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Résumé

Pour résoudre un système linéaire de grande taille, on utilise souvent des méthodes

itératives et des méthodes de projection. Parmi ces méthodes, on trouve les méthodes

de sous-espace de Krylov. Le principe de ces méthodes repose sur la condition de

Petrov- Galerkin. En effet, les méthodes de Krylov consistent à calculer une approxi-

mation de la solution d’un système linéaire dans le sous-espace de Krylov, à condition

que le résidu soit orthogonal à un autre sous-espace, appelé sous-espace à gauche. Le

choix du sous-espace à gauche donne différentes variantes des méthodes de Krylov,

qui diffèrent les unes des autres en termes de temps d’exécution, de stockage en mé-

moire et de précision de calcul. Notre axe de recherche porte donc sur l’amélioration

de la convergence de ce type de méthodes. Nous avons contribué en proposant une

approche unifiée et un cadre général pour simplifier l’étude de ces méthodes en util-

isant les inverses à gauche. Cette approche repose sur le fait que toutes les méthodes

de Krylov calculent les coefficients du polynôme minimal de la matrice du système

pour un résidu initial. En utilisant des outils mathématiques et des propriétés des

projecteurs orthogonaux, nous avons pu améliorer la précision de calcul de la plupart

de ces méthodes tout en conservant le même stockage et le même temps d’exécution.

Grâce à notre approche, nous avons également proposé de nouvelles implémentations

qui offrent des performances de calcul intéressantes pour certaines méthodes. Le cas

par bloc de ces méthodes a également été étudié. On a étudié aussi la méthode IDR(s)

en développement la version global de cette méthode et en proposant une amélioration

de convergence. On a donné la différence entre notre approche et l’approche d’IDR

L’efficacité et la précision de tous les algorithmes proposés sont illustrées par quelques

exemples numériques.
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v

Abstract

To solve large linear systems, iterative methods and projection methods are commonly

employed. Among these methods, the Krylov subspace methods are widely utilized.

The primary principle of these methods is based on the Petrov-Galerkin condition.

Krylov methods involve computing an approximation of the solution to a linear system

within the Krylov subspace, with the requirement that the residual is orthogonal to

another subspace known as the left subspace. The choice of the left subspace leads to

different variants of Krylov methods, which vary in terms of execution time, memory

usage, and computational accuracy. Therefore, our research focuses on analyzing the

convergence of these methods. We have contributed to this field by proposing a uni-

fied approach and a general framework to simplify the study of these methods using

left inverses of the Krylov matrix. This approach is based on the fact that all Krylov

methods compute the coefficients of the minimal polynomial of the system matrix for

an initial residual. By leveraging mathematical tools and the properties of orthogonal

projectors, we have enhanced the computational accuracy of most of these methods

while preserving the same storage and execution time. Furthermore, our approach has

facilitated the development of new implementations that exhibit interesting computa-

tional performance for selected methods. We have also investigated the block case of

these methods in our studies.

The effectiveness and the accuracy of all proposed algorithms are illustrated by some

numerical experiments.

Keywords: Krylov subspace, iterative methods, projection methods, linear system, or-

thogonal projectors, Left inverse, convergence improvement, accuracy and stability.
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Nomenclature

• C: Complex numbers space

• R: Real numbers space

• K : C or R

• KN×s: The space of matrices of size N × s with coefficients in K

• IN : Identity matrix of size N

• AT : Transpose of the matrix A

• AH : Conjugate transpose of the matrix A

• tr(A) : Trace of the matrix A

• Im(A) : The image of the matrix A

• Ker(A) : The kernel of the matrix A

• rank(A) : rank of the matrix A

• A† : The pseudo-inverse of the matrix A

• A−1 : The matrix inverse of the matrix A

• det(A) : determinant of the matrix A

• diag(A) : The vector whose coefficients are the coefficients of the diagonal of A.

• tridiag(βi, αi, βi+1) : The matrix whose diagonal coefficients are αi, the sub di-

agonal and under diagonal coefficients are βi and the rest coefficients equal to

zero.
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• κ(A): The condition numder of the matrix A
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• PA: The polynomial annular of A

• Ks
k(A, r0): Standard Krylov subspace of order k associated to the matrix A and

vector r0

• Kg
k (A, r0): Global Krylov subspace of order k

• Kb
k(A, r0): Block Krylov subspace of order k

• Bk =
[
r0, Ar0, A2r0, . . . , Ak−1r0

]
: Krylov matrix

• e(N)
k : The kth canonical vector of RN :

• ET
k : [0s, 0s, · · · , 0s, Is] ∈ Rs×ks

• W l
k: left inverse of Wk

• WL
k : general left inverse of Wk

• Span(Yk): span{y1, · · · , yk}

• PD: positive definite matrix

• CDR: Convection Diffusion Reaction problem

• DR: Diffusion Reaction problem

• LU: LU Decomposition

• QR: QR Decomposition
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Introduction générale (version

française)

Nous souhaitons résoudre les systèmes d’équations linéaires suivants

Ax(i) = f (i), i = 1, ..., s (1)

avec une même matrice A de taille N × N, mais avec s différents second membres f (i)

pour i = 1, · · · , s. Ces s systèmes linéaires peuvent être résumés sous forme de blocs

comme suit

AX = F, (2)

où A est une matrice dans RN×N , F et X deux matrices dans RN×s où X =
[

x(1), . . . , x(s)
]

et F =
[

f (1), . . . , f (s)
]

. Des problèmes tels que (1) et (2) apparaissent dans de nom-

breux domaines comme la physique, l’ingénierie, la chimie, la mécanique structurelle,

la biologie et bien d’autres encore [36, 53, 88]. La résolution algébrique de systèmes

d’équations linéaires est l’un des problèmes les plus fréquents dans le calcul scien-

tifique.

Pour résoudre un problème du monde réel, la première phase consiste générale-

ment à établir un modèle mathématique du problème conduisant à des équations dont

la solution devrait donner les inconnues recherchés, ou du moins des approximations

utiles. Le modèle peut être discret (posé dans un espace de dimension finie) ou continu

(posé dans un espace de dimension infinie). Il peut être linéaire ou non-linéaire. De

nombreux problèmes continus conduisent à des systèmes d’équations différentielles
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ordinaires ou aux dérivées partielles [36, 53].

Si le problème est posé dans un espace de dimension infinie, la phase suivante du

processus de calcul consiste à discrétiser les équations du modèle. On obtient alors des

équations discrètes dans un espace de dimension finie, qui peuvent être linéaires ou

non linéaires. En général, des méthodes itératives sont être utilisées pour résoudre les

équations non linéaires. Dans de nombreux cas, cela conduit à résoudre des séquences

de systèmes linéaires.

La troisième phase consiste à résoudre un ou plusieurs systèmes linéaires. Ces

systèmes peuvent être résolus par une variété de méthodes numériques différentes. La

plupart du temps, l’objectif est de résoudre le système linéaire rapidement tant que

possible avec précision à l’aide d’un ordinateur. La méthode numérique choisie pour

résoudre le système linéaire doit être alors programmée le plus efficacement possible

et être utilisée sur un ordinateur avec des calculs efficaces.

Nos recherches portent sur l’application des méthodes de projection pour résoudre

des systèmes linéaires de grandes tailles qui proviennent généralement de la discréti-

sation des équations aux dérivées partielles (EDP) linéaires et non linéaires en deux ou

trois dimensions. Si l’ordre N de la matrice A est petit, alors nous pouvons résoudre

(1) en utilisant des méthodes directes (LU, QR et Cholesky [80, 89],..). Cependant, si

N est grand, les méthodes directes peuvent être coûteuses en termes de mémoire et de

temps. Les méthodes itératives deviennent alors intéressantes. Parmi ces méthodes, on

trouve les méthodes du sous-espace de Krylov [73, 79, 89, 105]. L’analyse de la con-

vergence de ces méthodes est un problème difficile. Nous trouvons dans la littératures

quelques livres autour de ce sujet [73, 95]. L’objectif principal de ces méthodes est de

chercher une approximation de la solution d’un système linéaire dans un espace appelé

sous-espace de Krylov tel que le vecteur résidu vérifie une propriété d’orthogonalité

avec un autre sous-espace appelé sous-espace à gauche. Le choix de ce dernier donne

toutes les différentes variantes des méthodes de Krylov. Par exemple, si le sous-espace

à gauche est exactement le sous-espace de Krylov, on parle des méthodes orthogonales.

De plus, si le sous-espace à gauche est différent au sous-espace de Krylov, on trouve

des méthodes obliques. Nous supposerons que l’ordre N de A est suffisamment grand
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pour ne pas garder en mémoire qu’un nombre limité de vecteurs de dimension N et

que tous les seconds membres sont disponibles simultanément s � N. Si s = 1,

ces méthodes sont appelées méthodes du sous-espace de Krylov standard. Ensuite,

si s > 1, on trouve les versions global et par blocs des méthodes de Krylov. Quelques

recherches ont montré que la version par blocs est plus intéressante que la version

globale en termes de vitesse de convergence et de stockage [35]. Le problème principal

de ces méthodes est l’existence des pannes. Mais, grâce à leurs performances, ces méth-

odes connaissent un grand succès dans la communauté du calcul scientifique. Elles

sont maintenant largement appliquées aux équations matricielles de grande échelle

(Lyapunov, Sylvester, etc [70]). Ces méthodes sont intéressantes car elles sont moins

coûteuses mais elles souffraient du problème de panne lors de leur implémentation.

Ce problème a été finalement résolu en utilisant une nouvelle approche de la méthode

de Lanczos et des algorithmes optimaux au niveau de coût de calcul et de mémoire et

sans avoir le problème de panne. On cite à titre d’exemples les références [73, 95].

Si la matrice A est symétrique et définie positive, les méthodes les plus popu-

laires pour résoudre le système linéaire sont les méthodes du gradient conjugué (CG

[100]), Lanczos [59] et MINRES (MINimal RESidual [40]) et leurs variantes. Cependant,

lorsque la matrice est non symétrique, de nombreuses généralisations de la méthode du

gradient conjugué ont été données au cours des trente dernières années. On trouve par

exemple, la méthode d’Arnoldi FOM (Full Orthogonalization method [95, 69]), GMRES

(Generalized Minimal RESidual [101, 69]) et leurs variantes. Il y a aussi BiCG (Bi-

Conjugate Gradient), QMR (Quasi-Minimal Residual [38]), CGS (Conjugate Gradient

Squared [83]) et BiCGStab (Bi-Conjugate Gradient Stable [104]) qui sont des extensions

de la méthode de Lanczos dans le cas non-symétrique. Il existe une autre famille

de méthodes itératives appelées méthodes IDR (Induced Dimension Reduction) intro-

duites dans [97]. L’approche de cette famille est différente de celle des méthodes de

Krylov déjà mentionnées [91, 92] .

Si s > 1, nous avons la version global ou par blocs des méthodes de Krylov. Le

principe de ce type de méthode est similaire au cas standard, c’est-à-dire le cas où
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s = 1. Il s’agit de trouver une approximation de (2) dans un sous-espace appelé sous-

espace de Krylov global ou par blocs tel que la matrice résidu vérifie une condition

d’orthogonalité.

Nous avons contribué dans ce domaine, en développant une approche unifiée des

méthodes de Krylov, en améliorant la convergence de certaines de ces méthodes, et en

donnant une nouvelle implémentation de certaines d’entre elles. Nous avons proposé

un formalisme général pour unifier et étudier les méthodes du sous-espace de Krylov

d’une manière très efficace. Cela nous a permis de donner de l’importance à certains

nouveaux résultats. Nous avons également étudié la version par blocs de certaines

méthodes de Krylov et nous avons proposé une amélioration de leur convergence. Les

sujets de recherche tournent autour des méthodes du sous-espace de Krylov (analyse

de convergence et implémentation) et la résolution de systèmes d’équations linéaires

avec plusieurs seconds membres. Ensuite, comme il est expliqué précédemment, cette

thèse fait partie d’un effort global pour améliorer la convergence des méthodes itéra-

tives afin de:

• Développer une approche unifiée pour les méthodes de Krylov,

• Améliorer la convergence de certaines méthodes de Krylov,

• Développer des nouvelles implémentation pour des méthodes existent.

Pour atteindre cet objectif, nous étudions en détail les versions standards et par blocs

de la plupart des méthodes du sous-espace de Krylov et les méthodes IDR(s). Ce

manuscrit comporte une introduction générale et trois chapitres.

Dans cet article, on va présenter un cadre général pour l’étude des méthodes de

sous-espace de Krylov utilisées pour résoudre le système linéaire Ax = f . Ces méth-

odes visent à atteindre la convergence dans un nombre spécifié d’itérations, noté m,

étant donné un vecteur d’estimation initial particulier x0 et son résidu correspondant

r0 = f − Ax0. Notre analyse porte sur le polynôme minimal Φm de degré m de A pour

le vecteur r0. Nous établissons que ces méthodes englobent les méthodes de Petrov-

Galerkin et les méthodes de seminormes minimales en tant que cas particuliers. De
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plus, nous démontrons que les méthodes de seminormes minimales satisfont les con-

ditions implicites de Petrov-Galerkin.

Nous fournissons une formulation générale pour les itérés basée sur des inverses général-

isés. Le choix d’un inverse gauche spécifique et la méthode de construction de la base

de Krylov sont des facteurs de distinction cruciaux entre les différentes méthodes de

sous-espace de Krylov. Nous décrivons et analysons les propriétés mathématiques

de ces méthodes, en soulignant leur dépendance à l’égard de deux matrices. Nous

prouvons notamment que CMRH et QMR, en tant qu’exemples spécifiques, satisfont

également aux conditions d’orthogonalité implicites de Petrov-Galerkin.

En outre, nous explorons des techniques permettant d’améliorer le comportement de

convergence de ces méthodes en sélectionnant soigneusement les vecteurs dans leurs

implémentations. Grâce à notre étude, nous visons à approfondir la compréhension

des méthodes de sous-espace de Krylov, à donner un aperçu de leurs propriétés de

convergence et à identifier des améliorations potentielles.

Nous considérons également certaines méthodes de Krylov qui sont des méthodes de

produit. Dans ce cas, le kth résidu rk associé à l’approximation xk de la solution exacte

est donné par rk = Ψk(A)Φk(A)r0, et Ψk est un polynôme de degré fixe ou variable.

Nous examinerons des choix particuliers de Ψk impliquant la convergence locale, le

lissage, la mémoire fixe et le coût de chaque itération. Nous donnerons également une

amélioration de certaines méthodes de produits telles que CGS. Pour illustrer la per-

formance des algorithmes dérivés, nous fournissons quelques exemples numériques.

Dans le chapitre 2, nous étudions la version par bloc de quelques méthodes de

sous-espace de Krylov pour résoudre le système (2). Nous proposons une amélioration

de la convergence de ces méthodes en utilisant des projecteurs orthogonaux. Pour

cela, nous rappelons quelques définitions et propriétés dans le cas par bloc, à savoir

le sous-espace de Krylov par bloc. De plus, pour donner de l’importance à nos nou-

veaux algorithmes, nous rappelons également la méthode GMRES par bloc Bl-GMRES

basée sur le processus Bl-Arnoldi car elle est la plus optimale en terme de précision.

Des exemples numériques sont proposés pour comparer les nouvelles méthodes et la

méthode GMRES et pour illustrer les performances de notre technique.
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Enfin, le chapitre 3 est organisé comme suit, après une petite introduction, nous

donnons dans la section 2, un bref aperçu de l’approche IDR et nous la comparons

mathématiquement avec les méthodes du sous-espace de Krylov en expliquons la rai-

son pour laquelle nous ne pouvons pas inclure la méthode IDR dans l’approche des

méthodes de sous-espace de Krylov. Ensuite, nous proposons une amélioration de la

convergence de l’algorithme IDR en utilisant des projecteurs orthogonaux. La section

3 est consacrée à la comparaison de l’algorithme proposé avec la fameuse méthode

GMRES. De plus, nous présentons la version par bloc de la méthode IDR (Bl-IDR) en

donnant une amélioration de la convergence. Nous développons la version global de

la méthode IDR nommée pour Gl-IDR . De plus, nous proposons une amélioration

qu’on va la comparer avec la méthode Gl-GMRES. Enfin, dans la dernière section, nous

présentons quelques exemples numériques pour illustrer l’efficacité de l’algorithme

dérivé.
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Chapter 1

General introduction

We are interested in solving the following multiple systems of linear equations

Ax(i) = f (i), i = 1, ..., s (1.1)

with a same matrix A of size N×N, and s different right-hand sides f (i) for i = 1, · · · , s.

If all of the right hand sides are available simultaneously, these s linear systems (1.1)

can be summarized in a block form as follows

AX = F, (1.2)

with F and X two matrices in RN×s where X =
[

x(1), . . . , x(s)
]

and F =
[

f (1), . . . , f (s)
]

.

Problems of the form (1.1) and (1.2) appears in many fields of applications such as

physics, engineering, chemistry, structural mechanics computation, biology [36, 53, 88]

and many others. Then, solving systems of linear algebraic equations is one of the most

frequent problems in scientific computing.

When one wants to solve a real-world problem, usually the first phase is to set up

a mathematical model of the problem leading to equations whose solution should give

the quantities (also known as variables or unknowns) that are sought, or at least opti-

mal approximations. Generally, the model can be discrete (posed in a finite-dimensional

space) or continuous (posed in an infinite-dimensional space). Also, it can be linear or

nonlinear. Many continuous problems lead to systems of ordinary differential or partial
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differential equations [36, 53].

If the problem is posed in an infinite dimensional space, the next phase of the com-

putational process consists of discretizing the model equations, which leads to discrete

equations in a finite dimensional space, that can be linear or nonlinear. In general, an

iterative method may be used to solve the nonlinear equations. In many cases, this

leads to solve sequences of linear systems.

The third phase consists of solving one or more linear systems. These systems can be

solved by a variety of different numerical methods. The best are those which preserve

the precision of the solution and the speed of the calculations.

Our research focuses on the application of projection methods to solve large linear

systems that typically arise from the discretization of linear and nonlinear partial dif-

ferential equations (PDEs) in two or three dimensions. If the order N of the matrix A is

small, then we can solve (1.1) using direct methods (LU, QR and Cholesky [80, 89],..).

However, with large value of N, direct methods can be expensive in terms of memory

and time. Iterative methods, then become appealing. Among these methods, we find

the Krylov subspace methods also known as Krylov methods [63, 73, 79, 105]. The

analysis of the convergence of these methods is a very difficult problem that has been

developed by several researchers. The major main of these methods is to search an

approximation of the solution of a linear system in a space called Krylov subspace

such that the residual vector satisfy an orthogonality property lies to another subspace

called left subspace. The choice of this latter gives all different variants of the Krylov

methods. For example if we have the left subspace is the Krylov subspace, we talk

about orthogonal type method. In the other hand, if the left subspace is different to the

Krylov subspace, we find oblique methods. We will assume that the order N of A is

sufficiently large to keep in memory only a limited number of vectors of dimension N

and that all right-hand sides are available simultaneously s � N. In the case where

s = 1, these methods are called standard Krylov subspace methods. However, in some

practical problems, such as in electromagnetism and signal processing [88], one has to

solve several linear systems with the same matrix and several second members. Instead

of solving these systems separately, it is interesting and less costly to solve them in
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blocks. These methods have been developed into the block Krylov subspace methods

and in particular the global methods. Next, it is shown in [35] that the block version

is more interesting than the global version in terms of convergence speed. The main

issue in this methods is when breakdowns exist. But, thanks to their performances,

these methods are very successful in the scientific computing community. They are

now widely applied in large-scale general matrix equations (Lyapunov, Sylvester, etc).

These methods are interesting because of their low cost but they suffered from the

breakdown problem during their implementation. This problem was finally solved

using a new approach of the Lanczos method and optimal algorithms (cost and mem-

ory) without breakdown were proposed. There already exist excellent books describing

Krylov methods, see for example [73, 95].

When the matrix A is symmetric positive definite, the most popular methods to

solve the linear system are the conjugate gradient (CG [100]), Lanczos [59] and MIN-

RES (MINimal RESidual [40]) methods and their variants. When the matrix is non-

symmetric, many generalizations of the conjugate gradient method have been given in

the last thirty years. We find for example, the Arnoldi’s method FOM (Full Orthogonal-

ization method [95, 69]), GMRES (Generalized Minimal RESidual [101, 69]) and their

variants. There are also BiCG (Bi-Conjugate Gradient), QMR (Quasi-Minimal Residual

[38]), CGS (Conjugate Gradient Squared [83]) and BiCGStab (Bi-Conjugate Gradient

Stable [104]) which are the extension of the Lanczos method in non-symmetric case.

