
HAL Id: tel-04260094
https://theses.hal.science/tel-04260094

Submitted on 26 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling Under Memory Constraint in Task-based
Runtime Systems

Maxime Gonthier

To cite this version:
Maxime Gonthier. Scheduling Under Memory Constraint in Task-based Runtime Systems. Dis-
tributed, Parallel, and Cluster Computing [cs.DC]. Ecole normale supérieure de lyon - ENS LYON,
2023. English. �NNT : 2023ENSL0061�. �tel-04260094�

https://theses.hal.science/tel-04260094
https://hal.archives-ouvertes.fr

THÈSE
en vue de l’obtention du grade de Docteur, délivré par

l’ECOLE NORMALE SUPERIEURE DE LYON

École Doctorale N◦512
École Doctorale en Informatique et Mathématiques de Lyon

Spécialité : Informatique

Soutenue publiquement le 25/09/2023, par :

Maxime GONTHIER

Scheduling Under Memory Constraint in
Task-based Runtime Systems

Ordonnancement Sous Contrainte Mémoire dans un Modèle de
Programmation à Base de Tâches

Devant le jury composé de :

Camille COTI Professeure, École de Technologie Supérieure Montréal Rapporteuse
Julien LANGOU Professeur, University of Colorado Denver Rapporteur
Thomas HERAULT Professeur, The University of Tennesse Knoxville Examinateur
Isabelle TERRASSE Personnalité scientifique, Airbus Examinatrice
Loris MARCHAL Chargé de Recherche HDR, CNRS, LIP Directeur de thèse
Samuel THIBAULT Professeur des universités, Université de Bordeaux Directeur de thèse

iii

Scheduling Under Memory Constraint in Task-based Runtime Systems

Abstract: Hardware accelerators, such as GPUs, now provide a large part of the computational power
used for scientific simulations. GPUs come with their own limited memory and are connected to the
main memory of the machine via a bus with limited bandwidth. Scientific simulations often operate
on very large data, to the point of not fitting in the limited GPU memory. In this case, one has to turn
to out-of-core computing: data are kept in the CPU memory, and moved back and forth to the GPU
memory when needed for the computation. This out-of-core situation also happens when processing on
multi-core CPUs with limited memory huge datasets stored on disk.

In both cases, data movement quickly becomes a performance bottleneck. Task-based runtime
schedulers have emerged as a convenient and efficient way to manage large applications on such hetero-
geneous platforms. They are in charge of choosing which tasks to assign on which processing unit and
in which order they should be processed.

During this thesis, we worked on the problem of scheduling for a task-based runtime to improve data
locality in an out-of-core setting, in order to reduce data movements. We designed strategies for both
task scheduling and data eviction from limited memories. We implemented them in the STARPU run-
time and compared them to existing scheduling techniques in runtime systems. Our strategies achieves
significantly better performance when scheduling tasks on multiple GPUs with limited memory, as well
as on multiple CPU cores with limited main memory.

We also worked on batch scheduling of IO intensive workloads. Similarly, we used data locality
techniques to reduce the average latency of a job.

Keywords: Memory-aware scheduling, Eviction policy, Tasks sharing data, Runtime systems, Data
locality, GPUs, CPUs, Job input sharing, Job scheduling

Research Units
ROMA, ENS Lyon, 46 Allée d’Italie, 69007 Lyon and STORM, Inria Bordeaux Sud-Ouest, 200

Avenue de la Vieille Tour, 33400 Talence

Remerciements

Le début de cette thèse a été pour moi comme une navigation à l’aveugle dans un océan d’incertitudes.
Je ne connaissais ni mes encadrants, ni les villes de Lyon et de Bordeaux, ni personne dans ces régions,
j’avais un peu peur. Finalement, ce fut un voyage extrêmement enrichissant en expériences, rencontres
et apprentissages, tous plus positifs les uns que les autres. Tout cela a été possible grâce à une multitude
de personnes que je tiens à remercier.

En premier lieu, je souhaite exprimer ma gratitude envers le jury. Je tiens à remercier Julien et Camille
pour avoir pris le temps de relire attentivement ce long manuscrit. J’espère que cette lecture vous a été
agréable et je vous remercie pour vos retours. Un grand merci également à Thomas et Isabelle pour leur
rôle d’examinateurs. J’ai été ravi de répondre à vos questions, toutes particulièrement intéressantes.

En second lieu, je voudrais remercier toutes les personnes qui ont pris le temps de relire et de
contribuer, de près ou de loin, à l’élaboration de ce manuscrit. Je tiens donc à remercier Loris, Samuel,
Mihail, Olivier, Radja, Laércio, Gwenolé, Amina, Emmanuelle, Lionel, Nathalie, Nicolas, Laureline et
ma mère.

La première étape de mon périple fut de descendre le Rhône et d’accoster à Lyon. C’est là que j’ai fait
la rencontre de Loris. J’ai grandement apprécié nos échanges. Grâce à tes encouragements, tes retours
positifs et ta capacité inépuisable à générer de nouvelles idées, j’ai toujours travaillé en toute confiance.
J’avais alors l’assurance que j’atteindrai bon port à l’issue de ces trois années. Je te suis reconnaissant
pour le temps que tu as investi tout au long de cette thèse, que ce soit lors de nos nombreuses réunions ou
par le biais de tes multiples contributions. J’avais ainsi le sentiment de ne pas travailler pour un directeur
de thèse, mais bel et bien aux côtés d’un chercheur. Un grand merci également à toute l’équipe ROMA
pour son accueil chaleureux. Grégoire, Anne, Yves, Frédéric, Bora, Anthony et Lucas, merci beaucoup.

Un an plus tard, j’ai achevé ma descente du Rhône, traversé le détroit de Gibraltar pour rejoindre le
port de la Lune. C’est là que j’ai été chaleureusement accueilli par Samuel. Merci infiniment, Sam, de
m’avoir fait ressentir le sentiment de chez-moi si rapidement. Je te suis reconnaissant pour le temps que
tu as consacré à travailler avec moi sur tous mes problèmes liés à StarPU, parfois pendant des heures.
J’ai véritablement apprécié nos échanges. Tu es une source inépuisable de conversations, toujours in-
téressantes. Merci à toute l’équipe STORM pour ces innombrables heures de discussions passées dans
la salle café. Merci Emmanuelle pour tous tes précieux conseils sur la vie en postdoc. Mihail, merci
pour tes séances de psychothéra-courses (en tout bien tout honneur). Amina je te remercie pour ta bi-
enveillance et tes encouragements. Merci aussi à Olivier, Nathalie, Raymond, Marie-Christine, PAW,
Laércio, Van Man et Denis.

v

vi Remerciements

J’ai aussi rencontré les membres de l’open space, qui ont rendu cette thèse mille fois plus amusante
et j’aimerais les remercier. Vincent, merci à toi. Ton pardessus te donne un air de méchant tout droit sorti
d’un film de James Bond, j’aime beaucoup. Merci Romain, finalement, j’aime bien ta tasse. Baptiste, je
te remercie pour tes multiples propositions de pauses café quotidiennes. Gwenolé, merci pour ton sens
de l’humour, ton professionnalisme et ta créativité en matière de déguisements. Merci Diane pour nos
séances d’escalades véloces. Alice, tes fanfictions sont toujours un régal, merci. Merci Lana pour les
super chaussons requins. Merci Kun de me forcer à faire des cookies. Merci Célia pour ta bonne humeur
contagieuse. Radja, merci de courir plus vite que le bus. Merci Thomas de reprendre le flambeau des
thèses StarPU avec autant de brio. Merci Albert pour nos sorties aux BT.

J’ai également eu l’occasion de discuter avec de nombreuses personnes d’autres équipes. Je remercie
Alycia pour les montagnes de poils de Fifi que tu m’as généreusement laissées. Merci aussi à Lionel,
Abdou, Mathieu, Olivier B, Philippe S, Philippe V, ainsi qu’à l’ensemble des équipes TADAAM, TOPAL
et CONCACE.

I then sailed my boat toward the Baltic Sea for a 3-month stay at Uppsala University. It was a won-
derful time that taught me how to work with new people and how to adapt to a new environment. I
discovered the natural beauty of Sweden, but more importantly, the kindness of its people.

Thank you, Marina, for facilitating my arrival at Uppsala and for organizing so many events for me
to join. Watching the big fire in Gamla is still vivid in my memory. Thanks to all my friends on the 6th
floor of Sernanders väg 4. Thanks to Camille for introducing me to outdoor climbing. Thanks to Ivo,
Lukas, Sonja, Gesina, Andreas, and everyone at the Division of Scientific Computing.

And, of course, thank you, Carl, for all your insightful advice on the direction our project should
take. A special thanks to Elisabeth for being exceptionally welcoming and for inviting me to her birthday
celebration in the beautiful Kallmyr. I hold my time in Uppsala dear, and much of that is thanks to you.

Une embarcation ne navigue pas sans une charpente solide. Celle-ci a été construite au fil du temps
par ma famille. Merci à mes parents de m’avoir toujours inculqué l’amour de la science et de la culture.
J’apprécie toujours autant de visiter des musées et de m’intéresser à la géographie, et c’est cette curiosité
qui m’a aussi grandement aidé à mener à bien cette thèse. Je vous remercie également de m’avoir assisté
lors de deux (bientôt trois) déménagements. À mon frère, un grand merci pour m’avoir montré la voie
de la science et de la recherche. Grâce à toi, il m’a été beaucoup plus facile de me lancer dans cette
aventure. Je te remercie aussi de m’avoir écouté parler de mes problèmes pendant trois ans, et d’être
toujours aussi attentioné. À ma sœur, je tiens à te remercier pour ta bonne humeur constante, nos soirées
sous les étoiles filantes et d’être toujours là pour moi. Tu es une grande sœur en or.

Un voyage en mer c’est encore mieux lorsqu’on peut rester en contact avec des amis sur le continent.
Merci à Guillaume, pour être un ami extraordinaire, et ce depuis presque 10 ans (et merci pour les 70
euros). À Amandine et Bylitis, merci d’être toujours des amies fidèles, et ce depuis 13 ans ! C’est
toujours un plaisir de vous voir et de savoir que je peux compter sur vous. Merci à Ben, je passe
toujours d’excellents moments avec toi, même après de longues périodes de séparation. Merci à tous
les membres de DOàT pour nos soirées du Nouvel An, la béchamel, le limoncello et les anniversaires.
Un merci tout particulier également à Doruntine, Joseph, Fares, Hamza, Stéphane et tant d’autres que
j’oublie sûrement.

Enfin je voudrais remercier Laureline, sans qui mon navire aurait sombré à coup sûr. Tu as rendu ces
trois années absolument merveilleuses. À la maison, je me sentais bien, j’étais écouté, soutenu et con-

vii

seillé. Merci d’avoir accepté de déménager à deux reprises avec moi. Merci de ne m’avoir jamais jugé
et de me comprendre comme personne d’autre. Notre voyage ensemble comporte encore de nombreux
écueils, mais je suis sûr que nous atteindrons de plus beaux rivages dans un futur proche.

Merci à Fifi d’être aussi mignon et d’avoir servi de petit canard pour mes problèmes dans StarPU
tout au long de cette thèse, ce qui fait de toi, sans aucun doute, un ingénieur StarPU hors-pair.

Mon voyage m’amène maintenant à traverser l’Atlantique, et grâce à vous tous, je n’ai plus peur.

Résumé en français

L
ES SCIENTIFIQUES mènent des efforts constants afin d’améliorer les performances de leurs ap-
plications, que ce soit pour accroître leur précision ou pour s’attaquer à des problèmes plus
grands. Une puissance de calcul importante est nécessaire pour obtenir des résultats précis dans

les domaines tels que la prévision météorologique, la prédiction de tremblements de terre ou la simu-
lation de flux d’air. Les applications susmentionnées dépendent également de l’utilisation de grandes
quantités de données d’entrée. Pour les applications modernes, la puissance de calcul et les besoins
mémoire sont si importants que des machines dédiées, appelées supercalculateurs, sont devenues une
nécessité. Les supercalculateurs ont donné naissance au domaine du calcul haute performance (HPC),
qui se concentre sur l’optimisation de leurs utilisation afin de maximiser leurs capacités. Une réalité
bien connue dans le domaine du calcul haute performance est qu’il existe un lien intrinsèque entre la
puissance de calcul des supercalculateurs et leur mémoire.

Depuis ENIAC [70], le premier ordinateur électronique et programmable, construit en 1945, la ges-
tion de la mémoire a toujours été une contrainte. La mémoire était alors constituée de 18 000 tubes à
vide, et il en fallait 36 pour stocker un seul nombre en base 10. Les tubes à vide nécessitaient tellement
d’énergie que plusieurs d’entre eux grillaient presque chaque jour, ce qui rendait l’ordinateur inutilisable
la moitié du temps. La partie la plus critique du fonctionnement de l’ordinateur était donc le stockage
de données.

Au fil des progrès technologiques, la nécessité d’une gestion efficace de la mémoire est restée
d’actualité. On peut citer par exemple l’ordinateur Cray X-MP [41], construit en 1983 pour être
l’ordinateur le plus rapide du monde. Il était composé de quatre CPUs avec 64 mégaoctets de mémoire
partagée et pouvait atteindre une performance de pointe de près de 1 gigaflop/s, c.-à-d., 109 opérations à
virgule flottante par seconde. Lorsque la taille de l’ensemble des données d’entrée dépassait la mémoire
du CPU, il était alors nécessaire de transférer les données depuis le disque dur à l’aide d’un câble dont la
bande passante ne dépassait pas quelques mégaoctets par seconde. Afin d’éviter de ralentir les calculs,
il était donc important de gérer le moment et la manière d’accéder aux données.

Afin d’atteindre des vitesses de calcul sans précédent, la tendance de la dernière décennie consiste
à utiliser des GPUs en plus des CPUs. Depuis 2022, grâce à l’utilisation de plus de 37 000 GPUs, le
supercalculateur Frontier [53] est la machine la plus puissante du monde, avec une performance de 1
exaflop/s, c.-à-d., 1018 opérations à virgule flottante par seconde. Les GPUs sont rapides et massivement
parallèles, mais n’intègrent qu’une mémoire relativement limitée. Lorsque les utilisateurs essayent de
résoudre des applications très volumineuses, il est courant que toutes les données d’entrée du problème
ne peuvent pas tenir dans la mémoire des unités de calcul. Pour des GPUs, cela signifie qu’il faut trans-
férer les données depuis la mémoire d’un CPU en utilisant un bus dont la bande passante est limitée.
Bien que les GPUs aient une puissance de calcul de l’ordre de milliers de gigaflop/s, les bus ont com-

ix

x RÉSUMÉ EN FRANÇAIS

munément une bande passante de l’ordre d’une douzaine de milliers de mégaoctets/s. Cette différence
de rapport de 100 est un parfait exemple de l’écart grandissant entre la vitesse de calcul et les bandes
passantes de communication. Cette évolution s’accompagne également d’une diminution de la mémoire
par gigaflop/s. Ce qui signifie que le problème ne peut pas être résolu en chargeant toutes les données
d’entrée en mémoire. Cet écart constitue un goulot d’étranglement pour les performances. Cela motive
les chercheurs en calcul haute performance à travailler sur l’optimisation des techniques de gestion de
la mémoire afin d’utiliser tout le potentiel des supercalculateurs.

Dans cette thèse, nous visons à combler cette lacune en répondant au problème suivant : Comment
minimiser le temps d’exécution d’une application dont l’ensemble des données est plus grand que la
mémoire des unités de calcul utilisées ? Une réponse possible consiste à améliorer le matériel utilisé.
Cependant, l’ajout de mémoire est coûteux et ne constitue pas une solution permanente : si l’ensemble
des données devient de plus en plus important, on ne peut pas ajouter de la mémoire indéfiniment.
L’ajout de bus supplémentaires peut être une option pour améliorer les performances. Cependant, cela
est difficile car les bus sont coûteux, consomment beaucoup d’énergie et prennent de la place dans un
nœud de calcul déjà physiquement limité.

La réponse que nous proposons est plus générique et repose sur l’amélioration du logiciel d’un
support d’exécution. Les optimisations logicielles génériques peuvent être appliquées à n’importe quel
matériel et constituent donc un objectif complémentaire aux améliorations matérielles. Pour exploiter la
puissance des plateformes hétérogènes complexes, il est devenu très courant d’utiliser la programmation
à base de tâches, c.-à-d., d’exprimer le calcul de l’application sous la forme d’un graphe acyclique dirigé
(DAG), et de laisser un support d’exécution dynamique gérer l’exécution du graphe de tâches sur de
telles plateformes. La charge de l’allocation des données en mémoire, du choix de l’ordre de traitement
des tâches et de leur répartition sur les unités de calcul est ainsi retirée au programmeur de l’application.
Cette charge est alors gérée par le support d’exécution sous la forme d’un problème d’ordonnancement
de tâches. Étant donné que le support d’exécution gère à la fois les données et les tâches, il est alors
possible de créer des ordonnanceurs qui minimisent les mouvements de données. Cela améliore les
performances lorsque la mémoire est une contrainte. La création de politiques d’ordonnancement est
une approche plus générale car elle peut être appliquée à n’importe quelle architecture matérielle ou
application à base de tâches. Notre objectif est donc de construire un ordonnanceur générique qui par-
titionne et ordonne des tâches sur une ou plusieurs unités de calcul à mémoire limitée, et qui apporte
de meilleures performances que les stratégies d’ordonnancement actuelles. Pour atteindre cet objectif,
dans le Chapitre 1 nous étudions d’abord le contexte dans lequel cette thèse a eu lieu, nous passons
en revue les travaux connexes, et nous détaillons comment nous avons l’intention de résoudre le prob-
lème énoncé précédemment. Le Chapitre 2 présente la manière dont nous simplifions et modélisons le
problème. Le Chapitre 3 présente une solution algorithmique pour l’ordonnancement statique de tâches
indépendantes sur une seule unité de calcul. Nous étendons ensuite cette solution à plusieurs unités de
calcul dans le chapitre 4 et proposons un nouvel ordonnanceur dynamique. Le Chapitre 5 décrit les
améliorations apportées à notre ordonnanceur dynamique et les expériences menées avec des ensembles
de tâches avec dépendances. Dans le Chapitre 6, nous transférons les leçons tirées de l’ordonnancement
avec localité à l’ordonnancement batch1 en introduisant de nouveaux algorithmes pour les systèmes
batch. Les chapitres sont résumé ci-dessous.

1Le concept batch désigne les techniques appliquées à l’échelle d’un supercalculateur pour gérer des travaux. Les travaux
sont des applications ou codes soumis par des utilisateurs à un supercalculateur. Ainsi batch peut désigner de l’ordonnancement
de travaux sur un supercalculateur appelé ordonnancement batch, des systèmes de gestions de travaux appelé systèmes batch
ou alors un simulateur de travaux appelé simulateur batch.

xi

Chapter 1: Contexte et Revue de la Littérature

Dans ce premier chapitre, nous présentons le contexte dans lequel cette thèse a été conduite : le besoin
d’exécuter des applications d’algèbre linéaire dont les données d’entrée ne tiennent pas dans la mémoire
d’une unité de calcul. Nous expliquons également la motivation qui justifie l’approche que nous avons
choisie pour résoudre ce problème. Le Chapitre 1 développe ensuite les travaux existants sur ce problème
et comment ils interviennent à différent niveaux de l’architecture matérielle (du cache aux systèmes
batch). Nous justifions ensuite notre choix de positionnement par rapport à la proximité de l’architecture
matérielle. Enfin, nous expliquons comment nous avons réduit l’écart entre l’ordonnancement théorique
et l’ordonnancement pratique.

Chapter 2: Énoncé de la Problématique et Intégration dans un Support d’Exécution

Le Chapitre 2 exprime notre problème à l’aide de différents modèles théoriques. Le modèle le plus
simple est basé sur l’ordonnancement de tâches indépendantes sur une seule unité de calcul à mémoire
limitée. En utilisant cette simplification, nous prouvons l’optimalité d’une politique d’éviction et démon-
trons la complexité de notre problème. Nous complexifions ensuite notre modèle en ajoutant plusieurs
unités de calcul, des poids hétérogènes et des ensembles de tâches avec dépendances. Nous présentons
également STARPU, le support d’exécution que nous avons utilisé pour implémenter nos algorithmes
et mener nos expériences. Pour répondre à nos besoins, nous introduisons dans STARPU la capacité
d’ajouter des politiques d’éviction personnalisées ainsi qu’un nouvel outil de collecte de données et de
visualisation.

Chapter 3: Ordonnancement Statique pour une Seule Unité de Calcul [R1, IP1, W1, J1]

Une première solution algorithmique est proposée en considérant un problème d’empaquetage, que nous
prouvons être NP-complet. À partir de ce problème d’empaquetage, nous avons développé un ordon-
nanceur appelé Hierarchical Fair Packing (HFP), qui regroupe des tâches partageant des données. Pour
l’évaluer, nous adaptons deux méthodes de la littérature que nous estimons pertinentes par rapport à notre
problème. Les trois stratégies mentionnées sont implémentées dans le support d’exécution STARPU.
Nous évaluons expérimentalement les trois méthodes ainsi qu’un ordonnanceur de référence et un or-
donnanceur de pointe et utilisons des variantes de la multiplication matricielle. Le Chapitre 3 contient
ensuite une description des évaluations expérimentales et une explication des résultats grâce à notre outil
de visualisation présenté dans le chapitre précédent.

Chapter 4: Exploiter la Puissance de Plusieurs GPUs [IP2, C1]

Alors que le chapitre précédent utilisait une seule unité de calcul, le Chapitre 4 se concentre sur les
défis de l’ordonnancement de tâches sur plusieurs unités de calcul, chacune avec sa propre mémoire
limitée. Le chapitre commence par une description du nœud de calcul utilisé. Cette description souligne
l’importance de la localité spatiale lorsque sont utilisé plusieurs mémoires locales, en montrant com-
ment l’ordonnanceur de pointe utilise une telle architecture. Nous présentons ensuite une technique de
partitionnement de graphe, que nous avons adapté à notre problème en l’étendant avec du vol de tâches.
Nous expliquons ensuite comment HFP est adapté pour devenir une stratégie de partitionnement et
d’ordonnancement pour plusieurs unités de calcul : en y ajoutant des techniques d’équilibrage de charges
et de vol de tâches. Nous présentons également une nouvelle stratégie dynamique appelée DARTS (Dy-
namic Data-Aware Reactive Task Scheduling), également implémenté dans STARPU. L’intuition de
DARTS est de prendre en compte la localité des données avant l’allocation des tâches. DARTS utilise

xii RÉSUMÉ EN FRANÇAIS

l’état de la mémoire des unités de calcul afin de choisir les données à charger et maximiser la réutil-
isation des données. Pour illustrer les performances de nos ordonnanceurs, le chapitre présente des
résultats expérimentaux sur différentes variantes de la multiplication matricielle et des sous-ensembles
de la factorisation de Cholesky.

Chapter 5: Ordonnancement Dynamique pour les Graphes de Tâches [N1, P1, R3]

Ce chapitre se concentre sur le problème d’ordonnancement d’ensembles de tâches avec dépendances
sur plusieurs unités de calcul à mémoire limitée. Nous décrivons des algorithmes existants et largement
utilisés dans les support d’exécution : une politique de vol de travail avec localité et un ordonnanceur du
support d’exécution PaRSEC. Nous retravaillons la version de DARTS présentée dans le dernier chapitre
afin de favoriser le transfert rapide de données, gérer les dépendances et inclure les priorités dans la
prise de décision. Nous avons également travaillé à réduire la complexité de DARTS. Pour démontrer
l’efficacité de ces techniques d’ordonnancement, le chapitre présente des études expérimentales utilisant
GEMM, les factorisations Cholesky et LU, et en utilisant un ou plusieurs GPUs ou des cœurs CPU.

Chapter 6: Tirer Parti de la Localité pour les Ordonnanceurs Batch [R2]

Les travaux présentés dans ce chapitre ont été menés dans le cadre d’une collaboration avec Elisabeth
LARSSON et Carl NETTELBLAD. Cette collaboration s’est accompagné d’un séjour de trois mois à
l’université d’Uppsala en Suède. Nous avons adapté notre sujet d’étude afin de répondre à leurs be-
soins de recherche tout en gardant l’accent sur l’ordonnancement sous contrainte mémoire. L’université
d’Uppsala exploite une plateforme de calcul à haute performance utilisée par des chercheurs pour
soumettre des travaux utilisant de grandes quantités de données. Ces travaux nécessitent le charge-
ment de fichiers d’entrée de plusieurs gigaoctets avant de pouvoir commencer leurs exécutions. Les
ordonnanceurs batch traditionnels ne sont généralement pas conçus pour gérer des ensembles de travaux
intense en Entrée/Sortie. Avec ces ensembles de travaux, les temps de chargement peuvent devenir sig-
nificatifs, augmentant ainsi le temps d’attente pour tous les travaux. C’est pourquoi, dans le Chapitre 6,
nous proposons de modéliser les avantages de la réutilisation de données entre des travaux successifs.
Nous avons développé un simulateur batch et introduit de nouveaux ordonnanceurs batch qui ajoutent
une telle réutilisation de données. En suivant quelles données sont chargées sur quel nœud, ils sont
capables de réduire de la quantité de transfert de données, améliorant ainsi à la fois l’utilisation des
ressources et la satisfaction des utilisateurs. Nous évaluons ces algorithmes en utilisant des traces de
soumissions de travaux réellement observées sur la plateforme de calcul de l’université d’Uppsala et
étudions les performances obtenues après avoir ordonné près de 2 millions de travaux.

Contents

Remerciements v

Résumé en français ix

Introduction 1

1 Background and Literature Review 5
1.1 Context . 6

1.1.1 Three real-world examples . 6
1.1.2 Hardware will not save us... 7
1.1.3 ... but maybe software can . 9
1.1.4 What happens when the memory is full? . 9
1.1.5 Problem statement . 10

1.2 Related works . 11
1.2.1 Cache management . 11
1.2.2 Partitioned global address space . 12
1.2.3 Solutions in runtime systems . 12
1.2.4 An out-of-core middleware . 13
1.2.5 Scheduling for distributed platforms . 14
1.2.6 Out-of-core and communication-avoiding algorithms 14
1.2.7 Locality-aware mapping . 15
1.2.8 Locality-aware mapping and ordering . 15

1.3 Positioning in the hardware hierarchy . 15
1.4 Bridging the gap between theoretical scheduling and runtime schedulers 17

2 Problem Statement and Integration into a Runtime System 21
2.1 Simplifying our optimization problems . 22

2.1.1 Expressing applications as task graphs . 22
2.1.2 Avoiding the conflicting goals of using multiple processing units 23
2.1.3 Considering homogeneous processing time and data size 23
2.1.4 Making the model complex again . 24

2.2 Simplified model with an independent task set and a single processing unit 24
2.2.1 Expressing applications as a bipartite graphs 24
2.2.2 Simplified optimization problem . 25

xiii

xiv CONTENTS

2.2.3 Optimal eviction policy proof . 26
2.2.4 Complexity of finding an optimal task order . 27

2.3 Making the model parallel . 28
2.3.1 Adding the partitioning problem to the bipartite graph 28
2.3.2 Optimization problem in parallel . 29

2.4 Extension to heterogeneous task and data weights . 29
2.5 Adding dependencies to the model . 30
2.6 The STARPU Runtime System . 31

2.6.1 Task and data . 32
2.6.2 Tasks submission . 32
2.6.3 Task flow . 34
2.6.4 New functionality to add custom eviction policies 34
2.6.5 New logging and visualization tool . 37

2.7 Summary . 41

3 Static Scheduling for a Single Processing Unit 43
3.1 Schedulers from the STARPU runtime system . 44

3.1.1 A greedy baseline: EAGER . 44
3.1.2 Deque Model Data Aware Ready (DMDAR) 44

3.2 Adapted strategies from the literature . 45
3.2.1 Reverse-Cuthill-McKee (RCM) . 45
3.2.2 Maximum Spanning Tree (MST) . 47

3.3 Hierarchical Fair Packing (HFP) . 48
3.3.1 Intuition . 48
3.3.2 An NP-complete problem . 48
3.3.3 Strategy . 49
3.3.4 Complexity of HFP . 51
3.3.5 Improving HFP with package flipping . 52
3.3.6 Optimal eviction policy . 53
3.3.7 Adaptation to heterogeneous data sizes . 54
3.3.8 Improving the beginning of the schedule with the Ready re-ordering 54

3.4 Experimental settings . 54
3.5 Experimental results and analysis . 57

3.5.1 Results on the 2D matrix multiplication . 57
3.5.2 Results on the 3D matrix multiplication . 62
3.5.3 Results on the task set of the Cholesky factorization 65
3.5.4 Results on the 2D matrix multiplication with randomized task order 66
3.5.5 Results on the randomized pairs with 2D inputs 68
3.5.6 Results on the sparse 2D matrix multiplication 69

3.6 Conclusion on static scheduling for a single processing unit 70

4 Harnessing the Power of Multiple GPUs 73
4.1 State-of-the-art schedulers . 74

4.1.1 Leveraging expected communication time with DMDAR 74
4.1.2 Using (hyper-)graph partitioning . 76

4.2 Hierarchical Fair Packing adaptation to multiple processing units (mHFP) 77
4.2.1 Strategy . 77

CONTENTS xv

4.2.2 Additional unused solutions explored for mHFP 78
4.3 A dynamic data-aware scheduler: DARTS . 81

4.3.1 Intuition . 81
4.3.2 STARPU’s task flow with DARTS . 81
4.3.3 Strategy . 81
4.3.4 Eviction policy . 83
4.3.5 Dealing with more input data per task . 84
4.3.6 Reducing the scheduling overhead . 84
4.3.7 Faster code with fewer mutex . 84

4.4 Experimental evaluation with multiple processing units 86
4.4.1 Settings . 86
4.4.2 Results on the 2D matrix multiplication with a single GPU 86
4.4.3 Results on the 2D matrix multiplication with multiple GPUs 87
4.4.4 Result on the 2D matrix multiplication with randomized task order and 2 GPUs . 93
4.4.5 Result on the 3D matrix multiplication with 4 GPUs 96
4.4.6 Result on the task set of the Cholesky factorization with 4 GPUs 96
4.4.7 Results on the sparse 2D matrix multiplication with 4 GPUs 97

4.5 Conclusion on scheduling for multiple processing units 97

5 Dynamic Scheduling for Task Graphs 99
5.1 Existing runtime schedulers . 100

5.1.1 A work stealing policy: LWS . 100
5.1.2 A priority-based scheduler from the PaRSEC runtime: AP 101

5.2 Improving the DARTS scheduler . 101
5.2.1 Intuition . 101
5.2.2 Strategy . 101
5.2.3 Eviction policy . 103

5.3 Experimental settings . 103
5.4 Cholesky factorization with GPUs . 104

5.4.1 Overview . 104
5.4.2 Optimal data access pattern . 105
5.4.3 Single GPU case . 105
5.4.4 With multiple GPUs . 107
5.4.5 With multiple GPUs and no memory limitation 110

5.5 LU factorization with GPUs . 111
5.5.1 Results on 4 GPUs . 111
5.5.2 Results on a single GPU and no memory limitation 112

5.6 3D matrix multiplication with GPUs . 112
5.7 LU factorization on a multi-core CPU . 114
5.8 Conclusion on dynamic scheduling of task sets with dependencies 116

6 Leveraging Locality for Batch Schedulers 117
6.1 Motivation . 118
6.2 Related work . 119

6.2.1 Scheduling jobs on large clusters . 119
6.2.2 Using distributed file systems to deal with data-intensive workloads 119
6.2.3 Using schedulers to deal with data-intensive workloads 120

xvi CONTENTS

6.2.4 Reducing I/O contention . 120
6.3 Framework . 120
6.4 Schedulers . 122

6.4.1 Two schedulers from the state of the art: FCFS and EFT 123
6.4.2 Data-locality-based schedulers . 123
6.4.3 Adding backfilling to all strategies . 125

6.5 Experimental settings . 126
6.5.1 Platform description . 126
6.5.2 Workloads description . 126
6.5.3 Usage of real cluster logs . 127
6.5.4 Simulator description . 128

6.6 Experimental evaluation and analysis . 129
6.6.1 Results on an underutilized cluster . 129
6.6.2 Results on a saturated cluster . 131
6.6.3 Complete results . 132

6.7 Conclusion on locality-aware batch scheduling . 135

Conclusion and Perspectives 137

Bibliography 143

Publications 153

Acknowledgement 155

List of Figures

1.1 Examples of datasets used for applications with dense linear algebra as the main com-
putation phase. 7

1.2 Sources of computing performance over the last 50 years. 8
1.3 Platform topology of a multi-core CPU with shared memory. 9
1.4 Platform topology of multiple GPUs with distributed memory. 10
1.5 The hierarchy of solutions for the MIN-EXEC-TIME-LIMITED-MEM problem. 11

2.1 Task set from the Cholesky factorization. 23
2.2 Example of bipartite graph and processing order with one processing unit. 24
2.3 Example of bipartite graph and processing order with two processing units. 28
2.4 Task insertion of the Cholesky factorization within the STARPU runtime system. 33
2.5 Task flow within the STARPU runtime. 35
2.6 Function definitions needed for custom eviction policy within the STARPU runtime. . . 36
2.7 Visualization of the processing order on a 2D matrix multiplication. Side of the input

matrices N = 4. The shading, from lighter to darker, represents the ordering. A beige
vertical (resp. horizontal) line in a square corresponds to a row (resp. column) load
that was necessary to compute this tile. Solid lines are fetches while dotted lines are
prefetches. With multiple GPUs, each color is a set of tasks assigned to a GPU. 37

2.8 Visualization of the processing order on a 3D matrix multiplication with 1 GPU. Side of
the input matrices N = 4. The shading, from lighter to darker, represents the ordering.
A beige vertical (resp. horizontal) line in a square corresponds to a row (resp. column)
load that was necessary to compute this tile. Solid lines are fetches while dotted lines
are prefetches. 38

2.9 Visualization of the processing order on the Cholesky factorization with 1 GPU. Side of
the input matrices N = 10. The first 50 tasks processed are in red, the next 50 in green,
then blue, yellow, magenta and cyan. The shading, from lighter to darker, represents the
ordering within each set of 50 tasks. The black area represents the amount of tiles that
can be loaded in memory. 39

2.10 Visualization of the processing order on the Cholesky factorization with 2 GPUs. Side
of input the matrices N = 10. The first 50 tasks processed on each GPU are in red,
the next 50 in green, then in blue. The shading, from lighter to darker, represents the
ordering within each set of 50 tasks. The black area represents the amount of tiles that
can be loaded in memory. 40

xvii

xviii LIST OF FIGURES

3.1 Reverse-Cuthill-McKee ordering on a symmetric sparse matrix. 46
3.2 Data sharing among tasks that reach worst-case complexity for HFP. 52
3.3 Flipping packages to improve HFP. 52
3.4 HFP’s processing order on a 2D matrix multiplication with M = 4. 53
3.5 Difference between HFP and HFP with Ready ordering on a 2D matrix multiplication

with a single GPU. 54
3.6 Data dependencies on a 2D matrix multiplication. 56
3.7 Conventions used in experimental evaluation figures. 56
3.8 Results on the 2D matrix multiplication in real execution with 1 Tesla V100 GPU. Mem-

ory limited to 500 MB. 57
3.9 Performance on the 2D matrix multiplication in real execution with 1 Tesla V100 GPU

while varying the memory size. 58
3.10 Visualization of RCM’s processing order on the 2D matrix multiplication. 60
3.11 Visualization of DMDAR’s processing order on the 2D matrix multiplication. 60
3.12 Visualization of HFP’s processing order on the 2D matrix multiplication. 61
3.13 Results on the 3D matrix multiplication in real execution with 1 Tesla V100 GPU. Mem-

ory limited to 500 MB. 62
3.14 Performance on the 3D matrix multiplication in simulation with the performance model

of 1 Tesla V100 GPU. Memory limited to 500 MB. 63
3.15 Visualization of HFP’s processing order on the 3D matrix multiplication. 64
3.16 Performance on the task set of the Cholesky factorization in real execution with 1 Tesla

V100 GPU. Memory limited to 500 MB. 66
3.17 Performance on the random task order from from 2D matrix multiplication in real exe-

cution with 1 Tesla V100 GPU. Memory limited to 500 MB. 67
3.18 Visualization of the processing order on the random task order from from 2D matrix

multiplication. 67
3.19 Performance on the randomized pairs with 2D inputs in real execution with 1 Tesla V100

GPU. Memory limited to 500 MB. 69
3.20 Performance on the sparse 2D matrix multiplication in real execution with 1 Tesla V100

GPU. Memory limited to 500 MB. 70

4.1 Topology of the Gemini node. 75
4.2 Difference between mHFP and mHFP2 on the 2D matrix multiplication with 3 GPUs. . . 79
4.3 Using interlacing with HFP. 80
4.4 Simplified task flow within the STARPU runtime when using DARTS. 82
4.5 Results of DARTS mutex policies on the 2D matrix multiplication with 4 Tesla V100

GPUs. 86
4.6 Results on the 2D matrix multiplication in real with 1 Tesla V100 GPU. Memory limited

to 500 MB. 87
4.7 Performance on the 2D matrix multiplication in simulation with the performance models

of 2 Tesla V100 GPUs. 88
4.8 Results on the 2D matrix multiplication in real with 2 Tesla V100 GPUs. Memory

limited to 500 MB per GPU. 89
4.9 HFP’s ordering on the 2D matrix multiplication with 2 Tesla V100 GPUs. 90
4.10 HFP’s ordering on the 2D matrix multiplication with 8 Tesla V100 GPUs. 91
4.11 DMDAR’s ordering on the 2D matrix multiplication with 2 Tesla V100 GPUs. 92
4.12 DARTS’ ordering on the 2D matrix multiplication with 2 Tesla V100 GPUs. 94

LIST OF FIGURES xix

4.13 Performance on the 2D matrix multiplication in real with 4 Tesla V100 GPUs. Memory
limited to 500 MB per GPU. 95

4.14 Performance on the 2D matrix multiplication with randomized task order in real with 2
Tesla V100 GPUs. Memory limited to 500 MB per GPU. 95

4.15 Performance on the 3D matrix multiplication in simulation with the performance models
of 4 Tesla V100 GPUs. Memory limited to 500 MB per GPU. 96

4.16 Performance on the task set of the Cholesky factorization in real with 4 Tesla V100
GPUs. Memory limited to 500 MB per GPU. 97

4.17 Performance on the sparse 2D matrix multiplication in real with 4 Tesla V100 GPUs. . . 98

5.1 Tiles computed by a triangle block in an iteration of the Cholesky factorization. 105
5.2 Results on the Cholesky factorization with 1 Tesla V100 GPU. Memory limited to 2000

MB. 106
5.3 DMDAS’s ordering on iterations 1 to 4 of the Cholesky factorization with 1 Tesla V100

GPU. 106
5.4 DARTS’ ordering on iterations 1 to 4 of the Cholesky factorization with 1 Tesla V100

GPU. 107
5.5 Results on the Cholesky factorization with 8 Tesla V100 GPUs. Memory limited to

2000 MB per GPU. 108
5.6 DARTS’ ordering on the first two iterations of the Cholesky factorization with 8 Tesla

V100 GPUs. 109
5.7 Results on the Cholesky factorization with 8 Tesla V100 GPUs. Hardware limitation of

each GPU memory at 32 GB. 110
5.8 Results on the LU factorization with 4 Tesla V100 GPUs. Memory limited to 2000 MB

per GPU. 111
5.9 Results on the LU factorization with 1 Tesla V100 GPU. Hardware memory limitation

at 32 GB. 112
5.10 Performance on the 3D matrix multiplication with Tesla V100 GPUs. Memory limited

to 2000 MB. 113
5.11 Performance on the 3D matrix multiplication in simulation with the performance models

of Tesla V100 GPUs. Memory limited to 2000 MB. 114
5.12 Results on the LU factorization with an AMD EPYC 7642 CPU. Memory limited to

2000 MB. 115

6.1 Platform representation. 122
6.2 Methodology followed to schedule and evaluate jobs from a specific week while avoid-

ing edge effects. 128
6.3 Results on the workload of week 40. 129
6.4 Stretch times of each user session from week 40 compared to FCFS. 131
6.5 Results on the workload of week 43. 132
6.6 Stretch times of each user session from week 43 using LEA compared to FCFS. 133
6.7 Results without backfilling on all evaluated weeks. 133
6.8 Results with backfilling on all evaluated weeks. 134

Introduction

S
CIENTISTS are constantly striving for improved performance in their research applications,
whether for enhancing accuracy or for tackling larger problems. For instance in domains
such as weather forecasting, earthquake prediction or airflow simulation, significant computing

power is required to achieve accurate results. All of the above applications are also highly dependent on
large amounts of input data. The significance of computing power and memory requirements in modern
applications is such that dedicated machines called supercomputers have become a necessity. With su-
percomputers came the field of High Performance Computing (HPC), which focuses on optimizing their
utilization to maximize their capabilities. A well-known reality in HPC is that there has always been an
intrinsic connection between the computing power of supercomputers and their memory.

Since ENIAC [70], the first programmable electronic computer built in 1945, dealing with memory
has always been a constraint. The memory then consisted of 18 000 vacuum tubes, and it took 36 of
them to store a single decimal number. Vacuum tubes required so much energy that several of them
burned out almost every day, resulting in a non-functioning computer half the time. The most critical
part when running the computer was data storage.

Throughout technological progress, the need for effective memory management remained relevant.
For example, we can mention the Cray X-MP computer [41], released in 1983 to be the world’s fastest
computer. It consisted of four CPUs with a shared memory of 64 megabytes and could achieve a peak
performance of almost 1 gigaflop/s, i.e., 109 floating-point operations per seconds. A dataset larger than
the CPUs memory required to transfer data from a hard drive through a cable with a limited bandwidth
of a few megabytes per second. Therefore, it was important to manage how and when the data was
accessed in order to avoid computational slowdowns.

The last trend from the past decade is to leverage GPUs in addition to CPUs, to achieve unprece-
dented computing speed. Since 2022, the Frontier supercomputer [53], thanks to the use of more than
37 000 GPUs, is the most powerful machine in the world, with an achieved performance of 1 exaflop/s,
i.e., 1018 floating-point operations per seconds. GPUs are fast and massively parallel but embed only
relatively limited memory. With users trying to solve larger systems, it becomes common to encounter
situations where all the input data of the problem cannot fit into the memory of the computing units.
For GPUs, this means transferring data from a CPU memory using a bus with limited bandwidth. While
they have a computing power on the order of thousands of gigaflop/s, the bus can typically exhibit a
bandwidth on the order of a dozen thousands of megabyte/s. This ratio of 100 is a perfect example of
the widening gap between computing speed and communication bandwidth. This is also accompanied
by a decrease in memory per gigaflop/s, which means that problems cannot be solved by fitting all the
input data into memory. This gap is a performance bottleneck and motivates HPC researchers to work
on optimizing memory management techniques to unleash the full potential of supercomputers.

1

2 INTRODUCTION

In this thesis, we aim to fill this gap by answering the following problem: How to minimize the
execution time of an application whose dataset is larger than the memory of the processing units being
used? One possible answer is to improve the hardware. However, the addition of more memory is
expensive and not a permanent solution: if the dataset gets larger and larger, one cannot add memory
indefinitely. Adding more buses to enhance the hardware can be an option for improving performance.
However, this is difficult because buses are expensive, consume a lot of energy, and take up space in an
already physically limited compute node.

Our proposed answer is more generic and relies on improving the software of a runtime system.
Generic software optimizations can be applied to any hardware and are thus a complementary goal to
hardware improvements. To harness the power of complex heterogeneous computing platforms, it has
become very common to use task-based programming, i.e. to express the application computation as
a Directed Acyclic Graph (DAG), and let a dynamic runtime system manage the execution of the task
graph over such distributed and heterogeneous platforms. The burden of allocating data in memory,
choosing task processing order and mapping them is thus offloaded from the application programmer to
the runtime system, in the form of a task scheduling problem. Since the runtime system handles both
data and tasks, this provides an opportunity to build schedulers that minimize data movement, resulting
in improved performance when memory is a constraint. Creating scheduling policies is a more general
approach as it can be applied to any hardware or task-based application. Thus, our goal is to build
a generic scheduler that partitions and orders tasks across one or more processing units with limited
memory, and brings higher performance than current scheduling strategies. To achieve this goal, in
Chapter 1 we first study the context in which this thesis took place, review related work, and detail how
we intend to address the previously stated problem. Chapter 2 presents how we simplify and model
the problem. Chapter 3 presents an algorithmic solution for static scheduling of independent tasks on a
single processing unit. We then extend this solution to multiple processing units in Chapter 4 and propose
a new dynamic scheduler. Chapter 5 describes improvements to our dynamic scheduler and experiments
with dependent task sets. We take the opportunity to transfer the lessons learned from locality-aware
scheduling to batch scheduling by introducing new algorithms for batch systems in Chapter 6. Each
chapter is summarized below.

Chapter 1: Background and Literature Review

In this first chapter, we introduce the context in which this thesis was conducted: the need to execute
linear algebra applications that does not fit in the memory of a processing unit. We also explain the
motivation behind the approach chosen to solve this problem. Chapter 1 then elaborates on existing
work on how this problem is addressed at different hardware levels (from cache to batch systems), before
justifying our choice of positioning with regard to hardware proximity. Finally, we aim at bridging the
gap between theoretical and practical scheduling.

Chapter 2: Problem Statement and Integration into a Runtime System

Chapter 2 expresses our stated problem with different theoretical models. The simplest model is based
on the scheduling of independent tasks on a single processing unit with limited memory. Using this
simplification, we prove the optimality of an eviction policy and demonstrate the complexity of our
problem. We then complexify our model by adding multiple processing units, heterogeneous weights
and task sets with dependencies. We also present STARPU, which is the runtime we used to implement
our algorithms and conduct our experiments. To meet our needs, we introduce in STARPU the ability to
use custom eviction policies as well as a new logging and visualization tool.

3

Chapter 3: Static Scheduling for a Single Processing Unit [R1, IP1, W1, J1]

A first algorithmic solution is provided by considering a packing problem, which we prove to be NP-
complete. From the packing problem, we developed a scheduler called Hierarchical Fair Packing (HFP),
which groups together tasks sharing data. To evaluate it, we adapt two methods from the literature that
we believe may be relevant to our problem. The three mentioned strategies are implemented into the
STARPU runtime. We experimentally evaluate the three methods along with a baseline and a state-of-
the-art-runtime scheduler using variants of matrix multiplication and subsets of the Cholesky factoriza-
tion. Chapter 3 discusses the results of experimental evaluations, with the help of the visualization tool
presented in the previous chapter.

Chapter 4: Harnessing the Power of Multiple GPUs [IP2, C1]

While the previous chapter used a single processing unit, Chapter 4 focuses on the challenges of task-
based scheduling on multiple processing units, each with its own limited memory. The chapter begins
with a description of the used computing node. This description emphasizes the importance of spatial
locality in a setting with multiple local memories by showing how the state-of-the-art runtime scheduler
exploits such an architecture. We then introduce a graph partitioner, which we adapted to our problem
by extending it with task-stealing methods. We then discuss how the HFP scheduler is adapted into a
partitioning and ordering strategy by adding load-balancing and task-stealing to the strategy. We also
introduce a new dynamic strategy called DARTS (Dynamic Data-Aware Reactive Task Scheduling), also
implemented in STARPU. DARTS’ intuition is to consider data locality before task allocation: it uses
the state of the processing unit’s memory to choose which data should be loaded to increase data reuse.
To illustrate the performance of our schedulers, the chapter presents experimental results on different
variants of matrix multiplication and subsets of the Cholesky factorization.

Chapter 5: Dynamic Scheduling for Task Graphs [N1, P1, R3]

This chapter focuses on the problem of scheduling task sets with dependencies on multiple processing
units with limited memory. We describe existing algorithms that are widely used in runtime systems:
a locality work stealing policy and a scheduler from the PaRSEC runtime. Based on the version of
DARTS presented in the last chapter, we rebuilt it to favor fast data transfer, deal with dependencies, and
include priorities in its decision making. We also worked on reducing the computational complexity of
DARTS. To demonstrate the effectiveness of these scheduling techniques, the chapter presents studies
on GEMM, the Cholesky and LU factorizations, using one or more GPUs as well as CPU cores.

Chapter 6: Leveraging Locality for Batch Schedulers [R2]

The work presented in this chapter was conducted as part of a research collaboration with Elisabeth
LARSSON and Carl NETTELBLAD, during a three-month stay at Uppsala University in Sweden. We
adapted our study to meet their specific research needs while keeping the focus on locality-aware
scheduling under memory constraints. Uppsala University operates a high-performance computing plat-
form that is used by researchers to submit highly data-dependent workloads. These workloads are jobs
that require input files of multiple gigabytes to be loaded prior to computation. Traditional batch sched-
ulers are generally not designed to handle data-intensive workloads. With those workloads, the load
times can become significant, increasing the wait time for all jobs. Therefore, in Chapter 6 we propose
to model the benefits of reusing data loads between successive jobs. We developed a batch simulator and
introduce new batch schedulers that add such data reuse to the scheduling balance. By tracking which

4 INTRODUCTION

data is loaded on which node for the scheduled jobs, they are able to significantly reduce data loads,
thereby improving both resource utilization and user satisfaction. We evaluate these algorithms by using
traces of actual job submissions observed on the Uppsala University cluster and study the performance
obtained after scheduling nearly 2 million jobs.

Chapter 1
Background and Literature Review

Contents
1.1 Context . 6

1.1.1 Three real-world examples . 6
1.1.2 Hardware will not save us... 7
1.1.3 ... but maybe software can . 9
1.1.4 What happens when the memory is full? . 9
1.1.5 Problem statement . 10

1.2 Related works . 11
1.2.1 Cache management . 11
1.2.2 Partitioned global address space . 12
1.2.3 Solutions in runtime systems . 12
1.2.4 An out-of-core middleware . 13
1.2.5 Scheduling for distributed platforms . 14
1.2.6 Out-of-core and communication-avoiding algorithms 14
1.2.7 Locality-aware mapping . 15
1.2.8 Locality-aware mapping and ordering . 15

1.3 Positioning in the hardware hierarchy . 15
1.4 Bridging the gap between theoretical scheduling and runtime schedulers 17

5

6 CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

S
CIENTIFIC RESEARCH involves complex applications that require substantial computational re-
sources. As scientific datasets continue to grow exponentially in size, researchers face a critical
challenge: how to efficiently execute applications whose data exceeds the memory capacity

of modern supercomputers? This is the foundation of this thesis. The context provided in Section 1.1
details the main challenge that modern scientific applications face: data. It also outlines different paths
that can be taken to deal with such a challenge. After extracting a problem statement from it, we describe
in Section 1.2 existing solutions from related work. Then, we explain in Section 1.3 how we choose to
address the stated problem at two different levels of the hardware/software stack: runtimes and batch
systems. Finally, in Section 1.4, we delve into the underlying challenges of using theoretical studies to
build applied schedulers that work in runtime systems.

1.1 Context

Challenging and impactful problems are the driving factors of modern scientists. Examples of engaging
and significant areas of study include weather forecasting, acoustic and airflow simulations and earth-
quake prediction. These examples have three characteristics in common.

Computational intensity: These domains heavily rely on sophisticated computational models to sim-
ulate and understand complex physical processes. For instance, weather forecasting models simu-
late atmospheric conditions, acoustic simulations replicate sound propagation, and seismic models
analyze earth movements. These models involve intricate mathematical models and require sig-
nificant computational resources to produce accurate results.

Solvable with linear algebra: Linear algebra provides a fundamental mathematical framework that en-
ables the representation and resolution of such mathematical models.

Data intensive: All of these examples require the processing of large amounts of data. These datasets
consist of measurements, observations, or simulated models with data volumes that can sometimes
reach thousands of gigabytes.

We can point to three real-world examples that are impactful, computational intensive, rely on the
resolution of large linear algebra applications, and require a large amount of input data.

