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“Information is the resolution of uncertainty.”

Claude Elwood Shannon(1916-2001) - The father of Information Theory.
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Chapter 1

Context, Identified Problems, and
Work Plan

In this chapter, we introduce the context of our study: smart cities generate diverse
and large amounts of data through various data sources in the form of IoT devices,
cyber-physical systems, or full-fledged connected services. Capabilities extracted
from these data sources can be composed to build value-added services in multiple
domains.

In this chapter, we a) explain the context of this work through 3 examples of
smart city environments, b) briefly explain gaps in existing research efforts from
both: i) a knowledge perspective (SLRs and literature reviews) and an implemen-
tation perspective (weaknesses and gaps in existing capabilities composition frame-
works and platforms) the problem with existing composition platforms (a detailed
discussion is provided in the following chapters), and finally, we describe this
work’s plan to tackle gaps in the knowledge and implementation sides as well as
proposing a novel composition framework with implementations in various smart
city domains.

1.1 Context: Smart Cities: a source of diverse IoT and CPS
capabilities.

Smart cities in the current era provide a broad set of services targeting multiple
domains, including smart living, intelligent transportation, and intelligent health
(Check Figure 1.1). These intelligent services rely on connected IoT or CPS systems
which generate data that, when aggregated or composed, yields the possibility for
innovating services with added value to end users [240]. Furthermore, complex
IoT and CPS systems can also be decomposed -from a capability or computation
perspective- into atomic capabilities that can be reused or recycled in other systems
for cost-saving and computation efficiency purposes [14] [15].

The composition of IoT or CPS capabilities can either occur with one domain
(intra-domain) or between multiple domains (inter-domain). An example of
domains that can benefit from an inter-domain composition is smart buildings
with high air quality standards and extremely low noise levels. This specific
composition would require input from the transportation infrastructures nearby to
assess whether pollution or noise levels -caused by a specific density of vehicles
on nearby roads or highways- are below the stakeholders’ defined minimum
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thresholds [umair2021impact] [265].

In this work, we focus on compositions within a single, smart city domain and
leave inter-domain compositions for future work.

FIGURE 1.1: Smart cities leverage many systems and sensors (data
sources) to implement applications of interest in multiple domains,
including residential buildings, healthcare facilities, and transporta-

tion infrastructure.

We discuss efforts in three smart-city domains where the composition of IoT and
CPS capabilities was leveraged to innovate new services and applications based on
composable atomic features.

1.1.1 Smart Buildings

For smart living, multiple connected appliances and sensors provide a wide range
of services that ensure comfort or well-being. Examples of devices or sensors in-
clude temperature/humidity probes, noise and WiFi Signal Strength sensors, and
fire alarms, to mention a few. Examples of efforts that leveraged service composi-
tion in the smart building domain include [29], where the researchers focused on
automating service composition processes (discovery, selection, aggregation). An-
other service composition effort that focuses on smart building applications is high-
lighted in [169][171], where the authors proposed a composition platform -named
IoT Composer-which focuses on creating smart building services in a way that en-
sures ease of use for end users. Similarly, authors in [84] focused on automating
temperature and light management in smart buildings using ranking and filtering
blueprints or abstractions that are intelligible to end users. Finally, in [9], researchers
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addressed person detection as a smart composite feature in smart buildings while
enhancing the user-friendliness of the platform’s graphical user interface.

1.1.2 Smart Transportation Systems

Smart transportation services and sensors leverage IoT sensors and devices to in-
form drivers or autonomous vehicles about potential road hazards or weather/road
conditions which can impact people and property safety. When combined/com-
posed, data generated by all the IoT sensors can help provide a framework for safety
in transportation infrastructure for smart cities. Many research efforts discussed
service composition in the smart transportation domain, including [121], where
authors leveraged the UCEF environment to compose an autonomous driving
experiment to assess safety in an emergency braking scenario. Another example
is found in [196], where a platooning feature that enables cooperation during
adaptive cruise control for a series of vehicles is composed. Insurance companies
leverage service composition to predict insurance quotes based on sensor data and
predefined driving behaviors and thresholds; this was implemented in the DRA-
CENA composition platform [310]. Service composition in the smart transportation
domain is illustrated in other research efforts such as [264], where traffic congestion
at the city level leverages Node-RED’s distributed API to estimate traffic congestion
using data collected from traffic cameras. Similarly, researchers in [68] proposed an
estimator for parking, traffic, and noise using FIWARE’s composition capabilities;
these estimators are considered atomic capabilities that, when composed, provide a
modular open trip planner with reusable components. Finally, in [182] and [118], re-
searchers proposed a travel reservation composite service based on service-oriented
computing architectures or web-based architectures where users benefit from the
ease-of-use and plug-and-play automated features of the composition platform.

1.1.3 Smart Health Applications

Hospitals and Intensive Care Units (ICUs) can leverage data provided by sensors
that are either connected to patients or to smart medical devices to help improve pa-
tients’ health or help predict hospital occupancy based on patients’ health. Data ag-
gregated and composed from different sensors can be used to that end in a way that
renders care facilities more efficient and also helps track and improve the patients’
health. Many research efforts tackled the service composition role in smart health
applications. An example of such efforts includes [196], where a personal health
management service was conceived based on a distributed microservices platform,
with a focus on the privacy of patients’ data required for smart health applications.
Another example that addressed service composition in the smart health applica-
tions domain was identified in [26], where a cloud-based health monitoring system
was introduced which composes health/medical prescription based on the patient
data and the medical team input.

1.2 Identified Problems

Based on the research we have done, we identified two problems that this work
strives to add value and contribute to:
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I) The topic of IoT service composition still presents many scientific and tech-
nical gaps to be filled out. Based on a comprehensive study of existing research,
we classified these gaps under formal (e.g., how state space explosion in service
composition is addressed), technical (service decomposition categories and roles),
or QoS aspects (privacy, interoperability, and scalability challenges in service
composition).

After discussing gaps in SLRs and literature reviews in Chapter 3 Section (3.1),
15 formal, technical, and QoS questions were analyzed and addressed using the
systematic literature review approach in Chapter 4.

II) From an implementation and prototyping of composite capabilities perspec-
tive, the existing IoT or CPS composition frameworks and platforms either lack
composition foundations and guidelines, use complicated and non-human-readable
or non-composition-friendly semantics that isn’t accessible, or isn’t easily convert-
ible to specifications that can be automatically verified, which takes us to the 3rd
point which is formal verification, where we noticed in some frameworks the lack of
accessible and rapid formal verification mechanisms of the proposed composition
models, especially from a measurability perspective: making sure the composite
capability doesn’t yield unexpected results and respects user or stakeholder’s ex-
pectations is important when crafting and implementing novel services. We explain
these problems in detail in Chapter 3 Section (3.2), and based on a comparative
study in Chapter 5, a framework for composing novel smart city capabilities (ICCF)
is proposed to address all these concerns and gaps in existing frameworks, and a
platform (IoTCaP) for implementing the newly proposed framework foundations is
also presented.

1.3 Work Plan

To achieve the objectives of this work, we explained in this chapter (Chapter 1) the
context of the work and identified problems to be addressed.

In Chapter 2, we provide definitions -used throughout this work- and explana-
tions for the different components and operations related to IoT or CPS capabilities
composition and decomposition.

In Chapter 3, we present related work which identifies gaps in two research
areas:

a) SLRs and literature reviews, with the main objective of identifying
formal, technical, and QoS questions that, when answered, will strengthen the body
of knowledge related to service composition and decomposition in IoT and CPS.
Identified gaps will be addressed through the SLR methodology in Chapter 4.

b) Service composition frameworks and platforms, with the main objective
of identifying weaknesses in service composition foundations, semantics, and
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formal verification components. Identified gaps will be addressed by proposing a
new IoT and CPS Capabilities framework in Chapter 5.

In Chapter 4, we express formal, technical, and QoS questions through the gaps
identified in Chapter 3 Section (3.1); we answer those questions based on the SLR
methodology and primary studies obtained from trusted research databases.

In Chapter 5, we leverage gaps identified in Chapter (3.2) to propose a novel IoT
and CPS capabilities composition framework (ICCF). A comparative study is con-
ducted to determine the main pillars of ICCF, including foundations, semantics, and
formal verification techniques. An implementation and assessment platform that
we called IoTCaP is proposed to implement the ICCF pillars and help researchers
and engineers craft IoT and CPS capabilities in different domains of interest,
including smart buildings, smart transportation, and smart health environment
domains such as Intensive Care Units (ICU).

Chapter 6 leverages the ICCF foundations and the proposed IoTCaP service
composition platform -which implements the ICCF foundations- to propose,
describe, model, verify, implement, and assess smart cities composite capabilities in
three domains:

a) Well-being as a composite capability in the smart building domain.

b) Manoeuver Safety as a composite capability in the smart transportation
domain.

c) Health Improvement as a composite capability in the smart health
domain.

In Chapter 7, we summarize our work and highlight ongoing and future work.
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Chapter 2

Introduction

In the previous chapter, we defined the context of this work: smart city capabilities
in different domains can be composed -within the same domain or across multiple
domains- to create novel services or be decomposed for reuse purposes.

We explained the nature of the gaps we address in this work (knowledge gaps
and implementation/platforms gaps), and we summarized the work plan we
adopted to tackle those gaps.

In this chapter, we define jargon, concepts, and elements that will be instrumen-
tal in understanding the topic of IoT Capabilities Composition and Decomposition.
These concepts include capabilities in the context of IoT or CPS, classes of capa-
bilities from a measurability perspective, and composition and decomposition
functions. We leverage a layered architecture to better represent and understand the
definitions and concepts we introduced.

2.1 What’s IoT or CPS ?

According to [239], the Internet of things (IoT) refers to a network that connects var-
ious types of devices and services with the Internet via communication protocols
with the goal of conducting information exchange and communications to achieve
smart functions such as recognition, positioning, tracing, monitoring, and admin-
istration. An IoT device is typically a device that’s connected to the IoT network
or the Internet in a broad sense. On the other hand, Cyber-Physical Systems (CPS)
are -according to [50]- the next step into globally integrated software systems, as
they exhibit the result of combining embedded systems with cyberspace or the Inter-
net. Characteristics of Cyber-Physical Systems include support of real-world aware-
ness and access to global data and services by embedded systems. IoT and CPS can
be used interchangeably when discussing connected devices and services, and they
share a lot of characteristics and challenges, such as real-time constraints, functional
safety, security, dependability, and quality of service.

2.2 What’s an IoT capability ?

A capability of an Internet of Things (IoT) device [30], or a Cyber-Physical System
(CPS) -terms used interchangeably [110][53][124][241][143]- can represent a simple
feature, service, or measurement (temperature, humidity, pressure, etc.). IoT
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capabilities can also refer to full-fledged complex applications provided by one
or multiple devices interconnected at the network layer and orchestrated at the
application layer to generate a value-added feature, such as thermal comfort in a
smart building [267].

We define in the following sections capabilities categories and explain -using
a layered architecture- important concepts related to capabilities composition and
decomposition operations.

2.3 Capabilities Classification:

Capabilities can be classified into two categories based on how their features can be
measured.

i) Tangible capabilities: provide a quantitative metric, such as temperature
or round-trip time [287]. Tangible capabilities are usually a characteristic of ba-
sic/atomic services such as sensors or network probes. Keeping an open mind when
defining what an atomic or a composite service is, is necessary because some full-
fledged services and applications can be defined as atomic in the context of an even
more complex system.

ii) Abstract capabilities: are typically complex services not measured using tra-
ditional units. These abstract capabilities are recognized across multiple domains,
including smart cities (quality of life [45]), IoT infrastructures (scalability [5]), and
smart transportation systems (traffic jam prediction accuracy and driver risk level
[310]). Abstract capabilities measurements are often a user or programmer-defined
in a way that simplifies and makes their assessment intelligible.

2.4 Composition and Decomposition Functions:

IoT capabilities composition is the art of aggregating existing IoT capabilities in
order to come up with a novel service with added value [87], whereas decomposi-
tion aims to reuse a subset of the capabilities of a complex service or distribute its
computation [267]. A general diagram is provided in Figure 2.1, which shows how
IoT capabilities are modeled, composed, or decomposed.



2.4. Composition and Decomposition Functions: 9

FIGURE 2.1: An illustration of IoT capabilities modeling, composi-
tion, and decomposition functions

To formally explain the different concepts of the topic, let us consider the
example of IoT capabilities Ca1, Ca2, and Ca3 and two functions, C f , and D f , rep-
resenting IoT capabilities composition and decomposition functions, respectively.
Ca1, Ca2, . . . , Can the atomic capabilities that generate the composite capability
Cc. Cc can be considered atomic in the context of a service or an application with
a higher level of complexity. In [67], single-function components that are reusable
by other city services are packaged and published as standalone components or
atomic services, considered as single functional blocks that consume data and
implement a feature, such as managing, enriching, or filtering input, and are
similar to the concept of a microservice in terms of being a reusable, self-contained
piece of software targeting a specific task. In the same effort [67], eight atomic
services addressing smart city challenges in data analytics, evaluation, integration,
validation, and visualization were pointed out (parking data prediction atomic
service, traffic flow predictor; 2 atomic visualization services; 1 data elaboration
atomic service; and 3 data transformation atomic services). Functions performed
on atomic capabilities include the composition and decomposition functions C f
and D f , which can be synchronous [84], asynchronous [315], serial or sequential,
probabilistic or alternative, parallel, circular, or cyclic [29] [28]. The success of C f
and D f requires multiple processes, including computations, filtering, ranking,
composing, and verifying atomic and composite features [84].

Let us consider Figure 2.2: a1 and a2, two applications (e.g., hiking recommenda-
tion application and traffic condition application) that rely on a composite capability
Cc2 (e.g., Cc2 provides weather information necessary to decide whether or not to
travel/hike). Cc2 is a composition of multiple atomic capabilities(e.g., Ca3 provides
temperature information, Ca4 predicts precipitation, and Cak predicts the fog level).
Composition is a bottom-up process that leverages lower-level atomic capabilities to
build value-added capabilities that can be composed to create even more complex
capabilities or applications. Decomposition is a top-bottom process that analyzes
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existing composite capabilities components to determine reusable functions or dis-
tribute computation. Dotted lines in Figure 2.2 trace composition and decomposition
paths. Figure 2.3 and Figure 2.4 highlight a high-level, step-by-step approach to the
composition or decomposition of IoT/CPS capabilities.

2.5 A Layered model for IoT Capabilities Composition and
Decomposition

Researchers in [289] organized service composition into three layers: physical,
virtual object, and service composition. This model is representative of the composi-
tion/decomposition problem because it does not include networking complexities.
In [28], the authors based their composition survey on a layered architecture that
also considers network and application aspects. In [286], the proposed layered
approach, which represents the journey of a capability message, has three levels:
i) an information level where the message parameters and temporal scope are
defined; ii) a representation protocol level where the message is serialized as a JSON
object and made ready for composition by a composition engine; and iii) a session
layer where the composite capability is securely delivered to a client or service. A
smart home composition framework was proposed in [171] [169], which uses the
Majord’home platform as SDN middleware between the data plane layer, where
IoT sensors objects reside, and the service composition layer. Other layered models
for the composition and decomposition of IoT capabilities were discussed in [310]
[5][226].

Based on the aforementioned efforts, we proposed a layered architecture that
focuses on composition and decomposition operations (Figure 2.2), which illustrates
a layered, high-level, and hierarchical architecture within which devices, capabil-
ities, applications, and required functions to transition from one layer to another
-Modeling M f (turning devices capabilities into composition-ready objects or data
models), Composition C f , and Decomposition D f - are highlighted.

The bottom layer is the Devices, which provides raw and non-composition-
ready capabilities. The next layer is the Capability model or object layer, where
the atomic capabilities are composition-ready using different data models. The third
layer is the Composite Capabilities layer that incorporates value-added services
composed of aggregated capabilities. These composite capabilities are generated
using processes or engines that leverage composition-ready capabilities models to
aggregate atomic capabilities and provide novel and composite features which can
be further composed into more complex entities or Applications (e.g., a1, a2, ..., an
in Figure 2.1), which represent the fourth or upper layer. These applications can be
decomposed into less complex or atomic capabilities, or their computation can be
distributed across multiple nodes [14]. Composite capabilities can also be decom-
posed into atomic capabilities via decomposition processes.
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FIGURE 2.2: Modeling, composition, and decomposition layers and
functions

FIGURE 2.3: Composition of atomic services into composite services.

FIGURE 2.4: decomposition of composite services into atomic capa-
bilities.

In this chapter, we have introduced concepts related to the topic of IoT capabili-
ties composition and decomposition. In the next chapter, we provide related work
to identify:

a) Formal, Technical, and QoS Gaps in scientific questions within SLRs and
literature reviews. The goal is to discuss these gaps through the SLR methodology in
a way that adds to the body of knowledge and helps future readers, and researchers
better understand the topic of IoT and CPS service composition and decomposition
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b) Gaps in foundations, semantics, and formal verification techniques in ser-
vice composition frameworks and platforms. The goal is to propose a novel ser-
vice composition framework that fills out those gaps and enables the composition of
novel capabilities in different smart city domains.
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Chapter 3

State of the art and gaps in IoT
service composition SLRs, Surveys,
Frameworks, and Platforms

After introducing the definitions and concepts related to IoT capabilities service
composition and decomposition, we provide in this chapter the state-of-the-art
related to:

1) Systematic literature reviews and surveys: The goal is to find gaps in
SLRs and literature surveys and craft questions based on these gaps to be discussed
and answered through the SLR methodology in Chapter 4.

2) IoT and CPS capabilities composition frameworks and platforms: The
goal is to identify gaps in modeling foundations, including reference architectures,
formal and knowledge aspects, and propose a service composition framework that
will fill those gaps in Chapter 5.

3.1 Systematic Literature Reviews (SLRs) and Surveys: State
of the art and identified gaps

In this section, we discuss previous SLR studies and Literature reviews that
addressed an aspect or more of the topic of IoT capabilities composition and
decomposition. Based on the discussion of each SLR and literature review, we
revealed components for research questions (RQ) that received little to no attention
in previous efforts (see Table 3.1).

One major aspect that we identified as a lacking component in existing SLRs
and literature reviews is a general and comprehensive taxonomy that organizes the
different aspects related to IoT and CPS capabilities composition and decomposi-
tion. We consider this as one of the items we contributed to in this work.

We organized the different aspects related to studying service composition into
three aspects: Formal, Technical, and QoS. In Chapter 4, we explain in detail the rea-
sons behind adopting such taxonomy by comparing it against existing taxonomies.
.
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The topics discussed in previous SLRs and literature reviews will be discussed
according to the taxonomy proposed in Chapter 4, i.e., topics will be placed under
three buckets: Formal, Technical, and QoS.

Regarding the Formal aspect, many previous works tackled corresponding
sub-aspects, including IoT composition standards and frameworks [21][262][227],
composition algorithms (heuristic, meta-heuristic, exact, hybrid) [135], formal verifi-
cation tools, techniques, and properties verification such as correctness [271][270] or
security [129]. However, none of the SLR surveys addressed the motivation behind
native support for composition or decomposition guidelines and mechanisms by
standards, frameworks, and architectures (RQ1). In addition, previous SLR ques-
tions did not comprehensively explain the main properties of formal representations
in service composition from a modeling and formal verification perspective (RQ2).
Discussing recent formal trends in service composition, including the properties
type, formal modeling approaches, formal verification tools, and implementations,
lacks a comprehensive outlook (RQ3), and the question of state space explosion and
how it was tackled and to what extent it was solved was not discussed in previous
efforts (RQ4). We put service composition sub-aspects that relate to standards,
frameworks, architectures, and formal verification techniques and challenges under
the Formal aspect as they relate to the formalization, knowledge, background, and
foundations basics of the topic.

For the Technical aspect, the sub-aspects previously discussed in other SLRs
and literature reviews include service composition in the cloud [295], and industrial
environments [126], composition service types, attributes, domains of application
[132], composition planning and strategies [144] [162] [225], composition plat-
forms [262], and composition models, techniques, and tools [252][184]. However,
some Technical sub-aspects weren’t addressed, including stakeholders’ concerns
regarding service composition (RQ5). Similarly, no SLR question comprehensively
discussed the nature of composition platforms and how composition implementa-
tions differ within these different categories of platforms (RQ6). In addition, the
relationship between composition automation levels and composition process types
was not highlighted in previous SLRs (RQ7). Similarly, the role of communication
protocols in composing services at different layers of IoT environments needs
a discussion (RQ8). A comparative study of the different roles a data model
performs in service composition is also lacking (RQ9). From a measurability per-
spective, composite services typically reflect a metric that is difficult to assess using
conventional metrics, and this aspect also needs a discussion (RQ10). Similarly,
the decomposition of services for reuse or resource optimization has never been
surveyed (RQ11). Finally, the role of artificial intelligence and machine learning
(AI/ML) in capabilities composition, either in the composition process or the nature
of capabilities themselves, was not surveyed (RQ12).

Regarding the QoS aspect, different SLRs addressed key QoS questions under
different themes, including functional and non-functional properties. For example,
the availability of composite services was studied in surveys [271] [144] [126]. The
cost was studied in [271] [144] [126] [295], time-related QoS questions, including
execution time, response time, and latency, were addressed in [271] [295] [144]
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[126], reliability and reputation were both discussed in [144] [126], and scalability
was addressed in [295],[162],[126]. Unique QoS properties that were addressed
in SLR questions in previous surveys include performance parameters such as
completeness, distribution, dynamicity, level of automation, maturity, QoS aware-
ness [162], efficiency, and optimization [295], and security and throughput [144].
By looking at what was covered in previous SLR efforts as well as the existing
literature, we identified QoS questions that were not addressed previously; this
includes scalability challenges and solutions when composing capabilities in the
IoT or CPS space (RQ13). Although the authors in [28][162] discussed which
composition efforts provided high, low, or no scalability, they did not address the
challenges that face composition approaches to satisfy increased levels of scalability
(in terms of latency, computation, etc.). Similarly, in [271] and [126], ensuring a
high level of scalability while maintaining a low response time and low verification
cost are examples of scalability challenges for service composition that need to
be addressed. Another significant aspect that was not given a comprehensive
assessment was the interoperability challenges and solutions (RQ14). Different
efforts addressed specific areas of the interoperability question, which is the case
with SLR [132], which mentioned some interoperability challenges, including
differences in network protocols, data models, and service types. SLR [132] also
defines a fully interoperable composition as "service type heterogeneity." Similarly,
SLR [28] suggested open-source frameworks and a dynamic service composition
ensuring interoperability. SLR [271] addressed formal verification challenges related
to the interoperability of to-be-composed IoT capabilities. SLR [225] mentioned the
integration, selection, and discovery of services as challenges to interoperability.
By answering (RQ14), we provide a consolidated response to interoperability
challenges and solutions in one discussion. Finally, an aspect of crucial importance
in the age of data sharing is the privacy challenges and solutions when composing
services. Although many studies have addressed this concern from a composition
perspective [82] [192], none of the SLR surveys addressed privacy-related service
composition questions. We address this aspect in RQ15, try to understand how
different research efforts improve privacy in terms of service composition and
explain how new technologies, such as blockchain, can be leveraged to improve
privacy.

Table 3.1 aggregates SLR and literature reviews that tackled IoT and CPS capa-
bilities composition. We classified these efforts based on the survey type (SLR or
literature review), the year when the research was conducted, the topics covered in
the survey, the covered period of the study, and strengths as well as gaps in each
study that inspired the SLR questions in this work that we will discuss and answer
in Chapter 4.
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FIGURE 3.1: Distribution of previous SLRs questions per the pro-
posed taxonomy aspects and the SLR methodology.

3.2 Service Composition Frameworks and Platforms: State
of the art and identified gaps

After discussing surveys and systematic literature reviews in service composition,
as well as the gaps left by these studies, we address in this section the gaps in
service composition platforms and frameworks. We focus on gaps related to
composition foundations, modeling semantics, and formal verification aspects as
these components represent the initial phases of IoT or CPS capabilities service
composition, as they precede the deployment and implementation of composite
capabilities. Identifying gaps and weaknesses of existing IoT and CPS capabilities
composition frameworks and platforms would help in understanding the require-
ments for future composition frameworks and filling related constraints in terms
of accessibility to end users, developers, and city planners, as well as meeting
comprehensiveness and trustworthiness requirements.

Composing IoT or CPS capabilities in the smart city domain requires following
guidelines and best practices that satisfy different stakeholders’ concerns and
criteria. These concerns and criteria include making sure users, developers, or city
planners can easily craft composition models and translate their composition ideas
into a semantic model, which can later be semantically specified and verified for
potential implementation.

Examples of IoT and CPS frameworks or platforms for capabilities composition
include OneM2M environment [313]: it leverages the NIST CPS framework [112]
[113] [307] to define composition guidelines -including those relative to time
synchronization between atomic capabilities-.

The OneM2M environment can use the M2M semantics provided by the indus-
try segment that uses corresponding data. This makes its semantics domain-specific
[238]; a higher abstraction layer might be needed to simplify the rapid prototyping
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TABLE 3.1: Related work: Literature and SLR studies that tackled the
IoT/CPS capabilities composition topic.

Ref Type Year Topic Period Strengths ( ) and Gaps (x)

Our
SLR

Study
SLR 2022

Formal, Technical, and
QoS aspects of IoT
Capabilities
Composition and
Decomposition

2006-2022

( ) A new reference taxonomy based on Formal, Technical, and QoS aspects.
( ) Based on gaps in existing research, 15 formal, technical, and QoS questions were
identified and answered. (Check Table 4.1 for motivations behind each SLR ques-
tion).
(x) Check gaps in Chapter 4).

[28] SLR 2018
Functional and
non-functional service
composition properties

1993-2018

( ) Multiple formal, technical, and QoS sub-aspects addressed.
(x) QoS: Scalability challenges related to increased latency and computation burden
not addressed.
(x) QoS: privacy was considered a challenge and was left for future work.

[132] SLR 2019

Service composition in
interoperable and
heterogeneous
environments.

1992-2019

( ) Strong focus on service composition interoperability challenges in specific ser-
vice types (REST, SOAP, EOS).
(x) The SLR question does not answer how data and protocol interoperability chal-
lenges in service composition have been addressed or resolved in previous efforts.

[21] Literature
Review 2019

Composition types,
models, standards, and
QoS sub-aspects.

1996-2018
( ) A comparative study of service composition approaches.
(x) Doesn’t explain why composition foundations are fundamental when proposing
an IoT platform or composite service.

[271] SLR 2018
Formal verification role
in assessing service
composition correctness.

1999-2018
( ) Formal sub-aspects in service composition addressed.
(x) An SLR question to address the state space explosion problem in service compo-
sition is missing.

[295] SLR 2017 Cloud services
composition 2003-2017

( ) Focus on cloud composition technologies.
(x) Compositions at the Edge, Fog, SDN and simulation platforms were not ad-
dressed.

[129] Literature
Review 2020 Formal verification of

IoT protocols 1976-2020
( ) Focus on verifying the security of compositions and tools leveraged for this end.
(x) Missing challenges and solutions to the state space explosion problem when for-
mally verifying complex systems with a large state space.

[284] Literature
Review 2017

Interoperability
approaches in the IoT
application layer

2009-2016
( ) Application layer composition standards and frameworks compared
(x) Focus on interoperability aspects (properties, behavior, semantics, message, pro-
tocol.), but a discussion around solutions to interoperability challenges is missing.

[227] Literature
Review 2020

SOA Capabilities
composition and formal
specifications.

2003-2020
( ) Explaining the differences between SOA service composition languages.
(x) An architecture agnostic comparison cloud has been more comprehensive (SOA,
REST, ..).

[270] Literature
Review 2019

Formal verification
approaches for
composed IoT services.

2015-2019 ( ) IoT composite services correctness verification was the focus of the study.
(x) state space explosion issue concerns and solutions not addressed.

[252] Literature
Review 2021

Comparison of
enterprise service
composition models in
IoT

1992-2020
( ) Composition techniques, models, and tools were highlighted and compared.
(x) Formal sub-aspects and measurability/assessment of QoS metrics are not ad-
dressed.

[144] SLR 2015 QoS-aware web service
composition 2005-2015 ( ) A comprehensive study of QoS-Aware service composition algorithms (heuristic,

meta-heuristic, etc.)

[162] SLR 2022 Web service composition 1994-2021 ( ) Focus on Technical sub-aspects of web-service composition.
(x) Formal sub-aspects are missing.

[126] SLR 2022
Service composition
methods in cloud
manufacturing systems

2008-2021 ( ) Focus on Technical sub-aspects in composing cloud manufacturing capabilities.
(x) Formal and measurability aspects are missing.

[262] Literature
Review 2014 Web services

composition 1997-2014 ( ) A summary of standards, prototypes, and web-service composition platforms.
(x) Motivations for native support of composition by standards is missing

[184] Literature
Review 2015

Web services
composition tools and
techniques

1974-2015
( ) Overview of service composition techniques, technologies, and tools.
(x) Technical aspects, including the service decomposition role of AI/ML, are not
discussed.

[225] SLR 2021 QoS-Aware Service
Composition 2008-2020

( ) Focus on the technical and QoS aspects related to Hybrid meta-heuristic compo-
sition algorithms in SOA.
(x) Formal sub-aspects not covered.

of composition for different IoT and CPS domains.

Fiware [244] was coupled with the IoT-A framework, which supports IoT
capabilities composition and semantic specification using Business Process Model
and Notation (BPMN) 2.0; it also supports powerful features such as synchronous
and asynchronous compositions [40]. The BMPN semantics, however, make it
challenging to formally verify compositions as that involves converting the BPMN
notation to the Generic Property Specification Language (GPSL formal) specification
language, which can improve expressiveness but might add complexity, impact
performance or limit expressiveness when converting BMPN to a graphically
verifiable model such as Property Sequence Chart (PSC) [51].
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For the CIM (Context Information Management) environment [190], the founda-
tions for composition are provided by the CIM NGSI evolution framework; it uses
RDF (Resource Description Framework) to semantically describe the capabilities
of a system. RDF is a graph-based descriptive language; it can be converted to a
formally verifiable specification such as ShEx 2.0 (Shape expression schemas v2.0)
[48]. ShEx expressions can be used both to describe RDF and to automatically check
the conformance of RDF data; however, ShEx checks whether RDF data respects
the schema requirements as it is data-oriented, not composition function-oriented,
which makes it challenging to model checking the system features.

VITAL is another project that supports the IoT-A framework, W3C SSN seman-
tics, but recommendation on formal specification and verification languages and
tools to use are not the focus of the framework [157]. The same case for FogFlow
[63], an environment that leverages the NGSI framework for IoT capabilities
composition foundations and YAML as a capability descriptor.

AWS [226] is a commercial environment for cloud services; it leverages PlusCal
semantics [176] and TLA [175] formal specification techniques to verify the correct-
ness of properties such as fault tolerance in their storage services. Still, this benefit
didn’t cover functional capabilities of microservices in IoT composition solutions
such as GreenGrass [173].

mPlane [286][287] is a network measurement platform that comes baked with
service composition capabilities, objects, semantics, components, and operations.
The semantics of mPlane are particularly interesting from a service composition
standpoint as they are very natural to operations needed for discovering, requesting,
composing, and consuming composite capabilities. However, the mPlane platform
only mentions formal verification in the context of ensuring the safety of access
control (non-functional property) and doesn’t recommend formal verification tools
or techniques to make sure compositions are correct from a functional standpoint.

The NIST CPS Framework [112][113] does a great job of highlighting the
different requirements to think about when it comes to building new IoT or CPS ca-
pabilities, including detailed concerns related to composition aspects and concerns
(discoverability, reachability, complexity, and constructivity). However, The NIST
CPS framework doesn’t specify which semantics to use or which formal verification
techniques to adopt for building services as it stands as a reference for researchers
and engineers to keep in mind key aspects and concerns when building novel IoT
or CPS services or systems.

Table 3.2 summarizes the foundations, semantics, and formal verification
properties of the discussed composition frameworks and environments.

Based on studying the aforementioned frameworks and platforms, there’s a need
for an IoT and CPS capabilities platform that meets all the identified constraints and
fills all the identified gaps including:
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TABLE 3.2: Comparing existing IoT/CPS composition environments,
platforms, and frameworks

IoT service
composition

frameworks and
environments

Ref Composition Foundations and
Guidelines Modeling and Semantics Formal Verification Languages and

tools

OneM2M
environment [313][238]

• Leverages the NIST CPS
framework to define the
composition guidelines.

•M2M Domain-specific semantics
provided by the industry segment.

• Verification and validation
through implementation (Mobius)
(not formally verified)

Fiware [244] • Coupled with the IoT-A
framework

• Business Process Model and
Notation (BPMN) 2.0.

• BPMN converted to PSC for
formal verification.

IoT Architectural
Reference Model (IoT

ARM)
[40]

• IoT-A: The Service Organization
Functional Group (FG) implements
composition functions and
mechanisms.

• BPMN 2.0 • N/A.

Context Information
Management (CIM) [190] • Provided by the CIM NGSI

evolution framework

• RDF (Resource Description
Framework) is used to semantically
describe the capabilities of a
system.

• No formal verification. Data
validation using ShEx 2.0.

VITAL [157] • leverages IoT-A framework for
composition foundations. •W3C SSN • N/A.

FOGFLOW [63]
• NGSI framework for IoT
capabilities composition
foundations

• YAML • N/A.

AWS Microservices
and Storage (S3) load

balancing
[226] [173] • Follows Amazon Web Services

design recommendations.

• PLUSCAL is used to bridge the
gap between code semantics and
formal specifications to be verified

• TLA/TLA+ (from a functional
perspective, formal verification
wasn’t used in IoT microservices
functionality verification or in IoT
GreenGrass applications)

mPlane
Measurement

Platform

[79] [286]
[287]

• Describes components for
building a composition platform for
the measurement of network
performance (components include
clients, probes, supervisors and
reasoners, and repositories.).

•mPlane semantics are
composition friendly, with
operations geared towards
requesting capabilities and
returning results.

• highlights the importance of
leveraging formal specifications to
model and verify the safety of
access control mechanisms but
doesn’t provide examples or
recommendations for formal
specifications or tools.

