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Résumé 
 

 
 
 

L'un des phénomènes les plus importants survenus pendant la maturation du fruit de 

tomate est le changement de couleur du vert au rouge. Ce changement a lieu dans les 

plastes et correspond à la différenciation des plastes photosynthétiques, les chloroplastes, 

en plastes non-photosynthétiques qui accumulent des caroténoïdes, les chromoplastes. 

Dans  cette  thèse,  nous  présentons  d'abord  une  introduction  bibliographique  sur  le 

domaine de la transition chloroplaste-chromoplaste, en décrivant les modifications 

structurales  et  physiologiques  qui  se  produisent  pendant  la  transition.  Puis,  dans  le 

premier chapitre, nous présentons des observations microscopiques de plastes isolés à 

trois stades de mûrissement, puis des enregistrements en temps réel de la fluorescence des 

pigments sur les tranches de fruits de tomate. Il a été possible de montrer que la transition 

chloroplaste-chromoplaste était synchrone pour tous les plastes d'une seule cellule et que 

tous les chromoplastes proviennent de chloroplastes préexistants. Dans le deuxième 

chapitre, une approche protéomique quantitative de la transition chloroplaste- 

chromoplaste est présentée, pour identifier les protéines différentiellement exprimées. Le 

traitement  des  données  a  identifié  1932  protéines  parmi  lesquelles  1529  ont  été 

quantifiées par spectrométrie de masse. Les procédures de quantification ont ensuite été 

validées par WESTERN blot de certaines protéines. La chromoplastogénèse comprend 

les  changements  métaboliques  suivants :  diminution  de  l'abondance  des  protéines  de 

réaction à la lumière et du métabolisme des glucides, et l'augmentation de la biosynthèse 

des terpénoïdes et des protéines de stress. Ces changements sont couplés à la rupture de la 

biogenèse des thylakoïdes, des photosystèmes et des composants de production d'énergie, 

et l’arrêt de la division des plastes. Dans le dernier chapitre nous avons utilisé la 

lincomycine, un inhibiteur spécifique de la traduction à l’intérieur des plastes, afin 

d’étudier les effets sur la maturation des fruits et sur l’expression de gènes nucléaires 

impliqués dans la maturation. Les résultats préliminaires indiquent que l’inhibition de la 

traduction des protéines dans les plastes affecte la maturation du fruit en réduisant 

l’accumulation de caroténoïdes. L’expression de plusieurs gènes nucléaires a été modifiée 

mais une relation claire avec le phénotype altéré de maturation n’a pas pu être établie. 
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Au total, notre travail donne de nouveaux aperçus sur le processus de différenciation 

chromoplaste et fournit des données nouvelles ressources sur le protéome plaste. 
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Abstract 
 

 
 
 

One of the most important phenomenons occurring during tomato fruit ripening is 

the color change from green to red. This change takes place in the plastids and 

corresponds to the differentiation of photosynthetic plastids, chloroplasts, into non 

photosynthetic plastids that accumulate carotenoids, chromoplasts. In this thesis we first 

present  a  bibliographic  introduction  reviewing  the  state  of  the  art  in  the  field  of 

chloroplast to chromoplast transition and describing the structural and physiological 

changes occurring during the transition. Then, in the first chapter we present an in situ 

real-time recording of pigment fluorescence on live tomato fruit slices at three ripening 

stages. By viewing individual plastids it was possible to show that the chloroplast to 

chromoplast transition was synchronous for all plastids of a single cell and that all 

chromoplasts derived from pre-existing chloroplasts. In chapter two, a quantitative 

proteomic approach of the chloroplast-to-chromoplast transition is presented that 

identifies differentially expressed proteins. Stringent curation and processing of the data 

identified 1932 proteins among which 1529 were quantified by spectral counting. The 

quantification procedures have been subsequently validated by immune-blot evaluation 

of some proteins. Chromoplastogenesis appears to comprise major metabolic shifts 

(decrease in abundance of proteins of light reactions and carbohydrate metabolism and 

increase in terpenoid biosynthesis and stress-related protein) that are coupled to the 

disruption of the thylakoid and photosystems biogenesis machinery, elevated energy 

production components and loss of plastid division machinery. In the last chapter, we 

have used lincomycin, a specific inhibitor of protein translation within the plastids, in 

order to study the effects on fruit ripening and on the expression of some ripening-related 

nuclear genes. Preliminary results indicate that inhibiting protein translation in the plastids 

affects fruit ripening by reducing the accumulation of carotenoids. The expression of 

several nuclear genes has been affected but a clear relationship with the altered ripening 

phenotype could not be established. 

 

Altogether, our work gives new insights on the chromoplast differentiation process 

and provides novel resource data on the plastid proteome. 
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摘要 
 
 
 
 

番茄果皮由绿色到红色的转变是发生在其成熟过程中的最重要的现象之一。这 

种变化的本质是番茄果实中的质体发生了变化。伴随着可进行光合作用的叶绿体到 

非光合作用的色质体的转变，大量类胡萝卜素同时也积累在了色质体中，从而使得 

果实颜色由绿色变为红色。在本文中，我们综合介绍了叶绿体到色质体转变这一领 

域的最新研究进展，并且详细的描述了在这一转变过程中质体在结构上，生理上以 

及分子方面的变化。接下来在第一章中，我们利用激光共聚焦显微镜原位、实时的 

记录了活体番茄切片在三个不同阶段中所含色素荧光的变化。并且通过对不同时期 

单个质体的显微镜的观察，我们认为单个细胞的所有质体在从叶绿体转变到色质体 

的过程中很有可能是同步的，而且所有色质体都是由之前存在的叶绿体转变来的。 

在第二章中，用定量蛋白组学的方法研究叶绿体到色质体转变过程中不同蛋白的表 

达丰度。经过严格校对，有 1932 个蛋白质被鉴定了出来，其中 1529 个经过光谱计 

数定量。并且对其中一些蛋白的量化结果用免疫杂交的方法进行了验证。色质体产 

生的过程中包含了一系列重要代谢反应中相关蛋白的变化（例如，光反应和碳水化 

合物代谢有关的蛋白质在数量上减少了，但是萜类物质生物合成和外界压力应答相 

关的蛋白却增加了），所有这些变化都伴随着类囊体和光合系统机器的破坏，能量 

物质相关产物的增加，以及质粒分裂系统的消失。在最后一章中，我们利用林可霉 

素可以特异的抑制质体中蛋白质的翻译这一特性来研究水果成熟过程中细胞核成熟 

相关基因的表达。初步结果显示，通过抑制质体蛋白的合成，间接影响到了水果中 

类胡萝卜素的积累，从而影响到了水果的成熟。同时一些其它的核基因的表达也受 

到了影响，但是它们与果实成熟的关系还需要进一步的研究。 

 

综上所述，本工作为色质体的形成提供了新的观点并且为质体蛋白组学提供的新的数 

据资源。 
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Objectif de la thèse 
 

 
 
 

La maturation des fruits est un processus de développement subtilement orchestré, 

unique pour les plantes, qui se traduit par d'importants changements physiologiques et 

métaboliques,  conduisant  finalement  à  la  sénescence  des  fruits  et  la  dispersion  des 

graines (Pirrello et al., 2009). Dans de nombreux fruits, l'un des changements les plus 

importants et les plus visibles au cours de la maturation correspond à la perte de 

chlorophylle et la synthèse de composés colorés tels que des caroténoïdes. Ce processus 

se déroule au niveau sub-cellulaire dans le plaste. Le plaste est soumis à d'importantes 

modifications structurales et biochimiques au cours du développement des plantes, ce qui 

reflète l'état physiologique de la cellule. Par conséquent, plusieurs types de plastes 

(souvent interconvertibles) ont été décrits avec des fonctions spécialisées. Parmi eux, les 

chloroplastes abritent des fonctions essentielles telles que la photosynthèse, synthèses de 

glucides, lipides, isoprénoïdes (caroténoïdes, les quinones ...). Il est maintenant clair que 

les plastes non-verts, bien que dépourvu de la capacité photosynthétique, sont des formes 

métaboliquement actives de plastes, souvent impliqués dans la biosynthèse de nombreux 

composés. Cela est vrai pour chromoplastes qui sont souvent formés à partir de la 

différenciation des chloroplastes et défini comme plastes dépourvus de chlorophylle, qui 

accumulent des pigments de la classe des caroténoïdes (Marano et al., 1993; Camara et 

al., 1995). Ces derniers composés donnent leur couleur distinctive. Les chromoplastes 

sont présents dans certaines fleurs et de fruits, et parfois dans les racines et les feuilles. 

Dans les fleurs et le fruit, ils servent la stratégie de reproduction de la plante en attirant 

les pollinisateurs ou les animaux qui dispersent les graines. 

 

La division des plastes est associée à la division des cellules végétales. Ils se 

distinguent d'autres types de plastes dans différents types de cellules végétales. Il y a 

plusieurs centaines de chromoplastes dans les cellules mûres de fruits de tomate. 

L'augmentation de la population de plastes a lieu pendant le développement du fruit vert, 

ce qui entraîne de grandes populations de chloroplastes, qui vont ensuite se différencier 

en chromoplastes (Cookson et al., 2003). Les changements structurels au cours de la 

transition  du  chloroplaste-chromoplaste  ont  été  largement  étudiés  par  microscopie 
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électronique de la tomate (Rosso, 1968; Harris et Spurr, 1969) et du poivron (Spurr et 

Harris, 1968) et aussi par la fluorescence de la GFP ciblée pour les composés plastidiaux 

(Pyke, 2007). Gunning (2005) a fait des images en couleur en microscopie en champ clair 

des plastes où les chromoplastes apparaissent comme rouge foncé ou orange. Cependant, 

il n'y a pas d'observation simultanée de chlorophylles et de caroténoïdes sur plaste isolé 

lors des étapes de maturation de la tomate. Nous avons effectué l'observation à l'aide de 

microscopie confocale à balayage laser pour observer la perte de chlorophylles et de 

l'accumulation des caroténoïdes dans trois différents stades de différenciation des plastes: 

chloroplastes   (à   partir   de   fruits   mûrs-verts),   plastes   intermédiaire   (à   partir   de 

fruits breaker) et chromoplastes (fruits mûrs). Un dispositif microscopique a également 

permis de filmer les changements de fluorescence au niveau cellulaire sur tranches de 

tomate, permettant de révéler la dynamique de la transition du chloroplaste-chromoplaste. 

 

Les voies métaboliques individuelles ont été largement étudiées dans les 

chromoplastes. Il a été montré que chromoplastes sont actifs dans le métabolisme des 

glucides,  pour  répondre  aux  exigences  des  différentes  activités  biosynthétiques  qui 

opèrent dans ces plastes, par exemple la biosynthèse des caroténoïdes (Fraser et al., 1994; 

Bramley, 2002), et les métabolismes lipidiques (Liedvogel and Kleinig, 1977; Li-Beisson 

et al., 2010), probablement pour recycler les lipides des thylakoïdes et reconstruire de 

nouvelles membranes non chlorophylliennes. D'autres activités, telles que celles 

impliquées dans la synthèse de la cystéine (Romer et al., 1992), du glutathion (Mittova et 

al., 2003; Marti et al., 2009), des tocophérols (Arango et Heise, 1998; Dellapenna et 

Pogson, 2006), sont également présentes dans les chromoplastes. Des synthèses 

bibliographiques spécifiquement dédiées à la biogenèse et l'activité métabolique des 

chromoplastes ont été publiées (Ljubesic et al., 1991;. Bouvier et Camara, 2006). 

Certaines informations peuvent également être trouvés dans les documents consacrés à la 

différenciation des plastes en général (Pyke, 2007). 

 

Ces dernières années, des technologies à haut débit sont apparues et ont commencé à 

être appliquées à l'étude du métabolisme des plastes. Par exemple, les approches 

transcriptomique et la protéomique ont donné des informations inédites sur les aspects 

biochimiques et moléculaires de la différenciation des chromoplastes en relation avec 
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l'activité transcriptionnelle et traductionnelle du génome plastidial (Kahlau et Bock, 2008; 

Kleine Leister, 2011). Ils ont fourni une vue systématique de l'expression des gènes du 

génome pastidial au cours de la différenciation du chromoplaste dans la tomate. Toutefois, 

le génome de plaste est très faible de sorte que la plupart des protéines plastidiales sont 

codées par le génome nucléaire. Dans ces conditions, le protéome plastidial comprend 

plus de 90% de protéines importées. Le protéome plastidial des plantes supérieures a été 

étudié principalement sur le chloroplaste (van Wijk et Baginske, 2011). Moins 

d'informations sont disponibles sur le protéome du chromoplaste et peu d'études ont été 

réalisées sur les fruits, comme le poivron, la tomate et l’orange. Siddique et al. (2006) 

identifié 151 protéines du poivron, grâce à une nouvelle stratégie pour l'identification de 

base  de  données  indépendante  des  protéines  ce  qui  donne  un  aperçu  des  voies 

métaboliques majeures actives dans le chromoplaste. Barsan et al. (2010) ont analysé le 

protéome  de  la  tomate  fruits  chromoplaste  rouge  et  ont  révélé  la  présence  de  988 

protéines parmi lesquelles 209 protéines n’étaient pas mentionnées dans des banques de 

données  plastidiales.  La  combinaison  des  données  physiologiques  et  protéomique  a 

fourni de nouveaux détails sur les métabolismes des chromoplastes de  tomates. Un autre 

travail effectué sur les oranges par Zeng et al. (2011) a permis d’identifier 493 protéines 

dont 418 protéines plastidiales. Une comparaison avec les données de protéomique de 

chromoplastes de tomates suggère un niveau élevé de similitude dans de nombreuses 

voies métaboliques. Jusqu'à présent, ces études ont été réalisées sur des plastes typiques 

tels que les chloroplastes et chromoplastes, mais le processus de différenciation survenant 

au cours de la transition du chloroplaste-à-chromoplaste n'a pas été abordé par des 

approches protéomiques. Dans cette thèse, nous avons entrepris une caractérisation en 

profondeur de la différenciation du chromoplaste par des techniques de protéomique 

appliquée à trois stades différents de différenciation des plastes de tomates lors de la 

transition du fruit vert au fruit rouge. L'objectif était de quantifier les changements dans 

l'abondance des protéines afin de caractériser les changements majeurs d’activité 

métabolique et des processus de régulation. 

 

De nombreux gènes nucléaires et plastidiaux impliqués dans la transition du 

chloroplaste-chromoplaste agissent comme des régulateurs pour contrôler ce processus. 

La coordination de l'expression des gènes plastidiaux et nucléaires joue un rôle essentiel 
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lors de la différenciation des plastes. Par exemple, pour la biosynthèse de pigments, 

l'expression des gènes nucléaires est nécessaire (Rüdiger et Grimm, 2006). Des études 

approfondies ont été réalisées sur la signalisation entre le noyau et les plastes, plus 

particulièrement pour l'expression de gènes plastidiaux corrélés à la photosynthèse (Leon 

et al., 1998). Afin de découvrir les effets de l'expression du génome plastidial sur les 

gènes codés par le noyau, certains auteurs ont inhibé la traduction dans les plastes par un 

inhibiteur spécifique, la lincomycine (Sullivan et Gray, 1999, 2002;. Hideg et al., 2007 ). 

Il a été constaté que l’expression de gènes nucléaires associés à la photosynthèse dans les 

chloroplastes (PhANGs) ont été réprimés lors d'un traitement à la lincomycine montrant 

qu’il y a des signaux « rétrogrades » du plaste vers le noyau (Oelmuller et al, 1986;. Mulo 

et al., 2003;. Dietzel et al., 2008). Un traitement à la lincomycine de semis de tabac de 7 

jours, la transcription des complexes collecteurs de lumière (Lhcb1) a été supprimée alors 

qu'aucun effet n'a été observé sur la transcription de gènes nucléaires codant pour des 

protéines mitochondrial (ATP2) ou cytosoliques (actine) (Gray et al., 2003). L’objectif de 

notre travail consiste à évaluer si l’inhibition de la traduction des protéines à l’intérieur 

des plastes a un effet sur les processus de maturation des fruits et sur l’expression de 

gènes nucléaires. Ceci permettra d’impliquer ou non la présence d’une signalisation 

rétrograde pendant la différentiation du chromoplaste dans le fruit de tomate. 

 

En résumé, la transition du chloroplaste-chromoplaste est un processus très complexe 

comprenant de nombreux événements moléculaires et biochimiques et des changements 

dans la structure interne. Notre thèse débutera par une synthèse des événements 

métaboliques et moléculaires qui ont été décrits jusqu'à présent au cours de la biogenèse 

des chromoplastes. Puis, dans un premier chapitre, une étude par microscopie confocale à 

balayage laser est présentée, montrant comment les chloroplastes deviennent des 

chromoplastes, par l'observation des pigments dans les plastides isolés et un film sur des 

cellules de tranches de fruits. Dans un deuxième chapitre, une analyse protéomique 

quantitative a été réalisée dans le but de comprendre la régulation des changements 

métaboliques et structurels qui se produisent dans les plastes de fruits de tomate lors du 

passage de chloroplaste à chromoplaste. Dans un troisième chapitre, la lincomycine, a été 

utilisée pour inhiber la traduction des protéines dans le plaste afin d'étudier la régulation 

de l'expression génique au cours de la transition du chloroplaste-chromoplaste. 
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Objective of the Thesis 
 
 
 

Fruit ripening is a sophisticatedly orchestrated developmental process, unique to 

plants, that results in major physiological and metabolic changes, ultimately leading to 

fruit decay and seed dispersal (Pirrello, 2009). In many fruit, one of the most important 

and more visible changes during ripening corresponds to the loss of chlorophyll and the 

synthesis of colored compounds such as carotenoids. This process takes place at the sub- 

cellular level in the plastid. The plastid is subject to considerable structural and 

biochemical changes during plant development, reflecting the physiological state of the 

cell. Consequently, several types of plastids (often interconvertible) with specialised 

functions have been described. Among them, chloroplasts harbor essential functions such 

as photosynthesis, carbohydrate, lipid, isoprenoid (carotenoids, quinones…) metabolisms, 

etc. It is now clear that non-green plastids, although devoid of the photosynthetic 

capability, are metabolically active forms of plastids, often involved in the biosynthesis of 

many compounds. This is true for chromoplasts which are often formed from the 

differentiation of chloroplasts and defined as plastids lacking chlorophylls, which 

accumulate pigments of the carotenoid class (Marano et al., 1993; Camara et al., 1995). 

The latter compounds give them their distinctive color. Chromoplasts are present in some 

flowers and fruit, and occasionally in roots and leaves. In flower and fruit, they serve the 

reproduction strategy of the plant by attracting pollinators or animals that will disperse 

the seeds. 

 

Plastids division is associated with plant cells division for remaining resident in the 

plant cell. They are differentiated to other types of plastids in different types of plant cell. 

The chromoplast population in ripe tomato fruit cells reaches several hundreds. Most of 

the plastids population increase takes place during the development of the green fruit, 

resulting in large chloroplast populations, which then differentiate into chromoplasts 

(Cookson et al., 2003). The structural changes during the chloroplast-to-chromoplast 

transition have been extensively studied by electron microscopy in tomato (Rosso, 1968; 

Harris and Spurr, 1969) and in bell pepper (Spurr and Harris, 1968) and also by 

fluorescence of GFP targeted to the plastids compounds (Pyke, 2007). Gunning (2005) 
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has made color images under bright field microscopy of plastids where chromoplasts 

appear as dark red or orange. However, there is no observation of chlorophyll and 

carotenoid  fluorescence  on  the  single  isolated  plastid  from  three  different  stages  of 

tomato fruit. We performed the observation using a laser scanning confocal microscopy 

to monitor the loss of chlorophyll and accumulation of the carotenoid with three different 

stages  of  plastid  differentiation:  chloroplast  (from  mature-green  fruit),  intermediate 

plastid (from breaker fruit) and chromoplast (from ripe fruit). A time-lapse recording was 

performed to analyse the fluorescence of live tomato tissue slices to reveal the dynamic 

of the chloroplast-chromoplast transition. 

 

Individual metabolic pathways have been extensively studied in the chromoplasts. It 

has been shown that chromoplasts are active in carbohydrate metabolism, most likely to 

sustain the requirements for the different biosynthetic activities operating in these plastids 

(e.g. carotenoid biosynthesis,), and in acyl lipid metabolism (Liedvogel and Kleinig, 1977; 

Li-Beisson et al., 2010), most likely to recycle the lipids from the disappearing thylakoids 

and to rebuild new achlorophyllous membranes. Other activities, such as those involved 

in the synthesis of cysteine (Romer et al., 1992), glutathione (Mittova et al., 2003; Marti 

et al., 2009), tocopherols (Arango and Heise, 1998; DellaPenna and Pogson, 2006), are 

also  found  in  chromoplasts.  Reviews  specifically  dedicated  to  the  biogenesis  and 

metabolic activity of chromoplasts have been published (Ljubesic et al., 1991; Bouvier 

and Camara, 2006). Some information can also be found in papers dedicated to plastid 

differentiation in general (Pyke, 2007). 

 

In the recent years, high-throughput technologies have emerged that have started to 

be applied to the study of plastids metabolism. For instance, transcriptomics and 

proteomics approaches have given novel information of the biochemical and molecular 

aspects of the differentiation of chromoplasts in relation with the transcriptional and 

translational activity of the plastid genome (Kahlau and Bock, 2008; Kleine and Leister, 

2011). They provided a systematic view of the expression of genes of the plastid genome 

during chromoplast differentiation in tomato. However, the plastid genome is very small 

so that most of the plastid proteins are encoded by the nuclear genome. In these 

conditions, the plastid proteome comprises more than 90% of imported proteins. The 
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whole plastid proteome of higher plants has been studied with strong emphasis on the 

chloroplast (van Wijk and Baginsky, 2011). Less information is available on the 

chromoplast proteome with few studies on fruits, such as pepper, tomato and sweet 

orange.  Siddique et al. (2006) identified 151 proteins from pepper based on a novel 

strategy for the database-independent identification of proteins and provided an overview 

of the major metabolic pathway that active in chromoplast. (Barsan et al., 2010) have 

analysed the proteome of red tomato fruits chromoplast and revealed the presence of 988 

proteins among which 209 proteins had not been listed in plastidial databanks. The 

combination  of  physiological  and  proteomics  data  have  provided  new  insights  into 

tomato chromoplast metabolic characteristics. Another work performed on sweet orange 

fruits by Zeng et al. (2011) has identified 493 proteins of which 418 are putative plastid 

proteins. A comparison with tomato chromoplast proteomics data suggested a high level 

of conservation in a broad range of metabolic pathways. So far these studies have been 

carried out on typical plastid structures such as chloroplasts and chromoplasts, but the 

differentiation process occurring during the chloroplast-to-chromoplast transition has not 

been addressed by proteomics approaches. In this thesis we have undertaken an in-depth 

characterization of the chromoplast differentiation by proteomics techniques applied at 

three different stages of tomato plastids differentiation during the ripening process from 

mature-green to red fruit. The objective was to quantify the changes in protein abundance 

so as to characterize the major shifts in metabolic activity and the accompanying 

regulatory processes. 

 

Many of the nuclear and plastids genes involved in the transition of chloroplast- 

chromoplast act as regulators for controlling this process. The coordination between 

plastids and nucleus gene expression plays an essential role during plastids differentiation. 

For instance, for the biosynthesis of pigments, nuclear genes expression are required 

(Rüdiger and Grimm, 2006). Extensive studies have been performed on the nucleus to 

plastid signalling, more specifically for the expression of photosynthesis correlated genes 

in chloroplast (Leon et al., 1998). In order to uncover the effects of the expression of the 

plastid genome on nuclear-encoded genes, some authors have inhibited the translation in 

plastids by a specific protein translation inhibitor, lincomycin (Sullivan and Gray, 1999, 

2002; Hideg et al., 2007). It has been found that photosynthesis-associated nuclear genes 



13 
 

of chloroplasts (PhANGs) were repressed upon lincomycin treatment giving support to 

retrograde signalling from the plastid to the nucleus (Oelmuller et al., 1986; Mulo et al., 

2003; Dietzel et al., 2008). With lincomycin treatment of 7-day-old tobacco seedlings, 

transcripts of light-harvesting complexes (Lhcb1) were suppressed while no effect was 

observed on transcripts of nuclear genes encoding mitochondrial (Atp2) or cytosolic 

(Actin) proteins (Gray et al., 2003). The objective of our work is to evaluate whether the 

inhibition of protein translation within the plastids has an effect on the fruit ripening 

process and in the expression of nuclear genes. This would allow involving or not the 

presence of retrograde signalling during chromoplast differentiation in tomato fruit. 

 

In summary, the chloroplast-to-chromoplast transition is a very complex process 

comprising numerous molecular and biochemical events and changes in internal structure. 

Our thesis will start with a review of the metabolic and molecular events that have been 

described so far during the biogenesis of chromoplasts. Then, in a first chapter, a laser 

scanning confocal microscopy will be presented, showing how all chloroplasts become 

chromoplasts, by observation of pigments in isolated plastids and real-time recording of 

fruit slice tissues.  In a second chapter, a quantitative proteomic analysis has been carried 

out  in  order  to  understand  the  regulation  of  the  metabolic  and  structural  changes 

occurring in tomato fruit plastids during the transition from chloroplast to chromoplast. In 

a third chapter, the antibiotic lincomycin, an inhibitor of plastid translation, was used to 

inhibit translation of chromoplast proteins so as to investigate the regulation of gene 

expression during chloroplast to chromoplast transition. 
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General Introduction 
 

 
 
 

Fruit play an important role in nutrition for a healthy life of humans. Due to their 

importance, a large number of studies have been dedicated to the understanding of the 

ripening process and to the improvement of the organoleptic qualities of fruit in the 

search for fruit rich in aroma and beneficial nutrients with long shelf-life. The ripening 

process of fruit is a sophisticatedly orchestrated developmental process, unique to plants, 

that results in major physiological and metabolic changes, ultimately leading to seed 

dispersal (Pirrello, 2009). 

 

Tomato is one of the most important plants for human diet. Wild tomato (Solanum 

lycopersicum L.) is native from the coastal plain to the foothills of the Andes of western 

South America (Peralta et al., 2005). Now, this species is grown worldwide from sea level 

to 4000 meters of altitude. It is well known that tomato is beneficial to health due to the 

abundance of antioxidants. The most important antioxidants present in tomato fruit are 

carotenes which are colored compounds giving tomatoes their characteristic color. 

 

During ripening, the changes in color of the fruit represent one of the most important 

and complex event. They are used as obvious markers for fruit ripening and as important 

quality attributes. The color of the tomato is a major factor for the consumer’s purchase 

decision too (Radzevicius et al., 2009). Depending on the genotype, tomato fruit develop 

different colors during the ripening process, including green, yellow and red. The external 

color of tomato fruit is the result of both flesh and skin color (Yahia and Brecht, 2012). 

The complexity of tomato color is due to the presence of a diversity of carotenoid 

pigments in different concentrations (López Camelo and Gómez, 2004). The most 

important pigments of ripening tomato fruit are chlorophyll, lycopene and beta-carotene, 

which accumulate concomitantly with the decrease in chlorophyll content during the 

transition from chloroplast to chromoplast (Fraser et al., 1994). 

 

Chloroplasts and chromoplasts belong to the plastid class of sub-cellular organelles 

of endo-symbiotic origin that are present under various forms in plant and algae. They 

possess  a  wide  range  of  metabolic  pathways  including  nitrate  assimilation,  starch 
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metabolism, fatty acid biosynthesis… Chloroplasts represent one form of plastid 

especially devoted to photosynthesis in green plants and algae. Chromoplasts have the 

particularity to accumulate pigments in fruit and flowers. Profound morphological and 

metabolic changes happen during the transition from chloroplast to chromoplast that have 

been reviewed in recent papers from our laboratory to which I have participated as first 

co-author (Bian et al., 2011) or as co-author (Egea et al., 2010). After the present short 

general introduction a review of the literature published on the topic of chromoplast 

differentiation will be presented. It corresponds to the Bian et al paper. 
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Avenue Prof. Lineu Prestes 580, bl 14, 05508-000 São Paulo, SP, Brazil 
 

Correspondence should be addressed to Jean-Claude Pech, pech@ensat.fr 
 

Received 13 January 2011; Accepted 3 June 2011 
 

Academic Editor: William K. Smith 
 

Copyright © 2011 Wanping Bian et al. This is an open access article distributed under the Creative Commons Attribution License, 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

Chromoplasts are nonphotosynthetic plastids that accumulate carotenoids. They derive from other plastid forms, mostly 

chloroplasts. The biochemical events responsible for the interconversion of one plastid form into another are poorly documented. 