1.1.1 Three real-world examples

First, seismic tomography. It is a technique used in geophysics to create images of the Earth’s subsurface
structures by analyzing seismic waves. Seismic tomography plays a critical role in the assessment and
prediction of natural hazards. It is also used to monitor volcanic activity. The recorded seismic data used
as input is processed, typically reduced to solving a linear system such as the QR factorization, as shown
in [27]. In this same paper, the authors state that the resolution matrix with 267 520× 267 520 elements
requires over 200 GB of memory. The more collected data, the better the resolution and accuracy of
the resulting subsurface model. Therefore, seismic tomography requires large inputs, is useful to the
masses, and is resolved by linear algebra.

Second, geostatistics. It is a field of science where scientists try to accurately model and predict
environmental phenomena. For example, some scientists use past wind speed measurements as inputs
and aim to output accurate wind speed predictions for the coming days. An example of wind speed data
used is shown in Figure 1.1a. This is important because wind speed has an impact on various sectors
of activity, such as the energy production of a wind farm or the planning of construction activities.

1.1. CONTEXT 7

(a) Example of wind speed data used for geostatistics.
Figure from [2].

(b) Example of discretization used for acoustic simu-
lations. Figure from [10].

Figure 1.1: Examples of datasets used for applications with dense linear algebra as the main computation
phase.

The EXAGEOSTAT software [1] is able to process such forecasts. In the case of wind prediction,
EXAGEOSTAT uses large dense symmetric matrices that are solved using the Cholesky factorization [2].
They observed that they needed to move 3032 GB of data to produce the expected prediction.

Third, the simulation of acoustic waves generated by an aircraft engine. Measuring such propaga-
tion is a challenging and sometimes dangerous task. Therefore, numerical simulations are widely used in
such cases. Airbus is interested in the simulation of aeroacoustic phenomena such as the propagation of
acoustic waves generated by an aircraft during take-off or landing. This enables researchers to work on
noise reduction for prototype airplanes. Such physical models involve concepts that cannot be modeled
on a computer. Therefore, an approximation of the physical expression must be made using a discretiza-
tion technique. Figure 1.1b shows an example of discretization. Discretization enables the simulation
to be computed as large linear systems, which can then be partially solved using LU factorizations [10]
and with matrices so large that they are divided into blocks of 160 GB across 80 nodes [20].

As the cited applications require lots of computing power, have large memory requirements, and
must be resolved in a reasonable amount of time, they require the use of supercomputers. A super-
computer is a set of interconnected nodes, each containing memory, I/O systems, and processing units
that effectively perform the computations. Since all of these applications are common scientific topics
of study and rely on linear algebra for their completion, we can deduce that linear algebra occupies a
non-negligible fraction of modern supercomputers. Solving linear algebra applications faster would free
up many core hours for other important projects that do not rely on linear algebra results and require
customized refinement. From this statement we can extract our first problematic: What are the available
solutions to solve large linear algebra applications faster on modern supercomputers?

1.1.2 Hardware will not save us...

A common solution to improve the execution time of scientific applications is an upgrade of the su-
percomputers hardware. This means adding more CPUs, more memory, more GPUs, or making the
chipsets smaller so that more can fit in the same space. It can also mean using more transistors. This
has been a reasonable solution for the last five decades for three reasons. First, the Moore Law, an
empirical observation that microprocessor technology improves +100% every 18 months, supported the

8 CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

Figure 1.2: Sources of computing performance over the last 50 years. Original data up to the year 2010
collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C.
Batten. Plot and data collected for 2010-2021 by Karl Rupp [109].

use of more cores. Second, the Dennard scaling, which states that as transistors get smaller, their power
density remains constant, meaning that more can be added to a microprocessor. Third, large investments
from the industry supported spending money on larger and larger computing platforms. Today, however,
these three reasons are no longer in effect. Nowadays, we are at the end of the easy way to get more
performance: Moore’s Law is slowly reaching its limit. As we can see in Figure 1.2, the CPU fre-
quency is reaching a ceiling and thread performance is increasing more slowly than before, eventually
reaching an asymptote. Even if transistors keep getting smaller, we will run out of money before we
run out of physics. It is possible to build smaller transistors, but the cost is not justified now that the
progress is slowing down. Since there is a diminishing return on the investments in supercomputers, the
large investments from the industry that we mentioned earlier are less and less profitable. To understand
where HPC research is headed, we can draw a parallel with aircraft technologies. Nathan Myhrvold
made the following statement: "The way Moore’s Law occurs in computing is really unprecedented in
other walks of life. If the Boeing 747 obeyed Moore’s Law, it would travel a million miles an hour, it
would be shrunken down in size, and a trip to New York would cost about five dollars. Those enormous
changes just aren’t part of our everyday experience." If airplanes obeyed Moore’s Law, we would have
supersonic airplanes for every known destination. We have seen the opposite since the Concorde. The
economic cost of reaching higher and higher speeds was not realistic, so aeronautical engineers turned
their attention to other issues, such as reducing fuel consumption, aircraft weight, or engine noise. Simi-
larly, HPC must now pursue new goals. Some are studying energy efficiency or portability. Others solve
applications faster by resorting to mixed precision when possible. If the application does not require
floating-point operations, quantum computing could be used, but it is not currently applicable to high-
performance computing. To solve linear algebra systems faster without sacrificing the precision of the
results, a reasonable approach is to optimize the software that runs the applications.

1.1. CONTEXT 9

Core1 Core2 Core3 Core4 Core5 CoreN

Disk (infinite size)

Memory (limited)

Figure 1.3: Platform topology of a multi-core CPU with shared memory.

1.1.3 ... but maybe software can

In software optimization, it is often very effective to optimize code for a specific architecture or even
a specific processing unit. For example, some aim to optimize programs specifically for GeForce 8800
GTX GPUs [110], while others target specific supercomputing platforms. This makes sense, as it can
meet the needs of users quite quickly. However, computing architectures and trends change rapidly.
From the first high-performance computing platform (the Livermore Atomic Research Computer in
1956 [55]), to the use of PlayStation 2 connected together as a cluster in 2004 [102], and finally the
Frontier supercomputer in 2022 [53], only 5 decades have passed. Moreover, in just half a generation,
the popular trends in HPC have shifted from using CPUs to adding more and more GPUs or FPGAs to
lastly focusing on quantum computing. These rapidly changing trends and architectures make permanent
and generic approaches much more valuable. Such persistent solutions include algorithms that rely on
theoretical models and are extensible to a large number of different situations on top of being architecture
agnostic.

We give here two algorithmic solutions used to increase performance on linear algebra systems with-
out relying on specific architectures or trends. First, one can increase parallelism, i.e., perform computa-
tions on multiple processing units at the same time. For example, this has been proposed for dense [72]
or sparse matrix multiplication [19]. Ideally, parallelism is the perfect solution. Unfortunately, it is not
possible to perfectly parallelize every application due to dependencies between operations or lack of
available computing resources. So we turn to the second algorithmic solution: optimizing the partition-
ing and scheduling of applications on the different processing units of a supercomputer. Partitioning is
defined as assigning different parts of the application to different processing units. Scheduling is defined
as a method by which a task, specified as a subset of a larger application, is assigned to a processing
unit to be computed at a given time. Since it is a solution that does not rely on hardware peculiarities
or trends, we choose to focus on this partitioning and scheduling solution throughout this thesis. To op-
timize linear algebra applications through partitioning and scheduling, it is necessary to understand the
major performance bottleneck of modern supercomputers: data movement. Hence, we ask ourselves:
How is the performance of linear algebra applications on modern supercomputers hampered by data
movements?

1.1.4 What happens when the memory is full?

There are two main processing units in modern supercomputers: CPUs and GPUs. All cores of a multi-
core CPU share a common (limited) memory, as depicted on Figure 1.3. With users trying to solve
larger systems, it becomes common to encounter a situation where all input data of the problem cannot

10 CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

CPU memory (infinite size)

GPU1 GPU2 GPU3 GPU4

Memory (limited) Memory (limited) Memory (limited) Memory (limited)

PCI Express bus

Figure 1.4: Platform topology of multiple GPUs with distributed memory.

fit into the memory of the computing units. In such a case, data must be loaded from the disk (which we
consider to be infinite in size). The bandwidth between the disk and the CPU memory is only of a few
hundred MB/s, which has a strong impact on performance if data movements are not carefully handled
to overlap them with computation. Similarly, one should avoid loading several times the same data but
favor data reuse, by improving temporal data locality, i.e., by performing all computations on the same
data before its eviction from the memory. Recently, the trend has been to leverage GPUs in addition to
CPUs, to achieve unforeseen computation speed and power efficiency.

GPUs are fast because they are massively parallel but also because their local memory (or VRAM)
is located on the GPU chip itself and is specifically designed to provide fast access to data for the GPU
cores. However, the memory embedded in GPUs is relatively limited, and the bus that connects them to
the main memory has a limited bandwidth of a few dozens thousands MB/s. GPUs can achieve multiple
teraflops of performance, but when many GPUs are connected to the main memory, the bandwidth of
a few dozens thousand megabytes per second becomes the main performance bottleneck. In effect, the
GPUs are idle while waiting for the data they need to be loaded into their VRAM. A node architecture
with GPUs is described in Figure 1.4. Contrary to common usage, we do not use the term distributed
memory to describe multiple nodes connected in a network. Instead, in this thesis, distributed memory
describes the setup of a single node with multiple GPUs, each equipped with its own local memory and
connected to a CPU via a PCI bus. In such a distributed memory context, data reuse is even more crucial
as one has also to focus on spatial data locality, that is to aim at gathering all computations using the same
data on the same GPU. To make matters worse, recent technology trends show a widening gap between
peak compute speed and communication bandwidth as well as decrease in memory per gigaflop [42, 45].
This growing disparity result in underutilization of computational resources and longer execution times
for data-intensive applications.

1.1.5 Problem statement

In summary, a lot of important applications can be resolved through the resolution of linear algebra sys-
tems. However, they are often very computational- and data-intensive. Consequently, they are processed
on supercomputers. Even in modern supercomputers, the full application dataset cannot be loaded in
the memory of its processing units. This results in data transfers between main memory and processing
unit local memory. Because of a gap between communications and computations speed, data transfers
become the bottleneck for performance. Improving the hardware is not a permanent solution, so in order
to free up core hours on a supercomputer, the following problem must be solved:

Problem 1 (MIN-EXEC-TIME-LIMITED-MEM). For a given linear algebra application A with a data
set of sizeM(A) and a set of processing units P with a cumulated memory of sizeM(P), how to minimize
the execution time of A on P even if M(A) > M(P)?

1.2. RELATED WORKS 11

Out-of-scaleCache management

PGAS

Batch systems

Out-of-core
algorithms

Middleware

Runtime systems

Simple

Complex

High

Low

Hardware
proximity

Algorithm
complexity

Communication-
avoiding

Locality-aware
mapping

Locality-aware
ordering

Figure 1.5: The hierarchy of solutions for the MIN-EXEC-TIME-LIMITED-MEM problem.

1.2 Related works

To address this problem of fitting a working set in a given amount of memory [52], researchers explored
various strategies, such as advanced caching mechanisms, partitioned global address spaces, task graph
scheduling and batch scheduling. All these solutions appear at different levels of the hardware hierarchy,
and we present them in the current section. As illustrated in Figure 1.5, a strategy close to the hardware
has very little time to make a decision, forcing it to use simple algorithmic solutions, while solutions far
from the hardware can have more complex schemes.

In Figure 1.5, we refer to some topics as "out-of-scale". Those are generally offline methods that
decide how to process the application in advance and operate without knowledge of future events. For
this reason, they can be applied at any hardware level and do not rely on their position on the hardware
hierarchy. This includes out-of-core and communication-avoiding algorithms that rely on modifying
the application implementation to reduce data transfers. Other examples involve mapping and order-
ing strategies that carefully assign subsets of an application to workers to improve spatial or temporal
locality.

1.2.1 Cache management

Cache management solutions are closest to the hardware as they are directly controlled at compilation
time or even within hardware, and have effects on CPU cores, the smallest computational unit. However,
such strategies cannot be too complex, since the time available to make a decision is short and the CPU
caches are tiny. Cache management can be easily translated to our problem, as it requires data evictions:
when a cache is saturated, a choice must be made about which data to remove to make room for another.
The most common strategy for choosing which data to evict is to rely on the Least Recently Used (LRU)
eviction policy. LRU evicts the data that has not been accessed for the longest period of time, as it is
considered to be the least likely one to be used in the near future. A more sophisticated strategy at the
cache level is to use past accesses of a data1 to predict which data is more likely to be used again in a
given time frame [89]. With this information, a decision can be made to evict the data that has the lowest
probability of being used again.

1Throughout this thesis, for the sake of simplicity, when we refer to "a data," we mean "a piece of data," i.e., an input used
for a computation or task.

12 CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

Some studies in cache management focus on optimizing access to page caches (i.e. within the
operating system) by answering the following question: when a page cache of limited size is used to
store pages requested by an application, how long a page should stay in the cache, and when needed,
which page should be evicted from the cache to make room for a new one? Such management is another
case of data evictions. In most cases, the sequence of future requests is not available, which makes it
very difficult to choose a data to evict. One solution is to try to predict the future in the short term.
The operating system can get help by providing system calls such as madvise. Madvise lets application
tell in the short term the future accesses of memory zones, which can be used to evict a data that will
not be used again in the near future. Some studies show that knowing just a fraction of the sequence
of future requests allows to improve the competitive ratio [13]. There have also been some studies
on how to reduce the page loads when one is allowed to reorder some of the next requests [12, 59].
However, in our scope, we are able to reorder a much larger set of requests (tasks), whereas cache
studies usually consider that only a very limited number of future cache requests are known in advance,
and may possibly be reordered. If the full sequence of page requests is known in advance, Belady’s rule
minimizes the number of page loads [26]. If a scheduler plans the entire task set in advance, such a
solution can be applied to optimally minimize data transfers. Therefore, we introduce such a strategy in
Section 2.2.3 and apply it to a scheduler in Section 3.3.6.

A major difference is that operating systems are generally oblivious to future thread accesses. We
want to express our applications as a graph of tasks, which allows us to know, through task ordering,
which thread is accessing which set of data. Another difference between our work and existing cache
management studies is that each task typically does not request a single piece of data (or page in the
case of cache management), but multiple pieces of data (e.g. different matrix tiles). This means that one
data load or eviction affects only a portion of what a task requires, adding another layer of complexity.
Indeed, the decision of evicting data from memory becomes challenging when determining whether to
evict data from a task with almost all its data already loaded, or from a task with only one data already
loaded.

1.2.2 Partitioned global address space

A Partitioned Global Address Space (PGAS) is a programming model that provides a shared memory ab-
straction across a distributed memory system. This is used by some programming models like X10 [39]
or the HPX [82] runtime to make locality explicit to the user: one can control which objects are located
close to each other. This communication model significantly improves the asynchronism and the overlap
of communications and computations. The Chapel programming language [33] has recently been en-
hanced with locality-based optimizations [88] at the compiler level. These PGAS however do not allow
for a refined schedule that would for instance manage evictions. We aim to be able to precisely control
which data is removed from or added to memory as it is critical under severe memory constraints.

1.2.3 Solutions in runtime systems

To tackle the concern of using GPUs in addition to CPUs and deal with complex data management
among heterogeneous processing units, it has become very common to use the task-based programming
paradigm, i.e. to express the application computation as a Directed Acyclic Graph (DAG), and let a
dynamic runtime system such as OmpSs [32], PaRSEC [31], or STARPU [18] manage the execution of
the task graph over such distributed and heterogeneous platforms. The burden is thus offloaded from the
application programmer to the runtime system, in the form of a task scheduling problem.

1.2. RELATED WORKS 13

Some runtimes have been striving to improve data locality for better performance. For example,
runtime systems such as OmpSs and XKaapi [62] rely on work-stealing for load balancing. XKaapi also
gives some guarantee on data locality [3] by providing a lower bound on the number of data accesses
required by its scheduler. They also show that their locality-guided work-stealing policy performs sig-
nificantly better than standard work-stealing. We will use a similar work-stealing policy to evaluate our
own strategies with the LWS scheduler introduced in Section 5.1.1.

The STARPU runtime system automatically calibrates performance models to predict task execution
times. Based on these predictions, the DMDA scheduler (presented in Section 3.1.2), based on the
HEFT scheduler [123] strategy, schedules tasks on the resource on which they are expected to complete
at the earliest, which also takes data transfers into account. These predictions, however, only rely on
the current state of the memory, and do not take into account its limited size: when some new data are
loaded in memory, other data may be evicted, which is not taken into account and may lead to incorrect
predictions.

With Legion [22, 23], the user explicitly specifies locality thanks to data regions. Then, Legion
provides a data mapping strategy to ensure that data is not moved around when it is not necessary.
Hence, it is the responsibility of the programmer to describe data dependencies to improve locality.
We wish to build something more modular that can be applied to any application without additional
requirements.

PaRSEC, previously known as DAGuE [30], uses a different DAG representation, compared to
STARPU and other runtimes: it uses parameterized task graphs [44]. The advantage of such a model
is the concise representation of the DAG: each task is an algebraic representation that indicates which
type of task is to be executed after a task is finished. Thus, the memory required for the DAG is only
relative to the number of different task types. However, PaRSEC strategies do not specifically address
the problem of scheduling under memory constraints. For the specific case of computing matrix prod-
ucts on multiple GPUs, the PaRSEC runtime pays attention to the memory limitation and implements a
control-flow in order to avoid critically overflowing the GPUs memory [75]. We compare our proposed
scheduler to a PaRSEC scheduler in Chapter 5, but also to the control-flow strategy specific to the matrix
products.

The Python-based Parla runtime [92] provides special data wrappers (Parla Arrays) which allows
flexible memory management. Data locality is then considered when scheduling computations through
a cost function that mixes the time required for moving data and the load of each node. This is very sim-
ilar to the DMDA scheduler mentioned for STARPU. Additionally, Parla does not specifically manage
limited memory.

Data distribution can also be managed with modern high-level libraries. PHAST [106] or SYCL
coupled with the Celerity API [121] can automate parallelization while leaving room to the programmer
to direct data distribution on nodes. However, it must be manually programmed and does not specifically
address memory limitation.

In summary, no existing runtime system is able to automatically deal with both data locality and
limited memory.

1.2.4 An out-of-core middleware

A generic middleware aimed at computing applications on multiple nodes named DOoc [111] aims at
reducing data transfers. It has a global scheduler that assigns a task to the node where most of the input
data is already located. Then, a greedy local algorithm orders tasks based on the amount of additional
input data that must be brought into local memory to make each task ready for execution. The local

14 CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

algorithm is very similar to the DMDAR scheduler which we compare ourselves to in Chapters 3 and 4.
However, such global scheduler is not relevant in our case as we only work with a single node at a time.

1.2.5 Scheduling for distributed platforms

As we move away from hardware proximity, more time is available to schedule applications, as shown
in Figure 1.5. Scheduling on large distributed platforms is typically handled by workload managers
such as SLURM [127]. However, some strategies aim to replace such managers with more data-aware
strategies.

In particular Giersch et al. [69] studied how to allocate and schedule tasks sharing input files on a
distributed platform, when the communication between the server holding the input files and the workers
is limited. Senger et al. [113] proposed a hierarchical strategy for data distribution in order to improve
scalability. Kaya et al. refined the problem by considering that input files are initially distributed on the
platform, but may also be transferred through the network if required. They proposed heuristics using
hypergraph partitioning [86] and a three-phase approach using initial task placement, refinement, and
task ordering [87]. There is additional literature available on the topic of improving data management
in batch scheduling. This is presented in Chapter 6, a chapter devoted to this topic.

1.2.6 Out-of-core and communication-avoiding algorithms

Since the seminal work of Hong & Kung [77], which models the complexity of data transfers and prove
communication lower bounds for some linear algebra applications, many studies have focused on im-
proving the performance of scientific applications by considering the memory as the primary source of
contention. By considering the memory as a limited resource, it is possible to improve locality by rewrit-
ing the application or adjusting the data processing logic to increase parallelism by using different data
chunk sizes. This is done typically by out-of-core algorithms and communication-avoiding techniques.

Out-of-core algorithms address scenarios where the data cannot fit entirely within the available mem-
ory of a processing unit. It allows the input data to stay on slow but large storage (typically disk) and to
be loaded into the memory of the processing units (typically CPUs, as presented in Figure 1.3) whenever
needed for the computation. With GPUs, out-of-core computing consists in keeping the whole input data
in the (larger) memory of the CPU, and loading data in the memory of a GPU only when it is needed for
computation (as depicted in Figure 1.4). Toledo [122] surveys such out-of-core for dense linear algebra
operations. Direct sparse solvers are known to produce large amount of temporary data, which makes
out-of-core computing the only solution to factorize very large sparse matrices [11]. For example, it is
necessary to focus on reducing data transfers for task trees arising in sparse direct solvers [97].

In the topic of sparse linear algebra, Demmel et al. [51] propose to use communication avoiding
algorithms to reduce the amount of data transfers both between processing elements and from/to the
main memory. Communication-avoiding algorithms have been studied for a wide range of linear alge-
bra applications. For parallel and sequential dense Strassen’s matrix multiplication [21] or QR [49] and
LU [71] factorizations, algorithms have been studied and proved to be optimal in the amount of com-
munication they entail. Some communication-optimal algorithms are even implemented on very limited
machines, such as laptops [50], to evaluate them in situations where the RAM cannot hold the entire
matrix and the bandwidth connecting the disk is slow. This is relevant to our scope, as we also want to
test our proposed strategies under major hardware constraints, such as small virtual memory and/or slow
communication with the disk.

Kwasniewski et al. [90] work on a parallel matrix multiplication algorithm that is nearly
communication-optimal based on a red-blue pebble game to define data shares. However, it is specific

1.3. POSITIONING IN THE HARDWARE HIERARCHY 15

to the matrix multiplication application. Beaumont et al. [24] provide a communication-optimal
algorithm specific to the Cholesky factorization in sequential out-of-core systems.

While the cited solutions propose optimizations for linear algebra applications, they often involve
the need to partially or completely rewrite the code of the targeted applications. In contrast, our goal
is to reduce data transfers and improve performance in a non-communication-optimal way, but without
modifying the target applications. This way our algorithms can be more easily integrated into different
supports of linear algebra applications. To avoid modifying the applications, we are more interested
in applying locality-aware techniques to the ordering and mapping problem, that we review in the next
paragraphs.

1.2.7 Locality-aware mapping

The limited memory of GPUs have motivated many studies on how to efficiently access data stored
outside the GPU memory. These studies focus on the case of computing on multiple GPUs, and hence
concentrate on the mapping problem (which data to put on which GPU). This has been done for several
specific applications such as stencil computations [81], sorting problems [126], large scale graph pro-
cessing [114] or graphic computations [93]. The solution generally consists in building data blocks that
each fit within the GPU memory.

Other approaches aim to solve the mapping problem by relying on graph theory and to model the
problem either as a matching problem in a bipartite graph composed of workers and tasks [63] or as a par-
titioning problem in a graph where edges represent the amount of shared data between two tasks [124].

As these solutions concentrate on the mapping, they generally ignore how to order tasks within
one GPU. We aim to solve both problems simultaneously, as they cannot be separated if the goal is to
minimize data transfers under memory constraints. If one aims only at ordering tasks, one faces the
problem of replicating the load of similar data on multiple GPUs, which could be avoided with more
sophisticated task partitioning. If the goal is to partition only, the reuse of data on each processing unit
will not be optimal and will generate unnecessary data loads.

1.2.8 Locality-aware mapping and ordering

The work of Yoo et al. [128] is the closest to our problem, as they optimize the scheduling of independent
tasks sharing input data and tackle both a mapping and ordering problem for multi-core CPUs. For the
mapping problem, it make use of the METIS [84] graph partitioner to group tasks in different groups.
For the ordering problem, they apply Prim’s algorithm [43] to build a maximum spanning tree of tasks
and then order the vertices (tasks) according to their order of inclusion in the spanning tree. We will
draw inspiration from their work in the next chapters to build strategies that will be used to evaluate our
proposed schedulers.

1.3 Positioning in the hardware hierarchy

To address the issue of managing applications with datasets larger than the memory of the workers, we
place ourselves on two different hardware hierarchy layers of Figure 1.5; runtimes and batch systems.
We explain here how the runtime position in the hardware hierarchy is advantageous:

Proximity to computation units: Runtimes can decide on which computational unit to place each in-
dividual task. Such flexibility is important for heterogeneous platforms: some tasks have a larger
acceleration factor on GPUs than others. In addition, data movement can be minimized by care-
fully placing together tasks using common input data.

16 CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

Architecture awareness: Runtimes are aware of the characteristics of the architecture, including the
different memory levels and their access latencies. With this knowledge, precise decisions can be
made during execution to place data in the most appropriate processing unit memory and take into
account data transfer time.

Dynamic load balancing: The runtime can analyze workload distribution across different processing
units and dynamically redistribute tasks and data to achieve a more balanced utilization of re-
sources.

For these reasons, our goal is to propose a generic task scheduler for runtime systems managing several
computing units with shared or distributed limited memory. We also aim at managing data movements:
loads and evictions. More precisely, we want to determine (i) the assignment of the tasks to the process-
ing units to reach a good load balance and spatial data locality and (ii) the order in which tasks must
be processed on each processing unit to optimize temporal data locality as well as maximize overlap
between computations and data movements. The generic keyword means that we want our scheduler to
be generic with respect to:

• Memory availability. It must perform both when memory is unconstrained and when it is a scarce
resource.

• Number of processing units. It must be efficient with a single or multiple processing units.

• Type of processing unit. We want to tackle any processing unit that has a local memory and can
be managed by a runtime. In this thesis we present results on both CPU cores and GPUs.

• Task-based linear algebra applications. Any linear algebra application translated into a set of tasks
must be executable by our scheduler.

• Limited knowledge. Our approach does not rely on complete knowledge of the task graph. This
means that we do not have information about future tasks that are not yet ready for computation.
The ability to work with limited knowledge makes the scheduler applicable to a wider range of
applications.

We have also concentrated our efforts on building solutions at the level of batch systems. Batch
systems are interesting to study because (i) batch scheduling in HPC systems plays a crucial role in the
effective utilization of large supercomputers and (ii) many challenges remain in this area [57]. These
include hardware failures that require careful checkpointing of the application, improving user run-
time estimates, power- and cooling-aware scheduling, and the management of data-intensive workloads.
Targeting batch systems does not specifically solve the MIN-EXEC-TIME-LIMITED-MEM problem,
but better scheduling on a cluster indirectly solves faster linear algebra applications. Moreover, it will
require locality-aware techniques since we are focusing on data-intensive workloads. Indeed, some
scientific domains need to run jobs that are both compute and data intensive. Such jobs use large input
files that must be loaded onto a node before they can begin to compute. They are typically submitted
as a batch of a few hundred jobs that share the same few input files. Loading the input file, which
can be hundreds of gigabytes in size, can take anywhere from a few dozen minutes to 1 or 2 hours for
exceptionally large files. Either way, this is a significant cost and greatly increases the average wait time
for all other users. Retaining a job’s input file and reusing it for a future job eliminates its load time and
has the potential to reduce the average latency. Locality-aware strategies maximize such reuse. Our goal
here is to propose new algorithms for I/O-intensive workloads that focus on data reuse to reduce data
loads and thus improve both resource utilization and user satisfaction.

1.4. BRIDGING THE GAP BETWEEN THEORETICAL SCHEDULING AND RUNTIME
SCHEDULERS 17

1.4 Bridging the gap between theoretical scheduling and runtime
schedulers

Bridging the gap between theoretical scheduling and partitioning algorithms and their implementation
in runtime systems is essential if we really want to improve the performance of applications on super-
computers. Theoretical algorithms provide optimal or near-optimal solutions to scheduling problems.
However, this is achieved at the cost of limited considerations. Consequently, their implementation in
runtime systems faces several challenges. We describe these challenges here and suggest some possible
solutions that we believe are of interest.

Queues necessity: Theoretical schedulers and partitioning algorithms are often developed based on
simplified assumptions and idealized models. A major simplification concerns the tasks queues
used by the runtime system to overlap GPU kernel submission costs. Theoretical schedulers do not
consider the queue in which tasks are stored between a scheduling decision and the execution of
the task on the processing unit. Because of such queues, there is a delay between the selection of
the task to be processed and its actual processing time. Thus, if the decision is made according to
the state of memory at time t, at the actual processing time of the task, treal > t, the memory will
be in a different state because other tasks have been processed in the meantime. To deal with this
time discrepancy, we propose to introduce intermediate queues of tasks, which are sets of tasks
that are not submitted to the processing units and thus can be freely manipulated. Although it may
seem that we are adding queues to a queuing problem, this solution actually works because the
intermediate queues are controlled by the scheduler: the scheduler can adapt to the unexpected
effects of the main queue of task and consequently change its schedule by adding or removing
tasks in the intermediate queue.

Scheduling overhead: The scheduling overhead has two effects on an execution.

Firstly, because it takes time to make a scheduling decision, the state of the execution may have
changed between the decision and the actual mapping or ordering of tasks. This can lead to
problems such as data being thrown out of memory even though the scheduler planned to use it
for the next task computation. The best answer to this is to develop dynamic schedulers that adapt
to the state of execution at all times.

Secondly, when evaluating a scheduler on a real computing platform, performance is calculated as
the number of flops (floating point operations) divided by the total execution time, which includes
the scheduling overhead. Thus, the complexity of the scheduler can negate its benefits. Complex-
ity comes from the number of reads, comparisons, or sorts, but also from the data structures used.
This last detail, sometimes overlooked, is often critical in achieving peak performance and must
be considered in the design phase.

One great tool available to researchers for the two undesired effects mentioned above is the ability
to simulate the execution of an application. A simulation mimics the execution of an application on
a computing node that is itself simulated using accurate performance models. Simulations enable
one to evaluate the performance of a scheduler without considering the scheduler’s overhead. This
makes it easier to observe the expected behavior of a theoretical scheduler. Because a simulation
can mimic any compute node, it is then possible to compare the simulated results with results on
the same, real node. This provides valuable information about, for example, how the scheduling
overhead affects the scheduling quality. Another possible solution related to the overhead of a
schedule is to degrade the quality of the schedule, for example, by limiting the number of reads or
comparisons it can do. It is then important to find a good compromise between the quality of the

18 CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

schedule and its complexity. This can be easily found using simulation. A simulation provides
controlled settings and does not require a reservation on an actual cluster. These two elements
make simulation perfect for quickly testing a scheduler under different settings and workload
sizes to experimentally find the optimal tradeoff.

Inaccuracy of expected performance: Theoretical models aim at building schedulers that well bal-
ance the workload across processing units and overlap communications and computations. To
do this, they compute the expected completion time of a task on a given processing unit and the
expected transfer time of data from one memory to another and use this information to build static
schedulers. However, these predictions are usually inaccurate for two main reasons.

(i) Theoretical models often overlook the fact that two supposedly-identical processing units can
still have slightly different computing power. For example, due to uneven wear of the processing
units or material defects. Theoretical models can use calibrated performance models to account for
real processing unit performance, but there are still some uncertainties. Performance models do
not account for unforeseen disturbances that may occur in the system. For example, if a processing
unit overheats, the processing time for a task can be extended. Also, contention on a bus used for
data transfer can result in reduced bandwidth, causing delays in the completion of data transfers.

(ii) Theoretical models that manage data eviction usually assume that a node memory can be
partially or completely flushed in an instant. This is usually not true, which makes it difficult to
predict the exact transfer time of a data. After the scheduler informs the runtime that it wants
to evict a piece of data, the eviction is not performed immediately. This is due to a delay in the
process of evicting data, which involves, for example, checking that the data is not still being used
by another worker. There is also inaccuracy in predicting a data transfer time. Indeed, it is almost
impossible to predict the exact transfer time of a data before execution, because there are multiple
ways to transfer a data: PCI buses, NVLinks, interconnects, etc. Predicting the path taken by a
data is not possible with the inaccuracies described in this section. As a result, data are loaded
at a different time from what the scheduler expected, and tasks are consequently processed at a
different time because they need their data to be loaded before their computation.

These unpredictable factors are not taken into account by theoretical algorithms and result in
suboptimal performance. For example, it makes it difficult to balance the load correctly. This is
especially critical when the workload is small compared to the number of processing units: putting
more work on the fastest unit is usually faster.

The most interesting solution is that schedulers can address these limitations by being dynamic. A
dynamic scheduler can compensate for the fact that tasks may take longer or shorter than expected,
and it can also take into account that data may be delayed during a transfer. A dynamic scheduler
can solve the additional constraint of unforeseen disturbances mentioned in (i) by adjusting the
load on a processing unit based on its performance on previously assigned tasks. A dynamic
scheduler can also take I/O contention into account by modifying its schedule for nodes connected
to contended buses. Regarding the problem mentioned in (ii), a dynamic scheduler can adapt to
the current state of memory and decide which data to evict "at the last minute", i.e. just before a
data needs to be loaded. Another solution with a dynamic scheduler is to, at runtime, ask for a
data eviction either as soon as possible or after the computation of a particular task.

Prefetch system: Another issue of expected performance inaccuracies comes from prefetch systems.
Runtime systems are usually equipped with a prefetch system that allows data to be preloaded
prior to the computation of the task using that data. Prefetching is the key element that allows
communications and computations to overlap. Because of the unexpected disturbances mentioned

1.4. BRIDGING THE GAP BETWEEN THEORETICAL SCHEDULING AND RUNTIME
SCHEDULERS 19

above, a theoretical scheduler cannot plan for them in advance. One solution, although not perfect,
is to organize the task order in such a way that the data loads are distributed over time. The prefetch
is then managed by the runtime, following the data requirements of the tasks. With temporally
spread transfers, there will naturally be overlap between communications and computations. Thus,
in addition to using a dynamic scheduler that adapts to disturbances, we propose to rely on task
ordering and mapping rather than using exact times and placements to maximize overlap.

The schedulers presented in this thesis aim to exploit intuitions from theoretical models and algo-
rithms, while managing the constraints of their implementation in a runtime system, by utilizing some
or all of the solutions proposed here.

Chapter 2
Problem Statement and Integration
into a Runtime System

Contents
2.1 Simplifying our optimization problems . 22

2.1.1 Expressing applications as task graphs . 22
2.1.2 Avoiding the conflicting goals of using multiple processing units 23
2.1.3 Considering homogeneous processing time and data size 23
2.1.4 Making the model complex again . 24

2.2 Simplified model with an independent task set and a single processing unit . . . 24
2.2.1 Expressing applications as a bipartite graphs 24
2.2.2 Simplified optimization problem . 25
2.2.3 Optimal eviction policy proof . 26
2.2.4 Complexity of finding an optimal task order 27

2.3 Making the model parallel . 28
2.3.1 Adding the partitioning problem to the bipartite graph 28
2.3.2 Optimization problem in parallel . 29

2.4 Extension to heterogeneous task and data weights 29
2.5 Adding dependencies to the model . 30
2.6 The STARPU Runtime System . 31

2.6.1 Task and data . 32
2.6.2 Tasks submission . 32
2.6.3 Task flow . 34
2.6.4 New functionality to add custom eviction policies 34
2.6.5 New logging and visualization tool . 37

2.7 Summary . 41

21

22 CHAPTER 2. PROBLEM STATEMENT AND INTEGRATION INTO A RUNTIME SYSTEM

I
N this chapter we introduce our task sharing data model. This model is used in Chapters 3, 4
and 5. We describe our main objective: building a generic scheduler capable of reducing data
transfers and increasing performance by partitioning and scheduling a set of tasks (with and

without dependencies) sharing data on one or more processing units with limited distributed or shared
memory. Such a complex objective is a combination of different optimization problems that cannot be
solved all at once. To succeed, we plan to tackle these optimization problems one at a time.

Therefore, in Section 2.1, we describe how to build a model that simplifies these optimization prob-
lems. We then make our model complex again to more accurately describe our main objective. Sec-
tion 2.2 showcases a simplified version of our model with a simple problem statement, independent
tasks and a single processing unit. It allows us to prove that an optimal eviction policy exists, and we
use this result to prove the complexity of the problem. Section 2.3 adds multiple processing units to
the model. Section 2.4 adds heterogeneity to the data sizes and task processing times. Section 2.5 adds
dependencies and presents the model corresponding to our main objective.

The framework used to implement, test in simulation, and test on real high-performance-computing
platforms our algorithmic contributions is the STARPU runtime system. Section 2.6 describes the
STARPU runtime system and our contribution to its source code.

2.1 Simplifying our optimization problems

Here we describe the three steps we take to simplify our optimization problems.

2.1.1 Expressing applications as task graphs

The applications we are using in this thesis are expressed by the programmer as directed acyclic graphs
(DAGs) of tasks, where vertices represent tasks and edges represent data dependencies between tasks.
The programmer provides the code for each task as well as the description of its input and output data, al-
lowing the runtime system to assign tasks to processing units and to move data around when needed. Fig-
ure 2.1 provides a small example of such a task graph using the Cholesky factorization. Task POTRF_0
is the first task available for computation. Arcs coming out of POTRF_0 indicate the set of tasks that
will be made available upon its completion. If multiple arcs point to a task (such as GEMM_3_1_0), all
of its predecessors must be completed in order for it to be computed.

Solving the final objective stated earlier from such DAGs would be very ambitious. Applications
are often designed to maximize parallelism, as parallel computation greatly increases performance. This
involves breaking the work into as many independent tasks as possible, which are then spread across
the various workers for concurrent execution. Some linear algebra workflows are easily translated into
a completely independent set of tasks, such as matrix multiplication. But it can also be the case for
applications with dependencies such as the Cholesky and LU factorizations which expose a fair amount
or parallelism. As a result, when using a dynamic runtime, the scheduler is exposed at a given time to
an already-fairly large subset of tasks which are independent of each other. So, at a given time of the
computation, some of the tasks have been completed, and some tasks are not available for computation
as their input data has not been computed yet (tasks with pale colors on Figure 2.1). The tasks available
for computation form a subset of independent tasks in the graph, called the ready tasks (bright tasks in
the figure). Several of these available tasks depend on common predecessors (e.g., both GEMM_3_1_0
and GEMM_3_2_0 depend on the result of TRSM_3_0), which means that they share a common input
data produced by the common predecessor. Reducing the optimization problem only on the currently
available tasks can already lead to a large reduction in data transfers and hence a performance increase.

2.1. SIMPLIFYING OUR OPTIMIZATION PROBLEMS 23

SYRK_3_2

POTRF_3

SYRK_3_0

SYRK_3_1

SYRK_2_0

SYRK_2_1

POTRF_2

GEMM_2_1_0

TRSM_2_1

GEMM_3_2_1

GEMM_3_1_0

TRSM_3_1

GEMM_3_2_0

TRSM_3_2

POTRF_1

TRSM_1_0

SYRK_1_0TRSM_3_0 TRSM_2_0

POTRF_0

Figure 2.1: Cholesky factorization expressed as a task graph. Tasks with bright colors are independent
of each other.

Since scheduling a subset can already lead to better performance, our first step to simplify our model is
to only consider ready tasks, i.e., tasks with resolved dependencies.

2.1.2 Avoiding the conflicting goals of using multiple processing units

When working with multiple processing units, a task set must be both partitioned and scheduled on each
processing unit. Partitioning tasks across multiple processing units raises a load balancing issue. Load
balancing is the process of evenly distributing tasks across multiple processing units to minimize the
amount of time they are idle. Load balancing and minimizing data transfers are two conflicting goals. A
good task partitioning scheme will aim to distribute the workload fairly across the multiple processing
units, regardless of data mapping and transfer issues. On the contrary, a schedule that is focused on
minimizing IOs will process as many tasks as possible on a single processing unit to favor temporal
locality. Therefore, a second step to simplify our optimization problems is to consider only a single
processing unit.

2.1.3 Considering homogeneous processing time and data size

Finally, tasks may have different processing times and each data may vary in size. To properly balance
the load, a scheduler must take into account the different processing times, which is more complex than
balancing the number of tasks on each processing unit. With different data sizes, minimizing IOs leads
to minimizing the sum of data sizes loaded from the RAM. The additional difficulty is to balance data
reuse and data sizes: is it beneficial to load a large data multiple times if it is reused a lot? So, as a third
and final step in simplifying our model, we first consider homogeneous processing time and data size.

24 CHAPTER 2. PROBLEM STATEMENT AND INTEGRATION INTO A RUNTIME SYSTEM

T1 T2 T3 T4 T5

D1 D2 D3 D4 D5 D6

D1

D2

D3

D4

D5

D6

D1

timeT1 T2 T3 T4 T5

data in memory

processed tasks

Figure 2.2: Example with 5 tasks and 6 data, with a memory holding at most M = 3 data. The graph
of input data dependencies is shown on the left. The schedule on the right corresponds to processing
the tasks in the natural order with the following eviction policy: V(1) = V(2) = ∅, V(3) = {1},
V(4) = {2}, V(5) = {3, 4}. This results in 7 loads and only D1 is loaded twice.

2.1.4 Making the model complex again

Now that we have seen how to simplify our model, we will describe it in Section 2.2. We will use it to
provide optimality and complexity proofs. We will then gradually restore the complexity of our model.

We take successive steps to get back from our simple model to the more complex final model.
Section 2.3 adds multiple processing units. Section 2.4 adds different processing times for the tasks
and heterogeneous sizes for the data. Section 2.5 is the final and most complete model that accurately
describes our problem.

2.2 Simplified model with an independent task set and a single
processing unit

Here we formally define our simplified model, from which we formulate an optimization problem, which
we prove to be NP-complete. We also describe an eviction policy and prove its optimality in the context
of our model.

2.2.1 Expressing applications as a bipartite graphs

Tasks sharing their input data can be modeled as a bipartite graph G = (T∪D, E) [87]. The vertices of
this graph are on one side the tasks T = {T1, . . . , Tm} and on the other side the data D = {D1, . . . , Dn}.
All m tasks must be processed. An edge connects a task Ti and a data Dj if task Ti requires Dj as input
data. We denote by D(Ti) = {Dj s.t. (Ti, Dj) ∈ E} the set of input data for task Ti. We assume that
all data have the same size and all tasks have the same processing duration. These assumptions simplify
the discussion and allow us to make optimality and complexity proofs more easily. Section 2.4 presents
the more complex model with heterogeneous sizes.

The processing unit (PU) is equipped with a memory of limited size, which may contain at most
M data simultaneously. PU is used to refer to both GPU and CPU. It allows us to make no distinction
between the two, as our strategies target both architectures. During the processing of a task Ti, all its
inputs D(Ti) must be in memory.

For simplicity, we do not consider the size of the written output. In the case of linear algebra for
instance, the output data is most often smaller than the input data, and therefore can be transferred
concurrently and in less time than it takes to transfer the input data. Data output is then not the driving
constraint for efficient execution.

2.2. SIMPLIFIED MODEL WITH AN INDEPENDENT TASK SET AND A SINGLE PROCESSING
UNIT 25

Our goal with this simplified model is to minimize the amount of data movement. To fulfill this
objective, we will determine in which order to process each task and when each data must be loaded and
evicted. More formally, we denote by σ the order in which tasks are processed, and by V(t) the set of
data to be evicted from the memory before the processing of task Tσ(t). A schedule is made of m steps,
each step being composed of the following three stages (in this order):

1. All data in V(t) are evicted (unloaded) from the memory;

2. The input data in D(Tσ(t)) that are not yet in memory are loaded;

3. Task Tσ(t) is processed.

An example is shown in Figure 2.2. This example illustrates that input data are loaded in memory as
late as possible: loading them earlier would possibly trigger more data movements. In real computing
systems, a prefetch is usually designed to load data a bit earlier so as to avoid waiting for unavailable
data. For the sake of simplicity, we do not consider this in our model: if needed, we may simply book
part of our memory for the prefetch mechanism.

Using the previous definition, we define the live data L(t) as the data in memory during the compu-
tation of Tσ(t), which can be recursively defined:

L(t) =
{
D(Tσ(1)) if t = 1
L(t) = (L(t− 1)\V(t)) ∪ D(Tσ(t)) otherwise

The memory limitation can then be expressed as |L(t)| ≤ M for each step t = 1, . . . ,m. Our
objective is to minimize the amount of data movement, i.e., to minimize the number of load operations:
we consider that data are not modified so no store operation occurs when evicting a data from the
memory. Assuming that no input data used at step t is evicted right before its processing (V(t) ∩
D(Tσ(t)) = ∅), the number of loads can be computed as follows:

#Loads(σ,V) =
∑
t

∣∣∣D (Tσ(t)
)
\L(t)

∣∣∣
There is no reason for a scheduling policy to evict some data from memory if there is still room for
new input data. We call thrifty scheduler such a strategy, formalized by the following constraints: if
V(t) 6= ∅, then |L(t)| = M . For this class of schedulers, the number of loads can be computed more
easily: as soon as the memory is full, the number of loads is equal to the number of evictions. That is,
for the regular case when not all data fit in memory (n > M), we have:

#Loads(σ,V) = M +
∑
t

|V(t)|

All the strategies presented in this thesis are thrifty schedulers.

2.2.2 Simplified optimization problem

Our simplified optimization problem is stated below:

Problem 2 (MIN-LOADS-FOR-TASKS-SHARING-DATA). For a given set of tasks T sharing data in D
according to D, what is the task order σ and the eviction policy V that minimizes the number of loads
#Loads?

A solution to this optimization problem consists in two parts: the order σ of the tasks and the eviction
policy V . Note that when each task requests a single data, finding an efficient eviction policy corresponds
to the classical cache management policy problem.

26 CHAPTER 2. PROBLEM STATEMENT AND INTEGRATION INTO A RUNTIME SYSTEM

2.2.3 Optimal eviction policy proof

In order to reduce our objective to just finding the task order, we need to find an optimal eviction policy.
When the full sequence of data requests is known, the optimal policy consists in evicting the data whose
next use is the furthest in the future. This is the well-known Belady MIN replacement policy [26] (see
proof in [98]). We prove in the following theorem that this rule can be extended to our problem, with
tasks requiring multiple data.

Theorem 1. We consider a task schedule σ for a MIN-LOADS-FOR-TASKS-SHARING-DATA problem.
We denote by MIN the thrifty eviction policy that always evicts a data whose next use in σ is the latest
(breaking ties arbitrarily). MIN reaches an optimal performance, i.e., for any eviction policy V ,

#Loads(σ,MIN) ≤ #Loads(σ,V).

Proof. We consider a given task order σ. We transform our problem so that each task depends on a
single data. We replace each task Ti depending on data D(Ti) = {D1, . . . , Dk} by a series of 2k tasks:
T

(1)
i , T

(2k)
i such that D(T (j)

i) = D(T (j+k)
i) = Dj for j = 1, . . . , k. This transformation is performed

both in the task set T (leading to T′) and in the task order σ (leading to σ′).
Let V be an optimal eviction policy for the original problem, i.e. for task set T and task order σ.

We now transform it into an eviction policy for T′ and σ′ with the same number of loads and evictions.
We group tasks by subsets of 2k tasks (as they were created above) and evict all data in V(t) before
processing tasks T (1)

σ(t), T
(2k)
σ(t) (and loading their missing inputs). We denote this strategy by V ′. Clearly,

this is a valid strategy (we never exceed the memory if V did not on the original problem) and it has the
same number of loads as V:

#Loads(σ,V) = #Loads(σ′,V ′).

Symmetrically, we consider an optimal eviction policy for the transformed problem (T′ and σ′) ob-
tained with Belady’s MIN replacement policy, denoted by MIN ′: whenever some data must be evicted,
it selects the one whose next use is the furthest in the future. We now prove that it can be transformed
into an eviction policy MIN for the original problem with the same performance (loads and evictions),
and that MIN also follows Belady’s rule. We consider the subset of 2k tasks T (1)

i , T
(2k)
i coming from

the expansion of task Ti scheduled at time t (σ(t) = Ti) and the set Vi of all data evicted by MIN ′

before some task T (j)
i . By property of MIN ′ and as the memory is large enough for the inputs of task

Ti (M ≥ k), no input data of some T (j)
i belongs to Vi: during the first k tasks, their next occurrence is

among the closest next tasks. Thus, there is no eviction during the processing of the last k of the T (j)
i

tasks. Thus, we can adapt MIN ′ for the original problem by setting MIN (t) = Vi. It is easy to verify
that MIN reaches the same performance as MIN ′:

#Loads(σ,MIN) = #Loads(σ′,MIN ′)

and that the data evicted at time t are (among the) ones whose next use is the furthest in the future.
As MIN ′ is known to be optimal for the transformed problem, we have #Loads(σ′,MIN ′) ≤

#Loads(σ′,V ′) and we conclude that #Loads(σ,MIN) ≤ #Loads(σ,V), which proves that MIN is
optimal on the original problem.

For cache management, Belady’s rule has little practical impact, as the stream of future requests is
generally unknown; simple online policies such as LRU (Least Recently Used [52]) are generally used.
However in our simplified model, the full set of tasks is available at the beginning. Hence, we can take
advantage of this optimal offline eviction policy, as demonstrated in Chapter 3. Even with dynamic

2.2. SIMPLIFIED MODEL WITH AN INDEPENDENT TASK SET AND A SINGLE PROCESSING
UNIT 27

scheduling, some tasks are scheduled for execution in advance, so the set of data to be used in the future
is partially known to the scheduler. With this information, we want to adapt the intuition of Belady’s
rules to our dynamic scheduler in Chapter 4.

2.2.4 Complexity of finding an optimal task order

Thanks to the previous result, we can restrict our problem to finding the optimal task order σ. This
problem is NP-complete.

Theorem 2. Given a set of tasks T sharing data in D according to D and an integer B, finding a task
order σ such that #Loads(σ,MIN) ≤ B is NP-complete.

Proof. We first check that the problem is in NP. Given a schedule σ (and an eviction policy V , which
might be computed by MIN), it is easy to check in polynomial time that:
• The schedule is valid, that is, no more than M data are loaded in memory at any time step;
• The number of loads is not greater than the prescribed bound B.
The NP-completeness proof consists in a reduction from the cutwidth minimization problem (or

CMP), proven NP-complete by Gavril in 1977 [66]. We denote by ICMP an instance of CMP composed
of a graph G, and by ∆ the maximum degree of vertices in G. The question is to decide whether there
exists a linear arrangement of the vertices such that the cutwidth is at most K. A linear arrangement α
is an ordering of the vertices. The cutwidth CUTα(v) of a vertex v under the linear arrangement α is
the number of edges that connect vertices ordered before and after v in α, that is, the number of edges
(u,w) ∈ E, such as α(u) < α(v) < α(w). The total cutwidth of G is the maximal cutwidth over all
vertices : CUTα(G) = maxv∈V CUTα(v).

Given an instance ICMP of CMP , we create an instance IMinLoads of our problem as follows. For
each vertex vi ∈ ICMP , we create a task Ti, and for each edge ek = (vi, vj), we create a data Dk such
that Dk is a shared input of Ti and Tj . In addition, each task Ti with degree δi has ∆− δi specific input
data, denoted by Dj

i for j = 1, . . . ,∆− δi. Then,

D(Ti) = {Dk, s.t. ek is adjacent to vi} ∪ {Dj
i for j = 1, . . . ,∆− δi}.

Note that each task has exactly ∆ input data. Finally, we set M = K + ∆ and B = |D|: we are looking
for a solution where each data is loaded exactly once.

We now prove that if ICMP has a solution, then IMinLoads has a solution. Let α be the linear ar-
rangement solution of ICMP . We consider the task order σ = α−1 (i.e., σ(t) = i if α(i) = t), which
schedules tasks in the same order as in the linear arrangement. We also consider the optimal eviction
policy MIN . We prove that:

(i) A data is evicted only if it is not used anymore;

(ii) Each data is loaded exactly once.

