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Résumé

La décomposition des graphes fait référence au processus de décomposer un

graphe complexe en composantes plus simples et plus petites, souvent dans le

but d’analyser ou de résoudre des problèmes liés au graphe. Il s’agit d’un outil

important pour représenter la structure globale et les propriétés d’une manière plus

détaillée. Il est aussi également utile pour résoudre des problèmes impliquant

la recherche de structures spécifiques dans un graphe. Parmi les nombreuses

applications possibles, nous pourrions mentionner les problèmes d’enracinement,

un réseau où plusieurs paires source-destination doivent communiquer. Pour

garantir la résilience de la communication en cas de défaillance d’un nœud le

long d’un lien, nous devons maintenir des liens de communication entre plusieurs

paires source-destination. L’objectif dans un graphe est de trouver des chemins

internement disjoints entre ces paires, où chaque chemin devrait être unique et

ne partager aucun nœud commun avec un autre chemin. Ainsi, si un chemin

devient déconnecté dans une paire source-destination, nous pouvons trouver un

nouveau chemin pour les relier. Il existe plusieurs types courants de techniques de

décomposition de graphe largement utilisées en théorie des graphes et dans des

domaines connexes, notamment la décomposition en arbres, la décomposition en

blocs, la décomposition modulaire, la décomposition hiérarchique, etc. Cette thèse

étudie deux types de décomposition de sommets d’un graphe : les colorations

propres (décomposition en ensembles indépendants) et la Hamilton-connectivité

(décomposition en chemins internement disjoints entre deux ensembles où les

chemins couvrent tous les sommets du graphe).

Dans le deuxième chapitre, nous contribuons aux extensions des colorations

de sommets dans les graphes planaires. Les colorations par liste sont une

généralisation des colorations propres, où chaque sommet choisit sa couleur

dans une liste privée de couleurs autorisées [60]. En 2008, Hutchinson [59] a

étudié le problème d’extension d’un problème de coloration de degré-liste sur des

graphes planaires extérieurs. Elle a montré que si un graphe planaire extérieur

biparti 2-connexe G a une liste de couleurs L(v) pour chaque sommet v avec
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|L(v)| ≥ min{degG(v), 4}, alors G est L-colorable ; et si un graphe extérieur

biparti maximal G avec au moins quatre sommets a une liste de couleurs L(v)
pour chaque sommet v avec |L(v)| ≥ min{degG(v), 5}, alors G est L-colorable.

Elle a également montré que les bornes inférieures sont optimales au sens où la

borne inférieure 4 pour les graphes planaires extérieurs bipartis 2-connexes (resp.

5 pour les graphes planaires extérieurs maximaux) ne peuvent pas être remplacées

par 3 (resp. 4). Nous visons à déterminer si ces bornes sont valables pour les

DP-colorations, une généralisation des colorations par liste. Les DP-colorations

ont été introduites par Dvořák et Postle [38] pour résoudre une conjecture sur les

colorations par liste. Une fois qu’elles ont été proposées, elles ont attiré l’attention

de nombreux chercheurs. Il y a une quantité significative de recherches visant à

étendre les résultats des colorations par liste aux DP-colorations. Nos résultats

indiquent que la première borne des résultats de Hutchinson n’est pas suffisante

pour les DP-colorations. Cependant, la deuxième borne est suffisante pour tous

les graphes planaires extérieurs 2-connexes.

Dans le troisième chapitre, nous nous intéressons aux colorations fractionnaires

des graphes sans triangles avec un degré maximal au plus d, en mettant l’accent sur

le cas d = 4. Nous désignons par χf (d, K3) le supremum du nombre chromatique

fractionnaire sur tous les graphes sans K3 avec un degré maximal au plus d. Il a été

établi par Dvořák, Sereni et Volec [39] que χf (3, K3) = 14
5 . Pour d ∈ [16]\{3}, il

existe une borne supérieure χf (d, K3) ≤ d+3
2 , qui découle de la borne fractionnaire

de Reed, établie par Molloy et Reed [82]. On pense que cette borne n’est pas

optimale pour tout d ≥ 3. Pour d ≥ 17, Pirot et Sereni [88] ont utilisé des

distributions hardcore sur les ensembles indépendants des graphes sans triangles

pour obtenir les meilleures bornes supérieures connues pour χf (d, K3). Dans le cas

d = 4, Jones [62] a prouvé que pour tout graphe sans triangle G de degré maximal

4 avec n sommets, la taille des ensembles indépendants maximum est au moins 4n
13 .

Cela implique que χf (4, K3) ≤ 13
4 si nous restreignons sa définition à la classe des

graphes vertex-transitifs. En général, χf (4, K3) se situe entre 3.25 et 3.5 (selon la

borne fractionnaire de Reed). Nous utilisons la méthodologie introduite par Pirot

et Sereni [88] en utilisant des distributions de probabilités mixtes afin de prouver

que χf (4, K3) < 3.4663.

Dans le quatrième chapitre, nous étudions une généralisation des problèmes

2



de connexion Hamiltonienne. Un graphe G est k-fan-connexe si pour chaque

sommet v ∈ V (G) et chaque sous-ensemble de sommets U = {u1, u2, . . . , uk} de

V (G) \ {v}, il existe un ensemble de chemins internement disjoints P1, P2, . . . , Pk

tels que Pi est un chemin reliant v et ui pour 1 ≤ i ≤ k et ces chemins couvrent

tous les sommets de G. Cette notion a été introduite pour la première fois par

Lin, Tan, Hsu et Hsu [76], qui est un concept de type Menger similaire à la

connectivité englobante d’un graphe. Récemment, il y a eu un intérêt pour l’étude

des conditions suffisantes pour les graphes k-fan-connexes. Inspirés par cette

définition, nous proposons les graphes (k1, k2)-Hamilton-connexes. Un graphe G

est appelé (k1, k2)-Hamilton-connexe, si pour tout deux sous-ensembles disjoints de

sommets X = {x1, x2, . . . , xk1} et U = {u1, u2, . . . , uk2}, il existe k1k2 chemins

internement disjoints reliant xi à uj pour 1 ≤ i ≤ k1 et 1 ≤ j ≤ k2, qui couvrent

tous les sommets de G. Il est évident que la (1, k2)-Hamilton-connexité est

équivalente à la k2-fan-connexité. Soit σ2(G) la valeur minimale de deg(u)+deg(v)
sur toutes les paires {u, v} de sommets non adjacents dans G. Nous prouvons

qu’un graphe G à n sommets est (2, k)-Hamilton-connexe si G est (5k−4)-connexe

avec σ2(G) ≥ n + k − 2 où k ≥ 2. Nous prouvons également que si σ2(G) ≥
n + k1k2 − 2 avec k1, k2 ≥ 2, alors G est (k1, k2)-Hamilton-connexe. De plus,

nous construisons deux graphes pour montrer que nos résultats sont optimaux.

Nous concluons cette thèse dans le Chapitre 5 et présentons quelques

perspectives.
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Abstract

The decomposition of graphs refers to the process of breaking down a complex

graph into simpler, smaller components, often with the goal of analysing or solving

problems related to the graph. It is an important tool to display the global

structure and properties in a more fine-grained manner, and also useful in solving

problems that involve finding specific structures in a graph. Among the many

possible applications, we could mention rooting problems, a network where multiple

source-destination pairs need to communicate. To ensure the resilience of the

communication in the case that a node fails along one link, we must maintain

communication links within several source-destination pairs. The objective in a

graph is to find internally-disjoint paths between these pairs where each path

should be unique and share no common nodes with any other path. Thus, if

some path becomes disconnected in a source-destination pair, we can find a new

path to connect them. There are several common types of graph decomposition

techniques that are widely used in graph theory and related fields, including

tree decomposition, block decomposition, modular decomposition, hierarchical

decomposition, etc. This thesis studies two kinds of vertex decomposition

of a graph: proper colourings (decomposition into independent sets) and

Hamilton-connectivity (decomposition into internally-disjoint paths between two

sets where the paths cover all the vertices of graphs).

In the second chapter, we contribute to extensions of vertex colourings in

planar graphs. List colourings are a generalisation of proper colourings, where

every vertex picks its colour from a private list of allowed ones [60]. In 2008,

Hutchinson [59] studied a degree-choosability problem on outerplanar graphs. She

showed that if a 2-connected bipartite outerplanar graph G has a list of colours

L(v) for each vertex v with |L(v)| ≥ min{degG(v), 4}, then G is L-colourable;

and if a maximal outerplanar graph G with at least four vertices has a list of colours

L(v) for each vertex v with |L(v)| ≥ min{degG(v), 5}, then G is L-colourable.

She also showed the lower bounds are sharp in the sense that the lower bound 4 for

2-connected bipartite outerplanar graphs (resp. 5 for maximal outerplanar graph)
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cannot be replaced by 3 (resp. 4). We aim to determine whether these bounds

hold for DP-colourings, a generalisation of list colourings. DP-colourings were

introduced by Dvořák and Postle [38] to solve a conjecture about list colourings.

Once they were put forward, they caught the attention of many researchers. There

is a significant amount of research to extend the results of list colourings to

DP-colourings. Our findings indicate that the first bound of Hutchinson’s results

is not sufficient for DP-colourings. However, the second bound is sufficient for all

2-connected outerplanar graphs.

In the third chapter, we are interested in fractional colourings of triangle-free

graphs of maximum degree at most d with a specific focus on the case d = 4.

We denote χf (d, K3) the supremum of the fractional chromatic number over all

K3-free graphs of maximum degree at most d. It has been settled by Dvořák,

Sereni, and Volec [39] that χf (3, K3) = 14/5. For d ∈ [16] \ {3}, there is an

upper bound χf (d, K3) ≤ d+3
2 , which follows from the fractional Reed bound,

established by Molloy and Reed [82]. It is believed that this bound is not tight for

any d ≥ 3. For d ≥ 17, Pirot and Sereni [88] have used hard-core distributions

on the independent sets of triangle-free graphs in order to derive the best-known

upper bounds for χf (d, K3). For the case d = 4, Jones [62] proved that for every

triangle-free graph G of maximum degree 4 on n vertices, the size of maximum

independent sets is at least 4n
13 . This implies that χf (4, K3) ≤ 13

4 if we restrict

its definition to the class of vertex-transitive graphs. In general, χf (4, K3) lies

between 3.25 and 3.5 (by the fractional Reed bound). We use the methodology

introduced by Pirot and Sereni [88] together with mixed probability distributions

in order to prove that χf (4, K3) < 3.4663.

In the fourth chapter, we investigate a generalisation of Hamilton-connected

problems. A graph G is k-fan-connected if for every vertex v ∈ V (G) and

every vertex subset U = {u1, u2, . . . , uk} of V (G) \ {v}, there is a set of

internally-disjoint paths P1, P2, . . . , Pk such that Pi is a path connecting v and

ui for 1 ≤ i ≤ k and these paths cover all the vertices of G. This notion was

first introduced by Lin, Tan, Hsu, and Hsu [76], which is a Menger-type concept

similar to the spanning connectivity of a graph. Recently, there has been an

interest in studying the sufficient conditions for k-fan-connected graphs. Inspired

by this definition, we propose (k1, k2)-Hamilton-connected graphs. A graph G
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is called (k1, k2)-Hamilton-connected, if for any two disjoint vertex subsets X =
{x1, x2, . . . , xk1} and U = {u1, u2, . . . , uk2}, there are k1k2 internally-disjoint

paths connecting xi to uj for 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2, which cover all the

vertices of G. It is obvious that (1, k2)-Hamilton-connectedness is equivalent to

k2-fan connectedness. Let σ2(G) be the minimum value of deg(u) + deg(v) over

all pairs {u, v} of non-adjacent vertices in G. We prove that an n-vertex graph G

is (2, k)-Hamilton-connected if G is (5k − 4)-connected with σ2(G) ≥ n + k − 2
where k ≥ 2. We also prove that if σ2(G) ≥ n + k1k2− 2 with k1, k2 ≥ 2, then G

is (k1, k2)-Hamilton-connected. Moreover, we construct two graphs to show that

our results are sharp.

We conclude this thesis in Chapter 5 and give some prospects.
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1 - Introduction

Graphs are mathematical abstractions that represent any network that might

possibly exist in the real world. The concept of graph theory started with the

Königsberg Bridge’s problem in 1735 for the first time in history [12]. It is related

to various domains of mathematics, including algebra, topology, probabilities, and

extremal combinatorics. For instance, Extremal Graph Theory focuses on finding

graphs with extreme properties or determining bounds on certain graph parameters,

and probabilistic graph theory investigates random processes on graphs, such as

random walks. The probabilistic method is a technique for proving the existence of

objects with specific properties by studying the typical behaviour of a random one.

Graph Theory is rich in many problems of practical and/or theoretical interest;

among the most classical ones we can mention: Shortest Path Problem, Minimum

Spanning Tree Problem, Eulerian Path (Cycle) Problem, Graph Isomorphism and

Homomorphism, Graph Colouring Problem and Hamilton-connectivity Problem

that we are interested in, and so on. On the other hand, graphs are extensively

used in many disciplines. For example, we can non-exhaustively mention:

anatomy (neural circuit), biology (protein interaction network), chemistry (crystal

structures), computer sciences (web, peer-to-peer networks), artificial intelligence

(artificial neural network), statistics (Bayesian network), electricity (electrical grid),

telecom (telecommunication network), transportation (road network, rail network),

and urbanism (gas network, water distribution network).

In this thesis, we mainly study some vertex colouring problems and a

generalisation of Hamilton-connectivity in graphs. In addition to mathematics,

the colouring problem has a remarkable range of applications in other fields of

science. All those seemingly unrelated topics — the efficiency of a computer

processor, wireless communication networks, the number of tracks required in a

railway station, and the number of frequencies that our smartphones should be

able to capture — depend on a colouring problem. Hamilton-connectivity also has

many applications in different fields, including network design and fault tolerance,

DNA sequencing, robotics and automated path planning, and circuit design.
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We introduce the fundamentals of graph theory in the first section of this

chapter to make it easier to describe the context of our research topic. In the

second section, we present the background and main classic results on proper

vertex colourings, including variants of the chromatic number. We introduce the

background and some insightful findings that will be related to our studies on

Hamilton-connectivity in the third section. The final section will describe the

contributions of the thesis and the outline of the manuscript.

1.1 . The Basics

Graphs in this thesis are simple unless otherwise stated. We follow Bondy and

Murty [15] for undefined terms and notations in graph theory.

1.1.1 . Properties of planar graphs

A graph G is planar if G can be drawn in the plane with no pair of edges

crossing. Such a drawing is called an embedding of G on the plane. Graphs

already embedded on the plane are called plane graphs. Faces of a plane graph are

regions bounded by a set of edges and which contain no other vertex or edge. The

degree of a face f , denoted deg(f), is the number of edges along its boundary.

Alternatively, it is the number of vertices along its boundary. Every edge in a planar

graph is shared by exactly two faces.

In a plane graph, there is precisely one face that is unbounded; we call this

the infinite, or outer face (sometimes one calls it external face), and all others are

finite faces. An edge is called external (respectively, internal) when it lies (resp.,

does not lie) on the boundary of the external face.

A planar graph is called outerplanar if the graph can be embedded on the plane

in such a way that all vertices of the graph lie on the outer face.

Planar graphs play an essential role in a variety of applications, making them

an intriguing class of graphs to investigate. These graphs have specific properties

that follow mainly from Euler’s Formula, which establishes a relationship between

the number of vertices, edges, and faces in a plane graph.

Theorem 1 (Euler’s Formula) Let G be a connected plane graph on n
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vertices, m edges, and f faces. Then

n + f −m = 2.

There are many applications to this formula, the most notorious one being

certainly the Discharging Method. Although we do not rely on it in this thesis, it

is one of the most efficient tools to derive results on planar graphs. We will now

deduce the following simple result from Euler’s Formula.

Lemma 1 Every planar graph on n ≥ 3 vertices has at most 3n−6 edges.

Proof. Let G be a connected planar graph (otherwise we could add
edges to make the graph connected). Let m be the number of edges
and f be the number of faces of G. By Euler’s Formula, we have
f = 2−n+m. A simple counting argument shows that∑i deg(fi) = 2m

where {fi}i are the faces of G. Note that we count a bridge twice at
every face with which they are incident. Since the number of edges
in the boundary of each face is at least 3, we have f ≤ 2m

3 . Thus
m ≤ 3n− 6, as desired.

As we know, the sum of the degrees of the vertices of a graph is precisely twice

the number of edges of that graph. Thus, it follows from Lemma 1 that any planar

graph has average degree less than 6. In particular:

Corollary 1 Every planar graph has a vertex of degree at most 5.

The girth of G, denoted girth(G), is the size of a smallest cycle in G. More

generally, the average degree of a planar graph is bounded by a decreasing function

of its girth as follows.

Theorem 2 [89] The average degree of a planar graph of girth at least g is
less than 2g

g−2 .

Since being planar is a monotone property, it means that any subgraph of a

planar graph is also planar. Hence the degeneracy of a planar graph is at most 5.

Theorem 3 For every planar graph G,

δ∗(G) ≤ 5,
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and if moreover G is triangle-free (and so of girth g ≥ 4),

δ∗(G) ≤ 3.

Recall that a planar graph is said to be outerplanar if it has a planar drawing

in which all vertices lie on the outer face. For each outerplanar graph, we can find

a vertex of degree at most 2.

Lemma 2 Every edge-maximal outerplanar graph G on n ≥ 3 contains a
vertex of degree 2. In particular, every outerplanar graph has a vertex of
degree at most 2.

Proof. Let G be an edge-maximal outerplanar graph. We first claim
that G is 2-connected. Toward a contradiction, suppose that G is not
2-connected. Let us take an outerplanar embedding of G. If G is not
connected, then we could draw a non-crossing curve between any two
vertices u and v in different components of G and still every vertex of
G would be on the boundary of the outer face. So the graph G + uv

would be outerplanar, which contradicts thatG is edge-maximal. If the
connectivity ofG is 1, then let v be a cut-vertex and letC1 andC2 be two
components in G−v. Let u1 ∈ C1 and u2 ∈ C2 be neighbours of v, such
that the drawing of the edges u1v and vu2 are leaving v right after each
other when we go around v in a very small cycle. Two such neighbours
certainly exist as v has neighbours both inC1 andC2. Now it is possible
to draw a non-crossing curve between u1 and u2 by following closely
first the drawing of the edge u1v and then the drawing of the edge
vu2. This curve will close a triangle with the curves u1v and vu2 with no
vertex in its interior, so the obtained drawing ofG+u1u2 is outerplanar,
contradicting our assumption of G. Hence G is 2-connected.

If we consider any planar drawing of G in which all vertices lie on
the outer face, the outer face is a cycle (without repeated vertices),
and all internal faces are triangles. Indeed, we assume there exists
a face fi and deg(fi) > 3. We claim that there exist two non-adjacent
vertices vj and vk of fi. Otherwise, the edge vjvk must be outside of
fi; it contradicts the outerplanarity of G. So we can add the edge vjvk
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to G without losing outerplanarity. It contradicts the maximality of G.
A chord is an edge between two non-consecutive vertices of a given
cycle. We consider a shortest chord xy of the outer face, the distance
of x and y on the outer face is at least 2 because G is simple. So any
vertex between x and y on the shortest path from x to y on the outer
face must have degree 2.

Since outerplanar graphs form a hereditary family, this implies that outerplanar

graphs are 2-degenerate.

1.1.2 . Connectivity in graphs

The basic result in the theory of connectivity was proved by Menger in 1927.

Two s-t paths are independent if they have only the vertices s and t in common.

We also say that the two s-t paths are internally-disjoint paths.

Theorem 4 (Menger, 1927 [79])
1. Let s and t be distinct nonadjacent vertices of a graph G. Then the

minimal number of vertices separating s from t is equal to the maximal
number of independent s-t paths.

2. Let s and t be distinct vertices of G. Then the minimal number
of edges separating s from t is equal to the maximal number of
edge-disjoint s-t paths.

It is often the case that Menger’s Theorem needs to be applied as another

version, the following corollary.

Corollary 2 For k ≥ 2, a graph is k-connected if and only if it has at least
two vertices and any two vertices can be joined by k independent paths.
Also, for k ≥ 2, a graph is k-edge-connected if and only if it has at least
two vertices and any two vertices can be joined by k edge-disjoint paths.

A path is called a Hamiltonian path if it visits each vertex of G exactly once. If

for every pair of vertices in G there is a Hamiltonian path between the two vertices,

we say that G is Hamilton-connected.
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A cycle is called a Hamiltonian cycle if it visits each vertex of G exactly once.

If G has a Hamiltonian cycle, then G is a Hamiltonian.

1.2 . Colourings

The Four Colour Theorem is one of the most captivating and challenging

episodes in the history of mathematics. It spans over a century and involves the

contributions of numerous mathematicians and computer scientists. The origins

of the Four Colour Theorem can be traced back to 1852 when Francis Guthrie, a

mathematics student, posed the conjecture to his brother Frederick Guthrie. He

noticed that he could colour the counties of England on a map using only four

colours in such a way that no two adjacent counties shared the same colour. This

observation led to the formulation of the Four Colour Conjecture. Many tried

to prove or disprove this conjecture, but it remained unsolved for decades. In

1879, Alfred Kempe presented a proof, but it turned out to be flawed, as Percy

Heawood pointed out in 1890. It took more than a century before a valid proof was

established by Kenneth Appel and Wolfgang Haken from the University of Illinois,

using the discharge method in 1976. Their groundbreaking proof relied heavily

on computer analysis and verification, dealing with an exhaustive enumeration

of numerous cases. The complexity of their proof sparked controversy, as some

mathematicians were sceptical about the role of computers in mathematical proofs.

In addition to the computer-checked parts, it contains a part that needs to be

checked by a lengthy manual case analysis, and the researchers trying to do so

actually found flaws (though likely fixable ones). In 1997, the first universally

accepted proof of Four Colour Theorem is the one by Robertson, Sanders, Seymour,

and Thomas [93]. They announced another proof, still using a computer, but

simpler than Appel and Haken’s in several respects. However, to this date,

mathematicians still continue to work on the Four Colour Theorem, aiming to find

more intuitive and concise proofs that require less reliance on computer verification.

The Four Colour Theorem is just one of the many challenges in the field of

graph colouring, which deals with finding the optimal way to colour the vertices

of a graph so that no two adjacent vertices have the same colour — it is known

as a proper colouring. The minimum number of colours required for a proper

12



colouring of a graph is called its chromatic number, and the colouring problem is

the process of determining the chromatic number of a given graph. Graph colouring

has numerous applications across various fields. For example, graph colouring is

used to schedule and assign time slots to events or activities in various domains

such as schools, universities, conferences, and sports tournaments. Each event is

represented as a vertex, and conflicts between events are represented as edges. By

assigning distinct colours (time slots) to conflicting events, a conflict-free schedule

can be generated.

However, the colouring problem is notoriously challenging, as it is NP-hard to

solve or even approach with a non-optimal solution. This means that it is highly

unlikely that we will be able to devise an effective method for determining the

optimal colouring of any given graph. For this reason, a significant portion of

graph colouring research focuses on finding large classes of graphs for which either

the colouring problem is less difficult, or the chromatic number is substantially

lower.

1.2.1 . Presentation and definition

We now introduce the definitions of some vertex colourings and their related

basic properties.

Proper k-colourings

Definition 1. Let G be a graph.
1. A k-colouring of G is a function c : V (G)→ [k] where [k] = {1, 2, . . . , k}.

This canbe seen as a functionwhich associates to every vertex v ∈ V (G)
a colour among a palette of k possible ones. A partial colouring of G is
a colouring of an induced subgraph of G.

2. A colouring c of G is proper if no two vertices of the same colour are
adjacent;

∀uv ∈ E(G), c(u) ̸= c(v).

When there exists a proper k-colouring of G, we say that G is
k-colourable.
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Figure 1.1: A proper 3-colouring of the Petersen graph

3. The chromatic number of G, denoted by χ(G), is the minimum k such
that G is k-colourable.

4. For every colour i ∈ [k] used in some k-colouring c of G, the subset
of vertices c−1({i}) coloured with colour i is called a colour class, or
monochromatic class of c. The colour classes of c yield a partition of
V (G), and if c is proper, every colour class is an independent set of G.

A graph G is k-colourable if and only if it is a subgraph of the complete

k-partite graph Kk∗n. In particular, the class of bipartite graphs is exactly the

class of 2-colourable graphs. Being k-colourable is a hereditary property;

∀H ⊆ G, χ(H) ≤ χ(G).

There are many equivalent definitions of a proper k-colouring of a graph G.

Here, we present a definition based on a linear program. The chromatic number

χ(G) of a graph G is naturally defined as the solution of an integer linear program

with one variable wI for every of its independent sets I ∈ I (G).

χ(G) = min
∑

I∈I (G)
wI ,

such that


wI ∈ {0, 1} for each I ∈ I (G)∑
I∈I (G)

v∈I

wI ≥ 1 for each v ∈ V (G). (1.1)

List colourings
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To tackle some graph colouring problems, Vizing [105], and independently

Erdős, Rubin, and Taylor [40] introduced list colourings, a generalisation of proper

colourings. In a k-colouring, each vertex picks a colour from a common set of

colours [k]. Now we consider a generalisation of k-colourings to make each vertex

choose its colour from a private list of allowed colours. These are list colourings.

Definition 2. Let G be a graph.
1. A list assignment L with a graph G is a mapping that maps each vertex

v of G to a list of integers L(v). A list assignment L is called a t-list
assignment if |L(v)| = t for every v ∈ V (G). A list assignment L is called
a degree-list assignment if |L(v)| = degG(v) for every v ∈ V (G).

2. A graph G is L-coloured if there exists a proper colouring c of G such
that

∀v ∈ V (G), c(v) ∈ L(v).

3. A graph G is k-choosable if G is L-coloured for every k-list assignment
L.

4. The choice number, or list chromatic number, is theminimum k such that
G is k-choosable. It is denoted χℓ(G).

5. A graph G is said to be degree-choosable if G is L-coloured for every
degree-list assignment L.

Remark 1. The graph G has a proper k-colouring if and only if G has an
L-colouring with L(v) = [k]. Hence we have

∀G, χℓ(G) ≥ χ(G).

