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Résumé

Cette thèse se compose de deux parties. La première est consacrée à la compréhension de la dynamique d'une particule macroscopique dans un écoulement tourbillonnaire. Les études sur le mouvement de particules dans les écoulements tourbillonnaires se sont principalement concentrées sur des particules ponctuelles. L'objectif de cette thèse est d'aller au-delà de cette approximation et d'explorer la dynamique d'un objet allongé qui peut expérimenter la structure non linéaire d'un écoulement. Afin d'obtenir des résultats analytiques, nous considérons une haltère rigide dans un vortex bi-dimensionnel indépendant du temps. Si l'inertie de l'haltère est négligeable, il existe un invariant du mouvement fonction de la position et de l'orientation initiales, mais indépendant de la forme du tourbillon. Il en résulte que, pour tous les tourbillons dans lesquels la vitesse angulaire du fluide diminue avec la distance radiale, le centre de masse suit une trajectoire spirographique autour du centre du vortex. Si la vitesse angulaire du fluide n'est pas monotone, le mouvement spirographique est modifié par l'existence de barrières de transport, dont la forme dépend maintenant des détails du vortex. Lorsque l'inertie de l'haltère ne peut être ignorée, la trajectoire du centre de masse passe d'une courbe spirographique à une forme de huit puis à une spirale au fur et à mesure que le nombre de Stokes de la particule croît.

La partie II étudie la "turbulence élastique". Ceci est un régime chaotique généré dans les fluides à faible inertie par l'ajout de polymères. La simulation numérique de ce phénomène pose de grands défis en raison des forts gradients développés par le tenseur des contraintes des polymères. Diverses stratégies ont donc été proposées pour surmonter les difficultés rencontrées dans la simulation des écoulements viscoélastiques. Notre objectif est d'examiner la performance de certaines de ces stratégies qui ont été largement utilisées récemment. Pour ce faire, nous utilisons une borne mathématique sur le déterminant du tenseur de conformation des polymères pour le modèle d'Oldroyd-B. Nous montrons que la racine carrée symétrique du tenseur de conformation est moins précise que la décomposition de Log-Cholesky, car elle n'utilise pas de transformation logarithmique. Nous constatons également que l'inclusion d'un terme diffusif dans les modèle constitutifs, même localement dans l'espace, génère des artefacts dans la structure à grande échelle de l'écoulement. De plus, en raison de la nature hyperbolique des équations pour le tenseur de conformation des polymères, l'augmentation de la résolution numérique à paramètres du système constants active des petites échelles supplémentaires à la fois dans l'écoulement et dans le champ du polymère. Enfin, il est montré que l'approximation uniaxiale du tenseur de conformation du polymère échoue dans les régions tourbillonnaires de l'écoulement, à la fois dans la turbulence élastique et dans les solutions turbulentes de polymères. The droplets which start their journey from within the critical radius are colored in green, the others in red. Subsequently, if in a merging event, at least a caustics droplet is involved, the resulting droplet is colored in black. The size of the black droplets is scaled up for better visualization (from Ref. [14]). . . . . . . . . . . . . . . . . . . . . . . . . .

1.2 Distribution of bacteria in the vicinity of a rotating particle forming a depletion layer at the center (from Ref. [31]). . . . . . . . . . . . . . . . . .

Trajectories and density distributions of microswimmers of different shapes.

The shape parameter α is defined as α = (λ 2 -1)/(λ 2 + 1), where λ is the ratio of major to minor axis of the particle. α = -0.4, 0, 0.4 correspond to oblate, spherical, and prolate microswimmers, respectively. Top row: Trajectories of the microswimmers. Bottom row: phase-space distributions.

The black lines represent the flow streamlines and the color bar represents the magnitude of contraction and expansion of the phase-space (from Ref. [7]). 

2.3

Position and orientation of the dumbbell in the vicinity of a Lamb-Oseen vortex at typical times. These snapshots correspond to the trajectory shown in Fig. 2.1(c); see also Supplemental Movie 2 [2]. The orange and the green beads represent bead "1" and bead "2", respectively . . . . . . . . . . . . . 2.9 Left: Profiles of the fluid angular velocity for the Lamb-Oseen (green), Rankine (red), and Sullivan (black) vortices. Right: Schematic of the Rankine vortex (from Ref. [36]). . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.10

Vector plots of the field ( ṙc , α) for a Rankine vortex with (a) ℓ/R = 0.8, (b) ℓ/R = 1.5, (c) ℓ/R = 2. The white area is the interior of P 4 and corresponds to those initial configurations for which the dumbbell is in solid body rotation from the beginning. The green and orange lines are the stable and unstable boundaries of P 4 , respectively. (d) Vector plot of the field ( ṙc , α) for a Sullivan vortex with ℓ/R = 1.5. The orange (green) line is the unstable (stable) subset of P 4 . In all plots, the red points are P 1 and the red straight lines are P 3 , as in Fig. 

Preface

This thesis is divided into two parts. Part I is dedicated to understanding the dynamics of a macroscopic particle in a vortical flow. Part II is devoted to the modeling and numerical simulation of elastic turbulence. Each part has separate bibliography.

The thesis benefited from the support of CNRS through the 80 | Prime program and included a long-term visit at the International Center for Theoretical Sciences, Tata Institute of Fundamental Research (ICTS-TIFR), Bengaluru, India.

Part I: Elongated particles in vortex flows

Particles in fluid flows exhibit different dynamical behaviors, such as clustering, trapping, and ejection, depending on their shape and the nature of the flow in which they are embedded. In vortical flows, it is well-known that heavy inertial particles are ejected from the core of the vortex, while the light particles get entrapped in the vortex core [11,5]. However, most studies have focused on point-like particles. Considering macroscopic particles significantly increases the complexity of the problem and the mathematical analysis, since the velocity field that surrounds the particle cannot be approximated as linear. In this part of the thesis, we are concerned with the dynamics of elongated particles that can experience the nonlinear structure of a vortical flow. We consider a system that while being "macroscopic", remains sufficiently simple to allow an analytical study. This is a rigid dumbbell, which consists of two identical beads connected by a rigid rod. The model is adapted from polymer physics, where it has been widely used to describe rodlike macromolecules [8].

Chapter 2 discusses the dynamics of an inertialess rigid dumbbell in different vortices whose angular velocity varies as a function of radial distance. We show that the dumbbell performs spirographic-like trajectories around the center of any steady vortex whose fluid angular velocity decreases with radial distance. If the fluid angular velocity is not monotonic, the spirographic-like motion is altered by the existence of transport barriers, whose shape is now sensitive to the details of the vortex. The explanation of the dynamics is based on the existence of a constant of motion which is a function of the initial position and orientation of the dumbbell but does not depend on the functional form of the vortex. This work has been done in collaboration with Rama Govindarajan (ICTS-TIFR, India) and has been published in Physical Review Fluids [15]. Chapter 3 presents some preliminary results on how the above dynamics is modified when the inertia of the dumbbell is not ignored.

Part II: Numerical simulation of elastic turbulence

Elastic turbulence is the emergence of a chaotic flow in low-inertia fluids because of the addition of polymers. The elastic stresses generated by polymers in the fluid indeed trigger instabilities despite the absence of fluid inertia [10]. The amplification of these elastic instabilities lead to a chaotic flow behavior known as elastic turbulence. Experimentally, the main features of elastic turbulence were first discovered by Groisman and Steinberg in the year 2000 [9]. These include the excitation of several spatiotemporal scales with power-law power and energy spectra, the enhancement of the mixing rate, and the increase of the flow resistance.

Naturally, an interest began to develop on how to explain this phenomenon theoretically and to simulate it numerically. From a mathematically point of view, elastic turbulence has been described by coupling the Navier-Stokes equations for the flow field with a constitutive equation for polymers. The most common constitutive models are derived from the kinetic dumbbell theory, which represents long-chain linear polymer molecules as elastic dumbbells with two beads connected by an elastic spring [4]. The dynamics of the polymers is described in terms of the polymer conformation tensor, which describes the stretching and orientation of the polymer molecules. By construction, the conformation tensor is a symmetric and positive definite (SPD) tensor. However, in numerical simulations, unless ad hoc integration techniques are used, the cumulative errors that result from the discretization of the equations may lead to the loss of the SPD property of the conformation tensor and generate numerical instabilities. To stabilize numerical simulations different strategies have therefore been proposed:

1. The addition of a diffusive term to the constitutive equations [6,12], namely a Laplacian of the conformation tensor with a diffusivity coefficient that may be constant (global diffusion) or space dependent (local or modified diffusion).

2. Reformulations of the constitutive equations using matrix decompositions [13,1].

3. Use of shock-capturing schemes like the Kurganov-Tadmor scheme to discretize the convective term in the constitutive equations [14].

On the theoretical front, Fouxon and Lebedev [2,3,7] proposed a simplified constitutive model referred by them as uniaxial viscoelastic model. This model assumes that polymers are highly stretched everywhere in the domain. Thus, the contribution of thermal fluctuations is disregarded. As a result, the tensorial equation of the conformation tensor field is reduced to a vectorial equation for the polymer end-to-end vector.

In chapter 4, we discuss elastic turbulence in great detail along with the numerical methods commonly used to simulate this phenomenon. The focus is on the difficulties encountered in the simulations and the corresponding approaches that have been proposed to overcome these challenges. We also describe the numerical simulations that constitute the core of this part. This work has been done in collaboration with Jason R. Picardo (IIT Bombay), and Anupam Gupta (IIT Hyderabad). In short, our numerical solver is developed for 2D incompressible fluids (Stokes or Navier-Stokes equations) and either the Oldroyd-B or the FENE-P constitutive models; the Kurganov-Tadmor scheme is adopted to resolve the convective term in the polymer equations.

In chapter 5, we compare the performance of two widely used reformulations of the conformation tensor, namely the Log-Cholesky and the symmetric square root decompositions, and their ability to reproduce elastic turbulence faithfully. In particular, a mathematical constraint that the determinant of the conformation tensor of the Oldroyd-B model must satisfy in any flow condition is used to detect numerical inaccuracies.

The effect of incorporating a local diffusive term into the polymer constitutive equations is investigated in chapter 6. We also analyze the impact of numerical resolution on the simulation results. An article on the content of chapter 5 and 6 is currently in preparation.

Chapter 7 presents some preliminary results verifying the applicability of the uniaxial viscoelastic model both at low and high Re. An article summarizing our findings is in preparation.

Part I

Elongated particles in vortex flows

Chapter 1

INTRODUCTION

The transport of particles in fluid flows is of great interest as particle-laden flows are commonly observed in various settings ranging from nature to industry. Some examples include the transport and deposition of pollutants by the action of wind, the formation of rain droplets in clouds, migration of microorganisms in the ocean, and the transport of fibres in rheological flows. The nature of the background flow obviously plays a decisive role in determining the particle dynamics. However, even in a single two-dimensional vortex the dynamical behavior of particles can be complex in spite of the simple spatial structure of the flow. Particles that are denser than the fluid are ejected from the core of the vortex, whereas light particles and bubbles get entrapped into the vortex and accumulate near its center [19,12]. The ejection and entrapment rates of a particle depend strongly on the particle Stokes number (which is the ratio of the particle response time to the flow characteristic time scale) and the distance of the particle from the vortex center. Light particles rotate faster than the surrounding fluid and asymptotically approach the vortex center by spiralling inwards, whereas heavy particles rotate slower than the surrounding fluid and get ejected from the vortex center by spiralling outwards. In the latter case, optimal accumulation of heavy particles in the peripheries of the point vortex takes place when the outward pointing centrifugal force is balanced by the drag force [25].

The selective transport of particles in vortical flows generates strong inhomogeneities and even spikes in the spatial distribution of particles with important consequences on the collision and coalescence processes (see Refs. [25,15,26,14] and references therein). The ejection of heavy particles out of a vortex by the action of the centrifugal force forms concentration waves that grow and move away from the vortex center [15]. When the Stokes number of the particle is sufficiently high, a second peak even occurs in the concentration wave due to the overtaking phenomenon. This occurs as the particles that are initially close to the center of the vortex attain a high radial velocity because of the centrifugal acceleration and overtake the particles that are initially located in the outer regions of the vortex. The accumulation of particles in the outer regions leads to collisions and coalescence between them. Considering a planar time-independent vortical flow, it was showed that caustics, i.e. the arrival of two or more particles with different velocities at the same place and at same time play an important role in triggering the collisions between the clustered particles [26]. This fact has implications in the context of droplet growth in clouds and rainfall. Droplets initially located within a critical radius from the vortex center indeed centrifuge out and overtake the other particles to form bigger droplets by caustics-induced coalescence as shown in Fig. 1.1(a) [14]. On the other The droplets which start their journey from within the critical radius are colored in green, the others in red. Subsequently, if in a merging event, at least a caustics droplet is involved, the resulting droplet is colored in black. The size of the black droplets is scaled up for better visualization (from Ref. [14]). hand, light particles like bubbles, which neither interact with each other nor affect the vortical flow, accumulate at equilibrium points located at the center of the vortex, where the pressure gradients are stronger [28].

Ejection, entrapment, and strong spatial heterogeneity in vortical flows are also observed for inertialess but self-propelled particles, such as bacteria, plankton, or artificial microswimmers [31,33,7,8]. The dynamical regimes depend critically on the motility, shape, and deformability of the particles, as well as on the magnitude of rotational diffusion and external stimuli [33,7,17]. Microswimmers get rapidly expelled from the vortex forming a macroscopic deletion area in the vicinity of the high shear region at the center, as shown in Fig. 1.2. The complex interplay between self-propulsion and shear-induced alignment leads to the formation of an heterogeneous bacterial concentration even in the absence of rotational noise [31]. The shape and motility of microswimmer also play Figure 1.2: Distribution of bacteria in the vicinity of a rotating particle forming a depletion layer at the center (from Ref. [31]).

an important role in determining their dynamics in vortical flows: spherical microswimmers initially present in a homogeneous distribution conserve the phase-space volume by remaining homogeneously distributed, whereas non-spherical microswimmers contract or expand the phase-space volume and exhibit nonuniform density distributions, preferential orientations, clustering, and trapping as shown in Fig. 1.3 [7]. The shape parameter α is defined as α = (λ 2 -1)/(λ 2 + 1), where λ is the ratio of major to minor axis of the particle. α = -0.4, 0, 0.4 correspond to oblate, spherical, and prolate microswimmers, respectively. Top row: Trajectories of the microswimmers. Bottom row: phase-space distributions. The black lines represent the flow streamlines and the color bar represents the magnitude of contraction and expansion of the phase-space (from Ref. [7]). In all the studies described above, the particles are small enough to be treated as point-like. The velocity field surrounding them can therefore be modelled as linear, and if the particles possess internal degrees of freedom, the evolution of such degrees of freedom is entirely controlled by the local velocity gradient. Although much has been learned about the dynamics of spherical particles in vortex flows, the dynamics of non-spherical particles has been relatively less explored in this context. Assuming the particles to be spherical in shape simplifies the governing equations to a great extent and enables one to successfully describe the dynamics of the particles using simple mathematical models. But the shape of particles found in many industrial applications and even in nature varies widely. The coupling between the orientational and translational motions of non-spherical particles imparts complexity into the system, and therefore the spherical-particle hypothesis is not sufficient to describe the dynamics of non-spherical particles. This is especially true when there is two-way coupling between the particles and the surrounding fluid, i.e., the particles interact with the fluid, modify the fluid flow, and the fluid responds back by influencing the particle motion [11]. The complexity of the system increases if the particles interact with each other.

Here our interest is to go beyond the point-particle approximation and explore the dynamics of an elongated object that can experience the nonlinear structure of a flow field. This is in general a difficult problem, since even modelling the interaction of such an object with the fluid and deriving the equations of motion may be a great challenge. We consider a system that is sufficiently simple to allow an analytical study: a non-motile inertialess rigid dumbbell, with the two beads small enough in size to be in a Stokes flow relative to the fluid. This model is adapted from polymer physics, where it has been widely used to describe rodlike macromolecules [16]. An analogous generalization of the rigid dumbbell model was considered in Ref. [23] in a study of gravitational settling in a cellular flow. A more complicated version of the dumbbell model referred to as elastic dumbbell model, in which the rigid rod is replaced by an elastic spring, forms the basis of constitutive models for polymer solutions. Elastic dumbbell models for polymers will be discussed in more detail in the second part of the thesis.

In this part, we first discuss the dynamics of an inertialess rigid dumbbell in different vortical flows in chapter 2. The motion of the dumbbell is studied in a general twodimensional steady vortex. This allows us to neglect the effect of added mass and history forces on the dumbbell. By exploiting the rotational symmetry of the flow, the problem is reduced to the study of a two-dimensional dynamical system which describes the position of the center of mass of the dumbbell and its orientation with respect to the radial direction. The analysis of the fixed points and the periodic orbits of this system yields a complete understanding of the dynamics of the dumbbell. In particular, if ℓ is the length of the dumbbell, r c the radial distance of its center of mass from the centre of the vortex, and α its orientation angle, we show that the quantity

(r c /ℓ) exp(-2r 2 c /ℓ 2 ) cos α (1.1)
is a constant of the motion irrespective of the form of the vortex. This result has different implications depending on the variation of the fluid angular velocity with the radial distance. For all vortices in which the fluid angular velocity decreases with the radial distance, the dynamics is qualitatively the same and consists of a spirographic-like quasiperiodic motion around the vortex center (here 'spirographic' is used in a qualitative sense; it is not proved that the trajectories are roulettes [9]). The amplitude and the center of the radial oscillation can be predicted analytically and are found to depend strongly on the initial configuration of the dumbbell. For vortices where the fluid angular velocity is not strictly monotonic, the existence of an attracting set in the configuration space alters the spirographic-like dynamics in a way that is specific to the vortex. The attracting set indeed generates a barrier to transport in physical space, which is visualized by considering the long-time spatial distribution of an ensemble of dumbbells.

In chapter 3, we present preliminary results on the dynamics of the dumbbell when inertia is incorporated. We will show that the spirographic-like trajectories formed by the inertialess dumbbell are altered under the influence of inertia.

Chapter 2

INERTIALESS DUMBELL IN A VORTEX

In this chapter, we study the dynamics of an inertialess rigid dumbbell in vortical flows. Section 2.1 outlines the equations governing the motion of the dumbbell and describes the vortical flow. Section 2.2 exemplifies the spirographic-like dynamics by considering a dumbbell in a steady Lamb-Oseen vortex. The study of the fixed points and the periodic orbits of the reduced two-dimensional system is presented in section 2.4 for a generic two-dimensional steady vortex. The Rankine vortex and a two-dimensional version of the Sullivan vortex are used to illustrate the case of a non-monotonic fluid angular velocity. Concluding remarks and potential extensions of the work are discussed in section 2.5.

Rigid dumbbell in a vortex

We consider a rigid dumbbell with two identical beads immersed in a Newtonian fluid. The connector between the beads does not pose any resistance to the fluid and should only be regarded as a geometric constraint that maintains a fixed separation ℓ. Moreover, ℓ is assumed to be sufficiently large for hydrodynamic interactions between the beads to be negligible. The motion of the fluid is described by the velocity field u(x, t), and the force of the fluid on each bead is given by the Stokes drag with coefficient ζ.

Let r i (i = 1, 2) be the position vector of the i-th bead. Under the above asssumptions,

r i satisfies mr i = -ζ[ ṙi -u(r i , t)] + τ i , i = 1, 2, (2.1) 
where m is the mass of each bead and τ i is the tension exerted by the connector on the i-th bead. In this chapter, the study is conducted in the inertialess limit. If the inertia of the beads is negligible, Eq. (2.1) simplifies to ṙi = u(r i , t)

+ τ i ζ , i = 1, 2. (2.2)
The tension τ i can then be calculated by introducing the connector vector ℓ = r 1 -r 2 and noting that the rigidity constraint can be written as

ℓ • l = 0. (2.3)
Subtracting the equation for ṙ2 from that for ṙ1 , and taking the dot product with ℓ gives

ℓ • [u(r 1 , t) -u(r 2 , t)] + 1 ζ {ℓ • [τ 1 -τ 2 ]} = 0, (2.4) ℓ • [τ 1 -τ 2 ] = -ζ {ℓ • [u(r 1 , t) -u(r 2 , t)]}. (2.5)
Solving for τ i = |τ i | and observing that τ 1 = -τ 2 is antiparallel to ℓ then yields:

τ 1 = -τ 2 = - ζ 2 { l • [u(r 1 , t) -u(r 2 , t)]} l (2.6)
with l = ℓ/ℓ. Equations (2.2) and (2.6) show that the motion of a non-motile inertialess dumbbell is independent of ζ.

As an alternative to the positions of the beads, the configuration of the dumbbell may be described by specifying the position of its center of mass, r c = (r 1 + r 2 )/2, and the connector vector ℓ. The evolution equations for r c and ℓ are easily obtained from Eqs. (2.2) and (2.6):

ṙc = u(r 1 , t) + u(r 2 , t) 2 , (2.7a) l = u(r 1 , t) -u(r 2 , t) -{ l • [u(r 1 , t) -u(r 2 , t)]} l. (2.7b) 
These equations generalize the rigid dumbbell model of polymer physics [16] to a nonlinear velocity field. Indeed, the usual polymer dumbbell model is obtained by replacing u(x, t) = u(0, t) + ∇u(t) • x into Eq. (2.7) (and adding Brownian fluctuations).

Here we focus on a steady two-dimensional vortex. In order to take advantage of the rotational symmetry of the flow, it is convenient to use the polar coordinate system, where the position vector of a point with coordinates (r, φ) is r = r(cos φ, sin φ) and the unit vectors that form the orthogonal basis at the point (r, φ) are r = (cos φ, sin φ) and φ = (-sin φ, cos φ). We take a velocity field of the form

u(r) = U (r) φ, (2.8) 
where U (r) is the magnitude of the azimuthal velocity. Therefore, the fluid angular velocity at a distance r from the center of the vortex is

Ω(r) = U (r) r .
(2.9)

In section 2.4, we will show that several properties of the dynamics of the dumbbell can be predicted from Eqs. (2.7). The analytical study is not confined to any specific choice of the function Ω(r) and holds for a general steady two-dimensional vortex flow. However, to gain intuition on the dynamics, in the next section we first show the results of numerical simulations for a two-dimensional, time-independent Lamb-Oseen vortex. As we shall see, the motion of the dumbbell in this vortex is representative of the motion in any vortex such that Ω(r) decreases with r.

Because of the rigidity constraint, the dumbbell only possesses three degrees of freedom. It is therefore useful to describe its configuration by means of the polar coordinates of the center of mass, (r c , φ c ), and the angle α that ℓ makes with r c . This angle gives the orientation of the dumbbell with respect to the radial direction [see Fig. 2.1(a)]; α = 0 when the connector is parallel to the radial direction and it increases anticlockwise. For reasons that will be clear later, it is convenient to take -π/2 ⩽ α < 3π/2. When α = 0 (α = π) the dumbbell is parallel (antiparallel) to the radial direction; when α = ±π/2 the dumbbell is perpendicular to it and hence tangent to the streamlines of the vortex. Note that the value of α also determines which of the beads is closest to the vortex center: for π/2 < α < 3π/2 bead "1" is closest to the centre, while for -π/2 < α < π/2 bead "2" is closest.

Spirographic-like dynamics

In the steady, two-dimensional Lamb-Oseen vortex, the angular velocity is

Ω(r) = Γ 2π 1 -e -r 2 /R 2 r 2 , (2.10)
where R is the size of the vortex core and Γ its circulation. The Lamb-Oseen vortex is derived as an exact solution of the Navier-Stokes equations for an initial condition in which the full vorticity of the flow is concentrated into a single point of the plane. This vortex model has been widely used in different flow scenarios. For example, the Lamb-Oseen vortex is used to understand the dynamics of trailing vortices shed by the wings of transport aircraft [10,18,22] and in the transport of passive particles in viscous flows [20]. Very recently, the stability and decay of the Lamb-Oseen vortex in the presence of inertial particles has been analyzed in Ref. [30]. Equations (2.7) are integrated by using a second-order Heun method with time step dt = 10 -4 , which is sufficient to keep the length of the connector constant. As Eq. (2.10) possesses a numerical singularity at r = 0, e -r 2 /R 2 is approximated by using a Taylor series expansion up to 4th-order when 0 ≤ r ≤ 2R. Unless otherwise specified, the simulation parameters are R = 0.1, Γ = 2π, and ℓ = 1.