Note that (ii) is a direct consequence of (i). We consider a step t when some dataDj is evicted and some
task Ti is processed. We consider the set S of data in memory before starting step t together with the
inputs of Tσ(t) that are loaded in memory during step t. If Dj is evicted, this means that |S| > M (MIN
is a thrifty policy). We consider S′, the subset of S containing the data that are used as inputs for a later
step t′ > t. By construction of IMinLoads, each data Dk ∈ S′ corresponds to an edge ek = (va, vb)
in G such that σ−1(ua) = α(va) < t (the data was loaded for a task Ta scheduled before t) and
σ−1(vb) = α(vb) > t (the data is used for a task Tb scheduled after t). Hence, it corresponds to an edge
counted in the cutwidth CUTα(vi). Since this cutwidth is bounded by K, there are at most K data in

28 CHAPTER 2. PROBLEM STATEMENT AND INTEGRATION INTO A RUNTIME SYSTEM

T1 T2 T3

T4 T5 T6

T7 T8 T9

D1 D2 D3

D4

D5

D6

D4 D5

D1 D2 D1

T1 T2 T5 T4

data in memory

tasks being processed

PU1

D4 D5 D6

D3 D2 D1

T3 T6 T9 T8 T7

data in memory

tasks being processed

PU2

time

Figure 2.3: Example with 9 tasks with 2D grid dependencies. The graph of input data dependencies is
shown on the left, together with the task partition among processing units. A possible schedule is de-
scribed on the right. Each processing unit can hold 2 data in memory. PU1 processes tasks T1, T2, T5, T4
(in this order), and data D1 has to be loaded twice. PU2 processes tasks T3, T6, T9, T8, T7 in this order
to avoid multiple loads of the same data. The total amount of data movement is 11.

S′. Together with the ∆ input data of the current tasks, no more than K + ∆ = M in memory. Thus,
the evicted data Dj is not used later than t. Since all data are loaded exactly once, the number of loads
is not larger than B.

We now prove that if IMinLoads has a solution, then ICMP has a solution. Let σ the task order in the
solution of IMinLoads. We construct the solution of ICMP such that α = σ−1. We now prove that its
cutwidth is not larger thanK. By construction, the cutwidth CUTα(vi) at some vertex vi (corresponding
to a task Ti scheduled at time t) is the number of data which are used both before t and after t. Given the
constraint on the number of loads, each data is loaded once, so such a data must be in memory during
the processing of Ti, in addition to the ∆ inputs of Ti, and there are at most M − ∆ = K such data.
This proves that CUTα(vi) ≤ K. Hence α is a solution for ICMP .

2.3 Making the model parallel

We now consider multiple processing units. We consider the problem of scheduling independent tasks
on K processing units, denoted by PU1, . . . ,PUK . Each of the K processing units is equipped with a
memory of limited size M data. Our goal is to determine both how to partition the task set to the PUs
and in which order to process them on each PU.

2.3.1 Adding the partitioning problem to the bipartite graph

We now denote by σ(k, i) the ith task processed on PUk, and by V(k, i) the set of data to be evicted
from the memory of PUk before the processing of this ith task. We also let nbk be the number of tasks
allocated to PUk.

We can extend the model presented in Section 2.2.1 for k processing units. With Tσ(k,i) the i-th task
processed on PUk, we can define the live data on PUk as

L(k, i) =

D(Tσ(k,1)) if i = 1(
L(k, i− 1)\V(k, i)

)
∪ D(Tσ(k,i)) otherwise

2.4. EXTENSION TO HETEROGENEOUS TASK AND DATA WEIGHTS 29

and the number of loads on PUk can be computed as follows:

#Loadsk =
∑
i

∣∣∣D (Tσ(k,i)
)
\L(k, i− 1)

∣∣∣
An example of partitioning and ordering using tasks from a bipartite graph is shown in Figure 2.3.

2.3.2 Optimization problem in parallel

Our objective with multiple processing units is both to ensure a good load balancing and to minimize
the amount of data movement.

Objective 1: Load Balancing We assume that all tasks have the same processing time on any pro-
cessing unit. Thus, load-balancing the work on each PU amounts to minimizing the maximum number
of tasks on any PU:

Obj. 1 : minimize max
k

nbk

Objective 2: Data Movement The second objective is to limit the amount of data movement, that
is, to minimize the number of load operations from the main memory to the memory of the PUs:

Obj. 2 : minimize
∑
k

#Loadsk

In Section 2.2.3, we proved that with a single processing unit and a schedule σ, it is possible to derive
an optimal eviction policy V by following Belady’s rule. This rule can be extended to the multi-PU case:
once tasks have been partitioned among PUs and ordered for computation, that is, once σ is set, we may
compute the optimal eviction scheme for each PU by applying Belady’s rule. Hence our objective is
only to find a schedule σ of the tasks on the PUs. The decision version of the bi-objective problem is
then expressed as follows.

Problem 3 (BI-OBJ-MULTI-PU-TASK-SCHEDULING). Given a numberK of processing units,m tasks
sharing their inputs according to a bipartite graph G, and two bounds W and C, is there a schedule σ
such that maxk nbk ≤W and

∑
k #Loadsk ≤ C?

We proved in Section 2.2.4 that ordering tasks to minimize data movements is NP-complete. Order-
ing task on a single processing unit is a sub-problem contained in the more parallel ordering problem
presented here. This proves the complexity of our bi-objective problem.

2.4 Extension to heterogeneous task and data weights

The previous two models are extended to cope with heterogeneous weights where weight refers to both
task processing times and data sizes. We outline here the difference from the previous models.

With heterogeneous weights, each task Ti ∈ T is associated with a computation time C(Ti). Each
data Di ∈ D has a size M(Di). Instead of the number of loads, we now compute the sum of the data
sizes that have been loaded:

Amount_Loads(σ,V) =
∑
t

∣∣∣M (
D(Tσ(t))\L(t)

) ∣∣∣
The optimization problem for an independent task set processed on a single processing unit, MIN-

LOADS-FOR-TASKS-SHARING-DATA, is now defined as MIN-LOADS-FOR-TASKS-SHARING-DATA-
HETEROGENEOUS:

30 CHAPTER 2. PROBLEM STATEMENT AND INTEGRATION INTO A RUNTIME SYSTEM

Problem 4 (MIN-LOADS-FOR-TASKS-SHARING-DATA-HETEROGENEOUS). For a given set of tasks
T sharing data in D according to D, what is the task order σ and the eviction policy V that minimizes
the sum of data loads sizes Amount_Loads?

The NP-completeness result naturally extends to this variant of the problem. However, the optimality
of the MIN eviction policy does not hold anymore. Consider the following example. Data D1 has size
M(D1) = 2 and will be used next at time tmax. Data D2 has size M(D2) = 1 and will be used at time
tmax − 1. A space of size 1 must be freed from memory. According to MIN , the data to be evicted
is D1. However, in this case, evicting D1 will cause a data load of size 2 at time tmax, while evicting
D2 will only cause a data load of size 1. Nevertheless, by following the MIN principle, it is possible to
construct promising (even if not optimal) eviction policies, as we will see in Section 4.3.4.

For the parallel model the following modifications are made. Again we compute the sum of data
sizes that need to be transferred on PUk as follows:

Amount_Loadsk =
∑
i

∣∣∣M (
D(Tσ(k,i))\L(k, i− 1)

) ∣∣∣
The two objectives associated are now described as:

Objective 1: Load Balancing Since tasks can have different processing times, load-balancing here
consists of minimizing the sum of the processing times of tasks in (PUk):

Obj. 1 : minimize max
k

nbk∑
i

C(Ti)

Objective 2: Data Movement The second objective is to minimize the amount of data that are
loaded from the main memory to the memory of the PUs:

Obj. 2 : minimize
∑
k

Amount_Loadsk

The previous BI-OBJ-MULTI-PU-TASK-SCHEDULING is translated to BI-OBJ-MULTI-PU-TASK-
SCHEDULING-HETEROGENEOUS.

Problem 5 (BI-OBJ-MULTI-PU-TASK-SCHEDULING-HETEROGENEOUS). GivenK processing units,
m tasks sharing their inputs according to a bipartite graph G, and two bounds W and C, is there a
schedule σ such that maxk

∑nbk
i C(Ti) ≤W and

∑
k Amount_Loadsk ≤ C?

2.5 Adding dependencies to the model

Adding dependencies to our model is the final step in achieving our ultimate goal: building a generic
scheduler that can be used with any task-based application. Solving the problem with dependencies does
not add any complexity to the model because in practice, the scheduler only has the knowledge of tasks
ready for computation, i.e, tasks that have satisfied all their dependencies. Thus, we can aim to solve the
BI-OBJ-MULTI-PU-TASK-SCHEDULING-HETEROGENEOUS problem with dependent task sets.

However, dependencies introduce a new problem when building an efficient scheduler: the critical
path. In a task graph, the critical path is the longest path from the starting task to the last one, taking
into account task dependencies. In other words, it identifies the tasks that are critical to the overall

2.6. THE STARPU RUNTIME SYSTEM 31

completion of the task graph. To help the scheduler, each task is assigned a priority that represents
the distance to completion of the DAGs. A greedy approach focused on priorities would compute the
highest priority tasks first, hoping to progress quickly enough along the critical path to avoid lacking
parallelism. A more refined scheduler would be responsible for striking a balance between advancing
along the critical path by computing high-priority tasks, and favoring data locality to improve execution
efficiency, which can be two conflicting goals.

Dependencies also make the application dynamic. This means that T and D are not known to the
scheduler in advance, but are updated as tasks are completed and release other tasks. This means two
things for the scheduler. First, it must schedule an incomplete task set, which means that some optimal
data-reuse patterns may be missed. Second, it must be able to run a schedule, start processing a task,
and then schedule the new ready tasks that have become available, which can be hard to incorporate
into the initial schedule. To solve this second point, one can either reschedule everything after each
new ready task is released, or reschedule only after some time/number of tasks have been released.
The first approach has the advantage of keeping the schedule up to date but with a large scheduling
overhead, while the second approach minimizes the overhead but does not have a complete view of what
is available. The same issue applies to eviction policies. The policies need to be aware of D to decide if
a data should be removed or if it will be used by a large number of subsequent tasks.

2.6 The STARPU Runtime System

We present here the STARPU runtime system that we used to integrate and evaluate our proposed sched-
ulers. STARPU is a flexible, general-purpose runtime system that makes programmers’ jobs easier. With
STARPU, programmers do not have to worry about data transfer issues: STARPU automatically transfers
data onto the processing unit when they are required and triggers data preloading to overlap communi-
cations with computations. In addition, STARPU makes it easy to incorporate new scheduling policies
in a modular fashion. That is, it is possible to reuse existing components, such as resource-mapping
components that can make scheduling decisions over a given subset of tasks, or worker components that
handle the technical aspect of computing a task. This reduces the programmer’s burden to a simple task
ordering problem.

Computational libraries can be implemented on top of STARPU, giving it the ability to run on a
wide variety of applications. For example, the Chameleon [8] dense linear algebra library uses such a
feature. With Chameleon, STARPU has proven to be able to achieve very high performance for typical
dense linear algebra applications such as Cholesky [6] and QR [5]. With PaStiX, another library ported
on top of STARPU, it achieved high throughput for the sparse linear algebra case [91]. On the industrial
side, STARPU supports the factorization of hierarchically-compressed dense matrices in out-of-core
settings [61], which is now used by actors such as Airbus and the ArianeGroup.

STARPU supports simulation through SimGrid [35]. SimGrid is a framework for simulating the
execution of an application on a distributed computing platform. Simulations are highly valuable when
designing scheduling policies. They allow for a quick evaluation of performance without the need for a
reservation on a highly demanded computing platform. They are flexible; many different use cases can
be experimented with, such as changing memory limits, task durations, etc. Simulations are scalable,
allowing experiments to be run on a very large number of nodes without slowing down a cluster for
other users. Simulation also helps avoid unnecessary energy consumption, since the schedulers devel-
oped can be tested on real machines only at an advanced stage. Moreover, simulated results are highly
reliable [36]. STARPU provides a tool for collecting performance models of real computing nodes.
STARPU produces performance models with automatic calibration [17]: it measures the performance

32 CHAPTER 2. PROBLEM STATEMENT AND INTEGRATION INTO A RUNTIME SYSTEM

of tasks during an actual execution. It also builds history-based performance models by storing the per-
formance of tasks from previous executions. Such performance models are then used with SimgGrid to
simulate the behavior of any node under different settings. Finally, with simulation, experimental results
can be faithfully reproduced because two simulated executions with the same settings and performance
models are strictly identical. It is therefore a great advantage for STARPU to be able to work with
simulation.

Furthermore, in STARPU, programmers can rely on performance analysis tools such as traces using
the FxT library 1 or Gantt charts using ViTE 2. In the following sections, we will give an overview of
how STARPU works and describe in detail how a scheduler is integrated into the runtime.

2.6.1 Task and data

STARPU uses a task-based model, where each task is a function call with inputs and outputs. Tasks
can have dependencies between each other, which are then used to construct a DAG. The built-in sched-
ulers can then use this information to optimize the execution of such an application on heterogeneous
platforms. A task is defined as a combination of three factors.

Kernels: STARPU supports hybrid architectures, tasks can thus be executed through a CPU or GPU
kernel.

Handles: Data are abstracted as handles in the system, in order to efficiently manipulate them and keep
information on their location and status. This abstraction notably allows data to be replicated to
multiple different memories.

Access modes: They denote how the piece of data referred to by the handle should be accessed. It can
be either through reading, writing, or both.

In this thesis, when we refer to a data, we refer to the handle whose access mode can be read or read-
write, since this is the data that needs to be loaded and that can be shared among several tasks.

2.6.2 Tasks submission

Applications are typically transformed into a task graph in runtime systems. The task graph intuitively
captures the idea that certain tasks must be completed before others can begin, forming a directed acyclic
graph (DAG). Each node in the graph represents a task that is part of a larger process. The edges between
the nodes signify which tasks depend on the completion of other tasks. STARPU constructs a DAG
through task submissions. We use as an example Figure 2.4, which presents a series of task insertions
corresponding to the Cholesky factorization. Figure 2.4 shows the four different components of the
Cholesky factorization: POTRF, TRSM, SYRK and GEMM tasks.

Each call to starpu_task_insert is a task submission. It takes three types of parameters.
First, the codelet. STARPU, supports hybrid architectures that require the implementation of different
versions of a task. For example, a task may have both a CPU and a CUDA kernel implementation. The
codelet is a data structure that contains all of these implementations. Second, the priority, corresponding
to the value following STARPU_PRIORITY. This is an optional field. The priority is set to 0 by default.
Third, the various data the task is accessing, in this example it is the tiles of A, with their access modes.

From these insertions we can understand how STARPU infers dependencies. For example, in Fig-
ure 2.4, the first submission is task POTRF_0 that accesses the dataA[k][k] in read-write mode. The next

1https://savannah.nongnu.org/projects/fkt/
2https://solverstack.gitlabpages.inria.fr/vite/

https://savannah.nongnu.org/projects/fkt/
https://solverstack.gitlabpages.inria.fr/vite/

2.6. THE STARPU RUNTIME SYSTEM 33

1 [. . .]
2

3 s t a r p u _ d a t a _ h a n d l e _ t A[N] [N] ;
4

5 f o r (k = 0 ; k<N; k ++) {
6 s t a r p u _ i t e r a t i o n _ p u s h (k) ;
7 s t a r p u _ t a s k _ i n s e r t (& c l _ p o t r f ,
8 STARPU_PRIORITY , 3*N − 3*k ,
9 STARPU_RW, A[k] [k] ,

10 0) ;
11

12 f o r (m = k +1; m<N; m++) {
13 s t a r p u _ t a s k _ i n s e r t (& c l _ t r s m ,
14 STARPU_PRIORITY , 3*N − (2* k + m) ,
15 STARPU_R , A[k] [k] ,
16 STARPU_RW, A[m] [k] ,
17 0) ;
18 }
19

20 f o r (n = k +1; n<N; n ++) {
21 s t a r p u _ t a s k _ i n s e r t (& c l _ s y r k ,
22 STARPU_PRIORITY , 3*N − (k + 2*n) ,
23 STARPU_R , A[n] [k] ,
24 STARPU_RW, A[n] [n] ,
25 0) ;
26

27 f o r (m = n +1; m<N; m++) {
28 s t a r p u _ t a s k _ i n s e r t (&cl_gemm ,
29 STARPU_PRIORITY , 3*N − (k + n + m) ,
30 STARPU_R , A[m] [k] ,
31 STARPU_R , A[n] [k] ,
32 STARPU_RW, A[m] [n] ,
33 0) ;
34 }
35 }
36 s t a r p u _ i t e r a t i o n _ p o p () ;
37 }
38 s t a r p u _ t a s k _ w a i t _ f o r _ a l l () ;

Figure 2.4: Task insertion of the Cholesky factorization within the STARPU runtime system.

34 CHAPTER 2. PROBLEM STATEMENT AND INTEGRATION INTO A RUNTIME SYSTEM

submitted task is TRSM_0 accessing the data A[k][k] in read-only mode. So, the last task that modified
A[k][k] (POTRF_0) will be connected with a dependency to this TRSM task. On a DAG, this is equiv-
alent to putting an arc from POTRF_0 to TRSM_0. Similarly, the read-write access on data A[m][k] by
TRSM_0 creates a dependencie with task GEMM_0 that is also using A[m][k]. The resulting DAG is
similar to the one shown in Figure 2.1. Note that the loop submitting GEMM tasks (line 27) is nested
inside the main loop of line 5. Also note that the GEMM loop iterates over m, making GEMM write to
different data with A[m][n], and n > k so that no GEMM reads the result of another GEMM. Thus, for
a given loop k, all GEMMs are independent of each other.

Tasks pass through an application thread and worker threads. The application thread submits the
tasks one by one as shown in Figure 2.4. The worker threads resolve dependencies and send ready tasks
to the scheduler, which must assign them to the workers. The application thread is asynchronous to
the worker threads. With this asynchronicity, one does not have to wait for all tasks to be submitted to
start computing the application. Independent tasks can be computed in parallel. No dependencies are
added to an already submitted task, so, if a task has no unresolved dependencies at submission time, it is
immediately ready. From Figure 2.4, we can see starpu_task_wait_for_all, which serves as a
synchronization point after all tasks are completed.

2.6.3 Task flow

Figure 2.5 illustrates STARPU’s management of tasks, from start to finish, and the role of the scheduler.
This figure uses the distributed memory case with GPUs because it is the more general case, but the
behavior is similar for shared memory with CPU cores. The pink boxes represent the common STARPU
core. The blue elements represent the actions of the scheduler. A solid arrow is a task movement. Dashed
arrows represent notifications to the system. Dotted arrows are reads. A solid red arrow indicates a data
movement.

To begin with, from the application, STARPU infers a DAG through the application thread (1) men-
tioned earlier. Then, the worker threads read this DAG and push tasks that have all their dependencies
satisfied into the readyTasks queue (2). The scheduler is notified that the readyTasks queue has been
updated, and can thus start distributing the tasks into the taskBuffer . When PUk is idling, it will pop
the head of the taskBufferk queue of tasks. If that is empty, the scheduler will be notified and has the
option to push a set of tasks into taskBufferk (3) using tasks from readyTasks. The schedulers have
access to the performance model of each worker in order to estimate the processing time of a task. The
schedulers can also look at the set of data loaded into a processing unit memory. This gives the scheduler
information about what data is already loaded or in the process of being loaded. Tasks in taskBufferk
are in the STARPU common core and their data are being prefetched (4), i.e. preloaded into memory to
avoid waiting for unavailable data. PUs pop tasks one by one from taskBuffer . When a task is popped,
all of its datas that are not yet in the PU memory must be loaded (5). If a PU memory is saturated
and needs to load additional data, an eviction is performed (6) according to the an eviction policy. We
specify the choice of such data in Section 2.6.4. Once all the data required by the popped task are in the
PU memory, the task start to be computed (7). As soon as a task is completed (8), its results are written.
In some cases, a task completion fulfills dependencies, which makes some tasks in the DAG ready. This
is checked by STARPU (9) in order to update readyTasks.

2.6.4 New functionality to add custom eviction policies

The Least Recently Used eviction policy is the most common cache eviction algorithm. It removes the
least recently used data from memory. The LRU policy keeps track of the most recent use of a data by

2.6. THE STARPU RUNTIME SYSTEM 35

D

SCHEDULER

 Task Buffer 1 Task Buffer 2

D

D

D

D

D

D

Performance
model of the

GPUs

HPC Applications

1

2

3

5

8

7

9

6

4

Figure 2.5: Task flow within the STARPU runtime. The pink boxes are the common STARPU core.
The blue elements are the actions of the scheduler. A solid arrow is a task movement, a dashed one a
notification and a dotted one a read. A red arrow indicates a data movement.

36 CHAPTER 2. PROBLEM STATEMENT AND INTEGRATION INTO A RUNTIME SYSTEM

1 t y p e d e f s t a r p u _ d a t a _ h a n d l e _ t s t a r p u _ d a t a _ v i c t i m _ s e l e c t o r (
s t a r p u _ d a t a _ h a n d l e _ t t o l o a d , u n s i g n e d node , enum
s t a r p u _ i s _ p r e f e t c h i s _ p r e f e t c h , vo id * s c h e d u l e r _ d a t a) ;

2

3 t y p e d e f vo id s t a r p u _ d a t a _ v i c t i m _ e v i c t i o n _ f a i l e d (s t a r p u _ d a t a _ h a n d l e _ t
v i c t i m , vo id * s c h e d u l e r _ d a t a) ;

4

5 vo id s t a r p u _ d a t a _ r e g i s t e r _ v i c t i m _ s e l e c t o r (
s t a r p u _ d a t a _ v i c t i m _ s e l e c t o r s e l e c t o r ,
s t a r p u _ d a t a _ v i c t i m _ e v i c t i o n _ f a i l e d e v i c t e d , vo id * s c h e d u l e r _ d a t a)
;

6

7 i n t s t a r p u _ d a t a _ c a n _ e v i c t (s t a r p u _ d a t a _ h a n d l e _ t hand le , u n s i g n e d node
, enum s t a r p u _ i s _ p r e f e t c h i s _ p r e f e t c h) ;

8

9 # d e f i n e STARPU_DATA_NO_VICTIM ((s t a r p u _ d a t a _ h a n d l e _ t) −1)

Figure 2.6: Function definitions needed for custom eviction policy within the STARPU runtime.

placing the data used by the last started task at the top of a list. It can then simply pop the head of such
a list to perform an eviction. LRU is a fast and usually satisfying policy to follow. However, when data
movement becomes the key factor in achieving better performance, such as under memory constraints,
LRU provokes pathological behavior, which we describe in the next chapter. To avoid this, we need
to create custom eviction policies that match the scheduler’s strategy. For this reason, we added a new
functionality in STARPU that allows a programmer to implement custom eviction policies. Functions
presented in Figure 2.6 are the key components of our contribution and allow any new eviction policy to
be added to STARPU.

First, starpu_data_register_victim_selector is called to select which selector
eviction policy to use. By default, this is the LRU eviction policy. A programmer can now get his own
eviction policy invoked by registering it. We also assign through evicted the policy that should be
followed if a data returned by selector could not be removed from memory. scheduler_data
contains all the personal parameters used by the current scheduling policy. It is the context of the
scheduler. When StarPU needs to make room on a given memory node, the victim selector is called
with starpu_data_victim_selector. This function can choose to return a data to evict from
the memory node node. toload indicates the size and allocation pattern of the data we are trying to
load, the cause of the eviction. starpu_data_victim_selector can use this information to evict
a data with the same size and allocation pattern to avoid additional evictions and allocations, but it can
also evict some other data, if possible that has at least the requested size. When selecting a data to evict,
the eviction policy must check that the data is not being used by another worker. Otherwise the eviction
will fail. If an eviction fails, starpu_data_victim_selector is called again. The PU has not
processed any additional task since it needs an eviction. So the same data would be selected for eviction
and rejected again, trapping the eviction policy in an infinite loop. Therefore, before returning any data
to evict, starpu_data_victim_selector should call starpu_data_can_evict to check if
the data handle can be evicted from node. Otherwise, it restarts its selection to choose another data
to evict.

2.6. THE STARPU RUNTIME SYSTEM 37

(a) With 1 GPU. (b) With 2 GPUs.

Figure 2.7: Visualization of the processing order on a 2D matrix multiplication. Side of the input
matrices N = 4. The shading, from lighter to darker, represents the ordering. A beige vertical (resp.
horizontal) line in a square corresponds to a row (resp. column) load that was necessary to compute this
tile. Solid lines are fetches while dotted lines are prefetches. With multiple GPUs, each color is a set of
tasks assigned to a GPU.

An eviction can be requested by either the need for a fetch or a prefetch. A fetch is a data load that
is required for the next task to be processed, a prefetch is a data preload for a task that is scheduled
to be computed. Such information is provided to the victim selector with is_prefetch. In the
case of a prefetch, it is less important to free space in the PU memory because it is not needed to
resume task execution. It would also be detrimental to evict a data that is planned to be used for a
close-future task in order to do a prefetch for a task further in the planned schedule. Thus, the victim
selector can choose not to evict data immediately by returning STARPU_DATA_NO_VICTIM. Even
if we use starpu_data_can_evict, sometimes an eviction may fail. This is due to concurrency
issues: the delay between the selection of a data to be evicted and its actual eviction may allow other
workers to access it, making the eviction impossible. When this happens, to avoid invalid behavior,
starpu_data_victim_eviction_failed is called and the programmer must choose how to
handle the situation. By default, when an eviction fails, we try to evict another data. An interesting
perspective would be, for example, to be notified of the denied eviction in order to correct the eviction
policy decision in the future.

2.6.5 New logging and visualization tool

To better understand the behavior of our schedulers, we introduced a new way of visualizing a task order
and its impact on data transfer. We added a logging component to STARPU that automatically writes
trace information about an execution. The information is written when a processing unit pops a task
from taskBuffer to start an execution. Namely, we extract for each task: the used processing unit, the
order in which it was computed relative to the total number of tasks, the number of required fetches or
prefetches and the coordinates of the task (X, Y, and Z axis depending on the application data pattern).

To show the behavior of a scheduler from these logs, we developed a visualization tool in Python.
See Figures 2.7 through 2.10 for small examples of these visualizations using experiments run on GPUs.
Figure 2.7a shows the visualization obtained on an outer product (C = A × B). Each tile is a task

38 CHAPTER 2. PROBLEM STATEMENT AND INTEGRATION INTO A RUNTIME SYSTEM

Figure 2.8: Visualization of the processing order on a 3D matrix multiplication with 1 GPU. Side of the
input matrices N = 4. The shading, from lighter to darker, represents the ordering. A beige vertical
(resp. horizontal) line in a square corresponds to a row (resp. column) load that was necessary to
compute this tile. Solid lines are fetches while dotted lines are prefetches.

and its position on the 2D grid represents its data requirement: a row of A and a column of B. As we
can represent it with a 2D grid, we call the outer product a 2D matrix multiplication in this thesis. The
shading (from light to dark) represents the order in which the tasks were processed. We can see the
first processed task of Figure 2.7a at coordinates (0,0). A horizontal beige line in a tile indicates that
the column from B was not in memory when the task was processed and had to be loaded. Similarly, a
vertical beige line means that a row from A was loaded before the tile was processed. Naturally, as the
GPU’s memory is empty at first, the first processed task requires two data loads. From the shading we
learn that the tasks are computed column by column. Starting at tile (1,1), data start to be completely
reused as we do not see any line in the tiles. Tile (0,3) has a dotted horizontal line. It means that
the column from B was loaded during a prefetch for this tile. Figure 2.7b shows the same application
but using two GPUs. For several GPUs, a color is assigned to each of them. Here, the red tiles were
processed by GPU1, while the green tiles were processed by GPU2.

Figure 2.8 shows the processing order on a GEMM: A, B and C are square input matrices and
the computation of each tile of C is decomposed into tasks each requiring one tile of A, B and C. A
GEMM can be viewed as multiple layers of an outer product. We thus call this application a 3D matrix
multiplication in this manuscript. For N = 4 we can represent it with 4 layers K. Each layer represents

2.6. THE STARPU RUNTIME SYSTEM 39

Figure 2.9: Visualization of the processing order on the Cholesky factorization with 1 GPU. Side of the
input matrices N = 10. The first 50 tasks processed are in red, the next 50 in green, then blue, yellow,
magenta and cyan. The shading, from lighter to darker, represents the ordering within each set of 50
tasks. The black area represents the amount of tiles that can be loaded in memory.

a different result matrix C. Similar to the 2D matrix multiplication visualizations, we use a shading and
the lines in the tiles to represent the processing order and the amount of load required, respectively. C
tiles load are not displayed. From the color shading, we can see that the first four processed tasks are the
tasks at coordinates (0,0) on each layer K. This is a pipelining on the different K iterations: tasks from
a C tile are done in succession in order to reuse it.

Figure 2.9 represents a scheduler’s processing order on the Cholesky factorization (A = LLT). The
Cholesky factorization is here represented as a successions of iterations (K = 0 to K = 9) of the lower
triangular matrix L. The black area represents the number of tiles that can be loaded in memory. For
these representations the colors are used differently. The first 50 tasks processed are in red, the next 50
in green, then blue, yellow, magenta and cyan. The shading still represents the order within each set
of 50 tasks. To avoid an overload of visual elements that would make it difficult to see the processing
order, we do not plot the lines in the tiles. Thanks to the color division, we learn from such a figure that
the first 50 tasks processed belong to iterations 0, 1, and 2. From the shading we learn that except for
the first column of each iteration, the tasks are processed line by line.

Figure 2.10 shows the processing order with two GPUs. The colors serve the same purpose as in
Figure 2.9, but each sub-figure represents the set of tasks assigned to the corresponding GPU. This
format allows to more easily understand the division of the workload with a large number of tasks and
GPUs.

Our logging tool is built into STARPU and can be applied to any of STARPU’s schedulers. However,
it is not specifically designed for STARPU. It could be integrated into any other task-based runtime
system if we can plug it in when a processing unit pops a task for execution. The key requirements are
to be able to extract the coordinates and data load needs from a task.

40 CHAPTER 2. PROBLEM STATEMENT AND INTEGRATION INTO A RUNTIME SYSTEM

(a) Task processed by GPU 1.

(b) Task processed by GPU 2.

Figure 2.10: Visualization of the processing order on the Cholesky factorization with 2 GPUs. Side of
input the matrices N = 10. The first 50 tasks processed on each GPU are in red, the next 50 in green,
then in blue. The shading, from lighter to darker, represents the ordering within each set of 50 tasks.
The black area represents the amount of tiles that can be loaded in memory.

2.7. SUMMARY 41

2.7 Summary

Our goal is to build a scheduler capable of minimizing data transfers and maximizing performance by
partitioning and ordering a set of tasks on one or multiple processing units. To identify the elements that
make up a good strategy, it is necessary to reduce the number of observed parameters, in other words,
to simplify our optimization problem. Therefore, using a task-based model, we divide our problem into
four distinct steps, each more complex than its predecessor. Our first step is to schedule independent task
sets on a single processing unit. We prove that this problem is NP-complete. This limits our approach to
the use of heuristics. The second step is to add multiple processing units. This time the goal is twofold:
partitioning and ordering. The third step is to add heterogeneous weights. Finally, we add dependencies.
We present the STARPU task-based runtime system in which we have integrated our new algorithms.
We extend it with two new features: a way to add custom eviction policies and a logging system to draw
task order representations.

Chapter 3
Static Scheduling for a Single
Processing Unit

Contents
3.1 Schedulers from the STARPU runtime system 44

3.1.1 A greedy baseline: EAGER . 44
3.1.2 Deque Model Data Aware Ready (DMDAR) 44

3.2 Adapted strategies from the literature . 45
3.2.1 Reverse-Cuthill-McKee (RCM) . 45
3.2.2 Maximum Spanning Tree (MST) . 47

3.3 Hierarchical Fair Packing (HFP) . 48
3.3.1 Intuition . 48
3.3.2 An NP-complete problem . 48
3.3.3 Strategy . 49
3.3.4 Complexity of HFP . 51
3.3.5 Improving HFP with package flipping . 52
3.3.6 Optimal eviction policy . 53
3.3.7 Adaptation to heterogeneous data sizes . 54
3.3.8 Improving the beginning of the schedule with the Ready re-ordering 54

3.4 Experimental settings . 54
3.5 Experimental results and analysis . 57

3.5.1 Results on the 2D matrix multiplication . 57
3.5.2 Results on the 3D matrix multiplication . 62
3.5.3 Results on the task set of the Cholesky factorization 65
3.5.4 Results on the 2D matrix multiplication with randomized task order 66
3.5.5 Results on the randomized pairs with 2D inputs 68
3.5.6 Results on the sparse 2D matrix multiplication 69

3.6 Conclusion on static scheduling for a single processing unit 70

43

44 CHAPTER 3. STATIC SCHEDULING FOR A SINGLE PROCESSING UNIT

W
E focus in this chapter on scheduling a set of tasks on one processing unit with limited memory,
where tasks share some of their input data but are otherwise independent. We use the simplified
model presented in Section 2.2 and aim to solve the MIN-LOADS-FOR-TASKS-SHARING-

DATA problem (see Problem 2).
The chapter is organized as follows:

• We present two existing heuristics from the STARPU runtime system in Section 3.1.

• We review and adapt two algorithms from the literature for this problem in Section 3.2.

• In Section 3.3, we describe our proposed scheduler, Hierarchical Fair Packing, a scheduler based
on gathering tasks with similar data inputs into packages.

• After presenting the experimental settings used with STARPU in Section 3.4, we study in Sec-
tion 3.5 the performance (amount of data transfers and total processing time) of all the schedulers
mentioned above and obtained on various tasks sets coming from linear algebra operations.

3.1 Schedulers from the STARPU runtime system

STARPU provides multiple scheduling policies, including a simple baseline and a more advanced pol-
icy that considers expected completion times as a primary factor. By comparing our own scheduling
approach to these two policies, we will be able to evaluate its effectiveness.

3.1.1 A greedy baseline: EAGER

EAGER serves throughout this thesis as our baseline. It is a greedy scheduler that lets processing units
pick up tasks on demand from a shared queue that contains tasks in the submission order (e.g. row
major for matrix multiplications). Like all other presented schedulers, it prefetches data of tasks to be
computed soon.

3.1.2 Deque Model Data Aware Ready (DMDAR)

DMDA or “Deque Model Data Aware” (Algorithm 1) is a dynamic scheduling heuristic designed to
schedule tasks on heterogeneous processing units in the STARPU runtime [16] (also called tmdp-pr).
DMDA is based on the HEFT scheduler [123], which is already known to be an efficient scheduler. Ad-
ditionally, DMDA is a variant of DMDAS, the default state-of-the-art scheduler used by the Chameleon
library [8]. These reasons make DMDA and its variants a good point of comparison. The variant used
here, called DMDAR, ignores task priorities. As we consider independent tasks, such priorities are in-
deed not useful. DMDA computes the expected completion time C(Ti) of the first task Ti in the queue
of tasks, based on a prediction of the time for transferring the data to the PU (or communication time)
comm and of the task computation time comp:

C(Ti) =
∑

Dj∈D(Ti)
Dj /∈InMem(PU)

comm(Dj) + comp(Ti) (3.1)

Note that the data transfer time is counted only if the data is not already in memory. The task is then
allocated to the processing unit which minimizes C(Ti). Tasks are allocated to processing units with
this rule, one by one in their order of submission. In the context of this chapter, with a single processing
unit, DMDAR is reduced to selecting tasks in their submission order.

3.2. ADAPTED STRATEGIES FROM THE LITERATURE 45

Algorithm 1 Deque Model Data Aware heuristic (DMDA)

1: InMem ← ∅
2: while all tasks have not been allocated do
3: Ti ← pop(T)
4: Compute C(Ti) using Eq. 3.1
5: Allocate Ti
6: for each Dj ∈ D(Ti) do
7: Request data prefetch for Dj

8: Add Dj to InMem

DMDAR includes an additional Ready strategy (Algorithm 2): tasks are reordered at runtime in order
to favor tasks with the most input data already loaded into memory1. DMDAR is a dynamic scheduler
that relies on the actual state of the memory, it thus depends on the eviction policy, which is the LRU
policy.

Algorithm 2 Ready reordering heuristic

Require: List L of tasks allocated
1: while L 6= ∅ do
2: Search first T ∈ L requiring the lowest amount of data transfers
3: Wait for all data in D(T) to be in PU’s memory
4: Start processing T

DMDAR is already suited to heterogeneous data sizes, by taking them into account while computing
comm(Dj) and while selecting tasks in the Ready strategy.

3.2 Adapted strategies from the literature

We present here two heuristics adapted from the literature to solve the MIN-LOADS-FOR-TASKS-
SHARING-DATA optimization problem.

3.2.1 Reverse-Cuthill-McKee (RCM)

Intuition We proved with Proof 2.2.4 the complexity of MIN-LOADS-FOR-TASKS-SHARING-DATA

through a reduction from the cutwidth minimization problem. The proximity with the cutwidth mini-
mization problem motivates the use of the Cuthill–McKee algorithm [46], which concentrates on a close
metric: the bandwidth of a graph. It permutes a sparse matrix into a band matrix so that all elements
are close to the diagonal. You can find an example of such re-ordering in Figure 3.1. If the resulting
bandwidth is k, it means that vertices sharing an edge are not more than k edges away. We apply this
algorithm on the graph of tasks GT = (T, ET , wT) where there is an edge (Ti, Tj) if tasks Ti and Tj
share some data, and where wT (Ti, Tj) is the number of such shared data. If the bandwidth of the graph
is not larger than k, this means in our problem that any task Ti processed at time t has all its “neighbors”
tasks (tasks sharing some data with Ti) processed in the time interval [t−k; t+k]. Hence, if k is low, this
leads to a very good temporal data locality. Moreover, Cuthill–McKee has been used for Breadth-First

1https://files.inria.fr/starpu/testing/master/doc/html/Scheduling.html#
DMTaskSchedulingPolicy

https://files.inria.fr/starpu/testing/master/doc/html/Scheduling.html#DMTaskSchedulingPolicy
https://files.inria.fr/starpu/testing/master/doc/html/Scheduling.html#DMTaskSchedulingPolicy

46 CHAPTER 3. STATIC SCHEDULING FOR A SINGLE PROCESSING UNIT

Figure 3.1: Reverse-Cuthill-McKee ordering on a symmetric sparse matrix. Image from [15].

Search in graph computing [80] or in task mapping algorithms for big scientific applications [117] in
order to improve data locality and reduce communications, which motivates even more our use of it.

Reversing the obtained order is known to improve the performance of the Cuthill–McKee algo-
rithm [96]. We prove in Proof 3.2.1 that reversing a schedule does not change the amount of data
transfers. The adaption of the Reverse-Cuthill–McKee algorithm to our model is described in Algo-
rithm 3.

Algorithm 3 Reverse-Cuthill-McKee heuristic

Build the graph GT where vertices are tasks and edges are common data between tasks, weighted by
the number of such data
σ ← [v] where v is the vertex of GT with the smallest weighted degree
i← 0
while |σ| < m do

Let N be the set of vertices adjacent to σ[i] in GT not yet in σ
Sort N by non-decreasing weighted degree
Append N at the end of σ
i← i+ 1

Return σ in the reverse order

Differences between Cuthill-McKee (CM) and Reverse-Cuthill-McKee (RCM) We prove in
the following theorem that both Cuthill-McKee and Reverse-Cuthill-McKee algorithms reach the same
amount of data movement. More generally, reversing a schedule does not change the number of reads
or evictions.

Theorem 3. For a given set of tasks T sharing data in D and a given task order σ : #Loads(σ,MIN) =
#Loads(σ̄,MIN).

Proof. Given σ, an order of computation for T, we know that data are used in the following order:
D(Tσ(1)), . . . ,D(Tσ(m)). Together with the knowledge of the MIN eviction policy, we can deduce the
set of data that we need to load before computing task Tσ(t), that we note St. It is the set of input data
of Ti that were not in memory during the computation of the last task Ti−1. We reuse the live data
definition L(t) from Section 2.2.1 that represents the set of data in memory during the computation of a

3.2. ADAPTED STRATEGIES FROM THE LITERATURE 47

task, to define St: St = D(Tσ(t))\L(t− 1). We denote by S the ordered list of datasets that we need to
load before each task: S = [S1, ..., Sm]. Similarly, we build V, the ordered list of data that are evicted
before each task: V = [V(2), ...,V(m),V(m+ 1)]. Note that we start at task 2 (no data is evicted before
the first task) and we denote by V(m+ 1) the operation needed to completely empty the memory at the
end of the execution. S and V totally describe the memory operations for an execution, and can be used
to count the number of loads:

#Loads(σ,MIN) = #Loadsordered_list(S,V)
=
∑
Si∈S
|Si| =

∑
V(i)∈V

|V(i)|

The last equality comes from the fact that each data is evicted exactly as many times as it is loaded,
thanks to the last eviction that totally frees the memory.

We consider the reversed order of σ: σ̄, and similarly the reversed list of loads (S̄) and evictions
(V̄). We consider S′ = V̄ and V′ = S̄ and notice that the pair (S′,V′) describes correct lists of loading
sets and eviction sets for σ̄: this is what happens if we reverse the task order, and consider that each
eviction for σ is transformed into a load, and each load for σ is transformed into an eviction. Hence, the
total memory used by (S′,V′) for σ̄ is the same as the one used by (S,V) for σ, and not larger than M .
Because (S′,V′) is a correct loading/eviction scheme, we have:

#Loadsordered_list(S′,V′) ≤ #Loads(σ̄,MIN)

We also have:

#Loadsordered_list(S′,V′) = #Loadsordered_list(V̄, S̄)
=

∑
Si∈S
|Si|

= #Loadsordered_list(S,V)
= #Loads(σ,MIN)

Hence, we have #Loads(σ̄,MIN) ≤ #Loads(σ,MIN) By reversing once again the schedule (as
well as the list of loading sets and eviction sets), we obtain similarly that #Loads(σ,MIN) ≤
#Loads(σ̄,MIN), proving the equality.

We experimentally tested CM and RCM and concluded that the performance reached by both vari-
ants are not similar. We observed that in practice, RCM is always slightly better than CM. Even if the
total number of loads is the same, the distribution of loads in time is not equal: there is more overlap
between data movements and computations in RCM than in CM, which allows RCM to reach better
performance.

Adaptation to heterogeneous data sizes RCM can be adapted to heterogeneous data sizes by
considering data weights instead of number of common data. We can thus modify line 1 of Algorithm 3
to: Build the graph GT where vertices are tasks and edges are common data between tasks, weighted by
the weight of such data.

3.2.2 Maximum Spanning Tree (MST)

Yoo et al. [128] proposed another heuristic to order tasks sharing data to improve data locality. They
first build a Maximum Spanning Tree in the graph GT using Prim’s algorithm [43] and then order the

48 CHAPTER 3. STATIC SCHEDULING FOR A SINGLE PROCESSING UNIT

vertices according to their order of inclusion in the spanning tree. By selecting the incident edge with
the largest weight, they increase the data reuse between the current scheduled tasks and the next one
to process. The direct adaption of the Maximum Spanning Tree algorithm to our model is described in
Algorithm 4.

Algorithm 4 Maximum Spanning Tree heuristic

for each vertex vi do
Set Key_V alue(vi) to 0

Key_V alue(v0)← 1
while |σ| 6= m do

Choose vi ∈ T /∈ σ such that Key_V alue(vi) is maximum
Add vi at the end of the list σ
for each couple (vi, vj) do

Update Max_Path_Length(i, j)
for each vj adjacent to vi∩ /∈ σ do

if Key_V alue(vj) < Max_Path_Length(i, j) then
Key_V alue(vj)←Max_Path_Length(i, j)

Return σ

3.3 Hierarchical Fair Packing (HFP)

We present here our main contribution of this chapter: the Hierarchical Fair Packing scheduler. As
its name suggests, HFP creates packages of equal size M , each containing tasks sharing data. The
packages are then ordered hierarchically. The intuition is to create a task order that reuses data within
each package and from one package to another.

3.3.1 Intuition

HFP builds packages (denoted P1, P2, ...) of tasks, which are stored as lists of tasks, forming a partition
of T. We denote by D(Pk) the set of inputs of all tasks in package Pk. We aim at building the smallest
number of packages so that the inputs of all tasks in each package fit in memory: |D(Pk)| ≤ M . The
intuition is that when looking for the smallest number of packages, the tasks that share the most input
data will naturally be grouped together. For any k, once D(Pk) are loaded, all tasks in the Pk can be
processed without any additional data movement. The MIN-NB-PACKAGES problem that arises from
our intuition can be expressed as follows:

Problem 6. For a given set of tasks T sharing data in D, is there a task partition into at most L packages
P1, . . . , PL such that |D(Pi)| ≤M for each package Pi?

3.3.2 An NP-complete problem

We now prove that the MIN-NB-PACKAGES is NP-complete.

Proof. The certificate of our problem RP is the list of tasks grouped by package. We now verify our
certificate. We need to verify that the number of packages is less than L and that the weight W (Pi) of
each package is less than B. To compute the weights, it is necessary, to add the weight of the data while

3.3. HIERARCHICAL FAIR PACKING (HFP) 49

ignoring the duplicates. To detect duplicates it is necessary to browse |D(Pi)| × |D(Pi)| data. We are
therefore in polynomial time. We now check that the size of the certificate is polynomial. We initially
have |T| lists of data. Browsing the data is done in polynomial time (

∑|T|
i=1 |D(Ti)|). We know that

L ≤ |T|. Thus the size of the data is polynomial in |T|. Hence the problem lies in NP.
We prove that the problem is NP-complete thanks to a reduction from the 3-partition problem: Given

an integer B and 3n integers a1, a2, . . . , an, such that
∑3n
i=1 ai = nB the problem is to decide whether

we can partition 3n into n triplet whose sum is B. We consider the restricted version of the problem
where for all i, B/4 < ai < B/2, which is still NP-complete [64]. In this variant, each subset of
integers reaching B has exactly three elements.

We consider an instance I3P of the 3-partition problem and build an instance IMinP of the package
minimization problem as follows. For each ai ∈ I3P , we create a task Ti and ai input data D(Ti) =
{Di,1 . . . , Di,ai} (no input data is shared among two tasks). We set the size limit of a package toM = B
and the maximum number of packages to L = n. Thus, in instance IMinP , we try to solve the following
question: can we find at most n packages of input size at most M?

3P ⇒MinP: We prove here that if I3P has a solution, then IMinP has a solution. If I3P has a solution,
then we have n subsets of integers S1, S2, . . . , Sn which verify: |Si| = M for all i. We group tasks in
n packages P1, P2, . . . , Pn such that Pj = {Ti, ai ∈ Sj}. As L = n, we have exactly L packages. The
input size of each package is:

|D(Pj)| =
∑
Ti∈Pj

|D(Ti)| =
∑
ai∈Sj

ai = B = M.

Hence, this is a solution for IMinP .

MinP ⇒ 3P : We now prove that if IMinP has a solution, then I3P has a solution. If IMinP has a
solution then there are at most L packages whose input size is at most M : |D(Pi)| ≤ M for all i. We
know that

∑n
i=1 |Si| = nM , so

∑n
i=1 |D(Pi)| = nM . We therefore have L = n packages which must

satisfy the following conditions: { ∑n
i=1 |D(Pi)| = nM
∀i |D(Pi)| ≤M

Any package with input size smaller than M would require that another package has a size larger than
M , which is not possible. Therefore, we have |D(Pi)| = M for each package Pi. We denote by Sj
the set of ai corresponding to tasks Ti in Pj . Hence,

∑
ai∈Sj

ai = M for all Sj . We assume that
M/4 < ai < M/2, hence each Sj counts exactly three ai, and the Sj are a solution to instance I3P .

3.3.3 Strategy

Since building packages in an optimal way is NP-complete, we concentrate on a greedy heuristic to build
them, as described in Algorithm 5. We start with packages containing a single task. Then we iteratively
consider all packages with fewest tasks and try to merge each package with another package with which
it shares the most input data. To do so, we first compute the number of common data between each of the
smallest packages (identified in S) and all other packages. Then, for each Pi of the smallest packages,
we select a package Pj such that the number of data shared by Pi and Pj is maximal and merge these
two packages. Then, we mark Pj as not available for a merge at this step (to avoid all small packages
merging with the same package in a single step). We also enforce that only pairs of packages with a
maximal number of shared data are merged to ensure good locality: if a small package cannot be merged

50 CHAPTER 3. STATIC SCHEDULING FOR A SINGLE PROCESSING UNIT

Algorithm 5 Hierarchical Fair Packing

1: Let Pi ← [Ti] for i = 1 . . .m, P = {P1, . . . , Pm} and Pnon_connected ← ∅
2: SizeLimit ← true, MaxSizeReached ← false
3: while |P| > 1 do
4: MinPackageSize ← minPi∈P |Pi|
5: S← {Pi ∈ P with |Pi| = MinPackageSize} . The smallest packages that can be merged at

this iteration
6: for all packages Pi ∈ S and Pj ∈ P do
7: SharedData[i][j]← |D(Pi) ∩ D(Pj)|
8: MaxSharedData ← 0
9: if SizeLimit = true then . In case we are in the first phase

10: MaxSharedData ← maxPi∈S,Pj∈P SharedData[i][j] such as |D(Pi ∪ Pj)| ≤M
11: if MaxSharedData = 0 then
12: SizeLimit ← false . End of first phase: lift the size constraint for second phase
13: if SizeLimit = false then . In case we are in the second phase
14: MaxSharedData ← maxPi∈S,Pj∈P SharedData[i][j]
15: if MaxSharedData = 0 then . We have identified subsets of tasks without any common

data with other tasks
16: for all packages Pi ∈ S do
17: Merge Pi and Pnon_connected . This package gathers all non-connected task subsets
18: Remove Pi from P and from S
19: Q← ∅ . Set of packages that are not anymore available to merge with
20: for all Pi ∈ S do
21: Find j such that SharedData[i][j] is maximal and Pj ∈ P\Q
22: if MaxSharedData = SharedData[i][j] and (|D(Pi ∪ Pj)| ≤M or SizeLimit = false)

then
23: Merge Pi and Pj
24: Add Pi and Pj to Q
25: if |Pnon_connected_tasks| > 0 then
26: Merge the only package in P and Pnon_connected . Retrieve all non-connected subsets
27: Return the only package in P

3.3. HIERARCHICAL FAIR PACKING (HFP) 51

at some step, it will be more successful in a later step. If we did not prioritize small packages, a large
package would always be the best one to merge at each step, as it contains more tasks and thus more data
to share. This would result in creating a large package until it reaches the maximum size M , which can
lead to poor scheduling decisions (for example, all data shares can be on a single column, leading to a
schedule that would follow the submission order of task submission). Considering the smallest packages
first allows for a fair growth of each package. Merging two packages P1 and P2 consists in appending
the list of tasks of P2 at the end of the list of tasks of P1: we never modify the order of tasks within an
already built package, hence keeping a good data locality inside packages.

As presented above, we aim at building packages such that the size of the input data of a package is
smaller than, or equal to M . This is done during the first phase. However, we do not stop here and we
continue in a second phase to merge packages in the same way, without considering the bound on the
size of input data anymore. The objective of this second phase is to create meta-packages that express the
data affinity between the already built packages, in order to schedule packages sharing many common
input data close to each other.

Note that we may have identified disconnected packages, that is, subsets of tasks that do not share
any common data with other tasks. We then merge the packages containing these tasks in a dedicated
package, denoted Pnon_connected, which is added to the last package in the very end of the algorithm.
Eventually, the last remaining package after all merges provides the list of tasks of the final schedule.

3.3.4 Complexity of HFP

We now try to bound the complexity of HFP depending on the number m of tasks and on the maximal
number of input data for any task: ∆ = maxi |D(Ti)|. We first remark that by keeping the input
data of each package sorted, we can compute SharedData[i][j] for any pair of packages Pi, Pj , with a
complexity of O(D(Pi) +D(Pj)). Similarly, merging these packages can be done with the same linear
complexity. The first part of an iteration of the while loop (Line 3 of Algorithm 5) consists in computing
SharedData[i][j] for any packages Pi ∈ S and Pj ∈ P. The complexity of this phase is in O(C) with

C =
∑
Pi∈S

∑
j∈P
D(Pi) +D(Pj)

≤
∑
Pi∈P

∑
j∈P
D(Pi) +D(Pj)

≤ 2 |P|
∑
i∈P
D(Pi)

Since all packages contain at least one task, we have |P| ≤ m. Moreover, we can bound the sum of all
package inputs: ∑

i∈P
D(Pi) ≤

m∑
j=1
D(Tj) ≤ ∆m

as each task has at most ∆ inputs. Thus, the complexity of computing the shared data is in O(∆m2).
Since there is at least one merge operation in each iteration of the while loop and there are at most
m merge operations, the total complexity for computing shared data throughout the execution of the
algorithm is in O(∆m3).

