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Résumé:
Les transitions b→ s`+`− forment un labor-

atoire très intéressant pour rechercher la Nou-
velle Physique (NP) de manière indirecte. En
effet, des contributions de NP pourraient en-
trainer des déviations importantes par rapport
aux prédictions du Modèle Standard (MS). Des
mesures existantes d’observables angulaires et
de rapports d’embranchement dans les désinté-
grations de b→ sµ+µ− montrent des écarts con-
sistants par rapport au MS.

Dans cette thèse, une analyse angulaire des
désintégrations de Λ0

b → Λ(1520)µ+µ− est ef-
fectuée pour la première fois en utilisant les en-
sembles de données du Run 1 et 2 enregistrés par
l’expérience LHCb. Les observables angulaires
A`FB,3/2 et S1cc sont mesurées dans cinq régions
de la masse invariante au carré des dimuons q2.

Le modèle d’ajustement angulaire a été
développé pour la première fois incluant la
résonance Λ(1520), les contributions de réson-
ances Λ∗ avec un spin-1/2 et les effets

d’interférence non-négligeables entre les trois
résonances Λ∗. Les mesures de A`FB,3/2 dans les
modes de contrôle J/ψ et ψ(2S) sont compat-
ibles avec zéro à moins d’un écart type, comme
attendu. Les observables angulaires de la région
non-résonante dans q2 sont maintenues cachées
dans cette thèse.

Par ailleurs, les désintégrations B+ →
K+J/ψ(→ e+e−) et B+ → K+ψ(2S)(→ e+e−)
ont été étudiées avec les données du Run 3 col-
lectées en 2022. Le but de cette étude est d’avoir
un aperçu des données issues du détecteur “up-
gradé” et une évaluation de l’efficacité des élec-
trons dans le Run 3. Les nombres de partic-
ules ψ(2S) → e+e− issues des désintégrations
secondaires et de B+ → K+ψ(2S)(→ e+e−)
ont été déterminés sur les données Run 3 et
comparés au mode contenant un J/ψ. De plus,
les distributions des variables pertinentes dans
la désintégration B+ → K+J/ψ(→ e+e−) sont
comparées entre des échantillons de simulation
et les données soustraites du bruit de fond.
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Abstract:
New Physics (NP) searches via b → s`+`−

transitions are powerful methods since NP con-
tributions could cause sizeable deviations from
the Standard Model (SM) predictions. Previ-
ous measurements of angular observables and
branching fractions in b → sµ+µ− decays show
consistent deviations with respect to the SM.

In this thesis, an angular analysis of Λ0
b →

Λ(1520)µ+µ− decays is performed for the first
time using the full Run 1 and 2 datasets col-
lected by the LHCb experiment. The angu-
lar observables A`FB,3/2 and S1cc are attempted
to be measured in five bins of the dimuon in-
variant mass squared q2. This is the first at-
tempt to write a complete angular model, in-
cluding the Λ(1520) resonance, the spin-1/2 Λ∗

resonance contributions and the non-negligible
interference effects between the three Λ∗ reson-

ances. The measurements of A`FB,3/2 in the J/ψ
and ψ(2S) control modes are compatible with
zero within one standard deviation, as expected.
The angular observables in the non-resonant q2

region are kept blind in the thesis.
Furthermore, the B+ → K+J/ψ(→ e+e−)

and B+ → K+ψ(2S)(→ e+e−) decays have
been studied with Run 3 data recorded in 2022.
The aim of this study is to have a first look at
the data taken with the upgraded detector and
to understand the electron efficiencies in Run 3.
The yields of secondary ψ(2S) → e+e− and
B+ → K+ψ(2S)(→ e+e−) have been determ-
ined for the first time with Run 3 data and com-
pared to the J/ψ yields. In addition, a compar-
ison of relevant distribution in the simulation
samples and the background-subtracted data
has been performed using B+ → K+J/ψ(→
e+e−) decays.
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Synthèse en français

Le Modèle Standard (MS) de la physique des particules est une théorie très puissante
puisqu’elle permet de prédire précisément un grand nombre de phénomènes en physique
des particules, comme par exemple la valeur du moment magnétique anormal du muon
avec une précision de 10−11 [1, 2]. En revanche, il y a des phénomènes qui ne sont pas
explicables par le MS. Des exemples sont la matière noire qui n’est pas incluse, l’asymétrie
détectée entre la matière et l’antimatière dans notre univers ou les oscillations des neutri-
nos. Ces lacunes sont compensées par des extensions du MS, que l’on appelle la Nouvelle
Physique (NP).

Les transitions de b → s`+`− sont un laboratoire unique pour la recherche de la NP,
puisqu’elles sont sensibles à des particules de NP qui ont des masses jusqu’à l’échelle du
TeV/c2 [3]. Pour exprimer la NP d’une façon indépendante de modèles spécifiques et
pour pouvoir comparer les modèles facilement avec les résultats expérimentaux, il existe
la théorie effective des champs dans laquelle le hamiltonien des transitions b → s`+`−

s’exprime comme

Heff(b→ s`+`−) = −4GF√
2
VtbV

∗
ts

∑
i

(CiOi + C ′iO′i) + h.c. . (1)

Les coefficients de Wilson Ci contiennent la partie de haute énergie de l’interaction.
En supposant que la NP est présente à haute énergie, ce sont ceux-là qui recevraient
des contributions de NP. Traditionnellement, ces déviations sont écrites en fonction de
CNPi = Ci − CMS

i . La partie hadronique est incluse dans les opérateurs Oi. Dans le rap-
port d’embranchement, ils sont exprimés dans des facteurs de forme. Plusieurs méthodes
existent pour les calculer.

Cette thèse est dédiée à l’analyse angulaire d’une désintégration de b → s`+`−, à sa-
voir Λ0

b → pK−µ+µ−. Les diagrammes dominants de cette désintégration sont illustrés
dans la Fig. 1. La motivation de cette analyse est de vérifier les déviations des observ-
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Figure 1 – Deux des diagrams dominates de la désintégration Λ0
b → pK−`+`−.

ables angulaires mesurées dans des désintégrations rares des mésons b par une nouvelle
désintégration du hadron b Λ0

b . Les désintégrations à l’arbre via une résonance J/ψ ou
ψ(2S) sont les modes de contrôle de cette analyse grâce à leurs efficacités supérieures.
Une analyse complète en amplitude a pu être réalisée dans la désintégration à l’arbre,
Λ0
b → pK−J/ψ(→ µ+µ−) [4]. Dans cette analyse, le spectre de masse invariante pK− a

été mesuré et est celui de la Fig. 2. Le spectre de masse indique la présence de la résonance
abondante et étroite Λ(1520). A cause du manque d’événements dans le mode rare, le
focus de l’analyse est mis sur la résonance Λ(1520), puisqu’elle peut être séparée le plus
facilement des autres en gardant la majorité des événements.
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Figure 2 – Résonances Λ∗ et pentaquark mesurés dans le spectre de masse invariante
pK− par l’analyse en amplitudes de la désintégration
Λ0
b → pK−J/ψ(→ µ+µ−) [4].
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En plus, des prédictions du rapport d’embranchement différentiel et des observables
angulaires existent pour cette résonance [5] et sont formulées comme

8π
3

d4Γ
dq2d cos θ`d cos θpdφ

= cos2 θp
(
L1c cos θ` + L1cc cos2 θ` + L1ss sin2 θ`

)
+ sin2 θp

(
L2c cos θ` + L2cc cos2 θ` + L2ss sin2 θ`

)
+ sin2 θp

(
L3ss sin2 θ` cos2 φ+ L4ss sin2 θ` sinφ cosφ

)
+ sin θp cos θp cosφ(L5s sin θ` + L5sc sin θ` cos θ`)
+ sin θp cos θp sinφ(L6s sin θ` + L6sc sin θ` cos θ`). (2)

Les angles de désintégrations apparaissant dans Éq. 2 sont définis dans la base d’hélicité,
comme montré dans la Fig. 3.

Λ0
b

 rest frameΛ0
b

Λ*
 rest frameΛ*

p

K−

 rest frameℓ+ℓ−

ℓ+

ℓ−
ϕθℓ θp

Figure 3 – Définition des angles de désintégration du Λ0
b → pK−µ+µ−.

Les observables angulaires sont construites à l’aide des coefficients angulaires des
désintégrations du Λ0

b , Li, et du Λ0
b , L̄i. La somme des deux coefficients est appelée

symt́rie de CP , définie comme

Si = Li + L̄i

d(Γ + Γ̄)/dq2
, (3)

Particulièrement sensible aux contributions de NP, l’asymétrie leptonique avant-arrière
peut être exprimée comme

A`FB = 3
2

L1c + 2L2c

L1cc + 2L1ss + 2L2cc + 4L2ss + 2L3ss
. (4)

La moyenne de A`FB et Ā`FB va être mesurée. Des prédictions pour les observables an-
gulaires sont obtenues en se basant sur différentes prédictions des facteurs de forme.
Les facteurs de forme du modèle des quarks non-relativiste (NRQM) sont prédits en

ix



Figure 4 – Prédictions des observables angulaires A`FB et S1cc avec différents facteurs de
forme [6–8], en fonction de q2.

Ref. [6]. Des prédictions de la QCD sur réseau existent (Lattice QCD) [7] dans la région
de q2 ∈ [16, 16.8]GeV2/c4, qui ont été extrapolées dans la région q2 ∈ [15, 16.8]GeV2/c4.
La prédiction de la QCD sur réseau conjointe aux limites dispersives permet de prédire
les observables dans le q2 bas [8]. Les observables angulaires dans les différentes régions
en q2 sont présentées dans la Fig. 4. Malgré les différents modèles, les prédictions sont
cohérentes entre elles dans les régions de q2 visées à être mesurées.