There is another family of iterative methods named IDR (Induced Dimension Reduc-

tion) methods introduced in [97] and studied in [91, 92] whose approach is different to

Krylov methods.

In the case where s > 1, we have the block version of Krylov methods. Same as

in the standard case, the main goal is finding an approximation of (1.2) in a subspace

named block Krylov subspace such that the residual matrix in a left block or global

subspace.

We have contributed in this area, by developing a unified approach to the Krylov

methods by improving the convergence of some of these methods, and by giving a new

implementation of some of them. We have proposed a general framework to unify and
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study the Krylov subspace methods in a very efficient way. This allowed us to give

importance to some new results. We are also studied the block version of some Krylov

methods and we proposed an enhancement of their convergence and developed a new

implementation to avoid breakdown problems. The research topics revolve around

Krylov subspace methods (convergence analysis and implementation) and solving sys-

tems of linear equations with several right hand sides. Then, as previously explained,

this thesis is part of a global effort to improve the convergence of iterative methods in

order to:

• Develop a unified approach to Krylov methods,

• Improve the convergence of some Krylov subspace methods,

• Develop some new implementation to avoid breakdown problems.

To achieve this purpose, we study in detail the most variants of Krylov subspace meth-

ods in standard and block versions.The outline on the manuscript is as follow. In this

chapter we have presented a comprehensive framework for studying Krylov subspace

methods, explored their mathematical properties and convergence behaviour, and dis-

cussed techniques to enhance their performance. The paper covers various aspects in-

cluding the minimal polynomial of matrix A, the relationship between different meth-

ods, the role of generalized inverses, and the use of product methods. The provided

numerical examples further support the analysis and conclusions of the research.

We introduce a comprehensive framework for studying Krylov subspace methods used

to solve linear systems of the form Ax = f , where A is a matrix, x is the unknown

vector, and f is the right-hand side vector. The objective of these methods is to achieve

convergence within a specified number of iterations, denoted as m.

The minimal polynomial Φm of matrix A, associated with the initial residual r0 = f −

Ax0, is a key focus of analysis in the paper. The degree of Φm is m, and the properties of

this minimal polynomial play a crucial role in the convergence behaviour of the Krylov

subspace methods.

We establish that Petrov-Galerkin methods and minimal seminorm methods are spe-

cific cases of the broader framework of Krylov subspace methods. Additionally, it is
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demonstrated that minimal seminorm methods satisfy implicit Petrov-Galerkin condi-

tions.

In this chapter, we present a general formulation for the iterates of Krylov subspace

methods based on generalized inverses. The choice of a specific left inverse and the

construction method of the Krylov basis are important factors that differentiate various

Krylov subspace methods. The mathematical properties of these methods are described

and analysed, with emphasis on their dependency on two matrices.

The chapter proves that specific instances of Krylov subspace methods, such as CMRH

(Conjugate Minimum Residual with Hessenberg matrix) and QMR (Quasi-Minimal

Residual), satisfy implicit Petrov-Galerkin orthogonality conditions.

Techniques for improving the convergence behavior of Krylov subspace methods by

carefully selecting vectors in their implementations are explored. The aim is to deepen

the understanding of these methods, provide insights into their convergence proper-

ties, and identify potential enhancements.

We also discuss Krylov methods that are product methods, where the kth residual

rk associated with the approximation xk of the exact solution is expressed as rk =

Ψk(A)Φk(A)r0. Here, Ψk is a polynomial of fixed or variable degree. Specific choices of

Ψk, including local convergence, smoothing, fixed memory, and cost considerations for

each iteration, are examined.

Enhancements of product methods such like CGS (Conjugate Gradient Squared) is pre-

sented in the paper.

In conclusion, we present a comprehensive framework for studying Krylov subspace

methods, investigates their mathematical properties and convergence behaviour, ex-

plores techniques for improvement, and provides numerical examples to demonstrate

the effectiveness of the proposed algorithms.

In Chapter 2, we present our technique to improve the convergence of the block

version of some Krylov methods for solving non-symmetric linear systems of equa-

tions with multiple right-hand sides. This technique is similar to our technique in

standard case, we apply an orthogonal projector to the residual matrix to minimize

its norm. The considered method are block BiCG (Bl-BiCG [74]) and block BiCGStab
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(Bl-BiCGStab [58]) methods. Then, we first give a reminder of all these methods as well

as the definition of the block Krylov subspace. Secondly, To show the performance

of our derived algorithms, we give a comparison with the block GMRES method (Bl-

GMRES [35]) since it is the most optimal method in the level of accuracy. Finally, some

numerical examples are proposed to illustrate the performance of our technique.

The remainder of the last chapter is organized as follow, after an introduction, we

give in section 2, a brief review of IDR approach and compare it mathematically with

Krylov subspace methods and give the reason why we can not include IDR method in

Krylov subspace approach. Next, we will propose an enhancement of the convergence

of IDR algorithm using orthogonal projectors. The subject of section 3 is to develop the

global version of IDR method and give a enhancement of this new method. Moreover,

we discuss also the possibility to improve the convergence of the block version of this

method. In the last section, we will present some numerical experiments to illustrate

the effectiveness of the derived algorithm compared with the standard, the global and

the block GMRES method.
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Chapter 2

A unified approach to Krylov

subspace methods for solving linear

systems

Abstract

In this paper, we present a comprehensive framework for studying Krylov subspace

methods used to solve the linear system Ax = f . These methods aim to achieve conver-

gence within a specified number of iterations, denoted by m, given a particular initial

estimate vector x0 and its corresponding residual r0 = f − Ax0. Our analysis focuses

on the minimal polynomial Φm of degree m of A for the vector r0 . We establish that

these methods encompass Petrov-Galerkin methods and minimal seminorm methods

as special cases. Additionally, we demonstrate that minimal seminorm methods satisfy

implicit Petrov-Galerkin conditions.

We provide a general formulation for the iterates based on generalized inverses. The

choice of a specific left inverse and the method of constructing the Krylov basis are cru-

cial distinguishing factors among different Krylov subspace methods. We describe and

analyze the mathematical properties of these methods, emphasizing their dependency

on two matrices. Notably, we prove that CMRH and QMR, as specific instances, also

satisfy implicit Petrov-Galerkin orthogonality conditions.
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Furthermore, we explore techniques to improve the convergence behavior of these

methods by carefully selecting vectors in their implementations. Through our inves-

tigation, we aim to deepen the understanding of Krylov subspace methods, provide

insights into their convergence properties, and identify potential enhancements.

We also consider some Krylov methods, which are product methods. In this case the kth

residual rk associated with the approximation xk of the exact solution is given by rk =

Ψk(A)Φk(A)r0, and Ψk is a polynomial of fixed or variable degree. We will examine

particular choices of Ψk involving local convergence, smoothing, fixed memory, and

cost for each iteration. We will also give an enhancement of some products methods

such as CGS. To illustrate the performance of the derived algorithms, we provide some

numerical examples.

2.1 Introduction

Many problems in science and engineering require the solution of systems of linear

equations. Preconditioned Krylov subspace methods appear to be particularly suited

to solve linear systems when the matrix is sparse.

We consider the iterative solution of the linear system

Ax = f , (2.1)

where A is a real n× n nonsingular matrix and f is a given vector of Rn.

The classical Krylov subspace methods are often defined by an orthogonality or quasi-

orthogonality conditions for residuals or by minimal or semi-minimal residuals con-

ditions. The main difference between the many Krylov methods for solving linear

systems is in the choice of the construction of the Krylov basis and on the choice of

a left inverse, which characterizes the orthogonality or quasi-orthogonality conditions.

We will prove that many properties of Krylov subspaces methods can be obtained and

described in a general framework using generalized inverses.
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In 1950, Lanczos proposed a method for transforming a matrix into a similar tridiagonal

one. Since, by the theorem of Cayley-Hamilton, the computation of the characteristic

polynomial of a matrix and the solution of a system of linear equations are equivalent

problems, Lanczos [59], in 1952, used his method for that purpose.

Because of their many advantages, Krylov subspace methods have been the subject of

a great deal of research, and several algorithms have been obtained for their implemen-

tation. These include Hestenes and Stiefel’s famous conjugate gradient algorithm [50]

when the matrix is Hermitian, and Fletcher’s bi-conjugate gradient (BiCG) algorithm

[37] in the general case. For non-symmetric systems, the most commonly used Krylov

subspace methods are the FOM method, the GMRES method [84], and the BiCGStab

method [104]. The unknown parameters can be obtained for BiCG and GMRES by

imposing a Petrov-Galerkin condition (residual rk is orthogonal to a subspace of di-

mension k). Moreover, we know that the GMRES method satisfies a minimal residual

condition. Other Krylov subspace methods constructed without imposing an explicit

Petrov-Galerkin condition, but using instead a semi-norm residue minimization (QMR)

method presented in [38], which has low storage (in general) and the CMRH (mini-

mum changing residue method based on Hessenberg’s algorithm) presented in [94].

BiCG, GMRES, FOM, QMR and CMRH can be implemented using a factorization of

the Krylov matrix [73, chapter 6]. FOM and GMRES use Arnoldi’s algorithm, while

CMRH uses Hessenberg’s algorithm [69]. Then the BiCG and QMR methods use the

Lanczos algorithm. We can have a possible breakdown and we need to use an antici-

pated Lanczos algorithm to avoid them [38, 7, 8, 9].

Let x0 be the initial approximation of the exact solution,

x∗ = A−1 f , of the system (3.1) and r0 = f − Ax0 be the corresponding residual. We

recall the definition of the Krylov subspace [89, 105]

Definition 2.1. The Krylov subspace of dimension k associated to the matrix A and the

vector v is defined by

Kk(A, v) = span{v, Av, . . . , Ak−1v}.
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Classical Krylov subspace methods [89, 105, 73] compute the approximate solution xk

and its correspond residual rk = f − Axk such that

xk − x0 ∈ Kk (A, r0), and rk = Φk(A)r0 for k = 1, . . . , m,

where Φk is a polynomial of degree k.

Let Kk be the matrix defined by Kk = [r0, Ar0, . . . , Ak−1r0] and Wk = AKk. Then

xk − x0 = Kkdk, and rk = r0 −Wkdk = Φk(A)r0 for k = 1, . . . , m.

In order to determine the unknown vector dk, other conditions are needed, which ex-

plains why there are several Krylov subspace methods.

In the next section, we will discuss the convergence of Krylov subspace methods, which

typically converge after m iterations with the relation rk = Φk(A)r0 for k ≤ m. Here, Φm

represents the minimal polynomial of A for the vectorr0. We will begin by providing

the general expression of the residual. Furthermore, we will explore how to charac-

terize classical Krylov subspace methods using the left inverses of the matrix Wk and

establish the dependence of this characterization on two matrices, Yk and Zk.

Additionally, we will conduct a detailed examination of various classical Krylov sub-

space methods. In Section 3, we will present a technique for selecting the parametric

matrix Zk to enhance the convergence of these methods. We will also consider some

Krylov product methods and illustrate the algorithm of selecting the polynomial Ψk for

using these methods efficiently. Moreover, we will introduce an improved version of

the CGS method [83], which is one of the methods under consideration.

To demonstrate the efficacy of the derived algorithms, we will provide several exam-

ples in the concluding section.

Throughout this paper H† denotes the pseudo inverse of a nonsingular square matrix

H. The matrix Ik is the identity matrix of size k and the vector ei its ith column. we also

use the notation Hk+1,k for a rectangular matrix with k + 1 rows and k columns.

For simplicity of the exposition, throughout the paper we assume exact arithmetic and
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real data.

2.2 Preliminary results

In this section we will use the general left inverse of Wk [13], for characterizing the

Krylov subspace methods. This characterization depends on two parameters Yk and

Zk, which are two n× k matrices to be chosen for leading to Krylov subspace methods.

Then, we show how to improve the convergence of the BiCG method [63, 73, 89, 105].

2.2.1 Characterization of Krylov subspace methods

Let

Φm(ξ) = σ0 + σ1ξ + · · ·+ σmξm =
m

∑
i=0

ciξ
i, with Φm(0) = 1,

be the minimal polynomial of the matrix A for the vector r0, i.e.

Φm(A)r0 =
m

∑
i=0

σi Ai r0 = 0, (2.2)

and

m = min {k such that
k

∑
i=0

σi Air0 = 0, with σ0 = 1}.

Let wi be the vectors defined by

w0 = r0, wi = Air0, for i = 1, · · · , m,

and c̃ be the vector whose components are −σ1, . . . ,−σm. If we set Wm = [w1, . . . , wm],

then the relation (3.2) can be written in matrix form as

Wm c̃ = r0. (2.3)

It is important to remark that the system (2.3) has a unique solution and that the rank

of Wm is m.



18
Chapter 2. A unified approach to Krylov subspace methods for solving linear

systems

We first recall the notion of general left inverses of Wm. Let WL
m be a general left inverse

of Wm [13], i.e., WL
m Wm = Im, then it has been shown that if W`

m is a particular left

inverse of Wm, a general left inverse WL
m can be given by [13]

WL
m = W`

m + ZT
m

(
In −WmW`

m

)
, (2.4)

where Zm is an arbitrary n×m matrix.

As the rank of Wm is m (Wm is a full rank matrix), there exists an arbitrary n×m matrix

Ym of rank m such that YT
mWm is nonsingular (for example Ym = Wm). So, we define a

particular left inverse W`
m of the matrix Wm by

W`
m = (YT

mWm)
−1YT

m. (2.5)

Therefore, by using the general and particular left inverses, the linear system (2.3) can

be solved in two distinct ways. Thus, (2.3) becomes

r0 −WmWL
mr0 = 0.

From the general left inverse WL
k , with k ≤ m, the general residual vector rK

k and the

approximate solution xK
k are defined by

rK
k = (I −WkWL

k )r0 = f − AxK
k , (2.6)

with

rK
0 = r0, xK

m = A−1b = x∗, rK
m = 0.

Therefore, we obtain for k = 1, · · · , m− 1

xK
k = x0 + KkWL

k r0, (2.7)
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where Kk = A−1Wk is the Krylov matrix whose columns are w0, · · · , wk−1. Using the

relations (2.4), (2.5) and (2.6) we get

rK
k = (In −WkWL

k )r0

=
(

In −Wk[W`
k + ZT

k (In −WkW`
k )]
)

r0

= (In −WkZT
k )(In −WkW`

k )r0.

(2.8)

Let Yk be the matrix whose columns are denoted by yi, for i = 1, · · · , k. We define

Yk = span{y1, · · · , yk}.

By setting Zk = 0n×k or Zk = (W`
k )

T, and choosing the matrix Yk, we can obtain most of

the Krylov subspace methods. The residuals rP
k obtained by using the left inverse W`

k

are mathematically equivalent to the residuals of the known Petrov-Galerkin methods

defined by the Petrov-Galerkin condition, which consists in imposing that the residual

rP
k is orthogonal to Yk, that is,

xP
k − x0 ∈ Kk (A, r0), and rP

k = f − AxP
k ⊥ Yk.

Hence rP
k =

(
In −Wk(YT

k Wk)
−1YT

k

)
r0, and YT

k rP
k = 0.

Theorem 2.2. The kth residual in Krylov subspace methods defined by

rK
k = f − AxK

k , xK
k − x0 ∈ Kk (A, r0), and rK

m = 0,

where m is the degree of the minimal polynomial of the matrix A for the vector r0, can be written,

∀k ∈ {1, 2, . . . , m− 1}, as

rK
k =

(
In −WkZT

k

) (
In −Wk(YT

k Wk)
−1YT

k

)
r0 =

(
In −WkZT

k

)
rP

k ,
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where Yk is an arbitrary n× k matrix such that YT
k Wk is invertible and Zk is an arbitrary n× k

matrix.

The classical Krylov subspace methods are given in the following table, when Zk = 0.

For more details about the choice of the matrix Yk for the different methods see the

references associated to each method.

Method Condition Choice of Yk

FOM [89] KT
k AKk nonsingular Kk

GMRES [84, 89, 105] A nonsingular AKk

Hessenberg [31] A nonsingular
[
ep1 , ep2 , . . . , epk

]

Lanczos [63, 89] YT
k AKk nonsingular

[
y, ATy, . . . ,

(
AT)k−1 y

]
Table 1: The choices of the matrix Yk

2.2.2 Full Orthogonalization Method (FOM) and Generalized Minimum Resid-

ual Method (GMRES)

In this section we summarize the GMRES and Arnoldi methods. Let us first remark

that (
In −WkW†

k

) (
In −WkWL

k

)
=
(

In −WkW†
k

)
,

and that (
In −WkWL

k

) (
In −WkW†

k

)
=
(

In −WkWL
k

)
.

Hence if we set Zk such that ZT
k = W†

k and choose Yk as an arbitrary n× k matrix such

that YT
k Wk is invertible, we obtain the GMRES method

rG
k =

(
In −WkW†

k

) (
In −WkW`

k

)
r0 =

(
In −WkW†

k

)
r0,
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and we have

||rG
k || = min

z∈Kk(A,r0)
||b− A (x0 + z)||.

Now, if we choose Yk = Wk and ZT
k = (WT

k A−TWk)WT
k A−T, we obtain

rF
k =

(
In −Wk(WT

k A−TWk)WT
k A−T) (In −WkW†

k

)
r0

=
(

In −Wk(WT
k A−TWk)WT

k A−T) rG
k

=
(

In −Wk(WT
k A−TWk)WT

k A−T) r0.

The GMRES and FOM implementations are based upon the Arnoldi recursion, which

corresponds to an implicit QR factorization based on the Gram-Schmidt algorithm. For

the usual description of FOM and of GMRES, see [84, 89].

Consider the QR factorization of

Kk = VkR̃k,

where Vk ∈ Rn×k is such that VT
k Vk = Ik. We know that the columns of Vk form an

orthonormal basis of Kk(A, r0). and that R̃k is upper triangular.

Since Kk+1 = [r0, AKk] = [r0, Wk], we can then write

Kk+1


0

Ik

 = Vk+1R̃k+1


0

Ik

 = A Kk = A Vk R̃k.

Since R̃−1
k is also upper triangular, we can define the following (k + 1)× k upper Hes-

senberg matrix by the following relations

Hk+1,k = R̃k+1


01×k

Ik

 R̃−1
k = VT

k+1AVk =


Hk

vT
k+1AVk

 =


Hk

hk+1,k

(
e(k)k

)T

 ,
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and Hk ≡ VT
k AVk is a square upper Hessenberg matrix of dimension k. Moreover we

have the following Arnoldi relation

A Vk = Vk+1Hk+1,k = Vk Hk + hk+1,k vk+1 eT
k . (2.9)

In GMRES and FOM, the starting vector v1 = r0/‖r0‖ and the corresponding residual

vectors rF
k and rG

k are

rF
k =

(
In −Wk(KT

k Wk)
−1KT

k

)
r0

= r0 − AVkR̃k
(

R̃T
k VT

k AVkR̃k
)−1 R̃T

k VT
k r0

k

= r0 − AVk(VT
k AVk)

−1VT
k r0.

= r0 −Vk+1Hk+1,k (Hk)
−1 VT

k r0,

and

rG
k =

(
In −Wk(WT

k Wk)
−1WT

k

)
r0

= r0 − AVkR̃k
(

R̃T
k (AVk)

T AVkR̃k
)−1 R̃T

k (AVk)
Tr0

k

= r0 − AVk((AVk)
T AVk)

−1(AVk)
Tr0.

= r0 −Vk+1Hk+1,k (Hk+1,k)
† VT

k+1r0.

In the following lemma, we give the expression of H−1
k = H†

k and H†
k+1,k.

Lemma 2.3. Let Hk be an invertible square upper Hessenberg matrix of dimension k and let

Hk+1 be a (k + 1)× k upper Hessenberg matrix, then

H−1
k = [Hk,k−1, hk]

+ =


H+

k,k−1 − H+
k,k−1hkqT

k

qT
k

 ,

and
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H†
k+1,k =


Hk

hk+1,k

(
e(k)k

)T


†

=

[
H−1

k −
h2

k+1,k
1+h2

k+1,k(qk ,qk)
H−1

k qkqT
k

hk+1,k
1+h2

k+1,k(qk ,qk)
H−1

k qk

]
,

where qk =
(I − Hk,k−1H+

k,k−1) hk

||(I − Hk,k−1H+
k,k−1) hk||2

.