DP-colourings

List colourings helped establish a number of proper colouring results; however,

it is usually much more difficult to establish upper bounds on the choice number

than on the chromatic number. The methods used in proper colourings may not

directly apply to list colourings. For instance, the operation of identifying vertices,

which is common in proper colourings, may not be feasible in list colourings. Let
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us illustrate this with an example of a proof of the Five Colour Theorem on planar

graphs. We first observe that G contains a vertex v of degree at most 5. If

deg(v) ≤ 4, then every 5-colouring of G − v extends to a 5-colouring of G. If

deg(v) = 5, then we find two non-adjacent neighbours x and y of v, and let G′

be the graph obtained from G − v by identifying x and y to a new vertex w.

Given a 5-colouring ϕ of G′, we then obtain a 5-colouring of G by giving both

x and y the colour ϕ(w) and choosing a colour for v distinct from the colours

of its neighbours. But in list colourings, vertex identification as a strategy is

impractical, since different vertices can have various lists of available colours in list

colourings. To solve this issue, and allow themselves to use vertex identification in

the context of list colourings, Dvořák and Postle [38] have introduced the notion

of correspondence colourings (also referred to as DP-colourings).

As we all know, a proper k-colouring of G is isomorphic to a (maximum)

independent set of size |V (G)| of the Cartesian product G2Kk. List colourings

are to find such an independent set in the setting of monochromatic matchings

between two adjacent list assignments. While the idea behind correspondence

colourings is to forbid more configurations, it is to find an independent set of

size n(G) for any matched colours between two adjacent list assignments. The

lists do not matter for correspondence colourings (as long as all vertices use the

same number of colours). Note that when performing vertex identification for

DP-colourings, it is in general necessary to preserve the parallel edges if they arise.

Here we present the definition of DP-colourings in simple graphs from

Bernshteyn, Kostochka, Pron [8]. DP-colourings in multigraphs will be described

in Chapter 2.

Definition 3. Let G be a graph. A cover of G is a pair (L, H), where L is a list
assignment of pairwise disjoint sets to the vertices of G and H is a graph with
vertex set ∪v∈V (G)L(v), satisfying the following conditions.

1. For each v ∈ V (G), H[L(v)] is a complete graph.
2. For each uv ∈ E(G), the edges betweenL(u) andL(v) form amatching

(possibly empty).
3. For each distinct u, v ∈ V (G) with uv /∈ E(G), there are no edges
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Figure 1.2: C4 and two covers of it such that C4 is (L, H1)-colourable but

not (L, H2)-colourable.

between L(u) and L(v) in H .
Definition 4. Suppose G is a graph and (L, H) is a cover of G. An
(L, H)-colouring of G is an independent set I ⊆ V (H) of size |V (G)|. In
this context, we refer to the vertices of H as the colours. G is said to be
(L, H)-colourable if it admits an (L, H)-colouring.

Definition 5. Let G be a graph and f : V (G) → Z≥0 be an assignment
of nonnegative integers to the vertices of G. G is DP-f -colourable if it is
(L, H)-colourable whenever (L, H) is a cover ofG and |L(v)| ≥ f(v) for all v ∈
V (G). If G is DP-degG-colourable, then G is said to be DP-degree-colourable.
Definition 6. The DP-chromatic number, χDP (G), is the minimum k such that
G is (L, H)-colourable for each choice of (L, H) with |L(v)| ≥ k for all v ∈

V (G).
In DP-colourings, we are mainly concerned with the correspondences between a

colour of a vertex and the colours of its adjacent vertices. Hence we can arbitrarily

rename the colours while updating the cover as follows. Let (L, H) be a cover for

a graph G, and let v be a vertex in G. If c1 ∈ L(v) and c2 /∈ L(v), then we can

define a cover (L′, H ′) where

L′(u) =

 (L(v) \ {c1}) ∪ {c2}, if u = v,

L(u), otherwise.

and for each e ∈ E(G) incident with v, and H ′[L(v)] is obtained from H[L(v)] by

replacing the vertex c1 by c2. We say (L′, H ′) is obtained from (L, H) by renaming
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(at a vertex v). We say that two covers (L, H) and (L′, H ′) are equivalent if one

can be obtained from the other by a sequence of renaming. The following are some

useful facts about equivalent covers.

Fact 1 Let (L, H) and (L′, H ′) be equivalent covers for a graph G. Then
G is (L, H)-colourable if and only if it is (L′, H ′)-colourable.

Fact 2 Let (L, H) be a cover for a graph G such that for each vertex v,
|L(v)| = k. Then there exists a cover (L′, H ′), equivalent to (L, H), such
that L′ assigns the list [k] to each vertex.

So we may assume that each vertex is assigned the list [k] when we study

DP-colourings where every list has size k for some integer k. In fact, list colourings

are a specific case of DP-colourings. Given a list L for a graph G, the vertex set

of its cover H = H(G, L) is {(v, c)|v ∈ V (G) and c ∈ L(v)}, and two different

vertices (v, c) and (v′, c′) are adjacent in H if and only if either c = c′ and

vv′ ∈ E(G), or v = v′. The independence number of H is at most |V (G)|,
since V (H) is covered by |V (G)| cliques. If H has an independent set I with

|I| = |V (G)|, then for each v ∈ V (G), there exists a unique c ∈ L(v) such that

(v, c) ∈ I. In addition, the same colour c is not chosen for any two adjacent

vertices. So we have χDP (G) ≥ χℓ(G).

Fractional colourings

The notion of fractional colourings is an important concept in graph theory that

is commonly used to extend the notion of graph colouring beyond integer values. It

is a relaxation of the traditional chromatic number, allowing for real-valued weights

or probabilities associated with each colouring of a graph. Fractional colourings

have been extensively studied in combinatorial optimization, operations research,

and computer science, among other fields, as they have various applications

in scheduling, resource allocation, and network design. Many researchers and

mathematicians have contributed to the theory and applications of fractional

colourings.

Definition 7. Let G be a graph.
1. A proper (a : b)-colouring of G is a function c : V (G)→

([a]
b

) such that
∀uv ∈ E(G), c(u) ̸= c(v).
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Figure 1.3: The chromatic number and the fractional chromatic number of

C5, the right figure is also a proper (5 : 2)-colouring of C5.

We say that c is a fractional colouring of G, of weight a/b.
2. The fractional chromatic number of G, denoted χf (G), is defined by

χf (G) = inf{a

b

∣∣ there exists a proper(a : b)-colouring of G}.

Remark 2. A proper k-colouring is the same as a proper (k : 1)-colouring.
Therefore,

∀G, χf (G) ≤ χ(G).

The fractional chromatic number χf (G) can equivalently be defined as the

fractional relaxation of the integer linear program (1.1) computing the chromatic

number. Let G be a graph, we define I (G) to be the set of all independent

sets of G, and the fractional chromatic number χf (G) of G is the solution of the

following linear program.

χf (G) = min
∑

I∈I (G)
wI

such that


wI ∈ [0, 1] for each I ∈ I (G)∑
I∈I (G)

v∈I

wI ≥ 1 for each v ∈ V (G). (1.2)

A fractional colouring of weight w of G is any instance within the domain

of the above linear program such that
∑

wI = w. This equivalent formulation
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implies that the value of the fractional chromatic number is always attained as the

weight of some fractional colouring. Therefore, the infimum in Definition 7 can be

replaced with a minimum. Specifically, fractional chromatic numbers are always

rational.

Fractional colourings can be defined as probability distributions on the

independent sets of a graph G. A graph G has a fractional colouring of weight w

if and only if there exists a probability distribution on independent sets of G such

that

∀v ∈ V (G), P[v ∈ I] ≥ 1
w

for the independent set I sampled from this distribution.

1.2.2 . Main classical results on proper vertex colourings

There is almost no hope of finding any algorithm of polynomial complexity

computing the chromatic number of any graph, since it is strongly believed by the

scientific community that P ̸= NP, while the k-colouring problem is NP-complete.

As the exact computation of the chromatic number of a given graph G appears

infeasible in the general case, the initial step would be to bound it in terms of other

parameters of G.

Naive bounds for the chromatic number

We first present two lower bounds of χ(G) that are sufficient in many

applications to estimate the chromatic number of classical graphs, even though the

chromatic number can be arbitrarily larger than both. We know that χ(Kn) = n.

As a result, any graph G that contains Kn as a subgraph must require at least n

colours in a proper colouring;

∀G, χ(G) ≥ ω(G).

A proper k-colouring of G is also a partition of V (G) into k independent sets. Since

the size of each independent set is at most α(G), we have k · α(G) ≥ |V (G)|;

∀G, χ(G) ≥ |V (G)|
α(G) .

For a given graph G, it is possible to capture both lower bounds ω(G) and
|V (G)|
α(G) of χ(G) in a stronger lower bound. The Hall ratio of G, denoted ρ(G), and
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defined by

ρ(G) := max
{ |V (H)|

α(H) | H ⊆ G

}
≥ max

{ |V (G)|
α(G) , ω(G)

}
.

Since being k-colourable is a hereditary property, it holds that

∀G, χ(G) ≥ ρ(G).

For upper bounds, it is easy to bound from above the chromatic number of

a graph G in terms of its maximum degree by considering a greedy colouring

algorithm. Let G be a graph, and we order the vertices in V (G) arbitrarily. We

colour the vertices of G sequentially, assigning the smaller colour which does not

appear in the neighbourhood of the considered vertex at each step when there exists

one, or adding a new colour to the colouring otherwise. Since |NG(v)| ≤ ∆(G)
where ∆(G) is the maximum degree of G, we have χ(G) ≤ ∆(G) + 1 for every

graph G.

Main classical results for the chromatic number

A well-known objective in graph colouring is to establish adequate conditions

that can yield much-improved upper bounds on the chromatic number compared

to the straightforward ones. Over the past few decades, considerable research has

been conducted in this field, and presented below are some of the key findings in

this domain.

Theorem 5 (Four Colour Theorem [92]) For every planar graph G,

χ(G) ≤ 4.

Interestingly, the problem of deciding whether a planar graph is 3-colourable

is NP-complete, as proved by Garey, Johnson and Stockmeyer [47]. Therefore,

it seems wise to discuss some sufficient conditions for planar graphs to be

3-colourable. In 1959, Grötzsch’s [51] proved the following theorem.

Theorem6 (Grötzsch’s theorem, 1959 [51]) For every planar triangle-free
graph G,

χ(G) ≤ 3.

In 1976, Steinberg first presented the following conjecture.
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Conjecture 1 (Steinberg’s conjecture [99]) Every planar graph without
4-cycles and 5-cycles is 3-colourable.

This problem has been attracting a substantial amount of attention among

graph theorists. It is also one of the six graph theory problems ranked with

the 4-star (highest) importance in the Open Problem Garden [1]. As a possible

approach towards proving Steinberg’s conjecture, Erdős in 1991 (see [99])

suggested determining the smallest k such that every planar graph with no cycles

of length 4, . . . , k is 3-colourable. The best known upper bound for such a k is 7,

which was proved by Borodin, Glebov, Raspaud and Salavatipour [19].

Theorem 7 (Borodin, Glebov, Raspaud and Salavatipour, 2005 [19])
Every planar graph with no cycles of length from 4 to 7 is 3-colourable.

In 2017, Cohen-Addad, Hebdige, Král, Li, and Salgado[27] constructed a planar

graph to disprove Steinberg’s conjecture. It implies that k ≥ 6 for Erdős problem.

Theorem 8 (Cohen-Addad, Hebdige, Král, Li, and Salgado, 2017 [27])
There is a planar graph with no cycles of length 4 or 5 that is not
3-colourable.

There are also some insightful results about the upper bounds of the chromatic

number in general graphs.

Theorem 9 (Bipartite graphs characterisation) For every graph G,

χ(G) ≤ 2 ⇐⇒ G contains no odd cycle.

Theorem 10 (Brook’s theorem [21]) For every connected graph G, either
G is a complete graph or an odd cycle, or

χ(G) ≤ ∆(G).

Theorem11 (Johansson-Molloy theorem [61, 80] ) For every triangle-free
graph G,

χ(G) ≤ (1 + o(1)) ∆(G)
ln ∆(G) .
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All these theorems are sharp, since infinite families of graphs satisfying their

constraints and asymptotically reaching the upper bound exist for each of them.

With the exception of the Johansson-Molloy theorem, the sharpness is precise

for all of them, as the upper bound and the value achieved by the known infinite

families of graphs coincide. However, in the case of the Johansson-Molloy theorem,

an asymptotic multiplicative gap of 2 remains between the upper bound and the

value attained by Bollobás [13]. He showed that for any integers g and ∆ ≥ 3,

there exists a graph with a maximum degree of ∆, girth at least g, and chromatic

number at least ∆
2 ln ∆ .

There are still a lot of open problems related to the chromatic number of

graphs. Extending Theorem 11 to any H-free graph is one of these issues.

Conjecture 2 (Alon, Krivelevich, Sudakov, 1999 [4]) Let H be some fixed
graph. There exists a constant CH > 0 such that, for every H-free graph
G,

χ(G) ≤ CH
∆(G)

ln ∆(G) .

To prove Conjecture 2, it is enough to demonstrate its validity when H is a

complete graph, since any fixed H is a subgraph of Kn(H), and thus any H-free

graph is also Kn(H)-free. This conjecture deals with the chromatic number’s

asymptotic value for graphs with a fixed clique number as ∆→∞. The following

conjecture, Reed conjecture, is relevant to the case where the maximum degree is

arbitrarily near to the clique number.

Conjecture 3 (Reed, 1998 [91]) For every graph G,

χ(G) ≤
⌈

ω(G) + ∆(G) + 1
2

⌉
.

The following represents one of the most notable partial outcomes in support

of Reed’s conjecture thus far.

Theorem 12 (Hurley, Verclos, and Kang, 2021 [58]) There is some ∆0

such that, for every graph G of maximum degree ∆(G) ≥ ∆0,

χ(G) ≤ ⌈0.881(∆(G) + 1) + 0.119ω(G)⌉ .
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1.2.3 . Extensions of proper vertex colourings

One can imagine numerous variants of the colouring problem, depending on

the application context. Some are augmented variants of the problem, while others

are simplified. In this section, we will discuss the most notorious.

Main results on list colourings

Since G has a proper k-colouring if and only if G has an L-colouring with

L(v) = [k], we have χℓ(G) ≥ χ(G) for every graph G. Clearly, every k-choosable

graph is k-colourable, but the converse is not true in general. While the chromatic

number of a bipartite graph G is at most 2, Erdős, Rubin, and Taylor [95] showed

that the choice number of a bipartite graph G may be arbitrarily large by proving

that χℓ(Kn,n) = (1 + o(1)) log2 n. On the other hand, some well-known upper

bounds on χ(G) in terms of vertex degrees hold for χℓ(G) as well. For example,

Brook’s theorem and the degeneracy upper bound hold for χℓ(G). By using a

greedy algorithm, we have that:

Theorem 13 If G is k-degenerate, then χℓ(G) ≤ k + 1 ≤ ∆(G) + 1.

Alon proved in 2000 [2] that the choice number can also be bounded from

below as a function of the minimum degree δ(G). Note that it also holds for the

average degree.

Theorem 14 (Alon, 2000 [2]) For every graph G,

χℓ(G) ≥ (1
2 − o(1)) · log2(δ(G)).

This result was improved by Saxton and Thomason later.

Theorem 15 (Saxton, Thomason, 2015 [97]) For every graph G,

χℓ(G) ≥ (1 + o(1)) · log2(δ(G)).

Back in 1998, Alon and Krivelevich [3] established that the lower bound stated

in Theorem 15 is almost surely asymptotic to the choice number of a random

bipartite graph. In the same paper, they proposed the following conjecture.

Conjecture 4 (Alon, Krivelevich, 1998 [3]) There exists an absolute
constant C > 0 such that for every bipartite graph G,

χℓ(G) ≤ C ln ∆(G).
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While this conjecture asks a very natural question about a fundamental property

of a highly studied graph class, surprisingly, researchers have made very little

progress toward an answer.

In 2019, Molloy [81] further improved the celebrated result of Johansson [61]

which extended Theorem 11 to list colourings.

Theorem 16 (Molloy, 2019 [81]) For every triangle-free graph G,

χℓ(G) ≤ (1 + o(1)) ∆(G)
ln ∆(G) .

It implies that the upper bound of the choice number of a bipartite graph is

(1 + o(1)) ∆
ln ∆ . Recently, Bradshaw improved this upper bound of bipartite graphs

in his thesis.

Theorem 17 (Bradshaw, 2022 [20]) If G is a bipartite graph of sufficiently
large maximum degree ∆(G), then,

χℓ(G) < 0.797 ∆
ln ∆ .

Theorem 17 makes only a modest improvement to the coefficient of the

previously known upper bound and is still far away from the conjectured bound of

O(ln ∆). Whereas for planar graphs, the issue has been conclusively resolved. In

1994, Thomassen proved a version of the Four Colour Theorem for list colourings.

Theorem 18 (Thomassen, 1994 [101]) For every planar graph G,

χℓ(G) ≤ 5.

Voigt [106] constructed a planar graph that needs more than four colours to

be properly coloured, proving that not all planar graphs are 4-choosable.

Theorem 19 (Voigt, 1993 [106]) There exist planar graphs which are not
4-choosable.

Moreover, Gutner [52] established that the problem of determining whether

a planar graph is 4-choosable is NP-hard. Thomassen [102] later gave a nice

sufficient condition for a planar graph to be 3-choosable.

25



Theorem 20 (Thomassen, 1995 [102]) For every planar graph G of girth
at least 5,

χℓ(G) ≤ 3.

The intermediate result between Theorem 18 and Theorem 20 pertains to the

choice number of planar graphs without triangles. The conclusion is at most 4,

since the degeneracy of triangle-free planar graphs is at most 3.

Main results on DP-colourings

Inspired by Steinberg’s conjecture, Borodin [18] noted that it has remained

open since 1996 whether every planar graph without cycles of lengths 4 to 8 is

3-choosable.

Conjecture 5 (Borodin, 2013 [18]) Every planar graph without cycles of
lengths 4 to 8 is 3-choosable.

In order to prove such an upper bound for a class of planar graphs, Dvořák

and Postle [38] proposed and heavily used a new tool — DP-colourings. They

used vertex identification to deal with a main reduction of their proof. The lists

do not matter for DP-colourings (as long as all vertices use the same number of

colours). So they can assign every vertex the same list in order to perform vertex

identification which is usually not possible in a list colouring settings.

Theorem 21 (Dvořák, Postle, 2018 [38]) Every planar graph G without
cycles of lengths 4 to 8 is 3-choosable.

As mentioned above, we have χDP (G) ≥ χℓ(G) for every graph G. Some

upper bounds on the choice number hold for the DP-chromatic number as well. For

example, Dvořák and Postle observed that χDP (G) ≤ k+1 for every k-degenerate

graph G. Indeed, we may choose a colour for each vertex v greedily from L(v)
avoiding the colours adjacent in its cover H to the colours already chosen for

neighbours of v. Dvořák and Postle [38] noted that Theorem 18 and Theorem 20

immediately extend to DP-colourings.

Theorem 22 (Dvořák, Postle, 2018 [38]) For every planar graph G,

χDP (G) ≤ 5.
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Theorem23 (Dvořák, Postle, 2018 [38]) For every planar graph G of girth
at least 5,

χDP (G) ≤ 3.

In 2019, Bernshteyn verified Theorem 16 in the context of DP-colourings.

Theorem 24 (Bernshteyn, 2019 [10]) For every triangle-free graph G,

χDP (G) ≤ (1 + o(1)) ∆(G)
ln ∆(G) .

On the other hand, DP-colourings and list colourings are strikingly different.

Recall that due to a celebrated result of Alon [2], the choice number of the graphs

with average degree d is Ω(log d), and this bound is sharp for “small” bipartite

graphs. However, Bernshteyn proved that the DP-chromatic number of such graphs

is close to linear in d.

Theorem 25 (Bernshteyn, 2016 [9]) For every graph with average degree
d,

χDP (G) = Ω( d

ln d
).

Important tools in the study of list colourings that do not generalise to the

framework of DP-colourings are the orientation theorems of Alon and Tarsi [5] and

the closely related Bondy–Boppana–Siegel lemma (see [5]). Indeed, they can be

used to prove that even cycles are 2-choosable, while the DP-chromatic number

of any cycle is 3, regardless of its length.

Theorem 26 (Alon, Tarsi, 1992 [5]) Every planar bipartite graph is
3-choosable.

However, Bernshteyn and Kostochka [11] showed that Theorem 26 does not

hold for DP-colourings.

Theorem 27 (Bernshteyn, Kostochka, 2019 [11]) There exists a bipartite
planar graph G with

χDP (G) = 4.

Main results on fractional colourings
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Firstly, let us analyse some observations about the bounds of the fractional

chromatic number. As we mentioned previously, a k-colouring of graph G can be

viewed as a specific type of fractional colouring of weight k of G, where the weight

wI is one if I is a monochromatic class in the k-colouring, wI is 0 otherwise. So

we have χf (G) ≤ χ(G). Furthermore, if W is a clique of G, then any fractional

colouring of G must have a weight of at least |W |, and hence we have χf (G) ≥
ω(G). More generally, χf (G) ≥ χf (H) for any subgraph H of G.

Another lower bound on the fractional chromatic number of a graph G is

related to its independence number α(G). Indeed, the total weight induced by an

independent set I of G on its vertex set is at most ωIα(G), so we have

|V (G)| ≤
∑

v∈V (G)
w(v)

≤
∑

I∈F(G)
α(G)wI

= α(G) ·
∑

I∈F(G)
wI .

It means that the weight of any fractional colouring of G must be at least |V (G)|
α(G) .

Recall that the Hall ratio ρ(G) of G as ρ(G) := max{ |V (H)|
α(H) | H ⊆ G}.

By combining the two previously mentioned lower bounds, we have the following

observations:

max
{ |V (G)|

α(G) , ω(G)
}
≤ ρ(G) ≤ χf (G) ≤ χ(G) ≤ ∆(G) + 1.

We may wonder how close the fractional chromatic number can deviate from

the Hall ratio. In 2020, Dvořák, Ossona de Mendez, and Wu [37] conclude that

the fractional chromatic number can not be bounded by any function of the Hall

ratio.

If G is a perfect graph, then the clique number ω(G) equals to the chromatic

number χ(G), and therefore also equal to the fractional chromatic number χf (G).
A perfect graph G is a graph with the property that, for every induced subgraph

H of G, ω(H) = χ(H). Perfect graphs are a class of graphs that do not contain

any odd holes or odd antiholes, as conjectured by Berge [7] in 1961 and proven by

Chudnovsky, Robertson, Seymour, and Thomas, [26] in 2006. On the other hand,

Brooks [21] established in 1941 that equality holds between χ(G) and ∆(G) + 1
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only for cliques and odd cycles. Since the fractional chromatic number of an odd

cycle C2k+1 is 2k+1
k , the only graphs G for which χf (G) = ∆(G) + 1 are cliques.

Moreover, equality holds between the Hall ratio of G and its fractional chromatic

number for example when G is vertex transitive.

Results on fractional colourings

Given a graph H, we let χf (d, H) be the supremum of the fractional chromatic

numbers over all H-free graphs of maximum degree at most d. As we already

mentioned in Theorem 11, it implies that χf (d, K3) = (1+o(1)) d/ ln d as d→∞,

and one can infer from a study of random d-regular graphs by Bollobás [13] that

χf (d, K3) ≥ d
2 ln d . However, there is still a significant range of degrees that are

not covered by the bound for triangle-free graphs, i.e. when ∆ < ∆ϵ, which is

larger than 202/ϵ. The determination of the maximum value of χf (G) among

triangle-free graphs with a maximum degree of 3 has been a long-standing open

problem.

We define ρ(d, g) to be the supremum of the Hall ratios over all graphs of

maximum degree at most d and girth at least g. We also let ρ(d,∞) be the limit as

g →∞ of ρ(d, g). Note that if we fix d, then ρ(d, g) is a non-increasing function

of g. In symbols, ρ(d, g) := sup{|V (G)|/α(G) : G is a graph with ∆(G) ≤
d and girth(G) ≥ g}, and ρ(d,∞) = lim

g→∞
ρ(d, g).

In 1979, Staton [98] established that ρ(d, 4) ≤ 5d−1
5 , in particular implying

that ρ(3, 4) ≤ 14
5 . The two graphs depicted in Figure 1.4, called the graphs of

Fajtlowicz and of Locke, have 14 vertices each, girth 5, and no independent set

of order 6. It follows that ρ(3, 4) = 14
5 = ρ(3, 5). It is known that the graphs of

Fajtlowicz and of Locke are the only two cubic triangle-free and connected graphs

with Hall ratio 14
5 . It follows from a result of Fraughnaugh and Locke [45] for

graphs with more than 14 vertices completed by an exhaustive computer check on

graphs with at most 14 vertices performed by Bajnok and Brinkmann [6].

The determination of χf (3, K3) was finally settled in [39] by Dvořák, Sereni,

and Volec.

Theorem 28 (Dvořák, Sereni, and Volec, 2014 [39]) χf (3, K3) = 14
5 .

In 1983, Jones [62] established that ρ(4, 4) = 13
4 . Only one connected graph is
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Figure 1.4: The two cubic triangle-free connected graphs with Hall ratio 14
5 .

Figure 1.5: A graph certifying that χf (4, K3) ≥ 3.25.

known to attain this value: it has 13 vertices and is presented in Figure 3.1. The

value of ρ(d, 4) when d ≥ 5 is still unknown.

The best known upper bound in terms of clique number and maximum degree

(when those two parameters are not too far apart) for the fractional chromatic

number is due to Molloy and Reed [82], which solved Conjecture 3 in the fractional

setting.

Theorem 29 (Molloy, Reed, 2002 [82]) For every graph G,

χf (G) ≤ ω(G) + ∆(G) + 1
2 .

It implies that χf (4, K3) lies between 3.25 and 3.5. In Chapter 3, I will prove

the following.

Theorem 30 (Dai, Ouyang, Pirot, and Sereni, 2023 [32]) χf (4, K3) <

3.4663.

For triangle-free d-degenerate graphs, the chromatic number of such a graph

can be as large as d + 1. Notably, the only known examples of graphs reaching

this bound have a much smaller fractional chromatic number. As a result, Harris

has put forth the following conjecture.
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Figure 1.6: Hamilton’s puzzle: the graph of the dodecahedron

Conjecture 6 (Harris, 2019 [53]) There exists an absolute constant C ≥ 1
2

such that, for every triangle-free d-degenerate graph G,

χf (G) ≤ C
d

ln d
.

