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Résumé :
Cette thèse est consacrée à l’analyse de la créa-

tion et destruction de corrélations quantiques dans
le contexte de l’inflation cosmologique et d’une
expérience analogue du préchauffage. L’inflation
est une phase d’expansion accélérée de l’Univers,
précédant le modèle dit standard de la cosmolo-
gie, introduite pour résoudre certaines lacunes du
modèle. L’inflation fournit également un mécan-
isme d’émergence des inhomogénéités primordiales
par amplification de fluctuations quantiques ini-
tiales. Elle est suivie d’une période de "réchauf-
fement", durant laquelle on s’attend à ce que la
plupart des particules soient générées et atteignent
l’équilibre thermique, préparant ainsi le terrain
pour le déroulement du modèle standard de la cos-
mologie. Pendant une période de "préchauffage",
cette création procède en partie par excitation
paramétrique de modes résonants des champs de
matière initialement dans leur vide, un véritable
processus quantique. La physique de l’inflation
cosmologique et du préchauffage est celle d’un
champ classique fort agissant sur un champ
quantique pour produire des particules intriquées.
Lorsque la source est la métrique de l’espace-temps
elle-même, comme dans l’inflation, nous sommes
dans le cadre de la théorie quantique des champs
en espace-temps courbe (TQCEC). L’évolution des
corrélations quantiques ainsi générées est le su-
jet de cette thèse. Dans la première partie du
manuscrit, nous présentons le traitement quan-
tique standard des perturbations cosmologiques
durant l’inflation. Nous passons ensuite en re-
vue les travaux antérieurs analysant la généra-
tion de corrélations quantiques entre des pertur-
bations d’impulsions opposées à l’aide de mesures
de «quanticité» telles que la non-séparabilité, la
discorde quantique ou une inégalité de Bell. Par-
tant de cette revue, nous présentons un calcul de
l’évolution de la discorde quantique pour l’état des
modes d’impulsions opposées lorsque la distilla-
tion des corrélations aux degrés de liberté envi-

ronnementaux, appellée décohérence, est prise en
compte à l’aide d’un modèle de Caldeira-Leggett.
La décohérence place les perturbations dans un
état comprimé mixte à deux modes, omniprésent
dans le TQCEC et la physique quantique à basse
énergie. Nous identifions les régimes dans lesquels
les corrélations quantiques persistent malgré la dé-
cohérence et les régimes dans lesquels elles dis-
paraissent. Enfin, nous procédons à une compara-
ison systématique des résultats de trois mesures
différentes de quanticité appliquées au même état
mixte comprimé à deux modes et démontrons un
degré d’inéquivalence entre eux. La seconde par-
tie du manuscrit est dédiée à l’analyse d’une ex-
périence dite de "gravité analogue". La gravité
analogue a émergé des travaux fondateurs de W.
Unruh qui a proposé de concevoir des expériences
de matière condensée pour tester les prédictions
de la TQCEC dans un contexte où l’intrication
peut, en principe, être mesurée. Depuis 2008,
plusieurs groupes ont mené des expériences pour
observer les propriétés de quasi-particules émises
soit par un trou noir analogue, soit par l’analogue
d’un univers en expansion. Nous nous concentrons
ici sur une expérience imitant la dynamique du
préchauffage à l’aide d’un gaz quasi unidimension-
nel d’atomes d’hélium métastables, qui, lors de sa
première réalisation, n’a pas pu mettre en évidence
l’intrication. Il a ensuite été postulé qu’un degré
suffisant d’interactions des quasi-particules pou-
vait expliquer cette absence. Nous commençons
par passer en revue la génération de paires in-
triquées dans l’expérience et discutons l’absence
d’intrication. Nous analysons ensuite les interac-
tions du gaz de Bose unidimensionnel pour dé-
montrer l’existence de nouveaux processus de dis-
sipation pour les excitations générées au cours de
l’expérience. Enfin, nous montrons l’effet de ces
mêmes processus sur la corrélation. Nous conclu-
ons qu’ils pourraient être suffisants pour expliquer
l’absence d’intrication dans l’expérience.
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Abstract:
This thesis is dedicated to analysing the gen-

eration and destruction of quantum correlations in
the context of inflationary cosmology and an ex-
periment of ’analogue’ preheating. Inflation is a
phase of accelerated expansion of the Universe,
preceding the so-called Standard Model of Big
Bang cosmology, introduced to solve some short-
comings of this model. It also provides a mech-
anism for the emergence of primordial inhomo-
geneities by amplification of initial quantum fluc-
tuations. Inflation is followed by a ’reheating’ pe-
riod, in which most particles are expected to be
generated and reach thermal equilibrium, setting
the stage for the standard Big Bang of cosmol-
ogy. During a ’preheating’ period, this creation
proceeds partly by parametric excitation of reso-
nant modes of the matter fields initially in their
vacuum, a genuine quantum process. The physics
of both situations, inflation and preheating, is that
of a strong classical field acting on a quantum field
to produce entangled (quasi-)particles. When the
classical source is the space-time metric itself, as
in inflation, we are in the framework of Quantum
Field Theory in Curved Space-time (QFTCS). The
evolution of the generated quantum correlations is
the topic of this PhD.

In the first part of the manuscript, we present
the standard quantum treatment of cosmological
perturbations during inflation. We then review pre-
vious works analysing the generation of quantum
correlations between opposite momenta perturba-
tions using measures of ’quantumness’ such as
non-separability, quantum discord or Bell inequal-
ities. Building upon them, we present a compu-
tation of the evolution of quantum discord for the
state of opposite momenta modes when the dis-
tillation of correlations to environmental degrees

of freedom, i.e. decoherence, is taken into ac-
count using a Caldeira-Leggett model. Decoher-
ence places the perturbations in a mixed two-
mode squeezed state, ubiquitous in QFTCS and
low-energy quantum physics. We identify regimes
in which quantum correlations persist despite de-
coherence and regimes in which they disappear.
Finally, we systematically compare the results of
three different measures of quantumness applied
to the same mixed two-mode squeezed state and
demonstrate a degree of inequivalence between
them.

The second part of the manuscript is de-
voted to a so-called ’analogue gravity’ experiment.
Analogue gravity ideas emerged from the semi-
nal works of W. Unruh, who proposed designing
condensed matter experiments to test the predic-
tions of QFTCS in a context where entanglement
can, in principle, be measured. Since 2008 sev-
eral groups have performed experiments to observe
the properties of quasi-particles emitted either by
an analogue black hole or by the analogue of an
expanding universe. We here focus on an experi-
ment mimicking the dynamics of preheating using
a quasi-one dimensional gas of metastable Helium
atoms, which in its first run failed to witness entan-
glement. It was later postulated that a sufficient
degree of quasi-particle interactions could explain
its absence. We start by reviewing the generation
of entangled pairs in the experiment and the ensu-
ing discussion on the absence of entanglement. We
then analyse the interactions of one-dimensional
Bose gas and uncover new dissipation processes for
the excitations generated during the experiment.
Finally, we show the effect of the same processes
on correlation. We conclude that they might be
sufficient to explain the absence of entanglement
in the experiment.
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Synthèse en français

Cette thèse est consacrée à l’analyse de la création et destruction de corréla-
tions quantiques dans le contexte de l’inflation cosmologique et d’une expérience
analogue du préchauffage.

L’inflation est une phase d’expansion accélérée de l’Univers, précédant le mod-
èle dit standard de la cosmologie, introduite pour résoudre certaines lacunes du
modèle. L’inflation fournit également un mécanisme d’émergence des inhomogénéités
primordiales par amplification de fluctuations quantiques initiales. Elle est suivie
d’une période de "réchauffement", durant laquelle on s’attend à ce que la plupart
des particules soient générées et atteignent l’équilibre thermique, préparant ainsi
le terrain pour le déroulement du modèle standard de la cosmologie. Pendant
une période de "préchauffage", cette création procède en partie par excitation
paramétrique de modes résonants des champs de matière initialement dans leur
vide, un véritable processus quantique. La physique de l’inflation cosmologique et
du préchauffage est celle d’un champ classique fort agissant sur un champ quan-
tique pour produire des particules intriquées. Lorsque la source est la métrique de
l’espace-temps elle-même, comme dans l’inflation, nous sommes dans le cadre de
la théorie quantique des champs en espace-temps courbe (TQCEC). L’évolution
des corrélations quantiques ainsi générées est le sujet de cette thèse.

Le premier chapitre du manuscrit 1 fait office d’introduction aux domaines dans
lesquels les contributions de la thèse s’inscrivent : la cosmologie inflationnaire et
les expériences dites de "gravité analogue". La première partie du chapitre 1.1
est une présentation de la description standard de l’évolution de l’Univers con-
sidéré en première approximation comme homogène. Ce traitement est basé sur
la relativité générale dont les fondamentaux nécessaires sont tout d’abord rap-
pelés en section 1.1.1. Nous utilisons ensuite 1.1.2 cette théorie appliquée aux
différentes composantes de l’Univers considérées comme homogènes et isotropes,
hypothèse justifiée par les observations, pour dériver la géométrie de l’espace-
temps (un Univers en expansion décrit par la métrique de Friedmann-Robertson-
Lemaitre-Walker) et les équations régissant leur évolution (équations de Friedmann
et équation d’état). En se basant sur ces équations et sur les observations donnant
la composition actuelle de l’Univers, nous présentons 1.1.3 le modèle standard de
la cosmologie décrivant l’histoire de celui-ci comme une succession d’ères. Cha-
cune de ses ères est caractérisée par la domination de la composition de l’Univers
par une de ses composantes, et un taux d’expansion qui lui est associé. Cette
première partie se conclut 1.1.4 par une explication de certains problèmes associés
au modèle standard de la cosmologie: problème de la platitude, de l’horizon et des

7



monopoles.

Dans la seconde partie du chapitre 1.2 nous présentons le modèle d’inflation
cosmique, les prédictions associées pour l’état des inhomogénéités dans l’Univers,
ainsi que comment cette période se connecte avec le modèle standard de la cos-
mologie via une période de (p)réchauffement. L’inflation cosmique correspond à
une période d’expansion accélérée de l’Univers, par opposition aux périodes du
modèle standard où le taux d’expansion est décroissant. Nous commençons 1.2.1
par montrer qu’une période suffisamment longue d’expansion accélérée permet de
résoudre les trois problèmes du modèle standard détaillés précédemment. Nous
montrons ensuite comment une telle période d’inflation peut survenir si la compo-
sition de l’Univers est dominée par un champ scalaire homogène, l’inflaton, avec un
potentiel suffisamment plat pour que son évolution soit lente (conditions de roule-
ment lent). Dans 1.2.3, nous introduisons la description perturbative standard des
inhomogénéités dans l’Univers, leur caractère perturbatif étant justifié par leur
petitesse observée. Nous dérivons ensuite les équations d’évolution des perturba-
tions pendant l’inflation qui prédisent une amplification de celles-ci. De plus, les
grandes échelles d’énergie attendues pour l’inflation, suggèrent de décrire les per-
turbations par des champs quantiques. Nous montrons que ce caractère quantique
fixe un niveau minimal pour ces inhomogénéités si nous choisissons de considérer
leur champ comme initialement sans particules. L’expansion de l’Univers amplifie
ensuite ces fluctuations du vide, un phénomène de TQCEC. Le spectre de puis-
sance des inhomogeneités prédit par ce scénario d’amplification des fluctuations
du vide est en parfait accord avec les données du fond diffus cosmologique. À
l’issue d’une période d’inflation, l’Univers est essentiellement vide de particule.
Afin de connecter cette période avec le modèle standard de la cosmologie, qui sup-
pose un grand nombre de particules à l’équilibre, une période de réchauffement
est nécessaire. Nous discutons du réchauffement dans la dernière section de ce
chapitre 1.2.4, ainsi que du scénario de préchauffage, mentionné précédemment,
dans lequel des particules sont créées par des amplifications paramétriques provo-
quées par les oscillations de l’inflaton au fond de son potentiel. Il s’agit là encore
d’un effet de TQCEC.

La troisième et dernière partie 1.3 du chapitre d’introduction est consacrée à
une présentation des expériences de gravité analogue. Tout d’abord 1.3.1, nous
motivons l’utilité de telles expériences par quelques calculs d’ordre de grandeur
montrant la difficulté d’observer directement un effet de TQCEC où la création de
particules depuis le vide quantique médiée par la gravité. Nous démontrons en-
suite 1.3.2 que les équations décrivant les perturbations de grande longueur d’onde
d’un fluide peuvent être mises sous la forme de celle d’un champ scalaire évolu-
ant dans un espace-temps courbe. La métrique de cet espace-temps est appelée
métrique acoustique. Dans 1.3.3 nous passons rapidement en revue les progrès im-
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portant effectué dans la conceptualisation et la réalisation d’expérience analogue
en général. Enfin, dans 1.3.4, nous procédons à une revue plus exhaustive des
expériences faisant une analogie avec une situation cosmologique.

Le second chapitre 2 comprend les travaux effectués durant la thèse sur le car-
actère quantique ou classique des perturbations cosmologiques. Comme détaillé
dans le premier chapitre, dans le scénario standard de formation des structures, les
inhomogénéités primordiales sont le résultat de fluctuations du vide quantique am-
plifiées par la gravité, notamment pendant l’inflation. Il est bien connu que l’état
quantique qui en résulte est, pour les variables appropriées, un état comprimé à
deux modes (two-mode squeezed state) pour les modes de Fourier de direction
opposés ±k. Ces aspects standards des perturbations cosmologiques quantiques
sont décrits en détail dans l’article de revue reproduit dans la seconde partie du
chapitre 2.2. Cet article passe également en revue l’état de l’art des discussions sur
le caractère quantique ou classique des perturbations avant et jusqu’au milieu de
la thèse. En particulier, nous revenons sur l’affirmation qu’un état très comprimé
serait classique en le présentant rigoureusement et en n’en montrant les limites:
cela n’est vrai qu’en considérant la valeur de certains opérateurs. Nous décrivons
un certain nombre d’autres mesures de quanticité, basées sur les corrélations au
sein de l’état comprimé, qui ont été appliquées aux perturbations cosmologiques
(séparabilité, inégalités de Bell, discorde quantique, etc.) et qui montrent au con-
traire que l’état contient des corrélations quantiques. Enfin, nous discutons les
quelques articles prenant en compte l’effet que l’interaction des deux modes avec
d’autres champs peut avoir sur les corrélations, phénomène dit de décohérence.
Il est attendu que la décohérence affaiblisse les corrélations et leur enlève tout
caractère quantique. Les travaux effectués dans le contexte cosmologique tendent
à confirmer cette intuition tout en montrant qu’il y a une compétition entre la
décohérence et la compression de l’état pour déterminer le niveau de corrélation.
Dans la partie suivante 2.3 nous reproduisons l’article rédigé pendant cette thèse
consacré à l’évolution de la discorde quantique des perturbations cosmologiques
en présence de décohérence. Les premières parties de l’article sont applicables au
calcul de la discorde bipartite d’un champ scalaire dans un état gaussien. Nous
commençons par montrer la dépendance de la discorde dans le choix de la "parti-
tion" du champ en groupe de degrés de libertés. Nous décrivons ensuite l’évolution
de la discorde en l’absence de décohérence en utilisant plusieurs formalismes. Le
cœur de l’analyse est contenu dans la troisième partie où l’évolution du système
est suivie en présence de décohérence décrite par un modèle de Caldeira-Leggett
qui préserve le caractère gaussien de l’état. Ceci nous permet de garder un formal-
isme simple pour le calcul de la discorde tout en autorisant une paramétrisation
de l’interaction par sa dépendance temporelle dans le facteur d’échelle. Pour fa-
ciliter la compréhension de cette évolution, nous introduisons des paramètres de
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compression généralisés qui permettent une représentation géométrique simple de
l’état, même en présence de décohérence. Enfin, nous appliquons ces résultats au
cas des perturbations cosmologiques qui fixe la dépendance temporelle du champ
en absence de décohérence. Nous montrons que deux régimes existent : l’un où
la décohérence est suffisamment forte pour effacer toute discorde, l’autre où la
discorde, et donc les corrélations quantiques, restent larges à la fin de l’inflation.
Dans la dernière partie 2.4, nous reproduisons un article de la thèse comparant
différentes mesures de quanticité pour les états comprimés à deux modes déco-
hérés que nous avons étudiés dans l’article précédent. Ces états émergent dans de
multiples contextes physique. L’article est en conséquence très générique et rédigé
dans un langage de théorique quantique de l’information. Pour ces états, l’effet
de la décohérence est paramétrisé simplement par la valeur de la pureté de l’état,
qui décroit avec le degré d’interaction avec l’environnement. De tels états sont
dits mixtes. Nous montrons que, même pour cette classe simple d’états mixtes, les
critères sont inéquivalents, mais que pour tous les critères, la nature classique ou
quantique de l’état est le résultat d’une compétition entre le niveau de pureté et
le niveau de compression.

Le troisième chapitre décrit les progrès effectués dans la description théorique 3
d’une expérience de préchauffage analogue utilisant un gaz d’Hélium métastable
piégé dans un piège magnétique quasi unidimensionnel. Nous commençons 3.2
par décrire l’idée générale de l’expérience et les paramètres du gaz étudié. Nous
revenons ensuite 3.3 en détails sur la modélisation de l’expérience. Nous décrivons
ce qu’est un état condensé, suivons la dynamique du gaz dans l’approximation
d’une condensation complète puis étudions l’évolution de la partie non condensée
via l’approche de Bogoliubov-de Gennes. Le rôle des oscillations de l’inflaton dans
le préchauffage qui produit une amplification paramétrique des autres champs dans
l’Univers est joué dans l’expérience par l’oscillation radiale de la partie conden-
sée du gaz qui génère des excitations longitudinales dans la partie non condensée.
L’oscillation radiale est produite par une modulation de la fréquence de piégeage
radiale. Nous étudions la dynamique des excitations longitudinales en absence,
puis en présence de modulation. Nous montrons dans ce dernier cas que la mod-
ulation produit une compression des modes normaux de direction opposées ±k
en espace de Fourier. Cette compression se traduit par une création de paires de
quasi-particules corrélées. L’analogie avec le préchauffage et les moyens de mesurer
cette production sont détaillés dans la partie suivante 3.3.3. En particulier, nous
insistons sur la nécessité de mesurer la non-séparabilité des paires produites afin
de certifier qu’elles ont émergés du vide quantique et non d’une stimulation de
la population thermique préexistante. Nous revenons également dans cette partie
sur les résultats expérimentaux obtenus dans la première réalisation de l’expérience
qui n’avait pas réussi à démontrer la non-séparabilité des paires. Il avait alors été
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suggéré que des interactions entre les paires produites pouvaient détruire les cor-
rélations quantiques. La suite de ce chapitre consiste précisément en l’étude de ces
interactions afin d’évaluer leur capacité à faire disparaitre les corrélations quan-
tiques générées dans l’expérience. Nous commençons 3.3.4 par expliquer que le
caractère unidimensionnel du gaz nous oblige à adopter un schéma perturbatif en
termes de densité et de phase pour pouvoir utiliser l’approche de Bogoliubov-de
Gennes. Ce schéma perturbatif est ensuite utilisé dans l’article reproduit dans la
partie suivante 3.4 dans lequel il est montré que les interactions entre modes nor-
maux peuvent mener au transfert des excitations produites vers d’autres modes,
faisant effectivement décroitre le nombre et la corrélation des modes normaux pro-
duits. Les interactions dominantes sont des processus dit de Beliaev et Landau
stimulés par la population thermique de quasi-particules. Une quasi-particule créée
dans un mode donné peut-être transférée dans un mode voisin par collision avec
une quasi-particule thermique. Nous calculons le temps de vie des quasi-particules
dans un mode donné dû à ces processus. L’article s’appuie largement sur des simu-
lations numériques basées sur l’approximation de Wigner tronquée pour modéliser
l’évolution du gaz. Ces simulations confirment nos prédictions analytiques et en
particulier le temps de vie calculé pour les modes normaux. Nous donnons des
détails supplémentaires sur ces simulations dans la partie 3.5. Enfin, dans la
dernière partie 3.6 nous présentons nos derniers résultats sur le temps de vie de
la corrélation entre les modes normaux. Ce temps de vie apparait égal à celui de
la population des modes. Cette égalité des temps de vie était une hypothèse du
modèle effectif utilisé dans la littérature pour décrire l’effet des interactions sur la
production de quasi-particules. En se basant sur un seuil estimé dans la littéra-
ture, nous montrons que les processus que nous avons identifiés semblent suffisants
pour expliquer l’absence de corrélation quantique dans la première réalisation de
l’expérience. Il s’agit du résultat majeur pour cette partie de la thèse.

La dernière partie revient sur les résultats obtenus durant la thèse et proposent
quelques directions possibles de poursuite directe des travaux ainsi que des per-
spectives plus larges pour les domaines dans lesquels ils s’insèrent.
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Structure of the manuscript
In this thesis, we have considered time-dependent scenarios relevant to cosmol-

ogy and considered the amplification of quantum fluctuations in such scenarios.
The analysis focused on the evolution of the ‘quantumness’ of the amplified fluc-
tuations. We conducted this study in the case of inflationary cosmology and an
‘analogue’ preheating experiment. In order to make this thesis by published works
as self-contained as possible, we start in Chapt. 1 with a long introduction. It first
goes over the necessary basics of relativistic cosmology in Sec. 1.1. In Sec. 1.2, we
then review the motivations for cosmic inflation, its simplest implementation via
single field slow-roll inflation and the consequences for the statistics of primordial
inhomogeneities as well as, very briefly, for the production of particles in the early
Universe. In the latest part of the introduction, Sec. 1.3, we briefly introduce ana-
logue gravity experiments. Following this introduction, in Sec. 2, we reproduce the
articles published during the PhD about quantum aspects of cosmological pertur-
bations [1, 2, 3]. The following chapter, Chapt. 3, is then dedicated to the analogue
preheating experiment studied during this PhD. The first sections explain in detail
the set-up of the experiment. We also review the results of a series of publications
of which the contribution of this PhD [4] is a continuation. Finally, in the last
chapter Chapt. 4, we draw some conclusions on the work done and give possible
directions for what could be investigated next.
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1 - Introduction

1.1 Homogeneous cosmology

We start this manuscript with a general presentation of cosmology. This pre-
sentation is relatively standard and inspired by several textbooks [5, 6], as well as
lectures given at the ICFP master in Paris by Jérôme Martin, Sébastien Renaux-
Petel and Marios Petropoulos.

1.1.1 Gravity described by general relativity
Cosmology is the study of the history of the universe on large scales, typi-

cally scales larger than the typical distance in between galaxies i.e. d ≫ 1Mpc ≈
1022m [6]. What are the relevant physical ingredients to take into account over
these scales? Of the four fundamental interactions (gravity, electromagnetic, weak
and strong forces), gravity is the one that dominates on cosmological scales. First,
the two latter have a very short range of interaction, while electromagnetic force
and gravity have an infinite range. Of these two, gravity is by far the weakest.
For instance the gravitational attraction between an electron and a proton is 40
orders of magnitude smaller than the electromagnetic one. Still, electromagnetic
charges can be positive and negative, leading to the phenomenon of screening.
Therefore, on cosmological scales, assuming the universe to be charge neutral, the
electromagnetic force plays no role, and gravity will be the main player in defin-
ing the evolution of cosmological structures. Currently, the most accurate theory
describing the gravity force is General Relativity (GR) formulated by Einstein [7].
We briefly recap the mathematical and physical concepts of GR necessary for the
discussions in this manuscript and refer to [8, 5, 6] for further details. In GR,
events, e.g. the emission/reception of a particle, are represented as points on
a 4-dimensional Lorentzian manifold M. A manifold is a space for which the
neighbourhood of any event looks like that of Special Relativity: events E are rep-
resented by 4-vectors xE = (ct,x) in R×R3 and the spacetime distance in between
two infinitesimally close events E1 and E2 such that xµE2 = xµE1 + dxµ is given by

ds2 = ηµνdx
µdxν , (1.1)

where the 2-tensor ηµν is the Minkowski metric

ηµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (1.2)
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We adopt for the rest of this manuscript the mostly-pluses convention (− + ++)
for the signature of the metric [6]. The Lorentzian manifolds used in GR are pre-
cisely equipped with a globally defined metric tensor gµν that locally, by choosing
an appropriate system of coordinates, reads like the Minkowski metric ηµν . gµν
dictates how distances and time duration between events are measured at a given
manifold point. Generically the spacetime distance between infinitesimally close
events reads

ds2 = gµν (x) dx
µdxν . (1.3)

In GR the metric encodes all the information about the geometry of space-
time. It is a dynamical quantity, which is affected by the matter-energy content
of spacetime. Einstein’s field equations give the relation in between the two

Gµν =
8πGN

c4
Tµν , (1.4)

where Gµν is the Einstein tensor, and Tµν is the stress-energy tensor characterising
the matter-energy content. Gµν is related to the Ricci tensor Rµν , and the scalar
curvature R, by

Gµν = Rµν −
1

2
Rgµν . (1.5)

These two quantities are related to the Riemann tensor Rµ
νρσ by

R = Rµ
µ; Rµν = Rα

µαν (1.6)

The Riemann tensor itself is completely built from second-derivatives of the metric1

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓµ

νρ + Γµ
ρλΓ

λ
νσ − Γµ

σλΓ
λ
νρ (1.7)

where
Γµ
νρ =

1

2
gµλ (∂νgρλ + ∂ρgνλ − ∂λgνρ) , (1.8)

is the Levi-Civita connection. Einstein’s field equations (1.4) can be derived from
an action principle. The evolution of the metric is described by the Einstein-Hilbert
action

SEH =
c3

16πG

∫
d4x
√−g R , (1.9)

where g is the determinant of the metric gµν , while that of matter is described by
the action

Sm =
1

c

∫
d4x
√−g Lm , (1.10)

1Different conventions exist for the expression of the components of the Riemann tensor. We
follow the conventions of [6].
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where Lm is a Lagrangian describing the behaviour of matter fields. Defining

Tµν =
−2√−g

δ
√−g Lm

δgµν
, (1.11)

Eq. (1.4) is equivalent to the Euler-Lagrange equations for the total action S =
SEH + Sm varied with respect to gµν . Once the metric of spacetime is known, we
can compute the trajectories of test bodies i.e. bodies whose energy is small enough
so that the modification they induce on the local metric can be neglected as a first
approximation e.g. photons, dust grains or satellites. The spacetime trajectories
X (u) = {xµ (u)} of such test bodies, where u is an affine parameter, are given
by the geodesics curves of this spacetime. Affinely parameterised geodesics are
solutions of

d2xµ

du2
+ Γµ

νλ

dxν

du

dxλ

du
= 0 . (1.12)

This equation is a generalisation to curved spacetime of Newton’s second law (in a
gravitational field), and there are several ways to derive it. Eq. (1.12) can, for in-
stance, be derived by requiring that test bodies going from X (u1) to X (u2) follow
trajectories whose spacetime length is locally extremal in the sense that this length
ℓ =

∫ u2

u1
ds (u) is stationary under infinitesimal changes around the trajectory [5].

For massive particles, the 4-velocity dX (u) /du is time-like, i.e. gµν dxµ

du
dxν

du
< 0,

and u can be chosen to be the proper time τ associated to the particle rescaled by
its mass u = cτ/m (which changes the dimension of this parameter) so that

gµν
dxµ

dτ

dxν

dτ
= −m2 . (1.13)

Then
P = m

dX (τ)

dτ
=

(
E

c
, P i

)
, (1.14)

is the energy-momentum vector of the particle. E is the energy of the particle,
while p =

√
gijP iP j is its physical three-momentum, such that E2 = p2c2 +m2c4

by normalisation of the vector. For massless particles, e.g. photons, there is no
notion of proper time and dX (u) /du is such that

gµν
dxµ

dτ

dxν

dτ
= 0 . (1.15)

The parameter u can still be chosen so that P = dX (u) /du is the energy-
momentum vector of the particle [6, 5]. The normalisation of the 4-vector then
gives E = pc. The geodesic equation Eq. (1.12) can be conveniently rewritten as

P µ∇µP
ν = 0 , (1.16)

valid for massive and massless particles, where ∇µ is the covariant derivative with
respect to the Levi-Civita connection.
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1.1.2 General relativistic cosmology
Having reviewed the necessary basics of general relativity, we can apply the

theory to the distributions of energy and matter in the Universe on large scales.

1.1.2-a Geometry of the Universe: FLRW
It is an observational fact that the distribution of matter in the (observable)

Universe is isotropic on large scales, larger than 100Mpc [5].2 We assume, in
addition, that we, human observers, do not occupy a specific spatial position in
the Universe and that the Universe, therefore, would appear as isotropic from
any other location. It is the so-called cosmological principle [8], and implies that
the Universe is also homogeneous. The isotropy and homogeneity of the Universe
translate in the mathematical framework of GR as the existence of a class of
coordinate systems i.e. of observers, in which the metric is invariant by translation
and rotation. One can show that the metric in such coordinates is then of the
Friedmann-Lemaître-Robertson-Walker (FLRW) form [8]. The line element reads

ds2 = −c2dt2 + a2(t)

(
dr2

1−Kr2 + r2dθ2 + r2 sin2 θdφ2

)
, (1.17)

where the time coordinate t is referred to as cosmic time, (r, θ, φ) are the spherical
co-moving coordinates, K is called the spatial curvature, and a(t) is the scale factor.
The scale factor is the only dynamical quantity in Eq. (1.17). The evolution of the
homogeneous cosmological spacetime thus boils down to that of a(t).

1.1.2-b Time and distances in expanding Universe
Let us briefly discuss how to describe distances and time intervals in cosmology

with the FLRW metric. We start with the spatial curvature K. First, notice that
if K = 0 and a(t) = 1, the FLRW metric reduces to the Minkowski metric in
spherical coordinates. For K ̸= 0, we can always set K = ±1 by re-parameterising
the comoving coordinates r′ =

√
K r and a′ = a/

√
K . Notice that the density

parameter for curvature ΩK = K/a2, see Sec. 1.1.2-d for the origin of this quantity,
is invariant under such re-parameterisation. Generically, the spatial metric induced
by the metric (1.17) on t = cst hypersurfaces lead to the standard 3-dimensional
Euclidian distance for K = 0, and to the geodesic distance over a unit sphere
(respectively hyperbola) for K = +1 (resp. K = −1). K thus encodes the geometry
of the spatial sections of the Universe. Let us now consider an arbitrary scale
factor a(t) and assumes K = 0 for simplicity. We compute the physical distance
in between two points located at fixed co-moving coordinates r1 = (r1, 0, 0) and
r2 = (r2, 0, 0), as a function of cosmic time t. This physical distance is given

2We ignore the CMB dipole attributed to the peculiar velocity of our local group, or we work
in a coordinate system boosted with respect to Earth so that this dipole is eliminated.

22



by integrating the induced metric on t = cst hypersurfaces in between these two
points

d =

∫ r2

r1

√
gijdxidxj = a(t) |r1 − r2| , (1.18)

where the summation using Latin indices, such as i, is limited to spatial indices, as
opposed to summation using Greek indices, such as µ, which covers all spacetime
coordinates. The scale factor a(t), which evolves as a function of cosmic time,
leads to dilation or contraction of the physical distances in the Universe. We
come back to this point at the end of this part. What are the trajectories of
test bodies in such an expanding Universe? To answer, we have to solve the
geodesics equation, Eq. (1.16). The Christoffel symbols for the FLRW metric
and the computation details are given in Appendix A.1. Two special cases are
worth mentioning. First, test bodies at rest in co-moving coordinates i.e. with
no peculiar velocity dxr/du = 0, follow geodesics curves. Such bodies are called
co-moving observers. Their proper time τ corresponds to cosmic time t. A second
important case is that of photons. In Appendix A.1, it is shown that if we consider
a photon received today at t0 and trace back its evolution until an earlier time t,
we find that

E(t) =
a0
a(t)

E0 , (1.19)

where E0 is its energy, as seen by a co-moving observer, when received. The energy
of a photon is directly related to its frequency via E = hν where h is the Planck
constant. Therefore, independently of its reception frequency ν0, the photon was
redshifted by an amount given by

ν

ν0
=
a0
a

= 1 + z , (1.20)

where z is called the redshift. z is a convenient proxy to parameterise the evolution
of quantities in the FLRW metric. First, the redshift of a light source can be
directly measured by spectroscopy i.e. by comparing the frequencies of lines in the
spectrum of the source to their tabulated values e.g. [9]. Additionally, contrary to
cosmic time t, the use of the redshift z to label the time of occurrence of different
events, e.g. emission of lights from different astrophysical objects, does not depend
on the details of the evolution of a (t). Therefore, in the rest of this text, we often
refer to the redshift of events rather than their time of occurrence. We give a list
of approximate redshifts used in the manuscript in Tab. 1.1.

We close this discussion with a few words on the notion of distances in cosmol-
ogy. Notably, neither the physical nor the co-moving distance between two objects
can be directly measured in cosmology. The information we have about objects
in astrophysics and cosmology comes from the light (and, in a few instances, the
gravitational waves) that they emit. By measuring it, we try to infer the distance
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zGUT (without inflation) zdec ν zBBN zLSS zeq zm

1029 6× 109 4× 108 1090 3400 0.297

Table 1.1: Approximate values of redshift used in the manuscript. The approxi-
mation zGUT is computed in Sec. 1.1.3-c. zdec ν and zBBN are taken from Tab. 3.1
of [6]. zLSS is reported in [10, 11] where it is named z⋆. The approximations zeq
and zm are computed in Sec. 1.1.3-a.

to the object. For instance, in a Newtonian spacetime, the perceived flux LR of a
static object located at a distance d from us decays as

LR =
LE

4πd2
, (1.21)

where LE is the luminosity emitted, and we assumed the emission to be isotropic.
Therefore, if we know LE, by measuring LR, we can infer the distance to the object
d. Because light propagation from the source is affected by the expansion of the
Universe, this relation breaks down in FLRW Universe. If we define the luminosity
distance dL by

LR =
LE

4πd2L
, (1.22)

we find that [5]
dL(tR) = dE/R(tE)

(
1 + zE/R

)2
, (1.23)

where dE/R(tE) = a(tE)rE/R is the physical distance to the source at the time of
emission, and zE/R = a(tR)/a(tE) − 1 is the redshift to the source. Therefore,
if we trust the description of cosmology based on GR, in order to compute the
physical distance to an object we also need an independent measure of its redshift
zE/R. We can also view Eq. (1.23) as a prediction of cosmological models with an
expanding/contracting Universe which can be tested. Generically, zE/R depends
on the time of emission and reception of light, so on the distance to object dE/R.
This relation depends on the details of the evolution of a(t) i.e. on the considered
cosmological model. Still, for sources close enough such that zE/R ≪ 1, we can
derive the approximate relation

dL(tR) ≈
zE/R

cH (tR)
, (1.24)

where
H =

ȧ

a
, (1.25)
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is the rate of expansion of the Universe and is called the Hubble parameter.
Eq. (1.24) can be tested by plotting the luminosity distance of objects as a function
of their measured redshifts (correcting for any Doppler effect). The first to put
forward this linear relationship and to use observational data to extract the rate
was Lemaître in 1927 [12]. It was also identified by Hubble in [13], whose name is
now given to the relation of Eq (1.24). The analysis was later repeated with more
accurate data and confirmed the result. The expansion of the Universe is the first
confirmed prediction of GR-based cosmology. We will present others later on.

1.1.2-c Energy-matter content of the Universe
Having detailed the basic features of the FLRW metric in full generality, we

want to compute the precise dynamics of the scale factor a(t) in cosmology. It
is given by Einstein’s field equations (1.4). The Einstein tensor on the left-hand
side is entirely determined by the metric and Eqs. (1.5-1.8). The right-hand side
depends on the matter-energy content of the Universe, which we now specify. The
average distribution of matter, represented by the stress-energy tensor Tµν , has to
be compatible with the homogeneity and isotropy observed. One can show [6] that
the matter must then be described by a perfect fluid. The stress-energy tensor of
a generic perfect fluid reads

T µν = (ρ+ p)
uµuν

c2
+ pgµν , (1.26)

where ρ is the energy density of the fluid, p its pressure and uµ its 4-velocity vector
normalised to gµνuµuν = −c2. Notice that this expression is covariant. Imposing
that the fluids composing the Universe appear isotropic and homogeneous to co-
moving observers further requires that the fluid is co-moving i.e. uµ = (c,0) in
co-moving coordinates; the fluid is at rest and the energy density ρ and pressure p
are a function of time t but independent of x. Then T µν assumes the simple form

T µν =




ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


 . (1.27)

1.1.2-d Friedmann’s equations
In the presence of a collection of perfect fluids, Einstein’s field equations (1.4)

reduce to the two Friedmann equations [5, 6]

H2 =
8πGN

3c2

∑

i

ρi −
Kc2
a2

, (1.28)

ä

a
= −4πGN

3c2

∑

i

(ρi + 3pi) . (1.29)
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where H was defined in Eq (1.25). Additionally, we assume that each perfect fluid
is separately covariantly conserved i.e. we neglect conversion between the different
species of fluid

∇µT
µν
i = 0 ⇐⇒ ρ̇i + 3H (ρi + pi) = 0 , (1.30)

where T µν
i is the stress-energy tensor associated to the ith fluid.3 To close the

system of equations, we have to specify the relation between the energy density of
the fluid and its pressure. This relation is called the equation of state of the fluid
and depends on the nature of each fluid. The linear ansatz

p = wρ , (1.31)

where w is called the equation of state parameter, covers most of the relevant
cases, e.g. pressure-less matter corresponds to w = 0, and radiation to w = 1/3.
Combining Eq. (1.30) and Eq. (1.31), we get the evolution of the energy density
of the fluid

ρ (t) = ρ0

[
a0
a (t)

]3(1+w)

, (1.32)

where ρ0 and a0 are the quantities evaluated at present time.

1.1.3 Standard model of Big Bang cosmology
1.1.3-a Composition of the Universe

In the standard model of cosmology, we summarise the Universe’s composition
in four components: baryonic matter, cold dark matter, radiation and dark energy.
We will denote respectively ρb, ρcdm, ργ and ρΛ their densities. The same subscripts
are used for the pressure and all quantities related to a specific form of matter.
Baryonic and cold dark matters are taken to be pressure-less perfect fluids with
wm = 0.4 Because they dilute identically, we gather them in a single energy
density ρm. Radiation is a perfect fluid with wγ = 1/3. Dark energy is modelled
by a cosmological constant Λ added to the spatial curvature in the action (1.9)
such that

SΛ =
c3

16πGN

∫
d4x
√−g (R− 2Λ) . (1.33)

This results in the modified field equations

Gµν + Λgµν =
8πGN

c4
Tµν . (1.34)

3The covariant conservation of the total stress-energy tensor is a consequence of Einstein’s
field equations and not an additional assumption. In the case of a single fluid Eq. (1.30) can
then be derived from Eqs. (1.28)-(1.29).

4The adjective ‘cold’ precisely refers to the fact that this unknown form of matter behaves
as a pressure-less fluid as opposed to a relativistic one w ∼ 1/3 [6].
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H0 Ω
(0)
b h2 Ω

(0)
cdmh

2

67.36± 0.54 0.02237± 0.00015 0.1200± 0.0012

Ω
(0)
Λ Ω

(0)
K T

(0)
γ

0.6847± 0.0073 0.0007± 0.0019 2.72548± 0.00057

Table 1.2: Values of the cosmological parameters given at 68% confidence. The
values for H0, Ω

(0)
b h2, Ω(0)

cdmh
2, Ω(0)

Λ and Ω
(0)
K are based on the results of the mission

Planck [11] where h = H0 (100 km × s−1 × Mpc−1)−1. They are obtained by
performing a Markov Chain Monte Carlo (MCMC) analysis on the temperature
and polarisation power spectra of the CMB, see Sec. 1.2.3, combined with lensing
information. The first four values are obtained by assuming a spatially-flat, Ω(0)

K =

0, ΛCDM model with adiabatic, Gaussian initial fluctuations. H0 and Ω
(0)
Λ are best-

fit directly quoted from the paper. The value of Ω(0)
K comes from an MCMC analysis

performed over Planck data combined with BAO data, where the curvature is
included as an extra parameter. The value of the CMB photons’ temperature T (0)

γ

is reported from [14].

While the cosmological constant in this presentation appears in the ‘geometry’
part of the action, the Λgµν term can be moved to the right-hand side of the field
equations and understood as the stress-energy tensor of a perfect fluid with energy
density ρΛ = Λc4/8πG and equation of state parameter wΛ = −1. Dark energy
is then seen as a type of matter with negative pressure. The standard model
of Big Bang cosmology is often referred to as the Lambda-CDM model precisely
because it features a cosmological constant Λ as dark energy and cold dark matter
in addition to ordinary matter. We will come back to the necessity of introducing
dark matter and dark energy in Sec. 1.1.3-c, and focus here on describing the
physical content of the Lambda-CDM model.

The first Friedmann equation (1.28) can be rewritten by dividing by the critical
energy density

ρc(t) =
3H2(t)c2

8πGN
. (1.35)

It reads
Ωb + Ωcdm + Ωγ + ΩΛ + ΩK = 1 , (1.36)

where we have defined the density parameters for each fluid ΩX = ρX/ρc. Each
density parameter can then be understood as the contribution of the fluid to the to-
tal density of energy in the Universe. Let us say a few words about the contribution
of the spatial curvature. We can treat the spatial curvature as a fictitious perfect
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fluid at the level of Friedmann equations by taking its contribution to Eq. (1.28)
to be its energy density ρK = −3M2

PlK/a2. Accordingly we take wK = −1/3 so
that (1.32) is verified and that the contribution of curvature to Eq. (1.29) vanishes.
Still, notice that the resulting density parameter can contribute positively or neg-
atively to (1.36) depending on whether the Universe is closed or open K = ∓1.
The measured values of the cosmological parameters at present time5 are given
in the table Tab. 1.1.3-a. From these, we can compute the values of all density
parameters at present time. From the values of Ω(0)

b h2, Ω(0)
cdmh

2 and H0, we find
Ω

(0)
b ≈ 0.049 and Ω

(0)
cdm ≈ 0.264. Finally, radiation encompasses all types of rela-

tivistic species. We assume that neutrinos are still relativistic today and we assume
that their number is dominated by that in the Cosmic Neutrino Background, and
similarly for photons, see Sec. 1.2.3. Then we have a simple relation between the
density of photons and that of neutrinos [11]

ρν = 3.046× 7

8
×
(

7

11

)4/3

ργ . (1.37)

In general, the energy density of relativistic fluid at thermal equilibrium is directly
related to its temperature

ρ =
π2

30
gX

(kBT )
4

(ℏc)3
. (1.38)

g is the number of degrees of freedom of the particle, e.g. gγ = 2 for the two
helicities of the photons, or ge− = 2 because the electron has spin 1/2 and so two
spin states. The factor X differentiates between bosons X = 1 and fermions X =
7/8. Using the relation of Eq. (1.38) for the photons of the CMB at temperature
T

(0)
γ we can compute ργ, and deduce ρν . Combining the two and taking the value

of H0 given in Tab. 1.1.3-a we find the density parameter of radiation Ω
(0)
γ =

9.21× 10−5; the contribution of radiation is negligible at present time.
From the present-day values of the density parameters, and knowing how each

fluid dilutes (1.32), we can infer the composition of the Universe at any past time
as a function of the redshift z, see Fig. 1.1. We observe a succession of three
different ‘eras’, where the energy density of one fluid is orders of magnitude larger
than that of the others. First, we have the present-day dark-energy-dominated
era. Before that, we had a matter-dominated era and, even earlier, a radiation-
dominated era. We can compute the redshifts of transition between these different
eras by equating the density parameters of the relevant dominant contributions,
e.g. between dark energy and matter, to find the redshift at which the matter

5All quantities evaluated at present time will be shown with an exponent (0) or an index 0.
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Figure 1.1: Energy densities of the different constituents ρi as a function of the
redshift z in logarithmic scale. The dominant constituent is seen to vary with red-
shift. The dotted lines show the approximate transition redshifts given in Tab. 1.1.
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Figure 1.2: Evolution of the scale factor a(t) as a function of cosmic time t. The
dashed curve is obtained by numerically solving Eq. (1.28) backwards in time
starting from present-day values given in Tab. 1.1.3-a. The red curve shows the
piece-wise approximation computed in Eq. (1.40). The dotted lines show the ap-
proximate redshifts of transition given in Tab. 1.1.
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domination era ended. We have

zm =

[
Ω

(0)
Λ

Ω
(0)
m

]1/3
− 1 , (1.39a)

zeq =
Ω

(0)
m

Ω
(0)
γ

− 1 , (1.39b)

where zm (resp. zeq) is the redshift when the contributions of dark energy and
matter (resp. matter and radiation) are equal. This last time is often referred to
as ‘equality’ time, hence its label. The numerical values obtained using the values
of cosmological parameters given in Tab. 1.1.3-a are given in Tab. 1.1 Notice that
the curvature is measured to be negligible at present time. In fact, since its value is
currently small compared to that of matter and radiation, then it has always been
negligible and will always be. Indeed, as we go back in time to smaller values of
a(t), the contributions of matter and radiation grow faster than that of curvature,
respectively, as ρm ≈ a−3(t) for matter, and ργ ≈ a−4(t) for radiation, versus
ρK ≈ a−2(t) for curvature. In addition, since the budget is now dominated by dark
energy, whose energy density is constant, while curvature’s contribution dilutes, it
will not dominate in the future as well.

One may wish to describe the evolution of the composition of the Universe
as a function of cosmic time t, rather than as a function of the scale factor a.
That requires solving the dynamics of the scale factor a(t) as a function of t
given by Eq. (1.28). In the case where a single fluid X dominates and we can
neglect the other contributions in (1.28), the equation is easily solved. For a
collection of fluids, it can either be solved numerically or by assuming instantaneous
transitions between the different eras where a single fluid dominates the energy
budget. Following the second route, and requiring the scale factor a and the
overall energy density ρ to be continuous at the transitions6, we get a piece-wise
approximation of the dynamics. It reads

a(t)

a0
=





e−H0(t0−t) for t > tm ,
1

1+zm

[
1 + 3

2
H0 (t− tm)

]2/3 for tm > t > teq ,

1
1+zeq

[
1 + 2H0

(
1+zeq
1+zm

)3/2
(t− teq)

]1/2
for teq > t > tBB ,

(1.40)

where tm is the time when the contributions of dark energy and matter are equal,
and teq is the time of equality. tBB is the time of Big Bang defined by a(tBB) =
0. t0 − tBB is then the age of the Universe. We emphasise that the value of
these times depends on the precise dynamics of the scale factor. In the piece-wise

6Notice that by Eq. (1.28) it implies that H is continuous as well.
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approximation above, their expressions in terms of the redshift of transition can be
obtained by evaluating the above equations at transition time. Using the dynamics
of the scale factor in Eq. (1.40) and the dilution equation, Eq. (1.32), we get the
dynamics of the total energy density

ρ(t)

ρ
(0)
c

=





1 for zm ≥ z ,(
1+z
1+zm

)3
for zeq ≥ z ≥ zm ,(

1+zeq
1+zm

)3 (
1+z
1+zeq

)4
for z ≥ zeq .

(1.41)

This evolution of the scale factor and density from present time is plotted in
Fig. 1.2.

1.1.3-b Thermal history of the Universe
According to Eq. (1.40), as we go back in time, the scale factor decreases, and

the energy density of the fluids in the Universe increases, see Fig. 1.2. Earlier
times are therefore associated with larger energies. Generically we can associate
an energy scale E to a given total energy density ρ via [6]

E =
(
ℏ3c3ρ

)1/4
=
√
ℏ c
(
3H2M2

Pl

)1/4
=
(
24πH2

int
2
Pl

)1/4
MPlc

2 , (1.42)

where we have used Eq. (1.28) to rewrite the energy scale in terms of the Hubble
parameter and introduced the reduced Planck mass MPl =

√
ℏc/8πGN and Planck

time tPl =
√
ℏGN/c5 . In particular, notice that at a finite value of cosmic time

tBB, the scale factor vanishes so that the energy density of the fluids in the Universe
becomes infinite. This is the initial singularity in the Big Bang model. By analogy
with the form of the energy density of a single relativistic fluid in Eq. (1.38), and
neglecting the energy of curvature and of non-relativistic fluids, we can write [6]

ρ =
π2

30
g⋆(T )

(kBT )
4

(ℏc)3
, (1.43)

where T is a reference temperature (typically chosen to be that of photons Tγ),
and

g⋆(T ) =
∑

i

giXi

(
Ti
T

)4

, (1.44)

is called the effective number of degrees of freedom. The sum is over all the
fluids making up the budget of the Universe. Notice that here, different species of
particles would be treated as a separate fluid, e.g. proton and neutrons, and not
summarised in a common baryonic fluid. At early enough time, when the energy
is large enough, the constituents of the Universe were in thermal equilibrium in a
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primordial plasma at a common temperature T [6]. Then, g⋆ is just a weighted sum
of the degrees of freedom of the different fluids. Since the density of relativistic
species dilutes as a−4, Eq. (1.43) gives an inverse proportionality relation between
the temperature and the scale factor T ∝ a−1.7 Note that the energy scale E
of Eq. (1.42) is then proportional to the temperature. This allows us to discuss
the order of occurrence of the different events in the early Universe by referring
directly to the temperature and energy of the Universe at that time rather than
its redshift.

We follow closely the account of these events made in Chapter 3 of [6]. Unless
specified, the order of magnitude of the different quantities are also taken from
this reference. First, the proportionality coefficient in Eq. (1.43) is not strictly
a constant of time. The composition of the plasma changes, and so does g⋆(T ).
As the energy increases, atoms and nuclei are shattered by collisions with highly
energetic particles. Even the protons and neutrons are eventually shattered into
fundamental particles; the larger the energies of the collision, the larger the masses
of the particles that can be produced. Ultimately, when the temperature is around
100 GeV, the plasma contains all the fundamental particles of the Standard Model
of particle physics. They are then relativistic and at thermal equilibrium. If we
consider an extension of the Standard Model, such as Grand Unification Theo-
ries (GUT) [15], then at even larger temperature, around TGUT ≈ 1016 GeV for
GUT [5], other particles would also be present.

We here start our account of the events with Standard Model particles at equi-
librium. As temperature decreases, the heaviest particles stop being produced by
particle-antiparticle pair creation, and they gradually decay until we are only left
with electrons, positrons, protons, neutrons, photons, neutrinos and anti-neutrinos.
Initially, photons are trapped in the plasma due to Thompson scattering on elec-
trons, while neutrinos are trapped due to interaction via weak nuclear force. As
temperature drops, Tdec ν ≈ 1MeV the interaction rate of neutrinos with other
species Γν drops below the expansion rate H−1 leading to a decoupling of the
neutrinos from the plasma. Intuitively, the expansion is pulling away the reagents
too fast compared to their typical interaction time for them to have time to inter-
act. After decoupling, the neutrinos free-stream in the Universe. Therefore, the
hot Big Bang model predicts a background radiation of neutrinos emitted in the
early Universe. Since these neutrinos were at thermal equilibrium, this radiation
should be that of a black body at temperature (1 + zdec ν)

−1 Tdec ν ≈ 1.9K, where
we have redshifted it to its value at present time. Later, when the temperature
is below the MeV, around TBBN ∼ 0.1Mev [16], the so-called Big Bang Nucle-

7A more correct relation T ∝ g−1/3
⋆ (T )a−1 can be obtained by considering the total entropy

density [6]. The extra factor of g−1/3
⋆ accounts for species becoming non-relativistic, so that they

drop out of the sum Eq. (1.44), and transferring their entropy to other species.

33



osynthesis (BBN) [17] starts taking place i.e. protons and neutrons fuse to form
nuclei of the lightest atoms, essentially up to the lithium. Only a little bit later,
at Trec. ≈ 0.25 − 0.3 eV, did the free electrons start to combine with protons to
form actual hydrogen atoms. Then, since the photons were mainly interacting
with free electrons via Thomson scattering, the decrease in the density of free elec-
trons strongly reduced their interaction rate, eventually leading to their decoupling
from the plasma at Tdec ≈ 0.25 eV, and zdec = 1100. The hot Big Bang model
thus also predicts a background black-body radiation of photons at temperature
(1 + zdec)

−1 Tdec ≈ T
(0)
γ today.

1.1.3-c Experimental confirmation and validity of the Lambda-
CDM model

Several predictions of the hot Big Bang model described above have been tested.
We mention briefly a few of them in connection with the different aspects discussed
previously. First, we already mentioned in Sec. 1.1.2-b that the predicted dynam-
ical character of the distances in the Universe was observed as early as [12, 13].
Second, the model predicts the existence of two background thermal radiations,
one made of neutrinos and one of photons, emitted when these particles decouple
from the postulated primordial plasma. The Cosmic Neutrino Background (CνB)
has not been detected yet, as it is notoriously difficult to measure neutrinos, all
the more with such small energies. On the other hand, the Cosmic Microwave
Background (CMB) of photons, where microwave refers to the current wavelength
of these photons, was detected by Penzias and Wilson in 1965 [18, 19]. It was
increasingly better studied by several missions, culminating with the Planck satel-
lite [10]. The temperature of CMB photons is measured [14] to be T (0)

γ ≈ 2.7K, in
accordance with the prediction of the hot Big Bang model. The CMB is currently
the best window we have in the conditions of the very early Universe, and we
will come back to it repeatedly in the rest of this text. Third, the hot Big Bang
model, in combination with the standard model of particle physics, predicts the
abundance of the different elements produced during BBN. These predictions are
in excellent agreement with the abundance measured (except for the abundance
of Lithium, the so-called ‘cosmological lithium problem’) [16]. The hot Big Bang
model thus allows us to explain most of the cosmological observations consistently.
However, it requires the introduction of dark energy and dark matter, the micro-
physical nature of which remains elusive [20]. We briefly explain how observations
lead to the introduction of dark energy and dark matter in the model. In 1998,
the authors of [21, 22] extended the Hubble diagram to larger redshifts by mea-
suring the luminosity distance and the redshift of distant supernovae. Based on a
more general version of Eq. (1.24) valid for large redshifts and that parametrically
depends on the density parameters of the different fluids Ω

(0)
i , they demonstrated

that expansion accelerates and that some fluid behaving as a cosmological constant
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had to be introduced to account for it. This fluid is what we now refer to as dark
energy. On the other hand, the existence of dark matter can be seen as coming
from observations at three different scales [20]. First, at the galactic scale, where
the observed rotation curves of galaxies are in tension with Newtonian dynamics if
we consider that the galaxies are only made up of luminous matter. This problem
is solved by introducing supplementary matter, which is non-luminous, behaves
like a pressure-less fluid and interacts only gravitationally with ordinary matter.
Second, at the level of galaxy clusters, a comparison with total mass and lumi-
nous mass shows a deficit of gravitating mass that can be made up for by adding
dark matter. Finally, at cosmological scales, the measures of the CMB spectra
allow us to differentiate between ordinary and dark matter and to constrain their
abundances separately.

Despite its multiple successes, the hot Big Bang model cannot be valid until
arbitrarily large energies. At the very least, when energies are of the order of
the Planck Mass MPlc

2 ≈ 1019 GeV, we expect quantum gravitational effects to
become relevant, and Einstein’s equation should not be expected to be valid any-
more [23]. Therefore, if we wish to discuss the ‘initial conditions’ of the model, it
is appropriate to set them at energies lower than this Planck scale, but the precise
choice is arbitrary. In this manuscript, we choose to set the initial conditions at
a temperature close to these where the unification of the fundamental forces is
postulated TGUT ≈ 1016 GeV. We can compute the associated redshift using the
behaviour of the energy density in a radiation-domination era from Eq. (1.41) and
equating it to the energy density at GUT scale given by Eq. (1.43) evaluated at
TGUT. We take g⋆ (TGUT) ∼ 160, given for a GUT based on SU5 in [23], and find

zGUT = (1 + zeq)
1/4 (1 + zm)

3/4

(
ρGUT

ρtot

)1/4

− 1 ≈ 1029 . (1.45)

1.1.4 The hot Big Bang puzzles
Additionally, the hot Big Bang model still leaves unexplained a few observa-

tional facts; these are often referred to as the Big Bang puzzles.

1.1.4-a Horizon problem
First, the CMB is observed to be very isotropic ∆T/T ∼ 10−5 once the dipole

anisotropy of order ∆Tdip/T ∼ 10−3, attributed to the motion of the Solar system
with respect ot the CMB, is removed [24, 6]. A map of the CMB by Planck is
given for illustration in Fig. 1.3. However, based on the Lambda-CDM model,
any two points on this map separated by more than 1 degree should correspond
to regions that were causally disconnected at the time of emission. Indeed, at any
cosmic time t, two points are causally connected if they have been able to exchange
a photon since Big Bang time. The distance travelled by such a photon is called
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the particle horizon dH. Its value is computed by following a photon (which we
can always arrange to be radial) emitted at Big Bang time tBB and received at
time t

dH(t) = ca(t)

∫ t

tBB

dt′

a (t′)
. (1.46)

Assuming an instantaneous matter-radiation decoupling, all the photons received
from the CMB come from the same 3D sphere called the Last Scattering Surface
(LSS). If we consider the particle horizon at LSS time tLSS we have

dH (tLSS) =
c (1 + zm)

3/2

H0

(
2√

1 + zLSS
− 1√

1 + zeq

)
. (1.47)

We now compute the size of the particle horizon at LSS time using Eq. (1.47).
Given the current distance from us to LSS

dLSS = ca0

∫ t0

tLSS

dt′

a (t′)
=
c (1 + zm)

3/2

H0

[
2 (1 + zm)

2 + zm

(1 + zm)
3/2

− 2√
1 + zLSS

]
. (1.48)

Combining Eq. (1.47) and Eq. (1.48) we can compute the angular size separating
these two points on the CMB

δθH = arctan

[
dH(tLSS)

dLSS

]
≈

2√
1 + zLSS

− 1√
1 + zeq

2 (1 + zm)
2 + zm

(1 + zm)
3/2

− 2√
1 + zLSS

, (1.49)

where we expanded the arctan at first order, because the angle is small, and
computed all the other expressions using Eqs. (1.40). Using the values of Tab 1.1,
we find δθH ≈ 0.017 rad. ≈ 1 deg. as announced8. This corresponds to a solid
angle of 4π sin2 (δθH/4), that is, we have sin−2 (δθH/4) ≈ 50000 regions emitting
photons at nearly identical temperatures, while any non-adjacent ones have not
enjoyed any physical exchange allowing for equilibrium processes. We would then
have to impose by hand that the initial conditions in these different regions were
the same or accept that they have been set by processes violating causality. This
is the horizon problem.

1.1.4-b Flatness problem
A second puzzle comes from the low value of the spatial curvature density

parameter ΩK. Its value is constrained to be small today Ω
(0)
K = 0.0007 ± 0.0019

8For comparison, Moon’s angular size seen from Earth is 0.5 deg..
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and is compatible with 0. Nevertheless, as detailed above, the contribution of
spatial curvature to the energy budget is expected to grow with time compared to
that of matter and radiation. Therefore, the fact that curvature is negligible today
implies that it has to be fine-tuned to an even tinier value at earlier times. Using
Eqs. (1.40), we can compute the evolution of the Hubble parameter and so of the
critical energy density as well as the evolution of the curvature energy density. We
find that the density fraction of curvature reads

ΩK = Ω
(0)
K

(1 + zeq) (1 + zm)
3

(1 + z)2
for teq > t > tBB . (1.50)

We can then, for instance, evaluate the curvature density parameter at GUT scale
zGUT and we find ΩK (zGUT) ≈ 10−58. There is a large degree of arbitrariness in
the choice of considering this time rather than a later one. In any case, even if
evaluated at much lower energies, the fact still stands that the contribution of
curvature is tiny. One could argue that the curvature is simply vanishing K = 0
and that it is to be taken as another initial condition. However, as pointed out in
[23], the Universe is not exactly described by an FLRW metric, and so the spatial
curvature is not a parameter in the model that could be fixed to be vanishing by
some symmetry principle justifying that the effect is just not actually realised in
the physics we observe. FLRW is an effective description of spacetime on large
scales, and the value of the spatial curvature K is the result of some underlying
physical processes. It would thus be more satisfactory to see the flatness of the
Universe emerging as the result of a physical process. This is the flatness problem.

1.1.4-c Monopole problem
Finally, the non-observation of magnetic monopoles is also considered a short-

coming of the model. Although absent in the standard model of particle physics,
monopoles are present in high-energy extensions of it, e.g. Grand Unification The-
ories. They are expected to be produced in large numbers [25, 26, 27, 28] in the
early Universe when the energy densities get very large so that an observable num-
ber should persist until today. Monopoles form upon symmetry breaking when a
field transition from a ‘fake’ vacuum, which has become unstable, to a ‘true’ vac-
uum, which is stable. When this vacuum has residual symmetry, the field can be
found in different configurations of the new vacuum at different locations in space,
forming bubbles of different configurations. Topological defects then appear at the
boundaries between these bubbles, and monopoles are part of them. The transition
is a causal process, so the size of the region with a given field configuration cannot
exceed the size of the particle horizon at that time dH(tGUT). We can then put a
lower bound on the number density of the monopoles forming on the boundaries
of these regions nmon > dH(tGUT)

−3. Monopoles can only annihilate by combining
with anti-monopoles, and these interactions are expected to be rapidly suppressed
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by the expansion of space [25, 26] so that the number of monopoles is effectively
conserved until today. We can then compute the present-time density parameter
of monopoles

Ω(0)
mon = mmonc

2H
3
0

ρc

(1 + zGUT)
3

(1 + zeq)
3/2 (1 + zm)

9/2
, (1.51)

where mmon is the mass of a monopole. Taking mmonc
2 ≈ 1018 GeV and zGUT ≈

1029 we have Ω(0)
mon ≈ 1020 i.e. monopoles would largely dominate the energy budget

of the Universe today! We know it is not the case and that the energy budget is
dominated by dark energy. Worse, we have yet to observe any such monopole.
Searches for monopoles have constrained their number to 10−29 per nucleons [29,
30]. Taking all baryonic matter to be nucleons and assimilating all nucleons to
protons of mass mpc

2 = 938MeV we get a ratio of monopoles to nucleons of

ηmon/b =
Ω

(0)
mon

Ω
(0)
b

mp

mmon

≈ 2.5× 103 , (1.52)

more than 30 orders of magnitude larger than the experimental upper limit. GUT
models are then in clear tension with the standard hot Big-Bang model.

1.2 Cosmic Inflation

The idea of cosmic inflation appeared in the study of phase transitions in
the early Universe from GUT to the Standard Model [23, 32, 33]. Guth [23]
recognised that a period of exponential expansion in the early Universe was a way
to solve altogether the three puzzles of the Big Bang model that we detailed in
the previous sub-section, Sec. 1.1.4. Shortly after, Linde [32] and Albrecht and
Steinhardt [33] proposed a ‘new inflation’ model to solve some problems related to
the end of inflation in Guth’s original formulation. This section will present cosmic
inflation as a generic possible cosmic era outside its initial study context. First, in
Sec. 1.2.1, we show how a sufficiently long period of accelerated expansion solves
the Big-Bang puzzles. In Sec. 1.2.2, we then present a standard way to realise
inflation using a single field slowly rolling on top of its potential. In Sec. 1.2.3, we
show, considering cosmological perturbations, that cosmic inflation gives testable
and tested predictions for the statistics of inhomogeneities in the early Universe.
Finally, in Sec. 1.2.4, we say a few words about the connection between a period
of inflation and the standard succession of eras of the hot Big Bang model.

1.2.1 A solution to Big Bang puzzles
We had previously inferred from the present time values of the different density

parameters Ωi that the Universe was successively dominated by radiation, matter
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Figure 1.3: CMB map as measured by the satellite Planck [31]. In this map the
dipole, attributed to our peculiar velocity with respect to the CMB [24], and the
monopole, corresponding to the average thermal emission at T (0)

γ = 2.72548 ±
0.00057K [14], have been subtracted. This map shows the anisotropies of the
CMB which reflects the inhomogeneities in the underlying energy-matter content
of the Universe at the time of emission.
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and finally, dark energy. Let us introduce, during radiation dominated era, a
period when another perfect fluid X dominates the energy budget of the Universe
between tin and tf so that the scale factor dynamics is modified to

a(t)

a0
=





eH0(t0−t) for t ≥ tm,
1

1+zm

[
1 + 3

2
H0(t− tm)

]2/3 for tm ≥ t ≥ teq,

1
1+zeq

[
1 + 2H0

(
1+zeq
1+zm

)3/2
(t− teq)

]1/2
for teq ≥ t ≥ tf ,

1
1+zf

[
1 + 3

2
(wX + 1)H0

(
1+zeq
1+zm

)3/2 (
1+zf
1+zeq

)2
(t− tf)

] 2
3(wX+1)

for tf ≥ t ≥ tin,

1
1+zin

[
1 + 2H0

(
1+zeq
1+zm

)3/2

(
1+zf
1+zeq

)2 (
1+zin
1+zf

) 3
2
(wX+1)

(t− tf)
]1/2

for tin ≥ t ≥ tBB.

(1.53)

The evolution of the total energy density is accordingly changed to

ρ(t)

ρ
(0)
c

=





1 for zm ≥ z ,(
1+z
1+zm

)3
for zeq ≥ z ≥ zm ,(

1+zeq
1+zm

)3 (
1+z
1+zeq

)4
for zf ≥ z ≥ zeq ,

(
1+zeq
1+zm

)3 (
1+zf
1+zeq

)4 (
1+z
1+zf

)3(1+wX)

for zin ≥ z ≥ zf ,
(

1+zeq
1+zm

)3 (
1+zf
1+zeq

)4 (
1+zin
1+zf

)3(1+wX) (
1+z
1+zin

)4
for z ≥ zin .

(1.54)

Notice that the redshift z(E), associated with a certain energy scale E larger
than that of inflation, is now pushed to a larger value zinfl(E), to account for
the extra degree of expansion during inflation. The link between the two can be
obtained by equating the energy density of the Universe with and without the
inclusion of inflation using Eq. (1.41) and Eq. (1.54). We have

1 + zinfl (E) = [1 + z (E)] e
N
4
(1−3wX) , (1.55)

where we have introduced the number of e-folds

N = ln

(
1 + zf
1 + zin

)
= ln

(
af
ain

)
, (1.56)

as a measure of the duration of inflation. We will have to take this change into
account to keep fixing the initial condition at GUT scale, now corresponding to
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zinflGUT, to be consistent with our previous computations. We will see that if, during
this inflation period, the Universe undergoes an accelerated expansion, then we
can solve the three puzzles of the hot Big Bang model. The intuitive reason be-
hind it is that if we start from a locally homogeneous Universe over small regions
and blow up any of these regions to be the size of our observable Universe, then
the whole Universe will appear homogeneous. Additionally, even if initially spa-
tially curved, it will now appear flat as we have ‘zoomed in’ on a relatively small
section of it, making the curvature unnoticeable. Finally, suppose monopoles are
produced before or during this period of inflation, and their production rate is
small compared to that of expansion. In that case, their density is diluted down
to tiny values.

1.2.1-a Horizon problem
First, let us reconsider the particle horizon’s angular size today in the CMB.

Since the expansion history is unmodified until the radiation domination era, the
expression Eq. (1.48) of the co-moving distance to the LSS rLSS is unchanged.
Only the expression Eq. (1.47) of the particle horizon rH is modified to

dinflH (tLSS) =
c (1 + zm)

3/2

H0

{
2√

1 + zLSS
− 1√

1 + zeq

+

√
1 + zeq

1 + zf

1− 3wX

1 + 3wX

[
1−

(
1 + zf
1 + zin

) 3wX+1

2

]}
,

= dH (tLSS) +
c (1 + zm)

3/2

H0

√
1 + zeq

1 + zf

1− 3wX

1 + 3wX

(
1− e−

3wX+1

2
N
)
.

(1.57)

First, notice that if the radiation domination era is uninterrupted i.e. if the addi-
tional perfect fluid dominating from tin, to tf behaves as radiation i.e. wX = 1/3,
or if the duration of inflation is negligible N = 0, then the additional contribution
vanishes as it should. Second, for the angular size of the horizon to grow, we need
the fluid X to be less stiff than radiation, i.e. wX < 1/3, or else the contribu-
tion of the term is negative. In addition, if wX > −1/3, then the term in the
exponential is negative, and the term in brackets is bounded by one. The extra
contribution will then be negligible because it is suppressed by zf expected to be
larger than zBBN ∼ 109. On the other hand, if wX < −1/3, the contribution is
exponential in N . Then, if inflation lasts long enough, we can make the angular
horizon δθH defined in Eq. (1.49) arbitrarily large. For wX < −1/3, the second
Friedmann equation Eq. (1.29) shows that expansion accelerates. Thus, solving
the horizon problem requires a phase of accelerated expansion. How long should
this period last? Let us compute the modification induced by inflation to the size
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of the angular horizon at present

δθinflH = arctan

[
dinflH (tLSS)

dLSS

]
, (1.58)

≈ δθH +

√
1 + zeq

1 + zin

1− 3wX

1 + 3wX

eN
(
1− e−

3wX+1

2
N
)

×
[
2 (1 + zm)

2 + zm

(1 + zm)
3/2

− 2√
1 + zLSS

]−1

. (1.59)

We require that this size is larger than the celestial sphere i.e. δθinflH > 4π. Assuming
that the inflation starts around GUT scale zin = zinflGUT, and using Eq. (1.55), we
find a lower bound on the number of e-folds that inflation should last. Neglecting
δθH, and the 1 in front of the exponential, the condition reads

N > 1 +
4

1− 3wX

log

{
4π

[
2 (1 + zm)

2 + zm

(1 + zm)
3/2

− 2√
1 + zLSS

]
1 + zGUT√
1 + zeq

1 + 3wX

1− 3wX

}
,

≳ 4

1− 3wX

log

(
−10π1 + 3wX

1− 3wX

zGUT√
zeq

)
, (1.60)

where, in the second line, we have used the values of the different redshifts in
Tab. 1.1 to get a simpler estimate of the required number of e-folds. Although
the precise number depends on the details of the phase of inflation, in particular
on its energy scale, it only does so logarithmically so the order of magnitude will
not be modified. Using our estimate zGUT = 1029 and assuming that the phase of
inflation is powered by a cosmological constant-like fluid wX = −1, we get N ≳ 65.
We will find that roughly the same number of e-folds is required to solve the other
Big Bang puzzles.

1.2.1-b Flatness problem
We move on to compute how the curvature density fraction at early times is

modified when inflation is included. We had previously computed its value at a
certain energy scale in the early Universe and found it to be un-naturally small.
With the modified evolution, the curvature density parameter before inflation now
reads

ΩK (z) = Ω
(0)
K e(1−3wX)N (1 + zeq) (1 + zm)

3

(1 + z)2
for z ≥ zin. (1.61)

We want to allow the curvature to be of order unity before the period of inflation
starts and compute how much e-folds of inflation this requires. Starting inflation
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around GUT scale again we take ΩK
(
zinflGUT

)
≈ 1, which requires

N >
2

1− 3wX

ln

[
1

Ω
(0)
K

(1 + zGUT)
2

(1 + zeq) (1 + zm)
3

]
≈ 66 , (1.62)

which is almost the same duration as the one required to solve the horizon problem.

1.2.1-c Monopole problem
Finally, we review the monopole problem as well. We assume that the monopole

formed after a symmetry breaking before inflation proceeds. We can then repeat
the computations of Sec. 1.1.4 to have a lower bound on the density of monopoles,
and we have

Ω(0),infl
mon = mmonc

2H
3
0

ρc

(
1 + zinflGUT

)3

(1 + zeq)
3/2 (1 + zm)

9/2
e−

3
2
N(1−3wX) ,

= Ω(0)
mone

− 3
4
N(1−3wX) .

(1.63)

The estimate of the ratio of the number of monopoles to that of baryons changes
to

ηinflmon/b = ηmon/b e
− 3

4
N(1−3wX) . (1.64)

To agree with the current observations, we then have to require

N > −4

3

1

1− 3wX

ln

(
10−29

ηmon/b

)
. (1.65)

Evaluating this for a period of inflation powered by a cosmological constant-like
fluid, i.e. wX = −1, we find that N ≳ 25 e-folds of inflation are required, which
is the same order of magnitude found for the other problems. Again, changing
the fluid parameter wX , the energy scale of inflation by changing zin, or the scale
at which we fix the initial condition for curvature, would only marginally change
this result as the dependence is logarithmic. The outcome of these computations
is that a period of inflation lasting for roughly a 60 e-folds can simultaneously
solve the three Big-bang puzzles. This initially constituted the main motivation
to introduce such a period [23]. In the next sub-section Sec. 1.2.2 we demonstrate
a simple way to realise such a period of inflation.

1.2.2 Single field slow-roll inflation
We have effectively modelled inflation as the interruption of radiation domi-

nation era by a phase of domination by another fluid with an equation of state
parameter wX . We then showed that provided this domination is long-enough
and leads to an accelerated expansion, i.e. wX < −1/3, we can solve the three
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Big-Bang puzzles. We now refer to this period as (cosmic) inflation. We stress
that this requires the fluid to behave much differently from matter or radiation,
mainly to have a negative pressure. We now show a way to realise such a fluid. It
turns out to be sufficient to consider that this fluid is modelled by a scalar field φ
with a flat-enough potential V (φ) [32, 33], a scenario called single field slow-roll
inflation. They are other ways to realise inflation using multiple scalar fields [34],
but single field slow-roll inflation is perfectly compatible with observations, so in
the rest of this manuscript we will restrict to this simple scenario.

1.2.2-a Scalar field in FLRW
We consider the action of a scalar field minimally coupled to gravity with a

standard kinetic term

Sφ = −1

c

∫
d4x
√−g

[
1

2
gµν∂µφ∂νφ+ V (φ)

]
. (1.66)

The field φ will be referred to as the inflaton. We can compute the stress-energy
tensor of the field using the formula (1.11), details are given in Appendix B.1,

Tµν = ∂µφ∂νφ− gµν
[
1

2
gαβ∂αφ∂βφ+ V (φ)

]
. (1.67)

Imposing that the scalar field distribution is homogeneous and isotropic, the spatial
derivatives must vanish. We then find that the stress-energy tensor (1.67) assumes
the perfect fluid form of Eq. (1.27) for

ρ =
φ̇2

2c2
+ V (φ) , (1.68a)

p =
φ̇2

2c2
− V (φ) . (1.68b)

There is a priori no simple equation of state relating these two parameters,
and we have to solve for the dynamics of the fluid to find out how its energy and
pressure evolve as the Universe expands. Eq. (1.30), the conservation of the stress-
energy tensor Tµν , gives a first equation of evolution. For the scalar field, it gives
the curved spacetime form of the Klein-Gordon equation [35, 36]

□φ− V ′ (φ) c2 = 0 , (1.69)

where we introduced the d’Alembertian operator □ = gµν∇µ∇ν , and used the
relation

□φ = − 1√−g ∂µ
(√−g gµν∂νφ

)
. (1.70)
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valid for scalar fields. Notice the minus sign in Eq. (1.69) in the mostly pluses
signature convention. For the FLRW metric we have

φ̈+ 3Hφ̇+ V ′ (φ) c2 = 0 . (1.71)

The effect of the expansion appears in the friction term proportional to the Hubble
parameter. Assuming that the scalar field dominates the energy budget of the
Universe, Eq. (1.28), which now reads

H2 =
8πGN

3c2

[
φ̇2

2c2
+ V (φ)

]
, (1.72)

and Eq. (1.69) form a closed system of equations completely describing the dy-
namics of the scalar field once the potential V (φ) is fixed. It only features two
degrees of freedom so that initial conditions for the system are fixed by a choice of
the initial field value and of its derivative (φin, φ̇in), and the subsequent evolution
can be represented in a (φ, φ̇)-plane.

1.2.2-b de Sitter and slow-roll
In order to get an accelerated expansion of the Universe, Eq. (1.29) shows that

we have to require ρ+3p < 0, which translates for the scalar field in a domination
of the potential energy over the kinetic one

φ̇2 < V (φ) c2 . (1.73)

Intuitively, we need the field to evolve slowly in a region of large potential energy.
To solve the Big Bang puzzles, this regime should be sustained for at least 60 e-
folds. An important limiting case is when the kinetic energy is negligible compared
to the potential one V (φ)c2 ≫ φ̇2 in which case Eqs. (1.68a)-(1.68b) give p ≈ −ρ
i.e. w ≈ −1. In such phase the Hubble parameter is a constant H ≈ Hin and the
expansion is exponential a(t) = ain exp[H(t− tin)]; just as in the latest stage of the
evolution (1.40) when a cosmological constant dominate the energy-budget. The
geometry of spacetime is then that of a de Sitter Universe. We now consider the
possibility to realise inflation by a phase of quasi-de Sitter expansion. Indeed, in
a de Sitter spacetime, the exponential expansion never ends, while inflation ends
eventually at zf , and the Universe becomes radiation-dominated. Inflation can,
therefore, only be close to a de Sitter expansion phase for a finite duration. We
will require this phase to be long enough and parameterise the deviations from
such a situation. To that end, we introduce the hierarchy of Hubble flow functions
{ϵn} defined by

ϵn+1 =
d ln |ϵn|
dN

, (1.74)
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where ϵ0 = Hin/H and the number of e-folds is computed from the start of inflation
N = ln(a/ain). In de Sitter ϵ0 = 1 and all the other flow functions vanish. Close
to de Sitter we have ϵ0 ≈ 1, and for this regime to persist over a few e-folds,
we need this slow-roll parameter not to vary much i.e. ϵ1 = d ln|ϵ0|

dN
≪ 1. We can

iterate this reasoning and require all flow functions n ≥ 1 to be small ϵn ≪ 1.
All flow functions in the hierarchy are of the same order. These are the slow-
roll conditions, and the flow functions are often called the slow-roll parameters.
Satisfying the slow-roll conditions imposes constraints on the initial conditions and
the potential’s form. We illustrate that by computing the two first flow functions.
The first one reads

ϵ1 = −
Ḣ

H2
= 1− ä

aH2
= 3

φ̇2

2c2

φ̇2

2c2
+ V (φ)

, (1.75)

where we have used Friedmann equations to express Ḣ in terms of the kinetic
energy of the field

Ḣ = −4πGN

c4
φ̇2 . (1.76)

Notice that the Hubble parameter can only decrease Ḣ < 0, so ϵ1 > 0. Since
inflation happens when ä > 0, the second equality shows that the condition for
inflation is ϵ1 < 1. Inflation ends for ϵ1 = 1. On the other hand, the slow-roll
condition ϵ1 ≪ 1, required to be close to de Sitter, is stronger than requiring
inflation. The kinetic energy must be negligible compared to the potential one,
not only smaller. Similarly, the second flow function can be expressed as

ϵ2 = 6

[
ϵ1
3
− 1− V ′ (φ) c2

3Hφ̇

]
. (1.77)

Since ϵ1 ≪ 1 and ϵ2 ≪ 1, we get the relation

φ̇ ≈ −V
′ (φ) c2

3H
. (1.78)

This last relation corresponds to neglecting φ̈ in the Klein-Gordon equation (1.69).
It reduces the dynamics to a first-order equation, thereby reducing the space of
allowed initial conditions to a choice of φin rather than a couple (φin, φ̇in). In the
slow-roll regime, Eq. (1.78) can then be used to re-express the flow functions in
terms of the derivative of the potential. We have

ϵ1 ≈
φ̇2

2V (φ) c2
=

c4

16πGN

(
V ′

V

)2

, (1.79)
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where we have used the first Friedmann equation in the slow-roll limit

H2 ≈ 8πGN

3c2
V (φ) . (1.80)

The second flow function can similarly be written in terms of the derivatives of
the potential. We can approximate φ̈ by taking the time derivative of Eq. (1.78)
and use Eq. (1.69) and Eq. (1.80) to get

ϵ2 ≈
c4

4πGN

[(
V ′

V

)2

− V ′′

V

]
. (1.81)

To summarise, Eqs. (1.79-1.81) formalise our intuition that the potential should be
flat enough in some regions to sustain a slow-roll evolution, and Eq. (1.78) singles
out a specific trajectory, i.e. specific initial conditions in this region, for potential
energy to dominate over kinetic energy. The conjunction of these two conditions
is a generic feature of the slow-roll solution [37] that we have illustrated at leading
order in the slow-roll parameters. Generically [37], for a given potential, one can
construct order by order an analytic solution of the equations of motion that will
satisfy the slow-roll conditions. The series converges towards a single trajectory in
the phase-plane (φ, φ̇), the slow-roll solution. An essential feature is that, when the
potential supports inflation, the different trajectories in this phase-space will get
closer exponentially fast in the number of e-folds. Therefore, provided we consider
a scenario with more than a few e-folds of inflation, the slow-roll approximation
will be a good approximation of the dynamics of the field irrespective of the initial
conditions at the start of inflation; it is an attractor solution. This property
makes slow-roll inflation partially immune to fine-tuning problems in the initial
conditions. The slow-roll approximation is then a powerful method to compute
analytically, with an arbitrary level of precision, an inflationary trajectory with
somewhat generic properties.

In order to illustrate the described inflationary dynamics and its slow-roll be-
haviour, we briefly study the case of R2 inflation, also known as Starobinsky in-
flation [38]. Similar computations for other common inflationary models can be
found in [39]. The potential of this model reads

VS (φ) =
3

4

(
mc√
κ ℏ

)2
[
1− exp

(
−
√

2

3

√
κ φ

)]2
, (1.82)

where κ = 8πG/c4. The computation details for this case are given in Ap-
pendix B.2. For the potential of Eq (1.82), the slow-roll conditions are satisfied
in the large field regime

√
κ φ ≫ 1. In Fig. 1.5, the trajectories are shown to get

close to the slow-roll trajectory in this regime, illustrating the attractor property.
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Figure 1.4: Evolution of the field φ, its time-derivative φ̇ and the first flow function
ϵ1, as a function of the number of e-folds N in R2-inflation with potential (1.82).
Inflation is taken to start at N = 0 where

√
κ φin = 5.5 while φ̇in is given by

Eq. (1.78) evaluated at first order in slow-roll. For these values, the end of inflation
ϵ1 = 1 is reached after N = 64 e-folds, compatible with the estimate from the first-
order slow-roll Ne − 3

4
−
√

3
4
≈ 65.
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Figure 1.5: Trajectories in the phase-plane (φ, φ̇) in R2-inflation with poten-
tial (1.82). The red lines show the exact trajectories obtained by numerically
solving Eq. (1.69) and Eqs. (1.72) for different initial conditions. The green line
shows the slow-roll trajectory evaluated at first-order, see Eq. (4.25). The grey
areas correspond to ϵ1 ≤ 1 i.e. values for which inflation proceeds. Once they leave
the slow-roll attractor, the trajectories spiral towards the origin of the figure. This
corresponds to the oscillations of the field, damped by Hubble friction, which can
lead to preheating, see Sec. 1.2.4.
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Defining the number of e-folds to be 0 at the start of inflation N = ln (ain/a) and
the initial value of the field to be φin, the equation of motion is easily integrated to
find the evolution of the field as a function of the number of e-folds at first order
in slow-roll

φ (N) =

√
3

2

1√
κ

ln

[
4

3
(Ne −N)

]
, (1.83)

where
Ne =

3

4
e
√

2
3

√
κ φin. . (1.84)

Using the slow-roll approximation to find when ϵ1 reaches unity, we find that
inflation lasts approximately ∆N = Ne− 3

4
−
√

3
4

, a value controlled by the field’s
initial value. Comparing with the exact evolution of ϵ1 shown in Fig. 1.4, it is seen
to be a good approximation.

The energy scale of inflation is given by the value of the potential . Using
Eq. (1.42), and evaluating the energy at the beginning of inflation, we find

Einfl ≈
√

m

MPl

(
3

4

)1/4

MPlc
2 , (1.85)

making it obvious that the mass scale m in the potential controls the energy scale
of inflation. For Starobinsky inflation, the field’s initial value is decoupled from
the energy scale. We can tune the duration of inflation to be long enough to
solve the Big Bang puzzles without requiring that the energy scale of inflation is
super-Planckian Einfl > MPlc

2, a regime in which our classical description is not
expected to be accurate anymore. In Figs. 1.4 and 1.5, we chose m such that
Einfl = EGUT, also used for illustration when considering Big-Bang puzzles, and
chose the initial value of the field accordingly in order to have roughly 65 e-folds
of inflation. Therefore, we have constructed an explicit example of a model of
inflation able to solve the Big Bang puzzles without requiring super-Planckian
energies or fine-tuning in the initial values of the field. Many such models exist,
but they are constrained by the observed properties of inhomogeneities in the early
Universe. We review these aspects in the next sub-section Sec. 1.2.3.

We close this sub-section by pointing out that the inflationary scenario we
presented is not devoid of problems. For instance, although the attractor property
removes some degree of fine-tuning in the initial conditions, we still have assumed
that the inflaton field, and so Universe was homogeneous before inflation starts. If
for inflation to start, we need to require that the Universe is homogeneous across
a-causal scales, then we have not solved the Horizon problem. The intuition here is
that we only need to require homogeneity initially over a small patch, which is then
inflated to our whole observable Universe. Numerical simulations have analysed
the beginning of inflation in an inhomogeneous Universe, e.g. [40, 41, 42, 43, 44, 45],
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showing that, under certain conditions, in large field models, inflation can start
even in a very inhomogeneous environment, see however [45]. We refer to [46, 6]
for a discussion of this initial condition problem and others.

