Je Tiens À Remercier 
  
Cyril Demarche 
  
Je Remercie Grandement 
  
Philippe Gille 
  
Ariane Mézard 
  
Cédric Pépin D' 
  
Salim Rostam 
  
Ronan Terpereau 
  
Andrea Fanelli 
  
Florence Fauquant-Millet 
  
Julia Schneider 
  
Xavier Roulleau 
  
Marc Chardin 
  
Xavier Caruso 
  
  
  

HAL is

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Le Stum,
Cette thèse ayant été riche en rencontres, j'aimerais remercier toutes celles et ceux que j'ai connus grâce aux conférences ou autres évènements mathématiques. Je pense bien sûr à mon chouchou Andrès, à Marion (merci pour tes nombreux conseils et tes encouragements : je me sens forte après nos discussions !), Lucie : hâte que tu m'apprennes de nouvelles chansons, Yann, Neige et Bianca. Merci à l'incroyable team angevine d'avoir égayé mes passages dans leur laboratoire : je pense en particulier à Antoine et au manuel-et-musclé Jean-Baptiste.

Merci aux doctorantes et doctorants des années supérieures pour leurs précieux conseils. Je pense notamment à Fabien, Mercedes, Mégane, Ronan, Antoine et Titouan.

Je tiens à remercier toutes les doctorantes et tous les doctorants de l'IRMAR avec qui j'ai partagé cette expérience. De manière plus spécifique, merci à mes mâles cuites préférées Marie et Emeline pour nos discussions et réflexions très enrichissantes, et merci à Matilde d'être la meilleure co-bureau et (demi-)soeur de thèse possible ! Je vous souhaite plein de réussite dans le futur. Merci à Sergio d'égayer mes journées avec ses musiques, à Rémi, Milan, Virgile et Mattia pour la bonne ambiance de notre super bureau. Merci à MAAAAAAAARC de rester ami avec moi malgré les occurrences beaucoup trop nombreuses de cette blague. Merci à François, Rémi, Thomas et Pierre du bureau 232 pour les parties de SuperTuxKart. Merci aussi pour les parties de Cémantix. Merci pour celles de Pedantix. Bien sûr, merci aussi pour leurs homologues anglaises Cemantle et Pedantle. Ah oui merci aussi pour les parties de Flaggle, Wordle ou Numberle. Bon effectivement les apparences sont trompeuses mais on a quand même travaillé aussi durant ces trois années ! Merci aussi pour les parties de badminton partagées, même si je dois bien l'écrire : François, tu es le plus fort au badminton. Je l'acte sur ces remerciements (crois moi bien que ça me brise le coeur).

Je tiens également à remercier les ami.e.s que j'ai eu la chance de rencontrer durant mes études. Je pense notamment à Manuela et Kévin pour nos sessions travail tardives, Erwan, Enora, Maïwenn, Lucien et Olivier. Tout particulièrement, merci à Valentine pour les fructueuses sessions révisions, notamment l'année de l'agrégation. Merci pour ton accueil, et pour les superbes moments partagés ensemble. Merci à Aurore de toujours croire en moi, je te souhaite plein de réussite dans la suite de ta belle carrière de mathématicienne. Merci à toute la team de "Parmi nous" avec qui j'ai partagé une partie de ma scolarité : je pense en particulier à Pierre, Mériadec, Enguechou (aussi connu sous le nom de "Enguechouette"), Benjamin pour nos tendres restaurants en tête-à-tête (j'y arriverai, un jour !) et mon cher Grégouze. J'embrasse également tous mes ami.e.s qui ont réussi à me supporter durant cette thèse malgré mes petits moments de stress : merci à ma princesse Elisa pour tous ces fous rires. Je te souhaite tout le bonheur que tu mérites. Merci à Elphège, Marie, Lisa et Romane pour toutes nos rigolades et pour les soirées inoubliables. Merci à Elora d'être la meilleure marraine pour Rima possible, et l'élève qui m'a demandé le moins de travail ! Merci pour toutes nos discussions enrichissantes et pour ta tendresse. Merci à Eli et Michaël pour les bons restaurants partagés. Merci à ma rideuse professionnelle préférée Lise. En particulier merci pour ta force, et pour tout ce que tu m'apportes.

Merci à Nicolas et Théo pour tous les entraînements et les tournois de badminton partagés. J'ai trop hâte d'avoir un niveau de professionnelle reconnue (j'estime ça à dans 1 ou 2 ans max) ! De plus merci beaucoup, Théo de m'avoir, appris à mettre, les virgules aux bons endroits. Merci à mes voisins Ségolène et Florentin pour toutes vos petites attentions, et surtout merci d'avoir attendu que l'on parte de Rennes pour déménager ! Merci Youna et Toinette pour les sessions jeux partagées. Je te suis très reconnaissante Youna de rester copine avec moi malgré mes indénombrables trahisons au Time bomb.

François : merci d'être un si bon ami depuis la L2. Merci pour ton écoute précieuse, tes conseils et tes encouragements durant ma scolarité et tout particulièrement durant cette thèse. Merci de me faire autant rire (jusque dans mon sommeil apparemment). Merci de m'avoir appris l'existence des Cadillac ou encore de l'agrégation (exercice laissé au lecteur : deviner lequel m'a été le plus utile). Je ne suis pas peu fière de t'annoncer que j'ai déjà trouvé le titre de notre article commun : "La classification des fonctions régulues en caractéristique p, la troisième va vous étonner. Et la quatrième aussi, et même la millième, et même... bon allez j'arrête !". Merci à Lucie de faire partie de ma vie depuis si longtemps. Merci pour ta bienveillance, ton intelligence et ton amour. Je suis si fière de me construire chaque jour avec toi. en définissant une multiplication provenant de celle de Γ), il est alors naturel de se demander si le théorème de Lagrange y est toujours vérifié. Pierre Deligne a démontré qu'en effet un schéma en groupes fini localement libre de rang n était annulé par la puissance n-ième, dans le cas commutatif (il a utilisé la dualité de Cartier), et sur n'importe quelle base. Une preuve est faite dans [START_REF] Tate | Group schemes of prime order[END_REF]. Cependant nous ne savons toujours pas si le résultat est vrai pour un groupe non commutatif, sur une base non réduite (le cas de la base réduite est démontrée dans [START_REF]Schémas en groupes[END_REF], exposé VII, Proposition 8.5). Sur des corps de base, de nombreux résultats sur les groupes finis sont connus.

Par exemple en caractéristique nulle, Pierre Cartier a montré qu'ils étaient tous étales.

En caractéristique p > 0, nous avons des résultats partiels. Pour en citer quelques- Les schémas en groupes finis localement libres sont également très utiles pour étudier les schémas en groupes lisses connexes en général. D'intérêt particulier parmi ceux-ci sont les schémas en groupes lisses connexes sur un corps de base, ce qui inclut les groupes réductifs, les groupes unipotents, les variétés abéliennes, et les extensions de tels objets. Le théorème de Chevalley et le théorème de Rosenlicht donnent des résultats de structure en termes de ces classes particulières (voir [START_REF] Brion | Lectures on the structure of algebraic groups and geometric applications[END_REF], sous-parties 1.1 et 1.2). On rencontre des difficultés lorsqu'on étudie ces schémas en groupes, comme par exemple :

-manque d'une classification générale, sur un corps algébriquement clos -échec de la représentabilité des groupes d'automorphismes, dû essentiellement aux groupes unipotents -échec de la finitude de la cohomologie (cohomologie des G-modules cohérents)

-échec de l'algébricité du champ classifiant (liée à ce qui précède).

Pour s'attaquer à ces difficultés, en caractéristique p on dispose d'un atout : le morphisme de Frobenius, qui à son tour fournit la famille {G r } des noyaux de Frobenius, qui sont des schémas en groupes finis localement libres. Par exemple on associe à G a la collection {α p n , n ∈ N * }, et on associe à G m la collection {µ p n , n ∈ N * }. Il s'avère que la famille {G r } est reliée de manière très étroite au groupe G initial, et ce, par plusieurs manières comme par exemple :

-en géométrie : la collection {G r } permet de déterminer le revêtement universel de G, voir [START_REF] Sullivan | Simply connected groups, the hyperalgebra, and Verma's conjecture[END_REF] ;

-en théorie des représentations : les restrictions de certains G-modules simples étudier ces foncteurs : --------p-Lie n , et peut-on distinguer les points d'une fibre donnée en augmentant la hauteur c'est-à-dire en étudiant le morphisme ker(Frob r ) : GLC G r n pour r ≥ 2 ? Certaines de ces questions sont trop difficiles pour espérer une réponse en toute généralité, et l'étude d'exemples (petite dimension, groupes de type particulier) est nécessaire.

C'est ce que nous proposons de faire dans cette thèse.

Résumé du premier chapitre

Dans le but d'explorer les objectifs et questions évoqués ci-dessus, nous avons commencé par étudier l'espace G r n des groupes de hauteur r, finis localement libres de rang n. Alors G r est fini localement libre, de hauteur r dans toutes les fibres. Nous pouvons regarder son premier noyau de Frobenius (G r ) 1 , qui est un groupe fini localement libre de hauteur 1, et le quotient G r /(G r ) 1 est un groupe fini localement libre de hauteur r -1, et continuer à dévisser ce quotient. Ainsi dans ce chapitre, nous nous concentrons sur les groupes de hauteur 1 et leur p-algèbre de Lie.

Nous avons décrit la structure du morphisme p-Lie n

Lie n ainsi que le champ algébrique p-Lie n dans le cas particulier de la dimension 3 (les dimensions 1 et 2 ne posent pas de problème particulier). Nous rappelons ici quelques définitions et résultats utiles.

Définition A. Soit R un anneau de caractéristique p > 0, et l une R-algèbre de Lie. On appelle p-application sur l une application x x [p] de l dans l qui vérifie : -Algèbres de Lie associatives, avec le morphisme de Frobenius.

(AL1) pour tout x ∈ l, ad x [p] = (ad x ) p (AL2) pour tout λ ∈ R and x ∈ l, (λx) [p] = λ p x [p] (AL3) pour tout x, y ∈ l, (x + y) [p] = x [p] + y [p] + p-1 i=1 s i (x, y) où pour tout i, s i (x, y) • • = - 1 i u ad u(1)
-L'algèbre de Lie d'un groupe algébrique.

-Les algèbres de Lie avec une forme de Killing non-dégénérée (Zassenhaus).

Maintenant ces résultats démontrés, nous étudions plus en détails l'espace de modules Lie 3 des algèbres de Lie de dimension 3. Or, pour tout n, le groupe GL n agit naturellement sur L n par changement de base, et il existe une présentation de champs :

Lie n = [L n / GL n ].
Nous pouvons ainsi nous ramener à étudier les orbites de l'action naturelle de GL n sur cet espace, c'est-à-dire les différentes classes d'isomorphismes d'algèbres de Lie. Historiquement, sur le corps des réels ou des complexes, les algèbres de Lie de dimension 3 ont été classifiées dès 1898 dans le papier de Bianchi [START_REF] Bianchi | Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti[END_REF]. Nous pouvons ensuite citer plusieurs travaux, dans lesquels la structure de variété algébrique de l'ensemble 

R 3 ⊗ R 3 ∼ -S 2 R 3 ⊕ ∧ 2 R 3 w ( 1 2 (w + w), 1 2 (w -w))
mais ici nous ne pouvons pas l'utiliser car nous travaillons sur Z. Cela vient du fait que l'idéal de définition de L 3 est engendré par une suite régulière.

Grâce à cette jolie théorie, nous sommes arrivés au résultat suivant :

Théorème D. 1) Le schéma L 3 est plat sur Z.
2) Le schéma L 3 a deux composantes irréductibles L

(1)

3 et L (2)
3 , toutes les deux plates sur Z, et avec des fibres géométriques intègres Cohen-Macaulay, de dimension 6.

Dans le Théorème A, nous étudions l'espace de modules des p-algèbres de Lie sur une stratification aplatissante du centre, car c'est dans ce contexte qu'apparaissent des résultats satisfaisants. Afin de toujours faire le lien avec les schémas en groupes de hauteur 1, nous avons étendu l'équivalence de catégories entre les groupes de hauteur 1 et leur algèbre de Lie, en montrant que les centres de ces deux objets se correspondaient.

Cela nous a permis de déduire des résultats sur la topologie de l'espace G 1 3 grâce aux résultats obtenus sur Lie 3 : Théorème E. Pour tout r ∈ {0, 1, 2, 3}, on note G 3,r l'ensemble des schémas en groupes de hauteur 1, localement libres de rang p 3 , dont le centre est localement libre de rang r. Alors G 3,r possède deux composantes irréductibles, que l'on note G -G 3,3 est lisse.

Résumé du deuxième chapitre

Dans la deuxième partie de la thèse, nous nous intéressons de nouveau au champ p-Lie n , et à celui G r n des schémas en groupes finis localement libres infinitésimaux de hauteur r. De tels champs sont non séparés. Ceci peut être mesuré de diverses manières : soit par l'étude des fibres de la diagonale, soit par l'étude du défaut d'unicité dans le critère valuatif de séparation. Nous étudions plutôt le deuxième point de vue, qui mène à l'étude des modèles des schémas en groupes, que nous appellerons plutôt prolongements pour éviter de petites ambiguïtés liées à la proximité entre les mots module et modèle.

Nous nous plaçons sur un anneau de valuation discrète d'égale caractéristique. Soit Ce faisceau est alors un objet géométrique, avec lequel nous pouvons travailler. Nous aimerions alors en savoir plus sur sa structure : est-il un schéma formel (i.e. P red est-il un schéma) ? Si c'est le cas, son schéma réduit P red est-il de type fini ? Quelle est sa dimension ? Quelles sont ses composantes connexes, irréductibles ? Pour cela, nous allons étudier sa structure algébrique interne, en introduisant plusieurs outils. Tout d'abord nous introduisons une adhérence schématique plate, qui est l'analogue de l'adhérence schématique classique, mais dans notre espace de module.

alors k un corps et notons R • • = k[[t]] l'anneau des séries formelles et K • • = k((t
On montre dans le lemme 2.1.4 que le foncteur des adhérences schématiques plates est représentable :

Lemme A. Soit A une k-algèbre et G ∈ P(A). Soit H K G ⊗ A((t)) / un sous- schéma fermé de G K ⊗ A((t)).
Le foncteur suivant :

H K G : {Aff A } Set A ′ {adhérences schématiques de H K dans H ⊗ A ′ [[t]]}.
est représentable par un ind-schéma. De plus le morphisme de ind-schémas

H K G Spec(A)
est un monomorphisme bijectif. 

Ω(G) = {A-Alg} Set B Aut k[[t]] (G)(B((t)))/ Aut k[[t]] (G)(B[[t]]).
Ensuite, nous introduisons une relation d'ordre naturelle sur l'espace des prolon- 

gements : soient G ′ et G deux prolongements de G K . On note G ′ ≥ G s'il
D K • • = n i=1 µ p a i ,K
et les groupes De plus dans l'exemple 2.3.17, nous donnons un cas où ce morphisme n'est pas injectif.

A K • • = n i=1 α p a i ,K
Nous passons ensuite à l'étude d'espaces de prolongements particuliers. Les cas des prolongements de µ p et de µ p 2 sur un anneau de valuation discrète de caractéristique résiduelle positive ont été traités en détail dans [T10], et ceux de µ p n sur un anneau de valuation discrète de caractéristique mixte ont été considérés dans [START_REF] Mézard | Models of group schemes of roots of unity[END_REF]. Pour le cas du groupe (α p,K ) n , nous utilisons une nouvelle fois l'équivalence de catégories entre les groupes de hauteur 1 et celle des p-algèbres de Lie. En effet, on peut montrer que le foncteur Lie donne une équivalence entre la catégorie des prolongements d'un groupe de hauteur 1 et celle des prolongements de son algèbre de Lie, vue comme fibré vectoriel en p-algèbres de Lie. De plus, puisque nous ne considérons que des objets plats, la fibre générique d'un prolongement G de G K (qui est donc isomorphe à G K ) est schématiquement dense dans G. Grâce à cette propriété, nous savons qu'un prolongement d'une algèbre de Lie abélienne est également une algèbre de Lie abélienne.

De la même façon tout prolongement d'une p-algèbre de Lie dont la p-application est l'application nulle est également une algèbre de Lie restreinte, avec comme p-application l'application nulle. Grâce à cette observation, en notant G K • • = (α p,K ) n , on obtient un isomorphisme :

P G K ∼ -Latt n G -O Lie(G)
entre les prolongements de G K et l'espace des réseaux, qui est un ind-schéma non réduit et ind-projectif sur Spec(k).

Nous étudions ensuite les prolongements du groupe α p 2 ,K . Tout d'abord, comme nous pouvons calculer explicitement le groupe d'automorphismes Γ de α p 2 ,K , et ainsi calculer l'orbite du prolongement standard (donné par α p 2 comme groupe sous-jacent, et par l'identité en fibre générique). Nous montrons alors que cette orbite est de dimension infinie. Nous obtenons donc ce résultat, qui répond à la question de la dimension de P : Théorème J. L'espace P α p 2 ,K est de dimension infinie sur k.

Enfin, grâce à l'existence de la famille minimale discrète de α p 2 ,K et au procédé de dilatation, nous pouvons calculer tous les prolongements de α p 2 ,K à k [[t]]. En effet, il suffit de faire toutes les dilatations possibles successivement. Grâce à l'action du groupe d'automorphismes Γ, nous pouvons nous arrêter lorsque nous rencontrons un prolongement dont le groupe sous-jacent est déjà apparu auparavant. Ainsi nous calculons alors l'ensemble P α p 2 (k) explicitement dans la sous-section 3.2, et nous pouvons résumer ces prolongements à l'aide d'un arbre couvrant, ce qui permet de de résumer de manière visuelle tous les prolongements.

Voici alors l'arbre couvrant des prolongements de α p 2 ,K . Comme indiqué ci-dessus, nous nous sommes arrêtés dès lors que nous avons rencontré un prolongement dont le groupe sous-jacent est déjà apparu dans l'arbre. Ainsi nous avons coloré en violet les prolongements nouveaux, et nous avons indiqué sur les flèches quels sont les groupes que nous avons dilatés. Toutes les notations et les calculs sont présentés dans la soussection 3.2. 

α (0) p 2 β 1 P 1 α p 2 α (-1) p 2 α p 2 α (1) p 2 Hu 1 Hu 2 • • • Hu n α p 2 H 0 {e} • • • • • • • • • • • • αp {e} {e} β p-1 P 1 α p 2 α p 2 Hu 1 Hu 2 • • • Hu n α p 2 H 0 • • • {e} β p P 1 α p 2 β 1 Hu 1 Hu 2 • • • Hu n α p 2 H 0 • • • {e} β p+1 P 1 β 1 β 2 Hu 1 Hu 2 • • • Hu n β 1 H 0 • • • {e} β p+2

Ouvertures

Cette thèse amène à plusieurs questions ouvertes. Nous en listons ici quelques-unes, et donnons quelques pistes de réflexion.

Concernant le chapitre 1, de nombreuses questions sont naturelles. Par exemple en ce qui concerne le lieu restreignable d'une algèbre de Lie donnée :

-Comment le lieu restreignable d'une algèbre de Lie varie en fonction de la caractéristique p ? -Peut-on trouver un schéma défini sur Z tel qu'il devienne le lieu restreignable de l'algèbre de Lie universelle sur F p pour tout premier p ? Concernant l'espace de modules des p-algèbres de Lie de dimension n :

-Peut-on connaître le nombre de ses composantes connexes ? -Peut-on connaître le nombre de ses composantes irréductibles ? -Peut-on connaître sa dimension ? Déjà en dimension 4 ce travail n'est pas clair car l'idéal de définition du schéma L 4 n'est pas engendré par une suite régulière, et ainsi nous ne pourrions pas, a priori utiliser les méthodes que nous avons utilisées pour L 3 afin d'obtenir des résultats satisfaisants. Nous pourrions peut-être utiliser l'outil informatique (comme [START_REF] Grayson | Macaulay2 a software system for research in algebraic geometry[END_REF]) pour essayer d'en apprendre plus sur la structure schématique de L n mais déjà en dimension 4 cela demande de travailler avec un anneau de polynômes de 24 inconnues, avec 16 relations donc les calculs deviennent vite compliqués. Concernant l'espace de module des prolongements P, nous aimerions à l'avenir en connaître plus sur sa structure schématique :

-Quelles sont ses composantes connexes ? -Quelles sont ses composantes irréductibles ? De plus nous avons vu que P n'était pas de dimension finie en général, et que le groupe Γ des automorphismes de G K agissait sur P. On peut se demander :

-Est-ce que le quotient P/Γ est de dimension finie ?

Une stratégie pour en connaître plus est d'utiliser les outils que nous développons dans cette thèse, à savoir l'adhérence schématique plate et les dilatations. En particulier l'existence du morphisme rationnel entre l'espace de modules des sous-groupes de la fibre spéciale d'un prolongement et P amène des questions naturelles :

-Peut-on contrôler le défaut d'injectivité du morphisme S red d P?

-Ce morphisme peut-il s'étendre à un ouvert plus grand ? Peut-on connaître le plus grand ouvert sur lequel il s'étend ? -S'il s'étend, est-il toujours égal à la dilatation ?

Chapter II

MODULI OF LIE p-ALGEBRAS

The aim of this chapter is to study height 1 group schemes, in families. For simplicity we write G n := G 1 n for the moduli stack of height 1 group schemes, finite locally free of rank n. This is of course by far the easiest case, because if we write S Spec(F p ) for a base scheme, and p-Lie n (S) for the category of n-dimensional restricted O S -Lie algebras, then the functor Lie gives us an equivalence:

Lie : G n (S) ∼ -p-Lie n (S).
We are thus reduced to studying the moduli of finite-dimensional Lie algebras and p-mappings on them. Our work is divided in two parts: in the first half of the paper we study the theoretical aspects, and in the second half we study in detail the threedimensional case. In the first part we study a Lie algebra L over a scheme S, that is, a vector bundle equipped with a bracket satisfying the Jacobi condition. The difference of two p-mappings on L takes its values in the center Z(L), which for this reason plays a key role. Our first main result is obtained after restriction to the flattening stratification S * S of the center, and is stated as follows (see Theorem 2.1.4 and Theorem 2.1.8).

Theorem A. Let L S be a Lie algebra vector bundle. Let us define the functor X = X(L) of the p-mappings on L, i.e. X(T ) = {p-mappings on L × S T } for all S-schemes T . Let Frob : S S be the Frobenius morphism. Then, X is representable by an affine scheme, and is a formally principal homogeneous space under

E • • = Hom(Frob * S L, Z(L)
). Now let us define the restrictable locus of L as follows:

S res = S res (L) : {S-schemes} -Set T -      {∅} if L T is restrictable over T ∅ otherwise.

Then if we suppose Z(L)

S flat, the following two conditions are verified:

1. S res is representable by a closed subscheme of S.

2. X S factors through S res and X S res is an affine space under the vector bundle E × S S res .

It follows in particular that if Z(L) is flat over S, then X S res is smooth.

In the rest of the chapter, we will put our interest on the moduli stack Lie n of n- turns out to be a typical case of a reducible scheme whose components are linked.

dimensional

Theorem B.

1) The functor L 3 is representable by an affine flat Z-scheme of finite type.

2) The scheme L 3 has two relative irreducible components L For the end, as we said before, we will come back to our equivalence between height 1 group schemes and restricted Lie algebras. Because the center of a Lie algebra plays a key role in our work, we extend the classical equivalence of categories between locally free Lie p-algebras of finite rank with finite locally free group schemes of height 1, showing that the centers of those objects correspond to each other in Proposition 4.1.2.

For this reason, for r ≤ n, let us denote by p-Lie n,r (S) the category of n-dimensional restricted O S -Lie algebras, whose center is locally free of rank r, and with the same idea, let us denote by G n,r (S) the category of finite locally free S-group schemes of order p n , of height 1, whose center is locally free of rank p r . Theorem C. Let S be a scheme of characteristic p > 0 and let G S be a finite locally free group scheme of height 1. Let Z(G) denote its center. Then

Z(Lie(G)) = Lie(Z(G)).

Then the classical equivalence of categories

Lie : G n (S) ∼ -p-Lie n (S)
restricts to an equivalence

Lie : G n,r (S) ∼ -p-Lie n,r (S).
So using this, we can focus on the object p-Lie n,r (S), and because we have the quotient stack presentation Lie n = [L n / GL n ], we can focus on L n , and especially on L res n the locally closed subscheme of L n where the universal Lie algebra L n L n is restrictable. In particular, if k is an algebraically closed field of characteristic p > 0, Theorem C and the previous results allow us to count the centerless finite locally free k-group schemes of order p 3 , of height 1. This number is finite, equal to 1 if p = 2 and (p + 3)/2 if p = 2 (See Proposition 4.1.3).

For the end, in the subsections 4.2, 4.3 and 4.4, we study the smoothness of the restrictable locus L res 3 ⊂ L 3 of L 3 in the different flattening strata of the center. For a better understanding of the following theorem, the reader can look at the pictures of Subsection 3.3. Theorem D. Let k be an algebraically closed field of characteristic p > 0. Let L res 3,r Spec(k) be the locally closed subscheme of L 3 where the center Z(L 3 ) is locally free of rank r, and L 3 is restrictable.

1. (i) If p = 2, the singular locus of L res 3,0 is the orbit of l -1 . The singularity remains after intersection with L

(1)

3 but L res 3,0 ∩ L (2)
3 is smooth. (ii) If p = 2, the scheme L res 3,0 is smooth and remains smooth after intersection with any irreducible component.

The singular locus of L res

3,1 is the orbit of h 3 . The singularity remains after intersection with L

(2)

3 but L res 3,1 ∩ L (1)
3 is smooth. 3. The scheme L res 3,2 is empty. 4. The scheme L res 3,3 is smooth and remains smooth after intersection with any irreducible component.

It is well known that in Lie algebra theory, the characteristics p = 2 and p = 3 are special. In the previous result we see that the characteristic p = 2 appears as a special case, and the reader can see that the case p = 3 needs special care e.g. in the proof of Theorem 4.3.2.

Thanks to Theorem C, all the assertions of Theorem D hold also for G 3,r , i.e. G 3,r splits in two irreducible components that we denote by G

(1) 3,r and G

(2) 3,r ; and we can say that if p = 2, G 3,0 is singular, but becomes smooth if we intersect with G

(2) 3,0 , if p = 2 it is smooth. Moreover G 3,1 is singular but becomes smooth when we intersect it with G

(1) 3,1 , G 3,2 is empty and G p 3,3 is smooth. We refer to Corollary 4.4.1 for more details.

Preliminaries on Lie algebras 1.Definition and theory of Lie p-algebras over a ring

In this section, we recall basic notations and facts on Lie algebras and Lie p-algebras.

We also recall Jacobson's theorems on existence and uniqueness of p-mappings for some Lie algebras over a commutative ring. The reader can find the proofs for Lie algebras over a field in Strade and Farnsteiner's book on Modular Lie algebras [START_REF] Strade | Modular Lie algebras and their representations[END_REF], and we verify easily that these proofs do not use the fact that the base ring is a field.

