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Introduction Motivation

Medical ultrasound (US) imaging is one of the most widely employed imaging modalities due to its harmless, portable, cost efficient and real time properties compared with other medical imaging modalities, e.g., X-ray, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET). Particularly, due to the advances in ultrasound hardware conducted during last 20 years, clinical diagnosis using ultrasound systems is very common nowadays in radiology, cardiology and obstetrics. Moreover, driven by the healthcare needs and the requirement for low-cost imaging solutions, ultrasound is the first modality that is chosen for obstetrics, breast mass assessment and cardiovascular diseases. Besides, ultrasound is the only imaging modality capable of imaging soft tissue deformations quickly enough for the interventional procedure guidance.

However, the relative poor image quality (e.g., low resolution and contrast) still limits the applications of medical ultrasound modality. Inspired by the tight relationship between image processing techniques and medical image analysis, it is more and more interesting to improve ultrasound image quality using some post-processing techniques besides the device-based methods. Among the existing post-processing techniques, restoration (denoising, deconvolution, blind-deconvolution, etc.) and segmentation remain necessary steps in ultrasound image analysis in order to obtain qualitative measurements such as the location of objects of interest, as well as the quantitative measurements such as area, volume or the analysis of dynamic behavior of anatomical structures. This PhD thesis deals with the problems of ultrasound image quality improvement using post-processing techniques, 1 including deconvolution, segmentation and super-resolution.

Organization of the manuscript

• Chapter 1: This chapter reminds the basic principles related to medical US imaging. In addition to the physics related to ultrasound image acquisition, the linear image formation model including the point spread function (PSF)/blurring kernel is presented. Moreover, several widely studied post-processing techniques and some related state-of-the-art methods for medical ultrasound imaging are reported.

• Chapter 2: This chapter presents a Bayesian method for joint deconvolution and segmentation of ultrasound images. Due to the tight relationship between these two problems, some methods coupling deconvolution and segmentation have been recently considered for piece-wise homogeneous/natural images. However, these methods are not always efficient for US images because of the presence of speckle noise. In this chapter, a new model for joint segmentation and deconvolution of ultrasound images is proposed within a Bayesian framework. Since the posterior distribution obtained with the proposed Bayesian model is intractable, a Markov chain Monte Carlo (MCMC) method based on a Gibbs sampler is investigated to sample the posterior distribution. The generated samples are then used to build the Bayesian estimators of the unknown model parameters.

• Chapter 3: This chapter presents a fast single image super-resolution (SR) method, which consists of recovering a high resolution image from its blurred, decimated and noisy version.

The existing algorithms for single image SR include the traditional first-order gradient methods and the recent splitting-based methods dividing the SR problem into separate up-sampling and deconvolution steps that can be easily solved. Instead of following this splitting strategy, we propose to deal with the decimation and blurring operators simultaneously. The proposed method is sufficiently generic to deal with medical US images and natural piece-wise constant images. Different priors can be considered according to the image modalities of interest, including Laplacian, Gaussian, generalized Gaussian or TV priors.

• Chapter 4: While the deconvolution problems studied in the two previous chapters are supposed to be non-blind, i.e., the point spread function is estimated as a prerequisite step, this chapter studies the blind deconvolution of US images. Our first approach for tackling this problem consists of assigning a Gaussian prior to the PSF and to formulate the blind deconvolution problem within a Bayesian framework. An appropriate Gibbs sampler is then proposed to sample the posterior of this Bayesian model and to build Bayesian estimators of the parameters of interest. A second idea investigated in this chapter is based on a parametric model for the PSF. Given the parametric model for the PSF, several parameters are estimated instead of the whole PSF, which can reduce computational burden. The blind deconvolution problem is finally formulated as an optimization problem further solved within a variational framework.

Main Contributions

The main contributions of this thesis are as follows.

• Chapter 2. The contribution of this chapter is to propose a new hierarchical Bayesian model for joint segmentation and deconvolution of US images. This model is based on a mixture of generalized Gaussian distributions (GGDs) assigned to the tissue reflectivity function (TRF)/image to be estimated and a Potts model allowing interactions between pixels in a neighborhood to be considered. To our knowledge, the proposed method represents a first attempt for a joint segmentation and deconvolution in US imaging.

• Chapter 3. Single image super-resolution is addressed in this chapter. By taking advantage of the decimation and blurring operators' properties in the frequency domain, we show that it is possible to calculate the analytical solution of the 2 -2 problem (i.e., Tikhonov regularized quadratic problem). Other general image priors (e.g., TV, 1 -norm priors) can be considered by embedding this analytical solution into an alternating direction method of multipliers (ADMM) framework.

• Chapter 4. This chapter considers the blind deconvolution for ultrasound images. In order to estimate the PSF and the TRF jointly, a Gaussian prior is first considered in Bayesian inference. In a second step, a parametric model for the PSF is proposed in order to reduce the computational burden of the blind image deconvolution algorithm. The formulated problem is finally solved using an alternating optimization technique. 
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Ultrasound imaging background

Sound waves are caused by variation in the pressure within a medium. Precisely, a sound wave consists of repeating pattern of high and low pressure regions, as shown in Fig. 1.1. The wavelength λ is the shortest distance that the wave repeats itself, which is defined by

λ = c f (1.1)
where c is the speed of sound and f is its frequency. Note that the speed of sound depends on the medium. Particularly, the speed of sound in soft tissues takes values in the range [1300, 1600] 

Attributes and applications

Attributes

A comparison between medical ultrasound imaging and other prominent medical imaging modalities such as X-ray computed tomography (CT) or magnetic resonance imaging (MRI), inspired from [START_REF] Thomas | Diagnostic Ultrasound Imaging: Inside Out[END_REF] is presented in Table 1.1. Moreover, the attributes of medical ultrasound images are summarized and listed as below [START_REF] Kremkau | Sonography principle and instruments[END_REF], 

$ $ $$$$ $$$$$$$$ Portability Excellent Good Poor Poor
• Safety: Ultrasound uses non-ionizing sound waves, which is an important advantage, in particular for the evaluation of fetal or gonadal tissues.

• Inexpensive: Ultrasound examination is less expensive to conduct than CT or MRI, leading to its improved availability possible in local low budget clinical environment.

• Portable: There are few (if any) contraindications to use medical ultrasound, compared with MRI or contrast-enhanced CT.

• Real time: The real-time nature of ultrasound imaging is useful for the evaluation of physiology as well as anatomy (e.g., fetal heart rate, the movement of the body's internal organs as well as blood flowing through the blood vessels).

However, ultrasonography suffers from some drawbacks, related to the non-negligible width of acoustic beam and finite bandwidth of the transducer [START_REF] Alessandrini | Statistical Methods for Analysis and Processing of Medical Ultrasound-applications to segmentation and restoration[END_REF]. As a result, ultrasound images usually have poor signal-to-noise ratio, limited contrast and spatial resolution. Besides, ultrasound waves do not penetrate bone or other tissues containing air very well. Therefore, it is difficult to visualize structures behind bones, e.g., brain. Moreover, training is required to accurately and efficienctly conduct an ultrasound exam and there is nonuniformity in the quality of examinations.

Applications

Medical ultrasound imaging is widely utilized in medicine. Usually, ultrasound is used to visualize internal body structures such as tendons, muscles, joints, vessels and internal organs. Its aim is often to find a source of a disease or to exclude any pathology. Clinical applications involving medical US imaging are summarized as follows [CSJ11, Sza04]:

• Cardiology: Echocardiography is an essential tool to diagnose cardiac diseases through the observation of the dilation of parts of the heart and of the function of heart ventricles and valves.

• Obstetrics: Obstetrical sonography is commonly used during pregnancy to check on the development of the fetus.

• Urology: Ultrasound can be used for measuring the blood flow through the kidney, seeing kidney stones or early detecting of prostate cancer.

• Angiology: Duplex ultrasound (B-mode vessel imaging combined with Doppler flow measurement) is daily used in angiology to diagnose arterial and venous disease all over the body.

• Emergency Medicine: Point of care ultrasound has many applications in the Emergency Department, including the Focused Assessment with Sonography for Trauma (FAST) exam for assessing significant hemoperitoneum or pericardial tamponade after trauma. Ultrasound is routinely used in the Emergency Department to expedite the care of patients with right upper quadrant abdominal pain who may have gallstones or cholecystitis.

• Gastroenterology/Colorectal surgery: In abdominal sonography, the solid organs of the abdomen such as the pancreas, aorta, inferior vena cava, liver, gall bladder, bile ducts, kidneys, and spleen are imaged. Sound waves are blocked by gas in the bowel and attenuated in different degree by fat, therefore there are limited diagnostic capabilities in this area. The appendix can sometimes be seen when inflamed (e.g., appendicitis).

Ultrasound propagation

In a conventional pulse-echo ultrasound system, the ultrasound images are acquired by transmitting pulses into the body and detecting echoes reflected and backscattered by acoustic inhomogeneities.

Thus, the physical phenomena during ultrasound propagation, e.g., reflection, scattering and attenuation, due to the interaction between ultrasound waves and medium decide the generation and the inherent properties (e.g., heavy speckle noise) of ultrasound images.

Reflection and scattering

When the emitted pulses travel through the interface between two media of different acoustic properties (acoustical impedance), the reflected echoes that travel back to the transducer and thus give information about the medium are due to reflection and scattering. Specular reflection happens when the reflector is large and smooth compared to the wavelength, where the reflected waves are in a singular direction. Conversely, scattering/diffuse reflection is taking place when the reflector is small compared to the wavelength. Fig. 1.4 displays the phenomena of specular reflection and scattering/diffuse reflection during ultrasound wave propagation.

• Reflection: As known from the basic physics, ultrasound waves are partially reflected or transmitted at the boundary between two media when the interfaces are large and flat. Reflection forms the basis of pulse-echo ultrasonic imaging and contributes to image formation displaying organ boundaries. The extent of reflection and transmission depends on the acoustic impedance, denoted as Z (Z = ρc, where ρ is the density and c is the speed sound of the material). The amplitude of the reflected waves is proportional to the difference of the acoustic impedance of two materials, which is defined by the ratio of the reflected to the incident acoustic pressure amplitude, called the amplitude reflection coefficient R defined by

R = Z 2 cos θ 1 -Z 1 cos θ 2 Z 2 cos θ 1 + Z 1 cos θ 2 (1.2)
where Z 1 and Z 2 are the acoustic impedances of the two tissues respectively. The ratio of the transmitted to the incident acoustic amplitude is called amplitude transmission coefficient T , which is given by

T = 2Z 2 cos θ 1 Z 2 cos θ 1 + Z 1 cos θ 2 .
(1.3)

• Scattering: During ultrasound wave propagation, the reflections from the interfaces whose dimensions (denoted as d) are very small, i.e., d λ, are classified as scattering. The resulting detected echos have little angle dependence on the strength since the scattered waves spread in all directions. Compared with the strength of echos from large interfaces, the total ultrasound power scattered by the small targets is much smaller. Precisely, the scattered power (denoted as I s ) relative to the power of the incident pulse (denoted as

I i ) is [Sza04] I s I i ∝ d 6 f 4 (1.4)
where f is the frequency of the pulse. This frequency dependence is often referred to as Rayleigh scattering [START_REF]Physics for medical imaging applicaitons[END_REF].
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Attenuation and Penetration

During ultrasound propagation, the loss of waves with distance is generally referred to as attenuation. The main mechanism contributions of ultrasound attenuation are absorption and scattering.

Penetration, as the maximum distance that the ultrasonic beam can reach inside the tissue, is highly related with attenuation.

• Attenuation: The rate of the attenuation generally depends on two factors: i) the materials through which the waves are passing; ii) the ultrasound wave frequency (denoted as f ). The energy lost during the wave propagation is caused by absorption (conversion into heat) or the scattering beam (out of the beam confines). In general, ultrasound attenuation is characterized by the following exponential decrease of the pressure. Considering the attenuation, a transmitted signal can be modeled by

p(z, t) = exp(-αz)s(t -z/c) (1.5)
where z is the depth, s(t-z/c) is the wave emitted by the probe along the axial of z and α is the attenuation coefficient of the medium defined by the ratio of the amplitudes on a logarithmic scale, i.e., α = 20 log 10 (A/A 0 ) (1.6)

where A and A 0 are the amplitudes of the pulse at the depth of measurement and z = 0.

Generally, α is given in dB/cm, which satisfies the relationship α dB = 8.6886α nepers [START_REF] Thomas | Diagnostic Ultrasound Imaging: Inside Out[END_REF].

Attenuation also depends on the frequency of pulse. For soft tissue, the attenuation coefficient is usually given as 0.3 -0.6 dB/cm/MHz [START_REF]Physics for medical imaging applicaitons[END_REF]. Thus, for deep organs, a low frequency (3-5

MHz) must be used to reduce the amount of attenuation.

• Penetration: Penetration is the maximum distance that the ultrasonic beam can reach inside the tissue. As stated above, higher frequencies lead to higher attenuation, then lower penetration.

Thus, it is difficult to achieve good resolution at deeper depths given the trade-off between frequency and exploration depth.

Higher frequency ultrasound has shorter wavelength, thus the corresponding acquired image has better resolution. However, ultrasound with high frequency are absorbed easily, leading to more attenuation and less penetration. Therefore, high frequencies are used for scanning areas of the body close to the surface and low frequencies are used for areas that are deeper down in the body.

Resolution

• Spatial resolution: The spatial resolution of ultrasound images describes the minimum spacing Figure 1.6: Spatial resolution of an ultrasound imaging system.

Chapter 1 -Medical ultrasound imaging between two reflectors. The spatial resolution in ultrasound imaging mainly refers to the resolution along the axial direction (along the scan lines) and the lateral direction (perpendicular to the axial direction). Precisely, the axial spatial resolution is the ability to distinguish the closely spaced reflectors along/parallel to the beam axis, which mainly depends on the wavelength and frequency. Typically, the axial resolution is chosen equal to 2 wavelength

λ ax = c 2B (1.7)
where c is the sound velocity and B is the bandwidth of the pulse emitted by the transducer.

The lateral spatial resolution refers to the ability to distinguish closely spaced reflectors perpendicular to the beam, which depends on the beam width at the location of the reflectors and the focusing features [START_REF]Physics for medical imaging applicaitons[END_REF]. The lateral resolution is given by

λ la = F λ D (1.8)
where F is the focal depth, D is the probe diameter and λ is the wavelength, as shown in Fig. • Temporal resolution: In the standard brightness mode (B-mode) acquisition, the image is built as a collection of scan lines acquired in sequence. In this situation, temporal resolution is synonymous with frame rate. Given the number of scan lines N , a maximum depth P and the sound speed c, the frame rate is given by

FR = c 2P N .
(1.9)

For an image at 15 cm depth and 50 scan lines, the frame rate is approximately 100 frames/sec, i.e., a real time visualization is allowed. It is interesting to note that the ultrafast imaging in biomedical ultrasound developed in graphical processing unit (GPU) technology has permitted frame rates of > 1000 frames per second [START_REF] Tanter | Ultrafast imaging in biomedical ultrasound[END_REF].

Ultrasound transducer

An ultrasound transducer/probe generates sound waves and receives echoes through conversion between electrical energy and mechanical energy. The ultrasound transducer highly affects the performance and imaging quality of ultrasonic scanner. According to different clinical applications, there exist different kinds of probes, see e.g., Fig. 1.8.

In an ultrasound probe, there are one or more quartz crystals called piezoelectric (PZT) crystals, as displayed in Fig. 1.9. When an electric current is applied to the crystals, these crystals vibrate rapidly. The rapid change of the crystals produce sound waves that travel through the tissues.

Conversely, when sound waves hit the crystals, they emit electrical currents. This conversion of electrical energy to mechanical energy is known as PZT effect.

Transducer arrays

• Single element transducer: It contains only one element that cannot change focus.

• Array transducer: It contains more than one element, i.e., single slab of PZT crystal is sawed into separate elements, as shown in Fig. 1.9. Usually, multi-element transducers are manufactured because several scanning elements can be activated together to produce narrower beam (see Fig. 1.10). This beam can be formed by applying time delays to the individual elements that transmit excitation pulses. Moreover, the arrangement of transducer elements in an array makes it possible to focus or to steer the pulse-echo acoustic beam electrically by appropriately delaying the excitation pulses to each element. More illustrations about beamforming are presented in the following section.

Ultrasound data

Many different types of images can be formed using medical ultrasound instruments. The readers can refer to [START_REF] Thomas | Diagnostic Ultrasound Imaging: Inside Out[END_REF] for detailed illustrations.

Beamforming

The ultrasound image acquisition can be divided into two main steps, i.e., transmission and reception.

To concentrate the beam energy in a focal area, the transmission mode is when a subpart of the elements of the probe (called active elements) are acted together with previously delayed in such a way to obtain a summed beam at a focalization point. Then, the same probe switches in reception mode that record the reflected echoes from the scatterers. Then, the reflected signals are delayed and averaged, with or without apodization to create one radio-frequency (RF) line, as shown in Fig. 1.11. The accumulation of echoes in this way is referred to as delay-and-sum beamforming, which exists in both transmission and reception operations. The apodization in the beamforming is usually considered for reducing the amplitudes of side lobes in the incident pressure field. After repeating the transmission and reception operations along all the elements of the probe, one image called postbeamformed image/RF image is obtained. More recently, new beamforming techniques have been developed to improve ultrasound image formation, which is out of the scope of this manuscript. The readers can refer to [START_REF] Mathieu Toulemonde | New beamforming strategy for improved ultrasound imaging: application to biologibio tissues nonlinear imaging[END_REF] and the references therein for more details illustrations.

RF, IQ signals

• RF: The radio frequency (RF) signal is the reflected signal obtained from the US imaging system after beamforming techniques. • IQ: The in phase/quadrature (IQ) signal, also called complex envelope signal, is the demodulated version of RF signal. It can be computed as

r IQ = [r RF -iH(r RF) ]e -iω 0 t (1.10)
where r RF , r IQ are the RF and IQ signals respectively, H(•) represents the Hilbert transform and ω 0 is the central frequency of the ultrasound probe.

Ultrasound image modes

• A mode: The Amplitude mode is the simplest single dimension mode, where the signals are displayed as spikes related with the amplitude of the echoes.

• M mode: The motion mode, also called time motion (TM) mode, represents movement of structures over time. A 2D image is acquired initially and a single line is placed along the area of interest. The M mode displays the time history of this single line over time. Due to its good temporal resolution (high sampling rate), the M mode is valuable for evaluation of rapid movements, e.g., it is widely used in echocardiography given the dynamic output of the cardiac tissue. It is also often used with color flow Doppler for timing of abnormal flows. • Other modes: Besides the US modes explained above, other widely used US modes include Doppler mode, continuous wave Doppler (CWD), pulse wave Doppler (PWD) and so on [START_REF] Thomas | Diagnostic Ultrasound Imaging: Inside Out[END_REF],

which are out of the scope of this manuscript. 

Ultrasound image formation

Ultrasound images are produced based on the reflection of the waves on the body structures. By measuring the time between the transmission of a pulse and the reception of an echo, the ultrasound machine can calculate the distance between the probe and the tissue that caused the detected echo. This is the pulse-echo principle. In addition, the amplitude of the echoes also provide the information necessary to produce an image. This section motivates the linear model generally assumed and used in this manuscript for ultrasound image formation.

Received signal

Based on the physical principle of wave propagation and equation, Ng. et where is the two dimensional convolution operator, r 0 is the transducer surface, r is the location of the scatterer/tissue of interest, the term f m (r) is commonly referred as tissue reflectivity function (TRF) which accounts for the inhomogeneities of in the tissue due to density and propagation velocity perturbations, h(r, t) = v pe (r, t) h pe (r, t) is the system point spread function (PSF) which combines the electromechanical response v pe (r, t) and the pulse-echo impulse response h pe (r, t). Note that h pe relates the transducer geometry to the spatial extent of the scattered field [Ng06, NPK + 06].

Point spread function

The ultrasound PSF plays an important role in ultrasound imaging system. It describes the imaging system response to a point input, and it must be derived for an accurate deconvolution. An important property of the PSF is its spatial variability. Methods allowing this variability to be handled are proposed in [START_REF] Alessandrini | Statistical Methods for Analysis and Processing of Medical Ultrasound-applications to segmentation and restoration[END_REF]. The PSF depends on factors including the ultrasound system and the medium.

Among the factors, the shape of the system PSF is mainly relative with the transducer and beam- As stated in the previous ultrasound image presentation, the main limitation of ultrasound images is the poor image quality. Even though the device-based techniques have been carried out during last 20 years to improve ultrasound image visualization, many challenges on ultrasound imaging remain, e.g., restoration, resolution enhancement, segmentation, etc. Thus, some post-processing methods to improve the ultrasound image quality are prensented in the next section.

Post-processing techniques in ultrasound imaging

Introduction to inverse problems

An inverse problem is the process of calculating parameters from a set of observations: for example, calculating an image in CT, source reconstructing in acoustic, etc. In other words, it starts with the results and then calculates the causes. Inverse problems most often do not fulfill Hadamard's postulates of well-posedness: they might not have a solution in the strict sense, solutions might not be unique or might not depend continuously on the data (stability). Moreover, even if a problem is well-posed, it may still be ill-conditioned, i.e., the condition number may be too large. In these cases, a traditional technique is to consider regularization/penalty terms or prior information to regularize the ill-posed/ill-conditioned problem to a well-posed/well-conditioned problem. Usually, the regularization term is related with the prior information about the parameters to be estimated.

In this part, several widely studied post-processing techniques for ultrasound images are reported, including speckle reduction, image deconvolution, image segmentation and image super-resolution.

All these problems deal with parameter estimation given the observation. In this sense, they belong to the class of inverse problems.

