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Résumé: Le modèle le plus largement accepté
pour décrire la matière noire (DM) de notre
univers est le modèle de la matière noire froide
(CDM), dans lequel le scénario des WIMPs est
privilégié pour des raisons théoriques et expéri-
mentales. Cependant, malgré de nombreuses ex-
périences, les WIMPs n’ont toujours pas été dé-
tectés. De plus, plusieurs défis à petite échelle
sont apparus au fur et à mesure que les ob-
servations et les simulations à l’échelle galac-
tique se sont améliorées. Ces tensions pour-
raient être le signe d’une nouvelle physique
nécessaire pour mieux comprendre notre univers.
Dans ce contexte, des scénarios alternatifs ont
émergé, y compris l’hypothèse que la DM pour-
rait être un champ scalaire (SFDM). Cette thèse
développe de nouvelles études numériques et
analytiques pour examiner les différents mod-
èles de SFDM. A cette fin, nous analysons la
DM aux petites échelles. Ici, la dynamique
non-relativiste du système est gouvernée par
le système non-linéaire de Schrödinger–Poisson
(SP). Pour mieux comprendre cette dynamique,
nous avons obtenu de nouvelles solutions auto-
similaires par des méthodes semi-analytiques
pour le modèle Fuzzy Dark Matter (FDM).
Ces solutions auto-similaires diffèrent significa-
tivement de leurs homologues dans le modèle
CDM. Contrairement à l’effondrement hiérar-
chique familier de ces dernières, elles correspon-
dent à une explosion hiérarchique inverse. De
plus, cette étude met en évidence le proces-
sus de refroidissement gravitationnel, qui per-
met au système d’éjecter l’énergie excéden-
taire par l’expulsion intermittente d’amas de
matière sans dissipation. Ces comportements
surprenants sont dus aux propriétés ondulatoires
de l’équation de Schrödinger. En outre, nous
avons réalisé de nouvelles études numériques
pour résoudre la dynamique non linéaire du sys-
tème SP, en étudiant la formation et l’évolution
des solitons à l’intérieur de halos étendus pour
des scénarios de matière noire à champ scalaire
caractérisés par un potentiel d’interaction quar-

tique ou borné. Les solitons sont des configu-
rations d’équilibre du système SP et apparais-
sent dans ces modèles au centre des galaxies,
ce qui pourrait améliorer l’accord avec les don-
nées. Nous nous concentrons sur le régime
semi-classique où l’échelle des effets ondula-
toires est typiquement beaucoup plus petite que
l’échelle des auto-interactions. Nous présen-
tons de nouvelles simulations numériques avec
des conditions initiales où le halo est décrit par
l’approximation WKB pour les coefficients de ses
fonctions propres. Pour le potentiel quartique,
nous constatons que lorsque la taille du sys-
tème est de l’ordre de la longueur de Jeans asso-
ciée aux auto-interactions, un soliton central se
forme rapidement et représente environ 50% de
la masse totale. Cependant, si le halo est dix fois
plus grand que cette échelle d’auto-interaction,
un soliton ne se forme rapidement que dans les
halos où la densité centrale est suffisamment
grande pour déclencher les auto-interactions. Si
le halo a un profil plat, il faut plus de temps
pour qu’un soliton apparaisse après que de pe-
tites fluctuations aléatoires sur la taille de la
longueur d’onde de Broglie se soient accumulées
pour atteindre une densité suffisamment impor-
tante. Dans certains cas, nous observons la
coexistence de plusieurs pics de densité étroits
à l’intérieur d’un soliton plus large soutenu par
l’auto-interaction. Tous les solitons semblent ro-
bustes et croissent lentement à moins qu’ils ne
représentent déjà 40% de la masse totale. Pour
le potentiel borné, nous retrouvons les caractéris-
tiques des systèmes FDM lorsque le potentiel est
constant, tandis que nous retrouvons les résul-
tats du potentiel quartique lorsqu’il est linéaire.
Nous développons une théorie cinétique, valable
pour un fond inhomogène, afin d’estimer le taux
de croissance des solitons pour les faibles masses.
Nos résultats devraient montrer que les halos
cosmologiques montreraient une grande disper-
sion pour la masse de leur soliton, en fonction
de l’histoire de leur processus de formation.
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Abstract: The most widely accepted model to
describe the dark matter (DM) of our Universe is
the Cold Dark Matter model (CDM), where the
weakly interacting massive particles (WIMPs)
scenario is favoured for theoretical and experi-
mental reasons. However, despite many experi-
mental searches, WIMPs have still not been de-
tected. Moreover, several small-scale challenges
have emerged as observations and simulations at
galactic scales have improved. These tensions
could be signs of new physics needed to under-
stand better our Universe. In this context, alter-
native scenarios have emerged, including the hy-
pothesis that DM could be a scalar field (SFDM)
with masses ranging from 10−22 eV to eV.

In this thesis we develop new numerical and
analytical studies to examine different SFDM
models. To this end, we analyze DM at
small scales. Here, the non-relativistic dynam-
ics of the system are governed by the non-linear
Schrödinger – Poisson system (SP). In order to
understand better the complex dynamics of the
SP system, we have carried out new analytical
studies. We have found new self-similar solutions
for Fuzzy Dark Matter (FDM) by semi-analytical
methods. Thanks to these explicit expressions,
we have gained a much finer understanding of
the dynamic processes. A novel result is that
these self-similar solutions differ significantly of
the usual CDM self-similar solutions. In contrast
to the familiar hierarchical collapse of the cur-
rent model for structure formation, they corre-
spond to an inverse hierarchical explosion. More-
over, this study highlights the gravitational cool-
ing process, which allows the system to eject ex-
cess energy through the intermittent expulsion
of clumps of matter without dissipation. These
surprising behaviours are due to the wave prop-
erties of the Schrödinger equation.

Furthermore, we have performed new numer-
ical studies to solve the non-linear dynamics of
the SP system, investigating the formation and

evolution of solitons inside extended halos for
scalar-field dark matter scenarios characterized
by a quartic and bounded interaction potential.
Solitons are equilibrium configurations of the SP
system and appear in these models at the core
of galaxies, which could improve the agreement
with the data since they lead to a smooth den-
sity profile at the centre, solving one of the CDM
tensions at galactic scales, the core–cusp prob-
lem.

We focus on the semiclassical regime where
the scale of the wave-like effects is typically much
smaller than the scale of the self-interactions.
We present new numerical simulations with ini-
tial conditions where the halo is described by
the WKB approximation for its eigenfunction
coefficients. For the quartic potential, we find
that when the size of the system is of the or-
der of the Jeans length associated with the self-
interactions, a central soliton quickly forms and
makes about 50% of the total mass. However,
if the halo is ten times greater than this self-
interaction scale, a soliton only quickly forms in
cuspy halos where the central density is large
enough to trigger the self-interactions. If the
halo has a flat core, it takes a longer time for
a soliton to appear after small random fluctua-
tions on the de Broglie wavelength size build up
to reach a large enough density. In some cases,
we observe the co-existence of several narrow
density spikes inside the larger self-interaction-
supported soliton. All solitons appear robust and
slowly grow unless they already make up 40% of
the total mass. For the bounded potential, we
find features of FDM systems when the poten-
tial is constant, while we recover results for the
quartic potential when it is linear. We develop a
kinetic theory, valid for an inhomogeneous back-
ground, to estimate the soliton growth rate for
low masses. Our results suggest that cosmolog-
ical halos would show a large scatter for their
soliton mass, depending on their assembly his-
tory.
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[3] Solitons and halos for truncated self-interacting scalar field dark matter, Raquel
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Outline

This thesis undertakes a comprehensive exploration of both numerical and analytical
investigations concerning different scalar field dark matter models in the non-relativistic
regime. The structure of this thesis is as follows:

In Chapter 1, we introduce the dark matter paradigm, provide an overview of the
evidence supporting dark matter, and discuss the emergence of Cold Dark Matter. Addi-
tionally, we introduce Scalar Field Dark Matter as a compelling alternative to the Cold
Dark Matter model. In Chapter 2, we explore how scalar fields can act as dark matter and
examine the fundamental equations of the theory. Chapter 3 focuses on a comprehensive
study of self-similar solutions for Fuzzy Dark Matter. In Chapter 4, we discuss in detail
the numerical methods employed to compute the dynamics of scalar field dark matter
clouds. In Chapter 5 our attention shifts to investigating the formation and evolution
of solitons supported by repulsive self-interactions within extended halos focusing on the
quartic model. In Chapter 6, we present and analyze the results pertaining to the forma-
tion and evolution of solitons in truncated potentials. Finally in Chapter 7 we conclude
and summarize the key findings derived from this thesis.
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Résumé

La nature de la matière noire (DM) est actuellement l’un des plus grands défis de la
cosmologie, du point de vue de la relativité générale et du modèle standard de la physique
des particules. La matière noire est une forme hypothétique de matière qui n’interagit
pas avec la lumière ou d’autres formes de rayonnement électromagnétique, ce qui signifie
qu’elle ne réfléchit pas, n’absorbe pas et n’émet pas de lumière, ce qui la rend invisible
et difficile à détecter. C’est pourquoi on l’appelle "matière noire". Son existence est
déduite de ses effets gravitationnels sur la matière visible et de la structure à grande
échelle de l’Univers. Les mesures du rayonnement du fond diffus cosmologique (CMB), la
rémanence du Big Bang, effectuées par les missions Planck (Planck Collaboration et al.,
2020a) et WMAP (Bennett et al., 2013) ont fourni des preuves solides que la matière
noire représente environ 85 % de la matière totale de l’Univers.

Le modèle standard de la physique des particules, qui décrit les particules élémentaires
connues et leurs interactions, n’explique pas les propriétés de la matière noire. Les partic-
ules de matière noire, si elles existent, doivent être non baryoniques, c’est-à-dire qu’elles
ne sont pas constituées des mêmes éléments que la matière ordinaire (protons, neutrons
et électrons) (Del Popolo, 2014). Cela suggère qu’une extension du modèle standard est
nécessaire pour inclure la matière noire.

La combinaison de la matière noire et de la constante cosmologique donne naissance
au modèle ΛCDM, le modèle standard de la cosmologie (Weinberg, 2008). Ce cadre
est le modèle cosmologique le plus largement accepté pour décrire l’évolution et les pro-
priétés de notre Univers. Il repose sur la combinaison de la constante cosmologique (Λ)
et de la matière noire froide (CDM). La constante cosmologique représente une forme
d’énergie uniformément répartie dans l’espace et contribue à l’accélération de l’expansion
de l’Univers. Elle a été introduite pour la première fois par Einstein (1986) et est souvent
associée au concept d’énergie noire. La nature exacte de l’énergie noire reste inconnue,
mais elle représente environ 68 % de l’énergie totale de l’univers (Planck Collaboration
et al., 2020a). D’autre part, le CDM fait référence à un type de matière noire composé de
particules non relativistes qui se déplacent lentement à l’échelle cosmique (Peebles, 1982;
Bond et al., 1982). Elle est considérée comme "froide" car elle ne possède pas d’énergie
cinétique significative. Le modèle standard de cosmologie a remarquablement réussi à
simuler et à reproduire les caractéristiques observées de l’Univers. Il fournit un cadre
complet qui correspond étroitement à nos observations.

Cependant, l’absence de signal DM dans les canaux les plus prometteurs (Schumann,
2019; Conrad, 2014; Arcadi et al., 2018) et les incohérences qui apparaissent au fur et à
mesure que les observations et les simulations des échelles galactiques et subgalactiques
s’améliorent (Weinberg et al., 2015), ouvrent une nouvelle fenêtre pour l’exploration de
nouveaux modèles DM.
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4 Résumé

C’est pourquoi, dans cette thèse, nous nous aventurerons au-delà des modèles standard
de la physique des particules et de la cosmologie. Nous explorerons différents aspects
de la matière noire à champ scalaire (SFDM) (Hu et al., 2000; Goodman, 2000), une
alternative intrigante au paradigme CDM conventionnel qui remet en question certaines
des hypothèses sous-jacentes au modèle ΛCDM. En considérant cette alternative, nous
visons à élargir notre compréhension et à explorer les possibilités au-delà du cadre établi.

Le point essentiel des modèles SFDM est qu’ils reproduisent les prédictions du CDM
concernant la structure à grande échelle de l’univers (Shapiro et al., 2022) et qu’ils appor-
tent une solution naturelle à la crise à petite échelle (Weinberg et al., 2015; Del Popolo &
Delliou, 2016; Nakama et al., 2017; Di Luzio et al., 2020). En outre, ils expliquent l’absence
de preuves de détection directe et sont bien étayés du point de vue de la physique des
particules.

La principale hypothèse sous-jacente de la SFDM est que la masse associée au champ
doit être extrêmement légère, de l’ordre de 10−22 eV (Hu et al., 2000; Hui et al., 2017).
Cela correspond à une longueur d’onde de Broglie à l’échelle du kiloparsec,

λdB =
2π

mv
= 0.48kpc

(
10−22eV

m

)(
250km/s

v

)
. (1)

Ainsi, à des échelles beaucoup plus petites que λdB, le champ présente un comportement
ondulatoire conduisant à des interférences ondulatoires. Ces effets ondulatoires sont dus
à un nouveau terme de pression qui apparaît dans l’équation des mouvements, également
appelé pression quantique, provenant des gradients du champ scalaire. À ces échelles,
lorsque cette pression quantique s’équilibre avec la gravité, une solution d’équilibre se
forme. Ces solutions sont appelées solitons (Lee & Pang, 1992; Guth et al., 2015; Sikivie
& Yang, 2009). Ils apparaissent au centre des halos et donnent lieu à un profil de densité
radial plat au centre. Par conséquent, la formation de structures aux petites échelles est
entravée par l’effet de cette pression quantique. La formation et l’évolution de ces solitons
est l’un des objectifs de cette thèse. Nous nous demandons dans quelles conditions les
potentiels quartiques et tronqués sont formés.

Sur des échelles beaucoup plus grandes que la longueur d’onde de Broglie, cependant,
le comportement de la SFDM ne se distingue pas de celui de la CDM (Shapiro et al.,
2022). Les simulations cosmologiques montrent que l’on retrouve la distribution des vides
et des filaments lorsque l’on compare les deux résultats. Ainsi, la SFDM représente une
solution reliée à la crise des petites échelles, tout en préservant les acquis du CDM aux plus
grandes échelles (Ferreira, 2020; Hui, 2021).. La compréhension de la limite semi-classique
reliant le modèle CDM aux modèles SFDM est un autre objectif de la thèse, en particulier
nous explorons ce point avec le modèle FDM à travers des solutions auto-similaires.

Du point de vue de la physique des particules, l’idée d’un boson extrêmement léger
trouve un soutien dans plusieurs scénarios de physique des particules. Un exemple notable
est l’axion de la QCD, qui résout le problème CP fort (Peccei & Quinn, 1977). En tant
que boson ultra-léger, le SFDM constitue un candidat viable pour la matière noire sans
dépendre d’extensions supersymétriques du modèle standard.

Dans l’ensemble, la SFDM apparaît comme une alternative bien étayée au CDM, dé-
montrant son potentiel pour résoudre les problèmes à petite échelle de ce dernier. En même
temps, la convergence des prédictions du SFDM et du CDM aux échelles cosmologiques
garantit que ce modèle est un candidat viable pour reproduire les observations dérivées
des études sur la formation des structures cosmologiques.
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En particulier, dans cette thèse, nous nous concentrons sur l’étude analytique et
numérique de différents modèles de matière noire scalaire dans le régime non relativiste.
Ce régime est pertinent pour les structures astrophysiques et à grande échelle. Par con-
séquent, les équations fondamentales avec lesquelles nous allons travailler sont les équa-
tions de Schrödinger–Poisson.

La dérivation de ces équations, ainsi que la façon dont les champs scalaires peuvent
jouer le rôle de matière noire et les principales équations de la théorie sont présentées
dans le Chapitre 2.

Dans le Chapitre 3, nous utilisons des techniques semi-analytiques pour calculer des
solutions auto-similaires pour la matière noire fuzzy, (FDM) (Galazo-García et al., 2022).
L’autosimilarité fait référence à la propriété de rester inchangé dans la forme et l’apparence
sous des transformations d’échelle appropriées. En considérant des solutions auto-similaires,
nous visons à étendre notre compréhension au-delà de l’équilibre hydrostatique présenté
par les solitons. Cela nous permet d’explorer d’éventuelles solutions analytiques dépen-
dant du temps, ce qui nous fournit un outil précieux pour mieux contrôler et comprendre
la dynamique du modèle. Grâce à ces solutions auto-similaires, nous pouvons examiner
les configurations dynamiques intégrées dans un arrière-plan cosmologique en expansion.

Une autre motivation de l’étude des solutions auto-similaires pour le FDM est d’établir
un lien et de faciliter les comparaisons avec les solutions auto-similaires dans le cadre du
CDM (Fillmore & Goldreich, 1984; Bertschinger, 1985; Teyssier et al., 1997). Dans le scé-
nario CDM, les solutions auto-similaires présentent un modèle d’effondrement hiérarchique
bien connu. Au départ, de petites perturbations linéaires de la densité apparaissent sur
un fond homogène, leurs amplitudes décroissant comme une loi de puissance aux grands
rayons. Au fur et à mesure que le temps passe, des coquilles de masse plus importante
se retournent et s’effondrent. Pour des profils initiaux suffisamment abrupts, le noyau in-
terne se stabilise en coordonnées physiques, conduisant à la formation d’un halo viralisé.
Le profil de densité dans la région non linéaire suit une distribution en loi de puissance,
augmentant en masse et en rayon au fur et à mesure que des coquilles plus éloignées se
séparent du flux de Hubble et s’effondrent. Par conséquent, en explorant ces solutions,
nous pouvons mieux comprendre les similitudes et les différences entre les modèles FDM
et CDM.

L’étude des solutions autosimilaires nous aide également à comprendre la relation en-
tre les modèles FDM et CDM dans la limite semi-classique. Cette limite nous permet
d’étudier le comportement du FDM dans le régime où les effets quantiques sont signifi-
catifs, mais où la gravité classique reste la force dominante.

Nos résultats mettent en évidence la nature différente de ces solutions auto-similaires
pour la FDM par rapport à leurs homologues pour la matière noire froide (CDM). Les solu-
tions auto-similaires pour la CDM dans un univers perturbé d’Einstein-de Sitter décrivent
un effondrement gravitationnel, avec un contraste de densité croissant dans le régime
linéaire et une transition vers le régime non-linéaire où la forme du profil dans les régions
intérieures est altérée par des effets non-linéaires.

Cependant, les solutions auto-similaires pour la FDM présentent des différences sig-
nificatives. Elles ne présentent pas d’effondrement gravitationnel ; au lieu de cela, la
matière est expulsée des pics centraux par des amas successifs, ce qui ressemble à un
refroidissement gravitationnel. Ce comportement est attribué à la pression quantique et
aux propriétés ondulatoires de l’équation de Schrödinger. Contrairement à la CDM, les
coquilles extérieures de la FDM ne suivent pas la trajectoire de l’effondrement sphérique
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en chute libre. La prédominance de la pression quantique sur la gravité conduit à des
oscillations de type acoustique, facilitant le couplage entre petites et grandes échelles.

De plus, en comparant le profil du soliton avec le profil de la solution auto-similaire
dans la limite asymptotique à haute densité, nous observons que le pic central du pro-
fil auto-similaire ne converge pas vers l’état d’équilibre du profil du soliton, malgré
l’augmentation de la densité centrale. Cette divergence peut être attribuée à l’influence
des effets cinétiques près de la limite du pic central.

En ce qui concerne la limite semi-classique, nous découvrons que les solutions autosim-
ilaires FDM disparaissent à l’approche de la limite, devenant confinées dans un rayon de
plus en plus petit. Cela indique que la limite semi-classique ne permet pas de retrou-
ver la dynamique de la CDM dans le cas de la FDM. Cela souligne la nécessité de faire
preuve de prudence et d’examiner attentivement la limite semiclassique, car les solutions
auto-similaires standard du CDM ne sont retrouvées avec précision qu’à ε = 0.

Au Chapitre 4, nous présentons le code pseudo-spectral conçu pour simuler l’évolution
dynamique du système de Schrödinger–Poisson. Le code utilise une combinaison d’opérations
dans le domaine de Fourier et d’évaluations dans l’espace des positions pour traiter
les termes linéaires et non linéaires, respectivement. Cette approche élimine le bruit
généralement associé aux méthodes de différences finies pour le calcul des dérivées spa-
tiales (Pathria & Morris, 1990; Zhang & Hayee, 2008; Edwards et al., 2018). Bien que le
code entraîne des coûts de calcul dus aux transformées de Fourier et de Fourier inverse,
nous optimisons ces transformées à l’aide du logiciel efficace FFTW3 (Frigo & Johnson,
2005) et tirons parti des capacités de parallélisation offertes par OpenMP (OpenMP Ar-
chitecture Review Board, 2005–present ; Miguel Hermanns, 1997). La création de ce code
est fortement motivée par les études numériques des chapitres suivants, dans lesquels la
dynamique des halos de matière noire non relativistes est étudiée.

Dans le Chapitre 5, nous explorons la formation et l’évolution des solitons à l’intérieur
de halos étendus dans le modèle quartique à la fois analytiquement et numériquement
(Galazo García et al., 2023). Nous supposons que le halo est formé par l’instabilité
de Jeans et nous cherchons à savoir si les solitons peuvent émerger dynamiquement de
l’évolution de la matière noire dans le halo.

En considérant des conditions initiales spécifiques et en résolvant l’équation de Schrödinger
non linéaire, nous observons l’émergence rapide de solitons centraux soutenus par des auto-
interactions au sein de halos à l’échelle de la longueur d’auto-interaction. Ces solitons
amortissent les fluctuations de densité initiales et représentent une fraction significative
de la masse totale. Ce comportement est valable pour les profils de halos plats et cuspides,
les halos cuspides présentant des pics supplémentaires de haute densité à l’intérieur du
soliton.

Pour les halos plus grands que l’échelle des auto-interactions, il faut plus de temps
pour que les solitons se forment, les profils de densité plats nécessitant beaucoup de
temps jusqu’à ce que des pics à petite échelle se développent pour déclencher les auto-
interactions. Les halos épais, en revanche, conduisent rapidement à la formation de soli-
tons. Nous développons une théorie cinétique et un ansatz simplifié pour estimer les taux
de croissance des solitons, qui montrent un accord raisonnable avec la croissance précoce
pour les halos cuspides, mais ont des limites pour les grandes masses de solitons et les
profils de halo plats.

Dans l’ensemble, nos résultats suggèrent que les solitons jouent un rôle crucial dans
les scénarios de matière noire à champ scalaire avec des auto-interactions. Ils peuvent se
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former dans des régions surdenses qui s’effondrent et persistent au fur et à mesure que
les halos grandissent, augmentant progressivement leur masse par accrétion et fusions.
La relation entre les masses du halo et du soliton est complexe, dépendant de l’histoire
de l’assemblage du système et pouvant conduire à une grande dispersion des masses du
soliton pour une masse donnée du halo.

Enfin, dans le Chapitre 6, nous étudions numériquement l’émergence et l’évolution des
solitons dans deux modèles de matière noire de champ scalaire à potentiel tronqué. L’une
des principales motivations est d’explorer les caractéristiques du modèle du cosinus. Bien
que nous fassions une approximation de ce modèle et que nous complétions l’étude par
l’incorporation d’un potentiel tronqué, les simulations fourniront des indications et des
indices précieux sur le comportement et la phénoménologie de la résolution du potentiel
réel. En étudiant le modèle simplifié du cosinus, nous pouvons acquérir une meilleure com-
préhension de la dynamique sous-jacente et potentiellement appliquer ces connaissances
au potentiel réel plus complexe.

En plus, ce scénario offre la possibilité d’étudier de nouveaux phénomènes qui don-
nent lieu à des équilibres et des dynamiques inédits. Il est ainsi possible d’étudier les
transitions de soliton et la manière dont elles se manifestent dans ce modèle. Ces ré-
sultats peuvent avoir des implications significatives pour la compréhension des systèmes
astrophysiques. En particulier, dans le contexte des galaxies, les galaxies très massives
peuvent être assimilées au régime FDM, tandis qu’en dessous d’un certain seuil, l’équilibre
entre les auto-interactions et la gravité s’applique aux galaxies satellites. En revanche, les
galaxies plus petites présentent un équilibre entre la pression quantique et la gravité. Ces
simulations pourraient nous éclairer sur les mécanismes qui régissent leur équilibre et leur
dynamique. Les comparaisons avec d’autres modèles de matière noire en considérant ce
potentiel, nous visons à étendre notre compréhension au-delà du modèle quartique et de
la matière noire floue. Ce faisant, nous pouvons établir un lien et faciliter les compara-
isons avec d’autres modèles de matière noire, nous pouvons établir un lien et faciliter les
comparaisons entre ces deux modèles.

Le modèle A est basé sur un potentiel de cosinus limité, tandis que le modèle B
est le potentiel opposé. Nous examinons les halos formés à une échelle comparable à
la longueur d’auto-interaction. Dans le modèle A, un soliton central soutenu par les
auto-interactions se forme rapidement lorsque la densité critique est élevée. Ce soliton
représente une fraction significative de la masse totale et réduit les fluctuations initiales de
densité. Lorsque la densité critique est intermédiaire, un nouveau phénomène apparaît.
On passe d’un soliton dominé par les auto-interactions qui s’effondre à un pic de matière
noire dominé par la pression quantique. Aux faibles densités critiques, la formation du
pic FDM est retardée mais se produit quand même, ce qui indique que la formation du
pic FDM est plus efficace lorsque la condition initiale est un état cohérent.

Dans le modèle B, les solitons se forment rapidement lorsque la densité critique est
petite et intermédiaire. Cependant, la forme du soliton dans ce dernier cas présente
de légères variations par rapport aux autres cas. La chute de densité aux bords est
plus rapide, ce qui peut être attribué à l’absence d’un potentiel d’auto-interaction, ce
qui signifie qu’aucune force n’agit dans cette région. Aux grandes densités critiques, le
système ne conduit pas à la formation de solitons. L’absence de formation de solitons à
de grandes densités critiques s’aligne sur des études antérieures indiquant l’évaporation
de solitons légers dans les halos FDM.
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Nous étudions également des halos avec des tailles beaucoup plus grandes que l’échelle
d’auto-interaction et nous trouvons que la formation de solitons prend un temps con-
sidérable dans des profils de densité plats pour les modèles A et B lorsque le potentiel
ressemble au modèle quartique. Dans d’autres cas, un régime flou de matière noire est
observé avec la signature d’un halo fluctuant.

Dans l’ensemble, ces résultats donnent un aperçu de la formation et de l’évolution des
solitons dans les modèles scalaires de matière noire, en soulignant l’influence des auto-
interactions et des conditions initiales sur l’émergence des solitons et des pics FDM.

Grâce à ces études, nous avons élargi l’étendue de nos connaissances dans les différents
modèles scalaires de la matière noire. Nous avons pu mieux comprendre la frontière semi-
classique entre les modèles CDM et SFDM, ainsi que la formation et l’évolution des
solitons dans les halos de matière noire.



Chapter 1

Introduction

The nature of dark matter is currently one of the greatest challenges in Cosmology, from
the perspective of General Relativity and the Standard Model of Particle Physics. Dark
matter is a hypothetical form of matter that does not interact with light or other forms of
electromagnetic radiation, meaning that it does not reflect, absorb and emit light, making
it invisible and difficult to detect. This is why it is called dark matter (DM). Its existence
is inferred from its gravitational effects on visible matter and the large-scale structure
of the Universe. Measurements of the Cosmic Microwave Background (CMB) radiation,
the afterglow of the Big Bang from the Planck (Planck Collaboration et al., 2020a) and
WMAP (Bennett et al., 2013) missions have provided strong evidence that dark matter
makes up about 85% of the total matter in the Universe.

The Standard Model of Particle Physics, which describes the known elementary par-
ticles and their interactions, does not explain the properties of dark matter. Dark matter
particles, if they exist, must be non-baryonic, meaning that they are not made up of the
same building blocks as ordinary matter (protons, neutrons and electrons) (Del Popolo,
2014). This suggests that an extension of the Standard Model is needed to include dark
matter.

The combination of dark matter and the cosmological constant gives rise to the ΛCDM
model (see eg. Weinberg (2008)) the Standard Model of Cosmology. This framework is
the most widely accepted cosmological model describing the evolution and properties of
our Universe. It is based on the combination of the cosmological constant (Λ) and cold
dark matter (CDM). The cosmological constant, represents a form of energy that is uni-
formly distributed throughout space and contributes to the acceleration of the expansion
of the Universe. It was first introduced by Einstein (1986) and is often associated with
the concept of dark energy. The exact nature of dark energy remains unknown, but it
contributes about 68% of the total energy in the Universe (Planck Collaboration et al.,
2020a). On the other hand, CDM refers to Cold Dark Matter, a type of dark matter
consisting of non-relativistic particles that move slowly on cosmic scales (Peebles, 1982;
Bond et al., 1982). It is thought to be "cold" because it has no significant kinetic energy.
The Standard Model of Cosmology has been remarkably successful in simulating and re-
producing the observed features of the Universe. It provides a comprehensive framework
that closely matches our observations.

However, the lack of DM signal in the most promising channels (Schumann, 2019;
Conrad, 2014; Arcadi et al., 2018), and the inconsistencies that arise as observations and
simulations of the galactic and subgalactic scales improve (Weinberg et al., 2015), open a
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new window for exploring new DM models.
Therefore, in this thesis we will venture beyond the Standard Models of Particle

Physics and Cosmology. We will explore different aspects of Scalar Field Dark Matter
(SFDM) (Hu et al., 2000; Goodman, 2000), an intriguing alternative to the conventional
CDM paradigm which challenges some of the assumptions underlying the ΛCDM model.
By considering this alternative, we aim to broaden our understanding and explore the
possibilities beyond the established framework.

Figure 1.1. Energy content of the Universe

This chapter is organized as follows: In Section 1.1, we present the observational
evidence that supports the existence of dark matter. Then, in Section 1.2, we provide
an overview of the CDM paradigm and we discuss its success. Next, in Section 1.3, we
examine the challenges faced by the CDM model. Finally, in Section Section 1.4, we
introduce scalar field dark matter as an alternative to the CDM model.

1.1 Observational evidence

The existence of dark matter is supported by its gravitational influence on visible matter.
These gravitational effects have been observed at different scales and are briefly described
below.

1.1.1 Galaxy clusters

The first observational evidence for dark matter came in 1933, when the Swiss astronomer
Fritz Zwicky suggested the existence of missing matter by studying the dynamics of the
Coma cluster (Zwicky, 1933). He used spectral redshift to measure the radial velocities
of 7 galaxies belonging to Coma and estimated the total dynamical mass of the cluster
using the virial theorem. Then, he compared this dynamical mass with the luminous
mass obtained from the rotation curve of some nearby galaxies and found a discrepancy
between them by a factor of 400. This led him to conclude that the existence of invisible
matter, which he called dark matter, had a significant effect on the dynamics of the Coma
cluster. The work of Zwicky on the Coma cluster was followed up by Smith (1936) for
the Virgo cluster. Once again, the velocities of its galaxies highlighted an unexpectedly
high mass-to-light ratio.
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1.1.2 Rotational curves

Figure 1.2. Figure from Rubin et al. (1978). Rotational velocities for seven galaxies as a function of
distance from nucleus.

Vera Rubin and collaborators significantly advanced our understanding of spiral galax-
ies by making high-resolution measurements of their rotation curves (Rubin & Ford, 1970).
She discovered that the rotation curves of these galaxies remain flat even at very large
radii. This poses a challenge to Newtonian analysis, which suggests that the orbital veloc-
ity should decrease as one moves away from the galactic centre. The rotation, or circular
velocity is given by,

vc =

√
GM(< r)

r
, (1.1)

where M(< r) =
∫ r

0
4πr2ρ(r) is the mass enclosed by a radius r and ρ(r) is the density

profile. For large values of r, where the density profile (ρ(r)) is expected to be zero, the
velocity vc ∝ r−1/2 follows a Keplerian fall-off. However, the observed rotational speeds
in spiral galaxies remain roughly constant at large r, as seen in Fig.1.2, indicating that
M(< r) ∝ r and ρ(r) ∝ r−2. These results strongly suggest the presence of a spherical
dark matter halo surrounding the luminous matter, which contributes significantly to the
flat behaviour of the rotation curves through gravitational forces under the assumption of
Newtonian gravity. Ostriker & Peebles (1973) further supported this idea with numerical
simulations, showing that the galactic discs of spiral galaxies would be unstable if only
baryonic matter were considered. However, the inclusion of a dark matter halo resolves
the problem of disc instability.

1.1.3 Gravitational lensing

The existence of dark matter is further supported by gravitational lensing, a phenomenon
predicted by General Relativity. Gravitational lensing occurs when the space-time is
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Figure 1.3. Illustration of gravitational lensing (Image: NASA, ESA & L. Calçada).

Figure 1.4. Gravitational lensing in Webb’s First Deep Field taken by James Webb Space Telescope
(2022). Galaxy cluster SMACS 0723 (Image credit: NASA, ESA, CSA, and STScI)

distorted by massive objects, causing the path of photons from a distant source to deviate
based on irregularities in the mass distribution along the way (Einstein, 1936; Chwolson,
1924), as illustrated in Fig.1.3. As a result, the images of distant bright sources carry
information about the cosmic structure.

Strong lensing occurs when extremely massive objects like galaxies or clusters of galax-
ies cause multiple images and distorted shapes of objects, as seen in Fig.1.4. From these
images, we can reconstruct the total matter content and sometimes its distribution. This
technique has revealed intriguing conclusions, such as the dominance of dark matter in
galaxies and galaxy clusters (Massey et al., 2010; Limousin et al., 2022).

Weak lensing, also known as gravitational shear, refers to the collective gravitational
lensing effect caused by the distribution of matter in the Universe. It causes subtle dis-
tortions in the images of distant galaxies. By studying gravitational weak-lensing maps
of large clusters of galaxies, it has been observed that the gravitational potential does not
align with the distribution of visible mass (Kaiser & Squires, 1993). This provides evi-
dence that these structures are primarily influenced by dark matter. Another compelling
evidence for dark matter is observed in the Bullet cluster Fig.1.5, formed by the collision
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Figure 1.5. Bullet Cluster. The optical image from the Magellan and the Hubble Space Telescope
shows galaxies in orange and white in the background. Hot gas, which contains the bulk of the normal
matter in the cluster, is shown by the Chandra X-ray image, which showst the hot intracluster gas (pink).
Gravitational lensing, the distortion of background images by mass in the cluster, reveals the mass of
the cluster is dominated by dark matter (blue), an exotic form of matter abundant in the Universe, with
very different properties compared to normal matter. Credit: NASA.

of two clusters. By mapping baryonic matter through X-ray observations and inferring
gravitational mass through weak and strong lensing (Clowe et al., 2006), we observe the
separation of baryonic and dark matter components.

1.1.4 Cosmic Microwave Background

After the Big Bang, a hot dense plasma of particles (mostly protons, neutrons, and elec-
trons) and photons (light) filled space in the Universe. As the Universe expanded, the
plasma and radiation gradually cooled and neutral atoms formed when electrons com-
bined with protons, and the temperature was too low to separate them again. This
allowed photons to travel freely without being absorbed by the neutral atoms, giving rise
to the cosmic microwave background. Measurements of the CMB show that its temper-
ature is nearly uniform across the sky. However, small variations in temperature contain
valuable information about the Universe. In the early stages, ordinary matter was ionised
and interacted with radiation through Thomson scattering, while dark matter interacted
with radiation only weakly, if at all. As a result, the CMB was affected differently by
dark matter compared to ordinary matter.

The discovery of the CMB (Penzias & Wilson, 1965) and subsequent measurements,
such as COBE satellite (Smoot et al., 1992), the MAXIMA (Hanany et al., 2000) and
BOOMERanG (Mauskopf et al., 2000) experiments and observations by WMAP (Hin-
shaw et al., 2013) and Planck (Planck Collaboration et al., 2020b), have provided further
evidence for the existence of dark matter. These observations suggest that dark mat-
ter accounts for about 26% of the energy density of the Universe, while ordinary matter
accounts for about 5%. The different behaviour of dark matter and ordinary matter is
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expected to leave its mark on the CMB, providing a means of distinguishing between the
two components through analysis of the CMB power spectrum. In particular, extensive
studies have convincingly revealed a density field in the CMB that is dominated by dark
matter (Dent et al., 2012; Chluba & Grin, 2013).

Figure 1.6. Planck CMB. Projection of sphere, where the colours represent deviations with respect to
a homogenous distribution of temperature. The scale of the typical deviation is 105. Credit: ESA and
the Planck Collaboration

1.2 CDM paradigm and success

The combined evidence from the dynamics of galaxies and galaxy clusters, gravitational
lensing, and the anisotropies observed in the CMB strongly supports the existence of a
significant dark component within the matter composition of the Universe as we have
seen in Section 1.1. Observations consistently show that dark matter is massive, stable
over long periods of time, largely collisionless, and interacts primarily gravitationally,
while remaining distinct from baryonic matter. However, one of the major challenges
in understanding dark matter is its lack of electromagnetic interaction, which limits our
ability to constrain its specific properties. These properties provide important clues, and
many dark matter candidates with a huge range of masses, as seen in Fig.1.7, have been
proposed in recent decades. In this section, we briefly discuss some potential candidates
for dark matter and explain why the CDM paradigm has become the dominant model in
cosmology.