As outlined above, merging two packages Pi, Pj can be done in complexity O(D(Pi) + D(Pj)),
which is bounded by O(∆m). Since there are at most m merge operations, the total complexity for
merging is in O(∆m2). Hence the total complexity of HFP is dominated by the computation of the
shared data and is in O(∆m3).

52 CHAPTER 3. STATIC SCHEDULING FOR A SINGLE PROCESSING UNIT

T1 T2 T3 T4 T5 T6 T7
D1

1 D1
2 D1

3 D1
4 D1

5 D1
6

D2
1 D2

2 D2
3 D2

4 D2
5

D3
1

Figure 3.2: Data sharing among tasks that reach worst-case complexity for HFP (depicted for m = 7:
an edge between two tasks represents a data shared by these tasks. Note that in addition to these data,
tasks have private data so that each task exactly has ∆ input data (except for Tm with ∆− 1 data).

Note that this worst-case complexity can be reached on specific cases. We consider the following
problem instance, depicted on Figure 3.2. Each task Ti, 3 ≤ i ≤ m has as input data D1

i−1, D2
i−2, and

Dj
i for j = 1, . . . ,∆ − 2. Task T1 has input data Dj

1 for j = 1, . . . ,∆; task T2 has input data D1
1,D3

1,
and Dj

2 for j = 1, . . . ,∆ − 2. In the very beginning, packages are made of single tasks, and they have
at most one common data with another package, except for {T1} and {T2} which have two common
data (D1

1 and D3
1), hence these packages are merged in the first step. In the second step, only package

{T3} has two common data with the newly created package while all other packages have one or none
common input data, hence {T3} is merge with the package created in the first step. Similarly, at step k,
the package {Tk+1} is merged with the package created at the previous step. At each step k, the shared
input data must be recomputed. The first package contains k tasks, while the other m − k packages
contain a single task. Computing the shared data between the smallest packages and all other packages
requires a complexity O((m − k)2∆ + m∆). Summing over all m − 1 steps, we reach a complexity
O((m− k)3∆), corresponding to the previous bound.

In contrast with the previous pessimistic scenario, the complexity may be largely reduced in some
cases. In an optimistic scenario, we merge all the packages by pairs at each iteration of the while loop,
resulting in log2m iterations of this loop. At iteration i, we have m

2i packages. At each iteration, the
number of input data of a package at most doubles, thus this number is at most 2i∆ at iteration i. Since
we need to compute many intersections of input datasets for a single merge, the cost of computing the
intersections dominates the complexity. The complexity of this step for a single package at iteration i is
thus O(2i∆). The total cost for iteration i is thus:(

m

2i
)2
× 2i∆ = m2∆

2i

When summing over all iterations, we get:

log2 m∑
i=1

m2 ×∆
2i = O(∆×m2)

which gives the complexity of HFP in this optimistic scenario. Note that in linear algebra operations, all
tasks have a very similar data access pattern and the pattern of data sharing is regular. Hence, in practice,
this optimistic complexity is often reached.

3.3.5 Improving HFP with package flipping

A concern appears in the second step of HFP (when we merge packages without taking care of the M
bound): if Pi is merged with Pj , the merged package contains the tasks of Pi followed by the ones of
Pj . However, the last tasks of Pi might have very little shared data with the first tasks of Pj , leading

3.3. HIERARCHICAL FAIR PACKING (HFP) 53

P start
i P end

iPi: P start
j P end

jPj :

P start
i P end

i rev(P start
j)rev(P end

j)Pi + rev(Pj):

Figure 3.3: Flipping packages to improve HFP. Here we assume that the pair of subpackages (P end
i ,

P end
j) is the one with the most shared input data, so that only Pj is reversed before merging packages.

(a) Without package flipping. (b) With package flipping.

Figure 3.4: HFP’s processing order on a 2D matrix multiplication with M = 4. The colored lines on the
sides represent data loads of rows or columns for the tasks of the corresponding color.

to poor data reuse when starting Pj . Hence, for each package Pi, we consider two subpackages P start
i

and P end
i containing the first and last tasks so that the number of their input data is smaller than M but

their number of tasks is maximal, as illustrated on Figure 3.3. Then, we count the common input data
of each pair: (P start

i , P start
j), (P start

i , P end
j), (P end

i , P start
j), (P end

i , P end
j). We identify the pair with

most common input data and selectively reverse the packages so that tasks in this pair of subpackages
are scheduled consecutively in the resulting package.

Flipping packages requires to go through the set of tasks of two packages. In the worst case, both
packages together contain all of T, so the complexity is O(m). This complexity can be neglected
compared to the original complexity of HFP.

Figure 3.4a and 3.4b show an example of the task processing order of C on a 2D matrix multiplica-
tion with and without package flipping with M = 4 (4 rows or columns can fit in memory at the same
time). On these figures the numbers correspond to HFP’s processing order of each block of C. When
going from a colored set of tasks to another, at least 2 rows or columns must be loaded. Without package
flipping, to process the blue set of tasks, 2 rows and 2 columns must be loaded because the memory is
filled with rows number 2, 3 and with columns number 0, 1, which gives us a total of 12 data loads. In
contrast, package flipping HFP can reuse the same rows (number 2, 3) when going from the green to the
blue set of tasks. We thus save 2 data loads for a total of 10 data loads. On a bigger scale, this "U-shape"
formed by package flipping favors data reuse inside a package and thus reduces the total amount of data
loads.

54 CHAPTER 3. STATIC SCHEDULING FOR A SINGLE PROCESSING UNIT

0

100

200

300

400

0 100 200 300 400
Planned order

R
ea

l o
rd

er

Figure 3.5: Difference between HFP (planned order) and HFP with Ready (real order) ordering on a
2D matrix multiplication with a single GPU. Each square is a task, and its position on the X or Y axis
indicates its processing order. Deviation from linear progression means that planned and actual orders
differ.

3.3.6 Optimal eviction policy

Lastly, we make another improvement to HFP: it is equipped with the optimal eviction policy adapted
from Belady’s rule (see Theorem 1). To make it compatible with dynamic runtimes, such as the STARPU
runtime used in our experiments, we use a dynamic version of the eviction policy: whenever the runtime
needs to evict some data, we choose the one whose next usage is the latest.

3.3.7 Adaptation to heterogeneous data sizes

It is possible to extend the HFP algorithm to deal with input data that have heterogeneous sizes. We
assume that weight(D) gives the weight of the input data D, and that this function is extended to tasks
and subsets of tasks to give the size of their input data. Line 7 of Algorithm 5 needs to be modified to
compute the weight of the data shared by two tasks instead of their numbers:

7′: SharedData[i][j]← weight(D(Pi) ∩ D(Pj))
Similarly, when testing if two packages Pi and Pj can be merged without exceeding the M bound, we
need to replace the computation of the number of inputs data |D(Pi ∪ Pj)| by the computation of the
weight of these input data weight(D(Pi ∪ Pj)), on Lines 10 and 22 of Algorithm 5.

3.3.8 Improving the beginning of the schedule with the Ready re-ordering

We also apply the Ready strategy (Algorithm 2) to HFP. We can observe the effect of the reordering in
Figure 3.5. Only the first 50 tasks are reordered. HFP groups tasks into packages of size M . For a data
load of size M , a lot of data reuse occurs. However, this does not mean that the first few tasks in such a
package will use similar input data. So, HFP’s scheduling does not allow for much data reuse at the very
beginning of execution, but this is compensated for once a package’s data is fully loaded. The ready
strategy helps refine the schedule by improving temporal locality at the beginning of the experiment.

3.4. EXPERIMENTAL SETTINGS 55

3.4 Experimental settings

We now present the experimental settings used to compare the above schedulers to existing scheduling
techniques in runtime systems 2. Experiments were conducted on a Tesla V100 GPU using cuBLAS
10.2 GPU kernels with single-precision floating-point numbers. Throughout this document, when we
refer to GPUs, we are referring to the Tesla V100 GPUs from the Gemini-1 node on the Grid5000
computing platform3. The GPU memory is limited to M = 500MB. This limitation allows us to
distinguish the performance of different strategies even on small datasets. The V100 GPU has a memory
of M = 32GB, thus we would have to use applications with a dataset 64 times larger in order to have
the same ratio between the dataset size and the GPU memory. The time and power consumption costs
would be much higher to make the same observations. In order to test the performance of the strategies
in different conditions, we have also used the ability to run a STARPU application with the SimGrid
simulator [36].

The study in this chapter is limited to independent tasks, hence we concentrate on one of the major
kernels in linear algebra made of independent tasks: matrix multiplication, as well as several variants.
All our applications are based on linear algebra operations and we use matrices composed of tiles of
960 × 960 single-precision reals, a size that allows for a good tradeoff between performance and task
density.

2D matrix multiplication. To compute C = A×B, each task corresponds to the multiplication of one
block-row of A per one block-column of B. Input data are thus the block-rows of A and block-
columns of B. You can find an example of such data dependencies on Figure 3.6. Throughout
this thesis, all matrices are square.

3D matrix multiplication. All matrices (A, B, C) are square and contains N ×N tiles, and the com-
putation of each tile of C is decomposed into multiple tasks, each of which requires one tile of A,
B and C.

Task set of the Cholesky factorization. We consider the tasks of the tiled Cholesky decomposition [6]
on a square N ×N matrix, but remove all dependencies, as we are interested only in independent
tasks. The given set of tasks is representative of what a scheduler might be exposed to at some
point in a large execution with dependencies. Even if this does not compute the actual Cholesky
decomposition, it allows to have data dependencies with a more complex regularity than the 2D
or 3D matrix multiplication.

2D matrix multiplication with randomized task order. We consider the set of tasks from the 2D ma-
trix multiplication, but with a randomized submission order.

Randomized pairs with 2D inputs. We consider the set of tasks and data from the 2D matrix multi-
plication, but with a random dependency pattern between tasks and data: each task requires one
(random) block-row of A and one (random) block-column of B. This allows us to test our algo-
rithms on an unstructured dependency graph.

Sparse 2D matrix multiplication. Starting from the 2D matrix multiplication scenario above, we ran-
domly remove 90% of the tasks, thus largely increasing the communication-to-computation ratio.

2The code used to reproducibly obtain the results of this chapter is available at https://gitlab.inria.fr/starpu/
locality-aware-scheduling/-/tree/FGCS2021

3https://www.grid5000.fr/w/Lyon:Hardware#gemini

https://gitlab.inria.fr/starpu/locality-aware-scheduling/-/tree/FGCS2021
https://gitlab.inria.fr/starpu/locality-aware-scheduling/-/tree/FGCS2021
https://www.grid5000.fr/w/Lyon:Hardware#gemini

56 CHAPTER 3. STATIC SCHEDULING FOR A SINGLE PROCESSING UNIT

T1 T2 T3

T4 T5 T6

T7 T8 T9

D1 D2 D3

D4

D5

D6

Figure 3.6: Data dependencies on a 2D matrix multiplication.

While we use the terms 2D and 3D matrix multiplication to make the difference clear, they refer respec-
tively to the outer product and General Matrix Multiply.

We use the five scheduling heuristics presented above. DMDAR is considered as the state-of-the-art
strategy as it is the one used in the Chameleon library. Each scheduling algorithm receives the whole set
of tasks of an application in the submission order (row by row for a matrix multiplication for instance),
and then outputs this same set of tasks in a new order, which is used in STARPU to process tasks on the
GPU. We measure the obtained performance as the throughput of elementary computational operations
performed per time unit (in GFlop/s, thus the higher, the better), as well as the total volume of data
transferred between CPU and GPU (which we try to minimize) while varying the working set size.
We define the working set size as the size in bytes of all input data. For example, for the 2D matrix
multiplication, since we have 2 matrices of N ×n tiles (where n = 4), each tile counting 9602 elements
of 4 bytes, we have:

working_set_size = 2×N × n× 9602 × 4

Each result is the average of the performance obtained over 10 iterations. For most of the results, the
deviance is less than 2%, thus, we do not show error bars in the following graphs.

The plots in Chapters 3, 4 and 5 are all using the formalism shown on Figure 3.7. It shows the
performance when varying the problem size. The dotted horizontal black line at the top represents the
maximum throughput that the GPU can achieve when processing the selected application (without I/Os)
and is thus our asymptotic goal. The red dotted vertical line denotes the situation when the GPU memory
can fit exactly only one of the two input matrices, and the orange line denotes the situation when it can
accommodate both input matrices.

Unless specified otherwise, for HFP we enable all three optimizations: Ready dynamic task reorder-
ing of DMDAR (see Algorithm 2), package flipping (called flip on the plots), and Belady’s optimal
eviction policy (called Belady on the plots). All schedulers use LRU’s eviction policy except for HFP
(unless otherwise stated). In some cases, we take into account the scheduling’s overhead of HFP. Other-
wise, it will not be counted when measuring performance. Our proposed heuristic is an offline scheduler,
thus, if we know the size of the matrix as well as the size of the GPU memory, the processing order can
be generated ahead of execution. For the same reasons, MST and RCM’s scheduling time are not taken
into consideration. On the contrary, DMDAR and EAGER are dynamic, so we cannot pre-compute their
schedule and their scheduling time cannot be ignored. The overhead of the Belady’s eviction policy
(which is applied at runtime) is always taken into account in the results.

3.5. EXPERIMENTAL RESULTS AND ANALYSIS 57

B
 fi

ts
 in

 m
em

or
y

A
 a

nd
 B

 fi
ts

 in
 m

em
or

y

GFlop/s max

0

5000

10000

0 500 1000 1500 2000 2500
Working set (MB)

G
F

lo
p/

s

Figure 3.7: Conventions used in experimental evaluation figures.

3.5 Experimental results and analysis

We now present the results obtained by ordering the previously mentioned applications on a single GPU.

3.5.1 Results on the 2D matrix multiplication

General overview Figure 3.8a shows the performance of each scheduling heuristic when varying
the size of the problem, while Figure 3.8b shows the amount of data transfers. Figure 3.9 shows the
performance while varying the available memory. On Figure 3.8b, the black dotted curve represents the
maximum number of transfers that can be done during the minimum time for computation (given by
the bound on the throughput), thus the hard limitation induced by the PCI bus bandwidth: a strategy
exceeding this amount necessarily requires more time for the data transfers than the optimal time for
computation.

Communication lower bound for 2D matrix product The solid black line on Figure 3.8b rep-
resents the lower bound of the amount of data transfers required to complete the matrix product. The
derivation of this lower bound follows the ideas introduced by Hong and Kung [77] and later used by
many other studies. Note that we cannot use general formulas for the communication lower bound of
the matrix multiplication (such as [116]) as it deals with 3D matrix multiplication, while we consider
here the 2D matrix multiplication.

The considered matrices have the following size: matrix A is N × n, matrix B is n×N and matrix
C is N ×N . All these sizes are in number of blocks, and the memory size of a block is S. We denote
by m = M/nS the maximum number of block rows of A (or block columns of B) that fits in memory.
We define a phase of the computation as a time window during which at most m block columns of
A (or block columns of B) are read (corresponding to a volume of I/O of M). Together with the m
block rows/columns that may originally reside in memory, 2m block rows/columns are available for the
computation. We are looking for an upper bound on the number of computations that may be performed
using these 2m blocs rows/columns of data. The most optimistic situation is when m blocks rows of
A and m blocks rows of B are available, leading to m2 block computations. Since in total, we need to

58 CHAPTER 3. STATIC SCHEDULING FOR A SINGLE PROCESSING UNIT

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ●
●

●
●

●
●

●

●

● ●

●

B
 fi

ts
 in

 m
em

or
y

A
 a

nd
 B

 fi
ts

 in
 m

em
or

y

GFlop/s max

0

5000

10000

0 500 1000 1500 2000 2500
Working set (MB)

G
F

lo
p/

s

●●●●●●●●● ●●●●●●●●●

●●●●●●●●● ●●●●●●●●●

●●●●●●●●●

HFP HFP only flip RCM

HFP only Belady HFP with sched. time MST

HFP only ready DMDAR EAGER

(a) Performance.

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

P
C

I b
us

 li
m

it

Lower bound

B
 fi

ts
 in

 m
em

or
y

A
 a

nd
 B

 fi
ts

 in
 m

em
or

y

0

2500

5000

7500

10000

0 500 1000 1500 2000 2500
Working set (MB)

D
at

a
tr

an
sf

er
s

(M
B

)

●●●●●●●● ●●●●●●●●

●●●●●●●●

●●●●●●●●

HFP HFP only flip MST

HFP only Belady DMDAR EAGER

HFP only ready RCM

(b) Amount of data transfers.

Figure 3.8: Results on the 2D matrix multiplication in real execution with 1 Tesla V100 GPU, N ranging
from 5 to 90. Memory limited to 500 MB.

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ●
●

● ●

B
 fi

ts
 in

 m
em

or
y

A
 a

nd
 B

 fi
ts

 in
 m

em
or

y

GFlop/s max

0

5000

10000

0 100 200 300 400 500
Memory (MB)

G
F

lo
p/

s

●●●●●●●●● ●●●●●●●●●

●●●●●●●●● ●●●●●●●●●

●●●●●●●●●

HFP HFP only flip RCM

HFP only Belady HFP with sched. time MST

HFP only ready DMDAR EAGER

Figure 3.9: Performance on the 2D matrix multiplication in real execution with 1 Tesla V100 GPU while
varying the memory size, N set to 15. Memory limited to 500 MB.

3.5. EXPERIMENTAL RESULTS AND ANALYSIS 59

perform N2 block computations, we have at least bN2/m2c full phases. Hence, a lower bound on the
I/O is given by:

LBIO =
⌊
N2

m2

⌋
M =

⌊
N2n2S2

M2

⌋
M =

⌊
input_matrix_size2

M2

⌋
M

where input_matrix_size = nNS is the size of an input matrix (A or B). We may slightly refine
this bound, by acknowledging the specificity of the first phase: no data is initially in memory when the
computation starts. Hence, we define the first phase as the interval when the first 2m rows/columns are
read (instead of m), which also leads to at most m2 computations. We finally have two cases:

• Both input matrices fit in memory, leading to no full phases. In this case, the amount of I/O is
2× input_matrix_size.

• Both input matrices do not fit in memory, leading to at least one full phase. In this case, the first
phase leads to 2M I/Os.

This is summarized in the following formula:

LBIO =
⌊

input_matrix_size2

M2

⌋
M + min(M, 2× input_matrix_size)

A pathological matrix size for EAGER, MST and RCM The EAGER, MST and RCM heuristics
switch to pathological behavior at the red vertical line. We can both see the throughput plummeting (Fig-
ure 3.8a) and the data transfers increasing (Figure 3.8b) at the same working set size. These schedulers
tend to process tasks along the rows of C. To explain the results, we need to understand LRU’s behavior
when multiplying matrix. We multiply A by B to get C. For small matrices, we can for example load
all of B, a row of A and a piece of C to write the result in it. This results in few data transfers and thus
good performance as we can see on Figure 3.8a before 1 000 MB. After 1 000 MB however, neither A
nor B fits in memory. The scheduler is therefore forced to load a few columns of B, a row of A and
a block of C. It computes the first row of C. Unfortunately it could not load all the columns from B,
so when it wants to compute a block for which not all the data are in memory, it has to evict the first
column from B (the one used least recently) in order to load the column of B it needs. But when it goes
to the computation of the second row of C, it needs the first columns of B that it just evicted. It must
therefore again evict the last columns of B. This generates many additional data transfers as we can see
on Figure 3.8b. Consequently all the algorithms treating tasks row by row or column by column will
suffer from this well-known pathological case of LRU. HFP aims to avoid this pathological case.
To help us understand the results, we can use the visualization tool that we developed. It represents the
order produced by a scheduler as well as the resulting data loads by showing matrix C. Figure 3.10
shows the ordering of RCM on a matrix multiplication with 1 GPU. For better readability, our visual-
ization uses a smaller memory (M = 250MB) and matrix size (N = 20). However it leads to the
same behavior as the eighth point (N = 40 and M = 500MB) of Figure 3.8a. The shade and the
numbering represent the processing order. A tile is fitted with a horizontal (resp. vertical) beige line if a
column (resp. row) load was necessary before computing the tile. This line may be solid, representing a
blocking fetch operation, or dotted for a prefetch done in the background of previous computations.

As we can see on Figure 3.10, by looking at the amount of solid horizontal lines in the squares,
processing tasks rows by rows generates a lot of loads for the same columns ofB. A similar phenomenon
happens with EAGER and MST, and thus explains the amount of data transfers on Figure 3.8b for
EAGER, MST and RCM.

60 CHAPTER 3. STATIC SCHEDULING FOR A SINGLE PROCESSING UNIT

Figure 3.10: Visualization of RCM’s processing order (represented by the shading from lighter to darker
as well as the numbering) on the 2D matrix multiplication. N = 20 and M = 250MB, which corre-
sponds to the 8th point of Figure 3.8a. A beige vertical (resp. horizontal) line in a square corresponds to
a row (resp. column) load that was necessary to compute this tile. Solid lines are fetches while dotted
lines are prefetches.

Figure 3.11: Visualization of DMDAR’s processing order (represented by the shading from lighter to
darker as well as the numbering) on the 2D matrix multiplication. N = 20 and M = 250MB, which
corresponds to the 8th point of Figure 3.8a. A beige vertical (resp. horizontal) line in a square corre-
sponds to a row (resp. column) load that was necessary to compute this tile. Solid lines are fetches while
dotted lines are prefetches.

3.5. EXPERIMENTAL RESULTS AND ANALYSIS 61

Figure 3.12: Visualization of HFP’s processing order (represented by the shading from lighter to darker
as well as the numbering) on the 2D matrix multiplication. N = 20 and M = 250MB, which corre-
sponds to the 8th point of Figure 3.8a. A beige vertical (resp. horizontal) line in a square corresponds to
a row (resp. column) load that was necessary to compute this tile. Solid lines are fetches while dotted
lines are prefetches.

DMDAR results As we can see on the visualization (Figure 3.11), DMDAR first processes the first
column of C. Then instead of processing the first block from the second column of C, it will process
a block from the second column on row number 4 because those data are already loaded in memory.
Then it will continue with blocks from the second column. So, DMDAR does not suffer from LRU’s
pathological case because its Ready strategy allows it to rather process tasks that need the block-row of
A already in memory instead of reloading the whole matrix. DMDAR’s data transfers however start to
rise for the last five working set sizes as we can see on Figure 3.8b. That corresponds to the performance
drop on the last five points of Figure 3.8a. The reason is a conflict between data prefetching and eviction.
Indeed, once the GPU is filled with data, it is not clear for DMDAR whether some data should be evicted
in order to perform more prefetches. It will thus rather stop prefetching data as long as all the data
currently in the GPU will be useful for the subsequent tasks to be executed there. Also, when some
data is actually evicted, DMDAR does not reconsider the task ordering according to the new set of data
loaded on the GPU. The basic problem of DMDAR here is that it does not have a global view of the
whole set of data and tasks, and thus cannot find a balance between prefetching and eviction. HFP aims
to solve this issue.

HFP results As we observe on Figure 3.8a, all HFP variants (excluding HFP with scheduling time)
get performance very close to ideal. Indeed, it tends to gather tasks that compute a square part of C
that requires parts of A and B, that can fit in memory size M . On Figure 3.12, thanks to the color
shade (and the numbering), we can distinguish that the processing order forms rectangles of blocks of
C. This allows HFP to execute a lot of tasks with very few data to load. Moreover, we can see on the
visualization that most of these data loads are done during a prefetch (dotted beige lines in the tiles),
thus allowing to overlap computations and data transfers. As we can see on Figure 3.8b, HFP with only
Belady, flip or Ready induces more data transfers than DMDAR. However HFP performs better than

62 CHAPTER 3. STATIC SCHEDULING FOR A SINGLE PROCESSING UNIT

Ref. Alg. EAGER MST RCM DMDAR

Impr. 106.3 % 87.6 % 72.9 % 15.1 %

Table 3.1: Percentages of improvement of HFP over the other heuristics averaged on all sizes. From
results on the 2D matrix multiplication in real execution with 1 Tesla V100 GPU, N ranging from 5 to
90 (Figure 3.8a).

DMDAR, even with these variants, thanks to better prefetching. It means that HFP is able to better
distribute data transfers over time, while DMDAR has to transfer a lot of data at once when computing
a new row of C. It is also worth noting that HFP with all optimizations (Belady, flip and Ready) greatly
reduces data transfers compared to its variants with only one optimization. As a consequence, HFP
stays very close to the amount of data transfers required to complete the matrix product with at most two
times more transfers than the lower bound. This does not impact performance in 2D, but we will see in
the following applications that combining all the optimizations is crucial to achieve peak performance.
Table 3.1 offers us a summary of the performance of HFP with respect to the other algorithms.

The blue curve in Figure 3.8a represents the performance of HFP when the scheduling time is not
ignored and with a fast start, that is, with a reduced complexity for the first iteration of HFP. Indeed,
during the first iteration of HFP, the search for the pair of tasks sharing the most data leads to a huge
complexity (m2 intersections to compute). For the 2D and 3D matrix products, the tasks are all identical,
so we can predict the first merge of tasks of HFP. Thus, we merge together the tasks sharing at least one
data without looking for the maximum of intersections. This leads to a reduced complexity without
impacting the scheduling quality. HFP with scheduling time + fast start is outperformed by DMDAR
only on working set sizes between 1 300 and 1 900 MB. The scheduling time of HFP greatly reduces its
performance when the number of tasks becomes important, which may cancel out the benefit of a better
locality. However, as the full set of task is available at the start of the computation, the whole schedule
can be pre-processed offline, thus suppressing the scheduling cost. For the sake of readability, we do not
show HFP with scheduling time on the next applications.

Figure 3.9 shows the dual view of Figure 3.8a: The working set is now set to 422 MB and we vary
the amount of available GPU memory. The measurements at 500 MB on Figure 3.9 (its last point) are
the same as the measurements at 422 MB on Figure 3.8a (its third point). We can observe the same
results as on Figure 3.8a but reversed: when the available memory is smaller than the working set,
heuristics get pathological behavior. Since we strongly reduce the amount of available memory, we get
a more restrictive situation, and the Ready task selection provides a large improvement on the second
point. HFP with scheduling time is also always better than DMDAR. This graph confirms that HFP can
achieve better performance than DMDAR, even under very constrained memory.

3.5.2 Results on the 3D matrix multiplication

General overview On Figure 3.13a, we plot the performance for all heuristics on the 3D matrix
multiplication in real execution. On this set of tasks, matrix C now plays a role in affinities since its tiles
accumulate contributions. Figure 3.13b shows the amount of data transfer from the RAM to the GPU in
these experiments. Remember that we do not count results written back to main memory in these data
transfers. The green dotted vertical line indicates the working set size that allows all three input matrices
to be loaded into the GPU’s memory. Figure 3.14 shows the same experiment but in simulation with a
performance model from the same GPU.

3.5. EXPERIMENTAL RESULTS AND ANALYSIS 63

●

●

●

●
● ●

●
●

●
●

●

●

●

●

● ● ● ●

● ●

●

●

●

●

●

●
●

●

●

●

B
 fi

ts
 in

 m
em

or
y

A
 a

nd
 B

 fi
ts

 in
 m

em
or

y

A
, B

 a
nd

 C
 fi

ts
 in

 m
em

or
y

GFlop/s max

0

2500

5000

7500

10000

0 1000 2000 3000 4000
Working set (MB)

G
F

lo
p/

s

●●●●●● ●●●●●●

●●●●●●

HFP HFP only flip

RCM HFP only Belady

DMDAR EAGER

(a) Performance.

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

B
 fi

ts
 in

 m
em

or
y

A
 a

nd
 B

 fi
ts

 in
 m

em
or

y

A
, B

 a
nd

 C
 fi

ts
 in

 m
em

or
y

PCI b
us l

im
it

Lower bound

0

5000

10000

15000

0 1000 2000 3000 4000
Working set (MB)

D
at

a
tr

an
sf

er
s

(M
B

)

●●●●●● ●●●●●●

●●●●●●

HFP HFP only flip

HFP only Belady DMDAR

EAGER RCM

(b) Amount of data transfers.

Figure 3.13: Results on the 3D matrix multiplication in real execution with 1 Tesla V100 GPU, N
ranging from 2 to 20. Memory limited to 500 MB.

●

●

●

● ●
●

●
●

●
●

●

●

●

●

● ● ●
● ● ●

●

●

●

●

●
●

●

● ● ●

●

●

●

●
●

●
● ● ●

●

B
 fi

ts
 in

 m
em

or
y

A
 a

nd
 B

 fi
ts

 in
 m

em
or

y

A
, B

 a
nd

 C
 fi

ts
 in

 m
em

or
y

GFlop/s max

0

2500

5000

7500

10000

0 1000 2000 3000 4000
Working set (MB)

G
F

lo
p/

s

●●●●●●●● ●●●●●●●●

●●●●●●●●

●●●●●●●●

HFP HFP only flip MST

HFP only Belady DMDAR EAGER

HFP only ready RCM

Figure 3.14: Performance on the 3D matrix multiplication in simulation with the performance model of
1 Tesla V100 GPU, N ranging from 2 to 20. Memory limited to 500 MB.

64 CHAPTER 3. STATIC SCHEDULING FOR A SINGLE PROCESSING UNIT

Communication lower bound for the 3D matrix product As for the 2D matrix product, we
plot in Figure 3.13b with a solid black line the lower bound of the amount of data that need to be loaded
from the main memory to the GPU memory (we do not consider the communication of the results back
to the main memory). We can indeed apply the lower bound on data reads from [116]:

LB3D
IO = 2nN2√

M/S
S − 2M

This bound can be slightly tighten by computing the number of full phases with a floor function:

LB3D
IO = 2M

⌊
nN2S

M
√
M/S

⌋

As previously for the 2D matrix product, we take the maximum between this quantity and the size of A
and B as both input matrices should be loaded at most once:

LB3D
IO = max

(
2M

⌊
nN2S

M
√
M/S

⌋
, 2nNS

)

EAGER and RCM results EAGER and RCM still compute tasks row by row, but one layer of
C at a time. Thus, they still get pathological performance, but this time, when the memory cannot
accommodate matrix A and B, as we can see on Figure 3.13a. Indeed, their numbers of loads (on
Figure 3.13b) get dramatically high after the orange dotted line, from 1100MB on the fifth point to
7600 MB on the sixth point. We observe the same results in simulation on Figure 3.14.

DMDAR results DMDAR suffers here from the same issue of balance between prefetching and evic-
tion, mentioned in Section 3.5.1. It loads the full set of data from C with prefetches. Thus, when
matrices A and B cannot fit in memory, we are in a situation where the memory is filled with data from
C, but we still need to evict and load data from A and B. In this case, DMDAR will load a full column
of B and then evict and load data from the rows of A, in order to avoid the eviction of prefetched data.
This generates a lot of transfers as we can see on Figure 3.13b. This affects the throughput: DMDAR
achieves good performance for the first five points but, once the memory is constrained, the performance
is diminished. On Figure 3.13a, DMDAR has worse performance than EAGER for the last three points,
because of the scheduling cost induced by looking at the full set of tasks in order to find a task that can
load a minimum number of data. With a large number of tasks, as it is the case with the 3D matrix, this
causes a large scheduling cost that overcomes the benefit of DMDAR’s scheduling. As we can see on
Figure 3.14, DMDAR achieves more sustained performance for the last few points when the scheduling
time is ignored, as it is the case in simulation.

3.5. EXPERIMENTAL RESULTS AND ANALYSIS 65

Ref. Alg. EAGER MST RCM DMDAR

Impr. 68.3 % 64.0 % 73.7 % 66.5 %

Table 3.2: Percentages of improvement of HFP over the other heuristics averaged on all sizes. From
results on the 3D matrix multiplication in real execution with 1 Tesla V100 GPU, N ranging from 2 to
20 (from Figure 3.13a).

Figure 3.15: Visualization of HFP’s processing order (represented by the shading from lighter to darker
as well as the numbering) on the 3D matrix multiplication with only 4 layers. N = 10 and M = 250.
A beige vertical (resp. horizontal) line in a square corresponds to a row (resp. column) load that was
necessary to compute this tile. Solid lines are fetches while dotted lines are prefetches. C tiles load are
not displayed.

HFP’s results For the sake of readability, Figure 3.15 shows a visualization of a smaller version of
the 3D matrix multiplication, when the size of the inner loop is limited to 4 (matrix A is N × 4 while
B is 4 × N). The whole subset of tiles products (of size N × 4 × N) is plotted in 4 panels: the same
tile on all four panels uses the same tile of C. HFP keeps gathering tasks forming rectangular blocks
with all four layers of C, which provides a good locality between input matrices A, B and C, as well
as some data loads during a prefetch (as one can see with the beige dotted lines). It allows HFP to
generate at most two times more transfers than the lower bound of data transfers. Table 3.2 shows us
the percentages of average improvement of HFP over the other heuristics. HFP is thus still better on
average. It is worth noting that HFP without the Belady rule gets higher performance than RCM and
DMDAR. HFP’s ordering is able to reduce data transfers even without the optimal eviction policy. The

66 CHAPTER 3. STATIC SCHEDULING FOR A SINGLE PROCESSING UNIT

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

A
ll

da
ta

 fi
t

GFlop
/s

max

0

2000

4000

6000

0 1000 2000 3000 4000
Working set (MB)

G
F

lo
p/

s

●●●●●● ●●●●●●

●●●●●●

HFP HFP only flip

HFP only Belady DMDAR

EAGER RCM

Figure 3.16: Performance on the task set of the Cholesky factorization in real execution with 1 Tesla
V100 GPU, N ranging from 5 to 50. Memory limited to 500 MB.

Belady rule further reduces the quantity of data transfers, which explains the better performance of HFP
with this eviction policy.

As we can observe on Figure 3.14, HFP still outperforms the other heuristics when the scheduling
time is not taken into consideration. The percentage of average improvement in simulation can be seen
on Table 3.3.

Ref. Alg. EAGER MST RCM DMDAR

Impr. 61.8 % 60.4 % 68.9 % 46.0 %

Table 3.3: Percentages of improvement of HFP over the other heuristics averaged on all sizes. From
results on the 3D matrix multiplication in simulation with 1 Tesla V100 GPU, N ranging from 2 to 20
(from Figure 3.14).

3.5.3 Results on the task set of the Cholesky factorization

Figure 3.16 shows the performance of each scheduling heuristic on the task set of the Cholesky factor-
ization (with dependencies being ignored). The green dotted vertical line denotes the working set size
allowing to load all the data needed for the computation on memory.

EAGER and RCM’s results We notice that the EAGER and RCM heuristics get pathological per-
formance as soon as the whole matrix cannot fit the memory. They indeed do not manage to reuse more
than one tile between consecutive tasks, thus entailing a lot of tile reloads.

DMDAR and HFP’s results DMDAR has similar results with HFP for a working set inferior to
2.5 times the memory. DMDAR indeed takes advantage of the actual task submission order of the
Cholesky algorithm, which starts with tasks which require few input data (POTRF and TRSM kernels).
Meanwhile, it can load data for the subsequent tasks with more input dependencies (GEMM kernel).
HFP, on the contrary, does not pay attention to the task submission order, and aims for data sharing

3.5. EXPERIMENTAL RESULTS AND ANALYSIS 67

●

●

●
●

● ●
●

●
●

●
●

●
●

● ● ●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

B
 fi

ts
 in

 m
em

or
y

A
 a

nd
 B

 fi
ts

 in
 m

em
or

y

GFlop/s max

0

5000

10000

0 500 1000 1500 2000
Working set (MB)

G
F

lo
p/

s

●●●●●● ●●●●●●

●●●●●●

HFP HFP only flip

HFP only Belady DMDAR

EAGER RCM

Figure 3.17: Performance on the random task order from from 2D matrix multiplication in real execution
with 1 Tesla V100 GPU, N ranging from 5 to 80. Memory limited to 500 MB.

as much as possible. It will thus introduce a lot of GEMM tasks at the beginning of the execution,
and is therefore producing more data transfers. As the working set increases, however, HFP achieves
better performance than DMDAR. Belady’s eviction policy is crucial in this case, indeed HFP with only
Belady greatly increases the performance and allows us to stay close to our asymptotic goal. The average
improvement of HFP over the other heuristics with Cholesky are available on Table 3.4.

Ref. Alg. EAGER MST RCM DMDAR

Impr. 66.8 % 57.5 % 56.3 % 65.8 %

Table 3.4: Percentages of improvement of HFP over the other heuristics averaged on all sizes. From
results on the task set of the Cholesky factorization in real execution with 1 Tesla V100 GPU, N ranging
from 5 to 50 (from Figure 3.16).

3.5.4 Results on the 2D matrix multiplication with randomized task order

The results on the 2D matrix multiplication with randomized task order, shown on Figure 3.17, have an
interesting impact on the results previously discussed from Figure 3.8a.

EAGER and RCM’s results Due to the task order randomization, EAGER and RCM cannot take
advantage of the natural order of submission of tasks, and their performance is greatly affected. Indeed
for EAGER, onceA orB cannot fit in memory, processing tasks in this setting results in a random order,
which cannot bring data reuse as it is very unlikely that two tasks on the same row or column would be
computed consecutively. Now that RCM cannot follow the order of submission, its ability to minimize
bandwidth really contributes to its performance. Tasks are ordered to find at least one data share with
their neighbors. Although it does not find affinity for a large number of consecutive tasks, it still brings
enough improvements to beat EAGER.

68 CHAPTER 3. STATIC SCHEDULING FOR A SINGLE PROCESSING UNIT

(a) DMDAR’s processing order. (b) HFP’s processing order.

Figure 3.18: Visualization of the processing order (represented by the shading from lighter to darker
as well as the numbering) on the random task order from from 2D matrix multiplication. N = 20 and
M = 250MB, which corresponds to the 8th point of Figure 3.17. A beige vertical (resp. horizontal)
line in a square corresponds to a row (resp. column) load that was necessary to compute this tile. Solid
lines are fetches while dotted lines are prefetches.

DMDAR’s results The randomized task submission positively affects the performance of DMDAR.
With the randomized submission order, DMDAR can no longer process tasks column by column, as
it was the case in Section 3.5.1 and illustrated by Figure 3.11. Indeed with this random order, when
DMDAR is planning the next task to process, it will naturally process blocks of C forming squares. It is
very unlikely that random blocks from the same columns would be chosen. Moreover, once three blocks
of C forming a square have been processed, DMDAR will necessarily find the fourth block, completing
the square thanks to Ready, as it is looking for a data sharing the most data with what is loaded in
memory. This is clearly visible on Figure 3.18a. The light red blocks form a perfect square representing
the situation when both matrices fit in memory (N = 8 with M = 250MB which corresponds to
the third point on Figure 3.17). For the rest of the visualization we can still distinguish rectangles of
tasks computed one after another. It therefore completely avoids the LRU’s pathological case mentioned
earlier. Thus the data transfers of DMDAR are much smoother with the random submission order, which
improves its performance compared to Figure 3.8a.

HFP’s results For the first seven points, HFP obtains poorer performance than DMDAR, which
was not the case on Figure 3.8a. As explained above, DMDAR is better with the random submission
order. However, HFP suffers from an issue in this situation, which is illustrated by the visualization on
Figure 3.18b. For the first 100 tasks (corresponding to the very light red squares), we observe that the
tasks share the same rows and columns of data. However, if we want to merge this package with another
one, the data sharing will be much more limited than in the classic case of the 2D matrix, where we
could merge packages using strictly the same rows or columns. Thus, the randomization forces us to

3.5. EXPERIMENTAL RESULTS AND ANALYSIS 69

●

●

● ● ● ● ● ● ●
● ● ●

● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

B
 fi

ts
 in

 m
em

or
y

A
 a

nd
 B

 fi
ts

 in
 m

em
or

y

GFlop/s max

0

5000

10000

0 500 1000 1500 2000
Working set (MB)

G
F

lo
p/

s

●●●●●● ●●●●●●

●●●●●●

HFP HFP only flip

HFP only Belady DMDAR

EAGER RCM

Figure 3.19: Performance on the randomized pairs with 2D inputs in real execution with 1 Tesla V100
GPU, N ranging from 5 to 80. Memory limited to 500 MB.

form and merge packages corresponding to sparse matrices, which limits data reuse. This explains our
performance on the first few points.

However, HFP is still able to form squares blocks of C that allows to compute a large number of
tasks with a limited number of transfers. So even if we observe a large number of transfers on the
visualization of Figure 3.18b, these are overlapped with the computation. Indeed there are a lot of
transfers in beige dotted line on the visualization, meaning they are done in prefetch. This explains
the good performance of HFP for the last points. In addition, we observe on Figure 3.17 that HFP
without Belady does not achieve optimal GFlop/s. It is therefore crucial to use Belady, which allows us
to avoid evicting, and thus having to load again a data that will be used again in the future. Indeed, it
is even more important to manage eviction when the submission order is random because we no longer
rely on the submission order. Likewise, we can observe that HFP with all the improvements obtains
better performance compared to HFP with only Belady. This shows that the combination of HFP’s
improvements is effective. The average improvement of HFP over the other heuristics can be seen on
Table 3.5.

Ref. Alg. EAGER MST RCM DMDAR

Impr. 143.5 % 109.4 % 50.1 % 1.2%

Table 3.5: Percentages of improvement of HFP over the other heuristics averaged on all sizes. From
results on the 2D matrix multiplication with randomized task order in real execution with 1 Tesla V100
GPU, N ranging from 5 to 80 (from Figure 3.17).

3.5.5 Results on the randomized pairs with 2D inputs

The experiments on randomized pairs obtained from the 2D matrix multiplication, shown on Figure 3.19,
lead to results very similar to the previous experiment. The performance of EAGER decreases once
a matrix no longer fits in memory. Processing tasks along the rows of C is equivalent to a random
processing order with a randomized matrix operation. RCM gets more sustained performance: the

70 CHAPTER 3. STATIC SCHEDULING FOR A SINGLE PROCESSING UNIT

●

●

●

●

●

●
●

● ● ● ●
● ● ● ● ● ● ●

●

●

●
●

●

●

●

●
●

● ●
● ● ● ● ●

●
●

●

●

●
●

●

●

●

●
●

● ●
● ● ● ● ●

●
●

B
 fi

ts
 in

 m
em

or
y

A
 a

nd
 B

 fi
ts

 in
 m

em
or

y

GFlop/s max

0

5000

10000

0 500 1000 1500 2000 2500
Working set (MB)

G
F

lo
p/

s

●●●●●● ●●●●●●

●●●●●●

HFP HFP only flip

HFP only Belady DMDAR

EAGER RCM

Figure 3.20: Performance on the sparse 2D matrix multiplication in real execution with 1 Tesla V100
GPU, N ranging from 5 to 90. Memory limited to 500 MB.

randomization of data dependencies actually decreases the effect of the classical LRU pathological case,
since it does not tend to execute tasks rows by rows any more. For the same reasons as explained in
Section 3.5.4, DMDAR gets performance close to ideal. HFP outperforms DMDAR from the eighth
working set size. The randomization of data dependencies does not allow HFP to form perfect squares
of tasks. Thus it can only beat DMDAR when the working set is very restrictive compared to the GPU’s
memory. The percentages of improvement of HFP over the other heuristics averaged on the sixteen
points is shown on Table 3.6.

Ref. Alg. EAGER MST RCM DMDAR

Impr. 142.5 % 66.4 % 18.2 % 1.6%

Table 3.6: Percentages of improvement of HFP over the other heuristics averaged on all sizes. From
results on the randomized pairs with 2D inputs in real execution with 1 Tesla V100 GPU, N ranging
from 5 to 80 (from Figure 3.19).

3.5.6 Results on the sparse 2D matrix multiplication

We can observe on Figure 3.20 the performance obtained on a sparse matrix multiplication with only
10% of the tasks of the corresponding dense multiplication.

EAGER, RCM and DMDAR’s results Like in the previous experiments, following the submission
order does not carry enough locality to deal with the memory limitation. Both RCM and DMDAR
manage to find affinities on the rows or columns, but the sparsity increases the amount of data transfers
compared to the classical 2D matrix multiplication.

HFP’s results The way HFP groups packages does not depend on the ratio between the number
of tasks and the number of different data. Even in this more data-intensive case, HFP is able to form
clusters of data-sharing tasks. As we can see with HFP only flip in Figure 3.20, the package flipping

3.6. CONCLUSION ON STATIC SCHEDULING FOR A SINGLE PROCESSING UNIT 71

optimization has no impact in this situation because we cannot form optimal orders in a sparse set of
tasks. However, the packing heuristic coupled with Belady’s eviction policy produces a good amount
of data reuse, which explains why a good performance is kept even when memory is a constraint. The
percentage of improvements of HFP are given on Table 3.7.

Ref. Alg. EAGER MST RCM DMDAR

Impr. 65.9 % 55.6 % 46.6 % 41.6 %

Table 3.7: Percentages of improvement of HFP over the other heuristics averaged on all sizes. From
results on the sparse 2D matrix multiplication in real execution with 1 Tesla V100 GPU, N ranging from
5 to 90 (from Figure 3.20).

3.6 Conclusion on static scheduling for a single processing unit

Considering data movement is crucial to get the best performance out of a GPU. We focused in this
chapter on the ordering of tasks sharing some of their input data on a single GPU with limited memory.
We adapted two heuristics from the literature (MST and RCM). We proved that a task order and its
reverse produce the same number of data load. We designed a new algorithm gathering tasks with similar
input data into packages of increasing size, called HFP and demonstrated its computational complexity.
All three ordering strategies have been implemented using the STARPU runtime and tested together with
a baseline and a state-of-the-art scheduler for various sets of tasks on a Tesla V100 GPU.

On 2D and 3D matrix products, the HFP algorithm outperforms its competitors: it is able to group
together tasks of C forming rectangular blocks, as well as nicely ordering tasks among those blocks.
Hence, it both reduces the data transfers and allows a smooth overlap of communications with compu-
tations. In the case of the 3D matrix product, the Belady eviction policy further helps to improve the
performance. On more heterogeneous applications such as tasks from the Cholesky factorization, HFP
with all its optimizations (package flipping, Ready and Belady’s eviction policy) is also able to reduce
the amount of transfers and always reaches the best performance. On the randomized variants of the
2D matrix multiplication, HFP still manages to group tasks sharing data in order to obtain peak perfor-
mance. Finally, on the sparse application, HFP is also able to form packages of tasks, increasing data
reuse and thus leading to the best performance once the memory is a constraint. The Belady rule reduces
drastically the number of data transfers. Without this rule, HFP may entail much more data transfers than
other heuristics, but achieves better performance, which shows that HFP is also good at distributing data
transfer over time to increase transfer/computations overlap. This experimental evaluation allowed us to
show that HFP is generic with regard to the memory size: it can perform both with and without memory
limitations. The DMDAR scheduler, currently the best choice among available scheduling policies in
STARPU, obtains good performance for 2D matrix multiplication but is unable to cope both with very
large number of tasks and with more intricate data sharing patterns such as the ones from 3D matrix
multiplication. With the randomized variants, DMDAR avoids LRU’s pathological case and get more
sustained performance.

Our final objective is to build a generic scheduler that can deal with multiple processing units and any
task-based applications. HFP is very well suited to be extended to multiple GPUs as will be demonstrated
in the next chapter.

However, to work on any task-based application, a scheduler must be dynamic, since there are task
sets with dependencies. HFP could become dynamic in two ways, but both have significant drawbacks.

72 CHAPTER 3. STATIC SCHEDULING FOR A SINGLE PROCESSING UNIT

The first way would be to schedule the set of readyTasks and reschedule each time a new task becomes
available. This would mean that the schedule would be computed multiple times. We have already ob-
served in this chapter that the complexity of HFP is a problem for achieving good performance unless
the scheduling overhead is ignored, which is the case with dynamic schedulers. Computing the sched-
ule multiple times would introduce even more scheduling overhead and negate the benefits of HFP’s
strategy. The second way is to reschedule after an arbitrary amount of time or after a certain number
of dependencies have been released. This would lead to poor scheduling decisions, and finding such
arbitrary values is not guaranteed to yield good results on any task-based application.

These two limitations motivate the creation of a new dynamic scheduler that does not rely on a huge
complexity to solve the scheduling problem. We introduce such a new dynamic strategy in the next
chapter.

Chapter 4
Harnessing the Power of Multiple
GPUs

Contents
4.1 State-of-the-art schedulers . 74

4.1.1 Leveraging expected communication time with DMDAR 74
4.1.2 Using (hyper-)graph partitioning . 76

4.2 Hierarchical Fair Packing adaptation to multiple processing units (mHFP) . . . 77
4.2.1 Strategy . 77
4.2.2 Additional unused solutions explored for mHFP 78

4.3 A dynamic data-aware scheduler: DARTS . 81
4.3.1 Intuition . 81
4.3.2 STARPU’s task flow with DARTS . 81
4.3.3 Strategy . 81
4.3.4 Eviction policy . 83
4.3.5 Dealing with more input data per task . 84
4.3.6 Reducing the scheduling overhead . 84
4.3.7 Faster code with fewer mutex . 84

4.4 Experimental evaluation with multiple processing units 86
4.4.1 Settings . 86
4.4.2 Results on the 2D matrix multiplication with a single GPU 86
4.4.3 Results on the 2D matrix multiplication with multiple GPUs 87
4.4.4 Result on the 2D matrix multiplication with randomized task order and 2 GPUs 93
4.4.5 Result on the 3D matrix multiplication with 4 GPUs 96
4.4.6 Result on the task set of the Cholesky factorization with 4 GPUs 96
4.4.7 Results on the sparse 2D matrix multiplication with 4 GPUs 97

4.5 Conclusion on scheduling for multiple processing units 97

73

74 CHAPTER 4. HARNESSING THE POWER OF MULTIPLE GPUS

H
PC APPLICATIONS are often executed on nodes containing multiple processing units, be they
CPUs or GPUs. This is particularly relevant for task-based systems, as one can control the
granularity with which the application should be partitioned to fine-tune the distribution of

tasks across workers. In the previous chapter, we learned how to reduce data transfers on a single
processing unit: through temporal locality (i.e., processing tasks with common inputs consecutively). In
this chapter, we tackle the issue of maintaining good temporal locality, but on multiple processing units.
This is stated in Problem 3 as the BI-OBJ-MULTI-PU-TASK-SCHEDULING problem, introduced in the
model from Section 2.3. This model brings a new challenge, since one must both partition the tasks
(and consequently the data associated with it) and order the tasks for each processing unit.

In this chapter, we present several algorithmic solutions to the partitioning and scheduling problem
on a set of independent tasks. Some of these methods solve the partitioning problem first, and then
schedule the tasks on each processing unit while others tackle both simultaneously.

• We first present strategies from the state-of-the-art in Section 4.1.

• In Section 4.2 we present an extension to HFP to manage multiple processing units.

• In Section 4.3 we describe a new dynamic scheduler.

• The performance achieved by the different strategies is presented in Section 4.4.

4.1 State-of-the-art schedulers

DMDAR and EAGER are reused from the previous chapter. The EAGER strategy does not differ from
the one presented in Section 3.1.1. However, DMDAR offers more advantages with multiple processing
units (or PUs).