Dans cette thèse, toutes les données enregistrées par l’expérience LHCb entre 2011 et
2018 à une énergie dans centre de masse de 7, 8 et 13TeV sont analysées. Cela correspond
à une luminosité intégrée de 9.1 fb−1. Les observables angulaires A`FB et S1cc sont prévues
d’être analysées dans cinq régions de q2, notamment [0.1, 3], [3, 6], [6, 8], [11, 12.5] et
[1.1, 6]GeV2/c4.

La désintégration du signal a été sélectionnée et les contributions du bruit de fond
ont été étudiées dans le mode rare et les modes de contrôle. Le bruit de fond originaires
des combinaisons aléatoires a été supprimé par un classificateur multivarié. Les bruits
de fond restants ont soit été enlevés par un véto, soit sont modélisés dans l’ajustement
de la masse invariante de pK−µ+µ−. L’ajustement est montré dans la figure 5 pour le
mode de contrôle J/ψ et une région rare en q2. Le signal est modélisé par une fonction
Hypatia 2 [9], dont la forme est fixée par rapport à l’ajustement aux simulations LHCb. Le
même modèle est pris pour décrire le Ξb. Le bruit de fond des combinaisons aléatoires est
décrit par une exponentielle. La forme des contributions du bruit de fond B0

s → K+K−J/ψ

et B0 → K∗0J/ψ est extraite des simulations et leurs contributions relatives fixées à la
valeur déterminée par les données.

L’ajustement de la masse pK−µ+µ− permet l’extraction de poids avec lesquels il est
possible de soustraire de façon statistique la contribution du bruit de fond. Ces poids
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Figure 5 – Ajustement de la masse invariant pK−µ+µ− dans les données de l’expérience
LHCb pour le mode de contrôle J/ψ (gauche) et un mode rare (droite).

sont appliqués par la suite.
La sélection a une forte influence sur la forme des angles. La variation introduite par

cette “acceptance angulaire” doit être corrigée dans les données. Puisque les données sont
limitées dans le mode rare, l’ajustement angulaire présenté dans l’équation 2, est simplifié
dans la limite des quarks lourds. La fonction de distribution de probabilité correspond
au premier terme dans la somme dans Éq. 5. Les observables angulaires S1cc et A`FB vont
être mesurées. Pour la distinguer du paramètre de nuisance A`FB,1/2, l’observable A`FB va
être nommée A`FB,3/2 par la suite. Il a été vérifié que l’ajustement d’un échantillon généré
avec le modèle complet en utilisant les facteurs de forme du NRQM avec le modèle réduit
n’introduit pas de changement des valeurs d’observables angulaires.

La figure 2 indique la présence des résonances Λ(1405) et Λ(1600) dans la fenêtre de
masse invariante pK− autour de la résonance Λ(1520). Ces deux résonances ont un spin
1/2 et la distribution angulaire a été adaptée de Réf. [10] pour la désintégration forte des
résonances Λ∗. La fonction de distribution de probabilité est écrite dans la partie en vert
de l’équation 5, et n’a pas de dépendance en cos θp. Puisque elles sont mesurées ensemble
dans une fenêtre de masse réduite, les observables K1cc et A`FB,1/2 sont des paramètres de
nuisance.

Les valeurs des termes d’interférences entre les trois résonances Λ∗ ne peuvent pas être
prédits par la théorie. C’est pour cela que des simulations Monte Carlo dédiées à étudier
des scénarios d’interférences différents ont été générées par des collègues de LHCb. Il a
été trouvé que l’impact des interférences est de causer un changement de forme de cos θp.
Cela est pris en compte par des termes d’interférence, notés par i1,2, qui sont multipliés à
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la distribution des résonances Λ∗ de spin 1/2.
A cause de la ressemblance des deux termes dans la somme, une nouvelle dimension est

utilisée pour séparer les contributions de Λ(1520) et celles de Λ∗ avec un spin 1/2. Cette
dimension est la masse invariante pK− avec laquelle la fraction des résonances Λ(1520),
qui s’appelle f3/2, peut être déterminée. La résonance Λ(1520) est décrite par la fonction
de Breit-Wigner relativiste. Les résonances de spin 1/2 sont modélisées par un polynôme
d’ordre un.

En combinant tous ces termes, la fonction de distribution de probabilité a été dévelop-
pée et écrite comme

PDFInt1/2
ang

= f3/2

(1− 1
2S1cc

) (
1− cos2 θ`

)
+ S1cc cos2 θ` + 4

3A
`
FB,3/2 cos θ`


×
(1

4 + 3
4 cos2 θp

)
+ (1− f3/2)

(1
2 (1−K1cc)

(
1− cos2 θ`

)
+K1cc cos2 θ` + 2

3A
`
FB,1/2 cos θ`

)
×
(3− i2

3 + i1 cos θp + i2 cos2 θp

)
. (5)

En testant ce modèle avec ces simulations de Monte Carlo, l’ajustement donne des valeurs
de A`FB,3/2 et S1cc compatibles avec les valeurs générées, comme visible dans la fig. 6.
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Figure 6 – Stabilité des résultats de l’ajustement aux échantillons de Monte Carlo dédiés
à l’étude de l’impact de différentes interférences sur les observables angulaires.

Ces échantillons sont très grands, donc la taille ne correspond pas à l’attente. Il est
donc nécessaire de tester le modèle avec le mode de contrôle sur les données. Pour cela les
poids pour enlever le bruit de fond et corriger l’acceptance angulaire sont appliqués. Les
projections de l’ajustement de la masse invariante pK− et des angles sont montrées dans
Fig. 7. La valeur de l’asymétrie A`FB,3/2 résultant est 0.008± 0.008, ce qui est compatible
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Figure 7 – Projections de l’ajustement à la masse invariante pK− et des angles cos θ` et
cos θp dans le mode de contrôle J/ψ.

avec zéro, comme attendu dans les désintégrations à l’arbre.
Dû à la petite taille des données dans le mode rare, le fit angulaire a des problèmes

de convergence dans ces régions. C’est la raison pour laquelle la stratégie du bruit de
fond des combinaisons aléatoires a changé. Au lieu d’enlever le bruit de fond par des
poids, le bruit de fond est modélisé. Un polynôme d’ordre un modélise la masse pK−

et les angles sont décrits par le produit de deux polynômes d’ordre deux. L’ajustement
dans une région du mode rare est montré dans la Fig. 4.40. Les valeurs des observables
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Figure 8 – Projection de l’ajustement à la masse invariante pK− et des angles dans une
des régions dans le mode rare.

angulaires sont cachées. Un biais a été constaté qui doit être corrigé dans le futur. En
plus, les incertitudes systématiques doivent être traitées.

En parallèle, des nouvelles données ont été prises en 2022 par le détecteur amélioré de
l’expérience LHCb. Les données du dernier weekend de la prise des données sont analysées.
La motivation de cette analyse est de valider la nouvelle stratégie de déclenchement en
regardant l’efficacité des électrons. Pour la première fois les désintégration de ψ(2S) →
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e+e− originaires d’un vertex secondaire sont découvertes dans les nouvelles données. Elles
peuvent être vues dans la Fig. 9.
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Figure 9 – Ajustement à la masse invariante de e+e− dans les nouvelles données de
LHCb.

Pour la première fois, les désintégrations de B+ → K+ψ(2S)(→ e+e−) sont observées
dans les données. L’ajustement de la masse invarianteK+e+e− calculé avec une contrainte
de ψ(2S) est montré dans la Fig. 10.
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Figure 10 – Ajustement à la masse invariante de K+e+e− dans les nouvelles données.

Le rapport des désintégrations B+ → K+ψ(2S)(→ e+e−) sur B+ → K+J/ψ(→ e+e−)
est calculé et inférieur aux résultats précédents. En raison de la petite taille de cet
échantillon, les rapports doivent être recalculés avec un échantillon plus grande.
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Avec l’aide de l’ajustement des désintégrations B+ → K+J/ψ(→ e+e−), des poids sont
extraits pour supprimer de façon statistique les bruits de fonds. Cela permet une com-
paraison des distributions de différentes variables dans les données et les échantillons de
simulation. En conclusion, les variables topologiques et cinématiques sont en accord entre
les deux échantillons. Par contre, les variables d’identification des électrons par rapport
aux pions, nommées DLLeπ montrent de grands désaccords. En plus, une amélioration
de l’alignement temporel et spatial du détecteur est nécessaire pour exploiter tout le po-
tentiel du détecteur amélioré. Cette analyse est importante pour surveiller la qualité des
données et améliorer les simulations du nouveau détecteur LHCb.
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Glossary

The meaning of common acronyms and abbreviations is explained in the table below.

A`FB Leptonic forward-backward asymmetry of the Λ0
b decay

to a Λ(1520) resonance and a lepton pair.
A`FB,1/2 Leptonic forward-backward asymmetry of the Λ0

b decay
to a spin-1/2 Λ∗ resonance and a lepton pair.

BDT A machine learning technique trained to distinguish
between signal and background, called Boosted Decision
Tree. The technique attributes usually a value in the
interval [−1, 1] or [0, 1] to an event, which is translated
into background- and signal-like classification.