1.2.3 Inhomogeneous Universe

In the previous sections, we have only discussed the physics of a homogeneous
Universe. Although on very large scales, when coarse-graining the distribution of
matter, the Universe appears isotropic, it is only an approximation. On smaller
scales, the Universe is obviously inhomogeneous, being made up of galaxy clusters
separated by large voids. Soon after the first papers on cosmic inflation as a solu-
tion to Big Bang puzzles, it was realised that inflation also offers a mechanism for
generating primordial inhomogeneities. In [47], Mukhanov and Chibisov proposed
that quantum fluctuations amplified by an intermediate stage of de Sitter expan-
sion could explain inhomogeneities in the Universe. Their work was independent
of that of other authors working on inflation. They were building on the work
of Starobinsky [38], who showed that quantum-corrected Einstein’s field equation
admitted a non-singular de Sitter Universe as a solution. This work provided
the basis for R2-inflation used as an example in the last sub-section, Sec. 1.2.2.
The analysis of matter inhomogeneities in the context of inflation was first done
by [48, 49, 50, 51, 52]. The generation of gravitational waves in the context of
inflation was first considered in [53], see Sec. 2.2 for more details. In this sub-
section, we start by briefly explaining how to describe small inhomogeneities in
cosmology. The CMB’s temperature anisotropies are measured to be of order
δT/T ∼ 10−5 [31], which directly reflects the small degree of inhomogeneities at
LSS time [54]. We expect the inhomogeneities to be even smaller during inflation,
which proceeded earlier, so the perturbative treatment should be perfectly valid
then. In this sub-section, we will show how a quantum theory of inflation can pre-
scribe some initial conditions for structure formation, which were observationally
confirmed and allow us to constrain the specifics of the inflationary model.

1.2.3-a SVT decomposition

To account for the presence of inhomogeneities, we need to go beyond the de-
scription of the Universe in terms of the FLRW metric Eq. (1.17). In the standard
structure formation scenario, small primordial inhomogeneities are gradually am-
plified by gravitational collapse. In this work dealing with early Universe physics,
we restrict attention to the early phase of this process when the inhomogeneities
are still small compared to the background densities. For this exposition, we fol-
low the conventions and discussion of [55], except that we use the mostly-pluses
convention for the signature. We start by considering perturbations around the
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flat K = 0 FLRW metric

ds2 = a2(η)
[
−c2 (1 + 2ϕ) dη2 + 2Bidx

idη +
(
γij + Eij

)
dxidxj

]
, (1.86)

where we work with 3D Cartesian coordinates xi, γij is the Euclidian three-
dimensional metric in Cartesian coordinates. We have introduced the conformal
time η related to cosmic time by a2(η)dη2 = dt2. During inflation the conformal
time is negative η < 0, and the end of inflation corresponds to η → 0−. There are
10 perturbations parameterised by ϕ, the spatial vector Bi and the spatial 2-tensor
Eij . It is useful to perform a scalar-vector-tensor (SVT) decomposition of these
perturbations. We decompose each of these terms in objects having a well-defined
transformation under the group of 3D spatial rotations, which is a symmetry of
the (flat) background metric. To avoid confusion, we will refer to these objects
as helicity scalar-vector-tensors [56, 57]. Therefore, although Bi transforms as a
vector under a change of coordinates, we can decompose it in a helicity scalar and
a helicity vector as

Bi = Si − ∂iB , (1.87)
where B is an helicity scalar and Si is a divergence-free helicity vector ∂iSi = 0.
Eq. (1.87) is nothing else than the Helmholtz decomposition of a vector. We have
a similar decomposition for the tensor

Eij = −2ψγij + 2∂i∂jE + 2∂(iFj) + hij , (1.88)

where ∂(iFj) = (∂iFj + ∂jFi) /2 is the symmetrised derivative. In this decompo-
sition ψ and E are helicity scalars, Fj is an helicity vector and hij an helicity
tensor. We have ∂iFi = ∂ihij = 0 and the tensor is trace-less hii = 0. We go to
Fourier space to see the effect of rotations on these objects. For any wave-vector
k, the divergence-free condition reads kiSi(k) = 0 i.e. Si(k) is transverse, while
∂iB(k) ∥ k. Then under a rotation R(θ) around the direction k, ∂iB(k) will be un-
affected, while Si(k) will be rotated. In the helicity basis [56, 57] it would pick up
a factor of e±iθ. This justifies the terminology of helicity SVT. The same reasoning
applies to the components of Eij in Fourier space where hij(k) would instead pick
up a factor of e±2iθ in the helicity basis. In total we have four scalars ψ, ϕ, B,
E, two vectors Si, Fi, and one tensor hij. No vector perturbations are produced
during inflation, and any pre-existing ones would quickly decay [58]. They are thus
conveniently ignored in the rest of this text. We can repeat the SVT decomposition
for the energy-momentum tensor by perturbing that of a perfect fluid. The two
sets of perturbations are related by the perturbed Einstein field equations, which,
combined with the perturbed conservation equation, give the equations of motion
of the perturbations. We will not discuss the general case here and refer to [55]
for details. The main purpose of the SVT decomposition is that scalar, vector
and tensors do not mix in the equations of motion at linear order in perturbation
theory, see Appendix A of [57] for a proof.
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1.2.3-b Gauge invariant variables
There are some ambiguities in the definition of these perturbations. General

covariance is a basic property of General Relativity, and equations are generally
formulated in a covariant way. This symmetry under coordinate transformations
is broken in cosmology by working in coordinates where the distribution of matter
is homogeneous and isotropic. Still, we could work with coordinates where the
same Universe would no longer look homogeneous. For instance, starting from
coordinates where the metric reads as in Eq. (1.17), consider a small shift of the
original spatial coordinates x̃i = xi + ξi(η,x). The metric reads

ds2 = a2(η)
(
−c2dη2 + γijdx

idxj
)
,

= a2(η)
{
−c2dη2 − 2ξ′idx̃

idη +
[
γij − 2∂(iξj)

]
dx̃idx̃j

}
.

(1.89)

where ′ denote derivatives with respect to conformal time η. In the new coordi-
nates, the metric looks like a perturbed FLRW metric, and a direct comparison
with the ansatz (1.86) gives non-vanishing values for the perturbation parameters.
These perturbations are spurious since the Universe is still manifestly homoge-
neous by adopting the right system of coordinates (the old ones). This illustrates
the gauge dependence of the perturbations and of the quantities ϕ,Bi,γij and Eij.
To avoid mistaking an effect of coordinate choice for a true deviation from FLRW,
we can introduce gauge-invariant combinations of them. To build them, one should
consider how each type of perturbation transforms under a small coordinate change
x̃µ = xµ + ξµ(η,x). In general, it is found that the transverse trace-less pertur-
bations hij are gauge-invariant and that two gauge-invariant scalars, the so-called
Bardeen variables [59], can be constructed

Φ(B) = ϕ−H (B − E ′) + (B − E ′)
′
, (1.90a)

Ψ(B) = ψ −H (B − E ′) , (1.90b)

where H = a′/a. We are interested specifically in the case of single field inflation
where the situation is simpler and these two variables are equal Ψ(B) = Φ(B) [55].
Additionally, the perturbations around the background trajectory φ0(η) of the field
φ = φ0(η) + δφ(η,x) only leads to scalar perturbations that can be gathered with
metric perturbations in the gauge invariant combination [55]

δφ(gi) = δφ+ φ′
0 (B − E ′) . (1.91)

The scalar field perturbation δφ(gi) and the Bardeen variable Ψ(B) are related by
the perturbed Einstein equation

HΦ(B) + Φ′
(B) =

κ

2
φ′
0δφ(gi) (1.92)
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It is found after lengthy computations [55] that the perturbed actions of Einstein-
Hilbert and of the scalar field can be rewritten over a single scalar quantity v,
called the Mukhanov-Sasaki variable [47, 60], which is a combination of these two

v = a
[
δφ(gi) + zΦ(B)

]
, (1.93)

where

z =
aφ′

0

H = a

√
2ϵ1
κ

. (1.94)

We use the fraktur font z to distinguish this quantity from the redshift z. The
perturbed action reads [55]

δ(2)SS =
1

2c3

∫
d4x

[
(v′)

2 − γijc2∂iv∂jv +
z′′

z
v2
]
,

=
1

c2

∫
dη

∫

R3+

d3k

[
v′kv

′
−k − c2k2vkv−k +

z′′

z
vkv−k

]
,

(1.95)

where in the second line we transformed the action to Fourier space

v (x, η) =

∫
d3k

(2π)3/2
eik.xvk (η) , (1.96)

and folded the integration over R3+ = {k|kz > 0}. Since v is real, we have v⋆−k = vk.
It is more convenient to work in Fourier space because, at the linear level in
perturbation theory, different pair of modes ±k evolve independently as seen from
Eq. (1.95). The case of tensor perturbations is studied in detail in [1] reproduced
in Sec. 2.2, where the perturbed action is derived, and their evolution is followed
during inflation and after. We thus only quote relevant results for comparison with
the scalar case. First, the tensor perturbations hij can be decomposed in two real
scalar fields µλ, representing its two polarisations ± in helicity basis, via

hij(x, η) =
√
32πGN

∑

λ=±

∫
d3k

(2π)3/2a(η)
ε
(λ)
ij (k̂)µλ(k, η)e

ik·x , (1.97)

where ε(λ)ij (k̂) is the polarisation tensor for a wave in the direction k̂ defined in
Sec. 2.2. Using this expansion, the perturbed Einstein-Hilbert action for the tensor
sector reads

δ(2)St =

∫
dη
∑

λ=±

1

2

∫
d3x

[
(µ′

λ)
2 − c2γij∂iµλ∂jµλ +

a′′

a
µ2
λ

]
,

=

∫
dη
∑

λ=±

∫

R3+

d3k

[
µ′
λ (k)µ

′
λ (−k)−

(
c2k2 − a′′

a

)
µλ (k)µλ (−k)

]
.

(1.98)
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It is made of two copies of the action of scalar perturbations, up to the substitution
z→ a. Finally, although the Mukhanov-Sasaki variable v allows having the most
compact form for the equations of motion, δφ loses its meaning after inflation so
that the definition Eq. (1.93) is not valid anymore9. A convenient quantity to work
with is ζ defined as

ζ =
2

3

H−1Φ′
(B) + Φ(B)

1 + w
+ Φ(B) , (1.99)

where w = ρ/p is the effective equation of state parameter for the total pressure
and energy density. The definition (1.99) only contains geometrical quantities
and is therefore valid in any background spacetime, in particular when entering
radiation domination at the end of inflation. During inflation, ζ can be related to
the Mukhanov-Sasaki variable. First, using the expression of energy and pressure
density Eqs. (1.68a)-(1.68b) and the definition of the first slow-roll parameter
Eq. (1.75), we find

winfl =
2

3
ϵ1 − 1 . (1.100)

We then use the perturbed Einstein equation Eq. (1.92) and the definition Eq. (1.99)
to get the simple relation

ζ =
v

z
. (1.101)

A crucial property of ζ is that when a single perfect fluid dominates, e.g. during
inflation or radiation domination, it is conserved on large scales [52, 55, 61]. It thus
allows smoothly connecting the evolution of gravitational potentials from inflation
to later times, for example at LSS, and to compute the CMB power spectrum.
The fluctuations of temperature measured in the CMB photons are related to
Bardeen potentials by the Sachs-Wolfe effect [54], which is directly connected to ζ
by definition. Similarly, the physical quantity to compute for tensor is hij rather
than µλ. However, being intrinsically geometrical, they are always well-defined
and differ merely by a factor of a.

1.2.3-c Evolution of inflationary perturbations
We will now solve the equations of motion and describe the evolution of the

perturbations during inflation. The equation of motion of the scalar perturbation
is straightforwardly derived from the action (1.95)

v′′±k +

(
c2k2 − z′′

z

)
v±k = 0 . (1.102)

It is the equation of an oscillator with a time-dependent frequency

ω2
k S = c2k2 − z′′

z
. (1.103)

9Another definition valid for a perfect fluid can be given [55].
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The behaviour of the mode k will be different when ω2
k S is positive or negative.

When ω2
k S > 0, we expect the mode to oscillate, and when ω2

k S < 0, we expect the
mode to be amplified. To understand the evolution of z′′/z, we will work again in
the slow-roll approximation where the background is a quasi-de Sitter expansion.
We express the time-dependent part of the frequency in slow-roll parameters

z′′

z
=
a′′

a
+
ϵ2
2

(
a′′

a
+H2

)
+
H2

2

(
ϵ2ϵ3 +

ϵ22
2

)
. (1.104)

The terms a′′/a and H must also be expanded in slow-roll parameters to be con-
sistent. To understand the mode evolution qualitatively, let us first consider the
de Sitter case, where the flow functions vanish. We have a = −1/Hη, then
z′′/z = a′′/a = 2/η2. First, notice that, in de Sitter, the frequency for scalar
and tensor perturbations coincide10. Second, the sign of ω2

k S is then directly ob-
tained by a comparison between the physical size of the Hubble radius c/aH = −cη
and the wavelength of the mode k−1. When the mode is super-Hubble i.e. its wave-
length is larger than the Hubble radius, then k (aH)−1 = −ckη ≪ 1 and ω2

k S is
negative: the mode is amplified. On the other hand, when the mode is sub-Hubble
then k (aH)−1 = −ckη ≫ 1 and the mode oscillates ω2

k S > 0. Since the physical
size of the Hubble radius decreases as time passes, more modes k will become
super-Hubble and be amplified during inflation. The picture is similar in slow-roll,
but the amplification condition must be corrected to include the slow-roll param-
eters and have a precise estimate of the amount of amplification undergone by a
mode. Let us follow the evolution of one mode k which is initially sub-Hubble.
Starting in the regime c2k2 ≫ z′′/z, since ωk S ≈ ck, we have

vk (η) ≈ Ake
ickη +Bke

−ickη , (1.105)

where Ak and Bk are two constants fixing the initial conditions for the evolution
of the mode. Then in the regime c2k2 ≪ z′′/z where ωk S ≈ z′′/z, we have the
following general solution

vk (η) ≈ αkz (η) + βkz (η)

∫ 0

η

dη′

z2 (η′)
, (1.106)

where αk and βk are two complex coefficients. Dividing by z, we find the corre-
sponding super-Hubble expression for ζ

ζk ≈ αk + βk

∫ 0

η

dη′

z2 (η′)
. (1.107)

10This is a general feature of power law inflation models of which de Sitter is a special case [39]
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Since z2 > 0, the second term will decay; it is called the decaying mode. In
contrast, the first term is a constant and is called the growing mode. As announced
when introducing it, we find that ζ goes to a constant ζk ≈ αk when η → 0− on
large scales. Therefore, to connect computations made for v during inflation to
CMB observations, we only need to extract the value αk from the evolution of the
Mukhanov-Sasaki variable. This is done by continuously joining the two solutions
given in Eq. (1.105) and Eq. (1.106) in the regime c2k2 ≈ z′′/z. The number of
e-folds corresponding to this regime depends on the scales considered. We here
are interested in the range of modes k corresponding to that measured by CMB
experiments like Planck. By tracing back the evolution of their physical size from
today to the inflationary period, we can estimate (assuming certain values for
energy scale of inflation and reheating) that they crossed out the Hubble radius
from 60 to 53 e-folds before the end of inflation [62]. In the next part Sec. 1.2.3-
d, we first fix the initial conditions to derive the coefficients Ak and Bk. We
then compute an approximate solution for the evolution of the Mukhanov-Sasaki
variable valid during this period of 7 e-folds and extract from it the αk coefficient
of Eq. (1.107).

1.2.3-d Quantum initial conditions for structure formation
A good way to characterise the properties of the observed CMB temperature

fluctuations δT/T is to view them as the result of a random process. Intuitively,
each patch of a large enough size in a given direction n̂ is considered as an indepen-
dent realisation of the process δT/T (n̂) [63]. We can then deduce the statistical
properties of the underlying process by computing n-point correlation functions.
Following this strategy, it is found [64] that the fluctuations are Gaussian within
an excellent approximation i.e. all the information is contained in the 2-point cor-
relation function also known as the power spectrum ⟨δT/T (n̂)δT/T (n̂′)⟩. These
correlation functions are usually decomposed in spherical harmonics to be anal-
ysed and are related to that of curvature perturbations ⟨ζkζk′⟩ by the Sachs-Wolfe
effect [54]. In this picture, the curvature perturbations are also seen as a result of
an initial random process, the characteristics of which are fixed by the initial con-
ditions. These conditions are fixed in the very early Universe at the beginning of
inflation, where the energy scale at play, e.g. around the GUT scale, makes the de-
scription of matter in terms of quantum fields relevant. We can therefore consider
a quantum version of the scalar field theory developed so far. The quantisation
procedure is reviewed in detail in [1], reproduced in Sec. 2.2, for the tensor per-
turbations. The procedure for scalar perturbations proceeds in the same fashion;
we do not detail it here. However, for completeness, we present the conclusions of
the quantisation procedure for both scalar and tensor. Our goal in this part is to
derive the standard results for the spectra of the tensor and scalar perturbations,
which can be compared to cosmological observations. The quantum aspects of
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the perturbations are one of the two topics of this manuscript, and we relegate
in-depth discussions of the quantum aspects to later sections.

First, the Mukhanov-Sasaki variable is promoted to an operator v̂k whose
canonically conjugated operator

p̂±k = v̂′±k , (1.108)

is computed from the action Eq. (1.95), and we impose canonical commutation
relation

[v̂k, p̂k′ ] = iℏδ (k + k′) . (1.109)

Using these operators, we can compute quantum expectation values for the dif-
ferent quantities, e.g. ⟨ζ̂(x, η)ζ̂(x′, η)⟩. They would match the average value of
the quantity if we measured it repeatedly after having prepared the state multiple
times with the same initial conditions. However, we have only access to a single
realisation of our Universe. Still, under an ergodicity assumption [63], these quan-
tum expectation values are assumed to match the measured statistical expectation
values computed over different patches of the Universe at that time. To compare
them with the correlation functions measured in the CMB, the expectation values
at the end of inflation have to be evolved to LLS time. This evolution is sum-
marised in transfer functions [6]. Using this correspondence, we have to compute
the quantum evolution of the operators and evaluate their expectation values at
the end of inflation. For that, we can easily compute from Eq. (1.95) the Hamil-
tonian of the theory. As the action is quadratic, and only mixes the modes ±k,
we restrict to a pair of modes

Ĥ±k,S = p̂kp̂−k +

(
c2k2 − z′′

z

)
v̂kv̂−k , (1.110)

and write the associated Schrödinger equation. To solve this equation, we are
then back to the problem of specifying the initial conditions. The simplest and
minimal choice we can make is that initially, there were only vacuum fluctuations.
When a mode k is very sub-Hubble ckη → −∞ it does not feel the expansion of
spacetime, and the quantisation procedure is that of a simple harmonic oscillator
of frequencies k. We can introduce the standard creation/annihilation operators

v̂k (−∞) =

√
ℏc
2k

[
âk (−∞) + â†−k (−∞)

]
, (1.111a)

p̂k (−∞) = −i
√

ℏk
2c

[
âk (−∞)− â†−k (−∞)

]
. (1.111b)

The vacuum state in the sub-Hubble limit is then defined as the state annihilated
by both operators â±k (−∞) |0⟩±k, and is a well-know Gaussian wave-function,
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see Sec. 2.2. Evolving the mode under the quadratic Hamiltonian (1.110) from
this initial Gaussian vacuum state preserves the Gaussianity of the wave function.
The expectation values will then satisfy the observed Gaussian character of the
correlation functions. The choice of initial vacuum state for all modes k in the sub-
Hubble regime is called the Bunch-Davies vacuum [65]. Working in the Heisenberg
picture, the evolution can be summarised using a mode function uk, such that

v̂ (x, η) =

∫
d3k

(2π)3/2

[
eik.xuk (η) âk (−∞) + e−ik.xu⋆k (η) â

†
k (−∞)

]
. (1.112)

Using Eq. (1.112), one can show that v̂ is a solution of the Heisenberg equation if
and only if the mode function uk is a solution of the Mukhanov-Sasaki equation,
Eq. (1.102). We have then reduced the quantum evolution to the classical one.
Note that this reduction is a general feature of the evolution under a quadratic
Hamiltonians, see Sec. 2.2. The considerations of Sec. 1.2.3-c on the evolution
of the classical solution vk are then mapped completely to the mode function uk.
Recall that, to solve the dynamics, we have to first find the coefficients in the sub-
Hubble limit Eq. (1.105), fixing the initial conditions, and then join the obtained
sub-Hubble solution to the super-Hubble one in the regime k2 ≈ z′′/z. First, the
initial conditions are uniquely fixed by choice of the Bunch-Davies vacuum as an
initial state. It imposes that the mode function uk matches in the asymptotic past
ckη → −∞ the Minkowski mode function i.e.

uk −−−−−→
ckη→−∞

√
ℏc
2k

e−ickη . (1.113)

Comparing with Eq. (1.105) it fixes the coefficients to be Ak =
√

ℏc/2k and
Bk = 0. The quantum origin of the perturbations is then reflected in the k-
dependence, which is that of the quantum vacuum. Second, to connect with the
super-Hubble solution, we have to solve the Mukhanov-Sasaki equation Eq. (1.102)
in the regime k2 ≈ z′′/z with these initial conditions in the past. In general, the
expression of z′′/z given by Eq. (1.104) is too complicated to solve the equation
when the flow functions are time-dependent. However, their evolution is itself slow-
roll suppressed. Therefore, if we focus on a narrow enough time window around
a reference time η⋆, we can Taylor expand the flow functions. Since we focus on
CMB scales, we consider a typical pivot scale k⋆ and define its Hubble crossing
time by η⋆ such that a⋆H⋆ = ck⋆. We denote by a ⋆ quantities evaluated at η⋆.
We Taylor expand the flow-function about η⋆

ϵn (η) = ϵn⋆
{
1 + ϵn+1⋆ (N −N⋆) +O

[
(N −N⋆)

2 ϵ2n
]}

. (1.114)

All other CMB scales k ̸= k⋆ will exit the Hubble radius at times η such that
|N − N⋆| ≈ 3.5 [62]. Since we expect ϵ1(η⋆) ≪ 1, the expansion is expected to
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be valid for a sufficiently large time window to describe all CMB scales. To solve
the dynamics, we first compute the dynamics of the scale factor at first order in
slow-roll. By definition of the first slow-roll parameter, we have

H ≈ −1

η
(1 + ϵ1⋆) , (1.115)

which, by integration, gives

ln

(
a

a⋆

)
= − (1 + ϵ1⋆) ln

(
η

η⋆

)
. (1.116)

Using H⋆ ≈ −(1 + ϵ1⋆)/η⋆ we get

a (η) ≈ 1

H⋆η

[
1 + ϵ1⋆ − ϵ1⋆ ln

(
η

η⋆

)]
. (1.117)

We can then use Eq. (1.117), and Eq. (1.114) for ϵ1, to get the expansion of z
around η⋆. We have

z (η) ≈
√

2ϵ1⋆
κ

1

H⋆η

[
1 + ϵ1⋆ −

(
ϵ1⋆ +

ϵ2⋆
2

)
ln

(
η

η⋆

)]
, (1.118)

where we have used N − N⋆ ≈ − ln(η/η⋆). We can then compute the time-
dependent parts of the frequencies driving the evolution of scalar and tensor per-
turbations

a′′

a
=

2 + 3ϵ1⋆
η2

, (1.119)

and
z′′

z
=

2 + 3ϵ1⋆ +
3
2
ϵ2⋆

η2
, (1.120)

where the terms in the logarithm of the conformal time have cancelled out. Due
to these cancellations, and the simple remaining time-dependence, the equation of
motions, Eq. (1.102), and the equivalent for tensor perturbations, can be integrated
in terms of Hankel functions. For Eq. (1.102) we have

uk (η) = Ck

√
−c2ℏηπ

4
H

(1)
3
2
+ϵ1⋆+

ϵ2⋆
2

(−ckη) +Dk

√
−c2ℏηπ

4
H

(2)
3
2
+ϵ1⋆+

ϵ2⋆
2

(−ckη) ,
(1.121)

where Ck and Dk fix the initial conditions. Considering the limit of the Hankel
functions in the asymptotic past11, we have

H(1/2)
ν (−ckη) −−−−−→

kη→−∞

√
2

−ckηπ e
±i(ckη−νπ/2−π/4) , (1.122)

11Implicitly, we assume that this asymptotic behaviour is reached sufficiently quickly to be
within the range of validity of the expansion around η⋆. The same assumption is made when
looking at the asymptotic future limit below.
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so that the Bunch-Davies vacuum corresponds to Ck = −eiπ2 (ϵ1+
ϵ2
2 ), and Dk = 0.

The mode function is now completely specified. We want to extract from it the
value of the coefficient αk in front of the growing mode in Eq. (1.106). To do so, we
consider uk/z(η), effectively the mode function of ζ, and we take the asymptotic
future limit. Generically

H(1)
ν (−ckη) −−−−→

ckη→0+
− i
π
Γ (ν)

(
2

−ckη

)ν

, (1.123)

where we have introduced the Gamma function Γ(ν). Using the expansion of z(η)
of Eq. (1.118) we get

uk
z
∼

ckη→0+
i
Ck

2

√
ℏκH2

⋆

k3cϵ1⋆

[
1 + (1− ln 2− γE) ϵ1⋆

+(2− ln 2− γE)
ϵ2⋆
2
− (2ϵ1⋆ + ϵ2⋆) ln

(
k

k⋆

)]
,

(1.124)

where we have used Γ (3/2 + ν) ≈ √π [1 + (2 − 2 ln 2 − γE)ν]/2, γE being the
Euler constant, and used ck⋆ = − (1 + ϵ1⋆) /η⋆ to replace η⋆. We find that uk/z
is constant in the super-Hubble limit so that the matching to the super-Hubble
solution is trivial in this case: we set αk equal to the right of Eq. (1.124). At first
order in slow-roll, we thus found that for scales close to k⋆, uk ≈ αkz(η) in the
super-Hubble limit.

1.2.3-e Connection to observations
Using Eq. (1.112) we can compute the 2-point function related to the CMB

temperature fluctuations. We have

⟨v̂ (x, η) v̂ (x+ r, η)⟩ =
∫ +∞

0

d ln k
sin (kr)

kr

k3

2π2
|uk|2 , (1.125)

where we have used homogeneity and isotropy of the mode function to obtain the
expression on the right-hand side. The power spectrum is then conventionally
defined as

Pv (k, η) =
k3

2π2
|uk|2 . (1.126)

From Eq. (1.126), we deduce the power spectrum of ζ

Pζ (k, η) =
k3

2π2

|uk|2
z2

, (1.127)

which is a dimensionless quantity. These expressions are true at any time. We
are interested in the value of Pζ(k) for CMB scales at the end of inflation. In the
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previous part, we have derived the asymptotic value of uk/z, given in Eq. (1.124),
which combined with Eq. (1.127) gives

Pζ (k) =
H2

⋆κℏ
8π2ϵ1⋆c

[
1 + 2 (1− ln 2− γE) ϵ1⋆

+(2− ln 2− γE) ϵ2⋆ − (2ϵ1⋆ + ϵ2⋆) ln

(
k

k⋆

)]
.

(1.128)

It is the standard formula for the power spectrum of scalar perturbations on
CMB scales at the end of inflation [55]. We can perform similar computations for
tensor perturbations, see Sec. 2.2. We introduce a mode function uTk,λ for each
scalar polarisation which will satisfy Eq. (1.102) where z′′/z is replaced by a′′/a.
The power spectrum for tensor perturbations then reads

PT (k, η) =
4πκ

π2a2c
k3
∣∣uTk,λ

∣∣2 . (1.129)

A direct comparison of Eq. (1.119) and Eq. (1.120) then shows that the equation
are equal under the substitution ϵ1⋆ → ϵ1⋆ + ϵ2⋆/2. Therefore, we can repeat the
same procedure of matching sub and super-Hubble limits using an intermediate
slow-roll approximation. For CMB scales at the end of inflation, we then have

PT (k) = 2
H2

⋆κℏ
π2c

[
1 + 2 (1− ln 2− γE) ϵ1⋆ − 2ϵ1⋆ ln

(
k

k⋆

)]
. (1.130)

The spectra Eq. (1.128) and Eq. (1.130) are the key predictions of the theory
of inflationary perturbations. We briefly discuss how we can extract information
about inflation by measuring them. First, if we neglect the slow-roll corrections,
both power spectra Eq. (1.128) and Eq. (1.130) are scale invariant. The deviations
from scale invariance appear in the first order in the slow-roll parameter due to
departure from an exact de Sitter expansion. These deviations are customarily
parameterised by introducing the spectral indices

nS = 1 +
d lnPζ

d ln k
, (1.131)

and
nT =

d lnPT

d ln k
. (1.132)

Further deviations could be parameterised by higher derivatives of the power spec-
tra, e.g. the so-called running of the spectral index. Truncating at the spectral
index we can write Pζ = As (k/k⋆)

nS−1 and PT = AT (k/k⋆)
nT . Scale invariance

corresponds to nS = 1 and nT = 0. Eq. (1.128) and Eq. (1.130) gives in the first
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order in slow-roll nS = 1 − 2ϵ1⋆ − ϵ2⋆ and nT = −2ϵ1⋆. The behaviour of the
spectra thus depends on the values of the slow-roll parameters, which are model-
dependent quantities. Nevertheless, since ϵ1 > 0 for any inflation model, inflation
generically predicts a slightly red-tilted spectrum for tensor perturbations nT < 0,
i.e. a spectrum with an amplitude decreasing with k. On the other hand, the
scalar spectrum can be blue-tilted nS > 1 in specific inflationary models where ϵ2
becomes negative [39]. The experimental measures of the power spectra constrain
the values of the spectral indices nS and nT, and so constrain the space of allowed
inflationary models to that which can give rise to these values. Another important
quantity is the tensor-to-scalar ratio

r =
AT

AS

≈ 16ϵ1⋆ , (1.133)

where we have evaluated the expression in the first order in slow-roll parame-
ters. The level of tensor perturbations is slow-roll suppressed compared to scalar
perturbations.

So far, only the dominant scalar perturbations have been identified in the
CMB, and only an upper bound for the ratio is known r < 0.036 at 95% con-
fidence level [66]. The latest measurement of the CMB by Planck has provided
significant support for the prediction of single field inflation. It found no trace
of non-Gaussianity in the inhomogeneities at its level of precision [64], and the
spectrum of scalar perturbations which was found to be slightly red-tilted with a
spectral index measured [11] to nS = 0.9649± 0.0042. The overall amplitude was
measured to be AS = 2.101+0.031

−0.034 × 10−9. The measure of the index constrains the
value of the slow-roll parameters at the Hubble crossing for the cosmological scale.
A measure of the tensor perturbations would allow direct access to the value of
the first slow-roll parameter via the index nT, and then to the value of the Hubble
parameter H⋆. We recall that its value is directly related to the energy scale of
inflation via Eq. (1.42). We get

E⋆ =

(
3π2

2
rAS

)1/4

MPlc
2 , (1.134)

so the observational upper bound on r gives an upper bound on the energy scale
of inflation. We find roughly E⋆ ≤ 1016GeV.

To close this sub-section, we want to emphasise that the tremendous practi-
cal success of the inflationary mechanism to predict the CMB observations rests
on the assumption that these cosmological-scale inhomogeneities emerged from
initial vacuum fluctuations, a purely quantum phenomenon. Therefore the CMB
temperature fluctuations would be a trace of quantum physics playing a role on
cosmological scales, an observation at odds with the common lore that quantum
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physics is only relevant on very short scales. This, albeit commonly accepted,
surprising feature of the model is worth a deeper analysis. First, in the treatment
we presented previously, it was unclear when the physics described stopped being
quantum and became completely classical. This is the quantum-to-classical tran-
sition problem. Second, although the measure of the power spectrum matched the
one predicted from amplified vacuum fluctuations, this only constitutes indirect
proof of the quantum origin of the perturbations. We could provide an ad-hoc
initial stochastic Gaussian distribution that would reproduce the final measured
power spectrum, see Sec. 2.2. One might thus want to seek other features in the
final distribution that initial classical inhomogeneities would not be able to repro-
duce. Finally, finding such a feature would demonstrate that a quantum treatment
of the fluctuations of geometry is required in the early Universe, so that gravity
(at least at a linear level) has to acquire the status of a quantum theory. These
are the motivations for the analysis conducted in Chapt. 2.

1.2.4 (P)reheating: connecting inflation to the stan-
dard model of cosmology

1.2.4-a Reheating processes
In Sec. 1.2.1, we introduced a transitory phase of inflation within the radiation

domination era. We have explained that such a phase allows us to solve the hot
Big Bang puzzles while giving a generation mechanism for inhomogeneities in the
early Universe, the seeds for structure formation. During inflation, the Universe’s
energy budget is entirely dominated by the inflaton field φ (and its perturbations
δφ̂). Any pre-existing form of matter is expected to be highly diluted by the
expansion so that most of the Universe’s matter content must be produced after
inflation [67, 68]. At the end of inflation, the energy of the inflaton must be
somehow transferred to particles in other fields and eventually into the particles
of the Standard Model. In addition, to allow BBN to proceed as predicted and
observed, these particles must thermalise and do so at a temperature Treheat at least
as large as the temperature then: Treheat ≥ TBBN ≈ 1MeV. The processes leading
to the initial radiation domination of the standard Hot Big Bang model, and the
period during which they unfold, are commonly referred to as reheating12 [69].
We give a brief overview of reheating to connect with the work on an ‘analogue
preheating experiment’ presented in Chapt. 3. We refer to the review [70] for
details.

The generation of particles in reheating is expected to proceed in two ways.
First, by perturbative decays of inflaton particles φ, to particles of other matter

12Since we expect inflation to break any pre-existing thermal equilibrium and dilute the ex-
isting forms of matter, the Universe at the end of inflation would be empty and cold. Hence, we
must (re)heat it.
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fields χ. An example of such a process is a 3-body interaction φ → χχ, corre-
sponding to the annihilation of φ-particles in pairs of χ particles . In the first
papers on reheating, such perturbative decay processes were considered by adding
an effective decay rate in the Klein-Gordon equation (1.69) of the inflaton. Addi-
tionally, it was later realised [71, 68, 72] that the oscillations of the inflaton at the
end of inflation, see Fig. 1.4, effectively acting as a strong classical field, could trig-
ger an exponential production of particles in modes of other fields χ, within some
energy range related to the frequency of the oscillations. This is the phenomenon
of parametric amplification. The parametric processes can initially be much more
efficient than the perturbative ones [73]. This phase of parametric growth is re-
ferred to as preheating [72]. However, reheating never completes at this stage [73].
First, parametric resonances produce particles in a very non-thermal state. Inter-
actions between the produced particles are thus necessary to drive the distribution
to a thermal one. Second, the parametric resonance process is going to become
inefficient as the oscillations of the inflaton are damped by the energy transfer to
other particles. Perturbative channels are necessary to ensure in the late stages
a total decay of the inflaton and completion of reheating [73, 70]. In [4], repro-
duced in Sec. 3.4, we consider some interactions between quasi-particles produced
in an analogue preheating experiment. However, this analysis focuses on how these
interactions affect the production of quantum coherence in the early stage of para-
metric resonance rather than on how they could lead to the thermalisation of the
excitations.

1.2.4-b Illustration of preheating
To close this sub-section, we illustrate the phenomenology of parametric res-

onance by considering a simple model of preheating used in [73]. Assume that
the potential of the inflaton field has a minimum at φ = 0. We approximate the
potential to be quadratic around its minimum

Vφ (φ) ≈
m2c2

2ℏ2
φ2 , (1.135)

and assume that this approximation represents well the part probed by the inflaton
in its late-time oscillations. Assume now that the inflaton is coupled to a quantum
scalar field χ̂. We assume χ̂ to be massless for simplicity. We take the coupling to
the inflaton of the form λ2φ2χ̂2. The action for χ reads

Sχ = −1

c

∫
d4x
√−g

(
1

2
gµν∂µχ̂∂νχ̂+

1

2
λ2φ2χ̂2

)
. (1.136)

As we did previously for v̂, we can perform a mode expansion of the scalar field

χ̂ (x, t) =

∫
d3k

(2π)3/2

[
eik.xχk (t) ĉk + e−ik.xχ⋆

k (t) ĉ
†
k

]
. (1.137)
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The mode functions χk are going to satisfy the equation of motion of the Fourier
modes of the classical version of the field

χ̈k + 3
ȧ

a
χ̇k +

[
c2k2

a2(t)
+ λ2φ2(t)

]
χk = 0 (1.138)

We make the simplifying assumption that, over the characteristic time scale of
the expected growth, we can neglect the expansion of space and take a = 1 in
Eq (1.138). As a second simplifying assumption, we assume that the inflaton φ
oscillates at constant amplitude fixed by its mass φ(t) = φ sin(mc2t/ℏ). This
assumption eventually breaks down because the oscillations are damped by the
expansion of space and the transfer of energy to χ̂. Under these assumptions
Eq. (1.138) can be recast in the form of a Mathieu equation [73]

∂2χk

∂z2
+ [Ak + 2q cos (2θ)]χk = 0 , (1.139)

where Ak = 2q + c2k2/m2, q = λ2φ2/2m2 and θ = mc2t/ℏ. Eq. (1.139) is a
well-known equation. Its analysis [74] shows that for some q-dependent ranges
of Ak around specific values A(l)

k , the solution will exhibit exponential growth.
Outside of these instability bands, the modes oscillate. In the narrow resonance
regime, q ≪ 1, the instability bands are located around A(l)

k ≈ l2 and of size
∼ ql. Therefore, the primary band A(1)

k ≈ 1 is the largest one, and the resonant
modes have frequencies ck ≈ mc2/ℏ i.e. half of the driving frequency. We refer
to [74] for more on the instability regime. Notice that in a classical setting, where
the Fourier modes of the classical field satisfy Eq. (1.138), an initial vacuum of χ̂
excitation corresponds to χk = 0. In this case, the solution of Eq. (1.138) gives
χk = 0 at all times. In the quantum case, however, the vacuum corresponds to the
normalisation Eq. (1.113), which leads to an amplification of vacuum fluctuations,
a pure quantum phenomenon. As we will detail in Sec. 1.3.4-b, a signature of this
quantum origin is that the generated pairs are entangled. The entanglement can
be generated even if a small incoherent population is initially present.

Note the similarity of this process with the vacuum amplification of scalar and
tensor perturbations during the slow-roll part of the evolution. The different dy-
namics of the background, growing for inflation and oscillating for preheating, lead
to different excitation spectra. While any super-Hubble mode is amplified during
inflation, only modes in well-defined resonant modes are produced during preheat-
ing. Both of these effects fit in a large class of phenomena where a quantum field is
excited by a strong classical field such as the Schwinger effect [75] or the Hawking
effect [76, 77]. These effects are described using the formalism of quantum field
theories in curved spacetimes (QFTCS). We see that such QFTCS effects have
significant cosmological consequences. Yet, they are hard to demonstrate experi-
mentally. These effects are small, and the field strengths accessible in laboratories
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are often insufficient to generate a signal strong enough to be detected. Therefore,
a first avenue to explore is to look for signatures of such quantum effects directly
in cosmology. This is the topic of Chapt. 2 for the generation of inflationary per-
turbations. A second possible avenue is to rely on analogue systems, which are
described by the same equations of motion as a QFTCS situation while being ex-
perimentally realisable. This perspective led to the development of the analogue
gravity community, which we present in the next section, Sec. 1.3.

1.3 Analogue gravity

1.3.1 Motivations
The idea of analogue gravity first emerged in the study of Hawking radia-

tion [76, 77, 78]. By studying the evolution of modes of a field in the geometry
of a star collapsing to a black hole, Hawking predicted that the black hole would
emit a thermal black-body spectrum of the particles associated with that field.
The temperature of such radiation was predicted to be inversely proportional to
M , the mass of the black-hole

TH =
ℏc3

8πGMkB
≈ M⊙

M
60nK . (1.140)

For astrophysical black holes of mass typically larger than a few solar masses [79],
this temperature is much smaller than that of the cosmic microwave background
TCMB ≈ 3K [14], so that the hole effectively absorbs energy rather than emits. The
temperature is even smaller than the CMB temperature anisotropies δT/TCMB ≈
10−5 [24]. Thus, even if the prediction of Hawking is correct, the radiation of
astrophysical black holes seems too small to be detected [77].13

The Hawking effect illustrates the difficulty of observing QFTCS effects di-
rectly. A similar illustration can be found in the Unruh effect [78]. It predicts
that a uniformly accelerating observer in the Minkowski vacuum would observe
thermal radiations of particles at a temperature

TU =
ℏ
c

α

2πkB
, (1.141)

where α is the proper acceleration of the observer. Getting a temperature of
1 K in Eq. (1.141), with peak radiation in the microwave, requires accelerating
the detector to α ≈ 1020m/s2. To get a reference, we consider the initial linear

13As already mentioned in [77], smaller black-holes could have formed as primordial black-
holes from the collapse of large density fluctuations at the end inflation [80, 81]. If they exist,
such black holes can be of all masses, and the smallest ones would emit at a high rate.
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accelerator Linac4 at the LHC [82] that takes H− ions, that we will assume to be
protons, from rest to 160MeV of kinetic energy over 80m. To get a very rough
estimate, we assume the acceleration to be uniform throughout and compute the
proper acceleration of the particle (which, for these velocities, does not differ much
from the acceleration in the laboratory frame). We get a ≈ 5.70×1014m/s2 i.e. six
orders of magnitude lower than the acceleration necessary even to get microwave
radiation. Other estimates and a proposition to indirectly observe the Unruh effect
can be found in [83].

Still, a few years after the predictions of Hawking radiation, Unruh realised
that the equations describing the propagation of linear perturbations (i.e. sound
waves) in a trans-sonic fluid could be recast in the form of the equation of motions
of a scalar field in a black-hole metric [84]. The intuition behind this result is
that in a trans-sonic fluid, there is a sonic horizon. Past this horizon, the flow
velocity is larger than the speed of sound, and sound waves can only propagate
downstream, like particles beyond the horizon of a black hole. Unruh coined the
word ‘dumb’-holes for these geometries where sound is trapped. Following the same
reasoning leading to Hawking radiation, a quantum fluid with such a sonic horizon
would emit thermal radiation of sound waves. Unruh found the temperature to be
typically small

T ≈ 3× 10−7 cs
c

(
R

1mm

)−1

K , (1.142)

where cs is the speed of sound in the fluid and R the size of the horizon. Nev-
ertheless, to quote his words, observing the radiation in this fluid is still ‘a much
simpler experimental task than creating a 10−8 cm black hole’.

In addition to opening up the possibility for the experimental observation of
an effect akin to Hawking radiation, the study of this analogue system was also
acknowledged as a means to assess the robustness to UV modifications of QFT
above the Planck scale [84]. Indeed, the derivation assumes no back-reaction of the
produced particles on the background metric, and also that there are similar quan-
tum fluctuations available until arbitrarily larger energy, even beyond the Planck
scale, to fuel the radiation indefinitely [85]. This is the so-called trans-planckian
problem [86, 87, 88]. While the physics beyond the Planck scale i.e. a theory of
quantum gravity, is unknown, we know the fluid theory breakdowns when consid-
ering scales close to the inter-particle separation. Therefore, the analogue fluid can
be used to investigate how a modified UV theory affects the predicted radiation.
Ref. [84] marks the beginning of the analogue gravity programme, initially focused
on the analogue of the Hawking effect. Before reviewing the field’s main achieve-
ments, we demonstrate the advertised correspondence between the propagation of
sound waves on a fluid and that of a scalar field in curved spacetime.
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1.3.2 Sound-waves on a fluid as scalar field in curved
spacetime

We closely follow the demonstration made in [89]. Consider a fluid not sub-
mitted to any external force described by a pressure field p, a mass density field ρ
and a velocity field v. We work in the laboratory frame (ct,x) and the motion of
the fluid is described by the continuity and Euler’s equations

∂tρ+ ∇⃗ · (ρv) = 0 , (1.143a)

∂tv + v
(
∇⃗ · v

)
= −1

ρ
∇⃗p . (1.143b)

The continuity equation expresses the local conservation of the mass density, while
Euler’s equation comes from applying Newton’s third law to a mesoscopic volume
element. Assuming the fluid to be irrotational and making a Helmholtz decompo-
sition of the velocity field, we have v = −∇⃗ϕ, where ϕ is the velocity potential.
Then ∇⃗ · v = −v × (∇⃗ × v) + ∇⃗(v2)/2 = ∇⃗(v2)/2. Assuming now the fluid to be
barotropic i.e. the energy density field is a function of the pressure field ρ = ρ(p),
we can define the specific enthalpy of the fluid

h (p) =

∫ p

0

dp′

ρ (p′)
, (1.144)

such that ∇⃗h = ∇⃗(p)/ρ.14 Euler equation (1.143a) then reads

∇⃗
(
−∂tϕ+ h+

v2

2

)
= 0 , (1.145)

which can be integrated to

−∂tϕ+ h+
v2

2
= 0 . (1.146)

The integration constant C can always be absorbed by redefining the velocity
potential ϕ → ϕ + Ct, which does not affect the velocity field. We set it to 0 in
Eq. (1.146). Once the functional link between the density ρ and pressure field p
is fixed, the equations Eq. (1.143b) and Eq. (1.146) form a closed system for two
dynamical degrees of freedom, the velocity potential ϕ and the pressure field p.

14The enthalpy of a thermodynamic system of volume V is defined as the sum of its internal
energy U and the energy due to external pressure P exerted on it H = U + PV . Consider
the enthalpy variation in the system to see how Eq. (1.144) is related to the enthalpy. It reads
dH = TdS + V dP . If we consider an isentropic system dS = 0, then dH = V dP . The specific
enthalpy h is the enthalpy per unit of mass, so dh = dP/ρ since the volume divided by the mass
is the inverse mass density. Integrating this equation gives back Eq. (1.144).
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We now consider the propagation of perturbations on top of a background solution
ϕ0 and p0 of these equations; this is the definition of sound waves. We have

p = p0 + δp , (1.147a)
ϕ = ϕ0 + δϕ , (1.147b)

v = −∇⃗ϕ0 − ∇⃗ (δϕ) = v0 + δv , (1.147c)

where we assume the perturbations to be of small amplitude |ϕ0| ≫ |δϕ| and
|p0| ≫ |δp|. Varying the specific enthalpy Eq. (1.144) we have

h (p) ≈ h (p0) +
δp

ρ0
. (1.148)

The perturbations of Eq. (1.143b) and Eq. (1.146) at linear order, then reads

−∂tδϕ+
δp

ρ0
+ v0 · δv = 0 , (1.149a)

∂tδρ+ ∇⃗ (δpv0) + ∇⃗ · (ρ0δv) = 0 , (1.149b)

Using Eq. (1.149a) we get

δp = ρ0

[
∂tδϕ+ v0 · ∇⃗ (δϕ)

]
, (1.150)

that completely expresses the pressure perturbation as a function of the velocity
potential perturbation. We define the local speed of sound c0 by

c−2
0 =

∂ρ

∂p

∣∣∣∣
ρ0

. (1.151)

Notice that the speed of sound is a priori a field that depends on time and position.
Using Eq. (1.150), the density perturbation can then be expressed as

δρ =
ρ0
c20

[
∂tδϕ+ v0 · ∇⃗ (δϕ)

]
. (1.152)

Combining this equation with Eq. (1.149b) we get an equation for the perturbation
of the velocity potential alone

−∂t
{
ρ0
c20

[
∂tδϕ+ v0 · ∇⃗ (δϕ)

]}
+ ∇⃗ ·

{
∂tδϕ−

ρ0
c20

[
∂tδϕ+ v0 · ∇⃗ (δϕ)

]}
. (1.153)

This last equation can then be rewritten as a Klein-Gordon equation, see Eq. (1.69),
for δϕ as if it were a minimally coupled scalar field on curved spacetime without
a potential [89]

□δϕ = − 1√−g ∂µ
(√−g gµν∂νδϕ

)
= 0 , (1.154)
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where the acoustic metric is defined in the laboratory coordinates (t,x) by

gµν =
ρ0
c0

(
− (c20 − v20) −v0

−v0 13

)
, (1.155)

where 13 is the three-dimensional identity matrix. Eq. (1.154) is the basis of the
analogy. We give the associated acoustic line-element15

ds2 =
ρ0
c0

[
−
(
c20 − v20

)
dt2 − 2dtv0 · dx+ dx · dx

]
. (1.156)

Although we used a classical framework, since Eq. (1.154) is a linear equation, we
would obtain the same result by considering a quantum fluid with a large coherent
background treated classically and some perturbations on top, e.g. phonons on a
Bose-Einstein condensate ϕ̂ ≈ ϕ01̂+δϕ̂, see Sec. 3. Notice [89] that the analogy has
limits. First [89], we only reproduce the kinematics of a field on a given spacetime
metric and, although this metric could be dynamical, e.g. if ϕ0 is made time-
dependent, its dynamics is not described by analogue Einstein’s field equations.
Second, we can change coordinates, e.g., redefining time t→ τ to match the form
that a curved spacetime metric would have in a specific set of coordinates; see
below for an example with Schwarzchild metric. However, measuring devices will
ultimately experience the time of the laboratory frame t and not the transformed
one τ , see however [90]. Finally, not every metric can be reproduced, at least not
in the simple treatment we presented. In particular, a generic 3 + 1 spacetime
metric is defined by 6 independent functions: the metric can be represented by
a symmetric 4 × 4 matrix in coordinates which has 10 independent coefficients,
but these coefficients depend on a choice of coordinate system which we are free
to choose, adding 4 constraints. On the other hand, the acoustic metric features
three functions p0, ϕ0 and c0. The continuity equation relates the first two; we
are only left with 2 functions to fix. Still, tuning these two functions allows us to
reproduce many physically relevant spacetimes, see [89] for examples.

To close this discussion, we show, following [84] (while keeping the mostly pluses
convention used in this manuscript), how to reproduce the near horizon part of a
black-hole metric. First, let us assume that the speed of sound c0 is everywhere
constant and that the background flow is spherically symmetric, stationary and
convergent so that ρ(r) and v = vr(r)ur, with vr(r) < 0. Going to spherical
coordinates the line element (1.156) then reads

ds2 =
ρ0
c0

{
−
(
c20 − v20

)
dt2 − 2vr0dtdr + dr2 + r2

[
dθ2 + sin2 θdφ2

]}
. (1.157)

15Notice that the metric is not dimensionless and the line-element does not have the dimension
of a length squared. However, since the field obeys a linear equation of motion, the metric can
always be rescaled by an arbitrary factor to be made dimensionless.
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We define a new time coordinate

τ = t+

∫ r

0

vr0
c20 − (vr0)

2dr
′ , (1.158)

and assume that the fluid becomes trans-sonic at a radius R such that vr(r) ≈
−c0 + 2α(r −R) close to the sonic horizon. The line element close to the horizon
r ≈ R then reads

ds2 =
ρ0
c0

[
−2α (r −R) c0dτ 2 +

c0
2α (r −R)dr

2 + r2
(
dθ2 + sin2 θdφ2

)]
. (1.159)

Comparing with Schwarzchild metric in usual spherical coordinates close to the
horizon r ≈ rs = 2GM/c2, where

ds2Sch. = −
c2

r2s
(r − rs) dt2 +

rs
r − rs

dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (1.160)

we have the mapping c0 = c and α = c3/4GM up to the factor ρ0/c0 in front. In
the analogy, the speed of sound plays the role of the speed of light, and the factor
α is related to the mass of the black hole. This analogy at the linear level, with a
conformal factor, is sufficient to get the Hawking effect [84, 89]. Here we only use
the formula (1.140) to find what the analogue of Hawking’s temperature would be

TH =
ℏ

2πkB

(
∂vr

∂r

∣∣∣∣
r=R

)−1

. (1.161)

Theoretical refinements of this idea and experimental progress towards observ-
ing an analogue Hawking effect have been the central focus in the analogue gravity
community until recently.

1.3.3 Progress and achievements in Analogue Gravity
Several accounts of the progress in the study of analogue systems exist in the

literature [85, 89, 91, 92]. We limit ourselves here to a short account mainly
following [85, 92] to illustrate the diversity of platforms used and highlight the
successes of the analogue gravity programme so far. The initial focus was on
analogue black holes and the Hawking effect. A first theoretical success was in
understanding that the break-down of the fluid model for large frequencies did
not preclude the existence of Hawking radiation, and, provided dispersion was
weak enough, preserved approximately its thermality at the expected temperature
given in Eq. (1.140) [93, 94, 95, 85]. On the experimental side, many systems
were considered as possible platforms to realise the analogy. For instance, the
possibility of using superfluid He-3 [96, 97, 98], or Bose-Einstein condensates [99],
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two typically quantum fluids, was quickly suggested. The opportunity of using
electromagnetic radiation in a medium was also analysed [100, 101]. Since, as
detailed in Sec. 1.3.2, the analogy stands both for quantum and classical fields
depending on the nature of the fluid considered, a classical analogue black-hole in
water waves system was also considered [102].

The mechanism behind Hawking radiation is that of a scattering of modes at the
horizon of black-hole. The Hawking radiation corresponds to one of the scattered
modes of this process. When vacuum fluctuations source the process, it is called
spontaneous. The same type of scattering leading to Hawking radiation can also
be triggered by sending on the horizon a classical wave or by letting external noise
impinge on it. We get a stimulated Hawking radiation, the analogue of which can
be studied in classical systems.

The first experimental results started to be reported in 2007 with experiments
in electromagnetic optical fibres [103] and water waves [104]. In the following years,
experiments were improved in these platforms, e.g. see [105] in fibres and [106, 107]
for water waves, and performed in a growing diversity of platform, e.g. optical
crystals [108], polaritons [109], superfluid He-3 [110] or Bose-Einstein condensates
(BEC) [111, 112]. New theoretical tools were introduced to analyse them, e.g. 2-
point density correlation functions [113]. To conclude this sketch of the landscape
of analogue black-hole experiments and analysis, we point out that, as of June
2023, only one group [111, 112] claims to have observed spontaneous analogue
Hawking radiation i.e. seeded by vacuum fluctuations.

1.3.4 Cosmological analogues
Despite the initial dominance of analogue black holes in the analogue gravity

field, analogies with other systems have also been considered. The analogues of
cosmological situations are of particular relevance for this manuscript that presents
results on the analysis of an analogue preheating experiment, see Sec. 1.2.4 and
Sec. 3. Before moving on to this specific set-up, we review in this sub-section the
first analogue cosmology systems that have been considered or realised.

1.3.4-a Early theoretical investigations
Ref [96] is an early example of analogy with cosmology. It investigates analogies

between defects in superfluid He-3 and topological defects in the early Universe,
such as cosmic strings.

While the Schwarzchild black hole is a time-independent and stationary space-
time, the most relevant cases for cosmology are rather time-dependent and homo-
geneous spacetime, as represented by the FLRW metric of Eq. (1.17). Analogues
of time-dependent spacetimes were also quickly considered by authors.

First, although not an analogue gravity experiment, the ‘Bose-nova’ experi-
ment [114] was analysed by [115, 116, 117] drawing inspiration from inflationary
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cosmology and the analogue gravity endeavour. In the experiment, the interactions
between atoms in a Bose gas are changed from repulsive to attractive, leading to a
contracting of the BEC. They drew a parallel between the dynamics of certain ex-
citations on top of the condensate and that of perturbations in inflation, which are
‘frozen’ and amplified when super-Hubble, before oscillating at later times when
re-entering the Hubble radius. They attribute some oscillations seen in [114] to
these perturbations.

The possibility of simulating time-dependent spacetimes with such Bose gas
with tunable interactions was first explored in [118, 119]. The authors showed
that in a constant density condensate, with an appropriately modulated speed of
sound, phonons i.e. quantised sound waves, behave as a scalar field in an effec-
tive expanding FLRW metric. The dynamics then lead to the creation of phonons
from the vacuum [119]. Another way to realise an effective FLRW metric is to con-
sider an expanding (or contracting) condensate or to modulate the sound speed
and the trapping frequency simultaneously, as suggested by [120]. The authors
also generalised the computations of [119] for the creation of phonons and sug-
gested using density-density correlations, described in Sec. 3 of this manuscript,
to demonstrate the presence of quasi-particles. Some authors have also considered
the physical status of the coordinates in which the analogue metric is derived.
In [121], the authors considered an FLRW spacetime in different coordinates and
studied the possibility of observing an analogue of the Gibbons-Hawking effect.
In [90], the authors suggested building a detector sensitive to different time coor-
dinates to test their different responses to quasi-particle creation. Other authors
have considered the analogy of an expanding Universe with a purely expanding
Bose gas without modulating the speed of sound. For instance [122] considered a
three-dimensional Bose gas, while [123] considered lower dimensional trapped gases
with non-standard self-interactions. The authors of [124] argued that the proposed
expansion of the gas, or change of its scattering length, comes with difficulties that
can be circumvented by considering a two-component gas.

Numerical simulations of the generation of quasi-particles in analogue cosmol-
ogy were also performed. In [125], the authors performed numerical simulations
of a two-dimensional Bose gas with time-dependent scattering length to evaluate
particle production for inflationary or cyclic universe analogues. They used the
Truncated Wigner Approximation (TWA) method that became quite standard in
analogue gravity, see below Sec. 3.5 and e.g. [126]. In a follow-up work [127], the
authors study the implications of breaking down the analogue gravity picture be-
yond the hydrodynamical regime where we have an acoustic metric see Sec. 1.3.2.

Finally, in [128, 129], the authors proposed to use ion traps rather than Bose
gases to build analogue cosmology set-ups.

1.3.4-b Analogue cosmology experiments
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The first analogue cosmology experiments were performed in the 2010s. We
list a few examples of them to give a panorama. In [130], the authors report on
the observations of the production of sound waves following the modulation of the
trapping frequency of an elongated cigar-shaped gas. The creation proceeds by a
parametric transfer of the energy of the condensate to pairs of phonons in resonant
modes at half the driving frequency. Initially designed as an analogue dynamical
Casimir effect experiment proposed in [131], the results of the experiment were
later re-interpreted as an analogue of preheating [132]. In [133], the analogy was
extended to the late time dynamics where a redistribution of resonant phonons to
other modes, akin to preheating, see Sec. 1.2.4, is conjectured to have happened.
The authors of [130] showed that the produced phonons were correlated but not
entangled.

Soon after, in [134], the authors performed a quench i.e. a sudden variation, of
the scattering length of a two-dimensional BEC. They observed the amplification of
density fluctuations attributed to the creation of phonon pairs and the formation
of coherent density oscillations, a signature of the (classical) correlation of the
pairs, similar to Sakharov oscillations [135, 136] in primordial inhomogeneities. In
a recently updated run of the experiment [137], they reported the observation of
the quantum entanglement of the pairs. This arguably makes [137] a successful
DCE analogue experiment.

Another analogue cosmology experiment using a Bose gas was reported in [138].
There the authors designed a ring-shaped two-dimensional BEC on which they
imprinted an azimuthal phonon pattern before expanding the radius of the BEC.
They observed a redshifting of the phonons’ wavelength akin to that of cosmolog-
ical perturbations in FLRW and a damping of their amplitude that they partially
attribute to an analogue of Hubble friction. At the end of the expansion, they
witness the generation of transverse oscillations of the condensate, whose energy
then transfers to topological defects (dark solitons, then vortices). They point out
that this transfer is analogue to some reheating models. Refined analyses were
performed in [139, 140].

Very recently, in [141], the authors report a precise realisation of the suggestion
of [119, 120] in a BEC. The authors first observed the propagation of a localised
wave packet of phonons in real space. They showed that, by tuning the geometry
of the condensate, they could mimic the propagation in positive, flat or negative
curvature spacetimes. Then they perform a co-ramp of the scattering length and
the trapping frequency to generate phonons in pairs. They report the observa-
tion of analogue Sakharov oscillations, as in [142, 137] following a quench of the
scattering length but not that of entanglement of the pairs.

Finally, other experimental platforms were also used for analogue cosmology
experiments. The authors of [143] considered the relative motion of two trapped
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ions. The relative motion is seen as the analogue of a mode of a quantum field. By
changing the trap frequency, they managed to squeeze its state without directly
evidencing the entanglement of the two ions. Sakharov-like oscillations were ob-
served in a quantum fluid of light [144], but no direct evidence of entanglement
was shown.

Lastly, a second analogue preheating experiment was designed and realised us-
ing a fluid-fluid interface [145]. The authors predicted how interactions between
the different modes of perturbations generically lead to a transfer of energy from
the primary resonant modes to other modes. They were able to observe experimen-
tally different signatures of this transfer, distinguishing them from, for instance,
extra Floquet resonances.

1.3.4-c Experiments beyond QFTCS?
In the earliest analysis and experiments, the analogue gravity community fo-

cused on simulating pure QFTCS effects. There, quantum perturbations are acted
upon by a classical background field, produced particles are assumed to be non-
interacting and not back-react on the classical background. In contrast, analogues
of (p)reheating, during which interactions and backreaction are essential, have
recently received much attention. In addition to the experiment [145], several the-
oretical studies have been published [146, 147, 148, 149]. The interactions between
the produced quasi-particles and the backreaction of these quasi-particles on the
condensate are both analysed. For instance, in [148], the authors were able to nu-
merically follow the gradual fragmentation of the initially homogeneous condensate
into patches of different densities due to the backreaction of the perturbations, and
the decay of the initially excited field, the analogue of the inflaton.

In a similar spirit, we study in this manuscript a possible dissipation chan-
nel for the excitations produced by the initial parametric amplification in [130].
Contrary to [145], the excitations of the system are quantum. As detailed in
Sec. 1.2.4, we expect that (quasi-)particles will be generated from the quantum
vacuum, and a signature of this creation out of the vacuum is that they appear
in entangled pairs [132]. Unfortunately, the measured correlations in the orig-
inal experiment were insufficient to demonstrate the entanglement of the pairs.
In [132], the authors showed that a small degree of dissipation was sufficient to ex-
plain this absence of entanglement. However, a precise microphysical mechanism
to explain this dissipation was missing. In Sec. 3, we present the progress made
during this PhD in this direction. In particular, we compute the decay rate of the
quasi-particle number and pair correlation induced by the first-order interaction
between them. We verify the validity of our predictions by comparing them with
numerical simulations. These findings could be helpful in optimising the visibility
of entanglement in a new run of the experiment [130].
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2 - Quantumness and decoherence of cosmo-
logical perturbations

2.1 Content of this chapter

In this chapter, we reproduce the references [1, 2, 3]. They are the original
works produced during the PhD devoted to finding features in the state of cos-
mological perturbations that could reveal their quantum origin. The three next
sections are made up of a published article which is briefly introduced. In these in-
troductions we give some context, point out possible mismatches between existing
conventions, and sometimes add details skipped in the paper.

2.2 Review: ‘Quantum cosmological gravitational
waves?’

We start this discussion of the search for quantum features in cosmological
perturbations with the review article [1]. Although published later than Ref. [2]
and Ref. [3], it exposes in detail the formalism used in other references while
skipping the technicalities of these specific works. We, therefore, reproduce it first
as an introduction to the two other works. The detailed exposition is contained
in Sec. 3 of [1], except for Sec. 3.7, written by Patrick Peter, to be considered
separately. Although the focus of the review is on tensor perturbations, most
of this exposition is equally applicable to scalar perturbations. Still, note that
the discussion of the evolution of the perturbations in a simplified cosmological
model made in Sec. 3.8 cannot be applied to scalar perturbations. The latter are
described by the Mukhanov-Sasaki variable v and the equation Eq. (1.102) only
during inflation. The considerations on the extreme squeezing of perturbations in
de Sitter apply to scalar and tensor. Finally, the core of the analysis in Sec. 4 and
the conclusion in Sec. 5 cover both the scalar and tensor cases. We also point out
that the Lagrangian considered in Eq. (22) of [1], reproduced below, differs from
that in Eq. (1.98) by a total derivative d[H(µ⋆

λµλ)
′]/dη. The form used in [1] is

more standard in the cosmology literature, e.g. [150]. A canonical transformation
relates them, and they give the same results when computing the expectation
values of the same operators. Nevertheless, these different conventions result in
different definitions for the conjugated field πλ = ∂L/∂µ′

λ: in the convention of
Eq. (1.98) we have πλ = µ′

λ, while in that of Eq. (22) of [1] we have πλ = µ′
λ−Hµλ.
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An important consequence, as explained in [151], is that the creation/annihilation
operators, Bogoliubov coefficients, and so the squeezing parameters, see Eq. (42)
of [1], defined from these two different fields will in general be different. This
difference is manifest when comparing Fig. 5 of [1] and Fig. 3 of [2], where the
direction of squeezing is horizontal in the first case and vertical in the second.
This mismatch translates the difference between the fluctuations of v̂′, which are
asymptotically of order unity, and those of v̂′−Hv̂, which, due to the second term,
grow faster than those of v̂. However, note that they agree when the expansion of
the background encoded by H can be neglected, e.g. in radiation domination for
tensor perturbations.

Two additional references [152, 153] would have deserved citation in the lit-
erature review, but we were unaware of them at the time of writing. In [152],
the authors considered the decoherence induced by isocurvature perturbations on
adiabatic perturbations in a two-field model, where the fields are coupled via the
gravitational perturbations. They show that the adiabatic perturbations can be
efficiently decohered, in the sense that the off-diagonal matrix elements are sup-
pressed, and compute the associated entanglement entropy. In [153], the authors
also considered the decoherence caused by one field on another in de Sitter space-
time. In addition, they considered the effect of a modified dispersion relation
for the ‘measured’ scalar field. They showed that there is a competition between
squeezing and decoherence to determine whether the final state of the scalar field
particles is separable or not.

The observability of the features, in particular using the measures introduced
in Refs. [2, 3] reproduced in Secs. 2.3 and 2.4, is discussed at the very end of Sec. 4.
The discussion concludes that no viable measurement protocol has been proposed
to demonstrate the quantum origin of cosmological perturbations experimentally.
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Quantum cosmological gravitational waves?

Amaury Micheli and Patrick Peter ∗

Abstract General relativity and its cosmological solution predicts the existence of
tensor modes of perturbations evolving on top of our Friedman-Lemaı̂tre-Robertson-
Walker expanding Universe. Being gauge invariant and not necessarily coupled to
other quantum sources, they can be seen as representing pure gravity. Unambigu-
ously showing they are indeed to be quantised would thus provide an unquestionable
proof of the quantum nature of gravitation. This review will present a summary of
the various theoretical issues that could lead to this conclusion.

Keywords

Cosmological perturbation theory, tensor modes, gravitational waves, quantum cos-
mology, perturbative quantum gravity.

1 Introduction

Cosmology is a major player when it comes to quantum gravity effects. Indeed, on
top of our Friedman-Lemaı̂tre-Robertson-Walker (FLRW) expanding Universe, one
expects various modes of perturbations to be present, whose classical occurrence
is believed to result from initial quantum vacuum fluctuations. In the usual linear
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formalism [1, 2], using the FLRW underlying symmetry group (isotropy and homo-
geneity), they can be categorised into three components, namely scalars, vectors and
tensors. At this order, upon which we focus attention below, these components de-
couple. In a different situation with a background endowed with other symmetries,
perturbations can still be expanded in the relevant representations of the associated
group; they also naturally decouple at linear order (see, e.g. Ref. [3] for Bianchi I).

Scalar modes, detected long ago in the cosmic microwave background, initiat-
ing large-scale structure formation, are distributed in a way that is compatible with
quantum vacuum fluctuations in the very early times, often during a phase of in-
flation. This can be seen as requiring quantisation of gravity, and although many
authors consider it does, others argue that gauge issues and coupling with matter
render the conclusion not as clear as one would wish.

In an ever-expanding FLRW universe with dynamics driven by GR or any local
theory of gravity, with no specific source in the matter fields to induce them, vector
perturbations are expected to have decayed long ago so as to be mostly undetectable
now [4]. One of the above hypothesis needs to be invalidated to potentially render
them cosmologically relevant. Non local theories are expected to yield conclusions
similar to local ones [5]. A contracting phase in the universe as implemented in
bouncing models [6, 7] can lead to some increase of vector modes [8] which are
however limited if produced by means of some coupling with scalar modes initially
set to quantum vacuum fluctuations [9], leading to the conclusion that bouncing
models are generally stable under vector perturbations. For fully quantum cosmo-
logical models however, the situation may not be as clear [10]. In any case, the
question of their quantum origin would lead to similar doubts regarding the quan-
tumness of gravity itself; they are conveniently ignored in most studies, and likewise
in the present review.

Finally, one is left with the tensor modes, which are gauge invariant and with no
obvious coupling to other quantum sources. General relativity (GR) applied to pri-
mordial cosmology shows their dynamics to be that of two time-dependent massive
scalar fields; most models then demand they should be quantised and set in a vac-
uum state. The observation of their resulting properties in the absence of quantum
anisotropic pressure, jointly with those of the scalar modes, could provide an unam-
biguous and thus indisputable hint that gravitation itself should acquire the status of
a quantum theory.

2 Tensor modes in general relativistic cosmology

Before focusing on the quantum features expected from gravitational waves, let us
briefly recap the underlying classical theory. The starting point of our discussion is
the FLRW background universe, defined by its scale factor function a(η) depending
on the (conformal) time η and spatial 3D metric γi j, with tensorial perturbations hi j.
In that case, ignoring both scalar and vector modes which are not the subject of this
analysis, one sets the metric as
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ds2 = gµν dxµ dxν = a2(η)
[
−dη2 +(γi j +hi j)dxidx j] , (1)

(we use units such that the velocity of light is c = 1) and with hi j assumed transverse
and traceless, i.e.

Dihi j = 0 and hi
i = γ i jhi j = 0,

the 3D covariant derivative Di being derived from the corresponding metric γi j.
Noting H = a′/a the conformal Hubble function2 and K the spatial curvature3

associated with the background metric γi j, the equation of motion for hi j is found to
be

h′′i j +2H h′i j +(2K −∆)hi j = 8πGNa2 pπi j, (2)

where ∆ = γ i j∂i∂ j, p is the background pressure and πi j the anisotropic stress. For
many of the known components of matter, it is vanishing (however, see e.g. [11, 12]
and references therein), and we shall make the assumption that πi j = 0 from now
on.

In what follows, we set K → 0 and thus identify the background spatial metric
γ i j → δ i j as the 3D curvature has been measured to be vanishingly small. Techni-
cally, considering a non-vanishing curvature merely amounts to changing the spec-
trum (and eigenfunctions) of the Laplace-Beltrami operator used below for the mode
decomposition [13], so that the calculations and discussions presented below can be
generalised in a straightforward way if applied to epochs in which the assumption
K = 0 may not be valid.

Let us thus first decompose the tensor perturbations in Fourier modes through4

hi j(xxx,η) =
√

32πGN

∫ d3kkk
(2π)3/2a(η)

wi j(kkk,η)eikkk·xxx (3)

with w⋆
i j(−kkk,η) = wi j(kkk,η) to ensure hi j ∈ R, so that, from Eq. (2), a given mode

satisfies
w′′i j +ω2

k wi j = 0 , (4)

where we defined the module k := |kkk| ≥ 0 and the time-varying frequency

ω2
k = k2− a′′

a
. (5)

At this point, one notes that whenever the scale factor behaves as a power-law of the
conformal time5 a(η) ∝ |η |α , then a′′/a = α(α − 1)/η−2 = (α − 1)H 2/α . This
in particular encompasses the cases of cosmological interest where a single fluid

2 A prime denotes differentiation with respect to conformal time, e.g. a′ := da/dη
3 In appropriate units for the comoving coordinates xi, it can be scaled to K = 0,±1. For most
of the practical applications we shall deal with in this review, we shall consider the simplest, and
inflation-motivated, flat case with K = 0.
4 The numerical factor

√
32πGN is included here for later convenience.

5 We write the absolute value of the conformal time in what follows, as it is negative in many
situations, in particular during inflation.
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dominates the Friedmann dynamics, as well as the de Sitter inflationary expansion.
The condition k2≫ |a′′/a| then becomes kH −1 ∝ k|η | ≪ 1, so that, in terms of the
physical wavelength λ ∝ a/k, one has λ ≪ H−1: such a mode, much smaller than
the Hubble scale H−1, is said to be sub-Hubble. Conversely, modes with k2≪|a′′/a|
are called super-Hubble.

Let us temporarily restrict attention to a sub-Hubble mode k2≫ |a′′/a|. Eq. (4)
then simplifies to w′′i j + k2wi j = 0, whose solution reads wi j = αi j exp(±ikη).
For a mode propagating in the +xxx333−direction, this yields hi j = αi j exp[±ik(x3−
η)]/a(η). The first constraint, namely ∂ ihi j = 0, implies kiαi j = kαz j = 0, so that
for k ̸= 0, one is left with α11, α12 and α22 as the only non vanishing components
(the symmetries of wi j are identical to those of hi j). The second constraint, hi

i = 0,
translates into α22 = −α11, so the mode has only two independent degrees of free-
dom. The matrix αi j can be rewritten explicitly as

αi j =




α11 α12 0
α12 −α11 0
0 0 0


=




1 0 0
0 −1 0
0 0 0




︸ ︷︷ ︸
=
√

2P+
i j

α11 +




0 1 0
1 0 0
0 0 0




︸ ︷︷ ︸
=
√

2P×i j

α12. (6)

The matrices P+
i j and P×i j represent the two polarisations of the gravitational wave,

whose associated tensor perturbations read

hi j (xxx,η) = h× (t− z)P×i j +h+ (t− z)P+
i j , (7)

with {t,x,y,z}= {aη ,ax1,ax2,ax3} the physical coordinates.
Consider a test particle following the trajectory of affine parameter λ , i.e. xµ(λ ),

and initially at rest in the TT-frame where the metric has the form (1) with hi j given
by (7), namely, assuming the scale factor a to be constant during the passing of the
wave,

ds2 =−dt2 +[1+h+(z− t)]dx2 +[1−h+(z− t)]dy2 +2h×(z− t)dxdy+dz2. (8)

From (8), one can evaluate the connections while the wave passes, and it turns out
that Γ i

ηη = 0, so that the motion of a particle following a geodesic is unaltered as
it moves with the reference frame: it appears at rest at all times. It is therefore not
possible to detect a gravitational wave using a single particle.

Writing the line element as ds2 =−dt2 +dℓ2, we consider two particles located
on the TT-x axis (i,.e. y= z= 0) with coordinates x and x+∆x. Their proper distance
is obtained from (8): the relation dℓx =

√
1+α+(t)dx≃

[
1+ 1

2 h+(t)
]

dx, can be in-
tegrated to yield ∆ℓx =

[
1+ 1

2 h+(t)
]

∆x. Similarly, considering two particles lying
along the y axis, one obtains ∆ℓy =

[
1− 1

2 h+(t)
]

∆y, so that as the separation along
one direction is elongated, the other is compressed, and vice versa. A similar calcu-
lation on particles set on the y = ±x lines permits to visualize the effect of the α×
polarisation. Setting our test particles along a ring in the (x,y) plane, such as shown
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!

"

0 T/4 T/2 3T/4

P+

P×

Fig. 1 Effect of a gravitational wave mode P+ or P× as it passes through a ring of test particles,
producing ‘+’ or ‘×’ shapes as time goes through a full period of the wave: starting with an initially
circular ring at t = 0, its shape is modified and shown here for different values of time, namely T/4,
T/2 and 3T/4 for a period T = 2π/k.

in Fig. 1, one gets the + and × shapes as the wave propagates in the zzz−direction,
hence the names of the polarisation modes.

For a general wave vector kkk = knnn in the arbitrary direction parametrised by the
angles ϕ and θ (see Fig. 2), namely nnn = (cosϕ sinθ ,sinϕ sinθ ,cosθ), one sets

wi j(kkk,η) = ∑
λ=+,×

P(λ )
i j (nnn) fλ (kkk,η), (9)

with P(λ )
i j (nnn) the polarisation tensors and fλ the associated functions solutions of

the mode equation (4). Fig. 2 shows the vectors eeea (a = 1,2) generating the plane
orthogonal to the direction of propagation. Defined through

eee1 =−
1

sinθ
∂nnn
∂ϕ

=




sinϕ
−cosϕ

0


 and eee2 =

∂nnn
∂θ

=




cosθ cosϕ
cosθ sinϕ
−sinθ


 ,

so that nnn = eee1× eee2, they satisfy eeea · eeeb = δab and nnn · eeea = 0. Demanding hi j to be
transverse and traceless translates into

kiP(λ )
i j = 0, and P(λ )

i j δ i j = 0, (10)

and one can check that the choice

P+
i j =

1√
2

[
(eee2)i (eee2) j− (eee1)i (eee1) j

]
and P×i j =−

1√
2

[
(eee1)i (eee2) j +(eee2)i (eee1) j

]

(11)
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Fig. 2 Definition of the dyad eeea (a = 1,2) in the plane orthogonal to the arbitrary direction kkk.

satisfies all the constraints (10); they reduce to those appearing in (6) for kkk = kzzz
(choosing ϕ → 0 or ϕ → π as it is then undetermined). One can check straightfor-
wardly that the relations

Pi+
j (nnn)P

j+
i (nnn) = Pi×

j (nnn)P
j×
i (nnn) = 1 and Pi+

j (nnn)P
j×
i (nnn) = 0 (12)

hold.
Let us note at this point that the transformation nnn → −nnn, which amounts to

(θ ,ϕ)→ (π−θ ,ϕ +π), implies eee1→−eee111 and eee2→ eee222, so that

P+
i j (−nnn) = P+

i j (nnn) and P×i j (−nnn) =−P×i j (nnn). (13)

From (9) and the reality condition below (3), one then finds that

f ⋆+(−kkk,η) = f+(kkk,η) and f ⋆×(−kkk,η) =− f×(kkk,η),

the extra minus sign in the cross-polarisation reflecting the fact that the gravitational
wave transforms according to a spin-2 representation and not as a scalar. This sign
is however inconvenient as it requires the functions fλ to explicitly depend on the
direction of propagation of the gravitational wave.

This issue is solved by considering another basis instead of the + and × polari-
sations:
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ε±i j :=
1√
2

(
P+

i j ± iP×i j

)
, (14)

resulting in the new expansion

wi j(kkk,η) = ∑
λ=±

ε(λ )i j (nnn)µλ (kkk,η), (15)

where now one recovers the usual reality conditions in the form

µ⋆±(−kkk,η) = µ±(kkk,η), (16)

because
[
ε±i j (−nnn)

]⋆
= ε±i j (nnn). Note also that the orthogonality relations become

ε i±
j (nnn)ε

j∓
i (nnn) = 1 and ε i±

j (nnn)ε
j±
i (nnn) = 0 and that the coefficients of the expansion

are related via
µ±(kkk,η) =

1√
2
[ f+(kkk,η)∓ i f−(kkk,η)] . (17)

Performing a rotation in the plane orthogonal to nnn by an angle α amounts to
rotating eeea through {

eee1 → eee1 cosα− eee2 sinα
eee2 → eee1 sinα + eee2 cosα

and one can check explicitly that the new polarisations transform according to

ε±i j → e±2iα ε±i j , (18)

i.e. they transform as tensors with helicity ±2 and are, therefore referred to as the
helicity basis. Gathering all the above, one finds that Eq. (15) permits to show that,
in general, the modes µ+ and µ− both satisfy the same equation of motion, which
is nothing but Eq. (4) with the replacement wi j→ µ±.

This can be derived directly from Eq. (4) using the expansion on the helicity
basis, or going back to the Einstein-Hilbert action and performing an expansion in
powers of hi j

SEH =
1

16πGN

∫
d4x
√−gR =

1
16πGN

∫
d4x
√
−
[
g(0)+g(2)

][
R(0)+R(2)

]
+ · · · ,

where the dots represent higher-order terms and the determinant is expanded as the
exponent of the trace of a logarithm g = det

(
gµν
)
= det

(
g(0)µν

)
det
(
δ µ

ν +hµ
ν
)
=

a4
[
1− 1

2 hi
jh

j
i +O

(
h3
)]

and the first term vanishes due to the traceless condition,

while the contribution from R(1) vanishes identically if we assume the background
to satisfy the equation of motion. The resulting action at second-order reads

δ (2)ST =
1

64πGN

∫
a2(η)

[
∂hi

j

∂η
∂h j

i
∂η
−
(
∂khi

j
)

∂ kh j
i

]
d4x. (19)
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Plugging the expansion (3) and the definition (15) into the action (19), leads to

δ (2)ST =
∫

dη ∑
λ=±

1
2

∫
d3kkk

[(
µ ′⋆λ −H µ⋆λ

)(
µ ′λ −H µλ

)
− kkk2µ⋆λ µλ

]
. (20)

Upon integrating the H (µ⋆λ µλ )
′ by parts, and using Parseval theorem to revert to

real space, we get

δ (2)ST =
∫

dη ∑
λ=±

1
2

∫
d3xxx
√

γ
[(

µ ′λ
)2− γ i j∂iµλ ∂ jµλ +

a′′

a
µ2

λ

]
, (21)

where we wrote µλ = µλ (xxx,η) the inverse Fourier transform of µλ (kkk,η). This is
the action for two independent scalar fields µ+ and µ−, with identical time-varying
masses. One can check that the Euler-Lagrange equation for (21) gives back (4)
for both polarisations. The form (20) allows for straightforward quantisation of the
gravitational field as a collection of parametric oscillators, which is the subject of
the following section.

3 Quantisation and time development

3.1 Historical perspective

Parker, in Ref. [14], was the first to use the above separation of the gravitational
wave field into two minimally coupled scalar fields as a simpler route to quantisa-
tion, although previous works on (quantum) fields in curved spacetime had already
identified the crucial prediction of (vacuum) amplification powered by the expan-
sion of the Universe, including for gravitational waves. Particle creation following
a change in boundary conditions of a system was shown in Ref. [15], but creation
powered by an expanding Universe was first demonstrated by Parker in his semi-
nal articles [16, 17, 18]. However, it was argued that massless non-zero spin fields,
including gravitational waves, had to be conformally coupled to gravity so that no
particle creation could occur. The production of gravitons, particles associated with
gravitational waves, was studied in anisotropic universes in [19] and hinted at in
[20] but Grishchuk [21] was the first to lift the misunderstanding and to compute
the ensuing gravitational wave amplification in an isotropic expanding universe.
Despite the use of a classical treatment, the corresponding quantum particle pair
creation was noted and the existence of a primordial gravitational wave background
put forward. Several authors then attempted to compute the spectrum of this back-
ground based on spontaneous pair creation from the vacuum still using a classical
treatment and different initial conditions and renormalisation procedures as, e.g. in
Refs. [22, 23, 24]. Finally, in [24], graviton production due to an early de Sitter
phase of expansion, not yet called inflation, was considered with the Bunch-Davies
vacuum [25] providing the relevant initial conditions.
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Although acknowledged as originating from vacuum fluctuation, the dynamics
of primordial gravitational waves was first analysed classically as successive stages
of parametric amplifications, either using a classical field and possibly fixing the
initial conditions to match quantum vacuum fluctuations [21, 22, 24, 26, 27], or us-
ing mode functions [14, 28]. Another presentation, equivalent to the latter, consists
in understanding the amplification of the waves as successive Bogoliubov transfor-
mations [29] where the initial state is chosen as the vacuum in an asymptotically
Minkowski region. Finally, it was latter recognised [30], moving to the Schrödinger
picture, that the evolution puts the gravitational waves in a squeezed state. A good
parallel presentation of the classical and quantum descriptions can be found in [31].

In this section, we first proceed to the canonical quantisation of the field in
the Heisenberg picture following [14]. This is the standard approach; we refer to
Refs. [32, 33, 34] for textbooks dealing with scalar fields or gravitational waves. We
then review different formal approaches to the evolution of a quantised gravitational
wave field on an FLRW background. We begin by using a description in terms of
a Bogoliubov transformation, then make the connection with mode functions and
finally move to the Schrödinger picture, introducing squeezing parameters and the
phase-space representation of the state. We use these different approaches to dis-
cuss the mechanism of graviton creation in curved spacetime. This then leads to a
discussion of how these particles back-reacts on the geometry. Finally, we use these
analyses to compute the properties of primordial gravitational waves produced from
the vacuum by the cosmological expansion and discuss their quantum origin 6.