Figures 2.1(b) and 2.1(c) show two representative trajectories of the center of mass of the dumbbell (see also Supplemental Movies 1 [1] and 2 [2]). This oscillates back and forth between two concentric circles while simultaneously revolving around the center of the vortex. The combination of these two motions generates a spirographic-like trajectory that eventually fills an annulus around the vortex center. The shape of the trajectory and the way it is covered are found to depend strongly on the initial position and orientation Representative time series of r c , φ c , cos α, and the tension in the connector are shown in Fig. 2.2; inspection of these time series clearly describes the dynamics of the dumbbell. Both r c and cos α are periodic with the same time period T [Fig. 2.2(a)]. The distance of the dumbbell from the vortex centre oscillates between a minimum and a maximum value, so that the motion is confined to an annulus concentric with the vortex. The maximum and minimum distances are reached when cos α = 1, i.e. when the dumbell is parallel to the radial direction. In such a configuration, the tension in the connector vanishes [Fig. 2.2(c)]. Note that cos α never changes sign. This means that, during the motion, the connector vector keeps its initial, either inward or outward, orientation with respect to the radial direction and never reverses it. In other words, the bead that starts closest to the center of the vortex always remains closest to it (see also Supplemental Movies 1 [1] Figure 2.3: Position and orientation of the dumbbell in the vicinity of a Lamb-Oseen vortex at typical times. These snapshots correspond to the trajectory shown in Fig. 2.1(c); see also Supplemental Movie 2 [2]. The orange and the green beads represent bead "1" and bead "2", respectively and 2 [2]). Finally, the evolution of φ c is the combination of a linear growth with slope ω (which corresponds to a rotation about the vortex with angular velocity ω) and a periodic oscillation with same time period as r c and cos α [Figs. 2.2(d,e)]. Since 2π/ω ̸ = kT , where k is a rational fraction, the angular motion is not periodic, and hence the trajectory of the center of mass never repeats itself but fills an annulus around the vortex center, in classic quasiperiodic motion. Fig. 2.2(e) suggests that ω is independent of the initial conditions when the ratio ℓ/R is either very large or very small. In contrast, for intermediate values of ℓ/R, ω depends on r c (0) and α(0). Moreover, ω scales as (ℓ/R) -2 for ℓ/R ≫ 1, while it tends to a constant as ℓ/R → 0, i.e. the dynamics of the dumbbell does not reduce to that of a point particle in the ℓ/R → 0 limit. In summary, the motion of the dumbbell can be described as the superposition of: i) a periodic oscillation with period T of the center of mass in the radial direction; ii) a periodic revolution of the center of mass around the vortex center with a period 2π/ω, which is not in general a rational multiple of T ; iii) a periodic oscillation with period T of the connector around the centre of mass of the dumbbell without reversals. In our simulations, we did not find any instance of periodic motion, but in principle there might be some special values of r c (0) and α(0) such that 2π/ω is a rational multiple of T , in which case the spirograph would not be space filling. The resulting spirographic-like dynamics can also be described as follows [see Figs. 2.2(b) and 2.3 as well as Supplemental Movies 1 [1] and 2 [2]]. Let us consider an initial configuration in which bead "2" is closest to the vortex center (-π/2 ⩽ α(0) ⩽ π/2) and hence has a higher angular velocity. When bead "2" is "leading" (-π/2 < α < 0), the dumbbell moves inwards [Fig. 2.3(a)], while its orientation gradually approaches the radial direction (α increases). The inward motion continues until the dumbbell aligns with the radial direction (α = 0) [Fig. 2.3(b)], after which bead "2" starts "lagging" (0 < α < π/2) and the dumbbell moves outwards [Fig. Qualitatively the same dynamics to that shown in Figs. 2.2 and 2.3 is observed for different initial positions and orientations of the dumbbell as well as different values of the parameters ℓ and R. Because of the rotational symmetry of the problem, the dynamics of the dumbbell is obviously independent of φ c (0). However, the details of the motion depend very sensitively on the other initial conditions and on the system parameters. We demonstrate this by focusing on the time evolution of the distance r c . This can be described as

r c (t) = r ⋆ c + Af t -t ⋆ T , ( 2.11) 
where r ⋆ c is the distance around which the oscillation takes place, A its amplitude, T the time period over which α and r c go through one cycle, and t ⋆ a chosen temporal translation. The function f (z) is periodic of unit period and such that -1 ⩽ f (z) ⩽ 1, f (0) = 1, and 1 0 f (z)dz = 0. For a fixed initial orientation α(0) ̸ = ±π/2, the quantities A, r ⋆ c , T are convex functions of the initial distance r c (0); they reach their minima when r c (0) = ℓ/2 and diverge as r c (0) approaches zero or becomes very large (see Fig. 2.4). Thus, the oscillations performed by the center of mass are wider when the dumbbell is initially placed at a distance either much smaller or much greater than half the length of the connector. Rescaling A, r ⋆ c , T with their minimum values (denoted as A ℓ/2 , r * c,ℓ/2 , T ℓ/2 ) and r c (0) with the length of the dumbbell shows that the shape of each of the A, r ⋆ c , T vs r c (0) curves is independent of ℓ. In addition, the minimum values of A and r ⋆ c grow linearly with ℓ, whereas the minimum value of T is proportional to ℓ 2 (see the insets of Fig. 2.4).

For a fixed r c (0) ̸ = ℓ/2 and different values of ℓ, the dependence of A, r ⋆ c , and T on the initial orientation of the dumbbell is shown in Fig. 2.5. Only the range 0 ⩽ α(0) < π/2 is shown, since the curves for other ranges of α(0) can be obtained by symmetry arguments. The oscillations are narrow when the dumbbell is initially oriented along the radial direction α(0) = 0 and become wider and wider as the initial orientation approaches the direction tangential to the streamlines of the vortex [α(0) = π/2]. Once again, the behavior of the A, r ⋆ c , T vs α(0) curves is independent of r c (0)/ℓ, and the curves for different ℓ can be overlapped with suitable normalization. Figure 2.6(a) indicates that not only features such as the magnitude and the time period, but even the functional shape of the radial oscillation varies with the initial configuration and the system parameters.

In the section 2.4, we show that the above numerical observations can be explained analytically by studying Eqs. (2.7).

Equations in the (r c , α) plane

The evolution equations for the variables r c , φ c , α can be derived from Eqs. (2.7). In polar coordinates, the orthogonal bases at the positions of the beads and of the centre of mass are denoted as {r i , φi } (i = 1, 2) and {r c , φc }, respectively. These obey the relationships whence

r1 • φ2 = -r 2 • φ1 , φc = r 1 2r c φ1 + r 2 2r c φ2 (2.12)
ℓ • φc = r 1 r 2 r c r1 • φ2 = - r 1 r 2 r c r2 • φ1 . (2.13)
In addition

ℓ • rc = ℓ cos α, ℓ • φc = ℓ sin α. (2.14)
The distances of the beads from the center of the vortex can be expressed in terms of r c and α as

r 2 1 = r 2 c + ℓ 2 4 + ℓ r c cos α, r 2 2 = r 2 c + ℓ 2 4 -ℓ r c cos α, ( 2.15) 
which follows from

r 1 = r c + ℓ 2 , r 2 = r c - ℓ 2 .
(2.16)

By using the definition of the velocity in Eqs. (2.8) and (2.9) as well as Eq. (2.13) and the second of Eqs. (2.14), we find

u(r 1 , t) • r 2 = -r c ℓ Ω(r 1 ) sin α, u(r 2 , t) • r 1 = r c ℓ Ω(r 2 ) sin α.
(2.17)

Then, together with the condition

u(r i , t) ⊥ r i , (2.18) Eq. (2.7a) yields ṙc = 1 2 [u(r 1 , t)+u(r 2 , t)]• rc = 1 4r c [u(r 1 )•r 2 +u(r 2 )•r 1 ] = - ℓ sin α 4 [Ω(r 1 )-Ω(r 2 )]. (2.19)
To derive the evolution equation for α, we first note that

r c d cos α dt = 1 ℓ d dt (ℓ • r c ) -ṙc cos α. (2.20)
Then, Eqs. (2.7) and Eq (2.17) yield 

d dt (ℓ • r c ) = ℓ • ṙc + r c • l = -{ l • [u(r 1 , t) -u(r 2 , t)]} ( l • r c ) = -[-u(r 1 , t) • r 2 -u(r 2 , t) • r 1 ] l • r c ℓ = -r 2 c sin α cos α [Ω(r 1 ) -Ω(r 2 )]. ( 2 
d cos α dt = -sin α cos α r c ℓ - ℓ 4r c [Ω(r 1 ) -Ω(r 2 )] (2.22) and dα dt = cos α r c ℓ - ℓ 4r c [Ω(r 1 ) -Ω(r 2 )]. (2.23)
The x-component of Eq. (2.7a) may now be used to derive an evolution equation for φ c :

r c d cos φ c dt = x • ṙc -ṙc cos φ c = x • [ ṙc -ṙc rc ]. (2.24)
Note that Eq. (2.16) implies

r 1 φ1 = r c φc + ℓ ⊥ /2, r 2 φ2 = r c φc -ℓ ⊥ /2, ( 2.25) 
where

ℓ ⊥ = -ℓ sin α rc + ℓ cos α φc (2.26)
is such that ℓ • ℓ ⊥ = 0. By using Eqs. (2.25) and the definitions (2.8) and (2.9) we can rewrite Eq. (2.7a) as 

ṙc = 1 2 [r 1 Ω(r 1 ) φ1 + r 2 Ω(r 2 ) φ2 ] = r c 2 [Ω(r 1 ) + Ω(r 2 )] φc + ℓ ⊥ 4 [Ω(r 1 ) -Ω(r 2 )]. ( 2 
-ṙc rc = r c 2 [Ω(r 1 ) + Ω(r 2 )] φc + ℓ 4 cos α[Ω(r 1 ) -Ω(r 2 )] φc . (2.28)
Finally, inserting the latter expression in Eq. (2.24) yields

d cos φ c dt = - sin φ c 2 [Ω(r 1 ) + Ω(r 2 )] - ℓ 4r c cos α sin φ c [Ω(r 1 ) -Ω(r 2 )]. (2.29) 
Thus, the evolution equations for the variables r c , φ c , α are ṙc = -ℓ sin α 4

[Ω(r 1 ) -Ω(r 2 )],

(2.30a)

α = cos α r c ℓ - ℓ 4r c [Ω(r 1 ) -Ω(r 2 )], (2.30b) φc = 1 2 Ω(r 1 ) + Ω(r 2 ) + ℓ cos α 2r c [Ω(r 1 ) -Ω(r 2 )] . (2.30c)

Dynamics in the (r c , α) plane

An immediate consequence of Eqs. (2.30) is that, for a linear velocity field [U (r) ∝ r], the difference between the angular velocities of the beads vanish, i.e. ṙc = 0, α = 0, φc =const, and the dumbbell performs a solid-body rotation at fixed distance and orientation [the same conclusion could also be reached by noting that the tension in the connector vanishes for a linear velocity field-see Eq. (2.6)-and the beads move as tracers]. In the following analysis, therefore, it will be assumed that the velocity depends on the radial distance in a nonlinear way.

Furthermore, the right-hand sides of Eqs. (2.30a) and (2.30b) do not depend on the polar angle φ c . Hence φ c is "slaved" to the variables r c and α, and the main features of the dynamics can be understood by focusing on the (r c , α) plane alone. In addition, since the system is essentially two-dimensional, the Poincaré-Bendixson theorem implies that the dynamics cannot be chaotic [13].

In the (r c , α) plane, the system possesses the following sets of fixed points, each of which corresponds to a solid-body rotation of the dumbbell in physical space:

(i) P 1 = {(ℓ/2, 0), (ℓ/2, π)}. In these two configurations, one of the beads stays at the vortex center, while the other rotates on a circle of radius ℓ, so that the dumbbell rotates around one of its ends [see Fig. (iv)

P 4 = {(r c , α) s.t. r c > 0, α ̸ = ±π/2, Ω(r 1 ) = Ω(r 2 )}.
The dumbbell rotates at a fixed distance from the vortex centre while keeping its orientation with respect to the radial direction. Note that these fixed points only exist if Ω(r) goes through the same value at two or more different radial locations of r.

It can be checked that in all the above cases the radial velocity of the center of mass is zero. In addition, the beads experience no tension and move with the flow as fluid particles, i.e. ẋi = u(x i ), i = 1, 2. This can be seen by using Eqs. (2.2) and (2.6) and noting that (i) For the two points in P 1 , we have either u(x 1 ) = 0 and ℓ ⊥ u(x 2 ) or u(x 2 ) = 0 and ℓ ⊥ u(x 2 );

(ii) For the point in P 2 , the connector ℓ is perpendicular to both u(x 1 ) and u(x 2 );

(iii) The configurations belonging to the sets P 3 and P 4 satisfy u(r 1 )

• ℓ = -U (r 1 ) r 2 φ1 • r2 = U (r 2 ) r 1 φ2 • r1 = u(r 2 ) • ℓ.
From the analysis below, it will be clear that the fixed points in P 2 and P 3 are unstable, whereas those in P 1 are neutrally stable. The nature of the points belonging to P 4 , when they exist, depends on the form of the fluid angular velocity. Obviously, the fixed points of the (r c , α) plane correspond to a solid-body rotation of the dumbbell at a constant angular velocity [Eq. ( 2 The points P 3 impact the dynamics of the dumbbell in the same way for any vortex flow. These points, indeed, form two straight lines (α = ±π/2) which separate the domain into two disconnected regions, so that the dynamics takes place in either of the stripes -π/2 < α < π/2 or π/2 < α < 3π/2 depending on the initial orientation of the dumbbell [Fig. 2.8(a)]. As a consequence, the dumbbell never reverts its orientation with respect to the radial direction and the sign of cos α remains constant during the time evolution, as was observed numerically in section 2.2 in the case of the Lamb-Oseen vortex [see Fig.

.30c) indeed yields φ c (t) = φ c (0) + ωt with ω = ω(r 1 ) or ω = ω(r 2 )].

2.2(a)].

Finally, a very general result can be deduced from Eqs. (2.30a) and (2.30b). These equations indeed display the same dependence on Ω(r 1 ) and Ω(r 2 ) and can be combined to yield

dα dr c /ℓ = -4 r c ℓ - ℓ 4r c cot α. (2.31) It follows that r c ℓ e -2(rc/ℓ) 2 cos α = const (2.32)
is a constant of motion for all vortices. As will be shown in the following, the implications of this result for the dynamics of the dumbbell depend on how the fluid angular velocity behaves as a function of r.

Decreasing fluid angular velocity

A wide class of single vortices, which includes the Lamb-Oseen vortex, the point vortex, and axisymmetric vortices with Ω(r) ∝ 1/r p (0 ⩽ p ⩽ 2) [26], has angular vorticity Ω(r) decreasing with increase in r. We recall that in this case the set P 4 is empty. For such vortices, Eq. (2.32) indicates that, for all values of the parameters, the trajectories in the (r c , α) plane form a non-isolated set of periodic orbits around the fixed points (ℓ/2, 0) and (ℓ/2, π) [see Fig. 2.8(a)]. Therefore, there are no limit cycles and no bifurcation is observed as a function of the parameters in this case. The variables r c and α are periodic functions of time with the same period. The orbits are parametrized by the initial conditions r c (0) and α(0).

The radial oscillation of the center of mass reverses its direction (inward or ouwards) when α = 0, π, that is when the connector is parallel or antiparallel to the radial direction. Hence, for a given orbit, the minimum and maximum values of r c , denoted as r min and r max , are the two roots of the equation

r c ℓ e -2(rc/ℓ) 2 cos α = r c (0) ℓ e -2[rc(0)/ℓ] 2 | cos α(0)|. (2.33)
By using Eq. (2.33), it is thus possible to calculate the amplitude A and the distance r ⋆ c around which the oscillation takes place as

A = (r max -r min )/2, r ⋆ c = (r max + r min )/2. (2.34)
The theoretical curves (solid lines) in Figs. 2.4(a,b) and 2.5(a,b) and the contour plot of A in Fig. 2.6(b) have been obtained in this way. Since (r c /ℓ)e -2r 2 c /ℓ 2 is a concave function of r c and vanishes as r c tends to either zero or infinity, both A and r ⋆ c diverge when either α(0) approaches ±π/2 or r c (0) tends to zero or infinity. For such initial configurations, the centre of mass performs very wide oscillations, as was noted in section 2.2. Moreover, the solutions of Eq. (2.33) do not depend on r c and ℓ separately, but only on the ratio r c /ℓ. Hence the functional dependence of A and r ⋆ c on r c (0) and α(0) is independent of ℓ and, for fixed r c (0) and α(0), the values of A and r ⋆ c are proportional to ℓ. This is again consistent with the numerical observations shown in Figs. 2.4 and 2.5 for the Lamb-Oseen vortex. Figure 2.6(b) also shows that the dynamics becomes less and less sensitive to the initial orientation as r c (0) is increased.

The correlation between the orientation of the dumbbell and the direction of its radial motion, shown in Fig. 2.2(b), can also be predicted from Eq. (2.30a). Indeed, if Ω(r) is decreasing, then the sign of Ω(r 1 ) -Ω(r 2 ) is fixed at the beginning of the evolution (recall that during the motion the dumbbell never reverses its orientation with respect to the radial direction). Therefore, whether the radial motion is inward or outward is entirely determined by the sign of sin α(t).

It ought be stressed that Eq. (2.32) is independent of Ω(r). Therefore, all the properties of the dynamics that have been mentioned so far are independent of the form of the vortex, provided that Ω(r) decreases with increasing r. In particular, the dependence of A and r ⋆ c on the initial configuration of the dumbbell [see the solid lines in Figs. 2.4(a,b) and 2.5(a,b) and the contour plot of A in Fig. 2.6] is the same irrespective of the functional form of Ω(r). What varies with the specific form of the vortex is the speed at which the orbits in the (r c , α) plane are covered, which in turn determines the evolution of the angle φ c and ultimately the shape of the spirographic-like trajectories in physical space. Therefore, the behavior of T which was shown in Figs. 2.4(c) and 2.5(c) is not generic but is specific to the Lamb-Oseen vortex. To explain this further, in Fig. 2.8(b) we show a vector plot of the field ( ṙc , α) for the Lamb-Oseen vortex where the color of the arrows is a function of the magnitude of the vector field. Clearly, the orbits of the system are those described in Fig. 2.8(a), which are the same for any vortex with decreasing Ω(r). However, the speed of the system along such orbits depends on the details of the Lamb-Oseen vortex. A different vortex would perform exactly the same orbits but at a different speed. It would thus generate spirographic-like trajectories with same amplitude and at same radial distance, but of a different shape.

Finally, since the evolution of r c and α is periodic, the right-hand side of Eq. (2.30c) is also periodic with same time period T . As a consequence, the evolution of φ c can be written as

φ c (t) = φ c (0) + ωt + Φ(t), (2.35) 
where Φ(t) is a periodic function of period T and ω is the average of the right-hand side of Eq. (2.30c) over a time period. In general, 2π/ω differs from T , and therefore the rotational motion is not periodic. This explains the behavior observed in section 2.2, where the time evolution of φ c was found to be the combination of a linear growth and a periodic oscillation of period T superposed to it [see Figs. [36]).

Rankine vortex

It was mentioned above that for the set P 4 to be non-empty, the fluid angular velocity must be a non-monotonic function of the radial distance. To explore how this additional set of fixed points may modify the dynamics of the dumbbell, we thus consider vortices such that Ω(r) is not strictly decreasing. We start with the Rankine vortex [29,39], whose spatial structure is simple enough to allow an analytical study. The Rankine vortex indeed consists of an inner core of size R which is in solid-body rotation and an outer region where the flow is potential (Fig. 2.9):

Ω(r) =            Γ 2πR 2 , r ⩽ R, Γ 2πr 2 , r > R.
(2.36) Compared to vortices with decreasing angular velocity, there exists a new set of fixed points in the (r c , α) plane. This corresponds to configurations in which both the beads lie in the solid-body-rotation core:

P 4 = (r c , α) s.t. -π/2 < α < π/2 and r 2 1 = r 2 c + ℓ 2 4 + ℓ r c cos α ⩽ R 2 (2.37) ∪ (r c , α) s.t. π/2 < α < 3π/2 and r 2 2 = r 2 c + ℓ 2 4 -ℓ r c cos α ⩽ R 2 .
(2.38) The interior of P 4 obviously is neutrally stable. In contrast, a linear stability analysis (see appendix 2.6) shows that the boundary of P 4 is stable for sin α < 0 and unstable for sin α > 0. The unstable (stable) portions of the boundary act as a repelling (attracting) set for the trajectories that start outside P 4 (see Fig. 2.10, where P 4 is the white area).

In the (r c , α) plane, two successive bifurcations are observed as the ratio ℓ/R is increased [see the vector plots of the field ( ṙc , α) in Fig. 2.10]:

(i) if 0 < ℓ ⩽ R, the fixed points (ℓ/2, 0) and (ℓ/2, π) lie inside P 4 [Fig. 2.10(a)].
Therefore, if the system starts outside P 4 or on its repulsing boundary, it eventually ends up on the attracting boundary of P 4 . Periodic orbits are not possible in this case. This implies that either the dumbbell is in solid-body rotation from the very beginning or it ends up in solid-body rotation after a transient. Note that the motion towards the attracting set continues to take place along the curves described by Eq.

(2.32), even though now the orbits are not performed in full.

(ii) if R < ℓ ⩽ 2R, the fixed points (ℓ/2, 0) and (ℓ/2, π) lie outside P 4 [Fig. 2.10(b)]. Periodic orbits are now possible for initial conditions close to (ℓ/2, 0) and (ℓ/2, π). These periodic orbits are given by Eq. (2.32) and are therefore the same as for any vortex with decreasing angular velocity. What varies is the speed at which the orbits are performed.

(iii) if ℓ > 2R, the set P 4 is empty [see Fig. 2.10(c)]. The dumbbell is indeed too long compared to R for both the beads to lie inside the solid-body-rotation core. In this case, the dynamics is qualitatively similar to that described in section 2.4.1 for a decreasing Ω(r) and consists of periodic orbits around either (ℓ/2, 0) or (ℓ/2, π) depending on the value of α(0).

To show further how the existence of an attracting set modifies the dynamics, in Fig. 2.11 we compare the long-time spatial distribution of an ensembe of dumbbells in the Lamb-Oseen and Rankine vortices (see also Supplemental Movies 3-5 [3,4,5]). Naturally, this should only be regarded as a way to visualize the attracting set and not as a realistic simulation of an ensemble of dumbbells. The latter, indeed, would require accounting for mechanical and hydrodynamic interactions between dumbbells, which are instead disregarded here. In the Lamb-Oseen vortex, the dumbbells spread around the vortex center while performing spirographic-like trajectories with different amplitudes and at different distances from the vortex center, and no pattern emerges in their spatial distribution (see Fig. 2.11(a) and Supplemental Movie 3 of [3]).

In the Rankine vortex, the dynamics is similar to that in the Lamb-Oseen vortex if ℓ > 2R (not shown). When ℓ ⩽ 2R the dumbbells that start entirely inside the r ⩽ R disk perform a solid-body rotation, while those that have at least one bead outside the r ⩽ R disk display a different behavior according to their length and initial configuration. If 0 < ℓ ⩽ R, all such dumbbells eventually end up performing a solid-body rotation in the annulus of radius

R -ℓ/2 ⩽ r ⩽ R 2 -ℓ 2 /4. (2.39)
The inner and outer radii of which are determined by the location of the boundary of P 4 at α = 0, π and α = ±π/2, 3π/2, respectively. If R < ℓ ⩽ 2R, the dumbbells that have an initial configuration which is far from r c = ℓ/2, α = 0, π are attracted inside the aforementioned annulus, whereas those that start in a configuration close to r c = ℓ/2, α = 0, π perform spirographic-like trajectories. In this case, the long-time spatial distribution of the centers of mass consists of a core which is in solid-body rotation and an oscillating halo around the distance r = ℓ/2 (see Fig. 2.11(b) and Supplemental Movie 4 [4]). It is interesting to note that, when ℓ ⩽ 2R, the boundary of P 4 in the (r c , α) plane acts as a transport barrier that prevents the centers of mass of the dumbbells from penetrating inside the r < Rℓ/2 disk from outside. Therefore, if the initial distribution of the dumbbells is such that r c (0) > Rℓ/2 for all them, then the r < Rℓ/2 disk remains empty at later times (see Supplemental Movie 5 [5]).

The study of the Rankine vortex reveals two main differences with the case of decreasing fluid angular velocity. First, the ratio ℓ/R is now an important parameter which discriminates between different dynamical regimes. Second, an attracting set emerges, which was absent in vortices with decreasing Ω(r). Since the specific shape of this set plays a crucial role, the dynamics of the dumbbell in vortices with non-decreasing angular velocity does not enjoy the same degree of universality as in the case of a decreasing Ω(r). To illustrate this further, we consider a two-dimensional version of the Sullivan vortex. This can no longer be solved analytically but has a smooth angular velocity.

Two-dimensional Sullivan vortex

Sullivan [32] found an exact vortex solution of the three-dimensional Navier-Stokes equations with a two-cell spatial structure, i.e. with a region of reverse flow near to the axis of the vortex (see also Refs. [29,39]). The fluid angular velocity Ω(r) displays a maximum at a given distance from the vortex center [Fig. 2.9(left)]. This can be used to construct a stable vortex solution of the two-dimensional Euler equations with non-monotonic angular velocity. Ω(r) takes the form

Ω(r) = Γ 2πr 2 H(ξ) H(∞) , ( 2.40) 
where ξ = c (r/R) 2 and the function H(ξ) is expressed as

H(ξ) = ξ 0 exp -s + 3 s 0 1 -e -σ σ dσ ds. (2.41)
The constant c ≈ 6.238 is chosen in such a way that the maximum of Ω(r) is at r ≈ R [34].

In each of the stripes -π/2 < α < π/2 and π/2 < α < 3π/2 of the (r c , α) plane, the set of fixed points P 4 forms again a line that divides the stripe into two separate regions [Fig. 2.10(d)]. The line consists of an attracting and a repelling portion, and its shape varies with ℓ/R. The set P 4 now corresponds to those configurations in which one of the beads lies at r < R while the other is at r > R and Ω(r 1 ) = Ω(r 2 ). Two different behaviors can be observed in the (r c , α) plane [see the vector plot in Fig. 2. 10(d)]. If (r c (0), α(0)) is sufficiently close to (ℓ/2, 0) or (ℓ/2, π), then the system performs periodic orbits in the (r c , α) plane according to Eq. (2.32); otherwise it eventually ends up on the attracting portion of P 4 .