1.3 . Hamilton-connectivity

In 1857, the Irish mathematician Sir William Hamilton (1805-1865) invented a

game (Icosian Game, now also known as Hamilton’s puzzle) of travelling around the

edges of a graph from vertex to vertex. In a letter to his friend Graves, Hamilton

described the game as a dodecahedron-based mathematical game. Every vertex of

the dodecahedron is labelled with the name of a city, and the goal of the game

is to find a cycle along the edges of the dodecahedron such that every vertex is

visited exactly once, and the ending point is the same as the starting point; one

is therefore looking for a Hamiltonian cycle of the dodecahedron (see Figure 1.6).

Since then hamiltonicity, which aims at determining whether or not a graph G

contains a Hamiltonian cycle, has been at the origin of a whole branch of graph

theory.

Hamiltonicity has many applications in different fields, including network design

and fault tolerance, DNA sequencing, robotics and automated path planning,

circuit design, etc. Here we give a Traveling Salesman Problem as an example.

Consider a graph with a set of cities and the distances between them. The

task is to find a route that visits each city exactly once and returns to the

starting city, minimising the total distance travelled. The goal of the graph is
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to find a Hamiltonian cycle such that its distance is minimum. However, the

Hamiltonian problem is NP-complete [48]. Finding a Hamiltonian cycle or path in

a general graph is computationally tricky and may require significant computational

resources.

1.3.1 . Main classic results of hamiltonicity and

Hamilton-connectivity

Finding a good necessary and sufficient condition for a graph to have a

Hamilton cycle (path) turns out to be impossible. Naturally, there has been

much literature on graph theory studying sufficient conditions for hamiltonicity.

Research on sufficient conditions for the existence of Hamilton cycles often involves

conditions on the edge density, or equivalently, conditions related to the number

of neighbouring vertices. If a graph G has k independent vertices with k ≥ 1, we

define:

σk(G) = min
S⊆V (G)

{∑
v∈S

degG(v)
∣∣∣∣ |S| = k, S is an independent set in G

}
,

σk(G) = min
S⊆V (G)

{∑
v∈S

degG(v)− |
⋂

v∈S

NG(v)|
∣∣∣∣ |S| = k, S is an independent set in G

}
.

The earliest known result based on a degree condition was given by Dirac [35]

in 1952.

Theorem 31 (Dirac, 1952 [35]) Let G be a graph on n vertices. If δ(G) ≥
n
2 , then G is Hamiltonian.

The lower bound of Dirac’s theorem is known to be sharp. To illustrate this,

let’s consider a complete bipartite graph Kn,n+1 with 2n + 1 distinct vertices.

Clearly, the minimum degree of Kn,n+1 is n, and it is not Hamiltonian. Unless a few

more conditions are added, Dirac’s theorem cannot be relaxed without cancelling

the conclusion.

Over time, numerous scientists extended Dirac’s condition to encompass

broader scenarios. In 1960, Ore [83] gave the following generalised theorem.

Theorem 32 (Ore, 1960 [83]) Let G be a graph on n vertices. If σ2(G) ≥
n, then G is Hamiltonian.
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As well as Dirac’s theorem, Ore’s theorem also has a strict requirement on the

bound of n in order to maintain its conclusion. An example for the sharp of Ore’s

theorem is the complete bipartite graph K n−1
2 , n+1

2
. It’s worth noting that Dirac’s

theorem is a consequence of Ore’s theorem, which implies that Ore’s condition

implies Dirac’s condition.

Two initial well-known theorems, according to Dirac and Ore, provide sufficient

conditions based on degrees and degree sums. These are starting points for a

common approach to theorems of hamiltonicity which uses degree and degree-like

conditions together with other parameters in graphs. Studying the behaviour of

2-connected graphs, Flandrin, Jung, and Li proved the following result.

Theorem 33 (Flandrin, Jung, Li, 1991 [44]) If G is a 2-connected graph
with n vertices such that σ3(G) ≥ n, then G is Hamiltonian.

In the same paper [44], they also give a condition on σ3(G) to show the

existence of a Hamiltonian path.

Theorem 34 (Flandrin, Jung, Li, 1991 [44]) If G is a connected graph with
n vertices such that σ3(G) ≥ n− 1, then G has a Hamiltonian path.

The constant stream of results in hamiltonicity continues to supply us with

new and interesting theorems and still further questions. One of them is about

Hamilton-connectivity. In fact, determining whether a graph is Hamilton-connected

is NP-complete [46]. Researchers try to find sufficient degree and neighbourhood

union conditions for Hamilton-connected graphs. It was first introduced by Ore in

1963.

Theorem 35 (Ore, 1963 [84]) If G is a graph with σ2(G) ≥ n + 1 where
n is the order of G, then G is Hamilton-connected.

In 1989, Flandrin, Gould, Jacobson, Schelp gave a sufficient degree sums

condition of 3-connected graphs.

Theorem 36 (Flandrin, Gould, Jacobson, Schelp, 1989 [43]) If G is
3-connected with n vertices such that σ2(G) ≥ 2n+1

3 , then G is Hamilton
connected.

This result was generalised by Wei in 1993.
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Theorem 37 (Wei, 1993 [107]) If G is a 3-connected graph with n vertices
such that σ3(G) ≥ n + 1, then G is Hamilton-connected.

There are plenty of results about hamiltonicity and Hamilton-connectivity, here

we have only provided partial elegant results. For more results, we would mention

the excellent survey by Gould [49, 50].

1.3.2 . Extensions of Hamilton-connectivity

Hamilton-connectivity plays an important role in computer networks. The

parallel computer’s processors are connected through a network. Its architecture

can be visualized as a graph, with the communication lines serving as the edges and

the vertices as the processors. To ensure the resilience of the communication in the

case that a node fails along one link, we must maintain communication links within

several pairs of processors. The objective in a graph is to find internally-disjoint

paths between these pairs where each path should be unique and share no common

nodes with any other path. However, there are numerous needs that compete with

one another when building the architecture of computer networks. It is almost

impossible to design a network that is optimal from all aspects. One has to

design a suitable network depending on the requirements and their properties.

It inspired researchers to extend Hamilton-connectivity by the context needed for

its application.

Spanning connectivity

In some specific application contexts [72, 73], Hsu in 1984 introduced the

concept of a container and indicated that the container plays an essential role in

evaluating the reliability and performance of interconnectivity networks [55].

Definition 8. Let G be a graph.
1. A k-container of G between u and v, Ck(u, v), is a set of

k-internally-disjoint paths between u and v.
2. A spanning k-container, (abbreviated as k∗-container), is a k-container

that contains all vertices vertices of V (G).
3. A graph G is k-container-connected or k∗-connected if there exists a

k∗-container between any two different vertices.
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4. The spanning connectivity of G, κ∗(G), is the maximum integer k such
that G is w∗-connected for 1 ≤ w ≤ k if G is 1-container-connected.

5. A graph G is super spanning connected if κ∗(G) = κ(G).
Obviously, the complete graph Kn is super spanning connected if n ≥ 2.

Spanning connectivity is a hybrid concept of hamiltonicity and connectivity. We

can obtain the following properties about the container.

Remark 3.
1. It follows from the Menger Theorem [79] that there is a k-container

between any two distinct vertices of G if and only if G is k-connected.
2. A graph G is 1∗-connected if and only if it is Hamilton-connected, and a

graph G is 2∗-connected if and only if it is Hamiltonian.
3. All 1∗-connected graphs except for K1 and K2 are 2∗-connected.
Dirac’s theorem becomes that any graphGwith at least three vertices and

δ(G) ≥ n(G)/2 is 2∗-connected. Lin, Huang, and Hsu proved a k∗-connectivity
analogue of Dirac’s theorem as follows.
Theorem 38 (Lin, Huang, Hsu, 2007 [75]) If G is a graph with δ(G) ≥
n(G)+k−2

2 , then G is k∗-connected.

In 2008, Hsu and Lin [57] gave a Ore-type sufficient condition of
k∗-connected graphs.
Theorem39 (Lin, Huang, Tan, Hsu, 2008 [75]) Let k be a positive integer.
If σ2(G) ≥ n(G) + k − 2, then G is k∗-connected.

More results about the spanning connectivity of graphs have been studied
extensively [56, 57, 72, 73, 74, 57, 96, 103].
k-fan connected graphs

In 2009, Lin, Tan, Hsu, and Hsu [76] gave a definition of k-fan connected
graphs, which is a Menger-type concept similar to the spanning connectivity
of a graph.
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Definition 9. For any integer k ≥ 2, let v be a vertex of a graph G and U =
{u1, u2, . . . , uk} be a subset of V (G) \ {v}.

1. A (v, U)-fan is a set of internally-disjoint paths P1, P2, . . . , Pk such that
Pi is a path connecting v and ui for 1 ≤ i ≤ k.

2. If a (v, U)-fan spans G, then it is called a spanning (v, U)-fan of G.
3. If G has a spanning (v, U)-fan for every vertex v of G and every subset

U of V (G) \ {v} with |U | = k, then we call G is k-fan-connected or
k∗

f -connected.
4. The spanning fan-connectivity of a graph G, κ∗

f (G), is defined as the
largest integer k such that G is w∗

f -connected for 1 ≤ w ≤ k if G is a
1∗

f -connected graph.
Remark 4.

1. It is proved by Dirac [36] that a graph G is k-connected if and only if it
has at least k + 1 vertices and there exists a (v, U)-fan for every choice
of v and U with |U | ≤ k and v /∈ U .

2. Every 1∗-connected graph is 1∗
f -connected. Moreover, every

1∗
f -connected graph that is not K2 is 2∗

f -connected.
Lin, Tan, Hsu andHsu [76] discussed the relationship among κ∗

f (G), κ∗(G),
and κ(G).
Theorem 40 (Lin, Tan, Hsu, Hsu, 2009 [76]) For any 1∗

f -connected graph,
κ∗

f (G) ≤ κ∗(G) ≤ κ(G). Moreover, κ∗
f (G) ≤ κ∗(G) ≤ κ(G) =

n(G)− 1 if and only if G is a complete graph.

Furthermore, they presented an Ore-type sufficient condition for a graph
to be κ∗

f -connected.
Theorem 41 (Lin, Tan, Hsu, Hsu, 2009 [76]) Let G be a graph and k ≥ 2
be an integer. If σ2(G) ≥ n(G) + k − 1, then G is κ∗

f -connected.

Recently, Li, Maezawa, and Tian proved a stronger result as follows.
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Theorem 42 (Li, Maezawa, Tian [70]) Let G be an n-vertex graph. If G

is (k + 1)-connected and σ3(G) ≥ n + k − 1 with k ≥ 2, then G is
k-fan-connected.

k-linked connected graphs

We introduce a significant definition, k-linked graphs, which is also related
to the connectivity of graphs. Linkage structure plays an important role in the
study of graph minors.
Definition 10. For an integer k ≥ 2, a graph is k-linked if it has at least 2k

vertices and for every sequence s1, s2, . . . , sk, t1, t2, . . . , tk of distinct vertices
there exist disjoint paths P1, . . . , Pk such that the ends of Pi are si and ti for
i = 1, 2, . . . , k.

Clearly, every k-linked graph is k-connected. The converse is not true,
however, which brings up the natural question of how much connectivity, as
a function f(k), is necessary to ensure that a graph is k-linked. After a series
of papers by Jung [63], Larman andMani [69], Mader [78], and Robertson and
Seymour [94], the first linear upper bound for f , namely f(k) ≤ 22k, was
proved by Bollobás and Thomason [14].

In 2006, Kawarabayashi, Kostochka, and Yu [64] improved the bound of
f(k) to 12k.
Theorem 43 ([64]) Every 2k-connected graph G with e(G) ≥ 6kn(G) is
k-linked. In particular, every 12k-connected graph is k-linked.

They also determined sharpminimum degree and degree sum conditions
for a graph G of order at least 2k to be k-linked.
Theorem 44 ([64]) Let G be a graph on n ≥ 2k vertices.

δ(G) ≥


n+2k−3

2 , if n ≥ 4k − 1,
n+5k−5

3 , if 3k ≤ n ≤ 4k − 2,

n− 1, if 2k ≤ n ≤ 3k − 1.
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or

σ2(G) ≥


n + 2k − 3, if n ≥ 4k − 1,
2(n+5k)

3 − 3, if 3k ≤ n ≤ 4k − 2,

2n− 3, if 2k ≤ n ≤ 3k − 1.

then G is k-linked. These bounds are the best possible.

Thomas andWollan [100] used the bound δ(G) ≥ n+2k−3
2 to give sufficient

conditions for a graph to be k-linked in terms of connectivity.
Theorem 45 ([100]) If G is 10k-connected, then G is k-linked.

(k1, k2)-Hamilton-connected graphs

Motivated by spanning connectivity and k-fan connected graphs, we
define (k1, k2)-Hamilton-connected graphs.
Definition 11. A graph G is (k1, k2)-Hamilton-connected, if for any two disjoint
vertex subsetsX = {x1, x2, . . . , xk1} andU = {u1, u2, . . . , uk2}, there are k1k2

internally-disjoint paths connecting xi to uj for 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2,
which span the whole graph.
Remark 5.

1. (1, k)-Hamilton-connectivity is equivalent to k-fan-connectivity.
2. Both (1, 1)-Hamilton-connectivity and (1, 2)-Hamilton-connectivity are

equivalent to Hamilton-connectivity.
3. (k, k)-Hamilton-connectivity implies k-link.
In 2022, Dai, Li, Ouyang, and Tian studied (2, k)-Hamilton-connected graphs.

Theorem 46 (Dai, Li, Ouyang, Tian, [30]) Let G be an n-vertex graph. If
G is (5k − 2)-connected and σ2(G) ≥ n + k − 2 with k ≥ 2, then G is
(2, k)-Hamilton-connected. Moreover, the bound of σ2(G) is sharp.

38



Another result obtained is about (k1, k2)-Hamilton-connectivity which is
also a tight sufficient condition.
Theorem 47 (Dai, Li, Ouyang, Tian, [30]) Let G be an n-vertex
graph. If σ2(G) ≥ n + k1k2 − 2 with k1, k2 ≥ 2, then G is
(k1, k2)-Hamilton-connected. Moreover, the bound of σ2(G) is sharp.

The two theorems above will be stated Theorem 59 and Theorem 58 in
Chapter 4.

1.4 . Contribution and outline of the thesis

In this section, we summarise the main works and the organization of this
thesis.
(1) We extend the bound of list colourings on 2-connected bipartite

outerplanar graphs to DP-colourings. In 2008, Hutchinson [59] showed
that

• if a 2-connected bipartite outerplanar graph G has a list of colors
L(v) for each vertex v with |L(v)| ≥ min{degG(v), 4}, then G is
L-colorable; and

• if a maximal outerplanar graph G with at least four vertices has a
list of colors L(v) for each vertex v with |L(v)| ≥ min{degG(v), 5},
then G is L-colorable.

She also showed the lower bounds are sharp in the sense that the
lower bound 4 for 2-connected bipartite outerplanar graphs (resp. 5
for maximal outerplanar graph) cannot be replaced by 3 (resp. 4).
Our findings indicate that the first bound of Hutchinson’s results is
not sufficient for DP-colourings. Moreover, we give a sharp bound on
DP-colourings for all the 2-connected outerplanar graphs. This work is
illustrated precisely in Chapter 2.
[Corresponding paper: On DP-colourings of outerplanar graphs,
Submited to Discrete Math. in Oct. 2022, with Jie Hu, Hao Li, and
Shun-ichi Maezawa.]
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(2) We are interested in fractional colourings of triangle-free graphs of
maximum degree at most d with a specific focus on the case d = 4.
Given a graph H , we let χf (d, H) be the supremum of the fractional
chromatic numbers over allH-free graphs of maximum degree at most
d. It has been settled by Dvořák, Sereni, and Volec [39] that χf (3, K3) =
14/5. For d ∈ [16] \ {3}, there is an upper bound χf (d, K3) ≤ d+3

2 ,
which follows from the fractional Reed bound, established by Molloy
and Reed [82]. It is believed that this bound is not tight for any d ≥

3. For d ≥ 17, Pirot and Sereni [88] have used hard-core distributions
on the independent sets of triangle-free graphs in order to derive the
best-known upper bounds for χf (d, K3). For the case d = 4, Jones [62]
proved that for every triangle-free graph G of maximum degree 4 on
n vertices, the size of maximum independent sets is at least 4n

13 . This
implies that χf (4, K3) ≤ 13

4 if we restrict its definition to the class of
vertex-transitive graphs. In general, χf (4, K3) lies between 3.25 and 3.5
(by the fractional Reed bound). We use the methodology introduced
by Pirot and Sereni [88] together with mixed probability distributions in
order to prove thatχf (4, K3) < 3.4663. This work is shown in Chapter 3.
[Corresponding paper: Beyond the fractional Reed bound for triangle-free
graphs, in preprint, with Qiancheng Ouyang, François Pirot, and
Jean-Sébastien Sereni.]

(3) Inspired by the definition of spanning connectivity and k-fan connected
graphs, we study (k1, k2)-Hamilton-connected graphs. Weprove that an
n-vertex graphG is (2, k)-Hamilton-connected ifG is (5k−4)-connected
with σ2(G) ≥ n + k − 2 where k ≥ 2. We also prove that if σ2(G) ≥
n + k1k2 − 2 with k1, k2 ≥ 2, then G is (k1, k2)-Hamilton-connected.
Moreover, we construct two graphs to show that our results are sharp.
This work is discussed in Chapter 4.
[Corresponding paper: On (2,k)-Hamilton-connected graphs, Submited to
Discrete Applied Math. in Aug. 2022, with Hao Li, Qiancheng Ouyang,
and Zengxian Tian.]
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Remark 6. Some of my works are not included in this thesis (see [33, 29, 31,
85]), which have been (or will be) contained in theses of my collaborators. We
will introduce these works briefly in the last chapter Appendix.
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2 - On DP-colourings of outerplanar graphs

In Chapter 1, we have introduced the definition of DP-colourings on simple

graphs and related results. This chapter focuses mainly on our work with DP-colourings.

2.1 . Introduction

For list colourings, we have known that researchers try to make some upper

bounds on χ(G) in terms of vertex degrees hold for χℓ(G) as well. For example,

Brook’s theorem and the degeneracy upper bound hold for χℓ(G). Furthermore,

Borodin [16, 17] and independently Erdős, Rubin, and Taylor [40] generalised

Brook’s theorem to degree-list assignments. Recall that a list assignment L is

called a degree-list assignment if |L(v)| ≥ degG(v) for every v ∈ V (G). A graph

G is said to be degree-choosable if G admits an L-colouring for every degree-list

assignment L. A block of G, or 2-connected component, is a maximal (therefore

induced) 2-connected subgraph of G.

Theorem 48 ([16, 17, 40], a simple proof in [68]) A connected graph G

is not degree-choosable if and only if G is a Gallai tree, that is, each block
of G is isomorphic to Kn for some integer n or Cn for some odd integer n.

Hutchinson [59] studied the extension problem of a degree-list colouring

problem on outerplanar graphs. By induction, an outerplanar graph is easily seen

to be 3-choosable since it contains vertices of degree 2. The question she asked

involves a mixture of these two hypotheses: if a 2-connected outerplanar graph

satisfies|L(v)| ≥ min{deg(v), 4} for every vertex v, is it L-list colourable provided

it does not form a Gallai tree of maximum degree at most 4? She showed that

the answer is yes when the graph is bipartite, but the answer is no in general due

to an example of Kostochka [67]; Hutchinson [59] showed the lower bounds are

sharp in the sense that the lower bound 4 in Theorem 49 (resp. 5 in Theorem 50)

cannot be replaced by 3 (resp. 4). Note that all conditions of Hutchison’s results

are needed.
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Theorem 49 ([59]) Let G be a 2-connected, outerplanar bipartite graph.
For any list assignments L with |L(v)| ≥ min{degG(v), 4} for every vertex
v ∈ V (G), G has an L-colouring.

Theorem 50 ([59]) Let G be a 2-connected edge-maximal outerplanar
graph with at least three vertices that is not K3 with identical 2-lists at
each vertex. For any list assignments L with |L(v)| ≥ min{degG(v), 5}
for every vertex v ∈ V (G), G has an L-colouring.

We mainly study whether Theorems 49 and 50 hold in the setting of

DP-colourings. To better illustrate our results, we first propose a definition of

DP-colourings that applies to multigraphs and graphs.

Definition 12. Let G be a multigraph (possibly having multiple edges but no
loops) and L be a list assignment of G.

1. For each edge uv in E(G), let ML,uv be the union of µG(uv) matchings
between {u} × L(u) and {v} × L(v) where µG(uv) is the multiplicity
of uv in G. Note that if u and v are not connected by an edge in
G, then µG(uv) = 0 and ML,uv is an empty set. With abuse of
notation, we sometimes regard ML,uv as a bipartite graph between
{u} × L(u) and {v} × L(v) of maximum degree at most µG(uv). Let
ML = {ML,uv : uv ∈ E(G)}, which is called amatching assignment over
L. Then a graph H is said to be theML-cover of G if it satisfies the
following conditions:
(i) The vertex set of H is ⋃u∈V (G)({u} × L(u)) = {(u, c) : u ∈

V (G), c ∈ L(u)}.
(ii) For every u ∈ V (G), the set {u} × L(u) induces a clique in H .
(iii) For every two vertices u and v in G, {u} × L(u) and {v} × L(v)

induce inH the graph obtained fromML,uv by adding those edges
defined in (ii).

(See Figure 2.1 for an example)
2. AnML-colouring of G is an independent set I in theML-cover with
|I| = |G|. G is said to beML-colourable if it admits anML-colouring.
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Figure 2.1: Two examples of theML-cover of C4 such that |L(u)| = 2 for

any vertex u. Each thin rectangle represents {u} × L(u) for some vertex u.

In fact, the cycle C4 admits anML-colouring for the left, but it does not

for the right

3. The DP-chromatic number, denoted by χDP (G), is the minimum integer
t such that G admits anML-colouring for each t-list assignment L and
each matching assignmentML over L.

4. A graph G is said to be DP-degree-colourable if G admits an
ML-colouring for each degree-list assignment L and each matching
assignmentML over L.

Remark 7.
(1) When G is a simple graph and ML,uv = {(u, c)(v, c) : c ∈ L(u) ∩ L(v)}

for every edge uv inG, thenG has anL-colouring if and only ifG admits
anML-colouring. Thus

∀G, χDP (G) ≥ χℓ(G).

(2) When |L(u)| = [k] for eachu ∈ V (G) (that is, whenwe consider a proper
k-colouring), then theML-cover ofG is isomorphic to the graphG2Kk,
which is the Cartesian product of G and the complete graph Kk. The
Cartesian product of graphs G and H is the graph G2H whose vertex
set is V (G) × V (H) and edge set is the set of all pairs (u1, v1)(u2, v2)
such that either u1u2 ∈ E(G) and v1 = v2, or v1v2 ∈ E(H) and u1 = u2.

We want to generalise Theorems 49 and 50 to hold in the DP-colouring setting.

The following problem corresponds to Theorem 49.
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Problem 1 Let G be a 2-connected, outerplanar bipartite graph and L be
a list assignment with |L(v)| ≥ min{degG(v), 4} for every vertex v ∈
V (G). Does G admit anML-colouring for any matching assignment over
L unless G is an even cycle?

The answer to this problem is no, as we show by finding counterexamples.

Note that even cycles satisfying the condition of Problem 1 do not admit an

ML-colouring for some matching assignments over L by Theorem 52 (ii) for t = 1.

Theorem 51 There exist infinitely many counterexamples to Problem 1.

For the setting on DP-colourings of Theorem 49, our result is stronger than it.

In fact, we solve all the 2-connected outerplanar graphs, not only bipartite graphs.

Before giving the statement of our result, we need to introduce some special graphs

and a related result. For two graphs G and H and a vertex u of G, blowing up u

to H is the operation of replacing u by H and joining each vertex of H to every

neighbour in G of u. Let n and t be positive integers.

• The ladder of length n is Cn2K2. The left graph in Figure 2.1 is the ladder

of length 4.

• A graph G is the Möbius ladder of length n if it is obtained from the Pn2K2

with Pn = v1 . . . vn and V (K2) = {a, b} by adding the edges (v1, a)(vn, b)
and (v1, b)(vn, a). The right graph in Figure 2.1 is the Möbius ladder of

length 4.

• The t-fat ladder of length n is obtained from the ladder of length n by

blowing up every vertex to a complete graph Kt.

• The t-fat Möbius ladder of length n is obtained from the Möbius ladder of

length n by blowing up every vertex to a complete graph Kt.

For a graph G and an integer t, we denote by Gt the multigraph obtained from

G by replacing every edge of G with t multiple edges. A multigraph G is called

a complete multigraph, if the graph obtained from G by replacing every set of

multiple edges with a single edge is a complete graph. Kim and Ozeki obtained

the following result (in fact they showed a result stronger than Theorem 52).
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Theorem 52 ([65]) Let G be a 2-connected multigraph not isomorphic to
a complete multigraph with order at least four and let L be a list assignment
of G with |L(v)| ≥ degG(v) for each v ∈ V (G). Then G does not admit
anML-colouring if and only if G is isomorphic to Ct

n for some integers n

and t such that the following hold.

(i) If n is an odd integer, thenML-cover is isomorphic to t-fat ladder of
length n.

(ii) If n is an even integer, thenML-cover is isomorphic to t-fat Möbius
ladder of length n.

Given a graph G and a list assignment L of G, if an ML-cover of G satisfies

one of the two conditions in Theorem 52, then we say (G, L,ML) is bad. We prove

the following main result in this chapter, which is a generalisation of Theorem 50.

Theorem 53 Let G be a 2-connected outerplanar graph. Let L be a list
assignment of G with |L(v)| ≥ min{degG(v), 5} for every v ∈ V (G).
Then G admits an ML-colouring for each matching assignment ML over
L unless (G, L,ML) is bad.

The possible bad triples (G, L,ML) in Theorem 53 are as follows: either

(i) G is isomorphic to Cn for an odd integer n and itsML-cover is isomorphic

to the ladder of length n; or

(ii) G is isomorphic to Cn for an even integer n andML-cover is isomorphic to

the Möbius ladder of length n.