NIST CPS
Framework [112][113]

• Provides complexity,
constructivity, reachability, and
discoverability guidelines for IoT
and CPS compositions.

• Doesn’t recommend specific
descriptors or semantics for service
description and modeling.

• Doesn’t recommend a specific
formal verification language or tool
but highlights the importance of
building verified and trustworthy
systems.

a) Comprehensive composition foundations and guidelines.

b) Expressive and composition-friendly semantics for modeling capabilities,
operations, and components involved when discovering, registering, aggregating,
and serving services to end users.

c) Support for a seamless transition from modeling semantics to formal
specifications and verification of composition operations before deployment.

d) An implementation platform that takes into consideration the identified
service composition guidelines (a), leverages the expressive semantics when crafting
code for novel capabilities composition (b), and allows the testing and assessment
of formally verified capabilities(c).

Figure 3.2 summarizes elements to consider when proposing a novel service
composition framework that should facilitate prototyping and verification of the
novel capabilities while respecting different stakeholders’ concerns and require-
ments from the conception phase to the deployment phase.
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3.3 Summary and takeaways from related work

In this chapter, we discussed related work and identified gaps in both:

i) Systematic literature reviews and surveys:

The takeaways concluded from Table 3.1 include i) a strong interest in an-
swering specific questions related to the topic (SLR surveys) compared to simply
summarizing aspects related to it (Literature reviews), ii) there is a strong interest in
the Technical aspect of the topic compared to Formal and QoS aspects and iii) the
topic of IoT capabilities composition and decomposition is still trending as it was
continuously discussed as early as 1992 until this year (2022) and still attracts the
interest and curiosity of researchers. To complete the related work analysis in this
section, SLR efforts investigated in Table 3.1 addressed a total of 41 SLR questions.
None of the research questions identified (RQs) have been addressed previously.
Figure 3.1 shows the distribution of the previous SLR questions based on the aspect
under which they fall. The questions related to the methodology were geared
toward the SLR methodology itself or were too general to organize under a specific
aspect.

ii) IoT or CPS capabilities composition frameworks and platforms.

To address the gaps in these frameworks and provide a robust framework
for the composition of IoT and CPS capabilities, an IoT and CPS Composition
Framework (ICCF) is proposed in Chapter 5. This framework leverages the
NIST CPS framework composition and trustworthiness recommendations, uses
strong semantics inspired by the mPlane protocol [286], and relies on the intuitive
PlusCAL/TLA/TLA+ package to prototype, formally specify, and model check
capabilities and assess their trustworthiness. None of the frameworks mentioned
above provides a complete set of powerful foundations, modeling semantics, and
formal verification techniques, which should facilitate prototyping, composing,
assessing, and verifying novel capabilities in the IoT or CPS space.

To address gaps in i) and ii):

In Chapter 4, we address the identified formal, technical, and QoS gaps in
surveys and systematic literature reviews (RQs) by discussing these gaps in-depth
and providing answers and discussions based on the systematic literature review
methodology.

In Chapter 5, we address identified gaps in service composition platforms and
frameworks by proposing a new IoT and CPS capabilities composition framework
that meets the foundations, semantics, and formal verification needs -required for
prototyping and implementing novel capabilities in the IoT and CPS space- while
respecting different stakeholders concerns.
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Chapter 4

Answering scientific questions
related to Formal, Technical, and
QoS aspects in service composition.

In Chapter 3 Section (3.1), we identified fifteen formal, technical, and QoS gap in
SLRs and surveys (RQ1 to RQ15). These gaps represent important questions that
when answered will enrich the body of knowledge related to the topic of IoT and
CPS capabilities composition and will help future researchers and engineers craft
and design comprehensive, trustworthy, and reliable services and composition
platforms.

In this chapter, we rely on the Systematic Literature Review (SLR) methodology
to address the identified gaps in Chapter 3 Section (3.1), to achieve this goal, we
follow the organization below :

Section (4.1) discusses the SLR research methodology based on which we
provide data and answers to the research questions. This discussion includes
the formulation of research questions, explaining the search process and the
inclusion/exclusion criteria, assessing the quality of data sources, highlighting the
limitations, data extraction and analysis approach, and the execution timeline of the
systematic literature review.

Section (4.2) includes two major components of the SLR conduced in this chapter:

i) Proposes a new taxonomy for the different aspects and sub-aspects of the
IoT and CPS capabilities composition and decomposition.

ii) Provides through tabulated data information from primary studies that
will be leveraged in discussing and answering the formal, technical, and QoS
questions. Each table is preceded by a discussion explaining the main elements of
the question and the components required for discussing it.

Section (4.3) Answers the identified SLR questions based on the aforementioned
primary studies, and highlights trends and gaps in primary studies as well as threats
to the validity of this SLR effort.

Section (4.4) Summarizes the SLR study and showcases its benefit to different
stakeholders.
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aspects in service composition.

Information, discussions , and answers presented in this chapter benefit curious
end-users of IoT systems as it explains the role of capabilities composition and
decomposition in building value-added services or reusing existing ones for re-
source optimization or cost reduction. For researchers, it answers critical questions
related to the topic’s formal, technical, and QoS sub-aspects and indicates the
corresponding trends and gaps.

Another benefit for answering SLR questions in this chapter is enriching the dis-
cussion around formal, technical, and QpS aspects for the proposed ICCF frame-
work discussed in Chapter 5 and improving its aspects and applications through
the discussions and answers provided.

4.1 SLR : Research Methodology

The SLR approach uses an objective research methodology to answer specific re-
search questions based on relevant papers on that topic. SLR reviews require exper-
tise in the domain of study, search in different databases, and require years to pro-
duce. However, literature reviews can use subjective research methods to summa-
rize topics using informal approaches. The SLR approach was deemed the most suit-
able for answering the identified gaps for its comprehensiveness and rigorousness.
The guidelines proposed by Kitchenham [165][166] were used, as well as guidelines
from the SLR studies in the related work for respecting the SLR methodology: i) for-
mulating the research questions based on the PICOC approach [103][49][277], and ii)
explaining the search process while highlighting inclusion and exclusion criteria, iii)
performing Quality assessment, iv) discussing the effort limitations, v) explaining
the data collection process, vi) explaining data analysis process, and vii) explaining
the execution timeline of the SLR.

4.1.1 Formulating the research questions

Based on the gaps and weaknesses of related work, formal (RQ1-RQ4),
technical(RQ5-RQ12), and QoS(RQ13-R15) questions -that were not addressed in
previous SLR efforts- were pointed out, and the list of these questions was elabo-
rated in Table 4.1 along with corresponding motivations.

4.1.2 Explaining the Search process and the Inclusion/Exclusion criteria

4.1.2.1 Explaining the search process

The research questions (RQs) in Table 4.1 and the corresponding taxonomy aspects
and sub-aspects presented in Figure 4.5 are the foundations of the SLR review
because they guide the search process by guaranteeing that the selection of primary
studies is directly related to the SLR research questions. The search process was
performed in 6 stages:
• In Stage 1, the SLR questions and the corresponding taxonomy aspects and
sub-aspects are identified.
• In Stage 2, the search databases, corresponding search string, and filtering
formula, are selected, as illustrated in Figure 4.1. The search string incorporated
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TABLE 4.1: Systematic literature review (SLR) questions (RQs) and
corresponding motivations.

Research Questions Motivations

RQ1: What is the motivation for native
support for IoT capabilities
composition/decomposition mechanisms by
standards, reference models/architectures
(RMAs), and frameworks?

• Service composition/decomposition platforms rely on different frameworks, standards, or reference
architectures that may -or not- support composition mechanisms and guidelines.
• Answering this question would encourage future standard groups to consider
composition/decomposition benefits during the research and writing phase and platform builders to
adopt standards or frameworks that keep composition and decomposition guidelines in mind during
the implementation.

RQ2: What are the main properties of formal
representations leveraged in service
composition?

• Explaining the role formal representations play in modeling and explaining composite capabilities
from functional and non-functional perspectives, and highlighting how formal representations can be
leveraged in verifying composite capabilities’ formal properties such as correctness.

RQ3: What are the current trends in formal
representations modeling and formal
verification?

• As there is a wide range of techniques and tools adopted for enabling formal specification and
studying different properties, the goal is to make researchers and engineers recognize these elements for
potential use in their research efforts or industrial applications.

RQ4: What are the different ways and how
effective formal verification techniques and
tools tackled the state-space explosion
problem in service composition?

•What motivates this question is informing researchers of the different solutions used to solve or
minimize the impact of the state space explosion on service composition verification, as the number of
states explodes with the complexity that comes with composing different atomic capabilities with a
wide range of values and states.

RQ5: What are the different stakeholders’
categories and concerns when it comes to
composing or consuming capabilities in
different domains?

• Different stakeholders deal with service composition challenges from their own perspectives.
Developers, Users, City Planners, and Researchers each have their own concerns and expectations.
Understanding these concerns from the get-go would help in addressing them and taking them into
consideration either while developing new platforms for composite services or when using these
solutions by end users.

RQ6: What are the technical differences in
capabilities composition implementation in
different platforms?

• Composing capabilities in the cloud differs from composing capabilities in the edge or the fog.
Responding to this question would enlighten researchers and engineers on which processes or services
should be implemented in which composition layer.

RQ7: What are the different composition
process types, and how do they differ in
terms of automation level?

• Service composition can be synchronous or asynchronous, rule-based, or programming-based, among
other process types. These process types are discussed in light of the automation level. Based on existing
literature, we check whether automating composition can be better performed under a particular
composition process type.

RQ8: What roles do communication
protocols play in composing or
decomposing IoT capabilities?

• Besides ensuring communication between different components involved in service composition, the
other roles communication protocols play -either in improving certain QoS properties or enabling some
other capabilities- are discussed.

RQ9: What are the roles of data models
leveraged in service composition and
decomposition?

• IoT data models differ in terms of expressiveness and complexity, among other properties. Leveraged
data models in service composition are highlighted as well as their roles in the context in which they
were leveraged. This will help developers make informed choices relative to capabilities data models
when building new capabilities in the IoT space.

RQ10: How are atomic or composite
capabilities quantified or measured?

• Composite capabilities typically lack conventional methods of measurement or assessment compared
with atomic capabilities. Answering this question would inspire and inform researchers about different
ways of assessing and measuring the performance or levels of composite capabilities.

RQ11: What are the benefits of building IoT
platforms and complex services with
decomposition in mind?

• Service composition has been extensively discussed in previous surveys and literature. However, to
the best of our knowledge, this is the only study that extensively addresses service decomposition. We
explain decomposition flavors and the benefits it brings (including reuse) when services are built with it
in mind.

RQ12: What role can AI/ML techniques
play in shaping or improving service
composition?

• To the best of our knowledge, this is the only survey to address the role of AI/ML in service
composition. Two ways in which AI/ML plays a role were identified: improving service composition
workflow components (e.g., service selection) or building services with AI/ML capabilities.

RQ13: What are the main scalability
challenges and solutions adopted when
composing IoT and CPS capabilities?

• Different Technical sub-aspects can either improve or hinder scalability when composing services.
Based on existing efforts, these challenges and solutions are revealed to help composite capabilities
stakeholders build and use features that scale.

RQ14: What are interoperability challenges
and solutions when composing capabilities
from heterogeneous environments?

• Composing capabilities requires interoperable data models, network APIs, and synchronized data,
among other requirements. Those requirements are exposed to inform IoT platforms builders of
interoperability considerations when it comes to composing novel IoT capabilities.

RQ15: What are the main privacy challenges
and solutions in service composition?

• Privacy is an end-user concern that is receiving increasing attention, especially with the advent of new
standards such as GDPR that impact how IoT systems should be built to address privacy [31]. We
identify privacy concerns in service composition as well as the role of new technologies or best practices,
such as the blockchain or regulations, in addressing these concerns.

initial inclusion and exclusion criteria.
• In Stage 3, we ran the SCOPUS search script, which focused on the title, abstract,
and manuscript keywords, which yielded 2805 manuscripts.
• In Stage 4, the search results from Stage 3 are narrowed by applying dif-
ferent filtering keywords in column Population from Table 4.2. For example,
QoS/privacy-related primary studies were extracted by adding different related
keywords (privacy, private, etc.) to the search string. Performing filtering on the
different aspects and sub-aspects resulted in 553 manuscripts. Although some
papers contained keywords related to the research questions, 503 manuscripts were
excluded as they did not sufficiently answer the SLR RQs, leaving only 50 primary
studies that substantially addressed one or more RQ in a specific paragraph or as
the main topic of the manuscript.
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aspects in service composition.

TABLE 4.2: Criteria, Primary Studies, and scope of the SLR:
Population, Intervention, Comparison, Outcome, Context (PICOC).

Criteria Primary Studies Population Intervention Comparison Outcome Context

RQ1 Check Table 4.3 Column Ref
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RQ2
Check Table 4.4 and Table

4.5 Column Ref
Formal : Formal
Representations

RQ3
Check Table 4.4 and Table

4.5 Column Ref

Formal : Formal Verification
Techniques, aspects,

applications, tools

RQ4 Check Table 4.6 Column Ref
Formal : State Space

Explosion

RQ5 Check Table 4.7 Column Ref Technical : Stakeholders

RQ6 Check Table 4.8 Column Ref
Technical :Composition

Platforms

RQ7 Check Table 4.9 Column Ref
Technical : Composition

Processes and Automation

RQ8
Check Table 4.10 Column

Ref
Technical : Communication

Protocols

RQ9
Check Table 4.11 Column

Ref
Technical : Data Models

RQ10 Check Table ?? Column Ref Technical : Measurability

RQ11
Check Table 4.12 Column

Ref
Technical : Decomposition

RQ12
Check Table 4.13 Column

Ref
Technical : AI/ML

RQ13
Check Table 4.14 Column

Ref
QoS : Scalability

RQ14
Check Table 4.15 Column

Ref
QoS : Interoperability

RQ15
Check Table 4.16 Column

Ref
QoS : Privacy

• In Stage 5, more relevant manuscripts were included using the forward and
backward snowballing techniques based on the 50 primary studies in Stage 4 to
find more answers to the research questions, which required reading the full text
of these publications instead of focusing on the abstract, title, or keywords, which
added 103 more manuscripts.
• In Stage 6, 29 additional manuscripts were included using a manual search in the
Google Scholar database for completion.

Figure 4.4 highlights the search stages: the 182 primary studies are highlighted in
the Ref column from Table 4.3 to 4.16, with some primary studies providing answers
to more than one RQ. The primary studies for each RQ are highlighted in Table 4.2
column Primary Studies. For more details about the selected primary studies, read-
ers can refer to [160], where we put together the list of primary studies, as well as
related information (year of publication, the source database, how each study was
extracted (Main Search, Snowballing, Manual), publisher, as well as its role in an-
swering a Research Question (RQ)). For the other referenced material in this chapter,
publications and links mentioned when introducing certain concepts, web sources,
and Git repositories are not counted as primary studies, but they are components for
explanation and completion.

4.1.2.2 Inclusion Criteria

From a content perspective, the inclusion criteria require:
• Relevance to the 15 formal, technical, and QoS research questions or the taxonomy
sub-aspects.
• The manuscript addresses an RQ or taxonomy sub-aspect as the main component
or at least in a specific section/paragraph.
• The manuscript exists in the SCOPUS or Google Scholar Database.
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4.1.2.3 Exclusion Criteria

• SCOPUS main search: non-peer-reviewed publications and document type limita-
tions: sources that are not Conference Papers (cp), Articles (ar), Book Chapters (ch),
or Books (bk).
• Google Scholar Manual Search: respected the same criteria as in the SCOPUS main
search while tolerating a few important technical reports.
• All databases: document Type limitations: MS or PhD dissertations, white papers,
SLR and Literature reviews, documents that are not in the field of Computer Science,
Engineering, or Mathematics, and manuscripts written in languages other than En-
glish.
• All databases: the full text of the candidate primary study does not provide suffi-
cient information to allow classification of the studied sub-aspect properties.
• All databases: for manuscripts selected manually or using snowballing, the full
text of the candidate primary study could not be obtained by contacting the authors
or other means.

FIGURE 4.1: Search Strings and filtering method.
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aspects in service composition.

FIGURE 4.2: Count of primary studies per year and per publisher.



4.1. SLR : Research Methodology 29

FIGURE 4.3: Distribution of primary studies per search method: Main
SCOPUS (MS), Snowballing SCOPUS (SS), Manual Google Scholar

(MGS).

FIGURE 4.4: Multi-stage selection process with the inclusion/exclu-
sion criteria
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aspects in service composition.

4.1.3 Quality assessment

The six steps followed in the research process were intended to ensure that only
relevant and high-quality manuscripts were selected as primary studies. Techniques
to ensure quality include full-text reading, forward and backward snowballing, and
manual selection of relevant papers that add value to the RQs answers. We were
inspired by the quality assessment elements proposed in IEEE Access SLR [225] to
ensure that the selected articles respect a minimum quality threshold of 75% of the
criteria below :

i) Validating the data source: Queried databases and journals are well-known
and trusted by the research community through indicators such as the impact factor.

ii) Relevance to the research domain (IoT and Cyber-physical Systems).
iii) Presence of substantial information: The sole presence of RQ keywords

doesn’t imply inclusion.
iv) Primary studies selected provide solid contributions that address the SLR

objectives.

To ensure that the SLR is inclusive, efforts that do not originate from well-known
-but genuine and trusted- publishers were included; only 16% of the primary
studies were obtained using a manual search on the Google Scholar database to
ensure that the majority of primary studies were systematically selected while
guaranteeing a level of quality and completeness by including manually selected -
and RQ relevant- manuscripts. Although important, the number of citations was
not taken into consideration as an exclusion criterion as that would discriminate
against high quality or newer publications that might have important data; the same
reasoning applies to the year of publication of the manuscripts, which could limit
the scope of the study with no concrete benefit. The resulting primary studies were
published between 2006 and 2022, with more than 70% being published between
2015 and 2022, and for each SLR question, the majority of primary studies that
address them span this period which would reveal the latest advances in the topic
and provide up-to-date answers to the identified SLR questions.

Figure 4.2 (A) shows the number of publications per year; this distribution
shows that more than 70% of scientific publications on this topic were published
after 2015; hence, the continued relevance of the topic in recent years.

Figure 4.2 (B) shows the count of primary studies publications per publisher,
primary studies from less-known publishers -representing 21% of primary studies-
to achieve a higher level of completeness and to account for the importance of
these studies, while 79% of the manuscripts were extracted from well-known pub-
lishers (ACM, ELSEVIER, IEEE, and SPRINGER) to guarantee a high level of quality.

Figure 4.3 (A) accounts for primary studies cited in more than one RQ and
shows the distribution of primary studies search methodology per RQ: Main (MS),
Snowballing (SS), Manual (MGS).

Figure 4.3 (B) highlights the percentage of the primary studies search methodol-
ogy: 84% of the primary studies were either obtained using the direct search string
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and filtering keywords or the snowballing technique, and all the results of the main
search or the snowballing search are indexed in the SCOPUS database.

4.1.4 Limitations

The limitations of this SLR are as follows:
• Not including manuscripts ruled out by exclusion criteria.
• Some formal, technical, and QoS sub-aspects (referred to in the taxonomy as Other
Formal, Other Technical, and Other QoS) are not discussed (out of scope)
• Databases queried (Only SCOPUS and Google Scholar).
• Some papers were not probably considered due to human error while generating
results using the search strings or while selecting papers.
•Although we strongly believe that we extensively covered the studied sub-aspects,
relevant papers after May 2022 might have been missed due to the consolidation
phase.

4.1.5 Data Extraction

Data in the Results section were extracted from 182 primary studies; the methods
used included filtering on the SCOPUS and Google Scholar databases. Keywords
leveraged for extraction include those related to research questions but also : (i) ti-
tle, (ii) names of authors, (iii) year of publication, (iv) Publication venue and related
quality index (v), and approaches, criteria, and parameters for each sub-aspect or
research question.
Extracted data were placed in tables by referencing the primary studies, as well as
other columns, to classify and compare the different studies based on each RQ re-
quirement. For accuracy purposes, the extracted data were reviewed by the main
author and agreed upon by the co-authors.

4.1.6 Analyzing Data

Answering the research questions of this SLR required analyzing tabulated data
resulting from data extraction and synthesizing their content based on the RQ re-
quirements and response elements. The main output of the analysis is exposing
techniques, constraints, solutions, and other aspects and properties that provide el-
ements for answering each RQ. All documents were subject to classifications in the
tabulated data for each RQ, and this classification was re-evaluated by all authors
for refinement.

4.1.7 Execution

This SLR was conducted in five incremental updates; the first execution was done
in April 2018 (yielded 61% of the 182 primary studies), the second in February 2020,
the third in June 2021, and the 4th in December 2021 after the reviewers’ feedback,
and the last update was performed on May 30th, 2022, with a full reevaluation of
the abstracts. After the last update, a re-evaluation of the primary studies identified
a total of 11 false exclusions, which were later included in the final result of 182
selected documents.
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4.2 SLR Results: Taxonomy and Surveyed Aspects Data

In this section, we 1) propose a taxonomy for the IoT capabilities composition and
decomposition topic based on the studied RQs, and we highlight the references cited
in this chapter, including primary studies. In subsection 2, we provide extracted data
for the Formal sub-aspects, which answers formal questions RQ1-RQ4. In subsection
3, the extracted data that would answer Technical questions RQ5-RQ12 is provided,
and finally, in subsection 4, we provide tabulated data for the QoS sub-aspects that
would help answer RQ questions RQ13-RQ15.

4.2.1 A Taxonomy of the SLR research questions aspects and sub-aspects
and extracted data distribution.

4.2.1.1 Taxonomy

Based on related work and experts opinion, the issues and research questions
addressed in this chapter/SLR study are organized based on three aspects: Formal
(RQ1-RQ4), Technical (RQ5-RQ12), and QoS (RQ13-RQ15). We were inspired by
previous SLRs on how they organized topics into taxonomies [132] [21] [295] [129]
[284] [144] [162] [126] [262], and we proposed in Figure 4.5 a taxonomy for the
IoT capabilities composition and decomposition topic (root), with an indication of
which sub-aspect relates to which research question. The taxonomy would help in
the search/filtering steps and guide the discussion and trend analysis. We believe
that the proposed taxonomy can be extended by researchers to become compre-
hensive (with the inclusion of the other formal, technical, and QoS sub-aspects not
discussed in this SLR) and can be leveraged by researchers to build a full picture of
service composition formal, technical, and QoS sub-aspects. The taxonomy’s three
aspects (leaves) and corresponding sub-aspects (sub-leaves) discussed in this SLR
are as follows:

•Formal Aspect: We include service composition-related standards, frameworks,
and reference architectures as well as formal verification -which includes formal
specification languages, formal verification techniques, and challenges-, under one
aspect as they all aim to provide knowledge and common ground for representing
or building a certain concept (composition algorithms fall under this aspect but are
not addressed in the SLR study). The Formal aspect of the taxonomy contains the
following RQs-related / sub-aspects: building composite capabilities based on a
certain standard, framework, or reference architecture (RQ1); highlighting formal
representations properties (RQ2); identifying trends related to formal verification of
capabilities composition or decomposition (RQ3); and studying formal verification
constraints (the state space explosion problem) (RQ4).
•Technical Aspect: represents sub-aspects including service composition domains
and stakeholders (RQ5), service composition platform nature (RQ6), service com-
position automation and process type (RQ7), communication protocols leveraged
in service composition (RQ8), capabilities data models (RQ9) and measurability
aspects (RQ10), the role service decomposition plays in distributing capabilities
or computation (RQ11), and the role of AI/ML in crafting novel services or im-
proving the service composition/decomposition process (RQ12). Other Technical
sub-aspects not discussed in this SLR include service discovery and selection.
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•QoS Aspect: The taxonomy adopted in this survey considers QoS as a full-fledged
aspect of the IoT capabilities composition and decomposition topic. One reason
is that, for example, as more capabilities are composed into value-added services
and applications, concerns such as privacy (RQ15) are of great concern because
composition formulas and preferences might give away stakeholders’ personal
preferences [99][285]. In addition to privacy, scalability (RQ13) and interoperability
(RQ14) are two QoS sub-aspects that we will address, as they relate to the identified
research questions.

As indicated above, some Formal (composition algorithms, etc.), Technical (ser-
vice selection, service discovery, etc.), and QoS (security, cost, energy efficiency, fault
tolerance, response time, etc.) sub-aspects are not discussed in this SLR as the main
topic or research question; they are represented in the taxonomy as "Other (Formal,
Technical, QoS) Aspects." These other sub-aspects were either sufficiently discussed
in the previous SLRs or were outside of the scope of this SLR. One goal of this SLR
study is to encourage researchers to use and be inspired by the proposed taxonomy
to build a comprehensive picture of IoT or CPS service composition and decompo-
sition.

FIGURE 4.5: Proposed Taxonomy for the IoT/CPS capabilities com-
position and decomposition topic (root): Aspects (leaves), Sub-

aspects (sub-leaves).

4.2.1.2 Manuscripts role and distribution

In the following subsections, tabulated results extracted from the primary studies
-related to the research questions presented earlier- are exposed including :

• 182 primary studies that met the inclusion/exclusion/filtering criteria as
highlighted in Figure 4.4. These primary studies are referenced in column Ref from
Table 4.3 to Table 4.16.
• 15 references were leveraged to explain certain aspects of the SLR methodology or
to introduce or explain certain topics.
• 32 references to GitHub repositories were cited to enrich the discussion around
certain composition platforms implementations and projects, formal verification
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tools, and source code. GitHub repositories also include [160], which contains extra
details about the primary studies leveraged in this SLR.
• 12 online references that point to certain IoT composition tools or formal verifica-
tion software.

The results of this SLR search are presented in the form of tables, which would
be instrumental in answering the SLR questions in the discussion section. The next
three subsections (2, 3, 5) contain data extracted for each aspect and sub-aspect men-
tioned in the taxonomy and relate to the SLR questions we seek to answer. Each
sub-aspect of the taxonomy is introduced, and we identify which data -or Table- an-
swers which RQ, while explaining the columns in the tabulated data and specifying
whether these tables provide answers to more than one RQ.

4.2.2 Formal Aspects

In this subsection, data related to the Formal sub-aspects of IoT/CPS capabilities
composition and decomposition are extracted to answer RQ1, RQ2, RQ3, and RQ4.

First, the standards, frameworks, and reference architectures supporting the
composition and decomposition concepts of IoT and CPS capabilities are addressed.
Next, the key characteristics and implementations of the algebraic and graphical
formal representations were analyzed. Formal verification techniques used to verify
composite services as well as tools and technologies that support such operations,
are presented. Finally, the state-space explosion was given special consideration,
with efforts and methods for solving this issue being discussed.

4.2.2.1 Standards, reference architectures, and frameworks

Standards, reference architectures, and frameworks provide foundations and
guidance for building IoT or CPS platforms while respecting and guaranteeing
certain aspects and constraints of interest to stakeholders. We list the different
IoT and CPS capabilities frameworks that provide guidance on how to build com-
position environments with some criteria in mind [244]. Frameworks, standards
and reference architectures that propose composition/decomposition guidelines
ensure that platforms built have certain beneficial properties (listed in column
Composition/Decomposition Enabled Properties in Table 4.3), which would serve
as a reason and motivation for the native support of composition/decomposition
guidelines.

Table 4.3 shows primary studies that addressed this sub-aspect, and its data will
be used to answer RQ1.

4.2.2.2 Composition algebras and formal representations

Algebra or formal representations can be used to shape algorithms for composition
and can be leveraged as formal specifications in formal verification tools for assess-
ing different properties of interest [135]. Formal descriptions of objects and their
interactions, leading to composing and decomposing IoT capabilities, are performed
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TABLE 4.3: Composition and decomposition aware standards, frame-
works, and reference architectures

Standards, frameworks,
architectures Ref Composition/Decomposition Enabled Properties

IoT Architecture (IoT-A) [244] • Native support for composition engines: FIWARE Functionality Groups (FG) & The Management FG.

Architecture Reference
Model (ARM) and Web
Ontology Language (OWL)
based Frameworks

[231]
[40]
[105]

• Compatible with hierarchical and distributed systems.
• Supports the conversion of OWL descriptors to Domain Specific Languages via different tools.
• Assimilate composition and decomposition mechanisms to programming paradigms: classes and subclasses.

On-The-Fly (OTF)
Computing Reference
Architecture

[146]
[145]
[155]
[133]
[123]

• Brings on-the-fly automatic service composition to IoT platforms.
• Simplifies composition rules regardless of platforms complexity.

NIST CPS Framework
[112]
[113]
[307]

• Defines service composition requirements in IoT and CPS environments.
• Supported composition requirements: adaptability, complexity, constructivity, service discoverability, and
selection.

Service-oriented service of
cloud manufacturing (CMfg)
CPS

[313] • Inherits the NIST CPS Framework properties and integrates them into the OneM2M platform.
• CMfg enables the composition of trustworthy and large-scale industrial cloud applications.

Internet of Smart City
Objects (ISCO) [266] • Performs service composition with SCOs that satisfy functional and qualitative requirements at runtime.

• Adaptable, flexible, and suits different composition contexts in a wide range of applications.

IoT and CPS Composition
Framework (ICCF) [120]

• Leverages the NIST CPS Framework composition guidelines.
• Exploits the mPlane semantics to describe composition operations.
• Relies on formal verification tools such as TLA+ to verify the composition models.

Web Service Decomposition
Architecture [283] • Enables computation decomposition of complex and computation-intensive services from the cloud to edge

nodes.

using algorithms that rely on the algebraic representations of objects and services.
Algebraic representations can also be derived from graphical representations using
conversion [115].

In this paragraph, data that would help partially answer RQ2 is extracted, that is,
recognizing the main properties of formal representations leveraged in service com-
position. Table 4.4 presents the efforts that have discussed formal representations
and composition algebra. The data extracted from Table 4.4 provides an idea of how
these formal representations are leveraged, whether graphical or algebraic in nature
and their important characteristics. For completion, a column for the source code
related to composition algebra was provided to help the researcher use and explore
implementations and use cases of these formal representations.

4.2.2.3 Service composition formal verification aspects

Formally verifying composed IoT services properties is a mechanism that aims
to verify the properties of atomic or composed IoT capabilities using models in
the format of formal specifications, and running these models in tools to verify
certain properties (deadlock freeness, correctness, fairness, etc.) [171]. The formal
verification process is performed after the capabilities specifications are sketched to
describe composed services using compatible composition algebra. The capabilities
of IoT objects are typically described using a data model. This model is then
converted into an algebraic language, which is translated into a formal specification
language supported by a formal verification tool. The formal specification is later
subject to a formal verification technique (model checking, equivalence checking,
theorem proving) to verify -using a formal verification technique - that a certain
property is met. The formal verification workflow for service composition is
illustrated in Figure 4.6.
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TABLE 4.4: Formal representations and composition algebras.

Algebraic or
Graphical

Representation
Ref Nature Description and relevant aspects Src Code

Iterative Weighted
Relaxation Service
Composition
(IWRSC)

[14] Hybrid • IWRSC algebra uses a directed graph for modeling services and operations
• IWRSC is used to model power consumption inefficiency in large-scale IoT environments. N/A

Real-Maude [84][177][32] Algebraic • Real-Maude is used to reason about real-time systems and interactions in terms of time.
• Real-Time Maude tool supports LTL model checking commands.

[20]
[137]

LOTOS/ LOTOS
New Technology
(LNT)

[171][169][316]
[219][59][269] Algebraic

• Algebraic modeling style of IoT objects, interactions, states, and actions.
• This simple modeling enables the verification of nondeterministic and concurrent
systems.

[7][6]
[207]

Temporal Logic of
Actions (TLA) /
PLUSCAL

[226][120] Algebraic •Model checking of composite services using TLA after PLUSCAL conversion.
• The TLA+ tool converts the PLUSCAL model to a TLA specification.

[185]
[279]

HTN-MLS
(Hierarchical Task
Planning for
Machine Learning
Services)

[221][220] Algebraic
• HTN-MLS is an algorithm for automated service composition applied to the area of ML.
• HTN-MLS recursively decomposes complex tasks into subtasks until only atomic tasks
remain.

[92]

Recursive
Composition
Algebra (RCA)
and interaction
graph (RCIG)

[245] [246] Hybrid

• RCA yields a directed tree with a root service representation which allows traceability of
services in distributed systems.
• RCA traces recursively services that compose a complex application in distributed
systems built as a tree-leaf-root model.

N/A

DX-MAN
(Distributed
X-MAN)

[24][25]
[22][23] Hybrid • DX-MAN is based on X-MAN, a component-based system modeling tool.

• DX-MAN is suited for specifying multi-workflow services during runtime. [75]

Markov Decision
Process(MDP) [189][258] Algebraic

•MDP is used on top of FSM and Probabilistic Computation Tree Logic(PCTL) to model
formal properties such as reliability and cost.
•MDP uses states, actions, and rewards concepts to model discrete-time stochastic
processes.

[78]

Finite State
Machine (FSM) [308][215] Algebraic

• FSM enables the modeling of composite system states and the transitions between these
states.
• FSM is especially suited for deterministic, interoperable, and complete systems.

[259]

Pi-Calculus [191][62] Algebraic • Pi-Calculus is a refined classical logic that provides a method for tracking resources.
• Linear logic is leveraged to represent non-functional attributes, including cost and price. N/A

Communicating
Sequential
Processes (CSP)

[312][319]
[181] Algebraic • CSP is a mathematical theory for specifying complex patterns during concurrent

interactions. [150]

Extended Control
Flow Graph
(XCFG)

[187] Graphical
• XCFG is an extension of CFG, which adds concurrency and synchronization dependency
to model workflows of composite web services.
• XCFG models BPEL workflows and ensures synchronization among concurrent activities.

N/A

Business Process
Model and
Notation (BPMN)

[35][296] Graphical • An Energy Efficiency Algorithm (E2C2) based on the BPMN graphic formalism was used
to model an event-based choreography of decoupled microservices compositions. [233]

Directed Acyclic
Graph (DAG) [179][314] Graphical • Compositions are modeled using the DAG as a chain of services invoked successively.

• The result of the execution of one service invokes the next one. [76]

Petri
Nets/Colored
Petri Nets (CPN)
with a Kripke
specification.

