
HAL Id: tel-04260673
https://theses.hal.science/tel-04260673

Submitted on 26 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive deep learning models for omnidirectional
images : from perception to navigation

Charles-Olivier Artizzu

To cite this version:
Charles-Olivier Artizzu. Adaptive deep learning models for omnidirectional images : from perception
to navigation. Computer Vision and Pattern Recognition [cs.CV]. Université Côte d’Azur, 2023.
English. �NNT : 2023COAZ4039�. �tel-04260673�

https://theses.hal.science/tel-04260673
https://hal.archives-ouvertes.fr

Modèles d’apprentissage profond
adaptés aux images omnidirectionnelles :

de la perception à la navigation

Charles-Olivier Artizzu

Laboratoire I3S, CNRS

Présentée en vue de l’obtention du grade de docteur en :
Automatique Traitement du Signal et des Images d’Université Côte d’Azur.

Dirigée par :
Guillaume Allibert, Mâıtre de conférences HDR, Université Côte d’Azur, co-Directeur de thèse,
Cédric Demonceaux, Professeur des universités, Université de Bourgogne Franche-Comté,
co-Directeur de thèse.

Soutenue le : 14 Juin 2023.

Devant le jury, composé de :
Marie Babel, Professeure des universités, INSA Rennes, Examinatrice,
Nicolas Marchand, Directeur de recherche, CNRS, Rapporteur,
Anne Spalanzani, Professeure des universités, Université Grenoble Alpes, Examinatrice,
Pascal Vasseur, Professeur des universités, Université de Picardie Jules Verne, Rapporteur.

Le ciel est, par-dessus le toit,
Si bleu, si calme !
Un arbre, par-dessus le toit,
Berce sa palme.

La cloche, dans le ciel qu’on voit,
Doucement tinte.
Un oiseau sur l’arbre qu’on voit
Chante sa plainte.

Mon Dieu, mon Dieu, la vie est là,
Simple et tranquille.
Cette paisible rumeur-là
Vient de la ville.

Qu’as-tu fait, ô toi que voilà
Pleurant sans cesse,
Dis, qu’as-tu fait, toi que voilà,
De ta jeunesse ?

Paul Verlaine, Sagesse (1881).

Remerciements

Je saisis cette opportunité pour exprimer ma profonde reconnaissance en-
vers les membres éminents de mon jury de thèse. Votre présence lors de la
soutenance a témoigné de l’estime que vous portez à cette recherche, et je suis
sincèrement honoré d’avoir pu bénéficier de vos perspectives éclairantes et des
dialogues stimulants que nous avons partagés.

Un hommage tout particulier va à mes rapporteurs de thèse, Monsieur Nicolas
Marchand et Monsieur Pascal Vasseur, pour avoir généreusement consacré leur
temps à étudier minutieusement mon manuscrit et à élaborer des rapports détaillés.
Mes remerciements vont également aux examinatrices, Madame Marie Babel et
Madame Anne Spalanzani, pour leur évaluation attentive du manuscrit et de ma
soutenance.

Je tiens à adresser mes plus sincères remerciements et une profonde grati-
tude à mes directeurs de thèse, Monsieur Guillaume Allibert et Monsieur Cédric
Demonceaux. Leurs orientations avisées ont illuminé mon chemin de recherche et
ont joué un rôle essentiel dans la réalisation de ce travail. Je suis profondément
reconnaissant envers eux pour leur patience, leur expertise inestimable et surtout
leur engagement indéfectible. Leur soutien sans faille a été la pierre angulaire de
mon parcours jusqu’à la réussite de cette thèse.

Mes remerciements vont également à tous ceux qui ont partagé sans réserve
leurs idées et leurs connaissances au cours de cette aventure intellectuelle. Je
souhaite exprimer ma reconnaissance à Zongwei, Renato, Sardor, Rida et Théo
pour leur contribution précieuse.

Enfin, mes pensées vont vers ma famille, Pauline, ainsi que vers mes amis
proches, pour leur soutien inébranlable et leurs encouragements constants tout
au long de ce périple académique, en particulier durant les périodes qui n’ont pas
toujours été dépourvues de défis. Votre présence et votre confiance ont été des
sources inestimables de motivation. Merci du fond du cœur.

5

Abstract

Omnidirectional1 cameras for computer vision and robotics are becoming in-
creasingly widespread. Indeed, thanks to their 360° field of view, they allow a
global perception of each observed scene in a single shot. Moreover, the latest
generation of spherical cameras is more accurate, lighter, and less expensive,
encouraging their use in many mobile applications.

However, these images present significant distortions due to the spherical
projection, such as in the polar regions of equirectangular images. As a result,
conventional image processing methods often cannot recognize objects or un-
derstand what is happening in these areas. Thus, several methods have been
proposed to overcome these distortions and often use a supervised learning on
omnidirectional datasets. However, these spherical datasets are rare and usu-
ally limited to very specific use cases. In contrast, the perspective domain offers
greater diversity and versatility. Therefore, in this thesis, we propose transfer-
ring perspective-based methods to omnidirectional content without additional
training. Our simple and fast adaptation solution relies on distortion-aware con-
volutions using a local perspective projection on the sphere.

To prove the relevance and generalization of our method to any convolutional
network, we apply it to three commonly used computer vision tasks: semantic
segmentation, depth, and optical flow estimation. When tested on specially
created datasets and real scenarios, the spherically adapted networks always
perform better than the baseline version.

Following these results in computer vision, we focused on their use in robotics,
particularly for drone navigation in complex, dense, and unstructured environ-
ments such as forests. Perception is crucial for image-based navigation, especially
for obstacle avoidance. However, most current algorithms use images with a lim-
ited field of view.

Therefore, this thesis proposes a solution using omnidirectional images and
compares it to its perspective reference. For all scenarios and visual modali-
ties considered, our equirectangular image-based navigation solution is safer and
faster than its perspective counterpart, even in a much more complex environ-
ment than the one observed during training. In addition, using distortion-aware
convolutions in the navigation algorithm also improves flight performance.

Keywords:
Deep Learning, Omnidirectional Images, Perception, Drone Navigation.

1In this thesis, we interchangeably use the terms omnidirectional image, 360° FOV image,
spherical image, and equirectangular image.

7

Résumé

Les caméras omnidirectionnelles2 sont de plus en plus répandues en vision
par ordinateur et robotique. En effet, grâce à leur champ de vision à 360 degrés,
elles permettent d’acquérir en une seule prise de vue une scène complète. De
plus, la diminution du cout et du poids des dernières caméras sphériques facilite
leur intégration dans de nombreuses applications mobiles.

Cependant, ces images présentent toujours des distorsions importantes en
raison de la projection sphérique, comme dans les régions polaires des images
équirectangulaires. Par conséquent, les approches traditionnelles de traitement
d’image sont souvent incapables de reconnaitre les formes des objets, entrainant
ainsi une mauvaise compréhension de la scène observée. Plusieurs méthodes
ont donc été proposées pour prendre en compte ces distorsions et nécessitent le
plus souvent un apprentissage supervisé basé sur des images omnidirectionnelles.
Cependant, les ensembles de données sphériques sont rares et généralement
limités à des applications très spécifiques. A l’inverse, ceux regroupant des im-
ages perspectives offrent une grande diversité et polyvalence.

Dans cette thèse, nous proposons d’adapter des modèles entrainés avec des
images perspectives et de les appliquer directement sur des données omnidirec-
tionnelles en évitant tout apprentissage supplémentaire. Notre adaptation repose
sur la prise en compte des distorsions sphériques lors des opérations de convo-
lution par le biais de projections perspectives locales sur la sphère. La solution
proposée est facile et rapide d’utilisation.

Afin de démontrer la pertinence et la généralisation de notre méthode à tout
réseau convolutionnel, nous l’appliquons à trois tâches de vision par ordinateur
couramment utilisées : l’estimation de la segmentation sémantique, de la pro-
fondeur et du flot optique. Testée à la fois avec des données virtuelles et des
scénarios réels, les réseaux adaptés sont toujours plus performants que ceux de
référence.

À la suite de ces résultats en vision par ordinateur, nous nous sommes penchés
sur leur utilisation en robotique. La perception est une fonction cruciale de la
chaine de navigation, notamment pour éviter les obstacles dans le cadre de la
navigation de drones dans des environnements complexes, denses et non struc-
turés tels que les forêts. Cependant, la plupart des algorithmes actuels sont
limités par un champ de vision perspectif.

Nous proposons donc ici une solution utilisant un champ de vision omni-
directionnel et la comparons à celle basée sur des images perspectives. Dans

2Dans cette thèse, nous utilisons indifféremment les termes d’image omnidirectionnelle,
d’image à 360°, d’image sphérique et d’image équirectangulaire.

8

tous les scénarios testés, les images équirectangulaires permettent une naviga-
tion plus rapide et sure, y compris dans des situations plus complexes que celles
rencontrées lors de l’apprentissage. En outre, la prise en compte des distorsions
telle que proposée en première partie améliore également les performances de vol.

Mots-clés:
Apprentissage profond, Images omnidirectionnelles, Perception, Navigation de
drones.

Contents

1 Introduction 23
1.1 Motivations and Challenges . 23
1.2 Outline . 25
1.3 Contributions . 26

1.3.1 Peer-Reviewed Publications 26
1.3.2 Open-Source Datasets and Softwares 26

I Generalization of the Omnidirectional Distortion-Aware
Convolutions 29

2 Omnidirectional Computer Vision 30
2.1 Physical Devices . 31

2.1.1 Rotating Cameras . 31
2.1.2 Catadioptric Cameras . 32
2.1.3 Fisheyes Cameras . 32
2.1.4 Polydioptric Cameras . 33

2.2 Data-Driven Computer Vision . 34
2.2.1 Deep Learning . 34
2.2.2 Common Computer Vision Tasks 38

2.3 Omnidirectional Image Processing 44
2.3.1 Training on Omnidirectional Datasets 45
2.3.2 Spherical Latent Space . 46
2.3.3 Multi-Projection Fusion 46
2.3.4 Deformable Convolutions 47

2.4 Proposed Spherical Adaptation Solution 48
2.4.1 Local Perspective Projection on the Sphere 48
2.4.2 Implementation in any Convolutional Network 50

3 Evaluation on Omnidirectional Images 52
3.1 Evaluation Datasets . 52

3.1.1 Semantic Segmentation and Depth Evaluation 53
3.1.2 Optical Flow Evaluation 53
3.1.3 Additional Real-World Test Scenarios 56

3.2 Adapted and Baseline Models Comparison 57
3.2.1 Semantic Segmentation Comparison 57
3.2.2 Monocular Depth Comparison 61

10

3.2.3 Optical Flow Comparison 65
3.2.4 Computation Time Comparison 73

Conclusion of Part I 74

II Deep Reinforcement Learning Navigation using
Omnidirectional Images 77

4 Image-Based Navigation 78
4.1 Image-Based Navigation Strategies 79

4.1.1 Map-Based . 79
4.1.2 Learning-Based . 80
4.1.3 Combining Model-Based and Learning-Based 82
4.1.4 Selected Navigation Method 83

4.2 Reinforcement Learning . 84
4.2.1 Markov Decision Process 84
4.2.2 Discounted Expected Reward 85
4.2.3 Algorithmic diversity . 85
4.2.4 Optimal Policy Search . 86
4.2.5 Dynamic Programming . 87
4.2.6 Monte-Carlo . 88
4.2.7 Temporal Differences . 89

4.3 Deep Reinforcement Algorithms 90
4.3.1 Value-Based Approaches 90
4.3.2 Policy Gradient Methods 90
4.3.3 Actor-Critic Strategies . 91

5 Navigation Framework 92
5.1 Flight Environment . 92

5.1.1 RDMAP: Simplified Training and Testing Environment . . 92
5.1.2 RDFOREST: Photorealistic Testing Environment 93

5.2 Proposed Framework . 94
5.2.1 Action Space . 94
5.2.2 Drone State . 95
5.2.3 Visual Modalities used as Input 95
5.2.4 Actor-Critic Network . 96
5.2.5 Reward . 98

6 Navigation Evaluation 99
6.1 Metrics . 99
6.2 Training Schedule and Hyperparameters 100
6.3 Reinforcement Learning Solver selection 100

6.3.1 Test with No Obstacle . 101
6.3.2 Test with Obstacles . 101

6.4 Omnidirectional versus Perspective Navigation 102
6.5 Distortion-Aware Convolutions for DRL 105

6.5.1 Actor-Critic Network Adaptation 106
6.5.2 MIDAS Network Adaptation 107

6.6 Generalization to a Photorealistic Forest 110

Conclusion of Part II 112

7 Conclusion 113
7.1 Summary of Contributions . 113
7.2 Perspectives . 114

7.2.1 Distortion-Aware Transformers 114
7.2.2 Solve the Periodicity Issue 115
7.2.3 Omnidirectional Image generation 115

List of Figures

1.1 Equirectangular image of an outdoor urban driving scene. The
polar regions are strongly distorted, so much so that it is difficult
to recognize the car in the lower part of the image. 24

2.1 Pan Tilt Zoom cameras. Left: Axis. Right: Honey Optics. 31
2.2 A catadioptric camera and a captured spherical image [11]. 32
2.3 A fisheye camera and an image captured during urban driving [12]. 32
2.4 The Ricoh Theta Z1 camera combines two fisheye lenses to recon-

struct equirectangular images. 33
2.5 Polydioptric camera systems using circular rigs (GoPro Odyssey

on the left) or spherical configurations (Panono 360 on the right). 33
2.6 Artificial Neuron. 34
2.7 Artificial neural network with a single hidden layer. More pre-

cisely, it is a fully connected architecture because each neuron is
connected to all neurons of the previous layer. 36

2.8 Convolution operation of a 3× 3 filter applied on a 7× 7 input. . 37
2.9 The Vision Transformer architecture [24]. The image is split into

fixed-size patches with position embeddings and fed into a Trans-
former encoder. The output is a class estimation. 38

2.10 An example of semantic segmentation [30]. 39
2.11 Estimating depth from a single image is an ill-posed problem [47]

since several real points project onto the same pixel. Using a sec-
ond camera alleviates this ambiguity by matching points (drawing
inspired by [48]). 40

2.12 Optical flow between two frames [61]. (Top left): RGB input at
t, (top right): RGB input at t+1, (bottom left): ground truth
optical flow with reference color wheel, (bottom right): Flow
vectors between pixels. 42

2.13 Equirectangular projection of the Earth’s globe. The Tissot’s in-
dicatrix illustrate the amplitude of distortions [76]: a circle whose
shape is regular near the equator is significantly distorted near the
poles. 44

2.14 Standforf2d3d dataset [81]. 45
2.15 The visualization of how the kernel is applied to polyhedra rep-

resentation [90]. Yellow kernel shows the case when the kernel is
located at the vertex of the icosahedron. Blue kernel shows the
case when the kernel is located at the pole. 46

13

2.16 UniFuse network: [95]. The model extracts features from equirect-
angular and cubemap images and merges the contribution to es-
timate the depth in the observed scene. 46

2.17 Left: Illustration of 3 deformable convolutions [99]. Offsets are
learned during training to adapt to various transformations for
scale, aspect ratio, and rotation. Right: Each image shows the
sampling locations of deformable filters for activation units on a
small object and a large one. 47

2.18 The equirectangular image presents significant distortions in the
polar regions. Convolution kernel shapes are modified according
to their latitude. Blue: kernel center, Green: perspective kernel,
Red: adapted equirectangular kernel. 49

2.19 One significant advantage of our proposed method is its ease
of implementation in any existing convolutional network pre-
trained with perspective images. Moreover, no additional train-
ing on omnidirectional datasets is required. At test time, the
weights are directly transferred to the same architecture with
distortion-aware convolutional filters to process equirectangular
images. We compute these spherical offsets offline to avoid com-
putational slowdowns. Although this figure illustrates the case
of the semantic segmentation task, we apply the same strategy for
monocular depth and optical flow estimation. 51

3.1 RWFOREST dataset. Here is the 256× 256 resolution version. . 53
3.2 3D models used to generate the Forest dataset. 54
3.3 OmniFlowNet [6], Flow360 [110], CityScene and EquirectFlyingTh-

ings [98] datasets. 55
3.4 Images captured with an omnidirectional camera during different

moving scenes. 56
3.5 Semantic segmentation architecture used in this thesis proposed in

[46] (encoder: ResNet50 [21], decoder: Pyramid Pooling Module
[39]). 58

3.6 Prediction examples in the RWFOREST dataset. The spherical
adaptation improves shape detection (tree canopy is better iden-
tified) and reduces erroneous class estimation. (Top left): RGB
input, (top right): ground truth segmentation, (bottom left):
prediction from the baseline network, (bottom right): prediction
from the adapted network. 59

3.7 Urban driving example (Car2). The adapted network better iden-
tifies the tree canopy. A red circle at the top left of the image
highlights the area with the most visible differences: the baseline
network estimates the earth (in brown) class instead of trees (in
green). 60

3.8 MIDAS lightest network [60]. 61

3.9 Prediction examples in the RWFOREST dataset. The predicted
depth images are visually challenging to compare. However, quan-
titative measurements have shown that the adapted version is nu-
merically better than the baseline. (Top left): RGB input, (top
right): ground truth monocular depth, (bottom left): predic-
tion from the baseline network, (bottom right): prediction from
the adapted network. 63

3.10 Urban driving examples. Red circles at the top of the image high-
light the areas with the most visible differences. Sample 1: The
adapted network better estimates depth in the polar regions of
the equirectangular images. Sample 2: Less erroneous depth
estimation from the adapted network. 64

3.11 GMFlow network [28]. The RAFT [72] convolutional encoder is
used to preprocess the image input before the Transformer. 65

3.12 Ball1 and Ball2 cases. (Top) RGB input image , (bottom left)
optical flow estimation from the baseline network, (bottom right)
estimation from the adapted network. The adapted network bet-
ter estimates the optical flow in the top polar region is better.
Sample 1: The ball is clearly more visible and smoother in that
case. Sample 2: The arm is smoother. 67

3.13 Ball 1 case with masked south pole. (Top left) original RGB in-
put image, (top right) new RGB input image with masked south
pole (top-right), (bottom left) spherically adapted optical flow
estimation of the original image and (bottom right) spherically
adapted optical flow estimation of the masked image. The optical
flow computed with the masked images shows less noise in the
south pole. Thus camera tripod and equirectangular reconstruc-
tion add noise to the optical flow estimation. 68

3.14 Prediction examples in the Flow360 dataset. Spherical adaptation
allows better tracking of objects moving in polar regions. As a
result, the estimation of the optical flow of the observed lamp
post is significantly improved (area highlighted by the red circle).
(Top left): RGB input, (top right): ground truth optical flow,
(bottom left): prediction from the baseline network, (bottom
right): prediction from the adapted network. 71

3.15 Ball1 throw sequences. The adapted network provides correct
optical flow estimation, whereas the baseline version loses track of
the ball. (Top left): RGB input frame at t, (top right): RGB
input frame at t+1, (bottom left): prediction from the baseline
network, (bottom right): prediction from the adapted network. 72

4.1 Navigation pipeline in [123]. Depth and obstacles detection are
merged to build an Octomap. 79

4.2 Network outputs from a perspective image of a indoor corridor.
[127] . 80

4.3 Network outputs from a perspective image of a forest trail. The
drone commands are: turn left, go straight or turn right. [130] . . 81

4.4 Illustration of a deep neural network predictive model. The con-
volutional encoder takes as input the current RGB image and
processes it to form the initial hidden state of a recurrent LSTM
unit. This recurrent unit takes as input H actions in a sequential
fashion and produces H outputs. These outputs of the recurrent
unit are then passed through additional fully connected layers to
predict all K events for all H future time steps. These predicted
future events, such as position or collision, enable action selection
and achieve desirable events. [132] 81

4.5 Combining global way-points in a reconstructed map and local
obstacle avoidance based on learning [125]. Colored pins represent
these global waypoints in the figure. The drone trajectory (green)
often differs from the direct trajectory (red) due to the various
obstacles. 82

4.6 Reinforcement learning framework. The agent selects an action
based on its current state and policy. This interaction with the
environment results in a new state and an additional reward to
evaluate the relevance of the applied policy. 84

4.7 Policy iteration [131]. 88
4.8 The first-visit MC method for estimating Vπ [131]. 88
4.9 Sarsa: An on-policy TD control algorithm [131]. 89
4.10 Q-learning: An off-policy TD control algorithm [131]. 89

5.1 Overview of the RDMAP environment. 93
5.2 Overview of the RDFOREST environment. 93
5.3 General DRL framework. The drone state gathers information

about the goal relative position (dk, θk) and a visual capture of
the agent’s environment Ik as defined in Section 5.2.2. 94

5.4 Different visual modalities considered for drone navigation: (From
left to right: RGB, ground truth depth, and estimated depth with
baseline MIDAS network [60]). 96

5.5 The visual observation Ik is encoded into a 32-dimensional vec-
tor using convolutional operations (CNN) and a fully connected
network (FC). Then, combining this output vector and the goal
information (dk, θk), another fully connected network (RFC) pre-
dicts the agent’s next action ak. The specific case of estimated
depth as input is presented in this example. The MIDAS network
is not used when the navigation focuses on RGB images, ground
truth depth or semantic segmentation. 97

6.1 The drone starts at the center and must reach its target on a 20-
meter circle without obstacles. DQN solution is jerky, whereas
TD3 and PPO are smoother. 101

6.2 Trajectory sample 1 for an identical goal at 60 meters on the
RDMAP environment using 90° FOV (in orange on the left) and
360° FOV (in purple on the right) ground truth depth as input
visual modality. Link to the video. 103

6.3 Trajectory sample 2 for an identical goal at 60 meters on the
RDMAP environment using 90° FOV (in orange on the left) and
360° FOV (in purple on the right) ground truth depth as input
visual modality. Link to the video. 104

6.4 Example of kernels with different latitude and longitude. In blue
is the center of the kernel, in green the perspective kernel and in
red the adapted equirectangular one. The wider distortions are
near the poles. 105

6.5 Pre-computed spherical adapted offsets are added to the four con-
volution layers of the Actor-Critic network during training and
testing of the navigation solution. 106

6.6 The convolutions of the MIDAS decoder are modified without ad-
ditional network training to take into account spherical distortions
for depth prediction. Therefore, the final proposed DRL pipeline
has two spherical adaptations: one for the MIDAS network and
one for the Actor-Critic network. 107

6.7 Trajectory sample 1 for an identical goal at 60 meters on the
RDMAP environment using 90° FOV (in orange on the left) and
360° FOV (in purple on the right) estimated depth as input visual
modality. The 360° FOV solution on the right use distortion-aware
convolutions in the actor-critic and MIDAS networks. Link to the
video. 108

6.8 Trajectory sample 2 for an identical goal at 60 meters on the
RDMAP environment using 90° FOV (in orange on the left) and
360° FOV (in purple on the right) estimated depth as input visual
modality. The 360° FOV solution on the right use distortion-aware
convolutions in the actor-critic and MIDAS networks. Link to the
video. 109

6.9 RDFOREST: (left to right: RGB, ground truth depth, and esti-
mated depth with baseline MIDAS network [60]). 110

6.10 Trajectory sample for an 60 meters goal on the RDFOREST envi-
ronment using 360° FOV estimated depth as input visual modality
with spherical adaptation in DRL and MIDAS networks. Link to
the video. 111

7.1 (c) Standard Patch Embeddings. (d) Deformable Patch Embed-
ding for panoramas. [156]. 114

https://www.youtube.com/watch?v=hnxMLFjIgGs
https://www.youtube.com/watch?v=jFJlA5ad0bE
https://www.youtube.com/watch?v=JqQQYbExSeM
https://www.youtube.com/watch?v=JqQQYbExSeM
https://www.youtube.com/watch?v=kD_Zvk12ToY
https://www.youtube.com/watch?v=kD_Zvk12ToY
https://www.youtube.com/shorts/9fZBgjE1VUY
https://www.youtube.com/shorts/9fZBgjE1VUY

7.2 Cyclic Flow Estimation. Partitioned feature maps are extracted
from the encoder of the attended frame and the target frame.
According to the cyclicity of the left and right boundaries of a
panoramic image, the features extracted via the encoder, are re-
grouped into two feature pairs and sent to the decoder to obtain
the complementary optical flow field. The 360° flow can finally be
obtained via min operations [110]. 115

7.3 Controlling Stable Diffusion with ADE20K [58] segmentation map
[159]. On the left is the control semantic segmentation control
input used to create the different landscape images on the right. . 116

List of Tables

2.1 Comparison of different imaging systems. 31
2.2 Common activation functions and their derivatives. 35
2.3 Performances of deep learning based optical flow estimation meth-

ods. The comparison metric usually used is the End-Point-Error
(EPE) [73] for Sintel and Things dataset and the percentage of
optical flow outliers (Fl) for KITTI dataset. For each method the
computational time needed is also presented. 43

3.1 Different camera’s orientation given as Euler Angles (ϕ, θ, ψ). . . 54
3.2 Comparison of spherically adapted and baseline semantic segmen-

tation networks on RWFOREST 256×256, 512×256, and 1024×512.
Each dataset contains 1000 images. 58

3.3 Comparison of adapted and baseline depth estimation networks
on RWFOREST 256×256, 512×256, and 1024×512. Each dataset
contains 1000 images. 62

3.4 Metrics value for the depth estimations in Figure 3.9. 63
3.5 Comparison of adapted and baseline LiteFlowNet2 on OmniFlowNet

dataset. This dataset gathers 1200 images distributed in three dif-
ferent scenes: CartoonTree, Forest, and LowPolyModel. 66

3.6 Comparison of adapted and baseline optical flow networks on Om-
niFlowNet, Flow360, CityScene, and EquirectFlyingThings (EFT)
datasets. 70

3.7 Comparison of the running time and model size between spheri-
cally adapted and baseline networks. We give the average com-
putation time for processing one omnidirectional RGB image on
a RTX3060 GPU. This average is computed using the complete
datasets of 1000 images for RWFOREST and 1200 images for Om-
niFlowNet. Model and offset tables sizes are also provided. 73

3.8 Comparison of adapted and baseline networks on three different
visual modalities. The error metric used for semantic segmenta-
tion is the complement of the Mean Average of Intersection Over
Union, for optical flow is the End-Point Error, and for depth is
the Absolute Relative Error. 75

4.1 V-table . 87
4.2 Q-table . 87

19

5.1 Network architecture for the actor-critic pipeline. Total: 60814
parameters. 97

6.1 Simulation hyperparameters. 100
6.2 Comparing Sucess Rate (SR in %) with TD3 and PPO as solver.

Each evaluation is performed on 100 runs. 101
6.3 Comparing 90° and 360° modalities. Each evaluation is performed

on 600 runs and 3 goal-distances (20, 40 and 60 meters). Ground
Truth (GT), Estimated Depth (ED). 102

6.4 Performances in RDMAP. 106
6.5 Performances in RDMAP. 107
6.6 Performances in RDFOREST. 110

Abbreviations

AECE Averaged Erroneous Class Estimate

AI Artificial Intelligence

CNN Convolutional Neural Network

DDPG Deep Deterministic Policy Gradient

DP Dynamic Programming

DQN Deep Q-learning

DRL Deep Reinforcement Learning

ED Estimated Depth

EPE End-Point Error

FC Fully Connected

FOV Field Of View

GPS Global Positioning System

GPU Graphics Processing Unit

GT Ground Truth

LIDAR LIght Detection And Ranging

LSTM Long Short-Term Memory

MB MegaByte

MDP Markov Decision Process

MIoU Mean Intersection over Union

PPO Proximal Policy Optimization

RMSE Root Mean Square Error

SLAM Simultaneous Localization And Mapping

SPL Success weighted by Path Length

SR Success Rate

TD Temporal Differences

TD3 Twin Delayed Deep Deterministic Policy Gradient

TRPO Trust Region Policy Optimization

UAV Unmanned Aerial Vehicle

21

Chapter 1

Introduction

1.1 Motivations and Challenges

Perception refers to the capacity to perceive and interpret an environment
using different sensors. It is a complex process that involves collecting and an-
alyzing sensory data to create a representation of the surroundings. Millions of
years of evolution allow all living things to accomplish these tasks almost in-
stantly and effortlessly. Computers, on the other hand, do not acquire these
skills innately. As a result, computer vision has been studied intensively since
the 1980s [1] to address these limitations, primarily to mimic what humans do
naturally. The desire to develop autonomous mobile robots has accentuated this
need and led to the development of numerous image-processing algorithms.

