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3.1 Background   

During the last 900 million years, microorganisms belonging to the fungi kingdom have 

successfully evolved making of them, one of the largest groups within the actual world’s 

biodiversity. Although their impact may go unnoticed, they have critical repercussions in 

our daily live. In general, fungi are intrinsically involved in environmental 

transformation as the principal decomposers of organic material as well as they have an 

important symbiotic relationship with other species such as prokaryotes, plants, animals 

and humans (Galagan et al., 2005).  

In the last decades, the study of these microorganisms in mycology field has radically 

evolved since the development of DNA molecular techniques. These technologies carried 

out important advances in fungal knowledge and generated new arguments to better 

understand fungal adaptive mechanisms. Moreover, they also opened a new vision of 

biology study, taking in consideration the uncovered information of fungi’s world that is 

waiting to be deciphered. 

As an example, in the 90’s, the estimated number of fungal species was of the order of 

1.5 million (Hawksworth, 1997) while this number rapidly raised to 5.1 million whit the 

use of computer-aid sequence comparison (Blackwell, 2011).  

In toxicology field, and regarding to molds study, this number represents an alarming 

rate due to the potential raise of toxigenic strains which is today, one of the most current 

problems of food contamination. In fact, several species of molds that contaminate food 

can produce toxic secondary metabolites compromising food safety and by consequence, 

human and animal’s health.  

Taking advantage on DNA technologies and regarding the improvement of food safety, 

we estimate that the molecular study of these fungal contaminants can strategically 

contribute to understand the mechanisms underlying toxin production. This knowledge 

might be used to develop new strategies to target and control fungal toxicity.  

Based on this statement, we focused our research on the Aspergillus genus and more 

specifically to the Flavi section. Within this group, Aspergillus flavus is classified as one of 

the principal crop contaminants and moreover, as one of the main producers of the 

carcinogenic toxin Aflatoxin B1. In the present study, several aspects of this species will 

be presented with a deeper study on its genetic machinery to produce Aflatoxin B1, as 

well as natural strategies aiming the inhibition of its production. 
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3.2 Importance of molds/mycotoxins occurrence in food 

safety 

 

Molds are double-sided microorganisms that have led to a wide gamma of industrial 

benefits and parallely represent one of the principal problems in food contamination.  

Within their useful utilization in industry, some of them are essential elements for 

biotechnological production of enzymes, pigments and pharmaceuticals (De Jongh and 

Nielsen, 2007; Blanc et al., 1995). In food industrial processes, several of them also play 

an important role. As an example, species of the Aspergillus genus such as A. sojae, A. 

tamarii and A. oryzae are currently used in oriental food to make products like soy sauce 

or sake beverage. They are also used to produce enzymes such as pectin, esterases and 

lipases among others (Campbell-Platt and Cook, 1989; Pariza and Johnson, 2001). 

Reinforcing this idea, species belonging to the Penicillium genus such as P. roqueforti and 

P. camemberti are key factors in the manufacture of mold-ripened cheeses while P. 

nalgiovensis is also used for dry sausages preparation (Scott, 1981).  

Today, it is clear that the utilization of molds in food industry can represent a helpful 

tool as long as the nature of the strains allow their manipulation without representing a 

danger for human or animal’s health.  

Indeed, while some fungal species are useful for industrial processes other ones, known 

as toxigenic strains, can produce toxic secondary metabolites called mycotoxins.  

Several of these fungal strains are susceptible to colonize crops and feed products 

contaminating the matrix with their toxin and compromising food safety.  

Even if the final target of fungal contamination involves health’s issues, this problem 

starts at earlier agricultural steps. In fact, losses of food commodities contaminated with 

mycotoxins represent above the 25% of spoiled food in the world (FAO, 2003). Although 

the economic costs are impossible to be exactly estimated, the Food and Drug 

Administration (FDA) has evaluated that, for the United States, these losses can exceed 

the $900 million per year (CAST report, 2003).  

In addition to this, mycotoxin contamination is an affair that goes beyond economical 

issues since to date, their regulation in some countries is still until under consideration. 

Unfortunately, for some developing countries, allowed levels of mycotoxins remain 
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higher than others or in the most preoccupying situations, they are not controlled by 

stipulated regulations.  

Based on the above facts, it is understood that the study of fungal toxic metabolites is an 

important issue since it represents not only a sanitary and economic problem but also, 

an agricultural challenge for the 21st century.  

Considering the fact that human population is estimated to increase to 9.1 billion people 

in 2050, ensuring safe food supply is a main concern that must be taken in 

consideration. Under this perspective, research has the engagement to develop effective 

strategies to control fungal contamination and more important, mycotoxin production.   

 

3.2.1 Mycotoxin Definition  

 

The term “mycotoxin” is reserved to toxic chemical compounds produced by several 

fungal species that may colonize crops and contaminate them with toxins either in the 

field or after harvest (Turner et al., 2009).   

Mycotoxins are produced by filamentous microfungi that cause diseases in vertebrates 

when ingested, absorbed through skin or inhaled (Frisvad et al., 2007). Contrary to 

primary metabolites, mycotoxin production is not essential for fungal growth processes 

and thus, these compounds are considered as secondary metabolites (Drew and Demain, 

1977).  

During years, the production of mycotoxins was believed to occurs only at the idiophase 

fungal stage (Dutton, 1988). Nevertheless, recent discoveries cast doubt of when and 

why these compounds are produced by fungi. As recent propositions, they are highly 

supposed to serve as fungal defense skills giving a competitive advantage to the 

producer. It is also believed that they form part of the reproductive fungal processes or 

serve as interspecies competition (Thippeswamy et al., 2014; Vaishnav and Demain, 

2011; Magan and Aldred, 2007).  

Mycotoxins are low weight compounds (<1000 Daltons) that are mainly produced by the 

fungal genus Aspergillus, Penicillum, Fusarium, Alternaria and Claviceps.  

To date, more than 400 mycotoxins have been discovered but according to the exisiting 

knowledge, it is usually admitted that about 30 of them are of great importance for 

human and animal’s health. This consideration is based on their toxicity and/or 

prevalence in foods and feeds (Iram et al., 2016; AFSSA report, 2009).  
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Mycotoxins are very diverse in terms of chemical structure and their toxicity has to be 

considered as a separate special issue for each of them. Indeed, toxicity of mycotoxins 

not only depends on their chemical nature but also on the metabolic pathway that they 

can induce after ingestion by human or animals. In fact, after their ingestion, these 

compounds can also be transformed in vivo into new toxic metabolites due to the 

metabolisation process (Benkerroum, 2016). 

 

3.2.2 Bookmark of mycotoxin’s effects in human’s health   

 

Undoubtedly, the presence of opportunistic molds dates to millions years ago. Back in 

the history, there are early references of fungal contaminants signs and thus, effects of 

mycotoxins in human existence. It might be “the noxious pustule in the ear of grain” that 

was described on Assyrian cuneiform tablets or the “grasses that cause abortion of 

pregnant womans” described in the sacred Parsees books. It is believed that this 

observation came from the contaminated rye, which led to civilizations such as Greek 

and Roman to stop its consumption (Lapinskas, 2007). It was not until the first sounded 

mycotoxicosis case in humans, called at the time “St. Anthony’s fire” and caused by ergot 

alkaloids, that we have a documented register of mycotoxin effects in humans. This 

phenomenon was in fact, the result of the reintroduction of rye in Europe which caused 

outbreaks of ergotism and attired the attention of middle-age artists who capture in 

their paints, persons suffering of this disease (Figure 1). Since then, an important list of 

human accidents caused by several mycotoxins has been identified and registered.  
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Figure 1: Ergotism Art Illustration; A: “Victims of ergotism” by Peter Bruegel and B:“Saint Anthony 

Tormented by Demons” by Matthias Grünewald.   

 

For instance, in 1891 “yellow rice disease” was identified in Japan and was 

demonstrated to be caused by citrinin consumption, a mycotoxin produced by some 

Penicillium species. Another outbreak was also reported in the ancient USSR between 

1930 and 1940 with a disease called aleukia that was due to the trichothecenes of 

Fusarium species (Peraica et al., 1999).  

Latter, in the 90’s decades, another mycotoxicosis case occurred due to the 

contamination of food with fumonisins that affected Indian people (Bhat et al., 1997).  

 

Concerning the incidents caused by the Aspergillus species, during the 70’s, two 

outbreaks of contaminated maize with Aflatoxins were reported in India. The first one 

resulted in the intoxication of 994 persons where 97 of them died and the second one 

involved 400 people where more than 100 persons did not survived (Krishnamachari, 

1975; Peraica et al., 1999).  

More recently, in 2004, another case involving Aflatoxins occurred in Kenya resulting in 

the intoxication of 317 persons among which 125 deceased. It has to be noted that 

Kenya is, unfortunately, one of the most impacted countries due to mycotoxins and that 

several cases of intoxication have been already registered  (Lewis et al., 2005; Accinelli 

et al.2014; Perrone et al., 2014).  

 

Within the last years in Europe and during the period of February to March 2013, 

countries as Serbia, Croatia and Romania also reported milk’s contamination with AFM1, 

which is an hepatic metabolite from Aflatoxin B1 (De Saeger et al., 2016).  
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As demonstrated, mycotoxin occurrence and their intoxication cases have been reported 

during the last decades causing irreparable human loses. This reinforce the importance 

of surveying mycotoxin’s occurrence in food and feed commodities in order to prevent 

the mycotoxin exposure at long-term as well as fatal incidents.  

 

3.2.3 Mycotoxin occurrence in Food  

 

According to this, several research organisms survey the ocurrence of the major 

mycotoxins in the world.  

In fact, these types of contaminants can be present in a wide gamma of products such as 

fruits, vegetables, milk, grains, coffee, etc. Nevertheless, within the products designated 

to human consumption, one of the most contaminated matrixes concern cereals and 

especially maize and wheat which represent the stapple food for many countries.  

Within the mycotoxins’ classification, 7 major groups are regularly under surveillance. 

These groups are listed in Table 1 compiling their corresponding producing species, the 

most frequently contaminated products and their deleterious effects.  
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Table 1: Major mycotoxins and corresponding producing species, most frequent source and effects 

(AFSSA, 2009; CAST, 2003; Krska and Crews, 2008; Bbosa, 2013). 

 

Mycotoxin Type  Genus Mainly Producers Contaminated 
products 

Effects 

 
 
 
 
 

Aflatoxins 

 
 
 
 
 

B1, B2, G1, G2, M1  

 
 
 
 
 

Aspergillus 

 
Aspergillus flavus, 
A. parasiticus 
A. nomius for AFB1  
and Aspergillii 
from the Flavi 
section from 
Aflatoxin in 
general 

Maize, wheat, 
sorghum, rice, 
soybean, pearl 
millet, 
sunflower,tree 
nuts, almonds, 
pistachio, 
coconut, milk 
cotton, dried 
fruits, spices, 
peppers  

 
 
 
Hepatoxic 
Carcinonogenic 
Immunotoxic 
Teratogenic  

 

 

 

 

Trichothecenes 

 

 

 

 

Deoxynivalenol 

 

 

 

 

 

Fusarium 

F. graminearum, 
F. culmorum, 
F. sporotrichoides, 
F. langsethiae, 
F. tricinictum, 
F. poae, 
F. solani, 
F. equiseti 

 
 
 
Cereals: wheat, 
maize, rice and 
sorghum 

 
 
 
Immunotoxic 
Digestive 
problems  
Haematopoietic 
 

 
 

T-2 Toxin and HT-2 

F. tricinctum, 
F. langsthiae, 
F. sporotrichioides, 
F. poae 
F. equiseti 

Cereals: wheat, 
maize, rice, soy, 
beans and 
barley  
 

Genotoxic  
Immunotoxic  
Reprotoxic 
Neurotoxic  

 

Fumonisins 

 

B1, B2, B3 

 

Fusarium 

 
F. verticillioides, 
F. proliferatum 

 
Cereals: maize, 
rice and 
sorghum 
 

 
Carcinogenic 
Neurotoxic  
 

 

 

Ochratoxin 

 

 

A  

 
Penicillium 

 
P. verrucosum  

 

 
Cereals, Cacao, 
coffee, wine, 
grape juice and 
spices 
 

 
Nephrotoxic 
Immunotoxic  
Teratogenic  
  

Aspergillus 
 
A. ochraceus,  
A. carbonarius  
 

 

Zearalenone 

 

F-2 Toxin  

 

Fusarium 

 
F. graminearum,  
F. culmorum,  
F. crookwellense  

Cereals: maize, 
sorghum, soy, 
wheat, rice and 
oat 

 
Reprotoxic 
Immunotoxic  
 

 

Citrinin 

  

Penicillum 

 
Penicilium 
citrinum 
 

Stored grains  Nephrotoxic 
 

 

Patulin 

 Penicillum P. expansum Apples and 
pears as well as 
derivate juices 

Neurotoxic 
Genotoxic  
Cytotoxic  

Aspergillus A. clavatus 

Byssochlamys B. nivea 

 

Ergot Alkaloids 

  

Claviceps 

C. purpurea, 
C. paspali, 
C. Africana, 
C. fusiformis 

 
Rye, wheat and 
triticale 

Neurotoxic 
Digestive problems 
Vasoconstriction 
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In addition to this, it is thus understood that the detection and quantification of these 

major mycotoxins has to be updated within the years in order to measure their 

occurrence in food commodities.  

For that, several surveys have been performed and Figure 2 shows the results of one of 

the latest studies published in 2015.  

 

 

 

Figure 2: Global distribution of the principal mycotoxins reported by Biomin, (2015). 

 
Afla, Aflatoxins; ZEN, Zearalenone; DON, Deoxynivalenol; T-2, T-2 Toxin, FUM, Fumonisins and OTA, 
Ochratoxins.  
Low risk indicates that average levels of single mycotoxin presence of a given zone do not exceed minimum 
risk thresholds for livestock. The average level does not preclude specific, severe instances of mycotoxin 
contamination in farm or fields locally, nor does it account for the negative impacts of multiple mycotoxins 
presence. Moderate risk indicates the presence of one to two major mycotoxins at levels known to cause harm 
in animals. High risk indicates the presence of three to four major mycotoxins at levels known to cause harm 
in animals. Severe risk indicates the presence of five or more major mycotoxins at levels known to cause harm 
in animals.  

 

Between the years 2004 and 2011, another important worldwide study was performed 

by Streit et al., (2013) which determined the presence of Aflatoxins (AF), Zearalenone 

(ZEN), Deoxynivalenol (DON), Fumonisins (FUM) and Ochratoxins (OTA) by analyzing 

17,316 feed samples.  
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Results showed that among the positive samples, 72% of them were contaminated with 

at least one mycotoxin and the remaining 38% were found to be multi-contaminated 

with several mycotoxins.   

During the 8 years of the study, researchers advised that in general, a stable percentage 

of occurrences were observed for all mycotoxins with the exception of Aflatoxins. In fact, 

a raised in Aflatoxin’s detection was observed between the years 2005 to 2009 in some 

tropical countries.  

This fact constitutes an alarming signal since within the major mycotoxins, Aflatoxins 

are one of the most dangerous groups due to their effect on human’s and animal’s health 

(WHO, 1998).  

In fact, Aflatoxins are also known to be potent mutagenic, teratogenic, hepatotoxic, 

immunosuppressive as well as they inhibit several metabolic systems (IARC Monograph, 

1993; Minto and Townsend, 1997).  

Within the Aflatoxins family, Aflatoxin B1 (AFB1) is classified in Group 1 by the 

International Agency for Research on Cancer (IARC) since demonstrated as 

“Carcinogenic” for humans and animals.  

In consequence, to date Aflatoxins and specially AFB1, are subject of many researches 

since they are considered as a major health problem. According to this, a especial 

attention will given to this group in the next sections.  

 

3.3 Aflatoxins: A major public health issue 

 

3.3.1 Discovery   

 

Aflatoxins were discovered above 50 years ago due to a famous acute animal poisoning 

initially named “Turkey X disease” that occurred in England (Blound, 1961). This case 

led to the intoxication and death of above 100,000 turkey poults that ingested Brazilian 

groundnuts cake (Arachis hypogaea). Although turkey’s death was mainly attributed to 

Aflatoxins presence, further studies suggested that the clinical observations in animals 

also included the effect of cyclopiazonic acid, another mycotoxin potentially produced by 

the same fungal species (Cole, 1986; Bradburn et al., 1994). This hypothesis was 

strengthen with the isolation from contaminated feed of an Aspergillus flavus strain that 
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effectively produces both toxic secondary metabolites (Amare and Keller, 2014). Since 

then, these toxins were subsequently named Aflatoxins: A (for Aspergillus) fla (for 

flavus) toxins.  

Turkey X disease was certainly the most sounded case of intoxication in poultry but 

within the same time-frame, other cases of animal poisoning were also reported (Asplin 

and Carnaghan, 1961).  

In fact, the term mycotoxin was stablished just after the “Turkey X disease” case marking 

the start of the “mycotoxin gold rush era” between the years 1960 and 1975 (Maggon et 

al., 1977).  

The mycotoxin term included a number of previously known fungal toxins (e.g., ergot 

alkaloids), other compounds that were originally considered as antibiotics (e.g., patulin) 

and a number of new toxic secondary metabolites (Bennett, 2003). Additionally, in the 

60’s decade, one of the first experiments with aflatoxin-contaminated meals was 

performed in ducks and rapidly reported as cause of liver-tumors (Carnaghan, 1965). 

This report led to an important number of experiments that were performed in order to 

elucidate the effects of Aflatoxins in vertebrates.  

 

3.3.2 Aflatoxins chemical properties  

 

In general, Aflatoxins are difuranocoumarin derivatives formed by two furans and a 

coumarin ring. They are very stable in long-term storage and heat-resistant molecules 

with denaturation temperatures overpassing the 200°C which make their elimination a 

real challenge for food industry (e.g. denaturation temperatures for Aflatoxin B1: 268-

269°C) (Hayes and Forsythe, 1998; I.A.R.C. Monograph, 2002). They are highly 

liposoluble compounds and thus, soluble in moderately polar solvent such as 

chloroform, methanol and dimethyl sulfoxide while they are only slightly soluble in 

water (10–20 mg/L) (Jalili, 2015). 

To date, even if nearly of 20 aflatoxins have been described (e.g., P1, Q1 ,B2a, G2a, D1, 

B3), only 4 of them are produced by fungi and correspond to: Aflatoxin B1 (AFB1), 

Aflatoxin B2 (AFB2), Aflatoxin G1  (AFG1) and Aflatoxin G2 (AFG2) (Ashiq et al., 2014). 

The abbreviations of these major Aflatoxins are described by the AF prefix indicating 

their Aflatoxin’s nature, the numbers 1 and 2 indicating major and minor compounds 
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and B or G due to their natural blue or green fluorescence under ultraviolet light (Dalvi, 

1986).  

In terms of structure, B-types Aflatoxins have a cyclopentenone ring that is replaced by a 

lactone in G-series (Figure 3).  

 

  

 

Figure 3: Structures of the 4 mould-produced aflatoxins 
 

 

3.3.3 The genus Aspergillus  

 

Aflatoxins B1, B2, G1 and G2 are produced by a group of filamentous fungi classified in 

the Aspergillus genus and mainly produced by several species belonging to the Flavi 

section.  

 

The Aspergillus name was firstly established in 1729 by the priest and biologist Pier 

Micheli to design molds with conidial heads and stalks which literally reminded to an 

aspergillum: a liturgical device used to sprinkle holy water (Varga and Samson, 2008). 

The opportunistic molds that produce Aflatoxins can grow on minimal media containing 

only nitrate and sucrose as only source of substrate, but they can also grow on complex 

media such as cereals, oil crops, beans and peas among others (Frisvad et al., 2007). 
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The classification of Aspergillus species is taxonomically organized into sections and 

subgenera according to their morphology and teleomorph relationships. 

In general, fungi classification and sub-divisions has been subject of debate within the 

last 200 years and they can vary depending on authors. In order to classify the Aflatoxin 

producers, we now present a simplified classification of the Aspergillus species based on 

the above works: Hawksworth, Sutton and Ainsworth, (1983); Griffin, (1994); Geiser et 

al., (2008); Galagan et al., (2005) and O’Brien et al., (2005) and represented in Figure 4.  

 

 

 

 

 

Figure 4: Taxonomic classification of the Aflatoxin producers. 
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3.3.4 The Aflatoxin B1 producers  

 

Within the Aspergillus genus, at least 20 species belonging mostly to the Flavi, Nidulantes 

and Ochraceorosei sections are capable to produce different types of Aflatoxins and they 

are listed in Table 2 (Varga et al., 2009; Soares et al., 2012).  

 

Table 2: Aflatoxin producers belonging to the Flavi, Nidulantes and Ochraceorosei sections. Adapted from 

Varga, (2009; 2011) and Soares et al., (2012).  

 

 

 

In general, the ideal temperature for Aflatoxins production is of 29-30°C and their 

production significantly decrease at temperatures below of 25°C as well as it is inhibited 

at 37 °C or above. In terms of fungal development, water activity (Aw) below of 0.85 

decrease fungal growth and sporulation while those factors are completely inhibited at 

Aw values of 0.75 (Bhatnagar et al., 2006). 

 

AFB1 AFB2 AFG1 AFG2

A. arachidicola 

A. bombycis 

A. flavus 

A. minisclerotigenes 

A. nomius

A. novoparsiticus 

A. parasiticus

A. parvisclerotigenus 

A. pseudocaelatus

A. pseudonomius

A. pseudotamarii

A. togoensis

A. transmontanensis

A. mottae

A. sergii

A. ochraceoroseus

A. rambellii

A. astellatus 

A. olivicola 

A. venezeulensis  

Aspergillus  section Ochraceorosei 

Aspergillus  section Nidulantes

Aspergillus  section Flavi 
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In crops, Aflatoxin B1 production is mainly produced by a co-occurrence of Aspergillus 

flavus (A. flavus) and Aspergillus parasiticus (A. parasiticus) strains (Payne and Brown, 

1998; Baranyi et al., 2015). In order to better show the characteristics of both species, 

their aspects are shown in Figures 5 and 6.  

 

In terms of morphology, the colony appearance of Aspergillus flavus is floccose in the 

center with white mycelium (Figure 5). Macro and microscopic characteristics include 

species with conidial heads in shades of yellow-green with biserate columnar or 

radiates, globose vesicle, rough conidiophores with globose conidia and reddish-brown 

to black spherical sclerotia (Smith et al., 2008b).  

 

For species that produce sclerotia, a classification depending on their size is divided in: L 

strains (average sclerotia >400 µm) or S strains (average sclerotia <400 µm) (Balter, 

2006; Perrone et al., 2014).    

 

Otherwise, colonies of Aspergillus parasiticus strain (Figure 6) are dark green and more 

floccose that those of Aspergillus flavus in MEA medium. Their conidiophores are 

colorless, variable in size (300-700 µm) and their wall is smooth rough in the distal part. 

The vesicles are globular (20-35 µm) and phialides are mostly uniseriate (>90%). 

Conidies are very echinulate (3.5-5.5 pm) (Samson et al., 2010). 

 

 

 
Figure 5: Macroscopic and microscopic aspect of a classical Aspergillus flavus strain cultured in Malt 

Extract Agar (MEA). A: Macroscopic aspect; B: Binocular perspective of basal mycelium with sclerotias; C: 

Aerial mycelium heads; D: Conidiophore with biseriate sub-globose vesicle (Photos S. Bailly). 
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Figure 6: Macroscopic and microscopic aspect of Aspergillus parasiticus strain, cultured on Malt Extract 

Agar (MEA). A: macroscopic aspect; B: Binocular perspective of basal mycelium with sclerotias; C: 

Microscopic image of a classic conidiophore with uniseriate globose vesicle (Photos S. Bailly).  

 

The development of the latter species is only mildly influenced by nutritional 

composition of substrates and they are potentially able to grow in many foods and feeds. 

Temperature and water activity of the substrates represent the principal parameters 

influencing the development and toxigenesis of Aspergillii of the Flavi section. 

Such physiological requirements explain why Aflatoxins are the major contaminants in 

tropical and subtropical regions where mean climatic conditions are often very 

favorable for both, fungal development and toxigenesis. 

In addition to this, developing countries that present these climate conditions have a 

weak or miss in mycotoxins regulations leading to permissible limits of Aflatoxins 

consumption (Benkerroum, 2016).  

In addition to this, and as it will be described in the next section, climate conditions are 

now changing which represent an important problem regarding mycotoxin’s 

contamination.   

 

3.3.5 Effect of climate change in Aflatoxin’s occurrence 

 

In the decades to come, one of the factors that will likely have a great effect on 

mycotoxin contamination is global climate change. Indeed, most of the aflatoxigenic 

fungal species can be easily developed in tropical and sub-tropical regions exposing 

human populations to related health hazard.  

A B C 



 
 

17 
 

It is the case in many developing countries belonging to Latin America, Africa and Asia 

where above 500 million of people are chronically exposed to exceeded normative levels 

of aflatoxins (Moy and Miller, 2016).  

Due to climate change, this problematic could be extended to other regions considered 

as free until now, as is the case of Europe (Baranyi et al., 2015).  

Taking in consideration the expected raise of +2°C hypothesized for the European region 

as well as changes in CO2 levels and higher levels of drought in the next years, 

preventive strategies have to be adapted to cope aflatoxin’s contamination (Botana and 

Sainz, 2015; Tollefson, 2015).  

Indeed, with this panoramic it is considered that among all mycotoxins, the most likely 

to increase in the near future will be the Aflatoxins (Wu and Mitchell, 2016).  

As a demostration of this fact and mentioned in the 3.2.3 section, Aflatoxins’ 

concentrations rose in several countries between the years 2005 and 2009. This 

increment was principally observed in tropical areas but it was also related to more 

frequent climatic aberrations in other regions (Streit et al., 2013). For instance, in the 

North of Italy, a recent outbreak of Aflatoxin B1 contamination in maize was already 

registered (Perrone et al., 2014).  

In order to prevent this contamination, several precautions have been already taken and 

a recent study using computer-modeling simulation to predict AFB1’s contamination in 

European maize and wheat crops was performed. In the latter study, an estimation for 

the next 100 years considering two climate scenarios of +2°C and +5°C was taken in 

consideration.  

Results showed that in both conditions, the most concerned areas that will be highly 

exposed to Aflatoxin contamination are: Eastern Europe, Balkan Peninsula and the 

Mediterranean regions (Battilani et al., 2016).   

Taking in consideration AFB1’s occurrence in temperate countries, as well as its 

potential to increase in other ones, this mycotoxin deserves a special attention as one of 

the most preoccupying issues.  

In order to better control its incidence it is thus necessary to understand how this fungal 

metabolite is synthesized and which fungal mechanisms are involved in this process.  

From now, fungal genetic mechanisms involved in AFB1 production as well as their 

interaction with the corresponding enzymatic cascade leading to toxin production will 

be presented.   
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3.3.6 Aflatoxin B1 toxicity 

 

- Aflatoxins regulations  

 

Because of AFB1’s toxicity, more than 100 countries regulate the levels of Aflatoxins in 

the food and feed supplies (Van Egmond et al., 2007). In general, levels for food intended 

for human vary from 2-30 µg of Aflatoxin/kg of food depending on matrix, region and 

country. For instance, the limit imposed by the US Food and Drug Administration (FDA) 

stipulate a 20 ppb limit (parts per billion in µg/kg equivalent) for total Aflatoxin amount 

on food or feed substrate and this amount is a common limit for many commodities in 

most of the countries (Yu, 2012; Zain, 2011).  

Otherwise, the European Commission is stricter regarding to Aflatoxin’s control 

according to the Directive 200/32/EC (Mai, 2002) and Commission (EC) No. 1881/2006 

(December, 2006).  

In this regulation and regarding AFB1, it is stipulated a maximal concentration between 

2-5 ppb for cereals; 2, 5 or 8 ppb (depending on transformation processes) for 

groundnuts and dried fruits; 5 ppb for spices and 0.1 ppb for food commodities and 

cereals intended to children.  

 

- Aflatoxin toxicity  

 

Aflatoxin toxicity depends on the amount of toxin ingested and on the duration of the 

exposure. In addition to this, gender, age, tolerance and health conditions of 

animals/humans are also important factors that have to be taken in consideration.  

In fact, Aflatoxin B1 toxicity can vary depending on animal susceptibility; while sheep, 

rats and dogs are highly sensible, monkey, chicken, mice and humans are more resistant 

(Bbosa et al., 2013).  

 

In humans, AFB1 can lead to numerous diseases depending on doses and exposure time. 

Taking in consideration these parameters, two major types of toxicity can be 

distinguished: 
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1) Acute  

2) Chronic which includes: Teratogenic, Carcinogenic and Mutagenic effects.  

 

1. - Acute toxicity or Aflatoxicosis:  

 

Acute toxic accidents in which high levels of AFB1 are ingested cause intoxication 

symptoms such as jaundice, vomiting, abdominal pain and liver failure with documented 

fatality rates as high as 40% (Centers for Disease Control and Prevention, 2004).  

For instance, in the episode of Aflatoxicosis occurred in India in the 70’s where at least 

100 persons died, the consumption of Aflatoxins in a single day was calculated to be 

among 2-6 mg. Since then, the lethal dose for adult humans was stipulated between 10-

20 mg (Bennett, 2003).  

Nowadays, aflatoxicosis is rarely observed because of the sanitary regulations and 

preventive methods to avoid food contamination. Nevertheless, these kinds of 

intoxication accidents still occur and some of them are related to the fact that even if 

food commodities are contaminated, they represent the only source of available food 

which raises the risk of intoxication resulting in human death.  

 

2. - Chronic Toxicity:  

 

This type of toxicity appears in case of prolonged exposure to low or moderate amounts 

of AFB1. In humans, such exposure can be revealed using biological markers such as 

blood, urine and milk samples in which the presence of Aflatoxin metabolites (AFM1), 

AFB1-albumin or other derivate products can be detected (Williams et al., 2004). A 

chronic exposure to AFB1 can lead to the suppression of humoral and cell immunity, 

malabsorption of nutrients that in consequence lead to nutritional deficiencies such as 

malnutrition, stunted growth, kwashiorkor and marasmus diseases in children, 

infertility in men and interference with various endocrine glands responsible for the 

synthesis of various hormones (Stack and Carlson, 2003; Bbosa et al., 2013).  
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-Teratogenic effect:  

 

AFB1 can transgress the placenta barrier and thus, contaminate the fetus in utero 

associated with congenital malformations. Strong evidence indicates that transplacental 

transfer of AFB1 in humans may also increase the risk of childhood cancer (Wangikar et 

al., 2007).  

-Mutagenic and Carcinogenic effects:  

 

Aflatoxin B1 is among the existing mycotoxins, the most potent pre-carcinogenic 

molecule. Once this toxin is inside the human body, the molecule is transformed in vivo 

and can be highly associated with an increase incidence in Hepatocellular Carcinoma 

(HCC). In addition to this, HCC occurrence is highly associated with the Hepatitis B virus 

since both are synergists in humans. Patients that are seropositive for Hepatitis B and 

that are highly exposed to Aflatoxin B1 are 10-fold more susceptible to develop HCC 

(Smela et al., 2001).  

 

The toxic in vivo process is triggered by consumption of contaminated products.  

After entering to the body, the AFB1 is absorbed across the intestine membranes, 

reaches blood circulation and arrives to the liver system.  

Once in the liver, AFB1 is metabolized by the human cytochrome P-450 system 

(principally by CYP3A4 and CYP1A2) at the 8,9-vinyl bond to produce an unstable 

intermediate compound identified as AFB1-exo-8,9-epoxide (Wu et al., 2013).   

The transformation of AFB1 into a exo-8,9-epoxide occurs by an structural change that is 

highlighted with orange cadres in Figure 7 (Wan and Hsieh, 1980).  
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Figure 7: Aflatoxin B1 structure and its transformation to exo-8,9-epoxide 

 

 

Once the AFB1-exo-8,9-epoxide is formed, it can be covalently bounded to different 

cellular components:  

 

- to proteins in order to form AFB1-albumin and other protein adducts (Bbosa et al., 

2013; Bedard and Massey, 2006; Wu and Santella, 2012).  

 

- to DNA in order to form AFB1-guanine adducts: 

The formation of guanine adducts can lead to HCC in humans. In fact, these compounds 

can bind to DNA specifically to the sequence of the p53 gene encoding for a tumor-

suppressor factor (Hsu et al., 1991). The DNA binding occurs in the codon 249 where an 

induction of G→T mutations occurs and that is the principal marker in patients that 

developed HCC due to AFB1 (Bressac et al., 1991). The graphical process is described in 

Figure 8.    
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Figure 8:  Biotransformation of AFB1 molecule in vivo. 

 

In addition to this, AFB1 can also be metabolized into a hydroxylated metabolite known 

as AFM1. The M denomination comes from the fact that this compound can be excreted 

in mammals’ fluids such as Milk but it can also be detected in urine, bile and human 

feces. As a member of Aflatoxins’ group, AFM1 presents similarities with the other 

Aflatoxins such as a high heat resistance, making of this molecule resistant to 

pasteurization processes and other food treatments (Vidal et al., 2013).   

 

To conclude, AFB1 toxicity depends of intake conditions where the amounts and 

exposure time will determine the impact of damage in human or animals’ health.  
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3.4 Aflatoxin B1 Biosynthetic Pathway  

 

3.4.1 Description of the Aflatoxin B1 Gene Cluster 

 

Genetic information of fungal secondary metabolites is usually (but not always) 

contained in clusters that can span in average more than 10,000 bases (Brakhage, 2012). 

A cluster is a group of genes (2 or more) that are in charge to synthesize one product, 

and for the present purpose, secondary metabolites such as AFB1.  

In Aspergillus genus, the DNA information is contained in a total of 8 chromosomes 

(Robinow and Caten, 1969). Within this organization, the enzymatic Aflatoxins’ pathway 

is genetically took in charge by the 54th gene cluster localized at 80 kb away from 

telomere of the chromosome 3 (Georgianna and Payne, 2009). This cluster of 75 kB 

includes 30 genes and its activation is principally regulated by two principal genes 

named aflR and aflS (Figure 9) (Yu, 2012; Chang, 2003).  

 

 

 

Figure 9: Aflatoxin gene cluster localization and organization adapted from (Amaike and Keller, 2011; 

Chang et al., 2004; Ehrlich, 2009). 

 

The Aflatoxin gene cluster has been widely studied in several Aspergillus strains such as 

Aspergillus flavus and Aspergillus parasiticus since these fungal strains are the mainly 

producers of AFB1 (Jiujiang et al., 1995; Yu et al., 2004a). Nevertheless, this cluster is 

also highly studied in the sterigmatocystin producer strain A. nidulans, due to the fact 
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that this species shares 25 homologous genes of the AFB1 cluster and also to the fact 

that sterigmatocystin is the latter metabolite precursor in the AFB1’s biosynthetic 

pathway (Ehrlich, 2009).  

In fact, the homology of the clustered genes between A. parasiticus and A. flavus is about 

90–99%, while between the A. parasiticus and A. nidulans is of 55–75% (Yu et al., 

2000b). In terms of involved genes, there exists a difference between biosynthesis of 

Aflatoxins B-type from the G-type. This difference consists due to the fact that three 

within the AFB1 genes participate only for G-type aflatoxins’ formation and they are 

namely aflU, aflF and nadA (Ehrlich et al., 2004b; Ehrlich et al., 2008). The first one 

corresponds to a cytochrome P450 monooxygenase, the second one to an aryl alcohol 

dehydrogenase and the third one is a reductase. Due to the fact that a special attention 

will be only given to the AFB1 production, these three genes will be not discussed.  

 

Since the performance of DNA technologies, the elucidation of the role that each gene 

has in AFB1 production has been mostly performed by the use of molecular techniques 

such as Gene cloning, Chromosome walking and Expressed Sequence Tags (EST).  

The development of those techniques allowed an important number of experiments that 

elucidated the predicted roles of genes belonging to the AFB1 cluster and that 

participate in the enzymatic cascade that is responsible for toxin synthesis.  

 

3.4.2 Enzymatic Cascade Pathway of Aflatoxin B1 

 

AFB1 is produced by a polyketide pathway proposed by Birch in 1976 and nowadays, at 

least 27 enzymatic reactions have been demonstrated to be involved in this process.  

It is considered that, among the natural products, Aflatoxin’s biosynthesis is one of the 

longer and complex process due to the quantity of oxidative rearrangements (Minto and 

Townsend, 1997). Within this pathway there are three critical oxygen elements that 

were characterized by Dutton (1988):  

 

i) Monooxygenases: in charge to incorporate one oxygen atom to another atom being 

reduced by a Nicotinamide Adenine Dinucleotide Phosphate (NADPH). 

ii) Dioxygenases: often involved in ring-cleavage reactions.  

iii) Baeyer-Villiger reactions: in charge to insert oxygen atoms between two carbons.  
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Within the same enzymatic pathway, the cytochromes P450 also play an important role. 

These enzymes are absolutely required to make the backbone of ring structures by 

attaching functional groups (methyl, acetyl, etc.) and thus, inducing oxidative reactions 

leading to secondary metabolites biosynthesis (Nelson, 2011). It is important to note 

that the aflatoxin gene cluster contains the highest number of cytochromes P450 (at 

least seven) among the pathways that are in charge of produced secondary metabolites 

(Roze et al., 2015). 

Figure 10 shows a synthesized schema of the pathways leading to the four aflatoxins 

produced by fungi (AFB1; AFB2; AFG1 and AFG2) where some of the intermediate 

metabolites leading to final toxin productions are presented.  
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Figure 10: Synthesized schema of Aflatoxins’ Biosynthesis 

 

Abbreviations:  FAS, Fatty acid synthase; PKS, Polyketide synthase; NOR, Norsolorinic acid; AVN, 

Averantin; HAVN, 5’-hydroxy-averantin; OAVN, 5’-Oxoaverantin; AVF, averufin; VHA, Versiconal 

Hemiacetal acetate; VAL, Versiconal; VERB, Versicolorin B; VERA, Versicolorin A, DMST, 

Demethylsterigmatocystin; DHDMST, Dihydrodemethyl-sterigmatocystin; ST, Sterigmatocystin; DHST, 

Dihydrosterigmatocystin; OMST, O-methylsterigmatocystin; DHOMST, Dihydro-O-methylsterigmatocystin; 

AFB1, Aflatoxin B1; AFG1, Aflatoxin G1; AFB2, Aflatoxin B2; AFG2, Aflatoxin G2.  
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Since only the AFB1 pathway will be described, the different steps involved in its 

biosynthesis as well as the corresponding genes will be further described in detail. 

In order to follow the continuity of the different steps of the pathway, figure 11 shows 

some of the stables metabolites that lead in chronological order to the AFB1 production.  

 

 

 

 
 

Figure 11:  Stable metabolites of Aflatoxin B1 production. 

 

 

Concerning the genetic information that will be presented, it has to be noted that the 

names of the genes coding for the AFB1 production have changed with the time and in 

order to identify them properly, latest names are firstly described while ancient names 

are in brackets. In addition to this, genes are indicated in italic letters while their 

corresponding synthesized proteins are not.   

 

3.4.2.1 Conversion of Acetate into Norsolorinic Acid      

 

Aflatoxins are polyketide-derivate that initially require the formation of hexanoate units 

(from acetyl-CoA and malonyl-CoA) to start an enzymatic cascade reaction (Roze et al., 

2013).  

First steps in the pathway lead to the transformation from the starter unit hexanoate 

into the first stable metabolite: Norsolorinic acid (NOR). These reactions are principally 

encoded by four genes. The first two encoding for fatty acids synthases (aflA, aflB), the 

third one corresponding to a polyketide synthase (aflC) and the last one (hypC) coding 

for an anthrone oxidase (Ehrlich, 2009; Payne and Brown, 1998; Yu et al., 2004b).  
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The latter genes will be further described in detail:  

- aflA (fas-2) and aflB (fas-1) are one of the largest genes in the aflatoxin pathway and 

were formerly named “fas” since they code for fatty acid synthases. Their corresponding 

synthesized proteins are α and β sub-units that are principally in charge for the 

transformation of the hexanoate unit into a polyketide structure (Yu et al., 2004; Roze et 

al., 2013). These genes were characterized by Watanabe and Townsend (2002) 

demonstrating that their corresponding enzymes are absolutely necessary to synthesize 

Norsolorinic Acid (NOR).  

 

- aflC (pksA) is a gene coding for the synthesis of polyketide skeletons. In general, 

secondary metabolites that are acetate-derivatives (as it is the case of Aflatoxin B1) 

present a chain elongation that is in charge of these polyketases (e.g. from 2ManonylCoA 

to 7 ManonylCoA).  

In the fungal strain A. parasiticus, this enzyme has conserved regions with other fungal 

PKSs (e.g. A. nidulans) including β-ketoacyl synthase, acyltransferase, acyl carrier-

protein and thioesterase domains (Chang et al., 1995a). Disruption of aflC in A. 

parasiticus, resulted in the accumulation of Norsolorinic Acid with absence of AFB1 

production and others aflatoxin intermediates compounds (Feng and Leonard, 1995).  

This observation led to know that this polyketide synthase, as well as both genes coding 

for fatty acids, are key elements in the first steps of the AFB1 production.  

Interestingly, it seems that aflC is an evolved gene of fatty acid synthases generated by 

gene duplication (Bennett and Christensen, 1983). Additionally to this, this enzyme is 

also involved in further transformations of the polyketide structure into Norsoloric Acid 

Anthrone (NAA) (Roze et al., 2013).   

 

- hypC (hypB1) is a gene located in the intergenic region between aflC and aflD and it has 

numerous homologous within the Aspergillus strains. This 17-kDa enzyme was 

demonstrated to be involved in the catalytic conversion of NAA into NOR (Ehrlich et al., 

2010a). Based on EST technique, hypC is expressed only in Aflatoxin conductive 

conditions. Disruption of the hypC gene in A. parasiticus resulted in an accumulation of 

Norsolorinic Acid and in lower levels of Aflatoxins (Ehrlich, 2009; Yu, 2012).  
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Figure 12: First steps of the Aflatoxin enzymatic cascade coded by aflA, aflB, aflC and hypC adapted from 

Ehrlich (2009).  

 

 

3.4.2.2 Conversion of Norsolorinic Acid into Averantin  

 

In this step of the pathway, Norsolorinic acid is further transformed into Averantin 

(AVN) and this transformation is governed by the aflD gene (Dutton, 1988). For years, 

the implication of two other genes (aflE and aflF) was associated in this step. 

Nevertheless, new evidence of their implication in other steps within the AFB1 

biosynthesis changed this idea and these genes will be described latter.  

 

- aflD (nor-1) is a norsolorinic acid ketoreductase needed for the conversion of the 1'-

keto group in NOR to the 1'-hydroxyl group of AVN (Zhou and Linz, 1999). It was firstly 

cloned by Papa (1982) in an A. flavus strain and to date, it is known that null nor-1 

mutants still synthesize lower amounts of aflatoxins but accumulate higher amounts of 

NOR (Yabe et al., 1991).  

Several factors can modulate aflD expression. Indeed, its transcription can be stimulated 

in the presence of glucose and recent studies also hypothesized that a new protein (p32) 

could be intrinsically involved in the Nor-1 promoter region and contribute to its 
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regulation (Roze et al., 2004). Localization of the Nor-1 protein using fluorescent probes, 

demonstrated that this protein mainly occurs in the cytoplasm and vacuoles (Hong and 

Linz, 2009). 

 

3.4.2.3 Conversion of Averantin into Averufin 

 

In the 90’s, Yabe et al.(1991) identified in an A. parasiticus strain, two additional 

enzymatic steps involved in the conversion of Averantin into Averufin (AVF). It firstly 

involved the intervention of a monooxygenase to convert AVN into 5’hydroxyaverantin 

(HAVN) and secondly, of a dehydrogenase to transforms HAVN into Averufin.  

Even if the transformation between HAVN into AVF was firstly proposed to be in one 

step, Sakuno et al., (2003) discovered that whitin this process there exists an 

intermediate compound identified as 5’-oxoaverantin (OAVN). With this study not only 

the transformation of OAVN into AVF was discovered, but also a “novel enzyme” in 

charge of this process was reported.  

In parallel, the genes in charge of the above enzymatic processes were identified and 

nowadays are known as: aflG, aflH and aflK.   

 

- aflG (avnA) encodes a cytochrome P-450 monooxygenase that catalyzes the 

hydroxylation of the polyketide anthraquinone averantin, into 5’hydroxyaverantin (Yu 

et al., 1997; Cary et al., 2000b; Yu et al., 2004a). This enzyme belongs to a superfamily of 

seven P-450 monooxygenases intervening in the AF pathway (Roze et al., 2015).  

 

- aflH (adhA) previously called adhA since it codes for an alcohol dehydrogenase, is 

needed for the conversion of HAVN to OAVN. Disruption of this gene resulted in a strain 

that accumulates HAVN thus, explaining it essential presence to further steps in the 

aflatoxin pathway (Chang et al., 2000d). Even if almost all genes belonging to AF cluster 

are homologous within the Aspergillus species that produce AFB1, this is the exception 

since the aflH gene in A. flavus and the adhA gene in A. parasiticus, do not share 

significant homology at either DNA or amino acid levels (Yu, 2012).  