χ2
decay-length χ2 of the decay length of the corresponding particle

track.
χ2
DTF/ndof Goodness of the PV quality, which is evaluated by the

DecayTreeFitter algorithm.
χ2
FD χ2 of the distance between the vertex of origin and the

decay vertex, indicating the significance of the flight dis-
tance of a particle candidate.

χ2
IP χ2 of the impact parameter between the reconstructed

track and the PV of the candidate.
DIRA Angle between the direction between the line from the

PV to the SV and the sum of the final-state particle
four-momenta.

χ2
vertex χ2 of the vertex quality, associated to the decay vertex

of the corresponding particle.
DOCA Distance of closest approach between two tracks.
η Pseudo-rapidity is a measure of positions in the detector

relative to the beam axis. At high energies (m� p), it
equals the rapidity y.

hasMuon Boolean variable indicating if the track has hits in the
muon station.
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hasRich Boolean variable requiring RICH signatures, which are
associated to the track.

IP Impact parameter, indicating the smallest distance
between a track and a PV.

isMuon Boolean variable to check if muon sub-detector hits
match the reconstructed track of the muon candidate.

K1cc Angular observable of the Λ0
b decaying into a a spin-1/2

Λ∗ resonance and a lepton pair.
LHC The Large Hadron Collider is colliding protons and is

situated close to Geneva.
Λ0 Ground-state Λ resonance, which decays weakly.
Λ∗ Excited Λ resonances, which can decay via the strong

interaction to pK−.
Λ1/2 Λ∗ resonance with spin J = 1/2.
MVA Multivariate analysis tool, often but not necessarily

machine-learning based.
MC Monte-Carlo simulation sample.
NP New Physics, referring to phenomena un-explained by

the Standard Model of particle physics.
nTracks Number of reconstructed tracks in an event.
nSPDHits Number of hits in the Scintillating Pad Detector (SPD)

detected in a pp-collision.
P Positive (+) and negative (-) parity of a particle.
PDF (Angular) Probability Distribution Function.
PDF3/2 Angular PDF of the Λ0

b → Λ(1520)(→ pK−)µ+µ−− de-
cay.

PDF1/2 Angular PDF of the Λ0
b → Λ1/2(→ pK−)µ+µ−− decay.

phase-space Model for the generation of MC simulation samples
based on a probability distribution, which is flat in the
decay angles defined in the helicity basis.

ProbNNX Machine-learning technique trained to identify different
particles by attributing a probability to the hypothesis
of a particle to be X (X ∈ {p,K, π, µ, ...}).

Probghost-track Probability to be a ghost track.
pT Component of the particle momentum transversal to the

beam axis.
PV Primary vertex, located at the pp-collision point.
J Spin of a particle.
S1cc Angular observable of the Λ0

b decaying into a Λ(1520)
resonance and a lepton pair.

SM Standard Model of Particle physics.
SV Secondary vertex of the particle decay. In the studied

decay it is the Λ0
b decay vertex.

q2 Dilepton invariant mass squared. The angular observ-
ables are measured in bins of this quantity.

τ Lifetime of an unstable particle.
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Chapter 1
Theoretical and experimental overview

1.1 The Standard Model of particle physics

The idea of having elementary constituents, composing all types of matter in our
universe, was already debated in ancient Greece. Democritus, a Greek philosopher born
around 460BC, is the founder of the atomist theory, postulating that matter is composed
of indivisible, eternal and perfectly solid constituents [11].

Even though atoms are nowadays known not to be the indivisible components of
Nature, elementary constituents exist. Those elementary particles and three of the four
fundamental forces are described in the Standard Model (SM) of particle physics, which
was derived about 2400 years after Democritus’ birth 1.

Although the theory of classical mechanics fits the observations of macroscopic objects
at velocities much smaller than the speed of light c, it cannot predict the behaviour of
elementary particles. The uncertainty principle of quantum mechanics is necessary to
describe those quantum objects. Since massless particles travel at the speed of light,
neither classical nor quantum mechanics can explain their relativistic behaviour. The
solution is Einstein’s theory of special relativity. Combining quantum mechanics with
special relativity yields a quantum field theory (QFT), adapted to describe particles of
microscopic size moving at velocities close to or equal to the speed of light. QFTs are,
therefore, well suited to model the SM.

The scientific community celebrates the SM as “one of the most successful theories in
physics” [13]. The euphoria is caused by the precise prediction of phenomena, which were
later validated by experiments at colliders.

1. This paragraph is following the argumentation of Ref. [12].
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Nevertheless, some questions cannot be solved by the SM. Examples are the matter-
antimatter asymmetry in our universe, the missing Dark Matter particle, the neutrino
oscillations and the non-inclusion of gravity. Therefore, studying the SM provides inform-
ation about the microscopic world of elementary particles and enriches knowledge at the
cosmological and astrophysical scales.

In flavour physics, precision measurements of the SM properties are performed since
New Physics (NP) could contribute and give rise to deviations. Higher energy ranges can
be scanned for NP than it is producible at collider experiments. Promising candidates are
b → s`+`− transitions since they occur on loop level, and their branching fractions are,
thus, suppressed in the SM. Even small NP contributions could cause sizable deviations.
This is the reason why those electroweak penguin decays are judged to be good candidates
to search for NP.

By measuring electroweak penguin decays, the LHCb experiment reported discrepan-
cies with respect to the SM predictions. Since most up-to-date measurements are per-
formed with B0,± mesons, studies of b-baryons are important to cross-check theoretical
as experimental results. Thanks to their spin, b-baryons offer access to complementary
information. This thesis focuses on attempting to perform for the first time an angular
analysis in Λ0

b → Λ(1520)µ+µ− decays using Run 1 and 2 data collected by the LHCb
experiment.

The theoretical and experimental status is presented in the first chapter to introduce
the context of this work. Its first section is composed of an overview of the SM, includ-
ing the presentation of the elementary particle table, its mathematical description 2, the
properties of flavour physics and its shortcomings. In the second section, the theoretical
formalism to describe electroweak penguin decays and experimental results are presented.
In the third section, the focus is set on Λ0

b → pK−`+`− decays. The measurement is mo-
tivated, and the experimental status of art is explained. Theoretical predictions related
to the signal decay are presented afterwards. This section will become essential for the
construction of the angular fit model.

1.1.1 Elementary particles and interactions

The Standard Model (SM) of particle physics describes the elementary particles of
which our universe is composed and three of the four fundamental forces. Gravity is not
included since it is many orders of magnitudes weaker than the weak, electromagnetic and
strong force. However, the gravitational force holds large objects in our universe together,
thanks to its attractivity even at enormous distances [14]. The great success of the SM

2. This subsection is based on Ref. [12, 14,15].
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is the prediction of the Z, W± and H0 boson. Their discovery at collider experiments is
seen as validation of the SM [16–19]. Nowadays, all the SM particles are discovered.

Figure 1.1 shows a table of all the SM particles. According to their spin, the SM
particles can be classified into fermions and bosons. Spin is one of the fundamental
properties defining the particle type. An integer spin number defines bosons and a half-
integer number to fermions. While all the baryonic matter is made of fermions, the force
carriers and the Higgs are bosons.
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Figure 1.1 – All the Standard Model’s elementary particles and force carriers are shown.
The table is adapted from Ref. [20]. The particle masses are taken from
Ref. [21] and written in natural units.

Fermions

Fermions are the elementary constituents of our universe, and consequently all the
atoms we know. Atoms consist of electrons e− and a nucleus. The nucleus is made of
protons p and neutrons n, which are themselves composed of up u and down d quarks.
The proton composition is uud, and the neutron is made of udd valence quarks. The
electron, the up and the down quark are part of the first lepton family. In literature,
it is also spoken of as the first lepton generation. In total, there are three generations.
Fermions from the second and third generation are mainly produced in accelerators, but
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not exclusively. Atmospheric showers are natural sources of fermions from higher gener-
ations, produced by interactions of cosmic rays and the nuclei in the high atmosphere 3.
The ordering of the fermions follows the principle: “The higher the generation, the higher
are the masses of its constituents”.

Each fermion f has an antiparticle f with inverted quantum numbers 4, while the mass
and the spin stay the same. The transformation of the quantum numbers from a particle
to its antiparticle is performed by the charge conjugation operator C. Since the neutrinos
have only been observed to be left-handed and their antiparticles to be right-handed 5,
charge conjugation is not a good symmetry of the SM. The parity operator P is needed
to project the momentum of a particle to its negative counterpart. The combined applic-
ation of CP correctly converts left-handed neutrinos into their right-handed antiparticles.
For simplicity, the corresponding antiparticle of each presented fermion is implied in the
following.

Fermions are distinguished into two groups, the quarks and the leptons. Let us start
with the quarks. An important feature is that each quark carries a colour charge. The
colour charge is defined as red, green and blue in analogy to the colours of light. The
corresponding anti-quarks carry anti-colours. Depending on the electromagnetic charge of
the quarks, they are classified as up or down-type quarks. The up-type quarks are namely
the up u, charm c and truth t quark with an electromagnetic charge Q = 2

3e. Down d,
strange s and beauty b are the flavours of the down-type quarks. Their charge equals
Q = −1

3e. Counting all the quarks with their different colour charges and antiparticles,
the SM contains 36 different quark types.

Due to the colour confinement, quarks never appear alone in Nature. They hadronise.
The top quark is so heavy that it decays before forming a bound state. A meson is
composed of a quark q and an anti-quark q. Baryons consist of either three quarks or
three anti-quarks. Furthermore, exotic states as pentaquarks (qqqqq) and tetraquarks
(qqqq) have already been observed [22]. In each interaction, the number of baryons,
defined as

B = 1
3 (Nq −Nq̄) , (1.1)

is conserved. This property is called baryon number conservation.