4.1.1 Leveraging expected communication time with DMDAR

DMDAR is a dynamic scheduler presented in the single processing unit case in Section 3.1.2. DMDAR
computes the expected completion time Ck(Ti) of the first task Ti in the queue on each PUk, based on a
prediction of the time for transferring the data to the PU (or communication time) comm and of the task
computation time comp. With a single processing unit, this only processes task in the submission order
and the Ready reordering allows to prioritize task whose input data are already (or partially) loaded onto
the processing units memory. With multiple processing units, DMDAR can now take advantage of two
key benefits:

1. commk(Dj) is the expected duration of transferring Dj to PUk. But with multiple processing
units, this transfer can be achieved in various ways. To understand how STARPU predicts the
transfer time ofDj to PUk we need to look at the topology of the node we use for our experimental
evaluations: the Gemini node. Indeed, it is the topology of the node (Figure 4.1) that dictates the
speed at which data can be transferred. Note that all bandwidth values used in the following
paragraph have been measured experimentally with actual data transfers, they may not reflect the
theoretical bus bandwidths. There are three different paths that data can take in order to be loaded
onto a GPU:

(a) Gemini consists of 8 GPUs (the numbered cores). They are coupled two by two through
a PCI switch (the black rectangles closest to the GPUs) and then four by four through a
second PCI switch. The PCI Express buses (black lines) connecting them to the switches

4.1. STATE-OF-THE-ART SCHEDULERS 75

NUMA 1NUMA 0 1

0 4

5

3 7

6
Interconnect

Interconnect

12 GB/s

12 GB/s

44 GB/s

22 GB/s

48 GB/s

24 GB/s

2

22 GB/s

Figure 4.1: Topology of the Gemini node. Dotted and solid lines of the same color represent the same
cables. The dots are used for perspective purposes only.

has a bandwidth of 12 GB/s. There are two NUMA nodes (orange rectangles in the figure),
each connected to 4 GPUs via a 22 GB/s PCI Express bus using the outer PCI switch. The
NUMA nodes consist of a CPU interconnect system that connects to the RAM at a bandwidth
of 44 GB/s (red lines). The first method to load data for a GPU is to pass through the PCI
switches and reach the RAM of the NUMA node. A first contention for bandwidth happens
on the inner PCI switches as two 12 GB/s buses connect the outer switch with a 12 GB/s
bandwidth as well.

(b) NVlinks are short-range communication links between two GPUs or CPUs. In our case,
using the Gemini node, they connect GPUs with a bandwidth of 24 GB/s (single green lines).
An NVLink can be thought of as a cable, and a GPU can have multiple NVLink slots.
Multiple cables can be linked together to increase the bandwidth when connecting the same
GPUs (double green lines are two NVLinks connected to the same two GPUs, doubling
the bandwidth). If there is no NVLink available to connect two GPUs directly, data can be
routed between the GPUs. So, the second way to get data to a GPU is to get it from another
GPU. This is the fastest way to get access to data, but it requires another GPU to have a valid
copy of the data, which is not always the case.

(c) If the data is not available on a GPU or would be too slow to transfer, the GPUs must rely on
the RAM of its NUMA node. If the needed data is not on the GPU’s associated NUMA node,
it must travel through a link between the two NUMA nodes using a 22 GB/s interconnect link
(blue line in Figure 4.1). This is the third and slowest way to access data. Note, however,
that the bandwidth between the interconnect and the RAM allows for simultaneous transfers
from both the PCI switch and the other NUMA node.

Considering the transfer duration with commk(Dj) and multiple PUs allows DMDAR to favor
the fastest path between a GPU and a data. This is especially powerful with NVLinks. In other
words, DMDAR is able to exploit spatial locality.

76 CHAPTER 4. HARNESSING THE POWER OF MULTIPLE GPUS

2. compk(Ti) is the expected completion time of Ti on PUk. On a node with multiple PUs, it is not
surprising to see disparities in computation speed due to temperature, power supply, or uneven
wear. If load balancing is not required, DMDAR can choose the fastest processing unit. This is
especially helpful for small task sets or toward the end of an execution: with few tasks remaining,
the benefit of choosing the fastest processing unit is much more visible.

The equation with multiple resources is:

Ck(Ti) =
∑

Dj∈D(Ti)
Dj /∈InMem(k)

commk(Dj) + compk(Ti) (4.1)

From Algorithm 1, we highlight the modifications to select the processing unit that can complete each
Ti task the fastest in red:

Algorithm 6 Deque Model Data Aware heuristic (DMDA)

1: For each PUk, InMem(PUk)← ∅
2: while all tasks have not been allocated do
3: Ti ← pop(T)
4: For each PUk, compute Ck(Ti) using Eq. 4.1
5: Select k such that Ck(Ti) is minimal
6: Allocate Ti to PUk

7: for each Dj ∈ D(Ti) do
8: Request data prefetch for Dj in PUk

9: Add Dj to InMem(PUk)

4.1.2 Using (hyper-)graph partitioning

A graph partitioner is a very suitable tool to decompose the set of tasks sharing input data into several
subsets of similar size while minimizing the number of common data among subsets. It has been exten-
sively outlined by Yoo et al. [128]. Each subset is then allocated to a PU, and tasks within the subset
are scheduled to further increase data locality. The fact that subsets have similar sizes ensures the load
balancing among PUs, while the minimization of common data reduces the amount of data that must be
sent to several PUs.

Yoo et al. [128] model data reuse through a graph whose vertices are tasks, and edges between two
tasks are weighted by the amount of shared input data between these two tasks. Then, they use the
METIS [84] graph partitioner to get a balanced partition of tasks while maximizing the number of data
shares (edges) within a subset. A limitation of this method appears when data is shared by 3 (or more)
tasks. Consider for example that some input data Di is required by tasks Ta, Tb and Tc. In the modeled
graph, this shared data leads to three edges (Ta, Tb), (Ta, Tc) and (Tb, Tc), leading METIS to count three
times its weight. It is thus more reasonable to use a hypergraph to model data reuse, as proposed in [86].
A hyperedge is created for each data D which includes all the vertices corresponding to tasks using D
as input. In the previous example, Di is modeled with a single hyperedge {Ta, Tb, Tc}. We can then
use a hypergraph partitioner, namely hMETIS [85] to split the tasks into subsets of similar size with few
hyperedges between subsets, that is, few shared data. We mostly used default parameters when calling
hMETIS [85], except for the default imbalance between partition (UBfactor), which is set to 1 in order
to have almost perfectly balanced partitions, and V-cycle, set to 2, as it is advised by the authors if time

4.2. HIERARCHICAL FAIR PACKING ADAPTATION TO MULTIPLE PROCESSING UNITS
(MHFP) 77

is an issue (which is the case). The number of bisections (Nruns) is set to 20 as it is advised by the
authors.

Also in [128], the authors propose a technique based on constructing a minimum spanning tree on
the task graph to schedule tasks within the different subsets. It was shown in Chapter 3 (and notably
Figures 3.8a, 3.13a and 3.16) that this technique does not adapt well to the problem of scheduling tasks
for a PU. We thus do not apply MST re-ordering here. Instead, to ensure good temporal data locality
within each subset of tasks assigned to a single PU, we decided to use the Ready strategy of DMDAR
(see Algorithm 2). Additionally, even if the partition produced by METIS is well-balanced in terms
of number of tasks, data transfers make some PUs process tasks faster than others, leading to load
imbalance. Thereby, we also implement dynamic load balancing using task stealing: when a PU has
terminated its allocated tasks and some other PU still has work to do, the idle PU steals half of the
remaining tasks from the PU with the most unprocessed tasks (starting at the tail of the list). We call this
hMETIS+R, detailed in Algorithm 7.

Algorithm 7 hMETIS heuristic with ready (hMETIS+R)

1: For j = 1, . . . ,m, hj ← {Ti, s.t. Dj ∈ D(Ti)}
2: Build hypergraph H = ({T1, . . . Tn}, {h1, . . . hm})
3: Apply hMETIS on H to produce a task partition P1, . . . , PK
4: Allocate tasks of Pk on PUk

5: If at some point PUk has no more tasks to process, steal half of the remaining tasks from the most
loaded PU and allocate them to PUk

6: Reorder tasks using Ready at runtime

Adaptation to heterogeneous task durations To handle heterogeneous task durations,
hMETIS+R requires two modifications. First, when building the hypergraph at Line 2 of Algorithm 7,
it needs to add weights to the vertices by using the expected task durations. With this modification,
hMETIS is then able to produce task partitions (Line 3) that have balanced expected completion times.
Second, Line 5 needs to be modified to balance the total expected completion time of a partition
instead of the number of tasks of a partition: PUk steals a subset of tasks equal to half of the expected
completion time of the most loaded PU.

4.2 Hierarchical Fair Packing adaptation to multiple processing
units (mHFP)

We adapt here the HFP algorithm presented in Section 3.3. As a reminder, it consists in gathering tasks
sharing many common input data into packages of maximum size the memory bound M . Packages are
merged that way as long as they do not exceedM . In a second step, resulting packages are merged again
in order to bind together packages with high data affinity, so they can be scheduled one after the other.

4.2.1 Strategy

We adapted HFP for the multi-PU case as follows. When scheduling tasks for K PUs, we merge pack-
ages until we reachK of them. It is unlikely that all these packages represent the same load (computed as
the number of tasks if tasks have the same duration, or else the total duration of tasks for heterogeneous
tasks). To achieve load-balancing, we first compute the average load Lavg of a PU. Unlike DMDAR,

78 CHAPTER 4. HARNESSING THE POWER OF MULTIPLE GPUS

HFP cannot compute the computation time of a task on a particular GPU as this is done before assigning
the task to it. To avoid computing the duration of a task on each GPU, we use the performance model
of the first GPU with comp0(Ti) to compute the expected completion time of each task and derive Lavg .
The GPUs used in our work are homogeneous. Due to the negligible speed differences between these
GPUs, our load balancing approach is not significantly affected by considering only the performance
model of the first GPU. It is worth noting that in a heterogeneous environment we would adopt a differ-
ent strategy: consider the average completion time on each processing unit. We then move the last tasks
of the package Pmax with highest load to the package Pmin with smallest load in order to balance the
load without exceeding Lavg . This process is repeated until the load is Lavg on all PUs. The additional
tasks are placed at the end of a package, as we noticed that there is usually more slack for communication
near the end of the computation.

The static process above is unable to provide a completely accurate load-balancing, as it is hard
to predict the duration of communications on a shared bus as well as their overlap with computations.
Thereby, we also implement for HFP the dynamic load balancing strategy using task-stealing introduced
for hMETIS+R (see Section 4.1.2). Similarly, to adapt to heterogeneous weights, we would use the same
technique as described for hMETIS+R.

Finally, it uses the Ready reordering strategy from DMDAR to favor tasks with better data availabil-
ity. The resulting strategy is called mHFP (for multi-PU extension of HFP) and described in Algorithm 8.

Algorithm 8 multi-PU Hierarchical Fair Packing heuristic
1: Use HFP (Algorithm 5) to create K packages P1, . . . , Pk
2: TotalLoad ← comp0(Ti) for i = 1 . . .m
3: Lavg ← TotalLoad/K
4: while There exists Pi with |Pi| > Lavg do
5: Let Pmax be the largest package
6: Let Pmin be the smallest package
7: Remove min(|Pmax| − Lavg, Lavg − |Pmin|) tasks from the tail of Pmax and append them to
Pmin

8: Allocate tasks of Pk on PUk

9: If at some point PUk has no more tasks to process, steal half of the remaining tasks from the most
loaded PU and allocate them to PUk

10: Reorder tasks using Ready at runtime

4.2.2 Additional unused solutions explored for mHFP

We present here other interesting solutions that have been explored to adapt HFP to the multi-PU case.
We explain how they could be useful and why we decided not to apply them.

mHFP2 With mHFP, we merge packages until we reach K of them. The first unused solution was
to apply HFP to each package K just before assigning them to the PUs. It consists of adding the line:
Use HFP on each Pk after Line 7 of Algorithm 8 and outside of the while loop. We call this mHFP2.
Each Pk is already a subpackage of HFP’s ordering of T. As we demonstrated in the previous chapter,
the transition from one package to another also brings locality thanks to the package flipping strategy
introduced in Section 3.3.5. Some of these data reuse patterns might have been lost when assigning a
package to each processing unit. The intuition with mHFP2 is to form a task order that is coherent with

4.2. HIERARCHICAL FAIR PACKING ADAPTATION TO MULTIPLE PROCESSING UNITS
(MHFP) 79

0

250

500

750

0 250 500 750
Planned order

R
ea

l o
rd

er

Figure 4.2: Difference between mHFP (planned order) and mHFP2 on the 2D matrix multiplication
with 3 GPUs. Each square is a task, and its position on the X or Y axis indicates its processing order.
Deviation from linear progression means that planned and actual orders differ. The dotted lines delimit
the 3 GPUs.

respect to the tasks in each Pk, and to maintain good data reuse between the tasks of Pk. It is therefore
reasonable to reapply HFP to each of the K packages.

After experimental evaluations on the 2D and 3D matrix multiplication, we observed a small (about
5%) performance penalty when using mHFP2. We can see the difference between the processing order
of mHFP and mHFP2 on Figure 4.2. For each GPU, all tasks have been reordered with mHFP2. We
can still find on the figure, lines of tasks that most likely share data and therefore, mHFP2 kept them
in a consecutive order but executed them earlier or later compared to mHFP. However, many tasks are
isolated. mHFP2’s second use of HFP is based on a subset of HFP’s complete scheduling. So, it can
suffer from an edge effect: some data reuse would have been unlocked on the next merge and does not
appear in each subpackage Pk. Ordering a small set of tasks is harder than ordering a full task set, which
can lead to such isolated tasks. In addition, we saw in a previous plot (Figure 3.8a) that the scheduling
time of HFP is important. Applying HFP again to each subpackage would again increase the overall
scheduling overhead. For these reasons, we do not use mHFP2.

However, such a strategy would be interesting on a larger scale: executing a very large set of tasks
on multiple nodes. Indeed, with multiple nodes each containing multiple PUs, one could use mHFP2 to
first divide the application into as many packages as there are nodes, and then use HFP again on each
node to divide the subpackages into as many packages as there are processing units. The scheduling
overhead would be less important because with larger applications and more PUs, it is less significant in
the overall computation time. Also, the schedule would still be good after applying HFP a second time
because a large number of tasks would diminish the edge effect mentioned earlier.

Interlacing The second unused idea was to use interlacing after reaching K packages. The intuition
behind this is that when packages are formed, most data reuse occurs in the middle of the packages, not
at the extremities. In fact, subpackages at the extremities suffer from having only one adjacent package
to share common data with. However, at the beginning of the execution, when the memory is empty,
the loads cannot be overlapped by the computations, so we need to reuse the data as much as possible

80 CHAPTER 4. HARNESSING THE POWER OF MULTIPLE GPUS

(a) HFP’s processing order on a 2D matrix multipli-
cation. The numbers is the order produced by HFP.
The white arrows indicate the HFP+interlacing order,
starting at tile 7.

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

B
 fi

ts
 in

 m
em

or
y

A
 a

nd
 B

 fi
ts

 in
 m

em
or

y

GFlop/s max

0

500

1000

1500

300 600 900
Working set (MB)

G
F

lo
p/

s
●● ●●mHFP mHFP+interlacing

(b) Performance on the 2D matrix multiplication
of HFP with and without interlacing in simulation.
Memory limited to 500 MB.

Figure 4.3: Using interlacing with HFP.

at the start of the schedule. So, the idea is to cut each package K into two subpackages and interlace
the tasks from the two subpackages, starting with the end of the first subpackage and the beginning of
the second subpackage. This way, we first alternate with tasks sharing data (the middle of the original
package), and end with tasks sharing little data (the extremities of the original package). It puts the most
data reuse at the beginning of execution, when we need it most. We call this mHFP+interlacing.

An example is shown in Figure 4.3a. The numbers are HFP’s order and the white arrows show the
reordering with interlacing. Starting with tile 7, the order is then 8, 6, 9, 5, 10, 4, 11, 3, 12 etc. An
experiment with interlacing is shown in Figure 4.3b: the red curve is mHFP using interlacing while the
magenta curve is mHFP. The non-interlaced variant achieves better performance than mHFP+interlacing.
This is because we were missing a key element: if data reuse is important at the start of the execution,
it is even more important when evictions begin to occur. In a very memory-constrained situation, it
makes sense to first load a lot of data at the beginning of the execution, and then to favor data reuse
with the data already loaded, as mHFP does. This way, only a minimal amount of data needs to be
evicted. mHFP+interlacing reduces the load at the beginning of execution, then struggles with loading
and eviction towards the end of it. If memory is limited enough compared to the PU memory, eviction
and the resulting data reloads overcome the benefits of better overlap at the beginning of execution. We
can clearly see this effect in Figure 4.3b: the interlacing strategy is as good as or better than mHFP
on the first two points, before the memory constraint, and fall behind only after the two input matrices
cannot fit in memory and evictions become necessary. Thus, increasing locality at the beginning of the
schedule, when memory is empty, will not bring any improvement under memory constraint. For this
reason, we are not going to use this method.

However, the idea is interesting for situations where access to RAM is contentious, for example
when multiple GPUs want to access RAM and the sum of the bandwidths between the GPUs and the
PCI switch is greater than the bandwidth between the switch and the RAM. Such an example can

4.3. A DYNAMIC DATA-AWARE SCHEDULER: DARTS 81

be seen in Figure 4.1. Interlacing could be used to smooth the data load over time. After applying
mHFP+interlacing and starting to execute the tasks, we observe the bandwidth usage. If we observe
that the bandwidth is saturated, processing units should pop tasks from the beginning of their attributed
package. The beginning is the side that increases data reuse, which will reduce their need to transfer
data. When the bandwidth is no longer constrained, processing units pop tasks from the end of their
package and consequently switch to the ordering with low data reuse. In doing so, transfers could be
more spread out over time, resulting in a less contentious access to the PCI buses and more overlap of
communications and computations.

4.3 A dynamic data-aware scheduler: DARTS

This section is dedicated to introducing our new scheduler: DARTS, which stands for Data-Aware Re-
active Task Scheduling.

4.3.1 Intuition

The previous strategies that partition the tasks in order to increase data locality, namely hMETIS+R and
mHFP, are static algorithms: they require a preliminary phase where the partition of tasks is computed,
and their complexity might be prohibitive for large numbers of tasks or data. We propose here a dynamic
strategy, called DARTS (for Data-Aware Reactive Task Scheduling), adapted from previous algorithms
specifically designed for linear algebra operations, such as outer products and matrix products [25]. The
main idea of these algorithms is to perform as many tasks as possible with the data at hand. When a new
data is loaded on a processing unit memory, we allocate to this processing unit all the tasks that depend
on the new data and on data previously loaded on this processing unit. New data are chosen at random
to make sure different processing units have little chance to compete for the same tasks.

4.3.2 STARPU’s task flow with DARTS

In order to grasp DARTS’ strategy, one must understand the flow of tasks within the STARPU runtime
system when associated with our scheduler. STARPU’s task flow was presented in Figure 2.6.3 of
Chapter 2. Figure 4.4 is a simplified version of that figure with the addition of DARTS. The blue
elements are specific to the DARTS scheduler. As with any scheduler, when a PUk is idling, it will
pull the head of the taskBufferk queue of tasks. With DARTS, if that is empty, it will pull tasks from
plannedTasksk. More precisely, it will pull as many tasks as it can fit into taskBufferk. taskBufferk has
a limited size of 30 tasks (in order to pipeline a reasonable amount of prefetches), while plannedTasksk
is not limited. If taskBufferk is also empty, DARTS will be called to fill plannedTasksk. DARTS
cannot access tasks in taskBufferk (as those are in the STARPU common core), however, tasks in
plannedTasksk can still be removed by DARTS. This additional layer of plannedTasksk allows to
maintain a schedule in accordance with the evictions, as we will see in Section 4.3.4. DARTS uses a
custom eviction policy to determine what data should be removed from a PU’s memory as needed.

4.3.3 Strategy

The main idea of our new scheduler, detailed in Algorithm 9, is to first consider data movement before
task allocation. Whenever some PUk requests some new task, we first look in the set dataNotInMemk

(which initially contains all data) for the data Dopt that, if moved into the memory of PUk, would
maximize the number of new “free” tasks, i.e., tasks that can be allocated and processed on PUk without

82 CHAPTER 4. HARNESSING THE POWER OF MULTIPLE GPUS

D

DARTSPlanned Tasks

 Task Buffer 1

Planned Tasks

 Task Buffer 2

D

D

D

D

D

D

Figure 4.4: Simplified task flow within the STARPU runtime when using DARTS. The pink boxes are the
common STARPU core. The blue elements are the actions of DARTS. A solid arrow is a task movement
and a dashed one is a notification. A large red or blue arrow indicates a data movement.

4.3. A DYNAMIC DATA-AWARE SCHEDULER: DARTS 83

any additional data movement. Once such a data is found, all these free tasks are allocated on PUk. More
precisely, they are put into plannedTasksk. The process is started again when plannedTasksk is empty.
It may happen that we do not find any data that enables some free tasks. It occurs for example at the
very beginning of the computation when all tasks depend on two or more data: at least two data must
be loaded in order to produce some free task. In this case, some random unprocessed task is allocated
to PUk. On the contrary, when there exists several candidate data which may produce the maximum
number of free tasks, we select a data among the candidates that is useful for the highest number of tasks
(free or not). When a tie occurs (either in selecting a task or a data), we randomly pick some elements.
This is important to make sure that different PUs have little chance to load the same data and compete
for the same tasks.

We describe here the values required to select the optimal data Dopt (see Algorithm 9):

• S0(D): the set of tasks that depend only on D and some data already loaded in the memory of
PUk.

• task_left(D): the sum of the durations of the tasks in readyTasks that use D as an input.

Algorithm 9 DARTS scheduler on PUk

When PUk requests a new task
1: if plannedTasksk = ∅ then . We need to fill plannedTasksk
2: for each data D ∈ dataNotInMemk do
3: Compute S0(D) and task_left(D)
4: Choose the data Dopt with the highest |S0(D)|, tiebreak with task_left(D) and then randomly
5: if |S0(Dopt)| > 0 then
6: Append S0(Dopt) to plannedTasksk
7: Remove Dopt from dataNotInMemk

8: else
9: Select a random unprocessed task T

10: Append T to plannedTasksk
11: Remove the inputs of T from dataNotInMemk

12: Return head of plannedTasksk

Note that DARTS is not explicitly adapted to heterogeneous weights, but this is not a problem.
Because, unlike hMETIS+R and mHFP, DARTS is a dynamic scheduler: it only assigns work to PUs
when they are idle. As a result, load balancing is automatic, even with heterogeneous task durations.

4.3.4 Eviction policy

In order to improve the performance of our dynamic scheduler, we also designed a custom eviction
policy: since we plan ahead which tasks will be allocated to a PU (through the use of plannedTasks),
we can take this information into account when we have to remove some data from the memory. This
strategy is named Least Used in the Future (LUF) and is detailed in Algorithm 10. We consider all
data currently in memory and check if they are used as input for a future task. There are two types
of such future tasks: tasks in plannedTasksk that have been reserved for a later allocation on the PU
as mentioned above, but also tasks in taskBufferk, which are the tasks that have been popped from
plannedTasksk for execution on PUk, and thus whose PU placement cannot be changed any more (the
required data for these tasks may already have been prefetched). We first try to evict a data which is

84 CHAPTER 4. HARNESSING THE POWER OF MULTIPLE GPUS

not useful for any task in taskBufferk, and which is an input of few tasks in plannedTasksk. If this
is not possible, we apply Belady’s rule [26] on tasks already allocated: we select the input data whose
next usage in taskBufferk is the furthest in the future, which is known to minimize data movement.
In practice, this last rule is rarely used as we usually succeed finding a data not useful for any task in
taskBufferk.

Algorithm 10 Eviction procedure LUF for DARTS on PUk

1: for each data D in the memory of PUk do
2: nb(D)← number of tasks using D in taskBufferk
3: np(D)← number of tasks using D in plannedTasksk
4: if the minimum value of nb(D) on any data D is 0 then
5: Select V such that nb(V) = 0 and np(V) is minimum
6: else
7: Select V the data whose next use in taskBufferk is the furthest in the future
8: Remove tasks depending on V from plannedTasksk
9: Evict V from memory, push it to dataNotInMemk

4.3.5 Dealing with more input data per task

We introduce here the 3inputs variant of DARTS (Algorithm 11). The interest of this variant comes into
play when no data allows to compute a task without additional loads, i.e., in the “else” case on Line 8 of
Algorithm 9. Instead of loading a random data, we first look for a data which enables as many tasks as
possible to be processed with a single additional data load. Namely, we look for a data D such that the
number of tasks depending on D, on another unloaded data D′ and on some data already in memory, is
maximal. If we find such data D, we return a random selection of such task T , otherwise we return a
random task.

We introduce the S1(D) notation:

• S1(D): the set of tasks that depend only on D, some data already loaded in the memory of PUk,
and 1 additional data.

4.3.6 Reducing the scheduling overhead

With a large number of data available at once, as it might be the case with an independent task set, the
complexity of finding Dopt can induce a sizable scheduling overhead. We thus enhance DARTS with
the additional OPTI strategy to reduce scheduling time: instead of looking for the data that enables the
most tasks, we stop the search as soon as we find a data allowing to compute at least one task. In order
to do this, we add, in Algorithm 9, after Line 3 and inside the for each loop: If (|S0(D)| > 0) {Break}

4.3.7 Faster code with fewer mutex

The main optimization of the DARTS implementation is a refined mutex policy. Mutual exclusion (or
mutex) protects shared resources from being accessed by concurrent threads during overlapping time
intervals. As mentioned above, the main complexity of DARTS comes from finding Dopt . Once Dopt is
found, the tasks are moved from the readyTasks list to the plannedTasks list. This needs to be protected
by a mutex. However, to find Dopt , the scheduler does not need to access a shared resource, apart from

4.3. A DYNAMIC DATA-AWARE SCHEDULER: DARTS 85

Algorithm 11 DARTS 3inputs variants on PUk

When PUk requests a new task
1: if plannedTasksk = ∅ then . We need to fill plannedTasksk
2: for each data D ∈ dataNotInMemk do
3: Compute S0(D) and task_left(D)
4: Choose the data Dopt with the highest |S0(D)| tiebreak with task_left(D) then randomly
5: if |S0(Dopt)| > 0 then
6: Append S0(Dopt) to plannedTasksk
7: Remove Dopt from dataNotInMemk

8: else
9: for each data D ∈ dataNotInMemk do

10: Compute S1(D)
11: if |S1(Dopt)| > 0 then
12: Task T ← head of S1(Dopt)
13: Append T to plannedTasksk
14: Remove the inputs of T from dataNotInMemk

15: else
16: Select a random unprocessed task T
17: Append T to plannedTasksk
18: Remove the inputs of T from dataNotInMemk

19: Return head of plannedTasksk

reading readyTasks. Therefore, we introduce a refined mutex policy that lets concurrent PUs selectDopt
during overlapping time intervals. The mutex is then used to protect task movement from readyTasks
to plannedTasks .

With our refined mutex policy, multiple PUs may select the same data Dopt during the same time
interval. We call this a conflict. We use the following example to explain how we handle a conflict: PU1
selects data D1 between time t1 and t3 and PU2 selects data D1 between time t2 and t3. PU1 found
D1 earlier. We let it fill plannedTasks1 with the tasks using D1 and other data in PU1’s memory. PU2
can then fill plannedTasks2 with the tasks using D1 and its own data in memory. The first downside of
such a refined mutex policy is that a conflict may lower the scheduling quality on PU2, since some of
the tasks it planned to add to plannedTasks2 have been picked by PU1.

More importantly, in some cases, PU2 might not be able to add any tasks to plannedTasks2 because
they would all have been taken by PU1. We call this a critical conflict. In such a case, PU2 must
restart the process of finding Dopt . If such critical conflicts occur frequently, the overhead of restarting
the search for Dopt could lead to a large reduction in performance. We observe on Figure 4.5a the
performance obtained with (orange line) and without (blue line) our refined mutex policy and ensure that
the number of conflicts is not significant with Figure 4.5b. We observe a large performance improvement
with the refined mutex policy. It is not accompanied by a large number of conflicts, as with 57 600 tasks
(N = 240) and 11 iterations, only 3 conflicts occurred. And only 2 were critical over the 12 matrix sizes
tested. For this reason, DARTS uses the refined mutex policy for the remainder of this thesis.

86 CHAPTER 4. HARNESSING THE POWER OF MULTIPLE GPUS

50 100 150 200 250
N

32500

35000

37500

40000

42500

45000

47500

50000

52500

DARTS+LUF
DARTS+LUF refined mutex

(a) Average performance.

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

N

0

1

2

3

4

5 Conflits
Conflits critiques
Conflicts
Critical conflicts

(b) Number of conflicts and critical conflicts.

Figure 4.5: Results of DARTS mutex policies on the 2D matrix multiplication with 4 Tesla V100 GPUs
over 11 iterations while varying the side N of the input matrices A and B. Memory limited to 500 MB
per GPU.

4.4 Experimental evaluation with multiple processing units

We present below the experimental evaluation conducted to compare the strategies presented above1.

4.4.1 Settings

We use the same GPUs, settings, and set of applications as in Chapter 3 and presented in Section 3.4.
The main difference is that we are using multiple GPUs of the Gemini node, connected as shown in Fig-
ure 4.1. We have most often limited the GPU memory to 500 MB, to better differentiate the performance
of the schedulers on smaller datasets, but Section 4.4.7 also presents results with no memory limitation.

We plot the performance obtained with various problem sizes, the number of tasks ranging from 5×5
to 300× 300 (which corresponds to working set sizes from 140 MB to 8 400 MB) for the 2D matrix and
up to 50 000 MB for the 3D matrix, in order to test all strategies on various memory conditions.

4.4.2 Results on the 2D matrix multiplication with a single GPU

To validate the performance of our new DARTS scheduler, and to verify that we have not altered the HFP
strategy with mHFP, we first test our strategies on a single GPU. Figure 4.6 shows the results obtained
by the various algorithms with a single GPU.

EAGER and DMDAR results As explained in Section 3.5.1, with a single GPU, EAGER switches
to pathological behavior at the red vertical line. We can both see the throughput plummeting (Fig-
ure 4.6a) and the data transfers increasing (Figure 4.6b) at the same working set size. Similar to the case
in Section 3.5.1, DMDAR suffers from a conflict between data prefetching and data eviction, which
prevents it from staying close to the asymptotic goal.

1The code used to reproducibly obtain the results of this chapter is available at: https://gitlab.inria.fr/starpu/
locality-aware-scheduling/-/tree/IPDPS2021

https://gitlab.inria.fr/starpu/locality-aware-scheduling/-/tree/IPDPS2021
https://gitlab.inria.fr/starpu/locality-aware-scheduling/-/tree/IPDPS2021

4.4. EXPERIMENTAL EVALUATION WITH MULTIPLE PROCESSING UNITS 87

●

●

● ●
● ● ● ● ● ●

●
● ● ● ●

●

●

● ●
●

●

●

●

●

● B
 fi

ts
 in

 m
em

or
y

A
 a

nd
 B

 fi
ts

 in
 m

em
or

y

GFlop/s max

0

2500

5000

7500

10000

12500

0 500 1000 1500 2000
Working set (MB)

G
F

lo
p/

s

●●●●●● ●●●●●●

●●●●●●

DARTS+LUF mHFP DMDAR

DARTS mHFP no sched. time EAGER

(a) Performance.

● ● ● ● ● ● ●
●

●
●

●
●

●
●

●

● ● ●
●

●

B
 fi

ts
 in

 m
em

or
y

A
 a

nd
 B

 fi
ts

 in
 m

em
or

y

PCI b
us

 lim
it

0

5000

10000

15000

20000

0 500 1000 1500 2000
Working set (MB)

D
at

a
tr

an
sf

er
s

(M
B

)

●●●●●● ●●●●●●DARTS+LUF mHFP EAGER

DARTS DMDAR

(b) Amount of data transfers.

Figure 4.6: Results on the 2D matrix multiplication in real with 1 Tesla V100 GPU. Memory limited to
500 MB.

mHFP results We show two variants of mHFP for a few working set sizes on Figure 4.6a. The
dashed line represents the performance when we ignore the scheduling time, that is, when excluding
the first phase in which the static task mapping is computed. We notice that it achieves very good
performance. The continuous line represents the performance obtained while taking into account the
scheduling time (like we do for every other heuristics). Unfortunately, the scheduling time of mHFP is
very long for large working sets (1 minute for a 1 300 MB working set) and rapidly grows. Thus, the
overhead induced by the scheduling time overcomes its benefits.

DARTS results We can see on the first seven points of Figure 4.6a, that DARTS and DARTS+LUF
achieve near perfect performance. Indeed, loading a single data, which enables multiple tasks to be com-
puted without any additional data load, reduces data transfers and increases overlap between transfers
and computations. However, after the red-dotted line, when the memory is constrained, DARTS has to
load and evict data following LRU’s policy. As a result, the tasks in taskBuffer that are supposed to
be ready for computation, have to load more data. Indeed, the previous tasks caused evictions, and the
data evicted might be needed by the tasks in taskBuffer . This causes a domino effect where each new
task requires a new data load. On the contrary DARTS+LUF sustains on average 8.5% more GFlop/s
than DMDAR. When an eviction is needed, it avoids as much as possible evicting a data that is used by
the few tasks already planned for computation. This way DARTS+LUF avoids the pathological case of
DARTS, and achieves a better balance between prefetching and eviction since DARTS+LUF maintains
in plannedTasks and taskBuffer an accurate overview of the tasks to be computed, even when eviction
removes some data from a GPU. In the end, it achieves near-optimal performance and the least amount
of data transfers on the last two points.

4.4.3 Results on the 2D matrix multiplication with multiple GPUs

We now move to the multi-GPU case. Figure 4.7 shows the results obtained using simulation (for 2
GPUs), thus not taking the scheduling costs of all heuristics and the partitioning costs of hMETIS into

88 CHAPTER 4. HARNESSING THE POWER OF MULTIPLE GPUS

●

●

●

●
● ● ● ●

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ●

A
 a

nd
 B

 fi
ts

 in
 c

um
ul

at
ed

 m
em

or
y

B
 fi

ts
 in

 c
um

ul
at

ed
 m

em
or

y

GFlop/s max

0

5000

10000

15000

20000

25000

0 1000 2000 3000 4000
Working set (MB)

G
F

lo
p/

s

●●●●●● ●●●●●● ●●●●●●DARTS+LUF mHFP hMETIS+R

DARTS DMDAR EAGER

Figure 4.7: Performance on the 2D matrix multiplication in simulation with the performance models of
2 Tesla V100 GPUs.

account. Figures 4.8 and 4.13 show the results obtained with real executions (for 2 or 4 GPUs). On
these last two figures we added two versions of hMETIS+R, one with partitioning time and one without
(hMETIS+R no part. time) to show its impact on performance. Now, the vertical lines depict the
thresholds when one or both input matrices fit in the cumulated memory, that is, can be distributed over
the memory of all GPUs.

mHFP results with multiple GPUs in simulation As we can see in Figure 4.7, mHFP achieves
near-perfect performance, almost hugging the maximum GFlop/s upper bound, when scheduling time is
not taken into consideration. It shows that mHFP’s strategy of ordering, load balancing, and task stealing
achieves good results in theory. To understand the reason behind these results, we visualize mHFP’s
ordering with two GPUs on Figure 4.9. HFP’s order adapts nicely to the multi-PU case, as they are all
assigned rectangles of tasks, which contains a lot of data reuse. For example, the red package starts
on the tile with coordinates 8:8, which of course requires two fetches (indicated by the two lines inside
the tile). Then the light red tiles around it (the 8 by 8 square starting at coordinates 8:8) are processed,
requiring only a few data transfers thanks to package flipping. Going from this 8 by 8 subpackage to
the next also requires no more transfers than necessary. The same phenomenon happens with the green
package. In total, only 30 fetches are required here, whereas DMDAR requires 69 fetches in the same
experiment, as we will see in Figure 4.11.

For mHFP, however, the scheduling time increases significantly with the working set size. For
example, for a working set of 2000 MB, mHFP takes more than 8 minutes to schedule, while DARTS
finishes in just 2 seconds. As seen in Figure 4.6a, mHFP’s results would be very poor if scheduling time
were taken into account. Therefore, for the following graphs in this document, we do not show mHFP
on the plots.

Nevertheless, mHFP would achieve near perfect performance if we consider that the scheduling
is done before the application starts. We can see in Figure 4.10 that even with 8 GPUs, mHFP can
create packages (each different color is a set of tasks assigned to a GPU) that have a lot of data reuse.
Again, we find in the processing order these U-shapes generated by HFP’s package flipping and packing,

4.4. EXPERIMENTAL EVALUATION WITH MULTIPLE PROCESSING UNITS 89

●

●

●
● ●

●

●

●

● ● ● ● ● ● ●

●

●

●

●
●

●

●

●

● ● ● ● ● ● ●

●

●

●
●

● ● ● ● ● ●
●

● ● ● ●

A
 a

nd
 B

 fi
ts

 in
 c

um
ul

at
ed

 m
em

or
y

B
 fi

ts
 in

 c
um

ul
at

ed
 m

em
or

y

GFlop/s max

0

5000

10000

15000

20000

25000

0 1000 2000 3000 4000
Working set (MB)

G
F

lo
p/

s

●●●●●● ●●●●●●

●●●●●●

DARTS+LUF DMDAR hMETIS+R no part. time

DARTS hMETIS+R EAGER

(a) Performance.

● ● ● ● ● ●

●

●

● ● ●
●

●
●

●
●

●

●

●

●

●
●

●

A
 a

nd
 B

 fi
ts

 in
 c

um
ul

at
ed

 m
em

or
y

B
 fi

ts
 in

 c
um

ul
at

ed
 m

em
or

y

PCI b
us

 lim
it

0

10000

20000

30000

40000

50000

60000

0 1000 2000 3000 4000
Working set (MB)

D
at

a
tr

an
sf

er
s

(M
B

)

●●●●●●

●●●●●●

DARTS+LUF DMDAR DARTS

hMETIS+R EAGER

(b) Amount of data transfers.

Figure 4.8: Results on the 2D matrix multiplication in real with 2 Tesla V100 GPUs. Memory limited
to 500 MB per GPU.

that minimizes data transfers. If we look at the red package, we can find these U-shapes at any size
granularity of a package.

To summarize, mHFP is an algorithm that achieves its goal of reducing transfers to achieve peak
performance, be it on 1 or 8 GPUs. However, its scheduling overhead makes it unusable for online
scheduling, but it would be a highly efficient offline scheduler.

EAGER, hMETIS+R and DARTS results Similarly to the single-GPU case, we observe in Fig-
ures 4.7 and 4.8a that EAGER, hMETIS+R and DARTS show lower performance under memory con-
straint. hMETIS+R gives a partitioning based on the data-sharing graph. In constrained situations, the
lack of task ordering inside a partition, does not allow for good data reuse. The Ready heuristic can only
reorder a limited number of tasks ahead of the computation and cannot improve performance by a sig-
nificant margin. EAGER and DARTS both suffer from the same pathological case induced by the LRU
strategy. By observing the two curves of hMETIS+R in Figure 4.8a, we notice that the partitioning time
of hMETIS+R has a significant impact on performance, and that this impact increases with the number
of GPUs.

DMDAR results The DMDAR results on two GPUs are also very similar to the single-GPU case.
DMDAR achieves a good load balance between the two GPUs and favors locality, but at some point
it cannot properly manage both prefetching and LRU eviction like in the single-GPU case as can be
seen on the last two points of Figures 4.7 and 4.8a. However, DMDAR is also slightly slower than
DARTS+LUF and mHFP before these last two points. Figure 4.11 shows DMDAR’s behavior at the
8th point of these figures. We can see that most data transfers are not done with a prefetch. This is due
to DMDAR’s ordering, which still mainly orders tasks row by row. Going from one row to the next
causes a burst of data loads that do not allow all the inputs to overlap with computations. We also notice
that some rows are loaded multiple times, showing that DMDAR does not reuse each data optimally.
This explains why the performance is slightly lower compared to DARTS+LUF in real and compared to
mHFP in simulation.

90 CHAPTER 4. HARNESSING THE POWER OF MULTIPLE GPUS

Figure 4.9: mHFP’s ordering (represented by the shading from lighter to darker) on the 2D matrix multi-
plication with 2 Tesla V100 GPUs. N = 20 and the GPUs memory is limited to 250 MB, corresponding
to the 8th point of Figure 4.7. Tiles in green are assigned to GPU1 and those in red to GPU2. A beige
vertical (resp. horizontal) line in a square corresponds to a row (resp. column) load that was necessary
to compute this tile. Solid lines are fetches while dotted lines are prefetches.

4.4. EXPERIMENTAL EVALUATION WITH MULTIPLE PROCESSING UNITS 91

Figure 4.10: mHFP’s ordering (represented by the shading from lighter to darker) on the 2D matrix
multiplication with 8 Tesla V100 GPUs. N = 40 and the GPUs memory is limited to 250 MB. Each
color is a set of tasks assigned to a GPU. A beige vertical (resp. horizontal) line in a square corresponds
to a row (resp. column) load that was necessary to compute this tile. Solid lines are fetches while dotted
lines are prefetches. The different "U" and the associated arrows show how mHFP’s processing order
brings data reuse at different packages granularities.

92 CHAPTER 4. HARNESSING THE POWER OF MULTIPLE GPUS

Figure 4.11: DMDAR’s ordering (represented by the shading from lighter to darker) on the 2D matrix
multiplication with 2 Tesla V100 GPUs. N = 20 and the GPUs memory is limited to 250 MB, corre-
sponding to the 8th point of Figures 4.7 and 4.8a. Tiles in green are assigned to GPU1 and those in
red to GPU2. A beige vertical (resp. horizontal) line in a square corresponds to a row (resp. column)
load that was necessary to compute this tile. Solid lines are fetches while dotted lines are prefetches.
Although we observe that the GPUs compute tasks one out of every two rows, this does not mean that
there is no data reuse from one row to another: by renumbering, we can create squares of tasks that more
visually show data reuse.

4.4. EXPERIMENTAL EVALUATION WITH MULTIPLE PROCESSING UNITS 93

DARTS+LUF results DARTS+LUF gets performance close to ideal, with a 9.4% improvement over
DMDAR for two GPUs in real, while maintaining a very low complexity. In multi-GPU, DARTS assigns
to each GPU its own set of data dataNotInMemk to pick from. However, all GPUs share the same set
of tasks. When a GPU is assigned a task, it is removed from the common set of available tasks. Thus,
our scheduler will naturally assign to the other GPUs data from a row or column that has not been used
for tasks yet. This will evenly distribute tasks among GPUs and mostly separate data usage between
GPUs. LUF’s eviction policy allows us to keep the expected data loading order by evicting data that
will be used the least for future tasks. Thus, the scheduling can still be effective despite the memory
constraint. It is also important to note that we observe in Figure 4.8b that DARTS+LUF has more data
transfers than DMDAR between 2500 and 3500 MB. However, its throughput is always higher. We can
understand this result if we take a look at the Figure 4.12. Most tiles that require a data load are able to
use a prefetch. In fact, splitting data loads between several executions of tasks from taskBuffer induces
a better distribution of transfers. On the contrary, DMDAR tends to load a large number of data at once
as we mentioned above. In the example of Figure 4.12, DARTS requires 55 fetches, which is more than
mHFP (30 fetches) but less than DMDAR (69 fetches). Despite this, DARTS and mHFP results are the
same in simulation. We can explain this again by looking at Figure 4.12. If we renumber the rows, we
could form squares of green and red tiles, similar to the packing of mHFP. This shows that there is a
lot of data reuse both from the rows of A and the column of B within each GPU. This is a great result
for DARTS because it can achieve the same performance as an offline scheduler with a much smaller
scheduling time. Thus, DARTS can achieve high throughput in both simulated and real experiments.
Therefore, DARTS will thus be our main focus in the rest of the manuscript.

Trends with more GPUs Using 4 GPUs (as in Figure 4.13) mainly impacts the performance of
DARTS. EAGER, hMETIS+R, DARTS, and DMDAR have similar results as on Figure 4.8a with 2
GPUs. The only difference is that the working set must be larger to observe the same results, indeed the
sum of memory is 2x larger, so the working set is pushed 2x further. At around 4000 MB we observe that
DARTS+LUF’s performance starts decreasing. As we use larger task sets, the scheduling time required
to find the optimal data to load begins to degrade the global performance of the strategy. To reduce the
impact of the scheduling overhead, we have added a threshold on the number of data we can pick from
when filling plannedTasks for working sets larger than 3500 MB only (in line 3 of Algorithm 9). This
reduces the quality of the scheduling for these working set sizes, but lets DARTS partially compensate
for the performance drop (as we can see on the plots with the red dashed line), and to surpass DMDAR
on the last two points. However, it is difficult to come up with an optimal threshold that limits scheduling
time without impacting too much the schedule quality.

4.4.4 Result on the 2D matrix multiplication with randomized task order and 2
GPUs

In order to test our heuristics in more irregular cases, we randomize the task submission order. It will also
highlight the link between performance and tasks’ submission order. Figure 4.14 shows that EAGER,
DMDAR and hMETIS+R are highly impacted by the randomized order of submission as soon as the
memory cannot contain both input matrices. This shows that DMDAR actually relies on the tasks
submission order to get good performance in previous graphs. Note that the performance is much worse
than when we randomized the task order with a single GPU in Figure 3.17; with a single GPU, data reuse
can happen more often even with a randomized set of tasks. With multiple GPUs, the randomization
causes the GPUs to replicate data loads, greatly reducing performance. DARTS manages to maintain

94 CHAPTER 4. HARNESSING THE POWER OF MULTIPLE GPUS

Figure 4.12: DARTS’ ordering (represented by the shading from lighter to darker) on the 2D matrix
multiplication with 2 Tesla V100 GPUs. N = 20 and the GPUs memory is limited to 250 MB, corre-
sponding to the 8th point of Figures 4.7 and 4.8a. Tiles in green are assigned to GPU1 and those in red
to GPU2. A beige vertical (resp. horizontal) line in a square corresponds to a row (resp. column) load
that was necessary to compute this tile. Solid lines are fetches while dotted lines are prefetches.

4.4. EXPERIMENTAL EVALUATION WITH MULTIPLE PROCESSING UNITS 95

●

●

●
●

● ●

●

●

● ● ● ● ● ● ●

●

●

● ● ● ●

● ● ●
● ● ●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

● ● ● ●
●

●

●

●

●

●

●

●

●

A
 a

nd
 B

 fi
ts

 in
 c

um
ul

at
ed

 m
em

or
y

B
 fi

ts
 in

 c
um

ul
at

ed
 m

em
or

y

GFlop/s max

0

10000

20000

30000

40000

50000

0 2000 4000 6000 8000
Working set (MB)

G
F

lo
p/

s

●●●●●●● ●●●●●●●

●●●●●●● ●●●●●●●

DARTS+LUF hMETIS+R

DARTS+LUF+threshold hMETIS+R no part. time

DARTS EAGER

DMDAR

Figure 4.13: Performance on the 2D matrix multiplication in real with 4 Tesla V100 GPUs. Memory
limited to 500 MB per GPU.

●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

A and B fits in cumulated memory

GFlop/s max

0

5000

10000

15000

20000

25000

0 500 1000 1500
Working set (MB)

G
F

lo
p/

s

●●●●●● ●●●●●●

●●●●●●

DARTS+LUF hMETIS+R

DARTS hMETIS+R no part. time

DMDAR EAGER

Figure 4.14: Performance on the 2D matrix multiplication with randomized task order in real with 2
Tesla V100 GPUs. Memory limited to 500 MB per GPU.

96 CHAPTER 4. HARNESSING THE POWER OF MULTIPLE GPUS

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

● ● ●
●

●

●

●
● ● ●

● ● ● ● ●

B
 fi

ts
 in

 c
um

ul
at

ed
 m

em
or

y

A
 a

nd
 B

 fi
ts

 in
 c

um
ul

at
ed

 m
em

or
y

GFlop/s max

0

10000

20000

30000

40000

0 10000 20000 30000 40000 50000
Working set (MB)

G
F

lo
p/

s

●●●●●

●●●●● ●●●●●

DARTS+LUF−3inputs DMDAR EAGER

DARTS+LUF hMETIS+R

Figure 4.15: Performance on the 3D matrix multiplication in simulation with the performance models
of 4 Tesla V100 GPUs. Memory limited to 500 MB per GPU.

high throughput until the memory size is less than an input matrix size. On this graph, DARTS+LUF
averages 75% more GFlop/s than DMDAR on all points.

4.4.5 Result on the 3D matrix multiplication with 4 GPUs

Figure 4.15 shows the results on the 3D matrix multiplication in simulation with 4 GPUs. We add
here the 3inputs variant named "DARTS+LUF-3inputs" and presented in Section 4.3.5. We observe
in Figure 4.15 that this variant leads to a better schedule. DARTS+LUF-3inputs reaches a throughput
about 61% larger than the one of DMDAR. It is important to note that from the second working set size,
DARTS+LUF-3inputs is better than its competitors, which shows that even without memory limitation,
the order of processing of our variant allows for a better overlap of tasks and data transfers.

In real, with multiple GPUs, DARTS performs very poorly because of its scheduling time. Finding
the optimal Dopt is too costly to get any results comparable to the other strategies.

4.4.6 Result on the task set of the Cholesky factorization with 4 GPUs

Figure 4.16 shows the results on the Cholesky factorization (without dependencies) with 4 GPUs in real.
Here, the green vertical line marks the working set size where all of input data fit into memory. DARTS
is unable to achieve good performance, even with the 3inputs variant. This is explained by the huge
number of tasks and the resulting scheduling time. The OPTI extension (see Section 4.3.6) allows to
maintain performance close to the optimal up to a 3000 MB working set. DARTS with OPTI gets on
average 49% more GFlop/s compared to hMETIS+R no part. time. Note that DMDAR also suffers from
a large scheduling time induced by looking at all the tasks in order to choose the one allowing to avoid
data loads. As a conclusion, DARTS can easily be extended to scenarios with more than 2 inputs per
tasks, using the 3inputs variants, as well as scenario with a very large number of tasks, using OPTI.

4.5. CONCLUSION ON SCHEDULING FOR MULTIPLE PROCESSING UNITS 97

●

●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

● ● ● ●
●

● ● ● ●
● ●

All data fit

GFlop
/s

max

0

5000

10000

15000

20000

25000

0 2000 4000 6000 8000
Working set (MB)

G
F

lo
p/

s

●●●●●●● ●●●●●●●

●●●●●●● ●●●●●●●

●●●●●●●

DARTS+LUF+OPTI−3inputs hMETIS+R

DARTS+LUF−3inputs hMETIS+R no part. time

DARTS+LUF EAGER

DMDAR

Figure 4.16: Performance on the task set of the Cholesky factorization in real with 4 Tesla V100 GPUs.
Memory limited to 500 MB per GPU.

4.4.7 Results on the sparse 2D matrix multiplication with 4 GPUs

Figure 4.17 shows the results on the sparse 2D matrix multiplication scenario, in which much less tasks
can be computed with the same number of data. On Figure 4.17a, DARTS manages to navigate between
sparse tasks without generating too many transfers, which is not the case for other schedulers. On
this application we observe that DARTS+LUF obtains 40% more GFlop/s than DMDAR. As the total
number of tasks is smaller than before, the OPTI variant is not needed, but we also see that it does not
negatively impact performance.

Figure 4.17b shows the same application but without memory limitation. In this case, DARTS+OPTI
obtains the best performance. This shows the ability of DARTS to produce a processing order that best
distributes transfers over time. We also note that hMETIS+R suffers from an important partitioning cost;
this largely decreases its performance that would otherwise be only slightly lower than DARTS.

4.5 Conclusion on scheduling for multiple processing units

Maximizing the performance of multiple GPUs on a single node, all sharing a few communication
buses with limited bandwidth, is challenging. In this chapter, we have proposed several alternatives
for scheduling tasks that share input data on such multi-GPU platforms and implemented them in the
STARPU runtime. After detailing the node architecture, we proposed to implement a strategy based
on a graph partitioner and extended it with task stealing. We extended a previous strategy to manage
multiple processing units and called it mHFP. We proposed a new dynamic strategy, DARTS, which
considers data movement before task allocation. We extensively evaluated our proposed schedulers on
applications with different data access patterns.

