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Résumé: Cette thèse de doctorat aborde les défis de
la fusion de capteurs et de la localisation et de la car-

tographie simultanées (SLAM) pour les systèmes au-

tonomes, en se concentrant spécifiquement sur les

véhicules terrestres autonomes (AGV) et les micro-

véhicules aériens (MAV) naviguant dans des environ-

nements dynamiques et à grande échelle. La thèse

présente une gamme de solutions innovantes pour

améliorer la performance et la fiabilité des systèmes

SLAM à travers cinq chapitres méthodologiques.

Le chapitre d’introduction établit la motivation de

la recherche, en soulignant les défis et les limita-

tions de l’odométrie visuelle utilisant des caméras

hétérogènes. Il décrit également la structure de la

thèse et fournit une analyse approfondie de la littéra-

ture pertinente. Le deuxième chapitre présente IBIS-

Cape, une référence simulée pour valider les systèmes

SLAM haute fidélité basés sur le simulateur CARLA.

Le troisième chapitre présente une nouvelle méth-

ode basée sur l’optimisation pour calibrer une config-

uration visuelle-inertielle RGB-D-IMU, validée par des

expériences approfondies sur des séquences réelles

et simulées. Le quatrième chapitre propose une ap-

proche d’estimation d’état optimale linéaire pour les

MAV afin d’obtenir une localisation de haute précision

avec un retard minimal du système.

Le cinquième chapitre présente le système DH-PTAM

pour un suivi et une cartographie parallèles robustes

dans des environnements dynamiques utilisant des

images stéréo et des flux d’événements. Le sixième

chapitre explore de nouvelles frontières dans le do-

maine du SLAM dense à l’aide de caméras Event,

présentant une nouvelle approche de bout en bout

pour les événements hybrides et le système SLAM

dense à nuages de points. Le septième et dernier

chapitre résume les contributions et les principaux ré-

sultats de la thèse, en mettant l’accent sur les progrès

réalisés dans la fusion de capteurs hétérogènes mul-

timodaux pour les systèmes autonomes naviguant

dans des environnements dynamiques et à grande

échelle. Les travaux futurs comprennent l’étude du

potentiel d’intégration de capteurs de navigation iner-

tielle et l’exploration de composants supplémentaires

d’apprentissage en profondeur pour améliorer la ro-

bustesse et la précision de la fermeture de boucle.

Title: Visual odometry using heterogeneous cameras for simultaneous localization and mapping for au-

tonomous vehicles

Keywords: Visual odometry, Image matching, Event cameras, Stereovision

Abstract: This Ph.D. thesis addresses the challenges
of sensor fusion and Simultaneous Localization And

Mapping (SLAM) for autonomous systems, specifically

focusing on Autonomous Ground Vehicles (AGVs) and

Micro Aerial Vehicles (MAVs) navigating large-scale

and dynamic environments. The thesis presents a

range of innovative solutions to enhance the perfor-

mance and reliability of SLAM systems through five

methodological chapters.

The introductory chapter establishes the researchmo-

tivation, highlighting the challenges and limitations of

visual odometry using heterogeneous cameras. It also

outlines the thesis structure and extensively reviews

relevant literature. The second chapter introduces

IBISCape, a simulated benchmark for validating high-

fidelity SLAM systems based on the CARLA simulator.

The third chapter presents a novel optimization-based

method for calibrating an RGB-D-IMU visual-inertial

setup, validated through extensive experiments on

real-world and simulated sequences. The fourth chap-

ter proposes a linear optimal state estimation ap-

proach for MAVs to achieve high-accuracy localization

with minimal system delay.

The fifth chapter introduces the DH-PTAM system for

robust parallel tracking and mapping in dynamic en-

vironments using stereo images and event streams.

The sixth chapter explores new frontiers in the field

of dense SLAM using Event cameras, presenting a

novel end-to-end approach for hybrid events and

point clouds dense SLAM system. The seventh and

final chapter summarizes the thesis’s contributions

and main findings, emphasizing the advancements

made inmulti-modal heterogeneous sensor fusion for

autonomous systems navigating large-scale and dy-

namic environments. Future work includes investigat-

ing the potential of integrating inertial navigation sen-

sors and exploring additional deep-learning compo-

nents for improving loop-closure robustness and ac-

curacy.
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Synthèse

Cette thèse de doctorat présente des solutions innovantes pour relever les défis de la fusion de données multi-

capteurs, de la localisation et de la cartographie simultanées (SLAM) pour les systèmes autonomes, en se concentrant

spécifiquement sur les véhicules terrestres autonomes (AGV) et les micro-véhicules aériens (MAV) naviguant dans

des environnements dynamiques et à grande échelle. La thèse comprend cinq chapitres méthodologiques, chacun

apportant une solution unique pour améliorer la performance et la fiabilité des systèmes SLAM.

Le chapitre d’introduction établit la motivation de la recherche en mettant l’accent sur les défis et les limita-

tions actuelles de l’odométrie visuelle utilisant des caméras hétérogènes. La philosophie de la recherche consiste à

relever ces défis grâce à une approche innovante qui combine les caractéristiques visuelles extraites des caméras

RVB, de profondeur et d’événements pour estimer la pose du capteur. Cette introduction décrit la structure de la

thèse et ses différents chapitres, qui comprennent une revue de la littérature, l’extraction et la correspondance des

caractéristiques visuelles, l’étalonnage du capteur, l’estimation de l’état hybride, ainsi que le suivi et la cartographie

robustes. La thèse vise à faire progresser le domaine de l’odométrie visuelle en introduisant de nouvelles approches

qui exploitent les forces des caméras hétérogènes pour surmonter les limites desméthodes traditionnelles. En four-

nissant une base solide pour les chapitres suivants, l’introduction prépare le terrain pour la contribution globale de

la thèse au domaine.

Le deuxième chapitre présente IBISCape, un jeu de données simulé pour valider les systèmes SLAM de haute

fidélité qui inclut des API de synchronisation et d’acquisition de données pour la télémétrie de capteurs hétérogènes,

la segmentation de la scène de vérité terrain, les cartes de profondeur et l’égo-mouvement du véhicule. Construit

à l’aide du simulateur CARLA, qui utilise Unreal Engine pour simuler des scènes hautement dynamiques, le jeu de

données comprend 43 sous-ensembles pour l’évaluation de la fiabilité. Ce chapitre propose des cibles d’étalonnage

innovantes pour les cartes CARLA et une couche de prétraitement pour l’intégration des événements des capteurs

DVS dans n’importe quel système Visual-SLAM basé sur des images. Les derniers systèmes SLAM visuels (RVB, pro-

fondeur, événement), inertiels et LiDAR de pointe sont évalués de manière approfondie sur diverses séquences

IBISCape collectées dans des environnements dynamiques simulés à grande échelle.

Le troisième chapitre présente une nouvelle méthode basée sur l’optimisation pour l’étalonnage intrinsèque et

extrinsèque d’une configuration visuelle-inertielle RGB-D-IMU à l’aide d’un algorithme d’intialisation assisté par GPS.

La méthode fournit des estimations initiales fiables pour les paramètres intrinsèques et la trajectoire de la caméra
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RVB sur la base d’uneméthode d’odométrie visuelle (VO) basée sur le flot optique tout en optimisant les paramètres

spatio-temporels tels que la pose de la cible, le nuage de points 3D et les biais de l’IMU en arrière-plan. La méthode

est validée par de nombreux résultats expérimentaux sur des séquences réelles et simulées.

Le quatrième chapitre propose une approche linéaire d’estimation optimale de l’état pour les MAV afin d’obtenir

une localisation de haute précision avec un retard minimal du système. L’approche comprend une technique de

fusion de capteurs basée sur l’optimisation et le filtrage découplés qui permet d’obtenir une précision d’estimation

élevée et une complexité minimale du système. Le système utilise des environnements intérieurs et extérieurs réels

pour des études de localisation de MAV afin de valider et de tester les résultats de la méthode proposée.

Le cinquième chapitre présente le système DH-PTAM pour un suivi et une cartographie parallèles robustes dans

des environnements dynamiques à l’aide d’images stéréo et de flux d’événements. Le système combine les forces

des capteurs visuels multimodaux hétérogènes et utilise l’extraction et la description de caractéristiques basées

sur l’apprentissage profond pour l’estimation afin d’améliorer la robustesse. Les expériences démontrent que DH-

PTAM surpasse les méthodes SLAM visuelles-inertielles de pointe, en particulier dans des scénarios difficiles tels

que les mouvements rapides, la HDR et les occlusions. Le système proposé fournit une solution évolutive et précise

pour la reconstruction 3D et l’estimation de la pose et offre une API Python basée sur la recherche et disponible

publiquement sur GitHub pour d’autres recherches et développements.

Le sixième chapitre explore de nouvelles frontières dans le domaine du SLAM dense à l’aide de caméras évène-

mentielles. Le pipeline proposé est construit sur la bibliothèque open3D pour l’optimisation des graphes de poses

avec un simple paradigme de fermeture de boucle basé uniquement sur les nuages de points estimés basés sur les

événements. L’alignement des nuages de points et l’estimation de la pose relative sont effectués à l’aide de la méth-

ode efficace de l’état de l’art Teaser++ au lieu de la méthode ICP traditionnelle. Enfin, une validation de la preuve de

concept est effectuée sur DSEC, un benchmark public du monde réel.

Le septième chapitre de cette thèse dedoctorat résume les contributions et les principaux résultats de la recherche

présentée dans les chapitres précédents. Cette thèse propose plusieurs solutions nouvelles qui contribuent à faire

avancer la recherche dans le domaine de la fusion de capteurs hétérogènes multimodaux appliquée à la navigation

de systèmes autonomes dans des environnements dynamiques à grande échelle. Les repères proposés, les cibles

d’étalonnage et les couches de prétraitement offrent une validation fiable des systèmes SLAM. Les algorithmes de

calibration et de SLAM proposés permettent une estimation plus précise et plus robuste de la pose. Les techniques

de fusion de capteurs proposées permettent une localisation de haute précision avec un retardminimal du système.

Le système DH-PTAM proposé constitue une solution évolutive et précise pour la reconstruction 3D et l’estimation

de la pose dans des scénarios difficiles. Les travaux futurs comprennent l’étude du potentiel d’intégration de cap-

teurs de navigation inertielle et l’étude de l’intégration de composants d’apprentissage profond supplémentaires

pour améliorer la robustesse et la précision de la fermeture de boucle.



Abstract

This Ph.D. thesis presents innovative solutions to tackle the challenges of sensor fusion and Simultaneous Localiza-

tion AndMapping (SLAM) for autonomous systems, specifically focusing on AutonomousGround Vehicles (AGVs) and

Micro Aerial Vehicles (MAVs) navigating large-scale and dynamic environments. The thesis comprises five method-

ological chapters, each contributing a unique solution to enhance the performance and reliability of SLAM systems.

The introductory chapter establishes the research motivation by emphasizing the current challenges and limi-

tations in visual odometry using heterogeneous cameras. The research philosophy is to address these challenges

through an innovative approach that combines visual features extracted from RGB, depth, and event cameras to

estimate the sensor’s pose. The chapter outlines the thesis structure and its various chapters, which encompass

a literature review, visual feature extraction and matching, sensor calibration, hybrid state estimation, and robust

tracking andmapping. The thesis aims to advance the field of visual odometry by introducing novel approaches that

exploit the strengths of heterogeneous cameras to overcome traditional method limitations. By providing a solid

foundation for subsequent chapters, the introduction prepares the stage for the thesis’s overall contribution to the

field.

The second chapter presents IBISCape, a simulated benchmark for validating high-fidelity SLAM systems that

includes data synchronization and acquisition APIs for telemetry from heterogeneous sensors, ground truth scene

segmentation, depth maps, and vehicle ego-motion. Built upon the CARLA simulator, which employs Unreal Engine

to simulate highly dynamic scenes, the benchmark comprises 43 datasets for reliability assessment. The chapter pro-

poses innovative calibration targets for CARLA maps and a pre-processing layer for integrating DVS sensor events

in any frame-based Visual-SLAM system. The latest state-of-the-art Visual (RGB, Depth, Event)-Inertial-LiDAR SLAM

systems are extensively evaluated on various IBISCape sequences collected in simulated large-scale dynamic envi-

ronments.

The third chapter introduces a novel optimization-basedmethod for intrinsic and extrinsic calibration of an RGB-

D-IMU visual-inertial setup with a GPS-aided optimizer bootstrapping algorithm. The method delivers reliable initial

estimates for the RGB camera intrinsics and trajectory based on an optical flow Visual Odometry (VO) method while

optimizing spatio-temporal parameters such as the target’s pose, 3D point cloud, and IMU biases in the back-end.

The method is validated through extensive experimental results on real-world and simulated sequences.

The fourth chapter proposes a linear optimal state estimation approach for MAVs to achieve high-accuracy lo-
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calization with minimal system delay. The approach includes a decoupled optimization- and filtering-based sensor

fusion technique that achieves high estimation accuracy andminimal system complexity. The systemuses real-world

indoor and outdoor settings for MAV localization studies to validate and test the proposed method’s findings.

The fifth chapter introduces the DH-PTAM system for robust parallel tracking and mapping in dynamic environ-

ments using stereo images and event streams. The system combines the strengths of heterogeneous multi-modal

visual sensors and employs deep learning-based feature extraction and description for estimation to enhance ro-

bustness. Experiments demonstrate that DH-PTAM outperforms state-of-the-art visual-inertial SLAMmethods, par-

ticularly in challenging scenarios such as fast motion, HDR, and occlusions. The proposed system provides a scalable

and accurate solution for 3D reconstruction and pose estimation and offers a research-based Python API publicly

available on GitHub for further research and development.

The sixth chapter explores new frontiers in the field of dense SLAM using Event cameras. The proposed pipeline

is built on the open3D library for pose graph optimization with a simple loop-closure paradigm based only on the

estimated event-based point clouds. Point cloud alignment and relative pose recovery are performedusing the state-

of-the-art efficient method Teaser++ instead of the traditional ICP method. Lastly, a proof of concept evaluation is

performed on DSEC, a real-world public benchmark.

The seventh chapter of this Ph.D. thesis summarizes the contributions and main findings of the research pre-

sented in the preceding chapters. This thesis proposes several novel solutions that contribute to advancing multi-

modal heterogeneous sensor fusion research applied to autonomous systems’ navigation in large-scale and dynamic

environments. The proposed benchmarks, calibration targets, and pre-processing layers offer reliable validation of

SLAM systems. The proposed calibration and SLAM algorithms enable more accurate and robust pose estimation.

The proposed sensor fusion techniques achieve high-accuracy localization withminimal system delay. The proposed

DH-PTAM system provides a scalable and accurate solution for 3D reconstruction and pose estimation in challenging

scenarios. Future work includes investigating the potential of integrating inertial navigation sensors and exploring

the integration of additional deep-learning components for improving loop-closure robustness and accuracy.
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1 Introduction

Abstract
This thesis explores the development of simultaneous localization andmapping (SLAM)

systems using multiple heterogeneous visual sensors to increase robustness and ac-

curacy in challenging environments. It proposes novel integrationmethods for sensor

data into a comprehensive SLAM chain and investigates the benefits of incorporating

unconventional sensors like depth and event cameras. The work revolves around the

idea of using data fusion techniques like filtering and optimization to enhance SLAM

systems’ performance. The thesis provides a structured solution to the scientific gap

in sensor fusion and SLAM for autonomous systems. This includes a benchmark for

SLAM system validation, a novel calibration method for pose estimation, a decoupled

optimization andfiltering-based sensor fusion technique, amulti-modal visual sensor-

based robust pose estimation and 3D reconstruction system, and a dense SLAM sys-

tem using event cameras.

"Nothing in life is to be feared, it is only to be

understood. Now is the time to understand more, so

that we may fear less."

Marie Curie

11
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1.1 Motivation
The field of simultaneous localization and mapping (SLAM) has been a subject of active research in recent years,

as it has significant applications in various fields, including robotics, augmented reality, and autonomous driving.

Despite the popularity of using visual sensors for SLAM, several challenges persist in complex indoor or outdoor

environments, such as smoke, darkness, illumination variations, and seasonal changes (see Figure 1.1).

Figure 1.1: Some challenging driving situations for vision-based SLAM Systems (source: Google).

The motivation of this thesis is to explore the potential benefits of incorporating multiple heterogeneous visual

sensors in SLAM systems to address these challenges. Specifically, this research aims to develop novel methods for

integrating different types of visual sensors into a complete SLAM chain by utilizing calibration, synchronization, and

generic matching techniques. Furthermore, this thesis seeks to overcome limitations in visual odometry and feature

matching approaches and adapt them to different types of visual sensors.

The ultimate goal of this research is to provide new insights into developing more effective and robust SLAM

systems that can have potential applications in various fields. By incorporating unconventional sensors based on

their spectral sensitivity and caption technology, this thesis seeks to contribute to the development of SLAM systems

that can overcome the limitations of conventional approaches in challenging environments. The inclusion of IMU

and GPS sensors in this research can also improve the accuracy and robustness of SLAM systems.

Overall, this thesis aims to build upon existing research and propose novel methods for integrating and utilizing

data from multiple heterogeneous visual sensors in SLAM systems. By doing so, this research can contribute to the

development of more effective and robust SLAM systems with potential applications in various fields.

1.2 Philosophy
The philosophy underlying this PhD thesis is centered on the belief that the integration of multiple heterogeneous

visual sensors can provide significant benefits in the development of simultaneous localization andmapping systems

in complex indoor or outdoor environments. The thesis explores the benefits of incorporating unconventional visual

sensors, such as those with different spectral sensitivities (e.g., depth cameras) and caption technology (e.g., event
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Figure 1.2: A simulated challenging driving scenario with high intensity fog, rain and darkness as seen from left to

right by: RGB camera, Depth sensor, and Event camera (source: IBISCape [1]).

cameras). This is based on the idea that such sensors can capture complementary information that enhances the

accuracy and robustness of the localization and mapping processes (see Figure 1.2).

To achieve the integration of multiple heterogeneous visual sensors, the thesis explores different fusion tech-

niques such as filtering and optimization. The philosophy is based on the belief that these techniques can enhance

the accuracy and robustness of the localization and mapping processes, as they can reduce the effects of noise and

incomplete data.

Overall, the thesis philosophy emphasizes the importance of developing a common representation space for the

primitives extracted from different visual sensors, taking into account the heterogeneity and incompleteness of the

data. This is based on the understanding that the integration of multiple heterogeneous visual sensors can result in

data that is noisy, incomplete, and challenging to work with.

1.3 Thesis Outline
What is the scientific gap in the field of sensor fusion and Simultaneous Localization And Mapping (SLAM) for au-

tonomous systems, particularly in visual odometry using heterogeneous cameras, and how does this thesis address

this gap through its outlined chapters and proposed solutions?

This thesis identifies the scientific gap as the current challenges and limitations in visual odometry using hetero-

geneous cameras, which hinder the performance and reliability of SLAM systems in Autonomous Ground Vehicles

(AGVs) and Micro Aerial Vehicles (MAVs) navigating large-scale and dynamic environments. To address this gap and

towards a complete multi-modal heterogeneous sensor fusion framework (see Figure 1.3), the thesis proposes the

following structure and solutions:

• Chapter 1: Introduction
Establishes the research motivation and philosophy by emphasizing the scientific gap and outlining an inno-
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vative approach to address it.

• Chapter 2: IBISCape: Simulated Benchmark for High-Fidelity SLAM Systems
Presents a benchmark for validating SLAM systems, including data synchronization, calibration targets, and

pre-processing layers that address challenges related to heterogeneous sensor data.

• Chapter 3: Optimization-based Method for Intrinsic and Extrinsic Calibration of an RGB-D-IMU Visual-
Inertial Setup
Introduces a novel calibration method for improving the accuracy and robustness of pose estimation in visual

odometry systems.

• Chapter 4: Linear Optimal State Estimation Approach for MAVs
Proposes a decoupled optimization- and filtering-based sensor fusion technique that enhances localization

accuracy while minimizing system delay.

• Chapter 5: DH-PTAM: Robust Parallel Tracking and Mapping in Dynamic Environments
Develops a system that leverages heterogeneous multi-modal visual sensors and deep learning-based feature

extraction for robust pose estimation and 3D reconstruction.

• Chapter 6: Dense SLAM using Event Cameras
Explores new frontiers in dense SLAM, presenting an end-to-end approach for hybrid events-images dense

SLAM system that further addresses the scientific gap.

• Chapter 7: Conclusion & Perspectives
Summarizes the contributions and findings, emphasizing how the proposed solutions collectively address the

identified scientific gap in the field of sensor fusion and SLAM for autonomous systems.

1.4 Scientific and Experimental Contributions
This thesis addresses the scientific gap in multi-modal sensor fusion for simultaneous localization and mapping

(SLAM) systems in complex indoor or outdoor environments. The proposed methods integrate multiple heteroge-

neous visual sensors, including unconventional sensors based on their spectral sensitivity and caption technology,

and provide reliable calibration and synchronization methods. The proposed methods also address adapting hy-

brid classical and learning-based features to cameras with different spectral sensitivities and combining time, space,

luminance, and motion criteria to establish new events correspondences for matching problems. Additionally, all

the produced publications propose common representation spaces for the new primitives extracted from different

visual sensors, considering the data’s heterogeneity and incompleteness. These contributions can inspire future re-

search on efficient multi-modal calibration and SLAM algorithms based on the fusion of heterogeneous sensors with
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Figure 1.3: A general conceptional schematic for the intended heterogeneous SLAM system. VIO: Visual-Inertial

Odometry. B-spline (T,v): the splinemanifold nodes control parameters; pose (T(R|t)) and velocity (v). OF-VO: Optical

Flow - Visual Odometry. DAVIS sensor: Dynamic and Active VISion Sensor (Event camera). BA: Bundle-Adjustment.
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different caption and spectral technologies for reliable continuous-time 3D scenemapping. The thesis contributions

can be summed up as follows:

• The first contribution of this thesis is the IBISCape simulated benchmark, including telemetry from hetero-

geneous sensors, ground truth scene segmentation, depth maps, and vehicle ego-motion, for Autonomous

Ground Vehicles (AGVs) reliability assessment. It also introduces a novel pre-processing layer for DVS sen-

sor events in any frame-based Visual-SLAM system. This thesis also extensively evaluates the state-of-the-art

Visual/Inertial/LiDAR SLAM systems on various sequences in simulated large-scale dynamic environments.

• The second contribution of this thesis is a novel optimization-based method for intrinsic and extrinsic calibra-

tion of an RGB-D-IMU visual-inertial setup with a GPS-aided optimizer bootstrapping algorithm. This contribu-

tion provides reliable initial estimates for the RGB camera intrinsics and trajectory based on an optical flow

Visual Odometry (VO) method. It also includes experiments on real-world and realistically high-quality simu-

lated sequences to validate the proposed calibration algorithm and estimate each sensor’s contribution in the

multi-modal setup on the vehicle’s pose estimation accuracy.

• The third contribution of this thesis is a hybrid optimization/filtering optimal state estimation approach for

GPS-aided Micro Aerial Vehicles (MAVs) localization in large-scale landscapes. The proposed strategy shows

how the vision sensor can quickly bootstrap a pose and recover from various drifts that affect vision-based

algorithms. This contribution provides extensive quantitative and qualitative analyses utilizing real-world and

large-scale MAV sequences that demonstrate the proposed technique’s higher performance compared to the

most recent state-of-the-art algorithms in terms of trajectory estimation accuracy and system latency.

• The fourth contribution presents the DH-PTAM system for robust parallel tracking and mapping in dynamic

environments using stereo images and event streams. The proposed system builds upon the principles of

S-PTAM and extends it with a deep learning-based approach to handle the sparse and noisy nature of event-

based sensors while leveraging the rich information provided by fusion frames. This work provides exten-

sive experiments on both small-scale and large-scale real-world sequences of publicly available benchmarks,

demonstrating superior performance compared to state-of-the-art methods in terms of robustness and accu-

racy in adverse conditions.

• Finally, theoretical and conceptual modeling of a dense event-based SLAM system is presented, paving the

way for a novel hybrid dense multi-modal sensor fusion algorithm pushing the limits of visual SLAM systems

to new horizons.

These are the scientific collaborations and research articles published during this thesis preparation period:

1. Book chapters:
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• Soliman, Abanob, Fabien Bonardi, Désiré Sidibé, and Samia Bouchafa. "HCALIB: A Hybrid RGB-D-IMU
Pose EstimationandCalibrationMethod."Communications in Computer and Information Science, Springer
2023 - Under Review

2. Journal articles:

• Soliman, Abanob, Fabien Bonardi, Désiré Sidibé, and Samia Bouchafa. "IBISCape: A Simulated Bench-
mark for multi-modal SLAM Systems Evaluation in Large-scale Dynamic Environments." Journal of
Intelligent & Robotic Systems 106, no. 3 (2022): 53. https://doi.org/10.1007/s10846-022-01753-7

• Soliman, Abanob, Hicham Hadj-Abdelkader, Fabien Bonardi, Samia Bouchafa, and Désiré Sidibé. "MAV
Localization in Large-Scale Environments: A Decoupled Optimization/Filtering Approach" Sensors
23, no. 1(2023): 516. https://doi.org/10.3390/s23010516

• Soliman, Abanob, Fabien Bonardi, Désiré Sidibé, and Samia Bouchafa. "DH-PTAM: A Deep Hybrid
Stereo Events-Frames Parallel Tracking And Mapping System." arXiv preprint arXiv:2306.01891 - Un-
der Submission

3. International Conferences:

• Soliman, A.; Bonardi, F.; Sidibé, D. and Bouchafa, S. (2023). Robust RGB-D-IMU Calibration Method
Applied to GPS-Aided Pose Estimation. In Proceedings of the 18th International Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, ISBN 978-989-

758-634-7; ISSN 2184-4321, pages 83-94. https://doi.org/10.5220/0011656800003417

• Khairallah, M.; Soliman, A.; Bonardi, F.; Roussel, D. and Bouchafa, S. (2023). Flow-Based Visual-Inertial
Odometry for Neuromorphic Vision Sensors Using non-Linear Optimization with Online Calibra-
tion. In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer

Graphics Theory and Applications - Volume 5: VISAPP, ISBN 978-989-758-634-7; ISSN 2184-4321, pages 963-

973. https://doi.org/10.5220/0011660400003417

4. National Conferences:

• Soliman, A.; Bonardi, F.; Sidibé, D. and Bouchafa, S. (2023). HCALIB : Méthode hybride d’étalonnage
et d’estimation de pose RVB-D-IMU. In Proceedings of ORASIS 2023 - 19èmes Journées francophones des
jeunes chercheurs en vision par ordinateur, Centre National de la Recherche Scientifique [CNRS].

https://doi.org/10.1007/s10846-022-01753-7
https://doi.org/10.3390/s23010516
https://doi.org/10.5220/0011656800003417
https://doi.org/10.5220/0011660400003417
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2 Heterogeneous SLAM Benchmarking

Abstract
This chapter focuses on introducing IBISCape, a benchmark designed to validate high-

fidelity Simultaneous Localization and Mapping (SLAM) systems. The benchmark pro-

vides simulated data synchronization and acquisition Application Programming Inter-

faces (APIs) for capturing telemetry from different types of sensors, such as ground

truth scene segmentation, depth maps, and vehicle ego-motion. The foundation of

IBISCape is built upon the CARLA simulator, which utilizes the powerful Unreal En-

gine to create highly dynamic scenes. Within this benchmark, there are 43 datasets

available for assessing the reliability of SLAM systems. The chapter also presents in-

novative calibration targets specifically designed for CARLA maps, along with a pre-

processing layer that enables the integration of Dynamic Vision Sensor (DVS) sensor

events into any frame-based Visual-SLAM system. To evaluate the performance of

the latest state-of-the-art Visual (RGB, Depth, Event)-Inertial-LiDAR SLAM systems, ex-

tensive assessments are conducted using various IBISCape sequences obtained from

simulated large-scale dynamic environments.

"The important thing is not to stop questioning.

Curiosity has its own reason for existing."

Albert Einstein

19



20 CHAPTER 2. HETEROGENEOUS SLAM BENCHMARKING

2.1 Introduction
Autonomous vehicles navigating in unknown and dynamic environments need to rely on accurate perception sys-

tems for real-time 3D mapping. These perception systems must function optimally in all weather conditions and

situations. That enables the vehicle to make decisions for its passengers or the surrounding pedestrians and cars.

To this objective, many novel technologies have been developed over the last decade. Some use vision sensors

such as monocular Visual Odometry (VO) [2], which can suffer from estimations up to a scale factor. Innovative so-

lutions to estimate this scale factor by fusion with another sensor like mono/stereo Visual-Inertial Odometry (VIO)

[3, 4, 5] and RGB-D SLAM [6] to add depth information have been proposed. Other works use LiDAR [7] sensor that

provides high precision point clouds mapping of the scene, or use the GPS [8] for localization using satellite signal

triangulation.

Multi-modal datasets can enrich and broaden the research in the Simultaneous Localization andMapping (SLAM)

field, mainly applied to Autonomous Ground Vehicles (AGVs) navigation in large-scale and dynamic environments.

These environments have specific characteristics, such as the dynamic range of the objects’ intensities in the scene.

For example: mapping an indoor small room with proper lighting can be of higher quality than mapping a road in a

city (large-scale) at night with high intensity fog, rain, and wind (outdoors dynamic environment). The advantages of

systemmulti-modality appear when depending on cameras with high dynamic range, such as the DAVIS sensor and

regular low-cost cameras and sensors (IMU/GPS). This multi-modality leads to completing the data shortages during

the scene mapping and AGV’s localization.

Nowadays, multi-modal frameworks of sensors have proven to be attracting the attention of many researchers

in robotics perception for different tasks such as calibration [9, 10] and odometry [11, 12]. That is due to the fact

that heterogeneous sensors that perceive the environment allow the acquisition of complementary information data

about the scene. Moreover, sensors multi-modality can also include redundancy such as stereo-DVS or stereo-RGB

cameras configurations. Having redundancy in the system setup can improve both the precision and the quality of

the collected scene landmarks. Furthermore, some sensors have a high temporal resolution and are sensitive to the

scene intensity changes, such as the DAVIS sensor (Event Camera) [13]. While other sensors can efficiently detect

and track landmarks and scene features in the 3D spatial domain, such as RGB-D cameras [14] and LiDAR [15].

Simulated datasets [16, 12, 17, 18, 19] provide the possibility to have sequences in various complex scenar-

ios. Moreover, setting a hardware data acquisition framework with a specific configuration can be costly and time-

consuming and is prone to multiple limitations such as the carrier (car, handheld, drone), weather conditions, sen-

sors configuration, and synchronization. Furthermore, open sourcing the data acquisition APIs with configurable

calibration targets can widen the research horizon in multi-modal calibration and sensors synchronization to reach

reliable and easy algorithms to implement.

IBISCapemain contributions tomitigate all these hardware configuration constraints and to facilitate themulti-
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Figure 2.1: Full sensor setup CAD model (Top view). The GPS readings are axis-aligned with the ground truth (GT).

The IMU sensor frame is the vehicle body frame of reference with an identity transformation between them I4×4.

modal data synchronization and acquisition process are:

• A benchmark of 43 sequences for multi-modal LiDAR/VI-SLAM applications, besides open-sourcing our multi-

modal data acquisition APIs.

• A simulated core sensor suite of most visual-inertial sensors used in assessing visual SLAM systems, along

with providing high resolution frames of variable quality depending on the dynamic level of the scene. The full

sensor setup is represented in Figure 2.1.

• A solution to calibrate CARLA [20] RGB and DVS cameras with unknown distortion values.

• An advanced high quality 3-channel events pre-processing layer for frame-based Visual-SLAM systems based

on the Event Spike Tensor (EST) representation method [21], that can outperform the latest state-of-the-art

methods, especially in dynamic environments with adverse conditions.

• A comprehensive and extensive evaluation of state-of-the-art VI systems using IBISCape sequences collected

in dynamically simulated large-scale environments, along with a fair comparison with the publicly available

real world SLAM systems evaluation benchmarks.

This chapter is organized as follows: Section 2.2, discusses the advantages and novelty of our benchmark com-

pared to the related datasets in the field of multi-modal visual localization, including the state-of-the-art V/VI/LiDAR

SLAM algorithms. Section 2.3 explains the data acquisition APIs methodologies and the system calibration in de-

tails. Then, an extensive evaluation of the most recent Odometry/SLAM systems using 31 IBISCape SLAM sequences

with multiple modalities is represented in Section 2.4. Finally, Section 2.5, provides concluding remarks about our
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Figure 2.2: The average fog, rain, and wind percentages for sample IBISCape sequences simulated in dynamic

weather. Ti is CARLAmap of Town number (i). The percentage ranges can be set in IBISCape APIs within the weather

simulation class.

work including evaluation observations that motivate and push the development process of newmulti-modal SLAM

techniques forward, especially in dynamic and large-scale environments based on new findings.

2.2 Related Works
2.2.1 Existing Datasets
Themain goal of our benchmark’s data acquisition APIs is to collectmulti-modal sequences suitable formost robotics

perception evaluation, including scene understanding, calibration, and complete SLAM systems. IBISCape APIs are

highly configurable concerning the intrinsic and extrinsic setup of the sensors and include all CARLA sensors till the

version (0.9.11).

Table 2.1 compares the recent SLAM systems evaluation benchmarks from the sensors types and configuration

point of view along with the carrier and ground truth information. Compared to the most recent publicly available

benchmarks, IBISCape includes all the sensors needed to evaluate all the state-of-the-art VIO algorithms in any

desired configuration including data rates and mono/stereo setups.

Since IBISCape is a simulated benchmark, the GT data for the poses, vehicle controls, scene segmentation, and

depth maps are rendered in high precision. This high precision GT data can significantly improve fitting the models

of novel data driven VIO architectures that lacks this high quality training data with the real world datasets and hence

improving the prediction accuracy.

Thanks to the realistic simulations that CARLA simulator can provide, it has become an important data acquisition

environment that recently attracts the attention of many research works in the field on AGVs reliability assessment

[17, 18] and simulation to real world transfer-learning techniques [19]. All these recent state-of-the-art works [17,

18, 19] are proposing CARLA-based simulated datasets that exactly emulate other real world datasets collected in
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exactly similar situations (number of pedestrians or car types), environments (rural, urban, weather conditions), and

sensor setup.

Although the recent works [17, 18, 19] provide high quality sequences with realistic simulations in CARLA, there

still exist some shortages that are considered critical for a simulated dataset usability in SLAM systems evaluations

summed-up as follows:

• The work of [19] simulates the fisheye camera model with a parametric on-sphere projection of the pixels

acquired from a setup of multiple pinhole cameras. However, this work lacks addressing the effect of the

actual radial-tangential distortions of CARLA RGB/DVS pinhole cameras.

• Amore in-depth performance analysis of the V-SLAMalgorithms using a simulatedDAVIS sensor in the dynamic

environments with adverse weather conditions is needed.

• Since CARLA is an outdoor environment simulator, the acquired data should imitate that of the real world

platforms, as a result the SLAM systems evaluation results on these simulated outdoors datasets should be as

close as possible to the evaluations performed using real world datasets.

As an overview of the capabilities of the IBISCape benchmark, we collect simulated sequences on a car equipped

with most of the low-cost sensors that can be used in the field of robotics perception. This simulation is thoroughly

controlled by an autopilot that navigates the car on traffic-aligned roads. Furthermore, weather and scene con-

stituents, including other cars and pedestrians, can be autonomously controlledwithin our APIs, resulting in datasets

that can contend with the real world benchmarks in the literature.