Figure 1.7. Figure from (Ferreira, 2020). Sketch (not to scale) of the huge range of possible DM models
that have been conceived. They span many orders of magnitude in mass, with DM represented by very
distinct phenomena, ranging from new elementary particles to black holes
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Dark matter models can be categorized in different ways, such as astrophysical or
particle origin. Examples of astrophysical dark matter include Massive Compact Halo
Objects (MACHOs) (Alcock et al., 1993; Griest, 1996; Tisserand et al., 2007; Yoo et al.,
2004) and primordial black holes (Bird et al., 2016; García-Bellido & Ruiz Morales, 2017;
Sasaki et al., 2018). On the other hand, particle dark matter examples encompass axions
(Peccei & Quinn, 1977; Kim, 1979; Graham et al., 2015; Svrcek & Witten, 2006; Bach-
lechner et al., 2019; Marsh, 2016), neutrinos (Dodelson & Widrow, 1994; Shi & Fuller,
1999; Kopp, 2021), or supersymmetric partners to Standard Model particles (Jungman
et al., 1996; Drees et al., 2004; Steigman & Turner, 1985). These particle candidates for
dark matter are often called Weakly Interacting Massive Particles (WIMPs) because they
interact weakly through gravity and weak interactions while being non-electromagnetic.

Another important categorization of dark matter is its energy scale, which determines
its characteristic velocities. Candidates can be classified as hot, warm, or cold, depending
on their velocities. Neutrinos are an example of hot dark matter (HDM) as they travel
at speeds close to the speed of light. In contrast, stable supersymmetric WIMP particles
are considered CDM since they move much slower than light. There are also warm dark
matter (WDM) candidates like light gravitinos (Steffen, 2006) that exhibit intermediate
behaviour. Mapping of CMB anisotropies has provided increasingly stringent constraints
on dark matter models (Galli et al., 2009, 2011; Planck Collaboration et al., 2020c,a)
turning the CDM as the prevailing dark matter model.

The success of the CDM model can be attributed to several factors. First, as we see in
Fig.1.8, it is consistent with detailed measurements of the CMB. Moreover, it it success-
fully predicts and explains the observed large-scale structure of the Universe, including
the formation of galaxy clusters, filaments, and voids observed in galaxy surveys and it
effectively reproduces the observed large-scale structure with N-body simulations (Jing
et al., 1998; Coil, 2013; Springel et al., 2006) solving Vlasov or Collisionless Boltzmann
equation as seen in Fig. 1.9.

Figure 1.8. The temperature fluctuations in the CMB measured by Planck (red dots) at different
angular scales on the sky. The green curve represents the best fit of the ΛCDM. Credit: ESA and the
Planck Collaboration (Planck Collaboration et al., 2014)



16 Chapter 1. Introduction

Figure 1.9. Figure from https://wwwmpa.mpa-garching.mpg.de/millennium/. Large scale structure
of the Universe. In blue, observations by the 2dF Galaxy Redshift Survey (Colless et al., 2001) , the
Sloan Digital Sky Survey (Gott et al., 2003) and the CfA Redshift Survey (Geller & Huchra, 1989). Each
point represents a galaxy as a function of R.A. and redshift. The three redshift survey are accompanied
by the corresponding N-body Millenium-II simulations considering the ΛCDM in red.

While different CDM candidates exist, supersymmetric partners to Standard Model
particles are among the most popular. Specifically, models of supersymmetry where the
lightest stable supersymmetric particle is a neutralino provide a natural WIMP dark
matter candidate (Bednyakov et al., 1997). The appeal of this model arises because
it conveniently predicts the correct relic abundance to account for dark matter, which
has historically been referred to as the "WIMP Miracle". Moreover, the posibility of
direct detection in experiments like the Large Hadron Collider (Giagu, 2019) and indirect
detection with gamma ray-astronomy (Funk, 2015) have further bolstered the popularity.
In summary, CDM has emerged as the favoured model for dark matter, with viable WIMP
CDM candidates arising naturally from supersymmetric extensions to the Standard Model
of particle physics.

https://wwwmpa.mpa-garching.mpg.de/millennium/
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1.3 CDM Tensions

The CDM paradigm is a powerful model that successfully explains the observed features
of large-scale cosmological structures as we have seen in Section 1.2. However, as the
observations and simulations of the galactic and subgalatic scales improve, a number of
inconsistencies have emerged. These discrepancies are referred in the literature as small-
scale tensions (Weinberg et al., 2015; Del Popolo & Delliou, 2016; Nakama et al., 2017)
and the explanations are still under debate (Di Luzio et al., 2020).

1.3.1 Core-cusp

The core-cusp tension refers to the disagreement between simulations and observations of
the halo density profile. In CDM-only simulations, the halo density profile typically forms
a sharp cusp at the centre. This component is described by the Navarro-Frenk-White
(NFW) profile (Navarro et al., 1996a). However, different observations of dwarf galaxies
indicate a preference for cored density profiles (Moore, 1994; Flores & Primack, 1994).
The relevance of considering these objects is that they provide excellent opportunities to
study halo structure since they are dominated by DM throughout their halo. Because
of this mismatch, there is ongoing discussion surrounding the core-cusp problem, and
multiple solutions consistent with the CDM framework have been proposed. One of
the most promising explanations highlights the importance of considering the impact of
baryonic physics (Madau et al., 2014; Read et al., 2016; Dashyan et al., 2018). The
latest hydrodynamical simulations suggest that baryonic feedback can smooth the inner
cusps and produce core-like profiles like those observed for dwarf galaxies. However,
not all simulations agree with this finding, and it is deeply complicated to model these
physical processes as many parameters are introduced and sometimes are difficult to
justify. Therefore, despite the suggested explanations, the core-cusp problem is still under
debate. Thus, until a fully justified agreement is reached, alternatives such as modifying
the properties of the DM or small-scale gravity dynamics (such as MOND) should be
considered.

Figure 1.10. Figure from Kennicutt et al. (2011). The dark matter density profiles of the 7 THINGS
dwarf galaxies. The profiles are derived using the rotation curves. The dotted lines represent the mass
density profiles of NFW models The dashed lines indicate the mass density profiles of the best fit pseudo-
isothermal halo models. (Kennicutt et al., 2011; Oh et al., 2015)
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1.3.2 Missing satellites

The missing satellite problem emerges in the discrepancy between the over-predicted
number of subhalos in the N-body simulations and the observed satellite galaxies. (Moore
et al., 1999b; Klypin et al., 1999). The hierarchical structure formation in cold dark
matter suggests that there should be a significant presence of dark matter substructures
on smaller scales within galaxies. Precisely, it is predicted that the Milky Way (MW)
should have around 500 satellite galaxies (Moore et al., 1999a). However, it is known that
the MW has nine bright dSphs, Sagittarius, the LMC and the SMC.

Cosmological simulations, such as Aquarius (Springel et al., 2008), Via Lactea (Kuhlen
et al., 2008), and GHALO simulations (Stadel et al., 2009), have confirmed the issue of
the predicted excess of small subhalos in Milky Way-like galaxies.

Although not fully resolving the problem, the discovery of ultra-faint dwarf satellites
(UFDs) (Drlica-Wagner et al., 2015) has provided some relief. By including these UFDs
in the known satellites of the MW, the gap between the observed and predicted numbers
can be reduced. This approach considers that only a subset of the population of satellites
is visible, which helps to alleviate the discrepancy. However, this is not enough. Hence
several proposals have been suggested to alleviate this issue. Essentially, they include the
impact of baryonic physics in the equation. Incorporating baryonic mechanisms such as
tidal stripping, re-ionization stripping, photo-ionization and gas stripping, and transfer of
angular momentum (Brooks et al., 2013). Despite the numerous suggestions to address
the issue of missing satellites, it continues to pose a significant challenge for current CDM
models and prompts the exploration of alternative models.

Figure 1.11. Figure from Bullock & Boylan-Kolchin (2017). Left panel: Predicted ΛCDM substructure
within a sphere of radius 250 kpc around the center of a Milky-Way size dark matter halo (simulation by
V. Robles and T. Kelley in collaboration with the authors). Right panel: known Milky Way satellites:
The image on the right (by M. Pawlowski in collaboration with the authors) shows the current 2017
census of Milky Way satellite galaxies, with galaxies discovered since 2015 in red. The Galactic disk is
represented by a circle of radius 15 kpc at the center and the outer sphere has a radius of 250 kpc.
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1.3.3 Too-big-to-fail

The too-big-to-fail problem arises as a challenge in understanding the distribution of
subhalos within the MW and other galaxies (Garrison-Kimmel et al., 2014). According to
CDM simulations, the most massive subhalos should correspond to the visible subhalos
observed in the MW (Boylan-Kolchin et al., 2011). However, the simulations predict that
these massive subhalos have central masses that are too large to host the observed satellite
galaxies. On the other hand, subhalos with central masses similar to those expected in the
MW are not the most massive. This discrepancy is not unique to the MW and extends
to other galaxies in the Local Group and Local Volume.

Several proposed solutions to the too-big-to-fail problem involve astrophysical pro-
cesses driven by baryons. However, these solutions seem compelling only for the MW
and require highly efficient feedback mechanisms like supernova feedback (Chan et al.,
2015). There is ongoing debate, and no consensus has been reached regarding these pro-
posed solutions. Recent claims suggest that the too-big-to-fail problem has been resolved
(Ostriker et al., 2019), but this remains a topic of intense discussion.

Addressing both the missing satellite problem and the too-big-to-fail problem, scalar
field dark matter models offer potential solutions. These models propose mechanisms that
suppress the formation of small-scale subhalos and reduce the central densities of massive
subhalos, potentially modifying the dynamics of the central regions. These alternative
models provide a potential avenue for understanding the internal structure of subhalos
and resolving the discrepancies observed in simulations.

1.4 SFDM as an alternative to CDM

Given the open challenges to the CDM model discussed in Section 1.3, alternative ap-
proaches have emerged that can address these issues while preserving the achievements
of the CDM (see Section 1.2). These alternatives should replicate the CDM predictions
about the large-scale structure of the universe, while providing a natural solution to the
small-scale crisis. In addition, they should account for the lack of direct detection ev-
idence and be well supported from a particle physics point of view. In this section we
briefly outline the SFDM as an alternative to the CDM.

The main underlying assumption of SFDM is that the mass associated with the field
must be extremely light, of the order of 10−22 eV (Hu et al., 2000; Hui et al., 2017). This
corresponds to a de Broglie wavelength on the kiloparsec scale,

λdB =
2π

mv
= 0.48kpc

(
10−22eV

m

)(
250km/s

v

)
. (1.2)

Thus, at scales much smaller than λdB, the field exhibits a wave-like behaviour leading to
wave-like interferences such as those shown in the left panel of Fig.1.12 . We anticipate
here that these wave-like effects are due to a new pressure term that arises in the equation
of motions, also called quantum pressure, arising from the gradients of the scalar field.
When this quantum pressure balances with gravity, an equilibrium solution is formed.
These solutions are called solitons (Lee & Pang, 1992; Guth et al., 2015; Sikivie & Yang,
2009). They appear at the centre of the halos and give rise to a flat radial density profile
at the centre, as shown in the right panel of Fig. 1.12. If the SFDM includes interactions,
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the equilibrium can be obtained by balancing the self-interaction pressure with gravity.
We will see this with equations in In Chapter 2.

Figure 1.12. Figure from (Schive et al., 2014a). Left panel : A slice of the ψDM simulation density field
at different scales at z = 0.1. Right panel : Radial density profiles of halos formed in the ψDM model.

Figure 1.13. Figure from (Ferreira, 2020). Left panel : Angular power spectrum of the CMB temperature
anisotropy for the FDM model for different masses, where the FDM is considered to be all the DM in
the Universe. We compare this to the best fit of the ΛCDM model to the Planck data (Ade et al. 2018),
shown by the grey data points. Right panel : Matter power spectrum for the same FDM model used in
the left panel.

Consequently, the interplay between gravity and quantum pressure yields a redshift-
dependent Jeans scale, below which structures cannot form. We can see this in the right
panel of Fig.1.13, which shows the matter power spectrum for different ultra-light DM
particles. We can see that on small scales there is a suppression of structure formation
with a mass-dependent cut-off, and on large scales the CDM power spectrum is recovered.

On scales much larger than the de Broglie wavelength, however, the behaviour of
SFDM is indistinguishable from that of CDM (Shapiro et al., 2022). Figure 1.14 shows a
slice of the cosmological simulation for CDM and for SFDM. We can see that we recover
the distribution of voids and filaments when we compare the two results. However, it is
important to note that the CDM simulation has a clumpy behaviour. This is because
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here, nothing can overcome gravity. In CDM there is no quantum pressure nor effective
pressure to balance gravity and suppress structure formation. In addition, in the upper
panel of Fig. 1.13 representing the CMB power spectrum, we can observe how these
models reproduce the CDM success. In Chapter 3 we extend the discussion of how SFDM
converges to CDM analytically . Thus, SFDM represents an innate solution to the small-
scale crisis, while preserving the achievements of the CDM at larger scales (Ferreira, 2020;
Hui, 2021).

From a particle physics point of view, the idea of an extremely light boson finds
support in several particle physics scenarios. A notable example is the QCD axion, which
solves the strong CP problem (Peccei & Quinn, 1977). As an ultra-light boson, SFDM
provides a viable dark matter candidate without relying on supersymmetric extensions of
the Standard Model.

Overall, SFDM is emerging as a well-supported alternative to CDM, demonstrating
potential for solving the CDM small-scale challenges. At the same time, the convergence
of SFDM and CDM predictions on cosmological scales ensures that this model serves
as a viable candidate for reproducing observations derived from cosmological structure
formation studies.

Figure 1.14. Figure from (Schive et al., 2014a). This comparison clearly demonstrates that the large-
scale distribution of filaments and voids is indistinguishable between our model and ΛCDM (which has
been successful in describing the observed large-scale structure)





Chapter 2

Scalar field dark matter models

In this chapter, we present how scalar fields can play the role of dark matter and the
main equations of the theory. We focus on an effective model of scalar dark matter that
remains valid below a specific cut-off energy scale, denoted as Λ. The theory governing
the behaviour of the Universe beyond this energy scale is left open. Within this effective
framework, we assume the action is local with a standard kinetic term that is quadratic
over the first derivatives of the scalar field. Note that higher order Lagrangians can often
lead to problematic ghost-like behaviour. However, we do not assume any specific form for
them in this context. Instead, we consider that all the terms involving higher derivatives
correspond to the propagation of additional degrees of freedom with a mass equal to or
greater than the cut-off Λ. Consequently, their impact becomes negligible at energies
below Λ. As a result, we present a scalar model featuring a light particle with mass m
subject to self-interactions as defined by the Lagrangian.

This chapter is organized as follows: In Section 2.1, we introduce the Lagrangian with
a potential and standard kinetic terms, and the action of a scalar field dark matter model.
Section 2.2 focuses on the equation of state, while Section 2.3 explores how this model
reproduces the characteristics of cold dark matter at the background level. The inclusion
of gravity perturbations is discussed in Section 2.4. The dynamics of small scales in the
Universe are addressed in Section 2.5. The small scale dynamics of fuzzy dark matter and
the quartic potential, as well as the presence of solitonic cores in hydrostatic equilibrium,
are presented in Section 2.6 and Section 2.7, respectively. The cosine model is introduced
in Section 2.8. Finally, the expansion of the universe in the non-relativistic regime is
introduced in Section 2.9.

2.1 Scalar field dark matter Lagrangian

Let us consider the following Lagrangian of a real scalar field φ,

Lφ = −1

2
gµν∂µφ∂νφ− V (φ), (2.1)

where gµν is the metric, the first term is the standard kinetic term and V (φ) is the po-
tential. Gravitational interactions only takes place through the metric. For the moment,
we are not going to detail further the potential function V (φ), but we advance that for

23
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the scalar field to behave like dark matter, we need it to have the following form,

V (φ) =
m2

2
φ2 + VI(φ), (2.2)

where VI(φ) is the self-interaction potential,

VI(φ) = Λ4
∑
n≥3

λp
p

φp

Λp
. (2.3)

Note that we are working in natural units, c = ~ = 1, so the units of the field quantities
will be [φ] = [m] = energy.

The Lagrangian density for the metric is

LEH =
R

2κ2
, (2.4)

where κ2 = 8πGN, GN is the Newton’s gravitational constant and R is the Ricci scalar
(scalar curvature). Equation (2.4) is the Lagrangian for the Einstein-Hilbert action of
General Relativity. Note that the scalar field is not coupled to the curvature, i.e. φR, so
it is minimally coupled to gravity and we assume that φ is not coupled to other fields of
the Universe. The total Lagrangian of the system reads

L = LEH + Lφ + Lm, (2.5)

where Lm is the Lagrangian of the standard model particles (baryons, photons) and
possible dark energy components. Therefore, the total action is given by

S =

∫
d4x
√
−g L, (2.6)

where g is the determinant of the metric tensor. The action for the scalar field only reads,

Sφ =

∫
d4x
√
−g Lφ. (2.7)

2.2 Equation of state

The energy-momentum tensor of the scalar field is given by Tµν ,

Tµν = ∂µφ∂νφ− gµν
[

1

2
gαβ∂αφ∂βφ+ V (φ)

]
. (2.8)

The last equation can be written in an analogous form to that of a perfect fluid as

Tµν = (ρφ + Pφ)uµuν + Pφgµν , (2.9)

where we have defined the effective energy density ρφ, the effective pressure Pφ and the
4-velocity for the scalar field as follows:

ρφ = −1

2
∂µφ∂µφ+ V (φ), (2.10)
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Pφ = −1

2
∂µφ∂µφ− V (φ), (2.11)

uµ =
∂µφ√
−∂µφ∂µφ

. (2.12)

The state parameter ωφ is defined as

Pφ = ωφρφ. (2.13)

2.3 Cosmological background

To understand the evolution of the scalar field φ, let us apply the principle of least action
δS = 0 in (2.7) to get the equations of motion. Thus, varying this action with respect to
φ we have

�φ+
dV (φ)

dφ
= 0, (2.14)

where � is d’Alembert operator,

�φ = − 1√
−g

∂µ
[√
−ggµν∂νφ

]
. (2.15)

Equation (2.14) is known as the Klein-Gordon equation in General Relativity. To study
the evolution of the field φ in a an expanding Universe, we take the appropriate Friedmann-
Lemaître-Robertson-Walker (FLRW) metric,

ds2 = −dt2 + a2(t)d~x2, (2.16)

where a(t) is the cosmological scale factor that parametrizes the relative expansion of the
universe and ~x the comoving spatial coordinate. Note that for a cosmological scalar field
at the background level, we have, φ(t, x) = φ(t) and ∂iφ = 0 since it does not depend on
the spatial coordinates. Using this metric in equation (2.14), we obtain the equations of
motion of φ(t) for a flat, isotropic homogeneous and expanding universe:

φ̈+ 3H(t)φ̇+
dV (φ)

dφ
= 0, (2.17)

where H(t) = ȧ/a is the Hubble expansion rate. As we can see, equation (2.17) is simply
the equation of a damped harmonic oscillator φ. Therefore, the competition between the
Hubble friction term and the potential term will determine the cosmological evolution.
The energy density (2.10) and the pressure (2.11) for φ is given by

ρφ =
1

2
φ̇2 + V (φ), (2.18)

Pφ =
1

2
φ̇2 − V (φ), (2.19)

Therefore, the equation of state (2.13) for the scalar field is written as

ωφ =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (2.20)
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To understand fully the cosmological evolution, let us consider VI(φ) = 0, the simplest
scenario to exemplify it. This model is known as Fuzzy Dark Matter and we will present
it in Section 2.6. Hence, equation (2.17) translates into

φ̈+ 3H(t)φ̇+m2φ = 0. (2.21)

At early times, whenH � m, the Hubble friction prevails in (2.21) and φ is approximately
constant. The value of the field is given by the initial conditions set by the formation
mechanism of the field. In the early universe, we can see that φ behaves like dark energy
since its equation of state (2.20) is ω = −1.

Later, as the universe expands, the Hubble parameter gradually decreases until it falls
below the mass of the field, H � m. In this case, the solution of (2.21) is oscillatory,

φ(t) = A(t) cos(mt). (2.22)

As the field undergoes oscillations, and the potential V (φ) is quadratic, the equation of
state (2.20) also oscillates around zero, resulting in an average equation of state 〈ω〉 = 0.
In this particular regime, the scalar field behaves as pressureless cold dark matter. Note
that we require that the self-interaction potential be small, from the matter-radiation
equality until now, to satisfy the equation of state 〈ω〉 = 0,

VI �
m2

2
φ2. (2.23)

By substituting the ansatz solution (2.22) into the equation (2.21), we can deduce that
A2 ∝ a−3. As a result, we can conclude that ρφ ∝ a−3, which is the expected behaviour
for pressureless cold dark matter.

2.4 Introducing perturbations

Previously in Section 2.3 we have derived the background evolution of the scalar field φ
in a flat, homogeneous and isotropic universe. Furthermore, we have demonstrated how
the scalar field acts as cold dark matter when H � m. In this section, we introduce
gravity perturbations that depend on both space and time to the FLRW metric (2.16)
i.e. the Newtonian gauge in General Relativity. Consequently, the equations of motion
for the scalar field undergo modifications. These equations are the theoretical framework
for Chapter 3, which presents the self-similar solutions for FDM, for Chapter 4, which
develops the numerical methods for calculating the evolution of non-relativistc scalar field
dark matter clouds and for Chapter 5 and Chapter 6, that both investigate the formation
and evolution of solitons supported by repulsive quartic self-interactions and for cosine
self-interactions inside extended halos.

In the Newtonian gauge the perturbed FLRW metric is,

ds2 = −(1 + 2Φ)dt2 + a2(t)(1− 2Ψ)d~x2, (2.24)

where Φ and Ψ are the Newtonian potentials. Applying this metric to (2.7) we have the
following action,

Sφ =

∫
d4x a3

[
1− Φ− 3Ψ

2
φ̇2 − 1 + Φ−Ψ

2a2
(∇φ)2 − 1 + Φ− 3Ψ

2
m2φ2 − VI(φ)

]
. (2.25)
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Our final objective is to derive the equations of motion for the field within the non-
relativistic regime, which is applicable to astrophysical structures. In this regime, the
anisotropic stress can be considered negligible and the values of Φ and Ψ are small.
Therefore, to simplify the analysis, we impose this condition in the following steps. Con-
sequently, in the absence of anisotropic stress, we have Φ = Ψ, and we retain only the
terms that are significant in this context.

φ̈+ 3Hφ̇− 4Φ̇φ̇− 1

a2
(1 + 4Φ)∇2φ+m2(1 + 2Φ)φ+ (1 + 2Φ)

dVI
dφ

= 0. (2.26)

Now, we consider that both φ and Φ exhibit slow variations. More precisely:

|Φ̇| � m|Φ|, (2.27)

|∇φ| � m|φ|, (2.28)

|∇2φ| � m2|φ|. (2.29)

So, we have,

φ̈+ 3Hφ̇− 1

a2
∇2φ+m2(1 + 2Φ)φ+ (1 + 2Φ)

dVI
dφ

= 0. (2.30)

Since our focus lies in studying the dynamics at small scales, it is important to note
that the Hubble flow becomes decoupled within this scale. As a result, we can disregard
the time evolution of the Universe for our analysis, and we take the scale factor normalized
at today, a = 1 and H = 0 in the previous equations. As a result, we obtain the following
expression:

φ̈−∇2φ+m2(1 + 2Φ)φ+ (1 + 2Φ)
dVI
dφ

= 0. (2.31)

Likewise, we can use this action to get Eq.(2.31)

Sφ =

∫
d4x

[
1− Φ− 3Ψ

2
φ̇2 − 1 + Φ−Ψ

2
(∇φ)2 − 1 + Φ− 3Ψ

2
m2φ2 − VI(φ)

]
. (2.32)

2.5 Small-scales dynamics

In this section, we present the equations governing the dynamics of the small-scales of
the Universe. So this applies on astrophysical or galactic scales where the expansion
of the Universe can be neglected and metric fluctuations are small, so that Newtonian
gravity applies. Therefore, we assume that the field φ and the potential Φ are slowly
varying by fulfilling conditions (2.27)-(2.29). In addition to this, we ignore the expansion
of the universe. To do so, we start with equation (2.31), which describes the dynamics
of the relativistic scalar field without expansion. Note that the dynamics considering the
expansion of the universe i.e the scale factor a are presented in Section 2.9.
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2.5.1 Complex scalar field

In the non-relativistic regime, relevant for astrophysical and large-scale structures, it is
useful to introduce a complex scalar field ψ by (Hu et al., 2000; Hui et al., 2017),

φ =
1√
2m

(ψe−imt + ψ∗eimt), (2.33)

This allows us to separate the fast oscillations at frequency m ∼ (3 months)−1 from
the slower dynamics described by ψ that follow the evolution of the density field and of
the gravitational potential. Note that the complex scalar field ψ also satisfies the slow
varying conditions (2.28)-(2.29), that is, ψ̇ � mψ and ∇ψ � mψ. Replacing (2.33) into
the Klein-Gordon equation for φ (2.31) leads to the Schrödinger equation for ψ,

i
∂ψ

∂t
= − 1

2m
∇2ψ +mΦNψ +

∂VI
∂ψ∗

, (2.34)

where now ΦN is the gravitational potential. Note that we have changed the notation from
Φ→ ΦN. The self-interaction potential, denoted as VI(ψ, ψ∗) is derived by replacing the
decomposition (2.33) in the definition of VI(φ), (2.3). We selectively keep only the non-
oscillatory terms. This implies that in the series expansion (2.3), we exclusively consider
the even order terms φ2n, where each n factor of e−imt is paired with n factors of eimt.
Consequently, the resulting expression is:

VI(ψ, ψ∗) = Λ4
∑
n=2

λ2n

2n

(2n)!

(n!)2

(
mψψ∗

2mΛ2

)n
. (2.35)

Next, let us define the following self-interaction potential to make the Schrödinger equa-
tion (2.34) more user-friendly,

ΦI(ρ) =
dVI
dρ

, (2.36)

where ρ is the ultra-light scalar density,

ρ = mψψ∗. (2.37)

Finally, the outcome of replacing (2.36) into (2.34) is

i
∂ψ

∂t
= − 1

2m
∇2ψ +m(ΦN + ΦI)ψ, (2.38)

The gravitational potential ΦN, which is sourced by the field itself is given by the Poisson
equation,

∇2ΦN = 4πGNρ. (2.39)

The term ΦI describes the dark matter self-interactions and of course is model-dependent.
For the moment we leave this term free to avoid losing generality in the equations. We
will discuss three different scenarios according to the shape of ΦI in the following Section
2.7 and Section 2.6.
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2.5.2 Fluid approach

Taking the Madelung transformation (Madelung, 1926), we move from the field approach
to a hydrodynamic approach i.e. ψ → {ρ, S,~v},

ψ =

√
ρ

m
eiS, ~v =

∇S
m

, (2.40)

where the amplitude ρ plays the role of the scalar density and ~v that of the scalar velocity.
Replacing the form (2.40) into equation (2.38) and taking the real and imaginary part of
the Schrödinger equation we have the continuity and Hamilton-Jacobi equations,

∂ρ

∂t
+∇ · (ρ∇S) = 0, (2.41)

∂S

∂t
+

(∇S)2

2m
= −m(ΦN + ΦQ + ΦI), (2.42)

where we have introduced the so-called quantum pressure ΦQ (Spiegel, 1980; Chavanis,
2011; Marsh, 2015), given by

ΦQ = −
∇2√ρ
2m2
√
ρ
. (2.43)

In terms of the curl-free velocity field ~v, this gives the hydrodynamical continuity and
Euler equations,

∂ρ

∂t
+∇ · (ρ~v) = 0, (2.44)

∂~v

∂t
+ (~v · ∇)~v = −∇ (ΦN + ΦQ + ΦI) . (2.45)

2.5.3 Conservation laws of the Schrödinger-Poisson system

2.5.3.1 Mass

The mass of the system is defined as follows:

M =

∫
d~xρ = m

∫
d~x ψψ∗. (2.46)

To calculate whether the mass is a conserved quantity of the system, we take the derivative
with respect to time of this quantity,

Ṁ = 2m

∫
d~x Re

[
ψ̇ψ∗

]
. (2.47)

Using the Schrödinger equation (2.38) we have,

Ṁ = 2mRe

[∫
d~x

(
i

2m
~∇2ψψ∗ − im(ΦN + ΦI)ψψ

∗
)]

, (2.48)

where ψψ∗ ∈ R and consequently the second term of (2.48)vanishes. Now, by integrating
by parts the first term of (2.48), we can check that the result is zero. This is because
(~∇ψ)(~∇ψ∗) ∈ R and the boundary terms are also 0. Therefore,

Ṁ = 0. (2.49)

So, we have demonstrated that the mass of the system is conserved.
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2.5.3.2 Momentum

We can define the density current flow of the system as follows,

~J =
i

2

(
ψ~∇ψ∗ − ψ∗~∇ψ

)
. (2.50)

Mapping this expression into hydrodynamical variables with the Madelung transformation
(2.40) we obtain,

~J = ρ~v. (2.51)

So, the total momentum of the system is expressed as follows:

~P =

∫
d~x ~J. (2.52)

Thus, for the j-component of the vector ~P we have,

Pj =

∫
d~x

i

2

(
ψ
∂ψ∗

∂xj
− ψ∗ ∂ψ

∂xj

)
= −Im

∫
d~x ψ

∂ψ∗

∂xj
. (2.53)

Then, taking the derivative of this quantity with respect to time, we get,

Ṗj = −Im

∫
d~x

(
ψ̇
∂ψ∗

∂xj
+ ψ

∂ψ̇∗

∂xj

)
= −Im

∫
d~x

(
ψ̇
∂ψ∗

∂xj
− ∂ψ̇

∂xj
ψ∗

)
. (2.54)

Integrating by parts assuming that the boundary terms
[
ψψ̇∗

]∞
−∞

are zero, we obtain,

Ṗj = −2Im

∫
d~x ψ̇

∂ψ∗

∂xj
. (2.55)

Using the Schrödinger equation (2.38) and replacing in (2.55) we arrive at,

Ṗj = −2Re

∫
d~x

[
1

2m

∂2ψ

∂x2
k

∂ψ∗

∂xj
−m(ΦN + ΦI)ψ

∂ψ∗

∂xj

]
. (2.56)

Next, integrating again by parts and considering negligible the boundary terms, we get,

Ṗj =

∫
d~x (ΦN + ΦI)

∂ρ

∂xj
. (2.57)

Finally, for the first term in (2.57) we use the Poisson equation (2.39) and integrate by
parts giving 0 as a result. For the second term in (2.57) we use the fact that

ΦI =
dVI
dρ

, (2.58)

with [VI ]∞−∞ = 0, leading to a zero result too. Therefore,

Ṗj = 0. (2.59)

Consequently, Pj is constant so ~P is a conserved quantity.
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2.5.3.3 Energy

The total energy of the Schrödinger (2.38) Poisson (2.39) system is:

E =

∫
d~x

[
1

2m
~∇ψ~∇ψ∗ +

m

2
ψψ∗ΦN + VI

]
, (2.60)

where we can split the different contributions of the kinetic energy,

EK =

∫
d~x

1

2m
~∇ψ~∇ψ∗, (2.61)

the gravitational energy,

EN =

∫
d~x

m

2
ψψ∗ΦN, (2.62)

and the self-interaction energy,

EI =

∫
d~x VI . (2.63)

Knowing the relation between the ultralight density and the complex field ψ, (2.37) we
can rewrite equation (2.60) as follows,

E =

∫
d~x

[
1

2m
~∇ψ~∇ψ∗ +

1

2
ρΦN + VI

]
. (2.64)

As we previously did, we take the time derivative of this quantity to show that it is a
conserved quantity of the system. Doing so, we get,

Ė =

∫
d~x

[
− 1

2m

(
ψ̇ ~∇2ψ∗ + ψ̇∗~∇2ψ

)
+

1

2

∂ρ

∂t
ΦN +

1

2

∂ΦN

∂t
+ ΦI

∂ρ

∂t

]
. (2.65)

Using the fact that, ∫
d~x ρ

∂ΦN

∂t
=

∫
d~x

∂ρ

∂t
ΦN, (2.66)

we can replace (2.66) into (2.65) and we have,

Ė =

∫
d~x

[
− 1

2m

(
ψ̇ ~∇2ψ∗ + ψ̇∗~∇2ψ

)
+
∂ρ

∂t
(ΦN + ΦI)

]
. (2.67)

Taking again (2.37) and plugging (2.38) into the last expression, we get,

Ė =

∫
d~x

[
ψ̇

(
−
~∇2ψ∗

2m
+mψ∗(ΦN + ΦI)

)
+ ψ̇∗

(
−
~∇2ψ

2m
+mψ(ΦN + ΦI)

)]
. (2.68)

Finally, using (2.38), we obtain,

Ė =

∫
d~x
[
ψ̇
(
−iψ̇∗

)
+ ψ̇∗

(
iψ̇
)]
. (2.69)

Therefore,
Ė = 0. (2.70)

Consequently, the energy of the system is constant.
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2.5.3.4 Virial theorem

As we have introduced in Section 1.4, solitons are the equilibrium configurations of the
SFDM models that are present in the core of the DM halos. These states also correspond
to a minimum or a saddle point of energy i.e. δE = 0. To calculate the virial quantity,
let us take a perturbation of the system at constant mass. We can write this dilatation
of the profile as follows,

~x→ α~x, ρ→ α−3ρ, ψ → α−3/2ψ. (2.71)

Thus, replacing (2.71) into the energy functional (2.60), we obtain, for a quartic self-
interaction (See Section 2.7),

E(α) = α−2EK + α−1EN + α−3EI. (2.72)

For the quartic self-interaction:, at linear order on δα we have δE = 0, dE
dα

∣∣∣
α=1

= 0, so the
virial quantity reads,

2EK + EN + 3EI = 0. (2.73)

For FDM (Section 2.6) we have the usual expression

2EK + EN = 0. (2.74)

2.6 Fuzzy Dark Matter

The purpose of this section is to provide an overview of the action of the FDM model
and the equations that describe the dynamics in the non-relativistic regime, focusing on
astrophysical or galactic scales. At these scales, the expansion of the universe can be
neglected, and metric fluctuations are small, so that Newtonian gravity applies.

Fuzzy dark matter is the scalar field dark matter model, which considers the most
straightforward possibility for the potential V (φ) in (2.2). Thus, the scalar field is min-
imally coupled to gravity, and it does not have any self-interaction, (Hui et al., 2017)

VI(φ) = 0. (2.75)

This potential leads to the following action,

Sφ =

∫
d4x
√
−g
[
−1

2
gµν∂µφ∂νφ−

m2

2
φ2

]
. (2.76)

By applying the principle of least action, we can derive the Klein-Gordon equation for the
relativistic field φ in the absence of an interaction potential (VI = 0), as shown in equation
(2.31). Furthermore, utilizing equation (2.33), we can separate the rapid oscillations at
frequency m from the slower dynamics governed by ψ, which describe the evolution of the
density field and gravitational potential on these scales. Consequently, the Klein-Gordon
equation for φ can be transformed into the Schrödinger equation for ψ.

i
∂ψ

∂t
= − 1

2m
∇2ψ +mΦNψ, (2.77)
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where ΦN is the gravitational potential given by equation (2.39). Note that the only free
parameter in the model is the mass of the scalar field. As we have seen in Section 1.4 we
usually consider an exceptionally light boson, typically with a mass on the order of 10−22

eV. As wee have seen in Section 1.4 this tiny mass corresponds to a de Broglie wavelength
at the kiloparsec scale.

2.6.1 Scaling laws

One interesting feature of this Schrödinger–Poisson (2.77)-(2.39) system is that equations
of motion are invariant under this scaling law (Guzman & Urena-Lopez, 2003),

{t→ α−2t, ~x→ α−1~x, ΦN → α2ΦN, ρ→ α4ρ, ψ → α2ψ, M → αM, E → α3E} (2.78)

This means, that once we have obtained an equilibrium or a dynamical solution a complete
family of solutions can be derived through this scaling transformation. In particular, from
an equilibrium solution with mass M1, we obtain the equilibrium solution with mass M2

by the following rescaling,

α =
M2

M1

. (2.79)

2.6.2 Fuzzy dark matter solitons

The static equilibrium profiles, called solitons, have a zero velocity ~v. This leads through
the Euler equation (2.45) with ΦI = 0 to the following hydrostatic equilibrium condition,

ΦN + ΦQ =
E

m
. (2.80)

The soliton wavefunction reads ψ(r, t) = e−iEtψ̂(r). Thus, the soliton arises from the
balance between the repulsive quantum pressure and the attractive force of gravity in the
non-relativisitic limit. In the right panel of Fig.1.12, we present the radial density profile
for different FDM solitons.

2.7 The quartic model

The goal of this section is to introduce the action of the quartic model and the equations
that describe the dynamics on small-scales, as we did in Section 2.6 for the FDM model.
In this model, the self-interaction (2.3) is quartic, so VI(φ) is the following,

VI(φ) =
λ4

4
φ4, (2.81)

where λ4 dictates the strength of the self-interactions. The self-interaction parameter
can be positive (repulsive self-interaction) or negative (attractive force). Note that it is
required that VI(φ) to be small compared with the quadratic term of the potential V (φ)
(2.2) as we have discussed in (2.23) for the scalar field to behave as pressureless dark
matter at late times. Plugging (2.81) into (2.1) brings the following action,

Sφ =

∫
d4x
√
−g
[
−1

2
gµν∂µφ∂νφ−

m2

2
φ2 − λ4

4
φ4

]
. (2.82)
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We take the non-relativistic limit by decomposing the real field φ in terms of a complex
field ψ according to (2.33). From this we can arrive to the equations of motion for the
complex field, known as the Gross–Pitaevskii–Poisson equations (GPP) or the non-linear
Schrödinger–Poisson (NSP) equations.

i
∂ψ

∂t
= − 1

2m
∇2ψ +m(ΦN + ΦI)ψ, (2.83)

where ΦN is the gravitational potential provided by equation (2.39), and the self-interaction
potential ΦI(ρ) reads,

ΦI(ρ) =
3λ4

4m4
ρ. (2.84)

where we can group all model parameters with the definition of ρa:

ρa =
4m4

3λ4

. (2.85)

Thus, the quartic potential (2.84) can be written as follows.