Let R be a base ring (commutative with unit). An R-Lie algebra is an R-module l endowed with an R-bilinear alternating map denoted by [•, •] : l ⊗ R l l satisfying the Jacobi identity. If R R ′ is a map of rings, there is an obvious structure of R ′ -Lie algebra on l ⊗ R R ′ . We denote by End(l) the R-module of R-linear endomorphisms of l, ad : l End(l) the map x [x, •] and Z(l) the kernel of ad, called the center of l.

If l is locally free of finite rank as a module, the formation of End(l) and ad commutes with base change, but the formation of the center does not in general. Now let us assume that R is an F p -algebra, and write Frob : R R its Frobenius endomorphism.

1.1.1. Definition. We say that a mapping (•) [p] : l l is a p-mapping if:

(AL1) for all x ∈ l, ad x [p] = (ad x ) p (AL2) for all λ ∈ R and x ∈ l, (λx) [p] = λ p x [p] (AL3) for all x, y ∈ l, (x + y)

[p] = x [p] + y [p] + p-1 i=1 s i (x, y)
where for all i, s i (x, y)

• • = - 1 i u ad u(1) ad u(2) . . . ad u(p-1) (y),
and u ranges through the maps from {1, . . . , p -1} to {x, y} taking i times the value

x.

These three conditions are called Jacobson's identities. Let us remark that this definition generalises the "Frobenius morphism", in the following sense: let A be an associative algebra. We can endow A with a Lie algebra structure, setting [x, y] • • = xyyx. Then in this context, x x p is a p-mapping.

For instance, we have

s 1 (x, y) = -[y, [y, . . . , [x, y ]] . . . ] p-1 and s p-1 (x, y) = [x, [x, . . . , [x, y ]] . . . ] p-1 .
1.1.2. Definition. A Lie algebra equipped with a p-mapping is called Lie p-algebra or we say that it is restricted. If a Lie algebra can be equipped with a p-mapping, we say that it is restrictable.

We also recall that a p-morphism between two Lie p-algebras is a morphism of Lie algebras that commutes with the p-mappings. A p-ideal is an ideal stable by the p-mappings. For example, the center Z(l) is always a p-ideal, by the axiom (AL 1).

The next proposition shows that we can endow the image (under a Lie algebra morphism) of a Lie p-algebra with a natural p-mapping.

1.1.3. Proposition. Let (l 1 , (•) [p] ) be a Lie p-algebra over R. Suppose that f : l 1 l 2 is a Lie algebra morphism such that ker(f ) is a p-ideal of l 1 . Then there exists exactly one p-mapping on f (l 1 ) such that f :

l 1 f (l 1 ) is a p-morphism.
Proof. See [START_REF] Strade | Modular Lie algebras and their representations[END_REF], Chapter 2, Section 2.1, Proposition 1.4.

Theorem.

Let l be a Lie algebra over R.

1. Let γ 1 and γ 2 be two p-mappings on l.

Then γ 2 -γ 1 : l Z(l) is Frobenius- semi-linear.
2. Conversely, let φ : l Z(l) be a Frobenius-semi-linear map, and γ 1 a p-mapping on l. Then, γ 1 + φ : l l is also a p-mapping.

Proof. See [SF88], Chapter 2, Section 2.2, Proposition 2.1.
The following corollary is a rewording of the previous theorem. It will be useful for the following sections where we will present results on Lie p-algebras but in a geometric way.

1.1.5. Corollary. Let l be a Lie algebra over R. We define

E • • = Hom Frob (l, Z(l)) = Hom R (l ⊗ R,Frob R, Z(l))
the set of Frobenius semi-linear maps from l to Z(l) and let X denote the set of pmappings on l. Then the map:

E × X X × X (φ, γ) (φ + γ, γ) is bijective.
In particular, the theorem says that if there exists a p-mapping on l, it is unique if and only if E = {0}, i.e. if l is locally free of finite rank, the p-mapping is unique if and

only if Z(l) = {0}.
The next proposition shows that the hypothesis (AL 1) is essential in the definition of a p-mapping, and gives an equivalent condition for a Lie algebra to be restrictable.

1.1.6. Theorem. (Jacobson) Let l be a Lie algebra, free over R with basis {x i } i∈I . Let us assume that for all i ∈ I, there exists y i ∈ l such that ad p x i = ad y i . Then, there exists a unique p-mapping (•) [p] : l l such that for all i ∈ I, x

[p] i = y i . Proof. You can find the proof in [START_REF] Strade | Modular Lie algebras and their representations[END_REF], Chapter 2, Section 2.2, Theorem 2.3, but the initial version is due to Jacobson, in [J62], Chapter 5, Section 7, Theorem 11.

1.1.7. Example. (Zassenhaus). You can have a look at [START_REF] Strade | Modular Lie algebras and their representations[END_REF], Chapter 1, Section 2.7, Theorem 7.9, or at Zassenhaus's article: [Z39] for more details. Let l be a free Lie algebra over R, with Killing form denoted by B. We suppose that B is non-degenerate, that is we suppose that the following map

l -Hom R (l, R) x -B(x, •)
is an isomorphism. Then there exists a unique p-mapping on l.

Vector bundles, quotient and image

In this section, S is a base scheme. We will study vector bundles equipped with a bracket, in order to study Lie algebras in families. We start by giving standard definitions and notations about vector bundles. We use the notation O S for the ring scheme Spec(O S [X]).

Definition.

Throughout all this paper, we call a generalized vector bundle any scheme which is an O S -module, isomorphic to an O S -module of the form V(F) • • = Spec(Sym(F)) with F any quasi-coherent O S -module. We also call vector bundles those for which F is locally free of finite rank. In this case, we use the usual covariant equivalence for which the sheaf of sections of our scheme is F ∨ .

Remark.

Let F = Spec(Sym(F ∨ )) be a vector bundle. Then F is the restriction of the functor of points of F to the small Zariski site of S, that is, to the open subschemes U ֒ S.

Definition. Let f : E

F be a morphism of generalized vector bundles over S.

We define the kernel and the image of f as the fppf kernel sheaf of f and the fppf image sheaf of f , i.e. for all fppf covers T S, we have

im(f )(T ) = y ∈ F (T ), ∃ T ′ T fppf covering and x ′ ∈ E(T ′ ) such that f (x ′ ) = y |T ′ .
1.2.4. Remark. The image is not representable by a scheme in general, but its formation commutes with base change.

In the following, exact sequences of (generalized) vector bundles will be understood as exact sequences of fppf sheaves of modules.

1.2.5. Definition. Let X S be a vector bundle and Y ֒ X an O S -submodule of X. We say that Y is a subbundle of X if Y is a vector bundle and X/Y is also a vector bundle.

1.2.6. Remark. It is equivalent to be a subbundle of X and to be a locally direct factor of X.

1.2.7. Proposition. Let F S be a generalized vector bundle. Let us write F = Spec(Sym(F)) for a given quasi-coherent O S -module F. Then:

1. F S is of finite presentation if and only if F is of finite presentation. 2. If F is of finite presentation, then F S is flat ⇔ F S is smooth ⇔ F is locally free of finite rank.
Proof. See Görtz and Wedhorn's book [START_REF] Görtz | Algebraic geometry I. Schemes with examples and exercises[END_REF], Chapter 7, Proposition 7.41.

For the following, it will be useful to characterize when an O S -submodule of a vector bundle is in fact a subbundle. In order to do this, we establish these two preliminary lemmas.

Lemma.

1. Let R be a Noetherian ring. Then any surjective endomorphism α : R R is an automorphism.

Let R be a ring and α

: R ′ R ′ a surjective R-algebra morphism. Then if R R ′ is of finite presentation, α is an automorphism.
Proof. 1. For a contradiction, let us assume that α is not injective: let x ∈ ker(α), x = 0 and n ∈ N. Then α n is surjective, so there exists y ∈ R such that x = α n (y). Thus, α n+1 (y) = 0. Then y ∈ ker(α n+1 ) \ ker(α n ). Thus, the sequence (ker(α n )) n≥0 is not stationary, then we get a contradiction.

2. Now we suppose that R is any ring and R R ′ is of finite presentation. Then by standard arguments, there exists a subring R 0 ⊂ R of finite type over Z and an

R 0 - algebra R 0 R ′ 0 of finite presentation such that R ′ ≃ R ′ 0 ⊗ R 0 R. Then if α : R ′ R ′ is a surjective R-algebra morphism, we can write α = α 0 ⊗ R 0 id R : R ′ 0 ⊗R R ′ 0 ⊗R where α 0 : R ′ 0 R ′ 0 is surjective.
Then thanks to the previous point, α 0 is an automorphism, then so is α, as we wanted.

1.2.9. Lemma. Let X S be a scheme and G S a flat group scheme of finite presentation, acting on X S. Let π : X Y be a faithfully flat S-morphism of finite presentation and G-invariant. Let us assume that the morphism

G × S X X × Y X (g, x) (x, g • x)
is an isomorphism. Then, Y is the quotient of X by G in the category of fppf sheaves on S.

Proof. Let F be an fppf sheaf on S and f : X F a G-invariant morphism. As X Y is an fppf morphism and F is an fppf sheaf, the following sequence is exact:

F (Y ) π * -F (X) ⇒ F (X × Y X)
and this sequence is isomorphic to this one:

F (Y ) π * -F (X)
act.

----⇒ proj.

F (G × S X).

And this proves the lemma.

Proposition. Let E S be a vector bundle and F ֒ E an O S -submodule of finite presentation. Then F is a subbundle of E if and only if F

S is flat.

Proof. Let us assume F is a subbundle of E. Then by definition, F S is flat.

Conversely, let us suppose F S is flat. Then, thanks to Proposition 1.2.7, we know that its sheaf of sections is locally free of finite rank. Then F is a vector bundle. We only need to show that E/F is also a vector bundle. Let us denote by E and by F the sheaves of sections of E and F . Then E and E, and F and F determine each other. Moreover, for any f : S ′ S base change and for any vector bundle V S, 

we have (V × S S ′ ) |Zar = f * (V |Zar ),
0 F ֒ E Y 0.
Dualizing this sequence, we obtain:

0 Y ∨ E ∨ F ∨ 0.
As F is a subgroup of E, it acts on E by left translation. We then have the action morphism

F × S E E × S E (f, e) (f + e, e)
given on the rings by:

Φ : Sym(E ∨ ) ⊗ Sym(O ∨ S ) Sym(E ∨ ) Sym(F ∨ ) ⊗ Sym(O ∨ S ) Sym(E ∨ ) 1 ⊗ X 1 ⊗ X X ⊗ 1 X ⊗ 1 + 1 ⊗ X for all X ∈ E ∨ = Sym 1 (E ∨ ).
Using the definition we see that the elements of the form

X ⊗ 1 -1 ⊗ X with X ∈ Y ∨ are
in the kernel of Φ, then we obtain a factorized map

Φ : Sym(E ∨ ) ⊗ Sym(Y ∨ ) Sym(E ∨ ) Sym(F ∨ ) ⊗ Sym(O ∨ S ) Sym(E ∨ ).
Let us show that Φ is an isomorphism. First, one can see that the source and the target of Φ are sheaves of polynomial algebras, with the same number of variables, equal to

rk(F) + rk(E). Moreover, Φ is surjective because Φ(1 ⊗ X) = 1 ⊗ X and Φ(X ⊗ 1 -1 ⊗ X) = X ⊗ 1.
Thus Lemma 1.2.8 2. shows that Φ is an isomorphism. Then we have an isomorphism

F × S E ∼ -E × Y E.
Hence, using Lemma 1.2.9, we see that Y is the quotient of E by F in the category of fppf sheaves on S, so E/F = Y = Spec(Sym(Y ∨ )) is a vector bundle and F is a subbundle of E.

1.2.11. Proposition. Let E 1 and E 2 be two generalized vector bundles. Let f : E 1 E 2 be a morphism of generalized vector bundles. If E 1 is of finite presentation and if

E 2 is of finite type, then ker(f ) is of finite presentation.
Proof. By definition, we have:

ker(f ) = Spec(Sym(F 1 ) ⊗ Sym(F 2 ) O S ) = Spec(Sym(F 1 ) ⊗ Sym(F 2 ) Sym(F 2 )/(F 2 )) = Spec(Sym Sym(F 2 ) (F 1 )/f # (F 2 )).
Then because F 1 is of finite presentation and F 2 is of finite type, ker(f ) is of finite presentation.

The next statement is a general result about images and kernels of morphisms of vector bundles, for which we could not find a proof in the literature. It gives conditions for the kernel and the image of a vector bundle morphism to be subbundles. For this result, we first recall that, for any morphism of schemes f : X Y , there exists a smallest closed subscheme of Y that factorizes f . We denote it by imsc(f ) and it is called the schematic image of f . See [START_REF] Görtz | Algebraic geometry I. Schemes with examples and exercises[END_REF] Definition and Lemma 10.29.

1.2.12. Theorem.

Let f : E • • = Spec(Sym(E ∨ )) F • • = Spec(Sym(F ∨
)) be a morphism of S-vector bundles with kernel K and with image I. Then the following are equivalent:

1) K S is flat.
2) I S is representable by an S-scheme of finite presentation.

Moreover, when these conditions are satisfied, we have:

(i) K is a subbundle of E and I is a subbundle of F . Moreover, the induced mor- phism E/K I is an isomorphism. (ii) I = imsc(f ). (iii) The sheaf of sections of K is K • • = ker(E F), that of I is I • • = im(E F), and E/K ≃ I.
Moreover, the formation of K, I, and K, I commute with base change.

Proof. 1) =⇒ 2)

We denote by K the sheaf of sections of K. Because E and F are both of finite presentation, Proposition 1.2.11 tells us that K is of finite presentation, then we can apply Proposition 1.2.10 to say that K is a subbundle of E. Let us write the following exact sequence:

0 K E Q 0 and let us denote Y • • = Spec(Sym(Q ∨ ))
. Doing the same proof as in Proposition 1.2.10, we see that Q is locally free of finite rank, and Y is the quotient of E by K in the category of fppf sheaves on S. Then I = Y = E/K is representable by an S-scheme of finite type, given by

I = Spec(Sym(Q ∨ )). Because Q is the cokernel of the injection K ֒ E, we can write Q ֒ F so we get a surjection F ∨ ։ Q ∨ hence I F / is a closed immersion. But because I factorises f , by definition of the schematic image, we have I ≃ imsc(f ). 2) =⇒ 1)
Let us suppose I is representable by an S-scheme of finite presentation. In order to prove that K S is flat, it is sufficient to prove that E I is flat. Let s ∈ S. Then I s is the image of E s F s and K s is its kernel. Because the formation of the kernel and of the image commutes with base change, we have an isomorphism of fppf sheaves

E s /K s ∼ -I s then E s I s is flat.
Then, using the "critère de platitude par fibres" (see [START_REF] Grothendieck | IV . Eléments de géometrie algébrique. Étude locale des schémas et des morphismes de schémas[END_REF],

troisième partie, théorème 11.3.10), we obtain that E I is flat. Moreover, the morphism E I is surjective in the topological sense because it is surjective as a morphism of fppf sheaves, then I S is flat.

Let us suppose now that these conditions are satisfied. Then looking at the proof of 1) =⇒ 2), we see that K and E/K are vector bundles on S. Using this same proof, we see that I is also a subbundle of F , and that E/K ≃ I ≃ imsc(f ). The first part of (iii) is true because K is a subbundle of E and I is a subbundle of F . Then for the last assertion, we have to say that the formation of K commutes with base change because it is a kernel, then because K and K determine each other, we see that K commutes with base change. Finally, I commutes with base change because it is a quotient, and then I commutes with base change because it is determined by I.

Lie algebra vector bundles

In the following, L is a Lie O S -algebra locally free of finite rank, whose bracket is denoted by [•, •]. We denote by L • • = Spec(Sym(L ∨ )) the associated vector bundle, and

[•, •] : L × L
L the morphism of schemes we deduce from the bracket of L, inducing a

Lie S-algebra structure on L. We call these kinds of objects Lie algebra vector bundles.

We denote by End(L) the O S -module of O S -endomorphisms of L, and ad : L -End(L). We denote by ad : L End(L) = Spec(Sym(End(L) ∨ )) the corresponding morphism of schemes, and for the end, we denote by

Z(L) • • = ker(ad : L End(L))
the center of L.

1.3.1. Remark. By definition, the formation of ad and End(L) commutes with base change, and because L is locally free of finite rank, the formation of End(L) does too.

Proposition. The center Z(L) of a Lie algebra vector bundle is of finite presentation.

Proof. This is straightforward from Proposition 1.2.11.

Then we see that we are in good conditions for using Proposition 1.2.7 with the center of a Lie algebra vector bundle.

Moreover, using Theorem 1.2.12 (iii), we know that if the center Z(L) S is flat, then it is determined by its sheaf of Zariski sections, which is given by

Z(L) • • = ker(ad : L End(L)),
and so we have

Z(L) = Spec(Sym(Z(L) ∨ )).

Counter-example. The hypothesis "Z(L)

S flat" is essential. Here is a counter-example: let R be a ring and L be the Lie R-algebra with basis {x, y} and bracket defined by [x, y] = ax for some a ∈ R such that a ∤ 0, that is, geometrically Let L S be a Lie algebra generalised vector bundle. We define its derived Lie algebra

L = Spec(Sym(Rx * ⊕ Ry * )). Let Spec(R ′ ) Spec(R) be an open immersion. Hence R ′ is a flat R-algebra. Hence a ∤ 0 in R ′ . So using the previous notation, we have Z(L) = 0. But whenever R ′ is a R/(a)-algebra, we have Z(L)(R ′ ) = L(R ′ ).
L ′ as the fppf image sheaf of [•, •] : L ⊗ L L.
In general, the derived Lie algebra is not representable. In fact, Theorem 1.2.12 tells us that it is representable if and only if the kernel of the bracket is flat. Moreover, in this situation, we have L ′ = Spec(Sym(L ′∨ )).

2 The scheme of Lie p-algebra structures

The functor of p-mappings and the restrictable locus

From now on, S is a scheme of characteristic p > 0, and we globalize the definition of a p-mapping from Lie algebras to a definition on Lie algebra vector bundles as follows.

Definition.

Let L be a Lie algebra generalised vector bundle. We say that a morphism of schemes (•) [p] : L L is a p-mapping on L if for all S-schemes T , it is a p-mapping on L(T ).

Definition.

Let X S be an S-scheme, and let E be a generalised vector bundle over S. We say that X is a formally principal homogeneous space under E if E acts on X such that the action map

E × S X X × S X (e, x) (e • x, x)
is a scheme isomorphism.

Moreover, if E is a vector bundle, we say that X is a formally affine space under E.

Moreover, if X S has local sections, i.e. if X S is a sheaf epimorphism for the fppf topology, we say that X is an affine space under E.

Remark.

One can show that the second condition is equivalent to have local sections for the étale or for the Zariski topology. This is because H 1 fppf (S, E) ≃ H 1 Zar (S, E). See Milnes's book on étale cohomology [START_REF] Milne | Étale cohomology[END_REF], Chapter III, §3, Proposition 3.7.

Notations: Let X be a scheme of characteristic p > 0. We denote by Frob X : X X or simply Frob the absolute Frobenius morphism of the scheme X.

Let L S be a Lie algebra vector bundle. Let us denote by E the generalised vector bundle of Frobenius-semilinear morphisms between L and Z(L):

E • • = Hom Frob (L, Z(L)) = Hom(Frob * S L, Z(L)) = (Frob * S L) ∨ ⊗ Z(L)
where the tensor product is taken in the category of vector bundles over S. If Z(L) is a vector bundle, then so is E.

2.1.4. Theorem. Let L S be a Lie algebra vector bundle. Let us define a set-valued functor as follows:

X : {S-schemes} -Set T - p-mappings on L × S T .
Then, X is representable by an affine scheme, and is a formally principal homogeneous space under E.

Proof. Let L be the Zariski sheaf of sections of L S. Let us show that X is representable. Because the claim is local on the target, we can suppose S = Spec(R) affine, small enough so that L is free with basis x 1 , . . . , x n on S, i.e.

L = O S x 1 ⊕ • • • ⊕ O S x n , x i ∈ L(S) = L(S) and L = Spec(O S [x * 1 , . . . , x * n ]).
Let us define for all i the following morphism:

f i : S x i -L ad -End(L) p -End(L)
where p : End(L) End(L) maps an endomorphism to its p-power. Then, by definition of the fiber product, for all T S and i ∈ {1, . . . , n}, we have

(L × End(L),(ad,f i ) S)(T ) = {y ∈ L(T ), ad y = (ad x i ) p |T }.
Then, by Jacobson's Theorem 1.1.6, the map

X (L × End(L);(ad,f 1 ) S) × (L × End(L);(ad,f 2 ) S) × • • • × (L × End(L);(ad,fn) S) γ (γ(x 1 ), . . . , γ(x n ))
is an isomorphism. This shows that X is representable. Let us show now that X is a formally principal homogeneous space under E. Let T S be an S-scheme. We can write

E(T ) = Hom G a,T -mod (Frob * L×T, Z(L)× S T ) = Hom G a,T -mod (Frob * L× S T, Z(L× S T ))
and X(T ) = p-structures on L × S T .

Then the morphism

E × S X X × S X (φ, γ) (φ + γ, γ)
is well-defined and is an isomorphism thanks to Corollary 1.1.5.

Remark.

If we suppose moreover that Z(L) S flat, then E is a vector bundle, so X is a formally affine space under E.

For the next theorem, we recall that a scheme X S is said to be essentially free if we can find a cover of S by affine opens S i , and for all i an affine and faithfully flat

S i -scheme S ′ i , and a cover (X ′ i,j ) j of X ′ i • • = X × S S ′
i by affine opens X ′ ij such that for all (i, j), the ring of functions of X ′ ij is a free module on the ring of S ′ i .

2.1.6. Theorem. Let S be a scheme. Let Z S be essentially free and let Y Z / be a closed subscheme of Z. Then, the Weil restriction defined by

Π Z/S (Y ) : {S-schemes} -Set T -      {∅} if Z T = Y T ∅ otherwise
is representable by a closed subscheme of S.

Proof. See [START_REF]Schémas en groupes[END_REF] Tome 2, exposé VIII, Théorème 6.4.

2.1.7. Lemma. Let 0 K E π -F 0
be an exact sequence of vector bundles (i.e. seen as fppf sheaves) on a scheme S. Then, π is surjective, Zariski-locally on S.

Proof. By hypothesis, E F is a K F -torsor for the fppf topology. Let f : S F be a section on F . Let E × F S be the fiber product made with the section f . Then by base

change, E × F S is a K F × F S-torsor for the fppf topology. But K F × F S = K and H 1 f ppf (S, K) = H 1 Zar (S, K)
because K is a vector bundle over S (see [START_REF] Milne | Étale cohomology[END_REF] for more details). Then E × F S is a Ktorsor over S, for the Zariski topology. Then there exists a covering of open immersions g : S ′ S and h : S ′ E × F S such that this diagram commutes:

S ′ g h z z ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ E × F S pr 1 / / S f E π / / F .
Then the Zariski section we are looking for is given by pr 1 •h : S ′ E.

2.1.8. Theorem. Let L S be a Lie algebra vector bundle whose center Z(L) S is flat. Let us recall the notation E • • = Hom Frob (L, Z(L)). Let X S be the functor of p-mappings on L defined above, and let S res = S res (L) be defined as:

S res : {S-schemes} -Set T -      {∅} if L T is Zar-loc. restrictable over T ∅ otherwise.
Then the following two conditions are verified:

1. S res is representable by a closed subscheme of S.

2. X S factors through S res and X S res is an affine space under the vector bundle E × S S res .

2.1.9. Remark.

-The functor S res could have been defined as the unique sub-functor of S such that -We could have defined S res to be the locus where a Lie algebra is fppf-loc.

L T is
restrictable, because this is less restrictive, but the following results will show that those conditions are the same.

-By Yoneda, we can see X(X) = Hom S (X, X) = ∅ because id ∈ X(X). But by definition, id ∈ X(X) corresponds to a p-mapping on L X . Then L X is Zar-loc.

restrictable and we call this mapping the universal p-mapping on L X .

Proof. 1. Let I be the image of ad. Because Z(L) is flat, I is a subbundle of End(L) by Theorem 1.2.12 (i). Let ρ : I End(L) be the p-th power map, restricted to I. Let W = W (L) be the subfunctor of S defined by:

W : {S-schemes} -Set T -      {∅} if I T is stable by ρ ∅ otherwise.
Let us show that W is representable by a closed subscheme of S. Let T S be an

S-scheme. Then, I T is ρ-stable if and only if ρ -1 (I T ) ∼ -I T . But I End(L)
/ is closed thanks to Theorem 1.2.12 (ii), and closed immersion are stable by base change.

Then ρ -1 (I) is a closed subscheme of I. We know that I S is essentially free because it is a vector bundle, then using Theorem 2.1.6 with ρ -1 (I) I / , we see that W is a closed subscheme of S.

Let us now show that W = S res . First, let us show S res ⊂ W . Let T S. If S res (T ) = ∅, there is nothing to prove. Let us suppose S res (T ) = ∅. Then by definition L T is Zar-loc. restrictable over T , hence there exists a p-mapping on L T , locally on T for the Zariski topology. We denote this p-mapping by γ. We want to show that I T is stable by ρ. That means we want to show that there exists a map σ : I T I T such that the following diagram commutes:

I T ρ T / / σ $ $ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ End(L T ) I T . ? i O O
Thanks to Theorem 1.2.12, we know that 

I T = L T /Z(L T ). But Z(L T ) ⊂ L T is an ideal of L T ,
L T π / / γ L T /Z(L T ) = I T σ i / / End(L T ) p L T π / / L T /Z(L T ) = I T i / / End(L T )
The big square in this diagram is commutative thanks to axiom (AL 1). As ρ = p • i,

we can calculate ρ • π = p • i • π = i • π • γ = i • σ • π.
But π is an epimorphism in the category of schemes, then we obtain ρ = i • σ, i.e ρ factors via i as we wanted. Then, S res ⊂ W .

Conversely, let T S be such that I T is stable by ρ. Let us show that X(T ) is nonempty, locally for the Zariski topology on T . As everything is local on S, and Z T is locally a direct factor in L T , we can assume T is affine, small enough such that

L = Spec(O T [x * 1 , . . . , x * n ]
). Then we have the exact sequence 0 Z(L) L ad -I 0 and Lemma 2.1.7 says that ad is surjective, Zariski locally on T . Then, thanks to Jacobson's Theorem 1.1.6, we know that we have existence of a p-mapping, Zariski locally on T . Then S res = W , so S res is representable by a closed subscheme of S.

2. Let T S be an S-scheme. Let γ ∈ X(T ). Then by definition, L T is restrictable so S res (T ) = {∅}. Then we define this map:

X(T ) S res (T ) γ ∅
that factorizes X S. Thanks to Theorem 2.1.4, and because X × S X = X × S res X, we know that

E S res × S res X ≃ X × S res X.
We need to show that X S res is a sheaf epimorphism for the fppf topology. It suffices to show that for all T S such that L T is Zar-loc. restrictable, we can find an fppf morphism T ′ T such that there exists a p-mapping on L T ′ . We just have to take for T ′ the Zariski covering on which L T possesses a p-mapping.