[115] Hybrid

• CPN is a concurrent (as opposed to single-threaded FSMs) model.
• CPN is converted into an algebraic specification (Kripke) to describe and model-check a
customer service system model.
• The Kripke specification is used to verify the reachability from and to other system states.

[151]

Vector Symbolic
Architecture
(VSA)

[264] Algebraic
• VSA enables the compression of large volumes of data into a fixed-size vector.
• VSA hierarchically models composite features which can be decomposed into atomic
vectors.

N/A

Calculus of
Communicating
Systems (CCS)

[89] Algebraic
• CCS includes primitives for describing parallel compositions.
• CCS preserves synchronization and parallelism properties when converted to an LTS.
• CCS evaluates the qualitative correctness of properties such as a deadlock or livelock.

[17]

Process Meta
Language
(PROMELA)

[65][282] Algebraic

• PROMELA was used in this example to model and check the properties of Advanced
Electric Power Grids such as noninterference.
• RT-SPIN tool checks the correctness of the PROMELA model and determines whether it
encounters the state space explosion problem.

[71]
[250]

GALLINA [237] Algebraic • Gallina, the specification language of Coq, was used to specify and prove distributed
services mathematical theories based on building blocks including axioms, functions, etc.

[140][139]
[320]

Intelligible
semi-automated
reasoning(Isar)

[275] Algebraic • Theorem proving of axioms using the proof language Isar within the Isabelle tool.
• Isar is known for its easy readability by humans and machines.

[141][54]
[305]

FIGURE 4.6: Formal verification of IoT/CPS capabilities workflow.
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In this paragraph, data that would help partially answer RQ3 is presented, that
is, recognizing formal verification techniques, applications, and tools leveraged in
service composition. This would also help in understanding the extent of use of
these techniques in research, service prototyping, or industrial applications. Table
4.5 aggregates primary studies that would contribute to answering this question; it
provides data related to formal verification techniques, the properties they address,
their domains of application, and the tool used to perform formal verification.

TABLE 4.5: Formal verification techniques (Model Checking: MC |
Equivalence Checking: EC | Theorem Proving: TP), verified proper-

ties, applications, and tools.

Ref Techniques Verified formal properties Applications Tool

[84] MC Deadlock Freeness + Unmatched Sent Messages Mozilla Project Things Smart Home application Maude

[171] MC Deadlocks+Livelocks+Safety+Liveness+Fairness Majord’Home: SDN-based Smart Home platform CADP

[169] MC Compatibility + Deadlock Freeness + Correctness Majord’Home: SDN-based Smart Home platform CADP

[226] MC Correctness Fault-tolerance checking and bug detection in AWS
systems TLA+

[313] TP Trustworthiness OneM2M NIST-CPS Framework requirements
verification. Mobius

[189][174] MC Reliability Probabilistic model checking formal properties of IoT
services PRISM

[170] MC Deadlock Freeness + Correctness Light control in Smart Homes CADP

[272] MC Correctness Service Composition in Multi-Cloud Environments NuSMV

[256] MC Safety Model checking safety and states of an air conditioner
system. CLEM

[104] TP Correctness + Reliability Multi-stage composition formulas in smart health
systems Coq

[154][275] TP Correctness + Security Privacy-Oriented Smart Health Application Isabelle

[242] MC + EC Realizability BPMN 2.0 Choreographies CADP

[254] EC Bisimulation An Intrusion detection system BPMN model specified via
LTS CADP

[42] MC + EC Deadlock Freeness + Liveness Sequence Diagrams and Pi-Calculus Comparison MWB

[232][237] TP Correctness CPS Designs Formal Verification Coq

[214] MC Compliance NetBill Communication Protocol CWB-NC

[65][282] MC Correctness+Deadlock Freeness+Liveness+Safety Formal verification applied to MQTT-CV/CPS
Applications SPIN

[216][163] MC Correctness+Reliability+Consistency+CompletenessBPEL Processes and events in Web Services Maude

[197] MC Correctness + Security Verifying IEEE 802.11i correctness and security
mechanisms UPPAAL

[4] MC Correctness + Reliability Online Ticket System represented as a Process Algebra MWB

[80] MC Correctness Online Book Purchase System CWB-NC

[2] MC Correctness E-Health CADP

[64] MC Compatibility Distributed Systems TLA+

[172] MC Liveness + Safety TLA+ Specification and Applications TLA+

[300] MC Correctness Hotel Room Reservation System TLA+

[101] MC + TP Correctness CADP Specification and Applications CADP

[222] MC Safety Cross Road Smart Transportation System UPPAAL

[3] MC Correctness Online Book Purchase System MWB

[83] MC + EC Reliability + Compatibility Addressing State Space Explosion in Petri-Nets services Multiple

[125] MC Security + Privacy + Reliability Formal verification of composed IoT Services properties CompoSec

[205] MC Correctness + Reliability Verifying a SysML Model after ACME/ARMANI
conversion AcmeStudio

[321] MC + TP Safety Model checking non-functional properties of software
systems. TLA+

[57] MC Correctness + Safety + Security Model checking functional/non-functional properties of
IoT. NuSMV

[74] MC Dependability Model Checking industrial CPS properties nuXmv
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4.2.2.4 State Space Explosion

As the number of state variables in the composite system increases, the size of the
system’s state space increases exponentially, which makes it challenging to formally
verify composed systems’ properties. This is called the "state explosion problem."
Much of the research on model checking over the past 30 years has involved
developing techniques to address this problem [70].

Any composite system can have a large number of states. The size of the state-
space of a composed IoT system tends to grow exponentially as a function of the
number of its capabilities, processes, and variables. The base of exponentiation de-
pends on the number of local states of a capability or a variable, and the number
of values a capability or variable may store [226]. State-space methods have moti-
vated researchers to efficiently reduce the number of states while remaining faithful
to system design.

Previous surveys did not give this topic the attention it deserves and classified it
as an open research problem [271].

Table 4.6 aggregates the efforts that tackled the problem of state space explosion
in service composition and based on which an answer for RQ4 will be provided, i.e.,
the different methods for resolution and the extent of success of such methods in
solving the state-space explosion problem in service composition.

TABLE 4.6: The state space explosion problem in service composition:
description, techniques for resolution, and outcomes.

Ref Description Resolution Techniques and remarks Outcome

[246] •Modeling and verification of composed IoT services
• Trace Merging in Recursive composition algebra (RCIG) partially
solved the state space explosion problem by reducing the order of the
(RCIG)

Reduced

[316] • Composite systems parallel model-checking and
property verification.

• CADP Evaluator: proven to prevent a state-space explosion by
enabling the detection of errors in systems with a large state space Eliminated

[219] • State-space explosion in IoT capabilities composition • CADP toolbox: breaks the verification process into simpler
verification problems Eliminated

[312] • FDR Models specification scalability • FDR2 specification proposed: yielded fewer states, thus
contributing to better scalability of the model Reduced

[187] • Shortcomings study (including state space explosion) of
BPEL and Petri Nets specifications of concurrent systems.

• Limiting the size of the specification is a proposed solution to the
state space explosion problem Reduced

[214] • GCTL introduced an improvement to the Computation
Tree Logic (CTL) specification language.

• CWB-NC model checker: alleviates the state explosion problem of
automata-based techniques.
• The space requirements for Boolean functions used in the symbolic
technique are exponentially smaller than those that use explicit
representation.
• The proposed technique cannot eliminate the state explosion
problem because the state space still increases when the model
becomes larger

Reduced

[300] • Composing and verifying TLA specified composite
services

• TLA’s model checker TLC: equipped with a multithreaded
concurrent verification mechanism that alleviates the state-space
explosion problem
• TLA+ tool allows offloading computation to AWS EC2 instances,
which provides more resources to alleviate the state space explosion
problem.

Reduced

[130]
[301]

• State-space explosion in model checking for service
composition models

•ML algorithms: applied to find the optimal service composition.
• For future work, prediction methods such as deep learning will be
leveraged to avoid the state-space explosion in model checking for
service composition models.

Reduced

[73] • Errors during microservice choreography composition
in Cyber-Physical Social Systems (CPSS)

• The asynchronous compositions increase exponentially with the
size of the simulator buffers.
• PAT Simulator: stops when the number of states exceeds the
simulator buffer.

Managed

[47]
• State-space explosion in cryptographic IoT protocols
• Specifications of these protocols are not described in
simple rules

• Proverif tool: its pi-calculus algorithms efficiently simplify the
protocol’s specifications (unification) Eliminated

[282]
• The state space of the model of a CPS (Smart Grid) was
large and could not be verified using the available
computation resources.

• The model was decomposed into multiple sub-models, each with a
smaller state space that can be checked individually. Reduced
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4.2.3 Technical Aspect

In this subsection, the Technical sub-aspects of the composition and decomposition
of IoT capabilities are discussed. Domains of application, stakeholders’ concerns,
and real-world implementations (e.g., AWS GreenGrass + Lambda [276][300][226])
or efforts that provide substantial code-base or interesting prototypes (e.g., MCC
Cloudlets [202]) were explored. IoT platforms for service composition and related
communication protocols, data models, schemas, and engines will be discussed. The
composition process types and automation, as well as the measurability of the novel
capabilities, are investigated. Novel Technical sub-aspects, including the decompo-
sition of capabilities and the use of AI/ML in composing smart services or improv-
ing the composition process, are key contributions of this subsection. This subsec-
tion provides data that answers the technical questions RQ5 to RQ12.

4.2.3.1 Domains and Stakeholders

The applications of IoT composition cover multiple domains, including cities, build-
ings, transportation, health, farming, and manufacturing [152][29][313]. Differ-
ent stakeholders have diverse expectations and requirements regarding building or
leveraging composite capabilities. These stakeholders include end-users[9], devel-
opers[310], and city managers[68], to mention a few. Table 4.7 aggregates the efforts
that addressed domains of applications of the capabilities composition or decompo-
sition and highlights the stakeholders’ interests in each domain for each use case.
Data in Table 4.7 are instrumental in answering RQ5, i.e., Understanding the major
stakeholders’ concerns regarding composing capabilities in different domains.

4.2.3.2 Composition platforms, engines, and implementations

Composition platforms addressed the composition and decomposition of IoT capa-
bilities at different complexity layers, including edge [202], fog[63], and cloud[272]
layers. The takeaway that can be concluded by studying composition and decom-
position in these layers is the fact that the complexity of a service increases when
its atomic capabilities are composed of edge devices, creating a fog service, or com-
posed of fog services to create cloud services. However, this same complexity can
overwhelm the upper layers, particularly the cloud layer [196]. Offloading computa-
tions through decomposition from the cloud nodes to the fog nodes or even to edge
devices can prove necessary to perform capabilities in the most computationally-
efficient manner. Table 4.8 classifies platforms based on the composition engine, the
nature of the platform (simulation, centralized, decentralized), as well as the com-
position layers targeted (edge, fog, cloud), and provides the reader with implemen-
tation details and source code references. The data in Table 4.8 were used to answer
RQ6, that is, understanding the technical differences in capabilities composition im-
plementation in different platforms.

4.2.3.3 Composition Process Type and automation level

The process type refers to how the composition is triggered or processed and what
its workflow looks like. Services can be composed in a serial [171], parallel [310],
rule-based [128], or folow-based fashion [221], among other process types. Compo-
sition is a complex process that involves several steps, including discovery, selection,
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TABLE 4.7: Capabilities composition domains and corresponding
stakeholders concerns.

Domain Ref Description/Application Stakeholders’ Concerns/Interests

Smart
Buildings

[29]
[169][171]
[84]

[9]

• Composed smart building services and scenarios.
• IoT Composer: smart building services composition.
• Automatic temperature/light management in a smart
building.

• Person detection in a smart room

• Users expect a highly automated composition process.
• Users require ease of use of the platform.
• Ranking and filtering facilitate the selection of
composition abstractions that are intelligible to users.
• User-friendliness of the platform’s GUI.

Environment
Monitoring

[308] • FSM model-driven service composition architecture for the
rapid prototyping of IoT services. Environment monitoring
stations were implemented using three types of wireless
sensor networks and deployed on a university campus.

• Developers and researchers can customize and quickly
prototype composite services. These stakeholders also
showed interest in cost reduction, reusability, and
cross-domain interoperability.

Smart Trans-
portation

[121]

[196]

[310]

[264]

[68]

[182][118]

• UCEF, a co-simulation environment, allows the
composition of features of complex systems such as
autonomous vehicles.
• A platooning feature is composed: a technique that enables
cooperation during adaptive cruise control for a series of
vehicles.

• Dracena was used to compose vehicle sensor data for
decision support and to predict insurance quotes based on
thresholds.
• Traffic congestion at the city level uses Node-RED for a
distributed implementation, with input from a traffic camera
API.
• An estimator for parking, traffic, and noise was composed
via FIWARE to provide an open trip planner.

• A travel booking/reservation composite service based on
service-oriented computing architectures or web-based
architectures.

• Assessing the trustworthiness of the functions of a CPS

• Road users expect improved safety and mobility.
Developers benefit from the time efficiency gained by
shifting from hardware and communication composition
complexity to the ease of microservices composition.
• Insurance companies use Dracena to generate custom,
fine-grained recommendations on insurance fees.
• Developers benefit from improved collaboration when
Migrating the Node-RED implementation from a
centralized to a decentralized paradigm.
• City planners seek cost optimization, thereby
encouraging developers to build modular designs for their
applications and identify reusable IoT services.
• Users benefit from the ease-of-use and plug-and-play
automated features of the composition platform.

Smart
Farming

[152] • Gaiasense offers novel, inexpensive composite smart
farming services by facilitating data interoperability for
smart-farming systems using techniques such as "Data
Interoperability Zone" and "Information Management
Adapter."

• Farmers’ interest lies in the zero cost of implementing
Gaiasense. Producers of farming systems benefit from the
reduced manufacturing cost. The environment also benefits
from systems cooperation as it can reduce fossil fuel
emissions.

Smart Cities

[63]

[294]

[67]

[281][135]
[58][16]

[240]

• Application: FogFlow-based anomaly detection of energy
consumption in a smart city.
• Adaptive service composition framework that supports
dynamic reasoning. This allows mobile users to perform
their daily tasks dynamically by integrating the services
available in their vicinity.
• Smart city services include human-centric mobility,
multimodal transport (parking, disabled people’s
navigation), and community policy applications (noise
monitoring, agile governance).
• Energy-efficient IoT service composition algorithms are
discussed with a focus on data sharing, fog-enabled, and
mobile-based IoT applications.

• Smart-city composition platforms are discussed along with
different impacted domains and design challenges.

• FogFlow’s model allows IoT service developers to
program elastic IoT services easily over the cloud or the
edge.
• End-users discover and investigate more composition
opportunities owing to the dynamic reasoning support of
wEASEL-based composite heterogeneous systems.

• Developers are interested in publishing atomic services
-leveraged by small companies to speed up composition- in
a one-stop-shop repository.

• Energy-optimized composite services -achieved by
adopting resource-efficient platforms (FSCA-EQ,..) and
efficient composition algorithms (CRIO,...)- are the main
concern for different stakeholders.
• Users are concerned about the composition platform
performance, environment friendliness, security, low cost,
and reliability.

Smart Health

[196] • IoT capabilities were re-conceived as a "microservice" in
contrast to the "thing" concept. This allows IoT to benefit
from features such as the distribution of services and service
discovery. The approach is illustrated in a personal health
management service.

• Developers access ready-to-compose distributed, and
secure microservices features using API Gateways. Users
benefit from the enforcement of access control to composite
microservices, which improves privacy protection for the
data owner required for smart health applications.

Smart/Cloud
Manufactur-

ing

[313]

[309]

[195][13]

[273]

• A large-scale composition platform for cloud
manufacturing is introduced by connecting multiple remote
factories and establishing a collaborative connection through
the cloud.
• QoS stability algorithms were proposed to minimize
supply chain manufacturing errors and, as a result, improve
the competitiveness of the manufacturing facility.
• The difference between traditional manufacturing and
service-oriented manufacturing was explained, and the
benefits of cloud services in enabling collaboration and
fault-tolerant composition of services between different
providers were highlighted.
• SOCRADES, a smart manufacturing architecture, is
presented. It relies on smart connected objects and tagged
raw materials to build services that enable agile
manufacturing of goods that accommodate customers’
needs.

• This composition paradigm uses the NIST CPS
framework to address the concerns of
trustworthiness/stakeholders’ (i.e., functional, human,
timing, interoperability, and intelligence).
• Users and developers requirements: QoS stability, service
collaboration, and service composition failures are
discussed within a cloud manufacturing application.
• Recommendation algorithms are proposed to allow
customers to compose products online based on their
concerns (time, cost, reliability, availability, and
throughput) in a fault-tolerant fashion.

• User-friendliness, ease of use, and customization are the
major user concerns related to the proposed smart
manufacturing composition platform.

filtering, composing, verifying, and delivering. Some of these steps can be auto-
mated or semi-automated (requiring the input of a user or another entity). Similarly,
each composition process has a set of tasks, each with a certain level of automation.
Different efforts have tackled the composition process type and automation level
independently: we try to find synergies and relationships between these two Tech-
nical sub-aspects. Table 4.9 highlights efforts that addressed composition process
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TABLE 4.8: Composition platforms, engines, and implementations.

Platform Ref Platform nature Composition Engine Implementation Details Src
Code

mPlane

[287] Microservices distributed as
nodes (Consumer, Producer,
Registry, Supervisor,
Reasoner)

The Supervisor aggregates the
lower-level capabilities into
higher-level capabilities.

Implementation is available in Python3 [95], or
NodeJS [86]. Requires a supervisor for composing
capabilities, a capability source, and a requesting
client. These client-server implementations can be
run through an IP architecture or over a CDN.

[86]
[95]

Fast IoT
Composi-

tion

[14] Distributed IoT services
composition platform based
on user-defined QoS
requirements

The Service Composition Process
composes atomic services based on
various QoS needs.

Implemented using Java under a Windows 7 OS,
and machine specifications were provided. No Git
repository or reference to code is provided.

N/A

IoT
Composer

[169] Web application with a GUI
for composing capabilities
and verifying their
correctness.

The Majord’Home platform and
the CADP correctness verifier.

Web application hosted on Apache Tomcat. API
uses jQuery and Semantic UI; calls are done using
the REST API, serializing JSON objects

[8]
[138]

FIWARE

[244] Open-source
decentralized/scalable IoT
platform for data
management and
composition of smart
applications.

The IoT Broker hosts the Entity
Composer Plugin that composes
services by aggregating attribute
values.

Using the FIWARE composition plugin (iotbroker,
entitycomposer) requires installing the IoT agent
and enabling the entity to be composed.

[94]
[93]

MCC
Cloudlets

[202] The platform provides
composition at the edge via
mobile devices, fog (virtual
representations), and the
cloud.

The Central Cloud composes
Virtual Device Representations at
the fog into applications

Networking between edge, fog, and cloud is
ensured by OpenStack. Linux and android
containers host virtual device representations
residing in the fog. The Src Code column points to
the platform’s UPPAAL model and to the UPPAAL
tool used for modeling.

[61]
[292]

IFTTT

[146] IFTTT is a cloud-based app
available on iOS and
Android. It provides access
to public and private APIs.

IFTTT sets responses for events,
connects to service providers, and
executes commands.

Install the application on a supporting device and
connect to APIs of interest. IFTTT applications
include remotely controlling devices when a
condition is met.

[136]

Home
Assistant

[308] Web-based home
automation software for
central control of smart
home devices.

Home Assistant Scripts, Scenes,
and Automations compose
services similar to IFTTT’s.

The home assistant software comes in different
flavors. The most stable one uses an always-on VM
that comes pre-installed and requires network
configuration only.

[97]

Node-RED

[264] Flow-based Web tool for
composing services and
connecting hardware and
software services.

JavaScript Functions are inserted
from a web interface to compose
capabilities.

Install Node-RED using npm. On the web
interface, drag and drop features from different
APIs. Integration with IBM Watson’s data analytics
tool is available.

[278]

UCEF
[121]
[251]

Simulation framework,
which provides tools for
creating simulations for CPS

Simulates a CPS via a federation: a
composition of federates that
interact via the HLA Protocol.

A template federation for a CPS is created using
WebGME. The capabilities of each federate are
populated using an IDE. ADS example in [121].

[161]

AWS
Greengrass

[276] A commercial cloud
solution that provides
various services, including
storage and computing.

Greengrass is a solution for
connecting and composing IoT
services using Lambda scripts.

Install AWS Greengrass dependencies, certificates,
and software for target devices. Leverage Lambda
scripts to automatically compose services.

[260]

Microsoft
Azure IoT

[318]
[183]

Microsoft cloud service for
building, testing, deploying,
and managing services.

Azure IoT Hub enables
bidirectional communications and
composition between IoT devices.

Setting up an Azure IoT hub requires an Azure
account, Azure portal, Azure IoT Tools, Azure
PowerShell, Azure CLI, Azure REST API, and
.NET templates.

[218]
[217]

Cloud
CAMP

[44] An open-source cloud
platform that automatically
delivers composite
applications in the cloud

Abstraction of Business Model,
Configurator, Enactor, and the
Knowledge Base

WebGME MDE is used to define the metaModel,
MongoDB is used to store the model, and MySQL
is used to store the knowledge base.

[18]

Vert.X

[304] Message-driven toolkit for
creating reactive, elastic,
resilient, and responsive
microservices

Composition functions
implemented within Vert. X
microservices.

Install Vert.X, and use its REST libraries (e.g.,
Axios) to connect to sources of data. The code
references a well-being application that uses the
Vert.X toolkit.

[159]

Thing Or-
chestration

[201] A composition platform
geared toward centralized
computing architectures
such as the cloud.

The Orchestrator is a central
component coordinating a
concurrent sequence of things to
call during composition at runtime.

Python scripts were used to model a centralized
architecture with a pool of resources with services
to be composed. No Git repository or a reference to
code is provided

N/A

MMESCN

[229] A service composition
Mechanism based on
collaborative Mobile Edge
Servers and Cache Nodes
(MMESCN).

Mobile Edge Servers (MES)
compose capabilities provided by
IoT devices. Cloud Center Nodes
take over when MES are not
capable enough.

Network Simulator 3 (NS3) tool is used to simulate
networks and edge or cloud composition nodes.
One cloud center node is connected to 8 mobile
edge servers. Each mobile edge server is connected
to 20 IoT devices.

N/A

types and the automation level as well as manifestations for each topic. Data in Ta-
ble 4.9 will be instrumental in answering RQ7, i.e., understanding how composition
processes differ in terms of the automation level.

4.2.3.4 Communication protocols in service composition

From a communication perspective, capabilities composition and decomposition
platforms adopt multiple communication paradigms and play different roles that
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aspects in service composition.

TABLE 4.9: Service composition process types and automation levels.

Composition
Process Type

Ref Process Manifestation Automation
Level

Automation Manifestation

Sync/Async
Support

[287] • The data and control flow within mPlane supports both
cyclic workflows in the “foreground” and
continuous/periodic measurements in the “background”.
•mPlane interfaces facilitate the flow of control messages
that trigger new measurements and data reception,
supporting both synchronous and asynchronous modes.

semi-
automatic

•mPlane is highly programmable and supports
component-initiated workflows (no client
interference required) and client-initiated
workflows.

Flow-based
and

Programming-
based

[14] • The composition flow requires rendering constrained
devices’ capabilities into virtual objects before the
composition and defining their QoS in a way that
contributes to either their selection or exclusion.
• An Iterative Weighted Relaxation Service Composition
(IWRSC) algorithm is proposed that allows users to
customize QoS parameters that contribute to the selection
of atomic capabilities participating in a composition.

semi-
automatic

• Composite services are realized as a succession
of tasks.
• Tasks represent abstract services that can be
realized by the best-fitting concrete service.
• The user decides on the fitness of a service based
on its QoS properties.
• QoS properties are either device-specific or
user-defined; hence, they are semi-automatic.

Asynchronous
or Parallel

[310] • Dracena compositions enabled the asynchronous and
cooperative use of large amounts of IoT data among
disparate services in real-time.

semi-
automatic

• The composition development environment
provides Kafka plugins that perform
compositions on basic and complex capabilities.
• It also provides service designers APIs to inject
hypotheses and verify output correctness.

Rule-based

[84] • Automated techniques for building compositions of
devices represented as abstract objects are proposed.
• Filtering and Ranking rule out non-desirable
compositions as the number of possible compositions is
high.

automatic • For the Node-RED deployment, human
intervention is only required to define the goal of
the composition. The other composition steps
were then automated.

Flow-Based

[46]

[264]

[157]

• Node-RED, WoTKit, and VITAL-OS are flow-based IoT
programming tools. In particular, Node-RED models
composition task logic as a directed flow chart that
consists of sequences of interconnected service nodes.
• Flow-based composition can be easily represented in
GUIs, which increases usability and provides more
intuitive user interaction.
•When it comes to complicated composition task logic,
flow-based composition tools cannot avoid introducing
additional programming.

automatic • The WotKit Processing Engine automates data
collection and processing using scripts.
• The VSA approach applied in Node-RED
enables automated service composition by
combining and self-describing services.
• VITAL-OS, an open-source operating system for
smart cities, aims to automate smart city services
in a three-phase process: infrastructure
deployment, deployment of vertical applications,
and deployment of city-wide integrated
applications.

Synchronous
or Serial or
Sequential

[171]

[169]

• Composition aims to connect various objects through
their APIs.
• The objects involved in a composition interact through
bindings in a synchronous manner.

automatic • IoT Composer graphically exposes the interfaces
of the selected objects and allows the user to bind
interfaces concerning the IoT service expected
from the composition.
• It is worth noting that only this first step of the
approach requires human intervention; all the
subsequent steps are fully automated.

Flow-based

[221]
[220]

•MLS-PLAN: a Machine learning services planner that
leverages an algorithm for automating machine learning
data classification.

automatic • The automated task composes an ML pipeline
(consisting of ML services) that maximizes
classification accuracy over new data from a data
source

Process or
Programming

Based

[308] • Programming or process-based composition is the most
widely used method in which the business logic of the
service is composed mainly by manual programming or
using scripts.
• This method adopts either traditional programming
languages or domain-specific languages.

semi-
automatic

• This method allows the encapsulation of
heterogeneous sensors, actuators, and IoT devices
into composable Web services with uniform
model-driven,user-customizable, semi-automatic
compositions

Rule-Based

[128]
[293]

• In openHAB 2 and IFTTT, rules are usually predefined
and represented as events, conditions, formulas, or
symbolic logic.
•Whenever a rule is met during runtime, the
corresponding operation is automatically triggered.

automatic • IFTTT and openHAB only require setting up
simple rules via a GUI that trigger events in the
context of home automation. This approach is
deemed automatic owing to its GUI accessibility
and low complexity level.

vary depending on the context and other factors, including power consumption
[289] or the environment type (production[169], simulation[251], ..), among other
factors. Table 4.10 presents primary studies that tackled the communication proto-
cols in service composition, their use cases, and their workflows. Table 4.10 data
will be leveraged to answer RQ8, i.e., the role communication protocols play in the
composition or decomposition of IoT/CPS capabilities.

4.2.3.5 Data Models or Schemas

The capability extracted from a device must be properly represented using a data
model or schema to facilitate composition or decomposition. Efforts that tackle IoT
capabilities composition typically tend to use data models based on known formats
such as JSON, XML flavors, WSDL, HTML, and other options to represent IoT ca-
pabilities [248]. Device characteristics are described through ontologies that provide
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TABLE 4.10: Communication protocols roles in IoT/CPS service com-
position/decomposition.

Communication
Protocol Protocol description Ref Protocol Use case / Workflow

mPlane Protocol

•mPlane refers to a protocol in
which entities request, receive,
compose, and store data by
leveraging multiple components.

[287] • This example leverages mPlane as a measurement platform. Specifications are
sent by a consumer to request measurements from probes capabilities.

Representational
state

transfer
(REST/HTTP)

• A software architectural style that
guides the design and development
of web services

[45]

[315]

[149]

• RESTful communication technologies are used to connect the IoT server proxy
to both the smart city controller (using HTTP) and the Smart Service Provider
(using CoAP).
• A solution for composing asynchronous RESTful web services, making use of
various IoT services, invoking the RESTful web services from the IoT, and
publishing a BPEL process as a RESTful web service by extending BPEL.
• The proposed composition platform enables transparent access to
heterogeneous IoT networks -including CoAP- using "interworking" proxies to
the HTTP protocol.

multicast DNS
protocol (mDNS)

•mDNS resolves hostnames to IP
addresses within small networks
that do not include a local name
server.

[84] •mDNS is used to enable the discoverability of IoT devices.

Constrained
Application

Protocol (CoAP)

• An internet application protocol
(RFC 7252) that enables
communication between
constrained devices.

[289] • SVOM (Service and Virtual Objects Management system) is introduced with a
CoAP-based fault management component that captures the status of the
registered devices and services.

Software-Defined
Networks (SDN)

• A network management
technology that enables dynamic,
programmable, and efficient
network configuration.

[169]

[313]

•Majord’Home leverages a software-defined LAN (SD-LAN) for its simplified
interfaces required for network configuration of IoT services involving multiple
smart environments.
• A testbed based on SDN is constructed for experimental verification in a
flexible network configuration with Mininet as an emulator for configuring and
deploying virtual devices

Simple Object Access
Protocol (SOAP)

• A messaging protocol
specification that enables the
exchange of structured data in web
services

[312]

[88]

• The service requester and service provider exchange data using SOAP service
request and response messages.
• Genetic algorithms and case-based reasoning are leveraged to define
automatic composition workflows in SOA and select suitable atomic services
based on select QoS requirements.

Message Queuing
Telemetry Transport

(MQTT)

• A lightweight, publish-subscribe
network protocol that transports
messages between devices and
usually runs over TCP/IP.

[63]

[128]

• Fogflow’s NGSI-based context management system provides a global view for
all system components, enables querying, subscribing, and updating context
entities, and supports MQTT pub-sub message brokers such as Mosquitto and
Apache Kafka.
•MQTT is used as middleware for its pub/sub-broker, which runs on top of a
TCP/IP network for the openHAB automated home system.

High-Level
Architecture (HLA)

• A standard for the distributed
simulation used when building a
simulation for a larger purpose by
combining several simulations

[251]
[121]

• HLA is used as a medium for exchanging data between federates composing
CPS in UCEF simulations.

WebSocket

• A communications protocol
capable of bidirectional
communications over a single TCP
connection (RFC 6455).

[304] • Netty is compared with other WebSocket frameworks, including Undertow,
Vert.X, Grizzly, and Jetty, to decide which situations each framework ought to
be used for.

Named Data
Networks (NDN)

• Named Data Networks (NDN) is
an Information-Centric Networking
(ICN) protocol that is seen as an
alternative to TCP/IP.

[302]

[164]

• NDN provides the benefit of node caching and service decomposability by
tracing back its interest requests.
• Improving NDN’s high-speed forwarding capabilities using NDN-DPDK
techniques offers faster forwarding speeds than known IP protocols. These
benefits can be extended to other applications, such as IoT communications
capabilities.

Wireless Sensor
Networks (WSNs)

•Wireless sensor networks are
dispersed sensors that track
physical environment data and
forward it to a central location.

[224]

[117]

• Principles of the WSNs and SOA are exploited to enable energy-efficient
composition features in the Networks On a Chip (NOC) paradigm.
•WSNs and smart connected devices (IoT devices) are leveraged to develop
new applications in a specific domain using the concept of “mashup”
architectures or user-generated composite applications.

GS1 EPCglobal

• A set of protocols (RFID, GDSN)
and standards (EPCglobal) that
facilitate data exchange between
different stakeholders in the supply
chain domain.

[107] • An EPCglobal-compliant IoT Middleware (Fosstrac) was used to validate a
proposed IoT Infrastructure model which uses the Application Level Events
(ALE) and the Electronic Product Code Information Services (EPCIS)
components of the EPCglobal standard to support service decomposition,
multi-threading, elasticity, and cloud virtualization capabilities.

a shared vocabulary to model different objects and concepts and their relationships
[10]. Table 4.11 presents these efforts, and based on the results obtained from it
RQ9 is answered, i.e., understanding the roles of the different IoT data models and
schemas leveraged in capabilities composition or decomposition.

’;’

4.2.3.6 Decomposition

The decomposition of IoT services and capabilities is the process of deconstructing
a complex service into small services or atomic capabilities [15][283]. This process



44
Chapter 4. Answering scientific questions related to Formal, Technical, and QoS

aspects in service composition.

TABLE 4.11: Capabilities data models/schemas properties, roles, and
examples of attributes.

Data model/schema Ref Data model/schema role Examples of data models
attributes

XML [286]
[190]
[317]

• XML was used in mPlane for integration with XML-based systems.
• RDF/XML provides APIs for backward compatibility with other
platforms.
• Describing and discovering services from different Wireless Sensor
Networks (WSN) nodes and networks using XML and SOAP standards.

RDF/XML schema attributes:
rdf:statement;
rdf:subject;
rdf:predicate; rdf:object

WSDL [246][234][156] •WSDL is used with SOAP and XML schemas to describe web services
through a document that lacks implementation details and logic, which is
why WSDL is limited to modeling and not formally verifying operations.

WSDL schema parameters:
Port Type; Operation;
input; output

JSON-based schemas:
JSON
JSON-WoT
mPlane-JSON
JSON for linking data
(JSON-LD)

[171] [169]
[100]

[84]

[286]

[190]

[264]

• The JSON schema represents the objects, the bindings, steps, and strength
of the bindings and the composition plan.
• The JSON-Web of Things schema is used to describe IoT objects’
capabilities and also the IFTTT rules that describe the synchronous
compositions.
• The mPlane reference architecture leveraged JSON as the default schema
for its simplicity, parseability, and efficiency.
• For the evolution of context information representation, JSON-LD
provides more powerful options and is designed to be easily integrated into
the existing Context Information Management (CIM) platforms.
• JSON is used for a service description of the Node-RED object detectors.
JSON service descriptions were later converted into semantically
comparable service vector descriptions.

mPlane capability Attributes in
the JSON schema:
parameters
start: now...+inf
end: now...+inf
source.ip4: 192.0.2.3
destination.ip4:
octets.count: 28...65535
period.s:

YAML [286] • YAML’s main use cases for the mPlane platform include documenting
and debugging for its improved human readability and writability.