3.2 Canonical quantisation and Bogoliubov transformation

Let us consider one of the two fields µλ in Eq. (21). It so happens that for the study of
time evolution in terms of Bogoliubov transformations and squeezing, it is useful,
and standard [30], to keep the total derivative that was dropped in the process of
integration by part between eqs. (20) and (21). The Lagrangian thus obtained reads

Lλ =
1
2

∫
d3xxx
[(

µ ′λ
)2−2H µ ′λ µλ −∂iµλ ∂ iµλ +H 2µ2

λ

]
. (22)

The canonically conjugate momentum to µλ is

πλ (xxx,η) =
δLλ
δ µ ′λ

= µ ′λ −H µλ , (23)

so the Hamiltonian reads

Hλ =
1
2

∫
d3xxx
[
π2

λ +H (πλ µλ +µλ πλ )+∂iµλ ∂ iµλ
]
, (24)

6 Note that the exact same analyses on quantisation and time evolution can be repeated for scalar
perturbations during inflation with the same type of equations [35].
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the second term being written in a symmetric way, which is classically irrelevant
but prepares for quantisation. We proceed to canonical quantisation by imposing
equal-time canonical commutation relations (we now drop the λ subscripts)

[
µ̂ (xxx,η) , π̂

(
xxx′,η

)]
= ih̄δ

(
xxx− xxx′

)
, (25a)

[
µ̂ (xxx,η) , µ̂

(
xxx′,η

)]
=
[
π̂ (xxx,η) , π̂

(
xxx′,η

)]
= 0 . (25b)

Going to Fourier-space these relations are equivalent to

[µ̂kkk (η) , π̂kkk′ (η)] = ih̄δ
(
kkk+ kkk′

)
, (26a)

[µ̂kkk (η) , µ̂kkk′ (η)] = [π̂kkk (η) , π̂kkk′ (η)] = 0 , (26b)

and the Hamiltonian reads

Ĥ =
∫

R3+
d3kkk Ĥ±kkk =

∫

R3+
d3kkk
[
π̂kkkπ̂−kkk +H (π̂kkk µ̂−kkk + µ̂kkkπ̂−kkk)+ k2µ̂kkk µ̂−kkk

]
, (27)

where Ĥ±kkk is the Hamiltonian for the ±kkk sector. Observe that, as required by ho-
mogeneity, only the modes ±kkk are coupled and the coupling only depends on the
norm k, as required by isotropy. In order to expand Ĥ into a sum of independent
Hamiltonians Ĥ±kkk for the bi-modes ±kkk, we restrict the integration to be over the
top-half half of the Fourier space, denoted by R3+, e.g. by selecting only the vectors
kkk with positive kz component, and dropping the original global factor of a half.

Let us first analyse the evolution of one such pair of modes ±kkk in a situation
where the term in H can be neglected with respect to the others, so that µ̂ is just
a free scalar field in Minkowski spacetime. With H → 0, the Hamiltonian Ĥ is
time-independent and we can introduce the usual creation/annihilation operators for
a real scalar field

µ̂kkk (η) =

√
h̄
2k

[
âkkk (η)+ â†

−kkk (η)
]
, (28a)

π̂kkk (η) =−i

√
h̄k
2

[
âkkk (η)− â†

−kkk (η)
]
. (28b)

The equal-time commutation relations assume the standard form
[
âkkk, â

†
kkk′

]
= δ

(
kkk− kkk′

)
and [âkkk, âkkk′ ] =

[
â†

kkk, â
†
kkk′

]
= 0. (29)

The Hamiltonian Ĥ±kkk then separates into two harmonic oscillators of frequency k

Ĥ(0)
±kkk = h̄k

(
â†

kkkâkkk +
1
2

)
+ h̄k

(
â†
−kkkâ−kkk +

1
2

)
, (30)

and the Heisenberg equations of motions
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ih̄
dâ(†)±kkk

dη
=
[
â(†)±kkk, Ĥ±kkk

]

give âkkk (η) = âkkk(0)e−ikη . Including the friction term proportional to the Hubble
function H , the Hamiltonian now reads

Ĥ±kkk = h̄k
(

â†
kkkâkkk +

1
2

)
+ h̄k

(
â†
−kkkâ−kkk +

1
2

)
− iH h̄

(
â−kkkâkkk− â†

−kkkâ†
kkk

)
. (31)

The additional term corresponds to an interaction with a time-dependent classical
source, the expanding background, acting through H . It couples the ±kkk modes by
creating/destroying pairs of particles with opposite momentum; âkkk is paired with
â−kkk and similarly for their hermitian conjugate. These terms are the only quadratic
interactions terms that respect homogeneity. The Heisenberg equations of motions
accordingly only mixes âkkk with â†

kkk

d
dη

(
âkkk

â†
−kkk

)
=



−ik H

H ik



(

âkkk

â†
−kkk

)
. (32)

The operators at any further time η can then be expressed as a linear combination
of operators at an earlier time ηin

(
âkkk(η)

â†
−kkk(η)

)
=

(
αk(η) βk(η)
β ∗k (η) α∗k (η)

)(
âkkk (ηin)

â†
−kkk (ηin)

)
. (33)

The system (32) is equivalent to

d
dη

(
αk
β ⋆

k

)
=



−ik H

H ik



(

αk
β ⋆

k

)
, (34)

with αk (ηin) = 1 and βk (ηin) = 0 as initial conditions. One can check that Eq. (34)
implies the quantity |αk|2−|βk|2 is conserved, while the commutation relations (29)
impose

|αk|2−|βk|2 = 1 . (35)

At any fixed η , a transformation like (33) respecting the condition (35) is called
a Bogoliubov transformation [36]. Notice that the equations of motion, and so the
Bogoliubov coefficients, only depend on the norm k. The evolution of the quantum
field has thus been reduced to finding the coefficients of a time-dependent Bogoli-
ubov transformation. A convenient way to analyse this situation is to introduce mode
functions.
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3.3 Mode functions

Having observed that the dynamics only mixes âkkk and â†
−kkk, we have a basis on which

to expand µ̂ . Inserting (33) in the Fourier expansion of the field µ̂ , we get

µ̂kkk(η) = uk (η) âkkk (ηin)+u⋆k (η) â†
−kkk (ηin) , (36a)

π̂kkk(η) =Uk (η) âkkk (ηin)+U⋆
k (η) â†

−kkk (ηin) , (36b)

where uk and Uk are defined by

uk (η) =

√
h̄
2k

[αk (η)+β ⋆
k (η)] , (37a)

Uk (η) =−i

√
h̄k
2
[αk (η)−β ⋆

k (η)] . (37b)

Using these functions, we get the so-called mode expansion of the field µ̂

µ̂ (xxx,η) =
∫ d3kkk

(2π)3/2

[
eikkk.xxxuk (η) âkkk (ηin)+ e−ikkk.xxxu⋆k (η) â†

kkk (ηin)
]
, (38)

and a similar expression for π̂ with Uk instead of uk. It can be checked from (33)
that uk simply obeys the same equation of motion (4) as the classical field µ (kkk,η);
the momentum mode function Uk is then determined by

u′k = H uk +Uk . (39)

Finally, the conserved quantity |αk|2− |βk|2 maps to the Wronskian W
(
uk,u⋆k

)
=

u⋆ku′k−u⋆′k uk, which is a conserved quantity of (4), so the condition (35) translates in
the normalisation

W (uk,u⋆k) =−ih̄ . (40)

Any function uk solution of (4) and which satisfies the normalisation condition of
the Wronskian is called a mode function.

We now have a dictionnary between the Bogoliubov and mode function presen-
tations. Solving the system (34) with initial conditions αk (ηin) = 1 and βk (ηin) = 0
is equivalent to solving (4) for uk with initial conditions uk (ηin) =

√
h̄/2k and

u′k (ηin)=−i
√

h̄k/2+H (ηin), Uk being determined by Eq. (39). Using mode func-
tions the quantum dynamics reduces to the classical one. This justifies the classical
treatment used in works cited in introduction of this section; it is simply a conse-
quence of working at linear order and we will encounter other manifestations of this
fact when studying phase-space representation.
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3.4 Squeezed states

The time evolution was described so far in the Heisenberg picture. We now show
how to move to the Schrödinger picture and introduce the squeezing formalism. This
formulation was initially proposed in Ref. [30] and we use conventions matching
those of [37]. Without loss of generality, the Bogoliubov coefficients (33) can be
parametrised using three real coefficients rk, ϕk and θk through

αk(η) = e−iθk(η) cosh [rk(η)] , (41a)

βk(η) =−ei[θk(η)+2ϕk(η)] sinh [rk(η)] , (41b)

where rk and ϕk are respectively called the squeezing parameter and angle, collec-
tively referred to as the squeezing parameters. We define the 2-mode squeezing and
the 2-mode rotation operators by

Ŝ (rk,ϕk) = exp
[∫

R3+
d3kkk
(

rke−2iϕk âkkkâ−kkk− rke2iϕk â†
kkkâ†
−kkk

)]
, (42a)

R̂(θk) = exp
[
−i
∫

R3+
d3kkkθk

(
â†

kkkâkkk + â†
−kkkâ−kkk

)]
, (42b)

in which the integrals are again, as in (27), performed over half the Fourier space
and the creation and annihilation operators are understood to be evaluated at ηin.
The operators Ŝ and R̂ defined through (42) are unitary and one can check that

â(†)±kkk(η) = R̂† (θk) Ŝ† (rk,ϕk) â(†)±kkk (ηin) Ŝ (rk,ϕk) R̂(θk) , (43)

where the parameters are that of Eq. (41) and we have made their time dependence
implicit for display convenience. The time evolution equation (33) is seen to corre-
spond to the application of a rotation of parameter θk (η) followed by a squeezing
of parameters rk (η) and ϕk (η) on the operators.

Any operator Ô(η) in the Heisenberg picture can be written as a combination of
â(†)±kkk (η) so we have

⟨Ψ (ηin)| Ô(η) |Ψ (ηin)⟩= ⟨Ψ (ηin)| R̂†Ŝ†Ô(ηin) ŜR̂ |Ψ (ηin)⟩ ,
= ⟨Ψ (η)| Ô(ηin) |Ψ (η)⟩ .

(44)

where |Ψ (η)⟩= ŜR̂ |Ψ (ηin)⟩ is the Schrödinger evolved state of the system. Choos-
ing the waves to be initially in the vacuum of â(†)±kkk (ηin) for all modes kkk (we return to
this point later) yields

|Ψ (η)⟩= ∏
R3+

Ŝ (rk,ϕk) R̂(θk) |0kkk,0−kkk⟩= ∏
R3+

|2MS,rk,ϕk⟩ , (45)

where we have defined the 2-mode squeezed state (2MS) for the modes ±kkk



14 Amaury Micheli and Patrick Peter

|2MS,rk,ϕk⟩= Ŝ (rk,ϕk) |0kkk,0−kkk⟩=
1

cosh(2rkkk)

+∞

∑
n=0

(
− tanh2rke2iϕk

)n |nkkk,n−kkk⟩ .
(46)

The last expression can be computed using a Baker-Campbell-Hausdorff formula
on the squeezing operator, now restricted to a single ±kkk sector [38] and |nkkk,n−kkk⟩ is
the state with n particles in the mode kkk and −kkk. Note that the rotation angle θk has
dropped from (46) because the vacuum is invariant under the rotation operator and
the product involved is over all directions.

Following [39], one can quickly derive the associated wavefunction of a single
pair of modes by assuming that, at the initial time, the corresponding state is anni-
hilated by both annihilation operators, i.e.,

â±kkk (ηin) |0kkk,0−kkk⟩= 0 . (47)

Since Ŝ is unitary (Ŝ†Ŝ = 1), this is also

0 = Ŝ (rk,ϕk) â±kkkŜ† (rk,ϕk) Ŝ (rk,ϕk) |0kkk,0−kkk⟩ ,
= Ŝ (rk,ϕk) â±kkkŜ† (rk,ϕk) |2MS,rk,ϕk⟩ ,

(48)

where the transformation on the left corresponds to the inverse of Eq. (43) for θk =
0. Inverting the Bogoliubov transformation (33) and using (28), the relation (48)
becomes [

µ̂±kkk +
i
k

(
1− iγ12

γ11

)−1

π̂±kkk

]
|2MS,rk,ϕk⟩= 0 (49)

where, anticipating the next section, we have introduced the matrix entries

γ11 = cosh(2rk)− cos(2ϕk)sinh(2rk) , (50a)
γ12 =−sin(2ϕk)sinh(2rk) . (50b)

Projecting Eq.(49) onto the µ±kkk-representation of the wavefunction7 by setting
µ̂±kkk→ µ±kkk and π̂±kkk→−ih̄∂/∂ µ∓kkk. The wavefunction solution of Eq. (49) reads

Ψ (µkkk,µ−kkk) =

√
k

π h̄γ11
e−

k
h̄
(1−iγ12)

γ11
µkkkµ−kkk , (51)

which we normalised, using (16), to
∫ |Ψ |2dµkkkdµ−kkk = 1.

When the squeezing parameters are those determined by Eqs. (41), this gives the
wavefunction of any ±kkk mode of the gravitational waves. One can also provide a
description in terms of the squeezed state parameters only by recasting (33) into a
set of differential equations involving only rk, ϕk and θk. One finds that the system

7 Formally, the wavefunction is the projection of the relevant state on the basis |{µ±kkk}⟩, i.e.
Ψ(µkkk,µ−kkk) = ⟨µ±kkk|2MS,rk,ϕk⟩.
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drk

dη
=−H cos(2ϕk) , (52a)

dϕk

dη
=−k+H coth(2rk)sin(2ϕk) , (52b)

dθk

dη
= k−H tanh(rk)sin(2ϕk) , (52c)

should indeed hold. Note that the equations describing the time evolution of the
squeezing parameters rk and ϕk, namely (52a) and (52b), are independent of θk.
These equations are however rarely solved directly, as it is easier to first solve Eq. (4)
for the mode function, then deduce the Bogoliubov coefficients by inverting (37) and
finally, using (41), obtain the expression of the squeezing parameters. The virtue of
the squeezing formalism is rather to give a clear phase space representation of the
system’s evolution. Such representation can be obtained using the Wigner quasi-
probability distribution [40] to which we now turn.

3.5 Wigner function

Consider a system described by a density matrix ρ̂ and represented by n-pairs
of canonically conjugate hermitian operators X̂ = {(q̂i, p̂i)}i∈[1,n] of the same di-
mension. The Wigner function is a function of 2n phase space variables X =
{(qi, pi)}i∈[1,n] defined by

W (X) =
1

(2π h̄)n

∫
dn⃗xe−i p⃗.⃗x

h̄

〈
q⃗+

x⃗
2

∣∣∣∣ ρ̂
∣∣∣∣⃗q−

x⃗
2

〉
, (53)

where the states entering the averaging are product eigenstates of q̂i. The right hand
side of (53) is the Weyl transform of ρ̂/(2π)n. This transform maps any observ-
able Ô, which is a function of operators in X̂ , to a function Õ(X) of the associated
classical variables X . A crucial property is that the expectation value of any such
observable Ô can be computed by treating the Wigner function as a probability
measure for the Weyl transform

〈
Ô
〉
= E

[
Õ(X)

]
=
∫

W (X) Õ(X)DX , (54)

where the integral is over all the relevant variables in X and we denoted E the
stochastic average with respect to the Wigner funcion. Equation (54) then allows to
compute averages using the Wigner function as any classical phase-space probabil-
ity distribution. Finally, the von-Neumann equation of motion for the density matrix
can be mapped into an equation of motion for the Wigner function, namely [41]

ih̄Ẇ (X) = H (⃗q, p⃗)⋆W −W ⋆H (⃗q, p⃗) , (55)
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where the non-commutative ⋆-product is defined by

f (⃗q, p⃗)⋆g (⃗q, p⃗) = f
(

q⃗+
ih̄
2

∂p⃗, p⃗−
ih̄
2

∂⃗q

)
g (⃗q, p⃗) , (56a)

= f (⃗q, p⃗)g
(

q⃗− ih̄
2

∂p⃗, p⃗+
ih̄
2

∂⃗q

)
. (56b)

The Wigner function therefore furnishes a complete representation of the state of
the system and its evolution in phase space.

Two remarks are in order here. First, in general, the Wigner function is not ev-
erywhere positive making it only a quasi-probability distribution. It can be shown
that, for pure states, it is everywhere positive only when it takes the form [42]

W (X) =
1

(π h̄)n√detγ
exp
(
−XTγ−1X

h̄

)
, (57)

which is completely determined by γ , the covariance matrix, defined by

γab = ⟨X̂aX̂b + X̂aX̂b⟩. (58)

Such states are called Gaussian states and are widely used in quantum optics, see
[43] for a review. Second, for evolution under a quadratic Hamiltonian H

(
X̂
)
, the

dynamics (55) simply reduces to the classical Liouville equation 8

Ẇ (X) = {H (X) ,W (X)} , (59)

the curly brackets denoting the usual classical Poisson brackets.
Equation (59) can be solved by the method of characteristics i.e. by evolving

the initial distribution along the classical trajectories given by H. This is another
manifestation of the fact that, at quadratic order, the quantum dynamics reduces to
the classical one. In addition, this implies that an initially Gaussian state will remain
Gaussian under a quadratic Hamiltonian and that its evolution is thus summarised
in that of its covariance matrix γ .

Both of the above discussed simplifications apply to cosmological perturbations
at linear order, to which we return by considering a pair of modes ±kkk. These two
degrees of freedom represented by the four operators µ̂±kkk and π̂±kkk. These four oper-
ators are not hermitian and related to one another by hermitian conjugation. We can
however build two such pairs of operators by taking the real and imaginary parts of
µ̂±kkk and π̂±kkk (up to a factor of

√
2, introduced for further convenience), namely

8 For a detailed derivation in the special case of cosmological perturbations see Appendix H of
[37].
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µ̂ R
kkk =

µ̂kkk + µ̂†
kkk√

2
, µ̂ I

kkk =
µ̂kkk− µ̂†

kkk√
2i

(60a)

π̂ R
kkk =

π̂kkk + π̂†
kkk√

2
, π̂ I

kkk =
π̂kkk− π̂†

kkk√
2i

. (60b)

One can straightforwardly check that those are indeed Hermitian and canonically
conjugate i.e. [µ̂ S

kkk , π̂
S′
kkk′ ] = ih̄δ (kkk− kkk′)δS,S′ and [µ̂ S

kkk , µ̂
S′
kkk′ ] = [π̂ S

kkk , π̂
S′
kkk′ ] = 0 where S =

R, I. We arrange them in the vector X̂R/I =
(
k1/2µ̂ R

±kkk,k
−1/2π̂ R

−kkk,k
1/2µ̂ I

−kkk,k
−1/2π̂R

−kkk

)
,

where we have introduced factors of k to give the same dimension to all entries in
the vector, whose associate vector of classical variables is denoted XR/I. The Wigner
function with respect to these variables is defined by

W±kkk (X±kkk) =
1

(2π h̄)2

∫
e−

i
h̄ (πR

kkk x+π I
kkky)
〈

µ R
kkk +

x
2
,µ I

kkk +
y
2

∣∣∣ ρ̂kkk

∣∣∣µ R
kkk −

x
2
,µ I

kkk−
y
2

〉
dxdy.

(61)
In terms of the variables (60), the Hamiltonian Ĥ±kkk separates into two equal

Hamiltonian over the R/I sectors that thus evolve independently

Ĥ =
h̄
2

∫

R3+
d3kkk ∑

S=R,I

[
(π̂ S

kkk )
2 +2H

(
µ̂ S

kkk π̂ S
kkk + π̂ S

kkk µ̂ S
kkk
)
+ k2(µ̂ S

kkk )
2]=

∫

R3+
d3kkk ∑

S=R,I
ĤS

kkk .

(62)

Similarly, the wavefunction (51) factorises into a product of two wavefunctions over
each sector Ψ (µkkk,µ−kkk) =Ψ

(
µ R

kkk

)
Ψ
(
µ I

kkk

)
with

Ψ
(
µ S

kkk
)
=

(
k

π h̄γ11

)1/4

e−
k

2h̄
(1−iγ12)

γ11
(µ S

kkk)
2

, (63)

and the covariance matrix is block diagonal in the R/I partition γ = γ R⊕γ I. These
separations are in fact imposed by the homogeneity of the state that requires〈

âkkkâ†
−kkk

〉
=
〈
â2

kkk

〉
= 0, which can be recast in the vanishing of all R/I cross terms

[44]. Eq. (63) is nothing else than the wavefunction of a one-mode squeezed state
of parameter rk,ϕk [45]. Going from the±kkk operators to the R/I operators allows to
view a 2-mode squeezed state as a product of two 1-mode squeezed states 9. Such
transformations are studied in details in [46].

Since the wavefunction (63) is Gaussian, then so is the associated Wigner func-
tion W S; vacuua and squeezed states are indeed Gaussian states. Note that their gaus-
sianity is preserved by the evolution because ĤS

kkk is quadratic. The Wigner function
(61) also factorises into W±kkk =W R

(
µ̂ R

kkk , π̂
R
kkk

)
W I
(
µ̂ I

kkk, π̂
I
kkk

)
. Both sectors have identical

covariance matrix, namely

9 This fact can be directly seen by factorizing the 2-mode squeezing operator Ŝ (rk,ϕk) into to two
1-mode squeezing operators for the R/I creation/annihilation operators defined via (28) where ±kkk
operators are replaced by R/I operators.
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γ S =

(
γ11 γ12
γ21 γ22

)
, (64)

with

γ11 =
2k
h̄

〈(
µ̂ R

kkk
)2
〉
=

2k
h̄

〈(
µ̂ I

kkk
)2
〉
=

k
h̄

〈{
µ̂kkk, µ̂†

kkk

}〉
, (65a)

γ12 = γ21 =
1
h̄

〈
µ̂ R

kkk π̂ R
kkk + π̂R

kkk µ̂ R
kkk
〉
=

1
h̄

〈
µ̂ I

kkkπ̂ I
kkk + π̂ I

kkk µ̂ I
kkk
〉
=

1
h̄

〈
µ̂kkkπ̂†

kkk + π̂kkk µ̂†
kkk

〉
, (65b)

γ22 =
2
h̄k

〈(
π̂ R

kkk
)2
〉
=

2
h̄k

〈(
π̂ I

kkk
)2
〉
=

1
h̄k

〈{
π̂kkk, π̂†

kkk

}〉
, (65c)

where we defined the anti-commutator of two operators {Â, B̂} = ÂB̂ + B̂Â, and
we expressed the entries of the covariance matrix in terms of two-point function
of the original µ̂kkk and π̂kkk operators (one can also check that ⟨µ̂kkkπ̂kkk + π̂†

kkk µ̂†
kkk ⟩ = 0).

Using (65) and the parametrisation (41), the covariance matrix can be conveniently
expressed in terms of the squeezing parameters

γ11 = cosh(2rk)− cos(2ϕk)sinh(2rk) , (66a)
γ12 = γ21 =−sin(2ϕk)sinh(2rk) , (66b)
γ22 = cosh(2rk)+ cos(2ϕk)sinh(2rk) , (66c)

where the expressions for γ11 and γ12 correspond to those defined earlier when com-
puting the wavefunction. Finally in order to visualize this probability distribution,
we compute its contour levels. Owing to gaussianity, those are ellipses whose pa-
rameters can be computed through diagonalizing the quadratic form appearing in the
argument of the exponential in Eq. (57). It is readily done by performing a rotation
in phase space X̃ S = R(−ϕk)X S so that the covariance matrix of X S reads

(γ̃ S)−1 =

(
e2rk 0
0 e−2rk

)
. (67)

Some contour levels of W S are plotted in Fig. 3; they provide a geometrical rep-
resentation of the state of the tensor perturbations in phase space and illustrate the
meaning of the squeezing parameters: the ellipse representing the

√
2-σ contour has

semi-minor and semi-major axes of length Ak =
√

h̄erk and Bk =
√

h̄e−rk , which are
tilted by the angle ϕk in phase space. The fluctuations of the operator in the direc-
tion of the semi-major axis are exponentially amplified with respect to the vacuum;
this is called a super-fluctuant mode. On the other hand, the fluctuations of the op-
erator related to the semi-major axis are exponentially suppressed, thus defining a
sub-fluctuant mode.

The presence of amplification and suppression is a manifestation of the existence
of a growing and a decaying solution in Eq. (4) [45]. Their complementary can be
traced back to the purity of the state which, for a Gaussian state, can be computed
directly in terms of the covariance matrix via [43]
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pk = tr
(
ρ̂2)= 1√

det(γ)
=

1
γ11γ22− γ2

12
=

h̄2

A2
kB2

k
=

h̄2π2

S2
k
, (68)

where Sk is the area of the
√

2-σ contour defined by the points where the argument
of the exponential in Eq (57) is unity. Since the purity of the state is preserved under
Hamiltonian evolution, so is Sk. Therefore, the amplification in a given direction has
to be balanced out with squeezing in another. Conversely, if the fluctuations in one
direction are reduced, they increase in another. For any quantum state, pk ≤ 1 and
so the area is minimal for a pure state pk = 1, like the one we consider here, where
Sk = π h̄; this is a geometrical translation of the Heisenberg uncertainty principle
forbidding to localise the system too precisely. Note that in general, due to the ro-
tation ϕk, the product uncertainty of the original pair (µ̂kkk, π̂kkk) does not saturate the
inequality anymore.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
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1/
2 h̄
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1/
2
π
s k ϕk e−rk

erk

Fig. 3
√

2-σ contour level of the Wigner function W S for ϕk = π/4, rk = 1 (green ellipse) and the
vacuum state rk = 0 (pink circle). This figure is adapted from [46].

In addition to granting an elegant geometrical representation of the state, the
presentation in terms of 2-mode squeezed states is often used in the literature to
discuss the quantumness of primordial gravitational waves and scalar perturbations
alike. These aspects are discussed in Sec. 4.
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3.6 Particle production

Having laid out the formalisms to follow the evolution of gravitational waves in
cosmology, we want to give more physical insights into the evolution and show
that, under certain conditions, it can be understood as a process of particle creation.
Bogoliubov transformations and mode functions are the appropriate way to describe
this process in curved spacetime. We start by analysing their relation to particle
content.

Consider two pairs of operators
(
â, â†

)
and

(
b̂, b̂†

)
related by a constant Bogoli-

ubov transformation
b̂ = α â+β â† , (69)

with (α,β ) ∈ C2 such that |α|2−|β |2 = 1. We define two vacua: |0⟩a with respect
to the â operators and |0⟩b with respect to the b̂ operators. The crucial observation
is that these vacua do not coincide. The number of b-particles in the a-vacuum is
always non-vanishing when the Bogoliubov transformation is non-trivial

a ⟨0| b̂†b̂ |0⟩a = |β |2 > 0 . (70)

The analysis carries over to the study of ±kkk modes. Equation (46) shows that the
vacuum of the operators â±kkk(η) is filled with particles associated to â±kkk(ηin). We
thus already see that the number of particles will be different for the same state using
the operators â±kkk (η) of Eq. (28) at two different times.

What are then the appropriate operators to describe the particle content of the
field µ̂ and define a vacuum as we have in Sec. 3.4? We have so far considered
operators defined by (28). In Minkowski spacetime (a′ = 0), this form is uniquely
selected (up to a phase) by requiring that the Hamiltonian is diagonal and that the
vacuum thus defined is invariant under the Poincaré group so that it is shared by all
inertial observers, or, equivalently, the vacuum is the ground state of the Hamilto-
nian [34]. In this situation there is a preferred set of operators selected by physical
symmetries, which subsequently define preferred notions of vacuum and particle.

The procedure described above breaks down in an expanding Universe, a′ ̸= 0,
as the Poincaré group is no longer a symmetry of spacetime, ω2

k [see Eq. (27)] is
time-dependent and can even become negative so that the existence of an energy
minimum is not guaranteed anymore. We are left with no physically preferred vac-
uum in which no inertial detector would record the presence of particles. In this
context, the choice of âkkk (ηin) to perform the expansion (38) appears arbitrary.

A choice of operators in fact corresponds to a choice of mode functions, the latter
being more convenient to work with. Consider the operators b̂±kkk related to â±kkk (ηin)
by the following time-independent Bogoliubov transformation

b̂kkk = ρ⋆k âkkk (ηin)+χkâ†
−kkk (ηin) , (71)

with (ρk,χk) ∈ C2 such that |ρk|2 − |χk|2 = 1. Inverting this transformation and
inserting in (38), we get
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µ̂ (xxx,η) =
∫ d3kkk

(2π)3/2

[
eikkk.xxxvk (η) b̂kkk + e−ikkk.xxxv⋆k (η) b̂†

kkk

]
,

where
vk = ρ⋆k uk−χku⋆k (72)

can be checked to be a mode function, i.e. a solution of (4) with a Wronskian
normalised to W (vk,v⋆k) =

(
|ρk|2−|χk|2

)
W (uk,u⋆k) = −ih̄. A similar expansion is

found for π̂ , with vk replaced by new functions Vk defined as the Uks through the
replacement uk→ vk.

We then have an alternative expansion of µ̂ and π̂ over another set of mode
functions and operators. The meaning of the operators in the expansion is set once
the associated mode functions are fixed 10, and a choice of mode functions corre-
sponds to a choice of initial conditions for the solutions of (4). The normalisation
of the Wronskian fixes one condition, and one is left to choose. For instance, the
Minkowski operators (28) are associated to the mode function

u(M)
k (η) =

√
h̄
2k

e−ikη , (73)

corresponding to the initial conditions

uk (η0) =

√
h̄
2k

e−ikη0 and u′k (η0) =−i

√
h̄k
2

e−ikη0 . (74)

For non-vanishing H , u(M)
k is no longer a solution of (4). Yet, when analysing the

evolution of the two helicities of the gravitational field in this context, we have used
the associated operators (28). Their time-dependence then does not simply factorise
in the running phase of u(M)

k and we have to deal with a continuous change of refer-
ence operators parametrised by a time-dependent Bogoliubov transformation. These
operators correspond at any time η to what would be the Minkowskian definition of
particle and vacuum if the modulation were to stop at this instant. Alternatively, we
can work with the operators defined at some fixed time ηin, as we did in Eq. (36), in
which case the time-dependence is that of a mode function satisfying Eq. (4) which
differs from that of u(M)

k . As just discussed, when the background is time-dependent
neither of these two sets of operators can be favoured to discuss the particle content
of the field.

There are some situations where one can unambiguously define particles and
their properties. One such case [17] is that of a spacetime which is asymptotically
Minkowski at both very early and very late times, i.e. one for which the scale factor
varies in-between two asymptotic constant values

a(η)−−−−→
η→−∞

ain and a(η)−−−−→
η→+∞

aout .

10 This can be seen by expressing b̂kkk in terms of the mode function and the fields b̂kkk =
−i
[
V ⋆

k µ̂ (kkk,η)− v⋆k π̂ (kkk,η)
]
.
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We can therefore define asymptotically Minkowski “in” and “out” mode functions
u(in/out)

k and associated operators â(in/out)
kkk by requiring as initial condition that they

match the Minkowski solution

u(in)k −−−−→
η→−∞

√
h̄
2k

e−ikη and u(out)
k −−−−→

η→+∞

√
h̄
2k

e−ikη .

These mode functions are both solution of (4) for any time η and are therefore
related by a time-independent Bogoliubov transformation

u(in)k = ρku(out)
k +χku⋆(out)

k , (75)

and, via (71), so are â(in/out)
kkk , and it is straightforward to evaluate the number of

particles produced by the non-trivial evolution of the background. We assume that
the field is initially (in the “in” region) in the vacuum defined by the “in” operators
where there exists a preferred notion of vacuum; we denote |0⟩in this “in” vacuum.
In order to read the particle content at the end of evolution (in the “out” region) we
need to use the “out” operators that define the Minkowski notion of particle there.
The number of particles in the “out” region is given by

nout
±kkk = in ⟨0| â†(out)

±kkk â(out)
±kkk |0⟩in = |χk|2 . (76)

This number is strictly positive and the same in the modes ±kkk; this is the well-
known phenomenon of pair production out of the vacuum, here powered by the
background expansion. To evaluate the extent of this production quantitatively we
have to compute the mode equation for both “in” and “out” conditions and match
them. This computation can, for example, be done exactly in a 2d model where the
scale factor evolves as a hyperbolic tangent between its asymptotic values [47].

Let us make the connection in this idealised case with the time-dependent Bo-
goliubov coefficients solving the dynamics of (33). First, note that the operators (28)
coincide with those defined with respect to a mode function uk at times η0 where it
satisfies the Minkowski conditions (74). This can be checked directly upon inserting
(28) in the expression of the operator in terms of the mode function and the fields at
time η0. This applies in both the “in” and “out” regions

â±kkk (η)−−−−→
η→−∞

â(in)±kkk ,

â±kkk (η)−−−−→
η→+∞

â(out)
±kkk .

The time-independent Bogoliubov coefficients between the “in” and the “out” states,
therefore, correspond to the late time limit of the time-dependent Bogoliubov coef-
ficients of Eq. (34)

ρk = αk (η →+∞) and χk = βk (η →+∞) , (77)
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where the associated number of particles
〈

â†
±kkk (η) â±kkk (η)

〉
and correlations are

now meaningful. While it is not a priori the case at any intermediate times, since
the scale factor is varying, we discuss in Sec. 3.8.2 how it is often possible to identify
“in” and “out” regions for certain ranges of modes k in the cosmological evolution.

Anticipating these considerations, we conclude by making a connection with
Sec. 3.4 and studying the particle content of a 2-mode squeezed state. Those can
also be fully characterised by the following three non-vanishing expectation values
(two of them being equal)

nk =
〈

â†
kkkâkkk

〉
=
〈

â†
−kkkâ−kkk

〉
=

γ11 + γ22−2
4

= sinh2 (rk) , (78a)

ck = ⟨âkkkâ−kkk⟩=
γ11− γ22

4
+ i

γ12

2
=−1

2
sinh(2rk)e2iϕk . (78b)

These expressions are obtained by inverting Eq. (28) and making use of Eqs. (65)
and (66). The first expectation value nk gives the number of particles in the modes kkk
and −kkk, which must be identical because of isotropy, while ck encodes the 2-mode
coherence of the pairs. Imposing the purity to be less than unity, pk = γ11γ22−γ2

12 ≤
1, yields the following bound on the magnitude of this coherence:

|ck| ≤
√

nk (nk +1). (79)

For a pure state like that of the gravitons, the bound is saturated |ck|=
√

nk (nk +1),
while for a thermal state ck = 0. In this sense, the modes are uncorrelated in the
thermal state and maximally correlated in a 2-mode squeezed state; they are even
entangled [44]. We come back to this important point in Sec. 4.

3.7 Anomaly-induced semiclassical theory

The concept of particle associated with a quantum field is a global one in the sense
that it is defined through modes; somehow, it can be understood, as described above,
as the effect of geometry on matter, even when “matter” consists of tensor-like per-
turbations of the gravitational field itself. When coupled to classical GR in a semi-
classical way, the quantum nature of gravitational waves, just like any other particle,
may also manifest itself in another way, namely in the back reaction of their quan-
tum fields on geometry; (see, e.g., the historical papers by M. J. Duff [48, 49, 50]
who proposed it for the first time, and Refs. [51, 52] as well as the more recent
Ref [53]). This approach is, therefore, the opposite of the above, making extensive
use of the stress-energy tensor Tµν(x), which is a local quantity.

In this section, for the sake of notational simplicity, we set h̄→ 1 as all the effects
are quantum by nature.
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3.7.1 Gravity with quantum fields

When quantum fields are described in a geometric background, it is customary to
write the corresponding Einstein’s equations in the semiclassical form

Rµν −
1
2

Rgµν +Λgµν = 8πGN⟨Tµν⟩ren, (80)

so that geometry is now sourced by the renormalised stress-energy tensor ⟨Tµν⟩ren.
As the classical Einstein equations are derived from a variation of the vacuum

Einstein-Hilbert term11 (possibly including a cosmological constant contribution),

SEHΛ =
1

16πGN

∫
d4x
√−g(R+2Λ) , (81)

the stress-energy tensor being derived from the classical matter action Sm through

T class
µν =− 2√−g

δSm

δgµν , (82)

one can recover the semiclassical case (80) by similarly defining an effective action
Γ [gµν ] such that

⟨Tµν⟩=−
2√−g

δΓ
δgµν . (83)

It can be shown that for a set of matter fields denoted generically by φ , and which
can include scalar, gauge and fermion fields, whose dynamics is driven by the action
S[φ ;gµν ], one finds

eiΓ [gµν ] =
∫

DφeiS[φ ;gµν ], (84)

and the expectation value in (83) is then understandable in terms of ”in” and ”out”
vacuum states:

2√−g
δΓ

δgµν =
out⟨0|Tµν |0⟩in

out⟨0|0⟩in
, (85)

thereby automatically providing the required normalisation.
In order to integrate explicitly (85) and obtain the relevant effective action, one

needs to know the matter content and its corresponding action. Compared to their
flat space counterparts, fermionic and vectorial contributions are merely obtained by
the minimal coupling, namely making the replacements ∂ →∇ and using the metric
gµν to integrate. The scalar field case can also include an extra term, not present in
the flat Minkowski situation, and one gets

Sϕ =−1
2

∫
d4x
√−g

[
(∂ϕϕϕ)2 +ξi jϕ iϕ jR

]
, (86)

11 We do not consider the Gibbons–Hawking–York boundary term in these discussions; it can be
set to zero by assuming a compact manifold.
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where we considered a set of scalars {ϕ i}= ϕϕϕ; a possible extra potential term V (ϕϕϕ)
can be added to this action. Eq. (86) involves a set of new dimensionless numbers
{ξi j}which are called non-minimal parameters. For a single scalar field, this reduces
to a single parameter; its special value ξ = 1

6 yields conformal invariance.
It turns out that the action derived from this procedure contains ultraviolet diver-

gences that thus need to be renormalised. These lead to contributions that are purely
geometrical, involving only scalars made out of the Riemann tensor Rµναβ (x) and
its contractions. This is understandable as short wavelengths are only sensitive to lo-
cal features of spacetime. Regularising and renormalising forces to introduce coun-
terterms involving higher-order derivatives, and one is naturally led to the conclu-
sion that in order to obtain a renormalisable theory of quantum matter on a classical
curved spacetime, one must demand a geometrical framework that goes beyond gen-
eral relativity.

Applying the procedure described above, the relevant vacuum classical action

Svac = SEHΛ +SHD (87)

is found to include the usual Einstein-Hilbert term (81) in which both GN and Λ
are renormalised quantities, but another contribution, containing higher derivatives
(HD) terms, needs be included, namely

SHD =
∫

d4x
√−g

(
a1C2 +a2E +a32R+a4R2) , (88)

where
C2 = R2

µναβ −2R2
αβ +

1
3

R2

is the square of the Weyl tensor and

E = R2
µναβ −4R2

αβ +R2

represents the Gauss-Bonnet topological term. The action (87) has been shown [54]
to lead to a renormalisable (albeit containing unphysical ghosts or having non-
unitarity issues) theory of quantum gravity. Details can be found in particular in
[55] in the present volume. The parameter a3 is irrelevant for the equations of mo-
tion since 2R is a surface term, while the R2 term is at the origin of the most serious
inflation model proposed by Starobinsky [56].

3.7.2 Conformal anomalies

Let us consider a conformally invariant theory, i.e. for which the transformations

gµν → ḡµν = Ω 2(x)gµν and ϕ → ϕ/Ω(x) (89)

(vector fields being left unchanged and spinors transforming with Ω−3/2) leaves the
action S unchanged. From this requirement, one finds that the trace of the energy-
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momentum tensor [51]

T µ
µ [gαβ (x)] =−

Ω(x)√
−g(x)

δS[ḡµν ]

δΩ(x)

∣∣∣
Ω→1

, (90)

should vanish if (89) is a symmetry of S. This implies that the scalar fields are
massless and ξ → 1

6 . The identity (90) is true at the classical level, and indeed the
conserved Noether current in this case reads

(
2gµν

δ
δgµν

+∑
i

kiφi
δ

δφi

)
S[gαβ (x),φ(x)] = 0, (91)

in which the weights ki correspond to the various fields involved, with ks = −1 for
scalar fields, kf =−3/2 for the fermions and kv = 0 for the gauge fields.

At the quantum level, however, the trace ⟨T µ
µ⟩ is no longer vanishing, as ex-

plicitly calculating it with the given matter content (scalar, vector and spinor fields)
yields a renormalised expectation value [51]

⟨T µ
µ⟩=−

(
ωC2 +bE + c2R

)
, (92)

where the β−functions ω , b and c depend on the numbers of real scalar degrees
of freedom N0, four-component spinor fermions N1/2 and vector fields N1 in the
underlying particle physics model. In practice, they are found to be




ω
b
c


=

1
360(4π)2




3N0 +18N1/2 +36N1
−N0−11N1/2−62N1
2N0 +12N1/2−36N1


 . (93)

In the standard model (SM) of particle physics, where the SU(3)×SU(2)×U(1) is
broken to SU(3)×U(1) through a Higgs doublet, the relevant numbers are NSM

0 = 4,
NSM

1 = 12 (eight gluons, the intermediate W± and Z0 and the photon) and NSM
1/2 = 24

(leptons and quarks, assuming a massive neutrino), one finds

ω SM =
73

480π2 , bSM =− 253
1440π2 and cSM =− 17

720π2 .

Note that although b is negative definite, the sign of c depends on the exact matter
content: measuring this sign somehow, e.g. through that of the primordial gravi-
tational wave spectrum, could be an indirect way of getting information about the
physics that should apply at high energies such as the grand unification (if any) scale.
Note for instance that in the case of the minimal supersymmetric extension of the
standard model (MSSM), the number of vector modes is unchanged (NMSSM

1 = 12),
while the number of fermions is increased to NMSSM

1/2 = 32 and the proliferation of
new scalar modes then yields NMSSM

0 = 104, leading to cMSSM = 1/(36π2)> 0.
Integrating the trace of (83) using (92) is a non-trivial task that has been achieved

in Refs. [57, 58]. Ref [59] suggested to rewrite the action in terms of two auxiliary
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scalar fields σ and ρ (see also [60] for an independent but equivalent formulation)
which happens to be particularly useful for the gravitation wave discussion. It reads

Γ = Sc[gµν ] +
∫

d4x
√−g

(
1
2

σ∆4σ − 1
2

ρ∆4ρ + ℓ1C2ρ
)

+
∫

d4x
√−g

{
σ
[

k1C2 + k2

(
E− 2

3
2R
)]
− 1

12
k3R2

}
, (94)

where the integration constant Sc[gµν ] is conformally invariant, the covariant con-
formal fourth-order operator is (see Refs. [57, 58])

∆4 =22 +2Rµν ∇µ ∇ν −
2
3

R2+
1
3

R;µ ∇µ

and the coefficients are given in terms of those of (92) through

k1 =−
ω

2
√
|b|
, k2 =

√
|b|
2

, k3 = c+
2
3

b and ℓ1 =
ω

2
√
|b|

(95)

(recall b < 0). This effective action stemming from the conformal anomaly (the
Noether current is not conserved at the quantum level) should be added to the vac-
uum term Svac of Eq. (87).

3.7.3 Anomaly-induced cosmology and gravitational waves

Let us apply the above discussion to the specific case of a cosmological framework
which is our main subject, first by considering a background FLRW (conformally
flat) solution and its tensorial perturbations.

The FLRW metric can be written as a conformal transformation of the Minkowski
metric ηµν by setting gµν = a2(η)ηµν . In this very simple case, variations of (94)
with respect to the auxiliary fields σ and ρ yields

(
∂ 2

t −∇∇∇2
)(

σ +8π
√
|b| lna

)
= 0 and

(
∂ 2

t −∇∇∇2
)

ρ = 0, (96)

with solutions
σ = σh−8π

√
|b| lna and ρ = ρh, (97)

in which σh and ρh are solutions of the homogeneous equation,
(

∂ 2
t −∇∇∇2

)
fh = 0;

they can be set to zero in the cosmological context. In this case, one finds the relation

dnσ
dtn =−8π

√
|b|d

n−1H
dtn−1

where H = ȧ/a.
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The above solution (97) with the FLRW metric can now be inserted into the full
theory containing both (94) and the original vacuum (87). It leads to the modified
Friedmann equation

ä
a
+H2− 2

3
Λ =

c
M2

P

[ ....a
a

+3H
...a
a
+

(
ä
a

)2

−
(

5+
4b
c

)
H2 ä

a

]
, (98)

in which we defined the Planck mass M−2
P = 8πGN. As could have been anticipated,

this solution depends on b and c, but neither on ω and a1 since the Weyl tensor is
conformally invariant, nor on a2 and a3 (surface terms), and we have set a4→ 0 to
ensure the original theory is conformally invariant.

Inflationary solutions for (98) can be found in Refs. [56, 61, 62, 63, 64]. A simple
case consists of a de Sitter solution a ∝ exp(Ht) with H constant, which transforms
(98) into a quadratic algebraic equation for H whose solutions

H2 =
M2

P

2|b|

(
1±
√

1+
4|b|Λ
3M2

P

)
−−−−−→
|b|Λ≪M2

P

{
H2

inf = M2
P/|b| (+)

H2
Λ = 2Λ/3 (−) (99)

produce the two relevant extreme cases of present-day cosmological constant dom-
ination and initial inflation, with Hinf≫ HΛ .

Tensor perturbations of the kind (1) in this context are slightly different from
those of ordinary GR discussed in the previous sections. In particular, the mode
equation (4) is now replaced by the slightly more involved fourth order equation
(see Ref. [65] for details)



Quantum cosmological gravitational waves? 29
(

2 f1 +
f2

2

) ....
h +

[
3H(4 f1 + f2)+4 ḟ1 + ḟ2

] ...
h +

[
3H2

(
6 f1 +

f2

2
−4 f3

)

+ H
(

16 ḟ1 +
9
2

ḟ2

)
+6Ḣ( f1− f3)−

16π2

3
|b|
(
H2− Ḣ

)]
ḧ

−(4 f1 + f2)
∇2ḧ
a2 +

[
2Ḣ(2 ḟ1−3 ḟ3)−

21
2

HḢ ( f2 +4 f3)−
3
2

Ḧ ( f2 +4 f3)

+3H2
(

4 ḟ1 +
1
2

ḟ2−4 ḟ3

)
−9H3 ( f2 +4 f3)+H

(
4 f̈1 +

3
2

f̈2 +
3M2

P

4

)

+
16π2

3
|b|
(
Ḧ +HḢ−3H3)

]
ḣ−
[
H(4 f1 + f2)+4 ḟ1 + ḟ2

] ∇∇∇2ḣ
a2

+

[
16π2

3
|b|
(
2

...
H +12HḦ +9Ḣ2−6H2Ḣ−15H4)+ M2

P

2
(
2Ḣ +3H2)

−4HḢ
(
8 ḟ1 +9 ḟ2 +30 ḟ3

)
−8Ḧ

(
ḟ1 + ḟ2 +3 ḟ3)−H2(4 f̈1 +6 f̈2 +24 f̈3

)

−4Ḣ
(

f̈1 + f̈2 +3 f̈3
)
−H3 (8 ḟ1 +12 ḟ2 +48 ḟ3

)

−
(
36ḢH2 +18Ḣ2 +24HḦ +4

...
H
)
( f1 + f2 +3 f3)

]
h

+
[
2
(
2H2 + Ḣ

)
( f1 + f2 +3 f3)+

1
2

H
(
4 ḟ1 + ḟ2

)
+

M2
P

2
− 1

2
f̈2

−16π2

3
|b|
(
Ḣ +5H2)]∇∇∇2h

a2 +
(

2 f1 +
1
2

f2

)∇∇∇4h
a4 = 0, (100)

stemming from the variation of the second-order Lagrangian function

L =
M2

P

2
R+ f1R2

αβ µν + f2R2
αβ + f3R2− 4π

3

√
|b|σ2R+

1
2

σ∆σ , (101)

and we have set ρ = ρh→ 0 and σh→ 0 as the background depends only on time; the
perturbation h(xxx, t) is the amplitude of the tensor mode hi j for a given polarisation.
In Eqs. (100) and (101), the coefficients f1, f2 and f3 are time-dependent functions
that take the values

f1 = a1 +a2 +
|b|−ω
2
√
|b|

σ ,

f2 = −2a1−4a2 +
ω−2|b|√
|b|

σ ,

f3 =
a1

3
+a2−

3c−2|b|
36

+
3|b|−ω
6
√
|b|

σ .
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By inspection of the combinations of f ’s entering Eq. (100), one notes that the
equation of motion does not depend on a2, as expected from the fact that this comes
from a surface term.

Eq. (100) was obtained by assuming the value (97) for the auxiliary field σ(t)
in terms of the background Hubble variable, and so can be used for any admissi-
ble solution for the scale factor, including the inflating case of (99). Expanding in
Fourier modes, i.e. replacing ∇∇∇ by −kkk2, in principle permits to evaluate the gravita-
tional wave stochastic spectrum in such a theory, with a catch: contrary to GR, the
mode equation is no longer that of a parametric oscillator, so that its quantisation,
and consequently the vacuum initial conditions, are not that well defined.

This issue, still under discussion, can be handled by assuming that our semiclas-
sical framework provides a perturbation to GR, so that the extra (higher derivative)
terms may be neglected while quantising in a regime in which one can manage to
construct a consistent Hilbert space of state. Setting quantum vacuum fluctuation
initial conditions exactly then allows setting initial values for the gravitational wave
amplitude and its first three time derivatives.

Moreover, the presence of the higher derivative terms potentially implies insta-
bilities. Setting initial conditions as discussed above, one finds [66, 67] that the time
development, and hence the resulting predictions, is very sensitive to the properties
of the background. Assuming, for instance, a de Sitter inflation phase with constant
Hubble rate H = Hinf, initial trans-Planckian runaway solutions can be redshifted
to become sub-Planckian and then rapidly damped by the expansion: the instabili-
ties indeed present in the theory can end up harmless in a cosmological setup. We
assume in what follows that this is indeed the case.

3.8 Primordial gravitational-wave background

Independently of the underlying quantum theory leading to the production of pri-
mordial tensor modes, one must now evolve them through the expanding universe
to evaluate their current contribution. As we know GR to be valid for the most part
of the FLRW evolution, we consider from now on that the higher derivative terms
discussed above are either not present at all, or contribute only negligibly. In order
to clearly distinguish classical from quantum effects, we include again the relevant
factors of h̄ when necessary.

In Sec. 3.6, we have laid out three equivalent ways to describe the evolution of
perturbations for a general time-dependent background a(η): the use of Bogoliubov
transformations, mode functions and squeezing parameters. We now solve the dy-
namics of the gravitational wave field in a simplified model of the cosmological
evolution to discuss the properties of the primordial gravitational waves generated
and make a connection with observations.
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3.8.1 Cosmological evolution

In FLRW the curvature of spacetime is contained in the scale factor a, whose dy-
namics is related to the matter content of the Universe through the Friedmann equa-
tions. In what follows, we first solve them in the standard approximation that there
is always a single fluid dominating the energy budget of the Universe and that tran-
sitions between two phases are instantaneous. One can thus model the cosmologi-
cal evolution as a succession of three eras: first an accelerated expansion phase for
−∞≤ η ≤ ηr, whose dynamics is that of a slow-roll inflation phase [68], then a radi-
ation dominated phase for ηr ≤ η ≤ ηm and finally a matter domination for η ≥ ηm.
For the sake of simplicity, we ignore the late-time accelerated expansion.

The evolution of the gravitational waves contained in the universe is controlled
by Eq. (4) where the expansion enters through the scale factor a(η) and its second
derivative. Connecting the scale factor and its derivative continuously across the
transitions, we have

a(η)

ar
=





η1+ε
r

(2ηr−η)1+ε ≈
ηr

2ηr−η
+O(ε) for −∞≤ η ≤ ηr,

η
ηr

for ηr ≤ η ≤ ηm,

ηm

2ηr

(
η2

η2
m
+1
)

for ηm ≤ η ,

(102)

where ηr > 0. The first expression in inflation is at first order in ε = 1−H ′/H 2

the first slow-roll parameter considered time-independent and we have also given
the de Sitter limit ε = 0. From this, one computes the time-dependent part of the
frequency ω2

k defined in Eq. (5)

a′′

a
=





2+3ε
(2ηr−η)2 ≈

2

(ηr−η)2 +O(ε) for −∞≤ η ≤ ηr,

0 for ηr ≤ η ≤ ηm,
2

η2 for ηm ≤ η .

(103)

Solving Eq. (4) with (103) yields reference mode functions in each era, namely

u(infl.)
k (η) =

√
−(η−2ηr) h̄π

4
H(1)

3
2+ε

[−k (η−2ηr)] for −∞≤ η ≤ ηr, (104a)

≈
√

h̄
2k

e−ik(η−2ηr)

[
1− i

k (η−2ηr)

]

u(r)
k (η) =

√
h̄
2k

e−ikη = u(M)
k (η) for ηr ≤ η ≤ ηm, (104b)

u(m)
k (η) =

√
h̄
2k

e−ikη
(

1− i
kη

)
for ηm ≤ η , (104c)
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where in the first line, H(1)
κ is the Hankel function of the first kind of index κ and

the approximation corresponds to the de Sitter limit. We refer to [69] for a recent
textbook in which all details of the computations of the inflationary mode func-
tion can be found. Note that during radiation domination, the solution is given by
the Minkowski mode function because a′′ = 0. Since two solutions of (4) are re-
lated by a Bogoliubov transformation, a mode function solution of (4) for the whole
cosmological evolution is related by a Bogoliubov transformation to the associate
reference mode function (104) in each era.

One can construct a global solution uk (η) starting in the inflationary period. The
reference mode function there was chosen to match the Minkowski mode function
u(M)

k in the asymptotic past η →−∞. This gives us an “in” region in which we can
set the initial condition for the state of the system in terms of a well-defined particle
content. We therefore pick uk (η) = u(M)

k (η) during inflation. The expressions for
the radiation and matter domination are then

uk (η) =





α (r)
k u(r)

k (η)+β (r)
k u⋆ (r)

k (η) for ηr ≤ η ≤ ηm,

α (m)
k u(m)

k (η)+β (m)
k u⋆ (m)

k (η) for ηm ≤ η ,
(105)

where the Bogoliubov coefficients are found by requiring that the mode function
and its first time-derivative are continuous across the transition. Their expressions
are worked-out in full in Ref. [45]. The mode uk (η) is then completely determined
for both polarisations and, using (38), one achieves a fully quantum description of
the evolution of the gravitational wave field.

The analysis is completed once one specifies the initial state of the gravitational
waves as kη →−∞. The standard choice is to assume that, in the far past, the infla-
tion phase somehow wiped out any initial perturbation, leaving no graviton to start
with: this is the motivation behind choosing the vacuum state for every mode. This
vacuum initial state is often referred to the Bunch-Davies vacuum [25], although it
should be more appropriately be called Minkowski vacuum. This choice implies that
the state of the perturbation consists of a collection of independent 2-mode squeezed
states as discussed in Sec. 3.4.

For scalar perturbations, the above vacuum choice turns out to be in excellent
agreement with the observations of the Cosmic Microwave Background [70]. For
gravitational waves, we are so far short of equivalent observations so that other
states could be chosen as initial condition [71]. Although such alternative choices
do not modify our description of the subsequent evolution, they change the val-
ues of the Bogoliubov coefficients and therefore the prediction on the amplitude of
gravitational waves or, equivalently, the number of gravitons produced.

We have explained in Sec. 3.6 that, most of the time, this number is ambigu-
ous due to the time-dependent part of ω2

k . Let us explain how to make sense of it
for primordial gravitational waves. First, in the sub-Hubble regime k2 ≫ a′′/a the
frequency reduces to ωk ∼ k i.e. the mode kkk does not feel the expansion of space
and effectively oscillates as in flat spacetime. In this sub-Hubble limit, the reference
mode functions (104) reduce to the Minkowski one, and we can treat the mode as if
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evolving in Minkowski. On the other hand, in the super-Hubble regime k2≪ a′′/a,
the mode behaves as an inverted harmonic oscillator ωk ∼−a′′/a< 0. One therefore
expects its amplitude to be amplified, and it is indeed where most of the squeezing
happens, as illustrated in the first two panels of Fig. 5.

-10.0 -5.0 0.0 5.0 10.0ηrηmηk,1 ηk,2

η conformal time

0.0

0.1

0.2

0.3

0.4

0.5

a
′′ /
a

k2
s

k2
l

Fig. 4 Sketch of the potential for the tensor mode within the toy model (103). The full red line
represents the evolution of a′′/a in arbitrary units in our simplified cosmological evolution (102).
The blue and green dotted lines represent two comoving frequencies k2

s and k2
l in arbitrary units

which are constant during the evolution.

The evolution (103) of the time-dependent piece a′′/a is plotted in Fig. 4 and
is compared to the square of the comoving frequencies of two different modes k2

s
and k2

l . Note that at the beginning of inflation and during the radiation era, since
a′′ = 0, all modes are sub-Hubble and effectively living in Minkowski there12. This
second aspect is due to our simplistic modelling of the transition in Eq. (102). In a
realistic cosmological model, a′′ is continuous and part of the modes progressively
reach the sub-Hubble regime. In Fig. 4, the mode kkks has a short wavelength and is
always sub-Hubble. It is not affected by the amplification process. The mode kkkl has
a larger wavelength and becomes super-Hubble during inflation after ηk,1, is insen-
sitive to the expansion during radiation domination, becomes super-Hubble again
during matter domination, until ηk,2 where it settles in the sub-Hubble regime. The
modes of interest for cosmological observations are of the second type (or become
and stay super-Hubble during radiation domination).

The picture that we have just sketched for these modes, putting aside radiation
domination, is reminiscent of the idealized situation described in Sec. 3.6 where the
“in” region corresponds to η ≪ ηk,1 and the “out” region to η ≫ ηk,2. For such
modes, we are thus justified in talking about graviton production.

12 Recall that in this limiting case, the relation between the dominant term in the frequency and
the wavelength size compared to the Hubble radius does not hold. One cannot, strictly speaking,
employ the terminology sub or super-hubble here.
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Two remarks are in order here. First, modes progressively reenter the Hubble
radius during the neglected current accelerated expansion. For the modes of interest
here, this is of no consequence. Second, one should be careful when discussing
modes responsible for the B modes of polarisation in the CMB since some of them
had not yet reached the sub-Hubble regime when generating polarisation.

To close this discussion, we compute the relevant quantities describing the gravi-
tons in the different formalisms. For simplicity we only consider an inflationary
period where most of the amplification occurs. For this estimate, we neglect slow-
roll corrections and model inflation by a period of de Sitter expansion ending at ηr.
After the transition to radiation domination, the mode does not feel the expansion
anny more, so that its particle content can be computed. In de Sitter, the covariance
matrix elements can be computed exactly using the mode function in Eqs. (104). We
evaluate them at ηr [37]

γ11 = 1+
1

k2η2
r
≈ e2N , γ12 =−

1
kηr
≈ eN , γ22 = 1 . (106)

where, since we are considering a mode which is in the super-Hubble regime during
inflation, we have taken the limit kηr≪ 1. These last expressions are given in terms
of the number of e-folds N defined by N = ln [a(η)/a(ηk)] = ln [k (2ηr−η)] where
a(ηk) is the scale factor evaluated at Hubble crossing time k (2ηr−ηk) = 1.

At this point, one notes that
〈(

ĥ′λ ,kkkĥ′λ ,−kkk

)2
〉

∝ γ22/a2(η), so that, for a super-

Hubble mode, it decays exponentially during inflation. The fact that the matrix el-
ement γ11 = 2k

〈(
µ̂ R

kkk

)2
〉

grows faster than γ12 and γ22 leads to squeezing in a di-

rection close to that of the µ R
kkk axis. This can be verified by computing explicitly the

squeezing parameters: inverting Eq. (66), we deduce the squeezing parameters as

rk = arcsinh
(

1
2kηr

)
, ϕk =

π
2
− 1

2
arctan(2kηr) , (107)

which, in the super-Hubble limit, yields

rk ≈ ln
(

1
2kηr

)
≈ N , ϕk ≈

π
2
− kηr ≈

π
2
− e−N . (108)

ϕk→ π/2 so that indeed the ellipse will be squeezed in a direction close to µ R
kkk .

For scales of cosmological interest, one typically expects N = ln(kηr) ∼ 50 at
the end of inflation so that r ≈ 50. This is to be compared with the best quantum
optics experiments where one can hardly achieve r ≈ 2; the squeezing is extreme
[72]. The resulting evolution of the Wigner function is plotted for a few e-folds after
Hubble exit in Fig. 5 where the very large squeezing is manifest.

Finally, we compute the number of particles created and their pair correlation:
Eq. (78) in the de Sitter and super-Hubble limits gives
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Fig. 5 Phase space ellipse in the plane (k1/2µ S
kkk ,k
−1/2π S

kkk ) at different instants during inflation,
labelled by N = ln [a/a(ηk)], i.e. the number of e-folds measured from the Hubble-crossing time
of the mode under consideration. On sub-Hubble scales, the ellipse remains roughly a circle, while
it gets squeezed and rotates in the super-Hubble regime.

nk =
1

4k2η2 =
e2N

4
, (109)

ck =
1

4k2η2 −
i

2kη
≈ e2N

4
. (110)

The number of pairs and their correlation grow at the same rate; squeezing neces-
sarily creates entangled pairs. After 50 e-folds of inflation, one finds nk ∼ 1043. This
number might appear very large, but the physical field hi j is diluted by the inverse of
the scale factor that will keep acting even when the creation process stops, following
Eq. (3). In addition, the number of gravitons is not directly observable; we observe
gravitational waves or their imprint on other fields, e.g. the electromagnetic field in
the CMB, but not individual gravitons. One therefore needs to compute the physical
quantities that are more directly relevant in forecasting future observations.

3.8.2 Connection to observations

There is hope that observable signatures of these primordial gravitational waves
will be found either in the BBB-modes of the CMB or directly in future gravitational
wave interferometers. We refer to Ref. [73] or Chapter 19, 20 and 23 in Ref. [33]
for a detailed account. The waves we have described are stochastic in nature owing
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to their quantum origin. They account for part of the stochastic gravitational-wave
background (SGWB), the rest being produced by unresolved astrophysical sources
or possibly other high-energy phenomena such as topological defects. The SGWB is
usually assumed to be statistically homogeneous and isotropic, as the FLRW back-
ground metric, Gaussian, either due to the sum of a large number of independent
sources or because it is sourced by a Gaussian state as considered here, and un-
polarised (same content in both polarisations and polarisations are uncorrelated) 13

because there is no significant source of parity violation in the Universe [73]. All
these assumptions only have to be made on the initial state as the dynamics is the
same for both fields µ̂λ and preserves isotropy and homogeneity. They are in par-
ticular satisfied for primordial gravitational waves produced from the Bunch-Davies
vacuum. A typical quantity used to characterize a stochastic ensemble of waves is
their power spectrum which, within the gaussianity assumption, contains all the in-
formation. The power spectrum PT of gravitational waves hi j at time η is then
defined (working classically for the moment) by

〈
µλ (kkk,η)µ⋆λ ′

(
kkk′,η

)〉
=

πa2 (η)

32GNk3 δ (3) (kkk− kkk′
)

δλ ,λ ′PT (k,η) , (111)

where the Dirac delta comes from homogeneity, and PT only depends on k since
the background is isotropic and unpolarised. The index “T” stands for “tensor”, to
differentiate the latter from the scalar power spectrum PS. Using (3), (15) and the
orthogonality relations of the tensors below (16), one finds the two-point correlation
function of the Fourier coefficients of hi j

〈
hi j (kkk,η)h⋆i j (kkk,η)

〉
= δ (3) (kkk− kkk′

) 2π2

k3 PT (k,η) ,

as well as the two-point correlation of hi j in real space, namely

〈
hi j (xxx,η)hi j (xxx,η)

〉
=
∫

dln(k)PT (k,η) .

The power spectrum PT (k,η) corresponds to the typical squared amplitude of the
wave, per logarithm of k, at the time η . For perturbations made of sub-Hubble modes
k≫ |H |, the time dependent term of (4) can be neglected and the energy density
of gravitational waves reads 14

ρGW =
1

32πGN

〈
ḣi j (xxx,η) ḣi j (xxx,η)

〉
. (112)

13 It can be checked using (17) that the assumptions that the waves are both unpolarised
〈
µ+µ⋆+

〉
=〈

µ×µ⋆×
〉

and that polarisations uncorrelated
〈
µ+µ⋆×

〉
= 0 in terms of the +,− helicity basis is

equivalent to the same two assumptions on the +,× basis.
14 Averaging is necessary even for a deterministic source of gravitational waves to make sense of
their energy. The averaging can either be performed over a certain volume or a certain duration,
see [33]. In the context of this review, the averaging in (112) refers to an ensemble average.
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For sub-Hubble modes, h+,× (kkk,η)∝ ei(kkk.xxx−kη)/a(η) so that neglecting terms in H
with respect to k we get

〈
ḣi j (kkk,η) ḣi j (kkk,η)

〉
≈ k2

〈
hi j (kkk,η)hi j (kkk,η)

〉

a2 (η)
. (113)

Note that, since hi j dilutes as a−1, ρGW dilutes as a−4, i.e. sub-Hubble modes dilute
as standard radiation. Expanding the energy density in Fourier space and normalis-
ing by the critical energy density ρc = 3H2/8πGN, we get the energy fraction per
logarithm of k that is directly expressed as a function of the power spectrum

ΩGW (k,η) =
1
ρc

dρGW

dlnk
=

k2

12H2a2 (η)
PT (k,η) . (114)

The power spectrum (111) and the energy density fraction (114) are the two quan-
tities customarily used to assess the observability and constrain the models of pri-
mordial gravitational waves. More precisely, we often estimate the primordial power
spectrum, i.e. the power spectrum at the beginning of radiation domination. The rest
of the evolution is encoded in so-called transfer functions; these can be estimated us-
ing the previous computations. For actual comparison with observations, they have
to be computed numerically by solving Boltzmann-like equations.

Let us then evaluate the primordial power spectrum by considering only the initial
phase of single field slow-roll inflation in the cosmological evolution Eq. (102) and
assuming Bunch-Davies vacuum for both polarisations ±. Using (38), the power
spectrum is straightforwardly expressed in terms of the mode function for µ̂kkk

PT (k,η) =
32GNk3

πa2 (η)

∣∣∣u(infl.)
k (η)

∣∣∣
2
. (115)

Making use of (104), we get

PT (k,η) = 8GN
H2

k h̄

(1+ ε)2+ε [−k (η−2ηr)]
3+2ε

∣∣∣∣H
(1)
3
2+ε

[−k (η−2ηr)]

∣∣∣∣
2

, (116)

where ηk is the Hubble crossing time k/a(ηk) =H (ηk). To be consistent we expand
all the quantities at first order in the slow-roll parameter ε and take the super-Hubble
limit relevant for cosmological scales |k (η−2ηr)| ≪ 1

PT (k,η) =
2H2

k h̄
π2 8πGN [1+2(1− log2− γE)ε] ,

=
2H2

⋆ h̄
π2 8πGN

[
1+2(1− log2− γE)ε−2ε log

(
k
k⋆

)] (117)

where γE is the Euler-Mascheroni constant. Notice that in this limit the power spec-
trum does not depend on η , and we made the k-dependence explicit in the second
line by expanding Hk around a pivot scale k⋆.
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Current experiments have not been able to detect the primordial gravitational-
wave background but the combined (non)-observations of Planck and BICEP exper-
iments allow us to put bounds on the tensor-to-scalar ratio in single-field slow-roll
inflation [74]. A discussion of its potential observability in future gravitational wave
interferometers and with future CMB experiments can be found in [73, 75, 76]. No-
tice that different models of the very early universe would change the prediction
(117): initially excited states [71], temporary departures from the single field slow-
roll scenario [77] or coupling with extra fields [78] might for instance be able to
generate larger signatures than single-field slow-roll inflation, while modifications
of gravity in the high energy regime could also lead to changes in the spectrum at
high frequencies, e.g. through introduction of a cut-off in theories of lower dimen-
sionality in the ultraviolet [79]. Finally, we want to emphasise that the toy model of
cosmological evolution of Eq. (102) makes the unrealistic assumption of an instan-
taneous reheating. Adding a period of reheating is known to significantly modify the
resulting spectrum, e.g. the frequency at which it starts to decay, thereby modifying
observational perspectives [80].

3.8.3 Quantum origin of the primordial gravitational waves

To close this part, we want to comment on how quantumness enters the predic-
tion (117).

First, a subtle point hidden in (111) is the meaning of the averaging ⟨⟩. In the
discussion of the dynamics of perturbations, we have been computing averages in
the sense of expectation value for observables in a given quantum state. It is a basic
assumption of quantum mechanics that this would be the expected average value of
the physical quantity after repeated measurements of it when the system is prepared
in the same state. Unfortunately, we only have one realisation of the history of the
Universe. Yet, using statistical isotropy, we can treat each (sufficiently large) patch
of sky as an independent realisation of the same underlying random process and
compute average values over this ensemble of patches. Under an ergodicity assump-
tion, the resulting correlation functions can then be compared to (117), a procedure
applied to CMB data analysis [81]. Additional arguments to justify trading quantum
averages for classical ones will be discussed in Sec. 4.

Second, as we repeatedly emphasised, since the linear evolution is the same in
the classical and quantum settings, the quantum aspect has to be confined to the
choice of initial state. The result (117) reflects the choice that the waves emerged
from initial vacuum fluctuations. For primordial gravitational waves, we are short of
observational data to test this prediction. Still, if we were to insist on having a purely
classical treatment, then a classical vacuum of gravitational waves, i.e. a±kkk (ηin) = 0
would persist throughout the evolution. There would simply be no primordial gravi-
tational waves. On the contrary, initial gravitational waves would be classically am-
plified by cosmological expansion, but we then have to motivate a specific choice
for the initial distribution of perturbations. For scalar perturbations, the CMB ob-
servations already demonstrated a tremendously good agreement with the predicted
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power spectrum PS of initial vacuum fluctuations for the modes observed [74, 82].
Giving up on a quantum treatment in the inflationary paradigm would then require
providing an ad hoc classical theory that yields the same initial conditions as the
quantum vacuum. We could therefore argue that observations of the scalar sector
give indirect proof that gravitational degrees of freedom should be quantised.

Yet, third, it is sometimes argued see e.g. [33, 83], that the verification of the
prediction (117) would provide additional insights on the quantum aspect of gravity
with respect to the observation of the scalar perturbations. In the treatment of scalar
perturbations in single-field slow-roll inflation, the appropriate gauge-invariant vari-
able is the Mukhanov-Sasaki (MS) field related to the perturbations of the inflaton
δφ and the gravitational potential Ψ through

vMS =
z
κ

(
Ψ +H

δφ
φ ′0

)
, (118)

where z = a
√

2ε , ε being the first slow-roll parameter, φ0 the homogeneous back-
ground inflaton field and κ the reduced Planck mass. This is a scalar field whose
Lagrangian is the same as (22) upon substituting a→ z, and up to normalisation.
The MS field is then quantised in exactly the same manner as the two polarisations
of the graviton and the power spectrum evaluated by initially choosing the Bunch-
Davies vacuum. However, in the absence of perturbations δφ for the scalar field, the
equation of motion of the scalar part of the metric perturbations show that they can
be set to zero. This is the so-called synchronous gauge [84]. The existence of scalar
perturbations then requires the presence of the scalar field δφ and is not intrinsic
to the gravitational degrees of freedom. Even when δφ ̸= 0, in the synchronous
gauge Ψ = 0 and only the scalar field contributes to the perturbations. In this gauge,
the whole quantification process and evaluation of the power spectrum only deals
with the physics of a quantum scalar field that is not related to gravitational degrees
of freedom. This could therefore cast some doubt on whether some gravitational
degrees of freedom were even quantised in the first place. Such ambiguity does not
exist when dealing with gravitational waves. In the absence of any anisotropic stress,
the gravitational waves persist, and the quantisation procedure is undeniably a per-
turbative quantisation of the gravitational field. Verification of (117) would then be
an indirect observational proof that the gravitational field must be quantised.

Finally, to mitigate the above discussion, let us also mention an argument against
our line of reasoning, as discussed, e.g. in Ref. [35]. The argument made above
can be reversed, as one can also find a gauge in which the perturbation of the field
vanishes altogether, with δφ = 0, while the metric part is Ψ ̸= 0; in this gauge, the
quantisation is then over an element of the metric only. In addition, since perturba-
tions of matter and geometry appear on each side of Einstein equations (however,
note that their quantum counterpart is unknown), it is inconsistent to quantise only
one degree of freedom. The observational verification of the prediction for the scalar
power spectrum thus can be argued to be an indirect proof that the gravitational field
should be quantised.
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4 Quantum features in primordial gravitational waves ?

Given the quantum origin of primordial gravitational waves, it may seem natural to
wonder about their state’s quantum or classical character at present. While it is ex-
pected that we will never be able to detect the signal produced by a single graviton
[85], a discrete spectrum of excitations is not the only specific feature of a quantum
theory. For instance, entanglement is a statistical quantum feature that can be ex-
perimentally verified using Bell inequalities [86, 87]. The exciting possibility that
primordial gravitational waves exhibit such features has been investigated since this
idea was first put forward by Grishchuk and Sidorov in [30]. These discussions have
gradually introduced many concepts borrowed from low-energy quantum physics,
particularly quantum optics: squeezing, quasi-probability distribution, decoherence,
quantum discord. In this section, we will review this line of research following a
historical approach and trying to show the progress brought by each contribution.

This section is structured as follows. First, arguments based on the very squeezed
character of the state are used to justify a classical treatment to compute cosmolog-
ical observables [45]. This approach, sometimes called “decoherence without deco-
herence” [39], and its critics are reviewed in Sec. 4.1. It turns out, however, that the
classicality identified by these works does not do away with all the quantum features
of the state; the state of the perturbations could for instance violate a Bell inequality
[88]. We review these “quantum information” approaches in Sec. 4.2. Lastly, taking
into account the weak interactions of the perturbations is necessary as they would
induce decoherence which might erase the quantum features exhibited at the linear
level. This aspect is reviewed in Sec. 4.3.

For the most part, these works are based on analysing the state of a quantum
scalar field, which can either represent the MS field of scalar perturbations or one of
the polarisations of the tensor perturbations. The mechanisms and arguments being
the same for both, we do not distinguish when citing works which refers to which
and are only specific when necessary.

4.1 Classicalisation of perturbations without decoherence

In [30], the authors argue that the perturbations exhibit non-classical features due to
the fact that the relevant quantum state is strongly squeezed. In order to make the
discussion precise yet simple, we focus again on the inflationary period modeled
by a de Sitter phase of expansion and assume initial Bunch-Davies vacuum15; the
relevant equations were derived at the end of Sec. 3.8.1, and the squeezing is shown
in Fig 5.

One of the arguments developed in [30] is that the trajectory in phase space of
a classical system with given initial conditions is represented by a point moving on
a single curve. The situation is different for a quantum system. Due to the intrinsic

15 The reasoning can also be extended to certain non-vacuum initial states [89].
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uncertainty stemming from the Heisenberg principle, the trajectory is represented
by a moving surface. The quantum state that comes closest to mimicking a classical
trajectory would then be a coherent state. Indeed, its trajectory in phase space is
represented by a circle moving along a single curve: the system is located within
a tube of minimal uncertainty around the classical trajectory. On the contrary, the
surface representing an increasingly squeezed state is stretched around its centre
delocalising the position of the system away from any single curve. Therefore, they
argue, a very squeezed state like that of the cosmological perturbations is a very
quantum state.

In a couple of works written in response [45, 39], the authors reproduce and
complement the computations made in [30], but give a different interpretation of
the result. The gist of their arguments, which we reproduce below, is that the prop-
erties of a system in an extremely squeezed state are indistinguishable from that of
a classical system whose state is represented by a classic stochastic distribution; an
argument borrowed from [90]. In other words, although the intrinsic quantum uncer-
tainty on the outcome of a measurement dramatically spreads due to the evolution
of the system, this uncertainty cannot be distinguished from a purely classical one.

To demonstrate this, let us consider the wavefunction of the perturbations in the
modes ±kkk decomposed in the R/I sector and given by Eq. (63). Discarding the
indices “k”, we recall that this is the wavefunction of a 1-mode squeezed state.
We can show that for large r, it satisfies very well the conditions of the WKB ap-
proximation. For a general wavefunction Ψ (µ) = C (µ)exp [iS (µ)/h̄] the WKB
approximation is valid when the amplitude C varies slowly compared to the phase
S: |∂S/∂ µ| ≫

∣∣C−1∂C/∂ µ
∣∣. Since the WKB approximation is generally under-

stood as a semi-classical limit, this property is sometimes referred to as the ”WKB-
classicality” of the state. Using the wavefunction (63), we have

C (µ) =
(

k
h̄πγ11

)1/4

e−
kµ2

2h̄γ11 , (119a)

S (µ) = kµ2 γ12

2γ11
, (119b)

where we have dropped the exponent S and the index kkk for simplicity. We get
∣∣∣∣

C
∂C/∂ µ

∂S/∂ µ
h̄

∣∣∣∣= |sin(2ϕk)sinh(2rk)| . (120)

In the de Sitter case, using Eq. (107), one has sin(2ϕk)sinh(2rk)≈ eN ; the condition
is perfectly satisfied. We then compute the action of µ̂ and π̂ on such a state

µ̂Ψ (µ) = µΨ (µ) , (121a)

π̂Ψ (µ) =−ih̄
∂Ψ
∂ µ

=
∂S
∂ µ

(
1− ih̄

∂C/∂ µ
C∂S/∂ µ

)
Ψ (µ)≈ ∂S

∂ µ
(µ)Ψ (µ) , (121b)
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where in the last line we have used Eq. (120). This last equality suggests that,
neglecting sub-dominant contributions, we could attribute an unambiguous value
to the “momentum” π through the relation π ≈ ∂S/∂ µ [45] while the value of
the position µ would be controlled by the probability distribution given by the µ-
representation of the wavefunction, namely

P(µ) =C (µ)2 =

(
k

π h̄γ11

)1/2

e−
kµ2
h̄γ11 . (122)

To make this intuition rigorous, which is not always possible as we explain at the
end of the section, we have to use a phase space representation of the state. The
Wigner function W S (µ,π) can be factorised

W S (µ,π) =

√
k

π h̄γ11
e−

kµ2
h̄γ11

√
γ11

kπ h̄
e−

γ11
h̄k

(
π− γ12

γ11
kµ
)2

,

= P(µ)
√

γ11

kπ h̄
e−

γ11
h̄k

(
π− γ12

γ11
kµ
)2

,

(123)

where the relation det(γ) = γ11γ22− γ2
12 = 1 (we are using a pure state) was used.

The first piece is the probability distribution (122). The second piece controls the
value of π−γ12kµ/γ11 = π−∂S/∂ µ , i.e. the difference between the actual value of
π and that attributed to it following the WKB-classicality approach. It can be read
out from the above, or shown by a straightforward computation using covariance
matrix elements, that

〈(
π̂− γ12

γ11
kµ̂
)2
〉

=
h̄k
2

1
γ11
≈ h̄k

2
e−2N , (124)

where we have taken the super-Hubble limit in the last equality. Since the state
is Gaussian, and π̂ , µ̂ are centred, this is the only quantity that controls the error
induced by replacing π̂ by its WKB counterpart γ12kµ̂/γ11 in the expectation values.
As inflation proceeds, this error becomes exponentially small while the fluctuations
of µ̂ get exponentially large, and that of γ12kµ̂/γ11 tends to a constant. Therefore,
to compute the expectation value of any operator which is a polynomial in µ̂ and π̂ ,
one can safely make the WKB replacement. We emphasise that, to have meaningful
operators, the coefficients of these polynomials must not depend on the state of the
system. In such polynomials, when expanding π̂ as (π̂ − γ12kµ̂/γ11)+ γ12kµ̂/γ11,
the coefficients of µ̂ and π̂ cannot conspire to yield an expression depending only
on the subdominant combination π̂ − γ12kµ̂/γ11 since it explicitly depends on the
squeezing parameters. The translation of this approximation in terms of the Wigner
function is to take the limit of infinite rk, with γ11→ ∞, and to replace the Gaussian
over π−∂S/∂ µ by a Dirac delta [21, 45, 39]

W S (µ,π)≈ P(µ)δ
(

π− γ12

γ11
kµ
)
. (125)
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The interpretation of this equation is straightforward: when computing expectation
values using the Wigner function and Eq. (54), up to very sub-dominant contribu-
tions, we can replace π by ∂S/∂ µ in the Weyl transform and take the average on
µ using the classical stochastic variable of distribution Eq. (122). In the limit of
Eq. (125), the contour levels of the Wigner function are squashed from ellipses to
lines, and this implies that the size of the sub-fluctuant mode has been neglected.
This line-like limit of the Wigner function is visible in the last panels of Fig. 5.

We conclude with a series of remarks on this result. First, it is clear that the
replacement π̂→ ∂S/∂ µ cannot be exact as it implies [µ̂, π̂] = 0 ̸= ih̄, thus violating
the canonical commutation relations, although those must be verified irrespective of
the state of the system. Yet, the contribution of this non-vanishing commutator to
the expectation value of operators O(µ̂, π̂) which are polynomial in µ̂ and π̂ is
negligible.

The second remark is that, as explained in [72], we want to emphasise that the
Wigner function of a WKB state does not in general give rise to a Dirac delta; in
fact, it needs not even be positive everywhere. The naive intuition is only verified
here because the state is also Gaussian. In addition, the fact that the Wigner function
can be negative suggests taking with a grain of salt the idea that any WKB state is
understandable as an approximate classical state.

Thirdly, as stressed in [83], the distribution (125) has some undesirable features
for a Wigner function. For instance, computing the purity using the function (125)
and Eq. (54) yields an infinite result. This is obviously incorrect since for any quan-
tum state pk ≤ 1, and, in this pure case, we had derive earlier pk = 1. Geometrically,
by squeezing the ellipse to a line, one looses the information on the area that en-
codes the purity and the non-commutation of the variables through the Heisenberg
uncertainty principle. This additionally informs us that there exist quantities of in-
terest that crucially depend on the sub-leading contributions that were neglected,
and so on the sub-fluctuant mode.

The fourth point we want to stress concerns classicality. The part of the argu-
ment based on analysing the phase space distribution does not actually require large
squeezing to be formulated. Indeed, even before taking any limit, the Wigner func-
tion of the state is everywhere positive and obeys the classical equations of mo-
tion (59), so that using Eq. (54), any observable can be computed using a classical
stochastic distribution.

As a fifth point, let us note that the above statement has to be made more pre-
cise because it hides several subtle points. To start with, as pointed out in [37],
beyond quadratic order, the Weyl transform of an observable O(µ̂, π̂) is, in general,
not obtained by replacing the operators µ̂ and π̂ by the corresponding phase space
variables i.e. O(µ,π) ̸= Õ(µ,π). For instance

ˆ̃µ2
kkk π̂2

kkk + ˆ̃π2
kkk µ̂2

kkk = 2µ2
kkk π2

kkk − h̄ , (126)

so that, using Eq. (54)
〈
µ̂2

kkk π̂2
kkk + π̂2

kkk µ̂2
kkk
〉
= 2E

(
µ2

kkk π2
kkk
)
− h̄. (127)
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This extra h̄ is a contribution of the commutator that the Wigner-Weyl formalism
takes into account. Therefore, despite the Wigner function being everywhere posi-
tive and acting as a measure in Eq. (54), these terms introduce a slight difference
with classical stochastic distributions. The culprit is the Weyl transform of the oper-
ators rather than the Wigner function. As argued above, in the large squeezing limit,
these extra contributions to the Weyl transform of µ̂ and π̂ are expected to become
negligible. The second subtle point is precisely that these distortions will not be-
come negligible for all observables so that the classicality argument does not apply
to these. The fact that certain quantum features persist should not be a surprise since
we have shown that the gravitons produced by the evolution remain in entangled
pairs in the absence of other interactions [83].

The findings of this section can be summarised as follows: as long as we measure
only µ̂ and π̂ , or observables which are polynomials of it, super-Hubble modes
behave classically since their expectation values can be completely reproduced by a
classical stochastic distribution [88, 37].

4.2 Quantum information approaches

It has to be mentioned that the authors of Ref. [45] do recognise the possibility that
other operators would exhibit quantum features since squeezed states are known to
possess such features in quantum optics experiments. However, they dismiss this
possibility by arguing that, contrary to quantum optics, one can only perform mea-
surements of the values of the fields µ̂kkk and π̂kkk and not, say, of the number of par-
ticles n̂k. Therefore the ‘decoherence without decoherence’ argument is sufficient
to claim that the perturbations are practically classical. Setting temporarily aside
the question of their observability, we now derive examples of operators revealing
non-classicality features in the state of primordial gravitational waves.

We have already mentioned that the purity of the state cannot be computed if the
sub-dominant contributions of the non-vanishing commutators are dropped. In [91],
the authors showed that in order to correctly compute the entropy of the state using
the von Neumann entropy S (ρ̂) = −Tr [ρ̂ log(ρ̂)] the sub-dominant contributions
have to be restored. For a 2-mode mode squeezed state , the von Neumann entropy
reads [92]

S (ρ̂) = 2 f [det(γ)] , (128)

where the growing function f is defined for x≥ 1 by

f (x) =
(

x+1
2

)
log2

(
x+1

2

)
−
(

x−1
2

)
log2

(
x−1

2

)
. (129)

The entropy and purity are both controlled by the determinant of the covariance
matrix, which requires the inclusion of sub-dominant contributions to be correctly
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evaluated. For the pure 2-mode squeezed state of perturbations, one gets det(γ) = 1
and the definition of f gives f (1) = 0, so we recover that the entropy vanishes.

We have so far only shown that, for certain operators, it is not appropriate to
neglect the sub-fluctuant mode. We now go further and exhibit quantities whose
values cannot be accounted for if the system is described by a classical stochastic
distribution. The prime example of such quantities is the combinations of expecta-
tion values of spin operators entering the famous Bell inequalities [86]. To design
a Bell inequality, one has to exhibit a combination of operators C

(
Ô1, ..., Ôn

)
such

that, if the expectation values of the Ôis are described by a stochastic probability
distribution16, then C is bounded by a real number c

C (O1, ...,On)≤ c . (130)

As a consequence, if a quantum state is such that
〈
C
(
Ô1, ..., Ôn

)〉
> c, then we have

proven that not all expectation values of this state can be accounted for by a classical
probabilistic theory.