2.2.2 Dynamic Environment Simulation
[16] introduce the concept of dynamic scene simulationwithmoving vehicles. In theworks [17, 18, 19], sequences are

collected with some limited pre-definedweather conditions in CARLA. In our benchmark, we extrapolate the concept

of dynamic scene simulation to an entire dynamic environment simulation. This simulation includesmoving vehicles

and pedestrians, as well as a weather class. The weather ticking function updates the weather states every CARLA

world tick with a specific speed factor and update frequency. The weather states that can be controlled are clouds,

rain, wind, fog, humidity intensity, and sun angles.

A particular observation from sample IBISCape sequences in Figure 2.2 is that our weather update algorithm

generates dynamic weather with high intensity fog, rain, and wind with average percentages of 70%, 45%, and 70%,

respectively. These dynamic weather conditions result in high trajectory estimation errors due to map loss using ex-

isting VIO algorithms. This observation is further verified in Section 2.4 where we compare the trajectory estimation

accuracy in diverse weather conditions.

These weather challenges motivate the development of new VIO techniques based on the hybridization of het-

erogeneous multi-modal sensors to complete the shortages in the map lost during navigation. In Table 2.2, a brief
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comparison regarding the scene dynamic class and the amount of information being processed is represented in

the camera’s frame resolution for all benchmarks represented in Table 2.1. The dynamic level indicators ([C] for

Clear / [M] for Moderate / [D] for Dynamic) in Table 2.2, represent the severity of the [W]eather constituents such

as: rain, fog, wind and lack of luminosity besides indicating the amount and speed of moving objects in the [S]cene

such as other vehicles and walking pedestrians.

Table 2.2: Benchmarks Dynamic Scene Information.

Benchmark RGB Resolution [px] Level1,2

TUM-RGBD 1×640× 480 C

KITTI 2×1384× 1032 C

Malaga Urban 2×1024× 768 M

UMich NCLT 1×1600× 1200 D (W/S)

EuRoC 2×752× 480 D (S)

Zurich 1×1024× 768 M

PennCOSYVIO 2×752× 480 C

TUM-VI 2×1024× 1024 C

Oxford 2×1280× 960 M

KAIST 2×1600× 1200 M

OIVIO 2×1280× 720 C

UZH-FPV 2×640× 480 C

UMA-VI 2×1024× 768 C

Blackbird 2×1024× 768 C

VCU-RVI 1×640× 480 D (S)

TUM-VIE 2×1024× 1024 D (S)

VIODE 2×752× 480 D (S)

EVENTSCAPE 1×512× 256 C

Paris-CARLA-3D 6×2048× 2048 M (W/S)

KITTI-CARLA 2×1392× 1024 M (W/S)

SynWoodScape 1×1024× 1024 M (W/S)

2×1280× 966
2×3264× 2448IBISCape (Ours) 2×1024× 1024 D (W/S)

1C: Clear, M: Moderate, D: Dynamic. 2W: Weather, S: Scene.

2.2.3 Visual Odometry Techniques
The novel VI systems are divided into two prominent techniques: loosely and tightly coupled fusion methodologies

[38]. In loosely coupled fusion [39], the camera is used as a black-box pose estimator [2], and an Extended Kalman

Filter or an optimizer is applied to fuse the visual pose estimate with the pre-integrated noisy pose from IMU [40].

Whereas in tightly coupled fusion, the scene descriptors (feature points) from the camera are directly inserted to

the filter or optimizer to be fused with the IMU readings of the accelerometer and gyroscope using a model that

estimates the pose, visual scale, IMU biases, and also re-project the optimized features to build a precise map of the

scene.

The tightly coupled VI systems can be approached using two architectures: filter-based like MSCKF [41] and
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ROVIO [42], and optimization-based such as VINS-Mono [5], OKVIS [3], and recently ORB-SLAM3 [43] and BASALT

[44]. In the work of [45], they compare all these VIO algorithms (except the recent works: ORB-SLAM3 and BASALT)

in moderately constrained environments with respect to the dynamic level of the scene. They conclude that ROVIO

and VINS-Mono are the best performing techniques concerning system latency, robustness, and accuracy.

In this chapter we focus on evaluating the most recent VI systems: BASALT and ORB-SLAM3 that share the

same mapping layer concept based on ORB descriptors. However, their tracking architectures, IMU pre-integration

methodologies, and loop-closing constraints are different. In Section 2.4.1, a qualitative performance analysis of

BASALT and ORB-SLAM3 on multiple IBISCape SLAM sequences is performed.

Since the DAVIS camera is a visual sensor with the highest dynamic range and temporal resolution (up to 1MHz),

it can be deemed one of the efficient sensors to deal with high speed robotics scenarios [46] where conventional

cameras may fail. Event cameras work on an unconventional caption technology based on the asynchronous detec-

tion of image intensity changes through all pixels on the retina. Novel open-source event-based VO algorithms have

been developed in the last few years, including: monocular tracking (EVO) [47], mapping (EMVS) [48], and stereo

mapping and tracking (ESVO) [46] methods.

However, the current approaches have a computational complexity limitations based on the number of events

and the frame resolution. Another DAVIS sensor limitation is the navigation in high rain, dense fog and dark outdoor

environments. This limitation is recently studied in [49] by fusing RGB frames with DVS events in an object detection

application. In this work, we propose a novel low complexity events-only pre-processing layer that outputs a high

quality 3-channel event tensors that can outperform the data driven approach (E2VID) [50], especially in outdoors

environments with adverse weather conditions.

The LiDAR sensor operates on an efficient ranging technology that measures the distance to target objects based

on the time lapse between the emitted and received laser rays. LiDAR has a sensing range up to 200 meters and

a Field Of View (FOV) up to 360°. Due to its operational technology and technical capabilities, the LiDAR can be

deemed as the most reliable sensor for Odometry (LOAM) [51] and SLAM (MULLS) [52] tasks in large-scale dynamic

environments.

2.3 Core Sensor Suite
Sensors in IBISCape APIs are highly configurable according to the intended mission, we have set an initial sensor

configuration for our experiments that can be easily changed. This initial configuration of the IBISCape core sensor

suite is given in Table 2.1.

Table 2.4 shows the distribution of IBISCape sequences with different sensor modalities and configurations in

all dynamic environmental conditions. All datasets in every sensor suite are synchronized during acquisition and

timestamped in nano-seconds for high precision. Moreover, during the sequence collection, the vehicle control
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pitch (+ve)
pitch (-ve)

Figure 2.3: Excitation of the vehicle pitch and roll angles using bubble bumps for reliable calibration results using

Kalibr.

Table 2.3: Simulated LiDAR Characteristics.

Parameter Value set in CARLA

channels 64

range 100.0 [m]

points_per_second 5e6

rotation_frequency 20 [Hz]

upper_fov 15.0◦

lower_fov −25.0◦

horizontal_fov 360.0◦

atmosphere_attenuation_rate 0.004

dropoff_general_rate 0.45

dropoff_intensity_limit 0.8

dropoff_zero_intensity 0.4

noise_stddev 0.0

forces are saved as normalized vectors within the range [0, 1] and the steering angle in the range [-1, 1].

Simulated LiDAR intrinsics are given in Table 2.3, where atmosphere_attenuation_rate is a factor that defines

the sensor wave length and atmospheric conditions. To ensure a better realistic LiDAR measurements, CARLA de-

fines a random drop proportion of points with a general drop rate factor and a drop rate factor based on the point

intensity.

These control commands are normalized with respect to their maximum attained value based on the chosen

vehicle dynamics. One of the advantages of CARLA simulator is that we can tune the physical properties of the

vehicle and its wheels.

Simulated GPS data is collected with all setups and synchronized with the GT pose. A text file with every frame-

work explains its dataset files contents in detail. The data access manual for the 43 sequences and the acquisition

APIs is given in details in the link in the extended data section in Appendix A.

2.3.1 Cameras Intrinsic & Extrinsic Calibration
One of the advantages of IBISCape benchmark is providing calibration targets for evaluating multi-modal calibration

algorithms as well as SLAM systems performance analysis. The more erroneous the calibration parameters, the

more incorrect pose is estimated. Although the intrinsic calibration parameters of CARLA cameras can be configured
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Table 2.4: IBISCape Sequences & Sensor Setup.

Acquisition Sensor Suite Clear Mod. Dyn.

C
a
li
b
r
a
ti
o
n

IMU 2 - -

2xRGB+IMU (SVI) 2 - -

2xDVS+2xIMU (ESVI) 2 - -

RGB-D 2 - -

LiDAR+2xRGB 2 - -

Full Sensor Setup 2 - -

S
L
A
M

2xRGB+IMU (SVI) 2 2 3

2xDVS+2xIMU (ESVI) 2 2 2

RGB-D 2 2 2

LiDAR+2xRGB 2 2 2

Full Sensor Setup 2 2 2Total = 43 22 10 11

directly in the APIs, there is no direct way to set the lens distortion coefficients till version (0.9.11). Consequently,

we propose introducing the first calibration targets (Checkerboard (7 × 7) and AprilGrid (6 × 6)) to one CARLA map

(Town 3). Moreover, to excite all angles, especially the pitch and roll angles which are not easy to be simulated in a

car, we introduce artificial bumps in the form of bubbles and waves, as shown in Figure 2.3.

Instead of simulating blinking LED lights that cannot be used in amulti-modal calibration framework that includes

RGB frames, we use Kalibr [53] to calibrate the stereo RGB cameras and the stereo DVS sensors after performing

a frame reconstruction from events using the generic framework E2CALIB [54] (sample in Figure 2.4). Since active

illumination cannot be used to calibrate conventional cameras such as mono/stereo-RGB cameras, E2CALIB with

the traditional calibration targets makes it possible to calibrate DVS sensors as any conventional camera. Hence,

all cameras’ intrinsic and extrinsic parameters in a multi-modal framework can be calibrated irrespective of their

caption technology, i.e., frames or events.

All IBISCape cameras operate on a global shuttermodewith a FOVof 90◦. Table 2.5 shows the specificDVS sensors

parameters set during our simulations, including the positive/negative thresholds associated with an increment in

brightness change along with their white noise standard deviation for positive/negative events.

Table 2.5: Simulated DVS Characteristics.

Parameter Value set in CARLA

+ve/-ve_threshold 0.3

sigma_+ve/-ve_threshold 0.0

refractory_period_ns 0.0

log_eps 0.05

The known camera model is a pinhole model with unknown distortion parameters for RGB and DVS cameras.

We calibrate our cameras using Kalibr pinhole-radial-tangential and pinhole-equidistant distortion models. The
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Figure 2.4: Raw events to reconstructed frames using E2CALIB.

calibration process is validated based on two criteria:

• The estimated stereo baselines (extrinsics) compared to the GT values set in our acquisition APIs (see Tables

2.6, 2.7).

• The quality of the optimization process that can be determined from the pixels re-projection errors and the

number of optimization constraints (see Table 2.8).

Table 2.6: Stereo DVS sensors and RGB Cameras intrinsic parameters estimation using Kalibr. fx and fy , cx and

cy are the focal lengths and principal point coordinates, respectively. k1, k2 and k3, k4 are the radial and tangential
distortion coefficients, respectively. Calibration is performed using the Checkerboard target.
Camera Model fx fy cx cy k1 k2 k3 k4

D
V
S

cam0-radtan 517.07 517.59 506.41 513.27 -2.32e-3 7.12e-4 1.97e-4 -8.87e-4

cam1-radtan 517.45 517.79 504.48 512.89 -8.34e-4 -1.08e-3 9.11e-5 -1.28e-3

cam0-equi 375.85 373.29 573.79 513.44 -0.0122 1.9684 -3.8539 2.82

cam1-equi 370.65 368.16 572.65 513.1 0.2912 0.2954 -0.2626 0.2344GT cam0/cam1 512.0 512.0 512.0 512.0 - - - -

R
G
B

cam0-radtan 513.55 513.07 511.0 510.26 1.92e-3 -1.83e-3 -8.5e-4 2.1e-4

cam1-radtan 512.51 512.87 512.0 512.1 -2.75e-3 3.16e-3 3.7e-4 -3.8e-4

cam0-equi 511.11 511.18 511.24 511.0 0.3533 0.065 0.181 -0.058

cam1-equi 512.41 512.31 512.0 512.34 0.3269 0.1084 0.1495 -0.0505GT cam0/cam1 512.0 512.0 512.0 512.0 - - - -

Based on these two criteria and the obtained results, we can conclude that thepinhole-radtan camera-distortion

model best fits both RGB and DVS cameras simulation in CARLA. This conclusion is due to its lowest re-projection

errors and highest stereo baseline estimation accuracy.

We provide all the calibration configuration files and various ROS scripts to convert the raw dataset files to rosbag

and .h5 file formats for Kalibr and E2CALIB frameworks.
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Table 2.7: Estimation quality is further validated by comparison to the stereo baselines set in CARLA. cam0 and cam1

are the left and right cameras, respectively.

Camera Model Stereo Baseline (t [m])

D
V
S

cam0-radtan q=[3.18e-4 -1.77e-3 3.17e-5 1]

cam1-radtan t=[-0.1986 0.0009 0.0131]
cam0-equi q=[3.69e-4 -1.16e-3 -1.14e-4 1]

cam1-equi t=[-0.1902 0.003 0.0115]GT cam0/cam1 q=[0 0 0 1], t=[-0.2 0 0]

R
G
B

cam0-radtan q=[-0.0021 1.45e-4 4e-5 1]

cam1-radtan t=[-0.403 0.0103 -0.004]
cam0-equi q=[-.0014 -3.5e-4 -2e-5 1]

cam1-equi t=[-0.413 0.005 0.01]GT cam0/cam1 q=[0 0 0 1], t=[-0.4 0 0]

Table 2.8: Re-projection errors & optimization constraints.

Camera Model Re-projection errors [px.] Edges

D
V
S

cam0-radtan [0.000132, -0.000016] 61397

cam1-radtan [0.000163, -0.000009] 61397

cam0-equi [-0.000740, 0.000008] 61397

cam1-equi [-0.000703, 0.002294] 61397

R
G
B

cam0-radtan [-0.000034, -0.000007] 29008

cam1-radtan [0.000034, 0.000007] 29008

cam0-equi [-0.000067, 0.000001] 29008

cam1-equi [0.000064, 0.000007] 29008
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2.3.2 Simulated IMU Calibration
IBISCape novel calibration methodology is based on fixing the high quality calibration target in the center of the

frame and moving the vehicle towards it with a complete manual control. Furthermore, adding bumps in its way in

the form of a big wave and spherical bubbles, can ensure the sufficient excitation of the inertial sensor for precise

system (IMU+cameras) calibration.

In CARLA, IMU measurements are modeled as most low-cost real world IMUs containing a particular bias b and

white gaussian noise n. Thus, the GT angular velocities ω and linear accelerations a in the IMU frame are modeled

as

ωGT = ωgyro − bg − ng, aGT = aaccel − ba − na. (2.1)

The standard deviation σwa, σba, σwg, σbg values are given in Table 2.9, and Allan Deviation plots are given in

Figure 2.5 calibrated by the IMU Still Calibration Tool in [34] using a 300 [hrs] of IMU simulated sequence.

In Table 2.9, IMU still calibration shows a remarkable difference between the GT values we set in CARLA and

the estimated ones. This is an expected observation, since in a simulation environment the standard deviation and

bias values set as GT are the dynamic IMU covariance values which can’t be estimated by the static Allan deviation

method [55].

Till CARLA version 0.9.11, the acceleration bias standard deviation value cannot be manually set within the simu-

lation. As a result, an accurate and reliable IMU still calibration is essential to obtain simulated datasets with usable

IMUmeasurements. We evaluate the IBISCape Stereo-Visual Inertial (SVI) sequences using the still calibration values

for the IMU noises.

Table 2.9: Simulated IMU Still Calibration Results.

Parameter CARLA Calibrated

σba [m/s
2/
√
Hz] - 4.983e-3

σwa [m/s
3/
√
Hz] 7e-2 3.167e-6

σbg [rad/s/
√
Hz] - 2.839e-4

σwg [rad/s
2/
√
Hz] 4e-3 1.916e-7

2.3.3 Inter-sensor Extrinsic Parameters
The CADmodel of the GT extrinsic relation between all the sensors in a full sensor setup is represented in Figure 2.6.

The axes shown on the camera’s center-line are given for the visual sensors only: RGB, DVS, Depth, Segmentation.

All IMUs axes conventions are similar to that shown on the IMU0 center-line. Axes color and direction conventions

coincide precisely with the Top view CAD model in Figure 2.1.

There is no orientation change between cameras i.e. δθ = [0, 0, 0] and all cameras have the relative rotation



32 CHAPTER 2. HETEROGENEOUS SLAM BENCHMARKING

Figure 2.5: IMU log-log scaled plot of Allan-variances over the cluster time. We calculate the IMU noises σb and σw at

cluster times 1 sec. and 3 sec. with slopes ∓1/2 respectively.
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RGB0RGB1 DVS0 IMU1DVS1 IMU2 Segmentation
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0.1m 0.1m0.1m0.1m

2
.8

m

Figure 2.6: Full sensor setup CAD model (Front view).

qcam2
cam1

= [0, 0, 0, 1]. In Table 2.10, we give the exact GT values for each sensor location with respect to the IMU0

(body) axes.

In the RGB-D sensor setup, the simulated RGB and Depth cameras have a concentric configuration where both

the focal centers are coincided. Moreover, IBISCape data acquisition APIs are written to be highly configurable with

respect to the inter-sensor extrinsic parameters with the ease of adding and removing sensors.

Table 2.10: IBISCape Full Sensor Setup Extrinsics.

Sensor X,Y,Z Translation to IMU0 [m]

Left RGB0 [0.0, 0.2, -2.8]

Right RGB1 [0.0, -0.2, -2.8]

left DVS0 + IMU1 [0.0, 0.1, -2.8]

Right DVS1 + IMU2 [0.0, -0.1, -2.8]

RGB-D cameras [0.0, 0.0, -2.8]

GPS [0.2, 0.0, -2.8]

LiDAR [0.0, 0.0, -3.0]

GT Segmentation [0.0, 0.0, -2.8]

GT Pose [0.0, 0.0, 0.0]

2.4 Evaluation
2.4.1 Efficient VI Systems
We use our IBISCape sequences to evaluate state-of-the-art monocular and stereo VI-SLAM algorithms which are

ORB-SLAM3 [43] and BASALT VIO [44]. Their choice is because they are the latest state-of-the-art SLAM (ORB-SLAM3)

and VIO (BASALT) algorithms. Accordingly, their extensive evaluation on new large-scale and dynamic environment

(scene and weather) IBISCape sequences can facilitate detecting their limitations and performance regarding their
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accuracy and robustness.

BASALT uses a sparse set of FAST keypoints, tracks them between consecutive frames based on optical flow (KLT)

[56], and uses a pyramidal resolution method to ensure reliable and robust tracking in large-scale displacements

tracking. Two layers for local bundle adjustment and global pose graph optimization are implemented for precise lo-

calization, mapping, and loop-closing. Furthermore, partial marginalization non-linear factors are applied to remove

the IMU and feature outlier measurements for constant latency localization.

ORB-SLAM3 is developed to withstand a prolonged duration of low visual information. When a map is disturbed,

it initiates a new map that will be smoothly merged with previous maps when revisiting similarly mapped areas.

That results in a robust system that operates in dynamic environments and is much more accurate and robust than

previous approaches.

Both ORB-SLAM3 and BASALT relate to the optimization-based tightly-coupled fusion stereo VI systems. In Sec-

tion 2.4.2.1, a detailed evaluation of their performance in large-scale dynamic environments is performed.

In Section 2.4.2.3, our stereo event cameras configuration is used to evaluate the latest open-source stereo DVS

mapping and tracking method ESVO [46], along with the novel event-basedmapping method EMVS [48]. In the work

of E2VID [50], the authors evaluate their event-based frame reconstruction method in the application of monocular

VIO, and theirmethod has shown superior performance compared to the other frame-based and event/frame-based

methods in comparison. However, these experiments are carried out on indoor sequences with ideal environmental

conditions.

In our evaluations on IBISCape, inspired by thework of E2VID, we extrapolate these experiments to include stereo

V-SLAM systems in outdoors dynamic environments. Then, we propose an alternative 3-channel event-based frame

reconstruction layer that can outperform the quality of E2VID visually as shown in Figure 5.8,5.7 and numerically as

given in Table 2.12.

In Section 2.4.2.5, an extensive in-depth evaluations of the latest LiDAR basedOdometry/SLAMalgorithmsMULLS

[52] and an advanced version of LOAM [51] in dynamic environments with adverse weather conditions is provided.

All LiDAR SLAM sequences simulate multiple loop closure detection situations. Section 2.4.2.6 compares the evalu-

ation process which is run on 31 IBISCape sequences given in Table 2.11 simulated in various large-scale dynamic

environments with the real world evaluations on the state-of-the-art benchmarks in literature.

2.4.2 Performance Analysis
To ease the comparison with the previous and future SLAM system benchmarks, the performance analysis is done

using the two known SLAM systems evaluation metrics defined in [57]:

(i) The RMS of Absolute Trajectory Error (ATE) for all (n) estimated poses, and defined as:
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Table 2.11: IBISCape Sequences Specifications.

Sequence

Specifications

Length Duration
Size1

Loop

[m] [sec] Closure

Full Setup

Clear-1 214.6313 60.52 1211 -

Clear-2 251.0401 70.55 1412 -

Moderate-1 368.9815 71.08 1422 -

Moderate-2 104.5391 29.92 599 -

Dynamic-1 217.9678 70.24 1405 -

Dynamic-2 61.2707 23.38 468 -

SVI Setup -

Clear-1 140.2081 70.16 1404 -

Clear-2 141.1631 71.45 1429 ✓
Moderate-1 253.8933 64.40 1288 -

Moderate-2 330.6167 85.98 1719 -

Dynamic-1 248.6546 72.35 1448 -

Dynamic-2 289.0983 74.01 1480 -

Accident 23.6777 6.13 123 -

RGB-D Setup

Clear-1 223.1038 74.95 1500 -

Clear-2 360.5324 89.55 1792 -

Moderate-1 209.1469 72.65 1454 -

Moderate-2 233.6294 70.00 1401 -

Dynamic-1 208.0217 65.50 1311 -

Dynamic-2 406.3022 75.65 1514 -

ESVI Setup -

Clear-1 116.3213 23.98 4672 -

Clear-2 251.5679 60.61 12123 -

Moderate-1 264.8653 72.91 13980 -

Moderate-2 274.8627 61.13 4390 -

Dynamic-1 333.2455 71.54 13997 ✓
Dynamic-2 15.0866 23.87 11771 -

LiDAR Setup

Clear-1 38.2770 13.85 278 ✓
Clear-2 64.8373 22.75 456 ✓
Moderate-1 111.0011 37.50 751 ✓
Moderate-2 235.0245 76.90 1539 ✓
Dynamic-1 81.3070 28.90 579 ✓
Dynamic-2 146.7856 52.25 1046 ✓
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ATE(T̂ (1:n), T
(1:n)
gt ) =

√√√√ 1
n

n∑
i=1
||ti||2 [m], (2.2)

where T̂ (1:n), T
(1:n)
gt ∈ SE(3) are the estimated and ground truth trajectories, respectively. ti ∈ R(3) is the

translation vector of the absolute trajectory errorEi at time step iwhereEi(Ri, ti) = T−1
gt(i)TrelT̂i ∈ SE(3), and

Trel is rigid-body transformation corresponding to the least-squares solution that maps the T̂ trajectory onto

the Tgt trajectory calculated by optimization.

(ii) Relative Pose Error (RPE) at every i-th frame, and defined as:

RPE(T̂ (1:n), T
(1:n)
gt ) = ||δti|| [m], (2.3)

where δti is the translation vector of the relative pose error ei(δθi, δti) = (T−1
gt(i)Tgt(i+∆))−1(T̂ (i)−1

T̂ (i+ ∆)) ∈

se(3) at time step i with a fixed time interval ∆ for our local trajectory increments.

For the orientations, RPE values are given in degrees. We use the same formula after replacing the translation

vector δti with the rotation part δθi in ei by applying the vee operator to the skew-symmetric error matrix:

RPE(T̂ (1:n), T
(1:n)
gt ) = ||⌊δθi⌋∨|| [rad] (2.4)

We discuss a thorough descriptive and analytical evaluation for the latest state-of-the-art SLAM systems in the

following sub-sections. The descriptive and analytical studies for every sensor setup raise the confidence in the

novelty and usability of the IBISCape benchmark, using the calibrated RGB and DVS cameras distortion parameters

along with the IMU still calibration.

To ensure a fair evaluation process, all the data acquisition APIs and benchmarking experiments are executed

on a 16 GB RAM laptop computer running 64-bit Ubuntu 20.04.3 LTS with AMD(R) Ryzen 7 4800h ×16 cores 2.9 GHz

processor and a Radeon RTX NV166 Renoir graphics card.

2.4.2.1 Stereo Visual-Inertial (SVI) Setup Evaluation
IBISCape Stereo Visual Inertial (SVI) sequences push one of the limits of the ORB-SLAM3 system asmentioned in [43],

which is the IMU initialization of planar motion of vehicles like cars. In Figure 2.7(A), this limitation constraint was

further tested using the Dynamic 1 sequence with significantly dimmed light and rapid scene motions. The ORB-

SLAM3 IMU initialization failed to start with the mapping layer. This failure has led to a significant trajectory drift due

to the map loss. This IMU initialization failure problem is also observed in the Dynamic 2 sequence with the BASALT

system.
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Figure 2.7: Trajectories estimated by ORB-SLAM3 and BASALT SLAM systems using IBISCape sequences with SVIsensor setup and RGB-D sensor setup, with comparison to their ground truth and GPS paths. For the set (A) SVI
SETUP, ORB-SLAM3 Stereo Visual Inertial Odometry (SVI) algorithm performance is analysed and compared to the

BASALT SVI algorithm. Whereas for the set (B) RGB-D SETUP, two ORB-SLAM3 algorithms: Monocular RGB and RGB-

D SLAM systems, are assessed with respect to each other after estimation alignment with the GT and scale factor

recovery using the GPS measurements. OS3: ORB-SLAM3.
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In Table 2.12, the other sequences, Clear 1,2, Moderate 1,2, show superior performance for the trajectory

estimation using the ORB-SLAM3 system over BASALT based on both overall ATE and incremental RPE values. IBIS-

Cape SVI sequences are provided in raw and rosbag formats, along with the evaluation configuration files .json

and .yaml for BASALT and ORB-SLAM3.

Although sharing ORB keypoints for loop-closing in BASALT and scene descriptors in ORB-SLAM3, BASALT has

shown superior accuracy and robustness regarding the visual-inertial sub-system than an early version of ORB-

SLAM [44]. This better performance is due to the inertial layer of BASALT that utilizes recovered non-linear factors

summarizing IMU and visual tracking on the higher layer of VIO.

However, the latest version of ORB-SLAM3 proved to be much more accurate than BASALT during evaluation on

most of the IBISCape sequences, as shown in the performance analysis results in Table 2.12. Despite the superior

performance of ORB-SLAM3 over BASALT, we note that the trajectory estimation is much faster in BASALT than in

ORB-SLAM3. This evaluation observation validates the proposed comparison in Table (I) in [43].

2.4.2.2 RGB-D Setup Evaluation
One of the advantages of IBISCape sequences is the variety of its sensors’ multi-modality. While SVI sequences

can provide the scene depth information by stereo RGB cameras and augment the scale factor using the inertial

measurements, IBISCape RGB-D sequences offer another sensor modality to measure the scene depth: the depth

camera. After alignment with the GT and scale factor recovery using the GPS measurements, we evaluate two ORB-

SLAM3 algorithms: the monocular RGB and the RGB-D SLAM systems. In Figure 2.7, it is evident that adding the

depth information results in more accurate trajectory estimation with a minor map loss in dynamic weather.

We notice this map loss clearly with the mono-RGB using Dynamic 1,2, Moderate 1,2 sequences. However, in

clear weather sequences Clear 1,2, the monocular RGB SLAM can outperform the RGB-D SLAM as seen in Table

2.12 with respect to the ATE values. IBISCape RGB-D sequences are provided in raw format with the RGB and Depth

cameras association.txt file for every sequence, along with the evaluation configuration .yaml files for ORB-

SLAM3 RGB-D and mono-RGB systems.

2.4.2.3 Event Stereo Visual-Inertial (ESVI) Setup Evaluation
IBISCape event-based sequences address two corner case scenarios introduced to the event-basedmonocular/stereo

VO algorithms. The first scenario is the planar motion in large-scale environments; this scenario leads to millions

of events fired at locations in the scene that can be tens of meters away from each other. These environments

consume much time to reconstruct a map, leading to significant processing time gaps between the tracking and

mapping layers of the odometry algorithm.

As a result, the ESVO [46] experiments on IBISCape sequences fails during the trajectory estimation giving an error

indicating inconsistency between the tracking andmapping layers, althoughmaps initialize successfully. Accordingly,
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(A) ESVI Setup

GT ESVO EMVS

(B) FULL Setup

Figure 2.8: Pose estimation by ESVO and point cloud reconstruction by EMVS algorithms on ESVI and FULL sensorsetups.
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Before After

Figure 2.9: Histogram of Events before and after the hot pixels removal with 26.39% of events discarded, caused

mainly by fog and rain puddles. Sample from FULL_Dynamic_1 sequence.

to assess ESVO, the evaluation is run by down-sampling the rosbags playing time by a factor of 0.0005. This leads

to high system latency during evaluations; for example, a 23 seconds sequence needs (23/0.0005) seconds to be

evaluated, i.e., nearly 12 hours.

Despite this highly high system latency during evaluations, Figure 2.8 reports noticeably lowATE values compared

to the other frame-based SLAM system. During EMVS [48] event-based mapping evaluations, we notice a significant

map loss due to high fog as seen in sequence Dynamic 1 of the FULL setup, or rapid motions as seen in sequence

Clear 2 of the ESVI setup.

The second scenario is dynamic weather, including fog and rain droplets that can cause random asynchronous

events. Hot pixels in real-world DVS can be hardware defects, but simulated DVS can indicate random rain/fog firings

in CARLA. Applying a hot pixel filter can detect and remove these unexpected events. Figure 2.9 shows a sample of the

hot pixels removed due to fog and rain. Removing hot pixels in the DVS sensor is based on two criteria: the highest

N pixels firing most events or the pixels firing greater than nσ × σ events. nσ is the event occurrence standard

deviation multiplier, and σ is the event occurrence standard deviation.

The second corner case effect is witnessed during evaluating EMVS [48], where black dense blocks of point cloud

points are accumulated on the trajectory during navigation in heavy rain and fog.

To evaluate IBISCape stereo-DVS calibration parameters, we construct stereo-RGB frames from the events us-

ing the E2VID pre-trained model [50]. We assess the ORB-SLAM3 stereo RGB SLAM system on these reconstructed
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frames. Despite filtering the scene from noisy events resulting from fog and rain droplets, Table 2.12 shows a com-

plete failure in trajectory estimation in the case of Dynamic 1 sequence. Due to the dynamic weather conditions

and rapid system dynamics, E2VID frame reconstruction fails with most IBISCape sequences. Consequently, an-

other event-based frame reconstruction method is needed to consider these two corner case scenarios without

losing the high dynamic range that DVS sensors can provide.

2.4.2.4 FULL Sensor Setup Evaluation
Themost significant contribution of the IBISCapebenchmark is its FULL sensor setup sequences, where all sequences

contain a combination of all the available sensors simulated in clear/moderate/dynamic weather environments. As

a result, a complete comprehensive quantitative evaluation of all the SLAM systems mentioned in the previous sub-

sections can be compared on the same sequence for every specific weather condition, as seen in Figure 2.10. We

represent in Table 2.12 an extensive qualitative assessment of the state-of-the-art SLAM systems based on the six

FULL setup sequences. Regarding Clear 1,2, the trajectory estimation is aligned with the ground truth profile until

a rapid motion occurs and the events map is disturbed. Each IBISCape FULL setup sequence is equipped with all the

data formats as given with the specialized setup sequences.

Based on all the evaluation observations, we can conclude that the current pre-trained models to reconstruct

frames can be unreliable specially in dynamic weather and large-scale environments as represented in Figure 5.8.

This gives the most important advantage of IBISCape benchmark providing thousands of event arrays collected in

a way to ease the retraining of the current models and motivates the development of new approaches to process

events in such scenarios and corner cases.

The most prominent conclusion from evaluations on the FULL setup is that in outdoors dynamic weather where

the dynamic range of the scene is considerably high, DVS sensor cannot be reliable to estimate the pose of the

AGV with the current event-based SLAM systems. This conclusion is since events are fired asynchronously with high

frequency, causing the visual sensor to be susceptible to weather constituents like rain or fog, which can degrade

the estimation performance. Accordingly, our multi-modal datasets with the simulated corner cases can be the

building block of choose-case scenarios for selecting the most efficient combination of multi-modal VI sensors for

AGVs navigating in adverse conditions.

2.4.2.5 LiDAR Setup Evaluation
During the LiDAR based SLAM systems quantitative evaluation, we can observe significantly low RMS ATE values with

MULLS systems for all the sequences compared to A-LOAM system as given in Table 2.12, and the lowest RMS ATE

corresponds toMULLS with the loop closure option enabled. However, the RPE translation and rotation components

slightly show a relatively lower values for A-LOAM compared to MULLS systems.

Figure 2.11 shows a more detailed qualitative evaluations, the efficient LiDAR point cloud registration method
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E3CT-SVO (Ours)

Figure 2.10: Trajectories estimated by ORB-SLAM3 and BASALT SLAM systems using IBISCape sequences with FULLsensor setup and comparing to their ground truth and GPS paths. ORB-SLAM3 algorithms involved are: Monocular

RGB, Stereo-RGB (S-RGB) with E2VID and E3CT (Ours), Stereo Visual Inertial (SVI), and RGB-D SLAM systems. While

for BASALT, the SVI algorithm is assessed.
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(TEASER) [58] results are shown in red rectangles presenting the feature matching between two consecutive scans

on the left and the global registration results on the right using the Neighborhood Category Context (NCC) encoding.

In the blue colored rectangles, we shows NCC encoding results that provide an independent description of every fea-

ture extracted from the source and target scans without any additional computational operations that can increase

the system latency.

2.4.2.6 Comparative Evaluation

To sum up all the latest state-of-the-art evaluations of nearly 80 experiments using the IBISCape benchmark, we

provide a quantitative analysis of the mean value of all errors in Table 2.13. The average of experiments with the

E3CT-SVO show error values that are considerably less than that of the E2VID-SVO. This gives an indication that future

developments of event-based SLAM systems using the E3CT event representation method that can benefit from all

the 3-channels information will result in low latency and high accuracy system. Then, in order to have a thorough

quantitative comparison of all the methods, a weighted normalized accuracy parameter of all the SLAM systems

evaluation parameters is proposed:

Accuracy = 0.5× ATEmin

ATEmethod
+ 0.25× RPET rans

min

RPET rans
method

+ 0.25× RPERot
min

RPERot
method

[ul]. (2.5)

Weights are distributed with 50% for the RMS ATE values and 50% for the RPE values divided equally between

translation and rotation error values. The SLAM system that provides the lowest ATE and RPE values will give an

Accuracy = 1 which is the highest Accuracy value. This qualitative analysis is represented in Figure 2.12, where the

SLAM system accuracy is compared to its system latency.