 

- aflK (vbs) which is mainly associated to the Versiconal to Versicolorin B conversion 

(further steps in the biosynthetic pathway) was identified as the “novel enzyme” 
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required to transform OAVN into AVF that was reported by Sakuno et al., (2003). This 

research group not only elucidated the presence of an intermediate between HAVN and 

AVF but also, two years later, identified this enzyme as the cyclase coded by the vbs gene 

(aflK). Until now, this report is the first to demonstrate that the same enzyme can 

catalyze two different reactions within the AFB1 pathway. They hypothesized that this 

strange phenomenon could be due to an evolution of the AFB1 gene cluster that 

previously had 2 copies for the aflK gene (Sakuno et al., 2005).  

 

 

 

Figure 13:  Conversion of Averantin into Averufin coded by aflG, aflH, and aflK and adapted from Yabe et 

al., 1991 and Sakuno et al., (2005).  

 

3.4.2.4 Conversion from Averufin into Versiconal Hemiacetal 
Acetate    

 

Transition of Averufin into Versiconal hemiacetal acetate (VHA) is due to the 

intervention of three genes: aflI, aflV and aflW. The first two ones, being P450 

cytochromes, are likely involved in the ring-closure step of hydroxyversicolorone (HVN) 

while aflW coding for a monooxygenase transforms HVN to VHA (Wen et al., 2005; Yu, 

2012).  

 

- aflI (avfA) is a gene encoding for an enzyme that is involved in the transformation of 

AVF into versiconal hemiacetal acetate and that is present in both, A.  parasiticus and A. 

flavus (Yu et al., 2000b). Deletion of the aflI gene led to accumulation of Averufin (AVF) 

and it is mainly supposed that this enzyme catalyzes the ring-closure step during 
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formation of hydroxyversicolorone (HVN). Nevertheless, the precise role for AflI in the 

oxidation of AVF has never been exactly determined (Ehrlich, 2009).  

 

- aflV (cypX) and aflW (moxY) are two genes that have been mostly characterized by 

Wen et al., (2005) and Yu et al., (2004a).  aflV (monooxygenase) has been confirmed to 

catalyze the reaction from AVF to HVN while aflW was also confirmed to catalyzed the 

transformation from HVN to VHA by a Baeyer-Villiger reaction. In A. parasiticus both 

genes were separately deleted resulting in a lack of AFB1 production.  

 

 

 

 

Figure 14: Conversion of Averufin into Versiconal Hemiacetal Acetate adapted from Ehlrich, (2009) and 

Wen et al., (2005).   

 

 

3.4.2.5 Conversion from Versiconal Hemiacetal Acetate into 
Versicolorin B  

  

Transformation from VHA into Versiconal (VAL) is in charge of the gene aflJ and then, 

aflK intervenes to transform this latter into Versicolorin B (VERB) (Yu et al., 2004b).  

 

- aflJ (estA) encodes for an esterase that was firstly purified in A. parasiticus. Its deletion 

results in the accumulation of two compounds: VHA  and Versicolorin A (Hsieh et al., 

1989; Chang et al., 2004a). Several esterase activities are associated with the conversion 

of VHA into other intermediates, but only aflI belongs to the aflatoxin gene cluster. Its 

involvement in the conversion of VHA to VAL was finally characterized by Yabe et al., 
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(2003) and  Chang et al., (2004a) in A. parasiticus, allowing the elucidation of the 

chemical reactions involved in this step.  

With this characterization, not only this part of the AFB1 pathway was elucidated, but 

this research group also reported the reversible transformation of VHA and VAL into 

Versiconol Acetate (VOAc) and Versiconol (VOH) respectively and demonstrated that 

aflJ catalyzes both reactions during AFB1 biosynthesis.   

 

- aflK (vbs) is a gene encoding for a cyclase intervening during the transformation of 

VAL into VERB but also, as already mentioned, for previous steps in the pathway to 

transform OAVN into AVF. 

Concerning its intervention in this part of the pathway, this enzyme represents a critical 

step since it is in charge of the closure of the bisfuran ring of aflatoxin that is required to 

bind to DNA and that give to Aflatoxins their mutagenic effect (Yu et al., 2004b).  

 

 

 

Figure 15: Conversion of Versiconal Hemiacetal Acetate into Versicolorin B adapted from Yabe et al., 

(2003), Chang et al., (2004a) and Yu et al., (2004b). Green cadre represents the closure of the bisfuran-

ring present in aflatoxin structures.  
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3.4.2.6 Conversion from Versicolorin B into 
Demethylsterigmatocystin  

 

 

The transition from VERB into Versicolorin A (VERA) is coded by aflL while 

transformation of VERA into Demethylsterigmatocystin (DMST) is coded by 4 other  

genes: aflM, aflN, aflY and aflX (Cary et al., 2006).  

 

- aflL (verB) codes for a cytochrome P450 monooxygenase/desaturase which converts 

VERB into VERA. The main characteristic of this enzyme is that it represents the first 

and principal branch leading to the formation to B or G-types aflatoxins (Figure 10) 

(Yabe et al., 1991). The aflL gene is present in both, A. parasiticus and A. flavus gene 

clusters (Yu, 2012).  

- aflM (ver-1) coding for an enzyme during the middle steps of the aflatoxin biosynthetic 

pathway, was predicted to encode a ketoreductase involved in the conversion of VERA 

into DMST. Its involvement in aflatoxin pathway was firstly identified and cloned in the 

A. parasiticus genome (Liang et al., 1996, Skory et al., 1992; Trail et al., 1995; Mahanti et 

al., 1996) and its chemical characterization was widely described by Henry and 

Townsend (2005). Its homologous gene in A. nidulans was also identified as stcU by 

Keller et al., (1994). Recent studies demonstrated that this gene contains CAMP-

Response Element sites (CRE) that are also present in genes coding for fungal oxidative 

stress response (Hong et al., 2013). 

- aflN (verA) codes for a cytochrome P450-type monooxygenase and although its exact 

function is yet to be determined, it seems to work in parallel with aflM for the 

transformation of VERA. Interestingly, even if they seem to work together, no significant 

sequence homology between both at either DNA or amino acid levels was identified (Yu, 

et al., 2004b). In 2005, Ehrlich et al., suggested that this protein could be involved in the 

passage of VERA into an hypothetical intermediate and in 2006, Cary et al., confirmed 

the same observation.   

This gene was also identified as essential for sterigmatocystin (ST) production in A. 

nidulans since its disruption resulted in the inability to convert VERA into ST (Keller et 

al., 1994).  
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- aflY (hypA) is one of the AFB1 genes that has been recently described. Its involvement 

in aflatoxin enzymatic pathway was characterized in A. parasiticus and it seems most 

likely to intervene between two hypothetical intermediates structures among the 

transformation of VERA into DMST. In addition, this transformation seems to be 

catalyzed by a Baeyer-Villiger reaction (Cary et al., 2006; Ehrlich et al., 2005).  

Disrupted strains for this gene accumulated VERA, being the principal reason to include 

this gene within the VERB-DMST group. To date, no aflY gene homolog has been already 

identified in the A. nidulans gene cluster (Yu et al., 2004b).  

 

- aflX (ordB) was characterized by Cary et al., (2006). It encodes for an oxido-reductase 

most likely involved in a ring-opening rearrangement of the epoxide produced by the 

VERA. Nevertheless, further studies demonstrated that this gene catalyzes the oxidative 

decarboxylation and ring-closure of the Baeyer-Villiger intermediate that results from 

AflY-catalyzed oxidation. The disruption of aflX in Aspergillus flavus resulted in 

accumulation of VERA and reduced amounts of aflatoxin (Ehrlich, 2009). 
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Figure 16: Schematic representation of the enzymatic transformation from Versicolorin B into 

Demethylsterigmatocystin including the corresponding hypothetical structures and genes involved. This 

schema is a compilation from information reported by Ehrlich, (2009), Henry and Townsend (2005), Cary 

et al., (2006) and  Ehrlich et al., (2005).  

 

 

3.4.2.7 Conversion from Demethylsterigmatocystin into O-
methylsterigmatocystin  

 
 

Final steps of the enzymatic AFB1 pathway corresponding from DMST into O-

methylsterigmatocystin (OMST) are principally governed by two genes: aflO and aflP. 

Sterigmatocystin is, as previously mentioned, the late stable intermediate of AFB1 but it 

is also the final synthesized metabolite of Aspergillus nidulans.   

 

- aflO (omtB) encoding for an O-methyltransferase, is involved in the conversion of 

DMST to Sterigmatocystin. This gene has been described in A. parasiticus, A. flavus and A. 

nidulans (stcP). It was also reported that in A. parasiticus, this gene is only expressed in 
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aflatoxin-conducive conditions (Yu et al., 2000). The expression of aflO was analyzed in 

A. flavus and A. parasiticus strains, demonstrating a relationship between higher mRNA 

levels and increased AFB1 amounts (Jamali et al., 2013; Scherm et al., 2005)  

 

- aflP (omtA) is the principal gene in charge of transforming ST into OMST. It 

corresponds to one of the enzymes identified in A. parasiticus as O-methyltransferases 

(Yabe et al., 1989). This gene was initially named omt-1, then omtA and finally renamed 

aflP (Yu et al., 1993). The corresponding homologue of aflP was also identified few years 

later in A. flavus (Yu et al., 1995). aflP is also only expressed in aflatoxin permissive 

conditions (Scherm et al., 2005; Yu et al., 2000b) and it was hypothesized that aflP could 

play different roles than in the AF’s enzymatic cascade and it is also suspected to be 

involved in fungal conidiation (Lee et al., 2002a).  

 
 

 
Figure 17: Conversion of Demethylsterigmatocystin into O-methylsterigmatocystin by the genes aflO and 

aflP. 

 

3.4.2.8 Conversion from O-methylsterigmatocystin into AFB1  
 

 

Finally, conversion of OMST into AFB1 is in charge of the genes: aflQ, hypB, aflE and 

hypE. Within this final transformation, the exact intervention of aflQ and hypB has been 

identified while for the other genes only some partial information is known.  

 

- aflQ (ordA) is a gene adjacent to the aflP gene in the AFB1 cluster and codes for a P-450 

monooxygenase. It was identified by chromosome walking and cloned in A. parasiticus 

demostrating that this gene is involved in the conversion of OMST into AFB1 by an 

oxidation of the A-ring of OMST (Yu et al., 1998; Ehrlich et al., 2008). This reaction led to 

an AFB1 precursor named 11-hydroxyOMST (HOMST) (Ehrlich, 2009; Zeng et al., 2011). 

It was recently suggested that aflQ expression can be used to identify the aflatoxigenic A. 
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flavus strains since this gene (in experiments with contaminated pistachios) is not 

expressed when the amounts of AFB1 are lower than 30 ng/mg (Jamali et al., 2013). The 

corresponding protein of OrdA can be also called CYP64 (Roze et al., 2015).  

 

- hypB (hypB2): is a gene coding for an oxidase involved in the second step of the 

transformation from 11’ Hydroxy-O-methylsterigmatocystin (HOMST) into a 370 Da 7- 

ring lactone (later precursor of AFB1). The transformation of this latter lactone into 

another unknown intermediate compound could be done by hydrolytic enzymes 

encoded by genes that do not form part of the AF cluster (Ehrlich, 2009). Analysis of 

hypB sequenced by EST demonstrated that this gene is a homolog of the hypC gene (Yu 

and Ehrlich, 2011). Disruption of the hypB gene resulted in decreased amounts of 

Aflatoxins (Ehrlich et al., 2009).  

- aflE (norA) is a homologous gene of aflD in the aflatoxin cluster encoding for a short 

chain aryl alcohol dehydrogenase (Yu, 2012). First characterizations of aflE in A. 

parasiticus suggested that this gene, along with aflF, was involved in the transformation 

from NOR into AVN. At the time, this idea seemed to explain that the strains with an aflD 

deletion still produce low amounts of aflatoxins since it was believed that AflE and AflF 

could complement Nor-1’s function (Cary et al., 1996). However, further studies 

performed by Ehrlich et al., (2009) in A. flavus, demonstrated that aflE is instead mainly 

involved in the two final steps of the AFB1 formation (even if the exact position has not 

been defined). Experiments performed with null aflE strains not only demonstrated its 

involvement in later steps of the AFB1 pathway, but also allowed the discovery of a 

minor toxin produced in A. flavus. In fact, aflE deletion resulted in reduced amounts of 

AFB1 but in increased quantities of a new identified metabolite: deoxyAFB1.  

 

- hypE (aflLa) was identified in Aspergillus flavus by the EST technique. Disruption of 

this gene led to the accumulation of deoxyAFB1 (Holmes, 2008). Since the HypE protein 

conserves a catalytic ether domain, it is believed that it works together with another 

enzyme in the enzymatic pathway. This idea comes from the fact that in bacteria, 

proteins with such domain are known to work in parallel with cytochrome P450 

oxidases. Since AflV and AflQ are P-450 cytochromes they were proposed to interact 

with HypE (Ehrlich, 2009).  

 



 
 

39 
 

 

 

Figure 18: Last steps of AFB1 formation adapted from (Ehrlich et al., 2008; Ehrlich, 2009 and Zeng et al., 

2011).  

 

As demonstrated, AFB1 production is a long and complex cascade that involves, most of 

the times, oxygenated steps to its formation. Table 3 summarizes this process by 

presenting the identified genes involved, its ancient and recent name and the 

corresponding enzymes function that participates in each of the AFB1 steps 

transformations. 
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Table 3: Recapitulative steps and involved genes of the AFB1 enzymatic cascade biosynthesis. 

 

  

Gene Ancient name Enzyme Involved step in AF enzymatic cascade 
aflA fas-2 fatty acid synthase α manolyl-coA --> Norsoloric acid anthrone

aflB fas-1 fatty acid synthase β manolyl-coA --> Norsoloric acid anthrone

aflC pksA polyketide synthase manolyl-coA --> Norsoloric acid anthrone

hypC hypB1 anthrone oxidase Norsoloric acid anthrone --> Norsolorinic Acid 

aflD nor-1 ketoreductase Norsolorinic Acid  --> Averantin 

aflG avnA cytochrome P-450 monooxygenase Averantin --> 5'hydroxy-averantin

aflH adhA alcohol dehydrogenase 5'hydroxy-averantin --> 5'oxoaverantin

aflK vbs cyclase  5'oxoaverantin --> Averufin

aflI avfA cytochrome P-450 monooxygenase Averufin--> Hydroversicolorone ?? 

aflV cypX cytochrome P-450 monooxygenase Averufin--> Hydroversicolorone 

aflW moxY  monooxygenase Hydroversicolorone --> Versiconal Hemiacetal Acetate

Versiconal Hemiacetal Acetate --> Versiconal 

aflJ estA Esterase enzyme Versiconal Hemiacetal Acetate --> Versiconol Acetate

Versiconol --> Versiconal 

aflK vbs cyclase Versiconal --> Versicolorin B 

aflL verB cytochrome P-450 monooxygenase Versicolorin B --> Versicolorin A 

aflM ver-1 ketoreductase enzyme  Versicolorin A --> Demethylsterigmatocystin   (unnassigned specific localisation)

aflN verA cytochrome P-450 monooxygenase Versicolorin A --> Demethylsterigmatocystin   (unnassigned specific localisation)

aflY hypA monooxygenase Versicolorin A --> Demethylsterigmatocystin   (unnassigned specific localisation)

aflX ordB oxidoreductase Latter intermediate of Versicolorin A --> Demethylsterigmatocystin 

aflO omtB O -methyltransferase B  Demethylsterigmatocystin --> Sterigmatocystin

aflP omtA O -methyltransferase A Sterigmatocystin --> O -methylsterigmatocystin

aflQ ordA cytochrome P-450 monooxygenase  O -methylsterigmatocystin --> 11'Hydroxy-O -methylsterigmatocystin 

hypB hypB2 oxidase 11'Hydroxy-O-methylsterigmatocystin --> Compound 370 Da Lactone

aflE norA aryl alcohol dehydrogenase Final steps of AFB1 formation (unnassigned specific localisation) 

hypE aflLa oxidase Intermediate compound--> Aflatoxin B1
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3.4.2.9 Other genes that are presumably not involved in 
aflatoxin enzymatic cascade but that are present in 
AFB1 cluster   

 

Within the AFB1 gene cluster there exist other 2 genes for which their role is still 

unknown.  

 

- aflT which is a gene coding for a fungal transporter belonging to the major facilitator 

superfamily (MFS). This gene was widely characterized by Chang et al., (2004b) who 

demonstrated that even if this gene resides in the AFB1 gene cluster, its role is not 

linked to aflatoxin biosynthesis since its deletion in A. parasiticus does not affect final 

amounts of aflatoxin compared to control. These results were in agreement with the fact 

that aflT is neither regulated by principal activator of the AFB1 pathway AflR nor by its 

co-activator AflS.  

Results also suggested that aflT could be instead regulated by another external 

regulatory factor, Fad-A, belonging to the G-protein signaling pathway. In the same 

study, experiments using the yeast Saccharomyces cerevisiae led authors to suggest that 

aflT could not be implicated in aflatoxin’s transportation. Nevertheless, Chanda et al., 

(2010) suggested that AflT could resides in the aflatoxisomes which are vesicles 

implicated in exocytose of aflatoxins. Taken together the exact role of aflT is today not 

clear and has to be elucidated.  

- hypD (aflNa) codes for a 129 Da integral membrane binding protein but its role also 

remains unclear. Ehrlich (2009) characterized this protein in A. parasiticus by EST 

demonstrating that it conserves a DUF6 domain, which is common in several fungi and 

thus, it probably has an important role in fungi.  

They also deleted this gene resulting in increased sporulated cultures with reduced 

levels of AFB1 production. Taking into consideration that no official transporter for 

aflatoxin was identified, HypD has been suggested as to be an AF efflux pump.  

 

As shown in this section, AFB1 is the result of a coordinated enzymatic cascade where at 

least 20 enzymatic steps coded by genes belonging to the AFB1 gene cluster are 

involved. Whether or not they participate in AFB1 production, most of the genes 
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belonging to this pathway are regulated by two major internal regulators of the gene 

cluster aflR and aflS that will be further described.  

 

 

3.4.3 Regulation of Aflatoxin B1 synthesis  

 

Principal Regulators of AFB1 cluster  

 

- The AflR transcription factor  

 

In A. flavus, A. parasiticus and A. nidulans, the corresponding aflatoxin and 

sterigmatocystin biosynthetic pathways are mainly regulated by the aflR gene (Jiujiang 

et al., 1995; Price et al., 2006; Yu and Keller, 2005).  

In A. flavus species, the AflR protein binds to at least 17 of the residing genes in the AF 

gene cluster which results in the activation of the enzymatic cascade leading to the 

different AFs production (Figure 19B) (Ehrlich, 2009).  

AflR is also classified as a zinc cluster Zn(II)2Cys6 transcription factor of the Gal4-type 

family (Shimizu et al., 2003). 

This kind of transcription factors have a specific structure that is attributed only to fungi 

kingdom. They are capable to bind to DNA by using a DNA-binding domain (DBD) which 

is one of the most important elements in transcriptional and translational processes. In 

fact, this regulation process occurs in the nucleus; once there, the zinc finger proteins of 

AflR bind to DNA and it is believed that this binding occurs as a homodimer manner as it 

is shown in Figure 19 (A) (MacPherson et al., 2006; Woloshuk et al., 1994).  
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Figure 19: Representation of the AflR binding to DNA, its functional domains and regulated genes 

belonging to the aflatoxin cluster. A) Structure of a DNA-Binding Domain (DBD) Zn(II)2Cys6 regulator of 

the Gal4p family binding as homodimer. The yellow spheres represent both atoms of zinc. B) At the top, 

functional domains of the zinc cluster proteins. DBD domain is divided into three regions that correspond 

to DNA specific binding (Zinc finger); protein-DNA binding (Linker) and protein-protein interaction 

(Dimerization). In the bottom, aflatoxin gene cluster; the dotted red lines represent the binding sites of 

AflR in the above pathway. This figure is an adaptation from the original works reported by Ehrlich, 

(2009) and MacPherson et al., (2006).  

 

In particular, AflR was demonstrated to preferentially recognize the palindromic motif 

5’-TCGN5CGA-3’. Nevertheless, it also binds to others sequences such as 5‘-

TTAGGCCTAA-3’ as well as in a lesser extend to the 5’-TCGCAGCCCGG-3’ motif.  

The AflR binding motifs were found to be located relatively close from the translation 

starting site from –80 to –600 bp with the majority of them at  –100 to –200 bp (Ehrlich 

et al., 1999b; Payne and Brown, 1998; Yu and Ehrlich, 2011).  

 

Interestingly, AflR conserves within its own promoter the palindrome motif 5’-

TTAGGCCTAA-3’ suggesting that AflR, apart from being the principal modulator of the 

AF gene cluster, it could also be auto-regulated (Price et al., 2006; Chang et al., 1995b).  

In addition to this, aflR can act either as positive or negative regulator within the AF 

gene cluster. For instance, in A. flavus, an over-expression of aflR can up-regulate AF 

genes resulting in a 50-times increased production of aflatoxin (Flaherty and Payne, 

1997). Similarly, its deletion has a negative effect on aflatoxin pathway genes (Cary et al., 

2000a).  

Finally, it has been demonstrated that even if aflR is the principal activator of the AFB1 

gene cluster, it can interacts with another gene named aflS which attends as an enhancer 

element of this regulatory process (Chang, 2003).  
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- The AflS transcription enhancer  

 

aflS (previously named aflJ) was firstly characterized by Meyers et al., (1998) and was 

demonstrated to be necessary for aflatoxin regulation. In A. parasiticus, this gene 

encodes a 438-amino acid protein and no homology to the existent enzymatic or 

regulatory domains has been yet found (Yu, 2012). The aflS gene is adjacent to aflR in 

the AFB1 biosynthetic cluster and it was demonstrated that aflS is also regulated by aflR 

Ehrlich, (2009).  

Both genes share a 737-bp intergenic region from their translational starting sites. 

Nevertheless, it was demonstrated that aflS interacts with aflR but not with the 

biosynthetic enzymes demonstrating the co-activate function of aflS (Chang et al., 2003; 

Du et al., 2007).  

Disruption of aflS in A. parasiticus resulted in mutants that lost the ability to synthesize 

AF intermediates accompanied with a 5- to 20-fold reduction of some AFB1 genes 

expression such as aflC, aflD, aflM and aflP (Chang et al., 2003).  

Otherwise in A. flavus, its over-expression resulted in higher levels of AFB1 production 

with a 4-to 5-fold increased levels of aflC and aflD (Du et al., 2007).  

Even if to date it is unclear how aflS increases the transcription levels of the genes 

involved in AFB1 pathway, it has been demonstrated that a dimer between both 

corresponding proteins is formed in order to activate the AF gene cluster. This 

phenomenon was proposed by Du et al., (2007) indicating that this dimer-complex could 

recognize specific sites in the promoter regions of aflC and aflD (genes coding for early 

steps in the AFB1 enzymatic pathway) increasing their transcription and thus, AFB1 

production.  

 

Additional information on this protein-dimer formation was recently proposed. Taking 

in consideration that when both genes (aflR and aflS) are normally expressed, a protein 

complex made of 4 AflS for 1 AflR is formed allowing the correct binding process to the 

promoter regions of the aflatoxin pathway genes (Du et al., 2007; Kong et al., 2014).The 

graphical illustration of these complex is shown in Figure 20.  

Even if a great advance in the characterization of aflS has been made, to date, the exact 

mechanism of action by which this gene modulates transcription of AFB1 pathway is still 

under investigation (Yu, 2012).  
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Figure 20: Hypothetical AflR-AflS protein-complex simulating a relation of 4 proteins of AflS for 1 protein 

of AflR.  

 

In general, it is clear that the activation of the aflatoxin gene cluster is mainly governed 

by aflR and aflS. Nevertheless, AFB1’s production also depends of other complex 

mechanisms that involve response to environmental stimuli in which a great number of 

genetic elements are involved. These factors are known as external regulatory factors 

and in order to have a general idea of this external system, some of them will be 

described in the next section.  

 

3.4.4 External Regulatory Factors  

 

External regulatory factors can be classified in this work as the genes that do not belong 

to the AFB1 gene cluster but that can have a direct or indirect relation with the cluster 

and thus with AFB1 production.  

There exists a lot of information demonstrating that AFB1 production can be modulated 

by different external regulatory factors. For instance, the source of carbon, the light 

exposure or the different responses to oxidative stress are some of the external factors 

that can influence AFB1 production.  

To date, the interaction between the genes coding for external regulators and the genes 

belonging to AFB1 cluster is not completely understood. In addition to this, to date a 

recapitulation of all these gene connections has not been already reported.  

 

AflS protein (x4) 

AflR protein (x1)  
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Based on bibliographic data, one of the principal aims of the present work was to link 

together those different external regulatory factors with the AFB1 gene cluster and by 

consequence, with their possible relation with toxin production.  

For this purpose, a gene map linking all these interactions was constructed and is 

represented on Figure 21.  

It has to be noted that the constructed gene map, containing more than 80 genes, is a 

hypothetical illustration that was constructed using both, confirmed interactions with 

AFB1 gene cluster but also with other genes that could be indirectly related to that 

cluster.  
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Figure 21: Network of genes intervening directly or indirectly with AFB1 gene cluster and their possible relationships. 
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For practical explanations, all the above genes were classified in 7 main groups and in 

different sub-groups corresponding to: cellular signalization, reproductive development, 

global transcription factors, oxidative stress, natural antisense transcriptions, 

environmental transcription factors and relation with other secondary metabolites. All 

these groups and their corresponding sub-groups are represented in Figure 22.  

 

  

 

 

Figure 22: External Regulatory factors that influence AFB1 production grouped as a function of their 

demonstrated physiological effects 

 

 

In order to detail the influence that each of these gene groups have over the AFB1 

production, recapitulative tables will be further presented. Within these tables, a brief 

justification of the inclusion of each of the genes in the map gene network will be 

presented. Since the interactions between genes can be confusing, Figure 21 can help as 

graphical support.  
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3.4.4.1 Environmental Transcription factors 

 

During the production of secondary metabolites including AFB1, one of the most 

influencing factors are the stimuli by environmental factors such as carbon and nitrogen 

sources as well as pH and light changes (Deepika et al., 2015; Yu and Keller, 2005).  

 

- Carbon source utilization  

 

It has been demonstrated during several decades that the availability and type of carbon 

source can modulate the amount of secondary metabolites production including AFB1 

production. Within the utilization of carbon source, one of the most important elements 

for these processes resides in the sugar cluster as well as in the CreA-type proteins.  

 

-Sugar cluster  

 

Table 4:  Genes involved in sugar utilization  

 

Sugar cluster 

Genes  Function 

hxtA 

glcA 

sugR 

orf 

Hexose transporter  

Glucosidase 

Sugar regulator 

-- 

Relation between genes or corresponding proteins: 

These four genes are involved in sugar utilization and grouped in a 10 kB cluster 

located next to the AF gene cluster (Bhatnagar et al., 2006). 

Relation with AF production 

- Sugars are preferred carbohydrates for AFB1 production since they are important in 
generating polyketide starter units (e.g. Acetyl-CoA) (Georgianna et al., 2010; Davis, 
1968; Maggio-Hall et al., 2005; Nowicki and Foolad, 2012). 
 
-Simple sugars (e.g. sucrose, glucose, fructose, sorbitol) that are used as principal 
carbon source have been correlated with higher production of AFs, which is not the 
case of complex sugars (Bhatnagar et al., 2006; Calvo et al., 2002; Georgianna and 
Payne, 2009). 
- Even if glucose is a preferred source for aflatoxin production, this toxin can be also 
produced using other carbon sources (e.g. ribose, xylose, or glycerol) (Woloshuk and 
Shim, 2013).  
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-The presence of glucose is linked with increased levels of aflR expression, suggesting 
that glucose can influence AFB1 production in an indirect manner (Roze et al., 2004).   
 

Impact of sugar elements in a AF/ST producer model 
Aspergillus flavus 
-Within carbon sources, several glucose-derivatives (e.g. D-glucal) are non-
metabolized by fungi resulting in AFB1 inhibition (Zhang et al., 2014a). 

  
Aspergillus parasiticus  
-In aflatoxin conductive media, the hxtA gene is concurred with the AF genes which 
could potentially explain the induction of AFB1 synthesis by simple sugars (Yu, 
2000a).  

 

-Carbon Catabolic Repression  

In parallel, when a most favorable source of carbon is detected in the environment, 

other fungal mechanisms are activated in parallel in order to repress the catabolic 

activity for the utilization of other carbon sources. This process is known as Carbon 

Catabolic Repression (CCR) and is a strategic mechanism used by Aspergilli to preserve 

energy (Deepika et al., 2015). It is mainly governed by the transcription factor (TF) CreA 

as well as genes interacting with this latter.  

Table 5: Genes involved in carbon catabolic repression  

 

Carbon catabolic repression  

Genes Function 

creA 

creB 

creC 

alcR 

aldA 

alcA 

Cys2His2 Zinc finger transcription repressor  

Cys2His2 Zinc finger ubiquitin processing protease 

Cys2His2 Zinc finger ubiquitin processing protease 

Regulon specific transcription factor  

Aldehyde dehydrogenase 

Alcohol dehydrogenase 

Relation between genes or corresponding proteins: 

-creA represses gene expression of aclR which is a positive regulatory factor of genes 
involved in ethanol pathway: aldA and alcA (Ruijter and Visser, 1997; Shroff et al., 
1996).  
-CreB-CreC form a protein complex that is essential for CreA function and stability 
(Ries et al., 2016). 

Relation with AF production 

 
-CreA is one of the major repressors factors of CCR (Ichinose et al., 2014).  
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-It has been suggested that a competitive mode of action occurs between AlcR and 
CreA for carbon utilization (Brown et al., 2013).  
 
-Gene expression in AFB1 gene cluster is regulated either positively or negatively by 
CreA (Dowzer and Kelly, 1989; Yu and Keller, 2005).  
 
-Within the AFB1 cluster, several genes have CreA-sites near to their promoter regions 
(e.g. aflC) (Ehrlich et al., 2002; Georgianna and Payne, 2009).  
 
-CreA along with LaeA have been recently demonstrated to intervene in other 
secondary metabolite production (Penicillium oxalicum) (Zhang et al., 2016).  
 

Impact of carbon elements in a AF/ST producer model  
Aspergillus nidulans  
-CreA is likely to be regulated at post-transcriptional level and its activation or binding 
to the target DNA can be influenced by protein modification (Mogensena et al., 2006).  
-CreA has been shown to block the transcription of genes associated with the 
utilization of alternative carbon sources when glucose is present (Brown et al., 2013).  
 -creA positively regulates penicillin synthesis (Martin, 2000).  
-Deletion of creA results in strains that are not able to grow (Shroff et al., 1996).  

 

- Nitrogen source  

 

Depending on the Aspergillus species, nitrogen sources can affect in a different manner 

sterigmatocystin and aflatoxin production. This fact involves nitrogen sources as an 

important factor for secondary metabolite production (Calvo et al., 2002). For this, AreA 

is a key element since it is in charge of modulates genes coding for the utilization of 

alternative sources of nitrogen.  

 

 Table 6: Genes involved in nitrogen utilization  

 

 

Nitrogen source  

Genes Function 

areA 

nmrA 

meaB 

niiA 

niaD 

Zinc finger mediating nitrogen metabolite repression 

Repressive nitrogen 

Regulatory protein 

Nitrite reductase 

Nitrate reductase 
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Relation between genes or corresponding proteins: 

-areA and meaB are regulatory genes mediating nitrogen metabolite repression (Kudla 

et al., 1990; Ruijter and Visser, 1997; Wong et al., 2007; Yin and Keller, 2011).  

-AreA regulates nitrate transporters binding at the intergenic regions of niiA and niaD 

(Chang et al., 2000c).  

-MeaB is a regulatory factor that activates NmrA, which is a repressor of AreA (Amaike 

et al., 2013).  

Relation with AF production 

 
-Nitrogen source is closely linked to AF production since some substrates (e.g. 
asparagine, ammonium salts, glutamate) support aflatoxin production while others do 
not (e.g. sodium, nitrate, tryptophan) (Yu, 2012).  
 
-Area might play a role in regulation of aflR/aflS due to the GATA elements present in 
their intergenic region (Chang et al., 2000c). 
 
-niiA is one of the genes that does not belong to AFB1 gene cluster but that is regulated 
by the major regulator, aflR (Price et al., 2006).  
 

Impact of nitrogen elements in a AF/ST producer model 
Aspergillus flavus  
- aflS gene expression is modulated by AreA in different sources of nitrate and 
ammonium (Ehrlich and Cotty, 2002). 
- Overexpressing meaB strains lost their capacity to produce AFs (Amaike et al., 2013). 
 
Aspergillus parasiticus  
-aflC and aflD genes are expressed in ammonium and peptone media while they are 
not in nitrate sources (Feng and Leonard, 1998). 
-AreA binds to the promoters of aflR and aflS and affect their expression (Bhatnagar et 
al., 2006). 
 
Aspergillus nidulans 
-Contrary to AFB1 producers, nitrate medium increases the production of 
sterigmatocystin while ammonium does not (Feng and Leonard, 1998; Bayram and 
Braus, 2012). 
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- pH of medium  

 

The pH medium is another extracellular condition to which fungal organisms have to 

respond to survive. The pH also plays an important role in AF/ST production. 

Nevertheless, its impact on secondary metabolites production depends on each 

Aspergillus species. Within the transcription factors that are involved in pH response, 

pacC plays an essential role.  

 

Table 7: Genes involved in pH modulation 

 

pH impact  

Gene Function 

pacC Cys2Hys2 Zinc finger pH regulator 

Relation between genes or corresponding proteins: 

The transcription factor PacC is strongly expressed under alkaline conditions (Tilburn 
et al., 1995).  

Relation with AF production 

 
- Acidic conditions have been demonstrated as more favorable than alkaline ones for 
AF biosynthesis (Keller et al., 1997).  
 
- In neutral and alkaline conditions, PacC inhibits acid response genes and induces 
alkaline ones. ST/AF gene expression could be modulated in response to pH by PacC 
(Selvig and Alspaugh, 2011; Keller et al., 1997).  
 

Impact of pH elements in a AF/ST producer model 
Aspergillus flavus  
- Increased pH in nitrate-base medium results in lowers levels of AF while lower pH 
(4.0) resulted in 10-fold increased production of AF (Cotty, 1988).  
 
Aspergillus parasiticus  
- 164 matches to the consensus PacC binding sites have been identified in aflR 
promoter region, but interestingly alkaline conditions where pacC is activated do not 
support AFB1 production (Ehrlich et al., 1999a).  
- aflM was higher expressed in acidic media that in neutral and alkali media. Fungal 
growth decreases the pH of the medium and increase AF production with time (Keller 
et al., 1997).  
- Contrary to this, Buchanan (1975) showed a maximal AF production at pH 7.0 
attributing this behavior to composition of the medium rather than pH influence. 
 
Aspergillus nidulans 
- PacC deleted strains produced 10-fold less ST amounts compared to the control 
(Keller et al., 1997) 
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- Light  

 

Luminous stimulus is another important factor for fungi since it has a large effect in 

fungal adaptation and survival. Light can affect growth as well as it has an impact in 

several morphological changes. Light occurrence is without a doubt an important key for 

secondary metabolites biosynthesis and its impact is controlled by the “velvet complex”. 

Within this complex, a special attention was recently given to the major regulator veA 

since it has been demonstrated to govern a great number of genetic elements including, 

among several others, the photoreceptors elements leading to light-response.  

 

Table 8: Genes involved in light response 

 

Light   

Genes Function 

veA 

vapB 

vipC 

fphA 

kapA 

velB 

laeA  

velC 

lreA 

lreB 

llmF 

Global regulator 

Methyl transferase 

Methyltransferase 

Phytochrome-like red-light receptor 

α transport carrier 

Velvet-like protein B 

Putative methyltransferase 

Velvet-like protein C 

Blue-light sensing protein 

Blue-light sensing protein 

LaeA-like methyltransferase 

Relation between genes or corresponding proteins: 

- Vea-LaeA-VelB forms a trimeric complex called velvet complex. VeA interacts with 
LaeA in the nucleus and with VelB in the cytoplasm and the nucleus (Bayram et al., 
2008). 
- FphA interacts with VeA in the nucleus (Bayram and Braus, 2012). FphA also 
interacts with LreB which at the same time interact with LreA (Calvo, 2008). Together 
FphA, LreA, LreB and VeA form a complex for sensing red and blue light (Purschwitz et 
al., 2008).  
- KapA and VeA physically interact in dark conditions. KapA support the entry of the 
VeA-VelB complex into the nucleus (Sarikaya-Bayram et al., 2015).  
-VelC as well as VelB form a protein-dimer with vosA (in charge of viability of spores) 
(Sarikaya-Bayram et al., 2015). 
-VipC and VapB inhibit the nuclear accumulation of VeA (Sarikaya-Bayram et al., 
2014).  
-LlmF interacts with VeA controlling its subcellular localization (Palmer et al., 2013).  
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Relation with AF production 

-Light stimulus can modulate secondary metabolite production (Purschwitz et al., 
2008).  
 
-The trimeric complex (VeA-LaeA-VelB) with others light-receptors proteins, perceive 
light signal and are essential to coordinate secondary metabolism and development 
(Bayram and Braus, 2012; Sarikaya-Bayram et al., 2014).  
 
- Even if the effect of light and its transmission through veA is today not clear, studies 
in A. nidulans demonstrated that, in light conditions, asexual development is enhanced 
and sexual development as well as ST production are repressed (Fischer, 2008).  
 
-Also in dark conditions, nuclear localization of VeA increases its interaction with LaeA 
(situated exclusively in nucleus) to enhance secondary metabolite production and also 
with VelB to induce sexual development (Palmer et al., 2013).    
 

Impact of light in AF/ST producer model  
Aspergillus flavus    
-veA gene is essential for AFB1’s production  (Duran et al., 2007; Duran et al., 2009).  
-In null mutants of veA or laeA, no aflR expression was observed (Amaike and Keller, 
2009).  
-ΔlaeA reduced aflR, aflD and aflS mRNA expression with no AF production (Chang et 
al., 2012). 
-LaeA is a positive regulator of aflatoxin; overexpression of laeA results in higher 
levels of AFB1 (Amaike et al., 2013).  
-VeA governs 28 out of the 56 secondary metabolites gene clusters (Cary et al., 2015). 
 
Aspergillus parasiticus  
Deletion of veA resulted in loss of aflatoxin intermediates. veA is required for aflR/aflS 
expression (Calvo et al., 2004).  

 
Aspergillus nidulans  
- ΔveA strains resulted in absence of ST production and aflR expression (Kato et al., 
2003).  
- Deletion of the laeA gene results in no aflR expression (Bok and Keller, 2004).  
-LreA, LreB and FphA modulate sterigmatocystin and penicillin biosynthesis 
depending on light and glucose presence (Atoui et al., 2010).  
-FphA represses sexual development and ST production while LreA and LreB 
stimulate both processes. Blue light represses ST production and red-light has the 
opposite effect (Purschwitz et al., 2008).  
-velC deletion reduced sexual fruiting bodies (Park et al., 2014).  
-LaeA plays both, a role in secondary metabolism and in light control by modifying the 
levels of VelB and VosA (Bayram and Braus, 2012).  
-LlmF is a negative factor of sexual development and ST production (Palmer et al., 
2013).    
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3.4.4.2 Natural Antisense transcription  

 

Natural antisense transcripts (NATs) are Ribonucleic Acid (RNA) molecules that are 

transcribed from the opposite DNA strand and partly overlap, with RNA (Faghihi, 2009). 

It has been suggested that the expression of the antisense genes may be involved in 

silencing the cluster via chromatin remodeling  (Smith et al., 2008).  

Since their discovery in Aspergillus flavus, some of them have been linked to aflatoxin 

production, even if their role in this process is not clear yet.  

 

Table 9: Natural antisense transcripts  

 

NATs  

Genes Function 

352 cis NATs  Antisense transcripts  

Relation with AF production 

 
-NATs can modulate AF genes and secondary metabolism production. Up-regulation of 
the cis aflD antisense was associated with reduction of AF production (Smith et al., 
2008a).  
 

Impact of NATs elements in a AF/ST producer model 
Aspergillus flavus 
- Over the 352 cis NATs present in Aspergillus flavus, aflR encodes for two antisense 
transcripts (aflRas) (Woloshuk et al., 1994).  
 
- NATs might regulate gene expression at post-transcriptional level (Wu et al., 2014). 
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3.4.4.3 Reproductive processes 

 

-Sexual development  

 

For years, it was believed that A. flavus reproductive process occurs only in asexual 

manner. Nevertheless, sexual reproduction in A. flavus and A. parasiticus was recently 

demonstrated. Both were characterized as heterothallic species containing one of two 

mating-type genes: MAT1-1 or MAT1-2. Sexual reproduction occurs within conidia or 

sclerotia when  they recombine with the opposite mating-type (Perrone et al., 2014; 

Bruce et al., 2014; Horn et al., 2009).  

 

Table 10: Genes involved in sexual development   

 

Sexual Development  

Genes Function 

MAT1-1 

MAT1-2 

 

Sexual mating 

Relation between genes or corresponding proteins: 

Either MAT1-1 or MAT1-2 can be present in A. flavus and A. parasiticus strains and are 

in charge of sexual development (Ramirez-Prado et al., 2008).  

Relation with AF production 

 
-Sexual state of A. flavus and A. parasiticus are called Petromyces flavus and Petromyces 
parasiticus and they share the classification of  Aspergillus genus of the Flavi section.  
As a novel discovery, not all mycotoxins produced by sexual development have been 
described. Nevertheless, P. flavus can produce B-type AF’s as well as Ciclopiazonic 
Acid (CPA) while P. parasiticus produces B and G-type aflatoxins but not CPA (Horn et 
al., 2009). 
 

Impact of sexual development in AF/ST producer model  
Aspergillus flavus 
 - Strains of A. flavus sexually developed demonstrated that production of AF and CPA 
is highly heritable. In asexual development, non-aflatoxigenic populations are 
maintained while in sexual development the aflatoxigenicity increases (Olarte et al., 
2012).  
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-Asexual development  

 

Secondary metabolite production is also coordinated with the general development of 

the fungus and development is intrinsically linked with conidiation (the asexual 

reproduction mode).  

 

Table 11: Genes involved in asexual development   

 

Asexual development mode   

Genes Function 

fadA 

fluG  

brlA  

abaA  

wetA  

nsdC  

nsdD  

pkaA   

flbA  

flbB  

flbC  

flbD  

flbE  

vosA  

α subunit of heterotrimeric G-protein  

Developmental regulator  

C2H2 zinc finger protein transcriptional activator of conidiophore 

Transcription factor for conidia formation  

Developmental regulatory protein  

Zinc-finger transcription factor 

Zinc-finger transcription factor 

Catalytic subunit of protein kinase A 

RGS protein/ developmental regulator 

bZIP-type transcription factor 

C2H2 conidiation transcription factor, putative 

MYB family conidiophore development 

Developmental regulator 

Spore viability/Developmental regulator 

Relation between genes or corresponding proteins: 

 

-fluG activates flbA and thereby flbA represses fadA signaling  (Calvo et al., 2002; 

Deepika et al., 2015).  

-fadA up-regulates pkaA (Georgianna and Payne, 2009).  

-flbA is a regulator of flbB which regulates flbC, flbD, flbE (flb genes).  

-flb genes are required with fluG for the expression of brlA (Payne and Brown, 1998; 

Yu and Keller, 2005).  

-brlA is a negative regulator of abaA and abaA also regulates brlA.  

-abaA is also a repressor of wetA  (Andrianopoulos and Timberlake, 1994).  

-brlA is also regulated by veA (from the velvet complex) (Kato et al., 2003).  

-vosA is a repressor of brlA (Ni and Yu, 2007). VosA also forms  protein-complex with 

VelB and VelC (velvet proteins) (Bayram and Braus, 2012; Sarikaya-Bayram et al., 

2015).  

-nsdC and nsdD are repressors of brlA (Cary et al., 2012).  
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Relation with AF production 

 
- Asexual sporulation and secondary metabolite production has been linked (Calvo et 
al., 2002; Deepika et al., 2015; Yu and Keller, 2005). 
 
- It exists an interconnection between conidiation and AF/ST production principally 

by genes such as fadA, fluG, flb genes and brlA (Payne and Brown, 1998; Yu and Keller, 

2005).  

 
- FadA governs AF and ST biosynthesis (Calvo et al., 2002; Chang et al., 2004b). fadA 

up-regulates PkaA  which down-regulates conidiation and more important, PkaA 

inhibits AflR activity by phosphorylation (Georgianna and Payne, 2009; Shimizu et al., 

2003). fadA also regulates aflT, the MFS belonging to the AFB1 gene cluster (Chang et 

al., 2004b).  

 
- VosA is necessary for normal spore viability and thus, involved in AFB1 production 
(Calvo, 2008).  
 
- NsdC and NsdD are required for normal AF biosynthesis and conidiophore 
development (Cary et al., 2012).  

Impact of conidiation in model aflatoxin producer 
Aspergillus flavus  
Expression of aflD, aflM, and aflP is strongly reduced in nsdC deleted mutants. Loss of 
NsdC or NsdD results in developmental alterations that impact the ability of AflR to 
activate expression of the AF biosynthesis genes (Cary et al., 2012). 
 
Aspergillus parasiticus  
- Mutants defectives in conidiation had reduced AF production (Kale et al., 2003).  
 
