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Résumé 

Le travail décrit dans cette thèse vise à produire des nanostructures bien ordonnées 

présentant une forte activité catalytique sur la base d’ensembles de nanoparticules de 

ruthénium et de fullerènes/fullerènes fonctionnalisés. Le Chapitre 1 présente une 

analyse bibliographique sur l’utilisation des fullerènes en catalyse hétérogène, en 

mettant en avant leurs propriétés particulières telles que la stabilité thermique, une 

grande capacité d'adsorption d'hydrogène et la capacité d’obtenir diverses 

coordinations. Le Chapitre 2 décrit la synthèse et la caractérisation de nanostructures 

Ru@C60 obtenues par la réaction de décomposition par au dihydrogène du complexe 

[Ru(COD)(COT)] en présence de C60. L'effet du solvant et des rapports de Ru/C60 

utilisés durant la réaction ont été étudiés. Plusieurs caractérisations d’objets 

sphériques Ru@C60 et des calculs DFT nous permettent de proposer une voie pour 

leur formation. Le Chapitre 3 présente la préparation de nouveaux nano-assemblages 

obtenus à partir de [Ru(COD)(COT)] et de fullerènes fonctionnalisés en utilisant la 

même méthode décrite dans le chapitre 2. Tout d'abord la synthèse de fullerènes 

fonctionnalisés C66(COOH)12 est détaillée, puis la synthèse et la caractérisation des 

nanostructures Ru@C66(COOH)12 ont été étudiés. Le Chapitre 4 décrit l'utilisation de 

ces nanomatériaux en catalyse. Nous avons préparé trois Ru@fullerene: Ru@C60 dans 

du dichlorométhane, T-Ru@C60 dans le toluène et Ru@C66(COOH)12. Ensuite, 

l'activité catalytique et la sélectivité des catalyseurs préparés Ru@C60, T-Ru@C60 et 

Ru@C66(COOH)12 ont été étudiées pour l'hydrogénation du nitrobenzène et du 

cinnamaldéhyde. Des calculs DFT ont permis de rationaliser les résultats obtenus pour 

l'hydrogénation sélective de nitrobenzène sur Ru@C60. 

Mots clés: ruthénium; nanoparticules; C60; C66(COOH)12; catalyse; hydrogénation; 

nitrobenzène, cinnamaldéhyde 
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Abstract 

The work described in this thesis aims to produce well-ordered nanostructures 

presenting high catalytic activity, on the bases of the assembly of ruthenium 

nanoparticles and fullerene/functionalized fullerene. Chapter 1 provides a review on 

the use of fullerene and fullerene-based materials in heterogeneous catalysis, 

emphasizing their specific properties such as thermal stability, high capacity for 

hydrogen adsorption and the ability of various coordination modes. Chapter 2 

describes the synthesis and characterization of Ru@C60 nanostructures produced by 

the decomposition reaction of [Ru(COD)(COT)] in the presence of C60. The effect of 

the solvent and ratios of Ru/C60 on the course of the reaction have been investigated. 

Several characterizations of spherical Ru@C60 objects and DFT calculations allow us 

to propose a pathway for their formation. Chapter 3 presents new nano-assembly 

preparation based on [Ru(COD)(COT)] and functionalized fullerene using the same 

method as they are described in chapter 2. First, the synthesis of functionalized 

fullerene C66(COOH)12 is detailed, and then the synthesis and characterization of 

Ru@C66(COOH)12 is studied. Chapter 4 describes the use of these nanomaterials in 

catalysis. We have prepared three Ru@fullerene catalysts, which are Ru@C60 in 

dichloromethane, T-Ru@C60 in toluene, and Ru@C66(COOH)12. Then, the catalytic 

activity and selectivity of the prepared catalyst Ru@C60, T-Ru@C60 and 

Ru@C66(COOH)12 are studied for the hydrogenation of nitrobenzene and 

cinnamaldehyde. DFT calculations allow to rationalize the results obtained for the 

selective hydrogenation of nitrobenzene over Ru@C60. 

 

Keywords: Ruthenium; nanoparticles; C60; C66(COOH)12; catalysis; hydrogenation; 
nitrobenzene; cinnamaldehyde 
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General introduction and objectives 

Catalysis is the essential technology for precisely transforming the chemical structure 

of matter on a large scale, and catalysts are the key enabler in 90% of chemical 

manufacturing processes. One of the main challenges for catalysis science in the 21st 

century is to further understand and design catalyst structures to better control 

catalytic activity, selectivity and stability.1 In that context, investigations on porous 

materials with tailored pore structures, composition, and nano-environment for 

catalytic sites are of strategic importance; and it is obvious that any new branches of 

catalysis science, such as nanocatalysis,2 should be considered as a potential spur to 

reach the objectives. Among the different nanocatalysts, nanostructured carbon 

materials are gaining more and more visibility.3 The development of new carbon 

nanostructures over the last decades enables control of carbon materials at multiple 

length scales in very new manners. The versatility of these materials and the 

complexity of carbon physical chemistry make the design of structurally controlled 

catalysts a highly challenging task. Designing catalytic nano-architectures offers the 

promise of higher activity, selectivity and stability,4 provided the following 

specifications are followed: i) a control of nanoparticle size or shape, ii) a control of 

the direct environment of the nanoparticle, and ii) a robust and controlled (covalent) 

metal-support interaction.  

The objective of this PhD thesis is to produce groundbreaking metal@carbon 

nanostructures with such specifications that will open new routes and opportunities 

for modern catalysis science. Thus, a new carbon (surface) chemistry will be 

developed to synthesize a new type of metal@carbon architectures consisting in 

organized networks of fullerenes and ruthenium nanoparticles (NPs). We will apply 

them to a strategic domain of catalysis in industrialized countries: fine chemical 

synthesis. Two reactions of industrial interest have been selected for which catalytic 

activity, selectivity and stability are genuine challenges: i) the hydrogenation of 
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nitrobenzene to aniline and/or cyclohexylamine, and ii) the hydrogenation of 

cinnamaldehyde.  

The functionalization of nanostructured carbon materials with metal particles is a 

large field of research. Metallic NPs have been now associated to carbon nanotubes,5 

graphene,6 fullerenes,7 and even detonation nanodiamonds.8 While the control of NP 

size has been sometimes achieved,9 the main limitation of these materials is, as for 

activated carbon support, the almost complete absence of a control of their 

organization: i.e. the metallic NPs are randomly distributed on the carbon surface, and 

the NPs/carbon anchoring is not homogeneous due to the presence of different types 

of anchoring sites.10 Considering the fundamental importance of metal-support 

interaction on heterogeneous catalyst activity, selectivity, and stability, this is clearly 

detrimental to their performances. Additionally, the distance between NPs being not 

controlled, their properties are far from being optimized. Indeed, it has been recently 

evidenced that close proximity of NPs may strongly affect their catalytic 

performances, including their stability.11,12,13,14 Finally, it is often extremely difficult 

to achieve a high metal loading with small metal NP size, and this is detrimental to 

many catalytic applications. Inspired by Metal-Organic Frameworks (MOFs), and 

Covalent Organic Frameworks (COFs), we propose to develop a totally original 

family of hybrid materials, associating in a controlled manner and through covalent 

bonds, sp2–C nanostructured carbon materials with metallic NPs. The nanostructured 

materials selected include pristine and functionalized C60 fullerenes. Specifically for 

catalysis, this material should combine: i) a controlled NP size, ii) an 

atomically-defined environment for the NPs, iii) a covalent interaction with the 

support, and iv) a high porosity and a highly dense surface area availability of the 

catalytic centers. To reach this objective an interdisciplinary approach is necessary: i) 

functionalization of C60, ii) synthesis and characterization of Ru metallic NPs, iii) the 

controlled assembly of hybrid structures, and iv) a computational approach aimed at 

modeling and understanding the formation of such mixed edifices construction.
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1.1 Introduction 

Since 1985, the date of their discovery, fullerene, one carbon allotrope (Figure 1.1), 

has been widely investigated. The first fullerene to be discovered was the hollow, 

cage-like C60. Nowadays there are thirty or more forms of fullerenes. C60 is the first 

spherical carbon molecule, with carbon atoms arranged in a soccer ball shape. In the 

structure there are sixty carbon atoms and a number of five-membered rings isolated 

by six-membered rings. C70, a slightly elongated, spherical carbon molecule in the 

same group, resembles a rugby ball, and has seventy carbon atoms. Many other forms 

of fullerenes, up to and beyond C120, have been characterized. Their particular shapes 

depend on whether five-membered rings are isolated or not, or whether 

seven-membered rings are present. Among the fullerenes, spherical fullerene C60 is a 

wonderful unit to synthesize organized nanostructures, which have attracted much 

attention because of their specific size, shape, and physicochemical properties.1 

  

Figure 1.1. The family of carbon allotropes: 0 D, C60 fullerene and carbon onion; 1 D, 

single walled and multi walled carbon nanotubes; 2 D, graphene; and 3 D, graphite and 

diamond. 

To date, fullerenes have found applications in various fields such as the preparation of 

novel materials for molecular electronic2 or photovoltaic3 devices, liquid crystalline 

materials,4 materials for medicine,5 catalysis6 and others.7  



Chapter 1 Introduction 

 3  

 

C60 is a dark needle-like solid, and it is extremely stable even under high temperatures 

and pressures. Fullerenes are the only present allotrope of carbon that has the property 

to get dissolved in common organic solvents at room temperature. Thus it is soluble in 

many organic solvents as shown in Table 1.1,8 including carbon disulfide, toluene, 

chlorobenzene, etc. Solutions of pure fullerene usually have a deep purple or violet 

color.  

Table 1.1. Solubility of C60
9 

Solvent Solubility [C 60], mg/mL 

n-Pentane 0.005 

Decalin 4.6 

Dichloromethane 0.26 

Chloroform 0.16 

Methanol 0.000 

Ethanol 0.001 

Acetone 0.001 

Benzene 1.7 

Toluene 2.8 

Chlorobenzene 7.0 

1,2-dichlorobenzene 27 

Bromobenzene 3.3 

Nitrobenzene 0.8 

Carbon disulfide 7.9 

It is worth noting that C60 have a low surface area (BET) with 10-20 m2g-1 compare 

with CNT and graphene (~180-1000 m2g-1). However, the incorporation of chemical 

bond such as in metal-C60 will lead to increase the surface area of the materials.6b  

The diameter of fullerene is 7.10 ± 0.07Å. However, when taking in account the π 

electron-cloud of C60, the outside of C60 diameter will increase to 7.10 + 3.35 = 10.45 

Å, γ.γ5 Å being the estimated surrounding π electron-cloud thickness as shown in 

Figure 1.2. 
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Figure 1.2. a) The ball and stick model structure of C60; and b) C60 with isosurface of 

ground state electron density as calculated with DFT 

 

1.1.1 C60 structure  

C60 has sixty carbon atoms to form an icosidodecagon that consists of twelve  

pentagons and twenty hexagons as shown in Figure 1.3.10 There are two manifest 

features of C60, the first one is that all the pentagons are isolated by hexagons (Figure 

1.3b). That means that all the double bonds are located in the hexagons, and there are 

no double bonds in pentagons. The second one is that the bonds at the junction of [6,6] 

member rings are shorter (1.38 Å) than the bonds at junction of [6,5] member ring 

(1.45 Å) (Figure 1.3b).11 

Besides this, each carbon atom of C60 is three-connected to the other two carbon 

atoms by one double and two single bonds, so the carbon atoms is treated as a sp2 

carbon. Usually, the sp2 carbon and its three neighbor carbons are coplanar, such as in 

graphite. The carbon atoms in the spherical C60 are not coplanar, but the structure is 

very stable. Because of the molecule's spherical shape the carbon atoms are highly 

pyramidalized, which has far-reaching consequences for reactivity. It is estimated that 

strain energy constitutes 80% of the heat of formation. 
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Figure 1.3. a) The schematic representation of C60-Ih fullerene with length of two 

different bonds in the molecule; and b) Schlegel diagram. 

 

The conjugated carbon atoms respond to deviation from planarity by orbital 

rehybridization of the sp² orbitals and  orbitals to a sp2 orbital with a gain in 

p-character. The p lobes extend further outside the surface than they do into the 

interior of the sphere, and this is one of the reasons that the fullerene cage has a strong 

acidic character. The other reason is that the empty low-lying * orbitals also have a 

high s character. 

The double bonds in fullerene are not all the same. Two groups can be identified: the 

so-called [6,6] double bonds that connect two hexagons, and the [5,6] double bonds 

that connect a hexagon and a pentagon. Of the two, the [6,6] bonds are shorter with 

more double-bond character and therefore a hexagon is often represented as a 

cyclohexatriene and a pentagon as a pentalene or [5]radialene (Figure 1.4). In other 

words, although the carbon atoms in fullerene are all conjugated the superstructure, it 

is not a super-aromatic compound. Indeed, C60 fullerene has sixty  electrons but a 

closed shell configuration requires seventy two electrons. Fullerenes tend to react as 

electrophiles. An additional driving force is relief of strain when double bonds 

become saturated. As a result, C60 can react readily with electron rich species and 

behaves like an electron deficient alkene. 
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Figure 1.4. Structural fragments of C60: cyclohexatriene (left) and [5]radialene (right). 

1.1.2 C60 synthesis  

Fullerenes do not exist in significant amount naturally, so a lot of efforts have been 

devoted to synthesize them on a large scale. Generally, resistive heating vaporization, 

arc vaporization and combustion are the three usual synthesis methods. In 1990, 

Krätschmer and his colleagues developed a contact arc discharge method for 

macroscopic production, known as the Krätschmer-Huffman method. They 

discovered that carbon rods heated resistively in a He atmosphere could generate 

gram quantities of fullerenes embedded in carbon soot. This method uses graphite 

electrode contact arcs, passing alternating or direct current through them in an 

atmosphere of He (approximately 200 torr). The evaporated graphite takes the form of 

soot, which is dissolved in a nonpolar solvent. The solvent is dried away and the C60 

and C70 fullerenes can be separated from the residue by several methods like 

chromatography, crystallization or chemical complexation. The optimal current, 

helium pressure and flow rate allow to reach up to 70% and 15% yield of C60 and C70, 

respectively. This was the first method to produce gram-sized samples. The method 

was later on modified by Smalley who established an eletric arc between two graphite 

electrodes, where most of the power dissipate in the arc. This modification granted 

higher yields. Due to these developments a lot of new fullerene types were  rapidly 

discovered within the next years. 

The common used process for mass-production is the “Combusting Process”, which 

was invented by Howard in 1991. In this process, fullerenes are produced in sooting 

flames with premixed benzene, oxygen and argon under low pressure. The relative 
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low percentage of fullerenes in the soot (0.26%) was increased by some changes in 

the conditions, and up to 20% were obtained when mass production of fullerenes 

started. 

The pace of discovery in fullerene science has continued to accelerate, as above 

mentioned, and practical applications in catalysis have been investigated.12 Here, we 

will only focus on the synthesis, characterization and applications of fullerene 

catalysts, particularly on metal fullerene complexes, metal fullerides and metallic 

nanoparticle@fullerene nanostructures.  

1.2 Coordination chemistry of fullerene C60 

After the preparation of the C60 fullerene, many researches have focused on its 

coordination chemistry.6c, 13 Due to the hollow structure of fullerene, metal atoms can 

coordinate inside (endohedral) or outside (exohedral) the cage. Only exohedral metal 

fullerene C60 complexes are discussed here. There are seven possible coordination 

modes of fullerene C60 with metal atoms, which are depicted in Figure 1.5. 

 

Figure 1.5. Possible metal-C60 bonding modes. From ref.13b  

η1

η5 η6

η2(6-5) η2(6-6) η3

η4
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Since the first preparation of organometallic complexes of fullerene, 

[(η2-C60)Pt(PPh3)2]14 (Figure 1.6) and [(η2-C70)Ir(CO)Cl(PPh3)2]15, many 

organometallic compounds have been prepared and characterized.  

 

Figure 1.6. First organometallic complex of fullerene C60. 

Beside the η2 coordination, other hapticities are possible (Figure 1.5), where η1 

hapticity is the only one presenting a -bond interaction. The η5 hapticity is the 

coordination mode more observed after the η2 coordination; however, it requires the 

disruption of the conjugated system, modifying the fullerene structure. Nakamura 

published the first example of this type of compounds.16 η1, η3, η4 and η6 are predicted 

not to be stable, being η6 much less stable than other hapticities. However, η1 and η3 

complexes have been produced experimentally.  

1.2.1 η2 coordination 

Many researches have suggested that the metal interaction with C-C bonds in 

fullerene is similar to olefin coordination.17 The bond between metal and olefin has 

two components: one consist in donor-acceptor interaction (  type), and the other 

(back-bonding) is a dative component (π type). The first interaction is the charge 

transfer from the filled π orbital of the olefin to the empty d orbital of the metal. The 

second one is the back-donation from an occupied d-orbital of the metal to the 

nonbonding π* molecular orbital of the olefin. To understand this, an excellent 

theoretical work have been published by Sgamellotti et al.18 It was found that 

fullerene has a large population of non-bonding π* molecular orbitals, which are very 

near to the occupied d-orbitals of the metal, therefore the interaction of metal and 

fullerene C60 are usually very strong. Compare to metal-ethylene, the bond energies of 
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the metal-fullerene are higher, but lower than the tetrafluoro- and tetracyanoethylene 

complexes. 

Early theoretical studies of the interaction of C60 with transition metals carried out by 

Lichtemberg,19 have already shown that the η2 coordination mode in the [6,6] bonds is 

the most stable, followed by η2 coordination to the [6,5] bond. Analogously, Loboda20 

found that the η2 coordination in the [6,6] bonds is the most stable. The interaction 

between C60 and transition metal atoms of groups 9 and 10 (Co, Rh, Ir, Ni, Pd and Pt) 

has been studied in this latter work; showing, for instance, that palladium bond 

dissociation energies at different sites of the fullerene cage followed this trendμ η2 

(6-6) > η2 (6-5) > η5 > η6.  

A plethora of coordination metal complexes shows this kind of coordination mode 

including Mo,21 W,22,23 Fe,24 Co,25,26, Rh,27 Ir,27,28 Ni,29,30,31,32,33 and Pd.34,35 Table 1.2 

presents some recently published organometallic complexes of fullerenes coordinated 

through a η2 bond. 

Table 1.2. η2- fullerene C60 organometallic complexes  

Complex Ref. Complex Ref. 

 

25
 

 

25
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22-23
 

 

30
 

 

30
 

 

31
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33
 

 

26
 

Metallic clusters also prefer to coordinate to C60 fullerene through η2 coordination 

mode (Table 1.3). The coordination chemistry of clusters to C60 is dominated by the 

triosmium and triruthenium clusters coordinated in µ3-η2,η2,η2 to C60. Usually, these 

compounds are modified on the metal coordination sphere, but some examples can be 

found were the fullerene cage has been also modified (see Table 1.2). The first 

example of cluster coordinated to fullerene, [Ru3(CO)9(µ3-η2,η2,η2-C60)], was 

synthesized in 1996 by thermal decarbonylation of [Ru3(CO)12] in the presence of 

C60.38 X-ray diffraction shows that Ru atoms are η2 coordinated and positioned over 

the short C-C bonds, the Ru-C distances are in between β.γβ4(λ) and β.β1γ(λ) Ǻ 

(Figure 1.8). 

 

Figure 1.8. Crystal structure of [Ru3(CO)9(µ
3-η2 ,η2 ,η2 -C60)]. From ref.38 
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Rhodium clusters [Rh6(CO)9(dppm)2( 3-η2,η2,η2-C60)] and [Rh6(CO)5(dppm)2 

(CζR)( 3-η2,η2,η2-C60)2] can also coordinate to one or two fullerene cages via 

3-η2,η2,η2 coordination mode.39 The reaction of the Ir cluster [Ir4(CO)8(PMe3)4] with 

C60 allows to obtain the [Ir4(CO)3( 4-CH)(PMe3)2( -PMe2)(CζR)( -η2,η2-C60) 

( 4-η1,η1,η2,η2-C60)] compound, where the Ir4 cluster is mainly coordinated to the C60 

fullerene via η2 bonds, together with η1 bonds.40 

Table 1.3. η2, η2, η2 complexes of fullerene 

Complex Ref. Complex Ref. 

 

43
 

 

44
 

 

45
 

 

38
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46
 

 

47
 

 

48
 

 

49
 

 



Chapter 1 Introduction 

 16  

 

Theoretical studies have shown that the η2 coordination mode is usually the most 

stable for metallic clusters, as observed for mononuclear complexes. For instance, 

small cluster of Ru2
41 and Rh2

41 coordinate to the fullerene via one atom displaying a 

η2 hapticity. DFT calculations on osmium clusters [Os3(CO)9(µ3-η2,η2,η2-C60)] and 

[Os3(CO)8(P(CH3)3)(µ3-η2,η2,η2-C60)] show that all three osmium atoms are η2 

coordinated for neutral, mono- and di-anions. However, the addition of more electrons 

to produce the trianions produces a change in the coordination mode, obtaining 

[Os3(CO)9(µ3-η2,η2,η1-C60)]-3 and [Os3(CO)8(P(CH3)3)(µ3- η2,η2,η1-C60)]-3. The fourth 

electron reduction produces the [Os3(CO)9(µ3-η2,η1,η1-C60)]-4 and [Os3(CO)8(P- 

(CH3)3)(µ3-η2,η1,η1-C60)]-4 complexes.42 Other DFT studies on coordination chemistry 

of C60 to Pd, Au and Co clusters also point out that usually the η2(6-6) is the preferred 

one, nevertheless η2(6-5) coordination was also found possible. 

The η2 coordination in the [6,6] bonds is the most common between metal and 

fullerene.26, 33, 50 One reason could be that the non-planarity surface of fullerene makes 

that the orbitals are located well outside the plane, thus the η5 and η6 fashion is much 

more difficult to develop. Moreover, it is worth noting that most of C60 complexes of 

various metals have a η2-structure with metal bonding to [6,6] rather than [6,5] ring. 

In a theoretical work, Sheu and Su51 have found that the [6,6]-attack is more favorable 

than the [6,5]-one, both kinetically and thermodynamically under the same reaction 

conditions. Figure 1.9 presents some typical coordination η2 complexes. The first 

fullerene metal complex are [η2-C60Pt(PPh3)2]52 and [η2-C60Pd(PPh3)2]53 in which the 

metal center attach to one double bond of the [6,6] member ring. In 

[Ru5C(CO)11(PPh3)(µ3-η2,η2,η2-C60)] the metal cluster coordinates with three double 

bonds in the six member ring.54 In [Ni(Me3P)2( -η2, η2-C60)], the metal center is 

bonded to two fullerene cages to form a polymeric like structure.33 
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Figure 1.9. The coordination η2 mode of metal fullerene C60: a) η2- metal complex, from 

ref. 
52-53; b) η2,η2,η2- metal cluster complex (From ref.54); and c) η2- metal polymer 

complex (From ref.33). 

Computational studies55 on [MX(CO)(PH3)2(C60)] (M = Rh or Ir; X= H or Cl) have 

demonstrated that the binding energy depends on several factors, including d-orbital 

energy, d-orbital expansion, the presence of an empty d-orbital, and the distortion 

energy of the metal fragment induced by the complexation. For example, 

[IrH(CO)(PH3)2(C60)] is more stable than [RhH(CO)(PH3)2(C60)] because of the larger 

d-orbital energy.  

On the other hand, the η2 coordination is less stable than the η1 one under certain 

conditions. For instance, the η1 mode has been computed to be more stable for LMC60 

(L = ligand) with -3 anions.56 The interpretation is that the electron addition to C60 

leads to a decrease of π interactions with the d-orbital of the metal, whereas it has 

little effect on the  type interactions.  

Furthermore, the transformation of the  and π bonds has been reported in the case of 

a C60-Os cluster by controlling the steric and electronic properties of the metal 

center.57 In Scheme 1.1, 1 and 2 can reversibly be obtained, and the reaction of 2 and 

PPh3 will form a new π-type complex 3. 
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Scheme 1.1 The transformation between the σ and π bonds. From ref.57 

 

1.2.2 η5 coordination 

The delocalization of the π-electron density on the C60 fullerene makes that the 

formation of stable η5 complexes is highly improbable. The metal-C60 interaction in 

Cp-M-C60 complexes (M = Fe, Ru and Os) is calculated to be weaker than the M-Cp 

bonds in ferrocene, ruthenocene, and osmocene.58 Nevertheless, calculations on 

C60R5M (R = H, Ph; M = Ti, In) complexes predict that the addition of substituents in 

the α-position of the five membered ring, to form half-sandwich metallocene 

embedded in the C60 skeleton, allows the existence of stable η5 complexes.59 DFT 

calculations of a ferrocene analogue with a C60 ligand, Cp-Fe-C60Me5, show that this 

complex is stable.60 Similarly, the comparison of the coordination mode of osmium 

complexes and clusters to C60 fullerene or five substituted C60 predicts a change in the 

coordination mode of the metal from η2(6-6) to η5 coordination.61  

The first example of this kind of coordination was reported in 2000;16 where a 

rhodium atom is coordinated to a 5 membered ring, where all the α-positions are 

substituted with methyl groups (Figure 1.10). Since then, many examples of this type 

of coordination can be found in the literature including Rh,16 Co,62,63,64,65 Ru,66,67,68,69 

and Fe67 complexes. Table 1.4 presents recently published η5 complexes of fullerene. 
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Figure 1.10. Molecular structure of [Rh(η5-MeFCp)(CO)2] determined by X-ray 

diffraction. Selected bond lengths (Å):  Rh−C(1), 2.27(4); Rh−C(2), 2.22(3); Rh−C(3), 
2.12(4); Rh−C(4), 2.19(4); Rh−C(5), 2.13(4). From ref.16 

Table 1.4. η5 metal complexes of fullerene 

Complex Ref Complex Ref 
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68
 

 

69
 

1.2.3 η1 coordination 

In the η1 coordination, the metal atoms directly attach to carbon of fullerene by a  

bond. It exists theoretical and experimental examples that have shown that the  bond 

between the metal and fullerene cage is possible.17,70 Lee and co-workers40 first 

reported η1 C60 coordination in a new C60-Ir4 metal sandwich cluster with a novel 

µ4-η1, η1, η2, η2-C60 bonding. The -C60 metal complex {( 3-η1, η2, η1-C60)[Os3(CO)8- 

(CNCH2Ph)]} (Figure 1.7) was reported by Song et al.57, 71, and it was prepared by 

ligand-induced Os-Os bond cleavage.  

 

Figure 1.7. Crystallographic structure of (μ3-η1, η2, η1-C60)[Os3(CO)8(CNCH2Ph)]. From 

ref.57, 71 

The -bond between a fullerene and a metal atom seems to be neither stable, nor 

strong. It is considered more as a possible step in a reaction or a fluxional process.19,72 

DFT calculations on various LnMC60 (M = Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, 

Rh, Ir; L= H, CO) complexes have been carried out in order to understand the 

differences between η1 and η2 coordination modes. As previously observed in osmium 
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clusters [Os3(CO)9(µ3-η2,η2,η2-C60)] and [Os3(CO)8(P(CH3)3)(µ3-η2,η2,η2-C60)];42 

neutral M-C60 complexes prefer η2(6-6) followed by η2(6-5)  and finally η1, while the -3 

anions bound stronger in η1.70 The reason of this behavior is due to the π-type 

interactions. The addition of an electron significantly decreases the π-type interaction 

of both the η2(6-6) and η2(6-5) modes, whereas it has little effect on -type interactions. 

Because of the large proportion of π-character of η2(6-6) coordination, the stability 

decreases by the addition of electrons to the system, becoming the η1 coordination the 

most stable. Experimentally, this bond has been observed in ionic derivatives of Co73 

and Au74(Figure 1.11). 

 

Figure 1.11. Left, Crystal structure of [CoTPP·(C60
-)][cryptand[2,2,2]·(Na+)]. From ref.73. 

Right, crystal structure of [(4-MeC6H4)5C60][Au(PPh3)]: a) ORTEP drawing (thermal 

ellipsoids at 50% probability); and b) partial structure showing the ligand-metal 

bonding. From ref.74 

Recently, it has been demonstrated that neutral fullerenes of silver75 and ruthenium76 

bind also trough a -bond. The silver complex coordinates to fullerene to give 

polymeric chains (Figure 1.12).75 The ruthenium complex was obtained by reaction of 

[(η5-C5H5)Ru(CO)2] (Figure 1.13) with C60 in toluene solution under thermal or 

photolytic conditions. The X-ray diffraction of [η1-C60Ru(CO)2(η5-C5H5)2] shows two 

ruthenium atoms bound to the surface of the fullerene in a η1 fashion (Ru-C bond 

distances are β.β06(18) Ǻ and β.β01(1γ) Ǻ).76 
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Figure 1.12. View of the structure of a 1D polymer Front and back malonate addends 

have been omitted for clarity. The inset shows a photograph of a crystal of the polymer. 

The inset shows a photograph of a crystal of the polymer. From ref.75 

 

Figure 1.13. Crystallographic structure of [C60 η1-Ru(CO)2(η5-C5H5)2] with thermal 

ellipsoids shown at 50%. Only the major orientation of the cage is shown with fractional 

occupancy of 0.68. From ref. 76 

The Ir cluster Ir4(CO)3( 4-CH)(PMe3)2( -PMe2)(CζR)( -η2,η2-C60)( 4-η1,η1,η2,η2 

-C60)40 displays a -π mixed type 4-η1,η1,η2,η2-C60 bonding mode as evidenced by 

XRD analysis (Figure 1.14). 
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Figure 1.14. Ir4(CO)3(μ4-CH)(PMe3)2(μ-PMe2)(CNR)(μ-η2,η2-C60)(μ4-η1,η1,η2,η2-C60). 

From ref.40 

1.2.4 η3 and η4 coordinations 

Transition metal complexes displaying η3 or η4 coordination are not stable. However, 

as predicted for η5 coordination complexes, the modification of the fullerene cage 

could allow the formation of this kind of coordination complexes.13a  

 

Figure 1.15. Crystal structure of [(4-MeC6H4)5C60][Ag(PCy3)]: a) ORTEP drawing 

(thermal ellipsoids at 50% probability); and b) Partial structure showing the 

ligand-metal bonding. From ref.74 

Experimentally, this kind of coordination has been observed in silver compounds of 

fullerene anions ([(4-MeC6H4)5C60
-]) where the α-positions have substituted aryl rings 
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(Figure 1.15). The bond distances between Ag and fullerene are 2.259(4) Å for the 

principal interaction and 2.525(4) Å and 2.894(4) Å for the secondary interactions.74 

1.2.5 η6 coordination 

Early theoretical calculations have shown that metal coordination to fullerenes in a η6 

fashion is much less stable than other hapticities.19-20 The binding energies and 

stability of η6-M-C60 complexes have been predicted to be weaker than the respective 

benzene complexes.58, 77 Nevertheless, some theoretical studies have shown that Cr 

can form moderately stable species with C60
78 and C80.79 In addition, η6 sandwich type 

early transition metal complexes have been computed to be more stable than η5 

complexes due to the lower number of d electrons.80 The introduction of six R groups 

in the α sites with respect to the common hexagon of C60 favors the formation of η6 

complexes as observed for η5 and η3 complexes.81 DFT calculations of V-C60 

polymeric complexes show that polymers are more stable than the corresponding 

mononuclear complex. The formation of the polymer also implies the changing mode 

of the metal to fullereneμ η5-V-C60 complex is more stable than η6-V-C60; however, in 

the polymeric complexes the metal prefers to bind in a η6 fashion.82 

1.3 Metal-C60 polymers  

The incorporation of fullerene into nanostructures has always attracted the attention of 

the chemists, because fullerene based nanostructures have many potential 

applications.6c Up to now, many C60-based nanostructures have been developed using 

different methods. Here, we are mainly focusing on the transition metal fullerene-C60 

nanostructures. Some transition metal fullerides have been prepared in the past, based 

on Pd, Pt, Ru, etc.; however, the structure of these fullerides is still uncertain.83 It was 

found that these polymers are insoluble in many solvents and present good conducting 

properties. Some of them are air stable, for instance, PdnC60 can be kept in air for 

several weeks. Figure 1.16 shows the proposed metal polymer chain model, in which 

the metal atoms coordinates with fullerene cages in a η2 fashion.  
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Figure 1.16. Transition metal-fullerene C60 polymer coordinated in η2 mode. 

The synthesis of metal fullerene polymers can be performed either by chemical 

synthesis, co-evaporation or by electro-chemical procedures.6b The synthesis of bulk 

amounts of palladium and platinum fullerides was reported by solution reaction 

methods, and PdnC60 can be also prepared by electrochemical synthesis. Thin films of 

some other metal fulleride phases have been obtained under ultra-high vacuum (UHV) 

conditions by co-evaporation of C60 with carbide-forming transition metals such as Ti, 

Fe, Co and Nb. In the following section, the preparation methods of transition metal 

fullerene polymer is described. 

1.3.1 Synthesis of transition metal-fullerene polymers 

1.3.1.1 Chemical solution method  

The chemical solution method is a rapid, and simple and typical way to produce metal 

fullerene polymers (such as, Pd, Pt, Ru, Rh, and Ag). It involves a metal complex that 

reacts with C60 in solution. The decomposition of the metal precursor in the presence 

of C60 is depicted on Scheme 1.2. 
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Scheme 1.2. The possible formation process of metal fullerene[C60] polymer. 

1.3.1.1.1 Pd(0) and Pt(0) fullerene polymers  

The first organometallic polymer of fullerene PdnC60 was reported by Hideo and 

co-workers.84 PdnC60 is a black air-stable solid, insoluble in common organic solvent, 

which was synthesized from C60 and [Pd2(dba)3] (dba=dibenzylideneacetone) as 

depicted on Scheme 1.3. The composition of PdnC60 (n=1-7) depends on the reaction 

conditions. 

 
Scheme 1.3. The preparation of Pd fullerene[C60] polymer. From ref.84 

The ratio of Pd/C60 increases from 1 to 7 in the polymer when increasing the 

Pd2(dba)3/C60 ratio, or if the palladium polymer (C60Pd1) was refluxed in toluene for 

several days. Indeed, a long-time refluxing could remove part of the C60 from Pd1C60, 

thus increasing the ratio of Pd to C60. The authors propose a possible PdnC60 

formation mechanism, as depicted in scheme 1.4. In the PdnC60 (n>3) polymers, there 

are two types of Pd atoms: one is coordinated between the C60 molecules (polymer), 
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and the excess of palladium atoms is deposited on the surface of the C60. Pd3C60 is 

thermodynamically more stable than the other polymers (Pd1C60, Pd2C60, Pdn>3C60).85  

 

Scheme 1.4. The possible structure of Pd fullerene (PdnC60) polymer with different ratio 

of Pd precursor and C60. From ref. 84 

Using the same procedure, Nagashima86 found that the reaction of C60 and [Pt(dba)2] 

was slower than with [Pd2(dba)3]. A similar preparation of PtnC60 polymer was 

achieved using the [Pt(cod)2] complex.87 If a phosphine ligand was added to a 

suspension of [PtC60], the Pt-C60 bond cleaved, giving rise to the [Pt(η2-C60)(L-L)] 

complex as shown on Scheme 1.5. 

 

Scheme 1.5. The reaction of phosphine ligand and PtC60. From ref. 87 
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1.3.1.1.2 Fe (0) and Ru(0) fullerene C60 polymers 

Carbonyl metal complexes are efficient precursors to synthesize metal-fullerene 

compounds.88 In Scheme 1.5, the formation of metal carbonyl fullerene and metal 

fullerene polymer structures are shown. This process probably involves ligand 

exchange between C60 and CO.89 In some cases, the CO ligand is not completely 

eliminated, as shown in Scheme 1.6a. With continuous thermal treatment or 

photolysis, the Fe fullerene polymer is formed as depicted in Scheme 1.6b.83 

 

Scheme 1.6. Iron fullerene compounds synthesized from iron carbonyl complexes and 

fullerene: a) thermal reflux leading to C60Fe(CO)n-1; and b) photolysis leading to FenC60. 

A RunC60 compound was prepared by reaction of [Ru3(CO)12] and C60 with ratio 1/1 

under argon in refluxing toluene for 7 days.90 From the TEM image (Scheme 1.7), 

ruthenium particles (2-5 nm) embedded in an amorphous matrix was formed. 

 

Scheme 1.7. The Ru3C60 synthesis. From ref.90 
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1.3.1.2 Co-evaporation  

Many transition metal of the 3d and 4d series (Sc, Ti, V, Ni, Y, Nb, Pd, etc), when 

evaporated in the presence of fullerene, can react to produce the corresponding metal 

fullerene polymer. Specifically, for CoxC60
91, pure fullerene and Co were 

co-evaporated to achieve a atomic composition of Co and C60 2/1 in the same vacuum 

chamber. The C60-Co films were grown up at room temperature. The process of 

deposition was performed in a UHV chamber. HREM analyses (Figure 1.17) 

evidenced the polymer chain structure, and the measured distance (11~12 Å) between 

two neighboring fullerenes corresponds to the theoretical value 10.9 Å (1.9 × 2 + 7.1 

= 10.9 Å, 1.9 Å is the Co-C length,92 7.1 Å is the C60 diameter). 