Corollary. With the same hypothesis, if

Z(L) = {0}, then X ≃ S res , so X S is a closed immersion.

A case of existence of local p-mapping

In general it is not easy to decide if a given finite-dimensional Lie algebra or a Lie algebra vector bundle admits a p-mapping. Here is a brief review of the easiest cases we have already seen, where such existence is known to hold:

1. Associative Lie algebras, with the Frobenius map.

2. Lie algebras of group schemes.

3. Lie algebras whose Killing form is nondegenerate (Zassenhaus).

4. Somewhat opposite to 3. is the abelian case, where γ = 0 is a p-mapping.

The last case corresponds to the situation where the derived Lie algebra has rank 0. In the rest of the section, we will extend that case to the mildly non-abelian case where the derived Lie algebra has rank 1.

Theorem.

Let L S be a Lie algebra vector bundle, such that L ′ is a locally free subbundle of rank 1. Then, there exist p-mappings, Zariski-locally on L. So in this case S res = S.

Proof. In order to prove this, we can suppose L is free, such that L ′ is free, given by

L ′ = G a • v.
Then the bracket is given on the functor of points by:

[•, •] : L × L L (x, y) f (x, y)v
where f is a bilinear alternating form.

Let us write {x

1 , • • • , x n } for a basis of L. For any i ∈ [1, • • • , n], we write y i • • = f (x i , v) p-1 x i .
Then for any y ∈ L we can write :

ad y i (y) = f (f (x i , v) p-1 x i , y)v = f (x i , v) p-1 f (x i , y)v.
Moreover, we can write

ad x i (ad x i (y)) = ad x i (f (x i , y)v) = f (x i , y) ad x i (v) = f (x i , y)f (x i , v)v.
Then by induction, we find

ad p x i (y) = f (x i , y)f (x i , v) p-1 v.
Thus, (AL 1) is checked on the basis {x 1 , • • • , x n }. Therefore, thanks to Jacobson's theorem 1.1.6, we know that there is a p-mapping on L.

3 The moduli space of Lie p-algebras of rank 3

In the remaining sections, we illustrate the previous results in the case of three- acts by change of basis, by this action for any S-scheme T :

dimensional
GL n (T ) × L n (T ) L n (T ) (M, [•, •] T ) [•, •] ′ T • • = v ⊗ w M -1 [M v, M w] T .
Hence we are led to studying the GL n -equivariant geometry of L n . In the following we will focus on the case n = 3. For a fixed prime p, we are interested in the moduli stack p-Lie 3 of restricted Lie algebras. For this, we use the morphism π : p-Lie 3 Lie 3

to the moduli stack of three-dimensional Lie algebras. Thanks to Theorem 2.1.8, after passing to the flattening stratification of the center of the universal Lie algebra, the map π is an affine bundle, so before studying p-Lie 3 , we will focus on Lie 3 , i.e. on L 3 .

For our purposes, it is important to obtain a description available in all characteristics. Even better, by defining L 3 as a functor over Z and proving its representability we gain insight into its scheme structure and the way the fibers vary. For all this section, we denote by L 3,k the base change of L 3 with a field k. Here is a summary of our main results:

3.0.1. Theorem.
1) The functor L 3 is representable by an affine flat Z-scheme of finite type.

2) The scheme L 3 has two relative irreducible components L

(1)

3 and L

(2)

3 which are both flat with Cohen-Macaulay integral geometric fibers of dimension 6.

In 2) it is noteworthy that the component we call L

(1) 3 is very simple: it is isomorphic to 6-dimensional affine space A 6 Z . This is crucial because it turns out that the other component L

(2)

3 is linked to it in the sense of liaison theory as developed by Peskine and Szpiro in [START_REF] Peskine | Liaison des variétés algébriques[END_REF], which provides powerful tools to deduce its properties.

Here we use the terminology "relative irreducible components" in the sense that L (2) 3,k are the irreducible components of L 3,k . We use this terminology because we are over the ring of integers Z then it makes more sense. For more details the reader can have a look at [START_REF] Romagny | Composantes connexes et irréductibles en familles[END_REF], where the definition is given in 2.1.1, with a small (but not important for us) difference. Following the notation of loc. cit., we will show in the following that Irr(L 3 /Z) = Spec(Z) ∐ Spec(Z).

Classification over an algebraically closed field

To begin with, we recall the classification of isomorphism classes of three-dimensional Lie algebras over any algebraically closed field k. That is, the description of the (GL 3orbits of) geometric points of the moduli space L 3,k . Historically, the isomorphism classes of complex and real three-dimensional Lie algebras were classified as early as 1898 in Bianchi's paper [START_REF] Bianchi | Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti[END_REF]. After the development of the algebraic theory of Lie algebras, the topic appeared in the lecture notes of Jacobson's course [J62]. From this moment the focus shifted to the algebraic variety structure of the set L n of n-dimensional Lie algebras in work of Vergne [V66], Carles [START_REF] Carles | Variétés des algèbres de Lie de dimension inférieure ou égale à 7[END_REF], Carles and Diakité [START_REF] Carles | Sur les variétés d'algèbres de Lie de dimension ≤ 7[END_REF], Kirillov and Neretin [KN84] and others. There, emphasis was put on low dimensions. Note that this bibliographic selection is by no means complete. Here, in order to allow varying primes p, we need to reformulate the classification of 3-dimensional Lie algebras over algebraically closed fields in a characteristic-free way.

Some Lie algebras: four discrete ones, and a family.

We introduce the five Lie algebras involved in the classification in a way that allows a characteristic-free statement. Notationally speaking, if l is a Lie algebra over a ring R, free of rank 3 with basis {x, y, z} and bracket defined by [x, y] = ax + by + cz, [x, z] = dx + ey + f z, [y, z] = gx + hy + iz for some coefficients a, . . . , i ∈ R, then we say that " the Lie algebra structure of l is given by the matrix

     a d g b e h c f i      ."
Moreover, for any Lie algebra l and any v ∈ l, the map ad v is linear, so we will always represent this linear map by its matrix in the base {x, y, z}.

The first four Lie algebras are defined over the ring of integers R = Z:

(1) the abelian Lie algebra ab 3 with structure given by the zero matrix,

(2) the Heisenberg Lie algebra h 3 with structure matrix 0 0 1 0 0 0 0 0 0 , (3) the Lie algebra r, with structure matrix 0 0 0 1 1 0 0 1 0 , (4) the simple Lie algebra s with structure matrix

0 -1 0 0 0 1 1 0 0 .
The fifth Lie algebra is a family defined over the polynomial ring R = Z[T ]:

(5) the Lie algebra l T is defined by the structure matrix 0 0 0 1 0 0 0 T 0 .

More about the simple Lie algebra.

The reader wondering about the place of sl 2 and psl 2 in the picture will find the following explanations useful. Let us write {X, Y, H} and {X ′ , Y ′ , Z ′ } for the classical bases of sl 2 and psl 2 , and {x, y, z} for that of s. We can write a sequence of morphisms of Z-Lie algebras:

sl 2 π -psl 2 f -s ad ֒-gl 3 with π and f given by X X ′ 2x, Y Y ′ y, H 2Z ′ 2z. The morphism f is an isomorphism over Z[1/2],
but a contraction onto the subalgebra generated by y in the fiber at the prime p = 2. For any algebraically closed field k, the Lie algebra s ⊗ k is the only simple three-dimensional Lie algebra over k because in characteristic p = 2 we have s⊗k ≃ sl 2 ⊗k, while if p = 2 the algebra s⊗k is known as W (1, 2) ′ , the derived algebra of the Jacobson-Witt algebra. See [START_REF] Strade | Modular Lie algebras and their representations[END_REF], § 4.2 for more on W (n, m), and especially

Strade's paper [S07], Theorem 3.2 for the case of characteristic 2. In characteristic p = 2, the algebra sl 2 happens to be isomorphic with the Heisenberg algebra h 3 . Moreover, again when 2 is invertible the morphism π is an isomorphism so psl 2 is isomorphic to sl 2 i.e. to s. But in characteristic 2, using the adjoint representation of psl 2 in gl 3 we see the bracket is given by the one denoted by l 1 is the above classification. The following picture gives a summary of the situation. Note that in characteristic 2, the Lie algebra sl 2 is restrictable not simple while the Lie algebra s is simple not restrictable. It can be surprising to find that the group U 3 of upper-triangular unipotent matrices of size 3 and the reductive group SL 2 have the same Lie algebra in characteristic 2. But those Lie algebras are not isomorphic as restricted Lie algebras. Indeed, let k be a field of characteristic 2. Seeing SL 2 as a subgroup of GL 2 , we can see sl 2 as a 2-subalgebra of M 2 (k), where the 2-mapping on M 2 (k) is the square map. Then we obtain that the 2-mapping on sl 2 is the one given on a basis {x, y, z} by x, y 0 and z z. Doing the same for U 3 , i.e. seeing the group U 3 as a subgroup of GL 3 , we obtain that the 2-mapping on h 3 is the one sending the basis {x, y, z} on 0, and so the 2-mapping is given on any vector by ax + by + cz bcx.

We can see that there is no element sent to itself, so the two mappings are different.

3.1.

3. More about the family l T . The Lie algebra l 0 has center of dimension 1 and a 1-dimensional derived Lie algebra g ′ 0 = Span(y). Now let us suppose t ∈ k for some field k and t = 0. Then the Lie algebra l t has a trivial center and 2-dimensional derived Lie algebra g ′ t = Span(y, z). The adjoint action ad : l t End(g ′ t ) factors through l ab t := l t /g ′ t which is free of rank 1. Any generator of l ab t is of the form ux for some unit u ∈ k × and acts on g ′ t with eigenvalues {u, ut}. We see that the ratio of eigenvalues is well-defined up to inversion: that is, the class of t modulo the equivalence relation t ∼ t -1 is independent of u and thus intrinsic to l t . In this way we see that for every field k and elements t, t ′ ∈ k × we have:

l t ≃ l t ′ if and only if t ′ ∈ {t, t -1 }.
Here is the main theorem of this subsection: Let us remark that it is almost the same classification as in characteristic 0, the difference is that the Lie algebra s is changed by sl 2 , but those Lie algebras are isomorphic when p = 2.

Theorem. Let k be an algebraically closed field and denote by p its characteristic. Then any Lie algebra of dimension

We split the proof in three parts: first of all we list the isomorphism classes (3.1.5), then we compute the dimensions of the orbits (3.1.7) and finally we determine the restrictable Lie algebras (3.1.8).

Proof of the statement on isomorphism classes.

In order to have the list of the different orbits, we are following the proof in Fulton and Harris's book [START_REF] Fulton | Representation theory. A first course[END_REF], Chapter 10. In this chapter the proof is divided in three parts, depending on the dimension of the derived Lie algebra. In this book though, the classification is done over the ring of complex numbers. The reader can verify that the proof can be generalised to any field of characteristic = 2, and up to a change of basis for the Lie algebra whose Lie structure is given by the matrix

     0 -2 0 0 0 2 1 0 0     
, we find the classification we claim in the theorem (indeed changing X into 2X and H into 2H, we find the Lie algebra s).

Now let us suppose char(k) = 2. The reader can verify that the proof done in [START_REF] Fulton | Representation theory. A first course[END_REF] can still be generalised until the loc. cit. §10.4, where the authors consider Lie algebras with derived Lie algebra of rank 3. Indeed, in this part, they use an argument that is no longer true in characteristic 2: a certain endomorphism denoted by ad H has three eigenvalues: 0, α and -α, and because α = 0, these three eigenvalues are different, 

then
[H, [X, Y ]] = [X, [H, Y ]] + [Y, [H, X]] = [X, Y ] + [X, Y ] = 0.
Then [X, Y ] = βH with β = 0 because the derived Lie algebra of g is of dimension 3.

Changing X into aX and Y into aY where a 2 = β -1 , we can suppose β = 1 and using the matrix notation, we can suppose the bracket of g is given by

     0 1 1 0 0 1 1 0 0     
in the basis {X, Y, H}. Using the basis x = X, y = X + Y + H and z = X + H, we obtain

             [x, y] = [X, Y ] + [X, H] = H + X = z [x, z] = [X, H] = X = x [y, z] = [X, H] + [Y, X] + [Y, H] + [H, X] = [X, Y ] + [Y, H] = H + X + Y = y.
Hence we finally find the Lie algebra structure of s, so we find our classification.

Remark.

Here we use the terminology of [START_REF] Fulton | Representation theory. A first course[END_REF] for the Lie algebras l t , in particular for the Lie algebra l -1 . Actually you can find in the literature (for example in [START_REF] Kirillov | The variety A n of structures of ndimensional Lie algebras[END_REF]) the terminology m(2) for this one. This name is due to the fact it is the Lie algebra of the group M(2) of euclidean motions of the plane.

Proof of the statement on the dimension of the orbits.

From now on, we use the notation o(l) for the orbit of a Lie algebra l under the group GL 3 . In order to find the dimension of the orbits, we can calculate the dimension of the stabilizer, and use the orbit-stabilizer relation. Let l be a Lie algebra over k, i.e.

l ∈ L 3,k (k). Then the orbit of l is the image of this k-morphism:

GL 3 (k) -L 3,k (k) A A • l. Let A =      a 1,1 a 1,2 a 1,3 a 2,1 a 2,2 a 2,3 a 3,1 a 3,2 a 3,3     
∈ GL 3 (k) be a matrix in the stabilizer of o(l). Then, we write

[Av, Aw] = A[v, w]
for the elements of the basis and we can find the equations for the stabilizer. For example let us fix a t in some field k and let us do it for l t . We obtain theses conditions:

         (a 1,1 a 2,2 -a 2,1 a 1,2 )y + t(a 1,1 a 3,2 -a 3,1 a 1,2 )z = a 1,2 x + a 2,2 y + a 3,2 z, (a 1,1 a 2,3 -a 1,3 a 2,1 )y + t(a 1,1 a 3,3 -a 3,1 a 1,3 )z = ta 1,3 x + ta 2,3 y + ta 3,3 z (a 1,2 a 2,3 -a 2,2 a 1,3 )y + t(a 1,2 a 3,3 -a 1,3 a 3,2 )z = 0
Then for instance if t = 0, the conditions of the stabilizer are now:

         a 1,2 = a 3,2 = 0, a 1,1 a 2,2 = a 2,2 a 1,1 a 2,3 -a 1,3 a 2,1 = 0 a 2,2 a 1,3 = 0 .
But det(A) = a 2,2 a 3,3 = 0 then a 1,3 = 0 and a 1,1 = 1, so a 2,3 = 0. Hence

Stab(o(l 0 )) =          A ∈ GL 3 (k), A =      1 0 0 a 2,1 a 2,2 0 a 3,1 0 a 3,3               .
Then dim(Stab(o(l 0 ))) = 4, so dim(o(l 0 )) = 5. Now let us suppose t = 0 and t = 1.

Doing the same type of calculation, we obtain again:

Stab(o(l t )) =          A ∈ GL 3 (k), A =      1 0 0 a 2,1 a 2,2 0 a 3,1 0 a 3,3               .
Then dim(Stab(o(l t ))) = 4 and dim(o(l t )) = 5.

We can do the same calculations for the other orbits in order to find the announced dimensions. The details are left to the reader.

3.1.8. Proof of the statement on the restricted orbits. Now we can have a look at the restrictable orbits. Let us suppose for this section that char(k) = p > 0.

1. On the abelian Lie algebra, γ ≡ 0 is a p-mapping.

2. The Lie algebra h 3 = Lie(U 3 ) is algebraic, hence restrictable.

3. The Lie algebra s is restrictable if char(k) = 2, because then s ≃ sl 2 so it is algebraic. But if char(k) = 2, s is not restrictable: one can see that ad 2 x is not a linear combination of ad x , ad y and ad z , then the condition (AL 1) can not be verified.

4. Let l • • = r with basis {x, y, z}. We have

ad x =      0 0 0 0 1 1 0 0 1      ; ad y =      0 0 0 -1 0 0 0 0 0      and ad z =      0 0 0 -1 0 0 -1 0 0      . Then we have (ad x ) p =      0 0 0 0 1 p 0 0 1      =      0 0 0 0 1 0 0 0 1      .
Hence (ad x ) p is not a linear combination of ad x , ad y and ad z , so we conclude that r is not restrictable. 5. For the end let t ∈ k and let us have a look at the Lie algebra l t with basis {x, y, z}. We have

ad x =      0 0 0 0 1 0 0 0 t      ; ad y =      0 0 0 -1 0 0 0 0 0      and ad z =      0 0 0 0 0 0 -t 0 0     
.

Then we have

(ad x ) p =      0 0 0 0 1 0 0 0 t p     
and (ad y ) p = (ad z ) p ≡ 0. 

L res 3 × l T = Spec k[T ]/(T p -T ).
Then we see that L res 3 × l T is closed in Spec(k[T ]).

3.1.10. First consequences for the topology of L 3,k .

To finish this subsection, we derive the first topological description of the irreducible components of the moduli space that the classification just given affords. Finer information can only be obtained with the more advanced algebraic tools of liaison theory presented in Subsection 3.2. First, note that:

-the points corresponding to the Lie algebras ab 3 and h 3 are in the closure of the orbit of the simple algebra s;

-the point corresponding to the Lie algebras r is in the closure of the orbit of the 1-parameter algebra l T (to see this, let k be a field and let t ∈ k, and consider the Lie algebra defined by the structure matrix 0 0 0 1 1 0 0 t 0 . For t = 1, the structure constants of this algebra in the basis {x, y, y + (t -1)z} are those of l t and when t 1 the limit of this family is r). Therefore, in order to single out the irreducible components of L 3,k it is enough to look at o(s) and o(l T ). We consider their orbit morphisms:

ev s : GL 3 × Spec(Z) -L 3 , ev l T : GL 3 × Spec(Z[T ]) -L 3 .
We obtain the following result.

Lemma.

In each geometric fiber over a point Spec(k) Spec(Z), the following hold: ev s and ev l T have 6-dimensional image, their sum

GL 3,k ∐ GL 3,k[T ]
L 3,k is dominant, and L 3,k has pure dimension 6 with two irreducible components.

Proof. Everything takes place in the fiber over Spec(k) Spec(Z) so for simplicity we omit k from the notation. The stabilizer of s has dimension 3, hence its orbit (the image of ev s ) has dimension 6. For the orbit of l T we may as well remove the value t = 1 without changing the dimension. Then the stabilizer of l T is flat, of dimension 2 over Spec(k[T, (T -1) -1 ]), hence it has dimension 3 over k, and again the orbit (the image of ev l T ) has dimension 6. The fact that GL

3,k ∐ GL 3,k[T ]
L 3,k is dominant follows from the fact that the remaining orbits lie in the closure of those two, as we indicated before the lemma. Finally since both images of ev s and ev l T are distinct, irreducible, of dimension 6, their closures are the irreducible components of L 3,k .

Schematic description of the moduli space L 3

Let us now focus on the schematic structure of the moduli space of three-dimensional Lie algebras. We first prove the representability of the functor L 3 over the ring of integers.

Definition.

The moduli space of based Lie algebras of rank three is the following functor:

L 3 : Sch -Set T - [•, •] : O 3 T ⊗ O 3 T O 3 T ; where [•, •] is a Lie bracket .

Proposition. This functor is representable by a closed subscheme of A 9 Z , given by

Spec Z[a, b, c, d, e, f, g, h, i] ah + di -f g -bg, ie + bd -f h -ae, hc + dc -af -bi .
Proof. Let T be a scheme, and let {x, y, z} be a O T (T )-basis of O T (T ) 3 . (a,b,c,d,e,f,g,h,i Then by definition, we have:

Let us write

L 3 (T ) = [•, •] : O 3 T × O 3 T O 3 T , where [•, •] is a Lie bracket ≃ (a, . . . , i) ∈ O T (T ) 9 ; ah + di -f g -bg = ie + bd -f h -ae = hc + dc -af -bi = 0 .
One can easily verify that the conditions on the 9-tuple correspond to the Jacobi condition.

Notations: From now on, we will use the following notations:

-

Q 1 • • = ah + di -f g -bg, Q 2 • • = ie + bd -f h -ae and Q 3 • • = hc + dc -af -bi and R 3 • • = Z[a, b, c, d, e, f, g, h, i] (Q 1 , Q 2 , Q 3 ), hence L 3 = Spec(R 3 ). For any ring A, we write R 3,A for R 3 ⊗ A.
-Let us remark that the Jacobi condition can be written as

         Q 1 = ah + di -f g -bg = 0 Q 2 = ie + bd -f h -ae = 0 Q 3 = hc + dc -af -bi = 0 ⇔          (a -i)h + (b + f )(-g) + (d + h)i = 0 (a -i)(-e) + (b + f )(-h) + (d + h)b = 0 (a -i)(-f ) + (b + f )(-i) + (d + h)c = 0.
Then let us denote

M • • =      h -g i -e -h b -f -i c      and X • • =      L 1 • • = a -i L 2 • • = b + f L 3 • • = d + h      .
Then, the Jacobi condition is verified if and only if M X = 0.

Now we can remark that a product matrix-vector vanishes when, either the vector is the zero vector, or the matrix has a non-trivial vector in its kernel, and this means that its determinant vanishes.

-For these reasons, we finally set

L • • = (L 1 , L 2 , L 3 ), I • • = (Q 1 , Q 2 , Q 3 ) and J = (Q 1 , Q 2 , Q 3 , det(M )) = I+(det(M )),
and we will see that the two irreducible components are given, as schemes, by the ideals L and J, and we will give a more precise description of them. When it is clear from the context, we will still write I, J and L for those ideals seen in R 3,A for any ring A.

Description of the irreducible components.

3.2.4. Theorem. The affine scheme L 3 can be decomposed in two irreducible components: the first one is

L (1) 3 • • = Spec Z[a, . . . , i]/L ≃ A 6
and the second one is

L (2) 3 • • = Spec Z[a, . . . , i]/J .
These irreducible components are linked to each other, they are both Cohen-Macaulay, flat over Z with integral geometric fibers of dimension 6.

Let A be any regular ring (for the following we will use

A = Z, A = Q or A = F p ). We have R 3,A / (L ⊗ A) ≃ A[a, b, c, d, e, g] so L ⊗ A is prime in L 3,A . Let us show that the ideal L describes an irreducible component of L 3,A . Let us denote D • • = A[a, . . . i].
3.2.5. Lemma. The ideal L is minimal in D among the prime ideals containing I.

Proof. Let p ∈ Spec(D) be such that I ⊂ p ⊂ L. First of all, because we have

M      L 1 L 2 L 3      =      Q 1 Q 2 Q 3      , we obtain det(M )      L 1 L 2 L 3      = (com(M )) t      Q 1 Q 2 Q 3     
.

So we can write

( * )          det(M )L 1 = (-hc + bi)Q 1 + (gc -i 2 )Q 2 + (-gb + ih)Q 3 det(M )L 2 = (ec -bf )Q 1 + (hc + if )Q 2 + (-ie -bh)Q 3 det(M )L 3 = (ei -hf )Q 1 + (f g + ih)Q 2 + (-h 2 -ge)Q 3 . But det(M ) = -ch 2 + gbf + ei 2 -gec + hbi -ihf , then det(M ) = -cd 2 -gb 2 + ea 2 -gec -dba -adb = 0 ∈ D/L.
Then det(M ) / ∈ L so det(M ) / ∈ p. Thanks to ( * ), this means that L 1 , L 2 , L 3 ∈ p, i.e. p = L. So L is a minimal prime among the prime ideals containing I.

So now we need to show that J also describes schematically an irreducible component of L 3,A . In order to do this, we use liaison theory. Let us recall that for any ideal

I 1 and I 2 of a ring R, we write [I 1 : I 2 ] • • = {x ∈ R, xI 2 ⊂ I 1 }.
3.2.6. Definition. Let J and L be two ideals in a ring R. We say that J and L are linked in R by an ideal I if L = [I : J] and J = [I : L]. 

Lemma. The sequences

(L 1 , L 2 , L 3 ) and (Q 1 , Q 2 , Q 3 ) are regular in A. Proof. It is trivial for (L 1 , L 2 , L 3 ). For (Q 1 , Q 2 , Q 3 ),
• • = B[a, b, d, f, h, i]. Then, -Q 1 ∈ C[c, e]
[g] seen as a polynomial in g has a regular leading coefficient, hence is regular

-Q 2 ∈ (C[g]/(Q 1 ))[c, e]
seen as a polynomial in e has a regular leading coefficient, hence is regular

-Q 3 ∈ (C[g, e]/(Q 1 , Q 2 ))[c]
seen as a polynomial in c has a regular leading coefficient, hence is regular.

Corollary. Let us denote by M t the multiplication by the matrix

M t : D 3 D 3 . The two regular sequences {L 1 , L 2 , L 3 } and {Q 1 , Q 2 , Q 3 } define two Koszul complexes denoted by K.[L 1 , L 2 , L 3 ] and K.[Q 1 , Q 2 , Q 3 ],
and we have a morphism of Koszul complexes between them:

0 D D[2] 3 D[4] 3 D[6] 0 0 D[3] D[4] 3 D[5] 3 D[6] 0. det(M t ) d Q 3 ∧ 2 M t d Q 2 M t d Q 1 id d L 3 d L 2 d L 1 .

Here: D[n] is the graded ring D where we shift the graduation n times, in order to have a morphism of graded rings (i.e. a polynomial of degree d in D is seen in the (dn)-th graduation of D[n]).

Proof. This diagram comes from the definition of the Koszul complex (see for example Eisenbud's book [E95], Section 17, Subsection 17.2) and the functoriality of the Koszul complex: indeed we have ∧ 0 (D 3 ) = ∧ 3 (D 3 ) = D and ∧ 1 (D 3 ) = ∧ 2 (D 3 ) = D 3 , and the morphism id is just the morphism ∧ 0 M t , the morphism M t is ∧ 1 M t and the morphism

det(M t ) is ∧ 3 M t .
3.2.9. Remark. In the following, we will not need the graduation of our complex, so we will be writing and using it without specifying the graduation.

Corollary. A projective resolution of D/[I : L] can be obtained by taking the mapping cone of the map of Koszul complexes

(M t ) ∨ : K.[L 1 , L 2 , L 3 ] ∨ K.[Q 1 , Q 2 , Q 3 ] ∨ .
Proof. This is straightforward from Proposition 2.6 in [START_REF] Peskine | Liaison des variétés algébriques[END_REF].