Let G be a graph, L be a list assignment of G, and ML be a matching

assignment over L. To simplify notation, we can regard the vertex set of the

ML-cover of G as ∪u∈V (G)L̃(u) instead of ∪u∈V (G){u} × L(u). Similarly, L̃′(u)
denote {u} × L′(u) for L′(u) ⊆ L(u).

2.2 . The proof of Theorem 51

In this section, we prove Theorem 51: There exist infinitely many

counterexamples to Problem 1.
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u0v0 w0

x3 y3x6 y6

Figure 2.2: The graph H0.

We begin this section with an easy but useful fact about independent sets in

Möbius ladders. It is clear to obtain the following fact by the definition of the

Möbius ladder of length k.

Fact 3 Let M be a Möbius ladder of length k. Then the size of any
independent set of M is at most k − 1 when k is even.

We are now ready to prove Theorem 51 by constructing a graph G in this

section. Let L be a list assignment with |L(v)| ≥ min{degG(v), 4} for every

vertex v ∈ V (G). Our goal is to prove that G does not admit an ML-colouring

for a given matching assignment over L.

In fact, G consists of a series of subgraphs. Firstly, we construct a base

subgraph H0 (see Figure 2.2) of G. Let H0 be a connected outerplanar graph

satisfying the following conditions:

(i) The vertex set of H0 is {u0, v0, w0, x1, x2, . . . , x8, y1, y2, . . . , y8}.

(ii) There exists the walk v0x8x7 . . . x1u0y1y2 . . . y8w0u0v0 and it is an outer walk

of H0.

(iii) The edge set of H0 is the edges of the outer walk of (ii) and

{u0x3, x3x6, v0x6, u0y3, y3y6, w0y6}.

Note that H0 is symmetric with respect to u0. Let L be a list assignment with

|L(v)| ≥ min{degH0(v), 4} for every vertex v ∈ V (H0). For 1 ≤ i ≤ 4, let ui
0,

vi
0, and wi

0 be elements of L̃(u0), L̃(v0), and L̃(w0), respectively. Similarly, for

1 ≤ i ≤ 4, let xi
3, xi

6, yi
3, and yi

6 be elements of L̃(x3), L̃(x6), L̃(y3), and L̃(y6),
respectively. We construct anML-cover J0 of H0 such that
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(i) Each of J0[{u1
0, u2

0, x1
3, x2

3} ∪ L̃(x1) ∪ L̃(x2)], J0[{x3
3, x4

3, x3
6, x4

6} ∪ L̃(x4) ∪
L̃(x5)], and J0[{v1

0, v2
0, x1

6, x2
6}∪ L̃(x7)∪ L̃(x8)] induces a Möbius ladder of

length four.

(ii) Each of J0[{u3
0, u4

0, y1
3, y2

3}∪L̃(y1)∪L̃(y2)], J0[{y3
3, y4

3, y3
6, y4

6}∪L̃(y4)∪L̃(y5)],
and J0[{w1

0, w2
0, y1

6, y2
6} ∪ L̃(y7)∪ L̃(y8)] induces a Möbius ladder of length

four.

(iii) u1
0v4

0, u2
0v3

0, u3
0w4

0, u4
0w3

0 ∈ E(J0).

Note that J0 is symmetric with respect to L̃(u0).

Claim 2.2.1 Let I0 be an independent set of J0 with |I0| = |H0|. If ui
0

is in I0 for some i ∈ {1, 2}, then vi+2
0 is in I0. If ui

0 is in I0 for some
i ∈ {3, 4}, then wi

0 is in I0.

Proof. By symmetry, we may assume that u1
0 ∈ I0. Since

J0[{u1
0, u2

0, x1
3, x2

3} ∪ L̃(x1) ∪ L̃(x2)] is a Möbius ladder of length four,
it follows from Lemma 3 that x1

3, x2
3 /∈ I0 and so either x3

3 or x4
3 is in

I0. Since J0[{x3
3, x4

3, x3
6, x4

6} ∪ L̃(x4)∪ L̃(x5)] is a Möbius ladder of length
four, it follows from Lemma 3 that x3

6, x4
6 /∈ I0 and so either x1

6 or x2
6 is in

I0. Since J0[{v1
0, v2

0, x1
6, x2

6} ∪ L̃(x7)∪ L̃(x8)] is a Möbius ladder of length
four, it follows from Lemma 3 that v1

0, v2
0 /∈ I0 and so either v3

0 or v4
0 is

in I0. Since u1
0 ∈ I0 and u1

0v
4
0 ∈ E(G), v3

0 is in I0.

For i ≥ 1, let Hi be a graph isomorphic to H0 and let ui, vi, and wi be vertices

of Hi corresponding to u0, v0, and w0, respectively. For i ≥ 1 and 1 ≤ j ≤ 4, let

Ji be an ML-cover of Hi isomorphic to J0 and let uj
i , vj

i , and wj
i be vertices of

Ji corresponding to uj
0, vj

0, and wj
0, respectively. Let G9 be the graph obtained

from H0, . . . , H9 by adding the edges viwi+1 and uiui+1 for each 0 ≤ i ≤ 8 and

u0u3, u3u6, u6u9, u9u0. We construct anML-cover J of G9 such that

(i) v3
i w4

i+1, v4
i w3

i+1 ∈ E(J) for each 0 ≤ i ≤ 8,

(ii) u1
i u3

i+1, u2
i u4

i+1 ∈ E(J) for each 0 ≤ i ≤ 8,

(iii) J [{u1
0, u2

0, u1
3, u2

3, u1
6, u2

6, u1
9, u2

9}] induce a Möbius ladder of length four.
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Let G′
9 be the graph isomorphic to G9. G′

9 also consists of ten base subgraphs

that are isomorphic to H0. For convenience, let Hi+10 be the subgraph in G′
9

corresponding to Hi for 0 ≤ i ≤ 9 and w10 corresponds to v0. Let J ′ be

an ML-cover of G′
9 isomorphic to J replacing u1

0 and u2
0 with u3

10 and u4
10,

respectively.

Let G be a graph obtained from G9 and G′
9 by identifying H0 and H10 and

connecting v9 and v19 by a path P with odd order in the sense the path in G

connecting v9 and v19 not containing u0 is a path with odd order (see Figure 2.3).

Then the outer walk of G is a cycle and contains every vertex of G. Moreover,

every finite face of G is of even length. It means that all cycles of G have even

length as well. Hence G is a 2-connected outerplanar bipartite graph. Let K be

an ML-cover of G obtained from J and J ′ by identifying J [∪u∈V (H0)L̃(u)] and

J ′[∪u∈V (H10)L̃(u)]. We show that G does not admit anyML-colouring. Suppose

that G admits anML-colouring. Let I be an independent set of K with |I| = |G|.
By symmetry, we may assume that either u1

0 or u2
0 is in I.

Claim 2.2.2 For each 0 ≤ i ≤ 9, either u1
i or u2

i is in I .

Proof. We prove this claim by induction on i. When i = 0, this claim
holds. Suppose that i ≥ 1. By Claim 2.2.1 and the induction hypothesis,
either v3

i−1 or v4
i−1 is in I . Suppose that either u3

i or u4
i is in I . Then

either w3
i or w4

i is in I by Claim 2.2.1. However this contradicts to
Lemma 3 since K[u1

i−1, u2
i−1, v3

i−1, v4
i−1, w3

i , w4
i , u3

i , u4
i ] is isomorphic to a

Möbius ladder of length four. Hence this claim holds.
By Claim 2.2.2, we can deduce a contradiction Lemma 3 since

K[{u1
0, u2

0, u1
3, u2

3, u1
6, u2

6, u1
9, u2

9}] is isomorphic to a Möbius ladder of length

four.

2.3 . The proof of Theorem 53

In this section, we prove our main result Theorem 53 by a technical but stronger

result Theorem 54.

We need to introduce more notations so as to state Theorem 54. Let L be a

list assignment of G, and letML andM′
L be matching assignments over L. We
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odd path

Figure 2.3: The graph G

call the union of anML-cover and anM′
L-cover an (ML∪M′

L)-cover. We say G

has an (ML∪M′
L)-colouring if there is an independent set I in (ML∪M′

L)-cover

with |I| = |G|. If an (ML∪M′
L)-cover of G satisfies one of the two conditions in

Theorem 52 the result of Kim and Ozeki, then we say (G, L,ML ∪M
′
L) is bad.

Theorem 54 Let G be a 2-connected outerplanar graph and let C be
the outer face of G. Let L be a list assignment of G with |L(u)| ≥
min{degG(u), 5} for every u ∈ V (G) and let ML be an arbitrary
matching assignment over L. LetM1

L andM2
L be two arbitrary matching

assignments over L in C such that for each u1u2 ∈ E(C),

(i) the number of vertices in L̃(ui) incident with an edge in M1
L,u1u2 ∪

M2
L,u1u2 is at most two for each i ∈ {1, 2},

(ii) if M1
L,u1u2 ∪M2

L,u1u2 ̸= ∅, then |L(ui)| ≥ min{degG(ui) + 1, 5}
for each i ∈ {1, 2},

(iii) if there exists a vertex w ∈ L̃(ui) incident with three edges in
ML,u1u2 ∪M1

L,u1u2 ∪M2
L,u1u2 , then |L(u3−i)| ≥ 5, and

(iv) for consecutive three vertices x, y, z on the outer face, if M1
L,xy ∪

M2
L,xy ̸= ∅ and M1

L,yz∪M2
L,yz ̸= ∅, then |L(y)| ≥ min{degG(y)+

2, 5}.

Then G admits an (ML ∪ M1
L ∪ M2

L)-colouring unless (G, L,ML ∪
M1

L ∪M2
L) is bad.
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⇒

L̃(u) L̃(v) L̃(u) L̃(v)
Figure 2.4: u and v are vertices lying on the outer cycle of G and the black
lines, dotted lines, and doublet lines represent the edges inML,M1

L,M2
L,

respectively.

Let us make a few remarks on Theorem 54 before providing the proof.

(i) In Theorem 54,M1
L andM2

L are two arbitrary matching assignments over

L. In fact, it is possible thatM1
L =M2

L, and we may assume thatM2
L = ∅

in this case.

(ii) We may assume that

(|ML|, |M1
L|, |M2

L|) is as large as possible in lexicographic order.

Figure 2.4 shows an example. The left matching assignments in Figure 2.4

do not satisfy the assumption above since the edge in M2
L in the left

matching assignments can be regarded as an edge in M1
L, and it increases

(|ML|, |M1
L|, |M2

L|).

(iii) We construct a multigraph Gm and a matching assignment M′
L over L

such that Gm admits an M′
L-colouring if and only if G admits an (ML ∪

M1
L ∪ M2

L)-colouring. For every edge e = uv ∈ E(C), we replace e

with a multiple edge e′ such that the multiplicity of e′ is the number of

matching assignments between L̃(u) and L̃(v). Note that the number of

matching assignments between L̃(u) and L̃(v) is unique by remark (ii).

Figure 2.5 shows an example. We can regardML∪M1
L∪M2

L as a matching

assignment M′
L of Gm over L. Then Gm admits an M′

L-colouring if and

only if G admits an (ML ∪M1
L ∪M2

L)-colouring.
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⇒
L̃(u)

L̃(v) L̃(w)

u v w

G

u v w

Gm

Figure 2.5: u, v, and w are vertices lying on the outer cycle of G and the black
lines, dotted lines, and doublet lines represent the edges inML,M1

L,M2
L,

respectively. The number of matching assignments between L̃(u) and L̃(v)
(resp. L̃(v) and L̃(w)) is two (resp. three) and so the multiplicity of uv (resp.

vw) is two (resp. three) in Gm.

(iv) IfM1
L∪M2

L = ∅ in Theorem 54, then it corresponds to Theorem 53. Since

if M1
L ∪M2

L = ∅, then we do not need to consider conditions (I)–(IV) in

Theorem 54. Hence we have only to prove Theorem 54.

Proof. We prove the theorem by induction on the number of faces of
G. Suppose that G does not admit any (ML ∪M1

L ∪M2
L)-colouring.

Let Gm be a multigraph defined as in remark (iii).
Case 1. The number of faces of G is two.

In this case, G is a cycle. If |L(v)| = 2 for each v ∈ V (G), we have
M1

L ∪ M2
L = ∅ by assumption (II), then G admits an (ML ∪ M1

L ∪
M2

L)-colouring unless (G, L,ML ∪M1
L ∪M2

L) is bad by Theorem 52
(the result of Kim and Ozeki). Hence we may assume that there
exists a vertex v ∈ V (G) with |L(v)| ≥ 3. Then (ML ∪ M1

L ∪
M2

L)-cover is isomorphic to neither a t-fat ladder nor a t-fat Möbius
ladder by assumption (I) of Theorem 54. Suppose that there is no
vertex u ∈ V (G)with |L(u)| ≥ 5. The number of matching assignments
in the (ML ∪ M1

L ∪ M2
L)-cover is at most two by assumption (III)

of Theorem 54. Recall that for an edge uv ∈ E(C), the number
of matching assignments between L̃(u) and L̃(v) in (ML ∪ M1

L ∪
M2

L)-cover corresponds to the multiplicity of uv in Gm. For a vertex
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v ∈ V (G) with |L(v)| = 4 and a vertex w ∈ L̃(v), the number of edges
in the (ML ∪ M1

L ∪ M2
L)-cover incident with w is at most four since

the number of matching assignments in the (ML ∪M1
L ∪M2

L)-cover
is at most two. Moreover, for a vertex v ∈ V (G) with |L(v)| = 3 and
a vertex w ∈ L̃(v), the number of edges in (ML ∪ M1

L ∪ M2
L)-cover

incident with w is at most three by assumption (IV). Hence for each
vertex v ∈ V (G) and each vertex w ∈ L̃(v), the number of edges
in (ML ∪ M1

L ∪ M2
L)-cover incident with w is at most |L(v)|. By

Theorem52,Gm admits an (ML∪M1
L∪M2

L)-colouring and soG admits
an (ML ∪M1

L ∪M2
L)-colouring. Hence there is a vertex u ∈ V (G) with

|L(u)| ≥ 5.
We prove the case by induction on the number of vertices of G.

Suppose that |G| = 3. Write V (G) = {v1, v2, v3} and we may assume
that |L(v1)| ≥ 5. By assumptions (I) and (II) of Theorem 54, there is
a vertex w2 ∈ L̃(v2) incident with at most one edge in the ML,v1v2 ∪
M1

L,v1v2∪M2
L,v1v2 . We show that there is a vertexw3 ∈ L̃(v3) not adjacent

to w2 in the (ML ∪M1
L ∪M2

L)-cover. Suppose that w2 is adjacent to
every vertex in L̃(v3). By assumption (II) of Theorem 54, |L(v3)| ≥ 3.
Then w2 is adjacent to three vertices in L(v3). However, by assumption
(III) of Theorem 54, |L(v3)| ≥ 5 and so there is a vertex w3 ∈ L̃(v3)
not adjacent to w2, a contradiction. Hence there is a vertex w3 ∈ L̃(v3)
not adjacent to w2 in the (ML ∪M1

L ∪M2
L)-cover. Since |L(v1)| ≥ 5

and w3 is adjacent to at most three vertices in L̃(v1), there is a vertex
w1 ∈ L̃(v1) adjacent to neitherw2 norw3. Then {w1, w2, w3} is an (ML∪
M1

L ∪M2
L)-colouring, a contradiction.

Suppose that |G| ≥ 4. Recall that we choose u ∈ V (G) with
|L(u)| ≥ 5. Let u1 and u2 be the neighbours of u in G and let Ui be
the subset of L(ui) such that the degree of each vertex in Ui is at least
two in theML,uui

∪M1
L,uui

∪M2
L,uui

for each i = 1, 2 (see Figure 2.6).
Let G′ := G − u + u1u2 and let L′ be a list assignment of G′ such that
L′(v) = L(v) for every v ∈ V (G′). Let ML′ ,M1

L′ ,M2
L′ be matching

assignments over L′ obtained from ML,M1
L,M2

L, respectively, by
deleting the edges incident with the vertices in L̃(u) and adding all
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L̃(u1)
L̃(u) L̃(u2)

L̃′(u1)
L̃′(u2)

Figure 2.6: The left graph is a part of the (ML ∪M1
L ∪M2

L)-cover. The right
graph is a part of the (ML′ ∪M1

L′ ∪M2
L′)-cover. The black vertices are in U1

and U2.

edges between U1 and U2 toML′ ∪ M1
L′ . Note that we do not need

to add any edges inM2
L′ since |Ui| ≤ 2 for each i ∈ {1, 2}. We show

that (G′, L′,ML′∪M1
L′∪M2

L′) is not bad. IfU1 = ∅ orU2 = ∅, then there
is no edge between L̃′(u1) and L̃′(u2). So (G′, L′,ML′ ∪M1

L′ ∪M2
L′) is

not bad. We may assume that U1 ̸= ∅ and U2 ̸= ∅, so for each i = 1, 2,
we have |L(ui)| ≥ 3 by assumption (II) of Theorem54 and the definition
of Ui. For each i = 1, 2, there is a vertex w ∈ L̃(ui) such that the degree
of w inM1

L,u1u2 ∪M
2
L,u1u2 is zero. Hence (G′, L′,ML′ ∪M1

L′ ∪M2
L′) is

not bad.
By the induction hypothesis,G′ has an (ML′∪M1

L′∪M2
L′)-colouring

I ′. Then I ′ ∩ U1 = ∅ or I ′ ∩ U2 = ∅ by the construction above. Since
the number of vertices in L̃(u) adjacent to one of I ′ ∩ (L̃(u1)∪ L̃(u2)) is
at most four and |L(u)| ≥ 5, there is a vertex v ∈ L̃(u) not adjacent to
I ′ ∩ (L̃(u1) ∪ L̃(u2)). Then I ′ ∪ {v} is an (ML ∪M1

L ∪M2
L)-colouring.

Case 2. The number of faces of G is at least three.
Let v0, v1, . . . , vm+1 be consecutive vertices on the outer face such

that degG(vi) = 2 for 1 ≤ i ≤ m, degG(v0) ≥ 3, and degG(vm+1) ≥ 3;
note that v0v1 . . . vm+1 is an ear of G. Let H be the subgraph of the
(ML∪M1

L∪M2
L)-cover such that V (H) = L̃(v0)∪ L̃(v1)∪· · ·∪ L̃(vm+1)

and E(H) = ⋃
0≤i≤m(ML,vivi+1 ∪M1

L,vivi+1
∪M2

L,vivi+1
). For an integer i

with 1 ≤ i ≤ m, we call a pair {ai, bi} of two vertices in L̃(vi) a good pair
if one of ai and bi is degree at most one in H[L̃(vi)∪ L̃(vi+1)]. Note that
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there is a good pair in L̃(vi) for every 1 ≤ i ≤ m by assumptions (I) and
(II) of Theorem 54. Write P = v1v2 . . . vm. Let G′ := G− P and L′ be a
list assignment of G′ such that L′(u) = L(u) for every u ∈ V (G′). Let

ML′ :=ML −
⋃

0≤i≤m

ML,vivi+1

M1
L′ :=M1

L −
⋃

0≤i≤m

M1
L,vivi+1

M2
L′ :=M2

L −
⋃

0≤i≤m

M2
L,vivi+1

.

Note that |L′(vi)| ≥ min{degG′(vi) + 1, 5} for each i ∈ {0, m + 1} and
the edge v0vm+1 is on the outer face of G′.

We now provide a sketch of our proof of Case 2. We obtain an
(ML′ ∪ M1

L′ ∪ M2
L′)-colouring of G′ by induction first. We find two

independent sets A and B in H consisting of good pairs (Claims 2.3.1).
More precisely, independent setsA andB have the property that every
pair {a, b} with a ∈ A∩ L̃(vj) and b ∈ B ∩ L̃(vj) is a good pair. One of A

and B will be a part of an (ML∪M1
L∪M2

L)-colouring of G. In order to
show that adding one ofA andB to an (ML′∪M1

L′∪M2
L′)-colouring of

G′ preserves independence, we analyseH[L̃(v0)∪L̃(v1)] andH[L̃(vm)∪
L̃(vm+1)] (Claims 2.3.2, 2.3.3, 2.3.5, and 2.3.6).
Claim 2.3.1 Let i be a fixed integer with 1 ≤ i ≤ m. For every
good pair {ai, bi} of two vertices in L̃(vi), there exist vertex sets A =
{ai, ai+1, . . . , am} and B = {bi, bi+1, . . . , bm} such that

(i) aj, bj ∈ L̃(vj) for all j such that i ≤ j ≤ m,

(ii) {aj, bj} is a good pair for all j such that i ≤ j ≤ m, and

(iii) A and B are independent sets in H .

Proof. We show by induction on j that we can take aj, bj ∈ L̃(vj) for
each i ≤ j ≤ m such that {ai, ai+1, . . . , aj} and {bi, bi+1, . . . , bj} are
independent sets in H and aj and bj satisfy conditions (i), (ii), (iii) of
the claim. When j = i, the claim holds trivially. So we may assume
that j > i. Let Aj and Bj be subsets of maximum size of L(vj) such
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that NH(aj−1) ∩ Aj = ∅ and NH(bj−1) ∩ Bj = ∅. We show that we
can take a good pair {aj, bj} in L̃(vj), which means that we can find
aj, bj ∈ L̃(vj) such that one of aj and bj has degree at most one in
H[L̃(vj) ∪ L̃(vj+1)]. By induction hypothesis, {aj−1, bj−1} is a good pair
and so wemay assume that aj−1 has degree atmost one inH[L̃(vj−1)∪
L̃(vj)].

Suppose that the degree of bj−1 in H[L̃(vj−1) ∪ L̃(vj)] is also at
most one. If H[L̃(vj) ∪ L̃(vj+1)] is a matching, then we can take any
two vertices in L̃(vj) as a good pair. There must exist two vertices
aj, bj ∈ L̃(vj) with aj−1aj, bj−1bj /∈ E(H) since |L(vj)| ≥ 2. Hence
H[L̃(vj) ∪ L̃(vj+1)] has some edges inM1

L ∪ M2
L and |L(vj)| ≥ 3 by

assumption (II) of the theorem. If there is no vertex in L̃(vj) that is
adjacent to both aj−1 and bj−1, then |Aj ∪Bj| = |L(vj)| ≥ 3. If there is a
vertex in L̃(vj) that is adjacent to both aj−1 and bj−1, then |L(vj)| ≥ 4 by
assumption (IV) of Theorem 54, thus |Aj ∪Bj| ≥ |L(vj)| − 1 ≥ 3. Hence
|Aj| ≥ 2, |Bj| ≥ 2, and |Aj ∪Bj| ≥ 3. By assumption (I) of the theorem,
we can take the desired two vertices to be aj ∈ Aj and bj ∈ Bj (see the
left side of Figure 2.7). Hence we may assume that the degree of bj−1

in H[L̃(vj−1) ∪ L̃(vj)] is at least two.
By assumption (II) of the theorem, |L(vj)| ≥ 3. Note that |Aj| ≥ 2

and |Bj| ≥ 1. If H[L̃(vj) ∪ L̃(vj+1)] is a matching, then we can take
any two vertices in L̃(vj) as a good pair, and there exist two vertices
aj, bj ∈ L̃(vj) with aj−1aj, bj−1bj /∈ E(H). Hence H[L̃(vj) ∪ L̃(vj+1)] has
some edges inM1

L ∪M2
L and so |L(vj)| ≥ 4 by assumption (IV) of the

theorem. Then |Aj| ≥ 3 and |Bj| ≥ 2. By assumption (I) of the theorem,
we can take the desired two vertices aj ∈ Aj and bj ∈ Bj (see the right
side of Figure 2.7). Now we complete the proof of Claim 2.3.1.

Recall that G′ = G− ∪m
i=1vi, L′ is the list assignment of G′, |L′(vi)| ≥

min{degG′(vi) + 1, 5} for each i ∈ {0, m + 1}, and the edge v0vm+1 is on
the outer face of G′.
Claim 2.3.2 One of H[L̃(v0)∪L̃(v1)] and H[L̃(vm)∪L̃(vm+1)] has some
edges inM1

L ∪M2
L.
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L̃(vj−1)
L̃(vj)

L̃(vj+1) L̃(vj−1) L̃(vj) L̃(vj+1)

aj−1

bj−1

aj−1

bj−1

Figure 2.7: The left graph is a part of the (ML ∪M1
L ∪M2

L)-cover when the
case that the degree of bj−1 in H[L̃(vj−1) ∪ L̃(vj)] is one and the right one is
the other case. The black vertices are in Aj and the vertices surrounded by

squares are in Bj .

Proof. Suppose that both H[L̃(v0)∪ L̃(v1)] and H[L̃(vm)∪ L̃(vm+1)] are
matchings. Let {a1, b1} be a good pair of two vertices in L̃(v1). By
Claim 2.3.1, there exist two vertex sets A and B with a1 ∈ A and b1 ∈ B

satisfying conditions (i)–(iii) of Claim 2.3.1. Write {am} = A ∩ L̃(vm)
and {bm} = B ∩ L̃(vm). Let c0 ∈ L̃(v0) ∩ NH(a1), d0 ∈ L̃(v0) ∩ NH(b1),
cm+1 ∈ L̃(vm+1) ∩ NH(am), and dm+1 ∈ L̃(vm+1) ∩ NH(bm) (possibly
some of c0, d0, cm+1, and dm+1 do not exist). We add the edges c0dm+1

and d0cm+1 to M1
L′ if they are not in M1

L′ (see Figure 2.8). Since
the graph induced by the edges connecting L̃(v0) and L̃(vm+1) in the
(ML ∪M1

L ∪M2
L)-cover is a matching and we add at most two edges

between L̃(v0) and L̃(vm+1). Hence we have (G′, L′,ML′ ∪M1
L′ ∪M2

L′)
is not bad. It is clear that G′ satisfies the assumptions in Theorem 54.
By the induction hypothesis, G′ has an (ML′ ∪M1

L′ ∪M2
L′)-colouring

I ′. If either d0 ∈ I ′ or dm+1 ∈ I ′, then I := I ′ ∪ A otherwise I := I ′ ∪ B.
Then I is an (ML ∪M1

L ∪M2
L)-colouring of G. This is a contradiction.