Since IBISCape benchmark targets a realistic simulation for the state-of-the-art SLAM systems evaluation, we

compare the evaluation results on all the 31 IBIScape SLAM sequences with the real world publicly available datasets

based on the RMS ATE values as given in their original papers in Figure 2.13. To ensure a fair comparison, E2VID

results reported in our work can’t be compared to that in [50], because the back-end VIO estimation method [3]

using E2VID as a pre-processing layer is different than our evaluation back-end method (ORB-SLAM3/stereo-RGB).

The primary outcome of the IBISCape benchmark versus real-world benchmarks comparison is that the IBIS-

Cape dataset and the data acquisition APIs are designed to simulate outdoor environments that researchers can

confidently use in their novel AGVs SLAM systems reliability evaluation in adverse weather dynamic environments.

Furthermore, for reliable semantic SLAM systems, transfer-learning models from simulators to the real world are

indispensable, especially in scenarios where real-world data is difficult to collect or in dangerous situations. IBISCape

APIs can also provide high-end training and testing data for transfer-learning applications.
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Figure 2.11: LiDAR sensor setup sequences qualitative detailed evaluation. From right to left: in red rectangle the

point cloud features matching and global registration of two consecutive scans, in blue rectangle geometric feature

points extraction, MULLS loop closure detection by Pose Graph Optimization (PGO), and trajectories estimated by

MULLS and A-LOAM LiDAR Odometry/SLAM systems and comparison to their ground truth and GPS paths.
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Table 2.12: ORB-SLAM3 (SVI, RGB-D, mono-RGB, stereo-RGB(E2VID, E3CT)), BASALT, MULLS and A-LOAM perfor-

mance analysis based on both ATE and RPE evaluation metrics using IBISCape sequences in all simulated dynamic

environments. Relative Pose Error (RPE) is formulated in terms of the mean ± standard deviation.

Sequence
Method 1 Method 2

ATE [m] RPE [m] RPE [deg] ATE [m] RPE [m] RPE [deg]
FULL Setup - I ORB-SLAM3 - SVI BASALT
Clear-1 13.7184 0.2852±0.1765 1.1677±1.2825 18.7082 0.3231±0.2047 0.2675±0.5794
Clear-2 12.3043 0.1234±0.1437 0.7866±0.8635 12.0170 0.0655±0.0746 0.1699±0.3937
Moderate-1 32.8159 0.4248±0.0748 0.3838±0.3351 49.9634 0.6076±0.2327 0.1420±0.7516
Moderate-2 3.7829 0.1596±0.1356 0.6265±0.9143 11.8746 0.2190±0.1318 0.1645±0.4232
Dynamic-1 17.2807 0.2584±0.1782 0.3845±0.6576 16.6205 0.2433±0.1908 0.1222±0.3261
Dynamic-2 4.9187 0.1801±0.1520 0.0730±0.0607 9.3084 0.2031±0.1757 0.1231±0.5529
FULL Setup - II ORB-SLAM3 - RGB-D ORB-SLAM3 - mono-RGB
Clear-1 20.2653 0.3418±0.2003 1.1702±1.2942 3.5142 0.3103±0.1804 1.1723±1.2939
Clear-2 14.8820 0.1659±0.1276 0.7914±0.8535 18.4484 0.1759±0.1825 0.8240±0.8695
Moderate-1 40.1021 0.4612±0.1130 0.4307±0.3410 67.1074 0.4995±0.0667 0.4212±0.3720
Moderate-2 3.5969 0.2595±0.1471 0.6520±0.9115 15.0772 0.3040±0.2212 0.7999±0.9769
Dynamic-1 11.5730 0.2048±0.1478 0.3504±0.5771 22.2793 0.3090±0.2640 0.3154±0.6171
Dynamic-2 15.5917 0.2824±0.2806 0.1101±0.0955 17.2632 0.3210±0.4717 0.0626±0.0679
FULL Setup - III E2VID-SVO E3CT-SVO (Ours)
Clear-1 84.7657 0.7384±0.8979 0.6746±0.5510 70.9616 0.3383±0.8759 1.1609±2.5091
Clear-2 156.8587 0.2047±0.0446 0.3806±0.4775 103.4464 0.3612±0.0052 0.8020±2.3298
Moderate-1 157.9537 1.3439±0.4314 0.3565±0.1739 203.4386 0.6578±0.2343 0.5997±1.6192
Moderate-2 29.1791 1.2812±1.0903 0.1766±0.1263 37.1249 0.2946±0.5253 0.6242±0.6628
Dynamic-1 235.7885 0.4666±0.3055 0.0274±0.0733 91.2599 0.4045±0.0208 0.3515±1.9189
Dynamic-2 52.1609 5.4907±6.1910 0.1587±0.1005 36.0555 0.3870±0.9828 0.2542±0.3042
SVI Setup ORB-SLAM3 - SVI BASALT
Clear-1 3.1262 0.1145±0.0728 0.2699±0.4272 12.2769 0.1859±0.0234 0.0839±0.4300
Clear-2 1.6666 0.1076±0.0577 0.3646±0.4795 4.0626 0.0514±0.0845 0.0919±0.2049
Moderate-1 11.5160 0.0496±0.0913 0.1278±0.3385 70.1406 0.1290±0.0712 0.1087±0.5707
Moderate-2 8.8561 0.3207±0.1681 0.5831±0.7833 27.4657 0.3587±0.1527 0.1519±0.3228
Dynamic-1 50.7355 0.2580±0.1351 1.1411±1.0240 12.4161 0.1853±0.1512 0.2324±0.4938
Dynamic-2 9.5503 0.1188±0.1445 0.1338±0.4248 41.4773 0.2414±0.1277 0.0921±0.5366
Accident 16.2158 0.2916±0.1594 0.8453±1.9645 2.6652 0.4169±0.1158 0.4808±0.9041
RGB-D Setup ORB-SLAM3 - RGB-D ORB-SLAM3 - mono-RGB
Clear-1 20.9667 0.2370±0.1846 0.3830±0.5798 4.9536 0.2522±0.1970 0.3842±0.5761
Clear-2 5.9339 0.3647±0.2238 0.3788±0.6832 0.8387 0.3706±0.2227 0.3297±0.6424
Moderate-1 2.8882 0.2872±0.2419 0.0718±0.0740 14.6609 0.2873±0.2562 0.0290±0.0276
Moderate-2 13.5358 0.2353±0.1597 0.2610±0.6043 29.3680 0.2207±0.1559 0.2473±0.6575
Dynamic-1 8.7264 0.2732±0.2626 0.5988±0.8542 15.1911 0.2628±0.2426 0.6079±0.8009
Dynamic-2 12.0050 0.4743±0.1710 0.5558±0.5380 121.4955 0.6201±0.3161 0.5496±0.4548
ESVI Setup E2VID-SVO E3CT-SVO (Ours)
Clear-1 62.2875 0.6261±5.3078 0.6011±0.4366 60.6766 0.4882±0.8758 1.3745±1.2502
Clear-2 121.0946 0.7864±10.2467 0.2974±2.5671 169.6332 0.9917±0.1654 0.9103±2.2276
Moderate-1 79.8216 25.2978±43.9429 4.8828±15.0766 164.9004 2.0066±0.2899 3.9804±4.2025
Moderate-2 9.4286 9.4286±1.8231 0.0323±0.1110 4.0446 4.6330±0.5663 0.2109±0.1454
Dynamic-1 65.8318 0.4648±1.8205 0.6281±0.4794 64.6726 0.2043±0.8541 0.8514±0.6860
Dynamic-2 106.0616 3.8762±18.3748 1.9862±3.5864 109.9587 0.9751±0.5803 0.9036±1.9564
LiDAR Setup MULLS (with/without Loop Closure) A-LOAM

Clear-1
0.5593 0.1851±0.0572 1.4561±0.8493 1.0682 0.1393±0.0292 1.0532±0.60910.5881 0.1851±0.0572 1.4583±0.8472

Clear-2
5.5411 0.2121±0.0763 1.1231±0.9393 10.4762 0.1431±0.0161 0.8152±0.67535.5662 0.2122±0.0761 1.1221±0.9403

Moderate-1
0.9192 0.2061±0.0791 0.9073±0.9341 3.6931 0.1501±0.0201 0.6811±0.65120.9431 0.2061±0.0782 0.9063±0.9341

Moderate-2
0.5391 0.1861±0.1122 0.3613±0.7033 5.9511 0.1531±0.0141 0.2761±0.50620.5371 0.1871±0.1121 0.3611±0.7041

Dynamic-1
0.5711 0.1882±0.0693 1.1321±0.9351 2.3042 0.1391±0.0171 0.8871±0.65810.5492 0.1882±0.0693 1.1321±0.9351

Dynamic-2
1.6193 0.1821±0.0941 1.2051±0.9251 3.0251 0.1401±0.0151 0.8712±0.66421.6483 0.1821±0.0941 1.2051±0.9244
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Better

Figure 2.12: Semi-log Accuracy-Latency qualitative analysis of all SLAM systems undergoing evaluation on IBISCape

sequences.
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Figure 2.13: Mean of ATE values of evaluations using IBISCape benchmark compared to the real world benchmarks

in literature. Marker: Benchmark-number of experiments. RPG: Clear weather & Static indoors scenes dataset [59]
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Table 2.13: The average of all evaluation metrics for all experiments on the IBISCape benchmark.

Method
ATE RPE RPE

System
[m] [m] [deg]

OS3/RGB-D [43] 14.1723 0.2989 0.4795 V-SLAM

OS3/SVI [43] 14.3452 0.2071 0.5298 VI-SLAM

OS3/RGB [43] 27.5165 0.3278 0.4786 V-SLAM

BASALT [44] 22.2305 0.2485 0.1716 VIO

ESVO [46] 0.5051 0.1090 0.3008 VO

MULLS(LC) [52] 1.6249 0.1933 1.0308 SLAM

MULLS(No-LC) [52] 1.6387 0.1935 1.0308 Odometry

A-LOAM [51] 4.4197 0.1441 0.7640 Odometry

E2VID-SVO [50] 96.7694 4.1671 0.8502 V-SLAM

E3CT-SVO (Ours) 93.0144 0.9785 1.0020 V-SLAM

2.5 Conclusion
This chapter proposes the IBISCape simulated heterogeneous sensors benchmark in large-scale dynamic environ-

ments along with 43 sequences suitable for multi-modal calibration & LiDAR/VI-SLAM evaluation. We also demon-

strated new efficient algorithms for data synchronization during the acquisition process and a new iterative solution

to estimate the unknown distortion coefficients of CARLA-simulated cameras. Using multiple adverse weather con-

ditions, we have shown their impact on the latest state-of-the-art SLAM systems trajectory estimations.

A novel event-based pre-processing layer is presented based on the Event Spike Tensor representation called

the Event 3-Channel Tensor (E3CT). This efficient model-based layer produces high dynamic range 3-channel event

frames and is validated onmultiple adverse conditionswhere it is witnessed to outperformother learning-based pre-

trained models. Accordingly, E3CTs will open new paths for working on model-based multiple-channel event-based

representations for more robust event-based SLAM systems.

The performance analysis includes a description of the sequence upon which the evaluation is done and the

special conditions and corner cases simulated within every sequence to push the limits of the SLAM systems under

assessment. The analytical study includes a comprehensive evaluation of the SLAM system performance and a

quantitative comparison of ATE and RPE values. We hope this new dataset will help advance the research in the

multi-modal heterogeneous sensors fusion applied to Autonomous Ground Vehicles (AGV) navigation in large-scale

and dynamic environments.

As a future research trend, it will be indispensable to develop new efficient multi-modal: calibration and SLAM
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algorithms based on the fusion of heterogeneous sensors with different caption and spectral technologies. That

allows the SLAM system to estimate the trajectory better based on reliable continuous-time 3D scene mapping.

Finally, an in-depth investigation is needed concerning the effect of map loss on SLAM systems estimations during

long-term navigation in large-scale and dynamic weather environments.
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3 Hybrid Online Calibration

Abstract
In this chapter, a new optimization-basedmethod is presented for intrinsic and extrin-

sic calibration of an RGB-D-IMU visual-inertial setup, accompanied by a GPS-aided op-

timizer bootstrapping algorithm. The proposed method offers a reliable initialization

of the RGB camera intrinsics and trajectory by utilizing an optical flow Visual Odom-

etry (VO) technique. Additionally, it optimizes spatio-temporal parameters, including

the target’s pose, 3D point cloud, and IMU biases, in the back-end of the calibration

process. The effectiveness of the method is demonstrated through extensive exper-

imental evaluations conducted on both real-world and simulated sequences. These

evaluations serve to validate the performance and accuracy of the calibrationmethod

in various scenarios.

"The best vision is insight."

Malcolm Forbes

51
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3.1 Introduction
A reliable autonomous vehicle odometry solution relies on the continuous availability of the scene and vehicle in-

formation, such as scene structure and the vehicle’s physical properties (position, velocity, or acceleration). These

properties are measured by exteroceptive (Cameras/LiDAR/Radar/GPS) and proprioceptive (IMU/Wheel odometry)

sensor modalities. Hence, multi-modal odometry algorithms have attracted the attention of many researchers in

the last few years [60, 61, 62, 63], especially in challenging low structured environments.

Solutions incorporating a multi-camera system with no IMUs can be much easier to bootstrap using the 5-point

[64] or the 8-point [65] SfM algorithms with a robust outlier filtration method [66, 67] without the need to estimate

a global metric scale for the trajectory.

Adding an IMU (or multiple IMUs as in [53]) to a multi-camera calibration framework increases the complexity in

the alignment process of the target’s initial arbitrarily scaled poses with the initial real-world metric scaled ones [5].

In the recent work of [68], they studied a graph-based optimization approach that fuses GPS and IMU readings with

stereo-RGB cameras. They show a superior estimation accuracy, especially in an offline operation, which is ideal for

multi-modal calibration applications.

A well-known IMU-based bootstrapping method in the literature is described in [5], where the global metric

scale and the IMU gravity direction are estimated using 4-DoF Pose Graph Optimization (PGO) augmented with the

Figure 3.1: Our RGB-D-IMU setup calibration and pose estimation pipeline applied to the VCU-RVI hand-eye calibra-

tion sequence (top/bottom-right) and the EuRoC V2-01 sequence (bottom-left).
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Figure 3.2: The pipeline of our method’s front-end and back-end. The front-end is an initial data processing layer

after acquiring RGB-D aligned frames. The back-end is the central processing layer of two optimization levels.

IMU preintegration factors. We tackle this scaling problem with a novel method that can be applied online, where

low-rate noisy GPS signals can be detected with a 6-DoF PGO and a 3-DoF range factor. These instant initialization

factors solve the prominent initialization failure problem due to insufficient IMU excitation resulting in a reliable

pose estimation algorithm (see Figure 3.1).

The visual-inertial bundle adjustment (BA) [43, 69] is a highly non-linear process, primarily when there exists an

unconventional visual sensor (depth camera, for instance) with a different spectral technology than that of the RGB

camera within the multi-modal calibration framework. The accuracy and robustness of the calibration process are

thoroughly dependent on the estimator initialization, which we perform using front-end, and back-end (level 1) steps

represented in the pipeline in Figure 3.2. Towards a reliable RGB-D-IMU calibration and GPS-aided poses estimation

solution, we sum up our main contributions as threefold:

• A novel method for bootstrapping the global metric scale for a visual-inertial BA optimization problem with

a prior level of pose graph optimization that relies on noisy low-rate GPS readings combined with gyroscope

measurements.

• A novel point cloud scale optimization factor that integrates the untextured depth maps having no distinctive

features in a visual-inertial BA as any conventional camera in a stereo-vision setup by a double re-projection

with distortion function.

• A robust multi-modal calibration algorithm for RGB-D-IMU sensors setup with a reliable metric scaled 3D pose

estimation methodology easily extended to a multi-modal RGB-D-IMU-GPS odometry algorithm.
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3.2 Related Work
Multi-modality has become the mainstream of most recent calibration works [70, 71, 72, 73] because an efficient

multi-modal odometry solution depends on an optimally calibrated system. In this work, we propose a baseline

robust method to calibrate RGB-D-IMU full system parameters considering efficient performance regarding latency,

accuracy, and configuration robustness.

3.2.1 RGB-D-IMU Calibration
Over the recent years, RGB-D calibration algorithms [74, 75, 76, 77, 78] have evolved to incorporate various depth

correction strategies based on an extra stage of an on-manifold optimization. The works [74, 75, 76] correct depth

with an exponential undistortion parametric curve fitting, while others [77, 78] fit the point cloud on a sphere. Adding

an IMU sensor to an RGB-D calibration setup is a configuration tackled in the works of [79] and [80] using Extended

Kalman Filters (EKFs). However, these RGB-D-IMU calibration works mainly aim to estimate the pose and perform

IMU/CAM extrinsic calibration during the odometry task.

3.2.2 RGB-D-IMU Odometry
Inspired by the pipeline of VINS-Mono [5], we tackle the lack of insufficient IMU excitation in the bootstrapping

process by incorporating the low-rate noisy GPS readings in a novel approach. The RGB-D Visual-Inertial Odometry

(VIO) works [79, 81, 82, 83, 80], report two ways to state estimation for an RGB-D camera-based VIO. The first is

to compute the pose change using VO and fuse the estimated pose change with the IMU’s preintegration [84, 85].

Another way is to compute the visual features’ 3D locations using depth measurements and an iterative approach

to reduce the features’ re-projection and the IMU’s preintegration factors [86, 87].

In the iterative optimization process, existing approaches utilizing either scheme assume a precise depth mea-

surement and consider the depth value of a visual feature as a constant [86, 87]. However, an RGB-D camera’s depth

measurement may have a high uncertainty level [88], resulting in considerable error values in the odometry state

estimation if ignored. The work in [89] incorporates a learning-based dense depth mapping method and performs

a filter-based approach for navigation state estimation.

Our work can be considered the first optimization-based RGB-D-IMU complete system calibration with a novel

depth correction model that does not require a separate optimization stage to fit the depth map on a high-order

parametric curve or surface. The robustness of our method conforms to the works [90, 42], which can be summed

up in three main points: minimum information is needed to efficiently bootstrap the system, overcome inertial and

celestial sensors limitations during the initialization process, and efficient measurements outlier rejection [66].
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3.3 Methodology
This section presents a sequential overview of the proposed hybrid visual odometry with online calibration method.

Section 3.3.1 gives a brief overview of the on-manifold rigid body kinematics. In Section 3.3.2, we start by collect-

ing the target’s poses (up-to-scale) as well as the checkerboard corners and construct an initial point cloud of the

collected corners (see Figure 3.2 (top)). Then in Section 3.3.3, we bootstrap the optimizer with GPS and gyroscope

readings for instantmetric scale estimation of the estimated target’s poses. Finally, Section 3.3.4 presents the tightly-

coupled hybridization factors to calibrate the full RGB-D-IMU sensor setup in a non-linear BA optimization process.
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Figure 3.3: Illustration for the re-projection error factors on both RGB and Depth frames, as well as the coordinate

frames for all sensors undergoing optimization: (a) 3D to 2D and 2D to 3D to 2D re-projection error for triangulating

the same target’s 3D corner on both the RGB-D current aligned frames; (b) Coordinate frame of reference for all

sensors undergoing the calibration with respect to the world frame. For consistency: all frames follow the right-

handed rule as OpenCV library.
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3.3.1 Trajectory Rigid Body Kinematics
Visual-inertial odometry task for autonomous vehicles in challenging environments needs efficient real-time pro-

cessing algorithms. In this context, we need to optimize the estimated vehicle pose on a continuous-time manifold.

This manifold should allow the estimation of a continuous-time trajectory of the pose T (t), the velocity Ṫ (t), and the

acceleration T̈ (t) in the SE(3) Lie group representation for fast and accurate calculations. Choosing a continuous-

time manifold allows us to fuse sensors of different types of data being processed with variable frequencies (for

example: cameras, LiDARs: 15-30 Hz, IMUs: 100-250 Hz, and GPS: 1 Hz).

B-splines are widely used in manifold modeling due to their ability to handle complex geometries and their compu-

tational efficiency. In recent years, several works have been published that focus on developing B-spline manifold

models and their derivatives. [91] proposed a spline-based trajectory representation in SE(3) that can be used

to fuse information from different sensors, generate inertial and visual predictions, and even demonstrate self-

calibration of a visual-inertial system. In 2017, Ethan Eade’s research notes presented complete modeling for the

operators, operations, and Jacobians for 2D and 3D transformations. The following year, Patrick Geneva’s research

notes introduced complete modeling for time derivatives of the B-spline.

[92] published a paper on amicro Lie theory for state estimation in robotics, which is accompanied by a newopen-

source C++ header-only library called manif. This library implements the widely used groups SO(2), SO(3), SE(2),

and SE(3), with support for the creation of analytic Jacobians, designed for ease of use, flexibility, and performance.

Finally, in 2020, Sommer proposed a simple formulation for the time derivatives of Lie group cumulative B-splines

that require severalmatrix operations, which scale linearlywith the order k of the spline [93]. Theseworks collectively

provide a comprehensive understanding of B-spline manifold modeling along with its derivatives, which are crucial

for various applications, including robotics, trajectory planning, and sensor fusion.

For this approach to be practical in a visual-inertial odometry system as well as serve as a data fusion framework

for other sensors, it should include specific characteristics:

1. Local control, i.e. change in one segment doesn’t affect whole the trajectory allowing the system to function

online as well as in batch.

2. C2 continuity, the temporal derivatives enable inertial predictions.

3. Application of rigid-body motion kinematics free of singularities.

The representation for continuous trajectories in R(3) is well-known using B-Splines. As B-Splines provide local con-

trol, and cubic B-Splines are C2 continuous in R(3) . However, dealing with 3D rotations using B-Splines isn’t an easy

task, such as interpolation in SO(3). The different modeling domains are represented in Table 3.1.
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Some methods for interpolating rotations, such as piecewise Spherical Linear Interpolation, SLERP [94], affected by

discontinuities, while Spherical Quadratic Interpolation, SQUAD [95], does not preserve C2 continuity [96]. More

interpolation methods for rotations are provided in [97].

In this thesis, we choose to parameterize our continuous-time trajectory using cumulative basis functions formed

using the Lie Algebra se(3) of the matrix group SE(3) modeled in 3.3.1.1, equivalent to that proposed by [98].

This choice is based on two primary factors:

1. Using cumulative B-spline basis functions is not only C2 continuous, but it also provides a very simple second

derivative formulation useful for generating inertial predictions.

2. The Lie Algebra parameterization, when applied locally, is free from any singularities and offers a very good

analytical approximation to minimum torque trajectories.

3.3.1.1 Trajectory Modeling

Table 3.1: Different Modeling Domains

Space Definition Model Increments ∆
R(3) 3D Euclidean space (Translations or Euler

angles)

t3×3, R3×3 R(3)→ ν, ω

SO(3) "Special Orthogonal Matrix" is used to

describe the possible rotational symmetries

of an object, as well as the possible

orientations of an object in space.

R3×3 so(3)→ ⌊ω⌋×

SE(3) A “Special Euclidean Transformation” that is

a differentiable manifold is called a Lie group

T4x4 =
[
R3×3 t3×3
03×3 1

]
se(3)→

[
⌊ω⌋× ν
03×3 1

]

3.3.1.2 Cumulative B-spline modeling in R(3)
Matrix form of the B-spline segment can be generated depending on the degree of the spline needed and the num-

ber of the control points (poses) defining it.

We need to define some key points -symbols- first, represented in Figure 3.4:

• (k) is the order of the spline ex. for cubic k = 4 and quadratic k = 3, i.e. order = degree + 1

• (n) is equal to the number of control points - 1

• p(t) is the spline segment for interval of t = [ti, ti+1], where i is the pose number
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• Each segment in p(t) is defined by 2 knots; one at each end

• The number of knots defining all the spline segments incremented for all given control points (poses) is equal

tom+ 1, wherem = k + n+ 1
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Figure 3.4: Continuous-time B-splines compared to Discrete-time Trajectory

The non-cumulative B-spline basis function isB(k), is a blendingmatrixwith entries calculated using [99] recursive

formula.

b(k)
s,n =

Cn
k−1

(k − 1)!

k−1∑
l=s

(−1)l−sCl−s
k (k − 1− l)k−1−n

(3.1)

where s, n ∈ {0, ..., k − 1}are the numbers of B(k) rows and columns respectively.

At time t ∈ [ti, ti+1] the value of p(t) only depends on the control points ti, ti+1, ..., ti+k−1. To simplify calculations,

we transform time to a uniform representation s(t) := (t − t0)/∆t, such that the control points transform into

0, .., k − 1.

We define u(t) := s(t) − i as normalized time elapsed since the start of the segment [ti, ti+1] and from now on

use u as temporal variable. i.e. u = 0 : 1, with certain precision.
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Generalizing

ū(k) =



u0

.

.

.

uk−1

uk


(3.2)

The value of p(u) can then be evaluated using a matrix representation as follows:

p(u) =
[
pi pi+1 · · · pi+k−1

]
B(k)ū(k)

(3.3)

The cumulative B-spline matrix form in the R(3) can be modeled as:

p(u) =
[
pi di

1 · · · di
k−1

]
B̃(k)ū(k)

(3.4)

with the cumulative basis function matrix B̃(k), is a blending matrix with entries

b̃
(k)
j,n =

k−1∑
s=j

b(k)
s,n (3.5)

with j, is the number of row the accumulation of b
(k)
s,n elements start from.

and difference vectors di
j = pi+j − pi+j−1, for poses (translations and rotations).

Definition 3.1
The B-spline of order k at position u can be written as

p(u) = pi +
k−1∑
j=1

B̃j

(k)
ū

(k)
j di

j (3.6)

3.3.1.3 Cumulative B-spline modeling in SO(3)
SO(3) =

{
R|R ∈ SO(3), R⊤R = RR⊤ = I3×3, |R| = +1

}
Definition 3.2
The cumulative B-spline of order k in a Lie group SO(3) with control points R0, · · ·, RN ∈ SO(3) has the

form

R(u) = Ri

k−1∏
j=1

exp(B̃j

(k)
ū

(k)
j di

j) ∈ SO(3) (3.7)
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(a) Standard Basis Function Illustration [91]. On the left the normal basis function on the right the cumulative one.
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with the generalized difference vector di
j

di
j = log(R−1

i+j−1Ri+j) = ⌊ω⌋× ∈ so(3) (3.8)

With the definition of the exponential map exp(so(3))→ SO(3)

exp(⌊ω⌋×) = I3×3 + sin(∥ω∥)
∥ω∥

⌊ω⌋× + 1− cos(∥ω∥)
∥ω∥2 ⌊ω⌋2× ∈ SO(3) (3.9)

where ⌊ω⌋× =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

, is the skew-symmetric matrix of the 3 rotations increments.

Along with the definition of the logarithmic map log(SO(3))→ so(3)

log(Rd) = θ

2sinθ (Rd −R⊤
d ), with θ = cos−1

(
trace(Rd)− 1

2

)
∈ so(3) (3.10)

where Rd = R−1
i+j−1Ri+j , R

−1 = R⊤.

3.3.1.4 Cumulative B-spline modeling in SE(3)

SE(3) =

T |T =

 R t

03×3 1

 , R ∈ SO(3), t ∈ R(3), R⊤R = RR⊤ = I3×3, |R| = +1


Definition 3.3
The cumulative B-spline of order k in a Lie group [91] SE(3) with control points T0, · · ·, TN ∈ SE(3) has

the form

T (u) = exp(B̃(k)
0 ū

(k)
0 log(T0))

k−1∏
j=1

exp(B̃(k)
j ū

(k)
j di

j) ∈ SE(3) (3.11)

with the generalized twist vector di
j

di
j = log(T−1

w,i+j−1Tw,i+j) =

 ω

ν

 ∈ se(3) (3.12)

With the definition of the exponential map exp(se(3))→ SE(3)

exp


 ω

ν


 =

 exp(⌊ω⌋×) V ν

03×3 1

 =

 R t

03×3 1

 = T ∈ SE(3) (3.13)
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with

V = I3×3 + 1− cos(∥ω∥)
∥ω∥2 ⌊ω⌋× + ∥ω∥ − sin(∥ω∥)

∥ω∥3 ⌊ω⌋2× (3.14)

Along with the definition of the logarithmic map log(SE(3))→ se(3)

log(Td) =

 log(Rd)

V −1td

 ∈ R6
(3.15)

where Td = T−1
i+j−1Ti+j , T

−1 =

 R⊤ −R⊤t

03×3 1

 , T1T2 =

 R1R2 R1t2 + t1

03×3 1

.

3.3.1.5 Trajectory Temporal Derivatives in SE(3)
Inertial Predictions : Spline as a Generative Model

The ability to calculate the analytical derivative of the B-spline, enables us to calculate the velocity and accelera-

tion in a continuous-time manner. This gives us a huge plus in trivially synthesizing the IMU measurements of the

Gyroscope and the Accelerometer readings. Accordingly the IMU biases can be calculated precisely for every IMU

step by setting their residuals equals to zero.

The accelerometer and gyroscope residuals can be defined as:

rω(u) = ω(u)− ω̂ + bω (3.16)

ra(u) = Rwi(u)−1(awi(u) + g)− â+ ba (3.17)

where g =
[

0 0 −9.80665
]

m/sec2 is the gravity vector in world coordinates. â & ω̂ are the IMU mea-

surements of the accelerometer and gyroscope respectively.

For SE(3), ω(u) is the angular velocity calculated and T̈wi(u) is the translation vector of the second time derivative

of the pose computed in 3.11. The SE(3) formulation of these residuals is identical to that in both [91, 93].

Baseline Method
[91] worked on a cumulative cubic B-spline model (k = 4, n = 3) to represent the trajectory. With the control

point separated with ∆t on a uniform time intervals.

Starting with the pose T form in (3.11), we differentiate once we get this general model for B-spline of order (n)

is proposed by [93]:
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Ṫ (u) = Ti

k−1∑
j=1

(j−1∏
l=1

Al(u)
)
Ȧj(u)

k−1∏
l=j

Al(u)

 (3.18)

Expanding the first and second derivatives for cubic B-splines with n = 3:

Ṫ (u) = T (u)(Ȧ0A1A2 +A0Ȧ1A2 +A0A1Ȧ2) (3.19)

T̈ (u) = T (u)(Ä0A1A2 +A0Ä1A2 +A0A1Ä2 + 2Ȧ0Ȧ1A2 + 2Ȧ0A1Ȧ2 + 2A0Ȧ1Ȧ2) (3.20)

with

Ȧj(u) = B̃j ˙̄ujAj(u)Dj = B̃j ˙̄ujDjAj(u) (3.21)

and

Äj(u) = B̃j ¨̄ujAj(u)Dj + B̃j ˙̄ujDjȦj(u) (3.22)

and Dj = (dj)∧ =



0 −ωz ωy νx

ωz 0 −ωx νy

−ωy ωx 0 νz

0 0 0 0


, ˙̄u(k) = 1

∆t

[
(i− 1)ui−1

]
, ¨̄u(k) = 1

∆t2

[
(i− 1)2ui−2

]
,

with i = 1 : k. Noting in (3.21),(3.22) that Aj(u) andDj are commuting by definition.

Generalizing the second order derivative for any order (n) B-spline, we contributed with the following :

1. The first 3 terms in (3.20), can be modeled using (3.18) with replacing Ȧj(u) with Äj(u).

2. The last 3 terms are always formed in pairs of 2 derived A’s in the same expression, for any order spline.

A look-up table is constructed to visually represent the selected the pairs of "A" terms to be derived which

increased the computational speed significantly:

For B-spline with n=4 the terms are (A0A1A2A3), the pairs are:

counter i=1:n-1 counter j=1:n-i First Derivative term Second Derivative term Resulting term

1 1 1 2 Ȧ0Ȧ1A2A3

2 1 3 Ȧ0A1Ȧ2A3

3 1 4 Ȧ0A1A2Ȧ3

2 1 2 3 A0Ȧ1Ȧ2A3

2 2 4 A0Ȧ1A2Ȧ3

3 1 3 4 A0A1Ȧ2Ȧ3
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(a) for n=4, we have 3→ (n− 1) colored groups starting from 1 to n− 1. (The outer for loop)

(b) Also, to form this table we need 2 for loops, the first loops on (i) the second loops on (j) and a counter (c)

to fill each row in this table.

(c) We can conclude that in our loops, the first column is the (i) iterator value in every loop, while the second

column is (i+j).

(d) Completing this table will fill the selector table of n choose 2, Cn
2 rows and 2 columns.

The Inertial terms in Equations (3.16), (3.17) can be modeled as:

1. The Angular velocity term ⌊ω(u)⌋∨:

 ⌊ω(u)⌋∧ v(u)

03×3 1

 =T (u)−1Ṫ (u), V (u) = Rwi(u)v(u)

where V (u), ω(u) are the linear and angular velocity terms.

This step can be simplified by directly using the term:

 ⌊ω(u)⌋∧ v(u)

03×3 1

 =
k−1∑
j=1

(j−1∏
l=1

Al(u)
)
Ȧj(u)

k−1∏
l=j

Al(u)


2. The Linear Acceleration term ä(u):

 ⌊ω̇(u)⌋∧ s̈(u)

03×3 1

 =
[
T (u)−1T̈ (u)

]
−

 ⌊ω(u)⌋∧ v(u)

03×3 1


2

, ä(u) = T̈ (1 : 3, 4)

• where ä(u), ω̇(u) are the linear and angular acceleration terms, respectively.

Efficient Method
In the work of [93], the proposed formulation improved the performance instead of having a matrix-matrix mul-

tiplication complexity of (k− 1)2 + 1 in case of first derivative formula. And
1
2k

2(k− 1) in case of second derivatives

formula.

The first derivative formula is recursively defined by the relations:

 v(u)

⌊ω(u)⌋∨


(j)

= AdjA−1
j−1

ω(j−1) + B̃j−1 ˙̄uj−1dj−1, (3.23)
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 v(u)

⌊ω(u)⌋∨


(1)

= 0 (3.24)

The second derivative formula is also recursively defined by the relations:

 s(u)

⌊ω̇(u)⌋∨


(j)

= B̃j−1 ˙̄uj−1[
⌊
ω(j)

⌋
∧
, Dj−1]∨ +AdjAj−1 ω̇(j−1) + B̃j−1 ¨̄uj−1dj−1, (3.25)

 s(u)

⌊ω̇(u)⌋∨


(1)

= 0 (3.26)

with

T̈ (u) = T (u)
(⌊
ω(k)

⌋2

∧
−
⌊
ω̇(k)

⌋
∧

)
, ä(u) = T̈ (1 : 3, 4)

using the adjoint transformation matrix definition:

AdjA =

 R ⌊t⌋∧ R

03×3 R

 ∈ R6×6, with A =

 R t

03×3 1

 ∈ SE(3)

[⌊
ω(j)

⌋
∧
, Dj−1

]
=
⌊
ω(j)

⌋
∧
Dj−1 −Dj−1 ⌊ω(u)⌋(j)

∧

3.3.1.6 Application: IMU Online Calibration
All the estimations using the ground truth readings (Vicon system) are transformed with respect to the IMU frame of

reference. We used the Monocular VIO dataset provided with the EuRoC benchmark [26] (V101 Easy - V102 Medium

- V103 Difficult), and we compared the performance of our IMU calibration estimations based-on:

1. EuRoC IMU and ground truth (Vicon)

2. EuRoC IMU and a non-linear least squares ground truth estimator (Optimizer).

In our experiments (see Appendix B), the precision of every B-spline segment (mesh-grid) is 20 points for the pose

(p,q), velocity, and acceleration estimation in order to havemore readings than that of the IMU to calculate its biases.