3. In atmospheric showers mainly kaons, D mesons and muons are produced.
4. An anti-quark possesses, for example, an anti-colour and carries inversed flavour numbers.
5. Left-handed helicity is defined as the projection of the spin ~s of a particle on the direction of its

momentum ~p. Mathematically expressed, left-handed particles have a positive helicity h = ~s·~p
|~p| > 0.
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Leptons constitute the second group of fermions. Each generation comprises an elec-
tromagnetically charged lepton, namely the electron e−, the muon µ− and the tau lepton
τ−, and a corresponding neutral and massless neutrino, denoted by νe, νµ and ντ . The
number of leptons minus the number of anti-leptons within each family is conserved in all
interactions. The so-called lepton numbers are marked as Le, Lµ, Lτ .

For the analysis, it is important to understand the properties of leptons and quarks,
to get a feeling of the interaction.

Forces and their mediators

Following the particle-wave duality of quantum mechanics, each force in the SM has
an associated force carrier. The strong force is mediated by a massless gluon g, carrying
a colour and an anti-colour. Combining the three colours and anti-colours naively, nine
combinations exist. Since a gluon cannot occupy a colour singlet state, only eight gluons
are part of the SM. The strong force acts on particles carrying colour charges, which
are the quarks and the gluons. The strong force holds atomic nuclei together, while the
electromagnetic interaction bounds the electrons on the nucleus.

Electromagnetic interactions are mediated by photons γ. Only electromagnetically
charged particles can interact with the γ. These are quarks, charged leptons and the W±

boson. In all interactions, the electromagnetic charge Q is conserved.

The third force is the weak force, which interacts with all leptons and quarks. It is the
sole force interacting with neutrinos in the SM. The gauge bosons of the weak force are
the massive W± and the Z boson. Interactions with the W± boson are unique because
they do not conserve the quark flavours. Interactions with the W± boson, the Z boson
and the photon are present in the signal decay and, therefore, crucial for this thesis.

As described previously, the combined CP operation transforms a particle into its
antiparticle. While the electromagnetic and strong interactions conserve the CP sym-
metry, the weak interaction does not. The violation of CP symmetry is due to the
Cabibbo–Kobayashi–Maskawa (CKM) matrix, described in detail in section 1.1.2. Nev-
ertheless, it is a small effect and cannot explain the enormous matter dominance in our
universe. Since the SM is built to be symmetric under CPT transformations, CP violation
implies violation of the time inversion operator T .

A special place in the SM occupies the recently discovered Higgs boson H0. It provides
masses to the particles with which it interacts. These are, namely, the charged leptons,
the quarks, the weak bosons and itself. Even if the Higgs boson is not studied in this
analysis; it is important to understand its need to introduce particle masses.
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The Standard Model Lagrangian density

After the phenomenological introduction of fermions and bosons, the mathematical
formulation of the SM is presented in this section. The SM of particle physics is ex-
pressed as a Quantum Field Theory (QFT), which is invariant under the local gauge
transformation of the

SU(3)C ⊗ SU(2)L ⊗ U(1)Y (1.2)

group. The strong interaction is described by a SU(3)C symmetry generated by the colour
charge C. The corresponding QFT is called Quantum Chromodynamics (QCD). The
electroweak unification is based on the SU(2)L ⊗ U(1)Y symmetry. The corresponding
quantum numbers are the weak isospin I and the weak hypercharge Y , which is related
to the third component of the weak isospin I3 and the electromagnetic charge Q by the
Gell-Mann-Nishijima formula

Q = I3 + Y

2 . (1.3)

The subscript L reminds the different treatment of left- and right-handed fermions in
weak interactions.

The electroweak (EWK) symmetry is spontaneously broken to the U(1)Q symmetry of
electromagnetic interactions, which occurs at low energies and is formulated as Quantum
Electrodynamics (QED). The symmetry breaking gives rise to the Higgs boson and fer-
mion masses, expressed by the Yukawa terms.

The SM Lagrangian density LSM , in the following abbreviated by Lagrangian, de-
scribes the dynamics and interactions of the SM particles. It can be decomposed into the
terms

LSM = LQCD + LEWK + LH + LYukawa. (1.4)

Each term of the SM Lagrangian will be explained in the next subsections.
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Quantum Chromodynamics

To simplify the QCD Lagrangian, the quark fields are introduced with their corres-
ponding colours as the three-component vectors

ψ =


ψr

ψg

ψb

 , ψ̄ =
(
ψ̄r ψ̄g ψ̄b

)
. (1.5)

Their components ψr,g,b are Dirac spinors, composed of left- and right-handed fields.
The SU(3) generators T a are defined as a function of the Gell-Mann matrices λa with
a ∈ {1, 2, ..., 8} and multiplied by a factor 1/2. The local SU(3) gauge transformation can
be written as

ψ → eigsαa(x)Taψ (1.6)

and is interpreted as a rotation in the colour space. αa(x) are the real functions of the
space-time coordinate x. To keep local gauge invariance, the tensor field

Ga
µν = ∂µG

a
ν − ∂aνGa

µ − gsfabcGµ,bGν,c (1.7)

is introduced with the help of the commutator relation fabc. The eight gluon fields are
appearing as Ga

µ. The Lagrangian of the strong interaction is expressed as

LQCD = ψ̄(iγµδµ −m)ψ + gs(ψ̄γµTaψ)Ga
µ −

1
4G

a
µνG

µν
a . (1.8)

The γµ matrices are defined in the Dirac-Pauli representation as functions of the unity
matrix and the Pauli matrices σk. The first term in LQCD is interpreted as the kinetic
term of the quarks, while the second stands for the colour-changing interaction of two
quarks with a gluon. The coupling strength of the strong interaction is written as gs. The
third term corresponds to the kinetic term of the gluon plus the self-coupling of three and
four gluons to each other.

The strong coupling constant αs = gs
4π is modified by virtual quark and gluon loop

contributions. Corrections to the quark propagator cancel with the vertex correction 6,
while contributions to the gluon propagator persist. Those contributions are included in
the strong running coupling, αs(µ2), and cause a dependence of αs on the momentum

6. The values of each correction depend on the chosen gauge.
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transfer squared, µ2. The full expression of the strong running coupling is written as

αs(µ2) = 12π
11nc − 2nf

1
ln µ

ΛQCD
(µ2 � Λ2

QCD). (1.9)

Logarithmic terms in radiative corrections are resumed through the Renormalisation
Group. The introduced fundamental scale is parametrised by the QCD scale parameter
ΛQCD [23]. The ΛQCD parameter depends itself on the renormalisation scheme and the
number of active flavours nf [23]. In Eq. 1.9, the number of colours (3 in the SM) is
marked with nc. The running coupling gets weaker with increasing momentum trans-
fer. This effect is called asymptotic freedom. Decreasing the energy leads to a diverging
running coupling and causes the confinement of quarks.

For low-energetic processes, the coupling constant attains a value of the order O(1)
and QCD expansions in powers of αs are non-reliable anymore. One speaks about non-
perturbative QCD. While the b-quark production is governed by an energy scale of the
order mb ≈ 4GeV/c2 � ΛQCD and, thus, part of the perturbative regime, the hadron
propagation is non-perturbative and difficult to predict. How the hadronic part of the
interaction can, nevertheless, be predicted as form factors, will be presented in section
1.2.2.

Electroweak interaction

For the electroweak interaction, the handedness of the fermions matter. Left-handed
fermions are separated from their right-handed counterparts by the chiral projection op-
erators

PL(R) = 1∓ γ5

2 . (1.10)

While for massive fermions, the helicity depends on the reference frame, chirality is frame
independent. To describe the electroweak interaction, all the left-handed fermions are
arranged in six weak isospin doublets

ΨL ∈

νe
e−


L

,

νµ
µ−


L

,

ντ
τ−


L

,

u
d′


L

,

 c
s′


L

,

 t
b′


L

. (1.11)

In the upper element, the third component of the weak isospin I3 equals +1/2 and I3

takes a value of −1/2 in the lower element. The primed quarks are the weak interaction
eigenstates and will be presented below. Right-handed fermions are written as spinor
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singlets

ΨR ∈ {e−R, µ−R, τ−R , uR, dR, cR, sR, tR, bR}, (1.12)

where I = I3 = 0. According to Eq. 1.3, the weak hypercharge of right-handed neutrinos
vanishes. This is the reason why they do not interact via the weak interaction. The
primed quarks in Eq. 1.11 are rotations of the initial quark flavours by the CKM matrix
via 

d′

s′

b′

 = VCKM


d

s

b

 . (1.13)

The primed quarks are the weak interaction eigenstates, and the unprimed ones are the
mass or flavour eigenstates. The SU(2)L ⊗ U(1)Y gauge symmetry corresponds to the
local phase transformations 7

ΨL → eigαk(x)τk+ig′ Y2 β(x)ΨL, (1.14)
ΨR → eig

′Y β(x)ΨR. (1.15)

The isospin singlet ΨR is unaffected by the local SU(2)L gauge transformation. The
matrices τ k with k ∈ {1, 2, 3} are equivalent to the Pauli matrices σk multiplied by a
factor 1/2. β(x) and αk(x) are real functions of the space-time coordinate x.