ΦI(ρ) =
ρ

ρa
. (2.86)

It should be emphasised that (2.84) comes from the "non-relativistic" potential (2.35) for
n = 2,

VI(ψ, ψ∗) = Λ4λ4

4

4!

4

(
ψψ∗

2mΛ2

)2

=
3λ4

8m2
(ψψ∗)2 =

3λ4

8m4
ρ2. (2.87)

This model has two free parameters: the mass of the scalar field m and the strength of
the repulsive self-interactions λ4. In the following Fig. 2.1, we can see the allowed regions
for the space of parameters (m,λ4).

Figure 2.1. Figure from (Brax et al., 2019b). Range of interest in the plane (m,λ4).
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2.7.1 Thomas-Fermi limit

As seen from Eq.(2.45), such scalar field models admit hydrostatic equilibria given by
~v = 0 and ΦN + ΦI + ΦQ = constant. In the Thomas–Fermi regime this soliton is
governed by the balance between gravity and the repulsive force associated with the self-
interactions (for λ4 > 0). This means that ΦQ � ΦI over most of the extent of the soliton
and the Laplacian term −∇2ψ

2m
can be neglected in Eq.(2.83). Then, the wavefunction

reads ψ(r, t) = e−iEtψ̂(r) with

ΦN + ΦI =
E

m
. (2.88)

The soliton density profile is given by Chavanis (2011); Harko (2011); Brax et al. (2019a)

ρsol(r) = ρ0sol
sin(πr/Rsol)

πr/Rsol

, (2.89)

with the radius
Rsol = πra, with r2

a =
3λ4

16πGNm4
=

1

4πGNρa
. (2.90)

In fact, outside of the radius ra where Eq.(2.89) would give a zero density we can no longer
neglect ΦQ and the exact solution develops an exponential tail at large radii. Nevertheless,
we can see that the approximation (2.89) is valid up to r . Rsol for

ΦQ � ΦI :
ρ0sol

ρa
� 1

r2
am

2
. (2.91)

2.7.2 Scaling laws

An important characteristic of this non-linear Schrödinger–Poisson (2.77)-(2.39) system
is its property of invariance under the following scaling law (Guzman & Urena-Lopez,
2003).

{t→ α−2t, ~x→ α−1~x, ΦN → α2ΦN, ρ→ α4ρ, ψ → α2ψ, ΦI → α2ΦI, λ4 → α2λ4,

EI → α3EI, E → α3E}. (2.92)

This implies that once we have obtained an equilibrium or a dynamical solution, a com-
plete family of solutions can be derived through the application of this scaling transforma-
tion. It should be highlighted that the scaling law links different theories, with a different
λ4 coupling.

2.8 The cosine model

In this section, we present the last scenario that we consider in this thesis. This model
corresponds to a bounded potential such as a cosine with a standard kinetic term. Keeping
the two-scale scenario (2.23), we express the scalar field potential (2.2) as the sum of
a dominant quadratic term and a secondary non-linear self-interacting potential (2.3),
specifically chosen to be a cosine function:

VI(φ) = M4
I

[
cos(φ/Λ)− 1 +

φ2

2Λ2

]
. (2.93)
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It is important to highlight that for φ� Λ we recover a quartic potential λ4 = M4
I /(6Λ4).

MI refers to a new scale. In axion models, for instance in QC, it is the scale of breaking
of the shift symmetry φ → φ + c . To obtain the equations of motion for small scales,
we begin by inserting the potential (2.93) into the relativistic equation for φ (2.31). Sub-
sequently, we decompose the real field φ into a complex field ψ, as explained in equation
(2.33). This decomposition gives rise to the equations of motion for the complex field, pre-
cisely the Schrödinger equation (2.38), featuring the following self-interaction potential,

ΦI(ρ) =
8ρb
ρa

[
1−

2J1(
√
ρ/ρb)√

ρ/ρb

]
, (2.94)

with

ρa =
8m4Λ4

M4
I

, ρb =
m2Λ2

2
, ρb � ρa. (2.95)

It is important to note that at low densities we again recover the case of the quartic
potential (2.86), while at high densities the self-interaction potential converges to a finite
value:

ρ� ρb : ΦI(ρ) =
ρ

ρa
+ ... (2.96)

ρ� ρb : ΦI(ρ) =
8ρb
ρa
� 1 (2.97)

2.9 Non-relativistic regime in cosmology

In this section we introduce the equations of the non-relativistic regime taking into account
the expansion of the universe. To do so, we take the following ansatz solution which takes
into account the scale factor a:

φ =
1√

2ma3
(ψe−imt + ψ∗eimt), (2.98)

Note that ψ satisfies the same conditions for φ. Replacing (2.98) in (2.25) we get,

Sφ =

∫
d4x a3{e−2imt

[
1− Φ− 3Ψ

4m
(ψ̇2 − 2imψ̇ψ)− 1 + Φ−Ψ

4ma2
(∇ψ)2 − 1− 3Ψ

2
mψ2

]
+e2imt[c.c.] +

1− Φ− 3Ψ

2m
(ψ̇ψ̇∗ + imψ̇ψ∗ − imψψ̇∗)

−1 + Φ−Ψ

2ma2
(∇ψ) · (∇ψ∗)−mΦψψ∗ − VI(φ)}. (2.99)

Next, we neglect the fast oscillatory terms, therefore we obtain,

Sφ =

∫
d4x a3

(1− Φ− 3Ψ

2m
(imψ̇ψ∗ − imψψ∗)− 1 + Φ−Ψ

2ma2
(∇ψ) · (∇ψ∗)(2.100)

−mΦψψ∗ − VI(ψ, ψ∗)
)
.
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2.9.1 Field picture

Employing the principle of least action in (2.101), the Euler–Lagrange equations give rise
to the following Schrödinger equation for an expanding universe,

i

(
ψ̇ +

3

2
Hψ

)
= − ∇

2ψ

2ma2
+mΦNψ +

∂VI
∂ψ∗

. (2.101)

Recasting (2.101) with the self-interaction potential ΦI, we have,

iψ̇ = −3

2
iHψ − 1

2ma2
∇2ψ +m(ΦN + ΦI), (2.102)

where the Poisson equation is,

∇2ΦN = 4πGma2|ψ|2. (2.103)

2.9.2 Fluid picture

Taking the Madelung transformation (Madelung, 1926) the complex scalar field ψ can be
mapped to a hydrodynamical system,

ψ =

√
ρ

m
eiS with ~v =

∇S
ma

. (2.104)

Where ρ represents the density and ~v represents the fluid velocity.
√
ρ/m defines the

amplitude and the phase, S. As it is widely recognized, the equation of motion (2.102)
can be expressed as the continuity and Euler equations of hydrodynamics. In this case,
the continuity equation reads,

ρ̇+ 3Hρ+
1

ma2
∇(ρ∇S) = 0. (2.105)

It is important to observe that the self-interactions do not alter this continuity equation.
The Euler-Lagrange equation for ρ yields the second equation of motion.

Ṡ +
(∇S)2

2ma2
= −mΦN −m

dVI
dρ

+
1

2ma2

∇2√ρ
√
ρ
. (2.106)

The hydrodynamical Euler equation in an expanding univese can be derived by taking
the gradient of this equation (2.106),

~v +H~v +
1

a
(~v · ∇)~v = −1

a
∇(ΦN + ΦI + ΦQ), (2.107)

where the quantum pressure now reads,

ΦQ = −
∇2√ρ

2m2a2
√
ρ
. (2.108)

Hence, we rediscover the dynamics observed in the standard cold dark matter scenario,
characterized by density ρ and fluid velocity ~v. In addition, we introduce the interaction
potential ΦI and the quantum potential ΦQ (Marsh, 2015). These additional terms should
remain negligible on large scales to align with observational data. However, they have
the potential to induce substantial effects at galactic scales, where the cold dark matter
scenario faces certain discrepancies with observational evidence.





Chapter 3

Self-similar solutions for Fuzzy dark
matter

In this chapter, we focus on exploring the self-similar solutions within the framework of
the Fuzzy Dark Matter (FDM) model (Galazo-García et al., 2022). Self-similarity refers
to the property of remaining unchanged in form and appearance under appropriate scaling
transformations. The main motivations to investigate these particular solutions are:

1. Moving beyond hydrostatic equilibrium: By considering self-similar solutions, we
aim to extend our understanding beyond the hydrostatic equilibrium exhibited by
solitons. This allows us to explore possible time-dependent analytical solutions,
providing us with a valuable tool to gain better control and comprehension of the
model dynamics. With these self-similar solutions we can examine dynamical con-
figurations embedded in an expanding cosmological background.

2. Comparisons with CDM: Another motivation behind investigating self-similar so-
lutions for FDM is to establish a connection and facilitate comparisons with self-
similar solutions within the CDM framework. In the CDM scenario, self-similar
solutions exhibit a well-known hierarchical collapse pattern (Fillmore & Goldreich,
1984; Bertschinger, 1985; Teyssier et al., 1997). Initially, small linear density pertur-
bations arise on top of a homogeneous background, with their amplitudes decaying
as a power law at large radii. As time progresses, larger mass shells turn around and
collapse. For sufficiently steep initial profiles, the inner core stabilizes in physical
coordinates, leading to the formation of a virialized halo. The density profile within
the non-linear region follows a power-law distribution, growing in mass and radius
as more distant shells separate from the Hubble flow and collapse. Therefore, by
exploring these solutions, we can better understand the similarities and differences
between FDM and CDM models.

3. Bridging the semiclassical limit: The study of self-similar solutions also helps us to
grasp the relationship between the FDM and CDM models within the semiclassical
limit. This limit allows us to investigate the behavior of FDM in the regime where
quantum effects are significant, but classical gravity is still the dominant force.

This chapter is arranged as follows. In Section 3.1, we briefly recall the dynamics
of fuzzy dark matter, its equations of motion and we describe the semiclassical limit.

39
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In Section 3.2, we present the static solitons and we derive the critical exponents that
characterize self-similar solutions. In Section 3.3, we study spherical cosmological self-
similar solutions, which converge to the background universe at large radii. We obtain
their large-density asymptotic shape in Section 3.4. Finally, in Section 3.5 we compare
with the CDM self-similar solutions, we discuss the semiclassical limit and conclude.

3.1 Equations of motion

3.1.1 Field approach

As we discussed in Section 2.6 the action of Fuzzy Dark Matter (2.76) is that of a classical
scalar field φ with minimal coupling to gravity and no self-interactions. In the following
two sections, our focus lies on astrophysical or galactic scales, where the expansion of the
Universe can be disregarded, and metric fluctuations are small, allowing us the application
of Newtonian gravity. The inclusion of Hubble expansion will be discussed in Section 3.3.
Interestingly, we will discover that the self-similar exponents remain the same for both
the Minkowski background and the expanding Einstein-de Sitter background. In this
context, where the non-relativistic regime applies, it is helpful to introduce the complex
scalar field denoted as ψ given by (2.33) as we have seen in Section 2.5.1. Using this, we can
effectively separate the fast oscillations of frequencym from the slower dynamics governed
by ψ, which describes the evolution of the density field and gravitational potential. These
considerations simplify the dynamics of the system to the Schrödinger equation for ψ.

i
∂ψ

∂t
= − 1

2m
∇2ψ +mΦN ψ, (3.1)

where ΦN is the gravitational potential, given by the Poisson equation

∇2ΦN = 4πGNρ, ρ = mψψ∗, (3.2)

where ρ is the FDM density. As highlighted in Section 2.6.1, an important characteristic
of the Schrödinger-Poisson (SP) system, is its invariance under the scaling law (Guzman
& Urena-Lopez, 2003).

{t, ~r,ΦN, ψ, ρ} →
{
λ−2t, λ−1~r, λ2ΦN, λ

2ψ, λ4ρ
}
. (3.3)

This implies that once we have obtained an equilibrium or dynamic solution, a whole
range of solutions can be derived by applying this scaling transformation.

3.1.2 Semiclassical limit

Using dimensionless coordinates suited to the system under study is often helpful. Con-
sidering galactic cores or astrophysical objects such as FDM halos, we take a system of
typical length L?, time scale T?, and velocity V? = L?/T?. The virial theorem applied
to these systems, primarily influenced by gravity and near equilibrium, implies that the
gravitational potential is on the order of V 2

? . By employing the appropriate rescalings,

t = T? t̃, ~r = L? ~̃r, ΦN =
L2
?

T 2
?

Φ̃N,

ψ =
ψ̃√
GNmT?

= ψ?ψ̃, ρ =
ρ̃

GNT 2
?

= ρ?ρ̃, (3.4)
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we obtain the SP (3.1)-(3.2) system in dimensionless variables denoted with a tilde

iε
∂ψ̃

∂t̃
= −ε

2

2
∇̃2ψ̃ + Φ̃N ψ̃, (3.5)

∇̃2Φ̃N = 4πρ̃, ρ̃ = ψ̃ψ̃∗, (3.6)

where ε is given by

ε =
T?
mL2

?

. (3.7)

If we compare this quantity with the de Broglie wavelength λdB = 2π/(mV?), we have

ε ∼ λdB

L?
. (3.8)

Therefore, the parameter ε, which appears in the dimensionless Schrödinger equation
(3.5) plays the role of ~ in quantum mechanics. It represents the ratio between the de
Broglie wavelength λdB and the size of the system. As we have seen in Section 2.6.2, FDM
proposes the formation of DM cores, solitons, with a radius approximately equal to the
de Broglie wavelength λdB. In this regime, the wave-like effects become significant. On
larger scales, the system behaves like a collection of particles, and numerical simulations
indicate that the core is surrounded by an NFW-like halo, similar to the standard CDM
scenario (Schive et al., 2014a; Schwabe et al., 2016; Mocz et al., 2017; Veltmaat et al.,
2018). To ensure that the de Broglie wavelength λdB aligns with galactic scales, it is
necessary to set the mass of the scalar field to approximately 10−22 eV (Schive et al.,
2014a). Consequently, ε ∼ 1 indicates the significance of wave-like effects on these scales.
In the subsequent discussion, we adopt the dimensionless variables (3.4) and simplify the
notation by removing the tildes.

In the limit ε → 0, known as the "semiclassical" limit, FDM behaves similarly to
CDM on all relevant scales. In this regime, the Schrödinger-Poisson (SP) system (3.5)-
(3.6) has been proposed as an alternative framework for cosmological simulations of CDM.
This approach offers an alternative to the standard CDM N-body simulations, which aim
to replicate the Vlasov equation (Widrow & Kaiser, 1993; Uhlemann et al., 2014; Mocz
et al., 2018; Garny et al., 2020). In the semiclassical limit, ε→ 0, we expect that average
quantities, such as the density averaged over the fast oscillations at the frequency m,
converge to values obtained from the Vlasov equation. To be more precise, we can define
the Wigner distribution (Wigner, 1932) as follows,

fW(~r,~v) =

∫
d~r ′

(2π)3
ei~v·~r

′
ψ
(
~r − ε

2
~r ′
)
ψ∗
(
~r +

ε

2
~r ′
)
, (3.9)

and its coarse-grained version, the Husimi distribution (Husimi, 1940), by

fH(~r,~v) =

∫
d~r ′d~v ′

(2πε)3σ3
rσ

3
v

e−(~r−~r ′)2/(2εσ2
r)−(~v−~v ′)2/(2εσ2

v) × fW(~r ′, ~v ′), (3.10)

The Husimi distribution and the Wigner distribution satisfy an equation of motion that
deviates from the Vlasov equation in terms of order ε and higher (Skodje et al., 1989;
Widrow & Kaiser, 1993; Uhlemann et al., 2014). In the limit where σr → 0 and σv → 0,
the Husimi distribution converges in a weak sense to the Wigner distribution which can
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take negative values and display fast oscillations, in contrast with classical phase-space
distributions. However, when σrσv ≥ 1/2, the Husimi distribution is positive (Cartwright,
1976), providing a better correspondence with classical physics.

The lower bound σrσv ≥ 1/2 is directly connected to the Heisenberg uncertainty
principle inherent in the properties of all wave-like systems. This principle states that
we cannot achieve arbitrary precision simultaneously in both the spatial and momentum
coordinates. Consequently, there is a fundamental limit to the accuracy attainable in
these two quantities. We will adopt σrσv = 1/2 as it represents the optimal choice in
our numerical computations. This option strikes a balance between spatial accuracy and
velocity resolution. As shown in Figures 3.6 and 3.7, decreasing σr improves spatial
accuracy but degrades velocity resolution. For σrσv = 1/2, the Husimi distribution (3.10)
can also be expressed as follows:

fH(~r,~v) =

∣∣∣∣∣
∫

d~r ′

(2πε)9/4σ
3/2
r

e−(~r−~r ′)2/(4εσ2
r)−i~v·~r ′/εψ(~r ′)

∣∣∣∣∣
2

. (3.11)

This expression emphasises that the Husimi distribution is always positive, similar to clas-
sical phase space distributions. For this reason, the semiclassical limit is better analysed
in terms of the Husimi distribution than in terms of the Wigner distribution, which is
not definitely positive and typically often exhibits rapid oscillations. Nevertheless, the
semiclassical limit remains a complex problem (Jin et al., 2011), and only coarse-grained
quantities, averaged over the fast oscillations, are expected to converge to their classi-
cal counterparts. The wave function ψ retains strong oscillations at increasingly smaller
wavelengths λdB ∼ εL as ε approaches zero, with the macroscopic scale L held constant.

3.1.3 Hydrodynamical picture

As we have presented in Section 2.5.2, we can recast the SP system (3.5)-(3.6) with hydro-
dynamic variables, ψ → {ρ, S,~v}, using the Madelung transformation (2.40) (Madelung,
1926). In dimensionless coordinates, it reads,

ψ =
√
ρ eiS/ε, ~v = ∇S. (3.12)

The real and imaginary parts of the dimensionless Schrödinger equation lead to the con-
tinuity and Hamilton-Jacobi equations,

∂ρ

∂t
+∇ · (ρ∇S) = 0, (3.13)

∂S

∂t
+

1

2
(∇S)2 = −(ΦN + ΦQ), (3.14)

where we ΦQ is the dimensionless quantum pressure, (Spiegel, 1980; Chavanis, 2011;
Marsh, 2015) ΦQ,

ΦQ = −ε
2

2

∇2√ρ
√
ρ
. (3.15)

In terms of the curl-free velocity field ~v, this gives the dimensionless hydrodynamical
continuity and Euler equations,

∂ρ

∂t
+∇ · (ρ~v) = 0, (3.16)

∂~v

∂t
+ (~v · ∇)~v = −∇ (ΦN + ΦQ) . (3.17)
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The Poisson equation still reads
∇2ΦN = 4πρ. (3.18)

The parameter ε controls the importance of wavelike effects and it only appears as a
prefactor in the expression for the quantum pressure (3.15). In the semi-classical limit,ε→
0, the FDM continuity and Euler equations revert to their standard form, describing CDM
on large scales where shell crossing can be neglected. This shows that in the semi-classical
limit, or on large scales where the Laplacian ∇2 suppresses the quantum pressure, FDM
behaves similarly to CDM.

However, it is important to note that the limit ε→ 0 is not uniform and can break down
on small scales. As ε → 0, the fields can exhibit increasingly steep gradients, meaning
variations on increasingly small scales of the order of ε. This counterbalances the ε2
prefactor in equation (3.15), and the quantum pressure cannot be neglected uniformly
across all spatial regions. Thus, the quantum pressure remains significant in certain
regions of space, even in the limit ε→ 0.

As noted in Wallstrom (1994), the hydrodynamical equations (3.16)-(3.17) are not
strictly equivalent to the Schrödinger equation (3.5) due to the ill-defined mapping ψ ↔
{ρ, S,~v} as the density vanishes (leading to non-uniqueness of the phase). This can lead
to the generation of vorticity along the lines where ρ = 0, although the velocity field ~v
defined in equation (2.40) is always free of curl, representing the gradient of a scalar

Nevertheless, in regimes where the density does not vanish (or when such discrepancies
can be neglected) the hydrodynamical picture remains useful, as it is simpler to interpret
and provides a more direct comparison with the density and velocity fields used to describe
the cosmological distribution of DM. In this thesis, we shall focus on spherically symmetric
solutions, where the equivalence is exact. Indeed, this makes the problem one-dimensional
in space and any radial velocity vr can be written as the gradient of a phase S, so that one
can go back from the hydrodynamical picture to the Schrödinger picture with S =

∫
dr vr.

Besides, we shall find that for our self-similar solutions the density never vanishes if ε > 0.

3.1.4 Convergence to the classical distribution and multistream-
ing

As FDM has been used as an alternative tool from N-body simulations to study CDM, and
because we shall find that the properties of FDM self-similar solutions are quite different
from those of CDM self-similar solutions, we discuss here in more details the semiclassical
limit. In particular, we present the link between the wave function ψ, the Husimi phase
space distribution and its semiclassical limit, and the hydrodynamical picture. From
Eqs.(3.11) and (3.12), we write

fH(~r,~v) =

∣∣∣∣∣
∫

d~r ′

(2πε)9/4σ
3/2
r

√
ρ(~r ′) e

− (~r ′−~r)2

4σ2
rε
− i
ε
~v·~r ′+ i

ε
S(~r ′)

∣∣∣∣∣
2

. (3.19)

Making the change of variables ~r ′ = ~r+
√
ε~r ′′ and expanding ρ(~r ′) and S(~r ′), we obtain

at leading order over ε

fH ' ρ(~r)

∣∣∣∣∣
∫

d~r ′′

(2π)9/4ε3/4σ
3/2
r

e
i√
ε
(S,j−vj)r′′j −

r′′2

4σ2
r

+ i
2
S,jkr

′′
j r
′′
k

∣∣∣∣∣
2

, (3.20)
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where we sum over the spatial indices j, k and we denoted the spatial derivatives S,j = ∂jS
and S,jk = ∂j∂kS. Being real symmetric, the matrix S,jk is diagonalizable with real
eigenvalues sj. Then, the complex matrix M defined by

Mjk = δjk − i2σ2
rS,jk, (3.21)

is also diagonalizable with eigenvalues mj = 1 − i2σ2
rsj, with strictly positive real parts.

Therefore, we can perform the Gaussian integral,

fH(~r,~v) ' ρ(~r)

(
2σ2

r

πε

)3/2

(det(M) det(M∗))−1/2 × e−
σ2
r
ε

(M−1+M∗−1)jk(S,j−vj)(S,k−vk). (3.22)

Using (3.21) we also have

M−1 +M∗−1 = M−1(M +M∗)M∗−1 = 2M−1M∗−1. (3.23)

This is then a diagonalizable matrix with strictly positive real eigenvalues. Therefore, in
the limit ε→ 0 the Gaussian velocity factor gives a Dirac term with a normalization that
cancels the determinant prefactor,

ε→ 0 : fH(~r,~v) = ρ(~r) δD(~v −∇S). (3.24)

This is the classical distribution in phase space for a single-stream flow with density ρ
and velocity ~v = ∇S. Of course, this result only holds if the wave function only varies on
the macroscopic scale of interest L and does not show structures at scale

√
εL, so that we

can use a Taylor expansion for the density and the phase. This is violated if the dynamics
generate structures on increasingly small scales as ε → 0. This is why the semiclassical
limit can be a delicate matter.

In the multistreaming regime, the wave function reads as (Jin et al., 2011)

ψ =
∑

stream j

√
ρj(~r) e

iSj(~r)/ε, (3.25)

where we sum over the streams, and we obtain

ε→ 0 : fH(~r,~v) =
∑
j

ρj(~r) δD(~v −∇Sj). (3.26)

Indeed, the cross-terms that arise from the modulus squared show two Gaussian velocity
factors with well separated peaks and are therefore negligible in the limit ε→ 0. At least
locally we can always write ψ in the form (3.12). It is interesting to see why the derivation
(3.24) fails in this case. Let us choose for simplicity two streams in a one-dimensional
system, with constant densities ρ1 and ρ2, constant velocities v1 = 0 and v2, and hence
S1 = 0 and S2 = v2x,

ψ =
√
ρ1 +

√
ρ2e

iv2x/ε =
√
ρ eiS/ε. (3.27)

This gives for the total density ρ and phase S the expressions

ρ = ρ1 + ρ2 +
√
ρ1ρ22 cos(v2x/ε),

S = ε arccos

[
1
√
ρ

(
√
ρ1 +

√
ρ2 cos(v2x/ε))

]
. (3.28)
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We can see that the total density ρ and phase S now show fast oscillations at scale ε.
Therefore, the Gaussian approximation used above no longer applies if ψ is written as√
ρeiS/ε. It however applies on each of the two terms of the expression √ρ1 +

√
ρ2e

iv2x/ε,
as their densities ρj and phases Sj do not show fast oscillations.

This illustrates that, while by going from the 6D phase space of the classical distri-
bution f(~r,~v) to the 3D configuration space of the wave function ψ(~r), we can hope to
obtain a competitive tool to simulate CDM as compared with usual N-body simulations,
the difficulties associated with shell crossings reappear as small-scale oscillations. Thus,
one needs a high accuracy to resolve the different streams and this also sets a practical
lower bound on the semiclassical parameter ε to avoid too large computer times.

In the self-similar solutions studied here, we do not have multistreaming but the width
of the solutions shrinks with ε, as shown by the scaling (3.60) below. This again implies
that the semiclassical limit is not given by a Gaussian approximation as above and it is
not trivial. This is why we shall not recover the CDM self-similar solutions in the limit
ε → 0. Instead, these solutions vanish as their width becomes infinitesimal, while never
reaching a classical regime.

3.2 Equilibrium and self-similar solutions

3.2.1 Static equilibria: solitons

As we have discussed in Section 2.6.2, solitons are static equilibrium profiles, i.e zero
velocity ~v. This leads to the hydrostatic equilibrium condition, as derived from the Euler
equation (3.17), Chavanis (2011)

ΦN + ΦQ = α, (3.29)

where α is a constant. The FDM soliton arises from the balance between the repulsive
quantum pressure and the attractive force of gravity. Then, the Hamilton-Jacobi equation
(3.14) leads to

S = −αt, hence ψ = e−iαt/εψsol(r), ρsol = ψ2
sol, (3.30)

where we consider for spherically symmetric solutions. Replacing this into the Schrödinger
equation (3.5) we have,

ε2∇2ψsol = 2(ΦN − α)ψsol, (3.31)

which, coupled with the Poisson equation, ∇2ΦN = 4πψ2
sol, determines the soliton profile.

The boundary conditions are ψ′sol = 0 at r = 0 and ψsol → 0 for r →∞. Different values
of α correspond to different values of the soliton mass and central density. These different
profiles are related through the scaling law (2.78).

3.2.2 Self-similar exponents

As we have already explained, seeking self-similar solutions offers a valuable approach to
explore dynamics beyond static equilibrium profiles. Self-similar solutions provide time-
dependent solutions that can be effectively analyzed using semi-analytical tools. In this
section we explain how we calculate the scaling variable of the self-similar solutions for
the SP system.
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3.2.2.1 Field picture

In the setting of the complex field ψ and the gravitational potential ΦN, we search for
self-similar solutions using the self-similar ansatz, which are represented in the following
form:

ψ = t−αf
( r
tβ

)
, ΦN = t−µh

( r
tβ

)
, (3.32)

where f and h are unknown functions to be determined, as well as the scaling exponents
α, β and µ. Replacing this into the SP system (3.5)-(3.6), we get,

−iεt−α−1(αf + βηf ′) = −ε
2

2
t−α−2β

(
f ′′ +

2

η
f ′
)

+ t−µ−αhf, (3.33)

t−µ−2β

(
h′′ +

2

η
h′
)

= 4πt−α−α
∗
ff ∗, (3.34)

where the prime notation represents the derivative with respect to the new variable η =
r/tβ. The compatibility conditions of these equations, when expressed solely in terms of
η, provide us with the values of the scaling exponents,

β = 1/2, µ = 1, α = 1 + i b, (3.35)

where b is a real undetermined parameter. Thus, the fields take the form

ψ = t−1−ibf

(
r√
t

)
, ΦN = t−1h

(
r√
t

)
. (3.36)

We recognize the diffusive scaling
√
t arising from the Laplacian in the Schrödinger equa-

tion. The functions f and h must then be determined by solving the ordinary differential
equations (3.34)-(3.34).

3.2.2.2 Fluid picture

By examining the dynamics from a hydrodynamic perspective, we can verify the consis-
tency of the self-similar exponents. To do so, we search for solutions characterised by the
self-similar ansatz:

ρ = t−αf
( r
tβ

)
, v = t−δg

( r
tβ

)
, ΦN = t−µh

( r
tβ

)
, (3.37)

and substituting into the continuity, Euler and Poisson equations (3.16)-(3.18), we have,

−t−α−1 (αf + βηf ′) + t−α−β−δ
(

2

η
fg + f ′g + fg′

)
= 0, (3.38)

−t−δ−1 (δg + βηg′) + t−2δ−βgg′ = −t−µ−δh′+ ε2

4
t−3β d

dη

(
f ′′

f
+

2

η

f ′

f
− 1

2

(
f ′

f

)2
)
, (3.39)

t−µ−2β

(
h′′ +

2

η
h′
)

= 4πt−αf. (3.40)
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The compatibility conditions now give

β = 1/2, µ = 1, α = 2, δ = 1/2, (3.41)

and the fields take the form

ρ = t−2f

(
r√
t

)
, v = t−1/2g

(
r√
t

)
, ΦN = t−1h

(
r√
t

)
. (3.42)

Knowing that ~v = ~∇S and using the Hamilton-Jacobi equation (3.14), we obtain the
phase S from the velocity ~v as

S = s

(
r√
t

)
+ c0 ln t+ c1, with s′ = g, (3.43)

and c0 and c1 are undetermined real constants. This gives for the complex field ψ, using
the Madelung transformation (2.40),

ψ = t−1

√
f

(
r√
t

)
ei[s(r/

√
t)+c0 ln t+c1]/ε, (3.44)

which takes the same scaling form as the previous result (3.36) (with different meanings
for the function f and the parameters b, c0 and c1).

3.3 Cosmological self-similar solutions

3.3.1 Cosmological background

Given our interest in FDM in the cosmological context, our attention now shifts towards
self-similar solutions within this cosmological framework. Similar to CDM, these solutions
can only be found during cosmological epochs where the scale factor follows a power law
with respect to time. This ensures that the cosmological background does not introduce
any specific time or length scales, preserving the self-similarity. Hence, we focus on the
Einstein-de Sitter universe, which accurately describes the matter-dominated era during
which applies to the matter era when most large-scale structures are formed, until z ∼ 1.
On scales significantly smaller than the horizon, Newtonian gravity can effectively describe
the dynamics. The scale factor grows as a ∝ t2/3, and the Hubble expansion can be
expressed as follows:

H =
2

3t
, a = t2/3, (3.45)

in dimensionless units. Then, the background density ρ̄, the Hubble-flow radial velocity
v̄ and the background Newtonian potential Φ̄N read

ρ̄ =
1

6πt2
, v̄ =

2r

3t
, Φ̄N =

r2

9t2
. (3.46)

We can verify that these expressions satisfy the continuity, Euler, and Poisson equations
(3.16)-(3.18). Furthermore, these background expressions also exhibit self-similar forms
(3.42). Consequently, we can seek self-similar solutions related to perturbations around
this expanding background as well.
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3.3.2 Comoving coordinates

To facilitate comparison with the standard CDM scenario, we choose to work within the
hydrodynamical framework. Consequently, we introduce comoving spatial coordinates
~x = ~r/a and express the density, velocity fields, and gravitational potential as follows:

ρ = ρ̄(1 + δ), ~v = ~̄v + ~u, ΦN = Φ̄N + ϕN, (3.47)

Here, δ represents the density contrast, and ~u corresponds to the peculiar velocity. Sub-
stituting these expressions into the continuity, Euler, and Poisson equations (3.16)-(3.18),
we obtain:

∂δ

∂t
+

1

a
∇x · [(1 + δ)~u] = 0, (3.48)

∂~u

∂t
+

1

a
(~u · ∇x)~u+H~u = −1

a
∇x(ϕN + ΦQ), (3.49)

∇2
xϕN =

2

3

δ

a
. (3.50)

These equations resemble the standard comoving fluid equations, except for the additional
term accounting for quantum pressure on the right-hand side of the Euler equation. This
additional term is represented by:

ΦQ = − ε2

2a2

∇2
x

√
ρ

√
ρ
. (3.51)

Note that these hydrodynamical equations can be derived in a more rigorous way from the
action of the scalar field φ as we have discussed in Section 2.9. This action is formulated
in an expanding metric with linear-gravity perturbations around the FLRW metric (Brax
et al., 2019a). In the nonrelativistic limit, the comoving Schrödinger equation takes the
following form:

iε
∂ψ

∂t
= − ε2

2a2
∇2
xψ + ϕNψ, (3.52)

where we have factored out the term 1/(
√

6πt) from the amplitude of ψ, associated with
the decrease of the background density (Widrow & Kaiser, 1993).

The comoving Schrödinger-Poisson system is a suitable description for the dynamics
of large-scale structures within the Hubble radius, where relativistic corrections can be
safely neglected. This approximation is commonly employed when studying the formation
of large-scale structures during the matter era, both in analytical works and N-body
simulations (Peebles, 1980; Peacock, 1998; Mo et al., 2010). It is justified by the fact
that the scale at which the density field becomes non-linear (around . 10 Mpc) is much
smaller than the Hubble horizon.

In the usual approach, these Newtonian equations of motion are extended to infinite
space. This can be achieved through continuous Fourier transforms involving an integral
over all space or by employing N-body simulations within a finite box with periodic
boundary conditions. Such a procedure is valid as long as the focus is on scales significantly
smaller than the Hubble radius.

By expressing the comoving Madelung transformation as follows:

ψ =
√

1 + δ eiS/ε, ~p = a~u = ~∇xS, (3.53)
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where ~p represents the comoving momentum and ~u the peculiar velocity, we recover the
continuity and Euler equations (3.48)-(3.49). Additionally, the comoving Hamilton-Jacobi
equation for the phase S reads

∂S

∂t
+

(~∇xS)2

2a2
= −ϕN − ΦQ. (3.54)

Furthermore, the comoving Wigner distribution now becomes,

fW(~x, ~p) =

∫
d~x ′

(2π)3
ei~p·~x

′
ψ
(
~x− ε

2
~x ′
)
ψ∗
(
~x+

ε

2
~x ′
)
. (3.55)

Approximately, up to corrections of order ε, this distribution satisfies the comoving Vlasov
equation:

∂fW

∂t
+

~p

a2
· ∂fW

∂~x
− ~∇xϕN ·

∂fW

∂~p
+O(ε) = 0. (3.56)

The background comoving field ψ̄ and distribution f̄W are

ψ̄ = 1, S̄ = 0, f̄W = δD(~p), (3.57)

which coincides with the phase-space distribution of the CDM background.

3.3.3 Self-similar coordinates

Consistent with the fields in (3.42), we can verify that spherical self-similar solutions will
exhibit the following form:

δ(x, t) = δ̂(η),

u(x, t) = ε1/2 t−1/2 û(η),

ϕN(x, t) = ε t−1 ϕ̂N(η),

ΦQ(x, t) = ε t−1 Φ̂Q(η),

δM(x, t) = ε3/2 t−1/2 δM̂(η), (3.58)

where the perturbed mass δM is defined as follows:

δM(r) = 4π

∫ r

0

dr r2δρ(r) =
2

3

∫ x

0

dx x2δ(x), (3.59)

and we have introduced the scaling variable

η =
t1/6x

ε1/2
=

r√
εt
. (3.60)

This scaling is in agreement with the self-similar exponents derived in Section 3.2.2 and we
have additionally incorporated the scaling with respect to ε. Consequently, the self-similar
exponents remain unchanged for both the Minkowski and Einstein-de Sitter backgrounds.

Accordingly, the characteristic length scale exhibits growth as
√
t in physical units,

while it decreases as t−1/6 in comoving units. The associated mass follows a decreasing
trend as M ∝ 1/

√
t. Therefore, these self-similar solutions differ significantly from those

obtained for CDM. While their size expands in physical units, it does so at a slower rate
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compared to the scale factor, resulting in a contraction in comoving units. Consequently,
their mass also decreases over time, in contrast to the self-similar CDM solutions that
exhibit growth in both comoving size and mass (Fillmore & Goldreich, 1984; Bertschinger,
1985). This behaviour can be attributed to the diffusive scaling r ∼

√
t, which remains

independent of the shape of the self-similar solution and the Einstein-de Sitter expansion.
The Euler equation (3.49) can be expressed in terms of the scaling variable η as follows,

1

6
(û+ ηû′) + ûû′ + ϕ̂′N + Φ̂′Q = 0, (3.61)

which can be integrated as

1

6
ηû+

1

2
û2 + ϕ̂N + Φ̂Q = 0. (3.62)

By imposing the boundary condition that all fields vanish at infinity, where they converge
to the cosmological background, we obtain from the integration of the Euler equation a
Bernoulli-like equation (3.62). This integration is possible because the Euler equation
itself is derived from the Hamilton-Jacobi equation (3.14). The Bernoulli equation (3.62)
is really helpful since it takes into account the contribution of kinetic energy, in contrast
to the hydrostatic equilibrium (3.29) that determines the soliton profiles based on the
balance between gravity and quantum pressure.