YAML’s schema attributes :
template; interfaceMap;
activeTimeout;
maxFlows;
silkCompatible; ...

HSML/HTML [308] • HSML is a domain-specific language with HTML-like syntax for
describing the state of an IoT service and the state transfer chain between
services.

HSML Schema Attributes :
loc (x,y), id, src
(ip,protocol)
type , filter

OWL-based schemas:
OWL-S
OWLS-TC4

[300] [85]

[303]

[294]

• OWL-S documents describe services in terms of predefined upper
ontology, such as service profiles, grounding, and processes. A formal TLA
specification is defined based on the OWL-S description.
• IoT services are defined as a subclass of the service class defined in
OWL-S. An IoT Service has a Service Profile and a Process that describes its
functional and nonfunctional properties (inherited from the OWL-S Service
class).
• OWLS-TC4 was used as a data model to create composite services in the
context of smart cities. Authors argued that data models such as OWL-S
provide simple capability aggregation mechanisms for non-complex
compositions.

OWL-S Service schema
attributes:
service name,
port types,
service operations,
input message,
output message,
implementation descriptions

WoTDL [230] • The Web of Things Description Language (WoTDL) ontology is an
alternative to existing WoT models such as OWL-S and WSDL, which are
not suitable for describing AI planning concepts for automatic WoT
composition.

WoTDL schema attributes:
hasActuator; hasSensor;
name; hasMeasurement;
hasPreCondition;
hasActuation; hasEffect

BPEL-based schemas:
BPEL
WS-BPEL
BPEL-TC

[280]

[199][200]

[208]

[72]

•WS-BPEL is assimilated to UML as it allows the description of services
and enables the description and execution of composite services.
• Composite services based on WS-BPEL were tested under load in a
travel-agency composition prototype.
• BPEL-TC is an adaptation of WS-BPEL that accommodates composition
and decomposition requirements for temporally customized web services.
• BPEL process models are transformed into composite executable service
templates after three steps (template creation, composition, and
installation.)

BPEL schema attributes:
Travel Request; Invoke FS;
resp FS; type input;
Travel Response;
Type output

Semantic Sensor
Network (SSN)

[38] • The SSN ontology (part of the W3C Semantic Sensor Networks Incubator
Group) represents context information for sensor devices, including
deployment attributes.

SSN schema attributes :
available battery,
deployment attributes,
location, time

contributes to cost-efficiency, scalability, and interoperability between IoT systems
when complex services are built with decomposability in mind. Based on the re-
search we performed, decomposition efforts are either i) capability oriented: which
means a complex feature is decomposed into sub-features or atomic capabilities
for reuse by other systems, or ii) computation oriented: a complex service might
run in the cloud and consume more resources than allowed by a single service,
decomposing computation allows its distribution on fog or edge devices in a way
that renders resource consumption more efficient.

Decomposition is challenging, because the building blocks of complex services
might not be easily decomposable, especially when their APIs lack loose coupling
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support [196]. Decomposition also comes with nonfunctional challenges such as
scalability, frequency of data generation, and security requirements. Table 4.12
aggregates service decomposition primary studies, and the data it contains will be
leveraged to answer RQ11. i.e., exposing the benefits of building IoT platforms and
complex services with decomposition in mind.

TABLE 4.12: Service decomposition efforts description and benefits

Ref Platform Decomposition Description Decomposition
Topic Decomposition Benefit

[14]
Energy-efficient
and fast IoT
service composition

• Relaxation is a technique used to improve the flexibility
and scalability of service composition.
• Relaxation decomposes users’ requirements and QoS
constraints into local constraints of services.

Capability
• Decomposition points to
energy-efficient atomic capabilities that
compose energy-efficient services.

[15]
FOG-IoT and
Linked-
Microservices

• Linked microservices are built with decomposition in
mind, contributing to the computation across different
computing nodes in the IoT architecture and benefiting
from fog and SOA strengths.

Computation • Congestion reduced by (70%) at the
cloud.

[308]

FSM model-driven
service composition
and decomposition
architecture

• From a machine state perspective, composing or
decomposing IoT devices can be described as building or
breaking the linkage of states between FSMs.

Capability • Reusability of FSM model-driven
services.

[264] Node-RED/VSA

• The proposed scheme converts existing Node-RED
microservices into a cooperating set of decomposed and
decentralized proxies.
• These proxies are instantiated into the CORE
environment by adding a cognitively aware wrapper
around each service to facilitate decentralized discovery
and execution.

Capability
• Decomposition decentralizes services
and improves collaboration between
capabilities.

[196] Microservices-based
IoT platform

• Containers leveraged in microservices to enhance safe
service decomposition and enhance the security of IoT
infrastructure.
• Desirable characteristics of microservice-based systems
include the decomposition of larger services into small,
focused, self-contained services with loose coupling.

Capability

• The loose coupling allows fast
decomposition and, as a result, faster
reuse of existing capabilities for further
compositions

[302]

Named Functions
Networks
Computation
Service
Management
(NFN CS-Man)

• Decomposition is built into the information request of
the NDN IoT network model.
• Sending a request (interest) is later subject to
decomposition to sub-interests, each requesting an aspect
of the composite service.

Capability

• Interests retrieve cached capabilities
from a nearby cache.
• Traceability of atomic capabilities by
checking the interests in the Pending
Interest Table (PIT).

[267] iKaaS functional
decomposition

• Each simple service runs in its process and
communicates using lightweight mechanisms.
• The overall high-level service logic is decomposed into
multiple software modules, delivered as independent
runtime services.

Capability

• Service functional decomposition
ensures agile, autonomous, flexible, and
scalable services.

[81]
Fog-IoT
ORchestrator
(FITOR)

• Decomposition of application computation (CPU,
memory y) on different nodes is performed e using
optimized fog service provisioning g (O-FSP)

Computation • Resources/cost optimization.
• Stakeholder acceptance

[107] EPCES-ALE

• Service decomposition is considered one of the pillars for
a "Future IoT Infrastructure" along with virtualization and
multi-threading in order to distribute computation
optimally.

Computation • Computation optimization

[198] Hierarchical IoT
• A middle-layer service can be decomposed into
sub-services which can be integrated to complete the
pieces of another service with higher complexity.

Capability • Reusing atomic capabilities from a
complex service into another service

[37]

Decomposing
monoliths into
smaller
microservices
using
domain-driven
design (DDD)

• For monolithic software systems with a complex domain,
decomposition faces many challenges, including the low
comprehensibility of its source code.
• Add to these challenges that every change in the system
needs a whole redeployment, and all parts of the system
are not equal in terms of change frequency.
• DDD is a good option for the initial decomposition of a
system as it can be applied to a subdomain to decompose
it into smaller chunks.

Capability
• DDD ensures reusability through the
decomposition of small chunks of a
system.

4.2.3.7 AI/ML

Researchers have addressed AI and ML use in service composition from two per-
spectives. The first perspective is capability-oriented [67], where the AI/ML capabil-
ities are aggregated into value-added features with AI/ML capabilities. The second
perspective is process-oriented [221]: AI and ML improve the composition process,
especially service selection, where filtering criteria are considered for picking a par-
ticular capability over another. Table 4.13 illustrates the primary studies related to
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IoT capabilities composition that tapped into the AI/ML potential, and based on the
data it presents RQ12 is answered, i.e., understanding the role AI/ML techniques
play in shaping novel capabilities or improving the composition process.

TABLE 4.13: AI/ML use in service composition/decomposition: de-
scription of efforts, orientation, applications, and mechanisms.

Ref Description Orientation AI/ML applications and mechanisms

[67]

Using AI/ML atomic service to
compose intelligent and complex
capabilities in the smart-city domain
(EU’s SynchronyCity project).

Capability

• Composing ML complex capabilities, including parking area availability, traffic flow,
and noise level predictions based on time-series data.
• These complex capabilities will be used as atomic capabilities to build smarter and
cross-city applications

[15]

Facial recognition service that is
composed of ML tasks, including
facial feature extraction, data fusion,
data filtering, and face detection
algorithms

Capability

• Services decomposition via fog computing was introduced to shift computation latency
and burden from the centralized cloud to decentralized fog nodes regardless of data types
(numerical, text, image) and the different ML algorithms.
• Decomposition of facial recognition capabilities works with different ML algorithms and
data types.

[221]
[220]

Composing ML pipelines to
improve classification outcomes Process

• Given sample data, the task is to compose an ML pipeline (consisting of ML services)
that maximizes classification accuracy over new data from the same source.
• AI-based Classification can be leveraged in service selection, thereby improving the
composition process

[125]

AI is used to verify nonfunctional
properties of a composed system,
including security, privacy, and
dependability, and track its changes
over time

Process

• CompoSecReasoner framework uses AI algorithms to monitor the composite system
and its changes and evaluates its security, privacy, and dependability status.
• CompoSecReasoner utilizes an event and model-based approach and implements
dynamic system composition verification, properties validation, and automated
administration based on metrics.

[68] Reusable AI atomic smart-city
services. Capability

• AI-enabled smart city services were analyzed and compared collaboratively. This
resulted in atomic services such as parking and traffic estimators that use AI.
• These atomic AI capabilities can be used to enable more complex capabilities in a
collaborative platform.

[88]

Genetic algorithms are used for
service selection based on QoS
defined by the user in SOA-based
environments.

Process

• An approach to deal with the dynamic service composition problem is presented based
on a genetic algorithm and case-based reasoning, which supports the flexible service
workflow according to the user’s requirements.

[90]
AI algorithms are leveraged for
geospatial web service selection and
automatic composition

Process
• Integration of well-described web services into feasible workflows can be achieved
using AI planning, a computational deliberation process that chooses and organizes
actions to achieve predefined objectives.

[33]

Service selection using an agent that
uses reinforcement learning to select
devices for composition based on
specific user-defined criteria

Process

• A reinforcement learning technique was adopted to effectively deal with highly
dynamic situations in mobile IoT environments.
• A reinforcement learning agent was proposed that selects services in terms of spatial
cohesiveness and number of handovers while providing the services.

[253]
Predictive maintenance in Industrial
IoT platforms enabled by A
Federated Learning Framework.

Process

• IoT platforms maintenance impacts not only nonfunctional properties such as the QoS
but also process-related operations such as service discovery/availability.
•Maintenance and fault data are collected over time and based on which a prediction is
made to infer when the next fault will occur

[247]

Integrating and adapting Machine
Learning for security monitoring in
Big Data IoT data aggregation
platforms.

Process

• Ensuring the security of IoT platforms through AI can be instrumental in guaranteeing
certain composition processes are not compromised (service selection: a compromised
atomic service might lead to compromised composite service.).
• Phases for implementing security-aware machine learning processes within IoT Data
aggregation platforms are explained.

[228] Composing real-time AI capabilities
within the edge layer microservices. Capability

• The platform implements AI capabilities at the edge layer (called ROOF) and only calls
upper layers (Fog, Cloud) for composition or computation-intensive tasks.
• This platform was used to analyze incoming AC, Speed, and Fuel Consumption data
from simulated vehicles with the goal of leveraging these time-critical atomic capabilities
to build composite features in an automated driving scenario.

4.2.4 QoS Aspect

In this subsection, the important QoS sub-aspects of scalability, interoperability, and
privacy in service composition or decomposition are investigated. A unified ap-
proach is followed for studying these QoS properties via the SLR questions RQ13,
RQ14, and RQ15, respectively.
For each concern, the context of the study is presented, challenges encountered
against its realization, and how researchers tackled this concern in their service com-
position efforts.
This subsection will provide input for answering QoS questions RQ13, RQ14, RQ15
based on the tabulated results in Tables 4.14, 4.15, and 4.16.
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4.2.4.1 Scalability

Scalability in the context of capabilities composition is the ability of a particular IoT
composition platform, composition algebra, or a composition technical implemen-
tation, to function properly regardless of the number of composite capabilities [24].
Table 4.14 shows the capabilities compositions scalability challenges and the differ-
ent ways researchers addressed those challenges. Data in Table 4.14 is extracted
from primary studies that not only discussed scalability challenges in the context of
service composition but also provided solutions to address those challenges. Table
4.14 will also help address RQ13, i.e., recognizing the main scalability challenges and
adopting solutions to improve scalability in composition platforms.

TABLE 4.14: Scalability challenges and solutions in IoT/CPS service
composition.

Ref Context Scalability Challenges How Addressed

[171]
[169]

IoT Composer
scalability in smart
homes

Formal verification scalability challenge: number of states. • Formal verification: CADP scales well as it can handle
hundreds of parallel compositions.

[112]
[113]
[307]

NIST CPS
Framework
Scalability
Constraints

Billions of connected IoT devices present scalability
challenges:
(i) Network performance
(ii) Authenticating large numbers of users

• Building IoT/CPS capabilities composition platforms
with the NIST CPS Framework guidelines in mind,
especially those related to trustworthiness, would make
these platforms more scalable.

[24]
[25]
[22]

DX-MAN scalability
compared to existing
paradigms

Composing IoT systems from an ultra-large number of
services

• Scalability requirements:
(i) explicit control flow (ii) distributed workflows (iii)
location transparency (iv) decentralized data flows (v)
separation of control, data, and computation; (vi)
workflow variability

[199] Testing WS-BPEL
compositions under
load (Number of
Requests).

An online travel recommender tool was used to test the
WS-BPEL compositions triggered by the user requests;
each represents a composition of user travel criteria.

• The system scalability and performance were
satisfactory for small-scale compositions
• For higher load compositions, load balancing was
proposed as a solution.

[267]
IoT Big Data
Analytics
Platform

Variable number of devices, services, and users • Data management, storage, and processing services
need to be dimensioned dynamically

[261] secureSVM: a privacy
preserving Data
Distribution Platform
for
ML Data Training
and
Composition

Training data originates from multiple providers. This can
overwhelm training/composition algorithms.

• A Gradient Descent Optimization algorithm was
adopted for training and composing data, making the
platform scale with many data providers.

[255] Composition
algorithms that scale
for services that
capture qualitative
user preferences.

Proving that using qualitative preferences can help
improve the quality of the generated composition
algorithms, including their ability to scale.

• Integrating CP-net-based reasoning with traditional
approaches to composition would improve the scalability
of the composition processes.

[213] Wearable health
devices’ scalability
constraints

(i) High cost of wearable devices
(ii) When widely adopted, computing environments
might not handle the large volume of generated data,
especially when aggregation is required.

• Picking cost-effective devices.
• The computing architecture consists of a web service
that leverages Edge, Fog, and Cloud layers to achieve
scalability with real-time and computation-intensive
constraints.

4.2.4.2 Interoperability

Enabling the full compositionality potential of the future CPS and IoT plat-
forms requires enhanced interoperability between software and hardware elements,
supported by new reference architectures and common definitions and lexicons
[109][152]. Addressing this challenge requires broad collaboration to develop a con-
sensus around key concepts and build a common understanding of the underly-
ing composition technologies[19]. Interoperability in the context of IoT composition
refers to the ability of a certain platform to compose capabilities from devices with
different data models or that, in general, are not compatible or not built for straight-
forward composition.
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Table 4.15 aggregates efforts that addressed interoperability aspects, challenges,
and potential solutions; as a result, it will help answer RQ14, i.e., understanding in-
teroperability challenges and adopting solutions to improve interoperability aspects
in composition platforms.

TABLE 4.15: Interoperability challenges and solutions in IoT/CPS
service composition.

Ref Context Interoperability Challenges How Addressed

[235] Smart End-to-end Massive
IoT Interoperability,
Connectivity and
Security(SEMIoTICS)

- Technical: various device interfaces
- Syntactic: various data formats or
encoding
- Semantic: various data models/ontologies
- Organizational: heterogeneous APIs
prevent communication between
organizations.

• Standard device interfaces would address technical challenges.
• Unified data formats/encoding would address syntactic
challenges.
• Unified data models/ontologies address the semantic concerns.
• Standard APIs would solve organizational concerns.

[116] DIY IoT Networks and
Architectures

- Heterogeneous IoT systems and Platforms
APIs.

• Interoperability in IoT across stakeholders and
producers/consumers will only be achieved if standardized
interfaces are provided.

[40] Fair VS Full
interoperability in
ARM-enabled
IoT Architectures

-IoT Systems with different Architectures. • IoT ARM is a tool that allows fair interoperability by enabling
bridges between systems that don’t share the same architecture.

[112]
[113]
[307]

NIST CPS Framework
enabled Platforms

- Heterogeneous components and systems.
- Data Interoperability issues.

• External interoperability achieved by standardized APIs.
• Providing a common language for describing composite CPS.

[152] Gaiasense: Smart
Farming (SF) IoT
Platform.

- Lack of Interoperability APIs due to the
cost of networks and sensors needed to
allow communication between SF systems

• The “Data Interoperability Zone” and the “Information
Management Adapter” are introduced to facilitate data
interoperability between SF systems within an NGSIv2-FIWARE
implementation.

[157] VITAL-OS: Operating
System for Smart Cities.

- Semantic (Data-Models) and
organizational (Cross-domain)
interoperability challenges

• VITAL leverages W3C SSN-compliant semantics (including
JSON-LD, known for its flexibility and simplicity) to ensure
interoperability across diverse IoT streams and domains.

[267] IoT platform for composing
analytics data.

-Unstructured data
-Heterogeneous Semantics

• Semantic Interoperability and Data Homogenization
techniques exploit both structured and unstructured data.

[109] Fiware Composite IoT
Applications

- Heterogeneity of communication
protocols and data formats.

• Lightweight and reusable interoperability models that support
a broad range of applications.

[268] Interoperability and
composability of IoT Web
Services

-Traditional way of ensuring network
interoperability (using standards) has
shortcomings, including a lack of
compatibility between some standards and
specifications.

• A Technique that wraps service semantics into middleware at
the application layer, which automatically builds APIs allowing
interoperability without modifications to existing standards,
devices, or technologies.

[11] SenaaS: Event-driven IoT
Sensor Virtualization/Cloud
Approach

- Technical interoperability challenges
related to the heterogeneity of IoT devices.

• A hard-coded adapter is used to mitigate the diversity issues
related to sensor platforms (Technical) by selecting only
compatible devices. Automated selection is planned for future
work.

[153] Composition of
heterogeneous IoT services
in smart homes.

- Heterogeneous devices come with
different communication APIs and
supported protocols.

• Using a unified communication protocol (UPnP) at the
pervasive device layer to achieve communication between the
heterogeneous smart home devices.
• Once communication complexity is handled at the device layer,
an AI planning technique is used to compose services during
runtime.

[19] Interoperability challenges
when composing smart-city
services in a multi-platform
environment

- Lack of interoperability among IoT smart
city platforms and services prevents IoT
from reaching its full potential as
computation load distribution is not
managed efficiently.

• Analyzing the individual performance of a single IoT platform
(normal workload, parallel services workload) and the
aggregation of requirements when binding all platforms services
within a smart city.
• A Poisson Distribution function was provided to estimate load
and ensure that one platform interface doesn’t carry most of the
load.

4.2.4.3 Privacy

For IoT/CPS to be trusted by different stakeholders, privacy must be preserved
when sensitive and Personally Identifiable Information (PII) is exchanged [154]. IoT
and CPS capabilities are typically associated with privacy requirements, especially
in the case of applications that involve the collection of personal data, hence, there is
a need for anonymization techniques as well as techniques for encryption and secure
data storage. In [60], privacy is also considered the key to maintaining the success
of capabilities composition in the cloud and its impact on sharing information for
social networking and teamwork on a specific project. One way to maintain this
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success is to allow users to choose when and what they wish to share, in addition to
allowing encryption and decryption facilities to protect specific data.

Table 4.16 is an aggregation of primary studies that discussed the capabilities
composition privacy aspects, challenges, and solutions adopted to address privacy.
Data in Table 4.16 will constitute a basis for addressing RQ15, i.e., recognizing pri-
vacy challenges that arise while composing capabilities in IoT platforms and un-
derstanding the different solutions the researchers adopted to improve privacy and
tackle its challenges.

TABLE 4.16: Privacy challenges and solutions in IoT/CPS service
composition.

Ref Context Privacy Challenges How Addressed

[235] Privacy aspects and
dependencies in IoT
and Industrial IoT
Platforms

- Composing and facilitating the design of
IoT platforms that are secure and
privacy-aware.

• Privacy in IoT composition platforms is defined as a higher
property and is decomposed into specific and low-level aspects
each studied thoroughly, including authentication, authorization,
data protection, unobservability, anonymity, unlinkability,
undetectability, pseudonymity.

[244] Privacy-aware IoT-A
based FIWARE cloud IoT
platform.

- Allowing trusted devices and objects to
anonymously join and be composed within
IoT-A compliant platforms (FIWARE).

• The Security Functional Group (FG) handles security and
privacy issues in IoT-A-compliant IoT systems.
• The Identity Management Functional Component (FC) within
the Security FG issues/manages pseudonyms/accessory
information to trusted subjects, thereby ensuring anonymous
operations and privacy.

[116] Privacy best practices during
the development of IoT
Platforms.

- Developers focus more on functionality
and less on ethical values related to the use
of communication technologies.
- Privacy policies may be in place, but their
technical implementation is neither
supervised nor adhered to.

• Human-Centric Computing is proposed as a solution for
developing privacy-aware platforms from the
architecture/development phase.
• Examples of Human-Centric Computing include the “Human
Centric Systems Development Life Cycle”.

[40] Privacy in ARM-based IoT
Platforms

- Subject’s privacy is an "Element to
Protect": data that a user or a device does
not explicitly agree to make publicly
available. It is specifically impacted when
the composite system’s requirement
includes non-repudiation.

• Privacy is addressed by leveraging an Identity Management
component run by a trusted third party for user privacy
protection and tracking malicious actions.

[112]
[113]

Addressing Privacy in
Cyber-Physical Systems
using the
NIST CPS Framework

- Certain types of CPS data may present
little or no privacy concerns in isolation,
but when aggregated with other data, they
might become privacy intrusive.

• Privacy risk management guidelines include analyzing privacy
risks throughout the entire data lifecycle: creation, collection,
composition, exploitation, and disposal.

[125] AI-driven composition and
privacy validation in IoT

- Tangibly assessing Privacy is a challenge
in IoT Platforms.
- There is a need for IoT design and
management frameworks that implement
mechanisms to assess privacy.

• CompoSecReasoner addresses privacy concerns by deriving
and validating privacy computation/estimation
post-composition.
• Privacy was computed and estimated based on tangible
vulnerability, exposure, and disclosure metrics.
• "Attack Surface" and "Medieval Castle" are security approaches
used to derive measurements for privacy aspects based on
"Attackable Points" and "Protection Levels."

[267] Building IoT Analytics
Platforms with privacy in
mind

- Users need privacy policies that are
permissive enough for services to work
while also restrictive enough that their
privacy is not compromised.

IoT Analytics platform builders must keep privacy in mind by:
• Anonymization of personal data.
• Encrypting and securing data storage
• Implementing user-customizable data sharing mechanisms.

[261] Privacy-Preserving
Smart-City IoT
Platform based on ML
and Blockchain

- SVM ML classifiers require labeled IoT
data that may contain privacy-sensitive
elements.

• secureSVM: a privacy-preserving SVM training scheme over
blockchain-based encrypted IoT data.
• IoT data are encrypted and then recorded on a distributed
ledger.

[180]
[108]

Privacy-preserving in
distributed and cloud IoT
platforms using AI and
Blockchain

- Data containing sensitive personal
information can reveal the identity of IoT
stakeholders, including consumers and
producers.

• Human-centric approaches: user consent.
• Technological approaches: cryptography, blockchain networks.
• Regulatory approaches: GDPR.
• Blockchain provides a distributed way to protect privacy, as
there is no centralized entity to manage the credentials of devices
and stakeholders.

[285] Consent and Trust related to
Personal Data Sharing in IoT

- The IoT data volume doubles every two
years, with more than 60% generated by
individuals, with wearable medical devices
data, particularly raising privacy concerns.

• The EU’s GPDR is proposed as a framework for addressing
privacy by enforcing mechanisms of Transparency(how data are
processed), consent(user’s ability to opt-in or opt-out), and
erasure(right of the users to delete data).

[82]
[192]
[27]

Privacy-Aware Cloud or
Cross-Cloud Service
Composition.

- Private clouds don’t disclose QoS details
of their service owing to business privacy
concerns in cross-cloud scenarios.
- Cross-clouds credibility might be doubted
if the advertised service composition SLR
doesn’t meet real specifications.

• The HIstory REcord-based Service Optimization MEthod
(HireSomeII) protects cross-clouds privacy by evaluating their
QoS history records rather than their advertised QoS values,
which enhances the credibility of the composition plans they
provide.
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4.3 SLR : Discussion

Section (4.1) describes the adopted SLR methodology, and Section (4.2) presents the
results with tabulated data that would help provide answers (AQs) to the pointed
out SLR questions (RQs). In this section, 1) the data from Section (4.2) is analyzed
and consolidated to provide answers to SLR questions RQ1-R15, and B) trends, gaps,
and threats to the validity of this study are discussed.

4.3.1 Answering SLR Questions

In this subsection, we provide answers to the SLR questions by referencing relevant
primary studies while highlighting in figures trends for topics of interest.

4.3.1.1 AQ1: What is the motivation for native support for IoT capabilities com-
position/decomposition mechanisms by standards, reference models/ar-
chitectures (RMAs), and frameworks?

IoT/CPS standards, frameworks, and reference architectures not only define data
sharing, interoperability, and security specifications of exchanged messages over a
composition platform but also incorporate mechanisms for composing or decom-
posing novel capabilities in different platforms.

The different standards, frameworks, and reference architectures mentioned in
Table 4.3 provide motivations for native support for IoT/CPS capabilities composi-
tion/decomposition through their enabled properties. The motivations include: a)
the ability to address the composition of functional, business, human, trustworthi-
ness, timing, data, boundaries, composition, and life-cycle concerns of an IoT or a
CPS, and b) taking into consideration the complexity, discoverability, adaptability,
and constructivity of the composite capabilities [112][113][307]; c) enabling compu-
tation distribution of computation-intensive services running in cloud nodes to low
computation nodes at the Fog/Edge level [283]; d) addressing composite services
functional and qualitative properties during runtime to enable flexible and adapt-
able compositions [266] and e) incorporating composition-friendly ontologies and
composition mechanisms in distributed environments through hierarchical struc-
tures such as classes and subclasses [231][40][105]; f) providing automatic compo-
sition mechanisms to build modular software capabilities and from heterogeneous
service marketplaces and locations [146] [145] [155] [133][123]; g) enabling reusabil-
ity of small, atomic, reusable components through decomposition[283] [283][244];
and h) guiding atomic service discovery, selection, and complex services prototyp-
ing and composition in the cloud environments [283] [313] [307]. Figure 4.7 summa-
rizes the motivations above.
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FIGURE 4.7: AQ1: motivations for the native support of service com-
position/decomposition mechanisms in standards, frameworks, and

reference architectures.

4.3.1.2 AQ2: What are the main properties of formal representations leveraged
in service composition ?

Based on data from Tables 4.4 and 4.5, formal representations have two main
properties : the a) Modeling property, and the b) Formal verification property,
given that the formal model can be used in formal verification tools, and as a result,
the properties of interest can be formally assessed.

a) Modeling : can be performed in three ways: algebraic [171] [319] [177]
[269] [32] [258] [62] [181], graphical [35][179][314], or hybrid [115][22][24][25][23] .
Modeling targets two elements:
−→ Functional components : include modeling system’s components (e.g.: mod-
eling system buffers [242]), service types (e.g.: describing and tracing atomic or
composite services[301][14][245]), data format [312], composition interactions (e.g.,
querying and registering [308][73] [246]), composition operations (e.g., discovery
[35]) , behavior (e.g., traffic congestion was described using VSA [264]), function-
ality (e.g., actuation, communication, controllability, manageability, measurability,
monitorability, physical context, sensing, states and uncertainty [313]) or all what
preceded (Using LNT to model a composite system’s objects, interactions, states,
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and actions [59]). It’s worth mentioning that formal modeling typically preserves
compositions process type: for example, in [171], the concurrent/parallel nature of
the composition is preserved by the model.
−→Non-Functional Properties : this includes QoS properties of a composite system,
including cost and price of a composition [191], energy efficiency [296] or power
inefficiency [14], safety [80] (analyzed using the CWB-NC tool [291]) , privacy
[154], security [232], scalability [25], interoperability [104], and system performance
indicators such as response time [301].

b) Formal Verification: to perform model checking -for verifying formal prop-
erties or assessing the model against state space explosion-, the formal model needs
to be loaded into a formal verification tool after translation to a formal specification.
This is the case, for example, for PLUSCAL -that is converted to the TLA specifi-
cation in the TLA+ tool- or LNT -a description language, which is later translated
to LTS, a formal specification language- to formally verifiy the different properties
of interest [215]. Formally verifiable properties mentioned in the primary studies
discussed in Table 4.5 include correctness [272](verified in cloud environments
using tools such as NuSMV[158]), compliance [115] , liveness (the overall study
of formal verification problems such as starvation, deadlocks, and livelocks) [172],
compatibility [64], non-link redundancy[187], privacy [125], security [154], safety
[222], reachability [115] , livelocks [89], dependability [74], reliability (verified in
PRISM [174]) [189][104], realizability [242] , deadlock freeness [42], consistency
[216] , non-conflict [187], conformance [312] , completeness [216], fairness [171],
trustworthiness [313] , and communication properties such as unmatched send
messages [84]. It is worth mentioning that verification of some these properties can
be automatically achieved when other properties are verified. This is the case in
[65] where safety was verified through the verification of the non-reachability of
deadlock states by leveraging the PROMELA formal specification.

Figure 4.8 presents the main properties of formal representations as learned from
the primary studies results in Tables 4.4 and 4.5.

FIGURE 4.8: AQ2: Formal representations modeling and verifica-
tion properties and techniques and corresponding modeled/verified

properties in service composition.
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4.3.1.3 AQ3: What are the current trends in formal representations modeling and
formal verification?

Five trends were pointed out from the data extracted in Tables 4.4 and 4.5. These
trends are represented in Figure 4.9 as follows: formally verified functional proper-
ties (A), formal verification tools (B), formal verification techniques (C), formal rep-
resentations modeling approaches (D), and formal representations - used in service
composition- source code availability (E).

For formal verification techniques, model checking [170][256][197][4][163][2][3]
[205][57] represents the major technique for assessing properties of interest (74% of
primary the studies in Table 4.5), while equivalence checking [254][83] and theorem
proving [101][321] represent the remaining 26%.
70% of formal representations are of algebraic nature, while graphical or hybrid
representations representing are used in 30% of the identified primary studies: the
use of algebraic solutions in most primary studies can be explained by the fact that
they can be easily translated to formal specifications compared to their graphic
counterparts, which require additional interpretations and transformations (e.g.,
in [242], BPMN 2.0 is converted to LOTOS NT, and the latter is transformed to the
formal specification LTS using the CADP tool).
Verifying certain properties of the composed systems is the main goal of formal
verification. From this perspective, correctness remains the most verified property
(%31 of primary studies), while safety, security, deadlock freeness, and reliability
-combined- are addressed in 38% of the primary studies that addressed formal
properties assessment. Properties such as privacy can be considered emerging
properties in which researchers need to invest more effort (formally verified in one
manuscript [125]), which also explains why it was studied in a specific RQ (RQ15).
In terms of formal verification tools, CADP, TLA+, Maude, CoQ, and MWB [290]
combined represented 55% of the tools leveraged in the primary studies, followed
by Isabelle, UPAAL, CWB, NUSMV, and PRISM (5% each). These tools are used by
both the research community and industry stakeholders.

From an implementation perspective, the data in Table 4.4 shows that 75% of
the formal representations can be traced to a Git repository containing substantial
examples of formally specified models for different composite systems. This
provides resources to inspire researchers to model and verify the properties of novel
services. Figure 4.9 highlights all these trends.
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FIGURE 4.9: AQ3: formal representations: modeling and formal ver-
ification trends.

4.3.1.4 AQ4: What are the different ways formal verification techniques and
tools tackled the state-space explosion problem in service composition?

Data extracted from primary studies in Table 4.6 show that the state space explo-
sion problem in service composition can be tackled using three different approaches:

a) Model simplification:

This approach works better for models that cannot be decomposed into simpler
problems. Examples of this approach include [47] (where a pi-calculus composition
algorithm was simplified using an approach called unification that eliminated
the state space explosion problem), [214] (where the state space was reduced by
using Boolean functions instead of explicit representations with more states), [312]
(where the FDR2 algorithm replaced the old FDR, yielding simpler models and as
a result fewer states), [246] (where the algebra’s order was reduced causing fewer
states), [130] and [301] (where machine learning is used to determine the optimal
service composition, which in turn simplifies the model), and [316] (the model was
simplified by anticipating and eliminating errors in systems with a large state space).

b) Model decomposition:

This approach works better with models with a large state space that can be
decomposed into simpler problems, making model checking much simpler and
preventing state space explosion. Examples of this approach include [219], where
the CADP toolbox uses software mechanisms to decompose the model to be
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verified, also [187], where the size of the specification was reduced as a result of
decomposing the model, and [282], where the model was decomposed into multiple
sub-models, each with a smaller state space that can be checked individually,
thereby reducing the state space and as a result preventing the state space explosion
problem.

c) Resource management:

This approach leverages available hardware or cloud resources to alleviate the
computation of formally specified models or to put up measures against eventual
crashes when the state space computation exceeds the available resource capacity.
Examples of this approach include [216], where the TLA specification makes use of
multi-threading and allows access to multi-core processing, or by offloading and
distributing computation among multiple AWS EC2 cloud instances, or [73], where
the simulator manages the state space explosion problem by stopping the simulated
model to prevent crashes when the space is too large, which doesn’t reduce or
eliminate the state space explosion problem.

To conclude this analysis, the outcomes of these three approaches vary from
reducing the state space explosion problem by making the model work for low-
scale models, completely eliminating it if the model’s state space is small enough to
not cause the state space explosion, or managing it by preventing crashes in formal
verification tools. The trends in Figure 4.10 (A) show that model simplification
remains a widely adopted approach to tackle the state space explosion problem,
and in 65% of the cases, the problem is reduced, as Figure 4.10 (B) shows.