For the 2D matrix multiplication, with one or two GPUs, mHFP gives almost optimal results as an
offline scheduler. As an online scheduler, its performance is not competitive because of its scheduling
overhead. DARTS can achieve very good performance with both a single and multiple GPUs and on all

98 CHAPTER 4. HARNESSING THE POWER OF MULTIPLE GPUS

●

●

● ●

● ● ●
●

●
●

●
●

● ● ●

●

●

●
●

●
●

●
● ●

● ●
●

●

●

●

●

●

●

●
●

●
● ●

●
●

● ● ● ●
●

●

●

● ●
● ● ● ● ● ● ● ● ● ●

●

B fits in cumulated memory

A and B fits in cumulated memory

0

5000

10000

15000

20000

0 5000 10000 15000 20000
Working set (MB)

G
F

lo
p/

s

●●●●●● ●●●●●●

●●●●●● ●●●●●●

DARTS+LUF+OPTI hMETIS+R

DARTS+LUF hMETIS+R no part. time

DMDAR EAGER

(a) With memory limitation (500 MB per GPU).

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ●

GFlop/s max

0

10000

20000

30000

40000

50000

0 5000 10000 15000 20000
Working set (MB)

G
F

lo
p/

s

●●●●●● ●●●●●●

●●●●●● ●●●●●●

DARTS+LUF+OPTI hMETIS+R

DARTS+LUF hMETIS+R no part. time

DMDAR EAGER

(b) Without memory limitation (hardware limitation at 32
GB per GPU).

Figure 4.17: Performance on the sparse 2D matrix multiplication in real with 4 Tesla V100 GPUs.

the matrix multiplication variants as well as tasks from the Cholesky factorization without dependencies.
However, when a large number of tasks are ready at the same time (e.g., the 3D matrix multiplication),
the results are mixed.

Our goal is to create a generic scheduler: it must therefore be able to deal with dependencies. mHFP
is not incremental, therefore, with a dynamic task set, mHFP would have to be applied each time a new
task is made available. We have seen in this chapter that mHFP has an important scheduling overhead,
so it cannot not be applied to a dynamic task set. Therefore, in the next chapter, focused on scheduling
dependent task sets, we aim at improving DARTS.

Chapter 5
Dynamic Scheduling for Task Graphs

Contents
5.1 Existing runtime schedulers . 100

5.1.1 A work stealing policy: LWS . 100
5.1.2 A priority-based scheduler from the PaRSEC runtime: AP 101

5.2 Improving the DARTS scheduler . 101
5.2.1 Intuition . 101
5.2.2 Strategy . 101
5.2.3 Eviction policy . 103

5.3 Experimental settings . 103
5.4 Cholesky factorization with GPUs . 104

5.4.1 Overview . 104
5.4.2 Optimal data access pattern . 105
5.4.3 Single GPU case . 105
5.4.4 With multiple GPUs . 107
5.4.5 With multiple GPUs and no memory limitation 110

5.5 LU factorization with GPUs . 111
5.5.1 Results on 4 GPUs . 111
5.5.2 Results on a single GPU and no memory limitation 112

5.6 3D matrix multiplication with GPUs . 112
5.7 LU factorization on a multi-core CPU . 114
5.8 Conclusion on dynamic scheduling of task sets with dependencies 116

99

100 CHAPTER 5. DYNAMIC SCHEDULING FOR TASK GRAPHS

C
HAPTER 3 focused on grouping task sharing data in a static schedule to reduce data transfers.
Chapter 4 introduced a new strategy, called DARTS, that embraces this idea of data reuse
while being dynamic, reducing complexity, and managing multiple processing units. In this

chapter, we tackle our main goal, using the final model presented in Section 2.5: building a generic
scheduler capable of reducing data transfers and increasing performance by partitioning and scheduling
a set of tasks (with and without dependencies) sharing data on one or more processing units with limited
distributed or shared memory.

The remaining complexity that we need to add in order to reach our final model is the handling of
task graphs. Task graphs introduce task dependencies: some tasks must be processed before others and
therefore have a higher priority. A scheduler must then both progress along the critical path (the longest
path from the starting task to the last task) to avoid lack of parallelism, and order tasks to reduce data
transfers. These are two conflicting goals that raise the following question: How to balance locality and
priority? Because DARTS is dynamic, we favor it over mHFP, and focus in this chapter on rethinking
the DARTS strategy to answer this question. Our goal is for the DARTS scheduler to be able to override
priority in favor of locality when it can provide benefits.

We first present in Section 5.1 other strategies from runtime systems that deal with dependent task
sets. Then, in Section 5.2, we describe how DARTS was redesigned to reach its most optimized version.
Finally, we show a series of experimental evaluations. We first present an IO optimal scheduler and
use its behavior to explain our results on the Cholesky factorization (Section 5.4). Then, we use the
LU factorization with both distributed memory (Section 5.5) and shared memory (Section 5.7) settings.
Lastly, in Section 5.6 we present results on the 3D matrix multiplication.

5.1 Existing runtime schedulers

In this section, we present various algorithmic solutions that already exist in the literature to solve the
partitioning and scheduling problem with dependent task sets. As in previous chapters, we use the
greedy EAGER scheduler. We also use DMDAS, a variant of DMDAR that sorts tasks in the queue by
priority order (as provided by the application). It is the default state-of-the-art scheduler used by the
Chameleon library [8] when managing dependent task sets. DMDAS also includes the Ready strategy
(see Algorithm 2 in Chapter 3). We introduce two new competitors that are relevant in priority-based
workloads: a work stealing policy to deal with load balancing and locality (Section 5.1.1), and a strategy
from another runtime that uses priority as the main focus (Section 5.1.2).

5.1.1 A work stealing policy: LWS

Work stealing policies exist on several runtimes systems like XKaapi [65], or libraries like TBB [108].
Work stealing has proven to be efficient in situations where partitioning and reducing communication is
critical. We present here Locality Work Stealing (or LWS), a scheduler that combines work stealing for
load balancing, and locality to reduce communication. LWS is similar to the HWS scheduler introduced
by Quintin et al. [107].

Each worker has a queue of tasks planned for future execution on the worker. LWS can deal with
locality in two ways. First, when a task is released, it is queued on the worker that released it. Thus, by
default a task and its descendants are all scheduled on the same worker. In most cases, the descendants
of a task all share at least one input data, so scheduling them on the same worker favors data reuse.
Secondly, when a worker becomes idle, it steals a set of tasks from neighboring workers. It steals tasks
from the end of their queue. There is a high chance that the inputs of these tasks have not been prefetched

5.2. IMPROVING THE DARTS SCHEDULER 101

yet. This encourages workers to work on different input data. It thus favors distribution of different data
to different workers, which increases the locality within each worker’s task queue.

5.1.2 A priority-based scheduler from the PaRSEC runtime: AP

DPLASMA [29] is a well-known implementation of dense linear algebra operations for heterogeneous
architectures. It uses PaRSEC [31], a dynamic runtime for architecture-aware scheduling of tasks on
heterogeneous architectures. PaRSEC comes with different schedulers that all share two common as-
pects. First, they use the theoretical performance of CPUs and GPUs to balance the load assigned to each
processing unit. Second, they use the knowledge of the DAG [101] to evaluate the cost of a task relative
to its input, i.e. if multiple tasks use the same input data, the cost of a task will only be its computation
time (without counting the data loading time) as its input data can be reused. Thus, multiple tasks that
share input data have a higher probability of being computed on the same processing unit.

In our experiments, we use the Absolute Priority scheduler (AP) because of its affinities with prior-
ities, an important feature for the applications we will be using. With AP, all processing units share a
task-waiting queue that is sorted by priority, and each time a processing unit becomes available, it takes
for execution a task from the head of the waiting queue. We also evaluated the default scheduler of
PaRSEC: LFQ. We found that AP always gets slightly better performance on our applications. For this
reason, we only show AP in the following experiments.

5.2 Improving the DARTS scheduler

A preliminary version of DARTS limited to tasks without dependencies has already been proposed in
Section 4.3. We present here the improvements added to the DARTS scheduler. We only detail the new
features.

5.2.1 Intuition

Strategies mentioned in the previous section were favoring priority over locality: DMDAS and AP sort
tasks by priority, favoring progress on the task graph critical path over data reuse. On the contrary,
DARTS can contradict priority when useful to favor data reuse. Trading priority for more locality is
interesting when (i) a large number of tasks are available for computation at a given time, and (ii)
computation of tasks from the critical path is not urgent because many tasks must be computed before
the critical path becomes really critical. In such a case, there is enough parallelism available to occupy
all the processing units, and favoring data locality can thus bring more benefits. DARTS aims to take
advantage of this fact by considering as a primary factor the data that would bring the most data reuse if
loaded, and as a secondary factor, in case of a tie between two data to be loaded, the one associated with
the highest priority task.

5.2.2 Strategy

The fundamental principle of DARTS is, when requested for tasks to put in plannedTasksk for PUk,
to first look for the best new data to load, that is, a data that will maximize the work that can be per-
formed on PUk. Our first improvement over the previous DARTS design comes from the selection of
the best data to load Dopt . Whenever some PUk requests for some task to execute, we first look in the
dataNotInMemk set (which initially contains all data) for the optimal data Dopt that, if moved into

102 CHAPTER 5. DYNAMIC SCHEDULING FOR TASK GRAPHS

the memory of PUk, would minimize the ratio between the transfer duration of Dopt and the compu-
tation time of tasks that become “free”, i.e., tasks that can be assigned and processed on PUk without
any additional data movement. Considering the transfer duration favors direct communication between
GPUs (using NVLinks), which is much faster than using the PCI Express bus. In case of equality be-
tween several optimal data, we choose the data used by the task with the highest priority and associated
with the most remaining work. Once such data is found, all the corresponding free tasks are assigned
to plannedTasksk. If we cannot find a data which enables free tasks, we look for the data Dopt that
enables the computation of the highest-priority task T with one additional data load. In such a case, T
depends on Dopt , on another data D not in memory, and possibly other data already in memory. It may
happen that we do not find any such data, for example if all ready tasks depend on at least three data not
in memory. In this case, the highest-priority task from readyTasks is assigned to PUk.

The 3inputs variant from the last chapter is now obsolete. It was used as a secondary decision tree
when there was no data to compute a free task and thus accommodate tasks with three inputs. We now
use a single decision tree that can handle tasks with such input patterns. The OPTI variant that was
presented for the last implementation of DARTS is also now useless, since this new version of the code
has a large code optimization that partially solves our complexity problem.

We describe here the values required to select the optimal data Dopt (see Algorithm 12). Some
values have already been presented when DARTS was first introduced in Algorithm 9. For the sake of
clarity, we introduce them again here and outline the novelties in red.

• S0(D): the set of tasks that depend only on D and some data already loaded in the memory of
PUk.

• S1(D): the set of tasks that depend only on D, some data already loaded in the memory of PUk,
and 1 additional data.

• max_prio(D): the highest priority of a task in S0(D) if |S0(D)| > 0, otherwise the highest
priority of a task in S1(D).

• computation_time(D): the sum of the durations of the tasks in S0(D).

• task_left(D): the sum of the durations of the tasks in readyTasks that use D as an input.

• transfer_duration(D): time required to load D to PUk.

The previous DARTS design only supported independent tasks. The support of task graphs with
dependencies requires supporting the dynamic addition of tasks in readyTasks when their dependencies
are resolved. When such addition occurs, we dynamically update each dataNotInMemk, to include data
used by this new ready task but which was not used by any other ready task, and not loaded or planned
for load on PUk. The dataNotInMemk sets thus always contain exactly the set of data used by tasks
that can be started (either in readyTasks, in some plannedTasksk, or in some taskBufferk), which are
not yet loaded on PUk. As a reminder from the last chapter, taskBufferk is the set of tasks that have
been popped from plannedTasksk for execution on PUk.

Besides, for some newly-released ready tasks, we can bypass readyTasks and directly push them
to plannedTasksk when they are already “free”. Since we know which tasks have been queued to each
taskBufferk and plannedTasksk, we know the next data loading operations performed on PUk. When
a new task becomes ready, we can check if it will be free on PUk, i.e., if it can be already be processed
by some PUk without any additional data load (because its inputs are already loaded or queued to be
loaded). In such a case, we directly assign the new ready task to the corresponding plannedTasksk. If
several PUs qualify, we first consider the one with the fewest-queued tasks, to balance the load.

5.3. EXPERIMENTAL SETTINGS 103

Algorithm 12 DARTS scheduler on PUk

When PUk requests a new task
1: if plannedTasksk = ∅ then . We need to fill plannedTasksk
2: for each data D ∈ dataNotInMemk do
3: Compute S0(D), S1(D), max_prio(D),
4: computation_time(D), task_left(D) and transfer_duration(D)
5: Compute ratio = transfer_duration(D)

computation_time(D)

6: Choose the dataDopt with the smallest ratio, tiebreak in this order with |S0(D)|, max_prio(D),
|S1(D)| and task_left(D)

7: if |S0(Dopt)| > 0 then
8: Append S0(Dopt) to plannedTasksk
9: Remove Dopt from dataNotInMemk

10: else if |S1(Dopt)| > 0 then
11: Choose task T with highest priority from S1(Dopt)
12: Append T to plannedTasksk
13: Remove the inputs of T from dataNotInMemk

14: else
15: Choose task T with highest priority from readyTasks
16: Append T to plannedTasksk
17: Remove the inputs of T from dataNotInMemk

18: Return head of plannedTasksk

5.2.3 Eviction policy

The eviction policy is the same as presented in Section 4.3.4. We have updated this eviction policy
to update dataNotInMemk for each PUk after the eviction. The goal is to keep dataNotInMemk

up to date with the data that is currently required by ready tasks. This is essential for task sets with
dependencies, as the dataset must be dynamically managed to reduce the computational complexity
of finding Dopt . If the evicted data is not used by any task in readyTasks, we remove it from all
dataNotInMemk. It will be added there again when a new ready task with this input becomes available.
Otherwise, if any task of readyTasks uses the evicted data, we add it to dataNotInMemk for each PUk

that does not hold it in memory (and is not scheduled to load it).

5.3 Experimental settings

We present below the experimental evaluation conducted to compare the strategies presented above with
the improved DARTS scheduler1. The schedulers have been tested on three linear algebra applications:
the Cholesky factorization (A = L × LT), the LU factorization (A = L × U) without pivoting and
the 3D matrix multiplication (C = A × B and the computation of each tile of C is decomposed into
multiple tasks, each requiring one tile of A, B and C). Cholesky and LU are composed of tiled matrix
multiplications (GEMM, requiring 3 input data), symmetric rank-k update for Cholesky only (SYRK,
requiring 3 input data), triangular matrix equation (TRSM, requiring 2 input data), and Cholesky de-
composition (POTRF, requiring 1 input data) or LU decomposition (GETRF, requiring 1 input data).

1The code to reproduce the results of this chapter, including DARTS and the applications we used, is available at: https:
//gitlab.inria.fr/starpu/locality-aware-scheduling/-/tree/ICPP2023

https://gitlab.inria.fr/starpu/locality-aware-scheduling/-/tree/ICPP2023
https://gitlab.inria.fr/starpu/locality-aware-scheduling/-/tree/ICPP2023

104 CHAPTER 5. DYNAMIC SCHEDULING FOR TASK GRAPHS

When the scheduler requires task priorities (which is the case for DMDAS, LWS and DARTS), they are
computed as the bottom-level of the task in the task graph, which is the minimum time needed from the
start of the task to the completion of the whole graph, assuming unbounded resources [14]. The PaRSEC
AP scheduler uses its own set of priorities (although we noticed no difference when using bottom-level
priorities). Although we are running tests on Cholesky and LU factorizations, we made sure that our
new DARTS performs as well as the previous version on the applications from Chapter 4.

As in the previous chapters, we performed experiments on Tesla V100 GPUs (using cuBLAS 10.2
single precision GPU kernels) equipped with a 12 GB/s PCI bus. We use tiles of size 1920 as it allows to
achieve best peak performance on GPUs. Although being separate implementations for flexibility, our
applications are identical to those of the Chameleon linear algebra library [7]. In the case of the PaRSEC-
AP scheduler, we use the DPLASMA implementation of the Cholesky decomposition. To facilitate a
clear distinction of our various strategies, we have imposed a memory limitation of 2000 MB on the
processing units. This limitation allows us to evaluate the different strategies with smaller datasets. We
also provide results without any memory limitation. The shared memory setting with CPU is described
in the section presenting results with CPU cores: Section 5.7.

5.4 Cholesky factorization with GPUs

We present here a series of evaluations performed on GPUs using the Cholesky factorization. We first
describe how a communication-optimal algorithm behaves on a Cholesky factorization, before evaluat-
ing our scheduler on 1 and 8 GPUs under memory constraints. We also present results without memory
constraints on 8 GPUs.

5.4.1 Overview

Figure 5.2 shows the results obtained by the various algorithms using one GPU. Again, we find on
Figure 5.2a the maximum GFlop/s achievable, and the hard memory limitation with a black and a green
dotted line, respectively. We can also see on Figure 5.2b, with the solid gray line, the PCI bus limit:
a strategy exceeding this amount necessarily requires more time for the data transfers than the optimal
time for computation.

Figure 5.2b also depicts, with a solid black line, the lower bound on the communication volume
required by the Cholesky factorization of an N × N symmetric matrix. In a sequential out-of-core
setting, with a single RAM of infinite size and processing units of memory size S, Beaumont et al. [24]
prove that the minimal amount of IOs is computed as:

N3

3×
√

2× S

To be more precise, S is the number of 32-bit scalars that can be loaded in memory. If we simplify, we
can say that the proof of [24] states that the application can be divided into blocks of compute operations
that maximize the number of compute operations performed with a minimal amount of scalar loads.
In the proof, a single processing unit computes all the blocks of compute operations. With multiple
processing units, all starting with an empty memory, one can partition these same blocks of compute
operations to the GPUs, making them work on different data and therefore do not replicate data loads.
Thus, this result can be extended to multiple processing units on a single node.

5.4. CHOLESKY FACTORIZATION WITH GPUS 105

R

TriangleBlock(R)

Figure 5.1: Representation of the tiles computed by a triangle block in an iteration of the Cholesky
factorization. R is a set of TRSM results that have already been computed. Triangle block(R) is the
corresponding set of tasks to be processed to minimize IOs. Figure courtesy of Lionel Eyraud-Dubois.

5.4.2 Optimal data access pattern

The authors of [24] prove (i) that it is not possible to have fewer IOs than the previous lower bound,
and (ii) that there exists a sequential algorithm that matches such a result. We briefly introduce how
the optimal schedule would be adapted to multiple processing units on a single node. The proof mainly
focuses on the communication volume when processing SYRKs and GEMMs. Therefore, we only focus
on this part.

Figure 5.1 is an example of how the optimal schedule processes tasks on a given processing unit.
The intuition is to partition the results of the TRSM tasks across multiple processing units and then
compute as many SYRK and GEMM tasks as possible with such results. In Figure 5.1, we see on the
left side, in blue, the results of TRSM operations that have already been computed on this processing
unit. A node that has such results loaded into memory can compute the tiles in green (which are SYRKs
or GEMMs) with a minimal amount of IOs. The communication-optimal algorithm would compute such
triangle blocks associated with TRSM results already loaded on the GPU. Each GPU would compute
tiles associated with different TRSM results, thus not replicating the data. Finally, such triangle blocks
must be computed over multiple iterations. A scheduler that demonstrates a data access pattern in
a triangular block that effectively reuses TRSM results across multiple iterations has the potential to
significantly reduce IOs.

5.4.3 Single GPU case

From Figure 5.2a, we can see that LWS and EAGER greatly suffer from the memory constraint, as their
performance plummet after the green line. With only 1 GPU, they both process tasks in their natural
order of arrival, resulting in poor progress on the critical path for EAGER and a large number of data
loads for LWS, as shown in Figure 5.2b.

DMDAS and AP results DMDAS has more sustained performance but is far from the asymptotic
goal on large working set sizes. It suffers from the same issue as DMDAR: DMDAS does not reassign
tasks according to the new data loaded on the GPU because it does not have a global view of the set of
data and tasks, and thus cannot strike a balance between prefetching and eviction. However, we have
seen in previous chapters that such a problem causes only small performance losses, not as dramatic as
the one shown here. To better understand those results we can have a look at Figure 5.3. It corresponds

106 CHAPTER 5. DYNAMIC SCHEDULING FOR TASK GRAPHS

0 5 10 15 20 25
Working set size (GB)

0

2000

4000

6000

8000

10000

12000

GF
lo

p/
s

Full matrix fits

Upper bound

DARTS DMDAS LWS PaRSEC AP EAGER

(a) Performance.

0 5 10 15 20 25
Working set size (GB)

0

200

400

600

800

1000

1200

1400

Am
ou

nt
 o

f d
at

a
tra

ns
fe

rs
 (G

B)
PCI bus limit

Min IO

DARTS DMDAS LWS PaRSEC AP EAGER

(b) Amount of data transfers.

Figure 5.2: Results on the Cholesky factorization with 1 Tesla V100 GPU. Memory limited to 2000 MB.

Figure 5.3: DMDAS’s ordering on iterations 1 to 4 of the Cholesky factorization with 1 Tesla V100
GPU. N = 40 and the GPU’s memory is limited to 2000MB. The first 1000 processed tasks are in
red, the next 1000 in green, then blue, yellow, magenta, cyan and orange. The shading within each
color represents the processing order. The black area represents the amount of tiles that can be loaded
in memory. Corresponds to the 8th point of Figure 5.2a.

5.4. CHOLESKY FACTORIZATION WITH GPUS 107

Figure 5.4: DARTS’s ordering on iterations 1 to 4 of the Cholesky factorization with 1 Tesla V100
GPU. N = 40 and the GPU’s memory is limited to 2000MB. The first 1000 processed tasks are in
red, the next 1000 in green, then blue, yellow, magenta, cyan and orange. The shading within each
color represents the processing order. The black area represents the amount of tiles that can be loaded
in memory. Corresponds to the 8th point of Figure 5.2a.

to the 8th point of Figure 5.2a. It shows the processing order of each task on the first four iterations of
the Cholesky factorization. Each small square is a task. Here the first 1000 processed tasks are in red, the
next 1000 in green, then blue, yellow, magenta, cyan and orange. Again, within each color, the shading
(from light to dark) represents the processing order. The black area represents the amount of tiles the
GPU can load in its memory. We can see that DMDAS processes tasks following anti diagonals (because
of task priorities). If we look at the 1000 blue tasks for DMDAS, we can see that these diagonals do
not allow much data reuse (there are only data shares between the k iterations), and if the memory
cannot hold more tasks, the affinity on the rows and columns cannot be found, resulting in multiple
loads of the same rows or columns. This results in more data being transferred, as it can be seen in the
Figure 5.2b. AP behaves similarly to DMDAS. It uses the expected completion time of tasks and sorts
them by priority, resulting in similar results.

DARTS results DARTS maintains good performance with an increasing working set. DARTS also
processes tasks in a diagonal while it can fit in memory (tasks in red on Figure 5.4) but then switches
to what we call DARTS triangle blocks. We can notice such triangle blocks on the blue and magenta
tasks (a triangle on the main diagonal preceded by a square of tasks of the same color on the first few
columns). Note that DARTS triangle blocks are different from the optimal triangle blocks presented
earlier because they do not necessarily group tasks from different zones, thus not forming a complete
triangle. However, they have the benefit of reusing TRSM results to compute a maximum amount of
tasks. Those triangles and the associated squares fit exactly in memory and share a lot of common
data and are replicated over multiple iterations (up to k = 8) in order to progress on the critical path,
while maximizing data reuse. As explained earlier, accessing data with such a pattern allows to reduce
communications with the RAM as shown in Figure 5.2b: DARTS has the lowest amount of data transfers
and is the only strategy under the bus limit. It means that theoretically, all transfers can be overlapped
by a computation, which explains our good performance.

5.4.4 With multiple GPUs

Figure 5.5a shows the performance with 8 GPUs and Figure 5.5b shows the amount of data transfers.
We first notice that compared to the performance with a single GPU, all strategies are much further
from the upper bound. All strategies generate more transfers than the PCI bus limit (see Figure 5.5b).
With multiple GPUs, some data has to be replicated on various GPUs memories, which greatly increases
the total amount of data transfers but it is necessary to increase parallelization . This is normally not

108 CHAPTER 5. DYNAMIC SCHEDULING FOR TASK GRAPHS

0 5 10 15 20 25 30 35 40
Working set size (GB)

0

20000

40000

60000

80000

100000

GF
lo

p/
s

Full matrix fits in
cumulated memory

Upper bound

DARTS DMDAS LWS PaRSEC AP EAGER

(a) Performance.

0 5 10 15 20 25 30 35 40
Working set size (GB)

0

250

500

750

1000

1250

1500

1750

2000

Am
ou

nt
 o

f d
at

a
tra

ns
fe

rs
 (G

B)

PCI bus limit

Min IO

Full matrix fits in
cumulated memory

DARTS DMDAS LWS PaRSEC AP EAGER

(b) Amount of data transfers.

Figure 5.5: Results on the Cholesky factorization with 8 Tesla V100 GPUs. Memory limited to 2000 MB
per GPU.

an issue, but with a memory constraint this replication greatly reduces performance because each GPU
will suffer the same performance loss as seen with 1 GPU. For matrices smaller than the limit size
(green dotted line), LWS achieves the best performance. By stealing work from neighbor GPUs, LWS
is able to largely increase transfers using NVLinks, which are much faster than transfers with the CPU
memory. With 8 GPUs, the opportunity for such transfers are much more important which explains those
performance. This explains why on Figure 5.5b, even with more transfers than DARTS, LWS achieves
a better throughput on the left of the green line. For larger matrices, LWS and EAGER have much more
data transfers and thus much smaller throughput. They do not consider memory limitation and thus do
not favor data reuse. Similarly for AP and DMDAS, the low throughput is associated with high transfer
rates on Figure 5.5b, as in the case with one GPU. However, before the constraint, as they consider the
performance model to schedule, they are able to distribute tasks in a way that reduces the completion
time.

DARTS results DARTS has the best performance once the memory becomes a constraint. Figure 5.6
represents the DARTS scheduling with 8 GPUs and N = 40 on the first two iterations of the outer-loop
of the Cholesky algorithm. It corresponds to the 8th point of Figure 5.5. Note that the behavior of
DARTS is similar at larger sizes, we show a visualization with N = 40 for the sake of clarity.

In Figure 5.6a, we can find a column of TRSM (in red) being processed ahead of a triangular block
of GEMMs and SYRK. They are on the same rows of the TRSM results which means they can reuse
their data. As we can see, this is also done in the second iteration and even up to iteration 10 (not shown
here). Our triangle blocks are not complete, so we are not optimal in terms of IOs, but finding such
a structure explains our reduction in data transfers. We can also find such triangular structures with a
TRSM column associated on Figures 5.6d and 5.6h.

Sometimes, the TRSM column is not associated with the triangle blocks, as we can see for example
in Figure 5.6e. This is not an issue as such data can be transferred from other GPUs: from GPUs 1 and
8 with our current example. TRSM tasks must be computed before GEMM and SYRK tasks and their
input data are used by a large number of subsequent tasks. So, there is a good chance that their input data
are still in memory and can be quickly transferred using NVLinks. After doing so, the triangle block
in Figure 5.6e can be computed with few data transfers. DARTS triangle blocks with a missing TRSM

5.4. CHOLESKY FACTORIZATION WITH GPUS 109

(a) Task processed by GPU 1. (b) Task processed by GPU 2.

(c) Task processed by GPU 3. (d) Task processed by GPU 4.

(e) Task processed by GPU 5. (f) Task processed by GPU 6.

(g) Task processed by GPU 7. (h) Task processed by GPU 8.

Figure 5.6: DARTS’ ordering on the first two iterations of the Cholesky factorization with 8 Tesla V100
GPUs. N = 40 and the GPU’s memory are limited to 2000MB. The first 1000 tasks processed on
each GPU are in red, the next 1000 in green, then blue, yellow, magenta, cyan and orange. The shading
within each color represents the processing order. The black area represents the amount of tiles that can
be loaded in memory. Corresponds to the 8th point of Figure 5.5.

110 CHAPTER 5. DYNAMIC SCHEDULING FOR TASK GRAPHS

0 5 10 15 20 25 30 35 40
Working set size (GB)

0

20000

40000

60000

80000

100000

GF
lo

p/
s

Upper bound

DARTS DMDAS LWS PaRSEC AP EAGER

(a) Performance.

0 5 10 15 20 25 30 35 40
Working set size (GB)

0

200

400

600

800

1000

1200

Am
ou

nt
 o

f d
at

a
tra

ns
fe

rs
 (G

B)

PCI bus limit
Min IO

DARTS DMDAS LWS PaRSEC AP EAGER

(b) Amount of data transfers.

Figure 5.7: Results on the Cholesky factorization with 8 Tesla V100 GPUs. Hardware limitation of each
GPU memory at 32 GB.

column are also seen on Figures 5.6b, 5.6c, 5.6f and 5.6g. In addition, for all the figures mentioned, if
we renumber the columns, we can again find triangles of task, especially for the red tiles, that visually
show data sharing.

Once the memory becomes a constraint, such a strategy allows DARTS to greatly reduce data trans-
fers. DARTS triangle blocks are the results of our ratio (ratio = transfer_duration(D)

computation_time(D)) used to select the
best data to load Dopt . transfer_duration(D) favors loading TRSM results from other GPUs which
is the first requirement to compute tasks in a triangular block. computation_time(D) favors tasks that
can be computed with only one additional load, which is the case for GEMM and SYRK tasks once the
TRSM’s results are in memory: this is the second step to form DARTS triangle blocks.

Moreover, there is a good distribution of the data load on the 8 GPUs. The ratio we just mentioned
favors the selection of a data associated with as many unprocessed tasks as possible. The total work
associated with a data is reduced after some of its task is scheduled on another processing unit. Thus,
two distinct processing units have a low probability of selecting the same data. This encourages GPUs to
work on different datasets, further reducing the total amount of data to load by minimizing the replication
of data on multiple GPUs.

However, we can observe a performance loss on the first few points of Figure 5.5a, when only a few
tasks are computed. With a lot of GPUs and few tasks, it is sometimes more efficient to assign many
tasks sharing data to a single GPU, even if another one is idling, as it can lead to a smaller completion
time overall. DARTS always assigns a task to idle GPUs, leading to this result on small matrices. Once
the workload is large enough, it is not beneficial to keep some GPUs idle, which allows us to avoid
the performance loss on the first few points. The sustained performance of DARTS after the memory
constraint with both 1 and 8 GPUs shows that it is generic enough to adapt to various numbers of
processing units.

5.4.5 With multiple GPUs and no memory limitation

Figures 5.7a and 5.7b show the results obtained with 8 GPUs and without imposing a memory limit (each
GPU is equipped with 32 GB of RAM). On Figure 5.7b, we observe that DARTS manages to reduce the
amount of transfers on large matrices. This reduction is not significant enough to gain performance

5.5. LU FACTORIZATION WITH GPUS 111

0 10 20 30 40 50
Working set size (GB)

0

5000

10000

15000

20000

25000

GF
lo

p/
s

Full matrix fits in
cumulated memory

Upper bound

DARTS DMDAS LWS EAGER

(a) Performance.

0 10 20 30 40 50
Working set size (GB)

0

200

400

600

800

1000

1200

1400

Am
ou

nt
 o

f d
at

a
tra

ns
fe

rs
 (G

B)

PCI bus limit
Min IO

Full matrix fits in
cumulated memory

DARTS DMDAS LWS EAGER

(b) Amount of data transfers.

Figure 5.8: Results on the LU factorization with 4 Tesla V100 GPUs. Memory limited to 2000 MB per
GPU.

because, DARTS is unable to keep some GPU idle, which leads to slightly worse results than LWS on
the first few points. Apart from this, DARTS performs very similarly to LWS, which is the best strategy
here. Our scheduling strategy can thus also be used in situations where memory is not a constraint,
making DARTS generic enough to adapt to various memory sizes.

5.5 LU factorization with GPUs

We now move to the LU factorization. Figures 5.8b, 5.9b, 5.12b and 5.12d plot the minimal amount of
IO required by the LU factorization. Table 2 from a study by Olivry et al. [104] show that the minimal
amount of data transfers that can be achieved is:

(2×N3)/(3×
√
S)

Table 1 from the same paper shows that such a limit is achievable.

5.5.1 Results on 4 GPUs

Figure 5.8a presents performance using the LU factorization with 4 GPUs. This figure does not present
results for PaRSEC-AP as the DPLASMA implementation of LU does not make use of the cuSolver
library to solve GETRF kernels of the LU factorization. Hence, AP uses a much slower version of this
kernel, which makes it impossible for us to make a fair comparison with AP. LWS and EAGER process
tasks in their submission order (sorted by priorities for LWS), which makes it impossible to reuse data
on consecutive tasks when memory is limited. Hence, these two schedulers end up with 3 times more
data transfers than DARTS (see Figure 5.8b). DARTS has more sustained performance, and similarly to
the Cholesky case, is able to reduce data transfers by distributing the data on multiple GPUs and reusing
data for consecutive tasks.

112 CHAPTER 5. DYNAMIC SCHEDULING FOR TASK GRAPHS

0 20 40 60 80 100
Working set size (GB)

0

1000

2000

3000

4000

5000

6000

GF
lo

p/
s

Full matrix fits

Upper bound

DARTS DMDAS LWS EAGER

(a) Performance.

0 20 40 60 80 100
Working set size (GB)

0

500

1000

1500

2000

2500

3000

3500

Am
ou

nt
 o

f d
at

a
tra

ns
fe

rs
 (G

B)

PCI bus limit
Min IO

Full matrix fits

DARTS DMDAS LWS EAGER

(b) Amount of data transfers.

Figure 5.9: Results on the LU factorization with 1 Tesla V100 GPU. Hardware memory limitation at
32 GB.

5.5.2 Results on a single GPU and no memory limitation

Figure 5.9a shows the results for the LU factorization on a single GPU without limiting the memory.
The GPU embeds 32 GB of RAM, we can see this value on the plot with the green line. DMDAS has
more sustained performance than LWS and EAGER. The Ready strategy (see Algorithm 2 in Chapter 3)
allows DMDAS to re-order tasks so as to first compute tasks for which the input data is already in
memory, thus reducing data transfers. DARTS stays very close to the maximum obtainable GFlop/s for
the whole range of matrix sizes.

LU and Cholesky are very closely related applications: LU can be considered a "duplex Cholesky".
Because of the symmetry of the matrix, LU has twice as much data as Cholesky, but also twice as many
tasks to compute. So, they have the same communications to computations ratio. The same data reuse
patterns can be found for Cholesky and LU: building square blocks of GEMMs increases data reuse.
For Cholesky, however, one must exploit the symmetry of the matrix to increase data reuse, which is a
more complicated solution. This solution is much harder for a dynamic scheduler to reproduce. Since
DARTS strategy is similar for LU and for Cholesky, it is easier to reduce data transfers with LU. This
way, DARTS can get closer to the minimum IOs with LU, as demonstrated in Figure 5.9b: DARTS has
1.6 times more data transfers than the optimum and has 3.7 times less transfers than the PCI bus limit.
As a result, it can completely overlap communications with computations, resulting in near-optimal
performance with a single GPU.

5.6 3D matrix multiplication with GPUs

As mentioned in the last chapter, DARTS was unable to achieve good performance on 3D matrix mul-
tiplication due to its scheduling overhead (see section 4.4.5). After many complexity improvements
through code optimizations, our final version of DARTS is now much more scalable. To test it on a task
set with a large number of tasks that are ready at the same time, we compare ourselves to a hand-tuned
version of the 3D matrix multiplication [75] from the PaRSEC runtime. It implements a control flow
to avoid critical overflows of GPU memory. We are aware that such a hand-tuned version was aimed
at large distributed systems, used with specific tile sizes and without limiting the memory of the GPUs.

5.6. 3D MATRIX MULTIPLICATION WITH GPUS 113

0 5 10 15 20 25 30 35 40
Working set size (GB)

0

5000

10000

15000

20000

25000

30000

GF
lo

p/
s

Full matrix fits in
cumulated memory

Upper bound

PaRSEC Hand-tuned EAGER DMDAS LWS DARTS

(a) With 2 GPUs.

0 5 10 15 20 25 30 35 40
Working set size (GB)

0

10000

20000

30000

40000

50000

60000

GF
lo

p/
s

Full matrix fits in
cumulated memory

Upper bound

PaRSEC Hand-tuned EAGER DMDAS LWS DARTS

(b) With 4 GPUs.

0 5 10 15 20 25 30 35 40
Working set size (GB)

0

20000

40000

60000

80000

100000

120000

GF
lo

p/
s

Full matrix fits in
cumulated memory

Upper bound

PaRSEC Hand-tuned EAGER DMDAS LWS DARTS

(c) With 8 GPUs.

Figure 5.10: Performance on the 3D matrix multiplication with Tesla V100 GPUs. Memory limited to
2000 MB.

The current context does not allow a fair comparison. However, it is interesting to see how it behaves
when we plug it directly into our memory-constrained application case.

Figure 5.10 presents experiments on the 3D matrix multiplication with 2, 4 or 8 GPUs. We learn
from these figures that the hand-tuned version achieves the highest performances on very small matrix
sizes. If memory was not constrained, such results would be unbeatable. However, under strong memory
constraints, performance are degraded. We also learn from these figures that the complexity of DARTS
causes issues only on very large working set sizes. Also, the more GPUs we add, the more DARTS
is affected by the scheduling overhead because the scheduling is done every time a GPU is idle, which
happens more frequently with more GPUs. Finally, we can observe in all figures the point where DARTS
performance is maximal compared to the other strategies: just before or after the hard memory limitation.
Indeed, when only the input matrices A or B can fit into the cumulated memories, as is the case just
before the green line, the DARTS eviction strategy comes in very handy, as it avoids evicting data that
would be useful for the subsequent tasks. This is something the other schedulers do not deal with, while
DARTS updates the task in its plannedTasks buffer for each GPU to keep it up to date with the data in
memory.

114 CHAPTER 5. DYNAMIC SCHEDULING FOR TASK GRAPHS

0 5 10 15 20 25 30 35 40
Working set size (GB)

0

5000

10000

15000

20000

25000

30000

GF
lo

p/
s

Full matrix fits in
cumulated memory

Upper bound

DARTS DMDAS LWS EAGER

(a) With 2 GPUs.

0 5 10 15 20 25 30 35 40
Working set size (GB)

0

10000

20000

30000

40000

50000

60000

GF
lo

p/
s

Full matrix fits in
cumulated memory

Upper bound

DARTS DMDAS LWS EAGER

(b) With 4 GPUs.

0 5 10 15 20 25 30 35 40
Working set size (GB)

0

20000

40000

60000

80000

100000

120000

GF
lo

p/
s

Full matrix fits in
cumulated memory

Upper bound

DARTS DMDAS LWS EAGER

(c) With 8 GPUs.

Figure 5.11: Performance on the 3D matrix multiplication in simulation with the performance models
of Tesla V100 GPUs. Memory limited to 2000 MB.

Figure 5.11 is the same set of experiments as presented above but in simulation. Since the scheduling
time is not taken into account when calculating the GFlop/s, all strategies have a higher throughput. We
do not have results from the hand-tuned version in simulation since PaRSEC does not support it. From
these three figures, we can verify that theoretically, our new DARTS can achieve the best performance
on the 3D matrix multiplication.

5.7 LU factorization on a multi-core CPU

Our scheduler is able to consider any memory-limited system, and STARPU manages disk-CPU transfers
exactly like CPU-GPU transfers. As a result, we are able to perform experiments on a multi-core CPU.

Figure 5.12 reports experiments on an AMD EPYC 7642 CPU2 with 16 or 48 cores, 2 GB of shared
memory, and disks that sustain a 250 MB/s bandwidth. The application scenario here is only the LU

2From the neowise-1 node on the Grid5000 computing platform: https://www.grid5000.fr/w/Lyon:Hardware#
neowise

https://www.grid5000.fr/w/Lyon:Hardware#neowise
https://www.grid5000.fr/w/Lyon:Hardware#neowise

5.7. LU FACTORIZATION ON A MULTI-CORE CPU 115

0 1 2 3 4 5
Working set size (GB)

0

25

50

75

100

125

150

175

200

GF
lo

p/
s

Full matrix fits

Upper bound

DARTS DMDAS LWS EAGER

(a) Performance with 16 CPU cores.

0 1 2 3 4 5
Working set size (GB)

0

20

40

60

80

100

120

Am
ou

nt
 o

f d
at

a
tra

ns
fe

rs
 (G

B)

PCI bus limit
Min IO

Full matrix fits

DARTS DMDAS LWS EAGER

(b) Amount of data transfers with 16 CPU cores.

0 1 2 3 4 5
Working set size (GB)

0

100

200

300

400

500

GF
lo

p/
s

Full matrix fits

Upper bound

DARTS DMDAS LWS EAGER

(c) Performance with 48 CPU cores.

0 1 2 3 4 5
Working set size (GB)

0

20

40

60

80

100

120

Am
ou

nt
 o

f d
at

a
tra

ns
fe

rs
 (G

B)

PCI bus limit
Min IO

Full matrix fits

DARTS DMDAS LWS EAGER

(d) Amount of data transfers with 48 CPU cores.

Figure 5.12: Results on the LU factorization with an AMD EPYC 7642 CPU. Memory limited to
2000 MB.

116 CHAPTER 5. DYNAMIC SCHEDULING FOR TASK GRAPHS

factorization. We use tiles of size 320, which is a size optimized for CPU cores. In this shared-memory
setting, DARTS behaves in a similar way as it does with one GPU: it uses a single plannedTasks queue
as well as a single taskBuffer . Before the memory limitation, DARTS is at worst 5% slower than
DMDAS or LWS. This can be explained by two factors. (i) Like with GPUs, DARTS does not favor
the fastest CPU cores. CPU cores are supposed to have identical performance, but in practice they have
small differences. Choosing the fastest cores brings improvements when few tasks are available. This is
the case for the first few points. (ii) So far, we have tested DARTS with at most 8 workers (GPUs). With
2 and 6 times more processing units, workers are requesting tasks much more often from the scheduler.
The DARTS scheduling overhead is slightly higher than those of LWS and DMDAS, which can cause
such performance loss.

After the memory limitation, DARTS is the best strategy overall. With 16 cores, DARTS is able
to stay close to the disk bandwidth limit, symbolized by the gray curve in Figure 5.12b. Theoretically,
DARTS could overlap most communications and computations. As we just mentioned in (ii), scheduling
overhead is an issue here, which explains why DARTS performance is not at the asymptote. With 48
cores, the performance difference between DARTS and the other schedulers is greater. We can explain
this by looking at the topology. The bandwidth between the disk and the 48 CPU cores is around
250 MB/s. Each core may need to transfer data from disk at the same time, placing a high demand on
a bandwidth that cannot be expanded. With three times more cores, this problem becomes more severe,
which explains why all strategies are further from the asymptote with 48 cores. With 48 cores, DARTS
stays very close to the minimum number of IOs required, as shown in Figure 5.12d. Because DARTS
reduce data transfers, it partially avoids this severe problem and is able to widen the performance gap
with 48 cores compared to 16.

5.8 Conclusion on dynamic scheduling of task sets with depen-
dencies

Adding dependencies to the partitioning and scheduling problem brought two additional challenges. (i)
Tasks are now becoming ready gradually, meaning that a scheduler must produce data reuse patterns
without having a full view of the task set. (ii) Priorities are assigned to tasks to progress on the critical
path, however, following such path can be suboptimal if one wants to minimize data transfers. After
detailing schedulers we want to use as references, we focused in this chapter on improving our DARTS
scheduler. It now answers the two challenges we just mentioned, respectively by dynamically updating
its list of tasks and data used to make scheduling decisions, and adding priority as a secondary factor in
its schedule.

We have performed experiments with three classical linear algebra operations: Cholesky and LU
factorizations and the 3D matrix multiplication. Thanks to its modularity, DARTS reaches very good
performance in a large variety of situations, from multi-core CPU with shared memory to multiple
GPUs with distributed memory. Among available schedulers, DARTS is the only strategy to reach good
performance in memory-limited scenarios, and it also ranks among the best ones in all settings. In
particular, we explain that its strategy for choosing which data to load next enables it to replicate a
near-optimal schedule to minimize data transfers. On top of that, we ensured that our new DARTS gets
similar results compared to the previous DARTS on the 2D matrix multiplication, making DARTS able
to deal with a large scope of linear algebra applications.

DARTS answers our first stated goal. Without knowledge of the full task graph, it is able to lower
data transfers and increase performance on task sets with or without dependencies, on both GPUs and
CPU cores, and under any memory setting.

Chapter 6
Leveraging Locality for Batch
Schedulers

Contents
6.1 Motivation . 118
6.2 Related work . 119

6.2.1 Scheduling jobs on large clusters . 119
6.2.2 Using distributed file systems to deal with data-intensive workloads 119
6.2.3 Using schedulers to deal with data-intensive workloads 120
6.2.4 Reducing I/O contention . 120

6.3 Framework . 120
6.4 Schedulers . 122

6.4.1 Two schedulers from the state of the art: FCFS and EFT 123
6.4.2 Data-locality-based schedulers . 123
6.4.3 Adding backfilling to all strategies . 125

6.5 Experimental settings . 126
6.5.1 Platform description . 126
6.5.2 Workloads description . 126
6.5.3 Usage of real cluster logs . 127
6.5.4 Simulator description . 128

6.6 Experimental evaluation and analysis . 129
6.6.1 Results on an underutilized cluster . 129
6.6.2 Results on a saturated cluster . 131
6.6.3 Complete results . 132

6.7 Conclusion on locality-aware batch scheduling 135

117

118 CHAPTER 6. LEVERAGING LOCALITY FOR BATCH SCHEDULERS

W
E have studied in Chapters 3, 4, and 5 how to partition and order tasks across multiple processing
units in order to solve linear algebra applications faster, even when the memory is a scarce re-
source. To do this, we have seen that data locality is crucial: reusing similar data for successive

tasks leads to fewer data transfers and thus better performance. In this chapter, we address a problem
that requires similar solutions to more efficiently compute scientific applications, but in a completely
different setting.

We aim to schedule workloads on a high performance computing cluster. This is called batch
scheduling, and it plays a critical role in the efficient management of a supercomputer by orchestrating
the execution of computational jobs. In the area of batch scheduling, we seek to schedule data-intensive
workloads, i.e., job sets with large input files. We want to apply locality techniques to reduce the amount
of file load and thus minimize the completion time of a job set.

The chapter is organized as follows. After presenting our motivation in Section 6.1, we detail ex-
isting work related to batch scheduling and how they relate to our issue with Section 6.2. Then, in
Section 6.3, we formalize our model of scheduling data-intensive jobs sharing input files on a cluster.
Section 6.4 presents three schedulers focusing on re-using input files while minimizing evictions and
avoiding starvation. Lastly, we explain how we conducted our experimental evaluation in Section 6.5
before showing the achieved results in Section 6.6.

6.1 Motivation

In the previous chapters, we explored how to reduce the execution time of scientific applications on
a node composed of multiple GPUs or CPU cores. High-performance computing platforms typically
consist of a large number of computation nodes, each equipped with computational resources. To further
explore the topic of reducing the execution time of scientific applications, one can also take a step back
and look at the cluster as a whole. Scientists typically submit their computation jobs to a scheduler,
which decides the ordering and mapping of the jobs on the platform. This needs to be performed with
particular care to balance resource utilization and user satisfaction, so as to leverage the computation
resources as efficiently as possible, while avoiding adverse pathological cases that could particularly
impact some users rather than others.

Computation jobs need data input which, more often than not, can be very large, notably for many
subfields of life science with highly data-dependent workflows like taxonomic identification of DNA
fragments, genome alignments or ancestral reconstructions. It is a frequent use pattern for users of
such communities to submit a large batch of jobs using the same input files. Moreover, workloads
from these specific subfields require the data to be loaded ahead of the computation. Loading such data
input from the storage nodes may consume a significant part of the job duration. This load penalty can
however be avoided altogether when the data was actually already used by the previous job running on
the computation node, and thus still immediately available on the node. Therefore, by scheduling jobs
that use the same input data one after another on the same node, it is possible to reduce job completion
time, leading to better platform utilization efficiency. We only consider applications with very small
output data compared to the large databases used as inputs. This simplification lets us to avoid adding
an additional layer of complexity, as we want to focus primarily on locality-aware scheduling.

Unfortunately, classical job schedulers mostly do not take data input into account, and thus do not
benefit from such data reuse ; most jobs must always re-load their data input. From this observation, and
inspired by what we have learned about locality-aware scheduling in the previous chapters, we want to
extract the benefits of reusing input data between successive jobs. We thus present in this chapter three
new algorithms that add such data reuse to the scheduling equation. By tracking what data is loaded on

6.2. RELATED WORK 119

which node for the scheduled jobs, they are able to significantly reduce data loads, thereby improving
both resource utilization and user satisfaction.

We evaluated these algorithms thanks to traces of actual jobs submissions observed on a large cluster
platform. This allows to assess the effectiveness of our heuristics over a variety of realistic working sets.
This revealed that while our heuristics get slightly worse results over some working set samples (those
which exhibit ample cluster underuse), most working set samples largely benefit from our heuristics.

6.2 Related work

We now describe the literature specific to the management of batch systems. We begin by describing
classical scheduling policies and identify those that are most commonly used. We then describe different
ways to manage data-intensive workloads: through distributed file systems, data-aware scheduling, or
by reducing I/O contention.

6.2.1 Scheduling jobs on large clusters

Workloads managers are the main component of High-Performance Computing clusters. They pro-
file, distribute and schedule jobs on all the nodes. Workload managers like SLURM [127], OAR [34],
TORQUE [119], LoadLeveler [83], Portable Batch System [74], SunGrid [67] or Load Sharing Facil-
ity [129] all offer various scheduling strategies.

The First-Come-First-Served (FCFS) algorithm is the prevalent default scheduler on most of these
solutions [56]. Moreover, SLURM is used on most of the TOP500 supercomputers and its default
strategy is FCFS [115] as well. We can then safely assume that comparing ourselves to FCFS will bring
significant insights on what improvements can be achieved on data-intensive workloads.

A backfilling strategy is known to improve the use of supercomputer resources [78] [94]. The most
commonly-used backfilling strategy is called conservative backfilling [118] [95]. It follows a simple
paradigm: "a job can only be backfilled if it does not delay a job of higher priority". However, backfilling
strategies can lead to issues like unfair advantages for small jobs (either by length of amount of requested
cores/nodes). We will thus compare our strategies to FCFS with or without backfilling.

Other scheduling strategies exist. Maui [79], Gang scheduling [60], RASA [105] that use the ad-
vantages of both Min-min and Max-min algorithms, RSDC [48] that divides large jobs in sub jobs for
a more refined scheduling, or PJSC [68] and PSP+AC [47] that are priority-based schedulers; however
these heuristics do not consider the impact that input re-use could have on data-intensive workloads. We
aim at resolving this issue in this chapter.

6.2.2 Using distributed file systems to deal with data-intensive workloads

Distributed file systems are a solution to ease the access to shared input files. They facilitate the exe-
cution of I/O-intensive batch jobs by selecting appropriate storage policies. HDFS [28] (Hadoop Dis-
tributed File System) is the most commonly used and incorporates storage-aware scheduling. It migrates
a computation closer to where the data is located, rather than moving the data to where the application is
running, in order to reduce communication. These solutions are mainly storage systems that use a his-
tory of file locations to serve as a backup. In our scenario, we copy the data from an already-redundant
system (an online database for example) and store it locally on the node in an ephemeral way. Thus, in
the event of a crash, we do not manage the data which is already redundant, it simply results in an aborted
job. Secondly, the scheduling can cause issues (notably MapReduce, used in HDFS), as described by

120 CHAPTER 6. LEVERAGING LOCALITY FOR BATCH SCHEDULERS

Weets et al. [125]. By not using HDFS or any distributed file system, we avoid these problems alto-
gether. Lastly, file systems are particularly efficient when the input data used are identical over time. In
our case, between users, the inputs will be largely different, making distributed file systems less efficient.