Wemay assume thatH[L̃(v0)∪ L̃(v1)] has some edges inM1
L∪M2

L.
Let U0 and Um+1 be vertex sets such that Ui ⊆ L̃(vi) and the degree of
each vertex in Ui is at least two in H for each i ∈ {0, m + 1}.
Claim2.3.3 For a vertex u0 ∈ L̃(v0) with degree at most one in H[L̃(v0)∪
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L̃(v0)

c0

d0

L̃(v1)

a1

b1

L̃(v2)

a2

b2

L̃(v3)
a3

b3

L̃(v4)
c4

d4

Figure 2.8: An example of choosing c0, d0, cm+1, and dm+1 and adding the
edges c0dm+1 and d0cm+1 for m = 3.

L̃(v1)], there exists a good pair {a1, b1} of two vertices in L̃(v1) such that
a1 and b1 are both not adjacent to u0.

Proof. If |L(v1)| ≥ 4, then there are at least three vertices in L̃(v1) not
adjacent to u0 and so we can take a good pair by assumption (I). Hence
wemay assume that |L(v1)| = 3. SinceH[L̃(v0)∪L̃(v1)] has some edges
inM1

L ∪M2
L, it follows from assumption (IV) that H[L̃(v1) ∪ L̃(v2)] is a

matching. Then we can take a good pair.
Recall that U0 is the vertex set such that U0 ⊆ L̃(v0) and the degree

of each vertex in U0 is at least two in H . For 1 ≤ i ≤ m, if all the
vertices in Ui−1 are adjacent to the same vertices in L̃(vi) and |L̃(vi) \
NH(Ui−1)| ≤ 2, then we define Ui = L̃(vi) \ NH(Ui−1) (if Ui−1 is not
defined, thenwedonot defineUi). Note thatUi ̸= ∅by the assumptions
(II)-(IV). Let jmax be the largest integer j in 0 ≤ j ≤ m such that Ujmax is
defined. If jmax ≥ 1, we take an arbitrary vertex ui from Ui for each 0 ≤
i ≤ jmax − 1 and let U be the set of such vertices (seeFigure 2.9). Since
we deal with the case that there is an (ML′′ ∪M1

L′′ ∪M2
L′′)-colouring I ′

of G′ such that the degree of the vertex in I ′ ∩ L̃(vm+1) is at most one
58



L̃(v0)
L̃(v1)

L̃(v2) L̃(v3)
L̃(v4) L̃(v5)

a5

b5
L̃(v6)

Figure 2.9: The black vertices are in Ui for each 1 ≤ i ≤ m and jmax = 4 ̸= m.

in H several times after this, we will show a technical claim to handle
those situations.
Claim 2.3.4 Let L′′ be a list assignment of G′ and L′′(u) = L(u) for
every u ∈ V (G′). Let ML′′,M1

L′′,M2
L′′ be matching assignments over

L′′ satisfying assumptions (I)–(IV). Suppose that there is an (ML′′∪M1
L′′∪

M2
L′′)-colouring I ′ of G′ such that the degree of the vertex in I ′∩ L̃(vm+1)

is at most one in H . Then the following properties hold.

(i) The degree of the vertex in I ′ ∩ L̃(v0) is at least two in H .

(ii) jmax = m.

Proof. (i) Suppose that the vertex in I ′ ∩ L̃(v0) is degree at most one
in H . Note that I ′ ∩ L̃(vm+1) is a set that contains a single vertex. By
Claim2.3.3, there exists a good pair {a1, b1} of two vertices in L̃(v1) such
that a1 and b1 are not adjacent to the vertex in I ′∩L̃(v0). By Claim 2.3.1,
there exist two vertex setsA = {a1, a2, . . . , am} andB = {b1, b2, . . . , bm}
satisfying the conditions (i)–(iii) of Claim 2.3.1. Since the degree of the
vertex in I ′ ∩ L̃(vm+1) is at most one, one of am and bm, say am, is not
adjacent to the vertex in I ′ ∩ L̃(vm+1). Then I ′ ∪ A is an (ML ∪M1

L ∪
M2

L)-colouring of G, a contradiction.
(ii) Suppose that jmax ≤ m− 1. We prove the following subclaim.

Subclaim 2.3.4.1 For any good pair {ajmax+1, bjmax+1} of two vertices in
L̃(vjmax+1), either ajmax+1 or bjmax+1 is adjacent to every vertex in Ujmax .
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Proof. Suppose that there is a good pair {ajmax+1, bjmax+1} of two
vertices in L̃(vjmax+1) such that both ajmax+1 and bjmax+1 are not adjacent
to one of vertices in Ujmax . By Claim 2.3.1, there exist vertex sets
A = {ajmax+1, . . . , am} and B = {bjmax+1, . . . , bm} satisfying conditions
(i)–(iii) of Claim 2.3.1. Since the vertex in I ′∩L̃(vm+1) is degree one inH ,
one of am and bm, say am, is not adjacent to the vertex in I ′∩ L̃(vm+1) in
H . Let ujmax be a vertex inUjmax not adjacent to ajmax+1. SinceU0∩I ′ ̸= ∅
by Claim 2.3.4 (i), I ′ ∪U ∪{ujmax}∪A is an (ML ∪M1

L ∪M2
L)-colouring

of G. This is a contradiction.
Suppose that L̃[L(vjmax) ∪ L̃(vjmax+1)] is a matching. If |Ujmax| ≥ 2,

then for any good pair {ajmax+1, bjmax+1} of two vertices in L̃(vjmax+1),
both ajmax+1 and bjmax+1 are not adjacent to one of the vertices in
Ujmax . This contradicts Subclaim 2.3.4.1. Hence we may assume that
|Ujmax| = 1. Since H[L̃(vjmax) ∪ L̃(vjmax+1)] is a matching, we have
|L̃(vjmax+1) \ NH(Ujmax)| ≥ 3 by the definition of jmax. We have a
good pair {ajmax+1, bjmax+1} in L̃(vjmax+1) such that both ajmax+1 and
bjmax+1 are not adjacent to the vertices in Ujmax . This contradicts
Subclaim 2.3.4.1. Hence H[L̃(vjmax)∪ L̃(vjmax+1)] is not a matching and
so |L(vjmax+1)| ≥ 3 by assumption (II) of Theorem 54.

Suppose |L(vjmax+1)| ≥ 4. We show that |⋃uj∈Ujmax
(L̃(vjmax+1) \

NH(uj))| ≥ 3. If |L(vjmax+1)| = 4, then by assumption (IV) of
Theorem 54 and the definition of Ujmax , the number of vertices that
are both adjacent to the vertices of Ujmax in L̃(vjmax+1) is at most one. If
|L(vjmax+1)| = 5, then the number of vertices that are both adjacent to
the vertices of Ujmax in L̃(vjmax+1) is at most two. If |L(vjmax+1)| ≥ 6, then
the number of vertices that are both adjacent to the vertices of Ujmax in
L̃(vjmax+1) is at most three. Hence in both cases, |⋃uj∈Ujmax

(L̃(vjmax+1)\
NH(uj))| ≥ 3holds. This togetherwith assumption (I) implies that there
is a good pair {ajmax+1, bjmax+1} ⊆

⋃
uj∈Ujmax

(L̃(vjmax+1)\NH(uj)) of two
vertices in L̃(vjmax+1) such that both ajmax+1 and bjmax+1 are not adjacent
to one of vertices in Ujmax . This contradicts Subclaim 2.3.4.1. Hence we
may assume |L(vjmax+1)| = 3.
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By assumption (IV), H[L̃(vjmax+1) ∪ L̃(vjmax+2)] is a matching and so
every pair of two vertices in L̃(vjmax+1) is a good pair. Hence we can
take a good pair {ajmax+1, bjmax+1} of two vertices in L̃(vjmax+1) such that
both ajmax+1 and bjmax+1 are not adjacent to one of the vertices in Ujmax .
This contradicts Subclaim 2.3.4.1.
Claim 2.3.5 Both H[L̃(v0)∪L̃(v1)] and H[L̃(vm)∪L̃(vm+1)] have some
edges inM1

L ∪M2
L.

Proof. Suppose that H[L̃(vm)∪ L̃(vm+1)] has no edges inM1
L∪M2

L. By
Claim 2.3.2, H[L̃(v0) ∪ L̃(v1)] has some edges inM1

L ∪M2
L.

Subclaim 2.3.5.1 |L(v0)| ≥ 5.

Proof. Suppose that |L(v0)| ≤ 4. By the assumption (II) of Theorem 54,
degG(v0) ≥ 3 and we obtain degG(v0) = 3 and degG′(v0) = 2. Let L′′ be
a list assignment of G′ such that

L′′(u) =


L′(u)− {c ∈ L(u) : (u, c) ∈ U0}, if u = v0,

L′(u), otherwise.
LetML′′ ,M1

L′′ ,M2
L′′ be matching assignments over L′′ obtained from

ML′ ,M1
L′ ,M2

L′ , respectively, by deleting the edges incident with the
vertices in U0. Note that 1 ≤ |U0| ≤ 2 by assumption (I) of Theorem 54,
so 2 ≤ |L′′(v0)| ≤ 3, |L′′(vm+1)| ≥ degG(vm+1) ≥ 3, and the graph
induced by the edges connecting L̃′′(v0) and L̃′′(vm+1) is a matching.
Suppose that (G′, L′′,ML′′ ∪ M1

L′′ ∪ M2
L′′) is bad, then the (ML′′ ∪

M1
L′′ ∪M2

L′′)-cover of G′ must be isomorphic to a ladder of odd length
or a Möbius ladder of even length by assumption (I) of Theorem 54.
Since |L′′(vm+1)| ≥ 3, the (ML′′ ∪ M1

L′′ ∪ M2
L′′)-cover of G′ is not

isomorphic to a ladder of odd length or aMöbius ladder of even length,
a contradiction. Hence (G′, L′′,ML′′ ∪M1

L′′ ∪M2
L′′) is not bad. By the

induction hypothesis,G′ has an (ML′′∪M1
L′′∪M2

L′′)-colouring I ′. Since
the vertices in I ′ ∩ (L̃(v0) ∪ L̃(vm+1)) are degree at most one in H , this
contradicts Claim 2.3.4 (i). Hence the subclaim holds.
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Since H[L̃(vm) ∪ L̃(vm+1)] is a matching, it follows from Claim 2.3.4
(ii) that we obtain jmax = m. Suppose that |Um| ≥ 2. Since H[L̃(vm) ∪
L̃(vm+1)] is amatching, one of the vertices inUm, say um, is not adjacent
to the vertex in I ′ ∩ L̃(vm+1). Then I ′ ∪ U ∪ {um} is an (ML ∪M1

L ∪
M2

L)-colouring of G. This is a contradiction. Hence |Um| = 1 and write
Um = {um}. Let wm+1 be the vertex in L̃(vm+1) adjacent to um. We
add the edges between U0 and wm+1 toM1

L′ ∪M2
L′ . Since |L(v0)| ≥ 5,

such newML′ ,M1
L′ ,M2

L′ satisfy the assumptions of Theorem 54 and
(G′, L′,ML′∪M1

L′∪M2
L′) is not bad. By the induction hypothesis,G′ has

an (ML′ ∪M1
L′ ∪M2

L′)-colouring I ′′. By Claim 2.3.4 (i), I ′′ ∩ U0 ̸= ∅ and
so wm+1 /∈ I ′′. However I ′′∪U ∪{um} is an (ML∪M1

L∪M2
L)-colouring

of G, a contradiction.

Claim 2.3.6 |L(v0)| ≥ 5 and |L(vm+1)| ≥ 5.

Proof. Suppose that one of |L(v0)| and |L(vm+1)| is at most four. We
may assume that |L(vm+1)| ≤ 4. Let L′′ be a list assignment of G′ such
that

L′′(u) =


L′(u)− {c ∈ L′(u) : (u, c) ∈ Um+1} if u = vm+1

L′(u) otherwise.
LetML′′ ,M1

L′′ ,M2
L′′ be matching assignments over L′′ obtained from

ML′′ ,M1
L′′ ,M2

L′′ , respectively, by deleting the edges incident with the
vertices in Um+1. We have 2 ≤ |L′′(vm+1)| ≤ 3, |L′′(v0)| ≥ 4, and
the graph induced by the edges connecting L̃′′(v0) and L̃′′(vm+1) is a
matching. Hence, (G′, L′′,ML′′ ∪M1

L′′ ∪M2
L′′) is not bad and satisfies

the assumptions of the theorem. By the induction hypothesis, G′ has
an (ML′′ ∪M1

L′′ ∪M2
L′′)-colouring I ′. Since the vertex in I ′ ∩ L̃(vm+1) is

degree one inH , it follows fromClaim 2.3.4 (ii) that we obtain jmax = m.
We show that |Um| ≥ 2. By Claim 2.3.5 and assumption (II) of the

theorem, |L(vm)| ≥ 3. If |L(vm)| = 4, then |NH(Um−1) ∩ L̃(vm)| ≤ 2 by
assumption (III) of the theorem and so |Um| ≥ 2. If |L(vm)| ≥ 5, then
|NH(Um−1) ∩ L̃(vm)| ≤ 3 and so |Um| ≥ 2. Suppose that |L(vm)| = 3. By
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Claim2.3.5 and assumption (IV) of the theorem, |NH(Um−1)∩L̃(vm)| = 1
and so |Um| ≥ 2. Hence |Um| ≥ 2. This together with I ′ ∩ Um+1 = ∅
implies that there is a vertex um in Um not adjacent to the vertex in
I ′ ∩ L̃(vm+1). Then I ′ ∪ U ∪ {um} is an (ML ∪M1

L ∪M2
L)-colouring of

G. This is a contradiction.
We add the edges between U0 and Um+1 to M1

L′ ∪ M2
L′ . By

Claim2.3.6 and assumption (I) of Theorem54, (G′, L′,ML′∪M1
L′∪M2

L′)
is not bad and satisfies the assumptions of Theorem 54. By the
induction hypothesis, G′ has an (ML′ ∪M1

L′ ∪M2
L′)-colouring I ′. Note

that eitherU0∩I ′ = ∅ orUm+1∩I ′ = ∅. Wemay assume thatU0∩I ′ = ∅.
Suppose that m = 1. By Claim 2.3.5 and assumption (IV) of

Theorem 54, |L(v1)| ≥ 4. Since U0 ∩ I ′ = ∅, there is at most one vertex
in L̃(v1) adjacent to the vertex in I ′ ∩ L̃(v0). If |L(v1)| = 4, then there
are at most two vertices in L̃(v1) adjacent to the vertex in I ′ ∩ L̃(vm+1).
If |L(v1)| ≥ 5, then there are at most three vertices in L̃(v1) adjacent
to the vertex in I ′ ∩ L(vm+1). In the both cases, there is at least one
vertex in L̃(v1) not adjacent to I ′∩ (L̃(v0)∪ L̃(vm+1)). Then we add such
a vertex to I ′ and it is an (ML ∪M1

L ∪M2
L)-colouring of G. This is a

contradiction. Hence m ≥ 2.
We show that there exists a goodpair {a1, b1}of two vertices in L̃(v1)

such that a1 and b1 are not adjacent to I ′ ∩ L̃(v0). If |L(v1)| ≥ 4, then
since U0 ∩ I ′ = ∅, there are at least three vertices in L̃(v1) not adjacent
to the vertex in I ′ ∩ L̃(v0) and so we can take a desired good pair by
assumption (I) of Theorem 54. Hence we may assume that |L(v1)| = 3.
By Claim 2.3.5 and assumption (IV) of Theorem 54, H[L̃(v1) ∪ L̃(v2)] is
a matching. Hence the pair of two vertices not adjacent to the vertex
in I ′ ∩ L̃(v0) is a desired good pair.

By Claim 2.3.1, there exist vertex sets A = {a1, a2, . . . , am} and B =
{b1, b2, . . . , bm} satisfying conditions (i)–(iii) of Claim 2.3.1. Suppose that
|L(vm)| = 3. Then by assumption (III) of Theorem 54, there is a vertex
um in L̃(vm) not adjacent to the vertex in I ′ ∩ L̃(vm+1). By Claim 2.3.5
and assumption (IV) of Theorem 54, H[L̃(vm−1) ∪ L̃(vm)] is a matching
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and so one of am−1 and bm−1, say am−1, is not adjacent to um. Then I ′ ∪
{um}∪(A\{am}) is an (ML∪M1

L∪M2
L)-colouring ofG, a contradiction.

Hence |L(vm)| ≥ 4. By condition (ii) of Claim2.3.1, one of am−1 and bm−1,
say am−1, is degree one inH[L̃(vm−1)∪L̃(vm)]. If |L(vm)| = 4, then there
are at most two vertices in L̃(vm) adjacent to the vertex in I ′ ∩ L̃(vm+1)
by assumption (III) of Theorem 54. If |L(vm)| ≥ 5, then there are at
most three vertices in L̃(vm) adjacent to the vertex in I ′ ∩ L̃(vm+1). In
both cases, there are at least two vertices in L̃(vm) not adjacent to the
vertex in I ′ ∩ L̃(vm+1) and so there is a vertex wm in L̃(vm) not adjacent
to the vertices in I ′ ∩ L̃(vm+1) ∪ {am−1}. Then I ′ ∪ {wm} ∪ (A \ {am}) is
an (ML ∪M1

L ∪M2
L)-colouring of G, a contradiction. So we complete

the proof of Theorem 54.
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3 - Beyond the fractional Reed bound for

triangle-free graphs

Given a graph H, we let χf (d, H) be the supremum of the fractional chromatic

numbers over all H-free graphs of maximum degree at most d. In this chapter, we

study χf (4, K3).

3.1 . Introduction

When H is a complete graph, the study of χf (d, H) falls in the domain of

Ramsey theory, a domain which emerged in the 1930s following seminal results by

van der Waerden [104] and by Ramsey [90], and has attracted a lot of attention ever

since. An important result in this case is due to Molloy and Reed [82, Theorem 21.7,

p. 244]: known as “the fractional Reed bound”, it states that χf (d, Kn) ≤ d+n
2 for

all integers d, n ≥ 2.

In this chapter, we focus on the case H = K3, which is closely related to

off-diagonal Ramsey numbers. It has been established [39] that χf (3, K3) = 14/5.

The same question for larger values of the maximum degree is still open. At one

end of the spectrum, we know that χf (4, K3) lies between 3.25 (see Figure 3.1)

and 3.5 (by the fractional Reed bound). At the other end of the spectrum, one

has χf (d, K3) ≤ (1 + o(1)) d/ ln d as d→∞, which is a consequence of a result

by Molloy [80], and one can infer from a study of random d-regular graphs by

Bollobás [13] that χf (d, K3) ≥ d
2 ln d .

A first study of χf (d, K3) has been made by Pirot and Sereni [88], with the

Figure 3.1: A graph certifying that χf (4, K3) ≥ 3.25.
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help of a so-called greedy fractional colouring algorithm (GFCA). This algorithm

takes as input a graph G and a probability distribution π on the independent sets of

any induced subgraph of G, and returns a fractional colouring of G whose weight

is bounded by a function of π and G. They proved the following.

Theorem 55 (Pirot & Sereni, 2021) For every integer d,

χf (d, K3) ≤ 1 + min
k∈N

inf
λ>0

(1 + λ)k + λ(1 + λ)d
λ(1 + kλ) .

The upper bound in Theorem 55 which can be effectively computed from

this formula improves on the fractional Reed bound as soon as d ≥ 17. When

d ∈ [1, 16], the bound still follows d+3
2 .

We use the GFCA to obtain the following result.

Theorem 56 χf (4, K3) < 3.4663.

3.1.1 . Notations

Let G be a given graph. If J is a subset of vertices of G, then we write NG(J)
for the set of vertices that are not in J and have a neighbour in J , while NG[J ]
is NG(J)∪J . We omit the graph subscript when there is no ambiguity, write N(v)
for N({v}), and we sometimes write NX(v) instead of N(v) ∩X, for any subset

of vertices X ⊆ V (G). As mentioned earlier, the set of all independent sets of G

is I (G). If w is a mapping from I (G) to R, then for every vertex v ∈ V (G) we

set

w[v] :=
∑

I∈I (G)
v∈I

w(I).

Further, if I is a collection of independent sets of G, then w(I ) :=
∑

I∈I w(I).
If I is an independent set of a graph G, a vertex v is covered by I if v belongs to I

or has a neighbour in I. A vertex that is not covered by I is uncovered (by I).

3.1.2 . Intuition of our method

In order to apply the GFCA to a graph G, one needs to have some probability

distribution over the independent sets of any given induced subgraph H of G.

When this probability distribution has a relatively uniform coverage of the closed

neighbourhoods in H — this is referred to as (α, β)-local occupancy in works using
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the GFCA — one can deduce an upper bound on the fractional chromatic number

of G.

In previous works using the GFCA, the input probability distribution has always

been the hard-core distribution on some family of independent sets of H. In

this paper, we construct our random independent sets in several steps, where at

each step we lie within the subgraph of H induced by the vertices uncovered by

the random independent set constructed so far. The first step is the hard-core

distribution with fugacity λ, and the last step is given by a specific fractional

colouring with local demand (the demand is a decreasing function of the degree).

3.2 . Prerequisites

In this section we introduce the notions that will be needed to derive our results.

3.2.1 . Greedy fractional colouring algorithm

Our results on fractional colouring are obtained using a greedy algorithm

analysed in a recent work [34]. This algorithm is a generalisation of an algorithm

first described in the book of Molloy and Reed [82, p. 245] for the uniform

distribution over maximum independent sets. The setting here is, for each induced

subgraph H of the graph we wish to fractionally colour, a probability distribution

over the independent sets of H.

Lemma 3 (Davies et al., 2020) Let G be a graph given with
couples (αv, βv) for every vertex v ∈ V (G). For every induced subgraph
H of G, let IH be a random independent set of H drawn according to a
given probability distribution, and assume that

αvP [v ∈ IH ] + βvE [|IH ∩N(v)|] ≥ 1,

for every v ∈ V (H). Then the GFCA produces a fractional colouring w

of G which certifies that

χf (G) ≤ max
v∈V (G)

αv + βv deg(v).
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Algorithm 1: The Greedy Fractional Colouring Algorithm
(GFCA)
for I ∈ I (G) do

w(I)← 0

H ← G

while |V (H)| > 0 do

ι← min
v∈V (H)

1− w[v]
P [v ∈ IH ]

for I ∈ I (H) do
w(I)← w(I) + P [IH = I] ι

H ← H − {v ∈ V (H) : w[v] = 1}

We note that in Lemma 3, although there is one probability distribution on each

induced subgraph, the couple (αv, βv) associated with each vertex is fixed once

and for all, which somewhat ties together the different probability distributions

involved.

In our setting (the class of triangle-free graphs of bounded degree), the only

way to distinguish vertices when we look only at their first neighbourhood is by

considering their degree (and possibly those of their neighbours). In particular, if G

is a regular graph, then there I s no way of distinguishing its vertices in our setting.

For that reason, we will only apply Lemma 3 with all couples (αv, βv)v∈V (G) equal.

To ensure optimality, our task is to solve the following linear program.

Definition 13. LetG be a graph, and letφmap each (induced) subgraphH ⊆

G to a random independent set φ(H) ∈ I (H). We let LPφ(G), which we call
the linear program associated with (G,φ), be defined as follows.

LPφ(G) :



Minimise α + β∆

such that αP [v ∈ φ(H)] + β E [|φ(H) ∩N(v)|] ≥ 1, for all H ⊆ G

v ∈ V (H);

α, β ≥ 0.

First, we need to compute the constraints of the linear program described

above. To that end, we define the following.
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Definition 14. Let H be a graph and I a random independent set of H . For
every vertex v ∈ V (H), we let

eI(v) :=

 P [v ∈ I]
E [|N(v) ∩ I|]


be the constraint of I on v.

With the above definition in hand, the constraints of the linear program are all

of the form (α, β) · eφ(H)(v) ≥ 1, for every H ⊆ G and v ∈ V (H).
We note that if we generate the whole set of constraints {eφ(H)(v) : H ⊆

G, v ∈ V (H)}, we may end up with a huge number of constraints. It is however

possible to considerably reduce the number of constraints by restricting to a specific

subset. This requires the introduction of a partial ordering on the set of constraints.

In the end, we will keep only minimal constraints with respect to that order, and

argue that this does not affect the result of the linear program.

Definition 15. Given two constraints e0 = (p0, q0)T and e1 = (p1, q1)T , we say
that e0 is tighter than e1, or equivalently that e1 is looser then e0, if they satisfy
p0 ≤ p1 and p0 + q0 ≤ p1 + q1. We denote it e0 ≾ e1.

We can now introduce a new linear program obtained by keeping only minimal

constraints with respect to (≾) from the complete linear program.

Definition 16. Let G be a graph, and let φ map each (induced) subgraph
H ⊆ G to a random independent set φ(H) ∈ I (H). We denote Eφ the
set of minimal constraints with respect to (≾) among {eφ(H)(v) : H ⊆ G, v ∈

V (H)}. We let LP∗
φ(G,φ), which we call the reduced linear program associated

with (G,φ), be defined as follows.

LP∗
φ(G) :



Minimise α + β∆

such that αp + βq ≥ 1, for each
p

q

 ∈ Eφ;

α, β ≥ 0.

We now argue that solving LP∗
φ(G) instead of LPφ(G) is enough for our

purpose. This is justified by the following claim.
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Claim 3.2.1 If the solution of the linear program LP∗
φ(G) is at most

∆(G) + 1, then it matches the solution of LPφ(G).

Proof. Let (α, β) realise the solution of the linear program LP∗
φ(G),

which we assume to be at most ∆ + 1. So, in particular, the constraint
generated by a subgraph H = {v} of G must be satisfied, i.e. α ≥ 1.
If we now assume for the sake of contradiction that β > α, then the
solution of the linear program will be more than ∆(G) + 1, which
contradicts the assumption. So we have α ≥ β. We now argue that
every constraint eIH

(v) = (x, y)T for H ⊆ G and v ∈ V (H) is satisfied.
Indeed, there is a constraint e′ = (x′, y′)T that is minimal with respect
to (≾) and such that e′ ≾ eIH

(v). The constraint e′ appears in the linear
program, so it is satisfied by assumption; we have αx′ + βy′ ≥ 1. So we
have

αx + βy = (α− β)x + β(x + y)

≥ (α− β)x′ + β(x′ + y′)

= αx′ + βy′ ≥ 1.