To visualize the dynamics and show how it is influenced by the presence of the set P 4 , we have again simulated the motion of the center of mass of an ensemble of dumbbells (see Supplemental Movie 6 [6]). For simplicity, in the simulations we have used the following approximation of the Sullivan angular-velocity profile that was proposed by Wood and Brown [38]:

Ω(r) = 0.89 r(r/R) 2.4[0.3+0.7(r/R) 7.89 ] -0.435 . ( 2.42) 
The dumbbells whose initial conditions (r c (0), α(0)) are close to (ℓ/2, 0) or (ℓ/2, π) perform spirographic-like trajectories in an annulus around r = ℓ/2. Those that have an initial configuration (r c (0), α(0)) far from (ℓ/2, 0) and (ℓ/2, π) with r c (0) < ℓ/2 (r c (0) > ℓ/2) move away from (move towards) the vortex center and eventually end up performing solid-body rotation. Consequently, the long-time spatial distribution of the dumbbells in the Sullivan vortex consists of an annulus which is in solid-body rotation in an oscillating halo around r = ℓ/2 (see Fig. 2.11(c) and Supplemental Movie 6 [6]).

Thus, the example of the two-dimensional Sullivan vortex further demonstrates that if Ω(r) does not decrease with r, the attracting set that emerges in the (r c , α) plane strongly impacts the dynamics of the dumbbell in a way that is specific to the particular form of the vortex. Different dynamical regimes may in principle be generated by modifying the funcional dependence of Ω(r) on r.

Concluding remarks and perspectives

This chapter investigates the motion of particles in a vortex flow by going beyond the point-particle approximation. It thus aims to be a step in the direction of a better understanding of the dynamics of elongated objects in a flow field. In the case of a rigid dumbbell, the simplicity of the system allows a detailed analysis of the motion and of its dependence on the properties of the vortex.

The main result from this work is that, in the class of two-dimensional steady vortices with angular velocity decreasing as a function of the radial distance, the center of mass of a rigid dumbbell performs spirographic-like trajectories around the vortex center. The qualitative features of the dynamics do not depend on the details of the vortex. For instance, the amplitude of the radial oscillation and the distance around which the oscillation is performed are fully independent of the functional form of the vortex. The situation changes when the fluid angular velocity is not strictly monotonic. An attracting set emerges in the configuration space, and this impacts the dynamics in a way that depends on the details of the vortex. Even the shape of the attracting set is sensitive to the functional form of the vortex. The ratio ℓ/R emerges as an important parameter when Ω(r) is not strictly decreasing, and leads to different bifurcation scenarios.

The analysis is restricted to steady vortices, but several results also apply to timedependent vortices. In particular, the quantity

(r c /ℓ) exp(-2r 2 c /ℓ 2 ) cos α (2.43)
remains a constant of motion even for a time-dependent vortex and the orbits in the (r c , α) plane are unchanged: only the way these orbits are covered varies according to the temporal evolution of the fluid angular velocity. For example, if the temporal evolution of the fluid angular velocity is periodic, the center of mass of the dumbbell may not completely perform the orbits but may move back and forth on portions of these orbits. The speed at which these orbits are performed also depends on the details of the temporal evolution of the fluid angular velocity. Two-dimensional turbulent flows forced at large scales are characterized by large long-lived vortices in the vicinity of which straining is weak. A dumbbell would typically remain in a given vorticity-dominated region for a long time, during which the quantity (r c /ℓ) exp(-2r 2 c /ℓ 2 ) cos α would remain constant. It would be interesting to explore the consequences of this conserved quantity for the dynamics of dumbbells in two-dimensional turbulence.

In this study, Brownian fluctuations are disregarded. However, an inspection of the vector plots in Figs. 2.8 and 2.10 shows that, for most initial configurations, Brownian fluctuations would only cause small perturbations of the spirographic-like dynamics. In contrast, inertial effects may have a strong impact. If the inertia of the beads is not negligible, the dumbbell is likely to acquire a nonzero mean radial velocity resulting in its ejection or entrapment depending on the ratio between the bead and fluid density [25]. Nevertheless, we have seen that the instantaneous radial velocity of the dumbbell depends on its orientation. It is therefore interesting to study whether the orientation dynamics of the dumbbell speeds up or slows down its ejection or entrapment. In the next chapter, we will show that the spirographic-like dynamics of the inertialess dumbbell is modified when the inertia of the beads is not negligible, and the dumbbell moves out of the vortex at a speed that depends on the initial position and orientation and on the system parameters.

In a dumbbell only the two beads interact with the fluid, and hence the drag force is concentrated at the ends of the object. Nevertheless, based on the above analysis of the spirographic-like dynamics, we expect that a rigid fiber would perform a qualitatively similar motion, even though the effects of the hydrodynamic interactions between the segments of the fiber remain to be understood. In contrast, an elastic dumbbell would not be a realistic model for an elastic filament in this case, as more than one deformation mode would be needed to capture the dynamics of an elastic filament in a vortex. Experimentally and theoretically, the dynamics of elastic fibres has been investigated by [24] in cellular flows. They characterized the conditions under which the fibre gets trapped or buckles during its transport in the flow.

Finally, here we have focused on a non-motile dumbbell. It would also be interesting to extend the analysis to a self-propelled dumbbell and study how the dynamics changes as a function of the parameter V /ΩR, where V is the self-propulsion speed. As mentioned in the introduction, ellipsoidal motile particles in a two-dimensional axisymmetric vortex flows are reported to exhibit preferential orientation and trapping in the vortex under certain conditions. Considering a self-propelled dumbbell would therefore be useful to understand how the dynamics of a macroscopic motile particle differs from that of a microswimmer.

Appendix: Linear stability analysis of the boundary of P 4 in the Rankine vortex

The evolution equations for ṙc and α in the Rankine vortex are ṙc = -

ℓ sin α 4 1 r 2 1 - 1 r 2 2 , (2.44a) α = cos α r c ℓ - ℓ 4r c 1 r 2 1 - 1 r 2 2 .
(2.44b)

The linear stability analysis of the boundary of P 4 is performed for r 1 = r 2 = R. The resulting Jacobian matrix P is such that det(P ) = 0, (2.45)

tr(P ) = 8r c (ℓ + 2r c cos α) sin α (ℓ 2 + 4r 2 c + 4ℓr c cos α) 2 , (2.46)
where det is the determinant and tr is the trace of the Jacobian matrix P . Clearly, the two eigenvalues of P are

µ 1 = 0, (2.47a) µ 2 = tr(P ). ( 2 

.47b)

As µ 1 = 0, each point on the boundary of P 4 is critically stable. However, for an initial condition that starts in a neighborhood of P 4 but not inside P 4 , the set P 4 behaves as a repelling set for sin α > 0 (since µ 2 > 0) and as an attracting set for sin α < 0 (since µ 2 < 0). This is clear from Fig. 2.10 (a) and (b). Along the boundary of P 4 , the stability changes with sin α. If the system starts outside the attracting boundary of P 4 but within a short displacement, it eventually ends up on the attracting boundary of P 4 , which corresponds to sin α < 0 and is marked as green line. But if the system starts outside the repelling boundary of P 4 though within a short displacement, it immediately moves away from it and eventually ends up on the attracting boundary of P 4 . This makes the boundary of P 4 unstable for sin α > 0 and is marked as an orange line in Fig. 2.10. Finally, all points inside P 4 are neutrally stable.

Chapter 3

DYNAMICS OF AN INERTIAL DUMBBELL IN A VORTEX

Introduction

In the previous chapter, we considered an inertialess rigid dumbbell as an initial step to understand the dynamics of elongated objects in vortical flows. In this chapter, we examine the influence of inertia on the dynamics of the rigid dumbbell. Inertial effects play an important role in determining the dynamics of particles. Particle inertia leads to a difference in the acceleration of the particle with respect to that of the fluid. Because of this, inertial particles no longer follow the fluid streamlines and exhibit a complex behavior. As we discussed before, heavy particles are ejected out of a vortex by the action of the centrifugal force, whereas light particles get entrapped at the center of the vortex. The rate of ejection and entrapment depends on the ratio of the particle response time to the fluid flow time scale as well as on the distance of the particle from the vortex center [19,25]. If the background flow is turbulent, like in the case of clouds, light particles like droplets coalesce and grow in size leading to rapid rain initiation [37,21,35,14]. Heavy particles which are ejected out of a vortex rotate slower than the surrounding fluid and its center of mass traces an outward expanding spiral. Mathematically, the trajectory of a heavy spherical particle in the neighborhood of a Lamb-Oseen vortex can be described as follows. The motion of the spherical particle satisfies the following dimensionless equations in polar coordinates (r c , θ) [26,27]:

rc + ṙc = (Θ) 2 r 3 c , ( 3.1) 
Θ + Θ = 1 -e -r 2 c St , ( 3.2) 
where Θ ≡ r 2 c θ is the dimensionless angular momentum of the spherical particle. At large times, when the particles are evacuating the vortex, the distance r c keeps increasing. At a distance r c sufficiently far from the vortex center, and in the absence of external torques acting on the particle, the rate of change of angular momentum approaches zero, i.e. Θ ≈ 0. Thus, Eq. (3.2) reduces to Θ = 1.

(3.3)

In addition, at large times the rate of change of the velocity of the particle becomes negligible in comparison to its velocity. Taking this into consideration and substituting Θ = 1 in Eq. (3.1) gives

ṙc = 1 r 3 c . (3.4)
Thus, by integrating Eq. (3.4) we obtain r 4 c = 4t and r 2 c θ = 1. Eliminating time t from these two relations gives [27] θ/r 2 c = 1/2. (3.5) This analysis indicates that a spherical particle which has sufficiently moved away from the vortex center traces a Fermat's spiral, as shown in Fig. 3.1. Note that the distance between two consecutive arcs keeps decreasing as time proceeds, i.e., the particle centrifuges out slower and slower. Furthermore, Θ ≈ 0 means that the particle rotational time scale is very long and the orientation of the particle remains nearly constant with time. In this chapter, we present preliminary results aimed at understanding how this dynamics gets modified if the particle is macroscopic. To address this, we include inertia into the rigid dumbbell model we discussed in chapter 2 in order to understand its influence on the dynamics. This increases the complexity of the system, as the equations now become coupled second-order differential equations, and makes an analytical study more difficult than for the inertialess dumbbell. The dumbbell model with inertia had been used earlier to study the settling of elongated particles under the influence of gravity [23]. In a stationary cellular flow, it is showed that a small dumbbell while settling under gravity exhibits a variety of behaviors, including periodic, chaotic, and stable fixed motions in which the dumbbell gets permanently suspended. Figure 3.2 shows an instance where an increase of the length of the dumbbell causes the transition from a periodic to a chaotic behavior. The shape of the trajectory and the terminal velocity attained by the dumbbell display a sensitive dependence on the system parameters.

The remainder of the chapter is organized as follows. Section 3.2 revisits the rigid dumbbell model by taking into account the inertia of the two beads of the dumbbell. Details of the numerical scheme used in the simulations are also discussed. Then, we discuss the dynamics of the inertial dumbbell in section 3.3. The results reveal that inertia modifies the spirographic-like trajectories described in chapter 2 and generates a new class of trajectories whose shape depends on the Stokes number of the dumbbell and the ratio between its length and the vortex size. Concluding remarks and the future directions of this work are then discussed at the end of this chapter in section 3.4.

Rigid inertial dumbbell in a vortex

Under the same assumptions we made in chapter 2, the position vector r i of the i-th bead satisfies

mr i = F i + τ i , i = 1, 2, (3.6) 
where m is the mass of each bead, v i = ṙi is its velocity, τ i is the tension exerted by the connector, and F i is the hydrodynamic force acting on the i-th bead. By Stokes' law the hydrodynamic force acting on each bead can be written as

F i = -ζ[ vi -u(r i , t)]. (3.7)
As an alternative to the positions of the beads, the configuration of the dumbbell may be described by specifying the position of its center of mass, r c = (r 1 + r 2 )/2, the velocity of the center of mass, v c = (v 1 + v 2 )/2, and its angular velocity ω around the center of mass. Thus, the equation for the translational motion of the center of mass of the dumbbell can be obtained by summing Eq. (3.6) written for bead 1 and 2 to give

m dv c dt = -ζ v c - 1 2 [u(r 1 , t) + u(r 2 , t)] . (3.8)
The evolution equation for the rotational dynamics of the dumbbell can be obtained from the angular momentum equation for a rigid body. Let L be the angular momentum of the rigid dumbbell measured relative to its center of mass and M i the external torques acting on each bead. Thus, the rate of change of angular momentum is

dL dt = M 1 + M 2 , ( 3.9) 
where

M 1 = -ℓ/2 × F 1 , M 2 = ℓ/2 × F 2
, and ℓ = r 1 -r 2 is the connector vector which satisfies the rigidity constraint ℓ • l = 0. As the motion of the dumbbell is restricted to the xy plane, the direction of the angular velocity vector is along the z-axis. Substituting the angular momentum L = Iω, where ω = dθ/dt, into Eq. (3.9) gives

I dω dt = ζ 2 ℓ × [u(r 1 , t) -u(r 2 , t)] -ℓ 2 ωẑ , ( 3.10) 
where

I = 4 5 mR 2 b + m ℓ 2 2 (3.11)
is the sum of the moment of inertia of the two beads (R b denotes their radius) and the moment of inertia of the rigid rod measured along its center. As discussed in chapter 2, to take advantage of the rotational symmetry of the flow, we use the polar coordinate system, where the position vector of a point with coordinates (r, φ) is r = r(cos φ, sin φ) and the unit vectors that form the orthogonal basis at the point (r, φ) are r = (cos φ, sin φ) and φ = (-sin φ, cos φ). We take again a velocity field of the form

u(r) = U (r) φ, (3.12) 
where U (r) is the azimuthal velocity and denote the fluid angular velocity at a distance r from the center of the vortex as

Ω(r) = U (r) r . (3.13)
We define the following set of dimensionless variables by using the size of the vortex core, R, as the characteristic length scale of the flow and U 0 = Γ/2πR as its characteristic velocity, where Γ is the circulation of the vortex:

x * i = x i R , ℓ * = ℓ R , R * b = R b R , (3.14) t * = t U 0 R , v * c = v v U 0 , u * = u U 0 . (3.15)
As a result, we express Eqs. (3.8) and (3.10) in the following dimensionless form:

dv c dt = rc = A 1 2 [u(r 1 , t) + u(r 2 , t)]]R -v c , ( 3.16 
)

dω dt = θ = A r 2 [ℓ × (u(r 1 , t) -u(r 2 , t)]) -ℓ 2 ωẑ], (3.17) 
where we have dropped the asterisks for simplicity and θ denotes the angle formed by the dumbbell with the x-axis. From now on we will work with the non-dimensional equations.

The parameters A and A r appearing in Eqs. (3.16) and (3.17) are dimensionless quantities and are given as

A = ζR mU 0 (3.18) 
and

A r = ζR 3 IU 0 . ( 3.19) 
Under the assumption that the length of the dumbbell is much greater than the radius of the beads, i.e. ℓ ≫ R b , the moment of inertia I can be simplified to

I = m ℓ 2 2 . (3.20)
Thus, the non-dimensional quantity A r can be written as

A r = A R ℓ 2 . (3.21)
Note that 1/A is the so-called translational Stokes number of the particle St r ≫ 1 means that the particle rotation is independent of the fluid motion.

St = m/ζ R/U 0 , ( 3 

Complex dynamics of the inertial dumbbell

We study the motion of an inertial dumbbell in the steady two-dimensional Lamb-Oseen vortex. The angular velocity is ), the trajectory still oscillates back and forth while simultaneously revolving around the center of the vortex generating a slowly expanding spirographic curve. When the inertia of the dumbbell is increased and becomes sufficient to overcome the spirographic motion, the dumbbell gets pushed outwards from the vortex center by the action of the centrifugal force. As shown in the top right panel of Fig. 3.3, when the inertia of the beads is increased (St = 1 × 10 -2 ), the trajectory is no longer spirographic and takes an outwards expanding eight-shaped trajectory. The longest axis of the eight-shaped trajectory, marked as a dashed line in the top right panel of Fig. 3.3, is found to be oriented along a specific direction with respect to the x-axis, which is found to depend on the initial orientation of the dumbbell. The direction of the longest axis is defined as the direction in which the distance from the center of the trajectory to a point on the first arc of the trajectory is the longest. By further increasing the inertia of the dumbbell, the eight-shaped trajectory disappears and the trajectory of the center of mass forms an expanding spiral, as shown in Fig. 3.3 (bottom left) and (bottom right), where St = 1 and St = 10, respectively. As observed for a spherical particle in Fig. 3.1, the distance between two consecutive arcs keeps decreasing, which indicates that the dumbbell centrifuges out ever more slowly as time increases. The trajectories of the center of mass of the dumbbell when the initial distance r c (0) is changed from 0.1 to 0.5 while keeping the other initial conditions the same as in Fig. 3.5 are shown in Fig. 3.7. With this initial configuration and for St = 2 × 10 -4 , the center of mass is observed to form a wide spirographic-like trajectory, while for St = 1 × 10 -2 , 1, 10, the direction of the longest axis of the eight-shaped is observed to remain the same. Furthermore, the distance covered by the center of mass exhibits the same behavior as shown in Fig. 3.6 as a function of St number. Therefore, the time evolutions of r c (t) are not shown.

Ω(r) = Γ 2π 1 -e -r 2 /R 2 r 2 . ( 3 

Conclusions and future perspectives

In chapter 2, we had demonstrated that an inertialess rigid dumbbell in a two-dimensional Lamb-Oseen vortex performs spirographic-like trajectories which are very sensitive to the initial distance and orientation of the dumbbell. In this chapter, we have showed some preliminary results on the effect of inertia on the dynamics of the dumbbell. In particular, we have showed that if the inertia of the beads is not negligible, the spirographic-like trajectories found for the inertialess dumbbell are altered and expand outwards. The dynamics depends sensitively on the system parameters, namely the translational and rotational Stokes number, and on the initial conditions. For small St, it is found that the dumbbell moves along expanding spirographic-like trajectories. When St is increased, the trajectories are no longer spirographic and form outward expanding spirals of different shapes depending on the system parameters.

In the future, it would be interesting to pursue this analysis to address several questions, such as: (i) the critical Stokes number at which the trajectory of the center of mass transforms from a spirograph to a eight-shaped orbit and then to a spiral;

(ii) the mechanism by which the initial conditions determine the outward motion of the dumbbell;

(iii) the possibility of chaotic dynamics for some combination of the system parameters;

(iv) the dynamics of an inertial dumbbell in vortices in which the fluid angular velocity is a nonmonotonic function of the radial distance.

INTRODUCTION TO ELASTIC TURBULENCE

Introduction

Elastic turbulence is the emergence of a chaotic flow in low-inertia viscoelastic fluids, such as solutions of long-chain polymer molecules. Viscoelastic fluids are complex fluids which exhibit both viscous and elastic behavior when undergoing deformation. Newtonian turbulence requires large Reynolds numbers Re, which quantifies the ratio of inertial to viscous forces, to drive the fluid motion into a chaotic regime. In contrast, Re in elastic turbulence is arbitrarily low, i.e., the flow is purely driven by the amplification of elastic instabilities. By "purely elastic" we mean that inertia does not intervene in the generation of the chaotic flow. For such instabilities to occur, the Weissenberg number Wi should be sufficiently high, where Wi is the ratio of the polymer relaxation time to the flow characteristic time. In 1990, Larson et al. [START_REF] Larson | A purely elastic instability in Taylor-Couette flow[END_REF] predicted purely elastic instabilities in the Taylor-Couette flow of dilute polymer solutions and confirmed them experimentally.

In this geometry, they showed that the interaction between a fluctuating velocity field and the first normal stress difference drives elastic instabilities. Several other studies also reported the occurrence of such instabilities in different setups (see [START_REF] Larson | Instabilities in viscoelastic flows[END_REF][START_REF] Shaqfeh | Purely elastic instabilities in viscometric flows[END_REF][START_REF] Groisman | Elastic vs. inertial instability in a polymer solution flow[END_REF] and references therein). Following this seminal work, a series of experimental investigations were conducted in different curvilinear geometries to understand elastic instabilities at low-Re.

In 2000, Groisman and Steinberg [START_REF] Groisman | Elastic turbulence in a polymer solution flow[END_REF] performed an experiment with a dilute solution of high-molecular-weight polyacrylamide (80 ppm by weight) in a viscous sugar syrup as working fluid. The solution was placed between two concentric parallel disks that were separated by a distance of 10 mm. The bottom plate of radius R 2 =43.6 mm was held fixed, while the top plate of radius R =38 mm was rotated by attaching it to the shaft of a rheometer. This experimental setup is shown in the left panel of Fig. 4.1. To visualize the flow pattern, the fluid is injected with light reflecting flakes. Two representative snapshots of the polymer solution flow under the rotating top plate are shown in the right panel of Fig. 4.1. The flow pattern is observed to be very irregular with the formation of spiral-like structures. In this experiment Re = 0.7 and Wi = 13. Since Re is very small, inertial effects are negligible and the observed chaotic flow can be solely attributed to the elastic instabilities generated by the presence of polymers. This turbulent-like behavior was dubbed by them as "elastic turbulence". The quantitative characterization of the main features of elastic turbulence, such as increased flow resistance and enhanced mixing rate, was discussed in Refs. [START_REF] Groisman | Elastic turbulence in a polymer solution flow[END_REF][START_REF] Groisman | Efficient mixing at low Reynolds numbers using polymer additives[END_REF], see also Ref. [START_REF] Steinberg | Elastic turbulence: an experimental view on inertialess random flow[END_REF] for a recent review. Although elastic tur- bulence is a low-Re phenomenon, where inertial effects are negligible, there indeed exists some similarities with inertial turbulence:

(i) excitation of a broad range of spatial and temporal scales exhibiting energy powerlaw and power spectra;

(ii) significant increase in the rate of mixing compared to the diffusion-driven mixing;

(iii) sharp growth of the flow resistance compared to the laminar regime of a Newtonian flow at same Re.

These key observations were confirmed by a series of extended experiments performed in different flow setups. These include experiments in different curvilinear flow geometries (such as a swirling flow between parallel disks, serpentine and wavy channels, Taylor-Couette flow [18,[START_REF] Schiamberg | Transitional pathway to elastic turbulence in torsional, parallel-plate flow of a polymer solution[END_REF]19,[START_REF] Li | Creation of very-low-Reynolds-number chaotic fluid motions in microchannels using viscoelastic surfactant solution[END_REF][START_REF] Tatsumi | Turbulence characteristics and mixing performances of viscoelastic fluid flow in a serpentine microchannel[END_REF]), contraction-expansion devices [35], and straight channel [START_REF] Pan | Nonlinear elastic instability in channel flows at low Reynolds numbers[END_REF]16] and pipe flows [17]. The polymers that are typically used in the experiments are high-molecular-weight molecules such as polyacrylamide and polyethylene oxide.

Apart from dilute polymer solutions, experiments using dilute worm-like micellar solutions also reported similar chaotic-like behaviors at high Wi and low Re [31,5]. Micelles are flexible, elongated polymer-like structures which continuously break and fuse during deformation.

Several studies also investigated potential applications of elastic turbulence. Traore et al. [START_REF] Traore | Efficient heat transfer in a regime of elastic turbulence[END_REF] and Abed et al. [1] showed that the rate of heat transfer is enhanced in the elastic-turbulence regime because of the strong velocity fluctuations, to an extent almost comparable to that observed in inertial turbulent flows. Poole et al. [START_REF] Poole | Emulsification using elastic turbulence[END_REF] showed that elastic turbulence can be used to create emulsions from immiscible viscous fluids. Emulsions are mixtures of two or more immiscible liquids (liquids that do not dissolve in each other when left undisturbed), where one liquid (dispersed phase) is dispersed in the other liquid (continuous phase) by some external action [START_REF] Schramm | Emulsions, foams, and suspensions: fundamentals and applications[END_REF]. In their experimental study, Poole et al. observed that an oil droplet (dispersed phase) when placed in a Newtonian glycerine solution (continuous phase) never forms an emulsion and the liquids remain separated regardless of the shear rate applied. In contrast, when the same oil droplet is placed in a polymeric liquid (continuous phase) in the elastic turbulent regime, good emulsions are formed due to the enhancement in mixing rate. The effectiveness of elastic turbulence in enhancing mixing is analysed by placing a small blob of blue dye in the same Newtonian and polymeric fluids as those used in the emulsification experiments, as shown in the left panels of the top and bottom rows of Fig 4 .2. In the polymeric liquid under elastic turbulent conditions, the dye mixes very rapidly, whereas in the Newtonian fluid with same Re no mixing was observed (see the right panels of the top and bottom rows of Fig 4 .2). Liu and Steinberg [START_REF] Liu | Single polymer dynamics in a random flow[END_REF] utilized elastic turbulence to understand the dynamics of microscopic polymer molecules in random flows. By experimentally studying the stretching and orientation dynamics of single T4 DNA molecules in the random flow generated by the same molecules, they demonstrated that elastic turbulence starts only above the coil-stretch transition of the polymers, when polymers are stretched almost up to their full contour length by the velocity gradients and their feedback on the flow gives rise to the chaotic regime.