However, thanks  to  transcriptomics  and  proteomics  approaches,  novel information  is now  available. Data  of proteomic 

and  biochemical analysis revealed the importance  of lipid metabolism and  carotenoids biosynthetic activities. The loss of 

photosynthetic activity was associated with the absence of the chlorophyll biosynthesis branch and the presence of proteins 

involved in chlorophyll degradation. Surprisingly, the entire set of Calvin cycle and of the oxidative pentose phosphate pathway 

persisted after the transition from chloroplast to chromoplast. The role of plastoglobules in the formation and organisation 

of carotenoid-containing structures and that of the Or gene in the control of chromoplastogenesis are reviewed. Finally, using 

transcriptomic data, an overview is given the expression pattern of a number of genes encoding plastid-located proteins during 

tomato fruit ripening. 

 
 

 

1. Introduction 
 

Chromoplasts are nonphotosynthetic plastids that accumu- 

late carotenoids and give a bright colour to plant organs such 

as fruit, flowers, roots, and tubers. They derive from chlo- 

roplasts such as in ripening fruit [1], but they may also arise 

from proplastids such as in carrot roots [2] or from amylo- 

plasts such as in saff ron flowers [3] or tobacco floral nectaries 

[4].  Chromoplasts  are  variable in  terms  of  morphology 

of the carotenoid-accumulating structures and the type of 

carotenoids [5, 6]. For instance, in tomato, lycopene is the 

major carotenoid, and it accumulates in membrane-shaped 

structures [7] while in red pepper beta-carotene is prominent 

and accumulates mostly in large globules [8]. Reviews spe- 

cifically dedicated to the biogenesis of chromoplasts have 

been published [9–11]. Some information can also be found 

in  papers  dedicated  to  plastid  diff erentiation  in  

general [12, 13]. Thanks to transcriptomics and proteomics ap- 

proaches, novel information  is now available on the bio- 

chemical and molecular aspects of chromoplasts diff erenti- 

ation [14–16]. The present paper will review these novel data and 

provide a recent view of the metabolic and molecular events 

occurring during the biogenesis of chromoplasts and conferring 

specificities to the organelle. Focus will be made on the 

chloroplast to chromoplast transition. 
 

 
2. Chromoplast Differentiation Is 

Associated with Important Structural, 

Metabolic, and Molecular Reorientations 
 

Important  structural changes occur during the chloroplast 

to chromoplast transition, thylakoid disintegration being the 

most significant (Figure 1). Early microscopic observations 

mailto:pech@ensat.fr
mailto:pech@ensat.fr
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✒ Thylakoid disintegration 

 

✒ Plastoglobule increasing in size and number 

✒ Carotenoid accumulation (lycopene) 

✒ Membranous sac formation 

✒ Stromule increasing in number and size 
 

 
 
 
 
 
 
 
 
 
 
 

Grana 

Thylakoid and grana stacking 
 

Ribosome 

Circular DNA 
 

        Plastoglobule with carotenoid crystalloid 
 

Starch granule 

 
Stromule 

 
Internal membrane 

Membranous sac 

Carotenoid crystal 

Internal membrane (sac formation) 

Thylakoid remnants 

Stromule 

 
Figure 1: Schematic representation of the main structural changes occurring during the chloroplast to chromoplast transition. 

 

 
 

have shown that plastoglobuli increase in size and number 

during the chloroplast-chromoplast transition [7] and that 

the internal membrane system is profoundly aff ected at the 

level of the grana and intergrana thylakoids [17]. Stromules 

(stroma-filled tubules) that are dynamic extensions of the 

plastid envelope allowing communication between plastids 

and other cell compartments like the nucleus [18] are also 

aff ected during chromoplastogenesis. A large number of long 

stromules can be found in mature chromoplasts contrasting 

with the few small stromules of the chloroplasts in green 

fruit [19]. It can therefore be assumed that the exchange of 

metabolites between the network of plastids and between 

the plastids and the cytosol is increased in the chromoplast 

as compared to the chloroplast. However, the most visible 

structural change is the disruption  of the thylakoid grana, 

the disappearance of chlorophyll, and the biogenesis of car- 

otenoid-containing  bodies. Associated with the structural 

changes, the  toc/tic  transmembrane  transport  machinery 

is disintegrated [16, 20]. The noncanonical signal peptide 

transport [21] and intracellular vesicular transport [22, 23] 

may represent the most active form of trans-membrane 

transport into the chromoplast as compared to the chloro- 

plast. Proteins involved in vesicular transport were detected 

in the tomato chromoplastic proteome [16]. 

One of the most  visible metabolic changes occurring 

during the chloroplast to chromoplast transition is the loss of 

chlorophyll and the accumulation of carotenoids [24]. A 

spectral confocal microscopy analysis of carotenoids  and 

chlorophylls has been carried out during the chloroplast to 

chromoplast transition in tomato fruit, including a time- 

lapse recording on intact live tissue [25]. Details of the early 

steps of tomato  chromoplast biogenesis from chloroplasts 

are provided at the cellular level that show the formation 

of intermediate plastids containing both carotenoids and 

chlorophylls. This study also demonstrated that the chloro- 

plast to chromoplast transition was synchronous for all 

plastids of a single cell and that all chromoplasts derived from 

preexisting chloroplasts. 

The photosynthetic machinery is strongly disrupted and 

a reduction in the levels of proteins and mRNAs associated 

with photosynthesis was observed [26]. Also the decrease 

in photosynthetic capacity during the later stages of tomato 

fruit development was confirmed by transcriptomic data 

[27]. However, part of the machinery persist in the chro- 

moplast. It has been suggested that  it participates in the 

production of C4 acids, in particular malate a key substrate 

for respiration during fruit ripening [28]. In the tomato 

chromoplast proteome, all proteins of the chlorophyll 

biosynthesis branch are lacking [16]. In the early stages of 

tomato fruit ripening, the fruits are green and the plastids 

contain low levels of carotenoids that are essentially the same 

as in green leaves, that  is, mainly β-carotene, lutein, and 

violaxanthin. At the “breaker” stage of ripening, lycopene 

begins to accumulate and its concentration  increases 500- 

fold in ripe fruits, reaching ca. 70 mg/g fresh weight [24]. 

During  the  ripening  of tomato  fruit,  an  upregulation  of 
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the transcription  of Psy and Pds, which encode phytoene 

synthase and phytoene desaturase, respectively, was reported 

[29]. One of the main components of the carotenoid-protein 

complex, a chromoplast-specific 35-kD protein (chrC), has 

been purified and characterized in Cucumis sativus corollas. 

It showed increasing steady-state level in parallel with 

flower development and carotenoid  accumulation,  with a 

maximum in mature flowers [30]. In tomato, concomitantly 

with increased biosynthesis of lycopene, the processes for 

splitting into β and γ carotene were absent [16]. The mRNAs 

of CrtL-b and CrtL-e were strongly downregulated during 

fruit  ripening  [29]. They encode lycopene β-cyclase and 

ε-cyclase, enzymes involved in the cyclization of lycopene 

leading to the formation of β and δ carotene, respectively. 

In these conditions, the low rate of cyclization and splitting 

contributes to the accumulation of lycopene in ripe tomato 

fruit. 

In terms of reactive oxygen species, antioxidant enzymes 

are upregulated during chromoplast development, and lip- 

ids, rather than proteins, seem to be a target for oxidation. 

In the chromoplasts, an upregulation in the activity of su- 

peroxide dismutase and of components of the ascorbate- 

glutathione cycle was observed [31]. 

The plastid-to-nucleus signaling also undergoes impor- 

tant changes. In the chromoplast, the main proteins involved 

in the synthesis of Mg-protoporphyrin  IX, a molecule sup- 

posed to play an important role in retrograde signaling [32] 

is absent, but other mechanisms such as hexokinase 1 or cal- 

cium signaling were present [16]. The plastid-nucleus com- 

munication  is still an open subject with many still unan- 

swered questions. 
 
 

3. A Number of Metabolic Pathways 
Are Conserved during Chromoplast 
Differentiation 

 

The comparison of data arising from proteomics of the 

chloroplast  [33]  and  of the  chromoplast  [16]  as well as 

biochemical analysis of enzyme activities suggest that several 

pathways are conserved during  the transition  from  chlo- 

roplast to chromoplast. Such is the case for (i) the Calvin 

cycle which generates sugars from CO2 , (ii) the oxidative 

pentose  phosphate  pathway  (OxPPP)  which  utilizes the 

6 carbons of glucose to generate 5 carbon sugars and 

reducing equivalents, and (iii) many aspects of lipid me- 

tabolism  (Figure 2).  Activities of  enzymes of  the  Calvin 

cycle have been measured in plastids isolated from sweet 

pepper.  They may even be higher in  chromoplasts  than 

in chloroplasts [34] In ripening tomato fruits, several 

enzymes of the Calvin cycle (hexokinase, fructokinase, 

phosphoglucoisomerase, pyrophosphate-dependent  phos- 

phofructokinase, triose phosphate isomerase, glyceraldehyde 

3-phosphate dehydrogenase, phosphoglycerate kinase, and 

glucose 6-phosphate  dehydrogenase) are active [35]. The 

activity of glucose 6-phosphate  dehydrogenase (G6PDH), 

a key component  of the OxPPP, was higher in fully ripe 

tomato fruit chromoplasts than in leaves or green fruits [36]. 

Also, a functional oxidative OxPPP has been encountered 

in isolated buttercup chromoplasts [37]. Proteomic analysis 

have demonstrated that an almost complete set of proteins 

involved in the OxPPP are present in isolated tomato fruit 

chromoplasts (Figure 2). The persistence of the Calvin cycle 

and the OxPPP cannot be related to photosynthesis since the 

photosynthetic system is disrupted.  In nonphotosynthetic 

plastids, the Calvin cycle could provide reductants and also 

precursors of nucleotides and aromatic aminoacids to allow 

the OxPPP cycle to function optimally [16]. 

Starch transiently accumulates in  young tomato  fruit 

and undergoes almost complete degradation by maturity. In 

fact, starch accumulation results from an unbalance between 

synthesis and degradation. Enzymes capable of degrading 

starch have been detected in the plastids of tomato  fruit. 

In addition, tomato  fruit can synthesize starch during the 

period of net starch breakdown, illustrating that these two 

mechanisms  can  coexist [38].  As indicated  in  Figure 3, 

proteins  for  starch  synthesis have  been  encountered  in 

the tomato chromoplast (ADP-glucose pyrophosphorylase, 

starch synthase, and starch branching enzyme). In addition, 

the system for providing neutral sugars to the starch bio- 

synthesis pathway is complete including the glucose-6P- 

translocator  which imports  sugars from  the cytosol. The 

presence of active import  of glucose-6P, but not  glucose- 

1P, had been demonstrated in buttercup chromoplasts [37]. 

Although some starch granules may be present in ripe 

tomatoes, the amount of starch is strongly reduced [39]. The 

most probable explanation is that  starch undergoes rapid 

turnover with intense degradation. This assumption is sup- 

ported by the presence in the tomato chromoplast of most 

of the proteins  involved in starch degradation (Figure 3). 

Particularly interesting is the presence of one glucan-water 

dikinase (GWD), one phospho-glucan-dikinase (PWD), and 

one phospho-glucan-phosphatase  (PGP) that facilitate the 

action of β-amylases [40]. Mutants of these proteins, named 

starch excess (SEX1 corresponding to GWD and SEX4 to 

PGP), accumulate large amounts of starch [40]. In agreement 

with the above-mentioned  hypothesis, high activity of β- 

amylase has been found during apple and pear fruit ripening 

at a time where starch has disappeared [41]. The presence of 

a glucose translocator for the export of sugars generated by 

starch degradation represents another support to the func- 

tionality of the starch metabolism pathways in chromoplasts. 

In olive fruit, a high expression of a glucose transporter gene 

was observed at full maturity when the chromoplasts were 

devoid of starch [42]. Nevertheless, the enzymatic activity of 

all of the proteins remains to be demonstrated inasmuch as 

posttranslational regulation of enzymes of starch metabolism 

has been reported [43] including protein phosphorylation 

[44]. Interestingly, orthologs of the 14-3-3 proteins of the 

μ family of Arabidopsis involved in the regulation of starch 

accumulation [45] are present in the tomato chromoplastic 

proteome (Figure 3). The 14-3-3 proteins participate in the 

phosphorylation-mediated regulatory functions in plants. 

In chloroplasts, thylakoid membranes, as well as envelope 

membranes, are rich in galactolipids and sulfolipids [46]. 

Lipid metabolism is also highly active in the chromoplasts. 

Despite thylakoid  disassembly, new membranes  are  syn- 

thesized such as those  participating  in  the  formation  of 
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Plastid stroma 

 

Carboxylation 
1 SGN-U346314 large subunit of RUBISCO 
2 SGN-U314262 ribulose bisphosphate carboxylase small chain 1A 
2 SGN-U314254 ribulose bisphosphate carboxylase small chain 1A 
2 SGN-U314701 ribulose bisphosphate  carboxylase small chain 3B 
2 SGN-U314722 ribulose bisphosphate  carboxylase small chain 3B 
2 SGN-U314700 ribulose bisphosphate  carboxylase small chain 3B 
2 SGN-U338973 ribulose bisphosphate  carboxylase small chain 3B 
3 SGN-U316742 Chaperonin 60 beta 
3 SGN-U312543 Rubisco activase 
3 SGN-U312544 Rubisco activase 
3 SGN-U312538 60 kDa chaperonin  alpha subunit 
3 SGN-U312542 60 kDa chaperonin  alpha subunit 

Reduction 
4 SGN-U313176 phosphoglycerate kinase 
5 SGN-U312802 glyceraldehyde-3-phosphate dehydrogenase B subunit 
5 SGN-U312804 glyceraldehyde-3-phosphate dehydrogenase B subunit 
5 SGN-U312461 glyceraldehyde-3-phosphate dehydrogenase B subunit 

Regeneration 
6 SGN-U313729 triose-phosphate isomerase 
7 SGN-U314788 fructose-bisphosphate aldolase 
7 SGN-U314787 fructose-bisphosphate aldolase 
7 SGN-U312608 fructose-bisphosphate aldolase 
7 SGN-U312609 fructose-bisphosphate aldolase 
7 SGN-U312344 fructose-bisphosphate aldolase 
8 SGN-U316424 fructose-1,6-bisphosphatase 
9 SGN-U312320 Transketolase 
9 SGN-U312319 Transketolase 
9 SGN-U312322 Transketolase 
9 SGN-U323721 Transketolase 

10 SGN-U315559 sedoheptulose-bisphosphatase 
11 SGN-U312320 Transketolase 
11 SGN-U312319 Transketolase 
11 SGN-U312322 Transketolase 
11 SGN-U323721 Transketolase 
12 SGN-U313308 ribulose-phosphate 3-epimerase 
13 SGN-U315528 ribose 5-phosphate isomerase 
14 SGN-U312791 phosphoribulokinase 

 

(b) 
 

Figure 2: Presence of proteins of the Calvin cycle in the tomato chromoplastic proteome. Proteins are indicated by white squares inside 

black frames and represented by their generic name and unigene SGN code. Numbers represent the position of the protein in the cycle. Data 

are derived from [16]. 
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Cyto so l 

 

Starch synthesis 
1 SGN-U330538 Glucose-6-phosphate translocator 
2 SGN-U324006 Phosphoglucomutase 
2 SGN-U312467 Phosphoglucomutase 
3 SGN-U317866 ADP-glucosepyro phosphorylase 
4 SGN-U318293 Starch synthase I 
5 SGN-U312423 Starch branching enzyme 
5 SGN-U312427 Starch branching enzyme 
6 SGN-U317897 Phosphoglucose isomerase 

Post translational regulation of starch synthesis 
7 SGN-U313499 14-3-3-like protein GF14 mu 
7 SGN-U316857 14-3-3-like protein GF14 mu 

Starch degradation 
8 SGN-U328612 Phosphoglucan-water dikinase 
9 SGN-U315116 Glucan-water dikinase or SEX1 

10 SGN-U317732 Phosphoglucan phosphatase or SEX4 
11 SGN-U328875 Isoamylase3 
11 SGN-U333011 Isoamylase3 
12 SGN-U313315 β amylase3 
13 ABSENT Maltose translocator or RCP1 
14 SGN-U317456 α amylase3 
14 SGN-U326232 α amylase3 
14 SGN-U326817 α amylase3 
15 ABSENT Limit dextrinase 
16 SGN-U316416 α glucan phosphorylase 
16 SGN-U316417 α glucan phosphorylase 
16 SGN-U333374 α glucan phosphorylase 
16 SGN-U325849 α glucan phosphorylase 
16 SGN-U345057 α glucan phosphorylase 
17 SGN-U322816 Disproportionating enzyme 1 
17 SGN-U333138 Disproportionating enzyme 1 
17 SGN-U342143 Disproportionating enzyme 1 
18 SGN-U319050 Glucose translocator 

(b) 
 

Figure 3: Presence of proteins of the starch synthesis and degradation pathways, of posttranslational regulation of starch synthesis, and of 

sugar translocators in the tomato chromoplastic proteome. Proteins are indicated by white squares inside black frames and represented by 

their generic name and unigene SGN code. Numbers represent the position of the protein in the cycle. Data are derived from [16]. 
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carotenoid storage structures. These newly synthesized 

membranes are not derived from the thylakoids but rather 

from vesicles generated from the inner membrane  of the 

plastid [47]. Key proteins for the synthesis of phospholipids, 

glycolipids, and sterols were identified [16] along with some 

proteins involved in the lipoxygenase (LOX) pathway. They 

have been described in the chloroplast, and they lead to the 

formation oxylipins, which are important  compounds  for 

plant defense responses [48]. In the tomato chromoplast, all 

proteins potentially involved in the LOX pathway leading to 

the generation of aroma volatiles were found [16]. 

The shikimate pathway, which is present in microorgan- 

isms and plants and never in animals, is a branch point 

between the metabolism of carbohydrates and aromatic 

compounds. It leads to the biosynthetic of the aromatic 

amino acids tyrosine, tryptophan,  and phenylalanine [49]. 

The presence of an active shikimate pathway has been dem- 

onstrated in chromoplasts isolated from wild buttercup 

petals by measuring the activity of the shikimate oxidoreduc- 

tase [50], and a number of proteins involved in the shikimate 

pathway  have  been  encountered  in  the  tomato  chrom- 

oplast proteome [16]. The aromatic amino acids derived 

from the shikimate pathway are the precursors of a number 

of important  secondary metabolites. Tyrosine is the pre- 

cursor of tocopherols and tocotrienols. Tryptophane is in- 

volved in the synthesis of indole alkaloids which are essential 

for the generation of some glucosinolates, terpenoids, and 

tryptamine derivatives [50]. Phenylalanine is the precursor 

of several classes of flavonoids, including anthocyanins. It is 

also a precursor for the biosynthesis of volatile compounds 

which are important  for fruit flavor and flower scent, 

eugenol, 2-phenylacetaldehyde and,  2-phenylethanol  [51, 
52]. In tomato fruit, for instance, 2-phenylacetaldehyde and 

2-phenylethanol are generated from phenylalanine by an aro- 

matic amino acid decarboxylase and a phenylacetaldehyde 

reductase, respectively [53, 54]. Nevertheless, there  is no 

indication that the synthesis of the secondary metabolites 

derived from the shikimate pathway takes place in the 

chromoplast. 

During fruit ripening, an increased synthesis of α- 

tocopherol was observed [55]. The biosynthesis of α- 

tocopherol was localized in the envelope membranes of the 

Capsicum annum [56], and the almost complete set of pro- 

teins of the pathway were present in the tomato chromoplast 

[16]. The accumulation of α-tocopherol, by protecting mem- 

brane lipids against oxidation, may contribute  to delaying 

senescence [57]. 
 

 

4. Plastoglobuli, Plastoglobules, and the 
Chloroplast-to-Chromoplast Transition 

 

Plastoglobules are lipoprotein  particles present in chloro- 

plasts (Figure 1) and other plastids. They have been recently 

recognized as participating in some metabolic pathways 

[58]. For instance, plastoglobules accumulate tocopherols 

and harbor a tocopherol cyclase, an enzyme catalyzing the 

conversion of 2,3-dimethyl-5-phytyl-1,4-hydroquinol to γ- 

tocopherol [59]. Plastoglobuli also accumulate carotenoids 

as crystals or as long tubules named fibrils [60, 61]. Part of 

the enzymes involved in the carotenoid biosynthesis pathway 

(ζ -carotene  desaturase,  lycopene β cyclase, and  two  β- 

carotene β hydroxylases) were found  in the plastoglobuli 

[62]. 
Plastoglobules arise from  a  blistering of the  stroma- 

side leaflet of the thylakoid membrane [63], and they are 
physically attached to  it [45]. During  the chloroplast-to- 

chromoplast transition, a change in the size and number of 

plastoglobuli was observed (Figure 1). They are larger and 

more numerous than in the chloroplast [7]. Plastoglobules 

are the predominant proteins of plastoglobules. Several types 

of plastoglobules have been described: fibrillin, plastid lipid- 

associated proteins (PAP) and carotenoid-associated protein 

(CHRC). All plastoglobules participate in the accumulation 

of carotenoids in the plastoglobule structure. Carotenoids 

accumulate as fibrils to form supramolecular lipoprotein 

structures. A model for fibril assembly has been proposed 

in which the core is occupied by carotenoids that interact 

with polar galacto- and phospho-lipids. Fibrillin molecules 

are located at the periphery in contact with the plastid stroma 

[64]. In tomato, the overexpression of a pepper fibrillin 

caused an increase in carotenoid and carotenoid-derived 

flavour volatiles [47] along with a delayed loss of thylakoids 

during the chloroplast-to-chromoplast transition. In fibrillin 

overexpressing tomato, the plastids displayed a typical chro- 

moplastic zone contiguous with a preserved chloroplastic 

zone. PAP is another major protein of plastoglobules that 

also participates in the sequestration of carotenoids [64, 65]. 

As for CHRC, its downregulation resulted in a 30% reduc- 

tion  of carotenoids in tomato  flowers [66]. Plastoglobuli 

are, therefore, complex assemblies that  play a key role in 

carotenoid metabolism and greatly influence the evolution 

of the internal structure of the plastid during the chloroplast 

to chromoplast transition. 
 

 
5. A key Player in Chromoplast Differentiation: 

The Or Gene 
 

The Or gene was discovered in cauliflower where the dom- 

inant mutation Or conferred an orange pigmentation with 

the accumulation of β-carotene mostly in the inflorescence 

[67]. The Or gene was isolated by positional cloning [68]. 

It is localized in the nuclear genome and  is highly con- 

served among divergent plant species [69]. The Or protein 

corresponds to plastid-targeted a DnaJ-like co-chaperone 

with  a  cysteine-rich domain  lacking the  J-domain  [68]. 

DnaJ proteins are known for interacting with Hsp70 chap- 

erones to perform  protein  folding, assembly, disassembly, 

and translocation. The Or mutation is not a loss of function 

mutation  as indicated by the absence of phenotype upon 

RNAi silencing. It is probably a dominant-negative mutation 

aff ecting the interaction with Hsp70 chaperones [70]. The 

OR mutants displayed an arrest in plastid division so that a 

limited number of chromoplasts (one or two) were present 

in the aff ected cells [71]. Potato tubers over-expressing the 

Or gene accumulate carotenoids [69]. In the OR mutant, the 

expression of carotenoid biosynthetic genes was unaff ected 
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and chromoplasts diff erentiated normally with membra- 

nous inclusions of carotenoids similar to those of carrot 

roots.  It  is concluded  that  the  Or  gene is not  involved 

in carotenoid  biosynthesis but  rather  creates a metabolic 

sink for carotenoid accumulation through inducing the 

formation of chromoplasts [72]. 
 
 

6. Transcriptional and Translational Activity in 
the Plastid Undergo Subtle Changes during 
Chromoplast Biogenesis 

 

Most proteins present in the plastid are encoded by nuclear 

genes. The plastid genome encodes around 84 proteins [60]. 

Restriction enzyme analysis between chloroplasts of leaves 

and chromoplasts of tomato fruit indicates the absence of 

rearrangements, losses, or gains in the chromoplastic DNA 

[61]. During chromoplast diff erentiation, the global tran- 

scriptional activity is stable, except for a limited number of 

genes such as accD, encoding a subunit of the acetyl-CoA 

carboxylase involved in fatty acid biosynthesis, trnA (tRNA- 

ALA), and rpoC2 (RNA polymerase subunit) [15]. Polysome 

formation within the plastids declined during ripening 

suggesting that, while the overall RNA levels remain largely 

constant, plastid translation is gradually downregulated dur- 

ing chloroplast-to-chromoplast diff erentiation. This trend 

was particularly pronounced  for the photosynthesis gene 

group. A single exception was observed; the translation of 

accD stayed high and even increased at the onset of ripening 

[15]. 

Specific studies of few plastid-localized genes have been 

carried out. Genes involved in photosynthesis were, as ex- 

pected, downregulated during chromoplast formation [25]. 

However, an upregulation of the large subunit of ribulose- 

1,5-bisphosphate carboxylase/oxygenase and the 32 kD photo- 

system II quinone binding protein genes has been observed 

in the chromoplasts of squash fruits (Cucurbitae pepo) [62]. 

A possible explanation  would be that  these genes could 

be regulated independently from the plastid diff erentiation 

processes. Genes involved in carotenoid biosynthesis such 

as the lycopene  β-cyclase (CYCB) were upregulated during 

chromoplast formation in many plants including the wild 

species of tomato Solanum habrochaites [63]. 
 
 

7. Changes in Gene Expression 
during Chromoplast Differentiation in 
Ripening Tomato 

 

The availability of proteomic data of tomato chromoplasts 

[16] and expression data of a wide range of tomato genes 

(The Tomato Expression Database: http://ted.bti.cor- 

nell.edu) [73] allowed classifying genes encoding chrom- 

oplastic  proteins  according  to  their  expression  pattern 

(Table 1). Among the 87 unigenes whose encoded proteins 

are located in the chromoplast, the biggest functional class 

corresponds to genes involved in photosynthesis. Most of 

them (18 out of 24) are either permanently (Table 1(c)) or 

transiently   (Table 1(e))   downregulated   at   the   breaker 

stage. This is in agreement with the dramatic decrease in 

the photosynthetic activity of the chromoplast. Three of 

them show constant expression (Table 1(a): U313693 ATP 

synthase delta chain; U312985 glycine cleavage system H 

protein;  U312532 oxygen-evolving enhancer protein)  and 

three   upregulation   (Table 1(b):   U312690  plastocyanin; 

U312593 chlorophyll A-B binding protein 4; U314994 

phosphoglycolate  phosphatase).   In   the   case  of  Calvin 

cycle, 5 out  of 12 genes (U312344 fructose-bisphosphate 

aldolase; U312608 fructose-bisphosphate aldolase; U312609 

fructose-bisphosphate aldolase; U314254 ribulose bis- 

phosphate  carboxylase small chain 1A; U314701 ribulose 

bisphosphate carboxylase small chain 3B) had a constant 

decrease during  chromoplast  diff erentiation  (Table 1(c)). 

In tomato fruit, the activity of the ribulose-1,5-bisphosphate 

carboxylase/oxygenase had a constant decrease during fruit 

ripening [74], which is in line with the transcriptomic and 

proteomic data. The genes encoding fructose-bisphosphate 

aldolase isoforms presented diff erent expression profiles 

being either up- (U314788) or down- (U312344) regulated 

during tomato fruit ripening. An increase in overall 

transcript levels for the fructose-1,6-bisphosphate aldolase 

has been described during ripening [75]. The importance 

of transcripts and enzyme activity of the various isoforms 

are unknown. The remaining genes involved in the Calvin 

cycle   showed   either   increased   (Table 1(b);   U312802 

glyceraldehyde-3-phosphate  dehydrogenase   B;  U312538 

RuBisCO subunit binding-protein) or unchanged expression 

(Table 1(a); U316424 fructose-1,6-bisphosphatase; U312544 

ribulose  bisphosphate  carboxylase/-oxygenase activase). 