Speckle reduction

Speckle noise is a well known inherent phenomenon in most B-mode US images due to the constructive and destructive interferences of backscattered echoes from the scatterers that are much smaller than the wavelength. Speckle noise leads to a granular pattern on the imaged tissue structures, which generally obscure fine anatomic details. Even though speckle reduction was not studied in detail in this manuscript, it is an important post-processing technique for medical US images. In the context of speckle reduction using post-processing techniques, speckle noise is widely assumed to be multiplicative [START_REF] Michailovich | Despeckling of medical ultrasound images[END_REF][START_REF] Yanhui Guo | A novel approach to speckle reduction in ultrasound imaging[END_REF]. Thus, the logarithm transform is typically conducted to convert the multiplicative speckle noise into additive noise. A review of speckle reduction methods for cardiac ultrasound B-mode images can be found in [START_REF] Perperidis | Postprocessing apapproach for the improvement of cardiac ultrasound b-mode images: a review[END_REF]. However, it is interesting to note that even if speckle noise can be considered as multiplicative noise, it is also a source of information that can be exploited for speckle tracking and tissue characterization.

Image deconvolution

Linear image formation model

As a consequence of the linear model in (1.11), US images can be modelled as the convolution between a blurring kernel/PSF and a tissue reflectivity function. The resulting linear model can be rewritten as below

y(r) = h(r) x(r) + n(r), r ∈ R (1.12)
where y(r) is the observed image pixel at the location r, x(r) is the TRF to be estimated, h(r)

is the system PSF, n(r) is an additive noise due to the measurement and R is the image domain.

Equivalently, after lexicographical ordering the corresponding images y(r), x(r), n(r) and forming the huge matrix H ∈ R N ×N associated with h(r), we obtain the following equivalent model y = Hx + n.

(1.13)

PSF estimation

Given the linear image model mentioned above, the PSF of an ultrasound system is unknown in practice. In an ultrasound image deconvolution framework, the estimation of the PSF is one of the key problems. The PSF is shift variant along the axial direction due to the physical reasons, e.g., attenuation, scattering. In this case, US images are generally divided into several local regions along the axial direction. In each region, the local PSF is assumed shift-invariant. 

Y (ω) = X(ω)H(ω) (1.14)
where Y (ω), X(ω) and H(ω) are the Fourier transforms of y(r), x(r) and h(r) and ω represent the location of images in the frequency domain. Particularly, it has been observed in numerous studies that the log-spectrum log |H| is regular and slow-varying function, while log |X| appears to be broadband and "spiky", see Fig. 1.16. Thus, it is possible to separate the PSF and the reflectivity function using homomorphic techniques, whose basic idea is to transform the product of two functions into the sum of two other functions. This separation is conducted in the cepstrum1 domain. Precisely, the complex logarithmical transformation Ŷ of the observation where W is a wrapping operator. In the traditional homomorphic technique, it is possible to estimate the phase using the minimum phase assumption (see [START_REF] Arendt | Nonparametric estimation of ultrasound pulses[END_REF] for more details).

Y (ω) is given by Ŷ (ω) = log |Y (ω)| + i∠Y (ω) = log |X(ω)| + log |H(ω)| + i{∠X(ω) + ∠H(ω)} (1.
• Generalized homomorphic technique: Compared with the traditional homomorphic method, the generalized homomorphic technique explores wavelet-based denoising methods/wavelet filtering to estimate the amplitude [START_REF] Taxt | Restoration of medical ultrasound images using two-dimensional homomorphic deconvolution[END_REF][START_REF] Benameur | An homomorphic filtering and expectation maximization approach for the point spread function estimation in ultrasound imaging[END_REF]. In order to estimate the phase of the PSF, a variety of phase unwrapping techniques have been developed for ultrasound PSF in the literature, see e.g., [START_REF] Michailovich | Phase unwrapping for 2-D blind deconvolution of ultrasound images[END_REF][START_REF] Michailovich | Robust estimation of ultrasound pulses using outlierresistant de-noising[END_REF]. It is also interesting to note that the inverse filtering techniques can avoid the wrapped phase problem (see [START_REF] Michailovich | Blind deconvolution of medical ultrasound images: A parametric inverse filtering approach[END_REF] for details).

Non-blind image deconvolution

US image deconvolution aims at estimating the TRF x from the RF data y using the linear model where f (y -Hx) is the data fidelity term, i.e., the likelihood of the observations, related to the noise distribution, g(x) is the regularization constraint, which usually reflects the prior knowledge about x and τ is the regularization parameter which weights the importance between the data fidelity term and the regularization term. Given an additive white Gaussian noise (AWGN), the data fidelity term can be rewritten as

f (y -Hx) = 1 2 y -Hx 2 2 (1.20)
where • 2 stands for the standard 2 -norm. In US imaging, Gaussian and Laplacian distributions have been widely explored as prior information for the TRF x, leading to 2 -norm [JT08] and 1 -norm [START_REF] Michailovich | Blind deconvolution of medical ultrasound images: A parametric inverse filtering approach[END_REF], [START_REF] Yu | A blind deconvolution approach to ultrasound imaging[END_REF] constrained optimization problems.

• 2 -norm regularized deconvolution Considering Gaussian prior for the TRF x and an AWGN, the image deconvolution problem can be rewritten as

min x 1 2 y -Hx 2 2 + τ x 2 2 .
(1.21)

The analytical solution of (1.21) can be implemented in the frequency domain, i.e.,

X(ω 1 , ω 2 ) = Y (ω 1 , ω 2 )H H (ω 1 , ω 2 ) |H(ω 1 , ω 2 )| 2 + τ (1.22)
where • H denotes the complex conjugate. This type of deconvolution is well known as Wiener filtering [START_REF] Zhu | Total least squares reconstruction with wavelets for optical tomography[END_REF].

• 1 -norm regularized deconvolution Given AWGN and Laplacian prior for the TRF, we obtain the following image deconvolution problem min

x 1 2 y -Hx 2 2 + τ x 1 (1.23)
The cost function in (1.23) is non-differential, thus the traditional gradient-based algorithms cannot be considered directly. However, the variable splitting based algorithms developed for non-differential problems such as the alternating direction method of multipliers (ADMM)

[BPC + 11a], the forward-backward algorithm (FBA) [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF], the fast iterative shringkagethresholding algorithm (FISTA) [START_REF] Beck | A fast iterative shringkage-thresholding algorithm for linear inverse problems[END_REF], etc. can be employed.

• Total variation regularized deconvolution Total variation (TV) is widely used in image processing as a prior due to its good properties for edge preservation [START_REF] Michael | Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods[END_REF][START_REF] Morin | Alternating direction method of multipliers framework for super-resolution in ultrasound imaging[END_REF]. In order to give its definition, we first introduce the gradient operators ∇x, where

∇ := [∂ h , ∂ v ]
T and ∂ h and ∂ v are the horizontal and vertical gradients. For an image x ∈ R m×n , under the periodic boundary conditions, the numerical definitions of the gradient operators are

(∂ h x)(i, j) =        x(i + 1, j) -x(i, j) if i < m x(m, j) -x(1, j) if i = m (1.24) (∂ v x)(i, j) =        x(i, j + 1) -x(i, j) if j < n x(i, n) -x(i, 1) if j = n.
(1.25)

The gradient operators can be rewritten as two matrices D h and D v corresponding to the horizontal and vertical discrete differences of an image, respectively. Using these notations, the TV prior can be defined as

x TV = ∂ h x 2 + ∂ v x 2 = D h x 2 + D v x 2 .
(1.26)

Given the TV prior and under the assumption of AWGN, we can rewrite the image deconvolution problem as (1.27), which involves a nondifferential cost function.

min x 1 2 y -Hx 2 2 + τ x TV .
(1.27)

The methods that have been proposed to tackle problem (1.27) include the variable splitting algorithms such as the ADMM, FBA, primal-dual algorithms [CCC + 10], etc.
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In addition to these traditional image priors considered for US images, different kinds of priors depending on the type of applications have been studied. For instance, generalized Gaussian distributions have been used for tissue characterization in [AMP + 11], for joint US image deconvolution and segmentation in [START_REF] Zhao | Joint segmentation and deconvolution of ultrasound images using a hierarchical Bayesian model based on generalized Gaussian priors[END_REF] and for US image compressed sensing in [START_REF] Chen | Ultrasound compressive deconvolution with lp-norm prior[END_REF]. The Huber model is proposed in [START_REF] Michailovich | Adaptive learning of tissue reflectivity statistics and its application to deconvolution of medical ultrasound scans[END_REF] as a prior information for US image deconvolution. The Rayleigh distribution has been explored for US image segmentation in [START_REF] Pereyra | Segmentation of skin lesions in 2-D and 3-D ultrasound images using a spatially coherent generalized Rayleigh mixture model[END_REF].

Image segmentation

Image segmentation aims at partitioning an image into multiple regions or categories. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain characteristics, e.g., color, intensity, motion or texture. Segmentation can be used for object recognition or the locating of object boundaries in a variety of applications.

The image segmentation problem can be formulated in Bayesian or variational frameworks. There are three general approaches for segmentation, i.e., thresholding, edge-based methods and regionbased methods [START_REF] Glasbey | Image Analysis for the Biological Sciences, chapter Segmentation[END_REF][START_REF] Wang | Tutorial: Image segmentation[END_REF].

• Thresholding: Thresholding techniques are the simplest image segmentation methods, where histogram thresholding may be applied to an image directly or combined with pre/post processing techniques. Several popular methods are commonly used including the maximum entropy method, the maximum variance method [Ots79, SS04], or k-means clustering [START_REF] Arthur | K-means++: The advantages of careful seeding[END_REF].

• Edge-based methods: With these techniques, the edges of images, which are assumed to be the object boundaries, are detected in order to identify the objects of interest. The edge-based methods range from the simple methods based on edge detection (e.g., gradient operators, Hilbert transform [START_REF] Pei | The generalized radial Hilbert transform and its applications to 2-D edge detection (any direction or specified direction)[END_REF]) to more sophisticated methods based on watershed segmentation [START_REF] Vincent | Watersheds in digital spaces: an efficient algorithm based on immersion simulations[END_REF].

• Region-based methods: Generally, region-based techniques are based on the assumption that the neighboring pixels within one region have similar attributes. The aim of region detection is to provide the possibility to characterize the detected object by parameter analysis (shape, position, size, etc.). The region-based methods can be roughly categorized into region merging, region splitting and region growing schemes [START_REF] Saini | Ultrasound imaging and image segmentation in the area of ultrasound: a review[END_REF].

Segmentation techniques in ultrasound imaging

Since Markov chain Monte Carlo (MCMC) method was investigated to jointly estimate the mixture parameters and a label map associated with the US image pixels. In this thesis, we will study a similar framework to ultrasound RF images. Note that the statistical analysis of RF images (mixtures of generalized Gaussian distributions) were also studied in [START_REF] Alessandrini | Statistical Methods for Analysis and Processing of Medical Ultrasound-applications to segmentation and restoration[END_REF]. More detailed explanations about this Bayesian framework for ultrasound image segmentation will be presented in Chapter 2.

Single image super-resolution

Single image super-resolution (SR), also known as image scaling up or image enhancement, aims at estimating a high-resolution (HR) image from a low-resolution (LR) observed image [START_REF] Park | Super-resolution image reconstruction: a technical overview[END_REF].

This resolution enhancement problem is still an ongoing research problem with applications in various fields, such as remote sensing [START_REF] Martin | Hyperspectral compressive acquisition in the spatial domain via blind factorization[END_REF], video surveillance [START_REF] Yang | Super-resolution imaging, chapter Image superresolution: Historical overview and future challenges[END_REF], hyperspectral [START_REF] Toygar Akgun | Super-resolution reconstruction of hyperspectral images[END_REF],

microwave [START_REF] Yanovsky | Efficient deconvolution and super-resolution methods in microwave imagery[END_REF] or medical imaging [START_REF] Morin | Alternating direction method of multipliers framework for super-resolution in ultrasound imaging[END_REF].

In the single image SR problem, the observed LR image is modeled as a noisy version of the blurred and decimated HR image (to be estimated) as follows,

y = SHx + n (1.28)
where the vector

y ∈ R N l ×1 (N l = m l × n l ) denotes the LR observed image and x ∈ R N h ×1 (N h = m h ×n h )
is the vectorized HR image to be estimated, with N h > N l . The vectors y and x are obtained by stacking the corresponding images (LR image ∈ R m l ×n l and HR image ∈ R m h ×n h ) into column vectors in a lexicographic order. Note that the vector n ∈ R N l ×1 is an independent identically distributed (i.i.d.) additive white Gaussian noise (AWGN) and that the matrices S ∈ R N l ×N h and H ∈ R N h ×N h represent the decimation and the blurring/convolution operations respectively.

More specifically, H is a block circulant matrix with circulant blocks, which corresponds to cyclic convolution boundaries, and left multiplying by S performs down-sampling with an integer factor d Despite their simplicity and easy implementation, it is well-known that these algorithms generally over-smooth the high frequency details.

(d = d r × d c ), i.e., N h = N l × d.
• This PhD thesis will concentrate on the reconstruction-based methods for single image SR due to its efficiency in terms of computational time. Note also that there are limited works on single image SR in ultrasound imaging, while multi-frame image SR is studied more widely. Among the existing methods for single image SR, [START_REF] Morin | Alternating direction method of multipliers framework for super-resolution in ultrasound imaging[END_REF] proposed to solve the problem in an ADMM framework for US imaging. In this thesis, we have developed a general method which is valid for both ultrasound and natural images is developed (see Chapter 3).

Conclusion

This chapter presented some background about medical ultrasound imaging, ranging from the physic principle to the linear image formation model. Also, several widely considered post-processing techniques have been discussed allowing ultrasound image quality to be improved. These post-processing

Introduction

Ultrasound imaging is a well-established medical imaging modality widely used for clinical diagnosis, visualization of anatomical structures, tissue characterization and blood flow measurements. The popularity of US imaging compared to other imaging modalities such as computed tomography (CT) or magnetic resonance imaging (MRI) is mainly due to its efficiency, low cost and safety [START_REF] Atam | Medical Image Analysis, chapter Medical Image Modalites: Ultrasound Imaging[END_REF]. Despite these advantages and the recent advances in instrumentation [START_REF] Tanter | Ultrafast imaging in biomedical ultrasound[END_REF] and beamforming [START_REF] Marius | Understanding contrast improvements from capon beamforming[END_REF], it also has some limitations, mainly related to its poor signal-to-noise ratio, limited contrast and spatial resolution. Furthermore, US images are characterized by speckle, which considerably reduces their quality and may lead to interpretation issues. For this reason, several despeckling methods can be found in the US literature [START_REF] Murat | The homogeneity MAP method for speckle reduction in diagnostic ultrasound images[END_REF][START_REF] Michailovich | Despeckling of medical ultrasound images[END_REF]. Despite its negative effect, speckle has also been extensively used as a source of information in applications such as image 

Problem Statement

As stated in Chapter 1, RF ultrasound image formation can be modeled using the following linear model

y = Hx + n. (2.1)
where the vectors y, x and n are the TRF to be estimated, the observed RF ultrasound image and the measurement noise respectively, the huge matrix H ∈ R N ×N is associated with the system PSF.

Due to the physical corrections related to image formation (e.g., time gain compensation, dynamic beamforming), in most of soft tissues, H can be assumed shift invariant. Moreover, cyclic convolution is considered in this manuscript for computational purpose, leading to a block circulant matrix of circulant blocks (BCCB) H 1 . Note that the PSF is unknown in practical applications and that its estimation has been extensively explored in US imaging. A typical approach in US imaging, also adopted in this manuscript, is to estimate the PSF in a pre-processing step before applying the deconvolution algorithm (see, e.g., [AMP + 11, JMGS93]).

Related Work

US image deconvolution aims at estimating the TRF x from the RF data y, which is a typical illposed problem. Imposing a regularization constraint is one traditional way to cope with this problem.

The regularization constraint usually reflects the prior knowledge about x. In US imaging, Gaussian chapter. First, it is well-known that the EM algorithm can easily converge to a local minimum of the cost function and is sensible to the initial values of the parameters to be tuned, which may lead to inaccurate estimates. Second, the EM algorithm can only be applied to cases where a mask (or label map) of the homogeneous regions is available. Note that a US image deconvolution method based on Markov chain Monte Carlo (MCMC) methods was recently investigated in [START_REF] Zhao | Restoration of ultrasound images using a hierarchical Bayesian model with a generalized Gaussian prior[END_REF]. However, the proposed method also required an a priori label map for the different image regions. Due to the tight relationships between segmentation and deconvolution, we think that combining these two operations can increase their performance, which is the objective of this chapter.

Proposed method

Compared with the US image deconvolution method of [START_REF] Zhao | Restoration of ultrasound images using a hierarchical Bayesian model with a generalized Gaussian prior[END_REF], this chapter defines a Potts Markov random field for the hidden image labels, assigns GGD priors to the image TRF, and investigates a joint segmentation and deconvolution method for US images. Thus, the proposed algorithm generalizes the results of [START_REF] Zhao | Restoration of ultrasound images using a hierarchical Bayesian model with a generalized Gaussian prior[END_REF] to situations where a label map is unknown. Additional motivations for the proposed model are provided below. First, it uses a GGD-Potts model to regularize the ill-posed joint deconvolution and segmentation problem. Second, it exploits the local statistical properties of different image regions, which are usually related with the anatomical image structures. Finally, the proposed model is able to capture the spatial correlations between neighboring pixels. To our knowledge, the proposed method represents a first attempt for a joint segmentation and deconvolution in US imaging. The complicated form of the resulting posterior distribution makes it too difficult to compute closed form expressions of the corresponding Bayesian estimators. Therefore, a

Markov chain Monte Carlo (MCMC) method based on a Gibbs sampler is investigated to sample the posterior distribution of interest and build the estimators of its unknown parameters.

Bayesian Model for Joint Deconvolution and Segmentation

This section introduces the Bayesian model investigated in this chapter for the joint deconvolution and segmentation of US images. We assume that the US TRF x = (x 1 , • • • , x N ) T can be divided into K statistical homogeneous regions, denoted as {R 1 , ..., R K } and we introduce a hidden label field

z = (z 1 , • • • , z N ) T ∈ R N mapping the image into these K regions. More precisely, z i = k if and only if the corresponding pixel x i belongs to the region R k , where k ∈ {1, • • • , K} and i ∈ {1, • • • , N }.
The conditional distribution of pixel x i is then defined as

x i |z i = k ∼ GGD(x i ; ξ k , γ k ) (2.2)
where ξ k and γ k are the shape and scale parameters of the GGD associated with the region R k . We remind that a univariate GGD with shape parameter ξ and scale parameter γ denoted as GGD(ξ, γ)

has the following pdf

p GGD (x) = 1 2γ 1/ξ Γ(1 + 1/ξ) exp - |x| ξ γ , x ∈ R. (2.3)
Assuming that the pixels are independent conditionally to the knowledge of their classes, the TRF is distributed according to a mixture of GGDs with the following probability density function where ∝ means "proportional to", θ is a parameter vector containing all the model parameters and hyperparameters except x and z, i.e., the noise variance, the shape and scale parameters. The likelihood p(y|x, θ) depending on the noise model and the prior distributions p(x|z, θ), p(z|θ) based on the GGD-Potts model are detailed hereinafter.

(pdf) p(x i ) = K k=1 w k GGD(x i ; ξ k , γ k ) with w k = P (z i = k). ( 2 

Likelihood

Assuming an additive white Gaussian noise (AWGN) with a constant variance σ 2 n , the likelihood function associated with the linear model (2.1) is

p(y|x, σ 2 n ) = 1 (2πσ 2 n ) N/2 exp - 1 2σ 2 n y -Hx 2 2 (2.6) where • 2 is the Euclidean 2 -norm.

Prior Distributions

Tissue reflectivity function (TRF) x

As explained beforehand, a mixture of GGD priors is assigned to the TRF. Assuming that the pixels are independent conditionally to the knowledge of their classes, we obtain the following prior for the target image

p(x|z, ξ, γ) = K k=1 N k i=1 1 2γ 1/ξ k k Γ(1 + 1/ξ k ) exp - |x i | ξ k γ k = K k=1 1 2γ 1/ξ k k Γ(1 + 1/ξ k ) N k exp - N k i=1 |x i | ξ k γ k = K k=1 1 2γ 1/ξ k k Γ(1 + 1/ξ k ) N k exp   - x k ξ k ξ k γ k   (2.7) where ξ = (ξ 1 , • • • , ξ K ) T and γ = (γ 1 , • • • , γ K ) T ,
ξ k and γ k are the shape and scale parameters of

the kth region R k , N k is the number of pixels in R k , x k contains all the pixels assigned to R k , Γ(•)
is the gamma function and

x k ξ = ( N k i=1 |x i | ξ ) 1/ξ denotes the ξ -norm.

Noise variance σ 2 n

In the presence of an AWGN, it is standard to assign a conjugate inverse gamma (IG) prior to the noise variance, i.e.,

p(σ 2 n ) ∼IG(α, ν) = ν α Γ(α) (σ 2 n ) -α-1 exp - ν σ 2 n I R+ (σ 2 n ) (2.8)
where I A is the indicator function on the set A. This prior has two adjustable parameters α, ν which make it very flexible and thus appropriate to the variance of most statistical models. The values of α and ν have been fixed by cross validation in our experiments leading to (α, ν) = (0.1, 0.1).

Labels z

A 

p(z n |z -n ) = p(z n |z V(n) ) (2.9)
where z -n = (z 1 , ..., z n-1 , z n+1 , ..., z N ) and V(n) contains the neighbors of label z n . In this manuscript, a first order neighborhood structure (i.e., 4 nearest pixels) is considered. The whole set of random variables z forms a random field.

Using the Hammersley-Clifford theorem [START_REF] Besag | Spatial interaction and the statistical analysis of lattice systems[END_REF], the prior of z can be expressed as a Gibbs distribution, i.e.,

p(z) = 1 C(β) exp   N n=1 n ∈V(n) βδ(z n -z n )   (2.10)
where β is the granularity coefficient or smooth parameter, δ(•) is the Kronecker function and C(β)

is the normalizing constant (often referred to as partition function). The value of β has been fixed by cross validation, leading to β = 1.