The gauge symmetry U(1)Y is related to the gauge field Bµ. The gauge fields W k
µ

appear due to the SU(2)L symmetry. The covariant derivatives

Dµ,L = ∂µ − ig′
Y

2 Bµ − igτ kW k
µ , (1.16)

Dµ,R = ∂µ − ig′
Y

2 Bµ (1.17)

include the four boson fields. g and g′ are the coupling strengths corresponding to the
SU(2)L and U(1)Y gauge symmetries. The boson fields can be rewritten as

W±
µ = 1

2(W 1
µ ∓W 2

µ), (1.18)

Zµ = cos θWW 3
µ − sin θWBµ, (1.19)

Aµ = sin θWW 3
µ + cos θWBµ. (1.20)

7. In the literature, instead of writing the coupling constants explicitly, they are sometimes included
in the real functions αk(x) and β(x).
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The mass eigenstates of the bosons can be read from this representation. Aµ is the
photon field, Zµ represents the Z-boson field and W±

µ the W± bosons. θW is called the
weak mixing angle. The generators of the symmetry group are written out in Eq. 1.21
and 1.22. εijk is the Levi-Civita tensor and has the indices i, j, k ∈ {1, 2, 3}. By defining
the tensor fields

Bµν = ∂νBµ − ∂µBν , (1.21)
W k
µν = ∂νW

k
µ − ∂µW k

ν + gεijkW i
µW

j
ν , (1.22)

the full electroweak Lagrangian yields the expression

LEWK = iΨ̄Lγ
µDµ,LΨL + iΨ̄Rγ

µDµ,RΨR −
1
4BµνB

µν − 1
4W

k
µνW

µν,k. (1.23)

The first two terms correspond to the propagation of fermions and their interactions
with the gauge bosons W±, γ and Z. The W± bosons interact solely with left-handed
chiral fermions and right-handed chiral anti-fermions, whereas the photon couples to both
fermion chiralities equally. Since the Z boson is composed of a combination of the W 3

µ

and the Bµ field, its coupling differs depending on the fermion chiralities. Using the
weak mixing angle θW , the two coupling constants g and g′ can be expressed as the
electromagnetic charge e = g sin θW = g′ cos θW.

The two last terms in the electroweak Lagrangian describe the propagation and the
interactions of the three gauge bosons. A W± bosons pair can either interact in three- or
four-boson interactions. Hence, the W± boson pair can interact with a γ or a Z boson,
or it undergoes an interaction with two photons, two Z bosons, a photon and a Z boson
or another W± boson pair. The three-boson interaction is present in one of the dominant
Feynman diagrams for the b→ s`+`− transition, which is shown in Fig. 1.2.

b s

u, c, t

`+

`−

W−

γ, Z

b s

W−

`+

`−

u, c, t

γ, Z

b s

`+

`−

u, c, t

ν`

W− W+

Figure 1.2 – The three dominant Feynman diagrams of the b→ s`+`− transition in the
Standard Model.
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Brout-Englert-Higgs mechanism

Up to now, the gauge bosons and the fermions in the SM Lagrangian are massless.
Mass terms are included by breaking the SU(2)L ⊗ U(1)Y symmetry spontaneously to
become the U(1)Q symmetry. For this purpose, a complex scalar Higgs field is introduced
as the weak isospin doublet

φ =
φ+

φ0

 = 1√
2

φ1 + iφ2

φ3 + iφ4

 . (1.24)

The Higgs boson has a weak hypercharge Y = 1. The Lagrangian of the Higgs boson is
introduced as

LH = (Dµφ)†(Dµφ)− V (φ). (1.25)

Dµ is the same covariant derivative as introduced in Eq. 1.16 and 1.17. V (φ) is the Higgs
potential, which is defined as

V (φ) := µ2φ2 + λφ4. (1.26)

The parameters µ2 and λ are both real. λ has to be bigger than zero to get a finite
minimum of the Higgs potential, while µ2 can be positive or negative. However, only in
the case of µ2 < 0, V (φ) has an infinite set of absolute minima. The minima can be
expressed as

φmin = 1√
2

 0
υeiθ

 . (1.27)

The phase θ defines the rotation of |φmin| in the complex plane. Because the Higgs boson
“chooses” a particular minimum of the Higgs potential, the rotational symmetry of the
Higgs Lagrangian is broken. By convention, the phase θ is set to zero. The potential
minimum φmin is expanded around the vacuum state by exploiting gauge invariance 8 and
reads

φ = 1√
2

 0
υ + h(x)

 . (1.28)

By inserting Eq. 1.28 in 1.25, terms depending on υ arise. Those are the mass terms.
While the photon stays massless, the W± and Z boson receive masses of mW = 1

2gυ

8. Gauge invariance is exploited in order to choose the unitary gauge, which removes the three would-
be Gauge bosons.
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and mZ = υ
2
√
g2 + g′2. The weak mixing angle relates the two masses via cos θW = mW

mZ
.

In addition, the Higgs boson emerges from the Higgs scalar field h(x) with a mass of
mH =

√
2λυ. Interactions of one or two Higgs bosons with two vector bosons (W± or Z)

arise. Self-interactions of three or four Higgs bosons are part of the SM as well.

Yukawa interactions

After the electroweak symmetry breaking, the W±, Z and the Higgs boson acquire
masses, whereas the fermions remain massless. Yukawa interactions generate masses for
fermions. To better understand the interactions, the left-handed fermions in the isospin
doublets, displayed in Eq. 1.11, are separated into the lepton doublets Ψ`L and quark
doublets ΨqL. The right-handed fermions in the isospin singlets, shown in Eq. 1.12, are
likewise divided into leptonic singlets Ψ`R, up-type ΨuR and down-type quark singlets ΨdR.
Since it is again the Higgs, which generates masses for fermions, the Higgs isospin doublet,
written down in Eq. 1.28, is needed. Another Higgs doublet with the conjugated weak
hypercharge, Y = −1 is constructed as

φc = −iσ2φ∗ =
−φ0∗

φ−

 = 1√
2

υ + h(x)
0

 . (1.29)

Both of them are part of the Lagrangian defining the Yukawa interactions

LYukawa = y`ij
(
Ψ̄`iLφΨ

`j
R

)
+ ydij

(
Ψ̄qiLφΨ

dj
R

)
+ yuij

(
Ψ̄qiLφcΨ

uj
R

)
+ h.c. . (1.30)

The indices i and j run above the three generations. The hermitian conjugate is marked
with h.c. 9. The first term generates the masses of the charged leptons. The second and
third terms represent the masses of the down- and up-type quarks. It is important to note
that the Yukawa interaction does not generate neutrino masses. The matrix yij contains
the coupling strengths of the Higgs boson to the fermions. The Yukawa couplings are
proportional to the fermion masses and inversely proportional to the vacuum expectation
value υ, which yields 246GeV. With the help of bi-unitary transformations, the Yukawa
matrix can be diagonalized [24]. Its diagonal matrix elements are related to the fermion
masses via yfii =

√
2mf
υ

.

1.1.2 Flavours and vector bosons

The study of the properties of quarks and leptons is grouped under the term “flavour
physics”. Especially interesting for this thesis are their interactions with a W± boson,

9. The hermitian conjugate of a matrix M is marked as M† = (M∗)> = (M>)∗, meaning complex
conjugation and transposing the matrix. An important property is (M†)† = M .
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which are called charged current, and the neutral current interactions, which are mediated
by a Z boson.

The γ and Z boson couplings to fermions are independent of the particle masses
and generations. They depend exclusively on Q and I3, which are the same between
particles from the same type (ν`, `, u, d). While the charged current interactions with
quarks are more complicated, the couplings of the W± bosons to the leptons are flavour
universal, too. This behaviour is called Lepton Universality (LU) and has been tested
experimentally [25–27].

The complication of the charged current couplings is that they couple to the quark
weak eigenstates, while the quarks themselves propagate in mass eigenstates. The CKM
matrix describes the transformation between the two eigenstates, as described by Eq. 1.13.
By convention, the down-type quarks are rotated from their mass eigenstates to the weak
eigenstates, while the up-type quarks stay the same. Hence, the CKM matrix modifies
the coupling strength of the quarks to the W± boson.

In the standard parametrisation, the CKM matrix is parametrised by three angles
and one complex phase, which is the origin of CP violation in weak decays. Another
parametrisation is the Wolfenstein parameterisation [28, 29], where the CKM matrix is
expanded in terms of λ up to order four. The expansion yields the CKM matrix

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



=


1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (1.31)

The CKM matrix has a hierarchical structure in the SM. Coupling strengths between
quarks of the same generation are close to one, while matrix elements describing trans-
itions between generations are small. The flavour transitions between the first two gener-
ations are proportional to λ, between the last two to λ2 and the one between the first and
third generation to λ3. Decays suppressed by CKM matrix elements are called Cabibbo-
suppressed (CS).

The weak charged current is the only interaction in the SM, allowing quark flavour
transitions. As visible in Eq. 1.31, those flavour changes are always between an up-
and a down-type quark. Therefore, transitions between down-type quarks as b → s are
forbidden at tree-level.

The values of the CKM matrix elements are not predicted by the SM. The measured
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values of the CKM parameters are taken from Ref. [21] and equal

λ = 0.22500± 0.00067, A = 0.826+0.018
−0.015,

ρ̄ = 0.159± 0.010, η̄ = 0.348± 0.010. (1.32)

The unitarity condition of the CKMmatrix implies∑i VijV
∗
ik = δjk and

∑
j VijV

∗
kj = δik.

The six vanishing relations can be drawn as triangles in the complex plane. The area of the
triangles always yields half of the Jarlskog invariant J [30], a measure of CP violation. J is
determined to be (3.08+0.15

−0.13)×10−5. This small CP violating effect due to the CKM matrix
is quoted as insufficient to explain the baryon asymmetry observed in our universe [31].