Three genes coding for the OxPPP were found: two of them 

exhibited a transient increase in expression at the breaker 

stage (Table 1(d): U315528 ribose 5-phosphate isomerase- 

related;  U332994  6-phosphogluconate  dehydrogenase 

family protein)  and  one a transient  decrease (Table 1(e): 

U315064 transaldolase). The 3 genes involved in tetrapyrrole 

biosynthesis  are  not   part  of  the  chlorophyll  synthesis 

branch   and  all  of  them  had  an  increased  expression 

(Table 1(b):   U315993  coproporphyrinogen   III   oxidase; 

U315267 uroporphyrinogen  decarboxylase; U315567 

hydroxymethylbilane synthase), suggesting that the synthesis 

of tetrapyrroles continues during the transition from 

chloroplast  to  chromoplast.  As  expected,  most  of  the 

genes (5 out of 6) coding for enzymes involved in carotenoid 

synthesis showed continuous (Table 1(b): U314429 phytoene 

synthase; U315069 isopentenyl-diphosphate delta-isomerase 

II; U316915 geranylgeranyl pyrophosphate  synthase; 

U318137 phytoene dehydrogenase) or transient (Table 1(d): 

U313450 geranylgeranyl reductase) upregulation.  The 

precursors for carotenoid  production  are synthesized 

through  the  methylerythritol  phosphate  (MEP)  pathway. 

The gene encoding hydroxymethylbutenyl 4-diphosphate 

synthase (HDS)  (U314139) downstream  in  the  pathway 

has stable expression (Table 1(a)). This is consistent with 

previous studies that showed that there were no significant 

changes in HDS gene expression during tomato fruit 

ripening [76]. 

http://ted.bti.cor-/
http://ted.bti.cor-/
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Table 1: Expression profile analysis of 87 genes whose products are targeted to tomato chromoplasts (∗  ). 

 
+ 

 
 

 
0    

 

 
 

− 
 

MG B − 1 B B + 1  B + 5  B + 10 

(a) 

 
 
 
 
 
 
 
 
 
 
 
 

+ 

 
 
 

0 
 

 
 

− 
 

MG B − 1 B B + 1  B + 5  B + 10 

(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
+ 

 

 
 

0 
 

 
 

− 

MG B − 1 B B + 1   B + 5 B + 10 

(c) 

Photosystem: U313693 ATP synthase delta chain; U312985 glycine cleavage 

system H protein; U312532 oxygen-evolving enhancer protein. 

Calvin cycle: U316424  fructose-1, 6-bisphosphatase; U312544 ribulose 

bisphosphate carboxylase/-oxygenase activase. 

Secondary metabolism: U314139 1-hydroxy-2-methyl-2-(E)-butenyl 

4-diphosphate synthase. 
 
 
 
Photosystem: U312690 plastocyanin; U312593 chlorophyll A-B binding 

protein 4; U314994 phosphoglycolate phosphatase. 

Calvin cycle: U314788  fructose-bisphosphate aldolase; U312802 

glyceraldehyde-3-phosphate dehydrogenase B; U312538 RuBisCO subunit 

binding-protein. 

Redox: U314092 L-ascorbate peroxidase; U319145 thioredoxin family protein; 

U320487 monodehydroascorbate reductase. 

Amino acid metabolism: U321505 anthranilate synthase; U317466 

3-phosphoshikimate 1-Carboxyvinyltransferase; U317564 tryptophan 

synthase. 

Lipid metabolism: U315474 3-oxoacyl-(acyl-carrier-protein) synthase I; 

U315475 3-oxoacyl-(acyl-carrier-protein) synthase I; U313753 pyruvate 

dehydrogenase E1 component. Major CHO metabolism: U315116 starch 

excess protein (SEX1); U333011 isoamylase, putative; U312423 1, 

4-alpha-glucan branching enzyme; U312427 1, 4-alpha-glucan branching 

enzyme. 

Secondary metabolism: U314429 phytoene synthase; U315069 

isopentenyl-diphosphate delta-isomerase II; U316915 geranylgeranyl 

pyrophosphate synthase; U318137 phytoene dehydrogenase. 

Tetrapyrrole synthesis: U315993 coproporphyrinogen III oxidase; U315267 

uroporphyrinogen decarboxylase; U315567 hydroxymethylbilane  synthase. 

Mitochondrial electron transport: U316255 NADH-ubiquinone 

oxidoreductase. 

Fermentation, ADH: U314358 alcohol dehydrogenase (ADH). 

Miscellaneous, cytochrome P450: U313813 NADPH-cytochrome p450 

reductase. 

S-assimilation. APS: U313496 sulfate adenylyltransferase 1. 

Development unspecified: U316277 senescence-associated protein (SEN1). 

Cell organisation: U313480 plastid lipid-associated protein PAP, putative. 

Hormone metabolism: U315633 lipoxygenase. 

N-metabolism ammonia metabolism: U323261 glutamate synthase (GLU1). 

Stress abiotic heat: U315717 HS protein 70. 

Not assigned, No ontology: U317890 hydrolase, alpha/beta fold family protein. 

Photosystem: U312531 oxygen-evolving enhancer protein; U313447 

photosystem I reaction center subunit IV; U313204 chlorophyll A-B binding 

protein 2; U313245 ATP synthase gamma chain 1; U312436 chlorophyll A-B 

binding protein; U313211 chlorophyll A-B binding protein 2; U313212 

chlorophyll A-B binding protein 2; U313213 chlorophyll A-B binding protein 

2; U312572 photosystem II oxygen-evolving complex 23 (OEC23); U314260 

photosystem I reaction center subunit III family protein. 

Calvin cycle: U312344  fructose-bisphosphate aldolase; U312608 

fructose-bisphosphate aldolase; U312609 fructose-bisphosphate aldolase; 

U314254 ribulose bisphosphate carboxylase small chain 1A; U314701 ribulose 

bisphosphate carboxylase small chain 3B. 

Lipid metabolism: U319207 phosphatidylglycerol  phosphate synthase (PGS1). 

Redox: U313537 dehydroascorbate reductase. 

Major CHO metabolism: U316416 glucan phosphorylase, putative. 

N-metabolism: U314517 glutamine synthetase (GS2). 

Amino acid metabolism: U317344 bifunctional aspartate kinase/homoserine 

dehydrogenase; U320667 cystathionine beta-lyase. 
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Table 1: Continued. 
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MG B − 1 B B + 1  B + 5  B + 10 

(a) 

 

 
 

+ 
 

 
 

0 
 

 
 

− 

MG B − 1 B B + 1  B + 5  B + 10 

(d) 

 

 
 
 

+ 
 

 
 

0 
 

 
 

− 

MG B − 1 B B + 1  B + 5  B + 10 

(e) 

Photosystem: U313693 ATP synthase delta chain; U312985 glycine cleavage 

system H protein; U312532 oxygen-evolving enhancer protein. 

Calvin cycle: U316424  fructose-1, 6-bisphosphatase; U312544 ribulose 

bisphosphate carboxylase/-oxygenase activase. 

Secondary metabolism: U314139 1-hydroxy-2-methyl-2-(E)-butenyl 

4-diphosphate synthase. 
 
 
 
Redox: U314061 peroxiredoxin Q; U314093 L-ascorbate peroxidase, 

thylakoid-bound (tAPX); U314923 2-cys peroxiredoxin. 

OPP, Nonreductive PP: U315528 ribose 5-phosphate isomerase related; 

U332994 6-phosphogluconate dehydrogenase family protein; U316131 

6-phosphogluconate dehydrogenase NAD-binding domain-containing 

protein. 

Secondary metabolism: U317741 acetyl coenzyme A carboxylase carboxyl 

transferase alpha subunit family; U313450 geranylgeranyl reductase. 

Amino acid metabolism: U317245 tryptophan synthase related. 

N-metabolism ammonia metabolism: U317524 ferredoxin-nitrite reductase. 

Lipid metabolism: U315697 enoyl-(acyl-carrier protein) reductase (NADH) 

U321151 lipoxygenase. 

Transport metabolite: U312460 triose phosphate/phosphate translocator, 

putative. 

Signalling calcium: U315961 calnexin 1 (CNX1). 

Photosystem: U312843 chlorophyll A-B binding protein; U312858 cytochrome 

B6-F complex iron-sulfur subunit; U313214 chlorophyll A-B binding protein 

2; U312791 phosphoribulokinase (PRK); U317040 photosystem II reaction 

center PsbP family protein; U312449 chlorophyll A-B binding protein CP26; 

U312661 chlorophyll A-B binding protein CP29 (LHCB4); U313789 ATP 

synthase family. 

Calvin cycle: U312461 glyceraldehyde 3-phosphate dehydrogenase A; U312871 

oxygen-evolving enhancer protein 3. 

Redox: U315728 glutathione peroxidase. 

OPP nonreductive PP transaldolase: U315064 transaldolase. 

Signaling calcium: U318939 calcium-binding EF hand family protein. 

Major CHO metabolism: U313315 beta amylase. 

(∗  ) Genes represented in this table are filtered from TED database [64] crossing with the proteins described by Barsan et al. [16]. The expression profiles 

were clustered with the Bioinformatics tools of the Matlab (MathWorks) software package and further reduced to five representative expression profiles 

according to their general tendencies represented in the first column. The expression values used in this analysis were taken from experiment E011 from TED 

database. Relative expression refers to the ratio between the expression values of each ripening point and MG. All data were normalized by the mean and log2 

transformed. (a) Genes that remain stable during the ripening, (b) genes that have an increase or (c) a decrease until breaker stage and then reaches a plateau, 

(d) genes that have a positive or (e) negative transient expression around the breaker stage. (MG, mature green; B-1, 1 d before breaker; B, breaker stage; B + 

1, 1 d after breaker; B + 5, 5 d after breaker; B + 10, 10 d after breaker.) 

 

 

In the case of lipid metabolism, three genes showed 

increased expression (Table 1(b): U315474 3-oxoacyl-(acyl- 

carrier-protein) synthase I; U315475 3-oxoacyl-(acyl-carrier- 

protein)  synthase I; U313753 pyruvate dehydrogenase E1 

component),    and   two   genes   had   transient   increase 

(Table 1(d): U315697 enoyl-(acyl-carrier protein) reductase 

(NADH); U321151 lipoxygenase). Phosphatidylglycerol 

phosphate     synthase     showed     decreased     expression 

(Table 1(c)).  This enzyme is involved in the biosynthesis 

of phosphatidylglycerol and is considered as playing an 

important  role in the ordered assembly and structural 

maintenance of the photosynthetic apparatus in thylakoid 

membranes and in the functioning of the photosystem II 

[77]. The downregulation of this gene during chromoplast 

diff erentiation is consistent  with  thylakoid disintegration 

and photosynthesis disappearance. 

Four genes of the starch metabolism present upregu- 

lation  (Table 1(b)).  Two of  them  are  part  of  the  starch 

biosynthesis (U312423 1,4-alpha-glucan branching enzyme; 

U312427 1, 4-alpha-glucan branching enzyme), and one of 

them is involved starch degradation U315116 starch excess 

protein (SEX1). The fourth one, an isoamylase (U333011) 

can participate either in starch degradation or in starch 

synthesis, depending on the isoform [78]. The expression of 

the gene that codes a starch degrading glucan phosphorylase 

(U316416) decreases, and the expression of another starch 

degrading gene, beta-amylase (U313315), has a negative 

transient  expression (Table 1(b)).  In  addition,  proteomic 
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studies have shown the presence of two starch excess proteins 

(SEX1 and 4) that  probably contribute  to the absence of 

starch accumulation [16]. Starch is degraded during the 

chloroplast to chromoplast transition to provide carbon and 

energy necessary to sustain the metabolic activity during 

fruit ripening. Several enzymes are responsible for the 

processes, each one possessing several isoforms with diff erent 

regulatory mechanisms [78]. 

Interestingly genes involved in aroma production such as 

ADH (U314358) or LOXC (U315633) had a constant increase 

in gene expression (Table 1(b)). This could be related to the 

increase in aroma production via the LOX pathway. 

The microarray data discussed in this section cover a 

wide range of the tomato transcriptome. However, several 

isoforms of several genes are not represented in the database, 

which could explain some contradictory patterns of expres- 

sion encountered in our analysis. Nevertheless, although not 

providing a full picture of the molecular events occuring 

during the chloroplast to chromoplast transition, these data 

confirm the regulation at the transcriptional level of the most 

salient events. 
 

 
8. Conclusions and Perspectives 

 

With the advent of high throughput  technologies, great 

progress has been made in the recent years in the eluci- 

dation of the structure and function of plastids. The most 

important  data obtained in the area have been generated 

for the chloroplast of Arabidopsis. Much less information 

is available for the chromoplast.  However, recent studies 

with bell pepper [14] and tomato  fruit [16] have allowed 

assigning to chromoplasts a number of proteins around 1000, 

which is in the same order of magnitude as Arabidopsis 

chloroplasts [33].  This number  is, however, much  lower 

than  the  number  of proteins  predicted  to  be located in 

the plastid which has been estimated at up  to 2700 [79] 

or  even 3800 [80]. The increased sensitivity of the mass 

spectrometry technologies associated with effi cient methods 

of purification of plastids, particularly chromoplasts, will 

allow  in  the  future  identifying  more  proteins.  So  far, 

changes in the proteome  have not been described during 

the diff erentiation of chromoplast. Such studies imply the 

development of effi cient protocols for isolating plastids at 

di ff erent stages of di ff erentiation during 

chromoplastogen- esis. The combination  of proteomics 

and transcriptomics may also give novel information  on 

the process in a near future.  The  discovery of  the  Or  

gene has  been  a  great step forward to the understanding 

of the molecular deter- minism of chromoplast di ff
erentiation. There is a need to better understand the 

regulatory mechanism controlling the expression of the Or 

gene. Many genes encoding for plastidial proteins are 

regulated by the plant hormone ethylene and, therefore, 

participate in the transcriptional regulation of the fruit 

ripening process in general [81, 82]. Other hormones such 

as ABA and auxin may also be involved. Interactions 

between hormones  and other  signals (light, for instance) 

during chromoplast diff erentiation represent another field of 

investigation to be explored. Because most of the proteins 

present in the chromoplast are encoded by nuclear genes, 

it will be important  in future to better understand  the 

changes occurring in the processes of transport of proteins 

to the chromoplast. It is suspected that vesicular transport 

is gaining importance, but more experimental evidence is 

required.  Finally the dialog between the nucleus and  the 

chromoplast and the signals involved needs to be explored. 

So far most of the studies in this area have been carried out 

with chloroplasts [83]. 

In conclusion, important steps forward have been made 

into a better understanding of chromoplast diff erentiation. 

Metabolic reorientations and specific biochemical and mo- 

lecular events have been clearly identified. It is predictable 

that more information will arise from the indepth descrip- 

tion of the molecular events occurring during the chloroplast 

to chromoplast transition using genomic tools. 
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Chapter I-Chloroplast to chromoplast transition in tomato 

fruit: spectral confocal microscopy analyses of carotenoids and 

chlorophylls in isolated plastids and time-lapse recording on 

intact live tissue 
 

 
 
 

Introduction 
 

 

Tomato fruit development is a process associated with lots of changes, such as fruits size 

expansion, aroma accumulation and color change. All these changes help the seed dispersal of 

fleshy fruits (Pyke, 2008). The color change from green to red is one of the most obvious feature 

during fruit development. Pigments contributing to the fruit color from green to red are 

chlorophyll and carotenoid, respectively. Pyke (2007) showed a strong evidence that chromoplast 

is derived from chloroplast using green fluorescent protein (GFP). But there no observation of 

carotenoid fluorescence was performed. 

 

In the present work, we observed the pigment fluorescence within individual plastids with a 

laser  scanning confocal microscope. The  plastids were  isolated from tomato  fruits  at  three 

different ripening stages. Then we performed a real-time monitoring of these color changes 

within live tomato fruit slices. The observation of individual plastid and real-time monitoring of 

the transition revealed that all the chromoplasts derived from pre-existing chloroplasts in tomato 

tissues. 

 

This work was published in Annals of Botany for which I participated as the first co-author. 
 
 
 
 

Foreword: 
 

 

For the work presented in this chapter I participated in isolation of the plastid from three 

different stages (mature-green, breaker and red), the assessment of the intactness of isolated 

plastids, the observation of isolated plastids by confocal microscopy and assay of the fluorescence 

emission spectra. 
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† Background and Aims There are several studies suggesting that tomato (Solanum lycopersicum) chromoplasts 
arise from chloroplasts, but there is still no report showing the fluorescence of both chlorophylls and carotenoids 
in an intermediate plastid, and no video showing this transition phase. 

† Methods Pigment fluorescence within individual plastids, isolated from tomato fruit using sucrose gradients, 
was observed at different ripening stages, and an in situ real-time recording of pigment fluorescence was per- 
formed on live tomato fruit slices. 
† Key results At the mature green and red stages, homogenous fractions of chloroplasts and chromoplasts were 
obtained, respectively. At the breaker stage, spectral confocal microscopy showed that intermediate plastids con- 
tained both chlorophylls and carotenoids. Furthermore, an in situ real-time recording (a) showed that the chlor- 
oplast to chromoplast transition was synchronous for all plastids of a single cell; and (b) confirmed that all 
chromoplasts derived from pre-existing chloroplasts. 
† Conclusions These results give details of the early steps of tomato chromoplast biogenesis from chloroplasts, 
with the formation of intermediate plastids containing both carotenoids and chlorophylls. They provide infor- 
mation at the sub-cellular level on the synchronism of plastid transition and pigment changes. 

 

Key words:  Chloroplast, chromoplast, confocal, pigment fluorescence, Solanum lycopersicum, tomato. 
 

 
 

I N TR OD UCTI ON  
 

During evolution, chromoplasts have emerged as plastid struc- 
tures which accumulate pigments to facilitate flower pollina- 
tion  and  seed  dispersal  of  fleshy  fruit.  There  is  good 
evidence  that  chromoplasts derive  from  chloroplasts  (Pyke, 
2007), even if nobody has ever recorded this transition. 
Structural changes occurring during chloroplast to chromoplast 
transition have been described in fleshy fruit by electron 
microscopy  primarily  in  tomato  (Rosso,  1968;  Harris  and 
Spurr, 1969) and in bell pepper (Spurr and Harris, 1968). 
During the differentiation process controlled breakdown of 
chlorophyll   and   disruption   of   the   thylakoid   membrane 
occurred, concomitant with an increase in the aggregation of 
carotenoids. Different carotenoid-accumulating bodies have 
been described, including plastoglobules, crystalline and 
microfibrillar structures, and internal membranous structures 
(Marano  et  al.,  1993).  Coloured  images  have  been  made 
under bright-field microscopy of plastids of fruit and flowers 
where chloroplasts appear as dark green pigmented bodies, 
while  chromoplasts  appear  as  dark  red  or  orange  bodies 

(Gunning, 2005). More recently, Pyke and co-workers (Pyke 
and  Howells,  2002;  Waters  et  al.,  2004;  Forth  and  Pyke, 
2006; Pyke, 2007) have studied chloroplast to chromoplast 
transition using green fluorescent protein (GFP) constructs tar- 
geted to the plastid by the RecA plastid transit sequence. This 
technique showed the highly irregular and variable mor- 
phology of plastids between different types of cells. It also 
allowed the morphology of stromules to be studied and the 
presence of bead-like structures along the stromules to be dis- 
covered. In Pyke and Howells (2002), the fluorescence of caro- 
tenoids might have been quenched by the use of an anti-fading 
compound,   Vectashieldw     (http://forums.biotechniques.com/ 
viewtopic.php?f=17&t=22802); therefore, chromoplasts were 
observed in ripe fruit tissues using the merging of GFP fluor- 
escence and bright-field images, but the transition from chlor- 
oplasts was not observed. In later studies (Waters et al., 2004; 
Forth and Pyke, 2006), the authors focused on chlorophyll and 
GFP fluorescence during the transition from chloroplasts to 
chromoplasts and then onto stromules. No observation with 
carotenoid fluorescence was performed. In the present work, 
a  laser  scanning  confocal  microscopy  technique  has  been 
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used to monitor the loss of chlorophylls and the accumulation 
of carotenoids simultaneously in individual plastids isolated at 
different  stages  of  development.  Time-lapse  recording  on 
tissue slices of tomato fruit was also performed to follow the 
transition in situ in a cellular set of plastids. 

 

 
MATERI ALS A N D METH OD S 

 

Plant material 
 

Tomato plants (Solanum lycopersicum ‘MicroTom’) were ger- 
minated and cultivated under greenhouse conditions and fruit 
was collected at the mature green, turning (2 d after breaker, 
Br + 2)  and  ripe  (10 d  after  breaker,  Br + 10)  stages  as 
shown in Egea et al. (2010). The breaker stage is characterized 
by the initiation of fruit colouration, with fruit changing from 
green to pale orange at the blossom end. 

 

 
Plastid isolation and intactness assessment 

 

Fruit  were  thoroughly  washed  with  distilled  water,  the 
seeds  and  gel  were  eliminated  and  the  pericarp  was  cut 
into  small  pieces  (0.5– 1.0 cm).  Prior  to  homogenization, 
small  fruit  pieces  were  incubated  in  ice-cold  extraction 
buffer  (250 mM   HEPES,  330 mM   sorbitol,  0.5 mM   EDTA, 
5 mM  b-mercaptoethanol,  pH 7.6) for 30 min. Intact purified 
plastids were obtained by differential and density gradient 
centrifugation in discontinuous gradients of sucrose, as pre- 
viously described by Barsan et al. (2010) with some modifi- 
cations. Fruit for extraction of chloroplasts, immature 
chromoplasts and mature chromoplasts were chosen from 
mature  green,  breaker and  ripe  fruit,  respectively,  as 
described above. For isolating chloroplasts, a three-layer 
sucrose gradient  was used, 0.9  M – 1.15 M – 1.45 M, and  for 
mature  chromoplasts the  sucrose gradients  were  0.5  M – 0.9 

M –1.35 M. To obtain intact purified immature chromoplasts, 
from breaker fruit, a more sensitive discontinuous sucrose 
density gradient was necessary (0.5 M – 0.9 M –1.15 M –1.25 
M –1.35  M – 1.45  M).  Intact  chloroplasts,  immature  chromo- 
plasts and mature chromoplasts banded in the 1.15 M – 1.45 
M,  0.9  M – 1.15  M   and  0.9  M – 1.35  M   sucrose  interfaces, 
respectively.   The   plastid   bands   collected   were   washed 
twice   with   extraction   buffer   and   finally   resuspended 
in extraction buffer for further confocal microscopy 
observations. 

For the intactness assessment, the isolated plastids were sus- 
pended in a buffer containing 25 mM  Bicine, 25 mM  HEPES, 
2 mM  MgCl2,   2 mM  dithiothreitol, 0.4 M  sorbitol, pH 9 sup- 
plemented with an equal volume of carboxyfluorescein diace- 
tate (CFDA) at a final concentration of 0.0025 % (w/v) and 
incubated for 5 min (Schulz et al., 2004). CFDA fluoresces 
strongly when it is de-esterified to carboxyfluorescein in an 
intact plastid. Plastid suspensions were examined using an 
inverted microscope (Leica DMIRBE) equipped with an I3 
cube  filter  (excitation  filter  450 – 490 nm,  dichroic  mirror 
510 nm and emission filter LP 515 nm). The number of total 
plastids per microlitre in the samples was determined using a 
haemacytometer  (Neubauer  Double,  Zuzi),  and  the  results 
were expressed as a percentage of intact plastids. 

Tomato mesocarp preparation  for in situ time-lapse recording 
 

Very thin slices (around 300 mm) of tomato mesocarp were 
hand cut with a razor blade on the green part of inner + outer 
mesocarp layers, at the turning stage (Br + 2). Slices were 
mounted  on  a  glass  slide  in  water  (as  shown  in 
Supplemenatary Data Fig. S1A, available online), containing 
0.1 mM  of the ethylene precursor 1-aminocyclopropane-1-car 
boxylic acid (ACC). This treatment enhanced the chance of 
observing  colour  changes  within  a  time  interval  (several 
hours), during which the tissues neither moved on the slide 
nor dehydrated. 
 
 
Confocal microscopy of isolated plastids 
 

Confocal images of isolated plastids from the different frac- 
tions were acquired with a laser scanning confocal system 
(Leica   LSCM-SP2,   Nanterre,   France)   coupled   with   an 
upright microscope (Leica DM6000, Rueil-Malmaison, 
France). Samples of freshly isolated plastid fractions were 
placed between a glass slide and a coverslip. Fluorescence 
emission spectra were acquired using the 488 nm ray line of 
an  argon  laser  for  excitation  and  the  emitted  fluorescence 
was  recorded  from  505  to  745 nm  with  a  bandwidth  of 
10 nm using the l-scan module of the Leica software. The flu- 
orescence intensity expressed with arbitrary units corresponds 
to the average intensity of fluorescence per pixel. 
 
 
Confocal microscopy for time-lapse recording on mesocarp 

tissues 
 

Time-lapse acquisitions were performed using a long 
working  distance   ×40  water  immersion  lens  (NA:  0.8) 
dipping   directly   in   the   buffer.   Slices   of   the   mesocarp 
tissue were placed at the bottom of a Petri dish filled with 
buffer  to  avoid  both  displacement  and  dehydration  during 
the  time-lapse  acquisition  (shown  in  Supplementary  Data 
Fig.  S1B).  A  hole  in  the  cover  of  the  Petri  dish  allowed 
the objective lens to dip in the buffer. The whole apparatus 
(Petri dish and objective lens) was covered with Parafilmw

 

to avoid dehydration. The 488 nm excitation ray line of an 
argon  laser  was used to  image  the distribution of caroten- 
oids, the emitted fluorescence being collected between 500 
and  600 nm.  For  chlorophylls,  the  633 nm  excitation  ray 
line of a He:Ne laser was used and the emitted fluorescence 
between 650 and 700 nm was collected. Over 18.5 h, images 
were  acquired  every  15 min  taking  advantage  of  the  time- 
lapse module of the Leica software. To reduce photodamage 
due to laser illumination, both laser intensities were mini- 
mized, and image averaging was not performed. To collect 
fluorescence emission, the pinhole was opened at Airy ¼ 2 
and  the  photomultiplier  gain  increased,  which  generated 
some    electronic    noise,    especially    for    the    carotenoid 
channel.  Overall,  the  photobleaching  was  reduced  during 
image  acquisition.  Measurements  of  fluorescence  intensity 
were performed on the raw t-series with Image-Pro software. 
There was more variability in the carotenoid signal than in 
the  chlorophyll  signal.  This  may  be  due  to  a  differential 
setting of the photomultiplier in the two different channels. 
As an increase in carotenoid signal was expected, to avoid 

http://aob.oxfordjournals.org/cgi/content/full/mcr140/DC1
http://aob.oxfordjournals.org/cgi/content/full/mcr140/DC1
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F I G . 1 .  Separation on a sucrose gradient of tomato plastids at three stages of fruit ripening and corresponding fluorescence emission spectra. Plastid fractions 
from tomatoes at the mature green (A), breaker + 2 d (B) and breaker + 10 d (C) stages have been analysed by a laser confocal scanner to generate fluorescence 
emission spectra of individual plastids. Fluorescence intensity of the fractions indicated by an arrow is given as arbitrary units + s.d. (n . 50). The excitation 

wavelength was 488 nm. The peaks of fluorescence emission around 520 and 680 nm correspond to carotenoids and chlorophylls, respectively. 
 
 
 

saturation at the end of the time-lapse recording, the photo- 
multiplier was adjusted to a low level of amplification, cor- 
responding to a low signal/noise ratio. This was not required 
for the chlorophyll channel, where a decrease was expected, 
and for which the signal was already high at the beginning 
of the time-lapse recording. 

 
 

 
RE SULTS AND  DISCUSSION  

 

Characterization  of chloroplast to chromoplast transition 

in isolated plastids with a focus on the intermediate stages 
 

Plastids were isolated at different development stages and sep- 
arated on sucrose gradients. The degree of integrity of plastids 
in the fractions was analysed with a fluorescent dye, CFDA 
(Schulz  et  al.,  2004).  The  intactness  of  plastid  fractions 
retained   for   further   analysis   (indicated   by   arrows   in 
Fig. 1A – C), reached  between  85 and  90 %,  80 and  85 %, 

and 65 and 70 %, respectively. The upper layers in the gradi- 
ents contained broken plastids. 