Corollary. The ideal [I :

L] is perfect of height 3. Moreover,

[I : L] = I + det(M ) = J.
Proof. Using the notations of Corollary 3.2.8, we can see that the mapping cone of M t is the following complex:

0 D ⊕ 0 u -D 3 ⊕ D D 3 ⊕ D 3 -D ⊕ D 3 f -0 ⊕ D 0
where the morphism f is defined by:

f : D ⊕ D 3 D (x, y, z, t) x + yL 1 + zL 2 + tL 3 .
Then, dualizing the complex, we obtain:

0 (D) ∨ f ∨ -(D ⊕ D 3 ) ∨ (D 3 ⊕ D 3 ) ∨ (D 3 ⊕ D) ∨ (D) ∨ 0
where the morphism f ∨ is defined by:

f ∨ : (D) ∨ (D ⊕ D 3 ) ∨ φ (x, y, z, t) φ(x + yL 1 + zL 2 + tL 3 ) .
Replacing the morphism f ∨ with its image, and showing this image is projective, we manage to reduce the length of this resolution. Indeed, let us denote by H the kernel of f :

H • • = {(x, y, z, t) ∈ D 4 , x + yL 1 + zL 2 + tL 3 = 0}.
Then let us show

im(f ∨ ) = (D 4 /H) ∨ ≃ (D 3 ) ∨ = {ψ ∈ (D 4 ) ∨ , ψ |H ≡ 0}.
Let ψ be a form on D 4 such that ψ(H) = 0. Then for all y, z, t ∈ D, ψ(-yL 1 -zL 2 -tL 3 , y, z, t) = 0.

Let (x, y, z, t) ∈ D 4 . Then ψ(x, y, z, t) = ψ(x + yL 1 + zL 2 + tL 3 , 0, 0, 0) + ψ(-yL 1 -zL 2 -tL 3 , y, z, t)

= ψ(x + yL 1 + zL 2 + tL 3 , 0, 0, 0).

Let us set φ : D D, x ψ(x, 0, 0, 0). Then we obtain ψ = f ∨ (φ). The other inclusion is trivial.

Then, im(f ) is free over D, so the projective resolution given by Corollary 3.2.10 can be changed into this one: 

0 im(f ) ∨ (D 3 ⊕ D 3 ) ∨ (D 3 ⊕ D) ∨ ( 
u : D D 3 ⊕ D 1 (-Q 3 , Q 2 , -Q 1 , det(M )).
Then the dual map is given by

u ∨ : (D 3 ⊕ D) ∨ D ∨ φ (1 φ(-Q 3 , Q 2 , -Q 1 , det(M ))).
Then the cokernel of this morphism is given by D/(I + det(M )). So by uniqueness of the cokernel, we have

[I : L] = I + det(M ) = J.
In order to show that the ideals L and J are linked, it remains to show that L = [I : J]. It is one of the purposes of the following proposition, which is the main result of liaison theory that we will be using in this chapter. It will give us powerful tools to understand the ideal J thanks to the ideal L. For more convenience, let us denote by L • • = L/I and J • • = J/I the two quotient ideals in the quotient ring R 3,A . We have seen that J is the annihilator of L in R 3,A .

3.2.12. Proposition. The ideal L is the annihilator of J, and R 3,A /J has Cohen-Then,

l * t Ω 1 L (2) 3 = l * t Z • da ⊕ • • • ⊕ Z • di dQ 1 , dQ 2 , dQ 3 , d det(M )
and we have the following equalities:

dQ 1 = a(dh) + h(da) + d(di) + i(dd) -f (dg) -g(df ) -b(dg) -g(db) dQ 2 = i(de) + e(di) + b(dd) + d(db) -f (dh) -h(df ) -a(de) -e(da)
dQ 3 = h(dc) + c(dh) + d(dc) + c(dd) -a(df ) -f (da) -b(di) -i(db) d det(M ) = (f g + hi)db + (-eg -h 2 )dc + (-cg + i 2 )de + (bg -hi)df + (-ce + bf )dg + (-2ch + bi -f i)dh + (bh -f h + 2ei)di.
Then,

l * t Ω 1 L (2) 3 = Z • da ⊕ • • • ⊕ Z • di ((t + 1)dg, dd -tdh, di + tdf, tdg) = Z • da ⊕ • • • ⊕ Z • di (dg, dd -tdh, di + tdf )
so it is a free Z-module of rank 6. But thanks to Proposition 3.2.12, we know that L

(2) 3 has dimension 6, thus this Z-point is smooth and the proof is done.

Corollary.

The ideal J is prime in R 3,k for any algebraically closed field k, and the scheme Spec(k[a, • • • , i]/J) is integral.

Proof. Let k be an algebraically closed field. We have proved in the Lemma 3.1.11 that

V (J) = o(l T ) ⊂ R 3,k
which is irreducible. Moreover, we saw in Lemma 3.2.13 that it has a smooth point.

But because we know from Proposition 3.2.12 that it is Cohen-Macaulay, then without associated points, so because it is generically reduced, it is reduced. Hence V (J) is integral and J is prime.

Proposition. In the polynomial ring A[a, . . . , i], we have the equality

I = J ∩ L.
Proof. Thanks to Corollary 3.5 in Section 3, Subsection 3.2 of [E95], it is sufficient to show that (J ∩ L) p ⊂ I p for all primes p associated to I. Thanks to Proposition 3.2.12, we know that L is an associated prime of I. Now let p be such a prime ideal. As (J ∩ L) p ⊂ J p ∩ L p , it is sufficient to prove that J p ∩ L p ⊂ I p .

- Otherwise, we have L ⊂ p ⊂ J, hence I = J ∩ L = L which is impossible. Then p = J and J is a minimal prime among the ones containing I.

Now we have our two relative irreducible components denoted by L

(1)

3,A and L

(2)

3,A , we still have to prove the flatness of L

(2) 3 over the ring of integer Z. We need a preliminary lemma first.

Lemma. Let R be any commutative ring with unit, and

d ≥ 1. Let 0 P d+1 P d • • • P 1 M 0
be an exact sequence of R-modules such that all P 1 , . . . , P d are R-flat and we suppose that this exact sequence is still exact after any base change R R/I where I is an ideal of R. Then, M is also R-flat.

Moreover, if R is Noetherian, we only have to verify the condition for all R R/I

where I is a prime ideal.

Proof. We do an induction on the integer d.

If d = 1, then this is classic. If d > 1, let 0 P d+2 φ d+2 --P d+1 φ d+1 --P d • • • P 1 M 0
be an exact sequence with d + 3 terms, which is like in the statement. Let us define

C • • = coker(φ d+2 ) = P d+1 / im(φ d+2 ) = P d+1 / ker(φ d+1 ) = im(φ d+1 ) = ker(φ d ).

Because the inclusion P d+2 φ d+2

--P d+1 is universally injective by hypothesis, the cokernel C is flat over R. Then the following exact sequence:

0 C φ d -P d • • • P 1 M 0
is an exact sequence of d + 2 terms which is like in the statement. Then by induction, we conclude that M is R-flat.

Let us now prove the result when R is Noetherien. Because the localisation morphism

R p∈Spec(R) R p
is faithfully flat, we can suppose that R is local. This case is well-known (see for example [START_REF] Raynaud | Critères de platitude et de projectivité[END_REF], 3.1.6).

Corollary. The scheme L

(2)

3 is flat over Spec(Z).

Proof. Let us take D = Z[a, • • • , i] and let us take the corresponding resolution of

Z[a, • • • , i]/J found in Corollary 3.2.10
. This gives a resolution of flat Z-modules

0 P d+1 P d • • • P 1 Z[a, • • • , i]/J 0.
Let I be a prime ideal of Z. The sequence above is still exact after any base change of the form Z Z/I because the base change is given by the resolution of Corollary 3.2.10, where we take D = Z/I[a • • • , i]. Then we can apply the previous Lemma 3.2.17.

Proposition.

The entire scheme L 3 is flat over Z, and the ideal I is radical.

Proof. Because we have proved I = L ∩ J in Proposition 3.2.15, the following map is injective:

Z[a, . . . , i]/I ֒ Z[a, . . . , i]/L × Z[a, . . . , i]/J P (P , P ).
But both of the rings that appear on the right-hand side are flat over Z, then without torsion, so Z[a, . . . , i]/I is without Z-torsion, then it is Z-flat.

Moreover, because L and J are both radical and I = J ∩ L, then I is radical.

Summary: picture of a geometric fiber of our moduli space

In characteristic p = 2.

Let k be an algebraically closed field of characteristic p = 2. Here is a picture representing the two irreducible components of L 3,k . The points correspond to the different orbits on it, and we specify the restrictable ones. We also write on it the dimension of the center of those Lie algebras.

ab 3 , 3 h 3 , 1 l -1 , 0 r, 0 l t = l t -1 , 0 t / ∈ F 2 l 0 , 1 s, 0 A 6 k L (2) 3,k Caption: • Restrictable orbit.
• Non-restrictable orbit

Orbit of dimension 6

Orbit of dimension 5

Orbit of dimension 3

Orbit of dimension 0

In characteristic p = 2.

Let k be an algebraically closed field of characteristic p > 2. As on the previous page, here is a picture representing the two irreducible components of L 3,k with the orbits on it, and the dimension of the center of those Lie algebras.

ab 3 , 3 h 3 , 1 l -1 , 0 r, 0 l 1 , 0 l t = l t -1 , 0 t / ∈ Fp l t = l t -1 , 0 t ∈ Fp, t = 0, ±1 l 0 , 1 s, 0 A 6 k L (2) 3,k Caption: • Restrictable orbit.
• Non-restrictable orbit

Orbit of dimension 6

Orbit of dimension 5

Orbit of dimension 3

Orbit of dimension 0

Smoothness of L res 3 on the flattening stratification of the center

We did not study all the equations of the singular locus of L 3 , but using [START_REF] Grayson | Macaulay2 a software system for research in algebraic geometry[END_REF],

we can see that the singular locus of L

(2) 3,Q over Q is given by an ideal, whose radical is I 2 (M ) + L, where I 2 (M ) is the ideal generated by the two-minors of the matrix M , the one introduced in Subsection 3.2. In order to study the singular locus over Z, we prefer to carry out explicit tangent space computations.

In all this chapter, let us denote by L n • • = A n

Ln the universal Lie algebra of rank n over L n . Then in the following, we will study the smoothness of the restricted locus L res 3 ֒ L 3 of the universal Lie algebra L 3 L 3 . As said before, we know from Theorem 2.1.8 that it is interesting to study it after passing to the flattening stratification of the center. So for all this section, let us denote k = F p . All the schemes are understood as k-schemes.

Thanks to the theory of Fitting ideals (the reader can look at [SP23, Tag 0C3C]

for more details), we can have an explicit description of the different strata. We write Z(L n ) the center of the universal Lie algebra. Let

L n =: Z -1 ⊃ Z 0 ⊃ Z 1 ⊃ . . .
be the closed subschemes defined by the Fitting ideals of Z(L n ). Then, for r ≥ 0, let us define L n,r • • = Z r-1 \ Z r to be the locally closed subscheme of L n where Z(L n ) is locally free of rank r. Actually in the following, we will not need to calculate explicitly the flattening stratification. We use the notation L res n,r for the locally closed subscheme of L n where the center Z(L n ) is locally free of rank r, and L n is restrictable, i.e.

L res n,r • • = L n,r ∩ L res n .

Correspondence between the centers of the group and the

Lie algebra

In the following, we will extend the classical equivalence of categories between locally free Lie p-algebras of finite rank with finite locally free group schemes of height 1,

(see [START_REF]Schémas en groupes[END_REF], exposé VII A , section 7) showing that the centers of those objects correspond to each other. This is remarkable because the centers are not flat in general. In order to do this we will use the functor denoted by Spec * in [SGA3], Tome 1, exposé VII A , §3.1.2. We need first a preliminary lemma. For all this section, let S be a scheme of characteristic p > 0. We will use the exponential notation which is explained in [START_REF] Demazure | Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs[END_REF], Chapitre III, §4, n°3.

Lemma.

Let G S a group scheme. Let R be any ring. Then the following morphism:

Lie(G)(R) exp --G(R[α, β]/(α 2 , β 2 )) x -exp(αβx) is injective. Proof. Let us write R(α, β) • • = R[α, β]/(α 2 , β 2 ) and let f : Spec(R(α, β)) Spec(R[ǫ]/(ǫ 2
)) be the scheme morphism coming from this injective ring morphism: R[ǫ]/(ǫ 2 ) ֒ R(α, β), ǫ αβ. Then f is surjective as a topological map, so because f # is injective, f is an epimorphism in the category of schemes. Then this gives an injective

morphism G(R(ǫ)) ֒ G(R(α, β)) which gives by restriction to the Lie algebras an injective morphism

Lie(G)(R) ֒ G(R(ǫ)) ֒ G(R(α, β)).

Proposition. Let G

S be a finite locally free group scheme of height 1. Let Z(G) denote its center. Then

Z(Lie(G)) = Lie(Z(G)).

Proof. For more convenience, let us write g • • = Lie(G) and z • • = Z(g). When l is a Lie p-algebra, we use the notation G p (l) • • = Spec * (U p (l)) where U p (l) is the universal restricted enveloping algebra of l and where the notation Spec * comes from [START_REF]Schémas en groupes[END_REF],

exposé VII A , §3.1.2. and is defined for any S-scheme T S by:

G p (l)(T ) • • = Spec * (U p (l))(T ) = {x ∈ U p (l) ⊗ O T (T ), ǫ(x) = 1 and ∆(x) = x ⊗ x}.
Let us show z ⊂ Lie(Z(G)). The inclusion z ⊂ g gives a bialgebra inclusion of universal restricted enveloping algebras U p (z) ⊂ U p (g), and looking at the definition, we see that this gives an inclusion of functors:

G p (z) ⊂ G p (g) = G then we obtain [x, y] = 0 for all y ∈ Lie(G)(R) then x ∈ Z(Lie(G))(R).
Thanks to this result, we can count the number of centerless finite locally free group schemes of order p 3 of height 1 on an algebraically closed field:

4.1.3. Proposition. Let k be an algebraically closed field of characteristic p > 0. Up to isomorphism, -if p = 2, there is only 1 such group scheme.

-if p = 2, there are (p + 3)/2 such group schemes.

Proof. It suffices to count the centerless restrictable Lie algebras of rank 3, classified in 3.1.8. Indeed, because they are centerless, they have only one structure of Lie p-algebra so there is only one algebraic group scheme corresponding to it. For p = 2, it is useful to remember that, with our notations, the Lie algebras l t and l t -1 are in same orbit when t = 0.

This extended equivalence allows us to use the properties of L res n to deduce properties on the moduli space of finite locally free group schemes killed by Frobenius. That is, let S be a scheme of characteristic p > 0, and for r ≤ n, let us recall the notations p-Lie n,r (S) for the category of n-dimensional restrictable O S -Lie algebras whose center is locally free of rank r, and G n,r (S) the category of finite locally free group schemes of order p n , of height 1, whose center is locally free of rank p r . With these notations and using the previous results, we know that the functor Lie gives us an equivalence of categories:

Lie : G n,r (S) ∼ -p-Lie n,r (S).
Moreover, because GL n is smooth, the quotient map L n Lie n is smooth, so studying the smoothness of L n is equivalent to study the one of Lie n . Let us denote by is smooth for all r ≤ n. This is the reason why in the following, we will study the smoothness of L res 3,r for r ≤ 3.

L p n • • = X(L n ) the

4.2

In the stratum L 3,0 4.2.1. Study of L res 3,0 in the whole scheme L 3 . Thanks to the results we have established before, we can imagine all the k-points which are in the orbit of l -1 are singular in L res 3,0 because this orbit is in the intersection of two irreducible components. Actually, thanks to a calculation of tangent space, we will see that they are the only singular ones.

Theorem.

If char(k) = 2, the singular locus of L res 3,0 is the orbit of l -1 . If char(k) = 2, the scheme L res 3,0 is smooth. Proof.

-If p = 2. We see in the classification Theorem 3.1.4 that the points of L res 3,0 are the points which are in the orbit of l t with t ∈ F p and t = 0, and the points in the orbit of s. Let us start with l t , i.e. let us denote for t ∈ F * p as before the k-point l t • • = Spec(k) L 3,k . We need to calculate the local ring of this point. We will show that

O L res 3,0 ,lt = O L res 3 ,lt is smooth. Let us compute T L res 3 ,lt . Let us denote by N the F p [ε]-module F p [ε]x ⊕ F p [ε]y ⊕ F p [ε]z.
Let us recall the definition of the tangent vector of a scheme X at a point x:

T x (X) = {φ : Spec(k[ǫ]) X, im(φ) = {x}}.
Then we can write

T L res 3 ,lt = Structures of Lie algebra on N , restrictable, such that N ⊗ F p = l t .
Let us use again the matrix notation for a Lie algebra structure over N . We denote it by

l t,ε • • =      aε dε gε 1 + bε eε hε cε t + f ε iε      .
First of all, l t,ε is a Lie algebra structure if and only if its coefficients satisfy the conditions denoted by Q 1 , Q 2 and Q 3 above, that is if and only if

         (1 + t)g = 0 d -th = 0 ta + i = 0.
Then, l t,ε is in T L res 3 ,lt if and only if it is restrictable. In order to see the conditions to be restrictable we will calculate ad p x , ad p y and ad p z for any p prime. Let us denote

β • • = 1 + t + • • • + t p-1 =    0 if t = 1 1 if t = 1.
Now, using the matrix notation in the basis {x, y, z}, we have

ad x =      0 aε dε 0 1 + bε eε 0 cε t + f ε      then for all p prime ad p x =      0 aε dε 0 1 βeε 0 βcε t      . Likewise, ad y =      -aε 0 gε -1 -bε 0 hε -cε 0 iε      hence ad 2 y =      0 0 0 aε 0 -gε 0 0 0     
and for all p > 2, ad p y ≡ 0.

Likewise,

ad z =      -dε -gε 0 -eε -hε 0 -t -f ε -iε 0      , hence ad 2 z =      0 0 0 0 0 0 tdε tgε 0     
and for all p > 2, ad p z ≡ 0. Then ad p

x is a linear combination of ad x , ad y and ad z if and only if it exists λ = λ 0 + λ 1 ε, µ = µ 0 + µ 1 ε and ν = ν 0 + ν 1 ε such that:

    0 aε dε 0 1 βeε 0 βcε t     =     (-µ 0 a -ν 0 d)ε (λ 0 a -ν 0 g)ε (λ 0 d + µ 0 g)ε -µ 0 -(bµ 0 + µ 1 + ν 0 e)ε λ 0 + (bλ 0 + λ 1 -ν 0 h)ε (λ 0 e + µ 0 h)ε -tν 0 -(µ 0 c + sν 0 + tν 1 )ε (λ 0 c -ν 0 i)ε tλ 0 + (f λ 0 + tλ 1 + µ 0 i)ε    
Then ad p x is a linear combination of ad x , ad y and ad z if and only if

         bt = f c = βc e = βe.
Because ad p y ≡ ad p z ≡ 0, they are always linear combination of ad x , ad y and ad z . Hence we obtain the following conditions:

( * )    (1 + t)g = d -th = i + ta = 0 bt -f = c -βc = e -βe = 0.
So we have to distinguish different cases. First let us suppose t = -1. Then the conditions ( * ) are equivalent to:

         d + h = 0 a -i = 0 b + f = 0.
Hence dim(T L res 3 ,l -1 ) = 6. But dim(o(l -1 )) = 5 from Theorem 3.1.4, hence the local ring of l -1 is singular.

Let us suppose t = 1. Then the conditions ( * ) are equivalent to

   g = d -h = a + i = 0 b -f = c = e = 0 so dim(T L res 3 ,l 1 ) = 3 = dim(o(l 1 )
). Then the point l 1 is smooth. Then let us suppose t = 1 and t = -1. Then the conditions ( * ) are equivalent to:

   g = 0 d -th = i + ta = bt -f = 0
Hence dim(T L res 3 ,lt ) = 5. But dim(o(l t )) = 5, hence the local ring of l t is regular. Doing the same calculations for s ∈ L res 3,0 , we obtain these conditions:

         a -i = 0 b + f = 0 d + h = 0.
Hence dim(T L res 3 ,s ) = 6. But dim(o(s)) = 6, hence the local ring of s is regular. -Let us suppose p = 2. Then the only point in L res 3,0 is l 1 . So using the same notations as before, we see in this case, the conditions are equivalent to

   d -h = a + i = b -f = 0 c = e = g = 0 so dim(T L res 3 ,l 1 ) = 3. But dim(o(l 1 )) = 3, hence the local ring of l 1 = l -1 is regular.

Study of L res

3,0 in the first irreducible component. We start by establishing a result on the scheme structure of L res 3,0 in the first irreducible component, in the case we choose a field k of characteristic p = 2.

Proof. We can do the same proof as before, we just need to add the condition det(M ) = 0. That is, if we keep the same notations as before, we need to add to the system ( * ) the condition gt = 0. Hence the new system is given by

   g = d -th = i + ta = 0 bt -f = c -βc = e -βe = 0.
So in this case, we obtain

dim(T L res 3 ,lt ) =    3 if t = 1 5 if t = 1.
4.2.8. Remark. By a simple computation, we can see that any deformation of Lie algebras which are in the stratum L 3,0 is centerless without any condition. It is because

the stratum L 3,0 is open in L 3 .

In the stratum L 3,1

Let us do the same calculations for the points of L 3,1 .

Study of L res

3,1 in L 3 .

Proposition.

The k-point h 3 is singular in L res 3,1 , and l 0 is smooth.

Proof.

-For the point h 3 , as in the previous section, let us denote by h 3,ε a deformation of the Lie algebra h 3 :

h 3,ε • • =      aε dε 1 + gε bε eε hε cε f ε iε      .
Then, h 3,ε gives the constants of structure of a Lie algebra if and only if b+f = 0.

Moreover, h 3ε is restrictable if and only if:

-if p = 2: b = c = e = 0
-if p = 3: there is no condition -if p > 3: there is no condition.

For the end, the center Z(h 3,ε ) is locally free of rank 1 if and only if:

-if p = 2: there is no condition

-if p = 3: b = c = e = 0 -if p > 3: b = c = e = 0
So to conclude we use the fact that dim(o(h 3 )) = 3.

-For the point l 0 let us do the same. Then using the same notations, l 0,ε gives the constants of structure of a Lie algebra if and only if d = g = i = 0. Moreover, l 0,ε is restrictable if and only if f = 0. For the end, the center Z(l 0,ε ) is always locally free of rank 1. So we conclude using the fact that dim(o(l 0 )) = 5.

Study of

L res 3,1 in L (1)
3 .

Proposition. The k-point

h 3 is smooth in L res 3,1 ∩ L (1) 3 .
Proof. We have to add to the conditions found before the conditions a = i and d = -h.

Study of L res 3,1 in L

(2) 3 .

Proposition. The k-point

h 3 is singular in L res 3,1 ∩L (2) 
3 and the point l 0 is smooth.

Proof. For both of those points, the condition det(M ) = 0 is always satisfied for any deformation.

In the stratum L 3,3

This case is really simple because the condition "to be in the stratum L 3,3 " implies, using the same notations as in the previous subsections, that all the coefficient of the matrix ab 3,ε are 0. Then, dim(T L res 3,3 ,ab 3 ) = 0, in the whole scheme and in the irreducible components. Then the point ab 3 is smooth seen in L res 3,3 .

As stated in the introduction, we can apply the previous results of smoothness to the moduli space G 3,r , and this gives the following result:

4.4.1. Corollary. The scheme G 3,r splits in two irreducible components that we denote by G

(1)

3,r and G

(2) 3,r , and we have:

-If p = 2, G 3,0 is singular, but becomes smooth after intersection with G (2) 3,0 , if p = 2, G 3,0 is smooth. -G 3,1

is singular but becomes smooth when we intersect it with G

(1) 3,1 . -G 3,2 is empty and G 3,3 is smooth.

Proof. We have an equivalence of categories given by the functor Lie : G 3,r p-Lie 3,r . Moreover, the quotient morphism L p 3,r p-Lie 3,r is smooth. Then, because L p 3,r L res 3,r is smooth, we can apply the results of the subsections 4.2, 4.3 and 4.4. can happen that the set of prolongation maps G ′ G taking the special fiber into the chosen subgroup scheme of the special fiber is in fact empty. The second is that when trying to construct the dilatation, we have to ensure flatness, which we can do only for very specific rings (like low-dimensional regular ones). At least dilatations are well-known on a DVR (e.g. on k[[t]]), and the work done in [START_REF] Bosch | Ergeb. Math. Grenzgeb[END_REF] will allow us to study in details the k-points of the ind-scheme P, and we will be able to represent P(k) as the set of vertices of a certain tree. We also succeed in constructing dilatations over -As stated above, in all this chapter we fix a finite group scheme G K over Spec(K).

In the literature, you can also find the notation G K for the generic fiber of a certain group G. In order to avoid any ambiguity, for any group scheme G defined over R, we will write 

G ⊗ K • • = G × R Spec(K)

-Moreover, for any group G Spec(A[[t]]), we call special fiber of G the Agroup scheme G × A[[t]] Spec(A), where the A[[t]]-module structure of A is given by A[[t]]

A, t 0. It will be denoted by G |t=0 .

Definition.

Let A be any k-algebra.

-A prolongation of G K above A is a pair (G, i) where G is a finite locally free group

scheme over A[[t]], and i is an A((t))-isomorphism of groups i : G

K ⊗ A((t)) ∼ - G ⊗ A((t)). -A morphism between two prolongations (G 1 , i 1 ) and (G 2 , i 2 ), called a prolon- gation map, is a morphism of A[[t]]-group schemes f : G 1 G 2 such that f ⊗ A((t)) = i 2 • i -1 1 .
-We denote by P G K (A) the set of prolongations of G K above A, up to isomorphisms. When there will be no ambiguity on the group scheme G K , we will just write P(A) instead of P G K (A).

Remark.

-In the literature, we can also find the terminology model instead of prolongation.

Here we choose this word for reasons of euphony, the radical "mod-" (as in model, module, moduli) being a little invasive.

-By flatness (and because t ∤ 0 ∈ A[[t]]), the generic fiber of a prolongation G is schematically dense in G.

-For any prolongation G of a group scheme G K , we have G⊗A((t)) ≃ G K ⊗A((t)).

Then, thanks to the previous remark, if there exists a prolongation map between two prolongations, it is unique.

-Thanks to the previous remark, the category of prolongations is equivalent to a partially ordered set, and the order relation will be studied below.

-It is important to emphasize that, in the datum of a prolongation of a group scheme, the given isomorphism on the generic fiber is equivalent to the datum of an inclusion

O G ⊂ O G K ⊗ A((t)) that turns O G into a lattice of A((t)) rk(G) (see Definition 1.2.11).
In the following, we will sometimes use Cartier duality in order to take advantage of the symmetry it provides. But here, we do not suppose that the groups we are working with are commutative: indeed in particular we would like our setting to include the group schemes of rank p 3 and the corresponding Lie algebras that appear in Chapter II, Section 3 (e.g. SL 2 ), which are not commutative in general. Then, in order to use Cartier duality freely, we will also define the space of prolongations of a Hopf algebra (not necessarily commutative or co-commutative).

So for the rest of this chapter, let us fix H K a finite Hopf algebra over K. The definition of a prolongation of a Hopf algebra can be stated as follows:

1.1.4. Definition. Let A be any k-algebra.

-A prolongation of H K above A is a pair (H, i) where H is a Hopf algebra,

finite locally free over A[[t]] and i is an A((t))-isomorphism of Hopf algebras

i : H ⊗ A((t)) ∼ -H K ⊗ A((t)). -A morphism between two prolongations (H 1 , i 1 ) and (H 2 , i 2 ), called a prolonga- tion map, is a Hopf algebra morphism f : H 2 H 1 such that f ⊗A((t)) = i -1 1 •i 2 .
-We denote by P H K (A) the set of prolongations of H K above A, up to isomorphisms.