 

Figure 1.17. TEM and HREM image of CoC60 polymer showing the polymer chain (scale 

bar 5 nm). From ref.92 

Ag-C60 nanostructured films were also prepared by the vapor deposition method, the 

decomposition rate of Ag/C60 was fixed at 2/1. The Ag-C60 film was disclosed by Hou 

et al.,93 and in this film, Ag nano-crystallites are well dispersed in a C60 matrix 

(Figure 1.18), and the mean size of Ag nanocrystallites is 15.88 nm. 
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Figure 1.18. TEM image of a AgC60 nanostructured film. From ref.93 

1.3.1.3 Electrochemical reduction method 

Electrochemical reduction is another method to produce PdC60 films. It involves the 

use of C60 solution in toluene/acetonitrile in the presence of metal precursors such as 

[(PhCN)2PdCl2], [Pd(ac)2] (ac=acetate) or [Pd(CF3COO)2].94 The electro-reduction of 

[(PhCN)2PdCl2] was described by Hayashi et al. as depicted in Scheme 1.8. 94a 

 

Scheme 1.8. Electro-reduction synthesis of PdnC60 polymer film. From ref. 94a  

The structure and composition of the C60Pd films were affected by the Pd 

precursor/C60 ratio. This method can produce uniform and smooth polymer films, 

when using a high ratio of Pd to C60. In this material, the polymer chain [-C60-Pd-]n 

was separated by Pd nanoclusters. The existence of Pd nanoclusters (4-8 nm) in the 

film was confirmed by HREM (Figure 1.19).95 
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Figure 1.19. HREM image of Pd nano-clusters in the film (scale bar 10 nm). From ref.95 

As discussed in section 1.3.1.1, the Pd nanoclusters, formed by the excess of Pd and 

connected to the polymer chain will improve the electrical properties of PdC60 

polymers.  

It seems from these results that, according to the experimental conditions, the 

formation of a metal-C60 polymer can be accompanied by the formation of the 

metallic nanoparticles. 

1.3.2 Characterization of metal-fullerene polymers 

To investigate the structure of metal fullerene polymers, many techniques have been 

used including TEM, Raman, XRD, XPS and SSNMR. However, the understanding 

of the fullerene-metal interaction is still not very clear. 

1.3.2.1 TEM 

TEM is a simple and effective way to observe the metal fullerene polymer. No 

metallic nanoparticles(NPs) were detected in the PdC60 polymer in Figure 1.20. 

However, nanoparticles (4-8 nm) were observed in sample Pd2C60, or for syntheses 

performed by electro-reduction and co-evaporation.  
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Figure 1.20. TEM images of PdnC60 polymer synthesized with a ratio of [Pd2(dba)3] and 

C60 = 2/1 From ref.96 

1.3.2.2 Raman and IR spectroscopies 

Raman is an informative tool to analyse metal fullerides. As far as we know, both of 

metal-C60 polymer and C60 polymer will lead to the pentagonal pinch Ag(2) mode 

modification, which is active in Raman. On the other hand, compared to metal C60 

fullerides, C60 polymer have been intensively investigated by Raman spectroscopy. 

Thus it is very useful to make a comparison of metal fulleride and fullerene polymer, 

so there are some features of C60 polymer that we will discuss first. 

It is known that the fullerene cage can be polymerizated by 2+2 cycloaddition to form 

four member rings under high temperature and pressure (Figure 1.21). Table 1.5 

shows the peaks of the Raman spectra of fullerene polymer. Pristine C60 shows a band 

at 1469 cm-1 that corresponds to pentagonal pinch Ag(2) mode, linear chains are 

characterized by a band at 1457-1460 cm-1, branched chains at 1454-1455 cm-1 and 

tetragonal polymer at 1446-1449 cm-1.97  

 

Figure 1.21. Fullerene C60 polymer linear structure. 
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Table 1.5. Raman data of a C60 polymer synthesized under photo or pressurized 

conditions. From ref.97 

Photo-polymerized 
Percentage of 

total peak area 

Pressure 

polymerized 

Percentage of 

total peak area 
Assigned to 

1434.2 cm-1 4.53 1434.6 cm-1 1.49 
Polymeric 

planes 

1446.3 cm-1 4.50 1447.0 cm-1 5.00 
Polymeric 

planes 

1454.0 cm-1 24.9 1454.8 cm-1 6.12 
Branched 

chains 
1460.5 cm-1 45.0 1459.6 cm-1 50.5 Linear chains 
1464.6 cm-1 14.4 1464.7 cm-1 21.6 Dimers 
1469.6 cm-1 6.7 1468.8 cm-1 15.4 Prisine C60 

The first comparison between the Pd fulleride and pure fullerene was carried out by 

Talyzin.96 In this work, all the PdnC60 have a main peak at 1458 cm-1 (Figure 1.22a). 

However, it was found that at high Pd content, the main peak has two components: at 

1449 and 1458 cm- 1. The peak at 1458 cm- 1 can be assigned to linear chain or 

branched polymer and the peak at 1449 cm-1 to tetragonal polymer with four 

intermolecular connections. The structure of PtnC60 (n=1, 2, 3) with different ratio has 

been analyzed by Herbst et al.,98 the observation of Raman peaks at 527 and 566 cm-1 

suggests that a dimer/oligomer-like structure was formed under the fullerene polymer 

Raman features. 

Talyzin et al. also presented a Raman comparison of several metal fullerides: Fe, Nb, 

Pd, Pt and Ti (Figure 1.22b).99 Previously, it was found that the Ag(2) mode of 

fullerene pentagonal pinch (1469 cm-1) is sensitive to the modification of fullerene. 

Here, a strong peak (1400-1500 cm-1) was observed (Figure 1.22b). However, it 

shows a downshift compared with the pure fullerene (1469 cm-1). For the alkali metal 

fullerides, it is commonly accepted that, in ionic fulleride compounds, this mode is 

downshifted by approximately 6 cm-1 per electron transferred to C60. The downshift of 

Pd2C60 and Pt2C60 is approximately of 14 cm-1. Raman analysis have shown that the 

downshift of η2-Pd and Pt of Pd2C60 and Pt2C60 is approximately 7-10 cm-1, which is 
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similarly to the shift observed with the well know complexes [PdPPh3 (η2-C60)] and 

[PtPPh3(η2-C60)]. Thus, it is logical to believe that the Pd and Pt coordinate with two 

neighboring fullerene with η2-bonding, which lead to a shift of approximately 14 cm-1. 

Concerning the Raman spectra of these metal fullerides, it is commonly accepted that 

the same type of bonding occurs between the metal and the fullerene. For FexC60, the 

down shift is 24 cm-1, so it is reasonable to conclude that the x is equal to 3-4.  

 
Figure 1.22. Raman spectra of metal C60 polymer: a) PdnC60 polymer with different ratio 

(n= 1, 2, 3, 4 and 5) of Pd and C60; and b) different metal fullerides Ti, Pt, Pd, Nb and Fe 

(from the bottom to up). From ref. 96 and ref. 97 

The IR transmission spectra of some alkali metal fullerides were examined.100 For 

example, the vibrations of MxC60 (M = K and Rb) are presented in Table 1.6. Pristine 

C60 has four characteristic bands at 527, 576, 1182, and 1427 cm-1 (v1, v2, v3, v4 

modes). For the RbxC60, the v2 and v4 are more intense, so they are more useful for 

identifying the metal C60 polymer. The v1 and v3 mode have weaker absorptions 

compared with v2 and v4. Moreover, from C60 to M6C60, the peak of v2 and v4 will be 

enhanced, while the frequency of v2 and v4 will downshift: 576 to 565 and 1428 to 

1340 cm-1, respectively. 

 

 

 



Chapter 1 Introduction 

 36  

 

Table 1.6. IR intramolecular vibrations of MxC60 (M =Rb and K, x = 0, 3, 4, 6). From 

ref.100 

  C60 M 3C60 M 4C60 M 6C60 

v1 

ω0 (cm-1) 526  472 467 

S 0.02  0.008 0.03 

Ґ(cm-1) 2.5  1.5 3 

v2 

ω0 (cm-1) 576 573 570 565 

S 0.008 0.019 0.022 0.17 

Ґ(cm-1) 2.7 3 3.7 2.8 

v3 

ω0 (cm-1) 1182   1182 

S 0.0018   0.003 

Ґ(cm-1) 4.2   5.8 

v4 

ω0 (cm-1) 1428 1393 1363 1340 

S 0.001 0.012 0.016 0.08 

Ґ(cm-1) 4.5 20.8 23 7.2 
aω0 is the center frequency, K4C60 is 1369cm-1, S is the strength and Ґ is the width of each vibrational 
mode 

1.3.2.3 XRD, XPS, and EXAFS  

Considering that the structure of metal-fullerene polymer is amorphous, the XRD 

analysis usually provides a few informations. Figure 1.23a shows the XRD diagram of 

PdnC60 polymers.96 Interestingly, some peak of metallic Pd(111) or Pd carbide are 

founded in Pd2C60 and Pd3C60, and these peaks are weak and broad, which is 

attributed to the formation of small Pd nanoparticles in the samples.  

X-ray photoelectron spectroscopy (XPS) analysis is a surface-sensitive spectroscopic 

technique that measures the elemental composition, chemical state and electronic state 

of the elements that exist within a material. The XPS analysis of the Pd 3d binding 

energy in Pd2C60 was reported by Hayashi et al.95 In the Figure 1.23b, the binding 

energy of Pd was increased compared to the Pd(0), which means that there is an 

electron transfer from Pd to C60. It is easy to understand because the Pd electron 

flowing in the polymer chain will stabilize the structure. It have been suggested from 
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EXAFS analyses that the Pd atoms coordinated with fullerene in η2(6,6) mode,101 

which is similar to a fullerene polymer linked with the carbon of two hexagonal rings 

by 2+2 cyclo-addition. 

 

Figure 1.23. a) XRD diagram of PdnC60(n=1, 2, 3), from ref 96; and b) XPS spectrum of 

Pd2C60 3d. From ref.95 

1.4 Metal nanoparticles/fullerene C60  

Based on the assembly of C60, it is easy to understand that C60 would be a potential 

building block for well-defined nano-architectures design. However, there are limited 

reports that studied the interaction of metallic nanoparticles and fullerene. 

1.4.1 Metallic nanocluster/C60  

Hsu et al. reported the first hexahapto [Ru3(CO)9(µ3-η2,η2,η2-C60)] complex,38 which 

was synthesized with 40 % yield by mixing [Ru3(CO)12] and C60 in refuxing hexane 

solution. In Figure 24a, we can see the six member ring of C60 coordinates with 

triruthenium cluster in η2. Being each metal atom coordinated in a η2 fashion to one 

benzene ring. 
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Figure 1.24. Crystal structure of a) [Ru3(CO)9(µ3-η2,η2,η2-C60)], from ref. 38; and b) 

η2-C60[Os3(CO)11(NCMe)]. From ref.43. 

After the Ru carbonyl complex, Joon et al. investigate the reaction of the osmium 

[Os3(CO)11(NCMe)] complex with C60.43 It was found that the C60 and the osmium 

cluster can coordinate in different ways: not only C60 can bond with one Os in η2 

(Figure 24b), but it also can bond with triosmium cluster in three η2 mode.  

Later, Joon et al. have prepared the two fullerene metal sandwich complexes 

[Rh6(CO)9(dppm)2(µ3-η2,η2,η2-C60)]39 and [Ir4(CO)3(µ4-CH)(PMe3)2(µ-PMe2) 

(CNR)(µ-η2,η2-C60)-(µ4-η1,η1,η2,η2-C60)],40 in which the metal atoms bind with two 

neighboring C60 cages (Figure 1.25). It was also found that metal cluster center will 

enhance electronic communication between two fullerene cages. 

 

Figure 1.25. Crystal structure of a) [Rh6(CO)9(dppm)2(µ3-η2,η2,η2-C60)], from ref. 39; and 

b) [Ir 4(CO)3(µ4-CH)(PMe3)2(µ-PMe2)(CNR)(µ-η2,η2-C60)-(µ4-η1,η1,η2,η2-C60)]. From ref.40 

1.4.2 Metallic nanoparticles/C60  

Usually, the conventional way to prepare deposited metal nanoparticles onto the 

surface of C60 is using the impregnation-reduction technique. The use of performed 
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metal nanoparticles has also been proposed. Recently, Pd or Ru doped C60 were 

synthesized by Saha and Deng102 using a classic impregnation/activation technique 

with a mixture of [Pd(acac)3] or [Ru(acac)3] and C60. In the TEM images, the Pd/C60 

have a small particles size with a range of 5-6 nm (Figure 1.26).  

 

Figure 1.26. TEM image of Pd/C60 (left) and Ru/C60 (right) synthesized by impregnation 

method (scale bar = 100 nm). From the ref.102 

Very few and small ruthenium nanoparticles (Figure 1.26 right) were observed in the 

Ru-C60. A different morphology was observed with Ru3C60 (Ru particles 2-5nm), 

which was synthesized by refluxing a toluene solution of C60 and [Ru3(CO)12]. 

Probably, the interaction of fullerene with the two Ru precursors is different, which 

caused this difference.  

It is worth mention that the methods used to prepare metallic nanoparticles are very 

similar to the chemical solution way used for metal-C60 polymer synthesis. Thus, the 

presence of metal-C60 polymer in these materials cannot be excluded. 

For the gold fullerene compounds, some works have revealed that C60 can be treated 

as a stabilizing reagent for gold nanoparticles. In 1998, Brust and co-workers 

developed C60 mediated aggregation of gold nanoparticles.103 In the TEM 

images(Figure 1.27), small gold particles (3-6 nm) were detected, in a composite of 

aggregated clusters with size 50-100 nm.  
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Figure 1.27. TEM (right, scale bar = 50 nm) and HREM (left, scale bar = 2 nm) image of 

AuC60, from ref.103 

A similar induced nanoparticle aggregation was described by Liu et al.104 It was found 

that C60 is able to induce the aggregation of thiolated -cyclodextrin (CD) capped gold 

nanoparticles (Figure 1.28). The aggregation is attributed to the formation of a new 

complex between C60, and -CD that attached to gold nanoparticles (Figure 1.29). 

 

 

Figure 1.28. TEM image of a) γ-CD-Au nanostructure (scale bar = 10 nm) and b) Au 

nanoparticles aggregation induced by C60 (scale bar = 200 nm). From ref.104 
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Figure 1.29. C60 induced network of γ-CD-Au nanostructures. From ref.104 

Li et al.105 reported a novel Ag/C60 nanocomposite synthesis method, with a mean 

size of Ag NPs of 5 nm, which is formed by adding AgNO3 (as metal precursor) to a 

solution of C60
-
 (Scheme 1.9).  

 

Scheme 1.9. The preparation of Ag/C60 nanocomposite. 

The TEM image show that the Ag nanoparticles are partially embedded in a C60 

matrix (Figure 1.30). 

 

Figure 1.30. a) TEM image of Ag/C60 nanocomposite catalyst (scale bar = 100 nm); and 

b) HREM image of Ag/C60. From ref.105 

1.4.3 Metallic nanoparticles/functionalized C60  

Functionalized fullerenes,106,107 have attracted the attention of many researchers as 

building blocks for the assemblies of metallic NPs. As far as we know, the first108 new 
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thiol-functionalized fullerene/gold nanoparticles (C60-Au nanoparticles) structure was 

reported by Fujihara and Naaki in 2001. Then the self-assembly reaction of 

functionalized fullerene with a thiol derivative and gold NPs was disclosed by Sudeep 

and co-workers.109 Later, many fullerene thiol derivative as linker to stabilize Au NPs 

were used.110,111,112,113 In addition to the thiol functionalized fullerenes, few examples 

on N-containing functionalized fullerenes C60 associate with metal NPs have been 

studied.114,115,116 Generally, the nanostructures Au NPs/N-functionalized fullerene 

were prepared from gold NPs and a C60-pyrrolidine derivatives.  

Up today, however, few examples were focus on ordered three dimensional 

nanostructures. Lim et al.117 described the assembly of gold NPs mediated by a 

multifunctional fullerene (Scheme 1.10).  

 
Scheme 1.10. Network of stabilized-Au nanoparticles linked by functionalized C60. From 

ref.117 

They show that fullerene can mediate assembly of gold NPs into 3D architectures. It 

is also addressed that the driving force of the nano-assembly formation was attributed 

to the interaction between the negatively charged Au NPs and positively charged 

functionalized fullerenes. 

Rousseau et al.118 reported that the use of a hexaadduct of C60 (Figure 1.31) as a unit 

to form three dimensional networks of gold NPs (Figure 1.32). It was revealed that the 

gold NPs (size 3 nm) were homogenous and strongly coordinated with the sulfur 

atoms in the C60 hexaadducts. The interparticular distance of the NPs is around 2.3 nm 

as verified by XRD, which is consistent with the ligands they used. 
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Figure 1.31. C60 hexaadduct. 

 

Figure 1.32. TEM image of Au NPS@C60 nanostructures. From ref.118 

1.4.4 Metallic nanoparticles/C60 crystals 

Fullerene nano or microcrystals have been synthesized by solution based approaches.4 

For example, the Liquid-Liquid Interfacial Precipitation (LLIP) method was 

developed by Miyazawa and co-worker,119 in which the liquid/liquid interface acts as 

a nucleation site to synthesize fullerene crystals with different morphology such as 

sphere nanowhiskers and nano-rods (Figure 1.33). 
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Figure 1.33. a) SEM micrographs of the needlelike crystals of C60 formed in a beaker by 

the liquid–liquid interfacial precipitation method. C 60 nanowhiskers are indicated by 

arrows; and b) SEM of C60 nanorod obtained by mixed polygon (from TBA/benzene). 

From ref.119 

Concerning the development of fullerene crystal preparation, some metallic NPs 

caped on fullerene crystals were studied. Tan et al.120 developed a novel solution 

method to deposit gold NPs on the surface of C60 microcrystal with various shapes 

(Figure 1.34). As described above, the unique shape of C60 microcrystal can be 

controlled by the LLIP solution process named liquid-liquid re-precipitation. The 

hetero-structure C60-Au NPs (a core shell nanostructure) with mean Au NPs size of 

21.4 nm, was further valued for their use in catalysis.  

 

Figure 1.34. TEM image of Au Nanoparticles caped on C60 nanocrystals. From ref.120 

Chong et al.121 described a one-pot and rapid LLIP method to prepare Pd-C60 

composite. They use isopropanol to induce the co-crystalization of the solution of C60 
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and [Pd(PPh3)4]. Small Pd nano-clusters in the range of 1.4-5.6 nm were observed by 

TEM (Figure 1.35).  

 

Figure 1.35. SEM image of η2-C60Pd(PPh3)4 complex, a) Dark and b) bright field 200 K 

STEM z-contrast image of fullerite with 300 nm scale bars and high angle annular c) 

dark and d) bright field images of palladium clusters with 50 nm scale bars. From ref.121 

1.5 Catalysis with metal/C60 

Fullerene and fullerene-based materials have shown interesting catalytic activity and 

selectivity in heterogeneous catalysis122,123,6b,124,83,125 because of their specific 

properties, such as thermal stability126, high capacity for hydrogen 

adsorption127,128,129,130 and the ability of various coordination.13a,131,13b The 

fullerene-based materials, typically the transition metal and fullerene compounds, 

have been studied in many catalystic reaction.6b One of these is the hydrogenation 

reaction of functional groups including nitro132,105, 133,133,134, C=C83 and C=O135. 

1.5.1 Catalysis with metal/C60 polymers  

The catalytic activity of PdnC60 polymer was first investigated by Nagashima et 

al.84,136 They show that PdnC60 catalyzed the hydrogenation of olefins and acetylenes. 

This reaction proceeds in cyclohexane at room temperature under an hydrogen 

atmosphere.136 Using amines as co-catalysts, one can stop hydrogenation of 

acetylenes at the stage of alkene formation. It is worth to note that the aromatic rings 

and the ketone and ester groups are not hydrogenated by this catalyst. Palladium 
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fulleride is also an efficient catalyst to reduce NO2 to NH2 in aromatic 

nitrocompounds. 

The reason for the high activity of PdnC60 catalyst was the good dispersion of Pd on 

C60 and the strong interaction of Pd nano-cluster and C60. Moreover, PdnC60 (n<3) and 

PdnC60 (n>3) have a different activity in hydrogenation because of the different 

organization of metal atoms in the fulleride. When using PdnC60 (n<3) as catalyst, no 

activity was oberserved in the hydrogenation of diphenylacetylene.136 The more 

effective catalytic sites were Pd clusters localized on the fullerene surface and not the 

metal polymer. However, the complex C60Pd(PPh3)2
137 have a good catalytic activity 

for acetylenic alcohols hydrogenation. The interpretation could be that the phosphine 

ligands have a strong effect on metal electron density. Thus both of PdC60 and PdnC60 

could have a good catalytic activity with appropriate modifications.  

The alkali metal (M = Cs, K, Na) fullerides exhibit remarkable catalytic activity in the 

H2-D2 exchange reaction, which is similar to that obtained with a noble metal 

catalyst.138 The mechanism involved the dissociative chemisorption of H2 on the 

metal framework to form fullerene hydride. Later, Chen et al.139 found that the alkali 

metal is the catalytic center for the dissociative-adsorption of H2 in the case of Li, 

K/MWCNT.  

In another work reported by Li et al.,133 fullerenes were employed in the catalytic 

hydrogenation of nitrobenzene to aniline under UV light. These reactions were carried 

out at 140-160 °C and 4-5 MPa of H2 pressure and it is worth to note that the active 

species appears to be not C60 itself but rather [C60]- (Scheme 1.11). The authors also 

described a cooperative effect between C60/[C60]-, which gave enhanced product 

selectivity. Although the mechanistic nature of H2 activation is unclear, these authors 

reported that irradiation of the mixture led to clean reduction, even under ambient 

conditions using C60, [C60]−, C70, or [C70]− as catalysts in the photolysis. 
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Scheme 1.11. C60 catalyzed hydrogenation of nitrobenzene under UV light. 

Although the dissociation of H2 using C60 as catalyst has been realized under some 

specific conditions, it will be very difficult for fullerene to dissociate H2 when 

fullerene are associated to a metal cluster. A DFT calculation of the C60Ptn model was 

used to investigate the diffusion and migration of H2 on metal cluster and carbon.140 

The result showed that the hydrogen diffusion is very easy on the surface of both 

free-standing and C60-supported Ptn clusters, and the H-atom migration on the carbon 

surface is very unlikely.  

Furthermore, it is worth noting that C60 fullerene can be relatively easily 

hydrogenated by transition metals in the presence of H2.141 

1.5.2 Catalysis with metal nanoparticles/C60  

The catalytic properties of Pd/C60 nano-composite has been investigated by Yu et 

al.142 in two typical reactions: the hydrogenation of phenylacetylene and of 

cyclohexene (Figure 1.36). The Pd/C60 catalyst was synthesized from C60 and 

[Pd(OAc)2PPh3], followed by H2 treatment. A comparison of Pd/C60 and Pd/C showed 

that they provide a similar conversion but that the maximum conversion is obtained at 

a lower rate with the Pd/C catalyst. The possible reason is that the spherical nature of 

C60 provides an effective surface support for a number of metal fragments, at which 

the active catalytic sites are found. In additional, the good dispersion of Pd/C60 was 

also contributed to the high activity. 
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Figure 1.36. Hydrogenation of substrates: a) cyclohexene; and b) diphenylacetylene over 

the catalyst, Pd/C60 (O) and Pd/C (▲) in methanol under a H2 atmosphere at room 

temperature. From ref.142 

The cinnamaldehyde hydrogenation on Ru/C60 (Scheme 1.12) was investigated by 

Lashdaf et al.135 The catalysts were synthesized using impregnation of ruthenium 

complexes on fullerene and then reduction by H2 at 573K. It was shown that the 

support has a dramatic effect on the selectivity to cinnamayl alcohol COL (Figure 

1.37). The selectivity for COL is more than 60% with fullerene, while it is only of 30% 

on conventional carbon supports. The author points out that the Ru cluster size and 

the bond between Ru and fullerene cage favor the adsorption of cinnamaldehyde and 

lead to the preferential hydrogenation of the C=O bond. 

 

Scheme 1.12. Hydrogenation of trans-cinnamaldehyde. 
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Figure 1.37. The selectivity of hydrogenation of cinnamaldehyde over Ru/C (activated 

carbon) and Ru/C60. From ref.135
 

Braun et al. have evaluated the activity of Ru3C60 and ruthenium deposited on carbon 

support (including raw fullerene black, extracted fullerene and graphite) catalysts for 

the CO hydrogenation reaction.143 The authors suggested that there is no obvious 

change of the Ru3C60 with annealing to 820K. However, compare to Ru on the 

fullerene black, the activity of the Ru3C60 in the hydrogenation of CO is decreasing 

with the increase of the temperature from 470K to 570K (Table 1.7). 

Table 1.7. The hydrogenation of CO over Ru3C60 and Ru/C60 catalyst. From ref.143 

 Ru3C60  5% Ru on fullerene black 

 470 K 495 K 520 K 545 K 570 K  470 K 495 K 520 K 545 K 570K 

CO2   0.7 2.9 7.9    0.5 1.9 5.5 

CH4 82.3 91.3 96.4 96.4 91.6  83.9 94.4 98.0 97.7 94.2 

C2H4 2.6 0.8 0.1 0.1 0.1  2.1 0.5    

C2H6 3.5 3.7 1.5 0.4 0.3  3.3 2.8 1.1 0.3 0.2 

C3-C6 11.6 4.2 1.3 0.2 0.1  10.7 2.3 0.4 0.1 0.1 
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Next, a comparison of the catalytic performances of Ru3C60, Ru/C and Ru/C60 

catalysts, the latter two being synthesized by impregnation/activation procedure from 

[Ru3(CO)12], was made.144 Compared to conventional Ru/C catalysts, Ru3C60 and 

Ru/C60 exhibited a higher selectivity for hydrocarbons in the CO hydrogenation 

reaction at 473 K. However, this selectivity and the activity of Ru3C60 and Ru/C60 

decrease at higher reaction temperatures due to the transformation of the initially 

active Rux(CO)y clusters into metal. In contrast with this, after reductive treatment of 

the pristine Ru3C60 and Ru/C60 catalysts at elevated temperatures (annealing in vacuo), 

these catalysts exhibited strikingly higher activities in the hydrogenation of 

2-cyclohexenone than the initially present Rux(CO)y clusters. The reductive treatment 

will lead to the loss of residual CO ligands but no extensive crystallization of metal 

was observed. This finding suggests that the catalytic properties can be enhanced by 

appropriate pre-treatment, which might multiply the possible applications for Ru3C60 

and Ru/C60 catalysts.  

Finally, Li et al.105 have developed a novel catalyst Ag/C60, which is synthesized by 

AgNO3 and C60
-. The catalyst exhibited a good activity and selectivity in 

hydrogenation of nitroarene to amino-arene (Scheme 1.13). 

 

Scheme 1.13. Catalytic selective hydrogenation of nitroarene over Ag/C60.  

1.6 Conclusions  

With the development of fullerene chemistry, fullerene materials have been 

investigated for a large variety of purposes, such as catalyst supports, battery anodes, 

and proton transport membranes.6c In this chapter, the synthesis and characterization 

of transition metal fullerene polymers and nanostructures as well as their applications 

in catalysis have been described.  
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Metal fullerene C60 polymers have been prepared by three different methods, 

including, chemical solution synthesis, co-evaporation and electro-reduction method. 

Among these three procedures, chemical solution synthesis is a costly and effective 

method to produce metal fullerene polymers. However, the organization of the metal 

atoms and the fullerene is difficult to control. As far as we know, up to now, there is 

no examples suggesting the possibility of simple, efficient controlled assembly of 

metal and C60. For instance, only the amorphous metal fullerides PdC60 and PtC60 

were currently obtained. Although the co-evaporation is able to fabricate well-ordered 

metal fullerene nanocomposites, high temperatures and high vacuum are necessary 

during the synthesis.  

For the characterization techniques, TEM is a direct way to examine the metal 

fullerides structure. Raman analysis was thought to be an effective tool to identify the 

fullerene C60 modification. For example, the Ag (2) mode of fullerene pentagonal 

pinch downshift of PdC60 is 7 cm-1, and 14 cm-1 for Pd2C60. Analogously, IR spectra 

are useful to identify the metal fullerides, with shifting of v2 and v4 bands. Beside, 

XPS analyses can provide the state of metal (charges transfer) and other techniques 

also give useful information like EXAFS. 

In contrast with metal-C60 polymer, metallic nanoparticles/C60 materials were less 

investigated. Although the primary carbonyl metal nanocluster coordinated fullerenes 

C60 were synthesized, organized nanostructures of metal nanoparticles and fullerene 

are rare. The progress on these nanostructures is mainly related to metallic NPs 

associated with functional fullerene and fullerene crystals. For instance, it has been 

proposed that a fullerene hexa-adducts may mediated sub-gold nanoparticles to form a 

three dimensional structure.  

Numerous publications demonstrated that transition metal fullerene species present 

have high catalytic activity. The MnC60 (M = Pd, Pt, Ru.) materials can catalyze many 

reactions involving molecular hydrogen activation, hydrogenation of olefins and 
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acetylenes, reduction of CO and NO2 groups, etc. Comparing the catalytic 

performances of the metal fullerene and metal particles deposit on fullerene, it was 

found that the Pd/C60 material is better than Pd/C, whereas the ruthenium material 

behave as their counterparts on activated carbon. Additionally, metal particles play an 

important role in the catalytic process. For example, in the PdnC60 (n>3) material, 

there are two types of palladium atoms in the polymers as described above, it is the 

presence of an excess of palladium atoms on the surface of fullerene (formation of 

metallic NPs) that make that they present high catalytic activity for specific reactions. 
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2.1 Introduction  

Extensive investigations of fullerene C60, both in its pristine form as well as in its doped or 

intercalated variants, have definitively confirmed the strong tendency toward polymerization 

of this molecule.1 The combination of fullerenes and metals offers exciting perspectives for 

the production of novel fullerene-based architectures with unprecedented properties for 

catalysis,2 batteries,3 sensors4 or nanoelectronic devices.5 The metal fullerides have been the 

subject of intensive investigations over the past 20 years and mostly compounds of C60 with 

alkali and alkaline metals (AC60) have been synthesized.6 Metals in these compounds usually 

occupy interstitial sites in the octahedral or tetrahedral holes of the C60 structure. The bonding 

in these fullerides is ionic and the C60 molecules rotate free. Li4C60, one of the best 

representatives of lithium intercalated fullerides, features an unusual type of two-dimensional 

polymerization.7 In contrast, only a few reports claiming the existence of fullerides with 

transition metals are known;8 and despite the progress in the study of AC60 polymerization,9 

knowledge about this phenomenon in the transition metal-fullerene systems is scarce. 

Transition metal fullerides or organometallic fullerene derivatives can be prepared by 

chemical reactions in solution between a suitable metal complex and C60,10 through 

electrochemical reduction from solutions of C60 and selected transition metal complexes,11 or 

by co-evaporation of metal and C60 from separate sources under ultra-high vacuum (UHV) 

conditions.12 Up to now, organometallic fullerene derivatives of Pd,10 Pt,13 Co,14 Ru,15 Fe,16, 

Rh,17 and Ti12 have been reported. Although an understanding of the structure and bonding of 

the proposed compounds is highly desirable, the structure of these phases is still under 

discussion due to the poor crystallinity of the obtained samples, but it is believed that metal 

atoms serve as bridges connecting neighboring C60 molecules. Depending on the amount of 

metal, the suggested structure is polymeric with chain-like, two- or three-dimensional 

coordination. 
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The first and the most studied, organometallic fullerene derivatives, PdnC60, was reported in 

1992 by Nagashima et al.10 This compound, insoluble in most organic solvents, precipitated 

by mixing [Pd2(dba)3] (dba = dibenzylideneacetone) and C60 benzene solutions at room 

temperature. Two and three-dimensional amorphous polymeric structures were proposed 

already in early studies from electron probe microanalysis for PdnC60, but the exact nature of 

these polymers remains unclear, and no systematic study of PdnC60 with various compositions 

is available in the literature. Additionally, various transmission electron microscopy (TEM) 

studies on the PdnC60 compound suggest the possible presence of Pd nanoparticles in the 

material.18 The presence of metallic clusters was also evidenced for RunC60 compounds 

produced at higher temperatures from [Ru3(CO)12].15, 19 An organo-soluble C60 hexaadduct 

bearing twelve thiocyanate functions has been successfully used as a stabilizing agent to 

assemble homogeneous 3 nm gold nanoparticles into extended tridimensional networks.20 In 

addition, Lavrentiev et al. have observed the polymeric chains in the ConC60 mixture using 

TEM, which inner structure has been evaluated as (-C60-Co-C60-) order.21 It is worth 

mentioning that most of these structural studies have used single characterization techniques 

such as Raman spectroscopy,16 X-ray photoelectron spectroscopy (XPS),12 or TEM.18a 

Theoretical studies, using Density Functional Theory (DFT), on exohedral fullerenes have 

been mainly devoted to the interaction between C60 and alkali atoms: Na, K,22,23,24,25 and to a 

less extent with TM, mainly V,26,30 Ni,27 Au,28,29 and Ta,30,31 and more recently with Pd and Pt 

atoms.32 To our knowledge, no theoretical studies on the existence or the possible structures 

of -C60-TM-C60- linear chains have been reported. 

Considering the possible applications of these supramolecular architectures, it is of paramount 

importance to have a better knowledge of their structure for the establishment of 

structure/properties relationships. In this context, we decided to study the case of ruthenium. 

Ill-defined structures were reported for this metal, consisting in poorly dispersed Ru NPs 
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deposited on a C60 containing material.12 In this chapter, we describe an original synthesis to 

produce well defined materials, which have been characterized with a large variety of 

complementary characterization techniques, including TEM in high resolution, scanning and 

electron tomography modes, attenuated total reflection infrared spectroscopy (ATR-IR), 

nuclear magnetic resonance (NMR), Raman spectroscopy, Wide-Angle X-Ray Scattering 

WAXS, Extended X-Ray Absorption Fine Structure (EXAFS) and XPS, as well as DFT 

calculations. 

2.2 Results and discussion 

Ru@C60 nanoarchitectures have been synthesized by decomposing [Ru(COD)(COT)] (COD = 

1,5 cyclooctadiene, COT= 1,3,5-cyclooctatriene) in the presence of C60 under 3 bar of H2 at 

room temperature.33 The control of the reaction conditions allows to synthesize C60-Ru-C60- 

polymers, spherical Ru-C60 nanoparticles, and Ru NPs decorating nanospherical Ru-C60 

polymer nanoparticles.  

The effect of the solvent and the Ru/C60 ratio used during the reaction, on the nanostructures 

obtained have been studied in detail and is discussed below. The Ru@C60 nanostructures have 

been mainly characterized by microscopic techniques; however, in order to shed some light 

on the formation and nature of Ru-C60 interactions in some of the nanostructures synthesized, 

a large variety of complementary characterization techniques, including TEM in high 

resolution, scanning and electron tomography modes, IR, NMR, Raman, WAXS, EXAFS and 

XPS, as well as DFT calculations has been used. Scheme 2.1 shows the synthetic pathway; 

initially, [Ru(COD)(COT)] decomposes under dihydrogen and forms metallic atoms. 
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Scheme 2.1. Synthesis of Ru@C60 nanoarchitectures. 

Then these atoms may either: i) nucleate as small Ru NPs in the presence of the C60 ligand 

(further, the NPs will grow bigger and become more thermodynamically stable); or ii) 

coordinate directly to C60, so a Ru-C60 complex polymer compounds will be form instead of 

Ru NPs. Kinetic or thermodynamic control should dictate the course of the reaction (Table 

2.1).  

Table 2.1 Thermodynamic products based on either Ru-Ru bonds (Ru NPs) or Ru-C bonds 

(DFT calculations). 

Systems Energy gain (kcal/mol) 

C60-Ru -48 

(C60)2-Ru -92 

(C60)3-Ru -103 

…-C60-Ru-C60-… -86 

…-C60-Ru2-C60-… -94 

…-C60-Ru3-C60-… -106 

…-C60-Ru4-C60-… -76 

Ru13 -96 

Ru55 -123 

Ru bulk -153 

Energy stabilization per Ru atom 

From the thermodynamic point of view, DFT calculations performed on different systems 

involving either Ru-Ru bonds (Ru NPs) or Ru-C bonds (Ru molecular or polymeric species) 
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clearly show that the preferred tendency is the formation of metal-metal bonds (Table 2.1), so 

the thermodynamic product of the reaction should consists in Ru NPs. 