FIGURE 4.10: AQ4: trends related to the state space explosion prob-
lem approaches and outcomes.
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4.3.1.5 AQ5: What are the different stakeholders’ categories and concerns when
it comes to composing or consuming composite capabilities in different
domains?

Table 4.7 presents data from a set of primary studies that focused on different stake-
holders’ concerns when it comes to composing or consuming composite capabili-
ties in different domains. To better understand these trends, we put up Figure 4.11,
which matches pointed out stakeholders and domains with corresponding concerns.
Although Figure 4.11 doesn’t represent a full picture of the pointed out domains,
stakeholders, and concerns, it highlights key relationships and synergies between
these sub-aspects. Three main stakeholders were recognized: users, developers, and
city planners (or platform managers), with the majority of efforts focusing on users
(47%) and developers (42%) concerns.

For Users, the friendliness of composition platforms from a GUI perspective
represents an important concern, this is the case for smart buildings applications
such as [9], and this has been mentioned in other domains including smart trans-
portation [182][118]. Customization and ease of use are also user concerns in the
smart manufacturing domain [273]: customers use recommendation algorithms to
customize products during pre-production in terms of cost, reliability, and delivery
time, among other criteria [13][195]. Users also expect energy efficient compos-
ite systems in smart cities [281][135][58][16], less human interaction and more
automation in composition platforms processes [29], ease of use of composition
platforms[171][169], cost reduction or zero-cost implementation [152], trustworthi-
ness concerns that include the human/user factor in smart manufacturing [313],
accessible safety assessment especially for critical metrics such as security in smart
cities [240], safety in smart transportation applications, data privacy in smart health
applications [196], environment friendliness and security [240] for smart buildings
and cities.

For Developers, most concerns relate to the ease and time to develop, customize,
prototype and publish composite services. This typically requires ready-to-use APIs
or at least available and less complex software objects for hardware and communica-
tion components. Ease of development, customization, prototyping, and publishing
of services for developers were pointed out as concerns in applications related to
the domains of smart health [196], environment monitoring [308], and smart cities
[67][68]. Other developers’ concerns that are worth mentioning are collaboration
and interoperability in smart manufacturing [309], smart transportation [264], and
environment monitoring domains [308]. These concerns contribute to a faster and
easier composite service development process.

For City Planners and Platforms Managers, four concerns were identified: cus-
tomization of services to clients, which is the case for insurance companies that
can use composition platforms such as Dracena to generate costumer-specific fine-
grained recommendations on insurance fees [310]. Another concern is cost reduc-
tion. An example of such concern is addressed in [68], where city planners encour-
aged developers to adopt modular and reusable designs for composite services for
cost optimization purposes. An additional identified concern is ensuring trustwor-
thiness in smart manufacturing. An example of this concern was mentioned in [313],
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where researchers proposed a cloud manufacturing platform that takes into con-
sideration trustworthiness pillars as indicated by standards such as the NIST CPS
Framework. Finally, energy efficiency in smart cities was recognized as a major con-
cern by both users and platform managers in [281] [135][58][16].

FIGURE 4.11: AQ5: primary studies trends related to stakeholders’
concerns in different domains.

4.3.1.6 AQ6: What are the technical differences in capabilities composition im-
plementation in different platforms ?

Primary studies pointed out in Table 4.8 were selected to answer this question as
they provide sufficient implementation details, including where the services are
implemented from an IoT layer perspective, which composition engine is used, and
implementation instructions that would highlight more details about the technical
differences in implementation.

From a platform nature perspective, four implementation trends were recog-
nized:

a) Cloud/fog implementations:

The implementation of these platforms leverages cloud services, communi-
cations, and capabilities to provide value-added services. Examples of such
implementations include MCC Cloudlets [202], where researchers have created
virtual objects representing edge devices at the fog level. These virtual objects were
later composed into applications in the Central Cloud. Networking between the
edge, fog, and cloud components is ensured via OpenStack, and the repository for
virtual objects is maintained at the fog level. Thing Orchestration [201], along with
Cloud CAMP [44] are two other examples of composition performed at the cloud
level. Another example of the use of cloud computing capabilities to compose
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novel services or applications can be found in both commercial solutions: AWS
GreenGrass [276], and Microsoft Azure IoT [183] [318]. AWS GreenGrass leverages
Lambda scripts to compose value-added services and applications by connecting
different AWS services; this requires the installation of the different GreenGrass
dependencies and certificates related to the target devices and services. Similarly,
Microsoft Azure IoT relies on the Azure IoT Hub cloud component to connect
and compose capabilities and services at the cloud level. This also requires the
installation of different Microsoft Azure components and command line capabili-
ties. A rule-based cloud solution, IFTTT [146], has also been presented as a cloud
composition service. Users can set sensing or actuation rules anywhere on their
apps, and the IFTTT service composes the desired rules or outcomes. Finally,
Fiware [244] is also a cloud composition platform that leverages multiple plugins,
including the Entity Composer Plugin, to compose capabilities provided by devices
or services at the edge or fog level, which requires special agents to be installed
on edge devices or services to allow the composition of capabilities at the cloud level.

b) Edge/Local containers implementations:

Edge implementations rely on edge devices to perform a subset of composi-
tions and computations when these edge devices satisfy minimum computation
requirements. Edge computing or composition can also be leveraged to minimize
delays in safety-critical applications. This is the case for [229], where mobile edge
servers are proposed as a solution for composing capabilities at the edge when
the edge servers have sufficient computational power. When edge servers are
overwhelmed, only then do cloud center nodes take over the composition compu-
tation. This type of composition is typically suited for delay-sensitive applications
such as smart transportation applications. Another example of the use of edge
computing to perform service composition is highlighted in [308], where authors
discussed Home Assistant: a free and open-source software for home automation
designed for central control in smart homes. Home Assistant is hosted on a local
machine and doesn’t require internet connectivity. Edge devices and the Home
Assistant node are located in the home LAN and are managed in a way that ensures
privacy and security. mPlane is another measurement platform that can be used for
network measurements and compositions at the edge [287] and requires a local node
running the composition engine (Supervisor) on a competent machine connected
via different types of APIs (TCP/IP, REST) to network probes, services, and clients.
A similar concept is highlighted in [304], where the Vert.X toolkit is used to create
and compose local microservices, with the ability to call remote atomic capabilities
via different APIs such as Axios. Finally, the publication [14] highlights an example
of edge/local composition using a composite engine (Fast IoT Composer) running
on a local machine to compose smart home services.

It can be concluded that edge/container composition only serves as a substitute
for cloud composition when the resources associated with edge/container nodes
are sufficient to perform the composition computation. From a performance
perspective, edge composition is faster and provides faster results and services than
its cloud counterparts. Finally, it is also safe to assume that edge/local containers
computing provides more privacy when the data doesn’t leave the user’s vicinity.
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c) Simulation/prototyping implementations:

These platforms are used to compose simulations or prototypes for composite
services and systems. Examples of these platforms include [251] [121], where a CPS
representing an autonomous vehicle for safety assessment was simulated in UCEF
using atomic components called federates that communicate using the pub-sub
HLA protocol. Another example can be found in [264], where services and sensors
can be fetched using REST APIs from Node-RED’s web interface, which enables
the simulation and prototyping of composite services. It is worth mentioning that
Node-RED can be used for production as well for less-complex home applications,
but there are other mature solutions that are well-optimized for such purposes such
as Home Assistant.
Trends in Figure 4.12 show that from a platform nature perspective, cloud com-
position platforms represent (43%) of the primary studies identified: this can be
explained by the fact that most studied compositions are computation-intensive
and need resources that typically reside in the cloud. In addition, cloud platforms
are mostly commercial with high maturity and reach as opposed to edge/container
solutions which are mostly academic efforts. Edge or local containers composi-
tion solutions represent (36%) of primary studies, whereas service composition
simulation platforms represent only (21%) of primary studies.

FIGURE 4.12: AQ6: implementation trends in service composition.

4.3.1.7 AQ7: What are the most common composition processes, and how do
they differ in terms of automation level?

The primary studies in Table 4.9 were selected as they provided input on both
the composition level and the composition process type. By analyzing Table 4.9
columns, especially the automation and process type manifestation columns, the
depth of complexity and automation in each process type can be learned. Two trends
were pointed out:
a) Low complexity processes => Require no/basic user input: These processes
facilitate the automation of composition owing to their low complexity, and they
are ready to exploit APIs and interfaces to atomic services [171][169], or by au-
tomating complex composition steps, including data collection and composition
[46][264][25][221][220]. Rule-based processes can be considered the least complex
of all composition process types because they only require setting up simple rules or
composition goals by the user from a GUI to trigger desirable events [128][293][84].

b) High complexity processes => Require user or developer input and pro-
gramming These processes have a higher level of complexity due to the fact that
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they require extra programming to achieve the composition goals. Examples of such
composition process types include process or programming-based composition
processes, which -as the name suggests- require manual programming or crafting
composition scripts to achieve the compositions goal [308]. Asynchronous or
parallel compositions also show a higher level of complexity compared to their
synchronous counterparts, which was indicated in [310] and [287] where additional
development on specific highly programmable platforms is required. Finally,
some flow-based composition processes can have a high automation level but still
require user input on specific QoS parameters to successfully achieve the goal of
the composition, as in [14], where user input is required during the service selection
step to recognize specific atomic services that meet certain QoS properties of interest.

Figure 4.13 aggregates these trends and shows that among the 14 primary studies
addressed in Table 4.9, 28% are semi-automatic for their higher complexity and their
need for user or developer input, while 71% of the primary studies were automatic
for their lower complexity and their need for basic or no user input to achieve the
composition goals.

FIGURE 4.13: AQ7: trends in service composition automation level.

4.3.1.8 AQ8: What roles communication protocols play in composing or decom-
posing IoT capabilities ?

Table 4.10 contains the primary studies that provide insights into the role of com-
munication networks in service composition or decomposition. Three categories of
roles were pointed out.

a) Communication roles: This role is manifested in i) enabling a wide va-
riety of services such as microservices (Vert.X’s Axios, [304]) and pub/sub Java
federates (HLA [251],[121]) to communicate and exchange data with composition
engines in order to build composite services, or in [117], where smart connected
IoT devices leverage the mashup paradigm to communicate and exchange data,
leading to value-added services through compositions in WSNs; ii) facilitating
the communication of heterogeneous IoT networks through transparent access
(CoAP/HTTP, [149]); iii) enabling the discoverability of IoT devices capabilities
(mDNS, [84]); iv) simplifying interfaces and enabling flexible network management
(SDN, [169][313]); v) acting as middleware between publish-subscribe brokers
and services (MQTT,[63][128]); and vi) offering commands that enable requesting,
receiving, composing, and storing data by leveraging multiple network components
(mPlane protocol, [287]).
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b) QoS-related roles: This role is observed in i) (CoAP, [289]) which allows
communication between energy and computation constrained devices, or in ii)
(SVOM, a CoAP-based protocol, [289]) which captures the status of registered
devices to achieve fault management. Similarly, in [224], energy efficiency was
enabled in SOA composite applications in WSNs by leveraging the NOC paradigm.

c) Process roles: In addition to communication and QoS roles, two process roles
were identified in primary studies that communication protocols facilitate in ser-
vice composition: i) enabling asynchronous communications (REST, [315]), and ii)
enabling service decomposability by tracing back interests requests to reveal which
capabilities (atomic or composite) exchange data with the composition engine or
clients (NDN [302][164]).

4.3.1.9 AQ9: What are the main roles of data models leveraged in service compo-
sition and decomposition ?

Primary studies used in the discussion below were selected because they provide
the reasons behind using a given data model for composing capabilities. These
primary studies also provided concrete examples of such data models, as shown
in the last column of Table 4.11, where a subset of the data models used and
their attributes are represented. Some attributes are shared by most data models,
including capabilities ID, location, and timestamp. Based on the data provided in
Table 4.11, the following data models and schemas roles were pointed out:

a) Modeling services, composition, decomposition, processes, and operations:
The ease of composing atomic capabilities is one of the key enablers for creating
value-added applications, which can only be done through the use of data models
that facilitate this task by representing capabilities data and operations. This is
highlighted in [286] where JSON is used to model mPlane capabilities thanks to
its simplicity, parseability, and efficiency. JSON is also used to represent services,
bindings between services, as well as the strength of these bindings [171][169][100].
In IFTTT [84], JSON Web of Things (JWT) is used to model objects and composition
rules. The same applies to WSDL [246][156], which is typically used with SOAP
and XML [234][317] schemas to describe and enable the discovery of web-services.
BPEL data models describe composite services processes and enable their deploy-
ment in three steps: process template creation, process composition, and process
installation. Another flavor of BPEL, WS-BPEL [200][72], describes services and
their execution and compositions [280], with BPEL-TC upgrading the features of
WS-BPEL to include composition and decomposition requirements for temporally
customized web services [208]. OWL-S enables nested classes description to model
functional and non-functional properties of IoT devices [85][303], and OWLS-TC4
provides simple capability aggregation mechanisms for non-complex compositions
[294]. Finally, HSML/HTML [308] describes the state of IoT services whereas SSN
[38] represents context information for capabilities including deployment attributes.
The attributes of data models illustrated in Table 4.11 show that there are syner-
gies and common attributes (id or name, timestamp or start time, location or ip,
etc.) between most of the different data models when it comes to describing services.
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b) Enabling formal specification: After adequate translation, some data models
can enable formal specification. The translation process complexity varies in terms
of difficulty from one data model to another. Examples of data models that were
converted into a formal specification include JSON [264] which was used for a
service description of the Node-RED object detector; which were later converted
into semantically comparable service vector descriptions (VSA: Vector Symbolic
Architecture). Another example of this role can is found in OWL-S [300], which
enables services description (service profile, service processes) based on which
a TLA formal specification is defined. Some efforts mentioned challenges that
complicate the conversion of data models to formal specification: an example of
such complications can be found in WSDL [246], which cannot be converted into
formal specification because of its lack of implementation details and logic.

c) Facilitating interoperability between different platforms through inte-
gration APIs: To allow different platforms to compose their capabilities when
their data models differ, an interoperability bridge between these platforms must
be established. Data model integration APIs are one of the bridge techniques
used in service composition to accommodate this requirement. Examples of such
techniques can be found in [190], where JSON-LD was easily integrated with other
Context Information Management (CIM) platforms, and RDF/XML (Resource
Description Framework) was used to integrate APIs with external XML platforms
to ensure backward compatibility. XML has also been used in mPlane [286] to allow
integration with external platforms using XML data models.

d) Documenting services and debugging processes and compositions: YAML’s
improved human readability and writability, making it suitable for documenting
and debugging [286].

e) Special roles: WoTDL [230] is an alternative to existing WoT models such as
OWL-S and WSDL, which are unsuitable for describing AI planning concepts for
automatic WoT compositions.

4.3.1.10 AQ10: How are atomic or composite capabilities quantified or mea-
sured?

Data from the primary studies identified in Table ?? is used to shed light on the
measurability aspect of service composition. Regarding atomic or composite
capabilities, the following measurability trends were recognized:

a) Atomic capabilities:
↪→ The are typically concrete and tangible capabilities with standardized metrics
and units.
↪→ They are typically generated by devices by converting physical environment
information to a digital form and associating it with a standardized unit.
↪→ Cannot be further decomposed into other atomic capabilities.

The best example of atomic capabilities measurability approaches that satisfy
the trends above is illustrated in [5], where functional atomic capabilities (tempera-
ture, humidity, carbon dioxide, wind speed) and non-functional atomic capabilities
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(RTT, latency, and drop rate) of a thermal comfort system were measured using
different weather and home sensors as well as system performance probes.

b) Composite capabilities:
↪→ Are typically abstract/non-tangible capabilities; the metrics and units used are
user-defined and non-standardized.
↪→ Are generated by combining and aggregating atomic capabilities in a way that
can be assessed by end users.
↪→ Can be decomposed into atomic capabilities.

Examples of composite capabilities measurability approaches that satisfy the
elements above include the two non-functional capabilities mentioned in [171][169]:
i) "Tool Usability": was assessed using many atomic factors derived from the user’s
experience including the number of clicks to achieve a composition task and the
easiness of interacting with the UI. ii) "Platform Performance": was assessed by
assessing and aggregating multiple factors, including the time for the deployment
and the time to generate a specification, as well as the number of states and bindings
processed by the platform. Examples of functional composite capabilities include
Traffic Jam Trend prediction [310] (composed based on speed and location atomic
capabilities provided by the SUMO simulator probes) and Thermal Comfort [5]
(composed based on atomic capabilities provided by weather sensors: temperature,
humidity, carbon dioxide, and wind speed). The functional and non functional
composite capabilities identified in Table ?? follow the aforementioned trends.

It can be concluded that measurability trends apply regardless of whether atomic
or composite capabilities are i) functional (inherent features of IoT devices and rep-
resent their main output. For example, a temperature sensor provides a functional
capability: measuring temperature, which is a measurement that can be expressed
with a quantitative value and a unit (Celsius or Fahrenheit)) or ii) non-functional
(QoS and performance metrics associated with the IoT devices -or the infrastructure
they run on top of- rather than their main feature itself, these non-functional proper-
ties include the SLA level, latency, redundancy, scalability, interoperability, security,
and privacy, among other non-functional features [299]). As for the composite IoT
capabilities network infrastructure, measured aspects include service quality and
network capacity [193][194] by tracking resource utilization. Other non-functional
measurements in web-services platforms include performance, resource utilization,
dependability, fidelity, response time, availability, and cost [134][106]. Finally, an
interesting example of measuring latency in mPlane is worth mentioning as latency
measurement in this example is a functional property as it represents the main
feature of mPlane as a network performance measurement platform [287]. This
same metric (latency) is considered a non-functional property in other platforms,
such as the thermal comfort measurement platform [5] as it doesn’t contribute to the
calculation of comfort but rather provides an idea of the platform’s performance.

4.3.1.11 AQ11: What are the benefits of building IoT platforms and complex ser-
vices with decomposition in mind ?

The primary studies in Table 4.12 showcase publications focused on service decom-
position. This is a particularly interesting topic that has not been investigated in
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previous SLRs. Based on collected data, the following main benefits were pointed
out:

a) Capabilities reusability: Platforms with decomposition support benefit from
this property as a decomposed complex service into atomic capabilities can see its
atomic services reused in other compositions, omitting the need for implementing
redundant services and saving relative costs. This is the case in a hierarchical IoT
platform [198] where complex capabilities are decomposed and reused to complete
the pieces of another service with a higher complexity. Another example of reusing
capabilities owing to built-in decomposition mechanisms can be found in [196]: a
microservices-based platform allows larger services to be decomposed into small,
focused, self-contained services with loose coupling, which facilitate their reuse.
The same case applies to the use of Domain-Driven-Designs (DDD) to decompose
monolithic software [37], which makes it possible to use pieces of monolithic
software in other compositions. Finally, in [308], the FSM model-driven services
decomposition broke their linkage, which enabled their reusability.

b) Resource optimization: The decomposition of complex capabilities leads
to resources optimization not only in terms of costs associated with deploying
novel services [81] but also in terms of reducing network congestion as monolithic
services consume more bandwidth compared to atomic capabilities[15]. The same
concept applies to [107] where computation-intensive virtualized services leverage
decomposition to optimize computation. Another case of resource optimization was
encountered in [14] where decomposition leads to the identifying energy-efficient
atomic capabilities that can be later used to compose efficient complex services.

In addition to capabilities reusability and resource optimization (main benefits),
other benefits of building composition platforms with decomposition in mind were
mentioned, including stakeholders acceptance as described in [81] where platform
users can benefit from the reduced cost of exploitation due to reusability and
resource optimization. Other benefits include improved QoS parameters such as
platforms agility, flexibility, and scalability [267]. Improving collaboration between
capabilities has also been pointed out as a benefit of decomposition in [264]. Finally,
the traceability of the atomic capabilities that contribute to a certain composite
service was mentioned as a benefit in Information-Centric Networks (ICN) such as
Named Data Networks (NDN) [302] [164].

Figure 4.14 shows the distribution of the main benefits of building composi-
tion platforms with decomposition in mind as extracted from Table 4.12. Efforts
that leveraged decomposition to break complex services into atomic capabilities for
reusability purposes represent 72% of primary studies, while efforts that focused
on computation decomposition for resource optimization purposes represent the re-
maining 28%.
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FIGURE 4.14: AQ11: benefits of building platforms with decomposi-
tion in mind.

4.3.1.12 AQ12: What role can AI/ML techniques play in shaping or improving
service composition?.

The role of Artificial Intelligence (AI) and Machine Learning (ML) in service
composition was not surveyed in previous service composition SLRs. We presented
primary studies that tackled this particular aspect in Table 4.13; these primary
studies show the roles AI/ML techniques play in service composition, including:

a) Composing capabilities with AI/ML features.
Primary studies in Table 4.13 highlight this role. In [228], AI/ML capabilities

were implemented in a smart transportation platform that analyzed incoming
vehicle data to build real-time automated driving features. In [67], complex atomic
capabilities with AI/ML features were built and made available to developers
to compose smarter systems and platforms in smart city or smart transportation
domains. Examples of these atomic capabilities with AI/ML features include
multiple predictors such as noise level and free parking area predictors. Another
example of the role of AI/ML in building complex capabilities was referred to in
[15], where a cloud facial recognition composite service leveraged AI/ML atomic
capabilities at the fog level, including facial features extraction, data fusion, data
filtering, and face detection algorithms. Finally, in [68], an example of reusable
AI/ML smart city services was studied in the context of a collaborative platform.
This platform enables the composition of smart city services based on atomic AI
capabilities such as traffic and parking estimators.

b) Improving composition platforms and processes.
This is the most common role among the pointed out AI/ML primary studies

aggregated in Table 4.13, which shows how AI/ML can play a role in improving
composition platforms as in [253], where AI/ML is leveraged to improve mainte-
nance of IoT composition platforms and in [247] where AI/ML techniques were
used to improve security. To improve the composition processes, in [221] and [220],
an AI-based classification method applied to a pipeline consisting of ML services
was used to maximize the classification accuracy, leading to an improved service
selection process. Similarly, a service composition technique called AI Planning
was used in [90] for automatically composing well-described web services into
feasible workflows and for selecting and organizing web services based on location.
[88] is another primary study where genetic algorithms were used in SOA-based
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environments to perform service selection based on QoS properties defined by the
user. Finally, another example of AI/ML-based service selection was presented
in [33], where a reinforcement learning agent was used in the dynamic of Mobile
IoT to perform service selection based on user-defined criteria (including spacial
cohesiveness, number of handovers).

A secondary role of AI techniques in service composition was discussed in [125],
the CompoSecReasoner framework leveraged AI algorithms to assess, monitor, and
verify properties such as security, privacy, and dependability. The components
of the CompoSecReasoner framework also ensure dynamic system composition
verification, property validation, and metrics-based automated administration.

Based on the primary studies in Table 4.13, Figure 4.15 shows the distribution of
the main roles of AI/ML techniques in service composition: i) improving compo-
sition processes (67%) and ii) composing AI/ML enriched or improved capabilities
(33%).

FIGURE 4.15: AQ12: identified roles of AI/ML in service composi-
tion.

4.3.1.13 AQ13: What are the main scalability challenges and solutions adopted
when composing IoT and CPS capabilities?.

As novel services with high value require the composition of multiple atomic
capabilities, scalability can arise as a challenge if the platform fails to scale for
performance, QoS, network, or other constraints. Based on data from Table 4.14,
the growing number of services, users, and providers, generating or requesting
composed and value-added services represent the main causes for scalability
issues. These challenges and potential solutions are discussed to provide answers
to RQ14.

• a) Scalability Challenges in service composition
In [267], IoT BigData analytics platform scalability was impacted by a large

number of devices, services, and users. Similarly, a large number of wearable smart
health devices cause scalability issues not only from a computation perspective,
but also from a budget perspective [213]. For [261], the training data originating
from multiple providers overwhelmed the training and composition algorithms in
the secureSVM platform. Similarly, large user requests are considered the root for
overwhelming a WS-BPEL-based online travel recommender [199]. Another exam-
ple of the scalability issues caused by high numbers of IoT objects was mentioned
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in [171][169], which not only impacted IoT smart home applications deployments
but also generated a large state space that caused the state space explosion problem
when formally verifying composite capabilities properties. In [255], composition
algorithms that did not scale for reasons associated with large user quantitative
constraints were the subject of analysis. Finally, ultra-large numbers of services
were also identified as the root for scalability issues in [24][25][22].

• b) Scalability Solutions in service composition
To address scalability challenges in the above primary studies, researchers have

adopted the following solutions:

i) Properly adjusting and dimensioning resources: An example of such a so-
lution was adopted in [267], where researchers proposed a dynamic solution for
dimensioning resources, including storage and processing, to anticipate scalability
issues. Another example of such an approach was pointed out in [199], where re-
searchers proposed redundancy and load balancing at the level of computation and
network resources to tackle higher loads and user requests for composite services.
ii) Adopting optimized and enhanced composition algorithms to overcome scal-
ability issues: This is the case in [255], where CP-net algorithms were proven to
have a better capacity to handle compositions that require a large number of user
constraints. Similarly, an optimized Gradient Descent Optimization algorithm was
used in [261] for training and composing data, creating a platform that scales with
a large number of data providers. Another example was identified in [171][169],
where CADP’s parallel algorithms and composition capabilities were leveraged to
overcome scalability issues when formally verifying properties of interest.

iii) IoT capabilities layers, data, computation, and workflows management:
Adopting a layered architecture that distributes computation across different layers
(cloud, fog, edge) was adopted as a solution in [213] to handle the large amount
of data generated by smart health wearable devices. The research around the DX-
MAN composition platform also provides an example of this solution [24][25][22]
where researchers highlighted scalability requirements that, when applied to data
and workflows associated with IoT devices, contribute to better scalability, these re-
quirements are: explicit control flow, distributing workflows among multiple com-
pute nodes, localization transparency, decentralized data flows, separation of con-
trol, data, and computation, and workflows variability.

iv) Building IoT composition platforms based on scalability-aware frame-
works: frameworks with scalability recommendations and guidelines can help re-
searchers, developers, and composition platforms providers build platforms that
scale from the get-go. An example of this approach is illustrated in the NIST CPS
Framework [112][113][307], where building IoT/CPS capabilities composition plat-
forms with the NIST CPS Framework guidelines in mind -especially those related to
trustworthiness- would provide elements to enhance scalability in terms of network
constraints and in the case of large numbers of users.

4.3.1.14 AQ14: What are interoperability challenges and solutions when com-
posing capabilities from heterogeneous environments?

Capabilities in IoT or CPS may originate from heterogeneous devices and services.
This can create a challenge when attempting to compose these capabilities to
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innovate value-added capabilities. Primary studies in Table 4.15 discussed both
challenges and solutions to interoperability. These aspects are presented below to
provide answers to RQ14.

• a) Interoperability challenges in service composition

Two main challenges to service composition interoperability were identified:

i) Heterogeneous services, systems, networks, and components: lead to a lack
of communication/network interoperability. This was recognized as a challenge in
multi-platform environments discussed in [19], where the lack of interoperability
impacts load distribution. The same issue was noticed in the NIST CPS Frame-
work enabled platforms when it comes to heterogeneous components and systems
[112][113][307] or IoT Systems with different architectures [40]. Similarly, researchers
in [235] and [152] mentioned two challenges, one technical, related to the various
device interfaces in heterogeneous IoT systems and platforms APIs, and the second
organizational, illustrated by the heterogeneous service APIs that prevent commu-
nication between organizations. Another case of this challenge was identified in
[109][153] related to the heterogeneity of communication protocols and the chal-
lenges it represents to interoperability, and in [116] where heterogeneous APIs of
certain IoT systems and platforms contribute to the lack of interoperability and as a
result constitutes challenges to service composition.

ii) Heterogeneous and unstructured semantics and data: Unstructured and
heterogeneous data and data models were exposed as a challenge in the NIST CPS
Framework [112][113][307], and in [267] as a challenge to easily compose useful
analytics in IoT platforms. Similarly, the researchers in [235] and [157] discussed
syntactic and semantic challenges, including various data formats, data encoding,
data models, and ontologies as a hindrance to composing cross-domain IoT services.
The lack of compatibility between data formats and data models standards and
specifications also falls under the same umbrella as discussed in [268] and [109].

• b) Interoperability solutions in service composition

Two main solutions were identified to address the aforementioned interoper-
ability challenges.

i) Standardized or custom communication APIs and suitable interfaces
were identified as a solution for bridging interoperability gaps and challenges
in [109] [235] and would solve related technical and organizational concerns. In
[19], understanding the load each platform interface handles in a multi-platform
environment and providing suitable interfaces that fairly distribute this load is key
to improving interoperability between the different platforms. In [116], providing
standardized interfaces was pointed out as a measure to achieve interoperability
in IoT across stakeholders and producers/consumers. Another similar solution
was identity in ARM-based IoT platforms [40], by using the IoT ARM tool to
allow fair interoperability by enabling bridges between systems that don’t share
the same architecture. [152] is another effort that adopted the same strategy; the
“Information Management Adapter” was introduced to facilitate interoperability
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between smart farming systems within an NGSIv2-FIWARE implementation, and
in [11] a hard-coded adapter was used to mitigate the diversity issues related to
sensor platforms by picking compatible devices. Finally, standards such as the NIST
CPS Framework [112][113][307] proposed standardized APIs to achieve external
interoperability and, as a result, facilitate service composition in cyber-physical
systems.

ii) Standardized or common description languages and data semantics: is also
a technique adopted in multiple efforts such as [90] to ensure capabilities are com-
posable by leveraging data homogenization techniques to exploit both structured
and unstructured IoT devices data in analytics. In [109], lightweight and reusable
interoperability models were used to support the composition of a broad range of
applications, and in [235], unified data formats/encoding were leveraged to address
syntactic and semantic challenges to facilitate service composition. Similarly, re-
searchers in [157] leveraged W3C SSN-compliant semantics (JSON-LD) in the VITAL
platform in order to ensure interoperability across diverse IoT streams and domains,
and in [152] a “Data Interoperability Zone” was introduced to ensure data interoper-
ability between smart farming systems within an NGSIv2-FIWARE implementation.
In [268], a technique that wraps service semantics into middleware at the application
layer automatically generates APIs allowing interoperability without modifications
to existing standards, devices, or technologies. Finally, The NIST CPS framework
[112][113][307] proposed providing common languages for describing services to
ensure an easy composition of CPS capabilities. Figure 4.16 shows the above trends
related to interoperability challenges and solutions in service composition.

FIGURE 4.16: AQ14: interoperability challenges and solutions in ser-
vice composition.
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4.3.1.15 AQ15: What are the main privacy challenges and solutions in service
composition?

Primary studies in Table 4.16 focused on privacy challenges and solutions in service
composition.

• a) Privacy challenges in service composition

Four categories of privacy challenges were identified:

i) Non-trusted objects/Devices Challenges: non-trusted objects anonymously
joining composition platforms can lead to privacy issues when collecting or pro-
cessing IoT Data. An example of this challenge was highlighted in IoT-A-based
composition platforms such as Fiware [244].

ii) Data Challenges: data in IoT or CPS composition platforms can reveal
private information when labeled, exchanged, or composed. In [112][113], the NIST
CPS framework highlighted the privacy threat that originates from composing
or aggregating certain types of CPS data, which may present little or no privacy
concerns in isolation. Another example of data challenges leading to privacy
concerns is found in [261], where the use of labels on data to allow Machine learning
classification might compromise privacy if those labels contain privacy-sensitive
elements. In [180], the ever-growing number of IoT devices generating privacy-
sensitive information is considered a privacy concern if the data are not properly
processed throughout its life cycle: a Special case of this issue is discussed in
[285] where the ever-growing number of medical IoT devices constitutes a privacy
sensitive challenge if the data are not properly handled.

iii) Platforms Design challenges: platforms that lack privacy components
by design are the most vulnerable to different privacy challenges as discussed in
[235]. In other instances, Privacy policies might be in place, but their technical
implementation is neither supervised nor adhered to by developers, who typically
focus more on functionality and less on ethical values related to the use of commu-
nication technologies [116]. Cross-domain IoT platforms can also advertise good
QoS metrics, including privacy, but these metrics might not be credible, especially
when profitability is threatened [82], and In [125], researchers stressed the need for
IoT design and management frameworks that implement mechanisms for assessing
privacy in a tangible fashion.

iv) Legal challenges: This case is particularly crucial when the composite
system’s requirements include non-repudiation [40]. This goes against the users’ or
devices’ privacy which is an "Element to Protect".

• b) Privacy solutions in service composition

Three solutions were pointed out to address privacy challenges in service
composition:
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i) Service and component-based solutions : By implementing components and
services that enable, manage, and assess privacy within composition platforms. In
[244], an IoT-A-based IoT composition platform (Fiware) leveraged the "Identity
Management Functional Component (FC)" within the "Security Functional Group"
to issue pseudonyms and manage accessory information to trusted subjects to en-
sure anonymous operations and as a result protect privacy. In [40], an Identity
Management component, ran by a trusted third party, was leveraged for user pri-
vacy protection and for tracking malicious actions. Similarly, the CompoSecRea-
soner [125] component addressed privacy through the computation and validation
of privacy metrics post-composition. Privacy was computed/estimated based on
tangible metrics associated with vulnerability, exposure, and disclosure.

ii) Best practices, Standards, and Regulatory solutions: this solution is il-
lustrated in [112][113], where the NIST CPS Framework provides privacy risk
management guidelines, including the analysis of privacy risks throughout the
entire data life-cycle: creation, collection, composition, exploitation, and disposal.
In [180] and [285], The EU’s GPDR is proposed as a framework for addressing
privacy by enforcing mechanisms of Transparency (how data are processed),
Consent (user’s ability to opt-in or opt-out), and Erasure (the right of the users
to delete data). Human-Centric Computing, proposed in [116], also proposed
architectural best practices for developing privacy-aware composition platforms
from the development phase, and in [180][116], user consent was highlighted as an
important component to protect users’ privacy when accessing IoT cloud platforms.
Similarly, researchers in [82] proposed a history record-based service optimization
method (HireSomeII) that protects cross-clouds privacy by evaluating their QoS
history records instead of relying on their advertised QoS values, which would
enhance the credibility of the composition plans they provide. Another effort that
tackled the problem of protecting user privacy in cloud platforms while enhancing
other QoS parameters was mentioned in [27], where researchers used privacy
preserving mechanisms to rank compositions based on there privacy preservation
level. Other best practices that enhance privacy in IoT composition platforms were
discussed in [267], where researchers highlighted recommendations including the
anonymization of personal data, encrypting and securing data storage components,
and implementing user-customizable data sharing mechanisms

iii) Technology-based solutions: Including blockchain, encryption, and cryp-
tography as discussed in [261] and [180], where IoT data was encrypted to pre-
serve privacy in an ML/BLockchain based smart-city composition platform, and
in a cloud IoT platform. Blockchain have also been used in [261] and [180] to protect
privacy by either storing sensitive data on a distributed ledger, making it difficult to
trace; or by leveraging the decentralized nature of the blockchain to avoid the case
of a single entity managing devices and stakeholders credentials. Decomposition
of privacy into atomic properties is another technical solution leveraged in [235] to
address privacy concerns in IoT composition platforms. Researchers have decom-
posed privacy into atomic problems or properties, including authentication, autho-
rization, data protection, unobservability, anonymity, unlinkability, undetectability,
and pseudonymity. Each of these low-level atomic properties was studied individu-
ally and thoroughly to improve privacy. Figure 4.17 shows trends related to IoT/CPS
service composition privacy challenges (A) and solutions (B).
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FIGURE 4.17: AQ15: privacy challenges and solutions in service com-
position.