6.2.3 Using schedulers to deal with data-intensive workloads

Some schedulers tackle the issue of data-intensive workloads. A solution can be to minimize network
contention by allocating nodes to even out node and switch contention [100]. In our model, we are
not studying the network topology and consider independent nodes. This is reasonable, since our main
concern is the cross-section bandwidth to a shared storage solution.

Nikolopoulos et al. [103] focus on a better utilization of idling memory together with thrashing
limitation. Our focus will be to control data loads in order to limit eviction and will thus naturally limit
thrashing.

Agrawal et al. [4] propose to schedule jobs not sharing a file first and to use a stochastic model of job
arrivals for each input file to maximize re-use. That work focuses the Map-Reduce model and predicts
future jobs arrivals, two prerequisites that we do not consider.

Selvarani et al. propose an improved activity-based costing scheduler [112] where the scheduler
adapts to different application types (CPU intensive, high memory usage, high I/O cost) in order to
make the right decision. Our approach is more focused on maximizing data re-use on a set of identical
nodes.

An interesting solution proposed specifically for the Jacobi-Davidson method [99] addresses both
load balancing and memory constraints. It estimates how long it will take the fastest processor to com-
plete a set of jobs. It can use this information to balance the load. To deal with the memory constraint,
the strategy used is to suspend the execution of jobs that exceed the memory limit. Our model does not
include jobs that can be stopped and restarted, so we cannot apply this method.

6.2.4 Reducing I/O contention

Reducing contention for the bandwidth used to transfer files is another solution to handle data-intensive
workloads. Herbein et al. propose to avoid assigning jobs to nodes that would cause I/O contention [76].
It is also possible to try to predict I/O contention in order to avoid it [120]. Reducing I/O contention is
an important but orthogonal task to the one we study here. We are only interested in where to allocate
jobs to reuse data, but an additional step can be taken to better organize unavoidable I/Os. However,
considering both steps simultaneously would most likely make the model too complex.

6.3 Framework

We consider the problem of scheduling a set of J independent jobs, denoted J = {J1, J2, . . . , JJ } on a
set ofN nodes: N = {Node1,Node2, . . . ,NodeN }. Each node Nodei is equipped with m cores noted:
ci1, . . . , c

i
m sharing a memory of size M . Each job Ji depends on an input file noted File(Ji), which is

initially stored in the main shared file system.
During the processing of a job Ji on Nodek, File(Ji) must be in the memory of Nodek. If this is not

the case before starting computation of job Ji, then File(Ji) is loaded into the memory. We denote by
F = {F1, F2, . . . , FF} the set of distinct input files, whose size is denoted by Size(Fi). Each job runs
on a single node, but they can make use of a different number of cores. Single node jobs largely prevail
in our studied dataset and adding the complexity of multi-node jobs is not necessary in the context of
studying data reuse.

6.3. FRAMEWORK 121

Each job Ji has the following attributes:

• Resource requirement: job Ji requests Cores(Ji) cores, such that 1 ≤ Cores(Ji) ≤ m;

• Input file: File(Ji) ∈ F;

• Submission date: SubTime(Ji);

• Requested running time (or walltime): WallTime(Ji). If not finished after this duration, job Ji is
killed by the scheduler;

• Actual running time: Duration(Ji) (unknown to the scheduler before the job completion).

We do not consider the data output of jobs, as they are negligible in our workloads as mentioned
above. Each of the J jobs must be processed on one of the N nodes. As stated earlier, the shared file
system initially contains all files in F. Each node is connected to the file system with a link of limited
bandwidth, denoted by Bandwidth: transferring a data of size S from the shared file system to some
node memory takes a time S/Bandwidth. The limited bandwidth as well as the large file sizes are the
reasons why we aim at restricting the amount of data movement.

We consider that the memory of a node, denoted by M , is only used by the jobs input files, since all
other data are negligible compared with the input files. We assume that jobs are devoted a fraction of the
memory proportional to the number of requested cores, so that jobs willing to process large input files
must request large number of cores. This way, we make sure that the memory of a node is large enough
to accommodate all input files of running jobs. A file stored in the memory of a node can be shared by
two jobs Ji and Jj only in either of the following situations:

1. Ji and Jj are computed in parallel on the same node.

2. Ji and Jj are computed on the same node consecutively (i.e., no job is started on this node between
the completion of Ji and the start of Jj).

This can hold true if the file data is accessed through I/O (traditional or memory-mapped), allowing the
same page cache to serve multiple processes from different jobs. Otherwise we consider that memory
operations of jobs scheduled between Ji and Jj will cause the file to be evicted.

For each job Ji, the scheduler is in charge of deciding which node will process Ji, and more precisely
which cores of this node are allocated to the job, as well as a starting time tk for Ji. More precisely, Ji
is allocated a time window from tk to tk + WallTime(Ji) devoted to (i) possibly loading the input file
File(Ji) in the memory (if it is not already present at time tk) and (ii) executing job J(i). If the job is
not completed at time tk + WallTime(Ji), it is killed by the scheduler to ensure that later jobs are not
delayed. The scheduler must also make sure that two jobs are not executed simultaneously on the same
cores.

We can see a summary of a job lifecycle in Figure 6.1. When a job is submitted by a user, it is
added to J. From jobs in J, the job scheduler is responsible for assigning jobs to nodes. It also creates
a planned schedule for each node, that can be modified at any time. Each node has a limited amount
of memory and can compute multiple jobs simultaneously. The distributed file system allows the nodes
to load the files that they are missing for a computation. It is important to note that the file transfer is
done before the computation and cannot be overlapped. Jobs are non-preemptible: when started, a job
is executed throughout its completion.

Our objective is to reach an efficient usage of the platform and to limit job waiting times. Each user
submitting jobs is interested in obtaining the result of jobs as soon as possible. Hence we focus on the

122 CHAPTER 6. LEVERAGING LOCALITY FOR BATCH SCHEDULERS

Distributed File
System

F

F

F

F

…

SCHEDULER

F

Planned Schedule

Figure 6.1: Platform representation.

time spent in the system for each job, also called the flow time (or flow) of the job:

Flow(Ji) = CompletionTime(Ji)− SubTime(Ji)

In the following, we want to consider aggregated performance metrics on job flows, such as average
flow. However, the duration of a job significantly impacts its flow time. Jobs with the same flow but
very different durations do not experience the same quality of service. To avoid this, the stretch metric
has been introduced that compares the actual flow of a job to the one it would experience on an empty
cluster:

ReferenceFlow(Ji) = Size(File(Ji))
Bandwidth + Duration(Ji)

stretch(Ji) = Flow(Ji)
ReferenceFlow(Ji)

The stretch represents the slow-down of a job due to sharing the platform with other jobs and is a
commonly used metric in the evaluation of batch systems [37, 38, 40]. Considering the stretch allows to
better aggregate performance from small and large jobs.

6.4 Schedulers

Here, we present various schedulers used to allocate jobs to computing resources. We start with two
reference schedulers (FCFS and EFT) and then move to our contribution: three locality-aware job
schedulers (named LEA, LEO and LEM). Each of these five schedulers can be used with or without

6.4. SCHEDULERS 123

backfilling. We first present the simpler version, without backfilling, before detailing the modifications
needed to include backfilling.

The role of the scheduler is to allocate a set of cores from a node to each job submitted until now.
Some jobs may be started right away, while other jobs may be delayed and scheduled later: resource
reservations are made for these jobs. Jobs are presented to the scheduler in the form of a global queue,
sorted by job submission time. The scheduling policies are online algorithms which are called each time
a job completes (making cores available) or upon the submission of a new job. Note that in accordance
to our framework, each job is allocated to one or several cores of a single node.

Some of these methods use start or completion time as a way to schedule each job (Algorithms 13
and 14) while another compute a score to choose the best node (Algorithm 15) and others are opting for
a mixed strategy between locality and earliest possible start time (Algorithms 16 and 17).

6.4.1 Two schedulers from the state of the art: FCFS and EFT

A widely-used job scheduler that is typically considered to be efficient is First-Come-First-Serve
(FCFS), detailed in Algorithm 13. Implementing this scheduler requires to remember the time of next
availability for each core. Then, for each job, we look for the first time when a sufficient number of
cores is available, and we allocate the job to those cores.

Algorithm 13 First-Come-First-Serve (FCFS)
1: for each Ji ∈ the jobs queue do
2: for each Nodek ∈ N do
3: Find smallest time tk such that Cores(Ji) cores are available on Nodek
4: Select Nodek with the smallest tk
5: Schedule Ji on Cores(Ji) cores of Nodek that are available starting from tk
6: Mark these cores busy until time tk + WallTime(Ji)

FCFS is a standard baseline comparison for job scheduling. However, it is not aware of the capability
of the system to keep a large data file in the memory of a node between the execution of two consecutive
jobs. A first step towards a locality-aware scheduler is to select a node for each job not only based on
the cores availability time, but also using the file availability time, based on the file transfer time. This is
the purpose of the Earliest-Finish-Time (or EFT) scheduler, described in Algorithm 14: by selecting the
node that can effectively start the job at the earliest time, it minimizes the job completion time. There are
three scenarios to compute the time t′k at which the input file File(Ji) of job Ji is available on Nodek:

1. File(Ji) is already in memory, then t′k = tk;

2. File(Ji) is not in memory, then t′k = tk + Size(File(Ji))
Bandwidth ;

3. File(Ji) is partially loaded on Nodek: this happens when some job Jj , using the same input
file, has been scheduled on other cores of the same node at time StartTime(Jj) < tk but the
file transfer has not been completed at time tk. Then the file will be available at time: t′k =
StartTime(Jj) + Size(File(Ji))

Bandwidth .

6.4.2 Data-locality-based schedulers

The previous strategies focus on starting (FCFS) or finishing (EFT) a job as soon as possible, respec-
tively. Those are good methods to avoid node starvation and reduce queue times. However, they may

124 CHAPTER 6. LEVERAGING LOCALITY FOR BATCH SCHEDULERS

Algorithm 14 Earliest-Finish-Time (EFT)
1: for each Ji ∈ the jobs queue do
2: for each Nodek ∈ N do
3: Find smallest time tk such that Cores(Ji) cores are available Nodek
4: Find time t′k ≥ tk at which File(Ji) is available on Nodek
5: Select Nodek with the smallest t′k
6: Schedule Ji on Cores(Ji) cores of Nodek that are available starting from tk
7: Mark these cores busy until time tk + WallTime(Ji)

lead to loading the same input file on a large number of nodes in the platform, only to minimize imme-
diate queue times. Time is thus spent loading the input file multiple times. This can affect the global
performance of the system by delaying subsequent jobs. We present three strategies that attempt to take
data locality into account in a better way to reduce queuing times in the long run by increasing data
reuse.

The first proposed algorithm, called Locality and Eviction Aware (LEA) and detailed in Algo-
rithm 15, aims at a good balance between node availability and data locality. We consider three quantities
to rank nodes:

• The availability time for computation tk;

• The time needed to complete loading the input file for the job on Nodek (t′k − tk);

• The time required to reload files that need to be evicted before loading the input file; this time is
computed using all files in memory and considering that a fraction of these files need to be evicted,
corresponding to the fraction of the memory used by the job.

The intuition for the third criterion is that if loading a large file in memory requires the eviction of
many other files, these files will not be available for later jobs and may have to be reloaded. In the LEA
strategy, we put a strong emphasis on data loading, in order to really favor data locality. Hence, when
computing the score for each node Nodek, we sum the previous three quantities, with a weight W for
the second one (loading time). In our experiments, based on empirical evaluation, we set this value to
W = 500, incidentally roughly equivalent to the number of nodes. Note that the other two quantities
usually have very different values: the availability time is usually much larger than the time for reloading
evicted data. Hence this last criterion is mostly used as a tie-break in case of equality of the first two
criteria.

The LEA strategy puts a dramatic importance on data loads. Hence, it is very useful when the
platform is fully loaded and some jobs can safely be delayed to favor data reuse and avoid unnecessary
loads. However, when the platform is not fully loaded, delaying jobs can be detrimental, as it can
increase the response time for some jobs, without any benefit for other jobs. Our second proposed
strategy, named Locality and Eviction Opportunistic (LEO) and described in Algorithm 16, tries to
adapt based on the current cluster load: if we find some nodes that can process the job right away, we
select the one that will minimize the completion time (as in the EFT strategy). Otherwise, we assume
that the platform is fully loaded and we apply the previous LEA strategy, to favor data reuse.

We present a third strategy called Locality and Eviction Mixed (LEM) and described in Algorithm 17
that takes a similar approach to LEO but performs a simple mix between the EFT and the LEA strategies:
when the platform is saturated (each node is running at least one job), the LEA strategy is applied,
otherwise the EFT strategy is used.

6.4. SCHEDULERS 125

Algorithm 15 Locality and Eviction Aware (LEA)

1: for each Ji ∈ the jobs queue do
2: for each Nodek ∈ N do
3: Find smallest time tk such that Cores(Ji) cores are available
4: Find time t′k ≥ tk at which File(Ji) is available on Nodek
5: LoadOverhead ← t′k − tk
6: Let F be the set of files in the memory of node Nodek at time tk
7: EvictionPenalty ← (

∑
Fj∈F Size(Fj)× Size(File(Ji))/M)/Bandwidth

8: scoreNodek
← tk +W × LoadOverhead + EvictionPenalty

9: Select Nodek with the smallest scoreNodek

10: Schedule Ji on Cores(Ji) cores of Nodek that are available starting from tk
11: Mark these cores busy until time tk + WallTime(Ji)

Algorithm 16 Locality and Eviction Opportunistic (LEO)

1: for each Ji ∈ the jobs queue do
2: for each Nodek ∈ N do
3: Find smallest time tk such that Cores(Ji) cores are available
4: Find time t′k ≥ tk at which File(Ji) is available on Nodek
5: if tk = current_time then
6: scoreNodek

← t′k
7: else
8: LoadOverhead ← t′k − tk
9: Let F be the set of files in the memory of node Nodek at time tk

10: EvictionPenalty ← (
∑
Fj∈F Size(Fj)× Size(File(Ji))/M)/Bandwidth

11: scoreNodek
← tk +W × LoadOverhead + EvictionPenalty

12: Select Nodek with the smallest scoreNodek

13: Schedule Ji on Cores(Ji) cores of Nodek that are available starting from tk
14: Mark these cores busy until time tk + WallTime(Ji)

Algorithm 17 Locality and Eviction Mixed (LEM)

1: for each Ji ∈ the jobs queue do
2: if each node is running at least one job at current_time then
3: LEA(Ji,N)
4: else
5: EFT (Ji,N)

126 CHAPTER 6. LEVERAGING LOCALITY FOR BATCH SCHEDULERS

6.4.3 Adding backfilling to all strategies

As mentioned above, backfilling has been proposed to increase the performance of production cluster
job schedulers, by allowing jobs with lower priority to be scheduled before jobs with higher priority. In
our setting, the priority is directly linked to the submission order: if Ji is submitted before Jj , then Ji has
a higher priority than Jj . In order to avoid jobs being perpetually delayed, bounds have to be set on how
already-scheduled jobs can be affected by backfilling. As discussed above, conservative backfilling is
the most restrictive version and one of the most commonly-used strategies to improve cluster utilization.
It forbids any modification on the resource reservations of high-priority jobs: a job may be scheduled
before other jobs that appear earlier in the queue, provided that it does not impact the starting time of
these jobs.

For each of the previous scheduling strategies, we consider a variant using conservative backfilling
(suffixed by -BF). To add backfilling, Algorithms 13, 14, 15 and 16 have to be modified: we change the
choice of the earliest time when resources are available for a job (Line 3). Instead of considering the
time at which cores are (indefinitely) available, we look for an availability time window starting at tk
that is long enough to hold the job. Specifically, we change Line 3 into:

3′: Find smallest time tk such that Cores(Ji) cores are available from tk until tk + WallTime(Ji) on
Nodek

Note that this requires the schedulers to store the whole occupation profile of each core (with avail-
ability and unavailability times), whereas the version of each scheduler without backfilling simply re-
quires the time of last job completion on each core.

6.5 Experimental settings

In order to perform our experimental evaluation, we ran simulations using information from a real plat-
form, coupled with the same platform logs of jobs that have been historically submitted. Changing the
scheduling strategy of a production cluster for the purpose of scheduling research would be disruptive
to the community that uses this cluster. For this reason, we choose to run simulations based on his-
torical logs from the cluster. The combination of historical logs and platform information provides a
high-fidelity representation of real-world user behavior. In this section, we describe our platform (Sec-
tion 6.5.1), the workloads (Section 6.5.2), how we used historical logs (Section 6.5.3) and our simulator
(Section 6.5.4).

6.5.1 Platform description

UPPMAX (for Uppsala Multidisciplinary Center for Advanced Computational Science) is Uppsala Uni-
versity’s resource of high-performance computers. It includes Rackham1, the platform we used as a
reference. Rackham is a university cluster shared by several research labs. It contains 9720 cores spread
over 486 nodes. Each node has two 10-core Intel Xeon V4 CPU at 2.20 GHz/core. 450 nodes have
128 GB of RAM, 32 have 256 and 4 have 1024 GB of RAM. To avoid an additional constraint, while
maintaining a model close to the real cluster, we consider that the platform is made of 486 homoge-
neous nodes of size M = 128GB. Based on past job submissions, we studied the characteristics of
data-intensive jobs.

1https://www.uppmax.uu.se/resources/systems/the-rackham-cluster/

https://www.uppmax.uu.se/resources/systems/the-rackham-cluster/

6.5. EXPERIMENTAL SETTINGS 127

6.5.2 Workloads description

Actual workloads on the Rackahm cluster and other HPC resources shared by a large number of users
with diverse needs include projects that start a burst of jobs on the same file just a few thousand core
hours in length, then sit idle for a long time processing the results, and then start another such burst.
These files have sizes that can range from a few megabytes to hundreds of gigabytes. We have observed
such behavior on our cluster. For example, computational tasks in bioinformatics often require large
input files to be loaded onto a cluster. A good example comes from members of the Department of
Organismal Biology at the Evolutionary Biology Center at Uppsala University. They are recovering
and analyzing ancient human genomes to determine migration routes [73]. DNA samples from ancient
humans decay over time. Thus, computationally expensive methods must be used to reconstruct these
damaged genomes in order to reconstruct potential migration routes2. These DNA sequences are large
and must be loaded onto the cluster to perform such analysis. The cluster has also been used for taxo-
nomic identification of DNA fragments. To perform such identification, the Kraken2 tool3 is often used
together with an input database4, whose size vary from a few GB up to 800 GB. We also noticed the
use of genome alignment tools that require to store large text files5, and it is likely that they need to
load multiple of them, resulting in high I/O demands. Now that we have identified the presence of I/O
intensive jobs in our workloads, we can use historical logs to replicate this behavior.

6.5.3 Usage of real cluster logs

The logs we use contain historical data on jobs, namely their exact submission time, their requested
walltime, their actual duration, the number of cores they required and the corresponding user’s name.
Since explicit data dependencies are not encoded in SLURM job specifications, we do not have access
to the actual input files of these jobs. We thus create an artificial data dependency pattern that replicates
user behaviors. Each job uses exactly one input file. As an example, let us consider two jobs, Ji and Jj .
These jobs share their input file if they match the three following requirements:

1. Cores(Ji) = Cores(Jj), i.e., they request the same number of cores;

2. Ji and Jj are submitted by the same user, which means that they are from the same experimental
campaign;

3. Ji and Jj are submitted within an 800 seconds time frame. We consider this timeframe to be a
reasonable amount of time for a user to submit all of their jobs using the same input file.

Otherwise, we consider that Ji and Jj are using distinct input files. In theory, two users could share the
same file. However, because they are using subsets of different databases, it is very unlikely that two
users would work on the same project using the same databases, therefore we ignore this possibility.

We consider that these jobs are dedicated to processing their input file. Hence, the more cores the
job requests, the larger its input file. This allows to estimate the size of files as follows:

Size(File(i)) = Cores(Ji)
20 × 128GB

2https://www.uppmax.uu.se/projects-and-collaborations/research-at-uppmax/
arielle-munters/

3https://github.com/DerrickWood/kraken2/tree/master/src
4https://benlangmead.github.io/aws-indexes/k2
5For example for primates: https://ftp.ensembl.org/pub/release-107/maf/ensembl-compara/

multiple_alignments/10_primates.epo/

https://www.uppmax.uu.se/projects-and-collaborations/research-at-uppmax/arielle-munters/
https://www.uppmax.uu.se/projects-and-collaborations/research-at-uppmax/arielle-munters/
https://github.com/DerrickWood/kraken2/tree/master/src
https://benlangmead.github.io/aws-indexes/k2
https://ftp.ensembl.org/pub/release-107/maf/ensembl-compara/multiple_alignments/10_primates.epo/
https://ftp.ensembl.org/pub/release-107/maf/ensembl-compara/multiple_alignments/10_primates.epo/

128 CHAPTER 6. LEVERAGING LOCALITY FOR BATCH SCHEDULERS

Day -n ... Day -1 Day 0 Day 1→ Day 7 Day 8

Jobs scheduled as in the log

Jobs scheduled with
the desired scheduler

Evaluated
week

Figure 6.2: Methodology followed to schedule and evaluate jobs from a specific week while avoiding
edge effects.

Indeed, if a user needs 128 GB of memory but would request only 1 of the 20 available cores, that user
would block the node for all other users, for lack of remaining memory. Consequently, a user who needs
the whole memory of a node will reserve all its cores. Similarly, if a user needs a fraction of the memory,
the user can reserve a fraction of the cores on the machine.

The utilization levels in the log of the platform are typically high (> 90%), but not fully consistently.
The vast majority of jobs on these resources are single-node jobs and thus fit in our framework. The few
multi-nodes jobs are not representative of the typical usage of the platform, and are replaced by as many
single-node jobs as necessary to represent the same workload. We notice that jobs durations extend up
to 10 days, while some jobs only last a few minutes. Even if the workload is not homogeneous, it is
representative of the real usage from an actual user community including, but not exclusively consisting
of, many subfields of the life sciences with highly data-dependent workflows.

In our experiments we evaluate our schedulers week by week. Our workload is constituted of 51
weeks, ranging from January the 3rd 2022 to December the 25th 2022. To target different scenarios
but avoid scheduling the whole year, we randomly selected 12 weeks and extracted the jobs submitted
within these weeks from the logs. The most important for a user is that all the jobs that have been
submitted at once are finished as soon as possible. Thus we introduce the notion of user session. The
stretch (defined in Section 6.3) of a user session is the sum of the stretch of jobs submitted by a user in
a 5-minute window. Our evaluation is based on three metrics: the stretch of each user session, the total
time spent waiting for a file to become available, as well as the total core time. We evaluate the proposed
schedulers on these metrics and compare them to FCFS and EFT, with and without backfilling. Over
these 12 weeks of workloads, we scheduled 1 986 496 jobs and evaluated 1 493 151 of them. There have
been 1083 distinct users and 136 404 user sessions.

To simulate these jobs in a realistic, steady-state operation of the platform, we consider both jobs
submitted before and after the week under consideration. We proceed as illustrated in Figure 6.2. We
choose a week we want to evaluate (in red on the figure). To avoid edge effects from starting and ending
a schedule on an empty cluster, we add jobs submitted the day before (Day 0) and after (Day 8). The
desired scheduler is used at the start of Day 0. Thus, the evaluated jobs do not suffer from edge effects.
On top of that, we schedule jobs submitted before Day 0 on the actual node that was used for this job
from the logs information. This replicates the exact state of the cluster as it was that day. n is chosen
depending on the maximum observed duration of a job on the cluster. In our case, users typically do not
submit jobs that last longer than a week. So we choose n = 7, which covers all jobs submitted before
the start of Day 0.

6.6. EXPERIMENTAL EVALUATION AND ANALYSIS 129

6.5.4 Simulator description

We used simulations to avoid disrupting users on a production cluster, but our strategies could be imple-
mented on the SLURM workload by asking the users to flag the input files they are using. All strategies
as well as the two baselines (FCFS and EFT) have been implemented on a simulator that we developed6.
The simulator is a simple event-based simulator focusing on data locality. It is made in Python and
follows these principles:

• As in real systems, the schedule is re-computed entirely at each unpredicted event (job submission
or job termination before the walltime);

• The scheduler is only aware of jobs that have be submitted before the current time;

• When a job is submitted, the scheduler knows its submission time, requested walltime, number of
cores required and input file name;

• Scheduling a job consists in assigning to the job a start time, a node, and as many cores on that
node as requested.

In the context of our specific needs, we chose to develop our own batch simulator instead of relying on
an existing solution such as Batsim [54]. One of the primary reasons was the lack of coverage for our
specific use cases in existing solutions: data reuse and data loading prior to computation. By developing
our own simulator, we were able to tailor it specifically to add load time before a job starts and allow
a job to bypass this time by reusing an existing file. Moreover, we wanted to explore and compare
various scheduling and backfilling algorithms to identify the most efficient approach for our workload.
By developing our own simulator, we had complete control over the design and could easily experiment
with different strategies. Finally, given the time constraints of the three-month internship in Sweden,
developing our own batch simulator was a practical decision that allowed us to focus on testing the
schedulers. Future integration with existing simulators remains a possibility, although time consuming,
which would provide more reliable results.

6.6 Experimental evaluation and analysis

We evaluated our schedulers on 12 distinct randomly selected weeks. These weeks have different work-
loads, with different levels of cluster saturation. We start with a low utilization case.

6.6.1 Results on an underutilized cluster

Figure 6.3a depicts the distribution of the improvement of each user session stretch, compared to FCFS,
obtained by each strategy on week 407. In other words we represent Stretch_FCFS/Stretch_Scheduler
for each user session and each scheduler. In this figure, the horizontal black dotted line corresponds to
no improvements from FCFS, which is the situation where the sum of the queue time and transfer time
of the user session is the same as with FCFS. The percentages next to the scheduler names denotes
the fraction of user sessions where the improvement was at least 1% different from 1: only these
user sessions are depicted on this figure, for the sake of readability. The solid lines are the median and
the triangles are the average improvements. Because outliers bring a huge improvement, the averages

6Code, anonymized logs and the methodology followed to randomly select our evaluated weeks are available at: https:
//github.com/userdoubleblind/Locality-aware-batch-scheduling

7The 40th week of 2022: jobs submitted between the 3rd and the 9th of October 2022.

https://github.com/userdoubleblind/Locality-aware-batch-scheduling
https://github.com/userdoubleblind/Locality-aware-batch-scheduling

130 CHAPTER 6. LEVERAGING LOCALITY FOR BATCH SCHEDULERS

EFT 17% LEA 58% LEO 19% LEM 29%

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

St
re

tc
h

tim
e'

s i
m

pr
ov

em
en

t f
ro

m
 F

CF
S

(a) Stretch’s improvement from FCFS.

20000

40000

60000

80000

In
 q

ue
ue

3/10/2022 9/10/2022
0

2000
4000
6000
8000

Ru
nn

in
g

10000
0

Nu
m

be
r o

f r
eq

ue
st

ed
 c

or
es

All jobs Evaluated jobs Waiting for a file

(b) Visualization of the utilization rate of the cluster with
FCFS. For readability, the in queue and running scales
are different. Dotted orange lines frame the evaluation
window.

Figure 6.3: Results on the workload of week 40.

are usually higher than the medians. Because of such extreme outliers, we are more interested in median
values. An improvement above 1 is a speed-up. An improvement at 0.5 means that the sum of the
queue times and transfer times for this user session was two times larger with the scheduler than with
FCFS. For all boxplots shown in this chapter, the box contains results within the [25%,75%] range, while
whiskers are drawn at 12.5% and 87.5%.

Figure 6.3a shows that on this workload, all schedulers result in almost no improvement, nor degra-
dation of the user session stretch, apart from LEA that degrades performance for significantly more
than 50% of user sessions.

To understand the issues LEA encounters on this workload, we need to study the cluster’s usage over
time. Figure 6.3b shows the cluster usage when using FCFS. The vertical axis represents the number of
requested cores either running on a node (lower half, the maximum is the total number of cores on our
cluster: 9720) or in the queue of jobs waiting to be executed (top half, where the number of requested
cores can be much higher than the cluster’s capability). The blue line shows the number of cores (used
or requested) for all jobs. The red lines show the number of cores used by the evaluated jobs, i.e., those
jobs that have their submission time within our evaluation window. Thus, this forms a subset of the
set indicated by the blue line. If a line is present in the top half, it means that some jobs could not be
scheduled and are thus waiting in the queue of available jobs. A node may have some available cores
but not enough to accommodate some jobs with large requirements. This explains why the waiting job
queue may not be empty even if the lower half does not reach the maximum. The gray line represents
the number of cores currently loading a file. Lastly, the orange lines delimits the submission times of
our evaluated jobs, in other words it is our evaluation window.

By looking at the top half of Figure 6.3b we understand that the job queue is empty for more than
half of the evaluation window. In this situation, FCFS and EFT are very efficient. The earliest available
node is in most cases a node that can start the job immediately, explaining the mean stretch close to 1
in Figure 6.3a. LEO is a strategy that uses the earliest available time tk of a node to decide if it should
compute a score like LEA, that puts a large weight on transfer time or weigh equally tk, the transfer
and eviction duration. Thus, on underused clusters, LEO has a behavior close to EFT, while trying to
minimize evictions. Similarly, LEM switches between EFT and LEA depending on the cluster’s usage.

6.6. EXPERIMENTAL EVALUATION AND ANALYSIS 131

Schedulers EFT LEA LEO LEM

Reduction from FCFS 0.0% 14.8% 0.8% 3.8%

Table 6.1: Percentage reduction in time spent waiting for a file to be ready before starting the computa-
tion, relative to the total wait time of FCFS.

(a) With LEA. The max and min values are 543 and
0.003.

(b) With LEM. The max and min values are 543 and
0.007.

Figure 6.4: Stretch times of each user session from week 40 compared to FCFS. Cropped at 0.3 and 5.

On this particular workload the cluster’s usage is under 100% more than half the time, so LEM behaves
similarly to EFT. On the contrary, LEA favors data re-use over an early start time for a job.

Table 6.1 shows the reduction of the amount of time spent waiting for a file to be ready before starting
the computation, relative to the total waiting time of FCFS. In this case, LEA is the only strategy that
decreases this waiting time by re-using input files. It will create a queue of jobs that already have a valid
copy of their file loaded on a node, waiting to be able to re-use their input. On an underutilized cluster,
this creates situations where some nodes are idle while submitted jobs wait in a queue, resulting in
increased queue times. The consequences for the stretch are immediately distinguishable on Figure 6.4a.
This plot shows for each user session, the ratio of its stretch with LEA over its stretch with FCFS
(hence a value above 1 means LEA improves the stretch). The size of a circle is proportional to the
user session’s duration. On the workload of week 40, we observe several “columns” of jobs submitted
at the same time (hence sharing the same file with large probability) with a ratio lower than 1, hence
a worst performance with LEA. This means LEA is waiting to re-use the files before starting the jobs,
whereas FCFS paid the cost of loading the file on other nodes, but started the jobs earlier than LEA,
leading to shorter completion times. From Figure 6.4b concerning LEM, we see that most jobs have an
improvement close to 1, showing that LEM does not fall into LEA’s pathological case. To summarize,
on an underutilized cluster, LEA’s focus on locality does not allow optimal utilization of the cluster,
while LEO and LEM, thanks to their flexibility, achieve performance close to EFT.

132 CHAPTER 6. LEVERAGING LOCALITY FOR BATCH SCHEDULERS

EFT LEA LEO LEM

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

St
re

tc
h

tim
e'

s i
m

pr
ov

em
en

t f
ro

m
 F

CF
S

(a) Stretch’s improvement from FCFS. The upper
whisker of LEA extends up to 11.

20000

40000

60000

80000

In
 q

ue
ue

24/10/2022 30/10/2022
0

2000
4000
6000
8000

Ru
nn

in
g

10000
0

Nu
m

be
r o

f r
eq

ue
st

ed
 c

or
es

All jobs Evaluated jobs Waiting for a file

(b) Visualization of the utilization rate of the cluster with
FCFS. For readability, the in queue and running scales
are different. Dotted orange lines frame the evaluation
window.

Figure 6.5: Results on the workload of week 43.

Schedulers EFT LEA LEO LEM

Reduction from FCFS 0.4% 20.8% 1.0% 11.4%

Table 6.2: Percentage of reduction of the amount of time spent waiting for a file to be ready before
starting the computation, relative to the total waiting time of FCFS on week 43.

6.6.2 Results on a saturated cluster

We concentrate here on week 43, which we identify as a workload saturating the cluster. Indeed, Fig-
ure 6.5b shows a queue of several thousands requested cores for the whole duration of the evaluated
week. In this situation, re-using files has a significant impact on the queue times. As you can see on
Table 6.2, LEA and LEM greatly reduces the transfer time. This is confirmed by Figure 6.5a: more
data re-use is associated with better improvement for LEA and LEM. On a saturated cluster, filling all
cores with the first jobs of the queue, like FCFS does, is not crucial. It is more beneficial to group jobs
using the same file. The first few jobs have a longer queue than with FCFS, but, over time, re-using
files causes a snowball effect that reduces the queue times of all subsequent jobs. Moreover, the queue
contains enough jobs to fill all the nodes even when grouping them by input file. We thus avoid the
pathological case outlined in Section 6.6.1. In this case, the strategy of LEA, also found in LEM, allows
to greatly reduce the stretch of each user session. This is confirmed by Figure 6.6: very few jobs have
a worse stretch than FCFS and a large amount of jobs display an improvement above 2.

6.6.3 Complete results

We report here the results of the 5 schedulers on the 12 evaluated weeks. Figures 9 to 12 represent the
aggregated results of the ratio of each 136 404 user session stretches over 12 weeks and 1 986 496 jobs
relative to FCFS.

6.6. EXPERIMENTAL EVALUATION AND ANALYSIS 133

Figure 6.6: Stretch times of each user session from week 43 using LEA compared to FCFS. Cropped at
0.3 and 5. The max and min values are 314 and 0.006.

EFT LEA LEO LEM
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

St
re

tc
h

im
pr

ov
em

en
t f

ro
m

 F
CF

S

(a) Stretch’s improvement from FCFS. The upper
whisker of LEA extends up to 5.

0.5 1.0 1.5 2.0 2.5 3.0
Stretch's improvement from FCFS

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

EFT
LEA
LEO
LEM

(b) Empirical distribution function of the stretch’s im-
provement from FCFS.

Figure 6.7: Results without backfilling on all evaluated weeks.

134 CHAPTER 6. LEVERAGING LOCALITY FOR BATCH SCHEDULERS

Schedulers EFT LEA LEO LEM

Reduction from FCFS 0.9% 17.1% 0.9% 7.1%

Table 6.3: Percentage of reduction of the amount of time spent waiting for a file to be ready before
starting the computation, relative to the total waiting time of FCFS on all workloads.

Schedulers EFT LEA LEO LEM

Reduction from FCFS 0.01% 0.37% 0.02% 0.10%

Table 6.4: Percentage of reduction of the total core time used on all workloads relative to FCFS.

Results without backfilling As in the previous results, we observe on Figure 6.7a that EFT does not
bring any real improvement compared to FCFS. EFT takes into account file transfers when scheduling
jobs but is a less aggressive strategy than LEA or LEM, and the savings in data transfers are only
0.9% (see Table 6.3). EFT is not able to see that a large number of jobs using the same file should
be scheduled on the same node: even if it would generate more queue time, the overall execution time
would be lowered thanks to data re-use. On the contrary, LEA has the largest median improvement.

We can explain the larger median value for LEA from the good performance on heavily saturated
clusters (see Section 6.6.2). Re-using the same files is not detrimental to the filling of all the nodes
because there are enough jobs to cover all nodes. A large decrease (see Table 6.3) in the time spent
waiting for a file greatly reduces the stretch of each job. LEM has a lower median, however, as can be
seen on Figure 6.7a, at least 87.5% of its results are above 1, i.e., an improvement, whereas for LEA,
only approximately 75% of the results are above 1. LEM is a more versatile strategy and offers higher
sustained performance on non-saturated cluster at the cost of fewer extreme improvements on heavily
saturated clusters.

Table 6.4 shows the reduction in terms of total core time (i.e. the core time used on each core of
each node over the 12 weeks). LEA reduces the total core time used by 49 000 core hours over the 12
weeks (approximately 5h of the whole platform). Although it is a small percentage reduction, it can be
of interest on large scale clusters that are highly demanding in terms of electrical resources.

From the same data shown on Figure 6.7a, we plot an empirical distribution function on Figure 6.7b.
EFT’s low variance is clearly visible in the sudden jump in probability around an improvement of 1. It
is interesting to note that for LEA, 20% of the results are above an improvement of 300%. In addition,
thanks to its change of scheduling strategy between EFT and LEA, LEM clearly reduces performance
losses on the left of the black line.

Thus, LEA is the strategy that leads to more significant improvements: it is able to compute jobs
between 1 and 2 times faster in 50% of the cases and between 2 and 6 times faster in 25%. It is slower for
only 25% of the jobs, and 12.5% of those are within a 0.15 slow-down. LEO is a more sustained strategy
with 87.5% of its results with an improvement compared to FCFS, which shows that our opportunistic
strategy is much more consistent, while still having great improvements in some cases. LEM is more
versatile. It leads to an improvement in 87.5% of the results, with a speed-up of at least 7.5% in 50% of
the results.

Results with backfilling Figure 6.8a shows the results with the backfilling version of our schedulers
and compared to FCFS with backfilling (FCFS-BF) on all workloads. We notice that our schedulers have
smaller improvements with backfilling, because FCFS-BF already performs much better than FCFS.

6.7. CONCLUSION ON LOCALITY-AWARE BATCH SCHEDULING 135

EFT-BF LEA-BF LEO-BF LEM-BF
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

St
re

tc
h

tim
e'

s i
m

pr
ov

em
en

t f
ro

m
 F

CF
S-

BF

(a) Stretch’s improvement from FCFS. The upper
whisker of LEA extends up to 4.

FC
FS

FC
FS-

BF
EFT

EFT
-BF

LEA
LEA

-BF
LEO

LEO
-BF

LEM
LEM

-BF
200

300

400

500

600

M
ea

n
st

re
tc

h
by

 u
se

r's
 se

ss
io

n

(b) Average user session stretch with (circles) and with-
out (crosses) backfilling. Cropped at 200.

Figure 6.8: Results with backfilling on all evaluated weeks.

Figure 6.8b shows that the difference of performance with (circles) or without (crosses) backfilling is
much higher for FCFS-BF and EFT-BF. Our proposed strategies do not benefit from backfilling as much
as FCFS-BF does for two reasons. Firstly, even if we consider data locality when backfilling, trying
to fill a node as much as possible and optimizing data re-use are two contrary goals. Backfilling a job
can compromise a re-use pattern that was planned by our locality-aware strategy, thus reducing the total
amount of re-used files. Secondly, our strategies are already able to nicely fill the nodes without needing
backfilling. Grouping jobs by input file implies that similar jobs end up on the same nodes. Jobs having
the same duration and number of requested cores can much more easily fill a node to its fullest than a
completely heterogeneous set of jobs. Consequently, FCFS-BF and EFT-BF already naturally benefit
from increased data locality thanks to backfilling, leading to a reduced benefit in using LEA-BF, LEO-
BF or LEM-BF. Compared to FCFS-BF, our strategies still reduce the total queue time with backfilling
but the difference is less significant.

Figure 6.8a shows that the improvement of EFT-BF compared to FCFS-BF is not significant. Out of
our four heuristics, LEM-BF is the best compromise here. It is better than FCFS-BF in more than 75%
of the cases, with 12.5% of those results above an improvement of 1.8. Among the slow-downs, only
12.5% are worse than 0.95.

6.7 Conclusion on locality-aware batch scheduling

Research on topics such as ancestry reconstruction from DNA samples requires high computational
power coupled with large input data. When using computing clusters, users in such area commonly
submit dozens of jobs using the same multi-GB input file.

Batch schedulers are key components of computing clusters and are designed to improve resource
utilization and reduce job response time. Classical job schedulers are unaware of data locality and thus
fail to re-use data on nodes in data intensive workloads. We have studied how one may improve their
performance by taking job input file into account: we have proposed three new locality-aware strategies,
named LEA, LEO and LEM, capable of increasing data locality by grouping together jobs sharing inputs.

The first one has a major focus on data locality, while the other two target a balance between data
locality and load balancing. We have performed simulations on logs of an actual cluster. Our results
show that LEA significantly improves the mean waiting time of a job, especially when the cluster is
under a high computing demand. Without backfilling, LEA is better than our baseline in 75% of the

136 CHAPTER 6. LEVERAGING LOCALITY FOR BATCH SCHEDULERS

cases (50% of the cases with backfilling). Our strategy called LEM is the best compromise. LEM
is better than the baseline in more than 75% of the cases with or without backfilling, with a median
improvement of 7.5% compared to our baseline without backfilling.

Conclusion and Perspectives

Summary

T
HIS WORK is motivated by a well-known pathology of modern supercomputers: limited mem-
ory. Indeed, modern processing units can achieve unprecedented throughput, but their nearest
memory is always limited in size due to space, cost, or access speed constraints. This would not

be a problem if the main memory containing all the data was easily accessible. It is not; the bandwidth
between a CPU and a disk is low, and the bandwidth between a GPU and a CPU is too slow compared
to the GPU’s computational speed. The execution of large scientific applications on a supercomputer is
then reduced to waiting for data transfers for a large fraction of the total execution time. The goal of
this thesis is to reduce the time required to process scientific applications on modern supercomputers
under memory constraints. To unlock the full potential of supercomputers, we have been working on
two different hardware levels: runtime and batch systems.

Runtime schedulers For runtime systems, our objective was to build a generic scheduler capable
of reducing data transfers and increasing performance by partitioning and scheduling a set of tasks (with
and without dependencies) sharing data on one or more processing units with limited distributed or
shared memory. Since this is a goal with multiple parameters that require their own optimizations, we
first start with a simple model. Our first model expresses the application in terms of a bipartite graph
of independent tasks computed by a single processing unit. Thanks to this simplification, we provided
proofs of an optimal eviction policy and the complexity of finding an optimal task order. Our full model
includes multiple processing units, heterogeneous weights, and dependencies.

From the simplified model, we built our first scheduler: Hierarchical Fair Packing (HFP). HFP be-
gins with an initial packing phase to create packages of tasks that share a lot of data and whose required
data fits exactly into the memory of the processing units used. A package is an aggregation of subpack-
ages that have been carefully merged to achieve data reuse across successive tasks. After this initial
packing phase, HFP continues packing until there are as many packages as processing units, even if it
means exceeding the memory limit. A package is then assigned to each processing unit. In addition to
this task partitioning, the tasks within each package are carefully ordered thanks to the way the packages
were created. Because it schedules the entire set of tasks in advance, we were able to endow HFP with
an optimal eviction policy. We tested HFP on 2D matrix multiplication and its variants with sparsity
or randomization, on 3D matrix multiplication and tasks from the Cholesky factorization, with one or
several GPUs. On the 2D matrix multiplication, HFP achieves near-optimal performance, with one or
two GPUs. This is explained by what the packages produce: a lot of data reuse and distributed transfers

137

138 CONCLUSION AND PERSPECTIVES

over time, allowing a high overlap between communications and computations. For the other applica-
tions, HFP offers the best results compared to our competitors: adapted strategies from the literature
and a state-of-the-art runtime scheduler. However, this sophisticated scheduling does not come without
a cost: complexity. The complexity comes from the packing phase, which requires looking at each task
input data. With a lot of parallelism and a large number of tasks available at once, the cost of packing
becomes non-negligible. We have tested HFP on 2D and 3D matrix multiplication, applications with
a large number of tasks and a high degree of parallelism. It thus exacerbates the complexity of HFP.
However, not all applications have a large number of tasks ready at once. A progressive task submission
is common for many applications [9]. With progressive task submission, the number of tasks available
at a given time is less important, thus reducing the computational cost of HFP packing. However, we
would still need to make HFP incremental, i.e., able to dynamically add new ready tasks to an exist-
ing schedule, in order to adapt to an application with a progressive task submission. We outline other
methods to mitigate the complexity of HFP in the perspectives. Thus, HFP is a great offline scheduler
and partially meets our target, since it can perform well under memory constraints. However, it cannot
become a dynamic scheduler, which is a requirement of our main goal, since it is needed to tackle linear
algebra applications with dependencies.

With the complete model, we built a scheduler that would overcome this complexity constraint
and manage task sets with dependencies: Dynamic Data Aware Reactive Task Scheduling (DARTS).
DARTS considers data movement before anything else. The strategy considers, for each processing
unit, the state of its memory and uses this information to select the data that would be most beneficial to
load. For DARTS, the most beneficial data to load enables many tasks to be computed without additional
data movement, but it also considers fast data transfers, progress along the critical path, and allowing
processing units to work on different sets of data. Tasks associated with that data are then queued for
execution. DARTS can contradict priorities to favor locality when it brings benefits, but also recognize
situations where following the critical path is more important. In addition, DARTS has an eviction
policy that works in synergy with its schedule. DARTS has been tested on 2D, 3D and sparse matrix
multiplication as well as Cholesky and LU factorization. Similar to HFP, DARTS achieves near perfect
performance when scheduling time is not considered. When it is taken into account, DARTS is the best
overall solution for all of the cited applications. However, a lack of performance has been observed when
computing small workloads with many GPUs. DARTS distributes the workload across the different
GPUs as much as possible. However, for small workloads, it is preferable to increase data reuse, even
if it means leaving some GPUs idle. DARTS fulfills our initial target of reducing the execution time
of task-based applications under memory constraints, as it generally exhibits higher throughput than its
competitors. DARTS also satisfies our generic requirement since it is generic enough to perform well
with a single or multiple GPUs, with CPU cores, with any memory constraint, on a wide range of linear
algebra applications, and works without full knowledge of the task graph.

Four other steps were required to achieve the results presented above. First, we added a support
for custom eviction policies in STARPU. Second, we developed a visualization tool for 2D, 3D matrix
multiplication and Cholesky factorization. Third, we gained deeper insight into the performance of our
competitors. For example, we discovered that a random task submission positively affects the perfor-
mance of DMDAR and highlighted that the default LRU eviction policy causes a pathological case under
memory constraint. Fourth, we have built schedulers inspired by theoretical studies that are aware of the
peculiarities and constraints of practical implementation in a runtime system.

Batch schedulers Batch systems also share a similar motivation: to improve the execution time of
scientific applications on supercomputers. Batch schedulers are important parts of computing clusters,
and aim to improve resource utilization by carefully assigning jobs to compute nodes. We identified

139

a use case where common batch schedulers lack locality techniques: data-intensive workloads. Such
workloads include, for example, DNA reconstruction, where scientists typically submit hundreds of
jobs using the same input files, sometimes several gigabytes in size. We have developed three strategies
called LEA, LEO, and LEM (for Locality and Eviction Aware, Opportunistic, or Mixed) which are
designed to increase data reuse by applying locality techniques.

LEA strongly favors data locality. LEO and LEM balance locality and load balancing. To evaluate
them, we developed a batch simulator and used logs of real jobs submitted to a cluster. Our experimental
evaluation over two million jobs shows that LEM is the best compromise, as it reduces the average wait
time of a job in 75% of cases, with or without backfilling.

Future works

We now review future work for both our runtime and batch schedulers.

Runtime schedulers

Handle multiple MPI nodes HFP and DARTS currently handle only a single MPI node. The
complexity of HFP would not be usable with a large number of nodes that require a fast response time
from the scheduler to avoid starvation. Here we suggest ways to use our DARTS scheduler on multiple
MPI nodes by applying it on top of the nodes, inside each node, or both. DARTS should be used
differently at a small (less than ten nodes) or large scale (hundreds of nodes). At a small scale, an
instance of DARTS would be used at each memory level: one would distribute the tasks and data to the
various nodes, and each node would be equipped with an instance of DARTS to distribute and order
the task on each processing unit. This would work well with nodes equipped with GPUs, as they are
generally not too numerous in a single node. However, within nodes mainly composed of CPUs, DARTS
would not be able to assign the tasks to the many individual cores without getting hit by starvation issues.
Thus, in such a case, we aim to couple DARTS with other schedulers, such as work-stealing algorithms,
to take advantage of all their features. Since CPUs operate with a shared memory, DARTS does not
distinguish two CPU cores sharing the same memory. So, the goal would be to use DARTS to partition
the task set across the different shared memory NUMA nodes, since they are not too numerous within a
node, and then a locality-aware work-stealing policy would use its load balancing capability to carefully
order the tasks onto the different individual cores. At a large scale, with possibly hundreds of nodes, the
complexity of DARTS could become an issue because the response time would not be fast enough to
serve all the workers. One possible solution is to use a static workload partitioning, which would assign
a subset of tasks to each node, and then an instance of DARTS on each node would manage the memory
constraint of each processing unit.

Manage the complexity of HFP As we mentioned, HFP’s complexity makes it difficult to use on
highly parallel independent task sets. However, it has high performance if we ignore its complexity.
Several solutions can help to deal with the complexity of HFP. For example, HFP can be used offline to
determine a schedule for a large matrix multiplication of fixed size. If the matrix size and the processing
units used are known in advance, HFP can generate a task order that increases performance. The com-
plexity of HFP can also be handled on a heterogeneous node. Since GPUs are much faster than CPUs,
they are usually used for the vast majority of tasks in a linear algebra application, leaving the CPUs idle
most of the time. HFP could take advantage of this by quickly distributing a small set of tasks to the
GPUs while the idling CPUs are used to compute the rest of the schedule. Hopefully, before the GPUs
finish their initial sets of tasks, the CPUs will have computed the full schedule and can then assign the

140 CONCLUSION AND PERSPECTIVES

packages to the GPUs. However, such a solution would be difficult to implement on very large systems
with dozens of GPUs, as they would be too fast for HFP’s schedule. Finally, the complexity of HFP is
not an issue with large tile sizes. On a linear algebra application with very large tiles, they will take an
enormous amount of time to compute on a processing unit. This results in a much more favorable ratio
of scheduling time to computation time for HFP. The applications are also composed of fewer tasks,
making HFP packing much faster, which can negate the scheduling overhead.

Add more data reuse at the beginning of the execution At the very beginning of execution,
memory is empty, all processing units are idle, so it is crucial to schedule tasks with few input data first,
as they maximize the ratio between computation and required communication. This is something our
schedulers do not take into account today. Knowing the number of processing units and the duration
of a task, it would be advantageous to compute a schedule for each of them that favors data reuse for a
certain amount of time before switching to our initial strategies.

Adapt Belady’s rule to Ready To make full use of Belady’s eviction policy, it needs to know the
set of processed tasks in advance to infer the order in which data will be used. However, the Ready
reordering, which has been shown to be powerful, reorders the set of tasks assigned to a processing unit.
It thus messes with the planned order of data use that Belady knows. This does not significantly affect
performance on the experiments we ran. However, it could be detrimental for very large matrix sizes. A
future optimization is to inform Belady’s eviction policy of any task movement from the Ready dynamic
task reordering, making it much more efficient.

Analyze communications and computations overlap For both HFP and DARTS, we found
that they can have as many data transfers as DMDAR, but more GFlop/s. This means that they are
good at distributing data transfers over time. A future goal is to quantitatively evaluate the amount
of overlapping data transfers during an execution. With this evaluation, it is possible to identify the
decisions that maximize overlap and find ways to tune our algorithms in this direction.

Accept to let GPUs be idle We have found that DARTS is not able to achieve high performance
with many GPUs and few tasks because it is not able to let a GPU idle when another can provide benefits
through data reuse. To solve this problem, when DARTS has multiple idle GPUs, it needs to use the
expected completion time of a set of tasks on one GPU and evaluate whether it is more beneficial to
distribute the tasks across all GPUs or put it all on one GPU.

Apply to end-user cases An important future work is the use of DARTS in real-world applications.
These applications include the EXAGEOSTAT project mentioned in the context. It relies for some
applications on the resolution of large Cholesky factorizations and supports STARPU, which means that
little or no adjustment would be required to use DARTS.

Improve our visualization tool Lastly, our visualization tool can be improved. It can easily be
extended to support LU factorization, as it can be plotted as two Cholesky triangles. In a similar way,
QR can also be easily represented as squares of task. In the long run, extending our tool to any task-
based application is feasible. By grouping all data shares in an adjacency matrix and sorting them by
iterations, it is possible to find a 2D pattern to represent the application. Automating this process is a
non-negligible development effort, but would be beneficial for future performance analysis.