Shape and scale parameters

The prior used for the US TRF defined in (2.7) depends on the shape and scale parameters of the GGD, which are usually referred to as hyperparameters. Following the works in [CPT + 10], we have chosen the following priors for these hyperparameters

p(ξ) = K k=1 p(ξ k ) = K k=1 1 3 I [0,3] (ξ k ) (2.11) p(γ) = K k=1 p(γ k ) = K k=1 1 γ k I R+ (γ k ) (2.12)
where k ∈ {1, ..., K}. Note that the range [0, 3] covers all the possible values of ξ k and that p(γ k ) is the uninformative Jeffreys prior for γ k .

Joint posterior distribution

The joint posterior distribution of the unknown parameters x, σ 2 n , ξ, γ, z can be determined as follows

p(x, σ 2 n , ξ, γ, z|y) ∝ p(y|x, σ 2 n , ξ, γ, z)p(x, σ 2 n , ξ, γ, z) ∝ p(y|x, σ 2 n , ξ, γ, z)p(x|ξ, γ, z)p(σ 2 n ) × p(ξ)p(γ)p(z) ∝ 1 (2πσ 2 n ) N/2 exp - 1 2σ 2 n y -Hx 2 2 × 1 (σ 2 n ) α+1 exp -ν/σ 2 n × K k=1 a N k k exp   - x k ξ k ξ k γ k   × exp N n=1 n ∈V(n) βδ(z n -z n ) × 1 3 I [0,3] (ξ k ) 1 γ k I R+ (γ k ) (2.13)
where

a k = 1 2γ 1/ξ k k Γ(1+1/ξ k )
and the hyperparameters are supposed to be a priori independent. Fig. 2.1 summarizes the proposed hierarchical Bayesian model as a directed acyclic graph (DAG), in which the relationships between the parameters and hyperparameters are indicated.

Sampling the posterior and computing the Bayesian estimators

Computing closed-form expressions of the MMSE or MAP estimators for the unknown parameters x, σ 2 n , ξ, γ, z from (2.13) is clearly complicated. In this case, a possible solution is to consider MCMC methods in order to generate samples asymptotically distributed according to the distribution of interest and to use the generated samples to build estimators of the unknown parameters. In this
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.1: Hierarchical Bayesian model for the parameter and hyperparameter priors, where the TRF x is modeled by a mixture of GGDs, the hidden label field z follows a Potts MRF and the parameters appearing in the boxes are fixed in advance. section, a hybrid Gibbs sampler is investigated to generate samples asymptotically distributed according to (2.13). These samples are used to compute the Bayesian estimators of the US TRF x, hidden label field z, noise variance σ 2 n and GGD parameters ξ, γ.

Hybrid Gibbs sampler

The proposed hybrid Gibbs sampler is a 5-step algorithm summarized in Algorithm 1. The algorithm is explained in detail in what follows.

Algorithm 1: Hybrid Gibbs Sampler 1 Sampling the noise variance σ 2 n according to the conditional distribution (2.14). 2 Sampling the shape parameter ξ according to the conditional distribution (2.16) with an RWMH algorithm.

3 Sampling the scale parameter γ using (2.18).

4 Sampling the labels z according to the normalized conditional distribution (2.22).

5 Sampling the TRF x using an HMC method.

Sampling the noise variance σ 2 n

The conditional distribution of σ 2 n |y, x, ξ, γ, z is the following inverse gamma distribution whose expression is derived in Appendix B.1

p(σ 2 n |y, x, ξ, γ, z) ∝ p(y|x, σ 2 n , ξ, γ, z)p(σ 2 n ) = IG α + N/2, θ + 1 2 y -Hx 2 2 .
(2.14)

Generating samples according to (2.14) is straightforward.

Sampling the shape parameter vector ξ

The conditional distribution of the shape parameter vector ξ satisfies the following relation

p(ξ|y, x, σ 2 n , γ, z) ∝ p(y|x, σ 2 n , ξ, γ, z)p(x|ξ, γ, z)p(ξ) ∝ p(x|ξ, γ, z)p(ξ). (2.15) 
Assuming that the shape parameters are a priori independent, we have

p(ξ k |x, γ, z, ξ -k ) ∝ p(x k |ξ k , γ k , z k )p(ξ k ) ∝ a N k k exp   - x k ξ k ξ k γ k   I [0,3] (ξ k ) (2.16)
where ξ -k = (ξ 1 , ..., ξ k-1 , ξ k+1 , ..., ξ K ) for k ∈ {1, ..., K}, x k contains the pixels belonging to class k and z k is built from the corresponding labels. Unfortunately, the conditional distribution (2.16) is not easy to sample directly. Thus, we propose to consider a random walk Metropolis Hastings (RWMH) move, which samples the parameters according to an appropriate proposal (specifies in [START_REF] Keith | Monte Carlo sampling methods using Markov chains and their applications[END_REF]) and accept or reject these samples with an appropriate acceptance probability. More implementation details about this move and the resulting algorithm are given in Appendix B.2. It is also interesting to note that a proximal HMC (PHMC) algorithm for non-differential target distribution has also been studied in Appendix E.

Sampling the scale parameter vector γ

The conditional distribution of the scale parameter vector γ satisfies the following relation

p(γ|y, x, σ 2 n , ξ, z) ∝ p(y|x, σ 2 n , ξ, γ, z)p(x|ξ, γ, z)p(γ) ∝ p(x|ξ, γ, z)p(γ).
(2.17)

Assuming that the scale parameters are independent, we have

p(γ k |x, ξ, z, γ -k ) ∝ p(x k |ξ k , γ k , z k )p(γ k ) ∝ IG N k ξ k , x k ξ k ξ k (2.18)
where 

γ -k = (γ 1 , ..., γ k-1 , γ k+1 , ..., γ K ) for k ∈ {1, ...,

Sampling the labels z

The conditional distribution of the labels z can be computed using Bayes rule p(z|y, x, σ Considering the dependency between a label and its neighbors, the conditional distribution of the label z n (corresponding to the image pixel x n ) is given as follows

p(z n = k|z -n , x, ξ, γ) ∝ p(x n |z n = k, ξ, γ)p(z n = k|z V(n) ) (2.20)
where z -n is the vector z whose nth element has been removed and z V(n) represents the neighbors of label z n . Note that a 4-pixel neighborhood structure has been adopted in this chapter. Denoting the left hand side of (2.20) as π n,k , we have

π n,k ∝ a k exp - |x n | ξ k γ k exp   n ∈V(n) βδ(k -z n )   . (2.21)
The normalized conditional probability of the label z n is defined as

πn,k = π n,k K k=1 π n,k . (2.22)
Finally, the label z n can be drawn from the set {1, ..., K} with the respective probabilities {π n,1 , ..., πn,K }.

Sampling the TRF x

The conditional distribution of the target image we want to estimate is defined as follows 

p(x|y, σ 2 n , ξ, γ, z) ∝ exp   - y -Hx 2 2 2σ 2 n - K k=1 x k ξ k ξ k γ k   . ( 2 

Parameter estimation

Bayesian estimators of the unknown parameters are computed using the generated samples obtained by the hybrid Gibbs sampler summarized in Algorithm 1. Since the labels are discrete variables, marginal MAP estimators are chosen for the their estimations. The MMSE estimators for the other variables (the TRF x, noise variance σ 2 n and GGD parameters ξ, γ) are calculated. For example, the MMSE estimator of the TRF x is computed by

xMMSE |ẑ MAP E{x|z = ẑMAP } = p(x|z = ẑMAP )dx.
(2.24)

For each pixel, we can approximate this estimator as follows xn,MMSE |ẑ n,MAP 1

M M i=1 x (i) n |z (i) n = ẑn,MAP (2.25)
where M is the number of iterations after the so-called burn-in period (see Section 2.4.2 devoted to the sampler convergence for more details) that satisfy z (i) n = ẑn,MAP , the superscript i represents the ith generated sample and the subscript n is used for the nth pixel. Note that ẑMAP is the marginal MAP estimator of the label map and that xMMSE is the MMSE estimator of the reflectivity. Note also that a similar estimator was implemented in [START_REF] Kail | Blind deconvolution of sparse pulse sequences under a minimum distance constraint: A partially collapsed Gibbs sampler method[END_REF] for image blind deconvolution.

Computational complexity analysis

The computational cost of the proposed Gibbs sampler is mainly due to the generation of the TRF x and the label map z. In each sampling iteration, the computational complexity for sampling the TRF

x using the HMC is of the order O((L+1)N log N ), where L is the number of Leapfrog iterations and N is the number of image pixels. The computational complexity for sampling the label map z is of the order O(KN ), where K is the number of label classes. Thus, in total, the computation complexity for drawing a cycle of samples in the Gibbs sampler is of the order O((K + (L + 1) log N )N ). Note that in general (L + 1) log N K. Thus, the most time consuming step is for sampling the TRF.

Experimental results

This section presents several experiments conducted on simulated and real data using our algorithm.

We have also compared our approach with several existing deconvolution algorithms previously applied in US imaging.2 

Evaluation metrics

Different evaluation metrics were considered for simulated and in vivo US images since the TRF ground truth is only available for simulated images. These metrics are presented below.

Simulated US images

• Image deconvolution: The performance of the TRF estimation is assessed in terms of improvement in SNR (ISNR), root mean square error (RMSE), normalized root mean square error (NRMSE), peak signal-to-noise ratio (PSNR) and image structural similarity (MSSIM). These metrics are defined as follows

ISNR = 10 log 10 x -y 2 x -x 2 , (2.26) RMSE = x -x 2 (2.27) NRMSE = x -x 2 x 2 , (2.28) PSNR = 20 log 10 max(x, x) RMSE , (2.29) MSSIM(x, x) = 1 W W j=1 SSIM(x j , xj ) (2.30) 
where the vectors x, y, x are the ground truth of the TRF, the RF image and the restored TRF, respectively. Note that W is the number of local windows used to analyze the image under study, x j and xj represent the local reflectivities of x and x located in one of these windows and SSIM is the structural similarity measure of each window (defined in [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF]).

• Image segmentation: The performance of the label estimator is assessed using the overall accuracy (OA), defined as the ratio between the number of correctly estimated labels over the total number of labels.

In vivo US images Since the ground truth of the TRF and the label map are not available for in vivo US data, the quality of the deconvolution results is evaluated using two other metrics commonly used in US imaging: the resolution gain (RG) [START_REF] Yu | A blind deconvolution approach to ultrasound imaging[END_REF] and the contrast-to-noise ratio (CNR) [AM10, JNN + 12]. The resolution gain (RG) is the ratio of the normalized autocorrelation (higher than -3 dB) of the original RF US image to the normalized autocorrelation (higher than -3 dB) of the deconvolved image/restored TRF. The definition of the CNR is given by

CNR = |µ 1 -µ 2 | σ 2 1 + σ 2 2 (2.31)
where µ 1 , µ 2 , σ 1 and σ 2 are the means and standard deviations of pixels located in two regions extracted from the image. The two regions are manually chosen so that they belong to different tissue structures. Moreover, as in most US studies, they are at the same depth in order to avoid issues related to wave attenuation. Note that the higher the values of RG and CNR, the better the deconvolution performance.

Sampler convergence

The convergence of the proposed Gibbs sampler can be monitored by determining the so-called burnin period which refers to the first elements of the Markov chain that are discarded and not used to compute the estimators. The potential scale reduction factor (PSRF) is classically used to determine this burn-in period [START_REF] Gelman | Inference from iterative simulation using multiple sequences[END_REF]. It requires to run several chains in parallel with different initializations.

It is defined by

PSRF v = M -1 M + C + 1 CM B v W v (2.32)
where C is the number of Markov chains considered, M is the number of iterations after the burn-in period, B v and W v are the intra-chain and inter-chain variances of the variable v, whose definitions are given by

B v = M C -1 C c=1 (v -vc ) 2 , (2.33) W v = 1 C C c=1 1 M -1 M i=1 vc -v (i) c 2 (2.34) where v = 1 C C c=1 vc , vc = 1 M M i=1 v (i) c and v (i)
c is the ith sample of the variable v in the cth chain. Values of the PSRF below 1.2 indicate a good convergence of the sampler as suggested in [START_REF] Gelman | Inference from iterative simulation using multiple sequences[END_REF].

In this work, we checked that the PSRFs of all the variables of interest were below 1.2.

Computational complexity

The computational complexity analysis has been included in Section 2.3.3. In this part, the running time curves versus the image size and number of regions are displayed in Fig. 2.2, which are in agreement with the previous computational complexity analysis. As illustrated in Fig. 2.2, the CPU time is more dependent on the image size than on the structure complexity. 

Synthetic data

Deconvolution

We first study the deconvolution performance on synthetic data with controlled ground truth, which allows the quality of the different estimators to be appreciated. Precisely, three groups of 2D synthetic images with the same image size N = 50 × 50 are generated assuming that the image pixels are independent and identically distributed (i.i.d.) according to GGDs with different shape and scale parameters, as reported in Table 2 2.1.

Segmentation

This section evaluates the performance of our method for the segmentation of two regions of the same size (128 × 64) using the overall accuracy (OA). Given that pixels in both regions are characterized by two zero-mean GGDs, the difference between the two regions is controlled by the ratios of the 

Joint Deconvolution and Segmentation

Comparison with existing methods

Simulated US images

The proposed joint deconvolution and segmentation algorithm (denoted as "Joint MCMC ") was compared to the technique proposed in [START_REF] Martino Alessandrini | Expectation maximization for joint deconvolution and statistics estimation[END_REF] (that performs US deconvolution with GGD priors using the EM algorithm, denoted here by "Deconv EM ") on simulated data. Since "Deconv EM " was proposed for statistical homogeneous regions, we assumed that the labels associated with the statistically homogeneous regions were known for "Deconv EM ". In order to test the robustness of our method to label estimation errors, we also implemented the proposed algorithm using the true labels (denoted as "Deconv MCMC "). In this case, similar to "Deconv EM ", only the deconvolution process was performed, without label estimation. Finally, we compared our results with the 2 and 1 norm constrained optimization solutions. For the 2 -norm optimization problem, a numerical solution is given by

x = (H T H + λI) -1 H T y (2.36)
where λ is the regularization parameter. Concerning the 1 norm optimization problem, numerous dedicated algorithms, e.g., ISTA [START_REF] Beck | A fast iterative shringkage-thresholding algorithm for linear inverse problems[END_REF], FISTA [START_REF] Beck | A fast iterative shringkage-thresholding algorithm for linear inverse problems[END_REF], TwIST [START_REF] José | A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration[END_REF] or GEM [START_REF] Jose | Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class o heavy-tailed priors[END_REF] are available in the literature. The conjugate gradient (CG) method was considered in this work. Note that the regularization parameters were fixed manually by cross validation for the 2 and 1 norm constraint optimization problems.

In vivo US images Due to the fact that the ground truth for the label map is not available for in vivo US data, we were not able to test the methods "Deconv EM " and "Deconv MCMC " for these images. Instead, we considered Gaussian and Laplacian priors that have been extensively used in the US image deconvolution literature [START_REF] Michailovich | Blind deconvolution of medical ultrasound images: A parametric inverse filtering approach[END_REF], [START_REF] Jirik | Two dimensional blind Bayesian deconvolution of medical ultrasound images[END_REF], [START_REF] Yu | A blind deconvolution approach to ultrasound imaging[END_REF]. The analytical solution for the 2 -norm optimization problem is given by (2.36). The GPSR (gradient projection for sparse reconstruction) [START_REF] Mario | Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[END_REF] algorithm is implemented for the 1 norm constrained optimization problem for the real data, where the regularization parameter is chosen as 0.1 H T y ∞ , as suggested in [START_REF] Mario | Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[END_REF].

Joint deconvolution and segmentation for simulated US images

Experiments were first conducted on three groups of simulated US images with a simulation scenario inspired by [NPK + 07]. The PSF was simulated with a realistic state-of-the-art ultrasound simulator Field II [START_REF] Arendt | Field: A program for simulating ultrasound systems[END_REF] corresponding to a 3.5 MHz linear probe as shown in Fig. 2.6 (a). All images were simulated with the same PSF and contaminated by an AWGN with BSNR= 30 dB. All the simulation results presented hereinafter were obtained using 6000 Monte Carlo iterations, including a burn-in period of 2000 iterations.

• Group 1: The TRF x mimicking a hyperechoic (bright) round inclusion into an homogeneous medium was blurred by the simulated PSF and contaminated by an AWGN with BSNR = 30 Deconv MCMC and the proposed Joint MCMC . The quality of the segmentation can be observed in Fig. 2.6(j), which shows the estimated label map obtained with the method Joint MCMC .

Finally, the performance of the GGD parameter estimators is illustrated by the histograms of the generated GGD parameters (ξ, γ) displayed in Fig. 2.7, where the red and green vertical lines indicate the MMSE estimates and the true values of the parameters, respectively.

• Group 2: The TRF x is an homogeneous medium with two hypoechoic (dark) round inclusions (see Fig. Finally, the hyperparameter estimates of Group 2 are shown in Table 2.2, confirming the good estimation performance.

• Group 3: The third simulated image was obtained by using a clean TRF x of size 275 × 75 (see Fig. 2.9(a)) blurred by the same simulated PSF and contaminated by an AWGN such that BSNR = 30 dB. A more realistic geometry of the simulated tissues was considered, inspired by one of the in vivo results provided in the next section (see Fig. 2.11(i)). Three different structures were generated mimicking the skin, the tumor and the surrounding tissue (green, red and blue regions in Fig. 2.9(b)). The pixels in the different regions are distributed according to GGDs with different parameters: (ξ, γ) = (0.5, 1) for the blue region, (ξ, γ) =

(1, 30) for the green region and (ξ, γ) = (1.8, 2) for the red region. Figs. 2.9(d)-2.9(h) show the estimated TRFs obtained with the methods 2 , 1 , Deconv EM , Deconv MCMC and Joint MCMC .

The estimated label map obtained with the method Joint MCMC is also shown in Fig. 2.9(i).

Visually, we remark that all the three methods provide images with better object boundary definition (better spatial resolution) than the observed B-mode images. The quantitative results reported in Table 2.3 confirm that given the same conditions (knowledge of the true label map), our approach "Deconv MCMC " is more accurate than the existing "Deconv EM ". Moreover, we can note that the proposed technique "Joint MCMC " is able to estimate the label map with a precision of more than 98% and with a small quality loss for the estimated TRF. Visually, we remark that all the three methods provide images with better object boundary definition (better spatial resolution) than the observed B-mode images. The quantitative results reported in Table 2.3 confirm that given the same conditions (knowledge of the true label map), our approach "Deconv MCMC " is more accurate than the existing "Deconv EM ". Moreover, we can note that the proposed technique "Joint MCMC " is able to estimate the label map with a precision of more than 98% and with a small quality loss for the estimated TRF. A visual inspection as well as the obtained ISNR show that the restored TRF in Fig. 2.10 (left) is similar to the result in Fig. 2.8 that was obtained by setting K = 2 using the proposed method.

A slight degradation of the estimated label field can be observed, as highlighted by the OA that decreases from 0.99 to 0.8.

Joint deconvolution and segmentation for in vivo US images

Three groups of experiments have been conducted to evaluate the performance of the proposed method for in vivo US images. The images were acquired with a 20 MHz single-element US probe.

In contrast to the simulation scenarios studied previously, the PSF and the TRF are not available for in vivo experiments. For this reason, the PSF has been estimated from the RF image using • Group 1 -Mouse bladder: The observed B-mode image of size 400×256 is shown in Fig. 2.11(a) and displays a mouse bladder. The US transducer was placed into a small water container to ensure an efficient transmission of the US waves into the tissues. As there is no US scatterer in the water, the region located in the upper part of the image in Fig. 2.11(a) appears dark (no signal). It is also the case for the region located inside the bladder that also contains a fluid with poor reflection for the US waves. The number of homogeneous regions was set to K = 3 in this experiment, which is sufficient to represent the anatomical structures of the image. The number of Monte Carlo iterations was fixed to 10 000 (including 5 000 burn-in iterations). The parameters of the HMC method for the in vivo data were adjusted to the same values as in the previous experiments. The regularization parameters for the 2 -norm and 1 -norm constraint optimization problems were set to 10 and 54.39 by cross-validation. In addition to the visual inspection, the deconvolution results were evaluated using the RG and CNR criteria and the CPU time, as reported in Table 2.4. Despite its higher computational complexity, the visual impression and the numerical results confirm that a better contrast and more defined boundaries between the different tissues is achieved with the proposed method. It is interesting to note that in addition to the restored image, our algorithm also provides a segmentation result. To our knowledge, there is no other existing method in US imaging able to achieve this joint segmentation and deconvolution performance.

Observed B-mode 

2 1 Proposed (a) (b) (c) (d) (e) (f) (j) (h) (i) (j) (k) (l)

Conclusions

In this chapter, we proposed a new Bayesian method for joint deconvolution and segmentation of medical ultrasound images. This method assumed that the ultrasound image can be divided into regions with statistical homogeneous properties. Based on this assumption, a Potts model was introduced for the image labels. Independent generalized Gaussian priors were also assigned to the tissue reflectivity functions of each homogeneous region of the image. According to the author's knowledge, it is the first time a joint segmentation and deconvolution method is proposed for ultrasound images.

The proposed method showed very interesting restoration results when compared to more classical optimization methods based on 2 -norm or 1 -norm regularizations. (known to be equivalent to ADMM in certain conditions [START_REF] Yin | Bregman iterative algorithms for 1 -minimization with applications to compressed sensing[END_REF]) and their variants.