However, these methods have often been limited by sensor characteristics,
particularly the Field Of View (FOV) for cameras. Traditional cameras have
a field of view that ranges from 40 to 90 degrees. In contrast, human vision
covers up to 140 degrees. This gap has led to the recent development of cameras
with a wider field of view, notably inspired by nature with the fisheye lenses.
These latest camera models allow omnidirectional vision, i.e., capturing the entire
surroundings in a single shot.

Furthermore, computer vision has always been very demanding regarding
computational power. Only thanks to the development of very powerful dedi-
cated computing units, such as Graphics Processing Units (GPU), could image
processing be performed in a limited time. Traditional model-based computer
vision methods use a pre-existing model or theory to represent the problem accu-
rately. However, the recent explosion in computing power has made it possible to
process gigantic amounts of information compared to before. In particular, this
has led to new data-driven approaches, which involve collecting and analyzing
data to discover patterns, trends, and relationships between them.

Most computer vision is now done by data-driven algorithms and, more par-
ticularly, by deep learning [2]. This very recent method proposes to mimic the
functioning of the human brain. By stacking layers of neurons, it can learn
to perform very complex tasks. They have surpassed previous approaches and
allowed significant breakthroughs in vision thanks to the first architectures of
Convolutional Neural Networks (CNN).

23

Nevertheless, the use of omnidirectional vision is not trivial. All spheri-
cal projections have significant distortions [3], for example, the polar areas of
equirectangular images, as shown in figure 1.1. As a result, the shapes of the
objects in these areas are significantly altered: the car in the lower part of the
image is difficult to identify. Because of these distortions, classical perspective
machine vision methods, which often consider the position of points relative to
each other, are often unsuitable for wide-angle images. Therefore, it is necessary
to adapt the usual methods by taking into account the particularities of these
spherical images.

Figure 1.1: Equirectangular image of an outdoor urban driving scene. The
polar regions are strongly distorted, so much so that it is difficult to recognize

the car in the lower part of the image.

Data-driven methods are powerful but highly sensitive to domain change:
a situation in which the distribution of data used to train the model differs
from the distribution on which the model will be applied. Several methods
propose adaptation methods to deal with spherical distortions, but they all rely
on creating an omnidirectional dataset and training a new model. Therefore,
we offer an alternative solution to avoid these two laborious and time-consuming
tasks and benefit from decades of computer vision development using perspective
images. Our method relies on distortion-aware convolutions that modify the local
operations performed on the image during its processing.

To demonstrate the generalization of our spherical adaptation, we apply it to
three major computer vision tasks: semantic segmentation, depth, and optical
flow estimation. We evaluate the baseline and spherically adapted models on vir-
tual outdoor images and complex real-world scenarios not seen during training.
The adapted methods demonstrate improved estimation accuracy and smooth-
ness for each task considered.

Robotics benefits directly from improvements in computer vision. Indeed,
thanks to these new methods, the perception of robots is considerably improved,
allowing them to perform more complex tasks. For example, autonomous navi-

gation in dense and unstructured environments such as forests has always been
a significant challenge in robotics. However, thanks to the latest technological
advances, navigation reaches now outstanding levels of autonomy [4].

Applying the distortion-aware convolution strategy in robotics is a logical
continuation of the first step in computer vision. In [5], the authors demonstrated
that omnidirectional vision significantly improves Simultaneous Localization And
Mapping (SLAM) compared to a conventional perspective camera. However, the
camera’s capabilities often limit most newer and modern navigation algorithms,
such as Deep Reinforcement Learning (DRL).

Deep reinforcement learning proposes to learn a navigation policy through
trial and error experiments where the robot interacts with the environment based
on its perception. A reward promotes or prevents specific behaviors and thus
influences the learned policy. This strategy offers excellent generalization capa-
bilities but requires a very long learning process, usually performed in virtual
environments, to allow thousands of trials and exploration of failure cases. Nev-
ertheless, this method has gained significant interest in solving robot navigation
with increased computational power and realistic simulators.

Therefore, we propose a DRL aerial navigation solution based on equirect-
angular images and demonstrate its relevance, especially compared to its per-
spective version. Perception being crucial for navigation, we study several visual
modalities: RGB and depth. For this last modality, we consider both ground
truth depth and depth estimated from 360° RGB images using deep learning
methods. In all cases studied, navigation using omnidirectional images outper-
forms the perspective reference.

In addition, we integrate the distortion-aware convolution strategy into our
navigation solution to take into account the distortions in omnidirectional im-
ages. Once again, it significantly improves image processing, resulting in a higher
navigation success rate. Finally, we evaluate the most promising models on a
more photorealistic forest environment without additional training and demon-
strate the robustness of the navigation algorithm.

1.2 Outline

We divide this manuscript into two parts. Part I presents the study focused
on computer vision, while part II develops robot navigation.

Thus, in the first part, chapter 2 presents the different models of spherical
cameras, an overview of the main methods applied in computer vision, especially
focused on the approaches explicitly developed for omnidirectional images, and fi-
nally, the proposed spherical adaptation strategy: distortion-aware convolutions.
Next, chapter 3 presents the virtual and real test datasets considered and gath-
ers the evaluation of our spherical adaptation strategy, particularly comparing it
to the baseline results for all studied visual modalities: semantic segmentation,
depth, and optical flow.

In the second part, chapter 4 explores different image-based navigation meth-
ods and presents the chosen strategy based on deep reinforcement learning. Then,
chapter 5 introduces the virtual flight environments and develops the framework

adopted for our solution. Finally, chapter 6 gathers all the evaluations of the con-
sidered navigation solution: the comparison between omnidirectional and per-
spective images, the improvements thanks to the distortion-aware convolutions,
and the tests on a photorealistic environment without additional training.

Finally, chapter 7 presents the general conclusion and perspectives.

1.3 Contributions

This work was funded by the ANR CLARA project, grant ANR-18-CE33-
0004 of the French Agence Nationale de la Recherche. This work was also granted
access to the HPC resources of IDRIS under the allocation AD011013128 made
by GENCI.

1.3.1 Peer-Reviewed Publications

This manuscript is based on the material published in the following papers:
For Part I:

• C.-O. Artizzu et al. “OmniFlowNet: a Perspective Neural Network Adap-
tation for Optical Flow Estimation in Omnidirectional Images”. In: Pro-
ceedings of the International Conference on Pattern Recognition (ICPR).
Milan, Italy: IEEE, Jan. 2021, pp. 2657–2662 [6]

• C.-O. Artizzu et al. “OMNI-CONV: Generalization of the Omnidirectional
Distortion-Aware Convolutions”. In: Journal of Imaging 9.2 (2023), pp. 1–
16 [7]

For Part II:

• C.-O. Artizzu et al. “OMNI-DRL: Learning to Fly in Forests with Omni-
directional Images”. In: Proceedings of the Symposium on Robot Control
(SYROCO). Matsumoto, Japan: IFAC, Oct. 2022, pp. 1–6 [8]

• C.-O. Artizzu et al. “Deep Reinforcement Learning with Omnidirectional
Images: application to UAV Navigation in Forests”. In: Proceedings of
the International Conference on Control, Automation, Robotics and Vision
(ICARCV). Singapore, Singapore: IEEE, Dec. 2022, pp. 1–6 [9]
This article was Finalist for the Best Student Paper Award.

1.3.2 Open-Source Datasets and Softwares

We have released the following open-source datasets and software:

• Source code and dataset for ”OmniFlowNet: a Perspective Neural Network
Adaptation for Optical Flow Estimation in Omnidirectional Images” [6] can
be downloaded from the project GitHub. This omnidirectional optical flow
dataset gathers 1200 RGB images and the associated ground truth optical
flow.

https://github.com/COATZ/OmniFlowNet

• Source code and dataset for ”OMNI-DRL: Learning to Fly in Forests with
Omnidirectional Images” [8] and ”Deep Reinforcement Learning with Om-
nidirectional Images: application to UAV Navigation in Forests” [9] can
be downloaded from the project GitHub. The RDMAP environment exe-
cutable is provided with AirSim [10] simulator embedded.

• Source code for ”OMNI-CONV: Generalization of the Omnidirectional Distortion-
Aware Convolutions” [7] can be downloaded from the project GitHub.

https://github.com/COATZ/OMNI-DRL
https://github.com/COATZ/OMNI-CONV

Part I

Generalization of the
Omnidirectional

Distortion-Aware Convolutions

29

Chapter 2

Omnidirectional Computer
Vision

A standard perspective camera has a relatively limited field of view, usu-
ally in the range of 40 to 90, which is a limitation in many applications. An
omnidirectional sensor overcomes this drawback by providing a panoramic view
of the scene up to 360°. As a result, the use of spherical cameras for robotic
applications is proliferating. Recently, considerable effort has been devoted to
the development and commercialization of more accurate and affordable devices.
The latest generation cameras offer representative spherical images with up to
4K resolution, such as Instax 360 One X, Ricoh Theta Z1, and Samsung Gear
360, to cite a few.

In parallel, deep learning has significantly contributed to computer vision
over the past decade. Thanks to the increased computing power of GPU, com-
puters can now process large amounts of data. As a result, model-based image
processing has been gradually replaced by learning-based approaches. Inspired
by how the human brain works, deep learning algorithms can learn different tasks
from specific datasets and then repeat them. However, these approaches are very
sensitive to domain shift: the differences in data distribution or characteristics
between the training and test datasets.

In particular, all spherical projections contain significant distortions. These
distortions can significantly reduce performance if not taken into account during
image processing. Some works propose adaptations to improve existing methods.
In this thesis, we have chosen an elegant and simple approach that can be easily
integrated into already-developed networks. To demonstrate the effectiveness
and relevance of our solution, we applied it to three commonly used computer
vision tasks: semantic segmentation, depth, and optical flow.

In this chapter, we first present the different models of spherical cameras,
particularly the ones used during this thesis. Then, we briefly overview the
deep learning algorithms used in computer vision, especially for the three visual
modalities studied. Finally, we present the different methods to improve spherical
image processing.

30

2.1. PHYSICAL DEVICES 31

2.1 Physical Devices

The construction of omnidirectional cameras usually faces several challenges,
such as field of view, focal length, resolution, and volume. Depending on the
intended use scenarios, a trade-off must be found between these parameters.
Several physical solutions have been proposed and can be classified as rotating,
catadioptric, fisheye, or polydioptric cameras.

Table 2.1: Comparison of different imaging systems.

System Real time Image stitching Compactness Blind area

Rotating No Yes Low No
Catadioptric Yes No Medium Yes
Polydioptric Yes Yes High No

2.1.1 Rotating Cameras

Rotating cameras are the oldest method used to create omnidirectional im-
ages. The first panoramic image was captured in the 1900s using a perspective
camera rotating around a vertical axis. The spatial resolution of the image is
directly linked to the rotation speed. More recent versions of such devices use
a larger number of freedom, such as Pan Tilt Zoom cameras commonly used in
surveillance. They can create high-resolution omnidirectional images at the cost
of a long acquisition time.

Figure 2.1: Pan Tilt Zoom cameras. Left: Axis. Right: Honey Optics.

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

32 2.1. PHYSICAL DEVICES

2.1.2 Catadioptric Cameras

Catadioptric cameras use both refractive and reflective optics to capture im-
ages. The term catadioptric originates from dioptrics, the science of light refrac-
tion (lenses), and catoptrics, the science of reflection (with reflective surfaces like
mirrors). Catadioptric cameras are known for their ability to have a wide field of
view while maintaining a relatively long focal length. Conventional cameras are
combined with different mirror shapes, such as parabolic, hyperbolic, or ellipti-
cal, to capture omnidirectional images. Catadioptric cameras were democratized
in robotics for their ability to capture a large area with a single camera without
the need for synchronization (unlike a multi-camera system). However, there
are some drawbacks, notably the size, the cost, and the low and non-uniform
resolution.

Figure 2.2: A catadioptric camera and a captured spherical image [11].

2.1.3 Fisheyes Cameras

A fisheye camera uses a short focal lens to capture a wide field of view,
typically around 180 degrees or more. It is called a fisheye lens because the pro-
duced image is distorted, with straight lines appearing curved, similar to how
a fish might see the world from beneath the water. Similarly to the catadiop-
tric systems, the spatial resolution of the captured image varies, with higher
pixel density at the center. Its main advantage over the previous camera is the
possibility to remove the blind spot characteristic of catadioptric systems.

Figure 2.3: A fisheye camera and an image captured during urban driving [12].

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

2.1. PHYSICAL DEVICES 33

2.1.4 Polydioptric Cameras

Polydioptric cameras contain multiple lenses of different focal lengths ar-
ranged in a way that allows them to capture images with a wide field of view.
They can be used to create panoramic content or to correct for distortions in
the image caused by the use of a single lens. These vision systems allow a
quick acquisition of very high-resolution panoramic images. But the calibration
task can be very challenging due to the lack of information on the inter-camera
transformations or time synchronization between the cameras. The most com-
mon polydioptric systems are dual fisheye cameras, which use two fisheye lenses
usually placed back-to-back and facing opposite directions, as in Figure 2.4.

Figure 2.4: The Ricoh Theta Z1 camera combines two fisheye lenses to
reconstruct equirectangular images.

Some polydioptric systems use more lenses in specific circular or spherical
configurations, as shown in Figure 2.5. These builds increase the stitching ac-
curacy in return for higher computational cost and size. Each camera records
a small area of the environment which is then stitched together to form an om-
nidirectional image. The number of cameras used depends on the lenses’ focal
length: the smaller the focal, the larger the field of view, and therefore fewer
cameras are needed.

Figure 2.5: Polydioptric camera systems using circular rigs (GoPro Odyssey on
the left) or spherical configurations (Panono 360 on the right).

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

34 2.2. DATA-DRIVEN COMPUTER VISION

2.2 Data-Driven Computer Vision

In the past decade, deep learning has made significant contributions to the
field of computer vision and is now used in most state-of-the-art algorithms. One
of the critical advantages of deep learning is its ability to learn and make decisions
directly from data without the need for explicit programming or hand-engineered
features. Previously, traditional machine learning approaches typically required
manually transforming the data into a set of features suitable for the learning
algorithm. Thanks to deep learning algorithms, the relevant features are di-
rectly learned from the data, leading to better performance and more accurate
results. Here we provide a brief overview of deep learning approaches and their
application to specific computer vision tasks.

2.2.1 Deep Learning

The key element of deep learning is artificial neural networks [2], which mimic
the structure and function of the human brain. Composed of interconnected units
called neurons, they learn from the data by adjusting the weights and biases of
the connections between the neurons.

2.2.1.1 Artificial Neuron

Inspired by biological neurons, the first definition of the artificial neuron dates
back to 1943 [13]. Let’s consider an input x = [x0, . . . ,xn], the neuron outputs:

y = σ

(
n∑

i=0

wi · xi + bi

)
, (2.1)

where wi and b =
∑n

i=0 bi are internal parameters of the neuron, respectively
weight and bias. σ is an activation function that can add a non-linearity. Com-
mon activation functions and their derivatives are presented in Table 2.2.

Σ σ

Activation
function

y

Output

x0 x0

x1 w1

...

xn wn

Weights

Bias
b

Input

Figure 2.6: Artificial Neuron.

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

2.2. DATA-DRIVEN COMPUTER VISION 35

Table 2.2: Common activation functions and their derivatives.

Name Function Derivative

Sigmoid σ(x) =
1

1 + e−x
σ′(x) = σ(x)(1− σ(x))

TanH σ(x) =
2

1 + e−2x
− 1 σ′(x) = 1− σ(x)2

ReLU σ(x) =

{
0 x ≤ 0

x x > 0
σ′(x) =

{
0 x ≤ 0

1 x > 0

Leaky ReLU (α) σ(x) =

{
αx x ≤ 0

x x > 0
σ′(x) =

{
α x ≤ 0

1 x > 0

2.2.1.2 Artificial Neural Networks

Multiple network architectures can be created by connecting various artifi-
cial neurons and stacking them using numerous layers, the first of which was
proposed in [14]. Inputs are first fed into the first layer of artificial neurons,
called the input layer. The output of the input layer then passes through one
or more additional layers, called hidden layers, where the computations become
increasingly complex. Lastly, the output layer produces the final output of the
neural network. Each layer contains some neurons connected to the others in the
adjacent layers. If each neuron is linked to all neurons of the previous layer, this
is a fully connected layer. The required number of hidden layers and neurons
depends on the complexity of the task and the application.

The weights and biases are adjusted in supervised learning based on the error
between the predicted output and the ground truth. This error is calculated using
a loss function that differs depending on the desired behavior of the network. The
gradient of the loss function is computed one layer at a time with respect to the
other weights in the network, and this process is conducted in reverse through the
entire neural network, hence named the back-propagation. After computation,
nodes with a high error will have a smaller weight than those with a lower error.

The activation functions used in the network are also crucial to learn a broader
range of functions and represent more complex patterns. For many years, sig-
moid and tanh functions were popular in deep learning, but they suffer from the
vanishing gradients issue: the gradients of the weights can become very small,
which makes learning the network difficult. With the increasing popularity of
deep networks, the ReLU activation [15] function gained interest for two main
reasons: its simplicity and the fact that its gradient is equal to one or zero. But
this has also led to the dying ReLU problem: the neuron can ”die” during learn-
ing if it constantly produces a negative output. LeakyRelu [16, 17] solves this
problem by allowing a small non-zero gradient when the input is less than 0 and
becomes the reference activation function.

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

36 2.2. DATA-DRIVEN COMPUTER VISION

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Output

Figure 2.7: Artificial neural network with a single hidden layer. More precisely,
it is a fully connected architecture because each neuron is connected to all

neurons of the previous layer.

2.2.1.3 Convolutional Neural Networks

Convolutional neural networks have been developed to process images and
now dominate most computer vision algorithms. They use a succession of learn-
able filters, i.e. convolutional layers, to extract features from the input image.
These filters are designed to detect specific patterns or features in the input
data, such as edges, corners, or textures. Then the output of these layers is
often passed through one or more pooling layers (max-pool or more recently
strided convolutions), which downsample the data to reduce its dimensionality.
Depending on the computer vision tasks, the output is either passed through
a fully-connected layer to perform the final classification task or is upsampled
(deconvoluted) to reconstruct a new image. Most of the new networks are built
using lighter published and proven architectures such as LeNet [18], AlexNet [19],
VGG [20], ResNet [21], and MobileNet [22].

The fundamental operation of these networks is convolution. It adds to the
value of each image pixel, a combination of neighboring pixels weighted by a
filter. One significant advantage of this operation is that the convolutions are
spatially equivariant. If the image contains the same features in two different
regions, the outputs in these regions will be the same.

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

2.2. DATA-DRIVEN COMPUTER VISION 37

Let’s consider a convolution filter w applied on a 2D input features map x.
For each location p0, the convolution output y is defined by:

y (p0) =
∑
pn∈R

w (pn) · x (p0 + pn) , (2.2)

where R is a regular grid sampled over the input map x. This grid defines the
filter field size and dilation R = au⃗ + bv⃗ where (u⃗, v⃗) is the pixel coordinate
system and (a, b) the sampling. For example, a 3×3 regular kernel with dilation
1 is defined by (a, b) ∈ (−1, 0, 1)2 as illustrated in Figure 2.8.

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0




∗

1 0 1

0 1 0

1 0 1


 =

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0




Input x Filter w Output y

Figure 2.8: Convolution operation of a 3× 3 filter applied on a 7× 7 input.

2.2.1.4 Transformer Networks

First used for natural language processing tasks, Transformer networks [23]
have recently been applied to computer vision tasks. These networks use an
attention mechanism that distributes weights over certain input parts. It allows
the model to focus better on the most relevant input features.

The attention operation performs three linear transforms on the input X =
[x0, . . . ,xn] in order to produce a sequence of keys K = [k0, . . . ,kn], values
V = [v0, . . . ,vn] and queries Q = [q0, . . . ,qn]. By performing a dot-product
comparison of similarity between the queries and keys, the network can learn to
attend to different semantic concepts and features in the input sequence:

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V , (2.3)

where the normalizing factor dk is the size of the key vector. The attention
distribution is calculated between the key and query pairs. Still, the output
is a weighted average of the value vectors, allowing the network query to pass
on information different from those used to calculate the attention score. By
stacking and repeating this operation, the network can learn complex tasks.

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

38 2.2. DATA-DRIVEN COMPUTER VISION

For computer vision applications, the image input is split into a sequence
of regions and then processed through transformer-based models. One of the
main architectures is the Vision Transformer (ViT) [24] and was initially used
for image classification as presented in Figure 2.9. In addition, the reader can
refer to the following surveys for more details: [25, 26].

Many Transformer networks use convolutional neural networks to be more
sampling-efficient [27, 28, 29]. They are either used as an encoder to extract
high-level features from the input image, as a decoder to reconstruct the final
output, or as a positional encoding to constrain the transformer attention.

Figure 2.9: The Vision Transformer architecture [24]. The image is split into
fixed-size patches with position embeddings and fed into a Transformer

encoder. The output is a class estimation.

2.2.2 Common Computer Vision Tasks

Computer vision includes many tasks that aim to provide dense information
about the captured scene, allowing pixel-accuracy understanding. The three
most commonly used visual modalities are semantic segmentation, depth, and
optic flow estimation. Each task carries crucial information and offers a good
complementarity for scene understanding. For example, semantic segmentation
provides the category and the position of each object/element of the scene; depth
indicates their relative distance with respect to the camera; optical flow measures
their relative displacement or the observer’s motion.

These three tasks also have particular requirements related to their purpose.
They offer a good overview of the diversity of computer vision applications. Im-
age classification, instance segmentation, and saliency are standard computer
vision tasks but can be considered a related case of semantic segmentation. Sim-
ilarly, surface normals prediction is related to depth estimation, and the focus of
expansion computation is related to optical flow.

For these reasons, we focused on the three main tasks discussed above: se-
mantic segmentation, depth, and optical flow estimation.

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

2.2. DATA-DRIVEN COMPUTER VISION 39

2.2.2.1 Semantic Segmentation

Image segmentation consists in dividing pixels into groups according to spe-
cific criteria. In particular, semantics assigns a semantic label to each pixel in an
image like ground, trees, or sky, as shown in Figure 2.10. The image’s low-level
and high-level features are needed to build a system that determines semantic
meaning at the pixel level. Low-level features, such as edges, can be obtained
from local intensity variations, while high-level features require a semantic un-
derstanding of the image. As a result, the output image provides a holistic and
accurate understanding of the camera environment.

Figure 2.10: An example of semantic segmentation [30].

Early image segmentation algorithms can be divided into three techniques:
region detection, edge detection, and graph-based segmentation. Region-based
segmentation divides an image into multiple regions based on uniformity crite-
ria such as intensity, color, or distance. This can be done using methods such
as clustering [31], region growing [32], and thresholding. On the other hand,
edge detection involves defining segments based on a lack of continuity. It often
uses the intensity gradient to determine whether a pixel can be classified as an
edge [33, 34, 35, 36] (edge points have a high-value gradient). Finally, another
approach uses probabilistic graphical models such as Conditional Random Field
[37, 38], which models the relationship between pixels and image segmentation.

After the massive success of deep learning on image classification with LeNet-
5 [18], it was extended to semantic segmentation. However, this last task required
additional spatial information to discriminate pixels correctly. Therefore, the
most successful deep learning semantic segmentation architectures usually use
a pretrained classification network like VGG [20] and ResNet [21] as the en-
coder. Then the decoder projects the extracted discriminative features from the
encoder onto the pixel space to get a dense classification of every pixel in the
input image. Specific decoder architectures were proposed, such as the Pyramid
Pooling Module [39] or the Atrous Spatial Pyramid Pooling [40]. One of the
first networks used for semantic segmentation is a fully convolutional network
[41]. Since then, various more advanced architectures have been proposed, such
as UNet [42], YOLO [43], SegNet [44], and DeepLab [40].

