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Résumé

Dans cette thèse de doctorat, je modélise et simule des réseaux de neurones biologiques pour mieux
comprendre la genèse et l’évolution des schémas de burst neuronal. Plus précisément, je développe ici
un nouveau modèle de champ moyen basé sur la plasticité synaptique à court terme qui tient compte à
la fois des bursts et interbursts en ajoutant l’afterhyperpolarisation (AHP), un mécanisme induit par
divers canaux de K+, situés sur la membrane neuronale, avec une dynamique lente qui conduit à une
période réfractaire après les bursts.
Le modèle est un système dynamique non linéaire de dimension 3 avec un bruit blanc gaussien ad-
ditif. Je caractérise les durées des bursts et interbursts en combinant l’étude de l’espace des phases
déterministe avec de l’analyse asymptotique pour l’aspect stochastique. La distribution des durées
de bursts (définies par de longues trajectoires déterministes en dehors du bassin d’attraction) est
déterminée en caractérisant la densité de probabilité des points de sortie sur la séparatrice qui sat-
isfait l’équation de Fokker-Planck. Pour résoudre ce problème, j’utilise l’approximation WKB et la
méthode des caractéristiques.
Les interbursts sont définis comme la sortie du bassin d’attraction induite par le bruit. Comme la dy-
namique autour de l’attracteur est très anisotrope, j’utilise une projection bidimensionnelle du modèle
pour étudier ces interbursts. De manière surprenante, la densité de probabilité dans l’espace des phases
des trajectoires non sortantes a révélé un maximum qui n’est pas centré sur l’attracteur déterministe
et dont la position dépend de l’amplitude du bruit, décrivant ainsi un déplacement de la position de
l’attracteur dans le cas stochastique. Enfin, l’analyse des trajectoires sortantes a révélé un nouveau
mécanisme de sortie d’un bassin d’attraction (propre aux dimensions ≥ 2) : les trajectoires traversent
la séparatrice puis entrent et sortent un grand nombre de fois du bassin d’attraction avant de s’échapper
vers l’infini, induisant une différence significative entre le temps mis pour atteindre la séparatrice pour
la première fois et celui mis pour s’échapper et ce, quelle que soit l’amplitude du bruit. J’ai caractérisé
et quantifié ces deux nouveaux phénomènes dans le cadre général d’un système dynamique bidimen-
sionnel simplifié qui est topologiquement équivalent au modèle d’origine. Ce mécanisme d’entrées /
sorties récurrentes explique l’existence de temps de sortie plus longs qu’attendu par la théorie classique
de sortie de Kramers.
Dans la deuxième partie de la thèse, je présente deux applications de ce modèle. Tout d’abord, j’étudie
les mécanismes sous-jacents à la régulation de la dynamique de bursts-interburst par le réseau as-
trocytaire, en combinant modélisation mathématique, simulations numériques et analyse de données
électrophysiologiques de l’activité neuronale. Dans la seconde application, j’étudie l’existence ou la
disparition des oscillations cérébrales et leur connexion avec les états hauts (Up states) et bas (Down
states) qui émergent dans les réseaux de neurones connectés. Pour cela, je modélise la dynamique de
la boucle thalamo-corticale lors de l’anesthésie générale en reliant entre elles plusieurs populations de
neurones, chacune représentée par un modèle de champ moyen avec ou sans AHP.



Abstract

In this PhD thesis I model and simulate biological neural networks to better understand the genesis
and maintenance of neuronal bursting patterns. Specifically, I develop a new mean field model based
on synaptic short-term plasticity which accounts for both bursts and interbursts by adding afterhyper-
polarization (AHP), a mechanism induced by various K+ channels at the neuronal membrane, with
slow dynamics that leads to a refractory period after the bursts.
The model is a nonlinear dynamical system of dimension 3 with an additive Gaussian white noise. I
characterize the durations of bursts and interbursts by combining the study of the deterministic phase
space with asymptotic analysis for the stochastic aspect. The distribution of burst durations (defined
by long deterministic trajectories outside the basin of attraction) is determined by characterizing the
probability density of the exit points on the separatrix which satisfies the Fokker-Planck equation. To
solve this problem, I use WKB approximation and the method of characteristics.
The interbursts are defined as the exit from the basin of attraction induced by noise. As the dynamics
around the attractor is very anisotropic, I use a two-dimensional projection of the model to study the
interburst. Surprisingly, the probability density in the phase-space of the non exiting trajectories re-
vealed a maximum which is not centered on the deterministic attractor and whose position depends on
the noise amplitude, thus describing a shift in the attractor’s position in the stochastic case. Finally, the
analysis of the escaping trajectories revealed a new exit mechanism from a basin of attraction (specific
to dimensions ≥ 2): the trajectories cross the separatrix then enter and exit the basin of attraction
a large number of times before escaping to infinity, inducing a significant difference between the time
to reach the separatrix for the first time and the time to escape, regardless of the noise amplitude. I
characterized and quantified these two new phenomena in the general framework of a simplified two
dimensional dynamical system which is topologically equivalent to the original model. This recurrent
input / output mechanism explains the existence of longer escape times than what is expected from
the classical Kramers exit theory.
In the second part of the thesis, I present two applications of this model. First, I study the mechanisms
underlying the regulation of bursts-interbursts dynamics by the astrocyte network, using a combination
of mathematical modeling, numerical simulations and analysis of electrophysiological data of neuronal
activity. In the second application, I study the existence or disappearance of brain oscillations and
their connexion with the Up and Down states that emerge in connected neural networks. To this end,
I model the dynamics of the thalamo-cortical loop during general anesthesia by connecting together
several populations of neurons, each represented by a mean-field model with or without AHP.



“Did I pass out?”
“Not exactly. You did go into an altered state of consciousness, though.

For a few seconds. Probably an alpha state.”

Philip K. Dick, A Scanner Darkly
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Introduction

In this PhD thesis, I develop and study mathematical models of neuronal bursting with a particular
focus on the interburst intervals (IBI), in order to better understand the mechanisms underlying their
genesis. I concentrate on the mean behavior of a neuronal population that I model with low dimensional,
nonlinear dynamical systems driven by a small noise term. In this introduction section I will briefly
present the biological background, then give a short overview of the existing types of bursting models,
describe the effects of noise in nonlinear dynamical systems and in particular the question of noise
induced escape from an attractor. Finally, I will summarize the main results I obtained during my
PhD.

0.1 Biological background: burst and interbursts in neuronal

networks

Pre-synaptic neuron

Post-synaptic neuron

Cell body (soma)

Dendrites

Axon

Synapse

(receives an action potential from other neurons)

(transfers the action potential)

Pre-synaptic terminal

Post-synaptic terminal

Action potential

K+

Na+
Neurotransmitter

release

Ca2+

Figure 1: Schematic of two connected neurons (left): the stimulated pre-synaptic neuron (yellow) transfers
an action potential to the post-synaptic neuron (blue) through a synapse (inset, right). The action potential
(black) triggers the release of neurotransmitters (green) from the pre to the post-synaptic terminals, ions
channels on the pre-synaptic membrane allows the release of potassium K+ (cyan) to the extracellular space
while sodium Na+ (pink) and calcium Ca2+ (red) from the extracellular space enter the pre-synaptic terminal.
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INTRODUCTION

Neurons are electrically excitable cells. Indeed, the high gradient in the concentrations of extra
and intra cellular ions such as potassium (K+, fig. 1 cyan) and sodium (Na+, pink) results in a
strong difference of potential across their membrane. Neurons communicate together through synapses.
Specifically, to transfer a signal, the pre-synaptic neuron (fig. 1 yellow) generates a high intensity
electrical pulse called action potential (black). At the synaptic level (fig. 1 inset), this action potential
allows ionic channels to open, yielding the release of K+ in the extracellular space and entrance of Na+

and Ca2+ into the pre-synaptic terminal, which in turn triggers the release of neurotransmitters (fig. 1
green) that are eventually captured by the post-synaptic terminal (blue). I will now describe a specific
neuronal activation pattern called bursting and the biological mechanisms involved in its genesis and
modulation.

1 s20
 m

V

1 s10
0 μ

V

A

B

1 n
A

Intrinsic burst

Population burst

25 ms

20
 m

V

50 μm 

50 μm 

Single neuron

Neuronal network

Figure 2: A. Intrinsic burst: cortical neuron from confocal fluorescence imaging from [1] (left), intrinsic burst
response to a small depolarizing current injection (center) and rebound burst response following hyperpolarizing
current injection (right) in thalamic neurons, adapted from [2]. B. Network burst: network of hippocampus
neurons from confocal fluorescence imaging from [1] (left), network burst from hippocampal pyramidal neurons
recorded on a single cell (patch-clamp recording, center) and average response from multi-electrode array
(MEA, right).

Bursting Bursting is a neuronal activation pattern where neurons repeatedly fire action potentials at
a high frequency (fig. 2), they are followed by, sometimes long, silent phases called interburst intervals
(IBI). Bursting plays an important role in neuronal synchronization which is involved in learning and
memory [3]. It is also a fundamental feature of Central Pattern Generators such as the respiratory
rhythm in the pre-Bötzinger complex [4, 5], mastication, or oscillatory motor neurons [6] which are
involved in neuronal rhythm generation. However, bursting can also fall under a pathological behavior
such as epilepsy [7].
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0.1. BIOLOGICAL BACKGROUND: BURST AND INTERBURSTS IN NEURONAL NETWORKS

Two types of bursts can be distinguished, intrinsic bursting occurs at the single cell level (fig. 2A) and
combines a depolarizing mechanism with much faster spiking; such cells are called intrinsic bursters
and can be found in thalamic [2] or cortical [8] neurons. On the other hand, bursts can also emerge
as a network property (fig. 2B) involving excitatory and inhibitory neuronal populations that are not
necessarily intrinsic bursters [9, 10]. In this thesis we shall focus on this second type of bursting at
the network level. The genesis and maintenance of network bursts relies on synaptic properties [11–13]
as well as neuronal membrane depolarization or hyperpolarization, which results from the activation
of various ionic channels [2, 14]. Finally, we shall see that astrocytes also play a crucial role in this
regulation. We will now briefly define these important biological points.

Synaptic short-term plasticity Short-term synaptic plasticity (STP) is a phenomenon defined
by the change over time of the synaptic efficacy as a consequence of the history of the presynaptic
activity [15, 16]. The modifications induced by STP are temporary and only last for hundreds to
thousands of milliseconds which differentiates it from long term plasticity which is hypothetized as the
modification of the neuronal circuitry as a consequence of experience [17]. Two types of complementary
STP mechanisms have been observed experimentally:

1. Short-term depression: each activation of the pre-synaptic terminal (fig. 3A, yellow) releases
a portion of the available vesicles of neurotransmitters (the readily-releasable pool, RRP), when
the RRP is depleted faster than it can be refilled, a decreasing post-synaptic (fig. 3A, blue)
response over time is observed [18,19] (fig. 3B, left).

2. Short-term facilitation: when a neuron fires an action potential, Ca2+ enters in the pre-
synaptic terminal increasing the release probability of vesicles of neurotransmitters [20, 21]. In
the case of a repetitive stimulation, and thus repetitive firing, the Ca2+ accumulates in the pre-
synaptic terminal, leading to an increasing response of the post-synaptic terminal over time (fig.
3B center).
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Figure 3: A. Schematic representation of a synapse receiving a 50 Hz train of spikes at the presynaptic terminal
(yellow) and patch recording of the response at the postsynaptic terminal (blue). B. Postsynaptic responses
(current PSC, upper and potential PSP, lower) to a 50Hz train of presynaptic spikes for depressing (left),
facilitating (center) and without plasticity (right) synapses. Adapted from [22].

Neuronal networks, synchronization and emergence of oscillatory rhythms At the popula-
tion level (≈ 100µm), neurons are connected together through thousands of synapses: 7000 synapses per
cortical neuron on average [23]. These connections lead to the emergence of specific network-dependent
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activation patterns. For instance, several coupled pacemaker neurons receiving an excitatory input
from tonic firing neurons can either lead to bursting, tonic spiking or resting depending on the values
of the channel conductances and the neuronal coupling level [24–26]. Similarly, the emergence of Up
(depolarized with high frequency firing) and Down states (small fluctuations around resting membrane
potential) reflects this population level activity [27] and also involves longer connections between differ-
ent brain regions [28,29]. These large-scale connections between excitatory and inhibitory populations
are thought to be at the origin of neuronal brain waves that can be observed in electroencephalogram
(EEG, fig. 4A) such as the α-waves (8-12 Hz, fig. 4B) during general anesthesia [30,31] which involves
interactions between the thalamus and the cortex, or the θ-waves (4-8 Hz) in the hippocampus and
cortical regions, which are characteristic of REM sleep [32, 33]. Finally, fast γ-oscillations (20-100Hz,
fig. 4B) in the cortex are involved in memory formation and sensory processing [34, 35]. It has been
observed that γ-oscillations can be generated without the need for each individual neuron to fire at the
γ frequency; this phenomenon is called weak γ and suggests a complex network organization involving
clusters of synchronous cells that can be studied using mathematical models [36, 37] highlighting the
importance of collaborative network organization in neuronal activation patterns.
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Figure 4: A. Schematic of the electrode setup on a patient’s head for EEG recording. B. Typically observed
oscillatory rhythms in EEG during wake (fast γ (20-100Hz) and β (12-20Hz) oscillations, upper traces) and
anesthesia (slow δ (0-4Hz) and α (8-12Hz) oscillations, lower traces) adapted from [30].

Afterhyperpolarization In hippocampal pyramidal neurons, the IBI is modulated by the activation
of various types of K+ and Ca2+ channels with medium to slow dynamics [14, 38–40]. The activation
of these ionic channels, towards the end of a burst leads to medium and slow hyperpolarizing currents
taking the cells voltage below their resting membrane potential (fig. 5), a phenomenon known as
afterhyperpolarization (AHP). The AHP induces a refractory period during which the cells cannot
fire action potentials or initiate a burst. Thus, this mechanism is of fundamental importance in the
determination of IBI durations.
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Figure 5: Single cell electrophysiological patch-clamp recording showing afterhyperpolarization (AHP) after
the bursts.
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synaptic cleft. B. Astrocytes are connected in a network (lower) through gap junction channels made of
connexins (upper), image courtesy N. Rouach [private communication].

Astrocytes Glial cells gather all the non neuronal cells in the brain and central nervous system.
Among them, astrocytes represent 20 to 40 % of all glia [41] and are also the most numerous cell
type in the brain [42]. The role of glia and astrocytes has long been underestimated confining them
to the simplistic role of glue (hence their name) holding things together in the brain. However, the
past decades have marked a major change of perspective regarding the importance and diversity of
astrocytes functions in the brain activity [43, 44]. Indeed, it is now known that astrocytes play a key
role in brain information processing. At the the single cell level, they can modulate neuronal excitabil-
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ity, synaptic transmission and plasticity via several mechanisms including ions and neurotransmitters
uptake, gliotransmitters release and physical coverage of synapses [45,46], a concept known as the tri-
partite synapse (fig. 6A). Astrocytes are also organized together in networks via gap junction channels
(fig. 6B) which are formed by two main proteins called connexin (Cx43 and Cx30) [47]. This network
organization of astrocytes allows long-range exchanges of various ions through their intracellular net-
work [48, 49] thus allowing them to redistribute energy metabolites to neurons (through the so called
astrocyte-neuron lactate shuttle), control and buffer the concentration of extracellular ions (such as
the K+ that is released by neuronal firing) and neurotransmitters (mainly Glutamate and GABA).
Note that K+ fluxes are difficult to track experimentally but modeling can provide critical insights on
their regulation [50,51]. Through the aforementioned regulation mechanisms (metabolism, extracellular
K+ uptake and neurotransmitter buffering), astrocytic networks modulate neuronal excitability and
network synchronization. Specifically, they control population activity by promoting sustained coordi-
nated neuronal bursts [52–54]. In this thesis I will study further the underlying mechanisms involved
in the regulation of neuronal bursting by astrocytes using a modeling approach (see chapter 4).

0.2 Modeling population bursting

Models of electrical excitability In 1907 Louis Lapique proposed a first model of neuronal electri-
cal excitability, the integrate and fire (IF) neuron [55], which models the neuronal membrane potential
based on its capacitance. The more commonly used leaky integrate and fire (LIF) neuron adds a leak
current to account for the membrane permeability to different ions. In this model, when the voltage
reaches a certain threshold a spike is generated, but the shape of the spike itself is not modeled; rather
this model is used to study the spiking frequency and interspike intervals. Through its mathematical
simplicity and small number of parameters it allows analytical computations and extensive study of
its parameter space [56]. For example, it is possible to compute the probability distribution of output
spikes as a function of the presynaptic inputs and to use these results to study the synchronization
of several LIF neurons [57]. Despite its simplicity this model is relevant to study neuronal activation
patterns; for example adding hyperpolarizing currents to the voltage equation can modulate the inter-
spike intervals subject to the same presynaptic inputs leading to comparable adaptation patterns as
those observed in vivo from pyramidal cells in the cat visual cortex [58]. Network bursting or oscillatory
behaviors in neuronal populations can also be obtained by coupling together many LIF neurons [59,60].
The exponential adaptative IF (aEIF) [61], extends the LIF through the addition of an exponential
term in the voltage equation to account for the explosion of the voltage value at the moment of the spike
(even though the shape of the spike itself is still not modeled) and of a second variable representing
the adaptation in the spiking frequency over repetitive stimulation. The advantage of this model is
the easy biological interpretation of the parameters which can be estimated using simple patch clamp
experiments [61]. Furthermore, a bifurcation analysis of the aEIF model allows to reproduce different
spiking dynamics such as tonic, chaotic or phasic spiking and bursting [62]. More recently the aEIF
model has been used to reproduce the bistability between Up and Down state firing patterns of cere-
bellar Purkinje cells [63].

Another pioneering model of neuronal electrical excitability was introduced by Hodgkin and Huxley
(HH) in 1952 [67]. By modeling the flow of ionic currents across the neuronal membrane and accounting
for the membrane permeability by dynamically modeling the conductance of each ionic channel, the
model computes the evolution of the membrane potential. Coupling HH neurons together can be used
to model network bursting or induce fast oscillations [68]. More recently, adding noise to a network of
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Figure 7: Comparison of the neuronal models (biological plausibility vs computational cost) from [64] with
example of simulated burst with the adaptative integrate-and-fire (upper left), Hodgkin-Huxley (upper right,
from [65]), Morris-Lecar (lower left from [66]) and Hindmarsh-Rose (lower right) models.

coupled HH models was used to study the effect of desynchronisation [69]. Such models have also been
used to study the emergence of spindle oscillations [70, 71] and the addition of synaptic currents such
as GABA can lead to the apparition of α-oscillations [72, 73]. However modeling network properties
with such models can quickly become computationally expensive due to the high dimensionality and
number of parameters (fig. 7).
A lower dimensional neuronal firing model was introduced in 1961 by FitzHugh [74] and the following
year by Nagumo [75]. In the FitzHugh-Nagumo model, each time the external input reaches a certain
threshold, the dynamics describes a characteristic excursion in the two-dimensional phase-space. This
excursion defines the spike before the voltage goes back to resting state. This model is also very com-
monly used to describe bursting. For example, two coupled FitzHugh-Nagumo systems with different
timescales can lead to the generation of mixed-mode oscillations (MMOs) consisting of the combination
between local dynamics near a fold bifurcation, defining the small oscillations, and the existence of an
attracting limit cycle for the large ones [76]. A piece-wise linear approximation of the FitzHugh-Nagumo
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system allows to analytically characterize the bistability regime between the stationary and oscillatory
solutions [77]. Similarly, Morris and Lecar developed in 1981 a conductance based model initially to
represent oscillatory behavior in muscle fibers [78] but which is also considered as a simpler version of
the HH model and is widely used in computational neuroscience. For the Morris-Lecar model, a similar
piece-wise approximation [77] reveals a transition from stationary state to oscillations with logarithmic
dependence which makes it comparable to the LIF model.

Slow-fast systems and canards explosions Bursting can be decomposed into a fast subsystem
(the rapid spiking) and a slow subsystem (transient depolarization). Canonical models of slow-fast
systems have been developed by Ermentrout and Kopell [79] where the membrane potential is still
described as a conductance based model. A classical reduction of these models is the theta model.
This framework has been used to study periodic and chaotic bursting patterns [80] as well as burst
synchronization in coupled neurons [81].
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Figure 8: A. Phase portrait of a canard solution of a FitzHugh-Nagumo type model with canard trajectory
(red) alternatively following the fast and slow parts of the cubic nullcline (blue). B. Time-series of the canard
solution showing MMOs, from [82].

The Hindmarsh-Rose model [83] implements such strategy with three variables: one for the membrane
potential, one for the fast ion channels (fast subsystem) and one for the slow ion channels (slow
subsystem). Following this model, different type of bursters have been developed, such as low frequency
spiking at the beginning and the end of a burst [84] or parabolic burstsers, which exhibit fast-oscillations
frequencies that vary along with the burst slow modulation [79]. The Hindmarsh-Rose model was used
to study the importance of delays in synchronization of coupled bursting neurons [85]. A detailed
bifurcation analysis coupled with a slow-fast study of the Hindmarsh-Rose model revealed that the
routes leading to different bursting patterns depend on the relative location of the fixed points of the
system with respect to a homoclinic bifurcation of the fast subsystem [86]. A follow up of this study
also showed that tonic spiking and plateau bursting are connected together through branches of the
unstable periodic orbits of the Hindmarsh-Rose model [87, 88]. Slow-fast analysis on a conductance
based model with K+ and Ca2+ channels with either one fast and two slow variables, or two fast
and one slow, revealed a path from pseudo-plateau bursting to MMOs by varying a single model
parameter [89]. Finally, such systems are usually treated by considering the slow variables as parameters
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of the fast subsystem but more recent studies suggest to focus on the slow subsystem and have shown
that these two approaches become identical in the limit of both infinitely fast and slow subsystems [90].
In this framework, the classical canard phenomenon describes a very fast transition from a small
amplitude limit cycle to a relaxation cycle of larger amplitude (fig. 8A). This phenomenon occurs upon
small variations of a control parameter. It was first described in 1981 by the French mathematician
Benoit [91]. More recently, the study of synchronization of canard properties revealed synchronization
regimes for canards that differ from the classical relaxation cycles [92]. This type of fast transition
between different amplitude cycles (ie oscillations in the time domain) can be generalized to describe
MMOs (fig. 8B) and even mixed-mode bursting oscillations [93].

Classification of the deterministic burst types according to the corresponding bifurcation
All the deterministic bursting patterns cited in the previous paragraphs can be classified according to
the type of bifurcation that generates the burst. This involves a bifurcation from a stable point to a limit
cycle, that will generate the oscillations, and vice-versa for the burst termination. Specifically, there
are four different types of possible bifurcations of co-dimension one for the equilibrium: saddle-node
(fold), saddle-node on invariant cycle, supercritical Andronov-Hopf and subcritical Andronov-Hopf;
and, in the case of a two-dimensional fast-subsystem, four bifurcations for the limit cycle: saddle-node
on invariant cycle, saddle homoclinic orbit, supercritical Andronov-Hopf and fold limit cycle, resulting
in 16 possible combinations. This type of classification was first suggested by Rinzel [84] and fully
described by Izhikevich [10, 94, 95] (see also Golubitsky [96, 97] for higher co-dimensions). Finally the
complexity of the bursts can be evaluated by the co-dimension of their bifurcation (see for example [98]
for the case of fold bifurcations inducing pseudo plateau bursting).

Modeling the firing rate probability Bursts can also be modeled by their firing rate probability.
This was first introduced by the Wilson-Cowan oscillator [99, 100] which models two reciprocally con-
nected excitatory and inhibitory populations by their respective firing rates. Similar firing rate models
have been used to model the visual cortex and reproduce preferred orientation responses [101]. Fi-
nally, adding delays into coupled firing rate models has been used to generate a wide range of different
activation patterns in neuronal networks [68].

Mean-field models of bursting based on synaptic STP Modeling bursting in mean-field models
can be achieved by accounting for the molecular mechanisms at the synaptic level on which bursting de-
pends. A first model based on synaptic short term depression was developed by Tsodyks and Markram
in 1997 [102] and was later expanded to account for facilitation [103]. Another example of model based
on synaptic short term plasticity was derived at the same period in [104] for the visual cortex and
introduced a combination of facilitation and several depressions with different recovery timescales.
The original Tsodyks-Markram model describes the biophysical mechanism of synaptic depression,
which results from vesicle depletion. Its equations account for the evolution of the fraction of available
resources that are split into three states: E for the effective resources, I for the inactive ones and R
for the recovered. The equations read

dR

dt
=

I

τrec
− USERδ(t− tAP )

dE

dt
=

E

τinact
+ USERδ(t− tAP )

I = 1−R− E,

(1)
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where τrec and τinact are the time rates for recovery and inactivation respectively and USE reflects the
fraction of used resources at each action potential occurring at time tAP . This model was later simplified
to represent the mean-field firing rate and synaptic depression to which noise was added to replicate
Up and Down states in cortical neurons [105]. The equations become

τ V̇ =−V + µUwTα(V − T )+ +
√
τσω̇

µ̇ =
1− µ
tr
− Uµα(V − T )+,

(2)

where V is the average synaptic input (in mV), (V − T )+ = max(V − T, 0) the mean firing rate,
α = 1Hz/mV a conversion factor, wT the average synaptic strength, U the vesicle utilization parameter
and tr the recovery time constant of the synaptic depression. Finally, ω̇ is a Gaussian white noise and
σ its amplitude. Using this model, the authors could reproduce for the first time Up and Down states
dynamics as a consequence of STP driven by noise.
The phase-space associated with the two-dimensional dynamical system (2) consists of two attractor
points, one of which is inside an unstable limit cycle. The distribution of exit times of the stochastic
trajectories starting at the attractor and exiting the basin of attraction is solution of the Fokker-
Planck equation (FPE) and can be expanded in eigenfunctions, solution of the adjoint operator. An
asymptotic solution is obtained using WKB analysis. This analysis reveals that, at least, the first two
eigenvalues are necessary to describe the multiple peaks in the distribution of exit times present both
in simulations and experimental data. Interestingly, the spectrum is obtained by solving a Riccati
equation in a boundary layer of the limit cycle [106–108]. However, the method used to derive these
results fundamentally depends on dimension two and thus, cannot be extended to the case of the three-
dimensional model [109]. We introduce now the three dimensional model composed of three variables:
the mean voltage h, the facilitation x and the depression y

τ ḣ = −h+ Jxyh+ +
√
τσω̇

ẋ =
X − x
tf

+K(1− x)h+

ẏ =
1− y
tr
− Lxyh+,

(3)

where h+ = max(h, 0) is a linear threshold function of the synaptic current which defines the firing
rate. The combined effect of synaptic short-term facilitation and depression on the mean voltage is
described by the term Jxy where the parameter J represents the network connectivity (mean number
of synapses per neuron) [110]. The second equation describes facilitation, and the third one, depression.
The parameters K and L describe how the firing rate is transformed into molecular events modulating
the duration and probability of vesicular release respectively. The time scales tf and tr define the
recovery of a synapse from the network activity. Finally, ω̇ is an additive Gaussian noise and σ its
amplitude, it represents fluctuations in the synaptic current (synaptic noise).
Recently, the emergence of Up and Down states in the Tsodyks-Markram facilitation-depression model
was associated to a chaotic behavior, called Shilnikov chaos, near an unstable manifold that modifies
the shape of trajectories inducing a high sensitivity to the initial condition [111]. We shall see in
chapter 5 of this thesis that the bifurcation induced by increasing the network connectivity parameter
J in model (3) can also lead to the emergence of Up and Down states due to bistability without the
need for a chaotic behavior.
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Finally, a double depression model, decomposing the vesicles into ready and recovering pools was also
proposed to account for long recovery periods of the synapses [112].

Noisy dynamical systems Noisy nonlinear dynamical systems can exhibit peculiar behaviors where
the presence of noise leads to more than fluctuations around the expected deterministic dynamics. For
example, noise can induce large fluctuations away from a stable attractor [113–115] or enhance the
response to periodic external stimuli, a phenomenon known as stochastic resonance [116]. An oppo-
site behavior, called inverse stochastic resonance consists in inhibiting an otherwise active system (e.g.
silencing spontaneously spiking neurons) by the addition of noise of a specific variance [63]. Noise
can also sustain oscillations that would be damped in the deterministic case [117], induce a shift in
bifurcation values [118] or stabilize an otherwise unstable equilibrium [119–121].
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Figure 9: A. Potential well defined by the function ψ(x) = αx2(1 − x) with one stable attractor A (yellow)
and a repulsive equilibrium R (red) which defines the barrier of potential to cross to escape. B. Trajectories

x(t) satisfying ẋ = −
dψ(x)

dx
+σω̇ where ω̇ is a Gaussian white noise and σ its amplitude. The presence of noise

can induce escape from the basin of attraction of A when the trajectories reach the boundary of the basin of
attraction (red line).

Noise activated escape from an attractor (fig. 9A-B) as described in Kramers theory [122–125] is a
problem that has driven considerable attention over the years. Indeed, this problem has applications in
domains as diverse as chemistry, for example to accelerate chemical reaction simulations [126] or provide
insight on the backward binding rate [114,127], communication theory for the loss-of-lock of phase con-
trollers [128], finance, to compute future derivatives in the financial market [129] polymer physics [130]
or even better characterizing the search for a small target in a complex environment [131, 132]. Al-
though it had long been thought to depend only on the topology of the noiseless dynamics [133], in
some cases, the stochastic dynamics deviate from the deterministic theory. For instance, in dimensions
≥ 2, the distribution of exit points peaks at a distance O(

√
σ) from the saddle-point (where σ is the

noise amplitude), whereas, in the deterministic theory it is expected to be centered at the point that
minimizes the vector field, ie the saddle-point itself [123, 134]. Similarly, when a focus attractor falls
into the boundary layer of the basin of attraction, escaping trajectories exhibit periodic oscillations
leading to an escape time distribution which is not exponential [106, 108, 135–138], indeed in this case
several eigenvalues are necessary to describe the distribution. In the limit of small noise, the escape
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rate and the distribution of exit points can be computed by solving the Fokker-Planck equation (FPE)
satisfied by the stochastic process. This can be achieved using WKB approximation and the method
of characteristics [123,125,128,139] or using spectral decomposition [140,141].

0.3 Main results of the thesis

Part I: Modeling and computation of burst and interburst durations

Result section 1.1 Development of a facilitation-depression model accounting for AHP
Bursting models usually pay little attention to the IBI although it plays a crucial role in the definition
of oscillatory brain rhythms or switches between Up and Down sates. In this thesis, I extended the
facilitation-depression model (3) [109] to account for AHP by introducing two features: 1) a new
equilibrium state representing hyperpolarization and 2) two timescales (medium and slow) to describe
the slow recovery to the steady state due to the effect of the slow K+ channels that take over the
dynamics after the burst phase. The new model equations are

τ0ḣ =−(h− T0) + Jxy(h− T0)+ +
√
τ0σω̇

ẋ =
X − x
τf

+K(1− x)(h− T0)+

ẏ =
1− y
τr
− Lxy(h− T0)+.

(4)

Where the parameters τ0 and T0 are defined piece-wise, according to our decomposition of the burst
into four phases (fig. 10A):

- step 1: Burst (fig. 10A, blue). It is defined for {y > YAHP and h ≥ HAHP or ẏ ≤ 0} (fig.
10B, above the purple and orange surfaces). During this phase, the time constant τ0 of h is fixed
to τ0 = τ and the resting value of h is T0 = T (see Table 1.1 page 44 for the parameters values).

- Step 2: Hyperpolarization (fig. 10A, orange). This phase is initiated when the depression

variable y starts to increase after the burst

(
ẏ > 0 ⇐⇒ y <

1

1 + Lx(h− T0)

)
, and lasts as long

as y < Yh (fig. 10B, below the orange surface). During this phase the parameters are τ0 = τmAHP
and T0 = TAHP < T thus forcing the voltage to hyperpolarize.

- Step 3: Slow recovery period (fig. 10A-B, purple). During this phase, the depression y
is still increasing (ẏ > 0), with the condition that {YAHP < y or h < HAHP}, the time constant
is τ0 = τsAHP and the resting value of h is set to its initial value T0 = T thus accounting for the
slow recovery to the resting membrane potential.

- Step 4: Quiescent phase (QP, fig. 10A-B, green). This phase models the fluctuations of
the voltage around the steady state due to the synaptic noise. The conditions and parameters
are the same as for step 1 ({y > YAHP and h ≥ HAHP or ẏ ≤ 0}, τ0 = τ and T0 = T ).

This new model, driven by noise reproduces spontaneous bursts followed by long AHP refractory periods
(fig. 10C).

21



0.3. MAIN RESULTS OF THE THESIS

No
rm

ali
ze

d m
ea

n v
olt

ag
e h

Depression y Facilitation x

S1
S2

A

Burst

AHP

QP0.25

0.5

0.75

1

0

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

1 2 3 4
Membrane 
potential h

Depression y
Facilitation x

1: Population burst initiation 2: Hyperpolarization 3: Slow refractory period 4: Quiescent phase

Ca2+

K+Na+

Readily releasable pool K+

5 s
Yh

YAHP

HAHP

0.2
0.4
0.6
0.8

1

0.2
0.4
0.6
0.8

1

Fa
cil

lita
tio

n x

10 20 30 40 50 60 70 80 90 100

0.2
0.4
0.6
0.8

1

De
pr

es
sio

n y

Time (s)

0

- Action potentials
- Facilitation 
& synaptic depression

- Medium and slow K+-channels 
activation for repolarization
- Recovery of synaptic 
depression 

From minimal synaptic 
depression to membrane
hyperpolarization

- Refilled readily 
releasable pool
- No burst activity

A

B C

No
rm

. m
ea

n v
olt

ag
e h

Step 1

Step 2Step 3

Step 4
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and y exhibiting spontaneous bursts followed by AHP periods (inset).

Mathematical description of the phase-space of the facilitation-depression model account-
ing for AHP In this paragraph I briefly describe the deterministic phase-space of system (4) (see
section 1.1.2 page 44 for the detailed description). It has three critical points: one attractor A (stable-
node) with three real negative eigenvalues (fig. 11 yellow), and two saddle-points. The first saddle-point
S1 (fig. 11 magenta) is a saddle with repulsive focus, ie it has one real negative eigenvalue and two
complex-conjugate eigenvalues with positive real part. The second saddle S2 (fig. 11 blue), closer to
A is a saddle-node with an unstable manifold of dimension 1 and a stable manifold Γ (fig. 11 cyan)
of dimension 2 which defines the boundary of the basin of attraction of A. Note that since there is
only one attractor in the phase-space, all deterministic trajectories will finally return to A, however I
separated the trajectories going directly back to A thus defining the “basin of attraction” of A (below
Γ) from the trajectories doing a long excursion in the phase-space (trajectories starting above Γ, fig.
11 the long red trajectory is the unstable manifold of S2, see also the trajectory in fig. 10B) which
defines the burst.
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manifold of S2.

Result (section 1.2) A slow-fast approximation allows to obtain analytical formulas for the
deterministic burst and AHP durations In this section I summarize the slow-fast decomposition
of the deterministic (ie with σ = 0) model (4) that I used to compute analytical formulas for the burst
and AHP durations (see section 1.2 page 56 for the detailed calculations). The goal is to understand
the parameter dependency of the deterministic component of the burst and AHP phases.
Since, in the first phases of the burst, the voltage variable h is much faster than the facilitation x and
depression y variables (τ = 0.05� τf = 0.9� τr = 2.9s), and then, during the AHP phase it is much
slower (τ = 10.5 � τr = 2.9 � τf = 0.9s) I could decompose the system into a slow subsystem and a
fast subsystem in order to linearize and integrate it. To do so, I approximated the voltage variable by
a step function (fig. 12) that I injected into the x and y equations:

H(t) =


H1, for t ∈ [0, t1]
H2, for t ∈]t1, t2]
0 for t > t2,

(5)

yielding the simplified system
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t1 t2

H2

H1

1. Burst: fast timescale τ0=τ, 
no hyperpolarization: T0=0

2. AHP initiation: medium timescale τ0=τmAHP, 
hyperpolarization: T0= TAHP<0

3. Recovery: slow timescale τ0=τsAHP, 
no hyperpolarization: T0=0

Figure 12: Step function H(t)

τ0ḣ = −(h− T0(t)) + Jxy(h− T0(t))+

ẋ =
X − x
τf

+K(1− x)H(t)

ẏ =
1− y
τr
− LxyH(t),

(6)

where I account for AHP by changing T0 and τ0 as follows

T0(t) =


0 for t ∈ [0, t1]
TAHP for t ∈]t1, t2]
0 for t > t2

and τ0(t) =


τ for t ∈ [0, t1]
τmAHP for t ∈]t1, t2]
τsAHP for t > t2.

(7)

I then integrated system (6) piece-wise on the three time segments [0, t1], ]t1, t2] and ]t2,∞[ and obtained
analytical formulas for the x and y variables. Then, to integrate the h variable, the present method
differs from the classical slow-fast analysis in the sense that instead of now approximating the slow
variables x and y by constant values in the differential equation of h, I injected the integrated formulas
obtained from the first piece-wise integration. Finally, I used the analytical formulas of the three
variables h, x and y, to find the following analytical formulas for the burst and AHP durations, entailing
the following proposition:

Proposition 1.1 Analytical formulas for the burst ti and AHP durations ∆AHP = te − ti.
For the three-dimensional dynamical system defined by equation (6), if the parameters τ0 � τf , τ0 � τr
or τf � τ0, τ0 � τr then:

(i) System (6) can be integrated piece-wise yielding analytical formulas for the three variables h
(equations 1.58-1.65-1.68), x (equations 1.51-1.59-1.66) and y (equations 1.55-1.61-1.67),

(ii) The burst duration ti is defined by the equation h(ti) = 0, which can be inverted analytically,
yielding the expression

ti ≈ t1(J) +

− Λ−

√√√√Λ2 + 4Λ̃
τmAHP

J
ln

(
− TAHP

h0 − TAHP

)
2Λ̃

, (8)
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where t1(J), Λ = Λ(J,K, L,H2, t1(J)) and Λ̃ = Λ̃(K,L,H2, t1(J)) are smooth explicit functions
of the parameters J,K, L and H2 of system (6) calculated in section 1.2 pages 63 and 65.

(iii) The AHP duration ∆AHP = te−ti is solution of equation h(te) = ε which can be explicitly inverted
and is given by

te ≈ t2(J) +

(
τsAHP
J

ln

(
h(t2)

ε

)
+ f(X, τf , τr)

)
J

JX − 1
, (9)

where f is a rational function of parameters X, τf and τr explicited page 66.

The proof is given in section 1.2, pages 59-66.
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Figure 13: A. Analytical results (green) vs numerical integration (dotted magenta) for h (upper), x (center)
and y (lower) over the three phases. B. Analytical burst duration ti as a function of the medium AHP timescale
τmAHP for several values of TAHP . C. Analytical AHP duration ∆AHP = te− ti as a function of the slow AHP
recovery timescale τsAHP for several values of TAHP .

Remark: Numerical applications for burst and AHP durations. The numerical application
(see Table 1.1 page 44 and 1.3 page 74 for the parameter values) gives ti ≈ 0.6 s, which is comparable
to the bursting times observed in experimental data [52], and from the numerical integration in the
noiseless case (fig. 13A). For the AHP duration, we obtain ∆AHP = te − ti ≈ 14.3 s, which is also
coherent with the durations obtained from the numerical integration (fig. 13A), as well as classical
AHP durations found in the literature [38].

To conclude, formulas (8) and (9) allow us to understand how the deterministic component of the
burst and AHP durations are modulated by the different parameters of the model (fig. 13B-C, see also
section 1.2).
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0.3. MAIN RESULTS OF THE THESIS

Result (section 1.1.3) The distribution of burst durations is defined by the probability
density of exit points on the separatrix During the long excursions outside the basin of attraction
defining the burst in model (4), the deterministic vector field is strongly dominant compared to the
noise term, thus the length and duration of the trajectories only depend on their initial point: the exit
point on the separatrix Γ (fig. 14). The goal here is thus to determine this distribution of exit points
on Γ for trajectories starting in the neighborhood of the attractor A.
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the possible burst trajectories depend on the exit point (yellow dots) on the separatrix Γ (cyan surface).

Theorem 1.1 For stochastic trajectories of system (4) starting in the neighborhood of the attractor A,
the distribution pΓ of exit points located on the separatrix Γ is given per unit surface ds by

pΓ(s̃|s0) =
J(s̃|s0) · ν(s̃)ds̃∮
Σ
J(s̃|s0) · ν(s̃)ds̃

for s̃ ∈ Γ, (10)

where the probability flux is

J(s̃|s0) =



Jxy − 1

τ
hq(s̃)−

Γ

2τ

∂q(s̃)

∂h(
X − x
τf

+K(1− x)h

)
q(s̃)(

1− y
τr
− Lxyh

)
q(s̃)


, (11)

ν(s̃) is the unit normal vector at the point s̃ and q is the solution of the steady-state renewal degenerated
Fokker-Planck equation

−
∂

∂h

[
(Jxy − 1)h

τ
q

]
−

∂

∂x

[(
X − x
τf

+K(1− x)h

)
q

]
−

∂

∂y

[(
1− y
τr
− Lxyh

)
q

]
+

σ

2τ

∂2

∂h2
q = δ(s− A)(12)
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with the absorbing boundary condition

q(s|A) = 0 for s ∈ Γ. (13)

The solution q can be approximated by WKB and has the formal expression

q(s̃|s0) = qσ(s̃)Q0(s̃)e
−
ψ(s̃)

σ , (14)

where qσ(s̃) is the boundary layer solution.
Finally, the probability flux can be expressed as

J(s̃|s0) · ν(s̃)ds̃ = K0s̃
−
∇ ·B|S2

λ2 e
−
ψ(s̃)

σ ds̃, (15)

where ∇·B|S2 is the divergence of the field B at the saddle-point S2, λ2 is the dominant stable eigenvalue
of the Jacobian of B at S2 and ψ is solution of the degenerated eikonal equation

(Jxy − 1)h

τ

∂ψ

∂h
+

(
X − x
τf

+K(1− x)h

)
∂ψ

∂x
+

(
1− y
τr
− Lxyh

)
∂ψ

∂y
+

1

2τ

(
∂ψ

∂h

)2

= 0. (16)

The proof is given in section 1.1.3 pages 51-56.
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Figure 15: A. Probability density function (pdf) of the exit points on Γ obtained from numerical simulations
(green histogram) and by solving the FPE (dark surface). B. Distribution of burst durations from 104 s
simulations.