At the mature green stage, intact green plastids were loca- 
lized in a single band at the 1.15 – 1.45 M  sucrose interface 
(Fig. 1A). Fluorescence confocal analyses of the plastid pool 
in this band indicated the almost exclusive presence of chlor- 
ophylls, characteristic of chloroplasts (Fig. 1A). This was con- 
firmed by a spectrophotometric analysis of pigment 
absorbances (Supplementary Data Fig. S2). 

Plastids isolated from fruit at the breaker stage were separ- 
ated into four layers in a more fragmented sucrose gradient, 
excluding broken plastids in the upper part of the gradient 
above 0.9 M sucrose (Fig. 1B). The presence of different frac- 
tions of plastids with different colours from green to yellow 
clearly indicates that the differentiation process is not occur- 
ring synchronously. It is well known that chloroplasts have a 
greater density and a smaller size than chromoplasts (Rosso, 
1968; Iwatzuki et al., 1984; Hadjeb et al., 1988). A good illus- 
tration of the decrease in density during the transition from 
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F I G . 2 .  Confocal microscopy of tomato plastids isolated at three stages of fruit ripening. (A – D) Chloroplasts isolated at the mature green stage. (E – H) Immature 
chromoplasts isolated at the turning stage (breaker + 2 d). (I – L) Chromoplasts isolated at the fully ripe stage (breaker + 10 d). (A), (E) and (I) correspond to 
chlorophyll fluorescence emitted from 650 to 750 nm; (B), (F) and (J) to carotenoid fluorescence emitted from 500 to 600 nm; and (C), (G) and (K) to the overlay 
of chlorophyll and carotenoid autofluorescence of the same plastid images. (D), (H) and (L) correspond to images of transmitted light. Chlorophyll fluorescence is 

shown in green and the carotenoid fluorescence is shown in red. Scale bar ¼ 4 mm. 
 

 
 

chloroplasts to chromoplasts is shown in Fig. 1B, where a 
range of intermediate plastid forms are visible. After confocal 
microscopy analysis of the fractions, only the 0.9– 1.15 M frac- 
tion contained a majority of plastids in a transient stage 
between   chloroplast  and   chromoplast.   Confocal   analyses 
(Fig. 1B) showed that this fraction contained reduced levels 
of chlorophyll and significant amounts of carotenoids. This 
result was confirmed upon extraction of pigments and spectro- 
photometric analyses (Supplementary Data Fig. S2) and is 
typical for chromoplasts at the early stages of differentiation 
(also  called  immature  chromoplasts).  The  other  fractions 
below 1.15 M sucrose were more heterogeneous and comprised 
both early developing chromoplasts and chloroplasts (data not 
shown). Each band of the gradient was analysed for its chlor- 
ophyll and carotenoid content by solvent extraction 
(Supplementary Data Fig. S2) and the band at the interface 
of 0.9–1.15 M sucrose harboured a ratio close to 1:1 of chlor- 
ophylls:carotenoids. To our knowledge, intermediate plastids, 
in transition from chloroplast to the chromoplast stage, as 
shown in Fig. 2E – H, have never been characterized in pre- 
vious works dealing with the isolation of chromoplasts from 

at the 0.9– 1.35 M  interface (Fig. 1C) and contained almost 
exclusively carotenoids, typical of chromoplasts. 

Confocal observations of individual plastids provided more 
insight into the pigment transition at the plastid level (Fig. 2). 
The chloroplasts obtained from green tomatoes (Fig. 1A) were 
observed by confocal microscopy imaging, and a representa- 
tive plastid is shown in Fig. 2A – D. It emitted fluorescence 
mostly  in  the  chlorophyll  emission  range  (Fig.  2A),  and 
weakly in the carotenoid range (Fig. 2B), so that the carotenoid 
fluorescence emission is masked by chlorophyll fluorescence 
in  the  overlay  picture  (Fig.  2C).  A  typical  plastid  of  the 
breaker stage (Fig. 2E – H), taken from the orange band of 
Fig. 1B, exhibited significant fluorescence of both chlorophylls 
(Fig. 2E) and carotenoids (Fig. 2F), giving an orange colour in 
the overlay picture (Fig. 2G). This plastid represented an inter- 
mediate differentiation stage between chloroplast and chromo- 
plast. The suspension of chromoplasts isolated from red fruit 
contained only fully differentiated chromoplasts (Fig. 2I – L), 
that  emitted  fluorescence  only  in  the  carotenoid  emission 
range (Fig. 2J), and not at the specific wavelength of chloro- 
phylls (Fig. 2I). All isolated plastids were spherical; this may 

fruit  pericarp  (Siddique  et  al.,  2006;  Martı́ et  al.,  2009). be due to the fact they were removed from the cell where it 
Plastids from fully ripe fruit were separated in a single band has been observed that stromules (Waters et al.,  2004) and 
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F I G . 3 .  Time-lapse evolution of chlorophyll and carotenoid fluorescence by confocal microscopy of plastids from tomato fruit mesocarp cells at the early stages 
of the transition from chloroplast to chromoplast. (A) Chlorophyll fluorescence, (B) carotenoid fluorescence and (C) overlay of both images at 10, 12 and 16 h. 
The emitted fluorescence was collected between 650 and 750 nm for chlorophyll and between 500 and 600 nm for carotenoid. The timing corresponds to the 
arrow shown in Fig. 4. A video showing the kinetics of these variations is available in supporting information (Supplementary Data, Video S1). Chlorophyll 

fluorescence is shown in green, and carotenoid fluorescence is shown in red. Scale bar ¼ 50 mm. 

 
microfilaments and microtubules (Kwok and Hanson, 2003) 
control plastid morphology. 

 

 
In situ real-time recording of the chloroplast to chromoplast 

transition 
 

To get a complete sequence of the changes occurring at the 
beginning of the pigment switch, a real-time recording of 
mesocarp tissues was performed (Supplementary Data Video 
S1). Pictures extracted from the video (Fig. 3) show that the 
number of plastids per cell of the ‘MicroTom’ cultivar is 
around 70, which  is about  the  number of  plastids  per cell 

observed  in  the  inner  mesocarp  of  ‘Ailsa  Craig’  (Waters 
et al., 2004). However, there also appeared to be differences 
between the two cultivars. During the transition, the fluor- 
escence of carotenoids increased steadily within the plastids 
within 6 h (Fig. 3B). Interestingly, in these conditions, where 
observations could be made at the cell level, it appeared that 
the transition was rather synchronous, as shown by the pres- 
ence of a limited number of plastids having different colours 
upon merging of the spectral views of chlorophyll and caroten- 
oids (Fig. 3C). This is in contrast to the large number of inter- 
mediate plastid forms observed at the breaker stage in the 
isolated   plastid   population   arising   from   whole   tissues 
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possibility  that  chlorophyll  degradation  products  could 
exhibit fluorescence and therefore unmask chlorophyll break- 
down should be excluded. It has been demonstrated that chlor- 
ophyll breakdown products do not accumulate in higher plants 
(Matile et al., 1999) and they are rapidly metabolized into non- 
fluorescent compounds (Oberhuber et al., 2003). Our data on 
pigment changes are in agreement with previous observations 
showing that lycopene accumulated at a rate that was between 
three and four times higher than the corresponding chlorophyll 
decline (Trudel and Ozbun, 1970; Wu and Kubota, 2008). The 
very fast increase in carotenoid accumulation can be related to 
a very strong increase in the expression of phytoene synthase 
and phytoene desaturase genes between the mature green and 
breaker stages (Giuliano et al., 1993; Ronen et al., 1999). 

The biogenesis of plastids, more particularly the conversion 
of chloroplasts into chromoplasts, has become a major field of 
interest among plastid physiologists (Pyke, 2007; Kahlau and 

F I G . 4 .  In situ kinetics of chlorophyll and carotenoid fluorescence emission 
by  confocal  microscopy of  plastids  of  tomato  fruit  mesocarp  cells  at  the 
early  stages  of  the  transition  from  chloroplast  to  chromoplast.  Intensity 
measurements were made on a selection of 150 individual plastids from four 
different cells. Error bars represent the s.d. The arrows show the timing of 

the pictures in Fig. 3. 

 
 

(Fig. 1B). Although in the present experiment the ripening 
process was accelerated by the addition of ACC, it can be 
assumed that the synchrony of transition from chloroplasts to 
chromoplasts was higher within a cell than between cells of 
the fruit tissue. 

The ratio of chlorophyll to carotenoid fluorescence was cal- 
culated for a total of 70 plastids present in a single cell at 10 
and  16 h,  by  considering  that  a  ratio  .1  corresponded  to 
chloroplasts, and a ratio ,1 to chromoplasts. Over the 6 h of 
image  recording,  84.3 %  of  the  fluorescing plastids  turned 
from chloroplasts to chromoplasts, 8.6 % stayed as chloroplasts 
and 7.1 % were already chromoplasts at the beginning of the 
observation  period.  Therefore,  .80 %  of  the  plastids  have 
undergone  a  transition  within  6 h,  which  is  indicative  of 
strong intracellular synchrony. Interestingly, there was no 
appearance of new plastids, thus confirming that all chromo- 
plasts derived from pre-existing chloroplasts, as suggested by 
Pyke and Howells (2002) and Waters et al. (2004). 

The recording of fluorescence emission of chlorophyll and 
carotenoids  showed that  very  little  change  occurred  during 
the first 10 h (Fig. 4). At 10 h, the carotenoid fluorescence sud- 
denly  increased,  while  chlorophyll  fluorescence  decreased 
more  slowly.  The  increase  in  carotenoid  fluorescence was 
2.5-fold in the first 20 h interval, while the decrease in chlor- 
ophyll fluorescence was at most 0.25-fold during the same 
period. After 14 h, the fluorescence of carotenoids reached a 
maximum and stayed constant until the end of the observation 
period. This is in contrast to whole fruit that continue to 
accumulate carotenoids over a week after the breaker stage 
(Fraser  et  al.,  1994).  The  excision  and  survival  of  fruit 
tissues may be responsible for the early cessation of carotenoid 
accumulation beyond 14 h (Fig. 4); however, it is also possible 
that the cell has reached its maximum capacity of carotenoid 
accumulation. Indeed, it seems that the continuous accumu- 
lation of carotenoids in fruit tissues is the sum of carotenoid 
content of thousands of cells, which gradually turn red. The 

Bock, 2008; Egea et al., 2010). In the present work, laser scan- 
ning confocal microscopy has been used to study, at a sub- 
cellular resolution, the biogenesis of chromoplasts resulting 
from the conversion of chloroplasts in tomato fruit. The 
changes in carotenoids and chlorophylls have been monitored 
simultaneously on both isolated plastids and intact live meso- 
carp tissues. By recording the kinetics of short time changes, 
this method has allowed a fine description of the early steps 
of the transition to be described. The transition started in the 
nascent chromoplast by a sharp accumulation of carotenoids 
while the chlorophyll level was still high. The transition was 
more  synchronous  within  plastids  of  a  single  cell  than 
between cells of the fruit tissue. The real-time monitoring of 
the transition presented in a video revealed that all the chromo- 
plasts derived from pre-existing chloroplasts in mesocarp 
tissues. 
 

 
 

SUPPLEMENTA R Y DATA 
 

Supplementary data are available online at www.aob.oxford- 
journals.org and consist of the following. Video S1: pigment 
changes that occur during the early stages of the transition 
from chloroplast to chromoplast in mesocarp tomato cells, as 
viewed   under   a   laser   scanning   confocal   system   (Leica 
LSCM-SP2) coupled with an upright microscope (Leica 
DM6000);  the  video  is  available  in  both  .wmv  and  .avi 
formats. Figure S1: experimental device used to make the 
video.  Figure  S2:  ratio  of  chlorophylls  to  carotenoids  in 
isolated plastids. 
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Chapter II-Proteomic analysis of chloroplast-to-chromoplast 

transition in tomato reveals metabolic shifts coupled with 

disrupted thylakoid biogenesis machinery and elevated energy- 

production components 
 

 
 
 

Introduction 
 

 

Fruit ripening involves a series of biochemical and physiological events resulting in 

organoleptic changes in texture, aroma and colour that make fruit attractive to the 

consumer. In many fruit, one of the most important and more visible changes corresponds 

to the loss of chlorophyll and the synthesis of colored compounds such as carotenoids. 

This happens through the transformation of chloroplasts into chromoplasts (Camara et al., 

1995). In tomato which is widely used as a model fruit, the ripening process is triggered 

by the plant hormone ethylene (Lelièvre et al., 1997; Giovanonni, 2001). Fruit 

physiologists have contributed to the elucidation of some of the mechanisms governing 

the mode of action of ethylene and the accumulation of metabolites responsible for 

quality attributes (e.g. aromas, vitamins and antioxidants). A number of genes involved in 

the fruit ripening process have been isolated especially in the recent years with the use of 

high-throughput methods of genomics (Moore et al., 2002). However, little attention has 

been paid to the understanding of the mechanisms of fruit ripening at the sub-cellular 

level. For instance, the intimate mechanisms occurring in the chromoplasts are not well 

understood despite their crucial role in the generation of major metabolites that are 

essential for the sensory and nutritional quality of fruit. 

 

A large majority of the proteins present in the chromoplast are encoded by the 

nucleus and therefore imported into the organelle. The chromoplast genome encodes for 

only few proteins participating in the build-up of the chromoplast structure and in house- 

keeping activities (Soll J., 2002). Important programmes devoted to the generation of 
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ESTs and the sequence of the tomato genome has been published recently (Reference). 

However  for  the  reasons  mentioned  above,  knowledge  on  gene  expression  and  on 

genome sequences are of limited value for understanding the function of chromoplast in 

the synthesis of metabolites of interest. In addition, these programmes can take into 

account neither post-translational protein modifications nor subcellular localisation of the 

biosynthetic pathways. For these reasons, high-throughput proteomics associated with 

bio-informatics represents the most attractive and most suitable methodology for the 

understanding of the functions of the chromoplast. In turn, the knowledge of the tomato 

chloroplast/chromoplast proteome is expected to bring complementary information for 

the annotation of the tomato genome sequence. 

 

In the present chapter we present our contribution to the quantitative proteomic 

analysis of the chloroplast-to-chromoplast transition in tomato fruit corresponding to a 

paper recently accepted in Plant Physiology for which I am a first co-author with equal 

participation to the work. 

 

 
 
 

Foreword: 
 

 

The undertaking of a proteomic program requires a wide range of expertise. In our 

consortium the proteomic analysis has been carried out by mass spectrometry using a 

LTQ-Orbitrap mass spectrometer at the Proteomic platform of the Toulouse Midi- 

Pyrénées Génopole (Michel Rossignol, Carole Pichereaux and David Bouyssié). Bio- 

informatics and statistical analysis of the data has been carried out in the host laboratory 

under the supervision of Mohamed Zouine and Elie Maza. I have personally participated 

in all biochemical and metabolic aspects of the work with special investment in: (1) the 

isolation of plastids in collaboration with Cristina Barsan and Isabel Egea; (2) the in- 

depth analysis of proteins involved in the structural modifications of plastids, provision 

of energy and translocation of precursors; (3) the immunoblot analysis of several proteins 

in order to validate the mass spectrometry quantifications. 
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Proteomic Analysis of Chloroplast-to-Chromoplast 
Transition in Tomato Reveals Metabolic Shifts Coupled 
with  Disrupted Thylakoid Biogenesis Machinery and 
Elevated Energy-Production Components1[W]

 
 
 

Cristina Barsan 2, Mohamed Zouine 2, Elie Maza2,  Wanping Bian 2, Isabel Egea, 

Michel Rossignol, David Bouyssie, Carole  Pichereaux, Eduardo Purgatto, 

Mondher Bouzayen, Alain  Latché,  and  Jean-Claude Pech * 

Université de  Toulouse,  Institut  National Polytechnique-Ecole Nationale Supérieure Agronomique de  Toulouse, 

Génomique et Biotechnologie des  Fruits,  Castanet-Tolosan F–31326, France  (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., 

J.-C.P.); Institut National de  la Recherche  Agronomique, Génomique et Biotechnologie  des  Fruits,  Chemin  de 

Borde Rouge,  Castanet-Tolosan F–31326, France  (C.B., M.Z., E.M., W.B., I.E., M.B., A.L., J.-C.P.); Fédération de 

Recherche  3450, Agrobiosciences, Interactions et Biodiversités,  Plateforme Protéomique Génopole Toulouse  Midi- 

Pyrénées,  Institut de  Pharmacologie et de  Biologie Structurale, Centre  National de  la Recherche  Scientifique, F–31077 

Toulouse,  France  (M.R., C.P.); Université de  Toulouse,  Université Paul  Sabatier,  Institut de  Pharmacologie et de 

Biologie Structurale, Toulouse  F–31077, France  (M.R., D.B., C.P.); and  Universidade de  São Paulo,  Faculdade 

de  Ciências  Farmacêuticas, Depto.  de  Alimentos e Nutrição Experimental, 05508–000 São Paulo,  Brazil  (E.P.) 
 

 
A comparative proteomic approach was  performed to identify  differentially expressed proteins in plastids at three  stages  of tomato 
(Solanum lycopersicum) fruit ripening (mature-green, breaker, red). Stringent  curation and processing of the data from three independent 
replicates  identified 1,932 proteins among  which 1,529 were quantified by spectral  counting. The quantification procedures have been 
subsequently validated by immunoblot analysis of six proteins representative of distinct metabolic  or regulatory pathways. Among the 
main  features  of the chloroplast-to-chromoplast transition revealed by the study, chromoplastogenesis appears to be associated with 
major metabolic  shifts: (1) strong  decrease  in abundance of proteins of light reactions  (photosynthesis, Calvin cycle, photorespiration) 
and  carbohydrate metabolism (starch  synthesis/degradation), mostly  between breaker  and  red  stages  and  (2) increase  in terpenoid 
biosynthesis (including carotenoids) and stress-response proteins (ascorbate-glutathione cycle, abiotic stress, redox, heat shock). These 
metabolic  shifts are preceded by the accumulation of plastid-encoded acetyl Coenzyme A carboxylase D proteins accounting for the 
generation of a storage  matrix  that  will accumulate carotenoids. Of particular note  is the  high  abundance of proteins involved in 
providing energy  and  in metabolites import.  Structural differentiation of the chromoplast is characterized by a sharp  and  continuous 
decrease  of thylakoid proteins whereas envelope and stroma  proteins remain  remarkably stable. This is coincident with the disruption 
of the machinery for thylakoids and  photosystem biogenesis  (vesicular  trafficking, provision of material for thylakoid biosynthesis, 
photosystems assembly)  and the loss of the plastid  division  machinery. Altogether, the data provide new insights  on the chromoplast 
differentiation process  while enriching our knowledge of the plant  plastid proteome. 

 
 

1  This work  was  supported by the Laboratoire d’Excellence  (grant 

no. ANR–10–LABX–41; carried out in the Génomique et Biotechnologie 

des Fruits lab). I.E. received  a postdoctoral fellowship from Fundación 

Séneca (Murcia,  Spain),  C.B. a bursary from  the  French  Embassy  in 
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One of the most visible events occurring during fruit 
ripening is the loss of chlorophyll and  the synthesis of 
colored  compounds. In many  fruit, such as the tomato 
(Solanum lycopersicum), the change  in color from green 
to red is due  to the differentiation of chloroplasts into 
chromoplasts and is accompanied by the accumulation 
of carotenoids. 

Numerous studies have  been devoted to ultrastruc- 
tural  events  underlying the  conversion of chloroplast 
to chromoplast. The events investigated include,  in par- 
ticular,  the  formation of  protein-accumulating bodies 
and  the remodeling of the internal  membrane system. 
At the  structural level, the  differentiation of chromo- 
plasts consists mainly of the lysis of the grana and 
thylakoids (Spurr  and  Harris,  1968) but  also includes 
new  synthesis of membranes derived from  the  inner 
plastid membrane and that become the site for the 
formation of carotenoids (Simkin et al., 2007). 
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At the biochemical and molecular level chromoplast 
differentiation studies have been largely dedicated to the 
synthesis of carotenoids (Camara et al., 1995; Bramley, 
2002). However, although highly specialized, chromo- 
plasts carry out  a  variety  of functions,  many  of them 
persisting from  the  chloroplast (Bouvier  and  Camara, 
2007; Egea et al., 2010). The biochemical  and  structural 
events   during  chromoplast  differentiation have   been 
reviewed in a number of articles  over  the  last  decades 
(Thomson   and   Whatley,   1980;  Ljubesić  et  al.,  1991; 
Marano   et  al.,  1993; Camara et  al.,  1995; Waters  and 
Pyke, 2004; Lopez-Juez, 2007; Egea et al., 2010; Bian et al., 
2011). 

In the recent years high-throughput technologies have 
provided novel and extensive information on the plastid 
proteome of higher  plants  with  strong  emphasis on the 
chloroplast  (for  review,   see  van  Wijk  and   Baginsky, 
2011). Less information is available  on the chromoplast 
proteome to the  studies  focusing  on pepper (Capsicum 
annuum;  Siddique et  al.,  2006), tomato   (Barsan  et  al., 
2010), and  sweet  orange   (Citrus  sinensis; Zeng  et  al., 
2011). A comparison of the chromoplast proteome of 
sweet  orange  and  tomato  shows  a high level of conser- 
vation  although some  specificities have  been  encoun- 
tered   (Zeng   et   al.,   2011).  Nevertheless,  the   global 
changes  occurring during the differentiation of chro- 
moplasts from chloroplasts have  not been evaluated so 
far.  In  this  work,   a  quantitative  proteomic analysis 
was  carried  out  to  understand the  regulation of the 

metabolic  and  structural changes  occurring in tomato 
fruit plastids during the transformation of chloroplasts 
into chromoplasts. 
 
 
RESULTS AND DISCUSSION 
 

Inventory of Proteins Present in Tomato Fruit  Plastids 

during the  Chloroplast-to-Chromoplast Transition 
 

The experimental design  used  for fruit  sampling and 
biological  replications is presented in Figure  1. Plastids 
from four sets of about  100 g of pericarp (corresponding 
to 25–30 fruits)  were  isolated  separately in three  inde- 
pendent  replicates   (Rep  1–3) for  each  developmental 
stage, mature green (MG; 1–3), breaker  (B; 1–3), and  red 
(R; 1–3). This procedure was repeated twice. Two protein 
extracts   from   four   individual  plastid   fractions   were 
pooled  for each replicate.  The raw data  coming  from the 
analysis  of the replicates  of the tomato plastid  proteins 
were  curated by  comparing the  set  of proteins with 
five  databases  (AT-CHLORO,   Plprot,   PPDB,  SUBA, 
and Uniprot) and three predictors for subcellular lo- 
calization (TargetP,  Predotar, iPSORT). Only  proteins 
present in  at  least  two  databases or  predicted to  be 
plastid  localized  by one of the predictors were retained 
for  analysis.   In  addition  manual  curation was  per- 
formed  on the basis of the information available  in the 
literature. By combining the curated list of proteins en- 
countered in the three  replicates  of the tomato plastids 

 

 
 

 
 

Figure 1. Summarized experimental design used in this proteomic study. Plastids from four sets of four fruits were isolated 

separately in three independent replicates (Rep1, Rep2, and Rep3) for each developmental  stage (MG 1–3; B 1–3; and R 1–3). 

This procedure was repeated twice and plastids corresponding to each stage were pooled for each experiment before protein 

extraction. The different steps from purification of plastids to curation of data are indicated and described in detail in “Material 

and Methods.” The number of proteins encountered in each individual analysis is given under the denomination of total re- 

sources, resulting in a nonredundant total list of 1,932 proteins that are reported in Supplemental Table S1. After normalization 

and statistical analysis, the number of proteins that could be quantified is indicated under the denomination of total quantified 

proteins. The list and quantitative information of the 1,529 quantified proteins is given in Supplemental Table S2. 
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at three  stages  of development, an  inventory of 1,932 
proteins (including 47 proteins encoded by the plastid 
genome)  was drawn up and cataloged in Supplemental 
Table S1. Previous work  with  fruit  chromoplasts iden- 
tified  988 proteins in tomato (Barsan et al., 2010), 151 in 
pepper (Siddique  et al., 2006), and  493 in sweet  orange 
fruit (Zeng et al., 2011). The inventory reported here is 
in the  same  range  of magnitude as other  plastids da- 
tabase:  1,345 in AT-CHLORO,  2,043 in plprot,  1,367 in 
PPDB, and  2,112 in SUBA. Our  work  brings  362 pro- 
teins  that  had  not  yet been  referenced in plastid data- 
bases and that are predicted to be plastid localized by at 
least one predictor. Among  these, 38 had  already been 
cataloged in the tomato chromoplast proteome (Barsan 
et al., 2010). The size of the plant  plastid proteome has 
been evaluated by applying a combination of chloroplast 
transit  peptides predictors programs to the  screening 
of the nucleus-encoded amino acid sequences  available 
in databases. In Arabidopsis (Arabidopsis thaliana) pre- 
dictions  vary  between 2,100 (Richly and  Leister, 2004) 
and  2,700 (Millar et al., 2006). Armbruster et al. (2011) 
come to similar predictions of between 2,000 and 3,000 
proteins. In rice (Oryza sativa), predictions estimate  at 
4,800 the  number of chloroplast proteins (Richly and 
Leister, 2004). Therefore  it seems that marked differ- 
ences exist between plant species. However discrep- 
ancies are observed in the estimation of the size of the 
plastid proteome probably due  to  the  use  of different 
evaluation methods and to the fact that many  plastid 
proteins are not predicted by prediction tools (Kleffmann 
et al., 2006). By combining three  different  approaches 
for protein  localization (experimental determination by 
cell  biology   methods,  homology-based identification, 
and  predictions by targeting programs), Pierleoni  et al. 
(2007) estimated the Arabidopsis plastid proteome size 
at 4,875 proteins. With the availability of the tomato 
sequence  genome,  we have  been  able to calculate  that 
the number of proteins predicted to be plastidial in the 
tomato genome  is of 2,696, 4,651, and  4,142 using  Pre- 
dotar,  iPSORT, and  TargetP,  respectively. Therefore  it 
can be concluded that  the present inventory of plastid 
proteins in databases is probably not exhaustive. 

The  number of  proteins of  the  tomato   plastid   pro- 
teome  referenced in  each  of the  five  databases is pre- 
sented  in Figure 2A. It indicates  that the overlap is higher 
than  50% for SUBA (55.7%) and  Uniprot (63.3%), more 
than  35% for Plprot  (35.3%) and  AT-CHLORO  (44.2%). 
PPDB has the lowest overlap  with 23.9%. The percentage 
of tomato proteins that  are not referenced in any  of the 
five  databases is 22.5% only while  the percentage refer- 
enced  at  least  one,  two,  three,  four,  and  five  times  is 
77.5%, 56.9%, 44.9%, 28.3%, and 13.9%, respectively (Fig. 
2B). A large  majority  of proteins (1,492 = 77.2%) were 
predicted to be plastid localized  by at least one predic- 
tion software.  The overlap  of tomato  plastid  proteins 
predicted by the three softwares is presented in Figure 3. 
TargetP,  iPSORT, and  Predotar forecast  a plastid  locali- 
zation of 45.4% (876 proteins),  37.9% (733), and 40% (734) 
proteins, respectively. The percentage of proteins pre- 
dicted  by all three programs is only 7.3% (142). Previous 

 
 

 
Figure 2. Proteins of the tomato plastid proteome referenced in five 

plastid databases. A, Number and percentage of proteins (in black 

bars) referenced in each of the five databases, calculated on the basis 

of the 1,932 proteins listed in Supplemental Table S1. B, Percentage 

of the tomato plastid proteins not referenced (0) or referenced at least 

one, two, three, four, and five times in the different databases. The 

five databases are the following:  AT-CHLORO, Plprot, PPDB, Uni- 

prot, and SUBA. 

 
reports have  indicated similar  proportions of mitochon- 
drial proteins predicted in common by four prediction 
programs (Heazlewood et al., 2004). Predotar and  Tar- 
getP were the closest in terms of predictions with 485 
proteins  in  common.   It  is  noticeable   that  predictions 
specific  to iPSORT were  the  highest  with  509 proteins 
(Fig. 3). Predictions made  by the three  programs within 
the existing  chloroplast databases are extremely  variable 
from 83% with TargetP in PPDB to 43% with iPSORT in 
SUBA (Table I). 