141

Batch schedulers

Integration in real computing platforms The most impactful perspective is to integrate LEA,
LEO, and LEM into real cluster schedulers to test their robustness in real-world situations. However, it
is difficult to deploy a new scheduling strategy on a real platform without disrupting the research work
of hundreds of scientists. A reasonable solution would be to use the modularity of existing workload
managers to slowly add locality techniques. For example, since we have seen that LEO is the more stable
algorithm, it is conceivable to add LEO’s intuition to an existing batch scheduler on a real platform.

Gradual LEM Speaking of our batch schedulers: LEM could be improved. One simple upgrade is to
tune LEM to more finely adapt to the cluster level of utilization. Switching between a locality-first and
a load-balancing-first strategy could be done gradually.

More complex job modeling Lastly, the model we used for batch scheduling contained many
simplifications. For example, we only consider single-node jobs, as they are widely prevalent in the
studied dataset. However, our scheduler could be extended to multi-node jobs, although it is a more
complex task since one needs to find several nodes that all hold the corresponding data in order to reuse
them. Other simplifications include the overlooking of jobs outputs and jobs that require load during
computation and not only at the beginning. Finally, our model does not consider IO contention. We
are interested in where to allocate jobs to reduce IOs, an additional step can be taken to better organize
unavoidable IOs and minimize contention. Considering both steps simultaneously would most likely
yield large improvements, but is a much more complex task.

Afterthoughts

In the long run, many topics would benefit from more thorough study. I discuss here the points that seem
to me to be of greatest importance.

Hierarchical task scheduling Hierarchical tasks (also called recursive tasks) are a new way to
manage heterogeneous nodes [58]. A hierarchical task is a large divisible task that can accommodate
the heterogeneity of available computational resources by providing different task sizes to fit different
processing units. Additionally, it may reduce the cost of task graph submission. I believe that using
locality-aware scheduling policy with hierarchical tasks can bring newfound improvements. In addition
to dealing with the memory constraint, the scheduler also has the responsibility of deciding whether or
not to divide a task: it can decide to use the optimal tile size, or to recursively break tasks into the smallest
possible size to run on individual cores. With this additional control, a scheduler can manage granularity
to increase parallelism when memory is not constrained, and schedule tasks with small granularity when
a refined schedule is needed to avoid pathological cases. This control can also be used to occupy nodes
with large tasks while a complex scheduler plans a set of small tasks for later execution. Scheduling large
tasks at the beginning of execution, when all processing units are idle, reduces the scheduling overhead.
Scheduling small tasks at the end of execution, when all processing units are busy, is more important
to reduce data transfer and eviction, and increase overlap of computations and communications. By
dynamically controlling task granularity, the scheduler itself can control the overlap of computations
and scheduling overhead, which is an exciting future direction for research in scheduling.

142 CONCLUSION AND PERSPECTIVES

Implementation of theoretical studies Theoretical studies of communication-optimal algorithms
such as [24] and many others provide schedulers that minimize communication for sequential out-of-
core settings: a single processor with a distant slow but large memory and a nearby fast but small mem-
ory. Execution time is not the focus in such a setting. Execution time is more interesting to optimize in
the case we studied, with many processing units and distributed memory. If one wants to use theoretical
studies to try to reduce the execution time of an application, a main question arises: Is it better to fo-
cus on reducing communication above all else, or to use non-communication-optimal algorithms to add
more parallelism? To answer this question, I think we should implement static communication-optimal
schedulers in runtime systems and adapt them to multiple processing units. Observing the associated
performance compared to a dynamic scheduler would bring a lot of knowledge and perhaps enable the
creation of new hybrid strategies that would select ideas from both theoretical and practical scheduling
to achieve peak performance.

Improve the efficiency of existing supercomputers We have seen in this thesis how to increase
the performance of supercomputers on linear algebra applications. But what about applications that do
not rely on linear algebra? For such applications, scientists try to get as much parallelism as possible
and use as many nodes as possible. Beyond the common goal of getting as much parallelism as possible,
they also rely on using more GPUs and memory to meet their memory and compute speed needs. This
is especially true in AI, where large amounts of training data need to be processed. This encourages the
construction of larger and larger supercomputers with more and more nodes. However, I believe that
this is not sustainable, neither ecologically nor economically. Instead of larger systems, I advocate better
utilization of existing clusters. To this end, I believe that more work on locality-aware scheduling will
enable applications to require fewer nodes and less memory while still being completed in a reasonable
amount of time.

Bibliography

[1] S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton, and D. E. Keyes. “ExaGeoStat: A High Perfor-
mance Unified Software for Geostatistics on Manycore Systems.” In: IEEE Transactions on
Parallel and Distributed Systems 29.12 (2018). DOI: 10.1109/TPDS.2018.2850749.

[2] S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton, and D. E. Keyes. “Geostatistical Modeling and
Prediction Using Mixed Precision Tile Cholesky Factorization.” In: 2019 IEEE 26th Interna-
tional Conference on High Performance Computing, Data, and Analytics (HiPC). 2019. DOI:
10.1109/HiPC.2019.00028.

[3] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. “The Data Locality of Work Stealing.” In: Theory
Comput. Syst. 35.3 (2002).

[4] P. Agrawal, D. Kifer, and C. Olston. “Scheduling Shared Scans of Large Data Files.” In: Proc.
VLDB Endow. 1.1 (Aug. 2008). DOI: 10.14778/1453856.1453960.

[5] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief, S. Thibault, and S. Tomov. “QR
Factorization on a Multicore Node Enhanced with Multiple GPU Accelerators.” In: 2011 IEEE
International Parallel & Distributed Processing Symposium. 2011. DOI: 10.1109/IPDPS.
2011.90.

[6] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, J. Roman, S. Thibault, and S. Tomov.
“Dynamically scheduled Cholesky factorization on multicore architectures with GPU accelera-
tors.” In: Symposium on Application Accelerators in High Performance Computing. July 2010.

[7] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, S. Thibault, and S. Tomov. “Faster,
Cheaper, Better – a Hybridization Methodology to Develop Linear Algebra Software for GPUs.”
In: GPU Computing Gems. Vol. 2. Morgan Kaufmann, 2010. URL: https://hal.inria.
fr/inria-00547847.

[8] E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost, M. Sergent, and S. P. Thibault.
“Achieving High Performance on Supercomputers with a Sequential Task-based Programming
Model.” In: IEEE Transactions on Parallel and Distributed Systems (2017). DOI: 10.1109/
TPDS.2017.2766064.

[9] E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost, M. Sergent, and S. P. Thibault.
“Achieving High Performance on Supercomputers with a Sequential Task-based Programming
Model.” In: IEEE Transactions on Parallel and Distributed Systems (2017). DOI: 10.1109/
TPDS.2017.2766064.

143

https://doi.org/10.1109/TPDS.2018.2850749
https://doi.org/10.1109/HiPC.2019.00028
https://doi.org/10.14778/1453856.1453960
https://doi.org/10.1109/IPDPS.2011.90
https://doi.org/10.1109/IPDPS.2011.90
https://hal.inria.fr/inria-00547847
https://hal.inria.fr/inria-00547847
https://doi.org/10.1109/TPDS.2017.2766064
https://doi.org/10.1109/TPDS.2017.2766064
https://doi.org/10.1109/TPDS.2017.2766064
https://doi.org/10.1109/TPDS.2017.2766064

144 APPENDIX . BIBLIOGRAPHY

[10] E. Agullo, M. Felšöci, and G. Sylvand. A comparison of selected solvers for coupled FEM/BEM
linear systems arising from discretization of aeroacoustic problems. Research Report RR-9412.
Inria Bordeaux Sud-Ouest, June 2021. URL: https://inria.hal.science/hal-
03263603.

[11] E. Agullo, A. Guermouche, and J.-Y. L’Excellent. “A parallel out-of-core multifrontal method:
Storage of factors on disk and analysis of models for an out-of-core active memory.” In: Parallel
Computing 34.6 (2008). DOI: 10.1016/j.parco.2008.03.007.

[12] S. Albers. “New Results on Web Caching with Request Reordering.” In: Algorithmica 58.2
(2010).

[13] S. Albers. “On the Influence of Lookahead in Competitive Paging Algorithms.” In: Algorithmica
18.3 (1997).

[14] C. Alias, S. Thibault, and L. Gonnord. A Compiler Algorithm to Guide Runtime Scheduling.
Research Report RR-9315. INRIA Grenoble ; INRIA Bordeaux - Sud-Ouest, Dec. 2019. URL:
https://hal.inria.fr/hal-02421327.

[15] Anonymous. Reverse Cuthill-McKee Ordering in Python & Cython. 2014. URL: http://
science-and-samgaetang.blogspot.com/2014/01/reverse-cuthill-
mckee-ordering-in.html.

[16] C. Augonnet, J. Clet-Ortega, S. Thibault, and R. Namyst. “Data-Aware Task Scheduling on
Multi-Accelerator based Platforms.” In: Int. Conf. on Parallel and Distributed Systems. 2010.

[17] C. Augonnet, S. Thibault, and R. Namyst. “Automatic Calibration of Performance Models on
Heterogeneous Multicore Architectures.” In: Euro-Par 2009 – Parallel Processing Workshops.
Ed. by H.-X. Lin, M. Alexander, M. Forsell, A. Knüpfer, R. Prodan, L. Sousa, and A. Streit.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. ISBN: 978-3-642-14122-5.

[18] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. “StarPU: A Unified Platform for
Task Scheduling on Heterogeneous Multicore Architectures.” In: Concurrency and Computa-
tion: Practice and Experience, Special Issue: Euro-Par 2009 23 (2 2011). DOI: 10.1002/
cpe.1631.

[19] A. Azad, G. Ballard, A. Buluç, J. Demmel, L. Grigori, O. Schwartz, S. Toledo, and S. Williams.
“Exploiting Multiple Levels of Parallelism in Sparse Matrix-Matrix Multiplication.” In: SIAM
Journal on Scientific Computing 38.6 (2016). DOI: 10.1137/15M104253X.

[20] N. Balin, G. Sylvand, and J. Robert. “Fast Methods applied to BEM Solvers for Acoustic Prop-
agation Problems.” In: 22nd AIAA/CEAS Aeroacoustics Conference. 2016. DOI: 10.2514/6.
2016-2712.

[21] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz. “Communication-Optimal Par-
allel Algorithm for Strassen’s Matrix Multiplication.” In: Proceedings of the Twenty-Fourth An-
nual ACM Symposium on Parallelism in Algorithms and Architectures. SPAA ’12. Pittsburgh,
Pennsylvania, USA: Association for Computing Machinery, 2012. DOI: 10.1145/2312005.
2312044.

[22] M. Bauer. “Legion: programming distributed heterogeneous architectures with logical re-
gions.” PhD thesis. 2014. URL: https://stacks.stanford.edu/file/druid:
kk063hx7516/bauer_thesis-augmented.pdf.

https://inria.hal.science/hal-03263603
https://inria.hal.science/hal-03263603
https://doi.org/10.1016/j.parco.2008.03.007
https://hal.inria.fr/hal-02421327
http://science-and-samgaetang.blogspot.com/2014/01/reverse-cuthill-mckee-ordering-in.html
http://science-and-samgaetang.blogspot.com/2014/01/reverse-cuthill-mckee-ordering-in.html
http://science-and-samgaetang.blogspot.com/2014/01/reverse-cuthill-mckee-ordering-in.html
https://doi.org/10.1002/cpe.1631
https://doi.org/10.1002/cpe.1631
https://doi.org/10.1137/15M104253X
https://doi.org/10.2514/6.2016-2712
https://doi.org/10.2514/6.2016-2712
https://doi.org/10.1145/2312005.2312044
https://doi.org/10.1145/2312005.2312044
https://stacks.stanford.edu/file/druid:kk063hx7516/bauer_thesis-augmented.pdf
https://stacks.stanford.edu/file/druid:kk063hx7516/bauer_thesis-augmented.pdf

145

[23] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. “Legion: Expressing locality and indepen-
dence with logical regions.” In: SC ’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. 2012. DOI: 10.1109/SC.2012.
71.

[24] O. Beaumont, L. Eyraud-Dubois, M. Vérité, and J. Langou. “I/O-Optimal Algorithms for Sym-
metric Linear Algebra Kernels.” In: ACM Symposium on Parallelism in Algorithms and Archi-
tectures. 2022. URL: https://hal.inria.fr/hal-03580531.

[25] O. Beaumont and L. Marchal. “Analysis of dynamic scheduling strategies for matrix multiplica-
tion on heterogeneous platforms.” In: The 23rd International Symposium on High-Performance
Parallel and Distributed Computing (HPDC’14). ACM, 2014. DOI: 10.1145/2600212.
2600223.

[26] L. A. Belady. “A study of replacement algorithms for a virtual-storage computer.” In: IBM Sys-
tems Journal 5.2 (1966). ISSN: 0018-8670.

[27] P. Bogiatzis, M. Ishii, and T. A. Davis. “Towards using direct methods in seismic tomography:
computation of the full resolution matrix using high-performance computing and sparse QR
factorization.” In: Geophysical Journal International 205.2 (Feb. 2016). DOI: 10.1093/gji/
ggw052.

[28] D. Borthakur et al. “HDFS architecture guide.” In: Hadoop apache project (2008).

[29] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault, J. Kurzak, J. Langou,
P. Lemariner, H. Ltaeif, P. Luszczek, A. YarKhan, and J. Dongarra. “Flexible Development of
Dense Linear Algebra Algorithms on Massively Parallel Architectures with DPLASMA.” In:
International Symposium on Parallel and Distributed Processing Workshops and Phd Forum.
2011.

[30] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and J. Dongarra. “DAGuE:
A generic distributed DAG engine for High Performance Computing.” In: Parallel Computing
38.1 (2012). Extensions for Next-Generation Parallel Programming Models. DOI: 10.1016/
j.parco.2011.10.003.

[31] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, and J. Dongarra. “PaRSEC: A
programming paradigm exploiting heterogeneity for enhancing scalability.” In: Computing in
Science and Engineering 15.6 (2013).

[32] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguade, and J. Labarta. “Pro-
ductive programming of GPU clusters with OmpSs.” In: International Parallel and Distributed
Processing Symposium. 2012.

[33] D. Callahan, B. Chamberlain, and H. Zima. “The cascade high productivity language.” In: Ninth
International Workshop on High-Level Parallel Programming Models and Supportive Environ-
ments, 2004. Proceedings. 2004. DOI: 10.1109/HIPS.2004.1299190.

[34] N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin, G. Mounie, P. Neyron, and O. Richard.
“A batch scheduler with high level components.” In: CCGrid 2005. IEEE International Sympo-
sium on Cluster Computing and the Grid, 2005. Vol. 2. 2005. DOI: 10.1109/CCGRID.
2005.1558641.

[35] H. Casanova. “Simgrid: a toolkit for the simulation of application scheduling.” In: Proceedings
First IEEE/ACM International Symposium on Cluster Computing and the Grid. 2001. DOI: 10.
1109/CCGRID.2001.923223.

https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1109/SC.2012.71
https://hal.inria.fr/hal-03580531
https://doi.org/10.1145/2600212.2600223
https://doi.org/10.1145/2600212.2600223
https://doi.org/10.1093/gji/ggw052
https://doi.org/10.1093/gji/ggw052
https://doi.org/10.1016/j.parco.2011.10.003
https://doi.org/10.1016/j.parco.2011.10.003
https://doi.org/10.1109/HIPS.2004.1299190
https://doi.org/10.1109/CCGRID.2005.1558641
https://doi.org/10.1109/CCGRID.2005.1558641
https://doi.org/10.1109/CCGRID.2001.923223
https://doi.org/10.1109/CCGRID.2001.923223

146 APPENDIX . BIBLIOGRAPHY

[36] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter. “Versatile, Scalable, and Ac-
curate Simulation of Distributed Applications and Platforms.” In: Journal of Parallel and Dis-
tributed Computing 74.10 (June 2014).

[37] H.-L. Chan, T.-W. Lam, and K.-S. Liu. “Extra Unit-Speed Machines Are Almost as Powerful
as Speedy Machines for Flow Time Scheduling.” In: SIAM Journal on Computing 37.5 (2008).
DOI: 10.1137/060653445.

[38] W.-T. Chan, T.-W. Lam, K.-S. Liu, and P. W. Wong. “New resource augmentation analysis of the
total stretch of SRPT and SJF in multiprocessor scheduling.” In: Theoretical Computer Science
359.1 (2006). DOI: 10.1016/j.tcs.2006.06.003.

[39] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and
V. Sarkar. “X10: An Object-Oriented Approach to Non-Uniform Cluster Computing.” In: SIG-
PLAN Not. 40.10 (Oct. 2005). ISSN: 0362-1340.

[40] C. Chekuri, A. Goel, S. Khanna, and A. Kumar. “Multi-Processor Scheduling to Minimize Flow
Time with e Resource Augmentation.” In: Proceedings of the Thirty-Sixth Annual ACM Sym-
posium on Theory of Computing. STOC ’04. Chicago, IL, USA: Association for Computing
Machinery, 2004. ISBN: 1581138520. DOI: 10.1145/1007352.1007411.

[41] S. S. Chen, J. J. Dongarra, and C. C. Hsiung. “Multiprocessing linear algebra algorithms on the
CRAY X-MP-2: Experiences with small granularity.” In: Journal of Parallel and Distributed
Computing 1.1 (1984). DOI: 10.1016/0743-7315(84)90009-1.

[42] Q. Cheng, M. Glick, and K. Bergman. “Chapter 20 - Optical interconnection networks for high-
performance systems.” In: Optical Fiber Telecommunications VII. Ed. by A. E. Willner. Aca-
demic Press, 2020. DOI: 10.1016/B978-0-12-816502-7.00020-8.

[43] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, 3rd Edi-
tion. MIT Press, 2009. ISBN: 978-0-262-03384-8.

[44] M. Cosnard and M. Loi. “Automatic task graph generation techniques.” In: Proceedings of the
Twenty-Eighth Annual Hawaii International Conference on System Sciences. Vol. 2. 1995. DOI:
10.1109/HICSS.1995.375471.

[45] N. R. Council et al. Getting up to speed: The future of supercomputing. National Academies
Press, 2005.

[46] E. Cuthill and J. McKee. “Reducing the Bandwidth of Sparse Symmetric Matrices.” In: Proceed-
ings of the 1969 24th National Conference. ACM ’69. Association for Computing Machinery.
DOI: 10.1145/800195.805928.

[47] D. M. Dakshayini and D. H. Guruprasad. “An optimal model for priority based service schedul-
ing policy for cloud computing environment.” In: International journal of computer applications
32.9 (2011).

[48] A. G. Delavar, M. Javanmard, M. B. Shabestari, and M. K. Talebi. “RSDC (reliable scheduling
distributed in cloud computing).” In: International Journal of Computer Science, Engineering
and Applications 2.3 (2012).

[49] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. “Communication-optimal Parallel and
Sequential QR and LU Factorizations.” In: SIAM Journal on Scientific Computing 34.1 (2012).
DOI: 10.1137/080731992.

https://doi.org/10.1137/060653445
https://doi.org/10.1016/j.tcs.2006.06.003
https://doi.org/10.1145/1007352.1007411
https://doi.org/10.1016/0743-7315(84)90009-1
https://doi.org/10.1016/B978-0-12-816502-7.00020-8
https://doi.org/10.1109/HICSS.1995.375471
https://doi.org/10.1145/800195.805928
https://doi.org/10.1137/080731992

147

[50] J. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou. Communication-optimal parallel and
sequential QR and LU factorizations. Tech. rep. UCB/EECS-2008-89. Current version avail-
able in the ArXiv at http://arxiv.org/pdf/0809.0101 Replaces EECS-2008-89 and EECS-2008-
74. EECS Department, University of California, Berkeley, Aug. 2008. URL: http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-89.html.

[51] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick. “Avoiding communication in sparse
matrix computations.” In: IEEE International Symposium on Parallel and Distributed Process-
ing. 2008. DOI: 10.1109/IPDPS.2008.4536305.

[52] P. J. Denning. “The working set model for program behavior.” In: Communications of the ACM
11.5 (1968).

[53] J. Dongarra and A. Geist. Report on the Oak Ridge National Laboratory’s Frontier System. Tech
Report No. ICL-UT-22-05. University of Tennessee, May 2022. URL: https://icl.utk.
edu/files/publications/2022/icl-utk-1570-2022.pdf.

[54] P.-F. Dutot, M. Mercier, M. Poquet, and O. Richard. “Batsim: A Realistic Language-Independent
Resources and Jobs Management Systems Simulator.” In: Job Scheduling Strategies for Parallel
Processing. Cham: Springer International Publishing, 2017. ISBN: 978-3-319-61756-5.

[55] J. P. Eckert. “Univac-Larc, the next Step in Computer Design.” In: Papers and Discussions Pre-
sented at the December 10-12, 1956, Eastern Joint Computer Conference: New Developments
in Computers. AIEE-IRE ’56 (Eastern). New York, New York: Association for Computing Ma-
chinery, 1956. URL: 10.1145/1455533.1455539.

[56] Y. Etsion and D. Tsafrir. “A short survey of commercial cluster batch schedulers.” In: School of
Computer Science and Engineering, The Hebrew University of Jerusalem 44221 (2005).

[57] Y. Fan. Job Scheduling in High Performance Computing. 2021. arXiv: 2109 . 09269
[cs.DC].

[58] M. Faverge, N. Furmento, A. Guermouche, G. Lucas, R. Namyst, S. Thibault, and P.-A. Wacre-
nier. “Programming heterogeneous architectures using hierarchical tasks.” In: Concurrency and
Computation: Practice and Experience (). DOI: 10.1002/cpe.7811.

[59] T. Feder, R. Motwani, R. Panigrahy, S. Seiden, R. van Stee, and A. Zhu. “Combining request
scheduling with web caching.” In: Theoretical Computer Science 324.2 (2004). URL: http:
//www.sciencedirect.com/science/article/pii/S0304397504003792.

[60] D. G. Feitelson and M. A. Jettee. “Improved utilization and responsiveness with gang schedul-
ing.” In: Job Scheduling Strategies for Parallel Processing. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1997. ISBN: 978-3-540-69599-8.

[61] M. Felšöci. “Solveurs rapides pour l’aeroacoustique haute frequence.” Theses. Université de
Bordeaux, Feb. 2023. URL: https://theses.hal.science/tel-04077474.

[62] J. V. Ferreira Lima, T. Gautier, V. Danjean, B. Raffin, and N. Maillard. “Design and analysis of
scheduling strategies for multi-CPU and multi-GPU architectures.” In: Parallel Computing 44
(2015).

[63] Z. Fu, Z. Tang, L. Yang, and C. Liu. “An Optimal Locality-Aware Task Scheduling Algorithm
Based on Bipartite Graph Modelling for Spark Applications.” In: IEEE Transactions on Parallel
and Distributed Systems 31.10 (2020). DOI: 10.1109/TPDS.2020.2992073.

[64] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of NP-
Completeness. London (UK): W.H. Freeman and Co, 1979.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-89.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-89.html
https://doi.org/10.1109/IPDPS.2008.4536305
https://icl.utk.edu/files/publications/2022/icl-utk-1570-2022.pdf
https://icl.utk.edu/files/publications/2022/icl-utk-1570-2022.pdf
10.1145/1455533.1455539
https://arxiv.org/abs/2109.09269
https://arxiv.org/abs/2109.09269
https://doi.org/10.1002/cpe.7811
http://www.sciencedirect.com/science/article/pii/S0304397504003792
http://www.sciencedirect.com/science/article/pii/S0304397504003792
https://theses.hal.science/tel-04077474
https://doi.org/10.1109/TPDS.2020.2992073

148 APPENDIX . BIBLIOGRAPHY

[65] T. Gautier, J. V. Ferreira Lima, N. Maillard, and B. Raffin. “Locality-Aware Work Stealing on
Multi-CPU and Multi-GPU Architectures.” In: 6th Workshop on Programmability Issues for Het-
erogeneous Multicores (MULTIPROG). Berlin, Germany, Jan. 2013. URL: https://inria.
hal.science/hal-00780890.

[66] Gavril. “Some NP-complete problems on graphs.” In: Proceedings of the 11th conference on
Information Sciences and Systems. 1977.

[67] W. Gentzsch. “Sun Grid Engine: towards creating a compute power grid.” In: Proceedings
First IEEE/ACM International Symposium on Cluster Computing and the Grid. 2001. DOI:
10.1109/CCGRID.2001.923173.

[68] S. Ghanbari and M. Othman. “A priority based job scheduling algorithm in cloud computing.”
In: Procedia Engineering 50.0 (2012).

[69] A. Giersch, Y. Robert, and F. Vivien. “Scheduling tasks sharing files on heterogeneous clus-
ters.” In: European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting
(EuroPVM/MPI). Lecture Notes in Computer Science. Springer. 2003.

[70] H. H. Goldstine and A. Goldstine. “The Electronic Numerical Integrator and Computer
(ENIAC).” In: Mathematical Tables and Other Aids to Computation 2.15 (1946). ISSN:
08916837. URL: http://www.jstor.org/stable/2002620 (visited on 06/15/2023).

[71] L. Grigori, J. W. Demmel, and H. Xiang. “CALU: A Communication Optimal LU Factorization
Algorithm.” In: SIAM Journal on Matrix Analysis and Applications 32.4 (2011). DOI: 10.
1137/100788926.

[72] R. Gu, Y. Tang, C. Tian, H. Zhou, G. Li, X. Zheng, and Y. Huang. “Improving execution con-
currency of large-scale matrix multiplication on distributed data-parallel platforms.” In: IEEE
Transactions on Parallel and Distributed Systems 28.9 (2017).

[73] T. Günther, H. Malmström, E. M. Svensson, A. Omrak, F. Sánchez-Quinto, G. M. Kılınç, M.
Krzewińska, G. Eriksson, M. Fraser, H. Edlund, A. R. Munters, A. Coutinho, L. G. Simões, M.
Vicente, A. Sjölander, B. Jansen Sellevold, R. Jørgensen, P. Claes, M. D. Shriver, C. Valdiosera,
M. G. Netea, J. Apel, K. Lidén, B. Skar, J. Storå, A. Götherström, and M. Jakobsson. “Population
genomics of Mesolithic Scandinavia: Investigating early postglacial migration routes and high-
latitude adaptation.” In: PLOS Biology 16.1 (Jan. 2018). DOI: 10.1371/journal.pbio.
2003703.

[74] R. L. Henderson. “Job scheduling under the portable batch system.” In: Workshop on Job
Scheduling Strategies for Parallel Processing. Springer. 1995.

[75] T. Herault, Y. Robert, G. Bosilca, and J. Dongarra. “Generic Matrix Multiplication for Multi-
GPU Accelerated Distributed-Memory Platforms over PaRSEC.” In: Workshop on Latest Ad-
vances in Scalable Algorithms for Large-Scale Systems (ScalA). 2019. DOI: 10 . 1109 /
ScalA49573.2019.00010.

[76] S. Herbein, D. H. Ahn, D. Lipari, T. R. Scogland, M. Stearman, M. Grondona, J. Garlick, B.
Springmeyer, and M. Taufer. “Scalable I/O-Aware Job Scheduling for Burst Buffer Enabled
HPC Clusters.” In: Proceedings of the 25th ACM International Symposium on High-Performance
Parallel and Distributed Computing. HPDC ’16. Kyoto, Japan: Association for Computing Ma-
chinery, 2016. DOI: 10.1145/2907294.2907316.

[77] J.-W. Hong and H. Kung. “I/O complexity: The red-blue pebble game.” In: STOC’81: Proceed-
ings of the 13th ACM symposium on Theory of Computing. ACM Press, 1981.

https://inria.hal.science/hal-00780890
https://inria.hal.science/hal-00780890
https://doi.org/10.1109/CCGRID.2001.923173
http://www.jstor.org/stable/2002620
https://doi.org/10.1137/100788926
https://doi.org/10.1137/100788926
https://doi.org/10.1371/journal.pbio.2003703
https://doi.org/10.1371/journal.pbio.2003703
https://doi.org/10.1109/ScalA49573.2019.00010
https://doi.org/10.1109/ScalA49573.2019.00010
https://doi.org/10.1145/2907294.2907316

149

[78] D. Jackson, Q. Snell, and M. Clement. “Core Algorithms of the Maui Scheduler.” In: Job
Scheduling Strategies for Parallel Processing. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001. ISBN: 978-3-540-45540-0.

[79] D. Jackson, Q. Snell, and M. Clement. “Core Algorithms of the Maui Scheduler.” In: Job
Scheduling Strategies for Parallel Processing. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001. ISBN: 978-3-540-45540-0.

[80] Z. Jiang, T. Liu, S. Zhang, Z. Guan, M. Yuan, and H. You. Fast and Efficient Parallel Breadth-
First Search with Power-law Graph Transformation. 2020.

[81] G. Jin, T. Endo, and S. Matsuoka. “A parallel optimization method for stencil computation on the
domain that is bigger than memory capacity of GPUs.” In: 2013 IEEE International Conference
on Cluster Computing (CLUSTER). 2013. DOI: 10.1109/CLUSTER.2013.6702633.

[82] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey. “HPX: A Task Based Program-
ming Model in a Global Address Space.” In: Proceedings of the 8th International Conference
on Partitioned Global Address Space Programming Models. PGAS ’14. Eugene, OR, USA: As-
sociation for Computing Machinery, 2014. ISBN: 9781450332477.

[83] S. Kannan, M. Roberts, P. Mayes, D. Brelsford, and J. F. Skovira. “Workload management with
loadleveler.” In: IBM Redbooks 2.2 (2001).

[84] G. Karypis and V. Kumar. “A fast and high quality multilevel scheme for partitioning irregular
graphs.” In: SIAM Journal on scientific Computing 20.1 (1998).

[85] G. Karypis and V. Kumar. hMETIS 1.5 : A hypergraph partitioning package. Available at http:
//glaros.dtc.umn.edu/gkhome/metis/hmetis/download.

[86] K. Kaya and C. Aykanat. “Iterative-Improvement-Based Heuristics for Adaptive Scheduling of
Tasks Sharing Files on Heterogeneous Master-Slave Environments.” In: Trans. Parallel Dis-
tributed Syst. 17.8 (2006).

[87] K. Kaya, B. Uçar, and C. Aykanat. “Heuristics for scheduling file-sharing tasks on heterogeneous
systems with distributed repositories.” In: J. Parallel Distributed Comput. 67.3 (2007). DOI:
10.1016/j.jpdc.2006.11.004.

[88] E. Kayraklioglu, E. Ronaghan, M. P. Ferguson, and B. L. Chamberlain. “Locality-Based Opti-
mizations in the Chapel Compiler.” In: Languages and Compilers for Parallel Computing. Ed.
by X. Li and S. Chandrasekaran. Cham: Springer International Publishing, 2022. ISBN: 978-3-
030-99372-6.

[89] G. Keramidas, P. Petoumenos, and S. Kaxiras. “Cache replacement based on reuse-distance pre-
diction.” In: 2007 25th International Conference on Computer Design. 2007. DOI: 10.1109/
ICCD.2007.4601909.

[90] G. Kwasniewski, M. Kabic, M. Besta, J. VandeVondele, R. Solcà, and T. Hoefler. “Red-blue
pebbling revisited: near optimal parallel matrix-matrix multiplication.” In: Int. Conf. for High
Performance Computing, Networking, Storage and Analysis, SC 2019. 2019. DOI: 10.1145/
3295500.3356181.

[91] X. Lacoste, M. Faverge, G. Bosilca, P. Ramet, and S. Thibault. “Taking Advantage of Hybrid
Systems for Sparse Direct Solvers via Task-Based Runtimes.” In: 2014 IEEE International
Parallel & Distributed Processing Symposium Workshops. 2014. DOI: 10.1109/IPDPSW.
2014.9.

https://doi.org/10.1109/CLUSTER.2013.6702633
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download
https://doi.org/10.1016/j.jpdc.2006.11.004
https://doi.org/10.1109/ICCD.2007.4601909
https://doi.org/10.1109/ICCD.2007.4601909
https://doi.org/10.1145/3295500.3356181
https://doi.org/10.1145/3295500.3356181
https://doi.org/10.1109/IPDPSW.2014.9
https://doi.org/10.1109/IPDPSW.2014.9

150 APPENDIX . BIBLIOGRAPHY

[92] H. Lee, W. Ruys, I. Henriksen, A. Peters, Y. Yan, S. Stephens, B. You, H. Fingler, M. Burtscher,
M. Gligoric, et al. “Parla: A Python Orchestration System for Heterogeneous Architectures.”
In: SC ’22: Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis. 2022. URL: https://userweb.cs.txstate.edu/
~burtscher/papers/sc22.pdf.

[93] J. Lee, H. Kang, H.-j. Yeom, S. Cheon, J. Park, and D. Kim. “Out-of-core GPU 2D-shift-FFT
algorithm for ultra-high-resolution hologram generation.” In: Opt. Express 29.12 (June 2021).

[94] S. Leonenkov and S. Zhumatiy. “Introducing New Backfill-based Scheduler for SLURM Re-
source Manager.” In: Procedia Computer Science 66 (2015). 4th International Young Scientist
Conference on Computational Science. DOI: 10.1016/j.procs.2015.11.075.

[95] S. Leonenkov and S. Zhumatiy. “Introducing New Backfill-based Scheduler for SLURM Re-
source Manager.” In: Procedia Computer Science 66 (2015). 4th International Young Scientist
Conference on Computational Science. DOI: 10.1016/j.procs.2015.11.075.

[96] W.-H. Liu and A. H. Sherman. “Comparative analysis of the Cuthill–McKee and the reverse
Cuthill–McKee ordering algorithms for sparse matrices.” In: SIAM Journal on Numerical Anal-
ysis 13.2 (1976).

[97] L. Marchal, S. McCauley, B. Simon, and F. Vivien. “Minimizing I/Os in Out-of-Core Task Tree
Scheduling.” In: International Journal of Foundations of Computer Science 34.01 (2023). DOI:
10.1142/S0129054122500186.

[98] P. Michaud. (Yet another) proof of optimality for MIN replacement. Oct. 2007.

[99] R. T. Mills, A. Stathopoulos, and E. Smirni. “Algorithmic Modifications to the Jacobi-Davidson
Parallel Eigensolver to Dynamically Balance External CPU and Memory Load.” In: Proceedings
of the 15th International Conference on Supercomputing. ICS ’01. Sorrento, Italy: ACM, 2001.
DOI: 10.1145/377792.377903.

[100] P. Mishra, T. Agrawal, and P. Malakar. “Communication-aware Job Scheduling using SLURM.”
In: 49th International Conference on Parallel Processing-ICPP: Workshops. 2020.

[101] S. Moustafa, M. Faverge, L. Plagne, and P. Ramet. “3D cartesian transport sweep for massively
parallel architectures with PARSEC.” In: IEEE International Parallel and Distributed Process-
ing Symposium. 2015.

[102] C. R. Nigro. “Evaluation of the PlayStation 2 as a cluster computing node.” In: (2004).

[103] D. S. Nikolopoulos and C. D. Polychronopoulos. “Adaptive scheduling under memory con-
straints on non-dedicated computationalfarms.” In: Future Gener. Comput. Syst. 19 (2003).

[104] A. Olivry, J. Langou, L.-N. Pouchet, P. Sadayappan, and F. Rastello. Automated Derivation of
Parametric Data Movement Lower Bounds for Affine Programs. 2019. arXiv: 1911.06664
[cs.CC].

[105] S. Parsa and R. Entezari-Maleki. “RASA: a new grid task scheduling algorithm.” In: JDCTA 3
(Jan. 2009). DOI: 10.4156/jdcta.vol3.issue4.10.

[106] B. Peccerillo and S. Bartolini. “PHAST - A Portable High-Level Modern C++ Programming
Library for GPUs and Multi-Cores.” In: IEEE Transactions on Parallel and Distributed Systems
30.1 (2019).

[107] J.-N. Quintin and F. Wagner. “Hierarchical Work-Stealing.” In: Euro-Par 2010 - Parallel Pro-
cessing. 2010. ISBN: 978-3-642-15277-1.

https://userweb.cs.txstate.edu/~burtscher/papers/sc22.pdf
https://userweb.cs.txstate.edu/~burtscher/papers/sc22.pdf
https://doi.org/10.1016/j.procs.2015.11.075
https://doi.org/10.1016/j.procs.2015.11.075
https://doi.org/10.1142/S0129054122500186
https://doi.org/10.1145/377792.377903
https://arxiv.org/abs/1911.06664
https://arxiv.org/abs/1911.06664
https://doi.org/10.4156/jdcta.vol3.issue4.10

151

[108] A. Robison, M. Voss, and A. Kukanov. “Optimization via Reflection on Work Stealing in TBB.”
In: 2008 IEEE International Symposium on Parallel and Distributed Processing. 2008. DOI:
10.1109/IPDPS.2008.4536188.

[109] K. Rupp. 50 Years of Microprocessor Trend Data. 2021. URL: https://github.com/
karlrupp/microprocessor-trend-data.

[110] S. Ryoo, C. I. Rodrigues, S. S. Stone, J. A. Stratton, S.-Z. Ueng, S. S. Baghsorkhi, and W.-m. W.
Hwu. “Program optimization carving for GPU computing.” In: Journal of Parallel and Dis-
tributed Computing 68.10 (2008). General-Purpose Processing using Graphics Processing Units.
DOI: 10.1016/j.jpdc.2008.05.011.

[111] E. Saule, H. M. Aktulga, C. Yang, E. G. Ng, and Ü. V. Çatalyürek. “An out-of-core task-based
middleware for data-intensive scientific computing.” In: Handbook on Data Centers (2015).

[112] S. Selvarani and G. S. Sadhasivam. “Improved cost-based algorithm for task scheduling in cloud
computing.” In: 2010 IEEE International Conference on Computational Intelligence and Com-
puting Research. IEEE. 2010.

[113] H. Senger, F. A. Silva, and W. M. Nascimento. “Hierarchical scheduling of independent tasks
with shared files.” In: Sixth IEEE International Symposium on Cluster Computing and the Grid
(CCGRID’06). 2006. DOI: 10.1109/CCGRID.2006.1630942.

[114] K. Shirahata, H. Sato, and S. Matsuoka. “Out-of-core GPU memory management for
MapReduce-based large-scale graph processing.” In: 2014 IEEE International Conference on
Cluster Computing (CLUSTER). 2014. DOI: 10.1109/CLUSTER.2014.6968748.

[115] Slurm Workload manager. https://slurm.schedmd.com/sched_config.html.
Accessed: 2022-12-06.

[116] T. M. Smith, B. Lowery, J. Langou, and R. A. van de Geijn. A Tight I/O Lower Bound for Matrix
Multiplication. 2019. arXiv: 1702.02017 [cs.CC].

[117] S. Sreepathi, E. D’Azevedo, B. Philip, and P. Worley. “Communication Characterization and
Optimization of Applications Using Topology-Aware Task Mapping on Large Supercomput-
ers.” In: Proceedings of the 7th ACM/SPEC on International Conference on Performance Engi-
neering. ICPE ’16. Delft, The Netherlands: Association for Computing Machinery, 2016. ISBN:
9781450340809.

[118] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. “Characterization of Backfill-
ing Strategies for Parallel Job Scheduling.” In: Feb. 2002. DOI: 10.1109/ICPPW.2002.
1039773.

[119] G. Staples. “TORQUE Resource Manager.” In: Proceedings of the 2006 ACM/IEEE Confer-
ence on Supercomputing. SC ’06. Tampa, Florida: ACM, 2006. DOI: 10.1145/1188455.
1188464.

[120] M. Taufer. “AI4IO: A Suite of Ai-Based Tools for IO-Aware HPC Resource Management.” In:
2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics
(HiPC). 2021. DOI: 10.1109/HiPC53243.2021.00012.

[121] P. Thoman, P. Salzmann, B. Cosenza, and T. Fahringer. “Celerity: High-Level C++ for Accel-
erator Clusters.” In: Euro-Par 2019: Parallel Processing. Ed. by R. Yahyapour. Cham: Springer
International Publishing, 2019. ISBN: 978-3-030-29400-7.

[122] S. Toledo. “A survey of out-of-core algorithms in numerical linear algebra.” In: External Memory
Algorithms and Visualization. American Mathematical Society Press, 1999.

https://doi.org/10.1109/IPDPS.2008.4536188
https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data
https://doi.org/10.1016/j.jpdc.2008.05.011
https://doi.org/10.1109/CCGRID.2006.1630942
https://doi.org/10.1109/CLUSTER.2014.6968748
https://slurm.schedmd.com/sched_config.html
https://arxiv.org/abs/1702.02017
https://doi.org/10.1109/ICPPW.2002.1039773
https://doi.org/10.1109/ICPPW.2002.1039773
https://doi.org/10.1145/1188455.1188464
https://doi.org/10.1145/1188455.1188464
https://doi.org/10.1109/HiPC53243.2021.00012

152 APPENDIX . BIBLIOGRAPHY

[123] H. Topcuoglu, S. Hariri, and M.-Y. Wu. “Task scheduling algorithms for heterogeneous pro-
cessors.” In: Proceedings. Eighth Heterogeneous Computing Workshop (HCW’99). 1999. DOI:
10.1109/HCW.1999.765092.

[124] D. Tripathy, A. Abdolrashidi, L. N. Bhuyan, L. Zhou, and D. Wong. “PAVER: Locality Graph-
Based Thread Block Scheduling for GPUs.” In: ACM Trans. Archit. Code Optim. 18.3 (June
2021). ISSN: 1544-3566.

[125] J.-F. Weets, M. K. Kakhani, and A. Kumar. “Limitations and challenges of HDFS and MapRe-
duce.” In: 2015 International Conference on Green Computing and Internet of Things (ICG-
CIoT). 2015. DOI: 10.1109/ICGCIoT.2015.7380524.

[126] Y. Ye, Z. Du, D. Bader, Q. Yang, and W. Huo. “GPUMemSort: A High Performance Graph-
ics Co-processors Sorting Algorithm for Large Scale In-Memory Data.” In: GSTF INTERNA-
TIONAL JOURNAL ON COMPUTING 1 (May 2011). DOI: 10.5176/2010-2283_1.2.
34.

[127] A. B. Yoo, M. A. Jette, and M. Grondona. “SLURM: Simple Linux Utility for Resource Man-
agement.” In: Job Scheduling Strategies for Parallel Processing. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003. ISBN: 978-3-540-39727-4.

[128] R. M. Yoo, C. J. Hughes, C. Kim, Y.-K. Chen, and C. Kozyrakis. “Locality-Aware Task Manage-
ment for Unstructured Parallelism: A Quantitative Limit Study.” In: ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA). 2013. DOI: 10.1145/2486159.2486175.

[129] S. Zhou, X. Zheng, J. Wang, and P. Delisle. “Utopia: a load sharing facility for large, heteroge-
neous distributed computer systems.” In: Software: practice and Experience 23.12 (1993).

https://doi.org/10.1109/HCW.1999.765092
https://doi.org/10.1109/ICGCIoT.2015.7380524
https://doi.org/10.5176/2010-2283_1.2.34
https://doi.org/10.5176/2010-2283_1.2.34
https://doi.org/10.1145/2486159.2486175

List of publications

Article in International Refereed Journal

[J1] M. Gonthier, L. Marchal, and S. Thibault. “Taming data locality for task scheduling under
memory constraint in runtime systems.” In: Future Generation Computer Systems (2023). DOI:
10.1016/j.future.2023.01.024.

Article in International Refereed Conference

[C1] M. Gonthier, L. Marchal, and S. Thibault. “Memory-Aware Scheduling of Tasks Sharing Data
on Multiple GPUs with Dynamic Runtime Systems.” In: 2022 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 2022. DOI: 10.1109/IPDPS53621.2022.
00073.

Article in International Refereed Workshop

[W1] M. Gonthier, L. Marchal, and S. Thibault. “Locality-Aware Scheduling of Independent Tasks for
Runtime Systems.” In: COLOC - 5th workshop on data locality - 27th International European
Conference on Parallel and Distributed Computing. Lisbon, Portugal, Aug. 2021, pp. 1–12.
ISBN: 978-3-031-06156-1.

Poster in International Refereed Conference

[P1] M. Gonthier, L. Marchal, and S. Thibault. Memory-Aware Scheduling Of Tasks Sharing Data
On Multiple GPUs. ISC 2023 - ISC High Performance 2023. Poster. May 2023. URL: https:
//inria.hal.science/hal-04090595.

Article in National Refereed Conference

[N1] M. Gonthier. “Exploiting data locality to maximize the performance of data-sharing tasksets.”
In: ComPAS 2023 - Conférence francophone d’informatique en Parallélisme, Architecture et
Système. Annecy, France, July 2023. URL: https : / / inria . hal . science / hal -
04090634.

153

https://doi.org/10.1016/j.future.2023.01.024
https://doi.org/10.1109/IPDPS53621.2022.00073
https://doi.org/10.1109/IPDPS53621.2022.00073
https://inria.hal.science/hal-04090595
https://inria.hal.science/hal-04090595
https://inria.hal.science/hal-04090634
https://inria.hal.science/hal-04090634

154 APPENDIX . PUBLICATIONS

Invited Posters

[IP1] M. Gonthier, L. Marchal, and S. Thibault. Locality-Aware Scheduling Of Independent Tasks For
Runtime Systems. HiPEAC ACACES 2021 - 17th International Summer School on Advanced
Computer Architecture and Compilation for High-performance Embedded Systems. Poster.
Sept. 2021. URL: https://inria.hal.science/hal-04090604.

[IP2] M. Gonthier, L. Marchal, and S. Thibault. Memory-Aware Scheduling Of Tasks Sharing Data
On Multiple GPUs. HiPEAC ACACES 2022 - 18th International Summer School on Advanced
Computer Architecture and Compilation for High-performance Embedded Systems. Poster. July
2022. URL: https://inria.hal.science/hal-04090607.

Research Reports

[R1] M. Gonthier, L. Marchal, and S. Thibault. Locality-Aware Scheduling of Independant Tasks for
Runtime Systems. Research Report RR-9394. Inria Grenoble -Rhône-Alpes, 2021, p. 21. URL:
https://inria.hal.science/hal-03144290.

[R2] M. Gonthier, L. Marchal, S. Thibault, E. Larsson, and C. Nettelblad. Locality-aware batch
scheduling of I/O intensive workloads. Tech. rep. RR-9497. ENS Lyon ; Inria Bordeaux ;
Uppsala Universitet, Feb. 2022, p. 25. URL: https://inria.hal.science/hal-
03993118.

[R3] M. Gonthier, S. Thibault, and L. Marchal. A generic scheduler to foster data locality for GPU
and out-of-core task-based applications. Tech. rep. June 2023. URL: https://inria.hal.
science/hal-04146714.

https://inria.hal.science/hal-04090604
https://inria.hal.science/hal-04090607
https://inria.hal.science/hal-03144290
https://inria.hal.science/hal-03993118
https://inria.hal.science/hal-03993118
https://inria.hal.science/hal-04146714
https://inria.hal.science/hal-04146714

Acknowledgement

This work is part of the SOLHARIS project, supported by the Agence Nationale de la Recherche , under
grant ANR-19-CE46-0009.

Experiments presented in this paper were carried out using the Grid’5000 testbed, supported by a
scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as
well as other organizations (see https://www.grid5000.fr).

155

	Remerciements
	Résumé en français
	Introduction
	Background and Literature Review
	Context
	Three real-world examples
	Hardware will not save us...
	... but maybe software can
	What happens when the memory is full?
	Problem statement

	Related works
	Cache management
	Partitioned global address space
	Solutions in runtime systems
	An out-of-core middleware
	Scheduling for distributed platforms
	Out-of-core and communication-avoiding algorithms
	Locality-aware mapping
	Locality-aware mapping and ordering

	Positioning in the hardware hierarchy
	Bridging the gap between theoretical scheduling and runtime schedulers

	Problem Statement and Integration into a Runtime System
	Simplifying our optimization problems
	Expressing applications as task graphs
	Avoiding the conflicting goals of using multiple processing units
	Considering homogeneous processing time and data size
	Making the model complex again

	Simplified model with an independent task set and a single processing unit
	Expressing applications as a bipartite graphs
	Simplified optimization problem
	Optimal eviction policy proof
	Complexity of finding an optimal task order

	Making the model parallel
	Adding the partitioning problem to the bipartite graph
	Optimization problem in parallel

	Extension to heterogeneous task and data weights
	Adding dependencies to the model
	The StarPU Runtime System
	Task and data
	Tasks submission
	Task flow
	New functionality to add custom eviction policies
	New logging and visualization tool

	Summary

	Static Scheduling for a Single Processing Unit
	Schedulers from the StarPU runtime system
	A greedy baseline: EAGER
	Deque Model Data Aware Ready (DMDAR)

	Adapted strategies from the literature
	Reverse-Cuthill-McKee (RCM)
	Maximum Spanning Tree (MST)

	Hierarchical Fair Packing (HFP)
	Intuition
	An NP-complete problem
	Strategy
	Complexity of HFP
	Improving HFP with package flipping
	Optimal eviction policy
	Adaptation to heterogeneous data sizes
	Improving the beginning of the schedule with the Ready re-ordering

	Experimental settings
	Experimental results and analysis
	Results on the 2D matrix multiplication
	Results on the 3D matrix multiplication
	Results on the task set of the Cholesky factorization
	Results on the 2D matrix multiplication with randomized task order
	Results on the randomized pairs with 2D inputs
	Results on the sparse 2D matrix multiplication

	Conclusion on static scheduling for a single processing unit

	Harnessing the Power of Multiple GPUs
	State-of-the-art schedulers
	Leveraging expected communication time with DMDAR
	Using (hyper-)graph partitioning

	Hierarchical Fair Packing adaptation to multiple processing units (mHFP)
	Strategy
	Additional unused solutions explored for mHFP

	A dynamic data-aware scheduler: DARTS
	Intuition
	StarPU's task flow with DARTS
	Strategy
	Eviction policy
	Dealing with more input data per task
	Reducing the scheduling overhead
	Faster code with fewer mutex

	Experimental evaluation with multiple processing units
	Settings
	Results on the 2D matrix multiplication with a single GPU
	Results on the 2D matrix multiplication with multiple GPUs
	Result on the 2D matrix multiplication with randomized task order and 2 GPUs
	Result on the 3D matrix multiplication with 4 GPUs
	Result on the task set of the Cholesky factorization with 4 GPUs
	Results on the sparse 2D matrix multiplication with 4 GPUs

	Conclusion on scheduling for multiple processing units

	Dynamic Scheduling for Task Graphs
	Existing runtime schedulers
	A work stealing policy: LWS
	A priority-based scheduler from the PaRSEC runtime: AP

	Improving the DARTS scheduler
	Intuition
	Strategy
	Eviction policy

	Experimental settings
	Cholesky factorization with GPUs
	Overview
	Optimal data access pattern
	Single GPU case
	With multiple GPUs
	With multiple GPUs and no memory limitation

	LU factorization with GPUs
	Results on 4 GPUs
	Results on a single GPU and no memory limitation

	3D matrix multiplication with GPUs
	LU factorization on a multi-core CPU
	Conclusion on dynamic scheduling of task sets with dependencies

	Leveraging Locality for Batch Schedulers
	Motivation
	Related work
	Scheduling jobs on large clusters
	Using distributed file systems to deal with data-intensive workloads
	Using schedulers to deal with data-intensive workloads
	Reducing I/O contention

	Framework
	Schedulers
	Two schedulers from the state of the art: FCFS and EFT
	Data-locality-based schedulers
	Adding backfilling to all strategies

	Experimental settings
	Platform description
	Workloads description
	Usage of real cluster logs
	Simulator description

	Experimental evaluation and analysis
	Results on an underutilized cluster
	Results on a saturated cluster
	Complete results

	Conclusion on locality-aware batch scheduling

	Conclusion and Perspectives
	Bibliography
	Publications
	Acknowledgement