In terms of the ψ field, we obtain the self-similar scalings

S = εŜ(η), ψ = ψ̂(η) =

√
1 + δ̂ eiŜ. (3.63)

By comparing the self-similar form of the Hamilton-Jacobi equation (3.54) with the
Bernoulli equation (3.62), we find that

Ŝ ′ = û. (3.64)

Defining as in (3.60) and (3.58) the rescaled position ~η and momentum ~ν,

~x = ε1/2t−1/6~η, ~p = ε1/2t1/6~ν, (3.65)

the Wigner distribution takes the self-similar form

fW = ε−3/2t−1/2

∫
d~η ′

π3
e2i~η ′·~νψ̂(~η − ~η′)ψ̂∗(~η + ~η′). (3.66)

To obtain a self-similar form for the Husimi distribution, we need to smooth the Wigner
distribution while following the self-similar scaling t−1/6 of spatial coordinates, as in (3.60).
We choose:

σx = 2−1/2t−1/6σ, σp = 1/(2σx), (3.67)

where,as discussed for Eq.(3.11), we take σxσp = 1/2 to achieve the best possible resolution
for the positive Husimi distribution. The self-similar Husimi distribution is then given
by:

fH(~x, ~p) = ε−3/2t−1/2f̂H(~η, ~ν), (3.68)

with

f̂H =

∣∣∣∣∫ d~η ′

23/2π9/4σ3/2
e−(~η−~η ′)2/(2σ2)−i~ν·~η ′ψ̂(~η ′)

∣∣∣∣2 . (3.69)
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The parameter σ sets the spatial resolution of the self-similar Husimi distribution. At the
background level, this gives

¯̂
fH(~η, ~ν) = σ3π−3/2 e−σ

2ν2

. (3.70)

The time dependence of the smoothing σx introduces additional corrections to the equa-
tion of motion followed by the Husimi distribution compared to the classical Vlasov equa-
tion. However, this is not significant when considering the Wigner distribution as the
fundamental distribution, which satisfies equation (3.56). This equation deviates from
the Vlasov equation only by terms of order ε and higher. Therefore, we can choose any
smoothing for the Husimi distribution, determining the desired resolution. The choice
of smoothing can also depend on time to accommodate the growth or shrinking of the
underlying dynamics.

Moreover, these corrections are again higher order in ε. As a result, as ε→ 0, we can
expect to recover classical dynamics on scales much larger than σx, unless small scales
continue to have a non-negligible impact on larger scales.

3.3.4 Linear regime

Studying small linear perturbations around the expanding background is a valuable ap-
proach that enables us to obtain explicit analytical expressions. Additionally, it offers an
insightful comparison with the CDM. By linearizing the equations of motion (3.48)-(3.50)
with respect to the density and velocity fields and combining the continuity and Euler
equations, we arrive at a closed equation for the linear density contrast δL,

δ̈L +
4

3t
δ̇L −

2

3t2
δL +

ε2

4t8/3
∇4
xδL = 0, (3.71)

where derivative with respect to cosmic time t is denoted by a dot. The resulting equation
is a standard second-order equation in time, similar to what is obtained for CDM, with
the exception of an additional term associated with quantum pressure. This term carries
an ε prefactor, as anticipated. While this term is negligible on large scales, it damps
modes on small scales due to the presence of the Laplacian squared operator.

3.3.4.1 Fourier space

To facilitate comparison with the conventional CDM model, it is instructive to examine
(3.71) in Fourier space. In this representation, it takes the form

δ̈L +
4

3t
δ̇L −

2

3t2
δL +

ε2k4

4t8/3
δL = 0. (3.72)

Similar to CDM, different wavenumbers are decoupled, and this second-order differential
equation of the linear density contrast admits two independent solutions, denoted as
D±(k, t), corresponding to the growing and decaying modes

D+(k, t) = t−1/6J−5/2

(
3

2
εk2t−1/3

)
,

D−(k, t) = t−1/6J5/2

(
3

2
εk2t−1/3

)
. (3.73)
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In the semiclassical limit, ε → 0, or on large scales, k → 0, we recover the time
dependence of the CDM linear growing modes, D+(k, t) ∝ t2/3 ∝ a and D−(k, t) ∝ t−1.

However, in contrast with the CDM modes, for nonzero ε the modes D±(k, t) depend
on the wavenumber k and differ from power laws. At high k or at small time, we have
D+(k, t) ∼ cos

(
3εk2t−1/3/2

)
and D−(k, t) ∼ sin

(
3εk2t−1/3/2

)
. Thus, we obtain acoustic

waves when the quantum pressure is dominant (but with a higher power of k because
of the k4 factor in (3.72)). At late times we always recover the CDM behavior. This is
due to the damping of the quantum-pressure term in Eq.(3.72) by the factor t−8/3. This
is also related to the scalings r ∝

√
t and x ∝ t−1/6 found in (3.58): the scale where

wavelike effects, or the quantum pressure, are important decreases in time, in comoving
coordinates. Thus, deviations from CDM become confined to increasingly small scales.
Further detailed comparison, can be found in Section 3.3.5.

Then, the linear density contrast takes the form

δL(~k, t) = D+(k, t)δL+(~k) +D−(k, t)δL−(~k), (3.74)

where the functions δL±(~k) are determined by the initial conditions for δ and δ̇ at some
initial time. From Eq.(3.58) we find that spherically symmetric and self-similar solutions
are of the form

δ(~k, t) = t−1/2 δ(t−1/6k). (3.75)

Comparing with Eqs.(3.73) and (3.74), we obtain δL±(~k) ∝ k−2. We require δL(k) → 0
for k → 0, as we wish to recover the background density on large scales. This rules out
the mode D+(k, t) and we obtain

δL(~k, t) ∝ t−1/6k−2J5/2

(
3

2
εk2t−1/3

)
. (3.76)

Note that in the FDM regime, where the quantum pressure is important, the two modes
D± oscillate with a constant amplitude and no longer correspond to growing and decaying
modes. Therefore, it is not unphysical to keep only the mode D−, as a small perturbation
by a mode D+ will remain small as long as we remain in the FDM regime.Going back to
real space by taking the inverse Fourier transform, we obtain

δL(x, t) = 1 +
η4

45
− 8η2

9π
2F3

(
−1

2
, 2;

3

2
,
5

4
,
7

4
;− η4

144

)
, (3.77)

where 2F3 is a hypergeometric function, η is the scaling variable defined in (3.60), and
we normalized the linear mode to unity at the center. As already explained below (3.58),
this self-similar solution (3.77) expands in physical coordinates ~r but shrinks in comoving
coordinates ~x. Another difference with the CDM self-similar solutions is that the ampli-
tude of the linear density contrast near the center does not grow with time and remains
constant, δ(x, t) = δ̂(η). Thus, it is not unstable and does not reach the non-linear regime
at late times: a small-amplitude perturbation δL will always keep a small amplitude and
to reach the non-linear regime we must start with a large non-linear perturbation.

3.3.4.2 Real space

Because we look for spherically-symmetric self-similar solutions of the form (3.58), we can
actually solve the equation of motion (3.71) in real space. Looking for a solution δ(η),
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in terms of the self-similar scaling variable (3.60), the partial differential equation (3.71)
becomes the ordinary differential equation

δ
(4)
L +

4

η
δ

(3)
L +

η2

9
δ′′L +

η

3
δ′L −

8

3
δL = 0, (3.78)

where the prime denotes the derivative with respect to η.
The fourth and third derivatives come from the quantum pressure term, which changes

the order of the equation from two to four, as compared with the usual CDM case.
Therefore, we now have four independent linear modes instead of two, which read

δL1 = 45 + η4, δL2 =
1

η
2F3

(
−5

4
,
5

4
;
1

4
,
1

2
,
3

4
;− η4

144

)
,

δL3 = η 2F3

(
−3

4
,
7

4
;
3

4
,
5

4
,
3

2
;− η4

144

)
,

δL4 = η2
2F3

(
−1

2
, 2;

5

4
,
3

2
,
7

4
;− η4

144

)
. (3.79)

Their asymptotic behaviors at the center read

η → 0 : δL2 =
1

η
+ . . . , δL3 = η + . . . , δL4 = η2 + . . . (3.80)

where the dots stand for higher-order terms. This rules out δL2 and δL3 if we look for
a smooth solution with an even Taylor expansion in the radius x at the center. The
asymptotic behavior of δL4 at large distance reads

η →∞ : δL4 =
πη4

40
+

9π

8
−243

5η6
+· · ·+cos

(
η2/6

)
×

[
27
√

3π

2η3
+ . . .

]
+sin

(
η2/6

) [27
√

3π

2η3
+ . . .

]
,

(3.81)
where the dots stand for higher order terms in 1/η. Therefore, the only combination of
the four modes that satisfies the boundary conditions at the center and at infinity is

δL = − 8

9π

(
δL4 −

π

40
δL1

)
, (3.82)

where we chose the normalization δL(0) = 1, and we recover Eq.(3.77), as expected. From
the density contrast δL we can derive the velocity uL and the perturbed mass δML, which
can also be expressed in terms of hypergeometric functions.
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Figure 3.1. From top to bottom: linear density contrast δ̂L from Eq.(3.77), linear velocity perturbation
ûL and linear mass perturbation δM̂L, for δ̂L(0) = 1.
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3.3.4.3 Numerical results

Figure 3.1 illustrates the linear density contrast, velocity and mass perturbations, normal-
ized to δ̂L(0) = 1. In contrast with CDM self-similar solutions, which show a power-law
falloff at large distance without oscillations, the fields oscillate around zero at the same
frequency.

Notably, these self-similar solutions correspond to compensated profiles, as the mass
perturbation approaches zero at infinity and undergoes an infinite number of sign changes.
Positive density peaks roughly correspond to minima of the radial velocity perturbation
and zero crossings of the mass perturbation. These oscillatory features arise from the
presence of quantum pressure (absent in CDM), which generates acoustic waves with a
different dispersion relation from conventional sound waves.

The central density peak is significantly higher than the subsequent peaks, which
decrease as 1/η3 at large distances. This behaviour arises from the three-dimensional
nature of space (i.e. the volume factor η3), resulting in more regular velocity and mass
oscillations.

As time progresses, the profiles shrink in comoving coordinates according to x ∝ t−1/6

as stated in Eq.(3.60). The central peak becomes confined to an increasingly narrow region
in comoving coordinates, with a decreasing mass. However, in physical coordinates, the
peak actually expands with r ∝

√
t.

In contrast to CDM self-similar solutions, the amplitude of the linear density contrast
profile remains constant over time. However, the velocity and mass perturbations decay
as 1/

√
t, as indicated by the scaling laws in equation (3.58).

3.3.4.4 Balance of kinetic, gravitational and quantum-pressure terms

While the static solitons (3.31) are characterized by the balance between gravity and the
quantum pressure in (3.29), the self-similar solutions are dynamical and encompass kinetic
effects due to the nonzero velocity, as indicated by (3.62). Notably, at large distance we
obtain for η →∞,

ûL ∼ η−5 + η−2[cos
(
η2/6

)
+ sin

(
η2/6

)
],

ϕ̂NL ∼ η−4 + η−5[cos
(
η2/6

)
+ sin

(
η2/6

)
],

Φ̂QL ∼ η−8 + η−1[cos
(
η2/6

)
+ sin

(
η2/6

)
], (3.83)

where we have only provided the leading smooth and oscillatory terms, omitting the nu-
merical factors. Hence, we observe that the Bernoulli equation (3.62) in the limit of large
distances is governed by the interplay between kinetic energy and quantum pressure, while
gravity becomes negligible. This phenomenon arises due to the oscillations of the per-
turbed mass δM̂ around zero, resembling a compensated density profile. Consequently,
the central density peak and its gravitational attraction are effectively screened, render-
ing gravity insignificant at large radii. This outcome is not totally surprising. Gravity
is a long-range force, as shown by the inverse Laplacian in the Poisson equation (3.18),
whereas the quantum pressure is a short-range force, as indicated by the Laplacian in
Equation (3.15). As a result, the quantum pressure alone cannot counterbalance grav-
ity at large distances. Therefore, either the kinetic energy balances gravity (as seen in
the Hubble flow within the Einstein-de Sitter background) or gravity is screened by the
compensated density profile. In the latter scenario, the residual gravitational effects can
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be counteracted by the quantum pressure. However, in our solution (3.83), the screening
effect is remarkably efficient, resulting in the emergence of free waves at large distances.
These waves exhibit a delicate equilibrium between the quantum pressure and kinetic
terms, superimposed on the cosmological background.

However, at the central region where velocity vanishes due to symmetry, a balance
is achieved between gravity and the quantum pressure. Consequently, the nature of the
dynamics undergoes a transition with radius: gravity versus quantum pressure at the
center, and kinetic terms versus quantum pressure at large distances.

3.3.5 Comparison with CDM

First, let us review the CDM self-similar solutions. In CDM, as the universe expands, the
matter inside an overdense region of radius R experiences a greater degree of deceleration
compared to the matter outside of this region. Consequently, this leads to a further am-
plification of the density contrast. The density contrast within region R can be expressed
as ρ = (1 + δCDM)ρ̄ in the linear regime δCDM << 1 (Peebles, 1980) 1 :

δCDM = δi

(
3

5
t2/3 +

2

5
t−1

)
. (3.84)

Therefore, in CDM we can identify two linear modes D+(t) ∝ t2/3 and D−(t) ∝ t−1

that are scale-independent. Consequently at the linear level, we can already see that the
FDM self-similar (3.73) solutions are very different from the CDM ones. However, it is
important to note that (3.73) in the semiclassical limit, ε→ 0, or on large scales, k → 0,
recover the time dependence of the CDM linear growing modes, D+(k, t) ∝ t2/3 ∝ a and
D−(k, t) ∝ t−1.

Since for CDM the space and time dependences factorize in Eq.(3.74), requirements
on the shape of the density profile at an initial time do not rule out the growing nor
the decaying mode. Then, one usually only keeps the growing mode, assuming that the
decaying mode has had time to become negligible. In contrast, in Eq.(3.76) we only kept
the mode D− because of the requirement to converge to the cosmological background
on large scales. However, as we noticed below Eq.(3.76), for FDM the linear modes D±
are no longer growing and decaying modes but acoustic oscillations of similar amplitude.
Therefore, the self-similar solution associated with the mode D− is physical, as a small
perturbation associated with the mode D+ will remain small as long as we remain in the
FDM regime where the quantum pressure is important. As seen in Eq.(3.83), this is valid
at large radii in the linear regime. In fact, as seen in the lower panels in Figs. 3.2 and 3.3
below, this is valid at all radii at the non-linear level for the self-similar solutions studied
in this chapter.

As the Newtonian equations of motion (3.48)-(3.50) only apply to sub-Hubble scales,
one may consider introducing a large-scale cutoff at the Hubble radius, so that the FDM
mode D+(k, t) does not lead to divergent quantities. Then, one may wonder whether one
could recover the CDM self-similar solutions by first taking the semiclassical limit ε→ 0
and next c/H0 →∞. This is better discussed in real space, as we detail below.

Now, let us recall the main properties of the CDM self-similar solutions for the
Einstein-de Sitter cosmology (Fillmore & Goldreich, 1984), associated with overdensi-

1The prefactors in the linear and growing modes are dependent of the mass shell
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ties and the formation of spherical virialized halos. For an initial overdense power-law
profile

0 < γ < 3 : δL(r) ∝ r−γ, (3.85)

of the linear density contrast, one obtains non-linear self-similar solutions, with a turnaround
radius that grows with time as

rta(t) ∝ t2/3+2/(3γ), (3.86)

and a non-linear density profile in the inner virialized regions, for r � rta, that shows a
different power law,

γ ≤ 2 : ρ ∝ r−2, γ ≥ 2 : ρ ∝ r−3γ/(1+γ). (3.87)

For shallow initial profiles, γ < 2, the mass within a small radius R is dominated by
the particles that have just collapsed, whereas for steep initial profiles, γ > 2, the mass
within R is dominated by the particles that have collapsed long ago, when the turnaround
radius was of the order of R (Fillmore & Goldreich, 1984). These solutions, which exhibit
gravitational instability and collapse of increasingly massive and distant shells, originate
from the growing modeD+(t) in the linear regime, with the power-law radial profile (3.85).

In the case of FDM, the mode denoted as D+ in Equation (3.74) exhibits a profile
proportional to k−7 in the semiclassical limit. However, this profile is neglected due
to its divergence at low values of k. By performing power counting, we find that this
corresponds to a profile in real space that behaves as x4. This result aligns with the
analysis conducted in real space in Section 3.3.4.2, specifically in the linear mode δL1

described by Equation (3.79), which demonstrates growth proportional to η4 at large
values of η (where the semiclassical limit, ε → 0, corresponds to η → ∞ as determined
by Equation (3.60)). By comparing this with equation (3.85), we can formally assign
γ = −4, and equation (3.86) provides the characteristic scale at time t with the power
law relationship rta ∝

√
t. Therefore, we recover the square-root growth in physical

coordinates as derived in Equation (3.60).
Thus, for CDM the self-similar exponents, such as the growth of the characteristic

scale in Eq.(3.86), encompass a continuous range that is determined by the slope γ of the
initial density contrast profile. This range allows for a variety of self-similar solutions.

However, in the context of FDM, the inclusion of the quantum pressure term in the
hydrodynamical equations of motion adds a new restriction. This term, being in the form
of a power law, still permits the existence of self-similar solutions, but with a unique
exponent. This exponent corresponds to the square-root growth of the physical scale as
indicated in Equation (3.60).

Consequently, among the self-similar solutions of CDM (given by Equations (3.85)-
(3.87)), FDM selects the one obtained for γ = −4 since it is the only exponent compatible
with the quantum pressure term. However, it is important to note that this selection only
holds at a formal level because the value of the exponent γ falls outside the allowed range
specified in Equation (3.85).

In this regard, the semiclassical limit causes the FDM self-similar solution to con-
verge towards a specific CDM self-similar solution, one that shares the same exponent
γ. However, this convergence is neither feasible nor relevant in practice because this spe-
cific solution, applicable to both CDM and FDM, fails to approach the background on
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large scales and exhibits undesirable behaviour. Hence, the permitted self-similar solu-
tion for FDM, which we will delve into in subsequent sections, differs from the standard
self-similar solution for CDM. Specifically, it corresponds to a different CDM self-similar
solution associated with a decaying mode. In the case of CDM, such a solution is not
particularly relevant in practical terms since it is expected to be dominated by growing
modes. In contrast, as mentioned earlier, the linear modes D± in FDM do not exhibit
the characteristics of growing and decaying modes but instead manifest as acoustic os-
cillations with similar amplitudes. Consequently, the self-similar solution associated with
the D− mode is physically meaningful, as any small perturbation linked to the D+ mode
remains negligible. Notably, as we will explore in Section 3.3.6, non-linearity remains
significant across all scales. This means that the self-similar solution does not converge
to the linear-theory prediction (3.82) at large radii, as it includes additional contributions
related to the modes δL2 and δL3.

Despite lacking a standard counterpart in CDM, the study of this FDM self-similar
solution remains intriguing in its own right. It allows for an analytical or semi-analytical
treatment beyond static solitons and explicitly illustrates the gravitational cooling. Conse-
quently, it helps to the dynamics that arise from the interplay between quantum pressure,
gravity, and kinetic effects.

3.3.6 Non-linear regime

3.3.6.1 Closed equation over δM

We now turn to the non-linear regime and look for exact self-similar solutions of the
equations of motion (3.48)-(3.50) of the form (3.58). In terms of the self-similar coordinate
η, the Poisson equation reads

1

η2

d

dη

(
η2dϕ̂N

dη

)
=

2

3
δ̂, (3.88)

while the quantum pressure reads

Φ̂Q = − 1

2η2
√

1 + δ̂

d

dη

(
η2 d

dη

√
1 + δ̂

)
. (3.89)

The density contrast is given by the first derivative of the mass perturbation,

δ̂ =
3

2η2
δM̂ ′. (3.90)

By performing a single integration of the continuity equation with respect to the radial
coordinate, the expression for the radial velocity can be obtained in terms of the perturbed
mass as,

û =
3δM̂ − ηδM̂ ′

4η2 + 6δM̂ ′
. (3.91)
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Replacing these expressions into the Euler equation (3.61), we obtain a closed non-linear
equation for the perturbed mass δM̂ ,

9(2η3 + 3ηδM̂ ′)2δM̂ (4) − (144η5 + 216η3δM̂ ′ + 108η4δM̂ ′′ + 162η2δM̂ ′δM̂ ′′)δM̂ (3)

+(4η8 + 288η4 + 36η5δM̂ − 216η2δM̂ ′ + 324η3δM̂ ′′ + 81η2δM̂2 + 81η2δM̂ ′′2)δM̂ ′′

−3(4η7 + 96η3 + 180η4δM̂ + 243η2δM̂δM̂ ′ − 3η3δM̂ ′2 + 108δM̂δM̂ ′2)δM̂ ′

−12η3(7η3 − 9δM̂)δM̂ = 0. (3.92)

3.3.6.2 Comparison with the linear equation

If we linearize Eq.(3.92) we obtain the fourth-order linear equation

(L1) : 9η3δM̂ (4) − 36η2δM̂ (3) + (72η + η5)δM̂ ′′ − 3(24 + η4)δM̂ ′ − 21η3δM̂ = 0, (3.93)

whereas from the linear equation (3.78), using (3.90) we obtain the fifth-order linear
equation

(L2) : 9η4δM̂
(5)
L −36η3δM̂

(4)
L + (108η2 + η6)δM̂

(3)
L − (216η+ η5)δM̂ ′′

L + 24(9− η4)δM̂ ′
L = 0.
(3.94)

As it should, we can check that these two equations are related,

(L2) = η4 d

dη

[
η−3(L1)

]
. (3.95)

Hence, the solutions of equation (L1) are also valid solutions of equation (L2). The latter
equation, being of order five instead of four, encompasses an additional solution: (L1)
proportional to η3, which corresponds to a constant δML and thus yields δL = 0. As a
result, the linearized equation (3.93) aligns perfectly with the linear theory examined in
Section 3.3.4.

3.3.6.3 Numerical procedure

We solve the non-linear equation (3.92) with a shooting method (Press et al., 1992),
subdividing the spatial domain η ≥ 0 in three regions: a central region η . 0.1, an
intermediate region 0.1 . η . 10, and a large-distance region η & 10. This allows for a
convenient implementation of the boundary conditions.

We look for solutions that converge to the cosmological background at large distance,
so that the density contrast and the perturbed mass go to zero. Therefore, at large
distances we can use the linearized equation (3.93). This gives the four independent
linear modes,

δM̂L1 = η3
(
105 + η4

)
,

δM̂L2 = 2F3

(
−7

4
,
3

4
;−1

4
,
1

4
,
1

2
;− η4

144

)
+

√
π

180
√

3
δM̂L1,

δM̂L3 = η2
2F3

(
−5

4
,
5

4
;
1

4
,
3

4
,
3

2
;− η4

144

)
−
√
π

126
√

3
δM̂L1,

δM̂L4 = η5
2F3

(
−1

2
, 2;

3

2
,
7

4
,
9

4
;− η4

144

)
− π

56
δM̂L1.

(3.96)
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Therefore, at large distance the perturbed mass is a combination of these four modes,

η →∞ : δM̂ =
4∑
i=1

ci δM̂Li, (3.97)

whith coefficients ci to be determined. For η → ∞ the linear modes show the large-
distance behaviors

δM̂L2 = cos
(
η2/6

) [2079

η4
+ . . .

]
− sin

(
η2/6

) [63

η2
+ . . .

]
,

δM̂L3 = − cos
(
η2/6

) [90

η2
+ . . .

]
− sin

(
η2/6

) [2970

η4
+ . . .

]
,

δM̂L4 = − cos
(
η2/6

) [405
√

3π

2η2
+ . . .

]
+ sin

(
η2/6

) [405
√

3π

2η2
+ . . .

]
. (3.98)

Therefore, we can see that the three modes δM̂L2, δM̂L3 and δM̂L4 obey the boundary
condition δM̂ → 0, while the divergent contribution from the mode δM̂L1 is ruled out.
This gives the large-distance boundary condition

c1 = 0. (3.99)

To implement the boundary condition at the center, we write the Taylor expansion

η → 0 : δM̂ = a3η
3 + a5η

5 + a7η
7 + . . . , (3.100)

corresponding to a density contrast with is finite and smooth at the center, with an
expansion in even powers of x. In particular, the density contrast at the origin is

δ̂(0) = 9a3/2. (3.101)

Thus, the central density contrast δ̂(0) specifies the value of a3. Next, substituting the
expansion (3.100) into the differential equation (3.92) gives a hierarchy of equations that
determines all higher-order coefficients {a7, a9, ...} in terms of {a3, a5}. Thus, we are left
with only one free parameter a5, which is set by the boundary condition (3.99) at infinity.

In practice, we first choose the value of δ̂(0), hence of a3, of the profile we aim to
compute. Then, for a trial value of a5, we compute the profile δM̂(η) up to η− ∼ 0.1
with the Taylor expansion (3.100), all higher-order coefficients being known from the
substitution into the differential equation (3.92). Next, we advance up to η+ ∼ 10 by
solving the non-linear differential equation (3.92) with a Runge-Kutta algorithm. Then,
at η+, far enough in the linear regime, we match to the linear expansion (3.97). For a
random initial guess a5 at the center, this will give a nonzero coefficient c1. Therefore, we
use an iterative scheme over a5 until the matching coefficient c1 at the outer boundary η+

vanishes. This sets the value of a5.
In general, all three coefficients c2, c3 and c4 in the linear expansion (3.97) are nonzero.

In contrast, the linear-theory solution (3.82) actually corresponds to the linear mode δM̂L4

only, with c2 = c3 = 0. This corresponds to the fact that the linear modes δM̂L2 and
δM̂L3 do not satisfy the appropriate boundary conditions at the center, η → 0, which
only leaves δM̂L4 as the unique solution (up to a normalization) for a linear solution valid
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over the full range 0 ≤ η <∞. This agrees with the fact that we obtained only one linear
solution in Sec. 3.3.4.

Once we consider the exact non-linear differential equation (3.92), matters are different
and the modes δM̂L2 and δM̂L3 show nonzero contributions at large distances. This is
because at the center the perturbations do not asymptotically vanish (contrary to what
happens at η → ∞) but remain finite, so that non-linear contributions cannot be fully
neglected. This changes the mapping between the boundary conditions at the center and
at infinity and the large-distance modes δM̂L2 and δM̂L3 are no longer excluded because
the behavior at the center of the linear modes is no longer relevant, as this central region
is beyond strict linear theory. However, for δ̂(0) → 0 the contributions from the modes
δM̂L2 and δM̂L3 become small as compared with that from δM̂L4, as the solution converges
to the linear theory.

Therefore, in contrast with the CDM self-similar solutions, for a finite central density
there is never convergence to the linear theory at large distance, in the sense that δM̂(η)
does not converge to δM̂L(η) ∝ δM̂L4(η). Indeed, the additional modes δM̂L2 and δM̂L3

also decrease as 1/η2, with oscillatory prefactors. This is due to a strong coupling between
the behaviors at the center and at infinity. This arises from the self-similarity of the
solution and from the quantum pressure (absent for CDM) which propagates information
from the center to infinity and vice versa (by looking for a self-similar solution we have
implicitly provided an infinite amount of time to acoustic waves to propagate over all
space). Physically, the blow-up character of the solutions means that the scalar matter
starts in the non-linear regime at small radii, and ends in the linear regime (i.e. converges
to the Hubble flow) at late times and large radii, as explicitly seen in Sec. 3.3.10. This is
the opposite of the usual CDM collapsing solutions, where matter shells start in the linear
regime and finally collapse and virialize in the non-linear inner regions. This couples the
final linear era to the initial non-linear era.
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3.3.7 Overdensities

0 2 4 6 8 10
2

0

2

4

6

8

10 L

0 2 4 6 8 10

0.5

0.0

0.5

1.0

u

uL

u

0 2 4 6 8 10
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
u/6 + u2/2
N

Q

tot

Figure 3.2. Upper panel: nonlinear density contrast δ̂ (blue solid line) and linear density contrast δ̂L (red
dashed line), for δ̂(0) = 10. Middle panel: non-linear and linear velocity fields. Lower panel: comparison
of the terms in the Bernoulli equation (3.62). We show the kinetic part (red dashed line), the Newtonian
gravitational potential (blue dotted line), the quantum pressure (green dot-dashed line), and their sum
which must be zero (black solid line).
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Figure 3.3. Non-linear and linear solutions as in Fig. 3.2, but for δ̂(0) = 100.
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In Figures 3.2 and 3.3, we compare the non-linear and linear densities, as well as the
velocity perturbations, for two cases: δ̂(0) = 10 and δ̂(0) = 100.

Observing the figures, we can notice that as the central density peak increases in
height, the non-linear corrections cause the peak to become narrower, and all the higher-
order peaks shift closer to the center. The oscillations in the velocity field also intensify
and become much sharper. These oscillations are no longer symmetric, and the velocity
exhibits pronounced, narrow positive spikes at the density minima, where δ̂ ' −1 and
ρ ' 0.

This behaviour can be understood by considering the scalar matter flux. As explained
in Section 3.3.4.3, the profile contracts in comoving coordinates and loses mass over time.
Thus, for scalar mass to escape from the central peak through the radius R1(t), which
corresponds to the first minimum of the density, the velocity must be high to ensure a
substantial flux despite the low local density. This trend extends to the subsequent peaks,
where the density minima are also significantly below the background density.

This phenomenon of scalar matter being expelled through successive clumps, which
escape from the central density peak and move towards infinity, is commonly observed
in numerical simulations and referred to as "gravitational cooling" (Seidel & Suen, 1994;
Guzman & Urena-Lopez, 2006). This process allows the system to approach equilibrium
configurations, even in the absence of dissipative processes, by ejecting additional matter
and energy out to infinity. It is important to note that while simulations, particularly
those involving the collisions of DM halos, exhibit a somewhat chaotic transient process,
our self-similar solutions demonstrate a well-ordered version of this process that occurs
continuously, but with a rescaling of length and mass scales. It is nonetheless intriguing
to observe this matter ejection phenomenon in the simple and semi-analytical self-similar
solutions investigated in here. In the subsequent Section Section 3.3.10, we will delve
deeper into this matter ejection as we compute the trajectories of constant-mass shells.

As described in Section Section 3.3.4.3, the dynamics of the system involve a complex
interplay between gravity, quantum pressure, and kinetic effects. This interplay remains
significant even in the non-linear regime, as evident from the lower panels that depict the
terms in the Bernoulli equation (3.62).

In the vicinity of the central region, gravity and quantum pressure play the primary
roles, given that the velocity vanishes at the center due to symmetry. Gravity ensures that
the central overdensity does not decay too rapidly and closely follows the cosmological
background density. On the other hand, the quantum pressure resists the gravitational
pull and expels some matter from the central peak. As the central density becomes
extremely high (refer to Fig. 3.3), the dominance of gravity and quantum pressure extends
across multiple density peaks. This dominance is marked by sharp transitions at the
density minima, which correspond to spikes in the velocity field and, consequently, the
kinetic terms. These kinetic terms are counterbalanced by spikes in the quantum pressure.
The gravitational potential ϕN, being an integral of the matter density, appears very
smooth and cannot capture the abrupt changes in velocity. Conversely, the quantum
pressure (3.51), being the second derivative of the density, is a local quantity that responds
to localized changes in the system.

At larger distances, where the system returns to the linear regime, the gravitational
potential becomes negligible as the mass perturbation is screened, similar to a compen-
sated profile. In this region, the quantum pressure and kinetic terms assume dominant
roles, and scalar fluctuations propagate over long distances in a wave-like manner. Thus,
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we observe that the gravitational cooling phenomenon is closely linked to the wave-like
characteristics of FDM dynamics, primarily due to the significant influence of quantum
pressure. The numerical calculation consistently demonstrates that the density contrast
always remains above -1, ensuring that the density never reaches zero and remains strictly
positive. We can establish this analytically by seeking a regular solution in which the den-
sity vanishes at a specific point η0,

δM̂(η) = a0 + a1(η − η0) + a2(η − η0)2 + . . . , (3.102)

with the zero-density constraint

δ̂(η0) = −1 : a1 = −2

3
η2

0. (3.103)

By substituting into the equation of motion (3.92), we can determine the coefficients
a2, a3, ... and obtain the solution:

δM̂(η) = a0 −
2

9
(η3 − η3

0), (3.104)

where a0 remains undetermined. We can verify that this solution indeed satisfies Eq.
(3.92) and yields δ̂(η) = −1, representing the constant zero-density solution ρ = 0.
Therefore, the only regular self-similar solution in which the density vanishes at a specific
point is the homogeneous vacuum. As a consequence, the non-linear density profiles
depicted in Figs. 3.2 and 3.3 can never reach the zero-density threshold. The fact that the
density always remains strictly positive implies that the Madelung transformation (3.12) is
well-defined, and the ψ-field and {ρ,~v}-hydrodynamical descriptions are equivalent. Thus,
the self-similar solutions obtained from (3.92) in terms of {ρ,~v} simultaneously provide
the self-similar solutions in terms of ψ, ensuring that we do not miss any solutions when
working within the hydrodynamical framework.

Furthermore, due to the spherical symmetry of our solutions, the spatial dimensionality
reduces to one, allowing us to express the radial velocity as the gradient of a phase
S =

∫
dr vr. Consequently, the Schrödinger and hydrodynamical pictures are equivalent.

3.3.8 Underdensities

Figures 3.4 and 3.5 illustrate the cases of underdense central regions with δ̂(0) = −0.8
and −0.99. Compared to the linear profiles, we observe that the non-linear corrections
now shift the density peaks towards larger distances and widen the central void, contrary
to the behaviour observed in the overdense case.

Again, symmetry makes the velocity vanish at the center. Consequently, in the
Bernoulli equation (3.62), the dominant terms are the gravitational and quantum pres-
sure terms near the center, while in the linear regime at larger distances, the kinetic and
quantum pressure terms assume dominance. In this linear regime, the mass perturbation
is screened, resembling a compensated profile.

Once again, it is important to note that the density contrast always remains above -1,
ensuring that the density ρ is strictly positive. This confirms the validity of the equivalence
between the ψ-field and {ρ,~v}-hydrodynamical descriptions.
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Figure 3.4. Nonlinear and linear solutions as in Fig. 3.2, but for δ̂(0) = −0.8.
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3.3.9 Husimi distribution

3.3.9.1 Overdensities
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Figure 3.6. Isodensity contours for the radial Husimi distribution function f̂H(η, νr) for σ = 1 (upper
row, δ(0) = 10 and 100) and for σ = 0.3 (lower row, δ(0) = 10 and 100).

In Figures 3.6, we present the radial Husimi distributions f̂H(η, νr), where νr represents
the radial velocity. As shown in Figures 3.2 and 3.3, as the central density increases, suc-
cessive density peaks become more clearly defined and separated by almost void regions.
This pattern is also evident in the Husimi distribution, where the number of well-defined
peaks increases with δ(0). At large distance, where the profile converges to the cosmologi-
cal background, the finite smoothing parameter σ used in defining the Husimi distribution
smears out the density and velocity perturbations, causing the Husimi distribution to ap-
proach the background result given by Eq. (3.70).

Decreasing the spatial coarsening parameter σx, which is proportional to σ, leads to
an increase in the velocity coarsening parameter σp, following the Heisenberg uncertainty
principle (Eq. (3.67)). Therefore, in the case of δ(0) = 10 with σ = 1, we observe velocity
asymmetry within the central peak where the radial velocity is positive, as shown in Figure
3.2, but the spatial profile appears somewhat smoothed. Reducing σ to 0.3 improves the
separation between the first two peaks and preserves the signs of density fluctuations at
larger radii, but this comes at the cost of significant smoothing along the velocity axis,
making it difficult to discern the asymmetry of the velocity distribution within the central
peak. It is important to note that the vertical velocity axis scale is larger in the lower
panels corresponding to σ = 0.3. In the limit of σ → 0, we have f̂H ∼ σ3π−3/2ρ̂(η) at
fixed ~ν.
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For δ(0) = 100, the spatial width of the central peak and subsequent peaks decreases,
as observed in Figure 3.3. Consequently, the coarsening parameter of σ = 1 is no longer
sufficient to separate these initial peaks, resulting in artificial interferences between them
giving a Husimi distribution that is challenging to interpret and deviates significantly from
semiclassical expectations. Decreasing σ to 0.3 provides a more accurate representation
of the system, allowing us to clearly observe the sequence of scalar-field clumps. However,
this smoothing erases much of the information about the velocity field.

These findings highlight that employing the Schrödinger equation (3.52) and the
Husimi distribution as an alternative to N-body simulations for computing the classi-
cal phase-space distribution governed by the Vlasov equation is not always straightfor-
ward. Different choices of the smoothing parameter σ can lead to substantially different
outcomes, making it challenging to establish a direct connection to the underlying dy-
namics. This issue may become particularly relevant in systems with a wide range of
scales, such as those exhibiting hierarchical gravitational clustering observed in cosmolog-
ical structures. For the self-similar solutions investigated in this thesis, where the density
is strictly positive everywhere and the hydrodynamical mapping (3.12) is well-defined,
the density and velocity fields offer a clearer depiction of the dynamics compared to the
phase-space Husimi distribution.

3.3.9.2 Underdensities

0 2 4 6 8 10
4

3

2

1

0

1

2

3

4

r

(0) = 0.99, = 1

0 2 4 6 8 10
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

r

(0) = 0.99, = 0.3

Figure 3.7. Isodensity contours for the radial Husimi distribution function f̂H(η, νr), for σ = 1 (upper
panel) and σ = 0.3 (lower panel) with δ(0) = −0.99.

In Figure 3.7, we present the case of a central underdensity with δ(0) = −0.99. Once
again, we observe that a smaller value of the smoothing parameter σ enhances the sepa-
ration between the successive density peaks. However, this reduction in σ comes at the
cost of erasing the velocity asymmetries within the system.

3.3.10 Trajectories associated to the self-similar solutions

The self-similar solutions can be understood from both Eulerian and Lagrangian perspec-
tives. While the density and velocity fields, as well as the Husimi distribution, offer an
Eulerian viewpoint, considering a complementary Lagrangian perspective provides addi-
tional insights.
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Figure 3.8. Trajectory x(t) of the comoving radius associated with a fixed mass, as a function of cosmic
time t. We show the case of the self-similar solutions defined by the central density contrasts δ(0) = 100
(upper panel) and δ(0) = −0.99 (lower panel).