Aspergillus nidulans  
- Mutations in flbA, block both ST production and asexual sporulation while its 
overexpression causes ST accumulation as well as defects in sporulation (Hicks et al., 
1997).  
- fadA and pkaA mutants resulted in inhibition of conidiation and ST biosynthesis 
(Shimizu and Keller, 2001). 
- Loss of flbA function resulted in lack of ST and asexual sporulation (Hicks et al., 
1997).  
- FlbA is necessary for ST cluster transcription and biosynthesis (Shwab and Keller, 
2008).  
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3.4.4.4 Oxidative stress  

 

In fungi, changes in environmental conditions can alter the normal intracellular balance 

between Reactive Oxygen Spices (ROS) production and scavengers. In response of this 

phenomenon, several transcription factors are involved in order to activate enzymatic 

defenses that protect cell from excessive levels of ROS and subsequently to possible 

damages in DNA, proteins and lipids (Montibus et al., 2013). In addition to this, fungal 

oxidative stress has been also linked with secondary metabolite production and also 

demonstrated as a pre-requisite for AFB1 production. In fact, it is proposed that in A. 

parasiticus and A. flavus, aflatoxin production is part of the fungal oxidative stress 

response (Roze et al., 2013).  

Table 12:  Genes involved in oxidative stress response   

Oxidative Complex  

Genes Function 

ap-1 

srrA 

atfA 

atfB 

msnA 

bZIP transcription factor  

Transcription factor  

bZIP transcription factor 

bZIP transcription factor 

Transcription factor  

Relation between genes or corresponding proteins: 

-AtfB, SrrA, Ap-1 and MsnA together, constitute a regulatory network involved in 
oxidative stress response and secondary metabolite production (Roze et al., 2013).  
- AtfA might interact with AtfB in response to oxidative stress (Amare and Keller, 
2014; Hong et al., 2013).  

Relation with AF production 

-The relation between oxidative stress and secondary metabolites production starts to 
be deeply studied in fungi. Informatic reviews of the involved transcription factors in 
Aspergilli are reviewed by Linz and co-workers (2013) and Montibus et al., (2013).   
 
-Aflatoxins and their precursors (e.g. O-methylsterigmatocystin, Versicolorin, 
Norsolorinic Acid) are highly oxigenated molecules thus, subject to redox regulation. It 
has been demostrated that oxidative stress is a pre-requisite for AFB1 production 
(Narasaiah et al., 2006).  
 
-AFB1 biosynthesis is activated by high levels of oxidative stress-inducing factors (e.g. 
lipid hydroperoxides) whereas it is inhibited by antioxidants (e.g. polyphenols) 
(Grintzalis et al., 2014).   
-In cell systems, the ap-1 gene is activated under both, pro-oxidant and antioxidant 
conditions (Gomez del Arco et al., 1997).  
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Impact of oxidative stress elements in AF/ST producer model  
Aspergillus flavus 
msnA deletion results in higher amounts of aflatoxins as well as higher levels of kojic 
acid. msnA appears to be necessary to maintain normal oxidative stress state (Chang et 
al., 2011).   
 
Aspergillus parasiticus  
- AtfB binds to promoters of seven belonging to aflatoxin gene cluster (Roze et al., 
2011). 
-Ap-1 deletion resulted in increased AF production but also, Ap-1 has binding sites in 
the promoter region of the aflR gene (Reverberi et al., 2008). 
 
Aspergillus nidulans  
-atfA plays an important role to cope oxidative stress (Asano et al., 2007).  
-Deletion results in a phenotype of hypersensitivity to oxidative stress (Hagiwara et 
al., 2007; 2008).  

 

 

-Superoxide dismutases and Catalases 

 

Within the response to oxidative stress, superoxide dismutases (SOD), catalases (CAT) 

and Glutathione Peroxidase (GPX) are in also involved in the fungal mechanism of 

defense. For instance, SOD act as the first line of fungal defense by converting the 

radicals into hydrogen peroxide (H2O2) and O2, then the catalases and peroxidases 

convert H2O2 into H2O and in the case of catalases, into O2 and H2O (Weydert and Cullen , 

2011).  

  

Table 13: Genes coding for fungal superoxide dismutase and catalases   

 

Superoxide Dismutases and Catalases 

Genes Function 

mnSOD 

sod1  

catA 

catB  

hyr1  

Manganese Superoxide Dismutase 

Cu, Zn superoxide dismutase 

Conidia-specific catalase 

Mycelial catalase 

Glutathione Peroxidase  

Relation between genes or corresponding proteins: 

All genes are involved in cellular defense against oxidative stress (Weydert and Cullen, 

2011).  
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Relation with AF production 

-It has been demonstrated that mnSOD and the genes aflA, aflM, and aflP belonging to 
the aflatoxin cluster are co-regulated (Hong et al., 2013). 
 
-In other fungal strains such as A. ochraceus, ap-1’s deletion (from the previous table) 
was also related with the expression of CAT and SOD (Reverberi et al., 2008).  

Impact of CAT/SOD  in AF/ST producer model  
Aspergillus flavus  
Deletion of sod resulted in decreased AF production (He et al., 2007).  
 
Aspergillus nidulans 
Deletion of mnSOD increased both, glutathion reductase and catalase activities while 
its overproduction lowered the activity of catalase but increased the SOD activity 
(Leiter et al., 2016).  

 

- β-oxidation  

 

β-oxidation of fatty acids is a fungal process that degrade fatty acids into acetate units. 

Therefore, since AFB1 biosynthesis is trigger from acetate units, the involved pathways 

that contribute to the formation of acetate units such as β-oxidation are related with 

AFB1 production (Maggio-Hall et al., 2004; 2005). In addition to this, β-oxidation of fatty 

acids occurs in peroxisomes (Reverberi et al., 2012) and several genes can serve as 

peroxisomes’ markers thus, making interesting their study. On the other side, vacuoles 

and vesicles are also elements that are involved with AFB1 production by forming and 

then exporting this mycotoxin outside of the cell (Chanda et al., 2009).   

 

Table 14: Genes involved in β-oxidation 

 

β-oxidation 

Genes Function 

pexK 

pex11 

foxA 

rab7 

vps16 

Peroxisome existence 

Peroxisome proliferation 

Fatty acid regulation metabolism by β -oxidation 

Vesicle marker  

  Vacuole marker 

Relation between genes or corresponding proteins: 

- These genes are mainly used as markers of organelles that are involved in AFB1 
production.  
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Relation with AF production 

-β-oxidation is a fundamental step for aflatoxin biosynthesis (Maggio-Hall et al., 2005). 
 
-Peroxisomes are involved in the β-oxidation of fatty acids and probably in the first 
steps of AFB1 synthesis (Reverberi et al., 2012). 
 
-In filamentous fungi, peroxisomes are crucial for the primary metabolism and play a 
role in the formation of some secondary metabolites (Reverberi et al., 2012).  
 
- Vesicles catalyze the final 2 steps in aflatoxin biosynthesis and compartmentalize and 
export aflatoxin to the cell exterior (Chanda et al., 2009).  
 
-Nor-1 (protein involved in the norsolorinic acid biosynthesis and a precursor of 
AFB1) mainly occurs in the cytoplasm and vacuoles (Hong and Linz, 2009).  
 

Impact of β-oxidation in AF/ST producer model  
Aspergillus flavus  
-Proliferation of peroxisomes enhances AFB1 production (Reverberi et al., 2012). 
 
Aspergillus parasiticus  
-An increase in vesicle number was positively correlated with aflatoxin 
accumulation/export (Chanda et al., 2009).  
 
Aspergillus nidulans 
-Overexpression of pexK increased the number of peroxisomes, which was correlated 
with an increased production of another secondary metabolite, penicillin (Herr and 
Fischer, 2014). 
-pex mutants are able to grow on acetate but their growth is affected on fatty acids, 
indicating a requirement for the peroxisomal localization of -oxidation enzymes 
(Hynes et al., 2008).  
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3.4.4.5 Cellular signalization  

 

   Cellular signalization in fungi, help to overcome environmental stresses by activating 

rapid transduction of signal through the cell and thus, allowing the organism to be 

adapted to its surroundings. Within the members that are involved in this process, G-

protein coupled receptors (GPCR) and oxylipins are some of them. It has to be noted, 

that GPCR are one of the transmembrane receptors that have been recently studied in 

Aspergillus flavus so little is known about their functions in filamentous fungi (Affeldt et 

al., 2014).  

  

Table 15 Genes involved in cellular signalization 

 

Cellular signalization 

Genes Function 

ppoA 

ppoB 

ppoC 

ppoD 

lox  

gprK 

gprA 

gprP  

rasA 

(oxylipin) Dioxygenase 

(oxylipin) Dioxygenase 

(oxylipin) Dioxygenase 

(oxylipin) Dioxygenase 

  (oxylipin) Lipoxygenase 

GPCR  

GPCR 

GPCR 

 GTP-binding protein 

Relation between genes or corresponding proteins: 

-GPCRs are involved in oxylipins response (Affeldt et al., 2014).  

Relation with AF production 

 
- The proper regulation of G-protein signaling play a central role, among others, in 
secondary metabolite production (Yu and Keller, 2005).  
 
-Recently, the GPCRs were shown to regulate AFB1’s synthesis and its precursor, 
sterigmatocystin (ST) (Affeldt et al., 2014).  
 
-In Aspergillus fumigatus, gprK gene was demonstrated to be necessary for gliotoxin 
production and oxidative stress response (Jung et al., 2016).  
 
-Oxylipins regulate secondary metabolism at a transcriptional level (Tsitsigiannis and 
Keller, 2006).  
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Impact of cellular signalization in AF/ST producer model  
Aspergillus flavus 
-Deletion of gprK and grpA resulted in higher levels of AF production compared to 
control strain (Affeldt et al., 2014). 
-When all four ppo genes and the lox gene were disrupted at the same time, the mutant 
strains showed a reduced conidiation and increased their Aflatoxin production in 
maize and peanut seeds (Amare and Keller, 2014). 
 
Aspergillus nidulans  
-ΔppoA; ΔppoB and ΔppoC mutants are unable to produce sterigmatocystin (ST) 
(Tsitsigiannis and Keller, 2006). 
-RasA has been demonstrated to control aflR activity (Shimizu et al., 2003).  
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3.4.4.6 Relationship with the production of other secondary 
metabolites  

 

In addition to Aflatoxin production, A. flavus can produce other mycotoxins such as 

Cyclopiazonic acid (CPA), Aflatrem (AFT) and Kojic Acid (KA) (Duran et al., 2007; 

Shinohara et al., 2011). The implication of these latter with AFB1 production relies in the 

fact that some of these secondary metabolites are also modulated with variations of 

AFB1 production.  

 

-Cyclopiazonic acid  

 

Also considered as a mycotoxin, this compound is a calcium-dependent ATPase 

inhibitor, which modifies the Ca++ levels in organisms resulting in an increase of muscle 

contraction. Ingestion of cyclopiazonic acid has been demonstrated to be toxic for 

humans and animals (Amare and Keller, 2014; Duran et al., 2007). Specifically, some 

strains of A. flavus are capable to produce this secondary metabolite during in vitro and 

in vivo growth (Gilbert et al., 2016). CPA production is principally related to several 

genes that are clustered near to the AFB1 cluster.  

 

Table 16: Genes involved in Cyclopiazonic acid synthesis  

 

Cyclopiazonic acid   

Genes Function 

dmaT 

pks/nrps 

maoA 

msf1 

hypG 

hypF 

Dimethylallyl tryptophan synthase 

Hybrid polyketide non-ribosomal peptide synthase 

Flavin adenine dinucleotide oxidoreductase 

Major facilitator superfamily protein (MFS) 

Putative gene 

Putative gene 

Relation between genes or corresponding proteins: 

- CPA production requires four genes (dmat, pks/nrps, maoA and msf1) localized in a 

small cluster next to the AFB1 cluster (Chang et al., 2009). 

-hypG and hypF are two genes that are localized between AFB1 and CPA clusters but 

they do not belong to any of the clusters (Georgianna et al., 2010). 
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Relation with AF production 

- The 55th CPA cluster, is next to the gene cluster (54th) and under conductive 
conditions it is expected that both metabolites are synthesized (Georgianna et al., 
2010).  
 
-Disruption of the AF gene cluster and subtelomeric regions resulted in loss of AFB1 
but also of CPA (Amare and Keller, 2014).  
 

Impact of cyclopiazonic acid elements in a AF/ST producer model 
Aspergillus flavus 
-Several A. flavus strains that lacks of AFB1 cluster are not able to synthesize CPA, 
suggesting a link between productions of both mycotoxins (Chang et al., 2009).  
- dmaT deletion decrease conidiation and AFB1 biosynthesis (Yang et al., 2016).  
- hypG and hypF were demonstrated as non-essential for either CPA or AFB1 
production even if they are localized between both clusters (Georgianna et al., 2010). 
- Inhibition of AFB1 and CPA were observed in parallel using a Bacillus megaterium 
treatment (Kong et al., 2014).  

 

-Aflatrem  

 

Classified as a potent tremorgenic compound (which causes uncontrollable rhythmic 

movement of one part of the body), this mycotoxin is known to lead to neurological 

diseases in vertebrates (Gallagher and Wilson, 1978). Aflatrem, different to most 

mycotoxins produced in one cluster, needs the presence of two clusters for its 

biosynthesis (Dolezal et al., 2013; Georgianna et al., 2010).  

 

Table 17: Genes involved in Aflatrem synthesis  

 

Aflatrem  

Genes Function 

Cluster 32 

7th chromosome 

atmM 
atmG 
atmC 

FAD-dependent monooxygenase 

GGPP synthase 
prenyltransferase 

 

Cluster 15 

5th chromosome 

atmP 
atmQ 

Putative cytochrome P450 
monooxygenase 

atmB 
atmA 

Putative polytopic membrane protein 

atmD Putative aromatic prenyltransferase 
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Relation between genes or corresponding proteins: 

-Genes involved in Aflatrem production resides in two clusters localized in two 

separate chromosomes (Nicholson et al., 2009).  

-atmG, atmC and atmM are the principal genes for aflatrem biosynthesis (Dolezal et al., 

2013; Zhang et al., 2004).  

Relation of Aflatrem with AF production 

-Even if aflatoxins are the most preoccupying mycotoxins produced, other toxic 
metabolites such as Aflaterm are also produced by Aspergillus flavus and little is 
known about the relation between both clusters.   
 
- Aflatrem, Aflatoxin and Cyclopiazonic Acid production were demonstrated to be 
governed by the same global regulator, veA (Duran et al., 2007).  

Impact of Aflatrem elements in a AF/ST producer model 
 -No data of gene observation AF/ST was founded.   

 

 

- Kojic acid 

 

Produced by several species belonging to the Flavi section, Kojic acid is one of the 

secondary metabolites used for industrial processes. This compound is capable to 

inhibit pigments in plants and animals, which attracted the attention of food and 

cosmetic industries to preserve or change colors (Varga et al., 2015). Recently, Kojic 

Acid was also demonstrated as a potential parasite-inhibitor used for medicinal 

purposes (Rodrigues et al., 2014). The production of this secondary metabolite is 

governed by a little cluster regulated by kojR.  
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Table 18: Genes involved in Kojic acid synthesis  

 

Kojic Acid  

Genes Function 

kojR 

kojT  

kojA 

Zn2-Cys6 transcription factor 

Major facilitator transporter protein (MFS) 

FAD-dependent oxidoreductase 

Relation between genes or corresponding proteins: 

kojR is a transcription factor essential for KA synthesis and is the main and positive 

regulator of kojT and kojA (Marui et al., 2011).  

Relation with AF production 

-Several natural inhibitors of AFB1 also seem to modulate KA synthesis, sometimes by 
increasing its production (Zhang et al., 2014a). 
 
Since KA has not been demonstrated as toxic and is a useful compound in industry, 
mechanisms of action leading to inhibition of AF accompanied with an increase in KA 
production could be an interesting topic of research.   

Impact of Kojic acid elements in a AF/ST producer model 

Aspergillus flavus 
- D-glucal inhibits AFB1 production by modulating AF genes (but no aflR) while 
increasing KA biosynthesis (Zhang et al., 2014a). 
- The same impact between AFB1 and KA was observed with C18:3 acid fractions, this 
time  with a reduction in aflR gene expression (Yan et al., 2014).  
 
Aspergillus parasiticus  
- Dioctatin-A strongly inhibit AFB1 by reducing aflR’s expression while enhancing the 
KA production (Yoshinari et al., 2007).  
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As demonstrated, AFB1 production is a very complex process that involves a great 

number of genetic elements. The study of the molecular machinery that is involved in 

AFB1 production could led to identify essential genes that can be targeted in order to 

inhibit AFB1 production. Nevertheless, this molecular strategy still requires a lot of 

information that has to be elucidated.  

Since then, and taking in consideration that AFB1 inhibition still remains a priority, the 

use of other methods including the utilization of pesticide are commonly used.   

Within this context, natural compounds can represent an alternative strategy to 

pesticides (and their own toxicity) since some of them have been demonstrated as 

effective anti-aflatoxigenic agents. From now, a general overview of the major strategies 

that are used to inhibit AFB1 production will be presented with a special attention in the 

use of natural products.   
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  3.5 Use of natural compounds to inhibit AFB1 production  

3.5.1 General overview of strategies targeting the reduction of 

AFB1 occurrence   

 
 

Nowadays, a great number of strategies have been developed aiming the limitation of 

AFB1 in food intended for human and animal’s consumption.  

In general, one of the biggest problems that are related with AFB1’s contamination is 

that, being a very stable molecule, once this mycotoxin is synthesized its elimination 

from food products is a very difficult process.  

In fact, when food commodities are already contaminated with AFB1, those products 

have to be detoxified and for the moment, such procedures are only allowed for animal 

feed purposes and cannot be applied to human’s food (Adeyeye and Yildiz, 2016).  

Thus, in order to avoid crop contamination with mycotoxins it is necessary to develop 

preventive strategies.  

Within these strategies, implementation of Good Agricultural Practices (GAP) and Good 

Manufacturing Practices (GMP) during the pre- and post-harvest steps are a key point 

(Bennett, 2003; De Saeger et al., 2016).   

The principal Good Agricultural Practices that shall be applied at different stages of crop 

processing are recapitulated in Figure 23.    

 
 

Figure 23: Good Agricultural Practices at different crop processing stages 

 



 
 

72 
 

Aflatoxins can be produced either in the fields or later during crop storage if 

hydrothermal conditions are favorable for development of toxigenic strains. 

GAP during the pre-harvest stage principally aim to avoid mycotoxin appearance by 

limiting fungal contamination while during the post-harvest stage (when crop is stored) 

the main goal is to avoid an increase in mycotoxin contamination due to fungal 

development.  

In order to describe more in detail these practices, tables S1-S3 in the annexes of this 

work are available and summarize the strategies that are nowadays used.  

Some of these practices will be further detailed highlighting their advantages and 

drawbacks. 

 

As an example, within the pre-harvest stages, fungicides are one of the most used 

strategies to limit fungal contamination and development. Although they are very 

effective, these compounds also have demonstrated numerous disadvantages 

concerning their use. In fact, pesticides lead to environmental contamination and 

subsequent strong impact on microbial biodiversity. (Accinelli et al., 2014; Sakuda et al., 

2016; Tola et al., 2016). Moreover, they are more and more suspected to have 

detrimental effects to human due to repeated and longtime exposure as trace 

contaminants in many foods. Within this context, a few countries aim to limit the use of 

pesticides. As an example, in France the “Ecophyto 2” plan, aim to reduce by 50% the 

utilization of pesticides before 2025 and in Spain, the plan “Possible Mission” also target 

by 2020 their reduction by 30%.   

An alternative to the use of these chemicals products to limit fungal contamination in the 

fields, is the biological control which is based on the utilization of other microorganisms 

such as bacteria or non-toxigenic fungal strains in order to compete and limit the 

development of toxigenic strains.  

The great advantage of these biological methods is that most of them have been 

demonstrated to effectively inhibit AFB1’s contamination and to date, some non-

toxigenic fungal strains are already marketed and currently used (e.g. Aflasafe™, 

Aflaguard ®) (Adhikari et al., 2016).  

However, the use of non-toxigenic strains, especially those belonging to the Aspergillus 

genus, also present some disadvantages that have to be taken in consideration. In fact, in 
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the last years, it was demonstrated that several strains of A. flavus and A. parasiticus can 

be developed by sexual combination and since aflatoxin production is a heritable factor, 

this could challenge their long term efficiency. Therefore, the non-toxigenic strains have 

to be chosen based on the insurance that they have disrupted functions or lack genes 

coding for AFB1’s production (Horn et al., 2009; Jalili, 2015).   

Concerning the post-harvest GAP, appropriate drying techniques, proper storage that 

maintain low levels of temperature and humidity as well as the segregation of 

contaminated product have to be promoted (Torres et al., 2014). Indeed, moisture is a 

key factor that may positively favor fungus development and thus, mycotoxin synthesis.  

 

Mechanic removal and optical sorting aim the elimination of contaminated product by 

taking away the mouldy, shriveled or insect-infected grains (Zain, 2011).  

Even if those techniques have good results in reducing aflatoxin contamination by 

removing the contaminated particles and reducing fungal inoculum before storage, 

disadvantages like false positives as well as misclassification of contamination grade 

occur frequently (IARC, 2015; Moy and Miller, 2016).  

Taken together, even if to date numerous strategies have been developed to reduce 

AFB1’s occurrence in food commodities, GAP by themselves are not sufficiently effective 

to avoid mycotoxin contamination.  

Therefore, it is essential to continue investigating other effective procedures that can 

help to inhibit mycotoxin contamination.  

Within this context, the use of natural products represents an alternative strategy that 

can complement the use of the existent ones or in the best of the cases, that could 

represent an effective manner to inhibit AFB1 production.  
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3.5.2 Natural products 

 

Plants, as fungi, produce secondary metabolites that have been used for years as useful 

compounds for humans.  

Plants and their extracts are widely used for medicinal purposes since some of them are 

known as antioxidants, anti-inflammatory, antimicrobials and cancer preventive 

molecules, among various other properties (Friedman and Rasooly, 2013; Jeff-Agboola 

et al., 2016; Orole et al., 2016; Prakash et al., 2015).  

Compounds occurring in plants are bio-actives metabolites that can be divided in four 

major groups. They include terpens (terpenoides, isoterpenoids), phenylpropanoids 

(flavonoids, tannins, glycosides and lignins), phenolics and nitrogen-containing 

compounds (alkaloids and heterocyclic aromatics) (Razzaghi-Abyaneh et al., 2010).  

Within these compounds, some of them have been demonstrated as effective inhibitors 

of fungal growth and AFB1 production even if, for most of them, the exact mechanism of 

action has not been elucidated.  

These active compounds can be contained either in essential oils or in aqueous or 

organic extracts and their anti-fungal or anti-aflatoxigenic effect can be the result of one 

or several molecules.  

For practical purposes, a presentation of some works using natural products against 

AFB1 production will be described and divided in:  

 

i) Essential Oils 

ii) Plant extracts   

iii) Isolated Molecules  

 

i) Essential Oils  

 

The term essential oil is reserved to products obtained from vegetable raw material, 

either by distillation with water or steam, or from the epicarp of citrus fruits by a 

mechanical process or by dry distillation (Turek and Stintzing, 2013).  

Essential oils (EOs) are lipophilic and they are composed by high volatile secondary 

metabolites of plants.  
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They are some of the most studied natural compounds since they present numerous 

useful properties for varied domains such as medicine, biology, cosmetology, 

agricultural and food industry. EO’s are obtained from plants belonging to different 

families (e.g. Lamiaceae, Rutaceae, Myrtaceae, Zingiberceae, Asteraceae) and nowadays 

more than 17,000 aromatic plant species have been identified and represent a vast field 

of study (Regnault-Roger et al., 2012; Chizzola, 2013). 

Hundreds of studies including their possible use as fungal and mycotoxin inhibitors had 

been reported. Most of them can be found in reviews by Isman, (2000; 2006); Alpsoy, 

(2010); Friedman and Rasooly, (2013); Prakash et al., (2015); Macwan et al., (2016) and 

Sakuda et al., (2016). In particular, Alpsoy’s review contains detailed information 

concerning the use of EOs as aflatoxin inhibitors.  

In fact, some EOs have been demonstrated to effectively limit AFB1 production in 

several species such as A. parasiticus and A. flavus (Bluma and Etcheverry, 2008; 

Ferreira et al., 2013; Kohiyama et al., 2015).  

Moreover, a recent work reported by Shalaby and El-tawil, (2016) showed that a diet 

supplemented with 400 mg of oregano oil/kg of diet, can have protective effects against 

aflatoxicosis  in Japanese quails due to the antioxidant effects of oregano EO.   

The antifungal activity of the bioactive compounds contained in some of the EOs was 

strongly associated with monoterpenic phenols (Isman, 2000). Examples of EOs that 

have been used to inhibit A. flavus growth as well as AFB1 production are listed in table 

19.  

 

Table 19: Effect of some essential oils in Aspergillus flavus growth and AFB1 production.   

 

 

 

Essential Oil Concentration A. flavus fungal inhibition AFB1 inhibition Reference 

Basil (Acinum sanctum ) 0.1 µg/ml 72.50% 88.40%

0.2 µg/ml 90.10% 100%

Citronella (Cympopogon citratus ) 0.2 mg/ml 3% 100% (Paranagama et al., 2003)

Cumin (Cuminum cyminum ) 0.4 µl/ml 52% 67%

0.5 µl/ml 91% 100%

Rosemary (Romarinus officinalis ) 450 ppm 0% 100% (Rasooli et al., 2008)

0.3 µl/ml 46.90% 75.60%

0.7 µl/ml 100% 100%

(Kumar et al., 2010)

(Kedia et al., 2014)

Thyme (Thymus vulgaris ) (Kumar et al., 2008)
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In general, one of the great advantages of EOs is that they are effective fungal inhibitors, 

which could serve as pesticide replacement (Prakash et al.2015). In addition to this, they 

are considered as naturals, eco-friendly and some of them are not toxic at controlled 

doses. As a consequence, some of these essential oils are actually marketed as crop 

protectors such as E-Rase™ (Simmondsia californica EO); Sporan™ (Rosemarinus 

officialis EO), Promas™ (Thymus vulgaris EO) and Cinnamite and Valero™ (30% 

Cinnamomum EO) (Isman, 2000).  

 

On the other hand, they also present some disadvantages that make difficult their 

utilization in food: 

 

-Toxicity: a large number of EOs are reported and regulated as weakly toxic. 

Nevertheless, their overdose ingestion can trigger negative effects in mammals as well 

they could drive to morphological damages in plants (Isman, 2000). As an example, 

several cases of human intoxications to EO’s have been reported.  

In 1993, Hartool et al. reported a case of a 2-years child who ingested among 5-10 ml of 

clove’s EO resulting in coma, coagulopathy and acute liver damage.  

In 2008, five cases of poisoning by citronella’s EO were also reported and its ingestion 

also caused a child’s death (Temple et al., 2008).  

On the other hand, as part of their mechanism of action against fungi, EOs can alter cell 

membrane which could potentially have the same deleterious effect in plants (Isman 

and Machial, 2006).  

 

-Modification of organoleptic qualities: It is well-know that EOs are used in cosmetic and 

pharmacology industries since they contain volatile compounds that can be used for 

their influence on odor of products (Kumar et al., 2010). Nevertheless, this represents a 

strong limitation for food industry. As an example, thyme as well as rosemary essential 

oils at 0.1% and 1% respectively, were effective against the bacteria Brochothrix 

thermosphacta but this concentration was also sufficient to cause negative changes in 

organoleptic characteristics of meat (Nowak et al., 2012).  

 

- Stability: Essential oils can react to external factors such as heat, light, air, water 

content or metal contaminants, resulting in chemical changes. They are known to be 
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converted to other compounds due to oxidation, isomerization, cyclization or 

dehydrogenation reactions that can also trigger enzymatic changes (Turek and Stintzing, 

2013).  

 

-Finally, there exist some other technical barriers that make difficult their use in food 

production. It concerns the scarcity of the natural resource, the need of chemical 

standardization and traceability and quality control. 

 

Since then, the use of essential oils in food is limited to only a few of them and in order 

to extent the possibilities to inhibit AFB1 production other kind of natural extracts need 

to be explored.  

In fact, the study of other extraction techniques for natural bio-actives compounds relies 

in the utilization of aqueous or organic extracts of plants that could represent an 

alternative strategy to inhibit mycotoxin production. Some of them have been already 

demonstrated as anti-aflatoxigenic agents and their study had increased during last 

years.  

Due to their nature, these kind of extracts can notably display a greater inhibition of 

mycotoxin production as well as they could have less impact on organoleptic changes in 

food, among other benefits.  

In addition to this, during the hydro-distillation of EOs, the aqueous phase is frequently 

an industrial waste that could be considered as an option to inhibit mycotoxin’s 

production.   

It has to be noted that aqueous extracts are less studied than EOs and in the next section 

natural products that were only obtained by aqueous or organic extraction with the aim 

to inhibit AFB1 production will be presented.  

 

ii) Plant extracts  

One of the greatest advantages of using plant extracts as mycotoxin inhibitors relies in 

the bio-diversity that exists all over the world. More interestingly, some of these plants 

can be developed in different countries. Since then, their identification as anti-

aflatoxigenic agents could represent a useful skill.  
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The next figures recapitulate the principal information of works that had reported the 

use of natural plants against AFB1 production. Information such as, name of the natural 

product, countries of development, as well as general information and test conditions 

are presented.  

      

 

 

As supplementary information of this study, authors reported that higher 

concentrations of leaves extract resulted in cell damage with loss of cytoplasmic content. 

Otherwise, while using seeds extract, cytoplasm vacuolization and deformation of the 

cell’s wall was observed. The authors suggested that aflatoxin inhibition was associated 

to cell destruction. They compared neem’s effect to those of other antifungal agents 

explaining that chitin and glucans of the Aspergillus cell wall might be sensitive to 

neem’s compounds causing wall destruction.  
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Some other works using natural compounds against AFB1 producer strains have been 

reported. Even if their action over AFB1 production has not been evaluated, based on 

their antifungal effect some of them could be considered as interesting sources to limit 

A. flavus contamination and subsequently limit the risk of AFB1 contamination.  

 

For instance, a study performed by Sree et al., (2014) evaluated five plants from 

Western Ghats of India and tested methanolic, aqueous and ethyl-acetate extracts of (I) 

Naravelia zylanica DC; (II) Adhathoda zeylanica Medic; (III) Cassia auriculata; (IV) Vitex 

negundo L. and (V) Orthosiphonstaminus against 12 fungi including A. flavus and A. 

parasiticus strains. Some of these extracts were characterized showing that they are rich 

in phenol and flavonoid content while they presented interesting antifungal activity.   

 

Another study performed by Satish et al., (2007) tested the effect of fungal inhibition 

caused by aqueous and solvent extracts of 52 plants against different fungal strains in 

which A. flavus was included. Results showed that A. flavus was very susceptible to 

aqueous extracts as well as solvent extracts from all plants with the exception one of 

Polyalthia longifolia.  

 

Jeff-Agboola et al., (2016) tested ethanol- as well as cold and hot-water extracts of  

Nigerian plants: Cymbopogon citratus, Moringa oleifera, Ocimum gratissimum and 

Clerodendrum volubile against an A. flavus strain isolated from contaminated poultry 

feed.  

These plants were chosen since they are known to have beneficial properties such as 

flavoring, antioxidant, anti-inflammatory and antifungal among others. Results varied 

depending on plant and extraction method. In general, all of them with the exception of 

Cymbopogon citratus were effective antifungal agents. Characterization of plant extracts 

showed that saponins were present in all of them with the exception of C. citratus and 

tannins were presented in all extracts. Authors proposed that these plant extracts could 

be useful tools to limit fungal infections caused by A. flavus.   

 

All together these data demonstrate that plants and their extracts may contain specific 

molecules that can lead to an effective inhibition of AFB1. Thus, the study of their active 

molecules may allow a better understanding of the mechanism of action underlying 



 
 

81 
 

their biological effect and some of the reported isolated molecules will be further 

presented.  

 

iii) Isolated Molecules   

 

In the last years, the development of techniques such as q-PCR allowed the study of gene 

expression upon natural treatments and in particular, with isolated molecules. One of 

the principal focus is without a doubt, their impact on genes involved in AFB1 synthesis. 

Within this, aflR is one of the principal studied genes based on the fact that this gene is 

the main regulator of the AFB1 gene cluster.   

In the next section, the information of isolated anti-aflatoxigenic natural molecules for 

which the impact on genes belonging to the AFB1 gene cluster was determined will be 

detailed. In addition to this, the structures of these isolated anti-aflatoxigenic 

compounds are presented in the Figure 25 at the end of this section.  

 

Curcumin  

 

Curcumin is a phenolic compound that is classified as safe (GRAS) and is currently found 

in turmeric. This compound is known as antioxidant and antimicrobial agent.  

In A. parasiticus NRRL 2999 strain, curcumin inhibited in a dose-dependent manner 

AFB1’s production from 22.6 to 94.9% using concentrations from 125 to 2000 µg/ml. 

This effect was accompanied with a fungal growth inhibition of 34 to 60.8%.  At 250 and 

1000 µg/ml, aflR gene expression was significantly reduced as well as the same trend 

was observed for alfM, aflD, aflC, aflP.   

Authors proposed that AFB1 inhibition was due to the aflR’s gene reduction or by direct 

inhibition of all genes (Jahanshiri et al., 2012).  

 

Eugenol  

 

Eugenol is one of the active compounds of cloves, basil and other plants that has 

antioxidant properties and has been classified as safe by the FAO (daily intake up to 2-5 

mg/kg body weight in humans). In 1999, Jayashree T. and C. Subramanyam, 
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demonstrated that this compound inhibited AFB1 in A. parasiticus NRRL 2999 in a dose-

dependent manner from 0.75 mM without inhibiting fungal growth.  

Afterwards, in 2015, Jahanshiri et al., used the same fungal strain and tested 

concentrations between 15.62 to 500 µg/ml. They confirmed the AFB1’s inhibitory 

effect and also studied the expression of alfM, aflD, aflC, aflP and aflR. Results showed 

that all genes were significantly down-regulated at concentrations of 62.5 and 125 

µg/ml.  

Authors proposed that toxin inhibition was attributed to aflR’s gene reduction and to the 

disruption of lipid peroxidation through microsomal activity reduction.  

 

The same year, Liang et al., reinforced the inhibitory effect of eugenol in an A. flavus YC-

15 strain at 0.80 mM; q-PCR analysis were performed, demonstrating a down-regulation 

of aflP (the most impacted gene) followed by aflM, aflR, aflD and aflT that are five genes 

that were measured to control aflatoxin production. Experiments were performed over 

7 days demonstrating that after 6 days the only down-regulated gene was aflP.  

Authors suggested that eugenol might directly inhibit aflP or aflR. 

 

Figure 24 recapitulates the inhibitory effect observed with different doses of curcumin 

and eugenol that were reported in the above works.  

 

 

 

Figure 24: Effect of curcumin and eugenol at different concentrations over the expression of aflR detected 

by Real Time PCR in A. parasiticus NRRL 2999 strain and A. flavus YC-15  based in the works of Jahanshiri 

et al., (2012;2015); Liang et al.,(2015).  
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Cinnamaldehyde  

 

This compound is recognized as an antioxidant agent that is also the main component of 

Cinnamon. It represents a safe component that is legally registered as flavoring agent by 

the FDA, FAO and WHO organisms. Its effect on AFB1 production was recently analyzed 

by Sun et al., (2015) in two A. flavus strains: (I) CGMCC 8050 and (II) CGMCC 3.6153. 

They demonstrated that cinnamaldehyde inhibits AFB1’s production in a dose-

dependent manner and that a total inhibition of toxin and fungal growth was registered 

at 104 mg/L. Lower inhibitions were registered at 25.4 and 19.9 mg/L for I and II strains 

respectively.  

Authors demonstrated that larger amounts of cinnamaldehyde cause losses of 

cytoplasmic contents and mitochondrial destruction. These effects were accompanied 

with redox perturbations in the II strain by increasing enzymatic activities of catalases 

and glutathione peroxidases while superoxide dismutase activity was slightly reduced.  

 

Liang et al., (2015) also tested cinnamaldehyde at concentrations of 0.40 and 0.80 mM in 

an A. flavus strain. At 0.40 mM AFB1’s inhibition was of 68.9% and this effect was dose-

dependent with a complete inhibition of both fungal growth and toxin production at 

0.80 mM. In addition, an important down-regulation of genes belonging to the AF gene 

cluster was noted with higher impact on the expression of aflM followed by aflP, aflR, 

aflD and aflT.  

Authors proposed that:    

(i) aflR was the principal responsible of AFB1 inhibition 

(ii) all genes were directly inhibited by cinnamaldehyde via aflM gene.  

 

Caffeic acid  

 

The 3, 4-dihydroxycinnamic acid also named caffeic acid, is a phenolic and antioxidant 

compound that is widely distributed in flowers, leaves and buds of medicinal plants 

belonging to a great number of families (e.g. Umbelliferae, Cricifera, Curcubitaceae, 

Solanaceae, Leguminosae, Valerianaceae).  

This compound has been shown to inhibit AFB1 production by 95% at a concentration 

of 12mM in A. flavus strain NRRL 3357 without affecting fungal growth. A microarray 
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analysis demonstrated that upon treatment, all genes belonging to the AFB1 gene cluster 

were down regulated with the exception of aflF and aflS that presented lower expression 

regarding to the control. In addition to this, authors were unable to detect aflR 

expression. Genes coding for molecules involved in lipid metabolism, cell wall integrity, 

transporter pumps and oxido-reductase/oxygenase were also down regulated while an 

up-regulation was observed for enzymes, hypothetical proteins and other proteins such 

as integral membrane protein.  

Authors suggested that AFB1 inhibition might be associated with alleviation of oxidative 

stress response of the fungus (Kim et al., 2008).  

 

Piperine-like compounds  

 

Piperine and piperine-like compounds are currently compounds present in black 

peppers and they also have been studied as anti-aflatoxigenic agents. In fact, Lee et al., 

(2002b) demonstrated that piperine, piperlongumine, pipernolaline and 

piperoctadecalidine isolated from Piper longum inhibit AFB1 biosynthesis produced by 

A. flavus WRRC 3-90-42-12 strain and Yazdani et al., (2013) tested fractions of Piper 

crude extract, chloroform and water fractions against A. flavus UPMC 89.  

In 2016, Moon et al., tested twelve methylenedioxy-containing compounds that are 

abundant in Piper fruits including piperine and 10 piperine-like synthetic compounds 

against AFB1 produced by A. flavus ATCC2254.  

In general, they demonstrated that two of the compounds: 3-(benzo-1,3-dioxol-5-yl)-1-

(2-methylpiperidin-1-yl) prop-2-en-1-one and 1-(2-methylpiperidin-1-yl)-3-

phenylprop-2-en-1-one exhibited antifungal activities. Molecular studies were 

performed and demonstrated that the latter compound also reduced the expression of 

aflR and aflS as well as aflD, aflK, and aflQ.  

Author suggested that these compounds might act directly on the AFB1 biosynthesis 

pathway by inhibiting aflR and aflS.  
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Gallic acid  
 
 
Gallic acid is another compound that has been demonstrated as anti-aflatoxigenic agent 

and occurs in a great quantity of plants such (e.g. clove, origan, Salvia officinalis). Other 

uses of this compound include the creation of transgenic plants with elevated levels of 

gallic acid that resist Aspergillus flavus contamination (Jermnak et al., 2012). 

Cary et al. (2003) demonstrated that gallic acid was an effective compound to inhibit 

AFB1. In A. flavus, treatment at 0.25% with this compound showed a strong inhibition of 

aflD and aflM expression but interestingly, aflR levels were only slightly reduced.  

Authors suggested that an external transcription factor, involved in oxidative stress and 

interacting with aflR might be down regulated and thus, the efficient transcription of 

AFB1 genes was disrupted causing the inhibition of aflatoxin production.  

 

Methyl syringate  

 

This compound is a derivative of gallic acid and was isolated from the essential oil of 

Betula alba by Jermnak et al., (2012). It is capable to inhibit AFB1 production in a dose-

dependent manner in A. parasiticus and A. flavus strains. Four different concentrations 

were tested and, for both strains, AFB1 was no longer detected after exposure at 4 mM. 

This effect was accompanied with a slight impact on fungal growth.  

In addition to this, methyl syringate inhibited, in a dose-dependent manner, norsolorinic 

acid production with an IC50 value of 0.8 mM. This response indicated that inhibition of 

aflatoxin occured at earliest stages of the pathway. The mRNA levels of aflR, aflC and aflP 

were analyzed demonstrating a down-regulation of all of them.  

For authors, inhibition of aflatoxin by methyl syringate is a result of the down-regulation 

of aflR.  

 

Citral  

 

Citral (3,7-dimethyl-2,6-octadienal) or lemonal, is a compound present in several plants 

such as lemon, orange and derivatives. Its anti-aflatoxigenic effect was demonstrated by 

Liang et al., (2015) and its impact on several genes of the aflatoxin gene cluster was 

analyzed. Different citral concentrations resulted in AFB1’s inhibition ranging from 23.5 
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to 60.5%. In terms of fungal inhibition, citral significantly reduces A. flavus growth by 

61.1% at 1.68 mM and this inhibition was complete at 2.80 mM. In addition to this, 

mRNA levels were measured from day one to day seven in order to observe the kinetics 

of the effect. Contrary to other compounds, citral induces a complete inhibition of aflT at 

all tested-time. Other genes coding for aflM, aflP, aflR and aflD were also significantly 

different.  

Therefore, under citral treatment, aflR and aflD were only slightly inhibited while other 

such as aflM and aflP were more impacted. Moreover, at day 7 aflR and aflD levels were 

comparable to the control.  

 

In order to conclude, the structure of each of these isolated compounds that have been 

demonstrated as AFB1 inhibitors is presented in the Figure 25.  
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Figure 25: Structures of AFB1 inhibitory molecules 
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3.6 Conclusion  

 

As demonstrated during the bibliography study, contamination by fungi represents an 

important issue taking in consideration that not only fungal contamination is a 

constraint, but that also Aflatoxin B1 production represents a dangerous problem for 

human and animal’s health.   

Since then, numerous strategies are used in order to prevent mycotoxin occurrence in 

food commodities. Within these preventive methods, one of the most preoccupying is 

the use of pesticides.  

In order to offer an alternative strategy, the use of natural products that inhibit 

mycotoxin production could be taken in consideration. In particular, works based in the 

properties of these natural products as anti-aflatoxigenic agents have demonstrated that 

it could be a viable strategy to inhibit AFB1 production.  

Nevertheless, the exact mechanism of action by which these natural products prevent 

AFB1 production lacks of a lot of information.    

Since AFB1 production is a complex and not understood mechanism, the molecular 

study of the genes intervening during AFB1 production is a key element to understand 

the impact that natural products have over the genetic machinery in charge to produce 

this toxin.  
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3.7 Objectives   

 

According to this overall context, the objectives of the present work will be oriented 

towards two principal axes.  

The first one aims the construction of a molecular tool to understand the mechanism of 

action by which natural products inhibit AFB1 production in Aspergillus flavus. In fact, as 

demonstrated in bibliography, most of the reported works mainly studied the impact of 

natural molecules over the principal regulator of the pathway aflR but little is known 

about the effect on the rest of the genes belonging to the AFB1 cluster. Thus, the present 

molecular tool was developed in order to simultaneously measure the mRNA expression 

levels of the entire AFB1 gene cluster.  

In addition to this, while using natural products as AFB1 inhibitors we considered that 

the study of the external factors that are involved in the regulation of AFB1 can be a 

helpful skill to elucidate the mechanisms of action of these natural products.  

For that, within the construction of the molecular tool some of the principal genes that 

are involved in AFB1 global regulation were also included.  

 

Several works that had already evaluated the AFB1 inhibition by natural products in a 

great number of genes mainly use microarrays or RNA-Seq techniques in order to have a 

wide vision of the inhibitory agent. Even if this technique has great advantages at big-

scale, the interpretation of the mechanism of action is a difficult process since the precis 

role of most of the genes belonging to the Aspergillus genome has not been reported. 

Taking this in consideration, the construction of the present molecular tool uses the q-

PCR technique which allows targeting a reduced number of genes with the advantage of 

include specific genes that have been already reported to directly or indirectly interact 

with AFB1 production.  

The second aim of this study relies in the investigation of new natural sources to inhibit 

AFB1 production. Since pesticides is nowadays of the most used methods to inhibit this 

toxin and taking in consideration that pesticides have been demonstrated as hazardous 

for human and animal’s health, alternatives strategies are needed.  
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For this, the use of natural products represents a strategy that could offer several 

advantages such as an eco-friendly alternative as well as a potential element to inhibit 

mycotoxin production. According to this, two isolated molecules (eugenol and piperine) 

that have been previously identified as anti-aflatoxigenic agents were characterized by 

using the developed q-PCR molecular tool. In addition to this, Mediterranean and 

Mexican plants were also evaluated in order to report their efficacy as AFB1 inhibitors 

as well as their molecular impact was also characterized.       
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4.1 Chapter 1 
   

Deciphering the anti-aflatoxigenic properties of eugenol 

using a large-scale qPCR approach  

(Article 1 – Toxins, 8 (Basel), 123) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

93 
 

Introduction  
 
 
AFB1 production is a complex mechanism that involves numerous genetic elements. 