The inventory of tomato fruit plastid proteins present 
at different  stages of plastid differentiation enriches  the 
knowledge of the  plant  plastid proteome. Most  of the 
data  available  were related  to chloroplasts (Armbruster 
et al., 2011; van Wijk and Baginsky, 2011), although some 
information was also available  for nonphotosynthetic 
plastid  structures such  as amyloplasts (Andon et al., 
2002; Balmer  et  al.,  2006), etioplasts (von  Zychlinski 
et al., 2005), proplastids (Baginsky et al., 2004), and 
embryoplasts (Demartini et al., 2011). The present 
inventory  also   provides  information  that   comple- 
ments  previous articles published on the chromoplast 
proteome (bell pepper: Siddique et al., 2006; tomato: 
Barsan  et  al.,  2010; and  sweet  orange:  Zeng  et  al., 
2011). 

The plastid proteome of tomato fruit at the MG stage 
was   compared with   the   proteome of Arabidopsis 
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Figure 3. Venn diagram of the number of proteins of the tomato 

plastid proteome predicted to be plastid localized by three predic- 

tors. A total of 1,492 proteins are predicted by at least one predictor, 

TargetP, Predotar, or iPSORT. The 47 plastid-encoded proteins are not 

concerned. 
 

 
chloroplasts reported  in  the   AT-CHLORO   database 
(Ferro et al., 2010) and  in Zybailov  et al. (2008). It ap- 
pears  that  the percentage of proteins classified accord- 
ing to the MapMan functional classes is very similar  in 
the two proteomes, particularly for the class corre- 
sponding  to  photosynthesis  (Supplemental  Fig.  S1). 
This indicates that  MG plastids have  the general  char- 
acteristics  of chloroplasts although fruit photosynthesis 
is very low compared with  leaf photosynthesis (Blanke 
and  Lenz, 1989; Hetherington et al., 1998) and  plays  an 
unimportant  role  in  fruit   metabolism  (Lytovchenko 
et al., 2011). 

 

 
Proteomic Specificities of the  Three Stages  of Plastid 

Differentiation in Terms of Protein Abundance 
 

After normalization and statistical  analysis,  1,529 
proteins out  of the inventory of 1,932 were  quantified 
and their pattern of abundance determined (Fig. 1; 
Supplemental Table S2). A comparison of the protein 
pattern at different stages two by two is presented as 
scatter plots in Figure 4. Between the MG and B stages 
(Fig. 4A) a large number of proteins underwent no 
significant change in abundance (975 = 63.7%). Only 17 
proteins were significantly more abundant at the green 
stage and   28 at the B stage, while 75 proteins are 
specific to the MG stage and 89 to the B stage. Between 
the B and R stages  797  (52.1%) proteins underwent no 
quantitative changes.  Among proteins showing 

differences  in abundance, 43 are more abundant at the 
B stage  and  15 at  the  R stage  while  182 and  43 are 
specific  to the  B and  R stages,  respectively (Fig. 4B). 
Comparing the  two  most  distant stages  (MG and  R), 
the  number of  proteins undergoing  no  changes   be- 
tween  the  two  stages  was  found  to be only  578, rep- 
resenting  37.8%  of  the  proteome.  Therefore   around 
60% of the  proteins change  in abundance during the 
whole  differentiation process  (Fig. 4C) with  134 pro- 
teins overexpressed in the MG and 92 in the R plastids. 
The number of proteins encountered at one stage only 
was  286 in the MG and  86 in the R plastids (Fig. 4C). 

Proteomic data  on the whole  tomato fruit  are avail- 
able  in which  quantitative data  on  plastidial proteins 
can be encountered (Rocco et al., 2006; Faurobert et al., 
2007). Forty-seven proteins have  been  identified both 
in the plastid proteome described in this work  and  in 
the whole  fruit proteome of Rocco et al. (2006) and 
Faurobert et al. (2007). Although the tomato varieties 
and  the  quantification methods were  very  different, 
the  ratios  of abundance between the  three  stages  of 
plastid  development (MG, B, and R) were identical  or 
similar,  thus  confirming the accuracy  of the  quanti- 
fication  methods. 
 

 
Changes in Abundance of Proteins Encoded by the 

Plastid Genome 
 

Among  the  87 proteins predicted to  be  encoded by 
the  plastid genome,  47 were  encountered in our  study 
(Supplemental Table  S1) and  the  abundance of  32 of 
them is presented in Figure 5 for all three stages of plastid 
development (Supplemental Table  S). These comprise 
several proteins participating in photosynthesis whose 
abundance remains essentially stable between the MG 
and B stages but disappear or strongly decrease  at the R 
stage when the photosynthetic system is dismantled: two 
proteins of PSI, five  of PSII, three  of PS cytochrome b6, 
and  five  of PS ATP synthase. Only one protein of PSII 
(PSBC), and two proteins of cytochrome b6 (PETA and 
PETB) are present at the R stage at substantial amounts. 
Immunoblots were performed for the PSAD protein of 
PSI and PSBA/D of PSII (Fig. 6). They are decreasing in 
abundance between the MG and B stages and are to- tally 
undetectable at the R stage, which is globally in 
agreement with the proteomic analysis. Surprisingly all 
the six ATP synthase subunits encoded by the plastid 

 

 
Table I. Number of proteins predicted by three predictors in the tomato plastid proteome and in four 

plastid databases 

Predictions are made only on nuclear-encoded proteins. For plprot and PPDB, only the subset of Ara- 

bidopsis plastidial proteins was considered (indicated by an asterisk). 

Database No. of Nuclear-Encoded Proteins TargetP iPSORT Predotar 
 

Tomato plastid 1,885 876 (46.5%) 733 (38.9%) 730 (38.7%) 
AT-CHLORO 1,345 928 (68.9%) 660 (49%) 764 (56.8%) 
plprot* 1,006 493 (49.0%) 489 (48.6%) 546 (54.3%) 
PPDB* 1,178 980 (83.2%) 771 (65.4%) 908 (77.1%) 
SUBA 2,112 1,208 (57.1%) 913 (43.2%) 1,039 (49.2%) 
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Figure 4. Scatter plots comparing log2 protein abundance between two differentiation stages of tomato fruit plastids. A, MG 

versus B. B, B versus R. C, MG versus R. Shades of gray represent proteins that are equally abundant in both stages; open squares 
correspond to proteins overexpressed at the MG stage; open circles are proteins overexpressed at the B stage, and open triangles 

represent proteins  overabundant at the R stage. Data along the axis of the scatter plots indicate proteins that have been 

quantified at one of the two stages only and totally absent at the other stage. Numbers correspond to the number of proteins in 

each category. To draw the graphs, a log2 value of 217 was arbitrarily affected to proteins for which no abundance value was 

available in Supplemental Table S2. 
 

 

genome were found.  They all undergo a continuous 
decrease in abundance, but are still present at significant 
amount at the R stage, indicating that the ATP synthesis 
machinery is maintained at a good level throughout 
chromoplast development. The large subunit of Rubisco 
(RBCL) continuously decreases in abundance but is 
present at significant levels in red plastids (Fig. 5). The 
pattern of changes of RBCL is identical when evaluated 
by western blot (Fig. 6), thus providing another confir- 
mation of the reliability of the quantification procedure. 
Another interesting information given in Figure 5 is that 
the sum of ribosomal proteins of the small 30S subunit 
(RPS) and of the large 50S subunit (RPL) strongly de- 
cline in abundance, with the RPL proteins absent at the R 
stage.  This is in agreement with the gradual down- 
regulation of plastid translation observed by Kahlau and 
Bock (2008) during chromoplast differentiation in to- 
mato. In contrast,  the only caseinolytic protease encoded 

by the plastid genome,  CaseinoLytic Plastidial Protease1 
(CLPP1) is not changing in abundance, indicating a high 
level  of protein processing throughout  the  differentia- 
tion  process.  This is in line with the  sustained abun- 
dance of elements  of the protein import machinery 
discussed below. In our study special attention has been 
given to the acetyl CoA carboxylase (ACCD) protein 
involved  in  fatty  acid  biosynthesis  because   previous 
work has shown  that chromoplast gene expression 
largely  serves  the  production of ACCD  (Kahlau  and 
Bock, 2008). In our proteomic analysis it is decreasing in 
abundance, although at a significance of P = 0.06 only 
(Supplemental Table S2). Western blot of ACCD also 
shows a decrease in abundance between the MG and R 
stages (Fig. 6). This is in apparent contrast with  the 
western-blot data  of Kahlau  and  Bock (2008) showing 
an  increase  of the  ACCD  protein  between the  green 
and the turning stages. To explain the discrepancy, we 

 

 
Figure 5. Abundance of proteins en- 

coded by the plastid genome. Proteins 

present at  all  three stages  of  plastid 

development (MG: white bars; B: gray 

bars; and R: black bars) were classified 

according the MapMan functional clas- 

ses. Protein abundance is expressed as a 

log2. The graphs were generated using 

the data and symbols of Supplemental 

Table S2. PSA, PSB, PET, and ATP cor- 

respond to proteins of the subunits  of 

PSI, PSII, cytochrome b6, and ATP syn- 

thase complexes,  respectively. RBCL 

corresponds to the large subunit of 

Rubisco,  ACCD to the D subunit of 

acetyl CoA carboxylase, and CLPP1 to 

the caseinolytic protease P1. SRPS and 

SRPL represent  the sum  of proteins of 

the small  30S and the large 50S sub- 

units, respectively. 
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Figure 6. Comparison of protein abundance determined by proteomic 

analysis and immunoblotting. The abundance of proteins determined by 

proteomic analysis is expressed  as log2. RBCL corresponds  to the large 

subunit of Rubisco (GI89241679), PSAD to the D subunit of PSI 

(Solyc06g054260), PSBA/D1 to the A/D1 subunit of PSII (GI89241651), 

HSP21 to Heat Shock Proteins21 (Solyc03g082420 and Solyc05g014280), 

LOXC to  lipoxygenase C (Solyc01g006540, Solyc01g006560, and 

Solyc12g011040), and ACCD to the D subunit of acetyl CoA car- 

boxylase (GI89241680). For western blots, proteins were extracted 

from partially purified plastids as indicated in “Material and Methods.” 

 

 
performed another series of immunoblots blots  by in- 
cluding  an earlier stage of fruit development. The 
tendency observed in Figure 6 of a decline of ACCD 
protein between the MG and  R stages  was  confirmed, 
but, most importantly the abundance of the protein was 
much  lower  in immature green  fruit (Supplemental Fig. 
S2). These  data  indicate  that  the  green  fruit  of Kahlau 
and  Bock (2008) were probably sampled well before the 
MG stage. In our conditions, the MG stage was selected 
because  the fruit has gained  the capacity  to ripen  and to 
respond to the plant hormone ethylene  (Pech et al., 2012) 
but plastids still have a chloroplastic structure with high 
chlorophyll, low carotenoid content,  and  absence  of ly- 
copene. Western blots of the ACCD protein indicate that 
important changes occur in plastids between the green 
and MG stages of development (Fig. 6). Whether these 
changes are part of the chromoplast differentiation pro- 
cess may be a matter of discussion. However, a unified 
view could be that plastid differentiation is a continuous 
process during fruit development in which the final steps 
of the differentiation corresponding to the  chroma- 
togenesis  process  per se are triggered by the plant 
hormone ethylene.  In such a scheme, the early accu- 
mulation of the ACCD protein that is involved in fatty 
acid biosynthesis can be considered as a prerequisite 
for chromoplast differentiation by providing a storage 
matrix for the accumulation of carotenoids. 

 
 
Changes in Subplastidial Compartmentation 
 

The tomato  plastid proteome referenced in Supplemental 
Table S2 has been screened  with the AT_Chloro  database 
(Ferro et al., 2010) to isolate proteins present in the stroma, 
thylakoids, and  envelope membrane (Supplemental Table 
S3) and  with  the list of proteins of the plastoglobules 
established by Lundquist et al. (2012). In agreement with 
the structural remodeling of the internal membrane system 
(Spurr  and  Harris,  1968), this study clearly shows  that  the 
abundance of thylakoid proteins fell mostly  during the 
transition from B to R stages  while  the abundance of pro- 
teins  of the  envelope and  of the  plastoglobules remained 
essentially  unchanged and  proteins of the  stroma  under- 
went  a slight decrease  in abundance (Fig. 7). The observa- 
tion that the plastoglobule proteins underwent no changes 
during the transition from chloroplasts to chromoplasts is in 
line with the fact that the bulk of the carotenoids of tomato 
fruit are stored  predominantly in the form of lycopene 
crystalloids in membrane-shaped structures (Harris  and 
Spurr,  1969). 
 

 
Kinetics of Changes in the  Functional Classes during the 

Chloroplast-to-Chromoplast Transition 
 

The kinetics  of changes  in protein abundance occur- 
ring during the three stages of chromoplast development 
have  been  classified into  seven  categories:   stable,  de- 
creasing  early, decreasing late, decreasing continuously, 
increasing early, increasing late, and  increasing continu- 
ously  (Table  II). Among  the  seven  categories,  proteins 
whose  abundance remained statistically constant slightly 
outweighed (569) proteins undergoing an increase  in 
abundance (104 + 289 + 186 = 547). Those  of the  in- 
creasing  category  are  the  less  abundant (72 +  82 + 
100 = 254). Proteins  showing a late  decrease  are  the 
 

 
 

 
 

 
Figure 7. Abundance of proteins in the subplastidial compartments of 

tomato fruit plastids. Plastids were isolated from MG (white bars), B 

(gray bars), and R (black bars) fruit. Protein abundance is expressed as 

a log2. The present graph corresponds to Supplemental Table S3 gen- 

erated by screening the tomato plastid proteome on the base of AT 

homologs with the AT-CHLORO subplastidial database (Ferro et al., 

2010) for stroma, thylakoids, and envelope proteins and in Lundquist 

et al. (2012) for plastoglobule proteins. 
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Table II.  Abundance pattern of the tomato plastid proteins classified into seven 

categories 

Some proteins (127) for which we were unable to establish a consistent and logical 

pattern of abundance have been omitted. Data are from Supplemental Table S2. 

 
 

 

second-most numerous, indicating that important changes 
occur during the last step between B and R stages (Table II). 

Among  proteins showing the same  abundance dur- 
ing the whole  differentiation process,  some  functional 
classes  were  seen  to be more  stable  than  others  (Fig. 
8A). Sulfur  assimilation, although represented by few 
proteins, is 100% stable, followed  by tricarboxylic acid 
(TCA)/organic acid  (85.3%), metal  handling (66.7%), 
electron  transport/ATP  synthesis (62.5%), and  glycol- 
ysis (56.5%). Representatives of classes comprising 
around one-third of  stable  proteins only  are:  amino 
acid  metabolism, protein  synthesis, lipid  metabolism, 
secondary metabolism, Calvin cycle, and  oxidative 
pentose  phosphate pathway (OPP). Some classes have 
a very low percentage of stable proteins such as major 
carbohydrate (CHO; 10.7%), hormone metabolism 
(6.3%), and  photosynthesis (2.4%). This picture  allows 
the  identification of a basal  background of functions 
and  structures that are roughly maintained during the 
differentiation of  chromoplasts as  well  as  profound 
changes  in some  functions  that  contribute to redirect- 
ing the plastid  metabolism. 

Photosynthesis  is  the   most   representative  of  the 
functional classes  showing decreasing abundance dur- 
ing the chromoplast differentiation process with a much 
higher  percentage of proteins (60.7%) decreasing late 
between the  B and  R stages  (Fig. 8C) than  decreasing 
early (17.9%; Fig. 8B) or continuously (15.5%; Fig. 8D). 
Tetrapyrrole biosynthesis (which comprises the bio- 
synthesis of chlorophylls), OPP,  and  posttranslational 
event classes follows the same trend with a larger 
proportion  of  proteins undergoing  a  decline  in  the 

later  stages  (Fig. 8C). The situation where  a high  per- 
centage of proteins decrease  early is represented by the 
cofactors/vitamin  metabolism, nitrogen  metabolism, 
and  biodegradation of xenobiotics  classes  with  a de- 
crease between the MG and B stages ranging from 25% 
to 36.4% of the proteins (Fig. 8B). The major CHO  me- 
tabolism  class  comprises proteins decreasing in  abun- 
dance in about  the same proportions in the early (25.0%) 
and late (25.0%) stages of differentiation (Fig. 8, B and C). 

The  proportion of  proteins  showing  increasing 
abundance (Fig. 8, E–G) in the different  classes is gen- 
erally  low as compared with  the decreasing categories 
(Fig. 8, B–D). One  noticeable  exception  is proteins in- 
volved  in  fermentation of which  66.7% increase  con- 
tinuously (Fig. 8G). Interestingly stress-related proteins 
are  those  showing the  highest  percentage of increase 
with 15.7% (Fig. 8G), 15.7% (Fig. 8E), and 9.8% (Fig. 8F) 
in the increasing continuously, early  or late categories, 
respectively. The significant proportion of cell division/ 
organization proteins (15.1%) in the  increasing contin- 
uously  category  (Fig. 8G) may account  for the structural 
changes   occurring in  the  formation of  chromoplasts. 
Another remarkable observation is the high percentage 
(.30%) of hormone-related and  DNA-related proteins 
showing an early (Fig. 8E) and  a late (Fig. 8F) increase 
in  abundance, respectively. The  changes  in  hormone- 
related   proteins are  correlated to  the  increase  in  the 
synthesis of some  hormones, mainly  between B and  R 
stages,  such  as  abscisic  acid  (Zhang  et  al., 2009) and 
jasmonates (Fan  et  al.,  1998). A  small  proportion of 
proteins of the major metabolisms, such as lipid, major 
and  minor  CHO,  and  OPP still underwent an increase 
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Figure 8. Number and percentage of proteins in the MapMan functional classes for seven patterns of abundance. A, Stable. B, 

Decreasing early. C, Decreasing late. D, Decreasing continuously. E, Increasing  early. F, Increasing  late. G, Increasing con- 

tinuously. The abundance patterns are described in Table II. Numbers in % represent the percentage of proteins within each 

functional class. 

 
in abundance. Noteworthy is the  absence  of proteins of 
the  photosynthesis and  Calvin  cycle  classes  in  the  in- 
creasing categories  (Fig. 8, E–G), a very low proportion of 
them  remaining at  constant amounts throughout chro- 
moplast differentiation (Fig. 8A). Interestingly, two 
carbonic anhydrases of the TCA/organic acid class 
(Supplemental Table  S2) were  present at  increasing 
levels (Solyc02g067750 and Solyc05g005490). Carbonic 
anhydrases have been found  associated with the Rubisco 
complex   (Jebanathirajah  and   Coleman,   1998).  Rubisco 
being still present  at late stages of chromoplast formation, 
carbonic  anhydrases may  contribute to the  provision of 
CO2  to Rubisco by catalyzing the dehydration of HCO3 

in  the  alkaline   stroma   in  close  proximity  to  Rubisco. 
Some  of  the  proteins  increasing in  abundance partici- 
pate  in  the  development of the  sensory  quality  of the 
fruit, such as lipoxygenase C (LOXC; Solyc01g006540, 
Solyc01g006560, and  Solyc12g011040), which  is responsi- 
ble for the biosynthesis of fatty-acid-derived aroma  vola- 
tiles (Chen et al., 2004). The protein  undergoes continuous 
increase from the MG to the R stages in proteomic analysis 
(Supplemental Table S2) as well as in western blots (Fig. 
6). The increase in LOXC is coincident  with the increase in 
the production of aroma  volatiles  (Birtić et al., 2009). 

Overview of Metabolic and Regulatory Changes Occurring 

during Chromoplastogenesis 
 

A heatmap showing the  percentage of proteins in 
each functional class according to their abundance 
patterns allows  various   clusters  to  be  distinguished 
(Fig.  9)  Two  clusters   comprise   a  high  percentage 
of stable proteins:  III (sulfur assimilation and TCA/ 
organic acid classes), IVd (redox, signaling, protein 
degradation, transport, electron transport/ATP syn- 
thesis, glycolysis, biodegradation/xenobiotics, metal 
handling, and  gluconeogenesis). Two clusters  include 
a majority  of decreasing proteins corresponding to 
cluster  II (Calvin  cycle, major  CHO  metabolism and 
photosynthesis) and to cluster IVa (protein synthesis, 
cofactor/vitamin  metabolism, tetrapyrrole  synthesis, 
C1 and  nitrogen metabolism). Cluster  I is the only one 
comprising proteins with  a strong  increase  in abun- 
dance,  essentially fermentation. Clusters  IVb and  IVc 
have  an almost  equal  percentage of proteins with  sta- 
ble, decreasing, and  increasing patterns, indicating 
profound redirections in the corresponding functional 
classes, for instance  OPP, metabolism of nucleotides, 
amino  acids, and  lipids  as well as RNA synthesis. 
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Figure 9. Heatmap showing the percentage of 

proteins of each functional class according to the 

abundance pattern. The three abundance patterns 

considered during the differentiation of chromo- 

plasts are: stable, decreasing, and increasing. The 

magnitude of the percentage is represented by a 

color scale (top left) going from low (white), to 

medium (yellow), and high (red). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Changes in the abundance of individual proteins 
participating in the central metabolism are represented 
in a MapMan metabolic  display (Fig. 10A). This illus- 
trates  the major  shifts in metabolism occurring during 
the differentiation of chromoplasts. A large number of 
proteins involved in light  reactions  (including photo- 
synthesis,  Calvin   cycle,  and   photorespiration) and 
major  CHO  metabolism (starch  metabolism) are more 
abundant in the MG plastid  and  therefore decrease  in 
abundance during chromoplastogenesis. Many  of the 
proteins involved in  the  provision of  energy  to  the 
plastid  remain  unchanged (TCA cycle, glycolysis,  and 
electron  transport/ATP  synthesis). Some  proteins in- 
crease in abundance such as carbonic  anhydrases and 
some  proteins involved in  the  metabolism of  terpe- 
noids  (including carotenoids), lipids,  amino  acids, and 
ascorbate glutathione cycle. The increase  in activity  of 

enzymes of the ascorbate glutathione cycle has already 
been   demonstrated  during  fruit   ripening  (Jimenez 
et al., 2002). The abundance of carbonic  anhydrases in 
red chromoplasts has been discussed previously as 
possibly   participating  in  providing  CO2   to  Rubisco 
that  is still present at high  levels.  Another feature  of 
the  chloroplast-to-chromoplast transition is related  to 
changes  in stress-related, regulatory, and  signaling 
proteins  (Fig.  10B). Abiotic  stress,   redox,   and   heat 
shock classes comprise  a majority  of proteins not 
changing in abundance but  also a number of proteins 
exhibiting   either  an  increase  or  a  decrease  in  abun- 
dance.  The simultaneous changes  in redox  and  abiotic 
stress  proteins are  consistent with  the  role  of  redox 
signaling   in  the  response to  abiotic  stress  in  plants 
(Suzuki   et  al.,  2012).  The  role  of  some  heat  shock 
proteins in  promoting color  changes   during tomato 
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Figure 10. Metabolic overview comparing the protein abundance in MG and R tomato plastids. Red squares represent proteins 

with decreasing levels while blue squares correspond  to proteins with increasing levels. A, Metabolic overview. B, Stress, 

regulation, and signaling proteins. MapMan software (Thimm et al., 2004; http://gabi.rzpd.de/projects/MapMan/). 

 
 

fruit  ripening has  been  reported  (Neta-Sharir et  al., 
2005). Moderate redistribution can also be observed in 
transcription factors,  signaling,  and  proteins involved 
in protein modification and  degradation. Of particular 
interest are the signaling  proteins undergoing an increase 
in levels. Quantitative changes  also occur in proteins 
involved in  the  response to  hormones and  in  hor- 
mones  synthesis. The  jasmonate  biosynthetic path- 
way   is  located   in  the  plastid   and   several   proteins 
increase   in  abundance during  chromoplastogenesis. 
This is consistent with the role of jasmonate in the 
biosynthesis of carotenoid biosynthesis in interaction 
with  ethylene  (Fan et al., 1998). Proteins  annotated as 
ethylene  related  are  absent  from  the  MapMan map- 
ping.  This  could  be considered as  surprising consid- 
ering that ethylene plays a major role in the ripening 
process  of climacteric  fruit such as the tomato (Pirrello 
et al., 2009; Pech  et al., 2012) and  in the  synthesis  of 
carotenoids (Bramley, 2002). However, the ethylene 
biosynthesis and signaling pathways are not located in 
the  plastid   and  it  is  expected   that  the  regulation  of 
ethylene-responsive  genes  occurs  mainly   at  the  nu- 
cleus. In a microarray analysis  of tomato fruit  treated 
by the ethylene  antagonist 1-methylcyclopropene, 
Tiwari  and  Paliyath   (2011) found   that  at  least  nine 
nuclear  genes encoding plastidial proteins were up- 
regulated by  ethylene   and   three  down-regulated. 

Genes   involved  in  the  biosynthesis  of  carotenoids, 
fatty  acids,  and  jasmonic  acid and  in gluconeogenesis 
were up-regulated, while genes involved in starch 
degradation were down-regulated. Nevertheless, a full 
inventory of ethylene-responsive genes encoding plastid- 
localized  proteins remains to be performed. In addition, 
the  cross  talk  between hormones in ripening fruit  is 
not yet well understood at the molecular level. 
 

 
 
Loss of the  Machinery for the  Build  Up of Thylakoids 

and  Photosystems 
 

A number of proteins participating in the build  up 
of  thylakoids have  been  encountered  that  decrease 
in abundance during the  chloroplast-to-chromoplast 
transition (Fig. 11A; Supplemental Table S4). A nucleoid- 
binding protein classified in the  RNA  functional class, 
MATRIX ATTACHMENT  REGION FILAMENT BIND- 
ING PROTEIN1 (Solyc03g120230), which is tightly as- 
sociated  with the accumulation of thylakoid membranes 
(Jeong et al., 2003) decreases in abundance between 
the green  and  B stages  and  is not detectable at the R 
stage. In addition, the THYLAKOID FORMATION1 
(Solyc07g054820) protein, which is involved in thy- 
lakoid  formation through vesicular  trafficking, con- 
tinuously  decreases in  abundance. It  is  thought to 
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Figure 11. Abundance of proteins (y axis in log2) 

involved in structural modifications of plastids, 

provision of energy, and translocation of precur- 

sors during the chloroplast-to-chromoplast tran- 

sition. A, Proteins involved in the biogenesis of 

thylakoids and photosystems. B, Proteins involved 

in plastid differentiation. C, Proteins involved in 

plastid division. D, Proteins  involved in energy 

and translocation. Protein abundance is expressed 

as a log2. The full name of the proteins is indicated 

in the text and in Supplemental Table S. Ab- 

breviations preceded by S correspond to the sum 

of several proteins harboring the same function. In- 

dividual values are given in Supplemental Table S4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

interact  with a plasma membrane G protein  to provide a 
sugar-signaling mechanism necessary for thylakoid for- 
mation  (Huang et al., 2006). The tomato plastid  proteome 
comprises a number of membrane-bound ATP-dependent 
metalloproteases of the filamentation temperature- 
sensitive metalloprotease class (FtsH2: Solyc07g055320; 
FtsH5: Solyc04g082250; FtsH6: Solyc02g081550; and 
FtsH12: Solyc02g079000). Members of these proteases 
are involved in the repair  of PSII (Liu et al., 2010a) as 
well as in the maintenance of the thylakoid structure 
(Kato et al., 2012). Similarly, another type of ATP- 
independent metalloprotease, ETHYLENE-DEPENDENT 
GRAVITROPISM-DEFICIENT AND YELLOW MU- 
TANT1 (EGY1; Solyc10g081470), present in the tomato 
plastid proteome has been described as required for 
chloroplast development via its role in thylakoid mem- 
brane  biogenesis  (Chen et al., 2005). The build  up of the 
thylakoids requires  the import of proteins within  the 
plastid. A thylakoid Sec translocase subunit (SECA1, 
Solyc01g080840) is essential for chloroplast biogenesis 
(Liu et al., 2010b). Interestingly, the  FtsH  and  EGY1 
proteins decrease  in abundance, mostly between the B 
and   R  stages,   which   correlates   well  with   the  dis- 
mantling of the  thylakoid membranes, while  SECA 
was present only at the MG stage, indicating an early 

end to the provision of material for thylakoid bio- 
genesis.  Recently  the lutescent2 mutant of tomato  has 
been identified as mutated for a homolog of EGY1 of 
Arabidopsis (Barry et al., 2012). The mutation is re- 
sponsible for an altered  chloroplast development and 
delay in fruit ripening but this not precluded chro- 
moplast differentiation, indicating that  chromoplast 
development does not depend on functional chromo- 
plasts  (Barry et al., 2012). A signal  recognition particle 
subunit (SRP54, Solyc09g009940) involved in the  inte- 
gration  of the  light-harvesting chlorophyll a/b  protein 
into the thylakoid membrane (Li et al., 1995; Rutschow 
et al., 2008) is present at the MG stage and  then absent, 
giving  another indication of the disappearance of pho- 
tosynthetic protein import during the chloroplast-to- 
chromoplast transition. 