In the Lagrangian viewpoint, the motion of the radius r(t) that encloses a fixed mass
M(< r) = M serves as an analogue to particle trajectories in the hydrodynamical picture.
From Eq. (3.58), the mass M(< r) = M̄ + δM can be expressed as

M = M̄ + δM = ε3/2t−1/2

[
2

9
η3 + δM̂(η)

]
. (3.105)

This equation implicitly provides the trajectory η(t) as a function of time for a given
mass. Furthermore, Eq. (3.105) yields the scaling law

η(t|M, ε) = η(ε−3M2t), (3.106)

where η only depends on the combination ε−3M2t. Thus, trajectories associated with
different masses or different values of ε can be obtained from a single trajectory through
time rescaling, given by

t ∝ ε3M−2. (3.107)
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However, the shape of the trajectory depends on the self-similar profile, defined for in-
stance by the central density contrast δ(0).

The scaling law (3.107) reveals an interesting feature: in the FDM self-similar solu-
tions, large masses correspond to small times. This is in contrast to CDM self-similar
solutions, which describe a hierarchical collapse where large masses collapse later (Fill-
more & Goldreich (1984); Bertschinger (1985)). On the other hand, the FDM self-similar
solutions exhibit a slow blow-up that roughly follows the Hubble expansion. As the total
overdensity 1 + δ is always positive, both M(η) and η(M) are monotonically increasing
functions at fixed time. Consequently, the scaling law (3.106) implies that η(t) is also
a monotonically increasing function of t for fixed M . This behaviour leads to η → 0 as
t→ 0 and η →∞ as t→∞. Therefore, in terms of the rescaled radius η, at early times,
the mass shell starts close to the origin, inside the central peak or void, residing in the
non-linear regime if the self-similar solution is non-linear at the center. At late times, the
mass shell moves further into the linear regime, at large distances.

Thus, the trajectories in FDM self-similar solutions exhibit an expansion from the
non-linear to the linear regime, independently of whether the central region is overdense
or underdense, whereas the trajectories found in the CDM self-similar solutions describe
a spherical collapse that runs from the linear to the non-linear regime.

In Figure 3.8, we depict the trajectories obtained within the self-similar solutions
defined by δ(0) = 100 and −0.99. The trajectories x(t) are plotted in terms of the
comoving coordinate using Eq. (3.60), which gives x(t) = ε1/2t−1/6η(t). For the numerical
computations, we set ε = 1 and M = 1. It is important to note that other values of ε or
M only lead to a rescaling of time and radius.

We observe that all trajectories roughly follow the Hubble expansion, as the comoving
radius x(t) approaches nonzero finite values at both small and large times. This behaviour
is consistent with the scaling δ = δ̂(η) in Eq. (3.58), indicating that the typical density ρ
follows the decrease of the background density ρ̄ ∝ t−2. Consequently, mass shells cannot
expand much slower or faster than the Hubble flow. At late times, when η is large, the
background term 2η3/9 dominates in Eq. (3.105), leading to the recovery of the Hubble
flow with x(t) ' x̄, where x̄ = (9/2)1/3M1/3 represents the background comoving radius
associated with the mass M . Subdominant oscillations associated with the linear regime
can also be observed on top of this asymptotic value.

For the overdense case, we observe that the comoving radius x(t) increases from its
initial to its final value. This is because the mass shell is initially inside the central density
peak, close to the origin. This overdense configuration implies an initial radius xi that is
smaller than its counterpart x̄ in the background universe, for the same mass M (as ρ ∝
M/x3). At late time, as the system approaches the Hubble flow with increasingly small
perturbations, the trajectory converges to x̄ > xi. Conversely, for the underdense case,
the comoving radius x(t) decreases from its initial to its final value. In the case of the high
central overdensity δ(0) = 100, characterized by three distinct density peaks separated
by velocity spikes (see Fig. 3.3), the trajectory exhibits an intermittent character with
well-defined steps in the non-linear regime. The comoving radius grows very slowly while
the mass shell is inside the density peaks or clumps, and it shows rapid acceleration as
it transitions from one clump to the next due to the presence of velocity spikes found in
Fig. 3.3, associated with the voids separating the clumps.

For the underdense case δ(0) = −0.99 the secondary peaks and their velocity spikes
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spikes are weaker (as seen in Fig. 3.5), making it difficult to identify well-defined steps in
the trajectory.

Although the self-similar profile shrinks in comoving coordinates, as x ∝ t−1/6 at fixed
η from Eq.(3.60), the mass-shell trajectories remain roughly constant, with a global finite
increase for overdense cases and a global finite decrease for underdense cases.

Thus, similar to wave packets where the group and phase velocities need to be distin-
guished, two velocities or trajectories can be discerned in the self-similar solutions. The
"geometric" trajectory, described by x ∝ t−1/6, captures the shrinking of the self-similar
profile, while the "matter" trajectory, characterized by x ∼ constant, represents the flow
of matter. These correspond to r ∝ t1/2 and r ∼ t2/3 in physical coordinates, respectively.
Specifically, matter flows "through" the self-similar profile towards the linear regime at
large distances. It escapes from the non-linear central region, passing through a series of
clumps and experiencing velocity bursts until it ultimately converges to the Hubble flow.
This behaviour of matter moving through the clumps is reminiscent of the gravitational
cooling phenomenon observed in numerical simulations.

Therefore, the matter content of a given clump is not fixed over time, as matter
gradually flows through it, attaining significant velocities at the boundaries where the
density becomes very small. This behaviour shares similarities with systems governed
by wave equations, which exhibit wavelike and interference phenomena. In the case of
self-similar solutions, this phenomenon arises from the quantum pressure originating from
the Schrödinger equation that displays well-known wavelike and interference features.

3.4 High-density asymptotic limit
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Figure 3.9. Asymptotic self-similar (red solid line) and soliton (black dashed line) density profiles,
normalized to ρ(0) = 1.

In Section 3.1, we recalled the scale invariance of the SP system (3.1)-(3.2) under
the scaling law (3.3). However, in the case of cosmological self-similar solutions, this
symmetry is broken by the presence of an Einstein-de Sitter background, which imposes a
boundary condition at large distances. Unlike the solitonic solutions (3.31) in a vacuum,
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we cannot obtain a family of self-similar solutions through the rescaling (3.3), as it would
also change the density at infinity, corresponding to a different boundary condition.

Nevertheless, in the limit of large density contrasts, the background density becomes
negligible as compared with the central density and we can expect the inner profile to
converge to a limiting shape that obeys the scaling law (3.3), which reads here

{η, ψ, ρ,M} →
{
λ−1η, λ2ψ, λ4ρ, λM

}
. (3.108)

We can obtain the equation satisfied by this limiting profile by replacing these scalings
into Eq.(3.92) and keeping only the leading terms in the limit λ→∞. This gives

M ′2M (4) − 2M ′M ′′M (3) +M ′′3 =
4

η2
MM ′3 . (3.109)

In this limit we identified M ' δM̂ and ρ ' δ̂, so that the density is given by ρ =
3M ′/(2η2). Notably, this non-linear equation remains invariant under the symmetry
(3.108). Consequently, by rescaling a single solution normalized, for example, by setting
ρ(0) = 1 using the transformation (3.108), we can obtain a complete family of solutions.
Solving Eq.(3.109) is more challenging compared to finding solutions of Eq.(3.92), as the
density minima between successive peaks now reach the vacuum value ρ = 0. These
points, where M ′ = M ′′ = 0, represent singular points of the differential equation (3.109).
In practice, we compute the finite-λ profile defined by Eq.(3.92) and check that for large
δ(0) the curves collapse to a unique profile normalized to ρ(0) = 1 after applying the scal-
ing (3.108). Additionally, we verify that this profile approximately satisfies Eq.(3.109).

In Fig. 3.9, we compare the asymptotic self-similar profile with the soliton profile
derived from Eq.(3.31). The soliton profile, expressed in terms of dimensionless variables,
is given by

∇2
ηψsol = 2(ϕN − α)ψsol, ∇2

ηϕN =
2

3
ψ2

sol. (3.110)

The comparison between the two profiles reveals that they do not coincide. Despite the
increase in central density, the shape of the central peak in the self-similar profile does
not converge to the equilibrium of the soliton profile. This discrepancy arises from the
significant influence of kinetic effects, which dominate near the boundary of the central
peak, as observed in the lower panel of Fig. 3.3. Furthermore, in addition to the kinetic
terms, the soliton balance equation (3.29) differs from the self-similar Bernoulli equation
(3.62) due to the presence of the α parameter on the right-hand side. As a result, the
two profiles exhibit distinct characteristics, with the central peak of the self-similar solu-
tion being narrower than that of the soliton profile. Consequently, even when the local
timescale inside the central peak becomes significantly smaller than the Hubble time at
high densities, the profile does not relax towards the static soliton profile. This indicates
that the convergence towards the soliton core is not guaranteed in all configurations.

In the limit of large radius, we can neglect the right-hand side of Eq.(3.109), resulting
in a homogeneous equation. The solution to this equation can be expressed as follows,

η →∞ : ρ ' 3b

2η2
cos2

[
a(η − η0)√

2

]
,

M 'M0 + b

[
η − η0

2
+

sin[
√

2a(η − η0)]

2
√

2a

]
, (3.111)
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Figure 3.10. Mass of the density peaks for the asymptotic self-similar density profile normalized to
ρ(0) = 1

where M0, η0, a, and b are undetermined parameters that can be obtained by solving
the complete equation (3.109). It should be noted that the density is always positive but
now vanishes on an almost periodic set of radii. Thus, the oscillations of the asymptotic
profile have equal length in the radius η, whereas the oscillations in the linear profile
had equal lengths in η2, as shown in Eq.(3.81). The non-linear effects not only shift the
density peaks towards the center but also alter their scaling with distance. The envelope
of the density oscillations decreases 1/η2, while the soliton density exhibits an exponential
falloff. This also implies that the mass grows linearly with the radius, so that each peak
(or more precisely each shell in the 3D space) contains the same mass. Consequently, the
outer shells are not as negligible as they may appear in the density plots. This is also
depicted in Fig. 3.11, where we plot the mass associated with the first few density peaks
(i.e., the mass within each spherical shell delimited by density minima).

3.5 CDM comparison, semiclassical limit and conclu-
sion

As mentioned in Eqs.(3.85)-(3.87), self-similar solutions for collisionless matter in a per-
turbed Einstein-de Sitter universe were derived by by Fillmore & Goldreich (1984). Later,
using a different method these results were recovered and extended to a collisional gas
by Bertschinger (1985). These self-similar solutions describe the gravitational collapse
of spherical overdense regions or the expansion of voids. At early times, starting with a
small linear perturbation δL(r, ti), which follows the power-law profile (3.85), the density
contrast grows as t2/3 in accordance with the linear growing mode until it enters the non-
linear regime. Subsequently, non-linear effects come into play and modify the shape of the
density profile in the inner regions. At small radii, the profile follows a power-law form
(3.87), but with a different exponent determined by the slope of the linear perturbation.
This gives rise to a family of solutions characterized by the slope γ of the density pertur-
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bation at large distance. In the case of a collisional scenario, the profile also depends on
the adiabatic index γad.

In the case of overdense regions, these self-similar solutions display a gravitational
instability and increasingly distant shells collapse. They typically stabilize at a fixed
fraction of their turnaround radius, as gravity is balanced either by the radial velocity
dispersion or by the thermal pressure (in the collisional case). This leads to a virial
equilibrium in the inner non-linear core, with a mass and a radius that grow with time,
both in physical and comoving coordinates.

Figure 3.11. Figure from Fillmore & Goldreich (1984). CDM self-similar particle trajectory for ε=0.2
(γ in (3.85))

The self-similar solutions we have derived for FDM in this study exhibit significant
differences compared to the CDM case. These solutions do not follow power-law shapes,
and their amplitude does not grow over time. Consequently, the density contrast at
the center, δ(0), remains constant. This suggests that the gravitational instability is
counterbalanced by the quantum pressure, preventing the profile from transitioning from
the linear to the non-linear regime as time progresses. Instead, the profile remains linear
on all scales and at all times, or it remains non-linear in the central region.

In contrast to the CDM case, the limits of large distances and linear theory no longer
coincide for FDM. While the density perturbation becomes small at large radii, allowing
for a valid linear treatment, the profile does not converge to the linear-theory profile.
This discrepancy arises because at large distances, there are non-zero contributions from
all three linear modes, which exhibit well-behaved behaviour at infinity. In contrast, the
linear theory selects only one mode that satisfies the boundary condition at the center.

The constant amplitude of these solutions over time indicates the absence of gravita-
tional collapse. In both underdense and overdense central regions, the mass inside the
central peak or "void" decreases over time, following a scaling relation of M ∝ t−1/2.
Meanwhile, the associated radius expands as t1/2 in physical coordinates but contracts as
t−1/6 in comoving coordinates. Consequently, rather than accreting mass, the central re-
gion continuously ejects matter. During the non-linear regime, this process takes the form
of well-separated clumps that propagate outward in physical coordinates, reminiscent of
the expulsion of matter observed in gravitational cooling. However, in these self-similar



76 Chapter 3. Self-similar solutions for Fuzzy dark matter

solutions, matter does not remain confined within each clump but instead moves outward
at an accelerated pace, leaking from one clump to the next through a narrow region char-
acterized by low density but high velocity. In the linear regime, at large radii, acoustic
waves emerge around the cosmological background due to the screening effect of the cen-
tral overdensity, resembling a compensated profile. As a result, the gravitational force
becomes negligible compared to the kinetic and quantum-pressure terms. The character-
istic exponents M ∝ t−1/2 and r ∝ t1/2 exhibited by the FDM self-similar solutions are
universal, in contrast to the continuous range of exponents observed in the CDM case,
which depend on the slope γ of the linear seed. As explained in Sec. 3.3.5, this discrepancy
arises due to the presence of the the new force associated with the quantum pressure, in
addition to gravity. This new term in the equations of motion is only compatible with
the exponent γ = −4. However, this value lies outside the allowed range defined by
Equation (3.85) for standard CDM self-similar solutions. In fact, the self-similar FDM
solutions explored in this study are associated with a non-standard CDM solution, which
corresponds to a decaying mode in the linear regime and is therefore unphysical.

Nevertheless, in the FDM regime, the distinction between growing and decaying modes
vanishes as the quantum pressure transforms both modes into acoustic oscillations of
constant amplitude. As a result, the FDM case exhibits significant qualitative differences
compared to the CDM case. These differences persist in the self-similar solutions studied
throughout this chapter, at all times and scales, and are not eliminated even in the limit
as ε approaches zero. This is because ε is fully absorbed through the transformation
to the self-similar coordinate η in Equation (3.60). As discussed earlier, the profile at
large distance, although still within the linear regime of small perturbations, deviates
from the linear-theory profile due to the presence of two additional linear modes with
coefficients that depend on the central density. This introduces a strong coupling between
the small inner radii and the large outer radii, in contrast to the CDM case. In the non-
collisional case of CDM Fillmore & Goldreich (1984); Bertschinger (1985), outer shells
behave independently and undergo spherical collapse, which is only determined by the
inner mass according to Gauss theorem, and not on the density profile. As a result, they
collapse freely, similar to free fall with an initial outward velocity close to the Hubble flow,
until shell crossing occurs at non-linear radii. This signifies that the mass within each
shell is no longer constant, and the dynamics become more complex. Similarly, in the case
of collisional collapse of a polytropic gas, the pressure beyond the shock (located around
the virial radius) is zero due to cold initial conditions, allowing for free-fall spherical
collapse. However, the pressure becomes non-zero at the shock, accompanied by a jump
in temperature and entropy, and balances gravity at smaller radii Bertschinger (1985);
Teyssier et al. (1997).

In contrast, for the self-similar solutions of FDM, the outer shells do not follow a
spherical free fall. This is because the effective pressure associated with the quantum
pressure is non-zero and dominates over gravity in conjunction with the kinetic terms.
Consequently, this leads to acoustic-like oscillations or waves that propagate information
from small to large scales, establishing a coupling between the small and large scales.

The Schrödinger equation (3.52) has been proposed as an alternative approach, in the
semiclassical limit, ε → 0, to simulate the evolution of CDM without relying on N-body
simulations (Widrow & Kaiser, 1993; Uhlemann et al., 2014; Mocz et al., 2018; Garny
et al., 2020). One might expect that in this semiclassical limit, the dynamics of FDM
would converge towards CDM dynamics. However, the situation is more nuanced.
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The semiclassical limit is a weak limit and its interpretation is not straightforward.
The scaling relations (3.58) and (3.60) reveal that in the semiclassical limit, the FDM self-
similar solutions "vanish" as their size and mass decrease as ε1/2 and ε3/2 respectively, as
ε tends to zero. Consequently, in the semiclassical limit, these solutions become confined
to an increasingly small radius. This counteracts the ε2 factor in front of the Laplacian
in the Schrödinger equation (3.52), allowing for a self-similar solution where the quantum
pressure remains capable of balancing gravity near the center, for any finite value of
ε. However, from a macroscopic perspective, this configuration becomes irrelevant as it
becomes infinitesimally small.

The standard CDM self-similar solutions are only exactly recovered at ε = 0, or as ap-
proximate solutions at small ε with a slight breaking of the self-similarity. In other words,
the standard CDM self-similar solutions are not the limit at ε → 0. This highlights the
need for careful consideration when approaching the semiclassical limit. If the gradients
become sufficiently steep as ε → 0, they can sustain dynamics that differ significantly
from the CDM Vlasov case, resulting in a nontrivial limit.





Chapter 4

Numerical methods

This chapter fully presents the numerical methods that we used to simulate scalar field
dark matter clouds. As we have seen in Chapter 2, specifically in Section2.5, in the non-
relativistic regime and neglecting the expansion of the Universe, the equations of motion
for the complex scalar field ψ are given by the coupled equations of the Schrödinger–
Poisson (SP) system or of the Gross–Pitaevskii–Poisson system for a self-interacting scalar
field:

i
∂ψ

∂t
= −∇

2ψ

2m
+m(ΦN + ΦI)ψ, (4.1)

∇2ΦN = 4πGNm|ψ|2, (4.2)

where m is the mass of the scalar field, ΦN the gravitational potential and GN is Newton’s
gravitational constant. As we have discussed in Chapter 2, the term ΦI describes the self-
interactions, if any, being null for the FDM case and taking the form of other functions
for other scenarios. For further details of these scenarios we consider see Section 2.6 for
FDM, Section 2.7 for self-interactions described with the quartic potential and Section
2.8 for a bounded potential. In this chapter, we will leave the ΦI function open to focus
on discussing the the numerical methods developed.

4.1 Dimensionless variables

It is convenient to work with dimensionless quantities denoted with a tilde,

ψ = ψ?ψ̃, t = t?t̃, ~x = L?~̃x, Φ =
L2
?

t2∗
Φ̃, (4.3)

where t? and L? are the characteristic time and length scales of the system. This gives
the dimensionless Schrödinger equation

iε
∂ψ̃

∂t̃
= −ε

2

2
∇̃2ψ̃ + (Φ̃N + Φ̃I)ψ̃, (4.4)

with
ε =

t?
mL2

?

. (4.5)
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Where we have introduced the parameter ε, which plays the role of ~ and measures the
relevance of wave effects, such as interferences or the quantum pressure. The Poisson
equation now takes the following dimensionless form

∇̃2Φ̃N = 4πρ̃, with t? =
1√
GNρ?

, ρ = ρ?ρ̃, (4.6)

where t? is the gravitational dynamical time associated with the characteristic density ρ?
of the system. We also define the characteristic mass M?,

M̃ =

∫
d~̃x ρ̃, with M = M?M̃, M? = ρ?L

3
? (4.7)

and the characteristic wavefunction amplitude ψ?,

ρ̃ = ψ̃ψ̃∗, with ψ? =
√
ρ?/m. (4.8)

In practice, we consider a system of characteristic size L? and timescale t? and use
this to define the dimensionless coordinates of our system. These could be kpc and Gyrs
for a galactic system or AU and yr for a cloud of solar-system size. The unit of length is
somewhat arbitrary and can be taken as pc or Gpc as desired, as long as it is well below
the Hubble scale, far in the Newtonian gravitational regime. In the following, we remove
the tildes for simplicity, as we always work with the dimensionless variables. We will
choose L? as the radius of our initial spherical halo, so that in dimensionless coordinates
we have Rhalo = 1.

4.2 Dynamical evolution: Pseudo-spectral method

In this section we present the final method we have developed to solve the time evolution
of scalar clouds (Pathria & Morris, 1990; Zhang & Hayee, 2008; Edwards et al., 2018). As
we have seen, the nonlinear Schrödinger–Poisson system is given by the set of equations
(4.4) and (4.6). Note that these equations (4.4 and 4.6) are applicable when dealing with
open boundary conditions. However, the code we have developed is specifically designed
to handle the Schrödinger–Poisson system under periodic boundary conditions. In this
particular situation, equation (4.6) takes the following form,

∇2ΦN = 4π(|ψ|2 − 〈|ψ|2〉), (4.9)

as it is derived from Gauss’ law and the property that the surface integral of the field’s
gradient along the simulation grid’s perimeter becomes zero under the periodic boundary
conditions. Integrating the equation (4.4) gives the form of the time evolution for a time
step ∆t of the wave function,

ψ(~x, t+ ∆t) = exp

[
i

∫ t+∆t

t

dt′
(
ε

2
∇2 − 1

ε
Φ

)]
ψ(~x, t), with Φ = ΦN + ΦI. (4.10)

If the timestep ∆t is small enough, we can use the trapezoidal rule for Φ,∫ t+∆t

t

dt′Φ (~x, t) ≈ ∆t

2
(Φ (~x, t+ ∆t) + Φ (~x, t)) , (4.11)
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replacing this in (4.10) we have

ψ(~x, t+ ∆t) ≈ exp

[
i
∆t

2

(
ε∇2 − 1

ε
Φ(~x, t+ ∆t)− 1

ε
Φ(~x, t)

)]
ψ(~x, t). (4.12)

The operator Φψ is diagonal in configuration space while the operator ∇2ψ is diagonal
in Fourier space. Therefore, we can evaluate each term in its own domain by splitting the
exponential:

ψ(~x, t+ ∆t) ≈ exp

[
−i∆t

2ε
Φ(~x, t+ ∆t)

]
exp

[
i
∆tε

2
∇2

]
exp

[
−i∆t

2ε
Φ(~x, t)

]
ψ(~x, t). (4.13)

However, this expression is valid up to order two, as we will discuss in Section 4.2.1,
thanks to the symmetric splitting. We can go to higher orders by splitting over more
intervals with precise coefficients and we have performed the calculation up to order six.
However, to solve the scalar cloud dynamics going up to order two is sufficient. Now, with
the standard splitting expresion (4.13) we can compute the time evolution of ψ with the
symmetrised split-step Fourier method. The algorithm can be schematically described as
follows

ψ(~x, t+ ∆t) = exp

[
−i∆t

2ε
Φ(~x, t+ ∆t)

]
F−1 exp

[
−iε∆t

2
k2

]
F exp

[
−i∆t

2ε
Φ(~x, t)

]
ψ(~x, t).

where F and F−1 are the discrete Fourier transform and its inverse, and k is the wavenum-
ber in Fourier space. Note that the choice to place the∇2 operator in the middle is because
it is more expensive since it involves Fourier transforms.

The sequence of the operations is from right to left, and in a nutshell the algorithm can
be explained as follows: first, half time step is taken where only the non-linear potential
operator is applied, followed by a complete time step in the linear term. Afterwards, the
potential field is updated, and a final partial time step is performed in the non-linear
term.

ΦN(~x, t+ ∆t) = F−1

(
−4π

k2

)
F|ψ|2 (4.14)

and the computation of the self-interaction potential ΦI is done in the configuration
space according to the model of interest.

As a pseudo-spectral code, it performs linear differential operators through direct mul-
tiplication in the Fourier domain, while non-linear terms are evaluated in position space.
Consequently, the code avoids the noise associated with spatial derivatives computed us-
ing finite-differencing methods. Although there is a computational cost associated with
Fourier and inverse Fourier transforms, the code optimizes these transforms by employ-
ing FFTW3 (Frigo & Johnson, 2005) to compute the discrete Fourier transform (DFT).
These libraries adapt the DFT algorithm to details of the underlying hardware to max-
imize performance. In addition, the FFTW3 libraries offer parallelization capabilities,
taking the advantage of using multiple cores in a user’s PC or a shared-memory environ-
ment. We have taken advantage of the OpenMP tools to parallelize the multi-threaded
routines (OpenMP Architecture Review Board, 2005–present ; Miguel Hermanns, 1997).
However, due to the high computation time when executing the operations, it would be
necessary to go further and implement an MPI version, which we leave for future work.
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4.2.1 Commutator

Using the spectral method, as we have seen, we write

ψ(~x, t+ ∆t) = exp

[
−i∆t

2ε
Φ

]
exp

[
i
∆tε

2
∇2

]
exp

[
−i∆t

2ε
Φ

]
ψ(~x, t), (4.15)

i.e. we can conveniently rewrite it as follows,

ψ(~x, t+ ∆t) = e
A
2 eBe

A
2 ψ(~x, t), (4.16)

We integrate exactly each operation, e
A
2 and eB, so if the 2 operators commute the code

is exact (with the same spatial resolution). So we can think that the criterion on ∆t is not
necessarily A << 1 and B << 1, but [A,B] << 1. We have Baker-Campbell-Hausdorff’s
formula:

eXeY = eZ (4.17)

with
Z = X + Y +

1

2
[X, Y ] +

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]] + ... (4.18)

here
eBe

A
2 = eB+A

2
+ 1

2 [B,A2 ]+ 1
12 [B,[B,A2 ]]− 1

12 [A2 ,[B,
A
2 ]]+... = eZ1 (4.19)

Z1 = B +
A

2
+

1

2

[
B,

A

2

]
+

1

12

[
B,

[
B,

A

2

]]
− 1

12

[
A

2
,

[
B,

A

2

]]
(4.20)

e
A
2 eBe

A
2 = e

A
2 eZ1 = eZ (4.21)

Z =
A

2
+ Z1 +

1

2

[
A

2
, Z1

]
+

1

12

[
A

2
,

[
A

2
, Z1

]]
− 1

12

[
Z1,

[
A

2
, Z1

]]
+ ... (4.22)

We calculate up to the order (∆t)3.

Z =
A

2
+B +

A

2
+

1

2

[
B,

A

2

]
+

1

12

[
B,

[
B,

A

2

]]
− 1

12

[
A

2
,

[
B,

A

2

]]
(4.23)

+
1

2

[
A

2
, B +

A

2
+

1

2

[
B,

A

2

]]
+

1

12

[
A

2
,

[
A

2
, B +

A

2

]]
(4.24)

− 1

12

[
B +

A

2
,

[
A

2
, B +

A

2

]]
(4.25)

Using the properties of the commutators, finally we get:

Z = A+B +
1

12
[B, [B,A]] +

1

24
[A, [B,A]] (4.26)

therefore,
e
A
2 eBe

A
2 = eA+B+ 1

12
[B,[B,A]]+ 1

24
[A,[B,A]]+... (4.27)

We can see that we have a scheme of order 2 since the term of order (∆t)2 is zero and
the error is of order (∆t)3.
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4.2.2 Approximation error of the Pseudo-spectral method

Let us define the error contributions of the pseudo-spectral approximation in the following
way: the total error is E = E1 + E2 with

E1 =
1

12
[B, [B,A]] =

1

12
B2A− 1

6
BAB +

1

12
AB2 (4.28)

E2 =
1

24
[A, [B,A]] =

1

12
ABA− 1

24
A2B − 1

24
BA2 (4.29)

where the operators A and B are A = −i∆t
ε

Φ and B = i ε∆t
2
∇2.

Now we consider the following Fourier modes: ψ = ei
~k~x, φ = φ̃~qe

i~q~x. By replacing
these modes in (4.28) and (4.29) we have:

E1 = i
(∆t)3ε

48
φ̃qe

i(k+q)x
[
4k2q2 + 4kq3 + q4

]
(4.30)

We can check that E1 = 0 if q = 0, which means that φ is constant and commutes with
∇2. Note that the density ρ and the potential Φ are smoother than ψ since it oscillates
so fast. Therefore q ≤ k and:

|E1| ≤
3

16
(∆t)3εk2

maxMaxq[φ̃qq
2] (4.31)

and

|E2| ≤
(∆t)3

24ε
Maxq[(φ̃qq)

2] (4.32)

4.3 Code validation

To check the validity of the code, we use the conservation laws of the SP system. As
we have seen in Section 2.5.3, the mass of the system must be constant throughout the
time evolution, as well as the total energy and the linear momentum. On the other hand,
when we are solving the time evolution of an equilibrium configuration, i.e., the soliton,
we check that the virial quantity is always zero.

4.4 Initial densities profiles

In this section we present the different subroutines of the code that calculate different
initial density profiles. In addition to those developed in the following sections, a Gaussian
anstaz can also be used.

4.4.1 Soliton profile

As we have seen in Section 1.4, the soliton is the equilibrium configuration of the system,
so we can represent this state with ψe given by

αψe = Hψe. (4.33)
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Assuming spherical symmetry, the wave function for the equilibrium configurations is of
the form:

ψ(~x, t) = ψe(r) exp−iαt . (4.34)
where r = |~x|. So, the soliton profile is the solution of the time independent Schrödinger–
Poisson system of the radial density profile:

ε2∇2ψe = 2 (ΦN + ΦI − α)ψe and ∇2ΦN = 4π|ψe|2. (4.35)

Absorbing ΦN(0) in α, we have:

ΦN(r) = ΦN(0) + Φ̂N(r) with Φ̂N(0) = 0 and α = Φ̂N(0) + α̂. (4.36)

Therefore, the consequent set of equations are:

ε2∇2ψe = 2
(

Φ̂N + ΦI − α̂
)
, ∇2Φ̂N = 4π|ψe|2, Φ̂N(0) = 0 (4.37)

To proceed with the calculation, it is important to note that both ψe and Φ̂N are
even functions by construction. The profile is computed using a shooting method, starting
from the origin. The shooting method, is an approach to solve a boundary value problem
by transforming it into an initial value problem. Essentially, we search for solutions to
the initial value problem using different initial conditions until one solution satisfies the
boundary conditions of the original problem.

Around the centre, when r → 0 we can expand ψe is as follows taking into account
that ψ′e(0) = 0

ψe ≈ ψ0 +
ψ2

2
r2 + ...→ ρ = |ψe|2 = ψ2

0 + ψ0ψ2r
2 + ... with ∇2ψe = ψ2 + ... (4.38)

And at r → ∞ all the fields vanish. We proceed as follows: in the algorithm, α̂ is
fixed by the choice of the mass of the soliton profile we want to compute. Next, we try
a value of ψ0 at the origin. Then, we define the vector y(r) =

(
ψe, ψ

′
e, Φ̂N, Φ̂

′
N

)
and

we move forward in r to compute y(r) using a fourth-order Runge-Kutta algorithm to
solve the coupled profile equations. So, the initial condition at r = 0 is described by
y(0) =

(
ψ0, ψ

′
0 = 0, Φ̂N,0 = 0, Φ̂N,0 = 0

)
. If we find that ψe < 0 as we move towards r,

then we stop since we have started from a value for ψ0 that is too low. On the other hand,
if we find that ψ′ > 0, we have started from a high value of ψ0 and we stop. Therefore,
we have to update our choice of ψ0 accordingly to the case in which we are.

One other different situation is if ε is too small. In this case, the Runge-Kutta algo-
rithm fails to solve the profile. In this scenario, the Thomas Fermi approximation is used
directly.

4.5 Finite difference scheme

Before building 3D the pseudo-spectral method presented in Section 4.2, the preliminary
stages consisted of first developing the method in 1D, using both the pseudo-spectral and
finite difference methods. However, in this initial numerical study, we decided not to
further develop the finite difference method because it became obsolete for the following
reasons. First, the computational time of the spectral method was much faster, secondly,
it avoided the noise caused by the computation of the spatial derivatives and thirdly as
mentioned before, were able to parallelize it.
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4.5.1 Dynamical evolution in 1D: Finite difference scheme

To simulate the dark matter scalar field dynamics in 1D we implement a Fortran90
code which solves the SP system discretizing the equations (4.4) and (4.6) (Madarassy &
Toth, 2013, 2015).

We represent ψ(x, t) by its values at a set grid of points. The values of the scalar field
at the grid points will be abbreviated by ψ(x, t) = ψnj . We can write the evolution of the
system as follows:

i
∂ψ

∂t
= −iHψ, H = − ε

2

∂2

∂x2
+

1

ε
(ΦN + ΦI) (4.39)

So, the time evolution of the system is defined by:

ψn+1
i = exp−iH∆t ψni = Û(∆t)ψni . (4.40)

Therefore, splitting Û(∆t) as follows, we derive a unitary approximation :

ψn+1
i = exp

−iH∆t
2 exp

−iH∆t
2 ψni (4.41)

(
1 +

1

2
iH∆t

)
ψn+1
i =

(
1− 1

2
iH∆t

)
ψni (4.42)

By replacing H by its finite-difference approximation in x, we have a complex tridiagonal
system to solve. The method is stable, unitary, and second-order accurate in space and
time. In fact, it is simply the Crank-Nicholson method. By using the finite-difference
representation for the x derivative, equation (4.42) reads,

ψn+1
i −i∆t

2

[
ε
ψn+1
i+1 − 2ψn+1

i + ψn+1
i−1

2(∆x)2
− 1

ε
Φiψ

n+1
i

]
= ψni +

i∆t

2

[
ε
ψni+1 − 2ψni + ψni−1

2(∆x)2
− 1

ε
Φiψ

n
i

]
,

(4.43)
which can it be written (4.43) as a matrix equation:

U1ψ
n+1
i = U2ψ

n
i . (4.44)

Where

U1 =


β0 −α . . .
−α β1 −α . .
. −α β3 −α .
. . . . .
. . . . .
. . . −α βi

 and U2 =


γ0 α . . .
α γ1 α . .
. α γ3 α .
. . . . .
. . . . .
. . . α γi

 (4.45)

with

αi =
i∆tε

4(∆x)2
βi = 1 +

i∆t

2

(
ε

1

(∆x)2
+

1

ε
Φi

)
γi = 1− i∆t

2

(
ε

1

(∆x)2
+

1

ε
Φi

)
(4.46)

Where ∆x is the grid space size and ∆t the time step. In our code, ∆x will be fixed
meanwhile ∆t will be variable inspired by (Edwards et al., 2018). The contribution of the
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gravitational and the self-interaction potential is included in Φi = ΦNi + ΦIi . In 1D the
gravitational potential reads:

ΦN(x) = 2π

∫
dx′|ψ|2|x− x′| (4.47)

For the cases studied in the 1D collisions we considered the following scenarios: FDM
ΦI = 0 and for qthe uartic self-interaction, whose potential is: ΦI = λ|ψ|2.

As Φn+1 is not known in advance, we proceed by iterations: we start with Φn and then
we compute ψn+1, from which we can deduce Φn+1. Then we recalculate ψn+1, followed
by Φn+1, and we keep iterating until ψn+1 does not differ by more than 0.1% between 2
iterations.



Chapter 5

Solitons and halos for self-interacting
scalar dark matter

In this chapter, our focus is on the formation of self-interacting solitons within a larger
dark matter halo (Galazo García et al., 2023). We assume that the halo is formed through
Jeans’ instability (Alcubierre et al., 2002; Chavanis, 2018; Harko, 2019; Brax et al., 2019a)
and investigate whether solitons can dynamically emerge from the evolution of dark mat-
ter within the halo. Specifically, we demonstrate that due to initial density fluctuations
around the initial halo profile, self-interacting solitons always emerge and absorb a signif-
icant portion of the halo mass. This occurs regardless of whether a small soliton already
exists or if no soliton is initially present. We also compare the scenarios of a flat or cuspy
halo profile. In the case of cuspy profiles, we find that soliton formation from no initial
soliton occurs rapidly within a few dynamical times. In all cases, a soliton forms, grows,
and reaches a substantial size relative to the initial halo. This behavior differs from fuzzy
dark matter, where solitons are only stable if they are initially present and have a suffi-
cient mass (Schive et al., 2014b,c; Veltmaat et al., 2018; Chan et al., 2022). In the case
of self-interacting dark matter, the solitons are spontaneously created.

To validate these findings, we derive a kinetic equation from the nonlinear Schrödinger
equation, which is applicable even to a non-homogeneous background. By incorporating
a simple energy-cutoff assumption for the occupation numbers of excited states in the
halo, we determine that the growth rate of solitons is positive but decreases rapidly as
the soliton mass increases.

These results could have significant implications for astrophysical scenarios, suggesting
that if dark matter were a scalar with self-interactions, dark matter halos would consist
of a combination of a diffuse halo and a smaller soliton, the size of which depends on
the halo’s formation history. This could have observable effects on the dynamics of stars
within dark matter halos, which we leave for future investigations.

This chapter is organized as follows: In the first part, Section 5.1, we remind the
model and the initial conditions, specifically the halo from which a soliton will emerge. In
the subsequent Section 5.2, we discuss the emergence of solitons in flat halos, followed by
Section 5.3, where we explore cuspy halos. Finally, Section 5.4, we develop a kinetic theory
to analyze the growth rate of solitons. We conclude with a summary of our findings.