Introduction

Particularly, Ng et. al. [START_REF] Michael | Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods[END_REF] proposed an ADMM-based algorithm to solve a TV-regularized single image SR problem, where the decimation and blurring operators are split and solved iteratively.

Due to this splitting, the cumbersome SR problem can be decomposed into an up-sampling problem and a deconvolution problem, that can be both solved efficiently. Yanovsky et. al. [START_REF] Yanovsky | Efficient deconvolution and super-resolution methods in microwave imagery[END_REF] proposed to solve the same problem with an SB algorithm. However, the decimation operator was handled through a gradient descent method integrated in the SB framework. Sun et. al.

[SSXS08, SSXS11] proposed a gradient profile prior and formulated the single image SR problem as an 2 -regularized optimization problem, further solved with the gradient descent method. Yang et. al. [START_REF] Yang | Image super-resolution via sparse representation[END_REF] proposed a learning-based algorithm for the single image SR by seeking a sparse representation using the patches of LR and HR images, followed by back projecting through a gradient descent method. Despite the efficiency of these methods, it is still appealing to deal with the single image SR problem in a non-iterative or more efficient way.

This chapter aims at reducing the computational cost of these methods by proposing a new approach handling the decimation and blurring operators simultaneously by exploring their intrinsic properties in the frequency domain. It is interesting to note that similar properties were explored in [START_REF] Robinson | Efficient Fourier-Wavelet super-resolution[END_REF][START_REF] Sroubek | Superfast superresolution[END_REF] for multi-frame SR. However, the implementation of the matrix inversions proposed in [START_REF] Robinson | Efficient Fourier-Wavelet super-resolution[END_REF][START_REF] Sroubek | Superfast superresolution[END_REF] is less efficient than those proposed in this work, as it will be demonstrated in the complexity analysis conducted in Section 3. 

Image Super-resolution Formulation

Model of Image Formation

Consider the image formation model (3.1), two additional basic assumptions about the blurring and decimation operators are introduced. These assumptions have been widely used for image deconvolution or image SR problems (see, e.g., [EF97a, FREM04, ZEP12, YWHM10]) and are necessary for the proposed fast SR framework.

Assumption 1. The blurring matrix H is the matrix representation of the cyclic convolution operator, i.e., H is a block circulant matrix with circulant blocks (BCCB).

This assumption has been widely used in the image processing literature [LS04, RTLF10, SKM11].

It is satisfied provided the underlying blurring kernel is shift-invariant and the boundary conditions make the convolution operator periodic. Note that the BCCB matrix assumption does not depend on the shape of the blurring kernel, i.e., it is satisfied for any kind of blurring, including motion blur, out-of-focus blur, atmospheric turbulence, etc. Using the cyclic convolution assumption, the blurring matrix and its conjugate transpose can be decomposed as

H = F H ΛF (3.
2)

H H = F H Λ H F (3.3)
where the matrices F and F H are associated with the Fourier and inverse Fourier transforms (sat- an N h × N h mask having ones at the sampled positions and zeros elsewhere. where y -SHx 2 2 is a data fidelity term associated with the model likelihood and φ(Ax) is related to the image prior information and is referred to as regularization or penalty [START_REF] Werner Engl | Regularization of inverse problems[END_REF]. Note that the matrix A can be the identity matrix when the regularization is imposed on the SR image itself, the gradient operator, any orthogonal matrix or normalized tight frame, depending on the addressed application and the properties of the target image. The role of the regularization parameter τ is to weight the importance of the regularization term with respect to (w.r.t.) the data fidelity term. The next section derives a closed-form solution of the problem (3.4) for a quadratic regularizing operator φ(•) when the assumptions 1 and 2 hold.

isfying FF H = F H F = I N h ) and Λ = diag{Fh} ∈ C N h ×N h is a diagonal matrix,

Problem formulation

Proposed fast super-resolution using an 2 -regularization

Before considering more complicated regularizations investigated in Section 3.4, we first consider the basic 2 -norm regularization defined by

φ(Ax) = Ax -v 2 2 (3.5)
where the matrix A H A is assumed, unless otherwise specified, to be invertible. Typical examples of appropriate matrices A include the Fourier transform matrix, the wavelet transform matrix, etc.

When using this 2 -norm regularization, a generic form of a fast solution to problem (3.4) will be derived in Section 3.3.1. Then, two particular cases of this regularization widely used in the literature will be discussed in Sections 3.3.2 and 3.3.3.

Proposed closed-form solution for the 2 -2 problem

With the regularization (3.5), the problem (3.4) transforms to min

x 1 2 y -SHx 2 2 + τ Ax -v 2 2 (3.6)
whose solution is given by

x = (H H SH + 2τ A H A) -1 (H H S H y + 2τ A H v) (3.7) with S = S H S.
Direct computation of the analytical solution (3.7) requires the inversion of a high dimensional matrix, whose computational complexity is of order O(N 3 h ). One can think of using optimization or simulation-based methods to overcome this computational difficulty. The optimization-based methods, such as the gradient-based methods [START_REF] Sun | Gradient profile prior and its applications in image super-resolution and enhancement[END_REF] or, more recently, the ADMM [START_REF] Michael | Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods[END_REF] and SB [START_REF] Yanovsky | Efficient deconvolution and super-resolution methods in microwave imagery[END_REF] method approximate the solution of (3.6) by iterative updates. The simulation-based methods, e.g., the Markov Chain Monte Carlo methods [FOG15, OFG12, GMI15], are drawing samples from a multivariate posterior distribution (which is Gaussian for a Tikhonov regularization) and compute the average of the generated samples to approximate the minimum mean square error (MMSE) estimator of x. However, simulation-based methods have the major drawback of being computationally expensive, which prevents their effective use when processing large images. Moreover, because of the particular structure of the decimation matrix, the joint operator SH cannot be diagonalized in the frequency domain, which prevents any direct implementation of the solution (3.7) in this domain. The main contribution in this chapter is proposing a new scheme to compute (3.7) explicitly, getting rid of any statistically sampling or iterative update and leading to a fast SR method.

In order to compute the analytical solution (3.7), a property of the decimation matrix in the frequency domain is first stated in Lemma 1.

Lemma 1 (Wei et al.,[START_REF] Wei | Fast fusion of multi-band images based on solving a Sylvester equation[END_REF]). The following equality holds

FSF H = 1 d J d ⊗ I N l (3.8)
where J d ∈ R d×d is a matrix of ones, I N l ∈ R N l ×N l is the N l × N l identity matrix and ⊗ is the Kronecker product.

Using the property of the matrix FSF H given in Lemma 1 and taking into account the assumptions mentioned above, the analytical solution (3.7) can be rewritten as

x = F H 1 d Λ H Λ + 2τ FA H AF H -1 F H H S H y + 2τ A H v (3.9)
where the matrix Λ ∈ C N l ×N h is defined as

Λ = [Λ 1 , Λ 2 , • • • , Λ d ] (3.10)
and where the blocks

Λ i ∈ C N l ×N l (i = 1, • • • , d) satisfy the relationship diag{Λ 1 , • • • , Λ d } = Λ. (3.11)
The readers may refer to the Appendix C.1 for more details about the derivation of (3.9) from (3.7).

To further simply the expression (3.9), we propose to use the following Woodbury inverse formula.

Lemma 2 (Woodbury formula [START_REF] Hager | Updating the inverse of a matrix[END_REF]). The following equality holds conditional on the existence of A -1 1 and A -1

3 (A 1 + A 2 A 3 A 4 ) -1 = A -1 1 -A -1 1 A 2 (A -1 3 + A 4 A -1 1 A 2 ) -1 A 4 A -1 1 (3.12)
where A 1 , A 2 , A 3 and A 4 are matrices of correct sizes.

Taking into account the Woodbury formula of Lemma 2, the analytical solution (3.9) can be computed very efficiently as stated in the following theorem.

Theorem 1. When Assumptions 1 and 2 are satisfied, the solution of Problem (3.6) can be computed using the following closed-form expression 

x = 1 2τ F H ΨFr - 1 2τ F H ΨΛ H 2τ dI N l + ΛΨΛ H -1 ΛΨFr (3.13) where r = H H S H y + 2τ A H v, Ψ = F A H A -1 F H and
1 H = F H ΛF; // Compute Λ 2 Λ = [Λ 1 , Λ 2 , • • • , Λ d ];
// Calculate FFT of r denoted as Fr where ∇ is the discrete version of the gradient ∇ := [∂ h , ∂ v ] T and ∇x is the estimated gradient field. More explanations about the motivations for using the gradient field may be found in [START_REF] Sun | Image super-resolution using gradient profile prior[END_REF][START_REF] Sun | Gradient profile prior and its applications in image super-resolution and enhancement[END_REF]. For an image x ∈ R m×n , under the periodic boundary conditions, the numerical definitions of the gradient operators are

(∂ h x)(i, j) =        x(i + 1, j) -x(i, j) if i < m x(m, j) -x(1, j) if i = m (3.17) (∂ v x)(i, j) =        x(i, j + 1) -x(i, j) if j < n x(i, n) -x(i, 1) if j = n (3.18)
where ∂ h and ∂ v are the horizontal and vertical gradients. The gradient operators can be rewritten as two BCCB matrices D h and D v corresponding to the horizontal and vertical discrete differences of an image, respectively. Therefore, two diagonal matrices Σ h and Σ v (C N h ×N h ) are obtained by decomposing D h and D v in the frequency domain, i.e.,

D h = F H Σ h F and D v = F H Σ v F. (3.19)
Thus, the problem (3.16) can be transformed into

min x 1 2 y -SHx 2 2 + τ Ax -v 2 2 (3.20) with A = [D T h , D T v ] ∈ R 2N h ×N h and using the notation ∇x = v = [v h , v v ] T ∈ R 2N h ×1
. Note that the invertibility of A H A is violated here because of the periodic boundary assumption. Thus, adding a small 2 -norm regularization τ σ x 2 2 (where σ is a very small constant) to (3.20) can circumvent this invertibility problem while keeping the solution close to the original regularization. Using Theorem 1, the analytical solution of (3.20) (including the additional small 2 -norm term) is given by (3.13)

with Ψ = Σ H h Σ h + Σ H v Σ v + σI N h -1 .
The pseudocode used to implement this solution is summarized in Algorithm 3.

Algorithm 3: FSR with 2 -regularization in the gradient-domain: implementation of the analytical solution of (3.16)

Input: y, H, S, D h , D v , ∇x, τ , d // Factorizations of matrices H, D h , D v 1 H = F H ΛF; 2 D h = F H Σ h F; 3 D v = F H Σ v F; // Compute Λ and Ψ 4 Λ = [Λ 1 , Λ 2 , • • • , Λ d ]; 5 Ψ = (Σ H h Σ h + Σ H v Σ v + σI N h ) -1 ; // Calculate FFT of r denoted as Fr 6 Fr = F(H H S H y + 2τ D H v);
// Hadamard (or entrywise) product in the frequency domain

7 x f = ΨΛ H µdI N l + ΛΨΛ H -1 ΛΨ Fr; // Compute the analytical solution 8 x = 1 2τ F H ΨFr -F H x f ; Output:
x

Generalized fast super-resolution

As mentioned previously, a large variety of non-Gaussian regularizations has been proposed for the single image SR problem, in both image or transformed domains. Many SR algorithms, e.g., [START_REF] Michael | Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods[END_REF][START_REF] Yanovsky | Efficient deconvolution and super-resolution methods in microwave imagery[END_REF], require to solve an 2 -2 problem similar to (3.6) as an intermediate step.

This section shows that the solution (3.13) derived in Section 3.3 can be combined with existing SR iterative methods to significantly lighten their computational costs.

General form of the proposed algorithm

In order to use the analytical solution (3.13) derived for the 2 -regularized SR problem into an ADMM framework, the problem (3.4) is rewritten as the following constrained optimization problem

min x,u 1 2 y -SHx 2 2 + τ φ(u) subject to Ax = u.
(3.21)

The AL function associated with this problem is

L(x, u, λ) = 1 2 y -SHu 2 2 + τ φ(u) + λ T (Ax -u) + µ 2 Ax -u 2 2
or equivalently Note that the 3rd step updating the HR image x can be solved analytically using Theorem 1.

L(x, u, d) = 1 2 y -SHu 2 2 + τ φ(u) + µ 2 Ax -u + d 2 2 . ( 3 
The variable u is updated at the 4th step using the Moreau proximity operator whose definition is given by prox λ,φ (ν) = arg min

x φ(x) + 1 2λ x -ν 2 . (3.23)
The generic optimization scheme given in Algorithm 4, including the non-iterative update of the HR image following Theorem 1, is detailed hereafter for three widely used regularization techniques, namely for the TV regularization [NWY10], the 1 -norm regularization in the wavelet domain [START_REF] Jiji | Single-frame image super-resolution using learned wavelet coefficients[END_REF] and the learning-based method in [START_REF] Yang | Image super-resolution via sparse representation[END_REF].

TV regularization

Using a TV prior, problem (3.4) can be rewritten as

min x 1 2 y -SHx 2 2 + τ φ(Ax) (3.24)
Algorithm 4: Proposed generalized fast super-resolution (FSR) scheme Input: y, S, H, d, τ ;

1 Set k = 0, choose µ > 0, u 0 , d 0 ; 2 Repeat 3 x k+1 = arg min x y -SHx 2 2 + µ Ax -u k + d k 2 2 ; 4 u k+1 = arg min u τ φ(u) + µ 2 Ax k+1 -u + d k 2 2 ; 5 d k+1 = d k + (Ax k+1 -u k+1 ); 6 until stopping criterion is satisfied.
where the regularization term is given by

φ(Ax) = x TV = D h x 2 + D v x 2 (3.25) with A = [D h , D v ] T ∈ R 2N h ×N h .
We can solve (3.24) using Algorithm 4, with the auxiliary variable

u = [u h , u v ] T ∈ R 2N h ×1 such that Ax = u.
The resulting fast SR algorithm can be summarized into the following iterative three-step procedure For k = 0, 1, . . .

          x k+1 ∈ arg min x 1 2 y -SHx 2 2 + µ 2 Ax -u k + d k 2 2 u k+1 ∈ arg min u τ u h 2 + u v 2 + µ 2 Ax k+1 -u + d k 2 2 d k+1 = d k + (Ax k+1 -u k+1 ).
(3.26)

The optimization problems required to update x and u at each iteration are detailed below

• Update x: Use the closed-form expression resulting from Theorem 1 according to Algorithm 3.

• Update u:

Denoting ν = [ν h , ν v ] ∈ R N h ×2 where ν h = D h x k+1 + d k h and ν v = D v x k+1 + d k v , use the generalized 2D soft-shrinkage operator [NWY10] (prox λ, • : R 2 → R 2 ) defined as prox λ, • (ν[i]) = max(0, ν[i] -τ /µ) ν[i] ν[i] (3.27)
where

ν[i] if the ith row of the matrix ν, i = 1, • • • , N h .
The resulting pseudocodes of the proposed fast SR approach for solving (3.24) are detailed in Algorithm ??, which is reported in Appendix C.2.

1 -norm regularization in the wavelet domain

Assuming that x can be decomposed as a linear combination of wavelets (e.g., as in [START_REF] Jose | Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class o heavy-tailed priors[END_REF]), the SR can be conducted in the wavelet domain. Denote as x = Wθ the wavelet decomposition of x, where θ ∈ R N h ×1 is the vector containing the wavelet coefficients and multiplying by the matrices W H and W (∈ R N h ×N h ) represent the wavelet and inverse wavelet transforms (satisfying

WW H = W H W = I N h ).
The single image SR with 1 -norm regularization in the wavelet domain can be formulated as follows min

x 1 2 y -SHx 2 2 + τ Ax 1 (3.28)
where A = W H . By introducing the additional variable u = W H x, the problem (3.28) can be solved using Algorithm 4. The resulting fast SR algorithm can be summarized into the following iterative three-step procedure For k = 0, 1, . . .

          x k+1 ∈ arg min x 1 2 y -SHx 2 2 + µ 2 Ax -u k + d k 2 2 u k+1 ∈ arg min u τ u 1 + µ 2 Ax k+1 -u + d k 2 2 d k+1 = d k + (Ax k+1 -u k+1 ).
(3.29)

The optimization problems required to update x and u at each iteration are detailed below

• Update x: Use the closed-form expression resulting from Theorem 1 according to Algorithm 2.

• Update u: The MAP estimator of u can be calculated by the following soft-thresholding operator

prox λ,|•| (ν) = max(0, |ν| -λ)sign(ν) (3.30)
where ν is an element from the vector ν = Ax + d.

The corresponding pseudocodes of the resulting fast SR algorithm with an 1 -norm regularization in the wavelet domain are detailed in Algorithm 11 proposed in Appendix C.2.

Learning-based 2 -norm regularization

The effectiveness of the learning-based regularization for image reconstruction has been proved in several studies. In particular, Yang et. al. [START_REF] Yang | Image super-resolution via sparse representation[END_REF] solved the single image SR problem by jointly training two dictionaries for the LR and HR image patches and by applying sparse coding (SC).

Interestingly, the HR image x 0 obtained by sparse coding was projected onto the solution space satisfying (3.1), leading to the following optimization problem

x = arg min x 1 2 y -SHx 2 2 + τ x -x 0 2 2 . (3.31)
This optimization problem was solved using a gradient descent approach in [START_REF] Yang | Image super-resolution via sparse representation[END_REF]. However, it can benefit from the analytical solution provided by Theorem 1 that can be implemented using Algorithm 2.

Experimental Results

This section demonstrates the efficiency of the proposed fast SR strategy by testing it on various images with different regularization terms. The performance of the single image SR algorithms is evaluated in terms of reconstruction quality and computational complexity. Given the ability of our algorithm to solve the SR problem with less complexity than the existing methods, one may expect a gain in computational time and convergence properties. All the experiments were performed using MATLAB 2013A on a computer with Windows 7, Intel(R) Core(TM) i7-4770 CPU @3.40GHz and 8 GB RAM. It is interesting to note that the proposed algorithm is not just applicable to the ultrasound images, but is also appropriate for the natural images. Color images were processed using the illuminate channel only, as in [START_REF] Yang | Image super-resolution via sparse representation[END_REF]. Precisely, the RGB images were transformed into YUV coordinates and the color channels (Cb,Cr) were up-sampled using bicubic interpolation. In the illuminate channel, the HR image was blurred and down-sampled in each spatial direction with factors d r and d c . The resulting blurred and decimated images were then contaminated by AWGN of variance σ 2 n with a blurred-signal-to-noise ratio defined by

BSNR = 10 log 10 SHx -E(SHx) 2 2 N σ 2 n (3.32)
where N is the total number of pixels of the observed image and E(•) is the arithmetic mean operator.

Unless explicitly specified, the blurring kernel is a 2D-Gaussian filter of size 9 × 9 with variance widely used to evaluate image reconstruction methods, have been given in Chapter 2. Note that the observation y has to be interpolated (bicubic interpolation is implemented here) to have the same size as the HR image when calculating the ISNR for SR problems. Note also that it is not appropriate to compute the ISNR for bicubic interpolation since it is always 0. and τ = 0.1 in Case 2. The numerical results corresponding to this experiment are summarized in Table 3.1. The visual impression and the numerical results show that the reconstructed HR images obtained with our method are similar to those obtained with ADMM. However, the proposed FSR method performs much faster than ADMM. More precisely, the computational time with our method is divided by a factor of 60 for Case 1 and by a factor of 80 for Case 2.

Fast SR using

Note also that the restored images obtained with Case 2 (x is the ground truth) are visually much better than the ones obtained with Case 1 (x is the interpolated LR image), as expected. in the 3rd column, the kernel size was 9 × 9 and BSNR= 30 dB.

The performance of the proposed method has been also evaluated with various experimental parameters, namely, the BSNR level, the size of the blurring kernel and the decimation factors.

The corresponding RMSEs are depicted in Figs. The regularization parameter is set to τ = 0.01 and τ = 0.1 in Cases 1 and 2, respectively.

Quantitative results are reported in Table 3.2 and show that the proposed method provides competitive results w.r.t. the other methods, while being more computational efficient. 

-model in the gradient domain

This section compares the performance of the proposed fast SR strategy with the gradient profile regularization proposed in [START_REF] Sun | Image super-resolution using gradient profile prior[END_REF]. As shown in Section 3.3.1, Theorem 1 allows an analytical SR solution to be computed. The "face" image (of size 276×276) shown in Fig. 3.5 (b) was used for these tests. In this experiment, ∇x was calculated using the reference HR image and the regularization parameters were set to τ = 10 -3 and σ = 10 -8 . The proposed method is compared with the ADMM and the CG method (instead of the gradient descent (GD) method initially proposed in [START_REF] Sun | Gradient profile prior and its applications in image super-resolution and enhancement[END_REF] since CG has shown to be much more efficient than GD in this experiment). The restored images using bicubic interpolation, ADMM, the CG method and the proposed Algorithm 3 are shown in Fig. 3.5.

The corresponding numerical results are reported in Table 3.3. These results illustrate the superiority of the approach in terms of computational time. This significant difference can be explained by the non-iterative nature of the proposed method compared to CG and ADMM. Moreover, all the three methods converge to the same global minima as shown by the objective curves in Fig. 3.6. The convergence of the objective curves is in agreement with the visual and numerical results. the back-projected SC image combined with the gradient descent (GD) algorithm of [START_REF] Yang | Image super-resolution via sparse representation[END_REF] (referred to as "SC + GD") and the proposed closed-form solution (referred to as "SC + Algorithm 2"). The corresponding numerical results are reported in Table 3.4. The restored images obtained with the two back-projection approaches are clearly better than the restoration obtained with the SC method. While the quality of the images obtained with these projection approaches is similar, the use of the analytical solution of Theorem 1 allows the computational cost of the GD step to be reduced significantly. shown in Table 3.6 confirm that the two algorithms provide similar reconstruction performance.