1.1.3 Shortcomings of the Standard Model

Although the SM is able to predict some phenomena extremely precisely, for example,
the anomalous magnetic moment of the muon to the order 10−10 [32], some issues remain.
Those issues can be separated into experimental problems and conceptual shortcomings.
Some of them are listed in the following.
∗ During the Big Bang, equal amounts of matter and antimatter were created.

Nowadays, predominantly matter composes the universe. Consequently, a pro-
cess preferring the creation of matter is needed to establish this matter-antimatter
asymmetry. CP violation introduced by the CKMmatrix is not sufficient to explain
the size of the observed asymmetry [31].
∗ Astrophysical and cosmological observables, such as fluctuations in the Cosmic-

Microwave Background, the rotation curves of spiral galaxies and gravitational
lensing, suggest the matter-energy content of our universe to be composed only
of about 5% by baryonic matter [33]. 26% are attributed to Dark Matter (DM),
which is barely interacting and as a result difficult to detect. The majority of 69%
of the energy content is provided by the Dark Energy (DE), which accelerates the
universe’s expansion. Even though DM and DE are part of the most common
cosmological model, ΛCDM, the SM of particle physics does neither provide a DM
candidate nor describe DE.
∗ The Homestake Chlorine Experiment detected, as one of the first experiments,

fewer electronic neutrinos emitted by the sun than expected by the stellar the-
ory [34]. Moreover, the ratio of muonic to electronic neutrinos originating from
the atmosphere was measured to be inferior to the expectation [35]. The miss-
ing neutrinos are explained by neutrino flavour oscillations of νe ↔ ντ [36] and
νµ ↔ ντ [37]. These neutrino flavour oscillations are not part of the SM.
∗ The SM does not include gravity, which is expressed in the most general way as
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General Relativity (GR) by Albert Einstein. The recent discovery of gravitational
waves, released by a binary black hole merger, confirms the prediction of Einstein’s
theory [38]. This discovery enforces the need for a Grand Unified Theory, which
combines the SM and GR and is validated by experiments.
∗ Conceptual problems of the SM are the open questions: Why does the SM include

precisely three generations of leptons and quarks? Why are the fermion masses
and the CKM elements arranged in such a hierarchical order? Why interactions
between leptons and quarks at the same time are not part of the SM? Why are
19 parameters, including the fermion masses, the coupling strengths and the CKM
parameters, not predicted by the SM? Why is the mass range of the particles so
dispersed? Why is the electric charge quantized?

All of these shortcomings of the SM suggest the existence of NP. In modern particle phys-
ics, two distinct approaches are, in principle, applied to search for signs of NP. The first
approach involves the production of NP particles on-shell and measuring their properties.
These direct searches are typically performed in collider experiments with high centre-of-
mass energies. An example of this approach is the famous discovery of the Higgs-boson by
the ATLAS and CMS experiment at the Large Hadron Collider (LHC) [18,19]. However,
this approach is limited to NP particle masses equal to or below the centre-of-mass energy
of the collision

√
s.

The second approach, which is commonly used in flavour physics, is known as the
indirect searches. The idea behind this second approach is to measure the amplitudes of
well-known SM processes. Virtual NP particles could contribute and cause deviations in
the observables. Due to the virtual nature of quantum loops, NP particles with masses
in the TeV range can be implied by those measurements. 10

Thanks to the indirect searches, several important discoveries have been made. One
example is the prediction of the existence of a third quark family through the CP violation
measurement in kaon decays even before the discovery of the charm quark [39,41]. Another
example is the observation of B0- B0 mixing [42]. Through the virtual presence of the t
quark in the mixing diagram, a larger t quark mass than expected could be derived [43,44].

1.2 Rare b-hadron decays

Searching for NP in b → s`+`− transitions 11 is promising because those transitions
are forbidden in the SM at tree-level and occur, thus, via penguin and box diagrams. Ad-
ditional to the loop suppression, these transitions are Cabibbo-suppressed by the |V ∗qsVqb|

10. Measurements of CP violation in kaon mixing can even access NP scales up to 4.7×105 TeV. [?,40]
11. Particle conjugation is implied throughout this thesis, when not stated otherwise.
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CKM matrix elements, where q stands for an up-type quark. The contribution of the
virtual t quark dominates in the box diagram and the electroweak penguin diagram via
virtual Z-bosons, while the electroweak penguin diagram via a virtual photon can have
large contributions of the c quark [45]. Due to these suppressions, the branching fractions
of those decays are of the order O(10−6) or below. This is the reason why they are called
rare decays. The three leading-order Feynman diagrams are shown in figure 1.2.

In several NP models, supplementary interactions of a beauty quark to a strange quark
and a dilepton pair are allowed. Those transitions would contribute to the branching ratios
and angular observables. Exemplary NP Feynman diagrams are shown in figure 1.3. The
left two diagrams are tree-level interactions with a Z ′ boson and a leptoquark [46,47]. On
the right side a box diagram with a charged Higgs-bosons pair is shown, as predicted for
example in the two Higgs doublet model (2HDM) [48], and in supersymmetric (SUSY)
models [49].

b s

Z ′ `+

`−

b `−

LQ `+

s

b s

`+

`−

u, c, t

ν`

H− H+

Figure 1.3 – Three Feynman diagrams of b→ s`+`− transitions with possible NP
particles are sketched, namely interactions of a Z ′ boson (left), a scalar
leptoquark with charge q = 2/3 (center) and two oppositely charged Higgs
bosons (right).

Due to the low branching ratio of b→ s`+`− decays, even small NP contributions could
cause large deviations. In addition, those rare decays are accessible with the data collected
by collider experiments. Therefore, rare decays are especially suited for NP searches and
their study is essential in order to shape the landscape of possible NP scenarios.

1.2.1 Effective Hamiltonian

Theoretical predictions of observables in rare decays are challenging to compute, be-
cause of the presence of three largely separated energy scales. The first one is defined by
the flavour-changing transition via the weak gauge boson to be at mW ∼ 80GeV. The
second energy scale is the b-quark mass, which is set by the b-hadron decay. It is situated
at around 4GeV. The energy scale of strong interactions within the hadrons is the ΛQCD

scale. Those largely separated energy scales make the computation of the rare decay
amplitudes difficult and non-reliable due to the involvement of large logarithms [50].
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Effective Field Theories (EFT) allow a model-independent treatment to calculate those
amplitudes. Within their validity range, EFTs are more powerful and straightforward than
the full theory. An EFT is a QFT, which is only valid in a smaller energy range. The main
idea is to separate long- and short-distance physics with respect to a factorisation scale
µ, where the process takes place. The high-energy part is integrated out in the Wilson
Coefficients (WCs) C(′)

i [50]. In the presence of NP at high energies, the WCs would be
shifted. The low-energy part is described by the operatorsO(′)

i , which contain the hadronic
part of the interaction. Separating the two scales is referred to as the factorisation of the
high- and low-energy effects. The effective theory below the electroweak scale is called
the Weak Effective Theory (WET).

For the tree-level process of a W± boson exchange in the s-channel, the WC of the
four-point interaction is the Fermi-coupling GF multiplied by the CKM matrix elements.
Gluon exchanges between the in- and out-coming quarks introduce corrections, which
are described in WET by the operators Oq1 and Oq2 with q ∈ {u, c}. Those are called
current-current operators, and expressed as

Oq1 = (s̄γµT aPLq)(q̄γµT aPLb), (1.33)
Oq2 = (s̄γµPLq)(q̄γµPLb). (1.34)

Semileptonic electroweak penguin decays are described by the operators O9 and O10. The
operator for the radiative electroweak penguin decays is denoted by O7. According to
Ref. [5], those operators are defined as

O7 = e

16π2mb(s̄σµνPRb)F µν , (1.35)

O9 = e2

16π2 (s̄γµPLb)(¯̀γµ`), (1.36)

O10 = e2

16π2 (s̄γµPLb)(¯̀γµγ5`). (1.37)

The tensor σµν can be expressed as the commutator of the gamma matrices σµν = i
2 [γµ, γν ].

F µν is the electromagnetic field strength tensor

Fµν = ∂νAµ − ∂µAν . (1.38)

All of the above-mentioned operators are depicted in figure 1.4. Using those combined
operators, the effective SM Hamiltonian for b → s`+`− transitions [5, 51–53] is written
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Figure 1.4 – Sketch of the hadronic current-current operators Oc1,2, the semileptonic
electroweak penguin operators O9,10 and the radiative dipole operator O7.

as 12

Heff(b→ s`+`−) = −4GF√
2
VtbV

∗
ts

10∑
i=1
CiOi + h.c. . (1.39)

The decay amplitude of a given process is calculated by

A(B → f) = 〈f |Heff|B〉

= −4GF√
2
VtbV

∗
ts

10∑
i=1
Ci(µ)〈f |Oi(µ)|B〉+ h.c. . (1.40)

The WCs of an EFT are well-known since they can be matched to the full SM Lagrangian
at mW and run down to the factorisation scale. However, the calculation of the hadronic
operators is demanding.

1.2.2 Hadronic contributions

The leptonic term in the decay amplitude, ¯̀γµ(γ5)`, which are part of the operat-
ors O9,10 can be calculated in perturbation theory. The hadronic part of a given decay
amplitude is difficult to calculate because of the non-perturbative nature of QCD at low
energies.