We need to verify that the prolongations of a Hopf algebra are generalisations of prolongations of group schemes, in the sense that these objects coincide in the commutative case.

Proposition. Let us suppose H K is commutative. Let A be a k-algebra, and let us take H ∈ P H K (A).

In this case H is also commutative, and the functor Spec gives an equivalence of categories:

P H K (A) ∼ -P Spec(H K ) (A) H -Spec(H).

Proof. Let us write H A((t)) • • = H ⊗ A[[t]] A((t))

for the image of H by the tensor product functor. By flatness, the canonical morphism i :

H ⊗ A[[t]] H ֒ H A((t)) ⊗ A((t)) H A((t)) is injective. Let x ⊗ y and y ⊗ x ∈ H ⊗ A[[t]] H. Then because H A((t)) is commutative, i(x ⊗ y) = i(y ⊗ x), then by injectivity x ⊗ y = y ⊗ x.
1.1.6. Remark. Doing the same proof, we see that if H K is co-commutative, then so is H for any prolongation H ∈ P H K (A).

Theorem.(Cartier duality) Let A be any k-algebra. The linear dual functor gives a natural and involutive isomorphism:

P H K (A) ∼ -P H * K (A) H -H * .
Proof. The reader can verify that the generic fiber of the dual is the dual of the generic fiber. Then this functor is well defined, and because all Hopf algebras H of P H K (A) are finite locally free by definition, they verify the ordinary Cartier duality H ∼ -H * * so it is involutive.

Let us see some basic properties of prolongations.

1.1.8. Proposition. Let G 1 and G 2 ∈ P G K (A) be two prolongations of G K . Let f : G 1 G 2

be a prolongation map. Then f is an epimorphism in the category of separated A[[t]]-schemes. Moreover, because there is at most one prolongation map between two prolongations, in particular any prolongation morphism is an epimorphism and a monomorphism in the category of prolongations.

Proof. Let Z Spec(A[[t]]) be any separated scheme and

v 1 , v 2 : G 2 Z be two morphisms such that v 1 • f = v 2 • f . Let us write U • • = G 2 ⊗ A((t)). Then U is schematically dense in G 2 , and U ⊂ im(|f |). So we have v 1|U = v 2|U . But because Z is separated, we obtain v 1 = v 2 .
Let us remark that we can also define the moduli space of prolongations of a morphism:

1.1.9. Definition. Let H K and G K be two K-group schemes. Let f K : H K G K be a K-morphism. Let A be a k-algebra. Then a prolongation of f K above A is a morphism f : H G where H ∈ P H K (A) and G ∈ P G K (A), such that the following diagram is commutative:

H G H K ⊗ A((t)) G K ⊗ A((t)). f f K
1.1.10. Remark. Like before, if there exists a morphism f : H G which is a prolongation of a morphism f K , this one is unique.

Representability of the functor of prolongations

The functor of all the prolongations of a finite group scheme G K (or of a finitedimensional Hopf algebra, a finite-dimensional Lie p-algebra vector bundle,...) is not a scheme in general (we will see examples in section 3.2). But thanks to the affine Grassmannian, we will see that it is at least an ind-scheme over Spec(k). Here, our definition of ind-scheme is the one you can find in [G10], Definition 2.3: let us call a kspace any functor from the category of k-schemes which is a sheaf for the fpqc-topology.

An ind-scheme is a k-space which is the inductive limit (in the category of k-spaces) of an inductive system of schemes, indexed by N, and where all the transition maps are closed immersions. We call an ind-scheme X of ind-finite type, or ind-projective, etc... if we can write X = lim -X n where each X n is of finite type, projective, etc... In the following, for any ring A, we write Aff A for the site whose underlying category is the category of affine schemes over Spec(A), and the topology is the fpqc one.

Definition.

-Let G K be a finite group scheme over Spec(K). We call moduli presheaf of prolongations of G K the presheaf P G K : Aff k Set, which sends a k-algebra A to the set of all prolongations of G K above A, and which sends a morphism A B to the map (P(A)

P(B)), G G ⊗ A[[t]] B[[t]] • • = Spf(O G ⊗A B)
, where the " ⊗" denotes the t-adically completed tensor product.

-Likewise, let H K be a finite K-Hopf algebra. We call moduli presheaf of prolongations of H K the presheaf P H K : Aff k Set which sends a k-algebra A to the set of all prolongations of H K defined over A [[t]].

-Finally, for any finite group schemes H K and G K over Spec(K), for any K-

morphism f K : H K G K , we call moduli presheaf of prolongations of f K the presheaf: P f K : Aff k
Set which send a k-algebra A to the set of all morphisms which are prolongations of f K . 1.2.2. Remark. (Extending P to the category of ind-schemes, of ind-(finite type)). In later constructions, it will be convenient to handle objects like the universal prolongation, which lives over the ind-scheme P. With this in mind, we explain in this remark how to extend the functor P to the category of all k-schemes of finite type (not only the affine ones), and then to the category of ind-schemes, of ind-finite type over k. First of all, we need to associate to any k-scheme S an object that we will denote by S[[t]], which is a generalisation of the scheme Spec(A[[t]]) when S = Spec(A), and we will need to make sense of the definition of a "generic fiber". This is for this reason that the hypothesis "of finite type" appears. Then we associate to any k-scheme S a formal scheme defined by:

S[[t]] • • = S × Spf(k) Spf(R)
where S and Spec(k) are seen as discrete formal schemes, and the fiber product is the one of the category of formal schemes, so it is defined on affine schemes by

Spec(B) × Spf(k) Spf(R) • • = Spf(B ⊗k R).
Then a prolongation of a group scheme G K over a scheme S will be a finite, locally free t-adic formal group scheme

G S[[t]].

Now we need to adapt the definition of the generic fiber of such a scheme. In order to do this, we will use the tools of the rigid analytic geometry as introduced by Tate in the 60s. We want to define a functor from the category of formal R-schemes to the category of rigid K-spaces, which then will be interpreted as associating to a formal R-scheme X its "generic fiber" that we will denote by X rig . On affine topologically of finite type formal schemes, we define this functor by

rig : X = Spf(A) X rig = Spm(A ⊗ R K).
Then one can show that this construction can be generalised to all formal R-schemes topologically of finite type, by gluing. Then we obtain:

Proposition. The functor A

A ⊗ R K on R-algebras of topologically finite type gives rise to a functor X X rig , from the category of formal R-schemes that are locally of topologically finite type, to the category of rigid K-spaces. It is defined locally as above.

Proof. See [START_REF] Bosch | Lectures on formal and rigid geometry[END_REF], 7.4/3. This functor is compatible with the classical generic fiber, in the sense that for any formal R-scheme X = X which is the completion of a R-scheme X, then

X rig = (X ⊗ K) an
where for any K-scheme Y of finite type, we denote by Y an the analytification of Y .

Then now we can extend P to all k-schemes of finite type. Indeed let S be such a scheme. Let us write ForSch(S[[t]]) for the category of formal schemes over S [[t]]. We define

P(S) • • =    G ∈ ForSch(S[[t]]), finite locally free group with a group isomorphism i : (G K ) an ∼ -G rig .   
We need to see that this definition is the one we were looking for, in the sense that it is a generalisation of the set P(A) when S = Spec(A) is affine. This is given by Grothendieck's existence theorem of algebraic coherent sheaves (see [START_REF] Grothendieck | Eléments de géometrie algébrique. I. Le langage des schémas[END_REF], première partie, §5, 5. Now we can also extend the functor P to the category of ind-schemes, of ind-(finite type) as follows: let

X = lim - i∈I X i
be a presentation of X with schemes of finite type. We define

P(X) • • = lim - i∈I P(X i ).
This definition does not depend on the chosen presentation: indeed let us take another presentation

X = lim - j∈J X ′ j
where each X ′ j is of finite type over Spec(k). Let j ∈ J and let us consider the inclusion X ′ j ֒ X. Because X ′ j is of finite type, it is quasi-compact, so there exists i ∈ I such that X ′ j ⊂ X i thanks to Lemma 2.4 in [G10]. Likewise, for all i ∈ I there exists j ∈ J such that X i ⊂ X ′ j . Then we obtain lim

- i∈I P(X i ) = lim - j∈J P(X ′ j ).
The rest of this subsection is devoted to the proof of the representability of P. Actually, we prove the representability of P H K where H K is a finite K-Hopf algebra (not necessarily commutative) instead, because we will need it in the following in order to apply Cartier duality, and because it is more general.

Theorem. The functor P H K is representable by an ind-scheme, ind-projective on Spec(k).

In order to prove this, we will need to recall and introduce some notations and results about the affine Grassmannian. Our main reference is [G10]. Let V be a k-vector space of dimension n.

1.2.5. Definition. Let r ≤ n. Let us write Gr(V, r) for the following functor:

Gr(V, r) : Aff k Set A {U ⊂ V ⊗ A sub-A-module s.t. (V ⊗ A)/U is loc. free of rank n -r}.
1.2.6. Proposition. For all r ∈ N, the functor Gr(V, r) is representable by a projective scheme over k.

Proof. See Proposition 8.14 and Proposition 8.23 in [START_REF] Görtz | Algebraic geometry I. Schemes with examples and exercises[END_REF].

1.2.7. Definition. For any vector v ∈ V , we write Gr(V, r)(v) for the subfunctor of r) is representable by a closed immersion, so the functor Gr(V, r)(v) is representable by a projective scheme over k.

Gr(V, r) comprising the U ⊂ V ⊗ A which contain v ⊗ 1. 1.2.8. Proposition. Let v ∈ V . Then the monomorphism Gr(V, r)(v) ⊂ Gr(V,
Proof. Le A be a k-algebra and let us consider a morphism Spec(A) Gr(V, r). This morphism corresponds to a module U ∈ Gr(V, r)(A). Let us write X • • = Gr(V, r)(v)× Gr(V,r) Spec(A). We need to show that the morphism

X Spec(A)
is a closed immersion. Let A ′ be an A-algebra. Then X(A ′ ) is non empty if and only if

the vector v ⊗ 1 ∈ U ⊗ A ′ if and only if v ∈ U . But by hypothesis, U ⊗ A ′ is a locally direct factor of V ⊗ A ′ , and because the property "v ⊗ 1 ∈ U ⊗ A" is local on A, we can localise and suppose that U is a direct factor of V ⊗ A. So let us write W such that U ⊕ W = V ⊗ A ′ . Then U/(v) ⊕ W = V /(v) ⊗ A ′ and so U/(v) is a locally direct factor of V /(v) ⊗ A ′ .
Then we obtain an isomorphism

Gr(V, r)(v)(A ′ ) ≃ Gr(V /(v), r)(A ′ ),
so the inclusion we are looking for is representable by the closed immersion of indprojective schemes:

Gr(V /(v), r)(v) Gr(V, r).

/

We recall here the definition of the functor of lattices, because we will need it to prove that P is representbale by an ind-scheme.

1.2.9. Notation. Let N ∈ N.

-Let us write

E N • • = t -N R n /t N R n .
We also write

Gr(E N ) • • = 0≤r≤2N Gr(E N , r).
-We write Gr t (E N , r) for the closed subscheme of Gr(E N , r) which parameterizes the submodules which are stable by t. Similarly, we write

Gr t (E N ) • • = 0≤r≤2N Gr t (E N , r).
1.2.10. Definition. For N ∈ N, let us write Latt N n for the following functor:

Latt N n : Aff k Set A    M ⊂ A((t)) n , sub-A[[t]] module, t N A[[t]] n ⊂ M ⊂ t -N A[[t]] n and t -N A[[t]] n /M is projective of finite rank over A    .
We also write

Latt n • • = lim - N Latt N n .
1.2.11. Definition. For any k-algebra A, we call lattice of A((t)) n an element of Latt n (A).

Let us recall a classical lemma, which shows that the projective property of the lattices is local on R. This will help us for technical reasons in representability proofs like the one of Proposition 1.2.16, Lemma 2.1.4 or also Theorem 2.2.8.

1.2.12. Lemma. Let k be a field and let R be a k-algebra.

Let L ⊂ R((t)) n be an R[[t]]-submodule.
Then the following are equivalent:

-The submodule L is a lattice.

-

The submodule L is a projective R[[t]]-module and L ⊗ R[[t]] R((t)) = R((t)) n . -Zariski-locally on R, L is a free R[[t]]-module of rank n (i.e. there exist f 1 , • • • , f n ∈ R such that (f 1 , • • • , f n ) = R and for all i, L ⊗ R[[t]] R f i [[t]] is a free R f i [[t]]-module of rank n) and L ⊗ R[[t]] R((t)) = R((t)) n . -Fpqc-locally on R, L is a free R[[t]
]-module of rank n (i.e. there exists a faithfully

flat ring homomorphism R R ′ such that L⊗ R[[t]] R ′ ((t)) is a free R ′ ((t))-module) and L ⊗ R[[t]] R((t)) = R((t)) n .
Proof. See [G10], Lemma 2.11.

In our case, this means that the ring of functions of a prolongation of G K is free after

localising on R instead of R[[t]].
1.2.13. Proposition. For any N ∈ N, the functor Latt N n is representable by a projective scheme over k, then Latt n is an ind-scheme, ind-projective.

Proof. See [G10], part 2.3. 1.2.14. Lemma. Let v ∈ K n . Let Latt n (v) ⊂ Latt n be the subfunctor comprising the lattices of A((t)) n which contain v. Then, Latt n (v) ⊂ Latt n is representable by a closed immersion of k-ind-schemes. Proof. It suffices to show that Latt N n (v) • • = Latt n (v) ∩ Latt N n is representable by a closed immersion of k-schemes, for N large enough. Let us choose N ∈ N such that v ∈ t -N R n , and let M ∈ Latt N n (A) for a k-algebra A. Then the image of v in t -N A[[t]] n is in M if and only if its image v ∈ t -N A[[t]] n /t N A[[t]] n is in M/t N A[[t]] n . Then thanks to the bijection Latt N n (A) ∼ -Gr t (E N )(A)
we obtain

Latt N n (v)(A) ∼ -(Gr t (E N ) ∩ Gr(E N )(v))(A).
We conclude with Proposition 1.2.8.

Proof of Theorem 1.2.4. Let n be the rank of H K , and let us fix an isomorphism of K-vector spaces:

H K ∼ -K n .
For any k-algebra A, the set P H K (A) can be identified by flatness with the subset of Latt n (A) of lattices M ∈ K n such that the structure morphisms (multiplication, comultiplication, unit, counit) of the Hopf algebra H K ⊗ K A((t)) stabilise M . Let us write m for the multiplication of H K , seen as an element of the free module H * K ⊗ H * K ⊗ H K , where we write H * K for the K-linear dual of H K . The subset of Latt n (A) of the lattices M ⊂ A((t)) n such that m ⊗ 1 stabilises M can be identified with the A-points of the closed sub-ind-scheme of Latt n , inverse image of

Latt n 3 (m) ⊂ Latt n 3 by Latt n Latt n 3 M M * ⊗ M * ⊗ M.
Using the same reasoning for the three other structure morphisms of the Hopf algebra, we obtain that P H K is the intersection of four closed sub-ind-schemes in Latt n .

1.2.15. Remark. Thanks to Proposition 1.1.5, we obtain that P G K is representable by an ind-scheme, ind-projective over Spec(k).

Likewise, the moduli space of prolongations of a morphism f K is also representable by an ind-scheme:

1.2.16. Proposition. Let f K : H K G K be a K-morphism. Then the morphism i : P f K ֒-P H K × P G K H f -G - (H, G)
is representable by a closed immersion of finite presentation.

Proof. Let A be a k-algebra and let us consider a morphism Spec(A) P H K ×P G K . Let us write H ∈ P H K (A) and G ∈ P G K (A) the corresponding prolongations of respectively H K and G K . Then the fiber product X of the later morphism and i is given by:

X : {Aff A } Set A ′    {∅} if there exists a morphism f : H G which is a prolongation of f K ∅ otherwise.
Let us show that X is representable by a closed subscheme of Spec(A). Because this is local on Spec(A) and thanks to Lemma 1.2.12, we can suppose that Spec(A) is

small enough so that O G and O H are free A[[t]]-modules, say O H = n j=1 A[[t]]e j and O G = m i=1 A[[t]]f i . Then there exists a morphism f : H G prolongation of f K if and
only if there exists a morphism f # :

m i=1 A[[t]]f i n j=1 A[[t]
]e j such that the following diagram commutes:

n j=1 A[[t]]e j _ m i=1 A[[t]]f i f # o o _ n j=1 A((t))e j m i=1 A((t))f i . f # K o o
Now for all i ∈ [1, m] let us write

f # K (f i ) = n j=1 a i,j e j with for all i, j ∈ [1, n] × [1, m], a i,j = +∞ k=-N j a i,j,k t k .
Hence we see that there exists such a morphism f # if and only if a i,j,k = 0 for all

i, j ∈ [1, n] × [1, m] and for all k ∈ [-N j , -1].
So this fiber product is representable by V ({a i,j,k }) ⊂ Spec(A) which is of finite presentation because the set {a i,j,k } is finite.

We would like to know more about the ind-scheme P. For example, we would like to know its topology. In the following subsections, we will develop tools that will be useful to study P, and we will see some examples.

2 Inner algebraic structure

Schematic closure

This section is devoted to schematic closure of a closed subgroup of G K inside a prolongation. The classical schematic closure, in the sense of the Zariski closure is not flat in general. Then because we will need a closure that is an object of P, we introduce in this section a flat closure. We recall that we fixed a finite K-group scheme G K , and if it is not otherwise stated we write P instead of P G K .

Definition.

Let A be a k-algebra and

G ∈ P(A). Let H K be a closed subgroup of G K . We call flat closure of H K in G, if it exists, a closed flat subgroup scheme H K G of G such that H K G ⊗ A((t)) ≃ H K ⊗ A((t))
. When there will be no ambiguity on the group scheme G, we will only write H K . We define in a dual way the corresponding notion for a Hopf algebra H ∈ P H K (A). 

Lemma

O H K O H 2 O H K ⊗ A((t)) O H 2 ⊗ A((t))
but because the schematic closure commutes with flat base change, we know that

H 2 ⊗ A((t)) ≃ H K ⊗ A((t)) ≃ H K ⊗ A((t)).
Then the arrow at the bottom of the diagram is an isomorphism, so

O H K ։ O H 2 is
injective, and the lemma is proved.

Definition.

We call functor of flat closure of H K in G the functor which maps an A-algebra A ′ to the set of flat closures of

H K in G ⊗ A ′ [[t]]
, and we write it

F H K G : Aff A Set.

Theorem. The functor of flat closure is representable by an ind-scheme over Spec(A), which is an open in the ind-projective scheme of prolongations.

Proof. Let us call f K :

H K ⊗ A((t)) G K ⊗ A((t))
/ the natural closed immersion.

Let P CI f K be the sub-functor of P f K defined as follows:

P CI f K : {Aff A } Set A ′ {f ∈ P f K (A ′ ) such that f is a closed immersion}.
Then by definition,

P CI f K (A ′ ) = {flat closure of H K in G ⊗ A ′ [[t]]} = F H K (A ′ ). Let us show that the inclusion P CI f K ֒ P f K is representable by an open immersion. Let Spec(A ′ ) P f K be a point of P f K given by f : H G where H ∈ P H K (A ′ ) and G ∈ P G K (A ′ ).
Let à be an A ′ -algebra and let us write

X • • = P CI f K × P f K Spec(A ′ ). Then X( Ã) =    {∅} if f ⊗ Ã((t)) is a closed immersion ∅ otherwise .
Because being representable is local over Spec(A ′ ), thanks to Lemma 1.2.12, we can suppose Spec(A ′ ) small enough so that O 

d i such that its constant coefficient d 0 i is invertible in A ′ . Then X is representable by D(d 0 1 ) ∪ D(d 0 2 ) ∪ • • • ∪ D(d 0 k ) ⊂ Spec(A ′ ).
We present here some useful properties about the functor of flat schematic closure.

Lemma. The functor F H K G commutes with base change.

Proof. Let Spec(B) Spec(A) be an A-scheme. We need to show that

F H K G × Spec(B) ≃ F H K G⊗B .
This is by definition of the fiber product of a functor.

Lemma. Let us fix a closed subgroup

H K of G K . Let k ⊂ κ be a

field extension, and let G ∈ P(κ). Then in this case

F H K ≃ Spec(κ).
Proof. Let A be a κ-algebra. Let us see that

F H K (A) = Hom κ (Spec(A), Spec(κ)) = {∅}.
This is true because here the flat closure always exists and is given by the Zariski closure: indeed this one is flat because it is without torsion on κ [[t]]. See [START_REF] Raynaud | Schémas en groupes de type (p[END_REF], section 2 for more details.

2.1.7. Corollary. Let H K be a closed subgroup of G K . Let A be a k-algebra and let G ∈ P(A). Then the morphism of ind-schemes Φ :

F H K G Spec(A) is a bijective monomorphism.
Proof. Let x ∈ Spec(A) and let Spec(κ) Spec(A) be the corresponding morphism. The formation of flat closure commutes with base change thanks to Lemma 2.1.5, so we have that

Φ -1 (x) • • = F H K G × A Spec(κ) = F H K G⊗κ ≃ Spec(κ)
thanks to Lemma 2.1.6.

Lemma. The flat closure is functorial in the following sense

: let G 1 , G 2 ∈ P(A) and let H 1 , H 2 be two closed subgroups of G K . Let f : G 1 G 2 be a prolongation map such that f |H 1 factorises through H 2 . Let us suppose that H 1 G 1 and H 2 G 2 exist. Then in this case: f H 1 G 1 ⊂ H 2 G 2 .
Proof. For j = 1, 2 let us write H j = V (I j ) ⊂ G j ⊗ A((t)). Then the morphism

H j ⊂ G j
is given on the rings by the morphism

φ j : O G i O G i ⊗ A[[t]]/I j = O H j . For j = 1, 2, let us write K j • • = ker(φ j ). Then H j G j = V (K j ) ⊂ G j . Because f |H 1
factorises through H 2 , we have this commutative diagram:

O G 1 O G 2 O H 1 O H 2 . φ 1 f # φ 2 f # ⊗id
In order to see that f H 1

G 1 ⊂ H 2 G 2 , it suffices to show f # (K 2 ) ⊂ K 1 . Let us take x ∈ K 2 . Then φ 2 (x) = 0 so φ 1 (f # (x)) = 0, hence we obtain f # (x) ∈ K 1 .
Let us consider the diagonal morphism:

∆ : H K ⊗ H K ⊗ A((t)) ։ H K ⊗ A((t)), x ⊗ y ⊗ 1 xy ⊗ 1.
We denote by I • • = ker(∆ • i) and let us write

H 1 • • = (H ⊗ H ′ /I) ∨∨ .
Then we have that

(H ⊗ H ′ /I) ∨∨ ⊗ A((t)) ≃ (H ⊗ H ′ /I) ⊗ A((t)) ≃ H K ⊗ A((t)).
Moreover 

f • • = u × v : H ⊗ H ′ u⊗v --M ⊗ M M.
We have this commutative diagram, where we embed M in its generic fiber that we identify with H K ⊗ A((t)):

H K ⊗ H K ⊗ A((t)) H K ⊗ A((t)) H ⊗ H ′ M. ∆ i f
Then f (I) = {0} where I = ker(∆ • i), and so the morphism f factorises :

f : H ⊗ H ′ /I M
and by functoriality of the double dual we obtain a morphism of prolongations :

f : H 1 = (H ⊗ H ′ /I) ∨∨ M ∨∨ = M
because M is finite locally free. Then M ≥ H 1 and H 1 is a supremum for H and H ′ .

-Let us show now that there exists H 2 ∈ P(A) such that H 2 = inf(H, H ′ ). Thanks to the previous point, we know that there exists H 3 ∈ P(A) such that

H 3 = sup(H * , H ′ * ).
Then the Hopf algebra H 2 • • = H * 3 still belongs to the set P(A) and is the infimum of H and H ′ .

Corollary.

Let A be a regular ring of dimension lower than 1. Let G, G ′ ∈ P G K (A) be two prolongations of a group scheme. Then there exist an infimum and a supremum in P G K (A) for the order relation.

Proof. Thanks to Proposition 2.2.5, we know that there exist two A[[t]]-Hopf algebras H 1 and H 2 , finite locally free, prolongation of O G K (hence commutative thanks to Proposition 1.1.5) such that

H 1 = sup(O G , O G ′ ) and H 2 = inf(O G , O G ′ ). Then we obtain G 1 • • = Spec(H 1 ) = inf(G, G ′ ) and G 2 • • = Spec(H 2 ) = sup(G, G ′ ).
2.2.7. Definition. We denote by R the subfunctor of P × P of prolongations which are in relation, i.e. we define:

R : Aff k Set A {(G, G ′ ), such that G ≤ G ′ }.
We would like to know more about the structure of this order relation in the moduli space of prolongations.

schemes, where all the transition maps are closed immersion, it is separated in the sense that the diagonal P P × P is representable by a closed immersion. Hence the diagonal is representable by a proper morphism. Moreover the morphism R ֒ P × P is separated because it is a monomorphism. Then let us take a morphism Spec(A) R. This defines a morphism Spec(A) P × P (thanks to the inclusion R ֒ P × P). Let us write X • • = P × R Spec(A), X 1 • • = P × P×P Spec(A) and X 2 • • = R × P×P Spec(A) the corresponding fiber products. Then X 1 Spec(A) is proper and X 2 Spec(A) is separated. Thanks to [SP23, Tag 01W6], we know that the morphism X 1 X 2 is proper. But because Spec(A) P × P is a point of R by hypothesis, we obtain that X 2 = Spec(A). Then, because X 1 ≃ X × Spec(A) X 2 , we obtain that X 1 ≃ X and so we proved that X Spec(A) is proper. Then because it is also a monomorphism, we obtain that this morphism is also a closed immersion (see [SP23, Tag 04XV]).

Corollary. For any G K

Spec(K), we have an isomorphism:

R ≃ P ∐ R ′
where here we identify P with its image in P × P, and where R ′ is the functor of pairs of prolongations G and G ′ such that there exists a non-isomorphic prolongation morphism G G ′ .

Dilatations

We start our study of dilatations with a review of the classical case. Dilatations were initially defined over a discrete valuation ring (or a Dedekind scheme); we review here some landmarks from the book [START_REF] Bosch | Ergeb. Math. Grenzgeb[END_REF] 

A ′ = O G [y 1 , • • • , y n ]/ (ty 1 -g 1 , • • • , ty n -g n ) sat
where -For any ideal

J ⊂ O G [y 1 , • • • , y n ], we write J sat • • = J/J t-tor .
-The morphism of dilatation is given by the inclusion O G ֒ A ′ .

Proof. See [START_REF] Bosch | Ergeb. Math. Grenzgeb[END_REF], Chapter 3, §3.2/1.