Proof. . The proof of first formula is a consequence of formulas (8) and (16) in [41].

If we apply Corollary 1, page 267 of [13] to the matrix Hk,k+1, we obtain the second

formula.

A consequence of this lemma is the following theorem

Theorem 2.4. Let us assume that the Arnoldi matrix Hk = VT
k AVk is invertible, then

1. rF
k = −‖r0‖ hk+1,k(qk, e1)vk+1,

2. rG
k = ‖r0‖

(
h2

k+1,k(qk ,e1)

1+h2
k+1,k(qk ,qk)

Vkqk −
hk+1,k(qk ,e1)

1+h2
k+1,k(qk ,qk)

vk+1

)
,

3. rG
k =

(
I − AVk(AVk)

†) rF
k .

Proof. From Lemma 2.3, we deduce the following formulas

Hk+1,k H−1
k =


Ik

hk+1,kqT
k

 ,

and

Hk+1,k H†
k+1,k =


Ik −

h2
k+1,k

1+h2
k+1,k(qk ,qk)

qkqT
k

hk+1,k
1+h2

k+1,k(qk ,qk)
qk

hk+1,k
1+h2

k+1,k(qk ,qk)
qT

k 1− 1
1+h2

k+1,k(qk ,qk)

 .
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Multipliply Hk+1,k H−1
k by e(k)1 and Hk+1,k H†

k+1,k by e(k+1)
1 , we obtain

Hk+1,k H−1
k e(k)1 =

 e(k)1

hk+1,kqT
k e(k)1

 , and Hk+1,k H†
k+1,ke(k+1)

1 =

 e(k)1 −
h2

k+1,kqT
k e(k)1

1+h2
k+1,k(qk ,qk)

qk

hk+1,kqT
k e(k)1

1+h2
k+1,k(qk ,qk)

 .

We can now premultiply the above vectors by ‖r0‖Vk+1 to deduce the results of the first

two statements.

By subtracting rF
k from rG

k , we get

rG
k − rF

k = ‖r0‖
h2

k+1,k(qk, e1)

1 + h2
k+1,k(qk, qk)

(Vkqk + hk+1,k(qk, qk)vk+1) .

On the other hand

Vk+1Hk+1,k H†
k+1,kVT

k+1rF
k = −‖r0‖ hk+1,k(qk, e1)Vk+1Hk+1,k H†

k+1,ke(k+1)
(k+1)

= −‖r0‖ hk+1,k(qk ,e1)

1+h2
k+1,k(qk ,qk)

Vk+1

 hk+1,kqk

h2
k+1,k(qk, qk)

 .

We deduce that rG
k = (I − Vk+1Hk+1,k H†

k+1,kVT
k+1)r

F
k =

(
I − AVk(AVk)

†) rF
k , which ends

the proof.

2.2.3 Generalized Hessenberg algorithm

We describe now the Generalized Hessenberg method due to Hessenberg [107],

and to Householder and Bauer [51]. This algorithm is used for the reduction of a gen-

eral matrix to its Hessenbeg form. It contains the methods of Arnoldi, Lanczos and

Hessenberg as particular cases.

The Generalized Hessenberg algorithm constructs a basis {b1, . . . , bk} of Kk(A, r0) by

imposing an orthogonality condition on bk+1

bk+1 ⊥ span{y1, . . . , yk}.
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Let Yk be the n× k matrix whose columns y1, y2, . . . , yk are linearly independent vectors

of IRn. These two properties are verified if we first choose a non zero scalar γ1 such

that r0 = γ1b1 and define γk+1 and bk+1 such that

γk+1bk+1 =
(

I − Kk(YT
k Kk)

−1YT
k

)
Akr0. (2.10)

The non zeros scalars γ1, . . . , γk+1 are scaling vectors and can be selected in several

manners depending of the choice of matrix Yk. Let Bk be the n × k matrix whose

columns are b1, b2, . . . , bk, we deduce that

γk+1bk+1 =
(

I − BkB`
k

)
Abk =

(
I − Bk(YT

k Bk)
−1YT

k

)
Abk.

If we assume that yT
i bi 6= 0, for i = 1, . . . , k, then the matrix L̃k ≡ YT

k Bk, is an invertible

lower triangular matrix and we can prove by induction [86], that the matrix Hh
k ≡

B`
k ABk is a square Hessenberg matrix and the generalized Hessenberg relation follows

ABk = Bk+1Hh
k+1,k, (2.11)

with

Hh
k+1,k =


B`

k ABk

δk+1

(
e(k)k

)T

 =


Hh

k

hh
k+1,k

(
e(k)k

)T

 .

An important choice for the matrix Yk in the Generalized Hessenberg algorithm is the

Krylov matrix Kk. This leads to the Arnoldi algorithm, since Bk = Vk.

In his habilitation thesis [86], the author showed how to use the Generalized Hessen-

berg algorithm to derive some Krylov subspace methods based on the Petrov-Galerkin

condition. Since r0 = γ1b1 = γ1Bke(k)1 and YT
k Bk+1Hh

k+1,k = L̃k Hh
k , it holds
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rP
k =

(
In − AKk(YT

k AKk)
−1YT

k

)
r0

=
(

In − ABk(YT
k ABk)

−1YT
k

)
r0

=
(

In − Bk+1Hh
k+1,k(Y

T
k Bk+1Hh

k+1,k)
−1YT

k

)
r0

= r0 − γ1 Bk+1Hh
k+1,k

(
Hh

k

)−1 e(k)1 .

The QMR and CMRH methods, based on Generalized Hessenberg algorithm, was pro-

posed to improve the convergence behaviour of Petrov-Galerkin methods. In [52],

Heyouni and Sadok proposed the Minimizing Residual Seminorm method(MRS) and

define its residual rM
k by

rM
k = r0 − δ1 Bk+1Hh

k+1,k

(
Hh

k+1,k

)†
e(k+1)

1 , (2.12)

and gave a relationship between rP
k and rM

k (see Theorem 2 of [52]).

In each iteration of the method, the iterate xM
k is chosen suth that its residual has mini-

mal seminorm, i.e.,

|rM
k |Tk+1 = min

x∈x0+Kk(r0,A)
| f − Ax|Tk+1 = min

x∈x0+Kk(r0,A)
‖B`

k+1( f − Ax)‖,

where |u|Tk+1 =
√

uTTku, and Tk+1 =
(

B`
k+1

)T B`
k+1 is a symmetric matrix such that

uTTk+1u is positive for all vector u in Kk+1(A, r0).

Let us now show that the vectors rM
k verify also an orthogonality property. We have

rM
k = r0 − ABk

(
B`

k+1ABk
)† B`

k+1r0

= δ1Bk+1

(
I − Hh

k+1,k

(
Hh

k+1,k

)†
)

e(k+1)
1 .

We can now premultiply the above equality, first by B`
k+1 and after by

(
Hh

k+1,k

)T
, to



2.2. Preliminary results 27

obtain

(
Hh

k+1,k

)T
B`

k+1rM
k = δ1

((
Hh

k+1,k

)T
−
(

Hh
k+1,k

)T
Hh

k+1,k

(
Hh

k+1,k

)†
)

e(k+1)
1

= δ1

((
Hh

k+1,k

)T
−
(

Hh
k+1,k

)T
Hh

k+1,k

((
Hh

k+1,k

)T
Hh

k+1,k

)−1 (
Hh

k+1,k

)T
)

e(k+1)
1

= 0.

This gives (
(B`

k+1)
T Hh

k+1,k

)T
rM

k = 0.

In addition, we remark that
(

Hh
k+1,k

)†
B`

k+1 is also a left inverse of ABk, since

(
Hh

k+1,k

)†
B`

k+1ABk =
(

Hh
k+1,k

)†
B`

k+1Bk+1Hh
k+1,k

= Ik.
(2.13)

If we write Hh
k =

[
Hh

k,k−1, hh
k

]
, and define qh

k by

qh
k =

(I − Hh
k,k−1(Hh

k,k−1)
†) hh

k

||(I − Hh
k,k−1(Hh

k,k−1)
†) hh

k ||2
,

we can give, in the following two theorems, the relationships between the residuals for

the Petrov-Galerkin method and the MRS methods.

Theorem 2.5. Let us set r0 = δ1b1 and assume that in the Hessenberg algorithm the matrix

YT
k Bk is invertible. If we set dk = bk − Bk−1(Hh

k,k−1)
†hh

k , the iterates xP
k , xM

k and their residual

vectors rP
k , r

M

k are such that

1. xPG
k − xM

k−1 = δ1 (qh
k , e1) dk and rP

k − rM
k−1 = −δ1 (qh

k , e1) Adk

2. xM
k − xM

k−1 =
δ1(qh

k ,e1)

1+(hh
k+1,k)

2(qh
k ,qh

k )
dk and rM

k − rM
k−1 = − δ1(qh

k ,e1)

1+(hh
k+1,k)

2(qh
k ,qh

k )
Adk,

3. rP
k − rM

k−1 = (1 + (hh
k+1,k)

2(qh
k , qh

k))(r
M
k − rM

k−1).
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This Theorem was proved in [52]. We remark that if the matrix Hk is regular, we can

write the vector dk as

dk =
1

(qh
k , qh

k)
Bk

(
Hh

k

)−1
qh

k . (2.14)

We have also the following results

Theorem 2.6. Let us set r0 = δ1b1 and assume that in the Hessenberg algorithm the matrix

YT
k Bk is invertible, then

1. rM
k = δ1

(
(hh

k+1,k)
2(qh

k ,e1)

1+(hh
k+1,k)

2(qh
k ,qh

k )
Bkqh

k −
hk+1,k(qh

k ,e1)

1+(hh
k+1,k)

2(qh
k ,qh

k )
bk+1

)
.

2. Moreover if the matrix YT
k ABk invertible, then

rP
k = −δ1 hh

k+1,k(q
h
k , e1)bk+1,

and

rM
k = rP

k + δ1
(hh

k+1,k)
2(qh

k ,e1)

1+(hh
k+1,k)

2(qh
k ,qh

k )

(
Bkqh

k + hh
k+1,k(q

h
k , qh

k)bk+1

)
= (I − Bk+1Hh

k+1,k

(
Hh

k+1,k

)†
B`

k+1)r
P
k .

The proof of this theorem is based on lemma 2.3 and is similar to that of Theorem 2.4.

From the last statement, we deduce that the methods can also be defined by the general

formula given in Theorem2.2, since we can write

rM
k = (I − ABk

(
Hh

k+1,k

)†
B`

k+1)r
P
k

= (I −WkZk)rP
k

= (I −WkZk)
(

I −Wk(YT
k Wk)

−1YT
k

)
r0.

In the next section we will examine particular cases of the Generalized Hessenberg

algorithm, and we will review the Krylov subspace methods under consideration, and

discuss their properties.

2.2.3.1 The FOM/GMRES pair

Let us set Yk = Kk. With this choice the Generalized Hessenberg algorithm reduces

to the Arnoldi’s algorithm and we have Bk = Vk and B`
k = VT

k . Moreover the Petrov-

Galerkin method becomes FOM. Finally the results of Theorem 2.4 gives a relationship
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between the residuals of GMRES and FOM methods, since the matrix Vk is orthogonal.

These results are summarized in the following theorem

Theorem 2.7. Let us assume that the Arnoldi matrix Hk = VT
k AVk is invertible, then

1. ‖rF
k ‖ = ‖r0‖ hk+1,k|(qk, e1)|,

2. ‖rG
k ‖ = ‖rF

k ‖
√

1
1+h2

k+1,k(qk ,qk)
,

3. ‖rG
k − rF

k ‖ = ‖rF
k ‖
√

1− 1
1+h2

k+1,k(qk ,qk)
=
√
‖rF

k ‖2 − ‖rG
k ‖2.

We remark that the residuals in FOM are orthogonal and we have KT
k rF

k = 0. The

residuals in GMRES method can also defined by the orthogonality property WT
k rG

k = 0.

2.2.4 The Hessenberg/CMRH pair

Instead of using an implicit QR factorization as in Arnoldi algorithm, we consider here

the LU factorization of the n× k Krylov matrix

Kk = LkUk, (2.15)

with Lk ∈ Rn×k a lower trapezoidal n× k matrix, and Uk upper triangular. As we did

in preceding subsection for the Arnoldi algorithm, we can now write

Kk+1


0

Ik

 = Lk+1Uk+1


0

Ik

 = A Kk = A Lk Uk,

and similarly since U−1
k is upper triangular, we define the following (k + 1)× k upper

Hessenberg matrix

Hh
k+1,k = Uk+1


01×k

Ik

U−1
k =


Hh

k

hh
k+1,k

(
e(k)k

)T

 ,
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with Hh
k being a square upper Hessenberg matrix of dimension k. We also have the

following Hessenberg relation

A Lk = Lk+1Uk+1


0

Ik

U−1
k

= Lk+1Hh
k+1,k = Lk Hh

k + hh
k+1,k `k+1 eT

k . (2.16)

Thus, the columns of Lk form a different (non-orthogonal) basis of Kk(A, r0).

The Hessenberg algorithm consists of building iteratively the basis {`1, . . . , `k} of Kk(A, r0),

so that Lk = [`1, . . . , `k] is a lower trapezoidal n× k matrix. It begins appropriately by

computing α`1 = r0, with α = (r0)1 the first component of r0.

By choosing Yk = I(n)k in the Generalized Hessenberg algorithm, we obtain the Hessen-

berg algorithm, without pivoting. Consequently the vector `k+1 is defined by

hh
k+1,k`k+1 =

(
I − LkL`

k

)
A`k =

(
I − Lk((I(n)k )T Lk)

−1(I(n)k )T
)

A`k,

and

L`
k =


(L1

k)

(L2
k)


`

=

[
((L1

k))
−1 O

]
.

This equation can be rewritten as

hh
k+1,k`k+1 =


0

A`k − (L2
k)(L1

k)
−1A`k

 ,

and hh
k+1,k is chosen such that (`k+1)k+1 = 1. Moreover
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Hh
k+1,k =


L`

k ALk

hh
k+1,k

(
e(k)k

)T

 =


(L1

k)
−1(I(n)k )T ALk

hh
k+1,k

(
e(k)k

)T

 =


Hh

k

hh
k+1,k

(
e(k)k

)T

 .

To avoid breakdown and to ensure a more stable algorithm, we can use a pivoting

strategy as in Gaussian elimination. We first compute the index i1 such that |(r0)i1 | =

maxi=1,...,n |(r0)i| and set `1 = r0/(r0)i1 and y1 = e(n)i1
. Let us assume that the indexes

i1, . . . , ik have already been obtained and set Yk = [e(n)i1
, . . . , e(n)ik

]. To obtain ik+1 we have

to compute

hh
k+1,k`k+1 = d =

(
I − Lk((Y

(n)
k )T Lk)

−1(Y(n)
k )T

)
A`k,

and define lk+1 = d/(dik+1) and hh
k+1,k = (d)ik+1 , where |(d)ik+1 | = maxi=1,...,n |(d)i|.

Hence ‖`k+1‖∞ = 1

By setting Yk = [e(n)i1
, . . . , e(n)ik

], the residual for the Hessenberg method for solving the

linear system is defined by

rHess
k =

(
In − ALk(YT

k ALk)
−1YT

k

)
r0

= r0 − (r0)i1 Lk+1Hh
k+1,k

(
Hh

k

)−1 e(k)1 .

The CMRH method is a Minimizing Residual Seminorm methods and its kth residual

is defined by

rC
k = r0 − (r0)i1 Lk+1Hh

k+1,k

(
Hh

k+1,k

)†
e(k+1)

1

=

(
In − ALk

((
Hh

k+1,k

)T
L`

k+1ALk

)−1 (
Hh

k+1,k

)T
L`

k+1

)
r0.

We have the two orthogonality conditions

[e(n)i1
, . . . , e(n)ik

]Trh
k = 0, and

(
Hh

k+1,k

)T
L`

k+1rC
k = 0.
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Moreover
(

Hh
k+1,k

)†
L`

k+1 is a left inverse of ALk = Hh
k+1,kLk+1, and we have

rC
k =

(
In − ALk

(
Hh

k+1,k

)†
L`

k+1

)
r0

=

(
In − ALk

(
Hh

k+1,k

)†
L`

k+1

)
rHess

k .

2.2.5 Lanczos biorthogonalization algorithm and the BiCG/QMR pair

We choose r̃0 a vector of Rn and set yi = ATi−1r̃0. With this choice the Generalized

Hessenberg algorithm reduces to the Lanczos bi-orthogonalization algorithm, which is

a particular case of the two sided Gram-Schmidt algorithm introduced by Parlett [78].

We construct two basis {v1, . . . , vk} = Kk(A, r0) and {ṽ1, . . . , ṽk} = Kk(AT, r̃0) with

r0 = δ1v1 and, for k ≥ 1, we define Vk ≡ [v1, . . . , vk], Ṽk ≡ [ṽ1, . . . , ṽk], and vk+1 and ṽk+1

by

1. δk+1vk+1 = ck =
(

I − KkK`
k

)
Ak−1r0 =

(
I −Vk(YT

k Vk)
−1YT

k

)
Avk =

(
I −VkV`

k

)
Avk,

2. βk+1ṽk+1 = c̃k =
(

I −Yk(VT
k Yk)

−1VT
k

)
(AT)

k−1r̃0 =
(

I − Ṽk(VT
k Ṽk)

−1VT
k

)
AT ṽk,

where Yk =
[
AT r̃0, . . . , (Ak−1)T r̃0

]
.

3. If we assume that c̃T
k ck 6= 0, which guarantees that the algorithm does not break-

down, βk and γk at iteration k, can be chosen such that ṽT
k vk = 1. Thus ṼT

k Vk =

Ik, V`
k = ṼT

k

AVk = Vk+1H(1)
k+1,k and ATṼk = Ṽk+1H(2)

k+1,k,

where

H(1)
k+1,k =


ṼT

k AVk

δk+1

(
e(k)k

)T

 =


H(1)

k

δk+1

(
e(k)k

)T

 , H(2)
k+1,k =


VT

k ATṼk

βk+1

(
e(k)k

)T

 =


H(2)

k

βk+1

(
e(k)k

)T

 .

Consequently the matrices H(1)
k and H(2)

k are upper Hessenberg matrices, with H(2)
k =(

H(1)
k

)T
. Therefore the matrix H(1)

k is tridiagonal and will be denoted by Tk ≡ H(1)
k . We
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also set Tk+1,k ≡ H(1)
k+1,k. Therefore

AVk = Vk+1Tk+1,k = VkTk + δk+1vk+1

(
e(k)k

)T
and ATṼk = ṼkTT

k + βk+1vk+1

(
e(k)k

)T

The Lanczos bi-orthogonalization algorithm generates two rectangular matrices Vk, Ṽk

and a tridiagonal matrix Tk,

Tk =



α1 β2

δ2 α2 β3

. . . . . . . . .

δk−1 αk−1 βk

δk αk


.

It is a Krylov method defined by the Petrov-Galerkin condition rB
k⊥Kk(AT, r̃0). Hence

rB
k =

(
In − AVk(ṼT

k AVk)
−1ṼT

k

)
r0

= r0 − ‖r0‖Vk+1Tk+1,k (Tk)
−1 e(k)1 ,

and its iterates are defined by xB
k = x0 + BkyB

k . The coefficients yk are computed by

requiring orthogonality of the residuals. They are obtained by solving

Tk yB
k = ‖r0‖e1.

Hence the involved left inverse of AVk is (AVk)
` = T−1

k ṼT
k and T−1

k ṼT
k r0 = ‖r0‖ T−1

k e1 =

δ1 T−1
k e1. The following lemma will be used to show that, for computing the iterates

xL
k iteratively, we need only the last row and the last column of T−1

k .

Lemma 2.8. If the matrices Tk−1 and Tk are invertible and we set sk = T−1
k ek and qk = T−T

k ek,

then
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1. the inverse of the tridiagonal matrix Tk is given by

T−1
k =


T−1

k−1 + βkδk
θk

sk−1qT
k−1 − βk

θk
sk−1

− δk
θk

qT
k−1

1
θk

 ,

where θk = αk − βkδk qT
k−1ek−1,

2. sk =
[
− βk

θk
sk−1

1
θk

]T
, and qk =

[
− δk

θk
qk−1

1
θk

]T
, for k ≥ 2 and s1 = q1 =

1
α1

,

3. θk =
1

qT
k ek

= αk −
βkδk

θk−1
for k ≥ 2 and θ1 = α1,

4. (qk, e(k)1 ) = − δk

θk
(qk−1, e(k−1)

1 ), (sk, e(k)1 ) = −βk

θk
(sk−1, e(k−1)

1 ) for k ≥ 2.