Also, we performed the calibrations on a 4th-order cumulative B-spline in SE(3). i.e. using u = linspace(0, 1, 20).

3.3.2 Flow-based Visual Odometry
Corners and their corresponding features from the scene are first extracted via [100] with a block size of 17 pixels.

To enhance the robustness and the versatility of the VO process, we adopt the optical flow-based feature tracking
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method: Kanade–Lucas–Tomasi (KLT) [56], to match corresponding features in a pyramidal resolution approach of

7 levels with a 17× 17 pixels window size.

On tracking the most robust and stable features in 10 consecutive frames, we calculate the Essential Matrix with

feature outlier rejection by MAGSAC++ [67]. While both RANSAC and MAGSAC++ are useful for estimating model

parameters from noisy data, MAGSAC++ offers improved accuracy, robustness, and computational efficiency. Then

the relative transformation between every two consecutive frames Tvc ∈ SE(3) is recovered from the Essential Matrix,

which we use to initialize our level 1 optimization process with the initial pose graph using the following arbitrarily

scaled transformation:

Twc =̇ Twv Tvc, (3.27)

where Twv ∈ SE(3) is the rigid-body transformation between the IMU/body (world) and RGB camera (visual)

inertial frames of reference w, v, respectively. In initialization, we assume that there is no translation between the

IMU-camera reference frames, i.e., twv = [0, 0, 0]⊤, and the rotation Rwv between them is given in Figure 3.3 (b),

knowing that the camera frame c and its inertial frame of reference (visual frame v) initially coincides on each other.

Until this step, the RGB camera’s rigid-body motion Twc is considered the arbitrary scaled rigid-body motion of all

the multi-modal sensor setup T 0
wi.

In parallel, a checkerboard corner detection is run on all RGB camera frames. When a checkerboard is detected,

an RGB frame is considered a calibration keyframe (KF). We integrate the corresponding time-synchronized, and

spatially aligned [101] depth frame (d) to construct a 3D point cloud of the currently detected corners.

Ti Tk TjT0

PGO Factor Range Factor GPS reading Gyroscope reading T KLT-VO Pose

TN

RK4RK4 RK4RK4

CT-GPS

p(u)

Figure 3.6: Level 1 initialization factor graph. p(u) is the CT-GPS trajectory generated at high frequency. RK4 is the

Runge-Kutta 4th order gyroscope integration scheme. Dotted lines denote the error term (T̂
−1
i T̂ j) in Equation (3.31)

between any two KLT-VO poses.
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3.3.3 Optimizer Robust Initialization
After estimating the target’s poses and initially constructing point clouds of the checkerboard, bootstrapping the

optimizer is essential for a reliable calibration process. This method is efficient in terms of complexity since the

bootstrapping relies only on low-rate noisy GPS measurements and gyroscope preintegrated readings. To tackle

these GPS problems, we apply an on-manifold cumulative B-spline interpolation [93] to synthesize a very smooth

continuous-time (CT) trajectory ∈ R3 from the low-rate noisy GPS readings, as illustrated in Figure 3.6.

Thematrix form for the cumulative B-splinemanifold of order k = n+1, where n is the spline degree, is modeled

at t ∈ [ti, ti+k−1] as:

p(u) = pi +
k−1∑
j=1

B̃
(k)
j ū

(k)
j di

j ∈ R3, (3.28)

where p(u) ∈ R3 is the continuous-timeB-spline increment that interpolates kGPSmeasurements on the normalized

unit of time u(t) := (t − ti)/∆ts − Pn with 1/∆ts denoting the spline generation frequency and Pn being the pose

number that contributes to the current spline segment Pn ∈ [0, · · · , k − 1]. pi is the initial discrete-time (DT) GPS

location measurement at time ti. The term di
j = pi+j − pi+j−1 is the difference vector between two consecutive

DT-GPS readings. The matrix B̃
(k)
j is the cumulative basis blending and ū

(k)
j is the normalized time vector, and are

defined as:

B̃
(k)
j = b̃

(k)
j,n =

∑k−1
s=j b

(k)
s,n,

b
(k)
s,n = Cn

k−1
(k−1)!

∑k−1
l=s (−1)l−sCl−s

k (k − 1− l)k−1−n,

ū
(k)
j = [u0, · · · , uk−1, uk]⊤, u ∈ [0, · · · , 1].

(3.29)

Our GPS-IMU aided initialization system comprises two optimization factors; the first is a Pose Graph Optimiza-

tion (PGO) factor rp that optimizes the 6-DoF of every pose, whereas the second is a Range factor rs that constraints

the translation limits between every two KLT-VO poses. Hence, themetric scale of the visual odometry pose is recov-

ered using the gyroscope and GPS readings, leveraging the high accuracy of the optimization process. An illustrative

scheme for the initialization process factor graph is shown in Figure 3.6.

The initialization process objective function Lp,s is modeled as:

Lp,s = arg min
Twi

[ N∑
(i,j)

(
||rp(i, j)||2Σp

i,j
+ ||rs(i, j)||2Σs

i,j

)]
. (3.30)

Σp
i,j ,Σs

i,j are the informationmatrices associatedwith theGPS readings covariance, reflecting the PGOand Range

factors noises on the global metric scale estimation process between two RGB-D aligned frames.
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3.3.3.1 Pose Graph Optimization (PGO) factor
The PGO is a 6-DoF factor that controls the relative pose error between two consecutive edges i, j and is formulated

as:

rp =
∣∣∣∣∣∣(T̂

−1
i T̂ j

)
⊖∆T ω,GP S

ij

∣∣∣∣∣∣
2
, (3.31)

where ||.||2 is the L2-norm, T̂ i,j ∈ SE(3) is the T 0
wi estimated from the front-end pipeline at frames i, j. The operator

⊖ is the SE(3) logarithmic map as defined in [102]. The error transformation ∆Tω,GP S
ij [δRω

ij , δp
GP S
ij ] ∈ se(3), where

δpGP S
ij = pj − pi is the CT-GPS measurement increment and δRω

ij = [δϕ, δθ, δψ]⊤ ∈ so(3) is the gyroscope integrated

increment δRω
ij =

∫ j

k=i
(ωk)dk using Runge-Kutta 4th order (RK4) integration method [103] between the keyframes i

and j.

3.3.3.2 Velocity Graph Optimization (VGO) factor
Velocity GraphOptimization (VGO) is not a standard term in robotics or SLAM. Still, we can proceedwith the following

model to create an analogous concept to Pose Graph Optimization (PGO) by considering the velocities instead of the

poses. Given some constraints or relative velocity measurements, the idea would be to optimize the velocities to

minimize the error in the accumulated velocities over time.

We define the Velocity Graph Optimization problem by differentiating the PGO equation with respect to time.

We’ll assume that the robot poses T̂ i and T̂ j belong to a manifold that is function of time (t), and we have relative

velocity measurements vij instead of T̂ i,j ∈ SE(3). The residual error function formulating the VGO problem can be

defined as:

rv =
∣∣∣∣∣∣(ζ̂i − ζ̂j

)
−∆ζij

∣∣∣∣∣∣
2
, (3.32)

where ||.||2 is the L2-norm, ζ̂ = [ω, v]⊤ is the estimated twist state vector, and a twist vector is a mathematical

representation of the combination of linear and angular velocities of a rigid body in motion. It is a compact way to

describe the instantaneous motion of an object in 3D space. The twist vector is a 6-dimensional vector comprising

two 3-dimensional components: linear and angular. ∆ζij is the relative velocity vector between the two consecutive

poses.

The relative velocity between two poses can be measured using various sensors, including standard cameras,

IMUs, event cameras, LiDARs, or RADARs. Each sensor type has its strengths and weaknesses and may require

different processing methods to obtain the relative velocity measurement ∆ζij . An overview of how to measure

∆ζij with each sensor type:

• Standard Camera (Visual Odometry and Optical Flow)
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Visual odometry algorithms estimate the motion of a camera between consecutive frames by tracking and

matching feature points. By processing these tracked features, one can compute the relative pose change

and, thus, the relative velocity between frames.

Optical flow is a technique to estimate the apparent motion of objects in consecutive frames of a video se-

quence. It computes the 2D motion vectors for each pixel, which can be used to approximate the 3D motion

between frames. By using techniques like RANSAC and epipolar geometry, one can recover the relative pose

and velocity between frames.

• Inertial Measurement Unit (IMU)
An IMU measures the linear accelerations and angular velocities of a device. IMU measurements can be in-

tegrated to estimate the relative velocity between two poses. However, integrating the IMU data is prone to

drift, and it’s usually fused with other sensors like cameras or LiDARs to improve accuracy.

• Event Camera
An event camera is a type of camera thatmeasures changes in pixel intensity asynchronously, capturing events

when they happen rather than at fixed intervals. These events can be used to estimate optical flow, which can

then be used to compute the relative pose and velocity between poses similar to a standard camera. In our

work [104], we apply this VGO factor in an event-based visual-inertial odometry method where the optical flow

of events is coupled with the gyroscope’s angular velocity readings to measure the ∆ζij term in a novel and

highly efficient approach.

• LiDAR
LiDAR sensors emit laser pulses and measure the time the light bounces back after hitting an object. By pro-

cessing the point clouds generated by LiDAR, you can estimate the relative pose and velocity between sensor

readings. This can be done using algorithms like Iterative Closest Point (ICP) or Generalized Iterative Closest

Point (GICP) to align consecutive point clouds.

• Radar
Radar systems emit radio waves and measure the time it takes for the waves to bounce back after hitting an

object. Some radar systems can directly measure the velocity of objects using the Doppler effect. One can

estimate the relative velocity between poses by processing the radar data and fusing it with other sensor data

like cameras or IMUs.

In most practical applications, a combination of multiple sensors is used to obtain more accurate and robust ve-

locitymeasurements. Sensor fusion techniques like Kalman filters, particle filters, or optimization-based approaches
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can be employed to combine the information from different sensors and obtain an optimal estimate of the relative

velocity ∆ζij .

This formulation assumes that the relationship between velocities is linear. In practice, this assumption might

not always hold, and the residual error function may need to incorporate more complex models, considering the

specific motion dynamics of the system and the coordinate transformations between poses.

Note that this formulation is not standard in robotics and SLAM literature. It’s our conceptual extension of PGO

to velocities. The optimization problem can still be solved using iterative optimization algorithms such as Gauss-

Newton or Levenberg-Marquardt.

3.3.3.3 Range constraining factor
The range factor limits the front-end visual drift and keeps the global metric scale under control within a sensible

range defined by the GPS signal and is formulated as:

rs =
∣∣∣∣∣∣||̂tj − t̂i||2 − ||pGP S

j − pGP S
i ||2

∣∣∣∣∣∣
2
, (3.33)

where inner ||.||2 is the Euclidean norm between the translation vectors t̂i,j , p
GP S
i,j ∈ R3 of two consecutive front-end

(KLT-VO) poses and CT-GPS signals, respectively.

3.3.4 RGB-D-IMU Local Bundle Adjustment
To estimate the calibration parameters of the RGB-D-IMU, we fuse the tracked checkerboard corners and point

clouds with the IMU preintegrated measurements factor proposed in [4]. Figure 3.7 shows our sliding window ap-

proach. The local BA is performed on all collected 2D corners B within their corresponding 3D point cloud C between

two aligned RGB camera c and Depth camera d keyframes i, j, and the IMU readings I in-between. Our local bundle-

adjustment minimization objective function Lc,d,I is defined by:

Lc,d,I = arg min
X

[ N∑
(i,j)

ρH(||rI(i, j)||2ΣI
i,j

) +
N∑
Ci

M∑
Bi

(
ρH(||rc(Bi|Ci)||2Σc

i
) + ρC(||rd(Bi|Ci)||2Σd

i
)
)]
, (3.34)

with X , the full local BA optimization states, which is defined as:

X = {Kc,Kd,Ki, Tic, Tdc, Twi, vwi, Cw} ,

Kc,Kd = [fx, fy, cx, cy, k1, k2, p1, p2, k3, λ] ∈ R10,

Ki
k = [τic, b

ω, ba] ∈ R7, ∀k ∈ [0, N ],

Tic, Tdc, Twi = [Ric | tic, Rdc | tdc, Rwi | twi] ∈ SE(3),

Cw
k = [Xw, Y w, Zw] ∈ R3, ∀k ∈ [0, N ],

(3.35)
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Figure 3.7: Level 2 factor graph between RGB-D aligned keyframes (KF). This factor graph illustrates the non-linear

BA process to calibrate the full RGB-D-IMU sensor setup. ∆t denotes the IMU time step. τic denotes the camera-IMU

time offset.

whereKc,Kd are intrinsic parameters containing the cameras focal lengths fx, fy , focal centers cx, cy , radial-tangential

distortion coefficients k1,2,3, p1,2, and the cloud scale factor λ. Tic, Tdc are the inter-sensor extrinsic rigid-body trans-

formations. While the spatio-temporal parameters include the scene structure Cw, the body metric scaled pose Twi,

velocity vwi with respect to the world coordinates, τic [sec] is the IMU-camera time-offset [105], and bω ∈ R3, ba ∈ R3

are the gyroscope and accelerometer biases, respectively. N,M are the number of calibration keyframes and cor-

ner observations, respectively. rI , rc, rd are the IMU, corner re-projection, and cloud-scale factors, respectively.

ΣI
i,j ,Σc

i ,Σd
i are the information matrices associated with the IMU readings I , detected corners B, and reconstructed

cloud C scale noise covariance. ρ is the loss function defined by Huber norm [106] ρH for rI , rc and Cauchy norm

[107] ρC for rd.

3.3.4.1 Structured Re-projection Errors factor
We apply the RGB camera pinhole model with radial-tangential distortion coefficients with intrinsic parameters ma-

trix Kc. As illustrated in Figure 3.3 (a), we consider a constructed 3D point cloud Cw
k using the depth camera aligned

kth frame with the current RGB keyframe k. For every checkerboard, we have H ×W feature observations, repre-

senting the keyframe’s detected corners Bc
k[u, v].

There is a factor for every detected corner on the current keyframe k that minimizes the error between this

corner’s location Bc
k[u, v] and the re-projection of the cloud’s Cw

k (u, v) corresponding 3D point on kth keyframe after

distortion B̂c
k[û, v̂]. This factor is defined by:



72 CHAPTER 3. HYBRID ONLINE CALIBRATION

Figure 3.8: Illustration for the 2D-3D-2D projection of the H × W = 7 × 7 checkerboard feature points from the

RGB frame to the point cloud and then to the depth frame. λ is the correction factor for RGB camera intrinsics to

estimate the cloud scale factor optimally.

rc = ||Bc
k[u, v]− B̂c

k[û, v̂]||2. (3.36)

Applying the pinhole camera radial-tangential distortion model [108] to calculate the distorted pixel location of

the re-projected 3D point on the current frame B̂c
k[û, v̂], we get:

Cc
k(u, v) = Tic

−1Twi
−1Cw

k (u, v) = [Xc
k, Y

c
k , Z

c
k],

ū = Xc
k/Z

c
k + cx/fx, v̄ = Y c

k /Z
c
k + cy/fy,

r2 = ū2 + v̄2,

û = fx(ū(1 + k1r
2 + k2r

4 + k3r
6

+2p1v̄) + p2(r2 + 2ū2)),

v̂ = fy(v̄(1 + k1r
2 + k2r

4 + k3r
6

+2.p2ū) + p1(r2 + 2v̄2)).

(3.37)

3.3.4.2 Cloud Scale Optimization factor
This factor is modeled to fuse the corner features from RGB frames with the untextured depth maps to benefit from

the advantages of both sensors by minimizing the error between the distorted re-projection of the 3D cloud point

Cw
k (u, v) on the kth depth frame B̂d

k[û, v̂] and the current corner feature observation gd(Bc
k[u, v]) with respect to it.

The effectiveness of this factor comes from the hypothesis that undistorting the depth frame will, in return,
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undistort the planar coordinates of the point cloud Cd
k [Xd

k , Y
d

k ]. In Figure 3.8, we apply the scale of the cloud λ

(known as inverse depth) to optimize the RGB camera focal lengths with the cloud’s 3rd coordinate Cd
k [Zd

k ] which is

optimized within the joint calibration model, knowing the metric scale of the pose. This factor is defined by:

rd = ||gd(Bc
k[u, v])− B̂d

k[û, v̂]||2, (3.38)

where B̂d
k[û, v̂] follows the same model in Equation (3.37) by replacing Cc

k(u, v) with Cd
k(u, v) = TdcCc

k(u, v). gd(.) is

a double re-projection with distortion function, that firstly projects the observation Bc
k[u, v] to the 3D point cloud

Cc
k(Bc

k[u, v]) as illustrated by red arrow numbered (2) in Figure 3.3 (a) using the rigid-body transformation Twc =

TwiTic from c to w coordinates with the following formula:

Cc
k(Bc

k[u, v]) = Rwc(λK−1
c Bc

k[u, v]) + twc. (3.39)

Then secondly, rotates Cc
k(Bc

k[u, v]) to Cd
k(Bc

k[u, v]) using Tdc, and finally, re-projects and undistorts this double

rotated point on the depth frame Cd
k(Bc

k[u, v]) using the same model in Equation (3.37).

3.3.4.3 IMU Pre-integration factors
The IMU preintegration factors between two consecutive keyframes i, j is defined in [4] by:

rI = [∆Ri,j ,∆vi,j ,∆pi,j ,∆bω,a
i,j ] ∈ R15,

rI
∆Ri,j

= log((∆R̃i,j)⊤R⊤
i Rj),

rI
∆vi,j

= R⊤
i (vj − vi − g∆ti,j)−∆ṽi,j ,

rI
∆pi,j

= R⊤
i (tj − ti − vi∆ti,j − 1

2g∆t2i,j)−∆p̃i,j ,

rI
∆bi,j

= ||bω
j − bω

i ||2 + ||ba
j − ba

i ||2,

(3.40)

where ∆R̃i,j ,∆ṽi,j ,∆p̃i,j are the preintegrated rotation, velocity and translation increments. All these on-manifold

preintegration increments derivations, as well as the covariance ΣI
i,j propagation, are given in the supplementary

material of [4], and for better readability, we write Ri,j , ti,j , vi,j instead of [Rwi, twi, vwi].

3.4 Experiments
We evaluate the performance of our method (see Algorithm 1) on two applications: RGB-D-IMU Calibration and

GPS-aided pose estimation. Using the IBISCape [1] benchmark’s CARLA-based data acquisition APIs, we collect three

simulated calibration sequences with a vast range of sizes. Moreover, algorithm validation on simulated sequences

eases the change of settings to various sensor configurations for robust validation of all corner cases and provides a

baseline for most system parameters. Furthermore, for real-world assessment, we evaluate our calibration method
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Algorithm 1 End-to-End Optimization Scheme

Input: RGB frames (c), RGB-aligned depth maps (d), GPS readings (DT-GPS), IMU readings (I)Output: X = {Kc,Kd,Ki, Tic, Tdc, Twi, vwi, Cw}
1: Tvc ⇐ KLT-VO (c, K0

c ) ▷ Arbitrary scaled
2: T 0

wi ⇐ rotate (Twc ∗ [T 0
ic]−1) ▷ Eq. (3.27)

3: Bc
k[u, v]⇐ collect_corners (c, H, W) ▷ pix-2D

4: Cw
0 ⇐ construct (d, Bc

k[u, v], K0
d) ▷ Initial pcl-3D

5: p(u)⇐ spline_fit (DT-GPS) ▷ Eq. (3.28)
6: [ϕ, θ, ψ]⇐ RK4 (Igyro(ω)) ▷ Initial orientations
7: while not converged do ▷ Start Level 1
8: Twi ⇐ optimize (T 0

wi, p(u), [ϕ, θ, ψ]) ▷ Eq. (3.30)
9: end while
10: while not converged do ▷ Start Level 2
11: X ⇐ optimize (I , X0 (Twi, Cw

0 )) ▷ Eq. (3.34)
12: end while

on the RGB-D-IMU checkerboard hand-eye calibration sequence from the VCU-RVI benchmark [36]. Finally, we con-

duct ablation studies on both IBISCape (Vehicle) and EuRoC [26] (MAV) sequences to assess the contribution of each

sensor in an RGB-D-IMU-GPS setup to the accuracy of the pose estimation for a reliable long-term navigation.

Factor graph optimization problems in Equations (3.30) and (3.34) are modeled and solved using a sparse direct

method by the Ceres solver [109] with the automatic differentiation tool for Jacobian calculations. The sparse Schur

linear method is applied to use the Schur complement for a more robust and fast optimization process. Maximum

calibration time for the largest sequence S3 is ≈ 50[min] on a 16 cores 2.9 GHz processor and a Radeon NV166 RTX

graphics card. The front-end pipeline is developed in Python for better visualization, and the back-end cost functions

are developed in C++ to decrease the system latency during the optimization process.

A more in-depth quantitative analysis of the optimization process computational cost is given in Table 3.2, where

all experiments converged successfully. The prominent conclusion from this complexity analysis is that the level 2

BA optimization process is computationally highly expensive compared to the target’s pose estimation optimization

process of level 1. However, this level 2’s high computational load can still compete with other calibration tools’ BA

optimization time, such as Kalibr [53].

3.4.1 Application I: RGB-D-IMU Online Calibration
For both VCU-RVI and CARLA sequences, initial values for the cameras’ intrinsic matrices are set to W/2 for cx, fx,

H/2 for cy, fy , and zeros for the radial-tangential distortions. Initial λ is set with 0.1643, which is the pixel density

of CARLA cameras. For extrinsic parameters T 0
ic and T 0

dc initialization, we set the translation part with zeros, and

the rotation matrix is set as given in Figure 3.3 (b). Since the VCU-RVI handheld sequence can provide sufficient

IMU excitation but with no GPS data available, bootstrapping the calibration system is performed by the traditional

IMU-based method [5].

We validate our new cloud global optimization factor based on two criteria: the estimated point cloud after
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S1VCU-RVI (hand-eye)

(a) Before Optimization (b) After Optimization

Figure 3.9: Top: the target’s top-view 3D point cloud reconstruction; (left) VCU-RVI initially constructed point clouds,

(right) CARLA optimized point cloud. Blue dots with a red outline denote the checkerboard corners’ 3D location. The

green colored curve represents the point cloud’s normal distribution convergence after optimization. Green circles

denote a point cloud depthmean value. Bottom: the calibration target’s front-view 3D point clouds in the qualitative

analysis of the level 2 optimizer performance (a) before and (b) after optimization. Snippets from the S1 calibration

sequence of the IBISCape benchmark.
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Table 3.2: Optimization process complexity analysis on IBISCape benchmark S1,S2,S3 sequences.

Level Initial Cost Final Cost Residuals Iterations Time

1
.P
G
O S1 1.69e+4 3.19e-9 2464 22 2.81"

S2 9.62e+4 3.12e-8 6951 26 8.79"

S3 1.47e+5 2.31e-8 14875 22 16.08"

Average 8097 23 9.23"

2
.B
A

S1 6.02e+7 1.57e+5 74820 274 2’40.56"

S2 3.67e+8 7.09e+5 210500 758 22’10.23"

S3 7.53e+8 1.22e+6 450696 779 49’22.04"

Average 245339 604 24’44.28"

optimization and the depth frame distortion estimation as an indicator for depth correction. Figure 3.9 shows that

the optimized cloud is converging to a normal distribution whose mean is the exact location in the simulation world

at 60 m, which is at the checkerboard’s location as marked on Figure 3.10. Table 3.3 shows the considerably high

values for depth frame distortion coefficients, indicating our factor’s effect on the cloud’s planar undistortion.

Using Kalibr [53] as a baseline for the RGB camera intrinsics for both CARLA and VCU-RVI sequences, we evaluate

our optimizer estimation quality in Table 3.3. Since themap scale λ is an RGB camera optimization parameter based

on the RGB-D geometric linking constraint introduced in Equation (3.39), the estimates of the focal length need scale

correction using: f corr
x,y = fest

x,y ∗ λ. For the VCU-RVI hand-eye sequence, we notice that the cloud scale factor is

approaching the value 1, which indicates that the initial point cloud is constructed with a high-quality depth sensor.

In Table 3.4, we show the optimal performance of our optimizer to estimate the inter-sensor extrinsic parameters

compared to the GT values. Compared to the baseline, our optimizer efficiently estimates the inter-sensor rotation

and translation in the case of RGB-D sensors. For the IMU-camera extrinsic parameters and in contrast to rotations,

the IMU-camera rigid-body translation mainly depends on the initial values set in the optimizer. In order to estimate

the optimal values for the translation part, multiple experiments should be executed with zeros as initial conditions

with large data sets. Based on the quality of the IMU still calibration values, all the experiments will converge to

relative values, as shown in Table 3.4.

3.4.2 Application II: GPS-aided Visual-Inertial Odometry
Two ablation studies are carried out to assess the contribution of the GPS sensor to the accuracy of the pose esti-

mation when the depth information is available or not available. Standard VIO evaluation metrics [57] are used for

assessment: Root Mean Square Absolute Trajectory Error (RMS ATEp [m]) and Relative Pose Error (RPEp [m]).
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Table 3.3: RGB-D-IMU Sensors Setup Intrinsic Parameters Estimation. Since the CARLA simulator does not provide

exact intrinsics values, GT for RGB camera intrinsics are obtained with Kalibr [53]. KF: keyframes count. TL: Sequence

Trajectory Length. D: Sequence Duration. ∗ denotes a value calculated from the Structure Core (SC) RGB-D camera

specifications with depth FOV=70°. ∗∗ denotes a value from the Bosch BMI085 IMU technical data sheet.

Parameter
CARLA Simulator (IBISCape [1]) VCU-RVI [36]

S1 S2 S3 GT hand-eye GT

S
p
e
c
ifi
c
a
ti
o
n
s RGB 20 Hz - 1024×1024 px 30 Hz - 640×480 px

Depth 20 Hz - 1024×1024 px 30 Hz - 640×480 px
IMU 6-axis acc/gyro @200Hz 6-axis acc/gyro @100Hz

#KF 353 994 2126 - 1118 -

TL[m] 122.06 345.42 737.88 - 11.16 -

D[sec] 17.640 49.730 106.29 - 46.59 -

R
G
B
C
a
m
e
r
a

λ.fx 164.01 122.71 148.42 151.51 375.67 459.36

λ.fy 163.30 122.22 149.39 151.89 398.44 459.76

cx 498.89 506.21 507.59 510.01 315.48 332.69

cy 514.01 515.49 518.61 510.71 289.64 258.99

k1 -5.10e-3 -6.20e-3 -6.15e-3 2.42e-5 -1.62e-2 -2.98e-1

k2 -1.95e-3 -1.96e-3 -2.07e-3 2.89e-6 -3.62e-3 9.22e-2

p1 -1.25e-3 -1.96e-3 -8.31e-4 1.71e-4 -2.31e-3 -1.19e-4

p2 -3.20e-3 -2.27e-3 -3.53e-3 -3.22e-5 -1.09e-2 -7.46e-5

k3 -8.16e-4 -8.70e-4 -8.64e-4 0.0 -7.84e-4 -

λ 0.3581 0.2819 0.3432 - 0.9831 -

D
e
p
th

C
a
m
e
r
a

fx 511.42 511.51 511.51 512.0 456.82 457.01∗

fy 511.91 511.83 511.82 512.0 456.06 457.01∗

cx 512.20 512.22 512.30 512.0 333.29 320.0∗

cy 511.81 512.01 512.02 512.0 259.17 240.0∗

k1 -3.53e-2 -3.37e-2 -3.54e-2 - -5.74e-2 -

k2 -5.60e-3 -6.20e-3 -6.25e-3 - -9.07e-3 -

p1 -3.41e-2 -3.22e-2 -3.29e-2 - -4.13e-2 -

p2 -3.93e-2 -3.50e-2 -3.82e-2 - -6.09e-2 -

k3 -1.10e-3 -1.45e-3 -1.38e-3 - -2.98e-4 -

IM
U
S
e
n
s
o
r

τic 4.986e-3 4.989e-3 4.998e-3 5e-3 4.473e-3 -

bω
x -7.549e-3 -2.242e-2 -4.907e-3 -2.383e-3 1.512e-4 9.69e-5∗∗

bω
y -3.283e-2 3.813e-2 -2.054e-2 -3.364e-3 9.337e-5 9.69e-5∗∗

bω
z 8.151e-2 2.659e-2 -2.540e-2 1.555e-3 -2.967e-4 9.69e-5∗∗

ba
x 0.109 -0.062 0.147 -0.951 -5.704e-4 -

ba
y -0.707 -1.069 -0.091 -0.691 6.757e-4 -

ba
z -1.926 -2.295 -2.364 0.183 -9.304e-4 -
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Table 3.4: Extrinsic parameters estimation for both IBISCape (S1,S2,S3) and VCU-RVI (hand-eye) calibration se-

quences.

Parameter tx[m] ty[m] tz[m] qx qy qz qw

R
G
B
-D

(T
d

c
) S1 4.95e-3 0.017 0.037 -0.037 -0.022 0.030 0.997

S2 5.47e-3 0.020 0.065 -0.041 0.005 0.019 0.996

S3 9.10e-3 0.018 0.065 -0.036 -0.010 0.025 0.997

GT 0.0 0.020 0.060 0.0 0.0 0.0 1.0

hand-eye -0.103 0.003 0.018 0.041 0.081 0.009 0.969

GT -0.100 0.0 0.0 0.0 0.0 0.0 1.0

R
G
B
-I
M
U
(T

ic
) S1 -0.806 0.154 -0.308 0.493 0.507 0.499 0.500

S2 -0.854 -0.057 0.006 0.503 0.495 0.501 0.498

S3 -0.808 -0.028 -0.102 0.503 0.501 0.499 0.496

GT -0.800 0.0 0.0 0.500 0.500 0.500 0.500

hand-eye 0.077 0.020 -0.041 0.699 -0.713 -0.009 -9e-4

GT -0.008 0.015 -0.011 0.708 -0.706 0.001 -4e-4

Table 3.5: Ablation study on the contribution of the GPS sensor on the system accuracy when depth information is

available.

Method
IBISCape [1] (RPEp (µ± σ) [m])

Average
S1 S2 S3

DUI-VIO [88] 0.115±0.113 0.115±0.114 0.120±0.119 0.117±0.115
BASALT [69] 0.084±0.084 0.052±0.051 0.026±0.026 0.054±0.054
ORB-SLAM3 [43] 0.028±0.013 0.073±0.034 0.031±0.028 0.044±0.025Proposed (Lvl.1+2) 0.016±0.019 0.025±0.030 0.018±0.025 0.020±0.025

1

2

3

4

5

5

4

3

2

1

Proposed (Lvl.1+2)

Figure 3.10: Pose estimation evaluation of our method compared to ORB-SLAM3, BASALT, and DUI-VIO on S1,S2,S3

sequences. Different axes scale for showing fine details.
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Figure 3.11: Synthesizing low-rate noisy DT-GPS readings with three frequencies [10,5,1] Hz on EuRoC V2-01 se-

quence and performing the B-spline interpolation (CT-GPS) with manifolds of degree (n=3,5,7). Blue denotes the

most accurate, red denotes the least accurate, and green denotes the parameters used in our experiments (n=3,

f=10Hz). RMSE is the accuracy evaluation metric.
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Table 3.6: Ablation study on the contribution of the GPS sensor on the system accuracy when depth information is

unavailable. ∗ denotes tracking features in 5 consecutive frames instead of 10 due to the rapid motion of the MAV. +

denotes the only learning-based baseline in the table and the only method incorporating LiDAR point clouds. V,I,G:

Vision, IMU, and GPS.

Method
EuRoC [26] (RMS ATEp [m])

Avg.
V1-01 V1-02 V1-03 V2-01 V2-02 V2-03

M
o
n
o
-V
I

OKVIS [110] 0.090 0.200 0.240 0.130 0.160 0.290 0.185

ROVIO [42] 0.100 0.100 0.140 0.120 0.140 0.140 0.123

VINS-Mono [5] 0.047 0.066 0.180 0.056 0.090 0.244 0.114

OpenVINS [111] 0.056 0.072 0.069 0.098 0.061 0.286 0.107

CodeVIO+ [89] 0.054 0.071 0.068 0.097 0.061 0.275 0.104

S
te
r
e
o
-V
I VINS-Fusion [112] 0.076 0.069 0.114 0.066 0.091 0.096 0.085

BASALT [69] 0.040 0.020 0.030 0.030 0.020 0.050 0.032

Kimera [113] 0.050 0.110 0.120 0.070 0.100 0.190 0.107

ORB-SLAM3 [43] 0.038 0.014 0.024 0.032 0.014 0.024 0.024

M
o
n
o
-V
/I
/G

CT (V+I+G) [114] 0.024 0.014 0.011 0.012 0.010 0.010 0.014

CT (V+G) [114] 0.011 0.013 0.012 0.009 0.008 0.012 0.011
CT (I+G) [114] 0.062 0.102 0.117 0.112 0.164 0.363 0.153

DT (V+I+G) [114] 0.016 0.024 0.018 0.009 0.018 0.033 0.020

DT (V+G) [114] 0.010 0.025 0.024 0.010 0.012 0.029 0.018

DT (I+G) [114] 0.139 0.137 0.138 0.138 0.138 0.139 0.138Proposed (Lvl.1) 0.008 0.017∗ 0.023∗ 0.008 0.022 0.025∗ 0.017
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3.4.2.1 Ablation Study on a Simulated Ground Vehicle
In the first ablation study, we assess the performance of our depth-incorporated pose estimation with GPS-aided

bootstrapping compared to the latest state-of-the-art VIO systems that do not utilize GPS readings in their esti-

mations. We compare our GPS-aided RGB-D-IMU pose estimation accuracy with that of ORB-SLAM3 (RGB-D) [43],

BASALT (2×RGB-IMU) [69], and DUI-VIO (RGB-D-IMU) [88] systems using both VCU-RVI and CARLA sequences.

During the evaluation of the DUI-VIO [88] system, we noticed an initialization failure with the S1 sequence till the

system initialized successfully at the end of the speed bump at nearly 30 m as magnified in Figure 3.10 (#1). This

initialization problem is not witnessed with the VCU-RVI hand-eye calibration sequence due to its complex combined

motions (see Figure 3.1 (right)). Sequences (S2, S3) are simulated with a high combinedmotion to ensure the optimal

checkerboard coverage for all the RGB-D camera frames. The complex motion generated sufficient IMU excitation

to initialize BASALT and DUI-VIO.

In our analysis in Table 3.5, the quantitative results show superior performance for our method compared to

other approaches. Indeed, the pose estimation error is reduced by 54.55%, 62.96%, and 82.91% compared to ORB-

SLAM3, BASALT, and DUI-VIO, respectively. This happens thanks to our fast bootstrapping GPS-aided method that

decreases the relative pose error accumulation with time.

3.4.2.2 Ablation Study on a Real-world Aerial Vehicle
To further validate the performance of our pose estimation method in a real-world application, we perform another

ablation study. The experiments of this study were performed on the EuRoC MAV dataset [26] incorporating RGB-

IMU sensors and compared to the continuous-time and discrete-time (CT/DT) GPS-based SLAM system proposed

in [114]. Since a comparison with the competing technique [114], combining GPS signals computed from the Vicon

system measurements better emphasizes the findings of this ablation research, we chose the identical six Vicon

room sequences from the EuRoC benchmark they used in their evaluation.