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

40 2.2. DATA-DRIVEN COMPUTER VISION

In particular, the ADE20K dataset [45] is a reference dataset to train and
test semantic segmentation solutions. It mixes indoor and outdoor images in
20000 scenes with 150 ground truth semantic classes. The authors proposed a
classic encoder-decoder architecture in [46], demonstrating good accuracy and
robustness. This network combines a ResNet50 [21] encoder, and a Pyramid
Pooling Module [39] decoder.

2.2.2.2 Monocular Depth

The depth estimation problem has been a long-standing problem in computer
vision, especially for robot navigation. Initially, this task was solved using LIDAR
or stereo cameras. But the cost, weight, and power consumption of these sensors
motivated the development of new methods based on monocular cameras. But
depth estimation from a single image is an ill-posed problem [47] since the same
image could be produced by an infinite amount of real-world scenes as shown in
Fig. 2.11.

Image planeO

p

P

All these points project to p

OL

p

P

Second image plane

ORPoints matched

Monocular system Stereo system

Figure 2.11: Estimating depth from a single image is an ill-posed problem [47]
since several real points project onto the same pixel. Using a second camera
alleviates this ambiguity by matching points (drawing inspired by [48]).

Most model-based existing approaches aim to reconstruct a stereo vision sys-
tem and find correspondences between pixels [49, 50, 51]. But they are often
limited by their reliance on optical flow or scene assumptions. On the other
hand, deep learning brought significant progress in monocular depth estimation
thanks to convolutional neural networks. Depth estimation is a dense prediction
task in which each pixel in the image is assigned a depth value. It is closely re-
lated to semantic segmentation that aims to assign each pixel a class label from
several categories.

The first convolutional neural network for monocular depth estimation was
published in 2014 [52]. Their solution features a coarse-to-fine scheme and uses
supervised training with ground truth depth, thanks to an RGB-D camera. First,
the coarse network predicts the scene’s depth at a global level taking advantage
of the entire image. Then, this coarse output is combined with the original input
image and refined using local information. Following this work, they proposed
a multitasking network estimating jointly depth, normals, and semantic labels
[53].

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

2.2. DATA-DRIVEN COMPUTER VISION 41

Dense depth estimation has also been addressed as a classification task. In
[54], the authors propose to transform the depth regression task into an ordinal
regression problem. They divided the depth range into a fixed number of bins
of predetermined width. Adabins [55] proposes a generalization of this work by
computing adaptive bins based on the characteristics of the observed scene and
predicting the final depth as a linear combination of the centers of these bins.

To overcome the limitation of annotated datasets, another approach is to use
self-supervised learning. Most of these methods seek to mimic a stereo system,
either by image reconstruction or video sequences. The most famous network
based on image reconstruction is Monodepth [56]. It generates disparity images
by training the network with an image reconstruction loss based on left-right
consistency. The authors proposed a second version, Monodepth2 [57], which
improves the loss function to handle occlusions, adding a multi-scale sampling
method to reduce visual artifacts and auto-masking loss to ignore training pixels
that violate camera motion assumptions. In parallel, the use of image sequences
has also been explored. For example, in [58], the authors use video recordings
where the variation in camera position between successive frames is small and
can be considered a stereo system.

Recently, vision Transformers are replacing convolutional networks as the
backbone for dense prediction tasks, such as monocular depth [27]. Thanks to a
global receptive field at every stage and high-resolution feature maps, this solu-
tion demonstrated a significant improvement compared to the previous models.

However, all previous models require considerable computational power, usu-
ally not available on resource-constrained devices such as mobile robots. Never-
theless, depth is the most commonly used visual modality for obstacle avoidance
in navigation, primarily due to its robustness to scene changes. As a result,
considerable efforts have been put into reducing and simplifying the network
architectures. Supervised methods are particularly well suited for this size re-
duction. FastDepth [59] presents one of the first solutions optimized for depth
estimation in indoor scenes using smartphones. More versatile, MIDAS network
[60] is trained on multiple indoor and outdoor perspective datasets and offers
accurate and robust monocular depth estimation while being one of the lightest
networks.

2.2.2.3 Optical Flow

When an observer is in relative motion with respect to the objects in its en-
vironment, a visual field of displacement can be perceived. This field is called
optical flow. Computationally, the estimation methods aim to compute the ap-
parent motion of pixels between two frames. It enables autonomous vehicles
and robots to acquire temporal cues of the surrounding scenes. The scene flow
is generally expressed using color for the motion direction and intensity for its
magnitude, as shown in Figure 2.12.

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

42 2.2. DATA-DRIVEN COMPUTER VISION

Figure 2.12: Optical flow between two frames [61]. (Top left): RGB input at t,
(top right): RGB input at t+ 1, (bottom left): ground truth optical flow
with reference color wheel, (bottom right): Flow vectors between pixels.

Many solutions have been proposed to estimate the apparent motion in per-
spective images. In this section, we present the traditional approach and then
the current state-of-the-art methods dominated by deep learning. Let’s consider
a 3D point in the camera coordinate system P = (X, Y, Z) ∈ R3 projected onto
the image plane at the point p = (x, y, t) and whose light intensity is I(x, y, t).
Given ∆x and ∆y the displacement of this pixel between two image frames and
∆t the time variation, the brightness constancy constraint means that the light
intensity of the point p does not change over time. This translates mathemati-
cally as:

I(x, y, t) = I(x+∆x, y +∆y, t+∆t). (2.4)

We can use a Taylor expansion to develop the previous equation assuming
small displacements. If we neglect the second-order terms, the optical flow is
then constrained by the following equation:

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t = 0. (2.5)

Considering the optical flow V⃗ = (Vx, Vy) =
(
∆x
∆t
, ∆x
∆t

)
, the final equation is:

∇⃗I⃗ · V⃗ +
∂I

∂t
= 0. (2.6)

However, this equation has two unknowns (Vx, Vy), so it cannot be directly
solved. Several approaches have been proposed to tackle this aperture problem.

The first published methods [62, 63] are based on a variational formulation
of the problem. It tackles the flow estimation problem as an energy minimiza-
tion formulation. These energy functions are based on the brightness constancy
equation and spatial smoothness constraints. However, these assumptions are
often violated in the presence of large motion, occlusion, and lighting variations.

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

2.2. DATA-DRIVEN COMPUTER VISION 43

To better handle large motion, more recent methods adopt a pyramidal process-
ing and warping approach for coarse-to-fine flow estimation [64, 65].

In recent years, significant progress has been made with the publication of
two large annotated datasets for optical flow estimation in perspective images:
Sintel [66] and KITTI [67]. Thanks to these datasets, learning-based methods
could be trained in a supervised manner. One of the most cited networks is
FlowNet [68] which achieved state-of-the-art performances in a significantly lower
computational time than traditional approaches.

Architectures built upon this legacy [69, 70, 71] have dominated optical flow
estimation in perspective images for almost a decade, as shown in Table 2.3.
Using a classical encoder-decoder architecture, they are trained using a large
dataset of image pairs and ground truth optical flow. The input of the CNN
is a pair of successive perspective images, and the output is an estimate of the
(Vx, Vy) flow fields. The encoder and decoder are connected to preserve both
high-level information of the coarser feature maps and low-level information.

Recently, optical flow estimation was significantly improved. First, RAFT
[72] proposed a classically inspired iterative residual optical flow refinement up-
dated by a recurrent unit performing lookups on 4D correlation volumes. Then,
this correlation operation was optimized thanks to Transformer networks allow-
ing for global features matching. GMFlow [28], based upon this approach and
a self-attention layer for flow propagation, is now one of the best-performing
estimation solutions. Despite the new Transformer architecture, this strategy
relies heavily on convolutional neural networks to preprocess the input images
and extract high-level features.

Table 2.3: Performances of deep learning based optical flow estimation methods.
The comparison metric usually used is the End-Point-Error (EPE) [73] for Sintel
and Things dataset and the percentage of optical flow outliers (Fl) for KITTI
dataset. For each method the computational time needed is also presented.

Method Year
Sintel [66] KITTI [67] Things [74] Time
EPE (↓) Fl (%) (↓) EPE (↓) sec (↓)

Horn & Schunk [62, 75] 1981 9.61 28.86 - >150
DeepFlow [65] 2013 7.21 28.48 - 17
FlowNet [68] 2013 7.76 - - 1
LiteFlowNet2 [71] 2020 4.69 7.62 - 0.05
RAFT [72] 2020 2.86 4.74 4.25 0.1
GMFlow [28] 2022 2.65 9.67 2.80 0.1

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

44 2.3. OMNIDIRECTIONAL IMAGE PROCESSING

2.3 Omnidirectional Image Processing

As shown in Section 2.2, most state-of-the-art computer vision algorithms
use convolutional neural networks. However, these networks rely heavily on
their training datasets and are very sensitive to domain shift. Creating an ac-
curate and complete dataset with associated ground truth is labor-intensive and
time-consuming. Therefore, most existing datasets consist of perspective images.
Omnidirectional sensors capable of extracting ground truth are rare, complex to
calibrate, and often prone to reconstruction errors. There are several recent at-
tempts to construct spherical reference datasets. Although training networks
on these datasets is possible, extending the application to real cases or outdoor
images is not trivial.

In addition, all spherical projections come with significant distortions. In
a perspective image, the spatial resolution is generally uniform and defined by
two parameters (width and height). We can easily define a region of interest
centered on a pixel by creating a rectangle of neighboring pixels. But this classical
sampling is not adapted to omnidirectional images because it considers a uniform
resolution of the image and does not take into account the distortion of spherical
projections. Despite the format (cubic, cylindrical, equirectangular, Mercator,
stereographic, etc.), they all come with distortions [76].

In this thesis, we choose the equirectangular projection to represent spherical
images. This projection is commonly used for its ease of reading and classic rect-
angular format. The latitude and longitude of the spherical image are projected
in horizontal and vertical coordinates onto a 2D plane. As a result, the equirect-
angular projection suffers from significant distortions near the polar regions, as
shown in Figure 2.13. Because of this non-linearity, objects appear differently
depending on their latitudes.

Figure 2.13: Equirectangular projection of the Earth’s globe. The Tissot’s
indicatrix illustrate the amplitude of distortions [76]: a circle whose shape is

regular near the equator is significantly distorted near the poles.

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

2.3. OMNIDIRECTIONAL IMAGE PROCESSING 45

Different approaches have been proposed to take these distortions into ac-
count, such as training on omnidirectional datasets, spherical latent space, multi-
projection fusion, and deformable convolutions.

2.3.1 Training on Omnidirectional Datasets

Most existing datasets are with perspective images and only some with om-
nidirectional ones. Building an accurate and complete dataset is labor-intensive
and time-consuming. Early publications proposed to perform data augmenta-
tion on perspective datasets to fit fisheye distortions and use these spherically
augmented datasets to train semantic segmentation [77, 78] or optical flow [79]
networks.

Several recent attempts have been made to construct spherical reference
datasets, such as Matterport3D [80], Standford-2D3D [81], 3D60 [82], Struc-
ture3D [83], Pano3D [84]. Some publications have used these datasets to train
a network for a specific omnidirectional task such as image classification [85],
semantic segmentation [86], layout estimation [87], monocular depth estimation
[82]. But these solutions are limited to indoor office scenes and does not contain
ground truth optical flow. Extending the trained applications to outdoor images
or different scenes is not trivial. Therefore, developing a new generalized adapta-
tion method from pretrained networks on perspective images is in high demand
for omnidirectional applications.

Figure 2.14: Standforf2d3d dataset [81].

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

46 2.3. OMNIDIRECTIONAL IMAGE PROCESSING

2.3.2 Spherical Latent Space

Several works add distortion awareness on the latent space features using a
specific mathematical formulation such as the fast Fourier transform [88, 89] or
polyhedra [90, 91], as shown in Figure 2.15. However, despite the elegance of
these solutions, the adapted network must be trained from scratch with specific
training datasets. In addition, the adaptation methods are very computationally
demanding. Therefore, it is challenging to implement such strategies on resource-
constrained devices for real-time robotic applications.

Figure 2.15: The visualization of how the kernel is applied to polyhedra repre-
sentation [90]. Yellow kernel shows the case when the kernel is located at the
vertex of the icosahedron. Blue kernel shows the case when the kernel is located
at the pole.

2.3.3 Multi-Projection Fusion

Fusing multiple scene projections can create a more complete and accurate
representation. As a result, multi-projection fusion frameworks combining per-
spectives, cubemaps, or equirectangular images have been proposed to improve
estimation in panoramic images: [92, 93] for semantic segmentation, [94, 95,
96] for monocular depth, and [97, 98] for optical flow. These methods show
promising results but require complex and time-consuming training on spherical
datasets.

Figure 2.16: UniFuse network: [95]. The model extracts features from
equirectangular and cubemap images and merges the contribution to estimate

the depth in the observed scene.

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

2.3. OMNIDIRECTIONAL IMAGE PROCESSING 47

2.3.4 Deformable Convolutions

Another approach proposes to replace the uniform perspective convolution
operations with distortion-aware convolutions. Technically, the shape of each
convolution kernel is modified according to some criteria: its latitude in the
case of an equirectangular adaptation. The original deformable convolution was
presented by [99] and was initially used to improve perspective image processing.
The authors proposed to learn additional offsets in an end-to-end manner to
precisely match each region of interest used by the network to the observed
scene, as illustrated in Figure 2.17. More recent works has extended this idea
by using fixed offsets. For example, in [100, 101, 102, 103], the authors show
that depth prior can be used to compute the adaptive kernel statically, leading
to better awareness of the geometry.

Figure 2.17: Left: Illustration of 3 deformable convolutions [99]. Offsets are
learned during training to adapt to various transformations for scale, aspect ratio,
and rotation. Right: Each image shows the sampling locations of deformable
filters for activation units on a small object and a large one.

In deformable convolutions, the regular grid R used in classical convolution
is augmented with offsets ∆pn. The resulting sampling is irregular and the new
positions are pn +∆pn. Therefore, the Eq. 2.2 becomes:

y (p0) =
∑
pn∈R

w (pn) · x (p0 + pn +∆pn) . (2.7)

The first use of the deformable convolutions for spherical adaptation was
proposed in [104]. First, they roughly increase the size of the kernels by their
latitude to improve object detection. Then, in a second work [105], they learn
spherical distortions using trainable offsets in an end-to-end manner. Later works
[106, 107] reused this learning method for depth estimation.

Finally, the authors in [85] present the distortion-aware convolution strat-
egy for object detection. They use fixed offsets that fit the exact mathematical
formulas of equirectangular projection. Although they demonstrate promising
results, they still use additional training on specific omnidirectional datasets de-
spite using fixed offsets. Subsequent publications [87] have followed this strategy
for layout recovery.

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

48 2.4. PROPOSED SPHERICAL ADAPTATION SOLUTION

2.4 Proposed Spherical Adaptation Solution

In this first part of the thesis, we propose to demonstrate the gener-
alization of the distortion-aware convolution strategy to any existing
convolutional network independently of the computer vision task. Fur-
thermore, unlike previously cited work using this method, we perform no addi-
tional training on specific omnidirectional datasets as we keep the pretrained
weights on perspective images. This allows us to take advantage of the ongo-
ing development of new, more efficient methods in the perspective domain and
transfer them to omnidirectional images, all at a low implementation and
computational cost.

This section presents the equations for computing spherical offsets based on
a local perspective projection onto the sphere. Then, we explain our implemen-
tation strategy for any convolutional network.

2.4.1 Local Perspective Projection on the Sphere

Inspired by [87], this section presents the mathematics behind our proposed
spherical adaptation solution. The usual regular grid R is modified to fit the
equirectangular distortions. To build a kernel of resolution r and angular size
α centered in a location p0 = p00 = (u00, v00) in the equirectangular image,
the center coordinates are first transformed to spherical system ps,00 = (ϕ00, θ00)
using

ϕ00 =

(
u00 −

W

2

)
2π

W
; θ00 = −

(
v00 −

H

2

)
π

H
, (2.8)

where W and H are respectively the width and the height of the equirectangular
image in pixels. Each point of the kernel is defined by

p̂spher,ij =

 x̂ij
ŷij
ẑij

 =

 i
j
d

 , (2.9)

where i and j are integers in the range
[
− r−1

2
, r−1

2

]
and d is the distance from

the center of the sphere to the kernel grid. In order to cover the field of view α,
the distance is set to d = r

2 tan(α
2)
.

The coordinates of these points are computed by normalizing and rotating
them to align the kernel center on the sphere. Therefore:

pspher,ij =

 xij
yij
zij

 = Ry (ϕ00)Rx (θ00)
p̂spher,ij
|p̂spher,ij|

, (2.10)

where Ra(β) stands for the rotation matrix of an angle β around the a axis.

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

2.4. PROPOSED SPHERICAL ADAPTATION SOLUTION 49

These coordinates are transformed to latitude and longitude in the spherical
domain using

ϕij = arctan

(
xij
zij

)
; θij = arcsin (yij) ; (2.11)

and finally back-projected to the original 2D equirectangular image

uij =

(
ϕij

2π
+

1

2

)
W ; vij =

(
−θij
π

+
1

2

)
H . (2.12)

In Figure 2.18, some example of kernels at different latitude and longitude
are presented. The blue point defines the center of the kernel p0. The red points
are the positions of the elements pij = (uij, vij) in the adapted kernel, defined
as previously. The green points are the positions of elements in a standard
perspective kernel given by:

upersp,ij = u00 + ir ; vpersp,ij = v00 + jr . (2.13)

Figure 2.18: The equirectangular image presents significant distortions in the
polar regions. Convolution kernel shapes are modified according to their latitude.
Blue: kernel center, Green: perspective kernel, Red: adapted equirectangular
kernel.

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

50 2.4. PROPOSED SPHERICAL ADAPTATION SOLUTION

2.4.2 Implementation in any Convolutional Network

The distortion-aware convolution strategy use fixed offsets. As a result, there
is no additional parameter learning required. However, in previous works using
such strategy [85, 87], they performed a fine-tuning on spherical datasets. But
as we already demonstrated in Section 2.3.1, omnidirectional datasets are often
limited in terms of visual modalities or diversity of scenes. Therefore, we pro-
pose here to avoid any additional training by directly reusing pretrained
weights on perspective images. Figure 2.19 presents a schema of the general
implementation process.

The overall architecture and weights of the network are directly derived from
a model trained in a supervised manner using perspective images and ground
truth modalities. For all networks considered in this study, we reuse the pre-
trained weights provided by the authors of the models. This highlights the
simplicity of integrating our solution into previously published work and ensures
good performance fidelity to the original publication.

In parallel, we replace the standard convolution layers with new lay-
ers handling equirectangular distortions. In practice, the convolution op-
erations are modified to add fixed offsets to each coordinate of the kernel points.
These offsets are calculated using the Eq. 2.12. Moreover, since this equation only
requires the dimensions of the input features map and convolution parameters,
we can compute them offline. It guarantees no slowdown during inference:
the computation time of the initial perspective network and the adapted version
are identical.

Besides, the proposed solution is compatible with any kernel’s size,
stride, or padding. Therefore, we can implement our proposed spherical adap-
tation in any convolutional neural network architecture.

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

2.4. PROPOSED SPHERICAL ADAPTATION SOLUTION 51

TRAINING

Perspective

TESTING

Equirectangular

Distortion-aware convolution

Weights

Offsets

Figure 2.19: One significant advantage of our proposed method is its ease of
implementation in any existing convolutional network pre-trained with per-
spective images. Moreover, no additional training on omnidirectional datasets
is required. At test time, the weights are directly transferred to the same ar-
chitecture with distortion-aware convolutional filters to process equirectangular
images. We compute these spherical offsets offline to avoid computational
slowdowns. Although this figure illustrates the case of the semantic segmen-
tation task, we apply the same strategy for monocular depth and optical flow
estimation.

CHAPTER 2. OMNIDIRECTIONAL COMPUTER VISION

Chapter 3

Evaluation on Omnidirectional
Images

This section presents the generalization of our proposed spherical adaptation
to common computer vision tasks. As explained in Section 2.2.2, we mainly fo-
cused on semantic segmentation, depth, and optic flow estimation. These tasks
provide dense, crucial, and complementary information for pixel-level scene un-
derstanding. Moreover, each visual modality has different technical needs, which
test the robustness of our approach in a wide variety of contexts. This chapter
presents the comparison between the adapted network and its baseline for each
modality on several validation datasets. We perform extensive analysis on vir-
tual datasets. In addition, we also provide tests on real omnidirectional images
with different backgrounds and lighting.

3.1 Evaluation Datasets

Outdoor scenes are generally more challenging for networks than indoor
scenes, mainly due to the diversity of lighting and the limited number of outdoor
images in the training datasets. However, the available outdoor omnidirectional
datasets are very limited. To our knowledge, no published outdoor dataset ag-
gregates the omnidirectional ground truth for all visual modalities considered. In
order to effectively compare the output of the adapted network with its baseline
and to accurately measure the contributions of our adaptation, we created our
own outdoor datasets.

We use virtual, dense and unstructured photorealistic forest environments to
evaluate our proposed spherical adaptation solution. For example, low-altitude
images captured between closely spaced tree trunks provide good density and
context variations in equirectangular images. In addition, forest scenes are often
not used in perspective training datasets, which will further challenge the tested
models pretrained on more urban datasets.

Nevertheless, photorealistic rendering engines are often very complex. They
usually cannot provide access to all visual modalities, especially when considering
omnidirectional content. Therefore, we use different datasets to separately test
semantic segmentation and depth on one hand and optical flow on the other.

52

3.1. EVALUATION DATASETS 53

3.1.1 Semantic Segmentation and Depth Evaluation

RWFOREST Dataset: We create a photorealistic forest environment with
complex lighting and dense foliage using the best rendering capabilities of Unreal
Engine [108] and forest textures from its marketplace [109]: RWFOREST. For
all captured RGB images, we associate a semantic segmentation and a ground
truth depth provided by the AIRSIM plugin [10]. For the semantic segmentation,
three classes were distinguished: trees, ground, and sky. For depth, we limit the
depth values to 100 meters because most state-of-the-art algorithms can only
estimate a few dozen meters.

Several versions of our dataset are proposed with different image sizes (width×
height): 256 × 256, 512 × 256, and 1024 × 512. This allows us to test our con-
volution adaptation with different input resolutions. Figure 3.1 shows a Sample
of the dataset RWFOREST.

RGB Depth Segmentation

Figure 3.1: RWFOREST dataset. Here is the 256× 256 resolution version.

3.1.2 Optical Flow Evaluation

Ground truth optical flow is complex to compute, especially when consid-
ering a dense omnidirectional context. In [6], we published OmniFlowNet the
first open-source optical flow omnidirectional dataset. Since then, several new
datasets have been proposed: Flow360 [110], CityScene, and EquirectFlyingTh-
ings [98].

OmniFlowNet Dataset: Inspired by the creation of the Sintel dataset [66],
we use Blender [111] to create the OmniFlowNet dataset. This tool is a free and
open-source 3D computer graphics software for making animated films, visual
effects, 3D printed models, interactive 3D applications, and video games. Three
different scenes called CartoonTree, Forest, and LoyPolyModel are generated
with free 3D models available online (Figure 3.2). An equirectangular camera,
simulated in Blender, moves in these fixed scenes with different orientations given
by Euler angles (roll ϕ, pitch θ, yaw ψ). The sets are shown in TABLE 3.1.

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

54 3.1. EVALUATION DATASETS

Table 3.1: Different camera’s orientation given as Euler Angles (ϕ, θ, ψ).

Case CartoonTree Forest LowPolyModel

1 (−3π
4
, π, 0) (−3π

4
, π,−π

2
) (π

4
, 0, 0)

2 (−π
4
, π, 0) (−π

2
, π,−π

2
) (3π

4
, 0, 0)

3 (−π
2
, 3π

4
, 0) (−π

2
, 3π

4
,−π

2
) (π

2
,−π

4
, 0)

4 (−π
2
, 5π

4
, 0) (−π

2
, 5π

4
,−π

2
) (π

2
, π
4
, 0)

Figure 3.2: 3D models used to generate the Forest dataset.

To extract the ground truth optical flow, we used the Vector Pass given by
the Blender Cycles Renderer, as presented in [112]. This render pass is usually
helpful in producing motion blur by providing the motion of every pixel in the
image. Here, the Vector Pass returns the pixel displacement in the horizontal
and vertical directions perpendicular to the camera axis, the ground truth optical
flow. We create 1200 equirectangular RGB images with associated ground truth
omnidirectional optical flow. The image resolution is 768 × 384 to maintain a
width-to-height ratio of 2.

Flow360 Dataset: This dataset published in [110] proposes several urban
driving scenes during different times of day or weather. This dataset provides the
ground truth omnidirectional optical flow associated with RGB image sequences.

CityScene and EquirectFlyingThings (EFT) Dataset: The authors in
[98] proposed two new omnidirectional optical flow datasets. The first one
CityScene gathers 2000 images taken during urban driving in the virtual en-
vironment CARLA [113]. The second one EquirectFlyingThings was inspired by
the FlyingThings3D perspective dataset [74] and contains 2000 images.

Figure 3.3 presents an example of images from all above-mentioned cited
optical flow datasets.

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

3.1. EVALUATION DATASETS 55

E
q
u
ir
ec
tF

ly
in
gT

h
in
gs

C
it
y
S
ce
n
e

F
lo
w
36
0

F
lo
w
36
0

O
m
n
iF
lo
w
N
et

RGB Optical Flow

Figure 3.3: OmniFlowNet [6], Flow360 [110], CityScene and
EquirectFlyingThings [98] datasets.

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

56 3.1. EVALUATION DATASETS

3.1.3 Additional Real-World Test Scenarios

To test our adaptation even further, we test it in various real-world scenar-
ios. We capture different outdoor and indoor scenes using a Ricoh Theta Z1, a
polydioptric camera that combines two fisheye lenses to reconstruct a full omnidi-
rectional image, as explained in Section 2.1.4. Once acquired, the equirectangular
videos are reconstructed from the fisheye inputs using the Ricoh Theta Movie
Converter application [114]. Then, the videos are cut into multiple frames using
FFmpeg [115]. Since omnidirectional sensors capable of extracting ground truth
are rare, complex to calibrate, and often prone to reconstruction errors, we focus
on RGB with easily interpretable content. It allows us to validate our approach
and to test in real conditions its robustness in images never observed during
training.