In the following, we would like to use the dilatation as a tool to understand our moduli space P. Using the description from Proposition 2.3.3, we see that the classical dilatation of a group is an isomorphism on the generic fiber: that is, if we dilate a subgroup of an element of P(k), and if the obtained dilatation is finite, it is also an element of P(k). Moreover, any prolongation morphism can be generated by dilatation morphisms in the sense that we can associate to any prolongation morphism a canonical sequence of dilatation, called standard blow-up sequence:

2.3.4. Theorem. Any prolongation morphism G ′ G in P(k) is canonically isomorphic to a finite composition of classical dilatations, that can be constructed explicitly.

Proof. The construction is the following:

if the closed image H of G ′ |t=0 is all G |t=0 , one can see that the morphism G ′ G is an isomorphism. If not, the morphism G ′ G factors through G 1 • • = D G (H). Again if G ′ |t=0 does not map onto (G 1 ) |t=0 , the morphism G ′ G 1 factorises through D G 1 (im(G ′ |t=0
)), and so on. One can see that this process stops because G ′ is of finite type. See [START_REF] Waterhouse | One-dimensional affine group schemes[END_REF], Theorem 1.4. for more details.

Definition.

Let A be any k-algebra. Let us fix a prolongation G ∈ P(A). We write u G : Spec(A) P for the corresponding morphism.

-We define the moduli space P ≥G of prolongations which dominate G by this fiber product:

P ≥G P × Spec(A) R P × P. / id ×u G /
-For H a subgroup scheme of G t=0 , we write P H ≥G for the subspace of P ≥G of prolongations whose morphism to G sends the special fiber into H.

-Likewise, we define the moduli space P ≤G of prolongations which are dominated by G by this fiber product:

P ≤G Spec(A) × P R P × P. / u G ×id / 2.3.8. Remark.
1. The formations of P H ≥G commute with base change: indeed let T S be a S-scheme. Then by definition, P H ≥G × S T is the following functor:

P H ≥G × S T (T ′ ) • • = {G ′ ∈ P(T ′ ) s.t. ∃f : G ′ G T ′ = G T |T ′ s.t. f (G ′ |t=0 ) ⊂ H T ′ } = P H T ≥G T (T ′ ).
2. There exists a morphism of functors P H ≥G ֒-P ≥G , where we just forget the condition on the given morphism in the definition.

The functor P H

≥G is representable for any prolongation G, as a closed immersion of P ≥G defined above.

Proposition.

Let A be a k-algebra and G ∈ P(A). Let H a finite locally free closed subgroup scheme of G |t=0 . The morphism P H ≥G ֒-P ≥G is representable by a closed immersion, of finite presentation.

Proof. Let A ′ be an A-algebra, and let us take a morphism Spec(A ′ ) P ≥G , i.e. let us take a prolongation G ′ ∈ P(A ′ ) such that there exists a prolongation morphism f : G ′ G A ′ . We want to show that 

X • • = P H ≥G × P ≥G Spec(A ′ ) : Aff A ′ Set T    {∅} if f T (G ′ t=0 ) ⊂ H T ∅
O G ⊗A ′ [[t]] = n i=1 A ′ [[t]]e i ,
with all e i ∈ O G ⊗ A ′ . Similarly, we can write

O G ′ = m i=1 A ′ [[t]]e ′ i .
Then the morphism f :

G ′ G A ′ satisfies f (G ′ |t=0 ) ⊂ H A ′ if and only if f # (I) ⊂ t • O G ′ if and only if for all i ∈ [1, n] we have f # (f i ) ∈ (t). But let i ∈ [1, n]. Then we can write f # (f i ) = m j=1 a ′ i,j (t)e ′ j with a ′ i,j (t) ∈ A ′ [[t]]
and for all i, j we can write

a ′ i,j = a ′ i,j,0 + a ′ i,j,1 t + a ′ i,j,2 t 2 + • • •
where all the coefficients a ′ i,j,k belong to A ′ . Then we see that f # (f i ) ∈ (t) if and only if for all j ∈ [1, m], a ′ i,j,0 = 0. If we write

J • • = {a ′ i,j,0 , (i, j) ∈ [1, n] × [1, m]} ,
then X is representable by Spec(A ′ /J), and X Spec(A ′ ) is a closed immersion of finite presentation.

where we recall that for any ideal J in B, J sat = J/J t-tor . Then in this context, if the dilatation of H = V (I) ⊂ G |t=0 exists, it is given by Spec((O G [t -1 I]) ∨∨ ). In other words: 2.3.13. Proposition. Let A be a regular k-algebra of dimension at most 1. Let G ∈ P(A) and let H be a subgroup scheme of G |t=0 . The following are equivalent:

1. D G (H) exists in P(A) 2. The set P H ≥G is not empty 3. The A[[t]]-module O G [t -1 I] is finite.
Proof.

-1) =⇒ 2) by definition.

-Let us show that 2) =⇒ 3). Let G ′ G be an element of 

P H ≥G . Then the inclusion O G ⊂ O G ′ factorises through O G [t -1 I]: O G O G ′ O G [t -1 I] . But by hypothesis O G ′ is a finite A[[t]]-
I • O G ′ = (t) • O G ′ . Let i ∈ [1, n]. Then g # (g i ) ∈ I • O G ′ then let us write g # (g i ) = ta i with a i ∈ O G ′ . Because t ∤ 0 in O G ′ ,
: O G [t -1 I] ∨∨ O ∨∨ G ′ . But G ′ is flat then we have an isomorphism i : O G ′ O ∨∨ G ′ , so if we write j : O G [t -1 T ] O G [t -1 T ] ∨∨ , the morphism g # factorises through O G [t -1 I] ∨∨ via i -1 • φ ∨∨ .
This can be summarized by this diagram:

O G $ $ ■ ■ ■ ■ ■ ■ ■ ■ ■ g # / / O G ′ O ∨∨ G ′ i -1 o o O G [t -1 I] φ O O j / / O G [t -1 I] ∨∨ . φ ∨∨ O O Hence the dilatation of H = V (I) is given by Spec(O G [t -1 I] ∨∨ ).
This proposition allows us to say when there does not exist a dilatation. For instance, as we saw in Example 2.3.5, we know that for any k-algebra A, regular of dimension at most 1, the dilatation of

V (t, X) in Spec(A[[t]][X]/(X p -tX)) does not exist.
For the finiteness condition, we need to work with infinitesimal groups, where a group scheme G S is called infinitesimal when its structure morphism G S is a universal homemorphism.

Let us introduce a lemma first: 2.3.14. Lemma. Let S be any scheme and f : X S be a surjective, quasi-compact, separated S-scheme. Let U ⊂ S be an open subscheme whose preimage X U = f -1 (U ) is schematically dense in X. Assume that f U : X U U is a homeomorphism and that either (i) f is flat, or (ii) f has a section. Then f is a universal homeomorphism. If moreover f is of finite type, then it is finite.

Proof. By [SP23, Tag 0CEX], the property that f is a universal homeomorphism is local on S for the fpqc topology. It follows that in case (i), it suffices to show that the base change of f with itself is a universal homeomorphism; in this way we are reduced to case (ii) where f has a section e : S X. Because f is separated, the section e is closed; let us write I ⊂ O X for its ideal sheaf. Since the open immersion j : X U X is schematically dense, the morphism of sheaves j # : O X j * O X U is injective. Besides, by the assumption on f U the morphism e U : U X U is a nil-immersion (as a section of a nil-immersion), from which follows that the images of the local sections of I in j * O X U are nilpotent. Because j # is injective, the local section of I themselves are nilpotent, so e is a universal homeomorphism. Because f is a retraction of e, it is also By "Théorème de platitude générique" (see [START_REF] Grothendieck | IV . Eléments de géometrie algébrique. Étude locale des schémas et des morphismes de schémas[END_REF], seconde partie, Théorème 6.9.1), we know that there exists a non-empty open subset (hence 

dense) of Spec(A[[t]]) such that (O G ⊗A[[t]])[t -1 I] ∨∨ is
U • • = (W ∩ Spec(A)) of Spec(A) to P.
Thanks to this corollary, some natural questions appear. We would like to know more about this morphism. For example, is this morphism injective ? In general, it is not, i.e. doing dilatations give us "too much" prolongations, in the sense that two dilatations of different subgroup schemes (even of same order) can give the same prolongation: 2.3.17. Example. Let us write char(k) = p > 0 and let us consider the prolongation G of its generic fiber, defined over R by

G = ker   G 4 a - G 4 a (x, y, z, w) - (ty -x p , y p , tw -z p , w p )   Then G |t=0 = (α p ) 4 . For u = [α : β] ∈ P 1 (k), let us write H u • • = V (x, z, αy + βw).
Using Proposition 2.3.3, we obtain that the dilatations of H u does not depend of the point u ∈ P 1 (k), and it is given by: 

D G (H u ) = α p 2 × α p 2 -G (x, z) -(tx, t p-1 x p ,
Γ = Res k((t))/k (Aut k((t)) (G K ))
where Res k((t))/k is the functor of Weil restriction associated to the inclusion k ֒ k((t)).

Definition.

The group Γ acts on P as follows: for any k-algebra A, Γ(A) × P(A) P(A)

(Φ, (G, i)) G Φ • • = (G, i • Φ -1 ).

Lemma.

Let A be a k-algebra. Let (G, i) ∈ P(A). The stabiliser of G for the action of Γ × Spec(A) is given by

Σ G • • = Res A[[t]]/A (Aut(G)).
Proof. Let B be an A-algebra, and let γ ∈ Γ × Spec(A)(B) such that γ • G = G as a prolongation. This means that there exists an

B[[t]]-isomorphism u : G ⊗ B[[t]] G ⊗ B[[t]] such that: G ⊗ B((t)) G ⊗ B((t)) G K ⊗ B((t)) G K ⊗ B((t)) u B((t)) i γ -1 i .
-dilate all the strict subgroups of the special fiber of G -dilate again the new groups we find -(optionally) stop if we find a group G ′ which is in the orbit of G.

Indeed, we can stop the dilatation process whenever we find a group scheme that is in the orbit of G thanks to the following observation:

2.4.6. Proposition. Let A be a k-algebra, and let (G, i 1 ), (G, i 2 ) ∈ P(A). Let us suppose that these two prolongations are in the same orbit for the action of the automorphism group, i.e. let γ :

G K ⊗ A((t)) G K ⊗ A((t)) be an isomorphism such that i 1 = i 2 • γ -1 .
Let H be a subgroup scheme of G |t=0 be such that its dilatation exists in P(A). Let us write φ :

D G (H) G. Then (D G (H), φ -1 A((t)) ((t)) • i 1 ) and (D G (H), φ -1 A((t)) • i 2 )
are in the same orbit for the automorphism group of G K .

Then the process described above constructs a tree that we can call covering tree of prolongations associated to the family F , denoted by T F .

2.4.7. Remark. The morphism T F P(k) is surjective thanks to the standard blowup sequence. But this morphism is not injective in general. Indeed let G 1 and G 2 be two elements of T F . Let us write G • • = sup(G 1 , G 2 ). Then G possesses a prolongation morphism to G 1 and another one to G 2 . So G appears in two different spaces of the tree:

G 1 G 2 • • • D G 1 (H) G • • • D G 2 (H ′ ) G Standard blow-up sequence Standard blow-up sequence

Illustrations and examples

Case of height 1 group schemes

As we did in Chapter II, we would like to use the equivalence of categories between height 1 group schemes and their Lie p-algebras. Then in all this subsection, we suppose that the characteristic of k is p > 0 and that G K is a height 1 finite group scheme over Spec(K). Let us denote by L K • • = Lie(G K ), its Lie algebra equipped with its canonical p-mapping. As we did for Hopf algebras and morphisms of finite group schemes, we denote by P L K the moduli space of prolongations of L K , as Lie p-algebra vector bundle, i.e. for any k-algebra A, let us write

P L K (A) • • =    L Spec(A[[t]]
) Lie p-algebra, finite locally free with an isomorphism i :

L K ⊗ A((t)) ∼ -L ⊗ A[[t]] of Lie p-algebras    .
We would like to show that the equivalence mentioned above gives an equivalence between P G K and P L K . We need this lemma first: 3.1.1. Proposition. Let G K be a finite group scheme over Spec(K) of height n with n ∈ N * . Let A be a k-algebra, and let G be an element of P G K (A). Then, G is of height ≤ n. In particular, all prolongations of an infinitesimal group scheme are infinitesimal.

Remark.

We can also find the result "all prolongations of an infinitesimal group scheme are infinitesimal" thanks to Lemma 2.3.14.

Proof. Again we know that G ⊗ A((t)) is schematically dense in G, and because the trivial morphism and the n-th Frobenius morphism coincide on G ⊗ A((t)), we know that the n-th Frobenius morphism is trivial on G.

Corollary. Now let us suppose that G

K is of height 1. Let us denote by L K • • = Lie(G K )
, its Lie algebra equipped with its canonical p-mapping. Then the functor Lie induces an equivalence of functors between P G K and P L K .

Proof. Thanks to Proposition 3.1.1, we know that for any k-algebra A, any group G ∈ P(A) is of height 1. Let G ∈ P(A). Then we have an isomorphism:

G K ⊗ A((t)) ∼ -G ⊗ A((t))
so we obtain an isomorphism on their Lie algebras. Because the formation of the Lie algebra commutes with base change, we obtain an isomorphism

Lie(G K ) ⊗ A((t)) ∼ -Lie(G) ⊗ A((t)).
Moreover, because G is of height 1, its Lie algebra is finite locally free. Then the functor Lie gives a morphism P G K P Lie(G K ) . Conversely, we can use the functor

G p • • = Spec * (U p (-))
, the inverse functor of Lie. Doing the same reasoning, we obtain an inverse map P Lie(G K ) P G K , so the corollary follows.

In some cases, it would be easier to calculate the moduli space of prolongations of Lie p-algebras instead of the one of a group scheme. Let us show an example:

3.1.4. Example. Let n ∈ N * and let us define G K • • = (α p,K ) n .
Because G K is commutative, its Lie algebra L K is abelian. Moreover, the p-mapping given on L K is the null morphism (See [START_REF] Demazure | Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs[END_REF], II, §7 n°2, exemple 2.2.). In this case, the following morphism is an isomorphism

P G K ∼ -Latt n G -O Lie(G)
where Latt n is the moduli space of lattices, as defined in Definition 1.2.10: indeed, in this case the functor Lie gives an equivalence P G K ∼ -P L K thanks to Corollary 3.1.3, and L K ≃ K n as a K-vector space. Then for any k-algebra A, any element

L ∈ P L K (A) is an A[[t]]-module, locally free of rank n, such that L ⊗ A((t)) ≃ L K ⊗ A((t)) ≃ A((t)) n .
Then L is an element of Latt n . Conversely, any lattice M can be viewed as a element of P L K , equipped with the null bracket and the null p-mapping.

Prolongations of α p 2

In this subsection, let k be any field of characteristic p > 0, and let us write again

R • • = k[[t]] and K • • = k((t)).
We would like to study the k-points of the moduli space of prolongations of α p 2 ,K . First of all, we can give a minimal family of prolongations of α p n ,K above A for any k-algebra A and for any n ∈ N. For m ∈ Z, we write α (m) p n for the prolongation of α p n ,K defined over k [[t]], where α (m) p n is equal to α p n ,R as a group scheme, and the isomorphism on the generic fiber with α p 2 ,K is given by:

i m : α p n ,K -α (m) p n ⊗K x -t m x.
Note that for any m ∈ Z, there exists a prolongation morphism α

(m) p n α (m+1) p n
given by x tx.

Proposition. The family α (m)

p n , i m m∈Z is a minimal family of prolongations for α p n ,K on R.

Proof. Let G be a prolongation of α p n ,K defined over R. There exists an isomorphism α p n ,K ≃ G ⊗ K given on the rings by an isomorphism p n , given on the rings by X t m a is a morphism of prolongations.

A((t))[X]/X p n ≃ O G ⊗K,

Remark.

For a prolongation G ∈ P α p n ,K (k), we can set:

m G • • = min{m ∈ Z, ∃ G α (m) p n },
in order to obtain a "canonical" prolongation morphism from G to one of the prolongations that appear in the minimal family.

We would like to study the set P α p 2 ,K (k). Thanks to Proposition 3.2.1, we already know that the family (α

(m)
p 2 ) m∈Z is a minimal family of prolongations of α p 2 ,K . Then because every prolongation map in P(k) is a composition of dilatations (standard blow-up sequence, Theorem 2.3.4), we are led to studying the different compositions of dilatations coming from α (m) p n for all m. Because the source of any dilatation can be turned canonically into a prolongation, we do not even need to specify the prolongation morphisms but only the dilatation morphisms. Then as said in Proposition 2.4.6, we are led to studying only the dilatations of α (0) p 2 . Then in the following, we will use the strategy explained in the last subsection: we will study all the dilatations and the composite of dilatations of the group scheme α p 2 ,R . These dilatations can be calculated explicitely, thanks to Proposition 2.3.3.

Proposition. Let us write α

p 2 = Spec R[X]/X p 2 . Then α p 2 |t=0
has two strict subgroup schemes, and these subgroups give two different dilatations:

-D α p 2 ({e}) is isomorphic to α p 2 as a group scheme, and the dilatation morphism is given by

dil : D α p 2 ({e}) = α p 2 -α p 2 x -tx. -D α p 2 (α p ) is isomorphic to β 1 • • = Spec (R[X, Y ]/(tY -X p , Y p )) as a subgroup scheme of G 2 a . The dilatation morphism is given by dil : D α p 2 (α p ) = β 1 -α p 2 (x, y) -x.
Proof. The two strict subgroup schemes of α p 2 |t=0 are given by the trivial one and α p .

Let us calculate the corresponding dilatations:

-With the description of α p 2 given above, we can write that {e} = V (X), so using the construction given in Proposition 2.3.3 we can calculate:

D α p 2 ({e}) = Spec R[X, Y ]/(X p 2 , tY -X) sat ≃ Spec R[Y ]/Y p 2
given on the ring by X tY . For the group law, the comultiplication of Y should verify:

∆(tY ) = 1 ⊗ tY + tY ⊗ 1, i.e. ∆(Y ) = 1 ⊗ Y + Y ⊗ 1, because t ∤ 0 in R[Y ]/Y p 2 .
-Likewise, we can write that α p ֒ α p 2 is given by V (X p ), then

D α p 2 (α p ) = Spec R[X, Y ]/(X p 2 , tY -X p ) sat = Spec (R[X, Y ]/(tY -X p , Y p )) • • = β 1 .
For the group law, the comultiplication of Y should verify:

∆(tY ) = ∆(X p ) = 1 ⊗ X p + X p ⊗ 1 = 1 ⊗ tY + tY ⊗ 1 i.e. again ∆(Y ) = 1 ⊗ Y + Y ⊗ 1 because t ∤ 0 in R[X, Y ]/(tY -X p , Y p ).
So now, we go to the next step, i.e. we can focus on the calculations of the dilatations of the group scheme we denoted by β 1 , because the group scheme α p 2 already appeared in the covering tree of prolongations. We need first to know the subgroups of its special fiber

β 1|t=0 ≃ (α p × α p ) |t=0 .

Lemma. The strict subgroups schemes of (α

p × α p ) |t=0 = Spec(k[X, Y ]/(X p , Y p )) over Spec(k) are given by H u • • = V (aX + bY ) with u = [a : b] ∈ P 1 k (k)
, and by the trivial subgroup {e} = V (X, Y ).

Proof. Like in Example 3.1.4, we have that the Lie algebra of α p ×α p is the commutative Lie algebra of rank 2 (because the group is commutative), and the canonical p-mapping on it is the zero map. Hence in this case, the sub-Lie p-algebras are given by the submodules, which are the trivial one, and the lines. Finally because α p × α p is of height 1, there is an equivalence between its subgroups schemes and the sub-Lie palgebras of its Lie algebra. Now we can calculate all the dilatations of β 1 , and we sum up all these calculations in the following proposition.

Proposition. Let us write β

1 = Spec (R[X, Y ]/(tY -X p , Y p )). Let u = [a : b] ∈ P 1 (k) and let us write H u • • = V (aX + bY )
for the corresponding subgroup of its special fiber. Then the dilatation of H u in β 1 is given by:

-If u = [1 : b], D β 1 (H u ) is isomorphic to α p 2
as group scheme, and the dilatation morphism is given by:

α p 2 -β 1 x -(tx + bt p-1 x p , t p-1 x p ).
-If u = 0 ∈ P 1 (k) then D β 1 (H 0 ) = β 2 where we define

β 2 • • = Spec R[X, Y ]/(t 2 Y -X p , Y p ) ,
and the dilatation morphism is given by:

β 2 -β 1 (x, y) -(x, ty).
Moreover, the dilatation of the trivial subgroup is given by

α p 2 -β 1 x -(tx, t p-1 x p ). Proof. Let u ∈ P 1 k (k). -If u = [1 : b], then the function ring of D β 1 (H [1:b] ) is given by: R[X, Y, Z]/(tY -X p , Y p , tZ -X -bY ) sat ) ≃ R[Y, Z]/(tY -t p Z p + b p Y p , Y p ) sat ) ≃ R[Y, Z]/(tY -t p Z p , Y p ) sat ) ≃ R[Y, Z]/(Y -t p-1 Z p , Y p ) sat ≃ R[Z]/Z p 2 .
The dilatation morphism is given by the composite of the above isomorphisms, and we see that the group law of D β 1 (H u ) is given by

∆(tZ) = ∆(X + bY ) = 1 ⊗ X + X ⊗ 1 + 1 ⊗ bY + bY ⊗ 1 = 1 ⊗ tZ + tZ ⊗ 1 = t(1 ⊗ Z + Z ⊗ 1) i.e. ∆(Z) = 1 ⊗ Z + Z ⊗ 1. -If u = 0 ∈ P 1 (k), then the function ring of D β 1 (H 0 ) is given by: R[X, Y, Z]/(tY -X p , Y p , tZ -Y ) sat ) ≃ R[X, Z]/(t 2 Z -X p , t p Z p ) sat ≃ R[X, Z]/(t 2 Z -X p , Z p ).
Then let us use the notation

β 2 • • = Spec R[X, Z]/(t 2 Z -X p , Z p )
, and again, we find the dilatation morphism by keeping in mind the isomorphisms above.

We obtain again in β 2 that the group law is given by

∆(X) = 1 ⊗ X + X ⊗ 1 and ∆(Z) = 1 ⊗ Z + Z ⊗ 1.
Finally, the dilatation morphism given by the trivial subgroup {e} is given on the ring by:

R[X, Y ]/(tY -X p , Y p ) ֒ R[X, Y, Z 1 , Z 2 ]/(tY -X p , Y p , tZ 1 -X, tZ 2 -Y ) sat ≃ R[Z 1 , Z 2 ]/(t 2 Z 2 -t p Z 1 , t p Z p 2 ) sat ≃ R[Z 1 , Z 2 ]/(Z 2 -t p-2 Z 1 , Z p 2 ) sat ≃ R[Z 1 ]/(t p(p-2) Z p 1 ) sat ≃ R[Z 1 ]/(Z p 2 1 ).
Thanks to what we have done above, we can deduce this result:

3.2.6. Proposition. For all n ∈ N, let us denote

β n • • = ker   G 2 a - G 2 a (x, y) - (t n y -x p , y p )   .
Let H u • • = V (aX +bY ) be a subgroup scheme of its special fiber, with u = [a : b] ∈ P 1 (k).

Then the dilatation of H u in β n is given by:

-If u = [1 : b], then the dilatation D βn (H u ) if either isomorphic to α p 2 as group scheme or to β n-p and the dilatation morphisms are given by:

-if n ≤ p: D βn (H [1:b] ) = α p 2 -β n x -(tx + bt p-n x p , t p-n x p ) -if n > p: D βn (H [1:b] ) = β n-p -β n (x, y) -(tx + by, y) -If u = [0 : 1] then D βn (H 0 ) = β n+1
, and the dilatation morphism is given by:

β n+1 -β n (x, y) -(x, ty)
The last subgroup that we can dilate is the trivial one. The obtained dilatation depends on n:

-If n < p: D βn ({e}) = α p 2 -β n x -(tx, t p-n x p ) -If n ≥ p: D βn ({e}) = β n+1-p -β n (x, y) -(tx, ty)
Summary: a picture of the k-points of P α p 2

Here is a summary of the different prolongations of α p 2 ,K over k [[t]] in a tree, called covering tree above. The arrows represent dilatation morphism, and we color in purple the prolongations that do not appear before in the tree. We write on the arrows which subgroup is dilated, and let us recall that for u = [a : b] ∈ P 1 (k), we write H u for the subgroup of α p × α p given by V (ax + by). We stop the process of dilatation whenever we see a group that has already appear before thanks to Proposition 2.4.6.

α (0) p 2 β 1 P 1 α p 2 α (-1) p 2 α p 2 α (1) p 2 Hu 1 Hu 2 • • • Hu n α p 2 H 0 {e} • • • • • • • • • • • • αp {e} {e} β p-1 P 1 α p 2 α p 2 Hu 1 Hu 2 • • • Hu n α p 2 H 0 • • • {e} β p P 1 α p 2 β 1 Hu 1 Hu 2 • • • Hu n α p 2 H 0 • • • {e} β p+1 P 1 β 1 β 2 Hu 1 Hu 2 • • • Hu n β 1 H 0 • • • {e} β p+2 • • •
To conclude, we prove that P α p 2 ,K contains a Γ-orbit of infinite dimension, so that dim(P α p 2 ,K ) = +∞.

Lemma. The automorphism group of

α p 2 is G a ⋊ G m , where the action of G m over G a is given by v • u = v p-1 u. Proof. Let A be a k-algebra. Let f ∈ Aut A (α p 2 )(A).
Let us see that the corresponding morphism of Hopf algebras

φ : A[X]/X p 2 A[X]/X p 2 is of the form X a 1 X + a p X p with a 1 , a p ∈ A. Indeed, in A[X]/X p 2 , the comultiplication of X is given by ∆(X) = X ⊗ 1 + 1 ⊗ X. Let us write φ(X) = n k=0 a k X k with n < p 2 . Then ∆(φ(X)) = n k=0 a k (X ⊗ 1 + 1 ⊗ X) k = n k=0 a k k i=0 k i X i ⊗ X k-i . But ∆(φ(X)) = (φ ⊗ φ)(∆(X)) hence we obtain n k=0 a k k i=0 k i X i ⊗ X k-i = n k=0 a k X k ⊗ 1 + 1 ⊗ n k=0 a k X k = n k=0 a k (X k ⊗ 1 + 1 ⊗ X k ).

But the family {X

i ⊗X j } i,j∈[0,n] form a basis of the A-module A[X]/X p 2 ⊗A[X]/X p 2 , then a k = 0 for all k but k = 1 and k = p.
Moreover, φ is bijective if and only if there exists ψ ∈ Aut(A[X]/X p 2 ) such that φ • ψ = id. This means that a 1 ∈ A * . Hence we have an isomorphism of group schemes:

G a ⋊ G m Aut(α p 2 ) (u, v) (x v(x + ux p )) .