Consistent with  the  decrease   in  the  chlorophyll 
biosynthetic branch,  an  increase  is observed of the 
STAY-GREEN  (Solyc08g080090)  protein    that   regu- 
lates chlorophyll degradation by modulating pheo- 
phorbide a oxygenase activity  (Ren et al., 2007). 
Another protein, HYDROXYMETHYLBUTENYL DI- 
PHOSPHATE  REDUCTASE (Solyc01g109300) pro- 
duces  MEP-derived precursors for plastid  carotene 
biosynthesis. It increases slightly during the three stages 
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that  is  consistent  with  the  accumulation  of  carote- 
noids  and  in agreement with  the up-regulation of the 
HYDROXYMETHYLBUTENYL DIPHOSPHATE RE- 
DUCTASE genes during tomato fruit ripening (Botella- 
Pavía et al., 2004). In addition, there  is also an abrupt 
decrease,  between the B and R stages, of two low PSII 
accumulation proteins (LPA1: Solyc09g074880 and 
LPA3: Solyc06g068480) involved in  the  assembly  of 
PSII  (Peng  et  al.,  2006;  Cai  et  al.,  2010).  The  two 
proteins have  been  clearly  identified by  Peng  et  al. 
(2006) and  Cai et al. (2010) but  still annotated as un- 
known gene  in The Arabidopsis Information Resource 
and  Solyc databases. Another protein necessary  for 
the assembly  of PSII high chlorophyll fluorescence 
(HCF136, Solyc02g014150; Plücken  et al., 2002) de- 
creases continuously. A plastid  genome-encoded protein, 
YCF4 (Solyc01g007360) belonging to the  hypothetical 
chloroplast reading frame family (YCF) decreases 
strongly between the  B and  R stages  in parallel  with 
the  late  disassembly of PSI. The Ycf4 protein  partici- 
pates in the assembly of PSI in the alga Chlamydomonas 
reinhardtii (Onishi  and  Takahashi, 2009) and  in higher 
plants  (Krech  et al., 2012). However, unlike  its role  in 
algae, in higher  plants  it is not essential.  The knockdown 
of the YCF4 gene in tobacco (Nicotiana tabacum) results in 
an only partial  reduction of the amount of PSI complex, 
indicating that  other  proteins can  replace  YCF4 (Krech 
et al., 2012). Similarly to the decline  in the YCF4 protein 
during the transition from chloroplast to chromoplast 
observed here  in  tomato fruit,  YCF4 declines  continu- 
ously in old leaves of tobacco concomitantly with the 
decrease  of photosynthetic activity  (Krech et al., 2012). 

 

 
Several Elements of Plastid Differentiation Correlate with 

Chromoplast Formation 
 

Interestingly, the tomato fruit plastid proteome contains 
a number of proteins known to participate in the differ- 
entiation of plastids (Fig. 11B; Supplemental Table  S4). 
One  of them  is a dnaj-like  chaperone (Solyc03g093830) 
and  corresponds to the product of the Or gene  that 
controls  chromoplast differentiation and carotenoid 
accumulation (Li and Van Eck, 2007). The Or protein is 
more  abundant at  the  B than  at  the  green  stage  and 
was  not detected at the R stage  when  carotenoids are 
at their  maximum level. 

Some ATP-dependent casein  lytic proteinases  (Clp) 
located  in  the  stroma   are  described as  participating 
in  chloroplast development (Lee et  al.,  2007). Six of 
them  classified in the stress-related proteins (ClpB: 
Solyc06g082560,  Solyc03g115230,  Solyc02g088610, 
Solyc06g011400, Solyc06g011370, and Solyc06g011380) 
are  encountered  in  the  tomato   plastids.  Summing 
the  abundance of the  six proteins remains essentially 
constant, suggesting a sustained function  during chro- 
moplast differentiation. Also interesting is the  absence 
at the  G stage  and  the  sharp  accumulation at the  B 
and R stages of two HEAT SHOCK PROTEIN21 
(HSP21) heat shock proteins (Solyc03g082420 and 
Solyc05g014280) that have been reported to be involved 

in the promotion of color changes  during tomato fruit 
maturation  (Neta-Sharir et  al.,  2005).  Western   blots 
show  the presence  of HSP21 proteins at very low level 
at the MG stage and  a sudden and  large increase at the 
B  stage   (Fig.  6).  Except   for  the   presence   of  small 
amounts at the  MG stage  in western blots,  these  data 
are  in  agreement  with   the  proteomic  analysis.   An- 
other heat shock protein, HSC70-2 (Solyc11g020040), 
highly  expressed in the tomato plastids, increases 
continuously.  It  has  been  described  as  essential   for 
plant  development in  Arabidopsis (Su  and  Li, 2008). 
Its  role  in  chromoplast differentiation would deserve 
elucidation. 
 

 
Loss of the  Plastid Division Machinery 
 

Many  proteins involved in  the  division   of  plastids 
have  been  encountered in the  tomato plastid proteome 
(Fig. 11C; Supplemental Table S4). Two nuclear-encoded 
forms  of filamenting temperature-sensitive Z mutants 
(FtsZ1, Solyc07g065050 and FtsZ2, Solyc09g009430) play 
a major  role in the initiation  and  progression of plastid 
division  in plant  cells (McAndrew et al., 2008). They are 
both present at MG and B stages, but FtsZ1 was absent at 
the  R  stage  while  FtsZ2  remained stable  at  all  three 
stages.  An accumulation and  replication of chloroplasts 
protein (ARC6, Solyc04g081070) has  been  characterized 
in a mutant that has only one or two chloroplast per cell 
instead of .100 in wild-type cells (Vitha et al., 2003). The 
mutant exhibits  abnormal localization of the two key 
plastid  division  proteins FtsZ1 and FtsZ2, indicating that 
ARC6 promotes FtsZ filament formation in the  chloro- 
plast  (Aldridge et al., 2005). ARC6 was  encountered at 
the MG stage only. The MinE protein (Solyc05g012710), 
which  supports and  maintains FtsZ filament formation 
(Maple  and  Møller,  2007) and  is  required for  correct 
plastid  division  in Arabidopsis (Maple  et al., 2002), dis- 
appears between the MG and  B stages.  Similarly,  the 
crumpled leaf protein (CRL, Solyc06g068760), also de- 
scribed  as  important for  the  division   of  plastids, was 
found  only at the MG stage. Asano  et al. (2004) showed 
that cells of the CRL mutant contained a reduced number 
of plastids. The disappearance or strong  decrease  of the 
majority  of proteins involved in  plastid   division   men- 
tioned  above  during the  differentiation of chromoplasts 
indicates  that plastid  division  ceases. This is in agreement 
with our previous observation that no plastid division 
occurred in ripening tomatoes since all preexisting chlo- 
roplasts  were   differentiating  into   chromoplasts  (Egea 
et al., 2011). These data provide target proteins potentially 
responsible for the cessation  of plastid  division. 
 

 
Proteins Involved in Energy  Provision and 

Translocation Activities 
 

ATP synthase is an important enzyme  that  provides 
energy  for the cell to use through the synthesis of ATP. 
Thirteen nuclear-encoded ATP synthase units were 
quantified in the tomato  plastid  proteome (Supplemental 
Table S). The summation of the abundance of all these 
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ATP synthase units was stable during chromoplast 
differentiation (Fig. 11D). On the other  hand,  six ATP 
synthase units encoded by the plastid  genome  were 
quantified (Supplemental Table S4) and  slightly  de- 
creased  during tomato fruit ripening (Fig. 11D). These 
data   indicate   that   the  machinery  for  the  provision 
of energy  stays  very present throughout the differentia- 
tion process. Plastids  can import cytosolic Glc-6-P via the 
Glc-6-P/phosphate translocator (GPT, Solyc07g064270). 
Glc-6-P  is  used  either  for  the  synthesis of  starch  and 
fatty acids or is fed into the plastidic OPP (Emes and 
Neuhaus, 1997). Niewiadomski et al. (2005) have shown 
that  the loss of GPT1 function  results  in a disruption of 
the oxidative  pentose phosphate cycle and  affects fatty 
acid biosynthesis. Another translocator, phosphoenol- 
pyruvate phosphate translocator (Solyc03g112870), 
has  been  identified that  delivers  the  energy-rich gly- 
colytic intermediate phosphoenolpyruvate into the 
plastids (Fischer et al., 1997). In addition, a triose 
phosphate/phosphate  translocator (Solyc10g008980) 
has also been encountered that participates in Suc 
biosynthesis (Cho  et al., 2012). The sum  of the  three 
translocators decreases  very lightly during plastid 
transition (Fig. 11), indicating that  the machinery for 
provision of energy  and  precursors remained in place 
to allow  the  synthesis of fatty  acids  and  Suc within 
the plastid. 

Elements   for  the  direct   import   of  lipids   into  the 
plastid  are also present (Fig. 11D; Supplemental Table 
S4). Two  proteins of the  SEC translocase system  are 
highly  expressed and  increase  continuously in abun- 
dance  (SEC14, Solyc11g051160, Solyc06g064940). They 
are the homologs of the yeast (Saccharomyces cerevisiae) 
SFH5   phosphatidylinositol  transfer    protein    (Yakir- 
Tamang and  Gerst,  2009) and  could  be  involved in 
Golgi vesicle transport of phosphoinositides in plant 
plastids. The transport of lipids to the plastids via vesicles 
derived from the endoplasmic reticulum membrane and 
fused  with  Golgi membranes is more  than a hypothesis 
(Andersson  and   Dörmann,  2009;  Benning,  2009).  Ele- 
ments  of  the  protein   import   machinery were  also  en- 
countered. One signal peptidase complex subunit (SPCS3, 
Solyc01g098780) and  one  presequence protease (PREP1, 
Solyc01g108600) remained roughly stable, indicating that 
elements  of the machinery for import  of proteins remain 
present during chromoplast differentiation, while  the 
synthesis  of  protein   by  the  plastid  translational ma- 
chinery  strongly declines,  as mentioned above.  Another 
signal peptidase, plastidic  signal peptidase (PLSP1, Sol- 
yc12g007120) involved in thylakoid development through 
its involvement in processing the Toc75 envelope  protein 
and   0E33  thylakoid  luminal  protein   (Shipman-Roston 
et al., 2010) was  absent  at the  R stage,  which  is consis- 
tent with  thylakoid dismantling. 

 

 
CONCLUSION 

 

High-throughput technologies have been used in the 
recent years for elucidating the mechanisms of fruit 
ripening, such  as  transcriptomics (Alba  et  al.,  2004), 

metabolomics  (Schauer   et  al.,  2006;  Deborde  et  al., 
2009; Moing  et  al.,  2011),  proteomics  (Rocco  et  al., 
2006; Faurobert et  al., 2007; Palma  et  al., 2011), and 
more  recently,  a  combination of all  of them  (Osorio 
et  al.,  2011). However these  technologies have  been 
scarcely  used  in  the  study of  subcellular  organelles 
such as chromoplasts. In this article, we used high- 
throughput  proteomics to  make  an  inventory of the 
proteins present at different  stages of plastid  differ- 
entiation in ripening tomato fruit. This inventory 
enriches  the knowledge of the plant  plastid  proteome 
as reported in plastid databases. In addition, it provides 
an in-depth description of the changes  occurring in the 
plastidial proteome during  chloroplast-to-chromopast 
differentiation. The mechanisms governing the differ- 
entiation of plastids such as the conversion of proplas- 
tids   to  chloroplasts  or  chloroplasts  to  chromoplasts 
have  received  little attention and  are barely  mentioned 
in  recent  reviews   on  plastid  proteomics (Armbruster 
et al., 2011; van  Wijk and  Baginsky,  2011). The pattern 
of  changes  in  protein   abundance reported here  is  in 
agreement with proteomic data generated in whole fruit 
by others (Rocco et al., 2006; Faurobert et al., 2007). The 
western blots  of six proteins representative of several 
metabolic  or regulatory pathways give a pattern of 
changes  that is similar to proteomic analysis.  Therefore, 
these data confirm the reliability  of the tandem mass 
spectrometry (MS/MS)  analysis  and  the  spectral  count- 
ing quantification procedure carried  out in this study.  In 
addition, the evolutions of protein abundance are in 
agreement with  the  most  important metabolic  changes 
described in the  literature such  as chlorophyll degrada- 
tion,  loss of photosynthetic activity,  dismantling of thy- 
lakoid   membranes,  and   increase   in  the  synthesis  of 
lycopene  (Egea et al., 2010). Previous  studies had  se- 
quentially described individual metabolisms or even 
specific  steps  of metabolism. In this work  a global and 
extensive   quantitative  picture   is  given  of  the  major 
shifts  occurring during the  differentiation of chromo- 
plasts that integrate both the strong decrease  in proteins 
of the light reactions  and  major  CHO  metabolism and 
the increase in abundance of proteins involved in ca- 
rotenoid biosynthesis. A remarkable finding not de- 
scribed so far is the stability of proteins of the TCA cycle, 
glycolysis, and the high level of electron transport/ATP 
synthesis, indicating that  the  machinery providing en- 
ergy  to  the  plastid is  largely   conserved.  Particularly 
noticeable  is also the increase in a number of proteins of 
the ascorbate glutathione cycle, abiotic stress, redox, and 
heat shock classes, indicating that the transition seems to 
be governed at least partly  by a redox-signaling pathway 
causing  a stress-related response. Strong redistribution can 
also  be observed in transcription factors,  signaling,  pro- 
teins  involved in  protein-modification/degradation, and 
in proteins involved in the  response to and  synthesis of 
hormones. This indicates  that chromoplastogenesis in- 
volves profound changes in signaling events whose details 
and  interactions remain  to be elucidated. The demonstra- 
tion  that  chromoplasts can  develop from  altered  chloro- 
plasts in lutescent2 tomato fruit mutants (Barry et al., 2012) 
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indicates  that  the differentiation of chromoplasts and  the 
associated signaling  events  do not  depend on functional 
chloroplasts. However, although with  some  delay,  chro- 
moplast formation always  accompanies fruit ripening. 

Among  the  most  important events  of chromoplast 
differentiation the dismantling of thylakoids have been 
well described in the literature by electron microscopy. 
This  study  brings   novel   information  on  the  target 
proteins participating in the loss of the machinery for 
the build up of thylakoids and for the assembly of 
photosystems. For instance,  proteins involved in thy- 
lakoid  formation through vesicular  trafficking, in the 
provision of material for thylakoid biosynthesis, and in 
the  assembly of photosystems undergo a  strong  de- 
crease in abundance to be essentially absent  in red 
chromoplasts. In agreement with the loss of chloro- 
phylls,  the  stay-green protein  that  stimulates chloro- 
phyll  degradation increases  in abundance. Proteins  of 
the plastid division  machinery have been identified that 
disappear during the differentiation of chromoplasts. 
Their  absence  in fully  differentiated chromoplasts can 
therefore  be considered as responsible for the cessation 
of plastid division.  An unexpected finding is that 
chromoplast  differentiation  is  accompanied  with  the 
maintenance of the  major  elements  providing energy 
and metabolites to the plastid such as ATP synthase, 
hexose,  and  triose  phosphate translocators, as well  as 
lipid import elements.  The translation machinery of the 
plastid probably undergoes a  great  loss  of efficiency 
with the strong  decrease  in abundance of ribosomal 
proteins of both  the 30S and  50S complexes.  However, 
several  elements  of the  protein import machinery re- 
main at a high level, suggesting that nuclear-encoded 
proteins continue to be transferred at a high rate till the 
last stage of chromoplast differentiation. 

Our results  complement recent studies on chloroplast- 
to-chromoplast differentiation, showing that  chromo- 
plast  gene expression largely  serves the production of a 
single protein, ACCD (Kahlau and Bock, 2008). We now 
demonstrate that this occurs early during fruit devel- 
opment while the fruit is unable  to ripen  autonomously 
and well before any visible transition from chloroplast to 
chromoplast. We conclude  the early accumulation of the 
ACCD protein that is involved in fatty acid biosynthesis 
is a prerequisite for chromoplast differentiation by pro- 
viding  a storage  matrix  for the accumulation of carote- 
noids. The final steps of differentiation during which the 
metabolic  shifts  occur  are associated with  the initiation 
of the ripening process  by the plant  hormone ethylene. 

These data demonstrate that the shifts in metabolism 
are preceded by the increase of the ACCD protein  that 
could  account  for the  generation of a cartenoids stor- 
age matrix.  They also show  that the metabolic  changes 
are  associated with  a high  abundance of proteins in- 
volved  in providing energy  and import  of metabolites. 
In addition, regulatory proteins have  been  identified 
that  are  potentially responsible for the  overall  differ- 
entiation process  as well as for individual differentia- 
tion events  such  as the dismantling of thylakoids and 
photosystems and  cessation  of division. 

MATERIALS AND  METHODS 

Plant  Material 

Tomato  (Solanum lycopersicum ‘MicroTom’) plants  were  cultivated under 

standard greenhouse conditions. Fruit  were  collected  at three  stages  of ripening 

after careful  selection:  (1) MG fruit  corresponds to fruit  having  reached full size 

and able to ripen autonomously. They produce very low amounts of ethylene  but 

respond to ethylene  in terms of ripening. MG fruit were selected by the presence of 

gel in the locules and an a*/b* chromatic ratio between 20.32 and 20.38 measured 

by the Minolta chromameter; (2) B + 2 corresponds to fruit harvested 2 d after the 

B stage.  B is characterized by a change  in color from  green  to pale  orange  over 

about  30% of the surface. At B + 2, the fruit reach peak ethylene  production; (3) R 

fruit has the whole  surface  colored  red and  were  harvested 10 d after B. 

 
Plastid Isolation from  Fruit  at Various Stages  of Ripening 

and  Fractionation of Proteins 
 

Plastids  were isolated  from the fruit pericarp at three stages of ripening 

according to the procedure described in Egea et al. (2011). After separation on 

Suc gradient, plastid fractions  were analyzed by fluorescence confocal mi- 

croscopy  associated with spectrophotometric analysis.  MG plastids were 

characterized by the almost  exclusive  presence  of chlorophylls, characteristic 

of chloroplasts; B plastids corresponding to  intermediate forms  of plastids 

were  selected  in a band  of gradient containing reduced amounts of chloro- 

phylls  and  substantial amounts of carotenoids; R plastids contained almost 

exclusively  carotenoids, typical  of chromoplasts. The plastid  bands  collected 

were  washed twice  with  extraction buffer  (250 mM   HEPES, 330 mM   sorbitol, 

0.1 mM   EDTA, 5 mM   b-mercaptoethanol, pH  7.6). For the proteomic analysis 

plastids were  resuspended in 1 M  HEPES buffer (pH 7.6), 2 mM   dithiothreitol 

(DTT), and  kept  at 220°C until  protein precipitation. After storage  at 220°C 

plastids were  broken  by osmotic  shock by resuspension in 1 M  HEPES buffer 

(pH  7.6) complemented with  2 mM   DTT, followed   by  freeze/thawing and 

homogenization in a Potter-Elvehjem  tissue  grinder. Proteins  of each  fraction 

were precipitated with methanol/chloroform (3:8 v/v) according to Seigneurin- 

Berny  et al. (1999) with  some  modifications. The resulting protein pellet  was 

dissolved in 2% SDS, 62.5 mM   Tris-HCl  buffer  (pH  6.8). Protein  concentrations 

were determined using the bicinchoninic acid method (Smith et al., 1985). Finally 

the  proteins  were   reduced  with   DTT  (20  mM)   and   alkylated  with   chlor- 

oacetamide (60 mM)  before  solubilization in  Laemmli  buffer  and  SDS-PAGE 

(12% acrylamide) separation. Each lane of the one-dimensional SDS-PAGE gel 

was loaded with  70 mg of proteins originating from the three  types  of plastids. 

After electrophoresis, proteins were  stained with  PageBlue  protein staining  so- 

lution  (Fermentas). Three  independent biological  replicates  of SDS-PAGE gel 

were  carried  out for each plastid development stage  (Fig. 1). 

 
Western-Blot Analysis 
 

Western-blot analysis  was performed using polyclonal antibodies at ap- 

propriate dilution against  chloroplastic RBCL (53 kD, at 1:50,000 dilution), PSI 

PSAD (23 kD, at 1:25,000 dilution), PSII PSBA/D1 protein (39 kD, at 1:50,000 

dilution), HSP21 (26 kD, at 1:30,000 dilution), and  LOXC (102 kD, at 1:50,000 

dilution) from  Agrisera.  ACCD  (58 kD) antibodies were  purchased from  the 

Plant  Antibody facility of the Ohio State University and  used  at 1:25,000 and 

1:15,000 dilution in Figure  6 and  Supplemental Figure  S2, respectively. Ex- 

traction  of proteins, separation by  SDS-PAGE, and  detection by  antibodies 

were  performed as described in Barsan  et al. (2010). Proteins  were  extracted 

from partially purified plastids recovered at the step before separation on Suc 

gradient as described in Egea et al. (2011). 

 
Trypsin Digestion and  Liquid Chromatography MS/MS 

Analyses of Gel  Segments 
 

The protocol  was the same as in Barsan et al. (2010) except that each lane of 

the gel was  cut into 10 slices. 

 
Protein Identification and Quantification by 

Spectral Counting 
 

Data were  analyzed using  Xcalibur software (version  2.1.0, Thermo  Fisher 

Scientific)  and   MS/MS  centroid   peak  lists  were  generated  using   the 
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extract_msn.exe  executable   (Thermo   Fisher   Scientific)   integrated  into   the 

Mascot  Daemon software (Mascot  version  2.3.2, Matrix  Sciences).  The  fol- 

lowing  parameters were set to create peak  lists: parent ions in the mass range 

400 to 4,500, no grouping of MS/MS scans, and  threshold at 1,000. A peaklist 

was  created   for  each  fraction  (i.e.  each  gel  slice)  analyzed and  individual 

Mascot searches  were performed for each fraction. Data were searched against 

iTAG2.3 proteome sequence  (ftp://ftp.solgenomics.net/tomato_genome/ 

annotation/ITAG2.3_release/ITAG2.3_proteins.fasta) predicted from  the  to- 

mato   genome   sequence   by  the  International  Tomato   Genome   Annotation 

(iTAG) team  and  against  the proteome sequences  predicted from  the chloro- 

plastic  genome   (accession  no.  AM087200).  Mass  tolerances  in  mass  spec- 

trometry and MS/MS were set to 5 ppm  and 0.8 D, respectively, and the 

instrument setting  was  specified as ESI Trap.  Trypsin  was  designated as the 

protease  (specificity   set  for  cleavage   after  Lys  or  Arg)  and   one  missing 

cleavage was allowed. Carbamido methylation of Cys was fixed and oxidation 

of Met was searched as variable  modification. Mascot results were parsed with 

the  homemade  and   developed  software  MFPaQ  version   4.0  (Mascot  File 

Parsing  and  Quantification;  Bouyssié  et al., 2007). To evaluate false positive 

rates,  all the initial database searches  were  performed using  the decoy option 

of Mascot, i.e. the data  were searched against  a combined database containing 

the real specified protein sequences  (iTAG2.3 tomato proteome sequence)  and 

the corresponding reversed protein  sequences (decoy database). MFPaQ used 

the  same  criteria  to  validate decoy  and  target  hits,  calculated the  false  dis- 

covery  rate  (FDR; FDR = number of validated decoy  hits/[number of vali- 

dated target  hits + number of validated decoy  hits] 3 100) for each gel slice 

analyzed, and made  the average of FDR for all slices belonging to the same gel 

lane (i.e.to the same  sample).  FDRs were  below  1.6%. From  all the validated 

result   files  corresponding  to  the  fractions   of  a  one-dimensional  gel  lane, 

MFPaQ was used to generate a unique  nonredundant list of proteins that were 

identified and  characterized by homology-based comparisons with  iTA1G2.3 

tomato proteome sequence.  Output files from Mascot searches  were uploaded 

with MFPaQ for spectral  counting. The total number of spectra  corresponding 

to each  identified protein was  extracted from  each  lane  of analyses.  The fil- 

tering  parameters were  P values  . 0.05, more  than  seven  amino  acids  in the 

peptides and  more  than  one peptide encountered. Among  all strategies used 

for quantitative proteomics (Thelen  and  Peck, 2007; van  Wijk and  Baginsky, 

2011) we  followed  a label-free  option  of spectral  counting (Liu et al., 2004; 

Booth et al., 2011) described in Bouyssié et al. (2007). The spectral-count-based 

label free has  been  reported as allowing quantification of protein abundance 

with similar efficiency to isotope  labeling  (Zhu et al., 2009). This methodology 

had been applied in a number of other studies  related  to the plastid proteome 

(Bräutigam et al., 2008; Ferro et al., 2010; Demartini et al., 2011). 

 

 
Comparison with Existing Databases, Targeting 

Predictions, Functional Classification, and Curation 
 

Protein descriptions were performed using annotations associated with each 

protein  entry   and   through  homology-based comparisons with   the  TAIR9 

protein database (http://www.arabidopsis.org/) using  BasicLocal Alignment 

Search  Tool BLASTX (Altschul  et al., 1990) with  an e-value  cutoff  of 1e-5 to 

avoid  false positives,  and  linked.  MapMan Bins were  used  for functional as- 

signments (http://gabi.rzpd.de/projects/MapMan/).  The  protein  list  was 

compared  with   five   plastidial  databases  either   specific   to  plastids  (AT- 

CHLORO: Ferro et al., 2010; http://www.grenoble.prabi.fr/proteome/ 

grenoble-plant-proteomics/; plprot:  Kleffmann  et al., 2006; http://www. 

plprot.ethz.ch) or general  databases comprising subcellular subsets  (PPDB: 

Sun et al., 2009; http://ppdb.tc.cornell.edu; SUBA: Heazlewood et al., 2007; 

http://www.suba.bcs.uwa.edu.au; Uniprot:  The Uniprot Consortium, 2010: 

http://www.uniprot.org). Predictions of subcellular localization were  un- 

dertaken using  three  predictors (TargetP:  Emanuelsson et al., 2000; http:// 

www.cbs.dtu.dk/services/TargetP/; iPSORT: Bannai et al., 2002; http:// 

hypothesiscreator.net/iPSORT/; Predotar: Small et al., 2004; http://genoplante- 

info.infobiogen.fr/predotar/). Predictions were made  on the basis of tomato 

proteins when  harboring an N-terminal sequence.  A curation procedure was 

used  to select, in the protein  data  set, those  having  confirmed plastid loca- 

tion. Proteins  were retained in the final dataset if they meet with at least one 

of the two following  criteria: (1) presence  in at least two of the five databases 

mentioned above (AT-CHLORO,  plprot, PPDB, SUBA, and  Uniprot) and  (2) 

predicted by  at  least  one  of  the  three  predictors  (TargetP,  iPSORT,  and 

Predotar). Proteins  predicted to be encoded by the plastid genome  were  all 

retained. This resulted in the  cataloging of 1,932 proteins in Supplemental 

Table S1. 