A necessary condition for a state to violate a Bell inequality is that it is not
separable [94]. A state ρ̂ of a system that can be partitioned in two subsystems A
and B is said to be separable in this partition if its density matrix can be written as

ρ̂ = ∑
i

piρ̂ i
A

⊗
ρ̂ i

B , (131)

where pi≥ 0 and ∑i pi≥ 0. Such a state can be constructed using a classical protocol
[94]. The interpretation of Eq. (131) is that pi is the probability of finding the sys-
tem in the sector ρ̂ i

A
⊗

ρ̂ i
B where the subsystems A and B are independent since the

density matrix is factorised. The correlations between the subsystems are thus con-
trolled only by the probabilities {pi} and deemed classical. Non-separable states are
generally called entangled states. In general, it is very difficult to determine whether
a state is separable. Fortunately, for Gaussian states, the Peres-Horodecki criterion
allows us to check separability using the covariance matrix elements only [95]. This
method was first applied to cosmological perturbations by Campo and Parentani in
[44]. We explain their result in the terms used in this review.

We first need to choose a partition of the system. The separable character of the
state or not depends on the subsystems considered; for a general discussion of the
notion of partition, see [46]. Using the vectors of conjugate operators introduced in
Sec. 3.5, we define a (bi)partition of the system by sorting the operators into two
vectors of smaller dimensions

X̂ = X̂A
⊕

X̂B . (132)

To represent the state of the perturbations we have used the R/I partition defined
by X̂R/I =

(
k1/2µ̂ R

kkk ,k
−1/2π̂R

kkk ,k
1/2µ̂ I

kkk,k
−1/2π̂ I

kkk

)
where the two subsystems decouple.

These operators will, however, mix the creation/annihilation operators (28) defining

16 The precise assumption is that their values are described by a local realistic theory. For a discus-
sion of this subtle and important point we refer to [93].
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the modes±kkk. If we are interested in the correlations between these modes we have
to build separate hermitian operators describing the mode kkk and −kkk. This is readily
done by considering

q̂±kkk =

√
h̄
2k

(
â±kkk + â†

±kkk

)
and p̂±kkk =−i

√
h̄k
2

(
â±kkk + â†

±kkk

)
. (133)

These operators define the±kkk partition X̂±kkk =
(
k1/2q̂kkk,k−1/2 p̂kkk,k1/2q̂−kkk,k−1/2 p̂−kkk

)
.

We compute the covariance matrix in this partition

γ =

(
γkkk γkkk,−kkk

γ−kkk,kkk γ−kkk

)
, (134)

with

γkkk = γ−kkk = cosh(2rk)I2 =

(
nk +

1
2

)
I2 , (135)

where I2 is the 2-dimensional identity matrix and

γkkk,−kkk = γ−kkk,kkk =−sinh(2rk)

(
cos2ϕk sin2ϕk
sin2ϕk −cos2ϕk

)
=

(
ℜe(ck) ℑm(ck)
ℑm(ck) −ℜe(ck)

)
.

(136)

Unlike in the R/I partition, this covariance matrix is not block-diagonal. It shows
that the kkk and −kkk particles are correlated. The Peres-Horodecki applied to this co-
variance matrix reduces to [44]

ρ̂ separable in ±kkk partition⇐⇒ |ck| ≤ nk . (137)

This criterion lends itself to a very simple interpretation, the state will be separable
if and only if the correlation of the pairs is larger than their number. When is this sat-
isfied? The condition (137) is straightforwardly expressed in terms of the squeezing
parameters. We find that the state is separable if only if e−rk ≥ 1, i.e. for the vacuum
rk = 0. Therefore, the primordial gravitons pairs ±kkk are always entangled. We have
found a first quantum feature of their distribution. Notice that the same analysis
could be repeated in the R/I partition, but since these sectors are not correlated, it
would trivially lead to the conclusion that the state is always separable in this parti-
tion. This illustrates clearly the dependence of the (non)-separable character of the
state on the choice of subsystems.

The state of the perturbations we have considered so far is pure. It was shown
that, for any entangled pure state, one can build a Bell inequality that the state vi-
olates [94]. The separability criterion is, in this case, sufficient. How can we find
operators able to violate a Bell inequality for the gravitons? The considerations of
Sec. 4.1 already demonstrated that, in order to reveal the quantumness of the distri-
bution, we have to use operators which are non-polynomials in µ̂ S

kkk and π̂ S
kkk . In [96],
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Revzen further introduces a distinction between what he calls proper and improper
operators.

Proper operators are defined as those that cannot be used to violate a CSH-type
[97] Bell inequality when the Wigner function of the state is positive. He shows that
any operator Ô whose Weyl transform Õ takes values in the set of its eigenvalues is
proper. Indeed, the Wigner function then provides an appropriate local hidden vari-
able theory to describe its expectation values. Therefore, we have to use operators
that do not fall in this category to build a Bell inequality that can be violated by pri-
mordial gravitational waves. In fact, these operators are not uncommon. Consider,
for example, the number operator

n̂k = â†
kkkâkkk =

k
2h̄

µ̂kkk
2 +

1
2h̄k

π̂kkk
2 +

1
2
. (138)

It has a discrete spectrum, while its Weyl transform ˜̂nk = k
2h̄ µ2

kkk +
1

2h̄k π2
kkk +

1
2 is a

continuous function of the phase space variables. In [44], Campo and Parentani
were the first to exhibit Bell inequalities violated by cosmological perturbations.
They emphasise the necessity to use non-polynomial operators in the field operator
and they use as a building block the probability of finding the system in a certain
2-mode coherent state

Q(v,w) = Tr
(
ρ̂Π̂kkk,−kkk

)
,

=
1

∆k
exp
{
− 1

∆k

[
(nk +1)

(
|v|2 + |w|2

)
−2ℜe(c∗kvw)

]}
,

(139)

where ∆k = (nk +1)2−|ck|2 and Π̂kkk,−kkk = |v,kkk⟩⟨v,kkk|⊗ |w,−kkk⟩⟨w,−kkk| projects the
subsystem kkk (respectively −kkk) on the coherent state associated to v ∈ C (resp. w ∈
C). The bounds given on nk and ck in Sec. 3.4 ensure that ∆k is a positive quantity.
This real and positive function of v and w is called the Husimi Q-representation of
the state [98]17. For the purpose of building a Bell inequality, it can be simplified
by re-parametrising the arbitrary phase of v to absorb that of ck. We take argv =
2argck so that 2ℜe

(
c∗kvw

)
= 2 |ck|ℜe(v∗w). For a 2-mode squeezed state |ck| =√

nk (nk +1) so that, upon rearranging,

Q(v,w) =
1

nk +1
exp

(
− |v|

2

nk +1

)
exp

(
−
∣∣∣∣w− v

√
nk

nk +1

∣∣∣∣
2
)
. (140)

Since the Husimi representation is also the expectation value of an operator, it can
be used in a Bell inequality. The authors then use the Bell inequality demonstrated
by [99] over Q(v,w)

17 Like the Wigner function, it is a phase-space representation of the state but using coherent states
as a basis rather than eigenstates of the field operators. The authors discuss the quantumness of the
perturbation using its properties and that of the related Glauber Sudarshan P-representation. They
argue that the state not admitting a P-representation can be considered a non-classical feature. For
brievity, we will not discuss these aspects here and refer to [44, 98] for details.
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C (v,w) = [Q(0,0)+Q(v,0)+Q(0,w)−Q(v,w)]
(

nk +1
2

)
≤ 1 . (141)

They argue that C is maximal for w =−v in which case it only depends on |v|2 and

Cmax

(
|v|2
)
=

1
2

[
1+2e−|v|

2 − e
−2
(

1+
√ nk

nk+1

)
|v|2
]
. (142)

One can show that, provided we are not in the vacuum nk = 0, Cmax is always larger
than unity in the vicinity of v = 0, as illustrated in Fig. 7; the Bell inequality is
violated. As expected, we have recovered the separability condition. In a later work
[100], the authors proved that another inequality, built using operators, also defined
in [101], that are complementary (in the sense that their sum is the identity) to the
projectors Π̂kkk,−kkk, is violated. They also build other inequalities using the (GKM
and Larsson) pseudo-spin operators in the same work. They explicitly show that all
these operators belong to the subclass of improper operators identified by Revzen.
Since the Weyl transform of the identity is just the number 1, we can infer from
their complementary with the projectors Π̂kkk,−kkk that the operators Π̂kkk,−kkk also belong
to this subclass.

We now introduce a last non-classicality criterion, the quantum discord. We start
by giving the intuition behind its definition and reviewing some important prop-
erties. Technical details in definitions and proofs are skipped and can be found in
[102, 103]. The idea of quantum discord is also to show that correlations between
two subsystems are stronger than allowed classically. Two measures of the informa-
tion attached to these correlations are introduced to that end. These measures are
based on the von Neumann entropy, which, as we have shown, is highly sensitive
to terms that can be neglected when computing field expectation values. The first
measure is the mutual information

I (A,B) = S(A)+S(B)−S(A,B), (143)

where S(A,B) is the von-Neumann entropy of the full system while S(A) and S(B)
are the entropies of the subsystems. The latter are defined by computing the entropy
of the reduced density matrices when one of the subsystems is traced out, e.g. ρ̂A =
TrB (ρ̂) for the subsystem A. They are also called the entanglement entropy of the
state. The second measure

J (A,B) = S(A)−S(A|B), (144)

where S(A|B) measure the information gained on A by measuring B. Its precise
definition in the quantum setting must therefore include the system state after mea-
suring the system B. It is obtained by minimising the density matrix residual entropy
after having measured a complete set of projections on B, i.e. by maximising the in-
formation gain. For a quantum state, we then define the quantum discord as their
difference

D(A,B) = I (A,B)−J (A,B) , (145)
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which is shown to be in general non-negative. The key observation is that, by the
Bayes theorem, I and J coincide for a classical system so that the discord van-
ishes. A non-vanishing discord D(A,B) > 0 is therefore taken as a non-classical
feature. As the other criteria introduced, the quantum discord depends on the choice
of partition R̂ = R̂A

⊕
R̂B. However, it does not depend on the operators chosen to

represent them, i.e. it is invariant under any change of operators within the sectors A
and B. We call such a quantity a local symplectic invariant. On the contrary, a Bell
inequality is not necessarily a local symplectic invariant. A last important prop-
erty of the discord is that, for a pure state, it reduces to the entanglement entropy
D(A,B) = S(A) = S(B), and, for a pure state still, being entangled is equivalent to a
non-vanishing entanglement entropy. Therefore, all criteria introduced (separability,
Bell inequality, quantum discord) are equivalent for pure states. The cosmological
perturbations must therefore have a non-vanishing quantum discord.

The quantum discord of cosmological perturbations was computed in [37] for the
±kkk partition18. It reads

D±kkk = f [cosh(2rk)] , (146)

where f was defined in Eq. (129). We immediately verify that the discord is non-
vanishing provided that rk > 0, i.e. that we are not in the vacuum. Taking the de
Sitter limit of the above expression, we find D±kkk ≈ 2rk/ ln2≈ 2N/ ln2, the discord
grows linearly with the number of e-folds.

The results of this section demonstrate that, as suspected, the primordial gravi-
tational waves are only classical if we restrict our attention to field operators µ̂ and
π̂ . We showed, using several criteria, that their state exhibits in principle quantum
features: it is entangled, violates Bell inequalities and has a non-vanishing quan-
tum discord. We additionally verified that these three criteria are equivalent for pure
states like the 2-mode squeezed state considered here. Still, in any realistic model
of the early Universe, this assumption of purity has to be given up. What has al-
lowed us so far to simply consider a couple of modes ±kkk of the field is that we have
neglected all interactions of the gravitational waves, in particular their intrinsic non-
linearities. We were justified in doing since the latter are weak. Yet, it is well known
that even very weak interactions can lead to an erasure of non-classical features by
inducing decoherence of the system. The most famous example of this is probably
that a grain of dust whose spatial superposition would be turned into a classical su-
perposition in a fraction of an instant simply by the scattering of photons from the
CMB [105]. The importance of decoherence in the discussion of quantum features
of cosmological perturbations was quickly realised [106, 107]. We now investigate
how it affects the state, in general, and in particular the quantum features we have
just exhibited.

18 The quantum discord was already used in a work on cosmological perturbations in [104] but
the author considered correlation of another nature, namely that of the perturbations and their
environment.
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4.3 Decoherence of cosmological perturbations

We start by briefly recalling some basic concepts of decoherence and refer to [108]
for details. The 2-mode squeezed state of a coupled of modes ±kkk is a pure state
represented by the ket (46). One can easily compute its density matrix and express
it in the graviton 2-mode number basis

ρ̂2MSS =
1

cosh2 (2rk)

+∞

∑
n,n′=0

[− tanh(2rk)]
n+n′ e2i(n−n′)ϕk |nkkk,n−kkk⟩

〈
n′kkk,n

′
−kkk

∣∣ . (147)

The coefficients on the diagonal qn = tanh2n (2rk)/cosh2 (2rkkk) give a classical prob-
ability distribution over the 2-mode number states, while the non-diagonal reflects
the quantum interferences between them. If we discard these terms, the density ma-
trix reads

ρ̂th. =
1

cosh2 (2rk)

+∞

∑
n=0

tanh2n (2rk) |nkkk,n−kkk⟩⟨nkkk,n−kkk| . (148)

The state now represents a classical superposition of different number states with
the same probabilities as ρ̂2MSS. Such states are called statistical mixtures and are
indeed mixed states (except if all coefficients but one vanish) since pk = ∑n q2

n and
qn ≤ 1 . The general idea of decoherence is that interactions of the system with
a large number of unobserved degrees of freedom, referred to as the environment,
precisely diagonalises the density matrix, driving the state to a statistical mixture.
Equation (148) is actually the density matrix of a thermal state with, on average,
nk particles in both modes. Since it is fully diagonal, it is considered the result of
a complete decoherence process. A very important point is that the (non)-diagonal
character of the matrix depends on the basis, e.g. the matrix is originally diagonal in
the 2-mode squeezed state basis. The basis in which decoherence makes the density
matrix diagonal is called the pointer basis. Once again, we see that the choice of
basis and operators to analyse the state of the system is crucial. For cosmological
perturbations, several pointer basis were considered: coherent state basis [109, 44],
field amplitude basis [110, 111, 106, 107], number basis [110], and others [112]19.
Ultimately, in a realistic model, the pointer basis is given by the eigenstates of the in-
teraction Hamiltonian selected. The basis thus bears a double physical sense: it tells
us for which type of measurements the system appears classical, e.g. measures of
field amplitude or of number of particles, and also to which operators of the system
is the environment sensitive. In their follow-up articles [106, 107] to [39], the group
of authors (Kiefer, Lesgourgues, Starobinski, Polarski) considered the effect of de-
coherence. They argued that the correct pointer basis should be the field amplitude
basis on the ground that self-interactions of pure gravity are local in the field basis,

19 Notice that some of these, [111, 110], predate works referred to in the last section. Decoher-
ence was, in fact, already investigated in the context of the early Universe before the argument of
‘decoherence without decoherence’ was made. It was especially used to try to make sense of the
solutions of quantum cosmology, where both the background and the perturbations are treated as
quantum fields [113].
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i.e. Hin ∝ µ̂n (xxx,η) π̂m (xxx,η). Since these interactions are contained in the Einstein-
Hilbert action, they constitute a minimal and well-defined source of decoherence.
They were then taken into account in a more realistic model of decoherence for the
first time in [114, 115]. There, the system considered is made up of the observed
large wavelengths while the environment is made-up of the rest of the short unob-
served wavelengths like in stochastic inflation [116]. This approach was originally
performed for scalar perturbations and was later generalised to tensor perturbations
[117].

How is their influence on the state of ±kkk modes concretely accounted for? In
[114, 115] the process is followed in time, rather than assumed to have completed
[109, 118, 112], using a master equation. Earlier papers [111, 110] had also used an
equivalent formalism, the Feynman-Vernon influence functional, but only in solv-
able toy models with two scalar fields interacting quadratically. The two formalisms
were also used in [119], using the short-long wavelengths splitting and considering
a quartic self-interaction of the scalar field. To derive a master equation, one starts
by postulating that the couple system-environment evolves under a Hamiltonian

Ĥtot = Ĥ⊗ Îenv + Î⊗ Ĥenv +gĤint , (149)

where the Hamiltonian of interaction is taken to be an integral of a product of oper-
ators acting on the system and the environment

Ĥint =
∫

d3xxx Â(η ,xxx)⊗ Ê(η ,xxx) . (150)

Under certain assumptions, essentially perturbative coupling and a “large” enough
environment unperturbed by the action of the system, the von Neumann equation
over the full density matrix ρ̂tot can be reduced to a master equation over the reduced
density matrix of the system ρ̂ = trenv (ρ̂tot). Master equations became a standard
tool to analyse the decoherence of cosmological perturbations and are very often
considered to be of the Lindblad-type, e.g. [114, 115, 108, 120],

dρ̂
dη

=−i
[
Ĥ, ρ̂

]
−g2ηc

∫
d3xxxd3yyy⟨Ê(η ,xxx)Ê(η ,yyy)⟩

[
Â(xxx) ,

[
Â(yyy), ρ̂

]]
, (151)

where ηc is the auto-correlation time of the environment. This is a Markovian mas-
ter equation; it assumes that the environment is effectively stationary with respect
to the system, i.e. ηc ≪ δη where δη is the typical time-scale of evolution of the
system. In addition, the interaction term is often considered linear in the system
field operators Hint ∝ (αµ̂ +βπ̂)⊗ Ôenv, where Ôenv acts only on the environment
[39, 120]. It is the so-called Caldeira-Legget model [121]. Such interactions can
also be identified as the dominant term when considering pure gravity [114, 117]
and has the great advantage of preserving gaussianity and homogeneity. The result
of the evolution can therefore be simply analysed by considering a Gaussian deco-
hered homogeneous density matrix (GHDM). This class of state was introduced in
[122, 44] to study decoherence finely, without having to assume any specific mas-
ter equation, and still preserving a “partially” decohered state rather than assuming
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from the on-set the density matrix diagonal. This class also encompasses the density
matrices obtained by the common ansatz that its non-diagonal terms are suppressed
by a Gaussian, e.g. [123, 100]. For all these reasons, we will in this section analyse
the effect of decoherence using the GHDM and follow [44, 46].

To define the GHDM, we work in Fourier space. First, to avoid a preferred di-
rection all 1-point correlation functions have to vanish. The Gaussian state is then
completely characterised by its covariance matrix (58) made of 2-point correlation
functions. By homogeneity, the only non-vanishing 2-point correlation functions in-
volve kkk and −kkk, and we can work with a single couple of modes ±kkk. A priori we
have a 4×4 matrix, but, as mentioned below Eq. (63), homogeneity further imposes
that the matrix is block diagonal in the R/I partition. We are left with a 2×2 covari-
ance matrix like that of Eq. (64). The state is then fully characterised by the three real
covariance matrix elements γi j in Eq. (65), or alternatively the number of pairs nk
and their pair correlation ck (one complex and one real number) defined in Eq. (78).
The only difference with the previous analyses is that the constraint imposed by the
purity of the state pk = 1 is now relaxed to pk ≤ 1, i.e. det(γ S) = γ11γ22− γ2

12 ≥ 1,
or equivalently |ck| ≤

√
nk (nk +1). Notice that these numbers can still not be ar-

bitrarily chosen in order to keep a bona fide quantum state with purity bounded by
one. Finally, to be able to have a simple geometrical representation, we can use the
purity as an effective extra squeezing parameter and write [46]

γ11 = p−1/2
k [cosh(2rk)− cos(2ϕk)sinh(2rk)] , (152a)

γ12 = γ21 =−p−1/2
k sin(2ϕk)sinh(2rk) , (152b)

γ22 = p−1/2
k [cosh(2rk)+ cos(2ϕk)sinh(2rk)] . (152c)

One can check that this is a fully general parametrisation of a 2× 2 symmetric
matrix, that indeed det(γ) = p−2

k and that for pk = 1, we recover Eq. (66). How is
the geometrical representation affected by this additional parameter? It is readily
seen that the eigenvectors of γ are unchanged, and its eigenvalues simply increased
by p−1/2

k ≥ 1. The effect on the
√

2− σ contour levels is thus simply a dilation

by p−1/4
k . This increased width of the Gaussian was already noticed as an effect

of decoherence in [123] and before in a different context by [124]. An important
remark is that the existence of a sub-fluctuant mode due to squeezing is not guar-
anteed anymore since the semi-minor axis is now of length Bk = p−1/4

k e−rk which
can always be made larger than one, the vacuum value, provided that decoherence
is strong enough at a given a value of squeezing rk. Fig. 6 illustrates the ellipse cor-
responding to the state in Fig. 3 after having lost purity to pk = 0.17; there is no
sub-fluctuant direction. We mention an alternative parametrisation, used in [44, 88],
where the extent of the breaking of the relation between nk and |ck| is used to inter-
polate between a 2-mode squeezed state and a thermal state at fixed nk. We define
δk such that

|ck|= (nk +1)(nk−δk) . (153)
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δk = 0 is a 2-mode squeezed state and δk = nk, the maximal value, is a thermal state.
This parameter is easily related to the purity and the squeezing via

δk =
1

2
√

pk

1− pk

cosh(2rk)+
√

pk
. (154)
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2-σ contour level of the Wigner function W S for ϕk = π/4, rk = 1, pk = 0.12 (blue ellipse)
or pk = 1 (green ellipse) and the vacuum state rk = 0 (pink circle).

Let us investigate the effect of decoherence using this class of state. To start
with, how is the level of decoherence of the state estimated? Several criteria have
been used in the literature: the so-called rate of de-separation [106], evaluating the
suppression of non-diagonal terms [115, 114, 123], the positivity time if the initial
state is assumed to be non-Gaussian [108], δk [44] or simply the purity pk [120].
We will use the latter since it directly enters our definition of the GHDM (152).
The purity can also be conveniently related to the entropy by Eq. (128), which still
applies for decohered states. Since the purity has decreased, the entropy increases
and becomes non-vanishing. For instance, a thermal state in the 2-mode particle
number basis (148) gives ck = rk = 0 and pk = (2nk +1)−1.

Our focus is on how a certain level of decoherence, represented by pk, can lead
to a classical state in the sense of the criteria discussed in the previous section. As
we now show, for mixed states, the different criteria are, in general, inequivalent
and give different answers [122]. The separability condition Eq. (131) is also still
valid for the partially decohered distribution [44]. It has a very elegant interpretation
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when rewritten in terms of the effective squeezing parameter

Bkh̄−1/2 = p−1/4
k e−rk ≤ 1 , (155)

i.e. the state becomes separable when there is no sub-fluctuant mode anymore due
to a sufficient level of decoherence pk < erk . The condition can also be written as
δk ≥ nk/(nk +1) which, for the very large number of primordial gravitons expected
nk≫ 1, becomes δk ≥ 1 [44].

Let us now turn to the Bell inequality of Eq. (141). Its form, its maximisation
procedure, and the formula Eq. (139) are still valid for our partially decohered state.
We plot the value of Cmax for a modest number of gravitons in each polarisation
nk = 100 and different values of δk in Fig. 7. We see that the maximum of Cmax
gradually recedes away from violation as δk increases, and that for δk = 0.1, the
inequality is not violated anymore. In [88], the authors give an approximation in
the limit δk ≪ nk, which is equivalent to cosh2 (rk)≫ 1, i.e. in the limit of a very
squeeze state. In this limit, we have

Cmax

(
|v|2
)
=

1
2(1+δk)

[
1+

3
24/3 +O

(
1+δk

nk

)]
. (156)

so that inequality is violated when

δk < 0.095 . (157)

The threshold is an order of magnitude smaller than that of separability. This con-
dition is unfortunately not easily expressed in a comparison between pk and rk.
The perturbations loose their quantum character in the sense of the Bell inequality
Eq. (141) faster than in the sense of separability. This is expected since we recall that
separability is a necessary condition for Bell inequality violation, and here we see
that it is not a sufficient condition anymore; the criteria are inequivalent for mixed
states.

Finally, let us examine the behaviour of the quantum discord. The formula (146)
was generalised in [46] for partially decohered states. A similar computation in
presence of decoherence, although less general, was previously carried out in [125].
The generalisation reads

D±kkk = f
[

p−1/2
k cosh(2rk)

]
−2 f

(
p−1

k

)
+ f

[
p−1/2

k cosh(2rk)+ p−1
k

p−1/2
k cosh(2rk)+1

]
. (158)

One notes that the discord does not depend on the squeezing angle ϕk. This angle
can always be modified by a local symplectic transformation, and the discord is a
local symplectic invariant, so it must not depend on it. In Fig. 8, we plot this formula
as a function of pk and rk, and draw the line delimiting separable from non-separable
states. Its complexity prevents us from giving a simple threshold for the discord to
be, say, larger than 1 and to compare with separability and Bell inequality. Figure 8
shows clearly that, as for separability, the value of the discord is dictated by the
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Bell inequality violation Cmax = 1 is shown in dashed black line.

result of a competition between the level of squeezing rk and that of decoherence
pk. These two criteria, along with a Bell inequality of the type considered in [100],
were recently compared in [126].
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Fig. 8 Quantum discord D±kkk of Eq. (158) for a partially decohered state defined by Eq. (152) as
a function of its squeezing rk and a purity pk.

The overall result of this discussion is that decoherence, if large enough, does, in
the sense of different inequivalent criteria, erase the quantum features of the state. To
be able to complete the analysis, the only thing necessary is to get a realistic estima-
tion of the loss of purity in the early universe. Can we get observational constraints
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on the interactions generating decoherence and on its level? Unfortunately, not for
primordial gravitational waves since they were not detected yet. However, for scalar
perturbations, the observation of the baryonic acoustic oscillation (BAO) actually
imposes that during inflation, decoherence cannot modify too much the squeezing
parameters [44] rk ≫ 1 and ϕk ≈ −π/2. In particular, this implies that complete
decoherence during inflation, leading to a thermal state like Eq. (148), is excluded.
Indeed, the squeezing parameter rk would vanish [106]. Note that the purity pk is
not constrained by this argument. This relation between the oscillations and strong
squeezing had initially led to label the former a quantum feature [30]. As we have
explained, the squeezing, in its dynamical aspect, can be understood as the presence
of a growing and a decaying mode so that this result can be understood completely
classically as pointed in [45]. This ‘temporal coherence’ of the perturbations is ex-
plained in detail (using a classical point of view) in [82]. In addition of this general
argument, for precise models of decoherence, other constraints can be obtained as
discussed, for instance, in Ref. [120].

Let us close this section by coming back to the important question of the observ-
ability of the features. Even in the absence of decoherence, are the operators that
we have used in the discussion measurable? For the Bell inequality Eq (141) they
have derived in [88], Campo and Parentani argue that each of the four terms is, in
principle, measurable. However, one needs to measure a difference of order 1 be-
tween these while the intrinsic fluctuations of the factor nk is of order nk, which is of
order 1086. The measure is, in practice, impossible. The authors of [100] argue that
having only access to the growing mode makes it impossible to measure two of their
three pseudo-spin operators. Verifying their Bell inequality necessitates measuring
at least two, and so is experimentally impossible. To address this difficulty, they
suggest that one could try to build Legget-Garg inequalities [127] that rely on corre-
lation in time of a single operator and do not require to measure two non-commuting
operators at a given time. Ref. [128] also proposed a “baroque”, to use the term of
the author, inflationary model in which Bell operators are measured during inflation
by another field rather than at later times by observer. The field stores the result in
classical, robust variables that could be read out at later times by observers. Finally,
the separability and quantum discord, being directly attached to properties of the
density matrix, seem harder to measure. The possibility of measuring them directly
in the cosmological case has not, to the best of our knowledge, been analysed. In
[37], the authors took another approach and showed that if the perturbations were
in a quantum non-discordant state, and reproduced the power spectrum measured
for scalar perturbations, then they have to be in the thermal state (148). As we have
just explained, this is ruled out. Note that this argument assumes that the system is
described by a quantum state rather than proves it.
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5 Some perspectives and critics

To conclude this review, we mention a few perspectives and possible criticisms of
the previously developed issues.

First, the estimation of the minimal level of decoherence of cosmological per-
turbations keeps being refined see, e.g. [129, 117, 130]. Most authors conclude that
decoherence has completed by the end of inflation, and the state is classical when
the modes become sub-Hubble again. However, an application of the precise level of
decoherence obtained to a concrete non-classicality criterion is still missing. Such
computation would be essential since we have shown that the threshold for the emer-
gence of classicality given by the different criteria depends on both the purity and
the level of squeezing. In addition, some authors have also suggested that the use of
Markovian approximation is not well-justified in the cosmological context and that a
more general master equation is required to achieve a correct prediction [131, 132].

Second, the discussion of Sec. 4 applies to the tensor and scalar perturbations.
However, primordial gravitational waves have the important specificity that they
could be directly detected, not only indirectly in the temperature anisotropies of
the CMB, as scalar ones. Direct detection (although futuristic see [73] ) would
bring about exciting possibilities to search for quantum signatures in gravitational
wave detectors. Several authors, e.g. [133, 134, 135], have investigated these. The
squeezed states of gravitons could produce noise in gravitational wave interferom-
eters, and some of the authors argued that its quantum character might be revealed
by measuring the decoherence it would induce between two entangled mirrors.

Another possibility that we have not discussed is to use the interactions of the
perturbations, not as a mere source of decoherence, but as giving new signals in the
form of non-gaussianities that could be used. Focusing on scalar perturbations, the
authors of Ref. [136] showed that substituting the initial quantum vacuum fluctua-
tions by a Gaussian stochastic field with the same two-point functions would lead
to enhanced non-gaussianities akin to those generated by initial excited states. Not
measuring such an enhancement was then suggested to be a sign of non-classicality
of the initial state (see also [137]). With a different approach to non-gaussianities,
the Wigner function of primordial gravitational waves was calculated in Ref. [138],
taking in account the intrinsic non-linearities of gravity. Its regions of negativity
were then explored as a means of exhibiting a signature of quantumness of the state.
Other works such as Refs. [139, 140] took yet another route and provided some
constraints on decoherence based on the level of non-gaussianities.

Finally, some authors criticised the standard approach of analysing correlations
between ±kkk modes. The authors of [141, 122] have argued that discussing correla-
tions between ±kkk modes is not appropriate as these two modes do not exist sepa-
rately outside of Minkowski, in particular during inflation, and keep being mixed.
Just as there is no preferred choice of vacuum (Sec. 3.6), there is no preferred choice
of partition to unambiguously discuss levels of squeezing and correlations. These
critics, we believe, would not apply to sub-Hubble modes, e.g. in our toy model ra-
diation domination where a′ = 0. Some recent works [142, 143] do not suffer from
these shortcomings since they perform similar computations for quantum discord
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and Bell inequalities, but use real space correlation functions. Unfortunately, their
results tend to show that, even in the absence of decoherence, no quantum features
appear in real space. Lastly, the formalism presented here does not address the so-
called ”quantum measurement problem” in cosmology. In our approach, we used an
ergodicity assumption to justify equating the quantum expectation values to average
values over different patches of the sky. However, one could argue that we did not
discuss how the perturbations “collapsed” from a homogeneous quantum state to an
inhomogeneous distribution with different values in each patch. For a discussion of
this point, see [144].

To conclude, it is fair to say that the current status regarding the quest for quan-
tum features in the primordial gravitational wave background is not entirely settled.
First, on the observational side, the waves themselves, even in their classical aspects,
have yet to be detected [145]. Experiments in preparation [75, 76] might manage to
detect signatures of the waves in the BBB-modes of the CMB. However, direct detec-
tion via gravitational wave interferometers seems so far out of reach [73]. On the
theoretical side, in recent years, several quantum features of the quantum state for
the primordial gravitational waves predicted in the simplest models have been ex-
hibited. Unfortunately, no currently available experimental protocol has yet been
designed to detect these features. In addition, the effect of decoherence has been
increasingly more precisely characterised, and the latest findings tend to show that
it might have erased all the potentially detectable features by the end of inflation.
At this time, most analyses have been restricted to the simplest inflationary models
and at the Gaussian level. More recently, some promising suggestions and proposals
have been made concerning non-gaussianities, discussing the possible signatures of
decoherence, or other possible hints of a quantum origin of the perturbations.
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2.3 Article: ‘Discord and decoherence’

Our general strategy to evaluate the quantumness of cosmological perturbations
is to consider correlations between different perturbations and see if these can be
labelled quantum because they exhibit features that cannot be accounted for by a
classical theory, e.g. they violate a Bell inequality [3]. The non-classicality of these
correlations is expected to be affected by the interaction of the perturbations with
other degrees of freedom and themselves, a phenomenon known as decoherence.
In [2] reproduced below, we analysed one specific measure of the non-classicality
of correlations, the quantum discord, in the cosmological context. The main result
of this paper, derived in Sec. 4, is the computation of the quantum discord in the
presence of a minimal decoherence model, extending known results [154]. Similarly
to, [153] we show that there is a competition between the dynamics of inflation
generating quantum correlations and decoherence that destroys them: the rate of
interaction with the external degrees of freedom leading to decoherence must be
large enough for the quantum discord to have disappeared by the end of inflation.
Again, we point out that the convention used for p̂, the field conjugated to the
Mukhanov-Sasaki field v̂ matches Eq. (1.95), and so differs from that used in [1],
see Sec. 2.2 for details.
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Abstract. In quantum information theory, quantum discord has been proposed as a tool
to characterise the presence of “quantum correlations” between the subparts of a given
system. Whether a system behaves quantum-mechanically or classically is believed to
be impacted by the phenomenon of decoherence, which originates from the unavoidable
interaction between this system and an environment. Generically, decoherence is associ-
ated with a decrease of the state purity, i.e. a transition from a pure to a mixed state. In
this paper, we investigate how quantum discord is modified by this quantum-to-classical
transition. This study is carried out on systems described by quadratic Hamiltonians
and Gaussian states, with generalised squeezing parameters. A generic parametrisation
is also introduced to describe the way the system is partitioned into two subsystems.
We find that the evolution of quantum discord in presence of an environment is a com-
petition between the growth of the squeezing amplitude and the decrease of the state
purity. In phase space, this corresponds to whether the semi-minor axis of the Wigner
ellipse increases or decreases, which has a clear geometrical interpretation. Finally, these
considerations are applied to primordial cosmological perturbations, where we find that
quantum discord can remain large even in the presence of strong decoherence.
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1 Introduction

A intriguing fact in modern science is that, sometimes, it is not straightforward to decide
whether a system behaves classically or quantum-mechanically. This is for instance the
case in Cosmology where it is believed that the structures observed in our universe are
nothing but quantum fluctuations amplified to astrophysical scales [1–3]. Even if this
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hypothesis allows us to explain the properties of these structures, acquiring evidence that
would establish their origin beyond any doubt turns out to be highly non-trivial. Indeed,
assuming that the primordial fluctuations are stochastic rather than quantum leads to
almost the same consequences up to corrections that, in practice, are very difficult to
reveal experimentally [4, 5].

Recently, new methods have been developed to address the question of whether a
system is classical or quantum-mechanical. A typical approach consists in dividing the
system into two sub-systems and to study and characterise the nature of the correlations
between these two sub-systems. As a matter of fact, there exist efficient tools to decide
whether correlations are classical or quantum-mechanical in nature. Sometimes, indeed,
correlations are impossible to understand in a classical framework (see, for instance, the
Bell experiments [6, 7]) which establishes unambiguously their quantum origin. This
strategy leads to the concept of quantum discord [8, 9]. However, the ability of quantum
discord to precisely identify the quantum nature of some correlations has been chal-
lenged in the case of mixed states while, in the case of pure states, there is a one-to-one
correspondence between quantum discord and entropy of entanglement [10, 11]. On the
other hand, the quantum-to-classical transition of a system is generically believed to be
connected to the phenomenon of decoherence [12, 13]. This mechanism, which has been
observed in the laboratory [7], takes into account that any system is in fact always an
open system, namely a system in interaction with other degrees of freedom that collec-
tively constitute an environment. This interaction, when one is only interested in the
properties of the system, is responsible for the appearance of classical properties.

It is therefore interesting to study how the quantum discord “responds” to the
presence of decoherence in a system and to investigate how quantum discord can track
the “classicalization” of a system. This is the main goal of the present paper. This
study will be carried out in the generic case of a quadratic Hamiltonian. Physically,
this is very relevant since many systems are described by this type of Hamiltonians.
This is for instance the case for the Schwinger effect, the dynamical Casimir effect, the
Hawking effect, inflationary fluctuations, etc. Technically, this is advantageous since the
quantisation of these systems always leads to Gaussian states for which there exists an
efficient formalism permitting the calculation of quantum discord. When it comes to
concrete applications, we will consider the example of cosmological perturbations [14].
In addition to the advantages mentioned above, this will also allow us to shed new
light on the question of whether their quantum origin can be observationally revealed,
a long-standing question in Cosmology that has recently been the subject of many new
studies [4, 15–23].

This article is organised as follows. In Sec. 2, we present a description of the
quadratic systems considered in this paper and provide the formulas permitting the cal-
culation of their quantum discord. In Sec. 3, as a warm-up, we explain how the time
evolution of these systems and their quantum discord can be calculated in absence of
an environment. In Sec. 4, we introduce a simple model, based on the Caldeira-Leggett
model, which allows us to study and calculate quantum discord in presence of decoher-
ence. In Sec. 5, we apply this formalism to the theory of cosmological perturbations of
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quantum-mechanical origin. At the end of the article, in Sec. 6, we present our conclu-
sions. Finally, the technical details of our calculations are given in a series of appendices.
In Sec. A, we come back to the notion of partitions of a system and explain it in more de-
tails. In Sec. B, we calculate the covariance matrix of a Gaussian system for an arbitrary
partition. In Sec. C, we explain how the formula giving the quantum discord used in the
main text is arrived at. In Sec. D, we calculate the covariance matrix of the system in
presence of an environment and derive efficient approximations for its components.

2 Quantum discord of a Gaussian field

2.1 Quantum phase space

In this work we consider the case of a real quantum scalar field with a local quadratic
Hamiltonian

Ĥ =
1

2

∫

R3

d3x ẑT(x)Λ(τ)ẑ(x) , (2.1)

where ẑ(x) =
(
φ̂(x) , π̂φ(x)

)T
contains the field φ̂ and its conjugate momentum π̂φ,

which satisfy the canonical commutation relations

[
φ̂(x), π̂φ(y)

]
= iδ(x− y). (2.2)

We assume that the 2×2 symmetric matrix Λ(τ) does not depend on x but only on
time τ , which can result from the invariance under spatial translations of the physical
setup on which the field is introduced. For instance, the field φ may describe cosmo-
logical perturbations evolving on top of a homogeneous and isotropic background, as
further discussed in Sec. 5, but for now the formalism we develop remains generic and
applies to any system described by a (possibly infinite) collection of parametric oscilla-
tors. Note that Λφφ(τ) can nonetheless contain gradient operators ∂/∂x to any positive
(in agreement with the locality assumption) and even (in order to preserve homogeneity
and isotropy) power. If the theory does not feature higher-than two derivatives, which
we assume here, then the other entries of Λ cannot contain spatial gradients. In what
follows we introduce several successive canonical transformation, i.e. changes of variables
that preserve the structure of the commutators (2.2), which make the expression of the
Hamiltonian (2.1) simpler.

Let us perform a first canonical transformation and introduce the variables v̂(x)
and p̂(x) defined as

φ̂(x) =
√

Λππ v̂(x)

π̂φ(x) =

(
1

2

Λ′ππ
Λππ

− Λφπ

)
v̂(x)√
Λππ

+
p̂(x)√
Λππ

,
(2.3)

where a prime denotes derivation with respect to time, and where one can easily check
that v̂ and p̂ obey the same commutation relations as the original fields, see Eq. (2.2).
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In terms of these new variables, the Hamiltonian takes the simple form [24]

Ĥ =
1

2

∫

R3

d3x
[
p̂2(x) + ω2v̂2(x)

]
, (2.4)

where ω2 = ΛφφΛππ+1/2(Λ′′ππ/Λππ)−3/4(Λ′ππ/Λππ)2−Λ′φπ−Λ2
φπ+ΛφπΛ′ππ/Λππ encodes

all the information about the dynamics.
We then perform a second canonical transformation, in the form of the Fourier

expansion

v̂(x) =
1

(2π)3/2

∫

R3

d3k e−ik·xv̂k (2.5)

and a similar expression for p̂(x). The fact that this defines a canonical trans-
formation can be easily seen from combining the inverse Fourier transform, v̂k =
(2π)−3/2

∫
d3x eik·xv̂(x) (and a similar expression for p̂k) with Eq. (2.2) for the fields

v̂(x) and p̂(x), which yields

[
v̂k, p̂

†
k′

]
= iδ(k − k′) , (2.6)

while [v̂k, v̂
†
k′ ] = [p̂k, p̂

†
k′ ] = 0. Plugging the Fourier expansions into the Hamilto-

nian (2.4), one obtains

Ĥ =

∫

R3+

d3k Ĥk =

∫

R3+

d3k
[
p̂kp̂
†
k + ω2 (k, t) v̂kv̂

†
k

]
, (2.7)

which defines the Hamiltonian density in Fourier space Ĥk. In this expression, ω can
depend on k since, as pointed out above, it may involve the gradient operator. It is
important to notice that the operators v̂k and p̂k are not Hermitian. Indeed, since
v̂(t,x) is real, one has v̂†k = v̂−k and a similar relation for the conjugate momentum.
This shows that independent degrees of freedom are labelled by half the Fourier space
only, and explains why the integral is performed over R3+ = R2 × R+ in Eq. (2.7). In
the helicity basis, this also allows one to decompose the fields v̂k and p̂k onto creation
and annihilation operators as

v̂k =
1√
2k

(
ĉk + ĉ†−k

)
and p̂k = −i

√
k

2

(
ĉk − ĉ†−k

)
, (2.8)

where ĉk and ĉ†k′ obey the commutation relation [ĉk, ĉ
†
k′ ] = δ(k − k′). By plugging the

above into Eq. (2.7), one obtains

Ĥ =

∫

R3+

d3k

[
k

2

(
ω2

k2
+ 1

)(
ĉkĉ
†
k + ĉ†−kĉ−k

)
+
k

2

(
ω2

k2
− 1

)(
ĉkĉ−k + ĉ†−kĉ

†
k

)]
. (2.9)

In this expression, the first term does not lead to net particle creation and represents
a collection of free oscillators while the second term either creates or destroys a pair of
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particles with momenta k and −k, and can be seen as resulting from the interaction with
an exterior classical source. Note that the four combinations of ladder operators appear-
ing in Eq. (2.9) are the only quadratic terms that are allowed by statistical isotropy,
i.e. they are the only combinations that ensure momentum conservation in the particle
content. Let us also notice that the form (2.9) is not the one commonly used in Cos-
mology [which is given by Eq. (14) of Ref. [5]]. However, it is related to it by a simple
canonical transformation and is, therefore, equivalent to it.

Since v̂k and p̂k are not Hermitian, it is convenient to perform a third and last
canonical transformation, and introduce the Hermitian operators corresponding to the
Hermitian and anti-Hermitian parts of v̂k and p̂k,

v̂R
k =

v̂k + v̂†k√
2

, v̂I
k =

v̂k − v̂†k√
2 i

, p̂R
k =

p̂k + p̂†k√
2

, p̂I
k =

p̂k − p̂†k√
2 i

. (2.10)

The transformation (2.10) can be inverted according to v̂k =
(
v̂R
k + iv̂I

k

)
/
√

2 and

p̂k =
(
p̂R
k + ip̂I

k

)
/
√

2 , and one can readily check that these relations define a canonical

transformation, namely that [v̂sk, p̂
s′
k′ ] = iδ(k − k′)δs,s′ and that [v̂sk, v̂

s′
k′ ] = [p̂sk, p̂

s′
k′ ] = 0

where s = R, I. It is also clear from these expressions that v̂sk and p̂sk are Hermitian
operators, and that the Hamiltonian reads

Ĥ =

∫

R3+

d3k
∑

s=R,I

Ĥsk =
1

2

∫

R3+

d3k
∑

s=R,I

[
(p̂sk)2 + ω2(k, τ)(v̂sk)2

]
. (2.11)

The advantage of this last parameterisation is that it makes the Hamiltonian sum sepa-
rable, see Eq. (2.11). In other words, it describes a collection of independent parametric
oscillators. If the initial quantum state is factorisable in that basis, which is for instance
the case for the vacuum state selected by that Hamiltonian, it remains so at later time,
and the dynamical evolution does not generate correlation or entanglement between
different subspaces.

2.2 Partitions

As mentioned above, the system under consideration can be factorised into independent
Fourier subspaces, within which entangled pairs of particles with opposite wave-momenta
are created. Our goal is to measure the amount of entanglement associated with this
mechanism, and to determine whether the resulting correlations have genuinely quantum
properties.

Experiments aimed at testing the quantum nature of a physical setup usually rely
on probing the properties of the correlations between two of its subsystems. In Bell
inequality experiments for instance, the correlations between the spin states of two en-
tangled particles are tested against a possible local hidden-variables theory. In that case,
the way the physical system is split into two subsystems is obvious: the two subsystems
are simply the two space-like separated particles. One may choose to parameterise phase
space by means of other combinations of the spin operators, but given that Bell experi-
ments test for locality, it is clear that the two particles constitute a preferred partition.
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The situation is however less clear for quantum fields. One may still choose to work
in real space, and probe the nature of the correlations for two spatially-separated regions,
see for instance Refs. [21, 25]. However, in this approach, one has to deal with mixed
states, coming from the fact that when observing the field at two distinct locations in
real space one implicitly traces over the configurations of the field in all other locations,
making the reduced state of interest a mixed one. This problem does not occur in
Fourier space since different Fourier subspaces are uncoupled. Since we want to study
the effect of decoherence on the presence of quantum correlations, it seems important
to first isolate the decoherence associated with the coupling to environmental degrees of
freedom, from the one coming from the effective mixing effect mentioned above. This is
why in this work we choose to study correlations within Fourier subspaces, leaving the
combination of both mixing effects (i.e. the analysis of quantum discord in real space in
the presence of an environment) for future work.

In Fourier space, there is no obvious way to split the system into two subsystems.
At the technical level, this implies that the construction of Hermitian operators out of
v̂k and p̂k is not unique, and that Eq. (2.10) is not the only possibility. For instance,
one can consider the set of operators q̂k and π̂k involving ladder operators of a single
mode k (and excluding −k), namely [5]

q̂k =
1√
2k

(
ĉk + ĉ†k

)
and π̂k = −i

√
k

2

(
ĉk − ĉ†k

)
, (2.12)

which are indeed Hermitian and satisfy [q̂k, π̂k′ ] = iδ(k − k′). The variables (2.10)
and (2.12) define two partitions (namely a partition between the real and imaginary
sector, and between the k and −k sector, respectively), and these two partitions feature
different correlations of different amount and nature.

Since there is no preferred partition, a generic approach is to probe the nature of the
correlations in all possible partitions. This is why we now define the notion of quantum
partitions at a more formal level, and see how different partitions are related to each
other (we refer the reader to Appendix A for a more detailed analysis of partitions). A
partition of a Fourier subspace into two subsystems 1 and 2 is encoded in the phase-space
vector

R̂1/2 =
(
k1/2q̂

(1)
k , k−1/2π̂

(1)
k , k1/2q̂

(2)
k , k−1/2π̂

(2)
k

)T
, (2.13)

where the two first entries concern the first sector and the two last entries describe
the second sector (the prefactors k1/2 and k−1/2 are introduced to make all entries
of the R̂1/2 vector of the same dimension), and where the commutators between the

entries of R̂1/2 are canonical (i.e. the only non-vanishing commutators are between
the first and the second, and the third and the fourth, entries, and this commuta-
tor equals i). For instance, in the R/I partition corresponding to Eq. (2.10), one has
R̂R/I = (k1/2v̂R

k , k
−1/2p̂R

k , k
1/2v̂I

k, k
−1/2p̂I

k)T, while in the ±k partition corresponding to

Eq. (2.12), one has R̂±k = (k1/2q̂k, k
−1/2π̂k, k

1/2q̂−k, k−1/2π̂−k)T.
Among all possible partitions, let us note that the R/I partition plays a specific

role since it is such that the Hamiltonian is sum separable [i.e. Eq. (2.11) does not
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contain cross terms between the two subsectors]. In the following, in order to preserve
the quadratic nature of the Hamiltonian density, we focus on partitions that are linearly
related to that reference partition,

R̂1/2 = TR/I→1/2R̂R/I , (2.14)

where TR/I→1/2 is a four-by-four matrix that encodes the change of partitions. This
matrix must be such that the commutator structure is preserved, i.e. it must be a
symplectic matrix. Further imposing that different parameterisations share the same
vacuum state, i.e. that TR/I→1/2 does not mix creation and annihilation operators, in
Appendix A we show that TR/I→1/2 must be of the form

TR/I→1/2 =




cosα cos θ − sinα cos θ − cos δ sin θ sin δ sin θ
sinα cos θ cosα cos θ − sin δ sin θ − cos δ sin θ
cosβ sin θ − sinβ sin θ cos(α− β − δ) cos θ sin(α− β − δ) cos θ
sinβ sin θ cosβ sin θ − sin(α− β − δ) cos θ cos(α− β − δ) cos θ


 ,

(2.15)

where α, β, δ and θ are four angles that entirely characterise the partition. For instance,
the R/I partition obviously corresponds to α = β = δ = θ = 0, while the ±k partition
corresponds to α = 0, β = −π, δ = π/2 and θ = −π/4. It is also worth mentioning that
the one-parameter subset of partitions studied in Ref. [5] can be obtained by setting
α = 0, β = 3π/2 + 2θ and δ = π/2 in Eq. (2.15), leading to

TR/I→1/2(θ) =




cos θ 0 0 sin θ
0 cos θ − sin θ 0

sin θ sin(2θ) sin θ cos(2θ) cos θ cos(2θ) − cos θ sin(2θ)
− sin θ cos(2θ) sin θ sin(2θ) cos θ sin(2θ) cos θ cos(2θ)


 . (2.16)

This subset reaches the ±k partition since one can check that TR/I→±k =
TR/I→1/2(−π/4). In what follows, we will focus on the subclass (2.16) of partitions
for concrete applications of our formalism, since it will be sufficient to study how the
result may depend on the choice of partitions, but the formalism will be kept general
enough to make it obvious how to apply it to the most generic partitions (2.15).

2.3 Covariance matrix

Since the Hamiltonian (2.1) is quadratic, the dynamics it generates is linear and admits
Gaussian states as solutions.1 Such states are entirely characterised by their two-point
correlation functions. The two-point correlation functions are conventionally gathered
in the real symmetric covariance matrix γ of the state defined by

γab = 〈{R̂a, R̂b}〉 , (2.17)

1Note that this work is not restricted to pure states, so the quantum states we consider are in general
represented by a density matrix ρ̂, or equivalently by a Wigner function. Here, what “Gaussian state”
means in practice is that the Wigner function is Gaussian.
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where {.} denotes the anti-commutator, namely {a, b} ≡ ab + ba. Upon a change of
partition R̂→ R̂′ = TR̂, the covariance matrix becomes

γ′ = TγTT . (2.18)

As discussed around Eq. (2.11), in the R/I partition, the two sectors decouple and
have the same reduced Hamiltonian. As a consequence, if the initial state is uncorrelated
and symmetric between the two sectors (which is the case of the vacuum state selected
by the Hamiltonian), it remains so at any time, and the covariance matrix is of the form

γR/I =




γ11 γ12 0 0
γ12 γ22 0 0
0 0 γ11 γ12

0 0 γ12 γ22


 , (2.19)

which depends on three parameters only, namely

γ11 = 2k
〈(
v̂R
k

)2〉
= 2k

〈(
v̂I
k

)2〉
= k

〈{
v̂k, v̂

†
k

}〉
, (2.20)

γ12 = γ21 =
〈
v̂R
k p̂

R
k + p̂R

k v̂
R
k

〉
=
〈
v̂I
kp̂

I
k + p̂I

kv̂
I
k

〉
=
〈
v̂kp̂
†
k + p̂kv̂

†
k

〉
, (2.21)

γ22 =
2

k

〈(
p̂R
k

)2〉
=

2

k

〈(
p̂I
k

)2〉
=

1

k

〈{
p̂k, p̂

†
k

}〉
, (2.22)

where we have also related the entries of the covariance matrix to the two-point function
of the original v̂k and p̂k operators (where one can also check that 〈v̂kp̂k + p̂†kv̂

†
k〉 = 0).

Note that states represented by a covariance matrix of the form (2.19) are called Gaussian
and Homogeneous Density Matrices (GHDM) in Ref. [16], where they are shown to yield
the most general partial reconstruction of the state using only the knowledge of the two-
point correlation function.

Making use of Eq. (2.16) and (2.18), the covariance matrix can then be written
down in any partition, and we give the result in Appendix B for display convenience,
where the specific case of the ±k partition is also treated. Note that the correlators of
the ladder operators introduced in Eq. (2.8) can also be expressed in terms of the entries
of the covariance matrix (2.19), and one obtains

〈{
ĉk, ĉ

†
k

}〉
=
〈{
ĉ−k, ĉ

†
−k

}〉
=
γ11 + γ22

2
≡ 2Nk + 1 , (2.23)

〈{ĉk, ĉ−k}〉 =
γ11 − γ22

2
+ iγ12 ≡ 2Ck , (2.24)

〈{
ĉ†k, ĉ

†
−k

}〉
=
γ11 − γ22

2
− iγ12 = 2C∗k . (2.25)

where other correlators vanish. These expressions also define Nk, the number of particles
in the modes k and −k (which are equal because of isotropy), and Ck, the correlation
between the modes ±k [26].
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Note that the covariance matrix contains all information about the quantum state,
and any relevant quantity can be expressed in terms of its entries. For instance, the
purity of the state, Tr(ρ̂2) is given by [27]

Tr
(
ρ̂2
)

=
1√

det γ
=

1

γ11γ22 − γ2
12

. (2.26)

This quantity is comprised between 0 and 1 and measures the deviation from a pure
state, for which it equals 1. In the following, the purity will be thus used as a measure
of decoherence. Note that since symplectic matrices have unit determinant, the purity
is invariant under changes of partitions, and more generally under any change of phase-
space parameterisation.

2.4 Quantum discord

The presence of quantum correlations between two subparts of a system can be charac-
terised by means of quantum discord [8, 9], which is briefly reviewed in Appendix C. The
idea is to introduce two measures of correlation that coincide for classically correlated
setups because of Bayes theorem, but that may differ for quantum systems. The first
measure is the so-called mutual information, which is defined as the sum between the
von-Neumann entropy of each reduced sub-systems (known as entanglement entropy),
minus the entropy of the entire system. The second measure evaluates the difference
between the entropy contained in the first subsystem, and the entropy contained in that
same subsystem when the second subsystem has been measured, where an extremisa-
tion is performed over all possible ways to “measure” the second subsystem. Quantum
discord is defined as the difference between these two measures, and thus quantifies
deviations from Bayes theorem.

It is worth mentioning that for pure states, the different measures of correlations
mentioned above (entanglement entropy, mutual information and quantum discord) coin-
cide up to numerical prefactors. While this implies that correlated pure states necessarily
feature quantum correlations, it also means that quantum discord does not add partic-
ular insight in measuring them, since it contains the same information as entanglement
entropy, which is easier to compute. However, quantum discord becomes more clearly
useful when considering mixed states, which is precisely the topic of this work. The
reason is that there exist mixed states that feature classical correlations only. Contrary
to pure states, mixed states can thus possess classical and quantum correlations, and
the role of discord is to isolate the part of the correlations that is genuinely quantum.

In Appendix C, we show that for Gaussian homogeneous states such as the ones
introduced above, both measures depend only on the symplectic eigenvalue of the reduced
covariance matrix (i.e. of the diagonal 2-by-2 blocks of the covariance matrix),

σ(θ) =

√
cos2(2θ)

(
γ11γ22 − γ2

12

)
+

(
γ11 + γ22

2

)2

sin2(2θ) , (2.27)

and of the symplectic eigenvalue of the full covariance matrix, which is nothing but σ(0)
[and which coincides with (det γ)1/4, see Eq. (2.19)]. This gives rise to the following
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expression for quantum discord

D(θ) = f [σ(θ)]− 2f [σ(0)] + f

[
σ(θ) + σ2(0)

σ(θ) + 1

]
, (2.28)

where the function f(x) is defined for x ≥ 1 by

f(x) =

(
x+ 1

2

)
log2

(
x+ 1

2

)
−
(
x− 1

2

)
log2

(
x− 1

2

)
, (2.29)

One can check that, for the R/I partition where θ = 0, the above expressions give D = 0,
in agreement with the fact that the two subsystems are uncorrelated in this partition.

3 Discord in the absence of an environment

In Sec. 2, we have seen how the Fourier subspaces of a real scalar field can be partitioned,
and how the presence of quantum correlations between its subparts can be characterised
from the knowledge of its covariance matrix. In this section, we treat the situation where
the field does not couple to any environmental degree of freedom, and its quantum state
remains pure. We describe its time evolution using three different, though complemen-
tary, approaches: via Bogoliubov coefficients in Sec. 3.1, via squeezing parameters in
Sec. 3.2 and via transport equations in Sec. 3.3. These three approaches are useful as
they will lead to different insights into the case with environmental coupling, treated in
Sec. 4. We finally analyse how quantum discord evolves in time in Sec. 3.4.

3.1 Bogoliubov coefficients

In the Heisenberg picture, the equation of motion for the ladder operators can be ob-
tained from Eq. (2.9), and in matricial form they are given by

d

dτ

(
ĉk
ĉ†−k

)
=




−ik
2

[
ω2(k, τ)

k2
+ 1

]
−ik

2

[
ω2(k, τ)

k2
− 1

]

i
k

2

[
ω2(k, τ)

k2
− 1

]
i
k

2

[
ω2(k, τ)

k2
+ 1

]




(
ĉk
ĉ†−k

)
. (3.1)

This system being linear, it can be solved with a linear transformation known as the
Bogoliubov transformation

(
ĉk(τ)

ĉ†−k(τ)

)
=

(
uk(τ) wk(τ)
w∗−k(τ) u∗−k(τ)

)(
ĉk (τin)

ĉ†−k (τin)

)
, (3.2)

where uk and wk are the two complex Bogoliubov coefficients satisfying

|uk|2 − |w−k|2 = 1 . (3.3)

This condition ensures that the commutation relation [ĉk, ĉ
†
k′ ] = δ(k − k′) is preserved

in time [which can be checked by differentiating this commutation relation with respect
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to time and using Eq. (3.1)]. Solving the evolution of the system then boils down
to computing the Bogoliubov coefficients. They satisfy the same differential system
as the creation and annihilation operators, namely Eq. (3.1), with initial conditions
u±k (τin) = 1 and w±k (τin) = 0. Note that because of statistical isotropy, the Bogoliubov
coefficients only depend on the norm of k, so uk = u−k ≡ uk and wk = w−k ≡ wk.

The two first-order differential equations for the Bogoliubov coefficients can be
combined into a single second-order equation for the combination uk + w∗k, namely

d2

dτ2
(uk + w∗k) + ω2(k, τ) (uk + w∗k) = 0 . (3.4)

This equation needs to be solved with the initial conditions (uk + w∗k)(τin) = 1 and
(uk + w∗k)

′(τin) = −ik, where the latter comes from the relation

d

dτ
(uk + w∗k) = −ik (uk − w∗k) , (3.5)

which itself follows from the fact that the Bogoliubov coefficients satisfy the differential
system (3.1). Note that Eq. (3.5) also implies that uk − w∗k can be obtained from the
solution of the second-order equation (3.4), hence both uk and wk can be reconstructed
from that solution. In practice, determining the full dynamics of the system thus boils
down to solving Eq. (3.4).

The evolution can also be expressed in terms of the field variables, since plugging
Eq. (3.2) into Eq. (2.12) leads to

R̂R/I (τ) = TR/I (τ) R̂R/I (τin) , (3.6)

where

TR/I (τ) =




<e (uk + wk) −=m (uk − wk) 0 0
=m (uk + wk) <e (uk − wk) 0 0

0 0 <e (uk + wk) −=m (uk − wk)
0 0 =m (uk + wk) <e (uk − wk)


 . (3.7)

The covariance matrix can then be evaluated by means of Eq. (2.18), namely γ (τ) =
TR/I (τ) γ (τin)TT

R/I (τ), which gives rise to

γ11 (τ) =
1

2
[γ11(τin) + γ22(τin)] |uk(τ) + w∗k(τ)|2

+ <e

{
[uk(τ) + w∗k(τ)]2

[
γ11(τin)− γ22(τin)

2
+ iγ12(τin)

]}
, (3.8)

γ22 (τ) =
1

2
[γ11(τin) + γ22(τin)] |uk(τ)− w∗k(τ)|2

−<e

{
[uk(τ)− w∗k(τ)]2

[
γ11(τin)− γ22(τin)

2
+ iγ12(τin)

]}
, (3.9)

γ12 (τ) = [γ11(τin) + γ22(τin)]=m [uk(τ)wk(τ)]
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−=m

{[
u∗k

2(τ)− w2
k(τ)

] [γ11(τin)− γ22(τin)

2
− iγ12(τin)

]}
. (3.10)

Notice that, using Eqs. (2.23), (2.24) and (2.25), the above relations can be rewritten in
terms of the initial number of particles Nk(τin) and mode correlation Ck(τin), leading to

γ11 (τ) = [2Nk (τin) + 1] |uk(τ) + w∗k(τ)|2 + 2<e
{

[uk(τ) + w∗k(τ)]2 Ck (τin)
}

(3.11)

γ22 (τ) = [2Nk (τin) + 1] |uk(τ)− w∗k(τ)|2 − 2<e
{

[uk(τ)− w∗k(τ)]2 Ck (τin)
}

(3.12)

γ12 (τ) = 2 [2Nk (τin) + 1]=m [uk(τ)wk(τ)]− 2=m
{[
u∗k

2(τ)− w2
k(τ)

]
C∗k (τin)

}
. (3.13)

If the initial state is chosen as the vacuum state, Nk(τin) = Ck(τin) = 0, the above
expressions reduce to

γ11 (τ) = |uk(τ) + w∗k(τ)|2 , γ22 (τ) = |uk(τ)− w∗k(τ)|2 , (3.14)

γ12 (τ) = 2=m [uk(τ)wk(τ)] . (3.15)

In that case, given the initial conditions uk (τin) = 1 and wk (τin) = 0, these expressions
also imply that γ11 (τin) = γ22 (τin) = 1 and γ12 (tin) = 0.

3.2 Squeezing parameters

An equivalent description of the dynamics is through the squeezing parameters
(rk, ϕk, θk) (notice that the rotation angle θk, which carries the index “k”, should not
be confused with the angle θ defining a partition), which are defined in terms of the
Bogoliubov coefficients as

uk(τ) = e−iθk cosh rk, wk(τ) = −eiθk+2iϕk sinh rk , (3.16)

which ensures that the condition (3.3) is automatically satisfied. Given that the Bogoli-
ubov coefficients satisfy the differential system (3.2), one can derive equations of motion
for the squeezing parameters, namely

drk
dτ

=
k

2

(
ω2

k2
− 1

)
sin (2ϕk) , (3.17)

dϕk
dτ

= −k
2

(
ω2

k2
+ 1

)
+
k

2

(
ω2

k2
− 1

)
cos (2ϕk)

tanh(2rk)
, (3.18)

dθk
dτ

=
k

2

(
ω2

k2
+ 1

)
− k

2

(
ω2

k2
− 1

)
cos (2ϕk) tanh rk , (3.19)

where one can see that θk does not contribute to the time evolution of rk and ϕk.
Moreover, since we have already derived the relation between the covariance matrix
elements and the functions uk and vk, see Eq. (3.14), one can also express the components
γ11, γ22 and γ12 in terms of the squeezing parameters. One finds2

γ11 = cosh(2rk)− cos(2ϕk) sinh(2rk), (3.20)

2In the ±k partition, where the covariance matrix is given by Eqs. (B.10)-(B.16), those expressions
allow one to recover Eq. (C28) of Ref. [5].
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γ22 = cosh(2rk) + cos(2ϕk) sinh(2rk), (3.21)

γ12 =− sin(2ϕk) sinh(2rk), (3.22)

where one can see that θk does not appear.
The geometrical interpretation of the squeezing parameters becomes clear when

computing the Wigner function [28–30], which is the Wigner-Weyl transform of the
density matrix. It can be seen as a quasi probability distribution function, in the sense
that the quantum expectation value of any operator is given by the integral over phase-
space of the product between the Weyl transform of that operator and the Wigner
function. For a Gaussian state, it reads

W (R) =
1

π2
√

det γ
exp

(
−RTγ−1R

)
. (3.23)

In the R/I partition, γR/I is given by Eq. (2.19), so

(
γR/I

)−1
=

((
γR
)−1

0

0
(
γI
)−1

)
(3.24)

with

(
γR
)−1

=
(
γI
)−1

=

(
cosh(2rk) + cos(2ϕk) sinh(2rk) sin(2ϕk) sinh(2rk)

sin(2ϕk) sinh(2rk) cosh(2rk)− cos(2ϕk) sinh(2rk)

)
.

(3.25)

Since (γR/I)−1 is block diagonal, the Wigner function factorises in that partition,
i.e. W (R) = WR(RR)W I(RI), where Rs = (k1/2vsk, k

−1/2psk)T with s = R, I. This
translates the above remark that, in the R/I partition, the state is uncorrelated and
separable.

Owing to the Gaussian nature of W s, the contours of the Wigner function are
ellipses in phase space, the geometrical parameters of which can be derived as follows.
The quadratic form appearing in the argument of the exponential in the Wigner function
can be diagonalised upon performing a phase-space rotation with angle ϕk

R̃s = R(−ϕk)Rs =

(
cosϕk sinϕk
− sinϕk cosϕk

)
Rs , (3.26)

along which the covariance matrix becomes

(γ̃s)−1 = R(−ϕk)(γs)−1RT(−ϕk) =

(
e2rk 0

0 e−2rk

)
. (3.27)

This implies that the semi-minor and the semi-major axes of the above-mentioned
ellipses are tilted by the angle ϕk in phase space, and that for the

√
2 -σ contour, their

respective lengths are given by erk and e−rk . Such an ellipse is displayed in Fig. 1, and
fully describes the quantum state of the system. This leads to a simple interpretation of

– 13 –



−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

k1/2vsk

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

k
−

1/
2
ps k

ϕk e−rk

erk

Figure 1. Phase space representation of the
√

2 -σ contour level of the Wigner function W s, for
ϕk = π/4, rk = 1 (green ellipse) compared to the pink circle corresponding to a vacuum state
(coherent state) with vanishing squeezing.

the squeezing parameters: rk controls the eccentricity of the Wigner-function contours,
and ϕk its phase-space orientation.

Note that the area of the ellipse, which is proportional to the product between the
semi-major and the semi-minor axes lengths, is a constant. This can be traced back to
the fact that it is proportional to the determinant of the covariance matrix, which is a
constant given that the time evolution is performed via a symplectic matrix in Eq. (3.6).
Alternatively, it can also be seen as a consequence of Eq. (3.3). Since the determinant of
the covariance matrix is related to the purity of the state via Eq. (2.26), it also simply
translates the fact that the state remains pure if it does not couple to an environment.

3.3 Transport equations

The third method which allows us to follow the time evolution of the system is to
establish the differential equations obeyed by the components of the covariance matrix,
i.e. by the two-point functions of the system. In general, the quantum expectation value
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of any operator Ô evolves according to the Heisenberg equation

d〈Ô〉
dτ

=

〈
∂Ô

∂τ

〉
− i
〈[
Ô, Ĥ

]〉
. (3.28)

For one-point correlation functions, using the Hamiltonian (2.7), this leads

d〈vsk〉
dτ

= 〈psk〉,
d〈psk〉

dτ
= −ω2(k, τ)〈vsk〉 , (3.29)

which is nothing but Ehrenfest’s theorem. Combined together, these two equations
lead to 〈v̂sk〉′′ + ω2(k, τ)〈v̂sk〉 = 0, which coincides with the equation satisfied by the
combination uk + w∗k of the Bogoliubov coefficients, see Eq. (3.4), and which is nothing
but the classical equation of motion.

For two-point correlation functions, one has

d

dτ
〈v̂sk1

v̂sk2
〉 = 〈v̂sk1

p̂sk2
+ p̂sk1

v̂sk2
〉, (3.30)

d

dτ
〈p̂sk1

v̂sk2
〉 = 〈p̂sk1

p̂sk2
〉 − ω2(k1, τ)〈v̂sk1

v̂sk2
〉, (3.31)

d

dτ
〈v̂sk1

p̂sk2
〉 = 〈p̂sk1

p̂sk2
〉 − ω2(k2, τ)〈v̂sk1

v̂sk2
〉, (3.32)

d

dτ
〈p̂sk1

p̂sk2
〉 = −ω2(k2, τ)〈p̂sk1

v̂sk2
〉 − ω2(k1, τ)〈v̂sk1

p̂sk2
〉, (3.33)

where, as expected, the time derivative of correlators mixing R and I quantities vanish,
i.e. d〈RsiRs̃j〉/(dτ) ∝ δ(s− s̃). Making use of Eqs. (2.20)-(2.22), this leads to the following
differential system for the entries of the covariance matrix,

1

k

dγ11

dτ
= γ12 + γ21, (3.34)

1

k

d

dτ
(γ12 + γ21) = 2γ22 − 2

ω2

k2
γ11, (3.35)

1

k

dγ22

dτ
= −ω

2

k2
(γ12 + γ21). (3.36)

Let us recall that, as pointed out below Eq. (3.15), if the initial state is chosen to be the
vacuum state, these equations must be solved with initial conditions γ11(τin) = γ22(τin) =
1 and (γ12 + γ21)(τin) = 0. One can check that, in agreement with the remark made at
the end of Sec. 3.2, these equations imply that det γs = γ11γ22 − γ12γ21 is preserved in
time. One may also note that the above three first-order differential equations lead to a
single, third-order, differential equation for γ11, namely

1

k3

d3γ11

dτ3
+ 4

ω2

k2

1

k

dγ11

dτ
+

2

k

d

dτ

(
ω2

k2

)
γ11 = 0. (3.37)

The order of that differential equation can however be reduced upon introducing the
(complex) change of variable γ11 = vkv

∗
k. Indeed, one can show that Eq. (3.37) is satisfied
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if v′′k + ω2vk = 0. One recovers again the same second-order differential equation as the
one satisfied by the combination of Bogoliubov coefficients uk + w∗k, see Eq. (3.4) [note
that the initial conditions also match, i.e. the initial conditions give above for γ11, γ12

and γ22 lead to vk(τin) = 1 and v′k(τin) = −ik], which also coincides with the classical
equation of motion as pointed out above. This shows that the evolution of Gaussian
quantum states can be entirely described by the dynamics of its classical counterpart,
and that the three approaches introduced above to solve the dynamics are technically
equivalent.

3.4 Quantum discord

As explained in Sec. 2.4, the computation of quantum discord boils down to the com-
putation of the symplectic eigenvalue σ(θ). Setting θ = 0 in Eq. (2.27) leads to
σ(0) =

√
det γs , so for a pure state, one has σ(0) = 1. Since Eq. (2.29) leads to

f(1) = 0, the expression (2.28) for quantum discord reduces to

D = f [σ(θ)] . (3.38)

The symplectic eigenvalue σ(θ) can be expressed in terms of the Bogoliubov coefficients
by plugging Eq. (3.14) into Eq. (2.27), and one finds σ(θ) =

√
1 + 4|uk|2|wk|2 sin2(2θ) .

Making use of Eq. (3.16), it can also be written in terms of the squeezing parameters as

σ(θ) =

√
1 + sinh2(2rk) sin2(2θ) , (3.39)

where only the squeezing amplitude rk enters the expression. This shows that, when
θ 6= 0, the discord increases with the squeezing amplitude but does not depend on the
squeezing angle. Let us also mention that, plugging Eq. (2.23) into Eq. (2.27), one
obtains an expression that only involves the number of particles Nk, namely

σ(θ) =

√
1 + 4 sin2(2θ)Nk (Nk + 1) . (3.40)

This shows that discord increases with the number of entangled particles created between
the sectors k and −k, as expected. This also indicates that discord is maximal when
θ = −π/4, i.e. in the partition ±k. These considerations are in agreement with the
results found in Ref. [5].

4 Discord in the presence of an environment

In Sec. 3, we have described the evolution of the system and its quantum discord in the
case where it is placed in a pure state, without interactions with environmental degrees
of freedom. We now study how these considerations generalise to the situation where
an environment is present and couples to the system. Formally, we write down the
total Hamiltonian as the sum of a term acting on the system, Ĥ, a term acting on the
environment, Ĥenv, and an interaction term, Ĥint,

Ĥtot = Ĥ ⊗ Îenv + Î⊗ Ĥenv + gĤint, (4.1)
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where g is a coupling constant that controls the interaction strength and we recall that
Ĥ is given in Eq. (2.7). Our goal is to analyse the state of the system, which is described
by the reduced density matrix

ρ̂ = Trenv (ρ̂tot) . (4.2)

In practice, we assume that the interaction term is local, so it can be written as

Ĥint(τ) =

∫
d3x Â(τ,x)⊗ Ê(τ,x), (4.3)

where Â is an operator acting in the Hilbert space of the system and Ê an operator
acting in the Hilbert space of the environment.

4.1 Caldeira-Leggett model

Under the assumption that the auto-correlation time of Ê in the environment, which we
denote τc, is much shorter than the time scale over which the system evolves, one can
show that the reduced density matrix (4.2) obeys the Lindblad equation [15, 31–34]

dρ̂

dτ
= −i

[
Ĥ, ρ̂

]
− Γ

2

∫
d3x d3yCE(τ ;x,y)

[
Â(x),

[
Â(y), ρ̂

]]
, (4.4)

where CE(τ ;x,y) = 〈Ê(τ,x)Ê(τ,y)〉 is the equal-time correlation function of Ê, and
Γ ≡ 2g2τc. Let us note that the Lindblad equation generates all quantum dynamical
semigroups [35], and that even though it is derived at leading order in g, it allows for
efficient late-time re-summation [36].

Similarly to Eq. (3.28), the equation controlling the quantum expectation value of
a given operator Ô, namely 〈Ô〉 = Tr(ρ̂ Ô), can be obtained from the Lindblad equation,
and one finds

d〈Ô〉
dτ

=

〈
∂Ô

∂τ

〉
− i
〈[
Ô, Ĥ

]〉
−Γ

2
(2π)3/2

∫

R3

d3k C̃E(τ,k)
〈[[

Ô, Âk

]
, Â−k

]〉
, (4.5)

where C̃E(τ,k) is the Fourier transform of the correlation function [assuming statistical
homogeneity, CE(x,y) depends only on x − y, so we mean the Fourier transform with
respect to x− y].

These equations are difficult to solve in general, but they greatly simplify under
the assumption that Â is linear in the phase-space variables. The reason is that, in that
case, all interactions involving the system are linear, so the state of the system remains
Gaussian (although it becomes a mixed state). This allows one to still fully describe it in
terms of a covariance matrix, and to generalise most of the considerations presented in
Sec. 3. Such a setup is called the Caldeira-Leggett model [37–39], and in what follows we
will use it to understand how decoherence may affect the presence of quantum discord
within the system. For simplicity, we will consider the case where Â = v̂, but the more
generic situation where Â is a linear combination of v̂ and p̂ can be dealt with along
very similar lines, see Ref. [19].
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4.2 Transport equations

Let us first follow the approach presented in Sec. 3.3 and derive transport equations
from Eq. (4.5). For one-point correlation functions, one still obtains Eq. (3.29), i.e. the
classical equations of motion. For two-point correlation functions, one finds

d

dτ
〈v̂sk1

v̂sk2
〉 = 〈v̂sk1

p̂sk2
+ p̂sk1

v̂sk2
〉, (4.6)

d

dτ
〈p̂sk1

v̂sk2
〉 = 〈p̂sk1

p̂sk2
〉 − ω2(k1, τ)〈v̂sk1

v̂sk2
〉, (4.7)

d

dτ
〈v̂sk1

p̂sk2
〉 = 〈p̂sk1

p̂sk2
〉 − ω2(k2, τ)〈v̂sk1

v̂sk2
〉, (4.8)

d

dτ
〈p̂sk1

p̂sk2
〉 = −ω2(k2, τ)〈p̂sk1

v̂sk2
〉 − ω2(k1, τ)〈v̂sk1

p̂sk2
〉+ Γ(2π)3/2C̃E(τ,k1)δ(k2 − k1),

(4.9)

where correlators mixing R and I quantities still vanish, i.e. 〈RsiRs̃j〉 ∝ δ(s−s̃). Compared
to Eqs. (3.30)-(3.33), one can see that only the last equation gets modified, and receives
an additional contribution proportional to Γ. Making use of Eqs. (2.20)-(2.22), this leads
to the following differential system for the entries of the covariance matrix,

1

k

dγ11

dτ
= γ12 + γ21, (4.10)

1

k

d

dτ
(γ12 + γ21) = 2γ22 − 2

ω2

k2
γ11, (4.11)

1

k

dγ22

dτ
= −ω

2

k2
(γ12 + γ21) + 2Γ(2π)3/2 C̃E

k2
, (4.12)

which should be compared with Eqs. (3.34)-(3.36). Let us recall that, under the assump-
tion that the system is initially in the vacuum state, these equations should be solved
with initial conditions γ11(τin) = 1, (γ12 + γ21)(τin) = 0 and γ22(τin) = 1.

Another important consequence of these transport equations is that they lead to
the following evolution for det(γs) = γ11γ22 − γ2

12:

d

dτ
det (γs) = 2Γγ11(2π)3/2 C̃E

k
. (4.13)

When Γ = 0, i.e. in the absence of an environment, one recovers the fact that this
determinant is preserved, hence the system remains in a pure state. Otherwise, Eq. (4.13)
indicates that the interaction with the environment induces decoherence of the system,
since it makes the purity decrease away from one, see Eq. (2.26).

Finally, similarly to Eq. (3.37), one can derive a single, third-order differential
equation for γ11, which reads

1

k3

d3γ11

dτ3
+ 4

ω2

k2

1

k

dγ11

dτ
+

2

k

d

dτ

(
ω2

k2

)
γ11 = 4Γ(2π)3/2 C̃E

k2
. (4.14)
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As pointed out below Eq. (3.37), in the absence of a source term in the right-hand side,
the solution to this equation reads γ11 = vkv

∗
k, where vk satisfies the classical equation

of motion v′′k + ω2vk = 0. Using Green’s function method, the solution in the presence
of a source term is thus given by

γ11(τ) = vk(τ)v∗k(τ)− 8k

W 2
(2π)3/2

∫ τ

τin

Γ(τ ′) C̃E(τ ′, k)=m 2
[
vk(τ)v∗k(τ

′)
]

dτ ′, (4.15)

where W ≡ vkv∗k ′ − v∗kv′k is the Wronksian of the vk mode function. Given the equation
of motion that vk satisfies, one can readily show that W is preserved in time. It can
therefore be evaluated at initial time, where the initial conditions derived for vk below
Eq. (3.37) lead to W = 2ik. Using Eqs. (4.10) and (4.11) again, one thus obtains the
following expressions for the entries of the covariance matrix,

γ11 = |vk|2 + Ik, γ12 =
<e (vkv

∗ ′
k )

k
+ Jk, γ22 =

|v′k|
2

k2
+Kk , (4.16)

where

Ik(τ) =
2

k
(2π)3/2

∫ τ

τin

Γ(τ ′) C̃E(τ ′, k)=m 2
[
vk(τ

′)v∗k(τ)
]

dτ ′ , (4.17)

Jk(τ) =
2

k2
(2π)3/2

∫ τ

τin

Γ(τ ′) C̃E(τ ′, k)=m
[
vk(τ

′)v∗k(τ)
]
=m

[
vk(τ

′)v∗′k (τ)
]

dτ ′ , (4.18)

Kk(τ) =
2

k3
(2π)3/2

∫ τ

τin

Γ(τ ′) C̃E(τ ′, k)=m 2
[
vk(τ

′)v∗′k (τ)
]

dτ ′ . (4.19)

These formula provide an explicit expression for the covariance matrix, hence for the
full quantum state of the reduced system.

4.3 Generalised squeezing parameters

We now follow the approach presented in Sec. 3.2 where the quantum state of the system
is described in terms of squeezing parameters. Note that the Bogoliubov coefficients
introduced in Sec. 3.1 cannot be directly generalised to the case where an environment
is present, since they are related to the unitary evolution of the system. Therefore, one
cannot use Eq. (3.16) to define squeezing parameters in the present situation. However,
the geometrical interpretation developed around Fig. 1 can still be used to introduce
generalised squeezing parameters. This will be particularly useful to understand the
state purity, and quantum discord, from a phase-space geometrical perspective.

In the Caldeira-Leggett model indeed, the state is still described by a covariance
matrix, that can still be diagonalised as in Eq. (3.27). The only difference is that, as
mentioned around Eq. (4.13), the determinant of the covariance matrix does not remain
equal to one. This introduces a new “squeezing parameter”, denoted λk ≡ det(γs), such
that Eq. (3.27) becomes

(γ̃s)−1 = λ
−1/2
k

(
e2rk 0

0 e−2rk

)
. (4.20)
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Performing the phase-space rotation of angle ϕk introduced in Eq. (3.27), this leads to
the following expression for the covariance matrix in the R/I partition,

γs =
√
λk

(
cosh (2rk)− cos (2ϕk) sinh (2rk) − sin (2ϕk) sinh (2rk)

− sin (2ϕk) sinh (2rk) cosh (2rk) + cos (2ϕk) sinh (2rk)

)
, (4.21)

which generalises Eqs. (3.20)-(3.22). This shows that, in the Caldeira-Leggett model, the
quantum state of the system can still be described with an ellipse in phase space, where
rk describes the eccentricity of the ellipse, ϕk its orientation, and λk its area (which is
given by πλk).

Note that equations of motion for the generalised squeezing parameters rk, ϕk and
λk can also be derived, by plugging Eq. (4.21) into Eqs. (4.10)-(4.12). This leads to

dλk
dτ

= 2Γ(2π)3/2 C̃E
k
λ

1/2
k [cosh (2rk)− cos (2ϕk) sinh (2rk)] , (4.22)

drk
dτ

=
k

2

(
ω2

k2
− 1

)
sin(2ϕk)−

Γ√
λk

(2π)3/2

2

C̃E
k

[sinh (2rk)− cos (2ϕk) cosh (2rk)] ,

(4.23)

dϕk
dτ

= −k
2

(
ω2

k2
+ 1

)
+
k

2

(
ω2

k2
− 1

)
cos(2ϕk)

tanh(2rk)
− Γ

sin(2ϕk)

2 sinh(2rk)
√
λk

(2π)3/2 C̃E
k
. (4.24)

One can check that, in the limit Γ→ 0, Eqs. (3.17) are recovered, and that Eq. (4.22) is
essentially a rewriting of Eq. (4.13) for the non-conservation of the determinant.

4.4 Quantum discord

Let us now turn to the main goal of this article, namely the calculation of the quantum
discord in the presence of an environment. As explained in Sec. 2.4, a single quantity
needs to be computed, namely σ(θ) given in Eq. (2.27), which in terms of the generalised
squeezing parameters reads

σ(θ) = λ
1/2
k

√
1 + sinh2(2rk) sin2(2θ) . (4.25)

Plugging this expression into Eq. (2.28), one obtains an explicit formula for quantum
discord in terms of three parameters only: the squeezing amplitude rk, the state purity
Tr(ρ̂2) = 1/λk, and the partition angle θ. This formula is displayed in Fig. 2 for θ = −π/4
(left panel, corresponding to the ±k partition) and θ = 0.1 (right panel). One can see
that, as the squeezing amplitude increases, quantum discord increases, as in the case
where no environment was present. When the state purity decreases, quantum discord
decreases, which means that interactions with an environment tend to reduce the amount
of quantum correlations. This is in agreement with the common lore that decoherence is
associated with the emergence of classical properties. One can also check that quantum
discord increases with the partition angle as it varies between 0 and π/4, i.e. as it
interpolates between the R/I partition which is separable (hence uncorrelated) and the
±k partition where it is maximally correlated and discordant.
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Figure 2. Quantum discord Dk in terms of the generalised squeezing amplitude rk and the state
purity Tr(ρ̂2) = 1/λk, for θ = −π/4 (left panel) and θ = 0.1 (right panel). The black solid lines
show a few contour lines of Dk.

In order to gain more analytical insight in the behaviour of quantum discord, let
us consider the large-squeezing limit rk � 1 (this limit is particularly relevant to the
cosmological setting considered in Sec. 5). From Eq. (2.28), it is clear that different
behaviours are obtained depending on whether σ(θ)/σ2(0) is small or large. In the
large-squeezing limit, this ratio is given by

σ(θ)

σ2(0)
' λ−1/2

k e2rk
|sin(2θ)|

2
. (4.26)

In general, as the time evolution proceeds, rk increases (denoting particle creation) and
λk increases too (as an effect of decoherence). The two effects therefore compete in
Eq. (4.26), and whether the ratio σ(θ)/σ2(0) is small or large depends on the details of
the dynamics. Expanding Eq. (2.28) in these two limits, one obtains

Dk '





2rk
ln 2

if e2rk |sin(2θ)| � √λk

λ
−1/2
k e2rk

|sin(2θ)|
2 ln 2

if e2rk |sin(2θ)| � √λk
. (4.27)

This shows that quantum discord is large in the first case and small in the second case. As
a consequence, whether quantum discord is large or small depends on which of squeezing
or decoherence wins in the ratio (4.26). This provides a simple criterion for assessing
when decoherence substantially reduces the amount of quantum correlations, namely it
happens when

Tr(ρ̂2)� e−4rk . (4.28)
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A useful geometrical interpretation of Eq. (4.26) is that, according to Eq. (4.20), the
combination

√
λk e

−2r happens to be the length of the semi-minor axis of the phase-space
ellipse. The semi-minor axis increases as an effect of decoherence, which increases the
overall area of the ellipse, and decreases because of quantum squeezing: this competition
determines whether the semi-minor axis increases or decreases, hence it determines the
fate of quantum discord.