2.2.1 Solvent effect  

First, we studied the effect of the solvent fixing the Ru/C60 ratio to 2/1. Several solvents were 

studied including toluene, chlorobenzene, 1,2-dichlorobenzene, dichloromethane, chloroform 

and decalin using the same dilutions with the exception of CHCl3 and CH2Cl2, for which 

higher dilutions were used because of the low solubility of C60 in these solvents (see Table 

2.2).34  

As depicted in Table 2.2, the solubility of fullerene C60 depends on several solvent properties 

such as refraction, dielectric constant, molecular size and H-bonding. C60 have low solubility 

in polar or H-containing solvents, and increasing molar volume and solvent polarity will 

diminish the solubility of C60, whereas electron pair donation ability and polarizability 

enhanced solubility. Initially, we choose the solvent based on these factors, so 

dichloromethane, chloroform, decalin, toluene, bromobenzene, and chlorobenzene were tested 

for the synthesis. The structure of Ru@C60 synthesized in different solvents is shown in 

Figure 2.1. TEM analyses of the Ru@C60 compounds show that the solvent has a significant 

effect on the synthesized nanostructures (Figures 2.1 and 2.2 and Table 2.3). When the 

synthesis was performed in decalin, structures with irregular shapes decorated with small Ru 

NPs (1.23 ± 0.22 nm) were obtained. Toluene led to smaller shapeless structures with mean 

diameters of ca. 175 nm. Spherical particles were obtained using chlorinated solvents: 

chlorobenzene (285 ± 3 nm), 1,2-dichlorobenzene (200 ± 3 nm), CHCl3 (229 ± 1.5 nm), and 

CH2Cl2 (40 ± 0.7 nm). The nanospheres synthesized in CH2Cl2 shown a significantly smaller 

mean diameter and narrower size distribution. In addition, in CH2Cl2, these nanospheres were 

decorated with small Ru NPs (1.15 ± 0.02 nm).  
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Table 2.2. Solubility of fullerene in some organic solvents.34-35 

Solvent [C60] mg/mL Solvent [C60] mg/mL 

n-pentane 0.005 benzene 1.7 

decalins 

cis-decalin 

trans- decalin 

4.6 

2.2 

1.3 

toluene 2.8 

dichloromethane 0.26 xylene 5.2 

chloroform 0.16 bromobenzene 3.3 

1,1,2,2-tetrachloroethane 5.3 chlorobenzene 7.0 

methanol 0.000 1,2-dichlorobenzene 27 

acetone 0.001 tetrahydrofuran 0.000 

The HREM analyses (Figure 2.2) confirmed that the structures synthesized in toluene and 

1,2-dichlorobenzene do not contain Ru NPs. STEM-EDX mappings of the structures 

synthesized in toluene, 1,2-dichlorobenzene and dichloromethane confirm that they are 

composed of Ru and C even if Ru NPs are not observed (Figure 2.3).  

The absence of metal nanoparticles in several nanostructures synthesized pointed out the 

possible formation of C60-Ru-C60- polymers, as previously suggested for PdnC60 compounds.10 

It is known that polymeric spheres of uniform size can be produced using mechanical 

methods.37 The mechanism of formation of such spheres consists in three steps: in the first 

step the polymers form long threads, which in a second time break up into smaller droplets of 

uniform size due to Rayleigh instability. The resulting droplets can again break up into 

daughter droplets, however, this third step is much slower and not always observed. The size 

of the spheres is mainly determined by the applied stress, and weakly affected by the viscosity 

ratio between the dispersed and the continuous phases.38 The polymer concentration is also an 
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important factor that affects the structure formation.39 If we assume that all the Ru@C60 

spheres are polymeric and present similar properties (i.e. viscosity), we can correlate the 

self-assembly of the polymer in spheres with the solvent viscosity and permittivity (Figure 

2.4). 

 

Figure 2.1. TEM micrographs of Ru@C60 structures with Ru/C60=2/1 synthesized in different 

solvents: toluene (scale bar 1000 nm), dichlorobenzene (scale bar 200 nm), chlorobenzene (scale 

bar 500 nm), decalin (scale bar 1000 nm), chloroform (scale bar 1000 nm) and dichloromethane 

(scale bar 1000 nm). 
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Figure 2.2. TEM (left) and HREM (right) micrographs of Ru@C60 assemblies (Ru/C60 = 2/1) 

produced in different solvent. 
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Figure 2.3. STEM-EDX mappings of Ru@C60 (2/1) structures synthesized in a) toluene (scale 

bar 300 nm); b) 1, 2-dichlorobenzene (scale bar 200 nm); and dichloromethane (scale bar 50 

nm). 

During the synthesis carried out in decalin, which has the higher viscosity and the lower 

permittivity (see Table 2.3), no shape control is achieved, while in CH2Cl2 (lower viscosity 

and high permittivity), small spherical particles are produced. The other solvents, showing 

intermediate viscosity, allow obtaining spheres as well, however, with larger mean diameters. 

The only exception is the nanomaterial synthesized in toluene, which has, as decalin, a low 

permittivity. Mixtures of solvents were also tested in order to corroborate this hypothesis. 

First, a mixture of solvents, 1, 2-dichlorobenzene and dichloromethane, was used in several 

ratios (Figure 2.5 and Table 2.4). The nanosphere size clearly decreases at higher CH2Cl2 

concentration and correlate with the estimate viscosity of the solvent mixture (see Table 2.4), 

i.e. small nanospheres are obtained with lower viscosity of the solvent mixture.  
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Table 2.3. Solvent properties related to the TEM analyses obtained for the Ru@C60 structures. 

Solvent 
Viscosity 

(mPa.s)36 

C60 solubility 

([C60], 

mg/mL)34-35 

Relative 

permittivity 

(ɛr)
36 

TEM analyses 

cis-decalin 
trans-decalin 

3.042 
1.948 

4.6 
2.22 
2.18 

no shape controlled structures 
decorated with Ru NP of 1.23 ± 

0.22 nm 

1,2-dichlorobenzene 1.324 27 10.12 spheres of 200 ± 3 nm 

chlorobenzene 0.753 7 5.70 spheres of 285 ± 3 nm 

toluene 0.560 2.8 2.38 
no shape control of the 
structures of ca. 175 nm 

chloroform 0.537 0.16 4.81 spheres of 229 ± 1.5 nm 

dichloromethane 0.413 0.26 8.93 
spheres of 39.6 ± 0.7 nm 

decorated with Ru NP 1.15 ± 
0.02 nm 

methanol 0.545 0 32.7 n.a. 

Figure 2.4. Effect of solvent viscosity and permittivity on Ru@C60 assemblies (Ru/C60 = 2/1). 

Reaction conditions: [Ru(COD)(COT)] 2.0 eq, C60 1.0eq, solvent, 3 bar H2, r.t., overnight. 
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Table 2.4. Solvent mixture viscosity related to the TEM analyses obtained for the Ru@C60 

structures. 

Solvent 

 
Ratio 

Viscosity 

(mPa.s)36, a 

Relative 

permittivity 

(ɛr)
36, b 

TEM analyses 

1,2-dichlorobenzene - - 0.753 10.12 spheres of 197.0 ± 1.9 nm 

1,2-dichlorobenzene CH2Cl2 95/5 0.73 10.1 spheres of 133.0 ± 1.9 nm 

1,2-dichlorobenzene CH2Cl2 17/83 0.46 9.1 spheres of 47.4 ± 0.7 nm 

1,2-dichlorobenzene CH2Cl2 9/91 0.44 9.0 spheres of 44.0 ± 1.4 nm 

1,2-dichlorobenzene CH2Cl2 2/98 0.42 8.9 spheres of 37.6  ± 0.7 nm 

- CH2Cl2 - 0.413 8.93 spheres of 39.6 ± 0.7 nm 

Toluene - - 0.56 2.38 
no shape control of the 

structures of ca. 175 nm 

Toluene CH2Cl2 50/50 0.48 5.6 spheres of 220.5 ± 3.4 nm 

Toluene CH2Cl2 25/75 0.45 7.3 spheres of 182.2 ± 1.8 nm 

Toluene CH2Cl2 9/91 0.43 8.3 spheres of 119.0 ± 1.8 nm 

Toluene MeOH 95/5 0.56 3.8 spheres of 214.7 ± 1.5 nm 
aEstimated viscosity of the solvent mixture using the following equation: ν1/3=xaνa

1/3+xbνb
1/3 (ν = viscosity, x = 

mass fraction)40, bEstimated relative permittivity of the solvent mixture using the following equation: ɛ=xaɛa+xbɛb 

(ɛ = permittivity, x = mass fraction) 41 

Interestingly, the mixture toluene/CH2Cl2 allows also obtaining nanospheres while the use of 

pure toluene led to shapeless structures. Here also, the decrease of the viscosity of the solvent 

mixture also induces a decrease of the sphere size (Figure 2.6 and Table 2.4). Finally, in order 

to understand the role of the solvent permittivity, methanol was used as co-solvent with 

toluene. The toluene/methanol 95/5 mixture displaying a similar viscosity than pure toluene 

but higher permittivity also allows to obtain nanospheres of 214 nm diameter (Figure 2.6), 

pointing out that permittivity plays a crucial role on the formation of the nanospheres. 



Chapter 2 Synthesis and characterization of Ru@C60 nanostructures 

78 

 

 

Figure 2.5 TEM micrographs of Ru@C60 structures with Ru/C60=2/1 synthesized in a mixture of 

solvents: a) 1, 2-dichlorobenzene (scale bar 200 nm), b) 1, 2-dichlorobenzene/CH2Cl2 = 20/1 

(scale bar 200 nm), c) o-dichlorobenzene/CH2Cl2 = 1/5 (scale bar 500 nm), d) 

o-dichlorobenzene/CH2Cl2 = 1/10 (scale bar 200 nm), and e) 1, 2-dichlorobenzene/CH2Cl2 = 1/50 

(scale bar 200 nm). 

 

Figure 2.6. TEM micrographs of Ru@C60 structures with Ru/C60=2/1 synthesized in a mixture of 

solvents: a) toluene/CH2Cl2 = 1/1 (scale bar 500 nm), b) toluene/CH2Cl2 = 1/3 (scale bar 500 nm), 

c) toluene/CH2Cl2 = 1/10 (scale bar 500 nm), and d) toluene/methanol = 20/1 (scale bar 500 nm). 

In order to unravel the growth mechanism of the spherical nanoobjects the reaction was 

monitored by ex-situ TEM analyses (Figure 2.7). The synthesis was realized in CH2Cl2 using 
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a Ru/C60 ratio of 2/1 at low temperature (-20°C) because of the fast formation of the spheres 

at room temperature. TEM micrographs of samples taken at different reaction times are 

displayed in Figure 2.7.  

The TEM analyses show that the nanosphere growth mechanism in CH2Cl2 is divided in three 

steps, as observed for the synthesis of polymeric spheres.42 In the early stages of the reaction, 

long threads are formed: at 5 min of reaction, mainly elongated objects (with sizes ranging 

from 300 to 1000 nm) are observed together with some spherical particles with diameters of 

ca. 130 nm. At 10 min, the size of these objects ranged between 20 and 400 nm. In a second 

step, large nanospheres are formed from the elongated nanostructures. Large spheres of ca. 

290 nm are observed after 40 min. of reaction, which are clearly formed from the elongated 

objects (see Figure 2.7). The solution was stirred overnight in order to see if the third step of 

the growth mechanism is active. The TEM images revealed the formation of smaller 

nanospheres (37.0 ± 0.3 nm) together with the larger ones (ca. 330 nm) and clearly show that 

the small spheres are formed from the large ones.  

The STEM-EDX mappings of the Ru@C60 structures synthesized at -20°C in CH2Cl2 (see 

Figure 2.8) confirm that the structures observed in the early stages of the reaction are 

constituted by Ru and C, as well as the spheres observed at 40 min of reaction. This result 

indicates that a second step towards the formation of smaller spheres is indeed active and, as 

observed in the formation of polymer nanospheres, that this step is much slower. After 

overnight, the small Ru NPs was also observed in the TEM.  
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Figure 2.7. TEM micrographs of Ru@C60 structures synthesized in CH
2
Cl

2
 using a Ru/C60 

ratio 

of 2/1 at -20°C (scale bar: 5 min, 2000 et 200 nm; 10 min, 2000 et 500 nm; 40 min, 2000 et 500 

nm; and overnight, 1000 et 200 nm).  

 
Figure 2.8. STEM-EDX mappings of Ru/C60 (Ru/C60 = 2/1) nanostructures synthesized in 

dichloromethane a) at -20°C at 5 min of reaction (scale bar 200 nm); and b) at -20°C at 40 min 

of reaction (scale bar 200 and 80 nm). 
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In conclusion, using mild reaction conditions Ru@C60 nanostructures are synthesized in a 

straightforward manner. The careful choice of the solvent allows to obtain different 

nanostructures: i) Ru-C60 polymers in pure toluene; nanospherical Ru-C60 polymers in 1, 

2-dichlorobenzene, chlorobenzene, chloroform and in several solvent mixtures (1, 

2-dichlorobenzene/dichloromethane, toluene/dichloromethane and toluene/methanol); ii) Ru 

NPs decorated Ru-C60 polymeric nanospheres in dichloromethane; and iii) Ru NPs supported 

on a C60 or Ru-C60 matrix in decalin. The shape of the nanostructure is determined mainly by 

the viscosity of the solvent but also by its permittivity. Indeed, controlling the viscosity of the 

solvent (using solvent mixtures) permits a precise control of the nanosphere size, which open 

the way to the synthesis of tailored nanostructures. The preferential formation of polymeric 

structure at the beginning of the reaction points to the fact that the reaction should be 

kinetically driven. 

2.2.2 Ru/C60 ratio effect  

The synthesis of Pd fulleride have shown that the final product PdnC60 was determined by the 

ratio of metal to C60.43 From microprobe analyses, a possible mechanism for the PdnC60 

formation was proposed, which consists in one dimensional polymer PdC60 at the first stage. 

Then, the addition of Pd atoms will make bridges to connected the polymer chains and form 

PdnC60 (1 < n <3). Besides, an excess of Pd atoms would be deposited on the surface of the 

PdnC60 if the ratio of Pd to C60 is fixed beyond 3.44 In order to better understand the structure 

of the nanospheres, several nanostructures were synthesized using CH2Cl2 as solvent and 

changing the Ru/C60 ratio with a fixed C60 concentration. The Ru/C60 ratios investigated are 

the following: 2/3, 1, 2, 5, 10, 20, 30 and 50. The TEM images of the synthesized materials 

are shown in Figures 2.9 and 2.10. TEM analyses show that Ru@C60 2/3 and 1/1 do not 

contain Ru NPs, in agreement with HREM (see above Figure 2.2 ). Increasing the Ru content, 
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Ru NPs are observed. Ru NPs display in all cases a small mean diameter, even at high Ru/C60 

ratios, ranging from 1.10 to 1.35 nm (see Figure 2.9 and Table 2.5).  

Table 2.5. Mean size diameters of Ru NPs and spheres of Ru@C60 according to the Ru/C60 ratio. 

Ru/C60
a 

Ru loadb 

(%) 

Nanoparticles 

mean size (nm)c 

Spheres 

mean size (nm)c 

2/3 6.4 Not observed 35.1 ± 1.1 nm 

1/1 10.6 Not observed 36.2 ± 1.2 nm 

2/1 16.7 1.16 ± 0.02 nm 31.6 ± 0.6 nm 

5/1 35.6 1.31 ± 0.03 nm 42.6 ± 1.0 nm 

10/1 48.7 1.26 ± 0.03 nm 32.4 ± 0.3 nm 

20/1 50.4 1.10 ± 0.01 nm 39.8 ± 1.1 nm | 85.2 ± 2.9 nm 

30/1 54.7 1.34 ± 0.01 nm 56.4 ± 4.7 nm | 103.2 ± 1.0 nm 

50/1 61.9 1.35 ± 0.02 nm 63.3 ± 0.8 nm 
aSynthesized by decomposing [Ru(COD)(COT)] under H2 (3bar) in the presence of C60 at r.t. in CH2Cl2. bby ICP 

analyses cManual measurement from enlarged micrographs of at least 200 objects. 

Secondly, TEM images reveal that there is no significant change of the Ru@C60 nanosphere 

size from Ru/C60 ratios 1/1 to 10/1 (≈ 40 nm, Figure 2.11). For higher Ru content (20/1 and 

30/1) a bimodal size distribution is observed with small and large nanospheres (39.8 ± 1.1 nm 

| 85.2 ± 2.9 nm, and 56.4 ± 4.7 nm | 103.2 ± 1.0 nm, respectively). At 50/1 ratio, only one 

mean diameter of large spheres was measured (63.3 ± 0.8 nm, Table 2.5). A few aggregated 

Ru NPs was found in the ratio 30/1, and more particularly in the 50/1 nanostructures, and 

these aggregated Ru NPs are very similar to the one obtained by decomposition of the 

[Ru(COD)(COT)] precursor in the absence of C60 (Figure 2.10). 
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Figure 2.9. TEM images of Ru@C60 structures synthesized in CH2Cl2 using a Ru/C60 ratio of 2/3, 

1/1, 2/1, 5/1, 10/1, 20/1, 30/1 and 50/1 (scale bar 50 nm). 

 
Figure 2.10. TEM micrographs of a) Ru@C60 structures for Ru/C60 = 50/1, scale bar 100 nm, and 

b) aggregated Ru NPs obtained by decomposition of [Ru(COD)(COT)] in the absence of C60. 
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Figure 2.11. TEM images of Ru@C60 structures synthesized in CH2Cl2 using a Ru/C60 ratio of 

1/1, 2/1, 5/1, 20/1, 30/1, 50/1 (scale bar 500 nm) and 10/1(scale bar 200 nm). 

For comparative purposes, the Ru/C60 ratio effect was also studied for the nanostructures 

produced in toluene. Several Ru/C60 ratios (1/1, 10/1, 20/1 and 55/1) were investigated using 

toluene as reaction solvent (T-Ru@C60). Similarly, low Ru/C60 ratios do not produce Ru NPs, 

which are only observed in the T-Ru@C60 20/1 and 55/1 samples in conventional TEM 

(Figure 2.12). The structures with no regular shape were observed for all ratios, indicating no 

effect of the ruthenium content on the structure shape. 
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Figure 2.12. a) Ru@C60 synthesized in toluene with different ratio of Ru and C60; Ru@C60 1/1 

(scale bar 20 nm), Ru@C60 10/1 (scale bar 20 nm), Ru/C60 20/1 (scale bar 50 nm), and Ru@C60 

55/1 (scale bar 20 nm); and b) EDX spectrum of Ru@C60 10/1.  

HREM analysis confirmed the TEM observations. HREM images of T-Ru@C60 10/1 (Figure 

2.13) only revelead very small Ru NPs (with size less than 1 nm). Ultrasmall Ru NPs were 

observed in the T-Ru@C60 20 /1 sample (0.93 ± 0.01 nm). In contrats to the Ru@C60 samples 

synthesized in CH2Cl2, the increase of the Ru content in T-Ru@C60 samples indicate a 

increase of the Ru NP size. The EDX analysis confirmed that Ru and C are distributed 

homogeneously in the structures.  
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Figure 2.13. HREM images of T-Ru@C60 synthesized with different ratio a), b); and c) 10/1; and 

d), e); and f) 20/1. 

Table 2.6. Mean size diameters of Ru NPs according to the Ru/C60 ratio. 

T-Ru/C60
a Ru % ICP b Ru NPsc 

1/1 6.8 Not observed 

10/1 15.7 Not observed (< 1 nm) 

20/1 35.4 0.93 ± 0.01 nm 

55/1 47.5 1.15 ± 0.03 nm 
aSynthesized by decomposing [Ru(COD)(COT)] under H2 (3bar) in the presence of C60 at r.t. in toluene. bBy ICP 

analyses. cManual measurement from enlarged micrographs of at least 200 objects. 
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2.2.3 Characterization of the Ru@C60 nanostructures 

In order to better understand structure of the Ru/C60 nanostructures synthesized in CH2Cl2 

several techniques have been used including: TEM, HREM, Raman, ATR-IR, WAXS, 

EXAFS and XPS, in addition to DFT calculations.  

2.2.3.1 Electron microscopy 

Conventional TEM images revealed that some of the nanostructures prepared do not contain 

Ru nanoparticles (Figure 2.14), even if both Ru and C60 are present in these samples (Figure 

2.15). 

 

Figure 2.14. HREM images of Ru@C60 2/1 synthesized in different solvents a) dichloromethane; 

b) chloroform; c) toluene; d) dichlorobenzene; e) decalin; and f) toluene/CH2Cl2 = 1/1, ( all scale 

bar is 10 nm except e-2 nm ). 
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Figure 2.15. STEM-EDX images of Ru@C60 2/1 structures synthesized in different solvents: a) 

dichloromethane; b) dichlorobenzene; c) toluene; and d) toluene/CH2Cl2 1/1. 

Even if HREM (Figure 2.16a) confirmed the absence of NPs for the sample Ru@C60 1/1 

prepared in dichloromethane, and the presence of carbon and ruthenium in the nanostructures, 

the extremely small size of the Ru species possibly present in the Ru-C60 matrix is a drawback 

for a classical TEM analysis. To overcome this, a scanning TEM in high-angle annular dark 

field (STEM-HAADF) approach, based on the Z-contrast dependence, can be useful to 

identify the small metallic species supported in/on the lighter matrix. These analyses have 
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been performed in collaboration with S. Moldovan and M. Girleanu of Institut de Physique et 

Chimie des Matériaux de Strasbourg, UMR 7504 CNRS-UdS, Strasbourg, France. 

 

Figure 2.16. HREM of the Ru@C60 a) 1/1; and b) 2/1; and c) SEM of Ru@C60 1/1. 

The STEM-HAADF micrographs of the Ru@C60 1/1 sample synthesized in CH2Cl2 reveal 

that all the surface of the spheres was coated by Ru atoms and/or clusters (Figure 2.17a and 

2.17b). The Ru clusters size does not exceed 0.6 nm. Higher resolution images obtained on a 

ARM-200F microscope, on which Ru atoms are clearly visible are depicted on Figure 2.18. 
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Figure 2.17. STEM-HAADF micrographs of Ru@C60 1/1 (a, b) and 30/1 (c, d) nanostructures. In 

b), the yellow and red arrows point to the Ru few atom clusters and larger clusters, respectively 

(scale bars a) 20 nm, b) 10 nm, c) 200 nm; and d) 50 nm). 

 

Figure 2.18. ARM -HREM and STEM micrographys of Ru@C60 1/1. 

In contrast, for the ratio 30/1 ratio (Figure 2.17c and 2.19e,f), the HAADF micrographs 

shown small Ru NPs (~1.5nm) on the surface of the spheres. The distribution of the Ru signal, 

acquired in STEM-EDX along a line scan (Figure 2.19), confirms the presence of Ru NPs on 
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the outer sphere surface within the 30/1 sample, whereas a more uniform distribution of Ru is 

observed for the 1/1 sample. 

The above TEM or STEM analyses on the 2D projections of the object, do not provide clear 

information on the possible presence of Ru species (clusters or small NPs) in the interior of 

the spheres. Electron tomography analysis allowed the investigation within the volume of 

theses spheres. Figure 2.19 shows the results obtained for the 30/1 Ru/C60 ratio. From the 

slices views of 3D reconstructed volumes (Figures 2.20-b and 2.20-c) the presence of small 

Ru NPs is obvious on the surface of the sphere, creating a Ru NP shell with a thickness 

around 7 nm, which correspond to a multilayered NP structure. This is in agreement with the 

Ru signal distribution observed in Figure 2.19, as the heavier elements appear most contrasted 

in STEM-HAADF (Figure 2.19h). It is thus clear that no crystallized Ru NPs are present 

inside the spheres, but this analysis does not exclude the presence of atomic Ru inside the 

polymeric matrix. The analysis was also performed for the Ru@C60 sample with a 1/1 ratio, 

but the very small size of the clusters prevents their localization (see Figure 2.20d), the size of 

the clusters being below the resolution limit for the electron tomography analysis. 
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Figure 2.19. HAADF and BF STEM imaging of Ru@C60 1/1 (a,b) and 30/1 (e,f) nanostructures 

showing the presence of atomic clusters of Ru on the all surface of C60 spheres for 1/1 

composition and the presence of Ru small particles on the surface C60 spheres for 30/1 

composition. Subfigures (c,d) and (g,h) display the cumulated EDX line scans and the Ru signal 

extracted from the corresponding spectra for the 1/1 and 30/1 specimens, respectively (scale bars 

a) 10 nm, b) 10 nm, e) 20 nm, and f) 20 nm). 

The resolution attained in electron tomography is in the nanometer range, thus it is practically 

impossible to evidence the presence of any metal atoms and/or few-atom clusters within the 

spheres. It is therefore reasonable to propose that, in CH2Cl2, the decomposition of the 

[Ru(COD)(COT)] precursor leads to the formation of polymeric spheres containing Ru atoms 

or small clusters and fullerenes at low Ru/C60 ratio (≤ 1), and that further increase of the 

Ru/C60 ratio leads to Ru atoms, clusters or NPs deposition on the surface of these polymeric 

spheres.  
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Figure 2.20. a) Electron tomography analysis of Ru@C60 30/1 a) at 0° tilt from the tilt series, b) 

and c) representative cross-sectional slices along one direction in the plane of 3D reconstructed 

the volume and d) Ru@C60 1/1, at e0 -20nm, e) at e0 +17nm f) (scale bars 50 nm). 

The deposition of Ru NPs on the polymer surface might be due to diffusional limitations, 

which prevent the addition of extra Ru atoms in the polymeric spheres. We checked 

independently that the decomposition of an excess of [Ru(COD)(COT)] on the Ru@C60 1/1 

sample, to reach a 10/1 ratio, leads to NP deposition outside the Ru@C60 1/1 spheres (Figure 

2.21). In addition, TEM images reveal that the new nanoparticles are not all of them deposited 

on the surface, pointing out that fullerene C60 plays an important role in the stabilization of 

the Ru NPs in the Ru@C60 nanostructures. 
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Figure 2.21. TEM micrographs of a) Ru@C60 1/1 (scale bar 100 nm); b) Ru@C60 10/1 

synthesized by adding 9.0 eq. extra [Ru(COD)(COT)] to the obtained Ru@C60 1/1. (scale bar 100 

nm); and c) enlargement of b) (scale bar 50 nm). 

2.2.3.3 WAXS  

WAXS analyses were done in collaboration with Pierre Lecante of the Centre d’élaboration 

des matériaux et d’études structurales UPR CNRS 8011, Toulouse, France. Samples sealed in 

Lindemann glass capillaries were measured by WAXS using a diffractometer dedicated to 

pair-distribution function (PDF) studies (low background, Mo radiation). For the samples 

with high Ru/C60 ratio, the obtained diffractograms are very close and fully consistent with 

metallic Ru in the hcp system (Figure 2.22) with no significant contribution of C60. After 

corrections and Fourier Transforms, the related PDF functions are as expected also very close, 
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and consistent with metallic Ru NPs with low structural disorder and sizes (from coherence 

length) reaching 2.5 nm. From the shape of the envelope characterized by a rapid initial 

decrease and a secondary maximum for a larger value (ca. 1.5 nm) before the final decrease, 

size dispersion is likely, with a large proportion of NPs much smaller than the 2.5 nm value.  

 

Figure 2.22. a) Left – diffractograms for high Ru/C60 ratio together with Ru hcp reference data, 

right – related PDF; b) Left – diffractograms for lower Ru/C60 ratio with Ru hcp reference data, 

right – related PDF. 

This is in agreement with TEM measurements. Evolution is much different for smaller Ru/C60 

ratios: for 10/1, 5/1 and 2/1, we first observe (Figure 2.22b) a gradual decrease of the peaks 

characteristic of the Ru hcp structure, then for the 1/1 ratio the hcp crystalline signature totally 

vanishes and the diffractogram is closer to the one obtained for pure C60, excepted for the 
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sharp peaks at low angle observed only for the highly ordered pure C60 sample. The main 

interest of PDF analysis is the ability to go beyond crystalline order and to analyze 

characteristic distances in the material, related to crystalline periodicity or not. In the present 

case, we observe on the PDF a decrease of the metallic Ru order, however mostly marked for 

the longer distances for the 10/1, 5/1 and 2/1 ratios, actually indicating Ru NPs with a more 

single size distribution and an average diameter close to 1.5 nm for the 2/1 ratio. 

 

Figure 2.23. PDF for ratio Ru/C60 1/1, 2/1 and pure C60. 

For the 1/1 ratio (Figure 2.23), we observe a drastic change for the distances compare with the 

high Ru/C60 ratio. There is still Ru-Ru bond in ratio 2/1, however, it disappeared completely 

for the 1/1 sample. The PDF results in Figure 2.23 show that the range of distance (0.2~0.4nm) 

of 1/1 is very close to the pure C60 but a slight shorter. As we know, many Ru-light elements 

have this kind of distance distribution such as Ru-O, Ru-C and Ru-N. Concerning the reaction 

conditions, the distance distribution could be assigned to the Ru-C because many references 

have disclosed the general Ru-C distance at around 0.21-0.23 nm.45 In addition, ab initio 

calculations, as well as the results of our DFT calculations, show a significant contraction of 

the bond lengths for Ru clusters (n < 13): Ru-Ru bonding distance between 0.21 and 0.24 nm. 
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However, owing to non-bonding C-C distances from C60 obviously also pile up in this range, 

thus there is still not a very clear evidence of Ru-C or Ru-Ru bonds identification by these 

techniques.  

From the above discussion, all the analysis of ratio 1/1 have displayed that there is no Ru 

nanoparticles in this sample, regardless of some possible Ru-Ru bonds in small clusters. 

Order is dominated by the C60 structure for short distances, but discrepancies for distances 

above 0.7 nm strongly indicate more extended ordering, however it is difficult to safely 

characterize. Short distances are also in good agreement with eventual Ru-C bonding.  

For the 2/1 ratio, small Ru NPs (ca. 1.5 nm) can be observed. For the 5/1 ratio and above, 

these small NPs can still be observed but associated to an increasing proportion of larger NPs 

(2.5 nm from coherence length), which suggests increasing coalescence from small NPs. 

Besides, in the view of tomography results at high Ru/C60 ratio, we know that the structure 

has two components, one is Ru@C60 polymer inside, and one is a Ru NP shell.  

2.2.3.4 Raman  

C60 is a well-known electron acceptor and Raman spectroscopy can give valuable information 

on charge transfer. Figure 2.24a shows Raman spectra of Ru@C60 1/1, 2/1, 5/1 and 10/1 

samples at 532 nm. These analyses were performed in collaboration with Prof. Wolfgang 

Bacsa of the Centre d’élaboration des matériaux et d’études structurales UPR CNRS 8011, 

Toulouse, France. The spectral range is mainly focus on the pentagonal pinch mode Ag(2), 

because it have been proven that this mode is a reliable probe of metal fullerides polymer 

states. It is known that the energy of the Ag(2) mode (1468 cm-1 for pure C60) is sensitive to 

charge transfer when evaporating C60 on metal surfaces,46 or for transition metal fullerides.47 

Generally, the shift of this mode is affected by many factors such as the function of the metal, 

the number of covalent bonds on the C60 molecules and the metal-adsorbate interactions. 
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It is commonly accepted that the Ag(2) mode is downshifted by approximately 6 cm-1 

transferred to C60 in alkali metal fulleride compounds.48 The downshift of alkali metal 

fulleride depends of the number of metal atoms and each metal atom donates one electron to 

C60, because there are only ionic bonds between C60 and alkali atoms. For the transition metal 

fullerides, the relationship between shift and composition is more complicated since these 

compounds may exhibit a large proportion of covalent bonding between metal and C60.  

From the work function of Ru (4.71 eV) one would expect a similar spectral shift as for Cu 

(4.70 eV) of -23cm-1. We observe here a spectral shift as large as -10.1 cm-1 for the Ru@C60 

10/1 sample, and a significant broadening with increasing amount of C60 caused by strong 

electron-phonon interaction, which is in agreement with spectrum of PdnC60 at high Pd 

content. For the Ru@C60 1/1 sample, the spectral shift is -6 cm-1. The spectrum of C60 without 

Ru is shown at the bottom of Figure 2.24a for comparison. Unlike the PdnC60, which shows an 

identical signal at 1458 cm-1 at different ratio ,49 here we have a difference in shift with the 

four ratios (Figure 2.24b). 
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Figure 2.24. a) Raman spectra excited at 532 nm of C60 and Ru@C60 1/1, 2/1, 5/1 and 10/1 

samples in the spectral range of the pentagonal pinch mode Ag(2); and b) Raman spectral 

position of the Ag(2) band as a function of molar concentration of C60. 

In addition, the spectrum of pentagonal-pinch mode Ag(2) was not superimposed by the high 

content Ru, demonstrating that the C60 is strongly interacting with Ru. It is known that the 

Ag(2) mode downshift for Pd-C60 and Pt-C60 fullerides is 15 cm-1, which suggests that these 

fullerides have a similar coordination η2-fashion between the metal and C60, such as for the 

[Pd(PPh3)2(η2-C60)] and [Pt(PPh3)2(η2-C60)] molecular complexes. The difference of Ag(2) 

mode downshift among the Ru@C60 and Pd-C60 and Pt-C60 fullerides might be due to a 

different coordination mode: the η2-bonding to two neighboring C60 for Pd-C60 and Pt-C60, 

and the η2- and η6 for the Ru@C60 structures(see DFT calculation and EXAFS). Therefore, we 

concluded that the charge transfer to the C60 molecules is not only dependent on the metal but 

also on the type of covalent bonds. Figure 2.24b shows how the Ag(2) shift progressively 
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increases at higher molar concentration of Ru. The Hg(7) and Hg(8) modes were not found 

downshift in the spectra. Only small shifts were observed for C60 on Cu (< 7cm-1). Compared 

to metallic surfaces, the smaller spectral shift (6-10 cm-1) observed for the Ru@C60 samples, 

indicates that the work function of the Ru species is larger than for bulk Ru. 

2.2.3.5 ATR-IR 

IR gives valuable information to verify the structure of metal fullerides.50 As reported by 

Martin et al., the mode at 576 and 1427 cm-1(v2, v4) are more useful and sensitive for 

identification of the metal polymer structure. The attenuated total reflectance infrared 

(ATR-IR) spectra recorded for Ru@C60 samples in the solid state are shown in Figure 2.25.  

 

Figure 2.25. ATR-IR spectra of Ru@C60 with ratio of 1/1, 2/1, 5/1 and 10/1 from up to down. 

The presence of C60 was confirmed by the four characteristic peaks at 524, 576, 1182 and 

1422 cm-1, together with other vibrations in the range of 2800-3000 cm-1 and 400-1600 cm-1. 

Some of the peaks have been attributed to C60H18
51 and C60H36

52 species, and the rest of the 

peaks are probably due to the presence of a mixture of hydrofullerenes with different number 

of hydrogen atoms.53 The hydrogenation of C60 over Rh/Al2O3 catalyst at ambient 
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temperature and pressure has already been reported by Becker and co-workers,55 however the 

reaction have a low yield (15 %). For our Ru@C60 materials, it has been verified by solid state 

NMR (SSNMR) that the hydrogenated C60 are only present in a small proportion (see next 

section). Usually, the mode v4 at 1422 cm-1 for alkali metal fullerides will present a significant 

shift, such as for K3C60 to 1393 cm-1, and Rb4C60 to 1363 cm-1. However, the down or upshift 

of v4 mode at 1422 cm-1 was not observed for all Ru@C60 samples. That is probably because 

of the different bonding mode between the Ru@C60 and alkali metal fullerides.54  

Since carbon monoxide is a sensitive probe for studying the surface composition of metal 

nanoparticles, CO adsorption on the Ru@C60 nanostructures was investigated by ATR-IR. 

Carbon monoxide was reacted with solid samples of Ru@C60 in a Fisher-Porter bottle under 

mild conditions (1.5 bar of CO, r. t., 24 h). Then, ATR-IR spectra were recorded with a 

spectrometer available in a glove box (Figure 2.26).  

 

Figure 2.26. ATR-IR spectra of Ru@C60 exposed to CO with ratios of 1/1, 2/1, 5/1 and 10/1 from 

up to down. 

After CO exposure, Ru@C60 1/1, 2/1, 5/1 and 10/1 samples display at three new peaks in the 

range of 1900-2130 cm-1, which are typical of metal terminal CO species. In the Ru@C60 1/1 
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nanostructure, the peaks appear at 1998, 2053 and 2120 cm-1. In a previously reported 

coordination nickel-bridged fullerene polymer [Ni(Me3P)2( -η2,η2-C60)]∞,56 each nickel atom 

is linked in the polymer with two fullerene units by η2-type bonds to the [6,6] fullerene bonds. 

Taking into account the cis coordination of fullerenes to the Ru atom, CO molecules are likely 

to coordinate to the Ru atom to form species such as [Ru(CO)3( -η2,η2-C60)]∞. The 

[Ru(CO)3(alkene)2] complexes typically show three adsorption bands in the CO stretching 

region, in particular the [Ru(CO)3(C2H4)2] complex displays three bands at 2081, 2005 and 

1995 cm-1.57 Considering that fullerene acts as an electron-deficient olefin, the bands should 

be shifted to highest stretching frequencies in a [Ru(CO)3(η2-C60)2] species compared to the 

[Ru(CO)3(C2H4)2] complex, fitting with the spectrum obtained for the Ru@C60 1/1 sample. 