Remark: The distribution of exit points explains the peaked distribution of burst dura-
tions. The analytical distribution of exit points pΓ is peaked close to the saddle-point S2 (fig. 15A
dark surface). This result was confirmed by numerical simulations where I recorded the exit point on Γ
for successive bursts (fig. 15A green histogram, see also fig. 14 yellow dots). This peaked distribution
of exit points forces the bursting trajectories to stay confined in a tubular shape following an almost
deterministic path. This new result explains the small variance in the distribution of bursts durations
(fig. 15B).
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0.3. MAIN RESULTS OF THE THESIS

Result (chapters 2 & 3) Numerical simulations reveal two new stochastic features: a
shifted attractor and a novel escape pattern From a mathematical point of view the QP cor-
responds to the escape from the basin of attraction of A. Because the dynamics close to A is very

anisotropic: |λ1| =
1− JX

τ
≈ 12.6 � |λ2| =

1

τf
≈ 1.1 � |λ3| ≈

1

τr
= 0.34, (using the parameters in

table 1.1) I projected it in the 2D plan y = constant ⇐⇒ ẏ = 0 yielding the simplified 2D dynamics

ḣ =
h (Jx− 1− τrLxh+)

τ(1 + τrLxh+)
+
√
τσω̇

ẋ =
X − x
τf

+K(1− x)h+.

(17)

Numerical simulations of this simplified 2D model revealed two surprising behaviors:

1. The stochastic trajectories are not centered around the deterministic attractor A but rather
accumulate around a shifted attractor, the position of which depends on the noise amplitude (fig.
16A).

2. The exiting trajectories do not escape directly once they reach the separatrix but they can reenter
multiple times in the basin of attraction before actually escaping to infinity (fig. 16B).
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Figure 16: A. 2D phase-space of model (17) with non escaping stochastic trajectories for σ = 1 (pink) 1.5
(blue) and 2.5 (green) oscillating around a shifted attractor Aσ approximated by the center of mass of the
trajectories (red, blue and green stars). B. Trajectory reentering the basin of attraction before escaping to
infinity.

Description of the shifted attractor and recurrent exit pattern in a generalized frame-
work To characterize the phenomena mentioned in the previous paragraph in a general framework,
I introduced the simple 2D dynamical system

ḣ = −αh+ x2 + σω̇
ẋ = F (h, x),

(18)

28



INTRODUCTION

where

F (h, x) =

{
h− γx for h ≥ 0
−γx for h ≤ 0,

(19)

α ∈]0, 1], γ ∈]0, α[, ω̇ is a Gaussian white noise and σ its amplitude. This system has two critical
points, one attractor A = (0, 0) (fig. 17A, yellow) which is a stable node with only real negative
eigenvalues and S = (γ2α, γα) (fig. 17A, cyan) which is a saddle-node with one positive and one
negative real eigenvalues. The stable manifold of S (fig. 17A, black curve Γ) is the separatrix which
delimits the basin of attraction of A. System (18) is topologically equivalent to system (17) restricted
to {x ≤ 0.5 and h ≤ 30} (see section 3.2.2 page 88 for the description of the phase-space of system
(17) and section 3.3 page 89 for system (18)).

Result (section 3.3) An analytical formula for the shift in the attractor’s position To
compute the position of the shifted attractor in the stochastic case, I considered the probability density
function (pdf) in the basin of attraction of A, of the non exiting trajectories. The stochastic process
s = (x, h)T satisfies the stochastic differential equation

ds = B(s)dt+ ΞdW, (20)

where

B(s) =

(
b1(s)
b2(s)

)
and Ξ =

(√
σ 0

0 0

)
. (21)

The steady-state PDF p satisfies the stationary FPE

σ

2

∂2p

∂h2
− (∇ ·B)p−B · ∇p = −δA, (22)

where δA is the δ-Dirac function at point A. Due to the discontinuity of the field at h = 0, I computed
∇·B on the two half spaces (h ≥ 0) and (h ≤ 0) separately. I could compute p using the same method
as in section 1.1.3 based on WKB approximation and the method of characteristics, yielding:

Theorem 3.1. For stochastic processes ds = B(s)dt+ ΞdW , where the drift B = (b1, b2)T is

b1(s) = −αh+ x2

b2(s) =

{
h− γx for h ≥ 0
−γx for h ≤ 0,

,
(23)

and

Ξ =

(√
σ 0

0 0

)
, (24)

where α ∈]0, 1], γ ∈]0, α[, dW is a two dimensional Gaussian white noise and σ ≥ 0. We denote by Ω
the basin of attraction of the attractor A = (0, 0). We consider trajectories starting at A and staying
inside Ω. The pdf p associated to equation (18) is solution of the stationary FPE

σ

2

∂2p

∂h2
− (∇ ·B)p−B · ∇p = −δA, (25)

and the solution can be found explicitly in the two following sub domains:
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(i) For s = {(h, x) ∈ Ω|h ≥ 0},

p(s) = N
x0

x0 + γx
e
−
ψ(s)

σ . (26)

(ii) For s = {(h, x) ∈ Ω|h ≤ 0},

p(s) = N

(
x0

x0 + γx

)α + γ

γ
−

1

(α− γ)2

e
−
ψ(s)

σ , (27)

where ψ is the solution of the eikonal equation associated to (25) and N is a normalization constant
such that

∫
Ω
p(s)ds = 1.

The next proposition allows us to determine an explicit expression for the solution of the eikonal
equation.

Proposition 3.1. Under the assumptions of theorem 3.1, the solution of the eikonal equation

B · ∇ψ +
1

2

(
∂ψ

∂h

)2

= 0 (28)

is

(i) For s = {(h, x) ∈ Ω|h ≥ 0},

ψ(h, x) = α

h−
(
h0 −

x2
0

α− 2γ
−
q1,0

2α

)(
x

x0

)α
γ
−

x2

α− 2γ


2

, (29)

where the initial conditions are h(0) = h0, x(0) = x0, q1(0) = q1,0 and q2(0) = q2,0 > 0.

(ii) For s = {(h, x) ∈ Ω|h ≤ 0},

ψ(h, x) ≈
Q2

0

4α

(
2γ(h+ x)

q2,0

)2α

γ
+
γ(h+ x)2

(γ − α)2
+

Q0q2,0

γ2 − α2

(
2γ(h+ x)

q2,0

)α + γ

γ
, (30)

where

Q0 = q1,0 +
q2,0

γ − α

H0 = h0 −
Q0

2α
+

q2,0

γ2 − α2

X0 = x0 −
H0

γ − α
−

Q0

2α(γ + α)
+

q2,0

2γ(γ2 − α2)

(31)

and the initial conditions are h(0) = h0, x(0) = x0, q1(0) = q1,0 and q2(0) = q2,0 > 0.
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The proofs are given in section 3.3 pages 95-99.

The pdf in the domain {(h, x) ∈ Ω|h ≥ 0} shows a maximum along the h = 0+ axis and its posi-
tion depends on the value of σ (fig. 17B). The position of the maximum corresponds to the shifted
attractor. I could thus compute it as a function of the noise amplitude yielding the following corrollary:
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Figure 17: A. 2D phase-space of model (18) with non escaping stochastic trajectories for σ = 0.03 (pink) 0.09
(blue) and 0.12 (green) oscillating around a shifted attractor Aσ approximated by the center of mass of the
trajectories (red, blue and green stars). B. Analytical pdf p (equations 26 and 27) for the three values of σ.

Corollary 3.2 Position of the shifted stochastic attractor The pdf p of stochastic trajectories
solution of equation (18) that did not escape the basin of attraction Ω peaks at a shifted position compared
to the attractor A, and the shift depends on the noise amplitude σ. The maximum of the pdf p is located
on the line h = 0+ and is given by the implicit equation

−
A1

1 +
γ

x0

x

−
1

σ

A2x

2α

γ
− 1

+ A3x

α

γ + A4x

 = 0, (32)

where

A1 =

(
α + γ

γ
−

1

(α− γ)2

)
γ

x0

, A2 =
Q2

0

q2,0

(
2γ

q2,0

)2α

γ
− 1

, A3 =
2Q0

γ − α

(
2γ

q2,0

)α
γ
,A4 =

2γ

(α− γ)2
. (33)

The proof is page 101. This equation cannot be solved analytically, however, I shall describe here
a case where equation (32) can be approximated by a polynomial equation.

Corollary 3.3 Approximation of the distance |Aσ −A| in the parameter range 0.5 <
γ

α
<

0.645: the solution of equation (32) is

xM(σ) = |Aσ − A| =

(
− q(σ)−

√
∆(σ)

2

)1/3

+

(
− q(σ) +

√
∆(σ)

2

)1/3

−
c2

3c1

, (34)
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where

c1 = A2 + A3 +
A4γ

x0

> 0

c2 = A2 + A3

q(σ) =
2c3

2 − 9c1c2A4

27c3
1

+
A1

c1

σ

∆(σ) = q(σ)2 +
4

27

(
3c1A4 − c2

2

3c2
1

)3

(35)

(expression (34) is valid as long as ∆(σ) ≥ 0, that is σ > 0.0114).

The proof is given page 102.
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Figure 18: Analytical approximation (34) (yellow) minus the corrective constant ĉ = 0.032 for γ = 0.6 compared
to numerical simulations (black dots).

Remark 1: Comparison with the numerical simulations. I ran numerical simulations to obtain
the position of the shifted attractor for values of σ ∈ [0, 0.2] and compared it to the analytical result
(34) showing a good match (fig. 18 yellow curve compared to the result of numerical simulations, black
dots where I subtracted a corrective constant ĉ = 0.032 obtained by minimizing the difference between
analytical formula (34) and simulations).

Similarly, I obtained an analytical formula in the range 0.885 ≤
γ

α
< 1 (see corollary 3.4 page 102).

Remark 2: Approximation ranges validity. To obtain the aforementioned approximation ranges,
we computed the absolute difference d(σ) = |xM,num(σ)−xM(σ)| between the numerical result xM,num(σ)
and the solution xM(σ) defined by corollary 3.3 (respectively 3.4), for σ ∈ [0, 0.2], and we used the
criteria dmax = max

σ∈[0,0.2]
(d(σ)) < 0.02 (see page 101 for details).

Description of the recurrent exit mechanism The escape from the attractor takes three steps:
1) from the deterministic attractor A, the trajectories fall into the basin of the shifted attractor Aσ,
2) the trajectories reach the separatrix Γ (fig. 19 black) and 3) the trajectories can exit and reenter
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the basin of attraction several times (green, cyan) before escaping to infinity (pink). In the previous
paragraph I have described the position of the shifted attractor. However, step 1 is almost immediate
and can be neglected with respect to steps 2 and 3 when it comes to computing the escape time. I
shall now describe the recurrent exit pattern and quantify the mean and distribution of escape times
in this scenario.
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Figure 19: Trajectory escaping from the basin of attraction of A (red star) after 1) reaching the separatrix Γ
(black curve) for the first time (black) 2) exiting and reentering in the basin (green, cyan) and 3) escaping to
infinity (pink).

Result (sections 2.2 and 3.4.3) The mean escape time is multiplied by a factor 2.3
compared to the first exit time Since the trajectories can reenter several times in the basin, I need
to take into account the time spent doing these round trips (RT) around the separatrix Γ: they are
defined as the portion of trajectory from the time tn at which a trajectory exits the basin of attraction,
then reenters until it exits again at time tn+1. The mean escape time is thus summarized in the following
lemma:

Lemma 3.1 We consider a phase-space composed of a single bounded basin of attraction. Outside the
basin of attraction the trajectories converge to infinity. Then, the mean escape time to infinity from the
basin of attraction is given by the sum

〈τesc〉 = 〈τ0〉+
〈τext〉+ 〈τint〉

p̃
, (36)

where p̃ is the probability that a trajectory crossing the separatrix Γ does not return inside the basin of
attraction, 〈τ0〉 is the mean time to reach the separatrix for the first time and 〈τext〉 (resp. 〈τint〉) is the
mean time spent outside (resp. inside) the basin of attraction during one RT.

The proof is given page 106.

Remark: Numerical simulations of (18) shows a factor 2.3 in the escape time. Computing
the times 〈τ0〉, 〈τext〉 and 〈τint〉 numerically lead to the conclusion that, for system (18), the mean
escape time 〈τesc〉 is increased by a factor 2.3 compared to the time 〈τ0〉 to reach the separatrix for the
first time (see section 2.2 page 80 and section 3.4.3 page 105 for details) thus confirming the importance
of accounting for this recurrent exit mechanism in the computation of the escape time.
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Result (sections 2.2 and 3.4.4) The distribution of escape times can be decomposed
according to the number of RT before escape Similarly, the distribution of escape times is given
by

Lemma 3.2 Under the assumptions of lemma 3.1, the distribution of escape times is

P (τesc < t) =
∞∑
k=0

f0(t) ∗ f1(t)∗kp̃(1− p̃)k. (37)

where f(t)∗k = f(t) ∗ f(t) ∗ ... ∗ f(t), k times, f0 is the distribution of escape times for trajectories
escaping without any RT and f1 of a single RT.

The proof is page 108.

Remark: Comparison to numerical simulations. I found f0 and f1 for both dynamical systems
(17) and (18) by fitting the distributions obtained with numerical simulations. I could then compute all
the terms of the distribution (37) and found that they match the distributions obtained from numerical
simulations (see fig. 3.7 page 107). These results apply to the facilitation-depression model (17) and
explain why the IBI are longer than what is expected from the classical theory of noise activated escape.

To conclude this part, I propose that this recurrent exit mechanism can be generalized for stochas-
tic dynamical systems of dimensions ≥ 2 under the following assumptions:

Conjecture 3.1 Recurrent exit mechanism For stochastic dynamical systems of dimension ≥ 2
perturbed by a small Gaussian noise, if the following conditions are satisfied:

1. The distribution of exit points peaks at a distance O(
√
σ) from the saddle-point [134].

2. The shallow field near the separatrix allows the trajectories to reenter the basin of attraction with
a probability p close to 1.

3. The peaks Pk of the successive exit points distributions converge to the saddle-point S.

4. When the stochastic trajectories enter the region where the field B satisfies the condition B =
(b1 ≥ 0, ..., bn ≥ 0), they eventually escape to infinity.

Then the trajectories present multiple reentries into the basin of attraction and the escape time τesc is
not given by the classical Kramer’s exit theory and can be much higher due to the additive term in
equation (36).

Part II: Applications to data analysis and computational neuroscience

Time-series segmentation and numerical simulations to study how astro-
cytes regulate neuronal bursting dynamics (chapter 4)

Result (section 4.5.2) Segmentation of experimental time-series recordings shows AHP
is the main determinant of IBI duration I developed a segmentation method based on low-
pass filtering and a combination of thresholding steps (see section 4.5.2 page 134 for the details of the
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Figure 20: A. Segmentation of the traces into burst (blue), AHP (pink) and QP (green), scalebar: 10 s, 10
mV. B. Distributions of bursts (upper left), IBI=AHP+QP (upper right), AHP (lower left) and QP (lower
right) durations for the WT (purple) and KO (red) datasets.

segmentation algorithm) to segment electrophysiological recordings of neuronal activity into: burst (fig.
20A blue), AHP (pink) and a quiescent phase QP (green). The IBI (black) is defined by IBI=AHP+QP
and I obtained the distributions of burst, AHP and QP durations for wild type (WT) mice (fig. 20B
purple) and mice with a disrupted astrocyte network (knockout (KO) of the gap junctions, fig. 20B
red, see sections 4.4.1 and 4.4.2 page 129 for a description of the experiments). This segmentation
showed that the main component determining the IBI duration was the AHP, while the QP was almost
not affected by the disruption of the astrocyte network (fig. 20B).
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Figure 21: Distributions of burst (left) and IBI (right) durations, for simulations of the WT case (light purple)
and simulations with modified AHP parameters (light red) compared to the KO data (red curve).

Result (section 4.2.2) Numerical simulations reveal the contribution of each parameter
I calibrated the model (4) to reproduce the distributions of both burst and AHP durations in the WT
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and KO cases (section 4.2.1 page 120) and then used the calibrated model to decipher the respective
influence on neuronal bursting activity of AHP, synaptic noise and membrane depolarization, which are
all affected by the disruption of the astrocyte network. Specifically, I ran simulations of the model with
all the parameters obtained in the case of the WT fit (fig. 21 light purple) and then changed to the
KO values only the parameters corresponding to one phenomenon. I then compared the distribution
of the simulated burst and IBI durations (fig. 21 light red) to the KO data distributions (red curve).
I found that the AHP was sufficient to explain the change in burst and IBI durations observed in the
KO data, while the increase of synaptic noise had some effect on burst durations but not much on IBI
and the membrane depolarization had no effect on either duration (see section 4.2.2 and fig. 4.4 page
121 for the full simulation results and section 4.2.3 for the experimental validation). To conclude, these
results help decipher the physiological mechanisms underlying the regulation of neuronal bursting by
the astrocyte network in a way that would not have been possible experimentally.

Application to a computational study of the α-band (chapter 5)

EEG is used to monitor the brain activity and to reveal and quantify the presence of multiple frequency
oscillations [142] over time [143]. During general anesthesia, the dominant oscillation is the α-band (8-
12Hz) [30, 31]. Since Up and Down states reflect the neuronal activity at the population level [27, 28],
I modeled the emergence and fragmentation of the α-band using the mean field model of synaptic
facilitation-depression accounting for AHP (4) in a case were it could reproduce Up and Down states.

Result (Section 5.1.2) A model bifurcation leads to the emergence of Up and Down
states First, I investigated how the model (4) with and without AHP (fig. 22A) could exhibit Up
and Down states. To do so, I increased the network connectivity parameter J until the model reached a
bifurcation where the saddle-focus S1 becomes an attractor. In this case, the model (with and without
AHP) exhibits bistability with one attractor representing the Down state (fig. 22B-C right, purple)
and the second one representing the Up state (fig. 22B-C right, red). I will now briefly summarize the
results obtained in the two cases of a single population with and without AHP.

Result (Section 5.1.2) A single population without AHP exhibits a dominant oscillation
frequency due to the Up state focus attractor In the case without AHP, the Up state attractor
is a saddle-focus (see section 5.4.2 page 166 for a detailed analysis of the phase-space) and the dominant
oscillation frequency is determined by the imaginary part of the complex conjugate eigenvalues (fig. 22B
left). This result shows that the α-band dynamics depend on the properties of the Up state attractor
(fig. 22B right, red star). I found that the peak value of the oscillation frequency is an increasing
function of the network connectivity J : a higher connectivity leads to faster oscillations (fig. 5.2C page
145). However, in this case the system stays locked in the Up state due to the multiple reentries in the
Up state basin of attraction of the stochastic trajectories.

Result (Section 5.1.2) The AHP allows to switch dynamically between Up and Down
states For the model with AHP, the synaptic noise is sufficient to generate spontaneous switching
between the Up and Down states (fig. 22C left), however there is no dominant oscillation in the Up
state because in this case the Up state attractor is a stable node with only real eigenvalues (fig. 22C
right and see section 5.4.2 for the detailed analysis of the phase-space). This result suggests that
although the dynamics at the Up state shape the oscillatory behavior, the dynamic switch between Up
and Down states results from ionic membrane properties such as the ones responsible for AHP.
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Multiscale model of the thalamo-cortical loop Finally, to reproduce a more physiological be-
havior where the Up and Down states coexist with a dominant α-band in the Up state I coupled two
excitatory components with one inhibitory component (fig. 23). This model represents the large scale
interactions between the cortical and thalamic neurons, which are known to be involved in the genesis
and maintenance of the oscillatory brain rhythms observed in EEG during general anesthesia [30].
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Figure 23: Schematic of the thalamo-cortical loop model.

Result (Section 5.1.4) Two excitatory and one inhibitory coupled populations can repro-
duce the coexistence of α-band and Up and Down states The multi-scale model (fig. 23)
of the thalamo cortical loop revealed that the α-band spontaneously emerges with the suppression of
all external stimuli (fig. 5.5 page 149). I found that coupling two excitatory components with one
inhibitory is the minimal configuration allowing to reproduce switches between Up and Down states
combined with a dominant α-oscillation in the Up state. Indeed, one excitatory population (the one
without AHP) induces the oscillation in the Up state while the other one (with AHP) triggers the
switches between Up and Down states driven by the synaptic noise. I could then use this model to
study the fragmentation and disappearance of the α-band when the inhibitory pathway is stimulated.
The stimulation of the inhibitory neuronal population models the injection of a hypnotic drug such as
propofol. I found that increasing the stimulation on inhibition modulates the proportion of time spent
in Up vs Down states (fig. 5.6E page 150). This result suggest that the fragmentation of the α-band,
which precedes the appearance of iso-electric suppression [144] is in fact associated to an increase in
the proportion of Down states. Finally, this model could be used to investigate further the activation
pathways of anesthetic drugs and it could also be applied to study different oscillatory rhythms such
as the θ-band which is characteristic of REM sleep [32,33].
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Organisation of the manuscript

Part I: Modeling and computation of bursts and interbursts durations in
neuronal networks

Chapter 1 In this chapter I introduce the new facilitation-depression model with AHP and describe
its deterministic 3D phase-space. I explain the peaked distribution of burst durations obtained from
stochastic simulations by expliciting the distribution of exit points on the separatrix Γ. This distribution
is obtained by solving the steady-state renewal FPE for trajectories starting at the attractor and with
an absorbing boundary condition on the separatrix. Finally, I use a slow-fast decomposition to compute
analytical formulas for the burst and AHP durations in the deterministic case.

Chapters 2 & 3 In chapter 2 I briefly describe the recurrent escape mechanism in the generic case
of a simple 2D system and its application to the 2D projection of the facilitation-depression model
close to the attractor to explain longer than expected IBI. In chapter 3 I describe numerically and
analytically the shift in the attractor’s position induced by the presence of an additive noise and I give
algebraic formulas for the dependency between the shift and the noise amplitude. Then I further detail
the recurrent exit mechanism introduced in chapter 2 in the general case and its application to the long
IBI in the facilitation-depression model.

Part II: Applications to data analysis and computational neuroscience

Chapter 4 In this chapter I study the mechanisms underlying the regulation of burst and IBI by
the astrocyte network. The experiments from our collaborators in Collège de France are explicited.
I detail the data analysis, in particular the segmentation algorithms I developed. I explain how the
model is used to further understand the data: I calibrate the facilitation-depression model to reproduce
the distributions of both burst and AHP durations obtained from the segmentation of the experimental
data. I then use numerical simulations to decipher the respective influence on the neuronal bursting
dynamics of various parameters that are affected by the disruption of the astrocyte network. Finally,
the model predictions are verified experimentally.

Chapter 5 In the final chapter of this thesis, I describe how a bifurcation of the facilitation-depression
model (with and without AHP) can lead to the existence of Up and Down states. I use numerical
simulations to investigate the relation between Up and Down states and the emergence of dominant
oscillatory bands in the spectrogram of the simulated voltage time series. I then build multi-scale models
of the thalamo-cortical loop by coupling several excitatory and inhibitory neuronal populations and I
use these models to investigate the emergence and transient disappearance of the α-band through the
effect of external stimulations. Finally I show that the stability of the α-band depends on the balance
of time spent in Up vs Down states.

39



Part I

Modeling and computation of bursts and
interbursts durations in neuronal networks

40



Chapter 1

Modeling bursting in neuronal networks
using facilitation-depression and
afterhyperpolarization

Published in ZONCA L. & HOLCMAN D., “Modeling bursting in neuronal networks using facilitation-
depression and afterhyperpolarization” Communications in nonlinear science and numerical simula-
tions, 94:e105555 (2021) / arXiv:2001.11432

Abstract

In the absence of inhibition, excitatory neuronal networks can alternate between bursts and
interburst intervals (IBI), with heterogeneous length distributions. As this dynamic remains un-
clear, especially the durations of each epoch, we develop here a bursting model based on synaptic
depression and facilitation that also accounts for afterhyperpolarization (AHP), which is a key
component of IBI. The framework is a novel stochastic three dimensional dynamical system per-
turbed by noise: numerical simulations can reproduce a succession of bursts and interbursts. Each
phase corresponds to an exploration of a fraction of the phase-space, which contains three critical
points (one attractor and two saddles) separated by a two-dimensional stable manifold Σ. We show
here that bursting is defined by long deterministic excursions away from the attractor, while IBI
corresponds to escape induced by random fluctuations. We show that the variability in the burst
durations, depends on the distribution of exit points located on Σ that we compute using WKB
and the method of characteristics. Finally, to better characterize the role of several parameters
such as the network connectivity or the AHP time scale, we compute analytically the mean burst
and AHP durations in a linear approximation. To conclude the distribution of bursting and IBI
could result from synaptic dynamics modulated by AHP.

Introduction

Neuronal networks can exhibit periods of synchronous high-frequency activity called bursts separated
by interburst intervals (IBI), corresponding to low amplitude time periods. Bursting can either be due
to intrinsic channel activities driven by calcium and voltage-gated channels or by collective synchroniza-
tion of large ensemble of neuronal cells [10]. Yet the large distributions observed in electrophysiological
recordings of bursting and IBI remains unclear.
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Bursting is a fundamental feature of Central Pattern Generators such as the respiratory rhythm in
the pre-Bötzinger complex [4, 5], mastication or oscillatory motor neurons [6] which are involved in
the genesis and maintenance of rhythmic patterns. Interestingly, several coupled pacemaker neurons
receiving an excitatory input from tonic firing neurons can either lead to bursting, tonic spiking or
resting depending on the values of the channel conductances and the neuronal coupling level [24–26].
Bursts that emerge as a network property have been studied using different modeling approaches such
as coupled integrate and fire neurons [59,60], improved recently by adding noise to connected Hodgkin-
Huxley type neurons, to allow desynchronisation [69]. Bursting can also depend on the balance between
excitatory and inhibitory neurons: coupling excitatory neurons results in in-phase bursting within the
network, whereas inhibitory coupling leads to anti-phase dynamics [81]. Furthermore, time-delays [68]
play a crucial role in synchronisation, by generating coherent bursting, specifically when the time-delays
are inversely proportional to the coupling strength [85].
Rhythm generation based on network bursting also depends on the bursting frequency and the inter-
burst intervals. Synaptic properties shape the genesis and maintenance of bursts [11–13]. Synaptic
short-term plasticity modeled in the mean-field approximation, is based on facilitation, depression and
network firing rate [102]. Long interburst intervals have been generated by introducing a two state
synaptic depression [112]. Interestingly, different levels of facilitation and depression lead to various
network dynamics [145] such as resting, bursting, spiking and, when noise is added, to Up and Down
state transitions [105]. Such models were used to interpret bursting in small hippocampal neuronal
islands [109] to show that the correlation between successive bursts could result from synchronous
depressing-facilitating synapses.
However in all these models, the distribution of Bursting and IBI durations remains unclear. In par-
ticular, the IBI in hippocampal pyramidal neurons is shaped by various type of potassium and calcium
ionic channels [14, 38–40], leading to medium and slow hyperpolarizing currents in the cells, a phe-
nomenon known as afterhyperpolarization (AHP). AHP results from the activation of these slow and
fast potassium channels, but their exact biophysical properties and distributions are not fully known.
Thus, we decided here to model the consequences of these channels by using a phenomenological ap-
proach to reproduce the shape of the AHP. We analyse this model using WKB methods to determine
how the distribution of bursts durations depends on some properties of exit points in the phase-space.
Furthermore, we wish to better understand how the IBI durations depend on various parameters such
as the network connectivity, the AHP time scales and the facilitation-depression dynamics. We do so
by deriving analytical formulas for the burst and AHP durations using a linear approximation of our
model.
The manuscript is organized in two main sections: in the first one, we introduce a phenomenologi-
cal three-dimensional dynamical system, where we have added the effect of AHP to the facilitation-
depression model by modifying the dynamics in certain portions of the phase-space. Noise perturbation
on the voltage variable can produce bursting periods followed by IBI. We describe the phase-space that
contains three critical points (one attractor and two saddles). Moreover, we relate the distribution
of burst durations to the one of the exit points on the stable manifold, delimiting the region of non
bursting trajectories of the stable equilibrium. In the second section, we use a linear approximation of
the phenomenological system we introduced in section 1, to obtain a closed relation between the burst
and AHP durations and key parameters. Finally, we study how the network connectivity, facilitation
and depression parameters influence the burst and IBIs.
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CHAPTER 1. MODELING BURSTING IN NEURONAL NETWORKS USING FACILITATION- . . .

1.1 A facilitation-depression model with AHP

1.1.1 Model description

Since AHP involves the combination of several types of slow and fast potassium channels, to avoid
entering into a difficult choice of channels, we decided instead to use a coarse-grained representation.
We thus rather model the consequences of channel activity by modifying the facilitation-depression
short-term synaptic plasticity model. This is well accounted for by a mean-field system of equations for
a sufficiently well connected ensemble of neurons. The stochastic dynamical system consists of three
equations [102,109] for the mean voltage h, the depression y, and the synaptic facilitation x:

τ ḣ = −h+ Jxyh+ +
√
τσω̇

ẋ =
X − x
tf

+K(1− x)h+

ẏ =
1− y
tr
− Lxyh+,

(1.1)

The population average firing rate is given by h+ = max(h, 0), which is a linear threshold function of
the synaptic current [105]. The term Jxy reflects the combined effect of synaptic short-term dynamics
on the network activity. The second equation describes facilitation, while the third one describes
depression. The mean number of connections (synapses) per neurons is accounted for by the parameter
J [110]. We previously distinguished [109] the parameters K and L which describe how the firing rate
is transformed into molecular events that are changing the duration and the probability of vesicular
release respectively. The time scales tf and tr define the recovery of a synapse from the network activity.
Finally, ω̇ is an additive Gaussian noise and σ its amplitude, it represents fluctuations in the firing rate.
The model (1.1) does not account for long AHP periods, where the voltage is hyperpolarized and then
slowly depolarized due to potassium channels [38], leading to a refractory period. To account for AHP,
we thus incorporated changes in the facilitation-depression model by introducing two features: 1) a new
equilibrium state representing hyperpolarization, after the peak response 2) a slow recovery with two
timescales (medium and slow) to describe the slow transient to the steady state. The new equations
are

τ0ḣ =−(h− T0) + Jxy(h− T0)+ +
√
τ0σω̇

ẋ =
X − x
τf

+K(1− x)(h− T0)+

ẏ =
1− y
τr
− Lxy(h− T0)+.

(1.2)

These changes lead to a piece-wise system that decomposes into four steps:

- step 1: burst phase. It is defined when the dynamics fall into the subspace {y > YAHP and
h ≥ HAHP (fig. 1.1B purple surface)}. During this phase the time constant τ0 of h is fixed to
τ0 = τ and the resting value of h is T0 = T (see Table 1.1).

- Step 2: depression phase. In this phase, the depression parameter y increases (ẏ > 0 ⇐⇒

y <
1

1 + Lx(h− T0)
, fig. 1.1B curved orange surface), and it lasts until y reaches the threshold Yh
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1.1. A FACILITATION-DEPRESSION MODEL WITH AHP

Parameters Values
τ Fast time constant for h 0.05s [105]
τmAHP Medium time constants for h 0.15s
τsAHP Slow time constants for h 5s
J Synaptic connectivity 4.21 (modified: 3-5 in [145])
K Facilitation rate 0.037Hz (modified: 0.04Hz in [109])
X Facilitation resting value 0.08825 (modified: 0.5-0.1 in [145])
L Depression rate 0.028Hz (modified: 0.037Hz in [109])
τr Depression time rate 2.9s (modified: 2-20s in [109])
τf Facilitation time rate 0.9s (modified: 1.3s in [109])
T Depolarization parameter 0
σ Noise amplitude 3
TAHP Undershoot threshold -30

Table 1.1: Model parameters

(i.e. y < Yh, fig. 1.1B vertical orange surface). During this phase the parameters are τ0 = τmAHP
and T0 = TAHP < T . These parameter values forces the voltage to hyperpolarize.

- Step 3: return to steady state. In that phase, the depression y is still increasing (ẏ > 0),
with the condition that YAHP < y or h < HAHP . During this phase, we change the time constant
to τ0 = τsAHP and the resting value of h is set to its initial value T0 = T . These modifications
account for the slow recovery from hyperpolarization to the resting state, this phase ends when
y reaches the second threshold YAHP and h reaches its threshold HAHP .

- Step 4: resting state. This phase models the fluctuations of the voltage around the steady state
due to noise. The conditions and parameters are the ones of step 1 ({y > YAHP and h ≥ HAHP},
τ0 = τ and T0 = T ).

The values of the parameters for the classical facilitati,on-depression part are chosen in agreement
with [102,105,109,145], while the AHP parameters (TAHP , τmAHP and τsAHP , Table 1.1) are consistent
with the biological observations [38].
Numerical simulations of equations (1.2) with a sufficient level of noise exhibit spontaneous bursts in
the voltage variable followed by AHP periods (fig. 1.1A-B).
We segmented the simulated time series into two phases: bursting (fig. 1.1C, blue) and IBI, which
is further decomposed into an AHP period (pink) and a quiescent phase (QP, green). The quiescent
phase is a period where the voltage fluctuates around its equilibrium value h = 0. This segmentation
allows us to obtain the distributions of burst, AHP and QP durations (fig. 1.1D).

1.1.2 Phase-space analysis

Studying the phase-space of the deterministic system (1.2) is a key step to analyze the stochastic
dynamics.

Equilibrium points

We first search for the equilibrium points. There are three of them:
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Figure 1.1: Depression-facilition-AHP model. A. Voltage time series (parameter h) normalized, the
facilitation x and the depression y (lower) simulated from eq. (1.2). B. Three dimensional phase-space showing
a trajectory, decomposed into a QP (green), a burst (blue) and an AHP (pink) phase. The phase-space is
divided into 3 regions: 1) the medium dynamics (step 2) of hyperpolarization where τ0 = τmAHP , & T0 = TAHP
under and right of the orange surface. In this region the trajectory is highlighted with orange circles. 2) The
slow recovery dynamics (step 3, τ0 = τsAHP & T0 = 0, region under the purple plan), where the trajectory is
highlighted with purple triangles. 3) The fast dynamics (steps 1 and 4, τ0 = τ & T0 = 0). Here YAHP = 0.85,
Yh = 0.5 and HAHP = −7.5. C. Segmentation of the time series in burst (blue) and IBI: AHP (pink) and
QP (green). D. Distribution of bursts (left, blue), AHP (center, pink) and QP (right, green) durations from
numerical simulations lasting 104s.
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Attractor. The first equilibrium point A is given by h = 0, x = X, y = 1 (fig.1.1B and 1.2A, yellow
star) and the Jacobian at this point is given by

JA =



− 1 + JX

τ
0 0

K(1−X) −
1

τf
0

LX 0 −
1

τr

 . (1.3)

The eigenvalues (λ1, λ2, λ3) =

(
− 1 + JX

τ
,−

1

τf
,−

1

τr

)
are real strictly negative. With the parameters

of Table 1.1, we obtain three orders of magnitude |λ1| = 12.6� |λ2| = 1.1� |λ3| = 0.34. The dynamics
near the attractor is thus very anisotropic, restricted to the plan perpendicular to the eigenvector
associated to the highest eigenvalue |λ1|.

Saddle-points S1 and S2. The other steady-state solutions are given by Jxy = 1 thus,

X − x
τf

+K(1− x)(h− T − T0) = 0⇔ h = T + T0 +
x−X

τfK(1− x)
,

leading to

1−
1

Jx
τr

−
L

J

X − x
τfK(1− x)

= 0⇔ (JτfK + Lτr)x
2 − (τfK(J + 1) + LXτr)x+ τfK = 0.

The discriminant is

∆ = (τfK(J + 1) + LXτr)
2 − 4(JτfK + Lτr)τfK > 0, (1.4)

leading to

x1,2 =
τfK(J + 1) + LXτr ±

√
∆

2(JτfK + Lτr)

y1,2 =
1

Jx1,2

h1,2 = T + T0 +
x1,2 −X

τfK(1− x1,2)
.

(1.5)

The Jacobians at these points are

JS1,2 =


0

Jy1,2(h1,2 − T − T0)+

τ0

Jx1,2(h1,2 − T − T0)+

τ0

K(1− x1,2) −
1

τf
−K(h1,2 − T − T0)+ 0

−
L

J
−Ly1,2(h1,2 − T − T0)+ −

1

τr
− Lx1,2(h1,2 − T − T0)+.

 (1.6)
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With the parameter values of Table 1.1, y1,2 > Yh and thus T0 = 0. Moreover, ẏ|y1,2 < 0 so τ0 = τ .
We computed numerically the eigenvalues of the matrices JS1,2 . The first saddle point S1 has one real
strictly negative eigenvalue and two complex-conjugate eigenvalues with positive real-parts (λ1, λ2, λ3) =
(−5.06, 1.05 + 1.16i, 1.05− 1.16i): S1 is a saddle-focus (with a repulsive focus and a stable manifold of
dimension 1, fig. 1.2B). The second saddle point S2 has two real negative eigenvalues and one positive
one (λ1, λ2, λ3) = (−4.58,−0.25, 3.01), it is a saddle-point with a stable manifold of dimension two and
unstable of dimension one (fig. 1.2C).

Two dimensional separatrix Σ: boundary of long excursions away from the stable equilib-
rium A

The deterministic trajectories can be compartmentalized in two categories: 1) bursting trajectories,
doing long excursions away from the attractor A before going back and 2) trajectories going straight-
forwardly back to A. We determine the bursting boundary as the separatrix surface Σ (fig. 1.2, cyan
surface) passing through S2 (the stable manifold of S2) and splitting the phase-space in 2 regions: B+

situated “above” Σ where deterministic trajectories define bursts and B−, “below” Σ where trajectories
go straight back to A.
To determine Σ, we sampled the (h,x,y)-space with various initial conditions to determine the location
where trajectories are confined to B− and other characterized by a long trajectory away from the at-
tractor in B+, which describes the bursting phase. Finally, we note that the shape of Σ can become very
complex away from the saddle-point S2, however here our trajectories are confined within the square
prism defined by {x ∈ [0, 1] & y ∈ [0, 1]} and our numerical simulations show that in this domain the
surface Σ is still simple enough for our approximation and that it does split the phase-space in the two
subdomains described (fig. 1.2 and 1.3 cyan surface).
We constructed the separatrix Σ with a precision ∆h = 0.01 for a normalized amplitude of h to 1,
which is smaller than the spatial scale of the stochastic component of the simulation σ

√
τ∆t ≈ 0.07.

To characterize the range of bursting durations, we further determined numerically the durations of
the shortest (fig. 1.2D and 1.3 red) and longest (purple) trajectories, starting in the upper neighbor-
hood of the separatrix Σ and ending below h = 0 (fig. 1.2D): we found that the fastest and shortest
durations are 1s and 0.31s respectively. Note that these durations are measured after departure from
Σ (no return, which could be possible in the stochastic case), that could explain the difference with the
burst duration histogram (Fig. 1.1D). The extreme trajectories are determined when we sampled the
initial condition in the discretized approximation of Σ by a grid (xk, yq) = (k∆x, q∆y) ∈ [0, 1]2, where
we used the resolution ∆x = ∆y = 0.025.

1.1.3 Distribution of exit points

To characterize the distribution of bursting durations, we decided first to focus on the distribution of
exit points from the region B− located on the surface Σ. Our rational was the dominant dynamics above
Σ is deterministic. Thus any fluctuation should come from the statistics of the exit points distribution.

Distribution of exit points obtained from stochastic simulations

We first ran stochastic simulations of system (1.2) with the attractor A = (0, X, 1) as initial point for a
fixed noise amplitude. For each burst, we recorded the intersection point (exit point) of the trajectory
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and Σ (fig. 1.3). In this region of the phase-space, the dynamics simplifies to the system (1.1) without
AHP, which can be written in the matrix form

ṡ = B(s) +
√
σẆ (1.7)

where s = (h, x, y)T and

B(s) =


b1(s) = −

h

τ
+
Jxyh+

τ

b2(s) =
X − x
τf

+K(1− x)h+

b3(s) =
1− y
τr
− Lxyh+

 (1.8)

and
√
σ = diag

(√
σ

τ
, 0, 0

)
.