Although the final biosynthesis of this mycotoxin is known to occur in the AFB1 gene 

cluster, little is known about the influence that external regulators may have on the 

cluster and thus, on AFB1 production.  

To date AFB1’s inhibition is an important topic of research, the study of this gene 

network as a global fungal mechanism is of great importance. This could lead not only to 

understand which of the genes are intrinsically involved during AFB1 production but 

also, to increase the understanding of the mechanisms by which this toxin is controlled 

and possibly inhibited.   

According to this, an important number of natural compounds have been demonstrated 

as anti-aflatoxigenic agents. Nevertheless, even if they effectively inhibit toxin 

production, their precis mechanism of action is yet to be elucidated.  

Taking advantage of the great available information that has already been reported for 

the Aspergillus flavus genome, we constructed a q-PCR molecular tool involving a total of 

60 genes where the entire AFB1 cluster consisting in 27 genes, but also 33 external 

regulatory factors were included.  

First of all, the present q-PCR molecular tool needed to be tested and validated by using 

a molecule that was already demonstrated to greatly inhibit AFB1 production.  

It has to be noted that within the last years, one of the eco-friendliest strategies against 

AFB1 production resides in the use of natural compounds and to date, molecules from 

several spices and plants are used for this purpose.  

For instance, Eugenol is a molecule that naturally occurs in species such as clove and 

cinnamon but also in plants like basil. Moreover, its anti-aflatoxigenic ability is known 

since 1999. In order to validate our molecular tool, Eugenol seemed to be a good 

candidate.  

Thus, the work below reports in detail the construction of the molecular tool as well as 

the impact of the inhibitor molecule Eugenol, on the expression of the 60 analyzed 

genes.   
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Conclusion  
 
 
We demonstrated that in Aspergillus flavus, the impact of the anti-aflatoxigenic molecule 

Eugenol occurs in a transcriptomic manner and that this molecule modulates some of 

the external regulatory factors linked to AFB1 biosynthesis.  

Analysis of the entire cluster gave an interesting observation of Eugenol’s impact. For 

instance, we observed that with no longer detectable levels of AFB1 production, the gene 

expression of the main regulators aflR-aflS was only moderately inhibited. Nevertheless, 

this inhibition was sufficient to strongly decrease the expression levels of the other 

genes belonging to the AFB1 cluster with the only exception of aflT.  

In addition to this, genes coding for the first steps of the enzymatic cascade pathway 

were less inhibited than other genes coding for the middle and latter steps.  

Since aflR/aflS genes were not completely inhibited by treatment, this suggests that a 

remaining AflR/AflS protein complex was still formed and that this complex could be 

sufficient to activate genes coding for earlier steps of the AFB1 cascade. However, it is 

likely that the available quantity of complex was not enough to allow the transcription of 

further genes coding for middle and final steps of the enzymatic cascade.   

 

This study did not allow a complete elucidation of the mechanism of action of Eugenol 

since among the regulatory factors that were modulated, some of the relationships with 

AFB1 synthesis are still lacking. Nevertheless, this was an interesting result since it 

points out the need to study new interactions between genes that could be the target for 

further works.  

 

We estimate that the molecular approach developed here can represent a useful tool for 

a first characterization of the molecular impact that natural products have, not only on 

the entire AFB1 cluster but also in some of the most important transcriptional factors 

that are involved in toxin production. This could highlight some external stimuli that 

have direct consequences in mycotoxin production and that could therefore be 

integrated in a structure-function screening procedure of new anti-aflatoxigenic 

molecules. 
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4.2 Chapter2   
 

The anti-aflatoxigenic molecule Piperine modulates 

aflatoxin’s pathway and oxidative stress response in 

Aspergillus flavus  

(Article 2 – submitted in Molecular Microbiology). 
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Introduction  
 

 

Once the molecular tool was validated we were interested to know more about the 

impact that other natural products have during AFB1 inhibition. 

For that, another pure molecule, originally occurring in black pepper, was investigated. 

In fact, piperine is the major compound found in black peppers belonging to the Piper 

nigrum L. and Piper longum L. species.  

 

As for Eugenol, this molecule was already demonstrated as an anti-aflatoxigenic agent 

but its mechanism of action has not been identified. In addition to this, piperine has been 

reported as an antioxidant compound thus, having the capacity to scavenge Reactive 

Oxygen Species (ROS) (Srinivasan, 2007). Indeed, some of the potent AFB1 inhibitors 

have also been identified as antioxidant compounds which make interesting their study 

over the fungal oxidative stress response mechanisms.  

 

In the last years, oxidative stress response in fungi has attired the attention of 

researches since this factor has been closely related to secondary metabolites 

production. For instance, it has been demonstrated that several genes coding for 

oxidative stress are involved in AFB1 production.  In addition to this, a co-regulation of 

some of genes belonging to AFB1 gene cluster and oxidative stress-response elements 

has also been demonstrated  (Hong et al., 2013).  

 

Thus, the principal aim of the next article was to use Piperine to inhibit AFB1 production 

to observe its impact on the entire AFB1 gene cluster and in some external regulatory 

factors.  

Due to the anti-oxidative properties of piperine, we focused our research in the 

investigation of its molecular impact on genes coding for oxidative stress response.  
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Abstract 

 

The presence of the pathogenic fungus Aspergillus flavus in food commodities represents 

a potential danger for humans and animals since it is capable of producing the 

carcinogenic toxin: Aflatoxin B1. To date, several strategies have been developed to 

reduce this contaminant. Nevertheless, some of them are non-environmental friendly or 

even toxic for human’s health. Within this context, the use of natural products could 

represent an alternative strategy to limit toxin production without affecting microbial 

biodiversity. In the present study, piperine, a natural antioxidant and major compound 

of black peppers, was evaluated for its anti-aflatoxigenic properties as well as its impact 

on oxidative stress response using a q-PCR approach. We demonstrated that this 

molecule inhibits AFB1 production in Aspergillus flavus with only a moderate impact in 

fungal growth. In addition to this, morphological and molecular studies were performed.   

Piperine inhibits AFB1 production in a transcriptional manner and interestingly, this 

response was accompanied by a modulation of genes coding for oxidative stress 

response and fungal enzymatic defense. In fact, contrary to our expectatives, Piperine 

strongly up-regulates genes belonging to superoxide dismutase and catalase families 

while catalase enzymatic activity followed the same up-trend. We also emphasize the 

modulation of different b-ZIP transcription factors involved in stress defense systems 

such as atfA and ap-1. Taken together, these results demonstrated that piperine has a 

transcriptomic impact on Aflatoxin B1 pathway and that this effect was accompanied 

with an increased modulation of oxidative-stress elements in Aspergillus flavus.     

 

Key words: Aflatoxin B1, inhibition, oxidative stress, gene expression, enzymatic 

activity, piperine.  
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Introduction 

 

Mycotoxins are toxic secondary metabolites produced by some filamentous fungi. 

According to the Food and Agricultural Organization (FAO 2003) they contaminate 

about 25% of the world’s food commodities leading to important sanitary problems as 

well as economic and agricultural losses. Some recent surveys reported that worldwide 

contamination of cereals and agricultural commodities is becoming even more frequent 

(Streit et al., 2013). To date, the precise role of mycotoxins in fungal physiology has not 

been clearly elucidated. Nevertheless, these compounds could be involved in fungus 

defense and interspecies competition (Thippeswamy et al., 2014; Vaishnav and Demain, 

2011). Nowadays, more than 400 mycotoxins have been identified and among them, 

aflatoxins are considered as the most important family. Indeed within Aflatoxin’s group 

Aflatoxin B1 (AFB1) is the most dangerous one (Iram et al., 2016). This mycotoxin is a 

potent hepatocarcinogenic agent in humans (I.A.R.C. 1993), inducing liver cancer 

through a mutation in the p53 gene sequence, which encodes a tumor-suppressor factor 

(Hsu et al., 1991). AFB1 is synthesized by at least 20 species belonging to the Aspergillus 

genus and more precisely to the Flavi section. Aspergillus flavus and Aspergillus 

parasiticus are the most frequent toxinogenic fungi in crops, especially in tropical and 

subtropical zones where climate conditions favor their development on a wide variety of 

products (Baranyi et al., 2015). In fact, it is estimated that more than 500 million people 

residing in Africa, Latin America and Asia are exposed to exceeded normative levels of 

mycotoxins, including aflatoxins (Moy and Miller, 2016). Moreover, AFB1’s 

contamination was also recently reported on crops produced in other geographical 

regions such as Europe, demonstrating an increase in the geographical distribution of 

this food contaminant potentially related to climate changes (Battilani et al., 2016; 

Perrone et al., 2014). Thus, consumption of contaminated products exposes human and 

animal populations to high sanitary risks. Based on this evidence, limiting AFB1’s 

exposure has become an essential target for research. Different approaches, using 

physical, chemical and biological methods have been developed for contamination 

control and reviewed in a recent work (Jalili, 2015). In addition to this, the use of anti-

aflatoxigenic natural products such as spices, plant extracts or essential oils could be 

considered as a complementary or alternative strategy against mycotoxin biosynthesis 

(Sakuda et al., 2016; Holmes, Boston and Payne 2008). For instance, the biological 
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properties of piperine, a major active principle of black and long peppers (Piper nigrum 

L. and Piper longum L.), has been investigated in the last decades (Srinivasan, 2007). 

This molecule was demonstrated as a scavenger of Reactive Oxygen Species (ROS) in 

vitro (Mittal and Gupta, 2000) as well as an effective inhibitor of aflatoxin production in 

fungi (Lee, Mahoney and Campbell, 2002; Madhyastha and Bhat, 1984). Nevertheless, 

the exact mechanism of action leading to inhibition of AFB1’s synthesis in toxigenic fungi 

was yet to be elucidated. The understanding of molecule’s mechanism of action as well 

their impact on biosynthetic pathways involved in mycotoxin production, is of great 

importance. It can be a useful strategy to promote the use of natural compounds but it 

also allows a better understanding of the nature of environmental stimuli leading to 

mycotoxin production thus, providing new targets to limit toxin production. This 

strategy can be reinforced by the fact that several anti-aflatoxigenic compounds do not 

have an important impact on fungal development contributing in this manner, to 

preserve natural biodiversity. Therefore, the aim of this study was to investigate the 

mechanism of action through which piperine inhibits AFB1 production and study its 

impact on oxidative stress response. For that, gene expression of the AFB1’s cluster as 

well as different transcription factors involved in fungal stress response were analyzed 

using a previously-developed q-PCR molecular approach (Caceres et al., 2016). We 

demonstrated that piperine inhibits AFB1 production by down-regulating the 

expression of almost all genes of the AFB1’s biosynthetic pathway. Moreover, this 

response was accompanied by a modulation of several important oxidative-stress genes 

as well as an increase of catalase’s enzymatic activity. 

 

Materials and Methods  

 

Chemicals and Reagents  

 

Lyophilized piperine standard was purchased from Sigma-Aldrich (Saint-Quentin-

Fallavier, France). Stock and work solutions were diluted in acetonitrile and stocked at 

4°C until use. All solvents were analytical grade and purchased from Thermo Fisher 

Scientific (Illkirch, France). 
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Fungal Strain and Culture Conditions  

 

The Aspergillus flavus NRRL 62477 strain, previously identified as an AFB1 producer, 

was used in this study (El Mahgubi et al., 2013). All cultures were performed on Malt 

Extract Agar (MEA) medium (Biokar Diagnostics, Allone, France) and maintained in the 

dark at 27°C during 4 days. In order to determine the optimal piperine’s concentration 

capable to inhibit AFB1 with a limited impact on fungal development, different 

concentrations of piperine were tested and in all cases, solvent addition in culture 

medium did not exceed 25 µL. Control cultures were performed with the same volume of 

acetonitrile in the medium; this latter concentration having been identified as a no-effect 

dose on both, fungal growth and AFB1 production. Before inoculation, media were 

covered with sterile cellophane layers (Hutchinson, Chalette-sur-Loing, France) as 

described by Leite, Magan and Medina (2012) and then, centrally inoculated using a 

calibrated spore suspension (106 spores/mL) prepared from a seven-day stock culture. 

Six replicates of each group were prepared and the entire experiment was repeated 

three times.   

 

Fungal growth, Morphology and Spore Quantification  

 

Fungal growth was evaluated by measuring colony diameters (length and width).  

Macroscopic characteristics (colour of conidial areas, thallus margin and texture, aspect 

of conidial heads and colony reverse, etc.) were observed under stereomicroscope 

(Olympus SZX9 –X12-120). 

Microscopic observation of conidial heads was performed by staining sample material 

with a lactophenol blue dye solution and fungal structures were observed using an 

Olympus CX41 microscope with a total magnification of x400. In order to observe the 

impact of piperine on sporulation, spore quantification was realized at the end of the 

incubation. For that, cultures were suspended in 50 mL of Tween 0.05% using a 

stomacher bag where spores were carefully scraped up off the mycelium. Samples were 

homogenized with a Stomacher Lab-Blender 400 during 90 s and filtered through sterile 

gauze. To recover the remaining spores, three supplementary rinses were made, each 

one with 20 ml of Tween (0.05%). Spores were counted on a Malassez cell and at least 2 

dilutions were made to define the optimal counting conditions. Spore density was 
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calculated as follows: SD = SC/(���) where SC is the spore count and r is the average 

colony radius.   

Aflatoxin B1 Extraction and Determination by HPLC 

For AFB1 extraction, culture media were mixed with 25 mL of chloroform. Samples were 

agitated for 2 h on a horizontal shaking table at 160 rpm at room temperature. 

Chloroform extracts were filtered through a Whatman 1PS phase separator (GE 

Healthcare Life Sciences, Vélizy-Villacoublay, France), evaporated at 60 °C to dryness 

and dissolved in 500 μL of a water-acetonitrile-methanol (65:17.5:17.5; v/v/v) mixture. 

All samples were filtered through a 0.45 μm disk filters (Thermo Scientific Fisher, 

Villebon-Sur-Yvette, France) to eliminate possible impurities. Sample analysis was done 

with a Dionex Ultimate 3000 UHPLC system (Thermo Scientific, Illkirch, France) using a 

liquid chromatography column Luna® C18 (125 × 2 mm, 5 μm, 100 Å) (Phenomenex, 

Torrance, CA, USA) at 30 °C. Separation conditions were adapted from Fu et al.(2008) 

with mild modifications. A 20 min isocratic mode was delivered at 82.5% of eluent A: 

acidified water (0.2% of acetic acid) and acetonitrile (79:21 v/v); and 17.5% of eluent B: 

pure methanol. Flow rate was at 0.2 mL/min with an injection volume of 10 μL. AFB1 

was detected using a fluorescent detector at 365/430 nm excitation/emission 

wavelengths. Peak identity was further confirmed by analyzing absorption spectrum 

with a diode array detector coupled to the system. Production levels of AFB1 in media 

were calculated based on a standard calibration curve. 

 

Isolation of Fungal RNA, RT-PCR and q-PCR Conditions  

On day 4, mycelia were separated from media and grounded under liquid nitrogen. RNA 

was purified with a Qiagen RNeasy PlusMinikit (Qiagen, Hilden, Germany). Quality of 

samples was verified by gel electrophoresis (1.2% of agarose) and A260/A280 ratio, while 

concentrations were measured using a NanoDrop ND1000 (Labtech, Palaiseau, France). 

First-strand cDNA synthesis was carried out by RT-PCR.  A first denaturation step was 

done at 70 °C for 5 min and reverse transcription was performed as follows: 5 min at 37 

°C; 60 min at 42 °C and 15 min at 85 °C. All primer sets were designed based on the 

genomic data of the Aspergillus flavus strain NRRL3357 (GenBank accession number 

EQ963478A) and pair sequences were adapted from our previous work (Caceres et al., 

2016). A total number of 35 genes were tested: the 27 genes of the AFB1’s biosynthesis 
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cluster in A. flavus (Ehrlich et al., 2004) and 8 genes coding for external regulatory factors. 

The choice of these latter was based on their implication in oxidative stress response in 

fungi, which includes:  

-Enzymatic fungal response: cat2, catA, mnSOD and sod1.  

-Transcription factors involved in oxidative stress response: srrA, atfA, msnA and ap-1.  

Experiments were carried out using a ViiA7 Real-Time PCR System (Applied Biosystems, 

Forster City, CA, USA). The 384 wells’ plates were prepared by an Agilent Bravo 

Automated Liquid Handling Platform (Agilent Technologies, Santa Clara, CA, USA). Each 

well contained a final volume of a 5 μL mix using Power SYBR® Green PCR Master Mix 

(Applied Biosystems, Warrington, UK) as a fluorescent dye. Negative controls, in which 

no reverse transcriptase enzyme was added, and a no template control were included to 

control reagents contamination. Three-step quantitative PCRs were performed as 

follows: a first one-hold stage at 95 °C for 10 min followed by 45 cycles (95 °C for 15 s 

and 60 °C for 30 s) and a final extending step (95 °C for 15 s, 60 °C for 1 min and 95 °C 

for 15 s) for melt curve analysis.  

 

Gene expression data analysis 

 

Gene expression data was analyzed with a Quant-Studio Real time PCR software v1.1 

(Applied Biosystems, Courtaboeuf, France). The housekeeping gene β-tubulin, proved as 

being the most stable after analysis with the Normfinder algorithm (Andersen et al., 

2004) was used as a reference for data normalization. Gene expression values were 

determined using the 2−ΔΔCt analysis method (Livak and Schmittgen, 2001) and final 

results are expressed based on a control value fixed at 1.  

 

Fungal Enzymatic activity  

 

Sample preparation  

 

At the end of the incubation period, mycelium was separated from the medium and 

cytosolic superoxide dismutase (SOD) and total catalase (CAT) activities were 

determined. For each assay, 200 mg of mycelium were suspended in 1 mL of cold buffer: 

catalase samples were placed in a 50 mM potassium-phosphate buffer (ph 7.0 
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containing 1 mM EDTA) and SOD samples were placed in a 20 mM HEPES buffer (pH 7.2; 

1 mM EGTA, 210 mM mannitol and 70 mM sucrose). Samples were then snap-frozen in 

liquid nitrogen and kept on ice until homogenization using a Precellys®24 coupled with 

a Cryolys system (Bertin Technologies, Montigny-le-Bretonneux, France) in order to 

avoid enzyme degradation.  

  

Superoxide dismutase and Catalase tests   

 

After homogenization, all samples were centrifuged at 9.6 g for 15 min at 4°C and both, 

enzymes and total proteins were determined in supernatants. Proteins were measured 

using a Pierce BCA Protein Assay Kit (Thermo Scientific, Villebon-Sur-Yvette, France) 

and determination of enzymatic activity was performed using commercial kits of 

Catalase (CAT-707002) and Superoxide Dismutase (SOD-706002) (Interchim, 

Montluçon, France) according to the manufacturer’s instructions. At the end of the 

experiment, sample absorbance was determined at 540 and 450 nm for CAT and SOD 

assays respectively, using an ELISA plate reader (Spectra thermo scan, Tecan, NC, USA). 

All enzymatic activities were normalized according to the protein content. For CAT 

assays, results were expressed in nmol min-1 mg-1 ps and for SOD assays in U mg-1 ps 

where one unit defines the amount of enzyme needed to exhibit the dismutation of 50% 

of the superoxide radical. Experiments for each enzymatic measure were repeated by 

triplicate. 

 
Statistics 

Data analyses were analyzed using GraphPad Prism v4 software. A non parametric 

Mann-Whitney’s test was used to determine the differences between control and treated 

groups and differences were considered to be statistically significant when p-value was 

lower than 0.05. 

Results  

Effect of Piperine on AFB1 production and fungal growth in Aspergillus flavus   

 

Five concentrations of piperine were evaluated on both AFB1 production and fungal 

growth. We observed that piperine inhibits AFB1 in a dose-dependent manner, where a 
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concentration of 0.006 mM significantly reduces toxin production by 30.21% and AFB1 

was no longer detectable at 0.17 mM (Figure 1). This response was accompanied by a 

moderate impact on the development of A. flavus, showing a significant diminution of 

the fungus growth rate by 11.67% with 0.04 mM of piperine, while a 35.42% of growth 

inhibition was reached using 0.17 mM. A concentration of 0.04 mM was chosen as the 

optimal condition for further experiments, since it decreased toxin production by 95% 

with only a slight impact on fungal growth.  

 

 

Figure 1. Effect of piperine on Aflatoxin B1 (AFB1) production and fungal growth in A. flavus 
NRRL 62477. AFB1 was estimated by High Performance Liquid Chromatography (HPLC) and 
fungal growth by colony diameter. Both measures were taken on day 4 on three biological 
replicates. ns=no significant changes; * p-value <0.05; ** p-value <0.01; *** p-value<0.001.  
 

Morphological changes in presence of piperine  

 

The presence of piperine in the culture medium resulted in a marked reduction of A. 

flavus’ aerial mycelium that was left only in the center of treated cultures, as well as the 

appearance of pronounced ridges in the colony (Figure 2). In addition, basal mycelium’s 

aspect appeared to be more compact, with packed Aspergillus heads, compared to that of 

the control. However, piperine did not have an impact on other morphological aspects of 

Aspergillus flavus such as pigmentation or microscopic features, since conidial heads 
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maintained the characteristic morphology of the species (data not shown). In order to 

evaluate piperine’s effect on sporulation, spores’ quantity and density upon treatment 

were analyzed. Results showed that quantity of spores was not significantly decreased, 

with log10 values of 9.100±0.015 and 9.000±0.016 for control and treatment 

respectively. Similarly, no significant changes were observed for spore density between 

control and piperine treated groups (log10 values of: 7.837 ± 0.007 v/s 7.893 ± 0.036 

sp/cm2 respectively). 

 

Figure 2. Macroscopic effects of piperine on day 4 of A. flavus NRRL 62477 growth in MEA 
medium. Figures A and B represent control mycelia culture and C and D treated mycelia culture.  

 
Piperine down-regulates gene expression of AFB1 biosynthetic pathway  
 
In A. flavus, AFB1’s synthesis is the result of an enzymatic cascade involving 27 genes, 

grouped in a cluster. The impact of piperine on the entire AFB1 biosynthetic pathway is 

represented in figure 3.  

Based on the statistical analysis, 25 out of the 27 genes were significantly down-

regulated following piperine exposure compared to control. In a general manner, no 

significant changes were observed for aflT (p-value= 0.5653), neither for the principal 

activator of the cluster aflR (p-value= 0.4047); nevertheless, the expression of this latter 

was decreased by 1.11 folds. For genes that were statistically modulated, two presented 

levels decreased by less than 2 folds (aflS and hypD); 9 genes were mildly inhibited 
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between 2 to 4 folds (e.g. aflC, aflD, aflQ) and 13 genes presented inhibition rates from 4 

to 8 folds; aflN, aflW and aflK being the most down-regulated genes with respective fold 

changes of 6.77, 6.82 and 7.25 and p-values lower than 0.0001. Gene expression ratios 

and p-values of the test are listed in Table S1.   

 

 

Figure 3. Fold change expression of genes belonging to cluster responsible for aflatoxin 

biosynthesis in response to piperine at 0.04 mM. Red dotted line represents control 

expression; error bars represent the standard error of mean. ns = no significant changes; ** p-

value <0.01; *** p-value<0.001. 

Effect on oxidative stress genes and enzymatic activities  

In order to better characterize the effect of piperine on A. flavus, several external 

regulatory genes involved in oxidative stress response were also tested. Results showed 

that after 4 days of incubation, 7 out of the 8 analyzed genes were significantly 

modulated (Figure 4). We observed a down-regulation of gene expression of two 

transcription factors: msnA by 1.35 folds (p=0.0102) and srrA by 1.19 folds (p=0.0125).  

Otherwise, other tested genes were over-expressed following piperine exposure:  

- The transcription factor atfA was up-regulated by 2.32 folds (p<0.0001) while ap-1 

presented an over-expression of 1.43 folds compared to control (p= 0.004).  

- Genes encoding enzymes such as catalases and superoxide dismutases were over-

expressed with fold changes of: 1.72 for catA (p<0.0001), 2.06 for cat2 (p<0.0001) and 

3.31 for sod1 (p<0.0001). In addition to this, no significant change was observed for 

mnSOD (p=0.2906). All gene expressions are illustrated in Figure 4.  

In order to investigate the impact on final products of the above modulated genes by 

piperine, total catalases and cytosolic superoxide dismutases activities were measured.  
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As shown in figure 4-A, enzymatic activity of catalase’s activity was significantly 

increased (+68%, p=0.0165) compared to the control. On the other side, SOD activity did 

not display significant changes even if a slight increase tendency was observed (Figure 

4-B).  

 

 

 

Figure 4. Effect of piperine treatment on gene expression coding for oxidative stress response and 
enzymatic activity defense in Aspergillus flavus. Red circle represents control expression. Figure A and B 
are representative assays of the activities of antioxidant enzymes including total catalase activity (4-A) 

and cytosolic superoxide dismutase (4-B). ns = no significant changes; * p-value <0.05; ** p-value 
<0.01; *** p-value<0.001.  
 

Discussion  

 

Black pepper is widely used for a variety of different purposes such as food condiment 

but also medicinal, insecticide, among others (Srinivasan, 2007). The Food and Drug 

Administration (F.D.A.) has classified this product as Generally Regarded as Safe (GRAS) 

(CITE:21CFR182.10) making of it an interesting agent against AFB1 production. Within 

the last decades, the identification of the chemical constituents of Piper genus has been 

investigated in order to elucidate their role in the different biological activities of black 
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pepper. Within this context, piperine, which represents between 2 to 8% of black pepper 

compounds (Madhyastha and Bhat, 1984), has been demonstrated to be an antioxidant 

as well as an anti-aflatoxigenic agent but its precise mechanism of action was not 

elucidated.  

Impact of piperine on AFB1 gene cluster  

Aflatoxins are furanocoumarins synthesized by an enzymatic cascade involving at least 

20 steps (Bhatnagar et al., 2003). Near of the chromosome 3, the 54th gene cluster 

coordinates this enzymatic response. The genes aflR and aflS are the main regulators 

and their activation is governed, independently one from another, by external regulators 

(Georgianna and Payne, 2009).  

In fact, aflR provides the gene transcription machinery to activate aflatoxin’s pathway 

and aflS acts as its co-activator by enhancing the levels of aflatoxin gene expression 

(Chang, 2003). As long as both genes are normally expressed, the two corresponding 

proteins AflR and AflS interact to form a functional activation complex (Kong et al., 

2014a). Once aflatoxin-conducive conditions are present, AflR binds to a palindromic 

site (5’-TCGN5CGA-3’) located in the promoter regions of the structural genes inducing 

the transcription of at least 19 of the AFB1 genes (Bhatnagar et al., 2006; Price et al., 

2006). It must be noted that this process represents only one phase of the complex 

mechanism that leads to aflatoxin B1 production.  

In the present study, mRNA levels of both regulators were decreased in piperine-

exposed cultures compared to those of the control. Despite the slight down-regulation of 

aflR, its co-activator aflS was more inhibited. Thus, the inhibition of both regulatory 

genes explain the marked negative effect in the expression of other genes belonging to 

the pathway which demonstrates that piperine induce a transcriptomic effect over the 

AFB1 gene cluster.  

We suppose that dysfunctional complexes of AflR-AflS were formed upon piperine 

exposure which causes a diminution on the activation of genes regulated by this 

complex. This is in agreement with the results obtained with other AFB1 inhibitors such 

as eugenol, D-glucal or Dioctatin A (Yoshinari et al., 2007; Zhang et al., 2014). We also 

observed that genes localized at the mid and end of the AFB1 cluster, such as aflN, aflK 

and aflW, presented the most important inhibitions, suggesting that the lack of 

activation complexes could have a more pronounced effect along the cluster as already 
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reported for eugenol (Caceres et al., 2016). Interestingly, as for eugenol, we observed 

that expression of hypD was less impacted by piperine. To date, the exact role of this 

gene is yet to be clarified, but it has been demonstrated to be involved in fungal 

development as well as secondary metabolite production (Ehrlich, 2009b). Finally, aflT 

was the only gene within the AFB1 cluster that was not modulated by piperine. This 

observation accords with the fact that this gene is not regulated neither by AflR nor by 

its co-activator AflS, because of the absence of an AflR binding-site on its promoter 

(Chang et al., 2004).  

 

Effect of piperine on oxidative stress response  

 

In fungi, oxidative stress is an important factor for secondary metabolite regulation 

(Narasaiah et al., 2006).  In addition to this, a recent study demonstrated that several 

genes belonging to the AFB1 cluster as well as genes coding for oxidative stress 

response have conserved motifs and could be co-regulated (Hong et al., 2013). 

One of the factors that modulate oxidative stress in fungi is related to changes in the 

environmental conditions which cause an alteration of normal intracellular ROS levels 

causing an imbalance between ROS production and scavengers (Apel and Hirt, 2004).  

To cope these changes, a phosphorelay pathway coupled to a MAP kinase module is 

activated (SAPK/MAPK) (Lara-Rojas et al., 2011). Within this pathway, several 

transcription factors activate enzymatic defenses in order to protect the cell from 

excessive levels of ROS and thus, damages to DNA, proteins and lipids (Montibus et al., 

2013).  

Thus, we studied the impact that piperine has over some of these transcription factors 

coding for oxidative stress response and corresponding to ap-1, atfA, srrA, msnA, cat2, 

catA, sod1 and mnSOD.  

Within these genes, ap-1 and atfA which are both bZIP transcription factors were up-

regulated. According to this, it is demonstrated that the bZIP-type transcription factors 

may regulate secondary metabolite production by binding to the promoters regions of 

the genes involved in the biosynthetic pathways (Yin et al., 2012, Hong et al., 2013).  

In regard to the up-regulation of ap-1, this gene can be modulated by both pro- and anti-

oxidative conditions, where in the latter condition, an up-regulation of the antioxidant 

enzymes’ activity is observed (Gomez del Arco et al., 1997). In addition to this, the study 
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of some antioxidants in cell systems revealed that these compounds can stimulate AP-1 

and by consequence also the expression of genes involved in ROS scavenging such as 

superoxide dismutases and catalases (Reverberi et al., 2005).  

In fact, the corresponding homologous and orthologous of ap-1 have been characterized 

in Aspergilli species. For instance, its over-expression in A. nidulans resulted in lower 

amounts of sterigmatocystin and this effect was accompanied with a modulation of the 

enzymatic activity of catalases (Yin et al., 2013). In the present study and using an A. 

flavus strain, our observations demonstrate that an over-expression of ap-1 was also 

accompanied with an AFB1 inhibition and that genes coding for catalase activity were 

up-regulated.  

Similar to this, atfA, another bZIP transcription factor was also up-regulated. 

Homologous of this gene in other fungi such as Botrytis cinerea and Fusarium 

graminearum have been demonstrated to be involved in secondary metabolite 

production (Van Nguyen et al., 2013; Temme et al., 2012). 

Nevertheless, the role that atfA has over the AFB1 biosynthesis remains unknown. In the 

present study, we demonstrated that the inhibition of AFB1 was accompanied with an 

over-expression of atfA suggesting that this gene plays a role during the biosynthesis of 

this toxin and further studies are needed.  

In 2010, Balázs et al. reported that in A. nidulans, a modulation of atfA was a key element 

for other genes coding for stress responses such as catA. This seems to be in accord with 

our results since a modulation of atfA was accompanied with an up-regulation of catA. 

Nevertheless, it is difficult to attribute this co-regulation only to aftA and not to the 

effect that other regulatory factors could directly have over the catA expression.  

In addition to this, we also observed that upon treatment msnA was down-regulated. 

Regarding to this, Chang et al., (2011) demostrated that ΔmsnA in A. flavus strain 

resulted in increased amounts of aflatoxin and in an up-regulation of catA expression.  

This does not seem to be our case since upon piperine’s treatment, a down-regulation of 

msnA was observed during AFB1 inhibition. Interestingly, catA expression was still up-

regulated.  

In fact, catA, cat2 and sod1 were significantly up-regulated upon treatment; these genes 

code for the activation of superoxide dismutases and catalases and they are involved in 

enzymatic fungal defenses.   

In general, superoxide dismutases intervene in the dismutation of superoxide radicals 
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into H2O2 while catalases transform H2O2 into H2O molecules and oxygen (Weydert and 

Cullen, 2011).  

In order to observe if the up-regulation of these genes had a final impact over the 

enzymatic response, the enzymatic activity of the total catalases (CAT) and cytosolic 

superoxide dismutases (SOD) was measured. We observed that upon piperine, CAT’s 

activity was significantly up-regulated but it was not the case for SOD activity.  

According to this, previous studies were performed with other AFB1 inhibitors 

demonstrating that such enzymatic activities were increased upon treatments. For 

instance, a study performed with cinnamaldehyde, resulted in AFB1 inhibition in A. 

flavus with significant increased levels of CAT while SOD activity was only slightly 

decreased (Sun et al., 2015).  

In addition to this, Reverberi and co-workers (2005) observed that the utilization of β-

glucans of cultures filtrates of Lentinula edodes inhibits AFB1 production in A. parasiticus 

and that this response was also accompanied with an enhancement of the antioxidant 

system. They suggested that an enhancement on the anti-oxidant system could impede 

AFB1 production and that this response could be related by the stimulation of 

transcription factors coding for oxidative stress response, as it seems to be our case.  

To conclude, piperine inhibits AFB1 production in A. flavus by down-regulating the 

mRNA expression levels of genes belonging to the AFB1 cluster. This response was 

accompanied by a modulation of genes involved in oxidative-stress response. In 

addition, an enhancement of catalase’s enzymatic activity was also observed.  

Taken together, our results demonstrated that in A. flavus, piperine impacts the 

antioxidant machinery involved in fungal defense leading to AFB1 inhibition.  
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Supplementary Data  

 

 

Table S1. Fold change expression and p-values of aflatoxin cluster genes in response to 0.04 mM 

of piperine. 

 

 

 

 

 

 

 

 

 

 

Access number Gene Fold change  p-value

AFLA_139340 aflS 1.39 0.0008

AFLA_139270 hypD 1.91 P<0.0001

AFLA_139310 aflE 2.25 0.001

AFLA_139390 aflD 2.43 P<0.0001

AFLA_139290 hypE 2.52 0.0025

AFLA_139330 aflH 2.63 P<0.0001

AFLA_139250 aflL 2.69 P<0.0001

AFLA_139370 aflB 2.73 P<0.0001

AFLA_139380 aflA 2.91 P<0.0001

AFLA_139240 hypB 3.72 P<0.0001

AFLA_139200 aflQ 3.76 P<0.0001

AFLA_139410 aflC 3.83 0.0007

AFLA_139230 aflI 4.11 P<0.0001

AFLA_139160 aflX 4.22 P<0.0001

AFLA_139260 aflG 4.25 P<0.0001

AFLA_139210 aflP 4.29 P<0.0001

AFLA_139320 aflJ 4.39 0.0008

AFLA_139400 hypC 4.46 P<0.0001

AFLA_139300 aflM 4.83 0.0043

AFLA_139150 aflY 5.03 P<0.0001

AFLA_139220 aflO 5.49 P<0.0001

AFLA_139180 aflV 5.66 P<0.0001
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Conclusion 

 

In general, the study of the entire AFB1 gene cluster under piperine exposure, confirmed 

that, as previously described for eugenol, this molecule inhibits AFB1 production in a 

transcriptional manner.  

Regarding to this, only a slight inhibition of aflR was detected but a stronger impact in 

the co-activator aflS was observed.  

As for Eugenol, we can hypothesis that the decreased mRNA levels of the main 

regulators in the pathway conducted to an inefficient formation of the regulatory 

protein complex AflR-AflS that can be the principal reason to explain the down-

regulation of the subsequent genes belonging to the cluster. As a consequence, this lead 

to the diminution of AFB1 production.  

 

Concerning the study of the oxidative stress response, Piperine treatment resulted in an 

increased modulation of key stress elements such as superoxide dismutases and 

catalases either at gene expression as well as at enzymatic level. Transcription factors 

such as ap-1 and atfA also seem to play an important role in the piperine’s mechanism of 

action.  

These results, compared to other works that reported a similar effect, demonstrate that 

piperine can positively modulate oxidative stress response while inhibiting AFB1 

production.  

Such a response is an unusual phenomenon since some antioxidants compounds are 

mainly related to inhibit AFB1 production due to the alleviation of oxidative stress 

response (Huang et al., 2009). Thus, further studies are needed to understand and 

identify the principal factor(s) that are involved in this phenomenon. 

 

The analysis of piperine effects compared to eugenol data, reinforce the idea that natural 

products can trigger different pathways leading to AFB1 inhibition. It confirms that 

AFB1 biosynthesis is connected to several different cellular processes and that it can be 

modulated by different external stimuli. It seems now necessary to analyze more in 

depth these different pathways since it is possible that one gene could be the common 

“key” that has to be targeted to inhibit AFB1 production.  
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4.3 Chapter 3 
   
 

Identification of an anti-aflatoxigenic aqueous extract from 

Micromeria graeca and elucidation of its molecular 

mechanism in Aspergillus flavus  

(Article 3 – submitted in Food Chemistry). 
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Introduction  
 
One of our goals was to identify new plants extracts that could be used as AFB1 

inhibitors without affecting fungal development in order to ensure food safety and 

preserve biodiversity.  

For that, we started screening plant extracts, taking benefit of international 

collaborations of the laboratory and the local frequent use 

 

 

 of some plants in traditional medicine due to their known benefits. 

We also focused our attention mostly in aqueous extract from plants.  Indeed, some 

studies compared the efficacy of both essential oils and aqueous extracts to limit fungal 

development and/or AFB1 production and demonstrated that aqueous extracts were at 

least as efficient as essential oils (Kumar et al., 2010; Sarikurkcu et al., 2010).  

Moreover, aqueous extracts could present several practical advantages compared to 

essential oils such as: 

 

- lower toxicity: most of medicinal plants are ingested as decoction or infusion so 

aqueous extracts may be not toxic as essential oils 

- limited impact on organoleptic qualities of treated foods since these extracts do 

not contain lipophilic volatile compounds which are the responsible for this 

detrimental effect in essential oils. 

 

In the next article the study of a medicinal plant from the Mediterranean region and 

identified as Micromeria graeca family (commonly known as Hyssop) was investigated.  

This plant is principally known to serve as expectorant and anti-inflammatory agent. 

Nevertheless, to date its utilization as antifungal or anti-aflatoxigenic agent has not been 

reported.  

First of all, it was demonstrated that hyssop’s aqueous extract greatly inhibits AFB1 

synthesis from 10 mg/ml of hyssop solution and that this effect was accompanied with 

only a mild reduction of fungal development.  

On the other side, hyssop also generated important morphological changes in the 

Aspergillus flavus strains.  
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Since the extract of this plant was demonstrated to be an effective AFB1’s inhibitor, its 

mechanism of action was investigated using our q-PCR approach.  

 

Once again, both regulators of AFB1 gene cluster aflR and aflS were inhibited. 

Concerning the study of the external regulatory factors, Hyssop’s aqueous extract 

modulated a total of 15 genes such as veA, mtfA but also msnA. In addition to this, a 

negative modulation of genes coding for oxidative stress response was also observed. 
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Abstract 

Amongst all of the food-contaminating mycotoxins, aflatoxins, and mainly aflatoxin B1, 

emerge as the most toxic and economically-costly. As green agriculture is thriving to replace 

fungicides, natural preventive strategies are developed to limit crop contamination by these 

toxic fungal metabolites. In this study, we demonstrated that an aqueous extract of the 

medicinal plant Micromeria graeca - known as hyssop - completely inhibits aflatoxin 

production by Aspergillus flavus without reducing fungal growth. The molecular inhibitory 

mechanism was explored by analyzing the expression of 61 genes including 27 aflatoxin 

biosynthesis cluster genes and 34 secondary metabolism regulating genes. This analysis 

revealed a 3-fold down-regulation of aflR and aflS encoding the two internal cluster co-

activators, resulting in a drastic repression of all aflatoxin biosynthesis genes. Hyssop also 

targeted fifteen regulating genes including veA and mtfA, two major global-regulating 

transcription factors. The effect of this extract is also linked to a transcriptomic variation of a 

number of oxidative stress-defense genes such as msnA, srrA, catA, cat2, sod1, mnsod and 

stuA. In conclusion, hyssop inhibits AFB1’s synthesis at the transcriptomic level. This 

aqueous extract constitutes a promising natural-based solution to control AFB1 

contamination.  

Keywords: Aflatoxin B1, Aspergillus flavus, hyssop, inhibition, oxidative stress. 
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1. Introduction 

Aspergillus flavus is a saprophytic fungus developing on many crops and mostly 

maize, oilseed crops such as peanuts, as well as dried fruit and spices (Klich, 2007). It is the 

main producer of Aflatoxin B1 (AFB1), the most potent naturally occurring carcinogen. 

AFB1 is also associated with several health-detrimental pathologies mainly targeting the liver 

(Cano et al., 2016). This mycotoxin has major economic repercussions by increasing 

agricultural losses and threatening animal productivity (Bryden, 2012), thus endangering food 

and feed safety. These damages are further exacerbated by the globalization of food trade (Wu 

and Guclu, 2012) and the global climate changes (Medina et al., 2014). 

Many strategies have been developed to limit AFB1 contamination in crops. 

Implementing good agricultural practices is undoubtedly a key point to limit an undesirable 

fungal incidence. Fungal growth and mycotoxin production closely depend on temperature 

and humidity (Magan and Aldred, 2007) and since these meteorological parameters are 

impossible to control, contamination cannot be completely avoided. Use of fungicides has 

witnessed a major drawback for their toxic chemical residues accumulate in food products. 

Their excessive use in crops over the last decades also resulted in the development of resistant 

pathogen populations as well as the accumulation of toxic chemical residues in water and soil 

(Da Cruz Cabral et al., 2013).  

Since physical degradation after production remains impossible and decontamination 

attempts are, to date, restricted to animal feed (Huwig et al., 2001), the attention has been 

rather shifted towards more natural ways to prevent AFB1’s contamination. For example, a 

biocontrol approach was developed and consists on the use of micro-organisms, such as 

strains of soil or lactic acid bacteria and atoxinogenic fungi. Such strains displayed the ability 

to inhibit aflatoxin production or fungal growth to a certain extent (Dalié et al., 2010; Jane et 

al., 2014). Natural preventive strategies could also rely on the use of plant extracts or essential 

oils. Plants produce many metabolites as part of their development or as a defensive strategy 

in response to a number of environmental stresses. Therefore, plant extracts have long been 

studied as protective bioactive agents and some were characterized as having antifungal or 

anti-toxinogenic properties (Chulze, 2010; Kohiyama et al., 2015).  

M. graeca - hyssop - is an herbaceous plant, belonging to the Lamiaceae family. It is 

commonly found in the Mediterranean region and frequently used for medicinal and 

condimental purposes (Abu-Gharbieh et al., 2013). The purpose of this study was to test the 
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aqueous natural extract from Micromeria graeca for its ability to prevent aflatoxin’s 

biosynthesis. We observed that it inhibits AFB1’s production by A. flavus strains without 

interfering with fungal growth. The molecular mechanism of action of this extract resulted in 

a down-regulation of all of AFB1’s biosynthetic cluster as well as a modulation in the 

expression of 15 secondary metabolite regulating genes.  

2. Material and Methods 

2.1. Solvents and standards. All solvents were HPLC grade and purchased from 

ThermoScientific Fisher (Villebon-Sur-Yvette, France). Lyophilized aflatoxin B1 standard 

was purchased from Sigma Aldrich (St. Louis, Missouri, USA). Stock solutions of each of the 

standards were prepared in methanol and stored at 4°C in the darkness. Calibration curves 

were prepared before use by diluting stock solutions with mobile phase used for HPLC 

analysis. 

2.2. Preparation of the aqueous solution of hyssop. Dried hyssop (Micromeria 

graeca) was commercially purchased from Tyr, Lebanon. Hyssop’s species was kindly 

confirmed by Pr Marc Beyrouthy (Department of Agricultural Sciences, USEK - Lebanon). 

Leaves were grinded with an electrical grinder and ten grams of ground hyssop were added to 

80 ml of bi-distilled water and placed on a horizontal shaking table at 220 rpm for 24 hours. 

Extracts were then filtered through cotton gauze before being centrifuged for 10 min at 3,500 

rpm. Filtrates were centrifuged once again, at 4,700 rpm for 30 min and autoclaved at 121°C 

for 15 min. Final sterile extracts were stored at +4°C until their use.  

2.3. Fungal strains and growth conditions. A referenced toxinogenic Aspergillus 

flavus strain NRRL 62477 isolated from paprika samples harvested from Moroccan market 

(EL Mahgubi et al., 2013), was used to evaluate aflatoxin inhibition by hyssop’s aqueous 

solution as well as the molecular mechanism of inhibition. Further analysis of total aflatoxin 

inhibition by the aqueous hyssop solution were conducted on two other A. flavus strains (E28 

and E71) that were previously isolated by our team from white pepper and paprika samples 

from Morocco (EL Mahgubi et al., 2013). Strains were cultivated on a malt extract agar 

(MEA) medium (30 g malt extract and 15 g agar-agar per liter) (Biokar Diagnostics, Allone, 

France), supplemented at 2% v/v with an aqueous hyssop (M. graeca) solution whereas 

water-supplemented media were used as control cultures. Media for RNA isolation and dry 

weight measurement were layered with 8.5 cm diameter cellophane disks (Hutchinson, 

Chalette-sur-Loing, France) before inoculation in order to allow separation of mycelium for 
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culture medium. Spore suspensions were prepared in Tween 80 (0.05% in water) from a one-

week-old MEA culture. Spores were counted on a Malassez cell and 103 spores were 

inoculated in the centre of the medium. Cultures were incubated at 27ᵒC and those destined 

for RNA isolation were incubated in 6 replicates for four days. For AFB1 quantification 

assays, cultures were incubated for 8 days and were in triplicates. Media pH was measured 

before and after inoculation and after incubation using a H199161 food pH-meter (Hanna 

Instruments, Tanneries, France). 
 