However, species containing more or less CO ligands, as well as a mixture of species, cannot 

be discarded, as the signals are relatively broad. Ru@C60 2/1, 5/1 and 10/1 samples show the 

same pattern, although the signal at 1998 cm-1 becomes broader when increasing the Ru NPs. 

We assigned this broad signal, which increases in intensity with the number of Ru 

nanoparticle present on the sample, to terminal CO adsorbed on the Ru nanoparticles surface 

as it usually appears in the region of 1970-2000 cm-1.58 For higher Ru/C60 ratios, the ATR-IR 

signal intensity was too low to be observed. 

2.2.3.5 Solid State NMR 

To confirm the structure of Ru@C60, 1H and 13C-NMR spectra were measured; they are 

presented in Figure 2.27. Figure 2.27b shows the 13C spectra of the Ru@C60 with ratio 1/1, 

2/1, 5/1 and 10/1, which reveal an intense peak at 143 ppm and small peaks in the range 50-10 

ppm. The chemical shift at 143 ppm corresponds to sp2-carbon of pristine C60, and the 50-10 

ppm peaks can be assigned to the hydrogen adduct carbon. Signal enhancement in the 50-10 

ppm region with H-C cross polarization disclosed further the signal at 50-10 ppm are 

hydrogen adducted carbon, as shown in Figure 2.28. 
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Figure 2.27. SSNMR spectra of Ru@C60 with ratio of 1/1, 2/1, 5/1 and 10/1 from bottom to top, a) 

1H-NMR; and b) 13C-NMR. 

On the basis of the 1H-13C cross polarization NMR spectra, the presence of hydrogen on 

Ru@C60 could be directly verified by 1H-NMR spectra, as shown in the Figure 2.27a. There 

are two broad peaks at 4.0 and 0.7 ppm, which are accompanied by 4 spinning sidebands. 

Although hydrogenated C60 was detected in our sample, most of the sample consists in 

non-hydrogenated C60 and only a small amount was hydrogenated. 
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Figure 2.28. CP/MAS-13C SSNMR spectra of Ru@C60 with ratio of 1/1, 2/1, 5/1 and 10/1 from 

bottom to top.  

2.2.3.6 EXAFS 

The Ru K-edge X-ray absorption spectra of samples Ru@C60 1/1 and 2/1 were obtained in N2 

and after heating in 4% H2/He for 1h at 150 C, and the XANES energy is 22.1244 keV for 

both spectra. Figure 2.29a shows the X-ray absorption near edge (XANES) spectra of 

Ru@C60 1/1 in N2 and after high temperature treatment in H2. It was found that the shape of 

the XANES does not change, indicating no change in the Ru oxidation state. And there is no 

obvious change of the structure even after high temperature treatment under H2. After high 

temperature treatment under H2, the magnitude of the Fourier transform of Ru@C60 1/1 shows 

a peak below about 2 Å (phase uncorrected distance) and a small peak at longer distance in, 

while the Ru@C60 2/1 have two peaks: one is below 2 Å and one is at 2.5 Å (Figure 2.29b). 
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Figure 2.29. a) Ru K-edge XANES from 22.09 to 22.17 keV (red: Ru@C60 1/1 N2 at RT, and blue: 

Ru@C60 1/1 H2 at 150C); b) Magnitude of the Fourier Transform of k2-weighted Ru EXAFS (k2: 

k = 2.8 – 11.3 Å-1) (blue: Ru@C60 2/1, H2 at 150C, red: Ru@C60 1/1, H2 at 150C); and c) Ru 

K-edge XANES from 22.09 to 22.17 keV (blue: Ru@C60 1/1, H2 at 150C red: Ru@C60 2/1, H2 at 

150C). 

The fit of the Fourier transform is given in Table 2.7. The low R peak is fit with a Ru-C phase 

and amplitude functions calculated by FEFF, and gives 8.3 Ru-X bonds at 2.24 Å. Typical 

Ru-O bonds are below 2.0 Å, while Ru-C are longer at about 2.2 Å; thus it is likely that the 

light scatter is Ru-C. Within the error of the analysis, the fits of the sample treated in H2 at 

150 C, is identical to that in N2 at r.t. For Ru@C60 1/1, in both the N2 and H2 spectra there is 

no indication of Ru-Ru scatters typical of metallic Ru NPs. There is a small peak at about 3 Å, 

which is likely due to a Ru-C-Ru scatter; however, the peak is too small to fit reliably. 

The XANES and magnitude of the Fourier transform of Ru@C60 1/1 and 2/1 heated to 150 C 

in H2 are shown in Figures 2.29c and 2.29b, respectively. The XANES energy of Ru@C60 2/1 

is the same as Ru@C60 1/1, e.g., 22.1244 keV; however, the shape of the XANES is slightly 

different, indicating some small difference in structure. The magnitude of the FT of Ru@C60 
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2/1 shows that there are fewer light scatters and a new higher R peak at about 2.5 Å (phase 

uncorrected distance). Fits of the EXAFS spectra indicate there are fewer Ru-C, 5.1 Ru-C at 

2.24 Å, compared to sample Ru@C60 1/1. In addition, the scatter at longer R is due to Ru-Ru 

scatter with a coordination number of 2.2 at 2.63 Å, typical of metallic Ru NPs. Since 

non-metallic Ru-C has 8 bonds, a coordination number of 5.1 indicates that approximately 61% 

of the Ru is bonded to C in the Ru@C60 2/1 sample. The remaining Ru is, therefore, metallic, 

i.e., 39%. For the metallic fraction, the true coordination number is the measured coordination 

number divided by the fraction of metallic Ru, or 2.2/0.39, or 5.6. For fcc and hcp metals a 

coordination number of 5.6 is consistent with a particle size of about 1.5 nm.59 In summary, 

sample Ru@C60 1/1 has 8 Ru-C bonds, which are stable to reduction in H2 at 150°C; while in 

sample Ru@C60 2/1, approximately one-third of the Ru is present as 1.5 nm metallic Ru NPs. 

In the latter, the remaining two-thirds Ru-C are identical to those in Ru@C60 1/1 sample. 

Table 2.7. Ruthenium EXAFS fits of samples Ru@C60 1/1 and 2/1. 

Sample 
XANES 

Energy, keV 
Scatter N R, Å 2 (x 103) Eo, eV 

Ru Foil (ref.) 
Ref 

22.1170 Ru-Ru 12 2.68 0.0 8.5 

RuO2 22.1285 Ru-O 5.8 1.97 3.0 0.5 

Ru(NH3)6Cl3 22.1268      

Ru(NH3)6Cl2 22.1248      

Ru@C60 1/1 
N2 at RT 

22.1244 Ru-C 8.3 2.21 3.0 7.7 

Ru@C60 1/1 

H2 at 150C 
22.1244 Ru-C 8.3 2.21 3.0 8.7 

Ru@C60 2/1 

H2 at 150C 
22.1241 

Ru-C 5.1 2.21 3.0 9.4 
Ru-Ru 2.2 2.63 4.0 1.5 

The result of EXAFS are thus in good agreement with the tomography and theoretical DFT 

calculations. In magnitude of the Fourier transform spectra of Ru@C60 1/1 and 2/1 show that 

these two samples have a different structure as displayed by tomography (polymer structure if 
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ratio <1, and “core-shell” structure for ratio >1). DFT calculation have confirmed that Ru is 

bonded to 8 carbon atoms in a stable η2, η6 fashion (see below). 

2.2.3.7 XPS 

XPS measurements were performed to characterize the oxidation state of Ru. Although 

ruthenium is typically analyzed in XPS by following the strong 3d photoelectons, here the 

Ru-3p region was prefered in order to avoid interferences from the carbon substrates (the 

binding energy of Ru-3d overlaped with the C-1s). The analysis of the two samples Ru@C60 

1/1 and 20/1 (Figure 2.30) shows the presence of three element Ru, C and O. The C and Ru 

arise from our sample, while the presence of O is probably due to Ru oxidation during sample 

preparation for the analysis. Compare to the 3p3/2 binding energy of pure Ru metal at 460 

ev,60 the BE of the Ru@C60 1/1 (462.78 ev) and 20/1 (461.68 ev) were clearly higher.  

 
Figure 2.30. XPS spectra of the Ru@C60 a) binding energy of ratio 1/1and 20/1; b) Peak fitting of 

1/1; and c) Peak fitting of 20/1. 
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For Ru@C60 1/1, the Ru 3p region was divided into two components in Figure 2.30b,61 which 

were indentified as Ru(0) (462.2 ev) and Ru(IV) (464.2 ev). The Ru@C60 20/1 3p pattern was 

also deconvoluted into two components Ru(0) (461.5 ev) and Ru(IV) (463.2 ev) in Figure 

2.310c. Since the sample preparation for XPS analysis is under air, the Ru will be oxided, 

therefore the presence of RuO2 in our sample is reasonable. From the shift of the Ru(0) peak 

we deduced that the combination of Ru and C60 lead to a significant charge transfer as shown 

by Raman.  

Table 2.8. Binding energy of Ru3d, C 1s and O1s 

Entry Position FWHM Conc.% 

Ru 3d 

279.9 0.7 2.9 

284.1 1.0 1.9 

280.6 1.3 0.7 

284.8 1.5 0.5 

  6.0 

C 1s 

284.2 1.1 37.0 

285.0 1.1 29.8 

286.3 1.1 8.4 

288.7 1.0 5.7 

  80.8 

O 1s 

531.7 1.4 5.3 

533.1 1.4 5.3 

534.5 1.6 0.7 

  11.3 

C1 2p   1.9 
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XPS analyses were also performed for sample Ru@C60 10/1 in a special apparatus allowing to 

perform all the operation in a glove box under argon atmosphere (Figure 2.31 and Table 2.8). 

The results of binding energy of Ru 3d and Ru 3p (Figures 2.31-a and b) indicate the Ru is 

indeed in the metallic state, with only a small propostion that is oxidized, and the binding 

energy of C 1s (284.2 ev) suggesting the presence of C60. 

 

Figure 2.31. XPS spectra of the Ru/C60. 

2.2.3.8 DFT Calculations 

There are five possible sites on C60 surface where Ru atoms may be adsorbed (Figure 2.32): (i) 

an atop site (η1) on which the Ru atom is coordinated to a single carbon atom, (ii) a bridge site 

between two hexagonal rings (η2(6-6)), (iii) a bridge site between pentagonal and hexagonal 

rings (η2(6-5)) on which a Ru atom sits on the C–C bond and forms two Ru-C bonds, (iv) a 

hollow site above the center of a pentagonal ring of C atoms (η 5), and (v) a hollow site above 

the center of a hexagonal ring of C atoms (η6).  
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Figure 2.32. Possible metal-C60 bonding modes. 

For a single Ru atom interacting with one C60, the most stable configuration is η2(6), with an 

adsorption energy of -48 kcal/mol. And the following is η2(5), η6, η5, with energies of -39, -38, 

and -35 kcal/mol, respectively, while the top site is instable. The better stability of the η2(6) site 

is not surprising, as the double bond shared by two hexagons corresponds to a maximum of 

the electronic density of the fullerene. Experimentally, this coordination mode has been 

observed for Pt complexes and suspected for Ru ones.62 These adsorption energies are 

significantly larger than the ones obtained for Ni, Au or Ta atoms for instance, with typical 

values smaller than -25 kcal/mol,30, 63 but remain in very good agreement with values obtained 

for Rh, Ir, Pd and Pt atoms.64 Using the same computational settings, Pt atoms bind more 

strongly than Ru ones on C60 since the adsorption energy of a Pt atom is already -66 kcal/mol. 

This value is also in good agreement with previously reported values.64-65 For the η2(6) and η2(5) 

sites, the smallest Ru-C bond lengths are 2.06 Å. Then, the Ru-C bond length increases with 

the increase of adsorption energy for the different sites. For the η6 site, two Ru-C 

bond-lengths are 2.25, two others Ru-C distances are 2.34 when the last ones are 2.42 Å. It 

means that a single Ru prefers to lie in a displaced hollow site than a highly symmetric site. 

Finally, the Ru-C distances in the less stable site, i.e. in the η5 position, are 2.21 Å. 

Interestingly the most stable Ru-C60 complex is magnetic with a moment of β B.  

η1

η5 η6

η2(6-5) η2(6-6) η3

η4
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If now, we take into account the real source of Ru in the calculation, the [Ru(COD)(COT)] 

precursor, we have to consider that it may coordinate even when it is partially decomposed. 

The [Ru(COD)] species adsorbs, in a η2(6) site, with two short Ru-C bond-lengths of 2.11Å 

and adsorption energy of -58 kcal/mol. The η1 site has almost the same energy but with a 

smaller Ru-C distance, i.e 2.04 Å. On the contrary, the [Ru(COT)] species has a preference 

for the η1 site, with an adsorption energy of -38 kcal/mol, while the η2(6) site is 4 kcal/mol 

higher. However when using the following energy balances: [Ru(COD)(COT)] + C60  

[Ru(COT)]/C60 + COD or [Ru(COD)(COT)] + C60  [Ru(COD)]/C60 + COT, meaning that 

we take into account the precursor dissociation energy, the energy differences become largely 

positive: +21 and +28 kcal/mol, respectively. As a result, the precursor has to be completely 

decomposed by the action of H2 in order to allow for the creation of Ru-C60 bond, and no 

partially decomposed Ru complexes can be stabilized on the C60 surface. In interaction with 2 

fullerenes, a single Ru atom will preferably coordinate in a η2-η2 position, bridging two η2(6) 

positions, with 4 Ru-C bond-lengths of 2.07 Å, as shown in Figure 2.33a. This complex 

adopts then a dumbbell like structure, as for a Ni 63a, 66 or Pt atoms.64-65 The corresponding 

stabilization energy of this nonmagnetic complex is large, -44 kcal/mol, when adding a C60 to 

an existing Ru-C60 complex. However, this binding energy for a Ru complex is still lower 

than the value of -65 kcal/mol, obtained at a semi-empirical level, on a C60-Pt-C60 complex.65b 

It suggests again that a Ru atom has a little less affinity for C60 than a Pt one.  

 

Figure 2.33. Optimized structure of the: a) η2(6)-η2(6) C60-Ru-C60 complex; and b) η2(6)-η6 

C60-Ru-C60 complex. 
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Interestingly, another stable structure that exhibits a η2(6)-η6 coordination mode in (Figure 

2.33b), lies only 12 kcal/mol higher in energy. The corresponding Ru-C distances are ranging 

from 2.07 to 2.85 Å for this site that connects 8 carbons to the Ru atom. 

This relatively small energy difference between the two coordination modes can be reduced 

by 5 extra kcal/mol due to the presence of adsorbed hydrogen atoms on the C60, in the vicinity 

of the Ru atom, as proposed experimentally. Indeed, a significant change of the Ru 

coordination is observed upon H2 adsorption since the most stable structure possesses a 

2(6)-4 character. The thermodynamics of the hydrogenation of C60 have been studied using 

DFT calculations several years ago.67,68 Since it has been shown that the 1,2 addition of a [6,6] 

bond is energetically the most favorable adsorption site of a single H2 molecule, we have used 

this configuration through all our calculations. Considering that we have only a partial 

hydrogenation of the fullerenes, we have limited our study to systems that have been 

hydrogenated only once, as shown in Figure 2.34. Energetically speaking, the hydrogenation 

of a single C60 is favorable with an adsorption energy of -25 kcal/mol. Since H2 are in excess 

during the synthesis, and that a H2 molecule spontaneously dissociates on the metallic center 

of a C60-Ru-C60, the presence of C60-Ru(H)2-C60 complexes are almost certain since it 

corresponds to more complete coordination sphere of the metal. The optimized geometry that 

corresponds to this state is given in Figure 2.34-a. The Ru-H distances are 1.59 Å, when the 

H-H one is also 1.59 Å, a clear evidence of the H2 dissociation. The formation energy is 

negative: -79 kcal/mol, a value that is in the same range of the C60-Ru-C60 complex formation 

energy in its 2-6 configuration (-72 kcal/mol). Without discussing the migration process of 

the hydrides on the fullerenes, it is noteworthy that a C60-Ru-C60(H)2 complex has almost the 

same energy (+1.5 kcal/mol), despite the loss of coordination of the metallic center. A side 

view of the corresponding structure is given in Figure 2.34b. 



Chapter 2 Synthesis and characterization of Ru@C60 nanostructures 

113 

 

 
Figure 2.34. a) Optimized structure of the C60-Ru(H)2 -C60 complex; and b) Optimized structure 

of the C60-Ru-C60(H)2 complex. 

In the case of the dumbbell like structure (Figure 2.35a) it seems obvious that a third C60 can 

be easily coordinated to the central Ru atom. Due to the η1 coordination mode of the third 

fullerene, this reaction is still thermodynamically favorable, but the energy gain is only -11 

kcal/mol. This stable Ru(C60)3 configuration (Figure 2.35c) might be viewed as a potential 

linker between ideal linear polymeric chains, as described in the following. 

The two C60-Ru-C60 complexes (Figure 2.35a, 2.35b) can thus be viewed as elementary bricks 

for hypothetical 1D chains made of -C60-Ru-C60- with a 1Ru/1C60 ratio. Figure 2.35d shows a 

first model made of a unit cell that contains only 1 Ru and 1 C60. The corresponding 

optimized lattice constant is around 10.4 Å. In this particular state, the four smallest Ru-C 

distances are lying in 2.04 to 2.11 Å range and two others are at 2.42 and 2.45 Å, when the 

next nearest C atoms are 2.66 Å away. As a consequence, the Ru atom has a η2(6)-η4 

coordination mode in this case. To allow for more flexibility in the coordination mode, we 

have also used a model made of 2 Ru atoms and 2 C60 in the calculation cell. As a result of 

rotating slightly one of the C60 molecule on a vertical axis, a η2(6)- η6 coordination mode is 

stabilized, as shown in Figure 2.35e. In this structure a Ru atom is not having a perfect hollow 

position with 8 different Ru-C bond-lengths: 2.04, 2.11, 2.14, 2.18, 2.34, 2.44, 2.53 and 2.57 
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Å. Almost the same values are yielded for the second metallic center. This coordination mode 

is in good agreement with EXAFS results.  

If we now try to complete the coordination sphere of one Ru atom by approaching a H2 

molecule, it spontaneously dissociates and push the Ru to change its coordination to be 

η2(6)-η3 with two additional Ru-H distances are 1.59 Å, see Figure 2.35f. When these two 

hydrides are transferred to one of the C60, the η2(6)-η6 coordination mode is recovered but with 

a slight elongation of the largest Ru-C distances, that are now between 2.60 and 2.70 Å 

(Figure 2.35g). In this case, the Ru atoms provide large electronic density to the neighboring 

C60, with a charge transfer of around 0.6 e-. This value is not surprising since as already stated 

C60 is a well-known electron acceptor and it is in reasonable agreement with Raman 

spectroscopy results. From the different microscopy techniques, it seems obvious that outside 

the spheres that contain the polymeric phase, Ru NPs are formed. To propose an answer at the 

molecular level of this statement, we have addressed two issues: are the thermodynamics in 

favor of Ru NPs formation? Could it be the solvent that protects metallic atoms and avoid 

Ru-Ru formation bonds? 

Starting from an ideal 1D polymeric chain (Figure 2.35a), and thus adding a second metal 

atom or adding 2 other ones is indeed energetically favorable (Table 2.1). An interesting 

feature is that the lattice parameter values are increased to accommodate the creation of new 

Ru-C bonds, and thus could be experimentally detected.  
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Figure 2.35. Side views of a) C60-Ru-C60 complex in the dumbbell like structure; b) in the η2(6)-η6 

coordination mode; and c)of the most stable Ru-(C60)3 complex. Ideal 1D chains and their 

corresponding lattice parameters for 1 Ru/ 1 C60 ratio are also given: in d) for the η2(6)-η4 and in 

e) for the the η2(6)-η6 state. In the last two panels are given the partially hydrogenated ideal 

polymeric chains: in f) one Ru atom is hydrogenated or one C60 is in g). Ru atoms are in grey, 

carbon atoms in brown and H in white. 

Moreover, Figure 2.36a shows that the distance between the two Ru1-Ru2 atoms is very 

unusual for metallic bond with a value of 2.28 Å. With 4 Ru atoms, see Figure 2.36b, the 

Ru4-Ru2 bond-length is 2.26 Å, the Ru1-Ru2 is slightly elongated (+0.09 Å) when the last one 

is 2.35 Å. From Table 2.1, where energy gains per Ru atom are compiled in various binding 

situations, i.e. in single complexes with different ratio Ru/C60, in some ideal 1D polymeric 

chains or even in small cluster models and finally in the bulk, we can provide some 

interesting insights of the reaction media behavior. Indeed, when comparing the stabilization 

energies of a Ru atom involved in a 1D chain, and one in small clusters or even worse in the 

bulk, it is clear that Ru atoms prefer to bind to other Ru atoms. If one considers Ru13 cluster 

formation energy (-96 kcal/mol), the two processes are thermodynamically favorable. At this 

step, one can assume that the polymeric phase, with a ratio close to 1Ru/1C60 without 
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excluding small clusters of Run (n ≤ γ) linking fullerenes is the kinetic product of the reaction, 

and then larger Ru NPs are created, producing the thermodynamic products of the reaction.  

 

Figure 2.36. Side views and lattice parameters of Ru@C60: a) ratio of Ru/C60 = 2/1; and b) ratio 

of Ru/C60 = 4/1. Ru atoms are in grey, carbon atoms in brown. 

To support this idea we have also calculated the binding energy of Ru13-(C60)x complexes with 

x up to 6. The corresponding values are slightly lower than the others values given in Table 

2.1: the energy gain per C60 is maximal for x = 1 and x = 2, with -87 and -88 kcal/mol, 

respectively, and decreases when x increases: -77, -74, -61 kcal/mol. See Figure 2.37 for 

molecular models of the stable Ru13-C60, Ru13-(C60)2, and Ru13-(C60)6 complexes. It means 

that when fullerenes are in excess, they have also the possibility to strongly bind metallic 

NPs. 

However, in the present theoretical picture of the system, it is not clear why the polymeric 

phase is stabilized and has a net preference for the 1Ru/1C60 ratio. To propose a reasonable 

explanation, at the atomic scale, we have further investigated the effects of two different 

solvent molecules (Figure 2.38 and Table 2.9), i.e. toluene and dichloromethane, on the 

stabilization of the polymeric phase. Since the solvent molecules interact only weakly with 

the metallic center, the main reason probably is a steric effect to avoid the agglomeration of 

Ru atoms. 



Chapter 2 Synthesis and characterization of Ru@C60 nanostructures 

117 

 

 
Figure 2.37. Optimized geometries of Ru13-C60 (a), Ru13-(C60)2(b) and Ru13-(C60)6 (c) complexes. 

Ru atoms are in grey and carbon atoms in brown. Ru-C bonds are represented for values 

smaller than 2.5 Å. As a result one can identify 3 Ru atoms in η2 positions for Ru13-C60 system, 

and 3 others Ru atoms having the same coordination mode for the Ru13-(C60)2 complex. When 6 

fullerenes interact with the Ru13 cluster, four C60 are bound with 3 Ru atoms, one with 2 Ru 

atoms and the last one is in atop position. 

 

Figure 2.38. Side views of Ru-C60 polymer chain structure in toluene and CH2Cl2. 

A single toluene molecule or a dichloromethane molecule interacts weakly with fullerenes, 

with adsorption energies of -9 and -4 kcal/mol, respectively. These energies are slightly larger 

when the molecules are pointing to Ru metallic center of the 1D chain model, with values of 

-10 and -12 kcal/mol respectively, which are typical of van der Waals interactions. In Figure 
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2.38-a,b, the optimal geometries with the metallic center decorated by four solvent molecules 

are shown. The corresponding energetic balances are similar, with binding energies of -45 

kcal/mol for the interaction with 4 CH2Cl2 molecules and -49 kcal/mol for the toluene 

molecules. For the dichloromethane case, only one Cl interacts with the Ru atom with a Ru-Cl 

bond-length of 2.4 Å, the others neighboring atoms being above 4.4 Å. Interestingly, the Ru 

center is well protected by steric effects from any under-attack, due to the presence of the 

fullerenes. The bottom molecule has a C center placed at 5.4 Å when the three others have 

smaller C-Ru distances below 5 Å. This protection is even more pronounced when toluene is 

the reaction solvent, due to the presence of the methyl groups, stabilizing more the polymeric 

phase and avoiding the agglomeration of metals. 

Table 2.9. Stabilization energy of RuC60 polymer chain structure with different numbers of 

solvent molecules: toluene and dichloromethane 

Stabilization Energy (kcal/mol) CH2Cl2 C7H8 

Single C60 -4 -9 

Polymer Phase model 1C60-1Ru 
 

1 molecule of solvent -10 -12 

2 molecules of solvent -25 -22 

4 molecules of solvent -45 -49 
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Figure 2.38. Side views of C60-Ru-C60 complex in the dumbbell like structure (a) with the 

metallic center decorated by CH2Cl2 molecules, and (b) with toluene molecules. Panel (c) shows 

the resulting geometry of the adsorption of a N2 molecule on the Ru center. Ru atoms are in grey 

and carbon atoms in brown, while Cl are in green, H in white, and Nitrogen in blue. 

Finaly, we have also tested the effect of the interaction between the Ru atom and N2 

molecules, to exclude this interaction as a possible explanation for the coordination between 8 

light elements and the Ru center as determined by the EXAFS experiments. Indeed the 

corresponding interaction is weak (-10 kcal/mol), meaning that when the system is heated up, 

the N2 molecules should desorb. Since the EXAFS results are not thermally dependent, one 

can reject this hypothesis too. 

2.3 Conclusions 

In summary, the decomposition reaction of [Ru(COD)(COT)] in the presence of C60 has been 

investigated, and the products of the reaction characterized. The choice of the solvent affects 

the course of the reaction. Spherical particles are selectively produced in solvent with low 

viscosity and high permittivity, such as dichloromethane. The particle size depends on the 

nature of the solvent. According to the Ru/C60 ratio, these spherical particles can be surface 
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decorated with metallic Ru atoms, clusters (<0.6 nm) or NPs (1.5-2.5 nm), which are 

stabilized by C60. The structure of the spherical particles has been studied. EXAFS, WAXS, 

and DFT calculations point to a polymeric structure, in which each Ru atoms is coordinated to 

two C60, with a 2(6)-6 coordination mode. Solvent molecules contribute to stabilize this 

fulleride. This polymeric phase is the kinetic product of the reaction. Then, at Ru/C60 ratio ≥ β, 

larger Ru NPs are created on their surface, producing the thermodynamic products of the 

reaction. During the decomposition reaction under hydrogen, partial hydrogenation of the 

fullerene occurs, catalyzed by the ruthenium. Significant charge transfer from ruthenium to 

fullerene has been evidenced by Raman spectrometry and XPS for all the prepared materials, 

which is an important factor to take into account, particularly if we consider the possible 

reactivity of these fullerides. We believe that these results should open the possibility to draw 

important structure/properties relationships. 

2.4 Experimental section 

General Methods 

All operations were carried out under argon atmosphere using standard Schlenk techniques or 

in an MBraun glovebox. Solvents were purified by standard methods or by an MBraun 

SPS-800 solvent purification system. [Ru(COD)(COT)] was purchased from Nanomeps 

Toulouse, fullerene C60 (99.5%) from Sigma-Aldrich, and CO and H2 from Air Liquid. All 

these reactants were used as received. 

The ruthenium content was established by inductively coupled plasma optical emission 

spectroscopy (ICP-OES) performed in a Thermo Scientific ICAP 6300 instrument. Solid state 

NMR (MAS-NMR) with and without 1H-13C cross polarization (CP) were performed at the 

LCC on a Bruker Avance 400WB instrument equipped with a 4 mm probe with the sample 

rotation frequency being set at 12 kHz unless otherwise indicated. Measurements were carried 
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out in a 4 mm ZrO2 rotor. ATR-IR spectra were recorded on a Perkin-Elmer GX2000 

spectrometer available in a glovebox, in the range 4000-400 cm−1. The Raman spectra have 

been recorded with an Explora (Horiba) spectrometer in backscattering geometry using an 

opical objective x100 (NA 0.9). The wavelength of the incident laser has been 532nm and the 

laser power was set to 1mW. 

TEM analyses. Some TEM and HREε analyses were performed at the “Centre de 

microcaracterisation Raimond Castaing, UεS γ6βγ, Toulouse” by using a JEOδ JEε 1011 

CX-T electron microscope operating at 100 kV with a point resolution of 4.5 Å and a JEOL 

JEM 1400 electron microscope operating at 120 kV. The high resolution analyses were 

conduct using a JEOL JEM 2100F equipped with a Field Emission Gun (FEG) operating at 

200 kV with a point resolution of 2.3 Å. The approximation of the particles mean size was 

made through a manual analysis of enlarged micrographs by measuring at least 200 particles 

on a given grid. Other TEM micrographs were acquired with a JEOL 2100F S/TEM 

microscope equipped with a FEG operating at 200 kV, a spherical aberration probe corrector 

and a GATAN Tridiem energy filter. The resolutions attained are od 2 Å and 1.1 Å under 

parallel TEM mode and scanning STEM modes, respectively. For STEM-HAADF analyses 

the spot size was of 0.13 nm, a current density of 140 pA, the camera focal length was 10 cm, 

corresponding to inner and outer detection angle of the annular detector of about 60 mrad and 

160 mrad. For tomography experiments, the acquisitions of the tilt images series were 

performed using a high tilt sample holder, under angles spanning from +72 to -72 degrees, 

with projections taken every 2° according to Saxton scheme. The irradiation damage was 

limited by using low electron doses. The images were first roughly aligned using a 

cross-correlation algorithm. A refinement of this initial alignment and a precise determination 

of the tilt axis direction were then obtained using the IMOD software where the centers of 

several Au nanoparticles from the analyzed group were used as fiducial markers.69 The 
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volume reconstructions have been computed using an iterative approach consisting of a 

simultaneous algebraic reconstruction technique implemented using the TOMO3D software,70 

the number of iterations not exceeding 40. Visualization and quantitative analysis of the final 

volumes were carried out using ImageJ software. 

DFT Calculations. DFT calculations were carried out using the Vienna ab initio simulation 

package VASP.71 The code uses the full-potential projector augmented wave (PAW) 

framework.72 Exchange-correlation effects have been approximated using the PBE 

functional73 and applied in spin-polarized calculations. Besides to correctly describe weak 

intermolecular forces between Ru-C60 complexes and solvent molecules, we have also used 

the optB86b-vdW functional.74 We have checked that this scheme provide accurate 

geometries when van der Waals forces are the major bonding origin, as for instance in the C60 

crystalline phase. A kinetic-energy cutoff of 400 eV was found to be sufficient to achieve a 

total-energy convergence within several meV, considering a k-point sampling with a (1×1×5) 

grid for the polymeric state or Gamma-point only calculations for isolated molecules and 

complexes, in conjunction with a gaussian smearing with a width of 0.05 eV. During 

geometry optimization runs and cell relaxations, all the atoms were fully relaxed until forces 

on individual atoms were smaller than 0.01 eV/Å. Calculation cells for isolated molecules and 

complexes were 25×26×27Å, to avoid spurious interactions between periodic images, when 

the same lattice parameters on (Ox) and (Oy) were kept fixed for the polymeric phase. Figures 

of the different geometries were produced thanks to the 3D visualization program VESTA.75  

WAXS, EXAFS, and XPS analyses. Wide Angle X-ray Scattering measurements were 

performed at CEMES on a diffractometer dedicated to Pair Distribution Function (PDF) 

analysis: graphite-monochromatized Molybdenum radiation (0.07169nm), solid state 

detection and low background setup. Samples were sealed in Lindemann glass capillaries 

(diameter 1.5mm) to avoid any oxidation after filling in a glove box. For all samples data 
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were collected on an extended angular range (129 degrees in 2theta) with counting times of 

typically 150s for each of the 457 data points, thus allowing for PDF analysis. Classic 

corrections (polarization and absorption in cylindrical geometry) were applied before 

reduction and Fourier transform. 

X-ray absorption measurements were made on the bending magnet beam line of the Materials 

Research Collaborative Access Team (MRCAT) at the Advanced Photon Source, Argonne 

National Laboratory. The data was collected in step-scan, transmission mode. The 3 pre-edge 

regions, from -250 to -50 eV, -50 to -10eV and -10 to 30eV, were scanned in 10, 5 and 0.4 eV 

steps, respectively. The EXAFS was also scanned in 3 regions, to 6, from 6-10 and from 

10-13 Å-1. The data acquisition time in each region was increased to give a high signal to 

noise in the k2-weighted chi. The Ru on C60 samples were handled and loaded in the absence 

of air and water in a glove box. The samples were placed in an environmental cell for data 

acquisition. The samples were additionally treated in 4% H2/He at 150°C, cooled to room 

temperature and data taken without exposure to air. A ruthenium foil spectrum was acquired 

simultaneously with each measurement for energy calibration. Samples were pressed into a 

cylindrical holder capable of holding 6 samples with amounts chosen to give a ruthenium 

edge step of ca. 0.5-1.0. The spectra were obtained at room temperature without treatment and 

after heating in 4% H2/He at 150°C for 1h and cooled to RT. RuO2, Ru(NH3)6Cl3, 

Ru(NH3)6Cl2, Ru(IV), Ru(III) and Ru(II), respectively, reference compounds were obtained 

from Aldrich and used to determine the shift in the XANES energy due to change in oxidation 

state. Phase shifts, backscattering amplitudes were obtained from reference compounds: RuO2 

(4 Ru-O at 1.99 Å and 2 Ru-O at 1.94 Å, or an average of 6 Ru-O at 1.97 Å) and Ru foil (12 

Ru-Ru at 2.68 Å). The XANES edge energy was determined from the inflection point of the 

leading edge, i.e., the maximum in the first derivative. Standard procedures using 

WINXAS3.1 software were used to extract the EXAFS data. The coordination parameters 
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were obtained by a least square fit in k- and r-space of the isolated multiple-shell, k2–

weighted Fourier transform data. The samples were also analyzed by X-ray photoelectron 

spectroscopy (XPS) using a VG Escalab MKII spectrophotometer, which operated with a non 

monochromatized Mg K source (1253.6 eV). 

Synthesis of Ru@C60 nanostructures 

In a typical experiment the [Ru(COD)(COT)] complex was introduced in a Fisher-Porter 

bottle, and a solution of fullerene C60 in the desired solvent was then introduced in the reactor. 

The resulting purple solution was stirred for 30 min at room temperature, after which the 

bottle was pressurized with 3 bar of H2. The solution, which turned black after few min of 

reaction, was kept under stirring overnight at room temperature. After this period of time, 

excess of H2 was eliminated and the volume of solvent was reduced under vacuum. Pentane 

was then added to the colloidal suspension to precipitate the Ru@C60 nanostructures. After 

filtration under argon with a cannula, the black solid powder was washed twice with pentane 

and filtrated again before drying under vacuum. For each ratio studied, the quantities of 

reactants are detailed hereafter: 

Ru@C60 2/3: 16.3 mg (0.0517 mmol) of [Ru(COD)(COT)]; 55.8 mg (0.0776 mmol) of 

fullerene C60 and 250 mL of CH2Cl2. Yield: 52.3 mg. Ru: 6.35 %. 

Ru@C60 1/1: 30.0 mg (0.10 mmol) of [Ru(COD)(COT)]; 68.5 mg (0.10 mmol) of fullerene 

C60 and 300 mL of CH2Cl2. Yield: 68.1 mg. Ru: 10.6 %.  

Ru@C60 2/1: 80 mg (0.25 mmol) of [Ru(COD)(COT)]; 91.3 mg (0.126 mmol) of fullerene 

C60 and 400  mL of CH2Cl2. Yield: 100 mg. Ru: 16.7 %.  

Ru@C60 5/1: 200 mg (0.63 mmol) of [Ru(COD)(COT)]; 91.3 mg (0.126 mmol) of fullerene 

C60 and 400 mL of CH2Cl2. Yield:129  mg. Ru: 35.6 %.  
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Ru@C60 10/1: 400 mg (1.27 mmol) of [Ru(COD)(COT)]; 91.3 mg (0.126 mmol) of fullerene 

C60 and 400  mL of CH2Cl2. Yield: 188 mg. Ru: 48.7 %.  

Ru@C60 20/1: 100 mg (0.32 mmol) of [Ru(COD)(COT)]; 11.4 mg (0.016 mmol) of fullerene 

C60 and 50  mL of CH2Cl2. Yield: 36.9 mg. Ru: 50.4 %.  

Ru@C60 30/1: 150 mg (0.48 mmol) of [Ru(COD)(COT)]; 11.4 mg (0.016 mmol) of fullerene 

C60 and 50 mL of CH2Cl2. Yield: 48 mg. Ru: 54.7 %. 