However, as in the previous case (TV regularization), the proposed algorithm is characterized by much smaller computational times than the standard ADMM implementation. The faster and smoother convergence obtained with the proposed method (Algorithm 11) can be observed in Fig. 3.11. Note that the fluctuations of the objective function and PSNR values (versus the number of iterations) obtained with the method of [START_REF] Michael | Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods[END_REF] are due to the variable splitting, which requires more variables and constraints to be handled than for the proposed method. 

Medical ultrasound images: Embedding the 2 -2 analytical solution into the ADMM framework

Finally, the proposed SR algorithm was tested on in vivo US data using p -norm regularization. The image displayed in Fig. 3.12(a) is a mouse kidney image acquired with a probe of 25MHz central frequency. We carried out SR experiments on the region located inside the red box, shown in Fig. 3.12(b). The up-sampling factors were set to d r = d c = 2. The PSF was estimated directly from the data following [START_REF] Michailovich | Robust estimation of ultrasound pulses using outlierresistant de-noising[END_REF]. The regularization parameter τ was set to 0.1 in this section. For the real data, we compared the proposed algorithm with a classical ADMM implementation [START_REF] Morin | Alternating direction method of multipliers framework for super-resolution in ultrasound imaging[END_REF].

The restored images obtained with the proposed method are shown in Figs. 3.12(c)-(f), while the ones estimated with the classical method are shown in Figs. 3.12(g)-(j). The numerical results are reported in Table 3.7. According to the graphical and numerical results, the restored images with the proposed algorithm and the classical method are similar in terms of RG. However, the proposed algorithm needs less CPU time and a reduced number of iterations (when compared to the classical method) to converge. 

Conclusion

This chapter studies a new fast single image super-resolution framework based on the widely used image formation model. The proposed super-resolution approach computed the super-resolved image efficiently by exploiting intrinsic properties of the decimation and the blurring operators in the frequency domain. A large variety of priors can be handled in the proposed super-resolution scheme for both medical ultrasound and natural images. Specifically, when considering an 2 -regularization, the target image was computed analytically, getting rid of any iterative steps. For more complex priors (i.e., non 2 -regularization), variable splitting allowed this analytical solution to be embedded into the augmented Lagrangian framework, thus accelerating various existing schemes for single image super-resolution. Results on several medical ultrasound and natural images confirmed the computational efficiency of the proposed approach and showed its fast and smooth convergence.

Introduction

The linear model considered in the introduction and Chapter 2 was given by y = Hx + n. In this chapter, we follow the second category to estimate the ultrasound TRF and the PSF jointly. In order to estimate the PSF, two strategies are studied in this chapter. First, a Gaussian prior is proposed for the PSF and the blind deconvolution problem is formulated in a Bayesian framework. An MCMC technique is proposed to jointly estimate the PSF and the ultrasound TRF due to the intractability of the target distribution. Second, a parametric model for the US imaging system PSF is proposed. This model requires a few parameters to be estimated instead of all the PSF. The formulated problem in an optimization framework is then solved using a block-coordinate based iterative method.

Considering the ill-posedness of US image deconvolution problem, different regularization terms for the US TRF based on their a priori knowledge are derived in order to regularize the ill-posed problem [START_REF] Michailovich | Adaptive learning of tissue reflectivity statistics and its application to deconvolution of medical ultrasound scans[END_REF]. Several widely considered regularizers include the Laplace distribution [START_REF] Michailovich | Blind deconvolution of medical ultrasound images: A parametric inverse filtering approach[END_REF][START_REF] Yu | A blind deconvolution approach to ultrasound imaging[END_REF],

the Gaussian distribution [START_REF] Jirik | Two dimensional blind Bayesian deconvolution of medical ultrasound images[END_REF], the TV regularizer [START_REF] Morin | Alternating direction method of multipliers framework for super-resolution in ultrasound imaging[END_REF] and the Huber model recently proposed in [START_REF] Michailovich | Adaptive learning of tissue reflectivity statistics and its application to deconvolution of medical ultrasound scans[END_REF]. However, the 2 -norm regularized optimization problem always produces oversmoothed results, the TV method produces piecewise smooth results, and the 1 -norm regularized optimization method is known to yield sparse results [START_REF] Yu | A blind deconvolution approach to ultrasound imaging[END_REF]. In this chapter, a generalized Gaussian distribution/ p -norm (0 < p 2) regularization term is proposed for the US TRF [ZWB + 16b],

which has been shown to be relative to US RF images [START_REF] Alessandrini | Statistical Methods for Analysis and Processing of Medical Ultrasound-applications to segmentation and restoration[END_REF]. Moreover, it contains the traditional Gaussian and Laplacian regularization terms. The conditional distribution of the pixel x i is defined as

x i |z i = k ∼ GGD(ξ k , γ k )
where ξ k and γ k are the shape and scale parameters of the kth class. Conditioned on the label vector, we obtain the following prior for the reflectivity image

p(x|z, ξ, γ) = K k=1 1 2γ 1/ξ k k Γ(1 + 1/ξ k ) N k exp   - x k ξ k ξ k γ k   (4.4) 
where x k ξ = ( N k i=1 |x i | ξ ) 1/ξ denotes the ξ -norm, x k contains all the pixels assigned to class k, the shape and scale parameter vectors are denoted as ξ = (ξ 1 , ..., ξ K ) and γ = (γ 1 , ..., γ K ) with

γ k = σ 2 k Γ(1/ξ k )/Γ(3/ξ k ) ξ k (σ 2
k is the variance of class k), N k is the number of pixels in class k and Γ(•) is the gamma function.

B. Point Spread Function: Due to the relationship between the blurring matrix H and the PSF h, which has been illustrated in Appendix A, we estimate the PSF h instead of the big matrix H. Also, the convolution model is expressed in the Fourier domain (see (4.2)), thus a Gaussian prior is chosen as the prior of h, the Fourier transform of the firs t row of H [START_REF] Morin | Semi-blind deconvolution for resolution enhancement in ultrasound imaging[END_REF] 

p( h) = 1 (2πσ 2 h ) N/2 exp - 1 2σ 2 h h -h0 2 2 (4.5)
where h0 is the Fourier transform of the first row of the circulant matrix H 0 , which is an initial estimation of the PSF (for instance obtained with the method of [START_REF] Arendt | Nonparametric estimation of ultrasound pulses[END_REF]).

C. Noise variance: In the presence of AWGN, it is typical to assign a conjugate inverse gamma prior to the noise variance [START_REF] Zhao | Joint segmentation and deconvolution of ultrasound images using a hierarchical Bayesian model based on generalized Gaussian priors[END_REF], i.e.,

p(σ 2 n ) = ν α Γ(α) 1 (σ 2 n ) α+1 exp - ν σ 2 n 1 R + (σ 2 n ) (4.6)
where 1 A (.) is the indicator function on the set A. The two adjustable parameters α, ν make this prior very flexible and appropriate for many applications.

Hyperpriors

The priors introduced above depend on some hyperparameters to be fixed a priori or estimated within the algorithm. In this chapter, the hyperparameters to be estimated are the GGD parameters ξ, γ of the prior distribution for the ultrasound TRF. Note that the label field can be fixed in advance for simulated images or be estimated jointly using the method proposed in Chapter 2. We denote the hyperparameter vector to be estimated as Φ = {ξ, γ}. The hyperprior of Φ is defined as

p(Φ) = p(ξ)p(γ) with p(ξ) = K k=1 p(ξ k ) = K k=1 1 3 1 [0,3] (ξ k ) (4.7) p(γ) = K k=1 p(γ k ) = K k=1 1 γ k 1 R+ (γ k ). (4.8)
We should notice that the choices above cover all the possible values of the shape and scale parameters that one may encounter in practical situations [CPT + 10]. Note that the priors/hyperpriors are the same as in Chapter 2 except the Gaussian prior for the PSF.

Joint posterior function

Using Bayes' rule, the joint posterior distribution of our model is proportional to the product of the likelihood and the priors. Precisely, the following result can be obtained p(Θ, Φ|y) ∝ p(y|Θ, Φ)p(Θ, Φ)

∝ p(y|x, h, σ 2 n , ξ, γ)p(x, h, σ 2 n , ξ, γ) ∝ p(y|x, h, σ 2 n )p(x|ξ, γ)p( h) (4.9)
where the different probability density functions (pdfs) have been defined in (4.3), (4.4) and (4.5).

Closed-form expressions of the Bayesian estimators associated with the posterior (4.9) are difficult to obtain. In such situation, one can use simulation methods which generate samples distributed according to the posterior of interest and use these samples to compute the estimators of the unknown model parameters. The next section studies a hybrid Gibbs sampler to sample (4.9).

Hybrid Gibbs Sampler

The hybrid Gibbs sampler is one of the most popular MCMC methods, which generates samples from a Markov chain whose target distribution is the distribution of interest (here, the distribution (4.9)).

More precisely, each step of the sampler consists of generating samples according to the conditional distributions associated with the target distribution. The generated samples, after removing the burn-in period, are averaged to compute the MMSE estimates of the different unknown parameters.

The hybrid Gibbs sampler implemented in this section is summarized in Algorithm 5. Sampling h according to (4.13).

5

Sampling σ 2 n according to (4.15).

6

Sampling ξ according to (4.16) using a Metropolis Hastings move with a truncated Gaussian proposal.

7

Sampling γ according to (4.17).

end

The associated conditional distributions are detailed as follows.

• Reflectivity image x: The conditional distribution of the US reflectivity image is • Point Spread Function: We propose to sample h instead of H in this section. The likelihood function can be rewritten as follows

p(x|y, σ 2 n ,H, Φ) ∝ p(y|x, σ 2 n , H, Φ)p(x|Φ) ∝ exp   - 1 2σ 2 n y -Hx 2 2 - K k=1 x k ξ k ξ k γ k   . ( 4 
p(y|x, σ 2 n , Φ, h) = 1 (2πσ 2 n ) N/2 exp - 1 2σ 2 n ỹ -Σ H x 2 2 = 1 (2πσ 2 n ) N/2 exp - 1 2σ 2 n ỹ -Σ X h 2 2 (4.11)
where Σ H = diag( h) and Σ X = diag(x). Combining with the prior of h, the conditional distribution of h is given by

p( h|y, x, σ 2 n , Φ) ∝ p(y|x, σ 2 n , Φ, h)p( h) ∝ exp - 1 2σ 2 n ỹ -Σ X h 2 2 exp - 1 2σ 2 h h -h0 2 2 . 
(4.12)

The conditional distribution (4.12) is a multivariate Gaussian distribution

N ( mpost , Rpost ) (4.13) with R-1 post = I σ 2 h + |Σ X | 2 σ 2 n , mpost = Rpost h0 σ 2 h + Σ X T ỹ σ 2 n (4.14)
where the subscript "post" stands for "posterior". Note that (4.13) is easy to sample and that the circulant matrix H can be easily obtained from h by inverse Fourier transform and cyclic shift.

• Noise variance: The conditional distribution of the noise variance

σ 2 n is p(σ 2 n |y, x,ξ, γ, H) ∝ p(y|x, σ 2 n , ξ, γ, H)p(σ 2 n ) ∝ 1 (σ 2 n ) N 2 +α+1 exp - 1 2σ 2 n y -Hx 2 2 - ν σ 2 n .
It is corresponds to the inverse gamma distribution

IG α + N 2 , ν + 1 2 y -Hx 2 2 (4.15)
• Hyperparameters: A. Shape parameter ξ: Assuming a priori independence between the different shape parameters, the conditional distribution of parameter ξ k can be obtained as follows

p(ξ k |Θ, γ, ξ -k ) ∝ p(y|x, σ 2 n , H, ξ, γ)p(x k |ξ k , γ k )p(ξ k ) ∝ a N k k exp   - x k ξ k ξ k γ k   1 [0,3] (ξ k ) (4.16) 
where ξ -k = (ξ 1 , ..., ξ k-1 , ξ k+1 , ..., ξ K ) for k ∈ {1, ..., K} and where x k contains all the pixels assigned to the kth class. The conditional distribution (4.16) is sampled using a random walk Metropolis Hastings (RWMH) proposal [START_REF] Keith | Monte Carlo sampling methods using Markov chains and their applications[END_REF], which has been detailed in Chapter 2.

B. Scale parameter γ:

Assuming the different scale parameters are a priori independent, the conditional distributions of the scale parameters of the proposed GGDs can be written

p(γ k |Θ, ξ, γ -k ) ∝ p(y|x, σ 2 n , H, ξ, γ)p(x k |ξ k , γ k )p(γ k ) ∝ IG N k ξ k , x k ξ k ξ k (4.17)
where γ -k = (γ 1 , ..., γ k-1 , γ k+1 , ..., γ K ) for k ∈ {1, ..., K}. Drawing samples from the inverse gamma distribution (4.17) is straightforward.

Simulation results

In this section, we present results obtained with synthetic and real US images to validate the performance of the proposed algorithm.

Simulated US images

The US images have been generated following the approach described in [NPK Note that the method of [START_REF] Zhao | Restoration of ultrasound images using a hierarchical Bayesian model with a generalized Gaussian prior[END_REF] requires to estimate the PSF in a preprocessing step using the algorithm in [START_REF] Arendt | Nonparametric estimation of ultrasound pulses[END_REF] and that it was shown to provide better deconvolution results than the EM algorithm in [START_REF] Martino Alessandrini | Expectation maximization for joint deconvolution and statistics estimation[END_REF]. The objective of this experiment is to evaluate whether the performance of the joint estimation of the image and PSF can be improved or not when compared to the case where the PSF is estimated in a preprocessing step. Visually, one can observe that the reflectivity image estimated with our method is very similar to the true one, both in native and B-mode representations.

Quantitative results reported in Table 4.1 show (in terms of ISNR, NRMSE and PSNR) that we obtain a better performance with the proposed method when compared to [START_REF] Zhao | Restoration of ultrasound images using a hierarchical Bayesian model with a generalized Gaussian prior[END_REF]. Note that the higher the values of ISNR, PSNR, the better the performance. Conversely, the lower the NRMSE, the better. The results in Fig. 4.2 allow the performance of the PSF estimation to be appreciated. Figs. 

Blind deconvolution using a parametric model for the PSF

It is interesting to note that the blind deconvolution strategy in last section is time consuming. In order to reduce the computational burden and estimate the PSF and US TRF more efficiently, a parametric model for the PSF is explored in this section. The idea of blind deconvolution using a parametric model for the PSF has been studied in [START_REF] Yu | An envelope signal based deconvolution algorithm for ultrasound imaging[END_REF], where a Gaussian function modulated by a sinusoidal function was proposed to model the US PSF.

Parametric model of the PSF

Assuming that the ultrasound impulse response is a modulated band limited signal, we propose the following parametric model for the PSF in an US imaging system

h p (i, j) ≡ e(i, j) cos[ω 0 t a (i) + φ] (4.18) with e(i, j) = t ζ a (i) exp[-αt 2 a (i) -βt 2 l (j)] (4.19) 
where the parametric model of PSF "h p " and the envelope of this model "e" belong to R q×r , the integers i ∈ {1, • • • , q}, j ∈ {1, • • • , r} denote the pixel locations, ω 0 = 2πf 0 is the central frequency of the transducer (assumed to be known in advance), φ is the phase of the system PSF, the parameters α, β, ζ determine the shape of the PSF envelope, the vectors t a and t l are the temporal axes along the axial and lateral directions (i.e., the vertical and horizontal directions in a 2D US image). Thus, the vectors t a ∈ R q×1 and t l ∈ R 1×r determine the size of the PSF. • α and β: We introduce the following vector θ = {α, β} as the envelope shape parameters that will be estimated in this section. Since the estimation of the two envelope shape parameters is ill-posed, we propose the following two constraints for them

ρ(α) = ı [α min ,αmax] (α) (4.20) (β) = ı [β min ,βmax] (β) (4.21)
where ρ(α) and (β) are two indicator functions on the sets [α min , α max ] and [β min , β max ].

• φ: The estimation of phase term φ can be complicated since the phase is wrapped into [-π, π] [MA01]. In this section, we estimate the phase term as the traditional cepstrum-based method, i.e., the minimum phase assumption [START_REF] Arendt | Nonparametric estimation of ultrasound pulses[END_REF]. It is also interesting to note that it is possible to avoid the estimation of φ by dealing with demodulated signals following [START_REF] Yu | An envelope signal based deconvolution algorithm for ultrasound imaging[END_REF]. In order to calculate the convolution Hx, we hereinafter recall the basic assumption on the PSF used in this section, which has also been considered in Section 3.2 and the literature therein.

Optimization Problem Formulation

Assumption 1. The blurring matrix H represents a cyclic convolution, i.e., H is a block circulant matrix with circulant blocks (BCCB).

Using the cyclic convolution assumption, the blurring matrix and its conjugate transpose can be decomposed as

H = F H ΛF (4.24) H H = F H Λ H F (4.25)
where Λ = diag{Fh} ∈ C N ×N is a diagonal matrix, whose diagonal elements are the eigenvalues of the matrix H or the Fourier coefficients of the first column of the blurring matrix H, i.e., h. Using this assumption, the linear operation Hx can also be rewritten as below

Hx = F H ΛFx = F H diag{Fh}Fx = F H diag{Fx}Fh = Xh (4.26)
where X = F H diag{Fx}F is a block circulant matrix with circulant blocks. Note that (4.26) will be used for the estimation of the PSF.

BCD-based algorithms

In order to solve the problem (4.22), we propose a proximal alternating minimization approach, which is within the block-coordinate descent (BCD) framework. Algorithm 6 summarizes the proposed BCD strategy, where each sub-step is addressed using proximal forward-backward (PFB) algorithm. Note that the convergence analysis of the proximal alternating linearized minimization (PALM) algorithm has been studied in [START_REF] Bolte | Proximal alternating linearizad minimization for noncovex and nonsmooth problems[END_REF]. For j = 0, 1, . . . , J -1

      xj = x j -γ x A -1 x ∇ x Ψ(x j , h), x j+1 = prox γ -1
x Ax,ϕ (x j ) (4.29)

where has an analytical solution that can be computed as follows

A x = H H H , prox γ -1 x ,ϕ : R n → R n is a component-
prox γ -1 ,|•| p (x) =    x * sgn(x)max(0, |x| -χ) 0 < p ≤ 1 x * sgn(x) 1 < p ≤ 2 (4.32)
with a thresholding χ given by thresholding can be recovered as the special cases of (4.32) when p → 1 (p → 0). We recall that the soft-thresholding operator is defined by

χ = [2λ(1 -p)] 1 2-p + λp[2λ(1 -p)] p-1 2-p ( 
prox γ -1 ,|•| (x) = max(0, |x| -χ)sgn(x) (4.35)
where χ = τ γ. We should also note that when p ≥ 1, the problem (4.28) is convex and can be solved by a variety of existing algorithms, including the ADMM (alternating direction method of multipliers)

[BPC + 11a], ISTA (iterative shrinkage-thresholding algorithm), FISTA (fast ISTA) [START_REF] Beck | A fast iterative shringkage-thresholding algorithm for linear inverse problems[END_REF], TwIST (two step ISTA) [START_REF] José | A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration[END_REF] and so on.

Estimation of the PSF h

As discussed above, we can estimate the PSF by calculating the MAP estimators of the PSF envelope parameters α and β by solving the following sub-optimization problem α, β ∈ arg min

α,β Ψ(x, h) + ρ(α) + (β) ∈ arg min α,β Xh -y 2 + ρ(α) + (β) (4.36)
It is obviously not possible to find a closed-form solution for (4.36). Thus, an iterative method should be considered. More specifically, we propose a PFB algorithm (4.37) to estimate α, β.

For i = 0, 1, . . . , I -1

              ᾱi = α i -γ α A -1 α (x, h i )∇ α Ψ(x, h i ), α i+1 = prox γ -1 α Aα(x,h i ),ρ ( ᾱi ), βi = β i -γ β A -1 β (x, h i )∇ β Ψ(x, h i ), β i+1 = prox γ -1 β A β (x,h i ), ( βi ), (4.37) 
where

A α (x, h i ) = A β (x, h i ) = L(x)I N with L(x) = X H X 2 and I N ∈ R N is an identity matrix.
Since the functions ρ(α) and (β) are two indicator functions on convex sets, the proximity operators reduce to the Euclidean projection onto the corresponding convex sets. Define ∇ α Ψ(x, h i ) and ∇ β Ψ(x, h i ) as the gradient of the function Ψ with respect to α and β, which can be calculated as below

∇ α Ψ(x, h i ) = ∂Ψ ∂h i , ∂h i ∂α = X H (Xh i -y), -c t 2 a exp(-αt 2 a ) exp(-βt 2 l ) (4.38) ∇ β Ψ(x, h i ) = ∂Ψ ∂h i , ∂h i ∂β = X H (Xh i -y), -c exp(-αt 2 a )(t 2 l exp(-βt 2 l )) (4.39)
where " " is the Hadamard product, the vector c = (c(1),

• • • , c(N )) T with its element c(n) = t ζ a (n) cos(ω 0 t a (n) + ϕ) (n = 1, • • • , N ) and •,
• represents the inner product between two vectors.

Alternating Optimization Approach

The pseudo code of the algorithm that we propose for estimating the parameters of the PSF model and the ultrasound TRF jointly is given below. Note that the PALM algorithm in [START_REF] Bolte | Proximal alternating linearizad minimization for noncovex and nonsmooth problems[END_REF] can be recovered as a special case of the proposed algorithm when J = I = 1.