 Examination of cultural parameters. 
 

Effect on growth. The final growth mean was estimated by the measurement of culture 

diameters in length and width at day 4. 

Mycelium dry weight. Following a 4-day incubation period, cellophane disks were peeled 

off and placed in new petri dishes that were incubated for 48 hours at 60oC. Dried mycelium 

films were allowed to cool in a desiccator before being weighed on an analytical balance. 

Final weight was calculated by subtracting the mean weight of 4 desiccated control 

cellophane disks. 

Total spore quantification. Colonies were cut out of MEA media, 1 mm beyond the 

mycelium border, placed in a stomacher bag with 50 ml of Tween 0.05% and spores were 

gently manually scraped off of culture without tearing the media. The bag was then placed in 

a stomacher for 90 s. The supernatant was filtered through cotton gauze that was then rinsed 

with 3x20 ml Tween 0.05%. Spore solutions were homogenized by thorough vortex and 

subsequent dilutions were prepared in Tween 0.05% for counting on a Malassez cell in order 

to determine the total spore count (SC). Spore density (SD) was calculated as SD = SC/(���), 

r = average colony radius.   

Delay to germination. Two hundred spores were inoculated in the centre of media and 

germinating spores were counted after a 16-hour incubation period at 27ᵒC by stereo-

microscopic examination.   

Morphological features of fungi. Macroscopic (e.g. colour of conidial areas, thallus margin 

and texture, aspect of conidial heads and colony reverse) and microscopic (e.g. conidiophore, 

shape of vesicles, number of sterigmata, shape of conidia and ornamentation) characters were 

observed under stereomicroscope (Olympus SZX9 –X12-120) and optical microscope 

(Olympus CX41 – X400 and X1000) respectively.  
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2.5. RNA isolation and reverse transcription. Cellophane disks along with the 4-day 

mycelium were peeled off from medium, finely grinded with liquid nitrogen and a maximum 

of 100 mg were used for total RNA purification through a RNeasy Plus Minikit (Qiagen, 

Hilden, Germany) that includes an on-column genomic DNA clean-up, following the 

manufacturer’s instructions. RNA integrity and purity were checked with agarose gel 

electrophoresis and a NanoDrop ND1000 (Labtech, Palaiseau, France) that also determined 

its concentration.  First-strand cDNA synthesis reaction was primed using RevertAid Reverse 

Transcriptase (MBI Fermentas, UK), RNase Inhibitor (Applied Biosystems, Warrington, UK) 

and an anchored oligo(dT) Bys 3’ Primer (5’-

GCTGTCAACGATACGCTAACGTAACGGCATGACAGTGTTT TTTTTTTTTTTTTT-

3’). An RT minus sample, where no reverse transcriptase reaction takes place, and a sterile 

water sample were added as negative controls to verify the absence of undesirable genomic 

DNA contamination and primer complementation, respectively.  

2.6. Real-time PCR expression profile analysis of genes regulating the aflatoxin 

B1 biosynthesis in A. flavus. The genome of A. flavus strain NRRL 3357 (GenBank 

accession number EQ963478) served as a matrix for all of the primer used in this study. All of 

the primer pair sequences were adapted from a previous work (Caceres et al., 2016) and 

primer sequences of the stuA gene (AFLA_046990) were added in this study (stuA_F: 

GATAAACGGAACCAAACTGCTCAA; stuA_R: CACGCTCAAATGGGATCCAA ). 

Primer pairs design was based on the coding sequence of the corresponding genes, with at 

least one of the primers extending on an exon/exon junction in order to avoid undesirable 

genomic DNA amplification. Primer-dimer or self-complementarities were evaluated using 

the PrimerExpress 2.0 software (Applied Biosystems, Courtaboeuf, France). All primers were 

synthesized by Sigma Aldrich (Saint-Quentin Fallavier, France). Following RNA extractions 

and reverse transcriptase reactions, real-time PCR assays were performed on 15 ng cDNA in a 

5 μl reaction volume per well, using Power SYBR® Green PCR Master Mix (Applied 

Biosystems, Warrington, UK) as a fluorescent dye for cDNA quantification. Master mixes 

and diluted cDNA samples were prepared separately on 96-well Sorenson plates (VWR, 

Pennsylvania, United States) and mixed in 384-well plates by an Agilent Bravo Automated 

Liquid Handling Platform (Agilent Technologies, Santa Clara, CA, United States). All real 

time amplification reactions were carried out on a ViiA7 Real-Time PCR System (Applied 

Biosystems, Warrington, UK), as described by Tannous et al., 2014. In total, the expression 
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of 61 genes was simultaneously analyzed, 27 of which corresponded to AFB1 cluster and 34 

to regulatory factors.  

 

2.7. Aflatoxin extraction and HPLC quantification. Media of 4 and 8-day cultures 

were entirely retrieved and their AFB1 content determined after extraction with 25 and 40 ml 

chloroform respectively. Extracts were held for 2 hours on a horizontal shaking table at 200 

rpm and were then filtered through a Whatman 1PS phase separator filter (GE Healthcare, 

UK, 150 mm diameter). Filtrates were evaporated to dryness and dissolved in 1 ml of a water-

acetonitrile-methanol mixture (65:17.5:17.5; v/v/v). Extracts were filtered using 0.45 µm 

porosity disks (Thermo Scientific Fisher, Villebon-Sur-Yvette, France) before analysis. HPLC 

analysis was performed using a Dionex Ultimate 3000 UHPLC (Thermo Scientific, France) 

using a 125 x 2 mm, 5 µm, 100 Å, Luna® C18(2) LC column (Phenomenex, Torrance, CA, 

USA). Aflatoxins were separated using the program described by Fu, Huang, & Min, 2008, 

with minor modifications. A mixture of water (acidified with 0.2% acetic acid)-acetonitrile 

(79:21, v/v) is eluent A and methanol is eluent B. Separation program consists of a 30 min 

A:B (82.5:17.5) isocratic flow at 0.2 ml/min. Aflatoxins were detected using a fluorescent 

detector at wavelengths of 365/430 nm (excitation/emission). UV Spectra were confirmed by 

an additional diode array detector (DAD) coupled to the apparatus. Sample concentrations 

were calculated based on a standard calibration curve. 

3. Results and discussion 

3.1. Effect of hyssop’s aqueous extract on A. flavus development and AFB1 

production. When A. flavus strain NRRL 62477 is grown in a hyssop-supplemented medium 

a dose-dependent decrease in AFB1 production was observed. The downward trend started at 

the lowest concentration used (0.078 mg/ml) and was significant at 28.5% starting 0.156 

mg/ml (p-value 0.0032). Another recent study of Omidpanah et al.(2015), has evoked the 

fungicidal effect of some aqueous extracts including thyme and mint on A. flavus at 

concentrations of 0.2 and 0.8 mg/ml respectively yet without determining aflatoxin inhibition 

at any of the concentration range used. In this study, hyssop inhibited AFB1’s production by 

52% at 0.625 mg/ml without altering A. flavus’ growth. This inhibition reached 99.2% at 10 

mg/ml and AFB1 was no longer detectable at 15 mg/ml (Figure 1). Further experiments were 

then conducted using hyssop at 10 mg/ml in the medium, this concentration being the lowest 

to present a quasi-total AFB1 inhibition.  
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At 10 mg/ml, aflatoxin inhibition by hyssop was accompanied by a mild increase of 

the colony diameter (4.4 ± 0.03 vs 4.25 ± 0.03 cm for treated and control respectively, p-value 

0.0213). However, no significant increase in the total spore count neither in the spore density 

was observed following hyssop’s addition. Besides, no further change was observed for 

mycelium weights or for the germination delay in the presence of hyssop in medium (Table 

1). 

Following hyssop’s addition in medium, A. flavus colonies presented numerous macro 

and microscopic modifications. The major noticeable macroscopic morphological change is 

the development of an abundant aerial mycelium layering the entire surface of the colony. 

This latter also displayed a fasciculated edge. The presence of these numerous floccose tufts 

also increased the depth of the colony (Figure 2).  

Under microscope, classic A. flavus structures were present in the basal mycelium of 

hyssop-treated cultures: long, coarse, un-branched conidiophores and radiate biseriate 

conidial heads. However, in the aerial mycelium, conidiophores, vesicles and conidia 

presented an atypical morphology and organization: i) an increased number of short 

conidiophores bearing small columnar heads in relation with the abundant aerial mycelium, ii) 

phialides developing anarchically on hyphae and on conidiophores in the absence of a vesicle 

(Figure 3), iii) presence of conidiophores with two, and less frequently, three fully-sporulated 

vesicles. 

 A single previous study has described the modification of the aerial hyphae in an AF-

inhibiting profile in A. parasiticus in the presence of n-decyl aldehyde, a corn-derived volatile 

compound (Wright et al., 2000). Nevertheless, another study conducted on A. flavus mutant 

strains described the appearance of morphological abnormalities, notably on phialide 

formation, associated to a cessation of AFB1 production (Jeffrey W Cary et al., 2012). 

At the dose of 10 mg/ml we observed a 77.7 and 70.8% inhibition of AFB1 production 

in E28 and E71 A. flavus strains respectively, without alteration of fungal growth. Similar 

morphological changes were also observed on these two strains (data not shown).   

3.2. Hyssop’s aqueous extract down-regulated the expression of AFB1 cluster 

genes. In A. flavus AFB1’s biosynthesis is the result of a coordinated cascade of enzymatic 

reactions. The enzymes catalyzing these reactions are encoded by 27 genes and grouped in a 

cluster located in the telomeric region of the 3rd chromosome of aflatoxigenic species (D. 
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Ryan Georgianna and Payne, 2009). Inhibition of AFB1’s production in hyssop-supplemented 

media was accompanied by a decrease in the expression of both of aflR and aflS genes by 3.2 

and 2.8 times respectively (p-value < 0.0001). A down-regulation of these two latter genes 

has been associated with the repression of the entire AF cluster genes (Holmes et al., 2008). 

Apart from aflT (the MFS transporter encoding gene), which is not regulated by the 

AflR/AflS complex and was down-regulated only by 2.3 times, the expression of all of the 

other cluster genes was severely repressed. The extent of this repression varied between the 

different genes and was not linked with the intervention level within AFB1’s enzymatic 

cascade (Figure 4).  

Genes undergoing the most drastic inhibitions were hypC, aflI and aflO encoding 

enzymes respectively intervening at the beginning, middle and end of the biosynthetic 

pathway and with corresponding fold-changes of 167.2, 60.7 and 468.8 with p-values < 0.001. 

For the genes encoding enzymes involved in the first steps of the cascade leading to the 

polyketide structure, aflA, aflB and aflC, expression was decreased by 12.2, 12.3 and 14.7 

respectively. Genes least impacted are aflM, aflG and hypD with expression levels decreasing 

by 8.4, 9.3 and 9.4 times respectively. For the rest of the AFB1 cluster genes, a same 

downward trend was observed with expression levels decreasing by 14 to 50 folds (Table S1). 

This repression of the entire aflatoxin gene cluster is then directly responsible for inhibiting 

toxin production upon the presence of hyssop. 

3.3. Transcriptomic effect of hyssop’s extract on secondary metabolism 

regulating genes. The expression of AFB1 cluster genes is linked to the presence of 

regulating factors, encoded by genes outside of the cluster. In order to further investigate the 

mechanism behind the cluster’s inhibition, we conducted a study on the regulatory network 

affecting secondary metabolism, including 34 genes involved in several fungal functional 

pathways. Among these, a total of 15 genes involved in diverse cellular mechanisms were 

modulated by hyssop’s addition to culture medium (Figure 5): 

- Global regulating factors such as veA, mtfA, nsdC were affected with expression levels 

respectively increasing by 3.8, 1.9 and 1.5 folds (p-values<0.0001, 0.0001 and 0.0122).  

- Genes encoding enzymes involved in cellular protection from oxidative stress such as 

superoxide dismutases (sod1 and mnsod) and catalases (catA and cat2) had their 

expression decreased by 1.6, 2, 2.2 and 3 folds respectively (p-values 0.013, 0.0007, 0.004 

and <0.0001). As for other genes intervening in the oxidative stress response and 
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encoding transcription factors, notably msnA and srrA, their expression levels increased 

by 3.2 and 1.4 times with p-values of 0.0126 and 0.0017 respectively. 

- gprK and gprH, encoding G-protein receptors involved in relaying external signals were 

also affected with gprk’s expression increasing by 2 folds (p-value <0.0001) and gprH’s 

decreasing by 2.1 folds (p-value 0.0006). 

- The expression of the conidial developmental factor stuA was 1.8 times increased (p-value 

0.0012). 

- A couple of genes encoding environmentally-influenced transcription factors, areA and 

pacC were also triggered by the addition of hyssop in medium and their expression levels 

were respectively increased by 1.7 and 1.6 folds with p-values of 0.0215 and <0.0001. 

ppoC encoding a fatty acid oxygenase involved in oxylipin production also presented an 

expression decrease by 1.5 times (p-value 0.003). 

VeA is a global regulating transcription factor involved in primary and secondary 

metabolism (Calvo, 2008a) and recruiting other factors such as LaeA and VelB to form the 

trimeric velvet complex. The activity of this complex affects fungal development, conidiation 

and secondary metabolism (Bayram and Braus, 2012). In hyssop-treated cultures, transcripts 

of laeA, velB and vosA, the latter being an interacting partner of velB (O., Bayram et al., 

2008), were not affected. This result further highlights the independent role of VeA in 

multiple other cellular mechanisms (Baidya et al., 2014). The presence of VeA is necessary 

for the expression of secondary metabolite genes however it can also act as a repressor of 

some of these genes and thus inhibits the production of the concerned metabolite. VeA is 

essential for the transcription of AF cluster genes, including the transcription factor aflR and 

others (aflD, aflM and aflP) regulating aflatoxin production. Deletion of the veA gene led to 

the repression of AFB1 cluster genes in A. flavus (Duran et al., 2007). However according to 

our current study and to another recent one (Caceres et al., 2016) a repression of all AFB1 

cluster genes can also coincide with a veA-over-expression profile. Such is the case of 

penicillin, produced by A. nidulans where an OE:veA led to the repression of acvA, the 

penicillin biosynthesis gene and subsequent inhibition of penicillin production (Sprote and 

Brakhage, 2007). 

VeA can also interact with another conserved global transcription factor, MtfA. The 

latter has a major role in regulating development and secondary metabolism in filamentous 

fungi (Ramamoorthy et al., 2013) and it is linked to AFB1’s biosynthesis and to aflR’s 

expression. An over-expression of mtfA in A. flavus has drastically inhibited the production of 
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AFB1 following a down-regulation of aflR whereas the effect of an mtfA deletion was less 

important (Zhuang et al., 2016). The over-expression of mtfA in our conditions could result 

from that of veA and the interaction between these two factors would then be responsible for 

down-regulating AF-cluster genes and inhibiting aflatoxin production.  

 Besides its role in secondary metabolite regulation, VeA is also a developmental 

factor regulating morphogenesis as alterations in its expression levels can result in 

morphological abnormalities. For example, a reduction in fungal aerial hyphae was noted in 

both A. flavus and Fusarium graminaerum veA deleted strains (Duran et al., 2007; Jiang et al., 

2011). Therefore, the modulation of veA’s expression could contribute to morphological 

abnormalities observed upon hyssop exposure. 

 In the presence of an environmental stress, fungi may establish several defense lines 

for limiting cellular damages. It has been demonstrated that VeA contributes to a positive 

transcriptomic modulation of stress-tolerance genes such as msnA and srrA under induced 

oxidative stress conditions (Baidya et al., 2014). The expression of these two transcription 

factors is then highly dependent on that of veA. Therefore, their over-expression in a hyssop-

treated medium might be the outcome of an over-expressed veA. The developmental factor 

StuA has also been associated to stress-response in fungi yet without a clear view on its 

contribution (Linz et al., 2013). However, evidence exists on its dependence upon msnA since 

its expression levels were modulated in both A. flavus and A. parasiticus msnA-deletion 

strains (Chang et al., 2011). MsnA is also known for regulating the expression of the catalases 

(CAT)- and superoxide dismutases (SOD)-encoding genes (Chang et al., 2011). Those 

antioxidant enzymes along with aflatoxin formation are suggested as part of the fungus 

defense mechanism against reactive oxygen species (ROS) damages (Hong et al., 2013). 

When medium was supplemented with M. graeca’s extract, A. flavus responded by decreasing 

the expression of SOD- and CAT-encoding genes such as sod1, mnsod, catA and cat2 as 

levels of msnA increased thus resulting in an AF-biosynthesis repression, possibly related to 

an alleviation of environmental oxidative stress.  

 As for NsdC and PacC, more data is yet to be collected on their individual and 

possibly collaborative roles in secondary metabolism regulation. NsdC is known to be a 

developmental regulator which alteration caused several morphological aberrances such as 

shorter-stipe conidiophores presenting abnormal conidial-head formations. Similar to VeA, 

NsdC’s modulation could participate to the morphological modifications observed in hyssop-
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treated cultures. It has also been linked to aflatoxin cluster-gene expression (Jeffrey W Cary et 

al., 2012) as well as being a global regulator of secondary metabolism (Gilbert et al., 2016). 

As for PacC, a pH-dependent factor, its over-expression in aflatoxin-repressive conditions is 

to be investigated especially that pH conditions are neither alkaline thus suitable for its 

activation nor varying between control and hyssop-treated media (data not shown). 

Alterations in morphology, such as aerial hyphae development, were also associated to 

an imbalance in the G-protein signal transduction pathway (Han et al., 2004; Yang and 

Borkovich, 1999). This pathway is governed by the binding of signaling molecule to G-

protein coupled receptors (GPCR) such as those encoded by gprK and gprH and tuned by 

regulators of the G-protein signaling cascade (RGS), which roles and implication in AFB1’s 

synthesis are being investigated in A. flavus (Affeldt et al., 2014). G-protein signaling 

pathway is also linked to oxylipins that are hormonal-like signaling molecules (Brodhagen 

and Keller, 2006) produced by fatty-acid-oxygenases such as PpoC. Moreover, oxylipins’ 

regulation has also been described as VeA-dependent (Calvo, 2008a). However, fungal signal 

perception and transduction pathways is a very complex loop due to the diversity of signals 

that might be initiating it and most importantly to the numerous acting factors involved 

downstream any signal perception. Furthermore, since M. graeca’s extract is a complex 

extract containing many signal-provoking agents such as polysaccharides, amino acids, 

minerals, phenolic compounds and many others, it is possible that morphological 

modifications have no direct link to AFB1’s inhibition. 

 4. Conclusion  

This study demonstrates the efficiency of Micromeria graeca’s aqueous extract to 

limit AFB1 contamination without altering fungal growth. Such an effect could ensure food 

safety without affecting biodiversity. Indeed, A. flavus is a very competitive crop-

contaminating agent; therefore, use of fungistatic agents could favor the emergence of other 

and possibly uncontrollable microorganisms. According to our results, inhibition by hyssop’s 

extract occurs at a transcriptomic level as expression ratios of all of aflatoxin cluster-genes 

were severely decreased. Nonetheless, hyssop’s extract triggered a response in several fungal 

cellular mechanisms including cellular signaling, global transcription factors, conidial 

development and factors intervening in the oxidative stress response. Being as complex as it 

is, this extract may shelter several bioactive compounds (Atoui, 2005) complementarily 

contributing to its anti-aflatoxigenic activity. For a more accurate determination of the 
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inhibitory mechanism of action, the content of this extract needs to be deciphered in order to 

determine and purify its active molecules and the inhibition extent of each of the isolated 

compounds.  
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Figure 1. AFB1 production as a function of hyssop concentration. MEA medium was 

supplemented with increasing concentrations of hyssop’s extract ranging between 0.078 -15 

mg/ml and cultivated at 27°C, in the dark, for 8 days. AFB1 concentrations were quantified 

through HPLC/FLD analysis. Results are expressed as mean % ± SEM (n=3). * p-value < 

0.05; ** p-value < 0.01; *** p-value < 0.001. 

Table 1. Effect of 10 mg/ml of hyssop on the development of A. flavus i) colony diameter 

was measured in length and width, ii) weight was measured after a drying step at 60°C for 48 

h, iii) germinating conidia were counted by observation under stereo-microscope after 16h 

incubation at 27°C, iv) total spore count is estimated following a complete wash of conidia 

and a Malassez-cell count of proper dilutions and v) spore density was calculated based on the 

total spore count reported to the colony surface. Results are expressed as mean ± SEM (n=3). 
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    Control Hyssop  

Growth Colony diameter (cm) 4.25 ± 0.03 4.4 ± 0.03 

  Mycelium dry weight (g) 0.16 ± 0.03 0.15 ± 0.02 

Sporulation 
Germinating conidia after 
16h  

193 ± 17 203 ± 8 

Total spore count  
8.1E+08 ± 

4.5E07 
1.1E09 ± 9.9E07 

  
Spore density (conidia/cm2) 5.7E07± 2.6E06 7E07 ± 5.6E06 

 

 

 

 

Figure 2 Four-day A. flavus strain NRRL 62477 grown in the dark at 27ᵒC. A. Control 

culture grown on a regular MEA medium. B. MEA medium was supplemented with hyssop’s 

aqueous solution at 10 mg/ml.    
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Figure 3.  Microscopic views (x400) of conidiophores in the aerial mycelium of A. flavus 

NRRL 62477 showing the development of anarchic philalides when strain was grown on a 

hyssop-treated MEA medium. 

 

 

Figure 4. Normalized gene expression ratios of the two internal AF cluster-regulating genes 

aflR and aflS as well as aflC, aflG and aflO intervening at the beginning, middle and later 

stages of the enzymatic cascade, and aflT in the presence of hyssop extract (10 mg/ml). *** p-

value < 0.001. Results are expressed as mean ± SEM (n=6). 
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Figure 5. Schematic representation of fold-change ratios of the different regulatory genes 

affected upon hyssop supplementation of MEA media. The red line represents the expression 

level of genes set for control cultures and the black one indicates genes’ fold change in treated 

cultures. 
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Supplementary Materials: Identification of an anti-aflatoxinogenic 
aqueous extract from Micromeria graeca and elucidation of its 

molecular mechanism in Aspergillus flavus 

 

Rhoda El Khoury, Isaura Caceres, Olivier Puel, Sylviane Bailly, Ali Atoui, Isabelle P. 
Oswald, André El Khoury and Jean-Denis Bailly 

 

Table S1. Gene expression ratio values of AFB1 cluster genes upon hyssop addition. Ratios are 

obtained in comparison to control values.   

 

Gene Gene expression ratio SEM Fold change p-value 

aflR 0.31 0.053 3.2 < 0.0001 

aflS 0.35 0.069 2.8 < 0.0001 

aflT 0.43 0.055 2.3 < 0.0001 

aflA 0.08 0.019 12.2 < 0.0001 

aflB 0.08 0.018 12.3 < 0.0001 

aflC 0.07 0.029 14.7 0.00058 

hypC 0.01 0.003 167.2 < 0.0001 

aflD 0.06 0.022 16.8 < 0.0001 

aflE 0.06 0.019 17.8 < 0.0001 

aflG 0.11 0.042 9.3 < 0.0001 

aflH 0.04 0.011 24.8 < 0.0001 

aflI 0.02 0.007 60.7 0.00043 

aflV 0.05 0.012 19.8 < 0.0001 

aflJ 0.06 0.020 18.0 < 0.0001 

aflK 0.07 0.019 14.9 < 0.0001 

aflL 0.05 0.015 19.2 < 0.0001 

aflM 0.12 0.053 8.4 0.00120 

aflN 0.03 0.010 34.0 < 0.0001 

aflX 0.02 0.008 50.4 < 0.0001 

aflO 0.00 0.000 468.8 < 0.0001 

aflP 0.03 0.010 29.7 < 0.0001 

aflQ 0.07 0.027 13.4 < 0.0001 

hypB 0.03 0.016 35.8 0.00085 

aflW 0.07 0.019 14.7 < 0.0001 

aflY 0.02 0.009 45.8 < 0.0001 

hypD 0.11 0.024 9.4 < 0.0001 

hypE 0.05 0.011 18.5 0.00018 
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Conclusion  
 

 

In this study, we reported, for the first time, the capacity of Hyssop’s aqueous extract to 

inhibit AFB1 production in an Aspergillus flavus strain.  

The elucidation of its mechanism of action was relied with a marked down-regulation of 

the genes belonging to the AFB1 gene cluster, which demonstrate that Hyssop’s 

mechanism of action also occurs in a transcriptomic manner via the inhibition of the 

protein complex AflR-AflS.  

Several genes involved in fungal response to cope oxidative stress were modulated 

which seems to be a key pathway of Hyssop’s action.  

In fact, we observed that fungal stress response defense elements coding for superoxide 

dismutases and catalases response were down-regulated.  

On the other side, upon Hyssop treatment, important changes in fungal morphology 

were observed. Although these changes occurred during toxin inhibition, it is possible 

that they result from the action of other factors than those responsible for the AFB1 

inhibition.  

 

Indeed, aqueous extract of Hyssop, is a complex extract that is certainly constituted by 

more than one molecule which could explain by one hand, the morphological changes 

and by the other hand the toxin inhibition. As previously mentioned in the article, works 

by Wright et al., (2000) and Han et al., (2004) reported that an alteration of morphology 

can be accompagnied with an AFB1 inhibition.   

However, some few studies reported such association so it could also be of interest to 

include in our molecular tools some markers of conidiogenesis or fungal development to 

evaluate their behavior when AFB1 inhibitors are present in the medium. Such 

modifications could be either the cause of consequence of fungal metabolic changes 

upon hyssop (or other inhibitors) exposure. 
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4.4 Chapter 4 
   
 

Inhibition of Aflatoxin B1 biosynthesis by aqueous extracts 

of Mexican plants: Mimosa tenuiflora and Larrea tridentata  

(Article 4 – in preparation). 
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Introduction  

 

In Mexican culture a great number of plants are known as cure to specific diseases 

making that their use persists from generation to generation.  

This remedy is still a common practice and the potential of the active compounds 

occurring in these plants have demonstrated medicinal properties such as antiprotozoal, 

antiseptic, antivirial, but also antifungal effects (Arteaga et al., 2005; Quintanilla-Licea et 

al., 2014). Thus, these plants represent a vast research topic that could be considered 

whit potential efficacy over mycotoxin inhibition.  

Indeed, in countries were mycotoxin contamination is a common problem, the greater 

the number of anti-aflatoxigenic agents, the better the opportunities to use local sources 

as an alternative to inhibit AFB1 production.  

In fact, in tropical regions AFB1’s contamination can often occur during storage since air 

humidity and storage facilities make difficult to maintain moisture contain (and 

subsequent water activity of crops) under required limits. Such difficulties are even 

more frequent in small farmer facilities due to the cost of effective preventive measures. 

Therefore, the possible identification of a local and abundant resource that could be 

used to limit AFB1 risk during storage could represent a very interesting and 

sustainable strategy to help developing countries to improve food safety. 

In addition to this, the screening of plants that have anti-aflatoxigenic effect is of great 

utility. Indeed, some plants that are widely distributed in their native region can also be 

developed in other countries, offering in this manner an alternative strategy to various 

populations.   

 

In order to characterize two of the native plants of Mexico, experiments were performed 

to study their anti-aflatoxigenic effect against Aspergillus flavus and especially against 

AFB1 production.  

In the next part, Mimosa tenuiflora and Larrea tridentata better known as Tepezcohuite 

and Gobernadora were tested and their molecular impact was characterized.  

Several studies have been performed in order to investigate their chemical composition 

showing that they are rich in antioxidant compounds and in the case of Larrea 

tridentata, the effect of its aqueous extract against AFB1 was already demonstrated. 
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Thus, we used it as a positive control and contributed with the analysis of its molecular 

impact.  

For Mimosa tenuiflora, this is the first time that the aqueous extracts of this plant is 

tested against AFB1 production. 
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Abstract 

Contamination by fungi is a worldwide problem in foodstuff causing important 

economic losses in agricultural sector but also, endangering human and animal’s health 

by consumption of contaminated products. Indeed, some of these fungi are capable to 

produce dangerous toxins as is the case of Aflatoxin B1 (AFB1), a carcinogenic 

mycotoxin mainly produced by Aspergillus flavus and Aspergillus parasiticus. Many 

studies have been conducted to find out strategies able to limit food contamination with 

mycotoxins. Recent works demonstrated that natural plant compounds could have an 

anti-aflatoxigenic effect. Within this context, we studied the effect of two aqueous 

extracts prepared from Mexican native plants: Larrea tridentata and Mimosa tenuiflora 

against AFB1 production in an Aspergillus flavus strain. Both extracts were capable to 

inhibit toxin production with only a slight inhibition on fungal growth. A common 

concentration of 6.25 mg/ml was sufficient to inhibit AFB1 with ranges between 90-

95%. The mechanism of action was investigated by the impact that these extracts have 

on the expression of the genes involved in AFB1 biosynthetic pathway. Results 

demonstrated that toxin inhibition occurs in a transcriptomic manner induced by an 

inhibition of the mainly pathway regulators aflR and aflS expression.  

Keywords: Aflatoxin B1, anti-aflatoxigenic, natural compounds. 
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1. Introduction  

Along food chain process, from crops to foodstuff storage, contamination by fungi 

represents one of the main causes of agricultural and economical losses worldwide. 

Moreover, some of these fungal microorganisms are capable of produce toxic secondary 

metabolites called mycotoxins (Baranyi, Kocsubé and Varga 2015). Aflatoxin B1 (AFB1) 

is one of the most important mycotoxins. Indeed, it has been demonstrated that a long 

term exposure to this toxin causes liver cancer and depression of immune system 

(Warburton and Williams, 2014) leading to the classification of AFB1 in group 1 

“Carcinogens” by the International Agency for Research on Cancer (IARC) (Marin et al., 

2013). This mycotoxin is produced by several species of Aspergillus genus of the Flavi 

section and mainly by Aspergillus flavus and Aspergillus parasiticus. Its production 

occurs in a 70 kB gene cluster with at least of 21 enzymatic steps for its formation from 

acetate molecules (Bhatnagar et al., 2003). Occurrence of Aspergillus genera and thus, 

AFB1 production, is a frequent problem in tropical and sub-tropical zones where 

climatic conditions are very favorable for fungal growth and toxin production. AFB1 can 

be present in many products such as corn, peanuts, rice and tree nuts (BIOMIN 2014; 

Kong et al.2014). In Mexico, corn and its by-products are staple foodstuffs with a 

consumption of 120 kg per capita per year, making of Mexican people the biggest 

consumers of corn in the world. Unfortunately, climate conditions of this country result 

in infected crops and it is estimated that 60% of corn produced in Mexico could be 

contaminated and thus, hazardous for consumption (Ortega-Beltran, Jaime and Cotty 

2014; García and Heredia 2006). Because of this, different strategies to inhibit AFB1 

production have been developed and the most commonly used is based on pesticides. 

Nevertheles, the consumption of these compounds can be also toxic on their own.  

Within this context, natural compounds occurring in some essential oils and plants 

extracts could display anti-fungal or anti-mycotoxin properties that could be used as an 

alternative strategy to reduce food and feed contamination (Gemeda et al., 2014; 

Samapundo et al., 2007). A large number of these extracts are used by several cultures 

as an alternative to traditional medicine due to their composition rich in phenolic 

compounds. In fact, several of them have already been identified as natural aflatoxin’s 

inhibitors (Thippeswamy et al.2014; Sánchez, Heredia and García 2005; Sree et al.2014). 

In Mexico, Larrea tridentata and Mimosa tenuiflora are common plants locally called as 

“Gobernadora” and “Tepezcohuite” respectively, and their utilization within the 
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traditional Mexican medicine is frequent. Several studies have been performed in order 

to investigate their chemical composition showing that they are rich in antioxidant 

compounds (Lü et al.2010; Gardner et al.2011). In addition to this, the aqueous extract 

of Larrea tridentata, has been demonstrated as an effective inhibitor of mycelia growth 

in Aspergillus flavus. However, it mechanism of action is yet to be elucidated (Galva et al., 

2014). In this study, we demonstrate the effect of the aqueous extracts belonging to 

traditional Mexican medicinal plants: Tepezcohuite (Mimosa tenuiflora) and 

Gobernadora (Larrea tridentata) on Aspergillus flavus growth and toxigenesis. The 

mechanism of action was investigated at the transcriptional level by analyzing their 

effect on the expression of 4 genes coding for different functions in the aflatoxin 

biosynthesis pathway: aflC, aflR, aflS and aflQ. 

 

2. Material and methods 

 

2.1. Plant extracts preparation 

 

Larrea tridentata and Mimosa tenuiflora dried plants were bought in Sonora’s market in 

Mexico City. Twenty five grams of each plant were stirred with 200 ml of distilled water 

during 30 minutes at 60°C. Extracts were filtrated using a Whatman paper no. 1 (Vélizy-

Villacoublay, France) in order to obtain aqueous phase extract. Then, aqueous extracts 

were sterilized at 121°C during 20 min and added by mixing to agar medium before 

solidification.   

 

2.2. Fungal strain and culture conditions 

In this study, the Aspergillus flavus strain NRRL 62477 was used (El Mahgubi et al., 

2013) and all cultures were performed in 20 ml of Malt Agar Medium (MEA).   

For experiments 10 µl of a calibrated spore suspension (106 spores/ml) prepared from a 

7-day culture was used to centrally inoculate the MEA medium covered with a sterile 

cellophane layer (Hutchinson, Chalette-sur-Loing, France) as described by Leite et 

al.(2012). Firstly, different concentrations of each extract were mixed with MEA medium 

and were tested to determine the impact on fungal development as well as AFB1 

production.  
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A final concentration of 6.25 mg/ml of each extract was used for further experiments. 

Controls cultures were prepared with an equivalent sterile water volume and six 

replicates of each group were prepared and incubated 4 days at 27°C in the dark. 

  

2.3. Aflatoxin B1 extraction and quantification by HPLC 

 

For AFB1 extraction, culture media were mixed with 25 ml of chloroform and samples 

were agitated for 2 hours on a horizontal shaking table at 160 rpm at room temperature. 

Chloroform extract was filtered through a Whatman 1PS phase separator (Vélizy-

Villacoublay, France), evaporated at 60°C until dryness and dissolved in 500 µl of a 

water-acetonitrile-methanol (65:17.5:17.5; v/v/v) mixture then, filtered through a 0.45 

µm disks (Thermo Scientific Fisher, Villebon-Sur-Yvette, France). Analysis of samples 

was done using a Dionex Ultimate 3000 UHPLC system (Thermo Scientific, France) with 

a LC column, Luna® C18 (125 x 2 mm, 5 µm, 100 Å) (Phenomenex, Torrance, CA, USA) at 

30°C. Separation conditions were adapted from Fu et al.(2008). Briefly, a flow rate of 0.2 

ml/min was used and 10 µl of extract were injected. AFB1 was detected by a fluorescent 

detector at 365/430 nm excitation/emission wavelengths. Production levels of AFB1 on 

media were calculated based on a standard calibration curve. 

 

2.4. Isolation of fungal RNA and RT-PCR   

At the end of incubation, mycelia were separated from the medium and grounded up 

under liquid nitrogen. RNA was purified as recommended by the manufacturer using a 

Qiagen RNeasy PlusMinikit (Qiagen, Hilden, Germany). Quality of RNA was verified by 

gel electrophoresis and concentrations were measured using a NanoDrop ND1000 

(Labtech, Palaiseau, France). The A260/A280 ratio and values were compared according to 

Zeng and Yang method (2002). First-strand cDNA synthesis was carried out by RT-PCR.  

 

2.5. Design and validation of q-PCR primers  

 

Primer sets were designed based on the genomic data of the Aspergillus flavus strain 

NRRL3357 (GenBank accession number EQ963478A). All of the primer pair sequences 

were adapted from a previous work (Caceres et al., 2016). Primer pairs design was based 
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on the coding sequence of the corresponding genes, with at least one of the primers 

extending on an exon/exon junction in order to avoid undesirable genomic DNA 

amplification. Primer-dimer or self-complementarities were evaluated using the 

PrimerExpress 2.0 software (Applied Biosystems, Courtaboeuf, France). All primers 

were synthesized by Sigma Aldrich (Saint-Quentin Fallavier, France) and validated using 

mRNA product of a no-treated control of Aspergillus flavus strain.  

 

2.6. Analysis of the expression of the genes linked to Aflatoxin B1 biosynthesis 

Experiments were carried out using a ViiA7 Real-Time PCR System (Applied Biosystems, 

Forster City, CA, United States). The 384 well-plates were prepared by an Agilent Bravo 

Automated Liquid Handling Platform (Agilent Technologies, Santa Clara, CA, United 

States). Each well contained a total volume of a 5 µl mix: using Power SYBR® Green PCR 

Master Mix (Applied Biosystems, Warrington, UK) as a fluorescent dye. Three-steps q-

PCR were performed as follows: a first one-hold stage at 95°C during 10 min followed by 

45 cycles (95°C for 15 s and 60 °C for 30 s) and a final extending step (95°C for 15 s, 60 

°C for 1 min and 95°C for 15 s) for melt curve analysis. Results were analyzed with a 

Quant-Studio Real time PCR software v1.1 (Applied Biosystems, Courtaboeuf, France). 

Housekeeping genes were analyzed with Normfinder algorithm (Andersen et al., 2004) 

and the more stable was used as a reference for normalization in the 2-ΔΔCt analysis 

method (Livak and Schmittgen, 2001).  

 

2.7. Statistics  

Student’s t-test was used to analyze the differences between control and treated 

samples. Differences were considered to be statistically significant when p-value was 

lower than 0.05. 

 

3. Results and Discussion 

 

3.1. Effect of aqueous extracts on fungal growth and AFB1 production.  

Aqueous extracts of Tepezcohuite (Mimosa tenuiflora) and Gobernadora (Larrea 

tridentata) were tested against A. flavus strain. Treated cultures were macroscopically 
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observed on day 4 and pigmentation of mycelia presented differences comparing to 

control. Interestingly, both treatments leaded to yellow colored mycelia but no other 

important modification of culture aspect was observed (data not shown). This 

modulation related to pigment could be a first signal on changes occurring in 

sporulation process that are, in fungi, linked with secondary metabolism (Bayram and 

Braus, 2012). Fungal growth and AFB1 were also measured in this study. As shown in 

table 1, mycelia diameter as well as toxin production were inhibited in a dose-

dependent manner by the extracts. The highest mycelia inhibitions were observed with 

Larrea tridentata’s extract. For AFB1 production, both aqueous extracts showed a 

significant inhibition ranging from 90% to no-detectable levels with a p-value of ≤0.001.  

Table 1.- Effect of different concentrations of natural aqueous extracts on fungal growth and 

AFB1 production by Aspergillus flavus NRRL 62477 strain.  

 

Several studies have been conducted to investigate the active compounds as well as the 

antifungal activity of Mimosa tenuiflora. A recent study performed by Thippeswamy et 

al.(2014) using extracts of Acacia ferruginea DC and Adenanthera pavonina L, both 

belonging to mimosacea’s family, were tested on Aspergillus flavus. Results confirmed a 

slight inhibition on fungal growth followed by a negative effect on AFB1 production 

upon addition of 10% for each aqueous extract. In parallel, Gardner et al.(2011) 

analyzed Mimosa tenuiflora’s composition by LC-MS technique demonstrating the 

presence of two major alkaloids identified as N,N-dimethyltryptamine (DMT) and 2-

methylcarboline. This would not be the first time that an alkaloid compound 

demonstrates activity against AFB1; in fact, Lee et al., (2002) performed a study with 

four different alkaloids isolated from Piper longum showing an anti-aflatoxigenic effect 

on  A. flavus for all of them. Concerning Larrea tridentata, different parts of the plant 

were yet examined and found to be rich in lignans, especially in methyl-

nordihydroguaiaretic acid (methyl-NDGA) and nordihydro-guaiaretic acid (NDGA) as 
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well as in triterpene glycosides (Jitsuno and Mimaki, 2010; Kumoro et al., 2009; Vargas-

Arispuro et al., 2005). The two isolated compounds (methyl-NDGA and NDGA) were 

tested against A. flavus and A. parasiticus showing that, in both strains, the highest 

inhibition of AFB1 production was accompanied by an important fungal growth 

inhibition. Specifically, for A. flavus, a total percentage of 86% of toxin inhibition 

corresponded to 85.8% of fungal reduction. These results differ from ours, suggesting 

that other compounds occurring in Larrea tridentate’s aqueous extract could be involved 

in AFB1 inhibition without an important impact in fungal growth.   

3.2. Effect of aqueous extracts on AFB1 biosynthetic pathway  

In order to characterize the mechanism of action of both extracts, we analyzed their 

impact on the expression of genes involved in AFB1 biosynthesis. Four genes were 

tested and chosen due to their importance in AFB1 transformation: aflC, aflR, aflS and 

aflQ. Aflatoxins are synthesized by a polyketide metabolic pathway in which aflR is the 

main regulator in charge of activating almost all genes involved in cluster (Bhatnagar et 

al., 2006; Brakhage, 2012). It has been recently demonstrated that aflR interacts with 

aflS forming a functional activation complex, which is absolutely necessary to activate 

AFB1 biosynthesis (Ehrlich, 2009b; Kong et al., 2014a). In addition to this, a P-450 

polyketide-synthase coded by aflC gene is also necessary for the first steps of the 

pathway. A final enzyme, aflQ, is involved in the last steps of toxin formation and more 

precisely in the conversion of B-type toxins. This enzyme is responsible for the 

conversion of sterigmatocystin into AFB1 (P., K., Chang, Yu, et al., 2004; Ehrlich et al., 

2004). Results in this study showed that a transcriptional inhibition occurs upon 

addition of 6.25 mg/ml of each extract, affecting negatively the expression of the 4 genes 

involved in this pathway. A highest impact on all gene expressions was observed with 

Mimosa tenuiflora’s extract compared to Larrea tridentata (Figure 1).  
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Figure 1.- Fold change expression of genes belonging to cluster responsible for aflatoxin 

biosynthesis upon addition of 6.25 mg/ml of aqueous extracts.  ns= no significant changes; * p-

value<0.05; ** p-value<0.01; *** p-value<0.001. 

Expression of aflR was no significantly different upon Larrea tridentata treatment even 

if a diminution tendency is observed (Fig.1); this effect has been demonstrated in other 

natural inhibitors of AFB1 (Kim et al., 2006; Yoshinari et al., 2007b). On the other hand, 

Mimosa tenuiflora showed a significantly inhibition on aflR expression. Concerning aflS 

gene, both extracts affected significantly its expression with a p-value ≤0.001. A down-

regulation of AFB1 synthesis regulators led to a strong inhibition of subsequent genes 

such as aflC and aflQ. These results demonstrated that compounds occurring in Mimosa 

tenuiflora and Larrea tridentata aqueous extracts are capable to block AFB1 production 

by affecting the appropriate mRNA stability of genes involved in biosynthesis pathway.  

4.0. Conclusion  

We demonstrated the anti-aflatoxigenic effect of aqueous extracts of Larrea tridentata 

and Mimosa tenuiflora on Aspergillus flavus strain. The expression of four genes involved 

in toxin production was tested and results showed a transcriptomic inhibition by both 

extracts. This study demonstrates that natural extracts from Mexican plants could be 

used as an alternative strategy to avoid Aflatoxin B1 contamination. Further studies are 

needed to identify the active compounds involved in AFB1 inhibition in order to 

improve their extraction and purification.     
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Supplementary Data  

 

Since the present study is still in preparation, we presented some supplementary 

information that principally involves the study of other genes belonging to the AFB1 

gene cluster as well as the study of genes belonging to regulatory factors that were 

modulated by the addition of Larrea tridentata and Mimosa tenuiflora.  

 

 

Figure 1. Normalized gene expression ratios of the two internal AF cluster-regulating genes aflR and aflS 

(in red) as well as genes belonging to the AFB1 gene clusterin the presence of Larrea tridentata (6.25 

mg/ml). Results are expressed as mean ± SEM (n=6). The orange line represents the expression level of 

genes set for control cultures. 

 

 

Figure 2. Normalized gene expression ratios of the two internal AF cluster-regulating genes aflR and aflS 

(in red) as well as genes belonging to the AFB1 gene cluster in the presence of Mimosa tenuiflora (6.25 

mg/ml). Results are expressed as mean ± SEM (n=6). The orange line represents the expression level of 

genes set for control cultures. 
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Figure 3. Schematic representation of fold-change ratios of the different regulatory genes 

affected upon Larrea tridentata supplementation of MEA media. The orange line represents the 

expression level of genes set for control cultures. * p-value <0.05; ** p-value <0.01; *** p-value < 

0.001. Results are expressed as mean ± SEM (n=6). 

 

 

 

Figure 4. Schematic representation of fold-change ratios of the different regulatory genes 

affected upon Mimosa tenuiflora supplementation of MEA media. The orange line represents the 

expression level of genes set for control cultures. * p-value <0.05; ** p-value <0.01; *** p-value < 

0.001. Results are expressed as mean ± SEM (n=6). 
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Conclusion   

 

Two endemic plants from Mexico, Mimosa tenuiflora and Larrea tridentata were 

analyzed in order to investigate their anti-aflatoxigenic effect against AFB1 production. 