Ru@C60 50/1: 250 mg (0.79 mmol) of [Ru(COD)(COT)]; 11.4 mg (0.016 mmol) of fullerene 

C60 and 50 mL of CH2Cl2. Yield: 80 mg. Ru: 61.9 %.  

T-Ru@C60 1/1: 30 mg (0.10 mmol) of [Ru(COD)(COT)]; 68.5 mg (0.10 mmol) of fullerene 

C60 and 100 mL of toluene. Yield: 67 mg. Ru: 6.8 %. 

T-Ru@C60 10/1: 131 mg (0.415 mmol) of [Ru(COD)(COT)]; 30 mg (0.0416 mmol) of 

fullerene C60 and 50 mL of toluene. Yield: 51 mg. Ru: 15.7 %. 

T-Ru@C60 20/1: 262 mg (0.820 mmol) of [Ru(COD)(COT)]; 30 mg (0.0416 mmol) of 

fullerene C60 and 50 mL of toluene. Yield: 71 mg. Ru: 35.4 %. 

T-Ru@C60 55/1: 240 mg (0.764 mmol) of [Ru(COD)(COT)]; 10 mg (0.0139 mmol) of 

fullerene C60 and 15 mL of toluene. Yield: 55 mg. Ru: 47.5 %. 

In situ growth reaction for mechanistic study: The reaction was performed at -20 °C 

following the standard procedure: 20 mg (0.064 mmol) of [Ru(COD)(COT)]; 23 mg (0.032 

mmol) of fullerene C60 and 50 mL of CH2Cl2. The reaction was followed by sampling the 

mixture over the time. 

Surface reactivity with CO: The adsorption of carbon monoxide on the surface of the 

nanostructures was performed in the solid state as follows. A purified sample of nanoparticles 
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was introduced in a Fischer-Porter bottle. The reactor was pressurized with 1.5 bar of CO for 

72 h. Then, the CO gas was evacuated under vacuum for 20 min and the ATR-IR spectra were 

recorded. 

Solvent effect of viscosity and permittivity: 20 mg (0.064 mmol) of [Ru(COD)(COT)] were 

added to a solution of 23 mg (0.032 mmol) fullerene C60 in a mixture of solvents, then the 

resulting purple solution was stirred for 30 min at room temperature, after which the bottle 

was pressurized with 3 bar of H2. The solution was stirred overnight at room temperature. 

After this period of time, excess of H2 was eliminated and the volume of solvent was reduced 

under vacuum. Pentane was then added to the colloidal suspension to precipitate the Ru@C60 

nanostructures. After filtration under argon with a cannula, the black solid powder was 

washed twice with pentane and filtrated again before drying under vacuum.  

The comparison reaction with “core-shell” structure synthesis: The Ru@C60 1/1 was 

synthesized as described above. The excess of H2 was eliminated of the reaction mixture after 

being stirred overnight at room temperature. 9.0 eq [Ru(COD)(COT)] were introduced to the 

Fisher-Portter bottle and the reaction mixture was treated in an ultrasound bath for 5 min.  

The bottle was pressurized again with 3 bar of H2. The black suspension was kept under 

stirring overnight at room temperature. After this period of time, a sample of the mixture was 

analysed by TEM. 
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3.1 Introduction 

Ordered assemblies of metallic nanoparticles have found many applications in 

different fields including catalysis, and electronics.1 2 3 Uniform nanostructures, 

which present excellent catalytic and electronic properties because of their size4 and 

shape5, are synthesized in the presence of stabilizing agents. The assembly of metallic 

nanoparticles with different building blocks has been the subject of intensive work in 

the past few years. The properties of these hybrid structures are interesting from a 

fundamental point of view, and these objects are currently envisaged to be applied. 

Indeed they can address many cutting-edge applications like plasmonic,6 sensoric,7 or 

catalysis,8 where it has been shown that the proximity of NPs may affect their 

catalytic performances and their stability.9 

Functionalized fullerenes are interesting building blocks to create ordered metal NP 

assemblies due to the directionality of the directing groups present on the fullerene 

moiety. Thiol-functionalized fullerene/gold nanoparticles (Au NPs/C60) structures 

have been reported by Fujihara and Naaki in 2001.10 Also the self-assembly reaction 

of a thiol functionalized fullerene with gold nanoparticles was disclosed by Sudeep 

and co-workers.11 In this work (Figure 3.1), photoelectron-chemical measurements 

demonstrate that the nanocore (Au NPs) of the nano-assemblies (Au/S-C60) play an 

important role on mediating the charge transport process.  

Other fullerene thiol derivatives have been reported as linker to stabile Au NPs.12,13 In 

addition, Geng et al. report a novel approach to synthesize metallic NPs/ 

functionalized fullerene in 2010.14 In this work, the Au NPs were attached by 

4-aminobenzenethiol/1-hexanethiol and then Au/functionalized C60 was prepared 

through the amination reaction of fullerene C60 and peripheral amino groups, which 

were located on the gold surface.  
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Figure 3.1. Gold Nps/Thiol-functionalized fullerene (Au NPs/C60) structures. From ref.11  

In contrast with thiol functionalized fullerene that have been intensively studied, there 

are few examples of N-containing functionalized C60 associate with metal 

nanoparticles. A gold nanostructure Au NPs/N-functionalized fullerene was prepared 

from gold nanoparticles and a C60-pyrrolidine derivative.15,16,17 For example, a 

nano-assembly was synthesized by reduction of aqueous HAuCl4 in presence of the 

C60-pyrrolidine derivative (Figure 3.2.)15 Here, the authors attributted the driving 

force of the formation of the nano-assemblies to the interaction between the 

negatively charged Au NPs and positively charged functionalized fullerenes. 

 

Figure 3.2. Gold nanoparticles/C60-pyrrolidine derivative (Au NPs/C60) structures. From 

ref.15 

The Th-hexa-adduct fullerene compounds, as representative example of symmetrical 

multi-functional fullerene, are usually treated as potential building blocks to construct 

nanoobjects.18,19 However, few examples have been focus on the assembly of 

symmetrical functional fullerene C60 and metal nanoparticles. Recently, a Au 
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NPs/hexa-adducted-fullerene nanostructure was synthesized by Rousseau and 

co-workers (Figure 3.3).20 In this structure, it is proposed that the Au NPs linked by 

the hexa-adducted-fullerenes formed a three dimensional structures and the 

inter-particular distance was verified by XRD.  

 

Figure 3.3. TEM image of Au NPs/C60 nanostructures. From ref.20 

Except this, many ordered fullerene materials have been prepared by the assembly of 

functionalized fullerene C60.21 With these results in mind and with the objective to 

synthesise ordered nano-objects we describe here the synthesis of metallic 

nanoparticles and fullerene hexa-adducted assemblies.  

3.2 Results and discussion  

With the aim to build ordered hybrid materials containing Ru NPs together with 

nanometric-sized organic spacers, several hexa-substituted fullerene compounds, 

which contain amines or carboxylic acids as linking groups have been proposed 

(Figure 3.4). This work was performed in collaboration (through a scientific mission) 

with a team internationally recognized for his expertise on fullerene chemistry, the 

Nazario Martin Group in Madrid, Spain. Compounds 1-4 have been synthesized using 

the Bingel-Hirsch reaction,22,23 where a bromomalonate compound reacts in the 

presence of a base with a [6,6] double bonds of the fullerene to give the cyclopropane 

derivative.  

 



Chapter 3 Synthesis and characterization of ruthenium nanostructures based on functionalized fullerenes 

135 

 

 

Figure 3.4. Hexa-substituted fullerene C60 1-4. 

In this chapter, the synthesis of the hexasubstituted C60 fullerenes 1-4 is discussed first. 

Compounds 1 and 4 were successfully synthesized, unfortunately, for compounds 2 

and 3 the complete synththesis was not achieved and only the intermediary 
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compounds were obtained. Next, the synthesis and characterisation of Ru NPs in the 

presence of the hexasubstituted fullerene 1 (C66(COOH)12) is described.  

3.2.1 Functionalization of fullerene C60 

A plethora of methods to functionalize fullerenes have been described,24 and the most 

employed and well-known is the cycloaddition to [6,6] double bonds of C60. As well 

as mono-adducts, many stereochemically defined multiple adducts have been 

synthesized by the Bingel-Hirsh reaction. Of all the possible multiple addition 

products, hexakis-adducts C60 with a Th-symmetrical octahedral addition are by far the 

most interesting building block to construct 3D nanostructured nanomaterials. 

The cycloaddition reaction of a bromo-derivative of diethyl malonate in the presence 

of a base (NaH or DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) to C60 was first 

described by Bingel.22 Later on, the reaction conditions have been improved and 

several methods have been developed, such as the in situ preparation of the halogen 

malonate with CBr4
25 or I2.26 It has also been found that the addition of a large 

quantity of CBr4 plays an important role for the hexa-adducted cycloaddition 

reactions.27  

 

Scheme 3.1. The Bingel-Hirsh reaction mechanism. L leaving goup, B strong base. 

Scheme 3.1 depicts the mechanism of the cycloaddition reaction. The bromide 

malonate reacts first with a base to generate b, a negative carbanion. Then, the 
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negative charged malonate carbanion attacks the [6, 6] double bond of the electron 

deficient C60. Finally, the second carbanion formed c displaces the bromine to gives a 

cyclopropane ring. Mono- to hexa-substituted fullerenes can be synthesized using this 

procedure.18 

In previous studies performed in our group shown that carboxylic groups can 

coordinate and stabilize Ru NPs.28 With the purpose of preparing self-assembled 

nanostructures of Ru NPs several substituted fullerene with carboxylic acid groups 

have been prepared (1, 2 and 4). Additionally, the compound 3 was also synthesized 

with six amine groups, as it is known that amine compounds may stabilize well 

metallic NPs.29 

3.2.1.1 Synthesis of compound 1 (C66(COOH)12) 

C66(COOH)12 was synthesized by hydrolysis of the Th-hexa-adducts diethyl malonate 

fullerene C66(COOEt)12, which in turn was synthesized by nucleophilic 

cyclopropanation of fullerene C60 with diethyl bromo-malonate.22 

 

Scheme 3.2. Synthesis of C66(COOH)12: 1) synthesis of C66(COOEt)12 and 2) hydrolysis 

and acidification of C66(COOEt)12. 
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Figure 3.5. 13C-NMR spectrum of C66(COOEt)12. 

C66(COOEt)12 was synthesized as a yellow solid (50 % yield). The 13C-NMR (CDCl3) 

spectrum of C66(COOEt)12 depicted in Figure 3.5 shows the characteristic peaks of the 

fullerene cage (sp2-C C60) at 146 and 141 ppm. The peaks at 69 and 45 ppm are 

assigned to the cyclopropane carbons. The peaks at 62.9 and 14.19 ppm are attributed 

to the ethyl groups and the peak at 164.0 ppm to the carboxylic group. 

C66(COOH)12 was synthesized by refluxing 1a and NaH in toluene, followed by 

acidification with an ion exchange resin. Figure 3.6 displays the 13C-NMR ((CD3)2CO)  

spectrum of 1. The peaks at 146.3 and 142.5 correspond to the fullerene cage, the 

cyclopropane carbons appeared at 70.4 and 47.7 ppm which are downfield shifted 

with respect compound 1a. Finally the carboxylic group appeared at 164.7 ppm. 
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Figure 3.6. 13C-NMR spectrum of C66(COOH)12. 

2.1.2 Synthesis of compound 2  

A long chain carboxylic group of hexaadducts C60 was also desired to produce longer 

building blocks. Scheme 3.3 presents the compound 2 as the target product. A similar 

compound has been previously reported by Kraft et al.,30 which has a shorter carbon 

chain. First, the malonyl compound 2a was successfully synthesized by malonyl 

chloride and tert-butyl 3-hydroxypropionate with a 20% yield (Scheme 3.3). Next, 2a 

was allowed to react with C60 to produce the cyclopropane derivative 2b using similar 

conditions as described for 1a. Unfortunately, the reaction gave a complicated 

mixture of several substituted fullerenes, which was difficult to purify and 

characterize, and compound 2 was not isolated. 



Chapter 3 Synthesis and characterization of ruthenium nanostructures based on functionalized fullerenes 

140 

 

 

Scheme 3.3. Synthesis of compound 2. 

3.2.1.3 Synthesis of compounds 3  

The malonate 3d compound containing a substituted amine was also synthesized as 

presented in scheme 3.4. The malonate crown ether was synthesized from 3c and 

malonyl chloride, which is a typical method to synthesize functionalized malonates.18 

First, 3a was synthesized from (Boc)2O and 5-aminoisophthalic acid, and the 3b was 

produced from the reaction of ethylene glycol and toluene sulfonyl chloride. 3a was 

allowed to react with 3b using CsCO3 as base to produce 3c in 49% yield at room 

temperature. The malonate crown ester 3d was synthesized with a 27% yield by 

adding a solution of malonate chloride into the solution of 3c. The reaction of the 

malonate crown ester 3d with fullerene C60 in the presence of CBr4 and DBU allowed 

to obtain 3e. However the yield was very low (3.2%), probably due to the high steric 

hindrance of such malonate compound. 
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Scheme 3.4 Synthesis of compound 3. 

3.2.1.4 Synthesis of compound 4 

Using a Bingel-Hirsch hexaadduct and click chemistry,18 the synthesis of fullerene 

derivative 4b was carried out as depicted in Scheme 3.5. Fullerene hexaadduct 4a was 

prepared by the addition of dipent-4-ynyl malonate to C60 in toluene, employing an 

excess of CBr4. For the 1,3-dipolar cycloaddition of compound 4a, we followed  

optimised conditions previously reported,31 in which a CuBr·SMe2 was used as 

catalyst. At the end of the reaction, the product 4 was precipitated by centrifugation 

and washed. Using this procedure the reaction time was significantly reduced and 

compound 4 was obtained in 61 % yield. 
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Scheme 3.5. Synthesis of compound 4. 

3.2.2 Synthesis of Ru nanostructures based on functionalized 

fullerene@C66(COOH)12 

Ru@C66(COOH)12 nanostructures have been synthesized using a similar procedure to 

produce Ru@C60 nanostructures, as described in Chapter 2. [Ru(COD)(COT)] 

(COD= 1,5 cyclooctadiene, COT= 1,3,5-cyclooctatriene) was decomposed in the 

presence of C66(COOH)12 under 3 bar of H2 at room temperature.32 The effect of the 

solvent and the Ru/C66(COOH)12 ratio used during the reaction on the nanostructures 

have been characterized. The nanostructures obtained were studied in details using 

Transmission Electron Microscopy (TEM) techniques together with Wide-Angle 

X-Ray Scattering (WAXS), Small Angle X-ray Scattering (SAXS), Solid State NMR 
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(SSNMR), X-Ray Photoelectron Spectroscopy (XPS) and Attenuated Total Reflection 

Infrared Spectroscopy (ATR-IR). 

3.2.2.1 Solvent effect 

The effect of the solvent on the nanostructure was studied by using a 

Ru/C66(COOH)12 ratio of 6/1. The solvents were chosen according to the solubility of 

C66(COOH)12, including THF (tetrahydrofuran), MeOH, DMF(dimethylformamide), 

and THF/H2O (10/1) and THF/MeOH (1/1) mixtures. Figure 3.7 shows the TEM 

images of the Ru@C66(COOH)12 synthesized using several solvents.  

Table 3.1. Mean size diameters of Ru NPs produced with different solvents. 

Solvent 
Viscosity 

(mPa.s)33 
Relative 

permittivity( ɛr)33 
Nanoparticles mean 

size (nm)a 

THF 0.46 7.58 1.23 ± 0.02 

MeOH 0.54 32.7 1.03 ± 0.06 

DMF 0.79 36.7 1.74 ± 0.03 

THF/H2O 10/1 0.49b 14.2c 2.37 ± 0.04 

THF/MeOH 1/1 0.50b 20.1 c 2.25 ± 0.08 
aManual measurement from enlarged micrographs of at least 200 objects. bEstimated viscosity of the 
solvent mixture using the following equation: ν1/3=xaνa

1/3+xbνb
1/3 (ν = viscosity, x = mass fraction)34, 

cEstimated permittivity corrected viscosity of the solvent mixture using the following equation: 
ɛ=xaɛa+xbɛb (ɛ = permittivity, x = mass fraction).35 

In all cases, matrixes of irregular shapes decorated with Ru NPs were observed, 

except for the compound synthesized using a THF/MeOH (1/1) mixture, where 

nanospheres were obtained. The mean size diameters of the metallic NPs are in the 

range of 1.03 to 2.37 nm (see mean sizes distribution in Figure 3.7 and Table 3.1). 

The Ru@C66(COOH)12 nanostructures synthesized in THF and MeOH contain 

ultra-small Ru NPs, 1.23 ± 0.02 and 1.03 ± 0.06 nm, respectively. The NPs are close 

together indicating a certain degree of ordering. In contrast, the synthesis carried out 

in DMF afforded Ru NPs supported on a matrix that is similar to the one observed in 
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the TEM images obtained with the Ru@C60 polymer. However, no further analyses 

have been done in order to corroborate this hypothesis. Analogously, THF/H2O (10/1) 

and THF/MeOH (1/1) mixtures produced also probably a Ru@C66(COOH)12 polymer, 

see Figure 3.7 d) and e). 

3.2.2.2 Ru@C66(COOH)12 ratio effect 

A series of experiments using Ru/C66(COOH)12 ratio from 6/1 to 100/1 were carried 

out in order to understand better the Ru@C66(COOH)12 structures using THF as the 

reaction solvent. TEM analyses depicted in Figure 3.8 show that in all cases Ru NPs 

were synthesized and in all cases the NPs were near each other forming bigger 

superstructures. Interestingly, the narrower mean size distribution of the Ru NPs 

(Table 3.2) increased with increasing the Ru content while the nanostructure remained 

almost unchanged, except for Ru/C66(COOH)12 ratio 100/1, where the nanostructure 

slightly vanished maybe due to the high Ru content.  

Table 3.2. Mean size diameters of Ru NPs with different Ru/C66(COOH)12 ratio. 

Ru@C66(COOH)12 Ru loada (%) Nanoparticles mean size (nm)b 

6/1 22.6 1.23 ± 0.02 

12/1 40  1.56 ± 0.01 

30/1 52.2 1.52 ± 0.02 

50/1 --- 1.78 ± 0.02 

100/1 --- 1.67 ± 0.01 
aICP analysis. bManual measurement from enlarged micrographs of at least 200 objects. 
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Figure 3.7. TEM micrographs of Ru@C66(COOH)12 structures with Ru@C66(COOH)12 

= 6/1 synthesized in different solvents: a) THF(scale bar 50 nm), b) MeOH(scale bar 50 

nm), c) DMF (scale bar 50 nm), d) THF/ H2O (10/1) (scale bar 100 nm), e) MeOH/THF 

1/1 (scale bar 50 nm). 
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Figure 3.8. TEM micrographs of Ru@C66(COOH)12 structures synthesized in THF using 

a Ru/C66(COOH)12 ratio of: a) 6/1, b) 12/1, c) 30/1, d) 50/1; and e) 100/1 (scale bar 50 

nm). 
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Figure 3.9. HREM micrographs of Ru@C66(COOH)12 nanostructures: a), b), c) 

Ru@C66(COOH)12 6/1; and (d), (e) (f), Ru@C66(COOH)12 30/1. 

The HREM images of Ru@C66(COOH)12 nanostructures 6/1 and 30/1 are depicted in 

Figure 3.9. The small Ru NPs are clearly observed in both compounds. Even if 

HREM points out that no Ru@C66(COOH)12 polymer is synthesized and only Ru NPs 

are produced, further analyses are necessary (i. e. tomography) in order to discard the 

formation of the organometallic polymer. HREM observations (Figure 3.10) show 

that the Ru NPs are well crystallized with crystal parameters of Ru hcp. The EDX 

analysis conformed that the Ru@C66(COOH)12 nanostructures are composed of Ru 

and C in Figure 3.10b. 
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Figure 3.10. a) HREM image of of Ru@C66(COOH)12 6/1; inset: Fast Fourier Transform 

(FFT) with the corresponding orientation of the Ru lattice; and b) EDX of 

Ru@C66(COOH)12. 
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3.2.2.3 WAXS analyses 

WAXS analyses were done in collaboration with Pierre Lecante of the Centre 

d’élaboration des matériaux et d’études structurales UPR CζRS 8011, Toulouse, 

France. Ru@C66(COOH)12 samples synthesized in THF sealed in Lindemann glass 

capillaries were measured by WAXS using a diffractometer dedicated to 

pair-distribution function (PDF) studies. The diffractograms of Ru@C66(COOH)12 6/1, 

12/1 and 30/1 are displayed in Figures 3.11 and 3.12. 

 

Figure 3.11. Diffractograms for Ru@C66(COOH)12 6/1, 12/1 and 30/1 nanostructures 

together with Ru hcp reference data; inset diffractogram of C66(COOH)12. 

The three diffractograms of Ru@C66(COOH)12 6/1, 12/1 and 30/1 were very similar, 

and it is fully consistent with metallic Ru in the hcp system (2theta = 20°). The sharp 

peak signal at small angle could be assigned to the C66(COOH)12, which is very close 

to the feature of pure C66(COOH)12.  

After corrections and Fourier Transforms (Figure 3.12), the related PDF functions are 

also very close as expected, and the size (from coherence length) can reach 1.5 nm. In 

the present case, we do not observe a decrease or increase on the PDF of the metallic 
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Ru order like in Ru@C60. The PDF also indicate that Ru NPs have a single size 

distribution and an average diameter close to 1.5 nm, in agreement with the TEM 

measurements. 

 

Figure 3.12. Pair-distribution function of Ru@C66(COOH)12 6/1, 12/1 and 30/1 

nanostructures. 

3.2.3.4 Small Angle X-ray Scattering (SAXS)  

SAXS is a useful tool to analyse the nanoscale structure of particle systems in terms 

of parameters such as average particle sizes, shapes, distribution, and 

surface-to-volume ratio. To measure the interparticle distance of Ru@C66(COOH)12, 

the Ru@C66(COOH)12 12/1 nanostructure was characterized by SAXS at small angle 

(Figure 3.13.) in Paul Pascal Research Center-CNRS University of Bordeaux. SAXS 

patterns are typically represented as scattered intensity as a function of the magnitude 

of the scattering vector q = 4πsinө/ . The result shown a small peak at 0.22 Å-1 in 

(Figure 3.13). After calculations (q = 4πsinө/ , Bragg's law function βdsinө = n ), the 

results give an the interparticle distance of 2.85 nm from Ru NPs center to center. 

Taking into account that the Ru NPs mean size diameter is 1.56 nm in 

Ru@C66(COOH)12 12/1 nanostructure and the diameter of the C66(COOH)12 fullerene 
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is 1.48 nm (calculated by DFT, see DFT calculations section), a Ru NPs distance of 

3.04 nm correlates well with the distance (2.85 nm) found by SAXS. In addition, the 

manual counting of the Ru NPs - Ru NPs distance in TEM images is equal to 2.56 nm 

(Figure 3.14 and Table 3.3), which is also comparable considering the resolution of 

 

Figure 3.13. The SAXS spectrum of Ru@C66(COOH)12 12/1.  

 

Figure 3.14. Schematic representation of Ru NPs distance center to center found by 

SAXS, and rigth size histogram (left) and mean distance between to Ru NPs measured 

by manual measurement from enlarged TEM micrographs of at least 200 objects (right).  

TEM. Complementary counting realized in HREM images of the Ru@C66(COOH)12 

6/1 sample only using isolated Ru NPs (see Figure 3.15) give a mean distance of 2.87 

nm. 
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Table 3.3. Ru NP- RuNP distance from the TEM and SAXS analyses 

Sample 
Ru NPs-Ru NPs 

distance (nm)a 

Ru NPs 

diameter (nm)b 

Ru NPs-Ru NPs distance 

(nm) (nm)c 

Ru@C66(COOH)12 

12/1 
2.85 1.56 2.56 

aCalculated from SAXS measurement. bManual measurement from enlarged micrographs of at least 200 
objects. cManual measurement from enlarged TEM micrographs of at least 200 objects. 

 

Figure 3.15. HREM image of Ru@C66(COOH)12 6/1 sample displaying Ru NPs - Ru NPs 

distances. 

3.2.3.5 Solid State NMR  

13C-NMR and cross polarization magic-angle spinning (CP-MAS) Solid-State NMR 

(SSNMR) spectroscopy were performed for several Ru@C66(COOH)12 nanostructures. 
13C-NMR SSNMR spectra of Ru@C66(COOH)12 12/1 and 30/1 are displayed in the 

Figure 3.16a together with the functionalised fullerene C66(COOH)12. 13C-NMR 

SSNMR spectrum of C66(COOH)12 showed a peak at 69 ppm and a broad signal at 

141-150 ppm attributed to the fullerene cage. In addition, a peak visible at 45 ppm is 

attributed to the quaternary carbon and a peak visible at 165 ppm is attributed to the 

carbon of the carbonyl moiety. The 13C-NMR SSNMR spectra of Ru@C66(COOH)12 

12/1 and 30/1 displayed the same number of peaks. The peaks at 69 ppm and 141-150 

ppm are attributed to the fullerene cage; they remain unchanged with respect to the 

C66(COOH)12 compound in both nanostructures. In contrast, the peak visible at 45 
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ppm attributed to the quaternary carbon upfield shifted of 25 ppm and the peak 

attributed to the COOH downfield shifted to 185 ppm (see Figure 3.13b for CP-MAS 

13C-NMR SSNMR), indicating that C66(COOH)12 is coordinating to the Ru NPs 

thought the carbonyl moieties, probably in a carboxylate form, which has been 

confirmed by IR and DFT calculations (see below). 

 

Figure 3.16. 13C-NMR spectrum of a) SSNMR; and b) CP-MAS SSNMR of 

C66(COOH)12, Ru@C66(COOH)12 12/1; and Ru@C66(COOH)12 30/1 

3.2.3.6 XPS  

X-ray photoelectron spectrometry analyses were realized for several 

Ru@C66(COOH)12 nanostructures. XPS analysis of Ru@C66(COOH)12 12/1 is 

detailed in Figure 3.17 and Table 3.4. Ru, C and O were identified. The Ru 3d-C1s 

peak can be divided into several components and the peak fitting assigned to O-C=O, 

-C60, sp2-C, sp3-C, Ru 3d3/2 and Ru 3d5/2 bands. O1s binding energy peak is attributed 
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to O=C-O and RuO2. The binding energy of Ru 3p3/2 at 462.5 ev was slightly higher 

than the one of Ru(0), which normally appears at 462.2 ev.36 

The peak fitting analyses reveal that Ru is partially oxidized and the Ru atoms bind 

strongly to O. Additionally, the percentage of C and O found by XPS analyses (74.6% 

C, 22.2% O) was similar to the one expected for a Ru@C66(COOH)12 12/1 ratio (70.3% 

C, 28.8% O). 

 

Figure 3.17. Peak fitting of Ru@C66(COOH)12 12/1: a) Ru 3d b) O1s; and c) binding 

energy of Ru 3p.  

 

Figure 3.18. Binding energy of Ru 3d of Ru@C66(COOH)12 6/1, 12/1 and 30/1. 

The comparison of the Ru 3d5/2 binding energy peak of Ru@C66(COOH)12 6/1, 12/1 

and 30/1 nanostructures is displayed in Figure 3.18. The peak at 281.2 ev shifted with 

the ratio increase, indicating a more metallic composition of sample in high ratio. 
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Table 3.4 XPS data (peak fitting, FWHM and atomic concentration) for the 

Ru@C66(COOH)12 12/1 sample. 

Name Position FWHM concentration% 

 

Ru 3d 

280.5 1.6 1.9 

284.7 1.7 1.3 

  3.3 

 

 

C1s 

284.4 1.1 44.3 

285.0 1.2 16.4 

286.2 1.1 7.4 

288.5 1.0 6.5 

  74.6 

 

O1s 

530.1 1.5 3.2 

531.5 1.4 10.8 

533.0 1.5 8.1 

  22.1 

 

3.2.2.7 ATR-IR  

The attenuated total reflectance infrared (ATR-IR) spectra were recorded for 

C66(COOH)12 (top) and Ru@C66(COOH)12 6/1, 12/1 and 30/1 samples in the solid 

state in a IR available in a glove box (Figure 3.19). The C66(COOH)12 ATR-IR 

spectrum show peaks at 2900, 1700, 1192, 830, 708, 540 and 524 cm-1. The intense 

vibrations at 2900(COOH), 1700(C=O), 1192 cm-1 (C-O) are attributed to the -COOH 

moiety, while the other peaks are attributed to vibrations of the fullerene cage. 

Ru@C66(COOH)12 6/1, 12/1 and 30/1 samples gave similar ATR-IR spectra.  
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Figure 3.19. ATR-IR spectra of C66(COOH)12 (top) and Ru@C66(COOH)12 6/1, 12/1 and 

30/1 (bottom). 

Peaks at 540 and 524 cm-1 are attributed to the fullerene cage that remaines 

unchanged, while the C=O vibration of the COOH group observed at 1700 cm-1 

vanished in the Ru nanostructures when compared to the free ligand. Two new peaks 

at 1555 and 1367 cm-1 were attributed to the C=O vibrations of a new COO-Ru 

species, confirming again the coordination of the fullerene through carboxylate 

species. These data are in accordance with published values for Ru-carboxylate 

complexes.37 The peak at around 1900 cm-1 could be caused by the bond vibration of 

Ru-H.38,39 

3.2.2.8 DFT calculations 

In order to get better insights of the molecular structure of the Ru@C60 hybrids, 

Density Functional Theory (DFT) calculations have been performed, using the 

computational details presented in Chapter 2. To investigate the coordination modes 

of the functionalized C60 with Ru NPs, we have modelled the system using two 
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functionalized C60 in interaction with a Ru13 cluster. As shown in Figure 3.20, the 

coordination mode implies 3 oxygens with a facet of the cluster consisting of 3 

surface Ru atoms. 

 

Figure 3.20. Optimized structure of the C66(COOH)12-Ru13-C66(COOH)12 species. 

The Ru-O distances are typical of such systems with values ranging from 1.97 to 2.05 

Å, in good agreement with a previous study on the interaction of Ru NPs with 

oxidized nanotubes sidewalls.28 Interestingly, as in a former study,28 the migration of 

hydrides on the Ru cluster is spontaneous, resulting in the formation of carboxylates 

groups, with an energy gain of around 15 kcal/mol per H adsorbed. Globally, the 

formation of this complex is highly favourable: -149 kcal/mol.  

3.3 Conclusions  

Several functionalized fullerenes have been successfully synthesized using reported 

procedures. In particular, hexasubstituted fullerene C66(COOH)12 is able to stabilize 

small Ru NPs (1.23-2.37nm) synthesised under mild reaction conditions from 

[Ru(COD)(COT)]. The SAXS analyses show that Ru NPs are organised displaying a 

Ru NPs-Ru NPs distance of 2.85 nm in the case of Ru@C66(COOH)12 12/1 

synthesized in THF. TEM analyses together with WAXS measurements corroborate 
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that the Ru NPs are well crystallized and displayed a hcp structure. Furthermore, IR, 

SSNMR and XPS point out that the substituted fullerene coordinates to the Ru NPs 

via carboxylate groups, which is corroborate by DFT calculations. 

3.4 Experimental section 

General methods  

All operations were carried out under argon atmosphere using standard Schlenk 

techniques or in an MBraun glovebox. Solvents were purified by standard methods or 

by an MBraun SPS-800 solvent purification system. [Ru(COD)(COT)] was purchased 

from Nanomeps Toulouse, fullerene C60 (99.5%), diethyl malonate(99%), Malonyl 

dichloride (97.0%), tert-Butyl 3-hydroxypropionate(98.0%), carbon tetrabromide 

(CBr4 99%), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU 98%), caesium carbonate 

(Cs2CO3 99.0%), sodium hydride ( 60 % dispersion in mineral oil), triethylamine 

(Et3N 99.0%), 4-(dimethylamino)pyridine (DMAP, 99.0%), 5-aminoisophthalic 

acid(94.0%), di-tert-butyl dicarbonate ((Boc)2O 99%), 4-toluenesulfonyl chloride 

(98.0%), copper(I) bromide dimethyl sulfide complex (CuBr•Sεe2 99%), anhydrous 

Na2SO4(99.0%) from Sigma-Aldrich, CO and H2 from Air Liquid. All these reactants 

were used as received. The ruthenium content was measured by inductively coupled 

plasma optical emission spectroscopy (ICP-OES) performed at the LCC with a 

Thermo Scientific ICAP 6300 instrument. Solid state NMR (MAS-NMR) with and 

without 1H-13C cross polarization (CP) were performed at the LCC on a Bruker 

Avance 400WB instrument equipped with a 4 mm probe with the sample rotation 

frequency being set at 12 kHz, unless otherwise indicated. Measurements were carried 

out in a 4 mm ZrO2 rotor. Liquid NMR spectra were obtained on Bruker Fourier 300 

systems using CDCl3 as solvent, TMS as internal standard substance, with proton and 

carbon resonances at 300 and 75 MHz, respectively. ATR-IR spectra were recorded 

on a Perkin-Elmer GX2000 spectrometer available in a glovebox, in the range 

4000-400 cm−1. The Raman spectra have been recorded with an Explora (Horiba) 



Chapter 3 Synthesis and characterization of ruthenium nanostructures based on functionalized fullerenes 

159 

 

spectrometer in backscattering geometry using an optical objective x100 (NA 0.9). 

The wavelength of the incident laser has been 532 nm and the laser power was set to 1 

mW. 

TEM analyses. TEM and HREM analyses were performed at the “Centre de 

microcaracterisation Raimond Castaing, UεS γ6βγ, Toulouse” by using a JEOδ JEε 

1011 CX-T electron microscope operating at 100 kV with a point resolution of 4.5 Å 

and a JEOL JEM 1400 electron microscope operating at 120 kv. The high resolution 

analyses were conduct using a JEOL JEM 2100F equipped with a Field Emission Gun 

(FEG) operating at 200 kV with a point resolution of 2.3 Å and a JEOL 

JEM-ARM200F Cold FEG operating at 200 kV with a point resolution of >1.9 Å. The 

approximation of the particles mean size was made through a manual analysis of 

enlarged micrographs by measuring at least 200 particles on a given grid. Other TEM 

micrographs were acquired with a JEOL 2100F S/TEM microscope equipped with a 

FEG operating at 200 kV, a spherical aberration probe corrector and a GATAN 

Tridiem energy filter.  

WAXS and XPS analyses. Wide Angle X-ray Scattering measurements were 

performed at CEMES on a diffractometer dedicated to Pair Distribution Function 

(PDF) analysis: graphite-monochromatized Molybdenum radiation (0.07169nm), 

solid state detection and low background setup. Samples were sealed in Lindemann 

glass capillaries (diameter 1.5mm) to avoid any oxidation after filling in a glove box. 

For all samples data were collected on an extended angular range (129 degrees in 

2theta) with counting times of typically 150s for each of the 457 data points, thus 

allowing for PDF analysis. Classic corrections (polarization and absorption in 

cylindrical geometry) were applied before reduction and Fourier transform. The 

samples were also analyzed by X-ray photoelectron spectroscopy (XPS) using a VG 

Escalab MKII spectrophotometer, which operated with a non monochromatized Mg K 

source (1253.6 eV). 
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Synthesis of fullerene derivatives 

 

Compound 1a. CBr4 (22.8g, 69.5 mmol), diethyl malonate (1.104 g, 6.9 mmol) and 

1,8-diazabicyclo[5.4.0]undec--ene (DBU, (2.1 g, 13.8 mmol) were successively added 

to a fullerene C60 solution (500 mg, 0.7 mmol) in dry toluene (500 ml). The resulting 

reaction mixture was stirred under argon for 72h at room temperature. Finally, toluene 

was evaporated under reduced pressure and the crude was purified by flash column 

chromatography using a toluene/ethyl acetate mixture as eluting solvent. The product 

was isolated as a yellow solid (580 mg, 49% yield). 1H NMR (CDCl3, 300 MHz)  

(ppm) 4.33 (q, J = 7.14 Hz, 24H), 1.33(t, J = 7.11 Hz, 36H); 13C NMR (CDCl3, 75 

MHz)  (ppm) 164 (C=O), 146 (sp2-C C60), 141 (sp2-C C60), 69.2 (sp3-C C60), 62.9  

(-CH2-), 45.5 (tert-C), 14.2 (-CH3). 