Finally, in the same way as we have introduced generalised squeezing parameters,
one can extend the definition of the number of particles Nk and the correlation Ck, by
plugging Eq. (4.21) into Eqs. (2.23)-(2.25), leading to

2Nk + 1 =
√
λk cosh (2rk) , 2Ck = −

√
λk e

i2ϕk sinh (2rk) . (4.29)

In terms of these parameters, one has σ(θ) =
√

4(Nk + 1/2)2 − 4|Ck|2 cos2(2θ) , which
allows one to express quantum discord as a function of Nk and |Ck| only.

5 Application : Cosmological perturbations

In this section, we apply the formalism developed so far to the case of cosmological per-
turbations. The goal is twofold. First, this will allow us to exemplify in a concrete situa-
tion how the tools introduced above work in practice. Second, as explained in Sec. 1, the
presence of quantum correlations in the primordial field of cosmological perturbations,
and how decoherence might partly remove them, is of great importance regarding our
understanding of the origin of cosmic structures as emerging from a quantum-mechanical
mechanism, and for our ability to test this aspect of the cosmological scenario.

When the universe is dominated by a single scalar-field, there is a single scalar
gauge-invariant perturbation known as the Mukhanov-Sasaki variable [2, 40]. If time
is parameterised by conformal time η,3 which is related to cosmic time t by dt = adη,
where a is the Friedman-Lemâıtre-Robertson-Walker scale factor, then the Hamiltonian
for the Mukhanov-Sasaki variable v is by Eq. (2.7) where

ω2 (k, η) = k2 −
(
a
√
ε1
)′′

a
√
ε1

. (5.1)

In this expression, a prime denotes derivation with respect to η, ε1 = 1 −H′/H2 is the
first slow-roll parameter and H = a′/a.

In practice, we will consider the case of a de-Sitter expansion where a(η) = −1/(Hη)
with H the Hubble parameter, since cosmological observations indicate that it is a good
proxy for the dynamics of the universe expansion during the inflationary phase. In that
case, ω2 = k2 − 2/η2, where η varies between −∞ to 0.

3So far the time variable was left unspecified and denoted with the generic variable “τ”. The above
considerations can thus be applied to any time variable, provided the Hamiltonian is adapted accordingly.
In what follows, we therefore make the identification τ = η and ′ = ∂/∂η.
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5.1 Inflationary perturbations in the absence of an environment

Following the approach presented in Sec. 3.1, let us first derive the Bogoliubov co-
efficients. The solution of the equation of motion (3.4) satisfied by vk = uk + w∗k,
i.e. v′′k + ω2vk = 0, is given by

vk (η) =

(
1− i

kη

)
e−ikη , (5.2)

where we have made use of the initial conditions derived for vk below Eq. (3.37), namely
vk(ηin) = 1 and v′k(ηin) = −ik, at initial time ηin set to the infinite past, ηin = −∞. As
explained below Eq. (3.5), this allows one to derive both Bogoliubov coefficients, and
one finds

uk =

(
1− i

kη
− 1

2k2η2

)
e−ikη , w∗k =

1

2k2η2
e−ikη . (5.3)

One can easily check that these solutions satisfy Eq. (3.3), i.e. |uk|2 − |wk|2 = 1. Using
Eq. (3.14), one can then calculate the covariance-matrix element and one obtains

γ11(η) = 1 +
1

k2η2
, γ12(η) = − 1

k3η3
, γ22(η) = 1− 1

k2η2
+

1

k4η4
. (5.4)

As a consistency check, one can verify that these expressions are solutions of the differ-
ential system (3.34)-(3.36), and that they satisfy the initial conditions that were given
for it. Finally, the squeezing parameters can be derived from Eqs. (3.20)-(3.22), which
lead to

cosh2 (rk) = 1 +
1

4(kη)4
, tan (2ϕk) =

2kη

1− 2k2η2
. (5.5)

These expressions can be inverted, and one finds4

rk(η) =
1

2
arccosh

[
1 +

1

2(kη)4

]
, (5.6)

ϕk =
1

2
arctan

(
2kη

1− 2k2η2

)
− π

2
H

(
−kη − 1√

2

)
+ `π , (5.7)

where ` is an integer number and H is the Heaviside step function defined as H(x) = 1
when x > 0 and 0 otherwise. One can see that the squeezing amplitude increases as infla-
tion proceeds, and at late time (i.e. when the wavelength of the mode under consideration
is much larger than the Hubble radius, k � H = −1/η), rk ' −2 ln(−kη) = 2 ln[a/a(k)].
In this expression, a(k) denotes the value of the scale factor when k crosses out the

4The inversion for ϕk should be done noting that from Eq. (3.17) and the fact that rk grows during
inflation, one has sin(2ϕk) < 0. Moreover, Eq. (5.5) implies that tan(2ϕk) > 0 if kη < −1/

√
2 and

tan(2ϕk) < 0 if −1/
√

2 < kη < 0. This implies that 2ϕk ∈ [−π,−π/2] when kη < −1/
√

2 , and that
2ϕk ∈ [−π/2, 0] when kη < −1/

√
2 (modulo 2π). The Heaviside function in Eq. (5.7) ensures that ϕk

is continuous when kη = −1/
√

2 .
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Figure 3. Phase-space ellipse in the plane (k1/2vsk, k
−1/2psk) (see the discussion around Fig. 1) at

different instants during inflation, labelled by N = ln[a/a(k)], i.e. the number of e-folds measured
from the Hubble-crossing time of the mode under consideration. On sub-Hubble scales, the ellipse
remains a circle, while it gets squeezed and rotates in the super-Hubble regime.

Hubble scale, i.e. when kη = −1. For the modes observed in the cosmic microwave
background, ln[a/a(k)] ' 50 at the end of inflation, hence the squeezing amplitude is
of order 100. The squeezing angle starts out from ϕk = −π/2 in the asymptotic past
and approaches 0 at late time, where ϕk ' kη ' −a(k)/a ' −e−rk/2 [here we set ` = 0
in Eq. (5.7)]. The evolution of the squeezing parameters is displayed at the level of the
phase-space ellipse in Fig. 3. While the mode under consideration remains in the vacuum
state, i.e. on sub-Hubble scales when a � a(k), the squeezing amplitude is small and
the ellipse is close to a circle. When the mode crosses out the Hubble radius, the ellipse
gets squeezed (rk > 0) and rotates. In the asymptotic future, it gets infinitely squeezed
and its semi-minor axis becomes aligned with the horizontal axis (ϕk → 0, in agreement
with Fig. 1).

Regarding quantum discord, plugging Eq. (5.6) into Eq. (3.39) leads to

σ(θ) =

√
1 +

1

k4η4

(
1 +

1

4k4η4

)
sin2(2θ) , (5.8)

which together with Eq. (3.38) leads to an explicit expression for quantum discord. In
the super-Hubble regime, i.e. at late time when the squeezing amplitude is large, it can
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be expanded according to

Dk ' log2

( | sin(2θ)|
4k4η4

)
+

1

ln 2
∼ 4

ln 2
ln

[
a

a(k)

]
. (5.9)

Recalling that modes of astrophysical interest are such that rk ∼ 50 at the end of
inflation, their discord is of order 300, which makes the cosmic microwave background
an extremely discordant state by laboratory-experiment standard [5].

5.2 Inflationary perturbations in the presence of an environment

Let us now generalise the above considerations to the case where cosmological pertur-
bations interact with environmental degrees of freedom. In practice, we will use the
Caldeira-Leggett model and the approach laid out in Sec. 4. Note that this framework
relies on the assumption that interactions are linear in the system’s variables, which
is indeed the case at leading order in cosmological perturbation theory. In principle,
higher-order coupling terms may also be present, which would lead to non-Gaussian
states. While Lindblad equations can still be derived in that case, and the environ-
mental imprint on the power spectrum and higher-order correlation functions can be
investigated, see Refs. [19, 20], this does not allow for a straightforward calculation of
quantum discord. Nevertheless, these effects are parametrically suppressed by the am-
plitude of primordial fluctuations, which are constrained to be small, so they can be
safely neglected as a first approximation.

In practice, the relevant environmental degrees of freedom during inflation can be
additional fields, (since most physical setups that have been proposed to embed inflation
contain extra fields), to which the inflaton couples at least gravitationally. Because of
the non-linearities of General Relativity, unobserved scales also couple to the ones of
observable interest, and they may constitute another “environment”. The advantage of
the present formalism is that the microphysical details of the environment do not need
to be further specified.

The calculation of the integrals derived in Eqs. (4.17), (4.18) and (4.19) require
to specify the function C̃E(k), i.e. the Fourier transform of the equal-time environment
correlator CE(x − y). In practice, we will consider that the environment is correlated
on length scales `E , i.e. that CE(x− y) is suppressed when a|x− y| � `E (here x and
y are comoving coordinates, which explains why the scale factor has been introduced).
This implies that the Fourier transform C̃E(k) is suppressed at scales k � a/`E , which
in practice we model via a simple Heaviside function

ΓC̃E(k) = (2π)−3/2k2
Γ

(
a

a∗

)p−3

H

(
1− k`E

a

)
. (5.10)

In this expression, kΓ sets the strength of the environmental effects and has the same
dimension as a comoving wavenumber, hence the notation [the prefactor (2π)−3/2 is
introduced for later convenience, and in order to match the notations of Refs. [19, 20]].
The possible time dependence of Γ is accounted for in the factor (a/a∗)p−3, where a∗
denotes the scale factor at some reference time, i.e. we assume that ΓC̃E evolves as a
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Figure 4. Schematic representation of the evolution of the different physical scales. a/k (black)
represents the physical wavelength of the mode k under consideration. When a/k crosses `E
(green dashed), the coherence length of the environment, decoherence starts to be effective.
When a/k crosses out H−1 (pink), the Hubble radius, the perturbation starts to be amplified.

power of the scale factor. The model has therefore two free parameters, namely kΓ and
p.

In realistic situations, one may want to consider smoother kernels than Heaviside
functions, but this only slightly affects the boundary terms in the integrals of Eqs. (4.17),
(4.18) and (4.19) and does not lead to substantial modifications of the following consid-
erations. In practice, Eq. (5.10) indicates that small-scales fluctuations are immune to
environmental effects (which, conveniently, leave the vacuum state unaffected at early
time). The effect of the interaction with the environment becomes relevant when the
mode under consideration crosses out the correlation length `E . In practice, if the envi-
ronment is comprised of heavy (i.e. with respect to the Hubble scale) degrees of freedom,
one has `E < a/H, hence a given mode first crosses the environment correlation length
before crossing the Hubble radius. The situation is depicted in Fig. 4.

5.2.1 Covariance matrix

With the ansatz (5.10), the integrals appearing in Eqs. (4.17), (4.18) and (4.19) can
be performed exactly, and a detailed calculation is presented in Appendix D. In the
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late-time limit, i.e. on super-Hubble scales, −kη → 0, they can be approximated by

γ11 '
1

(−kη)2

{
1− 2

(
kΓ

k

)2 [
B11

(
k

k∗
, p, `EH

)
+A11

(
k

k∗
, p

)
(−kη)8−p

]}
, (5.11)

γ12 '
1

(−kη)3

{
1− 2

(
kΓ

k

)2 [
B12

(
k

k∗
, p, `EH

)
+A12

(
k

k∗
, p

)
(−kη)8−p

]}
, (5.12)

γ22 '
1

(−kη)4
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(
kΓ

k

)2 [
B22

(
k

k∗
, p, `EH

)
+A22

(
k

k∗
, p

)
(−kη)8−p

]}
, (5.13)

see Eqs. (D.38), (D.42) and (D.46), where k∗ denotes the comoving scale that crosses
out the Hubble radius at the reference time η∗. One can check that, in the limit kΓ → 0,
one recovers the covariance matrix calculated in the absence of an environment, namely
Eqs. (5.4). The coefficients A11, B11, A12, B12, A22 and B22 are functions of the param-
eters p and `EH and their explicit expressions can be found in Appendix D.

Let us note that the expression for γ11 is of observational interest as it gives the rel-
ative correction to the power spectrum of the Mukhanov-Sasaki variable, see Eq. (2.20),
or of any quantity proportional to the Mukhanov-Sasaki variable such as the curvature
perturbation ζ that is measured on the cosmic microwave background. Upon expanding
the expression given for B11 in Appendix D in the regime `EH � 1, one obtains

B11 '
1

2

(
k

k∗

)p−3((`EH)p−4

p− 4

{
1− p− 4

2
(`EH) sin

(
2

`EH

)
+O

[
(`EH)2

]}

− (p− 3)(p− 6)

24−p Γ(2− p) cos
(π

2
p
))

. (5.14)

It is interesting to notice that, at next-to-leading order, this expression contains non-
analytical terms. However, it is likely that this non-analytical behaviour would be
smoothed out if a non-sharp window function were used. On the other hand, we also
have A11 = −2(k/k∗)p−3/[(p−8)(p−5)(p−2)], see Eq. (D.31). Which term dominates in
B11 depends on the relative position of p with respect to 4, while which of the corrections
in Eq. (5.11) dominates depends on whether p < 8 or p > 8. There are therefore three
cases to distinguish, and one finds

∆Pζ
Pζ
'





(`EH)p−4

4− p

(
kΓ

k∗

)2( k

k∗

)p−5

if p < 4,

2p−4(3− p)(6− p)Γ(2− p) cos
(πp

2

)(kΓ

k∗

)2( k

k∗

)p−5

if 4 < p < 8,

4

(p− 8)(p− 5)(p− 2)

(
kΓ

k∗

)2( k

k∗

)3( η

η∗

)8−p
if p > 8.

(5.15)
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One can check that these expressions coincide with the result obtained in Ref. [19].5 In
particular, when p < 8, the correction to the power spectrum freezes on large scale and is
scale invariant when p = 5, while it continues to increase on large scales for p > 8. These
formulas allow one to set upper bound on Γ such that the modifications to observables
remain negligible, see the white dotted line in Fig. 6 below.

5.2.2 State purity

Endowed with the above expressions of the components γ11, γ12 and γ22 of the covariance
matrix, we are now in a position to calculate σ(0) and the state purity. However, upon
evaluating σ(0) by plugging Eqs. (5.11)-(5.13) into Eq. (2.27), one can see that the terms
controlled by kΓ all cancel out when θ = 0, which implies that Eqs. (5.11)-(5.13) must
be expanded to higher order in order to get the first correction to σ(0). Before following
that route, let us note that such an expansion can be avoided by using Eq. (4.13) directly.
The right hand side of this equation is proportional to k2

Γ, so it is enough to evaluate it
by using the solution (5.4) for γ11 in the free theory, which leads to

σ2(0) = det γs ' 1− 2

(
kΓ

k∗

)2( k

k∗

)p−5 ∫ −kη

1/(`EH)

(
y3−p + y1−p) dy, (5.16)

namely

σ2(0) ' 1 + 2

(
kΓ

k∗

)2( k

k∗

)p−5
[

1

p− 2

(
k

k∗

)2−p (a∗
a

)2−p
− (`EH)p−4

p− 4

]
, (5.17)

where we have kept the leading terms in `EH and in −kη only. This again coincides
with the result found in Ref. [19], see Eq. (4.6) of that reference, and it implies that
decoherence occurs at the pivot scale k∗ when

kΓ

k∗
�





(`EH)2− p
2 if p < 2,

(
a

a∗

)1− p
2

if p > 2,
(5.18)

where we recall that the state purity is related to σ(0) via Eq. (2.26). This domain is
delineated by the white dashed line in Fig. 6.

Before moving on and addressing the calculation of quantum discord, let us note
that the above result can be recovered from a higher-order expansion of the covariance
matrix. This is done in detail in Appendix D, see Eqs. (D.30), (D.40) and (D.44). This
leads to expressions for γ11, γ12 and γ22 which, compared to Eqs. (5.11), (5.12) and (5.13),
contain extra coefficients (i.e. beyond A11, B11, A12, B12, A22 and B22), namely C11,
D11, . . . , C12, D12, . . . and C22, D22, . . . , the explicit expressions of which are given

5More precisely, they should be compared to Eqs. (3.35), (3.32) and (3.29) of that reference (when
setting ε1∗ = 0 and ν = 3/2 in those expressions), to which they agree up to a factor 2 that corresponds
to a factor 2 difference in the definition of Γ.
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in Appendix D. Of course, these coefficients are also functions of the parameters p and
`EH. Plugging the result into Eq. (2.27), one obtains that, on super-Hubble scales,

σ2(0) = Σ−6 (−kη)−6 + Σ−5 (−kη)−5 + Σ−4 (−kη)−4 + Σ−3 (−kη)−3 + Σ−2 (−kη)−2

+ Σ−1 (−kη)−1 + 1 + Σ0 + Σ1 (−kη) + · · ·+ Σ2−p (−kη)2−p + Σ4−p (−kη)4−p

+ Σ5−p (−kη)5−p + · · · . (5.19)

Each coefficient Σi is a combination of the coefficients A11, B11, . . . , A12, B12, . . . and
A22, B22 . . . . As a consequence, the Σi’s are also functions of the parameters p and
`EH and are proportional to k2

Γ or k4
Γ, which guarantees that, without an environment

(i.e. when kΓ → 0), one recovers σ(0) = 1. Then, using the explicit expressions of
A11, B11, . . . , A12, B12, . . . and A22, B22 . . . given in Appendix D, one can show that
Σ−6 = Σ−5 = Σ−4 = Σ−3 = Σ−2 = Σ−1 = Σ1 = · · · = 0. These relationships are direct
consequences of the cancellations mentioned before, and indicate that the expansion has
to be performed to very high order indeed. Therefore, at leading order in the super-
Hubble limit, one has

σ2(0) ' 1 + Σ0 + Σ2−p (−kη)2−p + · · · , (5.20)

with

Σ0 =

(
kΓ

k

)2

(−2C11 + 4E12 − 2E22 − 2F11 − 2G22)

+

(
kΓ

k

)4 (
−4C2

12 + 4D11D22 − 8B12E12 + 4C11E22 + 4B22F11 + 4B11G22

)
,

(5.21)

Σ2−p =

(
kΓ

k

)2

(−2A11 + 4A12 − 2A22) +

(
kΓ

k

)4

(4A22B11 − 8A12B12 + 4A11B22) .

(5.22)

As mentioned above, the coefficients appearing in the expansions of γ11, γ12 and γ22 are
functions of p and `EH. However, the coefficients A11, A12 and A22 only depend on p,
see the explicit expressions in Appendix D, Eqs. (D.31), (D.41) and (D.45). It follows
that the term proportional to k2

Γ in the expression of Σ2−p is also a function of p only.
Explicitly, one has

−2A11 + 4A12 − 2A22 =
2

p− 2

(
k

k∗

)p−3

. (5.23)

By contrast, the term proportional to k2
Γ in the coefficient Σ0 contains the terms C11,

E12, E22, F11 and G22 and, as consequence, depends on p but also on `EH. Explicitly,
one finds

−2C11 + 4E12 − 2E22 − 2F11 − 2G22 = −2

(
k

k∗

)p−3
[

(`EH)p−4

p− 4
+

(`EH)p−2

p− 2

]
. (5.24)

Combining the above results, one recovers Eq. (5.17), which is an important consistency
check of our calculations.
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Figure 5. ln
[
σ2(0)

]
with (pink) and without (black) decoherence for the de Sitter case. The

approximated version (green dashed) is obtained using Eq. (5.20) for σ2(0). The first vertical
dashed line shows the time when the mode k starts to decohere `Ea/k = 1, the second the time
when the mode k exits the Hubble radius. The parameters are `EH = 0.1, x? = 1, p = 2.1 (left)
or p = 6.1 (right), and kΓ/k = 10.

5.2.3 Quantum discord

The final step is to calculate σ2(θ) and extract quantum discord. Given that we already
have computed σ2(0), see Eq. (5.17), and since Eq. (2.27) can be rewritten as

σ(θ) =

√
σ2(0) +

1

4

[
(γ11 − γ22)2 + 4γ2

12

]
sin2 (2θ) , (5.25)

we see that we only need to estimate the second term, i.e. the one proportional to
sin2(2θ). This is easier since no cancellation occurs in that term. In Appendix D, we
find that the dominant contribution comes from γ22, and that (γ11 − γ22)2 + 4γ2

12 '
(−kη)−8[1− (kΓ/k)2B11/2]2, see Eqs. (D.38), (D.42) and (D.46). This leads to

σ2(θ) =

[
1− 1

2

(
kΓ

k

)2

B11

]2
sin2(2θ)

4 (−kη)8 +O
[
(−kη)−6

]
. (5.26)

Recalling that B11 does not depend on time, one can see that the effect of the environ-
ment is only to change the prefactor in σ(θ), while it does not affect its time behaviour
σ(θ) ∝ (kη)−4 on super-scales.

Let us now consider the ratio σ2(0)/σ(θ) which, as explained in Sec. 4.4, determines
the fate of quantum discord. If p < 2, the second term dominates in Eq. (5.17), hence
σ2(0) reaches a constant on large scales. One thus has σ2(0)/σ(θ) ∝ a−4, which is highly
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Figure 6. Quantum discord Dk as a function of p and kΓ/k∗, for k = k∗, −kη = e−50 (cor-
responding to the scales probed in the cosmic microwave background at the end of inflation),
`EH = 10−3 and θ = −π/4. The white dashed line is the contour line of Tr(ρ2) = 1/2, and
above that line the quantum state is decohered. The white dotted line is the contour line of
∆Pζ/Pζ = 1, above which the power spectrum is spoilt by environmental effects. These two
contours essentially correspond to Fig. 6 of Ref. [19]; but, in Fig. 6 of Ref. [19], the region where
there is a substantial change of the spectral index is displayed, as opposed to the region where
there is a substantial change of Pζ in the above figure. This is the reason why, in Fig. 6 of
Ref. [19], there is a feature at p = 5, for which the corrections are scale-invariant, which does
not appear in the above figure. One of the main result of the present paper is the value of the
quantum discord in the parameter space (p, kΓ/k∗). Let us also notice that the “not decohered”
region invades the whole figure for sufficiently small values of kΓ. Here, it looks bounded because,
due to the logarithmic scale used, kΓ is “cut” at kΓ/k∗ = 10−10.

suppressed on super-Hubble scales, and which gives rise to Dk ∝ 4 log2[a/a(k)]. This
shows that quantum discord is large in that case, and one recovers the result obtained
in Eq. (5.9). If p ≥ 2, the first term dominates in Eq. (5.17), hence σ2(0) ∝ ap−2 on
super-Hubble scales. As a consequence, σ2(0)/σ(θ) ∝ ap−6, the time behaviour of which
depends on whether p < 6 or p > 6 as illustrated by Fig. 5 . If p < 6, σ2(0)/σ(θ) decays,
and one has Dk ∝ (6−p) log2[a/a(k)], so the discord remains large. If p > 6, σ2(0)/σ(θ)
increases on super-Hubble scales, and upon expanding Eq. (2.28) in that regime one
finds that Dk ∝ [a/a(k)]6−p, so it becomes highly suppressed. The behaviour of Dk on
each side of the threshold is illustrated by Fig. 7

These considerations can be checked in Fig. 6, where quantum discord is displayed
as a function of p and kΓ/k∗. It confirms that the pivotal value of p from the point of view
of quantum discord is p = 6: discord remains large on super-Hubble scales when p < 6,
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Figure 7. Quantum discord Dk with (pink) and without (black) decoherence for the de Sitter
case. The approximated version (green dashed) is obtained using the first order approxima-
tions (5.11), (5.12) and (5.13) for γij and the expression (5.20) for σ2(0) to obtain σ2(θ) in (5.25).
The quantity σ2(0) and σ2(θ) are then used in the expression (2.28) for the discord. The first
vertical dashed line shows the time when the mode k starts to decohere `Ea/k = 1, the second
the time when the mode k exits the Hubble radius. The parameters are `EH = 0.1, x? = 1,
p = 2.1 (left) or p = 6.1 (right), and kΓ/k = 10.

and is highly suppressed otherwise. Note however that the above formulas only describe
the time behaviour at large scales, and do not incorporate the constant prefactors that
can otherwise be readily established from combining the above results. These prefactors
depend on both `EH and Γ (through kΓ), and they explain why the discord shown in
Fig. 6 does not depend only on p (for instance, even for p > 6, one can get a substantial
discord by considering extremely low values of kΓ, in agreement with the fact that in
the limit Γ→ 0, one recovers the results of Sec. 5.1). Nonetheless, for reasonable values
of the coupling constant Γ, the result is mostly determined by the value of p.

In Fig. 6, we have also displayed the region in parameter space where decoherence
does not occur (below the white dashed line, see Sec. 5.2.2) and the region where sub-
stantial corrections to the power spectrum are obtained (above the white dotted line, see
Sec. 5.2.1). One can see that when the coupling to the environment is not strong enough
to make the system decohere, quantum discord is always large on super-Hubble scales.
This corresponds to the bottom left corner in Fig. 6. In the opposite corner, namely
the top-right region in Fig. 6, the coupling with the environment is so strong that it
both decoheres the system very efficiently, while it prevents its quantum discord from
growing. An important remark is that, between these two regimes, there are regions
where quantum discord remains large even though the system decoheres and even when
imposing that the observed power spectrum is unaffected by environmental effects.
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6 Conclusions

In this work, we have studied how quantum discord behaves in the presence of an en-
vironment. When a quantum system couples to environmental degrees of freedom, the
entanglement between the open system and the environment leads to decoherence of the
system, which is usually associated with the loss of certain quantum features displayed
by the system. Since discord characterises how “genuinely quantum” the correlations
between subparts of the system are, it is naturally expected that decoherence leads to a
suppression of discord. The goal of this work was to study this effect on generic grounds,
since any practical experiment aiming at revealing the presence of quantum effects is a
priori subject to such environmental limitations.

For simplicity, we have considered the case of a quantum scalar field with (homo-
geneous and isotropic) quadratic Hamiltonian, which boils down to a collection of inde-
pendent pairs of quantum parametric oscillators, one for each pair of opposite Fourier
modes. We have shown that, in general, quantum discord depends on the precise way
these systems are partitioned into two subsystems. We have found a generic parame-
terisation that describes all possible partitions, which has allowed us to derive quantum
discord for any partitioning. Note that the way a given physical system should be split
into two subsystems is sometimes obvious: for instance, for two particles located in
each polariser of a Bell’s inequality experiment, the two sub-systems are clearly the two
space-like separated particles. However, the Fourier sub-sector of a quantum field does
not feature such a clear preferred partitioning, and it is therefore necessary to study how
the result depends on the partition in general.6

In the absence of interactions with an environment, the system is placed in a Gaus-
sian state known as the two-mode squeezed state, which can be equivalently described
in terms of Bogoliubov coefficients, squeezing parameters, or covariance matrix. In
that case, we recovered the formula derived in Ref. [5] for quantum discord, which we
nonetheless extended to any partitioning.

In the case where an environment is present and couples to the system, for explicit-
ness, we have assumed that the coupling is linear in the phase-space variables describing
the system, and that it can be cast in terms of a Lindblad equation (this is the so-
called Caldeira-Leggett model). In this context, the state remains Gaussian (though
not pure anymore), so it can still be described in terms of a covariance matrix, for
which we have derived the modified evolution equation. We have shown that gener-
alised squeezing parameters can also still be defined, from their geometrical phase-space
interpretation. A third parameter describing the area of the elliptic contours of the

6An alternative approach is to study correlations between the field configuration at two separated
positions in real space (as opposed to between opposite Fourier modes). In that case, a natural par-
titioning is available (namely the two real-space locations), and the relevant bipartite system is mixed
even if the full quantum field is in a pure state. This is because, when considering the field configuration
at two locations, one implicitly traces over the configuration of the field at every other location, to which
the bipartite system is a priori entangled. The formalism developed in this work is still relevant for that
case, since it merely boils down to the calculation of quantum discord in a mixed Gaussian state. This
is the topic of Refs. [21, 25].
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Wigner function should be added to the usual squeezing amplitude and squeezing angle,
which respectively correspond to the eccentricity and orientation of these ellipses. This
“third squeezing parameter” equals one for a pure state and is larger than one otherwise,
and it is directly related to the inverse purity of the state. We have thus derived the
modified evolution equations for these three “squeezing parameters”, which represent an
alternative description of the state with an intuitive geometrical interpretation [41].

We have then computed quantum discord in this model, both in terms of the
covariance matrix and in terms of the generalised squeezing parameters. As in the case
of pure states, we have found that quantum discord does not depend on the squeezing
angle, but only involves the squeezing amplitude, the state purity and the partition
parameters. More precisely, in a given partitioning, quantum discord increases as the
length of the semi-minor axis of the phase-space ellipse decreases, which provides a
simple geometrical interpretation of discord. This implies that discord increases with
both the squeezing amplitude and the state purity. In general, as the time evolution
proceeds, the squeezing amplitude increases (denoting particle creation) and the state
purity decreases (because of decoherence), so the two effects compete. The details of
how quantum discord is affected by an environment thus depend on the rate at which
these two parameters vary, which has to be discussed on a model-by-model basis. Those
findings are consistent with the work of Ref. [18] where the authors considered a model
corresponding to p=5 in our parametrisation. They computed an upper bound on the
discord which despite decoherence grows in time, albeit at a reduced rate, in line with
the discussion of Sec. 5.2.3.

To go beyond those generic considerations, we have finally applied our framework
to the case of primordial cosmological perturbations. This case study is of particular
interest not only because it provides a useful illustration of the tools introduced in this
work, but also since the possible presence of quantum correlations in cosmic structures,
and the potential of decoherence to make them undetectable, is of great importance for
our understanding of their origin. Assuming that the coupling parameter Γ between the
system (here cosmological perturbations) and the environment (possibly heavier fields,
smaller-scale degrees of freedom, etc.) grows as a power of the scale factor a of the uni-
verse, Γ ∝ ap, whether or not decoherence leads to a suppression of discord (i.e. whether
or not the phase-space semi-minor axis increases) crucially depends on p. More precisely,
if p < 6, discord remains large on large scales, and is strongly suppressed otherwise. Let
us also note that for p < 2, decoherence cannot proceed without substantially affecting
the observed power spectrum of the cosmological density field, so in the region of pa-
rameter space that is in agreement with current observations, environmental effects are
mostly irrelevant. For 2 < p < 6, there exists a regime where the state decoheres but
remains strongly discordant, while preserving its power spectrum.

Those considerations imply that there is no simple relationship between decoher-
ence and discord: one can find situations where the state of the system becomes deco-
hered and non-discordant, where it becomes decohered but remains discordant, where
it remains pure and discordant, or where it is pure and non discordant (this case does
not appear in cosmology but may be encountered in other contexts, see the discussion
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around Fig. 2). As a consequence, although decoherence may affect our ability to reveal
the presence of quantum correlations within a given quantum system, this effect cannot
be simply assessed by considering the amount of decoherence (i.e. the state purity). One
alternative criterion may be the quantum discord discussed in this work, although its
relationship with concrete observables is not clear, in particular in the context of mixed
states [42]. This is why a next natural step would be to apply the present framework to
investigate violations of Bell-inequalities in the presence of environmental effects, using
the techniques developed in Refs. [17, 43–46]. In this way, one may be able to better
understand the relationship between discord, decoherence, Bell inequalities violation,
and maybe other criteria such as Peres-Horodecki separability [47], in a broad context.

Acknowledgments

A. Micheli is supported by the French National Research Agency under the Grant No.
ANR-20-CE47-0001 associated with the project COSQUA. We thank Ashley Wilkins for
pointing out a typo in the labels of Fig. 3 in a previous version of the manuscript.

A Partitions

As explained in Sec. 2.2, when studying the nature of the correlations present within a
given (classical or quantum) system, one first has to split this system into two (or more)
sub-systems, and then to analyse how these sub-systems are correlated. This way to
divide the system into several sub-systems is called a “partition”, and in this appendix
we formally study how partitions can be defined on generic grounds, and how different
partitions are related to each other.

A.1 Quantum phase space

In this article, we consider continuous-variable systems, i.e. systems described by Her-
mitian operators satisfying canonical commutation relation. It can be, for instance, the
positions q̂i and momenta π̂i of n particles (with i = 1 · · ·n), with [q̂i, π̂j ] = iδij . This
can also correspond to the Fourier modes of a quantum field, see Sec. 2.1. The quantum
state of the system is an element of the Hilbert space

E =
⊗

i=1 ···n
Ei , (A.1)

where Ei is the Hilbert space associated to the ith particle. It can be described by the
vector

R̂ = (q̂1, π̂1, · · · , q̂i, π̂i, · · · , q̂n, π̂n)T . (A.2)
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In terms of the components of the vector R̂, the commutation relations can be written
as7

[
R̂a, R̂b

]
= iJ

(n)
ab , (A.3)

where J (n) is the 2n× 2n block-diagonal matrix

J (n) =



J (1)

. . .

J (1)


 with J (1) =

(
0 1
−1 0

)
. (A.4)

An alternative description of the system is by means of the creation and annihilation
operators ĉi and ĉ†i , defined by

q̂i =
1√
2

(
ĉi + ĉ†i

)
, π̂i = − i√

2

(
ĉi − ĉ†i

)
. (A.5)

They can be assembled into the vector

Ĉ = (ĉ1, · · · , ĉi, · · · , ĉn, ĉ†1, · · · , ĉ†i , · · · , ĉ†n)T . (A.6)

Contrary to the vector R̂, notice that Ĉ is not arranged such that the variables describing
the subsystem i directly follow each other, and the reason for this choice will be made
clear below.8

The relation between R̂ and Ĉ is linear and can thus be written in matricial form
as R̂ = M (n) · Ĉ, where M (n) is an unitary matrix that can be obtained from Eq. (A.5).9

For instance, with n = 2, one has

M (2) =
1√
2




1 0 1 0
−i 0 i 0
0 1 0 1
0 −i 0 i


 . (A.8)

7Hereafter, the indices a, b, c, · · · label the components of the vectors R̂, while the indices i, j, k, · · ·
label the degrees of freedom of the system. For instance, for a two-“particle” system, one has R̂ =
(q̂1, π̂1, q̂2, π̂2)T, so R̂1 = q̂1, R̂2 = π̂1, R̂3 = q̂2 and R̂4 = π̂2.

8In practice, one may also consider the vector Ĉ = (ĉ1, ĉ
†
1, · · · , ĉn, ĉ†n)T which is related to Ĉ through

Ĉ = P (n) · Ĉ, where P (n) is a permutation matrix that can be readily written down.
9In general, the matrix M (n) can be computed as follows. One first writes R̂ = M

(n)
Ĉ, where Ĉ was

introduced in footnote 8 and where M
(n)

is a simple block-diagonal matrix :

M
(n)

=




M
(1)

. . .

M
(1)


 , where M

(1)
=

1√
2

(
1 1
−i i

)
. (A.7)

Since M
(n)

= M (n) ·P (n), one has M (n) = M
(n)
P (n),T since permutation matrices are orthogonal. This

allows one to compute M (n) from the above expression for M
(n)

. This also allows one to show that M (n)

is unitary: one can check that M
(1)
M

(1),†
= I2 and so M

(n) ·M (n),†
= I2n, which in turns implies that

M (n) ·M (n),† = I2n, using the fact that P (n) is orthogonal.
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The commutation relations can be expressed as
[
Ĉa, Ĉb

]
= Ω

(n)
ab , (A.9)

with Ω(n) = iM (n),−1 · J (n) ·M (n),−1,T, i.e.

Ω(n) =

(
0 In
−In 0

)
, (A.10)

where In is the identity matrix of size n.

A.2 Partitioning

For n ≥ 2, the degrees of freedom can always be split into two subsets A and B. This
defines a partition and allows us to see the whole system as a bipartite system. An
important point is that one can define several partitions for the same system. As an
introductory (and elementary) example, let us consider the case n = 4 where R̂ =
(q̂1, π̂1, q̂2, π̂2, q̂3, π̂3, q̂4, π̂4)T. For instance, one can choose the subsystem A to be made
of the first two degrees of freedom and to be described by R̂(A) = (q̂1, π̂1, q̂2, π̂2)T, and the
subsystem B to contain the third and fourth degrees of freedom, R̂(B) = (q̂3, π̂3, q̂4, π̂4)T.
Then, the vector R̂ can be written as R̂ = (R̂(A), R̂(B))T. This definition of R̂, namely
the way we order its components, is, implicitly, a definition of a partition. Obviously,
other partitions are possible, for instance the one defined by R̂(A)′ = (q̂1, π̂1, q̂3, π̂3)T and
R̂(B)′ = (q̂2, π̂2, q̂4, π̂4)T with R̂′ = (R̂(A)′, R̂(B)′)T.

More generally, changing the partition can be viewed as performing a canonical
transformation on the system (i.e. a transformation that preserves the commutator struc-
ture). A linear canonical transformation is a transformation R̂ → R̂′ = TR̂, where T is
a real matrix since R̂ and R̂′ are Hermitian, which preserves the commutators, i.e. such
that [R̂′a, R̂

′
b] = [R̂a, R̂b] (hereafter we drop the index n for notational convenience). This

leads to the condition

TJTT = J , (A.11)

which defines the group of symplectic matrices T [24, 48, 49]. In particular, any sym-
plectic matrix has determinant 1 [48],

detT = 1 . (A.12)

In the simple example mentioned above, one can check that the transformation matrix
T is indeed symplectic. Let us note that canonical transformations can also be defined
at the level of the vectors Ĉ, since R̂→ TR̂ leads to Ĉ → SĈ with

S = M−1TM = M †TM (A.13)

(where, in the last equation, we have used that M is unitary, see footnote 9). Using the
definition of Ω given below Eq. (A.9), Eqs. (A.11) and (A.13) lead to the condition

SΩST = Ω , (A.14)
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which also implies that
detS = 1 . (A.15)

Another useful property for the matrix S comes from the ordering of the entries of the
vector Ĉ in Eq. (A.6), which leads to Ĉ† = A · Ĉ, where Ĉ† is defined as (Ĉ†)a = (Ĉa)

†

and where A =

(
0 In
In 0

)
. Since R̂† = R̂, the adjoint of the relation R̂ = MĈ gives rise

to M∗A = M . Evaluating the complex conjugate of S = M−1TM , this leads to

S∗ = ASA , (A.16)

where we have used that A2 = In and that T ∗ = T (since R̂ and R̂′ are both Hermitian).
It is worth pointing out that there are canonical transformations that do not mix

the two subsystems (they are called “local” transformations) and hence do not change
the partition. A simple example is R̂′ = (q̂2, π̂2, q̂1, π̂1, q̂3, π̂3, q̂4, π̂4)T where we have
simply flipped the ordering of the two first degrees of freedom. As a less trivial example,
let us define Q̂±ij = (q̂i ± q̂j)/

√
2 and Π̂±ij = (π̂i ± π̂j)/

√
2 so that [Q̂±ij ,Π

±
ij ] = i, thus

ensuring that the corresponding transformation can be described by a symplectic matrix.
Clearly, R̂′ = (Q̂+

12, Π̂
+
12, Q̂

−
12, Π̂

−
12, q̂3, π̂3, q̂4, π̂4)T corresponds to the same partition as

R̂ = (q̂1, π̂1, q̂2, π̂2, q̂3, π̂3, q̂4, π̂4)T since we still have 1 and 2 in subsystem A and 3 and
4 in subsystem B. Therefore, partition changes are described by only a subclass of
symplectic matrices (namely those that are not n×n-block diagonal).

In order for two parameterisations of the system to share the same vacuum state,
let us first impose that S does not mix creation and annihilation operators. This implies
that S is block diagonal (which is the reason why the ordering made in Eq. (A.6) was
indeed convenient). The condition (A.16) then imposes that the two blocks are complex
conjugate to each other, so S can be written as

S =

(
s(n) 0

0 s(n)∗

)
. (A.17)

The symplectic condition (A.14) leads to s(n)†s(n) = In, i.e. the matrices s(n) belong to
the unitary group U(n). This discussion shows that the space of partitions is essentially
the group U(n), so any parameterisation of that group, which has dimension n2, leads
to a parameterisation of all possible partitions, by means of the above formulas. For
instance, with n = 2, matrices of U(2) can be written in the form

s(2) =

(
eiα cos θ −eiδ sin θ

eiβ sin θ ei(δ+β−α) cos θ

)
, (A.18)

where α, β, δ and θ are four arbitrary real numbers, which thus parameterise all possible
partitions. The matrix T can be also written in terms of these parameters by making
use of Eq. (A.13) together with Eqs. (A.8) and (A.17), leading to

T =




cosα cos θ − sinα cos θ − cos δ sin θ sin δ sin θ
sinα cos θ cosα cos θ − sin δ sin θ − cos δ sin θ
cosβ sin θ − sinβ sin θ cos(α− β − δ) cos θ sin(α− β − δ) cos θ
sinβ sin θ cosβ sin θ − sin(α− β − δ) cos θ cos(α− β − δ) cos θ


 . (A.19)
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As a consistency check, one can verify that such a matrix is indeed symplectic, namely
that it satisfies Eq. (A.11). However, note that the group of real 4×4 symplectic matrices,
usually denoted Sp(4,R), is of dimension 10 [49]. Therefore, partition changes, that are
described by 4 parameters, only correspond to a subgroup (isomorphic to U(2), and
corresponding to the “rotation” generators of table 2 in Ref. [49]) of the symplectic
group.

Note that, in agreement with the group structure of U(n), changes of partitions
can be composed according to

T 1/2→1′/2′ = T 1/2→1′′/2′′ · T 1′′/2′′→1′/2′ , (A.20)

and that

T 1/2→1′/2′ =
(
T 1′/2′→1/2

)−1
, (A.21)

with similar expressions for S1/2→1′/2′ .

B Covariance matrix in arbitrary partition

The covariance matrix γ in a given phase-space parameterisation R̂ is defined by
Eq. (2.17). Since R̂aR̂b = ({R̂a, R̂b} + [R̂a, R̂b])/2, Eqs. (A.3) and (2.17), give rise
to

〈R̂aR̂b〉 =
1

2
γab +

i

2
J

(n)
ab , (B.1)

where the matrix J (n) has been defined in Eq. (A.4). Furthermore, since R̂a and R̂b are
Hermitian, {R̂a, R̂b} is also Hermitian, and Eq. (2.17) implies that γ is a real symmetric
matrix. Note that the correlators of the ladder operators introduced in Eq. (A.6), and
arranged into the vector Ĉ = M (n),−1R̂, can also be expressed in terms of the covariance
matrix:

〈{
Ĉa, Ĉb

}〉
= M (n),−1

ac γcdM
(n),∗
db (B.2)

where we have used that M (n) is unitary, see footnote 9.
In the Fourier subspaces of a real scalar field, the covariance matrix is given by

Eq. (2.19) in the R/I partition. Making use of Eq. (2.16) and (2.18), the covariance
matrix can then be computed in all partitions, and one finds

γ =

(
γA γC
γC γB

)
, (B.3)

with

γA =

(
γ11 cos2 θ + γ22 sin2 θ γ12 cos(2θ)

γ12 cos(2θ) γ22 cos2 θ + γ11 sin2 θ

)
, (B.4)
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γB =

(
γB|11 γB|12

γB|21 γB|22

)
, (B.5)

γC =




1

2
(γ11 − γ22) sin2(2θ) +

1

2
γ12 sin(4θ) −1

4
(γ11 − γ22) sin(4θ) + γ12 sin2(2θ)

−1

4
(γ11 − γ22) sin(4θ) + γ12 sin2(2θ) −1

2
(γ11 − γ22) sin2(2θ)− 1

2
γ12 sin(4θ)


 ,

(B.6)

where the components of γB are given by

γB|11 =
1

2
γ11 +

1

2
γ22 +

1

2
(γ11 − γ22) cos(2θ) cos(4θ)− γ12 cos(2θ) sin(4θ), (B.7)

γB|12 = γB|21 = γ12 cos(2θ) cos(4θ) +
1

2
(γ11 − γ22) cos(2θ) sin(4θ), (B.8)

γB|22 =
1

2
γ11 +

1

2
γ22 −

1

2
(γ11 − γ22) cos(2θ) cos(4θ) + γ12 cos(2θ) sin(4θ). (B.9)

For instance, recalling that the ±k partition is reached by setting θ = π/4, the
correlation functions in the “k”-sector are given by

k
〈
q̂2
k

〉
=

1

2
γA|11 +

i

2
J

(2)
11 =

γ11 + γ22

4
, (B.10)

〈
π̂2
k

〉

k
=

1

2
γA|22 +

i

2
J

(2)
22 =

γ11 + γ22

4
(B.11)

〈q̂kπ̂k〉 = γA|12 +
i

2
J

(2)
12 =

i

2
, 〈π̂kq̂k〉 = γA|21 +

i

2
J

(2)
21 = − i

2
, (B.12)

and we have the same results in the “−k”-sector since, for θ = −π/4, one has γA =
γB = (γ11 + γ22)diag(1, 1)/2. The correlation functions mixing k and −k modes depend
on the matrix γC , and are given by

k 〈q̂kq̂−k〉 =
1

2
γC |11 +

i

2
J

(2)
13 =

1

4
(γ11 − γ22) (B.13)

1

k
〈π̂kπ̂−k〉 =

1

2
γC |22 +

i

2
J

(2)
24 = −1

4
(γ11 − γ22) (B.14)

〈q̂kπ̂−k〉 =
1

2
γC |12 +

i

2
J

(2)
14 =

1

2
γ12, 〈π̂−kq̂k〉 =

1

2
γC |21 +

i

2
J

(2)
41 =

1

2
γ12, (B.15)

〈q̂−kπ̂k〉 =
1

2
γC |12 +

i

2
J

(2)
32 =

1

2
γ12, 〈π̂kq̂−k〉 =

1

2
γC |21 +

i

2
J

(2)
23 =

1

2
γ12 . (B.16)

C Quantum discord for Gaussian homogeneous states

In this appendix we explain how the quantum discord can be used as a tool to assess
the presence of quantum correlations between two subsystems. In Secs. C.1 and C.2, we
first present a brief introduction to the main ideas behind quantum discord and give its
mathematical definition. In Secs. C.3 and C.4, we then derive the expression of quantum
discord for Gaussian homogeneous states we use in the main text, i.e. Eq. (2.28) .
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C.1 Classical correlations

Let us consider two systems A and B, and denote by {ai} and {bj} their possible
respective configurations. The probability to find the system A in the configuration
ai is noted pi, and similarly for pj . How uncertain the state of system A is can be
characterised by the von Neumann entropy which is defined by the following expression

S(A) = −
∑

i

pi log2(pi) . (C.1)

One can check that S(A) = 0 corresponds indeed to the situation where all ai vanish but
one (so the state of A is certain), and that, in general, S(A) ≥ 0. A similar expression
for S(B) can be introduced, and this can also be done for the joint system

S(A,B) = −
∑

i,j

pij log2(pij), (C.2)

where pij denotes the joint probability to find the system A in configuration ai and the
system B in configuration bj . Then, the mutual information between A and B can be
measured by

I(A,B) = S(A) + S(B)− S(A,B) . (C.3)

The fact that I(A,B) measures the presence of correlations between A and B can be
seen by noting that if A and B are uncorrelated, then the mutual information vanishes.
Indeed, if pij = pipj , then I = −∑i pi log2(pi) −

∑
j pj log2(pj) +

∑
i,j pipj [log2(pi) +

log2(pj)] = 0, where we have used that
∑

i pi =
∑

j pj = 1. More generally, pij can be
expressed by means of Baye’s theorem

pi,j = pjpi|j , (C.4)

where pi|j denotes the conditional probability to find A in configuration ai knowing that
B is in configuration bj . Plugging Eq. (C.4) into the definition (C.3), one obtains I =
−∑i pi log2(pi) −

∑
j pj log2(pj) +

∑
i,j pjpi|j [log2(pj) + log2(pi|j)] = −∑i pi log2(pi) +∑

i,j pjpi|j log2(pi|j) where we have used that
∑

i pi|j = 1. This justifies the introduction
of the following quantity

S(A|B) = −
∑

j

pj
∑

i

pi|j log2(pi|j) , (C.5)

which stands for the conditional entropy contained in A after finding the system B in
configuration bj , averaged over all possible configurations for B. The above calculation
thus suggests an alternative expression for mutual information, namely

J (A,B) = S(A)− S(A|B) . (C.6)

It also shows that, in classical systems, I = J .
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C.2 Quantum correlations

We now want to reproduce the above discussion in a quantum-mechanical context. This
implies to construct quantum analogues of I and J . The full quantum system can
be described by its density matrix ρ̂A,B, where information about the subsystem A is
obtained by tracing over the degrees of freedom contained in B, i.e.

ρ̂A = TrB (ρ̂A,B) , (C.7)

and similarly for ρ̂B. The von Neumann entropy can then be written as

S(A) = −Tr [ρ̂A log2 (ρ̂A)] , (C.8)

with similar expressions for S(B) and S(A,B). This allows us to evaluate I(A,B) with
Eq. (C.3). In order to evaluate J (A,B), one needs to introduce the notion of entropy
after performing a (quantum) measurement, S(A|B). To this end, let us introduce Π̂j ,
a complete set of projectors on subsystem B, and denote by |bj〉 the quantum states

on which they project. One thus has Π̂j = ÎA ⊗ |bj〉〈bj |. It is important to notice that
such complete sets of projectors Π̂j (or equivalently, of states |bj〉) are not unique. For
instance, for a spin particle, one can consider |+〉~e and |−〉~e along any unit vector ~e. We
will come back to this point below. The probability to find B in the state bj is given by
pj = Tr(ρ̂Π̂j), and a measurement of B that returns the result bj projects the state into
ρ̂→ Π̂j ρ̂Π̂j/pj . This leads us to introduce

ρ̂A|Π̂i
= TrB

(
Π̂j ρ̂Π̂j

pj

)
, (C.9)

which describes the state of A after measuring B and finding bj as a result of the
measurement, and in terms of which the conditional entropy is given by

S(A|B) =
∑

j

pjS
(
ρ̂A|Π̂i

)
. (C.10)

This is the analogue of Eq. (C.5), and these formulas then allow one to evaluate J (A,B)
with Eq. (C.6). Quantum discord is finally defined as

δ(A,B) = min
{Π̂i}

[I(A,B)− J (A,B)] . (C.11)

In this expression, we have minimised over all possible complete sets of projectors. This
ensures that a non-vanishing discord signals genuine quantum correlations, for any pro-
jection basis.

C.3 Mutual information I
For a Gaussian state, which is entirely characterised by its covariance matrix γ, the von
Neumann entropy is given by [50]

S(ρ̂) =

n∑

i=1

f(σi), (C.12)
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where the function f(x) is defined for x ≥ 1 by Eq. (2.29) in the text and σi are the
symplectic eigenvalues of the covariance matrix, that is to say the quantities σi such that
Sp(J (n)γ) = {iσ1,−iσ1, · · · , iσn,−iσn}.

For a partition of the kind (2.16), the full covariance matrix can be obtained
from (2.18) and Eq. (2.19). One can show that a Gaussian state remains Gaussian
after partial tracing over, with a covariance matrix given by the relevant entries of the
full covariance matrix. In other words, ρ̂A is still a Gaussian state with covariance matrix
γA given in Eq. (B.4), and ρ̂B is still a Gaussian state with covariance matrix γB given
in Eq. (B.5). This leads to Sp(J (1)γA) = Sp(J (1)γB) = {iσ(θ),−iσ(θ)} where σ(θ) has
been defined in the text Eq. (2.27).

Moreover, for the full system, one obtains Sp(J (2)γ) =
{iσ(0),−iσ(0), iσ(0),−iσ(0)} with σ2(0) = γ11γ22 − γ2

12. Combining the above
results, one obtains

I = 2f [σ(θ)]− 2f [σ(0)] . (C.13)

Note that because of Heisenberg’s uncertainty principle, σ(0) ≥ 1 since σ2(0) is the
determinant of the covariance matrix written in the R or I subspace, see Eq. (2.19).
This also guarantees that σ(θ) ≥ 1 since Eq. (2.27) implies that σ(θ) ≥ σ2(0). This
ensures that the function f can be safely applied to σ(0) and σ(θ).

C.4 Mutual information J
The calculation of J is less straightforward and we will follow the approach presented
in Ref. [51]. It relies on noting that the mutual information J (like I) is invariant
under local canonical transformations, which means that correlation measures do not
depend on the way each subsystem is parameterised internally. As a consequence, it
is convenient to first perform local canonical transformations that bring the covariance
matrix into the simple form

γ =

(
A C
CT B

)
, (C.14)

with A = aI2, B = bI2 and C = diag (c, d).
This can be achieved by performing two transformations. The first local transfor-

mation is realised by

T =

(
TA 0
0 TB

)
, (C.15)

with TA =
√
σ(θ) I2γ

−1/2
A and TB =

√
σ(θ) I2γ

−1/2
B . One can check that TA and TB,

hence T , satisfy Eq. (A.11), so they generate symplectic transformations. Making use
of Eq. (2.18), the covariance matrix becomes

γ′ =
(
σ(θ)I2 γC
γC σ(θ)I2

)
, (C.16)
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where we used the fact that γT
C = γC . It is interesting to notice that the off-diagonal

block matrix γC has been left unchanged by the transformation.
The second step uses the singular-value-decomposition theorem. The theorem

states that, if M is a two-dimensional real matrix, then it can always be written as
M = UΣV T where U and V are orthogonal (namely UUT = UTU = V V T = V TV = I2)
and Σ is a diagonal matrix (in fact, the theorem is valid for complex matrices of arbitrary
dimension but we do not need this general version here). The diagonal entries of Σ are
the singular values of M and are always positive. Since U and V are orthogonal [they
belong to the O(2) group], they have determinant +1 or −1, hence they can be written
in the form

M+ =

(
cosψ − sinψ
sinψ cosψ

)
or M− =

(
− cosψ sinψ
sinψ cosψ

)
(C.17)

depending on the value of their determinant. One can check that the first matrix (with
determinant 1) is symplectic, i.e. it satisfies Eq. (A.11), while the second matrix (with
determinant −1) is not, in agreement with the fact that symplectic matrices have al-
ways determinant +1 (and in dimension 2, being symplectic is equivalent to having
determinant 1) [52].

Our goal is to use the singular value decomposition theorem to define a four-
dimensional symplectic transformation, expressed in terms of the two-dimensional ma-
trices U and V that diagonalise γC , without affecting the diagonal blocks of γ′. We
will show that, quite intuitively, this is possible if U and V are symplectic themselves,
that is to say if they have determinant +1. However, let us note that since Eq. (B.6)
leads to det γC = −[γ2

12 + (γ11− γ22)2/4] sin2(2θ) < 0, the equation γC = UΣV T implies
that the determinants of U and V are of opposite signs, hence they cannot be both
equal to +1. This issue can be dealt with by introducing the matrix γ̃C = σ3γC , where
σ3 = diag(1,−1) is the third Pauli matrix. Since detσ3 = −1, one has det γ̃C > 0.
One can then apply the singular-value-decomposition theorem to γ̃C , i.e. γ̃C = Ũ Σ̃Ṽ T,
where the determinants of Ũ and Ṽ are now the same. If they are both −1, one can
simply multiply Ũ and Ṽ by σ3 (which does not change the form of the singular-value
decomposition since σ3Σ̃σ3 = Σ̃ given that Σ̃ is diagonal) such that one can assume that
Ũ and Ṽ have determinant +1 without loss of generality. This implies that they are
symplectic and that they satisfy Eq. (A.11). Let us then consider the transformation
generated by the matrix

T =

(
Ũ 0

0 Ṽ T

)
. (C.18)

One can check that it is symplectic, given that Ũ and Ṽ are. Plugging Eqs. (C.16)
and (C.18) into Eq. (2.18), the covariance matrix becomes

γ′′ =
(

σ(θ)I2 ŨγC Ṽ

Ṽ TγCŨ
T σ(θ)I2

)
, (C.19)
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where we have used that Ũ and Ṽ are orthogonal. Since γC = σ3γ̃C and γ̃C = Ũ Σ̃Ṽ T, the
off-diagonal block reads ŨγC Ṽ = Ũσ3Ũ Σ̃. One can then check explicitly that matrices
of the form M+ in Eq. (C.17) satisfy σ3M

+ = (M+)Tσ3, so Ũσ3Ũ = σ3 and one obtains

γ′′ =
(
σ(θ)I2 σ3Σ̃

σ3Σ̃ σ(θ)I2

)
. (C.20)

We have thus reached our goal, since γ′′ is of the form (C.14) with a = b = σ(θ) and
C = σ3Σ̃ is a diagonal matrix that we denote diag(c, d).

Let us now explain how the numbers c and d can be obtained in practice. Since
γ̃C = Ũ Σ̃Ṽ T, the eigenvalues of γ̃C γ̃

T
C are the same as those of Σ̃2, i.e. Sp(γ̃C γ̃

T
C) =

{c2, d2}. Making use of Eq. (B.6), the eigenvalues of γ̃C γ̃
T
C can be computed explicitly,

and this leads to

c = −d =
1

2

√
(γ11 − γ22)2 + 4γ2

12 |sin(2θ)| . (C.21)

Here, we have used the fact that c and d are of opposite signs since, as mentioned already
det γC < 0. In terms of the function σ(θ) given in Eq. (2.27), this can also be written
as c = −d =

√
σ2(θ)− σ2(0) .

The mutual information J for covariance matrices of the form (C.14) is com-
puted in Ref. [51], where it is shown that the result depends on the sign of (1 +
detB) det2 C(detA + det γ) − (det γ − detAdetB)2. Using that c = −d, this quan-
tity is given by c4(a− ab2 + bc2)2, which is necessarily positive. In that case, J is given
by [51]

max
{Π̂i}
J = f [σ(θ)]− f

[
σ2(0) + σ(θ)

1 + σ(θ)

]
, (C.22)

where we have used that σ2(0) > 1, see the discussion below Eq. (C.13).
Plugging Eqs. (C.13) and (C.22) into Eq. (C.11), one finally obtains the formula

Eq. (2.28) for the quantum discord.

D Covariance matrix for cosmological perturbations in the Caldeira-
Leggett model

In this appendix, we compute the covariance matrix of inflationary perturbations, given
by Eqs. (4.16) and (4.17), (4.18), (4.19) in the Caldeira-Leggett model described by the
ansatz (5.10).

D.1 Exact calculation

Recalling that the mode function is given by Eq. (5.2), the quantity =m 2 [vk(η)v∗k(η′)]
appearing in the integrand of Eq. (4.17) can be written as

Im2
[
vk(η)v∗k(η′)

]
=

1

k4η2η′2

[
k(η′ − η) cos(kη − kη′) + (1 + k2ηη′) sin(kη − kη′)

]2

.

(D.1)
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Introduce the dimensionless variables x = −kη and x′ = −kη′ for notational convenience,
and recalling that a = −1/(Hη) where H = H/a in the de Sitter space time, Eq. (4.16)
gives rise to

γ11(η) =vk(η)v∗k(η)− 2

(
kΓ

k

)2 ∫ x

1/(`EH)

(x∗
x′

)p−3 1

x2x′2
[
(x− x′) cos(x′ − x)

+ (1 + xx′) sin(x′ − x)
]2

dx′ (D.2)

=vk(η)v∗k(η)− 2

(
kΓ

k

)2 [
I

(1)
11 + I

(2)
11 + I

(3)
11

]
, (D.3)

with

I
(1)
11 =

xp−3
∗ (1 + x2)

2x2

∫ x

1/(`EH)
x′1−p(1 + x′2)dx′ ,

I
(2)
11 =

xp−3
∗

4x2
e−2ix

∫ x

1/(`EH)
e2ix′x′1−p

[
(x− x′)2 − 2i(x− x′)(1 + xx′)− (1 + xx′)2

]
dx′ ,

I
(3)
11 =

xp−3
∗

4x2
e2ix

∫ x

1/(`EH)
e−2ix′x′1−p

[
(x− x′)2 + 2i(x− x′)(1 + xx′)− (1 + xx′)2

]
dx′ ,

(D.4)

where the time η∗ and k∗ have been defined after Eqs. (5.10) and (5.11), (5.12), (5.13).
Our goal is now to calculate the three above integrals.

The calculation of the first integral is straightforward and one obtains the following
expression

I
(1)
11 =

xp−3
∗ (1 + x2)

2x2

[
x2−p

2− p +
x4−p

4− p −
(`EH)p−2

2− p − (`EH)p−4

4− p

]
. (D.5)

Of course, the result is not defined for the particular values p = 2 or p = 4. In these
cases, instead of power law solutions, we just have logarithms.

The calculation of the second term is more complicated but can still be done in
terms of special functions. After straightforward manipulations, one arrives at

I
(2)
11 =

xp−3
∗

4x2
e−2ix

[
(x2 − 1− 2ix)(A1−p −A3−p)− (4x+ 2ix2 − 2i)A2−p

]
, (D.6)

with

Aα ≡
∫ x

1/(`EH)
e2ix′x′αdx′ = −2−1−α(−i)−1−α

[
Γ (1 + α,−2ix)− Γ

(
1 + α,− 2i

`EH

)]
,

(D.7)

where Γ(a, z) =
∫ +∞
z ta−1e−tdt is the incomplete Gamma function [53, 54]. The third

term, I
(3)
11 , is just given by I

(3)
11 = I

(2)
11
∗. The resulting time evolution of γ11(η), with the

choices `EH = 0.1, x∗ = 0.1, p = 2.1 and kΓ/k = 10, is displayed in Fig. 8.
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Figure 8. ln (|γ11|) with (pink) and without (black) decoherence for the de Sitter case. The
approximated version (green dashed) is obtained using the first order approximations (5.11).
The first vertical dashed line shows the time when the mode k starts to decohere `Ea/k = 1,
the second the time when the mode k exits the Hubble radius. The parameters are `EH = 0.1,
x? = 1, p = 2.1 (left) or p = 6.1 (right), and kΓ/k = 10.

The next step consists in evaluating γ12. Instead of using Eq. (4.16) and performing
a similar calculation as above, one can use the transport equations (4.10), (4.11) and
(4.12). This leads to

γ12 =
1

2k

d

dη
(vkv

∗
k) +

(
kΓ

k

)2 ∫ η

−∞

(
a

a∗

)p−3

H

(
1− k`E

a

)
∂

∂η
Im2

[
vk(η)v∗k(η′)

]
dη′.

(D.8)

Instead of Im2 [vk(η)v∗k(η′)] in the integrand, as was the case for γ11, we now have the
derivative of it. Explicitly, written in terms of the variables x and x′, it can be expressed
as

∂

∂η
Im2

[
vk(η)v∗k(η′)

]
=

k

x3x′2
(1 + x′2)− i

2x3x′2
e−2ixe2ix′k(−i+ x) [−1 + x(−i+ x)]

× (i+ x′)2 +
i

2x3x′2
e2ixe−2ix′k(i+ x) [−1 + x(i+ x)] (−i+ x′)2.

(D.9)

As a consequence, γ12 takes the following form

γ12 =
1

2k

d

dη
[vk(η)v∗k(η)]− 2

(
kΓ

k

)2 [
I

(1)
12 + I

(2)
12 + I

(3)
12

]
, (D.10)
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Figure 9. ln (|γ12|) with (pink) and without (black) decoherence for the de Sitter case. The
approximated version (green dashed) is obtained using the first order approximations (5.12).
The first vertical dashed line shows the time when the mode k starts to decohere `Ea/k = 1,
the second the time when the mode k exits the Hubble radius. The parameters are `EH = 0.1,
x? = 1, p = 2.1 (left) or p = 6.1 (right), and kΓ/k = 10.

with

I
(1)
12 =

1

2

xp−3
∗
x3

∫ x

1/(`EH)
x′1−p(1 + x′2)dx′, (D.11)

I
(2)
12 = − ix

p−3
∗

4x3
e−2ix(−i+ x) [x(−i+ x)− 1]

∫ x

1/(`EH)
e2ix′x′1−p(i+ x′)2dx′, (D.12)

I
(3)
12 =

ixp−3
∗

4x3
e2ix(i+ x) [x(i+ x)− 1]

∫ x

1/(`EH)
e−2ix′x′1−p(−i+ x′)2dx′. (D.13)

These integrals are very similar to those appearing in the expression (D.2) of γ11 and
they can be computed with the same techniques. We obtain

I
(1)
12 =

1

2

xp−3
∗
x3

[
x2−p

2− p +
x4−p

4− p −
(`EH)p−2

2− p − (`EH)p−4

4− p

]
, (D.14)

I
(2)
12 = − ix

p−3
∗

4x3
e−2ix(−i+ x) [x(−i+ x)− 1] (−A1−p + 2iA2−p +A3−p) , (D.15)

and I
(3)
12 = I

(2)
12
∗. In Fig. 9, we have plotted γ12 with the same parameter values as in

Fig. 8, namely `E = 0.1, x∗ = 0.1, p = 2.1 and kΓ/k = 10.
Finally, the component γ22 remains to be evaluated. As done above for the com-

ponent γ12, one can use the transport equations to calculate γ22 from the expression of
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γ11. This leads to the following expression

γ22 =
1

2k2

d2

dη2
(vkv

∗
k) +

1

k

(
kΓ

k

)2 ∫ η

−∞

(
a

a∗

)p−3

H

(
1− k`E

a

)
∂2

∂η2
Im2

[
vk(η)v∗k(η′)

]
dη′

+
ω2

k2
γ11. (D.16)

As expected, the integrand in the above formula now contains the second derivative of
Im2 [vk(η)v∗k(η′)]. Concretely, this quantity can be written as

∂2

∂η2
Im2

[
vk(η)v∗k(η′)

]
=

3k2

x4x′2
(1 + x′2)

+
k2

2x4x′2
e−2ixe2ix′ {3 + 2x

[
3i+ x(−3− 2ix+ x2)

]}
(i+ x′)2

+
k2

2x4x′2
e2ixe−2ix′ {3 + 2x

[
−3i+ x(−3 + 2ix+ x2)

]}
(−i+ x′)2.

(D.17)

This leads to

γ22 =
1

2k2

d2

dη2
[vk(η)v∗k(η)]− 2

(
kΓ

k

)2 [
I

(1)
22 + I

(2)
22 + I

(3)
22

]
+
ω2

k2
γ11 (D.18)

=
1

2k2

d2

dη2
[vk(η)v∗k(η)] +

ω2

k2
vk(η)v∗k(η)

− 2

(
kΓ

k

)2{
I

(1)
22 + I

(2)
22 + I

(3)
22 + +

ω2

k2

[
I

(1)
11 + I

(2)
11 + I

(3)
11

]}
, (D.19)

with

I
(1)
22 =

3

2

xp−3
∗
x4

∫ x

1/(`EH)
x′1−p(1 + x′2)dx′, (D.20)

I
(2)
22 =

xp−3
∗

4x4
e−2ix

{
3 + 2x

[
3i+ x(−3− 2ix+ x2)

]} ∫ x

1/(`EH)
e2ix′x′1−p(i+ x′)2dx′,

(D.21)

I
(3)
22 =

xp−3
∗

4x4
e2ix

{
3 + 2x

[
−3i+ x(−3 + 2ix+ x2)

]} ∫ x

1/(`EH)
e−2ix′x′1−p(−i+ x′)2dx′.

(D.22)

Again, the integrals I
(1)
22 , I

(2)
22 and I

(3)
22 can be computed with the same tools used above.

This leads to the following expressions

I
(1)
22 =

3

2

xp−3
∗
x4

[
x2−p

2− p +
x4−p

4− p −
(`EH)p−2

2− p − (`EH)p−4

4− p

]
(D.23)
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Figure 10. ln (|γ22|) with (pink) and without (black) decoherence for the de Sitter case. The
approximated version (green dashed) is obtained using the first order approximations (5.13).
The first vertical dashed line shows the time when the mode k starts to decohere `Ea/k = 1,
the second the time when the mode k exits the Hubble radius. The parameters are `EH = 0.1,
x? = 1, p = 2.1 (left) or p = 6.1 (right), and kΓ/k = 10.

I
(2)
22 =

xp−3
∗

4x4
e−2ix

{
3 + 2x

[
3i+ x(−3− 2ix+ x2)

]}
(−A1−p + 2iA2−p +A3−p) , (D.24)

and I
(3)
22 = I

(2)
22
∗. The quantity γ22 is represented in Fig. 10 for the same values of the

parameters as above, that is to say `EH = 0.1, x∗ = 1, p = 2.1, and kΓ/k = 10.

D.2 Approximations

The above results allow one to fully study the time evolution of the system, since they
give exact and explicit expressions for the elements of the covariance matrix. However,
the corresponding formulas are not particularly insightful and it is therefore useful to
approximate them and to extract the leading behaviours of γ11, γ12 and γ22 in the late
time, i.e. super-Hubble, limit. This is the goal of this sub-section.

Let us start with the first component, γ11. We write the function Aα in terms of
its real and imaginary parts, Aα = AR

α + iAI
α. Then, it follows that

I
(2)
11 + I

(3)
11 =

xp−3
∗

2x2

[
(x2 − 1)

(
AR

1−p −AR
3−p + 2AI

2−p
)

+ 2x
(
AI

1−p −AI
3−p − 2AR

2−p
)]

cos(2x)

+
xp−3
∗

2x2

[
(x2 − 1)

(
AI

1−p −AI
3−p − 2AR

2−p
)

− 2x
(
AR

1−p −AR
3−p + 2AI

2−p
)]

sin(2x). (D.25)
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Since I
(3)
11 = I

(2)
11
∗, the quantity I

(2)
11 +I

(3)
11 must be real and one can check that it is indeed

the case. Then, upon Taylor expanding the real and imaginary parts of the function Aα,
defined in Eq. (D.7), around x = 0, one obtains

AR
α ' AR

α (`EH) + x1+α

[
1

α+ 1
− 2x2

3 + α
+

2x4

3(5 + α)
− 4x6

45(7 + α)

+
2x8

315(9 + α)
− 4x10

14175(11 + α)
+

4x12

467775(13 + α)
− 8x14

42567525(15 + α)

+
2x16

638512875(17 + α)
− 4x18

97692469875(19 + α)
+ · · ·

]
, (D.26)

where

AR
α (`EH) = 2−1−αΓ(1 + α) sin

(πα
2

)
− i 2−2−α

[
e−iπα/2Γ

(
1 + α,

2i

`EH

)

− eiπα/2Γ

(
1 + α,− 2i

`EH

)]
. (D.27)

The same type of calculations lead to the following expression for the imaginary part

AI
α ' AI

α(`EH) + x2+α

[
2

2 + α
− 4x2

3(4 + α)
+

4x4

15(6 + α)
− 8x6

315(8 + α)

+
4x8

2835(10 + α)
− 8x10

155925(12 + α)
+

8x12

6081075(14 + α)
− 16x14

638512875(16 + α)

+
4x16

10854718875(18 + α)
− 8x18

1856156927625(20 + α)
+ · · ·

]
, (D.28)

where

AI
α(`EH) = −2−1−αΓ(1 + α) cos

(πα
2

)
+ 2−2−α

[
e−iπα/2Γ

(
1 + α,

2i

`EH

)

+ eiπα/2Γ

(
1 + α,− 2i

`EH

)]
. (D.29)

The next step consists in using the above approximations for the real and imaginary

parts of Aα in Eq. (D.25) which, together with the exact expressions of I
(1)
11 (which is

already given in terms of power-laws) leads to an approximation for the term I
(1)
11 +I

(2)
11 +

I
(3)
11 . The corresponding expression reads

I
(1)
11 + I

(2)
11 + I

(3)
11 'x−p

[
A11x

6 +O
(
x8
)]

+
B11

x2
+ C11 +D11x+ E11x

3 + F11x
4

+G11x
5 +H11x

6 +O
(
x7
)
, (D.30)
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where

A11 = − 2xp−3
∗

(p− 8)(p− 5)(p− 2)
(D.31)

B11 =
xp−3
∗
2

[
(`EH)p−4

p− 4
+

(`EH)p−2

p− 2
−AR

1−p − 2AI
2−p +AR

3−p

]
, (D.32)

C11 = B11, (D.33)

D11 =
xp−3
∗
3

(
−AI

1−p + 2AR
2−p +AI

3−p
)
, (D.34)

E11 =
2

5
D11, (D.35)

F11 =
xp−3
∗
9

(
AR

1−p + 2AI
2−p −AR

3−p
)
, (D.36)

G11 = − 6

35
D11, H11 = −1

5
F11. (D.37)

We combine the above with Eq. (D.2) to obtain an approximation of γ11 which can be
expressed as

γ11 =
1

x2

[
1− 2

(
kΓ

k

)2

B11

]
+O

(
x0
)
− 2

(
kΓ

k

)2

A11x
6−p +O

(
x8−p) . (D.38)

Which of the two terms in the expression dominates depends on the value of p. This
asymptotic expression of γ11 is represented by the green dashed line in Fig. 8. We see
that it matches very well the exact result.

Let us now derive an approximation for the matrix element γ12. Compared to
what has been done above for γ11, the calculation proceeds in a similar fashion. The

expression of I
(1)
12 is already explicit, see Eq. (D.14). The two remaining terms, I

(2)
12 and

I
(3)
12 , have similar expressions in terms of the real and imaginary parts of Aα as I

(2)
11 and

I
(3)
11 . This leads to

I
(2)
12 + I

(3)
12 =

xp−3
∗

2x3

[
(1− 2x2)

(
−AR

1−p − 2AI
2−p +AR

3−p
)

− x(2− x2)
(
−AI

1−p + 2AR
2−p +AI

3−p
)]

cos(2x)

+
xp−3
∗

2x3

[
(1− 2x2)

(
−AI

1−p + 2AR
2−p +AI

3−p
)

+ x(2− x2)
(
−AR

1−p − 2AI
2−p +AR

3−p
)]

sin(2x). (D.39)

Using this result and expanding consistently the result, one obtains the following ex-
pression

I
(1)
12 + I

(2)
12 + I

(3)
12 ' x−p

[
A12x

5 +O
(
x7
)]

+
B12

x3
+ C12 +D12x

2 + E12x
3
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+ F12x
4 +G12x

5 +H12x
6 +O

(
x7
)
, (D.40)

with

A12 = − xp−3
∗ (p− 6)

(p− 8)(p− 5)(p− 2)
, (D.41)

and B12 = B11, C12 = −D11/2, D12 = −3D11/5, E12 = −2F11, F12 = 3D11/7, G12 =
3F11/5 and H12 = −2D11/27. Using Eq. (D.10) we get

γ12 =
1

x3

[
1− 2

(
kΓ

k

)2

B12

]
+O

(
x0
)
− 2

(
kΓ

k

)2 [
A12x

5−p +O
(
x7−p)] , (D.42)

Again, which of the two terms dominates in the above equation depends on the value of
p. The approximation (D.42) is represented in Fig. 9 and we notice that, in its domain
of validity (namely, on large scales), it is very accurate.

Let us finally consider the matrix element γ22. In order to establish its large scale

expansion, the considerations presented before can be repeated once more. The term I
(1)
22

has already the adequate form, see Eq. (D.23). As a consequence, the only calculation

that is needed is to express I
(2)
22 + I

(3)
22 in terms of the real and imaginary parts of Aα.

One obtains

I
(2)
22 + I

(3)
22 =

xp−3
∗

2x4

[
(3− 6x2 + 2x4)

(
−AR

1−p − 2AI
2−p +AR

3−p
)

− (6x− 4x3)
(
−AI

1−p + 2AR
2−p +AI

3−p
)]

cos(2x)

+
xp−3
∗

2x4

[
(3− 6x2 + 2x4)

(
−AI

1−p + 2AR
2−p +AI

3−p
)

+ (6x− 4x3)
(
−AR

1−p − 2AI
2−p +AR

3−p
)]

sin(2x). (D.43)

The next step consists in inserting the expressions (D.26) and (D.28) of the real and
imaginary parts of Aα in the above formula. This leads to the following equation for the
correction

I
(1)
22 + I

(2)
22 + I

(3)
22 +

ω2

k2

[
I

(1)
11 + I

(2)
11 + I

(3)
11

]
= x−p

[
A22x

4 +O
(
x6
)]

+
B22

x4
+
C22

x2

+
D22

x
+ E22 + F22x+G22x

2 +H22x
3 + I22x

4 + J22x
5 +K22x

6 +O
(
x7
)
, (D.44)

with

A22 = − [26 + p(p− 11)]xp−3
∗

(p− 8)(p− 5)(p− 2)
, (D.45)
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and B22 = B11, C22 = −B11, D22 = −2D11, E22 = B11, F22 = 7D11/5, G22 = 4F11,
H22 = −34D11/35, I22 = −8F11/5, J22 = 218D11/945 and K22 = 43F11/175. Finally,
we obtain the following approximation for γ22

γ22(η) =
1

x4

[
1− 2

(
kΓ

k

)2

B22

]
+O

(
1

x2

)
− 2

(
kΓ

k

)2

A22x
4−p +O

(
x6−p) . (D.46)

This approximation (D.46) is plotted in Fig. 10 and we notice that it fits very well
the exact result. Summarising, we have obtained, for each component of the covariant
matrix, precise and simple approximations valid on large scales.

An interesting feature of the above calculations is the relationships that exist be-
tween the coefficients of the expansions of γ11, γ12 and γ22. This can be understood as
follows. Combining Eqs. (4.10) and (4.12), one has

−dγ22

dx
=
ω2

k2

dγ11

dx
+ 2

(
kΓ

k

)2

xp−3
∗ x3−p. (D.47)

Then, one can insert Eqs. (D.38) and (D.46) in the above formula and this leads to

4

x5
−2

(
kΓ

k

)2 [4B22

x5
− (4− p)A22x

3−p
]

= − 2

x3
+

4

x5
− 2

(
kΓ

k

)2 [
−2B11

x3

+ (6− p)A11x
5−p +

4B11

x5
− 2(6− p)A11x

3−p
]

+ 2

(
kΓ

k

)2

xp−3
∗ x3−p. (D.48)

At this stage, one has to remember that the expressions used above are valid in the
long time limit only. Therefore, the term −2/x3 (first term on the right hand side) can
be neglected compared to 4/x5 (second term in the right hand side) and, indeed, the
equation is satisfied in the limit kΓ → 0. Applying the same reasoning for the terms
proportional to k2

Γ, one deduces that B22 = B11, a relation already established before
but whose origin is now understood, and

(4− p)A22 = 2(6− p)A11 + xp−3
∗ . (D.49)

One checks that this equation is satisfied by A11 and A22 given in Eqs. (D.31) and (D.45).
Of course, the above considerations are just an example illustrating the origin of the
relationships between the coefficients. A systematic generalisation of these calculations,
with more terms in the expansions, would allow us to derive all the relationships among
the coefficients.
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2.4 Article: ‘Comparing quantumness criteria’

As shown in the review [1], many quantumness criteria have been used to assess
the degree of non-classicality of cosmological perturbations in slightly different
situations. In [3] reproduced in this section, we thoroughly compare three such
criteria over a general class of states, the two-mode squeezed thermal states, which
cover most of the decohered states considered in the literature on inflationary
perturbations and beyond. The analysis is kept at a very general level, and the
paper is presented as one of quantum information. We supplement our general
analysis with the study of the effect on an initial two-mode squeezed states of
two simple Gaussian channels i.e. transformations of the state that needs not be
unitary, modelling losses and noise in a measurement process. Therefore, although
the initial motivation behind this work is the study of cosmological perturbations,
the comparison also applies to the study of the experiment [130] in which we expect
the state of correlated quasi-particles to be mixed and quasi-Gaussian, see Sec 3.6.

203



Comparing quantumness criteria

Jérôme Martin1, Amaury Micheli,2,1 and Vincent Vennin3,1

1 Institut d’Astrophysique de Paris, CNRS & Sorbonne Université, UMR 7095 98 bis boulevard
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Abstract –Measuring the quantumness of a system can be done with a variety
of methods. In this article we compare different criteria, namely quantum
discord, Bell inequality violation and non-separability, for systems placed in
a Gaussian state. When the state is pure, these criteria are equivalent, while
we find that they do not necessarily coincide when decoherence takes place.
Finally, we prove that these criteria are essentially controlled by the semi-
minor axis of the ellipse representing the state’s Wigner function in phase
space.

Introduction. – The characterisation of
“classicality” and “quantumness” in quantum
systems has become a topic of major importance
in several branches of modern physics. Indeed,
maybe surprisingly, it is not always trivial to es-
tablish whether a system behaves “classically”
or “quantum-mechanically”. This question is es-
pecially important when one tries to understand
the nature of a physical phenomenon.

For instance, in cosmology, it is well-known
that primordial perturbations are very well re-
produced [20] by vacuum quantum fluctuations,
amplified by gravitational instability [8, 33, 35,
60, 61, 75] during an early epoch of accelerated
expansion named inflation [5, 32, 46, 47, 69, 74].
However, the quantum origin of those primor-
dial perturbations has never been tested directly
and, in practice, they are mostly treated by as-

tronomers as classical, stochastic fluctuations.
The reason why this is possible is that, under pe-
culiar circumstances, and for certain observables,
a quantum system can be mimicked by a classical
one [45, 51, 53]. However, if a genuine quantum
signature could be detected in cosmological ob-
servables, that would shed light on fundamental
issues such as the need to quantise gravitational
degrees of freedom or the emergence of classical-
ity at cosmological scales [7, 49,55,59,64,78].

The same need to distinguish classical from
quantum processes appears in analogue grav-
ity, where phenomena involving gravitational
physics are mapped to condensed-matter sys-
tems. In these setups, particles can either be
created by quantum channels or by the classical
amplification of a thermal bath [12]. The latter
mechanism is always present when conducting
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experiments at finite temperature. A quantum
test is a way to tell the two populations apart
and to demonstrate the existence of a quantum
channel in these experiments [12,40,68,76].

In quantum technologies, the distinction be-
tween quantum and classical behaviours is also
central, since “quantumness” is a crucial re-
source e.g. in quantum computing [43] and quan-
tum cryptography [21,66].

This has led various notions of “quantum-
ness” to be put forward. One possible approach
is to consider correlations between sub-parts of
a given system, and to determine whether or
not they can be reproduced by classical ran-
dom variables. This route gave rise to the
celebrated Bell inequalities [6, 18, 29], quantum
steering [83], different measures of entangle-
ment (non-separability [81], multipartite entan-
glement [38], entanglement witnesses [37], etc.),
quantum discord [11,36,63], etc..

Another possible approach, leading to a
second class of criteria, is to make use of
phase-space formulations of quantum mechan-
ics. For instance, the non-positivity of the
Wigner function [82] or the absence of the P-
representation [28,77] have been viewed as crite-
ria signalling the quantumness of a system [26,
80].

How these different criteria are related is a
non-trivial question. In pure states, it is known
that quantum discord reduces to entanglement
entropy [11], which only vanishes in separable
states, and that all non-separable states violate
a Bell inequality [81]. For mixed states however,
these relations become more elusive (for instance
non-separability is only a necessary condition for
Bell-inequality violation [81]).

In this article, our goal is to investigate the re-
lations between different criteria in a subclass of
quantum states where explicit calculations can
be performed. We want to determine in which
cases they lead to the same conclusion regarding
the quantumness of a system, and in which cases
they differ. In practice, we consider two con-
tinuous degrees of freedom placed in two-mode
squeezed thermal states and analyse the link be-

tween three quantum criteria: non-separability,
quantum discord and a Bell inequality.

Gaussian states. – Let us consider two
continuous degrees of freedom q1 and q2, with
conjugated momenta p1 and p2, arranged into
the phase-space vector R̂1/2 = (q̂1, p̂1, q̂2, p̂2)

T

with [q̂i, p̂j ] = iδij . Their quantum state is rep-
resented by the density matrix ρ̂. For a given
quantum operator Ô, the Weyl transform

Õ(R1/2) ≡
∫

du1 du2 e
−ip1u1−ip2u2

×
〈
q1 +

u1
2
, q2 +

u2
2

∣∣∣ Ô
∣∣∣q1 −

u1
2
, q2 −

u2
2

〉
(1)

yields a scalar function in phase space. The
Wigner function W is the Weyl transform of the
density matrix [16], W = ρ̃/(2π)2, and is such
that the expectation value of any quantum op-
erator Â is given by the phase-space average of
its Weyl transform against the Wigner function,

〈
Â
〉

=

∫
Ã
(
R1/2

)
W (R1/2) d4R1/2 . (2)

This is why the Wigner function is often referred
to as a “quasi-probability” distribution function.

A Gaussian state is defined as a state whose
Wigner function is Gaussian. All information
about the state is then contained in the covari-
ance matrix

γab = 〈{R̂a, R̂b}〉 , (3)

where R̂a refers to the components of the vector
R̂1/2, {Â, B̂} = ÂB̂+B̂Â is the anti-commutator
and the Wigner function reads

W (R1/2) =
1

π2
√

det γ
exp

(
−RT

1/2γ
−1R1/2

)
.