This ends the proof.
3.2.2 . Hard-core model

The probability distribution that we are going to use as a setting of Lemma 3

uses the hard-core distribution over the independent sets of a graph, which has the

Spatial Markov Property. Given a family I of independent sets of a graph H, and

a positive real λ, a random independent set I drawn according to the hard-core

distribution at fugacity λ over I is such that

P [I = I] = λ|I|

ZI (λ) ,

for every I ∈ I , where ZI (λ) =
∑

J∈I
λ|J | is the partition function associated

with I.

Note that when I = I (H), and λ→∞, the hard-core distribution converges

towards the uniform distribution over the maximum independent sets of H.
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Lemma 4 (Spatial Markov Property) Given a graph H , and a real λ > 0,
let I be drawn according to the hard-core distribution at fugacity λ over the
independent sets I (H) of H . Let X ⊆ V (H) be any given subset of
vertices, and J be any possible outcome of I \X . Then, conditioned on the
fact that I\X = J , the random independent set I∩X follows the hard-core
distribution at fugacity λ over the independent sets of H[X \N(J)].

Proof. Conditioned on the fact that I \ X = J , let IJ be the set of
possible realisations of I ∩X . Now, for every I ∈ IJ ,

P [I ∩X = I | I \X = J ] = P [I = I ∪ J ] = λ|I∪J |∑
I′∈IJ

λ|I′∪J | = λ|I|∑
I′∈IJ

λ|I′| ·
λ|J |

λ|J |

= λ|I|∑
I′∈IJ

λ|I′| = λ|I|

ZIJ
(λ) .

The proof of this result is standard and follows from a simple consideration of

the marginal probabilities. It remains valid when we fix λ = ∞, i.e. the uniform

distribution over the maximum independent sets of any graph H has the Spatial

Markov Property.

Among the many consequences of the Spatial Markov Property, one can observe

that for every vertex v ∈ V (H),

P [v ∈ I] = λP [v is uncovered by I] . (3.1)

3.3 . Maximum degree 4

In this section, we focus on optimising the upper bound of χf (4, K3). To that

end, we use a 2-step procedure to construct the random independent sets that

feed the GFCA. The first step follows the hard-core distribution, and the second

step consists of a fractional colouring with local demand of the uncovered vertices

of degree at most 4. Before describing the procedure in more detail, we introduce

the necessary terminology.
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Figure 3.2: Dangerous graphs

3.3.1 . Setting up the finishing step

Let G be a graph. Given a function f : V (G)→ Q+, an f -fractional colouring

of G is a random independent set I of G such that P [v ∈ I] ≥ f(v) for every vertex

v ∈ V (G). An f -fractional colouring of G is also called a fractional colouring of

G with local demand f . Given a vertex v, the value of f(v) is called the demand

of v.

We say that a subgraph H of a given subcubic graph G is dangerous if

it is isomorphic to C5 or to K+
4 (the complete graph on 4 vertices where two

non-adjacent edges have been subdivided twice each, see Figure 3.2). A vertex is

dangerous if it has degree 2 in a dangerous graph. A vertex v ∈ V (G) is special if

it belongs to a dangerous subgraph of G, and has degree 2 in G. Given a subset B

of the dangerous vertices of G, we say that a vertex v of degree 2 in a dangerous

subgraph H of G is nailed by B if either v belongs to B, or v is not special (i.e

has degree 3 in G). A nail B of G is a subset of the dangerous vertices of G such

that for every dangerous subgraph H of G, at least 2 vertices of degree 2 in H are

nailed by B.

In order to analyse the final step of our procedure, we use the following

result [39].

Theorem 57 (Dvořák, Sereni, Volec; 2014) Let G be a triangle-free
subcubic graph, and let B be a nail of G. For every vertex v ∈ B, we let
fB(v) = 7−deg(v)

14 , and for every vertex v /∈ B, we let fB(v) = 8−deg(v)
14 .
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Then G has an fB-fractional colouring.

We begin by showing that Theorem 57 has the following result as a corollary.

Corollary 3 Let G be a triangle-free graph, and let

fG(v) =



1 if deg(v) = 0;
1/2 if v belongs to an isolated edge,

1− fG(u) ≥ 4/7 otherwise if N(v) = {u};
11/28 if v is special and has a special neighbour,

3/7 otherwise if deg(v) = 2;

5/14 if deg(v) = 3;
0 if deg(v) ≥ 4

for every vertex v ∈ V (G). Then G has an fG-fractional colouring.

Proof. Let G′ be obtained from G by deleting all vertices of degree at
least 4. Since the demand of the vertices of degree at least 4 in G is 0,
and since the demand of a vertex increases if its degree decreases (as
can be seen by the definition of fG), any fG′-fractional colouring of G′

is in particular an fG-fractional colouring of G. Therefore, in the rest of
the proof, we may assume that G is subcubic (its maximum degree is
at most 3).

If G contains a connected component C isomorphic to C5, then
any fG-fractional colouring of G \ V (C), extends to an fG-fractional
colouring of G with an independent 2/5-fractional colouring of G[C].
Indeed, the vertices v ∈ C are all special, hence we have demand
fG(v) = 11/28 < 2/5. We may therefore assume that G contains no
isolated C5.

Let S be the set of special vertices inG. SinceG contains no isolated
C5, it means that each copy of C5 in G contains one non-special vertex.
It follows that G[S] consists of a union of paths of length at most 3. We
disregard from G[S] the isolated vertices, which yields a linear forest
F of minimum degree 1, that we can properly 2-colour. Let B be a
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uniform random colour class of F ; this is a dominating set of V (F ),
and moreover P [v ∈ B] = 1/2 for every vertex v ∈ V (F ).

We now claim that B is a nail of G. Assume for the sake of
contradiction that there exists a dangerous subgraph H of G with at
most 1 nailed vertex. Let M = {u1v1, u2v2} be a matching of the
degree-2 vertices in H . For i ∈ {1, 2}, if both ui and vi are special, then
they are adjacent in F and therefore have a different colour; hence B
contains one of them, i.e. one of them is nailed. On the other hand,
if one of ui and vi is non-special, then it is nailed. So H contains one
nailed vertex among {u1, v1}, and one nailed vertex among {u2, v2}, a
contradiction.

Let G̃ be the subgraph ofG induced by the vertices of degree 2 or 3.
Wemay apply Theorem 57 in order to obtain an fB-fractional colouring
of G̃; this is a random independent set I0 such thatP [v ∈ I0] ≥ E [fB(v)]
if deg(v) ∈ {2, 3}. We observe that the vertices in V (F ) are precisely the
special vertices which have (at least) one special neighbour. For each
such vertex v, we recall that P [v ∈ B] = 1/2, hence E [fB(v)] = 1

2 ·
5
14 +

1
2 ·

3
7 = 11

28 . Moreover, we have fB(v) = 5
14 if deg(v) = 3 and fB(v) = 3

7 if
deg(v) = 2 and v /∈ V (F ), regardless of the random outcome of B.

There remains to treat the case of vertices of degree 0 or 1. For
every vertex v such that P [v ∈ I0] > fG(v), we remove it from I0 with
probability 1 − fG(v)

P[v∈I0] ; this yields a new random independent set I1

where P [v ∈ I1] = fG(v) for every vertex v of degree at least 2. We
construct I2 by adding to I1 all isolated vertices, aswell as one extremity
chosen uniformly at random from each isolated edge, and finally every
other vertex v of degree 1 whenever it is uncovered by I1. It is now
straightforward to check that I2 is indeed a fractional fG-colouring of
G.

3.3.2 . A description of the probability distribution

We are now ready to describe our fractional colouring procedure for a given

triangle-free graph G of maximum degree 4. We will use the GFCA with a

probability distribution over the independent sets of any induced subgraph H of G
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obtained as follows.

(i) We fix some real value λ > 0 (which will be optimised later on). We let

I0 be drawn according to the hard-core distribution at fugacity λ over the

independent sets of H. Let us write this I0 ← hcλ(I (H)).

(ii) We let H := H \ N [I0] be the subgraph of H induced by the vertices

uncovered by I0. We apply Corollary 3 to H in order to obtain an

fH-fractional colouring I1 of H.

(iii) We return the random independent set I0 ∪ I1.

It turns out that this procedure is not enough to guarantee that χf (G) < 3.5.

In order to fall below that threshold, we need to alter our last step and give a

non-zero demand f(v) for some vertices v of degree 4, namely the ones which have

at least one degree-4 neighbour. Before describing how to do that, we describe the

analysis of the current procedure. We will then explain how to alter it gradually in

order to obtain the promised upper bounds on χf (G).

3.3.3 . The analysis of the probability distribution

Let G be a graph given with a function φ which maps each subgraph H from

a given family of subgraphs of G to a random independent set of H. We introduce

some notation to bound from below the marginal probabilities associated with φ

on a vertex of given degree.

Definition 17. For every integer d ≤ ∆(G), we let
µφ(d) := min{P [v ∈ φ(H)] : H ⊆ G, v ∈ V (H), degH(v) = d}.

To avoid a non-uniform behaviour of the probability distribution we construct

over the independent sets, we will always make it so that µφ is a non-increasing

function over the integers.

Next, we introduce the notion of refined constraint, which will be helpful to

compute constraints generated by a random independent set I = I0∪I1 constructed

in two steps, where I0 follows the hard-core distribution.
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Definition 18. For every H ∈ dom(φ) and v ∈ V (H), we let

e+
φ,H(v) :=


P [v ∈ φ(H)]

E [|N(v) ∩φ(H)|]∑
u∈NH(v)

µφ(degH(u)− 1)


be the refined constraint of φ on v.
We extend the order (≾) to refined constraints as follows.

Definition 19. Given two refined constraints e0 = (p0, q0, r0)T and e1 =
(p1, q1, r1)T , we say that e0 is tighter than e1, or equivalently that e1 is looser
then e0, if they satisfy p0 ≤ p1, p0 + q0 ≤ p1 + q1, and r0 ≤ r1. We denote it
e0 ≾ e1.
For every integer d ≤ ∆(G), we denote E+

φ (d) the set of minimal refined constraints

in {
e+
φ,H(v) : H ∈ dom(φ), v ∈ V (H), degH(v) = d

}
,

with respect to (≾). We now show how to rely on this set of refined constraints in

order to compute a random independent set constructed in two steps as follows.

Lemma 5 Let G be a triangle-free graph. Let I be a random independent
set of G constructed in two steps, i.e. I = I0 ∪ φ(G \N [I0]), where I0 is
drawn from the hard-code distribution at fugacity λ > 0 from I (G), and φ

maps any subgraph H ⊆ G to a random independent set of H . Then each
constraint eI(v) is looser than some convex combination of the vectors

1
λ + (1 + λ)d

(
λ + p

(1 + λ)d−1(dλ + r) + q − r

)
: d ∈ {0, 1, . . . , ∆(G)} and


p

q

r

 ∈ E+
φ (d)

 .

Proof. Given a possible realisation J of I0 \N [v], let EJ be the random
event that I0 \N [v] = J . By the Spatial Markov Property, given a vertex
v ∈ V (G), if we condition on the event EJ , then I0 ∩ N [v] follows the
hard-core distribution at fugacity λ on the independent sets of a star
K1,d centred in v, where d = |N(v) \ N(J)|. A classical analysis of the
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hard-core model yields that
P [v ∈ I0 | EJ ] = λ

λ + (1 + λ)d
, and

P [u ∈ I0 | EJ ] = λ(1 + λ)d−1

λ + (1 + λ)d
for every u ∈ N(v) \N(J).

If we further condition on the event that v is uncovered by I0, then
we have I0 = J . Let us write this event E0

J ; we have P [E0
J | EJ ] =

1
λ+(1+λ)d . If we write H1 = G \N [J ], then the fact that E0

J holds means
thatG\N [I0] = H1. Note that we have v ∈ V (H1), and degH1(v) = d. So
there exists


p

q

r

 ∈ E+
φ (d) such that


p

q

r

 ≾ e+
φ,H1(v) =


p′

q′

r′

. It follows
that

P
[
v ∈ I1 | E0

J

]
= P [v ∈ φ(H1)] = p′, and so

P [v ∈ I | EJ ] = P [v ∈ I0 | EJ ] + P
[
v ∈ I1

∣∣∣ E0
J

]
P
[
E0

J

∣∣∣ EJ

]
= λ

λ + (1 + λ)d
+ p′

λ + (1 + λ)d
≥ λ + p

λ + (1 + λ)d
. (3.2)

We now let E∗
J be the random event that N(v) ∩ I0 ̸= ∅, given

the event EJ . Observe that EJ ≡ E0
J ∨ E∗

J ∨ “v ∈ I0”, and that
P [u ∈ V (G \N [I0])] equals 0 under the event “v ∈ I0” and 1 under the
event E0

J . We have
P [u ∈ V (G \N [I0]) | EJ ] = 1

1 + λ
(1− P [v ∈ I0 | EJ ]) = (1 + λ)d−1

λ + (1 + λ)d
,

and so
P [u ∈ V (G \N [I0]) ∧ E∗

J | EJ ] = P [u ∈ V (G \N [I0]) | EJ ]− P
[
E0

J

∣∣∣ EJ

]
= (1 + λ)d−1 − 1

λ + (1 + λ)d
.

If H ′
1 is any realisation of G \ N [I0] under the condition E∗

J , then
degH′

1
(u) ≤ degH1(u)− 1 for every u ∈ N(v) ∩ V (H ′

1), since v /∈ V (H ′
1).

In particular, P [u ∈ φ(H ′
1)] ≥ µφ

(
degH1(u)− 1

). It follows that
P [u ∈ I1 ∧ E∗

J | EJ ] ≥ P [u ∈ V (G \N [I0]) ∧ E∗
J | EJ ] µφ

(
degH1(u)− 1

)
≥ (1 + λ)d−1 − 1

λ + (1 + λ)d
µφ

(
degH1(u)− 1

)
,
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and so
P [u ∈ I1 | EJ ] = P [u ∈ I1 ∧ E∗

J | EJ ] + P
[
u ∈ I1

∣∣∣ E0
J

]
P
[
E0

J

∣∣∣ EJ

]
≥ 1

λ + (1 + λ)d

(
((1 + λ)d−1 − 1)µφ

(
degH1(u)− 1

)
+ P [u ∈ φ(H1)]

)
.

We now infer that
E
[
|N(v) ∩ I|

∣∣ EJ

]
=

∑
u∈NH1 (v)

(P [u ∈ I0 | EJ ] + P [u ∈ I1 | EJ ])

≥ dλ(1 + λ)d−1

λ + (1 + λ)d
+

∑
u∈NH1 (v)

1
λ + (1 + λ)d

(
((1 + λ)d−1 − 1)µφ

(
degH1(u)− 1

)
+ P [u ∈ φ(H1)]

)
.

So we have
P [v ∈ I | EJ ] + E

[
|N(v) ∩ I|

∣∣ EJ

]
≥ λ + p′

λ + (1 + λ)d
+ dλ(1 + λ)d−1

λ + (1 + λ)d

+
∑

u∈NH1 (v)

1
λ + (1 + λ)d

(
((1 + λ)d−1 − 1)µφ

(
degH1(u)− 1

)
+ P [u ∈ φ(H1)]

)
≥ λ + p + (1 + λ)d−1(dλ + r) + q − r

λ + (1 + λ)d
. (3.3)

We finish the proof with the laws of total probability and expectation,
from which we infer that the constraint eI(v) is looser than some
convex combination of the vector formed with the right-hand sides of
(3.2) and (3.3).

Now, we need to compute the sets E+
φ (d) for each integer d ≤ 4, where φ is

the finishing step described in Section 3.3.1.

Lemma 6 If G is a triangle-free graph of maximum degree at most 4, and
φ maps each subgraph H of G to the fH -fractional colouring given by
Corollary 3, then we have

µφ(0) = 1, µφ(1) = 1/2, µφ(2) = 11/28, µφ(3) = 5/14, µφ(4) = 0;
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E+
φ (0) =




1
0
0


 ;

E+
φ (1) =




1/2
1/2
1

 ,


4/7
3/7
1/2

 ,


9/14
5/14
11/28

 ,


1
0

5/14


 ;

E+
φ (2) =




11/28
3/4

25/28

 ,


3/7
5/7

11/14

 ,


1/2
1/2

19/14

 ,


4/7
3/7
6/7

 ,


9/14
5/14
3/4

 ,


1
0

5/7


 ;

E+
φ (3) =




5/14
15/14
33/28

 ,


11/28
3/4

35/28

 ,


3/7
5/7
8/7

 ,


1/2
1/2
12/7

 ,


4/7
3/7

17/14

 ,


9/14
5/14
31/28

 ,


1
0

15/14


 ;

E+
φ (4) =




0
0

10/7


 .

Proof. The values of µφ(d) for each d ≤ 4 follow readily from the
definition of fH .

Computing E+
φ (1) is straightforward: given a vertex v ∈ V (H) of

degree 1, its unique neighbour u has degree degH(u) ∈ {1, . . . , 4}. By
definition of fH , the constraint in v is of the form

1− fH(u)
fH(u)

µφ(degH(u)− 1)

 .

When the degree of u is fixed, the worst case is when fH(u) is
maximised (since this decreases the demand for v); hence for the case
degH(u) = 2 we keep the value fH(u) = 3/7.

To compute E+
φ (2), we can first reuse E+

φ (1) to treat the case where
the root vertex v has (at least) one neighbour u of degree 4, by adding
5/14 to the last coordinate of the constraint associated to the pattern
obtained by removing u. Note that this can be done more generally
for every degree. There remains to consider the patterns where both
neighbours u1, u2 of v have degree at most 3. The minimum total
demand of the neighbourhood (i.e. the second coordinate of the
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constraint) is 5/7 and is reached when both u1 and u2 have degree
3, but in that case v cannot be special and so its demand is 3/7; this
yields the constraint (3/7, 5/7, 11/14)T . The minimum demand for v is
µφ(2) = 11/28 and is reachedwhen v is special; in that case itmust have
a special neighbour of demand 11/28, and in the worst case its other
neighbour has degree 3 and demand 5/14. This yields the constraint
(11/28, 3/4, 25/28)T .

To compute E+
φ (3), we reuse E+

φ (2) as explained above, and then
consider the patterns where all neighbours of v have degree at most
3. The minimum demand for v is µφ(3) = 5/14, and the minimum total
demand for its neighbourhood is 3µφ(3) = 15/14; this is reached when
all its neighbours have degree 3. This yields the constraint ( 5

14 , 15
14 , 33

28)T .
To compute E+

φ (4), the worst case is when v has four degree-4
neighbours, which yields the constraint e0 = (0, 0, 10

7 )T . Note that e0 is
tighter than all constraints that could be inherited from E+

φ (3), so these
are discarded from E+

φ (4) (since we keep only minimal constraints with
respect to (≾)).

In Figure 3.3, we present the patterns rooted in a degree-3 vertex yielding the

refined constraints in E+
φ (3)

3.3.4 . Giving non-zero demand to (some) degree-4 vertices

Let H be any subgraph of G (which we recall is a triangle-free graph of

maximum degree 4). Let S≤3 ⊆ V (H) be the set of vertices of degree at most 3,

and let S4 = V (H) \ S≤3 be the set of vertices of degree 4. We further partition

S4 into S0
4 ∪S+

4 , where S0
4 is the set of isolated vertices in G[S4] (and hence each

vertex in S+
4 has a neighbour in S4).

Claim 3.3.1 There exists a random set X ⊆ S4 such that H \ X is
deterministically subcubic, and P [v ∈ X] = 1/2 for every v ∈ S+

4 .

Proof. Let us construct a random dominating set X of H[S4], so that
H \X is indeed subcubic. Let F be a spanning forest of H[S+

4 ], and c

be a proper 2-colouring of F . We let X+ be a random colour class of
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v v v v

eI(v) =
 5/14

15/14

 eI(v) =
11/28

3/4

 eI(v) =
3/7

5/7

 eI(v) =
1/2

1/2



v v v

eI(v) =
17/28

11/28

 eI(v) =
9/14

5/14

 eI(v) =
1

0



Figure 3.3: The patterns rooted in a degree-3 vertex that yield a minimal

refined constraint

c, and X := X+ ∪ S0
4 . This is a random dominating set of H[S4], and

indeed we have P [v ∈ X] = 1/2 for every vertex v ∈ S+
4 .

Let X be the random set promised by Claim 3.3.1, so that H′ := H \ X is

a (random) subcubic triangle-free graph. We are now ready to define the new

finishing step.

Let φ′ : H 7→ φ(H′) for every H ⊆ G, where φ is the finishing step described

in Section 3.3.3. Let us analyse the constraints that it generates.

For every vertex v ∈ S4, we have

P
[
v ∈ φ′(H)

]
≥ E [µφ(degH′(v)) | v /∈ X]P [v /∈ X] , and

E
[
|N(v) ∩φ′(H)|

]
≥

∑
u∈N(v)

E [µφ(degH′(u)) | u /∈ X]P [u /∈ X] .

For every v ∈ S0
4 , every neighbour of v has degree at most 3 in H and belongs

to V (H′). Since we always have v /∈ V (H′), we infer that degH′(u) ≤ 2 for every

u ∈ N(v). Since µφ(2) ≥ 11/28, we conclude that (0, 11/7, 11/7)T ≾ e+
φ′,H(v).
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For every v ∈ S+
4 , we have

E [µφ(degH′(v)) | v /∈ X] ≥ µφ(3) ≥ 5
14 ,

and so

P
[
v ∈ φ′(H)

]
≥ 5

28 . (3.4)
Since moreover all degree-4 neighbours of v are also in S+

4 , (3.4) holds for them

as well; hence

E
[
|N(v) ∩φ′(H)|

]
≥ 4× 5

28 = 5
7 .

We recall that µφ(3) ≥ 5/14, so we conclude that (5/28, 5/7, 10/7)T ≾ e+
φ′,H(v).

The two constraints that we have derived are reached by the patterns drawn

in Figure 3.4. We conclude that

E+
φ′(4) =




0
11/7
11/7

 ,


5/28
5/7
10/7


 .

v
v ∈ X

eIH
(v) =

 0
11/7



v

if v ∈ X

if v /∈ X

eIH
(v) =

 0
5/14



eIH
(v) =

 5/14
15/14


eI(v) =

5/28
5/7



Figure 3.4: Two possible patterns rooted at v with NG[v] ∩ S4 ̸= ∅, and

their related constraints

Finally, we argue that we may set E+
φ′(d) := E+

φ (d) for every integer d ≤ 3.
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Claim 3.3.2 For every vertex v ∈ V (H) of degree at most 3, the refined
constraint e+

φ′,H(v) is looser than a convex combination of constraints from⋃
d≤3 E+

φ (d).

Proof. This is straightforward once one notices that, by definition ofφ′,
e+
φ′,H(v) = E

[
e+
φ,H′(v)

].

v

u1

if u1 ∈ X

if u1 /∈ X

eIH
(v) =

 3/7
10/14



eIH
(v) =

 5/14
15/14


eI(v) =

11/28
25/28



Figure 3.5: A possible pattern rooted at v with NG[v] ∩ S4 ̸= ∅, and its

related constraints

We are now ready to prove the main result of this section. Let us fix λ =
0.51. Given an induced subgraph H ⊆ G, we let φ0(H) := I0 ∪ φ′(H \ N [I0]),
where I0 ← hcλ(H). We construct the linear program LP∗

φ0(G) with the set of

constraints depicted in Table 3.1, which we obtain by combining Lemma 5 with

the values of E+
φ′(d) computed above. The solution to that program is reached

when α = 1.8980861 and β = 0.39205135; this implies that χf (4, K3) < 3.4663.
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Eφ0(0) =
{(

1
0

)}
;

Eφ0(1) =
{(

1/2
1/2

)}
;

Eφ0(2) =
{(

0.4131956355890983
0.8171186900623122

)
,

(
0.3875949146727972
0.8623039624795835

)
,

(
0.3619941937564962
0.9792992570670792

)
,(

0.3235931123820447
0.9840353904365947

)
,

(
0.3363934728401952
0.9516504784774741

)}
;

Eφ0(3) =
{(

0.29164468339150756
1.3313975884273366

)
,

(
0.2735750004056644
1.3841637731984464

)
,

(
0.2555053174198213
1.5641504645155335

)
,(

0.22840079294105667
1.4770428472298294

)
,

(
0.23743563443397822
1.4333115039516406

)
,

(
0.21936595144813514
1.5352254194759454

)}
;

Eφ0(4) =
{(

0.12061460778924579
1.966740049953671

)
,

(
0.08933488585220072
2.178014577640148

)}
.

Table 3.1: The constraints of the final linear program, with λ := 0.51.
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4 - On (2,k)-Hamilton-connected graphs

In this chapter, we introduce our work on (k1, k2)-Hamilton connected graphs.

4.1 . Introduction

Motivated by spanning connectivity and k-fan connected graphs, we

define (k1, k2)-Hamilton-connected graphs. Recall that a graph G is

(k1, k2)-Hamilton-connected, if for any two disjoint vertex subsets X =
{x1, x2, . . . , xk1} and U = {u1, u2, . . . , uk2}, there exist k1k2 internally-disjoint

paths connecting xi to uj for 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2, which

span the whole graph. We note that (1, k)-Hamilton-connectivity is equivalent

to k-fan-connectivity. It is easy to see that both (1, 1)-Hamilton-connectivity

and (1, 2)-Hamilton-connectivity are equivalent to Hamilton-connectivity. Clearly

(k, k)-Hamilton-connectivity implies k-linkedness.

Firstly, we give a sufficient condition for a graph to be

(2, k)-Hamilton-connected.

Theorem 58 Let G be an n-vertex graph. If G is (5k− 2)-connected and
σ2(G) ≥ n + k − 2 with k ≥ 2, then G is (2, k)-Hamilton-connected.
Moreover, the bound of σ2(G) is sharp.

We construct a graph to state that σ2(G) ≥ n + k− 2 of Theorem 58 is sharp

as follows. Let k and m be integers with m ≥ 3k − 2. Let G be a graph of order

n = 3k+2m+3 composed of G1 and G2 = K2k+m where G1 is a set of k+m+3
independent vertices such that each vertex of G1 is adjacent to each vertex of G2.