Algorithm 7: Proposed Algorithm Input: Observation y, Initial estimation h 0 , τ , Parameters of PSF model α 0 , β 0

for k = 0,1, . . . do x k,0 = x k , h k,0 = h k ; // Update x for j = 0,1, . . . ,J do xk,j = x k,j -γ x A -1 x ∇ x Ψ(x k,j , h k ); x k,j+1 = prox γ -1 x Ax,ϕ (x k,j ); end // Update h x k+1 = x k,J ; for i = 0,1, . . . ,I do ᾱk,i = α k,i -γ α A -1 α ∇ α Ψ(x k+1 , h k,i ); α k,i+1 = prox γ -1 α Aα,ρ ( ᾱk,i ); βk,i = β k,i -γ β A -1 β ∇ β Ψ(x k+1 , h k,i ); β k,i+1 = prox γ -1 β A β ,ρ ( βk,i ) end α k+1 = α k,I , β k+1 = β k,I ; h k+1 = h p (α k+1 , β k+1 );
until meet the stopping criterion end Output: x = x k+1 , ĥ = h k+1

Simulation results

In order to study the performance of the proposed algorithm, experiments have been conducted on simulated and in vivo ultrasound images. Moreover, a comparison with a non-blind deconvolution algorithm, where the PSF is estimated in a pre-processing step using the cepstrum-based algorithm [MA03, JL94] has been conducted. For simulated US images, the performance of different algorithms can be evaluated by the NRMSE. However, the ground truth for the ultrasound TRF and PSF are not available for real US images. Thus, the resolution gain (RG) and visually inspection have been used to evaluate the performance of TRF estimation quantitatively for the real images.

Simulated US images

Simulated ultrasound image x of size 275 × 75 has been generated according to generalized Gaussian distribution, as shown in Fig. 4.6(a). More details about this generation can be found in Chapter and the proposed method respectively. Moreover, the prior used for the TRF is an p -norm with p = 0.5 for all experiments related to simulated images. The TRFs estimated using the true PSF and the proposed method are visually very similar. The PSF obtained with the proposed method is also closer to the true PSF than the estimated PSF using the cepstrum-based method. The quantitative results displayed in Table 4.3 confirm the visual impression in terms of NRMSE. To conclude, the proposed blind deconvolution algorithm seems to provide better performance than the one obtained with the non-blind deconvolution algorithm using a PSF estimated with cepstrum-based method. 

Real US images

The proposed blind deconvolution algorithm has also been tested on real US images using an pnorm regularization. In this experiment, an ultrasound image representing a mouse kidney has been Moreover, the smoothness of the restored images is proportional the the value of p according to the results presented in Fig. 4.7. The RG of the restored image is inversely proportional to the value of p.

Conclusion

This chapter studied two strategies for the blind deconvolution of medical ultrasound images. In the first strategy, a hierarchical Bayesian model for the joint estimation of an ultrasound image and the system PSF was proposed. In order to solve this ill-posed problem, generalized Gaussian priors were assigned to the reflectivities of homogeneous regions in the image and a Gaussian prior was chosen for the PSF. The results obtained on simulated US data clearly highlight the interest of updating the PSF during the deconvolution process. In the second strategy, a parametric model was proposed for the system PSF such that a few parameters related with the model were estimated instead of the whole PSF, which reduced the computational time significantly. Moreover, an alternating optimization method based on the forward-backward splitting technique was implemented to address the formulated problem, where the proximity operator of the p -norm function was studied. Note that the second strategy is much more efficiency in terms of the computational time compared with the first strategy. A more detailed comparison with be conducted in the future. 

Conclusions and perspectives

Conclusions

The objective of this thesis was to improve the medical ultrasound image quality by post-processing techniques. The main difficulty of medical ultrasound image restoration is its granular appearance due to speckle noise. In this thesis, we exploited the statistical properties of speckle to build new image showed in (A.3).

x =                
x 11 x 12 x 13 x 14 x 15

x 

                        (A.4)
The BCCB matrix ∈ R 25×25 in the linear model for image deblurring is then given by

H =                 H 2 H 1 H 3 H 3 H 2 H 1 H 3 H 2 H 1 H 3 H 2 H 1 H 1 H 3 H 2                 (A.5)
where ∈ R 5×5 is a matrix with all entries equal to 0 and the block H k ∈ R 5×5 is defined as

H k =                 h 2k h 1k 0 0 h 3k h 3k h 2k h 1k 0 0 0 h 3k h 2k h 1k 0 0 0 h 3k h 2k h 1k h 1k 0 0 h 3k h 2k                 (A.6)

A.2 Spectral decomposition

A.2.1 General definitions

In mathematics, a matrix A is normal is A H A = AA H where (•) H is the conjugate operator. A normal matrix is diagonalizable by a unitary matrix1 as below

A = UΛU H (A.7)
where Λ is a diagonal matrix whose elements are the eigenvalues of A.

A.2.2 Spectral decomposition of a BCCB matrix

Any BCCB matrix H is normal and has a spectral decomposition of the form H = F H ΛF (A.8) be decreased and vice versa. The range of the acceptance rate has been set to 30% -90% in the burn-in period. Note that the tuning of is just carried out during the burn-in period to ensure the Markov chain is homogeneous after the burn-in period. The acceptance rate generally belongs to the interval 60% -80% when the Markov chain has converged, while the acceptance rate is around 25% in standard MH moves for high dimensional target distributions [START_REF] Girolami | Riemann manifold Langevin and Hamiltonian Monte Carlo methods[END_REF]. where Ψ = F A H A -1 F H . The Lemma 2 is adopted from (C.9) to (C.10) with A 1 = 2τ FA H AF H , A 2 = Λ H , A 3 = 1 d I and A 4 = Λ. Note that the matrices A 1 and A 3 are always invertible, implying that the Woodbury formula can be applied. loss of generality. Since P (x) is differential when x > 0, by setting P (x) = 0, we have where x * is the unique solution to g(x) = |w| which satisfies x * > 0. We should also note that (D.9) is validate for p > 2, but we are just interested in 0 < p ≤ 2 in this thesis. Moreover, calculating the closed-form solution to g(x) = |w| is complicated even though x * is a unique positive solution. Thus, a Newton method is proposed to find the root of g(x) = |w| (The approximate the Hamiltonian's equations is expressed as below q n (i + /2) = q n (i) -2 ∂U ∂x n (x n (i)) (E.8)

I N l ]diagΛ 1 , • • • , Λ d = [I N l , • • • , I N l ]          Λ 1 • • • 0 . . . . . . . . . 0 • • • Λ d          (C.7) = [Λ 1 , Λ 2
x n (i + ) = x n (i) + q n (i + /2) (E.9)

q n (i + ) = q n (i + /2) -2 ∂U ∂x n (x n (i + )) (E.10)

where is the leapfrog stepsize. Denoting δ = L (L is the number of leapfrog steps), the generated candidate state is (x * , q * ) = (x n (δ), q n (δ)). (E.11) Thus, the generated candidate is accepted with the ratio ρ = min {exp[H(x n , q n ) -H(x * , q * )], 1} . (E.12)

In [START_REF] Chaari | Sparse signal and image recovery using a proximal Bayesian algorithm[END_REF], a proximal Hamiltonian Monte Carlo (PHMC) algorithm is proposed for a denoising problem. The proposed PHMC algorithm is based on a modified leapfrog method, which is given as below q n (i + /2) = q n (i) + prox /2 U (x n (i)) -x n (i) (E.13)

x n (i + ) = x n (i) + q n (i + /2) (E.14)

q n (i + ) = q n (i + /2) + prox /2 U (x n (i + )) -x n (i + ) (E.15)

E.3 Generalization to deconvolution problem

The deconvolution problem that we are considering has the following cost function

U (x) = f (x) + φ(x) (E.16)
where f (x) is the data fidelity term, which is highly related to the statistical properties of the noise.

Under an additive white Gaussian noise (AWGN) assumption, the data fidelity term is expressed as

f (x) = 1 2σ 2 n y -Hx 2 2 (E.17)
which is a quadratic and differential term. The second term in (E.16) φ(x) is the regularization/penalty term which depends on the properties of the image to be restored.

In this section, we generalize the PMALA and PHMC algorithms to be applied to a deconvolution problem based on the forward-backward (FB) splitting method. In the PMALA and PHMC algorithms mentioned above, the main problem is to calculate prox /2 U (x). However, it is not possible to calculate this proximal operator in deconvolution problems due to the presence of the blurring kernel. One solution is to approximate it with a one-step forward-backward splitting algorithm, i.e., prox

/2 U (x) ≈ prox 2 φ x -2 ∇f (x) (E.18)
We also note that this approximation has been implemented in [START_REF] Pereyra | Proximal Markov chain Monte Carlo algorithms[END_REF] for an image deconvolution problem with a total variation (TV) prior.

With the approximation (E.18), we can generalize the Euler discretization method (in PMALA)

and the Leapfrog discretization method (in PHMC) to obtain (E.19) and (E.20) respectively • PHMC q n (i + /2) = q n (i) + prox /2 φ

• PMALA x n+1 = prox
x n (i) -2 ∇f (x n (i)) -x n (i)

x n (i + ) = x n (i) + q n (i + /2) q n (i + ) = q n (i + /2) + prox x 0 (0) = x 0 ; q 0 (0) ∼ N (0, I N ×N );

for i = 0 : L -1 do Compute q n (i + /2) = q n (i) + prox /2 φ

x n (i) -2 ∇f (x n (i)) -x n (i);

Compute x n (i + ) = x n (i) + q n (i + /2); Compute q n (i + ) = q n (i + /2) + prox /2 φ

x n (i + ) -2 ∇f (x n (i + )) -x n (i+ ) ; end q * = q n (δ);

x * = x n (δ); 

/
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 1 Figure 1.1: A sound wave consists of pressure fluctuations. Diagnostic ultrasound waves are longitudinal waves with the motion of particles in a direction parallel to the direction of energy transport [LCR07].
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 12 Figure 1.2: Block diagram of an ultrasound imaging process [Ale10].
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 13 Figure 1.3: External parts of a medical ultrasound imaging system.
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 14 Figure 1.4: Specular reflection (left) versus scattering/diffuse reflection (right).
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 15 Figure 1.5: Specular reflection and transmission at the boundaries of two media.
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 17 Figure 1.7: Lateral resolution of ultrasound imaging.
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 18 Figure 1.8: Different kinds of ultrasound probes.
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 19 Figure 1.9: Basic piezoelectric ultrasound transducer structure [Sza04].

Figure 1 .

 1 Figure 1.10: Transducer arrays contain multi elements. A: linear; B: Phased; C: Convex [Tou14].

Figure 1 .

 1 Figure 1.11: Conceptual diagram of electronic beamforming. Top: Focalization in transmission in US imaging scanners. Bottom: Focalization in reception in US imaging scanners [Tou14].

•

  B mode: The ultrasound B-mode (B stands for brightness) images are 2D displays of echo signal amplitudes. Precisely, the envelopes of the received RF signals are detected previously by demodulating the RF signals. The corresponding amplitudes of the envelope signals are then logarithmically compressed, where the resulting generated data are B-mode images. The correspondence between a RF image and B-mode image of thyroid is shown in Fig. 1.12. Fig. 1.13 illustrates the relationship and calculation between RF, IQ and B-mode images.

Figure 1 .

 1 Figure 1.12: RF image and its corresponding B-mode image of thyroid [Bas08, Mor13]. The extracted axial profiles from the two images are shown at the right side of the figure.

Figure 1 .

 1 Figure 1.13: Relationship between ultrasound RF, IQ and B modes. "LBP" in the demodulation stage represents low band-pass filter.

Figure 1 .

 1 Figure 1.14: Point spread function of an electronically focused array at the focal point [LCR07].

  forming. As mentioned above, the most common beamforming technique is represented by static single focus beamforming (shown in Fig.1.11), where the time delay of transducer elements and the apodization techniques can be designed to affect the focalization. The shape of the PSF at the focal point is displayed in Fig.1.14. It is also interesting to note that the beamforming techniques can change the shape of the PSFs, as shown in Fig.1.15. The differences between the PSFs in Fig.

Figure 1 .

 1 Figure 1.15: Point spread function phantom simulated using the Field II software [Jen96]. Different apodization and focolization are employed in each image.

  Figure 1.16: Spectrum (left) and log cepstrum (right) of measured PSF and sythetic reflectivity function for an A-line signal. The two images are extracted from [JL94].

( 1 .

 1 13). A review of ultrasound image deconvolution can be found in[START_REF] Michailovich | Blind image deconvolution: theory and applications, chapter Deconvolution of medical images from microscopic to whole body images[END_REF]. US image deconvolution is a typical ill-posed problem. Imposing a regularization constraint is one traditional way to cope with this problem. Given the image formation model in (1.13), the image deconvolution problem can Chapter 1 -Medical ultrasound imaging be formulated as the following optimization problem min

  ultrasound images suffer from a relatively low data quality caused by attenuation, speckle and shadows, the methods used in literature exploit specific constraints or priors. Some widely used constraints include the intensity based priors, geometric priors or the statistical analysis of the ultrasound images. A variety of segmentation methodologies developed for medical US images have embedded these constraints into Bayesian approaches, active contours, active appearance models, level-sets, machine learning, clustering or graph based frameworks. In addition, it is interesting to note that most of the segmentation methods are developed for the traditional B-mode ultrasound images. A review of US image segmentation methods until 2006 can be found in [NB06]. Other interesting reviews on US image segmentation until 2010 are [Nob10, SDR10]. It is also important to note that for specific clinical applications including breast, carotid, prostate, ventricle, etc., different segmentation methods should be considered to obtain satisfying segmentation performances. For instance, an evaluation platform for left ventricle segmentation in 3D echocardiography has been conducted in [BHA + 14]. A review of the breast cancer detection and segmentation methods can also be found in [CSJ + 10]. Bayesian algorithms: Pereyra et. al. proposed a Bayesian method based on the statistical analysis (mixture of α-Rayleigh distributions) of B-mode ultrasound images [Per12]. Precisely, a

  The decimation factors d r and d c represent the numbers of discarded rows and columns from the input images satisfying the following relationships m h = m l × d r and n h = n l × d c . Note that the image formation model (3.1) has been widely considered in single image SR problems, see, e.g., [YWHM10, SSXS08, SSXS11, NWY10, ZGTL12]. The methods dedicated to single image SR can be classified into three categories [YWHM10, SSXS08, TLBL10]. • Interpolation-based approaches The first category includes the interpolation-based algorithms using nearest neighbor interpolation, bicubic interpolation [TBU00] or adaptive interpolation techniques [ZW08, MY10].

  Learning-based approaches The second type of methods consider learning-based (or example-based) algorithms that learn the relations between LR and HR image patches from a given database [FPC00, GBI09, HSA15, ZEP12, YWHM10]. Note that the effectiveness of the learning-based algorithms highly depends on the training image database and these algorithms have generally a high computational complexity. • Reconstruction-based approaches Reconstruction-based approaches that are considered in this manuscript belong to the third category of SR approaches [SSXS08, SSXS11, TLBL10, NWY10]. These approaches formulate the image SR as a reconstruction problem, either by incorporating priors in a Bayesian framework or by introducing regularizations into the ill-posed inverse problem. Also, the traditional image priors presented above for the deconvolution problems can be implemented for the single image SR problems.

  segmentation and tissue characterization [NB06, PDBT12]. Specifically, it has been shown that the statistical properties of the speckle are strictly correlated with the tissue structures [AMP + 11, Sza04]. Thus, methods allowing image restoration using the statistical properties of the speckle noise are also an interesting research track in US imaging [NPK + 07, AMP + 11].

. 4 )

 4 In addition, we assign a Potts model to the hidden field z to exploit the dependencies between pixels that are nearby in the image [AMD10, PDBT12, PDBT13]. The resulting model is referred to as GGD-Potts model. In the following, we define a hierarchical Bayesian model based on this GGD-Potts model for the joint segmentation and deconvolution of US images. Using the Bayes rule for the joint posterior of the unknown parameters, the following result can be obtained p(x, z, θ|y) ∝ p(y|x, θ)p(x|z, θ)p(z|θ)p(θ)(2.5) 
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 22 Figure 2.2: CPU time of our algorithm versus the image size (left) and the number of classes (right) for 6000 Monte Carlo iterations. Left: number of classes K = 2. Right: image size 100 × 100.
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 22223 Figure 2.3: Deconvolution results for one column of the synthetic image (the red curves are the observed lines, the blue curves are the ground truth and the green curves are the restored signals using the proposed method). The GGD parameters are ξ = 2,γ = 2 in (a), ξ = 1.5,γ = 1.2 in (b) and ξ = 0.6,γ = 0.4 in (c).
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 224 Figure 2.4: Estimated marginal posterior distributions (histograms) of the noise variance σ 2 n (1st line), the hyperparameters ξ (2nd line) and γ (3rd line). The vertical lines represent the ground truths of the corresponding parameters. Each column corresponds to a given image.
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 25 Figure 2.5: OA versus the ratios of the GGD parameters (left: scale parameters γ 1 = γ 2 = 20, right: shape parameters ξ 1 = ξ 2 = 1).
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 2 Figure 2.6: Group 1: (a) Simulated PSF; (b) Ground truth of the TRF; (c) Ground truth for label map; (d) Observed B-mode image; (e)-(i) Estimated TRFs in B-mode form obtained with methods 2 , 1 , Deconv EM , Deconv MCMC and the proposed Joint MCMC ; (j) Estimated label map obtained with the proposed method (regularization parameters for the 2 and 1 methods set to 0.01 and 0.1).

Figure 2

 2 Figure 2.7: (Group 1) 1st line includes the histograms of shape parameters ξ for the pixels inside (left) and outside (right) the inclusion; 2nd line includes the histograms of scale parameters γ for the pixels inside (left) and outside (right) the inclusion; The red and green vertical lines are the MMSE estimates and the true values of the parameters ξ, γ, respectively.
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 28 Figure 2.8: Group 2: (a) Ground truth of the TRF; (b) Ground truth for label map; (c) Observed Bmode image; (d)-(h) Estimated TRFs in B-mode form obtained with the methods 2 , 1 , Deconv EM , Deconv MCMC and the proposed Joint MCMC ; (i) Estimated label map obtained with the proposed method (regularization parameters for the 2 and 1 methods set to 0.1 and 1).

Figure 2 . 9 :

 29 Figure 2.9: Group 3: (a) Ground truth of the TRF; (b) Ground truth for label map; (c) Observed B-mode image; (d)-(h) Estimated TRFs in B-mode form obtained with methods 2 , 1 , Deconv EM , Deconv MCMC and the proposed Joint MCMC ; (i) Estimated label map obtained with the proposed method (regularization parameters for the 2 and 1 methods set to 0.1 and 1).

Figure 2 .

 2 Figure 2.10: Estimated TRF (left) and label map (right) for a two-class image with K = 3 (ISNR = 14.46 and OA = 0.8).

  the method of [MA05]. The regions selected for the computation of CNR are shown in the red rectangles of the observed B-mode images in Figs. 2.11(a),(e),(i). All the estimated TRFs are shown in B-mode form, after envelope detection and log-compression. The envelope detection is generally performed by considering the magnitude of the analytic signal in US imaging. While it is adapted to bandlimited modulated RF signals, this envelope detector may generate artifacts on TRFs. To avoid this phenomenon, we have used a different envelope detection method for the restored TRF, i.e., the method of [PFG04] based on the detection and interpolation of local maxima.

Figs. 2 .Fig. 2 .

 22 Figs. 2.11(b)-2.11(d) display the restored TRFs obtained with the 2 , 1 optimization algorithms and the proposed method. The proposed method provides good restoration results, especially with clearer boundaries. Fig. 2.13(a) shows the marginal MAP estimates of the labels, which segment the estimated image into several statistically homogeneous regions. The different anatomical structures of the image can be clearly recovered. Note that the two regions corresponding to fluids are identified with the same estimated label.
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 22 Figure 2.11: From up to down: 1st row corresponds to the mouse bladder; 2nd row is for the skin melanoma; 3rd row is for the healthy skin tissue. From left to right: Observed B-mode image, Restored B-mode images with 2 -norm, 1 -norm and the proposed method. The regions selected for computing CNR are shown in the red boxes in the observed B-mode images.

Figure 2 .

 2 Figure 2.13: Marginal MAP estimates of labels. (Left) is the label map for the mouse bladder. The estimated labels in blue correspond to liquid regions whereas the other labels represent tissue regions with different statistical properties. (Middle) is the label map for the skin melanoma. The four estimated labels correspond to the water-gel (light blue), the tumor (yellow) and the skin tissues (the two shades of red). (Right) is the label map for the healthy skin tissue. The skin tissue appears in red.

  As stated in the introduction, the image formation model for single image super-resolution can be written asy = SHx + n (3.1)where the vectors x ∈ R N h and y ∈ R N l are the high resolution (HR) and low resolution (LR) images, the matricesH ∈ R N h ×N h and S ∈ R N l ×N h arethe blurring and decimation matrices. In this chapter, we propose a general method based on reconstruction techniques which is valid for both natural and medical ultrasound images. Existing reconstruction-based techniques used to solve the single image SR include the first order gradient-based methods [SSXS08, SSXS11, TLBL10, YWHM10], the iterative shrinkage thresholding-based algorithms [BT09] (also called forward-backward algorithms), proximal gradient algorithms and other variable splitting algorithms that rely on the augmented Lagrangian (AL) scheme. The AL-based algorithms include the alternating direction method of multipliers (ADMM) [NWY10, MBD15, MBK12, MO08], the split Bregman (SB) methods [YLTV15]

3 .

 3 More precisely, this chapter derives a closed-form expression of the solution associated with the 2 -penalized least-squares SR problem, when the observed LR image is assumed to be a noisy, subsampled and blurred version of the HR image with a spatially invariant blur. This model, referred to as 2 -2 in what follows, underlies the restoration of an image contaminated by additive Gaussian noise and has been used intensively for the single image SR problem, see, e.g., [YWHM10, SSXS08, EV08] and the references mentioned above. The proposed solution is shown to be easily embeddable into an AL framework to handle non-Gaussian priors (i.e., non-2 regularizations), which significantly lightens the computational burdens of several existing SR algorithms.

Assumption 2 .