Distribution of exit points obtained from solving the Fokker-Planck equation

At this stage, we decided to compare the empirical distribution with the probability density function
(pdf) q(s) obtained form the steady-state renewal Fokker-Planck equation (FPE) [125, 128], when the
initial point is A. We obtained the following result:

Theorem 1.1 For stochastic trajectories of system (1.2) starting in the neighborhood of the attractor
A, the distribution pΓ of exit points located on the separatrix Γ is given per unit surface ds by

pΓ(s̃|s0) =
J(s̃|s0) · ν(s̃)ds̃∮
Σ
J(s̃|s0) · ν(s̃)ds̃

for s̃ ∈ Σ (1.9)

where the probability flux is

J(s̃|s0) =



Jxy − 1

τ
hq(s̃)−

σ

2τ

∂q(s̃)

∂h(
X − x
τf

+K(1− x)h

)
q(s̃)(

1− y
τr
− Lxyh

)
q(s̃)


, (1.10)

ν(s̃) is the unit normal vector at the point s̃ and q is the solution of the steady-state renewal degenerated
Fokker-Planck equation

−
∂

∂h

[
(Jxy − 1)h

τ
q

]
−

∂

∂x

[(
X − x
τf

+K(1− x)h

)
q

]
−

∂

∂y

[(
1− y
τr
− Lxyh

)
q

]
+

σ

2τ

∂2

∂h2
q = δ(s− A)

with the absorbing boundary condition

q(s|A) = 0 for s ∈ Γ. (1.11)
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The solution q can be approximated by WKB and has the formal expression

q(s̃|s0) = qσ(s̃)Q0(s̃)e
−
ψ(s̃)

σ , (1.12)

where qσ(s̃) is the boundary layer solution.
Finally, the probability flux can be expressed as

J(s̃|s0) · ν(s̃)ds̃ = K0s̃
−
∇ ·B|S2

λ2 e
−
ψ(s̃)

σ ds̃, (1.13)

where ∇·B|S2 is the divergence of the field B at the saddle-point S2, λ2 is the dominant stable eigenvalue
of the Jacobian of B at S2 and ψ is the solution of the degenerated eikonal equation

(Jxy − 1)h

τ

∂ψ

∂h
+

(
X − x
τf

+K(1− x)h

)
∂ψ

∂x
+

(
1− y
τr
− Lxyh

)
∂ψ

∂y
+

1

2τ

(
∂ψ

∂h

)2

= 0. (1.14)

Proof: This density is obtained by conditioning on trajectories of the process (1.7) that are absorbed
on Σ. It is solution of

−
∂

∂h

[
(Jxy − 1)h

τ
q

]
−

∂

∂x

[(
X − x
τf

+K(1− x)h

)
q

]
−

∂

∂y

[(
1− y
τr
− Lxyh

)
q

]
+

σ

2τ

∂2

∂h2
q = δ(s− A)

(1.15)

where

q(s|A) = 0 for s ∈ Σ. (1.16)

To solve equation (1.15), we search for a WKB approximation of the solution in the form

q(s|A) = Qσ(s)e
−
ψ(s)

σ , (1.17)

where Qσ is a regular function with the formal expansion

Qσ(s) =
∞∑
i=0

Qi(s)σi. (1.18)

The function ψ satisfies the eikonal equation [125,128]

(Jxy − 1)h

τ

∂ψ

∂h
+

(
X − x
τf

+K(1− x)h

)
∂ψ

∂x
+

(
1− y
τr
− Lxyh

)
∂ψ

∂y
+

1

2τ

(
∂ψ

∂h

)2

= 0. (1.19)

We use the method of characteristics to solve the eikonal equation. Setting

p = ∇ψ =

p1

p2

p3

 , (1.20)
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and

F (s, ψ, p) = b1(s)p1 + b2(s)p2 + b3(s)p3 +
1

2τ
p2

1, (1.21)

the characteristics are given by

dh

dt
= Fp1 = b1 +

1

τ
p1

dx

dt
= Fp2 = b2

dy

dt
= Fp3 = b3,

(1.22)

dp1

dt
= −Fh = −

Jxy − 1

τ
p1 −K(1− x)p2 + Lxyp3

dp2

dt
= −Fx = −

Jyh

τ
p1 +

(
1

τf
+Kh

)
p2 + Lyhp3

dp3

dt
= −Fy = −

Jxh

τ
p1 +

(
1

τr
+ Lxh

)
p3

(1.23)

and

dψ

dt
=

1

2τ
p2

1. (1.24)

We solve (1.22)-(1.24) starting at the attractor A, however, this characteristic will be trapped at A. To
avoid this difficulty, we follow the method proposed in [125] p.165-170, and we start from points located
in a neighborhood VA of A. In VA, the solution of the eikonal equation has a quadratic approximation

ψ(s) =
1

2
sTRs+ o(|s|2). (1.25)

To find the matrix R, we linearized the eikonal equation around the attractor A

(JAs)T · ∇ψ +
1

2τ
p2

1 = 0, (1.26)

where JA is the Jacobian defined in (1.3). Due to the noise present in only one coordinate, this matrix
equation (1.26) does not have a unique solution. We shall use the one given by

ψ(s) ≈ (1− JX)h2. (1.27)

We now follow the method of reconstruction [125] by choosing the initial points on the contours ψ(s) =
δ = 0.05, that is

h = ±
√

δ

1− JX
≈ 0.28. (1.28)
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We then computed the characteristics numerically (fig. 1.4A-B).
The final step to determine the exit points distribution is to solve the transport equation (3.29)

1− Jxy
τ

(
h
∂Q0

∂h
+Q0

)
+

(
1

τf
+Kh

)
Q0 −

(
X − x
τf

+K(1− x)h

)
∂Q0

∂x
+

(
1

τr
+ Lxh

)
Q0

−

(
1− y
τr
− Lxyh

)
∂Q0

∂y
−

1

τ

∂Q0

∂h

∂ψ

∂h
−
Q0

2τ

∂2ψ

∂h2
= 0.

(1.29)

To find Q0, we follow the method from [125] p.172-175: we rewrite equation (1.29)

B · ∇Q0 +
1

τ

∂Q0

∂h

∂ψ

∂h
= −

(
∇ ·B +

1

2τ

∂2ψ

∂h2

)
Q0 (1.30)

where B is defined in (1.8). Along the characteristics, (1.30) becomes

dQ0(s(t))

dt
= ∇Q0(s(t)) ·

ds(t)

dt
= −

(
∇ ·B(s(t)) +

1

2τ

∂2ψ(s(t))

∂h2

)
Q0(s(t)). (1.31)

Our goal is to compute Q0 on the separatrix and for that purpose, we need to evaluate
∂2ψ(s(t))

∂h2
by

differentiating the characteristics equations (1.22)-(1.24) with respect to the initial point s0 = s(0).
Setting

sj(t) =
∂s(t)

∂sj0
, pj(t) =

∂p(t)

∂sj0
,

∂2ψ(s(t))

∂si∂sj
= Ri,j(t), (1.32)

we have R(t) = P (t)S(t)−1, where P (t) (resp. S(t)) is the matrix with columns pj(t) (resp. sj(t)). The
initial conditions are

sij(0) = δi,j, pij(0) =
∂2ψ(0)

∂si∂sj
= Ri,j. (1.33)
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The dynamics has the form

ds1
1

dt
=
dh1

dt
=

(
∂b1

∂h
+

1

τ

∂p1

∂h

)
h1

ds1
2

dt
=
dh2

dt
=

(
∂b1

∂h
+

1

τ

∂p1

∂h

)
h2

ds1
3

dt
=
dh3

dt
=

(
∂b1

∂h
+

1

τ

∂p1

∂h

)
h3

ds2
1

dt
=
dx1

dt
=

∂b2

∂x
x1

ds2
2

dt
=
dx2

dt
=

∂b2

∂x
x2

ds2
3

dt
=
dx3

dt
=

∂b2

∂x
x3

ds3
1

dt
=
dy1

dt
=

∂b3

∂y
y1

ds3
2

dt
=
dy2

dt
=

∂b3

∂y
y2

ds3
3

dt
=
dy3

dt
=

∂b3

∂y
y3

(1.34)

and because we are only interested in R1,1 we only need to compute the first row of P (t), thus

dp1
1(t)

dt
=

(
−
Jxy − 1

τ

∂p1

∂h
−K(1− x)

∂p2

∂h
+ Lxy

∂p3

∂h

)
h1

dp1
2(t)

dt
=

(
−
Jxy − 1

τ

∂p1

∂h
−K(1− x)

∂p2

∂h
+ Lxy

∂p3

∂h

)
h2

dp1
3(t)

dt
=

(
−
Jxy − 1

τ

∂p1

∂h
−K(1− x)

∂p2

∂h
+ Lxy

∂p3

∂h

)
h3.

(1.35)

In the limit t → ∞ the characteristic that hits the saddle point S2 is tangent to the separatrix and

−

(
∇ ·B +

1

2τ

∂2ψ

∂h2

)
Q0 → −∇ · B|S2 ≈ 1.82. Indeed,

∂2ψ

∂h2
tends to 0 near the saddle point S2 as

shown in fig. 1.4C. Thus, near the saddle point, we have

dQ0(s(t))

dt
= −(∇ ·B|S2 + o(1))Q0(s(t)). (1.36)

The solution is approximated by

Q0(s(t)) = Q0(s(0))e−∇ ·B|S2t(1 + o(1)). (1.37)

Finally, the characteristic s(t) near the saddle point S2 can be expressed with respect to the arc length
s̃:

s̃(t) ≈
∫ t

0

√
ṡ2(u)2du, (1.38)
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where s2 is the dominant coordinate of s ∈ Σ in the eigenvectors basis of the jacobian JS2 of system
(1.2) at S2, (λ1 ≈ −4.58 and λ2 ≈ −0.25), thus locally

s̃(t) ≈
∫ t

0

√
s2(0)e2λ2udu, (1.39)

and

s̃(t) ≈
∫ t

0

√
s2(0)e2λ2udu = s2(0)

eλ2t − 1

λ2

. (1.40)

Finally, using (1.37) and (1.40), we obtain locally

Q0(s̃) = Q0(0)s̃
−
∇ ·B|S2

λ2 , (1.41)

where −
∇ ·B|S2

λ2

≈ −7.23.

The distribution of exit points is constructed from the solution q of the FPE (1.15) by accounting for
the boundary layer function qσ that has to be added to the transport solution in the form Q0qσ, such
that this product now satisfies the absorbing boundary condition (1.16). We do not compute here qσ
as the computation follows the one of [125] p. 182-183 near the separatrix. It is a regular function of

the form −
√

2

π

∫ ργ(s1,s2)/
√
σ

0

e−η
2/2dη, where ρ is the distance to the separatrix Σ in a neighborhood

of S2 and γ(s1, s2) is a regular function.
Finally, the exit point distribution per unit surface ds is given by

pΣ(s̃|s0) =
J(s̃|s0) · ν(s̃)ds̃∮
Σ
J(s̃|s0) · ν(s̃)ds̃

for s̃ ∈ Σ (1.42)

where the probability flux is

J(s̃|s0) =



Jxy − 1

τ
hq(s̃)−

σ

2τ

∂q(s̃)

∂h(
X − x
τf

+K(1− x)h

)
q(s̃)(

1− y
τr
− Lxyh

)
q(s̃)


, (1.43)

and ν(s̃) is the unit normal vector at the point s̃. The flux is computed by differentiating expression
(1.17) on the boundary

q(s̃|s0) = qσ(s̃)Q0(s̃)e
−
ψ(s̃)

σ . (1.44)

We obtain

J(s̃|s0) · ν(s̃)ds̃ = −
√

2σ

π
q(s̃|s0)γ(s1, s2)ds̃

= K0s̃
−
∇ ·B|S2

λ2 e
−
ψ(s̃)

σ ds̃,

(1.45)
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where γ(s1, s2) has been approximated by its value at s̃ = 0. Furthermore, in the limit s̃ → 0,

s̃
−
∇ ·B|S2

λ2 tends to infinity, however it is compensated by e
−
ψ(s̃)

σ which is small enough, as we
observe numerically. We plotted the distribution of exit points in fig. 1.4D-E for K0 = 1. Finally,
we compare the distribution pΣ with the one obtained from the stochastic simulations of system (1.2)
with the same level of noise (σ = 3). Both distributions are peaked, showing that the exit points are
constrained in a small area of the separatrix. 2

To conclude this part, our two different methods confirm that the exit point distribution is peaked,
thus the trajectories associated to the bursting periods are confined in a tubular neighborhood of a
generic trajectory and thus the distribution of the bursting times is peaked, as observed in fig. 1.1D.
Finally, the distribution of bursting durations should be quite concentrated near a deterministic value.

1.2 Computing the burst and AHP durations

How the burst duration depends on specific parameters such as the neuronal connectivity, the char-
acteristic time of depression, facilitation or AHP durations is usually very difficult to address from a
computational point of view. Indeed, it requires integrating a nonlinear dynamical system. Most of
the time, the sensitivity analysis to parameters is explored numerically by sampling a certain fraction
of the phase space. However, we shall show here that it is possible to get some expressions for the
bursting and IBI durations.

1.2.1 Deriving explicit expressions for the bursting and the AHP dura-
tions

In this section we develop an approximation procedure to compute the mean bursting and afterhyper-
polarization durations from the AHP facilitation-depression model (1.2).
The approximation procedure is based on the following considerations: because in the first phases of
burst and AHP, the voltage h evolves much faster than the facilitation x and depression y, to compute
the duration of the bursting phase, we will replace the dynamics of h in the depression and facilitation
equations by a piecewise constant function H(t) (fig.1.5). This approximation decouples the system
(1.2), thus x and y can be computed. Indeed, h increases quickly from 0 to a high value in less than
100 ms and then decays. Since we are interested in the decay phase, we will freeze the value of h in
equation (1.47) for x and y in the time interval [0, t1] (the time t1 will be estimated in section 1.2.3)
to a high value H1 (to be determined). Moreover, in the interval [t1, t2], we will fix the value of h to
a constant H2 (to be determined) to account for the AHP phase. Then we will re-compute h using
the approximated equations for x and y. We will then examine numerically how the unperturbed and
perturbed solutions differs. Note that we are interested in the longer time phase (thus the different
behavior of the solutions in the short-time will not matter much) so that we will able to use the ana-
lytical formulas to compute the burst and the AHP durations.
We shall now specify the function H(t). In the bursting phase, it is constant equal to H1 for t ∈ [0; t1].
In the hyperpolarization phase, H(t) = H2 for t ∈ [0; t2]. For t > t2 (that will also be specified in
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Figure 1.4: Exit point distributions: characteristics vs stochastic realizations. A-B. Characteristics
crossing the separatrix Σ (the darker the line color is, the lower the value of ψ on Σ is) and distribution of
exit points obtained from numerical simulations (yellow); visualized with two different angles. C. Element

R1,1(t) =
∂2ψ

∂h2
of the matrix 1.32 vs time along the characteristics computed numerically. D-E. pdf of the exit

points pΣ = Q0e
−
ψ

σ on the separatrix Σ compared to the distribution obtained from the stochastic simulations
(green histogram), visualized with two different angles.
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section 1.2.3), we choose H(t) = 0 to account for the recovery phase.

H(t) =


H1, for t ∈ [0, t1]
H2, for t ∈]t1, t2]
0 for t > t2.

(1.46)

The approximated system of equations becomes:

τ0ḣ =−(h− T0(t)) + Jxy(h− T0(t))+

ẋ =
X − x
τf

+K(1− x)H(t)

ẏ =
1− y
τr
− LxyH(t)

(1.47)

where the AHP is accounted for by changing the threshold and timescales as follows

T0(t) =


0 for t ∈ [0, t1]
TAHP for t ∈]t1, t2]
0 for t > t2

and τ0(t) =


τ for t ∈ [0, t1]
τmAHP for t ∈]t1, t2]
τsAHP for t > t2.

(1.48)

t1 t2

H2

H1

1. Burst: fast timescale τ0=τ, 
no hyperpolarization: T0=0

2. AHP initiation: medium timescale τ0=τmAHP, 
hyperpolarization: T0= TAHP<0

3. Recovery: slow timescale τ0=τsAHP, 
no hyperpolarization: T0=0

Figure 1.5: Approximated voltage step function H(t).

Proposition 1.1 Analytical formulas for the burst ti and AHP durations ∆AHP = te − ti.
For the three-dimensional dynamical system defined by equation (6), if the parameters τ0 � τf , τ0 � τr
or τf � τ0, τ0 � τr then:

(i) System (1.47) can be integrated piece-wise yielding analytical formulas for the three variables h
(equations 1.58-1.65-1.68), x (equations 1.51-1.59-1.66) and y (equations 1.55-1.61-1.67),
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(ii) The burst duration ti is defined by the equation h(ti) = 0, which can be inverted analytically,
yielding the expression

ti ≈ t1(J) +

− Λ−

√√√√Λ2 + 4Λ̃
τmAHP

J
ln

(
− TAHP

h0 − TAHP

)
2Λ̃

, (1.49)

where t1(J), Λ = Λ(J,K, L,H2, t1(J)) and Λ̃ = Λ̃(K,L,H2, t1(J)) are smooth explicit functions
of the parameters J,K, L and H2 of system (6) calculated in section 1.2 pages 63 and 65.

(iii) The AHP duration ∆AHP = te−ti is solution of equation h(te) = ε which can be explicitly inverted
and is given by

te ≈ t2(J) +

(
τsAHP
J

ln

(
h(t2)

ε

)
+ f(X, τf , τr)

)
J

JX − 1
, (1.50)

where f is a rational function of parameters X, τf and τr explicited page 66.

Proof: The proof of proposition 1.1 is divided into three subsections, first in subsection 1.2.2 we
prove (i) and calculate the analytical expressions of h, x and y. Then, in subsection 1.2.3 we identify
the times t1 and t2 for the piece-wise decomposition and finally, in subsection 1.2.4 we derive the explicit
formulas (1.49) and (1.50).

1.2.2 Explicit representation of the facilitation, depression and voltage
variables in three phases

Phase 1 [0, t1]

To integrate the facilitation and depression equations in (1.47), we note that during the bursting phase
(fig. 1.5, phase 1, blue) H(t) = H1 with the initial conditions: x(0) = X and y(0) = 1 (resting values).
We obtain

x(t) = A1e
−α1t +B1, (1.51)

where

α1 =
1

τf
+KH1, A1 =

KH1(X − 1)

α1

, B1 =

X

τf
+KH1

α1

. (1.52)

Injecting expression (1.51) in the third equation of system (1.47), we obtain

ẏ =
1− y
τr
− L(A1e

−α1t +B1)H1y

The solution is

y(t) =

(
C1 +

1

τr

∫ t

0

exp(f1(s))ds

)
exp(−f1(t)), (1.53)
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where the function

f1(t) = β1t−
LA1H1

α1

e−α1t.

To approximate the integral
∫ t

0
exp(f1(s))ds, we use that f1 is monotonic on the interval [0; t1], thus

using a Taylor’s expansion at order 1, we get∫ t

0

exp(f1(s))ds ≈ exp(f1(t))

∫ t

0

exp(f ′1(t)(s− t))ds =
exp(f1(t))

f ′1(t)
(1− exp(−tf ′1(t))). (1.54)

Using expression (1.53), we obtain for t ∈ [0, t1]

y(t) ≈
(

1

τr

(1− exp(−tf ′1(t)))

f ′1(t)

)
+ C1 exp(−f1(t)), (1.55)

where

β1 =
1

τr
+B1LH1 and C1 = exp

(
−
LH1A1

α1

)
. (1.56)

We now compute the firing rate h: the first equation in system (1.47) is

τ ḣ = −h+ Jxyh+ (1.57)

where the initial condition is h(0) = H̃1. We note that for numerical computations, the value of H̃1 has
to be much smaller than H1 in order to guarantee that the facilitation and depression are immediately
in the bursting state (Table 1.3).
A direct integration leads to

h(t) = H̃1 exp

(
− t
τ

+
J

τ

∫ t

0

x(s)y(s)ds

)
. (1.58)

We derive an explicit expression (appendix 1.3.1) for the solution h using (1.51) and (1.55) for x and
y respectively.

Phase 2 [t1, t2]

The second phase starts at t1 where H(t) = H2, the equations and the approximation are similar to the
paragraph above. However we use the following initial conditions: x(t−1 ) = x(t+1 ) and y(t−1 ) = y(t+1 ).
This yields for t ∈ [t1; t2],

x(t) = A2e
−α2t +B2, (1.59)

where

α2 =
1

τf
+KH2, A2 = (x(t−1 )−B2)eα2t1 , B2 =

X

τf
+KH2

α2

. (1.60)
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y(t) ≈
(

1

τr

(1− exp(−(t− t1)f ′2(t)))

f ′2(t)

)
+ C2 exp(−f2(t)), (1.61)

where

f2(t) = β2t−
LA2H2

α2

e−α2t, (1.62)

β2 =
1

τr
+B2LH2 and C2 = y(t−1 ) exp(f2(t1)). (1.63)

Finally, we use equation (1.48) for T0 = TAHP and τ0 = τmAHP so that the voltage equation reduces to

τmAHP ḣ = −(h− TAHP ) + Jxy(h− TAHP )+ (1.64)

with the initial condition h(t+1 ) = h(t−1 ). We obtain by a direct integration

h(t) = (h(t−1 )− TAHP ) exp

(
− t− t1
τmAHP

+
J

τmAHP

∫ t

t1

x(s)y(s)ds

)
+ TAHP , (1.65)

as detailed in appendix 1.3.2.

Phase 3 [t2,∞[

The recovery phase starts at time t2 where H(t) = 0. We use the following initial conditions: x(t−2 ) =
x(t+2 ) and y(t−2 ) = y(t+2 ), leading for t ≥ t2 to the representation

x(t) = X + (x(t−2 )−X) exp

(
−t− t2

τf

)
(1.66)

y(t) = 1 + (y(t−2 )− 1) exp

(
−t− t2

τr

)
. (1.67)

Finally, when t > t2, h enters into a slow relaxation phase, (see relation (1.48)), where T0 = 0 and
τ0 = τsAHP , and the initial condition is h(t−2 ) = h(t+2 ). A direct integration of equation (1.47) leads to
(see appendix 1.3.3 for the detailed solution)

h(t) = h(t−2 ) exp

(
− t− t2
τsAHP

+
J

τsAHP

∫ t

t2

x(s)y(s)ds

)
. (1.68)

1.2.3 Identification of the termination times t1 and t2

End of phase 1

Following burst activation, medium and slow K+ channels start to be activated forcing the voltage to
hyperpolarize. To account for the overall changes in the voltage dynamics due to this K+ channels
activation, we change the recovery timescale τ0 to τmAHP (equation (1.48)) and H(t) to H2 in (1.46) at
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Figure 1.6: Analytical approximation (green) from formulas (1.58, 1.65 and 1.68) for the three phases for h
(upper), formulas (1.51, 1.59 and 1.66) for x (center) and (1.55, 1.61 and 1.67) for y (lower) vs exact solutions
(dashed magenta) obtained numerically. With an inset of h for t ∈ [0, 1], showing the burst duration ti such
that h(ti) = 0 (red line: h = 0).

time t1. In practice the hyperpolarization initiation is defined in the region where h is decreasing after
reaching its maximum, as the first time t1 such that h(t1) = h0 (expression (1.58)), leading to equation

t1
B1J − τrβ1

τrβ1J
−

1

τrLH1α1

ln


1 +

LA1H1

β1

e−α1t1

1 +
LA1H1

β1

+
e−α1t1 − 1

α1

LA1H1B1

τrβ2
1

−
e−2α1t1 − 1

2α1

(LA1H1)2B1

τrβ3
1

+

e−(β1+LA1H1)t1 − 1

β1 + LA1H1

B1(1− τrβ1)

τrβ1

+
e−(α1+β1+LA1H1)t1 − 1

α1 + β1 + LA1H1

A1(−τrβ2
1 + β1 − LH1B1)

τrβ2
1

+
e−(2α1+β1+LA1H1)t1 − 1

2α1 + β1 + LA1H1

(
−
LA2

1H1

τrβ2
1

+
(LA1H1)2B1

τrβ3
1

)
+
e−(3α1+β1+LA1H1)t1 − 1

3α1 + β1 + LA1H1

L2A3
1H

2
1

τ 2
r β

3
1

=
τ

J
ln

(
h0

H1

)
.

(1.69)

Equation (1.69) is transcendental and cannot be solved explicitly. However, we will search for an
approximated solution by neglecting the exponential terms as shown by the range of our parameters
(Tables 1.1 and 1.3), leading to

t1 ≈
1

Γ1

(
−Γ2 ln

(
1

1 + Γ3

)
+

Γ4

α1

+
Γ5

β1 + LA1H1

+
Γ6

α1 + β1 + LA1H1

+
Γ7

2α1 + β1 + LA1H1

+
Γ8

3α1 + β1 + LA1H1

+
Γ9

2α1

+
τ

J
ln

(
h0

H̃1

))
,

(1.70)
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where

Γ1 =
B1J − τrβ1

τrβ1J
, Γ2 = −

1

τrLH1α1

, Γ3 =
LA1H1

β1

, Γ4 =
LA1H1B1

τrβ2
1

, Γ5 =
B1(1− τrβ1e

LA1H1
α1 )

τrβ1

,

Γ6 =
A1(−τrβ2

1e
LA1H1
α1 + β1 − LH1B1)

τrβ2
1

, Γ7 =
LA2

1H1

τrβ2
1

(
LH1B1

β1

− 1

)
, Γ8 =

L2A3
1H

2
1

τ 2
r β

3
1

and

Γ9 = −
(LA1H1)2B1

τrβ3
1

.

(1.71)

In order to grasp the respective influence of the network parameters J , K and L on t1, we rewrite
formula (1.70) by using the numerical values of all the other parameters (Table 1.1), yielding (see
appendix 1.3.5 relation (1.84) for the intermediate formulas)

t1(J) ≈
29J

2.9LH1 − J

(
F (K,L) +

τ

J
ln

(
h0

H̃1

))
, (1.72)

where J ∈ [3, 6] and

F (K,L) = exp

(
−0.9

L

K

)
0.01L+K

0.1L+K
. (1.73)

With parameters of Table 1.1, t1 ≈ 100 ms, suggesting that the medium and slow K+ channels start
to be activated quite early following burst initiation.

End of phase 2

The second phase is dominated by hyperpolarization and ends when the voltage reaches asymptotically
its minimum. In practice we introduce a threshold hAHP so that when the condition h(t2) = hAHP
is satisfied (expression (1.65)), we switch into the third phase (see (1.46) and (1.48)). This leads to
equation

(t2 − t1)
B2J − τrβ2

τrβ2J
−

1

τrLH2α2

ln


1 +

LA2H2

β2

e−α2t1e−α2(t2−t1)

1 +
LA2H2

β2

e−α2t1

+
e−α2(t2−t1) − 1

α2

e−α2t1
LA2H2B2

τrβ2
2

−
e−2α2(t2−t1) − 1

2α2

e−2α2t1
(LA2H2)2B2

τrβ3
2

+
e−(β2+LA2H2)(t2−t1) − 1

β2 + LA2H2

e−(β2+LA2H2)t1
B2(1− C2e

LA2H2
α2 τrβ2)

τrβ2

e−(α2+β2+LA2H2)(t2−t1) − 1

α2 + β2 + LA2H2

e−(α2+β2+LA2H2)t1
A2(−C2e

LA2H2
α2 τrβ

2
2 + β2 − LH2B2)

τrβ2
2

+
e−(2α2+β2+LA2H2)(t2−t1) − 1

2α2 + β2 + LA2H2

e−(2α2+β2+LA2H2)t1

(
−
LA2

2H2

τrβ2
2

+
(LA2H2)2B2

τrβ3
2

)

+
e−(3α2+β2+LA2H2)(t2−t1) − 1

3α2 + β2 + LA2H2

e−(3α2+β2+LA2H2)t1
L2A3

2H
2
2

τ 2
r β

3
2

=
τmAHP

J
ln

(
hAHP − TAHP
h0 − TAHP

)
.
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Contrary to the equivalent expression (1.69), all terms are of the same order and thus we cannot neglect
any of them. To estimate the value of t2, we solve now numerically the transcendental equation

Λ1(t2 − t1) + Λ2 ln

(
1+Λ3e

−α2(t2 − t1)
1+Λ3

)
+ Λ4

e−α2(t2 − t1) − 1

α2

+ Λ5

e−(β2 + LA2H2)(t2 − t1) − 1

β2 + LA2H2

+Λ6

e−(α2 + β2 + LA2H2)(t2 − t1) − 1

α2 + β2 + LA2H2

+ Λ7

e−(2α2 + β2 + LA2H2)(t2 − t1) − 1

2α2 + β2 + LA2H2

+Λ8

e−(3α2 + β2 + LA2H2)(t2 − t1) − 1

3α2 + β2 + LA2H2

+ Λ9

e−2α2(t2 − t1) − 1

2α2

−
τmAHP

J
ln

(
hAHP − TAHP
h0 − TAHP

)
= 0,

(1.74)

where

Λ1 =
B2J − τrβ2

τrβ2J
, Λ2 = −

1

τrLH2α2

, Λ3 =
LA2H2

β2

e−α2t1 , Λ4 =
LA2H2B2

τrβ2
2

e−α2t1 ,

Λ5 =
B2(1− τrβ2C2e

LA2H2
α2 )

τrβ2

e−(β2 + LA2H2)t1 ,

Λ6 =
A2(−C2e

LA2H2
α2 τrβ

2
2 + β2 − LH2B2)

τrβ2
2

e−(α2 + β2 + LA2H2)t1 ,

Λ7 =
LA2

2H2

τrβ2
2

(
LH2B2

β2

− 1

)
e−(2α2 + β2 + LA2H2)t1 ,

Λ8 =
L2A3

2H
2
2

τ 2
r β

3
2

e−(3α2 + β2 + LA2H2)t1 and Λ9 = −
(LA2H2)2B2

τrβ3
2

e−2α2t1 .

(1.75)

The time t2 depends on J and we obtain a numerical approximation for J ∈ [2.95, 5.25] by fitting a
rational function of the same form as the one we obtained for t1 (appendix fig. 1.9):

t2(J) ≈
43.96J + 42.29

−4.28J + 130.4
. (1.76)

With our parameters we obtain t2 ≈ 2 s (appendix 1.3.6). Finally, we compare the analytical approxi-
mation for h, x and y (dashed magenta) with the exact solution obtained using numerical simulations
(green) in fig. 1.6. In these computations, we have chosen H1 = 8000 and H2 = −1 such that the
analytical approximations for x and y fit well their numerical solutions. Even though the burst peak
is slightly before, with a shift of ≈ 100ms for the approximated system compared to the unperturbed
solution (fig. 1.6 inset), the decreasing phase is similar for both. We use this numerical agreement to
justify that we use the approximated system to compute the burst duration, by finding the time ti such
as h(ti) = 0 and in this time range the analytical approximation fits well the numerical solution.

1.2.4 Bursting and AHP durations

Bursting duration

The burst duration is defined from the voltage jump at time t = 0 to h(t) = H1 and ends when
h(ti) = 0 for the first time. In practice, we use expression (1.65) as in section 1.2.3 for the end of phase
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2 however, here ti − t1 is small enough to allow us to use Taylor expansions to second order leading to
the quadratic equation

Λ̃(ti − t1)2 + Λ(ti − t1)− τmAHP
J

ln

(
− TAHP

h0 − TAHP

)
= 0, (1.77)

where

Λ̃ =

(
Λ2Λ3α

2
2

2(1 + Λ3)2
+

1

2

(
α2Λ4 + (β2 + LA2H2)Λ5 + (α2 + β2 + LA2H2)Λ6 + (2α2 + β2 + LA2H2)Λ7

+(3α2 + β2 + LA2H2)Λ8 + 2α2Λ9

))
,

and

Λ =

(
−Λ2Λ3α2

1 + Λ3

+ Λ1 − Λ4 − Λ5 − Λ6 − Λ7 − Λ8 − Λ9

)
We keep the positive root

ti ≈ t1(J) +

− Λ−

√√√√Λ2 + 4Λ̃
τmAHP

J
ln

(
− TAHP

h0 − TAHP

)
2Λ̃

. (1.78)

Similarly as for t1, we give simplified formulas for Λ = Λ(J,K, L,H2, t1(J)) and Λ̃ = Λ̃(K,L,H2, t1(J))
depending only on the parameters J , K, L and the threshold H2 such as

Λ̃(K,L,H2, t1(J)) =
− 0.08− 0.49KH2 − 0.66LH2 + 0.06t1(J) + 0.54KH2t1(J) + 0.1LH2t1(J)

0.27 + 2.26KH2 + 1.9LH2

(1.79)

and

Λ(J,K, L,H2, t1(J)) =
A(K,L,H2) + (B(K,L,H2) + C(K,L,H2)t1(J)) J

J(Ã+ B̃J)
, (1.80)

where

A(K,L,H2) = 33.3− 246KH2 − 143LH2

B(K,L,H2) = 27.2− 122KH2 − 106LH2

C(K,L,H2) = 11.6 + 86.3KH2 + 49.8LH2

Ã = 33.3

B̃(K,L,H2) = 246KH2 + 143LH2

(1.81)

The simplified formulas for the intermediary parameters Λ1 − Λ9 are given in appendix 1.3.5 formula
(1.86) and approximated values are given in Table 1.2.
Using parameters from Table 1.1 and Table 1.3, we obtain ti ≈ 0.6 s, which is comparable to the
bursting times observed in experimental data [52], and from our numerical simulations in the noiseless
case (fig. 1.2D).
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AHP duration

The AHP starts at time ti computed above, however using expression (1.68) the termination time to
reach h(te) = 0 would be infinite. Thus, we introduce a threshold ε and define the end of AHP te such
as h(te) = ε. In practice, the value ε can be estimated from the amplitude of the voltage fluctuations
at equilibrium. We obtain from expression (1.68)

(
− 1

J
+X

)
(te − t2)− τrX(y(t2)− 1)

e−te − t2τr − 1

− τf (x(t2)−X)

e−te − t2τf − 1


−

(y(t2)− 1)(x(t2)−X)τfτr

τf + τr

e−(t− t2)
τf + τr
τfτr − 1

 =
τsAHP
J

ln

(
ε

h(t2)

)
because te − t2 is large enough, we neglect the exponential terms so that

(te − t2)

(
X − 1

J

)
+ τrX(y(t2)− 1) + τf (x(t2)−X) +

(x(t2)−X)(y(t2)− 1)τfτr

τf + τr
=
τsAHP
J

ln

(
ε

h(t2)

)
,

leading to

te = t2 +

(
τsAHP
J

ln

(
ε

h(t2)

)
− τrX(y(t2)− 1)− τf (x(t2)−X)−

(x(t2)−X)(y(t2)− 1)τfτr

τf + τr

)
J

JX − 1
,

This simplifies to

te ≈ t2(J) +

(
τsAHP
J

ln

(
h(t2)

ε

)
+ 0.26

)
J

1− JX
, (1.82)

using the approximated value of t2 we obtain

te ≈
43.96J + 42.29

−4.28J + 130.4
+

(
τsAHP
J

ln

(
h(t2)

ε

)
+ 0.26

)
J

1− JX
.

Using the parameter values from Table 1.1 and Table 1.3 we obtain te ≈ 15.4 s and ∆AHP = te−ti ≈ 14.3
s, which is coherent with the durations obtained from the numerical simulations (fig. 1.1D), as well as
classical AHP durations found in the literature [38]. 2

Study of parameter influence on burst and AHP durations

To evaluate the influence of the main parameters on the bursting and AHP durations we plotted
these times vs the recovery timescales τmAHP and τsAHP , the hyperpolarization level TAHP and the
arbitrary thresholds h0, H̃1, hAHP and ε. First, the burst duration that varies between 0.5 and 3s, is an
increasing function of τmAHP and does not depend much on TAHP in the range [−15;−40] (fig. 1.7A).
In addition, the AHP duration increases with τsAHP , but in a larger range from 9 to 35s. However,
the hyperpolarization level TAHP has a larger influence on this duration (fig. 1.7B). To verify that the
arbitrary thresholds that we use do not influence much the burst and AHP durations, we plotted them
in fig. 1.7C-F with respect to the phase 1 termination threshold h0, the phase 2 termination threshold
hAHP , the duration of phase 1 t1 and the AHP termination threshold ε, respectively. These figures
show that there is almost no dependency with respect to H̃1 and TAHP , as well as h0 and hAHP due to
the effect of the logarithmic term.
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Figure 1.7: Parameter influence on burst and AHP durations. A. Evolution of the burst duration
ti as a function of the medium timescale τmAHP for multiple values of the hyperpolarization level TAHP .
B. Evolution of the AHP duration te − ti as a function of the slow timescale τsAHP for multiple values of
the hyperpolarization level TAHP . C. Duration of phase 1 t1 as a function of its termination threshold h0

for multiple values of the initial voltage value h(0) = H̃1. D. End time of phase 2 t2 as a function of its
termination threshold hAHP (relatively to TAHP ) for multiple values of the hyperpolarization level TAHP . E.
Bursting duration as a function of t1 for τmAHP = 0.1s. F. AHP duration as a function of the threshold ε for
τsAHP = 7.5s and TAHP = −30. 67
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1.2.5 Burst and IBI durations vs J, K, L parameters

To study the influence of the network connectivity J on burst, AHP and QP durations, we ran numerical
simulations of the stochastic system (1.2), where we varied J , as well as the facilitation and depression
parameters K and L. To determine the time distributions of burst and IBI, we segmented the traces
obtained for 5000 seconds simulations with a noise amplitude σ = 6 and computed the mean value of the
bursts (fig. 1.8A), AHP (fig. 1.8B) and QP durations (fig. 1.8C). Interestingly, we observe two different
regimes depending on the values of the parameters: no bursts (J < 3.05 for K = 0.047, L = 0.028;
J < 3.2 for K = 0.037, L = 0.028; J < 3.5 for K = 0.027, L = 0.028; fig. 1.8 left column, or J < 3.7
for K = 0.037, L = 0.038 and J < 4.1 for K = 0.037, L = 0.048, right column) and bursts followed by
AHP (for higher values of J).
Interestingly, in the bursting regime, changing J does not influence much the mean burst duration.
However, AHP durations decreases as J increases. Finally, QP durations reach a peak at the transition
value of J between the two regimes and then quickly decrease around QP ≈ 25s. The mean burst
durations obtained here are longer than the ones observed in fig. 1.1D, because in these simulations,
we used σ = 6 (vs σ = 3 for fig. 1.1D). Indeed, the mean burst duration increases with the noise
because, at the beginning of the burst, the deterministic part of the trajectory is still perturbed by the
noise component, leading to a longer trajectory when the noise level is higher.
We also compared these mean durations to the ones obtained with the analytical formulas (1.78) and
(1.82) (fig. 1.8A, B dashed lines) with K = 0.037 and L = 0.028. To account for the difference in burst
durations induced by the noise, we added a constant c = 0.8s to the burst durations obtained from
our analytical formula. The burst duration increases slowly with the network connectivity J , which
is comparable to the numerical observations (for J ≥ 3.25, black dashed line). We also compared the
analytical AHP duration to the one observed with the numerical results: we obtain a good fit for a
small range of J (between J ∈ [3.25, 4], black dashed lines) but then the AHP value keeps increasing
with our analytical result, whereas it is decreasing in the numerical simulations. This difference might
be due to the effect of noise that modifies the deterministic behavior of the system.
To conclude, a sufficient connectivity level is necessary to generate bursting, however inside this regime,
increasing the level of neuronal connectivity does not change much the bursting times.

Conclusion and discussion

We presented here a novel mean-field model of synaptic short-term plasticity for the voltage, depres-
sion and facilitation variables that now accounts for long AHP periods. This model generalizes the
facilitation-depression model introduced in [102] and developed in [105,109,146,147]. The AHP signifi-
cantly increases the interburst duration by introducing a recovery phase after network bursting. When
a Gaussian noise of small amplitude is added to the dynamics, it exhibits spontaneous bursts followed
by AHP periods. We have studied here the distribution of bursts and of interbursts, decomposed in
AHP and QP durations. Interestingly, we found that the distribution of bursts durations is quite con-
centrated (subsection 1.1.1). To explain this property, we studied the three-dimensional phase-space
of the dynamical system (1.2), that contains one attractor and two saddle points. By computing nu-
merically the two-dimensional stable manifold at one of the saddles, we found the distribution of exit
points (on this manifold) when the initial point of the stochastic dynamics is located at the attractor.
To compute this distribution we used two methods: 1) stochastic simulations, and 2) the method of
characteristics to solve the FPE (1.15) in the limit of small noise. In both cases, we found a peaked
distribution of exit points close to the saddle point, as predicted for two-dimensional stochastic sys-

68



CHAPTER 1. MODELING BURSTING IN NEURONAL NETWORKS USING FACILITATION- . . .