(4)

Let us also introduce the purity p ≡ Tr(ρ̂2),
which determines whether the state is pure (p =
1) or mixed (p < 1). For a Gaussian state, the
purity is directly related to the determinant of
the covariance matrix [2]

p =
1√

detγ
. (5)
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Two-mode squeezed vacuua (TMSV) are
Gaussian states whose covariance matrix depend
on two parameters only, r and ϕ, respectively
called squeezing amplitude and squeezing angle,
and reads [9, 17,70]

γTMSV ≡
(
γ11 γ12

γ21 γ22

)
, (6)

with

γ11 = γ22 ≡ cosh (2r)12 , (7)

and

γ12 = γ21 ≡ − sinh 2r

(
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

)
.

(8)

TMSV are ubiquitous in modern physics :
they appear in quantum optics [9, 17, 70], cold
atoms [22, 62] as well as in the study of infla-
tion [3, 19, 30, 31] and Hawking radiation [4, 34].
Using Eq. (5) one can check that they are pure.
In general, TMSV may become mixed as an ef-
fect of decoherence [42, 84, 85]. We will consider
the class of two-mode squeezed thermal states
which are defined as Gaussian states with co-
variance matrices of the form

γ =
γTMSV

√
p

, (9)

where one can check from Eq. (5) that p is in-
deed the purity of the state. These states arise
for instance for cosmological perturbations lin-
early coupled to an environment while preserv-
ing statistical homogeneity [15, 50], or when an
initial TMSV interacts with two identical in-
dependent thermal baths [23, 48], or when the
modes are sent through a pure-loss or an addi-
tive Gaussian noise channel [25]. The two lat-
ter channels are described by simple transfor-
mations of the covariance matrix, respectively
given by γ = ηγTMSV + (1− η)14 where the ef-
ficiency parameter 0 ≤ η ≤ 1 encodes the level
of loss/damping experienced across the channel,
and γ = γTMSV +∆14 where ∆ ≥ 0 encodes the

level of noise. Both matrices can then be put in
the form (9), with effective squeezing and purity
parameters given in Eqs. (66) and (70) of the
Appendix where these two channels are studied
in details.

In the following we work in terms of these
effective squeezing and purity parameters, such
that all setups mentioned above are encompassed
in the analysis. Decoherence is expected to play
a key role in the emergence of classicality, and
this simply parameterised class of states will al-
low us to study how different criteria respond to
it.

Under a canonical transformation, R̂ → TR̂,
where T is a symplectic matrix (i.e. it preserves
commutation relations), the covariance matrix
changes according to γ → TγTT. This implies
that the covariance matrix depends on the set of
canonical variables used to describe a system.

For instance, there exists a partition R̂D where
the covariance matrix is block diagonal,

γD =
1√
p

(
γOMSV 0

0 γOMSV

)
, (10)

with

γOMSV ≡
(
γqq γqp
γpq γpp

)
(11)

and

γqq = [cosh(2r)− cos(2ϕ) sinh(2r)] , (12)

γpq = γqp = − sin(2ϕ) sinh(2r), (13)

γpp = [cosh(2r) + cos(2ϕ) sinh(2r)] , (14)

such that the Wigner function factorises accord-
ing to WD(RD) = W̄ (qD1 , p

D
1 )W̄ (qD2 , p

D
2 ). In this

basis, the quantum state is nothing but the prod-
uct of two identical and uncorrelated one-mode
squeezed (thermal) states. If p = 1 they are one-
mode squeezed vacuua (OMSV).

This also implies that quantumness criteria,
which characterise the correlations between two
subsystems, obviously depend on the way the
system is partitioned (for instance, the way
quantum discord depends on the choice of parti-
tion has been studied in Refs. [50, 52]).
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Fig. 1: Phase-space
√

2 -σ contour levels of the
Wigner function W̄ . The pink circle corresponds to
a vacuum state (coherent state) with p = 1 and van-
ishing squeezing parameter r = 0. The green ellipse
represents a pure state p = 1, slightly squeezed r = 1
along the diagonal ϕ = π/4. The blue ellipse rep-
resents a state with the same squeezing parameter
r = 1 but with purity p = e−4 ≈ 0.018 such that its
semi-minor axis is of the same size as in the vacuum
state.

In practice, their often exists a “preferred” ba-
sis of operators corresponding to separately mea-
surable physical degrees of freedom [56, 57] The
factorised partition (10) is nonetheless useful as
it provides a simple geometric representation of
the quantum state: the contours of W̄ are el-
lipses in the phase space (qDi , p

D
i ), as displayed

in Fig. 1. Their eccentricity is controlled by r, ϕ
is the angle between the qDi -axis and the semi-
minor axis, and the area contained in the ellipses
is proportional to 1/p.

Quantumness criteria. – Since the quan-
tum states we consider are fully characterised by
the three parameters r, ϕ and p, let us express
the three quantumness criteria in terms of these
parameters, in order to compare them.

Quantum Discord. A first way to characterise
the presence of quantum correlations between
two sub-parts of a system is by quantum dis-
cord [36, 63]. The idea is to introduce two mea-
sures of correlation that coincide for classically
correlated setups thanks to Bayes’ theorem, but
that may differ for quantum systems. The first
measure is the so-called mutual information I,
which is the sum between the von-Neumann en-
tropy of both reduced sub-systems, minus the
entropy of the entire system. The second mea-
sure J evaluates the difference between the en-
tropy contained in the first subsystem, and the
entropy contained in that same subsystem when
the second subsystem has been measured, where
an extremisation is performed over all possible
ways to “measure” the second subsystem. J can
be shown to be always less than I. Quantum dis-
cord D is defined as the difference between these
two measures and is thus a positive quantity that
only vanishes for classical systems.

For Gaussian states, I , J and D can be ex-
pressed in terms of the local symplectic invari-
ants of the covariance matrix [2].1 It is shown
in [1, 27, 65] that, for covariance matrices of the
form (9), quantum discord depends on r and p
only and is given by

D(p, r) =f [σ(p, r)]− 2f
(
p−1/2

)

+ f

[
σ(p, r) + p−1

σ(p, r) + 1

]
, (15)

where the function f(x) is defined for x ≥ 1 by

f(x) ≡
(
x+ 1

2

)
log2

(
x+ 1

2

)

−
(
x− 1

2

)
log2

(
x− 1

2

)
,

(16)

1This means that quantum discord is invariant under
local symplectic transformations, i.e. those mixing qi with
pi but not with qj and pj . This explains why ϕ does
not appear in the final expression (15), since it can be
changed arbitrarily by performing phase-space rotations
in each sector.
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and

σ(p, r) =
cosh(2r)√

p
. (17)

Note that in the partition (10), where the co-
variance matrix is block-diagonal, the two sub-
systems are uncorrelated hence quantum discord
vanishes.

Bell Inequality. Another way to characterise
the presence of quantum correlations is via Bell
inequalities [10]. When violated, they allow
one to exclude classical and realistic local the-
ories [58]. Usually designed for discrete observ-
ables [18](such as spins), they can also be applied
to continuous variables by means of pseudo-spin
operators [6, 29] or via projections on coherent
states [14]. In this paper we will use the pseudo-
spin operators introduced in Ref. [29]

σ̂ix =

∫ ∞

−∞
sign(qi) |qi〉 〈qi|dqi , (18)

σ̂iy = − i
∫ ∞

−∞
sign(qi) |qi〉 〈−qi|dqi , (19)

σ̂iz =−
∫ ∞

−∞
|qi〉 〈−qi|dqi . (20)

One can check that these operators satisfy the
SU(2) commutation relations

[
σ̂iµ, σ̂

j
ν

]
= 2iεµνλσ̂

i
λδ
ij , (21)

where εµνλ is the totally anti-symmetric tensor.
From these operators we can build a Bell in-

equality [29,54]

〈B̂〉 = 2

√
〈σ̂1
z σ̂

2
z〉2 + 〈σ̂1

xσ̂
2
x〉2 ≤ 2. (22)

In order to compute the two-point correla-
tion functions of the operators σ̂x and σ̂z, one
can derive their Weyl transform and make use
of Eq. (2). Since σ̂1

µ and σ̂2
µ act on different

degrees of freedom, the Weyl transform of their
product factorises as

σ̃1
µσ

2
ν = σ̃1

µσ̃
2
ν , (23)

and in the appendix we show that

σ̃iz = −πδ(qi)δ(pi), σ̃ix = sgn(qi) , (24)

where δ stands for the Dirac distribution. To-
gether with Eq. (2), this leads to

〈
σ̂izσ̂

j
z

〉
= p , (25)

〈
σ̂ixσ̂

j
x

〉
= − 2

π
arcsin [|cos(2ϕ)| tanh(2r)] . (26)

Inserting Eqs. (25) and (26) into Eq. (22) leads
to

〈B̂〉 = 2

√
p2 +

4

π2
arcsin2 [cos(2ϕ) tanh(2r)] .

(27)

Compared to quantum discord given in Eq. (15),
one can see that the mean value of the Bell op-
erator 〈B̂〉 depends on the squeezing angle ϕ in
addition to the squeezing amplitude r and the
purity p. This is expected since the operators
given in Eq. (18) are not invariant under local
symplectic transformations.

Non-separability. Finally we consider quan-
tum separability. A state is said to be separable
in a certain partition if its density matrix can
be written as a statistical mixture of products of
density matrices over the two sub-systems, i.e.

ρ̂ =
∑

i

αiρ̂
i
1

⊗
ρ̂i2, (28)

where αi are real coefficients. In general, prov-
ing that a state is separable is a non-trivial task,
yet, for Gaussian states, the so-called Peres-
Horodecki criterion was proven to be necessary
and sufficient [72]. In the appendix we show how
to evaluate this criterion for Gaussian states, in a
one-parameter family of partitions that contains
both Eq. (9) and Eq. (10). In the partition cor-
responding to Eq. (10), the state is, as expected,
always separable, while for Eq. (9) we find that
the state is separable if and only if

e−2r ≥ √p . (29)
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Fig. 2: Hyperbolic tangent of the quantum discord tanhD computed from Eq. (15) as a function of the
purity p and the hyperbolic tangent of the squeezing parameter tanh r. The dashed white (respectively
black) line represents the threshold of separability (respectively Bell inequality violation) defined as the
equality case in Eq. (29) [respectively Eq. (27)].

Results & Discussion. – Let us first make
connection with the phase-space approaches
mentioned in the introduction. We point out
that the thermal squeezed states considered here
always have a positive Wigner phase-space prob-
ability distribution, which could make them ap-
pear classical. Yet, as demonstrated, these states
can exhibit quantum features. We refer to
Refs. [24, 49, 67] for detailed discussions of this
point. Additionally, for these states, the absence
of a Glauber-Sudarshan P-representation, which
is considered as a sign of non-classicality, is ac-
tually equivalent to the non-separability of the
state [13, 44] whose conditions has been com-
puted in Eq. (29).

We now compare the three different criteria
for deciding whether a system behaves quantum-
mechanically or not: the quantum discord (15),
the violation of Bell inequalities (27) and the
non-separability of the state (29). As mentioned
above, the squeezing angle ϕ can be adjusted
by rotating the measurement direction in phase

space. This is why, for the Bell inequality (27),
which is the only criterion depending on ϕ, we
choose to optimise ϕ in order to get the maxi-
mal violation. It corresponds to setting ϕ = 0.
All three criteria thus depend on r and p only,
and are shown in Fig. 2. The colour encodes the
value of quantum discord as given by Eq. (15),
the black dashed line corresponds to the thresh-
old for Bell-inequality violation, Eq. (27), while
the white line stands for the non-separability cri-
terion as given in Eq. (29).

One can check that, for pure state (p = 1), all
criteria are equivalent: except from the vacuum
state (r = 0), all states have non-vanishing quan-
tum discord, are non separable and violate the
Bell inequality. In this sense, for a pure Gaussian
state, any correlation is quantum in nature. For
mixed states (p < 1), non-separability is a nec-
essary but non-sufficient condition for the Bell-
inequality violation [81] (i.e. the white line is be-
low the black line), and non-discordant states are
separable [11] (i.e. the dark blue region is below
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the white line).

These results also confirm that decoherence
(i.e. smaller value for p) is associated to the emer-
gence of classicality. Indeed, for a given squeez-
ing amplitude r, there always exists a value of
the purity parameter p below which the Bell in-
equality is not violated, the state is separable
and quantum discord is smaller than a given
threshold. The required amount of decoherence
(i.e. the critical value for the purity parameter
p), increases (decreases) with the squeezing am-
plitude. This is because, as r increases, the
two subsystems get more entangled, hence it
takes more decoherence to erase quantum fea-
tures. In [48], the authors had considered a sim-
ilar class of states and studied the robustness
of non-classicality measures against decoherence
induced by coupling to thermal baths. In this
special case it was also found that the state be-
comes classical in the sense that quantum discord
asymptotes zero at large decoherence, and that
separability vanishes once decoherence reaches a
certain finite threshold.

Our findings also prompt some reservations
about the physical relevance of the numerical
value of quantum discord. Discord is measured
in information bits and, a priori, one may think
that it is an extensive quantity, namely the larger
the discord the more “quantum” the state. How-
ever, one notices in Fig. 2 that the value of quan-
tum discord at which the separability or Bell cri-
teria are crossed may be small or large, depend-
ing on the squeezing amplitude. For instance, if
the state is almost pure p ∼ 1 and the squeez-
ing weak r ≤ 1, then one can achieve a non-
separable state and/or a Bell inequality violation
while keeping a small quantum discord, see point
“A”; or for large squeezing and small purity we
can both have a large quantum discord and still
satisfy the Bell inequality, see point “B”. This
suggests that the numerical value of discord itself
has no clear interpretation, at least in this setup
and in terms of the other quantumness criteria.

The behaviour of these three criteria can be
further understood in the phase-space represen-
tation. Ignoring the orientation ϕ (which we

have set to its optimal value ϕ = 0 for Bell
inequality violation), the ellipses of Fig. 1 have
been parameterised so far using their area, via p,
and their eccentricity, via r. Alternatively, one
can describe them by means of their semi-major,
a, and semi-minor, b, axes, related to r and p by

a = erp−1/4 , b = e−rp−1/4 . (30)

In particular, we expect b, the size of semi-minor
axis, to play a physical role since it encodes the
presence or absence of a sub-fluctuant direction
in phase space with respect to the vacuum.

Using Eq. (30) all criteria can be expressed in
terms of a and b. The non-separability criterion
assumes an extremely simple form as Eq. (29)
is straightforwardly recast to b ≥ 1. The fact
that the state is non-separable is then equiva-
lent to the existence of a sub-fluctuant direction
in phase space (for instance, in Fig. 1 the state
represented by the green ellipse is non-separable
while the one represented by the blue ellipse is
separable). The expression of quantum discord
and the Bell operator in terms of a and b is
not particularly illuminating but in the large-
squeezing and small-purity limit, i.e. a � b �
1/a, in the appendix we show that the discord
also becomes a function of b only (i.e. of the sub-
fluctuant mode), namely

D(a, b)→ g
(
1 + 2b2

)
+ log2

(
1 +

1

2b2

)
, (31)

where g(x) is bounded and defined in Eq. (64).
All criteria are displayed as a function of a and

b in Fig. 3, where one can check that 〈B̂〉 and D
become independent of a in the large-squeezing
limit.

Conclusions. – In this letter, we compared
three different criteria, quantum discord, Bell in-
equality violation and non-separability, aimed at
assessing whether a system behaves quantum-
mechanically or not. We have found that, even
in a simple class of Gaussian states, these criteria
are inequivalent, i.e. a state can be, at the same
time, “quantum” according to one criterion and
“classical” according to another one. However,
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Fig. 3: Same criteria as in Fig. 2, as a function of the semi-major a and semi-minor b axes of the phase-space
ellipses depicted in Fig. 1. The solid black lines are contour levels of quantum discord. The white region
corresponds to either a < b or p > 1, which are both non physical. In the large squeezing limit, b � a,
〈B̂〉 = 2 (black dashed line) is equivalent to b = [π/(8a3)]1/5.

in the large squeezing limit these criteria were
found to be mainly controlled by the amplitude
of the sub-fluctuant mode. There is no natu-
ral threshold for the value of quantum discord
at which the other two criteria are crossed, and
we found that decoherence always leads to more
classical states regardless of the criterion being
used.

This analysis could be extended to non-
Gaussian states [79], which are known to behave
differently under quantum criteria (for instance,
according to Hudson theorem [39] their Wigner
functions are necessarily non-positive if they are
pure).
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Appendix. – In the two first sections of this appendix we present the technical details relevant
for computing the expectation value of the Bell operator and the separability criterion for Gaussian
states. In the third section, we show that, in the limit r � 1 and p � 1, quantum discord is
only controlled by b, the size of the semi-minor axis introduced in the main text. In the last
section we analyse the effect of two specific Gaussian noisy channels, namely the pure-loss and the
additive-noise channels, on the non-classicality of a TMSV using the criteria identified in the text.

Weyl transform of spin operators and expectation value of Bell operator. We start by present-
ing the computation of the Weyl transform of the spin operators defined in Eq. (18). The Weyl
transform of an operator has been defined in Eq. (1). We apply this formula to σ̂iz, the spin operator
of the irm subsystem along z

σ̃iz (qi, pi) =

∫ ∞

−∞
eipiy

〈
qi +

y

2

∣∣∣
(
−
∫ ∞

−∞
|x〉 〈−x|dx

) ∣∣∣qi −
y

2

〉
dy (32)

= −
∫ ∞

−∞
eipiy

∫ ∞

−∞
δ
(
qi +

y

2
− x
)
δ
(
qi −

y

2
+ x
)

dxdy (33)

= −δ (2qi)

∫ ∞

−∞
eipiydy (34)

= −πδ (qi) δ (pi) , (35)

which is the formula given in Eq. (24). This readily gives Eq. (25). Proceeding similarly for the
spin operator along x we get

σ̃ix (qi, pi) =

∫ ∞

−∞
eipiy

〈
qi +

y

2

∣∣∣
(
−
∫ ∞

−∞
sign (x) |x〉 〈−x|dx

) ∣∣∣qi −
y

2

〉
dy (36)

=

∫ ∞

−∞
eipiy

∫ ∞

−∞
sign (x) δ

(
qi +

y

2
− x
)
δ
(
x− qi +

y

2

)
dxdy (37)

=

∫ ∞

−∞
eipiy sign

(
qi −

y

2

)
δ (y) dy (38)

= sign (qi) , (39)

which is the (second) formula given in Eq (24). Using Eq. (2) and the Gaussian Wigner function (4),
the expectation value of σ̂1

z σ̂
2
z can then be obtained as

〈
σ̂1
xσ̂

2
x

〉
=

∫
sign (q1) sign (q2)

π2
√

det γ
exp

(
−RT

1/2γ
−1R1/2

)
dq1 dp1 dq2 dp2 (40)

=

∫
sign (q1) sign (q2)

π
√
γqqγpp

exp

[
− (q1 + q2)

2

2γqq
− (q1 − q2)

2

2γpp

]
dq1 dq2 (41)

= − 2

π
arctan


 cos(2ϕ) sinh(2r)√

1 + sin2 (2ϕ) sinh (2r)


 (42)

= − 2

π
arcsin [|cos(2ϕ)| tanh(2r)] , (43)

where in the second line we have performed the integration over p1 and p2, and in the third line
over q1 and q2 after having inserted the expression of γqq and γpp given by Eqs.(12) and (14). The
last result is nothing but Eq. (26).
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Separability criterion. In this section we derive Eq. (29) of the main text, i.e. the condition
for a Gaussian state to be separable. In the partition leading to Eq. (9), the result is known, see
for instance [15]. Here we extend this result to the one-parameter family of partitions considered

in Ref. [50]: starting from R̂D, it is obtained by performing the canonical transformation R̂D →
S(θ)R̂D where S(θ) is the symplectic matrix

S (θ) =




cos θ 0 0 sin θ
0 cos θ − sin θ 0

sin θ sin(2θ) sin θ cos(2θ) cos θ cos(2θ) − cos θ sin(2θ)
− sin θ cos(2θ) sin θ sin(2θ) cos θ sin(2θ) cos θ cos(2θ)


 . (44)

This class of partitions is parameterised by the angle θ. The partition (9) corresponds to θ = −π/4,
while the factorised partition, i.e. the one leading to Eq. (10), corresponds to θ = 0. For arbitrary
θ the covariance matrix reads

γ =

(
γA γC
γC γB

)
, (45)

with

γA =

(
γ11 cos2 θ + γ22 sin2 θ γ12 cos(2θ)

γ12 cos(2θ) γ22 cos2 θ + γ11 sin2 θ

)
, (46)

γB =

(
γB |11 γB |12
γB |21 γB |22

)
, (47)

γC =




1

2
(γ11 − γ22) sin2(2θ) +

1

2
γ12 sin(4θ) −1

4
(γ11 − γ22) sin(4θ) + γ12 sin2(2θ)

−1

4
(γ11 − γ22) sin(4θ) + γ12 sin2(2θ) −1

2
(γ11 − γ22) sin2(2θ)− 1

2
γ12 sin(4θ)


 ,

(48)

and where the components of γB are given by

γB |11 =
1

2
γ11 +

1

2
γ22 +

1

2
(γ11 − γ22) cos(2θ) cos(4θ)− γ12 cos(2θ) sin(4θ), (49)

γB |12 = γB |21 = γ12 cos(2θ) cos(4θ) +
1

2
(γ11 − γ22) cos(2θ) sin(4θ), (50)

γB |22 =
1

2
γ11 +

1

2
γ22 −

1

2
(γ11 − γ22) cos(2θ) cos(4θ) + γ12 cos(2θ) sin(4θ). (51)

For a general covariance matrix the Peres-Horodecki criterion for separability can be written
as [73]

det γA det γB + (|det γC | − 1)
2 − Tr

[
γAJ

(1)γCJ
(1)γBJ

(1)γTCJ
(1)
]
≥ det γA + det γB , (52)

where the matrix J (1) is defined by J (1) ≡
(

0 1
−1 0

)
. Using the above expressions, straightforward
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manipulations lead to

det γA = det γB =
1

p

[
cosh2(2r)− cos2(2θ) sinh2(2r)

]
=

1

p
− det γC , (53)

det γC = −1

p
sinh2(2r) sin2(2θ), (54)

Tr
[
γAJ

(1)γCJ
(1)γBJ

(1)γTCJ
(1)
]

= −2 det γC

(
1

p
− det γC

)
. (55)

Combining the above results, the general criterion (52) can be written as a condition on det (γC)
only, which is always negative as can be seen in Eq. (54). One obtains

(
1

p
− det γC

)2

+ (det γC + 1)
2

+ 2 det γC

(
1

p
− det γC

)
≥ 2

(
1

p
− det γC

)
. (56)

Using Eq. (54) the above reduces to

1

p2
− 2

p
+ 1 + 4 det γC ≥ 0 . (57)

Using Eq. (54) again, one finds

(
1√
p
−√p

)2

≥ 4 sinh2(2r) sin2(2θ) . (58)

In the partition leading to Eq. (9), the above expression can be evaluated with θ = −π/4, a value
for which the previous formula reduces to

(
1√
p
−√p

)2

≥
(

1

e−2r
− e−2r

)2

. (59)

Given that both
√
p and e−2r are smaller than one, and since y → y − 1/y is a strictly increasing

function, this finally leads to

e−2r√
p
≥ 1 , (60)

which corresponds to Eq. (29).

Quantum discord in the large-squeezing limit. Using Eqs. (30), we can re-write the expres-
sion (15) of the quantum discord in terms of the lengths of the semi-major, a, and semi-minor axis,
b. Eq. (15) only depends on the quantity σ, defined by Eq. (17), and p. Therefore, we need to
express these two quantities in terms of a and b and one obtains

σ =
1

2

(
a2 + b2

)
, p =

1

a2b2
. (61)

Combining Eq. (15) and the two above formula, we get the following expression for the quantum
discord as a function of a and b only

D(a, b) = f

[
1

2

(
a2 + b2

)]
− 2f (ab) + f

(
a2 + b2 + 2a2b2

a2 + b2 + 2

)
. (62)
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Under this form the quantum discord is expressed as a sum of terms which have no definite sign
and are unbounded. In order to see that D is only controlled by b in the large-squeezing (i.e. a� b)
and small-purity (i.e. ab = 1/

√
p � 1) limit, we rewrite the above as

D(a, b) = g

[
1

2

(
a2 + b2

)]
−2g (ab)+g

(
a2 + b2 + 2a2b2

a2 + b2 + 2

)
+log2

[
(a2 + b2)(a2 + b2 + 2a2b2)

2a2b2(a2 + b2 + 2)

]
, (63)

where we have defined the function g(x) by

g(x) = f(x)− log2

(x
2

)
− 1

ln 2
. (64)

The function g(x) is defined as the difference between f(x) and its asymptotic value at large
argument. One can check that g(x) is a negative, strictly increasing function, which is bounded by
its limits limx→1+ g(x) = −1/ ln 2 + 1 ≈ −0.44 and limx→+∞ g(x) = 0. The large-squeezing regime
corresponds to b� a. Since ab ≥ 1 for the purity to be smaller than one, large squeezing requires
a � 1, i.e. the semi-major axis must be much larger than its vacuum value. The first term in
Eq. (63) therefore vanishes in this limit. In addition, for small purity ab = 1/

√
p � 1, the second

term vanishes as well. We are thus left with the last two terms, which, in this limit, read

D(a, b)→ g
(
1 + 2b2

)
+ log2

(
1 +

1

2b2

)
. (65)

Therefore, the value of the discord only depends on the size of the semi-minor axis b as can be seen
in the lower-right corner of Fig. 3. Note that asymptotic expression behaves as expected in the
limit of a large semi-minor axis, b � 1, where D goes to 0. In the opposite limit, namely, b � 1,
the first term goes to a finite value while the second one vanishes.

Pure-loss and additive-noise channels. Consider now the effect of a pure-loss channel of effi-
ciency η on a TMSV whose covariance matrix is given by Eq. (6). The resulting covariance matrix,
ηγTMSV + (1− η)14, can be recast in the form of Eq. (9) using the following effective squeezing
parameters and purity

r′ =
1

2
arctanh

[
η sinh (2r)

η cosh(2r) + 1− η

]
, ϕ′ = ϕ , p =

1

1 + 4 sinh2 (r) η (1− η)
. (66)

We check that, in the limit η → 1 (no loss), the rescaled squeezing parameters coincide with
the original ones and p = 1. Using this mapping we can express the quantum discord, the non-
separability and the Bell violation criteria with the help of the formulas derived in the main text.
We plot these three criteria in Fig. 4, where we set ϕ = 0 to optimise for the violation of the Bell
inequality.

First, we notice that, at fixed value of r, the discord increases with η, which is intuitive since
we expect the quantumness of the state to be more and more preserved as the loss decreases. Of
course, on the other hand, at fixed efficiency, the discord increases as r increases.

Second, the criterion for separability (52), expressed in terms of r and η, reads

− 16η2 sinh2(r)
[
1 + η (2− η) sinh2(r)

]
≥ 0 , (67)

which can only be satisfied if r = 0. This means that, after having gone through the loss channel, an
initial non-separable state will always remain non-separable irrespective of its efficiency as expected
for such pure damping [71].
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Third, in Fig. 4, we have also represented the threshold for violation of Bell inequality, see the
black dashed line. In terms of r and η, it is given by the following expression,

〈B̂〉 = 2

√
1

[
1 + 4 sinh2 (r) η (1− η)

]2 +
4

π2
arcsin2

[
η sinh (2r)

η cosh(2r) + 1− η

]
, (68)

This threshold is discontinuous at r = 0. Indeed, for r = 0, the system is in the vacuum which

does not violate the Bell inequality
〈
B̂
〉

= 2. For small but non-vanishing value of the squeezing

parameter, we can expand the expression of 〈B̂〉,

〈B̂〉 ∼ 2 + 8r2η

[(
2

π2
+ 1

)
η − 1

]
, (69)

and, as a consequence, the threshold of violation for the Bell inequality corresponds to η ≥(
1 + 2π−2

)−1 ∼ 0.83, which is independent of the squeezing parameter r. We now consider the
large r behaviour of the threshold. The figure shows that for large initial squeezing the level of loss
required to prevent the violation of the Bell inequality decreases. This is consistent with the results
of [41] where the authors consider a TMSV interacting with two thermal baths, and showed that
the violation of the Bell inequality considered in [6] decreases with the initial squeezing. Since a
large squeezing also implies stronger correlation, and larger value of the Bell operator initially, this
fact might appear surprising at first. However, this picture overlooks that the decoherence caused
this pure-channel is more efficient for strongly squeezed states. Indeed, Eq. (66) shows that for a
channel with fixed efficiency η, increasing the initial squeezing r of the TMSV will exponentially
suppress its purity p after the channel. This decoherence is suppressing the first term in Eq. (68),
while the stronger correlation increase the second term. The fact that the threshold of Bell inequal-
ity violation goes to η = 1 shows that this increase is not sufficient to compensate the decoherence
encoded in the first term. We can check this behaviour by approximating the curve 〈B̂〉 = 2 in
the vicinity of r � 1 and η ∼ 1. One finds η ∼ 1 − (π/8)2/5e−6r/5, see the white dashed line in
Fig. 4. This confirms the above described behaviour, which illustrates the “fragility” of a strongly
squeezed state.

Finally, we repeat the same analyses for the additive-noise channel whose covariance matrix, as
already mentioned above, is given by γ = γTMSV + ∆14, where ∆ ≥ 0 represents the noise level.
Using the following parameters

r′ =
1

2
arctanh

[
sinh (2r)

cosh(2r) + ∆

]
, ϕ′ = ϕ , p =

1

1 + 2∆ cosh(2r) + ∆2
, (70)

it can also be put under the form of Eq. (9). Of course, we check that, when ∆→ 0, r′ = r, ϕ′ = ϕ
and p = 1. The exact expressions of the quantum discord, the average value of the Bell operator
and the non-separability threshold can be obtained using this mapping. Starting from Eq. (29),
one can check that the state is separable if and only if

∆ ≥ 1− e−2r . (71)

The expressions of the Bell violation threshold and the quantum discord can also be derived but
are involved and not very enlightening. We do not reproduce them here. We only want to point
out that a phenomenon similar to that observed in the pure-loss channel for large initial squeezing
also happens for the additive-noise channel. Namely, as squeezing gets large, the amount of noise
required to destroy the violation of the Bell inequality is reduced. All these results are summarised
in Fig. 5.
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Fig. 4: Hyperbolic tangent of the quantum discord tanhD computed from Eq. (15) as a function of the
efficiency η and the hyperbolic tangent of the initial squeezing parameter tanh r. The dashed black line
represents the threshold of separability Bell inequality violation defined as the equality case in Eq. (27).
The vertical piece overlaps and follow the line r = 0 and is represented shifted towards a non-vanishing
value of r to be visible. The dashed white line shows the approximation for the threshold valid for r � 1,
plotted for r ≥ 1.
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Fig. 5: Hyperbolic tangent of the quantum discord tanhD computed from Eq. (15) as a function of the noise
∆ and the hyperbolic tangent of the initial squeezing parameter tanh r. The dashed white (respectively
black) line represents the threshold of separability (respectively Bell inequality violation) defined as the
equality case in Eq. (29) [respectively Eq. (27)].
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3 - An analogue preheating experiment with
BEC

3.1 Content of this chapter

This chapter is devoted to analysing the analogue preheating experiment [130],
which is the second topic of the PhD. In Sec. 3.2, we present the original experimen-
tal set-up, its goal and what was (not) observed in its first run. Then, in Sec. 3.3,
we present the model we use to describe it and review the results obtained in pre-
vious publications on the re-analysis of the experiment [155, 132, 156, 157, 133].
The latest publication [4] is reproduced in Sec. 3.4. It contains part of the original
results obtained during this PhD on the analysis of the experiment. It presents a
general decay mechanism for phonons in a 1D Bose gas via Beliaev-Landau chan-
nels and its application to resonant phonons in a parametric amplification set-up
akin to that of [130]. Given the importance of numerical simulations in this latest
analysis, we devote Sec. 3.5 to a more detailed explanation of the algorithm used.
Finally, Sec. 3.6 presents preliminary results on the decay, via similar Beliaev-
Landau processes, of phononic pair-correlation of the type generated during para-
metric amplification. These results will be the object of a future publication. We
conclude that these processes are sufficient to explain the absence of entanglement
in [130], which is the main result of the second part of this PhD.

3.2 Presentation of the experiment

In [130], the authors report on the results of their experiment of an analogue
Dynamical Casimir Effect (DCE) [158, 159, 160]. The dynamical Casimir effect
refers to the production of particles expected for a quantum field confined in a space
region when the boundaries of this region are varied in time. This creation can be
understood on the same basis as the cosmological pair production [161] discussed
in Sec. 2.2: an ‘in’ vacuum before the expansion, and an ‘out’ vacuum after the
expansion, are related by a Bogoliubov transformation [158]. Analogues of the
DCE were experimentally observed in super-conducting circuits [162, 163], where
the index of the medium is modulated to mimic changing boundary conditions, and
in an optical system [164]. In [130], the authors prepared a gas of approximately
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105 meta-stable Helium atoms1 4He
⋆ cooled down to 200nK. The atoms are placed

in a magnetic trap of an elongated cigar shape in the vertical direction, see Fig. 3.1.
The trapping potential is divided between a radial and vertical (longitudinal) part

Vext (x) =
1

2
mω2

⊥r
2 +

1

2
mω2

zz
2 , (3.1)

where m is the mass of the Helium atoms, r2 = x2 + y2, ω⊥ is the radial trapping
frequency and ωz is the vertical trapping frequency. For the anisotropic trap of
this experiment the authors report ω⊥/2π = 1500 Hz while ωz/2π = 7 Hz, so that
ω⊥ ≫ ωz and the gas is effectively one-dimensional.

The experimenter can change these trapping frequencies during the experiment,
and two types of time dependence were investigated in [130]. The first is a quench
of the frequencies by a factor

√
2 i.e. the trap is suddenly made tighter. In the

second experiment, the trap frequencies are modulated according to ω2 = ω2
0[1 +

A sin(ωmt)] for frequencies ωm/2π ∈ [900, 5000] Hz and A = 0.1, which is the
peak-to-peak modulation amplitude of ω. In both cases, due to the already strong
trapping in the radial direction, the frequency change does not excite the atoms
radially but leads to longitudinal excitations. These excitations are sound waves
on top of the condensed atoms for long enough wavelengths. This mechanism of
longitudinal waves generation via parametric resonance was also used in [165]. As
we will show in detail in Sec. 3.3.2-c the excitations can generally be interpreted as
quasi-particles. A modulation at frequency ωm is expected to lead to a parametric
creation of them in pairs of frequencies ω1/2 such that ωm = ω1 + ω2. To preserve
the isotropy of the gas, they have to be of opposite momentum ±k, and so are
of the same frequency ωk. Even in the case where no quasi-particles are present
in the initial state, owing to the quantum nature of the gas, pairs are going to be
produced out of the vacuum, a mechanism very reminiscent of preheating. Note
that, in agreement with a remark made in Sec. 1.2.4, since any time dependence
would lead to quasi-particle creation, an analogy could also be made with inflation
by expanding the trap rather than modulating it. A distinctive feature of this
creation out of the vacuum is that we expect the pairs to be entangled [155].

In [130], the authors showed that the modulation produced quasi-particles in
pairs of opposite momentum ±k. In addition, they showed that these pairs are

1This number of atoms could be inaccurate due to the detector’s saturation when the con-
densed part of the gas reaches it. Compared with the current experiment run, it is likely over-
estimated, and we will take the value of 1.5×104 for numerical applications below. This number
is obtained by inferring the one-dimensional density of the condensed gas n0 from the speed of
sound and trap frequency reported in [130]. Since most atoms are initially in the condensate, we
assimilate this density to the total density of the gas n1D. The number of atoms is then obtained
by assuming that the longitudinal size of the gas is given by twice the Thomas-Fermi radius, see
below. We thank Victor Gondret for the discussions on this point.
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Figure 3.1:
Representation of
the trapped cold atoms
used for the analogue
Dynamical Casimir
effect. This figure is
adapted from [130] with
only a change of colors.

Figure 3.2: In red, 2-point correlation function
g
(2)
k of Eq. (3.64) as measured after opening the

trap in the experiment [130]. This figure is
adapted from [130] with only a change of colors.
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correlated, yet, the correlations were not strong enough to demonstrate that the
pairs were entangled. In contrast, in other analogue DCE experiments [163, 164],
the authors explicitly demonstrated that the generated pairs of photons were in an
entangled state, thereby proving that they had been created out of the vacuum;
a genuine quantum effect. Subsequent analyses [155, 132, 156, 157, 133] tried
to account for the absence of entanglement and the non-linear processes at play
in [130]. The emergence of entanglement in the early-time dynamics was studied
in [155, 132] using simple quadratic models. The authors pointed out the anal-
ogy with the parametric creation during preheating. Then, in [156], the authors
accounted more precisely for the interplay between the change in the trapping fre-
quency and the production of excitations, with a focus on entanglement in [157].
In the latest paper of the series [133], the authors numerically analysed the redis-
tribution of energy of the generated pairs via interactions between quasi-particles
and their backreaction on the condensate. They also dealt with the late-time pro-
cesses drawing an analogy with the processes following preheating in the early
Universe. We point out that the focus of [156, 157, 133] was on the quench experi-
ment rather than the modulation. Still, following a quench, the gas would exhibit
‘breathing’ oscillations in the radial direction, and these oscillations would, in turn,
lead to pair creation in well-defined resonant modes. We come back to this point
in Sec. 3.3.2-a.

In the next section Sec. 3.3, we present the mathematical formalism that they
used to describe the experiment, which is independent of the type of modulation
considered. Similarly, the computations presented in Sec. 3.4 apply generically to
any quasi-particles in a 1D Bose gas, irrespective of their production mechanism.

3.3 Modelling the experiment

In Sec 3.3.1, we start by defining a condensed state in the standard description
of a gas using quantum field theory. Then, in Sec. 3.3.2, we describe the general
dynamics of a weakly interacting gas in a (quasi-)condensed state, including when
the radial trapping frequency is varied. In Sec. 3.3.3, we briefly examine the
specific case of a modulation of the radial trapping frequency, draw the link with
preheating and explain how relevant information about the created quasi-particles
is experimentally accessed. Finally, in Sec. 3.3.4, we amend the standard BdG
approximation presented in Sec. 3.3.2 for the specific case of a one-dimensional
gas.

3.3.1 Condensed state
The standard mathematical description of a mono-atomic Bose gas of Helium

atoms uses a quantum field theory for a complex scalar field Ψ̂(x) dubbed the
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atomic field. An extensive presentation of this formalism can be found in [166],
and we briefly recap essential aspects. The atomic field Ψ̂(x) is defined as the
operator whose action on any quantum state describing the system |Ψ⟩ removes
one atom at position x i.e. it is a destruction operator in real space. Similarly, its
hermitian conjugate Ψ̂†(x) is a creation operator in real space. We impose that
they satisfy the canonical commutation relation

[
Ψ̂ (x) , Ψ̂† (x′)

]
= δ (x− x′) , (3.2)

while the atomic field commutes with itself at any point
[
Ψ̂ (x) , Ψ̂ (x′)

]
= 0. The

atomic density at x is given by

ρ̂ (x) = Ψ̂† (x) Ψ̂ (x) , (3.3)

which is a hermitian operator. The total number of atoms in the system N is
obtained by integrating the density field over space. We can also define the phase
θ̂ of the gas by writing the atomic field

Ψ̂ (x) = eiθ̂
√
ρ̂ (x) . (3.4)

Mathematical problems are attached to the definition of a phase operator [167,
168]. We briefly discuss them in Sec. 3.3.4-b. The decomposition in density and
phase of Eq. (3.4) is called the Madelung form [169]. It will prove helpful later
when dealing with a one-dimensional gas for which no true condensed state can
emerge, and we can only have a quasicondensate [170]. For three, and even two-
dimensional, systems, there exists a temperature Tcond. below which the gas can be
placed in a condensed state. In a condensed state, a single-particle state, typically
the ground state of the gas, is macroscopically occupied, i.e. the number of particles
in this state N0 is such that when the total number of particles N diverges in the
thermodynamical limit, the fraction n0 = N0/N remains finite [166]. Such a state
is characterised by long-range order for some correlations [166], typically the one-
body correlation function g1 defined by

g1 (x , x
′) =

〈
Ψ̂† (x) Ψ̂ (x′)

〉
. (3.5)

If we consider a homogeneous system, g1 only depends on the difference x − x′

and for a condensate state is expected in the thermodynamical limit to behave as

g1 (x , x
′) −−−−−−−→

|x−x′|→+∞
n0 ̸= 0 . (3.6)

For a condensed gas, given that a macroscopic amount of particles are in the same
state, we consider them as a separate gas for which we define the operator Ψ̂0 that
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destroys a particle of the macroscopically occupied state. The density of particles
in this state is then given by

n0 =
〈
Ψ̂†

0Ψ̂0

〉
. (3.7)

For condensed states, where the number of particlesN0 is huge, removing or adding
a particle in this macroscopically occupied state should keep the system’s state
roughly the same. The action of Ψ̂0 can then be approximated as a multiplication
by a complex function Ψ0 such that

Ψ̂0 |Ψ⟩ ≈ Ψ0 |Ψ⟩ , (3.8)

and similarly for its hermitian conjugate. Therefore we treat this operator as a
complex function

Ψ̂0 (x) ≈ Ψ0 (x) 1̂ , (3.9)

where 1̂ is the identity operator. If we consider all particles to be in the macro-
scopically occupied state, then removing an atom from the gas corresponds to
removing an atom from the macroscopically occupied state hence

Ψ̂ (x) ≈ Ψ0 (x) 1̂ , (3.10)

and the total density n then equals the condensed density n0. Assuming that the
condensed state is homogeneous, it trivially exhibits non-diagonal long-range order

g1 (x , x
′) ≈ n0 ̸= 0 . (3.11)

Still, we need to refine the above prescription as only part of the atoms are in the
macroscopically occupied state. The standard approach is to split the atomic field
between a condensed part and a perturbation [166]

Ψ̂ = Ψ0

(
1̂+ δΨ̂

)
, (3.12)

where δΨ̂ is the atomic field for the non-condensed part. Notice that here we have
defined the perturbations in a relative manner using the condensed wavefunction as
a pre-factor. It is more common to use absolute perturbation Ψ̂ = Ψ01̂+ δΨ̂. The
Bogoliubov-de Gennes approximation (BdG) consists in assuming the contribution
of the non-condensed part to be a perturbation on top of the condensate |δΨ̂| ≪ 1.
Note the similarity with the analysis that lead to the introduction of the acoustic
metric in Sec. 1.3.2, where we considered the perturbations of a fluid around a
background flow. We now write a Hamiltonian describing the dynamics of this
atomic field.
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3.3.2 Dynamics of the gas
For dilute Bose gas as in [130], the interactions are dominated by two-body

contact interactions, which are described by the pseudo-potential [166]

V̂ (x) =
g

2
Ψ̂† (x) Ψ̂† (x) Ψ̂ (x) Ψ̂ (x) , (3.13)

where the interaction constant can be related to the s-wave scattering length g =
4πℏ2as/m. The trapping potential is given by Eq. (3.1), and we can write down
the Hamiltonian for the gas

Ĥ =

∫
dx

[
ℏ2

2m
∇⃗Ψ̂† · ∇⃗Ψ̂ + Vext (x) Ψ̂

†Ψ̂ +
g

2
Ψ̂†Ψ̂†Ψ̂Ψ̂

]
. (3.14)

Its Heisenberg equation of motion derived using Eq. (3.2) reads

iℏ∂tΨ̂ = − ℏ2

2m
∆Ψ̂ + Vext (x) Ψ̂ + gΨ̂†Ψ̂Ψ̂ . (3.15)

One can check that the number of atoms given by

N 1̂ =

∫
Ψ̂†Ψ̂dx (3.16)

is conserved for an evolution via Eq. (3.15). We solve Eq. (3.15) by splitting the
atomic field into condensed and perturbation parts as in Eq. (3.12), and use the
BdG approximation to write first an equation for the condensed part neglecting
the non-condensed part which is the classical version of Eq. (3.15)

iℏ∂tΨ0 = −
ℏ2

2m
∆Ψ0 + Vext (x)Ψ0 + g |Ψ0|2Ψ0 . (3.17)

This equation is called the Gross-Pitaevskii equation (GPE).
The BdG approximation is only valid for weakly interacting gas, so before

moving on to the computation of the dynamics of the gas, we do some order of
magnitude computations for the gas in [130] to ensure that the approximations
we applied are valid. First, we approximate the gas to have the geometry of a
cylinder. The radius of the cylinder is directly given by the trapping frequency
a⊥ =

√
ℏ/mω⊥ , see Sec. 3.3.2-a. The length of the gas is more complicated

to compute. Applying the analysis of [170], see in particular Fig. 5, given the
number of atoms N ≈ 104, and the radial extension a⊥ of [130], shows the gas is
in the Thomas-Fermi regime. Then, the vertical condensed density profile has an
extension of twice the Thomas-Fermi radius given by

RTF = az

(
3
azas
a2⊥

N

)1/3

, (3.18)

229



where az =
√

ℏ/mωz . Due to the second term in brackets, this extension is much
larger than the naive expectation az. While in the Thomas-Fermi regime the
density profile is not homogeneous, in the rest, we neglect the vertical trapping
and consider a homogeneous profile of length L. The length is estimated using
the above to L ≈ 2RTF. We then compute the gas parameter na3s, where n ≈
N/(2RTFπa

2
⊥) is the number density of atoms, and as is the s-wave scattering

length for 4He atoms in 23S1 meta-stable state. It is measured [171] to be as =
7.5 nm. The condition for a weakly interacting 3D gas is that the gas parameter
is much smaller than unity, i.e. that the typical distance between atoms n−1/3

is larger than the s-wave scattering length. We find na3s ≈ 2 × 10−6, so we are
well within this regime. It is also useful to compute the gas parameter in 1D
n1Das = Nas/(2RTF) ≈ 0.19, which is used as a parameter in the papers analysing
the experiment e.g. [133]. Following [170], the gas is in the weakly interacting
regime in one-dimension when the interaction energy per particle is much less
than the characteristic kinetic energy of particles. This condition translates in
the requirement that the Lieb-Liniger interaction constant [172] γ = mg1/(ℏn1D),
where g1 is the one-dimensional interaction constant, is much less than one γ ≪ 1.
For our radially confined gas we find [173, 170] g1 = g/(2a2⊥), which is derived in
Eq. (3.31) below. We then have γ = 2as/(n1Da

2
⊥) ≈ 4× 10−4. Again, we are in a

weakly interacting regime. Having checked the consistency of our treatment, we
describe the behaviour of the condensed part of the gas.

3.3.2-a Condensate
The wave function of the condensed part, which will act as a background for

the excitations on top, is shaped by the trap’s effect and the interaction between
atoms. We want to account for the effect of the change in the trap size on the
solution of this equation. We follow the method and the approximations made
in [156, 157, 133]. First, we expect the physics to be mainly one-dimensional in
the vertical direction due to the anisotropy of the trap ω⊥ ≫ ωz. We thus separate
the condensate wavefunction in a vertical part ϕ0(z, t) and radial part ψ0(r, θ, t)
such that

Ψ0 =
1√
2π

ψ0 (r, θ, t)ϕ0 (z, t) , (3.19)

where we choose the normalisation of these fields such that ϕ0 is normalised as the
wavefunction of 1D condensate

∫ +∞

−∞
|ϕ0 (z, t)|2 dz = N0 , (3.20a)

∫ +∞

0

|ψ0 (r, θ, t)|2 rdr = 1 , (3.20b)
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whereN0 is the number of atoms in the condensate. The factorisation ansatz. (3.19)
can only describe cylindrically symmetric condensates whose radial profile is the
same along their vertical extension. It can still provide a good approximation of
the ground state of the gas, as shown in [156] by comparing its profile to a nu-
merically computed one. Again, we appeal to the strong anisotropy of the trap
ω⊥ ≫ ωz to neglect the effect of the vertical trapping. To still give the gas a finite
extension, we assume it is confined in a box of length L in the vertical direction.
In addition, we assume the condensed part of the gas to be homogeneous in the
vertical direction i.e. ϕ0 = n0 = N0/L where n0 is the linear density of the conden-
sate along the vertical direction. Finally, homogeneity for a finite-size gas requires
working with periodic boundary conditions. The GPE over the radial direction
then reads

iℏ∂tψ = − ℏ2

2m

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

ℏ2

2ma4⊥
r2ψ +

ℏ2

m
2n0as |ψ|2 ψ , (3.21)

where the factor of n0 is inherited from the vertical homogeneous profile entering
the non-linear interaction term, and we recall that a⊥ =

√
ℏ/mω⊥ . Assuming

that the gas is stationary before any change in the trap frequency, we have

ψ0 (r, θ, t) = ψ̃ (r) e−iµℏ t , (3.22)

where µ is the chemical potential i.e. the energy per atom. The stationary GPE
now reads

µψ̃ = − ℏ2

2m

1

r

∂

∂r

(
r
∂ψ̃

∂r

)
+

ℏ2

2ma4⊥
r2ψ̃ +

ℏ2

m
2n0as

∣∣∣ψ̃
∣∣∣
2

ψ̃ . (3.23)

To find the ground state’s wave function in which the gas condenses, we have to
minimise the right-hand side of this wave function. It can be done approximately
by using a Gaussian ansatz for the radial profile

ψ̃ =

√
2

σ
e−

r2

2σ2 , (3.24)

where σ controls the extension of the gas. If we neglect the interaction of the
gas g = 0, then the Gaussian profile is an exact solution The extension is then
σ = a⊥, and the chemical potential is µ = ℏω⊥, completely controlled by the trap
frequency. This justifies the intuition that a⊥ is an estimate of the radial size of
the condensate in the trap. To compute the modifications to these values due to
interactions, we insert the ansatz (3.24) in Eq. (3.23) and integrate over the radial
direction

µ =
mω2

⊥
2

σ2 +
ℏ2

2mσ2
(1 + 4n0as) . (3.25)
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The first term is due to the trap. It favours smaller extensions, where the atoms lie
in the centre of the trap with minimal potential energy, while the second term, due
both to quantum pressure and the interactions, favours larger extensions, where
the atoms are far apart from each other. Minimising the right-hand side over σ
we find [174, 156] the extension of the ground state σ0 = a⊥(1+ 4n0as)

1/4 and the
associated energy µ0 = ℏω⊥(1+4n0as)

1/2. We found an approximate wavefunction
for the condensate when the trap frequency is constant

Ψ0 =

√
n0

2πσ2
0

e
− r2

2σ2
0 e−i

µ0
ℏ t . (3.26)

We now have to consider the change in the radial trapping frequency. In [130], both
the vertical and radial trapping frequencies are quenched (or modulated). Nev-
ertheless, since the radial trapping frequency is much tighter, the change of the
radial frequency injects much more energy for the same ratio of final and initial fre-
quencies. Therefore, we neglect changes in the vertical size. For a time-dependent
harmonic radial trap ω⊥(t) one can build an exact solution of the equation of
motion for a time-varying trap from a stationary solution at fixed trap frequency
ω⊥,0 [175]. Starting from our approximate stationary solution of Eq. (3.26), we
can then build the approximate time-dependent solution

Ψ0 (r, t) =

√
n0

2πσ2(t)
e
− r2

2σ2(t) e
i

[
mr2

2ℏ
σ̇
σ
−µ0

ℏ
∫ t
0

σ2
0

σ2(t′)dt
′
]

, (3.27)

where the radial extension of the gas σ is now time-dependent and satisfies the
Ermakov-Pinney [176, 177] differential equation

σ̈ + ω2
⊥(t)σ =

σ4
0ω

2
⊥,0

σ3
. (3.28)

The trap modulation’s effect has been accounted for by a change in the geometry
of the condensate. Notice that when the trap is held at ω⊥,0, then σ = σ0. It is
instructive to solve Eq. (3.28) for the two types of change considered in [130]: a
quench and a modulation. A quench of the radial trapping frequency from ω⊥ to
ω⊥,f will lead to oscillations of the radial size of the gas at 2ω⊥,f , see lower panel
of Fig. 3.3. In the case of a modulation at ωm, if it is slow enough i.e. ωm ≪ ω⊥,
the radial size will dominantly oscillate at ωm. However if the modulation is fast
ωm ≫ ω⊥ then the behaviour of σ has two characteristic frequencies ωm and
2ω⊥, see upper panel of Fig. 3.3. The oscillations at 2ω⊥ are present in the slow
case, but suppressed. Notice that the equation also has resonances, for instance,
at ωm = 2ω⊥ where σ grows exponentially. For the benchmark value in [130]
ωm ≈ 1.5ω⊥, shown in the upper panel of Fig. 3.3, we are in an intermediate regime
where we do expect to have oscillations at ωm and 2ω⊥, two similar frequencies.
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Figure 3.3: (Upper panel) Behaviour of σ, the radial extension of the condensate,
under a modulation of the transverse trapping frequency ω⊥ according to ω2

⊥ =
ω2
⊥ [1 + A sin (ωmt)]. σ is adimensionalised by the transverse size a⊥ associated

to ω⊥, and the time is adimensionalised by ω⊥. The green curve matches the
benchmark values used in [130], A = 0.1 and ωm = 1.45ω⊥. σ features oscillations
at two frequencies 2ω⊥ and ωm. The red curve corresponds to ωm ≪ ω⊥, σ
then predominantly features oscillations at ωm, while the breathing oscillations
at 2ω⊥ are suppressed. (Lower panel) Behaviour of σ, the radial extension of
the condensate, under a quench of the transverse trapping frequency ω⊥ → ω⊥,f .
Following the quench σ oscillates at a frequency 2ω⊥,f .
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We now compute the dynamics of the perturbation and show that it only de-
pends on that of the trap indirectly, through that of the condensate. In particular,
the perturbations undergo parametric amplification at half the frequency of oscil-
lations of the condensate. Here we will neglect the backreaction of perturbations
on the condensate and refer to [133] for treatment of that point.

3.3.2-b Perturbations
First, we will neglect excitations with nodes in the radial direction so that

Ψ̂ = Ψ0 (r, t)
[
1̂+ δΨ̂(z, t)

]
. (3.29)

Notice that we are dealing with a relative perturbation here, so the absolute per-
turbations have an r dependence given by the profile of the condensate. Follow-
ing [133], this approximation can be justified by computing the dispersion rela-
tion ω(k, n) of the three-dimensional excitations, perturbing Eq. (3.15) around
Eq. (3.26), where k is the wavenumber in the vertical direction and n is a quan-
tum number labelling excitations in the radial direction. This procedure was done
analytically in the non-interacting limit and numerically for excitations with no
azimuthal dependence in [156]. The authors found that azimuthally symmetric
excitations with a non-trivial radial part typically have an energy 2ω⊥ larger than
the longitudinal ones. Therefore, at the initial time, the thermal radial excitations
will be negligible in numbers compared to the longitudinal ones. Additionally,
anticipating the rest of the section, for a modulation at ωm we expect paramet-
ric resonance to occur in modes with a frequency half that of driving ωm/2, and
possibly at the trap frequency ω⊥. On the other hand, for a quench, we expect
oscillation at the trap frequency ω⊥. For the benchmark value ωm = 1.5ω⊥, both
of these frequencies are lower than the frequency of the first radial mode, which
will thus not be excited. We will neglect the radial excitations from now on. We
proceed by inserting Eq. (3.29) in Eq. (3.14) and collect the terms of second order
in δΨ̂ to form a Hamiltonian at first non-trivial order for the perturbations Ĥ(2).
At this stage, a slight technical complication comes from using relative perturba-
tions in Eq. (3.29). Ψ̂(†) are canonically conjugate operators, see Eq. (3.2), and√
n0 δΨ̂

(†) inherit this property (after integration over the radial profile) so that
[
δΨ̂ (x) , δΨ̂(†) (x′)

]
=

1

n0

δ (x− x′) . (3.30)

However, the time-dependent factor of Ψ0 in front of δΨ̂ in the expansion of Ψ̂
will lead to an additional term iℏΨ̇0δΨ̂ in the equation of motion at the first order
of δΨ̂ which is therefore not directly the Heisenberg equation derived from Ĥ(2).
This extra factor corresponds to implementing a canonical transformation δΨ̂ →
Ψ0δΨ̂ with a time-dependent factor which, as well-known, leads to a modified
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Hamiltonian. The computations are performed in Appendix. C.1, and we give the
resulting Hamiltonian (that we still call Ĥ(2) for simplicity)

Ĥ(2) =

∫ L

0

n0

[
ℏ2

2m

∂δΨ̂†

∂z

∂δΨ̂

∂z
+ g1n0δΨ̂

†δΨ̂ +
g1n0

2

(
δΨ̂† 2 + δΨ̂2

)]
dz , (3.31)

where we have integrated over the radial profile, and g1(t) = g/2πσ2(t) is the
effective 1D interaction constant. Eq. (3.31) is exactly the BdG Hamiltonian for
a one-dimensional gas whose interaction constant is made time-dependent. In
general, the interaction constant of a Bose gas can be controlled using a Fesbach
resonance, as in [141]. However, here the interaction constant is an effective one
coming from the dimensional reduction, and the time dependence is due to the
trap. We can compute the associated Heisenberg equation of motion, which could
have directly computed by perturbing Eq. (3.15) as in [156]

iℏ∂tδΨ̂ = − ℏ2

2m
∂2zδΨ̂ + g1(t)n0

(
δΨ̂ + δΨ̂†

)
. (3.32)

This equation is solved by decomposing the perturbation in Fourier modes

δΨ̂(z, t) =
1√
N0

∑

k∈2πZ⋆/L

eikzâk . (3.33)

where âk is the adimensional annihilation operator for atoms with momentum ℏk.
The k = 0 term is removed to make the number of condensed atoms conserved,
and the total number of atoms conserved at first order in perturbations2. The
creation/annihilation operators satisfy the canonical commutation relation

[
âk, â

†
k′

]
= δk,k′ , (3.34a)

[âk, âk′ ] = 0 , (3.34b)

where δk,k′ is the Kronecker delta. We have

N =

∫
dz ⟨ρ̂⟩ = N0 +

∑

k∈2πZ⋆/L

〈
â†kâk

〉
, (3.35)

where the second piece gives the number of excited atoms not in the condensate.
This piece is referred to as the depletion. We then write the Hamiltonian (3.31) in
Fourier modes

Ĥ(2) =
∑

k∈2πZ⋆/L

(
ℏ2k2

2m
+ g1n0

)
â†kâk +

g1n0

2

(
â†kâ

†
−k + âkâ−k

)
. (3.36)

2Notice that thanks to this, the Hamiltonian (3.14) vanishes at first order in perturbation,
and the quadratic Hamiltonian (3.31) is the first non-trivial contribution.
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The linear Heisenberg equation of motion (3.32) can also be recast as an equation
over âk and â†−k. We have

iℏ ∂t
(
âk
â†−k

)
=

(ℏ2k2
2m

+ g1n0 g1n0

−g1n0 −ℏ2k2
2m
− g1n0

)

︸ ︷︷ ︸
=Mk

(
âk
â†−k

)
. (3.37)

Notice that, just as for cosmological perturbations, see Sec. 1.2.3-c, as a conse-
quence of homogeneity of the Hamiltonian (3.14) these equations preserve the
total momentum only mixing operators having the same action, raising or lower-
ing the total momentum by k. Hence, only the mode ±k are coupled at quadratic
order.

3.3.2-c Dynamics in the absence of external drive
Let us first consider the time-independent case where the trap frequency is held

at a fixed value ω⊥,0 so that σ = σ0. For a free system g = 0, Mk is diagonal and
atoms of different momenta evolve independently. In the presence of interactions,
g ̸= 0, there is a non-trivial mixing between ±ℏk atoms. At the level of the
Hamiltonian, this manifests in the fact that Eq. (3.36) is not diagonal in the atom
number basis. Therefore, the ground state of the interacting gas does not only
contain atoms at rest, a part of them will be moving; this is the so-called quantum
depletion [166]. To quantify this depletion we need to diagonalise the Hamiltonian
or equivalently the matrix Mk of Eq. (3.37). As for cosmological perturbations,
see Sec. 2.2, this is done via a Bogoliubov transformation

(
âk
â†−k

)
=

(
uk vk
v∗−k u∗−k

)

︸ ︷︷ ︸
=Pk

(
b̂k
b̂†−k

)
, (3.38)

where we have defined the Bogoliubov coefficients that satisfy the standard rela-
tions |uk|2 − |vk|2 = |u−k|2 − |v−k|2 = 1 and ukv−k = u−kvk for the pairs (b̂±k, b̂

†
±k)

to be canonically conjugated. These operators define the quasi-particles of the
system, often called phonons, although this term is sometimes reserved only for
low-lying excitations. We here use these words interchangeably. We then pick Pk to
diagonalise Mk, and we find the expressions of the two Bogoliubov coefficients [166]

uk =

√(ℏ2k2
2m

+ g1n0

)
+ ℏωk

2ℏωk

=

√
ℏ2k2
4m

+ g1n0 +
√

ℏ2k2
4m√

2ℏωk

, (3.39)

vk = −

√(ℏ2k2
2m

+ g1n0

)
− ℏωk

2ℏωk

= −

√
ℏ2k2
4m

+ g1n0 −
√

ℏ2k2
4m√

2ℏωk

, (3.40)
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where we have defined the frequency

ωk = c|k|
√
1 +

ξ2k2

4
, (3.41)

the speed of sound c2 = g1n0/m and the healing length ξ = ℏ/mc. Eq. (3.41)
is the standard Bogoliubov-de Gennes dispersion relation [166]. The diagonalised
dynamics then reads

∂t

(
b̂k
b̂†−k

)
=

(
−iωk 0
0 iωk

)(
b̂k
b̂†−k

)
, (3.42)

and so
b̂k(t) = e−iωktb̂k(0) . (3.43)

Using the phononic creation and annihilation operators, we rewrite the Hamilto-
nian, which is now diagonal

Ĥ(2) =
∑

k∈2πZ⋆/L

ℏωkb̂
†
kb̂k . (3.44)

The phonons describe the gas (at the first order in perturbation) as a collection
of free quasi-particles of energy ℏωk. We can get a physical understanding of the
nature of these excitations by considering two limits. In the large wavenumber limit
kξ ≫ 1, we have ωk ∼ ℏk2/2m, the dispersion of free atoms, and the Bogoliubov
coefficients give uk → 1 and vk → 0: the quasi-particles are close to free atoms.
On the other hand, for kξ ≪ 1, we have ωk ∼ c|k|, the dispersion of sound waves,
and the Bogoliubov coefficients becomes equal uk ∼ vk ∼

√
mc/(2ℏ|k|) : the low

wavenumber excitations are that of a fluid. It is in this hydrodynamic regime that
the analogy of analogue gravity is usually formulated, see Sec. 1.3.

3.3.2-d Dynamics in the presence of an external drive
We now consider the case where the interaction constant g1(t) is varied, or

equivalently as considered in [178, 155, 132] the speed of sound c(t) is varied.
We follow the analysis of [132]. The passage matrix Pk defined in Eq. (3.38) is
time-dependent, and then the equation of motion for the phononic operators reads

∂t

(
b̂k
b̂†−k

)
=

(
−iωk(t)

ω̇k

2ωk
ω̇k

2ωk
iωk(t)

)(
b̂k
b̂†−k

)
, (3.45)

where we have used |uk|2−|vk|2 = 1, and the fact that only c(t) is varied here while
the mass is kept constant. The anti-diagonal term comes from the time depen-
dence of the passage matrix. It shows that, in addition to the adiabatic change of
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frequency ωk(t) in the phase, the evolution leads to a non-trivial mixing between
the phononic modes ±k, and so a quasi-particle creation. Notice the similarity
with Eq. (32) of [1], reproduced in Sec. 2.2, for cosmological perturbations. This
equation is then similarly solved by introducing a Bogoliubov transformation with
coefficients αk(t) and βk(t) such that

(
b̂k(t)

b̂†−k(t)

)
=

(
αk(t)e

−i
∫ t
tin

ωkdt
′
β⋆
k(t)e

−i
∫ t
tin

ωkdt
′

βk(t)e
i
∫ t
tin

ωkdt
′

α⋆
k(t)e

i
∫ t
tin

ωkdt
′

)(
b̂k(tin)

b̂†−k(tin)

)
, (3.46)

where αk(tin) = 1, βk(tin) = 0 and b̂
(†)
k (tin) corresponds to the operators of

Eq. (3.38) evaluated at some time tin. In Eq. (3.46), we have factored out the
adiabatic evolution of the phase, and Eq. (3.45) is then equivalent to

α̇k =
ω̇k

2ωk

βke
2i

∫ t
tin

ωkdt
′
, (3.47)

β̇k =
ω̇k

2ωk

αke
−2i

∫ t
tin

ωkdt
′
. (3.48)

We consider a situation where the frequency of the trap is varied during a
finite duration such that ω⊥(t) −−−−→

t→−∞
ω⊥,in and ω⊥(t) −−−−→

t→+∞
ω⊥,out. In these

two asymptotic regions, the Bogoliubov coefficients uin,outk and vin,outk are time-
independent, so the phonons defined by the creation and annihilation operators
b̂
(†) in,out
±k of Eq. (3.38), evaluated in the asymptotic regions, have a well-defined

number. These pairs of in and out operators are related by a Bogoliubov transfor-
mation. This can be seen by fixing tin → −∞ in Eq. (3.46). Then the operators
b̂
(†)
±k(t) in the asymptotic future will correspond to b̂(†) out±k (up to the running phase

that we factorised out) so

b̂out±k = αk(+∞)b̂in±k + β⋆
k(+∞)b̂† in∓k . (3.49)

The dynamics is then completely fixed by solving Eq. (3.47) for the specific vari-
ation of ωk(t) we consider. In principle, for a given variation of ω⊥(t), we should
first solve Eq. (3.28) to get the evolution of σ(t), which we then use as an input to
solve Eq. (3.47). In practice, in [4], we made the simplifying assumption that the
modulation of ω⊥(t) induces a modulation of ωk(t) at the same frequency, which
we recall is only valid for a slow enough modulation.

3.3.3 Parametric amplification
3.3.3-a Link with preheating

To exhibit the link between the creation of phonons in the Bose gas and the
preheating mechanism described in Sec. 1.2.4, we focus on the case where, for
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example following a quench, the speed of sound oscillates at a certain frequency

c2(t) = c20 [1 + a sin (ωmt)] , (3.50)

so that
ω2
k(t) = ω2

k,0 [1 +Ak sin (ωmt)] , (3.51)

where Ak = a(1 + k2ξ2/4)−1, we recall that ξ is the healing length defined below
Eq. (3.41). This modulation type was considered in [132]. To derive a Mathieu’s
equation, inspired by [179], we consider the perturbations of the density and phase
fields. Using the form (3.4), after integration over the radial profile, we expand
the field in density δρ̂ and phase δθ̂ perturbations assumed small

Ψ̂ = n0

√
1̂+

δρ̂

n0

eiδθ̂ ≈ n0

(
1+

δρ̂

2n0

+ iδθ̂

)
. (3.52)

Equating with Eq. (3.29), and taking the hermitian and anti-hermitian part, we
get

δρ̂ (z, t) = n0

(
δΨ̂ + δΨ̂†

)
, (3.53a)

δθ̂ (z, t) = − i
2

(
δΨ̂− δΨ̂†

)
. (3.53b)

We use the same conventions as [1] for the Fourier transform of these quantities
(chosen to make them adimensional)

δρ̂ =

√
n0

L

∑

k ̸=0

eikxρ̂k , (3.54a)

δθ̂ =
1√
Ln0

∑

k ̸=0

eikxθ̂k , (3.54b)

where we recall L is the length of the gas. In Fourier space, the relation with the
perturbations of the atomic field then reads

ρ̂k = âk + â†−k = (uk + vk)
(
b̂k + b̂†−k

)
, (3.55a)

θ̂k = −
i

2

(
âk − â†−k

)
= − i

2
(uk − vk)

(
b̂k − b̂†−k

)
, (3.55b)

where in the second equality we have written the expressions in terms of phononic
operators. First, notice that in a thermal state of atoms (or phonons), the above
expressions show explicitly that the average density and phase fluctuations vanish
⟨δθ̂⟩ = ⟨δρ̂⟩ = 0. Second, notice that (iℏδθ̂, δρ̂) form a canonically conjugated pair.

239



Finally, expressing uk + vk =
√

ℏk2/2mωk , notice that the normalisation (similar
to that of a relativistic scalar field) has a time-dependent piece due to ωk. Now
using Eq. (3.45) we can write the equation of motion of the density perturbation
modes

¨̂ρk + ω2
kρ̂k = 0 . (3.56)

For a modulation of the frequency as in Eq. (3.51), Eq. (3.56) is exactly a Mathieu’s
equation as that found for a scalar field excited by the oscillations of the inflaton
in preheating, see Eq. (1.139). Notice that Eq. (1.139) was obtained in the regime
where the expansion of space is negligible. Having an analogue of the equation in
the presence of expansion could maybe be achieved by considering the expansion
of the vertical part, which would redshift the modes as in [138]. Following the
standard analysis of Mathieu’s equation [74] we thus expect an exponential creation
of density fluctuations and pairs of phonons in some resonant bands.

To conclude this part, we compare two other studies of analogue preheating
systems [? 145]. On the one hand, the setting of the numerical study [146] is very
similar to the one of [130] in that it considers a 1D Bose gas whose longitudinal
modes are sourced by initial excitations in the radial modes. The main difference
is that while in [146] only the first excited radial mode is populated, in [130], the
gas is driven to oscillate in a quasi-classical manner in the radial direction. The
radial excitation is then treated as a second quantum field in the former, while it
is taken to be a classical background in the latter. Consequently, the longitudinal
modes are excited via a tachyonic instability triggered by the excited radial mode
in [146], while they are excited via parametric resonances due to the coherent
radial oscillations in [130]. On the other hand, the experiment [145] is based on
a quite different set-up which uses 2D interface waves. The system is placed on
a moving platform, which oscillates to trigger a parametric amplification of the
waves. In contrast to [146, 145], the excitations are classical in nature, and the
amplification is seeded by environmental noise rather than vacuum or thermal one.
The authors follow the amplification of the modes from their initial exponential
growth to its saturation and the redistribution towards other modes of the system,
leading to the growth of secondaries. In Sec. 3.4, we consider the effect of damping
in a 1D Bose gas due to interaction with a thermal population of quasi-particles.
Our analysis focuses on linear damping when the population of the decaying mode
is relatively small. In contrast, the system of Ref. [146] features linear damping
but not due to interaction with other modes, and the authors focus on damping
triggered by the largeness of the amplitude of the resonant mode leading to non-
linear damping.

3.3.3-b Growth and decay of phonon numbers and correlation
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In [132], the authors analysed analytically and numerically the generation of
phonons and the correlation between them in the presence of an effective dissipa-
tion rate. Let us first review the results in the absence of dissipation. Assuming
that we start from a thermal state (including possibly the vacuum), the initial state
is Gaussian, and the evolution via Eq. (3.47) leads to another Gaussian state. For
the homogeneous system we consider, the covariance matrix for the modes ±k is
then completely characterised by the 2-point functions

n±k =
〈
b̂†±kb̂±k

〉
, (3.57a)

ck =
〈
b̂±kb̂∓k

〉
, (3.57b)

where n±k is the number of phonons in the mode ±k and ck the correlation in
between them. Notice that ck is a complex quantity and, by definition, ck =
c−k. We assume that the system is isotropic nk = n−k for simplicity. Using the
relation (3.49), we can relate this quantity before and after the variation of the
speed of sound. We have

nout
k =

(
|αk|2 + |βk|2

)
nin
k + |βk|2 , (3.58a)

ck = αkβ
⋆
k

(
2nin

k + 1
)
, (3.58b)

where we have used cink = 0 and ⟨b̂kb̂†−k⟩ = 0 in a homogeneous thermal state.
We see that generically phonons are created by the variation of the sound

speed, the extent of which is controlled by the magnitude of the Bogolibuov coef-
ficients and the initial population. There are two types of contributions, the one
proportional to the initial population nin

k , a stimulated creation, and the sponta-
neous creation, which would be present even if nin

k = 0. Spontaneous production
can occur from an initial vacuum state, and it arises in the computation from the
non-commutation of the creation/annihilation operators; it is a genuine quantum
process. One cannot distinguish a phonon created via a stimulated or a spon-
taneous process, these two channels add phonons in the mode ±k in a common
quantum state. Still [132], a way to check those phonons were created out of the
vacuum is to check that their state is entangled, also referred to as ‘non-separable’,
see Sec. 2.4 for details on this notion. For an isotropic and homogeneous Gaussian
state, the non-separability condition is equivalent to the inequality [132, 180]

∆k = nk − |ck| < 0 . (3.59)

After the modulation, we have

∆out
k =

− |βk| (|αk|+ |βk|) + nin
k

(|αk|+ |βk|)2
, (3.60)
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which makes clear the effect of the different contributions. If we start from the
vacuum, then ∆out

k < 0, and the phonons are in an entangled state. On the
other hand, if we start to increase nin

k , then ∆k will also increase, and it can
make the state separable if 2nin

k + 1 > (|αk|+ |βk|)2. Therefore, only creation out
of the vacuum via a spontaneous process can generate an entangled state, while
stimulated creation will dilute this entanglement. In addition, with the form (3.60),
one can check that for a fixed value of nin

k , ∆out
k is monotonically decreasing as |βk|

increases. For very large |βk|, it goes to ∆out
k → −1/2. Therefore, the resonant

modes of the parametric amplification, which have the largest values of |βk|, will
exhibit the smallest values of ∆out

k .

The authors of [132] solved Eq. (3.47) for the modulation of Eq. (3.51) and
showed that, as expected from the Mathieu’s equation, Eq. (3.56), the Bogoliubov
coefficients only grows exponentially in some resonant bands and oscillate out of
this band. They also analysed the evolution of ∆k for different modes. As an
illustration we plot in Fig. 3.4 the evolution of nk and |ck| obtained for a small
quench of the trapping frequency ω⊥,f/ω⊥ = 1.048, that results in a modulation
of ωk at a frequency 2ω⊥. The ratio ω⊥,f/ω⊥ determines the amplitude a of the
oscillations of c2 in Eq. (3.50), which will be small in this case, putting us in the
narrow resonance regime, see Sec. 1.2.4. The instantaneous Bogoliubov coefficients
of Eq. (3.46) are numerically computed by first solving Eq. (3.28) and using the
result as an input for a numerical resolution of Eq. (3.45). We then compute nk

and |ck| from Eqs. (3.58a)-(3.58b) as a function of time for a non-vanishing initial
temperature kBT/mc

2 = 1. We chose these values to make the entanglement
generation clear and visible. We comment on more realistic values below. Fig. 3.4
shows the generation of an entangled state for the modes ±k at late times i.e. |ck| >
nk.

In [132], the authors solved Eq. (3.47) for a modulation lasting 50 oscillations,
close to the value of Nm ≈ 54.4 used in the second experiment of [130]. They
estimated the initial temperature value kBT/ℏω⊥ = 1. They concluded the simple
quadratic model overestimates the intensity of correlations, predicting that the
state should have been entangled. To illustrate this conclusion, we plot in Fig. 3.5
the evolution of nk and |ck| following a modulation of the trapping frequency. We
used values estimated from [130]. We considered a modulation at the benchmark
value of ωm/2π = 2170Hz, lasting Nm ≈ 54.4 oscillations. We used values of the
speed of sound and temperature computed from the estimates derived in Sec. 3.2,
which gives c ≈ 8mm/s and kBT/mc2 ≈ 6.5. In this respect, the value of kBT/ωk =
1, at resonance, used in [132] seems too low. It would correspond to kBT/mc2 ≈
2.3. Still, it is in the appropriate range for the current run of the experiment
where kBT/mc2 ≈ 1. Another difference with the computations of [132] is that, in
Fig. 3.5, we solved Eq. (3.28) to deduce the change in the speed of sound due to
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Figure 3.4: Evolution of the number of quasi-particles nk and their pair-correlation
|ck|, as predicted by Eqs. (3.58a)-(3.58b), following a quench of the trap frequency.
The vertical dashed line is located at the discrete mode kj whose frequency is
closest to half the final trap frequency 2ωkj = ω⊥,f . We are in the narrow resonance
regime where resonant modes are located close to this sub-harmonic mode. We
consider a gas of length L/a⊥ = 256.
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the modulation, rather than using the effective form Eq. (3.51). The oscillation
of σ is a combination of several oscillations at different frequencies as shown for
instance in the upper panel of Fig. 3.3. In the context of preheating [181, 182, 183],
it is known that such non-ideal modulation results in a modified structure of the
Mathieu equation resonance bands, for instance by broadening them 3 In our
particular case, Fig. 3.5 shows two resonant peaks, one around ωk = ω⊥, and
one around ωk = ωm/2. As reported in [132], and at odds with the experimental
results of [130], Fig. 3.5 shows that the phononic states of the two pairs of modes
are entangled at late time. For comparison, we have plotted the result of the same
modulation on the initial state of phonons at a lower temperature kBT/mc2 = 1,
close to current experimental values. We observe that the state becomes entangled
at earlier times and that the lower bound δk = −0.5 is quickly saturated. Note
that despite this saturation, the entanglement will be harder to detect when the
number of excitations is very large, see discussion below Eq. (3.64).

The authors of [132] suggested as a tentative explanation for the absence of
entanglement that some dissipative processes, ignored here, might have weakened
the correlations. They then introduce a model of dissipation that preserves the
Gaussianity and isotropy of the state of the modes so that they are still described by
nk and ck. Therefore, the resulting state is in the same class as the ones considered
for the cosmological perturbations in Sec. 2. The authors then derived an evolution
equation for nk and ck parameterised by a dissipation rate Γ, such that nk and
ck both decay at a rate 2Γ. They show that a large enough Γ can prevent the
generation of entanglement and, in some cases, even stop the exponential growth
of the number of phonons. Note that in Fig. 3.5 the number of phonons in the
resonant modes is much larger than that reported in [130]. Thus, in addition to
prevent the generation of entanglement, we do expect dissipation to significantly
reduced the number of phonons reduced. The authors of [132] give a threshold
Γ/ωk ≥ 4.2%4 above which they estimated the dissipation sufficient to explain the
absence of entanglement in [130].

However, the treatment of [132] was effective. In Sec. 3.4, by analysing the
non-linear evolution of the gas, we exhibit a micro-physically derived dissipation
mechanism due to Beliaev-Landau scatterings present in any one-dimensional Bose
gas. In Sec. 3.6, we explain that the same processes are expected to affect cor-
relations in just the same proportion so that due to these scatterings, nk and ck
decay approximately at the same rate. We then compare the magnitude of this
rate with the bounds given in [132]. Notice that we limit our investigations to the

3Quasi-particle interactions can also lead to broadened peak as shown in Sec. 3.4. However,
note that in this case the other modes in the peak are still non-resonant and are fed by the decay
of excitations in the resonant modes.

4We use our convention here where nk and ck decay at Γk, while their decay rate is 2Γk

in [132].
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Figure 3.5: Evolution of the number of quasi-particles nk and their pair-correlation
|ck| as a function of time during modulation of the trap frequency at ωm with
amplitude A = 0.1, as predicted by Eqs. (3.58a)-(3.58b). At final time the number
of phonons in the first peak is nk = 8.3 × 102, outside of the frame of the figure.
We consider a gas of length L/a⊥ = 256.
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effect of the dissipation on the growth of the resonant modes. The loss of entan-
glement and slowing down of the exponential growth are only the first effects of
non-linearities. They will be followed by substantial growth of non-resonant modes
and back-reaction on the condensate oscillations, which will be damped. These
later stages are very reminiscent of the very non-linear regime following preheating.
They were numerically analysed in [133]. As preparation for deriving the phonon
scattering rate in Sec. 3.6, we explain in the next sub-section, Sec. 3.3.4, why the
formalism used so far is not adapted for 1D gases and develop a more suitable one.

We close this sub-section by considering how the non-separability criteria of
Eq (3.59) can be experimentally accessed.

3.3.3-c Density-density correlation
In [156, 157], the authors showed that the 2-point density-density correlation

function, a quantity experimentally measured in [111] for instance, can be used to
demonstrate the non-separability of the phonon pairs. We define the connected
2-point density correlation function at equal time following [157]

G(2) (z, z′; t) = ⟨ρ̂ (z, t) ρ̂ (z′, t)⟩ − ⟨ρ̂ (z, t)⟩ ⟨ρ̂ (z′, t)⟩ ,
= ⟨δρ̂ (z, t) δρ̂ (z′, t)⟩ , (3.61)

where we have used that ⟨δρ̂⟩ = 0 to get the second line. Taking the Fourier
transform and expanding in terms of quasi-particles, we get

G(2) (k, k′; t) =

∫ L

0

∫ L

0

G(2)e−ikze−ik′z′ (z, z′; t) dzdz′ ,

= n0L ⟨δρ̂kδρ̂k′⟩ ,
= (uk + vk)

2 [2nk + 1 + 2ℜ (ck)] δk,−k′ ,

(3.62)

where the Kronecker delta comes from the homogeneity of the state. The only non-
trivial information then comes from the anti-diagonal 2-point functionG(2)(k,−k) =
G

(2)
k . Evaluating the above in the out asymptotic region, where the quasi-particles

are evolving freely, we have

G
(2)
k (t) = G

(2) out vac
k

[
2nout

k + 1 + 2ℜ
(
coutk e−i2ωout

k t
)]

, (3.63)

where we have introduced the out vacuum value G(2) vac
k = (uoutk + voutk )2. If at

any time t, G(2)
k is less than its vacuum value then it implies |coutk | > nout

k i.e. the
state of the quasi-particles is non-separable. The density-density correlation can
be directly accessed in an experimental set-up allowing for in situ measurements,
e.g. [111].
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In the case of [130], the phononic distribution is measured by opening the
trap and letting the atomic cloud expand and fall on a measuring device. The
velocities are inferred from the expansion of the cloud, a method called Time Of
Flight measurement (TOF), and one can show that, in the limit of an adiabatic
opening, the state of the phonons is mapped to the atoms [156], a phenomenon
known as phonon evaporation [130]. Using this procedure, the authors were able
to measure the following quantity

g(2) =

〈
b̂†−kb̂

†
kb̂kb̂−k

〉

〈
b̂†kb̂k

〉〈
b̂†−kb̂−k

〉 = 1 +
|ck|2
n2
k

, (3.64)

where we performed Wick contractions to get the second equality. The condition
of entanglement (3.59) is now recast as g(2) > 2. Note that measuring g(2) > 2, or
likewise G(2)

k < G
(2) vac
k , is not a non-classicality criteria in the sense of Ref. [184].

Indeed, we could find a classical model of the system giving G
(2)
k < G

(2) vac
k . A

Bell inequality would be necessary to rule out a whole class of alternative classical
theories. Still, our aim is slightly different here. We already know that the correct
description of the system is a quantum one. Adopting this description, we want
to show that the system is in a particular type of quantum states, the entangled
states, which is sufficient to demonstrate vacuum amplification.

We reproduce in Fig. 3.2 the measured values in [130]. We see that across the
spectrum, and in particular around the resonant mode, g(2) < 2. Therefore, as
previously stated, one cannot claim that the phonons produced in the experiment
were in an entangled state. Notice that with the values of nk and |ck| shown in
Fig. 3.5, although the state is entangled since ∆out.

k is negative, we would have
g(2) ≈ 2 at the resonant modes i.e. the threshold value between a separable and
an entangled state. This convergence to 2 is due to the normalisation of g(2) by
the number of phonons nk. It illustrates the notion of visibility of the entangle-
ment [157, 133]. Even if the state is entangled, it can be difficult to tell if we have
to compare two very large numbers, nk and |ck|, while their difference is bounded
from below by −1/2. Therefore, the visibility of entanglement in the experiment
is optimal when we create a small number of excitations [133]. Consequently, as
illustrated in Fig. 3.5, where entanglement is reached with fewer excitations cre-
ated for the smallest of the two temperatures, we should use the lowest possible
initial temperature for optimal visibility.

Having completed our review of the previous theoretical endeavours to analyse
the experiment results, we will present the progress made during this PhD. First,
we discuss the Madelung perturbation scheme, which is at the core of the analysis
conducted in [1] reproduced in Sec. 3.4.

3.3.4 Madelung approximation of 1D gas
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In this section, we examine more closely the BdG approximation, presented in
Sec. 3.3.2-b, in the case of one-dimensional gas. We show that it is not valid any-
more if the length of the gas L is larger than a critical size r0 defined in Eq. (3.76).
We then present a perturbative scheme based on the Madelung form (3.4), which
remains valid for long one-dimensional quasi-condensates.