Numerical simulations of elastic turbulence

Soon after the discovery and characterization of elastic turbulence in experiments, various numerical and theoretical investigations began to further explore this behavior. However, the computational fluid dynamics community has been struggling to achieve a converged solution at high Wi, which is known as the high-Weissenberg number problem [START_REF] Keunings | Mesoscopic numerical modelling of the flow of polymeric fluids: Overview of computational rheology[END_REF][START_REF] Walters | The distinctive CFD challenges of computational rheology[END_REF]3]. This is to be contrasted with high-Re turbulence in viscoelastic flows and turbulent drag reduction which has been extensively studied in various three-dimensional flow geometries [23,22,[START_REF] White | Mechanics and prediction of turbulent drag reduction with polymer additives[END_REF]39,33,[START_REF] Guimarães | Turbulent planar wakes of viscoelastic fluids analysed by direct numerical simulations[END_REF]. Due to the aforementioned difficulties in achieving a stable converged solution at high-Wi, most of the numerical studies of elastic turbulence focused on relatively simpler flow configurations in two dimensions and/or with periodic boundary conditions. Some of these studies considered the Oldroyd-B viscoelastic constitutive model (described in section 4.3.2) which focuses on the slowest relaxation mode of polymers and assumes linear elasticity. The first configurations to be studied was that of a Kolmogorov flow, which generates a shear flow with sinusoidal mean velocity profile [10,11,37], and the four-roll mill flow, where there exists an extensional stagnation point at the center of the periodic domain [START_REF] Thomases | Transition to mixing and oscillations in a Stokesian viscoelastic flow[END_REF][START_REF] Thomases | A Stokesian viscoelastic flow: transition to oscillations and mixing[END_REF]. Another periodic configuration that received some attention is the cellular flow, which generates a flow with distinct straining and vorticity regions [START_REF] Plan | Lyapunov dimension of elastic turbulence[END_REF]28]. Simulations in more realistic settings considered the Taylor-Couette flow, which confines the fluid flow between two coaxial and independently rotating cylinders [START_REF] Van Buel | Elastic turbulence in two-dimensional Taylor-Couette flows[END_REF][START_REF] Song | Selfsustaining cycle of purely elastic turbulence[END_REF] as well as the flow past periodic array of cylinders confined in a channel [START_REF] Grilli | Transition to turbulence and mixing in a viscoelastic fluid flowing inside a channel with a periodic array of cylindrical obstacles[END_REF]. Few other studies used non-linear viscoelastic models, namely the FENE-P (described in section 4.3.2) in a cellular flow [START_REF] Gupta | Melting of a nonequilibrium vortex crystal in a fluid film with polymers: Elastic versus fluid turbulence[END_REF][START_REF] Gupta | Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence[END_REF] and, very recently, in the three-dimensional Taylor-Couette geometry [START_REF] Song | Direct numerical simulation of elastic turbulence in the Taylor-Couette flow: transition pathway and mechanistic insight[END_REF][START_REF] Song | Selfsustaining cycle of purely elastic turbulence[END_REF].

Despite the use of simple viscoelastic models and of periodic boundary conditions, these studies successfully reproduced the main features of elastic turbulence that have been described earlier, in accord with experiments [START_REF] Groisman | Elastic turbulence in a polymer solution flow[END_REF]. The key common observation in all these numerical studies is the power-law decay of the spatial and temporal velocity spectra with an exponent that the theory predicts to be smaller than -3 [34]. A study of a low-dimensional version of the FENE-P model confirmed that the physical mechanisms that lead to elastic turbulence are independent of the specific boundary conditions or the form of the imposed mean flow [START_REF] Ray | Elastic turbulence in a shell model of polymer solution[END_REF].

Numerical simulations of elastic turbulence are usually performed by using the Navier-Stokes equations for the velocity field coupled with the constitutive equation of the polymer conformation tensor C, which describes the orientation and stretching experienced by polymers. The constitutive models used in this thesis are discussed in section 4.3. These equations are associated with some numerical challenges which are also common to the high-Re regime. By construction, the polymer conformation tensor is positive definite and the constitutive equation for polymers is hyperbolic in nature due to the absence of a diffusive term. This allows the constitutive equations to admit shocks/discontinuities [30] at high Wi. The inabilities of the numerical schemes to properly resolving these shocks generate numerical errors which amplify and lead to numerical instabilities [26,[START_REF] Min | Effect of spatial discretization schemes on numerical solutions of viscoelastic fluid flows[END_REF] that result in the loss of positive-definiteness of the conformation tensor.

Including a global diffusive term in the constitutive model, i.e. adding a Laplacian term to the polymer conformation tensor equation with a space-independent diffusive coefficient, has long been considered as a remedy to overcome the above issue, since it changes the nature of the constitutive equations from hyperbolic to parabolic [START_REF] Sureshkumar | Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows[END_REF]. In elastic turbulence simulations, global diffusion has been employed in Refs. [START_REF] Thomases | Transition to mixing and oscillations in a Stokesian viscoelastic flow[END_REF][START_REF] Thomases | A Stokesian viscoelastic flow: transition to oscillations and mixing[END_REF][START_REF] Liu | Elastically induced turbulence in Taylor-Couette flow: direct numerical simulation and mechanistic insight[END_REF]37]. In fact, the addition of polymer-stress diffusion has a physical origin. In the derivation of constitutive models, it is generally assumed that the distribution of polymers remains spatially homogeneous and the diffusion of their center of mass due to thermal noise is disregarded, but the inclusion of this force in the model results in a diffusive term [30]. Nevertheless, the values of the diffusivity coefficient that needs to be used to stabilize numerical simulations are three to six orders of magnitude greater than those appropriate for real polymers. The use of such an artificially large diffusion generates some notable quantitative artifacts such as, for instance:

(i) at moderate to high-Re

(1) the velocity and polymer stress fields are smeared out [START_REF] Min | Effect of spatial discretization schemes on numerical solutions of viscoelastic fluid flows[END_REF];

(2) the percentage drag reduction at moderate Re drops [START_REF] Vaithianathan | An improved algorithm for simulating three-dimensional, viscoelastic turbulence[END_REF];

(3) the elastic scales are strongly damped, which leads to the laminarization of the turbulent flow field [START_REF] Sid | Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction[END_REF]. For all these reasons, it is now well understood that global artificial diffusion is not recommended in simulations. To address the issue with global artificial diffusion, Dzanic et al. [29] very recently proposed the use of a modified artificial diffusion, where the diffusion coefficient is space dependent and its magnitude depends on the local gradients of the conformation tensor C. They claimed that incorporating modified diffusion into numerical simulations does not generate the unphysical artifacts observed with global diffusion and also limits the smoothening of the gradients of C. In addition, they also stated that modified diffusion reduces the required numerical resolution by an order of magnitude compared to schemes with no additional diffusion [29]. Indeed, in the study of Gupta and Vincenzi [START_REF] Gupta | Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence[END_REF] a 1024 2 grid was used to simulate elastic turbulence with zero diffusivity, while Dzanic et al. [29] used a 256 2 grid with modified diffusion. Therefore, it would be a great computational advantage if incorporating modified diffusion into numerical simulations can reduce the resolution required without generating any spurious results. This is one of the main points discussed in this part of the thesis. In chapter 6, we will indeed investigate the effect of incorporating modified diffusion into the constitutive equations and the role of numerical resolution. Note that other approaches that use local diffusion have been proposed by Refs. [START_REF] Min | Effect of spatial discretization schemes on numerical solutions of viscoelastic fluid flows[END_REF]25,38]. Other techniques that intrinsically preserve the positive-definiteness of the conformation tensor have been proposed. These are mainly based on reformulating the constitutive equations by using matrix decompositions. The most popular ones are:

(i) The matrix logarithm of the conformation tensor proposed by Fattal and Kupferman [32], where an evolution equation for the natural logarithm of the conformation tensor is proposed.

(ii) The log-Cholesky decomposition proposed by Vaithianathan and Collins [START_REF] Vaithianathan | Numerical approach to simulating turbulent flow of a viscoelastic polymer solution[END_REF], where C is expressed as the product of a lower triangular matrix times its transpose.

(iii) The symmetric square root (SSR) decomposition proposed by Balci et al. [4], where C is expressed as the product of its unique symmetric square root times its transpose.

Several numerical studies conducted with these reformulated equations showed that the conformation tensor indeed remains positive definite and tr C, which is a measure of the squared polymer extension, remains bounded [START_REF] Palhares Junior | Numerical study of the square-root conformation tensor formulation for confined and free-surface viscoelastic fluid flows[END_REF][START_REF] Nguyen | Small scale dynamics of isotropic viscoelastic turbulence[END_REF][START_REF] Hulsen | Numerical stability of four positive (semi-) definite reformulations for viscoelastic fluid models in benchmark flows[END_REF]. There are also other decompositions that have been proposed, such as the continuous eigendecomposition formulation by Vaithianathan and Collins [START_REF] Vaithianathan | Numerical approach to simulating turbulent flow of a viscoelastic polymer solution[END_REF], the k-th root of the conformation tensor by Afonso et al. [2], and the contravariant deformation tensor formulation by Hütter et al. [START_REF] Hütter | Fluctuating viscoelasticity[END_REF]. The continuous eigendecomposition formulation which evolves the eigenvalues and eigenvectors of C, ensures that the trace of the conformation tensor (tr C), remains bounded, but fails to guarantee that all the eigenvalues of C remain positive. In chapter 4, we will discuss and compare the Log-Cholesky and the SSR decompositions in more detail and analyze the results obtained in terms of accuracy to compute elastic turbulent flow behavior.

The main reason for the loss of positive-definiteness of the conformation tensor in simulations was investigated by Min et al. [START_REF] Min | Effect of spatial discretization schemes on numerical solutions of viscoelastic fluid flows[END_REF]. They pointed out that an inaccurate treatment of the convection term is essentially responsible for this. The same conclusion was reached in [24,[START_REF] Vaithianathan | Numerical approach to simulating turbulent flow of a viscoelastic polymer solution[END_REF][START_REF] Yu | Direct numerical simulation of viscoelastic drag-reducing flow: a faithful finite difference method[END_REF]. To address this issue, Vaithianathan et al. [START_REF] Vaithianathan | An improved algorithm for simulating three-dimensional, viscoelastic turbulence[END_REF] proposed a second-order central difference scheme known as shock-capturing Kurganov-Tadmor (KT) scheme to treat the convective term of the conformation tensor equation. This scheme was originally developed by Kurganov and Tadmor [START_REF] Kurganov | New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations[END_REF] to solve the advection-diffusion equation of a scalar field to ensure that the scalar field remains positive everywhere in the domain. As we mentioned before, the inherent hyperbolic nature of the conformation tensor equation admits shocks/discontinuities in the polymer stress field. The main idea behind this scheme is to capture these shocks and predict their propagation speed. More details on the KT scheme are provided in section 4.4.

A variety of numerical choices have been made in the application of these proposed techniques to simulate the system of governing equations in different flow configurations. For instance, pseudospectral methods, which solves the linear part of the equations in Fourier space, are widely used along with the addition of a global diffusive term to stabilize the numerical solution in the context of turbulent drag reduction by polymer additives [START_REF] Ptasinski | Turbulent channel flow near maximum drag reduction: simulations, experiments and mechanisms[END_REF][START_REF] Housiadas | Polymer-induced drag reduction: Effects of the variations in elasticity and inertia in turbulent viscoelastic channel flow[END_REF][START_REF] Li | Influence of rheological parameters on polymer induced turbulent drag reduction[END_REF][START_REF] Xi | Turbulent drag reduction and multistage transitions in viscoelastic minimal flow units[END_REF][START_REF] Lopez | Dynamics of viscoelastic pipe flow at low Reynolds numbers in the maximum drag reduction limit[END_REF] and in elastic turbulence [START_REF] Thomases | Transition to mixing and oscillations in a Stokesian viscoelastic flow[END_REF][START_REF] Thomases | A Stokesian viscoelastic flow: transition to oscillations and mixing[END_REF]. Hybrid pseudo-spectral/finite difference algorithms have also been used, where only the convective term of the constitutive term is discretized by the second-order central difference KT scheme in Refs. [START_REF] Vaithianathan | An improved algorithm for simulating three-dimensional, viscoelastic turbulence[END_REF][START_REF] Zhu | Inertia-driven and elastoinertial viscoelastic turbulent channel flow simulated with a hybrid pseudo-spectral/finite-difference numerical scheme[END_REF]. The lattice Boltzmann method, where the discretized Boltzmann equation is solved on a lattice instead of directly solving the Navier-Stokes equation for the flow field, has been employed to simulate elastic turbulence and viscoplastic turbulent flow by [START_REF] Souza | Lattice Boltzmann method for direct numerical simulation of viscoplastic turbulent flow[END_REF]28]. Very recently, Lin et al. [START_REF] Lin | High-fidelity robust and efficient finite difference algorithm for simulation of polymer-induced turbulence in cylindrical coordinates[END_REF] compared the numerical solutions obtained by using different numerical algorithms and showed qualitative differences in capturing the highly localized shock-like structures that appear in the elastically driven turbulent flow regime by exam-ining the contours of the polymer stress fields. Although, the hybrid method they have used does not include a global diffusive term, the sharp gradients in the polymer stress field are moderately smoothened by the implicit numerical diffusion. On the other hand, spectral methods with minimum global diffusion captures some of these sharp gradients, but not as well as finite-difference methods with no global diffusion. Evidently, the literature indicates that there is a lack of convergence between different numerical studies and sensitive dependence on the numerical algorithm chosen.

In the literature, it is always emphasized that during the evolution the conformation tensor should remain symmetric and positive-definite, and its trace must not exceed the maximum extension prescribed by finite extensibility models. These conditions must be obeyed irrespective of the numerical scheme, the constitutive equation or its reformulation, and the type of diffusion used in the simulations. However, in addition to these bounds, there exists yet another necessary criterion on the determinant of the conformation tensor of the Oldroyd-B model which seems to have been neglected in most numerical simulations. We will discuss this in more detail in chapter 5.

To this end, in chapter 5 we verify if this lower bound on det C is satisfied in numerical simulations of the Oldroyd-B model by considering two widely used reformulations, namely, the Log-Cholesky and the SSR decompositions. We will demonstrate that this lower bound can be used as a criterion to assess the accuracy of numerical simulations.

Governing equations

Velocity field

The dynamics of an isothermal and incompressible fluid is described by the Navier-Stokes equations:

∇ • u = 0, (4.1a) ρ ∂u ∂t + u • ∇u = -∇p + ∇ • T + f u , (4.1b)
where ρ is the fluid density, u(x, t) is the velocity field, t is time, p(x, t) is pressure, T (x, t) is the total stress, and f u (x) is an external body force, which is required to attain a stationary regime. The components of the velocity gradient tensor are defined as (∇u

) ij = ∂u i /∂x j .
The total stress tensor is expressed as the sum of the viscous and polymer stresses as

T = T s + T p , (4.2)
where T s is the solvent contribution to the total stress given as

T s = 2ρν s E. (4.3)
Here, ν s is the kinematic viscosity of the solvent, which is the ratio of the solvent dynamic viscosity µ s to the fluid density ρ and E = (∇u + ∇u T )/2 is the strain-rate tensor.

T p is the stress generated by the presence of polymers in the solvent. The viscoelastic constitutive equations used in this chapter to determine the polymer stress are discussed below.

Constitutive models for the polymers

We present here two widely accepted viscoelastic models that are derived from the continuum mechanics arguments, namely the Oldroyd-B and the FENE-P models. The basic element of these models is an elastic dumbbell, which represents a linear polymer molecule having several backbone atoms as two beads connected by an elastic spring. Each bead interacts with the local solvent molecules and experiences the hydrodynamic drag force generated by the motion of the solvent, the Brownian force due to the collisions of the solvent molecules with the beads, and the spring restoring force. The hydrodynamic forces tend to distort and orient the polymer molecules, the Brownian forces tend to randomize the orientation and extension of the polymer molecules, and the spring restoring force tends to restore stretched polymer molecules back into the equilibrium configuration. The dynamics of polymers under the action of these forces generate a polymeric stress [13].

In dumbbell models, the connector vector between the two beads is defined as ℓ = r 2 -r 1 (recall also the definitions in section 2.1), where r i (i = 1, 2) is the position vector of the ith bead. The conformation tensor C is an ensemble average of the second moment of the connector vector ℓ over the configurational space of the dumbbell:

C = ℓℓ ℓ 2 eq , ( 4.4) 
where ℓ 2 eq is the square of the equilibrium extension of the polymers in the absence of flow. The elastic spring restoring force can take different forms leading to different kinetic models, two of which are used in this work and are discussed below.

Oldroyd-B model:

Assuming the connector spring to be Hookean, i.e. the spring force F c is linear with spring constant H :

F c = H ℓ, ( 4.5) 
Oldroyd [START_REF] Oldroyd | On the formulation of rheological equations of state. Proceedings of the Royal Society of London[END_REF] derived a constitutive equation in terms of the total stress tensor as

T + λ ∇ T = 2ρµ t E + (µ s /µ t )τ ∇ E (4.6)
where µ t = µ p + ν s is the total kinematic viscosity of the solution, µ p is the polymer kinematic viscosity, τ is the polymer relaxation time, and ∇ T is the upper convected derivative given as

∇ T = ∂T ∂t + u • ∇T -T • ∇u -(∇u) T • T . (4.7)
The relation between the conformation tensor C and the polymeric stress T p is given as the deviation of the polymer conformation from its equilibrium state as

T p = µ p τ (C -I). (4.8)
This leads to the Oldroyd-B constitutive equation in terms of C as

∂C ∂t + u • ∇C = C • ∇u + (∇u) T • C - 1 τ (C -I), (4.9) 
where I is the identity tensor.

The Oldroyd-B model is one of the simplest viscoelastic models and has been used in various studies (see Ref. [START_REF] Sánchez | Understanding viscoelastic flow instabilities: Oldroyd-B and beyond[END_REF]). The simplicity of this model brings in an associated drawback in some flow situations. Particularly in extensional flows, the linear spring allows polymers to be infinitely stretchable without any bounds.

FENE-P model:

In order to address this drawback, Warner [START_REF] Warner | Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells[END_REF] introduced the Finitely Extensible Non-linear Elastic (FENE) model with a non-linear spring force.

Here, the Hookean spring is replaced by a non-linear spring to impose an upper bound on the maximum extension of the dumbbell. In the FENE model, the spring force takes the following form

F c = Hℓ 1 -ℓ 2 /ℓ 2 max , ( 4.10) 
where ℓ max is the maximum spring extension. The drawback of the FENE model is that it does not yield a closed form constitutive equation for the polymeric stress, which makes it unsuitable for macroscopic flow calculations. Therefore, to close this model the spring force is replaced by its ensemble average:

F c = Hℓ 1 -ℓ 2 /ℓ 2 max . (4.11)
The resulting model is known as the FENE-P model (P for Peterlin who introduced this idea). This constraint on the dumbbell extension modifies Eq. (4.9) as

∂C ∂t + u • ∇C = C • ∇u + (∇u) T • C - 1 τ (f (r)C -I). (4.
12)

The function f (r) is the so-called Peterlin function defined as follows

f (r) = ℓ 2 max -d ℓ 2 max -tr C , ( 4.13) 
where d is the spatial dimension of the system. From the Peterlin function it is evident that when tr C approaches ℓ 2 max , the force required to stretch the polymer further tends to infinity, thus limiting the maximum polymer extension to ℓ max .

In the FENE-P model, the relation between C and T p is

T p = µ p τ (f (r)C -I). (4.14)
When the finite extensibility parameter ℓ max , which measures the maximum extension of the spring, becomes infinite the FENE-P model reduces to the Oldroyd-B model.

Properties of the conformation tensor

By definition, the conformation tensor C is a symmetric positive-definite (SPD) matrix (see Eq. (4.4)). This implies that the eigenvalues of C must always remain real and positive. Therefore, if the conformation tensor is initially positive definite, then it must remain positive definite during the time evolution [START_REF] Hulsen | A sufficient condition for a positive definite configuration tensor in differential models[END_REF]. However, as was discussed in section 4.2 the numerical errors that accumulate in simulations may lead to the loss of the SPD property of the conformation tensor resulting in Hadamard instabilities [26].

The finite extensibility of the polymer imposes an upper bound on the trace of the conformation tensor. It implies that the trace of the conformation tensor, which is a measure of the square of the separation distance, must remain less than or equal to the square of the maximum polymer extension, i.e. λ 1 + λ 2 + λ 3 ≤ ℓ 2 max , where λ i (i = 1, 2, 3) are the eigenvalues of C [6].

As mentioned above, there exists another constraint on the conformation tensor which must be obeyed for the mathematical well-posedness of the governing equations and which is related to the determinant of C. For the Oldroyd-B model, Hu and Lelièvre derived an a priori estimate which states that if det C > 1 at t = 0, then det C > 1 ∀t ≥ 0.

(4.15)

For any symmetric positive-definite matrix M of size d × d, the relation between the determinant and the trace is

(det M ) 1/d ≤ (1/d) tr M . (4.16)
This relation imposes a lower bound on tr C and states that if tr C > d at t = 0, then tr C > d ∀t ≥ 0 (see Ref. [START_REF] Hu | New entropy estimates for the Oldroyd-B model and related models[END_REF] for the detailed derivation of this a priori constraint).

To our knowledge, the lower bound on the det C has been neglected in most of the studies. Violating this bound modifies the macroscopic structure of the flow, which will be discussed in the next chapter.

Non-dimensional parameters

Four dimensionless numbers characterize the above constitutive models. The Reynolds number is the ratio of inertial to viscous forces:

Re = LU ν s , ( 4.17) 
where L is a characteristic length scale, U is a characteristic velocity of the system, and ν s = µ s /ρ is the kinematic viscosity of the solvent.

The response of the polymers to the flow brings another dimensionless group called the Weissenberg number Wi, which is the ratio of elastic to viscous forces

Wi = τ T , ( 4.18) 
where T is the characteristic flow time scale.

If the polymers diffuse with a diffusive coefficient κ, the other non-dimensional number that comes into picture is the Schmidt number, which is the ratio of the viscous diffusion rate to the molecular diffusion rate:

Sc = ν s κ . ( 4 

.19)

In addition to these non-dimensional numbers, β is a quantity which is proportional to the non-dimensional polymer concentration

β = µ p µ t . (4.20)

Numerical algorithm

In lieu of the Navier-Stokes equations, in this thesis we will directly consider the Stokes equations. As elastic turbulence is a low-Re phenomenon, the contribution of inertial terms can be entirely neglected in comparison to the elastic ones. The same approach has been used before in Refs. [START_REF] Thomases | Transition to mixing and oscillations in a Stokesian viscoelastic flow[END_REF][START_REF] Thomases | A Stokesian viscoelastic flow: transition to oscillations and mixing[END_REF]4,[START_REF] Gupta | Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence[END_REF][START_REF] Gutierrez-Castillo | Three-dimensional viscoelastic instabilities in a four-roll mill geometry at the Stokes limit[END_REF]. In this case, the evolution of the velocity field u(x, t) coupled with the conformation tensor field C(x, t) is described by the Stokes equation

∇p = µ s ∇ 2 u + µ p τ ∇ • [f (r)C] + f u . (4.21)
To avoid the calculation of pressure from the Poisson equation, the code is developed in the streamfunction-vorticity formulation, where ω =|∇ × u| is the vorticity of the incompressible velocity field u(x, t). The corresponding vorticity equation is

µ s ∇ 2 ω = - µ p τ ∇ × ∇[f (r)C] -f ω , (4.22)
where f ω = ∇ × f u is the external body force applied on the vorticity field. The vorticity and the streamfunction are related as

ω = ∇ 2 ψ. (4.23)
The evolution of the flow and the conformation tensor are obtained by simultaneously integrating Eq. (4.22) and the constitutive equation for polymers on the two-dimensional domain X = [0, 2π] 2 with periodic boundary conditions. In this study we will use either the Log-Cholesky or the SSR decomposition (see chapter 5 for the details). Eq. (4.22) together with the constitutive equations for the polymer phase are solved on a regular grid by using fourth-order central difference to discretize all the spatial derivatives except the advection term. A second-order Runge-Kutta scheme with time step dt = 2 × 10 -3 is used for the time integration. The KT scheme used for discretizing the advective term is described below. Finally, Eq. (4.23) is solved in Fourier space to obtain the streamfunction ψ from which the velocity field is calculated as

u x = - ∂ψ ∂y , u y = ∂ψ ∂x , ( 4.24) 
where u x , u y are the components of the velocity field u.

Shock-capturing KT scheme

This is a second-order central difference scheme that uses precise information about the local wave propagation speeds to discretize the convection term. A comprehensive description of this scheme is given below.