Results demonstrated that both extracts were capable to greatly inhibit toxin production 

in Aspergillus flavus with a low to mild effect on fungal growth. Within the study of their 

molecular effect we demonstrated that both plant extracts inhibit AFB1 production in a 

transcriptomic manner. In fact, reduced levels of aflR and aflS were also registered 

similarly to other inhibitors tested in this work and many others reported in the 

literature.  

The inhibitory effect of these plants might be due to a single or even more probably, to 

several molecules contained in the aqueous extract. It is thus understood that further 

studies are needed to identify the active molecules.  

 

In addition to this, with this study we demonstrated that Mimosa tenuiflora is a new 

source of AFB1 inhibitor and we determined the dose that allows this inhibition in in 

vitro tests.  

 

Due to its climatic conditions, Mexico is one of the countries that are the most impacted 

by mycotoxins and especially AFB1. In fact, maize is a staple food for Mexican people 

and also one of the most frequent sources of AFB1 (García and Heredia, 2006).  

On the other side, the same climatic conditions allow the growth of native plants that 

could serve as AFB1 inhibitors. The demonstration of the anti-aflatoxigenic effect of 

these extracts could represent a new and useful way for Mexican small producers to 

fight against mycotoxin production.  
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During the present work different aspects regarding Aflatoxin B1 production were 

approached.  

Based on the vast genetic information of the Aspergillus genus, and more specifically on 

the Aspergillus flavus species, two important subjects were the major aims of this work.  

By one hand the identification and study of natural products that are capable to inhibit 

the synthesis of AFB1 production and by the other hand, the study of the molecular 

impact that these natural products have over the genetic machinery in charge to 

produce this toxin.  

 

Aiming to better understand the mechanism of action by which natural products inhibit 

AFB1 production, a molecular tool was created and a total of 60 genes that are known to 

participate in AFB1’s formation were included. The final aim of this molecular tool was 

to observe simultaneously the impact that these natural inhibitors may have over the 27 

genes belonging to the aflatoxin gene cluster as well as on the 33 external regulators 

that are directly or indirectly involved in AFB1’s production.  

 

The choice of using natural products as AFB1 inhibitors relies in an approach that 

targets the reduction of pesticides use and thus, that represent a sustainable and 

ecofriendly alternative to reduce mycotoxin contamination.  

In the present work, five natural products including two pure molecules and three plant 

extracts were analyzed against AFB1 production.   

The pure molecules (Eugenol and Piperine) and the Larrea tridentata plant extract were 

selected due to their already known anti-aflatoxigenic effect. In addition to this we also 

demonstrated that two new natural extracts from plants that are native of the 

Mediterranean and American regions are also effectives against AFB1 production. These 

extracts correspond to Micromeria graeca and Mimosa tenuiflora.  

 

It has to be noted that, during the experimental work of the present study, a special 

attention was given to the fact that the use of natural products greatly inhibits AFB1 

production without a strong impact in fungal development. This factor was chosen since 

AFB1 inhibitors that proceed in this mode of action can assure the respect of natural 

biodiversity while improving food safety.   
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Finally, the purpose to evaluate several natural AFB1 inhibitors with the same molecular 

tool was important first of all, to characterize the impact of these products on the 

molecular machinery of Aspergillus flavus during toxin inhibition and secondly, to 

compile the information of each natural product in order to search similitudes among 

the modulated genes. These observations might help us to better understand their 

mechanism of action.  

 

Based in the results presented during this work, a general discussion taking in 

consideration the five natural products is proposed. It has to be noted that some aspects 

that were already discussed in the corresponding articles will be omitted in this part.   

 

5.1 The analysis of the Aflatoxin B1 gene cluster  

 

Within the already known mycotoxins, AFB1 is one of the most dangerous one. Since 

that, a great research leading to the characterization of its entire genome has been made. 

Based in this information and aiming AFB1 inhibition, several research works using 

natural molecules have been performed in order to understand the mechanism of action 

by which they inhibit toxin production.   

Moreover, since the development of recent techniques such as q-PCR, a new branch of 

study dedicated to the investigation of the impact that these natural products have over 

the aflatoxin gene expression has increased during the last years.  

 

As an example, in the present work, the development of a molecular tool that could 

serve to the study of natural AFB1 inhibitors was a priority.  

This idea was based in the fact that the current research works that analyze natural 

AFB1 inhibitors, principally recurred to analyze only a few genes such as aflR or aflS that 

are the mainly regulator of the pathway and in some cases few other genes like aflC, aflD, 

aflM and aflP coding for earlier and later steps in the enzymatic cascade pathway.  

 

It is so that in a first instance we were wondering to know more about the molecular 

impact that natural inhibitors have over the entire AFB1 gene cluster to have more 

information about their mechanism of action but also to collect new data.   
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After having analyzed the five natural products that inhibit AFB1 production from 90% 

to no detectable levels, we noticed several points.  

First of all, comparing all results, a particular gene namely hypD was less impacted 

independently of the treatment. This is an interesting observation since it has been 

demonstrated that between aflN and hypD there exists an aflR binding site. 

Nevertheless, within the transcriptomic inhibition caused by natural products, hypD do 

not presented the same inhibition that other genes regulated by aflR. Unfortunately, to 

date little is known about hypD. Although deleted mutants of this gene have 

demonstrated to be involved in development and metabolite production, its exact 

function still remains unclear (Ehrlich, 2009). Since then, deeper studies in the 

characterization of this gene in order to known its exact role could be useful. 

In addition to this and independently of the treatment, all natural products inhibited 

AFB1 production in a transcriptomic manner. The report of Kong et al., (2014) proposed 

that when the principal cluster regulators aflR and aflS are normally expressed, their 

corresponding proteins form a protein complex that is essential for a correct 

transcription of the genes regulated by the AflR-AflS complex. As demonstrated in the 

corresponding articles, our results are in agreement with this statement since, in all 

cases, the AFB1 inhibition resulted in down-regulated levels of aflR and aflS. However, 

when they were compared, different levels of down-regulation between both genes 

were observed.  

To illustrate this, the impact that the five natural products had over the mRNA levels of 

genes belonging to the AFB1 gene cluster is presented in the figures 26-28 and 

associations according to their inhibition tendency over the AFB1 cluster were made. 

In fact, we observed several inhibition similarities between Eugenol and Gobernadora 

and between Tepezcohuite and Hyssop while Piperine presented several particular 

differences.  
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First of all, Eugenol and the Gobernadora’s extract seem to have a very similar inhibition 

tendency over the AFB1 gene cluster that is presented on Figure 26.  

 

 

 

Figure 26: Effect of the inhibitory tendency of Eugenol and Gobernadora over the genes belonging to the 

AFB1 gene cluster; orange line represents the control levels. 

 

While using both inhibitors, a greater negative impact was observed for aflS compared 

to aflR. As a consequence of the main regulators inhibition, the other genes belonging to 

the pathway were also significantly down regulated with a notable inhibition on the 

latest genes belonging to the cluster. 

Contrary to this, the only exception in both cases was for aflT, which confirms the study 

of Chang et al., (2004b) reporting that this gene is not regulated neither by aflR nor by 

its co-activator aflS. Moreover, we demonstrated that neither Eugenol nor 

Gobernadora’s treatment have a significant modulation in the expression of this gene.   

 

In addition to this, several genes coding for the first steps of the enzymatic cascade were 

also down-regulated. Either with the use of Eugenol and Gobernadora, aflB, aflC, hypC 

and aflD were down-regulated. Nevertheless, slight differences between the expression 

levels of aflB-aflC and hypC-aflD were observed. In general, the first two one were less 

impacted that the others ones.  

 

Within the enzymatic cascade, aflB-aflC code for the transformation of the hexanoate 

units into polyketide structures while hypC-aflD are involved in Norsolorinic acid 

transformations (Zhou and Linz, 1999) as shown in Figure 27.  

aflT aflC hypC aflD aflB aflR aflS aflH aflE aflN hypD aflG aflL aflI aflO aflP aflQ aflK aflV aflW aflX aflY
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Gobernadora 6.25 mg/ml
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Gobernadora AFB1's Inhibition :  95.3%

Eugenol's AFB1's Inhibition :  no longer detectable
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Figure 27: First steps of the AFB1 biosynthetic pathway 

 

We supposed that since the aflR-aflS genes were not completely inhibited few amounts 

of AflR-AflS protein complex were still formed and allowed the activation of the aflB-aflC 

genes, but that the available quantity of active complexes may not be enough to 

stimulate transcription of further genes such as hypC-aflD.  

 

Regarding the intervention of these genes within the enzymatic cascade, these little 

differences of inhibition could suggest that the use of Eugenol and Gobernadora’s extract 

could cause an AFB1 inhibition may occurs at very early steps of the pathway.  

In fact, differences between the expressed levels indicated that maybe no further or only 

little production of Norsoloric Acid Anthrone (NAA) was achieved.  

 

To illustrate this, and taking the example of Eugenol (where no further AFB1 was 

detected) and organizing the genes according to their intervention in the enzymatic 

cascade, a marked diminution between aflC and hypC is observed even if the expression 

levels are very low (Figure 28).  

 

 

 

Figure 28: Impact of 0.5 mM of Eugenol in genes intervening for the AFB1enzymatic cascade 
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To test this hypothesis, either Eugenol or Gobernadora’s extract could be tested in nor-1 

mutants of Aspergillus strains. This modified strain produces lower amounts of 

aflatoxins but can accumulate higher amounts of norsolorinic acid (Yabe et al., 1991).  

Since norsolorinic acid is a stable metabolite during AFB1 biosynthesis, this compound 

could by measured by techniques such as HPLC in order to observe if effectively, the 

inhibition of these compounds occurs at earlier steps of the AFB1 enzymatic cascade.  

One of the advantages that could present an inhibition at early steps of the pathways is 

to avoid the production of other stable intermediates that appear later in the cascade 

and that are toxic, such as sterigmatocystin.  

 

On the other side, the characterization of compounds occurring in different parts of the 

Gobernadora’s plant has been already performed. Results reported that this plant 

contains lignans compounds and notably a major presence of an antioxidant compound 

known as nordihydroguaiaretic acid (NDGA) (Vargas-Arispuro et al., 2005). Since the 

latter has molecule is commercially available, further studies could be performed using 

this isolated molecule to compare its effect whit that of the whole extract in AFB1 

cluster.  

 

To continue, figure 29 shows the inhibition tendencies of Tepezcohuite and Hyssop’s 

aqueous extract that were also compared.  

 

 

Figure 29: Effect of the inhibitory tendency of Tepezcohuite and Hyssop over the genes belonging to the 

AFB1 cluster; orange line represents the control levels. 
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Contrary to Eugenol or Gobernadora in this case, aflS inhibition seems to be comparable 

to that of aflR or even lower in the case of Hyssop’s treatment. Moreover, both extracts 

seem to have lower impacts on the latter steps of the AFB1 cluster and since then, it is 

more difficult to hypothesize at which steps of the enzymatic pathway the AFB1 

inhibition occurs.  

 

On the other side, while aflT levels were not significantly modulated by Tepezcohuite it 

was the case using Hyssop’s extract. According to this, Chang et al., (2004b) affirm that 

since aflT is not regulated by aflR or aflS and they supposed that this gene was instead 

regulated by the fadA dependent G-protein. Interestingly, under Hyssop exposure, fadA 

was not significantly impacted. This could suggest that molecules occurring in the 

Hyssop’s extract may directly modulate aflT expression or maybe that this gene could be 

also regulated by another external regulatory factor.  

A study performed by Liang et al., (2015) using cinnamaldehyde and citral as AFB1 

inhibitors in an Aspergillus flavus strain, demonstrated that similarly to Hyssop, at day 4, 

aflT was inhibited by both products. Moreover a study performed by Kim et al., (2008) 

using caffeic acid also demonstrate reduced level of expression of this gene.  

As a useful perspective, the characterization of the Hyssop and Tepezcohuite extracts by 

techniques like high performance liquid chromatography (HPLC) and mass 

chromatography could be of great help in order to identify the molecules occurring in 

these plants. Moreover, due to the fact that their inhibitory tendencies are similar, this 

could suggest that maybe compounds occurring in these plant extracts are structurally 

similar or have similar mechanism of action against toxin production.  
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Finally, one of the compounds that were also characterized using the molecular tool was 

piperine.  

 

Figure 30: Effect of the inhibitory tendency of Piperine over the genes belonging to the AFB1 cluster; orange 

line represents the control levels. 

 

In this case while using this pure molecule, we observed that aflS was more impacted 

than aflR. Even if this inhibition is similar to those of Eugenol or Gobernadora, slight 

differences on the impact on the rest of the cluster were observed.  

It was notably the case of genes that were less impacted than others genes belonging to 

the cluster such as aflE, hypE and aflD coding respectively for the final steps of AFB1 

production and  for the conversion of Norsolorinic Acid into Averantin (first steps in the 

AFB1 enzymatic cascade) (Ehrlich et al., 2009; Zhou and Linz, 1999).  

It is difficult to know why these genes were less impacted. It may be the result of the 

remaining AFB1 that is still produced but taking in consideration that the rates of 

inhibition with the other compounds were similar, this seem to be weakly probable.  

Another indice could be the highly down-regulation of aflK that was one of the genes 

that were most down-regulated upon piperine’s treatmeant. This gene codes either for 

the conversion of 5’oxoaverantin into Averufin but also for the closure of the bisfuran 

ring that gives AFB1 their mutagenic effect (Yu et al., 2004b; Sakuno et al., 2003).   
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Otherwise, aflR/aflS inhibition levels were recently reported by Moon et al., (2016) after 

exposure to a piperine-like compound 1-(2-Methylpiperidin-1-yl)-3-phenylprop-2-en-1-

one in Aspergillus flavus strain. Results were comparable to those obtained with 

piperine, the tested compound inhibited AFB1 production in a dose dependent manner.  

At comparable doses: 11.4 µg/ml for piperine (0.04mM) and 10 µg/ml for 1-(2-

Methylpiperidin-1-yl)-3-phenylprop-2-en-1-one, the AFB1 production was inhibited at 

95 and 53% respectively. Results using the piperine-like compound demonstrated that 

at this level of AFB1 inhibition, both genes were not inhibited compared to the control 

so no possible comparison could be made between both compounds at similar doses.  

Nevertheless, if comparing results observed when reaching a similar AFB1 inhibition 

and therefore suing the dose of 100 µg/ml of the piperine-like compound where no 

longer AFB1 was detected, the aflR/aflS ratios were comparable to those observed after 

piperine exposure, showing that aflS was more impacted that aflR.  

In addition to this, authors also tested 1000 µg/ml of the piperine-like compound and 

results demonstrated that compared to aflR, aflS still remained more inhibited. This 

could suggest that piperine and piperine-like compounds may have a greater inhibition 

on the aflS expression that on the main regulator aflR.  

As demonstrated, the effect of different natural products may show similarities 

regarding to their molecular impact on the AFB1 biosynthetic pathway.  In addition to 

this the behavior of several external regulatory factors that are directly or indirectly 

related with the AFB1 production was also analyzed.   
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5.2 The analysis of the external regulatory factors   

Genes that were commonly down-regulated by four of the five natural products are 

shown in figure 31. Indeed, all the tested products, with the exception of piperine, 

presented a significant common inhibition of the expression of some genes. 

 

 

 

Figure 31: Genes commonly down-regulated by several natural products 

 

As shown, four genes were the main targets of natural products and they are involved in 

the next functions: 

-brlA is a key element for conidiophore development (Tsitsigiannis et al., 2004). 

-gprA is a G-Protein Coupled receptor (Affeldt et al., 2014).  

-ppoC is a fatty dioxygenase predicted to be responsible of oxylipins production 

(Georgianna and Payne, 2009). 

-sod1, a Cu/Zn a superoxide dismutase, is involved in fungal enzymatic mechanism of 

defense against ROS  (Apel and Hirt, 2004).  

Otherwise, within the genes that were up-regulated, a total of ten genes were the 

principal targets of the different natural compounds. All of them are shown in Figure 32 

and in order to organize them, they were classified in: 

Gobernadora TepezcohuiteEugenol Hyssop

ppoCbrlA gprA sod1
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1. Oxidative Stress group  

2. Velvet complex  

3. Cellular signalization 

4. Environmental transcription factors  

5. Global transcription factors  

 

 

 

Figure 32: Genes commonly up-regulated by several natural products 

 

  

GobernadoraTepezcohuiteEugenol Piperine Hyssop

nsdCpacCveAmsnA gprK mtfAvelBcatA atfA areA

1 2 3 4 5
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Finally, the effect of the different natural compound over the modulated gene-

expression is summarized on table 20.  

Table 20: Comparative table of up- and down-regulated genes by the different natural 

products tested during this work.  

 

 

The interest of comparing all the modulated genes was to track information that led us 

to know if one of the tested genes could be commonly modulated using different AFB1 

inhibitors.  

Even if some of them could be essential keys within the different mechanism of actions 

triggered by natural products, two genes seem to be good candidates in order to 

continue further studies. It is the case of gprK and mtfA that, independently of the 

treatment, were always significantly up-regulated.  

Concerning the gprK,  G-Protein Coupled Receptors (GPCR) are known to serve as signal 

detectors of environmental stimuli that transmit information within the cell and 

generate some kind of cellular response. As discussed in the corresponding articles, 

gprK is a GPCR that has been recently studied in Aspergillus flavus (Affeldt et al., 2014). It 

has to be noted that since little is known about GPCRs within this species, in the cited 

work, 15 of them were deleted in order to observe their impact in fungal strain.  

One of the most controverting observations was that within the deletion of these GPCRs’, 

ΔgprA and ΔgprP were reported to have an impact on Aflatoxin production but it was 

not the case for ΔgprK.  

This seem to depend on species, since another recent work of Jung et al., (2016) using 

Aspergillus fumigatus demonstrated that null mutants of gprK resulted in inhibition of 

gliotoxin production. Even if the predicted role of gprK in Aspergillus flavus was not 

Hyssop Gobernadora Tepezcohuite Eugenol Piperine Total 
brlA brlA ? 2

Down-regulated gprA gprA gprA ? 3

ppoC ppoC ? 2

sod1 sod1 ? 2

gprK gprK gprK gprK ? 4

mtfA mtfA mtfA mtfA  ? 4

msnA msnA msnA  ? 3

areA areA ? 2

Up-regulated velB velB ? 2

catA catA catA 3

nsdC nsdC nsdC  ? 3

pacC pacC pacC ? 3

veA veA  ? 2

atfA atfA 2
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exactly determined, its deletion demostrated that this gene is involved in germination, 

carbon sensing, cell wall, osmotic and acidic stress response and deletion resulted in 

impaired growth on different sources of carbon.  

Interestingly, the null mutant of gprK was also tested with a compound, named Methyl 

Jasmonate (MejA), that was previously demonstrated to inhibit AFB1 production in 

Aspergillus flavus (Goodrich-Tanrikulu et al., 1995). Results showed that, in presence of 

MejA, the ΔgprK mutants increased Aflatoxin production.  

 

This could be an interesting point, since the natural products tested in this work inhibit 

AFB1 production with an over-expression of gprK. Thus, even if the ΔgprK strain by 

itself did not showed effect on AFB1 production in Aspergillus flavus, the effect of the 

over-expression of gprK in Aspergillus flavus using non-conductive AFB1 conditions has 

not been previously reported.  

 

Since then, one the next perspectives of this work could be to study in detail the over-

expression of gprK in Aspergillus flavus. The construction of an OE:gprK strain could led 

us to understand its impact in fungal growth, developmental processes and notably its 

impact on the AFB1 production.  

Moreover, the construction of such a mutant strain could allow studying the possible 

relationships between gprK and other genes that are involved in AFB1 production, 

especially aflR.  

It could therefore help to better understand if this gene is one of the direct targets of the 

natural inhibitors or if its over-expression is the consequence of other fungal 

mechanisms.   

On the other side, mtfA, considered as the second gene target has been demonstrated to 

be a master transcription factor that is involved in secondary metabolite production of 

A. nidulans, A. fumigatus and A. flavus (Ramamoorthy et al., 2013; Smith and Calvo, 2014; 

Zhuang et al., 2016).  As described in the corresponding articles, in A. nidulans, changes 

in the expression levels of this gene, either down- or over-expressed, led to aflR’s 

inhibition, and thus sterigmatocystin production (Ramamoorthy et al., 2013). It was one 

of the genes that could be a main target but its expression is related to other genes. It 
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could be interesting to investigate in detail the relations with the other genes that were 

modulated within AFB1 inhibition.  

In addition to this, in order to complete the present study, experiments will be 

performed to extend the study of the regulatory factors for piperine (the only compound 

for which only genes coding for the oxidative stress response were studied) aiming to 

know if the genes gprK or mtfA are also modulated.  

 

In addition to this, it could be of interest to perform a kinetic study in order to measure 

gene expression during the time course of tratmeant exposure.  

In fact, studies using eugenol as AFB1 inhibitor, demonstrated that after 7 days of 

exposure,  among 5 genes belonging to the AFB1 pathway that were initially modulated, 

four of them retrieved their normal expressions and in some cases, they were instead 

up-regulated compared to the control (Liang et al., 2015).  

If a natural inhibitor is destined to be applied in real conditions, it has to be taken in 

consideration that it needs to keep the capacity to inhibit AFB1 production during 

medium to long periods, corresponding for instance to crops’ storage duration.  

 

Moreover, since mycotoxin contamination co-occurred with other fungal species, the 

natural extracts can be tested on several other fungal species/mycotoxins to determine 

if they have an inhibitory effect in other toxic contaminants.  

According to this, and beyond Aspergillus flavus or A. parasiticus, several species of 

Fusarium spp. are major potent toxigenic contaminants of cereals that would be an 

interesting subject of study. For instance, F. verticillioides and F. proliferatum can 

produce Fumonisin B1 that is another currently mycotoxin that is found as a co-

contaminant with AFB1 (Hove et al., 2016).   

Moreover in order to consider the use of the natural products as potential AFB1 

inhibitors in real conditions, it has also to be considered that in vivo tests have to be 

performed to observe it these natural products can still inhibit mycotoxin production on 

complex matrixes such as maize grains, that is one of the principal source of AFB1 

contamination (Woloshuk and Shim, 2013).  
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According to this, one of the long-term perspectives is to identify a natural compound or 

extract that present the above-described characteristics targeting its utilization to 

inhibit mycotoxin production during grain’s storage.  

However, it is obvious that, since moisture is a key parameter to ensure proper storage 

of cereals, the aqueous extract would not be usable as it. Thus, formulation of active 

compounds has to be modified to allow an application that do not modify the initial 

water activity of grains but that could lead to a release of active molecules in case of 

moistening during storage.  

For this, several techniques have been proposed and one of the most convincing for 

natural compounds can be the micro-encapsulation.  

 

5.3 Micro-encapsulation 

 

Encapsulation is a technique by which a core material can be coated with another 

material or system. The covering material is called “wall material” or encapsulant and 

will be degraded within time-exposure or by external conditions that allow the 

liberation of the active compounds to the exterior (Madene et al., 2006).  

This encapsulation technique can be made, among others, by spray-dryer that is one of 

the techniques that offers the advantage of eliminate the water (in the case of aqueous 

extracts) in addition to protect the bio-actives molecules for their storage and further 

utilization.  

 

 

 

Figure 33: Microencapsulation principle with 2 types of microcapsules. This schematic diagram was 

integrally taken from the work reported by Desai and Jin Park, (2005). 

 

This encapsulation technique was discovered within the 50’s decades and has been 

developed in several branches of food, cosmetology and pharmaceutical industries. The 
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use of this technique increased during the last years due to its advantages since it offers 

an eco-friendly option. Indeed, some of the materials that can be used to encapsulate 

compounds are biodegradable materials fabricated with carbohydrates, cellulose, gum, 

lipid and proteins (Desai and Jin Park, 2005).  

Thus, micro-encapsulation can be a useful technique to conserve active molecules from 

natural extracts and to allow their conservation within the time.  

 

One of the disadvantages of using natural compounds is that some of them could change 

the sensorial properties of food commodities. Such effect has been demonstrated even 

by using essential oils that usually lead to major sensorial modifications of food 

commodities (Ayala-Zavala and González-Aguilar, 2010). For this, micro-encapsulation 

has been demonstrated to reduce these impacts.  

In addition to this, water-extracts or antioxidant compounds have been already 

demonstrated to be micro-encapsulable with good yields while using the use of micro-

encapsulation by the spray-drying technique (Şahin Nadeem et al., 2011; Sansone et al., 

2011).  

 

Finally, before the industrial application of these microcapsules, some considerations 

have to be taken in order to characterize the materials that can be used for encapsulate 

the active compounds or molecules.  

 

One of the most essential tests can be the kinetics studies using different kind of 

encapsulation materials as well as different relative humidity levels in order to 

determine the liberation rate of the encapsulated compound. Since micro-capsules can 

be disintegrated under different conditions, the choice of the material is a key element.  

Besides impact of moisture on the dissolution of capsules, other parameters such as pH 

conditions, temperature, effect of mechanical destruction, morphology, encapsulated 

yield rates and release mechanisms have to be also considered.  
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5.4 Conclusion 

To conclude, the analysis of gene clusters that are in charge of the secondary metabolite 

production can represent a useful approach to understand mycotoxin biosynthesis but 

also to understand the evolution of the fungal species.  

In the case of the AFB1’s cluster, the genes in charge to synthesize this mycotoxin as well 

as its precursor sterigmatocystin are shared between fungal species and notably 

between A. flavus, A. parasiticus and A. nidulans.  

In 2009, Ehrlich et al., compared six different gene clusters that code for different 

secondary metabolites production and demonstrated that some of the aflatoxin genes 

have similar functions, not only between AFB1 producer strains, but also with other 

fungal species (Figure 34).  

 

Figure 34: Comparison of gene clusters coding for secondary metabolites in several species  

 

With this image, it is shown that since several species can contain genes related to the 

aflatoxin production, the impact of natural compounds can lead to consider their use in 

other species.  
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In addition to this, the identification of their mechanism of action using molecular 

techniques could be helpful to identify not only their effect within the gene cluster but 

also, to study the effect that the external regulatory factors have over toxin production. 

Such understanding could allow the identification of natural stimuli that directly lead to 

inhibition of mycotoxin production and that could be subsequently used to limit food 

contamination at different steps of food chain.   

In parallel, this work also demonstrated that, the use of natural products can represent a 

promising alternative strategy to inhibit mycotoxin contamination and thus, improve 

food safety. It can offer an eco-friendly and sustainable option to the use of pesticides, 

especially in regions where natural resources are abundant and climatic conditions are 

favorable to mycotoxin production.  
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Annexes  

6.1 Physical Methods to reduce AFB1 incidence 
 
Table S1: Physical Methods to reduce AFB1 incidence 

 

 
Cleaning  

 

 
Method 

 

 
% Reduction 

of AFB1  

 
Food matrix 

 
Advantage 

 
Disadvantages 

 
Washing 

 
3-15 

 
Black  

pepper 

 
Little efficiency but can 

represent a complementary 
alternative to AFB1 elimination  

 

 
By nature, AF’s are not water-soluble 

Cost of seed drying after washing 
Increase of moisture levels   

Jalili, 2015  

 
Mechanical 

Remove 

 
Average 40 

 
Various  

 
Easy method to eliminate 

contaminated product 

Only used when a partial contamination 
exists 

Not practical for maize and cottonseed 
Peraica, 2002 

 

Optical  

Sorting  

 
50-60 

98 

 
Maize 

Peanuts 

 
Primary tool to reduce 

mycotoxin contamination  

False positives and sampling error 
Misclassification grade of 

contamination 
IARC, 2015; Moy and Miller, 2016  
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Fluorescent 

Detection 

 
 

90-100 

 
 

Various 

 
 

Effective for maize and 
cottonseed 

 
Not effective for peanuts 

Other metabolites such as Kojic Acid 
are also fluorescent (false positives) 

 
Peraica, 2002 

 

Irradiation  
 

 
Method 

 

 
% Reduction 

of AFB1  

 
Food matrix 

 
Advantage 

 
Disadvantages 

 
20 kGy 

 
 

 
100 

 
Yellow corn and 

peanut 

 
 
 
 

Non-ionizing radiation 
(microwaves, visible light) can 

rise temperature without 
hazardous molecular changes in 

products  
 
 

Gamma radiation, depending on 
Aw of product can form free 

radicals that attack AF’s 
 
 
 

 
 
 
 

Ionizing radiation (X-rays, gamma rays 
and UV rays) depends on temperature 
and could produce molecular changes 

in products  
 
 

Could these free radicals be hazardous 
for food safety?  

 
 

Radiation can be effective to reduce 
AF’s only into thinner lays of grains 

 

15 kGy 19.25 Almond 
 
 

 
10 kGy 

55-74 
81.1 
87.8 
86 
84 

81.1 
68.8 

Peanut 
Maize 
Rice 

Barley 
Bran 
Corn 

Peeled Pistachio 
 

8 kGy 
60.26 
64.24 
64.68 

Maize 
Wheat 

Rice 
6 kGy 32.39 Maize 
5 kGy 46 Maize 
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4 kGy 

15.54 
22.25 
27.46 

Maize 
Wheat 

Rice 

Effective against mold growth 
and toxin production 

 
Adeyeye, 2016; Peraica,2002;Stoev, 2013;  

Jalili, 2015 

2 kGy 68.9 Maize 
 

Heating 

 
Method 

% Reduction 
of AFB1 

 
Food matrix 

 
Advantage 

 
Disadvantages 

Microwave 50-60 
32.3 

Peanut 
Poultry feed 

 
 
 
 

Heat treatment still provides 
reduction of AF’s in maize 

products and some of them are 
current and easy to use 

 
 

 
 
 

High decomposition temperatures of AF 
 

Other mycotoxins are also heat-stable 
 

Efficacy depends on food constituents 
and of AF contamination amount 

 
Over-heat food can produce 

undesirable changes 
 

 
Jalili,2015 

Boiling 
Baking 

Steaming 

 
50-70 

 
Maize 

Roasting 
(90-150°C) 

78.4 
17-63 

Peanut meal 
Pistachio nuts 

Roasting 
(150°C) 

70 
95 

Peanut seed 
Peanut 

Roasting 
(140°C) 

58.8 Peanut seed 

Hot air oven 57.6 Feed 
Heating 
(180°C) 

62.5 
40 

Ginger 
Curry powder 

Ordinary 
cooking 

31-36 
34 

Rice 
Polished rice 
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Biomass 
Dryers 

 
lower than 20 

ppb 

 
 Maize  

Protection to insect injury 
(reduction of insecticides)  

Fungi can not growth in dry 
products 

 
 Some of them have high costs 

 
 

Kaya and Kyamuhangire, 2010; IARC, 2015 
 

Sun drying 
 

90-100 
 

Wheat 
 

Good cost-effective method 
 

Moisture control 
Not practical during rain and wet 

season 
IARC, 2015 Peraica, 2002 

 

Adsorption agents 
 

 
Method 

 

 

% Reduction 
of AFB1  

 
Food matrix 

 
Advantage 

 
Disadvantages 

 
Bentonite  

(e.g.Mycofix®) 
 

Zeolite 
 

MgO-SiO2 

 

Active 
Charcoal 

 
HSCAS 

 

 
>95% 

 
 

80 
 

80-100 
 

>99 
 
 

98-100 

 
Various 

 
 

Juice fruits 
 

Wheat flour 
 

Various 
 
 

Various 

 
Mycofix® is already authorized 

by the European Union  
 

Useful to prevent Aflatoxicosis 
 

Promising alternative for 
livestock feed  

 
HSCAS also reduce AFM1 in cow 

and goat’s milk  
 

 
Some adsorbents could not be effective 

for other mycotoxins 
 

Several works in vitro but its effect in in 
vivo tests is not predictive 

 
Active charcoal is expensive and might 

lead to deficiency of minerals and 
vitamins in domestic animals 

 
 

Peraica, 2002; Nortaa, E., 2016;Jalili, 2015; 
Biomin; Gallo and Masoero, 2010; Stoev, 2013 
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Solvents 

 
Method 

 

 
% Reduction 

of AFB1  

 
Food matrix 

 
Advantage 

 
Disadvantages 

Ethanol 
Isopropanol 
Methoxy- 
metane 

 
90-100 

 
Maize 

Peanuts 

 
Remove of AF from different 

types of foods products 

 
High cost of organic solvents 
Hazardous for industrial use 

Peraica, 2002 
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6.2 Chemical Methods to reduce AFB1 incidence 
 

Table S2: Chemical Methods to reduce AFB1 incidence  

 
 
 

 
Method 

 

% Reduction 
of AFB1  

Food 
matrix 

 
Advantage 

 
Disadvantages 

 
Citric Acid 

 
96.7 
86 

 
Maize 
Barely 

 
 

Under alkaline and acid conditions, 
lactone rings of AF’s could be open 

leading to a beta-keto acid compound 
that is water-soluble. 

 
 

For nixtamalization, not only a 
greatest reduction of AF’s are 

observed but also of Fumonisins 

Almost all experiments have 
been tested under impractical 

conditions 
Jalili, 2015 

 
 
 
 

Nixtamalization 

 
 

94 
94 
85 
79 

 
 

Maize 
Tortilla 
Tortilla 

chips 
Corn chips 

 
Not been adapted in other 
regions of Africa and Asia 

 
Requires adequate water 

 
Inhibition rates change 
depending on method 

 
Moy and Miller, 2016; IARC, 2015;  García 

and Heredia, 2006; Jalili, 2015 
 

Extrusion+Lime (0.3%) 
Extrusion+Lime 

(0.3%)+H2O2 
 

Extrusion+Lime (0.5%) 

 
74 

 
100 

 
85 

 
 
 

Corn 
Tortilla 

 
 

Several conditions of extrusion are 
very effective against AFB1 

 
Negative effect on taste and 

aroma of tortillas 
 

Inhibition depends on 
temperature and pH 

 
García and Heredia, (2006); Stoev, 

2013; Jalili, 2015 
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Ammoniation (2%) 

 
Ammonia with 

atmospheric  
pressured and 

increased temperatures 

 
88 

 
90-100 

 
Maize 

 
Peanut meal 

Ammoniation is one of the most 
current industrial processes to 

eliminate AF’s for animal feeding. 
 

Gaseous or liquid Ammonia is allowed 
by the FDA in the USA.  

 
Ammonia could convert AFB1 into a 

non-toxic compound AFD1. 
 

 
 

Long period of aeriation leading 
to high costs 

 
Ammonia reduces  

nutritional value in feed 
 
 

Peraica, 2002; Jalili, 2015 

Ozonization  
 

(33 mg/l) 
 

 (66 mg/l) 

 
 

80 
 

93 

 
 

Flanked and 
chopped 
peppers 

 
Could also represent an effective 

method for AFB1 degradation in corn 
and peanuts 

  
Efficiency increases with higher 

temperatures and longer exposure 
time  

 

 
Not allowed in European 

Community (EU) for foods 
destined to humans 

 
 

Torres, 2014; Stoev, 2016; Jalili, 2015 

 

Chemoprevention in humans 
 

Method % AFM1 
Reduction  

Test Advantages Disadvantages 

 
Oltipraz  

(500 mg/week) 

 
50  

 
Human 
Urine  

 
Reduction of disease risk 

 

 
Needs more investigation 

 
Age and genus influence the 

results 
IARC, 2015 
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Green Tea Polyphenols 
 

500 mg / 3 months  
 

1000 mg / 3 months 

 
 

42 
 

43 

 
 

Human 
Urine 

 
 

Reduction of toxic metabolites in 
humans 

Needs research in other 
countries to determine which 

local plant contain compounds 
with these effects 

 
Tang et al., 2008; IARC, 2015 

 

Pesticides:  Fungicides/Insecticides  
 

Examples of Pesticides  Advantages Disadvantages 

Fungicides  
  
Copper-Based (Cooper oxychloride, Cuprous oxide) 
Dithiocarbamates (Mancozeb, Maneb, Zineb, Thiram) 
Phtalimides (Captan, folpet) 
Benzimidazoles (Benomyl, Carbendazim, 
Thiabendazole) 
Phenylamides (Metalalxyl, Oxidixyl) 
Dicarboximides (Iprodione, procymidone) 
Strobilurin Analogues (Azoxystrobin, Pyraclostrobin) 
Azoles (triadimefon, epoxyconazole, propiconazole)  
Benzonitriles (Chlobenthiazone) 

 
 
 
 
 

Some of them are specific Aflatoxin 

inhibitors 

 

Effective against fungal infection  

 

Reduction of insect damage in crops 

which reduce risks 

Environmental Contamination 

Biodiversity changes 

Toxic Compounds 

Human allergies 

Microorganism resistance 

Pest-tolerance crops 

Economic issues 

Food safety issues  

Resistance mutations 

Different efficacy depending of 

fungi 

Accinelli et al., 2014; Sakuda et al., 
2014; Torres et al., 2014; Zain, 2011; 
Tola et al., 2016;Brent and Hollomon, 
2007 

 
Insecticides  

 
Spinosad 

Thiamethoxam 
Imidacloprid 
Indoxacarb  
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6.3 Biological control to reduce AFB1 incidence 
 
Table S3: Biological Methods to reduce AFB1 incidence 

 
 

Fungi 
Non toxinogenic Aspergillus Strains 

(Spread Spectrum including AFB1 but also other AF’s) 
 

Fungal strain % AF 
Reduction 

Food 
matrix 

Advantages Disadvantages 

 
 
 
 
 

A. flavus (AF36) 
(USA origin) 

 
 
 
 
 

>80 

 
 
 

Cottonseed 
  

Corn 
 

Pistachios  
 

 Figs 

 
 

First bio pesticide regulated in 
USA that is still used and 

approved by the Environmental 
Protection Agency (EPA) 

 
AF36 has a polymorphism near 

to the coding sequence of the 
polyketide synthase (pksA/aflC) 

required to AF’s synthesis  
 

 

 
In several regions is only effective 

from late May through June 
 

Strains can still produce CPA  
 

Efficiency depends of substrate 
 
 

Ehrlich and Cotty, 2004a; Adhikari et al., 2016 

 
 

Aflasafe™ 
(4 atoxigenic A. flavus 

strains of Nigerian origin) 
 

 
80 

 
 

90 

 
Maize 

harvest 
 

Storage 
Maize 

 
Used in pre-harvest control with 

post-harvest gains  
 

Potential utilization on small-
scale farmers of maize/cassava in 

Kenya and sub-Saharan Africa  

A sexual stage was recently 
described for A. flavus and sexual 
recombination in nature and its 

consequences have to be explored 
 
 

 Okike et al., 2015; Marechera and Ndwiga, 
2015 
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Aflaguard ® 
 (A. flavus NRRL 21882 
strain of USA origin) 

 

 
 
 

9-75 
 

85-88 
 

85.2 
 

 
 
 

Maize 
 

Maize 
 

Peanut 
 

 
Commercial use in USA and also 

tested in Australia and Argentina 
with good results 

 
The entire AF gene cluster and 

CPA clusters are deleted which is 
preferable than only to an 

aflatoxigenic strain  

 
 

 
 

Its efficacy in multi-environment 
and multi-state conditions and 

under longer time horizons has yet 
to be understood 

 
 

Adhikari et al., 2016;Dorner and Lamb, 2006; 
Torres, 2014; Jalili, 2015 

 
K94  

(USA origin) 

 
83-98 

 
Maize 

In addition to be atoxinogenic, 
this strain does not produce CPA 

 
Efficiency in maize crops within 

the years 

 

 
Need to be tested in other products 

 
 

Jalili, 2015 

 
Aspergillus niger (ND-1) 

 
58.2 

 
Coumarin 

 

 
Rapid detoxification of AFB1 

(24 h of fermentation) 
Enzymatic degradation 

 
Treatment is affected by heat, pH 

and metal ions  
 

Zhang et al., 2014b 
Supplementary Information: There exist other strains such as Penicillium raistrickii (NRRL 2038) that is capable to convert 
AFB1 into AFB2 as well as Dactylium dendroides (NRRL 2575); Mucor griseocyanus (NRRL 3359); Mucor alternans (NRRL 3358); 
Absidia repens (NRRL 1336); Helminthosporium sativum (NRRL 3356); Mucor ambiguous (I.M.M. 115) and Trichoderma viride 
(ATCC 13233) that could transform AFB1 into a compound also blue-fluorescent: AFR0  (Ji et al., 2016).  
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Bacteria 

 
Fungal strain % AFB1 

Reduction 

Test  Advantages Disadvantages 

Actinobacteria (gram positive) 
Corynebacterium 

rubrum 
Mycobacterium 

smegmatis 

99 
 

>99 

Liquid culture 
 

Liquid culture 

 
Great efficiency 

Needs further tests to understand its 
mechanism of action and its effect in 

in vivo test 
(Ji et al., 2016) 

Ɣ-Proteobacteria (gram negative) 
Pseudomonas 

aeruginosa N17-1 
82.8 Nutrient Broth 

medium 
Enzymatic degradation, great 

potential in industrial use 
Needs further tests to understand its 
mechanism of action and its effect in 

in vivo test 
Sangare et al., 2014  

Bacillus (gram positive) 
 
 

B. subtilis ANSB060 
 

 
 

81.5 
 

 
in vivo 

Broilers 
 

Antimicrobial activities against 
Escherichia coli, Salmonella 

typhimurium, Staphylococcus 
aureus  

 
Need to be tested in food products 

 
 

 
 

B. megaterium 

30.6 
 

36.6-41.6 
 

>98 

PDA culture 
 

Peanute kernels 
 

Liquid culture 
 

Biocontrol effectiveness in in vivo 
and in vitro tests 

 
Reduce expression of aflR/aflS 

and CPA genes 
 

 

Needs further tests to understand its 
mechanism of action  

 
 

Kong et al., 2014; Kong et al., 2010; Fan et al., 
2015 

Streptomyces griseochromogenes  (gram positive) 
 

Blasticidin S 
 

95 
 
Liquid medium 

 
New inhibitor compound 

Reduce expression of aflR, pksA 
and omtA 

 
Partial inhibition of CPA 

 
Yoshinari et al., (2013, 2010) 
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Lactobacillus (gram positive) 
L. rhamnosus 
 L. lactococcus 
L. plantarum 

80 
5.6-59.7 

15-60 

Liquid culture 
PBS solution 

Liquid culture 

Some of them have been also 
tested in vivo with good results 

Undesirable effect in foods 
 

(Jalili, 2015) 

 
 

Yeast 
 

Fungal strain % AFB1 
Reduction 

Test  Advantages Disadvantages 

Saccharomyces 
cerevisiae 
Saccharomyces and 
Candida strains 
Saccharomyces 
cerevisiae cell wall 

40 
 

15-60 
 

81.6 

PBS solution 
 

PBS solution 
 

Feed 
contaminated 

 

 
S. cerevisiae is a microorganism very well 

studied that could facilitate the 
understanding of a possible mechanism of 

action against AFB1   

 
Undesirable fermentation 

in products 
 

 
(Jalili, 2015) 



  

 

209 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

07 
BIBLIOGRAPHY  



 
 

210 
 

Bibliography  

A 

Accinelli, C., Abbas, H.K., Vicari, A. and Shier, W.T. (2014) Aflatoxin Contamination of Corn under 

Different Agro-Environmental Conditions and Biocontrol Applications. Crop Prot. 63, 9–14.  

Adeyeye, S.A.O. and Yildiz, F.  (2016) Fungal Mycotoxins in Foods: A review. Cogent Food and 

Agriculture. 2, 1213127.   

Adhikari, B.N., Bandyopadhyay, R. and Cotty, P.J. (2016) Degeneration of Aflatoxin Gene Clusters 

in Aspergillus flavus from Africa and North America. AMB Express 6, 62.  

Affeldt, K., Carrig, J., Amare, M.G. and Keller, N. (2014) Global Survey of Canonical Aspergillus 

flavus G Protein-Coupled Receptors. MBio. 5, 1501–1514. 

AFSSA (2009) Evaluation des risques liés à la présence de mycotoxines dans les chaines 

alimentaires humaine et animale. Rapport final.  

Alpsoy, L. (2010) Inhibitory Effect of Essential Oil on Aflatoxin Activities. African J. Biotechnol. 9, 

2474–2481.  

Amaike, S. and Keller, N.P. (2009) Distinct Roles for VeA and LaeA in Development and 

Pathogenesis of Aspergillus flavus. Eukaryot. Cell. 8, 1051–1060. 

Amaike, S. and Keller, N.P. (2011) Aspergillus flavus. Annu. Rev. Phytopathol. 49, 107–133. 

Amaike, S., Affeldt, K.J., Yin, W.B., Franke, S., Choithani, A. and Keller, N.P. (2013) The bZIP 

Protein MeaB Mediates Virulence Attributes in Aspergillus flavus. PLoS One. 8, 1–10. 

Amare, M.G. and Keller, N.P. (2014) Molecular mechanisms of Aspergillus flavus Secondary 

Metabolism and Development. Fungal Genet. Biol. 66, 11–18. 

Andrianopoulos, A. and Timberlake, W.E. (1994) The Aspergillus nidulans abaA Gene Encodes a 

Transcriptional Activator that Acts as a Genetic Switch to Control Development. Mol. Cell. Biol. 