3.3.4-a Failure of BdG in 1D gas
Assuming that we are in a static situation g = cst, the approximate ground

state of the system is given by the vacuum of phonons nk = ck = 0 for any k. The
number of depleted atoms in the mode k then reads

〈
â†kâk

〉
= |vk|2 ∼k→0

g1n0

2ℏck
, (3.65)

where we have taken the small wavenumber limit. The total number of atoms N
given by Eq. (3.35) is always larger than that in the condensate N0, so the total
density n always larger than n0. We want to compute the value of the total density
of the gas in the thermodynamic limit L→ +∞ for a condensate of fixed density
n0. The extra contribution is given by the number of depleted atoms normalised
by L, which by using the formula for Riemann sums, reads

1

L

∑

k∈2πZ⋆/L

〈
â†kâk

〉
−−−−→
L→+∞

1

2π

∫ +∞

−∞

〈
â†kâk

〉
dk = +∞ . (3.66)

The right-hand side is an IR divergent integral since its integrand behaves as
k−1. In the large L limit, the Bogoliubov approximate predicts an unphysical
infinite density. This failure of the approximation is directly related to the general
Mermin-Wagner-Hohenberg theorem [185] stating the absence of long-range order
in one and two-dimensional systems. The theorem can be proven using general
inequalities on the number of excitation resulting in a divergence of some physical
quantities, see Sec. 7.4 of [166]. In the specific case of Bose gas, it implies that
there can be no genuine condensate in reduced dimensions, only quasi-condensate.

The physical reason behind this failure is that one-dimensional Bose gas ex-
hibits large phase fluctuations [166]. One can check that by computing the phase-
phase correlation in a thermal state of phonons using Eq. (3.55b), see Sec. 3.3.4-c.
Because of these fluctuations, any pre-existing order will be gradually destroyed.
Thinking in terms of numbers rather than operators, the condition |δΨ| ≪ 1 of
the BdG approximation requires that the atomic field Ψ, a complex number, is
close to Ψ0. This condition requires that the modulus and the phase of Ψ are close
to that of Ψ0 i.e. the density and the phase perturbations around the condensate
are small. The latter condition is not satisfied for a 1D gas of arbitrary length. A
finite length L of the gas regulates the unbouded growth of the phase fluctuations,
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but the |δΨ| term would become more and more problematic as L is increased. To
avoid this problem, we can formulate a perturbation theory for one-dimensional
gas in the Madelung form of Eq. (3.4), where we expand the relative density per-
turbation, but not the phase one that cannot be assumed small. We followed this
strategy in [4] to define quasi-particles and calculate their interaction rate, and we
now give more details on this approach.

3.3.4-b Quantum hydrodynamics and quasi-condensate
Before making any computations using the density and phase formalism, we

have to say a few words about the technical difficulties hidden there. Indeed, the
analysis in density and phase can only describe long enough wavelength fluctua-
tions. As a consequence, as mentioned below the definition Eq. (3.4), the phase
operator cannot be mathematically well-defined. It is physically intuitive that
the notion of fluid ceases to make sense when looking at scales shorter than the
inter-particle distance: the density is infinite at points where atoms are located
and vanishing elsewhere. The authors of [168] showed that in order to make the
effective character of the theory manifest and make the mathematical treatment
rigorous, it is necessary to discretise space in boxes of size dx, which provides
a UV cut-off to the theory. Using this discrete theory, we want to describe a
quasi-condensed gas which exhibits small density fluctuations i.e. the variance of
its density is smaller than its average value Var(ρ̂)/⟨ρ̂⟩ ≪ 1. Following [168], it is
instructive to write the variance in this discrete theory explicitly

Var (ρ̂) =
〈
ρ̂2
〉
− ⟨ρ̂⟩2

=
〈
Ψ̂† (x) Ψ̂† (x) Ψ̂ (x) Ψ̂ (x)

〉
+
⟨ρ̂ (x)⟩
dx

− ⟨ρ̂ (x)⟩2 ,
(3.67)

where we have used the commutation relation of the discrete theory [Ψ̂ (x) , Ψ̂† (x′)] =
δx,x′/dx. We then have

Var (ρ̂)
⟨ρ̂⟩2

=
1

⟨ρ̂⟩ dx +
⟨: δρ̂(x)2 :⟩
⟨ρ̂⟩2

. (3.68)

The density fluctuations thus contain two terms. The first one comes from the
commutator; it depends on the discretisation and would be infinite in a continu-
ous theory. Therefore, to suppress the density fluctuations, we must choose a box
size large enough to ensure that ⟨ρ̂⟩ dx ≫ 1 i.e. the occupation number in each
box is large. The second term in Eq. (3.68) is the normal-ordered (with respect to
the atomic field) relative density fluctuations and regular in a well-behaved con-
tinuous theory. It encodes information about the state considered rather than the
discretisation, and we must consider states where it is small. Under these first
two requirements, we can define an approximate phase operator [168]. Additional

249



requirements are necessary to describe well the physics of long wavelength fluctu-
ations. The size of the boxes must be smaller than the healing length, to capture
the departure of excitation from exact sound waves, and smaller than the thermal
de Broglie wavelength λT =

√
2πℏ2/mkBT , for the energy cut-off ℏ2/mdx2 to be

larger than the typical energy of thermal fluctuations kBT . In this framework,
the authors of [168] then develop a perturbation theory around a classical solution
of the equation of motion given by ρ0(x) and θ0(x). Assuming that the density
fluctuations about this solution are small |δρ̂(x)| ≪ ρ0, and that the phase fluctua-
tions are slow |∂xδθ̂|dx≪ 1, they compute one and two-body correlation functions
and show that no divergence occurs when taking the limit dx→ 0. This rigorous
procedure is quite technical, and in [4], we skipped over these aspects when intro-
ducing the density and phase representation. Nonetheless, no divergence appears
in the computations, the spectrum of the quadratic theory found does match that
derived in [168], and the decay processes that we have identified involve only ther-
mal fluctuations located at very long wavelengths, where the effective density and
phase treatment is expected to be valid. The density and phase representation is
also used in the numerical simulations of the one-dimensional gas we performed
to confirm our analytical results. There, we represented the system using a grid
and chose the space-step dx to respect the prescription of [168]. At the end of
this section and in the next Sec. 3.5, we give additional details on the physics of
quasi-condensate and the method used to simulate it, that we omitted in [4].

3.3.4-c Phase and density fluctuations
We follow Sec. 3.4 and perform the canonical transformation to density and

phase using Eq. (3.4) while ignoring previously mentioned technical difficulties.
We first consider a classical theory of fields, where the transformation is indeed
canonical, and all quantities are well-defined. We then quantise the density and
phase by imposing [

ρ̂ (x) , θ̂ (x′)
]
= i δ (x− x′) . (3.69)

We reproduce the Hamiltonian (3) of [4]

Ĥ =

∫ L

0

dx

[
ℏ2

2m

∂θ̂

∂x
ρ̂
∂θ̂

∂x
+

ℏ2

8mρ̂

(
∂ρ̂

∂x

)2

+
g

2
ρ̂2

]
, (3.70)

where we dropped infinite commutators coming from the kinetic and interaction
term. The latter could be renormalised by an (infinite) chemical potential shift.
Notice that we have not expanded the exponential of the phase to obtain the above.
We then assume we are in a state where the density and phase are perturbations
around homogeneous and stationary solutions of the classical equations of motion,
given by ρ0(x) and θ0(x)

Ψ̂ = eiθ0+iδθ̂
√
ρ0 + δρ̂ , (3.71)
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with small relative density fluctuations |δρ̂(x)|ρ−1
0 , and slow phase fluctuations

i.e. |∂xδθ̂| small. The Hamiltonian Eq. (3.70) is then expanded in a perturbation
series, see Eq. (5) of [4]. The result of this expansion is given in Eq. (6) of [4].
We diagonalise the quadratic term of this expansion to Eq. (3.46) by introducing
quasi-particle creation/ annihilation operators defined in Eq. (10) of [4]. Notice
that both the energy spectrum defined by this procedure, see Eq. (9) of [4], and
the link between quasi-particles and density/phase, see Eq. (10) of [4], have the
same form as that obtained in the BdG approach, Eq. (3.41) and Eq. (3.55b)5.
However, one subtle difference is that n0 in the BdG expressions is replaced by ρ0,
the background density, in the Madelung perturbation scheme. Since ⟨δρ̂⟩ = 0,
one can check by computing the number of atoms in the gas via Eq. (3.35) that ρ0
is, in fact, the total density of atoms, while n0 was the density of condensed atoms
only. The Madelung perturbation scheme is thus, by construction, immune to the
appearance of divergences in the total number of atoms. Up to this substitution,
the two approaches only differ in how the atomic field is reconstructed from the
phonons. In BdG, the density and phase perturbations are treated as additive
perturbations of the atomic field, while in the density and phase picture, the
reconstruction is non-linear, see Eq. (3.71).

Using these new quasi-particles, we can define an approximate thermal state
of the system by assuming a thermal distribution ⟨b̂†kb̂k⟩ = nth

k , where

nth
k =

1

eℏωk/kBT − 1
. (3.72)

We can then compute the phase and density fluctuations in this state. We have

χ (x− x′) =
〈
δθ̂ (x) δθ̂ (x′)

〉
=

1

4ρ0L

∑

k ̸=0

eik(x−x′) (uk − vk)2
(
2nth

k + 1
)
,

≈ 1

8πρ0

∫ +∞

−∞
eik(x−x′) (uk − vk)2

(
2nth

k + 1
)
dk ,

(3.73)

where in the second line, we have taken the continuum limit. Although the integral
is taken over the whole range of wavenumbers, there should be a UV cut-off since
the hydrodynamical theory is not valid for arbitrarily large wavenumbers, and the
integral is divergent in this limit where uk − vk → 1. This divergence gives rise to
a Dirac delta and we study the finite part of the integral. We want to extract this
integral’s physical large wavelength content, which will correspond to the large
separation s = |x − x′| regime. For that, we expand the integrand in the limit of

5The published equation reproduced in Sec. 3.4 has a factor 1/2 too many in the definition
of Ck given below Eq. (10).
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small k. The lowest order term gives

(uk − vk)2
4

(
2nth

k + 1
)
∼k→0

kBT

mc2
1

k2a2⊥
. (3.74)

The phase fluctuations thus diverge for large wavelengths, the limit in which we
expect the theory to be valid. In addition, the term in Eq. (3.74) gives the integral
a finite UV contribution, so we do not need to introduce a cut-off to regularise it.
Notice that the dominant fluctuations are of thermal origin, as made manifest by
the factor of T , while vacuum fluctuations would contribute in 1/k [166]. In one
dimension, the integral in Eq. (3.73) does not pick up any factor of k from the
differential element and therefore exhibits an IR divergence. The divergence can
be renormalised by removing the coincident point fluctuation χ(0) [166]. We then
have

χ (s)− χ (0) ≈ 1

πρ0

∫ +∞

0

[cos (ks)− 1]
kBT

mc2
dk

k2
= − s

r0
, (3.75)

where
r0 =

2ℏ2ρ0
kBTm

, (3.76)

gives the characteristic scale for the growth of phase fluctuations. To compare, we
compute the density fluctuations

⟨δρ̂ (x) δρ̂ (x′)⟩ ≈ ρ0
2πL

∫ +∞

−∞
eik(x−x′) (uk + vk)

2 (2nth
k + 1

)
dk . (3.77)

We again have a UV divergence giving rise to a Dirac delta as uk + vk → 1 for
kξ ≫ 1. However, in the long wavelength limit, we find

(uk + vk)
2 (2nth

k + 1
)
∼k→0

kBT

mc2
, (3.78)

the density fluctuations are not growing in the IR. The integral in Eq. (3.77) will
be regular in this limit, giving a contribution decaying in 1/s. In this sense, the
density fluctuations are suppressed compared to the phase ones.

Finally, we use these results to compute the behaviour of the one-body correla-
tion, defined in Eq. (3.5), for a quasi-condensate at thermal equilibrium. We will
neglect the density fluctuations, and we have [166]

g1 (x, x
′) =

〈√
ρ̂ (x) e−i[θ̂(x)−θ̂(x′)]

√
ρ̂ (x′)

〉
,

≈ ρ0

〈
e−i[θ̂(x)−θ̂(x′)]

〉
,

= ρ0e
−⟨[θ̂(x)−θ̂(x′)]2⟩

2 ,

= ρ0e
χ(s)−χ(0) = ρ0e

− s
r0 .

(3.79)
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To compute the expression on the third line, we first expanded the exponential and
dropped the odd powers that are vanishing by expansion in creation/annihilation
operators

〈
e−i[θ̂(x)−θ̂(x′)]

〉
=

+∞∑

j=0

(−1)j
(2j)!

〈[
θ̂ (x)− θ̂ (x′)

]2j〉
. (3.80)

Each term in the expansion can be computed using Wick contractions and counting
the number of pairs. In general

〈
X̂2j

〉
=

(2j)!

2jj!

〈
X̂2
〉j

. (3.81)

Using this relation and the expansion Eq. (3.80), we obtain the third line of
Eq. (3.79). The above computation is only valid for distances s large compared to
the healing length ξ and the thermal length λT. A refined version can be found
in [168], which agrees with Eq. (3.79) in the large s limit. Eq. (3.79) shows that
even if the density fluctuations are small, there can be no long-range order in one
dimension due to large phase fluctuations.6 Notice, however, that if we consider a
system of finite size L, as we do here, then the Mermin-Wagner theorem does not
strictly apply, and the total number of depleted atoms remains finite. Eq. (3.79)
indicates that when L/r0 ≪ 1, the effect of the phase fluctuation is not visible,
and the gas effectively appears as condensed. Using the estimates computed in
Sec. 3.3.1, in particular, for the vertical size of the condensate in the Thomas-Fermi
regime, and the value of the temperature estimated in Sec. 3.3.2-d, we compute the
value of L/r0 in [130]. We find r0/L ≈ 3× 10−2 i.e. we are in the quasi-condensate
regime where phase fluctuations are large.

We reproduce our work [4] in the next section, Sec. 3.4. In this work, we also
use the perturbation theory based on the Madelung form for numerical simulations.
More details about the workings of these simulations are given in Sec. 3.5.

3.4 Article: ‘Phonon decay in one-dimensional
atomic Bose quasi-condensates via Beliaev-Landau
damping’

6This results still holds for zero temperature. The computation is different and lead to a
power-law decay [168].
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In a 1D Bose gas, there is no non-trivial scattering channel involving three Bogoliubov quasipar-
ticles that conserves both energy and momentum. Nevertheless, we show that such 3-wave mixing
processes (Beliaev and Landau damping) account for their decay via interactions with thermal fluc-
tuations. Within an appropriate time window where the Fermi Golden Rule is expected to apply, the
occupation number of the initially occupied mode decays exponentially and the rate takes a simple
analytic form. The result is shown to compare favorably with simulations based on the Truncated
Wigner Approximation. It is also shown that the same processes slow down the exponential growth
of phonons induced by a parametric oscillation.

I. INTRODUCTION

Ultracold gases have proved to be a fruitful arena for
both theoretical and experimental research. In particu-
lar, the propagation of elementary excitations on top of
a macroscopic condensed background provides an acces-
sible realisation of a quantum field in an effective curved
spacetime [1, 2]. This can be exploited to, e.g., mimic a
black-hole horizon so as to induce the analogue of Hawk-
ing radiation (as recently achieved in [3]). It can also be
used as a platform for realising an analogue of preheat-
ing, or the Dynamical Casimir Effect, which is a topic of
current interest [4–6]. The degree of experimental con-
trol, combined with the intrinsically quantum nature of
ultracold gases, makes them well-suited for such experi-
ments.

In studies of this kind, an important issue concerns
the effect of dissipation on the expected signal. Dissipa-
tion arises in closed systems as an effective phenomenon
due to quasiparticle interactions [7, 8]. This entails the
existence of an intrinsic quasiparticle decay. In 3D Bose
gases, the principle mechanisms behind this decay are the
3-wave mixing processes of Beliaev and Landau damping
[9, 10]. However, in 1D Bose gases with only two-body
contact interactions (i.e., of the Lieb-Liniger model [11]),
two objections have been raised against the possibility
of such processes. The first is that the integrability of
the model prevents quasiparticle decay in principle, and
that integrability-breaking perturbations must therefore
be included before damping can occur [12–14]. The sec-
ond is that quasiparticle decay requires the existence of
non-trivial scattering channels conserving both momen-
tum and energy, a criterion that has been routinely ap-
plied in many systems of all dimensionalities [15–19]. As
there are no such channels involving three collinear Bo-
goliubov excitations due to their gapless and convex spec-
trum, it has been concluded that 3-wave mixing in 1D
cannot induce decay [12, 18, 20].

In this paper, we wish to push back a little against
these conclusions. First, integrability does not seem to

prevent relaxation within a physical model, but only
thermalization: the system tends towards an equilib-
rium state with rather more structure than a thermal
state [21], described by a generalized Gibbs ensemble [22],
see [23] for a recent application to the Lieb-Liniger gas.
In addition, in the context of 1D Bose gases, this relax-
ation could even be necessary in order to comply with
the Mermin-Wagner-Hohenberg theorem [24, 25], as it
provides a mechanism by which the long-range order in-
duced by a sufficiently narrowband excitation spectrum
is washed away.

Second, we wish to show and emphasise that the appar-
ent absence of an elastic scattering channel does not nec-
essarily preclude any quasiparticle decay. In the Fermi
Golden Rule (FGR), the Dirac delta enforcing energy
conservation is typically interpreted in a binary way: ei-
ther an energy-conserving channel exists and quasipar-
ticle decay occurs, or there is no such channel and the
quasiparticle is stable. However, the Dirac delta is an ide-
alization of a narrow distribution with a small but finite
width, so we must consider those final states that are in
the vicinity of the exactly energy-conserving one. In par-
ticular, in 1D quasicondensates, the trivial 3-wave mixing
channel involving the zero-energy mode is not physical
itself. Yet the divergent thermal population of nearby
infrared modes yields a well-defined contribution to the
FGR decay rate. As anticipated, this mechanism leads to
a broadening of the excitation spectrum and, within an
appropriate time interval, the occupation of the initially
occupied mode decays exponentially at a constant rate.
The calculation of this rate is our main result.

The paper is organized as follows. In Sec. II, we re-
call the Lieb-Liniger model of a 1D Bose gas, including
its hydrodynamical description in the weakly-interacting
regime, and define the quasiparticles whose decay we are
interested in. In Sec. III, we present a derivation of the
intrinsic quasiparticle decay rate, as well as the outline of
a more precise formulation that includes the main devi-
ations from exponential decay. In Sec. IV, we show that
the decay rate extracted from numerical simulations is
in good agreement with the prediction of Sec. III, both
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in the relaxation of an initial injection of phonons and
in the slowing of exponential growth induced by a para-
metric oscillation (the latter example being inspired by
experiments [4]). We conclude and make links with other
works in Sec. V, while some further details are relegated
to Appendices.

II. SETTINGS

Here we recall the necessary preliminaries for describ-
ing a 1D Bose gas. The quasicondensate nature, and
the appropriateness of the hydrodynamical description,
are introduced. The quasiparticles are defined in the hy-
drodynamical framework. A brief description of the nu-
merical procedure adopted for simulating the dynamics
of the gas is also given, and some preliminary numerical
observations of the quasiparticle decay are presented.

A. Quasicondensate description

Consider a 1D gas of identical bosons of mass m with
only two-body contact interactions and no atom losses,
described by the Hamiltonian

Ĥ =

∫ L

0

dx

{
~2

2m
∂xΨ̂† ∂xΨ̂ +

g

2
Ψ̂†2Ψ̂2

}
, (1)

where Ψ̂ is the atomic field and g is the 1D interaction
constant. We impose periodic boundary conditions, so
that the gas effectively lives on a torus of length L. The
gas is “trapped” by the finiteness of the torus, but its dy-
namics and statistics are completely homogeneous. This
allows an equivalent description using Fourier modes,
each characterized by a wave number k = 2πn/L for

n ∈ Z. Each Fourier amplitude Ψ̂k is the annihilation
operator for atoms of momentum ~k. The state of the
system is fully characterized by the expectation values of

the Ψ̂
(†)
k and all their products.

A condensate occurs when one of the states of the
system (typically the lowest-energy state k = 0) con-
tains a macroscopic fraction of the total atom number
Nat or, equivalently, when the gas demonstrates long-
range order: the one-particle density matrix g1 (x− x′) =〈

Ψ̂† (x) Ψ̂ (x′)
〉

has a finite limit when |x− x′| → ∞ [26].

However, the Mermin-Wagner-Hohenberg theorem [24,
25] precludes the apparition of such long-range order in
a 1D system, essentially because the excitations of the
system induce large fluctuations in the relative phase
of Ψ̂ between widely separated points. The one-particle
density matrix then decays exponentially: g1 (x− x′) ≈
exp (− |x− x′| /r0), where the coherence length r0 is
given by [25]

r0

ξ
=

(
kBT

mc2

)−1

2ρ0ξ . (2)

A quasi-condensed state can however be achieved in
a 1D Bose gas at sufficiently low temperature [27]. As
indicated above, the quasicondensate is characterized
by large relative phase fluctuations over large distances,
while the density fluctuations remain small. It is there-
fore appropriate to adopt these as the field variables.
They are related to the atomic field via the Madelung

transformation: Ψ̂ = eiθ̂
√
ρ̂. The representation in terms

of the density and phase fields is known as the hydrody-

namical description, since θ̂ acts like a potential for the

flow velocity: v̂ = ~
m∂xθ̂. At the classical level where

these are all c-numbers, this is an exact canonical trans-
formation, with ρ and θ being conjugate variables. At
the quantum level, this is approximately true as long as
the discreteness of the atoms can be neglected, which re-
quires a sufficiently weak interaction and coarse-graining
over sites containing many atoms [28]. We may then
write the hydrodynamical version of Eq. (1), up to some
irrelevant term coming from normal ordering:

Ĥ =

∫ L

0

dx

{
~2

2m

∂θ̂

∂x
ρ̂
∂θ̂

∂x
+

~2

8mρ̂

(
∂ρ̂

∂x

)2

+
g

2
ρ̂2

}
, (3)

while imposing the canonical commutation relation

[
ρ̂ (x) , θ̂ (x′)

]
= i δ (x− x′) . (4)

B. Perturbative expansion of Hamiltonian

We wish to study elementary excitations, which re-
quires a well-defined splitting of the total field into a
background plus perturbations. The background is de-
fined as the homogeneous solution of the classical equa-
tion associated to the Hamiltonian (1) (i.e., the Gross-
Pitaevskii equation [25]), working in the rest frame of the
gas. The density ρ0 is then constant (the total number of
atoms is Nat = ρ0L) and the phase θ0 = −gρ0t/~. The
density fluctuations δρ̂ around this background are as-
sumed small while only the spatial variation of the phase

fluctuations ∂xδθ̂ is assumed small. We then expand the

Hamiltonian in (δρ̂, ∂xδθ̂)

Ĥ = E01̂ + Ĥ2 + Ĥ3 +
∑

i≥0

Ĥ4+i , (5)

where the zeroth-order term E0 = gρ2
0L/2 is the energy

of the homogeneous background, before any fluctuations
are included. Since the background is an exact solution
of the classical equation of motion, the first-order term
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vanishes identically. The higher orders are given by

Ĥ2 =

∫ L

0


~

2ρ0

2m

(
∂δ̂θ

∂x

)2

+
~2

8mρ0

(
∂δρ̂

∂x

)2

+
g

2
δρ̂2


dx ,

Ĥ3 =

∫ L

0

[
~2

2m

∂δθ̂

∂x
δρ̂
∂δθ̂

∂x
− ~2

8mρ0

(
∂δρ̂

∂x

)2
δρ̂

ρ0

]
dx ,

Ĥ4+i = (−1)i
∫ L

0

~2

8mρ0

(
∂δρ̂

∂x

)2(
δρ̂

ρ0

)(2+i)

dx ,

(6)

for i ≥ 0.
A couple of remarks are in order here. Notice first

that the quasicondensate perturbative scheme clearly dif-
fers from the standard Bogoliubov treatment since the
standard non-linear term Ψ̂† 2Ψ̂2 is fully included in
the quadratic Hamiltonian, while the infinite series of
perturbative corrections comes entirely from the kinetic
term. Second, Eq. (6) indicates that each order is sup-
pressed by an additional factor of δρ̂/ρ0 which suggests
that

〈
δρ2
〉
/ρ2

0 can be used as a measure of the impor-
tance of taking these higher orders into account. For
the typical values of parameters used in this work we
have

〈
δρ̂2
〉
/ρ2

0 ∼ 10−3 so that we will consider only the

second-order term Ĥ2 and the first perturbation Hamil-
tonian Ĥ3.

C. Quasiparticle definition

Working in the canonical ensemble, the atom number
Nat is a fixed parameter, and therefore so is the back-
ground density ρ0. The zero mode of the density fluctua-
tions thus vanishes identically: δρ̂k=0 = 0. Consequently,

the conjugate variable δθ̂k=0 is non-dynamical and can be

ignored. The fluctuations δρ̂ and δθ̂ on top of this back-
ground are then composed of the non-zero Fourier modes

δρ̂k and δθ̂k:

δρ̂(x) =

√
ρ0

L

∑

k 6=0

eikxδρ̂k , δθ̂(x) =
1√
ρ0L

∑

k 6=0

eikxδθ̂k .

(7)

With this writing δρ̂k and δθ̂k are dimensionless, and

they satisfy
[
δρ̂k , δθ̂k′

]
= i δk,−k′ . Since δρ̂(x) and δθ̂(x)

are Hermitian operators, the Fourier components satisfy

δρ̂−k = δρ̂†k and δθ̂−k = δθ̂†k. Ĥ2 can be diagonalized into
normal modes, called phonons 1, represented by opera-

tors ϕ̂
(†)
k such that

Ĥ2 =
∑

k 6=0

~ωk
(
ϕ̂†kϕ̂k +

1

2

)
, (8)

1 In this paper, we use the term “phonon” to refer to a quasipar-
ticle of any wavelength, and not just to those well within the
linear part of the dispersion relation (9).

where the phonon frequency

ωk = c |k|
√

1 +
1

4
k2ξ2 , (9)

with c =
√
gρ0/m the speed of sound and ξ = ~/mc the

healing length. In the limit kξ −→ 0, we have an exactly
linear dispersion relation like that of the Luttinger liquid.
The phononic operators are related to the density and
phase fluctuations by

ϕ̂k =
1√
2

(
C−1
k δρ̂k + i Ck δθ̂k

)
, (10)

where C2
k = ~k2/ (2mωk). The use of inverse coefficients

Ck and C−1
k ensures that the transformation is canonical

and hence that the phonon operators satisfy the bosonic

commutation relation
[
ϕ̂k , ϕ̂

†
k′

]
= δk,k′ .

ξ and the associated healing time, tξ = ξ/c, provide
natural units in which to express quantities adimension-
ally. There are three dimensionless parameters describing
the system: the 1D density ρ0ξ, the length L/ξ, and the
temperature kBT/mc

2 (where mc2 = ~/tξ is the chem-
ical potential ∂E0/∂Nat). The interaction strength is

characterised by γLL = 1/ (ρ0ξ)
2
, the dimensionless Lieb-

Liniger constant [11, 27]. Numerical simulations pre-
sented in this work typically have γLL ∼ 10−5 − 10−3,
placing us firmly in the weakly-interacting regime. We
also choose a grid spacing ∆x such that ρ0∆x ∼ 20 atoms
per site, justifying our use of the hydrodynamical descrip-
tion.

Just as for the atom operators Ψ̂k, the phonon oper-
ators ϕ̂k provide a complete description of the system,
whose state is fully characterized by the expectation val-

ues of the ϕ̂
(†)
k and all their products. Since the ϕ̂k

come close to diagonalizing the full Hamiltonian Ĥ , the
phonons are close to the exact normal modes of the sys-
tem and their mutual interactions are relatively weak.
The phonons therefore provide the most natural basis in
which to examine the state of the system and interpret its
dynamical behavior. However, the simplicity of the full
Hamiltonian (1) makes the atom basis more convenient
for numerical treatments of the evolution.

D. Quasiparticle interactions

Turning now to Ĥ3, and neglecting terms of the form
ϕ†ϕ̂†ϕ̂† (ϕ̂ϕ̂ϕ̂) which cause the unbalanced appearance
(disappearance) of three phonons typically associated
with strong violation of energy conservation, the relevant
part of the interaction Hamiltonian takes the form

V̂3 =
1√
Nat

∑

p,q 6=0
p+q 6=0

~V3 (p, q)
{
ϕ̂†pϕ̂

†
qϕ̂p+q + ϕ̂†p+qϕ̂pϕ̂q

}
,

(11)
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where

V3(p, q) =

√
~

32m

√
|pq(p+ q)|
vph
p vph

q vph
p+q

{
−
(

~
2m

)2 [
p2 + pq + q2

]

+ vph
p vph

q + vph
q vph

p+q + vph
p vph

p+q

}
,

(12)

and vph
k = ωk/k is the phase velocity at k.

V̂3 describes the decomposition of a single phonon into
two phonons, as well as the inverse process where two
phonons combine into one. Note that it is momentum-
conserving, reflecting the homogeneity of the system, and
that if p is held fixed and q → 0, V3 (p, q) vanishes as

√
q.

A similar writing of V̂3 can be found in [13], in a form
that is equivalent to the one given here.

E. Numerical simulations

The system is modeled numerically using the truncated
Wigner approximation (TWA) [29] (see Appendix C for

more details). The operators Ψ̂ are replaced by classical
variables Ψ, and products of these variables are iden-
tified with the corresponding fully symmetrized quan-
tum operators. A series of ab initio Monte Carlo simu-
lations are performed, with quantum indeterminacy ap-
pearing through the statistical ensemble describing the
initial state. The field is then evolved according to the
dynamics of Hamiltonian (1). This is repeated for a large
number of independent initial realisations, so as to get
good statistics when computing averages.

The phenomenon of interest is illustrated in Fig. 1,
which shows the typical evolution observed in numerical
simulations. Starting from a thermal state, the occupa-
tion number of a mode is increased by δn, to be con-
sidered as the initial number of phonons in the probe.
Indeed, throughout this paper we shall adopt the follow-
ing decomposition:

nk = nth
k + δnk , (13)

where nk =
〈
ϕ̂†kϕ̂k

〉
is the full phonon spectrum and nth

k

is the (thermal) spectrum in the absence of any probe.
Further details of the simulations are given in Sec. IV.
The figure shows nk at a series of different times. We

see that nprobe
k , the population of the initially occupied

mode, decays. The observed behaviour is essentially lin-
ear, in the sense that the relative change δnk(t)/δn is
independent of δn, the number of phonons injected in
the probe. Moreover, it is clear that the spectrum of
the probe has broadened. Summing over nearby modes
(those within the vertical dotted lines), the total n is
found to be constant in time. The phonons seem not
to have been lost, but rather to have been kicked into
neighboring modes. Note that the broadening is essen-
tially symmetric: the phonons are just as likely to be
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Figure 1. Snapshots of the phonon number spectrum at times
t/tξ = 0, 5, 10 assuming an initial thermal state at tempera-
ture kBT/mc

2 = 2 on top of which an additional δn = 1
(top) or δn = 10 (bottom) phonons are added in the mode
kξ = 3.1. The size of the system is L/ξ = 90.5 and its atomic
density ρ0ξ = 49.9. The averages are calculated from an en-
semble of 400 independent realisations, while the error bars
represent the standard deviation. There are 256 points on the
grid. The inset shows a more time-resolved evolution of the
population in the probe mode. The total number of phonons
within the vertical dotted lines is given for the initial and final
times, and is seen to be conserved.

kicked towards a higher momentum as a lower one. The
small shifts in momentum suggest that the evolution is
primarily driven by interactions with infrared phonons
from the thermal bath.

III. THEORETICAL DERIVATION

In this section, we provide an analytical description of
the dissipative process at play. In Sec. III A, we derive
the decay rate using the FGR; as this applies to a discrete
eigenstate in interaction with a continuum, we expect it
to describe the decay of the population of a singularly oc-
cupied mode (i.e., when the spectrum is sufficiently nar-
row). In Sec. III B, we sketch a formalism which takes us
beyond such an approximation, using response functions



5

to model the dynamics of the spectrum more accurately
and to describe the deviations from purely exponential
behavior. A fuller treatment of this formalism is given in
Appendix A, while a comprehensive analysis of the main
deviations observed numerically is given in Appendix B.

A. Using the Fermi Golden Rule

Given an initial eigenstate |i〉 that couples to a con-
tinuum of final eigenstates |νf 〉 via a time-independent

weak perturbation Hamiltonian Ĥ ′, the FGR gives the
transition rate into the continuum [30]:

dWi→f =
2π

~

∣∣∣〈νf | Ĥ ′ |i〉
∣∣∣
2

δ (Ef − Ei) dνf , (14)

where Ei and Ef are the energies of the initial and final
states, the latter being labeled by the dimensionless num-
ber νf . The Dirac delta imposes energy conservation, i.e.
the rate is evaluated as a matrix element between states
with the same (unperturbed) energy. The total rate is
found by integrating over νf .

Consider a singularly occupied phonon mode k, which
decays due to interactions with the thermal population
of phonons. Each available momentum is a multiple of
2π/L. For sufficiently large kL the thermal distribution
of phonons, as well as the states available to decay to, can
be approximated as a continuum from the point of view
of the mode k. We thus expect the FGR (14) to be appli-
cable. We need only determine the relevant perturbation
and corresponding initial and final states.

In the phonon basis, the role of the perturbation enter-
ing the FGR is played by V̂3 of Eq. (11). It describes two
distinct processes involving the annihilation of a probe
phonon at wave number k :

• Phonons of wave-numbers k and q combine to
produce a single phonon with wave number k +

q. The relevant term is ϕ̂†k+qϕ̂qϕ̂k, taking |i〉 =

|nq, nk, nk+q〉 to |f〉 = |nq − 1, nk − 1, nk+q + 1〉,
and the corresponding squared matrix element is

1
Nat

~2 |2V3 (k, q)|2 × nknq (nk+q + 1). The factor 2
comes from the p ←→ q symmetry of the sum in
Eq. (11). The factors of n come from the action
of the phonon operators on the state |i〉, with the
‘n’ and ‘+1’ terms encoding stimulated and sponta-
neous processes, respectively. The energy difference
is Ef − Ei = ~ δωL = ~ (ωk+q − ωq − ωk); at small
q, this gives δωL ≈ vgr

k q − c |q| = q (vgr
k ∓ c), where

vgr
k = dωk/dk is the group velocity at k.

• k decays to two phonons, with wave numbers k− q
and q. The relevant term is ϕ̂†k−qϕ̂

†
qϕ̂k, taking |i〉 =

|nq, nk−q, nk〉 to |f〉 = |nq + 1, nk−q + 1, nk − 1〉,
and the corresponding squared matrix element
is 1

Nat
~2 |2V3 (k − q, q)|2 × nk (nq + 1) (nk−q + 1).

The energy difference is Ef − Ei = ~ δωB =
~ (ωk−q + ωq − ωk); at small q, this gives δωB ≈
−q (vgr

k ∓ c) = −δωL.

The two scattering processes described above lead to the
well-known Landau and Beliaev damping of phonons in
BECs: the former is associated with the absorption of
a thermal phonon, the latter with a splitting into two
phonons. 2 The associated frequency differences are thus
labeled δωL and δωB .

Imposing also energy conservation δωL,B (q; k) = 0, as
demanded by the Dirac delta in Eq. (14), we encounter
the problem anticipated above: the only exact solution
respecting both momentum and energy conservation is
the trivial one, q = 0. 3 In the vicinity of this channel,
the interaction vanishes as |V3(k, q)|2 ∝ q. However, the
frequency ωq also vanishes as ωq → c |q|, and therefore
the thermal population nq ≈ kBT/~ωq simultaneously
diverges. It therefore makes sense to refer to the product
|V3(k, q)|2 nq as an effective interaction strength for the
corresponding channel, as it has a finite limit as q → 0,
and it is this finite limit that is picked up by the Dirac
delta in Eq. (14). Although the delta is centered at q = 0,
it does not actually matter that the trivial elastic chan-
nel is unphysical and thus removed from the dynamics:
the Dirac delta is a placeholder for a steadily narrowing
distribution of final states in the vicinity of this channel
(see Appendix A). As long as there are sufficiently many
modes within this distribution, the single removed mode
at q = 0 has a relative measure of zero. This allows the
application of the FGR, as if the limiting processes at
q → 0± were physically allowed. 4

The Dirac delta in Eq. (14) also serves to multiply by
the density of available states with respect to the energy.
Since the available states are evenly spaced in momen-
tum, in a window of size ∆q the number of states is
∆N = L/2π × ∆q ≈ L/2π~ ×

∣∣dq/d
(
δωL/B

)∣∣ × ∆E.
Recalling from above that, for small q, we have δωL ≈
−δωB ≈ q (vgr

k ∓ c), this gives the following density of
states:

ρE (k) ≡ dN

dE
=

1

2π~
L

vgr
k ∓ c

. (15)

For ease of notation we restrict to k > 0, so that vgr
k ∓ c

is always positive. Due to isotropy, −k will behave in

2 While Beliaev damping often occurs spontaneously (as it is a
1 → 2-phonon process), we are concerned here with a regime
of sufficiently high temperature in which it is stimulated by the
presence of a large number of thermal infrared phonons.

3 Notice that for a Luttinger liquid where ξ = 0 the problem is
exactly the opposite as there is an infinite number of elastic scat-
tering channels leading to a divergence of the FGR decay rate
[31, 32].

4 One important modification with respect to the standard case
arises because the effective interaction strength |V3(k, q)|2 nq is
discontinuous across the resonant channel q = 0. This obliges us
to consider separately the coupling with positive and negative q,
leading to two applications of the FGR where each channel picks
up “half” of the Dirac delta around q = 0. This factor is cancelled
by the co-occurrence of the Landau and Beliaev channels, which
contribute equally to the decay rate.
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exactly the same way as k. We recall that the sign in the
denominator is related to the sign of q, the momentum
of the infrared phonons with which the interaction takes
place. The abrupt change in the velocity as q crosses
zero means that there are two distinct limits to be taken:
q → 0 from above and from below. Putting everything
together, we thus derive two decay rates, corresponding
to the coupling with positive and negative q:

Γ± (k) =
limq→0±

[
L
Nat
|2V3 (k, q)|2 nq

]

(vgr
k ∓ c)

. (16)

Inserting the explicit form of V3 (k, q) yields:

Γ±tξ =
kBT

mc2
1

ρ0ξ
f± (kξ) (17)

where

f± (kξ) =
1

2

(kξ)
2

(
vph
k /c

)2

(
vph
k /c± 1/2

)2

vgr
k /c∓ 1

. (18)

The total decay rate presented in the figures is Γk =
Γ+ + Γ−.

Equation (17) constitutes our main result: an explicit
expression for the rate at which the population of a sin-
gularly populated mode will decay, due to interactions
with thermal phonons.

Since at small q we have δωL ≈ −δωB ≈ vgr
k q − c |q|,

at fixed |q| the magnitude of the frequency difference is
smaller when q has the same sign as k. We therefore
expect that such modes provide the dominant contribu-
tion to the decay, while the coupling to modes of the
opposite sign induces a subdominant correction. So the
Landau channel tends to kick a phonon at k into a higher-
energy mode, while the Beliaev channel acts in the oppo-
site direction. Since the two channels contribute equally,
there is no preference for a phonon at k to be kicked to-
wards either a higher or lower momentum. This explains
the approximate symmetry of the broadening observed
in Fig. 1.

B. Using response functions

Here, we give the outline of a more precise descrip-
tion of how a perturbation to the phonon number spec-
trum δnk evolves. For brevity, we shall avoid details here,
though they can be found in Appendix A. However, the
writing will allow us to point out significant deviations
from the exponential decay rate of Eq. (17), which are
studied in more detail in Appendix B.

The time-derivative of δnk depends both on δnk and on
phonon correlations, the most important of which are the
3-point correlations induced by the Beliaev and Landau

processes described above: C
(3)
p,q =

〈
ϕ̂†pϕ̂

†
qϕ̂p+q

〉
. Neglect-

ing other connected correlation functions, the equations

of motion can be written entirely in terms of nk, though
they become integro-differential equations that include
response functions, which encode how the system “re-
members” and responds to its past behaviour. Neglect-
ing any self-interaction of the perturbation, we linearize
the equations in δnk+q:

∂t (δnk) = −
∫ t

0

dt′Dk (t− t′) δnk (t′)

+

∫ t

0

dt′
∑

q 6=−k
Mk,k+q (t− t′) δnk+q (t′) .

(19)

The first term on the right-hand side of (19), governed
by Dk, describes the essential behavior of δnk, when
back-reaction from its near-neighbors can be neglected
and finite-size effects can also be ignored (see below).
Dk (t− t′) decays to zero within a time scale tcrit, and its
integral approaches Γk of Eq. (17). As long as t � tcrit

and δnk does not vary much on time scales of order tcrit,
its value at t can be taken outside the integral, and the
first term becomes −Γk δnk. This is the regime in which
the analysis of the previous subsection applies. We can
thus expect deviations when δnk varies significantly over
times of order tcrit. This can happen either when ∂t (δnk)
is particularly large, or for a time tcrit after a sudden in-
jection of phonons. The latter case will be relevant for
some of our numerical simulations.

The second term of Eq. (19), governed by Mk,k+q, de-
scribes the influence of other modes on the evolution of
nk. These typically act to slow down the decay of nk,
because some of the phonons in neighboring modes will
be kicked into the mode of interest. This is particularly
relevant in situations where k is at the center of a peak
with a finite width, and in such a scenario we expect
the net decay rate to be smaller than that predicted by
Eq. (17). Note that this is not in contradiction with the
FGR, which applies when a single discrete mode loses en-
ergy to a continuum of modes; this picture becomes less
applicable when the mode losing energy is itself part of
a continuum. Generally, the effect of this back-reaction
term is difficult to take fully into account, but in certain
situations (particularly in the case of parametric reso-
nance) we can make approximations and derive the ex-
pected qualitative behavior for the decay rate as a func-
tion of the peak width.

C. Suppression due to finite size of system

The second term of Eq. (19) includes a contribution
from q = 0, which will be present even when neighboring
modes are not significantly populated. This q = 0 term
slows down the decay, but it is proportional to 1/L and
vanishes entirely in the limit L → ∞ where we have a
continuum in k-space. The primary function of this term
is to account for the finite resolution in k by keeping
track of those phonons which, in the continuum limit,
would be lost to nearby modes within 1/L of the main



7

decaying mode. With the finite resolution induced by
the finiteness of L, these phonons remain in the same
bin as the decaying mode. Therefore, their contribution
to the variation of nk is removed, and the net decay is
effectively slowed down.

In Appendix B we derive the slowing down of the decay
rate induced by this contribution. On sufficiently short
time scales, it enters as a quadratic correction to the
exponential decay:

δnk ≈ δnk(0) e−Γkt+
1
2γkt

2

, (20)

where

γkt
2
ξ =

kBT

mc2
1

ρ0L
g (kξ) (21)

and where we have defined

g (kξ) =
(kξ)

2

v2
ph(k)/c2

{(
vph(k)

c
− 1

2

)2

+

(
vph(k)

c
+

1

2

)2
}
.

(22)
The finite-size effect grows in importance as time pro-
gresses, on a time scale tfs such that γkt

2
fs = Γktfs (where

the decay in Eq. (20) slows to zero). Its relevance there-
fore depends on how tfs compares to the typical time-scale
of decay Γ−1

k , i.e., the relevant quantity is

Γktfs =
Γ2
k

γk
=

2L

r0

f2 (kξ)

g (kξ)

≈ L

r0
when kξ � 1 . (23)

In the second line we have taken the large wavenum-
ber limit, where our exponential prediction for the decay
is most accurate (see Sec. IV below). r0 is the (one-
body) coherence length of the quasicondensate defined in
Eq. (2). So, when L/r0 � 1, the decay proceeds hardly
at all before it is stopped by the finite-size effect. On the
other hand, when L/r0 � 1, the decay is significant be-
fore the slowing-down kicks in, and the finite-size effect
becomes irrelevant.

As mentioned in Sec. II A, when considering a quasi-
condensate over distances larger than r0 the long-range
order characterising condensation is lost due to large
thermal fluctuations in the phase. Conversely, if we re-
strict attention to distances much shorter than r0, the
one-body correlation is preserved and the gas looks like
a “true” condensate. Equation (23) then shows that if
we consider a small enough system that appears as a
true condensate, the decay will be strongly suppressed by
finite-size effects. In effect, the decay processes we have
identified manifest in position space as an x-dependent
drift in the phase of the excited phonon, whose variance
becomes significant only over distances larger than r0.
Therefore, the decay is only effective when we reach the
quasicondensate regime L� r0.

This correspondence is further explored in Ap-
pendix B, where it is also shown that binning modes in

momentum space yields an evolution that is very similar
to that on a shorter torus. We thus conclude that the
system size L appearing in Eq. (23) can be generalized
to the size of any subsection of a larger system. If this
size is small compared to r0, local measurements will be
insensitive to the decay.

IV. NUMERICAL CONFIRMATION

We have run several numerical simulations in order to
test our prediction for the phonon damping rate. The
essentials of the numerical method have already been de-
scribed in Sec. II E, and more details can be found in
Appendix C.

The simulations fall into two types. First, we perform
a series of simulations like that of Fig. 1, where a num-
ber of phonons is injected into a single mode k, and the
evolution of the phonon number spectrum is followed in
time. This setup allows us to study the response of a
thermal system to a single perturbation, the addition of
phonons in the mode k. We use it to demonstrate that
the thermal processes discussed in the previous section
are indeed the main culprit involved in the scattering of
injected phonons, and to check that the scaling proper-
ties of the decay rate match those predicted by Eq. (17).
Moreover, this controlled scenario enables us to track pre-
cisely how phonons scatter to other modes (as shown in
Fig. 1), informing our study of the decay process and its
generalization to a peak of finite width (see Sec. IV B
below, and Appendix B).

The second series of simulations is inspired by the
parametric resonance experiments of [4] and theoretically
studied in [8, 33]: starting from a thermal state, a sinu-
soidal modulation of the 1D atomic interaction strength
is applied, inducing exponential growth of the phonon
occupation number within a resonance window. (This
can be achieved experimentally by modulating the trans-
verse stiffness of the trap [4, 7, 8].) The phonon damping
is then observed as a reduction in the rate of exponential
growth. As suggested above, the finite width of the reso-
nant peak induces a deviation from the decay rate (17),
which strictly speaking is only applicable in the limit of
a singularly occupied mode. However, this deviation oc-
curs in a controlled fashion, and is found to be consistent
with the back-reaction term appearing in Eq. (19).

A. Initial injection of phonons

In the first run of simulations, the initial state is taken
to be a thermal state for the quadratic Hamiltonian Ĥ2,
with the possible addition of a probe in a single phonon
mode of wave vector k. When the probe is present, it is
given an initial occupation number δn on top of the ther-
mal distribution by simply multiplying the amplitude of
the relevant mode by a constant factor. This ensures that
the phonon modes are initially independent of each other,
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Figure 2. Best fit values for ~Γk extracted from the TWA sim-
ulations, as a function of kBT/ρ0ξ. All points are extracted
from simulations performed using an addition of δn = 3
phonons on average. We used 400 realisations, a grid spac-
ing ∆x/ξ = 0.35, and a time window t/tξ ∈ [0, 10] with 140
time steps. For the grey and blue points the temperature
varies kBT/mc

2 ∈ [0.25, 3], while for the red points the den-
sity varies in ρ0ξ ∈ [33, 399]. The parameters that are fixed
in each run are listed in the legend.

and separately exhibit Gaussian statistics. Each realisa-
tion is then evolved twice, with and without the probe,
to take account of the slight degree of time-dependence
that occurs even when the probe is absent. The spec-
tra are calculated independently at different times in the
interval t/tξ ∈ [0 , 10], and the probe spectrum δnk(t)
is defined as the difference between the two, in accor-
dance with Eq. (13). δnk(t) is then fitted to the tem-
plate A exp

(
−Γt+ γt2/2

)
of Eq. (20), the fitted value

of Γ being the extracted decay rate. As mentioned in
Sec. III C above, the t2 correction is related to the lim-
ited resolution in k-space induced by the finite length of
the condensate, coming from the q = 0 term in the sec-
ond line of Eq. (19). It is included here as it makes a
small but noticeable difference to the fit. More details
on the extraction of the γ term are given in Appendix B.

In Fig. 2 we demonstrate the linearity of the best-fit
values of Γ in the overall prefactor in Eq. (17), at fixed
kξ. The numerical results are in good agreement with the
prediction. We illustrate that varying T at fixed ρξ (and
vice versa) yields the expected behaviour, and moreover
that the fitted decay rate is unaffected by a change in
L, as expected from prediction (17). Any L-dependence
of the observed behavior would then appear in the other
fitting parameters like γ.

In Fig. 3 we show instead the dependence of these best-
fit values for Γ on the probe mode kξ, with the prefactor
in Eq. (17) fixed. The numerical observations agree well
with the predicted behaviour at modestly high kξ & 2.5.
At lower kξ, we expect significant deviations, for as noted
in Sec. III B, the FGR becomes valid only after a critical
time tcrit (see also [30, 34]). We show in Appendix B that

0 1 2 3 4

kξ

0.10
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0.14

0.16

0.18

0.20

0.22

Γ
k
t ξ

kBT

mc2
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ρ0ξ = 49.9

L

ξ
= 90.5

Prediction

TWA fit

Figure 3. Best fit values for ~Γk extracted from the TWA
simulations, as a function of kξ. All other physical parameters
are fixed at the values shown, while numerical parameters are
the same as in Fig. 2. Numerically extracted values are shown
only for kξ & 2.5. For lower kξ, significant deviations appear
due to the longer response time. (A fuller treatment of this
regime is given in Appendix B.)

tcrit diverges like 1/ (kξ)
3

as kξ → 0, and for kξ . 2.5
it is not reached within the sampled time frame. In this
regime, the decay proceeds quadratically in time rather
than exponentially, with a lifetime that is significantly
longer than predicted by (17). This early-time behavior
at small kξ is examined in more detail in Appendix B.

B. Slowing of exponential growth

In our second set of simulations, the initial state is sim-
ply a thermal state for the quadratic Hamiltonian Ĥ2,
with no additional component added by hand. Instead,
during the evolution, parametric resonance is induced by
a sinusoidal modulation of the 1D atomic interaction pa-
rameter:

g(t) = g (1 + a sin (ωpt)) . (24)

As c2(t) ∝ g(t), this translates into a sinusoidal modula-
tion of the squared phonon frequencies:

ω2
k(t) = c2k2

[
1 + a sin (ωpt) +

1

4
k2ξ2

]

= ω2
k (1 +Ak sin (ωpt)) , (25)

where Ak = a/
(
1 + k2ξ2/4

)
. This is exactly the situa-

tion modeled in [33]. The result is an exponential growth
of the number of phonons within a resonant frequency
window centered at ωp/2. In the absence of any damp-
ing mechanism, the analysis in Appendix A of [33] shows
that, for the exactly resonant mode at ωk = ωp/2, the
occupation number is parametrically amplified according
to

nk(t) ≈ nin
k +

(
2nin

k + 1
)

sinh2

(
1

2
Gkt

)
, (26)



9

0 5 10 15
t/tξ

0

10

20

30

40

50

60

70

n
k

kBT

mc2
= 2

L

ξ
= 90.5

kξ = 3.1

Pure parametric resonance

Prediction ρ0ξ = 399

Prediction ρ0ξ = 133

TWA ρ0ξ = 399

TWA ρ0ξ = 133

Figure 4. Mean occupation of the resonant mode as a function
of time, as extracted from TWA simulations. We take an
initial thermal state at temperature kBT/mc

2 = 2, and a
modulation of amplitude a = 0.5 at frequency ωp = 2ωk where
kξ = 3.1 (so that the modulation of ω2

k has amplitude Ak =
0.15) lasting 24 periods, i.e., 13.5 tξ. The size of the system is
L/ξ = 90.5 and its atomic density is ρ0ξ = 399 for the red dots
and ρ0ξ = 133 for the green ones. The dashed black line is
the estimate Eq. (26), where nin has been set to the thermal
value. The solid lines correspond to the corrected estimate
Eq. (27), with Γk as predicted by Eq. (17). Each data point
is calculated independently, averaged over 400 realizations.

where the growth rate Gk = Akωk/2. Since the initial
state is thermal, the initial occupation number nin

k is sim-
ply the thermal population of the mode.

When including the effects of phonon interactions, the
Beliaev-Landau scattering with the thermal population
acts simultaneously with the parametric amplification,
kicking phonons out of the resonant mode as they are be-
ing produced. The damping mechanism thus acts much
like the phenomenological damping introduced in [33],
and is therefore expected to reduce the growth rate. This
is illustrated in Fig. 4, where nk(t) of the exactly reso-
nant mode is extracted from the numerical simulations
and shown for two different values of ρ0ξ. We clearly
see that the exponential growth rate is lower than pre-
dicted by Eq. (26), and that it is further reduced as ρ0ξ is
reduced, so that Γk of Eq. (17) is accordingly increased.

We may use the difference between the observed
growth rate and the “pure” growth rate of Eq. (26) as
a measure of the damping. 5 Assuming that the damp-

5 Similar simulations were performed in [8] where, although the

ing acts straightforwardly as a reduction of the growth
rate, we make a slight generalization of Eq. (26) and pro-
pose the following ansatz for the occupation number of
the resonant mode:

nk(t) = nin
k +

(
2nin

k + 1
)

sinh2

[
1

2
(Gk − Γk) t

]
. (27)

Figure 4 shows that this ansatz, taken together with the
assumption that Γk is as predicted by Eq. (17), accounts
very well for the reduced growth observed in TWA sim-
ulations with respect to that of Eq. (26). We stress that
this reduction rapidly leads to a sizeable change in the
number of produced phonons. For example, considering
the red data points in Fig. 4 (corresponding to kξ = 3.1,
kBT/mc

2 = 2, and ρ0ξ = 399), the relative damping is
Γk/Gk = 5%, yet the reduction with respect to the non-
damped case is very clear, and we are thus able to extract
quite precise values for the damping rate.

We now perform a more systematic examination of the
numerically observed reduction of the growth rate. Pro-
ceeding as for the first set of simulations, we fit nk(t) for
the exactly resonant mode to Eq. (27), where Γk is now
treated as a fitting parameter. This is done for two dif-
ferent wave vectors, one in the high-k regime (kξ = 3.1)
where the first set of simulations worked reasonable well,
and one in the low-k regime (kξ = 1.0) where they did
not. The temperature is fixed at kBT/mc

2 = 2, and the
1D density ρ0ξ is varied. The extracted values of Γk are
shown in Fig. 5 alongside the prediction of Eq. (17).

A few remarks are in order concerning these results.
We begin by focusing on the high-k mode (kξ = 3.1), the
first and third data points of which correspond to the
simulations shown in Fig. 4. While the extracted decay
rate tends towards prediction (17) at large ρ0ξ, there is
a clear trend for it to fall further away from this pre-
diction as ρ0ξ is decreased. We attempt to explain this
behavior by appealing to the finite width of the resonant
peak. Examining the evolution of the number spectrum
shows that, to a good approximation, the shape of the
resonant peak saturates such that nk ∼ Rke

Gt at suffi-
ciently late time, for some profile Rk and some growth
rate G. This is in contrast to the results of the “pure”
parametric resonance with no phonon interactions, where
the growth rate is k-dependent and largest at exact res-
onance [33], so that the width of the peak approaches
zero as t → ∞. In the present case, in addition to
the saturation of the profile, we observe that larger in-
teraction strengths are associated with wider peaks, see
Fig. 6. It thus seems likely that nk is also being fed by
phonons in neighboring modes through the last term on

focus was on nonlinear effects at large nk, hints of an nk-
independent damping rate were seen at sufficiently early times
(see in particular Fig. 6 and footnote 10). Given the parameters
used (kξ ∼ 1, kBT/mc

2 ∼ 1/2, ρ0ξ ∼ 400), this intrinsic decay
rate has ~Γk/mc

2 equal to a few times 10−3, in agreement with
prediction (17).
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the right-hand side of Eq. (19). We investigate this ef-
fect by adopting a Lorentzian ansatz for the profile of
δnk. Figure 6 shows how our ansatz compares with the
numerically observed number spectrum. Under this as-
sumption, we solve Eq. (19) self-consistently to extract
the net growth rate. The details of this calculation are
given in Appendix B, but the corrected predictions for
the decay rate are shown by the blue dots in Fig. 5. For
kξ = 3.1 this corrected prediction is found to be in very
good agreement with the extracted rate.

For the low-k mode (kξ = 1.0) there remains a clear
discrepancy even when accounting for the finite width
of the peak. Part of the explanation lies in the non-
Lorentzianity of the profile visible in Fig. 6, making the
correction less valid. However, note that the extracted
decay rate does not tend well to prediction (17) at large
ρ0ξ, as it seems to approach a line with a different slope.
We believe this to be a consequence of the large critical
time in the low-k regime: in effect, the occupation num-
ber is growing a little too fast for the system to have time
to react, and the amount of damping is thus lower than
expected.

The parametric resonance simulations described here
yield results that corroborate and complement those
found using straightforward phonon injection. In the
high-k regime where the critical response time is suf-
ficiently short, the observed deviations from predic-
tion (17) are well described via corrections due to the
finite width of the peak, which only appear in the case
of parametric resonance. On the other hand, at low
k where the critical time is long, the phonon injection
method yields a non-exponential behavior that has not
been shown here (see instead Appendix B), whereas the
parametric resonance approach still gives a damping rate
that has the same qualitative behavior as in the high-k
regime (see the near-linear behavior of the red dots in the
lower panel of Fig. 5). Moreover, the method of paramet-
ric resonance for exciting phonons has some interesting
advantages over that of phonon injection. Most notably,
the damping mechanism manifests in a rather more dra-
matic way, as is evident from the difference in the final
phonon numbers shown in Fig. 4. It is also of considerable
experimental relevance: while the injection of phonons
is conceptually simple, it is not very practical, whereas
parametric resonance is a way of exciting phonons that
has already been implemented in experiments [4]. On the
conceptual side, the method of parametric resonance by-
passes the finite-size effect. In Sec. IV A, it arises due to
the discretization of a time-dependent continuous profile,
the “binned” mode of interest containing both the expo-
nentially decaying mode and the nearby modes within
π/L that are growing in time. Here, the profile is fixed
(the only time-dependence being an overall exponential
factor eGt), and the discretization is therefore irrelevant.
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Figure 5. Best fit values for ~Γk extracted from the TWA sim-
ulations as a function of kBT/ρ0ξ. (We divide by mc2 to adi-
mensionalize.) The temperature is kept fixed to kBT/mc

2 = 2
and only the density is varied ρ0ξ ∈ [33, 399]. The parameters
that are fixed in each run are listed in the legend. All points
are extracted from simulations performed using a continuous
modulation of amplitude a = 0.5 at frequency ωp = 2ωk where
kξ = 3.1 (top) and kξ = 1.0 (bottom); the corresponding am-
plitudes for the modulation of ω2

k are Ak = 0.15 (top) and
Ak = 0.39 (bottom). We use nr = 400 realisations, a spatial
grid with spacing ∆x/ξ = 0.35. The fit is performed using the
template Eq. (27) over a time window t/tξ ∈ [0, 13.5] (top)
and t/tξ ∈ [0, 22.5] (bottom) with 224 (top) and 280 (bot-
tom) time steps. The green dashed line represents the FGR
prediction Eq. (17) while the blue dots are the corrected pre-
dictions taking into account the effect of a finite width of the
resonant peak, see Appendix B. The peak is assumed to be
of Lorentzian shape and its parameters are extracted by a
procedure described in Fig. 6.

V. CONCLUDING REMARKS

We have identified a mechanism whereby interactions
with a thermal bath of phonons, through Landau and
Beliaev damping mechanisms, yields exponential decay
of a singularly occupied phonon mode. It is effectively
described by an application of the FGR with the resonant
channel being the trivial one, in the limit q → 0. The
result was numerically verified using TWA simulations,
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Figure 6. Snapshots of the ratio Rq =
δnq

δnk
as a function

of qξ at time t/tξ = 13.5 (top) and t/tξ = 22.5 (bottom).
The spectrum is plotted for ρ0ξ = 399 (red) and ρ0ξ = 33
(green). They are obtained by a continuous modulation of the
type Eq. (24) with a = 0.5 and at the appropriate frequency
so that kξ = 3.1 (top) or kξ = 3.1 (bottom) are exactly
at the resonance. A Lorentzian is fitted to the distribution
taking into account the first five neighbours on each side of
the central resonant mode letting the overall amplitude, width
and center be free fitting parameters. The best-fit value of
the width is then used to correct the prediction of the decay
rate, blue dots in Fig. 5. The averages are calculated from
an ensemble of 400 independent realisations, while the error
bars represent the standard deviation. There are 256 points
on the grid.

following both the decay of a mode excited “by hand” and
the reduced growth of a parametrically resonant mode.
The prediction works particularly well in the higher-k
regime, where the critical response time is relatively short
and the discreteness of the thermal population is invisible
to the mode in question. We also observe a reduction of
the damping rate due to the finite width of the peak.

While this limit yields a non-vanishing rate only in

1D (since in higher dimensions the IR divergence of the
thermal population is tamed by the volume element in k-
space), it seems generally applicable to 1D systems with
an approximately linear excitation spectrum in the limit
of small k. We thus believe that it could appear as an
additional contribution to the decay of excitations in such
systems, such as the 1D dipolar gas considered in [19].

Comparing with higher dimensionality D [35], there
are some clear similarities: prediction (17) exhibits an

increasing dependence on kξ, is proportional to γ
D/2
LL ,

and is linear in T (as found in higher dimensions when
kBT/mc

2 & 1).
The experimental relevance of this decay mechanism

was exemplified by numerically studying the parametric
growth of phonons in the gas, as experimentally tested
in [4]. We have demonstrated that the numerically ob-
served reduction of the growth rate can be quantita-
tively explained assuming that the phonons generated by
the parametric process simultaneously decay by thermal
Landau-Beliaev processes.

These thermal scatterings of phonons are expected
to occur generally in 1D quasicondensate experiments.
They can produce important deviations to the dynamics
of phonons and should therefore be taken into account
in designing and analysing analogue gravity experiments
on this platform.

Finally, let us comment on the absence of entangle-
ment between the induced peaks in the experimental ob-
servations of [4]. In their phenomenological treatment of
dissipation, the authors of [33] showed that a dissipative
rate Γ/ωk ∼ 4.2% 6 would be sufficient to explain this
negative result. Using the relevant parameters (kξ ∼ 1,
kBT/~ωk ∼ 1, ρ0ξ ∼ 60), Eq. (17) gives Γ/ωk ∼ 5%. The
decay mechanism identified here thus provides a possible
microphysical basis to this scenario. The precise dynam-
ics of the entanglement will be the subject of a future
work.

ACKNOWLEDGMENTS

We thank Christos Charmousis, Alessandro Fabbri,
Denis Boiron, Chris Westbrook, and especially Florent
Michel for interesting discussions and useful suggestions.
We are particularly grateful to our friend and mentor
Renaud Parentani, who was responsible for the genesis
of this work and whose guidance and input in its ini-
tial stages proved invaluable. We would like to dedi-
cate the paper to his memory. This work was supported
by the French National Research Agency via Grant
No. ANR-20-CE47-0001 associated with the project
COSQUA (Cosmology and Quantum Simulation).

6 Since we focus directly on the phonon number nk rather than
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Appendix A FULLER DERIVATION OF EVOLUTION OF δnk

In this appendix we derive Eq. (19), a more precise equation of motion for the phonon spectrum, and we show how
the FGR emerges despite there being no exactly elastic scattering channel. We then analyze more fully the deviations
with respect to the FGR result.

A Equations of motion for phonon operators

We start by computing the Heisenberg equation of motion for ϕ̂k. The one for ϕ̂†k is easily deduced by taking
the adjoint. We consider only the dynamics under the quadratic (8) and cubic (11) Hamiltonians, neglecting higher
orders. We have :

∂tϕ̂k = −i



ωkϕ̂k +

1√
Nat

∑

q 6=0,−k
2V3(k, q)ϕ̂†qϕ̂k+q +

1√
Nat

∑

q 6=0,k

V3(k − q, q)ϕ̂k−qϕ̂q



 . (28)

Considering then the full number operator n̂k = ϕ̂†kϕ̂k, we have

∂tn̂k = ϕ̂†k · ∂tϕ̂k + ∂tϕ̂
†
k · ϕ̂k ,

= − i√
Nat

∑

q 6=0,−k
2V3(k, q)ϕ̂†kϕ̂

†
qϕ̂k+q −

i√
Nat

∑

q 6=0,k

V3(k − q, q)ϕ̂†kϕ̂k−qϕ̂q + h.c. .
(29)

On the right-hand side of the equation of motion for n̂k appears the momentum preserving 3-phonon operator

ϕ̂†kϕ̂
†
qϕ̂k+q, the same that appears in V̂3. We are thus compelled to consider the dynamics of this operator as well.

It is useful to define ϕ̂†pϕ̂
†
qϕ̂p+q = ĉ3(p, q) exp [−i (ωp+q − ωp − ωq) t], where the oscillations are made explicit. These

operators obey

e−i(ωp+q−ωp−ωq)t∂tĉ3(p, q) = ∂tϕ̂
†
p · ϕ̂†qϕ̂p+q + ϕ̂†p · ∂tϕ̂†q · ϕ̂p+q + ϕ̂†pϕ̂

†
q · ∂tϕ̂p+q + i (ωp+q − ωp − ωq) ϕ̂†pϕ̂†qϕ̂p+q

=
2i√
Nat

V3(p, q)ϕ̂†p+qϕ̂p+q

+
2i√
Nat

∑

λ6=0,−p
V3(p, λ)ϕ̂†p+λϕ̂

†
qϕ̂λϕ̂p+q +

∑

λ6=0,−q
V3(q, λ)ϕ̂†pϕ̂

†
q+λϕ̂λϕ̂p+q −

∑

λ6=0,−(p+q)

V3(p+ q, λ)ϕ̂†pϕ̂
†
qϕ̂
†
λϕ̂p+q+λ

+
i√
Nat

∑

λ6=0,p

V3(p− λ, λ)ϕ̂†λϕ̂
†
p−λϕ̂

†
qϕ̂p+q +

∑

λ6=0,q

V3(q − λ, λ)ϕ̂†pϕ̂
†
λϕ̂
†
q−λϕ̂p+q −

∑

λ6=0,p+q

V3(p+ q − λ, λ)ϕ̂†pϕ̂
†
qϕ̂p+q−λϕ̂λ .

(30)

The extra term on the first line involving the amplitudes for the p + q mode comes from rearranging the one term
which is not initially in normal order.

B Equations of motion for average values

We want to take average values in both equations of motion above and derive the evolution of nk = 〈n̂k〉. However, in
order to get a closed system we have to make some approximations. We assume that the state is initially homogeneous;
it will remain so as our Hamiltonian is momentum-conserving. We also assume that the initial state is Gaussian,
and that the only deviation from Gaussianity to evolve is a non-vanishing value of ĉ3(p, q), i.e., every connected
correlation function of order higher than three is negligible. Therefore, when taking average values on the right hand-
side of Eq. (30), the 4-point functions reduce to products of 2-point functions which have to respect the homogeneity
of the state:

〈
ϕ̂†pϕ̂

†
qϕ̂p+q−λϕ̂λ

〉
= npnqδq,λ + npnqδp,λ + c?qcλδp,−q , (31)
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where cp = 〈ϕ̂pϕ̂−p〉. The quantities n±p and cp – respectively, the population and 2-mode correlation of the modes
±p – are the only non-vanishing 2-point functions in a homogeneous state. We shall further assume, for simplicity,
that the cp are all vanishing. 7 The equation of motion for np and c3(p, q) = 〈ĉ3(p, q)〉 then reads :

∂tnk =
1√
Nat

∑

q 6=0,−k
4V3(k, q)=

[
c3(k, q)e−iδωL(q;k)t

]
− 1√

Nat

∑

q 6=0,k

2V3(k − q, q)=
[
c3(k − q, q)eiδωB(q;k)t

]
,

∂tc3(p, q) = 2i
V3(p, q)√
Nat

[np+q (np + nq + 1)− npnq] ei(ωp+q−ωp−ωq)t .

(32)

We can reduce this to a single equation of motion for nk by writing c3(p, q) explicitly in terms of nk:

c3(p, q)(t) = 2i
V3 (p, q)√

Nat

∫ t

0

dt′Np,q (t′) ei(ωp+q−ωp−ωq)t′ , (33)

where Np,q = np+q (np + nq + 1)− npnq. Equation (33) can now be substituted directly into the equation of motion
for nk:

∂tnk = 8
∑

q 6=0,−k

|V3 (k, q)|2
Nat

∫ t

0

dt′Nk,q (t′) cos [(ωk+q − ωk − ωq) (t− t′)]

−4
∑

q 6=0,k

|V3 (k − q, q)|2
Nat

∫ t

0

dt′Nk−q,q (t′) cos [(ωk − ωk−q − ωq) (t− t′)] .
(34)

Note that the terms depending on the various populations can be rewritten as the difference between the direct
process mentioned in the text below Eq. (11) and the corresponding reverse process. For instance in the first sum,
corresponding to the Landau scattering, we have

np+q (np + nq + 1)− npnq = (np + 1) (nq + 1)np+q − (np+q + 1)nqnp . (35)

On the right-hand side the +1 terms are associated only with the decay products and allow for spontaneous processes,
while the ns encode the stimulated part. This generalizes the matrix elements given in the main text, which only
include one direction where an excitation at p is removed by the interaction.

Equations (32) and (34) are the key equations governing the system, given our simplifying approximations. They
are entirely equivalent if c3(p, q) is set to zero at t = 0, though Eqs. (34) can be straightforwardly modified in a more
general case. Since Eqs. (32) are Markovian, they are much more suitable for numerical integration. On the other
hand, Eq. (34) is a nonlinear, non-Markovian equation for the full phonon spectrum nk. However, if analyzed using
appropriate approximations, we will show that it encodes both the exponential decay of the phononic population, its
first deviations and the corrections to the growth of population in a parametric resonance process.

C Dynamics of a probe on top of a quasicondensate

Up to this point, we have assumed homogeneity and quasi-Gaussianity of the state but worked with the full
phonon spectrum nq. As explained in the main text, the presence of a near-thermal population in the IR modes is
instrumental in the decay process that we study. Therefore, as done in Eq. (13), we split nq into a thermal background
nth
q = 1/ [exp (~ωq/kBT )− 1] plus a perturbation δnq. Physically this setup allows us to analyze the response of a

quasicondensate at temperature T to the addition of phonons around a certain mode k. This can either be done “by
hand”, as we have done in the first set of simulations presented in the text, or by a parametric amplification as in the
second set, see Sec. IV. As illustrated by Fig. 1 of the main text, we expect these δn probe phonons to redistribute
across the system and want to compute the ensuing decay rate.

Notice that the background thermal population nth
q is not strictly stationary due to the addition of the interaction

term V̂3, but as a first approximation we will assume it to be a solution of the equation of motion. Since we expect

7 This is not actually the case for the 2-mode squeezed state gen-
erated by the parametric resonance considered in the second set
of simulations. Yet, we achieve a quantitative agreement with

the TWA simulations for large enough value of kξ. We relegate
the analysis of the influence of the correlation on the decay to a
future work dedicated to the dynamics of entanglement in this
context.
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the relevant interactions to be between the peak and the thermal population, and not of the peak on itself, we insert
nk = nth

k + δnk in Eq. (34) and linearise in δn. We have

Np,q = N th
p,q + δnp+q

(
nth
p + nth

q + 1
)

+ δnp
(
nth
p+q − nth

q

)
+ δnq

(
nth
p+q − nth

p

)
+O

(
δn2
)
,

= N th
p,q + δNp,q +O

(
δn2
)
,

(36)

with N th
p,q the specific combination of populations evaluated with thermal populations and

δNk,q = δnk
(
nth
k+q − nth

q

)
+ δnk+q

(
nth
k + nth

q + 1
)

+ δnq
(
nth
k+q − nth

k

)
, (37)

δNk−q,q = δnk
(
nth
k−q + nth

q + 1
)

+ δnk−q
(
nth
k − nth

q

)
+ δnq

(
nth
k − nth

k−q
)
. (38)

Inserting back in the equations of motion we get

∂tδnk = 8
∑

q 6=0,−k

|V3 (k, q)|2
Nat

∫ t

0

dt′ δNk,qcos [(ωk+q − ωk − ωq) (t− t′)]

− 4
∑

q 6=0,k

|V3 (k − q, q)|2
Nat

∫ t

0

dt′ δNk−q,qcos [(ωk − ωk−q − ωq) (t− t′)] ,

= −
∫ t

0

dt′Dk (t− t′) δnk (t′) +

∫ t

0

dt′
∑

q 6=−k
Mk,k+q (t− t′) δnk+q (t′) .

(39)

In the last line we have split the RHS into two terms, defining a “diagonal” response function Dk(t − t′) that acts
only on δnk(t′), and a “matrix” response function that includes contributions from other modes δnk+q(t

′). Notice
that when defining the response functions we have included the term q = 0, by extending the summand to its finite
limit as q goes to 0, in both the diagonal and the matrix function; one can check that they exactly cancel out. This
inclusion allows to separate clearly the exponential decay from its deviations, as laid out below. The last equality in
Eq. (39) gives Eq. (19) of the main text.

D Diagonal response function and exponential decay

Considering first the diagonal response function, we have explicitly:

Dk (τ) = 8
∑

q 6=−k
|V3 (k, q)|2

(
nth
q − nth

k+q

)
cos [(ωk+q − ωk − ωq) τ ]

+ 8
∑

q≤k/2
|V3 (k − q, q)|2

(
nth
q + nth

k−q + 1
)

cos [(ωk − ωk−q − ωq) τ ] , (40)

where we have used the q → k − q symmetry in the second sum to fold it on q ≤ k/2 adding a factor 2. We want
to show that Dk (τ) reduces to a Dirac delta, and for this purpose it is convenient to first consider its integral. We
define

Ik(τ) =

∫ τ

0

dτ ′Dk (τ ′) ⇐⇒ Dk(τ) = I ′k(τ) , Ik(0) = 0 . (41)

Since Dk(τ) is an even function (Dk(−τ) = Dk(τ)), we find that Ik(τ) is odd:

Ik(−τ) =

∫ −τ

0

dτ ′Dk (τ ′) =

∫ τ

0

d (−τ ′) Dk (−τ ′) = −
∫ τ

0

dτ ′Dk (τ ′) = −Ik(τ) . (42)

Explicitly, we note that
∫ τ

0
cos (Ωτ ′) dτ ′ = τ sinc (Ωτ). Therefore,

Ik (τ) = 8
∑

q 6=−k
|V3(k, q)|2

(
nth
q − nth

k+q

)
τ sinc [(ωk+q − ωk − ωq) τ ]

+ 8
∑

q≤k/2
|V3(k − q, q)|2

(
nth
q + nth

k−q + 1
)
τ sinc [(ωk − ωk−q − ωq) τ ] . (43)
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It is also useful to take the continuous (large L) limit, replacing 1
∆q

∑
q ∆q → L

2π

∫
dq

Ik(τ) =
4L

π

∫ +∞

−∞
dq |V3(k, q)|2

(
nth
q − nth

k+q

)
τ sinc [(ωk+q − ωk − ωq) τ ]

+
4L

π

∫ k/2

−∞
dq |V3(k − q, q)|2

(
nth
q + nth

k−q + 1
)
τ sinc [(ωk − ωk−q − ωq) τ ] . (44)

Considering the large τ limit of Eq. (44), the sinc functions in the integrand become highly peaked around q = 0,
and to a good approximation can be replaced by Dirac deltas proportional to δ (q). However, the limit must be taken
with care since the general term has a discontinuity as q goes to 0. We split the integrals for negative and positive
momenta and in the limit of large τ we have

∫ ε
0
f(x)τ sinc(τ δωL/B(q))dq −→ f(0+)

∫∞
0
τ sinc(τ δω′L/B (0+) q)dq =

π
2 f(0+)/

∣∣∣δω′L/B (0+)
∣∣∣, and similarly on the other side. Explicitly, for τ →∞

∫ ε

−ε
|V3(k, q)|2

(
nth
q − nth

k+q

)
τ sinc [δωL(q)τ ] dq =

π

2

(
lim
q−→0−

+ lim
q−→0+

)
|V3(k, q)|2 nth

q

|δω′L (q)| ,
∫ ε

−ε
|V3(k − q, q)|2

(
nth
k−q + nth

q + 1
)
τ sinc [δωB(q)τ ] dq =

π

2

(
lim
q−→0−

+ lim
q−→0+

)
|V3(k − q, q)|2 nth

q

|δω′B (q)| .
(45)

In both integrals, in the limit q to 0, nth
k±q and 1 are negligible compared to nth

q that diverges as 1/q. In addition,

we have
∣∣∣δω′L/B (0±)

∣∣∣ = |vgr(k)∓ c|. Combining the above two limits we get the formula (17) for the decay rate of

phonon of momentum k. Therefore

Ik(τ) =

∫ τ

0

Dk (τ ′) dτ ′ → ±Γk as τ → ±∞ , (46)

where the opposite limit is obtained by anti-symmetry. Ik is asymptotically constant in both directions and only
varies in the vicinity of τ = 0. As a consequence Dk is peaked around τ = 0. We now assume that Dk is sufficiently
peaked compared to the variation of δnk so that the integral in Eq. (39) only picks out its instantaneous value δnk(t)

∫ t

0

dt′Dk (t− t′) δnk (t′) ≈ δnk (t)

∫ t

0

dt′Dk (t− t′) ,

= δnk (t) Ik(t) .

(47)

The equation of motion becomes

∂tδnk = −δnk (t) Ik(t) +

∫ t

0

dt′
∑

q 6=−k
Mk,k+q (t− t′) δnk+q (t′) . (48)

Let us now consider the ideal situation where at initial time every mode but a single mode k is exactly thermal:
nq(0) = nth

q + δn δk,q where δn is the number of phonons added in mode k on top of the quasicondensate. This
corresponds to the situation analyzed in Sec. IV A. Then we may neglect the matrix response function (since δnq �
δnk):

∂tδnk = −δnk (t) Ik(t) . (49)

Finally we take a large time limit to have Ik(t)→ ±Γk so that in this limit nk obeys

∂tδnk = −δnk (t) Γk , (50)

i.e., the population of the mode k decays exponentially at the rate predicted by Eq. (17).

E Matrix response function: the slowing effect of a finite width

It remains to give the form of Mk,k+q and describe its effects. It reads:

Mk,k+q (t− t′) = 8 |V3 (k, q)|2
(
nth
q + nth

k + 1
)

cos [(ωk+q − ωk − ωq) (t− t′)]
+ 8 |V3 (k + q,−q)|2

(
nth
q − nth

k

)
cos [(ωk − ωk+q − ωq) (t− t′)]

+ 8 |V3 (k, k + q)|2
(
nth

2k+q − nth
k

)
cos [(ω2k+q − ωk − ωk+q) (t− t′)]1q 6=−2k

(51)
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Firstly, a couple of technical remarks. Notice that there is an indicator function in the last term, stating that this
piece should not be evaluated at q = −2k. Also, the q = 0 term has been included to compensate for the inclusion of
the opposite term in Dk (t− t′). Therefore, even in the case where only a single mode is significantly occupied, the
matrix response function can never be completely neglected and (50) has to be amended. This first limitation is dealt
with in Appendix B below.
Mk,k+q represents the indirect interaction of phonons in the modes k and k + q through the thermal population.

Equation (51) shows that there are three such processes. The first term corresponds to the conversion between phonons
of wavevectors k and q and that of wavevector k + q, which we write symbolically as (k , q) ↔ k + q. Similarly, the
second term encodes processes of the form (k + q , −q) ↔ k, and the third term (k + q , k) ↔ 2k + q. Even though
the perturbation is initially localised in the mode k, the decay process will generate a non-zero δnq in the vicinity of
both q = 0 and q = k. We shall assume that the perturbation spectrum is relatively narrow around these two points.
Equation (48) then implies that we need only consider the values of Mk,k+q for k + q ≈ k and k + q ≈ 0.

Consider first k + q ≈ 0. In the second and third terms of (51), the factor of |V3|2 and the combination of thermal
populations independently vanish in the limit k + q → 0, making these terms negligible. In the first term, only the
factor of |V3|2 tends to zero, but the rapid oscillations of the cosine function at frequencies close to 2ωk will greatly
suppress its contribution to the integral of (48). Therefore, the back-reaction from the decay products at very low
momenta is expected to be negligible.

On the other hand, for k+ q ≈ k only the contribution of the third term in (51) is expected to be negligible, for the
frequency of the cosine function is large (roughly ω2k − 2ωk) and suppresses its contribution. We are then left with
contributions coming from the first and second terms. Their frequency differences are small, preventing any averaging
out due to rapid oscillations, and can be written to first order in q. Their coefficients have non-vanishing limit since
the vanishing of |V3|2 is compensated by the divergence of the thermal population, and can be approximated by their
low-q limits. Finally, we get 8

Mk,k+q (t− t′) ≈ 8

Nat
limq→0+

[
|V3(k, q)|2 nth

q

]
cos [q (vgr(k)− c) (t− t′)]

+
8

Nat
limq→0−

[
|V3(k, q)|2 nth

q

]
cos [q (vgr(k) + c) (t− t′)] . (52)

Equation (52) will be used to compute the correction to the FGR prediction of the decay rate due to the finite
width of the peak, i.e., to the back-reaction of neighbouring modes.

Appendix B DEVIATIONS FROM FGR RESULT

We turn in this appendix to the deviations with respect to the simple exponential decay predicted by the FGR.
Each of these deviations is described by equation of motion (39).

A Non-exponential decay of IR phonons

1 Numerical observations

It was shown in the main text that, in the first set of simulations where an initial probe is simply injected into
a single phonon mode, the numerically observed decay of modes with a large enough momentum (kξ ≥ 2.5) is very
well described by an exponential decay at a rate given by Eq. (17). In Fig. 7, a more complete set of results is
shown, in which the template δnk(t) = Aexp

(
−Γt+ γt2/2

)
is fitted to the behavior of a larger set of initial momenta.

This figure demonstrates that there are significant deviations at lower kξ, with the values of Γk extracted from the
simulations going to zero as kξ → 0 instead of the predicted finite limit. These deviations are due to the fact that
the FGR result is only valid within a certain time window [30, 34].

We review the last approximation made in the passage from Eq. (49) to Eq. (50), which is that t be large enough
for Ik(t) to be equal to its asymptotic value, or equivalently (as shown in Eqs. (45)-(46)), being able to replace

8 Notice that we dropped the terms nth
k and +1 compared to nth

q

which is divergent as q → 0. However, if we work in the discrete
setting and consider a small k ∼ j2π/L, then one could argue
that q can never be less than 2π/L so that nth

q is always finite

and of the order of nth
k . Still, in the limit k ≈ 0, these terms

come with opposite signs and practically cancel out unlike the
ones in nth

q .
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Figure 7. Best fit values for ~Γk extracted from the TWA simulations as a function of kξ. The window shown here is larger
than that of Fig. 3 while all physical parameters are fixed at the same values.
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Figure 8. Plots of the Rabi frequencies associated to Landau and Beliaev damping processes δωL,B (q; k) as a function of q for
kξ = 1.7 (left.) and kξ = 3.1 (right.). The value of k is shown by the vertical dashed line.

t sinc
(
δωL/Bt

)
/π by a δ function. This requires that δωL/B (k, q) t, which vanishes for the elastic scattering channel

q = 0, should nevertheless reach a large enough value in its vicinity so that the most significant part of the sinc is
squeezed into the region of constant effective interaction strength. We may introduce a critical response time, tcrit,
which marks the time after which this condition is satisfied. This critical time depends on k, so that, for a fixed time
window t/tξ ∈ [0, 10] over which the fit is performed, those k for which tcrit/tξ � 10 will be in the FGR regime, while
those k for which tcrit/tξ � 10 will be in an early-time regime long before the FGR can be applied.

Examples of δωL/B(q, k)tξ are plotted in Fig. 8, for kξ = 1.7 and 3.1. The key observation is that |δωB | is the
most significantly constrained, especially in the window q ∈ [0, k] where the decay processes are expected to be most
efficient (as the effective interaction strength is largest there). It is this restriction on |δωB | that is most clearly

responsible for the failure of the approximation. |δωB | reaches a maximum δω
(max)
B = ωk − 2ωk/2 at q = k/2. At

lowest order in kξ, we have δω
(max)
B tξ ≈ 3

32 (kξ)
3
. The critical response time can be (somewhat arbitrarily) defined

via δω
(max)
B tcrit = 2π, but the key point is that it increases quickly at low momentum: tcrit/tξ ∝ (kξ)

−3
. Since the

fitting window of Fig. 7 extends only up to t/tξ = 10, we require at least 10 δω
(max)
B tξ ≈ (kξ)

3 ≥ 2π, which imposes
kξ ≥ 2. This estimate is in close correspondence with the onset of deviations seen for kξ ∼ 2 in Fig. 7. Moreover, as

the total duration of the simulation is varied, the estimated threshold for kξ will vary only slowly, as (t/tξ)
−1/3

.
At lower kξ, we are well outside the validity regime of the FGR, in an early-time regime where a t2 behavior is
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Figure 9. Number of phonons nk in the mode kξ = 0.3 (top left), kξ = 1.3 (top right), kξ = 2.4 (bottom left), kξ = 3.4 (bottom
left) as a function of time t/tξ for kBT/mc

2 = 2, ρ0ξ = 49.9, L/ξ = 90.5 and nr = 400 realisations. Each plots is comprised
of nt = 140 points. The red dots correspond to the result of the TWA simulations. The green line is obtained by taking the
difference of the prediction of Eq. (53) for the background thermal population and the full population. The gray line in the top
left panel corresponds to the prediction for an early-time quadratic decay given by Eq. (54), while in the bottom right panel
it corresponds to the prediction of an exponential decay at the rate given by Eq. (17) of the text with corrections given by
Eq. (20).

expected [34] (see below). Furthermore, for very low-lying modes k ∼ 2π/L, the range q ∈ [0 , k] will be poorly
sampled. We thus expect a strong suppression of the Beliaev component of the decay as kξ → 0 due to the small
number of available modes to decay to, in accordance with similar remarks made in [9, 10]. While such low-lying
k mode can still decay via a Landau process we expect that in this regime the system becomes sensitive to the
discreteness of excitations and this process would thus require a separate analysis (see, e.g., Ref. [36]).
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2 Approximate analytical description of behavior

We expect that these low-k modes can still be well described by Eq. (34). However, we shall adopt an early-time
approximation, assuming that Np,q(t) varies sufficiently slowly for it to be taken out of the time-integral as an overall
prefactor. We get

∂tnk = 8
∑

q 6=0,−k

{
|V3(k, q)|2

Nat
[nk+q (nk + nq + 1)− nknq] t sinc [δωL(q; k)t]

}

− 8
∑

0<q≤k/2

{
|V3(k − q, q)|2

Nat
[nk (nk−q + nq + 1)− nk−qnq] t sinc [δωB(q; k)t]

}
,

(53)

where we have used the symmetry k → k−q in the second term to sum over only half the momenta, compensating with
the inclusion of a factor 2. This equation is then numerically solved twice: once using only the thermal population as
an initial state, and a second time using the thermal population plus the δn phonons added in the mode k. We then
take the difference to obtain the green curves in Fig. 9. This procedure correct for small variations of the background
thermal population. A good agreement is found with the TWA simulations even for large values of kξ.