In two dimensions, the second-order KT scheme applied to Eq. ( 4.12) at a grid point (i, j) can be written as [START_REF] Vaithianathan | An improved algorithm for simulating three-dimensional, viscoelastic turbulence[END_REF]:

∂C i,j ∂t = - 1 ∆x (H x i+1/2,j -H x i-1/2,j ) - 1 ∆y (H y i,j+1/2 -H y i,j-1/2 ) +(C i,j ∇u i,j + (∇u) T i,j C i,j ) - 1 τ (f (r)C i,j -I). (4.25)
where the convective flux H in each direction is given by

H x i+1/2,j = 1 2 u i+1/2,j (C + i+1/2,j + C - i+1/2,j ) -1 2 a x i+1/2,j (C + i+1/2,j -C - i+1/2,j ), (4.26 
)

H x i-1/2,j = 1 2 u i-1/2,j (C + i-1/2,j + C - i-1/2,j ) -1 2 a x i-1/2,j (C + i-1/2,j -C - i-1/2,j ), (4.27 
)

H y i,j+1/2 = 1 2 v i,j+1/2 (C + i,j+1/2 + C - i,j+1/2 ) -1 2 a x i,j+1/2 (C + i,j+1/2 -C - i,j+1/2
), (4.28)

H y i,j-1/2 = 1 2 v i,j-1/2 (C + i,j-1/2 + C - i,j-1/2 ) -1 2 a x i,j-1/2 (C + i,j-1/2 -C - i,j-1/2 ), (4.29) 
and the local wave propagation speeds at the shocks are given as

a x i+1/2,j = |u i+1/2,j |, (4.30 
)

a x i-1/2,j = |u i-1/2,j |, (4.31 
)

a x i,j+1/2 = |v i,j+1/2 |, (4.32 
)

a x i,j-1/2 = |v i,j-1/2 |. (4.33) 
C + and C -on the right-hand side of Eq. (4.26) represent the values of the conformation tensor approached from the right (+) and left (-) limits of the point of interest, respectively. The main idea behind the KT scheme is to admit the possibility of the generation of shocks (discontinuities) and resolve them without forcing the two values at the boundary to be identical. Therefore, the tensor C ± is calculated from second-order, linear piecewise approximations as

C ± i+1/2,j = C i+1/2±1/2,j ∓ ∆x 2 ∂C ∂x i+1/2±1/2,j
, (4.34)

C ± i,j+1/2 = C i,j+1/2±1/2 ∓ ∆y 2 ∂C ∂x i,j+1/2±1/2 . (4.35)
The two major benefits of using the KT scheme are: (i) it allows us to capture the sharp variations in the conformation tensor field by a second-order central difference scheme and (ii) representing the convective flux as the difference between the inward and outward flux automatically satisfies the conservation of the mean conformation tensor. The gradients of C can be approximated as:

∂C ∂x i,j =                      1 ∆x (C i+1,j -C i,j ), 1 ∆x (C i,j -C i-1,j ), 1 2∆x (C i+1,j -C i-1,j ). (4.36)
The choice of the approximation will affect the mid-point values on the left-hand side of Eq. (4.34). The objective here is to limit the slope by choosing a derivative that yields a SPD result even for C ± i+1/2,j , C ± i,j+1/2 (the right and left limit approximations of C in both the directions). If two or more derivative approximations satisfy this criterion, the scheme of Vaithianathan and Collins prescribes to select the one that maximizes the minimum eigenvalue for the two tensors. The derivative is set to zero when none of the derivative approximations satisfy this criterion. This makes the scheme first-order (locally) in space. In our algorithm, instead of applying the slope limiting strategy, we always approximate the slope of C using the second-order central-difference scheme. We chose to avoid the MINMOD operation because we use the Log-Cholesky and the SSR decompositions and these yield a symmetric and positive definite C tensor at all points during the evolution by construction. For more details on the KT scheme, please see Ref. [START_REF] Vaithianathan | An improved algorithm for simulating three-dimensional, viscoelastic turbulence[END_REF]. The shock-capturing KT scheme has been employed in the numerical simulations of turbulent polymer solutions [START_REF] Vaithianathan | Polymer mixing in shear-driven turbulence[END_REF][START_REF] Perlekar | Direct numerical simulations of statistically steady, homogeneous, isotropic fluid turbulence with polymer additives[END_REF]21,[START_REF] Robert | Polymer-laden homogeneous shear-driven turbulent flow: a model for polymer drag reduction[END_REF][START_REF] Valente | The effect of viscoelasticity on the turbulent kinetic energy cascade[END_REF][START_REF] Gupta | Two-dimensional homogeneous isotropic fluid turbulence with polymer additives[END_REF][START_REF] Shekar | Critical-layer structures and mechanisms in elastoinertial turbulence[END_REF], elastic turbulence [START_REF] Gupta | Melting of a nonequilibrium vortex crystal in a fluid film with polymers: Elastic versus fluid turbulence[END_REF][START_REF] Plan | Lyapunov dimension of elastic turbulence[END_REF][START_REF] Gupta | Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence[END_REF], and both inertial and elastic turbulence [START_REF] Lin | High-fidelity robust and efficient finite difference algorithm for simulation of polymer-induced turbulence in cylindrical coordinates[END_REF].

In our simulations, we consider the two-dimensional cellular forcing f u (x, t) = f 0 (-sin Ky, sin Ky), (4.37) where f 0 is the amplitude of the forcing and k f is the wave number at which the forcing is implemented. When there is no feedback of the polymers on the flow (µ p = 0), Eq. (4.21) results in the laminar solution: u(x, t) = -f u (x, t)/ν s K 2 . The corresponding vorticity field ω = -f 0 (cos Kx+cos Ky)/ν s K consists of a sequence of alternatively signed vortices separated by lines of pure strain, as shown in Fig. 4.4. The turnover time T can be defined using the length scale 1/K and the amplitude of the laminar velocity field f 0 /ν s K 2 as T = ν s K/f 0 . Using this flow time scale T , the dimensionless Weissenberg number can be defined as Wi = τ /T . In order to reach elastic turbulent regime, Wi >> 1 is required. Unless otherwise stated, at t = 0, ω(x, 0) = -f 0 (cos Kx + cos Ky)/ν s K, and C(x, 0) = I. 

REFORMULATION OF THE CONSTITUTIVE EQUATIONS

Introduction

As mentioned in Chapter 4, reformulating the constitutive equations by using matrix decompositions is considered as a strategy to ensure the positive definiteness of the conformation tensor. In this regard, the Log-Cholesky decomposition [START_REF] Vaithianathan | Numerical approach to simulating turbulent flow of a viscoelastic polymer solution[END_REF], symmetric square root (SSR) [4], and matrix-logarithm [32] of the conformation tensor are widely used reformulations of the constitutive equations. Both the Log-Cholesky and matrix logarithm reformulations share a commonality: they indeed involve a logarithmic transformation of the components of the conformation tensor. The performance of the above reformulations have been compared in laminar flows [20,[START_REF] Palhares Junior | Numerical study of the square-root conformation tensor formulation for confined and free-surface viscoelastic fluid flows[END_REF]. In this chapter, the study is developed further by comparing the Log-Cholesky and the SSR decompositions in the elastic turbulence regime. Several simulations of elastic turbulence have employed the Log-Cholesky [10,[START_REF] Gupta | Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence[END_REF]27] and the SSR decompositions [START_REF] Thomases | An analysis of the effect of stress diffusion on the dynamics of creeping viscoelastic flow[END_REF][START_REF] Gutierrez-Castillo | Three-dimensional viscoelastic instabilities in a four-roll mill geometry at the Stokes limit[END_REF] by combining them with different numerical schemes. We present below the mathematical details of the two formulations.

Log-Cholesky decomposition

In the Log-Cholesky decomposition, a new tensor J is introduced as:

J = f (r)C. (5.1)
By definition, J is also a SPD matrix, since f (r) is a positive quantity for all values of r.

Taking the trace on both sides of Eq. ( 5.1) and denoting j 2 = tr J and r 2 = tr C gives:

j 2 = f (r)r 2 , (5.2) tr J = f (r) tr C. (5.3) Recalling that f (r) = ℓ 2 max -d ℓ 2
max -tr C and from Eq. ( 5.3), it follows that

f (r) = ℓ 2 max -d ℓ 2 max -tr J f (r)
, (5.4) which gives

r 2 = j 2 ℓ 2 max ℓ 2 max + j 2 -d .
(5.5)

The evolution equation for J can be derived by substituting Eq. ( 5.1) into Eq. (4.12):

∂J ∂t + u • ∇J = J • ∇u + (∇u) T • J -p(J -I) + qJ , ( 5.6) 
where

p ≡ ℓ 2 max -d + j 2 τ ℓ 2 max , q ≡ k ℓ 2 max -d - (ℓ 2 max -d + j 2 )(j 2 -d) τ ℓ 2 max (ℓ 2 max -d) , k ≡ tr[J • ∇u + (∇u) T • J ].
(5.7)

Ensuring the positive definiteness of J guarantees the positive definiteness of C. For this reason, J is constructed as

J = L • L T , (5.8)
where L is a lower triangular matrix. In 2D, L is of the form

L ≡   ℓ xx 0 ℓ yx ℓ yy   .
(5.9) Substituting Eq. (5.9) into Eq. (5.8) gives:

J ≡   ℓ 2 xx ℓ xx ℓ yx ℓ xx ℓ yx ℓ 2 yx + ℓ 2 yy   .
(5.10) Thus constructing J from the components of L ensures that J remains symmetric and positive definite. The transport equations for the elements of the lower triangular matrix L can be derived by sequentially substituting the elements of J in Eq. (5.10) into Eq. (5.6). This gives: To ensure that the diagonal components of the lower triangular matrix L remain positive and hence the factorization is unique, a logarithmic transformation is implemented as lij = ln(ℓ ij ), if i=j. (5.14) Rewriting the equations in terms of lii gives

Dℓ xx Dt = (∂ x u x )ℓ xx + (∂ y u x )ℓ yx + 1 2 p ℓ xx + (q -p)ℓ xx , ( 5 
D lxx Dt = ∂ x u x + (∂ y u x )ℓ yx exp(-lxx ) + 1 2
p exp(-2 lxx ) + qp , (5.15)

D lyy Dt = ∂ y u y -(∂ y u x )ℓ yx exp(-lxx ) + 1 2 p exp(-2 lyy ) + pℓ 2 yx exp[-2( lxx + lyy )] + q -p .
(5.16) The diagonal entries ℓ ij are then calculated by exponentiating lij for i=j.

As f (r) = 1 for the Oldroyd-B model, p = 1/τ and q = 0. Therefore, the governing equations for the Oldroyd-B model simplify as follows:

Dℓ xx Dt = (∂ x u x )ℓ xx + (∂ y u x )ℓ yx + 1 2τ 1 ℓ xx -ℓ xx ,
(5.17) Rewriting the equations in terms of lii gives

Dℓ yx Dt = (∂ x u y )ℓ xx + (∂ y u y )ℓ yx + (∂ y u x ) ℓ 2 yy ℓ xx 1 2τ -ℓ yx - ℓ yx ℓ 2 xx , ( 5 
D lxx Dt = ∂ x u x + (∂ y u x )ℓ yx exp(-lxx ) + 1 2τ exp(-2 lxx ) -1 , (5.20) D lyy Dt = ∂ y u y -(∂ y u x )ℓ yx exp(-lxx ) + 1 2τ exp(-2 lyy ) + ℓ 2 yx exp[-2( lxx + lyy )] -1 . (5.21)
This decomposition has been widely used in numerical studies of elastic turbulence, where it has been combined with different numerical schemes. To name a few, Berti et al. [10] implemented the Log-Cholesky decomposition in two-dimensional pseudo-spectral simulations of elastic turbulence with Kolmogorov forcing. Gupta and Vincenzi [START_REF] Gupta | Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence[END_REF] combined the Log-Cholesky decomposition with the KT scheme to simulate ET with and without global diffusion. Dzanic et al. used the Log-Cholesky decomposition along with modified/local diffusion [29]. In all these simulations, it is shown that the Log-Cholesky decomposition guarantees that the conformation tensor remains positive-definite and yields numerically stable solutions.

Symmetric square root decomposition

Balci et al. [4] proposed another decomposition of the conformation tensor C in terms of its symmetric square root b as

C = bb T . (5.22)
By construction, any decomposition of this form ensures a symmetric and positive-definite C, irrespective of the form of the matrix b. However, by choosing b to be symmetric, i.e. b T =b, the decomposition is unique. In addition, Balci et al. [4] stated that choosing b to be symmetric is found to improve accuracy. We first derive the evolution equation for the Oldroyd-B model. We follow the derivation in Ref. [START_REF] Palhares Junior | Numerical study of the square-root conformation tensor formulation for confined and free-surface viscoelastic fluid flows[END_REF]. Substituting Eq. ( 5 

(∇u) - 1 2τ (b -1 -b) = b -1 - Db Dt + ∇u T b + 1 2τ (b -1 -b) b. (5.24)
By defining the tensor (5.25) we find that Eq. (5.24) can be expressed as

V = Db Dt -b(∇u) - 1 2τ (b -1 -b),
V = b -1 (-V T )b.
(5.26)

In addition, we define the anti-symmetric matrix

a = V b -1 = -b -1 V T , ( 5.27) 
which gives

V = b -1 (-V T )b = ab.
(5.28)

Finally, substituting Eq. (5.28) into Eq. (5.24) and rearranging leads to an evolution equation for the Oldroyd-B model in terms of the symmetric square root b as

∂b ∂t + u • ∇b = b • ∇u + a • b + 1 2τ ((b T ) -1 -b).
(5.29)

Repeating the same procedure with the FENE-P model, see Eq. (4.12), gives

∂b ∂t + u • ∇b = b • ∇u + a • b + 1 2τ (b T ) -1 - b 1 -|b| 2 /ℓ 2 max .
(5.30)

Now, we need the correct form of a in order to solve Eq. (5.29) or Eq. (5.30). Note that indeed Eqs. (5.29) and (5.30) do not preserve the symmetry of b, unlike the original constitutive equations in terms of C. Nevertheless, by properly choosing a suitable nonzero anti-symmetric matrix a, the symmetry of Eqs. (5.29), (5.30) can be preserved. Following [4], the matrix a is constructed from ∇u and b by defining the field r = b(∇u) + ab (5.31) and imposing that it be symmetric. Now, in two-dimensions the only nonzero component a xy of a can be computed by equating r xy = r yx . This gives .32) This construction also has a mathematical advantage. Indeed, the space of solutions (u, b) where b is symmetric is a vector space. This does not hold for the space of the solutions of the original constitutive equation, since the linear combination of two positive definite matrices is not necessarily positive definite. We also note that the SSR reformulated equation has a similar form compared to the Log-Cholesky equation and is therefore easier to implement [20].

a xy = (b xy ∂ x u x -b xx ∂ x u y ) + (b yy ∂ y u x -b xy ∂ y u y ) b xx + b yy . ( 5 
In this chapter we examine the accuracy of these two decompositions in simulating elastic turbulence. We employ both the two-dimensional Oldroyd-B and FENE-P constitutive models and perform numerical simulations in the elastic turbulence regime by coupling them with the Stokes equations for the flow field. The details of the numerical algorithm are given in chapter 4. Here we recall that the flow is sustained by an externally imposed cellular forcing. The simulations are performed in a 256 2 resolution without incorporating any form of diffusion (Sc = ∞) and by using the KT algorithm. Unless otherwise mentioned, the parameters used in this study are ν s = 0.05, µ p = 0.01, τ = 50, k f = 2, f 0 = 0.02, which correspond to Wi = 10. For the FENE-P model, the square of the maximum polymer extension ℓ 2 max = 3000 is used. In section 5.2, we compare the solutions obtained from both these decompositions in the elastic turbulence regime. In section 5.3, we show how the lower bound on the det C of the Oldroyd-B model can be used to compare the accuracy obtained with the two decompositions. In section 5.4 we examine the role of the logarithmic transformation, which distinguishes the two decompositions. The importance of predicting an accurate solution is demonstrated by considering the mixing of a passive scalar field in section 5.5. In section 5.6, we discuss the importance of using a shock-capturing scheme. Furthermore, we show the sensitive dependence of the numerical solution on the discretization techniques in section 5.7. We also briefly examine the accuracy of the Log-Cholesky and SSR decompositions in the high-Re regime in section 5.8. Finally, the main conclusions from this analysis are summarized in section 5.9.

Comparison of the solutions obtained from the

Log-Cholesky and SSR decompositions

In order to understand if the solutions obtained using the Log-Cholesky and the SSR decompositions are equivalent, we compare the numerical solutions obtained in the elastic turbulent regime. We consider the Oldroyd-B model and solve Eqs. (5.18), (5.20), and (5.21) for the Log-Cholesky decomposition and Eq. (5.29) for the SSR decomposition.

We define the space-averaged kinetic energy e(t) ≡ 1 2 X |u(x, t)| 2 dx and rescale it by the kinetic energy of the fixed-point laminar solution obtained in the absence of polymer feedback, i.e. e 0 = f 2 0 /2ν 2 s k 4 f . The time series of the space-averaged rescaled kinetic energy e(t)/e 0 obtained with both these decompositions is shown in the left panel of Fig. 5.1. Time is rescaled by the turnover time T . An alternative choice is to rescale time with the polymer relaxation time τ . However, this would not change the interpretation of the results. After a short initial transient both the solutions become chaotic and oscillate around a mean energy which smaller in magnitude for the SSR decomposition compared to the Log-Cholesky decomposition. The frequency of the fluctuations and the mean energies are in good agreement with those found in Ref. [START_REF] Gupta | Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence[END_REF] with cellular forcing and the same parameters. In the right panel of Fig. 5.1, we show the time series of the space-averaged trace of the conformation tensor ⟨tr C⟩ X , which is a measure of the average stretching experienced by the polymer molecules during deformation. As observed for e(t)/e 0 , after an initial transient both the numerical solutions become chaotic and oscillate around a mean extension with comparable frequency of fluctuations. However, the mean stretching predicted by the SSR decomposition is greater than that of the Log-Cholesky decomposition, which is consistent with a stronger polymer feedback and hence a lower kinetic energy, as seen in the left panel of Fig. 5.1. The reason for these differences will be explained in section 5.4.

The mechanism behind the chaotic flow can be explained as follows. The gradients in the velocity of the fluid act to stretch the polymer molecules by transferring the fluid kinetic energy into polymer elastic energy. This is evident from Fig. 5.1. During this initial phase, the kinetic energy drops and the stretching experienced by the polymers increases, which implies the transfer of kinetic energy into polymer elastic energy. As the stretching experienced by the polymer molecules increases, the stress generated by polymers keeps increasing. When the elastic stress becomes comparable to the existing viscous stresses in the fluid, polymers act to modify the fluid surrounding them thereby stopping its stretching action. The balance between the stretching action of the flow on polymers and the stress produced by the feedback results in a statistically steady state known as elastic turbulence. The snapshots of the contours of ln(tr C) shown in Fig. 5.2 also show qualitative discrepancies between the two solutions. Contours of tr C give information about the distribution of polymer stresses. In all the snapshots shown at different times, although polymers are highly stretched in the strain-dominated regions of the flow and less stretched in the vortical regions, there exists some notable differences in the way the polymer stress field evolves in the two decompositions. In the Log-Cholesky decomposition, the fluctuations do not seem to perturb the imposed cellular structure significantly. The largescale structure of the stress field is essentially slaved to the background cellular force, as expected for a numerical scheme which does not use any form of diffusion. Contrastingly, with the SSR decomposition the vortical structures are more perturbed by the fluctuations and interact with each other more frequently. At random times the emergence of large-scale structures in the stress field at different locations in the domain is noticeable, as shown in the right panel of In order to quantify the differences between the aforementioned large-scale flow structures and measure the deviations from the imposed cellular flow shown by the Log-Cholesky and SSR decompositions, we define the ratios To statistically characterize the stationary regime of the turbulent flow, we examine the spectrum of the velocity fluctuations in the wave-number k domain by defining the energy spectrum

∆ ω = ω(0, 0) -ω(π, 0) ω(0, 0) + ω(π, 0) , ( 5.33a) 
E(k) ≡ k-1/2<k ′ ≤k+1/2 ⟨|û(k ′ , t)| 2 ⟩ t ,
where ⟨⟩ t denotes the time average over the statistically steady state. As shown in the left panel of Fig 5 .5, the kinetic energy spectrum displays a power-law decay with an exponent close to -2.7, i.e. E(k) ∝ k -2.7 . However, an increase of energy at large-scales i.e. k < k f can be observed with the SSR decomposition compared to the Log-Cholesky decomposition. We also compute the power spectrum of the energy fluctuations E(f ) to examine the temporal behavior of the energy e(t) shown in Fig. 5.1. E(f ) is defined as the Fourier transform of the rescaled kinetic energy e(t)/e 0 minus the mean kinetic energy in the stationary regime of the flow. The energy power spectrum shown in the right panel of Fig. 5.5 also exhibits powerlaw decay of the spectrum over almost two decades with an exponent close to -4, i.e. E(f ) ∝ f -4 . Such a power-law decay of the temporal power spectrum of the fluctuating kinetic energy with an exponent varying between 3.2 and 4.3 was previously observed in some two-dimensional numerical simulations with the Oldroyd-B model [11,[START_REF] Van Buel | Elastic turbulence in two-dimensional Taylor-Couette flows[END_REF]36,29] and the FENE-P model [START_REF] Gupta | Melting of a nonequilibrium vortex crystal in a fluid film with polymers: Elastic versus fluid turbulence[END_REF]29]. The exponent obtained in these numerical simulations is in close agreement with the exponent α v ∼3.5 found in the experiments [START_REF] Groisman | Elastic turbulence in a polymer solution flow[END_REF][START_REF] Groisman | Elastic turbulence in curvilinear flows of polymer solutions[END_REF][START_REF] Steinberg | Elastic turbulence: an experimental view on inertialess random flow[END_REF]. The spreading of the spatial and the temporal spectra over several wave numbers and frequencies, respectively, indicate the activation of several spatial and temporal scales, which is a signature of a chaotic flow. Assuming a statistically homogeneous and isotropic flow and using a simple viscoelastic model referred by them as uniaxial model, Fouxon and Lebedev [34] theoretically predicted a power-law decay of the kinetic energy spectrum with an exponent α v > 3. In addition, they have also deduced the relation between the power-law decay exponent α v of the kinetic energy spectrum and that of the elastic energy spectrum, α p , as α p = α v -2 > 1. Although these theoretically predicted exponents qualitatively agree well with the experimental and numerical findings, the assumption of statistical homogeneity does not apply to our flow situation. Analogous conclusions were reached by Garg et al. [36] by considering a two-dimensional Kolmogorov flow, which has a sinusoidal mean shear. They showed that the velocity fluctuations are comparable to the mean flow, leading to a partial breakdown of Taylor's frozen-field hypothesis [START_REF] Taylor | The spectrum of turbulence[END_REF]. Also, in contrast to the assumptions made in the theory [34], the flow in this setup is found to be highly anisotropic at all scales and weakly inhomogeneous in the cross-stream direction. In chapter 7, we will discuss the assumptions behind the development of uniaxial model in more detail.

We have also calculated the spectrum of the polymer stretching by defining Tr C(k)

≡ k-1/2<k ′ ≤k+1/2 ⟨| tr C(k ′ , t)| 2 ⟩ t .
The polymer energy spectrum shows an increase of elastic To examine the effect of the decomposition on the large scales further, we increase the forcing wave number from k f = 2 to k f = 6. As shown in Fig. 5.7 for the Oldroyd-B model, the differences between the large-scale structures become more pronounced when the forcing wave-number is increased to k f = 6. Accordingly, the polymer stress field obtained with the SSR decomposition (shown in the left panel of Fig. 5.7) can be observed to be more perturbed and to display more interactions between the vortices compared to the stress field of the Log-Cholesky decomposition shown in the center panel of Fig. 5.7. The kinetic energy spectrum shown in the right panel of Fig. 5.6 for the Oldroyd-B model quantitatively highlights the increase of energy at large-scales, i.e. spatial scales larger than the forcing scale (k < k f ), with the SSR decomposition. 

Are both these solutions equally accurate?

As we observe these large-scale discrepancies between the two numerical solutions, we investigate further this point by asking the question: does the C tensor constructed from both these decompositions satisfy all the necessary criteria for the solution to be accurate? In particular, it was mentioned in section 4.3 that det C and tr C must satisfy a mathematical bound for the Oldroyd-B model. More precisely, det C and tr C must stay greater than unity and two, respectively. Figure 5.8 shows the time series of the minimum value of the determinant and trace of C in the numerical domain X obtained with the two decompositions and same parameters and numerical scheme. We recall that these simulations are performed by initialising C with the identity tensor, i.e. C = I at t = 0. As explained in section 4.3, if det C ≥ 1 at t = 0, then it must remain greater than one during the evolution at all points in the domain. Figure 5.8 (left) shows a striking difference in the evolution of the minimum of det C with the two decompositions. With the SSR decomposition the minimum of det C significantly drops below unity and fluctuates between one and zero very frequently, whilst with the Log-Cholesky decomposition det C always remains strictly greater than unity at all points in the domain.

Correspondingly, the minimum of tr C drops below 2 with the SSR decomposition, whereas with the Log-Cholesky decomposition it is never observed to go below 2 as shown in the inset of Fig. 5.8 (left). From Eq. (4.16) it is expected that tr C strictly remains greater than 2 at all points in the domain during the evolution. These discrepancies in the evolution of det C and tr C also persists even with the FENE-P model as shown in the right panel of Fig. 5.8. However, the violation of the lower bound on tr C is more pronounced with the Oldroyd-B model than that of the FENE-P model. Also, during the evolution, the bounds are violated more strongly and much more frequently with the Oldroyd-B model. Tr C dropping to values much below 2 indicates a compression of the polymer molecules by the flow, which is against the assumption of an incompressible velocity field.

Role of a logarithmic transformation

After quantifying the differences between the Log-Cholesky and SSR simulations and examining the accuracy of the two approaches thanks to the determinant criterion, we ask the question of what leads to these differences. In principle, both these decompositions are mathematically identical as they both represent the same Oldroyd-B or FENE-P constitutive equation. Therefore, if all the terms in the constitutive equation for polymers and the flow governing equation are treated exactly with the same numerical approximations in both the decompositions, the resulting u and C fields, must be similar. But clearly, the perturbed cellular structure, the larger mean stress, and the increase of kinetic energy at large scales that are observed with the SSR decomposition compared to the Log-Cholesky decomposition indicate that the two simulations are not equally accurate. The determi- nant criterion of the Oldroyd-B model has allowed us to show that the SSR simulations are indeed less accurate. In the Log-Cholesky decomposition proposed by Vaithianathan and Collins [START_REF] Vaithianathan | Numerical approach to simulating turbulent flow of a viscoelastic polymer solution[END_REF], a logarithmic transformation is imposed on the diagonal components of the lower triangular matrix L to ensure that the diagonal components stay positive. In the SSR decomposition, no such logarithmic transformation is required.