14, 2503–2515. 

Apel, K. and Hirt, H. (2004) Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal 

Transduction. Annu. Rev. Plant Biol. 55, 373–399.  

Arteaga, S., Andrade-Cetto, A. and, Cárdenas, R. (2005) Larrea tridentata (Creosote bush), an 

Abundant Plant of Mexican and US-American Deserts and its Metabolite Nordihydroguaiaretic 

Acid. J. Ethnopharmacol. 98, 231–239.  

Asano, Y., Hagiwara, D., Yamashino, T. and Mizuno, T. (2007) Characterization of the bZip-type 

Transcription Factor NapA with Reference to Oxidative Stress Response in Aspergillus nidulans. 

Biosci. Biotechnol. Biochem. 71, 1800–1803. 

Ashiq, S., Hussain, M. and Ahmad, B. (2014) Natural Occurrence of Mycotoxins in Medicinal 

Plants: A Review. Fungal Genet. Biol. 66, 1–10. 



  

 

211 
 

Asplin, F.D. and Carnaghan, R.B.A. (1961) The Toxicity of Certain Groundnut meals for Poultry 

with Special Reference to Their Effect on Duclings. Vet. Rec. 73, 1215-1219.  

Atoui, A., Kastner, C., Larey, C.M., Thokala, R., Etxebeste, O., Espeso, E.A., Fischer, R. and Calvo, 

A.M. (2010) Cross-talk Between Light and Glucose Regulation Controls Toxin Production and 

Morphogenesis in Aspergillus nidulans. Fungal Genet. Biol. 47, 962–972. 

Ayala-Zavala, J.F. and González-Aguilar, G.A. (2010) Optimizing the Use of Garlic Oil as 

Antimicrobial Agent on Fresh-Cut Tomato Through a Controlled Release System. J. Food Sci. 75. 

M398- M405.  

B 

Balter, S. (2006) Foodborne pathogens: Microbiology and Molecular Biology. Emerging 

Infectious Diseases. 12, 168.  

Baranyi, N., Kocsubé, S. and Varga, J. (2015) Aflatoxins: Climate change and biodegradation. 

Curr. Opin. Food Sci. 5, 60–66. 

Baranyi, N., Kocsube, S., Vagvolgyi, C., Varga, J. (2013) Current Trends in Aflatoxin Research. Acta 

Biol Szeged. 57, 95-107. 

Battilani, P., Camardo Leggieri, M., Rossi, V. and Giorni, P. (2013) AFLA-Maize, A Mechanistic  

Model for Aspergillus flavus Infection and Aflatoxin B1 Contamination in Maize. Comput. 

Electron. Agric. 94, 38–46.  

Battilani, P., Toscano, P., Van der Fels-Klerx, H.J., Moretti, A., Camardo Leggieri, M., Brera, C., 

Rortais, A., Goumperis, T. and Robinson, T. (2016) Aflatoxin B1 Contamination in Maize in 

Europe Increases Due to Climate Change. Sci. Rep. 6, 1–7. 

Bayram, Ö. and Braus, G.H. (2012) Coordination of Secondary Metabolism and Development in 

Fungi: The velvet family of regulatory proteins. FEMS Microbiol. Rev. 36, 1–24. 

Bayram, Ö., Krappmann, S., Ni, M., Bok, J.W., Helmstaedt, K., Yu, J. and Braus, G.H. (2008) VelB / 

VeA/LaeA Complex Coordinates Light Signal with fungal Development and Secondary 

Metabolites. Science. 320, 1504–1506. 

Bbosa, G., Kitya, D. and Lubega, A. (2013) Review of the Biological and Health Effects of 

Aflatoxins on Body Organs and Body Systems. Aflatoxin - Recent Adv. Futur. Prospect. Chapter 

12, 240 – 265. 

Bedard, L.L. and Massey, T.E. (2006) Aflatoxin B1-induced DNA Damage and its Repair. Cancer 

Lett. 241, 174–183. 

Benkerroum, N., (2016) Mycotoxins in Dairy Products: A review. Int. Dairy J. 62, 63–75.  

Bennett, J.W. (2003) Mycotoxins. Clin. Microbiol. Rev. 16, 497–516. 

Bennett, J.W. and Christensen, S.B. (1983). New Perspectives on Aflatoxin Biosynthesis. Adv. 

Appl. Microbiol. 29, 53–92. 



 
 

212 
 

Bhat, R.V., Shetty, P.H., Amruth, R.P. and Sudershan, R.V. (1997) A Foodborne Disease Outbreak 

Due to the Consumption of Moldy Sorghum and Maize Containing Fumonisin Mycotoxins. 

Clinical Toxicology. 35, 249-255. 

Bhatnagar, D., Cary, J.W., Ehrlich, K., Yu, J. and Cleveland, T.E. (2006) Understanding the Genetics 

of Regulation of Aflatoxin Production and Aspergillus flavus Development. Mycopathologia. 162, 

155–166. 

Biomin (2015) Mycotoxin Report: Your Personal Mycotoxin Risk Management Tool. BIOMIN 

Hold. GmbH Mycotoxin.  

Birch, A. J., Bladas, J., Hulbucek, R., Simpson, T.J. and Westerman, P.W. (1976) Biosynthesis of the 

Fungal Xantone Ravenelin. J. Chem. Soc. Perkin Trans. 1, 879-904.   

Blackwell, M. (2011) The fungi: 1, 2, 3 ... 5.1 million species? Am. J. Bot. 98, 426–438. 

Blanc, P.J., Loret, M.O. and Goma, G. (1995) Production of Citrinin by Various Species of 

Monascus. Biotechnol Lett. 17, 291-294.  

Blount, W. P. (1961). Turkey “X” Disease. Turkeys, 9, 52-55. 

Bluma, R. V. and Etcheverry, M.G. (2008) Application of Essential Oils in Maize Grain: Impact on 

Aspergillus section Flavi Growth Parameters and Aflatoxin Accumulation. Food Microbiol. 25, 

324–334.  

Bok, J.W. and Keller, N.P. (2004) LaeA, a Regulator of Secondary Metabolism in Aspergillus spp. 

Eukaryot Cell 3: 527–535. 

Botana, L. M. and Sainz, M. J. (2015) Climate Change and Mycotoxins. Ed. by Botana, Luis M.; 
Sainz, María J. Walter de Gruyter GmbH & Co KG., Germany.  

Bradburn, N., Coker, R.D. and Blunden, G. (1994) Short Reports of Turkey “X” Disease. Phyto. 35, 

187. 

Brakhage, A.A. (2012) Regulation of Fungal Secondary Metabolism. Nat. Rev. Microbiol. 11, 21–

32. 

Brent, K.J. and Hollomon, D.W. (2007) Fungicide Resistance: the Assessment of the Risk. 

Fungicide Agriculture, Ecosystems and Environment. 69, 233-242.  

Bressac, B., Kew, M., Wands, J. and Ozturk, M. (1991) Selective G to T mutations of p53 gene in 

Hepatocellular Carcinoma from Southern Africa. Nature. 350, 429–431. 

Brown, A.N., Fagundes de Gouvea, P., Krohn G. N., Savoldi, M., Goldman H. G. and Paulo, S. (2013) 

Functional Characterisation of the Non-Essential Protein Kinases and Phosphatases Regulating 

Aspergillus nidulans Hydrolytic Enzyme Production. Biotechnol. Biofuels. 6, 1–17. 

Buchanan, R. L., Jr. and Ayres, J.C. (1975) Effects of Initial pH on Aflatoxin Production. Appl. 

Microbiol. 30, 1050–1051. 

 



  

 

213 
 

C 

Calvo, A. M., Bok, J. W., Brooks, W. and Keller, N. P. (2004) Vea Is Required for Toxin And 

Sclerotial Production In Aspergillus parasiticus. Appl. Environ. Microbiol. 70, 4733-4739. 

Calvo, A.M. (2008) The Vea Regulatory System and Its Role in Morphological And Chemical 

Development In Fungi. Fungal Genet. Biol.  45, 1053–1061. 

Calvo, A.M., Wilson, R.A., Bok, J.W. and Keller, N.P. (2002) Relationship Between Secondary 

Metabolism and Fungal Development. Microbiol. Mol. Biol. Rev. 66, 447–459. 

Campbell-Platt, G. and Cook, P.E. (1989). Fungi in The Production Of Foods And Their 

Ingredients. Journal of Applied Bacteriology.  67, S117–S131. 

Carnaghan, R.B.A. (1965) Hepatic Tumors in Ducks Fed A Low Level Of Toxic Groundnut Meal. 

Nature, 208, 308.  

Cary, J. W., Harris, P. Y., Molyneux, R. J. and Mahoney, N.E. (2003) Inhibition of Aflatoxin 

Biosynthesis by Gallic Acid. In: Proceedings of the 16th Annual Aflatoxin Elimination Workshop, 

October 13-15, 2003, Savannah, Georgia. p. 40.  

Cary, J.W., Ehrlich, K.C., Bland, J.M. and Montalbano, B.G. (2006) The Aflatoxin Biosynthesis 

Cluster Gene aflX, Encodes an Oxidoreductase Involved in Conversion of Versicolorin A to 

Demethylsterigmatocystin. Appl. Environ. Microbiol. 72, 1096–1101. 

Cary, J.W., Ehrlich, K.C., Wright, M., Chang, P.K. and Bhatnagar, D. (2000a) Generation of aflR 

Disruption Mutants of Aspergillus parasiticus. Appl. Microbiol. Biotechnol. 53, 680–684. 

Cary, J.W., Han, Z., Yin, Y., Lohmar, J.M., Shantappa, S, Harris-Coward, P.Y., Mack, B, Ehrlich, K.C., 

Wei, Q., Arroyo-Manzanares, N., Uka, V., Vanhaecke, L., Bhatnagar, D., Yu, J., Nierman, W.C., Johns, 

M.A., Sorensen, D., Shen, H., De Saeger, S., Diana Di Mavungu, J. and Calvo, A.M. (2015) 

Transcriptome Analysis of Aspergillus Flavus Reveals veA-Dependent Regulation of Secondary 

Metabolite Gene Clusters, Including The Novel Aflavarin Cluster. Eukaryot. Cell. 14, 983–997. 

Cary, J.W., Harris-Coward, P.Y., Ehrlich, K.C., Mack, B.M., Kale, S.P., Larey, C. and Calvo, A.M. 

(2012) NsdC and NsdD Affect Aspergillus flavus Morphogenesis and Aflatoxin Production. 

Eukaryot. Cell. 11, 1104–1111. 

Cary, J.W., Montalbano, B.G. and Ehrlich, K.C. (2000b). Promoter Elements Involved in The 

Expression of the Aspergillus parasiticus Aflatoxin Pathway Gene avnA. Biochim. et Biophys Acta. 

91377, 1–6. 

Cary, J.W., Wright, M., Bhatnagar, D., Lee, R. and Chu, F.S. (1996) Molecular Characterization of 

an Aspergillus parasiticus dehydrogenase gene, norA, located on the Aflatoxin Biosynthesis Gene 

Cluster. Appl. Environ. Microbiol.  62, 360–366. 

CAST Report (2003) Mycotoxins: Risks in Plant, Animal, and Human Systems on Richard, J. L and 

Payne, G. A. eds. Council for Agricultural Science and Technology. Task Force report No. 139, 

Ames, Iowa, USA. 



 
 

214 
 

Centers for Disease Control and Prevention (2004) Outbreak of Aflatoxin Poisoning–Eastern and 

Central Provinces, Kenya, January–July 2004. MMWR Morb Mortal Wkly Rep. 53, 790–793.  

Chanda, A., Roze, L. V, Kang, S., Artymovich, K.A., Hicks, G.R., Raikhel, N. V, Calvo, A.M. and Linz, 

J.E. (2009) A Key Role for Vesicles in Fungal Secondary Metabolism. Proc. Natl. Acad. Sci. U.S.A. 

106, 19533–19538. 

Chanda, A., Roze, L.V. and Linz, J.E. (2010) A Possible Role for Exocytosis in Aflatoxin Export in 

Aspergillus parasiticus. Eukaryot Cell.  9, 1724-1727.  

Chang, P.K. (2003) The Aspergillus parasiticus protein AFLJ Interacts with the Aflatoxin 

Pathway-Specific Regulator AFLR. Mol. Genet. Genomics. 268, 711–719. 

Chang, P.K., Cary, J.W., Yu, J., Bhatnagar, D. and Cleveland, T.E. (1995a) The Aspergillus 

parasiticus Polyketide Synthase Gene pksA, a homolog of Aspergillus nidulans wA, is Required for 

Aflatoxin B1 Biosynthesis. Mol. Gen. Genet. 248, 270–277. 

Chang, P.K., Ehrlich, K.C., Yu, J., Bhatnagar, D. and Cleveland, T.E. (1995b) Increased Expression 

of Aspergillus parasiticus aflR, Encoding A Sequence-Specific DNA-binding Protein, Relieves 

Nitrate Inhibition of Aflatoxin Biosynthesis. Appl. Environ. Microbiol. 61, 2372–2377. 

Chang, P.K., Horn, B.W. and Dorner, J.W. (2009) Clustered Genes Involved in Cyclopiazonic Acid 

Production Are Next To The Aflatoxin Biosynthesis Gene Cluster in Aspergillus flavus. Fungal 

Genet Biol.  46, 176– 182. 

Chang, P.K., Scharfenstein, L.L., Ehrlich, K.C., Wei, Q., Bhatnagar, D. and Ingber, B.F. (2012) 

Effects of laeA Deletion on Aspergillus flavus Conidial Development and Hydrophobicity May 

Contribute to Loss of Aflatoxin Production. Fungal Biol. 116, 298–307. 

Chang, P.K., Scharfenstein, L.L., Luo, M., Mahoney, N., Molyneux, R.J., Yu, J., Brown, R.L. and 

Campbell, B.C., (2011) Loss of msnA, a Putative Stress Regulatory Gene, In Aspergillus parasiticus 

and Aspergillus flavus Increased Production of Conidia, Aflatoxins and Kojic Acid. Toxins (Basel). 

3, 82-104. 

Chang, P.K., Yabe, K. and Yu, J.H. (2004a) The Aspergillus parasiticus estA-encoded Esterase 

Converts Versiconal Hemiacetal Acetate to Versiconal and Versiconol Acetate to Versiconol in 

Aflatoxin Biosynthesis. Appl. Environ. Microbiol. 70, 3593–3599. 

Chang, P.K., Yu, J. and Yu, J.H. (2004b) aflT, a MFS Transporter-Encoding Gene Located in The 

Aflatoxin Gene Cluster, does not Have a Significant Role in Aflatoxin Secretion. Fungal Genet. 

Biol. 41, 911–20. 

Chang, P.K., Yu, J.H., Bhatnagar, D. and Cleveland, T.E. (2000c) Characterization of the Aspergillus 

parasiticus Major Nitrogen Regulatory Gene, areA. Biochimica et Biophysica Acta. 1491, 263–

266. 

Chang, P.K., Yu, J., Ehrlich, K.C., Boue, S.M., Montalbano, B.G., Bhatnagar, D. and Cleveland, T.E. 

(2000d). adhA in Aspergillus parasiticus is Involved in Conversion of 50-Hydroxyaverantin to 

Averufin. Appl. Environ. Microbiol. 66, 4715–4719. 



  

 

215 
 

Chizzola, R. (2013) Chapter 96 - Regular Monoterpenes and Sesquiterpenes (Essential Oils), in: 

Natural Products. p. 2973.  

Cole, R. J. (1986) Etiology of Turkey "X" Disease in Retrospect: A Case for the Involvement of 

Cyclopiazonic Acid. Mycotoxin Res. 2, 3-7. 

Cotty, P.J. (1988) Aflatoxin and Sclerotial Production by Aspergillus flavus: Influence of pH. 

Physiol. Biochem. 78, 1250–1253. 

D 

Dalvi, R.R. (1986) An overview of Aflatoxicosis of Poultry: Its Characteristics, Prevention and 

Reduction. Vet. Res. Commun. 10, 429–443. 

Davis, N.D. and Diener, U.L. (1968) Growth and Aflatoxin Production by Aspergillus parasiticus 

from Various Carbon Sources. Appl Microbiol. 16, 158–159. 

De Jongh, W.A. and Nielsen, J. (2007) Filamentous Fungi as Cell Factories for Metabolite 

Production. In J. Dijksterhuis and R.A. Samson (ed.) Food Mycology: A multifaceted Approach to 

Fungi and Food. CRC Press. Boca, Raton, Florida.  

De Saeger, S., Audenaert, K. and Croubels, S. (2016) Report from the 5th International 

Symposium on Mycotoxins and Toxigenic Moulds: Challenges and Perspectives (MYTOX) Held in 

Ghent, Belgium, May 2016. Toxins (Basel). 8, 146. 

Deepika, V.B., Murali, T.S. and Satyamoorthy, K. (2015) Modulation of Genetic Clusters for 

Synthesis of Bioactive Molecules in Fungal Endophytes: A review. Microbiol. Res. 182, 125–140. 

Desai, K.G.H. and Jin Park, H. (2005) Recent Developments in Microencapsulation of Food 

Ingredients, Drying Technology. 7, 1361-1394.  

Dolezal, A.L., Obrian, G.R., Nielsen, D.M., Woloshuk, C.P., Boston, R.S. and Payne, G.A. (2013) 

Localization, Morphology and Transcriptional Profile of Aspergillus flavus during seed 

colonization. Mol. Plant Pathol. 14, 898–909. 

Dorner, J.W. and Lamb, M.C. (2006) Development and Commercial Use of Afla-guard®, an 

Aflatoxin Biocontrol Agent. Mycotoxin Research. 22, 33-38.  

Dowzer, C.E. and Kelly, J.M. (1989) Cloning of the creA gene from Aspergillus nidulans – A Gene 

Involved in Carbon Catabolite Repression. Curr Genet. 15, 457–459. 

Drew, S.W. and Demain, A L. (1977) Effect of Primary Metabolites on Secondary Metabolism. 

Annu. Rev. Microbiol. 31, 343–356. 

Du, W., Obrian, G.R. and Payne, G. A. (2007) Function and Regulation of aflJ in the Accumulation 

of Aflatoxin Early Pathway Intermediate in Aspergillus flavus. Food Addit. Contam. 24, 1043–

1050. 

Duran, R.M., Cary, J.W. and Calvo, A.M. (2007) Production of Cyclopiazonic Acid, Aflatrem, and 

Aflatoxin by Aspergillus flavus is regulated by veA, a Gene Necessary for Sclerotial Formation. 

Appl. Microbiol. Biotechnol. 73, 1158–1168. 



 
 

216 
 

Duran, R.M., Cary, J.W. and Calvo, A.M. (2009) The Role of veA in Aspergillus flavus Infection of 

Peanut, Corn and Cotton. Open Mycol. J. 3, 27–36. 

Dutton, M.F. (1988) Enzymes and Aflatoxin Biosynthesis. Microbiol. Rev. 52, 274–295. 

E 

Ehrlich, K. C., Li, P., Scharfenstein, L. and Chang, P.K. (2010a). HypC, the Anthrone Oxidase 

Involved in Aflatoxin Biosynthesis. Applied and Environmental Microbiology. 76, 3374–3377.  

Ehrlich, K.C. (2009) Predicted Roles of the Uncharacterized Clustered Genes in Aflatoxin 

Biosynthesis. Toxins (Basel). 1, 37–58. 

Ehrlich, K.C. and Cotty, P.J. (2002) Variability in Nitrogen Regulation of Aflatoxin Production by 

Aspergillus flavus Strains. Appl. Microbiol. Biotechnol. 60, 174–178. 

Ehrlich, K.C. and Cotty, P.J. (2004a) An Isolate of Aspergillus flavus used to Reduce Aflatoxin 

Contamination in Cottonseed has a Defective Polyketide Synthase Gene. Applied Microbiology 

and Biotechnology. 65, 473–478.  

Ehrlich, K.C., Cary, J.W. and Montalbano, B.G. (1999a) Characterization of the Promoter for the 

Gene Encoding the Aflatoxin Biosynthetic Pathway Regulatory Protein AFLR. Biochim. Biophys. 

Acta - Gene Struct. Expr. 1444, 412–417. 

Ehrlich, K.C., Chang, P.K., Scharfenstein, L.L., Cary, J.W., Crawford, J.M. and Townsend, C.A. 

(2010b) Absence of The Aflatoxin Biosynthesis Gene, norA, Allows Accumulation Of 

Deoxyaflatoxin B1 In Aspergillus flavus Cultures. FEMS Microbiol. Lett. 305, 65–70. 

Ehrlich, K.C., Chang, P.K., Yu, J. and Cotty, P.J. (2004b) Aflatoxin Biosynthesis Cluster Gene cypA 

Is Required for G Aflatoxin Formation. Appl. Environ. Microbiol. 70, 6518–6524. 

Ehrlich, K.C., Montalbano, B., Boué, S.M. and Bhatnagar, D. (2005) An Aflatoxin Biosynthesis 

Cluster Gene Encodes a Novel Oxidase Required for Conversion of Versicolorin A to 

Sterigmatocystin. Appl. Environ. Microbiol. 71, 8963–8965. 

Ehrlich, K.C., Montalbano, B.G. and Cary, J.W. (1999b) Binding of the C6-zinc Cluster Protein, 

AFLR, to the Promoters of Aflatoxin Pathway Biosynthesis Genes in Aspergillus parasiticus. Gene. 

230, 249–257. 

Ehrlich, K.C., Montalbano, B.G., Cary, J.W. and Cotty, P.J. (2002) Promoter Elements in The 

Aflatoxin Pathway Polyketide Synthase Gene. Biochim. Biophys. Acta. 1576, 171–175.  

Ehrlich, K.C., Scharfenstein, L.L., Montalbano, B.G. and Chang, P.K. (2008) Are the genes nadA and 

norB Involved in Formation of Aflatoxin G 1? Int. J. Mol. Sci. 9, 1717–1729. 

F 

Faghihi, M.A. and Wahlestedt, C. (2009) Regulatory Roles of Natural Antisense Transcripts. Nat 

Rev Mol Cell Biol. 10, 637–643. 



  

 

217 
 

Fan, Y., Zhao, L., Ji, C., Li, X., Jia, R., Xi, L., Zhang, J. and Ma, Q. (2015) Protective Effects of Bacillus 

Subtilis ANSB060 on Serum Biochemistry, Histopathological Changes and Antioxidant Enzyme 

Activities of Broilers Fed Moldy Peanut Meal Naturally Contaminated with Aflatoxins. Toxins. 7, 

3330-3343.  

FAO (2003) Worldwide Regulations for Mycotoxins in Food and Feed in 2003. FAO Food Nutr. 

Pap. Rome, 1–165. 

Feng, G.H. and Leonard, T.J. (1998) Culture Conditions Control Expression Of The Genes For 

Aflatoxin and Sterigmatocystin Biosynthesis in Aspergillus parasiticus and A. nidulans. Appl. 

Environ. Microbiol. 64, 2275– 2277.  

Feng, G.H., and Leonard, T.J. (1995) Characterization of the Polyketide Synthase Gene (pksL1) 

Required for Aflatoxin Biosynthesis in Aspergillus parasiticus. J. Bacteriol. 177, 6246-6254. 

Ferreira, F.D., Kemmelmeier, C., Arrotéia, C.C., Da Costa, C.L., Mallmann, C.A., Janeiro, V., Ferreira, 

F.M.D., Mossini, S.A.G., Silva, E.L. and Machinski, M. (2013) Inhibitory Effect of the Essential Oil of 

Curcuma longa L. and Curcumin on Aflatoxin Production by Aspergillus flavus Link. Food Chem. 

136, 789–793.  

Fischer, R. (2008) Developmental Biology. Sex and Poison in the Dark. Science. 320, 1430–1431. 

Flaherty, J.E. and Payne, G.A. (1997) Overexpression of aflR Leads to Upregulation of Pathway 

Gene Transcription and Increased Aflatoxin Production in Aspergillus flavus. Appl. Environ. 

Microbiol. 63, 3995–4000. 

Friedman, M. and Rasooly, R. (2013) Review of the Inhibition of Biological Activities of Food-

Related Selected Toxins by Natural Compounds. Toxins (Basel). 5, 743–775.  

Frisvad, J.C., Andersen, B. and Samson, R.A. (2007). Association of Moulds to Foods. In J. 

Dijksterhuis and R.A. Samson (ed.).  Food Mycology: A multifaceted Approach to Fungi and Food. 

CRC Press. Boca, Raton, Florida.  

G 

Galagan, J.E., Henn, M.R., Ma, L.J., Cuomo, C.A. and Birren, B. (2005) Genomics of the Fungal 

Kingdom: Insights into Eukaryotic Biology. Genome Res. 15, 1620–1631. 

Gallagher, R.T. and Wilson, B.J. (1978) Aflatrem, the Tremorgenic Mycotoxin from Aspergillus 

flavus. Mycopathologia.  66, 183–185 

Gallo, A. and Masoero, F. (2010) In vitro Models to Evaluate the Capacity of Different 

Sequestering Agent to Adsorb Aflatoxins. Italian Journal of Animal Science. 9, 109-116.  

García, S. and Heredia, N. (2006) Mycotoxins in Mexico: Epidemiology, Management, and Control 

Strategies. Mycopathologia 162, 255–264.  

Geiser, D. M., Samson, R. A., Varga, J., Rokas, A. and Witiak, S. M. (2008). A Review of Molecular 

Phylogenetics in Aspergillus, and Prospects for a Robust Genus-Wide Phylogeny. In Varga, J. and 



 
 

218 
 

Samson, R. A. (Eds.) Aspergillus in the Genomic Era. (pp. 17-32). Wageningen: Wageningen 

Academic Publishers. 

Georgianna, D.R. and Payne, G.A. (2009) Genetic Regulation of Aflatoxin Biosynthesis: From gene 

to Genome. Fungal Genet. Biol. 46, 113–125. 

Georgianna, D.R., Fedorova, N.D., Burroughs, J.L., Dolezal, A.L, Bok, J.W., Horowitz-Brown, S, 

Woloshuk, C.P., Yu, J., Keller, N.P., Payne, G.A. (2010) Beyond Aflatoxin: Four Distinct Expression 

Patterns and Functional Roles Associated with Aspergillus flavus Secondary Metabolism Gene 

Clusters. Mol. Plant Pathol. 11, 213–226. 

Gilbert, M.K., Mack, B.M., Wei, Q., Bland, J.M., Bhatnagar, D. and Cary, J.W. (2016) RNA 

Sequencing of an nsdC Mutant Reveals Global Regulation of Secondary Metabolic Gene Clusters 

in Aspergillus flavus. Microbiol. Res. 182, 150–161. 

Gomez del Arco, P., Martínez-Martínez, S., Calvo, V., Armesilla, A L. and Redondo, J.M. (1997) 

Antioxidants and AP-1 activation: A Brief Overview. Immunobiology. 198, 273–278. 

Goodrich-Tanrikulu, M., Mahoney, N.E., and Rodriguez, S.B., (1995) The Plant Growth Regulator 

Methyl Jasmonate Inhibits Aflatoxin Production by Aspergillus flavus. Microbiology. 141, 2831–

2837. 

Griffin, D. H. (1994) Fungal physiology (2nd ed). Wiley-Liss, New York.  

Grintzalis, K., Vernardis, S. I., Klapa, M. I., and Georgiou, C. D. (2014) The Role of Oxidative Stress 

in Sclerotial Differentiation and Aflatoxin B1 Biosynthesis in Aspergillus flavus. Appl. and 

Environ. Microb.  80, 5561–5571.  

H 

Hagiwara, D., Asano, Y., Marui, J., Furukawa, K., Kanamaru, K., Kato, M., Abe, K., Kobayashi, T., 

Yamashino, T. and Mizuno, T. (2007) The SskA and SrrA Response Regulators are Implicated in 

Oxidative Stress Responses of Hyphae and Asexual Spores in the Phosphorelay Signaling 

Network of Aspergillus nidulans. Biosci. Biotechnol. Biochem. 71, 1003–1014.  

Hagiwara, D., Asano, Y., Yamashino, T., and Mizuno, T. (2008) Characterization of bZip-type 

transcription factor AtfA with reference to stress responses of conidia of Aspergillus nidulans. 

Biosci. Biotechnol. Biochem. 72, 2756–2760. 

Hartnoll, G., Moore, D. and Douek, D. (1993) Near Fatal Ingestion of Oil of Cloves. Arch. Dis. Child. 

69, 392–393.  

Hawksworth, D.L. (1997) The Fascination of Fungi: Exploring Fungal Diversity. Mycologist. 11, 

18–22. 

Hawksworth, D.L., Sutton, B.C., and Ainsworth, G.C. (1983) Dictionary of the Fungi. Seventh 

Edition. Commonwealth Mycological Institute, Kew, UK. p. 445.  

Hayes, P. R. and Forsythe, S.J. (1998) Food hygiene, microbiology and HACCP. London: Blackie 

Academic. 



  

 

219 
 

He, Z. M., Price, M. S., OBrian, G. R., Georgianna, D. R. and Payne, G. A. (2007). Improved Protocols 
for Functional Analysis in the Pathogenic Fungus Aspergillus flavus. BMC Microbiol. 7, 104. 

Henry, K.M. and Townsend, C.A. (2005) Ordering the Reductive and Cytochrome P450 Oxidative 

Steps In Demethylsterigmatocystin Formation Yields General Insights Into The Biosynthesis Of 

Aflatoxin And Related Fungal Metabolites. J. Am. Chem. Soc. 127, 3724–3733. 

Herr, A. and Fischer, R. (2014) Improvement of Aspergillus nidulans Penicillin Production by 

Targeting AcvA to Peroxisomes. Metab. Eng. 25, 131–139. 

Hicks, J.K., Yu, J.H., Keller, N.P. and Adams, T.H. (1997) Aspergillus Sporulation and Mycotoxin 

Production Both Require Inactivation of the FadA Gα Protein-Dependent Signaling Pathway. 

EMBO J. 16, 4916–4923. 

Holmes, R.A. (2008) Characterization of an Aflatoxin Biosynthetic Gene and Resistance in Maize 

Seeds to Aspergillus flavus. PhD thesis, North Carolina State University, Raleigh, 

NC,USA.http://www.lib.ncsu.edu/theses/available/etd-08182008-112539/unrestricted/etd.pdf 

Hong, S.Y. and Linz, J.E. (2009) Functional Expression and Sub-Cellular Localization of the Early 

Aflatoxin Pathway Enzyme Nor-1 in Aspergillus parasiticus. Mycol. Res. 113, 591–601. 

Hong, S.Y., Roze, L. V., Wee, J. and Linz, J.E. (2013) Evidence That a Transcription Factor 

Regulatory Network Coordinates Oxidative Stress Response and Secondary Metabolism in 

Aspergilli. Microbiologyopen.  2, 144–160. 

Horn, B., W., Sorensen, R.B., Lamb, M.C., Sobolev, V.S., Olarte, R. A., Worthington, C. J.  and 

Carbone, I. (2014) Sexual Reproduction in Aspergillus flavus Sclerotia Naturally produced in 

Corn. Genet. Resist. 104, 75–85. 

Horn, B.W., Moore, G.G. and Carbone, I. (2009) Sexual reproduction in Aspergillus flavus. 

Mycologia 101, 423–429. 

Hove, M., Van Poucke, C., Njumbe-Ediage, E., Nyanga, L.K. and De Saeger, S. (2016) Review on the 

natural Co-Occurrence of AFB1 and FB1 in Maize and the Combined Toxicity of AFB1 and FB1. 

Food Control 59, 675–682.  

Hsieh, D.P., Wan, C.C. and Billington, J.A. (1989) A versiconal Hemiacetal Acetate Converting 

Enzyme in Aflatoxin Biosynthesis. Mycopathologia. 107, 121–126. 

Hsu, I.C. (1991) © 1991 Nature Publishing Group. Lett. to Nat. 350, 427–428. 

Huang, J.Q., Jiang, H.F., Zhou, Y.Q., Lei, Y., Wang, S.Y. and, Liao, B.S. (2009). Ethylene Inhibited 

Aflatoxin Biosynthesis is due to Oxidative Stress Alleviation and Related to Glutathione Redox 

State Changes in Aspergillus flavus. Int. J. Food Microbiol. 130, 17–21. 

Hynes, M.J., Murray, S.L., Khew, G.S. and Davis, M.A. (2008) Genetic Analysis of the Role of 

Peroxisomes in the Utilization of Acetate and Fatty Acids in Aspergillus nidulans. Genetics. 178, 

1355–1369. 

 



 
 

220 
 

I 

IARC (2015) Mycotoxin Control in Low- And Middle- Income Countries. IARC Working Group, 

Report no. 9. Edited by Wild, C.P., Miller, J. D. and Groopman, J. D.  

IARC Monograph (1993) Some Naturally Occurring Substances: Food Items and Constituents, 

Heterocyclic Aromatic Amines and Mycotoxins. International Agency for Research on Cancer, 56.  

IARC Monograph (2002) Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene 

and Styrene. International Agency for Research on Cancer, 82.  

Ichinose, S., Tanaka, M., Shintani, T. and Gomi, K. (2014) Improved α-amylase Production by 

Aspergillus oryzae After a Double Deletion of Genes Involved in Carbon Catabolite Repression. 

Appl. Microbiol. Biotechnol. 98, 335–343. 

Iram, W., Anjum, T., Iqbal, M., Ghaffar, A. and Abbas, M. (2016) Structural Elucidation and 

Toxicity Assessment of Degraded Products of Aflatoxin B1 and B2 by Aqueous Extracts of 

Trachyspermum ammi. Front. Microbiol. 7, 1–16. 

Isman, M.B. (2000) Plant Essential Oils for Pest and Disease Management. Crop Prot. 19, 603–

608.  

Isman, M.B. and Machial, C.M. (2006) Pesticides Based on Plant Essential Oils: From Traditional 

Practice to Commercialization. Adv. Phytomedicine. 3, 29–44. 

J 

Jahanshiri, Z., Shams-Ghahfarokhi, M., Allameh, A. and Razzaghi-Abyaneh, M.  (2015) Inhibitory 

Effect of Eugenol on Aflatoxin B1 Production in Aspergillus parasiticus by Downregulating the 

Expression of Major Genes in the Toxin Biosynthetic Pathway. World J. Microbiol. Biotechnol. 31, 

1071–1078.  

Jahanshiri, Z., Shams-Ghahfarokhi, M., Allameh, A. and Razzaghi-Abyaneh, M. (2012) Effect of 

Curcumin on Aspergillus parasiticus Growth and Expression of Major Genes Involved in the Early 

and Late Stages of Aflatoxin Biosynthesis. Iran. J. Public Health 41, 72–79. 

Jalili, M. (2015) A Review on Aflatoxins Reduction in Food. Iran. J. Heal. Saf. Environ. 3, 445–459. 

Jamali, M., Karimipour, M., Shams-Ghahfarokhi, M., Amani, A. and Razzaghi-Abyaneh, M. (2013) 

Expression of Aflatoxin Genes aflO (omtB) and aflQ (ordA) differentiates levels of Aflatoxin 

Production by Aspergillus flavus Strains from Soils of Pistachio Orchards. Res. Microbiol. 164, 

293–297. 

Jayashree T. and C. Subramanyam (1999) Antiaflatoxinogenic Activity of Eugenol is Due to 

Inhibition of Lipid Peroxidation. Lett. Appl. Microbiol. 28, 179–183.  

Jeff-Agboola, Y.A., Awe, L.B. and Yildiz, F. (2016) Antifungal and Phytochemical Screening of 

Some Nigerian Medicinal Plant Extracts Against Toxigenic Aspergillus flavus. Cogent Food Agric. 

2, 1210556.  



  

 

221 
 

Jermnak, U., Yoshinari, T., Sugiyama, Y., Tsuyuki, R., Nagasawa, H. and Sakuda, S. (2012) Isolation 

of Methyl Syringate as a Specific Aflatoxin Production Inhibitor from the Essential Oil of Betula 

alba and Aflatoxin Production Inhibitory Activities of its Related Compounds. Int. J. Food 

Microbiol. 153, 339–344.  

Ji, C., Fan, Y. and Zhao, L. (2016) Review on Biological Degradation of Aflatoxin, Zearalenone and 

Deoxynivalenol. Anim. Nutr. In press. doi:10.1016/j.aninu.2016.07.003 

Jiujiang, Y., Chang, P., Cary, J.W., Wright, M., Bhatnagar, D., Cleveland, T.E., Payne, G.A. and Linz, 

J.E. (1995) Comparative Mapping of Aflatoxin Pathway Gene Clusters in Aspergillus parasiticus 

and Aspergillus flavus. Appl. Environ. Microbiol. 61, 2365–2371. 

Jung, M.G., Kim, S.S., Yu, J.H. and Shin, K.S. (2016) Characterization of gprK Encoding a Putative 

Hybrid G-Protein-Coupled Receptor in Aspergillus fumigatus. PLoS One 11, e0161312. 

K 

Kaaya, A.N. and Kyamuhangire, W. (2010) Drying Maize Using Biomass-Heated Natural 

Convection Dryer Improves Grain Quality During Storage. Journal of Applied Sciences. 10, 967-

974.  

Kale, S.P., Cary, J.W., Baker, C., Walker, D., Bhatnagar, D. and Bennett, J.W. (2003) Genetic 

Analysis Of Morphological Variants of Aspergillus parasiticus Deficient in Secondary Metabolite 

Production. Mycol Res. 107, 831–840. 

Kato, N., Brooks, W. and Calvo, A.M. (2003) The Expression of Sterigmatocystin and Penicillin 

Genes in Aspergillus nidulans is controlled by veA, a Gene Required for Sexual Development. Am. 

Soc. Microbiol. 2, 1178–1186. 

Kedia, A., Prakash, B., Mishra, P.K. and Dubey, N.K. (2014) Antifungal and Antiaflatoxigenic 

Properties of Cuminum cyminum (L.) Seed Essential Oil and its Efficacy as a Preservative in 

Stored Commodities. Int. J. Food Microbiol. 168-169, 1–7. 

Keller, N.P., Kantz, N.J. and Adams, T.H. (1994) Aspergillus nidulans verA is Required for 

Production of the Mycotoxin Sterigmatocystin. Appl. Environ. Microbiol. 60, 1444–1450. 

Keller, N.P., Nesbitt, C., Sarr, B., Phillips, T.D. and Burow, G.B. (1997) pH Regulation of 

Sterigmatocystin and Aflatoxin Biosynthesis in Aspergillus spp. Phytopathology. 87, 643–648. 

Kim, J.H., Yu, J., Mahoney, N., Chan, K.L., Molyneux, R.J., Varga, J., Bhatnagar, D., Cleveland, T.E., 

Nierman, W.C. and Campbell, B.C. (2008) Elucidation of The Functional Genomics of 

Antioxidant-Based Inhibition of Aflatoxin Biosynthesis. Int. J. Food Microbiol. 122, 49–60.  

Kohiyama, C.Y., Mayumi, M., Ribeiro, Y., Aparecida, S., Mossini, G., Bando, E., Da, N., Bomfim, S., 

Nerilo, S.B., Oliveira Rocha, G.H., Grespan, R., Graton Mikcha, J.M. and Machinski, M. (2015) 

Antifungal properties and Inhibitory Effects Upon Aflatoxin Production of Thymus vulgaris L. by 

Aspergillus flavus Link. Food Chem. 173, 1006–1010.  



 
 

222 
 

Kong, Q., Chi, C., Yu, J., Shan, S., Li, Q., Li, Q., Guan, B., Nierman, W.C. and Bennett, J.W. (2014) The 

Inhibitory Effect of Bacillus megaterium on Aflatoxin and Cyclopiazonic Acid Biosynthetic 

Pathway Gene Expression in Aspergillus flavus. Appl. Environ. Microbiol. 98, 5161–5172. 

Kong, Q., Shan, S., Liu, Q., Wang, X., and Yu, F. (2010) Biocontrol of Aspergillus flavus on Peanut 

Kernels by Use of a Strain of Marine Bacillus megaterium. International Journal of Food 

Microbiology. 139, 31–35.  

Krishnamachari, K., Bhat, R.V., Nagarajan, V. and Tilak, T.B.G. (1975) Investigations into an 

Outbreak of Hepatitis in Parts of Western India. Indian J Med Res. 63, 1036–1048. 

Krska, R. and Crews, C. (2008) Significance, Chemistry and Determination of Ergot Alkaloids: A 

Review. Food additives and contaminants. Part A. Chemistry, Analysis, Control, Exposure and 

Risk Assessment. 25, 722-731.   

Kudla, B., Caddick, M.X., Langdon, T., Martinez-Rossi, N.M., Bennett, C.F., Sibley, S., Davies, R.W. 

and Arst, H.N. (1990) The Regulatory Gene areA Mediating Nitrogen Metabolite Repression in 

Aspergillus nidulans. Mutations Affecting Specificity of Gene Activation Alter a Loop Residue of a 

Putative Zinc Finger. EMBO J. 9, 1355–1364. 

Kumar, A., Shukla, R., Singh, P. and Dubey, N.K. (2010) Chemical Composition, Antifungal and 

Antiaflatoxigenic Activities of Ocimum sanctum L. Essential Oil and its Safety Assessment as Plant 

Based Antimicrobial. Food and Chemical Toxicology. 48, 539-543.  

L 

Lapinskas V. (2007) A Brief History of Ergotism: From St. Anthony’s Fire and St. Vitus’ dance 

Until Today. Medicinos Teorija Ir Praktika. 2, 1392-1312.  

Lee, L.W., Chiou, C.H. and Linz, J. E. (2002a) Function of Native OmtA in Vivo and Expression and 

Distribution of This Protein in Colonies of Aspergillus parasiticus. Applied and Environmental 

Microbiology. 68, 5718–5727.  

Lee, S.E., Mahoney, N.E. and Campbell, B.C. (2002b) Inhibition of Aflatoxin B1 Biosynthesis by 

Piperlongumine Isolated from Piper longum L. J. Microbiol. Biotechnol. 12, 679–682. 

Leiter, É. et al. (2016) Characterization of the aodA, dnmA, mnSOD and pimA genes in Aspergillus 

nidulans. Sci. Rep. 6, 20523.  

Lewis, L., Onsongo, M., Njapau, H., Schurz-Rogers, H., Luber, G., Kieszak, S., Nyamongo, J., Backer, 

L., Dahiye, A., Misore A., DeCock, K. and Rubin C. (2005) Aflatoxin Contamination of Commercial 

Maize Products during an Outbreak of Acute Aflatoxicosis in Eastern and Central Kenya. 

Environmental Health Perspectives. 113, 1763–1767.  

Liang, D., Xing, F., Selvaraj, J.N., Liu, X., Wang, L., Hua, H., Zhou, L., Zhao, Y., Wang, Y. and Liu, Y. 

(2015) Inhibitory Effect of Cinnamaldehyde, Citral, and Eugenol on Aflatoxin Biosynthetic Gene 

Expression and Aflatoxin B 1 Biosynthesis in Aspergillus flavus. J. Food Sci. 80, M2917–M2924.  



  

 

223 
 

Liang, S. H., Skory, C. D. and Linz, J. E. (1996) Characterization of the Function of the ver-1A and 

ver-1B Genes, Involved in Aflatoxin Biosynthesis in Aspergillus parasiticus. Applied and 

Environmental Microbiology. 62, 4568–4575. 

Linz, J.E., Hong, S.Y. and Roze, L. V. (2013) Oxidative Stress-Related Transcription Factors in the 

Regulation of Secondary Metabolism. Toxins (Basel). 5, 683–702. 

 

M 

MacPherson, S., Larochelle, M. and Turcotte, B. (2006) A Fungal Family of Transcriptional 

Regulators: The Zinc Cluster Proteins. Microbiol. Mol. Biol. Rev. 70, 583–604. 

Macwan, S.R., Dabhi, B.K., Aparnathi, K.D. and Prajapati, J.B. (2016) Essential Oils of Herbs and 

Spices: Their Antimicrobial Activity and Application in Preservation of Food. Int. J. Curr. 

Microbiol. App. Sci 5, 885–901. 

Madene, A., Jacquot, M., Scher, J. and Desobry, S. (2006) Flavour Encapsulation and Controlled 

Release - A Review. Int. J. Food Sci. Technol. 41, 1–21.  

Magan, N. and Aldred, D. (2007) Mycotoxin Producers. In J. Dijksterhuis and R.A. Samson (ed.).  

Food Mycology: A multifaceted Approach to Fungi and Food. CRC Press. Boca, Raton, Florida.  

Maggio-Hall, L. A, Wilson, R. A. and Keller, N.P. (2005) Fundamental Contribution of Beta-

Oxidation to Polyketide Mycotoxin Production in Planta. Mol. Plant. Microbe. Interact. 18, 783–

793. 

Maggio-Hall, L.A. and Keller, N.P. (2004) Mitochondrial β-oxidation in Aspergillus nidulans. Mol. 

Microbiol. 54, 1173–1185. 

Maggon, K.K., Gupta, S.K. and Venkitasubramanian, T. A. (1977) Biosynthesis of Aflatoxins. 

Bacteriol. Rev. 41, 822–855. 

Mahanti, N., Bhatnagar, D., Cary, J.W., Joubran, J. and Linz, J.E. (1996) Structure and function of 

fas-1A, a Gene Encoding a Putative Fatty Acid Synthetase Directly Involved in Aflatoxin 

Biosynthesis in Aspergillus parasiticus. Appl. Environ. Microbiol.  62, 191–195. 