We study two different contexts. First, we focus on moving objects in front
of a fixed camera. For example, in the Ball1 and Ball2 scenes, a ball is thrown
in front of an omnidirectional camera or rotates around its north polar region.
Second, we also use urban driving images where a camera moves in an essentially
rigid background. For example, in the Car1 and Car2 scenes, a car either passes
under large infrastructures or near trees. Figure 3.4 presents Samples of these
various scenes.

All these situations provide a good variety of content for semantic segmenta-
tion, depth, and optical flow estimation.

Ball1 Ball2

Car1 Car2

Figure 3.4: Images captured with an omnidirectional camera during different
moving scenes.

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

3.2. ADAPTED AND BASELINE MODELS COMPARISON 57

3.2 Adapted and Baseline Models Comparison

This section compares the networks using our proposed spherical adaptation
with their baseline versions. In all cases, no additional training was performed
to fine-tune the networks. Therefore, all of the following input images were
never seen during training. First, we perform a quantitative analysis of all visual
modalities on the virtual datasets described in the section above. Then, we focus
more specifically on some of these results and the previously presented real-world
test scenarios.

3.2.1 Semantic Segmentation Comparison

First, we analyze the contributions of the distortion-aware convolution strat-
egy to transfer perspective-trained semantic segmentation networks to omnidi-
rectional images. To quantitatively measure the estimation performance, we use
two common metrics from [41]. In addition, we propose a third one that provides
additional comparison content. Let’s consider a dataset with Ni images and a
network trained to predict Nc classes, we define the metrics as:

• The Mean Intersection Over Union (MIoU) [41]: indicates the intersection
over union between predicted and ground truth pixels, averaged over all
the classes:

MIoU =
1

NiNc

∑
Ni,Nc

IoU(image, class), (3.1)

with for each image and class:

IoU =
Area of Overlap

Area of Union

=

Ground truth

Prediction

;

Ground truth

Prediction

(3.2)

• The Mean Accuracy [41]: indicates the proportion of correctly classified
pixels averaged over all the classes.

MA =
1

Ni

∑
Ni

Correct predictions

Total of predictions
=

1

Ni

∑
Ni

TP

TP + FP + FN
, (3.3)

with TP the true positives, TN the true negatives, FP the false positives,
and FN the false negatives;

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

58 3.2. ADAPTED AND BASELINE MODELS COMPARISON

• The Averaged Erroneous Class Estimate (AECE) [7]: indicates the number
of classes detected by the network but not present in the ground truth image
averaged over all runs.

AECE =
1

Ni

∑
Ni

Predicted classes not present in ground truth. (3.4)

Table 3.2 compares the metrics between the spherically adapted network and
its baseline version on the RWFOREST dataset. Three different image reso-
lutions are tested to test various convolutional kernel adaptations: 256×256,
512×256, and 1024×512. The network considered here has a classical encoder-
decoder architecture using ResNet50 [21] as the encoder and PPM [39] as the
decoder, as illustrated in Figure 3.5. We use the network pretrained version on
the perspective ADE20K dataset [45].

Table 3.2: Comparison of spherically adapted and baseline semantic
segmentation networks on RWFOREST 256×256, 512×256, and 1024×512.

Each dataset contains 1000 images.

RWFOREST 256×256 MIoU (↑) Accuracy (↑) AECE (↓)
Semantic segmentation baseline 0.677 0.810 2.045

Semantic segmentation adapted 0.688 (+1.525%) 0.828 (+2.282%) 0.337

RWFOREST 512×256 MIoU (↑) Accuracy (↑) AECE (↓)
Semantic segmentation baseline 0.504 0.631 3.692

Semantic segmentation adapted 0.564 (+11.980%) 0.639 (+1.332%) 1.577

RWFOREST 1024×512 MIoU (↑) Accuracy (↑) AECE (↓)
Semantic segmentation baseline 0.443 0.621 5.845

Semantic segmentation adapted 0.528 (+19.174%) 0.627 (+0.852%) 3.034

For each comparison, the best results are in bold.

Figure 3.5: Semantic segmentation architecture used in this thesis proposed in
[46] (encoder: ResNet50 [21], decoder: Pyramid Pooling Module [39]).

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

3.2. ADAPTED AND BASELINE MODELS COMPARISON 59

Looking at the metrics, we conclude that distortion-aware convolution im-
proves the semantic segmentation task. The MIoU and accuracy metrics are
higher for the spherically adapted model, which are the most significant mark-
ers of better segmentation. In addition, the AECE is significantly lower: the
adapted network detects fewer erroneous classes.

To better illustrate these results, we provide an in-depth analysis of two Sam-
ples of the RWFOREST dataset in Figure 3.6. Two improvements are noticeable
and correspond well with the previous conclusions on quantitative comparison:
better pattern matching in the polar regions and less erroneous class estimation.

First, the spherical adaptation helps the network to take into account equirect-
angular distortions. The detection of shapes and patterns is improved in highly
distorted regions thanks to a better local coherence of the pixels. This effect is
visible in Sample 1, where the adapted network better identifies the tree canopy
(upper polar region of the image).

In addition, the adaptation also reduces the number of noisy predictions.
Some objects in the equirectangular images are highly distorted, resulting in
false class predictions by the network. In Sample 2, the upper polar region of
the adapted version is less noisy and contains almost no wrong predictions.

Sample 1 Sample 2

Baseline Adapted Baseline Adapted

Figure 3.6: Prediction examples in the RWFOREST dataset. The spherical adap-
tation improves shape detection (tree canopy is better identified) and reduces
erroneous class estimation. (Top left): RGB input, (top right): ground truth
segmentation, (bottom left): prediction from the baseline network, (bottom
right): prediction from the adapted network.

We observe the same findings when estimating semantic segmentation in real
urban driving scenes. In our proposed example, Figure 3.7, we captured images
when the car was passing under trees in order to focus on the tree canopy de-
tection. The semantic segmentation predicted by the adapted network is more
accurate than the baseline estimate, with better tree canopy identification and
less noisy class predictions. This visually confirms that distortion-aware convo-
lutions improve the semantic segmentation in virtual and real outdoor images.

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

60 3.2. ADAPTED AND BASELINE MODELS COMPARISON

MASK MASK

Baseline Adapted

Figure 3.7: Urban driving example (Car2). The adapted network better identifies
the tree canopy. A red circle at the top left of the image highlights the area with
the most visible differences: the baseline network estimates the earth (in brown)
class instead of trees (in green).

A mask is added to the image’s lower part to hide the car’s semantic seg-
mentation estimate. The car’s shape is strongly distorted due to its proximity
to the omnidirectional camera. The absence of such images and nearby objects
in the training dataset makes the network unable to make a correct prediction.
Spherical adaptation improves the quality of semantic segmentation in spherical
images but remains limited by the training dataset, as in all supervised methods.

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

3.2. ADAPTED AND BASELINE MODELS COMPARISON 61

3.2.2 Monocular Depth Comparison

The previous section showed that distortion-aware convolutions improve se-
mantic segmentation. Here, we focus on depth estimation by comparing a spher-
ically adapted depth estimation network and its baseline version. We use three
common metrics to evaluate depth estimation algorithms as defined in [116].
Let’s consider a dataset with Ni images of Np pixels, d̂p the estimated depth for
a pixel p, and dp the ground truth depth. The resulting proposed metrics are:

• The Accuracy under a threshold th:

δ = max

(
d̂p
dp
,
dp

d̂p

)
< th, (3.5)

generally three thresholds values are used: th = 1.25, 1.252, and 1.253;

• The Absolute Relative Error (AbsRel):

AbsRel =
1

NiNp

∑
Ni,Np

|dp − d̂p|
dp

; (3.6)

• The linear Root Mean Square Error (RMSE):

RMSE =
1

Ni

∑
Ni

√
1

Np

∑
Np

(dp − d̂p)2. (3.7)

Similarly to the semantic segmentation evaluation, we compare in Table 3.3
the spherically adapted depth estimation network and its baseline version on
the RWFOREST dataset. The network used here is MIDAS, a very lightweight
encoder-decoder architecture, illustrated in Figure 3.8.

Figure 3.8: MIDAS lightest network [60].

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

62
3.2.

A
D
A
P
T
E
D

A
N
D

B
A
S
E
L
IN

E
M
O
D
E
L
S
C
O
M
P
A
R
IS
O
N

Table 3.3: Comparison of adapted and baseline depth estimation networks on RWFOREST 256×256, 512×256, and 1024×512.
Each dataset contains 1000 images.

RWFOREST 256×256 δ < 1.25 (↑) δ < 1.252 (↑) δ < 1.253 (↑) AbsRel (↓) RMSE (↓)
Monocular depth baseline 0.251 0.440 0.619 1.198 0.277

Monocular depth adapted 0.26 (+3.6%) 0.454 (+3.2%) 0.630 (+1.8%) 1.154 (−3.7%) 0.275 (−0.7%)

RWFOREST 512×256 δ < 1.25 (↑) δ < 1.252 (↑) δ < 1.253 (↑) AbsRel (↓) RMSE (↓)
Monocular depth baseline 0.254 0.421 0.554 1.664 0.305

Monocular depth adapted 0.264 (+3.9%) 0.437 (+3.8%) 0.574 (+3.6%) 1.567 (−5.8%) 0.298 (−2.3%)

RWFOREST 1024×512 δ < 1.25 (↑) δ < 1.252 (↑) δ < 1.253 (↑) AbsRel (↓) RMSE (↓)
Monocular depth baseline 0.248 0.413 0.545 1.836 0.316

Monocular depth adapted 0.257 (+3.6%) 0.431 (+4.4%) 0.57 (+4.6%) 1.7 (−7.0%) 0.307 (−2.8%)

For each comparison, the best results are in bold.

C
H
A
P
T
E
R

3.
E
V
A
L
U
A
T
IO

N
O
N

O
M
N
ID

IR
E
C
T
IO

N
A
L
IM

A
G
E
S

3.2. ADAPTED AND BASELINE MODELS COMPARISON 63

The adapted method performs better than the baseline version for all con-
sidered metrics and image resolutions. The depth’s accuracy is improved in
omnidirectional images thanks to distortion-aware convolutions.

Visual analysis of depth estimation is more challenging than in the case of
semantic segmentation. Especially, depth prediction images are more difficult
to comment on because depth contrasts are less visible to the human eye. As a
result, the visual differences seem ambiguous, and it is complex to decide which
estimate is better than the other. We illustrated this in Figure 3.9 and Table 3.4.

Baseline Adapted

Figure 3.9: Prediction examples in the RWFOREST dataset. The predicted
depth images are visually challenging to compare. However, quantitative mea-
surements have shown that the adapted version is numerically better than the
baseline. (Top left): RGB input, (top right): ground truth monocular depth,
(bottom left): prediction from the baseline network, (bottom right): predic-
tion from the adapted network.

Table 3.4: Metrics value for the depth estimations in Figure 3.9.

δ < 1.25
(↑)

δ < 1.252

(↑)
δ < 1.253

(↑)
AbsRel

(↓)
RMSE
(↓)

Baseline 0.183 0.321 0.453 1.374 0.293

Adapted 0.253
(+38.8%)

0.382
(+18.8%)

0.491
(+8.4%)

1.403
(+2.2%)

0.277
(−5.5%)

For each comparison, the best results are in bold.

Nevertheless, we can see significant visual improvements in some real outdoor
omnidirectional images. Figure 3.10 shows two image acquisitions, the first as
the car passes under a bridge and the second as it drives by a large tree. Similarly
to the results on semantic segmentation, the detection of patterns is improved in
the polar regions, and there is less erroneous depth estimation. Sample 1 shows

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

64 3.2. ADAPTED AND BASELINE MODELS COMPARISON

that the spherical adaptation improves the depth prediction in the polar regions
of the equirectangular images. In the upper left of the image, the bridge depth
estimation is more accurate and smoother due to better local pixel coherence.

In addition, Sample 2 shows that the adapted prediction is less sensitive to
illumination noise. The image contrast in the top polar region shows significant
differences due to the sun configuration. The baseline network interprets these
changes as depth differences, while the adapted model is more robust and remains
accurate.

Sample 1

Baseline Adapted
Sample 2

Baseline Adapted

Figure 3.10: Urban driving examples. Red circles at the top of the image high-
light the areas with the most visible differences. Sample 1: The adapted net-
work better estimates depth in the polar regions of the equirectangular images.
Sample 2: Less erroneous depth estimation from the adapted network.

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

3.2. ADAPTED AND BASELINE MODELS COMPARISON 65

3.2.3 Optical Flow Comparison

After having demonstrated in the previous sections the interest in using our
spherical adaptation method to transfer perspective semantic segmentation and
depth estimation methods to omnidirectional images, we focus here on the optical
flow. We use a common metric, the End-Point Error (EPE) [73], to quantify the
optical flow estimation accuracy. Let’s consider a dataset with Ni images of Np

pixels, (uf , vf) the estimated flow, and (ufgt, vfgt) the ground truth:

EPE =
1

NiNp

∑
Ni,Np

√
(ufgt − uf)2 + (vfgt − vf)2. (3.8)

We have investigated the advantage of using convolutions for optical flow
estimation on two occasions. First, we adapted the LiteFlowNet2 network [71]
in a paper published in 2021 [6]. This network presented a standard encoder-
decoder architecture and was one of the best-performing networks back then.
We specifically used the pretrained version on the perspective Sintel dataset [66].
Then, two years later, in [7], we updated this work using a new and more powerful
network: GMFlow [28]. This model uses convolution operations to encode input
images into high-level features, which are then processed by Transformers, as
shown in Figure 3.11. For this network, we use the version pretrained on Things
[74] dataset that replaced Sintel as the new reference dataset.

Figure 3.11: GMFlow network [28]. The RAFT [72] convolutional encoder is
used to preprocess the image input before the Transformer.

3.2.3.1 First Investigation with LiteFlowNet2 [71]

Table 3.5 presents a quantitative comparison on the OmniFlowNet dataset
comparing spherically adapted LiteFlowNet2 and its baseline version. Looking
at the metrics, we conclude that the model using distortion-aware convolutions
outperforms the baseline. The improved local pixel coherence in the polar regions
helps the network better to detect patterns and pixel displacements in these
regions.

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

66
3.2.

A
D
A
P
T
E
D

A
N
D

B
A
S
E
L
IN

E
M
O
D
E
L
S
C
O
M
P
A
R
IS
O
N

Table 3.5: Comparison of adapted and baseline LiteFlowNet2 on OmniFlowNet dataset. This dataset gathers 1200 images
distributed in three different scenes: CartoonTree, Forest, and LowPolyModel.

CartoonTree Forest LowPolyModel OmniFlowNet

EPE (↓) EPE (↓) EPE (↓) EPE (↓)
Optical flow baseline 5.60 10.61 7.66 7.96

Optical flow adapted 4.49 (−19.8%) 9.72 (−8.4%) 7.23 (−5.6%) 7.16 (−10.2%)

For each comparison, the best results are in bold.

C
H
A
P
T
E
R

3.
E
V
A
L
U
A
T
IO

N
O
N

O
M
N
ID

IR
E
C
T
IO

N
A
L
IM

A
G
E
S

3.2. ADAPTED AND BASELINE MODELS COMPARISON 67

Figure 3.12 presents the Ball1 and Ball2 motion scenarios. In polar regions,
the optical flow estimated by the adapted network is smoother and, all the time,
more coherent than the network in perspective, as shown in Sample 1. Whereas
the ball motion estimated by the baseline is a shredded mark, the adapted model
predicts a complete ball with coherent motion. In Sample 2, the arm moving
above the north pole of the camera has a smoother predicted optical flow by the
spherical network than the perspective one. The equirectangular convolution
helps the network to better understand and calculate motion in highly distorted
areas.

Sample 1

Baseline Adapted
Sample 2

Baseline Adapted

Figure 3.12: Ball1 and Ball2 cases. (Top) RGB input image , (bottom left)
optical flow estimation from the baseline network, (bottom right) estimation
from the adapted network. The adapted network better estimates the optical
flow in the top polar region is better. Sample 1: The ball is clearly more visible
and smoother in that case. Sample 2: The arm is smoother.

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

68 3.2. ADAPTED AND BASELINE MODELS COMPARISON

The south polar region often presents optical flow noise in the spherically
adapted estimation. This is related to the artifacts created by the tripod hold-
ing the camera. When reconstructing the equirectangular image from the two
fish-eye lenses, this highly distorted region certainly brings some noise to the
final image. While the baseline network interprets it as white noise, the model
with distortion-aware convolution probably detects coherent motion. Figure 3.13
shows that by masking the entire tripod region, the induced noise is reduced.

Figure 3.13: Ball 1 case with masked south pole. (Top left) original RGB input
image, (top right) new RGB input image with masked south pole (top-right),
(bottom left) spherically adapted optical flow estimation of the original image
and (bottom right) spherically adapted optical flow estimation of the masked
image. The optical flow computed with the masked images shows less noise in the
south pole. Thus camera tripod and equirectangular reconstruction add noise to
the optical flow estimation.

Overall, on several diverse real datasets, the spherically adapted LiteFlowNet2
network outperforms its baseline version in estimating better and smoother op-
tical flow in polar regions and shows the same performance in the equatorial
region. Supplementary video results are provided in [117].

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

3.2. ADAPTED AND BASELINE MODELS COMPARISON 69

3.2.3.2 Second Investigation with GMFlow [28]

Table 3.6 compares the metrics between the spherically adapted network and
its baseline version on the four spherical optical flow datasets considered. Simi-
larly to the previous study using LiteFlowNet2 [71] , the End-Point Error of the
adapted method is smaller than the baseline value for all considered optical flow
datasets. The better pixel local coherence improves the pattern detection and
the resulting pixel displacement estimation. Nevertheless, the lack of periodicity
in the estimated optical flow can explain still high EPE values, especially in the
case of the CityScene and EFT datasets. The spherical optical flow is periodic,
but the network did not learn this information when learning on perspective
datasets. Thus, the estimation of the road flow is still inaccurate. This lack of
periodicity remains one of the limitations of this adaptation method for optical
flow networks. However, modified convolutions still improve the predictions, es-
pecially in the case of single-object flow prediction, as shown in the following
qualitative study.

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

70
3.2.

A
D
A
P
T
E
D

A
N
D

B
A
S
E
L
IN

E
M
O
D
E
L
S
C
O
M
P
A
R
IS
O
N

Table 3.6: Comparison of adapted and baseline optical flow networks on OmniFlowNet, Flow360, CityScene, and
EquirectFlyingThings (EFT) datasets.

OmniFlowNet [6] Flow360 [110] CityScene [98] EFT [98]
EPE (↓) EPE (↓) EPE (↓) EPE (↓)

Optical flow baseline 5.16 16.15 32.16 42.44

Optical flow adapted 4.96 (−3.93%) 15.95 (−1.27%) 31.36 (−2.08%) 41.83 (−1.43%)

For each comparison, the best results are in bold.

C
H
A
P
T
E
R

3.
E
V
A
L
U
A
T
IO

N
O
N

O
M
N
ID

IR
E
C
T
IO

N
A
L
IM

A
G
E
S

3.2. ADAPTED AND BASELINE MODELS COMPARISON 71

Figure 3.14 shows two optical flow estimates from the dataset Flow360. The
optical flow enhancements are clearly visible as objects move into the polar re-
gions of the equirectangular image. In both examples, the car passes under a
streetlight. Due to the improved local pixel coherence provided by the distortion-
aware convolutions, the adapted network is able to track the path of the street-
light in the upper polar region of the image. As a result, the estimated optical
flow is close to the ground truth. In parallel, the non-adapted network has
difficulty detecting this same streetlight. Consequently, the flow prediction is
inaccurate in Sample 1 or even empty in Sample 2.

Sample 1 Sample 2

Baseline Adapted Baseline Adapted

Figure 3.14: Prediction examples in the Flow360 dataset. Spherical adaptation
allows better tracking of objects moving in polar regions. As a result, the estima-
tion of the optical flow of the observed lamp post is significantly improved (area
highlighted by the red circle). (Top left): RGB input, (top right): ground truth
optical flow, (bottom left): prediction from the baseline network, (bottom
right): prediction from the adapted network.

For optical flow estimation in real images, we focus on the motion of a ball
during a throw. Figure 3.15 shows two different image sequences with associated
optical flow predictions. Due to better local pixel coherence, the adapted model
keeps track of the ball and provides an accurate motion estimate. In contrast, the
baseline network loses track of the ball, resulting in a noisy optical flow prediction
without an apparent precise motion. This result confirms the improvement in the
optical flow estimation in virtual and real images provided by distortion-aware
convolutions.

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

72 3.2. ADAPTED AND BASELINE MODELS COMPARISON

Sequence 1

Baseline Adapted
Sequence 2

Baseline Adapted

Figure 3.15: Ball1 throw sequences. The adapted network provides correct op-
tical flow estimation, whereas the baseline version loses track of the ball. (Top
left): RGB input frame at t, (top right): RGB input frame at t+ 1, (bottom
left): prediction from the baseline network, (bottom right): prediction from
the adapted network.

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

3.2. ADAPTED AND BASELINE MODELS COMPARISON 73

3.2.4 Computation Time Comparison

Our proposed adaptation strategy avoids additional training by using fixed
offset tables. As mentioned in Section 2.4, these tables can be easily computed
offline using convolution parameters and image size. This guarantees no slow-
down in code execution, as shown in Table 3.7 below. The computation times
of the adapted and baseline networks are very close for all visual modalities. To
compute this average, we use the complete datasets, i.e., 1000 images in the case
of RWFOREST and 1200 frames in the case of OmniFlowNet and a RTX3060
GPU. Finally, our adaptation method improves estimation performances while
keeping the same execution speed, which is a significant advantage.

Table 3.7: Comparison of the running time and model size between spherically
adapted and baseline networks. We give the average computation time for pro-
cessing one omnidirectional RGB image on a RTX3060 GPU. This average is
computed using the complete datasets of 1000 images for RWFOREST and 1200
images for OmniFlowNet. Model and offset tables sizes are also provided.

Computation Time Model and Offsets
(in ms) (↓) Size (in MB)

Semantic segmentation baseline 1 2.952 206.8

Semantic segmentation adapted 1 2.963 (+0.4%) 208.0 (+1.2 MB)

Monocular depth baseline 1 3.802 85.8

Monocular depth adapted 1 3.797 (−0.1%) 92.0 (+6.2 MB)

Optical flow baseline 2 5.642 18.8

Optical flow adapted 2 5.667 (+0.4%) 19.1 (+0.3 MB)

For each comparison, the best results are in bold. 1 Evaluated on RWFOREST 256×256.
2 Evaluated on OmniFlowNet.

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

Conclusion of Part I

Developing new image processing methods or computer vision applications
is always conducted first for perspective images. Spherical image processing
comes later and often with significant limitations, as shown by the still limited
number of omnidirectional datasets. In this work, we proposed the distortion-
aware convolution strategy to easily and quickly adapt any convolutional network
pretrained with perspective images to equirectangular content for any computer
vision application.

In the previous sections, we tested and proved the generalization of our pro-
posed spherical adaptation solution on three fundamental computer vision tasks:
semantic segmentation, monocular depth, and optical flow. We modified a con-
volutional network for each of these modalities and compared it to its baseline
version. In all cases, the spherical adaptation improved performance. Table 3.8
provides a brief review of the previous noteworthy quantitative improvements.

Tested on virtual outdoor images and complex real-world scenarios, the adapted
convolution allows us to take into account the significant distortions present in
the polar zones of equirectangular images and thus improve the estimation accu-
racy in these specific areas: the better local coherence of the pixels significantly
enhances the quality and smoothness of the estimation and avoids errors.

Although this solution does not compete with networks developed and trained
with spherical images, it requires a much lower implementation cost and no ad-
ditional training. In addition, this allows for rapid transfer to new architectures
of any size and shape. All these advantages make this strategy very interest-
ing, especially in the context of image-based navigation of robots with limited
computing resources.

74

3.2. ADAPTED AND BASELINE MODELS COMPARISON 75

Table 3.8: Comparison of adapted and baseline networks on three different visual
modalities. The error metric used for semantic segmentation is the complement
of the Mean Average of Intersection Over Union, for optical flow is the End-Point
Error, and for depth is the Absolute Relative Error.

Error Metric (↓)
Semantic segmentation baseline 1 0.323

Semantic segmentation adapted 1 0.312 (−3.4%)

Monocular depth baseline 1 1.198

Monocular depth adapted 1 1.154 (−3.673%)

Optical flow baseline 2 5.16

Optical flow adapted 2 4.96 (−3.93%)

For each comparison, the best results are in bold. 1 Evaluated on RWFOREST 256×256.
2 Evaluated on OmniFlowNet.

CHAPTER 3. EVALUATION ON OMNIDIRECTIONAL IMAGES

Part II

Deep Reinforcement Learning
Navigation using

Omnidirectional Images

77

Chapter 4

Image-Based Navigation

Autonomous robot navigation refers to the ability of a robot to move through
an environment and reach a specific location or follow a particular path without
exterior supervision. Over the past few decades, this topic has been widely
studied, resulting in many approaches. All these methods first rely on sensors to
capture the state of the robot and its environment. Then the autopilot calculates
the best action from the sensor outputs and sends it to the low or high-level
controller. The frequency of sending these commands depends on the application,
the desired speed, and the sensors used. The Global Positioning System (GPS)
usually provides information about the robot’s state: its position and speed. In
addition to GPS, sensors like accelerometers, gyroscopes, and barometers can
estimate other robot states, such as attitude.

Robots also require visual perception sensors to capture their environment
and detect obstacles. Early methods primarily used LIDAR or stereo cameras for
accuracy and reliability. However, with the development of more efficient com-
puter vision techniques thanks to deep learning, the use of monocular cameras
is rapidly spreading. Perception is crucial in image-based navigation algorithms:
the accuracy, the acquisition speed, the field of view, and the relevance of the cap-
tured images have a direct impact on performance. Nevertheless, most existing
solutions use cameras with a limited field of view.