4.3.2 SLR Trends, Gaps, and Threats to Validity of the study

4.3.2.1 SLR Trends

We can recognize what’s trending in a certain topic and how important it is by run-
ning an advanced search -using different flavors of each sub-aspect’s vocabulary-
on the pool of primary studies (182 publications) using the Adobe Advanced Search
tool.
The advanced search parses primary studies and searches for keywords related to
the different taxonomy sub-aspects -mentions in the bibliography not considered-
including some that were not addressed in this SLR. As opposed to the discussion
section, we include in this analysis primary studies that not only discussed an as-
pect thoroughly but also papers that partially addressed it while discussing other
sub-aspects. These trends are illustrated in Figure 4.18.
For the Formal aspect, almost 99% of primary studies mentioned a framework, a
standard, or an architecture, which shows the importance of these components in
guiding service composition. Composition algorithms -although not addressed in
this SLR- are also a major aspect of the discussed primary studies, with more than
70% of primary studies mentioning at least one composition algorithm.
For Technical sub-aspects, composition process type and data models are the most
discussed aspects (more than 95% of primary studies), whereas service discovery
and service selection were discussed in only 26% of primary studies or less. A reason
for this is that we didn’t pick primary studies based on these sub-aspects’ keywords.
Finally, for the QoS aspect, cost, security, and reliability were mentioned in 56% of
the primary studies; although they weren’t the main subject of this study, this shows
their importance and involvement when discussing other service composition sub-
aspects.
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FIGURE 4.18: Primary studies trends in IoT/CPS capabilities com-
position and decomposition based on the number of primary studies
that partially or thoroughly addressed a particular formal, technical,
or QoS sub-aspect, including non-addressed sub-aspects in this study

(Other Formal, Other Technical, Other QoS.

4.3.2.2 SLR Gaps

As mentioned in the trends section and based on the taxonomy proposed in this SLR
study, many formal, technical, and QoS sub-aspects were not addressed through
SLR questions but rather discussed partially within other sub-aspects.

For the Formal aspect, although composition algorithms were extensively
discussed in [225] -specifically on how to leverage meta-heuristics algorithms
to efficiently select capabilities based on user-defined QoS parameters-, service
selection remains only one of many service composition steps. An SLR question
that addresses how different service composition algorithms efficiently intervene
during the other composition steps is a topic researchers need to invest effort in.

Regarding the Technical sub-aspects of service composition, automation and
process types in service decomposition, and the level of automation of each step of
the composition process are worth investigating by researchers, and we consider
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these topics as open issues.

For the QoS aspect, the security of composed systems was addressed in many
non-SLR/Literature publications, including [125], where authors discussed the se-
curity of IoT systems of systems (SoS) and highlighted the importance of calculating
the security level of the final/composed system, taking into consideration the secu-
rity of its subsystems. However, security-specific SLR questions, such as the security
mechanisms required during each composition or decomposition step, were not ad-
dressed in this SLR study or in other SLR studies, which makes it a gap worth filling
by the research community.

4.3.2.3 SLR Threats to Validity

In this paragraph, possible threats to the validity of this SLR are presented while
mentioning some corrective strategies.

For the document sources, only SCOPUS and Google Scholar databases were
queried; however, SCOPUS alone generates results from more than 5000 publishers
(including the main publishers), which should provide substantial results along with
the search performed -for completion- in Google Scholar.

For the SCOPUS and Google Scholar search strings: they were designed in a
way that produces as many results as possible, with extra keywords added to filter
specific sub-aspects questions. Not using all synonyms for a certain sub-aspect
might result in missing a certain study. The search string automates the selection
process as much as possible, but given the large number of papers and the different
addressed questions, human error/bias during the non-automatic phases of the
search process (manual selection, forward and backward snowballing) cannot be
completely ruled out.

For the selection procedure, it was partially automated as some stages require
researchers’ involvement and refinement (snowballing forward and backward and
manual evaluation of the large number of initial results from both databases). The
manual stages were repeated to minimize error and bias.

As for the possibility of false negatives, which could cause the exclusion of
important studies, we ran the search strings multiple times and during multiple
periods while conducting this study, which would reduce the chances of excluding
important manuscripts.

As for the focus of the study, this SLR did not exclude non-academia efforts and
cited not only scientific and academic publications but also industry solutions (es-
pecially in the platform type sub-aspect) to provide comprehensive results.

4.4 Conclusion

In this section, we provide a summary of the contributions presented in this chapter,
explain their benefit to different stakeholders, and highlight our ongoing and future
work.
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4.4.1 Summary

This chapter provides an SLR study that addresses formal, technical, and QoS sub-
aspects in the topic of IoT and CPS capabilities composition and decomposition us-
ing the rigorous SLR methodology and based on gaps in previous SLR efforts. From
hundreds of related publications, 182 primary studies were carefully selected to pro-
vide a high-quality study that answers novel and important questions. Fifteen ques-
tions related to various aspects illustrated in a potentially comprehensive taxonomy
were identified and answered. The taxonomy classifies the different aspects of the
topic in three main aspects: i) a Formal aspect where questions related to the role
of frameworks, standards, and references architectures were addressed, as well as
questions regarding formal specification and formal verification techniques, includ-
ing issues such as the state space explosion. ii) A rich technical study addressed
10 Technical sub-aspects to answer 8 SLR questions related to stakeholders’ con-
cerns in service composition domains, the different service composition platforms,
the relationship between service composition process types and the composition au-
tomation level, the role of communication protocols, data models, AI/ML, and de-
composition in creating novel applications or reusing existing ones, in addition to
investigating measurability aspects in service composition. iii) For QoS sub-aspects,
three major components were addressed in SLR questions, mainly exposing scala-
bility and interoperability challenges in service composition and how researchers
addressed privacy while composing IoT or CPS capabilities. After answering the
15 SLR questions, trends and gaps in the topic were pointed out based on the pool
of primary studies, and suggested a few research topics worth investigating by the
research community.

4.4.2 Benefits of the study for different stakeholders

This study will benefit different stakeholders. For example, engineers, develop-
ers, and city planners will learn about the various aspects, challenges, and solu-
tions related to the innovation of composite services or the reuse of atomic ones.
This study also represents a valuable contribution -through the proposition of a
potentially comprehensive taxonomy to guide research efforts- for researchers in-
terested in this topic’s formal, technical, and QoS sub-aspects. Finally, this survey
educates end-users on how the composition of services drives innovation by gener-
ating value-added services and making them accessible to the general public, as is
the case with well-known platforms, such as IFTTT and Home Assistant. In addi-
tion, it highlights general-public concerns that stem from exposing one’s capabilities
preferences, which could expose end-users to privacy and security issues. In addi-
tion, discussions in this SLR will shed more light on the ICCF framework and its
IoTCaP implementations in different smart city domains.
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Chapter 5

Toward an IoT and CPS
Capabilities Composition
Framework (ICCF).

In Chapter 1, we explained the smart-city context of the topic of IoT and CPS
capabilities composition and decomposition; in Chapter 2, we introduced the
main concepts around it by leveraging a layered architecture. In Chapter 3, we
presented related work in systematic literature reviews and surveys -to identify
the topic’s gaps and non-addressed scientific questions- and in frameworks and
platforms for service composition -to identify gaps in foundations, semantics,
and formal verification stages while composing new services-. In Chapter 4, we
performed a systematic literature review based on gaps in SLRs, and we addressed
unanswered formal, technical, and QoS questions related to service composition
and decomposition.

In this chapter, we introduce the IoT and CPS Composition Framework (ICCF),
a framework that aims to facilitate the innovation and reuse of Internet of Things
(IoT) and Cyber-Physical Systems (CPS) capabilities in various smart city domains.

ICCF is an answer to gaps identified in Chapter 3 Section (3.2) and is based
on the NIST CPS Framework’s recommendations and composition guidelines,
intuitive composition semantics inspired by the mPlane protocol, and strong formal
verification capabilities of the Temporal Logic of Actions (TLA) formal descriptors
and tools. We demonstrate why such guidelines, semantics, and formal specification
and verification components form a powerful and intuitive composition framework
that enables trustworthy modeling and composition of capabilities in the smart-city
domain and satisfies different stakeholders’ concerns.

To achieve the goals of this chapter, we adopt the following organization:

section (5.1) explains the ICCF framework’s required components and
pillars based on gaps identified in Chapter 3 Section (3.2).

section (5.2) presents a comparative study of ICCF’s pillars: guidelines
and foundations frameworks, modeling and description semantics, and formal
specification and verification languages and tools.
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section (5.3) introduces ICCF based on the comparative study outcomes.

section (5.4) highlights a prototype of a virtual composite capability within
a smart-city domain based on the ICCF pillars.

section (5.5) showcases a proposed implementation platform, IoTCaP,
which implements the ICCF framework pillars and enables the composition of com-
posite capabilities in different smart-city domains.

5.1 Introduction: Pillars for a comprehensive and trustwor-
thy service composition framework for IoT and CPS ca-
pabilities.

IoT or CPS capabilities composition is the process of generating a value-added
capability based on atomic measurements or services. Throughout this chapter, IoT
and CPS can be used interchangeably [110]. A framework for capabilities compo-
sition that addresses different stakeholders’ concerns would serve as a foundation
for open innovation and re-purposing of IoT and CPS capabilities of an expected
half-trillion IoT and CPS devices by 2030 [69]. Examples of target domains include
smart buildings (well-being), transportation (safety), and healthcare (bed occupancy
prediction). Verifying such novel compositions and making sure their deployment
won’t cause errors is crucial for a trustworthy implementation. For this reason, there
is a need for a framework for composing IoT or CPS systems capabilities regardless
of their complexity or domain. This work proposes an IoT and CPS Composition
Framework (ICCF) that addresses these goals. Such a framework should lay the
groundwork for composition and trustworthiness assessment, use straightforward
semantics to help developers prototype novel capabilities, and describe tools for the
formal verification of such novel composite capabilities.

We prove in this section why equipping a framework with composition foun-
dations and adopting expressive semantics that can be easily translated to a formal
specification for verification purposes constitute strong foundations for a robust
composition framework that allows reliable prototyping of IoT and CPS capabilities.

Building novel services in smart cities requires awareness of different stake-
holders’ concerns and systems criteria. Being aware of such concerns and criteria
requires deep expertise with IoT and CPS frameworks and systems while making
sure a comprehensive outlook of the stakeholders’ needs is adopted.

Satisfying different stakeholders’ concerns when proposing a novel composition
framework means relying on a knowledge database that provides capabilities com-
position foundations, which enables the satisfaction of all stakeholders’ concerns.
The expression of these concerns while modeling or implementing the novel service
is the reason why it’s important to adopt a comprehensive knowledge database
or foundation source. For example, users of a novel capability should be able
to tune it in a way that satisfies their needs, a well-being capability in a smart
building can be a subjective concept (a temperature value might not be comfortable
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across different users), and being able to satisfy different users outlook on the same
concept is a crucial element when attempting to build a comprehensive framework
that addresses thermal comfort.

Once the right foundation source or knowledge database is identified, choosing
the right semantics to express and model the objects, mechanisms, and operations
of the composite capability is the next crucial step. The model, at this point, should
be expressive and user-readable. The expression of the stakeholders’ concerns
needs to be enabled by the chosen semantics: the expression of the importance of
a certain component of a composite capability can be achieved through weighting
mechanisms, and the semantics must enable algebraic expressions that allow that
weighting mechanism to take place.

Semantics needs to be composition and algebra friendly, lightweight, and
expressive. The algebraic interpretation of the semantics is important in enabling
measurability of the composite capability down the road and transitioning from a
model to a verifiable specification.

Semantics should describe and model atomic components of the composite ser-
vice, operations on services, including service selection and discovery, composition
and decomposition operations and operators, as well as interactions between users
and services.

After performing semantic modeling and description of the composite service,
translating the semantic model into a formally verifiable specification is important
when it comes to services for which the range of values must be contained within
user or system acceptable envelops or thresholds.

Based on the discussion above and the gaps identified in existing service
composition platforms and frameworks (check Chapter 3 Section (3.2)), the design
and prototyping of novel IoT and CPS capabilities requires foundations, modeling,
specification, verification, and implementation components:

a) Foundations and Guidelines: Discuss Guidelines related to the desired
composite service in a way that meets different constraints and stakeholders’
concerns.

b) Modeling Semantics: Leverage expressive semantics to describe the
Composite Service’s objects and interactions based on The defined guidelines.

c) Formal Specification: Translate composition semantics and operations
into formally verified semantics.

d) Formal Verification: Verify through symbolic execution or model check-
ing the state space of crafted specifications of the Compositions.



80Chapter 5. Toward an IoT and CPS Capabilities Composition Framework (ICCF).

e) Implementation: Implement the verified composite service in a platform
that takes into account identified foundations and semantics.

Figure 5.1 highlights the main pillars to be considered when constructing a trust-
worthy framework for IoT and CPS capabilities composition and decomposition: i)
composition foundations and guidelines, ii) composition modeling semantics, and
iii) composition formal verification languages and tools.

FIGURE 5.1: ICCF foundations, semantics, and formal verification pil-
lars (foundations, semantics, formal verification) and parameters to

be respected by these pillars.

Figure 3.2 summarizes the thinking process and steps to follow from the initial
thinking about a novel capability’s foundations to its implementation phase.

section A comparative analysis of existing service composition guidelines, de-
scription semantics, and formal specification and verification languages and tools.

After listing gaps in existing service frameworks and platforms, we perform a
comparative analysis in this section to pick foundations, semantics, and formal spec-
ification and verification languages and tools for a service composition framework
that fills the identified gaps and facilitates the composition of novel capabilities in
the IoT and CPS space. Below is a comparison of foundations frameworks, model-
ing semantics, and formal verification languages and techniques: the goal is to select
suitable composition components for the ICCF framework we propose.

5.1.1 Composition Guidelines

A framework provides foundations for service composition when it takes into con-
sideration i) concerns related to the ability of the IoT/CPS to achieve an intended
purpose in the face of changing external conditions such as the need to upgrade
or otherwise reconfigure an IoT/CPS to meet new conditions, needs, or objectives
(adaptability), ii) concerns related to our understanding of the behavior of IoT/CPS
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due to the richness and heterogeneity of interactions among its components, such
as the existence of legacy components and the variety of interfaces (complexity), iii)
concerns related to the ability to combine IoT/CPS modular components (hardware,
software, and data) to satisfy user requirements (constructivity), vi) concerns related
to the ease and reliability with which an IoT/CPS component can be observed and
understood (for purposes of leveraging the component’s functionality) by an entity
(human, machines), and v) concerns related to the ease and reliability with which
an IoT/CPS component’s functions can be ascertained (for purposes of leveraging
that functionality) by an entity (discoverability). We can add to that the ability
of the framework to address concerns related to users as composite capabilities
measurability tends to be subjective (well-being in a smart building, safety in smart
transportation, health improvement in smart medical facilities).

Examples of frameworks with composition foundations include IoT-A, a refer-
ence model and architecture (RMA) designed to allow the generation of different IoT
architectures tailored to specific scenarios. Using IoT-A with Fiware in [244] enabled
the creation of architectures with different functional groups, each serving a specific
purpose and enabling interoperability; the composition of functions is intrinsic to
Fiware using the service organization FG (functionality group), but stakeholders
are concerns when composing IoT capabilities aren’t explicitly addressed.

In [231], an OWL-based ontological framework for the opportunistic composi-
tion of IoT systems was introduced. The framework leverages holons, which are
programming entities used to model distributed systems. Designing holons uses
CoAMOS and A3ME ontologies. The resulting ontologies can then be converted to
UML or domain-specific languages for further exploitation or composition in the
IoT domain. While the discoverability of capabilities or composition complexity is
addressed in this framework, the adaptability of the composition isn’t addressed.

In [266], ISCO, (Internet of Smart City Objects), a distributed framework for
service discovery and composition was introduced with three major enablers: a
functional semantic description of city objects, representing physical devices or
abstract services, a distributed service directory that embodies available city services
for service lookup and discovery, and planning tools for selecting and chaining basic
services to compose new complex services, this effort provides rich implementation
aspects in the smart city context but the trustworthiness of composed capabilities
isn’t discussed.

The NIST CPS framework [112] defines criteria that contribute to CPS composi-
tion trustworthiness, taking into consideration functional, human, trustworthiness,
timing, data, and composition concerns. The composition concern addresses the
adaptability, complexity, constructivity, and discoverability of CPS capabilities;
hence, the NIST CPS framework composition foundations are leveraged in ICCF to
guide stakeholders’ concerns for composing capabilities in the IoT or CPS Space.

Based on the discussion above and what we learned about IoT standards, frame-
works, and references architectures in Chapter 4, Table 5.1 compares frameworks
that provide foundations for IoT and CPS service composition in order to select a
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foundations source that meets service composition needs in IoT and CPS.

TABLE 5.1: Comparing frameworks composition foundations in IoT
and CPS

IoT/CPS service
composition
foundations

Ref Discussed strengths ( ) and Gaps (x)

IoT-A [244]

( ) Supports interoperability mechanisms between
heterogeneous IoT devices.
( ) Adopted by popular platforms such as Fiware.
(x) Adaptability to user concerns and preferences not
discussed, especially fine-tuning atomic capabilities
weights.

OWL-based
Ontological
framework

[231]

( ) Tailored for opportunistic, complex, and distributed
IoT systems composition, with built-in discoverability
mechanisms.
(x) OWL-specific with UML interpretations, which might
prevent the framework from being adapted to other
modeling languages, reducing its interoperability.

ISCO [266]

( ) Provides enablers for semantic description, pools of
capabilities for service discovery, and mechanisms for
chaining and composing services.
(x) Trustworthiness of composed capabilities isn’t
discussed.

NIST CPS Framework [112]

( ) Supports user, system, complexity, adaptability,
constructivity, and discoverability constraints
( ) Defines different aspects related to an IoT or a CPS
including functional, business, human, trustworthiness,
timing, data, boundaries, composition, and lifecycle
aspects.
( ) Supported by popular platforms such as OneM2M for
smart manufacturing (CMfg) [313].
(x) Doesn’t tell which semantics or formal verification
tools to use, which can be beneficial in preventing scope
reduction.

5.1.2 Modeling Semantics

Semantics for comprehensive, rapid, measurement-oriented, and accessible pro-
totyping of capabilities composition suggest that the descriptions are lightweight
and expressive enough to represent capabilities, interactions, compositions, and
workflows necessary to compose value-added features in IoT and CPS.

The W3C Web Ontology Language (OWL) [212] is a semantic web language
designed to represent complex and rich IoT capabilities, groups of things, and
relations between things. However, it is more geared toward web services, and it is
not a lightweight approach to composing services.

In [263], CyPhyML, a CPS capability description language, was discussed with
formal specification capabilities supported. However, the language was more
geared towards a formal description of CPS systems for model checking purposes
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and not for IoT services description.

mPlane semantics [286] allow the representation of value-added capabilities us-
ing a set of operations designed to facilitate service composition. These composi-
tions can be applied to measurement environments, IoT services, and CPS. mPlane
semantics are simple, expressive, and lightweight compared to other description
languages investigated; as a result, it satisfies the human aspect of the NIST CPS
framework.

Based on the discussion above, Table 5.2 compares service composition semantics
leveraged in describing IoT or CPS capabilities, their compositions, and interactions.

TABLE 5.2: Comparing IoT service composition semantics.

IoT/CPS service
composition

semantics
Ref strengths ( ) and weaknesses (x)

W3C Web Ontology
Language (OWL) [212]

( ) semantic web language designed to represent
complex and rich IoT capabilities, groups of things, and
relations between things.
(x) geared toward web services, and it is not a
lightweight approach to composing services.

CyPhyML [263]

( ) Formal specification capabilities supported.
(x) As it’s geared toward formal specification and
verification of a CPS, it’s not as accessible as other
high-level IoT service descriptors.

mPlane [286]

( ) Allows the representation of value-added capabilities
using a set of operations designed to facilitate service
composition.
( ) Semantics facilitate measurability.
( ) Simple, expressive, and lightweight semantics
compared to other description languages.
(x) Doesn’t recommend a particular formal specification
language to transition from semantics to specification.

5.1.3 Formal specification languages and formal verification tools

Building correct compositions and verifying their properties should not be a daunt-
ing experience for engineers and developers. These stakeholders should be able
to easily use semantics and service descriptors to formally specify and prototype
composite services.

In [191], authors introduced linear logic LL based on pi-Calculus to describe and
formally verify non-functional attributes such as the credibility/trustworthiness of
the service composition.

Linear temporal logic (LTL) was introduced in [177]: Real-Time Maude formal
verification tool that is based on LTL was used to formally verify properties of
interest.
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In [179], Directed acyclic graphs were used to formally model dynamic service
discovery, invocation, and composition in opportunistic networks.

Petri Nets [115] were used as an algebra to formally model services and pro-
cesses where the main goal was to check the compliance of compositions with the
ever-changing regulations on IoT.

Temporal Logic of Actions (TLA) formal specification was used to formally
specify and verify critical properties on services within the AWS echo-system [226].

The common aspect between these formal specification languages is how
difficult it is to transition from description semantics to formal specification of
composite services. TLA is an exception to this remark, as it has strong software
support using PlusCAL: a high-level language that is comparable to pseudocode
and which enables the fast translation of mPlane composition semantics to TLA
formal specification.

TLA+ is the formal verification tool that uses notations similar to natural
mathematic operations. CoQ [274], or Isabelle [12] use relatively daunting notations
that are challenging for stakeholders, which might impact the developer’s ability to
write verifiable compositions and, as a result, might limit innovation.

Table 5.3 compares service composition semantics leveraged in describing IoT or
CPS capabilities, their compositions, and interactions.

section ICCF: An IoT and CPS Capabilities Composition Framework
In this section, we select the ICCF pillars based on what was discussed in the

previous section.

Pillars of ICCF include:

i) foundations for composition: including parameters to build composition
platforms and composite services in a way that meets different stakeholders’
concerns, including users, developers, and city planners.

ii) semantics for capabilities, interactions, and compositions, based on which
composition algebra is crafterd.

iii) formal specification languages and formal verification tools used to translate
the semantics of composition into specifications for performing model checking and
trustworthiness assessment via assertions or deadlock analysis.

Based on the comparative study of IoT and CPS foundations and guidelines
frameworks, service description semantics and modeling languages, and formal
specification and verification techniques, we proposed a novel IoT and CPS Com-
position Framework that we call ICCF, a framework for the composition of IoT and
CPS capabilities that is based on:
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TABLE 5.3: Comparing IoT service composition formal specifications
languages.

Formal specification
and verification
languages/tools

Ref strengths ( ) and weaknesses (x)

Linear Logic and
Pi-Calculus / No tool

was used
[191]

( ) based on pi-Calculus to describe and formally verify
non-functional attributes such as the
credibility/trustworthiness of the service composition.
(x) Functional attributes verification not addressed.

Linear Temporal
Logic /

Real-Time-Maude
[177]

( ) Used to reason about real-time systems and
interactions in terms of time.
( ) Real-Time Maude tool supports LTL model
checking commands.
(x) Semantics might not be easily intelligible for new
developers/researchers.

Directed acyclic
graphs / VeriDAG [179][1]

( ) Compositions are specified using the DAG as a
chain of services invoked successively.
(x) DAG, a graphical representation, might need
further algebraic interpretation to be formally verified.

Petri Nets / No tool
was used [115]

( ) Specifies and verifies services and processes comply
with the ever-changing regulations on IoT.
(x) Doesn’t provide a mechanism to translate semantics
to formal specification.

Temporal Logic of
Actions (TLA) /

TLA+
[226]

( ) formally specifies and verifies critical properties
(load balancing) on services within the AWS
echo-system.
(x) Verification wasn’t applied to functional properties
in AWS IoT platforms such as GreenGrass.

Gallina/CoQ [274][237]

( ) Used to specify and prove distributed services
mathematical theories based on building blocks
including axioms and functions.
(x) uses relatively daunting notations that are
challenging for stakeholders, which might impact the
developer’s ability to write verifiable compositions
and, as a result, might limit innovation.

Isar/Isabelle [12][275]

( ) Isar is known for its easy readability by humans and
machines.
(x) Doesn’t provide mechanisms to deal with high
complexity specifications that require cloud EC2
instances to run.

• Strong composition foundations provided by the NIST CPS framework.

• Simple, expressive, composition-friendly, and lightweight semantics for
objects and operations inspired by the mPlane protocol.

• Easily interpretable modeling semantics (mPlane) to a pre-specification lan-
guage (PLUSCAL).

• User-readable pre-specification language (PLUSCAL) which automatically
translates to a Temporal Logic of Actions (TLA) formal specification thanks to
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PlusCAL’s translation capabilities of composition semantics to TLA specification.

FIGURE 5.2: ICCF’s selected pillars based on the comparative anal-
ysis: foundations (NIST CPS Framework), semantics (mPlane), and

formal verification (PLUSCAL/ TLA / TLA+)

ICCF components are complementary:

• The NIST CPS Framework only provides comprehensive guidelines for
building trustworthy CPS and IoT platforms but doesn’t specify which description
semantics to use for describing a composite service.

• mPlane semantics are very suitable for describing composite services ob-
jects, components, and interactions, but a language for interpreting these semantics
into formal specifications is lacking in the mPlane platform.

• PLUSCAL, a language supported by the TLA and TLA+ suite for formal
specification and verification, bridges the gap between mPlane semantics and formal
specifications of algebraic composition operations.

section An ICCF description of a virtual composite service in a smart-city do-
main

Based on what we learned so far and from the SLR study’s response to RQ1,
IoT/CPS standards, frameworks, and reference architectures not only define data
sharing, interoperability, and security specifications of exchanged messages over a
composition platform but also incorporate mechanisms for composing or decom-
posing novel capabilities in different platforms.

5.1.4 The NIST CPS Framework guidelines for building IoT and CPS
Platforms that meet stakeholders’ concerns.

In this subsection, we highlight the NIST’s CPS Framework general guidelines for
building IoT or CPS composition frameworks, as well as specific guidelines for en-
suring that compositions are built with many solutions to specific composition con-
cerns in mind.
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5.1.4.1 General guidelines for building IoT or CPS composition platforms.

Table 5.4 summarizes aspects and concerns to be aware of when composing capabil-
ities based on the NIST CPS Framework guidelines. For more details about concerns
related to each aspect, you can refer to [112][307][113].

TABLE 5.4: Aspects (including composition) and concerns related to
the NIST CPS framework.

Functional Concerns about function performed by the IoT or CPS, including
sensing, actuation, control, communications, etc.

Business Concerns about cost, enterprise, time to market, environment,
regulation, etc.

Human Concerns about human interaction with and as part of an IoT or
CPS

Trustworthiness Concerns about the trustworthiness of an IoT or a CPS Composite
service, including safety, privacy, security, reliability, and resilience

Timing

Concerns about time and frequency in CPS and composite IoT
services, including the generation and transport of time and
frequency signals, timestamping, managing latency, timing
composability, etc.

Data Concerns about data interoperability, including fusion, metadata,
type, identity, etc.

Boundaries Concerns related to demarcations of topological, functional,
organizational, or other forms of interactions

Composition

Concerns related to the ability to compute selected properties of a
component assembly from the properties of its components.
Compositionality requires components that are composable: they
do not change their properties in an assembly. Timing
composability is particularly difficult, hence the need for
synchronization when it comes to timing constraints.

Lifestyle Concerns about the lifecycle of CPS, including its components.

5.1.4.2 Composition-specific guidelines.

The NIST CPS Framework provides four composition-specific guidelines:

• Composition adaptability:

Addresses concerns related to the ability of the CPS to achieve an intended
purpose in the face of changing external conditions, such as the need to upgrade or
otherwise reconfigure a CPS to meet new conditions, needs, or objectives.

• Composition complexity:

Highlights concerns related to our understanding of the behavior of the CPS or
IoT composite service due to the richness and heterogeneity of interactions among
its components, such as the existence of old/legacy components and the variety of
communication interfaces.
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• Composition discoverability:

Identifies concerns related to the ease and reliability with which an IoT or a
CPS component can be discovered and exploited (for purposes of leveraging the
component’s capability) by a composite service or by an agent (human, machine).

• Composition constructivity:

Showcases concerns related to the ability to compose IoT or CPS modular
components including hardware, software, and data, to meet user requirements.

These guidelines, aspects, and concerns can be interpreted -In the context of the
ICCF proposal- as seen in Figure 5.3 below:

FIGURE 5.3: NIST CPS Framework Composition-specific aspects and
Concerns to consider

5.1.5 mPlane semantics for describing capabilities algebra, objects, com-
ponents, and operations

This subsection defines the mPlane semantics for describing capabilities algebra,
interactions, and compositions.

The mPlane semantics choice is motivated by what we learned from the com-
parative study in this chapter as well as the knowledge we learned from answering
SLR questions:

• RQ1/AQ1 : mPlane provides native support for composition functions.

• RQ6/AQ6: mPlane provides a composition engine (reasoner/supervisor).

• RQ7/AQ7: mPlane provides mechanisms for semi-automated compositions
as the user initiates the composition process.
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• RQ8/AQ8: mPlane offers commands that enable requesting, receiving,
composing, and storing data by leveraging multiple network components (mPlane
protocol, [287]).

• RQ9/AQ9: as a data model, mPlane semantics leverages JSON/XML schemas
to describe capabilities.

• RQ10/AQ10: as a measurement platform, mPlane measures Traffic volume by
composing bandwidth and latency atomic capabilities.

5.1.5.1 The space of capabilities and descriptors

Figure 5.4 shows the space of entities and capabilities. E represents the space of IoT
entities, while D represents the space of capability descriptors. There is a space R

in D that meets ICCF requirements. R elements can be composed and decomposed
using the ICCF framework specification algebra, inspired by the mPlane semantics.

There is a surjective relationship between D and E : one or more
CapabilityDescriptors are provided by a single entity (Ca1 and Ca2 provided
by Ea). In the implementation, using microservices, an exception to this rule are
those microservices that provide a single and unique CapabilityDescriptor (Cb1 →
Eb represents this case).

If E is composed of such microservices, then the relation between R and E is
injective. Capabilities in R are either atomic (or non-decomposable) or composite.

FIGURE 5.4: Space of Capabilities and Entities

5.1.5.2 Composition operators and descriptors

Let’s define an operator ψ, which represents a k-ary composition operator. To
illustrate composition, an assumption of k=2 is considered (which renders ψ a
binary composition), Ca1, Ca2, and Ca are represented as JSON objects (with
simple key-value pairs representing the CapabilityDescriptor parameters), the
composition is an operator on values obtained after sending a specification to all
atomic capabilities and receiving results.

Let’s consider Ca1 and Ca2 from Figure 5.4 two atomic capabilities and Ca a
composite capability obtained as follows:
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The composition operator ψ has outcomes in R :
ψ: R2 → R .

(Ca1,Ca2) → Ca
→ ψ (Ca1,Ca2)

This composition generates the CapabilityDescriptor of the composite capability Ca
described below:

{"ID": "Ca_ID",
"Organization": "Ca_O",
"NAME": "Ca_N",
"TIMESTAMP": "Ca_TS",
"LOCATION": "Ca_L",
"REFRESH_RATE": "Ca_RR",
"UNIT": "Ca_U",
"VALUE": "Ca_V",
"SIGNATURE": "Ca_S"}

Ca_ID: represents the ID of the composite capability. It is an increment of the last ID
registered in the CMr registry. Ca_N and Ca_O are the Name and the Organization
of the new composite capability, respectively; a new name and organization are
attributed to the composite parameters when the atomic capabilities have different
ones. Ca_TS: time of arrival of the composite capability. Ca_L represents the physi-
cal location (geographical in terms of latitude and longitude) or logical location (IP
address).

In the case of a geographical address, the composite location is the location that
comprises atomic capabilities’ locations. For logical locations, If the sensors reside
in the same IP Subnet, then the subnet that comprises their IP address becomes
their composite location. Ca_RR represents the frequency at which a measurement
is received. A composite value for this parameter should be the longest refresh rate:

Ca_RR ←− MAX{Ca1_RR,Ca2_RR}. Ca_U reflects the nature and unit of the
composite capability. The simple example of power consumption as a composite
capability of both current and voltage takes the "Watt" as the composite Unit of
"Amperes" and "Volts". In other cases such as well-being in a smart building, atomic
capabilities such as temperature, humidity, and air quality have different units, and
the composition algorithm depicts the composite unit. Ca_V: represents the value
of the composite capability.