Proof. This is straightforward from the fact that Tk can be written as

Tk =


Tk−1 βkek−1

δkeT
k−1 αk

 .

Let pk be the vector pk = VkT−1
k ek, using Lemma 2.8, we deduce that the kth iterates xB

k

can be written, for k ≥ 2, as

xB
k = xB

k−1 − ‖r0‖ δk (qk−1, e(k−1)
1 ) pk

= xB
k−1 + ‖r0‖ θk (qk, e(k)1 ) pk and pk =

1
θk
(vk − βk pk−1),

with p1 =
1
α1

v1. This gives us the direct version of Lanczos bi-orthogonalization algo-

rithm.

The classical implementation of the algorithm, is usually deduced by using the LDU

decomposition of Tk; see for example [84]. We can deduce it also from our approach by

setting

p̃k = Ṽk (Tk)
−T e(k)k .
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Algorithm 1 Direct Lanczos Biorthogonalization algorithm [89, 105]
Choose x0, compute r0 = f − Ax0, δ1 = ‖r0‖ and choose r̃0 such that (r̃0, r0) 6= 0,
set v0 = ṽ0 = p0 = 0, v1 = r0/δ1, β1 = (r̃0, v1), ṽ1 = r̃0/β1, ζ1 = δ1 and λ1 = 0
for k = 1, · · · ,, until convergence, Do:

Compute u := Avk − βkvk−1, ũ := AT ṽk − δkṽk−1 and αk = (ũ, vk)

If k > 1 then compute λk =
δk

θk−1
and ζk = −λkζk−1

θk = αk − λkβk

pk =
1
θk
(vk − βk pk−1)

xk = xk−1 + ζk pk,
If xk has converged then Stop,
u := u− αkvk and ũ := ũ− αkṽk

δk+1 =
√
|(ũ, u)| and vk+1 = u/δk+1

βk+1 = (ũ, bk+1) and ṽk+1 = ũ/βk+1

EndDo.

If we set Pk = [p1, . . . , pk] and P̃k = [ p̃1, . . . , p̃k], we obtain the following properties

1. span{p1, . . . , pk} = span{v1, . . . , vk} = Kk(A, r0),

2. span{ p̃1, . . . , p̃k} = span{ṽ1, . . . , ṽk} = Kk(AT, r̃0),

3. the matrix P̃k
T APk is diagonal, with p̃k

T Apk = (qk, ek) =
1
θk

.

Using these new bases, we have

xB
k = x0 + Pk(P̃T

k APk)
−1P̃T

k r0

= x0 + ‖r0‖
k

∑
i=1

(qi, e(i)1 )

( p̃i, Api)
pi

= xB
k−1 + ‖r0‖

(qk, e(k)1 )

( p̃k, Apk)
pk and rB

k = rB
k−1 − ‖r0‖

(qk, e(k)1 )

( p̃k, Apk)
Apk.

On the other hands, from Theorem 2.6, we know that rB
k = −‖r0‖δk+1(qk, e1)vk+1, it

follows that

pk =
1
θk

vk −
βk

θk
pk−1

= − 1
θk‖r0‖δk(qk−1, e1)

rB
k−1 −

βk

θk
pk−1.

Therefore, using the last statement of Lemma 2.8, we obtain

‖r0‖θ2
k(qk, e1)pk = rB

k−1 + ‖r0‖(qk−1, e1)βkδk pk−1.
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Replacing k by k + 1 in the last formula and setting pB
k = ‖r0‖θ2

k+1(qk+1, e1)pk+1 we

obtain pB
0 = r0, θ1 = α1 and

pB
k = rB

k +
βk+1δk+1

θ2
k

pB
k−1, xB

k = xB
k−1 +

1
θk

pB
k−1

rB
k = rB

k−1 −
1
θk

ApB
k−1, θk = αk −

βkδk

θk−1
.

Define similarly the vectors r̃0 = γ1ṽ1, r̃k and p̃Q
k by

r̃k = r̃0 − ATṼk(TT
k )
−1VT

k r̃0 and p̃B
k = γ1θ2

k+1(sk+1, e1) p̃k+1,

we obtain

p̃B
k = r̃B

k +
βk+1δk+1

θ2
k

p̃B
k−1 and r̃B

k = r̃B
k−1 −

1
θk

AT p̃B
k−1.

Moreover using the fact that r̃B
k = γ1βk+1(sk, e1)ṽk+1 and Lemma 2.8, we get

(r̃B
k−1, rB

k−1) = γ1‖r0|θ3
k(sk, e1)(qk, e1) and ( p̃B

k−1, ApB
k−1) = γ1‖r0|βk+1δk+1(sk, e1)(qk, e1).

Consequently

1
θk

=
(r̃B

k−1, rB
k−1)

( p̃B
k−1, ApB

k−1)
and

βk+1δk+1

θ2
k

=
(r̃B

k , rB
k )

(r̃B
k−1, rB

k−1)
.

Thus

p̃B
k = r̃B

k +
(r̃B

k , rB
k )

(r̃B
k−1, rB

k−1)
p̃B

k−1 and r̃B
k = r̃B

k−1 −
(r̃B

k−1, rB
k−1)

( p̃B
k−1, ApB

k−1)
AT p̃B

k−1.

Since BiCG ia a Petrov-Galerkin method, its corresponding Minimizing residual semi-

norm is the QMR method. Then if we denote by rQ
k the kth residual of the QMR method,

we deduce from (2.12) that

rQ
k = r0 − δ1 Vk+1Tk+1,k (Tk+1,k)

† e(k+1)
1 .
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Algorithm 2 BiCG method [37, 89]
Choose x0, r0 = f − Ax0, choose r̃0 such that (r̃0, r0) 6= 0,
set p0 = r0, and p̃0 = r̃0,
for k = 0, 1, · · · ,, until convergence Do:

αk = (r̃k, rk) / ( p̃k, Apk)

xk+1 = xk + αk pk

rk+1 = rk − αk Apk

r̃k+1 = r̃k − αk AT p̃k

βk = (r̃k+1, rk+1) / (r̃k, rk)

pk+1 = rk+1 + βk pk

p̃k+1 = r̃k+1 + βk r̃k

EndDo.

We have the following Petrov-Galerkin orthogonality conditions

ṼT
k rB

k = 0, and TT
k+1,kṼT

k+1rQ
k = 0.

Moreover from (2.13) we know that T†
k+1,kṼT

k+1 is a left inverse of AVk = Tk+1,kVk+1, and

we have

rQ
k =

(
In − AVk (Tk+1,k)

† ṼT
k+1

)
r0

=
(

In − AVk (Tk+1,k)
† ṼT

k+1

)
rBcg

k .

By using the second statement of Theorem 2.5, we obtain

xQ
k = xQ

k−1 +
‖r0‖(qk, e(k)1 )

(qk, qk)
(
1 + δ2

k+1(qk, qk)
)VkT−1

k qk

= xQ
k−1 +

‖r0‖(qk, e(k)1 )

(qk, qk)
(
1 + δ2

k+1(qk, qk)
) pQ

k with pQ
k = VkT−1

k qk,

From Theorem 2.7, we de decuce that

qT
k =

1
θk

[
−δkqT

k−1 1
]

and (qk, qk) =
1 + δ2

k (qk−1, qk−1)

θ2
k

.

It follows that

pQ
k = VkT−1

k qk = [Vk−1, vk]


− δk

θk
T−1

k−1qk−1 −
βk(1 + δ2

k (qk−1, qk−1))

θ2
k

sk−1

1 + δ2
k (qk−1, qk−1)

θ2
k


= − δk

θk
pQ

k−1 + θk(qk, qk)pk.
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Algorithm 3 Quasi-Minimal Residual Method (QMR)
Choose x0, compute r0 = f − Ax0, δ1 = ‖r0‖ and choose r̃0 such that (r̃0, r0) 6= 0,
set v0 = ṽ0 = p0 = 0, v1 = r0/δ1, β1 = (r̃0, v1), ṽ1 = r̃0/β1, ζ1 = δ1, λ1 = 0 and ρ0 = 0
for k = 1, · · · ,, until convergence Do:

Compute u := Avk − βkvk−1, ũ := AT ṽk − δkṽk−1 and αk = (ũ, vk)

If k > 1 then compute λk =
δk

θk−1
and ζk = −λkζk−1

θk = αk − λkβk

pk =
1
θk
(vk − βk pk−1)

pQ
k = − δk

θk
pQ

k−1 + θkρk pk

u := u− αkvk and ũ := ũ− αkṽk

δk+1 =
√
|(ũ, u)| and vk+1 = u/δk+1

βk+1 = (ũ, vk+1) and ṽk+1 = ũ/βk+1

ρk =
(1 + δ2

k ρk−1)

θ2
k

xk = xk−1 +
ζkθk

ρk(1 + δ2
k+1ρk)

pQ
k ,

If xk has converged then Stop,
EndDo.

2.3 Enhancement of the convergence behaviour of some classi-

cal Krylov methods

In this section, we first discuss the choice of the Zk matrix. Then, we will discuss a

strategy for improving the convergence of BiCG and BiCGstab. A similar approach for

improving BiCGSTAB and IDR, which are product-type Krylov subspace methods, can

be found in [22, 23]. The Zk matrix should be chosen in such a way as to limit work

and storage per iteration. The improved algorithm should involve a limited number

of vectors and very little extra work. The preferred algorithms are those for which this

number is low (less than ten). In addition, we need to avoid adding additional matrix-

vector products.

By invoking Theorem 2.2 with rP
k a residual vector of a Petrov-Galerkin method, we

obtain

rK
k = (In − AKkZT

k )r
P
k , and xK

k = x0 + KkZT
k xP

k . (2.17)
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The matrix Zk will be chosen such that ‖(Ik −WkZT
k )‖ ≤ 1. Then, using the preceding

relation, we get

‖rK
k ‖ = ‖(In −WkZT

k )r
P
k ‖ ≤ ‖rP

k ‖.

Let us consider in the following, some applications.

2.3.1 Enhanced BiCG method

As we have already seen, in BiCG, at each iteration of Krylov subspace methods, we

compute the vectors pk and Apk, such that

span {p0, p1, . . . , pk−1} = Kk (A, r0) .

Let Pk,sk be the matrix defined by Pk,sk = [pk−sk , . . . , pk−1] with 1 ≤ sk ≤ k. The matrix

Zk can be chosen such that

I −WkZT
k = I − APk,sk

(
APk,sk

)† .

Then we obtain a new residual vectors such that ‖rEB
k ‖ ≤ ‖rB

k ‖, with

rEB
k = (I − (APk,sk)(

(
APk,sk

)†
)rB

k . (2.18)

If sk = k,we have to use all the preceding vectors p0, . . . , pk−1. We propose to use

only the a fixed small number of vectors. Hence we optimize the cost of work and

the memory per iteration of the modified algorithm. For example if we sk = 1 then

we obtain the simplest Enhanced BiCG algorithm. In this case we will refer to this

algorithm as EBiCG(1)

rEB
k = rB

k − Apk−1 (Apk−1)
† rB

k , (2.19)

and

xB
k = xB

k + pk−1 (Apk−1)
† rEB

k . (2.20)
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We consider these new vectors, we get Simplest Enhanced BiCG method.

Algorithm 4 Simplest Enhanced BiCG method (sk = 1, ∀k)
Choose x0, r0 = f − Ax0, choose r̃0 such that (r̃0, r0) 6= 0,
set p0 = r0, and p̃0 = r̃0,
for k = 0, 1, · · · ,, until convergence Do:

αk = (r̃k, rk) / ( p̃k, Apk)

xk+1 = xk + αk pk

uk = Apk

rk+1 = rk − αkuk

ρk = (uk, rk+1) / (uk, uk)

xE
k+1 = xk+1 + ρk pk

rE
k+1 = rk+1 − ρkuk

r̃k+1 = r̃k − αk AT p̃k

βk = (r̃k+1, rk+1) / (r̃k, rk)

pk+1 = rk+1 + βk pk

p̃k+1 = r̃k+1 + βk r̃k

EndDo.

2.3.2 Some enhanced Krylov subspaces product type methods

The Krylov methods considered in this section are products methods in which the kth

residual is expressed by rk = Ψk(A)Φk(A)r0, where Φk is a polynomial of degree k

such that Φm is the minimal polynomial of A for r0 and Ψk a polynomial of degree k.

Sonneveld [83] propose to modify the BiCG by replacing the multiplication by AT by

a second one with A. The residual is CGS is rCGS
k = Φ2

k(A)r0, which correspond to

Ψk = Φk. If we set the direction vector pB
k in terms of polynomial in A applied to the

initial residuals, as

rBiCG
k = Φk(A)r0, pCGS

k = Θ2
k−1(A)r0,

where Θk is polynomial of degree less than or equal to k, we can derive the CGS algo-

rithm by setting

rCGS
k = Φ2

k(A)r0, pCGS
k = Θ2

k−1(A)r0, uk = Φk−1(A)Θk−1(A)r0, and qk = Φk(A)Θk−1(A)r0.

To avoid increasing the cost at each iteration, we can use the vectors already computed

and those with a matrix vector multiplication already done. For the storage problems,
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Algorithm 5 CGS method [83]
Choose x0, r0 = f − Ax0, choose r̃0 such that (r̃0, r0) 6= 0,
set p0 = u0 = r0,
for k = 0, 1, · · · ,, until convergence Do:

αk = (r̃0, rk) / (r̃0, Apk)

qk = uk − αk Apk

xk+1 = xk + αk(uk + qk)

rk+1 = rk − αk A(uk + qk)

βk = (r̃0, rk+1) / (r̃0, rk)

uk+1 = rk+1 + βkqk,
pk+1 = uk+1 + βk(qk + βk pk),

EndDo.

we will use the vectors pk and uk + qk computed at each iteration. So, concerning

the CGS method, we remark that at each iteration we calculate two vectors Apk and

A (uk + qk) and we will use them to build the orthogonal projector. We get

rECGS
k+1 = rCGS

k+1 − [Apk, A (uk + qk)] [Apk, A (uk + qk)]
† rCGS

k+1 , (2.21)

and

xECGS
k+1 = xCGS

k+1 + [pk, (uk + qk)] [Apk, A (uk + qk)]
† rCGS

k+1 . (2.22)

Of course we can use more than the last two vectors. A natural generalization is to

store a fixed number of preceding vectors from the sequence {pk, uk + qk}, that is,

rECGS
k+1 = (I − (APk,sk)(

(
APk,sk

)†
)rCGS

k+1 , (2.23)

where

Pk,sk = [pk−sk , uk−sk + qk−sk . . . , pk−1, uk + qk].

In [22, 23], similar techniques was used to improve the convergence behaviour of BiCGSTAB

and IDR.

2.4 Numerical examples

In this section, we consider the following convection-diffusion equation
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Figure 2.1: Comparison between residual norms of BiCG and its enhancements
EBiCG(s), for s = 1, 2, 4.

 −∆u− α.∇u− βu = f , in Ω

u = 0, on ∂Ω,

where Ω = [0, 1]3 and α = (αx, αy, αz)T ∈ R3. The discretization of this equation is

performed using centered finite differences with the standard 7-point stencil in three di-

mensions, resulting in a sparse matrix. For all examples, we choose α = (0.5, 0.5, 0.5)T,

β = 5, and Nx = 30, Ny = 20, Nz = 20. The dimension of the system is N =

Nx × Ny × Nz = 12 000.

In these numerical examples, the right-hand side b of the system is determined by

x? = (1, . . . , 1)T, and b = Ax?,
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where x? represents the exact solution of the given system. The initial guess is set to

zero. The tests are terminated as soon as |rk|/|b| ≤ 10−10.

Figure 2.2: The comparison between error norms of BiCG and its enhancements
EBiCG(s), for s = 1, 2, 4.

To demonstrate the effectiveness of our technique, we compare the BiCG method with

its enhanced variants, as outlined in Algorithm 4, utilizing only the previously stored

direction vectors pk−s+1, . . . , pk. The simplest enhanced BiCG algorithm corresponds

to the case where s = 1. Additionally, we compare the cases where s = 2, 4, 8, which

involve the utilization of formula (2.18) with 2, 4, or 8 direction vectors. We denote

the Enhanced BiCG algorithm with s direction vectors pk−s+1, . . . , pk as EBiCG(s). To

illustrate the comparison of these algorithms in terms of residual and error norms, we

present the curves of residual norms and error norms for s = 1, 2, 4, 8 in Fig. 2.1 and

Fig. 2.2, respectively.

Fig. 2.3 and Fig. 2.4 display the curves depicting the residual norms and error norms for

the CGS algorithm and its enhancements. In particular, ECGS(s) refers to the utilization
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Figure 2.3: The comparison between residual norms of CGS and its enhancements
ECGS(s), for s = 2, 4, 6, 8

of formula 2.23, incorporating the available direction vectors pk−i, uk−i for i = 1, . . . , s.

2.5 Conclusion

In this paper we have presented a comprehensive framework for studying Krylov sub-

space methods, explored their mathematical properties and convergence behaviour,

and discussed techniques to enhance their performance. The paper covers various as-

pects including the minimal polynomial of matrix A, the relationship between different

methods, the role of generalized inverses, and the use of product methods. The pro-

vided numerical examples further support the analysis and conclusions of the research.

The paper introduces a comprehensive framework for studying Krylov subspace meth-

ods used to solve linear systems of the form Ax = f , where A is a matrix, x is the

unknown vector, and f is the right-hand side vector. The objective of these methods is

to achieve convergence within a specified number of iterations, denoted as m.
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Figure 2.4: The comparison between error norms of CGS and its enhancements
ECGS(s), for s = 2, 4, 6, 8

The minimal polynomial Φm of matrix A for the initial residual r0 = f − Ax0 is a key

focus of the analysis in the paper. The degree of Φm is m, and the properties of this

minimal polynomial play a crucial role in the convergence behaviour of the Krylov

subspace methods.

The paper establishes that Petrov-Galerkin methods and minimal seminorm methods

are specific cases of the broader framework of Krylov subspace methods. Additionally,

it is demonstrated that minimal seminorm methods satisfy implicit Petrov-Galerkin

conditions.

The paper presents a general formulation for the iterates of Krylov subspace methods

based on generalized inverses. The choice of a specific left inverse and the construc-

tion method of the Krylov basis are important factors that differentiate various Krylov

subspace methods. The mathematical properties of these methods are described and

analysed, with emphasis on their dependency on two matrices.
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The paper proves that specific instances of Krylov subspace methods, such as CMRH

(Conjugate Minimum Residual with Hessenberg matrix) and QMR (Quasi-Minimal

Residual), satisfy implicit Petrov-Galerkin orthogonality conditions.

Techniques for improving the convergence behavior of Krylov subspace methods by

carefully selecting vectors in their implementations are explored. The aim is to deepen

the understanding of these methods, provide insights into their convergence proper-

ties, and identify potential enhancements.

The paper also discusses Krylov methods that are product methods, where the kth

residual rk associated with the approximation xk of the exact solution is expressed as

rk = Ψk(A)Φk(A)r0. Here, Ψk is a polynomial of fixed or variable degree. Specific

choices of Ψk, including local convergence, smoothing, fixed memory, and cost consid-

erations for each iteration, are examined.

Enhancements of product methods such like CGS (Conjugate Gradient Squared) is pre-

sented in the paper.

In conclusion, the paper presents a comprehensive framework for studying Krylov sub-

space methods, investigates their mathematical properties and convergence behaviour,

explores techniques for improvement, and provides numerical examples to demon-

strate the effectiveness of the proposed algorithms.
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Chapter 3

An enhancement of the convergence

of the BiCGStab method for solving

linear systems with single or

multipe right hand side

Abstract

In this paper, we present a technique to improve the convergence of the Bi-Conjugate

Gradient Stabilized (BiCGStab) method. This method was developed by Van der Vorst

for solving nonsymmetric linear systems with a single right-hand side. The global and

block versions of the BiCGStab method have been proposed for solving nonsymmetric

linear systems with multiple right-hand sides. Using orthogonal projectors to minimize

the residual norm in each step, we get an enhancement of the convergence of each ver-

sion of the BiCGStab method. The considered methods are BiCGStab, global BiCGStab,

and block BiCGStab methods, noted respectively Gl-BiCGStab and Bl-BiCGStab. To

show the performance of our enhanced algorithms, we compare them with the stan-

dard, global, and block versions of the well-known Generalized Minimal Residual

method (GMRES).