In order to check whether such logarithmic transformation is essential, we simulated the Oldroyd-B model in Eqs. (5.17), (5.18), (5.19) directly, by excluding the logarithmic transformation on the diagonal components. This approach from here on is referred to as "no Log-Cholesky" (NLC) decomposition. As shown in the left panel of Fig. 5.9, we checked that the diagonal components ℓ xx , ℓ yy of the lower triangular matrix L remain positive during the time evolution even if the logarithmic transformation is not used. Therefore, the uniqueness of the Cholesky decomposition is preserved. However, the minimum of the determinant and trace of the conformation tensor C significantly drops below unity and 2, respectively, as shown in the right panel of Fig. 5.9. This establishes the fact that the logarithmic transformation imposed on the diagonal components of the lower triangular matrix L in the Log-Cholesky decomposition is essential to satisfy the lower bound on the determinant of C and therefore to guarantee good accuracy. In fact, excluding the logarithmic transformation makes the Log-Cholesky simulations resemble to the SSR ones. As a result, the mean energy predicted by the NLC decreases and the mean stretching experienced by the polymers increases (Fig. 5.10). Applying a logarithmic transformation reduces the stretching experienced by the polymer molecules and hence the feedback on the flow. Furthermore, when the logarithmic transformation is excluded destabilisation of the imposed cellular structure and the appearance of large-scale structures are also visible from the contours of ln tr C shown in the right panel of Fig. 5.7. This behavior is analogous to that observed for the SSR decomposition. This indicates that imposing a logarithmic transformation reduces numerical errors and ensures that the numerical solution satisfies all the necessary mathematical constraints on the det C and tr C , providing an accurate and stable numerical solution.

Scalar mixing

As mentioned before, elastic turbulence finds its main application in microfluidic devices, such as those used in biochemistry. Fluid flows in microfluidic devices are mostly laminar in nature owing to their small sizes. In such low-Re flows, no inertial instabilities develop leading to turbulence, unless they are induced externally. Mixing is important in microfluids to distribute different substances effectively within the device, which otherwise remain separated for very long times. Therefore, different techniques have been proposed to promote mixing in microfluidic devices by disturbing the flow [START_REF] Stone | Microfluidics toward a lab-on-a-chip[END_REF][START_REF] Ottino | Introduction: mixing in microfluidics[END_REF][START_REF] Squires | Microfluidics: Fluid physics at the nanoliter scale[END_REF][START_REF] Ward | Mixing in microfluidic devices and enhancement methods[END_REF] by means of either electromagnetic or pressure or acoustic disturbances. In this regard, elastic turbulence, which is a low-Re and high-Wi phenomenon, has been proposed as an alternative technique to enhance mixing of substances in microfluidic devices [START_REF] Groisman | Efficient mixing at low Reynolds numbers using polymer additives[END_REF]. By considering a three-dimensional straight channel flow, the enhancement of mixing by elastic turbulence is analysed in Ref. [START_REF] Zhang | Direct numerical simulation of elastic turbulence and its mixing-enhancement effect in a straight channel flow[END_REF] and in a two-dimensional lid-driven cavity flow in Ref. [START_REF] Gupta | Influence of elastic instability and elastic turbulence on mixed convection of viscoelastic fluids in a lid-driven cavity[END_REF]. Both these numerical studies indicate that the mixing rate increases when the flow is in the elastic turbulent regime in both 2D and 3D. In order to determine how the different accuracy achieved with the Log-Cholesky and SSR decompositions affects the mixing of a passive scalar field, we study the transport of a scalar field initially concentrated at the center of the domain, inside the inner cell of the imposed cellular structure (left panel of Fig. 5.11). The scalar field does not influence the flow field and is just transported by the flow generated by the polymer solution. The transport of the scalar field θ(x, t) is given by the advection-diffusion equation

∂θ ∂t + u • ∇θ = κ θ ∇ 2 θ, ( 5.34) 
where κ θ is the diffusivity coefficient of the scalar field θ.

We simulated the transport of the scalar field in the stationary regime of the flow generated by the FENE-P model by using Eq. (5.34) with κ θ = 1×10 -5 and by initialising the scalar field θ as

θ(x, 0) = 1 2 - 1 π tan -1 r 2 (x) -a 1 /2 a 2 , ( 5.35) 
where r 2 (x) = (xπ) 2 + (yπ) 2 , a 1 = 0.4, and a 2 = (2π)/120. This initial condition generates a circular blob of the scalar field θ. The decay of the scalar field predicted by the Log-Cholesky and SSR decompositions of the FENE-P model is shown in the right panel of Fig. 5.11. Here, θ is the average of the scalar field over the entire domain at t = 0 and ⟨θ -θ⟩ is the average taken over a circle of radius twice the radius of the initial blob of scalar field. As the flow is more perturbed and the interaction between the vortices is stronger in the SSR decomposition, the scalar field decays more rapidly than in the flow field given by the Log-Cholesky decomposition. The contours of the scalar field θ shown in Fig. 5.12 show the decaying pattern of θ. In the SSR decomposition, the scalar field initially present at the center of the domain is lost into the neighbouring cells more quickly, whereas, when the Log-Cholesky decomposition is used the passive scalar mixes in the fluid more slowly. This study elucidates the importance of predicting an accurate numerical solution of both the conformation tensor and flow fields. Numerical studies that examine the mixing properties of microfluidic devices can be misleading if the numerical solution is not accurately calculated.

Is the KT scheme required to satisfy the lower bound on the det C ?

All the simulations results discussed so far are performed by applying the shock-capturing Kurganov-Tadmor scheme on the reformulated constitutive equations obtained by using the Log-Cholesky and SSR decompositions. It is clear from this analysis that the solution obtained with the SSR decomposition of the Oldroyd-B model is less accurate, since it does not satisfy the lower bound on the det C . We showed that the SSR decomposition of the FENE-P model is also prone to numerical errors, which leads to the destabilisation of the imposed cellular flow and a faster decay of a scalar field. We also showed that the logarithmic transformation applied to the diagonal components of the lower triangular matrix L is a crucial step that ensures that the lower bound on the det C is satisfied. At this point, we ask another question: is the combined use of both a shock-capturing scheme and a logarithmic transformation necessary to obtain an accurate solution, i.e. a solution that does not violate any mathematical constraint? In order to address this question, It is observed that min(det C ) drops below unity and min(tr C ) drops below two when the shock-capturing scheme is not applied. The time series of the rescaled kinetic energy and space-averaged trace of the conformation tensor shown in the right panel of Fig. 5.13 also indicate that implementing a shock-capturing scheme is mandatory to suppress the numerical errors. Otherwise, the mean energy and the mean stretching predicted by the numerical simulations become inaccurate. The impact of not using a shock-capturing scheme like KT can also be observed from the contours of ln(tr C) shown in Fig. 5.14. Although these show that the stress fields are not properly resolved, the imposed cellular structure does not seem to be perturbed when the Log-Cholesky decomposition is used. However, the above results reiterate the importance of properly resolving the convective term, as was shown in Ref. [START_REF] Min | Effect of spatial discretization schemes on numerical solutions of viscoelastic fluid flows[END_REF], in addition to imposing a logarithmic transformation. 

Sensitive dependence on the numerical algorithm

Pseudospectral methods are widely used in numerical simulations of fluid flows. They are a class of numerical methods which are based on the approximation of the solution by a sum of basis functions, for example, as a Fourier series. In numerical simulations of turbulence, which is a highly non-linear phenomenon with interactions between multiple scales, pseudospectral methods are a popular choice, as they can be easily implemented by inverting the governing equation to Fourier space. Moreover, pseudospectral methods are preferred over finite-difference or volume or element methods because of their computational efficiency and spectral convergence rates. In the elastic turbulent regime too, there are several studies which are based on pseudospectral algorithms. To name a few, Chebyshev functions are used in the pseudospectral algorithm of Sureshkumar et al. [START_REF] Sureshkumar | Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows[END_REF] with global diffusion, Berti et al. [10] used a pseudospectral algorithm to simulate two-dimensional elastic turbulence with the Kolmogorov forcing, Balci et al. [4] combined the SSR decomposition with a pseudospectral algorithm to simulate elastic turbulence in a four-roll mill geometry. Recently, Lin et al. [START_REF] Lin | High-fidelity robust and efficient finite difference algorithm for simulation of polymer-induced turbulence in cylindrical coordinates[END_REF] compared the numerical solutions obtained with finite-difference, spectral methods with global diffusion, and hybrid pseudospectral/finiedifference methods, in which only the convection term of the constitutive equation is treated with the KT scheme discussed in section 4.4.1. They showed that the implicit numerical diffusion introduced by the hybrid and spectral methods with global diffusion smoothens the sharp/shock like gradients in the polymer stress fields, whereas the use of finite-difference methods capture the sharp gradients in a better way. To understand if there are any discrepancies in the ability of finite difference and pseudospectral methods to simulate elastic turbulence, we performed numerical simulations with a pseudospectral algorithm using both the Log-Cholesky and SSR decompositions without any form of artificial diffusion. The spatial kinetic energy spectra obtained from both our algorithms is shown in Fig. 5.15. We found sensitive dependence of the SSR decomposition on the numerical algorithm. The decay of the kinetic energy spectrum exhibits a much steeper power-law decay when pseudospectral method is used to discretize the gradients. On the other hand, the Log-Cholesky decomposition is found to be more robust and the power-law is not too sensitive to the choice of the numerical algorithm. Although, this comparison is done with the FENE-P model, we believe that the same differences in the kinetic energy spectrum can also be observed with the Oldroyd-B model. This reestablishes the fact that numerical simulations obtained by using any kind of algorithm must satisfy all the necessary criteria for the solution to be accurate. Otherwise, this can modify the flow by exciting different scales, as shown by the energy spectra in Fig. 5.15 and can have serious implications on the mixing behavior in the elastic turbulent regime.

High-Re simulations

The SSR decomposition has also been employed in the simulations of turbulent polymer solutions [START_REF] Nguyen | Small scale dynamics of isotropic viscoelastic turbulence[END_REF]. To understand if the differences we observed in the evolution of the Log-Cholesky and SSR decompositions are specific to elastic turbulence only or this happens even at high Re, we performed simulations of the Navier-Stokes equations in the turbulent regime. Numerical simulations are performed by combining Eq. (4.1) with the Log-Cholesky and SSR decomposed equations for the FENE-P model by an externally imposed cellular forcing in a 512 2 resolution. The parameters used in this study are ν s = 5 × 10 -3 , µ p = 5 × 10 -5 , k f = 3, f 0 = 0.1, τ = 1, and Ekman friction factor α = 0.01, which correspond to Wi = 1.5 and Taylor-microscale Reynolds number Re λ = u rms λ/ν s = 61, where λ = ( E(k)dk/k 2 E(k)dk) is the Taylor-microscale. In the absence of polymer feedback on the flow, these parameters generate a turbulent flow in the direct cascade regime.

The time evolution of the mean energy and stretching predicted by the SSR and the Log-Cholesky decompositions is shown in the left panel of Fig. 5.16. Although the mean quantities predicted by both these decompositions are in good agreement, the right panel of Fig. 5.16 shows the differences in the evolution of min(det C ) and min(tr C ). Again, with the SSR decomposition a significant drop in min(det C ) and min(tr C ) below unity and two, respectively, can be observed. These results indicate that the differences between the Log-Cholesky and SSR decompositions observed with both the Oldroyd-B and the FENE-P models are not specific to the elastic turbulent regime and also exist at high Re. The impact of these differences on the flow dynamics at high Re remains an open question and is left for future work. 

Conclusion

In this chapter, a detailed analysis of two widely used reformulated constitutive equations, namely the Log-Cholesky and the SSR has been performed. Although both these decompositions generate a chaotic flow, we elucidated the fact that these decompositions do not give equivalently accurate results. We have showed that the lower bound on det C for the Oldroyd-B model, which has been overlooked in most numerical studies, can be used as a criterion to identify an accurate numerical solution. From this analysis it can be said that the SSR decomposition is less accurate, because it violates the lower bound on det C. A significant difference in the evolution of det C and tr C is also observed even with the FENE-P model. These differences are not specific to the elastic turbulent regime and are also observed in the high-Re regime. The use of a logarithmic transformation along with a higher-order shock-capturing scheme like the Kurganov-Tadmor scheme on the convective term reduces the numerical errors and yields an accurate numerical solution. These results also demonstrate that an inaccurate solution of the flow and conformation-tensor fields has a non-negligible effect on the prediction of the mixing of substances in elastic turbulence.

We hope that these results put forward the lower bound on the det C for the Oldroyd-B model as a criterion that can be used in numerical simulations to assess accuracy. There are a plethora of numerical approaches proposed in the literature to simulate viscoelastic flows. Here, we have analysed one such approach which is based on the reformulation of the constitutive equations using matrix decompositions. In the next chapter, we will study another approach which is based on the addition of a diffusive term. As an alternative to global diffusion, Dzanic et al. [29] recently proposed the addition of a modified diffusive term which takes into account the gradients of the local stress fields. In chapter 6, we will examine the ability of modified diffusion to yield an accurate numerical solution.

Appendix

Figure 5.17 shows the difference between the evolution of the energy and the trace with the FENE-P model for Sc = ∞. As expected, the stretching predicted by the FENE-P model, which imposes a finite maximum polymer extension, is smaller than that of the Oldroyd-B model in both the decompositions. However, the differences between the mean energy, the trace, the large-scale flow structures of ln(tr C), and ω obtained with the Log-Cholesky and SSR decompositions are analogous to those observed with the Oldroyd-B model (see Fig. 

EFFECT OF MODIFIED DIFFUSION AND NUMERICAL RESOLUTION

Introduction

In the previous chapter, we have examined two widely used matrix decompositions which are proposed to preserve the positive definiteness of the conformation tensor. In this chapter, we analyse the modified diffusion algorithm which was proposed very recently by Dzanic et al. [29] to overcome the unphysical artifacts generated by global diffusion. The addition of a diffusive term to the constitutive equations is considered as an alternative way to stabilize the numerical solution and avoid negative eigenvalues of the conformation tensor. The addition of a diffusive term can be justified in two ways: physically, considering the action of thermal noise on the center of mass of the dumbbell results in a diffusive term in the constitutive equation [12,[START_REF] Öttinger | Incorporation of polymer diffusivity and migration into constitutive equations[END_REF]7,14]. Brownian motion continuously acts to move polymers across the flow streamlines, thus smoothening the large gradients in the stress fields. Mathematically, the lack of a diffusive term makes the constitutive equations hyperbolic which generates discontinuities or steep gradients in the polymer stress fields. Thus, the presence of a Laplacian term is crucial, as it changes the nature of the constitutive equations from hyperbolic to parabolic. Joseph et al. [START_REF] Joseph | Change of type and loss of evolution in the flow of viscoelastic fluids[END_REF] showed that indeed the hyperbolic nature of the constitutive equations leads to the loss of evolution of the solution, i.e. Hadamard instabilities sharply increase in amplitude and eventually result in negative eigenvalues of the conformation tensor. Thus, the addition of a diffusive term can be justified in order to prove the existence of solutions to the constitutive equation [30]. Nonetheless, to avoid the break-down of the numerical solutions, the values of the diffusive coefficient used in simulations [START_REF] Vaithianathan | An improved algorithm for simulating three-dimensional, viscoelastic turbulence[END_REF] are several orders of magnitude greater than the physical value. This is approximately O(10 -9 ) in flow units [30].

Global diffusion

Sureshkumar and Beris [START_REF] Sureshkumar | Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows[END_REF] first incorporated an artificial global polymer stress diffusive term in the constitutive equations to study drag reduction by polymer additives in turbulent flows. They added a global diffusive (GD) term D = κ∇ 2 C to the Oldroyd-B constitutive equation as follows:

∂C ∂t + u • ∇C = C • ∇u + (∇u) T • C - 1 τ (C -I) + κ∇ 2 C. (6.1)
The addition of a diffusive term was observed to suppress numerical instabilities and enhance the stability of the numerical solution. However, the Schmidt number Sc, which is the ratio of kinematic viscosity ν s to the diffusivity coefficient κ, that was used in their study was varied from 0.1 to 1.

Following this, several studies in the inertial turbulent regime (high Re) pursued this approach and incorporated a diffusive term to study drag reduction by polymer additives [8,[START_REF] Sureshkumar | Direct numerical simulation of the turbulent channel flow of a polymer solution[END_REF]24]. Even in the elastic turbulence regime, the addition of a global diffusive term is considered as a numerical treatment to avoid the break-down of the simulations at high Wi. Thomases et al. [START_REF] Thomases | Transition to mixing and oscillations in a Stokesian viscoelastic flow[END_REF][START_REF] Thomases | A Stokesian viscoelastic flow: transition to oscillations and mixing[END_REF], added the diffusive term directly to the conformation tensor equation, while Dzanic et al. [28], added it to the Log-Cholesky decomposed equations. In all these simulations of elastic turbulence, the imposed forcing symmetry is observed to be highly perturbed with a continuous destruction of large-scale vortices leading to a mixing of the fluid across broad regions of the flow, Moreover, in some cases, the emergence of a single dominant vortex was observed. Later, Gupta and Vincenzi [START_REF] Gupta | Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence[END_REF] showed that the use of global artificial diffusion leads to spurious effects like a symmetry breaking due to the diffusion of polymer stresses into the vortical regions of the flow where, in principle, polymers would be weakly stretched. This effect of artificial diffusion significantly modifies the spatio-temporal properties of the flow, as was shown in the left panel of Fig. 4.3. If a numerical scheme does not use artificial diffusion, the imposed forcing symmetry is not highly perturbed and the large-scale stress structure resembles the forcing symmetry as shown in the right panel of Fig. 4.3.

Modified diffusion

As the addition of a global diffusive term was shown to produce unphysical artifacts, very recently Dzanic et al. [29] proposed the addition of a gradient based diffusive term, which was referred to as modified diffusion. This includes a prefactor in the diffusive term, which depends on the local gradients of C as

∂C ∂t + u • ∇C = C • ∇u + (∇u) T • C - 1 τ (f (r)C -I) + D, ( 6.2) 
with

D = κ Q(x, t) Q max (t) ∇ 2 C. (6.3)
Here, Q is the sum of the magnitude of the components of the gradient of the polymer stress defined as

Q(x, t) = d i,j d q [∇ q C ij (x, t)] 2 (6.4)
and Q max (t) = max x [Q(x, t)] is a normalisation factor. In contrast to global diffusion, where the diffusive coefficient κ is held constant at all points in the simulation domain, here, the coefficient depends on the local gradients of the conformation tensor C and scales linearly with the stress gradients between zero and a maximum of κ, i.e., in the limit Q → Q max the diffusive term reduces to κ∇ 2 C. Dzanic et al. [29] used | ln(tr D)| to quantify the magnitude of the diffusive term D for both global and modified diffusion in a 256 2 resolution by imposing a cellular forcing (Fig. 6.1). They claimed that incorporating modified diffusion into the numerical simulations is a way to control excessive smoothening of the stress gradients and localizes the diffusive term only within the regions where the gradients are steep. It was thus believed that modified diffusion does not generate any unphysical artifacts, differently from global diffusion. From Fig. 6.1, it is indeed evident that the extent at which the polymer stress gradients are smoothened is less when modified diffusion is implemented. The snapshots of the polymer stress field obtained in the simulations of Dzanic et al. [29] with global and modified diffusion are shown in Fig. 6.2. As pointed out by Gupta and Vincenzi [START_REF] Gupta | Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence[END_REF] for global diffusion, we identify that the forcing symmetry is destabilized also in the simulations of Dzanic et al. [29] despite the use of modified diffusion (right panel of Fig. 6.2). However, we note that the straining regions are much more localized when modified diffusion is implemented compared to global diffusion which excessively spreads the polymer stress gradients (see the right panel of Fig. 6.2). Therefore, in this study, we examine the effect of incorporating modified diffusion in comparison to the case where there is no form of artificial diffusion. Dzanic et al. [29] also state that including modified diffusion in the numerical simulations reduces the required numerical resolution by an order of magnitude compared to the resolution required for the same simulations without any form of diffusion (Sc = ∞). Different resolutions have been used in the past to simulate elastic turbulence up to 1024 2 . If incorporating modified diffusion can reduce the resolution required without introducing any spurious behavior, this is very advantageous.

To this end, we dedicate this chapter to analyse the effect of modified diffusion on the accuracy of the numerical solution as well as the impact of resolution. The remainder of this chapter is arranged as follows. In section 6.2, we incorporate the modified diffusive term into the Log-Cholesky decomposed equations and present the modified governing equations used in our algorithm. We discuss the effect of modified diffusion on the largescale flow structures in section 6.3. Next, in section 6.4, we analyse the impact of resolution on the convergence of the numerical solution when no form of diffusion is included. Finally, conclusions from this analysis are drawn in section 6.5.

Governing equations

In this section, we present the governing equations when modified diffusion is included in the Log-Cholesky decomposed constitutive equations. Consider the constitutive equation for the FENE-P model

∂C ∂t + u • ∇C = C • ∇u + (∇u) T • C - 1 τ (f (r)C -I). (6.5)
As mentioned before, Eq. (6.5) lacks a diffusive term and is hyperbolic. Including the modified diffusive term D proposed by Dzanic et al. [29] into Eq. (6.5) and substituting J = f (r)C converts the J transport Eq. (5.6) into an equation of parabolic type:

∂J ∂t + u • ∇J = J • ∇u + (∇u) T • J -p(J -I) + qJ + κs 1 Q(x, t) Q max (t) [∇ 2 (J /s 1 ) + d 1 J ], (6.6) 
where

s 1 ≡ (ℓ 2 max -d + j 2 ), d 1 ≡ tr[∇ 2 (J /s 1 )]/(ℓ 2 max -d).
(6.7)

Subsequently, by substituting J = LL T , the transport equations for the components of L can be written as To ensure that the numerical solution does not violate the lower bound on the det C and guarantees a positive-definite conformation tensor, a logarithmic transformation is enforced on the diagonal components as lij = ln(ℓ ij ) if i=j. Thus, Eq. (6.8) and Eq. (6.10) become

Dℓ xx Dt = ∂ x u x ℓ xx + ∂ y u x ℓ yx + 1 2 p ℓ xx + (q -p)ℓ xx + 1 2ℓ xx κs 1 Q(x, t) Q max (t) [∇ 2 (ℓ 2 xx /s 1 ) + d 1 ℓ 2 xx ], (6.8) Dℓ yx Dt =∂ x u y ℓ xx + ∂ y u y ℓ yx + ∂ y u x ℓ 2 yy ℓ xx 1 2 -pℓ yx - pℓ yx ℓ 2 xx + qℓ yx + κs 1 Q(x, t) Q max (t) 1 ℓ xx ∇ 2 (ℓ xx ℓ yx /s 1 ) - ℓ yx 2ℓ 2 xx ∇ 2 (ℓ 2 xx /s 1 ) + ℓ yx 2 d 1 , (6.9 
D lxx Dt =∂ x u x + ∂ y u x ℓ yx exp(-lxx ) + 1 2 p exp(-2 lxx ) + (q -p) + κs 1 2 Q(x, t) Q max (t) [exp(-2 lxx )∇ 2 (exp(2 lxx )/s 1 ) + d 1 ], (6.11 
) We show the contours of ln(tr C) obtained with and without modified diffusion at different times in Fig. 6.4. Clearly, when modified diffusion is incorporated the imposed cellular structure can be seen to be significantly perturbed with the formation of largescale vortices that span across the domain, interacting more with other vortices, mixing with them, and reforming again at later times. The increase of energy in the scales larger than the forcing scale (k < k f ) is more evidently visible from the energy spectra shown in the right panel of Fig. 6.3 for k f = 2. We quantify these observed deviations from the symmetry imposed by the cellular forcing using the quantities ∆ ω , ∆ tr C which were defined in Eq. (5.33). When modified diffusion is incorporated with Sc = 10 3 , ∆ ω , ∆ tr C display larger fluctuations compared to the case where there is no form of diffusion (Sc = ∞) as shown in Fig. 6.5. This confirms the fact that modified diffusion perturbs the forcing symmetry and modifies the large-scale flow structures, thereby resulting in a rapid mixing behavior. Obviously, we find that incorporating modified diffusion into the constitutive equation does not violate the lower bound on the det C and tr C of the Oldroyd-B model.

D lyy Dt =∂ y u y -∂ y u x ℓ yx exp(-lxx ) + 1 2 (q -p) + p exp(-2 lyy )(1 + ℓ 2 yx exp(-2 lxx )) + κs 1 2 Q(x, t) Q max (t) exp(- 2 
As the effect of modified diffusion is essentially at large scales, we have explored these differences further by increasing the forcing wave number from k f = 2 to k f = 6. The energy spectra for k f = 6 in 512 2 resolution shown as an inset in the right panel of Fig. 6.4 exposes an even stronger difference at large scales. Scales smaller than the forcing scale (k > k f ) do not seem to be significantly effected; however, the impact of modified diffusion on the large scales is stronger. The increase or decrease of energy in the large scales brings in large-scale modifications to the spatial structure of the polymer stress field, as shown in Fig. 6.6. Although Wi is held fixed, the appearance and disappearance of large scale structures in the polymer stress field when modified diffusion is used is concerning. As we discussed before, the generation of large-scale structures which interact with each other more frequently leads to a different mixing behavior.