3 3.5 4 4.5 50

1

2

3

4

5

Mean burst duration

K=0.027
K=0.037
K=0.047

Analytical

3 3.5 4 4.5 50

5

10

15

20

Du
ra

tio
n (

s)

Mean AHP duration

K=0.027
K=0.037
K=0.047

Analytical

3 3.5 4 4.5 5
Network connectivity J

0

100

200

300

Mean QP duration

K=0.027
K=0.037
K=0.047

3 3.5 4 4.5 50

1

2

3

4

5
L=0.028
L=0.038
L=0.048

Analytical

3 3.5 4 4.5 50

5

10

15

20

L=0.028
L=0.038
L=0.048

Analytical

3 3.5 4 4.5 5
Network connectivity J

0

100

200

300

400
L=0.028
L=0.038
L=0.048

Du
ra

tio
n (

s)
Du

ra
tio

n (
s)

A

B

C

Figure 1.8: Influence of the network connectivity J on bursting dynamics. A. (resp.B, C) Mean
burst (resp. AHP, QP) duration in seconds from 5000s simulations for J varying from 2.95 to 5.25 and three
values of K (left) and L (right) with a fixed noise level (σ = 6) compared to the analytical result (dashed)
obtained for t1 (1.78) (resp. ∆AHP = te − ti (1.82)) for (K,L) = (0.037, 0.028). The vertical black dashed
lines show the range of validity for J .
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tems [125, 148, 149], summarized by expression (1.45). After the stochastic trajectories have crossed
the separatrix, they follow an almost deterministic behavior, confirming that the distribution of exit
points on the separatrix defines the spread of the distribution of burst durations.
We also derived here analytical formulas (subsection 1.2.4) that reveal the influence of the parameters
on burst and AHP durations. These computations can be used to calibrate the AHP parameters with
respect to the expected values of burst and AHP durations, that could be measured experimentally.
This model could thus be used to decipher the main mechanisms leading to changes in bursting and
interburst dynamics, for example when the neuronal network is disrupted, during epilepsy or in the
case of a glial network alteration [52].
Classical bursting models describe accurately the burst phase [69, 79, 95, 150], but interburst is often
considered as the continuation in the phase-space of the deterministic trajectories. Here the inter-
burst phase is composed of a deterministic refractory period, the AHP, followed by the escape from
an attractor due to noise (subsection 1.1.1). During successive bursts, trajectories are not reset at the
attractor, but explore the region B− of non bursting trajectories. This exploration depends on the
previous bursting trajectory. Thus, we expect a correlation between successive burst and interburst
durations. This correlation may also depend on the amplitude of the voltage fluctuations. Finally, we
predict that modifying the AHP duration could affect bursting, because it corresponds to a change in
the attractor’s position and dominates the effect of synaptic depression.

70



CHAPTER 1. MODELING BURSTING IN NEURONAL NETWORKS USING FACILITATION- . . .

1.3 Appendix: detailed computations of burst and AHP du-

rations

1.3.1 Integral term of h in phase 1

To compute the integral in expression (1.58), we split it into two parts:∫ t

0

x(s)y(s)ds = C1

∫ t

0

(A1e
−α1s +B1)e−f1(s)︸ ︷︷ ︸

I

ds+

∫ t

0

(A1e
−α1s +B1)

(
1− e−sf ′1(s)

τrf ′1(s)

)
ds︸ ︷︷ ︸

II

.

We start by I:

I = C1A1

∫ t

0

e
−(α1 + β1)s+

LA1H1

α1

e−α1s

ds︸ ︷︷ ︸
IA

+C1B1

∫ t

0

e
−β1s+

LA1H1

α1

e−α1s

ds︸ ︷︷ ︸
IB

.

Using a Taylor expansion at first order, e−α1s ≈ 1− α1s, we obtain

IA(t) ≈ A1C1

∫ t

0

e

LA1H1

α1

−
(
α1 + β1 + LA1H1

)
s
ds ≈ −

A1

(
e−(α1 + β1 + LA1H1)t − 1

)
α1 + β1 + LA1H1

and

IB(t) ≈ −
B1

(
e−(β1 + LA1H1)t − 1

)
β1 + LA1H1

.

Similarly, we write II = IIA + IIB, where

IIA(t) =
A1

τr

∫ t

0

e−α1s
(

1− e−β1s− LA1H1se
−α1s

)
β1 + LA1H1e−α1s

ds

≈
A1

τrβ1


∫ t

0

e−α1s

1 +
LA1H1

β1

e−α1s
ds

︸ ︷︷ ︸
(i)

−
∫ t

0

e−(α1 + β1 + LA1H1)s

1 +
LA1H1

β1

e−α1s
ds

︸ ︷︷ ︸
(ii)


.

For (i), using the change of variable u = e−α1s, we obtain

(i) = −
1

α1

∫ e−α1t

1

du

1 +
LA1H1

β11
u

= −
β1

α1LA1H1

ln


1 +

LA1H1

β1

e−α1t

1 +
LA1H1

β1
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For small s, seα1s ≈ s and using the condition

∣∣∣∣∣LA1H1

β1

∣∣∣∣∣ < 1, we expand the denominator to second

order to obtain

(ii) ≈
∫ t

0

e−(α1 + β1 + LA1H1)s

1−
LA1H1

β1

e−α1s +

(
LA1H1

β1

)2

e−2α1s

 ds

≈ −
e−(α1 + β1 + LA1H1)t − 1

α1 + β1 + LA1H1

+
LA1H1

β1

e−(2α1 + β1 + LA1H1)t − 1

2α1 + β1 + LA1H1

−

(
LA1H1

β1

)2
e−(3α1 + β1 + LA1H1)t − 1

3α1 + β1 + LA1H1

.

Finally,

IIA(t) ≈ −
1

τrLH1α1

ln


1 +

LA1H1

β1

e−α1t

1 +
LA1H1

β1

+
A1

τrβ1

e−(α1 + β1 + LA1H1)t − 1

α1 + β1 + LA1H1

−
LA2

1H1

τrβ2
1

e−(2α1 + β1 + LA1H1)t − 1

2α1 + β1 + LA1H1

+
L2A3

1H
2
1

τ 2
r β

3
1

e−(3α1 + β1 + LA1H1)t − 1

3α1 + β1 + LA1H1

.

Similarly, we obtain the following expression for

IIB(t) ≈
B1

τrβ1

∫ t

0

1−
LA1H1

β1

e−α1s +

(
LA1H1

β1

)2

e−2α1s − e−(β1 + LA1H1)s

+
LA1H1

β1

e−(α1 + β1 + LA1H1)s −

(
LA1H1

β1

)2

e−(2α1 + β1 + LA1H1)s

 ds

IIB ≈
B1

τrβ1

t+
LA1H1

β1

e−α1t − 1

α1

−

(
LA1H1

β1

)2
e−2α1t − 1

2α1

+
e−(β1 + LA1H1)t − 1

β1 + LA1H1

−
LA1H1

β1

e−(α1 + β1 + LA1H1)t − 1

α1 + β1 + LA1H1

+

(
LA1H1

β1

)2
e−(2α1 + β1 + LA1H1)t − 1

2α1 + β1 + LA1H1

 .

1.3.2 Integral term of h in phase 2

Our goal is now to compute expression (1.65). We decompose it into four parts:∫ t

t1

x(s)y(s)ds = IA + IB + IIA + IIB.
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All computations and approximations are similar except that we integrate between t1 and t. We obtain

IA(t) ≈ −
A2C2e

LA2H2
α2

(
e−(α2 + β2 + LA2H2)t − e−(α2 + β2 + LA2H2)t1

)
α2 + β2 + LA2H2

IB(t) ≈ −
B2C2e

LA2H2

α2

(
e−(β2 + LA2H2)t − e−(β2 + LA2H2)t1

)
β2 + LA2H2

IIA(t) ≈ −
1

τrLH2α2

ln


1 +

LA2H2

β2

e−α2t

1 +
LA2H2

β2

e−α2t1


+
A2

τrβ2

e−(α2 + β2 + LA2H2)t − e−(α2 + β2 + LA2H2)t1

α2 + β2 + LA2H2

−
LA2

2H2

τrβ2
2

e−(2α2 + β2 + LA2H2)t − e−(2α2 + β2 + LA2H2)t1

2α2 + β2 + LA1H2

+
L2A3

2H
2
2

τ 2
r β

3
2

e−(3α2 + β2 + LA2H2)t − e−(3α2 + β2 + LA2H2)t1

3α2 + β2 + LA1H2

IIB(t) ≈
B2

τrβ2

t− t1 +
LA2H2

β2

e−α2t − e−α2t1

α2

−

(
LA2H2

β2

)2
e−2α2t − e−2α2t1

2α2

+
e−(β2 + LA2H2)t − e−(β2 + LA2H2)t1

β2 + LA2H2

−
LA2H2

β2

e−(α2 + β2 + LA2H2)t − e−(α2 + β2 + LA2H2)t1

α2 + β2 + LA2H2

+

(
LA2H2

β2

)2
e−(2α2 + β2 + LA2H2)t − e−(2α2 + β2 + LA2H2)t1

2α2 + β2 + LA2H2

 .

1.3.3 Integral term of h in phase 3

Similarly as in phases 1 and 2 we compute the integral in expression (1.68) and obtain

∫ t

t2

x(s)y(s)ds =

∫ t

t2

(X +X(y(t2−)− 1)e

t2 − s
τr + (x(t2−)−X)e

t2 − s
τf

+(y(t2−)− 1)(x(t2−)−X)e
(t2 − s)(

1

τf
+

1

τr
)
ds
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= X(t− t2)− τrX(y(t2−)− 1)(e
−t− t2

τr − 1)− τf (x(t2−)−X)

e−t− t2τf − 1


−

(y(t2−)− 1)(x(t2−)−X)τfτr

τf + τr

e−(t− t2)
τf + τr
τfτf − 1

 .

1.3.4 Numerical values of intermediate and approximation parameters

Parameters Values
Γ1 -0.24 Λ1 -0.18
Γ2 5.2.10−6 Λ2 11.47
Γ3 -0.91 Λ3 -0.077
Γ4 1.4.10−3 Λ4 4.4.10−3

Γ5 -0.50 Λ5 0.054
Γ6 0.46 Λ6 0.89
Γ7 1.9.10−6 Λ7 0.07
Γ8 4.0.10−4 Λ8 1.8.10−3

Γ9 1.3.10−3 Λ9 2.8.10−3

Table 1.2: Intermediate parameters

Parameters Values
H1 Approximation of h for x and y during phase 1 8000

H̃1 Initial value of h 250
H2 Approximation of h for x and y during phase 2 -1
h0 End of phase 1 threshold 400
hAHP End of phase 2 threshold -29
ε End of AHP threshold -5
t1 End of phase 1 time 200ms
t2 End of phase 2 time 1.37s
A1 Approximation of x on phase 1 parameter -0.91
B1 Approximation of x on phase 1 parameter 0.99
C1 Approximation of y on phase 1 parameter 1.98
α1 Approximation of x on phase 1 parameter 297Hz
β1 Approximation of y on phase 1 parameter 224Hz
A2 Approximation of x on phase 2 parameter 1.16
B2 Approximation of x on phase 2 parameter 0.06
C2 Approximation of y on phase 2 parameter 0.0017
α2 Approximation of x on phase 2 parameter 1.07Hz
β2 Approximation of y on phase 2 parameter 0.34Hz

Table 1.3: Approximation parameters
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1.3.5 Simplified formulas (1.72) and (1.79)

We give here the simplified formulas of the intermediary parameters used to obtain (1.72) and (1.79).

Phase 1 parameters In this phase H1 � 1, yielding

α1 ≈ 1.1 +KH1 ≈ KH1,

A1 ≈ −0.9, B1 ≈ 1, β1 ≈ LH1 and C1 ≈ exp

(
0.9

L

K

)
.

(1.83)

Using these values we can compute Γ1 − Γ9:

Γ1 ≈
J − 2.9LH1

2.9JLH1

∼ 0.24 (with our parameters)

Γ2 ln

(
1

1 + Γ3

)
≈

1

2.9LKH2
1

ln

 1

1− 0.9
L

K

 ∼ 10−5

Γ4 ≈ −
0.9

2.9LH1

∼ 10−3

Γ5 ≈ − exp

(
−0.9

L

K

)
∼ 0.5

Γ6 ≈ 0.9 exp

(
−0.9

L

K

)
∼ 0.46

Γ7 ≈
0.81

2.9LH1

(
LH1

LH1

− 1

)
∼ 10−6

Γ8 ≈
0.81

8.41LH1

∼ 10−4

Γ9 − ≈
0.81

8.41LH1

∼ 10−4

(1.84)

In our parameter range, we neglect the terms Γ2 ln

(
1

1 + Γ3

)
, Γ4, Γ7, Γ8 and Γ9 in formula (1.70).

Phase 2 parameters In this phase, |H2| = O(1) and thus we can neglect the second order terms in
K and L, that are small in our parameter range. It yields

α2 ≈ 1.1 +KH2, x(t1) ≈ 1 thus A2 ≈
1

1.1 +KH2

exp ((1.1 +KH2)t1)

B2 ≈
0.1 +KH2

1.1 +KH2

, β2 ≈
0.37 + 0.34KH2 + 0.1LH2

1.1 +KH2

and y(t1) ≈ 0 thus C2 ≈ 0.

(1.85)
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We can use these formulas to simplify the formulas for Λ1 − Λ9:

Λ1 ≈
J(0.1 +KH2)− 1.1−KH2 − 0.29LH2

(1.1 +KH2 + 0.29LH2)J
,

Λ2 ≈−
1

3.19LH2

,

Λ3 ≈
LH2

0.1LH2 + 0.34KH2 + 0.37

Λ4 ≈
LH2

29(0.37 + 0.34KH2 + 0.1LH2)

Λ5 ≈
1.1 + 1.2KH2 − 0.037t1 − 0.4KH2t1 − 0.11LH2t1

1.18 + 2.26KH2 + 0.32LH2

Λ6 ≈
0.4 + 0.74KH2 − 0.14t1 − 0.26KH2t1 − 0.4LH2t1

0.44 + 1.2KH2 + 0.23LH2

Λ7 ≈
− 1.1LH2 + 0.37LH2t1

0.44 + 1.2KH2 + 0.23LH2

Λ8 ≈ Λ9 ≈ o(KH).

(1.86)

1.3.6 Termination time t2 vs network connectivity J

We fitted Equation (1.74) defined with respect to the network connectivity parameter J by a rational
function

t2(J) =
AJ +B

CJ +D

(
1 +

τmAHP

J
ln

(
hAHP − TAHP
h(t1)− TAHP

))
. (1.87)
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Figure 1.9: Phase 2 termination time vs network connectivity J: numerical solution (1.74) (solid black)
fitted by a rational function of J (dashed green).
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Chapter 2

Escape from an attractor generated by
recurrent exit

Published in ZONCA L. & HOLCMAN D., “Escape from an attractor generated by recurrent exit”
Physical Review Research (2021, in press) / arXiv:2009.06745

Abstract

Kramer’s theory of activation over a potential barrier consists in computing the mean exit time
from the boundary of a basin of attraction of a randomly perturbed dynamical system. Here we
report that for some systems, crossing the boundary is not enough, because stochastic trajectories
return inside the basin with a high probability a certain number of times before escaping far away.
This situation is due to a shallow potential. We compute the mean and distribution of escape
times and show how this result explains the large distribution of interburst durations in neuronal
networks.

In Kramer’s theory [122–125], the escape time over a potential barrier consists in computing the mean
first passage time (MFPT) of a dynamical system perturbed by a small noise to the boundary of a basin
of attraction. The MFPT measures the stability and provides great insight of the backward binding
rate in chemistry [114, 127], loss-of-lock for phase controllers in communication theory [128], escape
of receptors from the post-synaptic density at neuronal synapses and is also used to evaluate future
derivatives in the financial market [129]. The full distribution of exit times can be used to characterize
both short and intermediate time asymptotics relevant in polymer physics [130], accelerating chemical
reaction simulations [126], or better characterizing the search for a small target in a complex environ-
ment [131,132].
In the limit of small noise, a trajectory escapes a basin of attraction with probability one [151], but the
escape time is exponentially long depending on the topology of the noiseless dynamics [133, 152] and
its behavior at the boundary. In addition, the distribution of exit points peaks at a distance O(

√
σ)

from a saddle-point, where σ is the noise intensity [123,128,134]. Interestingly, when a focus attractor
is located near the boundary of the basin of attraction, the escape time deviates from an exponential
distribution because trajectories oscillate inside the attractor before escape [108,136–138,153].
In these previous examples, the escape ends at the first time a trajectory crosses the separatrix that
delimits the basin of attraction. Recurrent returns inside a basin of attraction can be quantified by the
Green’s function of the inner domain used in the additive properties of the MFPT [154]. In their spe-
cific case, where the escape time consists in the first crossing of the boundary of the basin of attraction
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2.1. RECURRENT ESCAPE PATTERNS

and a second separatrix, their results show a factor two between the escape time and the exit from
the basin of attraction. In dimension one, a recurrent return can be quantified using a relaxation time
computed from the survival probability when it does not converge to zero in the long times regime [155].
We show here that for some shallow two-dimensional dynamical systems, trajectories can first exit the
basin of attraction, then make excursions outside before coming back inside the domain, a behavior
that occurs several times before eventually escaping far away. This situation is peculiar and specific to
dimensions greater than two and these recurrent entries need to be taken into account in computing
the final escape time.
This letter reports such phenomenon. We present formulas for the mean and distribution of escape
times and we show that these recurrent re-entries inside the basin of attraction can increase the escape
time by a factor between two and three. Finally, we apply these results to explain the origin of long
interburst durations found in neuronal network models [150].

2.1 Recurrent escape patterns

We start with a generic two-dimensional system

ḣ = −αh+ x2 + σω̇

ẋ =

{
h− γx for h ≥ 0
−γx for h ≤ 0,

(2.1)

where α ∈]0, 1], γ ∈]0, α[, ω̇ is a Gaussian white noise and σ its intensity. The determinist part of
this system has two critical points: one attractor A = (0, 0) (fig. 2.1A red star) and one saddle-point
S = (γ2α, γα) (fig. 2.1A cyan star) and the separatrix Γ delimits the basin of attraction of A (fig. 2.1A
solid black).

The escape of the basin of attraction occurs in two steps. 1) A trajectory starting at A reaches Γ for
the first time (fig. 2.1A black trajectory between A and the first exit point Exit no1, light green). 2)
The trajectory exits and crosses Γ several times, that we count by using a round-trip (RT) number
(fig. 2.1A, light green and cyan loops) before eventually escaping far away (fig. 2.1A, pink). To
characterize the final escape times and the distribution of crossing points on Γ, we ran stochastic
simulations of system (2.1) (500 runs, fig. 2.1B trajectories exhibit one (yellow) and two (orange) RT
before escape). To further characterize the recurrent crossing points, we plotted their distributions (fig.
2.1C) and found that they were peaked near the saddle-point. These recurrent excursions are not due

to a focus, since the saddle point S has only real eigenvalues λ± = −
1

2

(
−(α + γ)±

√
(α + γ)2 + 4αγ

)
,

λ+ ≈ 0.314, λ− ≈ −1.914 (with α = 1 and γ = 0.6). A possible explanation for this phenomenon is the
very shallow field tangent to the separatrix: only near the unstable manifold (fig. 2.1A yellow curve)
trajectories can depart to infinity when they are located inside the ensemble of points where the two

drift components are positive ẋ > 0 and ḣ > 0, thus C∞ =

{
h > γx and h <

x2

α

}
(fig. 2.1A, B yellow

area, situated between the x-nullcline (red) and the h-nullcline (purple)). Before reaching C∞, the
noise pushes the trajectories back and forth into the basin of attraction.
To conclude this part we shall summarize the escape dynamics:

1. The distribution of exit points peaks at a distance O(
√
σ) from the saddle-point (generically
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Figure 2.1: Recurrent escape patterns A. Escaping trajectories reach the separatrix Γ for the first time
(step 1, black) and re-cross it several times going back and forth inside and outside of the basin of attraction
(step 2, green, cyan) before eventually escaping far away (pink). B. Stochastic trajectories with one (yellow)
and two (orange) round-trips (RT) before escape. C. Distributions of exit points on Γ (500 runs) for successive
RT. D. Outer boundary layer C computed as the convex hull of all trajectories reentering the basin of attraction
(red).

satisfied [134]).

2. The shallow field near the separatrix allows the trajectories to reenter with high probability.

3. The peaks of the successive exit points distributions drift towards the saddle-point S (fig. 2.1C).

4. When the trajectories enter the escape cone C∞ (yellow surface in fig. 2.1A-B) where the field
increases, they eventually escape to infinity.

Finally, this escape pattern could not occur in dimension one since conditions 1 and 3 cannot be
satisfied.

79



2.2. CHARACTERIZING THE ESCAPE TIME

2.2 Characterizing the escape time

We compute here the total escape time. To this end, we decomposed it into the time to reach the
separatrix Γ for the first time plus the time spent to go back and forth around Γ before the final
escape. Using Baye’s law and conditioning on the RT numbers, the mean escape time can be written
as

〈τesc〉 =
∞∑
k=0

〈τ |k〉PRT (k), (2.2)

where 〈τ |k〉 (resp. PRT (k)) is the mean time (resp. probability) to return k times inside the basin
of attraction. To estimate the escape probability p̃ for a trajectory that has crossed Γ to escape to
infinity, we ran N = 500 trajectories starting from A and lasting T = 300s. We first counted the
proportion of trajectories reentering the basin of attraction at least once and obtained 88%. We then
reiterated this process and counted the proportion of trajectories reentering the basin of attraction one
more time after each RT. We found that this proportion was stable equal to 88%, leading to p̃ = 0.12.
We applied this process for values of the noise σ ∈ [0.21, 1.05] and found that p̃ did not depend on
σ. After T = 300s all trajectories had escaped to infinity (for all the values of σ), thus choosing a
higher value for T would not change the value of p̃. This escape phenomenon could be interpreted
as follows: a trajectory has escaped when it reaches a distance far away from the separatrix and to
better characterize such a distance outside the basin of attraction, we generated empirical trajectories
that will return (have not yet escaped) and estimated their convex hull C (fig. 2.1D red, 500 runs).
Formally, this is equivalent to looking at trajectories starting at A conditioned to a return to the basin
of attraction, thus defining a sort of Brownian bridge. This procedure leads to a bounded domain: any
point inside C has a high probability of reentering the basin of attraction while points further away
will escape to infinity.
Due to the strong Markovian properties, each RT can be considered independent of the previous ones,
thus the probability to escape after exactly k−RT is given by

PRT (k) = p̃(1− p̃)k−1, (2.3)

and thus the mean escape time is

〈τesc〉 = 〈τ0〉+ (〈τext〉+ 〈τint〉)p̃
∑∞

k=1 k(1− p̃)k−1

= 〈τ0〉+
〈τext〉+ 〈τint〉

p̃
,

(2.4)

where 〈τ0〉 is the mean time to reach the separatrix for the first time and 〈τext〉 (resp. 〈τint〉) is the
time spent on the outside (resp. inside) the basin of attraction of A for each RT (fig. 2.2A). When the
escape probability p̃ tends to zero, the escape time tends to infinity, corresponding to trajectories that
would be trapped in C. In our case, the mean escape time is 〈τesc〉 ≈ 〈τ0〉+ 8.33(〈τext〉+ 〈τint〉). With
the present parameters 〈τ0〉 ≈ 5.1s and 〈τext〉 + 〈τint〉 ≈ 1s showing that the escape time is increased
by a factor 2.6. Interestingly, the noise intensity does not influence the number of RT before escape
(fig. 2.2B). For the parameter value γ = 0.6, we found that a trajectory performs 8 RT on average (fig.
2.2B, inset). These results indicate that the noise intensity does not directly influence the probability
to escape to infinity.
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Figure 2.2: Distribution of RT and escape times. A. Distributions of a RT duration τRT,k = τext,k+τint,k
for k ∈ [1, 10]. Inset: mean time spent outside (resp. inside) the basin of attraction 〈τext,k〉 (resp. 〈τint,k〉) vs
the RT number k. B. Distributions of the RT number around the separatrix before a trajectory eventually
escapes for various values of σ (with γ = 0.6 and α = 1). 500 runs for each value of σ. Inset: mean RT
number with respect to the noise intensity σ. C. Distributions f0 (upper), resp. f1 (lower), of escape times for
trajectories with zero and one RT. The fit uses eq. (2.8). D. Distribution of exit times with the contribution
of each RT number compared to the analytical distribution (eq. 2.7).

We now determine the distribution of escape times

P (τesc < t) =
∞∑
k=0

P (τ k < t|k)PRT (k), (2.5)

where P (τ k < t|k) is the conditional probability distribution to escape after k RT. Because RT are
i.i.d, this probability is the k-th convolution of the distribution of times of a single RT f1(t) with the
distribution of escape times without RT f0(t)

P (τ k < t|k) = f0(t) ∗ f1(t)∗k, (2.6)
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2.3. INTERBURST DURATIONS IN A FIRING EXCITATORY NEURONAL NETWORK

where f(t)∗k = f(t) ∗ f(t) ∗ ... ∗ f(t), k times. Thus the pdf of exit times is given by

f(t) =
∞∑
k=0

f0(t) ∗ f1(t)∗kp̃(1− p̃)k−1. (2.7)

To compare this formula to the results of our numerical simulations, we approximate the distributions
f0 and f1 by

fi(t) = ci

(
1 + erf

(
t− ai
bi

))
e−λit, for i = 0, 1, (2.8)

where erf(x) =
2
√
π

∫ x

0

e−u
2

du is the error function. We fitted the distributions obtained from the

numerical simulations of trajectories that escaped without doing any RT (f0 fig. 2.2C, upper) and after
one single RT (f1 fig. 2.2C, lower) with the condition that λ1 ≥ λ0. We obtained c0 = 1.09, c1 = 1.63,
λ0 = 0.06 λ1 = 0.13, a0 = −38.28, a1 = −138.64, b0 = −36.72, b1 = −121.69. We then computed each
term of the sum (2.7) and we could compare it to the corresponding parts of the distribution of escape
times obtained from stochastic simulations (fig. 2.2D).

2.3 Interburst durations in a firing excitatory neuronal net-

work

Burst and interburst are fundamental network events occurring during dominant imbalance dominated
by excitatory neuronal activity. Network burst generation could rely on specific spiking frequencies in
connected neurons [156] despite a high variability in interspike intervals [157]. Neuronal population
bursts separated by long interbursts have been modeled using a two-state synaptic depression [112],
or by using the refractory period induced by afterhyperpolarization (AHP), a mechanism leading to
a long voltage hyperpolarisation transient and generated by various potassium channels [158]. Here
we show that the recurrent escape mechanism described above can be used as one explanation of the
origin of long interburst intervals without the need of any other mechanism. However, we note that
this mechanism does not have to be exclusive and that long interburst intervals could also be explained
in some cases by a combination of mechanisms such as the recurrent escape pattern presented here
and AHP. Indeed, we start from the depression-facilitation short-term synaptic plasticity mean-field
model of network neuronal bursting [102,105,109], which consists of three equations (2.9) for the mean
voltage h, the depression y, and the facilitation x. The depression mechanism describes the depletion
of the vesicular pool necessary for neurotransmission following successive action potentials, while the
facilitation mechanism corresponds to a transient increase of the release probability mediated by a local
calcium accumulation at synapses.

τ ḣ = −h+ Jxyh+ +
√
τσω̇

ẋ =
X − x
tf

+K(1− x)h+

ẏ =
1− y
tr
− Lxyh+,

(2.9)

where h+ = max(h, 0) is a linear threshold function of the synaptic current that gives the average pop-
ulation firing rate [102,105,145]. The mean number of connections (synapses) per neuron is accounted

82



CHAPTER 2. ESCAPE FROM AN ATTRACTOR GENERATED BY RECURRENT EXIT

for by the parameter J and the term Jxy represents the combined effect of the short-term synaptic
plasticity (facilitation and depression mechanisms) on the network activity. The parameters K and
L describe how the firing rate is transformed into molecular events that are changing the duration
(depression) and probability (facilitation) of vesicular release. The time scales tf and tr define the
recovery of an averaged synapse from the network activity. Finally, ω̇ is an additive Gaussian noise
and σ its intensity, this additive noise term represents the fluctuations of the mean voltage generated
by the average of independent vesicular release events and/or closings and openings of voltage gated
channels.
This system has 3 critical points, one attractor and two saddles. Interestingly, near the attractor
A = (0, X, 1), the dynamic is anisotropic (|λ1| = 12.6 � |λ2| = 1.11 � |λ3| = 0.34, with the parame-
ters from Table 2.1) and thus we project the system on the two-dimensional plan y = constant

ẏ = 0 =
1− y
τr
− Lxyh+ = 0 ⇐⇒ y =

1

1 + τrLxh+
(2.10)

leading to the simplified system

ḣ =
h (Jx− 1− τrLxh+)

τ(1 + τrLxh+)
+
√
τσω̇

ẋ =
X − x
τf

+K(1− x)h+

(2.11)

The deterministic component of this system has 3 critical points, two attractors and one saddle-point .

Attractor A0 A first equilibrium point is given by h = 0 and x = X. The Jacobian at this point is

JA =


− 1 + JX

τ
0

K(1−X) −
1

τf

 . (2.12)

With our parameters (Table 2.1) the eigenvalues λ1 =
JX − 1

τ
≈ −12.6 and λ2 = −

1

τf
≈ −1.11 are

both negative confirming A is an attractor.

Saddle-point S The second critical-point is S1(h1 ≈ 8.07;x1 ≈ 0.28). Its eigenvalues are λ1 ≈ −5.73
and λ2 ≈ 1.43. It is a saddle-point.

Attractor A2 The third critical-point is A2(h2 ≈ 28.8;x2 ≈ 0.53). Its eigenvalues are λ1 ≈ −11.9
and λ2 ≈ −1.33. It is another attractor. The two attractors are separated by the 1D stable manifold
of the saddle-point S1 (fig. 2.3A, solid black curve).
The phase-space of system (2.11), restricted to the region {x ≤ 0.5 and h ≤ 30} has the same topo-
logical properties than system (2.1): one attractor and one saddle-point, the separatrix delimiting the
basin of attraction is the stable manifold of S1 (fig. 2.3A). The escaping trajectories exits and re-enters
the basin of attraction several times before eventually escaping (fig. 2.3A, orange).
Thus, we can now understand that the interburst intervals correspond to the exit times of trajectories
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from the basin of attraction. Using formula (2.7) to fit the distribution of exit times, we obtain that
p̃ ≈ 0.13 (fig. 2.3B) and

f0(t) = 0.23 exp(−0.25t)

(
1 + erf

(
t− 2.45

0.43

))
(2.13)

and

f1(t) = 0.19 exp(−0.25t)

(
1 + erf

(
t+ 15.97

0.58

))
. (2.14)

Finally, similar to the generic system (2.1), the RT number before escape does not depend on the noise
intensity (fig. 2.3C). Trajectories are making on average 8 RT before escape (inset). To determine the
mean escape time, we use formula (2.4) and obtain 〈τesc〉 ≈ 〈τ0〉+ 7.7(〈τext〉+ 〈τint〉) where 〈τ0〉 ≈ 4.35s
and 〈τext〉 + 〈τint〉 ≈ 0.7s (fig. 2.3D) thus leading to a factor 2.2 in the increase of the escape time
〈τesc〉 compared to the first exit time 〈τ0〉. At this stage we conclude that long interburst durations,
generated by excitatory neuronal networks [52], can be explained by the recurrent escape mechanism
introduced here.

Concluding remarks

We presented an escape mechanism for which reaching the boundary of the deterministic basin of
attraction induced by noise is not sufficient to escape. After crossing the separatrix, the noise tends to
bring trajectories back inside the basin of attraction until they reach a region (escape cone-like domain
C∞), narrow near S and that widens with the distance. The size of the characteristic distance from

S (boundary layer) after which trajectories escape is

√
λ+

σ
[139]. We derived formulas for the mean

escape time and the distribution of escape times taking into account the excursions inside and outside
of the basin of attraction before the final escape.

Numerical methods

All simulations were run in Matlab using the Runge-Kutta 4 scheme with a time-step δt = 0.01s (we
also tried δt = 0.001s and obtained the same results thus ensuring stability). The same results were
also obtained using the Euler method.
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black curve Γ) with an exiting trajectory doing 1 RT (orange) around the separatrix before escape . B. Distri-
bution of exit times with the contribution of the trajectories per RT number before escape with the analytical
fit (equations 2.7, 2.13 and 2.14). C. Distribution of the RT number for σ ∈ [4, 7] and mean RT number with
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Parameters Values
τ Time constant for h 0.05s [158]
J Synaptic connectivity 4.21 [158]
K Facilitation rate 0.037Hz [158]
X Facilitation resting value 0.08825 [158]
L Depression rate 0.028Hz [158]
τr Depression time rate 2.9s [158]
τf Facilitation time rate 0.9s [158]
T Depolarization parameter 0

Table 2.1: Model (2.9) parameters
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Chapter 3

Exit versus escape for stochastic
dynamical systems and application to
neuronal network bursting time
computation

Under review in Journal of nonlinear science: ZONCA L. & HOLCMAN D., “Exit versus escape
for stochastic dynamical systems and application to neuronal network bursting time computation”
arXiv:2010.06699

Abstract

We study the exit time of two-dimensional dynamical systems perturbed by small noise that
exhibit two peculiar behaviors: 1) the maximum of the probability density function of the position
is not located at the point attractor, which came as a surprise. The distance between the maximum
and the attractor increases with the noise amplitude σ, as shown by using WKB approximation and
numerical simulations. 2) For such systems, exiting from the basin of attraction is not sufficient
to guarantee a full escape, due to trajectories that can return several times inside the basin of
attraction after crossing the boundary, before eventually escaping far away. We apply these results
to neuronal networks that can generate burst events. To analyse interburst periods and their
statistics, we study the phase-space of a mean-field model, based on synaptic short-term changes,
that exhibit burst and interburst dynamics and we identify that interburst corresponds to an
escape with multiple re-entries inside the basin of attraction. To conclude, escaping far away from
a basin of attraction is not equivalent to reaching the boundary, thus explaining long-interburst
durations present in neuronal dynamics.

3.1 Introduction

Trajectories of a dynamical system perturbed by small noise can escape from a basin of attraction and
present large fluctuations away from a stable attractor [113–115]. These perturbations can even induce
switching in multi-stable systems. Noise can also enhance the response to periodic external stimuli,
a phenomenon known as stochastic resonance [116]. In the case of interaction between noise and a
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dynamics presenting a Hopf bifurcation, oscillations that would disappear in the deterministic case can
be maintained. Finally, noise can induce a shift in bifurcation values [118] or stabilize an unstable
equilibrium [119–121].
In the context of modeling biological neuronal networks, noise also plays a critical role in defining col-
lective rhythms or large synchronization. To reduce the complexity and difficulty inherent in analyzing
large neuronal ensembles, mean-field models are used to study averaged behavior, which corresponds to
projecting a high dimensional system into a low dimension, as it is the case for modeling fast synaptic
adaptations [102]. Such models are used to study bursting activity, synchronization and oscillations in
excitatory neuronal networks [59, 60, 105, 109, 145]. However, in such models the distribution of inter-
burst durations remains unclear, although these durations have recently been shown to control to the
overall neuronal networks dynamics [52] and can even influence the bursting activity during epilepsy.
Stuyding the escape rate from a basin of attraction for a noisy dynamical system usually consists in
collecting trajectories that terminate when they hit for the first time the boundary of the basin of
attraction, which occurs with probability one [139, 151]. The escape rate and the distribution of exit
points can be computed in the small noise limit using WKB approximation. Another interesting prop-
erty is that the exit point distribution peaks at a distance O(

√
σ) from the saddle-point (where σ is

the noise amplitude) [123,134]. Metrics relations can also play a role in shaping the dynamics, so that
when a focus attractor falls into the boundary layer of the basin of attraction, escaping trajectories
exhibit periodic oscillations leading to an escape time distribution which is not exponential, because
several eigenvalues are necessary to describe the distribution [106,108,135–138].
In the case of periodically-driven systems, the escape rate scales by the field intensity [152, 159]. In
all these examples, escape ends when a trajectory hits the separatrix for the first time which will not
be the case for the systems we wish to study here. We consider here a class of dynamical systems
perturbed by a white noise of small amplitude for which trajectories exiting the basin of attraction can
reenter multiple times before eventually escaping to infinity. This effect requires to clarify the difference
between exiting versus escaping that we explain below.
The manuscript is organized as follows: in the first part, we introduce a reduced stochastic dynamical
system for bursting, based on modeling synaptic depression-facilitation for an excitatory neuronal net-
work [102,109]. The distribution of interburst intervals corresponds to the escape from an attractor and
numerical simulations reveal a shift in the distribution of exit points and multiple returns inside the
attractor. In the second part, we describe a generic two-dimensional dynamical system, containing an
attractor and one saddle-point. We analyze the stochastic perturbation, and show that the maximum
of the probability density function of trajectories before escape is not centered at the attractor, but at a
shifted location that depends on the noise amplitude σ. Finally, we focus on the escape from the basin
of attraction. After exiting, trajectories can return inside the basin of attraction multiple times before
eventually escaping to infinity. To conclude, the excursions outside and inside the basin of attraction
increase the total escape time by a factor between 2 to 3 compared to the first exit time, providing a
novel explanation for the large tail distribution of interbust intervals in experimental time series [52].

3.2 Modeling the interburst durations in neuronal networks

3.2.1 Noisy depression-facilitation model

Biological neuronal networks exhibit complex patterns of activity as revealed by time series of a single
neuron [160,161], a population or an entire Brain area [162]. To analyse neuronal networks, mean-field
models are used to formulate the dynamics as stochastic differential equations.
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3.2. MODELING THE INTERBURST DURATIONS IN NEURONAL NETWORKS

Bursting dynamics is a transient period of time where an ensemble of neurons discharge and these
events can be accounted for by using short-term plasticity properties of synapses, such as the classi-
cal depression and facilitation [102, 109, 145]. Bursting is followed by an interburst period, where the
network is almost silent. Neuronal population bursts separated by long interbursts can result from
two-state synaptic depression [112]. However, the refractory period could also be the result of other
mechanisms such as afterhyperpolarization (AHP), mediated by leading long-lasting voltage hyperpo-
larisation transient and generated by potassium channels [158].
We focus here on a depression-facilitation short-term synaptic plasticity model of network neuronal
bursting [102,105,147], which consists of three equations (3.1) for the mean voltage h, the depression y,
and the facilitation x. We recall that synaptic depression describes the possible depletion of vesicular
pools, necessary for neurotransmission following an action potential. In this phenomenology, facili-
tation is a synaptic mechanism that reflects a transient increase of the vesicular release probability,
possibly mediated by an increase of the local calcium concentration in the pre-synaptic terminal. The
associated equation is driven by two opposite forces: one is the return to an equilibrium X with a time
constant tf and the other is an increase induced by a mean firing rate h+ = max(h, 0). Similarly, the
depression variable y returns exponentially to steady state with a time constant tr. It can also decrease
following a firing rate h+, proportional to the available fraction y of vesicles and the facilitation x. The
three coupled equations for the mean voltage h, the depression y, and the synaptic facilitation x are

τ ḣ = −h+ Jxyh+ +
√
τσω̇

ẋ =
X − x
tf

+K(1− x)h+ (3.1)

ẏ =
1− y
tr
− Lxyh+,

where the population average firing rate h+ = max(h, 0) is a linear threshold function of the synaptic
current. The mean number of connections (synapses) per neuron is accounted for by the parameter
J and the term Jxy reflects the combined effect of the short-term synaptic plasticity on the network
activity. We previously distinguished [109] the parameters K and L which describe how the firing rate
is transformed into molecular events that are changing the duration and probability of vesicular release.
The time scales tf and tr define the recovery of a synapse from the network activity. Finally, ω̇ is an
additive Gaussian noise and σ its amplitude. We shall focus now on a reduced version of this system to
study the distribution of interburst intervals which are interpreted as escape from a basin of attraction
that we will define below, with similar properties as the ones we will present in equation (3.5).

3.2.2 Reduction to a two-dimensional system and phase-space analysis

System (3.1) has 3 critical points: one attractor and two saddle-points. At the attractor A = (0, X, 1),
the dynamics is very anisotropic(
|λ1| =

1− JX
τ

≈ 12.6� |λ2| =
1

τf
≈ 1.1� |λ3| ≈

1

τr
= 0.34, using parameters in table 3.1

)
and thus

can be reduced to a 2D-plan y = constant so that

ẏ = 0 =
1− y
τr
− Lxyh+ = 0 ⇐⇒ y =

1

1 + τrLxh+
, (3.2)
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and we obtain the simplified system:

ḣ =
h (Jx− 1− τrLxh+)

τ(1 + τrLxh+)
+
√
τσω̇

ẋ =
X − x
τf

+K(1− x)h+.

(3.3)

The deterministic system (3.3) for σ = 0 has 3 critical points, two attractors and one saddle-point:

Attractor A0 is given by h = 0 and x = X. The Jacobian is

JA0 =


− 1 + JX

τ
0

K(1−X) −
1

τf

 . (3.4)

With the parameters defined in table 3.1, the eigenvalues are (λ1, λ2) =

(
JX − 1

τ
,

1

τf

)
≈ (−12.6,−1.11).

Saddle-point S has coordinates S1(h1 ≈ 8.07;x1 ≈ 0.28). Its eigenvalues are (λ1, λ2) ≈ (−5.73, 1.43).

Attractor A2 is given by A2(h2 ≈ 28.8;x2 ≈ 0.53). Its eigenvalues are (λ1, λ2) ≈ (−11.9,−1.33).
The two attractors are separated by a 1D stable manifold Γ passing through the saddle-point S (fig.
3.1A, solid black). To study the dynamics around the attractor A0, where we approximate ẏ = 0, we
first generated stochastic trajectories and observed two novel phenomena: 1) in the basin of attraction
before exiting, trajectories fluctuate around a point not centered at the attractor A0, but rather around a
shifted point Aσ the position of which depends on the noise amplitude (fig. 3.1B.2-B.3); 2) trajectories
that exit the basin of attraction through the separatrix Γ can reenter multiple times before finally
escaping. In the reduced system (3.3), escape is characterized by falling to the second attractor A2.
The most interesting unexplain phenomena revealed by figs. 3.1C.1-C.2 is the single exponential decay
rate with a decay λ = 0.09 (or τ̄e = 11s). This is in contrast with the mean escape time 〈τ0〉 = 4.35
(estimated numerically) from the attractor for a trajectory starting at the attractor A and reaching
the separatrix Γ. The rest of the manuscript is dedicated to the resolution of this discrepancy and also
to the study of properties 1) and 2) that we identified numerically. For that purpose, we study below a
generic dynamical system that serves as a model and obtain specific computational criteria and finally,
we resolve the present enigma.