The GPS readings for EuRoC sequences are generated with the same realistic model and parameters given in

[114] that gives a real-world accuracy but does not suffer from limitations as multipath effects [115]. CARLA GPS

sensor is modeled as most commercial sensors containing a particular bias with a random noise seed and a zero

mean Gaussian noise added to every reading. The most prominent conclusion from Figure 3.11 is that as the GPS

rate increases, the CT-GPS interpolation is better with a low degree (n) manifold, and vice-versa, and our GPS-aided

initialization method can still be valid with the lowest GPS frequency (f = 1Hz).

The quantitative analysis in Table 3.6 shows that our level 1 estimations, with no depth information, can efficiently

estimate a metric-scaled trajectory that can bootstrap level 2 and outperform other well-established VIO systems in

terms of accuracy. We also notice an improvement in estimation accuracy with adding a sensor modality (IMU/GPS),

given that at least one visual sensor is present in the system. Another conclusion is that a GPS can be sufficient with
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the optical sensor to get a reliable trajectory estimate in a tightly-coupled fusion scheme. For a loosely-coupled fusion

scheme (proposed Lvl.1), adding a gyroscope increases the confidence of the optimizer to converge to reasonable

values.

3.4.3 Algorithm’s In-depth Behavioural Insights
In this sub-section, we enclose a more in-depth quantitative analysis for our calibration and pose estimation re-

sults (dashed lines) compared to the ground truth values (solid lines) when available or to a baseline algorithm—for

example, DUI-VIO is used as GT with the VCU-RVI handheld (hand-eye) calibration sequence.

CARLA datasets used in this experiments link:

https://drive.google.com/drive/folders/1aL4JNtUfshEw-nilLsgefijOSecUqwtf?usp=sharing

3.4.3.1 CARLA and VCU-RVI Quantitative Analysis
Figure 3.12 reports the 2D-XY trajectories with more information, including the trajectory estimated with each level

of the optimization process, the KLT-VO (in red) up-to-scale trajectory, and both the DT-GPS and CT-GPS trajectories.

Figure 3.13 illustrates the quality of the optimization process. Starting in the first column with the RK4 gyroscope

integration technique showing insights into the level 1 optimization quality. Then, the velocity estimation is one of the

important parameters to verify the Bundle-Adjustment optimization quality because it is initialized with zero values.

The estimated value completely depends on the IMU preintegration and bias factors, and the IMU still calibration

noise standard deviation values.

Finally, the last column reports the translations and rotations Relative Pose Error (RPE) for both the optimization

levels (1 in red and 2 in blue). The translations RPE values (top) are reported in [cm] and for the rotations (bottom)

in [degrees]. For the RK4 evaluation; rows 1-3: Roll ϕ, Pitch θ, and Yaw ψ angles in [rad]. For the velocity estimations;

rows 1-3: Vx, Vy , and Vz in [m/s].

The main conclusion from the quantitative evaluation results on both VCU-RVI and CARLA sequences is that the

RK4 integration scheme generates highly stable orientations with smooth transitions. i.e., when gyroscope sensor

measurements have an immediate transient impact, the RK4 integration scheme can filter the noisy measurements.

One limitation of the RK4 integration scheme is the high bias of the sensor as simulated in CARLA with the roll ϕ

angular velocity (this phenomenon is not witnessed with the real-world VCU-RVI sequence with the Bosch BMI085

IMU sensor).

3.4.3.2 EuRoC Quantitative Analysis
Figure 3.14 compares our level 1 optimizer estimated trajectory to the ground truth for all the V1- and V2- sequences

starting with the easiest in the top row, then medium in the middle, and the hardest in the bottom row. Then, in

https://drive.google.com/drive/folders/1aL4JNtUfshEw-nilLsgefijOSecUqwtf?usp=sharing
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S1 S2 S3 VCU-RVI

Figure 3.12: More quantitative evaluation on the 2D-XY estimated trajectories for the CARLA and VCU-RVI sequences.

Figure 3.15, we compare the level 1 estimated velocities to the ground truth velocities enclosed with the EuRoC se-

quences. Moreover, in Figure 3.16, we show the RK4 evaluation compared to the ground truth orientations. Figure

3.16 gives a more in-depth view of the insights of the RK4 integration scheme and its orientations estimation ac-

curacy, especially with the medium (middle) and hard (bottom) sequences. Finally, the RPE evaluation results are

reported in Figure 3.17 with the translation errors in [cm] to the left and the rotational errors in [degrees] to the

right.

The main conclusion from the quantitative evaluation results on EuRoC sequences, the RK4 integration scheme

can produce reasonable orientations estimations in the case of easy andmediumsequences (V1-01, V1-02, V2-01, V2-

02) due to the lownumber of rapid transient changes of themotion of theMAV.Whereas, for the hard sequences, the

RK4 results are slightly degrading in the integration quality due to the high number of significant and rapid transient

changes of the motion of the MAV in brief time lapses. Since the Pose Graph Optimization (PGO) factor accounts for

the orientations increments, and the information matrix includes a standard deviation value that incorporates the

noise to the orientations increments, this degraded quality with the hard sequences did not affect the overall quality

of the level 1 optimization process.

3.5 Conclusion
This chapter proposes the first baseline method for robust RGB-D-IMU intrinsic and extrinsic calibration, addressing

a critical challenge in the field of visual-inertial navigation for autonomous systems. Our novel approach begins with

an RGB-GPS-Gyro optimizer bootstrapping technique that reliably estimates the metric-scaled target’s pose, provid-

ing a strong foundation for the calibration process. Subsequently, we introduce a cloud-scale factor for spatially

aligning untextured depth maps in RGB-D, which estimates the scale by incorporating the uncertainty of the initially

reconstructed cloud.

Experimental results on both real-world and simulated sequences demonstrate the effectiveness of our method,

which can be considered as the foundation for a cutting-edge RGB-DGPS-aided VI-SLAM systemwith a reliable online

calibration algorithm. These promising results indicate that our method has the potential to significantly enhance

the performance and reliability of visual-inertial navigation systems.
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RK4-Evaluation Velocity Estimation Relative Pose Error
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Figure 3.13: RK4 Evaluations, Velocities Estimations and Relative Pose Error Analysis.



3.5. CONCLUSION 85

Figure 3.14: 2D-XY estimated trajectories for the EuRoC sequences.
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Figure 3.15: Velocities Estimation.
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Figure 3.16: RK4 Integration Scheme Evaluation.
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Figure 3.17: Relative Pose Error Analysis.
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In future work, it will be crucial to address situations where GPS sensor limitations, such as multipath effects,

cannot be simulated in the optimizer. This will further improve the robustness of our method and ensure its ap-

plicability in challenging environments. Additionally, it will be essential to generalize the Bundle Adjustment (BA)

optimization problem to extend the algorithm’s calibration capability to include multiple IMUs and vision sensors

(RGB and depth), thus catering to more complex and diverse system configurations.

In conclusion, our proposed method represents a substantial contribution to the field of RGB-D-IMU intrinsic

and extrinsic calibration, offering a reliable and effective solution to a critical problem. The promising experimental

results obtained in this chapter underscore the potential of our method for real-world applications and set the

stage for further advancements in this area. By addressing the calibration challenge, our work has the potential to

significantly impact the development of more robust and accurate autonomous navigation systems.
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4 Hybrid State Estimation

Abstract
In this chapter, a linear optimal state estimation approach is introduced for Micro

Aerial Vehicles (MAVs) in order to achieve highly accurate localization while minimiz-

ing system delay. The proposed approach incorporates a decoupled optimization-

and filtering-based sensor fusion technique, which aims to achieve both high estima-

tion accuracy and minimal system complexity. The system utilizes real-world indoor

and outdoor settings as experimental environments for conducting MAV localization

studies. Through these studies, the proposed method’s findings are validated and

tested, assessing its effectiveness and performance in different scenarios. The chap-

ter provides insights into the capabilities and limitations of the proposed approach,

shedding light on its potential applications in MAV localization.

"If I have seen further than others, it is by standing

upon the shoulders of giants."

Isaac Newton

91
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4.1 Introduction
Robust localization of Micro Aerial Vehicles (MAVs) in uncharted large-scale areas can rely on complementary data

gathered bymany sensormodalities. The study of Simultaneous Localization AndMapping (SLAM), primarily used for

MAV navigation in expansive and dynamic settings, may be enriched and expanded by using multi-modal datasets

[1]. These settings have certain traits, such as the dynamic range of the scene’s object intensities. For instance,

mapping a small interior space with adequate illumination might be of more outstanding quality than mapping a

rural area at night with heavy rain, wind, and fog (outdoors dynamic environment). The benefits of multimodal ap-

proaches become apparent when systems rely on sensors with high dynamic range and strong sensing capabilities,

such as event cameras, LiDARs, or Radars, or typical inexpensive cameras fused with other sensor modalities such

as the Inertial Measurement Units (IMUs) and GPS sensors. These multimodal approaches can fill indeed some lack

of data during scene mapping and MAV localization.

Toward this aim, we develop a trustworthy (quick and precise) localization solution that utilizes information from

three sensor modalities: camera frame data, IMU measurements, and GPS readings. Nevertheless, the GPS sen-

sor readings are consistently slower and noisier than those from the IMU or camera modules, and they frequently

experience signal loss in GPS-restricted locations. Therefore, a localization system that depends on GPS data must

perform effectively when GPS readings are lost.

Visual-Inertial Odometry (VIO) is one of the most mature and well-established approaches in the localization

field [116, 117, 118]. Efficient visual odometry can be achieved using a high-quality perception of the surroundings.

Sensors performing this perception task can differ in their nature of data collection. On the one hand, the most

common visual odometry sensors are cameras like RGB cameras [119], Event cameras [120], and RGB-D cameras

[121]. On the other hand, using LiDAR sensor [7] can provide point clouds, and GPS sensor [122, 123] can locate the

MAV using satellite signals triangulation as represented in Figure 4.1.

The accuracy of the state estimation process relies on an Error-State Extended Kalman Filter (ES-EKF) and the

bootstrapping quality of its states. A well-established IMU-based state estimator initialization technique is discussed

in [119]. In this bootstrappingmethod, the globalmetric scale of the trajectory and the IMU-camera gravity alignment

is optimized using a specific amount of IMU readings preintegration combined with an initial up-to-scale trajectory

estimated using the camera only. This bootstrapping process is prone to failure due to insufficient IMU excitation,

especially when the MAV navigates in a planar terrain.

The MAV should contain a localization system that continually calculates the pose with high accuracy and low

latency during search and rescue missions, for instance. The MAV is equipped with restricted resources regarding

the data processing unit and the limited power source capacity for long-term navigation operations in large-scale

situations. In light of this, the state estimate approach should consistently have low computational complexity and

resist sensor readings that deviate from the norm.
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Figure 4.1: An example for the on-map GPS readings of the large-scale environment of the Fast Flight dataset [124]
sequences: gps175, gps15, gps10, and gps5. The sequence number denotes the maximum flight velocity of each

sequence: 17.5, 15, 10, and 5 [m/sec], respectively. The color bar (bottom) denotes the map scale in [km] on the x-

axis and the altitude of each sequence in [m] on the y-axis. In the blue dotted box: Comparing the maximumMAV’s

altitude at instance before the descent stage to the height of an aircraft hangar. The estimated airport asset height

is 54.72 [m], corresponding to the maximum MAV altitude. Images are courtesy of Google Earth.

Our work’s main contribution to tackle the aforementioned challenges is threefold:
- In case of state estimator initialization failure, we propose a unique instant bootstrapping technique based on

continuous-time manifold optimization via Pose Graph Optimization (PGO) and Range factors, which depends on

low-rate GPS signals.

- A closed-form estimation method without non-linear optimization during IMU/CAM fusion produces a reduced

system latency with a constant CPU computing complexity. The mathematical modeling of a linear ES-EKF with a

precise and quick gyroscope integration strategy accounts for the simplicity of our proposed localization solution.

- The EuRoC benchmark [26], forMAV localization assessment in indoor environments, and the Fast Flight dataset

[124], for large-scale outdoor environments, are two real-world publicly available benchmarks onwhich our IMU/GPS-

CAM fusion system is thoroughly tested. With thorough ablation investigations on the role of each sensor modality

in the overall accuracy of the state estimation process, the assessment is conducted using the most recent state-of-

the-art visual-inertial odometry methodologies.

4.2 Related Work
4.2.1 Sensor Fusion
Figure 4.2 presents a global overview of the current state-of-the-art approaches for localization. The ability to con-

tinually estimate the robot’s ego-motion (position and orientation) over time is a significant difficulty in autonomous

navigation, path planning, object tracking, and collision avoidance platforms [112]. The Global Positioning System

(GPS) is a well-known localization method applied to several autonomous system domains. One kind of Global Nav-
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Localization
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Figure 4.2: Visual odometry is generally categorized together with self-contained and global localization methods.

igation Satellite System (GNSS) is GPS [123]. GPS is used as a self-localization source, such as for MAVs security

applications, and gives any user with a GPS receiver positional information with meter-level precision. The satellite

signal blockage, high noise levels, multipath effects, and other issues with GPS, on the other hand, make it a less

trustworthy alternative sensor for self-localization modules. However, RTK (Real-Time Kinematic) and PPP (Precise

Point Positioning) [122], two GPS technologies that are rapidly developing, can provide locations with decimeter- or

centimeter-level precision.

The effectiveness of GPS satellite signals depends heavily on the surrounding environment; it works best in

locations with clear skies and is ineffective for inside navigation since walls and other obstacles impede it [125].

This makes the GPS module an unsuitable primary sensor for reliable autonomous vehicle localization in adverse

weather and environmental conditions. Hence, the fusion of GPS signals with other inertial and/or visual sensors is

indispensable for a reliable localization solution, especially in such environments. The state-of-the-art sensor fusion

systems are differentiated into two prominent families: loosely- [126], and tightly-coupled [127] fusion strategies.

In loosely-coupled fusion, the camera frames for pose estimation are processed as a black-box. A filter or an opti-

mization model is developed to fuse the arbitrary-scaled poses from the visual sensor with the noisy metric-scaled

pe-integrated IMU readings [128].

On the contrary, in the tightly-coupled approach, scene information from the visual sensor is fused with the

IMU measurements (linear accelerations and angular velocities) using a fusion filter or an optimization model that

estimates themetric-scaled pose, visual odometry scale factor, IMU biases, and visual drift between the IMU-camera

inertial frames. One of the prominent advantages of a tightly-coupled fusion scheme is that it can estimate accurate

scene information to reconstruct a precise scene map, along with providing the SLAM system with high confidence

in loop closure during re-localization situations.
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4.2.2 Fusion Strategies
The two sensor fusion strategies (loosely and tightly coupled) have two main execution techniques: filter-based and

optimization-based. Some filter-based state-of-the-art approaches are deterministic such as MSCKF [41], S-MSCKF

[124], S-UKF-LG/S-IEKF [129], and ROVIO [42]. At the same time, alternative strategies can be based on nondetermin-

istic filters like particle filters [130], where a collection of Monte Carlo algorithms is used to address filtering issues

in Bayesian statistical inference and signal processing.

Optimization-based methods such as VINS-Mono [5], OKVIS [110], ORB-SLAM [43], and BASALT [69], can be de-

terministic or nondeterministic based on the optimization strategy and the convergence constraints. The estimation

and robustness of visual localization frameworks have advanced significantly over the past several decades, and this

development may be furthered by tightly integrating visual and inertial data. Most methods integrate data utilizing

optimization methods or filtering-based procedures.

Filtering approaches are ideally suited to real-time applications [131, 132], which is the main emphasis of this

study. In contrast, optimization-based methods are more precise but often have more extensive processing com-

plexity. The observability-constrained technique addresses the consistency issue, a shortcoming of traditional VIO

filter-based algorithms [133]. The EKF/MSCKF and its cutting-edge variations are among the most widely used solu-

tions because they effectively balance accuracy and computational complexity.

A recent study [134] shows that if the air mass’s random character is considered, the EKF system states of a MAV

are observable. The drag and lift forces on the MAV will directly impact the projected pose and velocity due to the

nature of air mass randomization. To make an online update for the uncertainties brought on by these random

effects on the precise position of the sensors’ reference frames, we contribute with a visual drift augmentation

technique to our EKF measurement model. The EKF’s ability to tolerate significant disturbances in the MAV’s velocity

state variable and still converge to the undisturbed estimates is what we target.

4.2.3 Visual Odometry
The main objective of a visual odometry solution is to perform an accurate and precise localization of the robot

(ground or aerial vehicle) to estimate its pose during the navigation task. Estimated poses can be on either discrete-

or continuous-time manifolds. [114] studied the reliability of the estimated poses on both manifolds using IMU/Vi-

sual/GPS sensors. They came to an important conclusion: similar results are produced by the two representations

when the camera and IMU are time-synchronized.

In [112], the sliding window pose-graph optimization of the most recent robot states uses global position data

with poses predicted by a VIO method. Like [126], pose-graph optimization employs an independent VIO technique

to generate pose estimations fused with GPS data. In contrast to [112], the pose-graph in [126] includes an extra

node representing the local coordinate frame’s origin to confine the absolute orientation. However, these methods
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are loosely connected, meaning that a separate VIO algorithm generates the relative pose estimations. Inspired by

[112], [126], we present a loosely-coupled strategy that considers the correlations between all measures by including

them in a hybrid optimization and filtering problem.

It is demonstrated in [110] that considering all measurement correlations is essential for high-precision estima-

tions in the visual-inertial situation. A tightly-coupled sliding window optimization for visual and inertial data with

a loosely connected GPS refinement is presented in [125]. The GPS readings are given the same timestamp as the

temporally nearest image to be included in the sliding window because it is believed they would only be accessible

at low rates. As opposed to [125], we efficiently compute the global positional factors by closely coupling the global

position measurements using the Runge-Kutta 4th-order gyroscope preintegration scheme [103]. This enables the

sliding window to incorporate numerous global parameters, each keyframe with barely any additional processing

load.

4.2.4 Methodology Background
We highlight the methodology that inspires our study in blue dashed rectangles in Figure 4.2. Where the loosely-

coupled fusion strategy [135] is adopted to keep constant computational complexity for real-time performance,

along with adding a reset mode for the framework as discussed in [136] as well as an online IMU-camera extrinsic

calibration paradigm [118]. Integrating the IMU/GPS readingswith the global shutter visual sensormonocular frames

raises our localization solution’s accuracy level, leveraging the MAV’s inertial and global localization information.

Pushing the limits of the Extended Kalman Filter to raise the robustness of our localization solution towards

a resilient system, we leverage the high accuracy of optimization to initialize the filter pose states using a novel

instant approach utilizing the low-rate noisy GPS readings when available. Sensor fusion on continuous-time (CT)

manifolds, such as B-splines [93], suffers from high execution complexity, especially with the time derivatives of

high-order manifolds for integrating the IMUmeasurements in the estimation process. Hence, in our novel method,

we avoid this dilemma with a simple spline-fitting approach for the GPS readings during the data pre-processing

stage.

4.3 System Architecture
Our core sensor setup consists of an inertial navigation sensor (IMU), a global positioning sensor (GPS), and amonoc-

ular camera, as illustrated in Figure 4.3. The pipeline starts with the data acquisition and pre-processing for the

initialization process, as discussed in Section 4.3.1. The initialization is an optimization-based phase (see Algorithm

2) with considerably low complexity and processing time whose output is an instant metric-scaled pose estimated

from the camera, GPS, and gyroscope readings. Then, an ES-EKF (see Algorithm 3) whose dynamic model is given in

Section 4.3.2 is applied to estimate all the system states, including the MAV’s trajectory, velocity, and a scale factor
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Figure 4.3: Overview of our proposed entire system architecture.

to recover the initially estimated trajectory in case of GPS readings loss. Finally, we present the measurement model

in Section 4.3.3 with a novel false pose augmentation paradigm to ensure the observability of all the filter states as

analyzed in Section 4.5.

The state representation is a 31-elements state vector X :

X =
[
pi

w

⊤
vi

w

⊤
qi

w

⊤
bω

⊤ ba
⊤ λ pc

i
⊤ qc

i
⊤ pw

v
⊤ qw

v
⊤
]⊤

, (4.1)

where pi
w is the position of the IMU in the world frame1 (w), its velocity vi

w, and its attitude rotation quaternion q
i
w

describing a rotation from the IMU frame (i) into the world frame (w). bω and ba are the gyro and acceleration biases

along with the visual odometry scale factor λ. R(q) is the quaternion q rotational matrix, g is the gravity vector aligned

with the world frame (w), and Ω(ω) is the quaternion-multiplication matrix of ω.

The IMU/Camera calibration states are the rotation from the camera frame into the IMU frame qc
i , and the

position of the camera center w.r.t. the IMU frame pc
i .

Finally, the visual attitude drifts between the black-boxed visual frame2 (v) and the world inertial frame (w) are

reflected in qw
v and the translational ones in pw

v . We assume that all the visual drifts are spatial without any temporal

drifts,i.e., the IMU and the camera have synchronized timestamps.

The corresponding 28-elements error state vector is defined by:

x̃ =
[
∆pi

w

⊤ ∆vi
w

⊤
δθi

w

⊤ ∆bω
⊤ ∆ba

⊤ ∆λ ∆pc
i

⊤ δθc
i

⊤ ∆pw
v

⊤ δθw
v

⊤
]⊤

, (4.2)

1World frame is a gravity-aligned frame
2Vision frame is the frame to which the camera pose is estimated in the black-box vision framework
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as the difference of an estimate x̂ to its quantity x, i.e. x̃ = x− x̂. We apply this to all state variables except the error

quaternions, which are defined by:

δqx
y = qx

y ⊗ q̂x
y ≈ [ 1

2δθ
x
y 1 ]⊤. (4.3)

This error quaternion representation increases the numerical stability of the estimation process and handles the

quaternion in its minimal representation [137].

4.3.1 State Estimator Initialization
An incremental Structure from Motion (SfM) algorithm [138] is applied to the acquired image frames, whose goal

is to retrieve the camera poses and 3D structure of the scene, based on the five-point algorithm proposed in [64].

ORB features are detected, and the highest quality points are tracked between 10 consecutive frames using the KLT

method [56].

To solve the arbitrary-scale problem of the camera trajectory only we follow the efficient level 1 optimization

process modeled in Section 3.3.3 of Chapter 3, by applying an on-manifold cumulative B-spline3 interpolation [93]

to synthesize a very smooth continuous-time (CT) trajectory in R3 from the low-rate noisy GPS readings.

Algorithm 2 Bootstrapping: Pose Graph Optimization and Range Factors

Input: RGB frames (c), Camera matrix (Kc), GPS readings (DT-GPS), IMU readings (I)Output: Metric-scaled Trajectory (Tvc[pc
v, q

c
v] ∈ SE(3))

1: T 0
vc ⇐ KLT-VO (c, Kc) ▷ Arbitrary-scaled pose

2: p(u)⇐ spline_fit (DT-GPS) ▷ CT-GPS by Equation (3.28)
3: [ϕ, θ, ψ]⇐ RK4 (Igyro(ω)) ▷ Initial orientations
4: while not converged do ▷ Initial Trajectory Optimization

5: Tvc ⇐ optimize (T 0
vc, p(u), [ϕ, θ, ψ]) ▷ Equation (3.30)

6: end while
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Figure 4.4: The frames of reference annotations.

3https://github.com/AbanobSoliman/B-splines

https://github.com/AbanobSoliman/B-splines
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4.3.2 Dynamic Model
The core state estimation is performed by fusing the RGB camera frames and the IMU reading using an Error-States

Extended Kalman Filter (ES-EKF). Figure 4.4 illustrates the inter-sensor extrinsic relation between the IMU/GPS sen-

sors and a monocular camera.

Touse the linear states estimator, we assume that the IMUmeasurements contain a particular bias ba ∈ N (0, σba),

bω ∈ N (0, σbω) and a white Gaussian noise na ∈ N (0, σa), nω ∈ N (0, σω).

Thus, the real angular velocities ω and accelerations a in the IMU body frame (i) can be written as:

ω = ωm − bω − nω and a = am − ba − na, (4.4)

where the subscriptm denotes themeasured value. The dynamics of the non-static biases aremodeled as a random

process:

˙bω = nbω
, ḃa = nba

. (4.5)

The standard deviation σbω
, σba

, σw, σa values are generally given by the IMU manufacturer’s data in Allan deviation

plots. For discrete time steps, as it will be applied in the filter. We need to convert these values according to their

units:

dσ2
ω,a = σ2

ω,a

∇t , dσ2
bω,a

= σ2
bω,a
∗ ∇t. (4.6)

The following differential equations govern IMU states propagation:

˙pi
w = vi

w,

˙vi
w = R⊤

(qi
w)(am − ba − na)− g,

˙qi
w = 1

2Ω(ωm − bω − nω)qi
w,

˙bω = nbω
, ḃa = nba

, λ̇ = 0,

ṗc
i = 0, q̇c

i = 0, ˙pw
v = 0, ˙qw

v = 0,

(4.7)

For the quaternion integration inside the ES-EKF, we use the first order integrator defined in [137] as:

w̄ = ωk+1+ωk

2 , κ = 1
2 Ω(ω̄)∆t,

q̂i
wk+1 = [eκ + ∆t2

48 (Ω(ωk+1)Ω(ωk)− Ω(ωk)Ω(ωk+1))]q̂i
wk.

(4.8)

where the hat term ,̂ means the estimated value. The exponential term eκ is expanded by the Maclaurin series.

The states transition matrix Fd is modeled as:
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Fd =



Id3 ∆t A B −R⊤
(q̂i

w)
∆t2

2 03×13

03 Id3 C D −R⊤
(q̂i

w)
∆t 03×13

03 03 E F 03 03×13

03 03 03 Id3 03 03×13

03 03 03 03 Id3 03×13

013×3 013×3 013×3 013×3 013×3 Id13


. (4.9)

Then, we apply the small angle approximation for which |ω| → 0, apply de l’Hopital rule and obtain a compact

solution for the six matrix blocks A,B,C,D,E, F [137]:

A = −R⊤
(q̂i

w)
⌊â⌋× ( ∆t2

2! −
∆t3

3! ⌊ω̂⌋× + ∆t4

4! ⌊ω̂⌋
2
×),

B = −R⊤
(q̂i

w)
⌊â⌋× ( −∆t3

3! + ∆t4

4! ⌊ω̂⌋× −
∆t5

5! ⌊ω̂⌋
2
×),

C = −R⊤
(q̂i

w)
⌊â⌋× (∆t− ∆t2

2! ⌊ω̂⌋× + ∆t3

3! ⌊ω̂⌋
2
×),

D = −A,

E = Id3 −∆t ⌊ω̂⌋× + ∆t2

2! ⌊ω̂⌋
2
× ,

F = −∆t+ ∆t2

2! ⌊ω̂⌋× −
∆t3

3! ⌊ω̂⌋
2
× ,

(4.10)

with ω̂ = ωm − b̂ω , â = am − b̂a and ⌊ω̂⌋×, ⌊â⌋× the skew-symmetric matrices for IMU readings.

We can now derive the discrete-time input noise covariance matrix Qd as:

Qd =
w

∆t

Fd(τ)GcQcG
⊤
c Fd(τ)⊤dτ, (4.11)

where Qc is the CT process noise covariance, and Gc is calculated in the form:

Gc =



03 03 03 03

−R⊤
(q̂i

w)
03 03 03

03 03 Id3 03

03 03 03 Id3

03 −Id3 03 03

013×3 013×3 013×3 013×3


. (4.12)

The closed-form solution of the complete derivation of theQd covariance matrix is given in detail in Appendix C.

Finally, the propagated state covariance matrix computation is defined as:
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Pk+1|k = FdPk|kF
⊤
d +Qd. (4.13)

4.3.3 Measurement Model
The main contribution of our measurement model for an observable ES-EKF is the false relative pose augmentation

methodology of the visual drift quaternion state at the previous time step (k) updated with the current camera

measurement at a time (k+1) and modeled as:

qw
v (k) = q̂i

w(k)−1 � q̂c
i (k)−1 � qc

v(k + 1). (4.14)

The camera position measurement model yields the position of the camera w.r.t. the vision frame pc
v. The error

in measurement modeled as z̃p and linearized as z̃pL:

z̃p = zp − ẑp = pc
v −R⊤

(q̂w
v )(p̂i

w +R⊤
(q̂i

w)p̂
c
i )λ̂ =̇ z̃pL = Hpx̃, (4.15)

with
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, (4.16)

using the definition of the error-quaternion

qi
w = δqi

w � q̂i
w,

R(qi
w) ≈ (Id3 −

⌊
δθi

w

⌋
×)R(qî

w).

(4.17)

The vision algorithm yields the rotation from the camera frame into the vision frame qc
v . We can model the error

measurement as,

z̃q = zq − ẑq = qc
i � qi

w � qw
v � (qc

i � q̂i
w � q̂w

v )−1. (4.18)

Finally, the measurements JacobianH in z̃ = H.x̃ is calculated based on the method in [136], and can be stacked
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together in the form,

 z̃p

z̃q

 =

 Hp

03x6 H̃wi
q 03x10 H̃ic

q 03×3 H̃vw
q

 x̃. (4.19)

with the Jacobian matrices H̃xy
q , known as the right Jacobian of SO(3), and are defined as:

H̃xy
q = Jr(θy

x) = limδθ→0
Log(Exp(θ)⊗Exp(θ+δθ))

δθ ,

Jr(θy
x) = Id3 − ( 1−cos∥δθ∥

∥δθ∥2 ) ⌊δθy
x⌋× + ( ∥δθ∥−sin∥δθ∥

∥δθ∥3 ) ⌊δθy
x⌋

2
× .

(4.20)

4.3.4 States Update
To update the framework for the current time step (k+1), we compute the innovation term S, Kalman gain K , and

the states correction vector ˆ̃x defined as:

S = HPH⊤ +R, K = PH⊤S−1, ˆ̃x = Kz̃ . (4.21)

The error state covariance is updated as follows:

Pk+1|k+1 = (Id28 −KH)Pk+1|k(Id28 −KH)⊤ +KRK⊤, (4.22)

whereR[6x6] = diag(Rposition,Rorientation) is the measurement noise covariance matrix.

The error quaternion is calculated by (4.3) to ensure its unit length, then update the states vector: Xk+1 = Xk + ˆ̃x.

For quaternions state update:

q̂k+1 =
[ 1 1

2δθ
1
k+1

1
2δθ

2
k+1

1
2δθ

3
k+1 ] � q̂k∥∥∥∥[ 1 1

2δθ
1
k+1

1
2δθ

2
k+1

1
2δθ

3
k+1 ] � q̂k

∥∥∥∥ , (4.23)

where δθi
k+1 is the i

th error state of this quaternion.

4.3.5 Reset Mode
The ES-EKF reset mode is performed by setting ˆ̃x← 0 and P ← GPG⊤, where G is the Jacobian matrix defined by,

G = diag(Id6 , Jrwi
, Id10 , Jric

, Id3 , Jrvw
),

Jrxy
= ∂δθy+

x

∂δθy
x

= Id3 − 1
2

⌊
ˆδθy

x

⌋
×
.

(4.24)
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Algorithm 3 End-to-End State Estimation Scheme

Input: IMU Readings, Initial Optimized Trajectory TvcOutput: FilterStates X = {λ,Ki[ba, bω], Tic, Twv, Twi, vwi} , ∀T [p, q] ∈ SE(3)
1: P,Qc,R_initialization, FilterStates_initialization
2: ErrorStates_initialization=0

3: while imuRead do
4: Read LastStep (k) P, FilterStates, ErrorStates

5: Read LastStep (k) IMU (Accel, Gyro) values

6: Read Current (k+1) IMU (Accel, Gyro) values

7: Step 1: Propagate IMU states ▷ Equation (4.7)
8: Step 2: Calculate Fd and Qd ▷ Equations (4.9),(4.11)
9: Step 3: Compute P state covariance matrix ▷ Equation (4.13)
10: if camRead then
11: Read Current (k+1) CAM Tvc values ▷Metric-scaled pose

12: Step 4: Estimate False Pose ▷ Equation (4.14)
13: Step 5: Calculate z̃, H ▷ Equation (4.15)
14: Step 6: Calculate S, K, ErrorStates ˆ̃x, P ▷ Equations (4.21),(4.22)
15: Step 7: Update: FilterStates += ErrorStates

16: Step 8: RESET ˆ̃x = 0, P ▷ Equation (4.24)
17: end if
18: end while

4.4 Experiments
4.4.1 Setup
An extensive quantitative and qualitative evaluation is carried out to validate all the state estimation process aspects.

This thorough performance analysis is run on the EuRoC benchmark [26] for indoor system global positioning eval-

uation in low-speed flights and on the Fast Flight dataset [124] for outdoor experimentation at relatively high-speed

flights. For a fair comparison, all the pipeline processing stages in both Algorithms 2,3 are performed on a 16 GB

RAM laptop computer running 64-bit Ubuntu 20.04.3 LTS with AMD(R) Ryzen 7 4800h ×16 cores 2.9 GHz processor

and a Radeon RTX NV166 Renoir graphics card. In Table 4.1, we represent quantitative insights of our experiments

settings regarding the benchmarks statistical data and the sensors parameters in-detail.

The front-end of the pipeline, including both the data acquisition and pre-processing steps, is developed as

Python API that sends the optimization variables to the factor graph implemented in C++ using the Ceres solver [109]

to achieve the lowest possible system latency before the state estimation process. The Sparse Normal Cholesky lin-

ear solver by the Ceres solver is employed to solve the least-squares convex optimization problem formulated in

Equation (3.30) along with the Levenberg-Marquardt trust region strategy with the automatic differentiation tool

for Jacobian calculations. The sparse Schur linear method is applied to utilize the Schur complement for a more

robust and fast optimization process. The pipeline’s back-end for the state estimation process is developed entirely

in MATLAB4 and all the initialization parameters are given explicitly in Table 4.2.

4https://github.com/AbanobSoliman/VIO_RGB_IMU

https://github.com/AbanobSoliman/VIO_RGB_IMU
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Table 4.1: Insights of our experiments statistical information and sensor settings.

Parameter EuRoC Benchmark [26] Fast Flight Dataset [124]

S
ta
ts

Total processed sequences 6 (Vicon room) 4 (Airport runway)

Total sequences duration 11.6111 minutes 8.8867 minutes

Total sequences length 411.5425 meters 2539.05991 meters

Maximum speed 2.3 [m/s] 17.5 [m/s]

C
a
m
e
r
a

Total processed frames 13736 21312

Frame Resolution 752×480 pixels 960×800 pixels
Intrinsics (fx, fy, cx, cy) 458.65 457.30 367.22 248.38 606.58 606.73 474.93 402.28

Distortion (k1, k2, p1, p2) -0.2834 0.0739 0.0001 1.8e-5 -0.0147 -0.0058 0.0072 -0.0046

Camera-IMU pc
i (x,y,z,1) [m] -0.0216 -0.0647 0.0098 1.0000 0.1058 -0.0177 -0.0089 1.0000

Camera-IMU qc
i (x,y,z,w) [-] -0.0077 0.0105 0.7018 0.7123 -1.0000 0.0042 -0.0039 0.0015

Frame rate 20 [Hz] 40 [Hz]

IM
U

Gyroscope noise density (σnω
) 1.6968× 10−4 [rad/s/

√
Hz] 6.1087× 10−5 [rad/s/

√
Hz]

Gyroscope random walk (σnbω
) 1.9393× 10−5 [rad/s2/

√
Hz] 9.1548× 10−5 [rad/s2/

√
Hz]

Accelerometer noise density (σna
) 2.0000× 10−3 [m/s2/

√
Hz] 1.3734× 10−3 [m/s2/

√
Hz]

Accelerometer random walk (σnba
) 3.0000× 10−3 [m/s3/

√
Hz] 2.7468× 10−3 [m/s3/

√
Hz]

Data rate (1/∆t) 200 [Hz] 200 [Hz]

G
P
S

Type / Operation Indoors / Vicon System Outdoors / Satellite Triangulation

Readings X [m], Y [m], Z [m] Long. [deg], Lat. [deg], Alt. [m]

Data rate 1 [Hz] (Down-sampled) 5 [Hz]

1 Denotes the exact value of the total trajectories lengths for all Fast Flight dataset sequences shown on the x-axis of Figure 4.1 (≈2.5 [km]).