Normalization and  Differential Abundance Analysis 
 

The raw  data  arising  from  the  LTQ-Orbitrap mass  spectrometer analysis 

(1,932 proteins listed  in Supplemental Table S1 were  submitted to a normal- 

ization  process  that  consisted   in  standardizing the  MS/MS counts  by  the 

length  of the corresponding protein, and by an integral  normalization, as 

described by Paoletti  et al., 2006). The sum  of abundances in all samples  was 

set to 1 so as to eliminate  the effect of the size of the total MS/MS counts in the 

different   samples.  Then,  the  Probabilistic Quotient Normalization method 

(Dieterle  et  al., 2006) was  applied by  taking  a reference  sample  at  random 

among  the  replicates  of the  MG  stage.  This  allowed the  calculation of the 

quotients of protein abundances (as log2  ratios) in each sample  and  hence the 

median of the  quotients. By dividing the  abundance of proteins by the  cor- 

responding  median, the  effect  of  the  difference   in  proteome size  between 

samples was  eliminated. The normalization process  is now  widespread and 

considered as a standard way  to preprocess data  in metabolomics and  pro- 

teomics  (Torgrip  et al., 2008; Issaq et al., 2009; Kato et al., 2011). 

The  differential abundance  analysis  was  carried  out  with  the  Anapuce R 

package in the R environment (http://www.R-project.org/) and  calculated us- 

ing a paired t test on normalized data.  An estimation of the variance  for each 

protein  observation was  performed using  the  mixed  model  of Delmar  et  al. 

(2005a, 2005b) implemented in the anapuce R package and consisting  in the 

estimation of  several  groups of  proteins with  the  same  variance.   Finally,  a 

classical  FDR procedure was  applied to correct  for multiple comparison tests 

according to the procedure of Benjamini  and  Hachberg (1995) implemented in 

the  anapuce R package. Normalization and  statistical  analysis  led to the cata- 

loging of 1,529 proteins considered as quantifiable out of the initial 1,932 proteins 

(Supplemental Table  S2). Protein  abundance values  (expressed as  log2)  were 

retained only when  a given  protein had  been detected at least twice in a given 

stage.  Supplemental Table  S2 comprises the  log2-abundance values,  the  log2 

ratios,  and  the P value  of the t test for each protein. The trends of changes  in 

abundance between stages  were  calculated with  a  5% significance level  and 

referred to as 0 for no change,  +1 for increasing, and  21 for decreasing. 

 
Supplemental Data 
 

The following  materials are available  in the online  version  of this article. 

Supplemental Figure  S1. Comparison of the percentage of proteins classi- 

fied  into  MapMan functional classes  between the  tomato fruit  chloro- 

plast proteome described in this article (white  bars) and the Arabidopsis 

chloroplast proteome  described in  the  AT-CHLORO   database  (Ferro 

et al., 2010; gray  bars) and  in Zybailov  et al. (2008; black bars). 
 

Supplemental Figure  S2. Western-blot analysis  of the ACCD protein in 

plastids isolated   at  four  stages  of  fruit  development: IG  (Immature- 

Green). 
 

Supplemental Table  S1. Inventory of the 1,932 proteins representing the 

compilation of the curated list of proteins encountered in the three  rep- 

licates of the tomato plastids at three  stages  of development. 

Supplemental Table  S2. Inventory of 1,529 proteins quantified from  the 

curated list. 
 

Supplemental Table   S3.  List  of  proteins in  the  subplastidial  compart- 

ments:  envelope, stroma,  thylakoids, and  plastoglobules. 
 

Supplemental Table  S4. List of proteins involved in the build  up  of thy- 

lakoids  and  photosystems, plastid  differentiation, plastid  division,  and 

energy  and  translocation. 
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Chapter III-Effects of inhibiting protein translation in the 

plastid on fruits ripening and expression of nuclear genes 

 
 
 

Abstract 
 

Several fruit ripening pathways occur in the chromoplast. The most obvious of them 

is the changes in color from green to red corresponding to the loss of chlorophylls and 

accumulation of carotenoids. Most of the proteins involved in the ripening process are 

encoded by the nuclear genome and are imported into the plastid. The plastid genome 

encodes approximately only 80 genes. Therefore, among the 3500-4000 proteins which 

are estimated to be present in the plastid, the large majority is encoded by nuclear genes. 

The  coordination  between  nuclear  and  plastidial  gene  expression  has  become  an 

important biological question. The search of signals participating in this interaction has 

been undertaken for the photosynthetic process in chloroplasts, but not for 

carotenogenesis in chromoplasts. This chapter is a preliminary attempt to address this 

question. In order to check whether plastid genes expression has a feedback on gene 

expression in the nucleus, we have inhibited protein synthesis in the plastid using the 

antibiotic lincomycin. We have observed a delay in coloration and carotenoid 

accumulation in lincomycin-treated fruit. The expression of a number of nuclear genes 

involved in carotenoid and ethylene biosynthesis has been assessed as well as the 

expression of transcription factors known to regulate the fruit ripening process. However, 

although the expression of these genes was affected by the lincomycin treatment, no clear 

relationship with the delay in carotenoid accumulation could be established. 

 

 
 
 

Introduction 
 

One of the most visible aspects of the fruit ripening process in tomato is the change 

in color from dark green to yellow and red. It corresponds to the loss of chlorophylls and 

the accumulation of carotenoids inside the plastids during the transition from chloroplasts 

to chromoplasts. Plastids are plant-specific, semiautonomous organelles that have 

important  metabolic  functions.  In  higher  plants,  plastids  differentiate  from  different 
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subtypes in response to environmental conditions and over several developmental stages. 

Each differentiated form of plastids plays a specific role in maintaining a variety of 

metabolic and physiological functions as a component of plant cells or tissues. The type 

of plastids depends on their function in the cell in which they reside (Egea et al., 2010; 

Bian  et  al.,  2011).  The  most  characterized  form  of  plastids  found  in  plants  are 

chloroplasts, which are present in green tissues and are involved in photosynthesis 

(Murakami, 1965). Chromoplasts occur in a limited number of organs, such as fruits and 

floral petals, or root tissues of carrot and are engaged in the synthesis and storage of 

pigments (Camara et al., 1995). Leucoplasts are colorless plastids mainly existing in root 

tissues and are the site of several reactions such as terpene biosynthesis (Gupta et al., 

2011).  Amyloplasts  are  non-pigmented organelles found  in  some plant  cells  that  are 

responsible for the synthesis and storage of starch granules (Enami et al., 2011; Stanga et 

al., 2011). Etioplasts are chloroplasts that have not been exposed to light, they are usually 

found in flowering plants grown in the dark (Wellburn and Wellburn, 1971, 1971). 

 

It is considered that plastids evolved from cyanobacteria that were incorporated into 

a eukaryotic host cell (Dyall et al., 2004). During the process of evolution, the transfer of 

genes from the prokaryotic endosymbiont to the nucleus of the host cell provided an 

opportunity for increased control of the endosymbiont and its biological functions by the 

host cell. The size of the plastid genome in land plants was reduced to about 80 genes or 

less. Therefore, plastid biogenesis is dependent on the expression of nuclear-encoded 

plastid proteins and their posttranslational import into plastids (Inaba and Schnell, 2008; 

Li and Chiu, 2010). 

 

Communication between the plastids and the nucleus is bidirectional. Anterograde 

signaling corresponds to the convey from the nucleus to the plastids of signals that 

stimulate gene expression in the plastid (Pesaresi et al., 2007; Kleine et al., 2009). In 

contrast, retrograde signaling correspond to the regulation of nuclear gene expression by 

signals emitted by the plastid (Nott et al., 2006; Pogson et al., 2008; Inaba, 2010; 

Pfannschmidt, 2010). These signals reflect both the developmental and functional state of 

the  plastid.  A  recent  review  paper  gives  more  details  of  the  plastid-to-nucleus 

http://en.wikipedia.org/wiki/Pigment
http://en.wikipedia.org/wiki/Pigment
http://en.wikipedia.org/wiki/Plant_cell
http://en.wikipedia.org/wiki/Starch
http://en.wikipedia.org/wiki/Chloroplast
http://en.wikipedia.org/wiki/Flowering_plants
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communication  (Barajas-Lopez  et  al.,  2012). A  number  of  mutants  have  been 

characterized that are affected the retrograde signaling. 

 

The phenotype of genome uncoupled (GUN) mutants varies from pale yellowish to 

undistinguishable from wild-type (Surpin et al., 2002). Gun genes are involved in 

modulating  magnesium-protoporphyrin  IX  (Mg-proto  IX)  levels  (Vinti  et  al.,  2000; 

Larkin et al., 2003; Strand et al., 2003) which were considered as a factor involved in the 

plastid to nucleus signal (Mochizuki et al., 2001). Loss of function of gun mutants led to 

increased expression of photosynthesis-associated nuclear genes (PhANGs) when 

chloroplast development was blocked by norflurazon. One exception, GUN1, is unique 

since it exhibited derepression of LHCB genes after treated with norflurazon or 

lincomycin (Mochizuki et al., 2001; Susek et al., 1993; Dietzel at al., 2009). GUN1 is 

insensitive to accumulation of Mg-proto IX which is considered to be a signal factor. 

Gun1 gene plays a role in the Mg-proto IX pathway, but it does not seem to be involved 

in chlorophyll biosynthesis, which indicates that it most likely acts downstream of Mg- 

proto IX accumulation (Koussevitzky et al., 2007). The others gun mutants have the 

similar function for increasing plastid photosynthesis-related genes expression treated by 

norflurazon or lincomycin. Gun2 and gun3 mutant alleles were encoding haem oxygenase 

and phytochromobiline synthase respectively. With absence of the two enzymes, plastid 

accumulated heme leads to negative feedback regulation of chlorophyll biosynthesis 

(Mochizuki et al., 2001). Gun4 and gun5 were found to be directly involved in the 

chelation of magnesium into protoporphyrin IX. Gun 4 was found to encode an activator 

of Mg-chelatase and gun5 was encoded a subunit of Mg-chelatase. Recently, a new 

mutant,  gun6-1D,  with  a  similar  phenotype  to  the  gun2-gun5  has  been  reported 

(Woodson et al., 2011). In the gun6-1D mutant, a 3-fold increasing of the ferrochelatase 1 

and  the  activity  was  found.  Subsequently,  heme  was  increased  and  expression  of 

PhANGs was up-regulated. These data suggest a model that heme may be used as a 

retrograde signal to coordinate PhANG expression with chloroplast development 

(Woodson et al., 2011). 

 

A mutant screened from norflurazon treated Arabidopsis seedlings called happy on 

norflurazon (HON) down-regulated the expression of Lhcb genes more indirectly prior to 
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initiation  of  plastid  signaling.  HON mutations disturb plastid protein homeostasis, 

thereby activating plastid signaling (Saini et al., 2011). Kakizaki et al. (2009) showed a 

mutant lack a most abundance protein import receptor atToc 159. With no proteins 

import  in  to the  plastid,  the  expression  of  photosynthesis-related  nuclear  genes  was 

down-regulated. They suggested a signal that repress the photosynthesis-genes expression 

through repress the expression of AtGLK instead of Mg-proto IX accumulation. 

 

The present chapter is intended at determining whether a retrograde signaling exist 

between the plastid and the nucleus for inducing the transition between chloroplast to 

chromoplast and the associated metabolic changes. In order to address the question we 

have infiltrated in the fruit a specific inhibitor of the translation of proteins in the plastid, 

lincomycin. It has already been used in vivo to study its influence on chromoplast tubules 

formation (Emter et al., 1990), chloroplast ultra-structure elements (Kryloy and 

Masikevich, 1996), chlorophyll-protein complex formation (Guseinova et al., 2001), 

expression of nuclear photosynthetic genes (Sullivan and Gray, 1999, 2002) and 

acclimation of the photosynthetic machinery (Tanaka et al., 2000). In our work, we have 

studied the effects of lincomycin on fruit ripening and on the expression of ripening- 

related genes including carotenoid and ethylene biosynthesis genes and transcription 

factors controlling the ripening process. 

 

Since  the  chloroplast-to-chromoplast  transition  is  primarily  associated  with  the 

accumulation of carotenoids, we have used carotenoid biosynthesis genes as targets for 

detecting the effects of lincomycin. Upstream in the pathway is the plastid-localized 

methylerythritol (MEP) pathway that provides precursors, IPP, DMAPP and GGPP for 

the synthesis of carotenoids (Phillips et al., 2008). Overexpression of 

hydroxymethylbutenyl diphoshate reductase (HDR) results in an increased production of 

carotenoids in light-grown Arabidopsis seedlings (Estévez et al., 2001; Botella-Pavía et 

al., 2004; Carretero-Paulet et al., 2006; Flores-Perez et al., 2008). GGPP synthase (GGPS) 

generates the 20-carbon GGPP molecule, which serves as the immediate precursor for 

carotenoids. The first committed step in plant carotenoid biosynthesis is the synthesis of 

phytoene from GGPP and IPP. Phytoene synthase (PSY) involved in this step. Tomato 

fruits contains two isoforms of the PSY gene, PSY1 and PSY2. The PSY1 encodes the 
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fruit-ripening-specific isoform, while PSY2 has no role in carotenogenesis in ripening 

fruits. Phytoene desaturase (PDS), ζ-carotene desaturase (ZDS), carotene isomerase 

(CRTISO), plastid terminal oxidase (PTOX) are involved in lycopene biosynthesis. The 

enzymes involved in the degradation of the lycopene are lycopene β-cyclase (LCY-B), 

lycopene ε-cyclase (LCY-E) and β-carotene hydroxylase 2 (CRTR B). The products of 

these enzymes are different carotene isomers. 

 

Among other ripening-related genes, we have also studied genes involved in the 

biosynthesis of ethylene. In the ethylene biosynthesis pathway, 1-aminocyclopropane-1- 

carboxylic acid (ACC) is catalyzed by ACC synthase (ACS), which is the rate-limited 

step in ethylene biosynthesis. ACC oxidase (ACO) then converts ACC to ethylene (Wang 

et al., 2002). ACS is encoded by a multigene family. Barry et al. (2000) showed that 

transcripts of ACS1A is decrease sharply from breaker stage fruits to ripening and 

Nakatsuka et al. (1998) indicated that ACO1 increasing transcripts during ripening. 

 

Beside genes involved in the biosynthesis of carotenoids and ethylene, some other 

genes corresponding to transcription factors controlling the ripening process have been 

taken into account: the tomato MADS-Box Transcription Factor ripening inhibitor (RIN) 

mutant is a loss-of-function mutant (Zhu et al., 2007). The color change, softening and 

aroma  production  of  this  mutant  are  inhibited  and  the  fruit  fails  to  ripen.  Another 

mutation named colorless non-ripening (CNR) results in mature fruits with colorless 

pericarp tissue and an excessive loss of cell adhesion (Thompson et al., 1999). The two 

mutants show deficient accumulation of pigments during tomato fruit ripening. 

 

Few genes controlling the differentiation of chromoplasts have been discovered. For 

instance, the Orange (Or) gene has been identified in a mutation of cauliflower 

accumulating high levels of β-carotene in various tissues normally devoid of carotenoids. 

Or is most likely not a loss-of-function mutant of the wild-type Or gene with no 

carotenoid accumulation in RNAi mutant (Lu et al., 2006). Also, a plastid fusion and/or 

translation factor (PFTF) has been characterized. It has been involved in chromoplast 

differentiation in red pepper (Hugueney et al., 1995). 

 

The objective of the present work was to make a preliminary understanding of the 

signaling between chromoplast and nucleus. We used lincomycin as the inhibitor of 
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plastidial translation to check whether the expression of nucleus genes were affected by 

the blocking. Tomatoes were injected with lincomycin and some color and ripening 

related genes was analyzed by qPCR. These results will enhance the understanding of the 

communication between plastid and nucleus and provide a preliminary work of signaling 

between chromoplast and nucleus. 

 

 
 
 

Material and Methods 
 

 
 
 

Tomato Material and growth conditions 
 

 
 

Tomato (Solanum lycopersicum cv Micro Tom) plants were grown under standard 

greenhouse conditions. The conditions for the culture chamber room are as follows: 14-h- 

day/10-h-night cycle, 25/20℃ day/night temperature, 80% humidity, 250 mmol m-2s-1
 

 

intense luminosity. Harvest at breaker stage which is characterized by a change in color 

from green to pale orange at about 30% of the surface. 

 

 
 
 

Tomato fruits Injected with lincomycin solution 
 

 
 

Tomato fruits were collected from green house at breaker stage, all the fruits washed 

twice with distilled water and dry in the air. Injection was done as indicated by (Orzaea et 

al., 2006) with modification. A 1 ml sterile hypodermic syringe with a 0.45 ×12 mm 

needle (TERUMO) was used for infiltration. Needle was introduced 4 to 6 mm in depth 

into the fruits through the stylar apex, and the infiltrated solution (sorbitol 3% and MES 

10 mM pH 5.6) with lincomycin (2mM) was gently injected into the fruits. Control fruits 

inject with only infiltrated solution. The total volume of solution injected varied to the 

size of the fruits with a volume approximately 300 µL. Once the entire fruit surface has 

been infiltrated, stop the injection. Sample were incubated at 25℃ for 6, 24, 48, 72 and 96 

hours. 
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Determination of fruits color and pigments 
 
 
 

After injection, tomato fruits are incubated in a transparent plastic container at 

phytotron.  Fruit  color  was  estimated  daily  through  the  CIE  L*a*b*  system using  a 

Chroma   Meter   CR300   (Konica   Minolta)   and   expressed   by   the   Hue   value 

(H°ab=tg−1 (b*/a*). Chlorophyll, β-carotene and lycopene were determined according to 

the method of Nagata and Yamashita (Nagata and Yamashita, 1992) with slightly 

modification. Wrap the tube with Aluminum Film during the processing avoid light. 

Grind tomato fruit pericarp to a fine powder quickly in liquid nitrogen. Take 100 mg 

powder to a 2.0 ml fresh tube, add 1.5 ml solvent acetone-hexane mixture (4:6), shaking 

for 30 min. Centrifuge 10,000 g for 2 min at 4℃. Take the supernatant to a new tube and 
 

centrifuge again for 2 min. Use a UV-VIS spectrophotometer to determine the absorbance 

of each sample at 663 nm, 645 nm, 505 nm and 453 nm separately. Calculate the content 

of  chlorophyll  and  carotenoid  use  the  equation  below.  Chlorophyll  (mg/100ml): 

0.671A663+1.671A645;         β-carotene         (mg/100ml):         0.216A663–1.22A645– 
 

0.304A505+0.452A453; Lycopene (mg/100ml): -0.0458A663+0.204A645+0.372A505– 
 

0.0806A453. The results were expressed as micrograms of carotenoid per gram of extract. 
 
 
 

 
Measurement of ethylene production 

 

 
 

The rate of ethylene produced of whole fruits were measured by individual fruit in an 

120 ml air-tight containers for 30 min at 24℃, withdraw 1 ml of the headspace gas and 

inject into a gas chromatograph 7820A (Agilent Technologies). The unit of ethylene is 

nmol g-1 h-1. The measurement conditions was as follows: the heater temperature is set to 

110℃, column flow is at 43 ml min-1, temperature of the oven is at 70℃, FID heater is at 

250℃, H2 flow and air are 40 ml min-1 and 350 ml min-1 respectively. 
 

 
 
 
 

Western blot analysis the inhibition of plastid translation 
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After 48 h incubation at phytotron, whole tomatoes were stored at -80℃ before the 
 

following experiment. Grind the tomato pericarp to well powder in liquid nitrogen. Take 
 

300 mg to a 2.0 ml flesh tube extraction buffer (4% SDS, 125 mM Tris-HCl pH6.8) 

vortex well. Boiled the mixture for 10 min with vortex occasion, centrifuged at RT, 16000 

g for 20 min. Transfer the supernatant to a flesh tube and stored. Total protein were 

separated by SDS-PAGE, transfer to a nitrocellulose membrane, treated with blocking 

TTBS buffer 20 mM TRIS, 137 mM NaCl, 0.1% (v/v) Tween-20, pH 7.6, containing 2% 

(w/v) of ECL Advancing Blocking, and subsequently incubated for 1 h with polyclonal 

antibodies in TTBS. Detection was performed with a peroxidase labelled anti-rabbit 

antibody (GE Healthcare, NA934), diluted 1:50 000 in TTBS, and the membranes were 

developed using the ECL Advancing Western blotting detection reagents (GE Healthcare). 

All the antibodies used at the appropriate dilution for Plastidial photosystem II D1 protein 

(PsbA/D1, 32 kD, at 1:25 000 dilution), Rubisco large subunit (RbcL, 53 kD, at 1:50 000 

dilution), Mitochondrial voltage-dependent anion-selective channel protein I (VDAC1, 

29 kD, at 1:5000 dilution), Sucrose phosphate synthase (SPS, 120 kD, at 1:10 000 

dilution), Cell wall protein polygalacturonase (PG, 41-43 kD, at 1:5000 dilution) and 

Vacuolar ATPase (V-ATPase, 26 kD, at 1:5000 dilution). All the antibody bought from 

Agrisera® except PG generated by lab from recombinant proteins corresponding to 

X77231 cDNA. 

 

Real-time PCR analysis of expression of genes involved in tomato ripening 
 

 
 

RNA Extraction used Plant RNA Reagent kit. Take 100 mg dry frozen tomato 

pericarp powder and 0.5 mL reagent to a 1.5 mL tube, after 5 min incubated at room 

temperature, centrifuged at 12000 g for 2 min, Add 0.1mL 5 M NaCl and 0.3 mL 

chloroform to the supernatant and mix thoroughly. Centrifuged at 4℃, 12000g for 15min, 
 

transfer the aqueous to a flesh tube, add equal volume isopropyl alcohol mix well, 

centrifuged at 4℃, 12 000 g for 15 min, RNA pellets were washed with 75% ethanol and 

dissolved in RNase-free water, Storage at -80℃. 

 
DNase treatment with RNA: add 0.1 volume 10X DNase I buffer and I µL rDNase to 

RNA sample mix well and incubate at 37℃ for 60 min, inactivate reaction with 0.1 
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volume  DNase  Inactivation  Reagent  and  mix  well,  incubation  for  2  min  at  RT, 

centrifuged at 10000 g for 1.5 min and transfer RNA to a fresh tube. For cDNA 

preparation, add 2 µg template RNA to the master mix reagent (2 uL 10X buffer, 2 uL 

dNTP Mix, 2 uL oligo dT primer, 1 uL RNase inhibitor, 1uL reverse transcriptase and 

variable water to volume 20 uL), mix thoroughly and incubated at 37℃ for 60 min. 

stored the reverse-transcription reaction at -20℃. 
 

 

To examine the expression of the tomato genes infected by lincomycin, the cDNA 

samples were used as templates in real-time PCR assay in the presence of a SYBR Green 

PCR Master Mix (Applied Biosystems) and gene-specific primers. qPCR reactions were 

performed as follow: 50 ℃ for 2 min, 95 ℃ for 10 min, followed by 40 cycles of 95 ℃ 

for 15 s and 60 ℃ for 1 min and one cycle of 95 ℃ for 15s and 60 ℃ for 15s. Relative 

expression levels were calculated using the ΔΔCt method as described by Lyi et al. 

(2007). The primer of the checked genes as follow: 

 
 
 
 
 
 

Primer sequence accession No. 

HDR-F AGTAACACTTCACATCTACAGGAG solyc01g109300 

 

HDR-R 
 

GTTCTCTTTCTCAACCAACTCAC 
 

 

GGPS-F 
 

GCTGTTGGTGTCTTATATCGTG 
 

solyc09g008920 

 

GGPS-R 
 

CTTCTCAATGCCATAAACGCTG 
 

 

PSY1-F 
 

GGAAAGCAAACTAATAATGGACGG 
 

Solyc03g031860 

 

PSY1-R 
 

CCACATCATAGACCATCTGTTCC 
 

 

PDS-F 
 

GGTCACAAACCGATACTGCT 
 

Solyc03g123760 

 

PDS-R 
 

AAACCAGTCTCGTACCAATCTC 
 

 

PTOX-F 
 

GATGAAAGCCTGTCAAACTCAC 
 

solyc11g011990 
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PTOX-R 

 
ZDS-F 

CAATCAGCTTGAGGTACGGA 

 
AGTGGTTTCTGTCTAAAGGTGG 

 
 

 
Solyc01g097810 

 

ZDS-R 

CRTISO-F 

CRTISO-R 

LCY E-F 

LCY E-R 

LCY B-F 

LCY B-R 

CRTR B2-F 

CRTR B2-R 

ACS1a-F 

 

ACCGAGCACTCATGTTATCAC 

AAGACCCACAGACGATACCT 

ATCGCCAACACAATATAGACCA 

CTTACCAGTTCAAGTATCCCGAG 

GCAATATCAGAGCCAGTCCA 

GTCCACTTCCAGTATTACCTCAG 

TGTCCTTGCCACCATATAACC 

CTTCTTTCCTACGGTTTCTTCCA 

CTCTTATGAACCAGTCCATCGT 

AAGGTTTATGGAGAAAGTGAGAGG 

 

 
 
 

Solyc10g081650 
 
 
 

 
Solyc12g008980 

 
 
 

 
Solyc04g040190 

 
 
 

 
Solyc03g007960 

 
 
 

 
Solyc08g081550 

 

ACS1a-R 

ACO1-F 

ACO1-R 

OR-F 

OR-R 

RIN-F 

RIN-R 

CNR-F 

CNR-R 

PFTF-F 

 

AAAGGCATCACCAGGATCAG 

ATTGCACAAACAGACGGGAC 

ACTTGTGTACTTTCCTCTGCCT 

TTGTGGCATCATTCTCTGGG 

AGCAAGATATCCTGTTCCAAGAC 

CAACATCTTTCCTCTTACAACCAC 

GGTCAAGCTCATTATTCCTCCT 

TGTGAGTTCCATTCAAAGTCTCC 

TCCTCTTAGCATCATCAAACTCTG 

CTTGGAAATGTTGGGCTTGG 

 

 
 
 

Solyc07g049530 
 
 
 

 
Solyc03g093830 

 
 
 

 
Solyc05g012020 

 
 
 

 
Solyc02g077920 

 
 
 

 
Solyc07g055320 
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PFTF-R 

 
GUN4-F 

GACATCCTTGAGTTAGAAACACCT 

 
CTTGCCATTAACGAATGCTCTG 

 
 

 
Solyc06g073290 

 

GUN4-R 

GUN5-F 

GUN5-R 

FC1-F 

FC1-R 

CA1-F 

CA1-R 

 

CATCTCCATCTTCAACAAATGCTG 

TCAGGAAACATGCACTAGAACAG 

TGTTGGAAGAGTAAGAACCCGA 

AAAGAAGCAGTGTAGGTGGAG 

CGTAGACAATCCAACAGAGCA 

GTCCCACCTTACGATCAGAC 

AGTCCTTTAATACCTCCACAACAG 

 

 
 
 

Solyc04g015750 
 
 
 

 
Solyc10g084140 

 
 
 

 
Solyc05g005490 

 
 
 
 
 

 
HDR, hydroxymethylbutenyl diphoshate reductase; GGPS, geranylgeranyl diphosphate synthase; 

PSY1, phytoene synthase 1; PDS, phytoene desaturase; PTOX, plastid terminal oxidase; ZDS, ζ- 

carotene desaturase; CRTISO, carotenoid isomerase; LCY-E, lycopene ε-cyclase; LCY-B, 

lycopene β-cyclase; CRTR-B2, β-carotene hydroxylase 2; ACS1a, 1-aminocyclopropane-1- 

carboxylic acid synthase; ACO1, 1-aminocyclopropane-1-carboxylic acid oxidase; OR, orange; 

RIN, ripening inhibitor; CNR, Colorless non-ripening; PFTF, plastid fusion and/or translation 

factor; GUN4, genome uncoupled 4; GUN5, genome uncoupled 5; FC1, ferrochelatase 1; CA1, 

carbonic anhydrase1. 