In this second thesis part, we propose a drone navigation strategy using 360°
field of view images. Omnidirectional cameras can capture the entire environment
in a single shot. By comparing our proposed solution to the method using limited
field of view sensors, we demonstrate the relevance of using the complete drone’s
surroundings for navigation.

In this chapter, we first present different approaches for image-based naviga-
tion. Then we develop the one chosen in this work: deep reinforcement learning.

78

4.1. IMAGE-BASED NAVIGATION STRATEGIES 79

4.1 Image-Based Navigation Strategies

Several solutions are available for robot image-based navigation. Two main
strategies stand out: classical hierarchical planning and machine learning. The
former proposes to combine global trajectory planning with local motion con-
trol, while the latter is data-driven and directly links perception and motion
commands in an end-to-end pipeline.

4.1.1 Map-Based

Monocular simultaneous localization and mapping (SLAM) is the most fa-
mous map-based algorithm [118, 119, 120, 121, 122]. This method creates a map
of an unknown environment using a single camera. It involves simultaneously
estimating the camera’s location (localization) and constructing a map of the
surroundings (mapping). Localization is computed using dense information or
tracking the movements of features in the image. These features can be points,
lines, or other image structures that are unique and easily identifiable in the im-
ages. In parallel, mapping is constructed by adding the locations of the features
in the camera’s field of view to the map. This is done by matching the features
in the current image with those in previous images and using the estimated cam-
era pose to determine the relative positions of the features. Monocular SLAM
can be implemented using a single inexpensive camera and is relatively robust
to changes in lighting conditions, resulting in a reliable navigation solution for
robots. Most recent works combine perception using deep learning and map ex-
ploration, such as [123]. They perform obstacle detection and localization using
a supervised CNN.

Figure 4.1: Navigation pipeline in [123]. Depth and obstacles detection are
merged to build an Octomap.

In [124], the authors proposed a solution for drone navigation in forests. They
combine monocular SLAM and trail path detection using deep learning to follow
safer trajectories. However, this solution is limited by SLAM accuracy despite
promising results in real experiments with a small drone. Besides, restricting
the trajectories to forest trail paths is a significant limitation. Monocular SLAM

CHAPTER 4. IMAGE-BASED NAVIGATION

80 4.1. IMAGE-BASED NAVIGATION STRATEGIES

heavily relies on the sensors’ accuracy to measure the environment, which can
significantly impact the localization and mapping in dense environments or at
high-speed flights [125]. Furthermore, these approaches are often limited by
the computational power embedded in small UAVs: updating a 3D map while
navigating is challenging and energy-consuming.

4.1.2 Learning-Based

Alternative algorithms based on machine learning techniques have been pro-
posed to overcome the limitations of map-based navigation. Typical methods
are imitation learning and deep reinforcement learning.

4.1.2.1 Imitation Learning

In the case of imitation learning [126], the agent learns to reproduce the
behavior of an expert from a lot of labeled data. A dataset of actions and
observations performed by a reference agent is collected and used to train a
machine learning model. This model then aims to reproduce the actions that
the reference agent would have performed in a given situation. This strategy
provides reasonable control over the policy learned by the agent.

More recent works [127, 128] exploit deep learning to mimic expert behavior
for drone navigation in indoor corridors. The dataset of expert demonstrations
is built by combining images of the scene and actions to perform. The network is
used as a classifier to determine the drone state and following actions, as shown
in Figure 4.2.

Figure 4.2: Network outputs from a perspective image of a indoor corridor. [127]

Specific solutions for forest exploration have been proposed. In [129], the
authors proposed a forest drone navigation algorithm mimicking human control.
As in the case of monocular SLAM, some studies also exploit the presence of
forest trails. In [130], trails are predicted using deep learning. Using an annotated
dataset built for this occasion, they trained a convolutional neural network to
detect and track trails. The network outputs three possible actions for the drone:
turn left, go straight, or turn right, as shown in Figure 4.3.

CHAPTER 4. IMAGE-BASED NAVIGATION

4.1. IMAGE-BASED NAVIGATION STRATEGIES 81

Figure 4.3: Network outputs from a perspective image of a forest trail. The
drone commands are: turn left, go straight or turn right. [130]

The most critical limitation of imitation learning is its need for an extensive
dataset of expert actions. This dataset must be representative of the range of
situations the agent is likely to encounter in order to perform well. Unfortunately,
collecting such a detailed data set is non-trivial. Furthermore, these algorithms
suffer from generalization capabilities to scenarios not included in the training
dataset, particularly critical failures.

4.1.2.2 Deep Reinforcement Learning

In reinforcement learning [131], an agent learns to interact with its environ-
ment in order to maximize a reward signal. This agent learns through trial and
error, making decisions based on its current state and the rewards or punishments
it receives for taking certain actions. This agent must balance exploration and
exploitation of the state space to find the optimal policy. Reinforcement learning
frameworks have been merged with deep learning to map high-dimensional sen-
sory information and robot motion commands without referencing the ground
truth. Deep neural networks allow to process large amounts of data and estimate
from it the best following action. As a result, it is possible to train agents to
perform complex tasks, such as playing video games or controlling robots[132].

Figure 4.4: Illustration of a deep neural network predictive model. The convo-
lutional encoder takes as input the current RGB image and processes it to form
the initial hidden state of a recurrent LSTM unit. This recurrent unit takes as
input H actions in a sequential fashion and produces H outputs. These outputs
of the recurrent unit are then passed through additional fully connected layers to
predict all K events for all H future time steps. These predicted future events,
such as position or collision, enable action selection and achieve desirable events.
[132]

CHAPTER 4. IMAGE-BASED NAVIGATION

82 4.1. IMAGE-BASED NAVIGATION STRATEGIES

Doukhi et al. [133] proposed a DRL solution for drone navigation in forests
using a small LIDAR instead of visual inputs. Promising results are presented on
real experiments with a drone reaching multiple waypoints while avoiding trees.

But this approach also present some limitations. A very large number of
iterations is often required to learn an optimal policy. Moreover, DRL may
struggle to learn in environments that are too complex or uncertain, resulting
sometimes in instabilities. Finally, the reward function, which plays a major
part in good convergence of the agent towards the desired policy, can be very
challenging to specify.

4.1.3 Combining Model-Based and Learning-Based

Current state-of-the-art point-goal navigation solutions combine map-based
and learning-based approaches [134, 135, 125]. In [125], the authors combine two
trajectory planners at different scales to fly a drone at high speed in dense and
unstructured environments. Figure 4.5 illustrates the strategy adopted. First, a
global planner establishes long-range waypoints using a map-based method. Col-
ored pins represent these global waypoints in the figure. Then, a local planner
takes care of the navigation between these waypoints, including obstacle avoid-
ance. The resulting trajectory (green) often differs from the direct trajectory
(red) due to the various obstacles. The authors favored imitation learning to
design this local planner to ensure the best reliability during real test flights.

Figure 4.5: Combining global way-points in a reconstructed map and local ob-
stacle avoidance based on learning [125]. Colored pins represent these global
waypoints in the figure. The drone trajectory (green) often differs from the di-
rect trajectory (red) due to the various obstacles.

CHAPTER 4. IMAGE-BASED NAVIGATION

4.1. IMAGE-BASED NAVIGATION STRATEGIES 83

4.1.4 Selected Navigation Method

As shown above, the best image-based navigation methods combine map-
based and learning-based approaches. In this thesis, we seek to demonstrate
the relevance of omnidirectional perception rather than perspective. Thus, it is
expected that the most significant impact will be on obstacle detection. For these
reasons, we simplify the problem by focusing only on navigation between global
waypoints spaced a few dozen meters apart. We assume that these waypoints
have been obtained either by a map-based method or GPS. It is between these
waypoints that the drone’s vision is most important, and it is on this part that
we focus.

Methods based on imitation learning, although very reliable for real appli-
cations, require the use of an expert pilot to create the training dataset. In
our case, the pilot must have similar flight capabilities with perspective and
omnidirectional images to compare the methods fairly. This step is a significant
challenge in addition to the already time-consuming and tedious dataset creation.

Recently, deep reinforcement learning has gained interest with the develop-
ment of more powerful realistic flight simulators [10, 136, 137]. In addition,
with increasingly powerful GPUs, recent publications [132, 138, 4] allow obstacle
avoidance by drones to be achieved with only a few hours of training, as opposed
to the previous weeks or months. Furthermore, using a virtual environment al-
lows for the exploration of critical situations without the risk of destroying the
drone, which significantly increases the robustness of navigation compared to
other approaches. Therefore, we favor deep reinforcement learning to perform
obstacle avoidance in dense and unstructured environments.

CHAPTER 4. IMAGE-BASED NAVIGATION

84 4.2. REINFORCEMENT LEARNING

4.2 Reinforcement Learning

The objective of reinforcement learning is to learn a policy that associates
states with actions in a reward-based environment, as in Figure 4.6. The agent
selects an action based on its current state and policy. This interaction with
the environment results in a new state and an additional reward to evaluate the
relevance of the applied policy. This sequence of actions ends with a termina-
tion state, which usually corresponds to the success or failure of the overall task.
Through a succession of trials and errors, the training seeks to maximize the cu-
mulative reward received by the agent. We provide here a brief formal definition
of the framework adopted in this thesis, mostly inspired by the reference book
on this field [131].

Agent

Environment

ActionState Reward

Figure 4.6: Reinforcement learning framework. The agent selects an action based
on its current state and policy. This interaction with the environment results in
a new state and an additional reward to evaluate the relevance of the applied
policy.

4.2.1 Markov Decision Process

Drone point-goal navigation is a decision-making problem with uncertainties,
which can be modeled by a Markov decision process (MDP). In this MDP, an
agent interacts with the environment by performing actions following a specific
policy in a given state. This state is assumed to have the Markov property, i.e.
to be only dependent on the previous state. Therefore the transition probability
is a function only of the previous state and action. From this same environment,
the agent receives a reward, positive or negative, to promote or prevent certain
behaviors.

CHAPTER 4. IMAGE-BASED NAVIGATION

4.2. REINFORCEMENT LEARNING 85

MDP provides a formal definition for a sequential decision making process,
defined as a five-tuple (S,A, P, R, γ) where:

• S: a finite set of states;

• A: a finite set of available actions;

• P (s, a, s′): a state transition matrix which indicates the probability that
action a in state s at time t will lead to state s′ at t+ 1;

• R(s, a, s′): a reward function received by the agent after performing action
a at state s and getting to state s′;

• γ: a discount factor ∈ (0, 1], representing the difference in importance
between short and long term rewards.

4.2.2 Discounted Expected Reward

A policy in reinforcement learning is a function π that associates states with
actions a = π(s). MDP objetives is to find a to find a policy that maximizes the
expected discounted sum of rewards from each state onwards, the return Gt:

Gt =
T∑
i=0

γiR(st+i, at+i, st+i+1), (4.1)

with γ a discount factor. The choice of this discount depends on the application
and the expected behavior of the agent. For example, the closer it is to 0, the
more the agent is only concerned with maximizing the reward received at time
t, which makes him shortsighted. On the contrary, as it approaches 1, the agent
becomes more future-oriented, as future rewards are less discounted. In long-
horizon tasks, such as point-goal navigation, the reward must be maximized over
the long term (reaching the end goal) rather than being concerned only with
immediate performance (avoiding obstacles). Therefore, the discount factor is
chosen close to 1.

4.2.3 Algorithmic diversity

There are many reinforcement learning algorithms. However, most have well-
defined properties that often depend on the task or the algorithmic capabilities
desired.

4.2.3.1 Model-Based or Model-Free

In some cases, the agent can use or learn a model of the environment. This
model can predict the next state and reward based on a given action-state pair
which will help decide on a course of action by taking into account possible
future situations before they are actually experienced. These methods are called
model-based, as opposed to more straightforward model-free approaches that
are explicitly trial-and-error learners. However, there is no prior model of the

CHAPTER 4. IMAGE-BASED NAVIGATION

86 4.2. REINFORCEMENT LEARNING

environment in most complex problems, such as point-goal navigation in a dense,
unstructured environment.

4.2.3.2 Episodic or Continuous

In some applications, there is a natural notion of a final time step: the
agent’s interaction with the environment naturally breaks into subsequences
called episodes. Each episode ends with a terminal state in a finite number
of T steps, followed by the reset to a starting state. This type of task is called
episodic. On the other hand, in some cases, there are no identifiable episodes,
and the agent’s interaction with the environment continues continuously without
a time limit (T = ∞). These tasks are called continuous.

4.2.3.3 Exploration or Exploitation

One of the challenges of reinforcement learning is the trade-off between ex-
ploration and exploitation. To maximize the reward it receives, the agent favors
actions that have proven effective in the past. It exploits what it already knows.
However, these actions can only be found through exploration. The agent must
randomly interact with the environment to find new and possibly better actions.
A common strategy is the ϵ-greedy approach which consists in picking the best
action (greedy action) with a probability of 1− ϵ or a random action otherwise.

4.2.3.4 On-Policy or Off-Policy

Off-policy algorithms learn from experiences generated by a behavior policy
(the policy applied) different from the target policy (the one learned). For exam-
ple, this policy can be stochastic or sub-optimal, such as ϵ-greedy exploration.
In contrast to the on-policy algorithms where the behavior and target policies
are identical: the algorithm learns directly from the experiments generated by
following the current policy. Using an identical policy in the on-policy setting
generally makes these reinforcement learning algorithms less sampling efficient
than non-policy ones. Nevertheless, they usually show better algorithmic stabil-
ity.

4.2.4 Optimal Policy Search

To evaluate how good it is for the agent to be in state s when following a
given policy π, the value-function V is defined as the expected return from a
given state. Similarly, to evaluate a state-action pair (s, a) when following π, the
action-value function Q (also named quality-function) is given by the expected
return from a given state-action pair:

Vπ(s) = Eπ [Gt | st = s] ,

Qπ(s, a) = Eπ [Gt | st = s, at = a] .
(4.2)

CHAPTER 4. IMAGE-BASED NAVIGATION

4.2. REINFORCEMENT LEARNING 87

Reinforcement learning aims to find an optimal policy π∗ which maximizes the
expected cumulative reward Gt over the long run. A policy is better than another
policy π ≥ π′ if the value function of the new policy is better Vπ(s) ≥ Vπ′(s) for
all s ∈ S. If the state-value function is optimal, an optimal policy was used by
the agent. Multiple optimal policies are possible and lead all to the same optimal
state-value function. The optimal value function V∗ and the optimal action-value
function Q∗ can be defined as followed:

V∗(s) = max
π

Vπ(s) for all s ∈ S,

Q∗(s, a) = max
π

Qπ(s, a) for all s ∈ S, a ∈ A.
(4.3)

Usually, to solve simple problems, reinforcement learning uses tabular meth-
ods [131]. They are based on the assumption that the functions V and Q can be
represented in tabular form, as shown in Tables 4.1and 4.2.

Table 4.1: V-table

Value
State s0 15
State s1 20

· · · · · ·
State sn · · ·

Table 4.2: Q-table

Action a0 Action a1 Action a2 Action a3
State s0 −1 12 0 15
State s1 3 20 4 14

· · · · · · · · · · · · · · ·
State sn · · · · · · · · · · · ·

Three approaches propose to solve tabular methods: dynamic programming,
Monte-Carlo, or Temporal Differences. However, these tables become massive
when the number of possible action-state pairs increases. Therefore, it is often
necessary to use an approximation of these tables, in particular by using deep
learning.

4.2.5 Dynamic Programming

Dynamic Programming (DP) refers to a collection of algorithms for solving fi-
nite MDPs using a perfect knowledge of the environment (i.e., the states, actions,
reward function, and transition function are known). The policy iteration algo-
rithm is an example, which iteratively evaluates and improves the policy until it
finds the optimal policy π∗. Since a finite MDP has a finite number of policies,
this process converges to an optimal policy and an optimal value function in a
finite number of iterations. Nevertheless, DP algorithms are often limited by this
assumption of a perfect model and are known to be computationally expensive.

CHAPTER 4. IMAGE-BASED NAVIGATION

88 4.2. REINFORCEMENT LEARNING

Figure 4.7: Policy iteration [131].

4.2.6 Monte-Carlo

Unlike DP, Monte Carlo algorithms require only experience (i.e., sequences
of sample states, actions, and rewards from interactions with an environment).
They solve the problem of reinforcement learning by averaging sample values.

Figure 4.8: The first-visit MC method for estimating Vπ [131].

CHAPTER 4. IMAGE-BASED NAVIGATION

4.2. REINFORCEMENT LEARNING 89

4.2.7 Temporal Differences

Temporal Differences (TD) learning algorithms update the values during the
episode and do not wait for the end of the episode, like Monte Carlo methods.
It mainly improves the computational speed. Two standard TD algorithms are
SARSA (on-policy) and Q-learning (off-policy).

The name SARSA comes from the quintuple (St, At, Rt+1, St+1, At+1) needed
for the algorithm. At every step, the agent chose an action a according to its
current policy (with sometimes a random action to explore), and gets a reward
r and a new state s′. The agent will then chose another action according to its
current policy, and update the Q-table with the reward r, and the Q value of
new state s′ and new action a′. SARSA is on-policy since the new action a′ is
chosen according to the current policy.

Figure 4.9: Sarsa: An on-policy TD control algorithm [131].

Q-learning is an off-policy version of SARSA: the agent does not have to chose
a second action a′, the update will be performed with the best possible action
(maxaQ(s, a)). As SARSA is on-policy, its convergence properties depend on
the policy used, whereas it is not the case for Q-learning, which is independent
of the policy being followed.

Figure 4.10: Q-learning: An off-policy TD control algorithm [131].

CHAPTER 4. IMAGE-BASED NAVIGATION

90 4.3. DEEP REINFORCEMENT ALGORITHMS

4.3 Deep Reinforcement Algorithms

Action and state spaces can become massive in complex problems, mainly
when the agent’s state contains large arrays such as images. Therefore, the size
needed to store action-state pairs and the time required to explore all possible
combinations become problematic. Deep neural networks can be used as function
approximators to overcome these restrictions. As shown in Section 2.2, they can
approximate nonlinear functions and extract relevant features from any input.
With deep learning, reinforcement learning is now able to generalize to unseen
states, eliminate the need to maintain a lookup table in memory, and create
complex mappings between actions and states. In addition, network architectures
are typically much smaller than those applied to computer vision, partly because
the need for precision decreases in favor of reduced learning time.

4.3.1 Value-Based Approaches

Deep Q-learning (DQN) [139] is one of the most famous DRL algorithms. As
a value-based algorithm, its basic premise is that knowledge of the Q-function,
defined in the equation 4.2, is sufficient to get to the optimal policy. It uses a
deep neural network to represent and approximate this Q-function. Furthermore,
experience replay [140] is added to improve the sample efficiency and stability:
past experiments are stored in a buffer and sampled to update the network
weights. The DQN is well known for demonstrating extraordinary abilities to
play many video games. However, its performance remains limited and new
algorithms have gradually replaced it.

4.3.2 Policy Gradient Methods

The size of the Q-function grows rapidly with the number of possible actions,
which becomes very problematic in the case of a continuous action space. Policy
gradient methods directly optimize the policy to maximize the expected cumu-
lative reward. Value-based methods, such as Q-learning, estimate the optimal
value function and derive a policy. In contrast, policy gradient methods, such
as REINFORCE [141], directly learn the policy by updating the parameters of
a policy function (classically, the weights and bias of a neural network) using
gradient descent. In the case of a discrete action space, the output of the policy
network will be a vector of probabilities over all possible actions. In the case of
a continuous action space, the classical output of the policy network is the mean
(and potentially the variance) of a Gaussian. Policy gradient methods generally
have good convergence properties but are quite slow.

CHAPTER 4. IMAGE-BASED NAVIGATION

4.3. DEEP REINFORCEMENT ALGORITHMS 91

4.3.3 Actor-Critic Strategies

Actor-Critic combines Q-learning and policy gradient using two neural net-
works, one for the policy (actor) and one for the value function (critic), to maxi-
mize the expected cumulative reward. The actor (policy gradient based) decides
what action to take, while the critic (value-based) evaluates how good that action
is and how to adjust it. Both networks improve over time. Actor-critic methods
can handle high-dimensional action spaces and have good stability and gener-
alization capabilities. However, they can be complex to implement and require
careful tuning of hyperparameters. We tested two actor-critic methods: TD3 an
off-policy algorithm and PPO an on-policy solution.

4.3.3.1 TD3

Twin Delayed DDPG (TD3) [142] is a variation of the Deep Determinis-
tic Policy Gradient (DDPG) algorithm [143]. DDPG is based on the actor-critic
strategy for deterministic policies and uses experience replay to improve learning.
DDPG achieves execution speeds 20 times faster than DQN on the same video
games. However, the algorithm is very sensitive to hyperparameters making fine-
tuning difficult. TD3 aims to solve some stability and convergence problems. It
uses two critical networks to estimate the value function, a target policy smooth-
ing technique that adds noise to the target policy during the learning process,
and a delayed policy update mechanism that updates the policy less frequently
than the critical networks. It has already been proposed for obstacle avoidance
by drones in [138].

4.3.3.2 PPO

Proximal Policy Optimization (PPO) [144] is a simplification of the Trust
Region Policy Optimization (TRPO) algorithm [145]. TRPO uses the actor-
critic strategy to iteratively improve the policy in a trust region, which ensures
that the policy update does not deviate too far from the previous policy. PPO
adds a clipped surrogate objective function to TRPO, which further constrains
the size of the policy updates to avoid instability and multiple passes over the
training data using mini-batches. In the end, PPO is a simplified version of
TRPO that is easier to implement while exhibiting identical performance. It has
performed well on various drone flight problems [146, 147, 148, 149].

In the next chapter, we present the adopted navigation solution based on the
deep reinforcement learning framework presented here.

CHAPTER 4. IMAGE-BASED NAVIGATION

Chapter 5

Navigation Framework

Our goal is to propose a point-goal navigation strategy using omnidirec-
tional images and compare it to its perspective reference. Furthermore, we chose
deep reinforcement learning to perform obstacle avoidance as explained in Sec-
tion 4.1.4. The following presents the training and test flight environment, our
navigation solution, and the different navigation performances.

5.1 Flight Environment

We chose the forest context to test our navigation solution. Forests are dense
and unstructured environments, offering a great diversity for testing obstacle
avoidance. Therefore, we first use a schematic forest to compare the omnidirec-
tional and perspective methods. Then, we test the most promising solutions in
a photorealistic forest.

5.1.1 RDMAP: Simplified Training and Testing
Environment

Unreal Engine [108] was chosen as rendering software for its wide range of
available scene complexity, from very simplified scenes to photo-realistic environ-
ments. Connected to Airsim [10], an open-source robotics simulation platform,
the simulator can provide high-fidelity modality captures and a low-level con-
troller to stabilize a drone.

With these softwares, we build a simplified forest environment named RDMAP.
This 200×200 meters terrain consists of many vertical cylinders randomly placed
schematizing a dense forest of tree trunks. Fig. 5.1 shows an overview of this
simplified environment. AirSim directly provides RGB images and the associated
ground truth semantic segmentation and depth.

92

5.1. FLIGHT ENVIRONMENT 93

Figure 5.1: Overview of the RDMAP environment.

5.1.2 RDFOREST: Photorealistic Testing Environment

To reduce the gap with reality, we create the RDFOREST forest environment.
Using the best rendering capabilities of Unreal Engine and forest textures from its
marketplace [109], we build a photorealistic forest with complex lighting. Unlike
the simplified trunks in RDMAP, the trees here have different sizes, branches, and
dense foliage. As a result, RDFOREST is a challenging environment where the
captured images are much more complex to analyze and translate into actions.

Figure 5.2: Overview of the RDFOREST environment.

CHAPTER 5. NAVIGATION FRAMEWORK

94 5.2. PROPOSED FRAMEWORK

5.2 Proposed Framework

As presented in Section 4.2.1, reinforcement learning follows a specific frame-
work illustrated in Figure 5.3. At each time-step tk = k∆t, where ∆t is the
control sampling time, the agent chooses an action ak based on its state Sk and
its policy. This interaction with the environment results in a new state Sk+1

and a reward Rk+1 to evaluate the previously followed policy. We define in this
section the action and state spaces and the reward that we considered in this
thesis.

Figure 5.3: General DRL framework. The drone state gathers information
about the goal relative position (dk, θk) and a visual capture of the agent’s

environment Ik as defined in Section 5.2.2.

5.2.1 Action Space

In our considered point-goal navigation problem, the agent must fly between
trees without collision. Due to the mostly vertical structure of trees, we choose
to perform obstacle avoidance in an iso-altitude plane. Therefore, the drone
keeps a constant altitude during flight while the controller focuses on rotational
movements. As a result, the agent’s action space is A ⊂ [−π, π], which cor-
responds to a desired yaw angle among Nb directions for the episodic case or
infinite directions for continuous case:

a =

{ (
2i

Nb−1
− 1
)
π i ∈ {0, .., Nb − 1} episodic case.

iπ i ∈ [−1, 1] continuous case.
(5.1)

CHAPTER 5. NAVIGATION FRAMEWORK

5.2. PROPOSED FRAMEWORK 95

5.2.2 Drone State

In reinforcement learning, the agent uses its current state to determine the
best following action. This state must be relevant and complete enough to pro-
vide sufficient information to make an appropriate decision. But in return, a
too-exhaustive state will overload the agent with redundant parameters. Thus,
in this study, we propose to use a state containing strictly critical information to
achieve the two main objectives: point-goal navigation and obstacle avoidance.

For the navigation task, only the relative distance and direction of the goal
are provided. In practice, we consider a drone at position Pk = (xk, yk, zk) with
a yaw angle ψk heading towards a fixed goal at position P ⋆ = (x⋆, y⋆, z⋆). At
each time-step tk, we define the distance dk and the angle θk to goal:

dk = ∥Pk − P ⋆∥2,
θk = arctan2 (y⋆ − yk, x

⋆ − xk)− ψk.
(5.2)

The drone captures its surroundings with its perception sensor and transforms
it into an image noted Ik. Several types of modalities are tested in this study and
are described in the next Section 5.2.3. The resulting drone state at time-step
tk is defined by:

Sk = [dk, θk, Ik]. (5.3)

5.2.3 Visual Modalities used as Input

Perception is crucial to achieve obstacle avoidance. This thesis compares two
visual modalities for input image Ik: RGB and depth. For depth, we study both
ground truth depth and depth estimated by deep learning. The AirSim simulator
directly provides RGB images and the associated absolute depth. We perform
an additional cropping in the [0..5] meter range to remain representative of the
capabilities of a small onboard LIDAR.