 

Compound 1. 1a (200 mg, 0.119 mmol) was dissolved in 50 mL toluene, and NaH 

(57.2 mg, 2.38 mmol) was slowly added to the solution. The resulting mixture was 

stirred 3h at 75 °C. The reaction mixture was centrifuged, the precipitate was washed 

with toluene three times (10 ml). Afterwards the crude was dissolved in distilled water 
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and the solution passed through a resin (Amberlite IR-120 hydrogen form). The water 

was evaporated to afford a yellow-brown solid (127 mg, 80% yield) 13C NMR 

((CD3)2CO, 75 MHz)  (ppm) 164.7(C=O), 146.3 (sp2-C C60), 142.5 (sp2-C C60), 70.4 

(sp3-C C60), 47.7 (tert-C). IR(ATR): ν 2900(COOH), 1700(C=O), 1192(C-O), 830, 

708, 540 (-C60), 524(-C60). Anal. Calcd for C78O24H12 (1332 g mol–1): C, 70.3; H, 0.01. 

Found: C, 60; H, 1.8. 

 

 

Compound 2a. Et3N 4 mL, DMAP (4-Dimethylaminopyridine) (15 mg, 0,12 mmol) 

were dissolved in 20 ml CH2Cl2. The mixture was cooled at 0°C and a malonyl 

chloride (0.3 mL, 2 mmol) solution in 2 mL CH2Cl2, was slowly added under argon 

atmosphere. The reaction was stirred during 30 min at 0°C. The reaction mixture was 

washed twice with 15 ml of HCl 1M, then with a saturated NaHCO3 solution, and 

finally twice with 15 ml of brine. The organic layer was dried with Na2SO4 and the 

solvent was evaporated under reduced pressure. The obtained crude was purified by 

flash chromatography (hexane/ CH2Cl2 3/7) to afford a colorless liquid (140 mg, 20% 

yield). 1H NMR (CDCl3, 300MHz)  (ppm) 4.36 (t, J = 8.8 Hz, 4H), 3.35 (s, 2H), 2.57 

(t, J = 8.8 Hz, 4H), 1.44 (s, 18H). 
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Compound 2b. This compound was prepared from the CBr4 (0.884 g, 2.7 mmol), 

diethyl malonate 2a (100 mg, 0.27 mmol) in toluene and DBU (82 mg, 0.54 mmol) in 

toluene, which were successively added to a fullerene C60 solution (20 mg, 0.027 

mmol). After column chromatography (toluene/EtOAc 200/10 to 75/25), traces of a 

brown solid was obtained. NMR (mixture). 

 

 

Compound 3a. A solution of 5-Aminoisophthalic acid (5.02 g, 36 mmol) and Et3N 

(11.5 ml) in 60 ml of DMF was added dropwise to a (Boc)2O (9 g, 54 mmol) solution 

in 20 ml DMF at room temperature. The resulting mixture was stirred 10 min at room 

temperature and then heated to 50 °C overnight. The reaction mixture was poured into 

water and extracted with EtOAc (2 x 50ml), the aqueous phase was acidified to pH = 

4~5 with HCl 1M and finally extracted with CH2Cl2. The combined organic layers 

were dried with MgSO4, and the obtained crude was purified by flash chromatography 

using a CHCl3/CH3OH 13/1 mixture as eluting solvent). Compound 3a was obtained 

as a yellow solid (4.0 g, 40% yield). 1H NMR (CDCl3, 300 εHz)  (ppm) 8.γ0 (s, βH), 

8.27 (s, 1H), 1.54 (s, 9H).  

 

 

Compound 3b. Toluenesulfonyl chloride (1.54 g, 8 mmol) was slowly added to a 

solution of DMAP (5.08 g, 14.2 mmol) in 6 ml of ethylene glycol at -5 °C. The 

reaction mixture was monitored using thin-layer chromatography. After 20 h of 
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reaction 20 ml of water were added to the reaction mixture, and extracted with EtOAc 

(3 x 20 ml). All the organic layer were combined and dried with anhydrous MgSO4. 

After filtration the solvent was evaporated under reduced pressure and the crude was 

purified by flash chromatography using EtOAc/Pentane as the eluting solvent. 

Compound 3b was obtained as a colourless solid (1.01g, 58% yield). 1H NMR (CDCl3, 

300 εHz)  (ppm) 7.8 (d, J = 11.2 Hz, 2H), 7.87 (d, J = 10.8 Hz 1H), 4.1(t, J = 6.4 

Hz 9H), 3.78 (m, 2H ), 2.42 (s, 3H). 

 

 

Compound 3c. 3a (100 mg, 0.356 mmol) and Cs2CO3 (68.8 mg, 0.211 mmol) were 

dissolved in deionized water (1 ml). The light yellow solid obtained after the water 

evaporation was added to a 3b (153 mg, 14.2 mmol) solution in 20 ml of DMF.. The 

resulting mixture was allowed to stir 48h at 60°C. Water was added to the reaction 

mixture and then extracted with ethyl acetate, and finally washed with brine. The 

organic layers were dried with anhydrous MgSO4, concentrated and the crude was 

purified by flash chromatography using a ethyl acetate/CH2Cl2 1/1 mixture as eluting 

solvent. 64.8 mg of a light yellow solvent were obtained (49% yield). 1H NMR 

(CDCl3, 300 εHz)  (ppm) 8.β5 (s, 1H, Ph-), 8.17 (s, 2H, Ph-), 7.1 (s, 1H, -NH-), 4.2 

(t, J= 6.5 Hz, 4H, -OCH2-), 3.5 (t, J= 6.5 Hz, 4H, -CH2OH), 1.51 (s, 9H, -CH3).  
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Compound 3d Compound 3c (60 mg, 0.162 mmol) and malonyl chlororide (28 mg, 

0.324 mmol) were dissolved in 5 ml of CH2Cl2, respectively, and filled in two 

syringes. Then the two solutions were added to a three-neck flask cointaining a 

solution of NaHCO3 (24 mg, 0.178 mmol) in 20 ml of CH2Cl2 using a syringe pump 

with a fixed speed of 0.04ml/min with vigorously stirring. The resulting mixture was 

allowed to react overnight. 20 ml of water were added to make an extraction, and 

finally washed with brine. Then the organic layer was dried in Na2SO4 and 

concentrated. The obtained crude was purified by thin layer chromatography plate to 

afford 3d as a yellow solid (13.8mg 19.4 % yield). 1H NMR (CDCl3, 300 εHz)  

(ppm) 8.28 (s, 1H), 8.2 (s, 2H), 6.6 (s, 1H), 4.5 (s, 8H), 3.56 (s, 2H), 1.53 (s, 9H).  

 

 

Compound 4a CBr4 (4.56 g, 13.90 mmol), dipent-4-ynyl malonate (326 mg, 1.38 

mmol), and DBU (420 mg, 2.76 mmol) were successively added to a solution of C60 

(100 mg, 0.14 mmol) in dry toluene (150 mL). The mixture was stirred for 72 h and 

evaporated. Then, aqueous Na2CO3 solution (sat.) was added, and the resulting 
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mixture was extracted with NaHCO3 (3×150 mL). The combined organic layer was 

washed with HCl (1 M, 2x150 mL) water (2×150 mL) and brine (100 mL), dried over 

MgSO4, and concentrated under vacuum. The crude was purified by column 

chromatography (SiO2, CH2Cl2, CH2Cl2: AcOEt; 95:5) giving 1 (184 mg, 62%) as an 

orange glassy product. 1H NMR (CDCl3, 300 MHz)  (ppm) 4.55-4.11 (m, 24H, 

-OCH2-), 2.41-2.12 (m, 24H,-CH2C≡C), 2.06-1.76 (m, 36H, -CH2- and -C≡CH). 13C 

NMR (CDCl3, 75 MHz)  (ppm) 162.4 (-C=O), 144.7 (sp2-C -C60), 139.8 (sp2-C C60), 

81.3 (-C≡CH), 68.7 (sp3-C C60), 64.4 (-C≡CH), 62.1(-OCH2-), 15.6(-CH2-), 

14.1(-CH2C≡CH). 

 

Compound 4 To a mixture of 4a (4β mg, 0.01λ7 mmol), CuBr•Sεe2 (22.0 mg, 0.107 

mmol) in DMSO (1 mL) the 6-azidohexanoic acid (92.7 mg, 0.591 mmol) was added 

under atmospheric pressure of Ar, and the solution was stirred at ambient temperature 

for 24 h. AcOEt was added to the reaction mixture and the desired compound was 

precipitated by centrifugation (3500 rpm, 20 min), suspended in AcOEt (2x3mL) and 

Et2O and centrifuged again (3500 rpm, 20 min, each time). The title compound 4 thus 

obtained was as an orange-brown solid (48 mg, 61 %). 4b 1H NMR (CDCl3, 300 MHz) 

 (ppm) 77.6 (s, 12H, -triazole ), 4.37-4.35 (m, 48H, -CH2-triazole and -CH2CO), 

2.69-2.67 (m, 24H, -CH2-triazole), 2.28-2.23 (m, 24H, -CH2COOH), 1.90-1.86 (m, 
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24H, -CH2-), 1.62-1.57 (m, 24H, -CH2-), 1.31-1.29 (m, 24H, -CH2-); 13C NMR 

(CDCl3, 75 εHz)  (ppm) 175.5 (-COOH), 163.1 (-C=O), 146.1 (-triazole), 145 

(sp2-C C60), 141 (sp2-C C60), 120 (-triazole), 69.1 (sp3-C C60), 66.2 (-OCH2-), 49.5 

(tert-C), 38.9 (N-CH2-triazole), 33.1 (-CH2COOH), 29.5 (-CH2-triazole), 27.5 (-CH2-), 

26.3 (-CH2-), 23.4 (-CH2-), 21.5 (-CH2-). 

Synthesis of Ru@C66(COOH)12 nanostructures 

In a typical experiment [Ru(COD)(COT)] complex was introduced in a Fisher-Porter 

bottle, and a solution of C66(COOH)12 in the desired solvent was then introduced in 

the reactor. The resulting solution was stirred for 30 min at room temperature, after 

which the bottle was pressurized with 3 bar of H2. The solution, which turned black 

after few min of reaction, was kept under stirring overnight at room temperature. 

After this period of time, excess of H2 was eliminated and the volume of solvent was 

reduced under vacuum. Pentane was then added to the colloidal suspension to 

precipitate the Ru@C66(COOH)12 nanostructures. After filtration under argon with a 

cannula, the black solid powder was washed twice with pentane and filtrated again 

before drying under vacuum. For each ratio studied, the quantities of reactants are 

detailed hereafter: 

Ru@C66(COOH)12 6/1: 100 mg (0.317 mmol) of [Ru(COD)(COT)]; 70.4 mg (0.0529 

mmol) of C66(COOH)12 and 150 mL of THF. Yield: 82 mg. Ru: 22.6 %.  

Ru@C66(COOH)12 12/1: 113.5 mg (0.36 mmol) of [Ru(COD)(COT)]; 45 mg (0.035 

mmol) of C66(COOH)12 and 100 mL of THF. Yield: 69mg. Ru: 40.7 %.  

Ru@C66(COOH)12 30/1: 282 mg (0.895 mmol) of [Ru(COD)(COT)]; 40 mg (0.0298 

mmol) of C66(COOH)12 and 90 mL of THF. Yield: 116 mg. Ru: 52.4 %. 
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4.1 Introduction  

Fullerene and fullerene-based materials have shown superior catalytic activity and 

selectivity in heterogeneous catalysis1,2,3,4,5,6 because of their specific properties, such 

as thermal stability,7 high capacity for hydrogen adsorption8,9,10,11 and the ability of 

various coordination modes.12,13,14 Fullerene-based materials, typically transition 

metal fullerene compounds, have been developed for several catalytic reactions.3 For 

instance, these kind of compounds have been successfully used in the hydrogenation 

reaction of several functional groups including nitro,15,16,16b,17 alkyne,18 C=C,5 and 

C=O bonds.19 Although progresses have been achieved in the past, there is still little 

information on the catalytic properties of metallic nanoparticles anchored on fullerene 

C60. For instance, no data are available concerning the influence of the size and shape 

of the metallic NPs as well as the morphology of the nanostructures, parameters 

which have been proved to be crucial for catalytic performances. 

In this chapter, the catalytic properties of several Ru@fullerene C60 nanostructures 

have been studied. Ruthenium-fullerene nanostructures synthesized in CH2Cl2 

(Ru@C60) and in toluene (T-Ru@C60), as well as Ru@C66(COOH)12 nanostructures 

have been used as catalysts in the hydrogenation reactions of nitrobenzene and 

trans-cinnamaldehyde. The best performances were obtained with Ru@C60 

nanocatalysts in both hydrogenation reactions. Interestingly, electron deficient 

ruthenium NPs supported on Ru fulleride nanospheres, Ru@C60, allow the successive 

and chemoselective hydrogenation of nitrobenzene to aniline and then to 

cyclohexylamine. The same behavior, i.e. a two-step successive hydrogenation, has 

been observed for several substituted nitroarenes. DFT calculations suggest that the 

observed chemoselectivity is mainly governed by the presence of surface hydrides on 

the electron-deficient Ru nanoparticles.  
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4.2 Results and discussion  

4.2.1 Hydrogenation of nitrobenzene 

Selective hydrogenation lay at the heart of many industrial processes, and is one of 

the widest areas of research in catalysis. The catalytic hydrogenation of nitrobenzene 

(NB) is an industrially important reaction, which may lead as major products to 

aniline (AN) or cyclohexyl amine (CA). Additionally, condensation side reaction may 

produce dicylohexylamine (DCA) as the major by-product (Scheme 4.1). 

 

Scheme 4.1. Main products and by-products formed during NB hydrogenation. 

It is generally admitted that in NB, the aromatic ring is electron deficient and 

coordinates only weakly to metals typically used in hydrogenation reactions. In 

contrast, the nitro group is strongly coordinating and is usually hydrogenated first. AN, 

which is an important intermediate for polyurethanes, dyes, pharmaceuticals, 

explosives, and agricultural products,20 is industrially produced via NB selective 

hydrogenation. Reactions performed in the liquid phase used a variety of metal 

catalysts (Ni, Pt, and Pd) associated to modifiers, and organic solvents. DuPont 

hydrogenates nitrobenzene in liquid phase using a Pt-Pd catalyst on a carbon support 

with iron as modifier. The modifier provides good catalyst life time, high activity, and 

protection against hydrogenation of the aromatic ring.20 CA can be used in the 

synthesis of artificial sweeteners, metal corrosion inhibitors, rubber vulcanizing 

additives, dyestuff, plasticizers and extracting agents for natural products.21 
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Commercially, it may be produced via reductive amination of cyclohexanol or phenol, 

or hydrogenation of AN. A variety of metals such as Ni, Co, Rh, Ru, Pd and Pt can be 

used for the hydrogenation of AN either in the vapor or in the liquid phase. 

The design of a single metal and non-promoted catalyst, which could hydrogenated in 

a controlled manner NB to selectively produce either AN, or CA in a single step is 

therefore of paramount interest. In that context, recent advances in the design of 

nanostructured catalysts for selective hydrogenation have been reviewed.22 Supported 

ruthenium catalysts could be interesting candidates since the literature indicates that 

Ru is the best of the platinum metal catalysts for the hydrogenation of aromatic 

amines to alicyclic anilines,23 and in addition high selectivity towards AN can also be 

obtained by careful choice of the support.24 Electron deficient Ru nanoparticles (NPs) 

have been reported to be highly active since AN desorption is facilitated,24a 

furthermore in the case of a controlled reaction they could be more selective to AN, 

thanks to a preferential coordination of the nitro group. Concerning the choice of the 

support, high NB conversions have been reported when using carbon supports rather 

than silica or alumina.25 Carbon is a chemically quite inert support that allows to skirt 

condensation reactions known for more acidic oxide supports. The direct reduction of 

NB to AN by carbon materials (carbocatalysis) such as fullerenes (C60) or carbon 

nanotubes (CNTs) has also been discussed.1, 26 Ruthenium supported on CNTs allow 

for hydrogenation of both the aromatic ring and the nitro group,23b and CA was 

produced with 90% selectivity. In that case, the AN selectivity reached a maximum of 

64%. The use of mixtures of CNT-supported Pt and Ru catalysts has also been 

proposed.27 Indeed, mixtures of Pt/CNT, having a high activity in NB hydrogenation, 

and of Ru/CNT, highly selective for the hydrogenation of AN to CA, provided high 

activity at constant high selectivity. A Ru/C-NaNO2 catalyst was found to catalyze 

NB hydrogenation to produce AN (100% selectivity at 80°C) or CA (100% selectivity 

at 90°C) in high yield, depending on the reaction temperature.28 Considering the fact 

that C60 is a well-known electron acceptor, a Ru@C60 catalyst should provide electron 
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deficient Ru NPs, which could be of interest for this reaction. In this context, Ru@C60, 

T-Ru@C60, and Ru@C66(COOH)12 nanostructures appear as excellent candidates as 

catalysts for the NB hydrogenation reaction. Nitrobenzene hydrogenation was studied 

at 30 bar of H2 and 80 °C in ethanol. All catalysts were found to be active for NB 

hydrogenation. We independently checked that, under these experimental conditions, 

C60 has no activity for this reaction. The main reaction products were AN and CA; 

DCA and N-ethylaniline (AN-Et), which is formed from N-alkylation of aniline due 

to reaction with the solvent,29,30 were the only detected byproducts. First, Ru@C60 

nanocatalysts were tested in the NB hydrogenation reaction and the reaction followed 

over time. Table 4.1 shows the results obtained with the Ru@C60 nanocatalysts and 

Figure 4.1 the evolution of the conversion over time. 

All catalysts were active in NB hydrogenation (Figure 4.2). The low loading catalysts 

(Ru/C60 ratio < 5) were found inactive for the hydrogenation of the aromatic ring, and 

AN was produced with selectivity > 80%. This might be due to the extreme small size 

of the Ru NPs present in these samples, which might be poorly active for aromatic 

ring hydrogenation.31,14 At Ru/C60 ratio ≥ 5, all catalysts were active for Aζ 

hydrogenation to CA. The remarkable feature of all these catalysts is that AN 

hydrogenation to CA starts only when complete NB hydrogenation to AN finished 

(see Figure 4.1 for the Ru@C60 10/1 catalyst). To the best of our knowledge such 

behavior has never been reported before. Controlled and chemoselective 

hydrogenation of nitrobenzene over these Ru@C60 catalysts is thus possible. 

Selectivity towards AN higher than 90% and selectivity towards CA higher than 80% 

have been obtained whatever the Ru/C60 ratio. If we consider the activity of these 

catalysts, the TOF were systematically higher for the hydrogenation of the aromatic 

ring compared to the nitro group.  
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Table 4.1. Results of hydrogenation of nitrobenzene in ethanol over different Ru@C60 

catalysts.a 

Ru@C60 

Nitro- group Selectivity (%)b Aromatic ring Selectivity(%)b 

TOF 

(h-1)c 

Time 

h 
AN AN-Et 

TOF 

(h-1)d 

Time 

h 
CA DCA CA-Et 

1/1 18.7 48 80 20 -- --- --- -- --- 

2/1 33.6 48 84 16 --- --- trace -- --- 

5/1 44.3 24 96 4 132.2 6 91 4 5 

10/1 55.7 4 90 10 100.4 3.5 86 7 7 

20/1 60.8 3.5 91 9 182.1 2 84.5 8.5 7 

30/1 59.8 3 91 9 123.1 1.5 82.5 9 8.5 

50/1 42.6 3 92 8 134.5 1.5 89 5 6 
aReaction conditions: 5 mg of Ru@C60 catalyst, 500 mg (4.06 mmol) of nitrobenzene, 200 mg (1.1 
mmol) of dodecane (internal standard), 30 bar of H2, 80 °C, 30 mL of EtOH. bDetermined by GC-MS 
using internal standard techniques. cTOFs calculated at 1 h of reaction (∼30% of conversion) except for 
ratios 1/1 and 2/1 (3 h). dTOFs calculated at 0.5 h of reaction (∼50% of conversion) except for ratios 
5/1 and 10/1 (1 h). 

 

Figure 4.1. Time-concentration curve for NB hydrogenation with Ru@C60 (Ru/C60 = 

10/1). 
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Figure 4.2. Evolution of conversion of nitrobenzene (left) and aniline (right) with time 

with different Ru@C60 catalysts. 

Apparent activation energies for nitrobenzene and aniline hydrogenation for the 

Ru@C60 10/1 catalyst were calculated using the kinetics measured at 60, 80 and 90°C 

(5 mg of Ru@C60 10/1 catalyst, NB or AN 0.2M, 30 bar H2, 20 mL EtOH see Table 

4.2 and Table 4.3 for further details). According to the nitrobenzene and aniline 

hydrogenation conversion rates in the temperature range of 60-90°C, the calculated 

activation energies are 63.4 and 34.6 kJ/mol, respectively.  

Table 4.2. Kinetics and activation energy of nitrobenzene hydrogenation. 

T (°C) Time(h) Conv (%)a k (M/h)  b Ea (kJ/mol)  c 

60 
2 14 

0.016 

63.4 

4 34 

6 49 

80 
1 29 

0.054 2 54 

3 81 

90 

0.2 9 

0.109 
0.5 33 

1 56 

1.5 80 
Reaction conditions: 5 mg Ru@C60 10/1 catalyst, 500 mg (4.06mmol) nitrobenzene, 200 mg (1.1 mmol) 
dodecane (internal standard), 30 bar H2, 20 mL solvent. aDetermined by GC-MS using internal standard 
technique.bConversion rate of NB c Calculated using the Arrhenius equation k=AE-(Ea/RT): ploting lnk vs 
1/T(K) yields a straight line with a slope of -Ea/R (R=8.314 J/mol.K; A: Arrhenius factor; k: conversion 
rate). 
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Table 4.3. Kinetics and activation energy of aniline hydrogenation. 

T (°C) Time(h) Conv (%)a k (M/h)  b Ea (kJ/mol)  c 

60 
2 22 

0.0231 

34.6 

4 47 

8 93 

80 

1 22 

0.0414 
2 41 

3 61 

4 85 

90 
1 34 

0.0671 2 68 

2.5 84 
Reaction conditions: 5 mg Ru@C60 10/1 catalyst, 500 mg (4.06mmol) aniline, 200mg (1.1 mmol) 
dodecane (internal standard), 30 bar H2, 20 mL solvent. aDetermined by GC-MS using internal standard 
technique.bConversion rate of AN c Calculated using the Arrhenius equation k=AE-(Ea/RT): ploting lnk vs 
1/T(K) yields a straight line with a slope of -Ea/R (R=8.314 J/mol.K; A: Arrhenius factor; k: conversion 
rate). 

Competitive hydrogenation in the presence of both nitrobenzene and aniline was 

performed using the Ru@C60 10/1 catalyst (see Table 4.4). The reaction proceed 

similarly: nitrobenzene was selectively hydrogenated first with no presence of CA in 

the reaction mixture. The direct hydrogenation of AN also produced selectively CA, 

nevertheless the activity of the catalyst was lower. 

After reaction, the size of the Ru NPs as well as the size of the Ru@C60 nanospheres 

did not significantly change (Table 4.5 and Table 4.6). Recyclability tests were 

performed employing Ru@C60 10/1 catalyst in order to confirm the stability of the 

catalytic species (Table 4.7). A slight decrease of the final conversion was detected in 

the successive catalytic runs.  
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Table 4.4. Nitrobenzene hydrogenation in the presence of aniline. 

 NB hydrogenationa 
NB hydrogenation in the presence of 

ANb 

Time 

(h) 
Conv (%)c TOF (h-1) 

AN Selec. 

(%) c 
Conv. (%)c TOF (h-1) 

AN 

Selec. (%)c 

1 33 55.7 86 24 39.8 100 

2 - - - 44 36.8 100 

3 84 47.2 90 69 38.8 99 

4 100 42.1 92 81 35.5 99 

aReaction conditions: 5 mg Ru@C60 catalyst, 4.06 mmol nitrobenzene, 1.1 mmol dodecane (internal 
standard), 30 bar H2, 80°C, 30 mL EtOH. bReaction conditions: 5 mg Ru@C60 catalyst, 4.06mmol 
nitrobenzene, 4.06mmol aniline,1.1 mmol dodecane (internal standard), 30 bar H2, 80°C, 30 mL EtOH. 
cDetermined by GC-MS using internal standard technique. 

Table 4.5. Ru NPs mean size before and after nitrobenzene hydrogenation. 

Ru@C60 Before reactiona After reactiona 

2/1 1.16 ± 0.02 nm 1.01 ± 0.01 nm 

5/1 1.31 ± 0.03 nm 1.50 ± 0.006 nm 

10/1 1.26 ± 0.03 nm 1.50 ± 0.01 nm 

20/1 1.10 ± 0.01 nm 1.56 ± 0.023 nm 

30/1 1.35 ± 0.02 nm 1.76 ± 0.01 nm 

50/1 1.31 ± 0.03 nm 1.87 ± 0.02 nm 

aManual measurement from enlarged TEM micrographs of at least 200 objects. 
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Table 4.6. Ru@C60 nanospheres size before and after the hydrogenation of nitrobenzene. 

Ru/C60 Before reactiona After reactiona 

1/1 36.2 ± 1.2 nm 43.6 ± 0.1 nm 

2/1 31.6 ± 0.6 nm 40 ± 0.9 nm 

5/1 42.6 ± 1.0 nm 51 ± 0.8 nm 

10/1 32.4 ± 0.3 nm 44 ± 0.4 nm 

20/1 39.8 ± 1.1 nm | 85.2 ± 2.9 nm 49 ±0.2nm | 95±1.1nm 

30/1 56.4 ± 4.7 nm | 103.2 ± 1.0 nm 112.5 ±1.8nm 

50/1 63.3 ± 0.8 nm 81.5± 1.4 nm 

aManual measurement from enlarged micrographs of at least 200 objects. 
 

Table 4.7. Catalytic recycling tests for NB hydrogenation with the Ru@C60 catalyst. 

Ru@C60 10/1 
Nitrobenzene conv. 

(%) a 

Aniline conv. 

(%) a 

Cyclohexylamine 

selectivity (%) a 

Fresh catalyst 100 97 90 

1st recycling 100 93 86 

2nd recycling 100 88 87 

Reaction conditions: 20 mg Ru@C60 10/1 catalyst, 16.14 mmol nitrobenzene, 4 mmol dodecane 
(internal standard), 30 bar H2, 80°C, 120 mL EtOH, 8h. aDetermined by GC-MS using internal standard 
technique. 

Nevertheless, Ru was not detected in the final product by ICP analyses, indicating that 

there is no leaching of soluble Ru species. Taking into account these results, the 

decrease of the conversion in the recycling test is more likely due to the slight 

increase of the Ru NPs mean size after catalysis. 



Chapter 4 Catalytic applications of ruthenium@fullerene nanostructures 

181 

 

4.2.2.1 Solvent effect 

Highly exothermic reactions, such as the NB hydrogenation reaction often employ a 

solvent to help dissipate the excess heat generated during reaction and to prevent 

possible explosion. It has been shown that the nature of the solvent employed has a 

significant effect on the rate and selectivity of the catalytic hydrogenation reaction.32 

Solvents have different roles, in addition to the usual one (heat management, 

solubilisation): i) they can change the solubility of hydrogen, ii) compete with the 

reactants for adsorption at the metal surface, iii) catalyze side reactions, iv) provoke 

catalyst agglomeration, and v) interact with the reactant. Concerning the latter effect, 

favorable thermodynamic interaction between the solvent and the reactant is expected 

to reduce the adsorption of the reactant on the catalyst while unfavorable interaction 

should favor the adsorption. The Ru@C60 10/1 catalyst was used to evaluate the 

influence of the solvent (Table 4.8). Methanol, ethanol and isopropanol were 

compared. Hydrogen solubility in these solvent is expected to follow the order: 

iPrOH > EtOH > MeOH, as H2 solubility in alcohols increases with the number of 

carbon atoms.33 The relative permittivity ( r) follow the order MeOH ( r = 32.7) > 

EtOH ( r = 24.5) > iPrOH ( r = 17.9). A significant solvent effect was noticed both on 

catalyst activity and selectivity. As far as the activity is concerned, methanol is by far 

the best solvent. Results obtained on Pd/C catalysts have shown that NB34 or 

nitrotoluene32 hydrogenations proceed much more rapidly in methanol than in 

isopropanol or ethanol. It has been proposed that the interaction between the solvent 

and the reactant is probably the dominant factor that decides the overall effect of the 

solvent on the rate of hydrogenation. The interactions seem to affect the energetics of 

the reaction, as reflected in the value of the activation energy, which was observed to 

change with the reaction medium.32 However, over palladium catalysts supported on 

nanodiamonds the higher rates of NB hydrogenation were obtained in butanol, 

followed by ethanol and then methanol.35 
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Table 4.8. Results of hydrogenation of nitrobenzene with the Ru@C60 (Ru/C60 = 10/1) 

catalyst in different solvents. 

 

Solvent 

Nitro- group Selectivity (%)a Aromatic ring Selectivity (%)a 

TOF 

(h-1) b 

Time 

h 
AN 

N-alkylati

on 

TOF 

(h-1)c 

Time 

h 
CA DCA 

N-alkylati

on 

MeOH 42.6 3 98 2 134.5 3 88 5 7 

EtOH 55.7 4 90 10 100.4 3.5 86 7 7 

iPrOH 37.0 6 100 0 45 4 94.5 2 3.5 

Reaction conditions: 5 mg Ru@C60 10/1 catalyst, 500 mg (4.06mmol) nitrobenzene, 200mg (1.1 mmol) 
dodecane (internal standard), 30 bar H2, 80°C, 30 mL solvent. aDetermined by GC-MS using internal 
standard technique. bTOFs calculated at 1h of reaction (≈30% of conversion). c TOFs calculated at 1h 
of reaction. 

4.2.2.3 Scope of the NB hydrogenation  

Finally, we also broadened the spectrum of substrates to substituted nitrobenzene 

(Table 4.9), varying the electron donating/withdrawing character of the substituent. 

In all substrates tested the stepwise hydrogenation to produce the fully hydrogenated 

alkylanime was observed. As expected from the electronic effect, 

p-chloronitrobenzene and p-fluoronitrobenzene react faster than p-nitrotoluene to 

produce the respective aniline.36  

The further hydrogenation of toluidine provides particular challenges with respect to 

chemo- and diastereoselectivity. Indeed: i) the aromatic ring can be fully or partially 

hydrogenated; ii) the amino group can be cleaved off or may be susceptible to parallel 

or consecutive reactions; and iii) the methyl group adds cis/trans diastereomerism to 

the hydrogenated product. Para-toluidine was fully converted only after 4.5h. In 

parallel with the consumption of p-toluidine, cis- and trans-4-MCyNH2 and small 

amounts of the three secondary amine (4-MCy)2NH diastereomers were formed as  
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Table 4.9. Results of hydrogenation of substituted nitroarenes with the Ru@C60 (Ru/C60 = 10/1) catalyst in ethanol. 

Substrate 

Nitro- group Selectivity (%)a Aromatic ring Selectivity(%)a 

TOF 
(h-1)b 

Time 
h 

s-AN N-alkylation 
TOF 
(h-1)b 

Time 
h 

s-CA s-DCA N-alkylation 

 
55.7 4 90 10 100.4 3.5 86 7 7 

 
94.8 2.5 94 6 36.0 4.5 89 3.1 7.8 

 
109.3 2 92 8 38.6 5 96.7c 1.5 1.8 

 
236.0 1 92.5 7.5 114.3 3 85.2c 9.1 5.7 

 
168.4 1 98 2 24.3 7 87 n.d. 12 

Reaction conditions: 5 mg Ru@C60 10/1 catalyst, (4.06mmol) nitroarene, 200 mg dodecane (internal standard), 30 bar H2, 80°C, 30 mL solvent. aDetermined by GC-MS 
using internal standard technique at 100% conversion, bTOFs calculated at 1h of reaction, cSelectivity towards the dehalogenated substrate. 
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well as N-alkylation product. Cis- and trans-4-MCyNH2 were formed in a ratio of 4, 

which is unusually high for Ru/C catalysts.37,38  

For chloro nitrobenzene hydrogenation, ruthenium is known as a good catalyst for 

minimizing dehalogenation, combined with a fast rate of reduction of the nitro 

group.39,40,41 Chloroaniline is usually obtained with high selectivity on carbon 

supports.42,43 The complete hydrogenation that should produce 

chlorocyclohexylamine has not been reported. However, it is known that on Pt/Al2O3 

catalysts, after the hydrogenation of p-chloronitrobenzene to p-chloroaniline, the 

aromatic haloamine undergoes hydro-dechlorination to aniline, and further ring 

hydrogenation to cyclohexylamine.44 After 2 hours of reaction the Ru@C60 catalyst 

allows the production of p-chloroaniline with 92% selectivity. In a second stage, the 

p-chloroaniline undergoes hydro-dechlorination to AN, and further ring 

hydrogenation to produce CA. p-fluoronitrobenzene presented the same behavior. 

4.2.2.3 NB hydrogenation with Ru@C60, T-Ru@C60, and Ru@C66(COOH)12 

nanocatalysts  

Catalysts prepared with different solvent or fullerenes were also tested in the NB 

hydrogenation. Table 4.10 summarizes the results obtained with the Ru@C60, 

T-Ru@C60, and Ru@C66(COOH)12 catalysts. 

All T-Ru@C60 compounds were active in the NB hydrogenation giving AN as major 

product with selectivity up to 93% at 6h of reaction. However, no conversion to CA 

was detected using these catalysts The reason is probably because of the Ru content 

and the Ru NP size. The T-Ru@C60 catalyst 1/1 (6.8% Ru), 10/1 (15.7% Ru) and 55/1 

(47.5% Ru) have similar percentage of Ru than Ru@C60 2/3 (6.4% Ru), 2/1 (16.7% 

Ru) and 10/1 (48.7% Ru), respectively. As previously shown the low loading catalysts 

(Ru@C60 ratio < 5) were found inactive for the hydrogenation of the aromatic ring 

and T-Ru@C60 1/1 and 10/1 are comparable to these catalysts. 
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Table 4.10. Results of hydrogenation of nitrobenzene with Ru@C60, T-Ru@C60, and 

Ru@C66(COOH)12.
a
 

   Catalyst       Ratio TOFb 
Conversion 

(%)c 

Selectivity (%)c 

AN AN-Et CA DCA CA-Et 

T-Ru@C60 

1/1 85 24 85 15 --- --- --- 

10/1 119 51 92 8 --- --- --- 

55/1 41 69 93 7 --- --- --- 

Ru@C66(COOH)12 
6/1 120 53 92 8 --- --- --- 

12/1 61 53 92 8 --- --- --- 

 30/1 51 100 2 --- 86 traces 11 

Ru@C60 

1/1 19 10 80 20 --- ---- ---- 

10/1 49 100 90 10 86 7 7 

50/1 42 100 92 8 89 5 6 
aReaction conditions: 5 mg catalyst, 500 mg (4.06 mmol) nitrobenzene, 200mg (1.1 mmol) dodecane 
(internal standard), 30 bar H2, 80°C, 30 mL EtOH. bTOFs calculated at 1h of reaction. cDetermined by 
GC-MS using internal standard technique at 6h of reaction. 

On the other hand, T-Ru@C60 55/1 did not show activity for the aromatic ring 

hydrogenation, indicating that the Ru loading is not the only factor that plays a role 

but Ru particles size also have a remarkable effect. The Ru nanoparticles size are 1/1 

(< 1 nm), 10/1 (< 1 nm) and 55/1 (1.15 ± 0.03 nm) in different T-Ru@C60 catalyst. It 

is comparable with the size of Ru@C60 2/1 ( 1.16 ± 0.02 nm). The T-Ru@C60 

catalysts and Ru@C60 2/1 nanostructure have a similar NPs size, as consequence, they 

show similar catalytic behavior, i.e. they are active for the hydrogenation of NO2 

group and in active for the aromatic ring hydenation. Additionally, the BET 

measurement of Ru@C60 10/1 and T-Ru@C60 10/1 show a surface area of 13.9 and 

4.8 m2/g, respectively, indicating that in T-Ru@C60 nanocatalysts, the ruthenium 

active species are probably less accessible and explaining the different behavior than 

observed in Ru@C60 nanocatalysts. 

The case of Ru@C66(COOH)12 samples seems to be similar. Low loading 

nanocatalysts were less active than Ru@C60 catalysts at similar Ru content. However, 
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Ru@C66(COOH)12 30/1 was able to hydrogenate AN to CA in 6h, which is 

comparable to Ru@C60 20/1. Again, this results points out that the accessibility of the 

metal plays an important role for the activity and selectivity in this reaction. 

4.2.2.4 DFT calculations  

In order to understand the controlled and chemoselective hydrogenation of NB over 

the Ru@C60 catalysts, a DFT study has been performed, to explore the coordination 

thermodynamics of a single NB molecule on a 2C60-Ru13 molecular model. Two 

coordination modes, denoted π-mode and nitro-mode in the following, appeared to be 

in competition. The first mode is when the π -system of the NB interacts with a facet 

of the Ru13. The second one corresponds to the nitro group attached to an edge of the 

cluster (see Figure 4.3a and b). 