The graph G is (5k − 2)-connected and σ2(G) ≥ n + k − 3. But for two disjoint

subsets X = {x1, x2} and U = {u1, u2, . . . , uk} from the same part of G1, we

can not find 2k internally-disjoint paths connecting xi and uj for 1 ≤ i ≤ 2 and

1 ≤ j ≤ k which span G.

Another result obtained is about (k1, k2)-Hamilton-connectivity which is also

a tight sufficient condition.
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Theorem 59 Let G be an n-vertex graph. If σ2(G) ≥ n + k1k2− 2 with
k1, k2 ≥ 2, then G is (k1, k2)-Hamilton-connected. Moreover, the bound
of σ2(G) is sharp.

We construct a graph G of order n certifying the sharpness of Theorem 59.

For any k1, k2 ≥ 2 and n = k1k2 + k1 + k2 − 1, G consists of G1 = Kk1 ,

G2 = Kk1k2−1, and G3 = Kk2 such that each vertex of G1 is adjacent to each

vertex of G2 and each vertex of G3 is adjacent to each vertex of G2. We have

σ2(G) = n+k1k2−3. But for X = V (G1) and U = V (G3), we can not find k1k2

internally-disjoint paths connecting each pair {x, u} where x ∈ X and u ∈ U .

The remainder of this chapter is organized as follows. In Section 4.2, we prove

Theorem 58. The first part of this section is to prove G is (2, k)-connected. In the

second part of it, we prove that G is (2, k)-Hamilton-connected. In section 4.3,

we show Theorem 59. In Section 4.4, we present a polynomial-time algorithm to

find a spanning (X, U)-connection given two disjoint vertex subsets X = {x, y}

and U = {u1, u2, . . . , uk} with k ≥ 2 for any graph satisfying the hypotheses of

Theorem 58.

4.2 . Proof of Theorem 58

For the purpose of proof, we need the following preliminaries. In fact, the

following notations and terminology are also suitable for the proof of Theorem 59.

Let G be a graph. For two disjoint vertex subsets X = {x1, x2, . . . , xk1} and

U = {u1, u2, . . . , uk2} with k1, k2 ≥ 2, an (X, U)-connection of G is a set of k1k2

internally-disjoint paths Si,j connecting xi to uj for 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2.

Specially, we call G is (k1, k2)-connected if for every k1-subset X of V (G) and

k2-subset U of V (G)\{X}, G contains an (X, U)-connection as a subgraph. If an

(X, U)-connection spans G, then it is a spanning (X, U)-connection of G. Let the

orientation of Si,j be from xi to uj . For any subset W of V (Si,j), we use W − (or

W +) to denote the set of predecessors (or successors) of W in Si,j , respectively.

For any vertex v ∈ V (Si,j), we use v− (or v+) to denote the predecessor (or

successor) of v in Si,j , respectively. For the endpoints of Si,j , it has either no

predecessor or no successor.

The following lemma is also necessary for the proof.

86



Lemma 7 ([71]) Let P = u1u2u3 · · ·up be a path in a graph G. Let w1

and w2 be two vertices in V (G) \ V (P ) such that (NG(w1) ∩ (V (P ) \
{u1}))−∩NG(w2) = ∅. Then |NG(w1)∩V (P )|+ |NG(w2)∩V (P )| ≤
p + 1. Moreover, if |NG(w1)∩V (P )|+ |NG(w2)∩V (P )| = p + 1, then
w1u1, w2up ∈ E(G).

4.2.1 . The graph is (2, k)-connected

Lemma 8 Let G be an n-vertex graph. If G is (5k − 2)-connected and
σ2(G) ≥ n + k − 2 with k ≥ 2, then G is (2, k)-connected.

Proof. Suppose to the contrary that G is not (2, k)-connected, but for
any e ∈ E(G), the graph G + e is (2, k)-connected where G is the
complement of G.

Let {x, y} be any pair of vertices in G and U = {u1, u2, . . . , uk} be
a subset of V (G) \ {x, y}. There exist 2k − 1 internally-disjoint paths
P1, P2, . . . , Pk, Q2, Q3, . . . , Qk connecting {x, y} and U . Without loss of
generality, let Pi be the path connecting x to ui for 1 ≤ i ≤ k and Qj

be the path connecting y to uj for 2 ≤ j ≤ k. Let F be a subgraph of
G consisting of all these 2k − 1 paths. Assume that the order of F is
minimal, denoted by assumption (I).

For the purpose of proof, let the orientation of Pi be from x to ui

for 1 ≤ i ≤ k and the orientation of Qj be from y to ui for 2 ≤ j ≤ k.
We denote Pi = Pi[x, ui] and P ′

i = Pi \ {x, ui} = P ′
i (x, ui) for 1 ≤ i ≤ k.

Let Qj = Qj[y, uj], Q′
j = Qj \ {y, uj} = Q′

j(y, uj) for 2 ≤ j ≤ k, and
R = G − F (see Figure 4.1). Note that P ′

i and Q′
j may be empty for

1 ≤ i ≤ k and 2 ≤ j ≤ k.
Claim 4.2.1 For 2 ≤ i ≤ k, |NG(u1) ∩ V (Q′

i)| ≤ 1 and |NG(y) ∩
(V (Q′

i) ∪ {ui})| = 1.

Proof. It is clear that |NG(y) ∩ (V (Q′
i) ∪ {ui})| = 1 for 2 ≤ i ≤ k by

assumption (I).
Toward a contradiction, suppose that there exists an integer i for

2 ≤ i ≤ k such that |NG(u1)∩Q′
i| ≥ 2. Without loss of generality, i = 2.

Let v1 and v2 be the neighbours of u1 inQ′
2. The orientation ofQ′

2[v1, v2]
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Figure 4.1: The maximal

counterexample of a

(2, k)-Hamilton-connected graph.
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Figure 4.2: F ′ with fewer vertices

than F

is from v1 to v2. We have a new subgraph F ′, which is the union of 2k−
1 internally-disjoint paths connecting {x, y} and U with fewer vertices
than F after we add u1v1 to F and delete v2 from F (see Figure 4.2).
This contradicts assumption (I). So |NQ′

i
(u1)| ≤ 1 for 2 ≤ i ≤ k.

Claim 4.2.2 There exists an integer i for 2 ≤ i ≤ k such that |Q′
i| ≥ 2.

Proof. Suppose that |Q′
i| ≤ 1 for each 2 ≤ i ≤ k. Let G′ be a graph

with order n′ obtained by removing x and all vertices of Qi except y

for 2 ≤ i ≤ k from G. Hence we have n′ = n − k − ∑k
i=2 |Q′

i| and
σ2(G′) ≥ σ2(G) − 2(k + ∑k

i=2 |Q′
i|) ≥ n′ − k − 1. It is easy to see that

there exist at most k − 1 vertices not dominated by u1 and y. G′ is still
connected after deleting these vertices. So we obtain a path P in G′

from u1 to y such that |P | ≤ 4.
Let F be obtained from G by removing y, all internal vertices of

P , and all vertices of Q′
i for 2 ≤ i ≤ k. F is (4k − 4)-connected.

Hencewehave an (x, U)-fan inF . Thenweobtain an (X, U)-connection
consisting of this (x, U)-fan, P , and ∪k

i=2V (Q′
i) where X = {x, y}. It is a

contradiction.
Claim 4.2.3 There exists an integer i for 1 ≤ i ≤ k such that |NP ′

i
(u1)∩

NP ′
i
(y)| ≥ 1. Furthermore, we have |P ′

i | = 1 and |NP ′
i
(u1)∩NP ′

i
(y)| = 1.
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Proof. Suppose that NP ′
i
(u1)∩NP ′

i
(y) = ∅ for 1 ≤ i ≤ k. Then dP ′

i
(u1) +

dP ′
i
(y) ≤ |P ′

i | for 1 ≤ i ≤ k and d{x}(u1) + d{x}(y) ≤ 2. Since NR(u1) ∩
NR(y) = ∅, we have dR(u1) + dR(y) ≤ |R|. By Claim 4.2.1, we have
dQ′

i∪{ui}(u1) + dQ′
i∪{ui}(y) ≤ |Q′

i| + 2 for 2 ≤ i ≤ k. To be specific,
dQ′

i∪{ui}(u1) + dQ′
i∪{ui}(y) ≤ 3 ≤ |Q′

i| + 1 when |Q′
i| ≥ 2 for 2 ≤ i ≤ k.

If 0 ≤ |Q′
i| ≤ 1, then dQ′

i∪{ui}(u1) + dQ′
i∪{ui}(y) ≤ |Q′

i| + 2 for 2 ≤ i ≤
k. By Claim 4.2.2, we assume that there exists an integer j such that
dQ′

j∪{uj}(u1) + dQ′
j∪{uj}(y) ≤ |Q′

i| + 1. Since u1 and y are not adjacent
and σ2(G) ≥ n + k − 2, we have
n+k−2 ≤ d(u1)+d(y) ≤

k∑
i=1
|P ′

i |+
∑

2≤i≤k
i ̸=j

(|Q′
i|+2)+(|Q′

j|+1)+|R|+2 = n+k−3.

We deduce a contradiction. Now there exists an integer i for 1 ≤ i ≤
k such that |NP ′

i
(u1) ∩ NP ′

i
(y)| ≥ 1. Let v be any vertex in NP ′

i
(u1) ∩

NP ′
i
(y). If P ′

i \ {v} ≠ ∅, then it contradicts assumption (I). So |P ′
i | = 1

and |NP ′
i
(u1) ∩NP ′

i
(y)| = 1.

Claim 4.2.4 For 1 ≤ i ≤ k, dP ′
i
(u1) + dP ′

i
(y) ≤ |P ′

i |+ 1.

Proof. Obviously, dP ′
i
(u1) + dP ′

i
(y) ≤ |P ′

i | when NP ′
i
(u1)∩NP ′

i
(y) = ∅ for

1 ≤ i ≤ k. If there exists an integer i such that NP ′
i
(u1) ∩ NP ′

i
(y) ̸= ∅

for 1 ≤ i ≤ k, then |NP ′
i
(u1) ∩ NP ′

i
(y)| = 1 by Claim 4.2.3. So dP ′

i
(u1) +

dP ′
i
(y) ≤ |P ′

i |+ 1 for 1 ≤ i ≤ k.

Without loss of generality, we assume that v ∈ NP ′
2
(u1)∩NP ′

2
(y) and

P ′
2 = {v} by Claim 4.2.3.
For 2 ≤ i ≤ k, if |Q′

i| = 0, then dQ′
i∪{ui}(u1) + dQ′

i∪{ui}(y) ≤ 2. By the
same argument as above, dQ′

i∪{ui}(u1) + dQ′
i∪{ui}(y) ≤ 3 for 2 ≤ i ≤ k

when |Q′
i| ≥ 1. SinceNR(u1)∩NR(y) = ∅, we have dR(u1)+dR(y) ≤ |R|.

By Claim 4.2.4, we have dP ′
1∪{x}(u1) + dP ′

1∪{x}(y) ≤ |P ′
1 ∪{x}|+ 1 and

dP ′
i
(u1) + dP ′

i
(y) ≤ |P ′

i |+ 1 for 2 ≤ i ≤ k. So
n + k− 2 ≤ d(u1) + d(y) ≤

k∑
i=2

(|P ′
i |+ 1) + |P ′

1 ∪{x}|+ 1 + 3(k− 1) + |R|.
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Hence we have
k∑

i=2
|Q′

i| ≤ 2k − 2. (4.1)
Let G∗ be the subgraph of G with P ∗

i = P ′
i for 1 ≤ i ≤ k and i ̸= 2,

Q∗
j = Q′

j for 2 ≤ j ≤ k, and Q∗
1 = yv + vu1. We have∑k

i=1 |P ′
i | − |P ′

2| ≤
2k − 2 by the same argument as mentioned above. By Claim 4.2.3, we
have

k∑
i=1
|P ′

i | ≤ 2k − 1. (4.2)
By (4.1) and (4.2), we have∑k

i=1 |P ′
i |+

∑k
i=2 |Q′

i|+ |U \{u1}|+ |{x}| ≤
5k − 3. Since G is (5k − 2)-connected, u1 and y are connected through
a path in R. It is a contradiction.

4.2.2 . The graph is (2, k)-Hamilton-connected

Let G be a graph satisfying the conditions of Theorem 58. For any pair

of vertices x and y of G, let U = {u1, u2, . . . , uk} be a subset of V (G) \
{x, y}. By Lemma 8, it follows that there exist 2k internally-disjoint paths

P1, P2, . . . , Pk, Q1, Q2, . . . , Qk connecting {x, y} and U where Pi is the path

connecting x to ui and Qi is the path connecting y to ui for 1 ≤ i ≤ k. Let

Pi = Pi[x, ui], P ′
i = P ′

i (x, ui), Qi = Qi[ui, y], and Q′
i = Q′

i(ui, y) for 1 ≤ i ≤ k.

We assume Si = Pi ∪Qi and the orientation of Si is from x to y for 1 ≤ i ≤ k.

Let S = ∪1≤i≤kSi be the union of k internally-disjoint paths connecting x to y

for ui ∈ Si \ {x, y} of G such that |V (S)| is maximum and R = G− S.

If |V (S)| = |V (G)|, then Theorem 58 is proved. So let H be a component

of R. For 1 ≤ i ≤ k, let a and b be any two vertices of Pi (or Qi), if Pab is a

path in Pi (or Qi) connecting a to b such that NG(V (H)) ∩ Pab = {a, b}, then

we call the path Pab a segment of S. For any segment Pab, we denote aHb a

path connecting a and b through H. For any segment, the order of a segment is

at least 3 by the maximality of S.

Let Pab be a segment of S such that NG(V (H)) ∩ Pab = {a, b} and w be

an internal vertex of Pab, if there exist two vertices c, d ∈ NG(w) such that

cd ∈ E(S) \ E(Pab), then w is called an insertable vertex of Pab, and we call w
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Figure 4.3: Pab is a segment of S. Pab[w1, wh1 ] is inserted by an edge a1b1.

Pab[wh1+1, wh2 ] is inserted by an edge a2b2.

is inserted by cd. If c and d do not exist, then we call the internal vertex w is a

non-insertable vertex. Suppose that w1, w2, . . . , ws are insertable vertices of the

segment Pab in order along Pab. Let

h1 := max {i : wi can be inserted by an edge which w1 can be inserted by}

and we suppose that w1 and wh1 can be inserted by an edge a1b1. Let

h2 := max {i : wi can be inserted by an edge which wh1+1 can be inserted by}

and we suppose that wh1+1 and wh2 can be inserted by an edge a2b2. Continuing in

the same procedure, we have ht = s for some t ≥ 1. Then we insert Pab[w1, wh1 ]
between a1 and b1, Pab[wh1+1, wh2 ] between a2 and b2, . . . , Pab[wht−1+1, wht ]
between at and bt (see Figure 4.3). We call such an operation a segment insertion
of Pab[w1, ws] and denote it by SI[Pab[w1, ws]].

Claim 4.2.5 Every segment of S contains a non-insertable vertex.

Proof. Suppose to the contrary that there exists a segment Pw1ws =
w1w2 . . . ws not containing any non-insertable vertex. Let T be the
resulting graph ofS after using a segment insertionSI[Pw1ws [w2, ws−1]].
Then T ∪w1Hws is the set of k internally-disjoint paths connecting x to
y such that ui ∈ Si\{x, y} for 1 ≤ i ≤ k with the order at least |V (S)|+1,
which contradicts the maximality of S.
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Claim 4.2.6 There exists a segment in Pi or Qi for 1 ≤ i ≤ k.

Proof. Since G is (5k − 2)-connected, G is also (2k + 1)-connected. If
|V (S)| ≥ 2k + 1, then for any vertex v ∈ V (H) and any (2k + 1)-subset
W = {w1, w2, . . . , w2k+1} of V (S), there exists a (v, W )-fan of G. For
each path from v to wj with 1 ≤ j ≤ 2k + 1, let w′

j be the first vertex
such that w′

j ∈ S. By the pigeonhole principle, at least two of them
belong to the same Pi or Qi. It implies that there exists a segment in Pi

or Qi for 1 ≤ i ≤ k. If |V (S)| ≤ 2k, then we obtain a segment in Pi or
Qi for 1 ≤ i ≤ k by the connectivity of G.

By Claim 4.2.5 and Claim 4.2.6, without loss of generality, we assume that

r1, r2 ∈ NG(V (H)) ∩ V (P1) such that there is no vertex of P1[r+
1 , r−

2 ] which

has a neighbour in H, and w is a non-insertable vertex of P1[r1, r2] such that

there is no non-insertable vertex of P1[r1, w−]. Clearly, P1[r1, r2] is a segment

of S. Let P1[r1, w] = y0y1 . . . ym where y0 = r1 and ym = w. For any vertex

z ∈ NG(V (H)) ∩ V (S1) \ {r1}, let z+ be a successor of z in S1. We obtain the

following claim.

Claim 4.2.7 yi is not adjacent to z+ for 1 ≤ i ≤ m.

Proof. By induction on i for 1 ≤ i ≤ m. Suppose that z+y1 ∈ E(G).
Then S + z+y1 − r1y1 − zz+ ∪ r1Hz is the union of k internally-disjoint
paths connecting x to y. The order of these k internally-disjoint paths
at least |V (S)| + 1, a contradiction. We suppose that this claim holds
for 1 ≤ j ≤ i− 1 with i ≥ 2. Suppose z+yi ∈ E(G). Let T be a resulting
graph of S after using a segment insertion SI[P1[y1, yi−1]]. It follows
from the induction hypothesis of this claim that yj is not inserted by
zz+ for 1 ≤ j ≤ i−1. Then T +z+yi−zz+∪r1Hz contradicts the choice
of S.

By Claim 4.2.7, we use the segment insertion SI[P1[y1, ym−1]] to S. Then

we get a resulting graph T such that T = ∪1≤i≤kTi where T2, T3, . . . , Tk are

internally-disjoint paths connecting x and y, respectively such that ui ∈ Ti \{x, y}
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for 2 ≤ i ≤ k, and T1 is obtained by S1 removing all yi for 1 ≤ i ≤ m− 1. Note

that V (S) = V (T ) and {r1, r2, u1} ⊆ V (T1). Let v be any vertex of V (H). It is

easy to see that

dR(w) + dR(v) ≤ |R| − 1. (4.3)
By the choices of r1 and r2, we have wv /∈ E(G). So

dT1[w,r2](w) + dT1[w,r2](v) ≤ |T1[w, r2]|. (4.4)
Since w is a non-insertable vertex of P1[r1, r2], for 2 ≤ i ≤ k we have

dTi\{x,y}(w) ≤


|Ti \ {x, y}|+ 1

2 , if Ti \ {x, y} is odd, (4.5a)
|Ti \ {x, y}|

2 , otherwise. (4.5b)
By the maximality of S, the neighbours of v in S are not adjacent. For

2 ≤ i ≤ k, we know that dTi\{x,y}(v) ≤ |Ti\{x,y}|+1
2 . So we have

dTi\{x,y}(w) + dTi\{x,y}(v) ≤ |Ti \ {x, y}|+ 1. (4.6)
We now prove the following claim in order to obtain the degree sum of w and

v in T1[x, r1] and T1[r+
2 , y].

Claim 4.2.8 xv /∈ E(G) and vy /∈ E(G).

Proof. Case 1: k = 2. We assume that xv ∈ E(G) by symmetry. If
vy ∈ E(G), then we have {x+

2 , y−
2 } /∈ NG(v) where x+

2 is the successor
of x in T2 and y−

2 is the predecessor of y in T2. Hence we have

dT2\{x,y}(v) ≤


|T2\{x,y}|−1

2 , if T2 \ {x, y} is odd,

|T2\{x,y}|−2
2 , otherwise,

and so
dT2\{x,y}(w) + dT2\{x,y}(v) ≤


|T2 \ {x, y}|, if T2 \ {x, y} is odd,

|T2 \ {x, y}| − 1, otherwise.
(4.7)
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Note that (NG(w) ∩ V (T1[x, r1])) ∩ (NG(v) ∩ V (T1[x, r1]))+ = ∅.
Otherwise, let a = NG(v)∩V (T1[x, r1]) and T ′

1 = T1−aa+ +wa+ +aHr1.
So T ′ = T2∪T ′

1 is the union of k internally-disjoint paths connecting x to
y such that u2 ∈ T2−{x, y} and u1 ∈ T ′

1 with the order at least |V (S)|+1,
this contradicts the maximality of S. By Lemma 7, we have

dT1[x,r1](w) + dT1[x,r1](v) ≤ |T1[x, r1]|+ 1, (4.8)
and the equality of (4.8) holds only if wx ∈ E(G). The equality of (4.5a)
holds only if wx+

2 ∈ E(G). Since w is a non-insertable vertex, the two
equalities can not hold in the meanwhile.

Let r+
2 be the successor of r2 in T1. By Claim 4.2.7, wr+

2 /∈ E(G). We
also know that vr+

2 /∈ E(G). By the same argument as above, (NG(w)∩
V (T1[r+

2 , y])) ∩ (NG(v) ∩ V (T1[r+
2 , y]))+ = ∅. Hence we have

dT1[r+
2 ,y](w) + dT1[r+

2 ,y](v) ≤ |T1[r+
2 , y]|. (4.9)

Since now σ2(G) ≥ n, by (4.3), (4.4), (4.7), (4.8), and (4.9), we have
n ≤ d(w) + d(v)

= dT1[x,r1](w) + dT1[x,r1](v)

+ dT1[w,r2](w) + dT1[w,r2](v) + dT1[r+
2 ,y](w) + dT1[r+

2 ,y](v)

+ dT2\{x,y}(w) + dT2\{x,y}(v) + dR(w) + dR(v)

≤ n− 1.

This is a contradiction.
If vy /∈ E(G), then we have

dT2\{x,y}(v) ≤


|T2\{x,y}|−1

2 , if T2 \ {x, y} is odd,

|T2\{x,y}|
2 , otherwise.

and so
dT2\{x,y}(w) + dT2\{x,y}(v) ≤ |T2 \ {x, y}|. (4.10)
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Let r+
2 be the successor of r2 in T1. By Lemma 7, we have

dT1[r+
2 ,y](w) + dT1[r+

2 ,y](v) ≤ |T1[r+
2 , y]|, and the equality holds only if

vy ∈ E(G). We have
dT1[r+

2 ,y](w) + dT1[r+
2 ,y](v) ≤ |T1[r+

2 , y]| − 1. (4.11)
So n ≤ d(w) + d(v) ≤ n− 1 by (4.10) and (4.11), it is a contradiction.
Case 2: k ≥ 3. We assume that xv ∈ E(G) by symmetry. For 3 ≤

i ≤ k, we have dTi\{x,y}(w) + dTi\{x,y}(v) ≤ |Ti \ {x, y}|. By the same
argument as above, we have dT1[x,r1](w) + dT1[x,r1](v) ≤ |T1[x, r1]| + 1,

and dT1[r+
2 ,y](w) + dT1[r+

2 ,y](v) ≤ |T1[r+
2 , y]|. So we obtain d(w) + d(v) ≤ n.

This contradicts σ2(G) ≥ n + k − 2 for k ≥ 3.

By Lemma 7 and Claim 4.2.8, we have

dT1[x,r1](w) + dT1[x,r1](v) ≤ |T1[x, r1]|. (4.12)
Let r+

2 be the successor of r2 in T1. By Claim 4.2.7, wr+
2 /∈ E(G). Note that

vr+
2 /∈ E(G). By the same argument as above, we have (NG(w)∩V (T1[r+

2 , y]))∩
(NG(v) ∩ V (T1[r+

2 , y]))+ = ∅. By Lemma 7 and Claim 4.2.8, we have

dT1[r+
2 ,y](w) + dT1[r+

2 ,y](v) ≤ |T1[r+
2 , y]| − 1. (4.13)

Since σ2(G) ≥ n + k − 2, by (4.3), (4.4), (4.6), (4.12) and (4.13), we have

n + k − 2 ≤ d(w) + d(v)

= dT1[w,r2](w) + dT1[w,r2](v)

+ dT1[r+
2 ,y](w) + dT1[r+

2 ,y](v) + dT1[x,r1](w) + dT1[x,r1](v)

+
k∑

i=2
(dTi\{x,y}(w) + dTi\{x,y}(v)) + dR(w) + dR(v)

≤ n + k − 3.

This is a contradiction. Now we finish the proof of Theorem 58.
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4.3 . The proof of Theorem 59

The proof of Theorem 59 is same as Theorem 58 mainly except the constraint

of connectivity and degree sum. So we prove some claims without connectivity in

this part.

Lemma 9 Let G be a graph with order n ≥ 4. For any two integers k1 ≥ 2
and k2 ≥ 2, if σ2(G) ≥ n + k1k2 − 2, then G is (k1, k2)-connected.

Proof. Suppose to the contrary that G is not (k1, k2)-connected, but for
any e ∈ E(G), the graph G + e is (k1, k2)-connected where G is the
complement of G.

Let X = {x1, x2, . . . , xk1} be a subset of V (G) and U =
{u1, u2, . . . , uk2} be a subset of V (G) \ X . There exist k1k2 − 1
internally-disjoint paths connecting X to U . Without loss of generality,
we denote these k1k2−1 internally-disjoint paths (∪1≤i≤k1−1,1≤j≤k2Si,j)∪
(∪k2

j=2Sk1,j). Let Si,j be the path connecting xi to ui for 1 ≤ i ≤ k1−1 and
1 ≤ j ≤ k2, and Sk1,j be the path connecting xk1 to uj for 2 ≤ j ≤ k2.
Let F be a subgraph of G consists of all these k1k2 − 1 paths. Assume
that the order of F is minimum, denoted by assumption (II).

For the purpose of proof, let the orientation of Si,j be from xi to
uj for 1 ≤ i ≤ k1 − 1 and 1 ≤ j ≤ k2, and Sk1,j be from xk1 to uj for
2 ≤ j ≤ k2. We denote Si,j = Si,j[xi, uj] and S ′

i,j = Si,j \ {xi, uj} =
S ′

i,j(xi, uj) for 1 ≤ i ≤ k1 − 1 and 1 ≤ j ≤ k2. Let Sk1,j = Sk1,j[xk1 , uj]
and S ′

k1,j = Sk1,j\{xk1 , uj} = S ′
k1,j(xk1 , uj) for 2 ≤ j ≤ k2, andR = G−F

(see Figure 4.4). Note that S ′
i,j and S ′

k1,2, S ′
k1,3, . . . , S ′

k1,k2 may be empty
for 1 ≤ i ≤ k1 − 1 and 1 ≤ j ≤ k2.