48
Chapter 3. An enhancement of the convergence of the BiCGStab method for solving

linear systems with single or multipe right hand side

3.1 Introduction

The aim of the BiCGStab method studied in this paper is to solve the following non-

symmetric linear system

Ax = b, (3.1)

where A is a nonsingular matrix in RN×N and the vectors b and x are in RN . Problems

such as (4.1) occur in most applications of scientific computing, engineering applica-

tions, and Navier-Stokes equations in computational fluid dynamics and structural me-

chanics computations based on the finite element analysis. If the order N of the matrix

A is small, we can solve (4.1) using direct methods, but if N is large, direct methods can

be prohibitively expensive both in terms of memory and time. So, iterative methods

become appealing. These methods include Krylov subspace methods. It is true that

current methods give us interesting computational performance, but it is important to

realize that there is no single method that can solve every linear system with desirable

accuracy. However, a number of factors can influence the choice of the method, includ-

ing the conditioning of the matrix A and the number of nonzero values. In literature,

there are many problems of linear systems with a sparse matrix and which are obtained

from real applications (heat transfer, fluid flow, mass transport, etc) by using numerical

strategy for solving partial differential equations (finite difference, finite volume, and

finite element methods). The difference between all the existing methods for solving

linear systems is in the level of accuracy, turnaround time, and storage. For system (4.1)

with a symmetric positive definite matrix, we use the conjugate gradient method (CG).

If A is a symmetric matrix, we use usually the MINRES. Finally, the nonsymmetric case

can be solved using GMRES developed as the most popular and the most optimal in

terms of precision but suffers from storage problems. The nonsymmetric case can also

be solved using some short-recurrence Krylov subsapce methods. We find for example

the BiCG, CGS, and BiCGStab methods. These methods are derived from the extension

of the CG in the non-symmetric case. In this work, we focus on the non-symmetric

case, especially on the BiCGStab method as the most stable method compared with
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BiCG and CGS methods. For more details about all Krylov subspace methods see [95]

and the current book [73].

The BiCGStab method has been developed in [104] for solving (4.1). The block ver-

sion of this method has been given in [33] for solving linear systems with several right

hand-sides. Using projectors and an idea for improvement the convergence of the IDR

method [91], given in [23], we will apply it for giving an enhancement of the BiCGStab

method.

The rest of this paper is organized as follows: in the next section, we recall the algo-

rithm of BiCGStab method [104]. Then, we propose an improvement of the conver-

gence of this algorithm using orthogonal projectors. A partial and full improvement of

the BiCGStab method is proposed and will be called PEnha-BiCGStab(k) and FEnha-

BiCGStab respectively. In Section 3, we focus on the solution of linear systems with

multiple right-hand sides. We will recall the global version of the BiCGStab [57], which

will be called global BiCGStab (Gl-BiCGStab) method. We will also propose two im-

provements of this method, partial and full improvements, which will be called partial

and full enhancement of the global BiCGStab and denoted by PEnha-Gl-BiCGStab(k)

and FEnha-Gl-BiCGStab, respectively. In section 4, we will recall the block version

of the BiCGStab (Bl-BiCGStab) method. We will also propose two improvements of

this method, partial and full improvements, which will be called partial and full en-

hancement of the block BiCGStab and denoted by PEnha-Bl-BiCGStab(k) and FEnha-

Bl-BiCGStab, respectively.

In Section 5, we will present some numerical experiments to compare the proposed

algorithms with the well-known GMRES [92], the global GMRES (Gl-GMRES) [55] and

the block GMRES (Bl-GMRES) [103] methods.

Throughout this article, all vectors and matrices are assumed to be real and the fol-

lowing notation is used. First, MT represents the transpose of any matrix M. For two

vectors x and y in RN , the inner product is 〈x, y〉2 = xTy, with ‖x‖2 =
√
〈x, x〉2 the

Euclidean norm. In the block and global cases, we consider for two matrices X and Y

in RN×m. The inner product is defined by 〈X, Y〉F = Tr
(
XTY

)
, where Tr (Z) denotes

the trace of a square matrix Z. Moreover, the associated norm is the Frobenius norm
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noted ‖.‖F. We denote by I the identity matrix of order N.

3.2 BiCGStab method and its enhancement

The Bi-Conjugate Gradient Stabilized (BiCGStab) algorithm has been developed for

solving nonsymmetric linear system (4.1). This algorithm has been given from the

Conjugate Gradient Squarred (CGS) algorithm of Sonneveld [83], which is obtained

from the Bi-Conjugate Gradient (BiCG) algorithm (see [95]). This last algorithm was

obtained by using the Lanczos bi-orthogonalization (see [95]). All this methods are

Krylov subspace methods for solving linear systems. So, in this section, we give some

theoretical background and some preliminary results. For an initial guess x0, we asso-

ciate a residual vector r0 = b− Ax0.

Definition 3.1. We define the Krylov subspace of order k associated to the matrix A

and vector r0 by

Ks
k (A, r0) = Span

{
r0, Ar0, . . . , Ak−1r0

}
.

Classical Krylov subspace methods compute the approximate solution xk and its corre-

spond residual rk = f − Axk such that

xk − x0 ∈ Kk (A, r0), and rk = Φk(A)r0 for k = 1, . . . , m,

where Φk is a polynomial of degree k. Let

ψm(ξ) = σ0 + σ1ξ + · · ·+ σmξm =
m

∑
i=0

σiξ
i, with ψm(0) = 1,

be the minimal polynomial of the matrix A with respect to the vector r0, i.e.

ψm(A)r0 =
m

∑
i=0

σi Ai r0 = 0, (3.2)
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and

m = min {k such that
k

∑
i=0

σi Air0 = 0, with σ0 = 1}.

If the considered method converge after m iterations, the polynomial matrix Φk(A) can

be written as follow

Φk(A) = φk(A)ψk(A).

The way in which the coefficients of these two polynomials are calculated gives us the

different variants of Krylov subspace methods. For example, in GMRES method

φk(A) = I and ψk(A) = I −WkW†
k

with Wk =
[
Ar0, A2r0, . . . , Akr0

]
and W†

k =
(
WT

k Wk
)−1 WT

k is the pseudo-inverse of the

matrix Wk. The BiCG method is obtained if we consider the following choice

φk(A) = I and ψk(A) = pk (A) = I −Wk

(
W̃T

k Wk

)−1
W̃T

k

with W̃ =
[
r0, ATr0, . . . ,

(
AT)k−1 r0

]
. For more details of this characterization see [23,

95].

Remark 3.2. Hk = I −WkW†
k is an orthogonal projector. Then, the associated resid-

ual vector of GMRES method is defined by an orthogonal projector, hence the optimal

property of this method.

The CGS method is developed to avoid the calculation of the transpose of the matrix A

in the BiCG method, then the residual associated to CGS method is given as follow

rCGS
k = p2

k (A) r0 (3.3)

The CGS algorithm is based on squaring the residual polynomial, and, in cases of irreg-

ular convergence, this may lead to substantial build-up of rounding errors, or possibly

even overflow. The BiCGStab algorithm is a variation of CGS method which was devel-

oped to remedy this difficulty. Instead of seeking a method which delivers a residual

vector of the form (3.3), BiCGStab produces iterates whose residual vectors are of the
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form

rBiCGStab
k = Ψk (A) pk (A) r0 (3.4)

in which, as before, pk (A) is the residual polynomial associated with the BiCG algo-

rithm and Ψk (A) is a new polynomial which is defined recursively at each step with

the goal of “stabilizing” or “smoothing” the convergence behavior of the original algo-

rithm. Specifically, Ψk (A) is defined by the simple recurrence,

Ψk+1 (A) = (I −ωk A)Ψk (A) (3.5)

with ωk is determined by minimizing the norm of the residual. Based on this fact

of minimization and from Remark 3.2, our idea of improving the convergence of the

BiCGStab method comes from the fact that we can give another form to these poly-

nomials to improve convergence, using the data that we have and keeping the other

properties, namely storage and computation time.

The BiCGStab method is summarized by the following algorithm

Algorithm 6 Bi-Conjugate Gradient Stabilized (BiCGStab) [104]

1. x0 ∈ RN guess initial vector;

2. r0 = b− Ax0, p0 = r0, r̃0 = r0;

3. for i = 0, 1, 2 . . .;

4. vi = Api;

5. αi = 〈r̃0, ri〉2 / 〈r̃0, vi〉2;

6. si = ri − αivi;

7. ti = Asi;

8. ωi = 〈ti, si〉2 / 〈ti, ti〉2;

9. xi+1 = xi + αi pi + ωisi;

10. ri+1 = si −ωiti;

11. βi = − 〈r̃0, ti〉2 / 〈r̃0, vi〉2;

12. pi+1 = ri+1 + βi(pi −ωivi);

13. end for.
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We will propose an improvement of the convergence of the BiCGStab method. Two en-

hancements of this method are studied, the first one will be called partial enhancement,

denoted by PEnha-BiCGStab(k), and the second one will be called full enhancement,

denoted by FEnha-BiCGStab. We propose to improve the convergence of the BiCGStab

method by using the following well-known result.

Proposition 3.3. Consider the orthogonal projector

Ql = I − ZlZ†
l ,

where the rectangular matrix Zl is a full rank matrix in RN×l and

Z†
l =

(
ZT

l Zl

)−1
ZT

l ,

is its pseudo-inverse (Moore-Penrose) (for more details of the pseudo inverse see [13]). Applying

the projector Ql to any vector r ∈ RN , we obtain a new vector, which we denote by

rEnha = Qlr.

Then, we have ∥∥∥rEnha
∥∥∥

2
≤ ‖r‖2 . (3.6)

The proof of this proposition is given in [95] page 38.

To improve the convergence of an iterative method for solving linear systems, it is

necessary to minimize and decrease the norm of its residual in as few iterations as

possible. Then, by invoking Proposition 4.3 with the residual vector ri, we obtain

an improvement in the accuracy and stability of the BiCGStab algorithm. Thus, we

will apply an orthogonal projector Qk to the residual of this method to obtain a new

residual with a smaller norm. Furthermore, to avoid a storage problem, we use the k

pairs of vectors already calculated in the BiCGStab method to construct the orthogonal

projector.

The partial enhancement of the convergence of the BiCGStab method (PEnha-BiCGStab(k))
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is given by choosing Zk equal to the k last pairs of vectors [vi, ti], and by adding to line

10 in Algorithm 6 the following instructions

1. Z1 = [pi−k+1, si−k+1, pi−k+2, si−k+2, . . . , pi, si];

2. Zk = AZ1 = [vi−k+1, ti−k+1, vi−k+2, ti−k+2, . . . , vi, ti];

3. Z = Z†
k ri;

4. xPEnha
i = xi + Z1Z;

5. rPEnha
i = ri − ZkZ.

The full enhancement of the convergence of the BiCGStab (FEnha-BiCGStab) method

is defined by choosing Z equal to the all last pairs of vectors

[v0, t0, v1, t1, . . . , vi, ti],

and by adding to line 10 in Algorithm 6 the following instructions

1. Z1 = [p0, s0, p1, s1, . . . , pi, si];

2. Z = AZ1 = [v0, t0, v1, t1, . . . , vi, ti];

3. Z2 = Z†ri;

4. xFEnha
i = xi + Z1Z2;

5. rFEnha
i = ri − ZZ2.

3.3 Global BiCGStab method and its enhancement

In this section, we consider the solution of large and sparse nonsymmetric systems with

multiple right-hand sides of the form

AX = B, (3.7)
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where the coefficient matrix A is a nonsingular real matrix of order N,

X = [x1 x2 . . . xm] and B = [b1 b2 . . . bm] ∈ RN×m,

with m� N.

One class of solvers for solving problem (4.11) are the global methods, which are based

on the use of a global projection process onto a matrix (global) Krylov subspace, in-

cluding global FOM and GMRES methods [55], global BiCG and Bi-CGStab methods

[33], global Hessenberg and CMRH methods [32].

The other class is that of the block solvers which are much more efficient when the

matrix A is relatively dense. The first block solvers are the block conjugate gradient

(Bl-CG) and block bi-conjugate gradient (Bl-BiCG) methods proposed in [74], for non-

symmetric problems, the block generalized minimal residual (Bl-GMRES) algorithm

[103], the block quasi-minimum residual (Bl-QMR) algorithm [39], the block BiCGStab

(Bl-BiCGStab) algorithm [33].

In what follows, we recall the global Bi-Conjugate Gradient Stabilized (Gl-BiCGStab)

algorithm.

We will propose an improvement of the convergence of the Gl-BiCGStab method. Two

enhancements of this method are studied, the first one will be called partial global

enhancement, denoted by PEnha-Gl-BiCGStab(k), and the second one will be called

full global enhancement, denoted by FEnha-Gl-BiCGStab. We propose to improve the

convergence of the Gl-BiCGStab method by using the following well-known result.

Proposition 3.4. Consider the orthogonal projector

Ql = I −ZlZ†
l ,

where the rectangular matrix Zl is a full rank matrix in RN×m and

Z†
l =

(
ZT

l Zl

)−1
ZT

l ,
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Algorithm 7 Global Bi-Conjugate Gradient Stabilized (Gl-BiCGStab) [57]

1. X0 ∈ RN×m guess initial matrix;

2. R0 = B− AX0, P0 = R0, R̃0 = R0;

3. for i = 0, 1, 2 . . .;

4. Vi = APi;

5. αi =
〈

R̃0, Ri
〉

F /
〈

R̃0, Vi
〉

F;

6. Si = Ri − αiVi;

7. Ti = ASi;

8. ωi = 〈Ti, Si〉F / 〈Ti, Ti〉F;

9. Xi+1 = Xi + αiPi + ωiSi;

10. Ri+1 = Si −ωiTi;

11. βi = −
〈

R̃0, Ti
〉

F /
〈

R̃0, Vi
〉

F;

12. Pi+1 = Ri+1 + βi(Pi −ωiVi);

13. end for.

is its pseudo-inverse (Moore-Penrose). Applying the projector Ql to any matrix R ∈ RN×m,

we obtain a new residual, which we denote by

REnha = Ql R.

Then, we have ∥∥∥REnha
∥∥∥

F
≤ ‖R‖F . (3.8)

The proof of this proposition is similar to that of the proposition in the standard case.

By invoking Proposition 4.12 with the residual matrix Ri, we obtain an improvement of

the convergence Gl-BiCGStab algorithm. Thus, we will apply an orthogonal projector

Qk to the residual of this method and then to minimize its norm. To avoid a storage

problem, we use the k pairs of matrices already calculated in the Gl-BiCGStab method

to construct the orthogonal projector.

The partial enhancement of the convergence of the Gl-BiCGStab method (PEnha-Gl-

BiCGStab(k)) is given by choosing Zk equal to the k last pairs of matrices [Vi, Ti], and
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by adding to line 10 in Algorithm 7 the following instructions

1. Z1 = [Pi−k+1, Si−k+1, Pi−k+2, Si−k+2, . . . , Pi, Si] ;

2. Zk = AZ1 = [Vi−k+1, Ti−k+1, Vi−k+2, Ti−k+2, . . . , Vi, Ti] ;

3. Z2 = Z†
k Ri;

4. XPEnha
i = Xi +Z1Z2;

5. RPEnha
i = Ri −ZkZ2.

The full enhancement of the convergence of the Gl-BiCGStab (FEnha-Gl-BiCGStab)

method is defined by choosing Zl equal to the all last pairs of matrices

[P0, S0, P1, S1, . . . , Pi, Si],

and by adding to line 10 in Algorithm 1 the following instructions

1. Z1 = [P0, S0, P1, S1, . . . , Pi, Si] ;

2. Z = AZ1 = [V0, T0, V1, T1, . . . , Vi, Ti] ;

3. Z2 = Z†Ri;

4. XFEnha
i = Xi +Z1Z2;

5. RFEnha
i = Ri −ZZ2.

3.4 Block BiCGStab method and its enhancement

As for Gl-BiCGStab method, we will propose an improvement of the convergence of

the block BiCGStab method by applying the Proposition 4.12. Two enhancements of

this method are proposed, the first one will be called the block partial enhancement,

denoted by PEnha-Bl-BiCGStab(k), and the second one will be called block full en-

hancement, denoted by FEnha-Bl-BiCGStab.

First let us recall the block version of BiCGStab (Bl-BiCGStab).
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Algorithm 8 Block Bi-Conjugate Gradient Stabilized (Bl-BiCGStab) [33]

1. X0 ∈ RN×m guess initial matrix;

2. R0 = B− AX0, P0 = R0, R̃0 = R0;

3. for i = 0, 1, 2 . . .;

4. Vi = APi;

5. αi =
(

R̃T
0 Vi
)−1 (R̃T

0 Ri
)
;

6. Si = Ri −Viαi;

7. Ti = ASi;

8. ωi = 〈Ti, Si〉F / 〈Ti, Ti〉F;

9. Xi+1 = Xi + αiPi + ωiSi;

10. Ri+1 = Si −ωiTi;

11. βi = −
(

R̃T
0 Vi
)−1 (R̃T

0 Ti
)
;

12. Pi+1 = Ri+1 + (Pi −ωiVi)βi;

13. end for.

By invoking Proposition 4.12 with the residual vector Ri, we obtain an improvement

of the Bl-BiCGStab algorithm. Thus, we will apply an orthogonal projector Qk to the

residual of this method. To avoid a storage problem, we use the k pairs of matrices

already calculated in the Bl-BiCGStab method to construct the orthogonal projector.

The partial enhancement of the convergence of the Bl-BiCGStab method (PEnha-Bl-

BiCGStab(k)) is given by choosing Zk equal to the k last pairs of matrices [Pi, Si], and

by adding to line 10 in Algorithm 8 the following instructions

1. Zk = [Pi−k+1, Si−k+1, Pi−k+2, Si−k+2, . . . , Pi, Si];

2. Z1 = AZk;

3. Z2 = Z1†Ri;

4. XPEnha
i = Xi +ZkZ2;

5. RPEnha
i = Ri −Z1Z2.
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Remark that Z1 = AZk is given by Algorithm 8

Z1 = AZk = A[Pi−k+1, Si−k+1, Pi−k+2, Si−k+2, . . . , Pi, Si]

= [Vi−k+1, Ti−k+1, Vi−k+2, Ti−k+2, . . . , Vi, Ti].

The full enhancement of the convergence of the Bl-BiCGStab (FEnha-Bl-BiCGStab) method

is defined by choosing Zl equal to the all last pairs of matrices

[P0, S0, P1, S1, . . . , Pi, Si],

and by adding to line 10 in Algorithm 8 the following instructions

1. Z = [P0, S0, P1, S1, . . . , Pi, Si];

2. Z1 = AZ ;

3. Z2 = Z1†Ri;

4. XFEnha
i = Xi +ZZ2;

5. RFEnha
i = Ri −Z1Z2.

We notice that at each iteration we compute two matrices Pi and Si. The choice of

the matrix Zi is crucial because we have 2km vectors in each matrix for the partial

enhancement instead of 2k like in the standard case. Then, the convergence is clear in

these two cases. In other words, if the number of vectors that we use to construct the

orthogonal projector is large, we obtain a clearer improvement in accuracy and stability

and then the convergence will be faster.

3.5 Numerical examples

In this section, we consider the following convection-diffusion equation

 −∆u− α.∇u− βu = f , in Ω

u = 0, on ∂Ω,



60
Chapter 3. An enhancement of the convergence of the BiCGStab method for solving

linear systems with single or multipe right hand side

where Ω = (0, 1)3 and α = (αx, αy, αz)T ∈ R3. The discretization of this equation is

done via centered finite differences. The obtained matrix is sparse. Then, we have used

an example where the existing methods converge. We have shown numerically that the

new methods give an improvement to this convergence. That is what we have shown

theoretically. For all the examples we choose α = (0.5, 0.5, 0.5)T, β = 5 and

Nx = 30, Ny = 20, Nz = 20.

The order of the system is N = Nx × Ny × Nz = 12 000.

In general, to compare two iterative methods in terms of convergence accuracy and

stability, we need to compare the history of the norm of the residual and error vectors.