 

 
 
 

Result and discussion 
 

 

Assessment by western blot of lincomycin inhibition of protein translation in plastid 
 

 
 

In order to verify that lincomycin was efficient and specific in inhibiting plastid 

translation, proteins representing different subcellular compartments were analyzed by 
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immuno-detection. A representative of plastid-translated protein is the plastidial 

photosystem II D1 (PsbA/D1) protein which is membrane-embedded in the large 

 

photosystem II complex. As shown in figure 1, the abundance of the PsbA/D1 protein is 

much lower in lincomycin-treated than in control indicating a strong inhibition of 

translation, thus demonstrating that the lincomycin treatment was efficient. Former 

experiments had shown the efficiency of lincomycin treatment in inhibiting the PsbA/D1 

protein accumulation in plastid (Kim et al. 1994). RbcL is the large subunit of Rubisco 

(Ribulose-1,5-bisphosphate carboxylase oxygenase) encoded by the plastid genome. Our 

data show that the amount of the RbcL protein remains essentially unchanged in control 

and lincomycin-treated samples. This is in agreement with the data of Hill et al. (2011) 

indicating that there is no significant differences in RbcL level between the samples 

treated with or without lincomycin in coral nubbins and with the data of Wostrikoff et al. 

(2012) showing that maize mesophyll protoplasts treated with lincomycin did not exhibit 

mRNA  instability.  The  RbcL  protein  was  present  in  stable  amounts  during  the 

chloroplast-to-chrompoplast transition in bell pepper despite a sharp decrease in 

expression of the corresponding gene (Kuntz et al. 1989). These data indicate that RbcL 

is very stable and that the cessation of translation does not affect significantly the amount 

of protein in short time. The specificity of inhibition of translation in the plastid only was 

confirmed by analyzing the amount of proteins known to be located in other cell 

compartments. The voltage-dependent anion channel (VDAC), which plays a central role 

in apoptosis, is located on the outer membrane of mitochondria (Betaneli et al., 2012). 

Fig. 1 shows that the expression of the VDAC protein is not affected by lincomycin 

treatment indicating that lincomycin does not inhibit protein translation in the 

mitochondria. Similar conclusions can be drawn from the immunodetection of the 

vacuolar-type  H+-ATPase  (V-ATPase)  which  is  a  highly  conserved  evolutionarily 

ancient enzyme with remarkably diverse functions in eukaryotic organisms (Nelson et al., 

2000). The amount of polygalacturonase (PG), a typical cell wall protein (Hadfield and 

Bennett, 1998) and of sucrose phosphate synthase (SPS), a marker protein for the cytosol 

(Lunn and Furbank, 1997), are not affected by lincomycin. 

http://en.wikipedia.org/wiki/Enzyme
http://en.wikipedia.org/wiki/Eukaryote
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Overall, the western blot analysis of the different proteins indicated that the antibiotic 

lincomycin treatment was efficient and that it inhibited specifically the translation of 

proteins in the plastids of tomato fruits. 
 

 
 

 
 
 

 
Fig.1 Western blots showing the effects of lincomycin on the accumulation of proteins 

located  in  various  sub-cellular  compartments. (PsbA/D1:  plastidial  photosystem II  D1; 

RbcL: rubisco large subunit; VDAC: voltage-dependent anion channel; V-ATPase: vacuolar- 

type H+-ATPase; PG: polygalacturonase; SPS: sucrose phosphate synthase) 
 

 

Effects of lincomycin on the changes in color and pigments of ripening tomatoes 
 

 
 

After injection of lincomycin in breaker tomatoes as described in “Material and 

Methods”, the changes in color were assessed by chromametry and the content of 

chlorophyll and carotenoids measured by spectrophotometry. Figure 2A shows visible 

differences in the changes in color between control (infiltrated with buffer only) and 
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lincomycin-infiltrated  tomatoes.  The  lincomycin  treatment  significantly  delayed  the 

changes of color from green to red as compared to control fruit although the variations 

between samples is elevated. 
 

 
 

 
 
 

 
Fig. 2 Effects of lincomycin on color change of tomato fruits. Pictures were taken of the 

external color (A); Hue angle value changes after lincomycin treated (B). Control injected 

with buffer only (   ), treated with 2 mM lincomycin (   ). n = 6, LSD bar  calculated at the 1% 

risk. 
 

 

An evaluation of the Hue angle, a main property of color, has been performed by 

chromametry (Fig. 2B). The Hue angle value decreased significantly faster in control 

than in lincomycin-treated fruit thus confirming a lower rate of tomato fruit color change 

from green to red. An evaluation of the pigments extracted from the fruit indicated that 

the delay of ripening mainly due to a low rate accumulation of lycopene (Fig.3A). 

However here again, although differences remain significant, there is often a large 

variation between samples, for example 100 hours after infiltration in lincomycin-treated 

fruit. Interestingly, the decrease of chlorophyll and the increase in β-carotene were similar 

in control and lincomycin-treated fruit (Fig. 3B and 3C). Therefore, the delay of color 

change mainly depends on the lycopene synthesis and accumulation. Lycopene and β- 

carotenes are the main metabolites in the carotenoid synthesis pathway. 

http://en.wikipedia.org/wiki/Color


72 
 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3 Kinetics of 

pigments after infiltration 

with lincomycin. Control 

injected   with   buffer   only 

(   ), treated with 2 mM 

lincomycin (    ). n = 6, error 

bars show SE. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Effects of lincomycin on ethylene production of the tomatoes 
 

 
 

To determine whether ethylene was involved in the response to the lincomycin 

treatment, ethylene production was evaluated by gas chromatography. Six biological 

replicates were performed and the data were combined and analyzed. Figure 4 shows that 

no significant differences could be observed between control and lincomycin-treated fruit 

in terms of ethylene production. It also shows high standard errors for samples taken at 

all times after infiltration. Therefore, these preliminary result suggest that lincomycin has 

no effect on the rate of ethylene production in tomato. 
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Fig. 4 Ethylene production changes after lincomycin treated. Control injected with buffer only and 

treated with 2mM lincomycin . n = 6, error bars show SE. 

Effects of lincomycin on the expression of carotenoid biosynthesis genes. 
 

 
 

During tomato fruit ripening, carotenoid accumulate in the skin and flesh as the fruit 

turns red. Since we have observed previously a delay in the accumulation of carotenoids 

upon lincomycin treatment, we have carried out a transcriptional analysis of genes 

involved  in  the  synthesis  of  carotenoids.  A  scheme  of  the  carotenoid  biosynthetic 

pathway is given in figure 5A. A qPCR analysis of genes of the downstream MEP 

pathway (HDR and GGPS) and of carotenoid biosynthesis (PSY1, PDS, PTOX, ZDS, 

CRTISO, LCY-E, LCY-B and CRTR-B2) has been performed. The data presented in 

figure 5B indicate that most of the transcripts remain stable except those of PSY1, PTOX, 

and ZDS which have significant increase and LCY-B undergoes a decrease as compared 

to control. 
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Phytoene synthase plays an important role in the synthesis of phytoene and it 

catalyzes the first committed reaction in carotenogenesis (Maass et al., 2009; Cazzonelli 

and Pogson, 2010). The PTOX is a plastoquinol-O2  oxidoreductase that regenerates the 

reduced plastoquinone formed during phytoene and ζ-carotene desaturation (Ruiz-sola et 

al., 2012). The absence of PTOX result in tomato ghost phenotype with green and 

bleached sectors leaves (chloroplast) and carotenoid deficient ripe fruits (chromoplast) 

(Josse et al., 2000; Shahbazi et al., 2007). ZDS is a ζ-carotene desaturase involved in this 

pathway. PSY, PTOX and ZDS exhibit higher expression after lincomycin treatment 

indicating that lycopene could accumulate at a high level during development. However, 

the contents of lycopene of lincomycin-treated fruits were lower than control as shown in 

figure 3A. One hypothesis is that the provision of precursors by the upsteram steps is 

insufficient so that the higher expression of genes of the carotenoid pathway is useless for 

carotenoid accumulation. It may also happen that the higher expression of some genes, 

such as phytoene synthase is not accompanied by an increased level of the protein. A 

discrepency between enzyme activty and gene expression of phytoene synthase has 

already been observed in tomato fruit sumitted to phytochrome regulation of phytoene 

synthase activity by red and far red light (Schofield and Paliyath, 2005) suggesting that 

PSY may be subject to post-translational regulation. Further work is needed to test 

whether this happens in our conditions upon lincomycin treatment. 

 

Concerning the LCY-B gene which is reposnsible for the accumulation of β-carotene 

(Ampomah-Dwamena et al., 2009) we observed a down-regulation after lincomycin 

treatment.  This is not consistent with a lower accumulation of lycopene. It could happen 

that the lower accumulation of lycopene upon lincomycin treatment arises from a lower 

provion of carotenoid precursors. For this reason, we have analysed key enzymes of the 

MEP pathway that supplies Geranylgeranyl diphosphate (GGPP) to the carotenoid 

pathway. Hydroxymethylbutenyl diphoshate reductase (HDR) and geranylgeranyl 

diphosphate  synthase  (GGPS)  are  the  two  key  enzyme  involved  in  MEP  pathway 

(Botella-Pavia et al., 2004). Our data show that there is no significant change in the 

expression of the two genes after infiltration with lincomycin (Fig. 5B) indicating that the 

provision  of  precursors  is  probably  not  responsible  for  the  lower  accumulation  of 

lycopene in lincomycin-treated fruit. In conclusion, our data on gene expression cannot 
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Fig. 5 Enzymes involved in the carotenoid biosynthesis. The pathway of carotenoid synthesis 

and the downstream of MEP pathway (A),  Effect of lincomycin on the expression of genes 

in carotenoid pathway (B). Controls were set at 0, n = 3, error bars show SE. (HDR: 

hydroxymethylbutenyl diphoshate reductase; GGPS: geranylgeranyl diphosphate synthase; 

PSY1: phytoene synthase 1; PDS: phytoene desaturase; PTOX: plastid terminal oxidase; 

ZDS: ζ-carotene desaturase; CRTISO: carotenoid isomerase; LCY-E: lycopene ε-cyclase; 

LCY-B: lycopene β-cyclase; CRTR-B2: β-carotene hydroxylase 2) 
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explain the effect of lincomycin on the reduction of accumulation of lycopene. 

 
Effects of lincomycin on the expression of ethylene biosynthesis genes. 

 

 
 

ACS1a and ACO1 participating in the ethylene biosynthesis are up-regulated after 

lincomycin treatment (Fig. 6). ACS1a is encoded by a multigene family. With lincomycin 

treated, ACS1a as well as the ACO1 has a higher expression than control. Expression of 

ACS1a is decreasing during the development of tomato fruit (Barry et al., 2000) and 

ACO1 transcripts increase during ripening (Nakatsuka et al., 1998). Our former ethylene 

assay indicated that ethylene production was not different between control and 

lincomycin-treated fruits although the transcripts of both ACS1a and ACO1 are increased. 

Knowing that ACS1 is negatively and ACO1 positively regulated by ethylene we cannot 

suspect an indirect effect of lincomycin on the activity of the receptor(s) otherwise the 

expression of the two genes would be inversely affected.  In the present state of our 

research we don’t have any clear explanation for the up-regulation of ACS1 and ACO1 

upon lincomycin treatment while ethylene production remains unchanged. 
 

 
 
 

Fig. 6 Effect of lincomycin on the 

expression of genes involved in the 

ethylene biosynthesis. controls were 

set at 0, n = 3, error bars show SE. 

(ACS1A: 1-aminocyclopropane-1- 

carboxylic acid synthase; ACO1: 1- 

aminocyclopropane-1-carboxylic acid 

oxidase) 
 

 

Effects of lincomycin on the expression of regulatory genes involved in fruit ripening 

and chromoplast differentiation. 
 

 
 

Several transcription factors have been described as regulating fruit ripening apart 

from the ethylene signaling or biosynthetic pathways. One of them is a MADS box 

named “ripening inhibitor” (rin). The loss-of-function rin mutant (Zhu et al., 2007) shows 
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inhibition of color development, softening, aroma production etc. In our experiments, the 

expression of the RIN gene was depressed significantly by lincomycin treatment (Fig. 7). 

This could explain the delay of lycopene accumulation and fruit ripening. Another 

transcription factor CNR (colorless non-ripening) involved in color changes has been 

studied shows no change in expression upon lincomycin treatment (Fig. 7). 

 

The expression of two other genes involved in the differentiation of plastids has been 

considered. The DNAJ-type gene Or, involved in the differentiation of chromoplasts 

shows reduced expression in lincomycin-treated fruit (Fig. 7). Only a mutation of the Or 

gene results in the accumulation of carotenoids. The RNAi knock-down of the Or protein 

does not cause any accumulation of carotenoids (Lu et al., 2006) suggesting that wild- 

type Or is most likely not a loss-of-function mutant. In our experiments, lincomycin 

treatment induces a significant decrease in Or transcripts (Fig. 7), while lycopene 

accumulates more than in control fruit. In view of this data, we cannot provide a rational 

explanation for the role of the Or gene in the phenotype of lincomycin-treated fruit. 

 

PFTF (plastid fusion and/or translation factor) has been involved in chromoplast 

differentiation in red pepper (Hugueney et al., 1995). The qPCR results (Fig. 7) show that 

gene expression was slightly, but not statistically decreased after lincomycin treatment 

indicating that this gene cannot be responsible for the effects of lincomycin on the higher 

accumulation of carotenoids. 

 

 
 
 

 
Fig. 7 Effect of lincomycin on the expression of regulatory genes in fruit ripening. controls 

were set at 0, n = 3, error bars show SE. (OR: orange; RIN: ripening inhibitor; CNR: 

colorless non-ripening; PFTF: plastid fusion and/or translation factor) 
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Effects of lincomycin on the expression of genes suspected to participate in the 

plastid-to-nucleus signaling. 
 

 
 

Gun (Genomes uncoupled) genes are involved in the chlorophyll biosynthesis 

pathway and ferrochelatase 1 (FC1) is the enzyme that participates in heme biosynthesis 

within the branch of tetrapyrrole biosynthesis. The phenotype of Gun mutants varies from 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Effect of lincomycin on the expression of genes suspected to participate in the 

plastid-to-nucleus signaling. controls were set at 0, n = 3, error bars show SE. (GUN4: 

genome uncoupled 4; GUN5: genome uncoupled 5; FC1: ferrochrlatase 1) 
 

 

pale yellowish to undistinguishable from wild-type (Surpin et al., 2002). The Gun4, Gun5 

mutants  demonstrated  that  reduced  Mg-Proto-IX  accumulation  under  NF  treatment 

causes down-regulation expression of Lhcb (light harvesting complex II) in Arabidopsis 

(Strand et al., 2003). Gun4 was found to encode an activator of the Mg-chelatase and 

gun5 was affected in CHL-H, a subunit of Mg-chelatase (Dietzel et al., 2009). Gun4, 

Gun5 and ferrochelatase1 were analyzed by qPCR. The transcripts of gun4 with a lower 

level than control, but gun5 has an induced expression. Gun4 as an activator involved in 

the tetrapyrrole biosynthesis binding either the substrate proto-IX or the product of the 

chelation reaction, Mg-Proto-IX. But the maximum Mg-chelatase activity requires pre- 

activation of ChlH with GUN4, Mg2+ and proto-IX in vitro of Oryza sativa (Zhou et al., 

2012). Gun4 transcripts decreased by lincomycin treated implied that activity of Mg- 
 

chelatase is depressed. The consequence is that chlorophyll synthesis was reduced. As 
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show in Fig. 3B, the decreasing of chlorophylls is similar between control and treated 

samples. One of the possibility is that almost all the enzymes involved in the chlorophyll 

synthesis are decreasing or undetectable with tomato fruit ripening (Barsan et al., 2012). 

Exception is ferrochelatase1 which is located in the heme branch of tetrapyrrole pathway. 

Recently,  Woodson  et  al.  (2011)  present  a  new  Arabidopsis  mutant,  gun6-1D,  with 

similar phenotype of the other gun mutants. The ferrochelatase1 is overexpressed in this 

gun6-1D mutant and which demonstrate that increased flux through the heme branch of 

the plastid tetrapyrrole pathway increases PhANGs expression. Our data show that 

ferrochelatase1 is slightly induced by lincomycin. That indicated there will be signals 

produced for the communication of plastid to nucleus. 

 

Effects of lincomycin on the expression of CA1, a gene responsive to lincomycin. 
 

 
 

Carbonic anhydrase 1 (CA1) is one of the most down-regulated genes upon 

lincomycin treatment in Arabidopsis seedlings (Cottage et al., 2008). Figure 9 shows that 

the CA1 gene is not significantly down-regulated in our conditions. The possibility is that 

different tissues have different sensitivity and responsiveness to lincomycin. 

 
 
 
 
 
 

 
Fig. 9 Effect of lincomycin on the 

expression of carbonic anhydrase1 

(CA1), a gene responsive to 

lincomycin. Controls were set at 

0, n = 3, error bars show SE 
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Conclusion 
 

 
 
 

This set of results shows that the plastidial translation may have impact on the fruit 

ripening process and nuclear gene expression. One of the first and most important effects 

of inhibiting plastid translation is the lowering of carotenoid accumulation which could 

be interpreted as a delay in the fruit ripening process. However more experiments would 

be necessary to determine whether other aspects of fruit ripening are affected. In terms of 

gene expression, inconstant results have been obtained since all genes upstream of 

lycopene in the carotenoid biosynthetic pathway exhibit higher expression upon 

lincomycin treatment. Also, the lower production of carotenoids in lincomycin-treated 

fruit could not be related to a lower expression of genes involved in the provision of 

precursors. The enhancement of expression of the ethylene biosynthesis genes is also 

inconsistent with the stable ethylene production. More work is needed to detect whether 

any discrepancy exist between gene expression and the level of the corresponding protein, 

as suggested in some occasions with the phytoene synthase gene. The expression of other 

genes related to various cellular signaling pathways and transcription factors were also 

affected by lincomycin, such as Or, RIN and GUN, but no clear scheme of their 

participation in the phenotype generated by lincomycin could be presented. We have 

always observed high variations between samples giving high error standards. This may 

be due to the fact that the infiltration of lincomycin in not homogenous within the fruit 

and from one fruit to another. Anyhow, this preliminary set of results shows that plastidial 

translation has an impact on fruit ripening, part of which may be due to retrograde 

signaling, but further work is required to provide a picture of which target  gene is 

affected. 
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General conclusion 
 

 
 
 

The ripening of fruits is a very complex process comprising many metabolic and 

biochemical events. As a model for climacteric fruit, tomato has been largely used for 

studying the physiological and molecular basis of the ripening process. Color is one of 

the most important features during tomato fruit ripening. The green color which is 

accompanying tomato fruit development starts to disappear at the breaker stage with the 

development of a yellow color to be totally absent at the red stage. The changes of color 

are due to the decrease of chlorophylls and the accumulation of carotenoids. These 

changes take place in the plastids and correspond to the transition from chloroplasts to 

chromoplasts. Early studies have provided a detailed structural description of this 

transition using microscopy techniques (Rosso, 1968; Harris and Spurr, 1969) although 

recent techniques of confocal microscopy can bring novel information. In the present 

thesis we have used confocal microscopy coupled to spectrometry to monitor the 

chloroplast-to-chromoplast transition by evaluating the chlorophyll and carotenoid content 

of single plastids within live tissues. Our results give evidence that each chromoplasts 

derive from a single chloroplast and that differentiation of plastids then ceased in ripening 

fruits. Plastids have been isolated at different stages of tomato fruit ripening, mature green 

(MG), breaker (B) and red (R), and observed by confocal microscopy. As expected 

chloroplast of mature-green fruit emitted fluorescence due almost exclusively to 

chlorophyll and chromoplast of red fruit to carotenoids. Interestingly, we have been able 

to isolate intermediate plastids from breaker stage fruit harboring both chlorophyll and 

carotenoids appearing in orange color in the overlay picture. Real-time in-situ recording 

of the live tissue showed that the transition was rather synchronous within one cell but not 

at the tissue level. The real-time monitoring of the transition presented in a video revealed 

that all the chromoplasts derived from pre- existing chloroplasts in tomato mesocarp 

tissues. The confocal microscopy characterization of the plastids at different stages of 

development has been highly useful for the selection of plastid fractions for proteomic 

analysis. 
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Following the early microscopy observations, studies have been dedicated to the 

understanding of the biochemical and molecular events underlying chromoplastogenesis. 

A description of the changes occurring in number of metabolic pathways has been 

performed with special emphasis to the biosynthesis of carotenoids (Camara et al., 1995). 

More recently a global characterization of chromoplasts from different species has been 

performed using high throughput technologies (Siddique et al., 2006; Barsan et al., 2010; 

Zeng et al., 2011), but the overall changes occurring during the chloroplast-to- 

chromoplast transition have been scarcely studied by proteomic or transcriptomic 

approaches (Kahlau and Bock, 2008). In the present thesis we have used a proteomic 

approach for studying the changes in protein abundance during chloroplast-to- 

chromoplast transition. For this purpose plastids have been isolated at three stages of 

differentiation and the corresponding proteins were analyzed by proteomics. A total of 

1932 proteins have been identified after curation. The curation procedure is generally 

performed after proteomic analysis. It consisted in discarding proteins that were not 

predicted to be plastid localized by 3 predicting softwares and not identified previously in 

plastid databanks. After curation, 1529 proteins could be quantified by spectral counting. 

Among 87 proteins predicted to be encoded by the plastid genome, 47 were encountered 

in our study and the abundance of 32 of them is presented for all three stages of plastid 

development. The accuracy of our quantification procedure was tested in two ways. First 

we have compared our data with previous data on the whole tomato fruit proteome 

(Rocco et al., 2006; Faurobert et al., 2007) and observed that, for proteins identified in 

both cases, the pattern of evolution during fruit ripening was very similar. Second, we 

have performed an immuno-detection for a number of proteins and have shown that the 

changes in abundance of the proteins detected by this technique were identical with 

proteomic data. The proteomic analysis revealed several metabolic features of the 

transition. As expected there was a shift of metabolism corresponding to a decrease of 

proteins involved in photosynthesis and an increase in proteins involved in carotenoid 

biosynthesis. One striking feature, however, is that the large subunit of Rubisco (RBCL), 

a protein typically abundant in photosynthetic plastids, although continuously decreasing 

in abundance, remained present at significant levels in red plastids. On the contrary, some 

proteins PSAD of PSI and PSBA/D of PSII involved in photosynthesis were totally 
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undetectable at the R stage after a strong decrease in abundance between the MG and B 

stages. A number of proteins participating in the buildup of thylakoids have been 

encountered that decrease in abundance during the chloroplast-to-chromoplast transition, 

accounting for the dismantling of the thylakoids during chromoplastogenesis. A dnaj-like 

chaperone participating in the differentiation of plastids and corresponding to the product 

of the Or gene that controls chromoplast differentiation and carotenoid accumulation was 

encountered. It was more abundant at the breaker stage than at the green stage and was 

not detected at the R stage. Two nuclear-encoded forms of filamenting temperature- 

sensitive mutant Z play a major role in the initiation and progression of plastid division in 

plant cells. They are both present at MG and B stages, but FtsZ1 was absent at the R 

stage in agreement with the cessation of plastid division. Altogether these data indicate 

that the major metabolic shifts occurring during chromoplastogenesis are associated with 

the loss of the machinery involved in the synthesis of thylakoids and in plastid division 

but also with the up-regulation of elements regulating the differentiation process such as 

the Or protein. 

 

All this changes are regulated by the nucleus and plastid genes. The coordination 

between plastids and nucleus gene expression plays an essential role during plastids 

differentiation. Even a slight perturbation can affect the expression of the two genomes. 

We have used the antibiotic lincomycin for inhibiting the translation of plastid and to test 

if the expression of nuclear genes was affected. After lincomycin treatment, the color 

change of the tomato was significantly delayed. The preliminary results indicate that 

inhibiting protein translation in the plastids affects fruit ripening by reducing the 

accumulation of carotenoids. The expression of several nuclear genes has been affected 

but a clear relationship with the altered ripening phenotype could not be established. 

These data suggest that a plastid to nucleus signaling may operate during the chloroplast- 

to-chromoplast transition, but more work is needed to elucidate the elements of such 

signaling. 

 

Altogether, we present here a work on metabolic and molecular events occurred 

during transition of chloroplast-to-chromoplast. This gives us a new insights into the 

process of tomato fruit ripening. 
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Abstract 
 

One of the most important phenomenons occurring during tomato fruit ripening is the color change from green 
to red. This change takes place in the plastids and corresponds to the differentiation of photosynthetic plastids, 
chloroplasts, into non photosynthetic plastids that accumulate carotenoids, chromoplasts. In this thesis we first 
present a bibliographic introduction reviewing the state of the art in the field of chloroplast to chromoplast 
transition and describing the structural and physiological changes occurring during the transition. Then, in the first 
chapter we present an in situ real-time recording of pigment fluorescence on live tomato fruit slices at three 
ripening stages. By viewing individual plastids it was possible to show that the chloroplast to chromoplast 
transition was synchronous for all plastids of a single cell and that all chromoplasts derived from pre-existing 
chloroplasts. In chapter two, a quantitative proteomic approach of the chloroplast-to-chromoplast transition is 
presented that identifies differentially expressed proteins. Stringent curation and processing of the data identified 
1932 proteins among which 1529 were quantified by spectral counting. The quantification procedures have been 
subsequently validated by immune-blot evaluation of some proteins. Chromoplastogenesis appears to comprise 
major metabolic shifts (decrease in abundance of proteins of light reactions and CHO metabolism and increase in 
terpenoid biosynthesis and stress-related protein) that are coupled to the disruption of the thylakoid and 
photosystems biogenesis machinery, elevated energy production components and loss of plastid division machinery. 
In the last chapter, we have used lincomycin, a specific inhibitor of protein translation within the plastids, in order 
to study the effects on fruit ripening and on the expression of some ripening-related nuclear genes. Preliminary 
results indicate that inhibiting protein translation in the plastids affects fruit ripening by reducing the accumulation 
of carotenoids. The expression of several nuclear genes has been affected but a clear relationship with the altered 
ripening phenotype could not be established.  

Altogether, our work gives new insights on the chromoplast differentiation process and provides novel 
resource data on the plastid proteome.  

 
Résumé 

 
L'un des phénomènes les plus importants survenus pendant la maturation du fruit de tomate est le changement 

de couleur du vert au rouge. Ce changement a lieu dans les plastes et correspond à la différenciation des plastes 
photosynthétiques, les chloroplastes, en plastes non-photosynthétiques qui accumulent des caroténoïdes, les 
chromoplastes. Dans cette thèse, nous présentons d'abord une introduction bibliographique sur le domaine de la 
transition chloroplaste-chromoplaste, en décrivant les modifications structurales et physiologiques qui se produisent 
pendant la transition. Puis, dans le premier chapitre, nous présentons des observations microscopiques de plastes 
isolés à trois stades de mûrissement, puis des enregistrements en temps réel de la fluorescence des pigments sur les 
tranches de fruits de tomate. Il a été possible de montrer que la transition chloroplaste-chromoplaste était synchrone 
pour tous les plastes d'une seule cellule et que tous les chromoplastes proviennent de chloroplastes préexistants. 
Dans le deuxième chapitre, une approche protéomique quantitative de la transition chloroplaste-chromoplaste est 
présentée, pour identifier les protéines différentiellement exprimées. Le traitement des données a identifié 1932 
protéines parmi lesquelles 1529 ont été quantifiées par spectrométrie de masse. Les procédures de quantification 
ont ensuite été validées par WESTERN blot de certaines protéines. La chromoplastogénèse comprend les 
changements métaboliques suivants : diminution de l'abondance des protéines de réaction à la lumière et du 
métabolisme des CHO, et l'augmentation de la biosynthèse des terpénoïdes et des protéines de stress. Ces 
changements sont couplés à la rupture de la biogenèse des thylakoïdes, des photosystèmes et des composants de 
production d'énergie, et l’arrêt de la division des plastes. Dans le dernier chapitre nous avons utilisé la lincomycine, 
un inhibiteur spécifique de la traduction à l’intérieur des plastes, afin d’étudier les effets sur la maturation des fruits 
et sur l’expression de gènes nucléaires impliqués dans la maturation. Les résultats préliminaires indiquent que 
l’inhibition de la traduction des protéines dans les plastes affecte la maturation du fruit en réduisant l’accumulation 
de caroténoïdes. L’expression de plusieurs gènes nucléaires a été modifiée mais une relation claire avec le 
phénotype altéré de maturation n’a pas pu être établie.  

Au total, notre travail donne de nouveaux aperçus sur le processus de différenciation chromoplaste et fournit 
des données nouvelles ressources sur le protéome plaste.  
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