3.3 When a perturbation of a two-dimensional system by a

Gaussian noise induces a shift of the density function

peak with respect to the attractor’s position

We consider a class of two-dimensional stochastic dynamical system described by

ḣ = −αh+ x2 + σω̇ = b1(s) + σω̇
ẋ = F (h, x) = b2(s),

(3.5)
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Figure 3.1: Modeling Bursting and interbursting using a facilitation-depression model A. Dynam-
ics generated by system (3.1). A.1 a bursting trajectory (black) in the phase-space, characterized by
an attractor A0 (yellow), two saddle-points S (blue) and S1 (pink) with a separatrix delimiting the basin of
attraction of A0 (cyan surface). A.2 Simulated time-series of system (3.1) with a noise amplitude σ = 5, mean
voltage h (upper), facilitation x (center) and depression y (lower) for T = 100s. B. Dynamics in the basin
of attraction of A0. B.1 Inset near A0 showing an escaping trajectory (black). B.2 Phase-space of the 2D
projected dynamics (3.3) for several trajectories (T = 500s) associated with three noise levels σ = 1 (pink),1.5
(blue) and 2.5 (green) rotating around shifted attractors Aσ (centers of mass of the trajectories). B.3 Distance
d(A0,Aσ) for σ ∈ [0.5, 3] compared to a numerical fit (yellow). C. Escape dynamics with several returns
inside the basin of attraction. C.1 Trajectory exiting the basin of attraction. C.2 Distribution of exit
times where the tail is well approximated by a single exponential with λe = 0.09 (or τ̄e 11s).
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where

F (h, x) =

{
h− γx for h ≥ 0
−γx for h ≤ 0,

(3.6)

We rewrite this process with s = (x, h)T

ds = B(s)dt+ ΞdW, (3.7)

where

B(s) =

(
b1(s)
b2(s)

)
and Ξ =

(√
σ 0

0 0

)
. (3.8)

In the following, α ∈]0, 1], γ ∈]0, α[, ω̇ is a Gaussian white noise and σ its amplitude. Our goal here
is to study some properties of such systems. This system has two critical points, A = (0, 0) (fig. 3.2A
yellow star) and S = (γ2α, γα) (fig. 3.2A cyan star). The jacobian of the system at point A can be
computed either for h ≥ 0 or for h ≤ 0 and in both cases, we have

JA =

(
−α 0
1 −γ

)
. (3.9)

The attractor A has real eigenvalues λ1 = −α and λ2 = −γ (its stable manifolds are shown in fig.
3.2A, dotted black lines). The first coordinate of the point S is hS = γ2α > 0 and the jacobian is

JS =

(
−α 2αγ
1 −γ

)
. (3.10)

Both eigenvalues are real, λ± = −
1

2

(
−(α + γ)±

√
(α + γ)2 + 4αγ

)
and thus S is a saddle point (with

α = 1 and γ = 0.6 we have λ+ ≈ 0.314 and λ− ≈ −1.914).
The separatrix that delimits the basin of attraction of A is the stable manifold of S (fig. 3.2A solid
black curve). As we shall describe below the unstable manifold defines the escaping direction (fig. 3.2A
yellow curve). It is located between the x (respectively h) nullcline Φx = {(x, h)|h = γx}, 3.2A red
(respectively Φ̃h = {(x, h)|h = x2/α}, purple).
Numerical simulations reveal that the stochastic trajectories are not centered around the deterministic

attractor A (fig. 3.2B, green trajectory). Indeed, we computed the shifted attractor as the expectation
of the center of mass for each trajectory, before escaping at time τω,

Aσ = Eω

[
1

τω

∫ τω

0

sω(t)dt

]
. (3.11)

The empirical distribution peaks at the point Aσ, which we found to be shifted towards the right of
the attractor A (fig. 3.2B, green star). Our next goal is to study how this shift depends on σ.

3.3.1 Numerical study of a shifted maximum density at Aσ

To better characterize the shifted peak Aσ induced by the noise for the maximum of the density
position, before trajectories escape the attractor, we ran simulations of model eq. (3.5) (fig. 3.2B
σ = 0.09), where trajectories are simulated for 500s. We observed that trajectories are looping around
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Figure 3.2: Emergence of a shift in the attractor’s position for the noisy dynamical system (3.5).
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the x-nullcline Φ (red). To characterize the shift in the distribution, we study the distribution of points
P0

ρP0 = P (s(t) ∈ Φ|s(0) = A) (3.12)

where a trajectory starting at A hits Φ for the first time (fig. 3.2C, red). We generated the empirical
distribution ρP0 by simulating 150 trajectories (fig. 3.2D, red) and we found that this distribution is
peaked at P0 close to A. To further understand the dynamics we then investigated the distribution of
points Q0

ρQ0 = P (s(t) ∈ Φ|s(0) = P0) (3.13)

where a trajectory starting at P0 hits Φ for the first time (fig. 3.2C, orange). This distribution is
also peaked and located nearby ρP0 (fig. 3.2D, orange). We then iterated this process to obtain the
successive distributions Pk

ρPk = P (s(t) ∈ Φ|s(0) = Qk−1), (3.14)

of points where a trajectory starting initially at Qk−1 hits Φ. Similarly, we define the distributions of
the points

ρQk = P (s(t) ∈ Φ|s(0) = Pk) (3.15)

where a trajectory starting at the peak of ρPk hits Φ for the first time (fig. 3.2D). Interestingly, we
observed that the distributions are peaked and progress along Φ towards the separatrix Γ. However,
after a few iterations, the successive distributions ρPk and ρQk , seems to accumulate toward a shifted
equilibrium (fig. 3.2D, pink and purple distributions).

3.3.2 Computing the steady-state distribution and the distance of its max-
imum to the attractor A using WKB approximation

In this section we study analytically the existence and position of the shifted attractor in the stochastic
case. This is summarized by the following theorem.

Theorem 3.1 For stochastic processes ds = B(s)dt+ ΞdW , where the drift B = (b1, b2)T is

b1(s) = −αh+ x2

b2(s) =

{
h− γx for h ≥ 0
−γx for h ≤ 0,

,
(3.16)

and

Ξ =

(√
σ 0

0 0

)
, (3.17)

where α ∈]0, 1], γ ∈]0, α[, dW is a two dimensional Gaussian white noise and σ ≥ 0. We denote by Ω
the basin of attraction of the attractor A = (0, 0). We consider trajectories starting at A and staying
inside Ω. The pdf p associated to equation (3.5) is solution of the stationary FPE

σ

2

∂2p

∂h2
− (∇ ·B)p−B · ∇p = −δA, (3.18)

and the solution can be found explicitly in the two following sub domains:
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(i) For s = {(h, x) ∈ Ω|h ≥ 0},

p(s) = N
x0

x0 + γx
e
−
ψ(s)

σ . (3.19)

(ii) For s = {(h, x) ∈ Ω|h ≤ 0},

p(s) = N

(
x0

x0 + γx

)α + γ

γ
−

1

(α− γ)2

e
−
ψ(s)

σ , (3.20)

where ψ is the solution of the eikonal equation associated to (3.18) and N is a normalization constant
such that

∫
Ω
p(s)ds = 1.

The next proposition allows us to determine an explicit expression for the solution of the eikonal
equation.

Proposition 3.1 Under the assumptions of theorem 3.1, the solution of the eikonal equation

B · ∇ψ +
1

2

(
∂ψ

∂h

)2

= 0 (3.21)

is

(i) For s = {(h, x) ∈ Ω|h ≥ 0},

ψ(h, x) = α

h−
(
h0 −

x2
0

α− 2γ
−
q1,0

2α

)(
x

x0

)α
γ
−

x2

α− 2γ


2

, (3.22)

where the initial conditions are h(0) = h0, x(0) = x0, q1(0) = q1,0 and q2(0) = q2,0 > 0.

(ii) For s = {(h, x) ∈ Ω|h ≤ 0},

ψ(h, x) ≈
Q2

0

4α

(
2γ(h+ x)

q2,0

)2α

γ
+
γ(h+ x)2

(γ − α)2
+

Q0q2,0

γ2 − α2

(
2γ(h+ x)

q2,0

)α + γ

γ
, (3.23)

where

Q0 = q1,0 +
q2,0

γ − α

H0 = h0 −
Q0

2α
+

q2,0

γ2 − α2

X0 = x0 −
H0

γ − α
−

Q0

2α(γ + α)
+

q2,0

2γ(γ2 − α2)

(3.24)

and the initial conditions are h(0) = h0, x(0) = x0, q1(0) = q1,0 and q2(0) = q2,0 > 0.

Proof: We prove theorem 3.1 and proposition 3.1 together:
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Steady state Fokker-Planck equation for system (3.5)

In this subsection, we study the probability density function (pdf) of the system (3.5) for trajectories
that stay inside the basin of attraction of A. We first generated 300s simulations for three values of
the noise amplitude σ = 0.03 (pink), 0.09 (blue) and 0.12 green (fig. 3.3A) showing that the pseudo-
distributions for points that do not escape the basin of attraction are peaked at Aσ shifted to the right
from A. We now compute this pdf using WKB approximation [123]. The steady-state pdf p satisfies
the stationary Fokker-Planck Equation (FPE)

σ

2

∂2p

∂h2
− (∇ ·B)p−B · ∇p = −δA, (3.25)

where δA is the δ-Dirac function at point A. Due to the discontinuity of the field at h = 0 we compute
∇ ·B on the two half spaces (h ≥ 0) and (h ≤ 0) separately. In the small noise limit σ → 0, the WKB
solution has the form

p(s) = Kσ(s)e
−
ψ(s)

σ , (3.26)

where Kσ is a regular function that admits an expansion

Kσ(s) =
∞∑
i=0

Ki(s)σi. (3.27)

The eikonal equation is obtained by injecting (3.26) in (3.25) and by keeping only the higher order
terms in σ (ie σ−1)

B · ∇ψ +
1

2

(
∂ψ

∂h

)2

= 0 (3.28)

and the transport equation is obtained using the order 1 terms:

B · ∇K0 +
∂ψ

∂h

∂K0

∂h
= −

(
∇ ·B +

1

2

∂2ψ

∂h2

)
K0. (3.29)

To solve (3.28), we use the method of characteristics with notation q = (q1, q2) = ∇ψ. Then eq. (3.28)
becomes

F (s, q, ψ) = B · q +
1

2
q2

1 = 0 (3.30)

and the characteristics are given by

dh

dt
= b1(s) + q1

dx

dt
= b2(s)

dq1

dt
= −Fh = −

∂b1

∂h
q1 −

∂b2

∂h
q2

dq2

dt
= −Fx = −

∂b1

∂x
q1 −

∂b2

∂x
q2

dψ

dt
=

1

2
q2

1.

(3.31)
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To define the initial condition, we can choose a neighborhood VA of A (positioned at the origin), where
ψ has a quadratic approximation

ψ(s) ≈
1

2
sTRs+ o(|s|2)) for s ∈ VA, (3.32)

and R is a symmetric positive definite matrix defined by a degenerated matrix equation at A

(JAs)T · ∇ψ +
1

2
q2

1 = 0, (3.33)

where JA is the Jacobian matrix at point A defined by relation (3.9). We obtain

ψ(s) ≈
1

2
sT
(

2α 2γ
2γ 2γ

)
s. (3.34)

The ψ contours are the ellipsoids given by

αh2 + 2γxh+ γx2 = ε, (3.35)

for small ε > 0. To conclude, we choose for the initial conditions one of the small ellipsoids given by
(3.35) by fixing later on the value of ε.

Solution in the subspace h ≤ 0

A direct integration of system (3.31) gives for t ≥ 0

h(t) =

(
h0 −

x2
0

α− 2γ
−
q1,0

2α

)
e−αt +

x2
0

α− 2γ
e−2γt +

q1,0

2α
eαt

x(t) = x0e
−γt

q1(t) = q1,0e
αt

q2(t) =

(
q2,0 −

2x0q1,0

α− 2γ

)
eγt −

2x0q1,0

α− 2γ
e(−γ + α)t

ψ(t) =
q2

1,0

4α
e2αt,

(3.36)

where the initial conditions are h(0) = h0, x(0) = x0, q1(0) = q1,0 and q2(0) = q2,0. Substituting the
expression of x and q1 in h, we obtain

ψ(h, x) = α

h−
(
h0 −

x2
0

α− 2γ
−
q1,0

2α

)(
x

x0

)α
γ
−

x2

α− 2γ


2

. (3.37)
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We solve the transport equation (3.29) along the characteristics (3.36). Using (3.5) and (3.37), we
obtain

dK0(s(t))

dt
= γK0(s(t)), (3.38)

yielding

K0(s(t)) = Ceγt. (3.39)

For α > γ, and choosing s(t) ∈ VA,

s̃(t) ≈
∫ t

0

x0e
−γudu ≈ −x0

e−γt − 1

γ
. (3.40)

Thus

K0 ∼
x0

x0 + γs · e2

=
x0

x0 + γx
, (3.41)

where e2 = (0, 1)T is the eigenvector associated to the eigenvalue λ2=−γ. Finally,

p(s) ∼
x0

x0 + γx
e
−
ψ(s)

σ . (3.42)

Solution in the subspace h ≥ 0

In this case, we cannot integrate system (3.31) analytically. In the neighborhood of A, x� 1 and since
ψ is a smooth function, we can neglect the quadratic terms in system (3.31) yielding

dh

dt
≈−αh+ q1

dx

dt
= −γx+ h

dq1

dt
= αq1 − q2

dq2

dt
≈−Fx = γq2

dψ

dt
=

1

2
q2

1.

(3.43)
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Integration of system (3.43) gives, for t ≥ 0

h(t) = H0e
−αt +

Q0

2α
eαt −

q2,0

γ2 − α2
eγt

x(t) = X0e
−γt +

H0

γ − α
e−αt +

Q0

2α(γ + α)
eαt −

q2,0

2γ(γ2 − α2)
eγt

q1(t) = Q0e
αt −

q2,0

γ − α
eγt

q2(t) = q2,0e
γt

ψ(t) =
Q2

0

4α
e2αt +

q2
2,0

4γ(γ − α)2
e2γt −

Q0q2,0

γ2 − α2
e(γ + α)t,

(3.44)

where

Q0 = q1,0 +
q2,0

γ − α

H0 = h0 −
Q0

2α
+

q2,0

γ2 − α2

X0 = x0 −
H0

γ − α
−

Q0

2α(γ + α)
+

q2,0

2γ(γ2 − α2)

(3.45)

and the initial conditions are h(0) = h0, x(0) = x0, q1(0) = q1,0 and q2(0) = q2,0.
To derive the eikonal solution, we eliminate the time and start with the relation

q2 ≈ 2γ(h+ x), (3.46)

which is obtained from (3.34). Substituting (3.46) in h, we obtain near the attractor A

ψ(h, x) ≈
Q2

0

4α

(
2γ(h+ x)

q2,0

)2α

γ
+
γ(h+ x)2

(γ − α)2
+

Q0q2,0

γ2 − α2

(
2γ(h+ x)

q2,0

)α + γ

γ
. (3.47)

Furthermore, we solve the transport equation (3.29) along the characteristics (3.44). We differentiate

twice (3.47) with respect to h, we obtain
∂2ψ

∂h2
≈

γ

(α− γ)2
, which leads to

dK0(s(t))

dt
≈

(
α + γ −

γ

(γ − α)2

)
K0(s(t)). (3.48)

Using (3.40) we obtain

K0 ∼

(
x0

x0 + γx

)α + γ

γ
−

1

(α− γ)2

. (3.49)
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Finally, for s ∈ VA

p(s) ∼ K0(s)e
−
ψ(s)

σ , (3.50)

where K0 and ψ are defined by relations (3.49) and (3.47), respectively. When α 6= γ and α 6= 2γ, the
exponent in (3.49) is positive when

α + γ

γ
−

1

(γ − α)2
> 0 ⇐⇒ 1−

(
γ

α

)
−

(
γ

α

)2

+

(
γ

α

)3

−
γ

α3
> 0, (3.51)

that is for
γ

α
> 0.45. For the range of parameters 0.45α < γ < α and α 6= 2γ, the pdf has a maximum

located on the h = 0+ axis shifted towards the right of A (fig. 3.3B, for three values of the noise
amplitude σ = 0.03 (pink), 0.09 (blue) and 0.12 green and for γ = 0.6). This maximum gives the

position of the shifted attractor Aσ, which depends on the noise amplitude. When
γ

α
≤ 0.45, since the

linearization approximation in (3.46) is not valid, formula (3.50) cannot be use to approximate the pdf.
2

Computing the distance between Aσ and A

The distance between A and Aσ is defined by

Corollary 3.2 Position of the shifted stochastic attractor The pdf p of stochastic trajectories
solution of equation (3.5) that did not escape the basin of attraction Ω peaks at a shifted position
compared to the attractor A, and the shift depends on the noise amplitude σ. The maximum of the pdf
p is located on the line h = 0+ and is given by the implicit equation

−
A1

1 +
γ

x0

x

−
1

σ

A2x

2α

γ
− 1

+ A3x

α

γ + A4x

 = 0, (3.52)

where

A1 =

(
α + γ

γ
−

1

(α− γ)2

)
γ

x0

, A2 =
Q2

0

q2,0

(
2γ

q2,0

)2α

γ
− 1

, A3 =
2Q0

γ − α

(
2γ

q2,0

)α
γ
,A4 =

2γ

(α− γ)2
. (3.53)

Proof: To study how the distance between A and Aσ depends on the noise amplitude σ, we use
that the maximum of the pdf (3.50) is given by

∇p = 0. (3.54)

However, the partial derivative along h is discontinuous, and the analytical expression for pdf p (3.42,
3.50) is decreasing with |h| on both halves of the phase-space. Thus based on the numerical motivation
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Figure 3.3: Position of the shifted attractor Aσ A. Simulated pdf of the trajectories for three noise levels
σ = 0.03 (pink), σ = 0.09 (blue) and σ = 0.12 (green) for γ = 0.6 and α = 1. B. Analytical distributions for

the three noise levels. Inset: same distributions with a different perspective. C.
∂p

∂x|h=0+(x) for σ ∈ [0.01, 0.2]

(the crosses indicate the zeros). D-E. Distance d(A,Aσ) as a function of σ. Numerical solution (black stars
with numerical fit in pink) and analytical relation 3.58 (resp. 3.61, cyan crosses with yellow curve) for γ = 0.6
(resp. 0.9) and α = 1. F. Distance d(A,Aσ) as a function of σ. Numerical solution (black stars with numerical
fit in pink) compared with the analytical expressions (3.58) and (3.61) (cyan crosses with yellow curve and
magenta crosses with blue curve) in the case γ = 0.75 and α = 1 for which neither polynomial approximation
is valid.
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that the maximum of the pdf Aσ is shifted along the x axis, we are left with solving
∂p

∂x
|h=0+ = 0. Using

relation (3.50), for h ≥ 0 we obtain

−

(
α + γ

γ
−

1

(α− γ)2

)
γ

x0 + γx
+

1

σ

−Q2
0

q2,0

(
2γ

q2,0

)2α

γ
− 1

x

2α

γ
− 1

−
2Q0

γ − α

(
2γ

q2,0

)α
γ
x

α

γ −
2γx

(α− γ)2

 = 0,

(3.55)

We rewrite (3.55) as

−
A1

1 +
γ

x0

x

−
1

σ

A2x

2α

γ
− 1

+ A3x

α

γ + A4x

 = 0, (3.56)

where

A1 =

(
α + γ

γ
−

1

(α− γ)2

)
γ

x0

, A2 =
Q2

0

q2,0

(
2γ

q2,0

)2α

γ
− 1

, A3 =
2Q0

γ − α

(
2γ

q2,0

)α
γ
,A4 =

2γ

(α− γ)2
. (3.57)

The algebraic equation (3.56) describes the shift, compared to the attractor, of the pdf peak along the
x axis. This equation cannot be solved analytically in general and we solved it numerically for various
values of σ (fig. 3.3C). 2

However, we shall describe two cases for which (3.56) can be approximated by a polynomial equa-
tion. We computed the absolute difference d(σ) = |xM,num(σ) − xM(σ)| between the numerical result
xM,num(σ) and the solution xM(σ) of the approximated polynomial equation (3.60) (respectively 3.62)
that we define below, for σ ∈ [0, 0.2], and using the criteria dmax = max

σ∈[0,0.2]
(d(σ)) < 0.02 (fig. 3.3D-F)

we obtained the approximation validity range 0.5 <
γ

α
≤ 0.645 (respectively 0.885 ≤

γ

α
< 1).

Corollary 3.3 Approximated expression for the distance |Aσ −A| in the parameter range

0.5 <
γ

α
< 0.645: the solution of equation (32) is

xM(σ) = |Aσ − A| =

(
− q(σ)−

√
∆(σ)

2

)1/3

+

(
− q(σ) +

√
∆(σ)

2

)1/3

−
c2

3c1

, (3.58)
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where

c1 = A2 + A3 +
A4γ

x0

≈ 397, 2

c2 = A2 + A3 ≈ 117.5
A4 = 7.5
A1 ≈ −17.7

q(σ) =
2c3

2 − 9c1c2A4

27c3
1

+
A1

c1

σ ≈ 5, 5.10−5 − 0.04σ

∆(σ) = q(σ)2 +
4

27

(
3c1A4 − c2

2

3c2
1

)3

≈ q(σ)2 − 1, 6.10−7

(3.59)

(expression (3.58) is valid as long as ∆(σ) ≥ 0, that is σ > 0.0114).

The numerical applications are given for the parameter values α = 1, γ = 0.6, h0 = 0.001, x0 = 0.12.

Proof: We approximate
2α

γ
−1 ≈ 2 and

α

γ
≈ 2 and (3.56) becomes the third order polynomial equation

A1σ + A4x+

(
A2 + A3 +

A4γ

x0

)
x2 + (A2 + A3)

γ

x0

x3 = 0. (3.60)

2

Corollary 3.4 Expression of distance Aσ − A in the range 0.885 ≤
γ

α
< 1: in this range the

solution is

xM(σ) =

− 1 +

√
1−

4γ

x0

A1σ

A2 + A3 + A4

2γ
x0 ≈ −0.56 +

√
1 + 38.45σ

1.8
, (3.61)

The numerical application is given for the parameter values α = 1, γ = 0.9 and σ ≥ 0 (fig. 3.3E
cyan crosses and yellow curve).
Proof: Here we can approximate (3.56) by the second order polynomial equation

γ

x0

x2 + x+
A1σ

A2 + A3 + A4

= 0, (3.62)

2

To verify the range of validity of our approximations for the position of Aσ, we also ran simulations
for σ ∈ [0.03, 0.12] (fig. 3.4A σ = 0.12, green, 0.09, blue and 0.03, pink). We compared the distance
d(A,Aσ) obtained from numerical simulations (3.4B-C black stars) and the analytical formula (3.58)
(resp. 3.61) (fig. 3.4B (resp. C) yellow curve) for α = 1 and γ = 0.6 (resp. γ = 0.9). In the case
γ = 0.6, we added an offset in formula (3.58) to minimize the absolute value of the difference between
the analytical formula and the simulations:

ĉ = min
c∈[0,0.1]

∑
σ∈[0.03,0.12]

|xM(σ)− c− xM,sim(σ)|, (3.63)
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where xM(σ) is defined by (3.58) and xM,sim(σ) is the value obtained from the numerical simulations.
Using a finite number of values, we found ĉ = 0.032. This offset is probably due to the approximations
we made for the derivation of formula (3.58).
To conclude we have found here analytical expressions (3.58 and 3.61) for the position of Aσ and showed
that these expressions approximate well the numerical simulations.
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Figure 3.4: Influence of the noise amplitude on the peak distribution Aσ. A. Stochastic trajectories
simulated for T = 500s with three noise levels σ = 0.03 (pink), 0.09 (blue) and 0.12 (green) and the shifted
peaks Aσ. B. Distance d(A,Aσ) vs σ. Numerical simulations are obtained with a stopping time T = 800 s per
noise value (black stars), compared to the analytical formula 3.58 (yellow) minus a corrective offset ĉ = 0.032.
C. Distance d(A,Aσ) vs σ. Numerical simulations are generated with a stopping time T = 800 s per noise
value (black stars), compared to the analytical formula 3.61 (yellow).

3.4 Multiple re-entries and distributions of escape times and

points

In this section, we report a novel mechanism of stochastic escape from an attractor, based on multiple
re-entries.

3.4.1 The different steps of escape

The escape from the basin of attraction of A can be divided into three steps.

1. Step 1: starting from the attractor A, trajectories fall into the basin of attraction of the shifted
equilibrium Aσ. The duration of this step is almost immediate and can be neglected compared
with the durations of the next steps 2 and 3.

2. Step 2: trajectories fluctuate around the shifted equilibrium Aσ until they reach the separatrix Γ
for the first time.

3. Step 3: trajectories cross Γ, exiting and reentering the basin of attraction several times before
eventually escaping far away (fig. 3.5A-C).
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We will quantify the excursions occurring in step 3 by counting the number of round-trips (RT) across
Γ. We first study these three steps numerically by simulating 5000 trajectories starting from A and
lasting T = 300s for σ = 0.78. To obtain the distribution of exit times and points on the separatrix
Γ at each RT, we decided to replace Γ by its tangent TΓ at S (fig. 3.5A-C pink line). Indeed, the
distribution of exit points peaks at a distance O(

√
σ) from S [134] and thus the difference between

the separatrix and its tangent is of order 2. This approximation will allow us to use the analytical
expression of the tangent TΓ.
We then decompose the escape time in the first time to reach the separatrix Γ plus the time spent doing
successive excursions outside and inside the basin of attraction (fig. 3.5D, the color gradient indicates
the contribution of the trajectories doing a specific number of RT to the total distribution of escape
times). This decomposition can be used to estimate the proportion of trajectories that escape at each
RT and to evaluate the escape probability after crossing the separatrix as we will see below.
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Figure 3.5: Recurrent exit pattern and contribution to the escape time. A-C. Trajectory doing zero
(resp. one, two) RT before escape (red, resp. orange, yellow) the red (resp. green) arrows indicate exit (resp.
reentry) points. D. Distribution of escape times from 5000 trajectories lasting T = 300 s (γ = 0.6, α = 1 and
σ = 0.78) with the contribution of trajectories doing for each number of RT around Γ before escaping (color
gradient).
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3.4.2 First exit time and exit points distributions on the separatrix Γ

We study here the influence of the noise on the distributions of first exit times and exit points: we
simulate N = 2500 trajectories starting at A and lasting T = 300 s for σ ∈ [0.21, 1.05]. The first
exit time can be very long for small values of σ (fig. 3.6A, orange distribution for σ = 0.21, and light
green for σ = 0.33) but becomes shorter with peaked distributions when σ increases (dark green to
red). The distribution of the first exit points is peaked and located on the left of the saddle-point S
(fig. A.3.1A purple for σ = 0.78). We found here that the distance d(PE, S) between the peak PE of
this distribution and the saddle-point S for σ ∈ [0.15, 1.05] is of order O(

√
σ) (fig. 3.6B) in agreement

with the classical theory [134]. We further observed from numerical simulations that the density of
exit points of the first trajectories that reenter the basin of attraction at least once follows a similar
distribution as the one of first exit points for all trajectories (fig. A.3.1A green) indicating that there
are no correlations between the position of the escape points and the phenomenon of reentry in the
basin of attraction. Finally, the distribution of the first reentry points also peaks on the left of the
saddle-point but spreads on both sides of S (fig. A.3.1A red).
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Figure 3.6: Influence of the noise amplitude on the first exit times and points. A. Distribution of
the first exit times with respect to the noise amplitude σ with an inset on short times. B. Distance between
the peak PE of the distribution of first exit points on the separatrix and the saddle-point S with respect to
the noise amplitude σ for γ = 0.6 and α = 1 with a square-root fit (pink).

3.4.3 Characterization of the mean escape time

The mean escape time is given by the following lemma:

Lemma 3.1 We consider a phase-space composed of a single bounded basin of attraction. Outside the
basin of attraction the trajectories converge to infinity. Then, the mean escape time to infinity from the
basin of attraction is given by the sum

〈τesc〉 = 〈τ0〉+
〈τext〉+ 〈τint〉

p̃
, (3.64)
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where p̃ is the probability that a trajectory crossing the separatrix Γ does not return inside the basin of
attraction, 〈τ0〉 is the mean time to reach the separatrix for the first time and 〈τext〉 (resp. 〈τint〉) is the
mean time spent outside (resp. inside) the basin of attraction during one RT.

Proof: To obtain a general expression for the mean escape time, we use Baye’s law and condition
by the RT numbers so that

〈τesc〉 =
∞∑
k=0

〈τ |k〉PRT (k), (3.65)

where 〈τ |k〉 (resp. PRT (k)) is the mean time (resp. probability) to return k−times inside the basin
of attraction. Because, due to the strong Markov properties, the RT are independent events, the
probability p̃ that a trajectory crossing the separatrix Γ escapes does not depend on k, yielding

PRT (k) = p̃(1− p̃)k−1, (3.66)

thus

〈τesc〉 = 〈τ0〉+ (〈τext〉+ 〈τint〉)p̃
∞∑
k=1

k(1− p̃)k−1 = 〈τ0〉+
〈τext〉+ 〈τint〉

p̃
, (3.67)

where 〈τext〉 (resp. 〈τint〉) is the mean time spent outside (resp. inside) the basin of attraction during
one RT. 2

To avoid counting small Brownian fluctuations as RT inherent to the discretization (fig. 3.7A black
arrows), we added a second line Γ̃ at distance δ = 0.25 parallel to the separatrix (fig. 3.7B blue line)
and thus a trajectory is considered to have fully exited the basin of attraction once it has crossed both
the tangent TΓ and Γ̃.
Using this procedure we estimated the probability p̃(k) to escape after k RT by counting the proportion
of trajectories that reenter the basin of attraction at least once and we found using numerical simulations
p̃(1) ≈ 0.40. We iterated this process for each RT until all trajectories had escaped to infinity and found
that the probability p̃(k) for k ≥ 1 does not depend on k (fig. A.3.1B), thus τesc ≈ τ0 + 2.5(τext + τint).
Finally, with the parameters α = 1, γ = 0.6 and σ = 0.78, numerical simulations show that 〈τ0〉 ≈ 5s
and 〈τext〉+ 〈τint〉 ≈ 2.6s (fig. 3.7C).
To conclude, the process of entering and exiting multiple times increases the mean escape time by a
factor of 2.3. In addition we found, based on simulations for σ ∈ [0.54, 0.90], that the noise amplitude
does not influence the number of RT before escape (fig. 3.7D) and that trajectories perform 2.5 RT on
average.

3.4.4 Characterization of escape times distributions

The escape time distribution is given by the following lemma

Lemma 3.2 Under the assumptions of lemma 3.1, the distribution of escape times is

P (τesc < t) =
∞∑
k=0

f0(t) ∗ f1(t)∗kp̃(1− p̃)k. (3.68)

where f(t)∗k = f(t) ∗ f(t) ∗ ... ∗ f(t), k times, f0 is the distribution of escape times for trajectories
escaping without any RT and f1 of a single RT.
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Figure 3.7: Characterization of escape times. A. Trajectory escaping (red cross) after small brownian
fluctuations at the separatrix (black arrows). B. Trajectory exiting (red crosses) after crossing TΓ (pink) and
Γ̃ (blue), reentering (green circles) and reexiting (orange crosses) the basin of attraction before escaping. C.
Mean time 〈τext〉 (resp. 〈τint〉) spent outside (resp. inside) the basin of attraction at each RT. D. Distributions
of the RT number before trajectories escape to infinity for σ ∈ [0.54, 0.90]. Inset: mean RT number 〈RT 〉 with
respect to the noise amplitude. E. Distribution of exit times for trajectories doing 0 (upper left, resp. 1 (lower
left), 2 (upper right), 3 (lower right)) RT before escape. F. Distribution of exit times with the contribution of
each RT number (color gradient) and analytical distribution (37) (black) G-H. Application to model (3.3)



3.4. MULTIPLE RE-ENTRIES AND DISTRIBUTIONS OF ESCAPE TIMES AND POINTS

Parameters Values
τ Time constant for h 0.05s
J Synaptic connectivity 4.21
K Facilitation rate 0.037Hz
X Facilitation resting value 0.08825
L Depression rate 0.028Hz
τr Depression time rate 2.9s
τf Facilitation time rate 0.9s
T Depolarization parameter 0

Table 3.1: Parameters of model (3.1)

Proof: To determine the distribution of escape times, we condition the escape on the number of
RT, so that

P (τesc < t) =
∞∑
k=0

P (τ k < t|k)PRT (k), (3.69)

where P (τ k < t|k) is the probability distribution of escape times after k RT. This probability is obtained
by the k-th convolution of the distribution f1 of times for trajectories exiting after a single RT with
the distribution f0 of escape times with 0 RT

P (τ k < t|k) = f0(t) ∗ f1(t)∗k, (3.70)

where f(t)∗k = f(t) ∗ f(t) ∗ ... ∗ f(t), k times. Thus (3.69) becomes

P (τesc < t) =
∞∑
k=0

f0(t) ∗ f1(t)∗kp̃(1− p̃)k. (3.71)

2

To compare this formula with our numerical results, we decided to fit the distributions with

fi(t) = cit
aie−λit, for i = 0, 1, ai ≥ 0 and λi ≥ 0 (3.72)

Using the Matlab fit function (fig. 3.7C), we obtained for the distribution escape without any RT

p̃f0(t) = 0.09t0.09e−0.20t (3.73)

and for the trajectories doing exactly one RT before escape

F1(t) = p̃(1− p̃)f0 ∗ f1(t) = 0.04t0.75e−0.22t. (3.74)

To recover the distribution f1 (3.74), we deconvolved numerically F1 from f0 (3.73) (fig. 3.7E lower
left). This procedure allows us to validate our approach by computing the distributions of 2 and 3 RT
and comparing them with the empirical distributions (3.70) (fig. 3.7E upper and lower right). Finally,
we decomposed the entire escape times distribution using (3.71) to evaluate the contribution of each
term (fig. 3.7E-F).
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3.5 Further application and concluding remarks

3.5.1 Distribution of interburst durations

The phase-space of system (3.3), restricted to the region {x ≤ 0.5 and h ≤ 30} is topologically equiva-
lent to the phase-space of system (3.5). It contains one attractor and one saddle-point and the stable
manifold of the saddle-point defines the boundary of the basin of attraction (fig. 3.1A). Following the
result of system (3.5), trajectories fall into a basin of attraction centered around a shifted attractor
towards the saddle-point S, as shown in fig. 3.1B, red (resp. blue, green) star for σ = 1 (resp. 1.5,
2.5)). The shifted attractor position depends on the noise amplitude σ (fig. 3.1C) and the escaping
trajectories can return several times inside the basin of attraction before escaping far away (fig. 3.1D,
one RT). We used formula (37) to fit the distribution of exit times (fig. 3.1E-F) and obtained, for σ = 6
the distribution of exit with no return

f0(t) = 0.02t1.82e−0.40t (3.75)

and the distribution of one RT is

f1(t) = 0.01t1.57e−0.26t. (3.76)

Finally, using numerical simulations, we estimated the escape probability p̃ ≈ 0.37 by generating
trajectories starting from the attractor A and counting the fraction that fully escaped far away vs
those that did return inside the basin of attraction (fig. A.3.2A). The mean escape time is given by
formula (3.64):

〈τesc〉 ≈ 〈τ0〉+ 2.7(〈τext〉+ 〈τint〉). (3.77)

Using parameters of table 3.1, we obtain 〈τ0〉 ≈ 4.35 s and 〈τext〉 + 〈τint〉 ≈ 2.6 s (fig. A.3.2B). We
conclude that returns to the attractor increases the mean escape time from 4.35 s to 11.37 s leading to
an increase by a factor 2.6. Moreover, the number of RT before escape does not depend on the noise
amplitude (section 3.4.3 and fig. A.3.2C) and trajectories generate in average 2.7 RT before escape
(fig. A.3.2C, inset). Finally, this escape mechanism could explain long interburst durations occurring in
excitatory neuronal networks without the need of adding any other refractory mechanisms. Indeed, the
present computations can be used to study the neuronal interburst dynamics modeled in the mean-field
approximation by depression-facilitation equations [102,109]. We also provided a possible explanation
for the long interburst durations observed in neuronal networks reported in [52].

To conclude this article, motivated by finding a possible mechanism that generates long interburst
intervals, we examined a family of stochastic dynamical systems perturbed by a small Gaussian noise.
The dynamics exhibits specific properties such as peaks of the pdf inside the basin of attraction shifted
compared to the attractor. In addition, escaping the basin is characterized by multiple reentries inside
the attractor. We computed the position of this shifted attractor using WKB approximation and we
derived algebraic formulas to link the position to the noise amplitude σ (formulas 3.58 and 3.61).
We also computed the escape time, decomposed into the time to reach the boundary of the basin of
attraction plus the time spent going back and forth through the separatrix (formulas 3.67 and 3.71).
Finally, we emphasize the generic conditions associated with this escape dynamics into the following
conjecture:

Conjecture 3.1 Recurrent exit mechanism
For stochastic dynamical systems of dimension ≥ 2 perturbed by a small Gaussian noise, if the following

conditions are satisfied:
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1. The distribution of exit points peaks at a distance O(
√
σ) from the saddle-point (generically sat-

isfied [134]).

2. The shallow field near the separatrix allows the trajectories to reenter the basin of attraction with
high probability.

3. The peaks of the successive exit points distributions converge to the saddle-point S (fig. 3.8C).

4. When trajectories enter the cone C∞ (yellow surface in fig. 3.8A-B) where the field increases,
they eventually escape to infinity,

Then the trajectories present multiple reentries into the basin of attraction and the escape time τesc is
not given by the classical Kramer’s exit theory and can be much higher due to the additive term in
equation (3.64).
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KCNQ channels
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Abstract

Astrocytic networks mediated by gap-junction channels promote population activity by modu-
lating neuronal excitability and network synchronization. Yet the underlying mechanisms remain
unclear. Here using astroglial connexin-deficient mice, we found that astrocyte networks regulate
neuronal bursting patterns via dynamic regulation of extracellular potassium levels. We then
examined the physiological and molecular targets underlying the astroglial-mediated potassium
regulation of neuronal patterns by an interdisciplinary approach combining electrophysiology and
modeling. Using a novel facilitation-depression model, we identified neuronal afterhyperpolar-
ization as the key parameter underlying bursting patterns regulation by extracellular potassium
in mice with disconnected astrocytes. We confirmed experimentally this prediction, and revealed
that astroglial network-control of extracellular potassium sustains neuronal afterhyperpolarization
via activation of KCNQ voltage-gated K+ channels. Altogether, these data identify the molecular
mechanism by which astroglial gap-junctions strengthen neuronal population bursts, thus point-
ing to selective astroglial gap-junction modulators as alternative therapeutic targets to control
aberrant activity in neurological diseases.

Introduction

Astrocytes are elements of the tripartite synapse playing a key role in brain information processing. At
the single cell level, they can integrate neuronal activity via activation of their channels, receptors and
transporters. In turn, they can modulate neuronal excitability, synaptic transmission and plasticity via
several mechanisms including ions and neurotransmitters uptake, gliotransmitters release or physical
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coverage of synapses [45,46]. Astrocytes are also organized in intercellular networks via their extensive
direct communication through gap junction (GJ) channels. These channels are formed by two main
connexin (Cx) subunits, Cx43, which is present from embryonic to adult stages, and Cx30, whose ex-
pression starts later during development [47]. GJ allow intercellular trafficking and long-range exchange
of various ions, metabolites and neuromodulators up to 1.5 kDa, important for the redistribution of
energy metabolites to neurons, as well as for extracellular ion, neurotransmitter and volume home-
ostasis [48, 49]. Thereby, GJ-connected astrocytic networks control basal synaptic transmission and
plasticity [163, 164]. Mice deficient for astroglial Cx43 and Cx30 have indeed increased hippocampal
synaptic transmission and reduced long-term synaptic plasticity, due to impaired astroglial glutamate
and potassium clearance and regulation of extracellular space volume during synaptic activity [164].
Astrocytic networks also control population activity by promoting sustained coordinated neuronal
bursts [52–54]. We indeed found that astrocytic disconnection in Cx-deficient mice resulted in shorter,
but more frequent population bursts, which translate in vivo into a reduced severity of evoked seizures
and associated convulsive behavior [52], indicating that GJ-mediated astroglial networks can exacerbate
pathological network activity. Yet, the cellular and molecular mechanisms underlying the alteration
of bursting patterns remain unknown. Electrophysiological dissection of neuronal alterations in mice
with disconnected astrocytes however revealed that the altered bursting pattern was associated with
increased synaptic noise, leading to depolarization of neuronal resting membrane potential, as well as
with decreased neuronal release probability and impaired synchronization [52]. In addition, increased
neuronal excitability and decreased refractory period after bursting were also found. Thus, numerous
alterations of neuronal membrane and synaptic properties were identified in Cx-deficient mice, ques-
tioning their relative contribution to the altered bursting pattern. Here we investigated the mechanisms
by which astrocytic networks modulate neuronal network bursts dynamics. By combining experimental
and modeling approaches, we found that astroglial networks regulate bursting patterns by controlling
neuronal afterhyperpolarization (AHP) via extracellular potassium modulation of KCNQ channels ac-
tivity.
Organisation of the chapter: In section 4.1, we present the experimental results showing that alter-
ation of the bursting pattern in Cx-deficient mice results from the impairment of extracellular potassium
regulation. Then we use modeling and numerical simulations (section 4.2) to decipher the respective
influence of AHP, membrane depolarization, synaptic noise and depression, which are all affected by
the imbalance of the extracellular potassium level. We also verify experimentally the model’s predic-
tions. Finally, we describe the experimental setup (subsections 4.4.1-4.4.4) and the model’s equations
(subsection 4.4.5) and we detail the data processing and segmentation procedure in the supplementary
information (section 4.5).