Let us try to get an analytical estimate for the behavior of the low-lying modes. Their critical time being very large,
it is appropriate to consider the early-time limit of Eq. (49) where δnk(t) ≈ δnk(0) and sinc (δω τ) ∼ 1, therefore
Ik (τ) = αkτ for a certain constant αk. This gives

δnk(t) = δnk(0)
(
1− αkt2/2

)
, (54)

where we now have to calculate αk.
We cannot simultaneously set all the sinc functions in Eq. (44) to 1, as the +1 term in the second sum would then

lead to a divergence. Indeed, for large q the frequency difference diverges and the sinc decay accordingly quickly. We
typically consider the evolution of the system over time scales of the order of tξ. Considering kξ ∼ 0.3, we want to
sort every mode q in two categories. Either δωL/B(q, k)tξ � 1, then this mode can be considered to experience an
early time behaviour and the related sinc can be set to 1, or δωL/B(q, k)tξ � 1 then the sinc should be set to 0. We
simply exclude the latter modes from the sum.

On the one hand, as noted above for the Beliaev-type channels it is clear from Fig. 8 that the modes q ∈ [0, k]
oscillate at frequencies smaller than the others and should be the one kept in the sum. On the other hand there is
no clear separation for the Landau-type scatterings. However, the terms associated to δωL in Eq. (44) are already
suppressed at large q by an exponentially decaying thermal population nq in factor. The inclusion of them in the sum
should then be irrelevant for the resulting numerical prediction and we include all the modes in the first sum. We
then get:

αk =
8

Nat




∑

q 6=0,−k
|V3(k, q)|2

(
nth
q − nth

k+q

)
+

∑

0<q≤k/2
|V3(k − q, q)|2

(
nth
k−q + nth

q + 1
)


 . (55)

In Fig. 10 we compare this prediction with the best-fit value of α for the template A
(
1− αt2/2

)
applied to the TWA

simulations with A and α as fitting parameters. We considered the smallest values of k of Fig. 3 in the text and used
the same time-window t/tξ ∈ [0, 10]. The agreement is good for very small k and deviations appear around kξ = 0.5.
This can be understood using Fig. 9. For kξ = 0.3 the decay is satisfyingly described by the quadratic prediction
Eq. (55), while for kξ = 3.4 it is well described by the exponential prediction of Eq. (17) plus the finite size-correction
examined in the next section. On the other hand for the intermediate values kξ = 1.4 and kξ = 2.4, corresponding
to the second and third panels, the decay from t/tξ = 0 to t/tξ = 10 is neither quadratic nor exponential all the way.
kξ = 2.4 is precisely the value around which our prediction of exponential decay seems to break down in Fig. 7.

B Finite-size effect

1 Description of effect

The inequivalent curves in Fig. 11 plotted for L/ξ = 90.5 and L/ξ = 181 demonstrate that the dynamics of nk in the
TWA simulations is not completely insensitive to the size of the system L. Therefore, the L-independent exponential
decay rate of Eq. (17) cannot fit exactly the result of the simulations.
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Figure 10. Red dots are the best fit values for αkt
2
ξ extracted from the TWA simulations using a template of the form of Eq. (54).

The green dashed line is the prediction for αkt
2
ξ of equation Eq. (55). The simulation parameters are kBT/mc

2 = 2, ρ0ξ = 49.9
and L/ξ = 90.5 with nr = 400. The fits are performed over a time-window t/tξ ∈ [0, 5], which is half the time-window used in
for the fits of Γk in Figs. 2 and 3, but with the same number of points nt = 140.
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Figure 11. Number of phonons nk in the mode kξ = 2.4 (left.), kξ = 3.1 (right.) as a function of time t/tξ for kBT/mc
2 = 2,

ρ0ξ = 49.9 and nr = 400 realisations. The red dots correspond to L/ξ = 90.5 and the green ones to L/ξ = 181.

The key to understanding this effect is the q = 0 contribution to the matrix part of the response function. For a
singularly occupied mode, this is the only term in the matrix part that plays any significant role. Recall that it must
be included simultaneously in both the diagonal and matrix parts, so that there is no net change in the total response
function. If these q = 0 terms were not included, the effect would be related to the absence of the q = 0 term in the
diagonal response function.

What effect does this term have? Considering the case where a certain number of phonons are injected at t = 0,
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Figure 12. (Left) Plot of γkt
2
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the best fit values extracted from the TWA simulations using Eq. (20) as a template. The green dashed line is the prediction
of equation Eq. (21).

and working in the regime where the diagonal response function reduces to a Dirac delta, we have

∂t (δnk) = −Γk δnk +

∫ t

0

dt′Mk,k (t− t′) δnk (t′)

= −Γk δnk + γk

∫ t

0

dt′ δnk (t′) , (56)

where we have made it manifest that γk ≡Mk,k does not depend on t− t′:

γk = 8

(
lim
q−→0+

+ lim
q−→0−

) |V3(k, q)|2
Nat

nth
q . (57)

At fixed density, Nat is proportional to L, so γk ∝ 1/L. Performing computations explicitly we get Eq. (21) of the
main text.

It is clear from Eq. (56) that there is some push-back on the decay. The simplest solution is when δnk does not
vary much over the duration of interest, so that we can pull it out of the integral:

∂t (δnk) ≈ (−Γk + γkt) δnk , (58)

with solution given by Eq. (20) of the main text. In this approximation, the γk term simply provides a constant
deceleration to the decay rate. 9 In numerical simulations, we have used Eq. (20) as a template to extract the fitted

9 Here a time dependence of the rate appears through the L-
dependence i.e. the finite size effect. The reader might wonder
why we never mentioned possible deviations to the exponential
decay solely due to the finiteness of t and hence the sinc being
not exactly a Dirac delta in Eq. (44). The finite t deviation
can be obtained by expanding the effective interaction strength
around q = 0. Indeed, a Dirac delta would pick up only the
value at q = 0, first term in the expansion, while a sinc is still
sensitive to the deviations from the value at q = 0 which are
encoded by the higher order terms. We can then proceed by
integration by part in Eq. (44) to find that each term in qn cor-

responds to a term decaying as 1/tn. A careful analysis shows
that by combining both integrals the next to leading order term
in the expansion around q = 0 is in q2 and not linear in q as
one might have expected. The first deviation is then in 1/t2.
The reason is that since nth

q + nth
k−q + 1 ≈ 1/q + 1/2 + nth

k and

nth
q − nth

k+q ≈ 1/q − 1/2 − nth
k , the contribution coming from

both integrals cancel exactly. Hence, the convergence of the sinc
to a Dirac delta is effectively faster than one might expect and
not a limitation to our result. Notice that since this term is
not continuous we have to perform different expansions on both
sides.
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Figure 13. Number of non-thermal phonons δnk as of function of kξ at t/tξ = 50 (top left.), and t/tξ = 25 (bottom left.), when
δn = 10 phonons were initially added in the mode kξ = 1.4 (top left.), or kξ = 3.1 (bottom left.). This number is shown in
full line for different values of density of the grid ∆k = 2π/L where L = 128 (blue), L = 256 (green) and L = 512 (red). The
number of modes in the simulation for L = 512 is then halved by merging nearby modes into a single bin via Eq. (59) and
shown in red squares. Equation (59) is then applied on the set of modes for L = 256 and repeated via Eq. (60) on the new set
of modes to have the same set of modes as L = 128 shown respectively the red and green dots. They are almost everywhere
superimposed so that they can hardly be distinguished. The evolution as a function of t/tξ of the population in the probe
mode is shown in full lines on the right figures for kξ = 1.4 (top right.) and kξ = 3.1 (bottom right.). The result of the binning
procedure from L = 512 to the set of modes of L = 256 is shown in red dotted line. The result of the second binning and
the binning of L = 256 to the set of modes of L = 128 is shown in red and green dashed lines. The initial thermal state used
corresponds to kBT/mc

2 = 2. The evolution is performed using the same numerical strategy as described for the green curves
of Fig. 9 for ρ0ξ = 49.9.

values of Γk shown in the figures of the main text. The values of γk extracted from the same fits in the time window
t/tξ ∈ [0, 10] are plotted in Fig. 12, along with the prediction of Eq. (21). It demonstrates a reasonable agreement
in the same regime of validity as the one of exponential decay (kξ ≤ 2.5) shown in Fig. 3. At smaller kξ, the system
exhibits the t2 behavior described above, and this becomes reflected in the fitting parameters. In particular, γk moves
over into the t2 coefficient −αk, and we see indeed that its sign changes.

That said, there is a difference between how γk and αk enter the expression of nk(t), respectively, linearly and
exponentially. In particular, while the early t2 behavior is described by the single fitting parameter αk, the inclusion
of γk as a correction to the exponential decay means that it is one of two fitting parameters. The time window of fit
is large enough so that the difference between these two templates (applied on the same data) is visible, as illustrated
by a direct comparison of Fig. 10 with Fig. 12.
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2 Relation to finite size and resolution in k-space

Is there an intuitive way to link this apparent deceleration to the finite size of the system? As our calculations are
based in Fourier space, the size of the system enters through the discreteness of the available modes. To some extent,
the discretized description should simply provide a finite-resolution view of the continuous-mode (infinite-L) case.

We have investigated this by numerically solving Eqs. (32) directly. We inject a number of phonons in a single
mode, and allow the system to evolve in time, for three different values of L. We then compare the evolution by
appropriately binning the phonon number spectrum nk when the k-space resolution is higher, so that each simulation
is ultimately represented using the same set of discrete modes. This procedure can also be seen as restricting attention
to a section of length D of the system so that the relevant momenta are 2π n/D rather than 2π n/L, for n ∈ Z. The
precise relationship between the two sets of modes is equivalent to a choice of window in position space, over which
the Fourier transform of the field is taken. We take a more heuristic approach here.

For example, to map the data for a simulation of a system of length L onto the set of modes applicable to a system
or section of length L/2, the phonons in every second mode must be reallocated to neighbouring modes. We do this
by dividing them symmetrically into their two nearest neighbours, half the phonons going into the mode above, half
into the mode below. So:

nbinned
k =

1

2
nk−∆k + nk +

1

2
nk+∆k . (59)

Similarly, to map onto a set of modes applicable to a system of length L/4, we adopt the following binning procedure:

nbinned
k =

1

2
nk−2∆k + nk−∆k + nk + nk+∆k +

1

2
nk+2∆k . (60)

Results are shown in Fig. 13, for two different values of k. Interestingly, the binning procedure applied to larger-L
data gives a very good approximation to the data for smaller-L. This suggests that there is no new (relevant) physics
due to the discretization in k-space, in the sense that we can solve for a continuous k-space (i.e., in the limit of infinite
L) and then simply apply a suitable binning procedure to see how the discretized system behaves. Similarly, the
(relevant) physics on a section of length L of a system of infinite size is the same as that of a finite-size system of the
same length.

This binning procedure provides an intuitive explanation for the apparent deceleration of the decay encoded in
Eq. (56). For, while the singularly occupied mode decays exponentially, the lost phonons are kicked into nearby
modes, whose occupation numbers grow in time. This is what is captured by the second term of Eq. (56): it
represents the growth of those modes in the continuous spectrum that are very near k, but which, due to the finite
resolution in k-space, are included in the same bin. By local conservation of the number of phonons described in
the text, if we bin all modes within the width of the peak into a single mode, we effectively suppress the decay, i.e.,
if we consider a sufficiently short section we will not witness the decay of the phononic excitations. The time-scale
comparison of Eq. (23) shows that the relevant length scale is the coherence length of the quasicondensate r0. For
shorter distances we do not expect to be able to resolve the decay of the phonons and the broadening of the peak in
momentum space.

Of course, we do not expect the good correspondence shown in Fig. 13 between simulations of different L to last
indefinitely. Eventually, the relevant components of the system – namely, the thermal spectrum and the probe – will
be able to tell that they are on a finite torus, rather than a finite section of an infinite-size system, and we can then
expect the different simulations to diverge significantly. The critical time can be conceptualized as the re-crossing of
the relevant components, which would not re-cross if the system were truly infinite in length. There are two such
times, corresponding to the re-crossing of the probe with the positive and negative wave vector components of the
thermal spectrum, which propagate and speeds c and −c, respectively. Then the re-crossing times are

trec
+ =

L

vgr(k)− c , trec
− =

L

vgr(k) + c
. (61)

Since these are simply proportional to L, it makes sense that the simulation with smallest L should be the first to show
deviations, as we see in the lower-right panel of Fig. 13. (In this example, trec

− /tξ = 30.1.) However, the deviations
remain small, likely due to the weaker coupling between the probe and the negative part of the thermal spectrum.
We expect more significant differences after time trec

+ ; indeed, we have observed some recurrence of δnk on this time
scale.
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Figure 14. Logarithm of the mean occupation of the resonant mode (green) and its nearest neighbours on either sides (red,
blue) as a function of time extracted from the TWA simulations. The parameters for the initial state, the amplitude and the
duration of the modulation are the same as in Fig. 4. We see a quicker convergence of the growth rates within the peak on the
right plot, which is due to a smaller atomic density resulting in a larger effective interaction strength.

C Finite width of the resonant peak

Here we will discuss the corrections to the decay rate induced by a finite peak width. In particular, we will show
how the approximate corrections shown in Fig. 5 were calculated.

The reduction of the decay rate is induced by the off-diagonal part of the matrix response function. Phonons next to
the mode of interest also decay due to interaction with the thermal population, and some of these are thus transferred
into the mode of interest. Since they can only contribute positively to the occupation number of the main mode, they
decelerate the decay of nk, thereby effectively reducing the decay rate Γk.

In our first set of simulations, we impose a very narrow initial peak, and this effect does not have a chance to build
up significantly. By contrast, in the second set of simulations where the peak is induced via parametric resonance, it
naturally has a finite width which is observed to depend on the interaction strength. We thus see signs of the overall
decay rate being smaller than the predicted value at larger interaction strengths, as seen in Fig. 5.

We wish to predict the expected reduction in Γk given the observed peak width. To this end we employ Eq. (19)
with two key assumptions. First, we modify the equation to include a source term that induces exponential growth,
modeling the parametric resonance. This is achieved by adding Gk δnk to the right-hand side, where Gk is the
predicted growth rate in the absence of any phonon-phonon interactions:

Gk =
1

2
Akωk , (62)

which is consistent with Eq. (26) for sufficiently large t. Second, we assume that a steady state is reached where the
occupation numbers of all relevant nearby modes grow at the same net rate, Gnet. Therefore, the shape of the peak
is assumed constant, and evolves in time simply according to

δnk(t) = fk e
Gnett . (63)

This appears to be consistent with numerical observations see Fig. 14.

Incorporating these assumptions in Eq. (19) for the occupation number of the resonant mode yields a consistency
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equation that determines the expected net growth rate, Gnet:

∂t (δnk) = Gnet δnk = (Gk − Γk) δnk +

∫ t

0

dt′
∑

q 6=−k
Mk,k+q (t− t′) δnk+q (t′)

≈ (Gk − Γk) δnk +

∫ t

0

dt′
∫
dq

L

2π
Mk,k+q (t− t′) δnk+q (t′)

δnk (t′)
δnk (t′)
δnk(t)

δnk(t)

= (Gk − Γk) δnk + δnk(t)

∫ t

0

dt′
∫
dq

L

2π
Mk,k+q (t− t′) Rk+q e

−Gnet(t−t′) , (64)

where in the second line we have taken the continuum limit to replace the sum over wave vectors q by an integral.
The exponential suppression in t− t′ allows us to replace the lower limit of the t′ integral by −∞, which in turn allows
us to write the integral independently of t and to divide through the whole equation by δnk(t):

Gnet = Gk − Γk +

∫ ∞

0

dτ

∫
dq

L

2π
Mk,k+q (τ) Rk+q e

−Gnetτ . (65)

This self-consistency equation can be solved for Gnet, given that we know Gk, Γk, and the profile shape Rk+q. If we
assume that the peak is narrow enough so that only small q are relevant, we may replace Mk,k+q with its small-q
limit, given in Eq. (52). This gives

Gnet ≈ Gk − Γk +

∫ ∞

0

dτ

∫
dq {f+ cos [q (vgr(k)− c) τ ] + f− cos [q (vgr(k) + c) τ ]} Rk+q e

−Gnetτ

= Gk − Γk +

∫
dq

{
f+

Gnet

G2
net + q2 (vgr(k)− c)2 + f−

Gnet

G2
net + q2 (vgr(k) + c)

2

}
Rk+q , (66)

where we have defined

f± =
4

π

L

Nat
limq→0±

{
|V3 (k, q)|2 nth

q

}
. (67)

All that remains is to plug in a suitable profile Rk+q for the profile of the peak. Over a significant range of parameters,
we observe numerically that the profile is fairly well described by a Lorentzian:

Rk+q =
1

(q/σ)
2

+ 1
. (68)

Adopting this as an ansatz and plugging it into the integral above, we find

Gnet − Γ+g

(
Gnet

(vgr(k)− c)σ

)
− Γ−g

(
Gnet

(vgr(k) + c)σ

)
= Gk − Γk , (69)

where Γ± are the predicted decay rates given in Eq. (17) (recall that Γk = Γ+ + Γ−), and where we have defined

g(x) =
1

1 + x
. (70)

The effective decay rate Γeff is then defined as Γeff = G−Gnet, thus capturing the reduction of the growth rate due
to phonon-phonon interactions. Note that Eq. (69) yields the expected behavior in the limits of very narrow and very
broad peaks:

• When the peak is very narrow, we take σ → 0 so that the argument of g(x) becomes very large, and we can set
g(x) to 0. Then we just get Gnet = Gk − Γk, so Γeff = Γk; this is exactly our prediction for the decay rate of a
narrow peak.

• Conversely, when the peak is very broad so that we can send σ →∞, the argument of g(x) becomes very small
and we can replace g(x) by 1. Since Γk = Γ+ + Γ−, Eq. (69) tells us that Gnet = Gk, i.e., there is no reduction
of the growth rate. This corroborates our expectation that the broadness of the peak tends to suppress the
decay rate.

To determine the corrected decay rates shown in Fig. 5, we first perform a fit of a Lorentzian profile to the occupation
numbers around the resonant peak (including five data points on either side of the resonant mode), in order to extract
the width σ. This is then used in Eq. (69) on order to determine the expected net growth rate Gnet, and thereby the
effective decay rate Γeff .
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Appendix C MONTE-CARLO SIMULATIONS : TRUNCATED WIGNER APPROXIMATION (TWA)

In order to assess the validity of our predictions we compare them to the results of ab initio Monte-Carlo simulations
of the system. To simulate the evolution of our quasicondensate we use the Truncated Wigner Approximation (TWA)
also known as the classical field approximation. This method is based on the description of the state of the system
by means of a quasi-probability distribution, the Wigner function. The TWA has been repeatedly used to describe
Bose gas [29, 37], specifically one-dimensional quasicondensate [38, 39], as well as a wide variety of other systems
(polaritons, spins etc.) [40, 41]. We will restrict our presentation of the TWA to the necessary minimum and we refer
to [29] for further details.

A TWA in a nutshell

The Wigner function W (Ψ,Ψ?) is a quasi-probability distribution in phase space defined by a bijective transforma-
tion of the density matrix ρ̂. Under this transformation the von Neumann equation of motion on the density matrix
then translates into a partial differential equation for W [42]. For the Hamiltonian (1) the equation reads

i~Ẇ (Ψ,Ψ?) = −
∫ +∞

−∞

{
δ

δΨ

[
1

2m
∂2
xΨ + g

(
|Ψ|2 − 1

)
Ψ

]
− 1

4

δ3

δ2ΨδΨ?
Ψ

}
W (Ψ,Ψ?) + c.c. , (71)

where the derivatives act on the element inside of the brackets multiplied by W (Ψ,Ψ?), see Eq. (23) of [29]. The
truncation giving its name to the Truncated Wigner Approximation consists in neglecting terms with three derivatives
or more. The resulting equation is then solved by using the method of characteristics. Practically, the Wigner function
at time t is found by first sampling the Wigner function at initial time i.e. drawing a set of values Ψi(x, t = 0) according
to the initial Wigner function and evolving these realizations under an equation of motion which is simply the classical
counterpart of the Heisenberg equation of motion of Ψ̂ under the Hamiltonian (1)

i~Ψ̇ = − 1

2m
∂2
xΨ + g |Ψ|2 Ψ . (72)

The resulting Ψi(x, t) represent a sampling of the Wigner function of the state at time t. This sample can be used to
compute average values of observables 〈A (ϕk)〉TWA built from ϕk. It can be shown that expectation values computed
treating the Wigner function as a bona fide probability distribution are equal to quantum expectation values of the

associated operator when the expression is completely symmetrized in ϕ̂k and ϕ̂†k. We will not discuss here the
conditions of validity of this truncation and of its numerical implementation; some considerations can be found in
[18, 28, 29].

B Numerical implementation

The numerical implementation of the TWA is a straightforward application of the above program. The evolution is
performed using a discretized version of Eq. (72) and a split-step Fourier algorithm [43]. The initial state is taken to be
thermal at a temperature T , up to the addition of a few “probe” phonons in the mode k for the first set of simulations.
The exact thermal state of the system is approximated by the one associated to the quadratic Hamiltonian Ĥ2 i.e., the
phonon modes are completely uncorrelated to each other and their number spectrum is set equal to the Bose-Einstein
distribution at temperature T . The realisations of the atomic field are built from nr realisations of the phonon modes
ϕk. These are themselves built drawing independently < [ϕk] and = [ϕk] according to a centered Gaussian distribution
with variance

σ2
k =

1

2

(
nk +

1

2

)
=

1

4
coth

(
~ωk

2kBT

)
. (73)

It is then straightforward to check that the TWA averages reproduce the averages of the symmetrized quantum
operators in a thermal state:

〈ϕk〉TWA = 〈ϕ∗k〉TWA = 0 , (74)

〈ϕ∗kϕk〉TWA = nth
k +

1

2
=

1

2

〈{
ϕ̂k, ϕ̂

†
k

}〉
, (75)
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where
{
Â, B̂

}
= ÂB̂+ B̂Â is the anti-commutator. Since this is not the exact thermal state we let the system evolve

for a certain duration to be as close as possible to a stationary state that we use as an initial state. For the first set
of simulations phonons are then injected in the mode k by transforming its amplitude ϕk(0) according to

ϕk(0) −→
√

1 +
δn

nth
k + 1

2

ϕk(0) , (76)

so that ϕk(0) still has Gaussian statistics but with a variance corresponding to nk = nth
k + δn. We then evolve under

Eq. (72) both the realisations with and without the addition of probe phonons using the same code. We repeat this
process for the nr realisations. Finally we compute the average values for nq with and without the probe at any time
and take the difference to get the evolution of the average value δnq(t).

This method closely mirrors the step of the derivation of the decay rate laid out around Eq. (39) where we subtract
the evolution of the background thermal population to single out the evolution of the probe. However the TWA
encodes also the deviations to the linear case considered in our equations. For the second set of simulations we simply
evolve the initial quasi-stationary state according to (72) where g is modulated according to (25), and proceed to the
same type of averaging as in the first set. We want to stress that in any figure of this work, for both set of simulations,
a data point at time t + dt is not obtained simply by evolving the realisations at t time by an extra-step dt as this
would result in strongly correlated data points. We rather start the whole evolution process from new realisations of
the initial state and evolve them until t+ dt.



3.5 Simulating 1D Bose gas using TWA

The numerical simulations we performed are based on the Truncated Wigner
Approximation (TWA) [186, 187], the general procedure of which is explained in
Appendix C of [4], reproduced in the previous section. TWA allows simulating the
gas’s evolution beyond the BdG approximation where quasi-particles are consid-
ered free and there is no backreaction on the gas’s condensed part. The strategy is
to treat the atomic field Ψ̂ as a stochastic variable Ψ. At the initial time, we draw
realisations of the atomic field Ψi, which we evolve using the full Heisenberg equa-
tion of motion, corresponding exactly to the GPE for these classical fields. Notice
that, in the TWA, the non-classical aspects are confined to the stochasticity of the
initial state, while the dynamics is entirely classical. The TWA, therefore, misses
part of the quantum dynamics [188]. Still, in [4], it completely captured the scat-
tering processes we were studying. Due to the stochasticity of the initial state,
the TWA differs from the resolution of the GPE describing the mean atomic field.
The procedure we just described can be justified by a truncation of the equation
of motion for the full Wigner function, see Appendix C of [4], and exactly solves
the quantum dynamics for a Gaussian state evolved via a quadratic Hamiltonian.
Our goal is to use the TWA to simulate the evolution of a gas initially in thermal
equilibrium, which undergoes a change in interaction constant g leading to the
creation of quasi-particles, as in [130], or to follow the evolution of a thermal state
in which we initially add a few quasi-particles in some modes. These simulations
allow us to probe how the gas reacts to the introduction of quasi-particles in a
weakly non-linear regime and to follow the propagation of these perturbations to
other modes. We summarise the main steps of the algorithm in Fig. 3.6. We give
more details about each of these steps in the dedicated sub-sections below.

3.5.1 A - Initial state preparation
3.5.1-a Space discretisation

We assume that our gas is contained in a one-dimensional box of size L. Ad-
ditionally, to represent the system, we need to discretise space with a space step
dx, and we have nx sites such that L = nx × dx. This discretisation of real space
induces a UV cut-off in Fourier space i.e. we do not encode the physics of scales
smaller than |k| ≥ π/dx. In our case, this UV cut-off is not a limitation since we are
mainly interested in the behaviour of long wavelengths. As detailed in Sec. 3.3.4-b,
for the discretisation to still capture the relevant physics, we have to make sure
that the space step is small enough i.e. dx≪ ξ and dx≪ λT. We typically work at
the limit of validity of these conditions where dx ∼ λT and dx ∼ ξ/3. Decreasing
the steps did not noticeably improved the results and require more computation
time to run the simulations. We also have to make sure that the space step is
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large enough so that the total number of atoms ρ0dx≫ 1 in each site is large. For
the smallest density values used in [4] we have roughly ρ0dx = 10 atoms per site
so that the condition is always satisfied. Combining these two series of conditions
gives a range in which we can choose dx. It thus puts a limit on the number of UV
modes we can include in the simulation for a given value of the size of the system
L and of the density n0.

The condition of a large occupation in each site is a requirement to build an
approximate phase operator and for the density fluctuation to remain small [168],
see Eq. (3.68). This requirement can be understood easily in the case of TWA sim-
ulations. The density fluctuations are not a priori a normal-ordered combination,
and in any state, it contains a sum of commutators encoding the vacuum fluctua-
tions of each mode. In principle, this number is infinite, and we have to regularise
it by normal ordering. In TWA simulations, each mode comes with a certain
level of vacuum fluctuations included by a stochastic noise, see Sec. 3.5.1-b below,
and these will contribute to every observable. If we include too many modes, the
density fluctuations will grow out of control. These vacuum fluctuations are also
effectively encoded via a non-zero value of the classical field as any other mode
excitation. Therefore, they are not protected against scattering processes affecting
the excitation of the system i.e. the ‘vacuum fluctuations’ can decay in a TWA
code. These processes can lead to a negative occupation number of the highest
UV modes and are thus another reason not to include too many UV modes [126].

3.5.1-b A1 - Thermal state
We want to use the thermal state of the system as an initial state to mimic

the setting of [130]. Initialising the atomic field in an actual thermal state of
the system would require knowing the exact energy spectrum and the associated
eigenfunctions of the system. In general, this is impossible. We instead start
from an approximate thermal state using the energy spectrum computed from the
quadratic order Hamiltonian Ĥ2 of Eq. (3.44). Notice that at this stage, using BdG,
or Madelung, perturbation theory gives the same energy spectrum. Nevertheless,
the quasi-particles are related to the atomic field differently in these two schemes.
They thus define different approximate thermal states for the system. As expected,
the phase and density approach leads to a more stationary and better-behaved
state. We come back to this point in Sec. 3.5.3-b.

A thermal state for the quadratic Hamiltonian is a number state |{nth
k }⟩ where

nth
k is the thermal state given in Eq. (3.72), and ωk is the BdG quasi-particles dis-

persion relation (3.41). In the stochastic treatment the operators b̂k are treated as
stochastic c-numbers bk. The probability distribution attached to them is given by
the Wigner function of the system’s state. The thermal state is a Gaussian state
meaning that its Wigner function is a Gaussian and is entirely characterised by
its covariance matrix as detailed in [1] reproduced in Sec. 2.2. By analogy with a
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harmonic oscillator, we can define pseudo-position q̂k, and pseudo-momentum op-
erator p̂k, for each quasi-particle mode related to the hermitian and anti-hermitian
part of the operator similar to Eq. (60) of [1]. This gives us a phase-space rep-
resentation of the state. We can then use the stochastic phase-space variables qk
and pk. Their statistics are given by the Wigner function of the modes ±k i.e. a
two-dimensional Gaussian probability distribution parameterised by the covari-
ance matrix of the quantum state. For a thermal state, qk and pk are independent
and they have equal variance ⟨q̂2k⟩ = ⟨p̂2k⟩ = nth

k + 1/2 see Eq. (C.3) of [4]. In
general, the stochastic phase-space variables satisfy [189].

⟨f (qk, pk)⟩W = ⟨fsym (q̂k, p̂k)⟩ , (3.82)

where the left-hand side is an average performed with the Wigner function, f
is a polynomial and fsym is a writing of the polynomial totally symmetric in its
arguments, e.g. for f(q, p) = q2p2 we have fsym(q̂, p̂) = (q̂2p̂2+ q̂p̂2q̂+ q̂p̂q̂p̂+ p̂q̂p̂q̂+
p̂q̂2p̂ + p̂2q̂2)/6. The left-hand side average in Eq. (3.82) can be approximated by
drawing a large number nr of independent realisations of the stochastic phase-
space variables {qk,i, pk,i}i∈[1,nr]. Typically we use nr = 500 in the simulations
of [4]. Going back to phonon numbers we have in particular ⟨b⋆kbk⟩W = nth

k + 1/2
see Eqs. (74)-(75) in Appendix C of [4]. The 1/2 present in each mode encodes
the vacuum fluctuations. To read out the average number of particles in each
mode, we must subtract this half. Note then that the total decay of the excitation
in a mode k, leading to a vanishing value for bk,i, would indeed imply a negative
number of quasi-particles in the mode as explained in Sec. 3.5.1-a.

Using this stochastic picture based on the Wigner function, we can exactly
represent the initial thermal state of quasi-particles. We only include a finite
number of modes in our simulation, but the requirement dx ≪ λT ensures that
we sample the thermally occupied ones. Finally, from each realisation of the series
{bkj}j∈[−πnx/L,πnx/L]\{0}, where kj = 2πj/L, we build a realisation of the atomic
field by taking for each point xl on the grid [190]

δρi (xl) =

√
ρ0
L

∑

j∈[−πnx
L

,πnx
L ]\{0}

eikjxl
(
ukj + vkj

) (
bkj ,i + b⋆kj ,i

)
, (3.83a)

δθi (xl) =
1

2

∑

j∈[−πnx
L

,πnx
L ]\{0}

eikjxl
(
ukj − vkj

) (
bkj ,i − b⋆kj ,i

)
, (3.83b)

Ψi (xl) =
√
ρ0 + δρi (xl) exp [δθi (xl)] . (3.83c)

Notice that with the above, the average density of atoms in each realisation is
fixed by construction to ρ0. Eq. (3.83c) also shows that the formalism cannot
accommodate arbitrarily large density fluctuations, or the number under the square
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root might become negative. First, this requires that space discretisation is chosen
as described in Sec. 3.5.1-a to limit the vacuum fluctuations. Second, we have to
consider a physical situation where the gas we model is in the quasi-condensate
regime so that the normal-ordered relative density fluctuations remain small [168,
170]. This condition requires a small enough temperature and a large enough
density. For the values of parameters used in [4], the fluctuations are, at maximum,
typically an order of magnitude smaller than the background density.

3.5.1-c Thermal state in BdG
The reconstruction Eq. (3.83c) is based on the density and phase perturbation

theory that, we have argued in Sec. 3.3.4, is the most appropriate to use for 1D
gas. In a previous paper [133] on the analysis of [130], the authors had used TWA
simulations of the gas but relied on the BdG approximation instead. The thermal
state of quasi-particles was similarly sampled, but the realisations of the initial
state of the atomic field were then built using

Ψi (xl) =
n0√
L

∑

j∈[−πnx
L

,πnx
L ]\{0}

eikjxl

(
ukjbkj ,i + vkjb

⋆
kj ,i

)
. (3.84)

For a given temperature value T , interaction constant g1 and background con-
densed density n0, the perturbation δΨ gives a non-vanishing density of depleted
atoms. The state’s average density of depleted atoms δn is computed from the
nr realisations. Therefore, with the prescription of Eq. (3.84), the average total
number of atoms in the system will fluctuate for different values of the parameters.
In [133], in order to keep the total number of atoms fixed in average, irrespective
of the parameters chosen, the density of condensed atoms is corrected to n0 − δn
and the full field taken to be

Ψi (xl) =

√
n0 − δn
n0

δΨi (xl) . (3.85)

It is clear that this procedure is not entirely consistent with the BdG procedure
since we first take the condensate density to be n0 to draw the realisations of the
phononic operators bk,i, but we then modify the condensate density to n0 − δn to
build the field. In addition the procedure can quickly run into problems if the den-
sity of depleted atoms δn grows too much, as it typically does in one-dimension,
see Sec. 3.3.4. However, even the safer prescription of Eq. (3.84) leads to diver-
gences in the density-density correlation function and to a poorer approximation
of the actual thermal state of the gas compared to Eq. (3.83c). To illustrate these
aspects, we compared in Sec. 3.5.3-b the evolution of the system’s Gaussian en-
tropy for the two constructions when the system is left to evolve without external
action.
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3.5.1-d A2 - Modifying initial state
We can apply a couple of modifications to the initial state we have constructed

to get around some of the limitations of the simulation. First, the thermal state of
the quasi-particles we use as an initial state is not strictly stationary. Therefore, we
expect a certain degree of state evolution even without external perturbation. We
can allow this initial state to evolve for some time to limit that effect, hoping it will
get closer to a stationary state before perturbing it [133]. However, when the initial
state is constructed using Eq. (3.83c) this initial evolution did not dramatically
change the system’s response when introducing quasi-particles directly or by a
modulation.

Second, we have already mentioned that only a few UV modes should be present
in the simulation. The vacuum fluctuations of these modes can decay, leading to
negative occupation, and even if we do not probe these UV modes, their decay
products can be located nearby IR modes of interest for our simulations. We allow
ourselves to remove all fluctuations in the modes with k larger than a certain kCO

to avoid this pollution of the IR modes. How do we pick this cut-off wavenumber?
In the preparation of [4], we identified spurious Beliaev-Landay decay channels

for the UV modes. These will be the topic of a future publication, but a brief
computation is sufficient to understand their origin. The energy and momentum
conservation for 3-body scattering, such as Beliaev-Landau processes, read

p+ q = k , (3.86a)
ωp + ωq = ωk . (3.86b)

The momentum-conservation condition of Eq. (3.86a) arises when looking at the
third-order Hamiltonian in Fourier space. It comes from the requirement that
eidx(p+q−k) = 1. Since we work with a discrete space, the space step is finite
dx = π/kmax. The conservation condition is then actually generalised to p + q −
k = m × 2kmax, where m can be any integer i.e. Fourier space is also effectively
periodic of period 2kmax. A quick analysis shows that for (p, q) ∈ [−kmax, kmax] the
momentum conservation condition can be satisfied for m = 0, the usual condition,
but also for m = ±1, leading to additional spurious channels. The dispersion
relation should now be extended to a periodic one ωk+2mkmax = ωk, see Fig. 3.7.

Let us now consider the energy conservation for fixed p > 0. When p, q and
p+ q lie within [−kmax, kmax] the conservation is only satisfied for q = 0. However,
when p + q > kmax, one can find a solution with non-vanishing q. In particular
choosing p = q we can always find a solution p⋆ > kmax/2 to Eq. (3.86b). Since
2p⋆ > kmax, if we restrict attention to modes within [−kmax, kmax], 2p⋆ is mapped
to 2p⋆ − 2kmax. The scattering process thus appears as the combination of two
quasi-particles with positive momentum p⋆ to create one with negative, typically
UV, momentum 2p⋆−2kmax, see Fig. 3.7. The reverse process also happens, giving
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Figure 3.7: (Top panel) Periodic Bogoliubov-de Gennes dispersion relation given
in Eq. (3.41) for a grid of size nx = 256. The red region for kmax < k < 2p⋆ shows
the UV modes decaying towards the green and grey regions, indicated by the two
arrows. The second red region for −kmax < k < 2p⋆ − 2kmax corresponds to the
first one translated by −2kmax.
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a channel for UV modes to decay towards IR modes. The spurious processes will
also happen between a quasi-particle with p > p⋆ combining with one with q < p⋆.
Therefore, to completely suppress the direct and reverse processes, one can pick
the cut-off momentum to be kCO = p⋆. We used this choice in [4] to avoid the decay
of quasi-particles injected in the gas by spurious Beliaev-Landau channels, which
would deteriorate quantitative comparison with our predictions for the physical
channel.

3.5.2 B - Evolution
One can map the Heisenberg evolution equation to an exact evolution equation

for the Wigner function. In the TWA, this equation is truncated at its lowest non-
trivial order, see Sec. 3.4, and the resulting equation is solved by evolving the
realisation of the atomic field Ψi using a space and time discrete version GPE
Eq. (3.17). While we use the density and phase perturbation picture to build the
initial realisations, evolving them using the equation of motion over the atomic field
given in Eq. (3.15) proves more convenient. In the absence of external potential
Vext, the latter only has two terms which are easy to integrate using a split-step
Fourier algorithm.

3.5.2-a Split-step Fourier evolution
We start by describing how we relate a realisation of the atomic field made

of the numbers Ψi(xl; t) to the realisation at time Ψi(xl; t + dt), where dt is our
time-step. Since we neglect the external potential Vext, there are two pieces to
evaluate on the right-hand side of the GPE to determine the time-derivative at t:
the kinetic and self-interaction terms. First, consider the interaction term. It is
local in real space and depends only on Ψi(xl). Assuming that any change of g(t)
happens over time scales much larger than dt, and forgetting about the kinetic
term, the evolution would be

Ψi (xl; t+ dt) = e−
i
ℏg(t)|Ψi(xl;t)|2dtΨi (xl; t) . (3.87)

Notice that this evolution takes into account the evolution of the stationary back-
ground part e−igρ0dt/ℏ since |Ψi|2 contains the average density ρ0. Second, consider
the kinetic term. It is not local in real space and would require to use finite differ-
ences to be evaluated at xl, which involves the field at nearby points xl ±m× dx,
with m an integer. However, working in Fourier space, this term is ‘local’ be-
cause its expression for Ψi(kj) only depends on Ψi(kj). If we temporarily drop the
interaction term the evolution can then be solved in Fourier space by

Ψi (kj; t+ dt) = e−
i
ℏ

ℏ2k2j
2m

dtΨi (kj; t) . (3.88)

The split-step Fourier algorithm [191] we use to evolve the realisations makes use
of both these simplifications. We first evaluate the evolution due to the interaction
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term (3.87) for half a step dt/2. We then do a discrete Fourier transform of the
resulting Ψi and perform the evolution due to the kinetic term for a full step
dt (3.88). Finally, we go back to real space and perform another evolution of
half a step for the interaction term dt/2. The error of the resulting evolution is
expected to be of the third order in the time-step [191].

3.5.2-b Time discretisation
The time-step dt cannot be chosen independently of the space-step dx. We have

to make sure that the highest frequency modes ω±kmax do not evolve too quickly be-
tween two time-steps so that we correctly describe their evolution. Approximating
ω±kmax as being in the free particle regime we have

ω±kmaxdt≪ 2π ⇐⇒ ℏ
m

πdt

4dx2
≪ 1 . (3.89)

We have observed that choosing a too large time-step not only leads to a poor
description of large frequency modes but can also lead to dramatic resonant be-
haviour around ωk ≈ π/dt, where we witness a spontaneous exponential growth
of the number of quasi-particles. The condition (3.89) ensures that this latter
frequency is not present in the system.

3.5.2-c Duplicating realisations
We want to observe the evolution of a perturbation on top of the initial ther-

mal state, particularly how initial quasi-particles injected in the system in a given
mode k redistribute. In order to isolate precisely the effect of introducing the
perturbation, we can compare the evolution from the same initial state with and
without the external perturbation. Recall that our initial thermal state is not
exactly stationary, so we expect a small degree of evolution even without per-
turbation. The algorithm we use is stochastic in drawing initial realisations of
the atomic field but deterministic in its evolution. If we draw nr realisations Ψi,
compute the evolution without perturbation, then draw nr more Ψ′

i, compute the
evolution with perturbation and compare Ψi(tfin.) and Ψ′

i(tfin.) there will always
be additional difference owing to the different initial states. A large number of
realisation nr already suppresses these differences. However, we can make the
comparison more efficient by duplicating the first nr realisations Ψi. We then use
one realisation for the evolution with perturbation, corresponding to B’2 or B’1 in
Fig. 3.6, and the other without perturbation, B in Fig. 3.6. This trick allows us to
have clean numerical results where we can track precisely the (dis)appearance of
quasi-particles in the mode k and their redistribution to other modes even if the
transfers are small, see Fig.13 of [4].

3.5.2-d B’1 - Modulation of transverse trapping frequency
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Modelling the effect of time-dependent trapping frequency ω⊥(t) is straight-
forward with the reduction we have described in Sec. 3.3.2: it is modelled by
a time-dependent 1D interaction constant g(t). Although the link between the
evolution of the interaction constant and that of the trapping frequency is compli-
cated, see Eq. (3.28). In [4], we made the simplifying assumption that modulating
the trapping frequency at ωm results directly in a modulation of g at the same
frequency. This modulation is simply implemented by changing the value of g(t)
in the integration of the kinetic term (3.88).

3.5.2-e B’2 - Injection of quasi-particles in a mode k
Another series of simulations performed in [4] consists in adding quasi-particles,

on top of the thermal population, in a given mode k. To do so, we modified the
statistics of the state of this mode k. In [4], we added δn quasi-particles in the
mode k by enhancing the values of the stochastic numbers bk,i that were drawn

b′k,i = bk,i

√
1 +

δn

nth
k + 0.5

. (3.90)

It is straightforward to check that the resulting b′k,i still follow a thermal distri-
bution. Nevertheless, the average number of quasi-particles has been enhanced to
nth
k + δn. A thermal state corresponds to a completely incoherent distribution,

so we have added excitations incoherently i.e. ⟨b2k⟩W = 0 before and after the ad-
dition. This incoherence would not have been achieved if we had added

√
δn to

each realisation bk,i → bk,i +
√
δn . The price to pay for this is that the number of

injected quasi-particles is also stochastic and only δn on average.
Note that the result of parametric amplification of the initial thermal distri-

bution considered in Sec. 3.3.3 would lead to a different state. First, it generates
quasi-particles in at least two resonant modes ±k. Second, the quasi-particles gen-
erated in the two modes are correlated: ck = ⟨bkb−k⟩W ̸= 0 after the amplification,
see Sec. 3.3.2-d. The evolution of the correlation ck is crucial to understand how
entanglement can be lost in [130]. Preliminary results on this point are presented
in Sec. 3.6. TWA simulations also guided these results. We injected quasi-particles
coherently in the initial state by replacing the initial thermal state of the modes
±k with a Two-Mode Squeezed Vacuum (TMSV) state, see [3] definitions. This
injection is a proxy for the effect of a parametric amplification on the modes ±k.
It is more computationally effective than solving the dynamics in the presence
of modulation and also much more straightforward as it leaves the other modes
k′ ̸= k unaffected. A TMSV is a Gaussian state, and we can also faithfully repre-
sent it using stochastic variables drawn from a Gaussian probability distribution.
The major difference with the initial state is that we deal with a four-dimensional
probability distribution for q±k and p±k. An easy way to build realisations of
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these stochastic numbers is to transform the TMSV into two independent equally
distributed One-Mode Squeezed Vacuum (OMSV) state for modes described by
(q̂R/I, p̂R/I), see Sec. 2.4. We draw realisations for the numbers qR/I and pR/I)
which are then linearly related to q±k and p±k. Note that the state after the
two-mode squeezing of modes in a thermal state is not strictly speaking a TMSV
but a two-mode squeezed thermal state because it is a mixed state, see Sec. 2.4.
This correction could be implemented in a future version of the code by replacing
the OMSV of the fictitious modes with a one-mode squeezed thermal state whose
degree of mixedness is fixed by the initial thermal population.

3.5.2-f Independent time-step
In our simulations, we compute approximate values for quantum operators us-

ing its correspondence to stochastic averages computed using the Wigner function,
see Eq. (3.82). We approximate the stochastic averages by performing averages
over a finite number of independent realisations nr. We estimate the error in our
approximated average by computing the variance of this quantity in our nr real-
isations. The standard deviation then gives the error bars we show in our plots
in [4], e.g. in Fig. 1.

Say we want to follow a quantity in time, for instance, the number of phonons
nk in a mode k and want to compare the evolution of this quantity with our
prediction, for instance, an exponential decay of the population nk ∝ e−Γkt. Then
we will fit the data points at different times using a curve matching the predicted
form with a few fitting parameters. The fitting procedure will give an estimated
error on the fitting parameters from the error bars given at each point ti. However,
correctly estimating the errors requires knowing how the points at different times t
and t+dt are correlated, which requires a detailed study for each quantity. To use
the usual fitting procedures, which assume that the data points are independent of
each other, we re-draw nr different realisations and repeat the complete evolution
until ti to evaluate the quantity at this time. It ensures that the data at each time
point are independent.

3.5.3 C - Reading final state
The primary quantity that we compute from the realisations of the atomic

field Ψi(xl) are the values of the phononic creation/annihilation operators bk,i.
Computing them requires knowing the density and the phase field at every point
xl. While computing the density field from the atomic field is straightforward
ρ(xl) = |Ψi(xl)|2, it is not so for the phase field. Indeed, the atomic field only
retains the value of the phase up to 2π. A straightforward reading of the argument
of the phase field can then lead to a large jump of the phase field from one point
to another, while we need a continuous field to build the quasi-particles. For
this reason, we construct, in parallel to the atomic field’s values, the phase field’s
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value. To avoid large phase jumps, we proceed iteratively. First, in the initial state,
we set the phase at the site xl = 0 to the value of the argument of the atomic
field there. Then, assuming that the phase difference between two neighbouring
sites xl and xl + dx is less than π, we compute the argument Ψ(xl + dx)/Ψ(xl)
and set θ(xl + dx) = θ(xl) + arg[Ψ(xl + dx)/Ψ(xl)]. Having constructed a phase
field devoid of large jumps for the initial state, we can repeat the same method
for the time evolution. At any point t + dt we set the phase of the field to be
θ(xl; t+ dt) = θ(xl; t) + arg[Ψ(xl; t+ dt)/Ψ(xl; t)]. With this reconstructed phase
field, we then build the stochastic number bk by inverting the transformation of
Eqs. (3.55a)-(3.55b). From this number, we can compute the average values of the
quantities studied in [4], all constructed from a combination of these operators.

3.5.3-a Following the external perturbation
Once both the realisations with Ψ′

i(xl) and without perturbation Ψi(xl) are
obtained, we can read out the effect of the perturbation by taking the difference of
the two before averaging δΨi = Ψ′

i − Ψi, rather than after. The intuition behind
this can be formulated as follows. The result of the unperturbed evolution is only
a function of the initial background state Ψi(t) = f [Ψi(0); t]. This piece can be
removed from the evolution of the perturbed evolution

Ψ′
i (t) = Ψi (t) + δ [Ψi (0) , δΨi (0) ; t] , (3.91)

where due to the non-linear evolution the perturbation δΨi at time t depends
on both its initial value δΨi(0) and that of the background Ψi(0). Therefore
Ψi(t) and δΨi(t) could be correlated ⟨Ψi(t)δΨi(t)⟩ ≠ 0 even if initially incoher-
ent ⟨Ψi(0)δΨi(0)⟩ = 0. We are not interested in this correlation between the
background and perturbation but solely in the evolution of the perturbation due
to the background. For instance, we may ask how many quasi-particles initially
contained in δΨi(0) were lost at time t by interaction with the background. To
extract this number, we first compute δΨi(t) and then extract the number of quasi-
particles via ⟨δΨ†

i (t)δΨi(t)⟩, rather than computing ⟨Ψ†,′
i (t)Ψ′

i(t)⟩−⟨Ψ†
i (t)Ψi(t)⟩ =

⟨δΨ†
i (t)δΨi(t)⟩+ ⟨δΨ†

i (t)Ψi(t)⟩+ ⟨δΨi(t)Ψ
†
i (t)⟩. The additional terms in the above

expression need not vanish, and their magnitude a priori depends on that of the
background, which can be large. Therefore, they could be a noise source, and
we favour the first expression where they are absent. This comparison method is
generically used in the plots of [4] unless otherwise specified.

3.5.3-b Madelung vs BdG
In this part, we illustrate the superiority of the Madelung perturbation scheme

over the BdG one when performing numerical simulations. The distinction between
the BdG and Madelung formalisms can be relevant at two stages. First, as already
explained, when building the initial state: à la BdG as in Eq. (3.84), or using the
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Madelung scheme as in Eq. (3.83c). We will refer to the first as the BdG state
and the second as the Madelung state. Still, for a given value of the atomic
field Ψi, we can use these expressions the other way around to define BdG quasi-
particles and Madelung quasi-particles. In the following, to be consistent, when
we refer to quasi-particles of the BdG state, we mean BdG quasi-particles, and
similarly, we only extract Madelung quasi-particles from the Madelung state. We
produced the data presented using a former version of the code that contained
no error bars on the data points and where the time steps were not independent.
However, the difference between the two schemes is clear enough without needing
these refinements. To compare the two states, we compare the evolution of several
quantities without any external perturbation (initial injection of quasi-particles or
modulation) computed in the BdG and the Madelung states. We use the same set
of realisations to build the two initial states to ensure that they only differ in the
method used to construct them.

First, in Fig. 3.8, we compare the number of quasi-particles extracted from the
BdG and Madelung states at two different times. At the initial time, both states
give a spectrum matching the prediction for an exact Bose-Einstein distribution at
temperature T given in Eq. (3.72). This has to be the case by construction. The
Madelung state stays close to the prediction as a function of time for both series
of values. On the other hand, Fig. 3.8 shows that, in the BdG state, nk suffers
from a significant degree of non-stationarity. For larger interactions, lower panel,
the non-stationarity of the BdG state becomes more dramatic and propagates
towards more UV modes. Note that additional snapshots would reveal oscillations
rather than a continuous growth of these modes. We point out that the non-
stationarity could be partially cured at lower interaction/temperature by ‘reading’
the BdG state with Madelung phonons, but the non-stationarity still appears at
larger interaction/temperature. The fact that the non-stationarity persists shows
that it is not only due to how we extract the quasi-particles from the BdG state;
the BdG state itself is plagued with non-stationarity.

In the current version of the algorithm, the primary quantity used in the com-
putation are the phononic amplitudes computed from the Madelung state bk,i.
Previously, the primary quantity was the atomic field Ψi itself. The number of
quasi-particles nk, and their pair-correlation ck, were deduced from evaluating the
density-density correlation function assuming Gaussianity using the formula (3.62).
This procedure mimics an experimental ‘in-situ’ measurement of these quantities.
Given the importance of G(2)

k,−k, we compared its values computed in the BdG and
the Madelung states. The results are shown in Fig. 3.9. We compare the values
estimated in the simulations to the predicted values of G(2)

k,−k for a thermal state
of Madelung quasi-particles at temperature T . It is given by Eq. (3.63), where
nk = nth

k is a thermal distribution given in Eq. (3.72), while ck = 0. In the up-
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Figure 3.8: Average number of phonons (3.57a) as a function of the wavenumber
kξ, for the Madelung and the BdG states, at two different times. This number
is compared to a thermal distribution (3.72) of phonons associated with the tem-
perature T shown in dashed lines. The two panels differ by the values of the
temperature of the initial phonon distribution kBT/mc2 = 0.5 for the upper panel,
kBT/mc

2 = 1 for the lower panel, and the value of the density of the background
ρ0ξ = 405 for the upper, and ρ0ξ = 40.5 for the lower panel. Recall that lower
densities imply larger interactions.
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per panel of Fig. 3.9, corresponding to lower interaction/temperature, G(2)
k,k for the

BdG state is manifestly non-stationary in the IR part of the spectrum. In the
lower panel corresponding to larger interaction and temperature, already at the
initial time, almost no point of the BdG state lies on the prediction of Eq. (3.63).
At later times, its IR values decrease but are still far off the expected values. On
the other hand, the Madelung state is again observed to be stationary around the
expected value for both series of parameters.

Finally, to quantify the level of non-stationarity, we can compute a Gaussian
approximate value of the entropy of the state. This corresponds to the best esti-
mate of the entropy based on 2-point functions [192], and would match the exact
entropy when the state is Gaussian. This entropy will be computed using the
state of the quasi-particles and we will assume each pairs of modes ±k ̸= 0 to be
independent of each other. The von Neumann entropy for one such pair reads [133]

Sk =
(
neff
k + 1

)
ln
(
neff
k + 1

)
− neff

k ln
(
neff
k

)
, (3.92)

where we defined the quantity
(
neff
k +

1

2

)2

=

(
nk +

1

2

)2

− |ck|2 . (3.93)

We can then compute the total entropy of the state by summing this over all modes
in the simulation

Stot =
∑

k>0

Sk . (3.94)

In Fig. 3.10, we show the evolution of the total entropy. (3.94) as a function of
time for the two initial states. As expected from the evolution of the number of
quasi-particles in Fig. 3.8, since the BdG state is more evidently non-stationary
for lower background density and larger temperature, its entropy grows to even
larger values. On the other hand, the entropy of the Madelung state is constant
for both series of temperature and background density.

We conclude that to make reliable predictions in numerical simulations, one
should relinquish the BdG state and use the Madelung state instead.

3.5.4 Improvements compared to previous versions
Since a similar algorithm was used in [133] to study the evolution of the same 1D

Bose gas numerically, we quickly summarise the improvements made over the code
used then. The primary improvement is using the density and phase perturbations
in the Madelung form rather than the BdG approximation. It made the code more
stable and reliable, especially at higher interactions, see Sec. 3.5.3-b. Second, we
have also implemented the possibility of directly extracting the value of bk,i, and
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Figure 3.9: Density-density correlation (3.62) as a function of the wavenumber
kξ, for the Madelung and the BdG states, at two different times. The results of the
numerical simulations are compared to the prediction (3.63) for a thermal state of
phonons, where nk = nth

k and ck = 0. As in Fig. 3.8, the two panels differ by the
values of the temperature and density.
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compute the number of quasi-particles nk and their correlation ck. Thanks to this,
we can directly manipulate the number of phonons in the system, allowing for
the simulation series where we inject phonons in a precisely controlled manner.
Third, we have implemented the duplication of realisations to visualise the effect
of an external perturbation better. Finally, we eliminated several noise sources by
identifying and removing spurious decay of UV modes.

3.6 Absence of entanglement during parametric
resonance

In the analysis of the evolution of entanglement made in [132], the authors
assumed that the pair-correlation ck, and the particle numbers n±k decay at the
same rate. Note that under this assumption, starting in a state where |ck| > nk, in
the absence of an external drive, entanglement would persist. No pure decoherence
process affects the correlation without changing the number of particles. Still, the
authors found that, in the context of parametric resonance, a large enough rate
Γk/ωk ≈ 4.2% would prevent the appearance of an entangled state starting from
a thermal state. Due to the simultaneity of parametric resonance and dissipation
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processes, there seems to be a non-trivial effect preventing entanglement formation.
Therefore, the growth rates of nk and ck are not simply reduced by the decay rate,
as suggested by the form used in [4] when studying nk alone. In [132], the authors
assumed ρ0ξ = 0.6 and kBT/ℏωk = 1 and in the conclusion of [4] we computed
for these values that Γk/ωk ≈ 5%. We thus concluded that the Beliaev-Landau
processes are sufficient to explain the absence of entanglement [130]. To draw this
conclusion, we implicitly assumed that ck would also decay at the rate Γk. The
evolution of pair correlation is the topic of current investigations, and we close this
chapter by briefly reporting on our latest findings.

3.6.1 Decay of correlations
In [4], we analysed the effects of Beliaev-Landau scattering processes on the

number of quasi-particles nk = ⟨b̂†kb̂k⟩. We derived an equation of motion for a
small perturbation of the number of particles δnk in the mode k. The strategy
is to start from the full Heisenberg equation of motion of b̂k, given by Eq. (A1)
of [4], and compute an equation of motion for nk with and without perturbation.
Under the assumption that the only relevant non-Gaussian connected correlation
functions are C

(3)
p,q = ⟨b̂†pb̂†q b̂p+q⟩ we can write a system of differential equations

over nk and C
(3)
p,q . We re-expressed the latter as an integro-differential equation

for δnk, Eq. (19) of [4], which involves the perturbation of all modes δnq. Finally,
neglecting the inverse processes that partially restore the initial δnk i.e. the terms
in δnq for q ̸= k, we checked that our equation predicts the same decay rate as the
Fermi Golden rule taken between two number states of quasi-particles.

Assume now that we excite quasi-particles in the modes ±k by an amount δn±k,
in a correlated fashion such that δck = ⟨b̂−kb̂k⟩ ≠ 0. We can repeat the same steps
to derive equations of motion for δn±k and δck. The equation for δck features an
extra non-Gaussian correlation function D

(3)
p,q = ⟨b̂pb̂q b̂−p−q⟩. Neglecting all other

connected correlation functions, we find a system of coupled integro-differential
equations over δnk and δck. These equations also a priori features the whole
spectrum of δnq and δcq. Nevertheless, an analysis of the magnitude of each
term shows that those mixing δnk and δck are sub-dominant; the dynamics of the
number of phonons and their correlation are independent. δnk still obeys Eq. (19)
of [4], while δck obeys an equation of the same form with a different response
function. Neglecting finite size effects and reverse processes, δnk still decays at a
rate Γk given by Eq. (17) of [4] that we repeat here

Γktξ =
kBT

mc2
1

ρ0ξ
[f− (kξ) + f+ (kξ)] . (3.95)

Finally, under the same assumptions, we find that |δck| decays at the same rate
Γk.
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In Fig. 3.11, we show the evolution of |δck| and δnk from an initial TMSV.
We normalised their values by their expected initial values δnk(0) = δn and
|δck|(0) =

√
δn(δn+ 1) . These two series are compared to the prediction of

an exponential decay at rate Γk given by Eq. (3.95) (corrected for finite size-effect,
see Eq. (20) of [4] ) and we observe an excellent agreement, at least at early-times.
The fact that correlation and number of particles decay at least at the same rate
is physically reasonable: when a quasi-particle is lost in one of the modes ±k, the
pair-correlation ck is lost. One could expect other pure decoherence processes to
affect pair-correlation leaving the number of quasi-particles nk unaffected. Indeed,
we see signs of such processes at late times in Fig. 3.11. However, they are sub-
dominant, and would only speed up the decoherence process. They are thus not
expected to change our conclusion that the Beliaev-Landau dissipative processes
are sufficient to explain the absence of entanglement.

In conclusion, our latest numerical and analytical analyses support the minimal
assumptions of an equal dissipation for quasi-particle numbers and pair correlation
made in [132]. With this extra piece of the puzzle, the claim of [4] that Beliaev-
Landau scatterings are sufficient to explain the absence of entanglement in [130]
is then adequately justified.

301



302



4 - Conclusion and perspectives

This PhD was dedicated to time-dependent situations relevant to cosmology
that are described using quantum field theory in curved spacetimes. We studied
the appearance and disappearance of quantum features in these contexts.

In the first part of this manuscript, we reported on our study of such quantum
aspects in the cosmological perturbations, which are expected to have emerged
from the quantum vacuum. Our goal was to assess the robustness of quantum
features in the state of the perturbations to decoherence phenomena. To do so, we
focused on the non-classicality of bi-partite correlation in the state of the cosmo-
logical perturbations, arguably the simplest manifestation of its quantum nature.
We have measured the efficiency of decoherence on the cosmological perturbations
using the quantum discord [2] and a GMKR-type Bell inequality [3]. We showed
that these measures reveal a competition between decoherence and squeezing to de-
termine the character (quantum or classical) of the bi-partite correlations between
opposite Fourier modes. This phenomenon is already known for other criteria, e.g.
separability or another Bell inequality [193, 153]. We systematically compared
three such quantumness criteria in a context broader than that of cosmological
perturbations [3]. Although they all qualitatively exhibit the competition between
squeezing and decoherence, the precise threshold of classicality depends on the
chosen measure. Finally, we tried to clarify and condense the discussions on this
question in a review [1]. The precise decoherence level in the early Universe is
still being determined. Therefore, we cannot yet assess definitively whether the
correlations were already classical at the end of inflation. Nevertheless, a lower
bound was recently obtained in [194].

As a continuation of the above programme and a direct application of the PhD
results, we give a quick evaluation of the expected level of quantumness left at
the end of inflation. The authors of [194] found that the purity of a mode k that
crossed out the Hubble radius N − N⋆ e-folds before the end of inflation is given
by

pk =
1√

1 + Ξk

, (4.1)

where

Ξk = 1.6× 104 ×
(

AS

2.2× 10−9

)(

− 1)

(
E⋆

MPlc2

)8

e3(N−N⋆) . (4.2)

Although the exact number depends on the details of reheating and the energy
scale of inflation, we expect that for modes corresponding to cosmological scales
today N −N⋆ ≥ 30, so that the exponentially is typically dominant in the above
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expression. The purity then scales as pk ∝ e−3(N−N⋆)/2. To assess the entangle-
ment of the state, we need to compare this number to the exponential of twice
the squeezing parameter r [3]. Using the conventions of [2] for the conjugated
momentum and taking the de Sitter limit, we have rk ∼ 2(N − N⋆). Taking the
ratio with the square root of the purity, we have e2r/√p ∼ e13(N−N⋆)/4, which
grows with N −N⋆. Thus, irrespective of the energy scale of inflation, if the mode
crosses the Hubble radius early enough during inflation, the state of the pair ±k
will still be entangled at the end of inflation! A more precise illustration is given in
Fig. 4.1, where we plotted the value of the quantum discord and the threshold of
separability as a function of N −N⋆ and the energy scale of inflation E⋆. Fig. 4.1
shows that modes ±k such that N − N⋆ ≥ 30, in particular cosmological scales,
are still entangled at the end of inflation and have a large quantum discord. We
thus observe that entanglement can persist despite an exponential suppression of
the purity in the number of e-folds. This suppression led the authors of [194] to
conclude that modes were all ‘decohered’ on cosmological scales. Nevertheless,
the above shows the necessity to consider the competition between squeezing and
decoherence to conclude on the classicalisation of the perturbations.

It is thus not obvious that by the end of inflation, the cosmological pertur-
bations are in an entirely classical state. Since the quantum character of the
perturbations might have persisted until the end of inflation, one may then want
to ask whether it can be experimentally demonstrated. Except for the conclusion
of Sec. 2.2, we did not deal with this question in the manuscript, and we say a few
words about it now.

We believe that, in the context of single field slow-roll inflation, with a Gaus-
sian state, the prospects of experimental demonstrating the quantum origin of the
perturbations are scarce. First, in this scenario, there are only two fields that carry
all information on the quantum state of the Universe, the Mukhanov-Sasaki field
v̂ and the tensor perturbations ĥ. Let us first discuss the scalar perturbations.
In the single field scenario, where v̂ is not substantially perturbed by other fields
that would bear traces of its state, we only have access to n-point functions of v̂
which are imprinted on CMB’s photons via the Sachs-Wolfe effect [54]. However,
in the Gaussian case, all correlation functions of v̂, and its conjugated field (which
we do not measure), can be reproduced to an excellent approximation by a classi-
cal stochastic process [1]. They are thus insufficient to demonstrate the quantum
origin of the state. On the other hand, tensor perturbations have yet to be de-
tected. Some authors have analysed the effect of a gravitational wave impinging
on a gravitational interferometer [195, 196]. They showed that a squeezed state of
the perturbations would induce noise in the detector akin to that of a Gaussian
stochastic process. Therefore, a naive measure of the amplitude of these waves can
only lead to an indirect proof of their quantum origin, as for scalar perturbations,
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by measuring the k-dependence of their power-spectrum, see Sec. 1.2.3-d. Still, if
we were to measure the noise of primordial gravitational waves in interferometers,
then we would be measuring directly waves produced during inflation, as opposed
to measuring CMB’s photons, produced much later, in the case of scalar pertur-
bations or B-mode detection, see Sec. 2.2. In principle, we can then access the
complete state of these waves, and one could potentially design some intelligent
measurement protocol to reveal their quantum nature, e.g. [197]. Unfortunately,
this remaining window of opportunity might also be closed due to the smallness of
the amplitude of the primordial gravitational waves. Even if the tensor to scalar
ratio, see Sec. 1.2.3-d, is close to the current upper bound r < 0.036 at 95% [66],
the waves would not be in the sensitivity of Big-Bang Observer (BBO), the most
futuristic interferometer planned [198].

Before discussing possibilities to go beyond the current modelling, note that, in
this work, we performed computations solely in Fourier space. Since each pair of
modes ±k is independent of the others, the only correlations to consider in Fourier
space are between the two members of the pair. Nevertheless, it could be objected,
see Sec. 2.2, that checking for a Bell inequality violation for non-local degrees of
freedom is meaningless since the objects are not well separated. In addition, since
the correlations in real space potentially depend on the state of all Fourier modes,
one may hope to escape the no-go theorem on n-points functions of v̂ and its
conjugate field. Some authors have analysed how correlations in Fourier space
manifest when correlating regions in real space [199, 200, 201]. Unfortunately,
they found that, already in the absence of decoherence, Bell inequalities are never
violated and that the quantum discord was very small, albeit non-vanishing.

With the work done in this PhD, we made a point that the presence of deco-
herence does not straightforwardly make the cosmological perturbations classical
at the end of inflation. However, as long as the quantum features are concealed
in operators for which no clear measurement protocol, even for a tabletop system,
can be given, it could be seen as a moot point. Therefore, we believe that in the
next studies, more attention should be given to operational approaches describing
what could actually be measured. For instance, in the spirit of [202], it would
be worth investigating whether some of the possible non-Gaussian signals can,
under reasonable assumptions, not be attributed to a classical theory and how
multi-partite [203] entanglement could manifest there.

In the other part of this PhD, we progressed on analysing the analogue preheat-
ing experiment [130]. We demonstrated the existence of scattering processes for
quasi-particles of 1D quasi-condensate [4], addressing some claims to the contrary
in parts of the literature. We improved a TWA simulation algorithm to study
these processes, making it more precise and reliable.

A first continuation of this PhD work would be to quantitatively explain the
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spectrum of phonons reported in [130]. Comparing these experimental results with
the dissipation-less prediction of Fig. 3.5, we see a few differences. First, we predict
two narrow and distinct peaks, while only a broad one was observed experimentally.
Several things can be brought up to explain it. It could be that the two peaks
are too close to be well resolved in the experiment. Additionally, although the
modulation in our model is already not simply the sum of two oscillations, one
associated with each peak, any supplementary noise in this modulation could affect
the peak structure [181, 182, 183]. Finally, the peaks will also broaden due to the
dissipation processes we identified. Therefore, they could appear as a single broad
peak in the experimental data. Second, the number of phonons observed is much
less than predicted. Again, the dissipation processes could provide a sufficient
reduction to explain it. As a first estimation, we can compare the growth Gk and
decay rate Γk expected for our resonant modes. Based on [132], and using the
decay rate given in Eq. (17) of [4], for the values c = 8 mm/s, kBT/mc2 ≈ 6.5 and
n1Das ≈ 0.19 of [130] used in Fig. 3.5, we find Γk/Gk ∼ 15.6 for the first resonant
mode. In this regime, we expect the growth of the resonant modes to saturate and
the final number of phonons to be strongly reduced with respect to that shown in
Fig. 3.5. Nevertheless, the comparison should be done precisely at the level of the
full spectrum.

A natural next step in the analysis is to use the TWA simulations to simulate
the current experimental set-up’s precise conditions and test whether our equa-
tions accounting for the dissipative effects, Eq. (19) of [4], allow us to predict the
evolution of entanglement correctly. These equations should also be compared
with the effective equations of motion used in [132] to understand the fine details
of decoherence during the parametric amplification process. In this respect, the
latest results shown in Fig. 3.11 indicate that decoherence channels are present in
the system, even without parametric resonance. Note that, in this figure, the pair-
correlation follows quite closely the predicted exponential decay, while the decay
of the number of phons nk seems to slow down. Our current understanding is that
this slowing down is due to inverse processes, i.e. decay products recombining to
the initial excitation. These inverse processes appear to be more efficient in regen-
erating the number of excitations nk in the two modes ±k than their correlation
ck. This result still requires a finer analysis, but it would constitute a nice illus-
tration of the fragility of quantum correlations compared to other quantities, such
as the number of excitations. From a broader perspective, it would be interesting
to investigate how general this decoherence mechanism via differentiated inverse
process rate is. Is it a specific feature of the unusual decay process we studied,
which involves many modes as decay products, or a general one?

In addition, the model still requires some improvements. We should consider
the trapping of the gas that breaks periodic boundary conditions so that the nature
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of the eigenmodes is altered. In particular, the notion of direction of the mode ±k
loses its meaning as it is reflected back and forth. It should then be analysed how
our non-separability witnesses are affected by these changes in the mode structure.
For instance, the quantity ⟨b̂kb̂†−k⟩, which encodes the mixes in between the two
directions ±k and was neglected in previous works, should be taken into account.

Finally, as a more long-term goal, following-up on [133], we would like to ex-
tend the analysis of the experiment to later times when it enters a very non-linear
regime. Several other groups have studied, numerically and experimentally, this
regime in similar set-ups, e.g. [148, 145, 146]. First, as done in [145, 146], we should
be able to predict and experimentally observe the generation of secondaries in our
system. Second, the authors [148] report the numerical observation of fragmen-
tation of the initially coherent condensate in different incoherent regions of space
due to the back-reaction of the amplified quantum fluctuations. It is unclear, but
worth studying, if there are signatures of this fragmentation in the distribution of
excitations in Fourier space beyond the mere decrease of the condensate occupa-
tion. If so, we might observe it using the TOF method used in the current set-up,
making it possible to experimentally study the back-reaction from a quantum field
on a classical one expected in preheating. A last question we wish to investigate
is whether the initial bi-partite ±k entanglement that is distilled to other degrees
of freedom in the system can still be captured experimentally by analysing well-
chosen quantities in this regime. As a first example, at early times, since the
relevant Beliaev-Landau scattering processes only involve nearby modes, it may
seem natural to believe that part of the entanglement is distilled to them. It is
then an experimentally relevant question to know whether this distilled entangle-
ment can be recovered in the Fourier analysis by simply correlating larger boxes
i.e. larger than δk ∼ 2π/L. More generically, it would be interesting to follow the
distillation of entanglement from the two resonant modes to more, in a similar
way that the number of excitations initially injected in the resonant modes can be
tracked down. Nevertheless, the problem appears much more challenging. Indeed,
while following which modes are excited or not only requires computing the 2-
point function nk, measuring the formation of muti-partite entanglement requires
accessing higher order n-point function since ck only encodes pair-correlation.
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Appendices

A Geodesics and time dilation in FLRW

A.1 Geodesics in an expanding Universe
The Christoffel symbols of the metric (1.17) in spherical co-moving coordinates

read

Γt
rr =

ȧa

1−Kr2 , Γt
θθ = ȧar2, Γt

ϕϕ = ȧar2 sin2 θ,

Γr
tr = Γθ

tθ = Γϕ
tϕ = H, Γr

rr =
Kr

1−Kr2 , Γr
θθ = −r

(
1−Kr2

)
,

Γr
ϕϕ = −r

(
1−Kr2

)
sin2 θ, Γθ

θr = Γϕ
ϕr =

1

r
, Γθ

ϕϕ = − sin θ cos θ, Γϕ
ϕθ = −

sin θ

cos θ
.

We give the solution of the geodesic equation over the energy-momentum vec-
tor (1.16) for massive and massless particles. We consider geodesics that are purely
radial at initial time P θ = P ϕ = 0, which can always be arranged by rotating the
system of coordinates. The geodesic then remains radial at any time, and we find
that as a function of cosmic time, its components read

P t (t) =
E (t)

c
= mc

√
1 +

[
a0
a (t)

]2
2
( p0
mc

)2
, (4.3)

P r (t) =

[
a0
a (t)

]2
p0
a0

√
1−Kr2 (t) , (4.4)

where p0 is the physical 3-momentum at the present time. At an earlier time t
we have p = [a0/a(t)]p0 i.e. the physical momentum decays with the expansion as
a−1. Notice that test bodies at rest in the co-moving coordinates, i.e. p = 0 at any
time, follow spacetime’s geodesics; they are said to be co-moving. For massless
particles, in particular photons, we similarly have

P t (t) =
E (t)

c
=
a0
a
p0 , (4.5)

P r (t) =

[
a0
a (t)

]2√
1−Kr2 (t) p0

a0
. (4.6)

In this case, the physical momentum and the energy evolve as a−1. For photons,
this translates into a redshift of their frequencies, see Sec. 1.1.2-b.
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A.2 Time dilation in an expanding Universe
In a spacetime described by the metric (1.17), time duration as measured by

observers at different times will differ. Consider an emitter E sending signals to a
receptor R. We assume that E and R are co-moving observers UE/R = (c, 0, 0, 0).
By redefining the co-moving coordinates, one can always arrange for E to be located
at the coordinates’ origin and R to be located at (rR, 0, 0). Assume that E sends a
first light signal from (ctE, 0, 0, 0) received by R at (ctR, rR, 0, 0), and then a second
signal just after at (ctE+ cδtE, 0, 0, 0) which is received at (ctR+ cδtR, 0, 0, 0). The
relation between the arrival time and the distance covered by these light signals is
found by setting d2s = 0 in Eq. (1.17). We find

rR = c

∫ tR

tE

dt′

a(t′)
= c

∫ tR+δtR

tE+δtE

dt′

a(t′)
. (4.7)

By taking the difference between these last two relations and exploiting the in-
finitesimal character of the time intervals, we find

δtR =
a (tR)

a (tE)
δtE , (4.8)

assuming that the scale factor increases with cosmic time, there is a time dilation
δtR > δtE. In particular, assuming that E sends a continuous monochromatic
light signal to R and taking δtE to be the interval in between two crests of the
light signals i.e. the period of the signal, then the above relation gives the same
relation as Eq. (1.20) for the redshift of the signal. This time dilation can then be
understood as the physical reason behind the redshift derived from the machinery
of null geodesics.

B Stress-energy tensor and R2 inflation

B.1 Stress-energy tensor of a scalar field
We first derive Jacobi’s formula for the variation of the determinant of a matrix

with respect to one of its coordinates. We have

g =
∑

µ1,...,µn

ϵµ1,...,µn
g1µ1

...gnµn
, (4.9)

where ϵµ1,...,µn
is the Levi-Civita tensor in n-dimensions. Notice that one cannot

forget about the sum by putting the indices up. It would imply having the coeffi-
cient of the inverse of metric, which would be wrong. Using the formula (4.9), we
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have

ωαβ =
δg

δgαβ
=
∑

s

∑

µ1,...,µs−1,µs+1,...,µn

ϵµ1,...,µn
g1µ1

...gs−1µs−1
δαsδ

β
µs
gs+1µs+1

...gnµn

(4.10)
Then one can check that ωαβgβγ = gδαγ and we get Jacobi’s formula

δg

δgαβ
ggαβ . (4.11)

Now using that gαβgβγ = δαγ we get

δgµν = −gµαgνβδgαβ . (4.12)

Combining the above

Tµν = Lmgµν − 2
δLm

δgµν
. (4.13)

For the scalar field action, this gives Eq. (1.67).

B.2 Slow-roll at first-order in R2-inflation
In this appendix, we analyse briefly the case of slow-roll R2 inflation.

B.2-a A potential for R2 inflation.
This model was originally introduced by Starobinsky in [38] by considering a

modification to Einstein-Hilbert action due to quantum corrections. The relevant
piece reads

SR2 =
1

2κc

∫ √−g
(
R +

ℏ2

6m2c2
R2

)
d4x , (4.14)

where m is a mass scale. The usual Einstein-Hilbert action only has two degrees of
freedom; the two polarisations of the gravitons, see Sec. 2.2. The theory described
by the action (4.14) has, in fact, an extra scalar degree of freedom. This action
can be recast as Einstein-Hilbert action plus an action for a scalar field ϕ [204].
We first introduce an auxiliary field χ with the action

S ′
R2 =

1

2κc

∫ √−g
(
R +

ℏ2

3m2c2
χR− ℏ2

6m2c2
χ2

)
d4x . (4.15)

The Euler-Lagrange equation for χ gives χ = R so that the equations of motion
are the same as that of Eq. (4.14). By re-parameterising the scalar field via φ =
1 + ℏ2

3m2c2
χ the action reads

S ′
R2 =

1

2κc

∫ √−g
[
φR− 3m2c2

2ℏ2
(φ− 1)2

]
d4x . (4.16)
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This action is a sub-case of Brans-Dicke’s theory of gravity. Under a conformal
transformation of the metric g = Ω2g̃ the action transforms to

S ′
R2 =

1

2κc

∫ √
−g̃

[
Ω2φ

(
R̃− 6Ω−1□̃Ω

)
− Ω43m

2c2

2ℏ2
(φ− 1)2

]
d4x . (4.17)

To cast the gravitational part of the action in the Einstein-Hilbert form, we pick
Ω2φ = 1, or Ω = φ−1/2, and reparameterise φ = exp

(√
2
3

√
κ ϕ
)
. Then

6Ω−1□̃Ω = 2κ
1

2
∂µϕ∂νϕ−

√
6κ

2
∂µ∂νϕ , (4.18)

and dropping the boundary term in the action, we finally get

S ′
R2 =

1

2κc

∫ √
−g̃ R̃d4x− 1

c

∫ √
−g̃

[
1

2
∂µϕ∂νϕ+ VS (ϕ)

]
d4x , (4.19)

where the potential VS is defined in Eq. (1.82). The actions given by Eq. (4.14)
and Eq. (4.19) are equivalent. The latter form is that of a scalar field minimally
coupled to general relativity, which corresponds to the form used in Sec. 1.2.2. This
form makes manifest the presence of an extra scalar degree of freedom compared
to the Einstein-Hilbert action.

B.2-b Slow-roll
We now derive the equation of evolution of the field in the first-order in slow-

roll parameters. It is useful first to rewrite the equations of motion using N , the
number of e-folds, as a time variable rather than cosmic time. The Klein-Gordon
equation can be recast has

d2ϕ

dN2
+ (3− ϵ1)

dϕ

dN
+
V ′(ϕ)c2

H2
= 0 . (4.20)

The second slow-roll parameter then assumes the simple form

ϵ2 = 2

(
dϕ

dN

)−1
d2ϕ

dN2
, (4.21)

which in turn allows us to rewrite the Klein-Gordon equation as
(
3− ϵ1 +

ϵ2
2

) dϕ

dN
+
V ′(ϕ)c2

H2
= 0 . (4.22)

Under this form, it is clear that neglecting the two first slow-roll parameters, we
have

dϕ

dN
≈ −V

′(ϕ)c2

3H2
≈ −1

κ

V ′

V
, (4.23)
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where we used Eq. (1.80) in the second equality. The expression of the first flow
function in the slow-roll regime (1.79) shows that the first slow-roll condition ϵ≪ 1,
imposes to be in the large-field regime

√
k ϕ. In this limit, defining the number of

e-folds to be 0 at the start of inflation N = ln (ain/a) and the initial value of the
field to be ϕin, the equation of motion is easily integrated to Eq. (1.83). We can
then express ϕ̇, ϵ1 and H as a function of the number of e-folds

ϕ̇ (N) = −mc
2
√
κ

4ℏ

√
3

8

1

Ne −N
, (4.24a)

ϵ1 (N) =
3

4

1
(
Ne −N − 3

4

)2 , (4.24b)

H (N) =
mc2

2ℏ

(
1− 3

4

1

Ne −N

)
. (4.24c)

Recasting the equation for ϕ̇ we get the expression of the slow-roll trajectory
in the

(
ϕ, ϕ̇

)
-plane

ϕ̇ = −mc
2
√
κ

ℏ

√
2

3
e−
√

2
3

√
κ ϕ , (4.25)

which is plotted in Fig. 1.5. Solving for ϵ1 (N) = 1 we find that inflation lasts
roughly Ne −N − 3

4
−
√

3
4

.

C Perturbations of a 1D weakly interacting Bose
gas

C.1 Canonical transformation for relative perturbations
For an Hamiltonian system with Hamiltonian H described by a conjugated pair

(p, q)

{p, q} = 1 , (4.26)

a generating function is a function that generates a canonical transformation to
another conjugated pair of variables (P,Q) :

{P,Q} = 1 . (4.27)

Hamilton’s equations also describe the time evolution of the new pair but with
respect to a possibly new Hamiltonian K computed from the generating function.
If the transformation is time-independent, then H = K. A type-2 generating
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function F2 depends on the old position q and the new momentum P and gives
the transformation laws

Q =
∂F2

∂P
, (4.28)

p =
∂F2

∂q
, (4.29)

and
K = H +

∂F2

∂t
. (4.30)

We want to use this formalism to describe the relative perturbations defined
in sub-section Sec. 3.3.2-b. We consider a classical version of the system, where
the atomic field Ψ is a complex function. We want to write a generating function
for the transformation ψ → e−iµt/ℏψ, where we defined ψ =

√
n0 δΨ̂ to shorten

the notations in this appendix. The canonical pair used to describe the system is
initially (ψ, iℏψ⋆) (the additional factor of iℏ appears in the classical counterpart
theory), and the final one (ψ′, iℏψ⋆ ′) = (e−iµt/ℏψ, iℏeiµt/ℏψ⋆). Notice that we have
one degree of freedom at each position x, so implicitly, we perform the canon-
ical transformation separately for each point. If we define the following type-2
generating function

F2 (ψ, ψ
⋆ ′, t) = e−iµt/ℏiℏψ⋆ ′ψ , (4.31)

the associated equations of transformation are

ψ′ =
∂F2

∂iℏψ† ′ = eiµtψ , (4.32)

iℏΨ† =
∂F2

∂ψ
= eiµtiℏψ† ′ , (4.33)

which are equivalent to a ψ → e−iµt/ℏψ. Therefore, F2 given by Eq. (4.31) is a gen-
erating function for the transformation we want to perform and the Hamiltonian
density for the new variable is given by

K(x) = H(x) +
∂F2

∂t
= H(x) + eiµt/ℏ

∂e−iµt/ℏ

∂t
iℏψ⋆ψ . (4.34)

Starting from Eq. (3.15) and expanding at second order in δΨ̂ we get

Ĥ(2) =

∫
dx

[
|Ψ0|2

ℏ2

2m

∂δΨ̂†

∂z

∂δΨ̂

∂z
+

(
ℏ2

2m

∣∣∣∣
∂Ψ0

∂r

∣∣∣∣
2

+
1

2
ω2
⊥r

2 |Ψ0|2 + g |Ψ0|4
)
δΨ̂†δΨ̂

+ g |Ψ0|4 Ψ̂†δΨ̂ +
g

2
|Ψ0|4

(
δΨ̂† 2 + δΨ̂2

)]
, (4.35)
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where, in the second term, we have isolated a combination of terms corresponding
to the right-hand side of the GPE, Eq. (3.17). Performing the transformation,
Eq. (4.34) cancels this term. The remaining Hamiltonian is integrated over r
and θ to give Eq. (3.31), where we have reused the name Ĥ(2) for this modified
Hamiltonian in the main text.
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