Table 4.2: The ES-EKF initialization parameters for both EuRoC and Fast Flight sequences.

Parameter Initialization EuRoC Benchmark [26] Fast Flight Dataset [124]

28-elements Error States Vector (ˆ̃x) 028×1 028×1

31-elements States Vector1 (X )
(
03×1 03×1 q̄

⊤ 03×1 03×1 1 pc
i

⊤ qc
i

⊤ 03×1 q̄
⊤)⊤

States Propagation Covariance (P ) 10−7 × Id28 10−12 × Id28

CT Process Noise Covariance2 (Qc) diag(dσ2
na
Id3 , dσ

2
nba

Id3 , dσ
2
nω
Id3 , dσ

2
nbω

Id3)
Measurement Noise Covariance (R) diag(0.01, 0.01, 0.03, 10−4, 10−4, 10−4)

1 q̄ denotes the unity quaternion [0,0,0,1].
2 IMU noise density values for each dataset are from Table 4.1 and discretized using Equation (4.6).
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The performance analysis is done using the two trajectory evaluationmetrics: RootMean Square Error (RMSE) for

the Fast Flight dataset compared to theGPS trajectory pgps, and the RMSAbsolute Trajectory Error (ATE) for the EuRoC

benchmark compared to the ground truth trajectory Tgt provided with Vicon room sequences. The positional RMSE

metric for the Fast Flight sequences is chosen because ground truth GPS trajectories exist with unknown ground

truth orientations. Whereas, for EuRoC sequences, we select the RMS ATE metric for two reasons: 1. the Vicon

system provides ground truth poses (positions and orientations), and 2. to ensure a fair comparison with the latest

state-of-the-art methods based on the same error metric. The two trajectory evaluation metrics are formulated as

follows:

RMSE =

√√√√ 1
n

n∑
i=1
||p̂(i)− pgps(i)||2, ATE =

√√√√ 1
n

n∑
i=1

∣∣∣∣∣∣p(T−1
gt (i)TrelT̂ (i))

∣∣∣∣∣∣2 [m], (4.25)

where p̂ is the estimated translation vector of the T̂ ∈ SE(3) trajectory. p(.) is the translation vector of the T ∈ SE(3)

pose, and Trel is rigid-body transformation corresponding to the least-squares solution that maps the T̂ trajectory

onto the Tgt trajectory calculated by optimization. We set it constant for all sequences that belong to the same

benchmark.

4.4.2 The EuRoC MAV Benchmark

X [m]
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−1
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Y
[m

]

−1
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Z
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V2-01 V2-02 V2-03

Figure 4.5: EuRoC 3D trajectory estimation compared to the ground truth.

The two main characteristics of the EuRoC MAV sequences are the complex combined 6-DoF motions and the
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Table 4.3: Ablation study on the contribution of the GPS sensor on the system accuracy. The latest state-of-the-art

(monocular/stereo) VI-SLAM systems are compared to our proposed trajectory initialization (PGO factors) and ES-EKF

state estimation methods. Bold denotes the most accurate.

Method
EuRoC Benchmark [26] (RMS ATE [m])

Avg.
V1-01 V1-02 V1-03 V2-01 V2-02 V2-03

M
o
n
o
-V
I

OKVIS [110] 0.090 0.200 0.240 0.130 0.160 0.290 0.185

ROVIO [42] 0.100 0.100 0.140 0.120 0.140 0.140 0.123

VINS-Mono [5] 0.047 0.066 0.180 0.056 0.090 0.244 0.114

OpenVINS [111] 0.056 0.072 0.069 0.098 0.061 0.286 0.107

CodeVIO1 [89] 0.054 0.071 0.068 0.097 0.061 0.275 0.104
2 [127] 0.034 0.035 0.042 0.026 0.033 0.057 0.038

S
te
r
e
o
-V
I VINS-Fusion [112] 0.076 0.069 0.114 0.066 0.091 0.096 0.085

BASALT [69] 0.040 0.020 0.030 0.030 0.020 0.050 0.032

Kimera [113] 0.050 0.110 0.120 0.070 0.100 0.190 0.107

ORB-SLAM3 [43] 0.038 0.014 0.024 0.032 0.014 0.024 0.024

M
o
n
o
-(
V
/I
/G
)3

CT (V+I+G) [114] 0.024 0.014 0.011 0.012 0.010 0.010 0.014

CT (V+G) [114] 0.011 0.013 0.012 0.009 0.008 0.012 0.011
CT (I+G) [114] 0.062 0.102 0.117 0.112 0.164 0.363 0.153

DT (V+I+G) [114] 0.016 0.024 0.018 0.009 0.018 0.033 0.020

DT (V+G) [114] 0.010 0.025 0.024 0.010 0.012 0.029 0.018

DT (I+G) [114] 0.139 0.137 0.138 0.138 0.138 0.139 0.138Ours (PGO) 0.008 0.0174 0.0234 0.008 0.022 0.0254 0.017Ours (ES-EKF) 0.009 0.012 0.011 0.010 0.011 0.010 0.011
1 Denotes the only learning-based baseline in the table and incorporates point clouds using LiDAR.

2 Denotes values from the original work with four GPS readings connected to each optimization state.

3 V,I,G: Vision, IMU, and GPS (generated from the Vicon system readings).

4 Denotes KLT-VO tracks features in 5 consecutive frames instead of 10 due to the rapid movement of the MAV.

Time [sec] Time [sec] Time [sec]

V2-01 V2-02 V2-03

Figure 4.6: Estimated velocity profile validation with the ground truth. Comparison of sample sequences from EuRoC

benchmark.
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relatively low speeds compared to the Fast Flight sequences. These prominent characteristics allow an accurate

evaluation of the ES-EKF marginally stable states, such as the velocity and the visual drift. In Table 4.3, we report

the ATE values as an evaluation parameter for the trajectory estimation accuracy compared to the ground truth.

Moreover, Table 4.3 shows an ablation study that investigates the contribution of the GPS sensor to the overall

estimation accuracy, especially for the monocular vision-based optimization methods: ours (PGO) and the recent

work of [114]. The selection of the six Vicon room sequences from the EuRoC benchmark is because a comparison

with an alternativemethod such as [114] incorporating GPS signals simulated from the Vicon system readings, better

emphasizes the findings of this ablation study.

A prominent finding of this ablation study is that vision is the most significant type of sensor. In most sequences,

the lowest ATE is obtained by fusing the camera trajectory from the vision KLT-based SfM algorithm to a gravity-

aligned frame using the noisy simulatedGPS data, and adding inertial measurements does not provide ameasurable

benefit in this case. However, adding the gyroscope measurements to the visual-GPS fusion has led to the least ATE

achieved by our PGO model compared to all other discrete-time (DT) methods. Figures 4.5,4.6 show our trajectory

and velocity estimations after incorporating the accelerometer readings in the ES-EKF model resulting in the lowest

achievable errors that can compete with the continuous-time optimization model in [114].

4.4.3 The Fast Flight Dataset
Table 4.4: Ablation study on the effect of the high MAV speed on the accuracy of the filtering approaches compared

to optimization approaches. The first sub-section compares monocular (VINS-Mono and Ours) to stereo (OKVIS)

optimization-based VI systems. The second sub-section compares stereo filtering-based approaches to our pro-

posed method. Bold denotes the most accurate in each sub-section.

Method
Fast Flight [124] (RMSE [m])

Avg.
gps5 gps10 gps15 gps175

OKVIS [110] 3.224 4.987 3.985 4.535 4.183

VINS-Mono [5] 5.542 8.753 2.875 3.452 5.156Ours (PGO) 0.417 0.759 0.180 0.927 0.571
S-MSCKF [124] 4.985 2.751 4.752 7.852 5.085
S-UKF-LG [129] 4.875 2.589 5.128 7.865 5.114

S-IEKF [129] 4.986 2.544 5.124 8.152 5.201Ours (ES-EKF) 4.751 7.924 7.221 9.488 7.346

The main observation, which is validated upon both the EuRoC and Fast Flight sequences (see Table 4.4 and

Figure 4.7), is that for velocities less than 5 [m/s], the monocular loosely-coupled ES-EKF can achieve considerably

low estimation errors concerning the other filter- or optimization-based methods. For velocities more than 5 [m/s],

our proposed optimization-based initialization scores the lowest RMSE compared to all othermethods in comparison

in Table 4.4. On the contrary, the monocular ES-EKF scores the lowest RMSE, especially for velocities more than 10
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gps5 (Max. Speed 5 m/s)gps10 (Max. Speed 10 m/s)gps15 (Max. Speed 15 m/s)gps175 (Max. Speed 17.5 m/s)

Figure 4.7: Fast Flight (X (top) - Y (middle) - Z (bottom)) trajectory estimation compared to the GPS readings.

gps5 (Max. Speed 5 m/s)gps10 (Max. Speed 10 m/s)gps15 (Max. Speed 15 m/s)gps175 (Max. Speed 17.5 m/s)

Figure 4.8: Top: Fast Flight velocity profile validation with the top speed of each sequence. Bottom: velocity error

states in the ES-EKF.
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[m/s], compared to the best-performing Kalman filter stereo model of the S-MSCKF.

Since the maximum achieved velocity of the EuRoC MAV is nearly 2.3 [m/s], the quantitative results in Table 4.3

further support this conclusion, where our ES-EKF scores the best performance compared to the other state-of-the-

art methods. In-depth reasoning for this degraded performance at high speeds (more than 5 [m/s]) can be clarified

based on the hardware characteristics of the MAV sensors’ properties, such as the data rate, latency, and noise

effects at high speeds. Our optimization-based (PGO) initialization outperforms all other optimization- or filtering-

based methods with high-rate visual-inertial sensors.

An insightful overview of the velocity profiles estimated by our ES-EKF is represented in Figure 4.8. The main

conclusion is that the estimated velocity profile during the planar motion of the MAV in the X-Z plane optimally fits

the upper and lower bounds of the top speed for each sequence. Towards an in-depth investigation to understand

the high perturbations in the estimated velocity when approaching the maximum limit, we plot the velocity error

states in the ES-EKF showing a high error at the instances when approaching top speeds due to strong vibrations in

the MAV structure affecting the IMU readings.

The high estimation accuracy of our ES-EKF model compared to GPS readings and the PGO optimization-based

initialization process is further verified by Y-axis trajectory estimation in Figure 4.7. Themaximum estimated altitude

for all sequences by the ES-EKF is nearly 60 [m], whereas both the GPS readings and the initialization optimizer

estimate a maximum altitude of nearly 100 [m]. To physically validate which is a more accurate altitude estimation,

we took snippets of the scene at a time instance in the exact halfway of all trajectories as shown in Figure 4.1. We

can observe that the MAV is nearly on the same level as the roof of a commercial aircraft hangar, which is in the

range of 30 [m] to 66 [m]. This observation validates the high estimation accuracy of the altitude using our ES-EKF.

4.4.4 Real-time Performance Analysis
The filter-based approaches are more advantageous for real-time onboard applications because they use the CPU

more efficiently thanmonocular and stereo optimization-basedmethods. Due to its computationally intensive front-

end pipeline for both temporal and stereo matching, OKVIS uses more CPU than VINS-Mono. Additionally, OKVIS’s

back-end operates at a speed that is much faster than the set 10 [Hz] rate of VINS-Mono. Around 90% of the work

in our back-end, ES-EKF, is brought on by the front-end, which includes ORB feature detection, KLT-based tracking,

and matching. At 200 [Hz], the filter uses around 10% of a core. Our suggested technique offers the maximum

estimation frequency, which provides the optimal balance between precision and computing cost.

Figure 4.9 contrasts howmuch CPU time various VIO solutions used on the EuRoC benchmark and the Fast Flight

dataset. Since V2-03 has considerable scale drift with S-IEKF and S-UKF-LG techniques and hence has significantly

worse accuracy when compared to other methods, the CPU consumption of V2-03 is excluded from the comparison.

According to the testing, the ES-EKF achieves the lowest CPU consumption while retaining a similar level of accuracy

in comparison to other methods. We notice that the proposed method puts more computing work into the image
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Ours

Figure 4.9: CPU usage as a real-time performance analysis indicator.

processing front-end than the tests using the EuRoC dataset. Higher imaging frequency and resolution are one

explanation, while Fast Flight results in a shorter feature lifetime, necessitating frequent new feature identification,

is another reason.

4.5 Observability Analysis
The EKF-based VIO for 6-DOF motion estimate contains four unobservable states corresponding to the global posi-

tion and rotation around the gravity axis, or yaw angle, as demonstrated in [139]. A simple EKF VIO implementation

will gather false information about yaw. The different processes andmeasurement’s linearizing point causes this un-

observability. To ensure that the uncertainty of the current camera states in the state vector is not impacted by the

uncertainty of the current IMU state during the propagation step, in our implementation, camera poses in the state

vector can be represented with respect to its inertial frame (v) instead of the latest IMU frame. Besides the efficient

gyroscope RK4 integration scheme during the initialization process, our ES-EKF implementationminimizes the effect

of the unobservable modes of the basic EKF. Figure 4.10 shows the IMU intrinsics, IMU-CAM extrinsic parameters,

and odometry scale ES-EKF states plotted for sample EuRoC and Fast Flight sequences.

The main observation from Figure 4.10, is that when the motion of the MAV is smooth with no abrupt rotations

and translations, our optimization-based initialization estimates an optimal metric-scaled trajectory with λ = 1.

Moreover, we also observe that when the IMU-camera setup is not accurately calibrated, the ES-EKF can optimally
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align the sensor setup in a robust online calibration process. Furthermore, the estimated IMU biases using our ES-

EKF model are accurate and in a sensible range. One crucial observation is the estimated attitude visual drift of the

visual sensor and the detection of consistent drift patterns based on the MAV speed (Fast Flight sequences) and

abrupt motions (EuRoC sequences). These observations validate the contribution of the ES-EKF to the sustainability

of the proposed method to achieve a resilient system that observes all the state vector parameters besides all the

6-DoF of the MAV trajectory. Finally, after the initial trajectory optimization, the filtering process is indispensable to

estimate the false camera poses during long-term navigation caused by the visual attitude drifts.

4.6 Conclusion
Our work aimed to provide an accurate and computationally inexpensive localization solution for Micro Aerial Vehi-

cles (MAVs) during long-term navigation in large-scale environments. To achieve this goal, we developed a loosely-

coupled IMU/GPS-Camera fusion framework with a pose failure detection methodology. Furthermore, we proposed

a novel decoupled optimization- and filtering-based sensor fusion technique that offers superior estimation accu-

racy and minimal system complexity compared to existing methods in the literature. We conducted extensive ex-

periments using real-world indoor and outdoor settings for MAV localization studies to validate and test the findings

of our proposed method.

We began our evaluation by examining the vision-based black-box pose estimation accuracy in a controlled lab-

oratory Vicon room of the EuRoC benchmark. The results confirmed the system’s reliance on monocular vision

and its ability to perform accurately in such settings. Subsequent experiments on EuRoC and Fast Flight sequences

demonstrated remarkable accuracy in trajectory estimation studies, further strengthening the effectiveness of our

approach. Additionally, we assessed the proposed scheme in terms of computational complexity, measured by CPU

usage. Our monocular-vision optimization/filtering solution consistently outperformed all competing techniques,

showcasing its efficiency.

These conclusions emphasize our work’s significant contributions toward providing a reliable (fast and accurate)

sensor fusion solution for challenging and large-scale environments. This paves the way for enhancing the perfor-

mance and robustness ofMAVs in various applications, including surveillance, search and rescue, and environmental

monitoring.

Looking forward, it will be essential to address situations where GPS sensor constraints, such asmultipath effects

on the optimizer, impact the performance of the proposed solution. This will ensure its robustness and applicability

in even more challenging environments. Lastly, further generalizing the optimization problem will be necessary to

extend the algorithm’s pose estimation capability to includemultiple vision sensors, such as stereo RGB. By doing so,

the versatility and adaptability of our solution will be enhanced, making it suitable for a wider range of autonomous

navigation tasks.
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Figure 4.10: Our ES-EKF estimated states. Columns from left to right: IMU (accelerometer/gyroscope) biases ba, bω ,

odometry scale factor λ, visual drift orientations qw
v , and IMU-camera translation online calibration pc

i . Rows 1,2 for

sample FAST Flight sequences (gps5,gps10) and rows 3,4 for sample EuRoC sequences (V2-02, V2-03), respectively.



5 Hybrid Visual Odometry

Abstract
In this chapter, the DH-PTAM system is introduced as a solution for achieving ro-

bust parallel tracking and mapping in dynamic environments, utilizing stereo images

and event streams. The system takes advantage of the strengths of heterogeneous

multi-modal visual sensors and incorporates deep learning-based feature extraction

and description techniques to enhance its robustness. Through CPU-/GPU-based ex-

periments, it is demonstrated that the DH-PTAM system outperforms existing visual-

inertial SLAMmethods, particularly in challenging scenarios characterized by fast mo-

tion, High Dynamic Range (HDR), and occlusions. This showcases the system’s abil-

ity to handle difficult conditions and produce superior results. The proposed system

not only offers scalability and accuracy in 3D reconstruction and pose estimation but

also provides a research-based Python API, which is publicly available on GitHub. This

allows for further research and development, encouraging collaboration and innova-

tion in the field.

"As far as the laws of mathematics refer to reality,

they are not certain, and as far as they are certain,

they do not refer to reality."

Albert Einstein

113
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5.1 Introduction
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Figure 5.1: Top & Bottom (right): snippets of experiments on school-scooter and corner-slow sequences from the

VECtor dataset that show the estimated trajectory with the constructed scenemap (green dotted rectangle). Red dot-

ted rectangle highlights an HDR use-case where DH-PTAM estimates the trajectory continuously based on the two

fusion modes (Dynamic Vision Sensor (DVS) or Active Pixel Sensor (APS) biased). Bottom (left): snippets of an exper-

iment on a small-scale (mocap-desk2) sequence from the TUM-VIE dataset that show the capability of the proposed

events-frames fusion method to maintain and track features in dimmed and bright scenes where grayscale-only

frames fail. APS: denotes the standard camera’s global shutter frames.

Sensor fusion [140] combines data frommultiple sensors to improve a system’s accuracy, reliability, and robust-

ness. It can also reduce computational costs by eliminating the need for redundant sensor data. Different types of

sensors can be fused, such as cameras, lidars, radars, and ultrasonics. The algorithm used for fusion can vary, and

it typically requires online calibration to ensure accurate and consistent data.

Visual Odometry (VO) is a method that utilizes sensor fusion to estimate the motion of a camera by analyzing

the changes in visual features between consecutive frames. Still, it has challenges, such as difficulties in feature

matching when the scene has little texture, the need for a robust feature detector and descriptor, and the problems

of scale ambiguity and drift [141]. Scale ambiguity refers to the problem of determining the actual scale of the scene.

In contrast, drift refers to the accumulation of errors over time that causes the estimated position to deviate from

the true position. These challenges and limitationsmust be considered when applying frame-based visual odometry

in practical applications [142].

An event camera [143], known as an asynchronous or dynamic vision sensor (DVS), operates on a fundamentally

different concept than traditional frame-based cameras. Instead of capturing frames at a constant rate, event cam-

eras output a stream of "events" that indicate the brightness changes in each pixel. This allows event cameras to

operate at high speed, in very low-light conditions, and more resistant to motion blur [144]. The event-based nature
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of these cameras also makes them highly suitable for tasks that involve fast-moving objects or scenes with high

dynamic range. These characteristics make them an excellent complementary sensor to frame-based visual odom-

etry in adverse conditions such as fast motion, high dynamic range, and low-light environments, where traditional

cameras may struggle.

Deep learning-based features are more robust than traditional methods [145, 146], as they can learn from large

amounts of data and generalize well to unseen data (for example, the checkerboard features in Figure 5.1). They are

also more invariant to changes in viewpoint and lighting, making them suitable for real-world applications. Recently,

pre-trained models have been widely adopted in computer vision and have achieved state-of-the-art performance

in object detection, semantic segmentation, and image classification tasks.

Overall, a deep hybrid stereo events-frames parallel tracking and mapping system can significantly improve si-

multaneous localization and mapping accuracy and robustness in dynamic environments. This system combines

the advantages of stereo standard and event cameras, which can capture visual information at high temporal res-

olution. The use of deep learning techniques in this system allows for the extraction of robust features from the

stereo hybrid image and event frames, which can improve the accuracy of the feature-matching process and the es-

timation of the camera pose. Towards a robust metric-scaled tracking andmapping system that performs efficiently

in adverse conditions, we contribute with the following:

• We propose an end-to-end parallel tracking and mapping (PTAM) approach based on a novel spatio-temporal

synchronization of stereo visual frames with event streams (see Fig. 5.1).

• We propose a simple mid-level feature loop-closure algorithm for prompt SLAM behavior based on a learning-

based feature description method to maximize robustness.

• DH-PTAM’s effectiveness is evaluated in both stereo event-aided and image-based visual SLAMmodes, achiev-

ing improved accuracy when incorporating event information, shown in an ablation study on the CPU versus

the GPU of a consumer-grade laptop.

This chapter is organized as follows: Section 5.2 gives a brief overview of the state-of-the-art SLAM methods.

Section 3.3 provides an in-detail overview of the proposed method and offers insights into the novel parts of the

algorithm. Section 2.4 comprehensively evaluates the algorithm on the most recent VECtor [147] and TUM-VIE [148]

benchmarks, along with defining the limitations. Section 3.5 summarizes the experiments’ main observations, the

proposed method’s behavioral aspects, and the start points for future works.
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5.2 Related Work
5.2.1 Conventional visual-SLAM
Simultaneous Localization and Mapping (SLAM) problem has been widely studied in the literature [149], and various

techniques have been proposed to solve it. Deep learning has also been applied to SLAM [150] in recent years.

Learning-based features extraction and description [145, 146] have been used to improve the SLAM robustness.

One of the most popular SLAM techniques is the filter-based SLAM using an extended Kalman filter (EKF) [140],

or a particle filter [151]. These filters use probabilistic frameworks to estimate the robot’s pose and map. They

can handle non-linearities and uncertainties in the system, making them useful for large-scale and highly dynamic

environments. Filter-based SLAM has been widely used in applications [152] such as mobile robots, UAVs, and

autonomous vehicles.

Another important class of SLAM is graph-based SLAM [153], which uses a factor graph data structure to rep-

resent the robot’s poses and the map. Graph-based SLAM requires Sparse Bundle Adjustment (SBA), which uses

a non-linear least squares optimization to estimate the robot’s poses and a graph to represent the map. These

methods are robust to changes in lighting and viewpoint, making themwell-suited for real-world applications. Some

popular graph-based SLAM methods include ORB-SLAM [43], Basalt [69], and VINS-Fusion [112].

Loop-closure detection is a fundamental approach to minimize drifts in visual-SLAM, as it allows a system to

recognize when it has returned to a previously visited location. Two common approaches to loop-closure detection

are mid-level features [154] and bag-of-words [155] representations. Mid-level features are more abstract than low-

level features, such as edges and corners, but are not as high-level as object recognition. Deep learning descriptors

[156] can be considered mid-level features as they can extract higher-level information from raw data compared to

low-level features, such as pixel values, but are not as high-level as features directly related to the task at hand, such

as object labels.

5.2.2 Event-aided visual-SLAM
Event-based VO is an emerging form of localization solution that uses event-based cameras to generate measure-

ments of the environment. While traditional SLAM is limited by the number of frames sampled, event-based SLAM

provides high temporal resolution by generating an abundance of measurements, allowing for improved localized

3D and 6D pose estimation. Indirect methods, like frame-based approaches, extract keypoints from the input data

in the front-end before passing them to the back-end. On the other hand, direct methods try to process all available

events without any intermediate filtering. Table 5.1 compares the latest event-based and event-aided VO solutions

concerning the sensor setup, events pre-processing layer (EPL), direct or indirect event processing, and the loop-

closure capability to minimize visual drifts.
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Table 5.1: Direct and Indirect (D/I) Visual Odometry methods based (B) on events and/or aided (A) by events

Method B/A D/I EPLa LCb More Information

[157] B D LIR × 3 EKFs + Image reconst.

[158] B D EI × Monocular (PTAM)

[46] B D TS × Stereo (PTAM)

[159] A I × × Event-aided Tracking

[160] A I MEF × Mono + IMU (front-end)

[143] A D EGM × Monocular OdometryProposed A D E3CT ✓ Stereo (PTAM) + DLc

a denotes an Event Pre-processing Layer. b denotes Loop-Closure capability. c denotes the only method incorporating Deep Learning-aided

features.

Event-aided systems leverage the high-quality representations that events can produce after processing, espe-

cially in dynamic and dimmed environments where standard camera frames fail. Some of the well-known event

representations are event image (EI) [158], event frame [161], event count image [162], voxel grid [163], Time Sur-

faces (TS) [164], Event Spike Tensor (EST) [21], and recently Event 3-Channel Tensor (E3CT) [1]. Others [143] build the

front-end on an Event Generation Model (EGM) [165] that generates a brightness increment model for the standard

frame, which is fused with an event representation. Others [160] develop a front-end method to construct motion-

compensated event frames (MEF) aided by a gyroscope andmedian scene depth informationwith no fusion between

events and standard camera images. Towards a traditional frame reconstruction from events, [157] propose a Log

Intensity Reconstruction (LIR), a model-based method, and [166] propose Spade-e2vid, a learning-based method.

5.3 Methodology
5.3.1 System Overview
Stereo Parallel Tracking and Mapping (Stereo PTAM) system is an extension of the original Mono PTAM, a real-time

simultaneous localization andmapping (SLAM) algorithm for autonomous robots or devices. Stereo PTAM leverages

the additional depth information from stereo cameras to improve the system’s performance and robustness.

Figure 5.2 illustrates the main components and the process of DH-PTAM. The system establishes a global ref-

erence frame based on the camera position in the initial frame. A preliminary map is created by identifying and

triangulating distinctive points in the first stereo image. For subsequent frames, the tracking thread calculates the

6D pose of each stereo frame by minimizing the discrepancy between the projected map points and their matches.

The system chooses a subset of keyframes used in another thread to update the map at a slower pace.

Map points are derived from the stereo matches of each keyframe and added to the map. The mapping thread

constantly improves the local discrepancy by adjusting all map points and stereo poses using Bundle Adjustment.
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Figure 5.2: Block diagram of the proposed event-aided hybrid stereo odometry approach (DH-PTAM). DVS denotes

"Dynamic Vision Sensor" (event camera).

A pose graph is utilized to preserve the global consistency of the map. The map is a shared resource among the

tracking, mapping, and loop-closing threads. Point correspondences are actively searched between keyframes to

strengthen the constraints of the pose graph optimization smoothing process.

Notations. The odometry state representation comprises the 3D pointsXk
w and a 7-increment vector µ ∈ se(3),

which is the current pose of the left fusion frame at time k:

µk = [δx δy δz δqx δqy δqz δqw]⊤ , (5.1)

where [δx δy δz]⊤ is the incremental translation vector and [δqx δqy δqz δqw]⊤ is the incremental quaternion vector.

In Stereo PTAM, the state vector represents the system’s current state, including both the camera pose and the

3D map points. Here’s a breakdown of the components of the state vector:

• Camera pose: The camera pose is represented by a 6-DoF (Degrees of Freedom) transformation, which in-

cludes 3D position (X,Y, Z) and orientation (roll, pitch, yaw) of the camera in the world coordinate frame.

The pose can also be expressed as a combination of rotation matrix (R) and translation vector (t) or as a

quaternion (q) and translation vector (t).

• 3D Map points: The 3D map points are the positions of the salient features observed by the stereo camera

in the world coordinate frame. These points are used to create a map of the environment, which can be used

for navigation and localization. Each map point is represented by its 3D coordinates (X,Y, Z).

The state vector in Stereo PTAM is typically represented as a concatenation of the camera pose and the 3D map

points. For example, if there are N map points, the state vector would have a length of 6 + 3 ∗ N , where the first
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six elements represent the camera pose, and the remaining 3 ∗N elements represent the 3D coordinates of the N

map points.

The Stereo PTAM system uses the state vector in its localization and mapping processes, where it updates the

camera pose and map points based on the new observations from the stereo camera. The state vector is essential

for tracking the camera motion and maintaining an accurate and consistent map of the environment.

5.3.2 Spatio-temporal Synchronization
Spatio-temporal synchronization of events with global shutter frames is an essential aspect of vision systems that

deal with dynamic scenes, particularly in applications such as robotics, autonomous vehicles, and sports analyt-

ics. Global shutter cameras capture the entire scene simultaneously, unlike rolling shutter cameras, which capture

different parts of the scene at slightly different times. This feature allows for the precise alignment of spatial and

temporal information, ensuring that all points in the scene are registered simultaneously. By leveraging global shut-

ter frames, the spatio-temporal synchronization of events can be significantly improved, resulting in amore accurate

representation of the scene’s dynamics. This accurate representation is critical for reliable motion estimation, object

tracking, and scene understanding in real-time applications. Furthermore, global shutter cameras reduce motion

artifacts and distortions, which is common in rolling shutter cameras, ensuring that the captured images are more

sensitive to the true nature of the observed events (see Figure 5.3).

Our spatio-temporal synchronization approach (see Figure 5.4) considers the general case of global shutter cam-

eras where the exposure time texp0,1 is known. We adopt the constant-time ∆tk0,1 events accumulation window k

approach in our spatio-temporal events-frames synchronization method.

As soon as stereo standard camera frames are received at timestamps tC0,1 , we calculate the fusion frames

timestamps assuming the hardware synchronization of stereo standard images and stereo event streams, using:

tf0,1 = tC0,1 +
texp0,1

2 , ∆tk0,1 = tkf0,1
− tk−1

f0,1
, (5.2)

where tC0 is the selected stereo keyframe timestamp.

5.3.2.1 The Event 3-Channel Tensor (E3CT)
Starting with the fundamental definition of an event. The event camera has a pixel array that triggers asyn-

chronous firings called "events" with every luminosity (log brightness) change in the scene, according to the following

formula:

L(x, y, t)− L(x, y, t−∆t) ≥ pC, (5.3)

where C is a contrast threshold, p ∈ {−1,+1} is the polarity of a decreasing or increasing scene luminosity, ∆t is
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Figure 5.3: Comparison of rolling shutter and global shutter DAVIS readout: Visualization of the DVS events and APS

frames generated by a 50 Hz rotating fan in space-time. Figures (a) and (b) display the data in space-time, with APS

sample readouts appearing as slanted planes. DVS events and APS samples are represented as dots, with recent

events in red and older ones in green. The exposure time is indicated by a yellow rectangle marked "exposure".

Figure (c) presents the output of the rolling shutter readout, while (d) demonstrates the global shutter readout. The

illustration figure is courtesy of [167].

Global Shutter Camera Timestamp

Figure 5.4: Spatio-temporal synchronization scheme. texp is the global shutter camera exposure time. ∆t is the
event representation (E3CT) volume accumulation time. tf is the fusion frame calculated timestamp. tD,C are the

DVS events, and standard camera frames timestamps, respectively.
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the time-lapse between two event firings at (x, y)⊤. For a temporal interval ∆τ , the event camera triggers an array

of 4D-tuples:

E = {ek}N
k=1 = {(xk, yk, tk, pk)}N

k=1. (5.4)

Owing to their asynchronous characteristics, events are depicted as a collection. To employ events in conjunction

with convolutional neural networks or visual SLAMsystems, it is essential to transform the event collection into a grid-

like format. Consequently, we need to establish a mappingM : E → T between the set E and a tensor T . Ideally,

this mapping should maintain the structure (spatiotemporal proximity) and the information contained within the

events.

Towards a generalized mappingM : E → T . In the article of [21], the authors present an innovative approach

to learning event representations from asynchronous event-based data. The event representation is derived from

two distinct fields, the event field (5.5) (events of both polarities are represented as Dirac pulses in time) and the

event-assigned measurement field (5.6) (events are grouped according to their polarity, normalized timestamp, or

count). The event field captures the spatial and temporal characteristics of the events, while the eventmeasurement

field assigns specific measurements to these events. To represent the event membrane potential (5.7), the authors

introduce the concept of kernels (alpha, exponential and trilinear voting), which are responsible for capturing the

spatial and temporal dependencies of the events. By leveraging these kernels, the researchers construct the Event

Spike Tensor (EST) (5.8), a novel generalized data structure that efficiently encodes the asynchronous event-based

data in spatio-temporal bins. The EST enables extracting meaningful features from the event-based data, paving

the way for end-to-end learning of representations in various event-driven applications. Figure 5.5 shows graphical

illustrations for these concepts.

• Event Field (Spatio-temporal Dirac Pulses δ(x, y, t)):

S±(x, y, t) =
∑

ek∈E±

δ(x− xk, y − yk)δ(t− tk). (5.5)

• Event (Assigned) Measurement Field:

S±(x, y, t) =
∑

ek∈E±

f±(xk, yk, tk)δ(x− xk, y − yk)δ(t− tk), f±(.) =


±1 Event Polarity

t−t0
∆t Normalized Timestamp

1 Event Count

(5.6)
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Figure 5.5: A synopsis of the recommended framework is provided. Each event is linked to ameasurement (indicated

in green) that undergoes convolution with a potentially learned kernel. The convoluted signal is then sampled on a

uniform grid. Different representations can be generated by executing projections along the temporal axis or across

polarities. Illustrative figures are courtesy of [21].

• Membrane Potential (Spatio-temporal and Voting Kernel Convolutions k(x, y, t)):

(k ∗S±(x, y, t)) =
∑

ek∈E±

f±(xk, yk, tk)k(x−xk, y− yk, t− tk), k(.) =


δ(x, y) αt

τ exp− t
τ Alpha

δ(x, y) 1
τ exp− t

τ Exponential

δ(x, y) max(0, | t
∆t |) Trilinear

(5.7)

• Generalized Representation (Event Spike Tensor, EST):

S ± [xl, ym, tn] = (k ∗ S±(xl, ym, tn)) =
∑

ek∈E±

f±(xk, yk, tk)k(xl − xk, ym − yk, tn − tk), (5.8)

Discretized Spatio-temporal Bins (n) on a Voxel Grid ∈


xl ∈ {0, 1, · · · ,W − 1}

ym ∈ {0, 1, · · · , H − 1}

tn ∈ {t0, t0 + ∆t, · · · , t0 + n∆t}

(5.9)

Inspired by the generalized representation. We propose a novel DVS sensor pre-processing layer called the

Event 3-Channel Tensor (E3CT) based on the Event Spike Tensor (EST) representation method [21]. The E3CT is

a pre-processing layer that combines the benefits of both EST and Histograms of Averaged Time Surfaces (HATS)
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[164] concepts. This allows its modeling to be simple with reliable time information. The E3CT concept is illustrated

in Algorithm 4, where in line (19), an event volume V0(x, y, t) is created in the form of a 4D tensor (n,2.c,h,w), then

in line (20) we update every event’s e(x,y,p,t) linearly weighted histogram. Where ti = t
δ is the sequential number

of the current event time, ci = ([ t×c
δ ] mod c) the sequential number of the current event nano-time bin, [.]c is the

closest nano-time bin number to the right and left, t∗ = c× ti−t0
δ −0.5 is the relative temporal distance to the center

of the corresponding nano-time bin, ti = t
δ is the sequential number of the current nano-time bin, t0 is the initial

event timestamp [nsec], δ = ∆t
n is the nano-time bin interval [nsec].