4.1 Experimental results

4.1.1 Astroglial gap junctions regulate extracellular potassium levels dur-
ing bursting

Astroglial GJ regulate neuronal bursting patterns and this is associated to changes in excitability
and synaptic activity [52]. Yet, the underlying physiological and molecular mechanisms are unknown.
GJ contribute to extracellular homeostasis of various ions, neurotransmitters and metabolites such as
potassium ions (K+), glutamate and glucose [49,165], but their physiological relevance is unclear. We
thus here first investigated whether astroglial GJ contribute to alterations in extracellular K+ levels
([K+]e) during bursting activity. The astroglial membrane potential reflects the presence of high resting
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conductances for K+ [46] and is thus highly sensitive, with a quasi-nernstian relationship, to alterations
in [K+]e [166,167]. We thus first assessed alterations in [K+]e by recording astrocyte membrane poten-
tial using whole-cell patch clamp recordings. We observed that disconnected astrocytes in Cx-deficient
mice (-/-) displayed a depolarized resting membrane potential compared to wild type (+/+) astrocytes
(+/+: −82.98 ± 0.37 mV, -/-: −79.67 ± 0.69 mV, p = 0.0001; n = 17 and n = 13 cells from 4 +/+
and 5 -/- mice, respectively; fig. 4.1A-B) and more frequent, but smaller and shorter membrane poten-
tial depolarizations during bursting activity (membrane potential depolarization frequency (per min):
+/+: 3.16± 0.40, -/-: 5.81± 0.62, p = 0.0008; ∆Vm during membrane potential depolarizations: +/+:
5.07 ± 0.86 mV, -/-: 2.68 ± 0.35 mV, p = 0.0207; membrane potential depolarization duration: +/+:
9.41 ± 0.49 s, -/-: 6.17 ± 0.91 s, p = 0.0029; n = 17 and n = 13 cells from 4 +/+ and 5 -/- mice,
respectively; fig. 4.1A-B). We also found that astroglial membrane potential depolarization evoked-
synaptically by Schaffer collateral stimulation with increasing strength (0.1 and 0.5 ms pulse width)
was reduced in -/- astrocytes for both stimulation paradigms (membrane potential depolarization area
(mV × s): 0.1 ms, +/+: 20.76 ± 4.13, -/-: 7.79 ± 1.41, p = 0.0072; 0.5 ms, +/+: 24.25 ± 4.24, -/-:
10.65±1.92, p = 0.0077; membrane potential depolarization amplitude (mV): 0.1 ms, +/+: 4.89±0.82,
-/-: 2.57± 0.31, p = 0.0359; 0.5 ms, +/+: 6.48± 0.83, -/-: 4.01± 0.46, p = 0.0406; n = 17 and n = 11
cells from 4 +/+ and 5 -/- mice, respectively; fig. 4.1C-D).
Further, to directly assess alterations in [K+]e during resting and bursting activity, we performed
simultaneous recordings of [K+]e and field potentials using K+-sensitive microelectrodes and electro-
physiology in +/+ and -/- hippocampal slices (fig. 4.1E). We found that -/- slices presented higher
basal [K+]e between bursts (+/+: 2.96± 0.11 mM, -/-: 3.65± 0.25 mM, p = 0.02; n = 16 and n = 17
slices from 9 +/+ and 6 -/- mice, respectively; fig. 4.1F) as well as burst-associated [K+]e transients
with reduced amplitude, half-width, rise time and decay time, which reflected decreased burst strength
(fig. 4.1E), compared to +/+ slices (∆[K+]e during bursts: +/+: 2.07±0.40 mM, -/-: 0.73±0.11 mM,
p = 0.0009; half-width: +/+: 10.34± 1.23 s, -/-: 5.09± 0.33 s, p < 0.0001; rise time: +/+: 2.28± 0.42
s, -/-: 0.99 ± 0.11 s, p = 0.0019; decay time: +/+: 21.63 ± 3.66 s, -/-: 8.78 ± 0.43 s, p = 0.0003;
n = 13 and n = 18 slices from 8 +/+ and 9 -/- mice, respectively; fig. 4.1G). Altogether, these results
indicate that disconnected astrocytes deficient for astroglial Cx impair extracellular K+ homeostasis,
which results in increased basal [K+]e and decreased [K+]e rise during bursting activity.

4.1.2 Switch between wild type and knockout bursting patterns by alter-
ing extracellular potassium levels

Since Cx-deficient astrocytes do not properly regulate [K+]e, we investigated whether the resulting
[K+]e changes induce an alteration of bursting activity in -/- mice. To do so, we first tested in +/+
mice the impact of [K+]e increase on bursting pattern. To this end, we determined the [K+]e that
would reflect the increase in [K+]e found in -/- mice. As reported above, we found that basal [K+]e
was increased by ≈ 0.7 mM in -/- slices, as measured by K+-sensitive microelectrodes in the tissue
(fig. 4.1F). However, this increase in basal [K+]e is most likely a relative value, since these electrodes
have limited access to the actual local [K+]e in tissue nanocompartments. In addition, extrapolation
of the exogenous [K+]e that would be needed to mimic the actual local [K+]e increase in -/- slices is
challenging, as penetration and diffusion of exogenous K+ is also limited in slices. Resting membrane
potential of neurons is sensitive to [K+]e and was previously reported to be depolarized by ≈ 5 mV in
mice with disconnected astrocytes [52]. We thus searched the exogenous [K+]e needed to mimic this
depolarization, and found that increasing [K+]e by 3.5 mM in +/+ slices depolarized pyramidal cells by
≈ 5 mV (before: −62.7±0.6 mV; during K+ application: −57.6±1.5 mV, n = 5; p < 0.001). Remark-
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Figure 4.1: Gap junction-mediated astroglial networks modulate extracellular potassium levels
during bursting. A. Representative traces of spontaneous astrocyte membrane depolarizations in +/+ (left)
and -/- (right) slices bathed in 0Mg2+, picrotoxin ACSF and generating bursts. The green dashed lines indicate
the resting membrane potential. Scale bars: 10 s, 2 mV. B. Quantification of CA1 stratum radiatum astrocyte
resting membrane potential (MP), and spontaneous MP frequency, amplitude and duration in +/+ and -/-
slices (+/+: n = 17 cells form 4 mice; -/-: n = 13 cells from 5 mice; unpaired t-test). C. Representative traces
of evoked astrocyte response in +/+ (grey) and -/- (black) slices after 0.1 ms (left) and 0.5 ms (right) Schaffer
collateral stimulation. Scale bars: 2 s, 2 mV. D. Quantification of MP depolarization area and amplitude
in +/+ and -/- astrocytes after 0.1 and 0.5 ms Schaffer collateral stimulation (+/+: n = 17 cells form 4
mice; -/-: n = 13 cells from 5 mice; unpaired t-test). E. Left, schematics illustrating simultaneous recordings
of extracellular K+ and fEPSPs in the CA1 area of hippocampal slices. Right, representative traces from
simultaneous recordings of K+ transients (top) and field potentials (bottom) in CA1 stratum radiatum of
+/+ and -/- mice. The red and green dashed lines indicate K+ concentration in ACSF ([K+]e = 2.5 mM)
and basal extracellular K+ concentration measured between consecutive bursts, respectively. The orange bar
indicates K+ changes (∆[K+]e) recorded during bursts. Scale bars: 10 s, 0.2 mV (bottom)/0.5 mM (top). F.
Quantification of basal [K+]e between bursts, indicated by the green dashed line in panel E (+/+: n = 16
slices from 9 mice; -/-: n = 17 slices from 6 mice; p < 0.05, unpaired t-test). G. Quantification of ∆[K+]e
during bursts (indicated by the orange line in panel E), half-width, rise time and decay time (+/+: n = 13
slices from 8 mice; -/-: n = 18 slices from 9 mice; unpaired t-test). Asterisks indicate statistical significance
(*, p < 0.05; **, p < 0.01; ***, p < 0.001).



4.1. EXPERIMENTAL RESULTS

ably, the same increase in [K+]e in +/+ slices strongly augmented burst frequency (before: 2.28± 0.26
bursts/min; during K+ application: 6.47± 0.43 bursts/min, n = 9 slices from 4 mice; p < 0.0001), and
decreased burst duration (before: 2.18± 0.22 s; during K+ application: 1.52± 0.07 s, n = 9 slices from
4 mice; p = 0.0065; fig. 4.2A-B), thus mimicking alterations induced by disconnection of astrocytes
in -/- mice. Conversely, we then tested in -/- mice the impact of [K+]e decrease on bursting pattern.
We found that decreasing [K+]e by 1 mM in -/- slices reduced burst frequency (before: 5.67 ± 0.55
bursts/min; during K+ application: 3.7 ± 0.32 bursts/min, n = 6 slices from 4 mice; p = 0.0018), as
well as increased burst duration (before: 1.23 ± 0.06 s; during K+ application: 1.76 ± 0.17 s, n = 6
slices from 4 mice; p = 0.0115; fig. 4.2C-D), thus rescuing wild type bursting pattern.
We previously reported that the altered bursting pattern in -/- mice is associated with a decreased
neuronal release probability, a hallmark of synaptic depression [168]. Such release probability is cor-
related to the size of the vesicle readily releasable pool [169], determining in turn the recruitment of
neurons during bursting activity [11, 170], which we also found to be reduced in -/- mice [52]. To
further test the implication of [K+]e alterations in the change of bursting pattern in -/- mice, we here
tested whether they also contribute to the synaptic depression. To do so, we performed repetitive
stimulation of Schaffer collaterals (10 Hz, 30 s), which induces a rapid synaptic facilitation followed by
a depression, resulting from presynaptic glutamate depletion (fig. 4.2E). We found that responses to
prolonged repetitive stimulation initially facilitated less and depressed faster in -/- compared to +/+
slices (p < 0.0001 and p = 0.0436, n = 9 and 7 slices for +/+ and -/-, respectively; fig. 4.2F-G).
Remarkably, increasing [K+]e by 3.5 mM in +/+ slices significantly reduced the initial facilitation
(p < 0.0001) to -/- levels (p = 0.1630) and accelerated synaptic depression (p < 0.001; n = 9 slices;
fig. 4.2F, orange). Conversely, decreasing extracellular K+ by 1 mM in -/- slices increased the 10
Hz-induced initial facilitation and slowed down the subsequent depression (p < 0.0001 and p = 0.0428,
n = 7 slices; fig. 4.2G, green) to +/+ level (p = 0.9374). Altogether, our data show that relevant
changes in basal [K+]e can fully switch wild type and knockout bursting patterns, pointing to their
contribution to alteration of bursting activity in -/- mice.

4.1.3 Impairing extracellular glutamate homeostasis or metabolic support
does not mimick the alteration of bursting pattern in astroglial Cx-
deficient mice

Astroglial networks also play a key role in restraining basal synaptic activity through modulation of
extracellular glutamate clearance rate. Astroglial Cx-deficient mice indeed show increased excitatory
synaptic activity due to an impairment of synaptic glutamate uptake, which makes glutamate persist
longer at the synapse and prolong its activation of AMPA and NMDA receptors currents [164]. To test
if a persistent activation of glutamatergic receptors is responsible for the altered bursting pattern in
Cx-deficient mice, we first prolonged in +/+ slices glutamate receptor activation by blocking AMPA
receptor (AMPAR) desensitization with cyclothiazide (100 µM) (fig. S4.1A). We found that cycloth-
iazide causes a decrease in burst frequency (bursts/min, Control: 2.78±0.25, cyclothiazide: 1.72±0.27,
p = 0.0022; n = 10 slices from 4 mice) with no effect on burst duration (Control: 1.85 ± 0.13 s, cy-
clothiazide: 1.82 ± 0.11 s, p = 0.8816; n = 10 slices from 4 mice). Furthermore, seizure-like events,
which were never observed in control conditions, appeared after ≈ 20 min of cyclothiazide application
with an average frequency of 0.37 ± 0.12 events/min (p = 0.0199; n = 10 slices from 4 mice) and
duration of 12.39± 3.22 s (fig. S4.1A-B). Thus prolonging glutamate activation of AMPARs via inhi-
bition of their desensitization did not reproduce the bursting pattern observed in slices from -/- mice.
Conversely, decreasing glutamate activation of AMPARs in -/- slices via their partial inhibition with
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Figure 4.2: Switch of bursting patterns between wild type and astroglial Cx-deficient mice via
alterations of extracellular potassium levels. A. Representative traces of hippocampal CA1 bursts
recorded extracellularly in +/+ mice in control ACSF (top) and ACSF supplemented with 3.5 mM KCl (+ 3.5
mM K+, bottom). Scale bars: 2 s, 400 µV. B. Quantification of burst frequency and duration (n = 9 slices
from 4 mice; paired t-test). C. Representative traces of hippocampal CA1 bursts in -/- mice in control ACSF
(top) and in ACSF depleted by 1 mM KCl (−1 mM K+, bottom). Scale bars: 2 s, 400 µV. D. Quantification of
burst frequency and duration (n = 6 slices from 4 mice; paired t-test). E. Top, Representative trace of fEPSPs
evoked by repetitive stimulation (10 Hz, 30 s) of CA1 Schaffer collaterals. Scale bars: 5 s, 0.2 mV. Bottom,
enlarged view of fEPSPs evoked by the first 10 stimuli. Scale bars: 200 ms, 0.2 mV. F-G. Quantification of
relative changes in fEPSP slope induced by the 10 Hz stimulation over baseline responses measured before the
onset of stimulation, in +/+ mice (F) in control ACSF (white) and ACSF supplemented with 3.5 mM KCl
(orange; n = 9 slices; repeated measures two-way ANOVA), and in -/- mice (G) in control ACSF (black) and
in ACSF depleted by 1 mM KCl (green; n = 7 slices; repeated measures two-way ANOVA). Asterisks indicate
statistical significance (*, p < 0.05; **, p < 0.01; ***, p < 0.0001).
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low NBQX concentration (0.5 µM) only decreased burst frequency (bursts/min, Control: 5.99± 0.29,
NBQX: 3.43± 0.38, p < 0.0001; n = 11 slices from 6 mice), without affecting burst duration (Control:
0.94 ± 0.04 s, NBQX, 1.00 ± 0.04 s, p = 0.2882; n = 11 slices from 6 mice; fig. S4.1C-D). Altogether,
these results indicate that the sole alteration in extracellular glutamate levels is unlikely to mediate the
impaired bursting pattern observed in -/- mice. Another key feature of astroglial networks is to pro-
vide energy metabolites to neurons via GJ-mediated intercellular pathway, thereby sustaining synaptic
transmission and neuronal population bursts [163]. To test whether an altered astroglial metabolic
supply contributes to the alteration of the bursting pattern observed in Cx-deficient mice, we mimicked
a decreased metabolite support by depriving +/+ slices from glucose. We found that this treatment
only inhibited bursting activity, with halved burst frequency after 20 min and an almost complete block
after 30 min (bursts/min, Control: 2.25 ± 0.31, 20 min: 1.24 ± 0.30, 30 min: 0.27 ± 0.07, p = 0.05
and p < 0.0001 for 20 and 30 min compared to Control; n = 11 slices; fig. S4.2). To ensure that this
manipulation did not affect slice viability, we subsequently supplied to +/+ slices exogenous glucose
(11 mM, 20 min), which fully restored bursting activity (2.45± 0.40 bursts/min, p = 0.9290 compared
to control; n = 11 slices; fig. S4.2). Altogether, these data do not point to a role of impaired astroglial
glucose supply in mediating the aberrant bursting pattern observed in -/- slices.

4.2 Modeling results

In this section, we present the results obtained from numerical simulations of the facilitation-depression
model with AHP (see methods section 4.4.5 equations 4.1). First, we explain the model calibration
and show that it can reproduce the distributions of burst and AHP durations in the +/+ and -/- cases
(section 4.2.1). Then we detail the numerical procedure we used to decipher the respective influence
of membrane depolarization, AHP, synaptic noise and depression on the modulation of burst and IBI
(section 4.2.2). Finally, we show the experimental validation of the model’s predictions (section 4.2.3).

4.2.1 Modeling neuronal bursting with astroglial networks

Our experimental data point to a role for astroglial networks in controlling bursting patterns via regu-
lation of [K+]e. Extracellular K+ has multiple physiological targets, such as membrane potential and
AHP, as well as synaptic noise and depression. Remarkably, we found that all these membrane and
synaptic properties are altered in mice with disconnected astrocytes [52] (se also fig. 4.2). This thus
raises the question of their relative contribution to the changes in bursting pattern. To identify the
properties underlying the astroglial network K+-mediated burst regulation, we used here a modeling
approach to study the burst generation, as there is no experimental tool to selectively target each of
these properties. To do so, we developed a mean-field model based on experimental data consisting
in neuronal patch-clamp recordings of hippocampal pyramidal cells from wild type and Cx-deficient
mice, and which accounts for synaptic facilitation and depression and membrane properties, where we
introduced an AHP component (fig. S4.3, see also Methods section 4.4.5). Analysis of these electro-
physiological data was performed using voltage time-series segmentation into three phases: bursting,
AHP and quiescent phase (QP) (fig. S4.3A, S4.4A and Supplementary Methods section 4.5.2) to gener-
ate the associated duration histograms (fig. S4.3B). We found that the distributions of burst durations
and interburst intervals (IBI, which includes the AHP and QP) were shifted to lower values in Cx-
deficient mice (burst durations: +/+, 3.06 ± 0.09 s, n = 284 bursts from 10 cells; -/-, 1.55 ± 0.02 s,
n = 250 bursts from 6 cells; p < 0.0001; IBI: +/+, 18.02 ± 0.61 s, n = 284 bursts from 10 cells; -/-,
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14.66±0.31 s, n = 250 bursts from 6 cells; p = 0.0033; fig. S4.3B), and were also more peaked, reflecting
reduction in variance (burst duration; s+/+ = 1.52 s, s−/− = 0.37 s; IBI: s+/+ = 10.27 s, s−/− = 4.95
s). The duration of the AHP was also decreased in -/- mice (+/+: 12.52 ± 0.56 s, -/-: 8.03 ± 0.19
s, p < 0.0001, fig. S4.3B), while the QP duration was only slightly changed (+/+, 5.50 ± 0.34 s; -/-,
6.63 ± 0.32 s, p = 0.017; fig. S4.3B). Further, we found an increase in the synaptic noise amplitude
(+/+: σ̃2 = 1.97, -/-: σ̃2 = 3.80, fig. S4.3C) by computing the power spectral densities (PSD) of the
QP using a Lorentzian fit on the low-pass filtered PSD at 30 Hz, as well as a depolarization of the
membrane potential in Cx-deficient mice (+/+, −61.84±1.43 mV, n = 12 cells; -/-, −57.04±0.56 mV,
n = 10 cells; p = 0.0075; fig. S4.3D). To explore the conditions under which numerical simulations can
reproduce the experimental data, the model accounts for four phases (fig. 4.3A): 1) burst initiation
(blue), that ends when the depression variable y reaches its minimum; 2) recovery from the bursting
phase (red, mid-burst), until the membrane hyperpolarization reaches its maximum; 3) recovery of
the membrane voltage to the resting potential (pink, burst refractory period); 4) membrane voltage
fluctuations around the resting potential until the next burst starts (green, QP). Using this model,
we simulated the mean membrane potential, the facilitation and the depression variables and obtained
time-series showing spontaneous bursts followed by AHP periods (fig. 4.3B). To determine the values
of the unknown parameters in our model, we compared the statistics of the simulated time-series to
those of the experimental data. More specifically, we generated numerical simulations of system (4.1)
that we segmented using a thresholding method (fig. S4.4B and Supplementary Methods section 4.5.2).
We then obtained the statistics of bursting and AHP durations, which we fitted to generate distribu-
tions comparable to the ones extracted from segmenting the patch-clamp recordings (fig. S4.3; see also
fig. S4.4A for more details). To determine the optimal values of the parameters (Table 4.1), we first
calibrated the model for the wild type case (fig. 4.3C, upper). We then modified the AHP duration,
noise amplitude and depolarization by changing the medium τmAHP and slow τsAHP time constants, the
AHP depth TAHP , the noise amplitude σ and the membrane depolarization T , in order to match the
experimental distributions of the Cx-deficient case (fig. 4.3C, lower). Using this approach, we obtained
a good fit for the AHP and burst durations in +/+ and -/- conditions. Further, since the experimental
data indicated the presence of synaptic depression in Cx-deficient mice (fig. 4.2E-G), we investigated
the depression level using the calibrated model. For that purpose, in the simulations, we reported the
synaptic depression level yi at the initiation of each detected burst (fig. 4.3D, inset). Interestingly, we
found that neurons in conditions of astrocyte disconnection are more depressed compared to the control
condition as the distribution of depression values is shifted to the left (p < 0.0001; fig. 4.3D), which
is in agreement with the experimental data. Altogether, our calibrated mean-field model accounts for
the bursts properties observed experimentally in +/+ and -/- conditions.

4.2.2 Modeling predicts that astroglial gap junctions-mediated regulation
of AHP sets bursting pattern

We then determined the relative contribution of the changes in either AHP, basal membrane depolar-
ization, synaptic noise or depression to the alteration of bursting pattern found in Cx-deficient mice. To
do so, we ran simulations of the model with the parameters obtained in the fit of the +/+ distributions,
except for the tested factor (AHP, noise amplitude or depolarization threshold), for which we used the
data from the fit of the -/- condition (fig. 4.4, red). These simulations were then compared to the ones
computed using all parameters from the fit of +/+ distributions (fig. 4.4, purple).
Using this approach, we first tested the selective effect of decreasing the AHP (medium τmAHP and slow
τsAHP timescales and AHP depth TAHP ) and found a shift in the durations of bursts and IBI towards
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Figure 4.3: Modeling neuronal network bursting using depression-facilitation and AHP dynam-
ics. A. Schematic decomposition of a burst, followed by AHP, into four steps: 1) burst initiation mediated
by facilitation and synaptic depression; 2) recovery of synaptic depression until the maximum amplitude of
hyperpolarization; 3) burst refractory period; 4) quiescent phase characterized by the lack of bursting activity.
Scale bar: 5 s. B. Simulated time-series of normalized voltage (upper), facilitation x (center) and synap-
tic depression y (lower) over 100 s. C. Model calibration based on fitting simultaneously the experimental
distributions of burst and AHP durations extracted from electrophysiological recordings segmentation (fig.
S4.3A) of pyramidal neurons in +/+ (purple) and -/- (red) mice overlaid with the simulated distributions
(light purple and red). D. Distribution of depression level yi at burst initiation (arrow in the inset) obtained
from 104 s simulations for +/+ (purple) and -/- (red). Asterisks indicate statistical significance in two-sample
Kolmogorov-Smirnov test (***, p < 0.0001). Parameters are summarized in Table 4.1
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reduced values (p < 0.0001; fig. 4.4A), mimicking for burst duration the value obtained experimentally
in the -/- condition (p = 0.23; fig. 4.4A). We then investigated the selective impact of the membrane
depolarization (∆V = 5 mV), and found no shift in the distribution histograms for bursts and IBI du-
rations (p = 0.78 and p = 0.60, respectively, fig. 4.4B), thus resulting in a different pattern compared
to the -/- condition (p < 0.0001, fig. 4.4B). We also tested the specific effect of increasing the synaptic
noise (σ, noise amplitude), and found that this only caused a shift in burst durations with no effect on
IBI durations (p < 0.0001 and p = 0.23 for bursts and IBI, respectively; fig. 4.4C).
Synaptic depression is an output of the model, and depends on AHP, membrane depolarization and
synaptic noise (fig. S4.5A-C). Thus to investigate the effect of depression on burst and IBI durations,
we reproduced the depression level at burst initiation that we observed in the +/+ case (fig. S4.5D,
purple). To do so, we ran numerical simulations with short AHP (-/- parameters, Table 4.1) combined
with a reduced depression recovery timescale (from τr = 2.9 s to 1.9 s; fig. S4.5D, yellow). We found
that with short AHP and low depression (yellow, fig. S4.5E) the bursts are longer than the ones in
the -/- condition (red, short AHP and high depression; p < 0.0001), but still much shorter than in the
+/+ case (purple, long AHP and low depression) (Supplementary fig. S4.5E). This result indicates
that the depression level plays a role in the bursting pattern, but its change in the -/- condition is
not sufficient to fully account for the bursting alteration. Furthermore, AHP durations in presence of
low depression are even shorter compared to -/- (p < 0.0001; fig. S4.5F), since a low depression in a
neuronal network triggers more bursts [11,170]. These results indicate that only decreasing depression
in the -/- condition is not sufficient to recover the WT phenotype. Altogether, these results indicate
that only the reduction in AHP, but not the increase in membrane depolarization, synaptic noise or
depression, results in the bursting pattern of the -/- condition.

4.2.3 Experimental validation of the role of AHP in switching between
wild type and knockout bursting patterns

We then verified experimentally whether changes in AHP are responsible for the altered bursting in
-/- slices, as predicted by the model. To do so, we first tested in +/+ mice the impact of inhibiting
AHP using XE-991, inhibiting voltage-gated KCNQ channels, which mediate the AHP M-current. We
found that XE-991 (10 µM) significantly increased burst frequency (Control, 1.78 ± 0.31 bursts/min;
XE-991, 2.98 ± 0.420 bursts/min, p = 0.0399, n = 5 slices from 3 mice) and reduced burst duration
(Control, 1.68±0.27 s; XE-991, 1.12±0.13 s; p = 0.0340, n = 5 slices from 3 mice; fig. 4.5A-B) in +/+
slices, thus mimicking alterations induced by astrocyte network disruption in -/- mice. Conversely,
we found that increasing AHP in -/- slices with retigabine (40 µM), which activates KCNQ-type K+

channels, decreased burst frequency (Control, 4.75±0.33 bursts/min; retigabine, 1.15±0.33 bursts/min,
p < 0.0001, n = 7 slices from 3 mice) and increased burst duration (Control, 1.55 ± 0.1 s; retigabine,
1.98± 0.17 s, p = 0.0481, n = 7 slices from 3 mice; fig. 4.5C-D), thus rescuing +/+ bursting pattern in
-/- mice. In all, these results confirm the model prediction that the reduction in AHP fully accounts for
the altered bursting pattern observed with astrocyte disconnection. Further, they reveal that astrocyte
GJ regulation of [K+]e during bursting controls the activation of KCNQ voltage-gated K+ channels.

4.3 Discussion

Here we combined molecular, physiological and modeling approaches to investigate the specific role of
astroglial networks in the regulation of hippocampal bursting patterns. We found that astroglial GJ
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Figure 4.4: Relative contribution of AHP, membrane potential depolarization and synaptic noise
on bursting dynamics. A. Left: distribution of burst (left) and IBI (right) durations for τsAHP = 10.5 s,
τmAHP = 0.35 s and TAHP = −30 (+/+, light purple), and for τsAHP = 5 s, τmAHP = 0.15 s and TAHP = −23
(-/-, light red). σ = 6 and T = 0 for both +/+ and -/- (5000 s simulations; p < 0.0001 for burst and IBI, two-
sample t-test). The red curves represent the burst and IBI duration distributions obtained in the experimental
data from -/- mice. Right: simulated mean voltage time series with AHP parameters of +/+ (top) and -/-
(bottom) conditions. B. Same plots as panel A with τsAHP = 10.5 s, τmAHP = 0.35 s, TAHP = −30, σ = 6
and T = 0 (+/+, light purple) or T = 40 (-/-, light red) (p = 0.88 for burst and p = 0.38 for IBI, two-sample
t-test). C. Same plots as panel A with τsAHP = 10.5 s, τmAHP = 0.35 s, TAHP = −30, T = 0 and σ = 6
(+/+, light purple) or σ = 9 (-/-, light red) (p < 0.0001 for bursts and p = 0.04 for IBI, two-sample t-test).
Asterisks indicate statistical significance (*, p < 0.05; ***, p < 0.0001).
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Figure 4.5: Switch between wild type and astroglial Cx-deficient bursting patterns via alterations
in AHP. A. Representative traces of hippocampal bursts in +/+ mice in control condition (top) and in the
presence of XE-991 (10 µM), an inhibitor of KCNQ channels. Scale bars: 10 s, 400 µV. B. Quantification of
burst frequency and duration (n = 5 slices from 3 mice; paired t-test). C. Representative traces of hippocampal
bursts in -/- mice in control condition (top) and in presence of retigabine (40 µM), an activator of KCNQ
channels. Scale bars: 10 s, 200 µV. d) Quantification of burst frequency and duration (n = 7 slices from 3
mice; paired t-test). Asterisks indicate statistical significance (*, p < 0.05; ***, p < 0.0001).
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strengthen hippocampal population bursts via extracellularK+ regulation of KCNQ channels mediating
AHP. Astroglial Cx deficiency indeed alters extracellular K+ regulation, resulting in higher basal K+

levels and smaller K+ transients during bursting activity. Furthermore, changing basal [K+]e levels
allows switching between wild type and knockout bursting patterns. Finally, AHP was reduced in
astroglial Cx-deficient mice and restoring it pharmacologically by activating KCNQ-type voltage-gated
K+ channels rescued normal bursting patterns. These data identify for the first time in the central
nervous system a neuronal ion channel that is a target of astroglial GJ and underlies changes in network
activity.

Extracellular glutamate homeostasis, metabolic support and astroglial networks regula-
tion of bursting pattern In basal conditions, Cx-deficient astrocytes inadequately remove glu-
tamate released from synapses [164]. The decreased glutamate clearance causes an accumulation of
glutamate, which prolongs neuronal excitatory activity through enhanced AMPAR and NMDAR acti-
vation and glutamate spillover [164]. Here, we investigated whether an impaired glutamate clearance
was involved in the altered bursting pattern found in Cx-deficient slices during sustained population
activity. Reducing glutamate AMPAR activation in -/- slices by partially inhibiting them with low
dose of NBQX only mildly decreased burst frequency, without increasing burst duration. In addition,
prolonging AMPAR activation by inhibiting their desensitization with cyclothiazide neither increased
burst frequency nor decreased burst duration in +/+ mice. Instead, this treatment induced seizure-like
activity, which was never observed spontaneously in -/- mice (fig. S4.1). These results thus indicate
that the impaired bursting in astroglial Cx-deficient mice is not due to an altered glutamate clearance
leading to glutamate accumulation at the synapse. In the absence of functional astroglial networks,
decreased presynaptic release probability was observed during spontaneous bursting activity [52]. Re-
markably, a decreased release probability was also reported during active states of physiological slow
oscillations [171]. Consistent with these data, it was previously shown that bursts are initiated when
action potential-induced synchronous synaptic release of glutamate occurs and are sustained till ex-
haustion of vesicle pools [11, 170]. Accordingly, we here found in Cx-deficient mice that the readily
releasable pool of synaptic vesicles during bursting was decreased, as shown by the impaired responses
to prolonged 10 Hz stimulation (fig. 4.2E-G). The enhanced synaptic bombardment causing neuronal
depolarization and spontaneous firing between bursts previously reported [52] likely decrease the readily
releasable pool of synaptic vesicles during bursting, thus reducing synaptic efficacy, neuronal synchro-
nization and burst strength.
GJ-mediated astroglial networks provide metabolic substrates to neurons. This intercellular pathway
for glucose delivery from blood vessels to distal active neurons is activity-dependent and sustain glu-
tamatergic activity [163]. Since burst duration and neuronal synchronization are reduced in -/- mice,
an impaired energy supply to neurons could contribute to the altered bursting. However, recordings
were performed in 11 mM glucose-containing ACSF, thereby bypassing a possible reduction in glucose
supply. In addition, we tested in +/+ mice the effect of extracellular glucose deprivation. We found
that it halved burst frequency after 20 min and almost fully blocked activity after 30 min, an effect
which does not reproduce the knockout bursting pattern (fig. S4.2). These results thus indicate that
the altered bursting pattern in astroglial Cx-deficient mice does not result from impaired energy supply.

Gap junction-mediated astroglial networks modulate extracellular potassium during burst-
ing [K+]e is tightly regulated in the brain and kept close to 3 mM in basal conditions, while local
changes occur in presence of neuronal activity. Limited K+ efflux from neurons may actually induce
significant changes in [K+]e, due to the small volume of extracellular space and the low baseline [K+]e.

126



CHAPTER 4. ASTROGLIAL GAP JUNCTIONS STRENGTHEN HIPPOCAMPAL NETWORK . . .

Physiological neuronal activity leads to [K+]e increases of less than 1 mM, while pathological activity,
such as seizures, can build [K+]e up to 10-12 mM [172]. Changes in [K+]e can strongly impact several
neuronal processes, such as the activity of voltage-gated ion channels, synaptic transmission, neuro-
transmitter transport, the maintenance of membrane potential and excitability. Rapid changes in [K+]e
are thus tightly controlled by passive diffusion and cellular mechanisms of K+ clearance [173]. Effective
removal of extracellular K+ is indeed vital for maintaining brain homeostasis and limiting neuronal
network hyperexcitability during physiological brain processes. Early on, GJ-connected retinal glial
cells have been shown to play a role in controlling [K+]e through spatial buffering [174]. Local excess of
K+ is indeed dispersed through interconnected glial cells in which K+ currents can traverse relatively
long distances and transfer K+ ions from sites of elevated [K+]e to those with lower [K+]e. Astroglial
GJ have been assumed to play a similar role. However, studies using knockout mice for astroglial
Cxs suggested that astroglial GJ only partially account for K+ spatial buffering in the hippocampus.
GJ-mediated currents indeed represent ≈ 30% of the astrocyte whole-cell currents [53], and although
they contribute to extracellular K+ homeostasis at both physiological (single and paired-pulse stimu-
lation) [53,164] and pathological levels (trains of stimulations) [53], Cx-deficient astrocytes still display
large K+ clearance capacity. Further, the contribution of astrocytic GJs to extracellular K+ buffering
has recently been questioned. Recent work indeed reports that acute pharmacological inhibition of
GJs does not alter synaptically-evoked extracellular K+ transients in hippocampal slices, but only in-
creases large and localized K+ variations exceeding ≈ 10 mM [175]. However, in this work inhibition of
astroglial GJ was performed using carbenoxolone, which is not a specific blocker of astroglial GJ. Car-
benoxolone, which blocks GJ from all cell types, is indeed a mineralocorticoid agonist, which has several
other off-target effects, as it inhibits numerous ion channels and pumps such as Na/K ATPases [176],
chloride channels [177], voltage-gated Ca2+ channels [178], pannexin1 channels [179] as well as neuro-
transmitter receptors such as AMPARs [180] and GABAARs [181]. Carbenoxolone thus alters intrinsic
neuronal membrane properties [182] and synaptic transmission [178], besides having some neurotoxic
effects [182]. These multiple actions of carbenoxolone, independent of GJ inhibition, thus preclude its
use to assess the impact of astroglial GJ on [K+]e. As up to now, there is no specific pharmacological
inhibitor of astroglial GJ communication and the effects of [K+]e are pleiotropic, here we combined
molecular and modeling approaches to study the impact of astroglial GJ on [K+]e and network activity.
We hypothesized that the increased bursting activity in mice with disconnected astrocytes results from
K+ accumulation in the extracellular space, as it has been shown that an increment of [K+]e from
5 to 10 mM can cause a 5-fold increase in the frequency of hippocampal interictal events [183, 184].
Further, since disconnected astrocytes display increased volume associated with decreased extracellular
space [164], K+ clearance by extracellular diffusion is also likely to be impaired, and thus contribute to
extracellular K+ build-up. Accordingly, we here found that resting [K+]e between bursts is increased
compared to +/+ mice (fig. 4.1A-B) [52]. This is in agreement with the steady-state depolariza-
tion of CA1 pyramidal cells [52] and astrocyte membrane potentials (fig. 4.1D-E) in a regime of
bursting activity in mice with disconnected astrocytes. It is noteworthy that this effect is specific
for the bursting regime of activity, as it was not observed in basal conditions [164]. In agreement
with these observations, we found that K+ transients during bursts are smaller and shorter in mice
with disconnected astrocytes compared to +/+ mice, as well as burst-associated or synaptically-evoked
astrocytic membrane depolarizations, which represent a sensitive measure of extracellular K+ levels
during activity (fig. 4.1). Astrocytic disconnection indeed prevents optimal coordination of neuronal
populations and impairs synchronization [52]. Astrocytes, as part of the tripartite synapse, modulate
neuronal synchronization and network activity, by preventing excessive accumulation of K+ [172]. Fur-
thermore, alterations in [K+]e due to astrocyte disconnection may also alter local electric fields and
synaptic current waveforms, thereby impacting on the whole network signal integration [185] and medi-
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ating transitions between tonic and phasic neuronal oscillations [186]. Remarkably, we also found that
changing resting K+ levels allows switching between +/+ and -/- bursting patterns, which points to
the contribution of impaired extracellular K+ homeostasis in the altered network activity of mice with
disconnected astrocytes. Thus, the control of [K+]e by GJ-connected astrocytes not only modulates
neuronal excitability at the cellular level, but also regulates the global activity of neuronal networks.

KCNQ channels are a target of astroglial gap junctions Our experimental data point to
a contribution of GJ-mediated astroglial networks in setting bursting patterns via [K+]e modulation.
Deciphering experimentally the physiological target of extracellular K+ involved in the astroglial control
of bursts is however challenging, as K+ acts on multiple membrane (membrane potential and AHP) and
synaptic properties (noise and depression), that are all altered in mice with disconnected astrocytes [52]
(see also fig. 4.2). To investigate their relative contribution to the changes in bursting pattern, we
thus here developed a novel neuronal network model based on experimental data and underlying burst
generation. In this model, which accounts for synaptic facilitation/depression [102,105,109], we added
the consequences of membrane properties and [K+]e dynamics, by introducing an AHP component,
without making the distinction between the variety of K+ channels. To calibrate the model, we found
the parameters by minimizing the difference between the distribution of bursts and IBI durations from
simulations and the experimental ones. This modeling approach predicted that the astroglial network
regulation of extracellular K+ sets bursting pattern by controlling AHP. This suggested that impaired
membrane depolarization and repolarizations of neurons in mice with disconnected astrocytes altered
the proper temporally and spatially-restricted functioning of voltage-gated ion channels during bursting.
Our electrophysiological recordings confirmed the role of AHP in the astroglial network regulation of
bursting pattern, and identified that this GJ-control of AHP results from modulation of KCNQ voltage-
gated K+ channels activation. Interestingly, loss of Cx43 GJ channels in the heart causes a decrease
in action potential duration in myocytes by increasing sustained repolarizing and inward rectifier K+

currents [187]. Furthermore, Cx43 deletion in adult ventricular and fetal atrial myocytes also decreases
the amplitude of the Nav1.5-mediated sodium current [188,189], thereby indicating that Cx43 channels
are necessary for proper sodium current function. Remarkably, it has also been shown in pancreatic
β-cells that GJ channels formed by Cx36 coordinate KATP channel activity to promote synchronized
and oscillatory insulin secretion under stimulatory levels of glucose or global β-cell inhibition at basal
level of glucose [190]. Consistent with these data, we here report in the central nervous system that
astroglial GJ modulate neuronal excitability via extracellular K+ regulation of AHP mediated by
KCNQ channels. By identifying KCNQ channels as downstream/molecular targets of astroglial GJ,
our data uncover the molecular mechanism underlying astroglial network regulation of bursting pattern.

4.4 Methods

Experiments were carried out according to the guidelines of the European Community Council Direc-
tives of January 1st 2013 (2010/63/EU) and all efforts were made to minimize the number of used
animals and their suffering. Experiments were performed in the hippocampus of wild-type mice (+/+)
and Cx30-/-Cx43fl/fl hGFAP-Cre mice (-/-), provided by Pr. K. Willecke (University of Bonn, Ger-
many), with conditional deletion of Cx43 in astrocytes and additional total deletion of Cx30. For
all analyses, mice of both genders and littermates were used and ex vivo slice electrophysiology was
performed on P16-P25 mice as previously described [163].
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4.4.1 In vitro slice electrophysiology

Acute transverse hippocampal slices (400 µm) were prepared as previously described [163] from 16 to
25 days old +/+ and -/- mice. Slices were maintained in a storage chamber containing a standard
artificial cerebrospinal fluid (ACSF; 119 mM NaCl, 2.5 mM KCl, 2.5 mM CaCl2, 1.3 mM MgSO4, 1
mM NaH2PO4, 26.2 mM NaHCO3, and 11 mM glucose, saturated with 95% O2 and 5% CO2) for 30
minutes, then stored in a magnesium-free ACSF in the presence of picrotoxin (100 µM) for at least 1 h
before recording so that the slices can spontaneously generate population bursts. Slices were transferred
in a submerged recording chamber mounted on an Olympus BX51WI microscope equipped for infrared-
differential interference (IR-DIC) microscopy and were perfused with 0 Mg2+-picrotoxin ACSF at a rate
of 2 ml/min. Extracellular field and whole-cell patch-clamp recordings of astrocytes were performed.
Field excitatory bursts were recorded with glass pipettes (2–5 MΩ) filled with ACSF and placed in
stratum radiatum. Prolonged repetitive stimulation was performed at 10 Hz for 30 s. Whole-cell
recordings were obtained from visually identified CA1 stratum radiatum astrocytes using 5-10 MΩ
glass pipettes filled with 105 mM K-gluconate, 30 mM KCl, 10 mM HEPES, 10 mM phosphocreatine,
4 mM ATP-Mg, 0.3 mM GTP-Tris, and 0.3 mM EGTA (pH 7.4, 280 mOsm). The stimulations
consisted of 0.1 and 0.5 ms electrical pulses (15 µA) applied through a glass pipette located in the
stratum radiatum. CA1 astrocytes resting membrane potential, membrane and series resistance as
well as membrane capacitance were monitored throughout the recordings. Measurements of membrane
resistance and capacitance were performed on astrocytes clamped at -80 mV. Responses (neuronal
fEPSP slope) to repetitive stimulation (10 Hz, 30 s) were binned (bin size 1.2 s) and normalized to
mean baseline responses measured at 0.1 Hz before repetitive stimulation. Field potentials and patch-
clamp recordings were acquired with Axopatch-1D amplifiers (Molecular Devices, USA), digitized at
10 kHz, filtered at 2 kHz, stored and analyzed on computer using pCLAMP9 and Clampfit10 software
(Molecular Devices, USA).
For multi-electrode array (MEA) recordings, hippocampal slices were transferred on planar MEA petri
dishes (200-30 ITO electrodes, organized in an 12x12 matrix, with internal reference, 30 µm diameter
and 200 µm inter-electrode distance; Multichannel Systems, Germany). They were kept in place by
using a small platinum anchor. The slices on MEAs were continuously perfused at a rate of 2 ml/min
with a magnesium-free ACSF containing picrotoxin (100 µM), as previously described [52]. Pictures of
hippocampal slices on MEAs were used to identify the location of the electrodes through the different
hippocampal regions and to select the electrodes of interest. Data were sampled at 10 kHz and network
spontaneous activity was recorded at room temperature by a MEA2100-60 system (bandwidth 1-3000
Hz, gain 2x, Multichannel Systems, Germany) through the MC Rack 4.5.1 software (Multichannel
Systems, Germany).