IoT providers have the flexibility to define and introduce parameters customized
to their composition needs. One such customization is the introduction of weights
and multipliers. For example, Ca_V← αCa1_V+βCa2_V where α and β are two dou-
bles that represent the weight of C_a1V and C_a2V, respectively, and (+) a compo-
sition operator. Composition rules and parameters are nested in the programmable
extension of the atomic capabilities descriptors. This addresses the constructivity
concern of the NIST CPS framework, as the ability to compose capabilities of differ-
ent units and sources in a modular way would allow more innovation.
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5.1.5.3 Capability Hierarchy and Level

Composite capabilities can be further composed into more complex capabilities. C1,1
and C1,2 in Figure 5.5 are an example of this case. The hierarchy level σ ranks the
capabilities’ complexity. Every capability can be expressed as follows: Cσ,y, where
σ is the hierarchy level and y is the id of the capability at that level. If σ(C) =0,
the capability is atomic. The composite capability descriptor enables tracking the
ancestry of the capabilities and verification of their source without directly send-
ing a request to the producing entities. This paradigm addresses the composition
complexity concern of the NIST CPS framework.

FIGURE 5.5: Composition Hierarchy

5.1.5.4 Specifications, results, and interactions

5.1.5.4.1 Specifications and results A Speci f ication (sC) for a capability with a
descriptor (C) is a request sent from an entity to a resource to get information. The
Speci f ication contains information about the capability that helps intermediate en-
tities (including proxies and capability managers) to locate the requested capability.
A Result is a Speci f ication for which all the parameters are known. The Result (rC)
can be represented as the solution for a system of equations with all the parameters
resolved. The space of solutions can contain a unique element, multiple elements,
or no element. Below is an example of a Speci f ication represented as a system of
equations where the only unknown parameter is CV : the value of the capability.
The other parameters are known as depicted in equation 1. The Result is a unique
solution to the Speci f ication as depicted in equation 2.

5.1.5.4.2 Discovery interaction The capability manager discovers entities that
verify the following rule: CapabilityDescriptor ∈ R. The discoverability function
is defined as Disc(CM, E); it takes CM, a capability manager, and E, an entity, as
input and returns a binary based on whether or not a capability is discovered. This
addresses discoverability, one of the NIST CPS framework composition concerns.

FIGURE 5.6: Specification and Result model.
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5.1.5.4.3 Registration interaction C ∈ R =⇒ C can be registered in CMr. The
above implies that all k-ary compositions ψ can be applied to C. The Reg(CM,C)
function is a binary function that takes CM (a capability manager) and C (the entity’s
CapabilityDescriptor) as inputs and returns True or false depending on whether or
not the descriptor is stored in the CMr and the composition algorithms nested in its
programmable extension are stored in the CMt.

5.1.5.4.4 sendSpec(Src,Dst,Specification) interaction It is a request sC sent to
a resource, a proxy, or a capability manager. If C represents a composite capa-
bility CapabilityDescriptor, the Speci f ication sC will be decomposed to its atomic
Speci f ications

(
sC1,sC2,...,sCk

)
first by applying the decomposition operator ψ−1 as

follows:

ψ−1 : R → Rk .
(sC ) → (sC1 ,sC2 , . . . , sCk )

→ ψ−1 (sC )

5.1.5.4.5 sendResult(Src,Dst,Result) interaction Entities directly provide a
Result for the Speci f ication (check 5.6) if it doesn’t require a further composition
or if it is available in the cache CMc. This explains how the adaptability concern of
the CPS framework is addressed. Composite Results require composition.

ψ: Rk → R .
(rC1 ,rC2 , . . . , rCk ) → rC

→ ψ (rC1 , rC2 , . . . , rCk )

5.1.5.5 ICCF semantics or algebra example

ICCF algebra helps in expressing abstract interactions (discovery, registration,
composition, decomposition, specification, results) and enables formal verification,
symbolic execution, and making sure the outputs of a system fall within trustworthy
values. The pseudocode in Algorithm 1 summarizes all these operations in a use
case explained in the section. The space of capabilities is described above via an
example depicted in Figure 5.4.

Let’s consider CM, a capability manager, Ex an entity that provides a composite
CapabilityDescriptor Cx from atomic capabilities Ca1 and Cb1. These atomic capa-
bilities are provided by entities Ea and Eb. Ex requests a composite capability Cx
from the nearest CM. CM checks its CMc as to whether a copy of the Result rCx is
available. If this is the case, CM returns the data to Ex. Otherwise, CM sends re-
quests to entities Ea and Eb based on information in the CMr. These latter respond
by sending their Results back to CM. The capability manager performs the com-
position of the Result rCx based on algorithms in the CMt and sends it back to Ex.

So far, ICCF composition interactions and operations have been described using
semantics inspired by the intuitive mPlane platform and following the capabilities
composition guidelines of the NIST CPS framework.
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Algorithm 1 ICCF Protocol

1: if Ca1 ∈R and Cb1 ∈R then
2: Disc(CM, (Ea,Eb))← true and
3: Reg(CM,(Ca1,Cb1))← true
4: sendSpec(Ex, CM, sCx)
5: if rCx ∈ CMc then
6: sendResult(CM, Ex, rCx)
7: else
8: ψ−1(sCx)→(sCa1, sCb1)
9: sendSpec(CM, Ea, sCa1) and

10: sendSpec(CM, Eb, sCb1)
11: sendResult(Ea, CM, rCa1) and
12: sendResult(Eb, CM, rCb1)
13: ψ(rCa1,rCb1)→(rCx)
14: sendResult(CM, Ex, rCx)

5.1.6 Formal Specification and Verification through PLUSCAL and TLA+

5.1.6.1 Usecase description

In this paragraph, a virtual composite service is formally studied. This virtual
service involves composing multiple atomic capabilities to get a value-added
feature.

Potential real-world use cases include composite well-being as a composite
capability in a smart building, safety as a composite capability in the smart trans-
portation domain, and health improvement as a composite capability in the smart
health domain.

In this example, we leverage an abstract composite capability that depends on
multiple sensor inputs from multiple entities.

These entities can be temperature, humidity, and pollution sensors in the case of
smart buildings.

For smart transportation, atomic capabilities can originate from vehicles, road
users, or transportation infrastructure.

For the medical domain, atomic capabilities can originate from the patient or the
ICU’s different smart devices.

The value rCn of a virtual composite capability Cn can be represented as the
composition ψ of n atomic capabilities as follows:

ψ:
(rC0 ,rC1 , . . . . , rCn− 2 ,rCn− 1 ,rCn ) → rCn

To simplify and illustrate the formal specification of such capability, we suppose
n=3:

ψ:
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(rC0 ,rC1 ,rC2) → rC3

ψ is the composition operator which represents, in this case, arithmetic and
logical operations on the results of atomic capabilities C0, C1, C2 that generate the
result rC3 of the composite capability C3.

The goal is to prototype a composition with an assured outcome, which means
the composite feature’s values must fall in a trustworthy range.

Assuming discovery, registration, and other mPlane protocol interactions are al-
ready performed, we focus on the composition operations on the capabilities results.

The composite feature’s value (or state) is comprised between a minimum value
and a maximum value, with desired and trustworthy values that meet stakeholders’
concerns falling between these two extremes.

The impact of each atomic capability on the state of the composite capability can
be represented using multiple techniques, including the weighting mechanism as
follows:

ψ:
(rC0 ,rC1 ,rC2) → (W0 * rC0) + (W1 * rC1) + (W2 * rC2)

→ rC3

As an example, let’s consider the set of values and ranges below for the atomic
capabilities C0, C1, and C2:

1 ≤ rC0 ≤ 5

2 ≤ rC1 ≤ 4

1 ≤ rC2 ≤ 3

And let’s consider that according to the engineer’s tuning preferences, the
weight of each capability is distributed as follows:

WC0 : 2 %

WC1 : 3 %

WC2 : 1 %

In this case, the range of C3 values is comprised between
[min((W0*rC0)+(W1*rC1)+(W2*rC2)) and max((W0*rC0)+(W1*rC1)+(W2*rC2))], ie
[min=2+6+1,max=10+12+3]=[9,25].

9 ≤ rC3 ≤ 25
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For any composite capability, there’s a threshold that defines acceptable values
for a certain stakeholder; if values of rC3 that are < 15 are the desired (or trustwor-
thy) states for the composite capability, any other outcome should raise flags when
formally verifying the composite capability. This is achieved through invariants
analysis.

This threshold analysis is part of the human concern analysis that we take into
consideration as we respect the NIST CPS framework implementation guidelines.
The timestamp is synced across all capabilities values, which are discrete.

Figure 5.7 shows the composite capability model in PlusCal and its translation
to TLA+.

FIGURE 5.7: Virtual Composite Service model in PlusCal and its
translation to TLA

Figure 5.8 shows the range of values generated by each atomic capability and the
trustworthy boundaries for the composite capability. In some applications, trustwor-
thy boundaries can be set for atomic capabilities as well.
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FIGURE 5.8: Atomic and Composite Capabilities and their range of
possible and trustworthy values.

Figure 5.9 shows results after running symbolic execution. The model was run on
an Ubuntu 16.04 with eight i7 CPU cores and 10 GB of RAM. TLA+ allows connec-
tion to remote AWS EC2 instances to analyze super complex and highly demanding
specifications.

FIGURE 5.9: Symbolic Execution Results: Error status (1), number of
states (2), user output (3)

To test the virtual composite capability against errors or unwanted states, we use
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deadlock invariants. Figure 5.10 shows an instance of checking a deadlock state that
yields a non-trustworthy / desired outcome.

FIGURE 5.10: Deadlock and Trustworthiness Verification

5.1.6.2 Qualitative and Quantitative Analysis

The symbolic execution of the model results in running combinations of all atomic
capabilities values to determine the composite capability state space. In Figure 5.8,
it took 1 second to perform symbolic execution as the model is simple and was
provided for demonstrating the usefulness of the TLA+ ecosystem. APALACHE
Model Checker can replace TLC (default TLA+ model checker) to improve execution
time [168] when the system’s model is too complex. From Figure 5.9, the number of
states generated across all combinations is 180, with 135 distinct states. The queue
didn’t suffer from congestion as the system presented few variables with fewer
states.

5.1.6.3 Takeaway from the use case

Through this use case, we demonstrated how to prototype a composition based
on the framework and semantics proposed, run symbolic execution, analyze
trustworthy results, and reveal errors using a deadlock invariant. Examples that
could benefit from this framework include composing a well-being capability in
the smart building domain, analyzing oxygen toxicity in autonomous ventilators
(smart health applications), or studying braking time as a composite feature in an
autonomous vehicle to evaluate the braking amount required to prevent collisions
(smart transportation applications). Minimizing execution time, queue congestion,
and the effect of state-space explosion can be done by optimizing the model,
space reduction, or leverage of better hardware (local/cloud) which TLA+ allows
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by calling EC2 instances that can run TLC as we learned by answering research
questions RQ4/AQ4 in Chapter 4.

section IoTCaP: an implementation platform for ICCF-described composite ser-
vices.

5.1.7 Implementation efforts

The ICCF composition framework is agnostic from the implementation perspective,
and its principles can be implemented in multiple environments. Vert.X, a reactive
and event-driven programming toolkit, is used to implement the well-being com-
posite features in a smart building application based on the ICCF foundations. The
well-being verticle receives data from temperature and humidity sensors (provided
by sensor DHT22 AM2302) and air-quality sensors (provided by sensor SDS011
PM2.5). Code for the project is available in the GitHub repository [159]. An Auto-
mated Driving System testbed [121] on the NIST’s UCEF co-simulation environment
is also being built [52] to provide atomic capabilities for a safety assessment verticle:
The goal is to simulate autonomy functions as a composite feature which will enable
trustworthiness assessment of safety-critical maneuvers such as emergency braking.

5.1.8 IoTCaP: An ICCF-based Platform For Implementing The Composite
Capability Entities And Interactions using mPlane Semantics.

We worked on an implementation for the ICCF framework that we called IoTCaP,
which stands for the IoT Capabilities Platform. IoTCaP leverages a front-end
interface built using the VUE.JS toolkit and a backend that leverages Vert.X verticles
to connect to the front-end interface via the Axios Library and to the devices layer
through endpoints compatible sensors.

The sequence diagram in Fig. 5.11 provides a high-level outlook on IoTCaP and
summarizes its composition-related interactions between its entities, it is inspired
by the mPlane protocol reference architecture that:

• Defines the role of the client in requesting capabilities (replaced in the IoTCaP
by a stakeholder).

• Defines the role of the probes and repositories in making capabilities results
available for requesting clients and services.

• Defines the role of the supervisor and reasonser in composing atomic capabili-
ties into value-added services.

In IoTCaP, the "Stakeholder" can be any actor with interest in the composition
platform; for example, it can be a user requesting a capability or an engineer tuning
its parameters through weights. Typically a stakeholder authenticates securely to
his/her profile in IoTCaP and then inputs parameters that describe the desired
capability. Once these parameters are submitted to the front-end interface and
communicated to the backend composite service "via specifications", the IoTCaP
composite capability backend computes one or multiple composite metrics and
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returns the "result" to the stakeholder, with the possibility to display atomic capabil-
ities contributing to the composite service. Figure 5.11 doesn’t show some mPlane
operations such as capabilities registration or discovery, and it also omits user
authentication as the main goal here is to show composition-specific operations.
These operations will be added to the real-world examples that we will discuss in
Chapter 6.

section*Summary of the ICCF framework proposal
In this chapter, we introduced the ICCF framework as well as its formal and

knowledge criteria derived from a composition-enabling framework (NIST CPS
Framework), straightforward and expressive semantics (mPlane), and strong formal
verification language and techniques (TLA+, TLA, TLC, PLUSCAL). A comparison
of existing environments, frameworks, semantics, and formal specification and
verification techniques enabled the selection of formal components of the ICCF
composition framework that enables specification, prototyping, and assessment
of IoT and CPS capabilities. The goal is to provide stakeholders with the tools to
innovate in the IoT and CPS space while addressing their corresponding concerns.
NIST CPS framework composition guidelines and powerful semantics inspired by
the mPlane protocol, as well as formal specification and verification techniques
provided by the TLA/PlusCal package, enable such a framework. Composition
requirements, services, and interactions were described, and based on that, a com-
posite capability example was studied. Results of model checking were generated,
and an analysis of the state space was performed to understand non-trustworthy
results through a deadlock invariant.

Figure 5.12 fills up the components chosen for the ICCF framework and summa-
rizes the steps to follow to prototype and implement a novel composite service.

In Chapter 6, we discuss in depth a real-world composite service in the smart
city domain:

• Assessing well-being as a composite capability in the smart building domain.

And we discuss components for assessing two more smart-city applications
within the ICCF framework:

• Assessing Autonomous Vehicle Manoeuvers Safety as a composite metric in
the smart transportation domain.

• Assessing Health improvement as a composite capability in the smart health
domain.
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Chapter 6

ICCF Applications in smart cities

After introducing and explaining the ICCF framework in Chapter 5, we devote this
chapter to discussing applications of the proposed framework in different smart city
domains. In section 6.1, we start by discussing well-being as a composite capabil-
ity in smart buildings, section 6.2 discusses safety as a composite capability in the
smart transportation domain, and section 6.3 discusses ongoing work on a health
improvement composite capability in the smart health domain.

6.1 Well-being as a Composite Capability in the Smart Build-
ing Domain: A Formal and Technical Study.

Smart building value-added capabilities are gaining significant attention from
various stakeholders, including the general public, researchers, and the industry.
One such capability is well-being, a composition of multiple atomic capabilities
that characterize a smart building. Atomic functions that compose a well-being
capability include temperature, noise level, pollution level, and humidity, to name
a few. Multiple efforts have addressed this specific capability and its composition
requirements and techniques from standardization, technical, and quality of service
aspects. One such effort is the IoT and CPS Composition Framework (ICCF), a
novel framework for rapid modeling, specifying, verifying, and prototyping IoT
and CPS capabilities, which we discussed in Chapter 5. ICCF relies on the NIST CPS
Framework guidelines to address different stakeholders’ concerns; it also leverages
composition semantics inspired by the mPlane platform to describe entities and
interactions intuitively. In addition, it uses the Temporal Logic of Actions + (TLA+)
formal verification techniques to verify the correctness of core functions.

In this chapter, we leverage the ICCF framework to provide the following contri-
butions: i) a description of a stakeholder-defined well-being composition capability
based on the ICCF framework foundations, ii) an in-depth characterization of the
well-being capability, iii) considerations regarding the formal aspects of the well-
being capability, including verifying its correctness, deadlock, and state-space, iv)
implementation of the composite capability using a lightweight microservices envi-
ronment and real sensors, v) discussion of results based on the different domains
of interest including residential buildings and factories. Finally, a summary of this
chapter is provided, and challenges to capabilities composition, as well as future
plans for improvement and expansion, are highlighted.
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6.1.1 Introduction

Innovating value-added capabilities in Internet of Things (IoT) or Cyber-Physical
Systems (CPS) - concepts that are converging over time [110] - through composition
is gaining more and more interest as a wide range of sensors and appliances are gen-
erating data that can be exploited to improve various features within the different
types of environments including smart buildings. Smart buildings are emerging as
complex cyber-physical systems with humans in the loop [148], that should provide
a safe and comfortable space for inhabitants. Well-being is a function that represents
the quality of living perceived by different entities (residents, maintenance, owners,
etc.) in a particular building with specific properties; this means that well-being
requirements in a residential building can differ from those of a factory or a hospital.
In other words, as buildings vary in terms of shape, characteristics, and purposes,
well-being definition varies accordingly to accommodate those particularities. For
example, well-being in a residential building has the primary purpose of addressing
the occupants’ comfort. Consequently, it requires reasonable levels of temperature,
humidity, air quality, noise level [257, 306, 131], and WiFi signal strength as wire-
less internet access in smart buildings is common practice as opposed to wired
communications and represents a crucial feature that appliances for well-being or
entertainment rely on [77].

On the other hand, for hospitals, well-being is based on ensuring sanitary
conditions, which may require more adjustable levels of temperature, humidity,
and air quality compared to those of residential buildings [186]. The same can be
said about clean rooms in which semiconductors are built where certain products
require temperature, humidity, and air quality (dust, particulate matter) levels that
differ from those of residential buildings or hospitals [188].

Factors that influence well-being can be classified into two categories: i) static
factors that a stakeholder has little to no ability to change or improve; these include
the shape of the building, and its location, to mention a few, and ii) dynamic factors,
which the stakeholder can alter and improve using multiple techniques or systems
and those factors include temperature, noise, humidity, and air quality. This work
focuses on dynamic factors that impact well-being in a given type of building.

Modeling, prototyping, and rapidly implementing composite capabilities in
IoT and CPS are essential for innovation in smart buildings. Therefore, following
streamlined and easy-to-follow guidelines is crucial to ensure adherence to stan-
dards [211] and best practices and achieve an acceptable level of correctness and
reliability.

In this chapter, the IoT and CPS Composition Framework (ICCF) [120] -a
framework for composing novel IoT and CPS capabilities- is leveraged for guiding,
modeling, prototyping, composing, and verifying an IoT composite capability
called well-being. This capability addresses concerns in different types of buildings.
We illustrate an end-to-end composition effort; to the best of our knowledge,
the well-being capability has never been formally specified as a full-fledged
capability; this effort provides a detailed prototype for this novel feature. The
ICCF framework guidelines followed in this chapter derive from the NIST CPS
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Framework -a framework that provides a comprehensive analysis of a CPS and
captures its generic functionalities, activities, and artifacts needed to support its
conceptualization, realization, and assurance-[114, 112, 307], make use of intuitive
and comprehensive mPlane semantics [286] to describe entities and interactions
and leverages robust, straightforward, and easy to use Temporal Logical of Actions
(TLA) formal verification techniques and tools [175, 168]. It was demonstrated in
[120] that these foundations, guidelines, and tools form a powerful framework that
would help researchers, developers, and engineers better frame and organize their
composition and innovation efforts and adhere to procedures and semantics to
improve the capabilities quality, correctness, and reliability.

The contributions presented in this section are organized as follows: Subsection
6.1.2 provides a comprehensive related work about well-being in IoT. Subsection
6.1.3 explains the introduced definition of well-being and its relation to different
stakeholders’ concerns and describes entities and interactions contributing to its
composition and computation in an ICCF implementation called IoTCaP. In Sub-
section 6.1.4, mPlane semantics for the well-being function are formally specified
using the PlusCal language, and model checking and deadlock analysis of the for-
mal specification are done using TLA+. In Subsection 6.1.5, an implementation of
IoTCaP is provided, as well as a discussion of the results obtained. Finally, a sum-
mary of this chapter discussing encountered challenges and future work is provided
in Subsection 6.1.6.

6.1.2 Related Work

This subsection provides a comprehensive review of capabilities composition in the
smart building domain. In addition, it highlights efforts addressing well-being or
comfort as a capability in the IoT or CPS space.

6.1.2.1 Smart Building Applications And Composition

Different research efforts addressed smart building applications from a service
composition perspective. In [36], Brick, a uniform metadata schema for representing
smart buildings components -including sensors and subsystems, and describing
the different interactions that occur between these components- is proposed. The
goal of such schema is to provide APIs that enable the creation of portable energy
efficiency applications.

In [148], a platform-based methodology for smart building design (PBD) was
proposed, which promotes the reuse of hardware and software on shared infrastruc-
tures, enables rapid prototyping of applications, and involves extensive exploration
of the design space to optimize design performance.

In [43], IoT was leveraged to build an Energy Management System (EMS)
that takes into account the behavior of individual customers who occupy smart
buildings. This idea is extended in this work to allow different stakeholders to
customize well-being to address their needs.
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In [122], full-IP IoT with real-time Web protocols is discussed as a major enabler
for efficient and meaningful aggregation of services known as composition and how
that would impact domains such as smart buildings.

In [203], energy cost, thermal comfort, and social IoT (SIoT) concepts are
composed to provide a Smart Heating, Ventilation, and Air Conditioning (HVAC)
system for smart buildings.

In [56], Fault Maintenance Trees (FMTs) and probabilistic model checking are
used to evaluate various dependability metrics and maintenance strategies of
Heating, Ventilation, and Air-Conditioning of a smart building.

In [294], an adaptive service composition framework that supports dynamic
reasoning on numerous smart city IoT services was proposed, and a contExt
Aware Web Service Description Language (wEASEL) abstraction was leveraged to
represent services, compositions, and interactions. For evaluating the composition
framework, an OWLS-TC4 testbed was proposed to evaluate the accuracy and
novelty of simple and composite services.

In [209], a model was proposed for simulating the core engineering subsystems
of a smart building. The model is based on Matlab Simulink, the Simscape physical
modeling library, and the Stateflow library. The goal of the model is to simulate
coordination between subsystems and assess power consumption for optimization
purposes.

6.1.2.2 Previous Efforts On assessing Well-Being

In this paragraph, previous efforts that tackled comfort or well-being as an IoT
capability are discussed, in particular, the IoT and CPS Composition Framework
(ICCF) [120].

Research on well-being usually addresses a single atomic capability that con-
tributes to well-being instead of studying well-being as a composite function which
this work addresses.

In [223], the role of smart urban technologies was demonstrated, especially in
ensuring sustainable cities and well-being for the citizens; however, the study fo-
cused on sustainability and energy efficiency aspects and didn’t address well-being
concerns.

In [147], a summary of IoT technologies enabling smart buildings was provided,
and a referenced study [311] found that people spend 80 percent of their lifetime
inside buildings; the study showed the extent to which comfort is a key component
that IoT researchers and engineers must address to improve the well-being of smart
building residents.

In [41], highlighting the differences between smart buildings and autonomous
buildings was performed to clear the confusion associated with these two con-
cepts; they also introduced a measurement to quantitatively assess the building’s
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"intelligence". One key criterion contributing to the building intelligence metric is
"inhabitants’ comfort." This component is defined as the ability of "Smart" homes to
learn from inhabitants’ behavior and maximize their comfort.

In [142], the book on Green and Smart buildings discusses the shift buildings are
witnessing as they become more and more people-centric rather than engineering,
construction, or technology-centric. This is exemplified in how building owners,
developers, and facility managers focus on increasing occupant well-being and
comfort by building smarter spaces that engage occupants, understand how they
use buildings in new ways, and get them involved in implementing sustainable
practices.

In [178], a focused study on addressing thermal comfort was done within an
occupied building and how that requires energy and, thus, an optimized solution
balancing energy use with indoor environmental quality (adequate thermal comfort,
lighting, etc.). In [119], a quantitative composite air quality metric was introduced
as a contributor to well-being.

In [102], balancing comfort requirements with environmental and energy con-
straints was discussed by leveraging a Context-Aware Framework for Collaborative
Learning Applications (CAFCLA) to combine various technologies that simplify
the creation of context-awareness and social computing systems that influence
user behavior to favor efficient energy resources without compromising comfort
in the workplace. In [236], comfort and well-being were addressed from a privacy
perspective. By setting and interacting with smart devices, inhabitants risk giving
away details about their preferences that compromise elements of their privacy. A
framework that forces IoT Assistants -when capturing and managing the privacy
preferences of their users- was proposed to communicate privacy-sensitive infor-
mation to privacy-aware systems.

In [39], a discussion around extracting information that enhances inhabitants’
comfort from smart buildings was done. Smart buildings generate huge amounts of
data, and the integration of Big Data Analytics (IBDA) and IoT to address the large
volume and velocity of real-time data in the smart building domain is proposed to
enhance well-being.

In [288], the health and well-being of smart city residents are discussed as a
social aim of IoT rather than the usual sustainability and ecology aim. A case study
of smart health and well-being in Kashiwanoha Smart City in Japan was discussed,
and the impact on resident lifestyles was assessed. Findings suggest that smart
cities have great potential to be designed and executed to tackle social problems
and realize more sustainable, equitable, and livable cities. In [206], comfort, among
other qualities, is discussed as a crucial property in educational buildings; comfort
contains thermal, acoustic, visual, and air quality components; the paper presents a
case study in Nuevo León, Mexico, where a comparative study was conducted to
assess the teaching-learning process in different environments with different health,
safety, and comfort criteria.
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In [204], a new metric was proposed: the Smart Readiness Indicator (SRI). SRI
shows whether or not a building respects different criteria defined by the European
Union Standards; the criteria contributing to the SRI include energy, flexibility for
the grid, self-generation, comfort, convenience, well-being and health, maintenance,
and fault prediction, information to occupants. The SRI methodology differentiates
between three weights for all functional levels and impact criteria: equal weights,
residential, and non-residential buildings.

In [91], smart buildings are discussed as well as several technologies that support
their functionalities, including the automated building management system (BMS),
which aims to achieve the well-being of occupants, promoting a comfortable envi-
ronment while ensuring efficient use of building resources. Context-based reasoning
as a modeling paradigm for smart buildings is proposed as a supportive mechanism
to realize smart building applications.

6.1.2.3 Main takeaway

As a summary of the related work above, well-being or comfort was addressed as a
qualitative feature, with some efforts addressing single aspects of well-being such as
air quality. However, and to the best of our knowledge, none of the research efforts
investigated tackled well-being as a dynamic quantitative composite measurement
that can be formally specified and verified, which this effort aims to achieve.

6.1.3 An ICCF definition of Well-Being as a composite capability

This subsection proposes an ICCF-based definition of well-being as a quantitative,
dynamic, and composite capability. Next, a discussion sheds light on this capability
from different stakeholders’ perspectives and how these perspectives can be quanti-
fied and incorporated into the well-being metric computation. After that, semantics
representing the requirements mentioned above using mPlane notations and alge-
bra are provided. Finally, an illustration is done for the required operations using
a sequence diagram and pseudo-code in the context of a platform called the IoT
Capabilities Platform (IoTCaP).

6.1.3.1 A Proposed Definition For Well-Being Based On Stakeholders Concerns

A set of metrics that contribute to well-being in smart buildings were identified;
some of these metrics are found in the WELL Building Standard version 2™ [297].
These metrics include temperature, humidity, air quality, noise level, and WiFi sig-
nal strength. These capabilities change over time, and sometimes they fall under
comfort levels that compromise well-being as a whole. In this work, weights and
scores characterize, quantify, and contribute to the computation of the well − being
metric as seen in equations (6.1) below:
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1≤ st, sh, sa, sn, ss ≤ 5

Wt+Wh+Wa+Wn+Ws=20

0≤Wt,Wh,Wa,Wn,Ws ≤ 20

(st, sh, sa, sn, ss,Wt,Wh,Wa,Wn,Ws) ∈N

WB=Wt ∗ st+Wh ∗ sh+Wa ∗ sa+Wn ∗ sn+Ws ∗ ss

(6.1)

Where WB, a value between 0 and 100, represents well-being (higher is better).
st, sh, sa, sn, and ss represent scores assigned to the values of temperature, humid-
ity, air quality, noise, and WiFi signal strength, respectively. These scores must be
between 1 and 5, with a higher score representing a range of more comfortable
values for the stakeholder in a given domain.

Finally, Wt, Wh, Wa, Wn, and Ws represent individual weights for temperature,
humidity, air quality, noise, and WiFi signal strength, respectively. Individual
weights represent the importance a stakeholder assigns to a given metric and can
be between 0 and 20, but their sum is always equal to 20.

For example, in a residential building, the weights for the different metrics
would all have the same importance, which means the weight is equal to 4 for each
metric.

If a single metric is crucial and the others are negligible, the value 20 is assigned
as the weight for that critical metric, while the other metrics will have a weight
equal to zero.

6.1.3.2 Respecting the NIST CPS Framework guidelines when modeling the
well-being capability in the smart building domain.

The NIST CPS framework provides best practices to compose IoT and CPS capabili-
ties while making sure important aspects are taken into consideration. We use the
nine aspects of the NIST CPS Framework to discuss the well-being capability, and
we explain how each aspect is addressed during the modeling phase. We will select
a few concerns for each aspect to avoid exhaustiveness, and we will focus on the
composition aspect as that’s the most important one.

6.1.3.2.1 Functional
We leverage a set of sensors, including temperature, humidity, air quality, noise

level, and WiFi signal strength, to compose a well-being capability in the smart
building domain.
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6.1.3.2.2 Business
Cost is addressed in two ways: the ICCF framework encourages the decomposi-

tion of complex services into reusable atomic capabilities, and a complex that con-
tains temperature for example can provide APIs to other services to use its tem-
perature feed, saving costs for other stakeholders related to implementing a brand
new temperature service. The other way cost is saved through the use of energy-
constrained sensors and low-computation devices (raspberry pie) to achieve the
goals of this composition.

6.1.3.2.3 Human
Humans interact with the well-being capability in different ways depending on

the environment. Hence, the need for weights related to each atomic capability to
reflect the importance of a certain metric in a specific area of operation. Dust, for
example, can be tolerated in a residential area but not in a chip factory. Similarly,
certain levels of temperature can be accepted in a hospital, but they might feel un-
comfortable in a residential building. Building composition with the human aspect
in mind contributes to a successful and useful deployment.

6.1.3.2.4 Trustworthiness
The reason we run formal verification and algebraic specifications when describ-

ing the well-being capability is to make sure our assessment can be trusted as it
runs through formal specification and verification pipelines. A well-being service
should always yield results that are deemed comfortable by end users, hence the
importance of implementing trustworthiness mechanisms (including formal verifi-
cation and software validation through testing) during the modeling, prototyping,
and testing phase.

6.1.3.2.5 Timing
The composite capability of well-being requires feeds of data from multiple

sources, which might have different time parameters and refresh rates. Adapting
the timing parameters in a way that’s compatible and intelligible by the composi-
tion engine is crucial for a successful and meaningful composition.

6.1.3.2.6 Data
Data associated with the composite well-being capability must arrive at the com-

position engine in a timely and correct fashion for the system to correctly compose
data feeds into a meaningful composite feature.

6.1.3.2.7 Boundaries
Data related to well-being should respect certain boundaries in terms of values

envelop, units, and refresh rate. Measures should be in place to make sure composed
data is in the right range and respects the anticipated properties.

6.1.3.2.8 Composition
This is the main element in the NIST CPS Framework which supports the compo-

sition foundations of the ICCF framework. The NIST CPS framework provides four
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"4" guidelines for service composition in ICCF: i) adaptability: well-being informa-
tion can come from different sensor technologies and different communication pro-
tocols, and the composite capability (well-being) must work seamlessly and adapt
to these differences. ii) complexity: well-being information can come from complex
or legacy systems and sensors and might require layers of simplification to be use-
able. iii) constructivity: the well-being composite metric must be able to leverage
and combine modular data and device components with satisfying stakeholders’ re-
quirements. iv) discoverability: the ability of the composite well-being capability to
connect to the underlying atomic services and sensors contributing to its calculation.

6.1.3.2.9 Lifecycle
This aspect ensures that the composite well-being service is reliable when de-

ployed and safe to disconnect from the building when there’s no need for it.

6.1.3.3 IoTCaP: An ICCF-based Platform For Implementing The Composite Ca-
pability Entities And Interactions using mPlane Semantics.

This paragraph describes entities and interactions within IoTCaP using the mPlane
semantics and algebra, describes those interactions using a sequence diagram, and
highlights the overall behavior using pseudo code.

6.1.3.3.1 Algebraic Description Of IoTCaP Entities and interactions

IoTCaP is the platform built to implement the ICCF-based composite capa-
bility. IoTCaP implements the following entities: Actor : logs into the IoTCaP
front-end interface and selects domains or custom weights, Auth : authentication
mechanism, IoTCaP : dashboard for visualizing the composite capability as well
as inserting weights either manually or by selecting a specific domain, well − being
: back-end process that implements the mPlane protocol by posting, speci f ication
to sensors. The well − being back-end also computes the composition based on
the received weights and the composition formula, Sensors : receive specifications
from the well − being back-end and return Results based on the Capability schema.
Consider R, the space of capabilities that can be composed and decomposed using
the ICCF framework.

Consider Ct, Ch, Ca,Cn, Cs, the Capabilities descriptors generated by the
temperature, humidity, air quality, noise, and signal strength sensors, respectively.
Consider sCt, sCh, sCa,sCn, sCs, the specification posted to the sensors of tempera-
ture, humidity, air quality, noise, and signal strength respectively.
Consider rCt, rCh, rCa,rCn, rCs, the result obtained from the sensors of temperature,
humidity, air quality, noise, and signal strength, respectively.