We obtain Claim 4.3 and Claim 4.3.2 by the same arguments as with
Claim 4.2.1 and Claim 4.2.4.

For 2 ≤ j ≤ k2, |NG(u1) ∩ V (S ′
k1,j)| ≤ 1 and |NG(xk1) ∩ (V (S ′

k1,j) ∪
{uj})| = 1.
Claim 4.3.1 There are two integers i and j for 1 ≤ i ≤ k1 − 1 and 1 ≤
j ≤ k2 such that |NS′

i,j
(xk1)∩NS′

i,j
(u1)| ≥ 1. Furthermore, |NS′

i,j
(xk1)∩

NS′
i,j

(u1)| = 1.
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x1

x2

xk1−1

xk1
u1

u2

u3

uk2

S1,1
Sk1,2

Sk1−1,k2

Sk1,k2

R

Sk1,3

Figure 4.4: The maximal counterexample of a (k1, k2)-Hamilton-connected

graph.

Proof. Suppose that NS′
i,j

(xk1) ∩ NS′
i,j

(u1) = ∅ for 1 ≤ i ≤ k1 − 1 and
1 ≤ j ≤ k2. Then dS′

i,j
(u1) + dS′

i,j
(xk1) ≤ |S ′

i,j| for 1 ≤ i ≤ k1 − 1 and
1 ≤ j ≤ k2, and d{xi}(u1) + d{xi}(xk1) ≤ 2. Since NR(u1) ∩ NR(xk1) = ∅,
we have dR(u1) + dR(xk1) ≤ |R|. By Claim 4.3, we have dS′

k1,j
∪{uj}(u1) +

dS′
k1,j

∪{uj}(xk1) ≤ |S ′
k1,j| + 2 for 2 ≤ j ≤ k2. Since u1 and xk1 are not

adjacent and σ2(G) ≥ n + k1k2 − 2, we have
n + k1k2 − 2 ≤ d(u1) + d(xk1)

≤
k1−1∑
i=1

k2∑
j=1
|S ′

i,j|+
k2∑

j=2
(|S ′

k1,j|+ 2) + |R|+ 2(k1 − 1)

= n + k1 + k2 − 4.

We deduce a contradiction, since k1(k2 − 1) > k2 − 2 when k1 ≥ 2
and k2 ≥ 2. Now there are two integers i and j for 1 ≤ i ≤ k1 − 1 and
1 ≤ j ≤ k2 such that |NS′

i,j
(xk1) ∩ NS′

i,j
(u1)| ≥ 1. Let v be any vertex in

NS′
i,j

(xk1) ∩ NS′
i,j

(u1). If S ′
i,j \ {v} ≠ ∅, then it contradicts Assumption

(II). So |S ′
i,j| = 1 and |NS′

i,j
(xk1) ∩NS′

i,j
(u1)| = 1.

Claim 4.3.2 For 1 ≤ i ≤ k1 − 1, 1 ≤ j ≤ k2, dS′
i,j

(u1) + dS′
i,j

(xk1) ≤
|S′

i,j|+ 1.

It is easy to see that dR(u1) + dR(xk1) ≤ |R|. By Claim 4.3, we have
dS′

k1,j
∪{uj}(u1)+dS′

k1,j
∪{uj}(xk1) ≤ |S ′

k1,j|+2 for 2 ≤ j ≤ k2. We also have
dS′

i,1∪{xi}(u1) + dS′
i,1∪{xi}(xk1) ≤ |S ′

i,1|+ 2 for 1 ≤ i ≤ k1 − 1.
97



We now infer that
n + k1k2 − 2 ≤ d(u1) + d(xk2)

=
k1−1∑
i=1

k2∑
j=2

(dS′
i,j

(u1) + dS′
i,j

(xk2)) +
k2∑

j=2
(dS′

k2,j
∪{uj}(u1) + dS′

k2,j
∪{uj}(xk2))

+
k1−1∑
i=1

(dS′
i,1∪{xi}(u1) + dS′

i,1∪{xi}(xk2)) + dR(u1) + dR(xk2)

≤
k1−1∑
i=1

k2∑
j=2

(|S ′
i,j|+ 1) +

k2∑
j=2

(|S ′
k1,j|+ 2) +

k1−1∑
i=1

(|S ′
i,1|+ 2) + |R|

=
k1−1∑
i=1

k2∑
j=2
|S ′

i,j|+ (k1 − 1)(k2 − 1) +
k2∑

j=2
|S ′

k1,j|+ 2(k2 − 1) +
k1−1∑
i=1
|S ′

i,1|

+ 2(k1 − 1) + |R|

= n + k1k2 − 3,

this is a contradiction. So we complete the proof of Lemma 9.

Let G be a graph satisfying the conditions of Theorem 59. For any k1-subset

X = {x1, x2, . . . , xk1} of V (G), let U = {u1, u2, . . . , uk2} be a k2-subset of

V (G) \X. By Lemma 9, it follows that there exist k1k2 internally-disjoint paths

Si,j connecting xi to uj for 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2. Let the orientation of Si,j

be from xi to uj for 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2. We denote Si,j = Si,j [xi, uj ],
S′

i,j = Si,j \ {xi, uj} = S′
i,j(xi, uj) for 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2. Let

S = ∪1≤i≤k1,1≤j≤k2Si,j be the union of these k1k2 internally-disjoint paths such

that |V (S)| is maximum, and R = G− S.

If |V (S)| = |V (G)|, then Theorem 59 is proved. So let H be a component of

R. We obtain the following claim by the same argument with Claim 4.2.5.

Claim 4.3.3 Every segment of S contains a non-insertable vertex.

Claim4.3.4 There exists a segment in Si,j for 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2.

Proof. Suppose that there is no segment in Si,j for 1 ≤ i ≤ k1 and
1 ≤ j ≤ k2. Let z be any vertex of V (H). We consider the following
cases.
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Case 1: NG(V (H)) ∩X ̸= ∅. Without loss of generality, we suppose
that x1 ∈ NG(V (H)). Let x+

1,1 be a successor of x1 in S1,1. By the
maximality of S, x+

1,1 and z are not adjacent.
It is clear that there exist two integers i and j with 2 ≤ i ≤ k1 and

1 ≤ j ≤ k2 such that NG(V (H)) ∩ (V (S ′
i,j) ∪ {xi}) ̸= ∅. Otherwise, we

can obtain the contradiction obviously by calculating the sum degree
of x+

1,1 and z. Without loss of generality, we assume that NG(V (H)) ∩
(V (S ′

k1,1) ∪ {xk1}) ̸= ∅.
For any vertex w ∈ NG(V (H)) ∩ (V (S ′

k1,1) ∪ {xk1}), let w− be a
predecessor of w in Sk1,1. We have x+

1,1w
− /∈ E(G). If x+

1,1w
− ∈ E(G),

then it contradicts the maximality of S. So we obtain

dS1,1∪Sk1,1(z) + dS1,1∪Sk1,1(x+
1,1) ≤


|S1,1 ∪ Sk1,1|+ 1, if y ∈ NG(V (H)),

|S1,1 ∪ Sk1,1|, otherwise.
For 2 ≤ j ≤ k2, we have

dS′
1,j∪S′

k1,j
∪{uj}(z) + dS′

1,j∪S′
k1,j

∪{uj}(x+
1,1) ≤


|S ′

1,j ∪ S ′
k1,j ∪ {uj}|, if y ∈ NG(V (H)),

|S ′
1,j ∪ S ′

k1,j ∪ {uj}|+ 1, otherwise.
For 2 ≤ i ≤ k1 − 1 and 1 ≤ j ≤ k2, we obtain

dS′
i,j∪{xi}(z) + dS′

i,j∪{xi}(x+
1,1) ≤

k1−1∑
i=2

k2∑
j=1
|S ′

i,j ∪ {xi}|+ 1.
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By the maximality of S, we have dR(x+
1,1) + dR(z) ≤ |R| − 1. So

n + k1k2 − 2 ≤ d(x+
1,1) + d(z)

= dS1,1∪Sk1,1(z) + dS1,1∪Sk1,1(x+
1,1) +

k2∑
j=2

(dS′
1,j∪S′

k1,j
∪{uj}(z)

+ dS′
1,j∪S′

k1,j
∪{uj}(x+

1,1)) +
k1−1∑
i=2

k2∑
j=1

(dS′
i,j∪{xi}(z) + dS′

i,j∪{xi}(x+
1,1))

+ dR(x+
1,1) + dR(z)

≤ |S1,1 ∪ Sk1,1|+ 1 +
k2∑

j=2
(|S ′

1,j ∪ S ′
k1,j ∪ {uj}|+ 1) +

k1−1∑
i=2

k2∑
j=1
|S ′

i,j ∪ {xi}|

+ k2(k1 − 2) + |R| − 1

= n + 1 + (k2 − 1) + k1k2 − 2k2 − 1

= n + k1k2 − k2 − 1,

this is a contradiction.
Case 2: NG(V (H)) ∩X = ∅.
For 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2, we have |NG(V (H)) ∩ (V (S ′

i,j) ∪
{uj})| ≤ 1. Without loss of generality, we suppose v ∈ (V (S ′

1,1)∪{u1})∩
NG(V (H)). Let v− be a predecessor of v in S1,1. Note that v− and z

are not adjacent. By the maximality of S, we have NG(v−) ∩ (NG(z) ∩
(V (S ′

k1,1)∪ {xk1}))+ = ∅. So dS1,1∪Sk1,1(v−) + dS1,1∪Sk1,1(z) ≤ |S1,1 ∪ Sk1,1|
by Lemma 7. When NG(V (H)) ∩ V (S ′

1,j) ̸= ∅ for 2 ≤ j ≤ k2. Let w be
any vertex of NG(V (H)) ∩ V (S ′

1,j) and w+ be a successor of w in S ′
1,j .

By the maximality of S, v−w+ /∈ E(G). For 2 ≤ j ≤ k2, we obtain

dS′
1,j

(v−) + dS′
1,j

(z) ≤


|S ′

1,j|+ 1, if w+ = ui,

|S ′
1,j|, otherwise.

Since |NG(V (H)) ∩ (V (S ′
k1,j) ∪ {uj})| ≤ 1, we have

dS′
k1,j

∪{uj}(v−) + dS′
k1,j

∪{uj}(z) ≤


|S ′

k1,j|+ 1, if w+ = ui,

|S ′
k1,j ∪ {ui}|+ 1, otherwise.
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So dS′
1,j∪S′

k1,j
∪{uj}(v−) + dS′

1,j∪S′
k1,j

∪{uj}(z) ≤ |S ′
1,j ∪ S ′

k1,j ∪ {uj}| + 1 for
2 ≤ j ≤ k2.

If NG(V (H)) ∩ V (S ′
1,j) = ∅ for 2 ≤ j ≤ k2, then dS′

1,j∪S′
k1,j

∪{uj}(v−) +
dS′

1,j∪S′
k1,j

∪{uj}(z) ≤ |S ′
1,j ∪ S ′

k1,j ∪ {uj}|+ 1.
Hence for 2 ≤ j ≤ k2, we have
dS′

1,j∪S′
k1,j

∪{uj}(v−) + dS′
1,j∪S′

k1,j
∪{uj}(z) ≤ |S ′

1,j ∪ S ′
k1,j ∪ {uj}|+ 1.

For 2 ≤ i ≤ k1 − 1 and 1 ≤ j ≤ k2, we have dS′
i,j∪{xi}(v−) +

dS′
i,j∪{xi}(z) ≤ |S ′

i,j ∪{xi}|+ 1. By the maximality of S, dR(v−) + dR(z) ≤
|R| − 1. So
n + k1k2 − 2 ≤ d(v−) + d(z)

= dS1,1∪Sk1,1(v−) + dS1,1∪Sk1,1(z) +
k2∑

j=2
(dS′

1,j∪S′
k1,j

∪{uj}(v−)

+ dS′
1,j∪S′

k1,j
∪{uj}(z)) +

k1−1∑
i=2

k2∑
j=1

(dS′
i,j∪{xi}(v−) + dS′

i,j∪{xi}(z))

+ dR(v−) + dR(z)

≤ |S1,1 ∪ Sk1,1|+
k2∑

j=2
(|S ′

1,j ∪ S ′
k1,j ∪ {uj}|+ 1) +

k1−1∑
i=2

k2∑
j=1

(|S ′
i,j ∪ {xi}|+ 1)

+ |R| − 1

= n + k1k2 − k2 − 2.

It is a contradiction.
By Claim 4.3.3 and Claim 4.3.4, without loss of generality, we assume that

r1, r2 ∈ NG(V (H)) ∩ V (S1,1) such that there is no vertex of S1,1[r+
1 , r−

2 ] which

has a neighbour in H, and w is a non-insertable vertex of S1,1[r1, r2] such that

there is no non-insertable vertex of S1,1[r1, w−]. Clearly, S1,1[r1, r2] is a segment

of S. Let S1,1[r1, w] = y0y1 . . . ym where y0 = r1 and ym = w. We denote

S1,1,k1 = S1,1 ∪ Sk1,u1 and the orientation of S1,1,k1 is from x1 to xk1 . For any

vertex z ∈ NG(V (H)) ∩ V (S1,1,k1) \ {r1}, let z+ be a successor of z in S1,1,k1 .

We obtain the following claim with the same argument of Claim 4.2.7.

Claim 4.3.5 yi is not adjacent to z+ for 1 ≤ i ≤ m.
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By Claim 4.3.5, we use the segment insertion SI[P1[y1, ym−1]] to S. Then we

get a resulting graph T such that T = ∪1≤i≤k1
1≤j≤k2

Ti,j where T1,1 is obtained by S1,1

removing all yi for 1 ≤ i ≤ m−1. We denote T1,1,k1 = S1,1,k1 \{y1, y2, . . . , ym−1}

and the orientation of T1,1,k1 is from x1 to xk1 . It is clear that V (S) = V (T ) and

{r1, r2, u1} ⊆ V (T1,1). Let v be any vertex of V (H).
We note that (NG(w)∩V (T1,1,k1 [x1, r1]))∩(NG(v)∩V (T1,1,k1 [x1, r1]))+ = ∅.

Hence we have

dT1,1,k1 [x1,r1](w) + dT1,1,k1 [x1,r1](v) ≤ |T1,1,k1 [x1, r1]|+ 1.

Let r+
2 be the successor of r2 in T1,1,k1 . By Claim 4.3.5, wr+

2 /∈

E(G). Note that vr+
2 /∈ E(G) and (NG(w) ∩ V (T1,1,k1 [r+

2 , xk1 ])) ∩ (NG(v) ∩
V (T1,1,k1 [r+

2 , xk1 ]))+ = ∅. So we have

dT1,1,k1 [r+
2 ,xk1 ](w) + dT1,1,k1 [r+

2 ,xk1 ](v) ≤ |T1,1,k1 [r+
2 , xk1 ]|.

We have the following facts likewise the analysis of (4.3), (4.4), and (4.6):

dR(w) + dR(v) ≤ |R| − 1 and dT1,1,k1 [w,r2](w) + dT1,1,k1 [w,r2](v) ≤ |T1,1,k1 [w, r2]|.
For 2 ≤ j ≤ k2, we have

dT1,j∪Txk1 ,j\{x1,xk1 }(w) + dT1,j∪Txk1 ,j\{x1,xk1 }(v) ≤ |T1,j ∪ Txk1 ,j \ {x1, xk1}|+ 1.

For 2 ≤ i ≤ k1 − 1 and 1 ≤ j ≤ k2, we have dTi,j\{uj}(w) + dTi,j\{uj}(v) ≤
|Ti,j \ {uj}|+ 1.

We now infer that

n + k1k2 − 2 ≤ d(w) + d(v)

≤
k2∑

j=2
(|T1,j ∪ Txk1 ,j \ {x1, xk1}|+ 1) +

k1−1∑
i=2

k2∑
j=1

(|Ti,j \ {uj}|+ 1)

+ |T1,1,k1 [x1, r1]|+ 1 + |T1,1,k1 [r+
2 , xk1 ]|+ |T1,1,k1 [w, r2]|+ |R| − 1

≤ n + k1k2 − k2 − 1.

This is a contradiction.

The proof of Theorem 59 is completed. 2
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4.4 . Algorithm to find a spanning (X, U)-connection given two

disjoint vertex subsets X = {x, y} and U = {u1, u2, . . . , uk}

Algorithm 2:
input : a (5k − 4)-connected graph G = (V, E) with σ2(G) ≥ n + k,

{x, y, u1, u2, . . . , uk} ∈ V

output: a spanning (X, U)-connection where X = {x, y} and

U = {u1, u2, . . . , uk}

P1, P2, . . . , P2k ← ∅
S ← ∪2k

i=1Pi

while Pi or Pi+k is empty for some 1 ≤ i ≤ k do
if |S| is minimal in terms of ui (see the proof of Claim 4.2.3 and
Claim 4.2.1) then

Find the common neighbour of ui and x (or y) outside S (by our

proof it must exist).

else
Do the operation of minimising |S|.

while there is a segment I in Pi for 1 ≤ i ≤ 2k. do
if there is a non-insertable vertex w in I then

Find the path from x to y through w and the vertices outside S.

else
Do the segment insertion on I.

We present an algorithm to find a spanning (X, U)-connection given two

disjoint vertex subsets X = {x, y} and U = {u1, u2, . . . , uk} with k ≥ 2 for

a graph satisfying the condition of Theorem 58 as follows. The time complexity of

the algorithm is O(kn2) + O(n3).
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5 - Conclusions and prospects

We first describe some open questions related to our results in the thesis. Then

we would like to mention the prospects of my research.

5.1 . Open problem

5.1.1 . Generalisation of Hamiltion-connectivity

In Chapter 4, we prove that every graph G with n vertices is

(2, k)-Hamilton-connected if G is (5k − 4)-connected and σ2(G) ≥ n + k − 2
where k ≥ 2. The connectivity of G is mainly used to prove the existence of the

(2, k)-connection. We want to improve this result if we remove the connectivity

condition.

Another direction is to study sufficient conditions of (k1, k2)-Hamilton

connected graphs. We have given a sufficient condition of (2, k)-Hamilton

connected graphs. We will continue to consider the case when k1 ≥ 3.

5.1.2 . Fractional colourings on triangle-free graphs

In Chapter 3, we know that χf (4, K3) lies between 3.25 and 3.5. Although we

have improved the bound of χf (4, K3) to 3.466, there is still room for improvement.

The same question for larger values of the maximum degree is still open.

In fact, we have done some work on further loosening of the constraints of

degree-4 vertices. It is a well-known fact that, given any graph G, if H is the

bipartite spanning subgraph of G induced by a maximum cut, then degH(v) ≥
degG(v)/2 for every vertex v ∈ V (G) (this actually holds even if H is induced by

a maximal cut, up to moving any vertex from one part to the other). By using this

method, we could improved 3.4663 to 3.456.

5.2 . Future research

5.2.1 . Proper conflict-free colourings
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Motivated by a frequency assignment problem in cellular networks, Even,

Lotker, Ron, and Smorodinsky [41] introduced the notion of conflict-free colourings

of hypergraphs. A colouring σ of a hypergraph H is conflict-free if for every edge

e ∈ E(H) there exists a colour appearing exactly once in e. Pach and Tardos

[86] studied this notion and proved that every hypergraph with fewer than
(s

2
)

edges (for some integer s) has a conflict-free colouring with fewer than s colours.

Kostochka, Kumbhat, and Luczak [66] further studied conflict-free colouring for

uniform hypergraphs.

A proper conflict-free colouring of G (pcf-colouring for short) is a proper

colouring of G such that for every non-isolated vertex v, there is a colour appearing

exactly once among the neighbours of v. We let χpcf (G) be the smallest integer

k such that there exists a pcf k-colouring of G. This notion is the combination of

proper colouring and the pointed conflict-free chromatic parameter introduced by

Cheilaris [24].

The notion of pcf colourings of graphs was formally introduced by Fabrici,

Lužar, Rindošová, and Soták [42], where they investigated the pcf colourings of

planar and outerplanar graphs, among many other related variants of a proper

conflict-free colouring. They proved that χpcf (G) ≤ 8 for all planar graphs and

χpcf (G) ≤ 5 for all outerplanar graphs. Plenty of further studies in pcf colourings

of sparse graphs can be found in [23, 25, 42, 54, 77].

Caro, Petruševski, and Škrekovski [23] proposed the following conjecture about

pcf colourings.

Conjecture 7 (Caro, Petruševski, Škrekovski [23, Conjecture 6.4]) If G

is a connected graph of maximum degree ∆ ≥ 3, then χpcf (G) ≤ ∆ + 1.

As a first step toward their conjecture, Caro, Petruševski, and Škrekovski [23]

proved that for such a graph G, χpcf (G) ≤ ⌊2.5∆⌋. Recently, it has been observed

by Cranston and Liu [28] that χpcf (G) ≤ ∆(G) + δ∗(G) + 1 where δ∗(G) denote

the degeneracy of G, that is δ∗(G) = maxH⊆G δ(H) (they actually more generally

proved that there always exists a pcf (∆(H)+δ∗(G)+1)-colouring of any given pair

(G,H)). They further reduced the gap to Conjecture 7 by proving that χpcf (G) ≤⌈
1.6550826∆ +

√
∆
⌉
, given that ∆ is large enough. So it is very interesting to

study Conjecture 7 by using probabilistic method to have an asymptotical bound
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as ∆→∞.

5.2.2 . Odd colouring

A proper vertex-colouring of a graph G is said to be odd if for each non-isolated

vertex there is a colour appearing an odd number of times on its neighbourhood.

It is introduced by Petruševski and Škrekovski [87]. The odd chromatic number

of a graph G, denoted by χo(G), is the minimum k ∈ N such that there exists

an odd colouring σ : V (G) → [k]. Since odd colourings are a weakening of pcf

colourings, it always holds that χo(G) ≤ χpcf (G) for every graph G.

In the last couple of years, there has been some interest in determining the

extremal value of χo in various classes of graphs. Petruševski and Škrekovski [87]

showed that χo(G) ≤ 9 for every planar graph G with a proof that relies on

the discharging method. Furthermore, they conjectured that this bound may be

reduced to 5. If true, this would be tight, since χo(C5) = 5.

Caro, Petruševski, and Škrekovski [22] also studied various properties of the

odd chromatic number of general graphs; in particular, they proved the following

facts: every graph of maximum degree three has an odd 4-colouring; every graph,

except for C5, of maximum degree ∆ has an odd 2∆-colouring. Moreover, they

presented a conjecture for general graphs.

Conjecture 8 (Caro, Petruševski, Škrekovski [22, Conjecture 5.5]) If G

is a connected graph of maximum degree ∆ ≥ 3, then χo(G) ≤ ∆ + 1.

Recently, Dai, Ouyang, and Pirot [31] used the probabilistic method to prove

that for every graph G with maximum degree ∆, χo(G) ≤ ∆+O(ln ∆) as ∆→∞.

We also prove that χo(G) ≤ ⌊3∆/2⌋+2 for every ∆. We will study this conjecture

in the near future.
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Appendix

Some of my works are not included in this thesis (see [33, 31, 29, 85]), which

have been (or will be) contained in theses of my collaborators or my master’s

thesis. I introduce these works briefly here.

(1) We study strong k-edge-colouring of subcubic graphs in [33]. A strong

k-edge-colouring of a graph G is an edge-colouring with k colours in

which every colour class is an induced matching. The strong chromatic

index of G, denoted by χ′
s(G), is the minimum k for which G has a

strong k-edge-coloring. In 1985, Erdős and Nešetřil conjectured that

χ′
s(G) ≤ 5

4∆(G)2, where ∆(G) is the maximum degree of G. When G

is a graph with maximum degree at most 3, the conjecture was verified

independently by Andersen and Horák, Qing, and Trotter. In this paper,

we consider the list version of strong edge-colouring. In particular, we show

that every subcubic graph has strong list-chromatic index at most 11 and

every planar subcubic graph has strong list-chromatic index at most 10.

(2) We consider odd colouring of graphs [31]. A proper vertex-colouring of a graph

G is said to be odd if for each non-isolated vertex there is a colour appearing

an odd number of times on its neighbourhood. The odd chromatic number

of a graph G, denoted by χo(G), is the minimum k ∈ N such that there exists

an odd colouring σ : V (G) → [k]. In this paper, we use the probabilistic

method to prove that for every graph G with maximum degree ∆, χo(G) ≤
∆+O(ln ∆) as ∆→∞. We also prove that χo(G) ≤ ⌊3∆/2⌋+2 for every

∆. If moreover the minimum degree δ of G is sufficiently large, we have

χo(G) ≤ χ(G) + O(∆ ln ∆/δ) and χo(G) = O(χ(G) ln ∆), and the latter

bound is tight up to some multiplicative constant. Finally, given an integer

h ≥ 1, we study the generalisation of these results to h-odd colourings,

where each vertex v must have min{deg(v), h} colours appearing an odd

number of times on its neighbourhood.

(3) As an analogy of the well-known anti-Ramsey problem, we study the existence
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of properly coloured cycles of given length in an edge-colored complete

graph in [29]. Let pr(Kn, G) be the maximum number of colours in an

edge-colouring of Kn with no properly coloured copy of G. In this paper,

we determine the exact threshold for cycles pr(Kn, Cl), which proves a

conjecture proposed by Fang, Győri, and Xiao, that the maximum number

of colours in an edge-colouring of Kn with no properly coloured copy of

Cl is max
{(l−1

2
)

+ n− l + 1,
⌊

l−1
3

⌋
n−

(⌊ l−1
3 ⌋+1

2
)

+ 1 + rl−1

}
, where Cl

is a cycle on l vertices, l − 1 ≡ rl−1 mod 3, and 0 ≤ rl−1 ≤ 2. It is a

slight modification of a previous conjecture posed by Manoussakis, Spyratos,

Tuza and Voigt. Also, we consider the maximal colouring of Kn whether a

properly coloured cycle can be extended by exact one more vertex.

(4) We present a hypergraph approach for logic-based abduction in [85].

Abduction reasoning, which finds possible hypotheses from existing

observations, has been studied in many different areas. We consider an

abduction problem that takes into account a user’s interest. We propose a

new approach to solving such an abduction problem based on a hypergraph

representation of an ontology and obtain a linear algorithm for a description

logic.
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