Numerically, sometimes, even if the residual norm gives calculation results, the error

norm does not. That is why it is necessary to check this also for the new methods too.

We define the residual norm ‖rk‖2 and the error norm ‖ek‖2 in the standard case as

follow

‖rk‖2 =
√
〈rk, rk〉 =

√
rT

k rk.

‖ek‖2 = ‖xk − xtrue‖2 =

√
(xk − xtrue)T (xk − xtrue).

For the global and block case, we use the following formulas

‖Rk‖F =
√
〈Rk, Rk〉F =

√
trace

(
RT

k Rk
)
.

‖Ek‖F = ‖Xk − Xtrue‖F

=
√
〈Xk − Xtrue, Xk − Xtrue〉F

=

√
trace

(
(Xk − Xtrue)T (Xk − Xtrue)

)
,

with xtrue and Xtrue are the exact solution in standard and block cases. We would also

compare the execution time of each method, but in this case, the difference between

the improved and unimproved methods is negligible (See Tables 1, 2 and 3). Because

to minimize the norm of the residual, we have used the matrices and vectors already

computed at each iteration.
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To illustrate the efficiency of our technique we compare the BiCGStab and its enhance-

ments methods for systems with single right-hand sides, given by Algorithm 6 with the

GMRES methods. Then, we apply the classical BiCGStab and new enhanced BiCGStab(k)

(partial and full enhancement of BiCGStab), denoted by PEnha-BiCGStab(k) and FEnha-

BiCGStab for k = 5 and k = 12, we give the curves of residual norms and error norms.

For these methods the right-hand b of the system is chosen as follows

xtrue = rand(N, 1), b = A xtrue,

where xs is the solution of the considered system and the rand function creates a ran-

dom N-vector for xs, with coefficients uniformly distributed in [0, 1] and the initial

guess was taken to be zero. For this case, the tests were stopped as soon as ‖ rn ‖

/ ‖ b ‖≤ 10−10. Figure 1 and Figure 2 illustrate the comparison of these algorithms

for residual and error norms respectively. Remark that the function randn can be also

used, which creates a random matrix or vector, with real random coefficients.

For global and block methods the right hand B of (4.11) is chosen as follows

Xtrue = rand(N, m) B = A Xtrue,

the initial guess matrix equal to zeros(N, m). The tests were stopped as soon as

‖ Rn ‖F / ‖ B ‖F≤ 10−10.

For the global case we compare the global BiCGStab (Gl-BiCGStab) and its enhance-

ments, partial enhancement of global BiCGStab(k) (PEnha-Gl-BiCGStab(k)) and full

enhancement of global BiCGStab (FEnha-Gl-BiCGStab) for k = 5, k = 12 and for m = 6,

with the Gl-GMRES method. Figure 3 and Figure 4 give this comparison of residual and

error norms respectively.

For the block case we compare the block BiCGStab (Bl-BiCGStab) and its enhancements,

partial enhancement of block BiCGStab(s) (PEnha-Bl-BiCGStab(k)) and full enhance-

ment of block BiCGStab (FEnha-Bl-BiCGStab) for k = 5, k = 12 and for m = 6, with the
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Bl-GMRES method. Figure 5 and Figure 6 show this comparison of residual and error

norms respectively.

3.5.1 BiCGStab method
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Figure 3.1: The comparison between residual norms of BiCGStab, its enhancements
and GMRES methods, for k = 5 and k = 12.

Method CPU time (s)
BiCGStab 5.01× 10−1

PEnha-BiCGStab(5) 5.48× 10−1

PEnha-BiCGStab(12) 6.15× 10−1

GMRES 5.89× 10−1

Table 3.1: Comparison of CPU time in the standard case

From the curves of Figures 3.1 and 3.2, we remark that the residual norm and the er-

ror norm of the enhanced algorithms decreases quickly comparing with the existing

methods. Furthermore, for k = 12, the convergence is clearly faster than the case when

k = 5.
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Figure 3.2: The comparison between errors norms of BiCGStab, its enhancements and
GMRES methods, for k = 5 and k = 12.
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Figure 3.3: Comparison between residual norms of Gl-BiCGStab, its enhancements,
Gl-GMRES, for k = 5, k = 12 and for m = 6.

3.5.2 Global BiCGStab method

In Figures 3.3 and 3.4, we observe that the enhanced solvers FEnha-Gl-BiCGStab and

PEnha-Gl-BiCGStab(k) give the best result. In this example, we can remark also that
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Figure 3.4: Comparison between errors norms of Gl-BiCGStab, its enhancements,
Gl-GMRES, for k = 5, k = 12 and for m = 6.

Method CPU time (s)
Gl-BiCGStab 3.69× 100

PEnha-Gl-BiCGStab(5) 5.69× 100

PEnha-Gl-BiCGStab(12) 7.36× 100

GMRES 1.46× 100

Table 3.2: Comparison of CPU time in the global case

for k = 12, the PEnha-Gl-BiCGStab(k) is faster. A slight improvement of stability is

also observed. For k = 5 the enhanced method is still better than Gl-BiCGStab and

Gl-GMRES methods.

3.5.3 Block BiCGStab method

Method CPU time (s)
Bl-BiCGStab 1.90× 100

PEnha-Bl-BiCGStab(5) 4.01× 100

PEnha-Bl-BiCGStab(12) 7.01× 100

GMRES 5.80× 10−1

Table 3.3: Comparison of CPU time in the block case
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Figure 3.5: Comparison between residual norms of Bl-BiCGStab, its enhancements,
and Bl-GMRES, for k = 5, k = 12 and for m = 6.
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Figure 3.6: Comparison between errors norms of Bl-BiCGStab, its enhancements, and
Bl-GMRES, for k = 5, k = 12 and for m = 6.

The curves clearly show that accuracy of the block enhanced methods is better than that

of the Bl-BiCGStab and Bl-GMRES. And this is totally normal, as we have in the global

and block cases, km vectors to construct an orthogonal projector. The Convergence is

faster as the number of vectors increases. Hence the importance of choosing matrices
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Zi for constructing the orthogonal projectors in the global and block cases. The main

aim of this paper is to improve the convergence of the BiCGStab method in terms of

accuracy and stability with keeping the same storage properties and computation time.

Tables show that when using this technique, the difference in computation time is neg-

ligible between the BiCGStab method and the improved BiCGStab method in all three

cases. Here, we have also included the GMRES method as the most optimal, to show

that even though we lose a little in terms of computation time, we still get a significant

improvement in accuracy. So, in tables 1, 2, and 3, we focus on the comparison between

the BiCGStab method and its improved version.

3.6 Conclusion

In this paper, we proposed a new technique to improve the convergence behavior

of the BiCGStab method for the standard, global and block cases. Using orthogonal

projectors, we have proposed an enhancement of the the convergence of BiCGStab

method. The orthogonal projector are constructed using vectors and matrices already

computed in each method to avoid storage problem and then keep the advantage stor-

age of BiCGStab in all cases. Numerically we see that for all three cases, the enhanced

algorithms of BiCGStab are more efficient and they converge faster than BiCGStab and

GMRES methods with negligible deference to the turnaround time.
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Chapter 4

An enhancement of the convergence

of the IDR method

Abstract

In this chapter, we consider a family of algorithms called IDR, based on the induced

dimension reduction theorem. IDR is a family of efficient short recurrence methods,

introduced by Sonneveld and Van Gijzen, for solving large systems of non-symmetric

linear equations. These methods generate residual vectors that must be in a sequence

of nested subspaces. We present the IDR(s) method and give two improvements of its

convergence. We will also define and give the global version of the IDR(s) method, and

describe the partial and complete improvement of its convergence. We will also recall

the block version and give its improvements. Numerical experiments are provided

to illustrate the performances of the derived algorithms compared to the well-known

classical GMRES method for systems with only one right-hand side as well as the global

GMRES method and the block GMRES method for systems with multiple right-hand

sides.
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4.1 Introduction

The aim of the IDR method studied in this chapter is to solve the following non-

symmetric linear system

Ax = f , (4.1)

where A is a matrix in RN×N and the vectors f and x are in RN . The IDR method is a

short recurrence method developed by Sonneveld and Van Gizen [91]. It is shown by

Simoncini and Szyld [92], that IDR(s) is a Petrov Galerkin type method with a particular

choice of the left Krylov subspace like other well-known Krylov subspace methods

(FOM, GMRES, Lanczos, Hessenbeg, QMR).

The rest of this chapter is organized as follows: in the next section, we give a brief

overview of the IDR(s) method. Then, we propose an improvement of the convergence

of the IDR(s) algorithm using orthogonal projectors. A partial and full improvement

of the IDR(s) method is proposed and will be called PEnha-IDR(s) and FEnha-IDR(s)

respectively. In Section 3, we focus on the solution of linear systems with multiple

right-hand sides. We will define the global version and recall the block version of the

IDR(s) method, which will be called global IDR(s) (Gl-IDR(s)) and block IDR(s) (Bl-

IDR(s)) methods. We will also propose two improvements of these methods, partial

and full improvements, which will be called global and block IDR(s) and They noted

by Gl-PEnha-IDR(s) and Bl-FEnha-IDR(s), respectively. In Section 4, we will present

some numerical experiments to compare the proposed algorithms with the well-known

GMRES method [101], the global GMRES method [55] and the block GMRES method

[103].

Throughout this chapter, all vectors and matrices are assumed to be real and the fol-

lowing notation is used. First, MT represents the transpose of any matrix M. For two

vectors x and y on RN , the inner product is 〈x, y〉 = xTy, with ‖x‖ =
√
〈x, x〉 is the

Euclidean norm. In the block and global cases, we consider for two matrices X and Y

in RN×m. The inner product is defined by 〈X, Y〉F = Tr
(
XTY

)
, where Tr (Z) denotes

the trace of a square matrix Z. Moreover, the associated norm is the Frobenius norm

noted ‖.‖F. We denote by IN , the identity matrix of order N.
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4.2 The IDR(s) method

Let x0 be an initial guess and r0 = f − Ax0 is its associate residual. The Krylov subspace

methods are defined by choosing at the kth iteration an approximation xk such that

xk − x0 in Kk = Ks
k (A, r0). Thus, the residual

rk = f − Axk = r0 + A(xk − x0) ∈ Kk+1.

Moreover, these methods satisfy the Petrov-Galerkin condition. Then, for a given set

{Lk} of nested subspaces, the Petrov-Galerkin condition consists of imposing that the

residual rk be orthogonal to the subspace Lk, and finding an approximate solution xk ∈

x0 +Kk such that rk = f − Axk ⊥ Lk. All different choices of the left subspace Lk give

different variant of iterative methods. For example, when Lk = Kk, we obtain the Full

Orthogonal Method (FOM) (see [89]). On the other hand, when Lk = AKk, one has a

minimal residual methods, such as the well-known GMRES method.

The IDR(s) method is a variant of IDR, using s shadow vectors, developed by Sonn-

eveld and Van Gizen [91]. The subspaces used by the IDR algorithms are related to

the Krylov subspace. We will first recall the definition of Krylov subspace of order n

associated to the matrix A and the vector r0 by

Ks
n(A, r0) = span{r0, Ar0, · · · , An−1r0},

where r0 = f − Ax0 with x0 a guess initial approximation of the solution of system

(4.1).

4.2.1 The IDR theorem

The IDR(s) method is based on the following Induction Dimension Reduction (IDR)

theorem [82], which is a generalization of the original IDR theorem [91] to the complex

case, we first review this theorem.

Theorem 4.1. (IDR) [82]
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Let A be any matrix in CN×N , and let G0 be the full Krylov space KN(A, r0). Let S be any

eigensubspace of CN such that S and G0 do not share a nontrivial invariant subspace of A, and

define the sequence Gj, j = 1, 2, · · · , as

Gj =
(

I −ωj A
) (
Gj−1 ∩ S

)
, (4.2)

where the ωj’s are nonzero complex scalars. Then the following hold:

• Gj ⊂ Gj−1, ∀j > 0.

• Gν = {0}, for some ν ≤ N.

From this theorem, we know that the dimension of the nested subspaces Gj decreases.

If all the residual rn = f − Axn can be constructed in the nested subspaces Gj, we may

get the approximate solution in finite steps. At most N + N/s matrix-vector products

will be needed in the generic case for the IDR(s) method [91].

4.2.2 The IDR(s) algorithm

Consider S = N
(

PT) , where P = [p1, p2, . . . , ps] is a full rank matrix in RN×s with

s� N. For all nonzero integers j, the IDR spaces are recursively defined as follows

Gj =
(

I −ωj A
) (
Gj−1 ∩ S

)
. (4.3)

According to the IDR theorem for all j ≤ N, we have Gj ⊂ Gj−1 and there exists ν 6 N

such that Gν = {0}. This is why the IDR theorem can be used to develop an algorithm

for solving linear systems. This is done by constructing residuals rn ∈ Gj, because

according to this theorem, it is possible to generate a sequence of smallest possible

subspaces. Then, the aim of Sonneveld’s approach is, first, to construct subspaces Gj, for

all nonzero integer j where ωj are nonzero scalars. Then, we compute the approximate

solution xn associated to the residual vector rn = b − Axn which is necessarily in Gj.

Thus, the residual rn ∈ Gj can be written as follows

rn =
(

I −ωj A
)

vn−1 with vn−1 ∈ Gj−1 ∩ S . (4.4)
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Since, there exists ν such that Gν = {0}, it follows that there exists an integer m such

that rm ∈ Gν = {0}. The scalars ωj are chosen such that ‖rn‖ is minimal.

Now, to compute rn at each iteration, it is necessary to compute vn−1 and this can be

done by using the fact that vn−1 ∈ S .

In [48], Gutknecht consider

vn−1 = rn−1 − Gn−1c, (4.5)

where for all integers l ≤ s, c = (δl , . . . , δ1)
T ∈ Rl and Gn−1 = [gn−1−l , . . . , gn−2] ∈

RN×l with gi ∈ Gj−1, for i = n− l− 1, · · · , n− 2. From equations (4.4) and (4.5), we get

rn = rn−1 −ωj Avn−1 − Gn−1c. (4.6)

Remark 4.2. In order to determine the s variables δi, the space S can be chosen to be the

left null space of some N × s matrix P = [p1 p2 . . . ps], e. g., S = N (PT), which

can be generated randomly, since the probability that the space G0 ∩ S contains some

eigenvectors of A is zero. Then δi can be determined from the equation

PTvn−1 = 0. (4.7)

We obtain therefore the following s× l system



pT
1 rn−1 − pT

1

(
l

∑
i=1

δign−i

)
= pT

1 rn−1 − pT
1 (Gn−1c) = 0

...

pT
s rn−1 − pT

s

(
l

∑
i=1

δign−i

)
= pT

s rn−1 − pT
s (Gn−1c) = 0.

Under normal circumstances the previous system is uniquely solvable if l = s. Then, to

compute all scalars δi for i = 1, . . . , s, we need s vectors in Gj. Consequently, computing

the first vector in Gj requires s+ 1 vectors in Gj−1, and we may expect rn to be in Gj only

for n ≥ j(s + 1). Define the following matrices

Gn−1 = ∆Rn = [∆rn−1 ∆rn−2 · · · ∆rn−s] , (4.8)



72 Chapter 4. An enhancement of the convergence of the IDR method

and

∆Xn = [∆xn−1 ∆xn−2 · · · ∆xn−s] , (4.9)

where the forward difference operator ∆un = un+1− un is used. Then the computation

of rn ∈ Gj can be implemented by the following algorithm


Calculate c ∈ Rs from

(
PT∆Rn

)
c = PTrn−1,

v = rn−1 − ∆Rn−1c,

rn = v−ωj Av.

Since Gj−1 ⊂ Gj, repeating these calculations will produce new residuals rn+1, rn+2, ...

in Gj. Once s + 1 residuals in Gj have been computed, we can expect the next residual

to be in Gj+1. The approximation xn associated with the residual rn = f − Axn is given

by

xn = xn−1 + ωjv− ∆Xn−1c.
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Putting all the relations together, we get the IDR(s) algorithm.

V. Simoncini and D. Szyld was approved in this work [92] that IDR method can also

be considered as a Petrov Galerkin type method. In this context, the left subspace

considered in IDR method is the following rational Krylov subspace

Wj =
(

Ωj

(
AT
))−1

Kj

(
AT, Q

)
,

where
(
Ωj
(

AT))−1
=
(
Ωj−1

(
AT))−1

((
I −ωj A

)T
)−1

, Ω0(A) = I and Kj
(

AT, Q
)
=

s

∑
i=1
Kj

(
AT, qi

)
. Then, this method consists of finding at the kth iteration, an approxi-

mation xk ∈ x0 +Kk (A, r0) such that for all k > s the residual rk satisfies the following

orthogonality condition

rk ⊥ Wj.

The prototype IDR Algorithm that is described in [91] is only one of many possible

IDR variants see for example [74, 6, 29, 47, 48, 81]. One of the possibilities to make

alternative IDR method is different computation of the intermediate residuals. In IDR

method, the residual is uniquely defined in every s + 1 step. This step corresponds

to the calculation of the first Gj. In order to advance to Gj+1, s additional residuals in

Gj should be computed. These intermediate residuals are not uniquely defined and

their computation leaves freedom to derive algorithmic variants. The residuals do not

depend on how the intermediate residuals are computed. The numerical stability and

efficiency of the specific IDR Algorithm, however, depending on the computation of

the intermediate residuals. On the other hand, to start, we have to choose the s vectors

pi for i = 1, . . . , s which must be linearly independent. Then, we can use any Krylov

subspace method to compute these vectors or simply choose s linearly independent

random vectors as in [91]. While in Krylov subspace method, we start only with one

vector r0. For this reason, IDR method can not include in the unified Krylov subspace

approach as we did in [23] for FOM, GMRES, Hessenberg, Lanczos [59], QMR, CGS [83]

and Bi-CGStab [104] methods. But, for s = 1, we have IDR method is mathematically
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Algorithm 9 IDR(s) Algorithm [91]

1. A ∈ RN×N , x0, f ∈ RN , P ∈ RN×s, P = orth(P), tol ∈ [0, 1], itemax > 0,
r0 = f − Ax0;

2. for n = 0 to s− 1 do (build s vectors in G0)

3. v = Arn;

4. ω = (vTrn)/(vTv);

5. ∆xn = ωrn; ∆rn = −ωv;

6. rn+1 = rn + ∆rn; xn+1 = xn + ∆xn;

7. end for

8. ∆Rn+1 = [∆rn, . . . , ∆r0]; ∆Xn+1 = [∆xn, . . . , ∆x0];

9. n = s;

10. while ‖rn‖ / ‖b‖ > tol and n < itemax do

11. for k = 0 to s do (build s vectors of Gj)

12. solve c from PT∆Rnc = PTrn;

13. compute q = −∆Rnc, v = rn − q;

14. if k = 0 then

15. t = Av; ω = (tTv)/(tTt);

16. ∆rn = q−ωt; ∆xn = −∆Xnc + ωv;

17. else

18. ∆xn = −∆Xnc + ωv;

19. ∆rn = −A∆xn;

20. end if

21. rn+1 = rn + ∆rn; xn+1 = xn + ∆xn;

22. n = n + 1;

23. ∆Rn = [∆rn−1, . . . , ∆rn−s]; ∆Xn = [∆xn−1, . . . , ∆xn−s];

24. end for

25. end while.
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equivalent to the BiCGStab method as shown in [48, 90] and it is related to Ml(k)Bi-

CGStab method for s > 1 (see [93]) for more details. Then, IDR in this case can be

considered as a product type method.

Now, comparing IDR with GMRES in term of accuracy, in [73], it shown that GMRES

is best than IDR. But IDR is cheaper than GMRES in term of storage and time. For us,

the fact to construct s vectors at each iteration is not a disadvantage. In the following

section, we will show how we can use these vectors to improve the convergence of the

IDR method for any integer s.

4.2.3 Partial and full enhancement of the convergence of the IDR(s) method

We will propose an improvement of the convergence of the IDR(s) method. Two en-

hancements of this method are studied, the first one will be called partial enhancement,

denoted by PEnha-IDR(s), and the second one will be called full enhancement, denoted

by FEnha-IDR(s). We propose to improve the convergence of the IDR(s) method by

using the following well-known result.

Proposition 4.3. Consider the orthogonal projector

Ql = I − ZlZ†
l ,

where the rectangular matrix Zl is a full rank matrix in RN×l and Z†
l =

(
ZT

l Zl
)−1 ZT

l is its

pseudo-inverse (Moore-Penrose) (for more details of the pseudo inverse see [62]). Applying the

projector Ql to any vector r in RN , we obtain a new residual, which denoted by

rEnha = Qlr.