87
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5.1 Equations of motion and initial conditions

As we have presented in Section 2.7, in the nonrelativistic limit (Brax et al., 2019a),
the wavefunction satisfies the nonlinear Schrödinger equation Eq.(2.83). The Newtonian
gravitational potential ΦN is given by the Poisson equation Eq. (2.39) This system is
characterized by the coupling of the non-linear Schrödinger equation with the Poisson
equation. This can also be reduced to a single integro-differential equation, which will be
analysed in Section 5.4,

i
∂ψ

∂t
= −∇

2ψ

2m
+m2ψ

(
4πGN∇−2 +

1

ρa

)
|ψ|2, (5.1)

with
ρa =

4m4

3λ4

. (5.2)

5.1.1 Hydrostatic equilibrium and Thomas-Fermi limit

In the Thomas-Fermi regime that we will consider in this chapter, this soliton is governed
by the balance between gravity and the repulsive force associated with the self-interactions
(for λ4 > 0). As a reminder, the soliton profile is,

ρsol(r) = ρ0sol
sin(πr/Rsol)

πr/Rsol

, (5.3)

with the radius
Rsol = πra, with r2

a =
3λ4

16πGNm4
=

1

4πGNρa
. (5.4)

As a reminder, outside of the radius ra where Eq.(5.3) would give a zero density we can
no longer neglect ΦQ and the exact solution develops an exponential tail at large radii.
The approximation (5.3) is valid up to r . Rsol for

ΦQ � ΦI :
ρ0sol

ρa
� 1

r2
am

2
. (5.5)

5.1.2 Outer halo and semi-classical limit

In this chapter, we will study the emergence and the evolution of these solitons within a
larger halo of radius Rhalo > Rsol. As seen above, the self-interactions can only support
an hydrostatic equilibrium within the radius Rsol of Eq.(5.4), independently of the soliton
mass. Therefore, while inside Rsol the self-interactions can balance gravity and build a flat
core when the condition (5.5) is satisfied, outside of Rsol the self-interactions are negligible.
There, as for FDM and CDM models, gravity is balanced by the velocity dispersion or the
angular momentum of the system. Thus, in cosmological numerical simulations of FDM
halos, one finds a flat core governed by the quantum pressure inside an NFW halo that
is similar to the halos found in CDM simulations (Navarro et al., 1996b). The halo is
made of granules that are stochastic fluctuations with a size of the order of the de Broglie
wavelength. A similar configuration would then apply to our case, except that the flat
core is now supported by the self-interactions instead of the quantum pressure.
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We will consider the semi-classical limit (i.e., large scalar massm), where the de Broglie
wavelength is much smaller than both the core and halo radii. Then, the granules also
correspond to temporary wave packets that play the role of particules (Hui et al., 2017)
with a velocity dispersion or an angular momentum that balances gravity and supports a
virialized halo. This means that ΦQ � ΦN . For a system of size L? and density ρ?, this
gives

ΦQ � ΦN : ε� 1 with ε =
1√

GNρ?mL2
?

. (5.6)

For a virialized system governed by gravity, the gravitational dynamical time t? and the
virial velocity are

t? =
1√
GNρ?

and v? =
L?
t?
. (5.7)

Therefore, the de Broglie wavelength λdB reads

λdB =
2π

mv?
=

2πt?
mL?

=
2π√

GNρ?mL?
= ε2πL?. (5.8)

Thus, the limit ε → 0 corresponds to the semiclassical limit, where the de Broglie wave-
length is much smaller than the size of the system. In this chapter, we focus on the
semiclassical regime ε = 0.01 � 1. Then, the halo is composed of incoherent stochastic
fluctuations of size λdB, with a velocity dispersion set by the virial velocity, whereas a
coherent static soliton can appear at the center.

5.1.3 Dimensionless variables

Going back to the Schrödinger equation, it is convenient to work with dimensionless
quantities denoted with a tilde,

ψ = ψ?ψ̃, t = t?t̃, ~x = L?~̃x, Φ =
L2
?

t2∗
Φ̃, (5.9)

where t? and L? are the characteristic time and length scales of the system (in our case
the halo that may contain a smaller soliton at the center). Then, the self-interaction
potential reads

Φ̃I = λρ̃, with λ =
4πr2

a

L2
?

=
1

GNρaL2
?

=
6πλ4M

2
Pl

m4L2
?

. (5.10)

In the following, we remove the tildes for simplicity, as we always work with the dimen-
sionless variables. We will choose L? as the radius of our initial spherical halo, so that in
dimensionless coordinates we have Rhalo = 1.

5.1.4 Initial conditions and central soliton

In this chapter, we study the evolution of solitons inside self-gravitating halos. As initial
conditions of our numerical simulations, we write the wavefunction as

ψinitial = ψsol + ψhalo. (5.11)
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The first term ψsol corresponds to a solitonic core, where gravity is balanced by the self-
interactions, whereas the second term ψhalo corresponds to the halo that makes up most
of the volume and mass of the object, where quantum pressure and self-interactions are
negligible and the scalar field behaves like cold dark matter.

As seen in Sec. 5.1.1, in the Thomas-Fermi limit the spherically symmetric soliton is
given by the hydrostatic equilibrium

ΦN(r) + ΦI(r) = Esol, (5.12)

where we used the dimensionless variables and Esol is a constant with

ψsol(~x, t) = e−iEsolt/εψ̂sol(r). (5.13)

For a quartic self-interaction λ4φ
4, which gives ΦI = λρ, this yields a linear Helmholtz

equation in ρ, with the solution

ρsol(r) = ρ0sol
sin(πr/Rsol)

πr/Rsol

, ψ̂sol(r) =
√
ρsol(r), (5.14)

over r ≤ Rsol, and ρsol = 0 for r > Rsol, as in Eq.(5.3). This is a compact object of
dimensionless radius and mass

Rsol =

√
λπ

2
, Msol =

4

π
ρ0solR

3
sol. (5.15)

In practice, we define our system by Rsol, and the self-interaction coupling λ follows from
Eq.(5.15) as λ = 4R2

sol/π. As the size of the halo is Rhalo = 1, we consider cases with
Rsol . 1, hence λ . 1.

In our numerical computations, we focus on the semiclassical regime ε = 0.01 � 1.
The central soliton is governed by the balance between gravity and self-interactions if the
condition (5.5) is satisfied. This reads

ρ0sol �
4πε2

λ2
, ρ0sol �

π3ε2

4R4
sol

. (5.16)

We will consider the cases Rsol = 0.5 and 0.1. In the former case the soliton is always
dominated by the self-interactions as ρ & 1, whereas in the latter case the self-interactions
dominate over the quantum pressure for ρ & 10.

5.1.5 Decomposition of the halo in eigenfunctions

5.1.5.1 Eigenmodes

For a given time-independent potential ΦN + ΦI = Φ̄, Eq.(3.5) takes the form of the
usual linear Schrödinger equation, which can be solved in terms of the energy eigenmodes
e−iEt/εψ̂E(~x) that obey

−ε
2

2
∇2ψ̂E + Φ̄ψ̂E = Eψ̂E. (5.17)

For a spherically symmetric potential Φ̄, we can expand these eigenmodes in spherical
harmonics,

ψ̂n`m(~x) = Rn`(r)Y
m
` (θ, ϕ), (5.18)
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where the radial parts obey the usual radial time-independent Schrödinger equation[
−ε

2

2

1

r2

d

dr

(
r2 d

dr

)
+
ε2

2

`(`+ 1)

r2
+ Φ̄

]
Rn` = En`Rn` (5.19)

and form an orthonormal basis∫
dr r2Rn1`Rn2` = δn1,n2 . (5.20)

The energy levels En` depend on the radial and orbital quantum numbers n and ` and
are independent of the azimuthal number m. As initial condition for the halo, we take
a semiclassical equilibrium solution defined by a target spherical density profile ρ̄(r),
and hence the associated target gravitational potential Φ̄N(r), where we neglect the self-
interactions and the central soliton,

Φ̄(r) = Φ̄N(r), ∇2Φ̄N = 4πρ̄. (5.21)

More precisely, in a fashion similar to Lin et al. (2018); Yavetz et al. (2022), we take for
the initial halo wavefunction

ψhalo(~x, t) =
∑
n`m

an`mψ̂n`m(~x)e−iEn`t/ε, (5.22)

where we choose the coefficients an`m of the eigenmodes as

an`m = a(En`)e
iΘn`m , (5.23)

where the amplitude |an`m| = a(En`) ≥ 0 is a deterministic function a(E) of the energy
while the phases Θn`m are uncorrelated random variables with a uniform distribution over
0 ≤ Θ < 2π.

This gives a stochastic halo density ρhalo = |ψhalo|2, which fluctuates between different
realizations of the phases Θn`m. Defining the average 〈. . . 〉 over these random realizations,
that is, over the uncorrelated phases Θn`m, we obtain the averaged density

〈ρhalo〉 =
∑
n`m

a(En`)
2|ψ̂n`m|2 =

∑
n`

2`+ 1

4π
a(En`)

2R2
n`, (5.24)

where we used
∑

m |Y m
` |2 = (2` + 1)/(4π). Then, the function a(En`) that determines

the occupation numbers is chosen so that 〈ρhalo〉 = ρ̄, i.e. we recover the target density
profile ρ̄(r) as the averaged profile over the random realizations. In the classical case
of discrete particles, this corresponds to the construction of the phase space distribution
function f(~x,~v) from the density profile, and the choice (5.23) corresponds to an isotropic
distribution f(E).

5.1.5.2 WKB approximation

As we consider the semiclassical regime ε � 1, we can expect the Wentzel-Kramers-
Brillouin (WKB) approximation (Landau & Lifshitz, 1977; Merzbacher, 1998; Yavetz
et al., 2022) to be valid. This gives for the radial part Rn`(r) the form

r1<r<r2 : Rn`(r) '
Nn`

r
√
kn`(r)

sin

[
1

ε

∫ r

r1

dr′kn`(r
′)+

π

4

]
(5.25)



92 Chapter 5. Solitons and halos for self-interacting scalar dark matter

where Nn` is the normalization factor, kn`(r) is defined by

kn`(r) =

√
2

(
En` − Φ̄N(r)− ε2

2

`(`+ 1)

r2

)
, (5.26)

and r1 < r2 are the two turning points of the classical trajectory, where kn`(r) = 0. The
lower bound r1 is due to the centrifugal barrier and the upper bound r2 to the confining
gravitational potential Φ̄N . For radial trajectories, associated with ` = 0, we have r1 = 0.
Outside of the interval [r1, r2] the wavefunction shows a fast decrease as this corresponds
to the forbidden region in the classical limit and we consider the semiclassical regime
ε� 1. The normalization condition (5.20) gives

Nn` =

(∫ r2

r1

dr

2kn`(r)

)−1/2

, (5.27)

where we neglected the contributions from the classically forbidden regions and took the
average over the fast oscillations of the wavefunction. Finally, the quantization condition
of the energy levels is given in this WKB approximation by

1

ε

∫ r2

r1

dr kn`(r) =

(
n+

1

2

)
π, (5.28)

where n = 0, 1, 2, . . . is a non-negative integer. We can see that in the semiclassical
regime, ε� 1, the quantum numbers become large as

n ∼ 1/ε, ` ∼ 1/ε, (5.29)

and the difference between energy levels decreases as ∆E ∼ ε. In particular, at fixed ` we
obtain from Eq.(5.28)

∂n

∂E
=

1

πε

∫ r2

r1

dr

kn`(r)
. (5.30)

In this continuum limit, we can replace the sums in Eq.(5.24) by integrals and we obtain

〈ρhalo(r)〉 =
1

2π2ε3

∫
dE a(E)2

√
2[E − Φ̄N(r)], (5.31)

where we used the WKB approximation (5.25). Comparing this expression with the
classical result that expresses the density in terms of the particle phase-space distribution
(Binney & Tremaine, 2008),

ρclassical(r) = 4π

∫ 0

Φ̄N (r)

dE f(E)
√

2[E − Φ̄N(r)], (5.32)

where we normalized the potential so that bound orbits correspond to E < 0, we obtain

a(E)2 = (2πε)3f(E). (5.33)

The classical phase-space distribution can be obtained from the density by Eddington’s
formula (Binney & Tremaine, 2008),

f(E) =
1

2
√

2π2

d

dE

∫ 0

E

dΦN√
ΦN − E

dρclassical

dΦN

. (5.34)
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In practice, choosing a target halo density profile ρ̄(r), we obtain the classical phase-
space distribution f(E) from Eddington’s formula (5.34), the eigenmode coefficients an`m
from Eqs.(5.23) and (5.33), and the initial halo wavefunction from Eq.(5.22). However,
to avoid the singularity of the WKB approximation at the turning points, we do not use
the WKB expression (5.25) for the eigenmodes. Instead, we explicitly solve the linear
eigenmode problem associated with the radial Schrödinger equation (5.19). Therefore,
the WKB approximation is only used for the determination of the initial coefficients an`m.
This is sufficient for our purpose, which is to build random initial conditions with a target
radial density profile.

5.2 Halo with a flat-core density profile

5.2.1 Halo eigenmodes
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Figure 5.1. Energy levels En` in the (`, En`) plane (upper left panel), for the gravitational potential
(5.35). Eigenmodes Rn`(r) for ` = 0 (upper right panel), ` = 1 (lower left panel) and some large values
of n or ` (lower right panel).

We first investigate the dynamics of systems with a flat halo density core. Thus, we
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consider a Lane-Emden profile with a polytropic index n = 1,

0≤r≤1: ρ̄(r) = ρ0
sin(πr)

πr
, Φ̄N(r) = −4ρ0 sin(πr)

π2r
, (5.35)

which corresponds to the phase-space distribution

−4ρ0

π
< E < 0 : f(E) =

1

8π
√
−2E

. (5.36)

Although this halo profile happens to take the same form as the hydrostatic soliton (5.14),
its physics is quite different. Indeed, here gravity is not balanced by self-interactions but
by the velocity dispersion, as for collisionless particles. With ρ0 = 1, this is a simple
model for a halo with a flat-core density profile and ρhalo ∼ 1 within the radius Rhalo = 1.

We solve the eigenvalue problem (5.19) with a numerical spectral method. For each
orbital quantum number `, we expand the radial wavefunctions Rn` on the basis defined
by the eigenvectors of the spherical flat potential well with infinite walls at r = 1 (they are
given by the spherical Bessel functions j`(knr) where kn is a zero of j`). This automatically
satisfies the boundary condition at r = 0, Rn` ∝ r`. This also gives Rn`(r = 1) = 0,
which is a good approximation in the semiclassical regime ε� 1, as we only include bound
eigenmodes with E < 0 that are classically forbidden beyond r = 1. Truncating the basis
at the first 100 eigenvectors, we obtain a finite linear eigenvalue problem associated with
a real symmetric matrix of size 100×100. Then, we obtain the nmax(`) energy levels with
E < 0 and their associated bound-state eigenvector. Starting from ` = 0 we increase `
with unit step until there are no more negative eigenvalues.

We show in Fig. 5.1 the energy levels and some radial eigenmodes associated with the
gravitational potential (5.35), with ε = 0.01. We find that there exist bound states until
`max = 67. The number n of bound radial modes decreases as ` increases and we find
nmax = 35 at ` = 0. In agreement with (5.29), because ε� 1 there are many eigenmodes
inside the potential well ΦN , which has a depth of the order of unity. As seen in Fig. 5.1,
high-energy modes with large n can probe small scales, down to ∆r ∼ ε = 0.01, while high
orbital momentum modes with large ` probe large radii. The modes ` = 0 correspond to
radial trajectories in the classical limit.

5.2.2 Large soliton radius, Rsol = 0.5

We first consider cases where the radius ra associated with the self-interactions is of the
order of the halo radius. Thus, in this section we take Rsol = 0.5. In the cosmological
context, this corresponds to the first overdensities that can collapse just above the Jeans
length ∼ ra, as gravity can overcome the pressure associated with the repulsive φ4 self-
interaction.

5.2.2.1 Halo without initial soliton

We first investigate the dynamics when there is no initial soliton inside the halo, ρ0sol = 0.
To compute the evolution of the system, we employ the dynamical method presented in
Chapter 4. We show in the left column in Fig. 5.2 our initial condition for one realization
of the random phases Θm`m in Eq.(5.23). As seen in the upper left panel, the averaged
density 〈ρhalo〉, defined by Eq.(5.24) where the interferences between the different modes
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Figure 5.2. [Rsol = 0.5, ρ0sol = 0.] Upper left panel: Initial density ρ along the x (blue dash-dot line),
y (red dotted line) and z (green dashed line) axis running through the center of the halo. The smooth
brown solid line is the target density profile (5.35) and the black wiggly solid line is the averaged density
〈ρhalo〉 of Eq.(5.24) (they can hardly be distinguished in the figure). There is no central soliton in this
initial condition. Upper middle panel: density profile along the x, y and z axis that run through the
point ~rmax where the density is maximum, at time t = 150. The lower brown solid line is the initial
target density profile as in the upper left panel, while the upper purple solid line is the density profile of
a soliton (5.14) that would contain all the mass of the system. Upper right panel: evolution with time
of the maximum density and of the kinetic, gravitational and self-interaction energies. Lower left panel:
initial density profile on the 2D (x, y) plane at z = 0. Lower middle panel: density profile at time t = 150
on the 2D (x, y) plane centered on ~rmax. Lower right panel: total potential Φ = ΦN + ΦI at t = 150,
along the x, y and z axis passing through ~rmax.

ψ̂n`m vanish, provides a good approximation of the target density (5.35). Moreover, 〈ρhalo〉
is identical along any axis that runs through the origin as there is no angular dependence
left in Eq.(5.24), which is consistent with the spherical symmetry of the target profile
(5.35). Thus, for ε = 0.01 the WKB approximation (5.33) for the amplitude of the
coefficients an`m is already rather good. As expected, it fares somewhat less well at
the center of the halo, dominated by low (n, `) modes. On the other hand, the exact
random initial density ρhalo = |

∑
an`mψ̂n`m|2 shows strong fluctuations around 〈ρhalo〉

and depends on the chosen axis running through the center. In agreement with Eq.(5.8),
these spikes have a width ∆x ∼ ε that decreases in the semiclassical regime but their
amplitude remains of order unity. Thus, ρhalo only converges in a weak sense to the target
classical density profile, after coarse-graining over a finite-size window. Note that for a
classical system of discrete particles the density field is also very noisy, as it is a sum of
Dirac peaks in the point-mass limit. Here the width of the spikes is set by the de Broglie
wavelength (5.8). More precisely, from Eqs.(5.24) and (5.33), we can see that the number
N of eigenmodes ψ̂n`m that contribute to the density at a given point ~x grows as 1/ε3.
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We can also write powers of the exact random halo density, ρhalo = ψψ? ≥ 0, as

ρphalo =
N∑

i1,..,ip=1

N∑
j1,..,ip=1

ai1 ..aipa
?
j1
..a?jpψi1 ..ψipψ

?
j1
..ψ?jp , (5.37)

where the indices i or j denote {n, `,m}. Taking the average over the random phases Θi

of Eq.(5.23), the only terms that contribute are those where each aik can be paired with
a coefficient a?jk′ with jk′ = ik. This gives p! possible permutations,

〈ρphalo〉 = p! 〈ρhalo〉p, (5.38)

and we obtain the probability distribution

ρhalo ≥ 0 : P(ρhalo) =
1

〈ρhalo〉
e−ρhalo/〈ρhalo〉, (5.39)

which does not depend on N nor ε. In particular, the standard deviation is
√
〈ρ2

halo〉c =
〈ρhalo〉, in agreement with the relative fluctuations of order unity seen in the upper left
panel in Fig. 5.2. Thus, the initial density shows strong relative fluctuations of order
unity throughout the halo.

We show the evolution with time of the system in the other panels in Fig. 5.2. Because
the soliton moves somewhat around the center of the halo, at the last time t = 150 we
show the profiles along the x/y/z axis or on the 2D (x, y) plane that run through the point
~rmax where ρ is maximum and reaches the value ρmax shown in the upper right panel, as
a function of time. We show the final density profiles in the middle column and the final
total potential Φ = ΦN + ΦI in the lower right panel. The upper right panel shows the
evolution with time of the maximum density ρmax(t) of the system, and of the kinetic,
gravitational and self-interaction energies. In our dimensionless units, they are given by

EK =
ε2

2

∫
d~x∇ψ · ∇ψ∗, EN =

1

2

∫
d~x ρΦN ,

EI =

∫
d~xVI =

λ

2

∫
d~x ρ2. (5.40)

The total energy E = EK+EN+EI is conserved by the equation of motion (3.5), as well as
the total mass M . We checked that M and E are conserved in the numerical simulations
until the final time shown in the figures. The kinetic energy EK comes with a prefactor ε2
in Eq.(5.40). This means that in the semiclassical limit, ε→ 0, it is negligible for smooth
static configurations such as the equilibrium soliton (5.12), which is thus governed by the
balance between gravity and self-interactions. However, this is not the case for the halo
for two reasons. First, nonzero orbital velocities ~v of order unity (i.e., of the order of
the virial velocity) correspond locally to a phase ei~v·~x/ε in the wavefunction (i.e., orbital
quantum number ` ∼ 1/ε). This implies that ψ shows large gradients that grow as 1/ε and
balance the prefactor ε2 in Eq.(5.40). Second, as seen above the halo also shows strong
density fluctuations on a spatial width ∆x ∼ ε, which again lead to large gradients that
balance the prefactor ε2. Therefore, even for small ε the wavelike nature of the system,
governed by the Schrödinger equation rather than by the hydrodynamical Euler equation,
remains important.
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We can see that within a few dynamical times, t . 8, the system reaches a quasi-
stationnary state where half of the mass is contained in a central soliton that follows the
profile (5.14). Afterwards, the maximum density, which is a proxy for the soliton peak
density, and the energies only show a slow evolution. The central equilibrium soliton is
clearly seen on the density profiles shown in the middle column, with its radius Rsol = 0.5.
Superimposed on this soliton, there remains a depleted halo, with the remaining half
of the initial mass, with again relative fluctuations of order unity as in in Eq.(5.39).
The fluctuations are somewhat lower than in the initial state as the halo mass has been
decreased by half. The hydrostatic equilibrium (5.12) is also clearly shown in the lower
right panel by the constant plateau of the total potential Φ = ΦN + ΦI over the extent
of the soliton, r ≤ 0.5 (with small wiggles associated with the excited halo modes that
cross the central region). Beyond the soliton radius, the rapid decrease of the density
means that ΦI becomes small as compared with ΦN and Φ is dominated by the smooth
−1/r shape of the gravitational potential. This collapse of the initial halo onto the half-
radius soliton is also clearly seen by the comparison between the left and middle columns.
This shows the depletion of the strongly fluctuating halo and the rise of a smooth central
soliton with a high density.

5.2.2.2 Initial soliton ρ0sol = 5
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Figure 5.3. Same as Fig. 5.2 but for the case where there is an initial soliton of density ρ0sol = 5 and
again Rsol = 0.5.

We now consider the case where there is an initial soliton of density ρ0sol = 5 on top
of the halo profile. This initial condition is shown in the left column in Fig. 5.3. We can
see that very quickly, in a few dynamical times t . 2, the mass of the soliton grows to
about 75% of the total mass and seems to remain stable thereafter. This decreases the



98 Chapter 5. Solitons and halos for self-interacting scalar dark matter

halo density and the amplitude of the density fluctuations, as compared with the initial
state. Again, this process is clearly apparent in the shape of the potential Φ and the 2D
density maps shown in the lower row.

Together with the results of Fig. 5.2, this shows that the soliton is to some degree
an attractor of the dynamics, when Rsol is not much below the size of the system. It
appears from a random initial state to make up 50% of the total mass, as in Fig. 5.2, or
can grow to larger values if it is already present with a significant mass, as in Fig. 5.3.
The latter results also suggest that the soliton does not grow to capture all the mass of
the system. However, this numerical simulation cannot rule out secular effects that would
become manifest on timescales that are much greater than the dynamical time and the
time of our simulations.

5.2.3 Small soliton radius, Rsol = 0.1

We now consider cases where the radius ra associated with the self-interactions is much
smaller than the halo radius. Thus, in this section we take Rsol = 0.1. In the cosmological
context, this would correspond to late-time structures that collapse on a scale that is
much greater than the characteristic length ra associated with the self-interactions. We
also take the mass of the system to be constant,Msol+Mhalo = 4/π, so that all simulations
have about the same mass (up to the random fluctuations associated with the stochastic
initial conditions). To compute the evolution of the system, we employ the dynamical
method presented in Chapter 4

5.2.3.1 Halo without initial soliton

We first study in Fig. 5.4 the dynamics of a halo without initial soliton, ρ0sol = 0.
We can see that no soliton dominated by the self-interactions appears until t ∼ 200.

As seen in the middle column, at t = 180 the halo is still dominated by strong fluctua-
tions, associated with the superposition of incoherent modes, and a few rare high-density
spikes that appear randomly. Their spatial width is not set by the radius Rsol = 0.1 as-
sociated with hydrostatic equilibria governed by the balance between the self-interaction
and gravity. Instead, it is of the order of ∆x ∼ ε = 0.01 and as in FDM scenarios it is
governed by the quantum pressure, that is, by wave effects that appear on the de Broglie
scale. One of these high density peaks grows sufficiently to dominate over all other peaks
and becomes stable, forming a soliton governed by the quantum pressure rather than the
self-interactions. This is also seen in the lower middle panel, where there is no flat region,
associated with an hydrostatic equilibria governed by the self-interaction, and Φ ' ΦN .
The small peak associated with the highest density peak is also off-center in the smooth
gravitational potential well and this offset is not the same in the three x/y/z directions,
as this peaks wanders around within the extend r ∼ 1 of the system.

The oscillations seen in the lower left panel for the maximum density and the integrated
energies until t . 100 are due to global modes, associated with a pulsation of the halo
radius, whence of its characteristic densities and energies. These modes appear to be
damped after t & 100. Thus, by t ∼ 100, the halo relaxes to a quasi-stationary state
close to the initial conditions obtained from the WKB approximation. The radius is not
significantly modified but it appears that small-scale density fluctuations have grown in
the central region, with the appearance of a long-lived high-density peak governed by the
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Figure 5.4. Evolution of a flat system with Rsol = 0.1, ρ0sol = 0.

quantum pressure. The halo appears off-center in the box in the central panel because
the coordinates are centered on the point ~rmax, which wanders within the half radius of
the halo.

However, the configuration shown at t = 180 is not the final state of the system and
after the density of the highest spike has kept slowly increasing it reaches a threshold at
t ∼ 200, where it shows a sudden sharp increase. This corresponds to a change of the
physics of the system, with the formation of a new soliton that is no longer of the FDM
type (balance between gravity and quantum pressure) but of the self-interaction type
(balance between gravity and self-interactions), as given by Eq.(5.12). This is clearly seen
in the right column at t = 250, where we can see the characteristic radius Rsol = 0.1 of
such hydrostatic equilibria and the plateau in the total potential Φ over the soliton extent.
In agreement with the condition (5.16), it is only after one of the narrow high density
peaks has grown sufficiently to reach a density threshold ρ & 15 that this transition takes
place and a soliton supported by the self-interactions can appear.

Thus, in this case we find that while the system remains dominated by FDM spikes
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for a long time and seems almost stationary, the secular evolution eventually makes such
a spike to slowly grow until the self-interactions come into play and lead to the formation
of a broad soliton governed by these self-interactions. There is thus a transition in the
system from a FDM phase to a self-interacting phase, embedded in the FDM halo. This
transition may only happen after a long time, much greater than the dynamical time of
the system, as the growth of the central density peaks is very slow until one of them
reaches this threshold and suddenly builds a unique massive soliton.

5.2.3.2 Small initial soliton ρ0sol = 5
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Figure 5.5. Evolution of a flat system with Rsol = 0.1, ρ0sol = 5.

We study in Fig. 5.5 the dynamics of a halo with a small initial soliton, ρ0sol = 5. In
agreement with Eq.(5.16), it is initially strongly perturbed by the wave packets from the
halo as it is close to this density threshold, but we can see that its density slowly grows
with time. Until t ∼ 50, the soliton cannot be clearly seen as it wanders inside the half-
radius of the halo and is somewhat masked by the overlying fluctuations associated with
higher-energy modes. However, as its density slowly grows it becomes less affected by these
perturbations and by t = 100 we can clearly see the characteristic size Rsol = 0.1 of the
central overdensity, much greater than the size ∼ ε = 0.01 of the incoherent fluctuations.
This is also apparent in the potential Φ, which shows a flat plateau at the center perturbed
by the wiggles due to the higher-energy modes. The density is still growing at t = 300.
Therefore, even reasonably small solitons, with a density a few times greater than the
halo background, survive and grow with time. This is despite their energy and potential
Φ is much smaller than the halo counterparts. This is of course consistent with the fact
that initial conditions without a soliton eventually form one, as found in the previous
section and in Fig. 5.4. Therefore, solitons governed by the self-interactions appear to
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be robust attractor. We checked with numerical simulations that initial solitons with a
higher density follow the same pattern, they are not destroyed and slowly grow with time.

5.3 Halo with a cuspy density profile

5.3.1 Halo eigenmodes
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Figure 5.6. Energy levels (`, En`) and eigenmodes Rn` for the gravitational potential (5.41).

We now study the dynamics of cuspy halos, as found in cosmological numerical simula-
tions of both CDM and FDM models. For simplicity, we consider an initial target density
profile ρ ∝ 1/r, which corresponds to the inner regions of both NFW and Hernquist
profiles,

0 ≤ r ≤ 1 : ρ̄(r) =
ρ0

r
, Φ̄N(r) = 2πρ0(r − 1), (5.41)

with the phase-space distribution over −2πρ0 < E < 0

f(E) =
3ρ2

0

2π(E + 2πρ0)2
√
−2E

− ρ0

4π2(E + 2πρ0)
√
−2E

+
3ρ2

0Arccos
√

1 + E/(2πρ0)

2
√

2π(E + 2πρ0)5/2
.

(5.42)



102 Chapter 5. Solitons and halos for self-interacting scalar dark matter

Because of the divergent density at the center, the gravitational potential well is
deeper than for the flat core profile studied in Section 5.2.1. This leads to a greater
number of bound states, as can be seen by comparing the energy levels in Figs. 5.1 and
5.6. This higher number of eigenmodes and their near degeneracy makes the numerical
computation of the matrix eigenvalue problem associated with the radial Schrödinger
equation (5.19) more difficult. Therefore, we use another method and instead of such a
numerical computation we derive approximate but explicit analytical expressions of the
eigenmodes. As described in more details in Appendix A, this corresponds to neglecting
the centrifugal barrier at large radii and the gravitational potential at small radii (i.e.,
we only keep the dominant contribution among them). This is exact for ` = 0, where
there is no centrifugal barrier at all. For ` ≥ 1, the asymptotic behaviors at small and
large radii are automatically recovered, up to a possible phase shift and a small error in
the energy eigenvalues that are not important for our purposes. This provides explicit
expressions for the eigenmodes, avoiding the diagonalization of a large matrix with many
close eigenvalues.

We show the energy levels and some radial eigenmodes in Fig. 5.6. As announced
above, because of the cuspy density profile, associated with a deeper potential well, there
are many more bound states than for the flat profile shown in Fig. 5.1. There are 75
energy levels for ` = 0 and we find bound states until `max = 340. Again, high-n modes
probe small scales, down to ∆r ∼ ε = 0.01, while high-` modes probe large radii.

5.3.2 Large soliton radius, Rsol = 0.5
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Figure 5.7. Evolution of a cuspy system with Rsol = 0.5, ρ0sol = 0.

We show in Fig. 5.7 the dynamics of a cuspy halo (5.41) in the case Rsol = 0.5
without initial soliton. As for the flat halo shown in Fig. 5.2, we can see in the upper left
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panel that the WKB approximation for the coefficients an`m provides a reasonably good
agreement between the averaged density 〈ρhalo〉 and the target density (5.41), although
it overestimates somewhat the density at the center. Again, the interferences between
the different modes ψn`m lead to strong relative density fluctuations of order unity, in
agreement with (5.39).

As in the flat halo case of Fig. 5.2, we can see that in a few dynamical times, t . 4, a
central solition of radius Rsol = 0.5 forms and contains about 33% of the total mass. This
relaxation depletes the halo that also diffuses beyond its initial unit radius, as the process
occurs in a rather fast and violent manner. The shape and size of this soliton, governed
by the self-interactions, can be clearly seen in the final density profiles and in the final
total potential Φ, which is flat over the extent of the soliton. However, in addition to the
small wiggles associated with high-energy modes that run across the center of the system,
there are a few very high-density spikes on top of the soliton. Their width ∆x ∼ ε shows
that these are not solitons supported by the self-interactions, but small-scale peaks on
the de Broglie wavelength that wander over the extent of the former soliton. Thus, in the
central region there is a co-existence of the two types of features, a large smooth soliton
where gravity is balanced by the self-interactions, and a few high-density spikes on the de
Broglie wavelength that are far from hydrostatic equilibrium. This is embedded within a
halo of fluctuating high-energy modes.
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Figure 5.8. Evolution of a cuspy system with Rsol = 0.5, ρ0sol = 20.

We show in Fig. 5.8 the initial and final density profiles when we start with a soliton
of density ρ0sol = 20 on top of the halo. As for the case of a flat halo shown in Fig. 5.3,
the system quickly reaches an equilibrium close to the initial state, where the soliton has
slightly increased its mass and depleted the halo. The most striking result is that, as
for the flat case shown in Fig. 5.3, the random fluctuations inside this soliton have been
significantly damped. Thus, the soliton appears to be an attractor, damping stochastic
perturbations. However, as in the case without initial soliton shown in Fig. 5.7, there
remain a few very high-density spikes of width ∼ ε.

5.3.3 Small soliton radius, Rsol = 0.1

We now consider cases where the radius ra associated with the self-interactions is much
smaller than the halo radius, taking again Rsol = 0.1 as for the flat case.
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5.3.3.1 No initial soliton
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Figure 5.9. Evolution of a cuspy system with Rsol = 0.1, ρ0sol = 0.

We first consider an initial profile without soliton, shown in Fig. 5.9. Because of the
high density at the center, ρhalo ∝ 1/r, the self-interaction ΦI = λρ is large in the central
region. This leads to the formation of a central soliton supported by the self-interaction
in a few dynamical times, t . 2. This again depletes somewhat the halo, which diffuses
slightly beyond its initial radius, while the fluctuations inside the soliton are damped.
In contrast with Figs. 5.7 and 5.8 there are no narrow density spikes, supported by the
quantum pressure, inside this soliton. This is presumably because the hierarchy of scale
between the de Broglie wavelength and the self-interaction soliton is not so large, only a
factor ten instead of fifty.

5.3.3.2 Small initial soliton

We show in Fig. 5.10 the case where there is an initial soliton of density ρ0sol = 100. Again,
the central soliton density grows somewhat with time and damps the central fluctuations,
while the halo diffuses slightly beyond its initial radius. Thus, as for the case of a flat halo,
we find that the solitons governed by the balance between gravity and the self-interactions
are robust and always form, either in a few dynamical times if the initial density is high
enough, or after small-scale density fluctuations are grown large enough by a slow secular
process to trigger an instability and a fast soliton formation.
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Figure 5.10. Evolution of a cuspy system with Rsol = 0.1, ρ0sol = 100.

5.4 Kinetic theory

5.4.1 Kinetic equation

In the following analysis, we will derive a kinetic equation that describes the time evolution
of the system, specifically focusing on the occupation numbers of the central soliton and
the halo eigenstates. Previous studies, such as those by Chan et al. (2022); Jain et al.
(2023), have explored similar approaches for the formation of FDM solitons within a
homogeneous background that can be decomposed into plane waves.

However, in our investigation, we extend these results by considering the effects of
self-interactions and a non-homogeneous background. The non-homogeneous background
cannot be decomposed into plane waves, which means we cannot rely on Fourier analysis
as before. Instead, we introduce a different approach by decomposing the background
into eigenmodes of a reference potential, similar to how we described the halo in Section
5.1.5.1.

Furthermore, as we study the time-dependent background, it becomes crucial to dis-
tinguish the smooth background from the stochastic fluctuations that drive the dynamics.
These fluctuations introduce randomness into the system and play a significant role in its
evolution.

By considering these factors, we aim to develop simple kinetic equations that cap-
ture the behaviour of the system and shed light on the interplay between the smooth
background and the stochastic fluctuations.

The equation of motion (3.5) is the Schrödinger equation in a self-force potential
Φ = ΦN + ΦI , sourced by the system self-gravity and self-interaction. For the quartic
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scalar-field model considered in this chapter, Φ is quadratic over the wavefunction ψ, and
the equations of motion read

iε
∂ψ

∂t
= −ε

2

2
∇2ψ + Φψ, (5.43)

with
Φ = (4π∇−2 + λ)ψ?ψ. (5.44)

If the potential Φ is fixed, ψ(~x, t) can be decomposed as usual in energy eigenmodes
with the simple time dependence e−iEt/ε. In the semiclassical limit, the system behaves
like a collection of classical particules and the Husimi phase-space distribution fH(~x,~v, t)
(Husimi, 1940) defined from ψ(~x, t) approximately follows the Vlasov equation that gov-
erns the dynamics of the classical distribution f(~x,~v, t) (Uhlemann et al., 2014; Mocz
et al., 2018). As described in Section 5.1.5, in this limit ε� 1, we can build approximate
equilibrium configurations by choosing the eigenmode coefficients an`m in correspondance
with a classical phase-space equilibrium solution, as in Eqs.(5.23) and (5.33). This proce-
dure would give true equilibria if the potential Φ were only sourced by the average density
〈ρ〉, which neglects interferences between different eigenmodes as in Eq.(5.24). However,
as shown in Eq.(5.39) and in the plots of the initial conditions displayed in the previous
sections, the interference terms lead to significant fluctuations of the density profile. They
have a relative magnitude of order unity but a spatial width that decreases as ε. Hence
they only become small in a coarse-graining sense. These random fluctuations mean that
even if we start with an equilibrium configuration in this averaged sense, the system will
not be exactly stationary as the potential Φ deviates from 〈Φ〉. To describe this sys-
tem, we therefore split the potential Φ in an average spherically symmetric part Φ̄ and a
fluctuating part δΦ,

Φ̄(~x, t) = Φ̄(r) + δΦ(~x, t). (5.45)

Within an adiabatic approximation, we have in mind that the smooth potential Φ̄ slowly
evolves on long time scales whereas the incoherent stochastic fluctuations δΦ evolve on
short times and drive the averaged dynamics, as would do an external noise for instance.
The potential Φ̄ defines the energy eigenmodes ψj,

ψj(~x, t) = e−iEjt/εψ̂j(~x), ψ̂n`m(~x) = Rn`(r)Y`m(θ, ϕ), (5.46)

where the index j denotes {n, `,m} and for future convenience we use the real spherical
harmonics Y`m (also called tesseral spherical harmonics) instead of the more usual complex
harmonics,

m < 0 : Y`m =
√

2 ImY
|m|
` , Y`0 = Y 0

` ,

m > 0 : Y`m =
√

2 ReY m
` . (5.47)

Therefore, the functions ψ̂j(~x) are real and form a complete orthonormal basis. We can
then expand the wavefunction ψ over this basis as

ψ(~x, t) =
∑
j

√
Mj(t)e

−iθj(t)/εψ̂j(~x), (5.48)

where Mj ≥ 0 and θj are real. The squared amplitude Mj is the mass contained in the
eigenmode j, if we neglect interferences. Substituting this expansion into the equation of
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motion (5.43) we obtain

iεṀj + 2Mj θ̇j = 2MjEj +
∑
j′

2
√
MjMj′e

i(θj−θj′ )/ε ×
∫
d~x ψ̂j δΦ ψ̂j′ (5.49)

where the dots denote the derivatives with respect to time. We define the reference
potential Φ̄ as the sum of the diagonal terms,

Φ̄ = (4π∇−2 + λ)
∑
j

Mjψ̂
2
j , (5.50)

while the remainder δΦ is given by the off-diagonal interference terms,

δΦ = (4π∇−2 + λ)
∑
j 6=j′

√
MjMj′e

i(θj−θj′ )/εψ̂jψ̂j′ . (5.51)

Next, we make the assumption that the background field Φ̄ evolves slowly over time,
allowing us to neglect its time dependence in the equation of motion (5.49). The evo-
lution of the system is primarily influenced by small fluctuations δΦ, which arise from
interferences. These fluctuations perturb the occupation numbers Mj of different energy
levels, and in turn, they affect the reference potential Φ̄ as the density profile gradually
changes.