In parallel, we can use specialized spherical networks or standard perspec-
tive solutions with spherical adaptations to estimate depth from equirectangular
RGB images. In the first part of this thesis, we have already proposed a detailed
overview of such techniques and highlighted the following statement: most om-
nidirectional methods require significant computational power and specific train-
ing on spherical datasets, which makes them less suitable for drone navigation.
Therefore, we choose the same lightweight network as in the first part of this
thesis: MIDAS [60]. This convolutional neural network is one of the lightest
and most accurate perspective depth estimation networks published, with per-
formances already proven in several mobile and drone applications [150, 151].
We directly use its pre-trained version midas v21 small to be representative of
an embedded drone solution. First, we use the baseline version of the MIDAS
network. We will apply our spherical adaptation proposed in the first part of
this thesis later on.

CHAPTER 5. NAVIGATION FRAMEWORK

96 5.2. PROPOSED FRAMEWORK

Two different fields of view are used for all these modalities: a limited field
(90°) and an omnidirectional one (360°). To make a fair comparison, we keep
the same encoder between the different study cases. The image resolution Ik is
independent of modality or FOV and fixed at 100× 100 pixels.

E
q
u
ir
ec
ta
n
gu

la
r

P
er
sp
ec
ti
ve

Figure 5.4: Different visual modalities considered for drone navigation: (From
left to right: RGB, ground truth depth, and estimated depth with baseline

MIDAS network [60]).

5.2.4 Actor-Critic Network

The Actor-Critic network architecture selected is based on contributions that
have already proven effective for drone navigation [152, 125, 138]. First, the
image Ik is preprocessed using a succession of convolutions and fully connected
networks. The resulting 32-dimensional vector is then combined with the goal
information (dk, θk) to determine the next action ak using another fully connected
network. The global pipeline is shown in Figure 5.5.

CHAPTER 5. NAVIGATION FRAMEWORK

5.2. PROPOSED FRAMEWORK 97

Figure 5.5: The visual observation Ik is encoded into a 32-dimensional vector
using convolutional operations (CNN) and a fully connected network (FC). Then,
combining this output vector and the goal information (dk, θk), another fully
connected network (RFC) predicts the agent’s next action ak. The specific case
of estimated depth as input is presented in this example. The MIDAS network
is not used when the navigation focuses on RGB images, ground truth depth or
semantic segmentation.

The precise architecture of the layers is presented in Table 5.1.

Table 5.1: Network architecture for the actor-critic pipeline. Total: 60814
parameters.

Layer Type Nb parameters

Visual capture (Ik)

C1 CONV2D(8, K=3, S=2, P=1) 80
C2 CONV2D(8, K=3, S=2, P=1) 584
C3 CONV2D(8, K=3, S=2, P=1) 584
C4 CONV2D(8, K=3, S=2, P=1) 584
FC1 FC(8*7*7, 64) 25152
FC2 FC(64, 32) 2080

+ Goal state (dk, θk)

RFC1 FC(34,64) 2172
RFC2 FC(64,128) 8320
RFC3 FC(128,128) 16512
RFC4 FC(128,37) 4773

CHAPTER 5. NAVIGATION FRAMEWORK

98 5.2. PROPOSED FRAMEWORK

5.2.5 Reward

The reward function design is critical to ensure proper convergence of the
agent to the expected behavior. Since many attempts are often needed to reach
a suitable candidate, we adapt previously published reward functions for the
specific case of drone point-goal navigation. We mainly based our final solution
on the proposal of [153]. However, we perform a slight modification to their
proposal. In our case, the drone does not always have access to absolute depth.
Therefore, we remove the dependency on safe flight distance to keep the same
reward function for all visual modalities.

Our final reward function depends on the goal relative position (dk, θk) to
push the agent towards this goal, a penalty term (−0.02) to penalize too-long
trajectories, and a terminal reward Rend that promotes or punishes the agent
depending on the episode end state. The goal is considered as reached when the
distance between the drone and this goal is less than a minimal distance dmin.
Moreover, the drone is penalized when it does not reach the goal in less than
tmax time steps or moves too far away at a distance greater than dmax. At each
time step tk, the resulting function is given by:

Rk = −0.1dk − 0.05∥θk∥ + −0.02 + Rend .

Push towards the goal

Penalization Terminal Reward

• 5 if goal reached (dk < dmin);
• −5 if collision;
• −2 if stuck or away (tk > tmax or dk > dmax);

(5.4)

In the next chapter, we finally present the evaluation of the proposed navi-
gation framework in dense and unstructured environments, such as forests.

CHAPTER 5. NAVIGATION FRAMEWORK

Chapter 6

Navigation Evaluation

This chapter presents the final navigation evaluation using the deep reinforce-
ment learning framework defined in the previous chapter. First, we define the
metrics evaluating the different trajectories produced by our proposed navigation
models. Then, we describe our training schedule and the valid hyperparameters
for each simulation. Finally, we present the evaluation of the different solutions
considered. This evaluation consists of four steps:

• Selection of a deep reinforcement learning solver;

• Evaluation and comparison of navigation based on omnidirectional or per-
spective images;

• Improvement of the proposed navigation solution by applying a spherical
adaptation based on the distortion-aware convolution strategy presented
in the thesis first part;

• Evaluation of the most promising models on a more photorealistic forest
environment without additional training.

6.1 Metrics

We use two standard metrics to evaluate navigation solutions. Considering
Nt the total number of paths to be evaluated and Si the Boolean indicator of
the success of episode i (Si = 1 if successful, 0 otherwise), we define:

• the Success Rate (SR) to directly assess the drone’s abilities to reach its
goal (dk < dmin):

SR =
1

Nt

Nt∑
i=1

Si ; (6.1)

• the Success weighted by Path Length (SPL), as defined in [154]:

SPL =
1

Nt

Nt∑
i=1

Si
ℓi
pi

, (6.2)

99

100 6.2. TRAINING SCHEDULE AND HYPERPARAMETERS

where pi is the length of the drone’s trajectory and ℓi is the shortest distance
between the initial and goal points. Thus, the closer the drone trajectory
is to the shortest path, the closer the SPL is to 1. Besides, failed tests are
strongly penalized by the boolean value Si.

6.2 Training Schedule and Hyperparameters

We use the simplified forest environment RDMAP to train all proposed nav-
igation solutions using different visual modalities and fields of view. Each train-
ing takes 100k time steps and uses the same schedule and parameters for a fair
comparison. Table 6.1 presents the hyperparameters used to tune the deep rein-
forcement learning algorithm.

Table 6.1: Simulation hyperparameters.

Hyperparameter Value

Learning rate 0.0003
Number of steps 2048
Batch size 64
Number of epochs 10
Gamma 0.99

∆t 200 ms
Nb 37 actions
dmin 1 meter
dmax 100 meters
tmax 200 time-steps

During training, the distance between the drone’s initial position and goal is
always 20 meters. Then, during inference, we also test longer distances (40 and
60 meters) to challenge our navigation solution. The training is performed on
Nvidia Tesla-V100 graphics cards and lasts about 8 to 10 hours. Inference on
600 drone trajectories takes between 120 and 180 minutes.

6.3 Reinforcement Learning Solver selection

Before performing an intense navigation comparison between visual modali-
ties and field of view, we have to select a deep reinforcement learning algorithm.
We use two point-goal navigation test to perform this initial selection: one with
and another without obstacles. We select three different algorithms as presented
in Section 4.3: two off-policy strategies with different levels of algorithmic com-
plexity: DQN and TD3, and an on-policy algorithm: PPO. Note that the feature
extraction network architecture described in Section 5.2.4 was not yet complete
for these initial tests. We initially used the solution proposed in [138]. We then
refined this model using complementary works [125, 152].

CHAPTER 6. NAVIGATION EVALUATION

6.3. REINFORCEMENT LEARNING SOLVER SELECTION 101

6.3.1 Test with No Obstacle

First, we focus on a simple point-goal navigation task with no obstacles.
Since visual capture is not helpful, we do not use the image Ik of the drone
state to predict the best following action. The drone initially starts in the center
of the map and must reach its target on a 20-meter circle. Figure 6.1 shows
the trajectories obtained with the three different solvers. We observe that the
solution using DQN presents jerky trajectories with abrupt direction changes like
a bang-bang controller. On the contrary, TD3 and PPO show smoother results.
These results are unsurprising, as DQN is one of the oldest deep reinforcement
learning algorithms and has been gradually supplanted by more efficient and
robust methods such as TD3 and PPO. Therefore, we keep only these two solvers
in the next test phase.

DQN
episodic actions

TD3
continuous actions

PPO
episodic actions

Figure 6.1: The drone starts at the center and must reach its target on a
20-meter circle without obstacles. DQN solution is jerky, whereas TD3 and

PPO are smoother.

6.3.2 Test with Obstacles

We add obstacles to the previous point-goal navigation task. The obstacles
are simple vertical cylinders such as the ones used in RDMAP. Contrary to the
previous test case, we use omnidirectional RGB image Ik as input to predict the
best following action. Table 6.2 presents the navigation performances obtained
with the two remaining solvers.

Table 6.2: Comparing Sucess Rate (SR in %) with TD3 and PPO as solver.
Each evaluation is performed on 100 runs.

RUN SR of TD3 (%) (↑) SR of PPO (%) (↑)
20 meters goal 50 80
40 meters goal 35 74

CHAPTER 6. NAVIGATION EVALUATION

102 6.4. OMNIDIRECTIONAL VERSUS PERSPECTIVE NAVIGATION

Despite the obstacles, the navigation solution using PPO remains exception-
ally stable and avoids most collisions: the success rate is 80% for 20 meters
trajectories. On the contrary, the model using TD3 is unstable and fails several
times. TD3 is more sample-efficient thanks to its off-policy characteristic but
much less stable and robust than PPO in our specific case. A long fine-tuning
phase would be necessary to cope with its higher sensitivity and instability. On
the contrary, out-of-the-box PPO is slightly slower but much more promising.

Thus, given these first results and the good robustness of PPO in complex
situations (SR of 74% for trajectories twice as long as those experienced during
training), we chose this algorithm as solver. As explained earlier, we further
improved these results by refining the architecture of the feature extraction net-
work. Numerous convolution parameter and layer changes led to a wide range of
navigation performance. We use the architecture with the best results in what
follows: the one described in Table 5.1.

6.4 Omnidirectional versus Perspective

Navigation

We now compare the performances of our proposed solution using omnidi-
rectional or perspective images. To do so, we train and test each model in the
RDMAP environment. The same training schedule and hyperparameters are
used regardless of the input visual modality or field of view. We test each so-
lution on the same 600 point-to-goal navigation trajectories. However, the goal
distance is not only 20 meters as in training, but we also investigate more dis-
tant goals at 40 meters and 60 meters. It puts to the test the robustness of our
navigation algorithm in situations not seen during training. Finally, we compute
the survival rate (SR) and the success weighted by path length (SPL), defined in
Section 6.1, for all tested trajectories. As described in Section 5.2.3, we compare
two different fields of view for all visual modalities considered: a limited one (90°)
and an omnidirectional one (360°). Table 6.3 compares the navigation based on
omnidirectional models and the perspective references.

Table 6.3: Comparing 90° and 360° modalities. Each evaluation is performed on
600 runs and 3 goal-distances (20, 40 and 60 meters). Ground Truth (GT),

Estimated Depth (ED).

RUN SR (%) (↑) SPL (%) (↑)
90° FOV RGB 68.3 52.8
360° FOV RGB 85.7 62.6

90° FOV GT Depth 76.0 54.0
360° FOV GT Depth 88.8 68.6

90° FOV ED 69.7 57.9
360° FOV ED 86.0 67.0

CHAPTER 6. NAVIGATION EVALUATION

6.4. OMNIDIRECTIONAL VERSUS PERSPECTIVE NAVIGATION 103

Looking at the metrics, the omnidirectional case shows significantly better
performance than the perspective case. 360° FOV images optimize collision
avoidance and navigation tasks. First, he larger FOV improves navigation and
obstacle detection tasks. Obstacles invisible in a narrow FOV are now detected
in omnidirectional images, reducing the number of collisions (higher SR). In ad-
dition, the drone has a better understanding of its environment, which allows
for better trajectory optimization (higher SPL). These results demonstrate the
great potential of large FOV sensors for point navigation, regardless of the type
of visual information captured.

As expected, ground truth depth is the best-performing visual modality. In
the second place, estimated depth has a slight advantage over RGB images and
shows promising performance, especially when using 360° FOV images. As a
result, despite its lightweight architecture, the prediction accuracy of MIDAS is
sufficient to build a more reliable navigation solution than a solution based on
RGB alone.

Below we present two examples of trajectory comparisons using ground truth
depth as a visual modality.

Figure 6.2: Trajectory sample 1 for an identical goal at 60 meters on the RDMAP
environment using 90° FOV (in orange on the left) and 360° FOV (in purple on
the right) ground truth depth as input visual modality. Link to the video.

CHAPTER 6. NAVIGATION EVALUATION

https://www.youtube.com/watch?v=hnxMLFjIgGs

104 6.4. OMNIDIRECTIONAL VERSUS PERSPECTIVE NAVIGATION

Figure 6.2 illustrates these findings by comparing the trajectories of the per-
spective model version (orange on the left) and the omnidirectional one (purple
on the right) for the same starting point and goal. The distance to the goal is
60m, three times longer than the one seen during training. The solution using
a 360° FOV reaches the destination in only 12 seconds (64 time-steps), while
the limited FOV version reaches it in 18 seconds (91 time-steps). The omni-
directional images allow for a better understanding of the scene and a better
localization of obstacles and the drone. It translates into more direct trajectories
to the goal while keeping a reasonable safety margin to avoid collisions.

Figure 6.3 shows trajectories for another pair of start and end points. In
this scenario, the omnidirectional model reaches the goal in 13 seconds (66 time-
steps), approximately the same time as in the previous example. In contrary, the
perspective solution gets stuck between several obstacles and, due to its limited
vision, cannot cross and eventually crashes after 38 seconds (190 time-steps).

Figure 6.3: Trajectory sample 2 for an identical goal at 60 meters on the RDMAP
environment using 90° FOV (in orange on the left) and 360° FOV (in purple on
the right) ground truth depth as input visual modality. Link to the video.

CHAPTER 6. NAVIGATION EVALUATION

https://www.youtube.com/watch?v=jFJlA5ad0bE

6.5. DISTORTION-AWARE CONVOLUTIONS FOR DRL 105

6.5 Distortion-Aware Convolutions for DRL

The proposed navigation solution shows promising results using 360° FOV
observations as inputs. However, as shown in Section 2.3, all spherical projections
present some distortions. In particular, equirectangular images show significant
distortions near the polar regions.

Therefore, we reuse the proposed spherical adaptation described in Section 2.3
and apply it on two different networks. First, the convolution layers of the actor-
critic network used in the deep reinforcement learning algorithm are modified.
Second, for models using estimated depth, we adapt the MIDAS network to
improve depth prediction in equirectangular images without additional training,
as we did in the first thesis part. Figure 6.4 shows different distortion-aware
kernel shapes in function of their position in the equirectangular image.

Figure 6.4: Example of kernels with different latitude and longitude. In blue is
the center of the kernel, in green the perspective kernel and in red the adapted

equirectangular one. The wider distortions are near the poles.

CHAPTER 6. NAVIGATION EVALUATION

106 6.5. DISTORTION-AWARE CONVOLUTIONS FOR DRL

6.5.1 Actor-Critic Network Adaptation

We modify the four convolutional layers of the proposed actor-critic network
architecture, previously presented in Figure 5.5. Prior to training, the offsets
tables are computed based on the resolution of the observation used and the
different parameters of each adapted convolutional layer. Figure 6.5 shows how
this additional plugin is applied on the network architecture. The proposed
navigation solution is trained in the RDMAP environment in a process similar
to that presented in Section 6.2.

Figure 6.5: Pre-computed spherical adapted offsets are added to the four
convolution layers of the Actor-Critic network during training and testing of

the navigation solution.

The spherically adapted actor critic model (DRL adapted) is tested in the
RDMAP environment and compared to its baseline from Section 6.4. Table 6.4
shows the performances of 360° FOV navigation based on ground truth or esti-
mated depth.

Table 6.4: Performances in RDMAP.

RUN SR (%) (↑) SPL (%) (↑)
360° FOV GT depth (baseline) 88.8 68.6
360° FOV GT depth (DRL adapted) 94.8 78.3

360° FOV ED (baseline) 86.0 69.0
360° FOV ED (DRL adapted) 89.5 73.3

For each modality, the distortion-aware solutions show highly better perfor-
mance. Maintaining local pixel coherence during convolutions helps the actor-
critic network to better detect obstacles in the Ik input image. As a result, the
drone trajectories are better optimized, with fewer collisions and faster paths.
In particular, it allows the spherically adapted ED solution to outperform the
non-adapted GT depth based solution, especially in trajectory optimization.

CHAPTER 6. NAVIGATION EVALUATION

6.5. DISTORTION-AWARE CONVOLUTIONS FOR DRL 107

6.5.2 MIDAS Network Adaptation

We reuse the spherically adapted version of MIDAS network presented in Sec-
tion 3.2.2. We already demonstrated better depth estimation results on various
datasets and transfer it to the navigation application. The actor-critic network
spherical adaptation remains active as it has shown excellent results in the pre-
vious section. Figure 6.6 shows the new global pipeline.

Figure 6.6: The convolutions of the MIDAS decoder are modified without ad-
ditional network training to take into account spherical distortions for depth
prediction. Therefore, the final proposed DRL pipeline has two spherical adap-
tations: one for the MIDAS network and one for the Actor-Critic network.

The navigation solution using spherically adapted MIDAS network is trained
and tested in the RDMAP environment similarly to previous runs. Table 6.5
shows the evaluation metrics. As expected, the more accurate depth estimation
the obstacle detection and more generally the navigation performances. The
success rate is higher thanks to the MIDAS spherical adaptation. In parallel, the
global scene understanding is improved and results in faster trajectories (higher
SPL). Therefore, using a larger FOV and spherical adaptations allows the final
version of our solution based on estimated depth to go from an initial success
rate of 70% to a final version close to 90%. Moreover, the drone trajectories also
gain noticeably in speed, as we can see in the following example.

Table 6.5: Performances in RDMAP.

RUN SR (%) (↑) SPL (%) (↑)
360° FOV ED (DRL & MIDAS adapted) 89.8 74.5

CHAPTER 6. NAVIGATION EVALUATION

108 6.5. DISTORTION-AWARE CONVOLUTIONS FOR DRL

Figure 6.7 illustrates these results by comparing the trajectories of the per-
spective model version (orange on the left) and the omnidirectional version (pur-
ple on the right) for the same starting point and goal. Similarly, the distance to
the goal is 60m. The solution using 360° FOV estimated depth reaches the des-
tination in 17 seconds (81 time-steps). Unsurprisingly, this time is longer than
the previous example with ground truth depth in Figure 6.2, but the drone still
keeps a reasonable safety margin to avoid collisions during its flight. In contrast,
the limited FOV version crashed into an obstacle after 9 seconds (45 time-steps)
because it did not detect the tree trunk earlier and was not fast enough to avoid
it. These results again encourage using omnidirectional visual inputs for obstacle
avoidance by drones.

Figure 6.7: Trajectory sample 1 for an identical goal at 60 meters on the RDMAP
environment using 90° FOV (in orange on the left) and 360° FOV (in purple on
the right) estimated depth as input visual modality. The 360° FOV solution
on the right use distortion-aware convolutions in the actor-critic and MIDAS
networks. Link to the video.

CHAPTER 6. NAVIGATION EVALUATION

https://www.youtube.com/watch?v=JqQQYbExSeM

6.5. DISTORTION-AWARE CONVOLUTIONS FOR DRL 109

Figure 6.8 shows trajectories for the same start and end points as ground
truth depth trajectory sample 2. In this scenario, both models reach the goal.
The spherically adapted omnidirectional estimated depth model goes faster in
13 seconds (66 time-steps) than the perspective version in 19 seconds (85 time-
steps).

Figure 6.8: Trajectory sample 2 for an identical goal at 60 meters on the RDMAP
environment using 90° FOV (in orange on the left) and 360° FOV (in purple on
the right) estimated depth as input visual modality. The 360° FOV solution
on the right use distortion-aware convolutions in the actor-critic and MIDAS
networks. Link to the video.

CHAPTER 6. NAVIGATION EVALUATION

https://www.youtube.com/watch?v=kD_Zvk12ToY

110 6.6. GENERALIZATION TO A PHOTOREALISTIC FOREST

6.6 Generalization to a Photorealistic Forest

To test the robustness of our most promising navigation solutions in different
scenarios, we test them directly in a more complex photorealistic environment
without additional training. We propose to use the RDFOREST forest environ-
ment presented in Section 5.1.2. Unlike the simplified trunks in RDMAP, the
trees here have different sizes, branches, and dense foliage. As a result, RDFOR-
EST is a challenging environment where the captured images Ik are much more
complex to analyze and translate into actions. Figure 6.9 shows some observa-
tions from this environment.

E
q
u
ir
ec
ta
n
gu

la
r

P
er
sp
ec
ti
ve

Figure 6.9: RDFOREST: (left to right: RGB, ground truth depth, and
estimated depth with baseline MIDAS network [60]).

The promising pre-trained models from the previous sections were directly
tested on 600 objectives of 20 meters, 40 meters, and 60 meters. The Table 6.6
presents the result of the best performing solutions from the previous sections:
the spherically DRL adapted ground truth and the spherically DRL & MIDAS
adapted estimated depth.

Table 6.6: Performances in RDFOREST.

RUN SR (%) (↑) SPL (%) (↑)
90° FOV GT depth 81.0 69.1

360° FOV GT depth (DRL adapted) 89.7 76.9

360° FOV ED (DRL & MIDAS adapted) 84.7 62.1

Although a challenging test using much more complex images than those used
for training, our proposed solution still performs very well. The DRL & MIDAS
adapted 360° FOV estimated depth reaches almost 85% success. This proves the

CHAPTER 6. NAVIGATION EVALUATION

6.6. GENERALIZATION TO A PHOTOREALISTIC FOREST 111

robustness of our proposed solution to domain change despite the increase in
observational complexity.

The MIDAS network also proves its stability in predicting consistent depth
estimation in various environments without additional training. Despite its small
size, it is reliable enough to build a DRL navigation solution with performance
close to ground truth modalities. Our proposed spherical adaptation further im-
proves navigation performance without additional training, computational slow-
down, or implementation of complex code. Figure 6.10 presents an example of
trajectory in the RDFOREST environment performed using 360° FOV estimated
depth with spherical adaptation in DRL and MIDAS networks. The distance to
the goal is 60 meters and the drone reach it in 19 seconds (91 time-steps). These
results again encourage using omnidirectional visual inputs for obstacle avoid-
ance by drones and demonstrate good robustness of our proposed navigation
solution to domain shift.

Time: 6 seconds. Time: 7 seconds.

Time: 8 seconds. Time: 19 seconds.

Figure 6.10: Trajectory sample for an 60 meters goal on the RDFOREST
environment using 360° FOV estimated depth as input visual modality with

spherical adaptation in DRL and MIDAS networks. Link to the video.

CHAPTER 6. NAVIGATION EVALUATION

https://www.youtube.com/shorts/9fZBgjE1VUY

Conclusion of Part II

Perception is crucial for image-based navigation algorithms. Therefore, widen-
ing the field of view greatly improves performance. This is what we have demon-
strated in the second part of this thesis by focusing on drone point-goal navigation
in dense and unstructured environments such as forests.

For this purpose, two distinct fields of view were used as input to the same
deep reinforcement learning-based navigation method: a 90° limited FOV and
a 360° equirectangular one. In all cases tested, the omnidirectional vision de-
tects more obstacles, significantly improving collision avoidance and success rate.
Moreover, the 360° understanding of its environment helps the drone to evolve
more easily and quickly, resulting in faster trajectories toward its goal while
maintaining a reasonable safety distance during most of the flight.

In parallel, we tested several visual modalities as input to our navigation
method. Unsurprisingly, ground truth depth is the modality with the best per-
formance. Indeed, the absolute depth information allows the drone to know the
precise position of all the elements in the scene at any time. Moreover, this
modality is robust to any change in the environment. Nevertheless, we have
shown promising navigation performances using an ultra-light convolutional net-
work like MIDAS to estimate depth from monocular RGB images. Despite the
significant spherical distortions, this network trained on perspective images pro-
vides reliable and accurate depth prediction, sufficient to outperform a solution
using only RGB.

Furthermore, we used the part I findings and applied the distortion-aware
convolutions strategy to consider the distortions in equirectangular images. We
used this spherical adaptation on the deep reinforcement learning actor-critic
network and the MIDAS depth estimation network. In each case, we have shown
that a better local coherence between pixels during convolution operations sig-
nificantly improves performances.

Finally, even when tested in a new photorealistic environment, our navigation
solutions demonstrated high robustness to domain shift.

The full video examples are available at [155].

112

Chapter 7

Conclusion

7.1 Summary of Contributions

In this work, we have proposed a method for omnidirectional image processing
using distortion-sensitive convolutions for vision and robotics applications. This
approach improves the local coherence of pixels during convolution operations
at the heart of most computer vision algorithms. This strategy can be easily
adapted to any pre-trained convolutional network with perspective im-
ages without additional training. It provides significant time savings for
developing applications using omnidirectional images while maintaining a low
implementation cost and improving estimation accuracy. It also keeps
up with new architectures regularly proposed in deep learning for perspective
images.