 2 whose diagonal elements are the Fourier coefficients of the first column of the blurring matrix H, denoted as h.Using the decompositions (4.24) and (4.25), the blurring operator Hx and its conjugate H H x can be efficiently computed in the frequency domain, see, e.g.,[START_REF] Kee | Restoration of Medical Pulse-Echo Ultrasound Images[END_REF][START_REF] Elad | Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images[END_REF][START_REF] Zhao | Joint segmentation and deconvolution of ultrasound images using a hierarchical Bayesian model based on generalized Gaussian priors[END_REF]. The decimation matrix S ∈ R N l ×N h is a down-sampling operator, while its conjugate transpose S H ∈ R N h ×N l interpolates the decimated image with zeros.

Figure 3 . 1 :

 31 Figure 3.1: Effect of the up-sampling matrix S H on a 3 × 3 image and of the down-sampling matrix S on the corresponding 9 × 9 image (whose scale up factor equals 3).

  Similar to traditional image reconstruction problems, the estimation of an HR image from the observation of an LR image is an ill-posed problem. This ill-posedness is classically overcome by incorporating some appropriate prior information or regularization term. The regularization term can be chosen from a specific task of interest, the information resulting from previous experiments or from a perceptual view on the constraints affecting the unknown model parameters [Rob07, GCS + 13]. Various priors or regularizations have already been advocated to regularize the image SR problem in the literature, including: (i) traditional generic image priors such as Tikhonov [NMG01, WDT15b, EV08], total variation (TV) [NWY10, AD05, MO08] and priors prompting sparsity in transformed domains [BD06, NPK + 07, JJC04, FN03], (ii) more recent image regularizations such as the gradient profile prior [SSXS08, SSXS11, TLBL10] or Fattal's edge statistics [Fat09] and (iii) learning-based priors [RB05, ZW11]. The fast approach proposed in the next section is shown to be adapted to many of the existing regularization terms. Assuming that the noise n in (3.1) is AWGN and incorporating a proper regularization to the target image x, the maximum a posteriori (MAP) estimator of x for the single image SR can be obtained by solving the following optimization problem min

3x 3 . 3 . 3

 333 Fr = F(H H S H y + 2τ x); // Hadamard (or entrywise) product in frequency domain4 x f = Λ H 2τ dI N l + ΛΛ H -1 Λ Fr;// Compute the analytical solution5 x = 1 2τ r -F H x f ; Output: Solution of the 2 -2 problemin the gradient domainGeneric image priors defined in the gradient domain have been successfully used for image reconstruction, avoiding the common ringing artifacts see, e.g.,[START_REF] Sun | Image super-resolution using gradient profile prior[END_REF][START_REF] Sun | Gradient profile prior and its applications in image super-resolution and enhancement[END_REF][START_REF] Tai | Super resolution using edge prior and single image detail synthesis[END_REF]. In this part, we focus on the gradient profile prior proposed in[START_REF] Sun | Gradient profile prior and its applications in image super-resolution and enhancement[END_REF] for the single image SR problem. This prior consists of considering the regularizing term ∇x -∇x 2 2 . Thus the problem (3

  .22) To solve problem (3.21), we need to minimize L(x, u, d) w.r.t. x and u and update the scaled dual variable d iteratively as summarized in Algorithm 4.

σ 2 h = 3 ,

 3 the decimation factors are d r = d c = 4 and the noise level is BSNR = 30dB. The performances of the different SR algorithms are evaluated both visually and quantitatively in terms of the following metrics: RMSE, PSNR, ISNR and MSSIM. The definitions of these metrics,

2 -regularizations 2 - 2

 222 model in the image domain • Gaussian blurring kernel We first explore the single image SR problem with the "pepper" image and standard Tikhonov regularization corresponding to the optimization problem formulated in (3.14). The size of the ground truth HR image shown in Fig. 3.2(b) is 512 × 512. Fig. 3.2 also displays the restored images with bicubic interpolation, the proposed analytical solution given in Algorithm 2 and the ADMM of [NWY10] adapted to a Gaussian prior. The prior mean image x (approximated HR image) is the up-sampled version/bicubic interpolation of the LR image (Case 1) with restoration results in Figs. 3.2(d) and 3.2(e), whereas x is the ground truth (Case 2) with restoration results in Figs. 3.2(f) and 3.2(g). The regularization parameter was τ = 1 in Case 1

Figure 3 . 2 :

 32 Figure 3.2: SR of the pepper image when considering an 2 -2 -model in the image domain: visual results. The prior image mean x is defined as the bicubic interpolated LR image in Case 1 and as the ground truth HR image in Case 2. † Note that the LR images have been scaled for better visualization in the figures of this chapter (i.e., the actual LR images contain d times fewer pixels than the corresponding HR images).

Figure 3 . 3 :

 33 Figure 3.3: SR of the "pepper" image when considering the 2 -2 model in the image domain: RMSE as functions of the regularization parameter τ for various noise levels (1st column), blurring kernel sizes (2nd column) and decimation factors (3rd column). The results in the 1st column were obtained for d r = d c = 4 and 9 × 9 kernel size; in the 2nd column, d r = d c = 4 and BSNR= 30 dB;

3 . 3

 33 as functions of the regularization parameter τ for the two considered scenarios (Cases 1 and 2). Note that the same performance is obtained by the ADMM-based SR technique since it solves the same optimization problem.• Motion blurring kernelThis paragraph considers a dataset composed of images that have been captured by a camera placed on a tripod, whose Z-axis rotation handle has been locked and X-and Y-axis rotation handles have been loosen[START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF]. The corresponding dataset is available online 1 . The observed LR image, motion kernel and corresponding SR results are shown in Figs. 3.4. The size of the motion kernel is 19 × 19. As in the previous paragraph, the prior image x is the bicubic interpolation of the LR image in Case 1, while x is the ground truth in Case 2.

2 Figure 3 . 4 :

 234 Figure 3.4: SR of the motion blurred image when considering an 2 -2 -model in the image domain: visual results. The prior image mean x is defined as the bicubic interpolated LR image in Case 1 and as the ground truth HR image in Case 2.

Figure 3 . 5 :

 35 Figure 3.5: SR of the face image when considering an 2 -2 -model in the gradient domain: visual results.

Figure 3 . 2 Figure 3

 323 Figure 3.6: SR of the face image when considering an 2 -2 -model in the gradient domain: objective functions.

3. 5 . 2 Figure 3 Figure 3

 5233 Figure 3.8: SR of the Monarch, Lena and Barbara images when considering a TV-regularization: visual results.

Figure 3 .

 3 Figure 3.11: SR of the Monarch, Lena and Barbara images when considering an 1 -norm regularization in the wavelet domain: objective function (left) and PSNR (right) vs time.

Figure 3 . 12 :

 312 Figure 3.12: In vivo US image and the restored images with the proposed and classical methods using p norm regularizers.

  y, x and n are the tissue reflectivity function (TRF) to be estimated, the observed RF ultrasound image and the measurement noise respectively, the huge matrix H is associated with the system point spread function (PSF). Several blind or semi-blind deconvolution methods have been previously proposed in the ultrasound literature using the linear model (4.1), see e.g.,[START_REF] Campisi | Blind Image Deconvolution: Theory and Application, chapter Deconvolution of Medical Images from Microscopic to Whole Body Images[END_REF]. The 103 existing methods for ultrasound image blind deconvolution can be roughly divided into two categories. The first group involves a pre-estimation of the PSF, followed by one of the classical non-blind deconvolution algorithms. The homomorphic filter technique [JL94, Tax95, MA01] is a traditional method for the PSF estimation, which falls into this group. More recently, a hybrid method based on inverse filtering for PSF estimation has been explored [MT07, DM11]. The second class of blind deconvolution algorithms includes simultaneously estimation of the PSF and the ultrasound image. Most of the existing works fall in group 2 are using non-parametric model for the PSF estimation, see e.g., [JT08, YZX12a, RPD + 15].

PriorsA.

  Reflectivity image: As stated in Chapter 2, we assume that the pixels of the US image are independent random variables distributed according to generalized Gaussian distributions (GGDs) as in Chapter 2. Moreover, the pixels of the US image belonging to different homogeneous regions are supposed to be distributed according to GGDs with different parameters. This assumption makes sense in applications such as tumor detection, where the tumor and the image background are characterized by different sets of parameters. Precisely, we introduce a label vector z ∈ R N ×1 to map the image into the different homogeneous regions. The ith label is such that z i = k if and only if the corresponding pixel x i belongs to the class k ∈ {1, ..., K}.

Algorithm 5 :2 3

 53 Hybrid for i = 1 : N mc do Sampling x according to (4.10) with an HMC method.

4

 4 

  .10) Generating samples from (4.10) is complicated due to the high dimensionality of the image x and to the non-quadratic term x k ξ k ξ k . In this work, we propose to use a Hamiltonian Monte Carlo (HMC) method for this generation since this method has shown interesting results in the case of non-blind deconvolution in Chapter 2.

  Figs.4.1 show the images estimated by the proposed method and the method of[START_REF] Zhao | Restoration of ultrasound images using a hierarchical Bayesian model with a generalized Gaussian prior[END_REF].

4. 2 Figure 4

 24 Figure 4.1: Observation, ground truth and estimated US images (top: RF images, bottom: B-mode images).

Figure 4 . 2 :

 42 Figure 4.2: Ground truth and estimated PSFs.

Fig. 4 .

 4 4 shows a simulated PSF with the parametric model(4.18).With the a priori knowledge of the size of the PSF 1 , there are just a few parameters, i.e.,φ, α, β, ζto estimate instead of the whole PSF pixels.• ζ: The value of ζ can be determined by cross validation. More precisely, the value of ζ is fixed to 3 for both simulated and in vivo US data in this chapter.

Figure 4 . 4 :

 44 Figure 4.4: Simulated PSF with the proposed parametric model (4.18).

  4.33) where λ = τ γ, x * is the positive root of the equationx + λpx p-1 = |x|. (4.34)Proof. See Appendix D.

Fig. 4 .

 4 Fig.4.5 shows the graph of the proximity operator when 0 < p ≤ 2. Note that (4.32) is also valid when p > 2 even if we are just interested in p ∈ (0, 2] in this chapter. Note that the soft (hard)

Figure 4 . 5 :

 45 Figure 4.5: Graph of proximity operator of | • | p (0 < p ≤ 2).

2 .

 2 Fig. 4.6(b)) using the parametric model (4.18) and contaminated by an additive white Gaussian noise with BSNR= 30 dB. Figs. 4.6(c), 4.6(d) display the estimated PSFs using the cepstrum-based method described in Chapter 1 and the proposed method. Figs. 4.6(f)-4.6(h) show the restored ultrasound TRFs using the true PSF, the estimated PSFs obtained with the cepstrum-based method

Table 4 . 3 :

 43 Simulated US images: Performance of blind deconvolution using parametric PSF model.

  Non blind with (b) (g) Non blind with (c) (h) Proposed

Figure 4 . 6 :

 46 Figure 4.6: Blind deconvolution of simulated US images using a parametric model for the PSF.

Figure 4 . 7 :

 47 Figure 4.7: Blind deconvolution of real US images using a parametric model for the PSF.

  Figure A.1: A BCCB matrix of size 9 × 9.

2 3 p 4 for i = 1 : L do 5 67 2 ∂U

 3452 for t = 1 : N M C do /* Candidate generation */ (t,0) ∼ N (0, I N ×N ); /* Leapfrog Method */ Set p (t,i) = p (t,i) -2 ∂U ∂x (t,i) x (t,i) ; Set x (t,i) = x (t,i) + p (t,i) ; Set p (t,i) = p (t,i)to obtain a suitable acceptance rate.18 endIn (C.5), Λ ∈ R N h ×N h whereas [I N l , • • • , I N l ] ∈ R N l ×N h and [I N l , • • • , I N l ] T ∈ R N h ×N l are blockmatrices whose blocks are equal to the identity matrixI N l . The matrix Λ ∈ R N l ×N h in (C.6) is given by Λ = [I N l , • • • , I N l ]Λ = [I N l , • • • ,

2 *

 2 Figure D.1: Plot of g(x) for x > 0.

/ 2 φ

 2 x n (i + ) -2 ∇f (x n (i + )) -x n (i + ) (E.20) Thus, the forward-backward based MALA and HMC algorithms for image deconvolution are summarized in Algorithms 12 and 13. Algorithm 12: PMALA Algorithm /* Initialization Procedure */ x 0 = y; for n = 0 : N M C -1 do /* Candidate generation Procedure */ x n+1 = prox /2 φ x n -2 ∇f (x n ) + d n ; x * = x n+1 ; /* Accept/Reject Procedure */ Compute ρ with (E.4) if rand ρ then x n+1 = x * ; else x n+1 = x (t) ; end Adjust in order to obtain a suitable acceptance rate.

of ultrasound images using a hierarchical Bayesian model with a generalized Gaussian prior, in
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Table 1 .

 1 1: Comparison of different medical imaging modalities[START_REF] Thomas | Diagnostic Ultrasound Imaging: Inside Out[END_REF].

	Modality	Ultrasound	X-ray	CT	MRI
	Principle	Mechanical properties	Mean tissue absorption	Tissue absorption	Biochemistry
	Access	Small windows adequate	2 slides needed	Circumferential around body	Circumferential around body
	Spatial resolution	Frequency and 0.3 -3 mm axially dependent	∼ 1 mm	∼ 1 mm	∼ 1 mm
	Penetration	Frequency dependent 3 -25 cm	Excellent	Excellent	Excellent
	Safety	Very good	Ionizing radiation	Ionizing radiation	Very good
	Speed	30-1000 frames/sec	Minutes		

1 2 minute to minutes 10 frames/sec Cost

  In each region, the local PSF is assumed shift-invariant. The global blurring matrix is built in this case by combining these local shift-invariant PSFs.

and Laplacian distributions have been widely explored as prior information for the TRF x, leading to 2 -norm

[START_REF] Jirik | Two dimensional blind Bayesian deconvolution of medical ultrasound images[END_REF] 

and 1 -norm

[START_REF] Michailovich | Blind deconvolution of medical ultrasound images: A parametric inverse filtering approach[END_REF]

,

[START_REF] Yu | A blind deconvolution approach to ultrasound imaging[END_REF] 

constrained optimization problems.

Due to the tight relationship between image deconvolution and segmentation, it is interesting to consider these two operations jointly. This idea has been recently exploited for piecewise homogeneous images using the Mumford-Shah model [BSK04, BCC + 11, CYZ14], the Potts model

[START_REF] Ayasso | Joint NDT image restoration and segmentation using Gauss-Markov-Potts prior models and variational Bayesian computation[END_REF][START_REF] Storath | Joint image reconstruction and segmentation using the Potts model[END_REF] 

or the generalized linear models

[START_REF] Paul | Coupling image restoration and segmentation: A generalized linear model/Bregman perspective[END_REF] 

in Bayesian or variational frameworks. Moreover, segmentation-based regularizations have been considered in

[START_REF] Mignotte | A segmentation-based regularization term for image deconvolution[END_REF] 

to improve the image reconstruction performance. However, due to the intrinsic granular appearance of US data, these methods are not always efficient to simultaneously restore and segment US images. In order to develop US image deconvolution and segmentation methods, it is common to take advantage of the statistical properties of the TRF. Except the traditional Gaussian and Laplace distributions mentioned above, distributions that have been considered for US images include the homodyned K [HO09], Nakagami

[START_REF] Larrue | Nakagami imaging with small windows[END_REF] 

and generalized Gaussian distributions

[START_REF] Bernard | Statistical modeling of the radio-frequency signal for partially-and fully-developed speckle based on a generalized Gaussian model with application to echocardiography[END_REF]

. In particular, Alessandrini et. al. recently investigated a deconvolution method for US images based on generalized Gaussian distributions (GGDs) using the expectation maximization (EM) algorithm [APMS11, AMP + 11]. This method assumed that the US image can be divided into different regions characterized by GDDs with different parameters. Despite its accuracy when compared to several state-of-the-art US image deconvolution methods, the framework in

[START_REF] Martino Alessandrini | Expectation maximization for joint deconvolution and statistics estimation[END_REF] 

has two major drawbacks that we propose to tackle in this

  Potts model (generalization of the Ising model) is considered as prior for the hidden image label field. The Potts Markov random field (MRF) has been shown to be appropriate for image segmen-

tation

[START_REF] Murray | MCMC for doublyintractable distributions[END_REF][START_REF] Pereyra | Estimating the granularity coefficient of a Potts-Markov random field within a Markov chain Monte Carlo algorithm[END_REF]

. It establishes dependencies between pixels that are nearby in an image

[START_REF] Pereyra | Segmentation of skin lesions in 2-D and 3-D ultrasound images using a spatially coherent generalized Rayleigh mixture model[END_REF][START_REF] Pereyra | Estimating the granularity coefficient of a Potts-Markov random field within a Markov chain Monte Carlo algorithm[END_REF]

. More specifically, adjacent labels of the image are dependent and tend to belong to the same class. The conditional distribution of z n (associated with pixel x n ) for the Potts MRF is defined as

Table 2 .

 2 1: Parameter Estimations for the synthetic data

	Group	Group 1		Group 2		Group 3	
	Parameters	σ 2 n	ξ	γ	σ 2 n	ξ	γ	σ 2 n	ξ	γ
		(×10 -5 )			(×10 -5 )			(×10 -5 )		
	True values	3.72	2	2	3.22	1.50 1.26	3.13	0.60 0.37
	MMSE	3.65	1.98 2.00	3.63	1.41 1.16	4.15	0.59 0.37
	Standard deviation	0.35	0.04 0.05	0.61	0.09 0.09	0.60	0.03 0.02

Table 2 .

 2 2: Hyperparameter Estimations for Simulated data (Group 2).

	Method	ξ 1	ξ 2	γ 1	γ 2
	Ground truth 0.8	1.5	10	1
	Deconv EM	0.60 0.96 21.10 0.42
	Deconv MCMC 0.80 2.15 10.05 1.50
	Joint MCMC	0.82 1.37 11.24 0.82
	of Joint				

MCMC for the deconvolution of US images. The estimated label map obtained with the method Joint MCMC is shown in Fig.

2

.8(i), confirming its good segmentation performance.

Table 2 .

 2 

		3: Deconvolution Quality Assessment for Simulated data	
	Group	Method	ISNR (dB) NRMSE PSNR (dB) MSSIM OA
		2	12.83	0.52	33.19	0.98	N/A
		1	12.83	0.52	33.19	0.98	N/A
	1	Deconv EM	13.04	0.46	33.74	0.98	N/A
		Deconv MCMC	16.21	0.35	36.57	0.99	N/A
		Joint MCMC	16.01	0.36	36.37	0.99	0.99
		2	10.63	0.69	21.02	0.61	N/A
		1	12.75	0.54	23.30	0.79	N/A
	2	Deconv EM	14.31	0.45	24.70	0.82	N/A
		Deconv MCMC	15.09	0.41	25.39	0.88	N/A
		Joint MCMC	15.00	0.42	25.26	0.88	0.99
		2	9.96	0.70	21.92	0.64	N/A
		1	11.49	0.59	23.45	0.76	N/A
	3	Deconv EM	12.21	0.54	24.16	0.78	N/A
		Deconv MCMC	12.40	0.52	24.40	0.80	N/A
		Joint MCMC	12.38	0.53	24.37	0.79	0.98

Table 2 .

 2 

				4: Deconvolution Quality for the real US data		
	Group	group 1 -Mouse bladder group 2 -Skin melanoma group 3 -Healthy skin tissue
	Metrics	RG CNR Time (s)	RG	CNR Time (s) RG CNR	Time (s)
	Observation	-	1.08	-	-	1.17	-	-	1.30	-
	2	3.82 1.00	0.006	3.01	1.09	0.007	1.07 3.01	0.007
	1	3.29 1.11	5.07	4.63	1.19	3.53	2.09 2.47	22.30
	Proposed	3.94 0.94	3904.8	10.01 1.35	1303.4	2.59 2.23	6585.8

3 Proposed fast super-resolution using an 2

  

	Chapter 3
	Fast Single Image Super-resolution
	Part of this chapter has been adapted from the journal paper [ZWB + 16a] and the conference paper [ZWB + 16c].
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Table 3 .

 3 1: SR assessment of the pepper image when considering an 2 -2 -model in the image domain.

	Method	PSNR (dB) ISNR (dB) MSSIM Time (s.)
	Bicubic	25.37	-	0.59	0.002
			Case 1		
	ADMM	29.26	4.01	0.67	1.92
	Algorithm 2	29.27	4.01	0.67	0.02
			Case 2		
	ADMM	53.84	29.27	1	0.5
	Algorithm 2	53.74	29.55	1	0.02

Table 3 .

 3 2: SR assessment of the motion blurred image using an 2 -2 -model in the image domain.

	Method	PSNR (dB) ISNR (dB) MSSIM Time (s.)
	Bicubic	21.15	-	0.91	0.002
			Case 1		
	ADMM	27.11	5.96	0.96	0.11
	Algorithm 2	27.11	5.96	0.96	0.01
			Case 2		
	ADMM	53.23	32.08	1	0.42
	Algorithm 2	53.23	32.08	1	0.01

Table 3 .

 3 3: SR of the face image when considering an 2 -2 -model in the gradient domain: quantitative

	results.				
	Method	PSNR (dB) ISNR (dB) MSSIM Time (s.)
	Bicubic	26.84	-	0.49	0.001
	ADMM	42.82	15.98	0.98	0.71
	CG	42.82	15.98	0.98	0.35
	Algorithm 3	42.82	15.98	0.98	0.009

Table 3 .

 3 4: SR of the zebra image when considering a learning-based 2 -norm regularization: quanti-

	tative results.				
	Method	PSNR (dB) ISNR (dB) MSSIM Time (s.)
	Bicubic	18.98	-	0.37	0.001
	SC [YWHM10]	19.15	0.16	0.38	170.9
	SC+GD [YWHM10]	20.76	1.78	0.47 170.9+1.23
	SC+Algorithm 2	29.99	1.88	0.48 170.9+0.01

Table 3 .