Algorithm 4 Event 3-Channel Tensor (E3CT) Pre-processing Layer for Frame-based Systems

Input: Packets of Events Arrays @fep HzOutput: E3CT (RGB Frame) @fec Hz

1: hot_pixels⇐ Hot P ixel Array ▷ Figure 2.9
2: n⇐ 24 ▷ #Temporal bins

3: c⇐ 3 ▷ #Channels
4: h× w ⇐ 1024× 1024 ▷ Frame dimensions

5: ∆t⇐ 1e9 (1 sec) ▷ Sampling duration [nsec]

6: el ⇐ [t, x, y, p] ▷ Events List
7: for each packet ∈ event_packets do
8: if #packets < fep/fec then
9: Load events in the current packet

10: if length(packet) > 2× h× w then
11: Remove hot_pixels from packet

12: Add packet to el

13: else
14: Add packet to el

15: end if
16: tf ⇐ el[t][−1]
17: packet += 1

18: else
19: V0 ⇐ V(el, n, 2 ∗ c,∆t) ▷ Event Volume Construction

20: V1 ⇐ V0(el, n, 2 ∗ c,∆t) ▷ Alpha Temporal Exponential Kernel

21: V2 ⇐ V1(ti, ci, y, x) += max (0, 1− ∥t∗c − t∗∥) ▷ Trilinear Voting Kernel

22: VT otal =
∑24

n=0 V2(ti, ci, y, x)
23: visualize (VT otal) ▷ Synthetic 3-Channel RGB Frame Construction

24: end if
25: end for

The E3CT events pre-processing layer is adopted and modeled as two consecutive filtering kernel convolutions

on the event volume V0(x, y, t) of the temporal width of ∆tk. The first kernel to filter the time decaying events in the

volume is the α-exponential time decay kernel and modeled as:

V1(x, y, t) .= exp
(
−α

(
V0(x, y, t)− η/2

η/6

)2
)
, (5.10)

where α = 0.5 and the decay rate η = 30 [ms] for our model. Followed by a trilinear voting kernel to stack the events

in the three channels tensor so that each event contributes to two consecutive channels depending on their location

from a vertex of this trilinear kernel. An event near the top contributes a higher weight to the current channel and a
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lower weight to the neighboring ones. These contribution weights of the three channels can represent a percentage

of an R-G-B color map; hence, the E3CT can be considered a synthetic RGB frame of events. The trilinear voting

kernel can be modeled as follows:

V2(x, y, ti)
.= max

(
0, 1−

∣∣∣∣V1(x, y, ti)
δt

∣∣∣∣) , (5.11)

where δt is the temporal bin i size as discussed in [21].

After applying the trilinear temporal voting kernel on the exponential-decay time surface, we stack the 3-channel

tensor temporal bins together, resulting in a synthetically colored 2D frame called the Event 3-Channel Tensor (E3CT).

In Figures 5.7,5.2, we can observe that the constructed synthetic colors are always consistent, meaning that the

stereo left and right constructed E3CTs have identical colors for the same scene.

For a visualized illustration for the nano-time bins concept see Figure 5.6, we show an example of two positive

events fall with the only two possibilities. The first falls exactly on the nano-time bin edge between the two nano-tbin

n, n+1. This event will contribute equally to both first and middle channels of this E3CT. The second falls totally in

the n-1 nano-tbin, so it will have a high contribution weight to the last channel and a low contribution weight to the

middle and no contribution to the first channel. As, the number of nano-tbins increase the number of contribution

slices will increase and the quality of the E3CT will improve.

In Figure 5.8, we represent six cases to compare DVS sensor event arrays preprocessed using the E3CT and E2VID

methodswithout any post processing. These corner cases show the the effectiveness of the E3CT to construct frames

that preserve the scene artifacts even in the harshest weather conditions. This is due to the high sampling duration

(1 sec) set during the E3CT construction. Selecting high sampling duration along with a hot pixel filter can efficiently

suppress the rain and fog events contributions to the E3CT as seen with Cases 3-6. Figure 5.7 gives an in-depth

illustration to the quality of the constructed E3CTs on sample artifacts from IBISCape sequences.

The only case where the E2VID can evaluate event-based SLAM systems performance in trajectory estimations

is clear weather with a low dynamic scene level as in the Clear 1 sequence. A rapid change in the scene can cause

an instantaneous map loss that affects the whole trajectory estimation even if the weather is clear, as in the Clear

2 sequence. IBISCape ESVI sequences are provided in raw .npz (NumPy arrays) and bag formats for the stereo-

DVS events, along with timestamps.csv file includes the start and end timestamps for every time surface. Besides,

the E2VID grayscale frames reconstruction results and the locations of the hot pixels for the stereo-DVS are also

provided.

5.3.3 Events-Frames Hybridization Front-end
One of the main advantages of our front-end fusion modeling is that it does not rely on any online probabilistic

photo-metric matching or alignment approach using filters or cost functions and considers all events polarities p ∈
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Figure 5.6: Graphical illustration of E3CT nano-time bins and events contribution to each channel. Nano-tbins are

replaced with micro-tbins for real-world DVS sensors. The contribution slice is mathematically a trilinear voting

kernel. The event volume is mathematically an exponentially decaying time surface of events with both polarities.
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Figure 5.7: E3CT qualitative analysis in simulated (top) IBISCape [1] and real-world (bottom) TUM-VIE and DSEC

[37, 13] scenes. Top: Event 3-Channel Tensor precision testing on multiple IBISCape artifacts compared to RGB

and E2VID frames. Bottom: (a) Sequence: TUM-VIE Dataset (mocap-desk2), edge events are color-encoded with

bright (red/blue) gradient pixels in good light. (b) Sequence: TUM-VIE Dataset (mocap-6dof), edge events are color-

encoded with dark (red/blue) gradient pixels in dimmed light. (c) Sequence: DSEC Dataset (Zurich_city_00_a), the

green traffic lights (dark - far) and the car rear lights triggering color-encoded events. (d) Sequence: DSEC Dataset

(Zurich_city_04_a), the green traffic lights (bright – near / dark - far) are clearer than the RGB frame.
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Figure 5.8: The effect of adverse weather conditions on DVS events and ORB feature extraction. E3CT preserves

both the high dynamic range property with the pixel temporal information of the DVS sensor and the high quality

with rich information (3 channels) of the RGB frames in all weather conditions in both static and dynamic scenes. Six

cases are tested with an ascending difficulty from clear to adverse weather and static to the dynamic scene.
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Figure 5.9: E3CT after the post-processing operations.

{+1, −1}. Hence, the computational load of ourmethod liesmainly on the PTAMmodules of the optimization-based

back-end. We employ our novel event pre-processing layer, the Event 3-Channel Tensor (E3CT), that is thoroughly

discussed in Chapter 2.

Conventional frame-based post-processing operations can be applied to the constructed E3CTs, such as adaptive

threshold, contrast stretch, color correction and balance, and denoising functions. Figure 5.9 shows the effect of

the post-processing operations on the E3CT compared to a conventional event accumulation frame. We consider

a fully calibrated stereo standard and event cameras stack as represented in Figure 5.10, so that the rigid-body

transformations Tcd0,1 = [Rcd0,1 |tcd0,1 ]3×4 and the cameras intrinsic parameters Kc0,1 ,Kd0,1 are known.

Given that the same post-processing operations are applied on the current stereo E3CT frames, the 2D-to-3D-to-

2D consecutive inverse-forward projections of the pixels on the E3CT frames Ph
d0,1

to the standard camera frames

Ph
d∈c0,1

can be performed as follows:

Ph
d∈c0,1

≈ Kc0,1 Tcd0,1 [(Kd0,1)−1 Ph
d0,1

1]⊤ + δPh
align , (5.12)

where (.)h denotes the pixel location in homogeneous coordinates. The term δPh
align denotes the pixel location

alignment correction factor for the standard and event frames (see Figure 5.11) so that the same 3D world point

Xh
w0,1

should correspond exactly to the pixel locations Ph
d∈c0,1

, Ph
c0,1

. This alignment term is observed to be constant

for the same sensor rig with non-varying intrinsic and extrinsic parameters. δPh
align value can be estimated using an

offline optimization process only once on a selected number of frames (the more the accurate) with high confidence

feature matches, and this value is given in Section 5.4 for both VECtor and TUM-VIE sequences.
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Figure 5.10: Geometry of the stereo hybrid event-standard cameras stack.

Figure 5.11: E3CT alignment with the standard camera frame. Top: standard camera frame (left) and E3CT post-

processed frame (right). Bottom: E3CT-standard camera fusion frames before (left) and after (right) δPh
align correc-

tion.
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Finally, the fusion function (and frame) f(.) performs a temporal cross-dissolve (linear blending) between both

the left (D0, C0) and right (D1, C1) E3CTs and standard camera frames, respectively, and is formulated as:

f0,1(C0,1, D0,1) = (1− β) ∗ C0,1 + β ∗D0,1 , (5.13)

where β ∈ [0, 1] is the E3CT contribution weight in the current fusion frame. β value is dynamic and depends on the

scene lighting and texture conditions. It should be set to high values β = max( C̄0,1
Cmax

0,1
, 1− C̄0,1

Cmax
0,1

) when the standard

camera frame fails to detect features due to adverse conditions and low-textured scenes, and this is the DVS-biased

fusionmode. For situations where standard camera frames can detect reliable scene features with good lighting and

enough texture, the β value should be low β = min( C̄0,1
Cmax

0,1
, 1 − C̄0,1

Cmax
0,1

) to reduce the amount of extracted features

to maintain the back-end processing complexity and latency in reasonable ranges, and this is the APS-biased fusion

mode.

Dynamic scenes with challenging and adverse conditions can easily trigger rapid switching between these two

fusion modes during estimation (see Figure 5.12). This causes a critical problem during the feature tracking process

using conventional low-level feature detectors, such as ORB, SIFT, SURF, BRIEF, and FAST. Accordingly, applying mid-

level feature detectors that depend mainly on learning-based architectures could solve this fusion frame modes

alternation problem. Hence, we employ the learning-based feature extractors and descriptors [145, 146] for their

high robustness and feature detection speed.

5.3.4 Optimization-based Back-end
Inspired by the first work of the traditional S-PTAM system, all the optimization Jacobians mentioned in this section

can be found with detailed proofs in [168]. All objective functions are minimized with the Levenberg-Marquardt

algorithm implemented in the g2o optimization library. We employ the Huber loss function for outliers rejection ρ(.).

5.3.4.1 System bootstrapping
The bootstrapping process in a Stereo Parallel Tracking andMapping (Stereo PTAM) system refers to the initialization

phase. The system creates an initial map and estimates the initial camera pose based on the first few frames cap-

tured by the stereo camera. The bootstrapping process is essential for establishing a starting point for subsequent

tracking and mapping updates. Here is a high-level overview of the bootstrapping process in Stereo PTAM:

1. Capture stereo frames: The stereo setup captures images (left and right) from the environment. These im-

ages are used to extract features and compute depth information.

2. Feature extraction: Features are detected and extracted from the left and right images using feature extrac-

tion algorithms, such as Scale-Invariant Feature Transform (SIFT), Oriented FAST and Rotated BRIEF (ORB), or
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Figure 5.12: Spatio-temporal matching for SuperPoint features on two consecutive stereo fusion frames. A ran-

dom batch of 50 matches is selected as a sample. The dynamic value of β opens new horizons for introducing a

continuous-feature concept. This continuous-feature has a high-quality traceability as evident with the learning-

based SuperPoint detector in these challenging situations.
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learning-based methods. These features are matched between the left and right images to establish corre-

spondences.

3. Compute depth information: By using the matched features and the known baseline distance between the

two cameras, depth information canbe calculated through triangulation. This process results in 3D coordinates

for the matched features, which serve as the initial map points.

4. Estimate initial camera pose: The initial camera pose can be estimated by solving a Perspective-n-Point (PnP)

problem using the 3Dmap points and their corresponding 2D image points in the left image. The PnP problem

aims to find the camera pose that minimizes the re-projection error between the observed 2D image points

and the 3Dmap points projected onto the image plane. The camera pose can be represented as a combination

of rotation matrix (R) and translation vector (t) or as a quaternion (q) and translation vector (t).

5. Initialize themap and tracking: Once the initial map points and camera pose are estimated, the Stereo PTAM

system initializes the mapping and tracking layers. The map is created by inserting the 3D map points, while

the tracking is initialized with the estimated camera pose. The system is now ready for subsequent tracking

and mapping updates based on new incoming stereo frames.

The bootstrapping process in Stereo PTAM is crucial for a successful operation. It provides the system with an

initial map and camera pose that can be refined and expanded as new data is processed.

5.3.4.2 Pose tracking thread
Each map point is projected into the viewing frustum of the anticipated stereo position, and we then look nearby for

the match. A valid prediction of the current pose is required for such a projection. By contrasting the descriptions,

map points and features are matched. The L2 norm is computed using the binary descriptors of SuperPoint and

R2D2. The match is valid if the distance falls below a certain threshold; otherwise, it is ignored. The pose refinement

is then applied to recover the current pose knowing the previous one using the following objective function:

Lrefine = arg min
µ

∑
i∈N

ρ(||Jk
i µk −∆zi(µk−1, X

i
w)||2) , (5.14)

whereN = {z1, . . . , zM} andM is the number of matched measurements. The measurement z = [u, v]⊤ is a pixel

2D location of the forward projection of a 3D map point Xw using the pinhole model projection function π(Xi
w) =

KcT f0w
i Xi

w. J
k
i = ∂∆zi(µ)

∂µk
is the re-projection error’s Jacobian with respect to the current odometry state vector. ∆z

is the re-projection error of a matched set of measurements on the current k stereo fusion frames and is defined

as:

∆zi(µ,Xw) = zi − π(exp (µ)T f0w
k−1 X

i
w) , (5.15)
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where the 3D point cloud Xw is considered a constant optimization parameter and not updated in the tracking

thread and T f0w
k−1 = exp(µ) ∈ SE(3) with exp (.) the exponential map in the Lie group for the previous increment

state vactor. If the number of observed points is less than 90% of the points recorded in the previous keyframe, a

frame is chosen to be a keyframe after the current pose has been evaluated. Then, new map points are created by

triangulating the stereo pair’s remaining mismatched features. The keyframe is then placed in the local mapping

thread for processing.

In the Stereo Parallel Tracking and Mapping (Stereo PTAM) system, the tracking thread estimates the camera’s

current pose using the incoming stereo frames and the existing 3D map. The tracking thread works in parallel with

the mapping thread, which maintains and updates the 3D map of the environment. Accurate and efficient camera

pose estimation is crucial for navigation, localization, and obstacle detection in autonomous systems. Here’s an

overview of the key tasks performed by the tracking thread:

1. Feature extraction: For each new incoming stereo frame, the tracking thread extracts features from the left

image using feature extraction algorithms like Scale-Invariant Feature Transform (SIFT), Oriented FAST, and

Rotated BRIEF (ORB), or other learning-based extractors/descriptors. These features are used to establish

correspondences with the 3D map points.

2. Feature matching and map point projection: The tracking thread matches the extracted features from the

left image with the 3D map points by projecting the map points onto the image plane using the camera’s

previous pose estimate. This process results in a set of 2D-3D correspondences that will be used to refine the

camera pose.

3. Camera pose estimation: The tracking thread estimates the current camera pose by solving a Perspective-n-

Point (PnP) problem using the 2D-3D correspondences. The PnP problem aims to find the camera pose that

minimizes the reprojection error between the observed 2D image points and the 3Dmap points projected onto

the image plane. The camera pose can be represented as a combination of rotation matrix (R) and translation

vector (t), or as a quaternion (q) and translation vector (t).

4. Pose refinement: The initial pose estimate is typically refinedusing an iterative optimization algorithm, such as

the Levenberg-Marquardt algorithm, to reduce the reprojection error further and improve the pose accuracy.

5. Tracking quality assessment: The tracking thread evaluates the quality of the estimated camera pose based

on criteria like the number of inliers (i.e., the correspondences with low reprojection error) and the distribution

of the inliers in the image. If the tracking quality is deemed insufficient, the systemmay trigger a re-localization

process to recover the camera pose using other techniques, such as searching for more keyframes in themap.

6. Update system state: Once the camera pose is estimated, the tracking thread updates the system’s state with

the new pose, allowing the robot or device to use this information for navigation, localization, and other tasks.
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The tracking thread in Stereo PTAM is essential for real-time camera pose estimation, enabling the system to

navigate and interact with its environment effectively. It works closely with themapping thread to ensure the camera

pose and 3D map are consistent and up-to-date.

5.3.4.3 Mapping thread
A type of least squares estimation known as Bundle Adjustment (BA) is used to fine-tune the camera poses (keyframe

map) and the 3D points (point cloudmap). Local Bundle Adjustment minimizes the re-projection error of every point

in every keyframe fk
0 . Given an initial set of N keyframe poses {T f0w

1 , . . . , T f0w
N }, an initial set ofM 3D points Xi

w,

and measurement sets S ∈ {S1, . . . , SN}, where each set comprises the measurement zk
i of the ith point in the

kth keyframe, the local BA is performed using the following objective function on all keyframes in a pre-defined

sliding-window size N :

LBA = arg min
µ, Xw

N∑
k=1

∑
i∈Sk

ρ(||Jk
i

 µk

Xi
w

−∆zi(µk, X
i
w)||2) , (5.16)

where the 3D point cloudXw is considered a variable optimization parameter and is updated in themapping thread.

Hence, the Jk
i = [ ∂∆zi(µk,Xi

w)
∂µk

,
∂∆zi(µk,Xi

w)
∂Xi

w
] is the re-projection error’s Jacobian with respect to the current odometry

state vector and the 3D point as well.

In the Stereo Parallel Tracking and Mapping (Stereo PTAM) system, the mapping thread is responsible for main-

taining and updating the 3D map of the environment using the information from the stereo camera. The mapping

thread works in parallel with the tracking thread, which estimates the camera pose based on the current frame

and the existing map. The mapping thread is critical in ensuring an accurate and consistent representation of the

environment. Here’s an overview of the key tasks performed by the mapping thread:

1. Keyframe selection: The mapping thread selects keyframes from the incoming stereo frames. Keyframes

are chosen based on criteria such as significant camera motion or many new features observed since the last

keyframe. Keyframes provide a basis for updating the map and ensure that the map is updated only when

necessary, reducing computational load.

2. Feature extraction and matching: For each new keyframe, the mapping thread extracts features from the

left and right images using feature extraction algorithms like Scale-Invariant Feature Transform (SIFT), Oriented

FAST and Rotated BRIEF (ORB), or other learning-based architectures. The features are matched between the

left and right images to establish correspondences and compute depth information.

3. Triangulation: Themapping thread triangulates thematched features using the stereo camera’s known base-

line and the matched feature pairs’ disparities. This results in new 3D map points added to the map.
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4. Bundle Adjustment (BA): BA is an optimization process that refines the camera poses (keyframe poses) and

3D map points by minimizing the reprojection error between the observed 2D image points and the 3D map

points projected onto the image plane. This process helps improve themap’s overall accuracy and consistency.

5. Map management: The mapping thread continuously updates the map, adding new 3D map points and

keyframes while removing redundant or poorly estimated points. This process ensures that the map remains

reliable and efficient for camera pose estimation and path planning.

6. Loop closure detection and correction: In some Stereo PTAM implementations, themapping thread handles

loop closure detection, identifying when the camera returns to a previously visited location. If a loop closure is

detected, the system corrects any accumulated drift by adjusting the camera poses andmap points tomaintain

a consistent map.

The mapping thread in Stereo PTAM is essential for maintaining an accurate and up-to-date environment map,

which is crucial for navigation, localization, and obstacle detection in autonomous systems.

5.3.4.4 Loop-closure thread
In the domain of Simultaneous Localization and Mapping (SLAM), loop closure detection is crucial to maintaining

a consistent and accurate environment map. Various methods have been developed to address this challenge,

primarily focusing on techniques that efficiently and reliably recognize previously visited locations. Among these

approaches, the bags-of-words (BoW)model andmid-level feature-basedmethods have gained significant attention

due to their robustness and scalability. The BoW model represents images as sparse histograms of visual words

and quantized feature descriptors from a pre-defined vocabulary. The BoW approach enables efficient matching

and retrieval of similar images by comparing their histograms, thus facilitating loop closure detection in large-scale

environments. On the other hand, mid-level features, also known as part-based or semantic features, capture the

structural and semantic information of the scene by leveraging object recognition, segmentation, or higher-level

abstractions. These features provide a more discriminative and invariant representation than low-level features,

increasing robustness to viewpoint changes, occlusions, and dynamic objects. By incorporating mid-level features

into the loop closure detection process, the system can better handle challenging scenarios and improve overall map

consistency. Bags-of-words and mid-level feature-based approaches have demonstrated their effectiveness in loop

closure detection tasks, contributing to developingmore reliable and accurate SLAM systems in various applications,

from robotics to augmented reality.

The advent of deep learning has led to the development of powerful learning-based feature extractors and de-

scriptors that have proven highly effective in computer vision tasks. These learning-based methods, particularly

convolutional neural networks (CNNs), have been increasingly employed as mid-level features for loop closure de-

tection in SLAM systems. Unlike handcrafted feature descriptors, learning-based features can capture hierarchical
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and semantically meaningful information from the raw image data. They are trained on large datasets, which en-

ables them to generalize well and provide more robust and discriminative representations of the scene.

In loop closure detection, learning-based features can be extracted from intermediate layers of a pre-trained

CNN or networks designed explicitly for place recognition, such as NetVLAD or DenseVLAD. These features offer

several advantages, including increased invariance to changes in viewpoint, illumination, and occlusions, leading to

improved performance in challenging environments. Furthermore, learning-based features can be combined with

traditional BoW or mid-level feature-based approaches to enhance the overall loop closure detection performance.

For instance, by incorporating semantic segmentation or object recognition into the process, the system can focus

on the most informative parts of the scene, improving its ability to recognize previously visited locations.

Integrating learning-based feature extractors and descriptors in SLAM systems has shown great promise in ad-

vancing the state-of-the-art in loop closure detection, paving the way for more robust, accurate, and efficient map-

ping and localization solutions across various applications.

In the Stereo Parallel Tracking and Mapping (Stereo PTAM) system, the loop closure thread is responsible for

detecting and correcting loop closures to maintain a consistent and accurate map of the environment. Loop clo-

sures occur when the camera returns to a previously visited location, and recognizing these events is essential for

correcting accumulated drift in the estimated camera poses and 3D map points. The loop closure thread works in

parallel with the tracking and mapping threads. Here’s an overview of the key tasks performed by the loop closure

thread:

1. Candidate selection: The loop closure thread continuously monitors the system’s state and selects potential

loop closure candidates based on the current camera pose and the existing keyframes in the map. Candidates

can be selected using various criteria, such as proximity or similarity in appearance.

2. Feature extraction and matching: For each loop closure candidate, the thread extracts features from the

current frame and the candidate keyframe using the mean of the mid-level learning-based feature descrip-

tors (SuperPoint and R2D2) for each keyframe and assign this mean value as the embedding identity of each

keyframe. The features are then matched between the two frames to establish correspondences.

3. Geometric verification: The loop closure thread performs geometric verification to confirm the loop closure

by estimating a relative transformation between the current frame and the candidate keyframe. This can

be achieved using techniques like RANSAC-based homography, fundamental matrix estimation, or solving a

Perspective-n-Point (PnP) problem.

4. Loop closure detection: If the geometric verification is successful and the number of inliers (i.e., the corre-

spondenceswith low reprojection error) exceeds a predefined threshold, the system considers the loop closure

as detected.
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5. Loop closure correction: Once a loop closure is detected, the system corrects the accumulated drift by ad-

justing the camera poses and 3D map points. This process typically involves a global optimization step, such

as pose graph optimization or global Bundle Adjustment (BA), to minimize the overall reprojection error and

ensure a consistent map.

6. Map merging and optimization: After the loop closure correction, the loop closure thread may perform

additional map merging and optimization tasks, such as merging duplicated map points or optimizing local

sub-maps, to maintain an efficient and accurate map representation.

The loop closure thread in Stereo PTAM is essential for maintaining a consistent and accurate environment map,

enabling the system to navigate and interact with its environment more effectively. It works closely with the tracking

and mapping threads to ensure that the camera poses and 3D map are consistent and up-to-date.

5.4 Evaluation
We perform a thorough, comprehensive evaluation during navigation in real-world, large-scale, and small-scale ar-

eas in challenging settings. In subsection 5.4.1, we compare DH-PTAM with other standard image-based and event-

based/-aided methods on the HDR large-scale sequences of the publicly available dataset VECtor [147] due to its

high-quality ground truth values and sensors calibration parameters. In subsection 5.4.2, we evaluate the small-scale

(mocap-) sequences of TUM-VIE [148] to test the quality of the DH-PTAM spatio-temporal synchronization method

with degraded event camera calibration parameters. Moreover, the first 45 frames of TUM-VIE sequences suffer

a high over-/under-exposure global shutter alternation, which tests the DH-PTAM’s pose estimation stability. We

perform a comparative quantitative analysis to evaluate the accuracy of our system in Tables 5.2, 5.3 and a qualita-

tive/quantitative analysis in Figures 5.13, 5.15, 5.14. The accuracy of DH-PTAM is measured with absolute trajectory

error (ATE), and relative pose error (RPE) metrics calculated using the baseline SLAM evaluation tool [169].

To prevail the advantages of complementing the sensor stack with events information, we compare our event-

aided stereo visual odometry solution (DH-PTAM) to the latest best-performing open-source visual-inertial systems

in literature in Table 5.2. Table 5.4 gives the system parameters configuration for large-scale and small-scale se-

quences. We keep these parameters constant for all sequences of the same scale groupwithout an online fine-tuning

process.

All experiments are performed on the CPU and the GPU of a 16 GB RAM laptop computer running 64-bit Ubuntu

20.04.3 LTS with AMD(R) Ryzen 7 4800h ×16 cores 2.9 GHz processor and a Radeon RTX NV166 Renoir graphics card.

Table 5.5 reports a detailed computational complexity analysis for our DH-PTAM system with minimal and maximal

system requirements. The high CPU load observed when detecting SuperPoint and R2D2 features can be attributed

to the algorithms’ design, which prioritizes feature quality and robustness over computational efficiency. This trade-
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Table 5.2: DH-PTAM Quantitative Comparison Against the best performing open-source State-of-the-art SLAM Sys-

tems based on the Absolute Trajectory Error (ATE [m]) metric. The upper sub-table is for Standard Stereo VIO Meth-

ods, the middle is for event-based VO/VIO Methods, and the lower is for DH-PTAM. Bold denotes best performing,

Underline for second best performing, and (×) denotes failure

Method

VECtor sequences [147] TUM-VIE sequences [148] Mean Mean

corridors corridors units units school school mocap mocap mocap mocap mocap VECtor TUM-VIE

dolly walk dolly scooter dolly scooter 1d-trans 3d-trans 6dof desk desk2 large-scale small-scale

ORB-SLAM3 (SVIO) [43] 0.802 1.031 18.063 14.504 0.921 0.752 0.007 0.012 0.018 0.007 0.025 6.012 0.013

BASALT (SVIO) [69] 1.625 2.152 11.151 13.256 1.852 1.482 0.003 0.009 0.014 0.016 0.011 5.253 0.011
VINS-Fusion (SVIO) [112] 1.464 0.392 10.391 11.471 1.791 0.562 0.011 0.011 0.017 0.058 0.013 4.345 0.022

EVO (Mono Events) [158] × × × × × × 0.075 0.125 0.855 0.541 0.752 × 0.470

ESVO (Stereo Events) [46] × × × × 13.710 9.830 0.009 0.028 0.058 0.033 0.032 11.77 0.032

Ultimate SLAM (EVIO)+ [160] × × × × × 6.830 0.039 0.047 0.353 0.195 0.341 6.830 0.195DH-PTAM (Stereo Fusion) 1.884 1.299 5.274 8.433 1.093 0.796 0.103 0.007 0.024 0.016 0.015 3.130 0.033

(SuperPoint on CPU) - RPE (σ) 0.073 0.038 0.055 0.149 0.178 0.074 0.006 0.007 0.009 0.009 0.007 0.095 0.008DH-PTAM∗ (Stereo Image) 1.841 1.543 5.738 5.010 1.559 0.877 0.099 0.004 0.045 0.011 0.008 2.761 0.033

(R2D2 on GPU) - RPE (σ) 0.116 0.141 0.134 0.308 0.202 0.331 0.014 0.020 0.022 0.023 0.021 0.205 0.020

+ IMU sensor is included since it is integrated into the front-end and cannot be separated for a fair comparison with EVO, ESVO, and DH-PTAM

(ours).
∗ in this ablation case study, the SuperPoint detector is replacedwith the R2D2 detector (trained for SLAM tasks), leveraging theGPUperformance.

Table 5.3: DH-PTAM Quantitative Analysis based on the Relative Pose Error (RPE [m]) metric (for more qualitative

results insights, refer to Figure 5.14 and Figure 5.15). Bold denotes best performing.

Dataset Sequence
SuperPoint on CPU R2D2 on GPU

Stereo Fusion Stereo Images∗

VECtor

corridors-dolly 0.073±0.073 0.116±0.058
corridors-walk 0.038±0.034 0.141±0.057
units-dolly 0.055±0.046 0.134±0.065
units-scooter 0.149±0.099 0.308±0.157
school-dolly 0.178±0.099 0.202±0.107
school-scooter 0.074±0.043 0.331±0.203

TUM-VIE

mocap-1d-trans 0.006±0.004 0.014±0.009
mocap-3d-trans 0.007±0.004 0.020±0.009
mocap-6dof 0.009±0.005 0.022±0.012
mocap-desk 0.009±0.006 0.023±.009
mocap-desk2 0.007±0.003 0.021±0.008
Mean 0.055±0.038 0.121±0.063

∗ No events to complement the scene in this ablation case-study.

Table 5.4: DH-PTAM Parameters Configuration

Parameter VECtor sequences TUM-VIE sequences

δPh
align - Left (-160, -235) [px] (355, 40) [px]

δPh
align - Right (-160, -235) [px] (375, 45) [px]

frustum_near 0.1 [m] 0.1 [m]

frustum_far 30.0 [m] 5.0 [m]

matching_cell_size 15 [px] 15 [px]

matching_neighborhood 2 [px] 1.8 [px]

matching_distance 25 [px] 15 [px]
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Figure 5.13: DH-PTAM (GPU (no events) vs. CPU (event-aided)) qualitative analysis. All trajectories are transformed

to a reference frame as the ground truth poses using the extrinsic parameters, followed by an alignment with all

poses by Umeyama’s SE(3) method implemented by [169]. Large-scale trajectories show high-quality loop closure

detection in the case of R2D2 on GPU. Small-scale trajectories show the high accuracy of the event-aided version of

DH-PTAM.
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Figure 5.14: DH-PTAM (GPU (no events)) qualitative/quantitative analysis based on the positional relative pose error

RPE [m] metric. The main observation from the low ATE and high RPE on the GPU, is due to the high-quality loop-

closures detected using R2D2 features.
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Figure 5.15: DH-PTAM (CPU (event-aided)) qualitative/quantitative analysis based on the positional relative pose

error RPE [m] metric. The high visual drifts and the undetected loops with the large-scale sequences, is due to the

low efficiency memory management in case of the learning-based features on the CPU leading to RAM overflow

failures.
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off is often necessary for computer vision research, where high-quality results are crucial for many applications but

come at the cost of increased computational complexity. The back-end runs with real-time performance, and its

recommended to run the front-end on a GPU to achieve a memory efficient, faster, and more stable performance.

No event streams (β = 0). In Tables 5.2, 5.3, we show an ablation study where we run DH-PTAM on stereo

images. We notice estimation failure with all the conventional and learning-based feature detectors except R2D2.

Although the ATE metric shows slightly better results without using events, the RPE metric shows much more accu-

rate values when using events. These better ATE values are due to the high performance of the GPU in processing

R2D2 feature detection (see Figure 5.13).

Table 5.5: Computational Complexity Analysis on CPU vs. GPU

Thread #Tasks Operation CPU [ms] GPU [ms]

Front-end 3 Stereo E3CT Construction 25-30 76-172

Events-Frames Fusion 439-521 191-352

(≈2×10K) SuperPoint Detection 2478-3256 521-1752

(≈2×4K) R2D2 Detection 8532-8752 1067-2254

Bootstrapping 1 Initialize the Map 106-143 53-120

Tracking 2 Spatio-temporal Matching 161-215 142-172

(10 iter.) Pose Refinement 11-15 10-12

Mapping 2 Update Map 1-3 0.452-1

(30 iter.) Local Bundle-Adjustment 1-4 1-2

Loop-closing 3 Loop Detection 14-20 10-15

Compute and Validate 2-5 1-3

(30 iter.) Pose Graph Optimization 1-3 0.524-2

End-to-End 11 SuperPoint Detector 3153-4208 356-1962

R2D2 Detector 8560-9125 1226-2486

5.4.1 VECtor large-scale experiments
We notice a prominent estimation failure in Table 5.2 while evaluating the event-based methods EVO, ESVO and

Ultimate SLAM on the large-scale sequences. Numerous factors may contribute to the failure of these systems,

including stringent initialization requirements. For instance, the system EVO necessitates running in a sensor-planar

scene for several seconds to bootstrap the system. Additionally, these systems are susceptible to parameter tuning,

as demonstrated by using different parameters for different sequences in the same scenarios, even within their

open-source projects.

Table 5.2 shows a good performance for DH-PTAMcompared to the competing VI-SLAM systems. Although Figure

5.13 shows high visual drifts for our vision-only system in the case of units sequences, DH-PTAM could outperform
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the VI-SLAM systems based on the ATEmetric. Figure 5.13 gives an overview of the high-quality loop detection of DH-

PTAM in the case of corridors sequences. Loop detection failure can be noticed only when the RAM overflows while

running the systemwith enormous point clouds, as in the case of units sequences. We provide trajectory smoothing

and post-processing script with our open-source implementation to join estimated trajectory increments in case of

RAM overflow failures.

5.4.2 TUM-VIE small-scale experiments
As noticed in [170], the calibrationA (mocap-desk, mocap-desk2) sequences have more accurate depth estimation

results than calibrationB (rest of mocap and TUM-VIE large-scale) sequences due to the significant calibration errors

in the latter. Hence, we perform our comparative evaluation on TUM-VIE small-scale (mocap-) sequences using

calibrationA parameters. Although the same high-quality calibrationA parameters apply to both desk2 and desk

sequences with the same spiral motion, DH-PTAM performs the best with desk2 sequence but the worst with desk

sequence. This occurs since the scene of the desk sequence is bounded by a close-by white wall that strict the depth,

and hence DH-PTAM front-end detects low quality and fewer features for desk than desk2. Table 5.2 shows that the

more DoF excited (6dof, desk2) and the consistent loops detection (1d-trans), the better the pose estimation quality

based on ATE [m] metric.