4.4.2 Preparation of K+-sensitive microelectrodes and measurement of
extracellular K+ concentration

Single-barreled K+-selective microelectrodes were prepared using thin-walled borosilicate capillaries
(GC150T-7.5, Harvard Apparatus, USA). The interior walls of the capillaries were silanized with silan
vapors (N,N-Dimethyltrimethylsilylamine, Sigma Aldrich, France) for 15 min and dried at 200◦C for
100 min. The tip of K+-selective microelectrodes was filled with Potassium ionophore I (Cocktail
A, Sigma Aldrich, France) and the rest of the electrode was backfilled with 200 mM KCl in ACSF
background. The reference electrode was made of standard patch-clamp glass (GC150F-10, Harvard
Apparatus, USA) and filled with ACSF containing (in mM): 119 NaCl, 2.5 KCl, 1 NaH2PO4, 26.2
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NaHCO3, 2.5 CaCl2, 1.3 MgSO4 and 11 glucose. The K+-selective microelectrodes were calibrated
using solutions containing 0.5, 1, 2, 3, 4, 5, 6, 8, 10, 12, 20 and 40 mM KCl. The extracellular K+

concentration was recorded in +/+ and -/- mouse hippocampal slices in a recording chamber mounted
on an Olympus BX51WI microscope equipped for infrared differential interference microscopy and with
40x objective; slices were perfused with standard ACSF or magnesium-free ACSF containing picrotoxin
(100 µM) at a rate of 2 ml/min. Both the K+-selective and reference electrodes were placed in CA1
stratum radiatum, so that their tips were within 10 µm distance from each other. Data were acquired
using Axopatch 200B amplifier, sampled at 20 kHz, low pass filtered (2 kHz), digitized (Digidata 1440),
and stored and analyzed on computer using pCLAMP 9 and Clampfit 10 software (all from Molecular
Devices, USA). The signal from the reference electrode was offline subtracted from the signal of the
K+-selective electrode to obtain a signal proportional to actual K+ concentration. The relationship
between the measured voltage and the actual K+ concentration was derived from the log-linear fit
function.

4.4.3 Burst Analysis

Raw data were analyzed with MC Rack (Multi-Channel System, Reutlingen, Germany). Detection of
bursts was performed using the “Spike Sorter” algorithm, which sets a threshold based on multiples of
standard deviation of the noise (5-fold) calculated over the first 500 ms of recording free of electrical
activity. A 5-fold standard deviation threshold was used to automatically detect each event, which
could be modified in real-time by the operator on visual check if needed. Analysis of burst duration
was performed using Neuroexplorer (version 4.109, Nex Technologies, USA).

4.4.4 Drugs

NBQX and cyclothiazide were from Tocris (UK); all the other products were obtained from Sigma-
Aldrich (France).

4.4.5 Generalized depression-facilitation model accounting for potassium
dynamics

The facilitation-depression model [102, 105, 109] is a mean-field type representation of a sufficiently
connected neuronal network. It consists of three equations for the mean voltage h, the mean depression
y, and the mean synaptic facilitation x. However, this neuronal-network model does not account for
long hyperpolarization periods, due to K+ channel activation [38], leading to a refractory period. To
account for these periods, we modified this initial model by introducing two new features:

1. A hyperpolarized equilibrium state, in addition to the resting state. This new state is defined by
a negative value for the voltage h, with a new threshold (TAHP = −30, see Table 4.1).

2. A medium and slow recovery of the voltage during AHP to the resting potential, modeled by two
time constants τmAHP and τsAHP .
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The general system becomes

τ0ḣ =−(h− T0) + Jxy(h− T0)+ +
√
τ0σω̇

ẋ =
X − x
τf

+K(1− x)(h− T0)+

ẏ =
1− y
τr
− Lxy(h− T0)+,

(4.1)

where

τ0 =


τmAHP if (ẏ > 0) and (y < Yh)

τsAHP if (Yh ≤ y ≤ YAHP ) and (h < HAHP )

τ otherwise

(4.2)

and

T0 =


TAHP if (ẏ > 0) and (y < Yh)

0 otherwise.

(4.3)

The threshold linear function h+ = max(h, 0) represents the firing rate and ω̇ is a Gaussian white noise
centered at 0 and of variance 1. The noise amplitude is σ. The parameters J , K, L represent the
synaptic connectivity, the facilitation increase rate during bursts and the rate of vesicular release prob-
ability (i.e. the depression) which decays during bursts [105,110]. The time constants τf (facilitation)
and τr (depression recovery) are defined in Table 4.1.
A burst can be initiated by a Dirac impulse at time t0 (T0 = 0 and τ0 = τ) or just by the addition of a
Gaussian white noise of low amplitude. It ends when the depression variable y starts to increase (fig.
4.3A, Step 1, blue). After y reaches the threshold value Yh, then τ0 = τmAHP and the resting value
T0 = TAHP . In practice this phase is defined for y < Yh and (ẏ > 0), Step 2 (red). These changes
force the voltage to hyperpolarize and lasts until y > yAHP or h > HAHP . During the last phase, we
change the time constant τ0 = τsAHP and the resting value T0 = 0 (Step 3, purple). For y > YAHP
and h ≥ HAHP , we are back to and τ0 = τ and T0 = 0 (fig. 4.3A, Step 4). The role of the noise is to
generate spontaneous bursts (fig. 4.3B). The parameters K, L and J are adapted from [105, 109] to
fit the patch-clamp recordings data (see Table 4.1). The fine-tuning of all parameters is obtained by
best fitting the burst and AHP time distributions, as described in the Results section 4.2.1. The AHP
parameters are determined using the order of magnitudes observed in CA1 hippocampal pyramidal
neurons [38].

4.4.6 Numerical Simulations

We ran numerical simulations of equations (4.1) in MATLAB using a Runge-Kutta 4 scheme with
δt = 10 ms (we also used δt = 1 ms to confirm the robustness of the numerical scheme).
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Parameters Values
σ Noise amplitude 6
τ Fast time constant for h 0.05s
τmAHP Medium time constants for h 0.35s (+/+) / 0.15s (-/-)
τsAHP Slow time constants for h 10.5s (+/+) / 5s (-/-)
J Synaptic connectivity 4.21 (modified: 3-5 in [145])
K Facilitation rate 0.037Hz (modified: 0.04Hz in [109])
X Facilitation resting value 0.08825 (modified: 0.5-0.1 in [145])
L Depression rate 0.028Hz (modified: 0.037Hz in [109])
τr Depression time rate 2.9s (modified: 2-20s in [109])
τf Facilitation time rate 0.9s (modified: 1.3s in [109])
T Depolarization parameter 0
σ Noise amplitude 3
TAHP Undershoot threshold -30 (+/+) / -23 (-/-)

Table 4.1: Model parameters

4.4.7 Time series segmentation

To detect the bursts and IBI, we developed a segmentation procedure based on various time series:
MEA recordings of hippocampal slices from +/+ and -/- mice, patch-clamp recordings of hippocampal
pyramidal cells from +/+ and -/- mice and numerical simulations. The method is detailed in the
Supplementary Information section 4.5.2, but we briefly summarize here the principles used for the
experimental data: we first filtered the individual action potentials using a sliding window of length

Tw = 1s to compute the local average sm(t) =
1

T

∫ t+T/2
t−T/2 s(t)dt. A burst is detected when sm(t) exceeds a

threshold Te1 and the end of the burst is determined when sm(t) reaches its equilibrium value Te2. This
segmentation is used to extract the burst and IBI durations in both MEA and patch-clamp recordings
(see supplementary information section 4.5.2 for details). The threshold Te2 is estimated by fitting
a horizontal line to the epochs preceding the burst, and we define the burst detection threshold as

Te1 =
max[0,Tf ]sm(t) + Te2

2
.

4.4.8 Statistical analysis

Data are expressed as mean ± SEM, unless otherwise stated. Statistical significance for between
groups comparisons was determined by paired and unpaired two tailed t-tests. One-way ANOVA with
Dunnett post hoc test was performed for 0 glucose experiment. Repeated measures two-way ANOVA
was performed for repetitive stimulation (10 Hz, 30 s). Two-sample Kolmogorov-Smirnov test was used
for distribution comparison. Differences were considered significant at p < 0.05. Statistical analysis
was performed using GraphPad Prism 5 software and figures were prepared using Adobe Illustrator
CS3. Exact p values are given unless p < 0.0001 or p > 0.9999.

Data availability

The data that support the findings of this study are available from the corresponding author upon
reasonable request.
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O., HOLCMAN D.+ & ROUACH N.+, “Astroglial gap junctions strengthen hippocampal network ac-
tivity by sustaining afterhyperpolarization via KCNQ channels” *,+contributed equally

4.5 Supplementary methods: signal processing

4.5.1 Noise analysis

To quantify the level of the noise in the voltage of the wild type and Cx-deficient datasets we selected
the time periods outside bursting and AHP (quiescent phase) in the patch recording experiments. To
obtain a significant time period we concatenated these phases for different cells that were rarely spiking.
We computed the power spectra P+/+ and P−/− for the wild type and Cx-deficient voltage time series
(1000s for the wild type and 600s for the Cx-deficient), and filtered them using a low pass filter
(Butterworth of order 3) with a cutoff frequency at 100Hz. To extract from these power spectra further
information we used model (4.1) around its equilibrium point in the presence of a continuous Brownian
noise. Under the condition of neither burst nor AHP, the voltage equation can be approximated by

τ ḣ = −(1− J〈x〉〈y〉)h+
√
τσω̇, (S4.4)

where we use the approximation that the facilitation and depression are constant equal to 〈x〉 and 〈y〉
respectively. Equation (S4.4) is an Ornstein-Uhlenbeck process and the associated power spectrum is
a Lorentzian:

P (ω) =
1

ω2 +
γ2

τ 2

σ2

τ
, (S4.5)

where γ = 1−J〈x〉〈y〉. We fitted equation (S4.5) to the filtered power spectra P+/+ and P−/− as shown

in fig. S4.3C. The amplitude of the noise for the wild type case is
σ2

τ
= 1.967 and for the Cx-deficient

case
σ2

τ
= 3.801. We conclude that the amplitude of the noise is doubled in the Cx-deficient compared

to the wild type. Interestingly, the cutoff frequency γ is similar
γ

τ
= 1.84 in the wild type and

γ

τ
= 1.90

in the Cx-deficient.

4.5.2 Time-series segmentation

We describe here the segmentation methods we developed to differentiate bursting and hyperpolariza-
tion from resting phases, in the case of patch clamp, MEA recordings and numerical simulations.

- For the patch-clamp data, we first apply a low-pass filter to the input membrane potential s(t)
using a sliding time window of length Tw = 1s resulting in the output signal sm(t) (fig. S4.4A1).
We detect burst initiation when the filtered signal reaches a threshold such as sm(τ i) = Te1, where

Te1 =
Te2 +max(sm)

2
mV is the average between the maximum value of the filtered signal and the

resting membrane potential Te2 (fig. S4.4A2, yellow line). We note that although burst initiation
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occurred before τ i when the signal sm was at resting state, we neglected this delay of the order
of few ms. We determine the time of burst termination when the signal decreases to its resting
state defined by sm(τ e) = Te2 (fig. S4.4A2, red line).
The end of the burst τ e is the beginning of the AHP phase that lasts until the signal sm has
increased back to its resting value Te2 at time τa (fig. S4.4A3, magenta trace).
Finally, we define the QP as the time period between the end of AHP until the initiation of the
next burst (fig. SS4.4A3, green trace).
In summary, we segmented the nth burst duration BD = τ en − τ in (fig. S4.44, blue line), hyper-
polarization duration AHPD = τan − τ en, (magenta line), and quiescent phases QP = τ in+1 − τan
(green line).

- For MEA recordings, we apply a low-pass filter to the input field recordings using a sliding time
window of length Tw = 0.4s. We detect bursts and interburst intervals on the absolute value of
the filtered signal |sm,MEA|.
Specifically we detect the burst initiation time τ i when the signal reaches one third of its max-

imum value such as |sm,MEA|(τ i) =
max(|sm,MEA|)

3
and the end time τ e of the burst when

|sm,MEA|(τ e) =
max(|sm,MEA|)

15
.

Because it is not possible to vizualize the hyperpolarization in MEA recordings, this segmentation
only provides the statistics of burst durations and interburst intervals.

- In numerical simulations, the burst initiation is detected when the mean voltage h(τ) = T1

(fig. S4.4B1). Here we cannot neglect the time delay between the burst initiation and the time
detection τ . We set the time τ i of burst initiation as the last time previous to τ where the mean
voltage h was equal to its resting value: h(τ i) = T (fig. S4.4B2). Similarly, we detect burst
termination by finding the time τ such as the mean voltage passes a second threshold T2 < T
leading to h(τ) = T2. To account for a possible delay, we consider as the burst termination the
last time τ e before τ where h is equal to its resting value h(τ e) = T (fig. S4.4B2).
We detect the AHP and QP phases similarly as for the patch recordings.

The distributions obtained from this segmentation are given in fig. S4.3A-B.
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Figure S4.1: Impaired bursting in astroglial Cx-deficient mice is not due to altered extracellular
glutamate homeostasis. A. Representative traces of hippocampal bursts in +/+ mice in control condition
(top) and in presence of cyclothiazide (100 µM; bottom). Scale bars: 5 s, 200 µV. B. Quantification of burst
frequency and duration and of seizure frequency (n = 10 slices from 4 mice; paired t-test). C. Representative
traces of hippocampal bursts in −/− mice in control (top) and in presence of NBQX (0.5 µM; bottom). Scale
bars: 5 s, 200 µV. D. Quantification of burst frequency and duration (n = 11 slices from 6 mice; paired t-test).
Asterisks indicate statistical significance (*, p < 0.05; **, p < 0.01; ***, p < 0.0001).
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Figure S4.2: Impaired bursting in astroglial Cx-deficient mice is not due to altered metabolic
support. A. Representative field potentials recording of hippocampal bursting activity in +/+ mice during
application of glucose-free ACSF (0 glucose) and washout in normal ACSF (11 mM glucose). Scale bars: 5
min, 0.2 mV. B. Temporal profile of burst frequency changes during perfusion of 0 glucose-ACSF (30 min) and
washout in 11 mM glucose-containing ACSF (30 min) (n = 11 slices). C. Quantification of burst frequency in
control, after 20 and 30 min in 0 glucose-ACSF and after 20 min of washout in normal ACSF (n = 11 slices;
one-way ANOVA). Asterisks indicate statistical significance (*, p < 0.05; ***, p < 0.0001).
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A Voltage time-series segmentation
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Figure S4.3: Statistics of burst dynamics from electrophysiological time-series in neurons from
+/+ and Cx-deficient mice. A. Segmentation of patch-clamp recordings in hippocampal neurons in 3
phases: burst (blue), AHP (pink), and QP (green) using two thresholds T1 and T2 (red and yellow dotted
lines). AHP and QP form IBI (black). Scale bar: 10 s, 10 mV. B. Distributions of bursts (upper left), IBI
(upper right), AHP (lower left, inset boxplots) and QP (lower right) durations from neurons in +/+ (purple)
and −/− (red) mice (n = 10 neurons for +/+ and n = 6 neurons for −/−; two sample t-test). C. Power
spectrum (black) of the QPs and power spectrum PF for the filtered signal at fc = 30 Hz (low-pass filter, pink

trace). The fit of a Lorentzian P (ω) = 1

ω2 +
γ2

τ2

to PF for the +/+ (left) and −/− (right) is shown in blue.

The extracted noise amplitude σ̃2 is 1.97 and 3.80 for +/+ and −/−, respectively. D. Resting membrane
potentials in neurons from +/+ (n = 12 cells, purple) and −/− mice (n = 10 cells, red; p = 0.0075, unpaired
t-test). Asterisks indicate statistical significance (**, p < 0.01; ***, p < 0.0001).
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Figure S4.4: Burst detection algorithms. Upper: Burst detection for patch clamp electrophysi-
ological traces: A1. The membrane potential signal is low-pass filtered using a sliding window of length
Tw = 1s. A2. Threshold detection is applied to the filtered signal sm. 3. AHP begins at the end of the
burst and lasts until sm is back above resting membrane potential where the QP begins until the next burst.
4. Extraction of burst durations, (BD,blue), AHP duration (magenta) and quiescent phases (QP, green).
IBI are composed of AHP and QP. Lower: Detection algorithm for simulated traces. B1-B2. Burst
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in the experimental traces, yielding a three period segmentation.
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Figure S4.5: Synaptic depression: dependence on AHP, depolarization and noise; and influence
on burst dynamics. A. Distribution of depression level at burst initiation from 5000 s simulations with
τsAHP = 10.5 s, τmAHP = 0.35 s, TAHP = −30 (+/+, light purple), and for τsAHP = 7.5 s, τmAHP = 0.15
s, TAHP = −23 (−/−, light red). σ = 6 and T = 0 for both conditions (p < 0.001, two-sample Kolmogorov-
Smirnov test). B. Distribution of depression level at burst initiation from 5000 s simulations with τsAHP = 10.5
s, τsAHP = 0.35 s, TAHP = −30, σ = 6 and T = 0 (+/+, light purple) or T = 40 (−/−, light red) (p < 0.001,
two-sample Kolmogorov-Smirnov test). C. Distribution of depression level at burst initiation from 5000 s
simulations with τsAHP = 10.5 s, τmAHP = 0.35 s, TAHP = −30, T = 0 and σ = 6 (+/+, light purple) or σ = 9
(−/−, light red) (p = 0.0013, two-sample Kolmogorov-Smirnov test). D. Distribution of depression level at
burst initiation from 5000 s simulations with τsAHP = 10.5 s, τmAHP = 0.35 s, TAHP = −30, σ = 6, T = 0
and with τr = 2.9 s (light purple) and for τsAHP = 5 s, τmAHP = 0.15 s, TAHP = −23, σ = 6, T = 0 and with
τr = 1.9 s (light yellow; p = 0.614, two-sample Kolmogorov-Smirnov test). E. Distribution of burst durations
for τsAHP = 5 s, τmAHP = 0.15 s, TAHP = −23, σ = 6 and T = 0 (light red, −/−) and reduced depression
(light yellow; p < 0.0001, two-sample Kolmogorov-Smirnov test). The distribution of burst durations for +/+
parameters is indicated by the light purple line. F. Distribution of AHP, with the same parameters as in (E).
The purple curves represent the distribution of burst E and AHP F durations obtained from experimental
data in +/+ mice. Asterisks indicate statistical significance (***, p < 0.0001; **, p < 0.001).
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Chapter 5

Up and Down states occurring in neuronal
networks regulate the emergence and
fragmentation of the α-band

under review in PLoS Computational Biology: ZONCA L. & HOLCMAN D., “Up and Down states
occurring in neuronal networks regulate the emergence and fragmentation of the alpha-band”

Abstract

Rhythmic neuronal network activity underlies brain oscillation. At the neuronal level, these
rhythms are driven by the fraction of Up and Down states in cortical or hippocampus regions. To
investigate how connected neuronal networks contribute to the emergence of the α-band in parallel
with the regulation of Up and Down states, we introduce a computational model based on synaptic
short-term depression-facilitation with afterhyperpolarization (AHP). We found that the α-band
is generated by the network behavior near the attractor of the Up-state. To better characterize
the emergence and stability of thalamocortical oscillations containing α and δ rhythms during
anesthesia, we model the stochastic interactions of two excitatory with one inhibitory networks,
showing that this minimal network topology leads to a persistent α-band in the neuronal voltage
characterized by dominant Up over Down states. Finally, we show here that the emergence of the
α-band appears when external inputs are stopped, while the fragmentation occurs at small synaptic
noise or with increasing inhibition inputs. Interaction between excitatory neuronal networks with
and without AHP seems to be a general principle underlying network oscillations that could apply
to generate other rhythms.

Introduction

Electroencephalogram (EEG) is used to monitor the brain activity in various conditions such as
sleep [34, 191], coma [192] or meditation [193] and to reveal and quantify the presence of multiple
frequency oscillations [142] over time [143]. This analysis can be used to asses the level of consciousness
or depth of unconsciousness of the brain. For example, during general anesthesia under propofol, a
dominant oscillation is the α-band (8-12Hz) [30, 31]. However, the precise mechanisms underlying the
emergence or disappearance of this α-band remain unknown. Interestingly, when the level of sedation
becomes too high, the EEG shows that the α-band can get fragmented and even disappear replaced
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by a different transient motif called burst-suppression, which consists in alternation of periods of high
frequency activity followed by iso-electric suppression periods where the EEG is almost flat [31]. In gen-
eral, large doses of hypnotic in prolonged anesthesia in rodents alters brain synaptic architecture [194],
confirming the need to avoid over sedation. Burst-suppression is a motif associated with a too deep
anesthesia and its presence could indicate possible post anesthetic complications, although it has been
attributed to ATP depletion [195]. Recently, it was shown that the loss of the α-band announces the
appearance of burst-suppressions [144], however, this causality between α-band suppression and burst-
suppressions remains unexplained.
The α-band revealed by the EEG signal reflects the local neuronal circuitry activity associated with
the Up and Down states [196–198], which corresponds to a depolarized and hyperpolarized membrane
voltage of a neuron respectively [28]. The alternation between Up and Down states generates slow
wave oscillations present in NREM sleep, as reported in slices electrophysiology [199] as well as using
modeling approaches [200,201]. Similarly, the emergence of the α-band during anesthesia could result
from network interactions, as proposed by models based on the Hodgkin-Huxley formalism [71–73].
Since Up and Down states reflect the neuronal activity at the population level [27,28], we propose here
to investigate the emergence and fragmentation of the α-band using a modeling approach based on
synaptic short-term plasticity [102, 105], which is often used to obtain estimations for burst or inter-
burst durations [109, 147, 202]. These models based on facilitation and depression have recently been
used to evaluate the working memory capacity to remember a sequence of words [203].
Here, we use a mean-field neuronal model that accounts for both synaptic short-term dynamics and
afterhyperpolarization (AHP) [158] resulting in a refractory period during which neurons stop firing
after a burst. As a result, at a population level, AHP can modify the type of oscillations [70], from
waxing and waning spindle oscillations to slow waves.
We first study a single, two and then three interacting neuronal networks, a minimal configuration
revealing the coexistence of α-oscillations and switching between Up and Down states. As we shall
see, only the neuronal population with AHP can trigger spontaneous switching between Up and Down
states while the other one, without AHP is at the origin of the α-oscillations in the Up state. We
also investigate the role of synaptic noise and model the effect of propofol as an excitatory current for
inhibitory neurons.

5.1 Results

5.1.1 EEG reveals the dynamics of the α-band during general anesthesia

General anesthesia can be monitored using EEG (fig. 5.1A) that often reveals a stable α-band which
persists in time (fig. 5.1B). The origin of the α-band is not fully understood but it was found to result
from the dynamics of neuronal populations involving the reciprocal connexions between the thalamus
and the cortex. During anesthesia involving the propofol agent, the inhibitory neurons are activated
resulting in the emergence and stability of the α-band. Increase of the anesthetic agent can lead to
a deeper anesthesia characterized by a transient disapearance of the α-band (fig. 5.1C) so that the
spectrum is carried by the δ-band. This disappearance can be quantified by two values, defining a
fragmentation level which would account for the persistence in the α-power compared to a threshold
value over a specific period of time in duration (Pα) and number of disruptions in the power band (Dα)
(see Methods section 5.2.1). The exact mechanisms leading to the stability and the peak of the α-band
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frequency remains unclear. In the remaining part of this manuscript we propose to develop mean-field
models based on synaptic properties to address this question.
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Figure 5.1: EEG recorded during general anesthesia A. Schematic of EEG electrode setup on a patient’s
head. B. Upper: Time recordings showing the EEG (inset: 5 s). The EEG signal is composed of multiple
bands as shown in the spectrogram (lower panel) composed of two major bands: the δ-band (0-4Hz) and
the α-band (8-12Hz) tracked by its maximum (black curve) revealing the persistence of the α-band during
anesthesia. C. Same as A for a case of fragmented α-band. Data from the database VitalDB [204].

5.1.2 A single neuronal population can exhibit α-oscillations or slow waves
through switching between Up and Down states

The synaptic depression-facilitation model generates locked α-oscillations

To analyze the change between a persistent α-band and a δ-band we develop a mean-field model of
neuronal networks based on short term synaptic plasticity (fig. 5.2A). The first model consists of
one well connected population of excitatory neurons described by three variables: the mean voltage
h, the synaptic facilitation x and the depression y, resulting in a stochastic dynamical system (see
Methods, section 5.2.2, equations 4) showing bi-stability: one attractor corresponds to the Down state
(hyperpolarized, low frequency oscillations) and the second one to the Up state (depolarized, high
frequency oscillations). One fundamental parameter is the level of connectivity J that we shall vary
(fig. 5.2B). We found that such a system can generate a dominant oscillatory band where the peak
value is an increasing function of the connectivity J (fig. 5.2C). In the present scenario the network
dynamics is locked into an Up state and the dominant oscillations are generated by the imaginary part
of the eigenvalues at the Up state attractor. This result shows that the persistent oscillations are the
consequence of the noise and of the synaptic properties as well as the biophysical parameters (Table
1, SI), indeed, changing the synaptic properties can lead to the fragmentation and disappearance of
the band where most of the energy is now located in the δ-band as quantified by the spectral edge
frequency at 95% (SEF95, fig. S1). In addition, varying the noise amplitude allows to either fragment
the band (fig. 5.2D, σ = 7) or to increase the power and the persistence of the band (fig. 5.2D, σ = 15)
but it does not affect the value of the peak of the dominant oscillation (fig. 5.2E). Indeed, similarly
as for the EEG data presented in section 5.1.1 we quantified the fragmentation level (Methods section
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5.2.1) for different noise amplitudes and found it varies from (Pα, Dα) = (52%, 34/min) for σ = 5 to
(Pα, Dα) = (86%, 16/min) for σ = 7 and to (Pα, Dα) = (100%, 0/min) for σ = 15 which is coherent
with the fragmentation levels observed in the human EEG data. This fragmentation of the α-band
results only from the changes in the noise amplitude and can occur even though the population is
locked into the Up state, suggesting that the loss the α-band is independent from the switch between
Up and Down states. However, the present model does not allow a dynamic switch between Up and
Down states, thus we decided to add AHP to our model to explore a larger range of dynamics (see
Methods).

The synaptic depression-facilitation model with AHP generates Up and Down states but
no α-oscillations

The synaptic depression-facilitation model with AHP is constructed by adding the AHP components
to the mean-field equations (5.2) presented above (see Methods). The dynamics exhibit a bi-stability
characterized by Up and Down states (fig. 5.3A-B). Contrary to the system without AHP, in the Up
state the dynamics do not exhibit a dominant oscillation band other than δ (fig. S5.2) due to the non
imaginary eigenvalues at the Up state attractor. Interestingly, by increasing the network connectivity
J we can modulate the fraction of time spent in the Up state: for J small (J = 5.6) the dynamics
spends 37% of the time in the Up state, while for J = 7.6 it represents 79% (fig. 5.3C-D and see
also fig. S5.2A-B). Finally, increasing the noise leads to more frequent switches between Up and Down
states (fig. S5.2C-D). To conclude, this model recapitulates the switch between Up and Down states
but does not generate a stable α-band.

Adding a stimulation during the Up states cannot change the oscillation rhythm between
Up and Down states in the stable AHP model

Adding an additive input current on the mean voltage h during the Up states simulates a situation
where the observed network projects an excitatory input on a second network that would send a
positive feedback when activated. The second network would only get activated by such stimuli when
the first (observed) network is in the Up state. In previous studies with a 2D model (modeling only
the firing rate and depression) we showed that such stimulus stabilizes the Up state [105]. Here we ran
simulations for the cases with and without AHP where we added a constant input current only when
the system was in the Up state (fig. S5.3). In the case without AHP, the dynamics stays locked in the
Up state (fig. S5.3A), even in the case of a negative feedback current (upper) and the amplitude of the
current IUp does not affect the peak value of the oscillatory band (fig. S3B). In the case with AHP the
dynamics is not changed either: the dynamics switches between Up and Down states (fig. S5.3C) and
the proportion of time spent in either Up or Down state is not affected by the value of the current IUp
(fig. S5.3D).

5.1.3 Modelling the effect of inhibition on the excitatory short term synap-
tic model with and without AHP

To explore the range of oscillatory behaviors, we connected an inhibitory neuronal network to the
excitatory one that could have or not the AHP (see Methods, section 5.2.3, equations 5.4). We also
added a constant stimulating current Ii on the inhibitory population (fig. 5.4A).
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Figure 5.2: Effect of network connectivity J and noise amplitude σ on model (5.2) without AHP. A.
Schematic of the facilitation-depression model (5.2). B. Time-series and spectrograms of h (60s simulations)
with peak value of the dominant oscillatory band (black curve) for J = 5.6 (upper) and 7.6 (lower). C. Mean
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In the case where the excitatory network has AHP the dynamics exhibit switching between Up and
Down states (fig. 5.4B). Interestingly, by increasing the current Ii we modulate the fraction of time
spent in Up state by the excitatory system (fig. 5.4C-D). However, independently of the value of Ii
the Up state does not show any persistent α-oscillations (fig. 5.4E). Finally, modulating the current Ii
is not sufficient in a dynamics that exhibits the α-band to switch between band frequency dominance
(fig. 5.4F).

5.1.4 Two excitatory connected to an inhibitory networks leads to the
coexistence of Up and Down states and α-oscillations

To define the conditions for which the Up and Down states can coexist with an α-band, we explore a
model that contains two coupled excitatory components with one inhibitory component (see Methods,
section 5.2.4, equations 5.5). This investigation is driven by the α-oscillation that can be generated
by the thalamo-cortical loop (fig. 5.5A). The thalamo-cortical excitatory subsystem is decomposed
into two components α and U/D connected by reciprocal connections and receives an inhibitory input
from the inhibitory subsystem NR. The NR component sends reciprocal connections to the U/D
component and can also be activated by an external stimulation Ii. We focus on the sum of the three
voltage components because it is the one recorded by EEG. During general anesthesia with propofol,
increasing the dose leads to a fragmentation and transient disappearance of the α-band. To assess
under which conditions this phenomenon could be generated, we followed the same protocol by first
investigating the effect of switching off all external stimuli, followed by increasing an injected current
to the inhibitory neuronal component to simulate an increase of the propofol concentration.

Suppressing external stimuli into two excitatory coupled to an inhibitory network leads
to the spontaneous emergence of α-oscillations

External stimuli are switch off during the loss of consciousness at the start of a general anesthesia. We
modeled here this transition by first adding stimuli modeled as excitatory input current Iext = 300+20ξ
(resp. Iext,2 = 100 + 20ξ) where ξ is a Gaussian white noise of mean 0 and variance 1. We applied
Iext and Iext,2 to the three components of the model (fig. 5.5A, blue and green) for the first 40 seconds
of the simulation. To model the beginning of anesthesia, we set the external stimuli Iext and Iext,2 to
zero for the rest of the simulation (fig. 5.5B). We found that during the wakefulness period, during
which Iext > 0 from 0 to 40s, there is no dominant oscillatory band in the spectrogram, but after the
suppression of the external inputs Iext = 0 from 40 to 120s, the network stabilizes in the Up state and
a dominant stable α-band appears (fig. 5.5B).

Constant low input on inhibition modulates the switching between Up and Down states

We first studied the effect of increasing the inhibitory input current Ii (fig. 5.6A) on the fraction of time
the system spends in Up and Down states. For Ii = 0, we found that the dynamics is characterized by a
large proportion of time spent in the Up state (99%) showing persistent α-oscillations (fig. 5.6B). The
transition from Up to Down is characterized by a disappearance of the α-band, however, the transition
from Down to Up is associated with a burst which can either lead to the emergence of an α-band
or a return to the Down state. By increasing Ii from 0 to 50 and 150 we found that the fraction of
time spent in Up states decreases from 99% to 89% and to 4.5% (fig. 5.6C-E). Each network has a
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(green). B. Time-series for the sum of the three populations voltage hα + hUD + hR (upper), spectrograms
(center) and maximum value of α intensity (red) and inputs Iext (blue and green, lower). The timescale
parameters for U/D are τ = 0.025s, τr = 0.5s, τf = 0.3s; for NR and α: τ = 0.07s, τr = 0.14s, τf = 0.086s,
σUD = σR = 6.25 and σα = 1.5.

different contribution to the EEG. The U/D component (with AHP) shows a fragmented and weak
α-band while the inhibitory network does not exhibit any particular oscillatory band. Finally, the α
component (without AHP) exhibits a very strong dominant α-band (fig. S5.4A-B).
To study the impact of the network connectivity on the emergence of a dominant band, we varied
together the intrinsic connectivities JUD = Jα of both excitatory networks (fig. 5.6F-H). We found
that a small connectivity JUD = Jα = 5 is associated with a large number of Down states (88%) and
transient bursts rarely lead to a stable α-band (fig. 5.6F). By increasing JUD = Jα to 5.6 and 6.5
the fraction of Up states increases to 43% and 99% respectively (fig. 5.6I) leading to stable Up states
associated with a persistent α-band.

Transient responses of the thalamo-cortical model to step and stairs inputs

To study the possible responses of the thalamo-cortical model to propofol bolus and constant increasing
we consider a step input (protocol 1) and a stairs (protocol 2) as shown in fig. 5.7A.
To analyze the response to a step input (protocol 1), we ran simulations for N = 2500 iterations lasting
T = 2min where we simulated a strong injection by a positive input current Ii = 1000 on the inhibitory
network (NR) lasting ti = 20s (fig. 5.7B-C). To quantify the response we collected the statistics of
two durations: 1) the duration tC after which the α-band disappears after the step function begins. 2)
the duration tU after which the α-band reappears after the end of the step function. Interestingly, for
some realizations the α-band does not disappear (fig. 5.7C), we thus characterized this effect by the
collapse probability pC . We found that pC = 53%, tC = 9.42± 5.36s and tU = 4.39± 2.58s (fig. 5.7D).
The histogram for tC is characterized by an abrupt decay at 20s confirming that the suppression of
the α-band can only occur during the stimulation period. However, the time tU is dominated by an
exponential decay, a classical feature of dynamical systems driven by noise over a separatrix.
Each network has a different contribution to the EEG. The U/D excitatory network with AHP shows
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Figure 5.6: Three compartment model exhibiting Up-Down states and α-band in the Up state.
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Time-series of the sum of the three populations voltage hα +hUD +hR (upper) and spectrograms (lower) with
position of maximum of the oscillatory band (black) for JUD = Jα = 6.5 and Ii = {0, 50, 150}. E. Fraction of
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a weak α-band while the inhibitory network NR only exhibits weak power in the slow δ-wave region
(≤ 1Hz). Finally, the α excitatory component without AHP exhibits a very strong dominant α-band
(fig. S5.5A-B).
To analyze the effect of a slower increase of the input (stairs function, protocol 2) we ran simulations for
N = 2500 iterations lasting T = 2min where we simulated a stairs increase from Ii = 0 to 1000 on the
inhibitory network (NR) lasting ti = 60s (fig. 5.7E-F). We collected the statistics of the durations tC
(disappearance of the α-band) and tU (reemergence of the α-band) as well as the probability to collapse
pC . We found that the probability to collapse is slightly lower in this case pC = 40%, tC = 53.39±4.44s
and tU = 4.20± 2.43s (fig. 5.7G). Similarly, the histogram of tC is characterized by an abrupt decay at
60s confirming that the suppression of the α-band can only occur during the stimulation period, while
the histogram of tU is dominated by an exponential decay.

Discussion

We presented here minimal computational principles based on coarse-grained neuronal network models
necessary to generate α-oscillations. A single neuronal population driven by synaptic short-term plas-
ticity can illicit oscillations at a defined frequency, which directly depends on the value of the network
connectivity: a higher connectivity generates faster oscillations (fig. 5.2B-C). Interestingly, we show
here that the α-oscillations results from the combination of network connectivity, synaptic and bio-
physical properties, leading to a focus attractor, around which the stochastic mean population voltage
oscillates in the phase-space (fig. S5.7A-B). Moreover, we showed that spontaneous switching between
Up and Down states in a single neuronal population is modulated by AHP and also that the network
connectivity controls the proportion Up vs Down states: a higher connectivity J results in a dominant
percentage of time spent in Up states (fig. 5.3C-D). The stability of the oscillations during Up states
for a population without AHP could result from the intrinsic network regulation: indeed, interactions
between hundreds of inhibitory interneurons and hippocampal pyramidal excitatory neurons can redis-
tribute the firing load to maintain the oscillation frequency even when up to 25% of the synapses are
deactivated [205].
When we added an excitatory input current on the inhibitory coupled to excitatory population, the
proportion of time spent in Up states decreased and, after reaching a threshold value (Ii = 60), the
network became completely silenced, characterized by Down states only (fig. 5.4C-D). When coupling
two excitatory and one inhibitory neuronal population (fig. 5.5A), α-oscillations, generated by the ex-
citatory component without AHP, co-existed with spontaneous switching between Up and Down states
induced by the excitatory population with AHP, as summarized in fig. 5.8. Stimulating the inhibitory
population induces the fragmentation of the α-band by modulating directly the proportion of Up vs
Down states (fig. 5.6B-E).
Finally, we suggest that synaptic noise has two main roles on the network properties: 1) increasing
the noise intensity stabilizes the α-band (fig. 5.2D) and 2) when an external stimulation is applied to
the inhibitory system in a step or stairs input, the network can react with opposite behavior: either
the network activity collapses, leading to a suppression of all oscillatory bands in the EEG or a stable
persistent α-band emerges during the entire stimulation (fig. 5.7). Finally, we propose that three
connected neuronal populations are sufficient to generate an α-oscillation that could be fragmented by
increasing the inhibitory pathway, as suggested during general anesthesia [31]. The present model could
be generalized to study the emergence and disappearance of other oscillations such as the θ-oscillations
occurring during REM sleep [32–34].
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Modeling the dynamics of the α-band

The origin of the α-band [198] remains unclear. Early modeling efforts using the Hodgkin-Huxley
framework [70] suggested a key role of ionic currents such as sodium, potassium currents, low thresh-
old calcium, AHP and synaptic currents (GABAs, AMPA) that could reproduce various patterns of
oscillations such as waxing and waning spindle oscillations [71] as well as initiation, propagation and
termination of spindle oscillations (see also [206]). By varying the GABA conductances similar models
could reproduce the dominant α-oscillation observed in propofol anesthesia [72,73]. Indeed the GABA
conductance regulates the firing frequencies and the synchronization of pyramidal neurons [207]. In
contrast, in the present model, based on synaptic dynamics driven by noise, the α-band is generated
only when the mean voltage is in the Up state, suggesting that the ionic mechanisms are not necessary
to generate the α-band, but contribute to the termination of the Up states and thus control the α-band
fragmentation. Furthermore, adding an input current to the inhibitory population allows to generate
transitions between spindles (fig. 5.4C-D and 5.6B-E). In addition, we found that the α-band can be
stabilized by increasing the noise amplitude, while the peak frequency of the α-band was unchanged
(fig. 5.2D-E). Thus, we propose that the synaptic noise could be responsible for the stabilization
of the α-band. Interestingly, the α-band is persistent in young subjects and becomes sparser with
age [208]. Possibly, a higher neuronal activity (in younger subjects) leads to higher extracellular potas-
sium which, in turn, increases the synaptic noise [52]. Another possible mechanism for fragmenting
the α-band could involve the metabolism pathway, when the ATP concentration coupled to the sodium
concentration is decreased: during a burst, a high sodium concentration depletes ATP that deregulates
the K+ repolarization current and thus leads to a phase of suppression [195].

Relation between Up and Down states and the α-band

Neuronal networks exhibit collective transitions from Up to Down states [27,28,199]. We reported here
that the α-oscillations are only generated when the neuronal ensemble is in the Up state. Interestingly,
we could not generate, in a single neuronal population, at the same time this α-oscillation and the Up-
Down states transitions. Rather we needed a minimum of two coupled excitatory neuronal populations.
We reported here that the fraction of time spent in Up and Down states depends on the level of
synaptic connectivity (fig. 5.3C-D and 5.6F-I). However, by adding an inhibitory network, we were
able to modulate the proportion of time spent in Up vs Down states by changing the input stimulation
current (fig. 5.4C-D and 5.6B-E) on this inhibitory population without varying the connectivity. The
mechanism is feasible because the inhibitory input on both excitatory populations allows to destabilize
the Up state and thus increase the transitions to Down state modulating the overall fraction of time
spent in the Up states. To conclude, in the extreme case where the Down states are dominant, the
overall voltage dynamics resemble iso-electric suppressions without the need to account for a metabolic
stress [209,210].