Then, we have ∥∥∥rEnha
∥∥∥ ≤ ‖r‖ . (4.10)
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Remark 4.4. The matrix computed in Algorithm 9

∆Rn = [∆rn−1 ∆rn−2 ∆rn−s] ,

is of full rank. Therefore, the pseudo-inverse of ∆Rn is well defined and its columns

can be used for building the orthogonal projecteur Ql .

By invoking Proposition 4.3 with the residual vector rn, we obtain an improvement in

the accuracy and stability of the IDR(s) algorithm. Thus, we will apply an orthogonal

projector Ql to the residual of this method. However, we will fall into the storage

problem. This problem can be avoided by using the s vectors of Gj already computed

in the IDR(s) method to construct the orthogonal projector.

The partial enhancement of the convergence of the IDR(s) (PEnha-IDR(s)) method is

given by choosing Zl equal to the last column of ∆Rn, (l = 1), and by adding to line 26

in Algorithm 9 the following instructions

1. Z1 = ∆Rn(:, n);

2. Z = Z†
1 ∗ rn+1;

3. xPEnha
n+1 = xn+1 + ∆Xn(:, n) ∗ Z;

4. rPEnha
n+1 = rn+1 − ∆Rn(:, n) ∗ Z;

The full enhancement of the convergence of the IDR(s) (FEnha-IDR(s)) method is de-

fined by choosing Zl equal to ∆Rn, (l = s), and by adding to line 26 in Algorithm 9 the

following instructions

1. Zs = ∆Rn;

2. Z = Z†
s ∗ rn+1;

3. xFEnha
n+1 = xn+1 + ∆Xn ∗ Z;

4. rFEnha
n+1 = rn+1 − ∆Rn ∗ Z;
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Remark 4.5. For building the orthogonal projector Ql , we can also take some of the latest

columns of the matrix ∆Rn.

Using these new vectors, we obtain a new algorithm that improves the convergence of

IDR algorithm which is denoted by EnhaIDR and summarized in Algorithm 9.

Proposition 4.6. When s is large we obtain a remarkable enhancement of accuracy and stabil-

ity.

Proof. We can show this mathematically by remarking that, if we have more than s lin-

early independent vectors, we can use them to construct an other orthogonal projector.

Then, we minimize the norm of the last enhanced residual vector. This can be observed

numerically in the last section.

4.3 Global and block IDR(s) methods

In this section, we consider the solution of large and sparse nonsymmetric systems with

multiple right-hand sides of the form

AX = F, (4.11)

where the coefficient matrix A is a nonsingular real matrix of order N, X = [x1 x2 . . . xm]

and B = [ f1 f2 . . . fm] ∈ RN×m, with m� N.

One class of solvers for solving problem (4.11) are the global methods, which are based

on the use of a global projection process onto a matrix (global) Krylov subspace, includ-

ing global FOM and GMRES methods [55], global BiCG and BiCGStab methods [33],

global Hessenberg and CMRH methods [32].

The other class is that of the block solvers which are much more efficient when the

matrix A is relatively dense. The first block solvers are the block conjugate gradi-

ent (Bl-CG) and the block bi-conjugate gradient (Bl-BiCG) methods proposed in [74],

for nonsymmetric problems, the Bl-BiCG, the block generalized minimal residual (Bl-

GMRES) algorithm [103], the block quasi-minimum residual (Bl-QMR) algorithm [39],
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Algorithm 10 PEnhaIDR algorithm

1. A ∈ Rn×n, x0, f ∈ Rn, Q ∈ Rn×s, tol ∈ [0, 1] , itemax > 0, r0 = f − Ax0;

2. For k = 0, . . . , s− 1, do (Construct s initial vectors in G0)

3. u = Ark; ω = 〈u, rk〉 / 〈u, u〉 ;

4. dxk = ωrk; drk = −ωu;

5. rk+1 = rk + drk; xk+1 = xk + dxk;

6. End for

7. dRk+1 = [drk, . . . , dr0] ; dXk+1 = [dxk, . . . , dx0] ;

8. k = s

9. While ‖rk‖ > tol or k < itemax

10. For j = 0, . . . , s, do (Construct s vectors of Gj)

11. Solve the system QTdRkc = QTrk and compute u = rk − dRkc;

12. If k = 0, then

13. t = Au;

14. ω = 〈t, u〉 / 〈t, t〉 ;

15. drk = −dRkc−ωt; dxk = −dXkc + ωu;

16. Else if

17. dxk = −dXkc + ωu; drk = −Adxk;

18. End if

19. rk+1 = rk + drk; xk+1 = xk + dxk; k = k + 1;

20. dRk = [drk−1, . . . , drk−s] ; dXk = [dxk−1, . . . , dxk−s] ;

21. wk = dR†
krk+1;

22. rEnha
k+1 = rk+1 − dRkwk; xEnha

k+1 = xk+1 + dXkwk;

23. End for

24. End while
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the block BiCGStab (Bl-BiCGStab) algorithm [33], the block Lanczos method [34] have

been developed.

4.3.1 Global IDR(s) method

In this section we will recall some products that will be used to define the global version

of IDR(s) method for solving the system of non-symmetric linear equations (4.11). As

for the IDR(s) method, partial and full enhancement of this version will be proposed.

We will recall the definition of the Kronecker product [62] and of the � product [14] and

give some fundamental properties of the later.

A matrix system of RN×m is said to be F-orthonormal if it is orthonormal with respect to

〈Y, Z〉F = Tr(YTZ). For any matrix A = (ai,j) and any matrix B, the Kronecker product

of A and B is defined by A⊗ B = [ai,jB].

In what follows, we recall the product denoted by � and defined as follows [14].

Definition 4.7. Let A = [A1, A2, · · · , As] and B = [B1, B2, · · · , Bl ] be matrices of dimen-

sion N × sm and N × lm, respectively, where Ai and Bj (i = 1, · · · , s; j = 1, · · · , l) are

N ×m matrices. Then the s× l matrix AT � B is defined by

AT � B =



〈A1, B1〉F 〈A1, B2〉F · · · 〈A1, Bl〉F

〈A2, B1〉F 〈A2, B2〉F · · · 〈A2, Bl〉F
...

...
...

...

〈As, B1〉F 〈As, B2〉F · · · 〈As, Bl〉F


Remark 4.8. 1. If m = 1 then AT � B = ATB.

2. If m = 1, s = 1 and l = 1, then setting A = u ∈ RN , B = v ∈ RN , we have

AT � B = uTv ∈ R.

3. The matrix A = [A1, A2, · · · , As] is F-orthonormal if and only AT � A = Is.

4. If X ∈ RN×m, then XT � X =‖ X ‖2
F.

We will give properties of this product combined with the Kronecker product.

Proposition 4.9. Let A, B, C ∈ RN×sm, D ∈ RN×N , L ∈ Rs and α ∈ R. Then we have
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1. (A + B)T � C = AT � C + BT � C.

2. AT � (B + C) = AT � B + AT � C.

3. (αA)T � C = α(AT � C).

4. (AT � B)T = BT � A.

5. (DA)T � B = AT � (DTB).

6. ‖ AT � B ‖F≤‖ A ‖F‖ B ‖F.

7. AT � (B(L⊗ Im)) = (AT � B)L.

Proof. The first six assertions are proved in [14]. We will prove the last one. We define

A = [A1 A2 . . . As] ∈ RN×sm, B = [B1 B2 . . . Bs] ∈ RN×sm, with Ai, Bi ∈ RN×m and

L = (l1, l2, . . . , ls)T ∈ Rs×1. Then using the definition of the product � we get

AT � (B(L⊗ Im)) = AT �
(

s

∑
i=1

Bili

)

=
s

∑
i=1

(
AT � Bi

)
li

=
(

AT � B
)

L,

and the result follows.

We recall the definition of the global Krylov subspace of order n associated with the ma-

trices A and R0, where R0 = F− AX0 with X0 an initial approximation of the solution,

X∗, of the system (4.11).

Definition 4.10. The subspace Kg
n(A, R0) generated by A and increasing powers of A

applied to R0

Kg
n(A, R0) =

{
n

∑
i=1

γi Ai−1R0; γi ∈ R

}
,
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is called the global Krylov subspace of order n associated with A and R0; see e.g.,[55].

It can be also defined by

Kg
n(A, R0) = span

{
R0, AR0, . . . , An−1R0

}
.

If we set Kn = [R0 AR0 . . . An−1R0] and γ = (γ1, γ2, . . . , γs)T, then using the Kro-

necker product, the subspace Kg
n(A, R0) can be written as follows

Kg
k (A, R0) =

{
n

∑
i=1

Ai−1R0γi; γi ∈ R

}
= {Kn(γ⊗ Im); γ ∈ Rs} .

4.3.1.1 The global IDR(s) algorithm

The global version of the IDR theorem can be given as follows, whose proof is similar

to that of the IDR theorem.

Theorem 4.11. (global IDR)

Let A be any matrix in CN×N , and let Gg
0 be the full global Krylov space Kg

N(A, R0). Let

S g denote any eigensubspace of CN such that S g and Gg
0 do not share a nontrivial invariant

subspace of A, and define the sequence Gg
j , j = 1, 2, · · · , as follows

Gg
j =

(
I −ωj A

) (
Gg

j−1 ∩ S
g
)

, (4.12)

where the ωj’s are nonzero complex scalars. Then the following conditions are satisfied:

• Gg
j ⊂ G

g
j−1, ∀j > 0.

• Gg
ν = {0}, for some ν ≤ N.

The global IDR(s) algorithm is an extension of the IDR(s) algorithm. It can be de-

rived as a translation of the global IDR theorem. Assume that all column vectors of

Rn−s, . . . , Rn−1 belong to Gg
j−1. Then, we can construct the global residual Rn whose

column vectors belong to Gg
j , by defining

Rn = (I −ωj A)Vn−1,
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where Vn−1 is an N ×m matrix such that Vn−1 ∈ G
g
j−1 ∩ S g and the scalar parameter is

obtained by minimizing the Frobenius norm of the residual Rn. To obtain such Vn−1,

suppose that the subspace S g can be written as follows

S g = N (PT) = {Z ∈ RN×m; PT � Z = 0s×1},

for a certain N × sm matrix P. Let

Vn−1 = Rn−1 −
s

∑
i=1

∆Rn−1−iδi, where ∆Rk = Rk+1 − Rk.

Then, the condition Vn−1 ∈ S g can be written

PT �Vn−1 = 0s×1. (4.13)

The coefficients δ1, δ2, , . . . , δs can be obtained by solving the previous equation.

Define c = (δ1, δ2, . . . , δs)
T ∈ Rs and the following matrices

∆Rg
n = [∆Rn−1 ∆Rn−2 · · · ∆Rn−s] , (4.14)

and

∆Xg
n = [∆Xn−1 ∆Xn−2 · · · ∆Xn−s] . (4.15)

Then, the matrix Rn can be written

Rn = (I −ωj A)Vn−1

= (I −ωj A)

(
Rn−1 −

s

∑
i=1

∆Rn−1−iδi

)
= Rn−1 −ωj AVn−1 − ∆Rg

n(c⊗ Im),
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and using Proposition 4.9, equation (4.13) can be written as follows

PT �Vn−1 = PT �
(

Rn−1 −
s

∑
i=1

∆Rn−1−iδi

)
= PT � Rn−1 − PT �

(
∆Rg

n(c⊗ Im)
)

= PT � Rn−1 −
(
PT � ∆Rg

n
)

c

= 0s×1.

The computation of Rn ∈ Gg
j can be implemented by the following algorithm


Calculate c ∈ Rs from

(
PT � ∆Rg

n
)

c = PT � Rn−1,

Vn−1 = Rn−1 − ∆Rg
n(c⊗ Im),

Rn = Vn−1 −ωj AVn−1.

The approximation Xn is obtained as follows

Xn = Xn−1 + ωjVn−1 −
s

∑
i=1

∆Xn−1−iδi

= Xn−1 + ωjVn−1 − ∆Xg
n (c⊗ Im) .

The scalar ωj is given by

ωj =
〈T, Vn−1〉F
〈T, T〉F

=
Tr(TTVn−1)

Tr(TTT)
, where T = AVn−1.

Finally we obtain the following global IDR(s) algorithm.

4.3.1.2 Partial and full enhancement of the global IDR(s) method

As for IDR(s) method, we will propose an improvement of the convergence of the

global IDR(s) method. Two enhancements of these methods are studied, the first one

will be called the global partial enhancement, denoted by Gl-PEnha-IDR(s), and the

second one will be called global full enhancement, denoted by Gl-FEnha-IDR(s). We
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Algorithm 11 Global IDR(s) algorithm (Gl-IDR(s))

1. A ∈ RN×N , X0, F ∈ RN×m, P ∈ RN×sm, P = orth(P), tol ∈ [0, 1],

itemax > 0, R0 = F− AX0;

2. for n = 0 to s− 1 do (build s matrices in Gg
0 )

3. V = ARn;

4. ω = 〈V, Rn〉F / 〈V, V〉F;

5. ∆Xn = ωRn; ∆Rn = −ωV;

6. Rn+1 = Rn + ∆Rn; Xn+1 = Xn + ∆Xn;

7. end for

8. ∆Rg
n+1 = [∆Rn . . . ∆R0]; ∆Xg

n+1 = [∆Xn . . . ∆X0];

9. H = PT � ∆Rg
n+1, h = PT � Rn+1;

10. n = s;

11. while ‖Rn‖F / ‖B‖F > tol and n < itemax do

12. for k = 0 to s do (build s matrices of Gg
j )

13. solve the system Hc = h;

14. compute Q = −∆Rg
n (c⊗ Im), V = Rn −Q;

15. if k = 0 then

16. T = AV ; ω = 〈T, V〉F / 〈T, T〉F;

17. ∆Rn = Q−ωT; ∆Xn = −∆Xg
n (c⊗ Im) + ωV;

18. else

19. ∆Xn = −∆Xg
n (c⊗ Im) + ωV; ∆Rn = −A∆Xn;

20. end if

21. Rn+1 = Rn + ∆Rn; Xn+1 = Xn + ∆Xn;

22. n = n + 1;

23. ∆Rg
n = [∆Rn−1 . . . ∆Rn−s]; ∆Xg

n = [∆Xn−1 . . . ∆Xn−s];

24. ∆h = PT � ∆Rn;

25. H(:, n) = ∆h;

26. end for

27. end while



4.3. Global and block IDR(s) methods 85

propose to improve the convergence of the global IDR(s) method by using the following

result.

Proposition 4.12. Consider the orthogonal projector

Ql = I −ZlZ†
l ,

where the rectangular matrix Zl is a full rank matrix in RN×lm and Z†
l =

(
ZT

l Zl
)−1ZT

l its

pseudo-inverse (Moore-Penrose). By applying the projector Ql to any matrix R ∈ RN×m, we

obtain a new residual that denote by

REnha = Ql R.

Then, we have ∥∥∥REnha
∥∥∥

F
≤ ‖R‖F . (4.16)

By invoking Proposition 4.12 with the residual vector Rn, we obtain an improvement of

the global IDR(s) algorithm. We will therefore apply an orthogonal projector Ql to the

residual of this method by using the s matrices of Gg
j already computed in the global

IDR(s) method to construct the orthogonal projector.

The partial improvement of the convergenceof of the global IDR(s) (Gl-PEnha-IDR(s))

method is given by choosing Zl equal to the last column matrix of ∆Rg
n, (l = 1), and by

adding to line 27 in Algorithm 11 the following instructions

1. Z1 = ∆Rg
n(:, (n− 1)m + 1 : nm);

2. Z = Z†
1 ∗ Rn+1;

3. XGl−PEnha
n+1 = Xn+1 + ∆Xg

n(:, (n− 1)m + 1 : nm) ∗ Z ;

4. RGl−PEnha
n+1 = Rn+1 − ∆Rg

n(:, (n− 1)m + 1 : nm) ∗ Z ;

The full improvement of the convergence of the global IDR(s) (Gl-FEnha-IDR(s)) method

is defined by choosing Zl equal to ∆Rg
n, (l = s), and by adding to line 27 in Algorithm

11 the following instructions
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1. Zs = ∆Rg
n;

2. Z = Z†
s ∗ Rn+1;

3. XGl−FEnha
n+1 = Xn+1 + ∆Xg

n ∗ Z ;

4. RGl−FEnha
n+1 = Rn+1 − ∆Rg

n ∗ Z ;

4.3.2 The block IDR(s) method

In this section we consider nonsymmetric linear systems with multiple right-hand sides

(4.11). In order to propose the block version of IDR(s), we first give a variant of the

IDR theorem, which is an extension of IDR theorem to the block case. We will also

recall the block IDR(s) (Bl-IDR(s)), as defined in [28] and we will define the partial

enhancement (PEnha-Bl-IDR(s)) method, and the full enhancement (FEnha-Bl-IDR(s))

of the convergence of this method. We first recall the block Krylov subspace of order n

associate to the matrices A and R0.

Definition 4.13. The subspace Kb
n(A, R0) generated by A and increasing powers of A

applied to R0,

Kb
n(A, R0) =

{
n

∑
i=1

Ai−1R0γi; γi ∈ Rm×m

}
,

is called the block Krylov subspace; see e.g.,[35].

Now we will recall the definition of the block grade of R0 with respect A [47].

Definition 4.14. Let Bn(A, R0) be the subspace defined as follows

Bn(A, R0) := Kn(A, R0(:, 1)) + . . . +Kn(A, R0(:, m)).

Then, the positive integer v(A, R0) defined by

v(A, R0) := min{n| dim(Bn(A, R0))} = dim(Bn+1(A, R0))

= min{n| Bn(A, R0)} = Bn+1(A, R0)
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is called the block grade of R0 with respect to A.

Remark 4.15. If X∗ is the exact block solution of AX = B, then

X∗ ∈ X0 +Kb
v(A,R0)

(A, R0).

4.3.2.1 The block IDR(s) algorithm

Now we will recall the extension of the IDR theorem to the block case given by [28].

Theorem 4.16. (Block IDR). Let A be any matrix in CN×N , and let Gb
0 be the full block Krylov

space Kb
v(A,R0)

(A, R0). Let Sb denote any eigensubspace of CN such that Sb and Gb
0 do not

share a nontrivial invariant subspace of A, and define the sequence Gb
j , j = 1, 2, · · · , as follows

Gb
j =

(
I −ωj A

) (
Gb

j−1 ∩ Sb
)

, (4.17)

where the ωj’s are nonzero complex scalars. Then the following conditions are satisfied:

• Gb
j ⊂ Gb

j−1, ∀j > 0.

• Gb
ν = {0}, for some ν ≤ v(A, R0).

The block IDR(s) method is a natural extension of the IDR(s) method. It can be de-

rived as a translation of the block IDR theorem. Suppose that all column vectors of

Rn−s, . . . , Rn−1 belong to Gb
j−1. Then we can construct the block residual Rn whose

column vectors belong to Gb
j , by defining

Rn = (I −ωj A)Vn−1,

where Vn−1 is an N×m matrix whose column vectors belong to Gb
j−1∩Sb and the scalar

parameter is obtained by minimizing the Frobenius norm of the block residual Rn. To

obtain such Vn−1, suppose that the subspace Sb can be written as Sb = N (PT) for some
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N × sm matrix P. Let

Vn−1 = Rn−1 −
s

∑
i=1

∆Rn−1−iγi, where ∆Rk = Rk+1 − Rk.

Then the condition Vn−1 ∈ Sb can be written

PTVn−1 = 0.

The m×m matrices γ1, γ2, , . . . , γs can be obtained by solving the previous equation.

The approximation is obtained as follows

Xn = Xn−1 + ωjVn−1 −
s

∑
i=1

∆Xn−1−iγi.

The scalar ωj is given by

ωj =
〈T, Vn−1〉F
〈T, T〉F

=
Tr(TTVn−1)

Tr(TTT)
, where T = AVn−1.

Finally we obtain the following block IDR(s) algorithm.
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4.3.2.2 Partial and full enhancement of the block IDR(s) method

As for IDR(s) method, we will propose an improvement of the convergence of the block

IDR(s) method by applying the proposition 4.3. Two enhancements of this method are

proposed, the first one will be called the block partial enhancement, denoted by Bl-

PEnha-IDR(s), and the second one will be called block full enhancement, denoted by

Bl-FEnha-IDR(s).