In the adiabatic approximation, the slow variation of Φ̄ only causes a change in the
phase of the eigenmodes (and energy levels), while leaving their occupation numbers
unchanged. Consequently, our main focus lies in understanding the driving mechanism
associated with δΦ.

Therefore, we can express the equation of motion (5.49) as

iεṀ1+2M1θ̇1 = 2M1E1+

26=4∑
234

2
√
M1M2M3M4 × ei(θ1+θ2−θ3−θ4)/ε

∫
d~x ψ̂1ψ̂3(4π∇−2+λ)ψ̂2ψ̂4,

(5.52)
where the indices {1, 2, 3, 4} denote {j1, j2, j3, j4}. Let us define the vertices V13;24 as

V13;24 =

∫
d~x ψ̂1ψ̂3(4π∇−2 + λ)ψ̂2ψ̂4, (5.53)

which are real and symmetric over {1↔ 3}, {2↔ 4} and {(13)↔ (24)}. Then, separating
the real and imaginary parts of Eq.(5.52) gives

εṀ1 = 2

2 6=4∑
234

√
M1M2M3M4V13;24 sin

(
θ1+θ2−θ3−θ4

ε

)
,

θ̇1 = E1 +

26=4∑
234

√
M2M3M4

M1

V13;24 cos

(
θ1+θ2−θ3−θ4

ε

)
.

(5.54)

To avoid secular effects, associated with trivial resonances between products of identical
oscillatory terms (Nazarenko, 2011), we define the renormalized frequencies ωj as

ω1 = E1 +

2 6=1∑
2

M2 V12;21. (5.55)
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Then, the system (5.54) also reads

Ṁ1 =
2γ

ε

∑
234

√
M1M2M3M4 V̂13;24 sin

(
θ34

12/ε
)
,

θ̇1 = ω1 + γ
∑
234

√
M2M3M4

M1

V̂13;24 cos
(
θ34

12/ε
)
, (5.56)

where we introduced the notation

θ34
12 = θ1 + θ2 − θ3 − θ4 (5.57)

and the new vertices V̂13;24 defined as

V̂13;24 = V13;24 except V̂13;22 = 0, V̂12;21 = 0. (5.58)

We also introduced a book-keeping parameter γ = 1 that multiplies the vertices V̂ , i.e.
the potential δΦ. We have in mind that the fluctuating part δΦ leads to a slow drift of
the system as compared with the orbital motions in the mean potential Φ̄. Therefore, we
will develop a perturbation theory in δΦ, which corresponds to a perturbation theory in
powers of γ (taking γ = 1 at the end).

The system (5.56) is similar to those encountered in four-wave systems (Nazarenko,
2011; Onorato & Dematteis, 2020). However, the vertices V̂ are no longer fully symmetric
and do not contain Krönecker symbols δ34

12 in wavenumbers. This is because we expand
around a non-homogeneous equilibrium Φ̄, with a peculiar radial density profile ρ̄(r).
This breaks the invariance over translations obeyed by wave systems over a uniform
background.

We now look for the perturbative expansion of the squared amplitudes Mj and the
phases θj in powers of γ,

Mj = M
(0)
j + γ M

(1)
j + γ2M

(2)
j + . . . (5.59)

At zeroth order we obtain

M
(0)
1 (t) = M̄1, θ

(0)
1 (t) = θ̄1 + ω̄1t, (5.60)

with M̄1 = M1(0), θ̄1 = θ1(0), setting the initial conditions of the system at the time
t = 0. At first order we obtain

Ṁ
(1)
1 =

2

ε

∑
234

√
M̄1M̄2M̄3M̄4 V̂13;24 sin[(θ̄34

12 + ω̄34
12t)/ε], (5.61)

and

M
(1)
1 (t) = 2

∑
234

√
M̄1M̄2M̄3M̄4

V̂13;24

ω̄34
12

[
cos
(
θ̄34

12/ε
)
− cos[(θ̄34

12 + ω̄34
12t)/ε]

]
, (5.62)

θ
(1)
1 (t) = ε

∑
234

√
M̄2M̄3M̄4

M̄1

V̂13;24

ω̄34
12

[
sin[(θ̄34

12 + ω̄34
12t)/ε] − sin

(
θ̄34

12/ε
)]
. (5.63)
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At second order, using trigonometric identities we obtain

Ṁ
(2)
1 =

∑
234

V̂13;24

4∑
m=1

∑
567

V̂m6,57

ω̄67
m5

√
M̄1M̄2M̄3M̄4M̄5M̄6M̄7

M̄m

×2

ε

[
sin[(θ̄34

12 + ω̄34
12t− σmθ̄67

m5)/ε]

− sin[(θ̄34
12 + ω̄34

12t− σmθ̄67
m5 − σmω̄67

m5t)/ε]
]
, (5.64)

where we introduced σ1 = σ2 = 1, σ3 = σ4 = −1.
At zeroth order we have Ṁ (0)

1 = 0. At first order we obtain from Eq.(5.61)

〈Ṁ (1)
1 〉 = 0, (5.65)

assuming that the initial phases θ̄j are uncorrelated and uniformly distributed over [0, 2π],
as in (5.23). Here we used the properties (5.58) of the non-symmetric vertex V̂ . At second
order we obtain from Eq.(5.64)

〈Ṁ (2)
1 〉 =

2

ε

∑
234

M̄1M̄2M̄3M̄4

{
sin(ω̄34

12t/ε)

ω̄34
12

V̂13;24

×

[
V̂13;24 + V̂14;23

M̄1

+
V̂23;14 + V̂24;13

M̄2

− V̂31;42 + V̂32;41

M̄3

− V̂41;32 + V̂42;31

M̄4

]
+

sin(ω̄3
1t/ε)

ω̄3
1

V̂12;23

[
V̂14;43

M̄1

− V̂34;41

M̄3

]

+
sin(ω̄4

2t/ε)

ω̄4
2

V̂23;34
V̂14;21 − V̂12;41

M̄2

}
, (5.66)

where we used the properties and symmetries of the vertices V̂ and V . In usual four-
wave systems over an homogeneous background, with a symmetric vertex V̂ , the last
two terms vanish and the first term simplifies as sin(ω̄34

12t/ε)(2V̂
2

1234/ω̄
34
12)(1/M̄1 + 1/M̄2 −

1/M̄3−1/M̄4). In our case, the inhomogeneous background leads to the more complicated
expression (5.66).

5.4.2 Soliton ground state and halo excited states

We are interested in hydrostatic solitons embedded within a halo formed by a quasi-
continuum of excited states, as described in Section 5.1.5. As shown in the figures in the
previous sections, in the limit ε � 1 the central soliton follows the density profile (5.14)
with a flat potential Φ = Esol over its extent, determined by the hydrostatic equilibrium
(5.12). This is the ground state j = 0 of the system. Higher-energy states correspond in
the classical limit to particles that orbit up to a radius rmax

j > Rsol, with a higher energy
Ej = v2

2
+ Φ ≥ Φ(rmax

j ) > Φ(Rsol). The soliton contains a macroscopic mass, that can
make up a significant fraction of the system, whereas the higher-energy states that build
the halo form a quasi continuum, with a mass of the order of ε3 � 1 as in Eq.(5.33) and
energy levels separation ∆E ∼ ε as in (5.28).
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Therefore, we look for the evolution of Msol = M0 and we separate the contributions
of the soliton from those of the halo quasi-continuum in the sums in the right-hand side
in Eq.(5.66). We also consider times much longer than the orbital periods, using

lim
t→∞

sin(tx)

x
= π δD(x). (5.67)

This gives

Ṁ0 =
2π

ε

∑
12

M2
0M1M2

{
δD(ω12

00)4V 2
01;02

(
1

M0

− 1

M1

)
+δD(ω1

0)
V02;21V00,01

M0

}
+

2π

ε

∑
123

M0M1M2M3

{
δD(ω23

01)

×1

2
(V02;13 + V03;12)2

(
1

M0

+
1

M1

− 1

M2

− 1

M3

)
+δD(ω1

0)V02;21V03;31

(
1

M0

− 1

M1

)}
, (5.68)

where the sums only run over the halo excited states j 6= 0 (and at least one is transformed
into an integral in the continuum limit). Here we dropped the overbars for simplicity and
we replaced V̂ by V as we discarded the constraints (5.58) in the sums over the halo
excited states, as each of them only contains a mass of the order of ε3.

5.4.3 Renormalized frequencies ωj
We also separate the soliton from the quasi-continuum of halo excited states in the ex-
pression (5.55) of the renormalized frequencies ωj. Thus, we write ωj = Ej + ∆Ej with

∆E0 =
∑

1

V01;10M1, ∆E1 = V10;01M0 +
∑

2

V12;21M2, (5.69)

where the indices 1 and 2 stand for halo excited states. As in Eq.(5.33) for the initial
halo configuration, we assume that the squared amplitudesMj only depend on the energy
Ej, and hence on the quantum numbers n and `, and are independent of the azimuthal
number m,

Mj = a2
j = (2πε)3f(En,`). (5.70)

In particular, as in Eq.(5.24), we obtain from (5.48) the averaged halo density as

〈ρhalo〉 =
∑
j

Mjψ̂
2
j =

∑
n`

2`+ 1

4π
Mn`R2

n`, (5.71)

where we used again the assumption that the initial phases θ̄j are uncorrelated.
The vertices V13;24 defined in Eq.(5.53) can be decomposed over their self-interaction

and gravitational parts
V13;24 = V λ

13;24 + V N
13;24, (5.72)

with
V λ

13;24 = λ

∫
d~x ψ̂1ψ̂3ψ̂2ψ̂4, (5.73)
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and
V N

13;24 = −
∫

d~x d~x ′

|~x− ~x ′|
ψ̂1(~x)ψ̂3(~x) ψ̂2(~x ′)ψ̂4(~x ′). (5.74)

Then, we obtain for the self-interaction contribution to the frequency shifts

∆Eλ
0 = λ

∫
dr r2R2

0〈ρhalo〉,

∆Eλ
1 = V λ

1001M0 + λ

∫
dr r2R2

1〈ρhalo〉. (5.75)

This gives the order of magnitude estimates ∆Eλ
0 ∼ λ〈ρhalo〉Rsol

= ΦIhalo(Rsol) and ∆Eλ
1 ∼

λMsolR2
1(Rsol) + ΦIhalo(R1), where R1 is the radial extent of the eigenmode R1. By

definition, we consider systems where the self-interaction is negligible in the halo, which
is governed by gravity and the velocity dispersion. We also have λ � 1 and Msol � 1.
Therefore, the shifts ∆Eλ

j � 1 are negligible as compared with the energies Ej ∼ 1,
except for low-energy modes that are confined within the soliton radius.

The gravitational contribution reads as

∆EN
0 = −

∑
1

M1

∫
d~x d~x ′

|~x− ~x ′|
ψ̂0ψ̂1ψ̂

′
1ψ̂
′
0

∆EN
1 = V N

10;01M0 −
∑

2

M2

∫
d~x d~x ′

|~x− ~x ′|
ψ̂1ψ̂2ψ̂

′
2ψ̂
′
1. (5.76)

A crude estimate, where we would replace the mixed product ψ̂1ψ̂2ψ̂
′
2ψ̂
′
1 by ψ̂2

1ψ̂
′2
2 , would

give ∆EN
j ∼ ΦNhalo(Rj). This is much smaller than E0 for the ground state j = 0, while for

halo excited states this would give ∆EN
j ∼ Ej. However, this is a significant overestimate

because the mixed product ψ̂1ψ̂2ψ̂
′
2ψ̂
′
1 means that we have significant interferences between

the two eigenmodes in the integrals over both ~x and ~x ′. Then, for halo excited states we
also have ∆EN

j � Ej.
Thus, we find that the frequency shifts are small, ωj ' Ej, except for the low energy

modes that are confined within the soliton radius where ∆Eλ
j ≥ 0 can be significant. The

soliton frequency shift is smaller than that of these low-energy halo states, because it
does not contain the term V λ

1001M0 in Eq.(5.75). Therefore, as we checked numerically,
the soliton ground state keeps the lowest frequency,

ωj > ω0 for j 6= 0. (5.77)

Some of the renormalized frequencies ωj are shown in Figs. 5.11 and 5.13 below.

5.4.4 Evolution of the soliton mass

We are interested in the evolution with time of the mass of the soliton, given by Eq.(5.68)
Because the halo excited states have ωj > ω0 from (5.77), the Dirac factors δD(ω12

00) and
δD(ω1

0) vanish and Eq.(5.68) simplifies as

Ṁ0 =
π

ε

∑
123

M0M1M2M3 δD(ω23
01) (V02;13 + V03;12)2 ×

(
1

M0

+
1

M1

− 1

M2

− 1

M3

)
. (5.78)
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This is actually similar to the usual kinetic equation of four-wave systems (Nazarenko,
2011; Onorato & Dematteis, 2020), but as seen above for excited states the kinetic equa-
tion would take the more complicated form (5.68).

The kinetic equation (5.78) shows at once that if we start without a central soliton, it
will be generated by the nonlinear dynamics, as we have

Ṁ0 =
2π

ε

∑
123

M1M2M3 δD(ω23
01) (V02;13 + V03;12)2 > 0 (5.79)

for M0 = 0.
Nevertheless, this expression becomes less informative when dealing with small values

of M0. In such cases, it becomes challenging to distinguish the soliton from the random
fluctuations present in the central region. In fact, the constraint (5.5) demonstrates
that solitons with low mass, meaning low density, cannot be supported solely by self-
interactions. Initially, low-mass density peaks are sustained by the quantum pressure,
and they must surpass a specific density threshold to transition into solitons supported
by the self-interaction pressure. This was discussed in detail in Section 5.2.3.1, particularly
in reference to the simulation depicted in Figure 5.4.

Using the fact that the occupation numbers Mj and the renormalized frequencies ωj
do not depend on the azimuthal numbers mj, we can perform the sums over {m1,m2,m3}
in Eq.(5.78). Using the expressions (5.73)-(5.74) of the vertices V we obtain

Ṁ0 =
1

2ε

∑̂
123
M0M1M2M3 δD(ω23

01)

(
`1 `2 `3

0 0 0

)2

×(2`1 + 1)(2`2 + 1)(2`3 + 1)

(
1

M0

+
1

M1

− 1

M2

− 1

M3

)
×
[
λ

2π

∫
dr r2R0R1R2R3 −

∫
dx x2 R0R2

2`2+1

∫
dx′ x′2

×R′1R′3
x`2<

x`2+1
>

−
∫
dx x2 R0R3

2`3+1

∫
dx′ x′2R′1R

′
2

x`3<

x`3+1
>

]2

(5.80)

where
∑̂

denotes that we only sum over the quantum numbers nj and `j, x< = min(x, x′),
x> = max(x, x′), R′j denotes Rj(x

′), and we used the expansion

1

|~x− ~x ′|
=
∑
`,m

4π

2`+ 1

x`<
x`+1
>

Y m
` (~x)∗Y m

` (~x ′). (5.81)

5.4.5 Halo with a flat density profile

We consider in this section the growth of the central soliton inside the flat halo studied
in Section 5.2

5.4.5.1 Modified potential and approximate energy cutoff

As the central soliton grows, it modifies the shape of the potential Φ. Indeed, as seen
in the previous sections, inside the soliton Φ is roughly constant, in agreement with
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Figure 5.11. Left panel: potential Φ̄ without a soliton (red dashed line) and with a soliton of mass
Msol = 0.05 (blue dotted line). Right panel: renormalized frequencies ωj such that Ej > Ecoll. The
soliton ground state frequency ω0 is shown by the lower left blue point.

the hydrostatic equilibrium (5.12). At radii slightly beyond the soliton radius Rsol, Φ
is dominated by the gravitational potential ΦNsol = −Msol/r of the soliton. Finally, at
large radii Φ is dominated by the gravitational potential ΦNhalo of the halo. In principle,
we should follow simultaneously the evolution with time of the potential Φ̄, the halo
occupation numbers Mj, and the soliton mass M0. However, in this article we investigate
a simplified approach where we only use the kinetic equation (5.80) to follow the soliton
growth rate and use instead approximate explicit models for the potential Φ̄ and the halo
occupation numbers Mj.

We approximate the potential Φ̄(r) by

r>Rcoll : Φ̄(r) = ΦNhalo(r),

Rsol<r<Rcoll : Φ̄(r) = −Msol

r
+
Msol

Rcoll

+ ΦNhalo(Rcoll),

r<Rsol : Φ̄(r) = −Msol

Rsol

+
Msol

Rcoll

+ ΦNhalo(Rcoll), (5.82)

where ΦNhalo is the initial gravitational potential (5.35) of the halo and Rcoll is the radius
where the initial enclosed mass is equal to the soliton mass, Mhalo(< Rcoll) = Msol. This
simple approximation provides a reasonably good description of the potential Φ displayed
in Figs. 5.4 and 5.5, except in the outer parts as it does not capture the diffusion of the
halo somewhat beyon its initial radius. This potential Φ̄ defines in turns the eigenmodes
ψj.

Instead of using the kinetic equations (5.66) to follow the occupation numbers of the
halo excited states, we assume an adiabatic evolution with Mj = Mj(t = 0), where
Mj(0) = (2πε)3f [Ej(0)] are the initial halo occupation numbers as in Eq.(5.33). Then,
to take into account the transfer of mass from the halo to the central soliton, we assume
that the soliton mostly builds from the lowest energy modes. Therefore, we take Mj = 0
for all modes with Ej < Ecoll, where the threshold Ecoll is such that the mass associated
with all these modes is equal to the increase of the soliton mass,

Ej<Ecoll∑
j

(2`+ 1)Mn`(0) = Msol −Msol(0), (5.83)
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where Msol(0) is the initial soliton mass at time t = 0.
We show in Fig. 5.11 the potential Φ̄ given by the approximation (5.82) and the

renormalized frequencies ωj for the case of a small soliton Msol = 0.05. The soliton
creates a flat potential over Rsol, which is deeper than the initial halo potential because
of the central overdensity. The new energy levels Ej are close to the initial energy levels
Ej(0) of the unperturbed halo for E > Ecoll but are significantly lowered for E < Ecoll,
because of the increased depth of Φ̄ in the central region. This is why the ground state
(soliton) level E0 = Φ̄(0) ' −1.4 is below the initial energy level E0 ' −1.2 shown in
Fig. 5.1. In agreement with the analysis in Section 5.4.3, the shifts ∆Ej that give the
renormalized frequencies ωj are small, except for the low-energy states that are confined
within the soliton radius. However, these states do not appear in the right panel in
Fig. 5.11, because they are removed by the energy cutoff (5.83). Nevertheless, the small
but nonzero shifts ∆Ej for higher energy levels explain why the constant-energy cutoff
Ecoll gives a cutoff for ωn` that is not completely constant with `, as seen in Fig. 5.11.

We can see in the figure that for the small mass Msol = 0.05 there is already a large
gap between ω0 and the remaining halo frequencies ωj. In fact, we have |ωj| < |ω0|/2 for
all halo modes with Ej > Ecoll. This means that the Dirac factor δD(ω23

01) in Eq.(5.80) is
always zero. Therefore, the soliton growth rate Γsol, defined by

Γsol =
Ṁ0

M0

, (5.84)

vanishes within the approximation (5.83). This means that this approximation is not
sufficient to predict the soliton growth rate in this configuration. We need to follow more
precisely the evolution with time of the low-energy occupation numbers Mj(t) as the
growth rate Γsol is very sensitive to the distribution at low energies, for halo modes that
have a significant overlap with the soliton central region so that the kernal V02;13 are not
negligible.

5.4.5.2 Growth of the soliton mass
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Figure 5.12. Left panel: growth with time of the soliton mass Msol(t), for a set of simulations with
different initial conditions. Right panel: growth rate Γsol from these simulations shown as a function of
Msol.
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We show in Fig. 5.12 the growth with time of the soliton mass Msol(t), for numerical
simulations of the Schrödinger equation (3.5) with different initial soliton density ρ0sol. We
measureMsol(t) by counting the total mass within the radius Rsol from the highest density
peak in the system. This provides a good proxy for Msol as soon as a well-characterized
soliton forms at the center of the halo.

We can see in the right panel that, when we start with an initial solitonMsol(0) & 0.05,
Msol(t) typically shows an early fast growth over a few dynamical times and next grows
at a much slower rate. The initial stage presumably corresponds to a violent relaxation,
where the low-energy levels of the halo are depleted as they mostly merge with the soliton,
while the late stage corresponds to a slow accretion limited by the low occupation numbers
of these low halo energy levels. The three bottom curves, where there is no initial soliton
or a very small overdensity at the center, show the behavior found in Fig. 5.4. Until
a long time, t ∼ 200 in the case without initial central overdensity, there is no soliton
supported by the self-interaction but only narrow stochastic peaks. However, they slowly
grow and when one peak reaches the density threshold (5.16) a broad soliton supported
by the self-interaction appears and next follows a similar evolution to that displayed by
the other cases.

We show in the right panel the growth rate Γsol(t) as a function of the soliton mass.
To compute Γsol we first fit the simulation curveMsol(t) with splines and next we compute
the time derivative (5.84) from this smooth curve. We plot the result as a function of
Msol(t), to see whether the dynamics reach a scaling regime where the growth rate only
depends on the soliton mass (which also defines the halo mass as Mhalo = Mtot −Msol).
We can see that this is not the case and the growth rate at late times still depends on
the initial conditions. This is thus different from the scaling regime found in numerical
simulations Chan et al. (2022) for FDM (i.e. without self-interactions). Another difference
is that the solitons displayed in Fig. 5.12 always grow, whereas in Chan et al. (2022) small
solitons evaporate. Note that in our simulations the self-interactions indeed dominate in
the central region. However, all cases follow the same pattern. The growth rate steadily
decreases with time (whileMsol grows increasingly slowly). This falloff may be understood
from the increasingly large gap between the soliton frequency ω0 and the halo frequencies
ωj above the increasingly large cutoff Ecoll, shown in Fig. 5.11, and the low occupation
numbers of the lower energy states where resonances with the soliton are possible. The
leftmost red-dotted curve, which starts with the lowest central overdensity and mass,
starts with a very low growth rate and oscillations, before reaching the same pattern as
the other cases. As explained above, this is because before the threshold (5.16) is reached
there is no self-interaction supported soliton and the central region is dominated for a
long time by narrow stochastic peaks, with a size set by the de Broglie wavelength.

5.4.6 Halo with a cuspy density profile

We now consider the growth of the central soliton in the case of the cuspy halo studied
in Section 5.3. We use the same approximation (5.82) for the potential Φ̄ and the energy
cutoff (5.83) for the removal of the low energy levels.

As seen in Fig. 5.13, we recover the flat potential Φ̄ over the extent of the soliton,
somewhat deeper than the initial halo potential. The gap between the ground-state
frequency ω0 and the lowest levels ωj above the threshold Ecoll is not as large as in
Fig. 5.11, even though the ratio Msol/Mhalo ' 0.05 is about the same. This is because
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Figure 5.13. Potential Φ̄ and renormalized frequencies ωj as in Fig. 5.11, but for a cuspy halo and a
soliton mass Msol = 0.3.
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Figure 5.14. Growth with time of the soliton massMsol(t) (left panel) and growth rate Γsol as a function
of Msol (right panel), as in Fig. 5.12 but for a cuspy halo. The dots are the theoretical predictions.

the cuspy initial density profile means that low-energy levels initially contain a greater
relative fraction of the total mass of the system. Therefore, a smaller fraction of them is
needed to make up the growing soliton mass. As seen in Fig. 5.13, the lowest energy levels
above the threshold Ecoll now have |ωj| > |ω0|/2. Therefore, the Dirac factor δD(ω23

01) in
Eq.(5.80) is no longer always zero. The soliton mass can grow through the interaction
with two low-energy levels −4.5 . ω2, ω3 . −3.5 and a high energy level ω1 ' 0. However,
for higher solition mass E0 decreases while more low-energy levels are depleted, within the
approximation (5.83), so that the gap increases and eventually the Dirac factor δD(ω23

01)
always vanishes.

We show in Fig. 5.14 the growth with time of the soliton mass. As for the flat-core
halos displayed in Fig. 5.12, except for this highest-mass case, the soliton always grows,
with a growth rate that decreases with time. The total mass of the system is 2π ' 6,
so that the upper curve corresponds to a central soliton that makes about 40% of the
total mass. In this case, the soliton mass seems to slightly decrease over the course of
the simulation. Therefore, the numerical simulations suggest that the central soliton can
slowly grow until it makes a large fraction of the total mass of the system, of the order of
40%.
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We show in the right panel the growth rate as a function of the soliton mass. As
for the flat-core halos displayed in Fig. 5.12, there is no clear sign of a scaling regime,
as the growth rate still depends on the initial conditions at late times. The dots are
the theoretical predictions from Eqs.(5.80) and (5.83), for the different initial conditions.
In agreement with the lower panel in Fig. 5.13, at early times when the soliton has not
grown too much, the gap between the renormalized soliton and halo frequencies ω0 and
ωj is not too large and the simple energy-cutoff ansatz (5.83) allows for some resonances
in the theoretical prediction (5.80). This gives a positive growth rate that shows a fast
decrease withMsol and vanishes beyond some mass threshold as the frequency gap becomes
too large to allow for resonances. This provides a reasonably good agreement with the
results from the numerical simulations, except close to this mass threshold and beyond.
There, our ansatz underestimates the growth rate, which remains positive but steadily
decreasing in the numerical simulations. As for the flat-core halos displayed in Fig. 5.12,
this means that the halo low-energy levels are partially refilled by the interactions between
higher-energy states. This cannot be captured by the simple ansatz (5.83) and is beyond
the scope of this study. We leave a detailed study of this regime, where one needs to
simultaneously follow the evolution of all halo excited states, to future works.

5.5 Conclusion

In this chapter we have discussed the emergence of solitons in self-interacting scalar dark
matter models. In doing so, we have first chosen specific initial conditions for the initial
halo in the form of a decomposition in eigenmodes of the Schrödinger equation in the
presence of the Newtonian gravity due to the halo. This allows us to solve for the eigen-
modes in the WKB approximation and then construct an initial state whose projection
on this basis depends on random phases. The modulus of the coefficients of the decom-
position reproduce the halo profile whilst the random phases create strong fluctuations
in the initial wavefunction. We then let the system evolve under the influence of gravity
and the self-interaction and solve the nonlinear Schrödinger equation.

The WKB approximation for the coefficients an`m of the eigenmodes of the halo pro-
vides a reasonably good approximation of the target density profile by the averaged density
〈ρhalo〉. This could be expected as we focus on the semiclassical limit ε� 1. However, the
actual density profile ρhalo always shows strong density fluctuations, of the same order as
the mean density 〈ρhalo〉, because of the interferences between the different eigenmodes.
The amplitude of these fluctuations does not decrease with ε, but their spatial width
decreases as ∆x ∝ ε.

When halos form on a scale of the order of the length ra associated with the self-
interactions (the cases Rsol = 0.5 in our units), without initial soliton, a unique central
soliton supported by the self-interactions quickly forms in a few dynamical times. It con-
tains 30−50% of the total mass. It also damps the initial density fluctuations, associated
with interferences, within its radius. This holds whether we start with a flat or a cuspy
halo profile. However, in the cuspy case, we find that a few narrow and very high-density
spikes survive and wander inside the large central soliton.

If there is an initial soliton, it grows in a few dynamical times to reach a quasi-
stationary state where initial fluctuations are also damped. Again, in the cuspy case
a few narrow quantum-pressure supported spikes survive and wander inside this central
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soliton.
Next, we considered halos with a size much greater than the self-interaction scale

(Rsol = 0.1 in our units). If the halo has a flat density profile, with density fluctuations of
order unity, it takes a long time for a central soliton supported by the self-interactions to
appear, until the small-scale spikes on sizes of the order of the de Broglie wavelength grow
and reach densities that are high enough to trigger the self-interactions. In contrast, if the
halo has a cuspy density profile, the high density at the center leads at once to significant
self interactions. This gives rise in a few dynamical times to a central soliton supported
by the self-interactions. Again, the fluctuations are damped within this soliton. If there
is an initial soliton, it slowly grows for many dynamical times.

We developed a kinetic theory to follow the evolution with time of the system for
arbitrary profile (i.e., going beyond plane waves in an homogeneous system). For the
quartic self-interaction λ4φ

4 that we consider in this chapter, which leads to an effective
quadratic pressure P ∝ ρ2 in the nonrelativistic limit, we obtain a kinetic equation that
is similar to the kinetic equation of four-wave systems. To estimate the soliton growth
rate, we further simplify the theory by taking a simple ansatz for the halo excited modes,
assuming that they keep their initial occupation numbers in an adiabatic fashion, except
for the low-energy levels that are depleted below a threshold Ecoll to build the soliton.
This allows us to compute the soliton growth rate at once, for a given soliton and halo
mass, without following the precise evolution with time of all occupation numbers. For
a cuspy halo, this provides a reasonably good prediction for the growth rate Γsol at early
times. This simple ansatz breaks down for large Msol, and for a flat halo, because it does
not follow the replenishing of the low-energy excited states and predicts an abrupt end of
the soliton growth as there are no more possible resonances.

To improve this theoretical prediction, we would need to go beyond the energy-
threshold ansatz and use the kinetic theory to follow the simultaneous evolution of all
occupation numbers. We leave such a task to future works.

All solitons that are lighter than 40% of the total mass of the system keep slowly
growing until the end of our numerical simulations, albeit at an increasingly slow rate.
Therefore, our results suggest that the soliton mass observed at a given time depends on
the past history of the system and can make up a significant fraction of the total mass of
the system.

In a cosmological context, these results suggest that, in scalar-field dark matter sce-
narios with repulsive self-interactions, a soliton with about half of the total mass forms
when overdense regions first collapse just above the Jeans mass. These solitons should
then survive as the halos grow by accretion or mergings. The solitons should also grow
in the process by accretion or direct mergings of solitons. The absence of clear relation
between the halo and soliton masses suggests that the complex hierarchical formation
process of cosmological halos will lead to a large scatter for the mass of the soliton at
fixed halo mass, depending on the assembly history of the system. We leave a detailed
investigation of this point to future works, using cosmological simulations.



Chapter 6

Solitons and halos for truncated
self-interacting scalar dark matter

This chapter explores the formation and evolution of solitons within extended halos. Our
investiagation centers around a bounded potential described by the cosine model, which
is introduced in Section 2.8 supplemented by the opposite case, an unbound potential.
Similar to the preceding Chapter 5, our analysis focuses mainly on the semiclassical
regime. In this limit, the quantum pressure is significantly smaller in comparison to the
self-interactions. To carry out our study, we follow exactly the same procedure described in
Chapter 5. Therefore, we use initial conditions derived from the WKB approximation for
the eigenfunction coefficients of the halo and we employ the numerical method described
in Chapter 4. For a comprehensive understanding of the WKB approximation and the
details of the procedure, please refer to Chapter 5 and for detailed explanations and
further information of the numerical procedure to Chapter 4.

The primary reasons for exploring these scenario are:

1. The cosine model: The simulations conducted in this chapter are aimed at exploring
the characteristics of the cosine model. While we will make an approximation of
this model and supplement the study with an incorporation a truncated potential,
the simulations will provide valuable insights and clues regarding the behaviour
and phenomenology of solving the actual potential. By studying the simplified
cosine model, we can gain a better understanding of the underlying dynamics and
potentially apply this knowledge to the more complex real potential.

2. Explore new phenomena: This scenario presents an opportunity to study new phe-
nomena that give rise to novel equilibria and dynamics. This opens up possibilities
to study soliton transitions and how they manifest in this model. These findings
may have significant implications for understanding astrophysical systems. Specifi-
cally, in the context of galaxies, very massive ones can be linked to the FDM regime,
while below a certain threshold, the balance between self-interactions and gravity
becomes applicable to satellite galaxies. On the other hand, smaller galaxies exhibit
a balance between quantum pressure and gravity. These simulations could shed
light on the mechanisms that govern their equilibrium and dynamics.

3. Comparisons with other dark matter models: By considering this potential, we aim
to extend our understanding beyond the quartic model and Fuzzy dark matter.
Doing so, we can establish a connection and facilitate comparisons between them.

119



120 Chapter 6. Solitons and halos for truncated self-interacting scalar dark matter

This chapter is organized as follows: In the first part, Section 6.1, we provide a recap
of the cosine model and the initial conditions of the numerical simulations. Subsequently
in Section 6.2, we discuss the emergence of solitons in flat halos in the proxy Model A,
followed by Section 6.3, where we explore flat halos in the second potential, Model B.
Finally, in Section 6.4 we conclude the chapter by summarizing our findings.

6.1 The cosine scenario

Axions have been extensively studied as potential candidates for dark matter. In the case
of the QCD axion, which arises from the breaking of the Peccei-Quinn symmetry, the
associated potential term is non-perturbative and exhibits periodicity. This periodicity is
a fundamental characteristic of axions and axion-like particles, where the axion field can
be understood as a Goldstone mode originating from a globally broken symmetry. The
potential terms for these scalar or pseudo-scalar fields retain a discrete U(1) symmetry and
arise either from non-perturbative effects related to the symmetry or from soft breaking
terms prior to the symmetry-breaking phase. In most cases, these give rise to cosine-like
potentials in the same spirit of the scenarios that we consider in this chapter.

6.1.1 Equations of motion

Our direction is to investigate the formation of solitons within extended halos. These
small-scale structures are subjected to the dynamics governed by the Schrödinger–Poisson
system (2.38)-(2.39), as we have discussed in Section 2.5.1. Similar to our approach
in Chapter 5, we use the dimensionless quantities (5.9). This gives the dimensionless
Schrödinger - Poisson equations,

iε
∂ψ̃

∂t̃
= −ε

2

2
∇̃2ψ̃ + (Φ̃N + Φ̃I)ψ̃, (6.1)

∇̃2Φ̃N = 4πρ̃, (6.2)

with the now familiar ε parameter Eq.(5.6). We recall that these parameters measure the
relevance of wave effects in the system, such as interferences or the effect of the quantum
pressure. As usual, Φ̃N denotes the dimensionless gravitational potential and Φ̃I is the
dimensionless non-relativistic cosine potential given by,

Φ̃I(ρ̃) =
8λ

γ

(
1−

2J1

(√
ρ̃γ
)

√
ρ̃γ

)
, with λ =

1

GNρaL2
?

and γ = ρ?/ρb (6.3)

As explained in Section 2.8 the potential (2.94) exhibits different behaviours at low and
high densities. At low densities, it follows a linear relationship with ρ (2.96), resembling
the quartic potential (2.86). Conversely, at high densities, the self-interaction potential
approaches a finite value (2.97).

To accommodate these distinct characteristics, we simplify the model and we represent
the potential as a piecewise function defined in two parts. This allows us to incorporate a
linear portion in ρ and a constant portion. Therefore, to explore all the possibilities, we
will examine two distinct models.
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6.1.1.1 Model A

The first model is formulated straightforwardly, featuring initially linear in ρ followed by
a second part where the potential assumes a finite value defined by λρ̃c. Thus, the Model
A reads,

Φ̃I,A(ρ̃) =

{
λρ̃ if, ρ̃ < ρ̃c

λρ̃c if, ρ̃ > ρ̃c
(6.4)

with the critical density, ρ̃c, where the potential changes is,

ρ̃c =
8

γ
(6.5)

In Appendix B we provide a variational approach to explore solutions with the Gaus-
sian ansatz in this potential.

6.1.1.2 Model B

The second model, on the other hand, represents the opposite scenario. It begins with a
constant value of 0, resembling to FDM, and then undergoes a change in its behaviour at
the critical density ρ̃c, transitioning to behave similar to the quartic model. The Model
B is formulated as follows,

Φ̃I,B(ρ̃) =

{
0 if, ρ̃ < ρ̃c

λ(ρ̃− ρ̃c) if, ρ̃ > ρ̃c
(6.6)

For convenience, we remove the tilde from the variables in the following discussion.

6.1.2 Initial conditions and simulation set up

To initiate our numerical study, we focus solely on the halo component and consider the
initial wavefunction as ψhalo. In this chapter, we exclude the soliton as an initial condition.