In part I, we have demonstrated the generalization of our approach to three
fundamental computer vision tasks: semantic segmentation, monocular depth
and optical flow. Tested on virtual outdoor images and complex real-world
scenarios, the adapted spherical model consistently outperformed the
baseline version while maintaining close runtimes and memory sizes.
Even when tested on images whose distribution is far from the one used during
training, our strategy has shown good robustness to domain shift.

In part II, we extended the demonstration to robotics, particularly aerial
navigation in dense and unstructured environments. Adapting a state-of-the-
art algorithm to omnidirectional images showed that distortion-aware con-
volutions can improve point-goal navigation performance. We have also
shown that it is possible to spherically adapt a depth estimation method initially
reserved for perspective images and to build a more reliable navigation method
than the one based only on RGB images while maintaining identical runtimes.

In parallel, we have shown that using omnidirectional vision to navigate sig-
nificantly increases the success rate compared to a method with a limited field
of view. A broader view improves obstacle detection, which significantly reduces
the number of collisions. In addition, the robot better perceives its surroundings
and thus better optimizes its trajectory. Navigation based on omnidirec-
tional images is safer and faster. Our solution shows robustness even when
tested in a more complex environment than the one used during training.

113

7.2 Perspectives

The contributions made in this thesis and parallel work have opened up many
avenues and directions for future research. Therefore, we now propose some
possible perspectives.

7.2.1 Distortion-Aware Transformers

Computer vision algorithms are now in a phase of hesitation and explo-
ration between Convolutional Neural Networks and Transformers. CNNs are
well known for their sliding receptive field that can pay attention to local pixels.
The Transformers, from another perspective, can better model global correla-
tion while requiring a higher computational cost. Each of these methods has
advantages and disadvantages. As a result, it still needs to be made clear which
model can consistently lead to better performance. Nevertheless, Transformers
will undoubtedly continue to be studied and used.

It would be interesting to extend our spherical adaptation strategy to Trans-
formers. This adaptation could be done similarly to our proposition for CNNs
and would extend Transformers, initially dedicated to perspective images, to
omnidirectional applications. For CNNs, we modified the convolution kernels’
shape, regular for perspective images, to take into account the local distortions
of equirectangular images. Similarly, the Transformers split the input image into
several regular patches during pre-processing. This splitting operation could be
adapted to exactly match the omnidirectional distortions. Some authors [156,
157] have already contributed to panoramic processing, as shown in Figure 7.1.
However, in these works, the offsets used for slicing are learned during training.
It would be interesting to directly use the formulas presented in Section 2.4.1
and avoid any additional learning on an omnidirectional dataset.

Figure 7.1: (c) Standard Patch Embeddings. (d) Deformable Patch Embedding
for panoramas. [156].

7.2.2 Solve the Periodicity Issue

As presented in this thesis, distortion-aware convolutions allow the transfer
of networks trained on perspective images to omnidirectional applications. How-
ever, since no additional training is performed on spherical images, the models do
not incorporate the fact that equirectangular images are periodic. For example,
in optical flow estimation (Section 3.2.3), the network cannot correctly estimate
displacements on the edges: it does not know that these edges are mathemat-
ically connected. It would be interesting to find a solution to incorporate this
periodicity in networks trained only with perspective images.

A first very rough approach would be to use several projections of the same
equirectangular image by performing rotations to modify the position of the
elements in the image center and edges. The work of [110, 98] presents some
promising propositions. As shown in Figure 7.2, flow prediction is improved by
combining the contributions of an image and its 180° rotation along the vertical
axis. Since the runtimes of most estimation networks are very small, it would be
possible to combine additional projections (rotations) to improve the prediction
further. However, this would only enhance the estimation without incorporating
the periodicity of spherical images.

Figure 7.2: Cyclic Flow Estimation. Partitioned feature maps are extracted
from the encoder of the attended frame and the target frame. According to
the cyclicity of the left and right boundaries of a panoramic image, the features
extracted via the encoder, are regrouped into two feature pairs and sent to the
decoder to obtain the complementary optical flow field. The 360° flow can finally
be obtained via min operations [110].

7.2.3 Omnidirectional Image generation

Image generation methods are popular nowadays thanks to the stable diffu-
sion models [158]. From any textual input, these methods can create matching
images. Moreover, with the recent addition of add-ons like [159], it is possible to
further control the output by adding higher-level information such as contour,
semantic segmentation, or depth as presented in Figure 7.3.

However, most of this work is in the context of perspective images. There-
fore, studying the generation of equirectangular images using these models could
be very interesting. In particular, distortion-aware convolutions could help the
transfer from perspective to omnidirectional scenes.

Figure 7.3: Controlling Stable Diffusion with ADE20K [58] segmentation map
[159]. On the left is the control semantic segmentation control input used to

create the different landscape images on the right.

Bibliography

[1] D. Marr. Vision: A Computational Investigation into the Human Rep-
resentation and Processing of Visual Information Freeman. 4576th ed.
Vol. 218. 1982, 398 p. (Cit. on p. 23).

[2] Y. LeCun, Y. Bengio, and G. Hinton. “Deep Learning”. In: Nature 521.7553
(2015), pp. 436–444 (cit. on pp. 23, 34).

[3] F. Pearson. Map Projections : Theory and Applications. CRC Press Boca
Raton, Fla, 1990, 372 p. (Cit. on p. 24).

[4] Y. Song, K. Shi, R. Penicka, and D. Scaramuzza. “Learning Perception-
Aware Agile Flight in Cluttered Environments”. In: Proceedings of the
International Conference on Robotics and Automation (ICRA). London,
United Kingdom: IEEE, May 2023, pp. 1–7 (cit. on pp. 25, 83).

[5] A. Rituerto, L. Puig, and J. Guerrero. “Comparison of omnidirectional
and conventional monocular systems for visual SLAM”. In: Proceedings
of the Workshop on Omnidirectional Vision, Camera Networks and Non-
classical Cameras (OMNIVIS). Zaragoza, Spain: IEEE, June 2010, pp. 1–
8 (cit. on p. 25).

[6] C.-O. Artizzu, H. Zhang, G. Allibert, and C. Demonceaux. “OmniFlowNet:
a Perspective Neural Network Adaptation for Optical Flow Estimation in
Omnidirectional Images”. In: Proceedings of the International Conference
on Pattern Recognition (ICPR). Milan, Italy: IEEE, Jan. 2021, pp. 2657–
2662 (cit. on pp. 26, 53, 55, 65, 70).

[7] C.-O. Artizzu, G. Allibert, and C. Demonceaux. “OMNI-CONV: Gen-
eralization of the Omnidirectional Distortion-Aware Convolutions”. In:
Journal of Imaging 9.2 (2023), pp. 1–16 (cit. on pp. 26, 27, 58, 65).

[8] C.-O. Artizzu, G. Allibert, and C. Demonceaux. “OMNI-DRL: Learning
to Fly in Forests with Omnidirectional Images”. In: Proceedings of the
Symposium on Robot Control (SYROCO). Matsumoto, Japan: IFAC, Oct.
2022, pp. 1–6 (cit. on pp. 26, 27).

[9] C.-O. Artizzu, G. Allibert, and C. Demonceaux. “Deep Reinforcement
Learning with Omnidirectional Images: application to UAV Navigation in
Forests”. In: Proceedings of the International Conference on Control, Au-
tomation, Robotics and Vision (ICARCV). Singapore, Singapore: IEEE,
Dec. 2022, pp. 1–6 (cit. on pp. 26, 27).

117

118 BIBLIOGRAPHY

[10] S. Shah, D. Dey, C. Lovett, and A. Kapoor. “AirSim: High-Fidelity Visual
and Physical Simulation for Autonomous Vehicles”. In: arXiv abs/1705.05065
(2018), pp. 621–635 (cit. on pp. 27, 53, 83, 92).

[11] F. Aziz, O. Labbani-Igbida, A. Radgui, and A. Tamtaoui. “Generic Spatial-
Color Metric for Scale-Space Processing of Catadioptric Images”. In: Com-
puter Vision and Image Understanding 176-177 (Nov. 2018), pp. 54–69
(cit. on p. 32).

[12] S. Yogamani, C. Hughes, J. Horgan, G. Sistu, S. Chennupati, M. Uricar,
et al. “WoodScape: A Multi-Task, Multi-Camera Fisheye Dataset for Au-
tonomous Driving”. In: Proceedings of the International Conference on
Computer Vision (ICCV). Seoul, Korea: IEEE, Oct. 2019, pp. 9307–9317
(cit. on p. 32).

[13] W. S. McCulloch and W. Pitts. “A Logical Calculus of the Ideas Imma-
nent in Nervous Activity”. In: The Bulletin of Mathematical Biophysics
5 (4 Dec. 1943), pp. 115–133 (cit. on p. 34).

[14] F. Rosenblatt. “The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain.” In: Psychological Review 65 (6
1958), pp. 386–408 (cit. on p. 35).

[15] K. Fukushima. “Cognitron: A Self-Organizing Multilayered Neural Net-
work”. In: Biological Cybernetics 20 (3-4 1975), pp. 121–136 (cit. on p. 35).

[16] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al. “Rectifier Nonlinearities Im-
prove Neural Network Acoustic Models”. In: Proceedings of the Interna-
tional Conference on Machine Learning (ICML). Vol. 28. Atlanta, USA:
JMLR, June 2013, pp. 1–6 (cit. on p. 35).

[17] B. Xu, N. Wang, T. Chen, and M. Li. “Empirical Evaluation of Rectified
Activations in Convolutional Network”. In: arXiv abs/1505.00853 (2015),
pp. 1–5 (cit. on p. 35).

[18] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-Based Learning
Applied to Document Recognition”. In: Proceedings of the Institute of
Electrical and Electronics Engineers (IEEE) 86 (11 1998), pp. 2278–2324
(cit. on pp. 36, 39).

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet classification
with deep convolutional neural networks”. In: Proceedings of the Interna-
tional Conference on Neural Information Processing Systems (NeurIPS).
Vol. 25. Lake Tahoe, USA, 2012, pp. 1097–1105 (cit. on p. 36).

[20] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for
Large-Scale Image Recognition”. In: Proceedings of the 3rd International
Conference on Learning Representations (ICLR). San Diego, USA, 2015,
pp. 1–14 (cit. on pp. 36, 39).

[21] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image
Recognition”. In: Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR). Las Vegas, USA: IEEE, June 2016, pp. 770–
778 (cit. on pp. 36, 39, 40, 58).

BIBLIOGRAPHY

BIBLIOGRAPHY 119

[22] A. Howard, M. Sandler, B. Chen, W. Wang, L.-C. Chen, M. Tan, et al.
“Searching for MobileNetV3”. In: Proceedings of the International Con-
ference on Computer Vision (ICCV). Seoul, Korea: IEEE, Oct. 2019,
pp. 1314–1324 (cit. on p. 36).

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
et al. “Attention is All You Need”. In: Proceedings of the International
Conference on Neural Information Processing Systems (NeurIPS). Long
Beach, USA, 2017, pp. 6000–6010 (cit. on p. 37).

[24] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, et al. “An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale”. In: Proceedings of the International Conference on
Learning Representations (ICLR). Vienna, Austria, May 2021, pp. 1–22
(cit. on p. 38).

[25] K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, et al. “A Survey on
Vision Transformer”. In: Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 45 (1 Jan. 2022), pp. 87–110 (cit. on p. 38).

[26] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah.
“Transformers in Vision: A Survey”. In: ACM Computing Surveys 54 (10
Jan. 2022), pp. 1–41 (cit. on p. 38).

[27] R. Ranftl, A. Bochkovskiy, and V. Koltun. “Vision Transformers for Dense
Prediction”. In: Proceedings of the International Conference on Computer
Vision (ICCV). Montreal, Canada: IEEE, Oct. 2021, pp. 12159–12168
(cit. on pp. 38, 41).

[28] H. Xu, J. Zhang, J. Cai, H. Rezatofighi, and D. Tao. “GMFlow: Learning
Optical Flow via Global Matching”. In: Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR). New Orleans, USA:
IEEE, June 2022, pp. 8121–8130 (cit. on pp. 38, 43, 65, 69).

[29] Z. WU, Z. Zhou, G. Allibert, C. Stolz, C. Demonceaux, and C. Ma.
“Transformer fusion for indoor rgb-d semantic segmentation”. In: Avail-
able at SSRN 4251286 (2022) (cit. on p. 38).

[30] F.-F. Li, J. Johnson, and S. Yeung. An Introduction to Deep Neural Net-
works for Computer Vision. http://cs231n.stanford.edu/slides/
2017/cs231n_2017_lecture11.pdf. 2017 (cit. on p. 39).

[31] L. Najman and M. Schmitt. “Watershed of a Continuous Function”. In:
Signal Processing 38 (1 July 1994), pp. 99–112 (cit. on p. 39).

[32] N. Ikonomatakis, K. Plataniotis, M. Zervakis, and A. Venetsanopoulos.
“Region growing and region merging image segmentation”. In: Proceed-
ings of the International Conference on Digital Signal Processing (DSP).
Santorini, Greece: IEEE, July 1997, pp. 299–302 (cit. on p. 39).

[33] M. Thompson, R. O. Duda, and P. E. Hart. “Pattern Classification and
Scene Analysis”. In: A Wiley-Interscience publication 7 (4 1974), 370 p.
(Cit. on p. 39).

BIBLIOGRAPHY

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

120 BIBLIOGRAPHY

[34] J. Canny. “A Computational Approach to Edge Detection”. In: Transac-
tions on Pattern Analysis and Machine Intelligence (TPAMI) 8 (6 Nov.
1986), pp. 679–698 (cit. on p. 39).

[35] M. Kass, A. Witkin, and D. Terzopoulos. “Snakes: Active contour mod-
els”. In: International Journal of Computer Vision (IJCV) 1 (4 Jan. 1988),
pp. 321–331 (cit. on p. 39).

[36] Z. Wu, D. P. Paudel, D.-P. Fan, J. Wang, S. Wang, C. Demonceaux, et
al. “Source-free depth for object pop-out”. In: IEEE ICCV. 2023 (cit. on
p. 39).

[37] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. “Conditional Ran-
dom Fields: Probabilistic Models for Segmenting and Labeling Sequence
Data”. In: Proceedings of the International Conference on Machine Learn-
ing (ICML). 1. San Francisco, USA: JMLR, 2001, pp. 282–289 (cit. on
p. 39).

[38] P. Krähenbühl and V. Koltun. “Efficient Inference in Fully Connected
CRFs with Gaussian Edge Potentials”. In: Proceedings of the Interna-
tional Conference on Neural Information Processing Systems (NeurIPS).
Vol. 24. Granada, Spain, 2011, pp. 1–9 (cit. on p. 39).

[39] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. “Pyramid Scene Parsing
Network”. In: Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR). Honolulu, Hawai: IEEE, July 2017, pp. 1–
10 (cit. on pp. 39, 40, 58).

[40] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille.
“DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs”. In: Transactions on
Pattern Analysis and Machine Intelligence (TPAMI) 40 (4 Apr. 2018),
pp. 834–848 (cit. on p. 39).

[41] J. Long, E. Shelhamer, and T. Darrell. “Fully Convolutional Networks for
Semantic Segmentation”. In: Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR). Boston, USA: IEEE, June 2015,
pp. 3431–3440 (cit. on pp. 39, 57).

[42] O. Ronneberger, P. Fischer, and T. Brox. “U-Net: Convolutional Networks
for Biomedical Image Segmentation”. In: Computer Science 9351 (2015),
pp. 234–241 (cit. on p. 39).

[43] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. “You Only Look
Once: Unified, Real-Time Object Detection”. In: Las Vegas, USA: IEEE,
June 2016, pp. 779–788 (cit. on p. 39).

[44] V. Badrinarayanan, A. Kendall, and R. Cipolla. “SegNet: A Deep Con-
volutional Encoder-Decoder Architecture for Image Segmentation”. In:
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 39
(12 Dec. 2017), pp. 2481–2495 (cit. on p. 39).

BIBLIOGRAPHY

BIBLIOGRAPHY 121

[45] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. “Scene
Parsing through ADE20K Dataset”. In: Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR). Honolulu, Hawai:
IEEE, July 2017, pp. 5122–5130 (cit. on pp. 40, 58).

[46] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, et al. “Seman-
tic Understanding of Scenes Through the ADE20K Dataset”. In: Interna-
tional Journal of Computer Vision (IJCV) 127 (3 Mar. 2019), pp. 302–
321 (cit. on pp. 40, 58).

[47] P. Sinha and E. Adelson. “Recovering Reflectance and Illumination in a
World of Painted Polyhedra”. In: Proceedings of the International Con-
ference on Computer Vision (ICCV). Berlin, Germany: IEEE, May 1993,
pp. 156–163 (cit. on p. 40).

[48] S. Fidler. CSC420: Intro to Image Understanding. http : / / www . cs .
toronto.edu/~fidler/slides/2015/CSC420/lecture12_hres.pdf.
2023 (cit. on p. 40).

[49] D. Scharstein and R. Szeliski. “A Taxonomy and Evaluation of Dense
Two-Frame Stereo Correspondence Algorithms”. In: International Jour-
nal of Computer Vision (IJCV) 47 (2002), pp. 7–42 (cit. on p. 40).

[50] M. Liu, M. Salzmann, and X. He. “Discrete-Continuous Depth Estimation
from a Single Image”. In: Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR). Columbus, USA: IEEE, June
2014, pp. 716–723 (cit. on p. 40).

[51] R. Ranftl, V. Vineet, Q. Chen, and V. Koltun. “Dense Monocular Depth
Estimation in Complex Dynamic Scenes”. In: Proceedings of the Confer-
ence on Computer Vision and Pattern Recognition (CVPR). Las Vegas,
USA: IEEE, June 2016, pp. 4058–4066 (cit. on p. 40).

[52] D. Eigen, C. Puhrsch, and R. Fergus. “Depth map prediction from a
single image using a multi-scale deep network”. In: Advances in Neural
Information Processing Systems (NIPS) 3 (January 2014), pp. 2366–2374
(cit. on p. 40).

[53] D. Eigen and R. Fergus. “Predicting Depth, Surface Normals and Seman-
tic Labels with a Common Multi-scale Convolutional Architecture”. In:
Proceedings of the International Conference on Computer Vision (ICCV).
Santiago, Chile: IEEE, Dec. 2015, pp. 2650–2658 (cit. on p. 40).

[54] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao. “Deep Ordinal
Regression Network for Monocular Depth Estimation”. In: Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR).
Salt Lake City, USA: IEEE, June 2018, pp. 2002–2011 (cit. on p. 41).

[55] S. F. Bhat, I. Alhashim, and P. Wonka. “AdaBins: Depth Estimation
Using Adaptive Bins”. In: Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, June
2021, pp. 4008–4017 (cit. on p. 41).

BIBLIOGRAPHY

http://www.cs.toronto.edu/~fidler/slides/2015/CSC420/lecture12_hres.pdf
http://www.cs.toronto.edu/~fidler/slides/2015/CSC420/lecture12_hres.pdf

122 BIBLIOGRAPHY

[56] C. Godard, O. M. Aodha, and G. J. Brostow. “Unsupervised Monocu-
lar Depth Estimation with Left-Right Consistency”. In: Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR).
Honolulu, Hawai: IEEE, July 2017, pp. 6602–6611 (cit. on p. 41).

[57] C. Godard, O. M. Aodha, M. Firman, and G. Brostow. “Digging Into
Self-Supervised Monocular Depth Estimation”. In: Proceedings of the In-
ternational Conference on Computer Vision (ICCV). Seoul, Korea: IEEE,
Oct. 2019, pp. 3827–3837 (cit. on p. 41).

[58] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. “Unsupervised Learning
of Depth and Ego-Motion from Video”. In: Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR). Honolulu, Hawai:
IEEE, July 2017, pp. 6612–6619 (cit. on pp. 41, 116).

[59] D. Wofk, F. Ma, T.-J. Yang, S. Karaman, and V. Sze. “FastDepth: Fast
Monocular Depth Estimation on Embedded Systems”. In: Proceedings of
the International Conference on Robotics and Automation (ICRA). Mon-
treal, Canada: IEEE, May 2019, pp. 6101–6108 (cit. on p. 41).

[60] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun. “To-
wards Robust Monocular Depth Estimation: Mixing Datasets for Zero-
Shot Cross-Dataset Transfer”. In: Transactions on Pattern Analysis and
Machine Intelligence (TPAMI) 44 (3 Mar. 2022), pp. 1623–1637 (cit. on
pp. 41, 61, 95, 96, 110).

[61] R. Schuster, C. Bailer, O. Wasenmüller, and D. Stricker. “Combining
Stereo Disparity and Optical Flow for Basic Scene Flow”. In: Proceedings
of the Commercial Vehicle Technology (CVT). Kaiserslautern, Germany:
Springer, 2018, pp. 90–101 (cit. on p. 42).

[62] B. K. P. Horn and B. G. Schunck. “Determining Optical Flow”. In: Ar-
tificial Intelligence (AIJ) 17 (3 Sept. 1981), pp. 185–203 (cit. on pp. 42,
43).

[63] B. D. Lucas and T. Kanade. “An Iterative Image Registration Technique
with an Application to Stereo Vision”. In: Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI). Vancouver, Canada:
AAAI Press, Aug. 1981, pp. 674–679 (cit. on p. 42).

[64] T. Brox and J. Malik. “Large Displacement Optical Flow: Descriptor
Matching in Variational Motion Estimation”. In: Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) 33 (3 Mar. 2011), pp. 500–
513 (cit. on p. 43).

[65] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. “DeepFlow:
Large Displacement Optical Flow with Deep Matching”. In: Proceedings
of the International Conference on Computer Vision (ICCV). Sydney,
Australia: IEEE, Dec. 2013, pp. 1385–1392 (cit. on p. 43).

BIBLIOGRAPHY

BIBLIOGRAPHY 123

[66] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. “A Naturalistic
Open Source Movie for Optical Flow Evaluation”. In: Proceedings of the
European Conference on Computer Vision (ECCV). Vol. 7577. Firenze,
Italy: Springer, 2012, pp. 611–625 (cit. on pp. 43, 53, 65).

[67] A. Geiger, P. Lenz, and R. Urtasun. “Are we Ready for Autonomous Driv-
ing? the KITTI Vision Benchmark Suite”. In: Proceedings of the Confer-
ence on Computer Vision and Pattern Recognition (CVPR). Providence,
USA: IEEE, June 2012, pp. 3354–3361 (cit. on p. 43).

[68] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, et
al. “FlowNet: Learning Optical Flow with Convolutional Networks”. In:
Proceedings of the International Conference on Computer Vision (ICCV).
Santiago, Chile: IEEE, Dec. 2015, pp. 2758–2766 (cit. on p. 43).

[69] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox.
“FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Net-
works”. In: Proceedings of the Conference on Computer Vision and Pat-
tern Recognition (CVPR). Honolulu, Hawai: IEEE, July 2017, pp. 1647–
1655 (cit. on p. 43).

[70] T.-W. Hui, X. Tang, and C. C. Loy. “LiteFlowNet: A Lightweight Con-
volutional Neural Network for Optical Flow Estimation”. In: Proceedings
of the Conference on Computer Vision and Pattern Recognition (CVPR).
Salt Lake City, USA: IEEE, June 2018, pp. 8981–8989 (cit. on p. 43).

[71] T.-W. Hui, X. Tang, and C. C. Loy. “A Lightweight Optical Flow CNN
—Revisiting Data Fidelity and Regularization”. In: Transactions on Pat-
tern Analysis and Machine Intelligence (TPAMI) 43 (8 Aug. 2021), pp. 2555–
2569 (cit. on pp. 43, 65, 69).

[72] Z. Teed and J. Deng. “Raft: Recurrent All-Pairs Field Transforms for
Optical Flow”. In: Proceedings of the European Conference on Computer
Vision (ECCV). Online: Springer, Aug. 2020, pp. 402–419 (cit. on pp. 43,
65).

[73] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski.
“A Database and Evaluation Methodology for Optical Flow”. In: Proceed-
ings of the International Conference on Computer Vision (ICCV). Vol. 92.
Barcelona, Spain: IEEE, Mar. 2011, pp. 1–31 (cit. on pp. 43, 65).

[74] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, et al.
“A Large Dataset to Train Convolutional Networks for Disparity, Opti-
cal Flow, and Scene Flow Estimation”. In: Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA:
IEEE, June 2016, pp. 4040–4048 (cit. on pp. 43, 54, 65).

[75] D. Sun, S. Roth, and M. J. Black. “A Quantitative Analysis of Current
Practices in Optical Flow Estimation and the Principles Behind Them”.
In: International Journal of Computer Vision (IJCV) 106 (2 Jan. 2014),
pp. 115–137 (cit. on p. 43).

BIBLIOGRAPHY

124 BIBLIOGRAPHY

[76] D. M. Goldberg and J. R. Gott. “Flexion and Skewness in Map Pro-
jections of the Earth”. In: Cartographica: The International Journal for
Geographic Information and Geovisualization 42 (4 Dec. 2007), pp. 297–
318 (cit. on p. 44).

[77] L. Deng, M. Yang, Y. Qian, C. Wang, and B. Wang. “CNN based Seman-
tic Segmentation for Urban Traffic Scenes using Fisheye Camera”. In:
Proceedings of the Intelligent Vehicles Symposium (IV). Redondo Beach,
USA: IEEE, June 2017, pp. 231–236 (cit. on p. 45).

[78] A. Saez, L. M. Bergasa, E. Romeral, E. Lopez, R. Barea, and R. Sanz.
“CNN-based Fisheye Image Real-Time Semantic Segmentation”. In: Pro-
ceedings of the Intelligent Vehicles Symposium (IV). Changshu, China:
IEEE, June 2018, pp. 1039–1044 (cit. on p. 45).

[79] K. Bhandari, Z. Zong, and Y. Yan. “Revisiting Optical Flow Estimation
in 360 Videos”. In: Taichung, Taiwan: IEEE, July 2021, pp. 8196–8203
(cit. on p. 45).

[80] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niebner, M. Savva,
et al. “Matterport3D: Learning from RGB-D Data in Indoor Environ-
ments”. In: Proceedings of the International Conference on 3D Vision
(3DV). Qingdao, China: IEEE, Oct. 2017, pp. 667–676 (cit. on p. 45).