The partial enhancement of the block IDR(s) (Bl-PEnha-IDR(s)) method is given by

choosing Zl equal to the last column matrix of ∆Rb
n, l = 1, and by adding to line 27 in

Algorithm 12 the following instructions

1. Z1 = ∆Rb
n(:, (n− 1)m + 1 : nm);

2. Z = Z†
1 ∗ Rn+1;

3. XBl−PEnha
n+1 = Xn+1 + ∆Xb

n(:, (n− 1)m + 1 : nm) ∗ Z ;

4. RBl−PEnha
n+1 = Rn+1 − ∆Rb

n(:, (n− 1)m + 1 : nm) ∗ Z ;

The full enhancement of the convergence of the block IDR(s) (Bl-FEnha-IDR(s)) method

is defined by choosing Zl equal to ∆Rb
n, l = s, and by adding to line 27 in Algorithm 12

the following instructions

1. Zs = ∆Rb
n;

2. Z = Z†
s ∗ Rn+1;

3. XBl−FEnha
n+1 = Xn+1 + ∆Xb

n ∗ Z ;

4. RBl−FEnha
n+1 = Rn+1 − ∆Rb

n ∗ Z ;

Using this notations and formulas, we propose a new algorithm named for us Bl-

EnhaIDR, which improve the convergence of the Bl-IDR algorithm

Remark 4.17. We will see in the numerical examples that, the enhancement is clearly

seen in the block global case. In fact, we assume that any breakdown occur, we use

the s blocks matrices ∆R (:, (j− 1)p + 1 : jm) of size n× m which form a family of in-

dependent blocks considering the inner product 〈., .〉F.Then, as we said in section 3, if
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Algorithm 12 Block IDR(s) algorithm (Bl-IDRs))

1. A ∈ RN×N , X0, F ∈ RN×m, P ∈ RN×sm, P = orth(P), tol ∈ [0, 1],

itemax > 0, R0 = F− AX0;

2. for n = 0 to s− 1 do (build s matrices of Gb
0)

3. V = ARn;

4. ω = 〈V, Rn〉F / 〈V, V〉F;

5. ∆Xn = ωRn; ∆Rn = −ωV; Rn+1 = Rn + ∆Rn; Xn+1 = Xn + ∆Xn;

6. end for

7. ∆Rb
n+1 = [∆Rn . . . ∆R0]; ∆Xb

n+1 = [∆Xn . . . ∆X0];

8. H = PT∆Rb
n+1, h = PTRn+1;

9. n = s;

10. while ‖Rn‖F / ‖B‖F > tol and n < itemax do

11. for k = 0 to s do (build s matrices of Gb
j )

12. solve the system HC = h;

13. compute Q = −∆Rb
nC, V = Rn −Q;

14. if k = 0 then

15. T = AV ; ω = 〈T, V〉F / 〈T, T〉F;

16. ∆Rn = Q−ωT; ∆Xn = −∆Xb
nC + ωV;

17. else

18. ∆Xn = −∆Xb
nC + ωV; ∆Rn = −A∆Xn;

19. end if

20. Rn+1 = Rn + ∆Rn; Xn+1 = Xn + ∆Xn;

21. n = n + 1;

22. ∆Rb
n = [∆Rn−1 . . . ∆Rn−s]; ∆Xb

n = [∆Xn−1 . . . ∆Xn−s];

23. ∆h = PTRn;

24. H(:, (n− 1)m + 1 : nm) = ∆h;

25. end for

26. end while
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Algorithm 13 Block PEnhaIDR method

1. R0 = F− AX0; Q ∈ Rn×sp;

2. For i = 0 to s− 1 do

3. V = ARi, ω =
〈V,Ri〉F
〈V,V〉F

;

4. ∆Xi = ωRi; ∆Ri = −ωVi;

5. Xi+1 = Xi + ∆X(:, ip + 1 : (i + 1)m); Ri+1 = Ri + ∆R(:, ip + 1 : (i + 1)m);

6. End for

7. j = 1; i = s;

8. M = QH∆R; h = QHRi;

9. While maxj=1:m
‖Ri(:,j)‖
‖B0(:,j)‖ > ε do

10. For k = 0 to s do

11. Solve c from Mc = h;

12. H = −∆Rc;

13. V = Ri + H;

14. If k = 0 then

15. T = AVi; ω =
〈T,V〉F
〈T,V〉F

;

16. ∆Ri = H −ωT; ∆Xi = −∆Xc + ωV;

17. Else

18. ∆Xi = −∆Xc + ωV; ∆Ri = −A∆Xi;

19. End if

20. Ri+1 = Ri + ∆Ri; Xi+1 = Xi + ∆Xi;

21. Di+1 = ∆R†
i Ri+1

22. REnha
i+1 = Ri+1 − ∆RiDi+1; XEnha

i+1 = Xi+1 + ∆XiDi+1

23. ∆p = PH∆Rj;

24. Mj = ∆p;

25. h = h + ∆p;

26. i = i + 1; j = j + 1;

27. j = (j− 1) mod s + 1 with ’mod’ is the modulo operation

28. End for

29. End while
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the number of vectors that we use to construct the orthogonal projector is large, we

obtain a clearer improvement of accuracy and stability. This is the case because we

have [∆Rk−1, · · · , ∆Rk−s] of size n× sm.

Even if their approaches are different, IDR and GMRES methods solve nonsymmetric

linear systems. The difference between these methods is in cost, storage and accuracy.

GMRES method is a long-recurrence method this is why it suffers from storage prob-

lems while IDR method is a short-recurrence method. But GMRES method remains the

best in terms of accuracy because it is an orthogonal projection method (see [81]). For

this reason, we tried to give the orthogonality property for IDR method to achieve the

accuracy and stability of GMRES method and keep the fact that IDR method is better

than GMRES method in term of time and storage. Therefore, to compare EnhaIDR with

GMRES in term of memory requirements and time, it is enough to compare IDR with

GMRES because the difference between IDR method and its enhancement is only the

calculation of the new residual

rEnha
k+1 = rk+1 − dRkdR†

krk+1.

4.4 Numerical experiments

In this section, we consider the following convection-diffusion equation

 −∆u− α.∇u− βu = f , in Ω

u = 0, on ∂Ω,

where Ω = (0, 1)3 and α = (αx, αy, αz)T ∈ R3. The discretization of this equation is

done via centered finite differences with the standard 7-point stencil in three dimen-

sions. For all the examples we choose α = (0.5, 0.5, 0.5)T, β = 5 and

Nx = 30, Ny = 20, Nz = 20.

The order of the system is then, N = Nx × Ny × Nz = 12 000.
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To illustrate the efficiency of our technique we compare the enhanced IDR(s) methods

for systems with one right-hand side, given by Algorithm 9 with the GMRES method.

Then, we apply the classical IDR(s) and new enhanced IDR(s) (partial and full enhance-

ment IDR(s)), denoted by PEnha-IDR(s) and FEnha-IDR(s) for different values of s. For

these methods the shadow vectors P and the right-hand b of (4.1) are chosen as follows

P = orth(rand(N, s)), b = rand(N, 1),

where the rand function creates an N × s random matrix for P and a random N-vector

for b, with coefficients uniformly distributed in [0, 1] and the initial guess was taken to

be zero. For this case, the tests were stopped as soon as ‖ rn ‖ / ‖ b ‖≤ 10−10. Fig 4.1

and Fig 4.2 illustrate the comparison of these algorithms.

For global and block methods the shadow matrix P and the right hand B of (4.11) are

chosen as follows

P = orth(rand(N, sm)), B = rand(N, m),

the initial guess matrix equal to zeros(N, m). The tests were stopped as soon as

‖ Rn ‖F / ‖ B ‖F≤ 10−10.

For the global case we compare the global IDR(s) (Gl-IDR(s)) and its enhancements,

global partial enhancement IDR(s) (Gl-PEnha-IDR(s)) and global full enhancement IDR(s)

(Gl-FEnha-IDR(s)) for different values of s and m. Fig 4.3-Fig 4.6 give this comparison.

For the block case we compare the block IDR(s) (Bl-IDR(s)) and its enhancements, block

partial enhancement IDR(s) (Bl-PEnha-IDR(s)) and block full enhancement IDR(s) (Bl-

FEnha-IDR(s)) for different values of s and m. Fig 4.7-Fig 4.10 show this comparison.
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4.4.1 IDR(s) method

We consider different values of s. The following figures illustrate the cases where s = 3

and s = 7 and where s = 8 and s = 12.

Figure 4.1: The comparison between residual norms of IDR(3), IDR(7), PEnha-
IDR(3), FEnha-IDR(3), PEnha-IDR(7), FEnha-IDR(7) and GMRES methods.

Figure 4.2: The comparison between residual norms of IDR(8), IDR(12), PEnha-
IDR(8), FEnha-IDR(8), PEnha-IDR(12), FEnha-IDR(12) and GMRES methods.
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Table 6.2: Numerical results using some MatrixMarket examples.

MatrixMarket IDR IDREnha GMRES

pde225

itemax=100

RES

CPU

7.64e-11

4.41e-03

1.12e-12

1.82e-02

6.92e-11

3.41e-02

gr3030

itemax=60

RES

CPU

7.79e-11

1.43e-02

1.99e-12

3.55e-02

7.36e-11

5.24e-02

jpwh991

itemax=70

RES

CPU

2.13e-08

1.51e-02

2.29e-10

3.1e-02

1.84e-09

6.25e02

pde2961

itemax=260

RES

CPU

1.81e-11

1.51e-2

7.11e-12

1.83e-01

9.61e-11

6.21e-2

jagmesh1

itemax=300

RES

CPU

4.10e-02

5.51e-02

4.55e-03

1.62e-01

6.58e-04

4.41e-01

sherman1

itemax=400

RES

CPU

9.81e-11

4.22e-02

9.91e-12

1.81e-01

9.45e-11

1.15e02

nos3

itemax=400

RES

CPU

1.38e-09

4.01e-02

9.11e-11

1.21e-02

1.21e-10

9.67e-01

cavity05

itemax=500

RES

CPU

9.17e-11

1.26e-01

1.95e-11

2.33e-01

8.87e-11

4.89e-01

cavity10

itemax=600

RES

CPU

4.71e-09

4.11e-01

1.33e-11

7.56e-01

9.74e-11

1.54e00

watt1

itemax=300

RES

CPU

8.15e-10

3.74e-01

5.46e-11

3.93e-01

9.91e-11

6.12e-01

add32

itemax=100

RES

CPU

3.45e-11

6.32e-2

1.75e-12

3.98e-1

8.82e-11

3.52e-01

rdb2048

itemax=100

RES

CPU

2.98e-09

1.24e-01

8.12e-11

2.94e-01

9.58e-11

1.15e01

cdde1

itemax=100

RES

CPU

2.32e-11

2.50e-2

7.94e-13

6.10e-02

9.87e-11

2.11e-01

orsreg1

itemax=400

RES

CPU

5.40e-09

2.31e-01

5.74e-10

5.20e-01

8.32e-10

3.45e01
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In Table 4.4.1, we present different results using GMRES, IDR and IDREnha methods

applying to all matrix market problems used by Meurant in his recently book [73]. In

all this examples, we choose s = 6, the shadow vectors are chosen as follow

Q = orth(rand(n, s)).

The initial guess equal to zero and the stopping criterion was ‖rk‖ ≤ 10−8. Then, If

we compare the CPU time and the last residual norm of each method, we deduce that,

this result confirm the fact that the derived algorithm gives best accuracy comparing

with GMRES method and keep the fact that IDR method is better in term of time and

storage.

4.4.2 Global IDR(s) method

We consider different values of s and of m. We compare the different global IDR(s)

methods and their enhancements with Gl-GMRES method.

Figure 4.3: The comparison between residual norms of Gl-IDR(4), Gl-IDR(8),
Gl-PEnha-IDR(4), Gl-FEnha-IDR(4), Gl-PEnha-IDR(8), Gl-FEnha-IDR(8) and Gl-

GMRES for m = 4.
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Figure 4.4: The comparison between residual norms of Gl-IDR(7), Gl-IDR(12), Gl-
PEnha-IDR(7), Gl-FEnha-IDR(7), Gl-PEnha-IDR(12), Gl-FEnha-IDR(12) and Gl-

GMRES for m = 4.

Figure 4.5: The comparison between residual norms of Gl-IDR(4), Gl-IDR(8) Gl-
PEnha-IDR(4), Gl-FEnha-IDR(4), Gl-PEnha-IDR(8), Gl-FEnha-IDR(8) and Gl-

GMRES for m = 6.
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Figure 4.6: The comparison between residual norms of Gl-IDR(7), Gl-IDR(12), Gl-
PEnha-IDR(7), Gl-FEnha-IDR(7), Gl-PEnha-IDR(12), Gl-FEnha-IDR(12) and Gl-

GMRES for m = 6.

4.4.3 Block IDR(s) method

We consider different values of s and of m. We compare Bl-IDR(s), Bl-PEnha-IDR(s),

Bl-FEnha-IDR(s) with Bl-GMRES.
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Figure 4.7: The comparison between residual norms of Bl-IDR(4), Bl-IDR(8),
Bl-PEnha-IDR(4), Bl-FEnha-IDR(4), Bl-PEnha-IDR(8), Bl-FEnha-IDR(8) and Bl-

GMRES for m = 4.

Figure 4.8: The comparison between residual norms of Gl-IDR(8), Gl-IDR(12), Bl-
PEnha-IDR(8), Bl-FEnha-IDR(8), Bl-PEnha-IDR(12), Bl-FEnha-IDR(12) and Bl-

GMRES for m = 4.

In all these figures, we remark that the derived methods in standard, global and block

cases give more precision than IDR. If we compare also the smoothness of all curves,
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Figure 4.9: The comparison between residual norms of Bl-IDR(4), Bl-IDR(8),
Bl-PEnha-IDR(4), Bl-FEnha-IDR(4), Bl-PEnha-IDR(8), Bl-FEnha-IDR(8) and Bl-

GMRES for m = 6.

Figure 4.10: The comparison between residual norms of Bl-IDR(8), Bl-IDR(12), Bl-
PEnha-IDR(8), Bl-FEnha-IDR(8), Bl-PEnha-IDR(12), Bl-FEnha-IDR(12) and Bl-

GMRES for m = 6.

we remark that the enhanced methods are more stable than IDR method. For s > 8, the

Enhanced IDR gives a better precision comparing with IDR. In this case, the enhanced
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method can also achieves GMRES method in term of accuracy and stability and we

keep the fact that our algorithm is better in term of time and storage. . Then, we

conclude from this example that, we have a clearer enhancement of accuracy when s

increase.

4.5 Conclusion

In this chapter, we proposed a new technique to improve the convergence behavior

of the IDR(s) method for the standard, global and block cases. Using the s linearly

independent vectors already computed, we have constructed orthogonal projectors to

improve the convergence of the IDR(s) method. Furthermore, we have shown numer-

ically that these methods are as efficient as the GMRES method for the standard and

block cases. For the global case, we have given the global version of the IDR(s) and

its improvement. The derived algorithms are also as efficient as the global GMRES

method in term of the precision.
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Achievements and conclusion

In this thesis we have presented a comprehensive framework for studying Krylov sub-

space methods, explored their mathematical properties and convergence behaviour,

and discussed techniques to enhance their performance. The paper covers various as-

pects including the minimal polynomial of matrix A, the relationship between different

methods, the role of generalized inverses, and the use of product methods. The pro-

vided numerical examples further support the analysis and conclusions of the research.

We introduce a comprehensive framework for studying Krylov subspace methods used

to solve linear systems of the form Ax = f , where A is a matrix, x is the unknown

vector, and f is the right-hand side vector. The objective of these methods is to achieve

convergence within a specified number of iterations, denoted as m.

The minimal polynomial Φm of matrix A, associated with the initial residual r0 =

f − Ax0, is a key focus of analysis in the paper. The degree of Φm is m, and the proper-

ties of this minimal polynomial play a crucial role in the convergence behaviour of the

Krylov subspace methods. We establish that Petrov-Galerkin methods and minimal

seminorm methods are specific cases of the broader framework of Krylov subspace

methods. Additionally, it is demonstrated that minimal seminorm methods satisfy im-

plicit Petrov-Galerkin conditions. In this thesis, we present a general formulation for

the iterates of Krylov subspace methods based on generalized inverses. The choice of a

specific left inverse and the construction method of the Krylov basis are important fac-

tors that differentiate various Krylov subspace methods. The mathematical properties

of these methods are described and analysed, with emphasis on their dependency on

two matrices. The thesis proves that specific instances of Krylov subspace methods,

such as CMRH (Conjugate Minimum Residual with Hessenberg matrix) and QMR
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(Quasi-Minimal Residual), satisfy implicit Petrov-Galerkin orthogonality conditions.

Techniques for improving the convergence behavior of Krylov subspace methods by

carefully selecting vectors in their implementations are explored. The aim is to deepen

the understanding of these methods, provide insights into their convergence proper-

ties, and identify potential enhancements. We also discuss Krylov methods that are

product methods, where the kth residual rk associated with the approximation xk of

the exact solution is expressed as rk = Ψk(A)Φk(A)r0. Here, Ψk is a polynomial of

fixed or variable degree. Specific choices of Ψk, including local convergence, smooth-

ing, fixed memory, and cost considerations for each iteration, are examined. Enhance-

ments of product methods such like CGS BiCGStab and IDR(s) method are presented

in the thesis and. In conclusion, we present a comprehensive framework for studying

Krylov subspace methods, investigates their mathematical properties and convergence

behaviour, explores techniques for improvement, and provides numerical examples to

demonstrate the effectiveness of the proposed algorithms.
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Conclusion

Pour conclure, dans cette thèse, on a étudié les versions standard et par blocs de toutes

les méthodes de sous espace de Krylov pour la résolution d’un système linéaire AX = F

avec A une matrice supposée inversible dans Rn×n, F et X deux matrices de Rn×s avec

s � n. Pour s = 1, on a proposé une approche unifiée pour les méthodes standard du

types Krylov. Cette approche est basée sur le fait que toutes les méthodes de Krylov cal-

culent les coefficients de polynôme minimal de la matrice A pour un vecteur résidu ini-

tial. En effet, le vecteur résidu de toute méthode de Krylov s’écrit comme un polynôme

Pk appliquée à la matrice A pour un vecteur initial r0. Si la méthode considérée con-

verge après m itérations le polynôme peut se décomposer en produit de deux autres

polynômes Pm = Qm Mm avec Mm est le polynôme minimal de A pour le vecteur résidu

initial. En utilisant le calcul récursif de l’inverse à gauche de la matrice de Krylov,

on a pu retrouver la plupart des méthodes de Krylov et développer un algorithme

général pour la résolution des systèmes linéaires. L’inverse à gauche de la matrice de

Krylov dépend de deux matrices. Le choix de ces deux matrices et le polynôme Qk

donne les différentes variétés des méthodes de Krylov. Pour un choix particulier des

deux matrices, on a pu améliorer la convergence de quelques méthodes de Krylov. En

effet, on a appliqué des projecteurs orthogonaux aux vecteurs résidus pour minimiser

leurs normes et améliorer la précision de calcul par la suite. De plus, pour éviter les

problèmes de stockage et garder le même stockage, on a pensé à utiliser pour chaque

méthode tous les vecteurs calculer à chaque itération pour construire ces projecteurs

orthogonaux. D’autre part, on a étudié une autre famille de méthodes itératives pour

la résolution des systèmes linéaires appelés IDR. On a montré que l’approche des méth-

odes IDR est différente de celle des méthodes Krylov. Alors, on ne peut l’inclure dans
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notre approche. Ceci n’était pas un inconvénient pour nous car on a pu améliorer sa

convergence au niveau de la précision et la stabilité pour atteindre la précision de la

méthode la plus optimal GMRES en gardant le fait que la méthode IDR est mieux au

niveau du stockage et au niveau de temps. L’amélioration de la convergence se voit

clairement lorsque le nombre de vecteurs utilisés pour construire le projecteur orthog-

onal est grand. Pour ceci, on a considéré les versions par bloc de quelques méthodes de

Krylov et on a appliqué la même technique. Pour illustrer la performance des méthodes

dérivées, on a considéré la fameuse méthode Bl-GMRES en tant que la méthode la plus

optimale. On a montré numériquement qu’on peut atteindre la précision et la stabilité

de la méthode Bl-GMRES.
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