Corollary. The orbit of the standard prolongation α p 2 ,k[[t]

] contains the infinitedimensional affine ind-space A ∞ k . In particular it is an infinite-dimensional ind-scheme over Spec(k).

Proof. Let us write G

K • • = α p 2 ,K . Let G • • = α p 2 ,k[[t]]
be the standard prolongation of α p 2 ,K given by the identity on the generic fiber. Let us write Γ • • = Aut α p 2 . Then thanks to Corollary 2.4.3, we know that the orbit of G inside P is the affine Grassmannian Gr Γ .

Because Γ contains G a , its Grassmannian contain Gr Ga which is infinite-dimensional because it is the sheaf associated to the presheaf

A A((t))/A[[t]] = N ∈N * N ⊕ i=1 At -i
which is the sheaf A ∞ k .

Appendix. Classification of free Lie p-algebras of rank 3 over k((t))

As stated in Corollary 3.1.3, we have an equivalence between the prolongation space of a height 1 group scheme and the one of its Lie p-algebra. Then in this section, as we did in Chapter II, we propose to classify the Lie p-algebras of rank 3 over the field k((t)), up to isomorphisms. Actually in the following, we classify the dimension 3 Lie algebras over k((t)), with k algebraically closed and char(k) = 2, and we give some results about the p-mappings on them. We explain how the calculations work, but we do not explicit all of them, because at some point it starts to be cumbersome and difficult.

Then let us first classify the Lie algebras over k((t)). Thanks to the work we have done in Subsection 3.1, we already know the classification of the Lie algebras over k((t)).

Hence we only have to compute the forms of these Lie algebras. In order to do this, we will use the characterisation of the forms by the cohomology groups. For this reason, let us recall the following result:

3.3.1. Proposition. Let K be any field, and let G Spec(K) be a group scheme over K. Then, the forms over K of G are classified by the first fppf cohomology group of its automorphism group scheme.

Proof. In [SP23, Tag 03AJ], an isomorphism in given between the following groups So in the following, if it is not precised before, all the exact sequences will be understood as sequences of fppf sheaves, and all the schemes will be seen as fppf sheaves. Likewise, all the cohomology groups will be cohomology groups for the fppf topology. Because it will be used in the following, let us recall this theorem:

H 1 (K, Aut(G)) ≃ {Aut(G)-torsors}/ ∼ .
3.3.2. Proposition. Let K be any field. Then

H 1 (K, G a ) = H 1 (K, G m ) = 1.
Moreover, for all n ∈ N * , we have H 1 (K, GL n ) = 1.

Proof. As a sheaf, we have G a = O Spec(k) which is quasi-coherent, so its cohomology is 1. The second equality is known as Hilbert's theorem 90, and the last one from Speiser, see [START_REF] Colliot-Thélène | The Brauer-Grothendieck group[END_REF], 1.3, Theorem 1.3.2 and Theorem 1. In the following, we will detail the proof of this result, by calculating the automorphism groups of the different Lie algebras over k((t)), and their cohomology. But the derived Lie algebra r ′ is given by r ′ = Vect(y, z) and we always have φ(r ′ ) ⊂ r ′ , so d = g = 0.

Now, using the fact that φ([v 1 , v 2 ]) = [φ(v 1 ), φ(v 2 )] for all v i ∈ r, we obtain this system: Hence 2f = 0 so because char(k) = 2 we obtain f = 0. Then in this case, aei is invertible, so e is invertible, so we obtain a = 1 and so e = i. To conclude, we obtain for any K-algebra A,

Aut(r)(A) ⊂ GL 3 (A) =               1 0 0 b i h c 0 i      ∈ GL 3 (A)          .
For more convenience, let us write the subfunctor

B =      A               1 0 0 0 i h 0 0 i      ∈ GL 3 (A)               ≃ (G m ⋊ G a )(A).
Then we have Aut(r) = G 2 a ⋊ B. So in cohomology we obtain that this sequence

H 1 (K, G a ) ⊕2 H 1 (K, Aut(r)) H 1 (K, B)
is exact, but thanks to Proposition 3.3.2 we know that both H 1 (K, G a ) and H 1 (K, B) are 1. Hence H 1 (K, Aut(r)) = 1.

The forms of l α

Let α ∈ K and let {x, y, z} be a basis of l α where the bracket is given by [x, y] = y, Proof. Let f (t) ∈ k((t)). Let n ∈ Z be the valuation of f . So we have

f (t) = t n (a 0 + a 1 t + a 2 t 2 + • • • )
with a i ∈ k, and a 0 = 0. Then

a 0 + a 1 t + a 2 t 2 + • • • =a 0 (1 + t ã1 + t 2 ã2 + • • • ) = b 2 0 (1 + tg(t))
with g(t) ∈ k((t)) and a certain b 0 ∈ k because k is algebraically closed. But in k((t)), the series 1 + tg(t) is a square, for any power series g.

So we prove in this case that a 0 + a 1 t + a 2 t 2 + • • • is a square in k((t)). Then we have now to distinguish two cases.

-First, if n ≡ 2[2] then t n is also a square in k((t)) and so f (t) is a square.

-Now if n ≡ 1[2] then t n is not a square. Then if f was a square, because we have

t n = f (t)(a 0 + a 1 t + • • • ) -1 ,
then t n would be a square too. This is false so in this case we obtain that f is not a square.

Hence, for any algebraically closed field k, k((t)) * /k((t)) * 2 ≃ Z/2Z.

Proposition. With these notations, we have

Aut(l α ) =          G 2 a ⋊ G 2 m if α = ±1 G 2 a ⋊ GL 2 if α = 1 G 2 a ⋊ G 2 m ⋊ µ 2 if α = -1.
And then,

H 1 (K, Aut(l α )) =    1 if α = -1 Z/2Z if α = -1.
Proof. Let A be a K-algebra. Let φ ∈ Aut(l α )(A) be represented by this matrix

φ =      a 0 0 b e h c f i     
, in the basis {x, y, z}.

Doing similar calculations as we did for Aut(r), we obtain that the coefficients of φ should verify: Therefore, (a -1)(aαα 2 )(eif h) = 0 so (a -1)(α 2 -1)(eif h) = 0 but because eif h is invertible, we obtain (a -1)(α 2 -1) = 0.

                    
-That is, if α 2 = 1, i.e. α = ±1, we obtain a = 1, so f = 0 and h = 0. Therefore, for all α ∈ K such that α = ±1, we have

Aut(l α )(A) =               1 0 0 b e 0 c 0 i      ∈ GL 3 (A)          ≃ (G 2 a ⋊ G 2 m )(A).
Hence, H 1 (K, Aut(l α )) = 1 in this case thanks to Proposition 3.3.2.

-If α = 1, we obtain (a -1)(eif h) = 0 hence a = 1, and

Aut(l 1 )(R) =               1 0 0 b e h c f i      ∈ GL 3 (A)          ≃ (G 2 a ⋊ GL 2 )(A).
Again here, H 1 (K, Aut(l α )) = 1 thanks to Proposition 3.3.2.

-Now let us suppose char(K) = 2, and α = -1. In this case, the conditions can be written as Therefore, (a + 1)(a -1)(eif h) = 0 i.e. (a -1)(a + 1) = 0 i.e. a 2 = 1.

Hence we have this exact sequence:

1               1 0 0 b e 0 c 0 i      ∈ GL 3          ֒ Aut(l -1 ) ψ -µ 2 1
where the morphism ψ is the one which maps a matrix on its first coefficient.

So

H 1 (K, Aut(l -1 )) ≃ H 1 (K, µ 2 ).

Let us calculate H 1 (K, µ 2 ). We have the following Kummer fppf exact sequence:

1 µ 2 G m ∧2 -G m 1
which gives a long exact sequence in cohomology:

1 K * 2 K * H 1 (K, µ 2 ) H 1 (K, G m ) = 1
where K * 2 = {f ∈ K * , ∃g ∈ K * , g 2 = f }. So we obtain

H 1 (K, µ 2 ) ≃ K * /K * ∧2 .
Here we have K = k((t)) with k algebraically closed, so we obtain

H 1 (k((t)), Aut(l -1 )) = k((t)) * /k((t)) * 2 ≃ Z/2Z
where the last isomorphism comes from Lemma 3.3.6.

Let us find the only non trivial form of l -1 . Let T ∈ k((t)) such that T 2 = t. Let us denote by f t the three-dimensional Lie algebra over k((t)), whose bracket is given on a basis {x ′ , y ′ , z ′ } by [x ′ , y ′ ] = z ′ , [x ′ , z ′ ] = ty ′ and [y ′ , z ′ ] = 0. Then, this Lie algebra is a form of the Lie algebra l -1 . Indeed, the isomorphism on k((t)) is given by φ :

f t ⊗ K l -1 ⊗ K x ′ T x y ′ y + z z ′ T (y -z).
The details are left to the reader. Let us show that this form is indeed non trivial: let us suppose there exists a isomorphism φ defined on k((t)) from l -1 to this Lie algebra . We obtain this system:

                     taf = e ae = f ah = -i tai = -h a(ei -f h) = 0.
Hence we obtain e(ta 2 -1) = 0. If e = 0 then a and f are invertible, but this is impossible because taf = e. Then e = 0 and ta 2 -1 = 0, i.e. a 2 = t -1 but this is impossible because t -1 is not a square in k((t)). Then there is no isomorphism defined on k((t)) so f t is the unique non-trivial form of l -1 .

The forms of h 3

Let us consider the three-dimensional Lie algebra h 3 , whose bracket is given on a basis by [x, y] = [x, z] = 0 and [y, z] = x.

3.3.8. Proposition. With these notations, we have Aut(h 3 ) = G a ⋊ GL 2 , and so

H 1 (K, Aut(h 3 )) = 1.
Proof. Doing the same kind of calculations as we did for the proof of Proposition 3.3.5 and Proposition 3.3.7, the result follows.

The forms of s

For the end, let us study the forms of the Lie algebra s. We recall that the Lie algebra s is the three-dimensional one, whose bracket is defined on a basis by [x, y] = z, [x, z] = -x and [y, z] = y. In order to study its forms, we need to recall that a discrete valuation ring is strictly henselian if it is henselian and its residue field is separably algebraically closed. In our case, R = k[[t]] with k algebraically closed so R is strictly henselian.

3.3.9. Proposition. Let R be a strictly henselian discrete valuation ring with fraction field K and algebraically closed residue field. Then Then let us calculate H 1 (K, PSL 2 ). We have this exact sequence:

1 G m GL 2 PGL 2 = PSL 2 1
and because H 2 (K, G m ) = 0 thanks to Proposition 3.3.9 and H 1 (K, GL 2 ) = 1, we obtain H 1 (K, PSL 2 ) = 1.

Then now we can prove the theorem of the classification of Lie algebras over k((t)). -Let us show that f t is restrictable for any prime p = 2. Let us write {x, y, z} for a basis of f t . Then, is this basis, the morphism ad can be written like this: If we suppose i = 0 then e = 0 so h is invertible, so a 2 = 1. If i = 0, the relation a 2 i = i gives also a 2 = 1. Hence in all cases we obtain a 2 = 1 and so a = ±1. Using the relations we found just above, we can write Then dim(Stab(f t )) = 4, so dim(o(f t )) = 5. Now in order to classify all the Lie p-algebras over k((t)) (and not only the Lie algebras), we also have to classify the different p-mappings that we can have on the Lie algebras over k((t)). Let l be a restrictable Lie algebra over K. Let γ : l l be a p-mapping. We write γ-Aut(l) for the functor of the automorphism of Lie p-algebra of l, with respect to the p-mapping γ. If the p-mapping is unique on l, we just write p-Aut(l).

Stab(o(f t )) =          A ∈ GL 3 (K), A =     
3.3.11. Lemma. Let l be a restrictable Lie algebra over a field K of characteristic p > 0, with Z(l) = {0}. Let us write γ : l l the unique p-morphism of l, and let φ : l l be an isomorphism of Lie algebra. Then, φ is an isomorphism of Lie p-algebras.

Proof. With simple calculations, one can prove that the morphism γ ′ • • =: f • γ • f -1 is a p-mapping on l. But by uniqueness we obtain γ ′ = γ i.e. f • γ = γ • f .

3.3.12.

Corollary. There is no s-form as Lie p-algebra over k((t)), and no l α -form either, with α ∈ F * p .

For the other ones, it is more complicated to find all the forms of Lie p-algebra because there are infinitely many different p-mappings and the calculations of the forms of them start to be difficult. Because this subsection is only here to illustrate and to give some examples, we stop our calculations here. 

Abstract:

The main objects of this thesis are the group schemes defined over a based scheme of characteristic p > 0. We propose here to study these schemes in families, thanks to tools of moduli spaces. More precisely, we start by studying the moduli space of finite group schemes of height 1. This is a pleasant setting because these groups are determined by their Lie algebra, which is naturally equipped with an additional structure, called a "p-mapping". Then we explore in detail the moduli space of finite locally free Lie p-algebras. We will see that the moduli spaces that appear are non-separated stacks. We propose then to study its lack of separateness by studying models of finite group schemes, in families. We also make the connection with the first part of the thesis studying models of height 1 group schemes and those of their Lie p-algebra.
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  uns, John Tate et Frans Oort ont classifié les groupes finis d'ordre p sous de faibles hypothèses dans [TO70]. De plus, des résultats sur les corps parfaits sont connus : par exemple tout groupe fini abélien commutatif défini sur un corps parfait se décompose de manière unique en produit G = G (e,e) × G (e,c) × G (c,e) × G (c,c) où G (e,e) est de type étale avec dual de Cartier étale, G (e,c) est de type étale avec dual de Cartier connexe, G (c,e) est connexe avec dual de Cartier étale, et G (c,c) est connexe avec dual de Cartier connexe (voir [W79], section 6.8). La théorie de Galois permet de comprendre les deux premiers types, et après dualisation de Cartier, elle permet également de comprendre le troisième type. La théorie des modules de Dieudonné permet de classifier la partie "connexe-connexe". Nous pouvons également citer A.J. de Jong ([D93]) qui a caractérisé certains schémas en groupes finis localement libres commutatifs de caractéristique p > 0 sur des bases plus générales. De plus, ces objets apparaissent naturellement en géométrie algébrique, et ce, de différentes manières. Par exemple soit A une variété abélienne de dimension g définie sur un corps k algébriquement clos. Pour tout entier naturel n, l'ensemble des points de n-torsion A(k)[n] = ker(n : A A) est un groupe fini (par exemple si car(k) ∤ n, on sait que A(k)[n] = (Z/nZ) 2g ). De plus tout groupe fini localement libre est lié à une variété abélienne de la façon suivante : pour tout schéma de base S et tout schéma en groupes commutatif G S fini localement libre, alors localement pour la topologie de Zariski, il existe un schéma abélien projectif A et une S-immersion fermée G A / (voir [BBM82], Théorème 3.1.1).

.

  On note GLC le champ ci-dessus qui associe à un schéma S la catégorie des schémas en groupes lisses connexes sur S, on note Lie n le champ des algèbres de Lie finies localement libres de rang n, et p-Lie n celui des p-algèbres de Lie de ce type. On note également G r n le champ des schémas en groupes finis d'ordre p n , localement libres de hauteur r. Notons que GLC n'est pas algébrique alors que p-Lie n , Lie n et G r n le sont. Voici quelques questions naturelles : 1) Quelle est la structure algébro-géométrique du champ G r n ? 2) Quelle est la structure algébro-géométrique du morphisme de champs algébriques p-Lie n oubli --Lie n ? 3) Quelle est l'image de GLC (qui n'est pas algébrique) dans p-Lie n et Lie n ? Estelle algébrique ? 4) Les liens rappelés ci-dessus entre un groupe algébrique G et la famille {G r } s'étendent-ils à des schémas en groupes sur des bases S plus générales ? 5) Quelles sont les fibres du morphisme GLC Lie(ker(Frob))

L

  n d'algèbres de Lie de dimension n a été étudiée, voir par exemple Vergne [V66], Carles [Carl79], Carles et Diakité [CD84], Kirillov et Neretin [KN84], et d'autres. Dans ces travaux, ce sont principalement les petites dimensions qui ont été étudiées. Pour obtenir une classification des algèbres de Lie sur des corps algébriquement clos quelconques, nous avons adapté la preuve de la classification des classes d'isomorphismes sur C que l'on peut trouver dans le livre de Fulton et Harris [FH91] Part 2 Section 10. En particulier, nous avons besoin de classifier les algèbres de Lie sur un corps de caractéristique positive, pour pouvoir également donner une classification des algèbres de Lie restreignables. Cela donne ce résultat, détaillé dans la sous-section 3.1 : Théorème C. Soit k un corps algébriquement clos de caractéristique p > 0. On note ∼ la relation d'équivalence sur k, donnée par x ∼ x ′ si et seulement si x ′ = x ou x ′ = x -1 . Alors, toute algèbre de Lie de dimension 3 sur k est isomorphe à exactement une algèbre de Lie de la famille suivante : {ab, h 3 , r, s, (l t ) t∈ k / ∼ }. A partir de cette classification des algèbres de Lie, nous donnons la classification des p-algèbres de Lie en cherchant lesquelles d'entre elles sont restreignables. Ensuite, nous avons donné des résultats plus précis sur la structure schématique de l'espace de modules L 3 des algèbres de Lie de dimension 3, que nous avons défini sur Z. Ce schéma avait été étudié auparavant mais sur le corps des complexes. Par exemple Laurent Manivel dans [Ma16] a donné une description des composantes irréductibles de L 3 , en donnant une preuve géométrique : il a exploité la correspondance entre la structure d'algèbre de Lie sur un anneau R avec un élément de w ∈ R 3 ⊗ R 3 . Dans ce cas, il y a alors une décomposition

-

  Si p = 2, G 3,0 est singulier, mais devient lisse après intersection avec G (2) 3,0 , et si p = 2, G 3,0 est lisse. -G 3,1 est singulier, mais devient lisse après intersection avec G (1) 3,1 . -G 3,2 est vide.

  both flat with Cohen-Macaulay integral geometric fibers of dimension 6.

  and because a monomorphism of schemes remains a monomorphism after any base change, we know that the injection F ֒ E remains injective after any base change. Then the cokernel Y of this injection is O S -flat. Because it is also of finite presentation, it is locally free of finite rank thanks to Proposition 1.2.7. Let us show now that Y • • = Spec(Sym(Y ∨ )) is actually the quotient E/F . We have the following exact sequence:

  Hence the center Z(L) and its sheaf of Zariski sections do not determine each other. 1.3.4. Definition. Let L be an O S -module in Lie algebras. We define its derived Lie algebra L ′ as the image sheaf of [•, •] : L ⊗ L L.

  Lie algebras. As stated in the introduction, let us denote by Lie n the moduli stack of n-dimensional Lie algebras, and L n the moduli space of based Lie algebras. Then we have the quotient stack presentation Lie n = [L n / GL n ] where GL n

3

  are flat of finite presentation over Z, and that for all algebraically closed fields k, L (1) 3,k and L

Figure II. 1 -

 1 Figure II.1 -Representation of different fibers of Lie algebras over Spec(Z)

  ) ∈ O T (T ) 9 for the coefficients of the Lie bracket [•, •], where [x, y] = ax + by + cz , [x, z] = dx + ey + f z and [y, z] = gx + hy + iz.

  D) ∨ 0 which is a projective resolution of length 3 of D/[I : L]. Then projdim([I : L]) ≤ 3. But because I ⊂ [I : L], we know that grade([I : L]) ≥ 3. Hence [I : L] is perfect of grade 3. Now in order to show [I : L] = I + det(M ), we will see that the resolution found above is actually a resolution of D/(I + det(M )). Let us calculate the cokernel of the dual of this map:

  If p = L, we will show that I p = L p . Then let a b ∈ L p , with a ∈ L and b / ∈ L. Then, because det(M ) / ∈ L, a b = a det(M ) b det(M ) ∈ I p because we showed in Lemma 3.2.5 that det(M )L 1 ∈ I. Then I p = L p , so J p ∩ L p ⊂ I p . -If p = L, we will show that I p = J p . Let det(M ) b ∈ J p . As L = p and p is minimal, we have L p, so we can suppose L 1 / ∈ p. Then because det(M )L 1 ∈ I and det(M ) b = det(M )L 1 bL 1 , we have the equality I p = J p . Hence J p ∩ L p ⊂ I p . 3.2.16. Corollary. The ideal J is minimal among the prime ideals containing I. Proof. Let p ∈ Spec(A[a, . . . , i]) such that I ⊂ p ⊂ J. If det(M ) ∈ p, then J = p.

  set of p-mappings on L n . Then the quotient map L p n p-Lie n is smooth, and L p n Forgetful -----L res n is an affine fibration, and if for r ≤ n, we denote by L p n,r • • = L p n ∩ L n,r , we know that

  any ring of the form A[[t]] with A regular of dimension at most 1.



  scheme over Spec(A[[t]])

  H and O G are free A ′ [[t]]-modules, and let us write m = rk(O G ). In this case, f is a closed immersion if and only if the corresponding morphism f # on the rings of functions is surjective. Let us write M for the corresponding matrix and let us write d 1 , • • • , d k for its minors of size m. Then f is surjective if and only if there exists a minor d i which is invertible if and only if there exists a minor

  Covering S red d with affine schemes, and working on one connected component of it, we can suppose that S red d = Spec(A) is affine and irreducible over Spec(k). Let H = V (I) ∈ S red d (k).

  which is uniquely determined by the image a ∈ O G ⊗K of the indeterminate X. Let us write m for the t-valuation of a. Then t m a ∈ O G . Therefore the morphism G α (m)

Moreover, we can

  construct an isomorphism between {Aut(G)-torsors}/ ∼ and the forms of G as follows : we associate to a class of Aut(G)-torsor E the the contracted product G Aut(H) × E, and to any form G ′ of G, we associate the class of Aut(G)-torsor Isom K (G, G ′ ). The proof of this isomorphism is given in [DG70], Chapitre III, §5, n°1.

  3.1.Thanks to theses theorems, we can study the different forms of Lie p-algebras of dimension 3. We will first generalise the classification of Lie algebras we have made in Theorem 3.1.4, and then focus on the ones which are restrictable. 3.3.3. Notation. Let us denote by f t the three-dimensional Lie algebra over K, with bracket given on a basis by [x, y] = z, [x, z] = ty and [y, z] = 0. 3.3.4. Theorem. Let K = k((t)), with char(k) = 2. Then any Lie algebras of dimension 3 over K is isomorphic to exactly one in the following table.

The forms of r

  Let r denote the three-dimensional Lie algebra vector bundle over Spec(K), with bracket given on a basis by [x, y] = y, [x, z] = y + z and [y, z] = 0.3.3.5. Proposition. With these notations, we haveAut(r) = G 2 a ⋊ (G m ⋊ G a ), then H 1 (K, Aut(r)) = 1.Proof. Let us calculate the sheaf Aut(r). For this, let A be a K-algebra, and let φ ∈ Aut(r)(R). Then φ can be represented by a matrix {x, y, z}.

∈e

  + i) = e + h ai = f + i a(eif h) ∈ A * ⇔                      (a -1)e = -af (a -1)f = 0 (a -1)h = eai (a -1)i = f a(eif h) ∈ A * . so we can calculate (a -1) 2 (eif h) = (a -1) 2 ei = -(a -1)af i = 0. But becauseeif h is invertible, we obtain (a -1) 2 = 0. Now we are able to give a description of the functor Aut(r) :Aut(r) : {K-algebras} Set 1)h + ai h c -(a -1)(h(a -1) + ai) i GL 3 (A), (a -1) 2 = 0, i ∈ A * i = (a -1)h + aii = (a -1)(h + i) so (ei)(a -1) = 0. But (ei)(a -1) = e(a -1)i(a -1) = -aff = -ff = -2f.

  [x, z] = αz and [y, z] = 0. In order to calculate the forms of l α , we need a lemma before: 3.3.6. Lemma. Let k be an algebraically closed field of characteristic = 2. Then k((t)) * /k((t)) * 2 ≃ Z/2Z.

  1)(aα -1)(eif h) = 0 (a -1)(aα)(eif h) = 0.

  f h) ∈ A * .

f

  t . Let us write φ as a matrix: φ =

H

  i (K, G m ) = 1, for all i ≥ 1.Proof. See[START_REF] Colliot-Thélène | The Brauer-Grothendieck group[END_REF], 1.4, Proposition 1.4.5.3.3.10. Proposition. Because char(k) = 2, we have s ≃ sl 2 , then Aut(s) = PSL 2 and H 1 (K, Aut(s)) = 1. Proof. Because s ≃ sl 2 , we obtain Aut(s) = Aut(sl 2 ) = Aut(SL 2 ) = PSL 2 . Indeedthe last equality comes from[START_REF]Schémas en groupes[END_REF], Exposé XXIV, 3.6, where it is proved that for any simply-connected reductive group scheme, we have an isomorphism Out(G) ∼ -Aut(Dyn(G)). But here, the Dynkin diagram of SL 2 is A 1 , which has no automorphism. Hence we have (See[START_REF] Milne | Algebraic groups[END_REF] §23. e. for more details) PSL 2 ≃ Inn(SL 2 ) ≃ Aut(SL 2 ).

  Proof. (of Theorem 3.3.4) -In order to know all the differents isomorphism classes, we use the theorem of classification of Lie algebras of dimension 3 over an algebraically closed field, Theorem 3.1.4, and the propositions 3.3.5, 3.3.7, 3.3.8 and 3.3.10.

.∈

  Then for all p ≥ 3 we have ad p y = ad p z ≡ 0. Now for any n ∈ N such thatn ≡ 1[2],we can prove by induction that we have ad n x = p ≥ 3 we have ad p x = ad x ′ where x ′ = t p-1 2 x, and ad p y = ad p z = ad 0 . So f t is restrictable thanks to Theorem 1.1.6 (Jacobson's theorem).-Let us show that its orbit's dimension is 5. In order to do this, let us calculate its stabilizer. Let A = GL 3 (K) be a matrix in the stabilizer of o(f t ). Then, we write the relation[Av, Aw] = A[v, w]for all elements of the basis and we can fin the equations for the stabilizer. We obtain these conditions:                           g = d = 0 ae = i af t = h ah = tf ait = te a(eif h) = 0 ⇔                                  g = d = 0 a 2 i = i a 2 h = h af t = h ah = tf ait = te a(eif h) = 0

Titre:

  Modules de groupes finis plats en caractéristique p > 0 Mot clés : Algèbre de Lie restreignable, schéma en groupe fini, espace de modules Résumé : Les objets principaux de cette thèse sont les schémas en groupes définis sur un schéma de base de caractéristique p > 0. Le point de vue adopté ici est l'étude de ces objets en famille. Plus précisément, nous commençons par étudier l'espace de modules des schémas en groupes finis sur un schéma de caractéristique p > 0, localement libres de hauteur 1. Ce cadre est plaisant car ces groupes sont caractérisés par leur algèbre de Lie, qui est naturellement munie d'une structure supplémentaire, appelée "p-application". Nous explorons alors en détail l'espace de modules des p-algèbres de Lie localement libres de rang fini. Nous allons voir que les espaces de module qui apparaissent sont des champs non séparés, et nous proposons alors d'étudier leur défaut de séparation en étudiant leurs modèles. Ainsi en deuxième partie nous développons les bases de l'étude des modèles d'un schéma en groupe fini en famille, et nous illustrons les résultats obtenus. Nous faisons notamment le lien avec la première partie en étudiant également les modèles de schémas en groupes de hauteur 1 et ceux de leur p-algèbre de Lie. Title: Moduli of finite flat group schemes in characteristic p > 0 Keywords: Restrictable Lie algebra, finite group scheme, moduli space

  En caractéristique p, nous pouvons munir canoniquement l'algèbre de Lie d'un groupe algébrique d'une structure supplémentaire, appelée p-application. De manière générale, l'algèbre de Lie d'un groupe en caractéristique p ne caractérise pas le groupe (par exemple si G est un groupe étale, alors son algèbre de Lie est nulle), mais munie de sa p-application, l'algèbre de Lie capture le premier noyau de Frobenius de notre groupe. En effet, le foncteur Lie donne une équivalence de champs G 1 n ≃ p-Lie n (voir [SGA3], exposé VIIA, section 7) et ainsi donne un cadre naturellement plaisant pour mieux comprendre ces objets. De plus, les groupes de hauteur 1 permettent un "dévissage" dans le sens suivant : soit G r le r-ième noyau de Frobenius d'un groupe lisse.