5.5 Conclusion
This chapter presented the DH-PTAM system for robust parallel tracking and mapping in dynamic environments

using stereo images and event streams. The proposed system builds upon the principles of S-PTAM and extends it

with a deep learning-based approach to handle the sparse and noisy nature of event-based sensors while leveraging

the rich information provided by fusion frames. Our experiments demonstrate that DH-PTAM outperforms state-of-

the-art visual-inertial SLAMmethods, particularly in challenging scenarios such as fast motion, HDR, and occlusions.

The proposed system can achieve better performance on a GPU and provides a scalable and accurate solution for

3D reconstruction and pose estimation.

Ourwork has contributed significantly to the field of SLAMby developing a novel system that effectively combines

the strengths of heterogeneous multi-modal visual sensors and employs deep learning-based feature extraction

and description for estimation to enhance robustness. The DH-PTAM system has the potential to enable various

applications in robotics, augmented reality, and autonomous driving, where robust and accurate 3D mapping and

localization are critical for safety and efficient operation.

Futurework includes investigating the potential of integrating inertial navigation sensors, such as IMUs, to further

improve the system’s robustness and accuracy in challenging environments. Additionally, exploring the integration

of other deep learning components for feature extraction, matching, and loop-closure detection can potentially
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enhance the overall performance and reliability of the system. Evaluating the DH-PTAM system in more diverse and

challenging real-world scenarios will also be essential to validate its applicability and adaptability across a wide range

of use cases.

In conclusion, the DH-PTAM system represents a significant advancement in the field of SLAM, offering a robust,

scalable, and accurate solution that addresses the challenges associated with dynamic environments and hetero-

geneous sensor data. We believe that our work will pave the way for further research and development in this

area, ultimately leading to more robust and efficient solutions for a variety of applications in robotics, autonomous

navigation, and beyond.



6 Towards Event-based Dense SLAM

Abstract
In this chapter, we delve into unexplored territories within the realm of dense Simulta-

neous Localization and Mapping (SLAM) by focusing on utilizing Event cameras. Sub-

sequently, we present our pioneering end-to-end approach for a dense event-based

SLAM system. The proposed pipeline is constructed upon the open3D library, facili-

tating pose graph optimization. A straightforward loop-closure paradigm is employed

based solely on the estimated hybrid point clouds. Rather than relying on the tradi-

tional Iterative Closest Point (ICP) method, we employ the efficient Teaser++ method

for point cloud alignment and relative pose recovery, representing the current state-

of-the-art approach. Lastly, we perform a proof-of-concept evaluation on DSEC and

TUM-VIE, real-world public benchmarks. This evaluation demonstrates our proposed

method’s practical feasibility and effectiveness in a realistic setting, further solidifying

its potential and value in the field.

"Imagination is more important than knowledge. For

knowledge is limited, whereas imagination embraces

the entire world, stimulating progress, giving birth to

evolution."

Albert Einstein
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6.1 Introduction and Related Works
Simultaneous Localization and Mapping (SLAM) is a fundamental problem in robotics and computer vision, which

involves estimating the trajectory of a sensor-equipped agent while simultaneously constructing a map of the envi-

ronment. Traditional SLAM approaches rely on visual sensors such as cameras, which provide dense pixel informa-

tion. However, thesemethods often suffer from limitations such as high computational requirements and sensitivity

to lighting conditions. In recent years, there has been a growing interest in utilizing event cameras, a type of sensor

that captures asynchronous changes in pixel intensity, to overcome these challenges and enhance the performance

of SLAM systems.

Event cameras offer several advantages over traditional cameras. They have a high temporal resolution, low

power consumption, and a wide dynamic range, making them particularly suitable for high-speed and dynamic

environments. Moreover, event cameras provide a sparse stream of events, which reduces the amount of data to

process and enables real-time performance. These unique characteristics of event cameras make them promising

candidates for dense SLAM applications.

Previous research in event-based SLAM [171] has predominantly focused on sparse mapping and tracking, ne-

glecting the potential for dense reconstruction [59], [170]. While sparse methods have shown impressive results in

terms of efficiency and accuracy, they suffer from limited environmental understanding due to the lack of dense

geometric information. On the other hand, dense event-based SLAM aims to reconstruct a detailed and dense rep-

resentation of the environment by leveraging the event stream.

Several approaches have been proposed to tackle the challenge of dense event-based SLAM. Some methods

utilize traditional point cloud registration techniques from the Semi-global matching (SGM) algorithm [172] produc-

ing dense depth maps, such as Iterative Closest Point (ICP) [173], to align the event-based point clouds with the

map. However, these methods may struggle with the sparsity and temporal nature of the event data, leading to

suboptimal alignment results.

We propose a pioneering end-to-end approach for a dense, event-based SLAM system to address these limita-

tions. Our pipeline builds upon the open3D library [174], which facilitates pose graph optimization. In contrast to

traditional ICP-based methods, we employ the state-of-the-art Teaser++ method [58] for point cloud alignment and

relative pose recovery. This method leverages efficient optimization techniques and has demonstrated superior

performance compared to traditional methods.

This chapter presents the details of our proposed approach for dense event-based SLAM. We describe the

pipeline, including the data preprocessing steps, the Teaser++ alignment method, and the loop-closure paradigm

based on dense event-based point clouds. Furthermore, we evaluate our proposedmethod’s practical feasibility and

effectiveness through a proof-of-concept evaluation on real-world public benchmarks, namely DSEC [13] and TUM-

VIE [37]. The results of this evaluation demonstrate the potential and value of our approach in a realistic setting,
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paving the way for future advancements in dense event-based SLAM.

6.2 Methodology
The proposed event-based stereo-dense mapping pipeline 6.1 involves transforming stereo event streams into a

dense 3D point cloud, followed by pose estimation and loop closure using the Teaser++ method. The methodology

can be outlined as follows:
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Figure 6.1: Our proposed event-based semi-dense SLAM system pipeline.

1. Acquisition of Stereo Event Streams:

The system starts by acquiring stereo event streams from the event cameras. These cameras capture asyn-

chronous changes in pixel intensity and provide a sparse stream of events, which form the basis of the subse-

quent processing steps.

2. Construction of Event 3-Channel Tensor (E3CT):

To facilitate the processing of stereo events, the stereo event streams are converted into an Event 3-Channel

Tensor (E3CT), denoted as T. The E3CT represents the temporal information of events in a compact and struc-

tured format suitable for further computations.

3. Estimation of Disparity Map using Semi-Global Matching (SGM):

The E3CT is used to estimate the disparity map, denoted as D, which represents the pixel-wise disparity or

depth difference between the left and right views of the stereo pair. The Semi-GlobalMatching (SGM) algorithm

is applied to compute the disparity map by minimizing the energy function:

E(D) =
N∑

i=1
(Ci(di) + Pi(di, di−1) + Si(di))

where Ci(di) is the data cost, Pi(di, di−1) is the prior cost, and Si(di) is the smoothness cost. This optimization

process produces the estimated disparity map.
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4. Filtering of Disparity Map:

The estimated disparitymap is subjected to filtering techniques to improve its quality. First, theWeighted Least

Squares (WLS) filter is applied to reduce noise and enhance the sharpness of disparity edges. The WLS filtering

is formulated as:

D̂ = arg min
D

N∑
i=1

wi (Di − Ii)2 + λ (∇D)2

where D̂ is the filtered disparity map, Ii represents the intensity values, wi is the weight for each pixel, and λ

controls the smoothness regularization.

5. Disparity Completion using Morphological Closing Filter:

To address occluded regions and fill in missing information, the disparity map undergoes disparity completion

using a Morphological Closing filter. This filter employs a kernel to close gaps and smooth the disparities,

ensuring a more complete and continuous depth estimation.

6. Conversion of Disparity Map to Depth Map:

The filtered and completed disparitymap, D̂, is converted to a depthmap, denoted asZ, using the focal length,

f , and stereo baseline, b, of the camera system. The depth map is computed as:

Z = f · b
D̂

providing a per-pixel estimate of the scene’s depth or distance from the camera.

7. Conversion of Depth Map to 3D Point Cloud:

The depth map, Z, is further transformed into a 3D point cloud, denoted as P. This conversion involves using

the known camera parameters and geometry to map the depth values to their corresponding 3D coordinates.

Each point in the point cloud is represented as pi = (xi, yi, zi), where xi, yi, and zi are the coordinates in the

3D space.

8. Pose Estimation and Loop Closure using Teaser++:

The consecutive estimated 3D point clouds, Pt−1 and Pt, are fed into the Teaser++ algorithm for pose estima-

tion and loop closure. Teaser++ is a robust form of the traditional Iterative Closest Point (ICP) method (refer

to Figure 6.2 for more insights). It performs point cloud registration and alignment to estimate the relative

pose between consecutive frames, enabling accurate trajectory estimation. The registration process can be

formulated as:
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T = arg min
T

N∑
i=1

wi ∥RPt−1,i + t−Pt,i∥2

where T = (R, t) represents the relative transformation between the point clouds, Pt−1,i and Pt,i are corre-

sponding points in the point clouds, and wi is the weight for each correspondence. The output of Teaser++

provides the relative pose T between consecutive frames, enabling accurate motion estimation and loop clo-

sure detection.

Figure 6.2: Comparison of 3D registration methods in the presence of outliers. (a) The Bunny dataset with 95%

outliers (red lines) and 5% inliers (green lines). Existing algorithms like RANSAC (b) struggle to produce accurate esti-

mates even after 10,000 iterations. The certifiable algorithm, TEASER, outperforms state-of-the-art in robustness and

accuracy. The fast implementation, TEASER++ (c), computes precisemillisecond estimates, evenwith extreme outlier

rates, identifying the small inliers (green dots). TEASER++ excels in correspondence-free registration (d), where ICP

(e) fails without a good initial guess, while TEASER++ (f) succeeds without requiring one. Tests on challenging RGB-D

datasets for object localization (g-h) and scan matching (i-j), using traditional features (FPFH) and deep-learned fea-

tures (3DSmoothNet), demonstrate the superior performance of TEASER++. The figure is courtesy of [58].

By following these steps, the proposed event-based stereo-dense mapping pipeline enables the reconstruction

of a dense 3D representation of the environment while incorporating pose estimation and loop closure to improve

the accuracy and robustness of the system.

6.3 A Proof-of-Concept Evaluation
6.3.1 Datasets Insights
We conducted evaluations of our stereo methods using sequences from five publicly available datasets. The DSEC

dataset consisted of recordings with event cameras mounted on a car driving through Zurich’s surroundings [13].
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The TUM-VIE dataset [37], on the other hand, captured indoor and outdoor scenes using a sensor rig mounted on

a helmet. For datasets that provided ground truth poses from a motion-capture system, we utilized those poses as

input for all tested methods. In cases where camera poses were unavailable, such as in the TUM-VIE dataset, we

computed them using data from the sensor rig, employing a visual-inertial odometry algorithm.

To enable quantitative assessment of the 3D reconstruction methods, certain datasets, including DSEC, included

ground truth depth information. Depthmeasurementswere obtained using a LiDAR operating at 10-20Hz. However,

it should be noted that event camera pixels corresponding to points outside the LiDAR’s field of view or points in

close proximity to the sensor rig might lack a LiDAR depth value.

Table 6.1 summarizes the main geometric parameters of the event cameras employed in the aforementioned

datasets. The DAVIS camera configuration comprises frame- and event-based sensors sharing the same pixel array.

Intrinsic and extrinsic calibration is performed using the intensity frames and subsequently applied to the event data.

For datasets where the cameras exclusively output events (DSEC and TUM-VIE), calibration is achieved by converting

events to frames and calibrating the frames using methods such as [54]. It is important to note that all methods

employed in our study operate on undistorted coordinates.

Table 6.1: Experimental setups involved the utilization of stereo event-camera configurations, with the correspond-

ing camera parameters being adjusted accordingly.

Dataset Cameras Resolution [pix] Baseline [cm] FOV [°]
DSEC Prophesee Gen3 640 × 480 60 60.1

TUM-VIE Prophesee Gen4 1280 × 720 11.84 90

6.3.2 Evaluation Metrics Insights
The performance evaluation of the proposedmethod is conducted using a comprehensive set of standardmetrics on

datasets that provide ground truth depth information, specifically the DSEC dataset. This evaluation encompasses

various quantitative measures to assess the accuracy and robustness of the proposed method.

Firstly, themean error (ME) andmedian error (MdE) between the estimated depth and the ground truth depth are

calculated. Themedian error is favored in this evaluation due to its resilience to outliers. These errors are computed

as follows:

ME = 1
N

N∑
i=1
|Di − D̂i|

MdE = median(|Di − D̂i|)

whereDi represents the ground truth depth and D̂i denotes the estimated depth for the i-th point.

Additionally, several other metrics are employed to analyze the proposed method’s performance comprehen-
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sively. These metrics include:

1. Number of Reconstructed Points (RP): This metric quantifies the total number of points successfully recon-

structed by the proposed method.

2. Number of Outliers (NO): The number of outliers is determined using the bad-pix measure, which identifies

points that deviate significantly from the ground truth depth.

3. Scale-Invariant Depth Error (SILog Err): This metric assesses the similarity between the estimated and ground

truth depths, accounting for scale differences. It is calculated as:

SILog Err = 1
N

N∑
i=1

log
(

max(Di, D̂i)
min(Di, D̂i)

)2

4. Sum of Absolute Relative Differences in Depth (AErrR): AErrR measures the relative difference between the

estimated and ground truth depths. It is computed as:

AErrR = 1
N

N∑
i=1

|Di − D̂i|
Di

5. δ-Accuracy Values: These values represent the percentage of points whose depth ratios with respect to the

ground truth depth fall within a specified threshold. The depth ratio ri for each point is calculated as ri = D̂i

Di
,

and the δ-accuracy is determined as the percentage of ri values within the threshold.

The methodology presented in Section 6.2 is specifically tailored for events within a time window. To apply

the method to an entire sequence, the sequence is divided into non-overlapping time windows, and the method is

applied to eachwindow individually. This approach comprehensively evaluates the proposedmethod’s performance

across the sequence, ensuring accurate and robust results.

6.3.3 Quantitative Analysis on DSEC Dataset
The proposed methods undergo a quantitative evaluation using the DSEC driving dataset, specifically focusing on

the zurich04a sequence. The dataset provides maximum ground truth depth information up to 50meters. The eval-

uation is conducted on a 35-second segment of stereo data, which comprises a substantial amount of information,

including 635million events and 350 ground truth depthmaps. Notably, each depthmap is computed using approx-

imately 0.2 seconds of event data, equivalent to around 3.5 million events. For the evaluation, the ESVO method is

executed by fusing two depth maps generated at a rate of 10 Hz, aligning with the frequency of the LiDAR data. In

other words, each depth map is generated using 0.2 seconds of event data. The main observation from Table 6.2 is

that our proposed methods variants (with and without the Morphological Closing FIlter) produce the densest point

clouds at a very small cost on the overall depth estimation accuracy.
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Table 6.2: Quantitative evaluation using the DSEC driving dataset

Algorithm ME [m] MdE [m] NO [%] SILog [×100] AErrR [%] log RMSE [×100] δ <1.25 [%] δ <1.252 [%] δ <1.253 [%] #RP [million]
EMVS (mono) [48] 5.64 2.52 13.68 13.23 25.52 36.49 72.56 87.12 93.56 1.31

ESVO [46] 3.88 1.56 12.08 9.23 18.89 30.80 84.53 92.57 95.63 3.40

MEC Depth [170] 3.27 0.90 10.75 8.19 17.48 28.73 83.30 91.56 95.62 1.25

MEC Depth + MF [170] 3.51 0.96 11.81 8.89 18.84 29.99 81.72 90.68 95.07 3.83

Proposed 4.79 3.23 6.87 32.90 27.84 35.51 49.29 84.07 94.44 57.62

Proposed + MF 4.73 3.20 5.64 31.95 28.01 35.31 47.44 85.64 94.08 62.13
MF: denotes the closing Morphological Filter.

6.3.4 Qualitative Analysis on TUM-VIE Dataset
The TUM-VIE dataset allowed us to conduct experiments using high-resolution event cameras (1Mpix) and evaluate

our method’s robustness to camera pose errors, as shown in Figure 6.3. Throughout our experiments, including

those on DSEC and TUM-VIE, we consistently demonstrated the advantages of stereo over monocular methods,

which include higher accuracy, outlier rejection, and faster convergence due to additional parallax information. We

also investigated the sensitivity of our method to the camera’s spatial resolution and contrast threshold, observing

that higher resolution and lower threshold values result in improved accuracy at the cost of increased computational

burden due to a larger number of input events. Our method does not require event simultaneity and can effectively

fuse E3CTs even when constructed from temporally separated events. The best results were achieved when fusing

E3CTs derived from identical time intervals.

6.4 Conclusion and Future Work
In conclusion, this thesis chapter explored dense Simultaneous Localization and Mapping (SLAM) using Event cam-

eras. We presented a pioneering end-to-end approach for a dense event-based SLAM system, utilizing the Event

3-Channel Tensor (E3CT) and advanced techniques such as Semi-global matching (SGM), WLS filter, and Morpholog-

ical Closing filter to estimate disparity maps and convert them into depth maps. The proposed method showcased

practical feasibility and effectiveness by evaluating real-world benchmarks like DSEC and TUM-VIE, demonstrating

its potential and value in the field.

Looking ahead, there are several promising avenues for futurework. One interesting direction is the hybridization

of depth maps estimated from the stereo E3CTs with depth maps obtained from other sensors such as stereo RGB

cameras or LiDAR. This hybridization can leverage the complementary strengths of different sensing modalities and

enhance the accuracy and robustness of the reconstructed 3D environment.

To achieve this hybridization, filtering or optimization techniques can be employed. Filteringmethods like Kalman

or particle filtering can fuse the depthmaps frommultiple sources and refine the final depth estimates. Thesemeth-

ods effectively handle noise, uncertainties, and outliers in individual depth maps. Optimization-based approaches,

such as bundle adjustment or graph optimization, can be employed to jointly optimize the parameters of the depth
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Figure 6.3: Top (2 rows): snippets of experiments on mocap-6dof from the TUM-VIE dataset that show from left to

right grey-scale frame, E3CT frame, and the semi-dense depthmap. The 2nd row shows the 3D scene reconstruction.

Middle (2 rows): snippets of experiments onmocap-desk2 from the TUM-VIE dataset that show from left to right grey-

scale frame, E3CT frame, and the semi-dense depth map. The 2nd row shows the 3D scene reconstruction. Bottom

(2 rows): TheMEC Depthmethod [170] (with the confidencemap) is compared qualitatively to our proposedmethod

output for the two TUM-VIE sequences (mocap-6dof and mocap-desk2).
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maps from different sensors, ensuring consistency and improving the overall reconstruction quality.

Furthermore, integrating additional sensor information, such as color or intensity data from RGB cameras, can

provide valuable cues for depth estimation. Incorporating the RGB camera depth maps into the event-based SLAM

pipeline makes it possible to exploit the rich texture and visual features present in the RGB images, leading to more

accurate and detailed depth estimation.

Additionally, exploring the fusion of event-based depthmapswith LiDAR data can offer significant benefits. LiDAR

provides precise and dense 3Dmeasurements, which can serve as ground truth or strong constraints for optimizing

the depth maps estimated from the event cameras. By incorporating LiDAR data into the fusion process, the final

depth maps can benefit from the high accuracy and completeness of the LiDAR measurements.

Overall, the hybridization of depth maps estimated from stereo E3CTs with other sensor modalities, such as

RGB cameras or LiDAR, through filtering or optimization techniques holds great potential for advancing the field of

dense event-based SLAM. Further research and development in this direction can lead to more accurate, robust,

and comprehensive 3D mapping systems with broader applicability in real-world scenarios.



7 Conclusions and perspectives

Abstract
This chapter serves as a summary of the contributions and key findings presented

in the preceding chapters of this Ph.D. thesis. The research conducted in this thesis

puts forth several innovative solutions that contribute to the advancement of multi-

modal heterogeneous sensor fusion in the context of autonomous systems’ naviga-

tion within large-scale and dynamic environments.

"I am among those who think that science has great

beauty. A scientist in his laboratory is not only a

technician: he is also a child placed before natural

phenomena which impress him like a fairy tale."

Marie Curie
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7.1 Conclusions
This Ph.D. thesis has addressed the challenges of sensor fusion and Simultaneous Localization And Mapping (SLAM)

for autonomous systems, specifically focusing on Autonomous Ground Vehicles (AGVs) and Micro Aerial Vehicles

(MAVs) navigating large-scale and dynamic environments. Through the development of innovative solutions, the

research has significantly advanced the field of visual odometry and SLAM.

In the first methodological chapter, we introduced IBISCape, a simulated benchmark for validating high-fidelity

SLAM systems, including data synchronization and acquisition APIs for telemetry from heterogeneous sensors,

ground truth scene segmentation, depth maps, and vehicle ego-motion. The chapter also proposed innovative

calibration targets and a pre-processing layer for integrating DVS sensor events in any frame-based Visual-SLAM

system.

In the secondmethodological chapter, we presented a novel approach for intrinsic and extrinsic calibration of an

RGB-D-IMU visual-inertial setup using a GPS-aided optimizer bootstrapping algorithm. Our method delivers reliable

initial estimates for the RGB camera intrinsics and trajectory while optimizing spatio-temporal parameters. Exten-

sive experimental results on real-world and simulated sequences confirm the effectiveness and robustness of our

method.

The third methodological chapter focused on developing an accurate and computationally inexpensive localiza-

tion solution for MAVs in large-scale environments. We proposed a decoupled optimization- and filtering-based

sensor fusion technique, achieving high estimation accuracy and minimum system complexity. The results from

real-world indoor and outdoor settings demonstrated the method’s reliability and performance compared to other

techniques in the literature.

In the fourth methodological chapter, we introduced the DH-PTAM system for robust parallel tracking and map-

ping in dynamic environments using stereo images and event streams. By leveraging deep learning-based feature

extraction and description, DH-PTAM outperforms state-of-the-art visual-inertial SLAM methods in challenging sce-

narios. The system is scalable and accurate, providing an effective solution for 3D reconstruction and pose estima-

tion.

The fifthmethodological chapter explored new frontiers in the field of dense SLAM using Event cameras. We pre-

sented a novel end-to-end approach for an event-based dense SLAM system, achieving spatio-temporal hybridiza-

tion of the stereo events and point clouds using the efficient probabilistic approach Teaser++. The proof of concept

evaluation was performed on DSEC, a real-world public benchmark.

Overall, the contributions of this thesis have significantly advanced research in multi-modal heterogeneous sen-

sor fusion applied to autonomous systems navigating large-scale and dynamic environments. The proposed bench-

marks, calibration targets, and pre-processing layers offer reliable validation of SLAM systems. The proposed cali-

bration and SLAM algorithms enable more accurate and robust pose estimation, while the proposed sensor fusion
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techniques achieve high-accuracy localization with minimal system delay.

7.2 Perspectives
Building on the significant contributions of this thesis, there are several promising avenues for future research:

• Extending the proposed algorithms to support multiple vision sensors (stereo RGB, for instance) and multiple

IMUs would enhance the system’s capabilities and adaptability to different configurations and applications.

• Investigating the application of the proposed SLAMmethods to other autonomous systems, such as underwa-

ter vehicles and drones, to validate their performance and robustness in various contexts.

• Developing methods for efficient map management, map merging, and map updating in long-term SLAM ap-

plications, addressing challenges related to dynamic changes in the environment and the need for efficient

data storage and retrieval.

• Enhancing the real-time performance of the proposed algorithms by optimizing their computational efficiency,

possibly through hardware acceleration or parallelization techniques.

• Extending the algorithms’ online calibration and pose estimation capability to includemultiple IMUswithmulti-

ple vision sensors (RGB and depth), thereby generalizing the optimization problem and enablingmore complex

sensor configurations.

• Investigating the potential for incorporating semantic information into the proposed SLAM algorithms to en-

able richer scene understanding, better loop-closure detection, and improved robustness in highly dynamic

environments.

In conclusion, this Ph.D. thesis has made significant contributions to the field of SLAM and sensor fusion for

autonomous systems. The innovative solutions presented throughout the methodological chapters have shown

great promise in addressing the challenges of large-scale and dynamic environments. The perspectives outlined

above provide a road-map for future research, which will continue to advance the state-of-the-art in this exciting

and rapidly evolving field.
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A CARLA Synchronization Modes

We generate data by eight acquisition APIs with four sensor setups mentioned in Tab. 2.4 in two groups: 1. calibra-

tion and 2. SLAM. SLAM data acquisition APIs run on all CARLA maps with an autopilot for traffic-aligned navigation.

On the other hand, calibration APIs run on our modified CARLA-map with manual vehicle control to apply desired

motions to collect sequences with basic or complex motions. Both AprilGrid and Checkerboard targets are intro-

duced during acquisition. Half of the calibration sequences are collected using the AprilGrid 6× 6 and the other half

using the Checkerboard 7× 7.

In order to operate all sensors in the same acquisition API on multiple frequencies, we develop the following

procedure: the core data acquisition concept is that the CARLA world clock ticks with the highest frequency sensor

in the setup. After that, the system waits to listen to all sensors sending data at this tick, updates the weather condi-

tions, and waits for a new world tick. This allows the acquisition of all sensors data with its occurrence timestamps.

Then, one can apply any synchronization/calibration algorithms on the collected datasets as in [9, 11]. We apply this

methodology (see Program A.1) to all sensor setups except the RGB-D setup, which requires time-synchronized and

registered frames.

Program A.1: Normal Data Acquisition Mode.

data = [ ]

sensor_ l i s t = Create_Sensors_List ( )

Create_Senors_Listener_handler ( sensor _ l i s t )

Create_Weather_Control_class ( )

while ( CARLA_world_tick ( ) ) :

Update_world_weather ( )

for sensor in sensor_ l i s t :

sensor . l i s t en ( )

i f (RECORD_ON ( ) ) :
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data . append ( sensors . data ( ) )

On the contrary, the CARLA world ticks with the lowest frequency sensor in the LiDAR/RGB-D setup with CARLA

synchronous_mode acquisition (see Program A.2). All the spawned sensors in the setup are stacked in a queue

waiting for the world’s tick to start listening to the data. Although all sensors operate with their frequencies, the API

reads the measurements of all sensors simultaneously at the timestamp of that CARLA world tick.

Program A.2: Synchronous Data Acquisition Mode.

data = [ ]

sensors = Create_Sensors_List ( )

Create_Senors_Synchronization_Queue_class ( )

Create_Weather_Control_class ( )

while ( CARLA_world_tick ( ) ) :

Update_world_weather ( )

Sensors_Queue . t i c k ( sensors )

Sensors_Queue . l i s t en ( sensors )

i f (RECORD_ON ( ) ) :

data . append ( sensors . data ( ) )

The open source data acquisition APIs and all sequences can be accessed using the Github repository: https:

//github.com/AbanobSoliman/IBISCape.git

In the repository there is a complete manual on how to execute the APIs in all setups and options, including a

library developed for IBISCape dataset files format to be processed using Robotic Operating System (ROS) based

algorithms. Besides the Python based ROS tools, we attach the configuration files for all the assessed algorithms

along with the Kalibr calibration results.

https://github.com/AbanobSoliman/IBISCape.git
https://github.com/AbanobSoliman/IBISCape.git


B On Manifold IMU Online Calibration

This appendix presents a quantitative analysis of a sample undergoing experiments on manifold IMU online calibra-

tion. This analysis focuses on the smoothness of the 2D path plots generated using cumulative and non-cumulative

B-splines, as well as the discrete-time path generated using ground truth. The analysis considers the C1 and C2-

continuity conditions and evaluates the performance of the sample against these criteria. The results of this analy-

sis provide valuable insights into the effectiveness of manifold IMU online calibration and contribute to the ongoing

research in this field.

Table B.1: Sample size for the discrete-time and continuous-time poses, velocities & accelerations.

Data Size

Control Poses (discrete-time) 434

Quadratic B-spline (continuous-time) 23760

Cubic B-spline (continuous-time) 23705

Eff. & BL. (Accel./Vel.) Estimations 23705

IMU readings (Accel. & Gyro.) 21741

IMU Estimated Biases (bw, ba) 21741

Table B.2: Positions on B-spline trajectory analysis

Degree Type Domain Smoothness Time to Generate (sec.)

Quadratic

Cumulative R(3) SE(3) Medium Medium 0.0072 2.74785

Non-Cumulative R(3) Low 0.0046

Cubic

Cumulative R(3) SE(3) High High 0.0179 3.7248

Non-Cumulative R(3) Medium 0.0077

161



162 APPENDIX B. ON MANIFOLD IMU ONLINE CALIBRATION

Table B.3: Cumulative Orientations on B-spline trajectory analysis

Degree Domain Smoothness Time to Generate (sec.)

Quadratic SO(3) Low 2.5640

Quadratic SE(3) Medium 2.74785

Cubic SO(3) Medium 3.3083

Cubic SE(3) High 3.7248

The upcoming appendix subsections provide a detailed analysis of the performance of IMU bias estimation using

time derivative B-spline models. Specifically, we compare the accuracy of biases estimated using these models on

the ground truth values of the EuRoC non-linear estimator with those estimated using the Vicon system alone. Our

results show that the biases estimated using the B-spline models are highly accurate, providing a valuable initial

calibration step for a multi-modal framework of sensors.

Moreover, we demonstrate that our linear calibration framework has a low processing load and can generate

highly accurate values for biases, which can be used as a reliable initial guess in any non-linear estimator. We also

evaluate the performance of the B-spline time derivatives proposed by [93] from both qualitative (smoothness) and

quantitative (time for generation) perspectives. Our analysis shows that these time derivatives are faster and more

reliable than the baseline algorithm used in a multi-modal sensor calibration framework.

Overall, our findings demonstrate the effectiveness of the Efficient time derivative B-spline models by [93] in

IMU bias estimation and their potential for use in multi-modal sensor calibration.

Table B.4: IMU Online Calibration using the Baseline and Efficient Models of the Generative B-spline in SE(3).

V101 bax
bay

baz
bωx

bωy
bωz

V101 bax
bay

baz
bωx

bωy
bωz

Baseline -0.011469 0.198229 0.081414 -0.002119 0.023376 0.076494 Baseline -0.006148 0.543458 0.068384 -0.002177 0.021956 0.076343

Efficient -0.018737 0.200878 0.073887 -0.002171 0.021169 0.076489 Efficient -0.013231 0.547694 0.063963 -0.002219 0.020867 0.076295

Vicon -0.012492 0.547666 0.069073 -0.002229 0.020700 0.076350 Optimizer -0.012492 0.547666 0.069073 -0.002229 0.020700 0.076350

V102 bax
bay

baz
bωx

bωy
bωz

V102 bax
bay

baz
bωx

bωy
bωz

Baseline 0.025622 0.140923 0.010189 -0.000306 0.030212 0.075139 Baseline 0.017615 0.068431 0.058637 -0.000842 0.023458 0.075741

Efficient -0.009334 0.175685 0.030821 -0.002141 0.023146 0.075064 Efficient -0.013839 0.106027 0.095274 -0.002014 0.020023 0.075965

Vicon -0.013337 0.103464 0.093086 -0.002153 0.020744 0.075806 Optimizer -0.013337 0.103464 0.093086 -0.002153 0.020744 0.075806

V103 bax bay baz bωx bωy bωz V103 bax bay baz bωx bωy bωz

Baseline 0.066031 0.186584 -0.031513 -0.001386 0.027252 0.074564 Baseline 0.040577 0.168604 0.014779 -0.001504 0.024185 0.075915

Efficient -0.000540 0.200116 0.019334 -0.002320 0.022748 0.076470 Efficient -0.023387 0.182120 0.081518 -0.002402 0.021809 0.076622

Vicon -0.022808 0.177689 0.090354 -0.002341 0.021815 0.076602 Optimizer -0.022808 0.177689 0.090354 -0.002341 0.021815 0.076602
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B.1 Calibration results using EuRoC IMU and Vicon as ground truth
B.1.1 EuRoC Dataset: Vicon room 1 “easy”
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Figure B.1: Vicon room 1 Easy: B-spline comparison in R(3),SE(3)
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Figure B.2: Vicon room 1 Easy: Baseline/Efficient/GT comparison

The IMU online calibration experiment on the V101-Easy sequence shows high-precision accelerometer and gyro-

scope biases estimation based on the Efficient B-spline model compared to the baseline model using the Vicon

measured trajectory.
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B.1.2 EuRoC Dataset: Vicon room 1 “medium”
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Figure B.3: Vicon room 1 Medium: B-spline comparison in R(3),SE(3)
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Figure B.4: Vicon room 1 Medium: Baseline/Efficient/GT comparison

The IMU online calibration experiment on the V102-Medium sequence shows high-precision accelerometer and

gyroscope biases estimation based on the Efficient B-spline model compared to the baseline model using the Vicon

measured trajectory.
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B.1.3 EuRoC Dataset: Vicon room 1 “difficult”
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Figure B.5: Vicon room 1 Difficult: B-spline comparison in R(3),SE(3)
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Figure B.6: Vicon room 1 Difficult: Baseline/Efficient/GT comparison

The IMU online calibration experiment on the V103-Difficult sequence shows high-precision accelerometer and gy-

roscope biases estimation based on the Efficient B-spline model compared to the baseline model using the Vicon

measured trajectory.
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B.2 Calibration results using EuRoC IMU and Optimizer as ground truth
B.2.1 EuRoC Dataset: Vicon room 1 “easy”
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Figure B.7: Vicon room 1 Easy: B-spline comparison in R(3),SE(3)
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Figure B.8: Vicon room 1 Easy: Baseline/Efficient/GT comparison

The IMU online calibration experiment on the V101-Easy sequence shows high-precision accelerometer and gyro-

scope biases estimation based on the Efficient B-spline model compared to the baseline model using the EuRoC

non-linearly optimized trajectory.
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B.2.2 EuRoC Dataset: Vicon room 1 “medium”
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Figure B.9: Vicon room 1 Medium: B-spline comparison in R(3),SE(3)
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Figure B.10: Vicon room 1 Medium: Baseline/Efficient/GT comparison

The IMU online calibration experiment on the V102-Medium sequence shows high-precision accelerometer and

gyroscope biases estimation based on the EfficientB-splinemodel compared to the baselinemodel using the EuRoC

non-linearly optimized trajectory.
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B.2.3 EuRoC Dataset: Vicon room 1 “difficult”
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Figure B.11: Vicon room 1 Difficult: B-spline comparison in R(3),SE(3)
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Figure B.12: Vicon room 1 Difficult: Baseline/Efficient/GT comparison

The IMU online calibration experiment on the V103-Difficult sequence shows high-precision accelerometer and gy-

roscope biases estimation based on the Efficient B-spline model compared to the baseline model using the EuRoC

non-linearly optimized trajectory.
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C Qd Derivation Equations

The Qd in Equation (4.11) can be obtained after the consecutive matrix multiplications are performed using the

following formulas. For simplicity, let t = ∆t,σ = dσ,β = −R(q̂i
w):
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[(β ⌊â⌋×)(Id3 .

t4

8 −
t5

60 ⌊ω̂⌋× + t6

144 ⌊ω̂⌋
2
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