For the matrix elements of currents, the hadronic contribution can be written as a sum
of independent Lorentz structures multiplied by form factors. These form factors need to
be predicted and depend on kinematic variables, especially the squared di-lepton invariant
mass q2. Different methods are employed to calculate the form factors. The most precise
one is the Lattice QCD prediction. It does not depend on perturbative expansions but
calculates QCD on the lattice. The shape of the form factors in terms of q2 are then
extrapolated from those points. This method is limited by the computational power and

12. In this effective Hamiltonian, corrections proportional to VubV
∗
us are neglected, since

|VubV ∗us/VtbV ∗ts| < 0.2 [52].
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is usually only available in the high-q2 region. Other methods can be applied in specific
q2 regions. Those are for example the heavy quark expansion, quark models or QCD and
light-cone sum rules. Form factors can be extracted from experimental data, too.

b s
c̄ c̄

`+

`−

γ, Z

Figure 1.5 – Charm loops occuring at the b→ s vertex are from a theoretical point of
view problematic for c quark energies below the b mass.

At the b → s vertex, cc loops can occur, as depicted in figure 1.5. For charm quarks
with energies above the b mass, the effect is local. The hadronic Oc1,2 can, therefore, be
factorized and expressed in perturbation theory by form factors times a coefficient. 13 In
the case of charm quark energies below the b mass, the effect is non-local. What happens
is that the charm quarks form hadrons already after travelling finite distances. These
hadronic non-local effects cannot be computed from the first principles and are subject of
debates in the theory community.

The problem with the charm loops is that they can mimic NP contributions, as they
can be interpreted as shifts of the WCs C7 and C9. In Ref. [54], a new parametrisation and
uncertainty estimation of non-local form factors was developed for the B → K(∗)µ+µ−

and B0
s → φµ+µ− decays. Similar to an extrapolation of local form factors between the

Lattice QCD predictions, available at high q2, and the light-cone sum rule predictions,
calculated at low q2, the non-local form factors are evaluated in two kinematic regimes.
The local operator product expansion (OPE) is used at |q2| & m2

b and theory points at
q2 < 0 are calculated via the light-cone OPE [55]. The non-local contributions can be con-
strained by fitting experimental BF results at the charmonium resonances and the branch
cut, due to the D(∗)

(s)-meson production. The theoretical uncertainties are constrained by
dispersive bounds, received from the e+e− → b̄s cross-section.

The key point is that NP at energy scales of ΛNP � mW can be described by an EFT.
Either NP can modify already existing WCs or add new operators. Indirect searches of
NP measure these WCs. An example of existing operators are the chirality flipped 14

13. However, for the actual value of the b mass, power corrections to factorization, i.e. non-perturbative,
long-distance contributions, might be significant.
14. The chirality flip is expressed mathematically by switching the chiral projection operator PL ↔ PR.
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operators or the (pseudo-)scalar operators

O(′)
S = (s̄PR(L)b)(¯̀̀ ), (1.41)
O(′)
P = (s̄PR(L)b)(¯̀γ5`). (1.42)

The chirality flipped operators are suppressed in the SM by a factor ms
mb

. The above-
mentioned (pseudo-)scalar operators and the O10 are important for the B0

(s) → µ+µ−

decay. The dominant contribution is found numerically to be the O10 operator. The
branching fraction of this decay is very small due to the additional helicity suppression.
In the case of NP, it could be particularly sensitive to NP contributions [56]. In the SM,
the chromomagnetic operator O8 and four-quark operators O(′)

1−6 exist, too. However,
b→ s`+`− transitions are less sensitive to NP contributions to the operators O(′)

1−6
15.

1.2.3 Experimental measurements

As said before, b → s`+`− transitions are a good probe of the SM since NP could
contribute to the loop-mediated SM process, which would change the measurement of
the observables. Several observables exist to test the SM, but they possess different
theoretical “cleanness”. Branching fraction (BF) measurements are, for example, the
less clean observables because the hadronic form factors have large uncertainties. It is
possible to construct observables, which are less affected by the hadronic contributions 16.
Those can be accessed in angular analyses. The cleanest observables are Lepton Flavour
Universality tests. Those are measured as a ratio of the muonic and electronic decay.
The hadronic contributions are the same for both decays and cancel entirely in the SM.
The remaining effect is due to Final State Radiation and is a source of a deviation of at
most 1% [58]. Differences in lepton masses contribute only at the order of 0.1%. The
experimental measurements of the various observables in different decay modes are listed
in this subsection. In this thesis, the theoretical predictions used in the experimental
publications are referred to as “SM predictions” without judging their completeness and
correctness.

Differential branching fraction measurements

A differential branching fraction measurement denotes the measurement of a BF as
a function of another observable. The BF of rare decays is usually measured with re-

15. NP contributions could leak into the semileptonic operators through renormalization group evolu-
tion [57].
16. The cleanness of the angular observables would be decreased in the case power corrections to

factorization are a dominant source of hadronic uncertainties.
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spect to the dilepton invariant mass q2. A sketch of the differential BF, expected in
Λ0
b → Λ(1520)µ+µ− decays, is shown in figure 1.6. Depending on the q2 region, the differ-
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Figure 1.6 – Sketch of the expected spectrum of the differential branching ratio of the
Λ0
b → Λ(∗)µ+µ− decay as a function of the squared dilepton invariant mass.

The left peak represents the photon pole. The peaks of the charmonium
resonance states J/ψ and ψ(2S) are visible, too. Taken from Ref. [59].

ential branching fraction measurement accesses different WCs. At the photon pole, C(′)
7

contributions are measured. Thanks to the abundance of the b→ cc̄s transitions in com-
parison to the b→ s`+`− decays, the decay modes Λ0

b → pK−J/ψ and Λ0
b → pK−ψ(2S)

serve as the control modes of the analysis. The corresponding leading-order diagram is
shown in Fig. 1.7.

b s

d

u

u

d

u u

c

c

g

W−

Λ0
b

p

K−

J/ψ, ψ(2S)

Figure 1.7 – Leading order diagram of the Λ0
b → pK−J/ψ and Λ0

b → pK−ψ(2S) decay.

The differential BF measurements are usually normalised by the J/ψ mode [60]. The
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expression of the Λ0
b → Λ(1520)µ+µ− differential BF is exemplarily written as

q2
max∫

q2
min

dB(Λ0
b → Λ(1520)µ+µ−)

dq2 dq2 (1.43)

= 1
(q2

max − q2
min)
B(Λ0

b → pK−J/ψ)B(J/ψ → µ+µ−)
B(Λ(1520)→ pK−)

NΛ(1520)µ+µ−

NpK−J/ψ

εpK−J/ψ
εΛ(1520)µ+µ−

.

The yields NpK−J/ψ and NΛ(1520)µ+µ− are measured by a fit to the data points. The
efficiencies εΛ(1520)µ+µ− and εpK−J/ψ are calculated with the help of the simulation sample.
Ref. [21] provides the branching fractions of B(J/ψ → µ+µ−) = (5.961 ± 0.033)% and
B(Λ(1520)→ pK−) = (22.5± 0.5)% by considering the isospin symmetry.

The LHCb collaboration measured the differential BFs of the B+ → K(∗)+µ+µ−,
B0 → K(∗)0µ+µ−, B± → π±µ+µ− and Λ0

b → Λ0µ+µ− decays using the Run 1 data-
set [61–65]. Λ0 denotes the ground-state Λ resonance. The differential BF of B0

s → φµ+µ−

decays is determined with the full Run 1 and 2 dataset [66]. Some of those measurements
are shown in figure 1.8. The measurement of the B0 → K∗0µ+µ− decay includes SM pre-
dictions from Lattice QCD (Lattice) and Light-Cone Sum Rules (LCSR). The theoretical
predictions of the Λ0

b → Λ0µ+µ− differential BF are Lattice QCD predictions [68]. The
LHCb collaboration published several differential BF measurements of b → sµ+µ− de-
cays, where the resulting values are situated below the SM prediction. Ref. [66] claims a
deviation of 3.6σ in the 1.1-6.0 GeV2/c4 q2 bin between the measured BF of B0

s → φµ+µ−

decays and the predicted one.
The Belle, BaBar and CMS collaboration measured BFs of the B → K(∗)µ+µ− decay,

too [67,69–72]. Measurement of B → K(∗)µ+µ−, B0
s → φµ+µ− and Λ0

b → Λ0µ+µ− decays
were performed by the CDF collaboration [73]. All of those results are consistent with
the SM prediction but have larger uncertainties than the LHCb measurements. Some are
represented in Fig. 1.8 for illustration.

Thanks to the leptonic final state, the B0
(s) → µ+µ− BF measurement is theoretically

clean. The hadronic part of the decay is encoded in the decay constants fB and fBs , which
are precisely known from Lattice QCD [74]. Due to the additional helicity suppression of
this b → s`+`− decay, the BFs of those decays are predicted to be in the SM [75, 76] of
about

B(B0
s → µ+µ−) = (3.66± 0.14)× 10−9, (1.44)

B(B0 → µ+µ−) = (1.03± 0.05)× 10−10. (1.45)

The pure leptonic final state is experimentally very clean, too. This decay is interesting
since it constrains many NP scenarios, for example, SUSY models [77].
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Figure 1.8 – The LHCb measurements of the differential BFs of the B+ → K+µ+µ−

(top left), B0 → K0
Sµ

+µ− (top right), B0 → K∗0µ+µ− (center left),
B0
s → φµ+µ− (center right) and Λ0

b → Λ0µ+µ− decays (bottom left) are
drawn [61,62,65,66]. As a comparison, the differential BF of the
B0 → K∗0µ+µ− decay, measured by the CMS collaboration, is presented
(bottom right) [67].
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Angular analyses and how they work

The principle of angular analyses is to measure the differential decay width as a func-
tion of the decay angles. The decay angles ~Ω are usually defined in the helicity frame,
which is shown exemplarily for the Λ0

b → Λ(1520)µ+µ− decay in figure 1.9.