6.1.3.3.2 Algebraic Description Of IoTCaP Interactions Using mPlane Semantics
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The different interactions that occur within IoTCaP can be described as fol-
lows:

• Authentication interaction: The Auth entity authenticates an Actor to the IoT-
CaP front-end; the Actor can be a user or a process. The Authentication function
is defined as Authenticate(Actor, Auth); it compares Actor credentials against Auth
database and allows access to the IoTCaP front-end if there is a match.
• Discovery interaction: The well − being back-end discovers entities that

contribute to computing well − being. The discoverability function is defined as
Disc(well − being, C); it takes well − being, a composition manager, which also
represents the well − being back-end and C, a capability as input and returns a
binary that shows whether or not that capability is discovered.

• SendSpec(Src,Dst,Specification) interaction: It is a request sC used in two in-
stances: i) sCwb : a well-being specification (in the mPlane semantics, a specification
is a request sent from a particular entity or a service to get data values or results
from a sensor or another service) sent from the IoTCaP front-end to the Well− being
back-end, or ii) sCt, sCh, sCa,sCn, sCs, sent from the Well − being backed to the
different Sensors providing atomic capabilities.

• sendResult(Src,Dst,Result) interaction: According to the mPlane semantics,
processes or sensors provide a Result for the Speci f ication they receive based on
their Capability. Two instances of this operation are witnessed in our implementa-
tion: i) results of sensor values returned upon processing specifications sent by the
well − being back-end. ii) results of the computed well-being value returned to the
IoTCaP front-end.

• Composition function: Consider an operator ψ, which represents a k-ary
composition operator. To illustrate composition, we assume that k=5, representing
the five capabilities contributing to the composite capability of well-being, is made.
The composition is an operator on values obtained after sending a specification to
all atomic capabilities and receiving results.

• Capability weight and composition computation: Consider Wt , Wh, Wa, Wn,
Ws, the weights of rCt, rCh, rCa,rCn, rCs respectively, the well-being composite
result rCwb can be expressed as seen in equation (6.2):

ψ : N5→N

(rCt,rCh,rCa,rCn,rCs)→ rCwb

→Wt ∗ rCt+Wh ∗ rCh+Wa ∗ rCa+Wn ∗ rCn+Ws ∗ rCs

(6.2)

• Specification decomposition function: since the well-being Cwb represents a
composite capability CapabilityDescriptor, the Speci f ication sCwb will be decom-
posed to its atomic Speci f ications

(
sCt, sCh, sCa,sCn, sCs

)
by applying the decom-

position operator ψ−1 as seen in expression (6.3):
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ψ−1 : R→R5

(sCwb)→ (sCt, sCh, sCa, sCn, sCs)

→ ψ−1(sCwb)

(6.3)

Figure 6.1 illustrates graphically the composition of atomic capabilities contribut-
ing to the calculation of well-being in a smart building after being weighted by the
user/stakeholder.

FIGURE 6.1: Composition of the well-being composite service using
atomic capabilities that are weighted based on user/stakeholder pref-

erences.

6.1.3.3.3 Illustrating Entities And Interactions Using A Sequence Diagram

The sequence diagram in Fig. 6.2 summarizes the interactions between IoT-
CaP entities. The "Actor" authenticates to its profile in IoTCaP and then selects
weights for different metrics based on their importance. Once weights are submit-
ted, the "Well being" composition engine computes a well-being value and returns
it to the Actor as well as values for atomic metrics. In the case where the sum of
weights exceeds 20, an error is displayed to the Actor.

6.1.3.3.4 Illustrating mPlane-described IoTCaP Entities And Interactions Using
Pseudo-code

The pseudo-code in Algorithm 2 summarizes the well-being composition opera-
tions. In particular, line 15 refers to the computation of the composite capability of
well-being.
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FIGURE 6.2: Sequence diagram for the well-being capability ex-
pressed using mPlane interactions.

6.1.4 Formal Specification And Verification

Formal verification is necessary because it is a reliable way to verify the mPlane-
modeled functions. Furthermore, fixing and optimizing the well-being model
becomes possible by studying deadlocks and in-variants. This subsection converts
mPlane semantics defined previously to PLUSCAL language, which is translated to
TLA specification. Then the model checker yields the state space, and by studying
invariants, assessing the correctness of the model, or proposing corrections in the
case of errors or deadlocks is possible.

The choice of TLA+ was based on the fact that it is a trusted tool for verifying
microservices, including in commercial solutions such as AWS [226], where it was
leveraged to verify the correctness of properties such as fault tolerance in storage
services.

6.1.4.1 Formal Verification Environment

TCL version 1.5.7, TLA+’s model checker, is executed in a four-core CPU-equipped
Linux Ubuntu 14.04 VM with 8GB RAM.
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Algorithm 2 IoTCaP platform mPlane interactions.

1: if Ct,Ch,Cs,Ca,Cn ∈R and
2: Disc(well − being,(Ct,Ch,Cs,Ca,Cn))← true and Authenticate(Actor, Auth)←

true then
3: sendSpec(IoTCaP, well − being, sCwb)
4: ψ−1(sCwb)→(sCt, sCh, sCa,sCn, sCs)
5: sendSpec(well − being, Ct, sCt) and
6: sendSpec(well − being, Ch, sCh) and
7: sendSpec(well − being, Ca, sCa) and
8: sendSpec(well − being, Cn, sCn) and
9: sendSpec(well − being, Cs, sCs)

10: sendResult(Ct, well − being, rCt) and
11: sendResult(Ch, well − being, rCh) and
12: sendResult(Ca, well − being, rCa) and
13: sendResult(Cn, well − being, rCn) and
14: sendResult(Cs, well − being, rCs)
15: ψ(rCt,rCh,rCa,rCn,rCs )→(rCwb)
16: sendResult(well − being, IoTCaP, rCwb)

6.1.4.2 Adapting The State Space For PLUSCAL’s Requirements

Converting mPlane algebra to PLUSCAL language requires some modifications,
including adapting the state space of sensor values to include positive values
only. Fig. 6.3 describes a pipeline of operations that yields values compatible with
PLUSCAL. The outcome is shown in Table 6.1 where sensor values -provided by
the temperature and humidity sensor (DHT22), noise sensor (KY-038), air quality
sensor (SDS011), and WiFi signal strength sensor (ESP8266 SOC)- were translated
into positive values and distributed among ranges representing different well-being
areas. These areas are assigned scores that reflect how they contribute to the
well-being metric.

For example, the temperature sensor provides temperature values tv between -40
ºC and 125 ºC. To make these values positive, the value 40 ºC is added to both ends
of this range to make all values positive (because the minimum temperature value
is -40 ºC). The best values of temperature that contribute to well-being are between
20 ºC and 22 ºC. This range RT of values is assigned a score RTs of 5; the equivalent
range in PLUSCAL is the positive range RpT with values between 60 ºC and 62 ºC.
A score RpTs of 5 is assigned to this positive range as well, and this value is used
to compute the overall well-being after subjecting all the sensor values to the same
pipeline processes described in Fig. 6.3. In the case of humidity, sensor values hv
won’t require adaptation as the values are already positive, as it can be seen in Table
6.1.

6.1.4.3 Interpreting Core Composition Functions Into PLUSCAL And Transla-
tion Into TLA Specification

Two core functions for composing the well-being capability are interesting from a
formal verification perspective:
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TABLE 6.1: State space of values, ranges, and scores related to well-
being atomic capabilities in a residential building.

Atomic
Capability Sensors Units Low

value
High
Value

Real sensor values ranges
(RT, RH, RN, RA, RS)

and score assignment per range
(RTs, RHs, RNs, RAs, RSs)

TLA+ compatible sensor values ranges
(RpT, RpH, RpN, RpA, RpS)

and score assignment per range
(RpTs, RpHs, RpNs, RpAs, RpSs

1 2 3 4 5 1 2 3 4 5

Temper-
ature DHT22 ◦C

tv RT RpT

-40 125
[-40,-1]

or
[41,125]

[0,9]
or

[31,40]

[10,16]
or

[26,30]

[17,19]
or

[23,25]
[20,22]

[0,41]
or

[81,165]

[40,49]
or

[71,80]

[50,56]
or

[66,70]

[57,59]
or

[63,65]
[60,62]

Humidity DHT22 %
tv RH RpH

0 100
[0,10]

or
[80,100]

[11,20]
or

[61,79]

[21,25]
or
[55,
60]

[26,29]
or

[51,54]
[30,50]

[0,10]
or

[80,100]

[11,20]
or

[61,79]

[21,25]
or
[55,
60]

[26,29]
or

[51,54]
[30,50]

Noise KY-038 dB
tv RN RpN

23 129 [81,129] [51,80] [41,50] [31,40] [25,30] [81,129] [51,80] [41,50] [31,40] [25,30]

Air
Quality

SDS011
2.5UG µg/m3

tv RA RpA

0 999 [101,999] [36,100] [21,35] [13,20] [0,12] [101,999] [36,100] [21,35] [13,20] [0,12]

WiFi
Signal

Strength

ESP8266
WiFi
SOC

dBm
tv RS RpS

-80 -5 [-80,-61] [-60,-51] [-50,-41] [-40,-31] [-30,-5] [0,19] [20,29] [30,39] [40,49] [50,75]

6.1.4.3.1 The score assignment function

The role of this function is to assign scores from 1 to 5 for sensor values
based on how much they contribute to well-being.

6.1.4.3.2 The Composition computation function

The role of this function is to compute well-being based on both the assigned
scores of sensor ranges of values and metric weights.

Fig. 6.4 shows both of these functions as described in the PLUSCAL language.
After translating the PLUSCAL description, the TLA specification is generated,

as seen in Fig. 6.5.

6.1.4.4 Model Checking And State-Space Analysis

6.1.4.4.1 Running Symbolic Execution And Discussing Results Of The State
Space

The symbolic execution of the model results runs combinations of all atomic
capabilities scores and weights to assign score values to humidity ranges and
determine the well-being state space. In Fig. 6.7, it took 4 minutes and 31 seconds to
perform symbolic execution; TLC can improve its execution time when it leverages
multiple EC2 or Azure cloud instances. The number of states generated across
all combinations is 60750000, with 35437500 distinct states, which means more
optimization can be done on the model. The queue experienced congestion 31
seconds after execution, but it was emptied over. This simple but efficient method
of calculating well-being using TLC’s model checker was verified, and the results
show the correctness of the core functions of the composite capability.
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FIGURE 6.4: Screenshot from TLA+ indicating the functions to verify
described using the PLUSCAL language.

6.1.4.4.2 Preventing State Space Explosion

Score assignment was executed for humidity values alone to reduce the
state space and prevent state space explosion. Once humidity is verified, swapping
ranges to compute score assignment for the other sensor values is straightforward.
This technique saves hours of symbolic execution run-time. TLA+ can also save
time by running the symbolic execution on cloud instances such as EC2 or Azure
instances.

6.1.4.5 Deadlock Case And Corrective Measures

As software developers, applying formal methods and model checking enables
thinking above the code level, validating the understanding of the composite
capabilities, and finding critical bugs that are difficult to spot. For example, the
invariant study aims to test the capability in case well-being weights aren’t equal to
4. i.e., Wt and Ws randomly vary between 0 and 8.
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FIGURE 6.5: Screenshot from TLA+ indicating the composition func-
tions to verify translated to TLA specification.

However, if well-being is set as an invariant where its value is strictly inferior to
100, and with random weights or without proper controls, the symbolic execution
of the well-being model might yield values superior to 100, which is an incorrect
outcome that causes TLC to throw deadlock errors. Adding a control instruction
that forces TLC to check whether the sum of weights equals 20 would prevent this
deadlock case.

6.1.5 IoTCaP Implementation, Results, and Analysis

This subsection describes the experiment environment, hardware, and toolkit used
to implement the IoTCaP platform. The results obtained are also discussed in light
of other efforts and based on different stakeholders’ perspectives.
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FIGURE 6.7: TLC model checking results show historical data of the
well-being model’s total number of generated states, distinct states,

and the state’s queue handling.

6.1.5.1 Experiment Environment, Hardware, and Toolkits

An Ubuntu 18.04 desktop machine with an i711700 eight-core processor and 32 GB
of ram is running eclipse, where Vert.X verticles are collecting data from hardware
described in Fig. 6.6.

The sensors used include a DHT-22 temperature and humidity sensor, a KY-38
noise sensor, an SDS-011 particulate matter sensor for measuring air quality, a GL-
Inet Acces point that provides network access to two ESP8266 boards that play two
roles: provide signal strength values to the IoTCaP platform and also running a
web-server/client that collect all sensor data and sends it to a custom API in the
Linux-Machine where vert.X verticles are running.
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TABLE 6.2: Comparing implementation technologies.

Technology Ref Performance Long-running
Processes

Logging Latency
[ms]

Application Related Pros(+) and Cons(-)

Vert.X [243] EventLoop model
(less overhead, less
CPU usage)

Supported
(JVM Support)

Vert.X verticles offer
significantly faster
messages for error
recovery compared to
Akka

1.8 (+)More flexibility with callbacks, futures,
Java Completion Stage, Kotlin coroutines,
RxJava, and fibers support.
(-) Many conflicting versions.

Node.js [55] reactor pattern
(High CPU usage,
high memory usage)

Supported Errors in Node.js are
handled through ex-
ceptions.

1.2 * Both Node.js and Vert.X give scalable
server-side applications, but Vert.X scales
better than Node.js.

Akka [249] Actor model
(less overhead, moder-
ate CPU usage)

Supported
(JVM Support)

Akka actors offer mes-
sages for error recovery

2.8 * Vert.X is more suited for a wider vari-
ety of tasks, while Akka fits more for de-
signing large systems with several sub-
systems that handle humongous concur-
rency.

Spring Frame-
work

[298] (Slow startup time,
high load, High Heap
memory usage)

Supported
(JVM Support)

Default Logback Log-
ging

4.2 (-)Spring is less flexible and slower than
vert.X and uses blocking APIs

Quarkus [167] Vertx EventLoop
(less overhead, high
CPU usage)

Supported
(JVM Support)

JBoss Log Manager 4.7 (+)Runs exceptionally well in container
environments like Kubernetes. Vert.X is
used to powering the Quarkus network-
ing stack.

Netty [210] memory and CPU
overhead

Supported
(JVM Support)

JdkLoggerFactory 1.3 (+)Provides non-blocking I/O APIs for
the JVM. Slightly faster than Vert.X
(-)APIs low-level compared to Vert.X

6.1.5.2 Micro-services Toolkits

ICCF is platform agnostic; platforms are swapped when better ones are available.
For this project’s microservices toolkit needs, Vert.X is picked as it satisfies latency,
performance, and logging requirements needed for IoTCaP as concluded from
Table 6.2. In addition, Vert.X is an approachable and efficient toolkit for writing
asynchronous and reactive applications on the JVM [243]. Vue.JS, a lightweight
front-end platform, is used for its compatibility with the libraries needed to transmit
data between Vert.X verticles and the front-end interface.

Code for both IoTCaP back-end (Vert.X) and IoTCaP front-end (Vue.JS) is
available in Github [159].

6.1.5.3 Running IoTCaP and discussing stakeholders’ concerns and require-
ments

Figure 6.9 illustrates IoTCaP components upon implementation:

• Different users connect to IoTCaP’s Vue.JS front end via the Keycloak [66]
authentication API; this ensures that privacy concerns that we discussed in
RQ15/AQ15 in Chapter 4 are addressed. as different user profiles store different
preferences in terms of the well-being atomic capabilities weights.

• Meanwhile, the HazelCast layer ensures that registered services are secure
and trustworthy. This is guaranteed by registering trusted objects using JSON Web
Tokens (JWTs) [127].

• The devices layer represents sensors and data sources, each are using custom/-
factory protocols to connect to their corresponding Vert.X verticle, which makes the
capabilities of the sensors composition-ready.

• The Vert.X back-end connects to the sensors and devices layer to retrieve
capabilities data; it also implements composition functions to aggregate sensor data
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into value-added capabilities such as well-being.

• The event-bus or the Axios library enables the Vue.JS front-end and the Vert.X
back-end to communicate and exchange data.

• The Vue.JS front end allows users to select different views: atomic capabilities
views or composite capabilities views, or both.

FIGURE 6.9: An illustration of the IoTCaP implementation layers for
collecting and composing smart building data into a composite capa-

bility.

After powering the sensors, running Vert.X verticles, and launching the GUI, the
IoTCaP platform is up, as seen in Fig. 6.8. An Agent picks domains of preference
based on the smart building requirements. For example, choosing a smart building
type of factory for semiconductors manufacturing would suggest a higher weight
for air quality as dust is intolerable in clean rooms. On the other hand, picking a
residential building as a domain suggests equal weight for all metrics as they are
equally important.

The front-end interface also allows users to set thresholds for well-being and get
e-mail warnings when the value sinks below the desired values.

6.1.6 Conclusion, Challenges, And Future Work

This subsection introduced a stakeholder-defined well-being composition capability
based on the ICCF framework foundations. First, scores and weights to quantita-
tively compute the metric of the composite well-being capability are introduced.
Second, an algebraic specification is developed using the ICCF framework seman-
tics to describe entities and interactions. Third, formal verification is executed on
the well-being model. Fourth, the core composition operations and the state-space
dimensions are analyzed. Fifth, A Vert.X/Vue.JS implementation for the well-being
composite capability is built and presented, and run-time behavior is discussed



6.2. Safety as a Composite Capability in the Smart Transportation Domain. 125

based on two stakeholders’ perspectives: residential buildings and factories.

Two challenges related to this work were identified: i) when composing atomic
capabilities, gaining insight into the composite capability is straightforward, but
keeping sight of what caused a particular state of the composite capability isn’t
always an easy task. A suggested solution is to leverage Artificial Intelligence by
assigning profiles to atomic capabilities, which would lead to a better understanding
of what caused a particular state of a composite capability. An identical issue was
addressed in [98], where researchers recognized appliances that consume the most
energy based on their energy profile. ii) The second challenge is when running a
model checking for many variables and values; it might take a long time to execute
the symbolic execution. A solution to this challenge would involve leveraging cloud
instances to run TLC on multiple AWS or Azure instances and assessing the benefits
of this approach.

For future work, the QoS aspect of the studied composition will be assessed,
especially from a privacy and scalability perspective.

In the next sections, composite capabilities in other domains of interest will be
explored: safety assessment in smart transportation systems (Section 6.2) and health
improvement in the smart health domain (Section 6.3).

6.2 Safety as a Composite Capability in the Smart Trans-
portation Domain.

6.2.1 Introduction

After we discussed well-being as a composite capability in the smart building
domain, we discuss in this section another application of interest that we are going
to describe according to ICCF’s foundations, semantics, and formal specifications
and verification. The application we will discuss in this section is assessing safety
during an autonomous vehicle emergency braking experiment. The manoeuver
of emergency braking can have two outcomes based on different environment
parameters: Safe or NOT Safe.

6.2.2 Related Work

6.2.2.1 Exisiting efforts on assessing safety in smart transportation applications

Multiple efforts have attempted to assess safety as a composite metric in the smart
transportation domain; the NIST OES Framework [111] is a recent approach to
describe the Operational Design Domain (ODD) components in a tangible and mea-
surable fashion, and in a way that facilitates the description of a safe manoeuver,
by identifying the envelope -or range- of acceptable values related to the different
components of an autonomous driving scenario during a safety-critical manoeuver.
Similarly, researchers in [310] leveraged atomic capabilities such as speed and posi-
tion of vehicles to interpret traffic jams on a certain road, but a formally specified
safety function wasn’t provided. In [96], RAND corporation proposed a framework
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for measuring safety in autonomous vehicles, but no tangible composite capability
was provided to address this concern and formal specification and verification of
such a capability weren’t proposed.

6.2.3 An ICCF definition of Safety as a Composite Capability:

6.2.3.1 A proposed definition of safety based on stakeholders concerns:

In our work, we leverage specific components in the related work to define a safety
metric for a given autonomous driving manoeuver.

One way to simplify safety assessment during an autonomous driving manoeu-
ver is to treat it as either a binary property:

In this case, a manoeuver can be either safe or not safe. We express this out-
come in a tangible fashion based on the ICCF description of a composite capability
aggregated through atomic features of the studied domain.

6.2.3.2 Respecting the NIST CPS Framework guidelines when modeling the
safety composite capability:

The NIST CPS framework provides best practices to compose IoT and CPS capabili-
ties while making sure key aspects are respected. We go through the nine elements of
the NIST CPS Framework and we explain how each aspect is going to be addressed
during the modeling phase. We will select a few concerns for each aspect to avoid
exhaustion.

6.2.3.2.1 Functional
For the functional aspect, the safety composite capability will leverage speed and

distance sensors to retrieve information related to these atomic capabilities neces-
sary to assess the safety of a vehicle or its occupants during an emergency braking
maneuver.

6.2.3.2.2 Business
Cost is one concern among multiple business concerns; as we are measuring the

safety of autonomous vehicles in a simulation setting, the cost is reduced compared
to real-world testing.

6.2.3.2.3 Human
Humans interact with the safety metric in two ways:

i) As readers of the safety metric, the assessed results need to be accessible and easily
readable for end users. Binary outcomes (Safe/Not safe) or color schemes that rep-
resent how safe the ADS is are examples of accessible ways to inform humans about
the safety metric. i) As subjects of an assessment: when the human driver or passen-
ger’s safety is impacted (or improved) during an autonomous driving experiment
(regardless of the integrity of the car).
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6.2.3.2.4 Trustworthiness
The reason we include formal verification and algebraic specifications when de-

scribing the safety capability is to make sure our assessment can be trusted as it runs
through formal specification and verification pipelines.

6.2.3.2.5 Timing
Timing for the Safety Composite Capability during an emergency braking experi-

ment is of crucial importance. A distracted driver may not detect an obstacle earlier,
and as a result, a few seconds can make the difference between survival and non-
survival. This can also occur for an ADS if the system responsible for detecting
obstacles fails.

6.2.3.2.6 Data
Data associated with the safety composite metric must arrive at the composition

engine in a timely and correct fashion for the system to correctly compose data feeds
into a meaningful composite feature.

6.2.3.2.7 Boundaries
Data related to safety should respect certain boundaries in terms of values en-

velop, units, and refresh rate. Measures should be in place to make sure composed
data is in the right range and respects the anticipated properties.

6.2.3.2.8 Composition
This is the most important element in the NIST CPS Framework with regard to the

theme of the topic we are addressing in this effort. The NIST CPS framework pro-
vides four "4" guidelines for service composition: i) adaptability: safety information
can come from different sensor technologies and different communication protocols,
and the safety composite capability must work well and adapt to these differences.
ii) complexity: safety information can come from complex or legacy systems and
sensors and might require layers of simplification to be useable. iii) constructivity:
the safety composite metric must be able to leverage and combine modular data and
device components with satisfying stakeholders’ requirements. iv) discoverability:
the ability of the safety composite capability to connect to the underlying atomic
services and sensors contributing to its calculation.

6.2.3.2.9 Lifecycle
This aspect ensures that the composite safety service is reliable when deployed

and safe to disconnect from the ADS when there’s no need for it.

6.2.3.3 IoTCaP: An ICCF-based Platform For Implementing The Composite Ca-
pability Entities And Interactions using mPlane Semantics.

6.2.3.3.1 Illustrating Entities And Interactions Using A Sequence Diagram

The sequence diagram in Fig. 6.10 summarizes the interactions between
IoTCaP entities. The "Actor", typically a simulation or test engineer, authenticates
to its profile in IoTCaP and then inputs parameters that describe the vehicle, the
manoeuver, the environment, and the obstacles, if any. Once these parameters are
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submitted to the front-end interface and communicated to the back-end composite
service, the safety assessment composition function computes one or multiple safety
factors and returns the result to the Actor, with the possibility to display atomic
capabilities values related to the maneuver.

6.2.4 Formal Specification And Verification

If, for a given environment, we elect to study safety based on two parameters: how
far the vehicle is from an obstacle (distance, with discreet values ranging from 1
to 100 meters) and how fast the vehicle is at the moment of detecting the obstacle
(speed, with discreet values ranging from 1..100 mph), we can express the Safety
as a composite capability of two atomic features (speed, distance), with the safety
capability having a binary outcome (as opposed to well being which has a range of
0%-100%)).

6.2.4.1 Interpreting Core Composition Functions Into PLUSCAL And Transla-
tion Into TLA Specification

Figure 6.11 shows the translation of the experiment semantics from natural language
to PLUSCAL and from PLUSCAL to TLA within the TLA+ toolkit.

6.2.4.2 Model Checking And State-Space Analysis

Figure 6.12 shows the outcome of the symbolic execution for the given state space:
the state of values yields 20000 unique cases, with the safety taking two outcomes as
seen in the log output ("SAFE", "NOT Safe").

6.2.5 IoTCaP Implementation, Results, and Analysis

In [121][161], we built an experiment that simulates the emergency braking of an
autonomous vehicle when an obstacle is detected. The simulation environment
leveraged IGNITE, a proprietary vehicle dynamics physics engine, to simulate
acceleration, braking, and deceleration of the vehicle, while the control signals,
including the speed and braking requests, were originating from the UCEF [251]
environment thanks to co-simulation capabilities.

Parameters that influence the "time to stop" include vehicle mass, distance to
the obstacle, vehicle aerodynamics, vehicle speed at the moment of detection of the
obstacle, tire rolling resistance, and wind speed.

To take into consideration all the components of the simulation when calculating
the stopping distance -and, as a result, assess safety- the function for assessing
safety was simplified to take into consideration two variables instead of the full
state space that impacts an emergency braking experiment.

As explained earlier, to simplify the specification of the safety composition
function, we only consider two discrete atomic capabilities, i) distance to the
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FIGURE 6.11: PLUSCAL description translated to a TLA formal speci-
fication for the Safety use-case. Safety is a binary composite capability

of two discreet atomic capabilities, speed, and distance.

obstacle, and ii) the speed at the moment of detecting the obstacle. We consider the
other parameters as constant and not contributing to the output of the experiment.

Figure 6.13 shows the experimentation setting we adopted.

Figure 6.14 describes the moment T=97 when the vehicle has detected the obsta-
cle. The time ∆T

6.2.6 Conclusion, Challenges, And Future Work

In this section, we proposed a formal specification of the safety metric during an
autonomous driving maneuver.

As the composition function of atomic capabilities during an emergency braking
experiment is still a work in progress, we highlighted a simple example that only
considers two parameters to define whether or not the manoeuver was safe.

The model we adopted reduces the scope of parameters that influence emer-
gency braking, but it provides a glimpse into what formal specification and
verification of composite capabilities would add to this field of study. We consider
our effort among the very few attempts to study safety as a composite and tangible
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FIGURE 6.12: Symbolic execution of the safety composite capability
specification with 20000: the number of possible unique outcomes,
the log file shows the safety assessment/value for each pair of speed

and distance values.

capability that can be measured in a specific scenario and under specific constraints.

For future work, we will continue improving our model to take into consid-
eration all the possible properties impacting the emergency braking experiment
while making sure we test a large variety of values for each parameter and trying
to overcome the state space explosion problem that can occur as a byproduct of
extending the state space of parameters and values, and which can be mitigated or
reduced by connecting our formal verification machines to extra EC2 instances or
by optimizing further our composite capability function.

Another domain of contribution we are trying to contribute to is the adoption of
a color-coded scheme for representing safety as a composite capability in the smart
transportation domain. The choice for color-coded schemes subscribes to the NIST
CPS Framework guidelines that encourage building IoT Composition Platforms



132 Chapter 6. ICCF Applications in smart cities

F
IG

U
R

E
6.13:Em

ergency
braking

experim
entsim

ulation
environm

ent.



6.2. Safety as a Composite Capability in the Smart Transportation Domain. 133

FIGURE 6.14: At T=99, the vehicle detected the obstacle, we vary ve-
hicle speed at the moment of detection and distance to the obstacle to

assessing safety

that provide value-added services with assessments that are user-friendly, and
color-coded schemes for assessing non-tangible capabilities are one way of ensuring
this goal is met.

Once the full state space of parameters that influence safety in a smart transporta-
tion experiment is taken into consideration, and composition functions that assess
safety based on this state space are identified and verified, Figure 6.15 provides a
glimpse for a user-friendly color-coded scheme that can be leveraged to assess safety
in the smart transportation domain.

FIGURE 6.15: Color Coded scheme for assessing the safety of a ma-
neuver in the smart transportation domain.
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6.3 Ongoing work: Health improvement as a Composite Ca-
pability in the Smart Health Domain.

After we discussed well-being as a composite capability in the smart building do-
main and safety as a composite capability in the smart transportation domain, we
discuss in this section an ongoing work relative to service composition in the smart
health domain: the assessment of health improvement for a patient in a smart ICU,
we examine the example of a patient suffering from respiratory disease (e.g., asthma,
chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, pneumonia,
and lung cancer, etc.) and connected to a ventilator with autonomy functions, as
part of a smart Intensive Care Unit (ICU) setting. Figure 6.16 explains the context of
the study:

The interactions between entities contributing to composing the health indicator
are showcased in the sequence diagram in Fig. 6.17, which highlights a potential
implementation using the ICCF-based IoTCaP platform:

The "Actor", which is, in this case, a Medical Practitioner, authenticates to its
profile in IoTCaP and then selects a patient using a patient ID. The back end of
IoTCaP connects to individual atomic capabilities and implements a composition
function that can also return a health indicator.
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Chapter 7

Conclusion

7.1 Summary of the work

In this work, we started by explaining in chapter 1 the context that motivated this
study: smart cities offering a tremendous number of data sources via IoT sensors
and devices and the potential this creates in innovating new services that can satisfy
multiple stakeholders’ needs.

In chapter 2, we explained the concepts related to service composition in IoT
and CPS through a layered model, and we explained service composition actors
and operations.

In chapter 3, we discussed related work relative to:

i) Systematic Literature Reviews:

The goal is to identify gaps in the literature to be filled through a systematic
literature review that we performed in chapter 4, section 1.

ii) Service Composition Platforms and Frameworks:

The goal is to identify gaps and weaknesses in existing service composition
frameworks and platforms with the objective of defining a new service composition
framework that we propose and discuss in chapter 5.

In chapter 4, we performed a systematic literature review (SLR) to provide
answers to fifteen formal, technical, and QoS questions. The identified questions
represent gaps in previous systematic literature reviews that weren’t addressed, as
we concluded from chapter 4, section 1. The discussions and answers provided for
the different questions would benefit different stakeholders, including researchers
willing to propose new frameworks or end users that need to learn about IoT service
composition frameworks. The knowledge gathered from the SLR would also help
in implementing best practices when it comes to proposing or improving future
iterations of composition frameworks such as the ICCF composition framework we
propose.

In chapter 5, we used knowledge gathered from chapters 3 and 4, and we
compared existing composition environments and frameworks: corresponding
gaps in formal and knowledge foundations were identified, and a new IoT and
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CPS composition framework were proposed to fill those gaps. We call the newly
proposed framework ICCF. Its foundations are based on the NIST CPS Framework,
providing guidelines for respecting different stakeholders’ concerns and pointing
out characteristics to be addressed relative to service composition. ICCF uses
mPlane for semantics as mPlane provides composition-friendly jargon that covers
composed capabilities, composition operations, and composition engines. mPlane
is also measurability friendly as it was originally conceived to assess network
performance KPIs such as the RTT. Finally, TLA+, a formal verification toolkit, was
proposed as it offers a bridge (PLUSCAL) between human-readable composition
semantics described in the mPlane semantics and the TLA specification, which is
used to formally verify the composition model and test its invariants. A simple
well-being example was provided to give a glimpse of what the semantics of a
composite capability would look like under ICCF, and a formal specification model
was executed to model check the proposed composite metric.

In chapter 6, three examples of the ICCF framework were highlighted:

→Well-being as a composite capability in a smart building: which leverages five
atomic capabilities (humidity, temperature, noise level, wifi signal strength, and air
quality). An implementation in Vert.X using real sensors was also provided, which
shows how the composite metric can satisfy multiple stakeholders in different
categories of smart buildings (residential, factory, hospital, ...).

→ Safety as a composite capability in the smart transportation domain: Based on
research we have done associated with the study of autonomous vehicles functions
such as emergency braking [121][161], we are working on a composition formula for
safety that takes as an input component of the simulation environment and runs an
experiment that yields results reflecting whether or not the manoeuver was safely
executed. Levels of safety are defined as either a spectrum or as a binary function.
The measurability aspect of this effort will use elements of the CVSS vulnerability
measurement framework.

→ Health improvement as a composite capability in the smart medical domain:
this is an ongoing collaborative research effort between researchers and scientists
at the Johns Hopkins Computer Science School and the Johns Hopkins Medical
school. The effort aims to introduce an autonomous ventilator with trustworthiness
and assuredness capabilities. The simulation environment is based on Biogears [34],
with plans to co-simulate it with MATLAB models and hardware in the loop. The
simulation environment allows the simulation of multiple actors and situations,
including patients, medical devices, health preconditions, and real-time insults. The
focus of the simulation is on respiratory systems, and data generated by the sim-
ulator is compared with real-world data -from patients suffering from respiratory
health conditions- for data validation purposes. A health improvement composite
capability based on the ICCF Framework is under development which will take
into consideration data input from sensors attached to patients, data collected from
medical devices, and also input from experienced medical staff and practitioners
to determine whether a patient’s health has improved. The health improvement
capability would also serve as an indicator or predictor for the hospital’s bed
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occupancy.

Chapter 7 concludes this effort and provides highlights of ongoing and future
work.

7.2 Ongoing and future work

In this work, we proposed a novel IoT and CPS composition framework called ICCF.
We focused on the knowledge and formal aspects of the framework as the main
aim is to provide researchers and interested parties with formal and knowledge
tools to prototype novel capabilities while respecting certain foundations for a
trustworthy and robust implementation. In the future iterations of ICCF, we define
Technical and QoS components, and we discuss those components under the same
applications we proposed in chapter 6.

We will also continue to develop and improve the composition formulas for
the three domains of interest in a way that best reflects their meaning to a large
extent and equip the composition formulas with means that enable customization
to address different user views as composite capabilities such as well-being tend to
mean different things for different stakeholders; ensuring certain flexibility in the
composition formula is an important aspect that we will take into account.

Formally verifying compositions is another item of interest for future work as
we intend to include other properties to verify -in addition to invariants checking-
including correctness, safety, and reliability.
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