Predictions and limitations of the model to interpret the α-band during
general anesthesia

The physiological mechanisms leading to the emergence of the α-band shortly after propofol injection
during general anesthesia remains unclear [30,31]. Possibly, during wakefulness, the amount of external
stimuli suppresses the emergence of α-oscillations [34]. When the external stimuli ceases with propofol
injection, the α-oscillation could become dominant (fig. 5.5B). The present model suggests that the
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initial state represents an already anesthetized brain where the neuronal networks do not receive any
external stimuli, leading to the spontaneous emergence of the α-band.
General anesthesia needs to be sustained over the whole course of a surgery and thus controlling
optimally the anesthetic injection to prevent cortical awareness or a too deep anesthesia remains a
difficult problem [208]. Population models such as the one presented here could be used to test different
activation pathways of anesthetic drugs. The present model accounts for the appearance an iso-electric
suppression [211] in the EEG of the order of a few seconds (fig. 5.7B,E) induced by increasing transiently
the hypnotic. We predicted here that the fragmentation of the α-band results from a shift between
Up and Down states dominance that could be tested with in vivo experiments. It would be interesting
to further account for longer term consequences of an anesthetic input (several minutes). Indeed,
the causality between α-suppressions and burst-suppressions [144] remains unexplained, suggesting
that this relation could involve other mechanisms than the ones we modeled here based on synaptic
plasticity, AHP and network connectivity.

5.2 Methods

5.2.1 Definition of the fragmentation level of an oscillatory band

The emergence of the α-rhythm is characterized by a continuous band in the range [8-12]Hz in the
spectrogram of the EEG, yet there are no universal criteria to define its persistence in time and
frequency. In this section, we define a fragmentation measure of the α−band. We start by detecting
the peak spectral value Sα(t) in each bin of the spectrogram by finding the highest power value in the
extended range αmin = 4 − αmax = 16 Hz. If Sα(t) > Tα, we consider that the band is present and
attribute xpr(t) = 1, otherwise xpr(t) = 0. For a signal divided into N bins at times tk, we can define
the fraction of total presence of the α band as the persistence level:

Pα =
1

N

N∑
k=1

xpr(tk), (5.1)

Another measure of the fragmentation level is the disruption number Dα that we count as the number
of time per minute where the peak spectral value Sα(t) goes under the threshold Tα. We call the
fragmentation level the pair Fα = (Pα, Dα) (fig S5.6). For the human EEG data from VitalDB (fig.
5.1), we used a window size w = 0.5s (which is the same as the window size used to compute the
spectrogram) and a threshold value Tα = 1.5, for the simulated data we had stronger power in every
frequency range in the spectrogram and thus we used Tα = 10.

5.2.2 Modeling a single neuronal population based on synaptic depression-
facilitation dynamics

For a sufficiently well connected ensemble of neurons, we use a mean-field system of equations to study
bursting dynamics, AHP and the emergence of Up and Down states. This stochastic dynamical system
consists of three equations [102, 109, 158] for the mean voltage h, the depression y, and the synaptic
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facilitation x:

τ0ḣ =−(h− T0) + Jxy(h− T0)+ +
√
τ0σω̇

ẋ =
X − x
τf

+K(1− x)(h− T0)+

ẏ =
1− y
τr
− Lxy(h− T0)+,

(5.2)

where h+ = max(h, 0) is the population mean firing rate [105]. The term Jxy reflects the combined
synaptic short-term dynamics with the network activity. The second equation describes facilitation,
and the third one depression. The parameter J accounts for the mean number of synaptic connections
per neuron [102, 110]. We previously distinguished [109] the parameters K and L which describe how
the firing rate is transformed into synaptic events that are changing the duration and probability of
vesicular release respectively. The time scales τf and τr define the recovery of a synapse from the
network activity. We account for AHP with two features: 1) a new equilibrium state representing
hyperpolarization after the peak response of the burst 2) two timescales for the medium and slow
recovery to the resting membrane potential to describe the slow transient to the steady state. Finally,
ω̇ is an additive Gaussian noise and σ its amplitude, representing fluctuations in the firing rate.
In the case of a neuronal network that does not exhibit AHP the resting membrane potential is constant
T0 = 0 and τ0 = cst ∈ [0.005, 0.025]s. However, for a population showing AHP after the bursts, the
resting membrane potential T0 and the recovery time constant τ0 of the voltage h are defined piece-wise
as follows:

- τ0 = τ and T0 = 0 in the subspace Ωfast = {y > YAHP and h ≥ HAHP}, which represents
the fluctuations around the resting membrane potential during the down state and the burst
dynamics.

- τ0 = τmAHP and T0 = TAHP < 0 in the subspace ΩmAHP = {y <
1

1 + Lx(h− T0)
( ⇐⇒ ẏ > 0)

and y < Yh or ẏ < 0}. This part of the phase-space defines the moment when the hyperpolarizing
currents at the end of the burst become dominant and force the voltage to hyperpolarize.

- τ0 = τsAHP and T0 = 0 in the subspace ΩsAHP = {y <
1

1 + Lx(h− T0)
and (YAHP < y or

h < HAHP )}, which represents the slow recovery to resting membrane potential.

The threshold parameters defining the three phases are Yh = 0.5, YAHP = 0.85 and HAHP = −7.5. In
this study, we varied the network connectivity parameter J ∈ [5.6, 8.6] and all other parameters are
described in Table 1, SI.
To convert the mean-field variable h into a mean voltage h̃ in mV, we use the following normalization

h̃ =
h− hmin

hmax − hmin
Amax + Vrest, (5.3)

where Vrest = −70 mV and we identified hmin = −100 and hmin = 1200 based on numerical simulations
and chose Amax = 200mV according to the classical amplitude of local field potential recordings.
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5.2.3 Two-populations model of the thalamo-cortical loop

To model the interactions between one excitatory E and inhibitory I neuronal network, we coupled
two systems of equations (5.2)) as follows:

τ0ḣE =−(hE − T0) + JEExEyE(hE − T0)+ − JIE
τ0

τ
xIyI(hI − T )+ +

√
τ0σEω̇E

ẋE =
X − xE
τf

+K(1− xE)(hE − T0)+

ẏE =
1− yE
τr

− LxEyE(hE − T0)+,

τ ḣI =−(hI − T )− JIIxIyI(hI − T )+ + JEI
τ

τ0

xEyE(hE − T0)+ +
√
τσI ω̇I + Ii

ẋI =
X − xI
τf

+K(1− xI)(hI − T )+

ẏI =
1− yI
τr
− LxIyI(hI − T )+,

(5.4)

where τ0 and T0 for the excitatory population can either be constant, in the absence of AHP or defined
piece-wise when it is present, as already discussed in subsection 5.2.2. The inhibitory population is
always modeled without AHP and thus τ is constant and T = 0. All other parameters are described
in the central columns called “2 populations” of Table 5.1.

5.2.4 Three connected neuronal populations to model the thalamo-cortical
loop

To model the thalamo-cortical loop, we connected three neuronal networks. One excitatory network
driven by AHP generates the Up-Down state dynamics (referred to as U/D in figs. 5.5, 5.6 and 5.7).
The second excitatory network is not driven by AHP and is referred as α in figs. 5.5, 5.6 and 5.7.
Both networks are coupled with an inhibitory one (called NR), which does not exhibit any AHP. The
equations extend the case of two neuronal networks presented in subsection 5.2.3 and the connectivity
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matrix with 9 elements is presented in Table 5.1. The overall system of equations is

τ0
˙hUD =−(hUD − T0) + JUDxUDyUD(hUD − T0)+ + Jα−UD

τ0

τ
xαyα(hα − T )+

−JR−UD
τ0

τ
xRyR(hR − T )+ +

√
τ0σUDω̇UD

˙xUD =
X − xUD

τf
+K(1− xUD)(hUD − T0)+

˙yUD =
1− yUD

τr
− LxUDyUD(hUD − T0)+,

τ ḣα =−(hα − T ) + Jαxαyα(hα − T )+ + JUD−α
τ

τ0

xUDyUD(hUD − T0)+

−JR−αxRyR(hR − T )+ +
√
τσαω̇α

ẋα =
X − xα
τf

+K(1− xα)(hα − T )+

ẏα =
1− yα
τr
− Lxαyα(hα − T )+,

τ ḣR =−(hR − T )− JRxRyR(hR − T )+ + JUD−R
τ

τ0

xUDyUD(hUD − T0)+

+Jα−Rxαyα(hα − T )+ +
√
τσRω̇R + Ii

ẋR =
X − xR
τf

+K(1− xR)(hR − T )+

ẏR =
1− yR
τr

− LxRyR(hR − T )+,

(5.5)

where τ0 and T0 for the first excitatory population U/D are defined piece-wise in part 5.2.2 and all
other parameters are given in Table 5.1 (right columns: “3 populations”).

5.2.5 Origin of oscillations in the Up state

We study here the origin of the oscillations observed in the spectrograms of h in relation with the Up
and Down states.

Oscillations around the Up state attractor for a neuronal population without AHP

In the absence of AHP, the focus attractor AUp has two complex conjugated eigenvalues. Thus the
deterministic dynamics oscillates around the point AUp at a frequency

2πωUp = Im(λ
AUp
2 ) ⇐⇒ ωUp ∈ [5.85, 8.26]Hz for J ∈ [5.6, 8.6]. (5.6)

which corresponds to the dominant spectral band observed in fig. 5.2. The oscillation eigenfrequency
ωUp depends on the network connectivity J (fig. 5.2A-B), but not on the noise amplitude (fig. 5.2C-
D). Note that the noise allows to generate persistent oscillation compared to the case of the pure
deterministic system. Finally, increasing the noise amplitude stabilizes the α-band (fig. 5.2C-D).
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Note that if we take τ = 0.025s, τr = 0.5s and τf = 0.3s, then the eigenvalues of AUp become λ1
AUp
∈

[−22.28,−31.76] and the complex-conjugate eigenvalues

λ2,3
AUp
∈ [−2.46,−5.89]± i[14.71, 20.75]

leading to an eigenfrequency ωUp ∈ [2.34, 3.30]Hz (fig. S5.1) which explains the disappearance of the
dominant α-band in this case (see also fig. S5.7C).
Finally, since |λ1

AUp
| � |Re(λ2

AUp
)| the dynamics is very anisotropic and the oscillations are confined in

a 2D manifold (fig. S5.7A.1-A.3, light red trajectories).

The Up state stability is due to multiple re-entries in its basin of attraction

To explain the locking in the Up state, we recall that the stochastic trajectories starting inside the
basin of attraction of the Up state can cross the separatrix Γ and fall into the Down state. However,
because the deterministic vector field of system (5.2) is very shallow near Γ, the additive noise on the
h variable can push the trajectories back into the Up state, where the field is stronger, and thus the
trajectory is brought in a neighborhood of AUp and continues oscillating, as shown in fig. S5.7B (see
inset).
To explain the other frequencies (than the eigenfrequency ωUp) observed in the spectrum of h (fig.
S5.7C), we note that when a trajectory falls back in the Up state, it can produce a longer or shorter
loop depending on its initial distance to the attractor AUp. These oscillations between the two basins
of attraction define stochastic oscillations that contribute to the spectrogram of h.

Oscillations between Up and Down state in a neuronal population containing an AHP
component

For a neuronal network with an AHP component, the Up state has only real negative eigenvalues (fig.
S5.8C), thus no oscillations are expected near the attractor. However, the presence of a slow AHP
component (fig. S5.8A-B pink) can push the dynamics into the Down state, as opposed to the case
without AHP. Finally, in the Down state, the trajectories fluctuate with the noise until they escape.
Once trajectories cross the separatrix Γ, they follow an almost deterministic path close to that of the
unstable manifold of S fig. S5.8A-B grey) showing a long excursion in the phase-space before falling
back near the attractor AUp. This dynamics explains the recurrent switches between Up and Down
states.

159



5.3. SUPPLEMENTARY RESULTS

Supplementary information for ZONCA L. & HOLCMAN D., “Up and Down states occurring in
neuronal networks regulate the emergence and fragmentation of the alpha-band”

5.3 Supplementary results

Table 5.1 summarizes the parameters used for all the simulation results presented in the main text and
in the following supplementary figures.

1 population 2 populations 3 populations

no AHP AHP no AHP & I AHP same E no AHP & I AHP

τ 0.005 (α) - 0.01s (θ) 0.025s 0.005 (α) - 0.01s 0.025s 0.005s 0.005-0.07s 0.025s
τr 0.2 - 0.5s 0.5s 0.2 - 0.5s 0.5s 0.1s 0.1 -0.2s 0.5s
τf 0.12 - 0.3s 0.3s 0.12 - 0.3s 0.3s 0.06s 0.06 - 0.12s 0.3s

τmAHP 0.3s 0.12s 0.06s 0.12s
τsAHP 1s - 10.5s 1s 0.5s 1s

JE1E1 5.6 - 8.6 6.8 5.6 6.5
JE1I 5.1 5.6 6.5
JIE1 3.4 4.48 16.25
JII 8.5 5.6 3.25
JE1E2 2.8 1.3
JE2E1 1.12 1.3
JE2I 0 0
JIE2 4.48 16.25
JE2E2 4.2 6.5

σ 5 - 15 2.75 (σI) 5.5 (σE) 10 (σT ) 3 (σC,R) 2.5 (σT,C,R)

TAHP -30 -30 -30 -30

K 0.5 Hz
L 0.3 Hz
X 0.06

Table 5.1: Models 5.2 (1 population), 5.4 (2 populations) and 5.5 (3 populations) parameters (see Main
text, Methods). For model (5.4) and (5.5), the inhibitory population is always without AHP and the
excitatory populations can be with or without AHP. For model (5.5) E1 corresponds to the network
with AHP (U/D), and E2 to the network without AHP (α).
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Figure S5.1: Effect of network connectivity J and noise amplitude σ on model (5.2) without AHP.
A. Time-series and spectrograms of h (60s simulations) with SEF95 (blue curve) for J = 5.6 (upper), 6.6
(center) and 7.6 (lower). B. Mean value of the SEF95 for J ∈ [3.8, 10]. C. Time-series and spectrograms of h
(60s simulations) with SEF95 (blue curve) for σ = 7 (upper), 11 (center) and 15 (lower). D. Mean value of
the SEF95 for σ ∈ [5, 15]. Synaptic plasticity timescales: τ = 0.025s,τr = 0.5s and τf = 0.3s.

161



5.3. SUPPLEMENTARY RESULTS

Influence of the network connectivity J for σ = 14A

B

C 

D

Influence of the noise amplitude σ for J = 6.6

0 10 20 30 40 50 60
Time (s)

Fr
eq

ue
nc

y (
Hz

)
Fr

eq
ue

nc
y (

Hz
)

Fr
eq

ue
nc

y (
Hz

) J = 5.6

0 10 20 30 40 50 60
Time (s)

Fr
eq

ue
nc

y (
Hz

)
Fr

eq
ue

nc
y (

Hz
)

Fr
eq

ue
nc

y (
Hz

)

Network connectivity J

me
an

 S
EF

 95
 va

lue
 in

 U
p s

tat
es

Noise amplitude σ

me
an

 S
EF

 95
 va

lue
 in

 U
p s

tat
es

Me
an

 vo
lta

ge
 h 

(m
V)

J = 6.6

Me
an

 vo
lta

ge
 h 

(m
V)

J = 7.6

Me
an

 vo
lta

ge
 h 

(m
V)

10

20

30

0

σ = 7

Me
an

 vo
lta

ge
 h 

(m
V)

σ = 11
Me

an
 vo

lta
ge

 h 
(m

V)

σ = 15

Me
an

 vo
lta

ge
 h 

(m
V)

5 6 7 8 9 10 11 12 13 14 15

4

5

6

7

3 4 5 6 7 8 9 10

3

4

5

6

7

Up states
Down states

-50

-30

-10

10

-50
-30
-10
10
30

10

20

30

0

-50
-30
-10
10
30
50

10

20

30

0

10

20

30

0

-50
-30
-10
10
30

-50
-30
-10
10
30

10

20

30

0

-50
-30
-10
10
30

10

20

30

0

Figure S5.2: Effect of network connectivity J and noise amplitude σ on model (5.2) with AHP.
A. Time-series and spectrograms of h (60s simulations) with SEF95 (blue curve) for J = 5.6 (upper), 6.6
(center) and 7.6 (lower). B. Mean value of the SEF95 in the upstates for J ∈ [3.8, 10]. C. Time-series and
spectrograms of h (60s simulations) with SEF95 (blue curve) for σ = 7 (upper), 11 (center) and 15 (lower). D.
Mean value of the SEF95 in the Up states for σ ∈ [5, 15]. Synaptic plasticity timescales: τ = 0.025s,τr = 0.5s
and τf = 0.3s.
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input Ii = 50 on the inhibitory network (red line). B. Trajectories in the h − x − y phase space of each
component (U/D, pink, left, NR black, center and α, green, right).
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Figure S5.5: Contribution of the three components of model (5.5) for a step input. A. Time-series
of mean voltage h, spectrogram, facilitation x and depression y of system (5.5) (120s simulations) for the
excitatory network with AHP (U/D, left: τ = 0.005s, τf = 0.06s,τr = 0.12s), the inhibitory network (NR,
center) and the excitatory network without AHP (α, right: τ = 0.005s, τf = 0.06s,τr = 0.12s) with a step
input Ii = 1000 at 40-60s on the inhibitory network (red line). B. Trajectories in the h− x− y phase space of
each component (U/D, pink, left, NR black, center and α, green, right).



5.4. SUPPLEMENTARY METHODS

5.4 Supplementary methods

5.4.1 Fragmentation level of an oscillatory band
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Figure S5.6: Schematic showing the quantification of the fragmentation level in a spectrogram.

5.4.2 Mathematical analysis of the phase-space associated with the mean-
field depression-facilitation model

We shall now describe the phase-space of the dynamical system (5.2) with and without AHP. In a first
subsection we describe the three critical points (two attractors and a saddle-point) and the linearized
dynamics around each point and in a second subsection we describe the numerical method used to
obtain the shape of the separatrix delimiting the basins of attraction of each attractor.

Description of the three critical points of the phase-space of network model (5.2)

The phase-space of the deterministic system (5.2) contains three critical points that we shall analyze
now.

Down state attractor point ADown

The basin of attraction of the critical point ADown = (0, X, 1) (fig. S5.7A and S5.8A, purple) defines
the Down state region. The Jacobian at this point is

JADown =



− 1 + JX

τ
0 0

K(1−X) −
1

τf
0

LX 0 −
1

τr

 . (S5.7)
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Figure S5.7: Phase-space of system (5.2) without AHP. A. 3D phase-space of the system with the two
attractors ADown (purple, resp. AUp, red) and saddle-point S (cyan) with its 2-dimensional stable manifold Γ
(blue surface) which defines the separatrix. Stable trajectories (black curves) and unstable manifold of S (grey)
and deterministic trajectories starting below (purple, resp. above light red) Γ falling to ADown (resp. AUp).
Top view (A.1), inset around ADown and S (A.2), inset around AUp where deterministic trajectories oscillate
at their eigenfrequency ωUp (light red, A.3), schematic summary of the entire phase-space (A.4). B. Stochastic
trajectory lasting T = 30s with σ = 10 starting at ADown and oscillating around AUp. C. (h, x, y)-time series
of a stochastic trajectory, with the spectrogram of the mean voltage h and SEF95 (blue curve).
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The eigenvalues are
(
λADown1 , λADown2 , λADown3

)
=

(
JX − 1

τ
,−

1

τf
,−

1

τr

)
. When the connectivity J varies

in the range [5.6, 8.6], the attractor ADown is a stable-node since the first eigenvalue is negative as long

as J ≤
1

X
≈ 16.67. For J ∈ [5.6, 8.6], τ = 0.025s, τf = 0.3s, τr = 0.5s and the parameter values of

Table 5.1, we obtain that λADown1 ∈ [−19,−27], λADown2 ≈ −3.33 and λADown3 ≈ −2. The dynamics at
this point is identical for the systems exhibiting AHP or not.

Up state attractor AUp

The second critical point (fig. S5.7A and S5.8A, red) is obtained by solving

xUp =
τfK(J + 1) + LXτr +

√
∆

2(JτfK + Lτr)

yUp =
1

JxUp

hUp = T + T0 +
xUp −X

τfK(1− xUp)
,

(S5.8)

where

∆ = (τfK(J + 1) + LXτr)
2 − 4(JτfK + Lτr)τfK. (S5.9)

The dynamics around this point depends on whether the system exhibits AHP or not, we will now
describe these two cases.

1. Neuronal network without AHP: For that system, the resting membrane potential T0 and the
recovery timescale τ0 of the mean voltage h are constant in the entire phase-space. The numerical
range of values for the position of the critical point AUp for J ∈ [5.6, 8.6], τ = 0.01s, τf = 0.2s, τr =
0.12s and parameters values from Table 5.1 is AUp = (hAUp ∈ [73.15, 124.59], xAUp ∈ [0.83, 0.89],
yAUp ∈ [0.22, 0.13]). The Jacobian at this point is

JAUp =


0

JyUp(hUp − T − T0)+

τ0

JxUp(hUp − T − T0)+

τ0

K(1− xUp) −
1

τf
−K(hUp − T − T0)+ 0

−
L

J
−Ly1,2(hUp − T − T0)+ −

1

τr
− LxUp(hUp − T − T0)+.

 (S5.10)

With the present parameters, JAUp has one real negative and two complex conjugate eigenvalues

with negative real part thus AUp is a stable-focus: λ
AUp
1 ∈ [−55.71,−79.40] for the real eigenvalue

and the two complex conjugate eigenvalues are

λ
AUp
2,3 ∈ [−6.16,−14.73]± i[36.78, 51.87].

2. Neuronal network exhibiting AHP: the Up state attractor AUp is situated in the subspace of
medium dynamics with hyperpolarization ΩmAHP (fig. S5.8A-B, orange) where T0 = TAHP = −30
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and τ0 = τm,AHP ∈ [0.06, 0.3]s. For J ∈ [5.6, 8.6], τ = 0.025s, τf = 0.3s, τr = 0.5s the position
of AUp is now AUp =

(
hAUp ∈ [−0.74, 19.84], xAUp ∈ [0.83, 0.89], yAUp ∈ [0.22, 0.13]

)
. Here, the

eigenvalues of JAUp are real and negative, thus for the system with AHP AUp is a stable-node.

The numerical values are now λ
AUp
1 ∈ [−34.01,−43.96], λ

AUp
2 ∈ [−11.67,−18.94] and λ

AUp
3 ∈

[−3.96,−3.65].

Saddle-point S

The third critical point S (fig. S5.7A and S5.8A, cyan) is solution of equations

xS =
τfK(J + 1) + LXτr −

√
∆

2(JτfK + Lτr)

yS =
1

JxS

hS = T + T0 +
xS −X

τfK(1− xS)
,

(S5.11)

for J ∈ [5.6, 8.6], τ = 0.01s, τf = 0.2s, τr = 0.12s and the parameters are presented in Table 5.1, we
get AS = (hS ∈ [2.52, 1.08], xS ∈ [0.18, 0.12], yS ∈ [0.97, 0.99]). The Jacobian at S does not depend on
whether the system exhibits AHP or not and it has one real positive and two real negative eigenvalues,
it is thus a saddle-node with an unstable manifold of dimension one and a stable manifold of dimension
two. With the present parameters, we obtain λS1 ∈ [−28.80,−25.03], λS2 ∈ [18.96, 16.08] and λS3 ∈
[−4.89,−4.97]. Finally, the stable two-dimensional manifold Γ defines the separatrix between the
basins on attraction of Down ADown and Up AUp states.

Numerical construction of the separatrix

To represent the stable manifold Γ of the saddle-point S, we use the following algorithm based on
numerical approximations (figs. S5.7A-B and S5.8A-B, blue surface). Since Γ defines the separatrix
between the two basins of attraction for the attractors ADown and AUp, we ran simulations of the
noiseless dynamics for σ = 0 of system (5.2) with the initial condition sampling the entire phase
space. We used grid points (hi, xi, yi) ∈ [−35, 500]× [0, 1],×[0, 1]) with δh = 1, δx = δy = 0.05. Each
initial point was then attributed to the basin of attraction of the attractor at which the corresponding
trajectory ended. The separatrix Γ is defined as the border between the set of initial points falling into
the basin of ADown and those falling into the basin of AUp.
This separatrix does not define a bounded domain for neither attractor but rather separates the entire
phase-space in two subdomains, one above Γ leading to the Up state and the other one below Γ to the
Down state.

5.4.3 Segmentation of the time-series to detect Up and Down states

To determine whether the neuronal population is in an Up or a Down state, we segmented the simulated
time-series according to the following criteria:

- the Up states are defined in the subspace {x ≥ xUp = 0.5&h ≤ hUp = 0.175hmax},
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Figure S5.8: Phase-space of system (5.2) with AHP. A. 3D phase-space of system (5.2) with the two
attractor points ADown (purple), AUp (red) and the saddle-point S (cyan) with its 2-dimensional stable manifold
Γ (blue surface) which defines the separatrix. Stable trajectories (black curves) and unstable manifold of S
(grey) and deterministic trajectories starting below (purple, resp. above light red) Γ falling to ADown (resp.
AUp). The phase-space is separated into 3 subspaces defining the different dynamics: fast Ωfast (above pink
and orange meshes), medium ΩmAHP (below the orange mesh) and slow ΩsAHP (below the pink mesh). Top
view (A.1), inset around ADown and S (A.2), inset around AUp (A.3), schematic summary of the entire phase-
space (A.4). B. Stochastic trajectory lasting T = 30s with σ = 10 starting at ADown and oscillating between
AUp and ADown. C. (h, x, y)-time series of a stochastic trajectory, with the spectrogram of the mean voltage
h and SEF95 (blue curve).
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- the Down states are defined when {y ≥ yDown = 0.95}

We added the threshold on h for the Up state detection because we do not want to count the bursts,
defining the transition from Down to Up, as an Up state.
To determine the proportion of time spent in Up vs Down state for one neuronal population with
AHP (fig. 3C-D, main text), we ran simulations of system (5.2) with AHP for N = 100 trajectories of
duration T = 600s with J ∈ {5.6, 6.6, 7.6} and σ = 14.
Similarly, for the model (5.4) with two populations (fig. 4B-D, main text), we segmented the time-series
of the excitatory population for N = 100 trajectories of duration T = 600s.
Finally for the three population network (5.5), we segmented the time-series of the excitatory network
α without AHP (N = 100 trajectories of duration T = 300s).

5.4.4 Numerical methods

All simulations were run in Matlab, using Runge-Kutta 4 scheme with a time step ∆t = 0.005s. We
also tried ∆t = 0.001s and obtained the same results, thus ensuring stability.
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Discussion and perspectives

In this PhD, I have introduced and analyzed a new model of neuronal bursting which accounts for a
refractory AHP period after the bursts. The mathematical analysis of the deterministic model allowed
to find formulas for the burst and AHP durations (section 1.2) and the stochastic analysis of the model
driven by a small noise term revealed several novel phenomena: 1) the peaked distribution of burst
duration comes from the confined exit points on the separatrix (section 1.1.3), 2) the noise induces a
shift in the attractor’s position that I could characterize in a generic framework (section 3.3) and 3) in
the case of a shallow field close to the peak of the exit point location, exiting the basin of attraction is
not sufficient to escape, thus revealing a novel escape pattern composed of many round-trips in and out
of the basin of attraction before a definitive escape (chapter 2 and section 3.4). Finally I have shown
how simulations of this model, combined with statistical time-series analysis could help understand the
mechanisms underlying neuron-glia interactions (chapter 4), and I proposed an oscillatory mechanism
in the brain during general anesthesia (chapter 5). I will discuss below some remaining open questions
and perspectives for my future work.

6.1 Computation of the stochastic separatrix associated to

the recurrent exit pattern (chapter 2 and section 3.4)

Escape from an attractor usually ends when trajectories hit the boundary of the basin of attraction
for the first time. However, as we have seen in chapter 2 there are exceptions where trajectories can
re-enter multiple times in the basin before escaping to infinity. In this case, the first passage time
through the deterministic separatrix Γ (fig. 6.1A-B cyan curve) delimiting the basin of attraction is
not sufficient to characterize the full escape time. Instead, we propose to account for the recurrent
entries by extending the basin of attraction through the addition of a bounded region where trajecto-
ries can re-enter with high probability (fig. 6.1A see also section 2.2 page 80). Numerical simulations
suggest that the boundary C could be defined by the maximal distance of the stochastic reentering
trajectories to the separatrix Γ (fig. 6.1A red curve). In this added region, the trajectories have a very
low probability to escape, while on the other side they almost surely escape to infinity thus defining a
stochastic separatrix that I propose to characterize.

The stochastic separatrix is defined as the external boundary of all possible exiting trajectories condi-
tioned to a return inside the basin in a finite time. For the stochastic process Xt satisfying the stochastic
differential equation Xt = b(Xt)dt+σdWt where b is the deterministic drift, σ the noise amplitude and
Wt a standard Wiener process, the trajectories starting at the separatrix Γ and conditioned to return
inside the basin define a stochastic bridge process

X̂t := (Xt|X0 ∈ Γ and XTrt ∈ Γ) , (6.1)
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Figure 6.1: A. Trajectories reentering the basin of attraction of A (yellow) by crossing multiple times the
deterministic separatrix Γ (cyan). The trajectories with the maximal distances to Γ (black) define the stochastic
separatrix C (red). B. The distributions of the exit (resp. reentry) points on the deterministic separatrix Γ
(red, resp. purple) are peaked close to the saddle-point S (cyan star).

where Trt is the time to return to Γ. However, there are several difficulties compared to the classical
study of Brownian or Ornstein-Uhlenbeck bridges [212–214] starting with the fact that here, the drift b
is nonlinear. In addition, the recurrent exit pattern occurs in dimensions ≥ 2 and we do not condition
the stochastic process Xt to start at (respectively, return to) a specific location but rather, at any point
of the deterministic separatrix Γ. Thus, we will need to integrate over the whole distribution of exit
(respectively, reentry) points (fig. 6.1B), that we can determine by solving the corresponding FPE.
However, an option to overcome this difficulty could be to consider the stochastic process Dt := d(Xt,Γ)
of the distance between Xt and Γ conditioned to start at (respectively return to) 0:

D̂t := (Dt|D0 = 0 and DTrt = 0) . (6.2)

In either case, we will then need to integrate over all possible return times Trt ≥ 0. To do so, we
first need to determine the distribution of return times and to show that it is peaked with a finite

mean and fast enough decay to infinity. Then we will need to define the ensemble C := max
(
D̂t

)
of

the maximum distances to the separatrix from the ensemble of re-entering trajectories wich will define
the stochastic separatrix. Finally, we will need to show that the MFPT for trajectories crossing C
is equivalent to the mean escape time computed using Baye’s law accounting for all RTs around the
deterministic separatrix (sections 2.2 and 3.7).
To conclude, this open question suggests that the definition of the basin of attraction can differ in
the stochastic case compared to the deterministic one in a similar fashion to the stochastic attractor,
which is shifted compared to its deterministic position (section 3.3). Similarly, it would be interesting
to understand the dependency of this difference with respect to the noise amplitude σ.
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6.2 Image analysis, clustering and modeling to further inves-

tigate neuron-glia interactions (chapter 4)

6.2.1 Analysis and clustering of in vivo calcium imaging from astrocyte
activity

In order to further understand how astrocytes regulate neuronal activation, I collaborate with the
group of Neuroglial Interactions in Cerebral Physiopathology, under the direction of Prof. N. Rouach
in Collège de France. We work on in vivo data of astrocyte activity from freely behaving mice. The
data consists of long video recordings (> 1h) of fluorescent Ca2+ activity. This results in noisy and
very heavy data which is difficult to process. I currently work on a data analysis pipeline to segment
the images into ROIs and extract their time-series. The goal is to build a classification algorithm that
will automatically detect the different types of Ca2+ events. There are two main difficulties: 1) the
choice of features that need to separate the data well enough while being as concise as possible and 2)
the choice of a good metric to assess for the distance between each point (i.e. each event) in the feature
space. I propose to summarize the video event features in a single image to preserve the importance
of the spatial information. Thus, I need to find a relevant distance to compare images. A good option
could be the Earth mover’s distance (also known as the Wasserstein metric) which is defined in the
optimal transport theory [215,216]. It is a natural way to compare probability distributions [217] and it
can be used for multi-dimensional histograms [218] which makes it very suitable for image comparison.
Preliminary results indicate that these choices could lead to a good classification of the events.
Finally, the question of the biological interpretation of these clusters remains open. In order to examine
this question, I will confront the clustering results to the electrophysiological activity of the neurons
that was recorded simultaneously. I shall assess the neuronal activity through the spectral analysis of
the electrophysiological time-series. Altogether this project aims at understanding the correlation and
causality between neuronal and astrocytic activities.

6.2.2 Development of a detailed neuron-glia network model

To conclude this section about investigation of neuron-glia interactions, I propose to build a detailed
model of a neuron-astrocyte network based on the extension of the tri-compartment model introduced in
[50,51] which represents the regulation of extracellular K+ by accounting for the neuronal, extracellular
and astrocytic ionic concentrations. The goal here is to extend the equations into a two-dimensional
network by connecting together many such tri-partite compartments (fig. 6.2). The neurons will be
modeled using the Hodgkin-Huxley formalism to which we shall add equations to account for synaptic
short term plasticity and they will be connected together through electrical synapses. Astrocytes uptake
the extracellular K+ released by the neurons through channels called Kir4.1 (fig. 6.2, dark green) and
they regulate their intracellular ionic concentrations through gap junctions that we will model with the
Goldman-Hodgkin-Katz equation. Finally the ionic diffusion through the extracellular space will be
modeled using Fick’s law.
The challenge in this project is to find the correct parameters values and connectivity matrices between
the different compartments, which is difficult given the high dimensionality of the model. Another
difficulty is the cost of computations, especially since we want to model large-scale networks to assess
how astrocytes redistribute K+ over long distances. Ultimately it would be very interesting to derive
from this high dimensional model a mean field version, which would explicitly account for the astrocytes
K+ regulation but would be reduced in lower dimension and thus much easier to analyze and simulate.
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Figure 6.2: Schematic of the tri-compartment network model. Left: the neurons (yellow) are connected together
through electrical synapses, astrocytes (purple) are connected through gap junctions and ions can diffuse in
the extracellullar space (white). Right: inset on a tripartite synapse, astrocytes regulate the extracellular K+

released by the neurons through Kir 4.1 channels (dark green).

6.3 Interdisciplinary study of the underlying mechanisms in-

volved in the genesis and maintenance of brain rhythms

(chapter 5)

I presented in chapter 5 a multi-scale model of the thalamo-cortical loop that could account for the
emergence and fragmentation of the α-band associated to the proportion of time spent in Up vs Down
states. Currently, we are working with a team of electrophysiologists to design experiments that would
validate the model’s predictions.
Following up on this new collaboration there are different paths I would like to explore. First, the
question of causality remains unexplained: how is the suppression of the α-band connected with the
burst-suppression that follows [144]? Understanding the mechanisms underlying this causality could
help build tools to prevent unwanted effects such as burst-suppressions resulting from a too deep
anesthesia. Furthermore, these results could find other applications such as predicting the occurrence
of an epilepsy seizure or a stroke. To this end, we will need to extend the thalamo-cortical loop model
which does not account for this causality so far.
Another path I want to explore is to adapt the model to the study other neuronal rhythms such as
the θ-oscillation observed during REM sleep [32, 33] or the fast γ-oscillations [33, 34, 36] involved in
memory encoding. Indeed, we found that the frequency of oscillations in the Up state is an increasing
function of the network connectivity (fig. 5.2B-C) and that it also depends on the synaptic properties
(fig. S5.1 and section 5.2.5). It would be interesting to verify experimentally these predictions and then
to explore with numerical simulations of the thalamo-cortical loop model how these mechanisms affect
the genesis and maintenance of the oscillations for each frequency range. More generally, it would be
very interesting to investigate the physiological similarities or differences of the mechanisms underlying
the genesis of the different oscillatory frequencies.
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Acronyms

Ca2+ Calcium. 10, 12, 13, 17, 127, 175

K+ Potassium. 13, 15, 17, 114, 123, 126–128, 154, 174, 175

Na+ Sodium. 10, 175

aEIF Exponential adaptative integrate and fire. 15, 175

AHP Afterhyperpolarization. 6, 13, 21, 34, 43, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70,
115, 120, 121, 123, 126, 128, 130, 131, 144, 155, 175

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid. 118, 154, 175

AMPAR AMPA receptor. 118, 126, 127, 175

ATP adénosine triphosphate. 154, 175

Cx Connexin. 15, 115, 116, 118, 121, 126, 128, 175

EEG Electroencephalogram. 13, 36, 141, 147, 155, 175

EMD Earth mover’s distance. 175

fEPSP Field electrophysiological post-synaptic potential. 117, 119, 129, 175

FPE Fokker-Planck equation. 19, 21, 29, 50, 95, 175

GABA γ-aminobutyric acid. 15, 16, 154, 175

GABAAR GABA A receptor. 127, 175

GJ Gap junctions. 115, 120, 123, 126–128, 175

HH Hodgkin-Huxley. 15, 174, 175

IBI Interburst interval. 6, 10, 11, 13, 21, 34, 44, 68, 120, 121, 128, 132, 175

IF Integrate and fire. 15, 175

KCNQ Low-threshold voltage-gated K+ channels (also known as M-channels). 114, 123, 126, 128,
175

KO Knockout. 35, 175
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Acronyms

LIF Leaky integrate and fire. 15, 175

MEA Multi-electrode array. 11, 132, 175

MFPT Mean first passage time. 77, 173, 175

MMOs Mixed-mode oscillations. 17, 175

NBQX 2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f ]quinoxaline (AMPA receptor antagonist). 120, 126, 175

NMDA N-Methyl-D-aspartic acid. 118, 175

NMDAR NMDA receptor. 126, 175

NREM Non-rapid eye motion (also known as paradoxical sleep). 175

pdf Probability density function. 27, 29, 31, 50, 95, 99, 175

PSD Power spectral density. 121, 175

QP Quiescent phase. 21, 28, 35, 44, 68, 120, 175

REM Rapid eye motion (also know as paradoxical sleep). 13, 38, 175

ROI Region of interest. 174, 175

RRP Readily-releasable pool. 12, 175

RT Round trips. 33, 78, 106, 108, 173, 175

SDE Stochastic differential equation. 175

STP Short-term synaptic plasticity. 12, 18, 19, 175

WKB Wentzel-Kramers-Brillouin. 21, 29, 51, 95, 175

WT Wild type. 35, 123, 175
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N. Rouach, “Astroglial networks scale synaptic activity and plasticity,” Proceedings of the national
academy of sciences, vol. 108, no. 20, pp. 8467–8472, 2011.
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[177] C. Böhmer, U. Kirschner, and F. Wehner, “18-β-glycyrrhetinic acid (bga) as an electrical uncou-
pler for intracellular recordings in confluent monolayer cultures,” Pflügers Archiv, vol. 442, no. 5,
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A. McGonigal, P. Merle, V. Mutschler, et al., “Recommendations for the use of electroencephalog-
raphy and evoked potentials in comatose patients,” Neurophysiologie clinique, vol. 48, no. 3,
pp. 143–169, 2018.

[193] T. Lomas, I. Ivtzan, and C. H. Fu, “A systematic review of the neurophysiology of mindfulness
on eeg oscillations,” Neuroscience & Biobehavioral Reviews, vol. 57, pp. 401–410, 2015.

[194] M. Wenzel, A. Leunig, S. Han, D. S. Peterka, and R. Yuste, “Prolonged anesthesia alters brain
synaptic architecture,” Proceedings of the National Academy of Sciences, vol. 118, no. 7, 2021.

190



BIBLIOGRAPHY

[195] S. Ching, P. L. Purdon, S. Vijayan, N. J. Kopell, and E. N. Brown, “A neurophysiological–
metabolic model for burst suppression,” Proceedings of the National Academy of Sciences,
vol. 109, no. 8, pp. 3095–3100, 2012.

[196] M. Steriade, F. Amzica, and D. Contreras, “Cortical and thalamic cellular correlates of electroen-
cephalographic burst-suppression,” Electroencephalography and clinical neurophysiology, vol. 90,
no. 1, pp. 1–16, 1994.

[197] M. Steriade, “Grouping of brain rhythms in corticothalamic systems,” Neuroscience, vol. 137,
no. 4, pp. 1087–1106, 2006.

[198] R. R. Llinás and M. Steriade, “Bursting of thalamic neurons and states of vigilance,” Journal of
neurophysiology, vol. 95, no. 6, pp. 3297–3308, 2006.

[199] M. V. Sanchez-Vives and D. A. McCormick, “Cellular and network mechanisms of rhythmic
recurrent activity in neocortex,” Nature neuroscience, vol. 3, no. 10, pp. 1027–1034, 2000.

[200] A. Compte, M. V. Sanchez-Vives, D. A. McCormick, and X.-J. Wang, “Cellular and network
mechanisms of slow oscillatory activity (< 1 hz) and wave propagations in a cortical network
model,” Journal of neurophysiology, vol. 89, no. 5, pp. 2707–2725, 2003.
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