[81] I. Armeni, S. Sax, A. R. Zamir, and S. Savarese. “Joint 2D-3D-Semantic
Data for Indoor Scene Understanding”. In: arXiv abs/1702.01105 (Feb.
2017), pp. 1–9 (cit. on p. 45).

[82] N. Zioulis, A. Karakottas, D. Zarpalas, and P. Daras. “OmniDepth: Dense
Depth Estimation for Indoors Spherical Panoramas”. In: Proceedings of
the European Conference of Computer Vision (ECCV). Munich, Ger-
many: Springer, Sept. 2018, pp. 453–471 (cit. on p. 45).

[83] J. Zheng, J. Zhang, J. Li, R. Tang, S. Gao, and Z. Zhou. “Structured3D: A
Large Photo-Realistic Dataset for Structured 3D Modeling”. In: Proceed-
ings of the European Conference on Computer Vision (ECCV). Online:
Springer, Aug. 2020, pp. 519–535 (cit. on p. 45).

[84] G. Albanis, N. Zioulis, P. Drakoulis, V. Gkitsas, V. Sterzentsenko, F.
Alvarez, et al. “Pano3D: A Holistic Benchmark and a Solid Baseline for
360° Depth Estimation”. In: Proceedings of the Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW). Nashville, USA:
IEEE, June 2021, pp. 3722–3732 (cit. on p. 45).

[85] B. Coors, A. P. Condurache, and A. Geiger. “SphereNet: Learning Spher-
ical Representations for Detection and Classification in Omnidirectional
Images”. In: Proceedings of the European Conference on Computer Vi-
sion (ECCV). Munich, Germany: Springer, Sept. 2018, pp. 525–541 (cit.
on pp. 45, 47, 50).

BIBLIOGRAPHY

BIBLIOGRAPHY 125

[86] S.-H. Chou, C. Sun, W.-Y. Chang, W.-T. Hsu, M. Sun, and J. Fu. “360-
Indoor: Towards Learning Real-World Objects in 360° Indoor Equirectan-
gular Images”. In: Proceedings of the Winter Conference on Applications
of Computer Vision (WACV). Snowmass Village, USA: IEEE, Mar. 2020,
pp. 834–842 (cit. on p. 45).

[87] C. Fernandez-Labrador, J. M. Facil, A. Perez-Yus, C. Demonceaux, J.
Civera, and J. J. Guerrero. “Corners for layout: End-to-end layout recov-
ery from 360 images”. In: IEEE Robotics and Automation Letters 5 (2
Apr. 2020), pp. 1255–1262 (cit. on pp. 45, 47, 48, 50).

[88] T. S. Cohen, M. Geiger, J. Koehler, and M.Welling. “Spherical CNNs”. In:
Proceedings of the International Conference on Learning Representations
(ICLR). Vancouver, Canada, Apr. 2018, pp. 1–15 (cit. on p. 46).

[89] C. M. Jiang, J. Huang, K. Kashinath, Prabhat, P. Marcus, and M. Niess-
ner. “Spherical CNNs on Unstructured Grids”. In: Proceedings of the In-
ternational Conference on Learning Representations (ICLR). New Or-
leans, USA, May 2019, pp. 1–16 (cit. on p. 46).

[90] Y. Lee, J. Jeong, J. Yun, W. Cho, and K.-J. Yoon. “SpherePHD: Apply-
ing CNNs on a Spherical PolyHeDron Representation of 360° Images”. In:
Proceedings of the Conference on Computer Vision and Pattern Recogni-
tion (CVPR). Long Beach, USA: IEEE, June 2019, pp. 9173–9181 (cit. on
p. 46).

[91] C. Zhang, S. Liwicki, W. Smith, and R. Cipolla. “Orientation-Aware Se-
mantic Segmentation on Icosahedron Spheres”. In: Proceedings of theF In-
ternational Conference on Computer Vision (ICCV). Seoul, Korea: IEEE,
Oct. 2019, pp. 3532–3540 (cit. on p. 46).

[92] L. Deng, M. Yang, H. Li, T. Li, B. Hu, and C. Wang. “Restricted De-
formable Convolution-Based Road Scene Semantic Segmentation Using
Surround View Cameras”. In: Transactions on Intelligent Transportation
Systems (TPAMI) 21 (10 Oct. 2020), pp. 4350–4362 (cit. on p. 46).

[93] A. R. Sekkat, Y. Dupuis, V. R. Kumar, H. Rashed, S. Yogamani, P.
Vasseur, et al. “SynWoodScape: Synthetic Surround-View Fisheye Cam-
era Dataset for Autonomous Driving”. In: IEEE Robotics and Automation
Letters 7 (3 July 2022), pp. 8502–8509 (cit. on p. 46).

[94] F.-E. Wang, Y.-H. Yeh, M. Sun, W.-C. Chiu, and Y.-H. Tsai. “BiFuse:
Monocular 360 Depth Estimation via Bi-Projection Fusion”. In: Pro-
ceedings of the Conference on Computer Vision and Pattern Recognition
(CVPR). Online: IEEE, June 2020, pp. 459–468 (cit. on p. 46).

[95] H. Jiang, Z. Sheng, S. Zhu, Z. Dong, and R. Huang. “UniFuse: Unidirec-
tional Fusion for 360° Panorama Depth Estimation”. In: IEEE Robotics
and Automation Letters 6 (2021), pp. 1519–1526 (cit. on p. 46).

BIBLIOGRAPHY

126 BIBLIOGRAPHY

[96] Q. Feng, H. P. H. Shum, and S. Morishima. “360 Depth Estimation in
the Wild - the Depth360 Dataset and the SegFuse Network”. In: Proceed-
ings of the Conference on Virtual Reality and 3D User Interfaces (VR).
Christchurch, New Zealand: IEEE, Mar. 2022, pp. 664–673 (cit. on p. 46).

[97] M. Yuan and C. Richardt. “360° Optical Flow using Tangent Images”. In:
Proceedings of the British Machine Vision Conference (BMVC). London,
United Kingdom: BMVA, Nov. 2021, pp. 1–20 (cit. on p. 46).

[98] Y. Li, C. Barnes, K. Huang, and F.-L. Zhang. “Deep 360◦ Optical Flow Es-
timation Based on Multi-Projection Fusion”. In: Proceedings of the Euro-
pean Conference on Computer Vision (ECCV). Tel Aviv, Israel: Springer,
Oct. 2022, pp. 336–352 (cit. on pp. 46, 53, 54, 55, 70, 115).

[99] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, et al. “Deformable
Convolutional Networks”. In: Proceedings of the International Conference
on Computer Vision (ICCV). Venice, Italy: IEEE, Oct. 2017, pp. 764–773
(cit. on p. 47).

[100] Z. Wu, G. Allibert, C. Stolz, and C. Demonceaux. “Depth-Adapted CNN
for RGB-D Cameras”. In: Proceedings of the Asian Conference on Com-
puter Vision (ACCV). Kyoto, Japan: Springer, Nov. 2020, pp. 388–404
(cit. on p. 47).

[101] Z. Wu, G. Allibert, C. Stolz, C. Ma, and C. Demonceaux. “Modality-
Guided Subnetwork for Salient Object Detection”. In: Proceedings of the
International Conference on 3D Vision (3DV). London, United Kingdom:
IEEE, Dec. 2021, pp. 515–524 (cit. on p. 47).

[102] Z. Wu, G. Allibert, C. Stolz, C. Ma, and C. Demonceaux. “Depth-Adapted
CNNs for RGB-D Semantic Segmentation”. In: arXiv preprint/2206.03939
(2022), pp. 1–12 (cit. on p. 47).

[103] Z. Wu. “Depth attention for scene understanding”. PhD thesis. Université
Bourgogne Franche-Comté, 2022 (cit. on p. 47).

[104] Y.-C. Su and K. Grauman. “Learning Spherical Convolution for Fast Fea-
tures from 360° Imagery”. In: Proceedings of the International Conference
on Neural Information Processing Systems (NeurIPS). Long Beach, USA,
Dec. 2017, pp. 529–539 (cit. on p. 47).

[105] Y.-C. Su and K. Grauman. “Kernel Transformer Networks for Compact
Spherical Convolution”. In: Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, June
2019, pp. 9434–9443 (cit. on p. 47).

[106] X. Cheng, P. Wang, Y. Zhou, C. Guan, and R. Yang. “Omnidirectional
Depth Extension Networks”. In: Proceedings of the International Con-
ference on Robotics and Automation (ICRA). Paris, France: IEEE, May
2020, pp. 589–595 (cit. on p. 47).

[107] H.-X. Chen, K. Li, Z. Fu, M. Liu, Z. Chen, and Y. Guo. “Distortion-Aware
Monocular Depth Estimation for Omnidirectional Images”. In: Signal Pro-
cessing Letters 28 (2021), pp. 334–338 (cit. on p. 47).

BIBLIOGRAPHY

BIBLIOGRAPHY 127

[108] E. Games. Unreal Engine. https://www.unrealengine.com/. 2020 (cit.
on pp. 53, 92).

[109] M. U. GmbH.MW Redwood Tree Forest Biome. https://www.unrealengine.
com/marketplace/en-US/product/redwood-forest-collection. 2022
(cit. on pp. 53, 93).

[110] H. Shi, Y. Zhou, K. Yang, X. Yin, Z. Wang, Y. Ye, et al. “PanoFlow:
Learning 360° Optical Flow for Surrounding Temporal Understanding”.
In: Transactions on Intelligent Transportation Systems (Feb. 2022), pp. 1–
15 (cit. on pp. 53, 54, 55, 70, 115).

[111] B. O. Community. “Blender”. In: (2013) (cit. on p. 53).

[112] A. Ranjan, D. T. Hoffmann, D. Tzionas, S. Tang, J. Romero, and M. J.
Black. “Learning Multi-human Optical Flow”. In: International Journal
of Computer Vision 128 (4 Apr. 2020), pp. 873–890 (cit. on p. 54).

[113] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. “CARLA:
An Open Urban Driving Simulator”. In: Proceedings of the Annual Con-
ference on Robot Learning (CoRL). Vol. 78. Mountain View, USA: PMLR.org,
Nov. 2017, pp. 1–16 (cit. on p. 54).

[114] R. company. Ricoh Theta Movie Converter application. https://support.
theta360.com/en/download/movieconverter/. 2018 (cit. on p. 56).

[115] FFmpeg. FFmpeg. https://ffmpeg.org/download.html. 2020 (cit. on
p. 56).

[116] C. Cadena, Y. Latif, and I. D. Reid. “Measuring the Performance of Single
Image Depth Estimation Methods”. In: Proceedings of the International
Conference on Intelligent Robots and Systems (IROS). Daejeon, Korea:
IEEE, Oct. 2016, pp. 4150–4157 (cit. on p. 61).

[117] C.-O. Artizzu, H. Zhang, G. Allibert, and C. Demonceaux. Supplementary
video results for OmniFlowNet: a Perspective Neural Network Adaptation
for Optical Flow Estimation in Omnidirectional Images. http://www.
i3s.unice.fr/~allibert/Videos/icpr20_video.mp4. 2021 (cit. on
p. 68).

[118] J. Engel, T. Schöps, and D. Cremers. “LSD-SLAM: Large-Scale Direct
monocular SLAM”. In: Lecture Notes in Computer Science 8690 LNCS
(2 2014), pp. 834–849 (cit. on p. 79).

[119] D. Scaramuzza, M. C. Achtelik, L. Doitsidis, F. Friedrich, E. Kosmatopou-
los, A. Martinelli, et al. “Vision-Controlled Micro Flying Robots: From
System Design to Autonomous Navigation and Mapping in GPS-Denied
Environments”. In: Robotics and Automation Magazine 21 (3 Sept. 2014),
pp. 26–40 (cit. on p. 79).

[120] I. S. Mohamed, G. Allibert, and P. Martinet. “Model Predictive Path Inte-
gral Control Framework for Partially Observable Navigation: A Quadrotor
Case Study”. In: Proceedings of the International Conference on Control,
Automation, Robotics and Vision (ICARCV). Shenzhen, China: IEEE,
Dec. 2020, pp. 196–203 (cit. on p. 79).

BIBLIOGRAPHY

https://www.unrealengine.com/
https://www.unrealengine.com/marketplace/en-US/product/redwood-forest-collection
https://www.unrealengine.com/marketplace/en-US/product/redwood-forest-collection
https://support.theta360.com/en/download/movieconverter/
https://support.theta360.com/en/download/movieconverter/
https://ffmpeg.org/download.html
http://www.i3s.unice.fr/~allibert/Videos/icpr20_video.mp4
http://www.i3s.unice.fr/~allibert/Videos/icpr20_video.mp4

128 BIBLIOGRAPHY

[121] B. Zhou, Y. Zhang, X. Chen, and S. Shen. “FUEL: Fast UAV Explo-
ration Using Incremental Frontier Structure and Hierarchical Planning”.
In: IEEE Robotics and Automation Letters 6 (2 Apr. 2021), pp. 779–786
(cit. on p. 79).

[122] I. S. Mohamed, K. Yin, and L. Liu. “Autonomous Navigation of AGVs
in Unknown Cluttered Environments: Log-MPPI Control Strategy”. In:
IEEE Robotics and Automation Letters 7 (4 Oct. 2022), pp. 10240–10247
(cit. on p. 79).

[123] M. Mancini, G. Costante, P. Valigi, and T. A. Ciarfuglia. “J-MOD 2 :
Joint Monocular Obstacle Detection and Depth Estimation”. In: IEEE
Robotics and Automation Letters 3 (3 July 2018), pp. 1490–1497 (cit. on
p. 79).

[124] A. Silva, R. Mendonça, and P. Santana. “Monocular Trail Detection and
Tracking Aided by Visual SLAM for Small Unmanned Aerial Vehicles”. In:
Journal of Intelligent and Robotic Systems 97 (3-4 Mar. 2020), pp. 531–
551 (cit. on p. 79).

[125] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, and D.
Scaramuzza. “Learning high-speed flight in the wild”. In: Science Robotics
6 (59 Oct. 2021), pp. 1–23 (cit. on pp. 80, 82, 96, 100).

[126] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters.
“An Algorithmic Perspective on Imitation Learning”. In: Foundations and
Trends in Robotics 7 (1-2 2018), pp. 1–179 (cit. on p. 80).

[127] D. K. Kim and T. Chen. “Deep Neural Network for Real-Time Au-
tonomous Indoor Navigation”. In: arXiv abs/1511.04668 (Nov. 2015),
pp. 1–13 (cit. on p. 80).

[128] R. P. Padhy, S. Verma, S. Ahmad, S. K. Choudhury, and P. K. Sa. “Deep
Neural Network for Autonomous UAV Navigation in Indoor Corridor En-
vironments”. In: Procedia Computer Science 133 (2018), pp. 643–650 (cit.
on p. 80).

[129] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A.
Bagnell, et al. “Learning Monocular Reactive UAV Control in Cluttered
Natural Environments”. In: Proceedings of the International Conference
on Robotics and Automation (ICRA). Karlsruhe, Germany: IEEE, May
2013, pp. 1765–1772 (cit. on p. 80).

[130] A. Giusti, J. Guzzi, D. C. Ciresan, F.-L. He, J. P. Rodriguez, F. Fontana,
et al. “A Machine Learning Approach to Visual Perception of Forest Trails
for Mobile Robots”. In: IEEE Robotics and Automation Letters 1 (2 July
2016), pp. 661–667 (cit. on pp. 80, 81).

[131] R. S. Sutton, A. G. Barto, et al. Introduction to reinforcement learning.
Vol. 135. MIT press Cambridge, 1998, 340 p. (Cit. on pp. 81, 84, 87, 88,
89).

BIBLIOGRAPHY

BIBLIOGRAPHY 129

[132] G. Kahn, P. Abbeel, and S. Levine. “BADGR: An Autonomous Self-
Supervised Learning-Based Navigation System”. In: IEEE Robotics and
Automation Letters 6 (2 Apr. 2021), pp. 1312–1319 (cit. on pp. 81, 83).

[133] O. Doukhi and D.-J. Lee. “Deep Reinforcement Learning for End-to-End
Local Motion Planning of Autonomous Aerial Robots in Unknown Out-
door Environments: Real-Time Flight Experiments”. In: Sensors 21 (7
Apr. 2021), pp. 1–18 (cit. on p. 82).

[134] D. C. Guastella and G. Muscato. “Learning-Based Methods of Perception
and Navigation for Ground Vehicles in Unstructured Environments: A
Review”. In: Sensors 21 (1 Dec. 2020), p. 73 (cit. on p. 82).

[135] L. Kastner, X. Zhao, T. Buiyan, J. Li, Z. Shen, J. Lambrecht, et al. “Con-
necting Deep-Reinforcement-Learning-based Obstacle Avoidance with Con-
ventional Global Planners using Waypoint Generators”. In: Proceedings of
the International Conference on Intelligent Robots and Systems (IROS).
Prague, Czech Republic: IEEE, Sept. 2021, pp. 1213–1220 (cit. on p. 82).

[136] T. Tezenas Du Montcel, A. Nègre, J.-E. Gomez-Balderas, and N. Marc-
hand. “BOARR : A Benchmark for quadrotor Obstacle Avoidance based
on ROS and RotorS”. May 2019 (cit. on p. 83).

[137] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza. “Flight-
mare: A Flexible Quadrotor Simulator”. In: Proceedings of the Conference
on Robot Learning (CoRL). Online, Nov. 2020, pp. 1147–1157 (cit. on
p. 83).

[138] L. He, N. Aouf, and B. Song. “Explainable Deep Reinforcement Learning
for UAV autonomous path planning”. In: Aerospace Science and Technol-
ogy 118 (Nov. 2021), pp. 1–12 (cit. on pp. 83, 91, 96, 100).

[139] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, et al. “Playing Atari with Deep Reinforcement Learning”. In: Pro-
ceedings of the International Conference on Neural Information Process-
ing Systems (NeurIPS). Lake Tahoe, USA, Dec. 2013, pp. 1–9 (cit. on
p. 90).

[140] S. Adam, L. Busoniu, and R. Babuska. “Experience Replay for Real-
Time Reinforcement Learning Control”. In: IEEE Transactions on Sys-
tems, Man, and Cybernetics 42 (2 Mar. 2012), pp. 201–212 (cit. on p. 90).

[141] R. J. Williams. “Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning”. In:Machine Learning 8 (3-4 May
1992), pp. 229–256 (cit. on p. 90).

[142] S. Fujimoto, H. van Hoof, and D. Meger. “Addressing Function Approx-
imation Error in Actor-Critic Methods”. In: Proceedings of the Interna-
tional Conference on Machine Learning (ICML). Vol. 80. Stockholm, Swe-
den: JMLR, July 2018, pp. 1582–1591 (cit. on p. 91).

BIBLIOGRAPHY

130 BIBLIOGRAPHY

[143] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, et al.
“Continuous Control with Deep Reinforcement Learning”. In: Proceedings
or the International Conference on Learning Representations (ICLR). San
Juan, Puerto Rico, May 2016, pp. 1–14 (cit. on p. 91).

[144] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Prox-
imal Policy Optimization Algorithms”. In: arXiv abs/1707.06347 (July
2017), pp. 1–12 (cit. on p. 91).

[145] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. “Trust
Region Policy Optimization”. In: Proceedings of the International Con-
ference on Machine Learning (ICML). Vol. 37. Lille, France: PMLR, July
2015, pp. 1889–1897 (cit. on p. 91).

[146] J. Xu, T. Du, M. Foshey, B. Li, B. Zhu, A. Schulz, et al. “Learning to Fly:
Computational Controller Design for Hybrid UAVs with Reinforcement
Learning”. In: ACM Transactions on Graphics 38 (4 Aug. 2019), pp. 1–12
(cit. on p. 91).

[147] E. Bohn, E. M. Coates, S. Moe, and T. A. Johansen. “Deep Reinforce-
ment Learning Attitude Control of Fixed-Wing UAVs Using Proximal
Policy optimization”. In: Proceedings of the International Conference on
Unmanned Aircraft Systems (ICUAS). Atlanta, USA: IEEE, June 2019,
pp. 523–533 (cit. on p. 91).

[148] V. J. Hodge, R. Hawkins, and R. Alexander. “Deep Reinforcement Learn-
ing for Drone Navigation using Sensor Data”. In: Neural Computing and
Applications 33 (6 Mar. 2021), pp. 2015–2033 (cit. on p. 91).

[149] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza. “Autonomous
Drone Racing with Deep Reinforcement Learning”. In: Proceedings of
the International Conference on Intelligent Robots and Systems (IROS).
Prague, Czech Republic: IEEE, Sept. 2021, pp. 1205–1212 (cit. on p. 91).

[150] F. Aleotti, G. Zaccaroni, L. Bartolomei, M. Poggi, F. Tosi, and S. Mattoc-
cia. “Real-Time Single Image Depth Perception in the Wild with Hand-
held Devices”. In: Sensors 21 (1 Dec. 2020), pp. 1–15 (cit. on p. 95).

[151] N. Polosky, T. Gwin, S. Furman, P. Barhanpurkar, and J. Jagannath.
“Machine Learning Subsystem for Autonomous Collision Avoidance on a
small UAS with Embedded GPU”. In: Proceedings of the Annual Con-
sumer Communications & Networking Conference (CCNC). Las Vegas,
USA: IEEE, Jan. 2022, pp. 1–7 (cit. on p. 95).

[152] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, et al. “Human-Level Control through Deep Reinforcement Learn-
ing”. In: Nature 518 (7540 Feb. 2015), pp. 529–533 (cit. on pp. 96, 100).

[153] S. Zhang, Y. Li, and Q. Dong. “Autonomous Navigation of UAV in Multi-
Obstacle Environments Based on a Deep Reinforcement Learning Ap-
proach”. In: Applied Soft Computing 115 (Jan. 2022), pp. 1–13 (cit. on
p. 98).

BIBLIOGRAPHY

BIBLIOGRAPHY 131

[154] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V.
Koltun, et al. “On Evaluation of Embodied Navigation Agents”. In: arXiv
abs/1807.06757 (July 2018), pp. 1–7 (cit. on p. 99).

[155] C.-O. Artizzu, G. Allibert, and C. Demonceaux. Supplementary video re-
sults for Deep Reinforcement Learning with Omnidirectional Images: ap-
plication to UAV Navigation in Forests. https://www.youtube.com/
@coatz3943/videos. 2022 (cit. on p. 112).

[156] J. Zhang, K. Yang, C. Ma, S. Reiss, K. Peng, and R. Stiefelhagen. “Bend-
ing Reality: Distortion-aware Transformers for Adapting to Panoramic
Semantic Segmentation”. In: Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, June
2022, pp. 16896–16906 (cit. on p. 114).

[157] J. Zhang, K. Yang, H. Shi, S. Reiß, K. Peng, C. Ma, et al. “Behind Every
Domain There is a Shift: Adapting Distortion-aware Vision Transformers
for Panoramic Semantic Segmentation”. In: arXiv abs/2207.11860 (July
2022), pp. 1–18 (cit. on p. 114).

[158] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. “High-
Resolution Image Synthesis With Latent Diffusion Models”. In: Proceed-
ings of the Conference on Computer Vision and Pattern Recognition (CVPR).
New Orleans, USA: IEEE, June 2022, pp. 10684–10695 (cit. on p. 115).

[159] L. Zhang and M. Agrawala. “Adding Conditional Control to Text-to-
Image Diffusion Models”. In: arXiv abs/2302.05543 (Feb. 2023), pp. 1–33
(cit. on pp. 115, 116).

BIBLIOGRAPHY

https://www.youtube.com/@coatz3943/videos
https://www.youtube.com/@coatz3943/videos

	Introduction
	Motivations and Challenges
	Outline
	Contributions
	Peer-Reviewed Publications
	Open-Source Datasets and Softwares

	I Generalization of the Omnidirectional Distortion-Aware Convolutions
	Omnidirectional Computer Vision
	Physical Devices
	Rotating Cameras
	Catadioptric Cameras
	Fisheyes Cameras
	Polydioptric Cameras

	Data-Driven Computer Vision
	Deep Learning
	Common Computer Vision Tasks

	Omnidirectional Image Processing
	Training on Omnidirectional Datasets
	Spherical Latent Space
	Multi-Projection Fusion
	Deformable Convolutions

	Proposed Spherical Adaptation Solution
	Local Perspective Projection on the Sphere
	Implementation in any Convolutional Network

	Evaluation on Omnidirectional Images
	Evaluation Datasets
	Semantic Segmentation and Depth Evaluation
	Optical Flow Evaluation
	Additional Real-World Test Scenarios

	Adapted and Baseline Models Comparison
	Semantic Segmentation Comparison
	Monocular Depth Comparison
	Optical Flow Comparison
	Computation Time Comparison

	Conclusion of Part I

	II Deep Reinforcement Learning Navigation using Omnidirectional Images
	Image-Based Navigation
	Image-Based Navigation Strategies
	Map-Based
	Learning-Based
	Combining Model-Based and Learning-Based
	Selected Navigation Method

	Reinforcement Learning
	Markov Decision Process
	Discounted Expected Reward
	Algorithmic diversity
	Optimal Policy Search
	Dynamic Programming
	Monte-Carlo
	Temporal Differences

	Deep Reinforcement Algorithms
	Value-Based Approaches
	Policy Gradient Methods
	Actor-Critic Strategies

	Navigation Framework
	Flight Environment
	RDMAP: Simplified Training and Testing Environment
	RDFOREST: Photorealistic Testing Environment

	Proposed Framework
	Action Space
	Drone State
	Visual Modalities used as Input
	Actor-Critic Network
	Reward

	Navigation Evaluation
	Metrics
	Training Schedule and Hyperparameters
	Reinforcement Learning Solver selection
	Test with No Obstacle
	Test with Obstacles

	Omnidirectional versus Perspective Navigation
	Distortion-Aware Convolutions for DRL
	Actor-Critic Network Adaptation
	MIDAS Network Adaptation

	Generalization to a Photorealistic Forest

	Conclusion of Part II
	Conclusion
	Summary of Contributions
	Perspectives
	Distortion-Aware Transformers
	Solve the Periodicity Issue
	Omnidirectional Image generation