In conclusion, the differences in the large-scale structures that we noticed in Fig. 6.2 are attributed to the use of modified diffusion, which acts to smear out large polymer stress gradients in the straining regions of the flow. Thus, if the diffusivity coefficient is not small 

Effect of resolution without diffusion

It is now clear that modified diffusion plays a role in the transfer of energy across scales, generates different large-scale flow structures, and affects the mean energy and stretching in comparison to the case where there is no artificial diffusion, i.e. Sc = ∞. Here, we recall that Dzanic et al. [29] used 256 2 resolution by incorporating modified diffusion and stated that the resolution required to simulate elastic turbulence can be reduced by an order of magnitude by adding a modified diffusive term compared to the resolution used when there is no form of diffusion [START_REF] Gupta | Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence[END_REF]. In this regard, we now ask the question: what role does resolution play when no form of diffusion is added to the constitutive equations? To understand this, we have performed numerical simulations in 256 2 , 512 2 , and 1024 2 for k f = 2, f 0 = 0.02 with the Log-Cholesky decomposed equations (this time of FENE-P model) for Sc = ∞. The time series of the rescaled kinetic energy and spatial average of the trace of the conformation tensor obtained with increasing resolution are shown in the left panel of Fig. 6.7. By increasing the resolution from 256 2 to 512 2 , the mean stretching (energy) slightly increases (decreases) and by further increasing the resolution to 1024 2 , convergence in the mean energy and stretching can be seen to be reached. However, the polymer energy spectra shown in the inset of the right panel of Fig. 6.7 reveal the effect of increasing the resolution on small scales. With increasing resolution, more wave numbers which were not active in small resolution gets activated. The activated small scales of the conformation tensor field imparts the energy stored in them to the flow, thus influencing the kinetic energy spectrum as shown in the right panel of Fig. 6.7. As a result of the activation of these additional scales, the power-law behavior in the energy spectrum extends across increasingly high wave numbers. Due to the absence of a diffusive length scale or wave number set by polymer diffusion, more length scales/wave numbers gets activated and the power-law decay of the kinetic energy spectrum extends over a broader range of wave numbers with an increase in resolution (right panel of Fig. 6.7).

Snapshots of ln(tr C ) obtained with the Log-Cholesky decomposed equations in 256 2 , 512 2 , and 1024 2 resolution but same parameters show that, with increasing resolution, the straining regions become more and more localized (Fig. 6.8). From the analogous snapshots of ln(tr C ) obtained with the SSR decomposed equations, it can be seen that the forcing symmetry is perturbed even when resolution is increased Fig. 6.9. 

Conclusion

The addition of a diffusive term to the constitutive equations is a widely used technique to ensure positive-definiteness of the conformation tensor and overcome numerical instabilities. However, unphysically large values of diffusivity need to be used in simulations.

In the elastic turbulent regime, Gupta and Vincenzi [START_REF] Gupta | Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence[END_REF] showed that the addition of an excessive amount of global diffusion leads to the loss of the forcing symmetry and generates a big dominant vortex as observed in the numerical simulations of Thomases et al. [START_REF] Thomases | Transition to mixing and oscillations in a Stokesian viscoelastic flow[END_REF][START_REF] Thomases | A Stokesian viscoelastic flow: transition to oscillations and mixing[END_REF]. In this regard, Dzanic et al. [29] introduced the addition of a modified diffusion which is based on the local gradients of the conformation tensor as a strategy to avoid the unphysical artifacts generated by global diffusion. They claimed that incorporating modified diffusion into the numerical simulations not only overcomes the unphysical artifacts, but also reduces the resolution required to simulate elastic turbulence by an order of magnitude compared to the resolution required when no form of diffusion is used (Sc = ∞).

To this end, in this chapter, we have analyzed the accuracy of this approach by comparing the numerical simulations performed with the two-dimensional Oldroyd-B model sustained by externally imposed cellular force with and without modified diffusion. We have used the Log-Cholesky decomposed equations to ensure positive definiteness of the conformation tensor, and the Kurganov-Tadmor scheme is used to resolve the convective term. Our results demonstrate that modified diffusion also acts to smoothen the stress gradients just like global diffusion, albeit less extensively. The straining regions imposed by the cellular force are more localized when modified diffusion is used, whereas global diffusion spreads the polymers stresses even into the vortical regions. When no form of artificial diffusion is used, the flow is mainly perturbed in the strain-dominated regions, and the large-scale flow structures resemble the imposed cellular flow. Contrastingly, when modified diffusion is incorporated into our algorithm, we found that the imposed forcing symmetry is perturbed and the polymer stress gradients are spread over large regions of the flow. In particular, the large-scale flow structures interact and mix with each other more frequently.

We have also investigated the role of resolution when modified diffusion is incorporated into our numerical scheme. Although there is convergence in the mean energy and stretching with respect to resolution, we observed significant differences at small scales when resolution is increased. The analysis of the kinetic energy spectrum revealed that compared to the Sc = ∞ case, there is a modification of the energy content at k < k f when modified diffusion is incorporated with Sc = 10 3 .

Resolution plays an important role, even when no form of artificial diffusion is incorporated. Increasing the resolution activates higher wave numbers, thus influencing the transfer of energy across different scales. The presence of more active wave numbers extends the power-law decay of the kinetic energy spectrum over several additional wave numbers. Ideally, when no form of diffusion is present in the constitutive equations, the power-law decay of the kinetic energy spectrum keeps broadening toward higher wave numbers. In contrast to this, the presence of a diffusive term defines a diffusive length scale/wave number, which introduces additional dissipation mechanisms at small scales and act as a cutoff for the kinetic energy spectrum. A rough scaling estimate can be made to determine the cutoff wave number k c set by a given diffusive coefficient by comparing the dimensionless convective transport rate with the dimensionless diffusive transport rate: (6.13) and in Fourier space

u • ∇C ≈ P e -1 ∇ 2 C,
k c | ûk | Ĉk ≈ P e -1 k 2 c Ĉk , (6.14) | ûk | ≈ P e -1 k c , ( 6.15) 
where P e = L 2 /κ L/U is the Péclet number, which is the ratio of the time scale associated with the polymer stress diffusion to that of the time scale of the convective transport of the polymer stress. Here, L is the characteristic length scale and U is the characteristic velocity of the system. From the kinetic energy spectrum, we know that E(k) ≈ k -2.7 , i.e.

| ûk | 2 ≈ k -2.7 . Inserting this behavior into Eq. (6.15) gives the estimate k c ≈ P e 0.42 (6.16) for the wave number at which the convective and diffusive transport mechanisms are comparable.

This is an approximate estimate of the wave number at which dissipation acts to dampen out the small-scale fluctuations, leading to a decrease in elastic energy at those scales. For real polymers, the value of diffusivity κ is 5.305 × O(10 -16 ) [30]. Therefore, for the mean velocity U ≈ 4 × 10 -2 obtained in these simulations and for domain size of L = 2π, P e is 4.737 × O (10 14 ). According to Eq. (6.16), for such large values of P e, the dissipative mechanism acts to regularize the small-scale fluctuations at a wave number k c ≈ 4.737 × O(10 6 ). In 2D, the resolution required to properly resolve the diffusive length scales for a realistic value of P e is then O(10 6 ) approximately. This significantly increases the computational cost.

To summarize, we have identified that incorporating modified diffusion also has a non-negligible effect on the mean energy and stretching and generates spurious largescale flow structures by smearing out the polymer stress gradients even into the vortical regions where polymers would be weakly stretched. These effects of artificial diffusivity might be less severe at high Reynolds as the flow is already turbulent before the addition of polymers. Contrary to that, in elastic turbulence the flow is laminar before the addition of polymers. Therefore, artificial diffusivity plays a strong role in the development of the chaotic flow behavior and impacts the accuracy of the numerical results in elastic turbulent simulations. It is thus very important to carefully tune the parameters of artificial diffusion to mitigate such unphysical artifacts. On the other hand, for realistically small diffusive coefficients a very large resolution is required to properly resolve the dissipation scales.

However, increasing just the resolution is not sufficient to obtain an accurate solution. A combination of higher order techniques like the Kurganov-Tadmor scheme are required to achieve accuracy in numerical simulations.

Chapter 7

UNIAXIAL VISCOELASTIC MODEL

Introduction

We recall here that the conformation tensor C of polymers is constructed from their endto-end vector ℓ as C = ⟨ℓℓ⟩/ℓ 2 eq where ⟨⟩ represents an average over thermal noise. In the statistical steady state which is attained at times much longer than the Lagrangian correlation time of the velocity gradient, polymers are expected to be strongly stretched by the velocity gradients, so that the the end-to-end length ℓ is significantly larger than the equilibrium length ℓ eq , i.e. ℓ(x, t) ≫ ℓ eq . By using this assumption, Fouxon and Lebedev [34] proposed an approximation to the constitutive equations which they referred to as uniaxial approximation and where C is rewritten as a uniaxial tensor of the form C ∼ ℓℓ. (7.1) Thus, the uniaxial approximation implies that the polymer molecules are very far from their equilibrium configuration and the relaxation to equilibrium can be ignored. In the Oldroyd-B model, this assumption allows us to rewrite the equation for the conformation tensor as

∂C ∂t + u • ∇C = C • ∇u + (∇u) T • C - C τ . ( 7.2) 
Substituting C ∼ ℓℓ into Eq. (7.2) gives the transport equation for the end-to-end vector

ℓ as ∂ℓ ∂t + u • ∇ℓ = (∇u) T • ℓ - ℓ τ , ( 7.3) 
and the corresponding polymer stress is modified as

T p ij = µ τ ℓ i ℓ j . (7.4)
Moreover, taking the divergence of Eq. ( 7.3) and considering the incompressibility condition ∇

• u = 0 gives D(∇ • ℓ) Dt = - (∇ • ℓ) τ , ( 7.5) 
where D Dt = ∂ t + u • ∇. It is evident from Eq. (7.5) that ∇ • ℓ exponentially decays to zero at long times, and thus ℓ can be considered as a solenoidal vector field, i.e. 

∂u ∂t + u • ∇u = -∇p + ν∇ 2 u + µ τ (ℓ • ∇ℓ) + f u , ( 7.7 
)

∇ • u = 0. (7.8)
Here the term ℓ • ∇ℓ determines the back reaction of the polymers on the flow when they are sufficiently stretched. Equations (7.3) and (7.7) comprise the so-called uniaxial model for viscoelastic fluids [34]. Observe that the form of these equations resemble the magnetohydrodynamic equations at zero resistivity with a linear damping [START_REF] Moffatt | Magnetic field generation in electrically conducting fluids[END_REF]15]. See Ref. [START_REF] Ogilvie | On the relation between viscoelastic and magnetohydrodynamic flows and their instabilities[END_REF] for a further discussion of the connection between magnetohydrodynamics and viscoelastic flows. The vector ℓ in the uniaxial model is analogous to the director defined in nematic liquid crystals [34]. In the elastic turbulent regime, which is a low-Re phenomenon, Eq. (7.7) can be further simplified by neglecting the inertial terms in comparison with the viscous and elastic terms. This gives

∇p = ν∇ 2 u + µ τ (ℓ • ∇ℓ) ℓ 2 eq + f u . (7.9)
Using this uniaxial approximation and assuming that the small scale perturbations of the velocity and polymer stress fields are passively advected by the large-scale random velocity field, Fouxon and Lebedev predicted the power-law decay of the kinetic energy spectrum and obtained the relation between the exponents of the kinetic energy and polymer elastic energy spectra as α v = α p -2. By considering the dynamics of polymers in a plane Couette flow setup which introduces a uniform shear along a particular direction, the same relation between these exponents was later derived by Steinberg [START_REF] Steinberg | Scaling relations in elastic turbulence[END_REF] by using scaling arguments and the same uniaxial model Eqs. (7.3), (7.6), (7.9), and (7.8). In addition to this relation, Steinberg [START_REF] Steinberg | Scaling relations in elastic turbulence[END_REF] further showed that the power-law decay exponent of the pressure power spectrum satisfies β = 2(α p -2). The uniaxial approximation has also been utilized in numerical simulations of homogeneous isotropic turbulence of dilute polymer solutions at high-Re number by Berti et al. [9]. They showed that the kinetic energy spectrum is partially suppressed at small scales by polymers.

The use of the uniaxial model would make the numerical simulations of viscoelastic flows easier, as it reduces the number of equations that have to be integrated from three for the three components of the conformation tensor field in 2D to two equations for the end-to-end vector field ℓ. Yet another great advantage associated with the uniaxial model is that one needs not to implement ad hoc techniques that ensure positive definiteness of the conformation tensor, since this follows directly from the approximation C = ℓℓ. If these simplifications hold true even in turbulent flows, the numerical simulations can be simplified to a great extent.

Although the theoretically predicted exponent of the power-law decay of the kinetic energy spectrum using the uniaxial approximation is in close agreement with both experimental and numerical studies, assuming that the polymer molecules never relax back to the equilibrium configuration may be questionable, particularly in flows where vortical regions are observed. Applying the uniaxial approximation is indeed equivalent to assuming that polymers are highly stretched and preferentially oriented along a particular direction everywhere in the domain including the vortical regions, where, on the contrary, polymers are expected to be found in the coiled state.

To this end, in this chapter we present some preliminary results aimed at verifying whether the uniaxial approximation holds true in two different flow situations: (i) in the elastic turbulent regime and (ii) in the high-Re regime. The results obtained from this study are presented in section 7.2. Conclusions and future perspectives are discussed in section 7.3.

Numerical results and discussion

We consider again the Oldroyd-B model in a two-dimensional domain X = [0, 2π] 2 with periodic boundary conditions at 256 2 resolution and with cellular forcing. All the other terms in the governing equations are discretized using our numerical algorithm discussed in section 4.4. In this study, we examine the applicability of the uniaxial approximation in the elastic turbulent regime and in high-Re regime. The parameters used in the elastic turbulent regime are ν = 0.05, µ = 0.01, τ = 50, k f = 2, f 0 = 0.02, W i = 10, as before. In the high-Re regime, we employed Ekman friction αω into the vorticity field Eq. If the assumption that the polymer molecules are deformed in a preferential direction given by the end-to-end vector ℓ holds true, then the conformation tensor possesses a leading or largest eigenvalue λ 1 and a smallest eigenvalue λ 2 ≈ 0. This implies that the ratio of eigenvalues λ 2 /λ 1 ≈ 0. In these studies, we particularly investigate if λ 2 /λ 1 ≈ 0 in our numerical simulations. This is first examined in the elastic turbulent regime followed by the high-Re regime.

In the statistical steady state, we calculated the ratio of the smallest to the largest eigenvalue λ 2 /λ 1 . A snapshot of λ 2 /λ 1 is shown in the left panel of Fig. 7.1. We found a distribution of regions where the ratio of the smallest to the largest eigenvalue λ 2 /λ 1 is nearly close to one. The two eigenvalues of C are apparently comparable in the vortical regions of the flow or in the regions of the flow where the velocity gradient is small. This means that the polymer molecules are not oriented along a preferred direction, but rather exist in a coiled-state and are weakly stretched. The time series of the ratio of the smallest to the largest eigenvalue, averaged over the spatial domain X, ⟨λ 2 /λ 1 ⟩ X , is shown in the right panel of Fig. 7.1. It shows that the spatial average of this quantity is a non-zero value and fluctuates around 0.082. As mentioned before, we have also performed numerical simulations to verify the applicability of the uniaxial approximation at high Re. In the statistical steady state obtained at Re λ = 374, Wi = 3.3, for k f = 3, the distribution of λ 2 /λ 1 field is shown in the left panel of Fig. 7.2. This demonstrates that there are non-negligible areas of the flow where the ratio λ 2 /λ 1 is nearly equal to one. In addition, the time series of ⟨λ 2 /λ 1 ⟩ X shown in the right panel of Fig. 7.2 indicates that the spatial average of λ 2 /λ 1 is a finite value, which fluctuates around a nonzero mean value. It can also be noted that the value of ⟨λ 2 /λ 1 ⟩ X is higher in the inertial turbulent regime than that found in the elastic turbulent regime.

To confirm this, we have also done one more simulation in the inverse cascade regime of high-Re by increasing the forcing wave number from k f = 3 to k f = 10. The contour of λ 2 /λ 1 and the time series of ⟨λ 2 /λ 1 ⟩ X are shown in the Fig. 7.3. These plots also indicate that the there is a distribution in the configuration and stretching of the polymer molecules. The ratio λ 2 /λ 1 indeed varies from 0 to 1 and there are regions where the conformation tensor is close to isotropic. Also, the spatial average ⟨λ 2 /λ 1 ⟩ X is found to be a finite value fluctuating around 0.115.

Conclusion

The uniaxial viscoelastic model is a simple linear viscoelastic model proposed by Fouxon and Lebedev [34]. This model is based on the assumption that in the statistical steady state attained at times much larger than the velocity gradient correlation times, the polymer molecules are highly stretched and take a uniaxial configuration prescribed by their end-to-end vector. This theory disregards the possibility of polymers to relax to their equilibrium configuration during the evolution, thus neglecting the identity tensor in the governing equation for the conformation tensor field. The uniaxial approximation is associated with some advantages in numerical simulations. The major computational advantage is that it reduces the tensorial equation for the conformation tensor to a vectorial equation for the end-to-end vector, saving both time and memory required for the computations. In addition, it is very easy to implement in the numerical simulations. The problem of preserving the positive definiteness of the conformation tensor can also be get rid of, and no special matrix reformulation of the conformation tensor is required. Finally, the uniaxial approximation also helps to gain analytical insight in some flow situations.

In this preliminary study, we verified if there are any limitations to this model, especially in chaotic flows which contain highly vortical regions. In such flow situations, the underlying assumption on which the uniaxial model is based upon, i.e. that polymers always take a uniaxial configuration and do not relax to a coiled state, is questionable. In this chapter, we have considered two cases: the high-Re regime and the elastic turbulent regime, and we have investigated the validity of this approximation. We have used the ratio of the smallest to the largest eigenvalues of the conformation tensor as a measure for identifying how much the configuration of the polymer molecules deviates from isotropy. We have demonstrated that in both these flow regimes, there are non-negligible regions where polymers are not highly deformed and are in a coiled state. This chapter presents preliminary results that question the validity of the uniaxial approximation in both the low and high-Re regimes. The applicability of the uniaxial model may be further investigated by considering additional quantitative measures. For example, identifying the strain/vorticity-dominated regions by using the Okubo-Weiss parameter and calculating the corresponding ratio of the smallest to the largest eigenvalues in those regions would provide more insights on the correlation between the flow topology and the deviation of the polymer configuration from the uniaxial configuration. Looking at the probability distribution functions of the trace of conformation tensor would also be a good measure to understand the stretching experienced by polymers and their configuration.

Conclusions

This thesis consists of two parts. Part 1 is concerned with the dynamics of macroscopic particles in vortical flows. In this part of the thesis, our interest was to go beyond the point-particle approximation that is commonly used in studies of inertial particles and microswimmers and explore the dynamics of an elongated object that can experience the nonlinear structure of a flow field. We have achieved this by considering a rigid dumbbell, which consists of two identical beads connected by a rigid rod. We have first studied the dynamics of an inertialess rigid dumbbell in different vortex flows. The analysis of the fixed points and the periodic orbits of this system yields a complete understanding of the dynamics. In particular, we have showed that there exists a constant of motion which is independent of the form of the vortex. This result has different implications depending on the variation of the fluid angular velocity with the radial distance. We have found that the center of mass of the dumbbell performs spirographic-like trajectories around the center of any steady vortex whose fluid angular velocity decreases as a function of the radial distance. If the fluid angular velocity is not strictly monotonic, we have demonstrated the emergence of an attracting set in the configuration space of the dumbbell. The structure of this set, which acts as a transport barrier for the radial motion, depends on the details of the vortex.

We have also showed preliminary results about an inertial dumbbell. The spirographiclike trajectories formed in the inertialess case are altered under the influence of inertia. With increasing inertia the trajectory of the center of mass changes from a spirographic curve to a shape of an eight to a spiral each of which expands out. The dynamics of both inertialess and inertial dumbbells are found to be sensitive to the initial conditions and system parameters.

In addition to a more detailed study of the effect of inertia, future extensions of this work include three-dimensional vortex flows or the dynamics of elongated swimmers and of elastic filaments. Considering more realistic particle or fibre models may also reveal new dynamics which cannot be captured with the dumbbell model. Part 2 is dedicated to the modeling and numerical simulation of elastic turbulence. In the literature, different strategies have been proposed to reduce numerical errors that may lead to instabilities and eventually to the break-down of numerical simulations. These strategies have emphasized that during the time evolution the conformation tensor C should remain symmetric and positive-definite, and its trace must remain bounded. We have examined the impact of some of these different stabilization techniques on the numerical simulation of elastic turbulence and have assessed their accuracy. We have first analyzed two widely used reformulations of the constitutive equations, namely the Log-Cholesky and the symmetric square root (SSR) decompositions. In principle, both these decompositions are mathematically equivalent, as they both represent the same constitu-tive equation. However, we have showed that in numerical simulations the velocity and conformation tensor obtained with these two decompositions display notable differences even at large scales. In order to identify the accurate solution, we have therefore put forward a criterion on the determinant of the conformation tensor of the Oldroyd-B model that seems to have been overlooked in most numerical studies. This criterion states that, after an initial transient, det C must remain greater than unity over the entire spatial domain. The violation of this lower bound is a critical issue because it corresponds to the compression of the polymers below their equilibrium length. By using this criterion, we have showed that the solution obtained via the SSR decomposition is less accurate, since it does not satisfy the lower bound on det C for the Oldroyd-B model. Furthermore, we have showed that the differences in the evolution of det C and tr C of the SSR and the Log-Cholesky decompositions also exists even for the FENE-P model. We have demonstrated that this difference in accuracy has a strong impact on the simulation of mixing, which is one of the most common applications of elastic turbulence. Moreover, the differences in the evolution of the minimum of the determinant and trace of the conformation tensor of the SSR and the Log-Cholesky decompositions are not specific to the elastic turbulence regime, but also persists at high Re. Furthermore, we have demonstrated the importance of the use of a shock-capturing scheme like the Kurganov-Tadmor scheme.

Next, we have analyzed the impact of incorporating a modified diffusive term on the numerical results. The addition of a modified diffusion term, where the diffusivity coefficient depends on the local gradients of C, was very recently proposed by Dzanic et al. [Phys. Rev. E 106, L013101 (2022)] to overcome the unphysical artifacts generated by global diffusion, where the diffusivity coefficient is uniform at all points in the domain. From our numerical studies with and without modified diffusion, we have demonstrated that modified diffusion also acts to smoothen the stress gradients in a way similar to global diffusion, although less extensively. We have elucidated that the forcing symmetry is perturbed and the gradients are spread over large regions of the flow even when modified diffusion is incorporated. The impact of modified diffusion is mainly on the large scales, i.e. scales larger than the forcing scale. Incorporating modified diffusion leads to the generation of different large-scale structures which interact with each other more frequently and results in a different mixing behavior. Therefore, the outcome of our study is that the addition of a diffusive term in the polymer equation should be avoided.

In addition, we have also assessed the role of resolution on the numerical results. We have showed that increasing the resolution has an effect on the numerical results, especially when no form of diffusion is incorporated. Increasing resolution adds more active scales, which extends the power-law decay of the kinetic energy spectrum across several additional wave numbers.

All the results in the elastic turbulent regime discussed in this thesis are in the Stokes limit Re = 0. However, we have also performed simulations with the Navier-Stokes equa-tions at Reynolds smaller than the critical value for inertial instabilities. These simulations are in good agreement with those performed in the Stokes limit.

Finally, we have discussed the uniaxial model that was proposed by Fouxon and Lebedev [Phys. Fluids 15, 2060Fluids 15, -2072Fluids 15, (2003))] for a theoretical study of both elastic turbulence and turbulent drag reduction. This model is based on the assumption that polymers are highly stretched and preferentially orient along a particular direction everywhere in the domain and never relax back to the equilibrium configuration. We have conducted a preliminary study of the applicability of this approximation both at low and high Re. By studying the evolution of the eigenvalues of the conformation tensor, we have shown that there are significant regions of the domain where the uniaxial approximation fails.

In this study, we have discussed the criteria that an accurate numerical solution of elastic turbulence must satisfy for the Oldroyd-B model and we have identified numerical schemes that guarantee such accuracy. The code that we have developed is versatile and allows us to switch between the Stokes and Navier-Stokes equations for the flow field, the Log-Cholesky or the SSR decomposition, with artificial diffusion or without any form of diffusion, and with the KT scheme or an ordinary discretization of the convective term. With these numerical tools in hand, possible extensions of our code include the following studies of:

• the mechanical degradation of polymers, which results in a significant drop in the percentage drag reduction is well explored in the turbulent drag reduction studies [Soares, J. Non-Newtonian Fluid Mech. 276, 104225, (2020)]. In the elastic turbulence regime, the effect of the scission of polymers has not been explored yet. Incorporating a critical extension for scission of polymers into the code will allow us to explore this phenomenon.

• considering the variation in the polymer concentration field is another possible potential extension of our work. In our study, we have shown that the interaction between the vortices transports the scalar field to different regions of the flow. Likewise, considering an equation for the concentration of polymers will help to understand how a non-uniform distribution of polymer modifies the flow field.