  De plus, pour avoir des résultats plus fins sur les propriétés du schéma L 3 et de ses composantes irréductibles, nous avons utilisé la théorie de la liaison, comme l'ont développée Christian Peskine et Lucien Szpiro dans [PS74]. Lorsqu'un idéal J d'un anneau est lié à un autre idéal

L (au sens où J est l'annulateur de L), alors on peut obtenir des informations fines de régularité sur J si on en connaît sur L. Dans notre cas, il s'avère que notre variété L 3 est en réalité un cas typique de schéma réductible, dont les composantes sont liées.

  )) le corps des séries de Laurent. Etant donnés un K-schéma en groupes fini G K et une k-algèbre A, on appelle prolongement de G K à A un schéma en groupes fini localement libre sur

A[[t]], dont la fibre générique, définie comme G ⊗ A((t)) est munie d'un isomorphisme avec G K ⊗ A((t)). Nous notons P G K ou simplement P lorsque le contexte est clair, le faisceau des prolongements de G K . En utilisant la représentabilité des grassmanniennes affines, on obtient le résultat suivant (voir Theorem 1.2.4) : Théorème F. Le foncteur P est représentable par un ind-schéma, ind-projectif sur k.

  De plus, nous remarquons que le groupe Γ égal à la restriction de Weil du groupe

d'automorphismes de G K agit naturellement sur l'espace des prolongements P, en changeant l'isomorphisme en fibre générique. Nous calculons explicitement les orbites pour cette action dans la sous-section 2.4 : Théorème G. Pour tout G ∈ P(A), l'orbite de G sous l'action de Γ est le faisceau fpqc associé au préfaisceau

  Si l'ensemble P H ≥G est non vide et s'il possède un minimum pour la relation d'ordre, nous le notons D G (H) et l'appelons dilatation de H dans G. De manière générale, il n'est pas simple de savoir si une dilatation existe. Cependant, grâce au fait que la platitude est bien maîtrisée sur les anneaux réguliers de dimension ≤ 2, nous arrivons à démontrer l'existence des dilatations dans P(A) avec A régulier de dimension au plus 1, et lorsque le groupe G K est infinitésimal (voir Proposition 2.3.15) : Supposons G K infinitésimal. Soit A un anneau régulier de dimension au plus 1. Alors pour tout sous-groupe H de la fibre spéciale de G, la dilatation D G (H) existe dans P(A). ce cadre plaisant, nous obtenons alors un morphisme rationnel de l'espace des sous-groupes de la fibre spéciale de G vers l'espace des prolongements. Plus précisément (voir Corollaire 2.3.16) :

	Proposition A. Dans Théorème			
				≥G le sous-
	espace des prolongements munis d'un morphisme vers G qui envoie la fibre spéciale
	dans H. Ce foncteur est également représentable par un ind-schéma, ind-projectif, car
	l'inclusion naturelle suivante est représentable par une immersion fermée :
	P H ≥G	P	ind-schéma -------ind-projectif	Spec(k)

possèdent des familles minimales composées respectivement d'un élément D R et d'une famille infinie de prolongements dont le groupe sous-jacent est A R (ceci se voit facilement ; pour G m et G a , voir [WW80], Lemma 2.1. et Corollary 2.4.). Supposons alors connue une famille minimale de prolongements pour notre groupe G K . Alors la propriété de factorisation par les dilatations fournit un procédé de construction de tous les modèles de G K . Ainsi, pour décrire un à un tous les prolongements d'un groupe G K à k[[t]], nous pouvons nous restreindre à étudier et lister ses dilatations successives (qui peuvent se calculer explicitement), et nous pouvons nous arrêter dès lors que l'on rencontre un prolongement G 1 dont le groupe sous-jacent est le même qu'un prolongement G 2 déjà rencontré auparavant. En effet, cela implique que G 1 et G 2 sont dans la même orbite pour l'action du groupe d'automorphismes de G K , et ainsi on peut montrer que leurs dilatations, en tant que prolongements, sont également dans la même orbite sous l'action du groupe d'automorphismes. Dans notre cas, comme l'espace de modules des prolongements d'un groupe G K est représentable, on peut avoir une définition de dilatation comme objet de cet espace, et obtenir ainsi des dilatations sur des bases plus générales. Ainsi pour tout prolongement G ∈ P(A), pour tout groupe fermé H de la fibre spéciale de G, notons P H / . I. Supposons G K infinitesimal. Soit A une k-algèbre et soit G ∈ P(A). On note S d l'espace de modules des sous-groupes fermés de G |t=0 , d'ordre p d . Alors il existe un morphisme rationnel entre le normalisé S red d et l'espace P, défini sur un ouvert non vide contenant tous les points de codimension 1 : S red d P.

  Lie algebras, and especially on the case n = 3. For this, we will introduce the moduli space L n of based Lie algebras locally free of rank n, with the natural action of GL n on it, by change of basis. We can see that we have the quotient stack presentation Lie n = [L n / GL n ], so we are led to studying the orbits of the action of GL n . You can find the classification on those isomorphism classes in Fulton and Harris' Let us denote by ∼ the equivalence relation on k, given by x ∼ x ′ if and only if x ′ = x or x ′ = x -1 . Then any Lie algebras of dimension 3 over k

	this, we use liaison theory, as developed by Peskine and Szpiro in [PS74]; in fact L 3
	book [FH91], but in order to apply our theoretical results and to allow varying primes p,
	we reformulate in Subsection 3.1 the classification of 3-dimensional Lie algebras over
	algebraically closed fields in a characteristic-free way, giving representatives of the
	isomorphism classes defined over Z and Z[T ]. So let k be an algebraically closed field
	of characteristic p > 0. is isomorphic to exactly one in the following table.	
		Name	Structure Orbit dimension Center dimension	Restrictable
		ab 3	abelian	0	3	yes
		h 3	nilpotent	3	1	yes
		r	solvable	5	0	no
		s	simple	6	0	p = 2 p = 2
						yes	no
		t / ∈ F p /∼	solvable	5	0	no
	l t	t ∈ F p /∼ {0, 1} solvable t = 0 solvable	5 5	0 1	yes yes
		t = 1	solvable	3	0	yes
		Afterward in Subsection 3.2 we supplement the known results by giving more precise
	information on the scheme structure of the moduli space L 3 , that we define over Z. For

  3 over k is isomorphic to exactly one in the following table.

		Name	Structure Orbit dimension Center dimension	Restrictable
		ab 3	abelian	0	3	yes
		h 3	nilpotent	3	1	yes
		r	solvable	5	0	no
		s	simple	6	0	p = 2 p = 2 yes no
		t / ∈ F p /∼	solvable	5	0	no
	l t	t ∈ F p /∼ {0, 1} solvable t = 0 solvable	5 5	0 1	yes yes
		t = 1	solvable	3	0	yes

  this endomorphism is diagonalizable. So now let us transform this argument in our case. So let g be a Lie algebra over k, with derived Lie algebra of rank 3. Let us do the same proof as done in loc. cit. §10.4 until this argument. Then, changing the eigenvector X of ad H for the eigenvalue α into αX, and changing H in α -1 H, we find that ad H has 0 and 1 as eigenvalues. If ad H is diagonalizable, we can apply the proof of[START_REF] Fulton | Representation theory. A first course[END_REF]. Otherwise, we can apply the Jordan-Chevalley decomposition to ad H and so we can suppose there is a basis {X, Y, H} of g such that [H, X] = X and

[H, Y ] = X + Y . Then thanks to the Jacobi condition, we know that

  Then using Theorem 1.1.6 (Jacobson's theorem), and the definition of a restrictable Lie algebra, we know that l is restrictable if and only if t p = t i.e. if and only if t ∈ F p .

	3.1.9. Example. Thanks to this classification, we can illustrate Theorem 2.1.8. Indeed,
	let k be an algebraically closed field of characteristic p > 0. Let l T • • = Spec(k[T ])	L 3 ,
	given on the rings by a, c, d, e, g, h, i	0, b	1 and f	T . Let us calculate L res 3 × l T .
	Thanks to what we have done before, we know	

  appears only in Q 1 , the variable e appears only in Q 2 and the variable c appears only in Q 3 . Moreover, all of them appear with a regular coefficient. Then let us set C

let us remark that for any ring R, any polynomial in R[X] whose leading coefficient is regular, is regular. But, the variable g

  , using Proposition 2.2.4, we know thatH 1 is flat over A[[t]].So H 1 is greater than or equal to H and H ′ . Now let us show that H 1 is the supremum of H and H ′ . Let M ∈ P(A) such that there exist two morphisms of

	Let us consider the diagram	
	H	H ∨∨	
			(H ⊗ H ′ ) ∨∨	j	H 1 .
	H ′	H ′∨∨	
	prolongations u : H	M and v : H ′	M. Let us write

  and the article[START_REF] Waterhouse | One-dimensional affine group schemes[END_REF]. Classical dilatations are the solution to a universal problem among all flat schemes, and they are defined as follows. Let us recall the notations R• • = k[[t]] and K • • = k((t)). of G k . We call classical dilatation of H in G k a group morphism D G (H)G sending the special fiber into H, such that D G (H) is flat over R and such that it is final for these properties. Actually the term dilatation is used is the case of general schemes. When we are working with group schemes, it is usually the term Néron blowup which is used in the literature.Because being flat on a DVR is equivalent to being torsion-free, the classical dilatation of any finite type subgroup exists and it can be constructed explicitly.Let I = (t, g 1 , • • • , g n ) be the ideal of H in O G .Then the dilatation of H in G exists and is given by D G (H) = Spec(A ′ ) where

	2.3.1. Definition. Let G	Spec(R) be a flat group scheme. Let H	/	G k	be
	a closed subgroup 2.3.2. Remark. 2.3.3. Proposition. Let G	Spec(R) be a flat group scheme. Let H	/	G k	be
	any closed subgroup, of finite type over R.			

  otherwise is representable by a closed subscheme of Spec(A ′ ). First of all, both H and G are of finite presentation, hence the morphismH A ′ ֒ G A ′ |t=0 is of finite presentation. Then let us denote I = (t, f 1 , • • • f m ) the finite type ideal of H A ′ .Because everything is local on A and thanks to Lemma 1.2.12 we can suppose that O G is a free A[[t]]-module, and we can write

  module, and becauseA[[t]] is Noetherian, then O G [t -1 I] is also finite.

	-Let us show that 3) =⇒ 1). Because O G [t -1 I] is a finite A[[t]]-module, we
	know that O G [t -1 I] ∨∨ is reflexive in the sense of Definition 2.2.3. Then because
	A[[t]] is a regular ring of dimension at most 2, this module is locally free thanks
	to Proposition 2.2.4. Now let us show that this group respects the universal
	property of the dilatation. Let g : G ′	G be a morphism in P(A), such that
	g(G ′ |t=0 ) ⊂ H. Then in this case we have	

  the element a i is uniquely determined.Then the morphism g # factorises through O G [t -1 I], sending the indeterminate X i on the a i corresponding. Let us write this morphism φ. By dualizing this morphism twice, we obtain a morphism φ ∨∨

  flat over it. Let us denote by W for the largest one with this property. Then thanks to Proposition 2.2.4, we know that this open subset contains the points of codimension at most 1, and thanks to Proposition 2.3.15, we know that on this open subset, the dilatation exists and it is given by Spec(O G [t -1 I] ∨∨ ). Then this defines a morphism from the nonempty open subscheme

Action of the automorphism group and covering tree of prolongations

  Studying examples of moduli spaces of prolongations (like Example 3.1.4), we see that in general P is "big", in the sense that it is of infinite dimension. But one can see easily that if we have a model (G, i) of G K , then any automorphism φ of G K gives another model of G K , by composing i and φ. So the automorphism group of G K acts on P, and it is natural to study its orbits, and to see if the quotient is of finite dimension. Let us write:

	tz, t p-1 z p )
	2.4

Macaulay geometric fibers of dimension 6.

Proof. Let p ∈ Spec(R 3,A ) and let us denote R • • = (R 3,A ) p . Let us denote I 1 • • = (L) p and I 2 • • = (J) p . We would like to apply Proposition 1.3 from [START_REF] Peskine | Liaison des variétés algébriques[END_REF]. Let us show that we are in good conditions:

1. R is a Gorenstein local ring: indeed, A[a, . . . , i] is regular hence Gorenstein, but because I = (Q 1 , Q 2 , Q 3 ) is a regular sequence, then A[a, . . . , i]/I is also Gorenstein. Hence R is Gorenstein as a localisation of a Gorenstein ring.

2. I 2 = ann(I 1 ): indeed I 2 = (J) p = (ann(L)) p = ann((L) p ) because R is Noetherian.

3. dim(R) = dim(R/I 1 ) because as R is Gorenstein hence Cohen-Macaulay, so we can apply Proposition 2.15 d) in Chapter 8, Section 8.2.2 in Liu's book [L02],

using I 1 as prime ideal which has height 0 (because L is a minimal prime thanks to Lemma 3.2.5).

R/I

1 is regular hence Cohen-Macaulay. Then using Proposition 1.3 in [START_REF] Peskine | Liaison des variétés algébriques[END_REF],

we obtain that (L) p = [0 : (J) p ] = [0 : J] p .

Because we obtain this result for all p ∈ Spec(R) and because we already know the inclusion L ⊂ [0 : J], then we have the equality not only locally but globally

Hence L is an associate prime of I, and L is the annihilator of J in R 3,A .

The end of the lemma follows from Proposition 1.3 in [START_REF] Peskine | Liaison des variétés algébriques[END_REF].

Then now we know that the ideals J and L are linked, and thanks to this the previous proposition says that because D/L is Cohen-Macaulay, then D/J is Cohen-Macaulay as well. Thanks to this, we will prove that, for any algebraically closed field k, the ideal J is prime in R 3,k , then it describes schematically the second irreducible component of L 3,k . We need this preliminary lemma first.

Lemma. Let k be a field. The scheme L

(2) 3,k = Spec(k[a, . . . , i]/J) has a smooth point.

Proof. Actually, we will find a Z-point of L 3 along which L 3 is smooth. Let t ∈ Z and let l t : Spec(Z) Spec(Z[a, . . . , i]/J) given on the rings by a, c, d, e, g, h, i

where the last equality is because G is of height 1. But actually, this subfunctor takes its values in the center of G: indeed, because z is an abelian Lie algebra, the bialgebra

Moreover by definition, we have for any S-scheme T S,

where the group law of G(T ) is given by (x, y) x ⊗ y. But because the algebra

Applying the functor Lie we obtain

and by definition, z ⊂ Prim(W(U p (z))) so we have the inclusion z ⊂ Lie(Z(G)). 

Now let us show

where the last equality comes from [START_REF] Demazure | Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs[END_REF], Chapitre II, §4, n°4, 4.2 (6), and where [x, y]

is the bracket on Lie(G)(R). But x exp(αβx) is injective thanks to Lemma 4.1.1,

3 is open in the reduced irreducible component L

(1) 3 , then it is reduced. Moreover, using the classification of the Lie algebras we have done above, we can write:

3 is a closed subscheme of the reduced scheme L 3,0 ∩ L

(1)

3 with the same underlying set. Then they are equal as schemes. Now we study the k-points of this intersection of schemes. We have to do exactly the same calculus we have done in the previous subsection, but we have to change the conditions Q 1 , Q 2 and Q 3 for the conditions L 1 , L 2 and L 3 . Then we find:

3 , the k-points l -1 is singular, and s is regular. If char(k) = 2, the scheme L res 3,0 ∩ L

(1) 3 is smooth.

Proof.

-Let us suppose p = 2. We first look at the point s. We obtain, as before, these conditions:

Hence dim(T L res 3 ,s ) = 6, so the local ring of s is regular. Let us do the same for the point l -1 . Doing the same calculations we obtain dim(T L res 3 ,l -1 ) = 6, so the local ring of l -1 is singular. -If p = 2, we have dim(T L res 3 ,l 1 ) = 3 so l 1 is regular.

Study of L res

3,0 in the second irreducible component.

Theorem.

In the second irreducible component, all the k-points of L res 3,0 ∩ L

(2) 3 are smooth.

Chapter III

MODULI OF PROLONGATIONS OF FINITE GROUP SCHEMES

Let us first recall the definition of height. Over any base scheme S of characteristic p > 0, we say that a group scheme G S is of height ≤ n if the n-th Frobenius morphism vanishes. If S = Spec(k) with k a field, we say in this case that the group is exactly of height n. For the end, over any based scheme S, we say that G is of height n if it is of height n in any fiber. As explained in the introduction, we are interested in the stack p-Lie of Lie p-algebras, and the stack G r of finite locally free group schemes of height r. Such stacks are non separated, and this can be measured in different manners:

for example we could study the fibers of the diagonal, or the lack of uniqueness in the valuative criterion for separatedness. We use the second way, which leads to the study of models of group schemes, that in the following we will call prolongations.

Here is the set-up. Let k be a field. Let us fix a discrete valuation ring R

For all this chapter, we fix a finite group scheme G K Spec(K). We will study the space of all prolongations P of G K , i.e. the space of finite flat group schemes G defined over A [[t]], where A is a k-algebra, endowed with an

In the following, we will generalise results that have been obtained studying prolongations over a DVR, like in [START_REF] Raynaud | Schémas en groupes de type (p[END_REF] or in [START_REF] Bosch | Ergeb. Math. Grenzgeb[END_REF]. We bring a new point of view in the following by studying these objects in families. Then in the first section we lay the foundations of the space of prolongations of a fixed finite group scheme G K defined over Spec(K).

We start by proving that the functor we are looking at is an algebraic object: actually it is not representable by a scheme, but by an inductive limit of schemes, see Theorem 1.2.4. We develop two important tools to study P: the dilatations of subgroup schemes of the special fiber of prolongations of G K (see Subsection 2.3), and the action of the (Weil restriction of the) sheaf of automorphisms of G K (see Subsection 2.4). In the following the focus will be done on the dilatations, for which we encounter two types of problems. The first one is that, taking a prolongation G defined over A[ [t]], it

Order relation, supremum and infimum

In this subsection, we will study the existence of morphisms between prolongations.

Because we will use the Cartier duality, we start by defining the order relation on the space of prolongations of a Hopf algebra.

Definition.

Let H K be a K-Hopf algebra, and let A be a k-algebra. Let H and H ′ ∈ P H K (A). We write H ′ ≥ H if there exists a prolongation morphism H ′ H. Likewise, for two group schemes G and G ′ prolongations of a finite group scheme

Lemma. The relation defined above is an order relation on P H . Moreover the Cartier duality inverts the order.

Proof. This is left to the reader.

We will use the theory of reflexive module in order to prove that if A is a regular ring of dimension at most 1, the set P(A) is connected for the order relation. Let us recall a flatness criterion for the modules over a regular ring of dimension 2.

Definition.

We say that a finite module M over a ring A is reflexive if the morphism M M ∨∨ is an isomorphism.

Proposition.

Let S be a regular scheme. Then a reflexive coherent sheaf F on S is locally free except along a closed subset S ′ of codimension ≥ 3. In particular, a reflexive sheaf on a regular scheme of dimension 2 is locally free.

Proof. See Corollary 1.4 in [H80].

In particular, for any finite module M over a regular ring of dimension 2, the module M ∨∨ is flat (because it is reflexive).

Proposition.

Let A be a regular ring of dimension lower than 1. Let H, H ′ ∈ P H K (A). Then, there exist a supremum and an infimum for H and H ′ for the order relation on P(A).

Proof. We will adapt the proof of Proposition 2.2.2 in [START_REF] Raynaud | Schémas en groupes de type (p[END_REF], because here we do not suppose that the Hopf algebra H K is co-commutative.

-Let us first show that there exists a supremum for H and H ′ . Let us consider the tensor product H ⊗ H ′ , and let us write

Theorem. The morphism

is a quasi-compact open and closed immersion. Moreover, the inclusion morphism R ֒-P × P is a closed immersion of finite presentation.

Proof.

-Let us show that the inclusion R ֒ P ×P is representable by a closed immersion of finite presentation. This is a special case of Proposition 1.2.16 with

-Now let us prove that the morphism u is a quasi-compact open immersion. Let

Like above, we can write:

Because being representable is local on A and thanks to Lemma 1.2.12, we can suppose Spec(A) small enough so that G 1 and G 2 are free on A

[[t]]. Let us write

Then v is an isomorphism if and only if the matrix of the b i,j is invertible, i.e. if and only if

i.e. if and only if δ(0) ∈ A is invertible. Then, the morphism u is representable by D(δ(0)) on Spec(A) so it is a quasi-compact open immersion.

-For the end, let us prove that the morphism

is also representable by a closed immersion. Because P is a colimit of separated Over more general bases, the situation is more complicated. This is considered in the article [START_REF] Mayeux | Néron blowups and low degree cohomological applications[END_REF] where the existence of dilatations of flat group schemes with center in a regularly embedded flat subgroup scheme is established. However, in the context of finite locally free group schemes, major difficulties occur: starting from the explicit construction of the dilatation as in Proposition 2.3.3, both finiteness and flatness are hard to obtain. What is more, these two difficulties are interrelated.

Let us start now with the finiteness issue. It turns out that the classical dilatation may not be finite:

Example.

Let us suppose that char(k) = p > 2 and let us define

Then the classical dilatation of V (t, X) is given by

which is not a finite as a R-module.

We will see that restricting to prolongations of an infinitesimal group, the situation is better thanks to Lemma 2.3.14.

We now come to the flatness issue that will appear whenever we will not be working on a DVR. The first observation here is that strict subgroups of finite locally free group schemes are never regularly embedded, and the flatness result of [MRR20] usually fails.

Here is an example.

Example.

Let A be a k-algebra and a = 0 not invertible. Let us write

and let us consider H = V (t, X). If we wanted to use the expression of Proposition 2.3.3, this would give the following scheme

which is not flat over A[[t]], even if the group G was a finite flat group scheme over A[[t]].

Below we shall see how we deal with them, but it is time to give the definition of dilatations that is prompted by the setting of the moduli space P.

Summary: To sum up, we have showed:

In particular, P H ≥G and P ≥G are two ind-schemes, both ind-projective over S.

Definition.

Let A be a k-algebra, and let G ∈ P(A). Let H ⊂ G |t=0 be a closed subgroup of G t=0 , finite locally free over Spec(A). We we call dilatation of H in G, and we write it D G (H), if it exists:

Notation. Let G Spec(A[[t]]) be an A[[t]

]-group scheme, and let D G (H 1 ) be the dilatation of G by a closed subgroup H 1 of the special fiber. Let H 2 be a closed subgroup of the special fiber of D G (H 1 ). Then we write

We can remark that there is a functoriality between dilatation morphisms:

Lemma. (Functoriality of the dilatation) Let G 1 and G 2 be two A[[t]]-group

schemes with A a k-algebra. Let H 1 and H 2 be two subgroup schemes, finite locally free over Spec(A) of respectively G 1,|t=0 and G 2,|t=0 . Let us suppose

Then there exists a morphism dil(u) :

) such that the following diagram commutes:

Then by definition of the dilatation, the lemma is proved.

In the following, we present two different results on existence of dilatations in P(A),

where A is a regular ring of dimension at most 1. We will use again the fact that flatness is well-behaved in this context. Let B be a k

Then we write

a universal homeomorphism. Finally if moreover f is of finite type, it is finite (see [START_REF] Grothendieck | IV . Eléments de géometrie algébrique. Étude locale des schémas et des morphismes de schémas[END_REF], (18.12.11)).

Then we obtain: 

Let us show that f is finite. Because f is affine, it is quasi-compact and separated. By construction,

by hypothesis so f U is a homeomorphism because G K is infinitesimal. Then because f has a section, we can apply Lemma 2.3.14 to get that f is finite, so O G [t -1 I] is a finite

A[[t]

]-module, and thanks to Proposition 2.3.13, we know that the dilatation of H in G exists and it is given by Spec(O G [t -1 I]) ∨∨ ).

In This means that γ is in the image of this injective morphism:

so we get the result.

Corollary.

For any G ∈ P(A), the orbit of G under the action of Γ × Spec(A) is the twisted affine Grasmannian of G (see Pappas and Rapoport [START_REF] Pappas | Twisted loop groups and their affine flag varieties[END_REF]), that is to say, the fpqc sheaf Γ/Σ G associated to the presheaf

In the following, we would like to understand the set P(k) of all prolongations of G K , defined over k [[t]]. In order to do this, a strategy consists in finding an interesting family of prolongations, that generates all the prolongations under iterated dilatations.

Definition.

Let G K be a K-group scheme. We say that a prolongation G of G K is minimal if for any prolongation G, there exists a prolongation map G G. We say that a family of prolongations {G i } i∈I is a minimal family of prolongations of G K if for any prolongation G, there exists i ∈ I and a morphism of prolongations G G i .

2.4.5. Example. In general, there does not exist a minimal prolongation. But we can see that G m,R is a minimal prolongation of G m,K (see [START_REF] Waterhouse | One-dimensional affine group schemes[END_REF], Corollary 2.4).

Moreover, there always exists a minimal family of prolongations (we can just take all the prolongations), but of course we are looking for interesting families, in the sense that we are looking for "small" families that allow us to calculate all the prolongations of a group. We will see in Section 3.2 that the group α p n ,K has an interesting minimal family of prolongations that can be easily calculated. It is not difficult to see that this is also true for µ p n , and their products.

Then after finding (if it exists) an interesting minimal family F of prolongations for G K , the strategy to obtain all the prolongations is the following: for all group schemes

G in the family

Proof. The proof is the same as the one of 3.2.5.

Here all the group schemes that appear in the sequence of dilatations are group schemes that have already appeared before. So we can stop our calculations here: we now know all the prolongations of α p 2 ,K defined on k[[t]], i.e. with our notations, we know all the points of P α p 2 (k).