We follow the same procedure as in Section 5.1.5. Initially, we select specific initial
conditions for the halo by decomposing it into eigenmodes of the Schrödinger equation,
considering the influence of Newtonian gravity induced by the halo. Our desired target
halo density profile in this chapter is the flat-core density profile. This is a reminder of
the steps we follow to determine the initial conditions:

1. Using Eddington’s formula (5.34), we derive the classical phase-space distribution
f(E).

2. The eigenmode coefficients an`m are calculated using Equations (5.23) and (5.33).

3. The initial halo wavefunction is obtained from Equation (5.22).

The WKB approximation is utilized solely to determine the initial coefficients an`m,
allowing us to establish random initial conditions that align with the desired target radial
density profile. Subsequently, we allow the system to evolve by considering the effects of
gravity and self-interaction, and we solve the nonlinear Schrödinger equation using the
symmetrized split-step Fourier technique as described in Section 4.2.
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In this study, we maintain the same parametrization as in Chapter 5. This ensures
consistency and allows us to compare our results with the previous study. Consequently,
we keep the size of the halo fixed at Rhalo = 1, and we choose ε = 0.01 to focus on the
semi-classical regime.

To determine the first parameter of the potential, λ, we follow the same approach
as described in Section 5.1.4. We use the dimensionless radius Rsol to calculate the self-
interaction coupling λ using the relation λ = 4R2

sol/π. This allows us to set the strength of
the self-interactions in the model. In this study, we consider the same two cases for Rsol:
Rsol = 0.5 and Rsol = 0.1. The second parameter, ρc represents critical the density at
which the self-interaction potential undergoes a transition. By exploring different values
of ρc, we can investigate its impact on the formation and evolution of solitons within
extended halos. Specifically, we consider three scenarios for ρc: one with a small value of
ρc = 0.5, one with an intermediate value of ρc = 3, and one with a large value of ρc = 100.
These different choices for ρc allow us to examine how changes in the density where the
potential undergoes a change affect the dynamics.

We examine these set of parameters in the two models, Model A and Model B, that
we have defined previously. By systematically varying the parameters Rsol and ρc in our
study, we aim to understand how these choices influence the formation and evolution of
solitons within extended halos. This analysis will provide valuable insights into the role
of these parameters in shaping the properties of solitons and their interaction with the
surrounding environment.

6.2 Halo with a flat-core density profile in Model A

In this section, we explore the effects of the self-interacting potential Φ̃I,A, presented in
Section 6.1.1.1, on the dynamics of the system. Thus, initial part of the self-interacting
potential is linear with ρ̃ upto the critical density ρc where it takes a fixed value.

6.2.1 Large soliton radius, Rsol = 0.5

As we have discussed in Section 5.1.4, when is Rsol = 0.5, the scale of the self-interactions
set by λ is of the order of the halo radius. In the context of cosmology, this choice
represents the initial overdensities that are capable of collapsing slightly above the Jeans
length.

6.2.1.1 Large critical density, ρc = 100

We first set ρc = 100 in Eq. (6.4). In this case, we put the threshold far away, at high
density, which means that given the initial conditions of the cloud, it will primarily reside
in the first part of the potential, characterized by its linear dependence on ρ. As a result,
this set-up mimics the quartic potential and we observe that we get the same outcome as
in Section 5.2.2.1. Specifically, Figure 6.1 presents the same features as in Figure 5.2.

We check that again within a few dynamical times, typically when t . 8, the system
reaches a quasi-stationary state and the halo collapses in a soliton.This soliton remains
relatively stable over time, with only slow changes in the maximum density and energy.
The presence of the central equilibrium soliton is clearly evident in the density profiles
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Figure 6.1. [Model A, Rsol = 0.5, ρ0sol = 0, ρc = 100.] Upper left panel: Initial density ρ along the
x (blue dash-dot line), y (red dotted line) and z (green dashed line) axis running through the center of
the halo. The smooth brown solid line is the target density profile (5.35) and the black wiggly solid line
is the averaged density 〈ρhalo〉 of Eq.(5.24) (they can hardly be distinguished in the figure). There is no
central soliton in this initial condition. Upper middle panel: density profile along the x, y and z axis that
run through the point ~rmax where the density is maximum, at time t = 150. The lower brown solid line is
the initial target density profile as in the upper left panel, while the upper purple solid line is the density
profile of a soliton (5.14) that would contain all the mass of the system. Upper right panel: evolution
with time of the maximum density and of the kinetic, gravitational and self-interaction energies. Lower
left panel: initial density profile on the 2D (x, y) plane at z = 0. Lower middle panel: density profile at
time t = 150 on the 2D (x, y) plane centered on ~rmax. Lower right panel: total potential Φ = ΦN + ΦI

at t = 150, along the x, y and z axis passing through ~rmax.

shown in the middle column. Its radius is fixed at Rsol = 0.5. The lower right panel pro-
vides a visual representation of hydrostatic equilibrium, as expressed by equation (5.12).
This equilibrium is evident from the constant plateau observed in the total potential,
Φ = ΦN + ΦI . However, small oscillations may occur due to the presence of excited
halo modes crossing the central region. Beyond the soliton radius, the density rapidly
decreases, resulting in a diminished influence of ΦI compared to ΦN . As a result, the
smooth gravitational potential characterized by a −1/r shape dominates in this region.

By comparing the left and middle columns, we can clearly observe the collapse of the
initial halo onto the soliton with half the original radius. This comparison highlights the
depletion of the highly fluctuating halo and the emergence of a central soliton character-
ized by a high density.

6.2.1.2 Intermediate critical density, ρc = 3

We now discuss the intermediate case, where ρc = 3 in the Model A given by Eq.(6.4).
Figure 6.2 presents the results obtained for this simulation. In this set-up, the halo initially
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Figure 6.2. Same labels as Figure 6.1 but for Model A with Rsol = 0.5 and ρc = 3.

resides in the linear part of the potential, similar to the quartic potential. However, the
threshold at which the potential changes its shape is now closer compared to the previous
case. This proximity has significant implications.

As shown in Figure 6.2, the halo initially appears with strong fluctuations, associated
with the superposition of incoherent modes, similar to what we have observed before.
However, at t = 6, something interesting happens. We can observe the fast emergence of
self-interacting soliton within the halo leading to a coherent state. This occurrence is not
surprising since under these conditions, the halo has the potential to form self-interacting
solitons.

Later, specifically at t = 20, the halo reaches densities where the self-interaction
potential is a constant value. As a consequence, the self-interacting soliton collapses
leading to a formation of a unique FDM spike. The size of this spike is determined by the
value of ε, which is set at ε = 0.01 in this case. This simulation shows a rapid evolution
from the self-interacting regime to the FDM-like regime. The rapidity of this transition
can be attributed to the fact that FDM peak originates from a coherent state. Unlike
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other scenarios where the peak may emerge gradually from fluctuations, the presence of
a coherent state accelerates the transition process. The coherent state serves as a well-
defined starting point for the formation of the FDM peak, allowing it to quickly manifest
and establish its dominance within the system.

6.2.1.3 Small critical density, ρc = 0.5
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Figure 6.3. Evolution of a flat system in Model A with Rsol = 0.5 and ρc = 0.5. (Same labels as Fig.6.1)

In this particular case, the critical density is set at ρ = 0.5 in Eq.(6.4). Consequently,
almost the entire self-interacting potential domain assumes a constant value. Despite this
uniformity, we can observe a fascinating dynamic unfolding.

As seen in Figure 6.3, the final outcome of this simulation is a dominant FDM-like
peak that reaches a quasi-stationary state around t ∼ 75 dynamical times. Unlike the
previous case discussed in Section 6.2.1.2, no self-interacting soliton is formed here due to
the constant nature of the self-interacting potential. Consequently, the rapid formation
of the FDM peak, as observed in the previously, does not occur. Instead, the growth
of the maximum halo density is characterized by a noisy competition between different
peaks associated with incoherent modes of the halo. Note that the width of the FDM
peak at lower densities looks wider in this simulation because it is surrounded by other
small peaks within a halo-like envelope (like NFW).

6.2.2 Small soliton radius, Rsol = 0.1

We explore in this section scenarios where the scale of self-interactions is significantly
smaller than the halo radius. For this purpose, we set Rsol = 0.1. In the cosmological
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context, this choice corresponds to structures that form at later times, collapsing on a
much larger scale than the characteristic length associated with the λ self-interactions.
We continue investigating the three different thresholds for ρc, as we have done in the
previous Section 6.2.1.

6.2.2.1 Large critical density, ρc = 100
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Figure 6.4. Evolution of a flat system in Model A with Rsol = 0.1 and ρc = 100. (Same labels as
Fig.6.1)

In this case, we set the threshold at high densities which leads to a configuration
where the initial part of the self-interacting potential given by Eq.(6.4), linear with ρ is
sufficiently large. This configuration prevents the system from reaching densities where
the potential is constant. Therefore, the system will behave as in Section 5.2.3.1. If we
examine the dynamics of this system, illustrated in Figure 6.4 , we find that it has similar
characteristics to the case presented in the previous Section 5.2.3.1, as shown in Figure
5.4.

We observe that while the system remains dominated by FDM spikes for an extended
period and appears nearly stationary, the slow evolution eventually leads one of these
spikes to gradually grow. This growth persists until self-interactions come into play,
resulting in the formation of a broad soliton of the size of Rsol = 0.1 governed by these
interactions at t ∼ 200. Consequently, there is a transition in the system from the FDM
phase to a self-interacting phase embedded within the FDM halo. This transition may
only occur after a considerable duration, far exceeding the dynamical time of the system,
as the growth of central density peaks is very gradual until one of them surpasses the
threshold and suddenly forms a distinct massive soliton.
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6.2.2.2 Intermediate critical density, ρc = 3

Here, the critical density parameter of the self-interaction potential Φ̃I,A given by (6.4) is
set at ρc = 3. Thus, densities above this critical value will experience a constant potential,
preventing the formation of a self-interacting soliton governed by self-interactions. As
illustrated in Figure 6.5, the dynamics of this system is characterized by the presence of
a FDM peak that grows with fluctuations. As shown in the bottom left panel, the ρmax
during the simulation constantly grows, reaching the value of ρmax ∼ 30. This fluctuating
halo has a FDM behaviour.
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Figure 6.5. Evolution of a flat system in Model A with Rsol = 0.1 and ρc = 3. (Same labels as Fig.6.1)

6.2.2.3 Small critical density, ρc = 0.5

In this case, the critical density for the change in the self-interaction potential Φ̃I,A given
by Eq.(6.4) is set very low, at ρc = 0.5. Consequently, most of the domain of the potential
takes a constant value fixed by λρc. As depicted in Figure 6.6, the halo fluctuates and the



128 Chapter 6. Solitons and halos for truncated self-interacting scalar dark matter

dynamics of this system is characterized by the presence of an FDM peak that oscillates
around ρmax = 8. There is no hint of the dynamics being anything but FDM. This is in
agreement with Chan et al. (2022).
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Figure 6.6. Evolution of a flat system in Model A with Rsol = 0.1 and ρc = 0.5. (Same labels as Fig.6.1)

6.3 Halo with a flat-core density profile in Model B

In this section, we investigate the impact of the self-interacting potential formulated in
Section 6.1.1.2. Thus, the first part of ΦI,B given by Eq.(6.6) is set to zero, resulting in a
FDM scenario. However, beyond the density threshold ρc, the potential grows, resembling
the behaviour of the quartic model. We remark that this potential is no longer bounded
and that we study this scenario to compare. We explore the same set of parameters as
we did for Section 6.3.

6.3.1 Large soliton radius, Rsol = 0.5

In this section we focus on scenarios where the scale associated with the λ self-interaction
is of the size of the system. Thus, we keep the value Rsol = 0.5, as in previous simulations.

6.3.1.1 Large critical density, ρc = 100

In this case, the self-interaction potential ΦI,B defined in Eq.(6.6) is zero up to ρc = 100,
where it recovers the behaviour of the quartic model. We illustrate in Figure 6.7, the out-
come of the numerical simulation. Initially, the halo is dominated by strong fluctuations,
associated with the superposition of incoherent modes, and a few rare high-density spikes
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Figure 6.7. Evolution of a flat system in Model B with Rsol = 0.5 and ρc = 100. (Same labels as
Fig.6.1)

that appear randomly. However, we observe that one of these high density peaks grows
sufficiently to dominate over all other peaks and becomes stable, forming a "soliton" gov-
erned by the quantum pressure rather than the self-interactions. The size of the peak is
of the order of ∆x ∼ ε = 0.01. This is not surprising since, in this set-up the system is
goberned by the quantum pressure, that is, by wave effects that appear on the de Broglie
scale.

6.3.1.2 Intermediate critical density, ρc = 3

In this simulation, the function ΦI,B in Eq.(6.6) takes the critical density ρc = 3. Therefore,
the potential remains at zero in the first part, and beyond this threshold, it resembles to
the quartic model. The results are illustrated in Figure 6.8. Initially, the halo displays
strong fluctuations caused by the superposition of incoherent modes. Around t ∼ 25,
the center the halo experiences the second part of the self-interacting potential. At this
point, the self-interactions are strong and come into play and initiate the formation of
a soliton. Subsequently, the soliton remains approximately stationary. However, it is
important to note that the shape of this soliton differs from previously observed ones. In
this configuration, when ρ < 3, the value of ΦI,B is 0, meaning that no force is acting.
Consequently, the soliton profile drops faster, resulting in a slightly smaller soliton.

6.3.1.3 Small critical density, ρc = 0.5

Here, we explore the behaviour of a system governed by the inverse potential given by
Eq.(6.6). Specifically, when the critical density is set at ρc = 0.5. Thus, the potential
takes on a shape similar to the quartic model throughout almost its entire domain. As
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a consequence of this configuration, we witness the rapid formation of a self-interacting
soliton as we can observe in Figure 6.9. This outcome aligns with our previous findings
in Section 5.2.2.1, and Section 6.2.1.1. Specifically in Fig.6.1 and Fig.5.2.
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Figure 6.8. Evolution of a flat system in Model B with Rsol = 0.5 and ρc = 3. (Same labels as Fig.6.1)
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Figure 6.9. Evolution of a flat system in Model B with Rsol = 0.5 and ρc = 0.5. (Same labels as Fig.6.1)
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6.3.2 Small soliton radius, Rsol = 0.1

In this part, we shift our focus to scenarios where the radius associated with the self-
interactions is significantly smaller than the radius of the halo. Thus, we take the value
Rsol = 0.1.

6.3.2.1 Large critical density, ρc = 100

In this case, we study a system that follows the inverse potential described by Equation
(6.6), where the critical density is set to a high values, ρc = 100. The results depicted
in Figure 6.10 reveal that initially, the halo displays significant fluctuations due to the
combination of incoherent modes. However, as the simulation progresses, no distinct peak
corresponding to FDM is formed up to the end of the simulation. Instead, during this
time, the halo fluctuates and changes smoothly its shape by shrinking and stretching
within the simulation box. These findings align with the conclusions of a study by Chan
et al. (2022), who also investigated the evolution of FDM clouds and found that light
solitons do not form under similar conditions.
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Figure 6.10. Evolution of a flat system in Model B with Rsol = 0.1 and ρc = 100. (Same labels as
Fig.6.1)

6.3.2.2 Intermediate critical density, ρc = 3

In this specific simulation, we explore the behaviour of a system governed by the inverse
potential described in Equation (6.6), with a critical density set to an intermediate value of
ρc = 3. As shown in Figure 6.11, we find that the halo initially displays strong fluctuations
due to the superposition of incoherent modes. However, as the evolution progresses, no
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FDM peak forms. The halo instead continues to exhibit oscillatory dynamics, similar to
the behaviour observed in the case with ρc = 100, presented in Figure 6.10. This finding
is simply like the previous case, in agreement with Chan et al. (2022).

1.0 0.5 0.0 0.5 1.0

x/y/z
0

1

2

3

4

5

6

t=0

1.0 0.5 0.0 0.5 1.0
x/y/z

10 1

100

101

102

t=250

0 50 100 150 200 250
t

0.50

0.25

0.00

0.25

0.50

0.75

1.00
log( max)
EK

EN

EI

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

t=0

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

t=250

1.0 0.5 0.0 0.5 1.0
x/y/z

2.5

2.0

1.5

1.0

0.5

0.0

=
N

+
I

t=250

Figure 6.11. Evolution of a flat system in Model B with Rsol = 0.1 and ρc = 3. (Same labels as Fig.6.1)

6.3.2.3 Small critical density, ρc = 0.5

In this case, we investigate a system governed by the inverse potential described in Equa-
tion (6.6). We specifically focus on the scenario where the critical density is set to ρc = 0.5.
This choice results in the self-interacting potential adopting a shape that closely resembles
the quartic model across its entire range.

As a consequence of this potential configuration, we observe a prolonged dominance of
FDM spikes in the system, giving the appearance of almost stationary behaviour. How-
ever, the slow evolution eventually leads one of these spikes to gradually grow, enabling
the influence of self-interactions and resulting in the formation of a small soliton of radius
Rsol = 0.1 governed by these interactions. This transition from the FDM phase to the
self-interacting phase, embedded within the FDM halo, occurs after a considerable dura-
tion that exceeds the dynamical time of the system. The growth of central density peaks
is slow until one of them reaches the threshold and abruptly forms a distinct and massive
soliton. The characteristics and behaviour of this soliton can be observed in Figure 6.12.
This finding aligns with our previous observations which are illustrated in Figure 6.4 and
Figure 5.4.
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Figure 6.12. Evolution of a flat system in Model B with Rsol = 0.1 and ρc = 0.5. (Same labels as
Fig.6.1)

6.4 Conclusion

In this chapter, our focus was on investigating the formation and evolution of solitons in
two distinct truncated scalar dark matter models. The first model, referred to as Model
A, discussed in Section 6.1.1.1, was based on an approximation of the bounded cosine
potential. Additionally, in order to provide a comprehensive analysis, we also explored
the contrasting scenario, which involved an unbounded potential, named as Model B,
presented in Section 6.1.1.2.

As we did for Chapter 5, we started by selecting specific initial conditions for the
halo, which involved decomposing it into eigenmodes of the Schrödinger equation in the
presence of Newtonian gravity. This decomposition allowed us to construct an initial state
with random phases, resulting in strong fluctuations in the wavefunction. The system was
then allowed to evolve under the influence of gravity and self-interactions, following the
nonlinear Schrödinger equation.

In Model A, we observed that when halos formed on a scale similar to the length as-
sociated with self-interactions, a central soliton supported by the self-interactions quickly
emerged if the critical density had a high value as presented in Fig.6.1. The central soliton
in this case accounted for a significant fraction of the total mass and reduced the initial
density fluctuations within its region. This finding aligns with the results obtained in the
previous Chapter 5 in Fig.5.2.

Additionally, when the critical density was at an intermediate level, we observed a
fast transition from a soliton dominated by self-interactions to FDM peak as shown in
Fig.6.2. The new phenomena that we observed is the collapse of the halo into a soliton
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and subsequently into an FDM peak which was the final state of the simulation. Similarly,
the final outcome when the critical density was at small values, a FDM peak was also
observed in Fig.6.3. However, in this later case, the FDM peak took longer to form. This
suggests that the formation of the FDM peak is more efficient when the initial condition
is a coherent state, as to the soliton state. So the soliton governed by self-interactions
played a role in triggering the formation of the FDM peak, collapsing onto it.

In Model B, we observed that when halos formed on a scale similar to the length as-
sociated with self-interactions, a central soliton supported by the self-interactions rapidly
emerged, particularly when the critical density was small as shown Fig.6.9. This finding
is consistent with the results obtained in the precedent Chapter in Fig.5.2 as well as in
Model A in Fig.6.1. However, when the critical density was at intermediate levels, a
soliton governed by self-interactions still formed, as presented in Fig.6.8, but its shape
exhibited slight variations compared to the previous cases. In particular, the tail profile
of the soliton exhibited a faster drop-off. This can be attributed to the absence of a
self-interacting potential, which means that no force is acting in that region. As a result,
the soliton profile decreases more rapidly and sharply in this scenario. This can lead to
relevant consequences in astrophysics. When the critical density in Model B was very
high, no soliton formation was found, Fig.6.7. This aligns with the results founds in Chan
et al. (2022) where FDM halos were studied and light solitons evaportate, which means
that other mechanisms are needed to form them.

We also explored halos with sizes significantly larger than the scale of self-interactions.
In the case of Model A, when a large critical density was considered, we observed that it
took a substantial amount of time for a central soliton supported by self-interactions to
form as seen in Fig.6.4. Initially, the halo exhibited a flat density profile with fluctuations
of order unity. However, over time, the small-scale spikes within the halo gradually grew
and reached densities high enough to trigger self-interactions. This led to the emergence
of a self-interacting soliton.

For the cases with intermediate, Fig.6.5, and small critical densities, Fig.6.6, we ob-
served a continuous flat density profile within the halo, accompanied by noisy fluctuations
that oscillated. Additionally, a FDM peak appeared in the center of the halo, exhibiting
oscillatory behaviour. Notably, in the case of the small critical density, the simulations
reached a quasi-stationary state, as evident from the maximum density fluctuations and
overall potential. However, in the intermediate case, there was an hint that the maximum
density was still increasing, suggesting ongoing dynamics in the system.

Moving on to Model B, we found that for both large, Fig.6.10, and intermediate
critical densities, Fig.6.11, the halo exhibited fluctuations of the order of unity and it did
not collapse into a fuzzy dark matter peak. This observation aligns with the findings
of Chan et al. (2022). Furthermore, when the critical density was too small, Fig.6.12,
we observed similar dynamics in Fig.5.4 and Fig.6.4, where the initial flat density profile
with fluctuations took a considerable amount of time for a central soliton supported by
self-interactions to form. This occurred when the small-scale spikes reached sufficiently
high densities due to their growth and triggered self-interactions.



Chapter 7

Conclusions

In this thesis, we have conducted both numerical and analytical investigations on different
scalar field dark matter models within the non-relativistic regime. This regime is rele-
vant for large-scale structure and astrophysical structures. Therefore, the dynamics are
described by the Schrödinger–Poisson equations.

In Chapter 2 we provide a comprehensive overview of the derivation of the Schrödinger-
Poisson equations, and we present the fundamental equations that govern the theory.

In Chapter 3, we employed semi-analytical techniques to compute self-similar solu-
tions for Fuzzy Dark Matter (FDM). Our findings highlighted the different nature of
these FDM self-similar solutions compared to their Cold Dark Matter (CDM) counter-
parts. The self-similar solutions for CDM in a perturbed Einstein-de Sitter universe
described gravitational collapse, with the density contrast growing in the linear regime
and transitioning to the non-linear regime where the profile shape in the inner regions
was altered by non-linear effects. However, the self-similar solutions for FDM exhibited
significant differences. They did not display gravitational collapse; instead, matter was
expelled from central peaks through successive clumps, resembling gravitational cooling.
This behaviour was attributed to the quantum pressure and wavelike properties of the
Schrödinger equation. In contrast to CDM, outer shells in FDM did not follow the tra-
jectory of free-fall spherical collapse. The dominance of quantum pressure over gravity
led to acoustic-like oscillations, facilitating the coupling between small and large scales.

Furthermore, when comparing the soliton profile with the self-similar solution profile
in the high-density asymptotic limit, we observed that the central peak of the self-similar
profile did not converge to the equilibrium state of the soliton profile, despite the increase
in central density. This discrepancy could be attributed to the influence of kinetic effects
near the boundary of the central peak.

In terms of the semiclassical limit, we discovered that FDM self-similar solutions dis-
appeared as the limit approached, becoming confined to an increasingly small radius. This
indicated that the semiclassical limit did not recover the dynamics of CDM in the case
of FDM. It emphasized the need for caution and careful consideration when dealing with
the semiclassical limit, as the standard CDM self-similar solutions were only precisely
recovered at ε = 0.

In Chapter 4, we introduced the pseudo-spectral code that we designed for simulating
the dynamical evolution of the Schrödinger-Poisson system. The code employed a combi-
nation of Fourier domain operations and position space evaluations to handle linear and
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non-linear terms, respectively. This approach eliminated the noise typically associated
with finite-difference methods for computing spatial derivatives. Although the code in-
curred computational costs due to Fourier and inverse Fourier transforms, we optimized
these transforms using the efficient FFTW3 and along with the parallelization capabili-
ties offered by OpenMP.

In Chapter 5 we have explored the formation and evolution of solitons in the quartic
model both analytical and numerically.

By considering specific initial conditions and solving the nonlinear Schrödinger equa-
tion, we observed the rapid emergence of central solitons supported by self-interactions
within halos on the scale of self-interaction length. These solitons dampened initial density
fluctuations and accounted for a significant fraction of the total mass. The behaviour held
for both flat and cuspy halo profiles, with cuspy halos exhibiting additional high-density
spikes within the soliton.

For halos larger than the scale of the self-interactions, it took longer for solitons to
form, with flat density profiles requiring substantial time until small-scale spikes grew
to trigger self-interactions. Cuspy halos, on the other hand, quickly led to soliton for-
mation. We developed a kinetic theory and simplified ansatz to estimate soliton growth
rates, which showed reasonable agreement with early-time growth for cuspy halos but had
limitations for large soliton masses and flat halo profiles. Overall, our findings suggest
that solitons play a crucial role in scalar-field dark matter scenarios with self-interactions.
They can form within collapsing overdense regions and persist as halos grow, gradually
increasing in mass through accretion and mergers. The relationship between halo and
soliton masses is complex, depending on the assembly history of the system and poten-
tially leading to a wide scatter in soliton masses at a given halo mass.

Finally, in Chapter 6 we studied numerically the emergence and evolution of solitons
in two truncated scalar field dark matter models. Model A was based on a bounded cosine
potential, while Model B was the opposite potential. We examined halos formed on a scale
comparable to the self-interaction length. In Model A, a central soliton supported by self-
interactions quickly formed, when the critical density was high. This soliton accounted
for a significant fraction of the total mass and reduced initial density fluctuations. When
the critical density was intermediate, a new phenomenon appears. There was a transition
from a soliton dominated by self-interactions collapsing to a fuzzy dark matter peak. At
small critical densities, the FDM peak formation was delayed but still occurred, indi-
cating that the formation of the FDM peak is more efficient when the initial condition
is a coherent state. In Model B, solitons formed rapidly when the critical density was
small and intermediate. However, the soliton shape exhibited in the latter case showed
slight variations compared to the other cases. It showed a faster drop-off. This can be
attributed to the absence of a self-interacting potential, which means that no force is act-
ing in that region. At large critical density the system did not lead to soliton formation.
The absence of soliton formation at large critical densities aligns with previous studies
indicating the evaporation of light solitons in FDM halos. We also investigated halos with
sizes much larger than the self-interaction scale and found that soliton formation took a
considerable amount of time in flat density profiles for both Model A and B, when the
potential resembled the quartic model. In other cases, a fuzzy dark matter nature regime
was observed with the signature of a fluctuating halo. Overall, these findings provide
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insights into soliton formation and evolution in scalar dark matter models, highlighting
the influence of self-interactions and initial conditions on the emergence of solitons and
FDM peaks.

Thanks to these studies, we have extended the knowledge frontier in the different scalar
dark matter models, in particular for the FDM model, for the quartic model and for the
cosine model. We have been able to better understand the semiclassical boundary between
the CDM and FDM models through self-similar solutions, as well as the formation and
evolution of solitons in halos in the quartic and truncated models. These results are novel
and answer open questions in the field of SFDM models.

Future research

In future research, one important goal is to parallelize the numerical method presented
in Section 4.2 using MPI (Message Passing Interface). In this way, it would significantly
enhance its performance and enable the exploration of larger and more complex systems.
This parallelization will facilitate more efficient and faster calculations, allowing for more
extensive investigations.

Another area for future investigation is the refinement of the kinetic theory devel-
oped in Section 5.4 and the study of hierarchical halo formation through cosmological
simulations. By improving the understanding of the underlying kinetic processes and
their impact on structure formation, we can gain deeper insights into the formation and
evolution of cosmological halos.

To comprehensively explore these phenomena, future investigations should also incor-
porate baryonic physics and consider mixtures of different dark matter components in the
numerical simulations. This will provide a more realistic representation of the Universe
and enable a more accurate analysis of the interplay between different physical processes.

In addition, a thorough numerical analysis of the cosine model Section 6.1, including
the oscillations in the Bessel function, is an important avenue for future research. These
simulations will provide a comprehensive understanding of the behaviour and properties
of the cosine model and its implications for dark matter dynamics.





Appendix A

Eigenvectors in the linear 3D
gravitational potential

We describe in this appendix how we obtain approximate analytical expressions for the
eigenmodes of the linear gravitational potential (5.41). We first define r? as the radius
where the centrifugal term ε2`(`+ 1)/(2r2) is equal to the linear potential term 2πρ0r in
the radial Schrödinger equation (5.19),

r? =

[
ε2`(`+ 1)

4πρ0

]1/3

. (A.1)

Then, on the left of r? we only keep the centrifugal term, giving the radial Schrödinger
equation for r < r?,

−ε
2

2

1

r2

d

dr

(
r2dRn`
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)
+
ε2

2

`(`+ 1)

r2
Rn` = (E + 2πρ0)Rn`, (A.2)

whereas on the right of r? we only keep the linear potential term, giving for r > r?,
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d

dr

(
r2dRn`

dr

)
+ 2πρ0rRn` = (E + 2πρ0)Rn`. (A.3)

This approximation is actually exact for ` = 0. Then, below r? the eigenmodes read as

r < r? : Rn`(r) = Nj`(λr), λ2 =
2(E + 2πρ0)

ε2
, (A.4)

while above r? they read as

r > r? : Rn`(r) =
N ′

r
Ai(αr − ω), with

α =

(
4πρ0

ε2

)1/3

, ω = α
E + 2πρ0

2πρ0

, (A.5)

where N and N ′ are normalization factors. For ` = 0, the expression (A.5) extends down
to r = 0, as r? = 0. Then, the regularity condition at the center r = 0 directly gives the
quantization condition

` = 0 : ω = ωn, En0 = −2πρ0 + 2πρ0ωn/α, (A.6)
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where 0 > −ω0 > −ω1 > −ω2 > . . . are the zeros of the Airy function Ai(x). For ` ≥ 1,
the quantization condition is given by the continuity ofRn` andR′n` at the junction radius
r?. These two constraints give one equation for the ratio N ′/N and one nonlinear equation
for the energy E. The roots of this latter condition provide the the discrete energy levels
En`, which we compute with a numerical root solver algorithm.



Appendix B

Gaussian ansatz for the radial profile

In this appendix we describe how we can study analytically solitons transitions in the
bounded potential (2.94) using the Gaussian ansatz. As we have discussed, solitons are
equilibrium configurations of the non-relativistic Schrödinger–Poisson equations. There-
fore, they represent static solutions that minimize the energy functional of the system.

The total energy of the system is given by (2.60). Thus, the energy functional as a
function of ρ reads,

E =

∫
d3x

(
ρ

2
ΦN + VI(ρ) +

(∇√ρ)2

2m2

)
. (B.1)

Since they are static configurations, solitons satisfy the following Euler equation,

∇(ΦN + ΦI + ΦQ) = 0 (B.2)

B.1 Solitons

Obtaining an explicit solution for equation (B.2) is not feasible. Hence, we will employ
a variational approach and explore solutions characterized by a static Gaussian spherical
density profile with a constant mass M given by,

ρ(r) = ρc e
−(r/R)2

, with ρc =
M

π3/2R3
. (B.3)

Using this ansatz in (B.1), we obtain the following energy contributions: the gravitational
energy,

EG = −GNπ
5/2R5ρ2

c√
2

, (B.4)

the quantum energy,

EQ =
3πM1/3ρ

2/3
c

4m2
, (B.5)

and, after one integration by parts, the energy due to the self-interactions is given by,

EI =
8π

3
ρcR

3

∫ ∞
0

dx x4e−x
2

ΦI(ρce
−x2

), with x = r/R. (B.6)
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To simplify the problem, we take the asymptotic limit of the self-interacting potential
ΦI, (2.94), at low (2.96) and large (2.97) densities. Thus, the self-interaction energy for
ρ < 8ρb is,

EI =
Mρc

4
√

2ρa
(B.7)

and for ρ > 8ρb,

EI =
M

24
√
πρaρc

(
192
√
πρbρcErf

(√
− log(8ρb/ρc)

)
+ 3
√

2πρ2
cErfc

(√
2
√
− log(8ρb/ρc)

)
+256ρ2

b

√
− log(8ρb/ρc) (−9 + 4 log(8ρb/ρc))

)
(B.8)

B.1.1 Dimensionless quantities

To simplify the calculations, we employ the rescaling described in expression (3.4). By
applying this rescaling, we establish the connection between the dimensional energy and
the dimensionless energy, represented by the tilde symbol. The relationship between them
reads,

E = ρ?
L5
?

T 2
?

Ẽ = E?Ẽ. (B.9)

We define the characteristic scale of the density, denoted as ρ?, at which the potential
exhibits a change in behaviour. Consequently, the characteristic scales of the system can
be specified as follows:

ρ? = 8ρb, L? =
1√
GNρa

, T? =
1√
GNρ?

. (B.10)

Therefore, the dimensionless gravitational energy reads,

ẼG = −M̃
5/3ρ̃1/3

√
2

(B.11)

the quantum energy,

ẼQ =
3π

4
ε M̃1/3ρ̃2/3 (B.12)

and for the self-interaction we have, when ρ̃ < 1,

ẼI =
M̃ρ̃

4
√

2
(B.13)

and when ρ̃ > 1,

ẼI =
M̃

24
√
πρ̃

(
24
√
π ρ̃Erf

(√
log ρ̃

)
+ 3
√

2πρ̃2 Erfc
(√

2
√

log ρ̃
)

+ 4(−9− 4 log ρ̃)
√

log ρ̃
)

(B.14)
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B.2 Low density solitons: Gravity and Self-interactions

Figure B.1. Upper panel: Energy as a function of the density for different solitons. In blue when the
soliton mass is M̃=0.05, in orange, M̃=0.06 and in green, M̃=0.1 Bottom panel: Mass-density relation.

In this case, the equilibrium configuration arises from the equilibrium between attractive
gravity and repulsive self-interactions. In the regime where the soliton density is low, we
can disregard the contribution of the repulsive quantum pressure. The energy functional
that describes this scenario is:

E = −M̃
5/3ρ̃1/3

√
2

+
M̃ρ̃

4
√

2
(B.15)

If we take the derivative respect to ρ̃, we have,

dE

dρ̃
=

M̃

4
√

2
− M̃5/3

3
√

2ρ̃2/3
(B.16)
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By setting this quantity equal to zero, we obtain the mass-density relation of the solitons
in this set-up,

ρ̃ =
8M̃

3
√

3
(B.17)

As anticipated, we consistently observe a minimum in the energy functional for a given
mass within this regime. This minimum corresponds to the soliton formed in the Thomas-
Fermi regime, since the quantum pressure contribution is negligible in the functional.

B.3 Mid-density solitons: Gravity and self-interactions

In this section we explore configurations where the central density of the soliton is ap-
proximately around the critical density.Therefore, the two parts of the potential ΦI play
a role. The soliton arises when there is an equilibrium between an attractive and a repul-
sive force. Specifically, the soliton can only form when its central density resides in the
first part of the self-interaction potential, as the second part is unable to counteract the
gravitational effects. Consequently, within this regime, the more masive soliton that can
be formed has a mass of M̃ = 0.84 .

Figure B.2. Energy as a function of the density for different solitons. In blue when the soliton mass is
M̃=0.25, in orange, M̃= 0.5 and in green, M̃=0.75.

B.4 Low density solitons: Gravity, Self-interactions and
Quantum pressure

In this section, unlike Section B.2, we also consider the influence of quantum pressure in
the soliton configuration. Consequently, the total energy functional we have is as follows:

Ẽ = −M̃
5/3ρ̃1/3

√
2

+
3

4
M̃1/3πε2ρ̃2/3 +

M̃ρ̃

4
√

2
(B.18)
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Figure B.3. Energy as a function of the density for different solitons. In blue when the soliton mass is
M̃=0.05, in orange, M̃=0.06 and in green, M̃=0.1

As we can see, the incorporation of quantum pressure does not substantially modify
the dynamics. We find ourselves again with a single minimum.

B.5 Mid-density solitons: Gravity, Self-interactions and
Quantum pressure

Figure B.4. Energy as a function of the density for the soliton with M̃ = 0.5 and ε = 0.1. Blue line:
energy with the contribution of the quantum pressuere (Cases 3 & 4). Orange line, energy functional
without quantum pressure (Cases 1 & 2).

In this case, we investigate the model that incorporates all contributions, including the
attractive gravity, the repulsive self-interactions, and the repulsive quantum pressure. So
the total energy has the three contributions.

In Figure B.4, we compare the energy functional in two configurations: one considering
the quantum pressure and the other without it. The orange curve represents the case
where quantum pressure is neglected, and it shows a single minimum corresponding to
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the Thomas-Fermi soliton. We can verify that neglecting the quantum pressure at low
densities is a valid approximation because both curves exhibit the same behaviour in
this regime. We show in Fig.B.5 the time evolution of the first minima. Since it is an
equilibrium configuration, we can observe oscillations around 0 in the virial quantity. The
mass and the total energy of the system is conserved and matches with the analytical
predictions.

However, in the case we are currently examining, we observe a different behaviour.
A second minimum appears in the energy functional at much higher densities. This
new minimum corresponds to the soliton formation when the quantum pressure is taken
into account. It is important to note that there are energy levels that can explore both
minimas. This implies that there is a possibility of transitioning from the original self-
interaction regime to a fuzzy dark matter regime by crossing the potential barrier and
settling into the global minimum of the functional. This scenario is reminiscent of the
findings from numerical simulation in Fig.6.2, where a similar transition was observed.

Figure B.5. Evolution of the soliton ρc = 0.61 M̃ = 0.5, ε = 0.1. Upper left panel : Density at the
center. Upper right panel :Virial quantity. Lower left panel: Total mass. Lower right panel: Energies.
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