 

Figure 4.3. a) Side view of the π–mode coordination of a nitrobenzene molecule on a 

facet of a naked 2C60-Ru13 molecular complex; and b) Side view of the NO2-mode 

coordination of a nitrobenzene molecule on the edge of a naked 2C60-Ru13 molecular 

complex. 
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It is then clear that in the π-mode, both hydrogenation of the aromatic ring and the 

nitro group are possible, when only the latter will be possible in the nitro-mode 

coordination. Without any hydrides on the metallic surface, the adsorption energy of 

both configurations are close together, -50 and -57 kcal/mol for nitro- and π-mode 

respectively. Mind that for an infinite Ru(0001) surface, which could be viewed as a 

good approximation of facets presented by large Ru NPs,45 the adsorption energy is 

rised but remains in favor of the π-mode, -45 kcal/mol vs. -30 kcal/mol.  

Here, we propose that the NO2-mode is favored by the presence of numerous hydrides 

on the metallic surface, with an experimental ratio between 1.3 and 2 H per surface 

Ru atom.46,47 Recently, a theoretical study has shown that on small Ru NPs, the 

maximum coverage value is 1.6 H per Ru surface atom.48 As shown in Figure 4.4, for 

low coverage values the π-mode is thermodynamically favored, but as soon as enough 

hydrides are present on the surface, the NO2-mode becomes more stable. Considering 

the experimental conditions (temperature and pression of H2), it is possible to 

consider that the small metallic NPs are fully covered, and are preferential sites for 

the selective hydrogenation to aniline. 

 

Figure 4.4. Evolution of the energy difference between the two adsorption modes with 

respect to the ratio of H per Ru surface atoms present on the metallic cluster. 

To conclude, we have successfully prepared in a straightforward manner different 

Ru@C60 nano-objects. Among them, the Ru@C60 catalysts are the most interesting 
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These structures consist in a ruthenium fulleride core (kinetic product of the reaction), 

surrounded by a shell of Ru ζPs (≈ 1.5 nm). These materials are characterized by a 

significant charge transfer between Ru and C60 providing electron deficient Ru centers 

(see Chapter 2). The remarkable feature of this study is the controlled and 

chemoselective hydrogenation of NB, which provide with high selectivity, first AN, 

and then CA. DFT calculations have shown that the coordination mode of NB on such 

nano-objects changes with the hydride coverage. At low coverage, π–mode 

coordination is favored, for which both hydrogenation of the aromatic ring and the 

nitro group are possible. Whereas at high hydride coverage, NO2-mode coordination 

prevails, for which only NO2 hydrogenation is possible. Thus the combination of 

electron poor ruthenium nanoparticles and high hydride coverage explain the peculiar 

observed selectivity of Ru@C60. For comparison, a Ru/CNT catalyst give only a 

maximum selectivity towards AN of 64%.23b 

4.2.2 Hydrogenation of trans-cinnamaldehyde 

Selective hydrogenation of α, -unsaturated aldehydes is of industrial 

importance.49,50,51 The hydrogenation products are widely used for pharmaceuticals, 

perfumes, and flavors.52 The hydrogenation of the double bond produces the saturated 

aldehyde, while carbonyl group hydrogenated lead to unsaturated alcohols (Scheme 

4.2). In this reaction, the formation of the saturated aldehyde (HCAL) is favoured 

over the unsaturated alcohol (COL) because of thermodynamics. The definition of 

selective catalysts for the production of COL is thus very challenging.53  

 

Scheme 4.2. trans-cinnamaldehyde hydrogenation reaction. 

To obtain the unsaturated alcohol COL, the catalyst should allow controlling the 

reduction rate of the double bond and the carbonyl group, and changing the adsorption 
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constants of the components. It was found that the polarization of the C=O group and 

hindering the adsorption of the substrate though C=C group are very useful strategies 

to achieve the selective C=O hydrogenation. Thus many factors have been considered 

for the selective hydrogenation of α, -unsaturated aldehydes, including the  choice 

of the support materials,54,55,56 the size of the metal nanoparticles,57,51,58,59 the presence 

of a second metal,60,61 and the use of some additives like bases or Lewis salts.62,63,64 

The selective synthesis of cinnamyl alcohol has been achieved by the use of metal 

oxides supports, following the order: MgO > SiO2 > ZnO > SWCNTs > 

MWCNTs.65,54 Even if carbon based supports usually provide less selective catalysts 

for the hydrogenation of cinnamaldehyde, there are few reports that use carbon based 

materials-C60, which present a good selectivity towards cinnamyl alcohol.19 In this 

context, the selective hydrogenation of CAL has been studied with Ru@fullerene 

catalysts. Solvent and additive effects have been investigated, showing a marked 

effect on the selectivity. In this chapter, a comparison of the different catalyst 

Ru@C60, T-Ru@C60, and Ru@C66(COOH)12 will be described. Ru@C60 10/1 exhibits 

the best selectivity for cinnamyl alcohol. Besides, saturated aldehyde was also 

synthesized with a high selectivity by controlling the reaction conditions. 

Cinnamaldehyde hydrogenation was studied at 20 bar of H2 and 70 °C in several 

solvents and using different bases. Ru@C60 10/1 nanocatalysts was used to optimize 

the reaction conditions, then other ratios as well as T-Ru@C60 and Ru@C66(COOH)12 

catalysts were tested in this hydrogenation reaction. In general, the addition of a base 

in the reaction mixture prevents significantly the formation of acetals(a typically 

by-product) and improves the selectivity towards COL.66,67,68 Two types of bases have 

been studied, including amines and alkali hydroxides. The mechanism of C=O 

activation with addition of amines is still uncertain. However, it was proposed that 

amines could be in interaction with the metal surface via lone electron pair, which 

disfavors the C=C bond hydrogenation.69 For the alkali hydroxides, the improvement 

of the selectivity towards C=O bond hydrogenation was attributed to the polarization 
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of the C=O bond by an interaction between the metal cation that act a Lewis acidic 

site and the lone electron pair of oxygen atom in the C=O group.70,71 

The different bases were tested as additive and the results of the catalysis are 

summarized in Table 4.11. In the absence of any base, the Ru@C60 catalyst formed 

very large amounts of acetals, from the condensation reaction between CAL and the 

solvent (iPrOH). This could be explained by the fact that the Ru NPs are electron 

deficient. We independently checked that the Ru@C60 catalyst was active for this 

condensation reaction under argon (78 % conversion after 20 h at 70°C). At 20% of 

conversion, 61% of COL was obtained without any base, which is a high selectivity 

for a Ru catalyst (≈ 40% selectivity is usually reported for Ru/C catalysts)19,72. 

However, such high selectivity has already been reported in the case of a 5% Ru/C60 

catalyst that shows a poor catalytic activity; and in that case also acetal formation was 

reported.19  

Table 4.11. Effect of the base on cinnamaldehyde hydrogenation using Ru@C60 10/1.a 

Ru@C60 10/1 
TOF 

(h-1)b 

Selectivity (%)c 

HCAL HCOL COL 

No based 16.7 14 25 61 

KOH 11.6 56 1 43 

Et3N 54.7 45 13 42 

Pyridine 17.7 20 3 77 

Pyridine (3 mL ) 23.8 27 2 71 
aReaction conditions: 4.0 mmol cinnamaldehyde 528 mg, nonane 200 mg, isopropanol 30 mL, 70 °C, 
1.5 eq. base, 2.0 MPa H2, 1000 rpm/min. bTOF was calculated at 2h of reaction.c At 20 % conversion of 
CAL. dAcetals are the main products of the reaction, and the given selectivity do not take into account 
the acetals. 

The addition of 1.5 eq. of pyridine was beneficial, increasing the selectivity towards 

COL up to 77% and suppressing completely the formation of acetals. However, the 

addition of an excess of pyridine did not improve further the selectivity. In contrast, 
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the addition of strong bases such as KOH or Et3N significantly decreased the 

selectivity. 

It has been shown that the nature of the solvent employed has a significant effect on 

the rate and selectivity of the catalytic hydrogenation reaction.32 In this case (Table 

4.12) we observed that the use of protic solvents such as MeOH and isopropanol give 

the best selectivity towards COL, while a polar aprotic solvent, dioxane, gives high 

selectivity towards the C=C bond hydrogenation (Scheme 4.2).  

Table 4.12. Effect of the solvent on cinnamaldehyde hydrogenation using Ru@C60 10/1a 

aReaction conditions: 4.0 mmol cinnamaldehyde 528 mg, nonane 200mg, solvent 30 mL, pyridine (0.5 
mL), 70 °C, 1.5 eq. base, 2.0 MPa H2, 1000 rpm/min. bTOF was calculated at 2h of reaction. cAt 20 % 
conversion of CAL. d At 77 % conversion of cinnamaldehyde. 

Scheme 4.2 Selective hydrogenation of CAL over Ru@C60 catalyst. 

Like for NB hydrogenation, the highest TOF were obtained in methanol. Presumably 

because of a specific interaction between CAL or intermediates with this solvent. 

Ru@C60 10/1 TOF (h-1)b
 

Selectivity(%)c 

HCAL HCOL COL 

1,4-Dioxane 14.7 73 6 21 

Acetone 21.1 22 11 67 

Isopropanol 17.8 20 3 77 

MeOH 128.4 17.2 6.9 76d 

MeOH/water (1/1) 35.9 55 2 43 
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4.2.3.2 Effect of different nano-catalysts Ru@C60, T-Ru@C60 and 

Ru@C66(COOH)12 

Under these optimized conditions, Ru@C60, T-Ru@C60 and Ru@C66(COOH)12 

catalysts were tested, and the results are listed in Table 4.13.  

Table 4.13. The effect of Ru@C60 ratio and of catalysts on cinnamaldehyde 

hydrogenation.a 

Catalyst Ratio TOF (h-1)b 
Selectivity (%)c 

HCAL HCOL COL 

Ru@C60 
 

1/1 12.6 23 12 65 

10/1 17.7 20 3 77 

30/1 32 33 2 65 

T-Ru@C60 55/1 6.9 16 9 74 

Ru@C66(COOH)12 6/1 7.2 39 7 54 

 12/1 11.3 28 9 63 
aReaction conditions: 4.0 mmol cinnamaldehyde 528 mg, nonane 200 mg, solvent 30 mL, pyridine (0.5 
mL), 70 °C, 1.5 eq. base, 2.0 MPa H2, 1000 rpm/min. bTOF was calculated at 2h of reaction. c at 20 % 
conversion of CAL. 

All Ru@fullerene catalysts gave relatively similar selectivity to COL ranging from 54 

to 77 %. The best performances in the sense of activity and selectivity were obtained 

with the Ru@C60 10/1 nanocatalysts, pointing out that the approachability of the 

active centers is fundamental in catalysis. 

4.3 Conclusions 

In conclusion, Ru@C60, T-Ru@C60 and Ru@C66(COOH)12 catalysts were tested in 

the hydrogenation of nitrobenzene. The results revealed that the Ru@C60 catalyst not 

only can produce aniline but also cyclohexylamine by selective and consecutive 

hydrogenation. For T-Ru@C60, only aniline was formed. This catalyst is not effective 

for the hydrogenation of aniline, presumably because of the small Ru NP size. 
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Similarly, Ru@C66(COOH)12 with ratio 6/1 and 12/1 only hydrogenate nitrobenzene 

to aniline. However, the behavior of Ru@C66(COOH)12 30/1 is different, and in this 

case cyclohexylamine is produced such as in the case of Ru@C60 10/1. The controlled 

selective hydrogenation of nitrobenzene over Ru@C60 was studied by DFT 

calculations. The results suggest that indeed, the nitro group will be hydrogenated first, 

and then the aromatic ring provided a high concentration of hydride is present on the 

Ru surface.  

Then, the hydrogenation of cinnamaldehyde was investigated over the same catalysts. 

The results show that the nature of the solvent has a pronounced effect on the 

selectivity. The HCAL is the predominant product if 1,4-dioxane is used, while COL 

is produce with high selectivity in isopropanol. In alcoholic solvents, the addition of a 

base completly suppressed the formation of acetals, by preventing alcohols to react 

with the aldehyde. Compared to T-Ru@C60 and Ru@C66(COOH)12 catalysts, Ru@C60 

10/1 allows reaching the best selectivity (81% to COL). 

4.4 Experimental section  

Materials and methods 

All operations were carried out under argon atmosphere using standard Schlenk 

techniques or in an MBraun glovebox. Solvents were purified by standard methods or 

by an MBraun SPS-800 solvent purification system. Nitroarenes (>99.0%), dodecane 

(>99%), and trans-cinnamaldehyde (99.0%) were purchased from Sigma-Aldrich, and 

CO and H2 from Air Liquid. All these reactants were used as received. Ru-fullerene 

nanocatalysts were prepared as described in chapters 2 and 3. The ruthenium content 

was established by inductively coupled plasma optical emission spectroscopy 

(ICP-OES) performed at the LCC in a Thermo Scientific ICAP 6300 instrument.  

GC-MS analyses were performed in a PerkinElmer Autosystem GC equipped with an 

Elite-5MS Capillary Column (γ0 m × 0.β5 mm × 0.β5 m) coupled to a Turbo εass 

mass spectrometer.  
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General procedure for the hydrogenation of nitrobenzene. Hydrogenation reactions 

were performed in a Top Industrie high pressure and temperature stainless steel 

autoclave with a controlling system. In a typical experiment, the autoclave was purged 

by three vacuum/argon cycles. A mixture of Ru@C60 catalyst (5mg), dodecane (200 

mg) and the corresponding nitroarene (4.06 mmol) in 30 mL of solvent was 

ultrasonicated for 5 min and transferred into a high-pressure autoclave under argon 

atmosphere. The autoclave was heated to 80°C and pressurized with 30 bar of H2; the 

stirring rate was fixed at 1000 rpm. Samples of the reaction mixture were taken 

periodically and then analysed by GC-MS. Quantitative analysis of reaction mixtures 

was performed via GC-MS using calibration solutions of commercially available 

products. 

Catalytic recycling tests. The autoclave was purged by three vacuum/argon cycles. 

The mixture of Ru@C60 10/1 catalyst (20 mg), dodecane (as internal standard, 4 mmol) 

and nitrobenzene (16.14 mmol) in 120 mL of ethanol was prepared in a glovebox, 

ultrasonicated for 5 min and then transferred into a high-pressure autoclave under an 

argon atmosphere. The autoclave was heated to 80°C and pressurized with 30 bar of 

H2 during 8h; the stirring rate was fixed at 1000 rpm. After 8h, the autoclave was 

cooled to room temperature and depressurized. The reaction mixture was cannulated 

to a Schlenck tube and the catalyst was allowed to precipitate. A sample of the 

reaction mixture was analysed by GC-MS. After filtration under argon with a cannula, 

the black solid powder was washed twice with EtOH and filtrated again before drying 

under vacuum. The catalyst was kept for reuse. All solutions were combined, the 

solvent was removed under reduced pressure, and the residue analysed by ICP. Two 

recycling tests were performed following this procedure. 

Activation energy and kinetic. A series of experiments of hydrogenation of NB and 

AN were performed in order to evaluate the apparent activation energies. The 

hydrogenation of 4.06 mmol of nitrobenzene was carried out with 5mg of Ru@C60 
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10/1 catalyst in 20 mL of ethanol (0.2 M) at 30 bar of hydrogen pressure with the 

stirring rate fixed at 1000 rpm at 60, 80 and 90°C. The same conditions were used in 

the hydrogenation of AN. The reaction was followed by sampling the mixture, and the 

products were analysed by GC-MS. 

General procedure for the hydrogenation of cinnamaldehyde. Hydrogenation 

reactions were performed in a Top Industrie high pressure and temperature stainless 

steel autoclave with a controlling system. In a typical experiment, 5 mg of catalyst, 

nonane (200mg) and trans-cinnamaldehyde (4.0mmol, 528mg) and 30 mL of 

isopropanol were added into the autoclave. Then, four vacuum/argon cycles were 

performed and the autoclave was sealed with 20 bar of H2. The hydrogenation 

experiment was carried out under 20 bar H2 at 70°C temperature with magnetic 

stirring at 1000 rpm. The products were analysed on a PerkinElmer gas 

chromatograph equipped with Elite-5MS capillary column (30 m × 0.32 mm ×0.25 

m) with a flame ionization detector. The response factors of each component were 

determined with standard samples and were used to calculate the conversion and 

selectivity. 

TEM analyses. TEM and HREM analyses were performed at the “Centre de 

microcaracterisation Raimond Castaing, UεS γ6βγ, Toulouse” by using a JEOδ JEε 

1011 CX-T electron microscope operating at 100 kV with a point resolution of 4.5 Å 

and a JEOL JEM 1400 electron microscope operating at 120 kV. The high resolution 

analyses were conduct using a JEOL JEM 2100F equipped with a Field Emission Gun 

(FEG) operating at 200 kV with a point resolution of 2.3 Å and a JEOL 

JEM-ARM200F Cold FEG operating at 200 kV with a point resolution of >1.9 Å. The 

approximation of the particles mean size was made through a manual analysis of 

enlarged micrographs by measuring at least 200 particles on a given grid. Other TEM 

micrographs were acquired with a JEOL 2100F S/TEM microscope equipped with a 

FEG operating at 200 kV, a spherical aberration probe corrector and a GATAN 
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Tridiem energy filter. The resolutions attained are 2 Å and 1.1 Å under parallel TEM 

mode and scanning STEM modes, respectively.  

DFT calculations were carried out using the Vienna ab initio simulation package 

VASP 73,74,75,76. The code uses the full-potential projector augmented wave (PAW) 

framework77,78. Exchange-correlation effects have been approximated using the PBE 

functional 79 and applied in spin-polarized calculations. A kinetic-energy cutoff of 400 

eV was found to be sufficient to achieve a total-energy convergence within several 

meV, considering a k-point sampling in Gamma-point only calculations for isolated 

molecules and complexes, in conjunction with a Gaussian smearing with a width of 

0.05 eV. The (4×4) cell of the Ru (0001) was modeled by a slab of 6 layers separated 

to its periodic images in the z direction by a vacuum of 13.2 Å for a total cell height 

of 24 Å, as proposed in a previous work80. In these cases the k-point sampling was 

performed on a (3×3×1) Gamma-centered grid for the optimization procedure, when a 

(5×5×1) grid was used for analysis runs. During geometry optimization runs, all the 

atoms were fully relaxed until forces on individual atoms were smaller than 0.01 

eV/Å. Calculation cells for isolated molecules and complexes were (25×26×27) Å3, to 

avoid spurious interactions between periodic images. Figures of the different 

geometries were produced thanks to the 3D visualization program VESTA81. Bader 

charge analyses were performed using Henkelmann’s group code 82. The optimal 

geometries upon H2 adsorption were constructed following the results of Ref 80, 

meaning that all available 3 sites were occupied and then the top sites and if 

necessary some Bridge sites were used to build the starting geometries. 
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General conclusions and perspectives 

In this thesis novel Ru nanostructures based on fullerene or functionalized fullerene 

and Ru NPs have been developed and employed in catalytic hydrogenation reactions. 

First, Ru@C60 nano-architectures were synthesized by decomposition of 

[Ru(COD)(COT)] in the presence of C60 using an organometallic approach. For the 

synthesis of Ru@C60, the effect of solvent and Ru/C60 ratio were investigated. These 

two parameters play a key role in the formation of the Ru@C60 nanostructure. The 

effect of different solvents (toluene, chlorobenzene, o-dichlorobenzene, 

dichloromethane, and decalin) was studied first with a Ru/C60 ratio of 2. It was found 

that the use of high permittivity and low viscosity solvents allow the production of 

spherical Ru@C60 polymeric particles with mean size of: 285 ± 3 nm for 

chlorobenzene, 200 ± 3 nm for o-dichlorobenzene and 39.6 ± 0.7 nm for 

dichloromethane. On the other hand, the permittivity and high viscosity solvent as 

decalin and toluene do not produce polymer spheres. 

Using dichloromethane as solvent, which allow obtaining well-defined polymeric 

nanospheres, we examined the effect of the Ru/C60 ratio. Ru@C60 1/1 displays 

polymeric nanospheres (37.8 ± 1.0 nm) with no Ru NPs. Polymeric nanospheres 

decorated with Ru NPs were obtained with the increase of the Ru content. The size of 

the nanospheres is constant (around 40 nm) and the Ru nanoparticle size shows a 

narrow distribution (1-1.5 nm). The characterization of the Ru@C60 1/1 spherical 

particles has been performed. EXAFS, WAXS, and DFT calculations point to a 

polymeric structure, in which each Ru atoms is coordinated to two C60, with a 2(6)-6 

coordination mode. Solvent molecules contribute to stabilize this fulleride. This 

polymeric phase is the kinetic product of the reaction. An increase of the Ru/C60 ratio 

induces the formation of well-dispersed Ru NPs on the spheres (thermodynamic 

product of the reaction). Significant charge transfer from ruthenium to fullerene has 

been evidenced by Raman spectrometry and XPS for all the prepared materials, which 
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is an important factor to take into account, particularly if we consider the possible 

reactivity of this fulleride.  

Using similar reaction conditions, several T-Ru@C60 were synthesized in toluene by 

decomposition of [Ru(COD)(COT)] in the presence of C60 under 3 bar hydrogen. The 

results indicate that sub-nanometer Ru NPs are produced for ratio 1/1 and 10/1, while 

Ru NPs around 1.1~1.5 nm were produced at higher ratios (20/1 and 55/1). 

Next, in oder to introduce directionality to the C60 fullerene we have synthesized 

several functionalized fullerene. The functionalized hexa-adduct fullerene 

C66(COOH)12 was used as stabilizing agent or support to build three dimensional 

nanostructures. The Ru@C66(COOH)12 samples were synthesized with the same 

procedure as Ru@C60. The use of fullerenehexamalonic acid C66(COOH)12 should 

insure directionality in the assembly. We investigated the solvent and 

Ru@C66(COOH)12 ratio effect for this reaction. For the solvent, the results were 

obtained in THF, methanol, and a THF/methanol mixture. Among these solvents, 

regular shapes and narrow size distributions of Ru nanoparticles (around 1.5 nm) 

occurred spontaneously in THF. Specifically, very small particles (< 1 nm) are 

formed in methanol, while a few big Ru NPs are obtained in the mixture of solvents 

THF/H2O and THF/methanol. Furthermore, the effect of ratio of Ru/C66(COOH)12 

was studied. TEM characterizations of Ru@C66(COOH)12 6/1, 12/1 and 30/1 revealed 

that Ru NPs with a good distribution are obtained even at high ratio. The 

decomposition of the Ru precursor in the presence of this modified fullerene 

(Ru@C66(COOH)12 = 20/1) leads in the appropriate solvent to very small an 

monodispersed Ru NPs (1.5 ± 0.2 nm). SAXS analyses have been performed showing 

the presence of a peak at 0.22Å-1 corresponding to a Ru NPs - Ru NPs distance 2.85 

nm, perfectly consistent with Ru NPs organization in this material. 

The Ru@C60, T-Ru@C60 and Ru@C66(COOH)12 catalysts were tested in the 

hydrogenation of nitrobenzene and cinnamaldehyde. In the hydrogenation 
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nitrobenzene, the result revealed that Ru@C60 can not only produce selectively aniline 

but also cyclohexylaime by the consecutively hydrogenation. T-Ru@C60, only 

reduced aniline at a same reaction time, and further studies revealed that the 

T-Ru@C60 catalysts are not effective for the hydrogenation of aniline. Similarly, 

Ru@C66(COOH)12 6/1and 12/1 only provide hydrogenation of nitrobenzene to aniline. 

These result suggest that small Ru NPs (1.5 nm) are not active for aromatic ring 

hydrogenation. However, the behavior of Ru@C66(COOH)12 30/1 is different, with 

results which are comparable with Ru@C60 10/1. The controlled selective 

hydrogenation of nitrobenzene over Ru@C60 was studied by DFT calculation, which 

suggest that the nitro group will be hydrogenated first if high hydride coverage is 

reached on Ru NPs surface.  

In the hydrogenation of cinnamaldehyde, our studies suggest that the nature of the 

solvent has a remarkable effect on the selectivity towards HCAL or COL. The HCAL 

is the predominant product if 1,4-dioxane is used, while COL is produced with a high 

selectivity in isopropanol, if we except the acetal formation. The addition of a base 

sharply suppressed the formation of acetals, by preventing the alcohol react with the 

aldehyde on the electron deficient Ru NPs. Comparing Ru@C60, T-Ru@C60 and 

Ru@C66(COOH)12 catalyst, it is shown that the Ru@C60 10/1 system allows reaching 

the best selectivity towards COL (81%). 

This PhD work open a number of exciting perspectives. 

 The preliminary results obtained with the Ru@C66(COOH)12 system are 

extremely encouraging. They show that it seems possible to produce 3D 

organizations with covalent bonding that associate Ru NPs and carbon NPs 

(fullerene). Other type of functionalized fullerenes as well as other metals (such 

as Co for its magnetic properties) should be investigated in order to: i) expand to 

1D and/or 2D organizations, and ii) expand to other applications such as in 

physics. 
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 The results obtained in the case of T-Ru@C60 systems are also extremely exciting, 

since Ru NPs with size < 1 nm have been produced for a Ru/C60 ratio of 10 (size 

of a Ru13 cluster = 0.5 nm). Isolated atoms in a C60 matrix are produced for a 

Ru/C60 ratio of 1. It will be very interesting to produce samples with ratio 

between 1 and 10 to see if it is possible to produce a Ru NP almost atom per atom, 

and also to study the NP size effect in catalysis at the sub-nanometer scale. 

 The Ru NPs associate to C60 are highly electron deficient. This has an effect on 

catalytic performances. The study of the electronic effects in catalysis is of course 

of paramount importance. The model systems synthesized offered enormous 

possibility to study these effects. Indeed, if we suppose that the electron transfer 

could be modulate via UV/visible light irradiation, it will be possible to study 

metal support electronic interaction for a given system showing the same support, 

the same metal loading and the same metal NP size. 

 Finally, the application of the Ru@fullerene catalytic systems in other catalytic 

reactions, such as condensation reaction, and ammonia synthesis, could be 

interesting due to the presence of electron deficient Ru centers. 
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5.1 Introduction 

La catalyse est essentielle pour transformer de façon spécifique la structure chimique de la 

matière à grande échelle, et de fait les catalyseurs jouent un rôle central dans 90% des 

procédés de fabrication des produits chimiques. L'un des principaux défis pour la catalyse au 

21eme siècle est de mieux comprendre et concevoir des catalyseurs afin de mieux contrôler 

l'activité catalytique, la sélectivité et la stabilité. Dans ce contexte, la recherche sur des 

matériaux poreux avec des structures de pores sur mesure, et sur la composition et le 

nano-environnement des sites catalytiques est d'une importance stratégique; et il est évident 

que toutes nouvelles branches de la catalyse, comme la nanocatalyse, devraient être 

considérées comme un levier potentiel pour atteindre ces objectifs. Parmi les différents 

nanocatalyseurs, les matériaux carbonés nanostructurés gagnent de plus en plus de visibilité. 

Le développement de nouvelles nanostructures de carbone au cours des dernières décennies 

permet un contrôle à des échelles de longueur multiples. La polyvalence de ces matériaux et 

la complexité de la chimie physique du carbone rend la conception de catalyseurs 

structurellement contrôlés une tâche difficile. Concevoir des nano-architectures catalytiques 

offre donc la promesse d'une plus grande activité, sélectivité et stabilité, à condition que les 

spécifications suivantes soient respectées: a) un contrôle de la taille et/ou de la forme des 

nanoparticules, b) un contrôle de l'environnement proche de la nanoparticule, et c) une 

interaction contrôlée et robuste (covalente) du métal avec le support. 

La fonctionnalisation des composées nanostructurées de carbone avec des particules 

métalliques est un domaine de recherche en pleine effervescence. Les nanoparticules (NPs) 

métalliques ont été associés à des nanotubes de carbone, du graphène, des fullerènes, et même 

à des nano-diamants. Alors que le contrôle de la taille des NPs a parfois été atteint, la 

principale limitation de ces matériaux est, comme pour le charbon actif, l'absence presque 

complète d'un contrôle de leur organisation : à savoir les NPs métalliques sont réparties de 

manière aléatoire sur la surface du carbone, et les interactions de ces NPs avec le site 

d’ancrage du carbone n’est pas homogène en raison de la présence de différents types de 

groupes fonctionnels en surface du support. Compte tenu de l'importance fondamentale de 

l'interaction métal-support sur l'activité, la sélectivité et la stabilité des catalyseurs 

hétérogènes, ceci est clairement préjudiciable à leurs performances. En outre, la distance entre 

les NPs étant non contrôlée, leurs propriétés sont loin d'être optimales. En effet, il a été 

récemment mis en évidence que la proximité des NPs peut fortement affecter leurs 

performances catalytiques, y compris leur stabilité. Enfin, il est souvent extrêmement difficile 
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d'obtenir un chargement élevé en métal avec une petite taille de NPs métalliques, et ceci est 

désavantageux à de nombreuses applications catalytiques. Inspirés par les Metal-Organic 

Frameworks (MOF) et les Covalent Organic Frameworks (COF), nous proposons dans cette 

thèse de développer une famille originale de matériaux hybrides, associant d'une façon 

contrôlée et par des liaisons covalentes, des matériaux sp2-C nanostructurés avec des NPs 

métalliques. Les matériaux nanostructurés sélectionnés comprennent le fullerène C60 et des 

fullerènes C60 fonctionnalisés. Plus précisément pour la catalyse, ce matériau devrait 

combiner: a) une taille de NP contrôlée, b) un environnement atomique défini pour les NPs, c) 

une interaction covalente avec le support, et d) une porosité élevée et une disponibilité de 

surface très dense des centres catalytiques. Pour atteindre ces objectifs une approche 

interdisciplinaire est nécessaire : a) fonctionnalisation du C60, b) la synthèse et la 

caractérisation des NPs de métal (dans notre cas du ruthénium), c) l'assemblage contrôlé des 

structures hybrides, et d) une approche théorique visant à la modélisation et à la 

compréhension de la formation des édifices hybrides. 

L'objectif de cette thèse est donc de produire des nanostructures Ru@carbone avec de telles 

spécifications qui ouvriront de nouvelles possibilités pour la catalyse du futur. Ainsi, une 

nouvelle chimie du carbone (chimie de surface) sera développée pour synthétiser un nouveau 

type d'architectures Ru@carbone constitué par des réseaux organisés de fullerènes et des 

nanoparticules de ruthénium. Ces nanocatalyseurs seront appliqués à un domaine stratégique 

de la catalyse dans les pays industrialisés : la chimie fine. Deux réactions d'intérêt industriel 

ont été sélectionnées pour lesquelles l'activité catalytique, la sélectivité et la stabilité sont de 

véritables défis : a) l'hydrogénation du nitrobenzene en aniline et/ou en cyclohexylamine, et b) 

l'hydrogénation du trans-cinnamaldéhyde. 

5.2 Synthèse et caractérisation des nanostructures Ru@C60 et 

T-Ru@C60. 

Dans cette partie, nous décrivons la synthèse de matériaux bien définis, qui ont été 

caractérisés par une grande variété de techniques de caractérisation complémentaires. 

5.2.1 Synthèse des nanostructures Ru@C60 

Les nano-architectures Ru@C60 ont été synthétisées par la décomposition du précurseur 

organométallique [Ru(COD)(COT)] (COD = 1,5 cyclooctadiène, COT = 1,3,5-cyclooctatriène) 

en présence du C60 sous 3 bars de H2 à température ambiante (Schéma 5.1). Le contrôle des 



Chapitre 5 Résumé 

211 

 

conditions de réaction permet de synthétiser des polymères C60-Ru-C60-, des particules 

polymériques sphériques Ru-C60, ou des particules polymériques sphériques Ru-C60 décorées 

avec des NPs de Ru. 

 

Schéma 5.1. Synthèse des nanoarchitectures Ru@C60. 

5.2.1.1 Effet du solvant et du rapport Ru/C60 

Dans un premier temps, nous avons étudié l'effet du solvant sur les architectures synthétisées, 

fixant le rapport Ru/C60 à 2/1. Plusieurs solvants ont été étudiés, y compris le toluène, le 

chlorobenzène, le 1,2-dichlorobenzène, le dichlorométhane et le chloroforme (Figure 5.1). 

Dans la décaline (bicyclo[4.4.0]décane), des structures avec des formes irrégulières décorées 

avec des petites NPs de Ru (1.23 ± 0,22 nm) ont été obtenues. Le toluène conduit à des 

structures plus petites avec des diamètres moyens d’environ 175 nm ne présentant pas de ζPs 

de Ru. Des particules sphériques ont été obtenues en utilisant des solvants chlorés : 

chlorobenzène (285 ± 3 nm), 1,2-dichlorobenzène (200 ± 3 nm), CHCl3 (229 ± 1.5 nm) et 

CH2CI2 (40 ± 0.7 nm). Les nanosphères synthétisées dans le CH2Cl2 ont un diamètre moyen 

nettement plus petit et une distribution plus étroite des tailles. En outre, dans le CH2Cl2, ces 

nanosphères sont décorées avec des NPS de Ru de taille très petite (1.15 ± 0.02 nm). Au cours 

de la synthèse réalisée dans la décaline, qui a la plus forte viscosité et la permittivité la plus 

faible (voir Figure 5.1), aucun ajustement de la forme n’est réalisé, tandis que dans le CH2Cl2 

(viscosité plus faible et haute permittivité), des petites particules sphériques sont produites. 

Les autres solvants, montrant une viscosité intermédiaire, permettent aussi d'obtenir des 

sphères, cependant, avec des diamètres moyens plus importants. La seule exception est le 

nanomatériau synthétisé dans le toluène, qui a, comme la décaline, une permittivité faible. 
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Figure 5.1. Effet de la viscosité et de la permittivité du solvant sur les assemblages Ru@C60 

(Ru/C60 = 2/1). Conditions de réaction: [Ru(COD)(COT)] 2.0 éq, C60 1.0 éq, solvant, 3 bar H2, 
température ambiante, pendant une nuit. 

Afin de mieux comprendre la structure des nanosphères produites, plusieurs nanostructures 

ont été synthétisées en utilisant le CH2Cl2 comme solvant et en changeant le rapport Ru/C60 

avec une concentration de C60 fixe. Les rapports Ru/C60 étudiés sont les suivants : 2/3, 1, 2, 5, 

10, 20, 30 et 50. Les analyses MET montrent que Ru@C60 2/3 et 1/1 ne contiennent pas de 

NPs de Ru, en accord avec la HRMET. En augmentant la teneur en Ru, des NPs de Ru sont 

observées. Les NPs de Ru présentent dans tous les cas un diamètre moyen très petit, même à 

des rapports Ru/C60 élevés, allant de 1.10 à 1.35 nm. 

5.2.1.1 Synthèse des nanostructures T-Ru@C60 

L'effet du rapport Ru/C60 a également été étudiée pour les nanostructures synthétises dans le 

toluène. Plusieurs rapports Ru/C60 (1/1, 10/1, 20/1 et 55/1) ont été étudiés en utilisant le 

toluène comme solvant de réaction (T-Ru@C60). De même que pour le CH2Cl2, les faibles 

ratios Ru/C60 ne conduisent pas à la formation de NPs de Ru, qui ne sont observés que dans 

les échantillons T-Ru@C60 20/1 et 55/1 en MET conventionnelle (Figure 5.2). Des structures 

sans forme régulière ont été observées pour tous les rapports, ce qui indique que la teneur en 

ruthénium de l’échantillon n’a aucun effet sur la forme de la structure. 
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Figure 5.2. Structures T-Ru@C60 synthétisés dans le toluène avec des rapports Ru/C60 1/1 (barre 
d'échelle de 20 nm), 10/1 (barre d'échelle de 20 nm), 20/1 (échelle de bar 50 nm) et 55/1 (barre 

d'échelle 20 nm). 

 

5.2.2 Caractérisation des nanostructures Ru@C60 

Une grande variété de techniques complémentaires de caractérisation, y compris la MET en 

mode conventionnel, haute résolution et la tomographie, les spectroscopies Raman, XPS, 

WAXS et EXAFS, ainsi que des calculs DFT ont été utilisés. 

Les analyses MET ou STEM sur les projections 2D de l'objet (Ru/C60 = 30), ne fournissent 

pas d’informations claires sur la présence éventuelle d'espèces de Ru (clusters ou petites ζPs) 

à l'intérieur des sphères. A partir des tranches de vues 3D reconstruites (Figure 5.3) la 

présence de petites NPs de Ru est évidente sur la surface de la sphère, ce qui crée une coquille 

de NPs de Ru ayant une épaisseur d'environ 7 nm, ce qui correspond à une structure à 

plusieurs couches de ζPs. Il est donc clair qu'aucune ζP de Ru n’est présente à l'intérieur des 

sphères, mais cette analyse n'exclut pas la présence d'atomes de Ru dans la matrice polymère. 

L'analyse a également été réalisée pour l'échantillon Ru@C60 avec un rapport 1/1, mais la très 

petite taille des amas empêche leur localisation, la taille des agglomérats étant inférieure à la 

limite de résolution pour l'analyse par tomographie. 
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Figure 5.3. a) Analyse par tomographie de Ru@C60 30/1 : a) à 0 ° d'inclinaison de la série 

d'inclinaison, b) et c) tranches en coupe transversale ; et d), e) et f) Ru@C60 1/1 (barres d'échelle 
de 50 nm). 