Marechera G. and Ndwiga J. (2015) Estimation of the Potential Adoption of Aflasafe Among 

Smallholder Maize Farmers in Lower Eastern Kenya. African Journal of Agricultural and 

Resource Economics. 10, 72-85.  

Martin, J.F. (2000) Molecular Control of Expression of Penicillin Biosynthesis Genes in Fungi: 

Regulatory Proteins Interact with a Bidirectional Promoter Region. J. Bacteriol. 182, 2355–2362. 

Marui, J., Yamane, N., Ohashi-Kunihiro, S., Ando, T, Terabayashi, Y., Sano, M., Ohashi, S., Ohshima, 

E., Tachibana, K., Higa, Y., Nishimura, M., Koike, H. and Machida, M. (2011) Kojic Acid 

Biosynthesis in Aspergillus oryzae is Regulated by a Zn(II)(2) Cys(6) Transcriptional Activator 

and induced by Kojic Acid at the Transcriptional Level. J. Biosci. Bioeng. 112, 40–43. 



 
 

224 
 

Matthew, J., Nicholson, A., Koulman, B. J., Monahan, Pritchard, B. L., Payne, G. A. and Scott, B. 

(2009) Identification of Two Aflatrem Biosynthesis Gene Loci in Aspergillus flavus and Metabolic 

Engineering of Penicillium paxilli to Elucidate their Function Applied and Environnmental 

Microbiology. 75, 7469–7481.  

Meyers, D.M., OBrian, G., Du, W.L., Bhatnagar, D. and Payne, G.A. (1998) Characterization of aflJ, a 

Gene Required for Conversion of pathway Intermediates to Aflatoxin. Appl. Environ. Microbiol. 

64, 3713–3717. 

Minto, R.E. and Townsend, C. A. (1997) Enzymology and Molecular Biology of Aflatoxin 

Biosynthesis. Chem. Rev. 97, 2537–2556. 

Mogensena J., Nielsenb, H.B., Hofmanna, G. and Nielsen, J. (2006) Transcription Analysis Using 

High-Density Micro-Arrays of Aspergillus nidulans Wild-Type and creA Mutant During Growth On 

Glucose or Ethanol. Fungal Genet. Biol. 43, 593–603. 

Montibus, M., Pinson-Gadais, L., Richard-Forget, F., Barreau, C. and Ponts, N., (2013) Coupling of 

Transcriptional Response to Oxidative Stress and Secondary Metabolism Regulation in 

Filamentous Fungi. Crit. Rev. Microbiol. 43, 1–14.  

Moon, Y.-S., Choi, W.-S., Park, E.-S., Bae, I., Choi, S.-D., Paek, O., Kim, S.-H., Chun, H. and Lee, S.-E. 

(2016) Antifungal and Antiaflatoxigenic Methylenedioxy-Containing Compounds and Piperine-

Like Synthetic Compounds. Toxins (Basel). 8, E240.  

Moy, G.G. and Miller, J.D. (2016) Aflatoxin Update. Int. Union Food Sci. Technol. Sci. Inf. Bull. 

N 

Narasaiah, K. V., Sashidhar, R. B. and Subramanyam, C. (2006) Biochemical Analysis of Oxidative 

Stress in the Production of Aflatoxin and its Precursor Intermediates. Mycopathologia. 162, 179–

189. 

Nelson, D.R. (2011) Progress in Tracing the Evolutionary Paths of Cytochrome P450. Biochim. 

Biophys. Acta - Proteins Proteomics. 1814, 14–18. 

Ni, M. and Yu, J.H., (2007) A Novel Regulator Couples Sporogenesis and Trehalose Biogenesis in 

Aspergillus nidulans. PLoS ONE. 2, e970. 

Nicholson, M.J. Koulman, A., Monahan, B.J., Pritchard, B.L., Payne, G.A. and Scott, B. (2009) 

Identification of two aflatrem biosynthesis gene loci in Aspergillus flavus and metabolic 

engineering of Penicillium paxilli to elucidate their function. Appl. Environ. Microbiol. 75, 7469–

7481.  

Nortaa Elias, K.S. (2016) Aflatoxins: A Silent Threat in Developing Countries. Acad. Journals. 15, 

1864–1870.  

Nowak, A., Kalemba, D., Krala, L., Piotrowska, M. and Czyzowska, A. (2012) The effects of thyme 

(Thymus vulgaris) and Rosemary (Rosmarinus officinalis) Essential Oils on Brochothrix 

thermosphacta and on the Shelf Life of Beef Packaged in High-Oxygen Modified Atmosphere, 

Food Microbiology. 32, 212-216.  



  

 

225 
 

Nowicki, M. and Foolad, M. (2012) Potato and Tomato Late Blight Caused by Phytophthora 

infestans: An Overview of Pathology and Resistance Breeding. Plant Dis. 18, 783–793. 

O 

O’Brien, H.E., Parrent, J.L., Jackson, J.A., Moncalvo, J. and Vilgalys, R. (2005) Fungal Community 

Analysis by Large-Scale Sequencing of Environmental Samples. Appl. Environ. Microbiol. 71, 

5544–5550. 

Okike, I., Samireddypalle, A., Kaptoge, L., Fauquet, C., Atehnkeng, J., Bandyopadhyay, R., Kulakow 

P., Duncan A., Alabi, T. and  Blummel, M. (2015) Technical Innovations for Small-scale Producers 

and Households to Process Wet Cassava Peels into High Quality Animal Feed Ingredients and 

Aflasafe substrate. Food Chain.5, 71-90.   

Olarte, R.A., Horn, B.W., Dorner, J.W., Monacell, J.T., Singh, R., Stone, E.A. and Carbone, I. (2012) 

Effect of Sexual Recombination on Population Diversity in Aflatoxin Production by Aspergillus 

flavus and Evidence for Cryptic Heterokaryosis. Mol. Ecol. 21, 1453–1476. 

Omics Technologies–Tools for Food Science (2012) Edited by N. Benkeblia, CRC Press (Taylor & 

Francis Group), Boca Raton, FL, USA. 

Orole, O., Adejumo, T. and Orole, R. (2016) Antifungal Activity of Nine Medicinal Plants against 

Aspergillus species from Cocoa Beans (Theobroma cacao). J. Agric. Ecol. Res. Int. 7, 1–11.  

P 

Palmer, J.M., Theisen, J.M., Duran, R.M., Grayburn, W.S., Calvo, A.M. and Keller, N.P. (2013) 

Secondary Metabolism and Development is Mediated by LlmF Control of VeA Subcellular 

Localization in Aspergillus nidulans. PLoS Genet. 9, e1003193.  

Papa, G. (1982) Norsolorinic Acid Mutant of Aspergillus flavus. J. Gen. Microbiol. 128, 1345–

1348. 

Paranagama, P.A., Abeysekera, K.H.T., Abeywickrama, K. and Nugaliyadde, L. (2003) Fungicidal 

and Anti-Aflatoxigenic Effects of the Essential Oil of Cymbopogon citratus (DC.) Stapf. 

(lemongrass) Against Aspergillus flavus Link. Isolated from Stored Rice. Lett. Appl. Microbiol. 37, 

86–90. 

Pariza, M.W. and Johnson, E.A. (2001) Evaluating the Safety of Microbial Enzyme Preparations 

Used in Food Processing: Update For A New Century. Regulatory Toxicology & Pharmacology. 

33, 173–186. 

Park, H.S., Nam, T.Y., Han, K.H., Kim, S.C. and Yu, J.H. (2014) VelC Positively Controls Sexual 

Development in Aspergillus nidulans. PLoS One 9, e89883.  

Payne, G. A. and Brown, M.P. (1998) Genetics and Physiology of Aflatoxin Biosynthesis. Annu. 

Rev. Phytopathol. 36, 329–362. 



 
 

226 
 

Peraica, M., Domijan, A.-M., Jurjević, Z. and Cvjetković, B. (2002) Prevention of Exposure to 

Mycotoxins from Food and Feed. Arh. Hig. Rada Toksikol. 53, 229–237. 

Peraica, M., Radić, B., Lucić, A. and Pavlović, M. (1999) Toxic Effects of Mycotoxins in Humans. 

Bull. World Health Organ. 77, 754–766. 

Perrone, G., Gallo, A. and Logrieco, A.F. (2014) Biodiversity of Aspergillus section Flavi in Europe 

in Relation to the Management of Aflatoxin Risk. Front. Microbiol. 5, 1–5. 

Prakash, B., Kedia, A., Mishra, P.K. and Dubey, N.K. (2015) Plant Essential Oils as Food 

Preservatives to Control Moulds, Mycotoxin Contamination and Oxidative Deterioration of 

AgriFood Commodities Potentials and Challenges. Food Control. 47, 381–391.  

Price, M.S., Yu, J., Nierman, W.C., Kim, H., Pritchard, B., Jacobus, C.A., Bhatnagar, D., Cleveland, T.E. 

and Payne, G.A. (2006) The aflatoxin Pathway Regulator AflR Induces Gene Transcription Inside 

and Outside of the Aflatoxin Biosynthetic Cluster. FEMS Microbiol. Lett. 255, 275–279. 

Purschwitz, J., Müller, S., Kastner, C., Schöser, M., Haas, H., Espeso, E.A., Atoui, A., Calvo, A.M. and 

Fischer, R. (2008) Functional and Physical Interaction of Blue- and Red-Light Sensors in 

Aspergillus nidulans. Curr. Biol. 18, 255–259. 

 Q 

Quintanilla-Licea, R., Mata-Cardenas, B.D., Vargas-Villarreal, J., Bazaldua-Rodriguez, A.F., 

Angeles-Hernandez, I.K., Garza-Gonzalez, J.N. and, Hernandez-Garcia, M.E. (2014) Antiprotozoal 

Activity Against Entamoeba histolytica of Plants Used in Northeast Mexican Traditional Medicine. 

Bioactive Compounds from Lippia graveolens and Ruta chalepensis. Molecules 19, 21044–21065. 

R 

Ramamoorthy, V., Dhingra, S., Kincaid, A., Shantappa, S., Feng, X. and Calvo, A.M. (2013) The 

Putative C2H2 Transcription Factor MtfA Is a Novel Regulator of Secondary Metabolism and 

Morphogenesis in Aspergillus nidulans. PLoS One 8, e74122.  

Ramirez-Prado, J.H., Moore, G.G., Horn, B.W. and Carbone, I. (2008) Characterization and 

Population Analysis of the Mating-Type Genes in Aspergillus flavus and Aspergillus parasiticus. 

Fungal Genet Biol. 45, 1292-1299.  

Rasooli, I., Fakoor, M.H., Yadegarinia, D., Gachkar, L., Allameh, A. and Rezaei, M.B. (2008) 

Antimycotoxigenic Characteristics of Rosmarinus officinalis and Trachyspermum copticum L. 

Essential Oils. Int. J. Food Microbiol. 122, 135–139. 

Razzaghi-Abyaneh, M., Allameh, A., Tiraihi, T., Shams-Ghahfarokhi, M. and Ghorbanian, M. 

(2005) Morphological Alterations in Toxigenic Aspergillus parasiticus Exposed to Neem 

(Azadirachta indica) Leaf and Seed Aqueous Extracts. Mycopathologia. 159, 565- 570. 

Razzaghi-Abyaneh, M., Shams-Ghahfarokhi, M. and Perng-Kuang, C. (2010) Aflatoxins: 

Mechanisms of Inhibition by Antagonistic Plants and Microorganisms, in: Aflatoxins - 

Biochemistry and Molecular Biology. pp. 285–304. 



  

 

227 
 

Regnault-Roger, C., Vincent, C., and Arnason, J. T. (2012) Essential Oils in Insect Control: Low-

Risk Products in a High-Stakes World. Annual Review of Entomology. 57, 405-424.  

Reverberi, M., Gazzetti, K., Punelli, F., Scarpari, M., Zjalic, S., Ricelli, A., Fabbri, A.A. and Fanelli, C. 

(2012) Aoyap1 Regulates OTA Synthesis by Controlling Cell Redox Balance in Aspergillus 

ochraceus. Appl. Microbiol. Biotechnol. 95, 1293–1304. 

Reverberi, M., Zjalic, S., Ricelli, A., Punelli, F., Camera, E., Fabbri, C., Picardo, M., Fanelli, C. and 

Fabbri, A.A. (2008) Modulation of Antioxidant Defense in Aspergillus parasiticus is Involved in 

Aflatoxin Biosynthesis: A role for the ApyapA gene. Eukaryot. Cell. 7, 988–1000. 

Ries, L.N., Beattie, S.R., Espeso, E.A., Cramer, R.A. and Goldman, G.H. (2016) Diverse Regulation of 

the CreA Carbon Catabolite Repressor in Aspergillus nidulans. Genetics. 203, 335–335. 

Robinow, C.F. and Caten, C.E. (1969) Mitosis in Aspergillus nidulans. J.Cell Sci. 5, 403– 431. 

Rodrigues, A.P.D., Farias, L.H.S., Carvalho, A.S.C., Santos, A.S., Do Nascimento, J.L.M. and Silva E.O.  

(2014) A Novel Function for Kojic Acid, a Secondary Metabolite from Aspergillus Fungi, as 

Antileishmanial Agent. PLoS One 9, e91259. 

Roze, L. V, Hong, S.-Y and Linz, J.E. (2013) Aflatoxin Biosynthesis: Current Frontiers. Annu. Rev. 

Food Sci. Technol. 4, 293–311. 

Roze, L. V., Chanda, A., Wee, J., Awad, D. and Linz, J.E. (2011) Stress-related Transcription Factor 

AtfB Integrates Secondary Metabolism with Oxidative Stress Response in Aspergilli. J. Biol. Chem. 

286, 35137–35148. 

Roze, L. V., Laivenieks, M., Hong, S.Y., Wee, J., Wong, S.S., Vanos, B., Awad, D., Ehrlich, K.C. and 

Linz, J.E. (2015) Aflatoxin Biosynthesis is a Novel Source of Reactive Oxygen Species??? A 

Potential Redox Signal to Initiate Resistance to Oxidative Stress?. Toxins (Basel). 28, 1411-1430.  

Roze, L. V., Miller, M.J., Rarick, M., Mahanti, N. and Linz, J.E. (2004) A Novel cAMP-response 

Element, CRE1, Modulates Expression of nor-1 in Aspergillus parasiticus. J. Biol. Chem. 279, 

27428–27439. 

Ruijter, G.J.G. and Visser, J. (1997) Carbon repression in Aspergilli. FEMS Microbiol. Lett. 151, 

103–114. 

S 

Şahin Nadeem, H., Torun, M., Özdemir, F., (2011) Spray drying of the mountain tea (Sideritis 

stricta) Water Extract by Using Different Hydrocolloid Carriers. LWT - Food Sci. Technol. 44, 

1626–1635.  

Sakuda, S., Prabowo, D.F., Takagi, K., Shiomi, K., Mori, M., Omura, S. and Nagasawa, H. (2014) 

Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production. Toxins (Basel). 6, 1193–

1200.  



 
 

228 
 

Sakuda, S., Yoshinari, T., Furukawa, T., Jermnak, U., Takagi, K., Iimura, K., Yamamoto, T. and 

Suzuki, M. (2016) Search for Aflatoxin and Trichothecene Production Inhibitors and Analysis of 

Their Modes of Action. Biosci. Biotechnol. Biochem. 80, 43–54.  

Sakuno, E., Wen, Y., Hatabayashi, H., Arai, H., Aoki, C., Yabe, K. and Nakajima, H. (2005) 

Aspergillus parasiticus Cyclase Catalyzes Two Dehydration Steps in Aflatoxin Biosynthesis. Appl. 

Environ. Microbiol. 71, 2999–3006.  

Sakuno, E., Yabe, K., and Nakajima, H. (2003) Involvement of Two Cytosolic Enzymes and a 

Novel Intermediate, 5’-Oxoaverantin, in the Pathway from 5’-Hydroxyaverantin to Averufin in 

Aflatoxin Biosynthesis. Appl. Environ. Microbiol. 69, 6418–6426. 

Samson, R., Houbraken, J., Thrane, U., Frisvad, J.C. and Andersen, B. (2010) Food and Indoor 

Fungi., CBS-KNAW Fungal Biodiversity Centre. 

Sánchez, E., Heredia, N. and García, S. (2005) Inhibition of Growth and Mycotoxin Production of 

Aspergillus flavus and Aspergillus parasiticus by Extracts of Agave Species. Int. J. Food Microbiol. 

98, 271–279.  

Sangare, L., Zhao, Y., Folly, Y.M.E., Chang, J., Li, J., Selvaraj, J.N., Xing, F., Zhou, L., Wang, Y. and Liu, 

Y. (2014) Aflatoxin B1 Degradation by a Pseudomonas Strain. Toxins. 10, 3028–3040. 

Sansone, F., Picerno, P., Mencherini, T., Villecco, F., D’ Ursi, A.M., Aquino, R.P. and Lauro, M.R., 

(2011) Flavonoid Microparticles by Spray-Drying: Influence of Enhancers of the Dissolution 

Rate on Properties and Stability. J. Food Eng. 103, 188–196.  

Sarikaya-Bayram, O., Bayram, O., Feussner, K., Kim, J.H., Kim, H.S., Kaever, A., Feussner, I., Chae, 

K.S., Han, D.M., Han, K.H. and Braus, G.H. (2014) Membrane-bound Methyltransferase Complex 

VapA-VipC-VapB Guides Epigenetic Control of Fungal Development. Dev. Cell. 29, 406–420. 

Sarikaya-Bayram, O., Palmer, J.M., Keller, N., Braus, G.H. and Bayram, O. (2015) One Juliet and 

four Romeos: VeA and its Methyltransferases. Front. Microbiol. 6, 1–7. 

Sarikurkcu, C., Sabih Ozer, M., Eskici, M., Tepe, B., Can, S. and Mete, E. (2010) Essential Oil 

Composition and Antioxidant Activity of Thymus longicaulis C. Presl subsp. longicaulis var. 

longicaulis. Food Chem. Toxicol. 48, 1801–1805.  

Satish, S., Mohana, D.C., Raghavendra, M.P. and Raveesha, K.A. (2007) Antifungal Activity of 

Some Plant Extracts Against Important Seed Borne Pathogens of Aspergillus sp. J. Agric. Technol. 

3, 109–119. 

Scherm, B., Palomba, M., Serra, D., Marcello, A. and Migheli, Q. (2005) Detection of Transcripts of 

the Aflatoxin Genes aflD, aflO, and aflP by Reverse Transcription-Polymerase Chain Reaction 

Allows Differentiation of Aflatoxin-Producing and Non-Producing Isolates of Aspergillus flavus 

and Aspergillus parasiticus. Int. J. Food Microbiol. 98, 201–210. 

Scott, P.M. (1981) Toxins of Penicillium Species Used in Cheese Manufacture. J. Food Prot. 44, 

702–710. 

Selvig, K. and Alspaugh, J.A. (2011) pH Response Pathways in Fungi: Adapting to Host-derived 

and Environmental Signals. Mycobiology, 39, 249–256.  



  

 

229 
 

Shalaby, A.A. and El-tawil, O.S. (2016) Protective Effects of Oregano Oil on Aflatoxicosis in 

Japanese quail. Vet. Sci. 6, 633–637. 

Shimizu, K. and Keller, N. (2001) Genetic Involvement of a cAMP-dependent Protein Kinase in a 

G Protein Signaling Pathway Regulating Morphological and Chemical Transitions in Aspergillus 

nidulans. Genetics. 157, 591–600. 

Shimizu, K., Hicks, J.K., Huang, T.P. and Keller, N.P. (2003) Pka, Ras and RGS Protein Interactions 

Regulate Activity of AflR, a Zn(II)2Cys6 Transcription Factor in Aspergillus nidulans. Genetics. 

165, 1095–1104. 

Shinohara, Y., Tokuoka, M. and Koyama, Y. (2011) Functional Analysis of the Cyclopiazonic Acid 

Biosynthesis Gene Cluster in Aspergillus oryzae RIB 40. Biosci. Biotechnol. Biochem. 75, 2249–

2252. 

Shroff, R.A., Lockington, R.A. and Kelly, J.M. (1996) Analysis of Mutations in the creA Gene 

Involved in Carbon Catabolite Repression in Aspergillus nidulans. Can.J Microbiol. 42, 950–959. 

Shwab, E.K. and Keller, N.P. (2008) Regulation of Secondary Metabolite Production in 

Filamentous Ascomycetes. Mycol. Res. 112, 225–230. 

Skory, C. D., Chang, P., Cary, K. J. and Linz, J. E. (1992) Isolation and Characterization of a Gene 

from Aspergillus parasiticus Associated with the Conversion of Versicolorin A to 

Sterigmatocystin in Aflatoxin Biosynthesis. Appl. Environ. Microbiol. 58, 3527–3537. 

Smela, M.E., Currier, S.S., Bailey, E.A. and Essigmann, J.M. (2001) The Chemistry and Biology of 

Aflatoxin B (1): From Mutational Spectrometry to Carcinogenesis. Carcinogenesis. 22, 535–545. 

Smith, C.A., Robertson, D., Yates, B., Nielsen, D.M., Brown, D., Dean, R.A. and Payne, G.A. (2008a) 

The Effect of Temperature on Natural Antisense Transcript (NAT) Expression in Aspergillus 

flavus. Curr. Genet. 54, 241–269. 

Smith, J. L., Bhunia, A.K., Fratamico, P.M. (2008b) In Ed. Of Foodborne Pathogens: Microbiology 

and Molecular Biology, Caister Academic Press, USA.  

Smith, T.D. and Calvo, A.M. (2014) The mtfA Transcription Factor Gene Controls Morphogenesis, 

Gliotoxin Production, and Virulence in the Opportunistic Human Pathogen Aspergillus fumigatus. 

Eukaryot. Cell 13, 766–775.  

Soares, C., Rodrigues, P., Peterson, S.W., Lima, N. and Venancio, A. (2012) Three new species of 

Aspergillus section Flavi Isolated from Almonds and Maize in Portugal. Mycologia. 104, 682–697. 

Sree, N.V., Sri, P.U., Aswani Kumar, Y.V. V. and Ramarao, N. (2014) In-vitro Antioxidant and 

Antimicrobial Activities of Some Medicinal Plants grown in Western Ghats of India. IOSR J. 

Pharm. 4, 25–33. 

Srinivasan, K. (2007) Black Pepper and its pungent principle-piperine: a review of Diverse 

Physiological Effects. Crit. Rev. Food Sci. Nutr. 47, 735–748. 

Stack, J. and Carlson, M. (2003) NF571 Aspergillus flavus and Aflatoxins in Corn. Historical 

Materials from University of Nebraska-Lincoln Extension. Paper 43.  



 
 

230 
 

Stoev, S.D.  (2013) Food Safety and Increasing Hazard of Mycotoxin Occurrence in Foods and 

Feeds. Crit. Rev. Food Sci. Nutr. 53, 887–901.  

Streit, E., Naehrer, K., Rodrigues, I. and Schatzmayr, G. (2013) Mycotoxin Occurrence in Feed and 

Feed Raw Materials Worldwide: Long-term Analysis with Special Focus on Europe and Asia. J. 

Sci. Food Agric. 93, 2892–2899. 

Sun, Q., Shang, B., Wang, L., Lu, Z. and Liu, Y. (2015) Cinnamaldehyde Inhibits Fungal Growth and 

Aflatoxin B1 Biosynthesis by Modulating the Oxidative Stress Response of Aspergillus flavus. 

Appl. Microbiol. Biotechnol. 100, 1355-1364.   

T 

Tang, L., Tang, M., Xu, L., Luo, H., Huang, T., Yu, J., Zhang, L., Gao, W., Cox, S.B. and Wang, J.-S. 

(2008) Modulation of Aflatoxin Biomarkers in Human Blood and Urine by Green Tea 

Polyphenols Intervention. Carcinogenesis. 29, 411–417.  

Temple, W. A., Smith, N. A. and Beasley M. (2008) Management of Oil of Citronella Poisoning. 

Journal of Toxicology. 29, 257-262.  

Thippeswamy, S., Mohana, D.C., Abhishek, R.U. and Manjunath, K. (2014) Inhibitory Activity of 

Plant Extracts on Aflatoxin B1 Biosynthesis by Aspergillus flavus. J. Agr. Sci. Tech. 16, 1123–1132. 

Tilburn, J., Sarkar, S., Widdick, D. A, Espeso, E. A, Orejas, M., Mungroo, J., Peñalva, M. A and Arst, 

H.N. (1995) The Aspergillus PacC Zinc Finger Transcription Factor Mediates Regulation of both 

Acid- and Alkaline-Expressed Genes By Ambient pH. EMBO J. 14, 779–790. 

Tola, M., Kebede, B. and Yildiz, F. (2016) Occurrence, Importance and Control of Mycotoxins: A 

Review. Cogent Food Agric. 2, 1191103.  

Tollefson, J. (2015) Global-warming limit of 2 degrees C hangs in the balance. Nature. 520, 14–

15.  

Torres, A.M., Barros, G.G., Palacios, S.A., Chulze, S.N. and Battilani, P. (2014) Review on Pre- and 

Post-Harvest Management of Peanuts to Minimize Aflatoxin Contamination. Food Res. Int. 62, 

11–19.  

Trail, F., Mahanti, N., Rarick, M., Mehigh, R., Liang, S.H., Zhou, R. and Linz, J.E. (1995) Physical and 

Transcriptional Map of an Aflatoxin Gene Cluster in Aspergillus parasiticus and Functional 

Disruption of a Gene Involved Early in the Aflatoxin Pathway. Appl. Environ. Microbiol. 61, 

2665–73. 

Tsitsigiannis, D.I. and Keller, N.P. (2006) Oxylipins Act as Determinants of Natural Product 

Biosynthesis and Seed Colonization in Aspergillus nidulans. Mol. Microbiol. 59, 882–892. 

Tsitsigiannis, D.I., Kowieski, T.M., Zarnowski, R. and Keller, N.P. (2004) Endogenous Lipogenic 

Regulators of Spore Balance in Aspergillus nidulans. Eukaryot. Cell 3, 1398–1411.  

Turek, C. and Stintzing, F.C. (2013) Stability of Essential Oils: A review. Compr. Rev. Food Sci. 

Food Saf. 12, 40–53.  



  

 

231 
 

Turner, N.W., Subrahmanyam, S. and Piletsky, S.A. (2009) Analytical Methods for Determination 

of Mycotoxins: A Review. Anal. Chim. Acta. 632, 168–80.  

V 

Vaishnav, P. and Demain, A.L. (2011) Unexpected Applications of Secondary Metabolites. 

Biotechnol. Adv. 29, 223–229. 

Van Egmond, H.P., Schothorst, R.C. and Jonker, M.A. (2007) Regulations Relating to Mycotoxins 

in Food: Perspectives in a Global and European Context. Anal. Bioanal. Chem. 389, 147–157. 

Varga J. and Samson, R.A. (2008) Aspergillus in the genomic era. Wageningen Academic Pub, 

Netherlands: p. 334.  

Varga, J., Baranyi, N., Chandrasekaran, M. and Vágvölgyi, C. (2015) Mycotoxin Producers in the 

Aspergillus genus: An Update. Acta Biol. Szeged. 59, 151–167. 

Varga, J., Frisvad, J.C. and Samson, R.A. (2009) A Reappraisal of Fungi Producing Aflatoxins. 

World Mycotoxin J.  2, 263-277.   

Varga, J., Frisvad, J.C. and Samson, R.A. (2011) Two New Aflatoxin Producing Species, and an 

Overview of Aspergillus section Flavi, Studies in Mycology.  69, 57–80. 

Vargas-Arispuro, I., Reyes-Báez, R., Rivera-Castañeda, G., Martínez-Téllez, M. A., and Rivero-

Espejel, I., (2005) Antifungal Lignans from the Creosotebush (Larrea tridentata). Ind. Crops 

Prod. 22, 101–107.  

Vidal, J.C., Bonel, L., Ezquerra, A., Hernández, S., Bertolín, J.R., Cubel, C. and Castillo, J.R. (2013) 

Electrochemical Affinity Biosensors for Detection of Mycotoxins: A review. Biosens. Bioelectron. 

49, 146–158. 

W 

Waliyar, F., Osiru, M., Sudini, H. K. and Njoroge, S. (2013) Reducing aflatoxins in Groundnuts 

Through Integrated Management and Biocontrol. In Aflatoxins: Finding Solutions for Improved 

Food Safety, eds. Unnevehr, Laurian J. and Grace, Delia. 2020 Vision Focus 20 (18). Washington, 

D.C.: International Food Policy Research Institute (IFPRI). 

Wan, N.C. and Hsieh, D.P.H. (1980) Enzymatic Formation of the Bisfuran Structure in Aflatoxin 

Biosynthesis. Appl. Environ. Microbiol. 39, 109–112. 

Wangikar, Sinha, B., Dwivedi, N., P. and Sharma, A. K. (2007) Teratogenic Effects of Ochratoxin A 

And Aflatoxin B1 Alone and in Combination on Post-Implantation Rat Embryos In Culture. J 

Turkish-German Gynecol. Assoc. 8, 357-364.  

Watanabe, C.M.H. and Townsend, C. A. (2002) Initial Characterization of a Type I Fatty Acid 

Synthase and Polyketide Synthase Multienzyme Complex NorS in the Biosynthesis of Aflatoxin 

B1. Chemistry & Biology. 9, 981–988. 



 
 

232 
 

Wen, Y., Hatabayashi, H., Arai, H., Kitamoto, H.K. and Yabe, K. (2005) Function of the cypX and 

moxY Genes in Aflatoxin Biosynthesis in Aspergillus parasiticus. Appl. Environ. Microbiol. 71, 

3192–3198. 

Weydert J. C. and Cullen J. (2011) Measurement of Superoxide Dismutase, Catalase and 

Glutathione Peroxidase in Cultured Cells and Tissue. Nat Protoc 5: 51–66. 

WHO (World Health Organization) (1998) Aflatoxins. In Safety Evaluation of Certain Food 

Additives and Contaminants. Report of the 49th Meeting of the Joint FAO/WHO Expert Committee 

on Food Additives (JECFA) Geneva (Switzerland): WHO, WHO Food Additive Series. No. 40, 359–

468. 

Williams, J.H., Phillips, T.D., Jolly, P.E., Stiles, J.K., Jolly, C.M. and Aggarwal, D. (2004) Human 

Aflatoxin in Developing Countries: A Review of Toxicology, Exposure, Potential Health 

Consequences, and Interventions. Am. Soc. Clin. Nutr. 80, 1106–1122. 

Wilson, R.A., Calvo, A.M., Chang, P.K. and Keller, N.P. (2004) Characterization of the Aspergillus 

parasiticus Delta 12-desaturase Gene: A Role for Lipid Metabolism in the Aspergillus- seed 

Interaction. Microbiology. 150, 2881–2888. 

Woloshuk, C.P. and Shim, W.B. (2013) Aflatoxins, Fumonisins, and Trichothecenes: A 

Convergence of Knowledge. FEMS Microbiol. Rev. 37, 94–109. 

Woloshuk, C.P., Foutz, K.R., Brewer, J.F., Bhatnagar, D., Cleveland, T.E. and Payne, G.A. (1994) 

Molecular Characterization of aflR, A Regulatory Locus for Aflatoxin Biosynthesis. Appl. Environ. 

Microbiol. 60, 2408–2414. 

Wong, K.H., Hynes, M.J., Todd, R.B. and Davis, M.A. (2007) Transcriptional Control of nmrA by the 

bZIP Transcription Factor MeaB Reveals a New Level of Nitrogen Regulation in Aspergillus 

nidulans. Mol Microbiol. 66, 534-551.  

Wu, F. and Mitchell, N.J. (2016) How Climate Change and Regulations Can Affect the Economics 

of Mycotoxin. World Mycotoxin J, Ahead of Print: 1-12.  

Wu, H.C. and Santella, R. (2012) The Role of Aflatoxins in Hepatocellular Carcinoma. Hepat. Mon. 

12, 1–9. 

Wu, H.C., Wang, Q., Yang, H.-I., Tsai, W.-Y., Chen, C.J. and Santella, R. M. (2013) Global DNA 

Methylation in a Population with Aflatoxin B1 Exposure. Epigenetics. 8, 962–969.  

Wu, X., Zhou, B., Yin, C., Guo, Y., Lin, Y., Pan, L. and Wang, B. (2014) Characterization of Natural 

Antisense Transcript, Sclerotia Development and Secondary Metabolism by Strand-Specific RNA 

Sequencing of Aspergillus flavus. PLoS One. 9, e97814.  

Y 

Yabe, K., Ando, Y. and Hamasaki, T. (1991) Desaturase Activity in the Branching Step Between 

Aflatoxins B 1 And G1 and Aflatoxins B2 and G2. Agric Biol Chem. 55, 1907–1911.  



  

 

233 
 

Yabe, K., Ando, Y., Hashimoto, J. and Hamasaki, T. (1989) Two distinct O-methyltransferases in 

Aflatoxin Biosynthesis. Applied and Enviromental Microbiology. 55, 2172-2177.  

Yabe, K., Chihaya, N., Hamamatsu, S., Sakuno, E., Hamasaki, T., Nakajima, H. and Bennett, J.W. 

(2003) Enzymatic Conversion of Averufin to Hydroxyversicolorone and Elucidation of a Novel 

Metabolic Grid Involved in Aflatoxin Biosynthesis. Appl. Environ. Microbiol. 69, 66–73. 

Yabe, K., Nakamura, Y., Nakajima, H. and Ando, Y. (1991) Enzymatic Conversion of Norsolorinic 

Acid to Averufin in Aflatoxin Biosynthesis. Appl. Environ. Microbiol. 57, 1340–1345. 

Yan, S., Liang, Y., Zhang, J., Chen, Z. and Liu, C.M. (2014) Autoxidated Linolenic Acid Inhibits 

Aflatoxin Biosynthesis in Aspergillus flavus Via Oxylipin Species. Fungal Genet. Biol. 81, 229–237. 

Yang, K., Liang, L., Ran, F., Liu, Y., Li, Z., Lan, H., Gao, P., Zhuang, Z., Zhang, F., Nie, X., Kalayu Yirga, 

S., Wang, S. (2016) The DmtA Methyltransferase Contributes to Aspergillus flavus Conidiation, 

Sclerotial Production, Aflatoxin Biosynthesis and Virulence. Sci. Rep. 6, 6:23259. 

Yazdani, D., Abidin, Z., Ahmad, M., How, T.Y., Jaganath, I.B. and Shahnazi, S. (2013) Inhibition of 

Aflatoxin Biosynthesis in Aspergillus flavus by Phenolic Compounds Extracted of Piper betle L. 

Iran. J. Microbiol. 5, 428–433. 

Yin, W. and Keller, N.P. (2011) Transcriptional Regulatory Elements in Fungal Secondary 

Metabolism. J. Microbiol. 49, 329–339. 

Yoshinari, T., Akiyama, T., Nakamura, K., Kondo, T., Takahashi, Y., Muraoka, Y., Nonomura, Y., 

Nagasawa, H. and Sakuda, S. (2007) Dioctatin A Is a Strong Inhibitor of Aflatoxin Production by 

Aspergillus parasiticus. Microbiology. 153, 2774–2780. 

Yoshinari, T., Noda, Y., Yoda, K., Sezaki, H., Nagasawa, H. and Sakuda, S. (2010) Inhibitory 

Activity of Blasticidin A, a Strong Aflatoxin Production Inhibitor, on Protein Synthesis of Yeast: 

Selective Inhibition of Aflatoxin Production by Protein Synthesis Inhibitors. J. Antibiot. (Tokyo). 

63, 309–314.  

Yoshinari, T., Sakuda, S., Watanabe, M., Kamata, Y., Ohnishi, T. and Sugita-Konishi, Y. (2013) New 

Metabolic Pathway for Converting Blasticidin S in Aspergillus flavus and Inhibitory Activity of 

Aflatoxin Production by Blasticidin S Metabolites. J. Agric. Food Chem. 61, 7925–7931.  

Yu, J. (2012) Current Understanding on Aflatoxin Biosynthesis and Future Perspective in 

Reducing Aflatoxin Contamination. Toxins (Basel). 4, 1024–1057. 

Yu, J. and Ehrlich, K.C. (2011) Aflatoxin Biosynthetic Pathway and Pathway Genes. Aflatoxins– 

Biochem. Mol. Biol.  Chapter 3, 41–66. 

Yu, J., Bhatnagar, D. and Cleveland, T.E. (2004a) Completed Sequence of Aflatoxin Pathway Gene 

Cluster in Aspergillus parasiticus. FEBS Lett. 564, 126–130. 

Yu, J., Cary, J.W., Bhatnagar, D., Cleveland, T.E., Keller, N.P. and Chu, F.S. (1993) Cloning and 

Characterization of a cDNA from Aspergillus parasiticus Encoding an O-methyltransferase 

Involved in Aflatoxin Biosynthesis. Appl. Environ. Microbiol. 59, 3564–3571. 



 
 

234 
 

Yu, J., Chang, P.K., Bhatnagar, D. and Cleveland, T.E., (2000a) Cloning of a Sugar Utilization Gene 

Cluster in Aspergillus parasiticus. Biochimica et Biophysica Acta. 1493, 211–214. 

Yu, J., Chang, P.K., Ehrlich, K.C., Cary, J.W., Bhatnagar, D., Cleveland, T.E., Payne, G.A., Linz, J.E., 

Woloshuk, C.P. and Bennett J.W. (2004b) Clustered Pathway Genes in Aflatoxin Biosynthesis. 

Appl. Environ. Microbiol. 70, 1253–1262. 

Yu, J., Chang, P.K., Bhatnagar D. and Cleveland T.E. (1997) avnA, Encoding A Putative P-450 

Monooxygenase, is Involved in the Conversion of Averantin to Averufin in Aflatoxin Biosynthesis 

in Aspergillus parasiticus. Appl. Environ. Microbiol. 63, 1349–1356. 

Yu, J., Chang, P.K., Ehrlich, K.C., Cary, J.W., Montalbano, B., Dyer, J.M., Bhatnagar, D. and Cleveland, 

T.E. (1998) Characterization of the Critical Amino Acids of an Aspergillus parasiticus Cytochrome 

P-450 Monooxygenase Encoded by ordA that is Involved in the Biosynthesis of Aflatoxins B1, G1, 

B2, and G2. Appl. Environ. Microbiol. 64, 4834–4841. 

Yu, J., Chang, P.K., Payne, G. A., Cary, J. W., Bhatnagar, D. and Cleveland, T. E. (1995) Comparison 

of the omtA Genes Encoding O-Methyltransferases Involved in Aflatoxin Biosynthesis from 

Aspergillus parasiticus and Aspergillus flavus. Gene .163, 121–125. 

Yu, J., Woloshuk C.P., Bhatnagar D. and Cleveland T.E. (2000b). Cloning and Characterization of 

avfA and omtB Genes Involved in Aflatoxin Biosynthesis in Three Aspergillus species. Gene. 248, 

157–167. 

Yu, J.-H. and Keller, N. (2005) Regulation of Secondary Metabolism in Filamentous Fungi. Annu. 

Rev. Phytopathol. 43, 437–458. 

Z 

Zain, M.E. (2011) Impact of Mycotoxins on Humans and Animals. J. Saudi Chem. Soc. 15, 129–

144.  

Zeng, H., Hatabayashi, H., Nakagawa, H., Cai, J., Suzuki, R., Sakuno, E., Tanaka, T., Ito, Y., Ehrlich, 

K.C., Nakajima, H. and Yabe, K. (2011) Conversion of 11-hydroxy-O methylsterigmatocystin to 

Aflatoxin G1 in Aspergillus parasiticus. Appl Microbiol Biotechnol. 90, 635.  

Zhang, J.-D., Han, L., Yan, S. and Liu, C.-M. (2014a) The Non-Metabolizable Glucose Analog D-

glucal Inhibits Aflatoxin Biosynthesis and Promotes Kojic Acid Production in Aspergillus flavus. 

BMC Microbiol. 14, 1–9. 

Zhang, S., Monahan, B.J., Tkacz, J.S. and Scott, B. (2004) Indole-Diterpene Gene Cluster from 

Aspergillus flavus Indole-Diterpene Gene Cluster from Aspergillus flavus. App. Environ. Microbiol. 

70, 6875–6883. 

Zhang, W. Xue, B. Li, M., Mu, Y., Chen, Z., Li, J. and Shan, A. (2014b) Screening a Strain of 

Aspergillus Niger and Optimization of Fermentation Conditions for Degradation of Aflatoxin B₁. 

Toxins (Basel). 6, 3157-3172.  

Zhang, X., Zhu, Y., Bao, L., Gao, L., Yao, G., Li, Y., Yang, Z., Li, Z., Zhong, Y., Li, F., Yin, H., Qu, Y. and 

Qin, Y. (2016) Putative Methyltransferase LaeA and Transcription Factor CreA Are Necessary for 



  

 

235 
 

Proper Asexual Development and Controlling Secondary Metabolic Gene Cluster Expression. 

Fungal Genet. Biol. 94, 32–46. 

Zhou, R. and Linz, J.E. (1999) Enzymatic Function of the Nor-1 Protein in Aflatoxin Biosynthesis 

in Aspergillus parasiticus. Appl. Environ. Microbiol.  65, 5639–5641. 

Zhuang, Z., Lohmar, J.M., Satterlee, T., Cary, J.W. and Calvo, A.M. (2016) The Master Transcription 

Factor mtfA Governs Aflatoxin Production, Morphological Development and Pathogenicity in the 

Fungus Aspergillus flavus. Toxins (Basel). 8, 1–16.  

 


	ACKNOWLEDGMENTS
	CONTENT
	01 PUBLICATIONS and COMMUNICATIONS
	1.1 Articles
	1.2 Lectures
	1.3 Posters
	1.4 Awards

	02 INFORMATION LISTS
	2.1 Figure List
	2.2 Table List
	2.3 Annexes list
	2.4 Abbreviations list

	03 INTRODUCTION
	3.1 Background
	3.2 Importance of molds/mycotoxins occurrence in foodsafety
	3.2.1 Mycotoxin Definition
	3.2.2 Bookmark of mycotoxin’s effects in human’s health
	3.2.3 Mycotoxin occurrence in Food

	3.3 Aflatoxins: A major public health issue
	3.3.1 Discovery
	3.3.2 Aflatoxins chemical properties
	3.3.3 The genus Aspergillus
	3.3.4 The Aflatoxin B1 producers
	3.3.5 Effect of climate change in Aflatoxin’s occurrence
	3.3.6 Aflatoxin B1 toxicity

	3.4 Aflatoxin B1 Biosynthetic Pathway
	3.4.1 Description of the Aflatoxin B1 Gene Cluster
	3.4.2 Enzymatic Cascade Pathway of Aflatoxin B1
	3.4.2.1 Conversion of Acetate into Norsolorinic Acid
	3.4.2.2 Conversion of Norsolorinic Acid into Averantin
	3.4.2.3 Conversion of Averantin into Averufin
	3.4.2.4 Conversion from Averufin into Versiconal HemiacetalAcetate
	3.4.2.5 Conversion from Versiconal Hemiacetal Acetate intoVersicolorin B
	3.4.2.6 Conversion from Versicolorin B intoDemethylsterigmatocystin
	3.4.2.7 Conversion from Demethylsterigmatocystin into Omethylsterigmatocystin
	3.4.2.8 Conversion from O-methylsterigmatocystin into AFB1
	3.4.2.9 Other genes that are presumably not involved inaflatoxin enzymatic cascade but that are present inAFB1 cluster

	3.4.3 Regulation of Aflatoxin B1 synthesis
	3.4.4 External Regulatory Factors
	3.4.4.1 Environmental Transcription factors
	3.4.4.2 Natural Antisense transcription
	3.4.4.3 Reproductive processes
	3.4.4.4 Oxidative stress
	3.4.4.5 Cellular signalization
	3.4.4.6 Relationship with the production of other secondarymetabolites


	3.5 Use of natural compounds to inhibit AFB1 production
	3.5.1 General overview of strategies targeting the reduction ofAFB1 occurrence
	3.5.2 Natural products
	i) Essential Oils
	ii) Plant extracts
	iii) Isolated Molecules


	3.6 Conclusion
	3.7 Objectives

	04 EXPERIMENTAL WORK
	4.1 Chapter 1
	Deciphering the anti-aflatoxigenic properties of eugenolusing a large-scale qPCR approach
	4.2 Chapter 2
	The anti-aflatoxigenic molecule Piperine modulatesaflatoxin’s pathway and oxidative stress response inAspergillus flavus
	4.3 Chapter 3
	Identification of an anti-aflatoxigenic aqueous extract fromMicromeria graeca and elucidation of its molecularmechanism in Aspergillus flavus
	4.4 Chapter 4
	Inhibition of Aflatoxin B1 biosynthesis by aqueous extractsof Mexican plants: Mimosa tenuiflora and Larrea tridentata

	05 GENERAL DISCUSSION AND PERSPECTIVES
	5.1 The analysis of the Aflatoxin B1 gene cluster
	5.2 The analysis of the external regulatory factors
	5.3 Micro-encapsulation
	5.4 Conclusion

	06 ANNEXES
	6.1 Physical Methods to reduce AFB1 incidence
	6.2 Chemical Methods to reduce AFB1 incidence
	6.3 Biological control to reduce AFB1 incidence

	07 BIBLIOGRAPHY