 3 5: SR of the Monarch, Lena and Barbara images when considering a TV-regularization: Figs. 3.10 show some SR reconstruction results with an 1 -norm minimization in the wavelet domain. The HR images obtained with Algorithm 11 and with the algorithm of [NWY10] adapted to the 1 -norm prior are visually similar and better than a simple interpolation. The numerical results

	quantitative results.					
	Image	Method	PSNR (dB) ISNR (dB) MSSIM Time (s) Iter.
		Bicubic	23.11	-	0.75	0.002	-
	Monarch	ADMM [NWY10]	29.49	6.38	0.84	78.95	812
		Algorithm 10	29.38	6.28	0.83	19.81	170
		Bicubic	25.80	-	0.57	0.002	-
	Lena	ADMM [NWY10]	30.81	5.00	0.66	35.67	372
		Algorithm 10	30.91	5.11	0.66	20.63	164
		Bicubic	22.71	-	0.48	0.002	-
	Barbara	ADMM [NWY10]	24.80	2.09	0.56	13.85	148
		Algorithm 10	24.84	2.13	0.56	8.36	73

Table 3 .

 3 6: SR of the Monarch, Lena and Barbara images when considering a 1 -norm regularization in the wavelet domain: quantitative results.

	Image	Method	PSNR (dB) ISNR (dB) MSSIM Time (sec.) Iter.
		Bicubic	23.11	-	0.75	0.002	-
	Monarch	ADMM [NWY10] *	27.08	3.97	0.74	34.08	400
		Algorithm 11	27.13	4.03	0.74	15.02	177
		Bicubic	25.80	-	0.57	0.002	-
	Lena	ADMM [NWY10]	30.09	4.29	0.62	38.48	450
		Algorithm 11	30.21	4.41	0.63	14.25	164
		Bicubic	22.71	-	0.48	0.002	-
	Barbara	ADMM [NWY10]	24.66	1.95	0.52	34.13	400
		Algorithm 11	24.70	2.00	0.53	14.83	171

Table 3 .

 3 7: SR of the real US image

	p	Method	RG	Time (s) Iters.
	p = 2	Proposed Classical	1.78 1.78	0.009 0.53	-55
	p = 1	Proposed 16.26 Classical 16.50	2.42 2.58	190 199
	p = 4 3	Proposed Classical 10.04 9.72	0.76 1.12	28 37
	p = 3 2	Proposed Classical	5.55 5.72	0.31 0.75	14 33

Table 4 .

 4 1: Performance of reflectivity image estimation.

	Methods	ISNR(dB) NRMSE(dB) PSNR(dB)
	Proposed	8.7597	0.8018	18.5373
	[ZBKT14]	4.1089	1.3696	18.0123

Table 4 .

 4 2: Performance of PSF estimation.

	Methods	NRMSE(dB) PSNR(dB)
	Proposed	0.7392	9.2301
	[ZBKT14]	0.7805	8.7575
	and the method of [ZBKT14].		

  = p |x 1 | p + • • • + |x N | p and 0 < p ≤ 2.The PFB method implemented to solve (4.27) is defined by the following recursions

	where x p			
				(4.27)
	The problem (4.27) is a typical non-blind deconvolution problem. In this section, a GGD is considered
	as a prior for x as explained in the next paragraph.	
	p -norm regularizer Given a generalized Gaussian prior for the ultrasound TRF and AWGN, the
	problem (4.27) can be written as below			
	x ∈ arg min x	1 2	y -Hx 2 + τ x p p	(4.28)

Algorithm 6: Overall Algorithm Input: Observation y, Initial estimation h 0 , τ , Parameters of PSF model α 0 , β 0 // Update x with a known PSF 1 x ∈ arg min x Ψ(x, h) + τ ϕ(x); // Update h by estimating α, β with a known TRF 2 α, β ∈ arg min α,β Ψ(x, h) + ρ(α) + (β);

3 ĥ = h p (α, β); Output: x, ĥ

Estimation of the TRF x

Considering AWGN, the sub-optimization problem to estimate the TRF x can be formulated as below x ∈ arg min x Ψ(x, h) + τ ϕ(x).

  21 x 22 x 23 x 24 x 25 x 31 x 32 x 33 x 34 x 35 x 41 x 42 x 43 x 44 x 45 x 51 x 52 x 53 x 54 x 55 11 y 12 y y 14 y 15 y 21 y 22 y y 24 y 25 y 31 y 32 y y 34 y 35 y 41 y 42 y y 44 y 45 y 51 y 52 y y 54 y 55 In order to use the forward model (A.1) to calculate the observation y, the blurring operator is rotated and its center is placed over each element in matrix x. Then an element by element multiplication and summation are performed. 55 h 33 x 51 h 32 x 52 h 31 x 53 x 54 x 55 x 51 x 15 h 23 x 11 h 22 x 12 h 21 x 13 x 14 x 15 x 11 x 25 h 13 x 21 h 12 x 22 h 11 x 23 x 24 x 25 x 21

										
		              	, h =	       	h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33	       	and y =	              	              	.
										(A.3)
									
	                      	x 35 x 45 x 55 x 15	x 31 x 41 x 51 x 11		x 32 x 42 x 52 x 12	x 33 x 34 x 35 x 31 x 43 x 44 x 45 x 41 x 53 x 54 x 55 x 51 x 13 x 14 x 15 x 11

y x

The cepstrum is the result of the inverse Fourier transform (IFT) of the logarithm of the spectrum (Fourier transform) of a signal

Some existing works [NPK + 07, MA05, AMP + 11, NO98] assume that the PSF in US imaging is shift-variant mainly along the axial direction. In this case, US images are generally divided into several local regions along the axial direction.

All the experiments have been conducted using MATLAB R2013a on a computer with Intel(R) Core(TM) i7-4770 CPU @3.40GHz and 8 GB RAM.

, 1 , Deconv EM , Deconv MCMC and the proposed Joint MCMC , confirming the good performance

Available online at http://www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR09Data.zip

* The algorithm of[START_REF] Michael | Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods[END_REF] was originally proposed for SR using a TV regularization. This algorithm has been modified by the authors to solve the 1 -norm penalized optimization problem.

The values of q and r or the size of the PSF are always assumed to be known in advance in the problem of US image deconvolution. Moreover, since the size of the PSF is usually much smaller compared with the size of images (i.e., q m, r n), zero padding of the PSF is necessary for the convolution in the frequency domain. Without loss of generality, all the PSFs mentioned in this chapter hereinafter have been zero padded for the convolution computation.

A matrix U is unitary is U H = U -1
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Proof. See Appendix C.1.

Complexity Analysis

The most computationally expensive part for the computation of (3.13) in Theorem 1 is the implementation of FFT/iFFT. In total, four FFT/iFFT computations are required in our implementation.

Comparing with the original problem (3.7), the order of computation complexity has decreased significantly from O(N 3 h ) to O(N h log N h ), which allows the analytical solution (3.13) to be computed efficiently. Note that [START_REF] Robinson | Efficient Fourier-Wavelet super-resolution[END_REF][START_REF] Sroubek | Superfast superresolution[END_REF] also addressed image SR problems by using the properties of S in the frequency domain, where N l small matrices of size d × d were inverted. The total computational complexity of the methods investigated in [START_REF] Robinson | Efficient Fourier-Wavelet super-resolution[END_REF][START_REF] Sroubek | Superfast superresolution[END_REF] is O(N h log N h + N h d 2 ). Another important difference with our work is that the authors of [START_REF] Robinson | Efficient Fourier-Wavelet super-resolution[END_REF] and [START_REF] Sroubek | Superfast superresolution[END_REF] decomposed the SR problem into an upsampling (including motion estimation which is not considered in this work) and a deblurring step. The operators H and S were thus considered separately, requiring two 2 regularizations for the blurred image (referred to as z in [START_REF] Robinson | Efficient Fourier-Wavelet super-resolution[END_REF]) and the ground-truth image (referred to as x in [START_REF] Robinson | Efficient Fourier-Wavelet super-resolution[END_REF]). On the contrary, this work considers the blurring and downsampling jointly and achieve the SR in one step, requiring only one regularization term for the unknown image.

It is worthy to mention that the proposed SR solution can be extended to incorporate the warping operator considered in [START_REF] Robinson | Efficient Fourier-Wavelet super-resolution[END_REF][START_REF] Sroubek | Superfast superresolution[END_REF], which can also be modelled as a BCCB matrix. This is not included in this manuscript but will be considered in future work.

In the sequel of this section, two particular instances of the 2 -norm regularization are considered, defined in the image and gradient domains, respectively. This implies that the target image x is a priori close to the image x. The image x can be an estimation of the HR image, e.g., an interpolated version of the observed image, a restored image where f (x) = 1 2 y -SHx 2 2 + τ φ(Ax). Note that other stopping criteria such as those studied in [BPC + 11b] could also be investigated. The 512 × 512 images "Lena", "monarch" and "Barbara" were considered in these experiments. The observed LR images and the HR images (ground truth) are displayed in Fig. 3.8 (first two columns).

Solution of the 2 -2 problem in the image domain

TV-regularization

The regularization parameter was manually fixed (by cross validation) to τ = 2 × 10 -3 for the image "Lena", to τ = 1.8 × 10 -3 for the image "monarch" and to τ = 2.5 × 10 -3 for the image "Barbara". Figs. 3.8 show the SR results obtained using the bicubic interpolation (third column), ADMM based algorithm of [START_REF] Michael | Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods[END_REF] (fourth column) and Algorithm 10 (last column). As expected, the ADMM reconstructions perform much better than a simple interpolation of the LR image that is not able to solve the upsampling and deblurring problem. The results obtained with the proposed algorithm and with the method of [START_REF] Michael | Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods[END_REF] are visually very similar. This visual inspection is confirmed by the quantitative results provided in Table 3.5. However, the proposed algorithm has the advantage of being much faster than the algorithm of [START_REF] Michael | Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods[END_REF] (with computational times reduced by a factor larger than 2). Moreover, Fig. 3.9 illustrates the convergence of the two algorithms. The proposed single image SR algorithm (Algorithm 10) converges faster and with less fluctuations than the algorithm of [START_REF] Michael | Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods[END_REF]. This result can be explained by the fact that the algorithm in [START_REF] Michael | Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods[END_REF] requires to handle more variables in the ADMM scheme than the proposed algorithm.

-norm regularization in the wavelet domain

This section evaluates the performance of Algorithm 11, which is compared with a generalization of the method proposed in [START_REF] Michael | Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods[END_REF] to an 1 -norm regularization in the wavelet domain. The motivations for working in the wavelet domain are essentially to take advantage of the sparsity of the wavelet coefficients. All experiments were conducted using the discrete Haar wavelet transform and the Rice wavelet toolbox [BCN + ]. For both implementations, the regularization parameter was adjusted by cross validation, leading to τ = 2 × 10 -4 for the image "Lena", τ = 1.8 × 10 -4 for the image "Monarch" and τ = 2.5 × 10 -4 for the image "Barbara". ADMM [START_REF] Michael | Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods[END_REF] Algorithm 11 

Blind deconvolution using a Gaussian prior for the PSF

Following the problem formulation in Chapter 2, we first study the case of a Gaussian prior for the PSF. Moreover, a mixture of generalized Gaussian distributions based on a hidden label field is proposed for the US TRF as in Chapter 2.

Given the linear US image formation model (4.1), an efficient implementation of the matrix-vector product is obtained by using the direct and inverse Fourier transforms as follows 

Hierarchical Bayesian model

The hierarchical Bayesian model proposed in this work requires to define appropriated prior distributions for the unknown vector Θ = (x, h). The joint posterior distribution of Θ can then be calculated from the product of the likelihood function and the prior distributions. The likelihood function and the prior distributions considered in this section are then investigated.

Likelihood

Assuming an AWGN sequence with covariance matrix σ 2 n I N ×N , the likelihood function associated with model (4.1) is

where • 2 is the usual 2 -norm.

Real US images

In order to validate the performance of the proposed algorithm, a group of real US images has been considered in this section. benefited from the segmentation information. In this sense, the proposed method is competitive with the state-of-the-art techniques for image deconvolution.

Chapter 3 proposed a novel method for single image super-resolution. This method can be implemented not only for medical ultrasound images but also for piece-wise constant/natural images. Single image super-resolution aims at estimating a high resolution image from a blurred, down-sampled and noisy observation. Compared with the existing methods for single image super-resolution, e.g., first order gradient or splitting based algorithm, the proposed method was able to give an analytical solution for the 2 -2 problems/Tikhonov regularized quadratic problems. Moreover, in order to handle more generic image priors, the analytical solution was embedded into an traditional alternating direction methods of multipliers (ADMM) framework. Numerical experiments showed that the novel method using the proposed analytical solution for single image super-resolution problems can increase the computational efficiency significantly than the existing methods.

Chapter 4 studied blind deconvolution of ultrasound images, which is an additionally ill-posed problem. Thus, two strategies were investigated. First, a hierarchical Bayesian framework was firstly proposed, where a Gaussian prior was introduced for the system point spread function. Due to the intractability of the joint posterior distribution, a Markov chain Monte Carlo method was explored.

Simulations conducted showed that the proposed method was competitive with the existing non-blind ultrasound image deconvolution method. In order to reduce the computational burden, a parametric model for the PSF is explored in a second step. A few parameters of the model were estimated instead of the whole pixels of blurring kernel. Moreover, an alternating optimization method was proposed for the formulated problem. Compared with the first strategy, the computational complexity was reduced significantly. The experiments demonstrated the performance and efficiency of the proposed method.

Future work

The open issues and perspectives resulting from this thesis are listed in what follows.

Regularizations: It is well known that the inverse problems are ill-posed/ill-conditioned. Thus, various priors/regularizations have been considered in our works and the relative references to address this problem. However, the regularization parameters are fixed in the optimization methods of this thesis. It is interesting how to tune these parameters adaptively. Multi-frame image super-resolution: In Chapter 3, a method for single image super-resolution has been explored. However, it is very interesting to deal with multi-frame image super-resolution since it is reasonable to assume that more information in the observations can help in restoration of a high resolution images. Thus, how to address multi-frame image super-resolution with the proposed method is an interesting track.

3D image analysis:

All the methods proposed methods in this thesis aim at 2D images. How to extend the proposed methods to 3D images or develop new techniques especially for 3D images are of interest.

Other medical applications: Other medical image applications include not only ultrasound image analysis, e.g., motion estimation, processing specific data (brain, cardiac disease, breast, etc.) but also other medical image modalities, e.g., MRI, CT.

Appendices

Appendix A

Computation of blurring operator

Consider the following linear image formation model

where x ∈ R m×n is the ground truth/image to be estimated, y ∈ R m×n is the observed image and h ∈ R p×q is a spatially invariant blurring operator. A more widely used representation of the image formation model (A.1) is given by the matrix-vector formation as below

where x and y (∈ R N ×1 , N = m×n) are column stacked vectors obtained by lexicographical ordering of x and y. The blurring matrix H is associated with the blurring operator h. As stated in Chapter 1, the blurring matrix H is a block circulant matrix with circulant blocks (BCCB) when cyclic boundary is considered [START_REF] Gary | Toeplitz and circulant matrics: a review[END_REF].

A.1 Block circulant matrix with circulant blocks

A matrix is called BCCB if each row of blocks is a periodic shift of its previous row of blocks and every block is a circulant matrix, see e. where zero-padding is necessary to make sure all the images in (A.9) of the same size.

Appendices of Chapter 2 B.1 Determinations of the conditional distributions of the noise variance and scale parameters

Inverse gamma distribution A univariate inverse gamma distribution with shape parameter α and scale parameter β denoted as IG(α, β) has the following pdf

where ı C is an indicator function on the set C. The conditional distribution of the noise variance and of the GGD scale parameters of the joint posterior distribution, i.e., (2.14) and (2.18) are inverse gamma distributions that are derived hereinafter.

Conditional distribution of the noise variance

We can recognize the following inverse gamma distribution

137 Conditional distribution of the scale parameters

We can recognize the following inverse gamma distribution

B.2 Sampling the shape parameters with an RWMH Algorithm

In order to sample the shape parameter ξ k following (2.16), we generate a candidate using a proposal and accept or reject this candidate with an appropriate acceptance ratio. The proposal used in this manuscript is a truncated Gaussian distribution whose mean is ξ

k (the value of the parameter generated at the previous iteration) and whose variance δ is adjusted in order to obtain a suitable average acceptance ratio, i.e.,

This candidate is then accepted or rejected according to the following ratio

We propose to adjust the stepsize δ every 100 iterations to achieve a reasonable acceptance rate (30% -90%) [START_REF] Pereyra | Proximal Markov chain Monte Carlo algorithms[END_REF]. Specifically, if the acceptance ratio during the previous 100 iterations is larger than 90% (respectively smaller than 30%), than the variance δ is decreased (respectively increased) of 20% compared to its previous value. Note that to ensure the homogeneity of the Markov chain after the burn-in period, this tuning procedure is only executed during the burn-in period. The stepsize is then fixed during the following iterations.

The algorithm used to sample ξ k is finally divided into three procedures that are summarized in Algorithm 8. 

B.3 Sampling the TRF using an Hamiltonian Monte Carlo Algorithm B.3.1 HMC Algorithm

The main idea of the Hamiltonian Monte Carlo(HMC) algorithm is to introduce a vector of momentum variables p ∈ R N that is independent of x and to sample the pair (x, p) instead of just sampling

x. The conditional distribution of (x, p) can be written

The Hamiltonian of the system is defined as

where V (p) and U (x) are the kinetic and potential energies of the Hamiltonian system. They are defined as

At the iteration #t, the HMC consists of two steps:

• generate a candidate pair (p ( ) , x ( ) ) from the current state (p (t) , x (t) ) using a discretizing method, such as the leapfrog and Euler methods;

• accept or reject the candidate with the probability ρ

In our experiments, we have considered the leapfrog discretizing method due to its better performance compared to the Euler method, also noticed in [START_REF] Radford | Handbook of Markov chain Monte Carlo, chapter MCMC using Hamiltonian dynamics[END_REF]. The three steps of the leapfrog method are defined as

where is a so-called stepsize and L is the number of leapfrog iterations. We should note that U (x)

is not differentiable when ξ k 1. To deal with this problem, a smoothing approximation has been

The algorithm based on the leapfrog discretization and this approximation is summarized in Algorithm 9. Compared to other MCMC algorithms, the HMC method has the noticeable advantage to generate efficiently a candidate x even in the case of a high dimensional and complicated distribution.

B.3.2 Tuning the parameters and L

The performance of the HMC algorithm mainly depends on the values of the parameters (stepsize)

and L (number of leapfrog steps). Fortunately, these two parameters can be tuned independently in most applications [START_REF] Radford | Handbook of Markov chain Monte Carlo, chapter MCMC using Hamiltonian dynamics[END_REF]. It is recommended to select a random number of leapfrog steps L to avoid possible periodic trajectories [START_REF] Radford | Handbook of Markov chain Monte Carlo, chapter MCMC using Hamiltonian dynamics[END_REF]. In our algorithm, L is sampled uniformly in the The computational details for obtaining the result in (3.13) from (3.7) are summarized hereinafter. 

µ F H ΨFr -1 µ F H x f ; // Update u using the vector-soft-thresholding operator

Algorithm 11: FSR with 1 -norm regularization in the wavelet domain Input: y, H, S, τ , d

4 Repeat // Update θ using Theorem 1 admits a unique solution, which is defined as prox f (x). The operator prox f : R N → R N thus defined is the proximity operator of f . We often encounter the proximity operator of the scaled function τ f , where τ > 0, which can be expressed as

This is also called the proximity operator of f with parameter τ .

D.2 Proximity operator of |x| p

Since proximity operator is an element-to-element arithmetic, we just calculate the proximity operator for a scalar hereinafter. Denoting P (x) We note that this problem has been explored in different applications, e.g., in [ALP02, MS12, ZMZ + 13] for 0 < p ≤ 1 and in [START_REF] Chaux | A variational formulation for frame-based inverse problems[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] for p ≥ 1.

In order to solve (D.3), we first note that the variables satisfy the relationship sgn(x) = sgn(w).

Otherwise, the problem P (x) is minimized at x = 0. In the following, we just consider x > 0 without 147 fixed point method mentioned above is not valid here since its convergence condition cannot be guaranteed for p > 1 [START_REF] Faires | Numerical analysis[END_REF]). Besides, the analytical solution of (D.3) when p = {4/3, 3/2} is calculated in [START_REF] Chaux | A variational formulation for frame-based inverse problems[END_REF].

In summary, we have the proximity operator for the problem (D.3) is defined as Note that the generated samples have a better mixing property and higher effective sample size (lower autocorrelation) compared with the traditional MALA for deconcolution problem, as shown in [START_REF] Pereyra | Proximal Markov chain Monte Carlo algorithms[END_REF]. However, the computation time could increase due to the evaluating of the proximal operator (if the proximal operator is easy to be calculated, the computation time would not increase).

We also note that Schreck et. al. [START_REF] Schreck | A shrinkagethresholding Metropolis adjusted Langevin algorithm for Bayesian variable selection[END_REF] proposed another proximal based MALA algorithm for Bayesian variable selection.

E.2 Proximal Hamiltonian Monte Carlo algorithm

The HMC algorithm is another efficient sampling method for high dimensional problems (for an extensive review see [START_REF] Radford | Handbook of Markov chain Monte Carlo, chapter MCMC using Hamiltonian dynamics[END_REF]). In HMC, an auxiliary momentum variable q which is independent and identically distributed i.i.d. according to a Gaussian distribution is introduced. The negative joint log density of (x, q) is defined as follows H(x, q) = U (x) + K(q) (E.7)

where K(q) = 1 2 q T q. The physical analogy of H(x, q), U (x) and K(q) are the Hamiltonian, potential energy and kinetic energy respectively. A discretizing leapfrog integrator which is employed to