δ’analyse WAXS montre que pour les échantillons avec un rapport Ru/C60 élevé, les 

diffractogrammes obtenus sont très proches et pleinement compatible avec du Ru métallique 

dans le système hcp sans contribution significative du fullerène C60. Après corrections et 

transformées de Fourier, les fonctions PDF connexes sont comme prévu également très 

proches, et compatible avec des NPS métalliques de Ru. Pour le rapport 1/1, des NPs de Ru 

n’ont pas été identifiés. 

Un transfert de charge du ruthénium au fullerène significatif a été mis en évidence par 

spectrométrie Raman et XPS pour tous les matériaux préparés, ce qui est un facteur important 

à prendre en compte, en particulier si l'on considère la réactivité possible de ces matériaux. La 

Figure 5.4a montre les spectres Raman excités à 532 nm du C60 et des structures Ru@C60 1/1 

et 20/1, dans le domaine spectral du mode Ag(2). Il a été montré que l'énergie du mode Ag(2) 

(1469.3 cm-1 pour le C60 pur) est sensible au transfert de charge dans les fullerures métalliques. 

On observe ici un décalage spectral de -8.7 cm-1 pour l’échantillon Ru@C60 1/1 et de -11.6 

cm-1 pour l’échantillon Ru@C60 20/1, ainsi qu’un élargissement de la bande significatif avec 

une quantité croissante de C60, causée par une forte interaction électron-phonon. Le transfert 

de charge a également été mis en évidence par XPS (Figure 5.4b), en comparant l'énergie de 

liaison de Ru 3p3/2 dans des échantillons Ru@C60 1/1 et 20/1 avec celle du ruthénium 

métallique (462.2 eV). Les énergies de liaison mesurées étaient de 462.2 et 461.5 eV pour les 

échantillons Ru@C60 1/1 et 20/1, respectivement. 
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Figure 5.4. a) Spectres Raman excités à 532 nm du C60 et de Ru@C60 1/1 et 20/1 dans la gamme 

spectrale du mode Ag(2); et b) spectres XPS Ru 3p3/2 du Ru@C60 1/1 et 20/1. 

Pour l'EXAFS, les spectres d'absorption au seuil K des échantillons Ru@C60 1/1 et 2/1 ont été 

obtenus sous azote et après chauffage sous 4% de H2/He pendant 1 h à 150 °C. δ’énergie 

XANES mesurée est de 22.1244 keV pour les deux spectres. L'énergie XANES de Ru@C60 

2/1 est la même que celle du Ru@C60 1/1; cependant, la forme de l’enveloppe XAζES est 

légèrement différente, ce qui indique une petite différence de structure. Le nanocatalyseur 

Ru@C60 1/1 a 8 liaisons Ru-C, qui sont stables à la réduction sous l’H2 à 150 °C; tandis que 

dans l'échantillon Ru@C60 2/1, environ un tiers du Ru est présent sous forme de NPs de Ru 

métallique de 1.5 nm de diamètre. Dans ce dernier cas, les deux tiers restants des Ru-C sont 

identiques à celles de l’échantillon Ru@C60 1/1. δes résultats de l’EXAFS sont donc en bon 

accord avec les calculs DFT réalisés qui ont par ailleurs confirmé que le Ru est lié à 8 atomes 

de carbone en forme des liaisons η2-η6 (voir ci-dessous). 

Pour comprendre la structure des nanostructures Ru@C60, des calculs DFT ont été réalisés. 

Plusieurs modèles optimisés ont été obtenus dans des conditions spécifiques. Pour un seul 

atome de Ru qui interagit avec une molécule de C60, la configuration la plus stable est η2(6), 

avec une énergie d'adsorption de -48 kcal/mole. En interaction avec deux fullerènes, un seul 

atome de Ru sera de préférence coordonné dans une position pontante η2-η2 utilisant deux 

liaisons η2(6). Une autre structure stable qui présente une coordination η2(6)-η6 est représentée 

sur la Figure 5.5. Un changement significatif de la coordination du Ru est observé lors de 

l'adsorption d’H2 et la structure la plus stable possède des liaisons η2(6)-η4. Pour des chaînes 

1D hypothétiques de polymère -C60-Ru-C60- avec un rapport Ru/C60 1/1, on constate que les 

deux modes de coordination η2(6)-η4 et η2(6)-η6 pourraient être stabilisés. 
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Figure 5.5. Vues : a) d'un complexe C60-Ru-C60; b) en mode de coordination η2(6)-η6; et c) du 
complexe le plus stable Ru-(C60)3. Les chaînes 1D idéales et leurs paramètres de maille 

correspondants pour le rapport Ru/C60 1/1 sont également donnés : en d) pour l’état η2(6)-η4 et e) 
pour l’état η2(6)-η6. Dans les deux derniers panneaux sont donnés les chaînes polymères idéales 

partiellement hydrogénées : en f) un atome de Ru est hydrogéné ou g) un C60 . Les atomes de Ru 
sont en gris, les atomes de carbone en brun et l’hydrogène en blanc. 

 

5.3 Synthèse et caractérisation des nanostructures à base de ruthénium 

et de fullerène fonctionnalisé 

Dans le but de construire des matériaux hybrides contenant des NPs de Ru avec des espaceurs 

organiques de taille nanométrique, un composé de fullerène hexa-substitué, qui contient douze 

acides carboxyliques comme groupes fonctionnels (C66(COOH)12) a été préparé (Schéma 5.2).  

 
Schéma 5.2. Synthèse des nanostuctures Ru@C66(COOH)12 
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5.3.1 Effet du solvant et du rapport Ru/C66(COOH)12 

L'effet du solvant sur la nanostructure synthétisée a été étudié en utilisant un rapport 

Ru/C66(COOH)12 de 6/1. Les solvants ont été choisis en fonction de la solubilité du fullerène 

C66(COOH)12, il s’agit du THF (tétrahydrofuranne), du εeOH, du DεF (diméthylformamide), 

et des mélanges de solvants THF/H2O (10/1) et THF/MeOH (1/1). Dans tous les cas, des 

matrices de formes irrégulières décorées avec des NPs de Ru ont été produits (Figure 5.6), à 

l'exception du composé synthétisé dans un mélange THF/MeOH (1/1), où nous avons obtenu 

des nanosphères. Les diamètres moyens des NPs métalliques sont dans la gamme de 1.03 à 

2.37 nm. Les nanostructures Ru/C66(COOH)12 synthétisées dans du THF et du MeOH 

contiennent des NPs de très petite taille, 1.23 ± 0.02 et 1.03 ± 0.06 nm, respectivement. Les 

NPs sont très proches indiquant un certain degré d’ordre. En revanche, la synthèse réalisée 

dans du DMF a donné des NPs de Ru supportées sur une matrice qui est similaire à celle 

observée dans les images MET du polymère Ru@C60.  

 
 

Figure 5.6. Images MET des structures Ru@C66(COOH)12 6/1 synthétisées dans différents 
solvants : a) THF (barre d’échelle de 50 nm), b) MeOH (barre d’échelle de 50 nm), c) DMF 

(barre d'échelle de 50 nm), d) THF/H2O (10/1) (barre d'échelle de 100 nm), et e) THF/MeOH 
(1/1) (barre d’échelle de 50 nm). 

Une série d'expériences en utilisant différents rapports Ru/C66(COOH)12 (de 6/1 jusqu’à 100/1) 

ont également été effectuées (en utilisant le THF comme solvant de réaction) afin de mieux 

comprendre les structures Ru@C66(COOH)12. Les analyses MET montrent que, dans tous les 

cas des NPs de Ru ont été obtenu, et dans tous les cas, les NPs étaient près les unes des autres 

formant de plus grandes superstructures. Fait intéressant, la distribution moyenne de taille des 

NPs de Ru augmente avec l'augmentation de la teneur en Ru tandis, que la nanostructure est 
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restée pratiquement inchangée, sauf pour l’échantillon Ru@C66(COOH)12 100/1, 

probablement dû à forte teneur en Ru de la nanostructure. 

5.3.2 Caractérisation des nanostructures Ru@C66(COOH)12 

Les nanostructures Ru@C66(COOH)12 ont été étudiées en détail en utilisant plusieurs 

techniques de caractérisation : WAXS, SAXS, RMN du solide, XPS et ATR-IR. 

Les analyses WAXS des nanostructures Ru@C66(COOH)12 6/1, 12/1 et 30/1 montrent trois 

diffractogrammes très similaires (Figure 5.7) ; ils sont parfaitement compatibles avec du Ru 

métallique dans le système hcp (2theta = 20°). Le signal aux petits angles pourrait être 

attribué au ligand C66(COOH)12, car il est très proche de celui du C66(COOH)12 pur. Après 

corrections et transformées de Fourier, les fonctions PDF connexes sont également et comme 

prévu très proches, et la taille (longueur de cohérence) peut atteindre 1.5 nm. Dans le cas 

présent, nous n'observons pas une diminution ou une augmentation de la PDF du Ru 

métallique comme dans le cas des structures Ru@C60. Les PDF indiquent également que les 

NPs de Ru ont une distribution de taille unique et un diamètre moyen proche de 1.5 nm, en 

accord avec les mesures MET. 

 
Figure 5.7. Diffractogrammes des nanostructures Ru@C66(COOH)12 6/1, 12/1 et 30/1 ainsi que 

des données de référence du Ru hcp; encart diffractogramme de C66(COOH)12. 

Pour mesurer la distance inter-particulaire des ζPs de Ru, l’échantillon Ru@C66(COOH)12 

12/1 a été caractérisé par SAXS (Figure 5.8). Les spectres SAXS sont généralement 

représentés comme une intensité diffusée en fonction de l'amplitude du vecteur de diffusion q 

= 4πsinө/ . Le spectre  montre un petit pic à 0.22 Å-1 qui correspond à une distance 

inter-particulaire de 2.85 nm. 
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Figure 5.8. Gauche : spectre SAXS du Ru@C66(COOH)12 12/1 ; centre : représentation 

schématique de la distance NP de Ru - NP de Ru ; et droite : image MET du Ru@C66(COOH)12 
12/1. 

Les spectres de 13C-RMN et CP-εAS à l’état solide ont été réalisés pour plusieurs 

nanostructures Ru@C66(COOH)12 (Figure 5.9). Les pics à 69 ppm et 141-150 ppm sont 

attribués à la structure du fullerène; ils restent inchangés par rapport au C66(COOH)12 libre. 

En revanche, le pic visible à 45 ppm, attribué à l'atome de carbone quaternaire, est décalé de 

25 ppm et le pic attribué au groupes carboxyliques est décalée à 185 ppm, indiquant que le 

C66(COOH)12 se coordonne aux NPs de Ru par les groupes carboxyliques, probablement sous 

forme de carboxylate, fait qui a été confirmé par des analyses IR et des calculs DFT. 

 
Figure 5.9. Spectre RMN 13C : a) SSNMR; et b) CP-MAS SSNMR du C66(COOH)12, 

Ru@C66(COOH)12 12/1 et 30/1. 

Les analyses XPS ont été réalisées pour plusieurs nanostructures Ru@C66(COOH)12. 

δ’analyse XPS du Ru@C66(COOH)12 12/1 est détaillée sur la Figure 5.10. Les éléments Ru, C 

et O ont été identifiés. Le pic Ru 3d et C1s peuvent être déconvolués en plusieurs 

composantes : le pic attribué au O-C=O, au C60, sp2-C, sp3-C, et les bandes du Ru 3d3/2 et du 

3d5/2. δ’énergie de liaison du pic O1s est attribuée au O=C-O et au RuO2. L'énergie de liaison 

du Ru 3p3/2 à 462.5 eV est légèrement plus élevée que celle du Ru(0), qui apparaît 

normalement à 462.2 ev. 
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Figure 5.10. Spectre XPS du Ru@C66(COOH)12 12/1 : a) Ru 3d, b) O1s, et c) énergie de liaison 

du Ru 3p. 

Le spectre ATR-IR du C66(COOH)12 montrent des pics à 2900, 1700, 1192, 830, 708, 540 et 

524 cm-1 (Figure 5.11). Les vibrations intenses à 2900 cm-1 (COOH), 1700 cm-1 (C=O), 1192 

cm-1 (C-O) sont attribués au groupe -COOH, tandis que les autres pics sont attribués à des 

vibrations de la cage du fullerène. Les échantillons Ru@C66(COOH)12 6/1, 12/1 et 30/1 ont 

donnés des spectres ATR-IR similaires. Les pics à 540 et 524 cm-1 sont attribués à la cage du 

fullerène qui reste inchangée ; tandis que les vibrations C=O du groupe COOH qui 

apparaissent à 1700 cm-1 ont disparues dans les nanostructures de Ru par rapport au ligand 

libre. Deux nouveaux pics à 1555 et 1367 cm-1 sont apparus qui ont été attribués aux 

vibrations C=O d'une nouvelle espèce COO-Ru, confirmant à nouveau la coordination du 

fullerène sous forme de ligand carboxylate. Ces données sont en accord avec les valeurs 

publiées pour des complexes Ru-carboxylate. Le pic à environ 1900 cm-1 pourrait être causé 

par la vibration de la liaison de Ru-H. 
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Figure 5.11. Spectres ATR-IR du C66(COOH)12 (en haut) et Ru@ C66(COOH)12 6/1, 12/1 et 30/1 

(en bas). 

Pour étudier les modes de coordination du C66(COOH)12 avec les NPs de Ru, nous avons 

modélisé le système en utilisant deux espèces C66(COOH)12 en interaction avec un cluster 

Ru13. Comme le montre la Figure 5.12, le mode de coordination implique 3 atomes d'oxygène 

avec une facette constituée de 3 atomes de Ru en surface de la NP. Les distances Ru-O sont 

typiques de ces systèmes avec des valeurs allant de 1.97 à 2.05 Å, en bon accord avec une 

étude précédente sur l'interaction de NPs de Ru avec les parois latérales de nanotubes de 

carbone oxydés (présence de groupe carboxylique en surface des nanotubes). Il est intéressant 

de noter que, comme dans l’étude précédente, la migration des hydrures sur le cluster de Ru 

est spontanée, ce qui entraîne la formation de groupes carboxylates, avec un gain énergétique 

de l'ordre de 15 kcal/mol par H adsorbé. Globalement, la formation de ce complexe est très 

favorable: -149 kcal/mol. 
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Figure 5.12. Structure optimisée de l’espèce C66(COOH)12-Ru13-C66(COOH)12. 

 

5.4 Applications catalytiques des nanostructures ruthénium@fullerène 

Dans cette partie les propriétés catalytiques de plusieurs nanostructures Ru@fullerène ont été 

étudiées. Les nanostructures de ruthénium synthétisées dans le CH2Cl2 (Ru@C60) et dans le 

toluène (T-Ru@C60), ainsi que les nanostructures Ru@C66(COOH)12 ont été utilisées comme 

catalyseurs dans les réactions d'hydrogénation du nitrobenzène (NB) et du 

trans-cinnamaldéhyde (CAL). 

5.4.1 Hydrogénation du nitrobenzène 

5.4.1.1 Hydrogénation de nitrobenzène avec des catalyseurs Ru@C60 

δ’hydrogénation du nitrobenzène (ζB) a été étudiée sous γ0 bars de H2 à 80 °C dans l'éthanol 

(Schéma 5.3). Tous les catalyseurs se sont révélés actifs pour l’hydrogénation du ζB (Tableau 

5.1). Dans les conditions expérimentales testées, le fullerène C60 n'est pas d'actif pour cette 

réaction. Pour les catalyseurs avec les rapports Ru/C60 les plus faibles (Ru/C60 < 5) l’aniline 

(AN) a été produite avec une sélectivité > 80%, néanmoins la cyclohéxylamine (CA) n’a pas 

été détectée dans le milieu réactionnel. Cela peut être dû à la très petite taille des NPs de Ru 

présentes dans ces échantillons, ce qui pourrait les rendre inactives pour l’hydrogénation du 

cycle aromatique. Aux rapports Ru/C60 ≥ 5, tous les catalyseurs sont actifs pour 

l’hydrogénation complète du ζB pour produire la CA. δa caractéristique remarquable de tous 

ces catalyseurs est que l’hydrogénation de l’Aζ pour produire la CA ne démarre que lorsque 

l’hydrogénation du ζB en Aζ est terminée. Un tel comportement n'a jamais été rapporté 
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auparavant. Une hydrogénation chimiosélective et contrôlée du NB sur les catalyseurs 

Ru@C60 est donc possible.  

 
Schéma 5.3. Principaux produits et sous-produits formés au cours de l’hydrogénation du NB. 

Tableau 5.1. Hydrogénation du nitrobenzène dans l'éthanol utilisant plusieurs 
catalyseurs Ru@C60.

a 

Ru@C60 

Group nitro Sélectivité (%)b 
Cycle 

aromatique 
Sélectivité (%)b 

TOF 

(h-1)c 

Temps 

h 
AN AN-Et 

TOF 

(h-1)d 

Temps 

h 
CA DCA CA-Et 

1/1 18.7 48 80 20 -- --- --- -- --- 

2/1 33.6 48 84 16 --- --- trace -- --- 

5/1 44.3 24 96 4 132.2 6 91 4 5 

10/1 55.7 4 90 10 100.4 3.5 86 7 7 

20/1 60.8 3.5 91 9 182.1 2 84.5 8.5 7 

30/1 59.8 3 91 9 123.1 1.5 82.5 9 8.5 

50/1 42.6 3 92 8 134.5 1.5 89 5 6 
aConditions de réaction: 5 mg de catalyseur Ru@C60, 500 mg (4.06 mmol) de NB, 200 mg (1.1 mmol) de 

dodécane (étalon interne), γ0 bar d’H2, 80 °C, γ0 mδ d’EtOH. bDéterminé par GC-MS en utilisant la technique 

de l’étalon interne. cTOFs calculés à 1 h de réaction (∼30% de conversion) sauf pour les rapports 1/1 et 2/1 (3 h). 
dTOFs calculés à 0.5 h de réaction (∼50% de conversion) sauf pour les rapports 5/1 and 10/1 (1 h). 

Dans tous les cas, la sélectivité obtenue envers l’Aζ est supérieure à λ0% et la sélectivité 

envers la CA est supérieure à 80%. Si l'on considère l'activité de ces catalyseurs, les TOF sont 

systématiquement plus élevés pour l'hydrogénation du cycle aromatique que pour 

l'hydrogénation du groupe nitro. 
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Plusieurs substrats ont également été testés, en variant le caractère donneur/attracteur 

d'électrons du substituant sur le cycle aromatique. Dans tous les substrats testés, 

l'hydrogénation par étapes a été observée pour produire l'amine entièrement hydrogénée. 

Comme prévu par l'effet électronique, le p-chloronitrobenzène et le p-fluoronitrobenzène 

réagissent plus vite que le p-nitrotoluène pour produire l'aniline respective. Le catalyseur 

Ru@C60 permet la production de la p-chloraniline avec 92% de sélectivité. Dans une 

deuxième étape, la p-chloroaniline subit une hydro-déchloration pour produire l’Aζ, qui est 

ensuite hydrogénée pour produire la CA. Le p-fluoronitrobenzène a présenté le même 

comportement. La p-toluidine a été entièrement convertie après seulement 4.5h de réaction. 

Les cis- et trans-4-MCyNH2 ont été formées avec un rapport de 4, ce qui est 

exceptionnellement élevé pour des catalyseurs Ru/C. 

5.4.1.2 DFT 

Afin de comprendre l'hydrogénation chimiosélective et contrôlée du NB sur les catalyseurs 

Ru@C60, une étude DFT a été réalisée, pour explorer la thermodynamique de la coordination 

d'une seule molécule de NB sur un modèle moléculaire 2C60-Ru13.  

 
Figure 5.13. Evolution de la différence d'énergie entre les deux modes d'adsorption en fonction 

du rapport de H par atome de Ru de surface. 

Deux modes de coordination, notés comme π-mode et nitro-mode dans ce qui suit, sont en 

compétition. Ici, nous proposons que le mode de nitro est favorisé par la présence de 

nombreux hydrures sur la surface métallique, avec un rapport expérimental entre 1.3 et 2 H 

par atome de Ru en surface. Comme le montre la Figure 5.13, pour des valeurs faibles du taux 

de recouvrement en H, la coordination π-mode est thermodynamiquement favorisée, mais dès 

que suffisamment d’hydrures sont présents en surface du Ru, le mode nitro devient plus stable. 

Compte tenu des conditions expérimentales (température et pression d’H2), il est possible de 
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considérer que les petites ζPs métalliques sont entièrement couvertes d’hydrures, et sont des 

sites préférentiels pour l'hydrogénation sélective en aniline. 

5.4.1.3 Hydrogénation du nitrobenzène utilisant les nanocatalyseurs Ru@C60, T- Ru@C60, 

et Ru@C66(COOH)12  

Tous les nanocatalyseurs T-Ru@C60 sont actifs dans l'hydrogénation du NB pour produire de 

l’Aζ en tant que produit majoritaire avec une sélectivité allant jusqu'à 93% à 6h de réaction 

(voir le Tableau 5.β). Cependant, aucune conversion en CA n’a pas été détectée en utilisant 

ces catalyseurs. La raison est probablement la teneur en Ru et la taille des NPs. Les 

catalyseurs T-Ru@C60 1/1 (6.8% Ru), 10/1 (15.7% Ru) et 55/1 (47.5% Ru) ont un 

pourcentage similaire de Ru que les nanocatalyseurs Ru@C60 2/3 (6.4% Ru), 2/1 (16.7% de 

Ru) et 10/1 (48.7% de Ru), respectivement. Ces catalyseurs Ru@C60 avec des rapports Ru/C60 

faibles (Ru/C60 <5) se sont avérés inactifs pour l'hydrogénation du cycle aromatique et les 

catalyseurs T-Ru/C60 1/1 et 10/1 sont donc comparables. 

Tableau 5.2. Hydrogénation du nitrobenzène en utilisant les catalyseurs Ru@C60, 
T-Ru@ 60, et Ru@C66(COOH)12.

a 

Catalyseur Rapport TOFb 
Conversion 

(%)c 

Sélectivité (%)c 

AN AN-Et CA DCA CA-Et 

T-Ru@C60 

1/1 85 24 85 15 --- --- --- 

10/1 119 51 92 8 --- --- --- 

55/1 41 69 93 7 --- --- --- 

Ru@C66(COOH)12 
6/1 120 53 92 8 --- --- --- 

12/1 61 53 92 8 --- --- --- 

 30/1 51 100 2 --- 86 traces 11 

Ru@C60 

1/1 19 10 80 20 --- ---- ---- 

10/1 49 100 90 10 86 7 7 

50/1 42 100 92 8 89 5 6 
aConditions de réaction: 5 mg de catalyseur, 500 mg (4.06 mmol) de NB, 200 mg (1.1 mmol) de dodécane 

(étalon interne), γ0 bar d’H2, 80 °C, γ0 mδ d’EtOH. bTOFs calculés à 1 h de réaction. cDéterminé par GC-MS 

utilisant la technique d’étalon interne a 6h de réaction. 

D'autre part, le système T-Ru@C60 55/1 n'a pas montré d’activité pour l'hydrogénation du 

cycle aromatique, ce qui indique que la charge en Ru n’est pas le seul facteur qui joue un rôle, 

et la taille des NPS de Ru a aussi un effet remarquable. Les tailles des NPs dans les 
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catalyseurs T-Ru@C60 sont : 1/1 (<1 nm), 10/1 (<1 nm) et 55/1 (1.15 ± 0.03 nm). Ces tailles 

sont comparables à la taille des NPs de Ru dans le catalyseur Ru@C60 2/1 (1.16 ± 0.02 nm). 

Les catalyseurs T-Ru@C60 et Ru@C60 2/1 ont une taille similaire de NPs, par conséquent, ils 

présentent un comportement catalytique similaire, à savoir qu'ils sont actifs pour 

l'hydrogénation du groupe NO2 et inactifs pour l'hydrogénation du cycle aromatique. Le cas 

des catalyseurs Ru@C66(COOH)12 semble être similaire. Les nanocatalyseurs à bas 

chargement sont moins actifs que les catalyseurs Ru@C60 à teneur de Ru similaire. Cependant, 

Ru@C66(COOH)12 γ0/1 a été capable d'hydrogéner l’Aζ en CA en 6 h de réaction, ce qui est 

comparable au nanocatalyseur Ru@C60 20/1. Là encore, ce résultat souligne que l'accessibilité 

du métal joue un rôle très important pour l'activité et la sélectivité de cette réaction. 

5.4.2 Hydrogénation du trans-cinnamaldéhyde 

δ’hydrogénation sélective du trans-cinnamaldéhyde (CAL) (Schéma 5.4) a été étudiée en 

utilisant les catalyseurs Ru@fullerène. δ’effet du solvant ainsi que de l’ajout d’additifs ont été 

étudiés. Un effet marqué sur la sélectivité a été observé. Enfin, une comparaison des différents 

catalyseurs Ru@C60, T-Ru@C60, et Ru@C66(COOH)12 sera décrite. Le nanocatalyseur 

Ru@C60 10/1 présente la meilleure sélectivité pour l'alcool cinnamylique (COL). En outre, 

l'aldéhyde saturé (HCAL) a également été synthétisée avec une sélectivité élevée en 

contrôlant les conditions de la réaction. 

 
Schéma 5.4. Réaction d'hydrogénation du trans-cinnamaldéhyde. 

5.4.2.1 Effet du solvant et de la base 

δ’hydrogénation du trans-cinnamaldéhyde a été étudiée à 20 bars de H2 et 70 °C dans 

plusieurs solvants et en utilisant plusieurs bases. Le nanocatalyseur Ru@C60 10/1s a été utilisé 

pour optimiser les conditions de réaction, puis, à partir des conditions optimisées les autres 

catalyseurs Ru@C60, T-Ru@C60 et Ru@C66(COOH)12 ont été évalués. En général, l'addition 

d'une base dans le mélange réactionnel empêche de manière significative la formation 

d'acétals et améliore la sélectivité envers le COL. Deux types de bases ont été étudiés, des 

amines et des hydroxydes alcalins. Les résultats de la catalyse sont résumés dans le Tableau 

5.3. En l'absence de toute base, le catalyseur Ru@C60 forme de très grandes quantités d'acétals, 
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dû à la réaction de condensation entre le CAL et le solvant (iPrOH). Ceci pourrait être 

expliqué par le fait que les NPs de Ru sont déficientes en électrons (catalyseur acide). Nous 

avons indépendamment vérifié que le catalyseur Ru@C60 est actif pour cette réaction de 

condensation sous atmosphère d'argon (conversion de 78% des CAL/iPrOH en acétal en 20 h 

à 70°C). À 20% de conversion et en présence d’hydrogène, 61% de COδ a été obtenus  sans 

aucune base (en faisant abstraction de la formation d’acétals) en utilisant le nanocatalyseur 

Ru@C60 10/1, ce qui est déjà une haute sélectivité pour un catalyseur de Ru (≈40% de 

sélectivité en COL sont généralement rapportés sur des catalyseurs Ru/C). 

Tableau 5.3. Effet de la base sur l’hydrogénation du trans-cinnamaldéhyde utilisant 
Ru@C60 10/1.a 

Ru@C60 10/1 
TOF 

(h-1)b 

Sélectivité (%)c 

HCAL HCOL COL 

Sans based 16.7 14 25 61 

KOH 11.6 56 1 43 

Et3N 54.7 45 13 42 

Pyridine 17.7 20 3 77 

Pyridine (3 mL) 23.8 27 2 71 
aConditions de réaction : 528 mg (4.0 mmol) de trans-cinnamaldéhyde, β00 mg de nonane, γ0 mδ d’isopropanol, 
70 °C, 1.5 eq. base, 20 bar H2, 1000 rpm/min bTOFs calculés à 2 h de réaction.cA 20 % de conversion de CAL. 
dLes acétals sont les produits majoritaires de la réaction, la sélectivité reportée ne tient pas en compte ces acétals. 

L'addition de 1,5 équivalents de pyridine augmente la sélectivité envers le COL jusqu'à 77% 

et supprime totalement la formation d'acétals. L'addition d'un excès supplémentaire de 

pyridine, n'a pas amélioré davantage la sélectivité. En revanche, l'ajout de bases plus fortes 

telles que KOH ou la triéthylamine diminue de manière significative la sélectivité. 

 

5.4.2.2 Effet des différents nanocatalyseurs Ru@C60, T-Ru@C60 et Ru@C66(COOH)12 

En utilisant les conditions optimisées, les nanocatalyseurs Ru@C60, T-Ru@C60 et 

Ru@C66(COOH)12 ont été testés, et les résultats sont résumés dans le Tableau 5.4. Tous les 

catalyseurs Ru@fullerène présentent des sélectivités relativement similaires envers le COL 

allant de 54 à 77%. Les meilleures performances dans le sens de l'activité et de la sélectivité 
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ont été obtenues avec les nanocatalyseurs Ru@C60, soulignant que l’accessibilité des centres 

actifs est fondamentale dans la catalyse. 

Tableau 5.4. Effet des catalyseurs sur l’hydrogénation du trans-cinnamaldéhyde 

Catalyseur 
Rapport 

Ru/fullerène 

TOF  

(h-1)b 

Sélectivité (%)c 

HCAL HCOL COL 

 

Ru@C60 

 

1/1 12.6 23 12 65 

10/1 17.7 20 3 77 

30/1 32 33 2 65 

T-Ru@C60 55/1 6.9 16 9 74 

Ru@C66(COOH)12 
6/1 7.2 39 7 54 

12/1 11.3 28 9 63 
aConditions de réaction : 528 mg (4.0 mmol) de trans-cinnamaldéhyde, β00 mg de nonane, γ0 mδ d’isopropanol, 
70 °C, 1.5 eq. base, 20 bar H2, 1000 rpm/min bTOFs calculés à 2 h de réaction.cA 20 % de conversion de CAL. 

5.5 Conclusions 

Dans cette thèse des nanostructures à base de fullerène C60 ou de fullerène fonctionnalisés et 

de NPs de Ru ont été synthétisées et utilisées pour des réactions catalytiques d'hydrogénation. 

Tout d'abord, les nano-architectures Ru@C60 ont été synthétisées par décomposition du 

[Ru(COD)(COT)], en présence du C60. Pour la synthèse des échantillons Ru@C60, l'effet du 

solvant et du rapport Ru/C60 ont été étudiés. Ces deux paramètres jouent un rôle clé dans la 

formation des nanostructures Ru@C60. L'effet de différents solvants (toluène, chlorobenzène, 

o-dichlorobenzène, chloroformr, dichlorométhane, et décaline) a d'abord été étudié avec un 

rapport Ru/C60 de 2. On a constaté que les solvants de permittivité élevée et de faible viscosité 

permettent la production de particules sphériques de polymère Ru-C60, ces particules ont une 

taille moyenne de 285 ± 3 nm pour le chlorobenzène, de 200 ± 3 nm pour le 

o-dichlorobenzène et de 39.6 ± 0.7 nm, pour le dichlorométhane. D'autre part, la faible 

permittivité et la viscosité élevée de la décaline et du toluène ne permettent pas l’obtention 

des sphères polymèriques. 

En utilisant du dichlorométhane comme solvant, ce qui permet l'obtention de nanosphères 

polymériques bien définies, nous avons examiné l'effet du rapport Ru/C60. En utilisant un 

rapport Ru/C60 1/1 des nanosphères polymériques (37.8 ± 1,0 nm) sans NPs de Ru ont été 
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obtenues. En augmentant le teneur en Ru des nanosphères polymériques décorées avec des 

NPs de Ru ont été synthétisées. La taille des nanosphères est constante (environ 40 nm) et la 

taille des nanoparticules de Ru montre une distribution étroite (1-1.5 nm) dans tous les 

échantillons synthétisés (Ru/C60 > 1). La caractérisation des particules sphériques Ru@C60 

1/1 a été réalisée. δ’EXAFS, le WAXS et les calculs DFT pointent vers une structure 

polymérique, dans laquelle chacun des atomes de Ru est coordonné à deux C60, avec un mode 

de coordination original du type η2(6)-η6. Les molécules de solvant contribuent à stabiliser ce 

fullerure. Cette phase polymérique est le produit cinétique de la réaction. Une augmentation 

du rapport Ru/C60 induit la formation de NPs de Ru bien dispersées sur la surface des sphères 

(produit thermodynamique de la réaction). Un transfert de charge significatif du ruthénium 

vers les fullerènes a été mis en évidence par spectrométrie Raman et XPS pour tous les 

matériaux préparés, ce qui est un facteur important à prendre en compte, en particulier si l'on 

considère la réactivité possible de ce fullerure. 

En utilisant des conditions de réaction similaires, plusieurs nano-architectures T- Ru@C60 ont 

été synthétisés dans le toluène par décomposition de [Ru(COD)(COT)] en présence du C60 

sous 3 bars d'hydrogène. Les résultats indiquent que des NPs de Ru sous-nanométriques sont 

produites pour les rapport 1/1 et 10/1, alors que des ζPs de Ru d’environ 1.1 ~ 1.5 nm ont été 

produites à des rapports Ru/C60 plus élevés (20/1 et 55/1). 

Afin d'introduire de la directionnalité sur le fullerène C60, nous avons synthétisé plusieurs 

fullerènes fonctionnalisés. Le fullerène hexa-substitué avec douze groupes carboxyliques, 

C66(COOH)12 a été utilisé comme agent de stabilisation pour construire des nanostructures 

tridimensionnelles. Les nanostructures Ru@C66(COOH)12 ont été synthétisées par le même 

mode opératoire que celui décrit pour le Ru@C60. L'utilisation de l'acide 

fullerènehexamalonique C66(COOH)12 (fonctionnalisation octaédrique) devrait assurer la 

directionnalité dans l'assemblage. Nous avons étudié l'effet du solvant et du rapport 

Ru/C66(COOH)12 pour cette réaction. Plusieurs solvants dont, le THF, le MeOH et des 

mélanges de solvant THF/MeOH et THF/H2O ont été utilisés. Parmi ces solvants, des formes 

régulières et des distributions de taille étroite des NPs de Ru (environ 1.5 nm) sont produites 

spontanément dans le THF. En particulier, de très petites particules (<1 nm) sont formées 

dans le MeOH, tandis que des NPs de Ru de taille plus importante sont obtenues dans les 

mélanges de solvants THF/MeOH et THF/H2O. L'effet du rapport de Ru/C66(COOH)12 a 

également été étudié. La caractérisation par microscopie électronique des échantillons 

Ru@C66(COOH)12 6/1, 12/1 et 30/1 a révélé que des NPs de Ru avec une distribution étroite 
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en taille ont été obtenues même a des rapports Ru/C66(COOH)12 élevés. Les analyses SAXS 

effectuées montrent la présence d'un pic à 0.22Å-1 correspondant à une distance NP de Ru-NP 

de Ru de 2.85 nm, parfaitement cohérente avec l'organisation des NPs de Ru dans ce 

matériau. 

Les nanocatalyseurs Ru@C60, T-Ru@C60 et Ru@C66(COOH)12 ont été testés dans 

l'hydrogénation du nitrobenzène et du trans-cinnamaldéhyde. Dans l’hydrogénation du ζB, 

les résultats ont révélés que les nanostructures Ru@C60 peuvent non seulement produire 

l'aniline, mais aussi la cyclohexylamine par hydrogénations consécutives. Le nanocatalyseur 

T-Ru@C60, réduit seulement le NB en AN et est inactif pour l'hydrogénation du cycle 

aromatique. De même, les nanocatalyseurs Ru@C66(COOH)12 6/1 et 1β/1 n’hydrogènent pas 

le NB en CA. Toutefois, le Ru@C66(COOH)12 30/1 avec une teneur en Ru plus élevée est 

capable d’hydrogéner complètement le ζB pour produire la CA, avec des résultats qui sont 

comparables au nanocatalyseur Ru@C60 10/1. L'hydrogénation sélective et contrôlée du NB 

sur Ru@C60 a été étudiée par DFT, les résultats obtenus suggèrent que le groupe NO2 est 

hydrogéné d'abord si une couverture élevée en hydrures est atteinte en surface des NPs de Ru. 

Dans l'hydrogénation du trans-cinnamaldéhyde, les études suggèrent que la nature du solvant 

a un effet remarquable sur la sélectivité envers le HCAL ou le COL. Le HCAL est le produit 

majoritaire si le 1,4-dioxane est utilisé comme solvant, tandis que le COL est produit avec une 

sélectivité élevée dans l'isopropanol, si la formation d'acétal n’est pas comptabilisée. 

L'addition d'une base supprime la formation d'acétals, en empêchant l'alcool (solvant) de 

réagir avec l'aldéhyde. En comparant les catalyseurs Ru@C60, T-Ru@C60 et 

Ru@C66(COOH)12, il est démontré que le système Ru@C60 permet d'atteindre la meilleure 

sélectivité envers le COL (81%). 
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