• expanding our code to simulate three-dimensional elastic turbulence is another direction to explore. Very recent 3D simulations of elastic turbulence in Taylor-Couette flow geometries revealed much steeper power-law decay of the temporal power spectrum [Song et al., J. Fluid Mech. 949, A49, (2022)]. It would be interesting to further investigate the effect of the third dimension of the flow field on the main features of elastic turbulence.
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v 2 . 4
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 11 Figure 1.1: Snapshots of the distribution of droplets in a vortex of circulation rate Γ = 10 m 2 /s. The origin represents the center of the vortex. (a) Initial locations of the droplets (randomly distributed) at time t = 0 s; (b) droplet positions at time t = 0.024 s.The droplets which start their journey from within the critical radius are colored in green, the others in red. Subsequently, if in a merging event, at least a caustics droplet is involved, the resulting droplet is colored in black. The size of the black droplets is scaled up for better visualization (from Ref.[14]).
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 13 Figure 1.3: Trajectories and density distributions of microswimmers of different shapes.The shape parameter α is defined as α = (λ 2 -1)/(λ 2 + 1), where λ is the ratio of major to minor axis of the particle. α = -0.4, 0, 0.4 correspond to oblate, spherical, and prolate microswimmers, respectively. Top row: Trajectories of the microswimmers. Bottom row: phase-space distributions. The black lines represent the flow streamlines and the color bar represents the magnitude of contraction and expansion of the phase-space (from Ref.[7]).
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 21 Figure 2.1: (a) Schematic of the dumbbell in a vortex. (b) Trajectory of the center of mass of the dumbbell in the Lamb-Oseen vortex for r c (0) = 0.3, φ c (0) = π/4, α(0) = 0. (c) The same as in (b) for r c (0) = 1 and α(0) = -π/4.
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 22 Figure 2.2: Dumbbell in the vicinity of a Lamb-Oseen vortex: the time evolution of (a) r c and cos α, (b) r c and the sign of sin α, (c) r c and τ 1 , (d) φ c -ωt; in (c), the magnitude of τ 1 is divided by 5 to make the comparison of the curves easier. The initial conditions are the same as in Fig. 2.1(c). Here ω = 4.7 and T = 6.9. (e) Dependence of ω on ℓ/R for α(0) = -π/18 and different values of r c (0)/R. The black line is proportional to (ℓ/R) -2 . The inset shows the time series of φ c for the same initial conditions as in panels (a)-(d).

  2.3(c)]. Once the dumbbell aligns again with the radial direction, the inward motion restarts [Fig. 2.3(d)].
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 24 Figure 2.4: Motion of the dumbbell near a Lamb-Oseen vortex: dependence on the initial distance r c (0) of (a) the amplitude A, (b) the base radial distance r ⋆ c around which the center of mass oscillates, and (c) the time period T for fixed α(0) = π/4. A ℓ/2 , r * c,ℓ/2 , T ℓ/2 are the values of A, r * c , T at r c (0) = ℓ/2 and α(0) = π/4. The insets show the dependence of these quantities on ℓ. The solid lines are obtained analytically from Eq. (2.33) (see section 2.4); the dashed lines are included to guide the eye.
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 25 Figure 2.5: Motion near a Lamb-Oseen vortex: dependence on the initial orientation α(0) of (a) the amplitude A, (b) the distance around which the center of mass oscillates, r ⋆ c , and (c) the time period T for r c (0)/ℓ = 1.1. A 0 , r * c,0 , T 0 are the values of A, r * c , T at r c (0)/ℓ = 1.1 and α(0) = 0. The solid lines are obtained analytically from Eq. (2.33) (see section 2.4); the dashed line is included to guide the eye.
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 26 Figure 2.6: (a) Functional shape of the radial oscillation in the Lamb-Oseen vortex for α(0) = -π/4 and different r c (0). (b) Contour plot of the amplitude A of the radial oscillation.

  2.7(a)]; (ii) P 2 = {(r c , α) s.t. r c = 0}. The center of mass stays at the vortex center and the dumbbell rotates on itself with the beads moving on the circle of radius ℓ/2 [see Fig. 2.7(b)]. As a matter of fact, the existence of this fixed point cannot be deduced from Eqs. (2.30), because neither α nor φ c are defined when r c = 0. However, it follows directly from Eq. (2.7), since u(x 1 ) = -u(x 2 ) when r c = 0; (iii) P 3 = {(r c , α) s.t. r c > 0 and α = ±π/2}. Both the beads rotate with the flow on the same circle of radius r 1 = r 2 , and the dumbbell moves tangentially to the circle of radius r c [see Fig. 2.7(c)];
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 27 Figure 2.7: Fixed points in the (r c , α) plane corresponding to (a) P 1 where one of the beads stays at the vortex center; (b) P 2 where the center of mass stays at the vortex center; (c) P 3 where both the beads rotate with the flow on the same circle.
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 28 Figure 2.8: (a) Fixed points (red) and periodic orbits (blue) in the (r c , α) plane for a Lamb-Oseen vortex with R = 0.1 and ℓ = 1. The red points are the set P 1 and the red lines are the set P 3 . (b) Vector plot of the field ( ṙc , α) for a Lamb-Oseen vortex with R = 0.1 and ℓ = 1. The colour of the arrows describes to the magnitude of the vector ( ṙc , α).

  2.2(d) and (e)].
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 29 Figure 2.9: Left: Profiles of the fluid angular velocity for the Lamb-Oseen (green), Rankine (red), and Sullivan (black) vortices. Right: Schematic of the Rankine vortex (from Ref. [36]).
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 210 Figure 2.10: Vector plots of the field ( ṙc , α) for a Rankine vortex with (a) ℓ/R = 0.8, (b) ℓ/R = 1.5, (c) ℓ/R = 2. The white area is the interior of P 4 and corresponds to those initial configurations for which the dumbbell is in solid body rotation from the beginning. The green and orange lines are the stable and unstable boundaries of P 4 , respectively. (d) Vector plot of the field ( ṙc , α) for a Sullivan vortex with ℓ/R = 1.5. The orange (green) line is the unstable (stable) subset of P 4 . In all plots, the red points are P 1 and the red straight lines are P 3 , as in Fig. 2.8. Only the range -π/2 ⩽ α ⩽ π/2 is shown, since the vector fields in the range π/2 ⩽ α < 3π/2 are identical. Γ = 2π and R = 1 in all cases.

Figure 2 . 11 :

 211 Figure 2.11: Spatial distribution of the centers of mass of 2×10 3 non-interacting dumbbells at t = 200 in (a) the Lamb-Oseen vortex for ℓ = 0.8, (b) the Rankine vortex for ℓ = 0.8, and (c) the Sullivan vortex for ℓ = 1.2. At t = 0 the centers of mass of the dumbbells are distributed uniformly over a disk of radius r = 1.6 in the Lamb-Oseen and Rankine vortices and r = 1.5 in the Sullivan vortex. In both the Rankine and Sullivan vortices, Γ = 2π and R = 1. The parameters of the Lamb-Oseen vortex are the same as in section 2.2.

Figure 3 . 1 :

 31 Figure 3.1: Trajectory of a heavy spherical particle in the outer region of a Lamb-Oseen vortex in the (xy) plane. The outward expanding trajectory is a Fermat's spiral.

Figure 3 . 2 :

 32 Figure 3.2: Trajectory formed by an inertial dumbbell settling under gravity in the vertical direction for a length (a) ℓ = 0.75, (b) ℓ = 1.4, (c) ℓ = 1.49. All the other parameters are the same in these three cases. The trajectory of the dumbbell transitions from a periodic to chaotic orbit with increasing length of the dumbbell.

  .22) which measures the time taken by the dumbbell to respond to the changes in the surrounding fluid. St ≪ 1 means that the particles follow the fluid trajectories closely, whereas St ≫ 1 indicates that the particles are much heavier than the surrounding fluid and deviate from the local fluid motion. 1/A r is another dimensionless number called rotational Stokes number St r and gives the ratio of the time scale of the particle rotation to the fluid characteristic time scale. St r ≪ 1 means that the particle rotates with the fluid, whereas

. 23 )

 23 Equations(3.16) and (3.17) are integrated by using a second-order Heun method with time step dt = 10 -4 as in chapter 2. The resulting v c and ω are further integrated with the same time integration method to obtain the coordinates of the center of mass r c and the dumbbell orientation θ. Unless otherwise specified, the simulation parameters are R = 0.1, Γ = 2π, m = 1, ℓ = 1. In all the results presented below, the center of mass of the dumbbell initially possess zero translational and rotational velocity, i.e. v c (0) = 0 and ω(0) = 0.To understand the influence of the inertia of the beads on the dynamics of the dumbbell, we systematically increase St by decreasing the Stokes drag coefficient ζ, while keeping all the other parameters constant. The trajectories of the center of mass of the dumbbell obtained for different St are shown in Fig.3.3 for the initial distance r c (0) = 0.1 and the initial orientation θ(0) = π/4. For a small Stokes number (St = 2 × 10 -4

Figure 3 . 3 :

 33 Figure 3.3: Trajectory of the center of mass of a dumbbell of length ℓ = 1 in the vicinity of a Lamb-Oseen vortex with R = 0.1 for (top left) St = 2 × 10 -4 , (top right) St = 1 × 10 -2 , (bottom left) St = 1, (bottom right) St = 10. Note that the initial conditions are the same in all the four cases: r c (0) = 0.1 and θ(0) = π/4. The trajectories shown in panels (top left) and (top right) are plotted until t = 100, while the trajectories shown in panels (bottom left) and (bottom right) are plotted until t = 10000.

Figure 3 . 4 :

 34 Figure 3.4: Time evolution of r c in the Lamb-Oseen vortex for (a) St = 2 × 10 -4 , (b) St = 1×10 -2 , (c) St = 1.0, (d) St = 10. For all panels the initial conditions are r c (0) = 0.1 and θ(0) = π/4.
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 35 Figure 3.5: Trajectory of the center of mass of a dumbbell of length ℓ = 1 in the vicinity of a Lamb-Oseen vortex with R = 0.1 for (top left) St = 2 × 10 -4 , (top right) St = 1 × 10 -2 , (bottom left) St = 1, (bottom right) St = 10. Note that the initial conditions are the same in all the four cases: r c (0) = 0.1 and θ(0) = π/2. The trajectories shown in panels (top left) and (top right) are plotted until t = 100, while the trajectories shown in panels (bottom left) and (bottom right) are plotted until t = 10000.
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 36 Figure 3.6: Time evolution of r c in the Lamb-Oseen vortex for (a) St = 2 × 10 -4 , (b) St = 1×10 -2 , (c) St = 1.0, (d) St = 10. For all panels the initial conditions are r c (0) = 0.1 and θ(0) = π/2.

Figure 3 . 7 :

 37 Figure 3.7: Trajectory of the center of mass of a dumbbell of length ℓ = 1 in the vicinity of a Lamb-Oseen vortex with R = 0.1 for (top left) St = 2 × 10 -4 , (top right) St = 1 × 10 -2 , (bottom left) St = 1, (bottom right) St = 10. Note that the initial conditions are the same in all the four cases: r c (0) = 0.5 and θ(0) = π/2. The trajectories shown in panels (top left) and (top right) are plotted until t = 100, while the trajectories shown in panels (bottom left) and (bottom right) are plotted until t = 10000.
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 41 Figure 4.1: Left: The experimental set-up of Groisman and Steinberg. See the text for more details. Right: Two snapshots of the flow at W i =13, Re=0.7. (from Ref. [42]).

Figure 4 . 2 :

 42 Figure 4.2: Top view of the mixing of a small blob of a passive blue dye. Top row: In a Newtonian fluid (glycerine/water mixture) at (a) t =0 and (b) t =120 s. Bottom row: In a polymeric solution (1% concentration by weight of a polyacrylamide in water) in the elastic turbulent regime at (a) t =0 and (b) t = 30 s (from Ref. [78]). The dye mixes rapidly in the elastic turbulent regime because of the enhancement in mixing rate.

(

  ii) at Re below the critical Reynolds number Re c for the transition to turbulence and at Re = 0 (Stokes flow) (5) in viscoelastic creeping flows (Re = 0) the conformation tensor is smoothed and remains bounded even close to hyperbolic points [99]; (6) the large-scale flow structures are excessively smoothened and modified. Snapshots of the polymer stress fields obtained with and without global diffusion are shown in Fig. 4.3. The simulations are sustained by a cellular external force [48].

Figure 4 . 3 :

 43 Figure 4.3: Snapshots of ln(trC) obtained with the Oldroyd-B model for finite global diffusivity (left) and for zero diffusivity (right). All the other simulation parameters are the same in both cases. Global diffusion excessively spreads the polymer stress gradients into the vortical regions of the flow and blurs the large-scale structures (from Ref. [48]).

Figure 4 . 4 :

 44 Figure 4.4: Contours of the laminar vorticity field obtained as a solution of Eq. (4.22) in the absence of polymer feedback for k f = 2, f 0 = 0.02, ν s = 0.05.

  .22) into the Oldroyd-B constitutive Eq. (4.9) gives b Db Dt = -Db Dt b + b 2 ∇u + (∇u) T b 2 + 1 τ (Ib 2 ) (5.23) Multiplying Eq. (5.23) by b -1 and rearranging yields Db Dt -b
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 51 Figure 5.1: Left: Time series of the rescaled kinetic energy of the polymer solution averaged over the spatial domain X. Right: Time series of the trace of the conformation tensor field averaged over the spatial domain X. The inset in both these figures shows the evolution in the steady state. The time series refer to the Oldroyd-B simulation.

Figure 5 . 2 :

 52 Figure 5.2: Snapshots of ln(tr C) obtained with the Oldroyd-B model at t/T = 271, 382 from top to bottom, respectively. Left: with the Log-Cholesky decomposition. Right: with the SSR decomposition.

Figure 5 . 3 :

 53 Figure 5.3: Snapshots of the vorticity field ω obtained with the Oldroyd-B model at t/T = 271, 382 from top to bottom, respectively. Left: with the Log-Cholesky decomposition. Right: with the SSR decomposition.

∆

  tr C = ln(tr C(0, 0)) -ln(tr C(π, 0)) ln(tr C(0, 0)) + ln(tr C(π, 0)) , (5.33b) which compares the magnitude of ω and tr C, respectively, at two different points in the flow, (x, y) = (0, 0) and (x, y) = (π, 0). When the flow is laminar with no polymer feedback (µ p = 0), these two points correspond to the centers of two equally-signed vortices as shown in Fig. 4.4. In this case, ∆ ω = 0 and ∆ tr C = 0. Therefore, the deviation of ∆ ω from zero is a measure of the deviations from the laminar solution. Similarly, ∆ tr C is a measure of the deviation from the laminar solution of the conformation tensor. The differences between the two predictions can be clearly seen from Fig. 5.4 for the Oldroyd-B model. The SSR decomposition displays much bigger fluctuations of ∆ ω , and ∆ tr C than the Log-Cholesky decomposition. This provides evidence that the solution predicted by the SSR decomposition deviates more from the imposed cellular flow and is highly perturbed by the fluctuations leading to a difference in interactions between the vortices of the flow. As we will see later, a difference in the evolution of the vortices in a chaotic flow plays a crucial role in determining the mixing properties, namely the mixing rate and efficiency. It is therefore essential to capture the large-scale structure accurately.
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 54 Figure 5.4: Oldroyd-B model. Left: Time series of ∆ ω . Right: Time series of ∆ tr C . ∆ ω and ∆ tr C display much larger fluctuations with the SSR decomposition.

Figure 5 . 5 :

 55 Figure 5.5: Oldroyd-B model. Left: Spatial spectra of the kinetic energy. Right: Temporal power spectra of the fluctuations of the kinetic energy. The spectra are averaged over several snapshots of the flow such as those shown in Fig. 5.3.
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 56 Figure 5.6: Left: Spatial spectra of the polymer elastic energy for k f = 2 with the Oldroyd-B model. Right: Spatial spectra of the kinetic energy for k f = 6 with the Oldroyd-B model. The no log-Cholesky decomposition is defined in section 5.4.
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 57 Figure 5.7: Oldroyd-B model at k f = 6. Snapshots of ln(tr C ) at t/T = 385 for the SSR decomposition (left), Log-Cholesky (center) and no log-Cholesky (right) decompositions. The color bar indicates the magnitude of ln(tr C ). The no log-Cholesky decomposition is defined in section 5.4.
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 58 Figure 5.8: Time series of the minimum of the determinant of the conformation tensor field in the spatial domain X for the Oldroyd-B model (left) and the FENE-P model (right). The inset in both the figures shows the time series of the minimum of the trace of the conformation tensor field in the spatial domain X.

Figure 5 . 9 :

 59 Figure 5.9: Oldroyd-B model with no log-Cholesky decomposition. Left: Time series of the minimum of ℓ xx and ℓ yy (in the inset) in the spatial domain X in the steady state. Right: Time series of the minimum of det C in the spatial domain X and the minimum of tr C in the spatial domain X (in the inset) in the steady state.

Figure 5 .

 5 Figure 5.10: Oldroyd-B model. Left: Time series of the rescaled kinetic energy in the steady state. Right: Time series of the trace of the conformation tensor field averaged over the spatial domain X in the steady state.

Figure 5 .

 5 Figure 5.11: Left: Contour of the initial distribution of the scalar field θ. The color bar indicates the amount of scalar field. Right: Decay of the scalar field predicted by the SSR and the Log-Cholesky decompositions of the FENE-P model for κ θ = 1E -5.
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 512 Figure 5.12: Contours of the distribution of the scalar field θ at t/T = 150 predicted by the SSR (left) and the Log-Cholesky (right) decompositions of the FENE-P model. The color bar indicates the amount of scalar field.

Figure 5 . 13 :

 513 Figure 5.13: Oldroyd-B model. Left: Evolution of min(det C) and min(tr C) in the inset obtained using the Log-Cholesky decomposition without KT scheme. Right: Evolution of the rescaled kinetic energy and trace of the conformation tensor (in the inset) in the steady state.
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 514 Figure 5.14: Snapshots of ln(tr C) obtained with the Oldroyd-B model using the Log-Cholesky decomposition without the KT scheme at t/T = 258 (left) and t/T = 380 (right).

Figure 5 . 15 :

 515 Figure 5.15: Spatial spectra of the kinetic energy obtained using finite-difference and pseudo-spectral algorithms with the FENE-P model for the SSR decomposition (left) and the Log-Cholesky decomposition (right).

Figure 5 .

 5 Figure 5.16: FENE-P model. For Re λ = 61, W i = 1.5 (left) Evolution of the kinetic energy e(t) and spatial average of tr C (in the inset); (right) evolution of min(det C) and min(tr C) (in the inset) predicted by the SSR and Log-Cholesky decompositions.

  Figure 5.17 shows the difference between the evolution of the energy and the trace with the FENE-P model for Sc = ∞. As expected, the stretching predicted by the FENE-P model, which imposes a finite maximum polymer extension, is smaller than that of the Oldroyd-B model in both the decompositions. However, the differences between the mean energy, the trace, the large-scale flow structures of ln(tr C), and ω obtained with the Log-Cholesky and SSR decompositions are analogous to those observed with the Oldroyd-B model (see Fig.5.18).

Figure 5 .

 5 Figure 5.17: FENE-P model. Left: Time series of the rescaled kinetic energy of the polymer solution averaged over the spatial domain X. Right: Time series of the trace of the conformation tensor field averaged over the spatial domain X.

Figure 5 . 18 :

 518 Figure 5.18: Snapshots of ln(tr C) (left) and the vorticity field ω (right) obtained with the FENE-P model at t/T = 258. Top and bottom rows correspond to the Log-Cholesky and the SSR decompositions.

Figure 6 . 1 :

 61 Figure 6.1: Snapshots of | ln(tr D)| obtained with (a) global artificial diffusion and (b) modified artificial diffusion (from Ref. [29]).

Figure 6 . 2 :

 62 Figure 6.2: Snapshots of ln(tr C) for Sc = 10 3 taken at same time t with (left) global diffusion and (right) modified diffusion. The snapshots are taken from the Supplemental Movies of Ref. [29].
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 64 Figure 6.4: Snapshots of ln(tr C ) obtained with modified diffusion at t/T = 460 (left), t/T = 470 (center), t/T = 490 (right). The color bar indicates the magnitude of ln(tr C ).
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 65 Figure 6.5: Left: Time series of ∆ ω with and without modified diffusion. Right: Time series of ∆ tr C with and without modified diffusion. ∆ ω and ∆ tr C display larger fluctuations when modified diffusion is included.

Figure 6 . 6 :

 66 Figure 6.6: Snapshots of ln(tr C) for k f = 6 in 512 2 resolution obtained for Sc = ∞ (left) and modified diffusion with Sc = 10 3 (right).

Figure 6 . 7 :

 67 Figure 6.7: Left: evolution of the rescaled kinetic energy e(t)/e 0 and spatial average of tr C in the inset at different spatial resolutions. Right: spatial spectra of kinetic energy and polymer elastic energy in the inset for different resolutions.

Figure 6 . 8 :

 68 Figure 6.8: Snapshots of ln(tr C ) obtained with the Log-Cholesky decomposed FENE-P model without any form of diffusion (Sc = ∞) at resolution 256 2 (left), 512 2 (center), 1024 2 (right). The color bar indicates the magnitude of ln(tr C ).
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 69 Figure 6.9: Snapshots of ln(tr C ) obtained with the SSR decomposed FENE-P model without any form of diffusion (Sc = ∞) at resolution 256 2 (left), 512 2 (center), 1024 2 (right). The color bar indicates the magnitude of ln(tr C ).

( 4 .

 4 22) to avoid the piling up of energy at large-scales due to the inverse cascade of energy. The friction factor α = 1 × 10 -2 is used in the high-Re simulations. Two simulations are performed at high-Re, one in the direct cascade (test 1) and the other in the inverse cascade (test 2) regime. The parameters used in test 1 are ν = 5 × 10 -4 , µ = 0.09, k f = 3, f 0 = 0.1 and in test 2 they are ν = 3 × 10 -4 , µ = 0.14, k f = 10, f 0 = 0.1. No form of artificial diffusivity is incorporated in these flow situations (Sc = ∞).

Figure 7 . 1 :

 71 Figure 7.1: Elastic turbulent regime. Left: snapshot of the ratio of the smallest to the largest eigenvalue λ 2 /λ 1 . The color bar indicates the magnitude of λ 2 /λ 1 . Right: time series of the spatial average of ⟨λ 2 /λ 1 ⟩ X .

Figure 7 . 2 :

 72 Figure 7.2: High-Re regime at Re λ = 374, Wi = 3.3, k f = 3, ν = 5 × 10 -4 . Left: snapshot of the ratio of the smallest to the largest eigenvalue λ 2 /λ 1 . The color bar indicates the magnitude of λ 2 /λ 1 . Right: time series of the spatial average of ⟨λ 2 /λ 1 ⟩ X . The inset shows the time evolution of ⟨λ 2 /λ 1 ⟩ X in the steady state.
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 73 Figure 7.3: High-Re regime at Re λ = 102, W i = 5.6, k f = 10, ν = 3 × 10 -4 . Left: snapshot of the ratio of smallest to largest eigenvalue λ 2 /λ 1 . The color bar indicates the magnitude of λ 2 /λ 1 . Right: time series of the spatial average of ⟨λ 2 /λ 1 ⟩ X . The inset shows the time evolution of ⟨λ 2 /λ 1 ⟩ X in the steady state.

  It would be interesting to investigate to what extent the imposed forcing symmetry is recovered by the SSR and the Log-Cholesky decompositions as a function of scales, as was done recently by Garg et al. [Phys. Rev. E 104, 035103 (2021)].
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  .11) 

		Dℓ yy Dt	= (∂ y u y )ℓ yy -(∂ y u x )	ℓ yx ℓ yy ℓ xx	+	1 2		-pℓ yy +	p ℓ yy	+	pℓ 2 yx ℓ 2 xx ℓ yy	+ qℓ yy .	(5.13)
	Dℓ yx Dt	= (∂ ℓ 2 yy ℓ xx	1 2	-pℓ yx -	pℓ yx xx ℓ 2	+ qℓ yx ,	(5.12)

x u y )ℓ xx + (∂ y u y )ℓ yx + (∂ y u x )

  .18) 

	Dℓ yy Dt	= (∂ ℓ yx ℓ yy ℓ xx	+	1 2τ	-ℓ yy +	1 ℓ yy	+	ℓ 2 yx ℓ 2 xx ℓ yy	.	(5.19)

y u y )ℓ yy -(∂ y u x )

  )

	Dℓ yy Dt	=∂ y u y ℓ yy -∂ y u x	ℓ yx ℓ yy ℓ xx	+	1 2	-pℓ yy +	p ℓ yy	+	pℓ 2 yx ℓ 2 xx ℓ yy	+ qℓ yy +
		κs 1 2ℓ yy	Q(x, t) Q max (t)	∇ 2 ((ℓ 2 yx + ℓ 2 yy )/s 1 ) -	2ℓ yx ℓ xx	∇ 2 (ℓ yx ℓ xx /s 1 ) +	ℓ 2 yx xx ℓ 2	∇ 2 (ℓ 2 xx /s 1 ) + d 1 ℓ 2 yy .
											(6.10)
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Part II

Numerical simulation of elastic turbulence

In this chapter, we use the same algorithm described in section 4.4, and the Oldroyd-B constitutive equation over a two-dimensional domain X = [0, 2π] 2 with periodic boundary conditions and a cellular forcing. Recall that p = 1/τ and q = 0 for the Oldroyd-B model. The parameters used in this study are ν s = 0.05, τ = 50, µ s = 0.01, k f = 2, f 0 = 0.02, κ = 5 × 10 -5 , which correspond to Wi = 10, Sc = 10 3 . To study the effect of numerical resolution, the FENE-P model is used with the same parameters and with ℓ 2 max = 3000.

Effect of modified diffusion

In this section, we analyse the effect of modified diffusion on the numerical solution by incorporating the additional diffusive terms given in section 6.2 into our numerical algorithm presented in section 4.4. In the left panel of Fig. 6.3, we compare the evolution of the rescaled kinetic energy and space-averaged trace of the conformation tensor with and without modified diffusion in a 256 2 simulation of the Oldroyd-B model. For Sc = 10 3 , the evolution remains frozen for sometime and starts to fluctuate with a frequency much smaller than in the case where there is no form of diffusion (Sc = ∞). This behavior is analogous to that found with global diffusion by Gupta and Vincenzi for the same parameters and same cellular forcing (see Fig. 2 and 3 in Ref. [START_REF] Gupta | Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence[END_REF]). Moreover, the mean kinetic energy is smaller and the mean stretching of polymers is greater when modified diffusion is applied. This is a consequence of the excessive spreading of polymer stress.