Λ0
b

 rest frameΛ0
b

Λ*
 rest frameΛ*

p

K−

 rest frameℓ+ℓ−

ℓ+

ℓ−
ϕθℓ θp

Figure 1.9 – The definition of the Λ0
b → pK−µ+µ− decay angles is sketched in the

helicity frame.

The differential decay width is defined as

d4Γ
dq2d~Ω

= k
∑
i

Li(q2, C, ƒƒ)× fi(~Ω). (1.46)

k represents a factor guaranteeing the normalisation. The polynomials fi depend on the
decay topology. The angular coefficients Li encode the physics since they depend on the
WCs. However, form factor predictions are needed to compute the angular coefficients, if
assuming factorization.

The angular coefficients describing the Λ0
b and Λ0

b decay are represented as Li and L̄i.
Using them, the CP -symmetric and asymmetric angular observables

Si = Li + L̄i

d(Γ + Γ̄)/dq2
, (1.47)

Ai = Li − L̄i
d(Γ + Γ̄)/dq2

. (1.48)

are constructed. Theoretically optimised observables are built by combining several an-
gular observables in order to minimise the effect of hadronic uncertainties. Examples of
such optimised observables are the leptonic forward-backwards asymmetry A`FB and P ′5.
Their definitions depend on the studied process. In Ref. [78,79], P ′5 is defined as

P ′5 = S5

2
√
FL(1− FL)

. (1.49)
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FL represents the fraction of longitudinal polarised K(∗) hadrons.

The LHCb collaboration measured the angular observable P ′5 in B0 → K∗0µ+µ− and
B+ → K∗+(→ K0

Sπ
+)µ+µ− decays, which are performed with the Run 1 and 2016 dataset

and the full Run 1 and 2 dataset [78, 79]. Local tensions with respect to the SM are
detected in the P ′5 observable of about 2.9σ and 3.0σ in the 6.0 < q2 < 8.0 GeV2/c4 bin.
The hadronic longitudinal polarisation of B0

s → φ(→ K+K−)µ+µ− decays is determined
using the Run 1 and 2016-18 dataset [80]. The distributions of the angular observables are
shown in Fig. 1.10. The angular observables measured in Ref. [78,79] reach independently
a deviation of 3.3σ and 3.1σ in the real part of the WC C9. All of them show the same
pattern of a negative shift in the effective coupling strength.

Angular observables of electroweak penguin decays are analyzed by the Belle, CMS
and ATLAS experiment, too [81–83]. Compared to the LHCb results, those measurements
have larger uncertainties. The Belle collaboration performed a lepton-flavour-dependent
angular analysis in the B → K`+`− decays. The strongest local tension between the
measured P ′5 value and the SM prediction is determined to be in the q2 ∈ [4, 8]GeV2/c4

bin. The muon mode shows local tensions of about 2.6σ, while a deviation of 1.3σ is
measured in the electron mode. The overall combined value deviates by 2.5σ from the
SM prediction [82]. The ATLAS collaboration reported in the q2 ∈ [4, 6]GeV2/c4 bin a
local tension of 2.7σ in the B0 → K∗0µ+µ− decay using both angular observables, P ′5 and
P ′4. In turn, the CMS collaboration does not measure tensions of the measured value of
the P ′5 observable in B0 → K∗0µ+µ− decays and the SM prediction.

The C(′)
7 photon pole can be accessed by measuring the angular observables in the very

low q2 bin (q2 → 0). The most precise measurements of the virtual photon polarisation
up-to-date were performed by the LHCb experiment using B0 → K∗0e+e− decays with the
full Run 1 and 2 datasets in the q2 ∈ [0.00008, 0.257]GeV2/c4 bin [84] and was found to be
compatible with the SM prediction. A ratio of right- over left-handed photon polarisation
amplitudes was performed in B0

s → φγ decays with the 2011 - 2016 dataset collected by
the LHCb detector [85]. Angular analyses to access the virtual photon polarisation with
measurements on the photon pole are performed for example in Λ0

b → Λ0γ decays using
the Run 2 dataset [86] and B± → K±π∓π±γ decays using the Run 2 and Run 1 dataset
only [87]. The photon polarisation can also be accessed by measurements of CP -induced
asymmetries, which have been measured for example by BaBar, Belle and LHCb [88–90].
All of these measurements constrain the C ′7 enhancement, which is predicted in some NP
models.
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Figure 1.10 – LHCb measurements of the angular observables in B0 → K∗0µ+µ− (top
left), B0
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Λ0
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(center right) [81]. An angular analysis of the Belle collaboration using
several B → Kµ+µ− decay modes is presented (bottom left) [82].
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Lepton Flavour Universality tests

In the B meson sector, a test of Lepton Flavour Universality (LFU) can be constructed
to be the ratio of the b → sµ+µ− over the b → se+e− transition of the same hadronic
transition. Because of the cancellation of hadronic uncertainties in the SM ratio, LFU
tests are the theoretically cleanest observables in the SM. Furthermore, the ratio is ex-
perimentally advantageous since a large number of systematic uncertainties cancel. The
LFU ratios of a b-hadron Hb decaying into a strange hadron Hs and two leptons can be
written in bins of q2 ∈ [q2

min, q
2
max] as

RHs =

∫ q2
max

q2
min

dB(Hb→Hsµ+µ−)
dq2 dq2

∫ q2
max

q2
min

dB(Hb→Hse+e−)
dq2 dq2

. (1.50)

Due to the lepton universal coupling of the weak bosons, the SM prediction of the
R-ratios are close to unity with theoretical uncertainties at per cent level [91,92]. At very
low q2 values, close to the muon mass threshold q2 = 4m2

µ ≈ 0.045 GeV2/c4, the kinematic
region of the muon is reduced, and the LFU ratio gets slightly smaller than one [92]. This
effect is negligible by considering the q2 region above 0.1 GeV2/c4.

The LHCb collaboration tested the LFU ratios of the B0 → K0
S`

+`−, B+ → K∗+(→
K0
Sπ

+)`+`− decays with the full Run 1 and 2 dataset. Those have been found to be smaller
than unity and are drawn in Fig. 1.11 [93]. However, the first decay includes the critical
q2 region below 0.1 GeV2/c4. The recent simultaneous fit of RK+ and RK∗0 has been
published with the full Run 1 and 2 dataset [58,94]. The measurements in the two q2 bins
agree with unity within one standard deviation and supersede the previous individual
determinations of RK+ and RK∗0 [97,98]. The LHCb experiment published the LFU ratio
of the Λ0

b → pK−`+`− decay, measured with Run 1 and 2016 data, which was found to be
compatible with the SM within one standard deviation [95]. BaBar and Belle performed
LFU tests in B → K(∗)`+`− decays and are compatible with the SM, as well [69–71,96].

Even though the LFU ratios are mostly compatible with the SM, a tendency to lower
R values is visible. Therefore, it is important to check their behaviour with a higher data
sample size.

1.2.4 Global EFT fits

The behaviour of angular observables, LFU tests and BFs can be interpreted by global
fits, with which the consistency of the results, in terms of WCs for example, is checked.
The global fit of the b→ s`+`− BFs and angular observables is shown in figure 1.12.
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Figure 1.12 – The combination of angular observables and differential branching
fractions of b→ s`+`− decays are drawn on the left (from Ref. [99]), using
the Lattice QCD form factor for B → K`+`− decays [100] and the CMS
measurement of B0

s → µ+µ−. Baryonic decays are not yet part of this
combination. The Wilson coefficients CNPi and CBSMi describe both the
New Physics contribution. On the right, four Global fits (from Ref. [101])
based on different form factor predictions, different b→ s`+`− observables,
different assumptions about the non-local matrix elements and different
statistical frameworks are presented [102–104] (and update of Ref. [105]).
All four theory groups treat the hadronic uncertainties model dependently.
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Drawn are the Wilson coefficients describing NP, which are defined as

CNPi = Ci − CSMi . (1.51)

The notation of CNPi and CBSMi is equivalent.
Ref. [99] studied the deviations of the BF measurements from the different experi-

ments. The authors believe in having a better handle on the charm loops by using a
new parametrisation of the non-local form factors. Using their parametrisation, a ten-
sion of 5.7σ is observed with the combined BF measurements of the B → Kµ+µ− and
B0
s → µ+µ− decay mode with respect to the SM. Those measurements are combined

to constrain simultaneously C9 and C10. Combining the BF measurements and angular
analyses of the different experiments, a tension of the B → K∗µ+µ− and B0

s → φµ+µ− of
2.7σ and 2.6σ respectively is established. The best fit to the measurements is achieved
by a shift in the WCs with respect to the SM WCs of

(Re CNP9 ,Re CNP10 ) ' (−1.0,+0.4). (1.52)

Four independent Global fits, with separate statistical frameworks, are performed in
Ref. [102–104]. The selection of the experimental results of the angular analyses, BF
and LFU measurements differ between the theory groups. In addition, the theoretical
form factors and the assumptions about non-local matrix elements differ. Using model-
dependent treatment of the hadronic uncertainties, a consistent deviation in the WCs C9µ

and C10,µ is observed in Fig. 1.12. In Ref. [104], the impact of a data-driven treatment of
the hadronic uncertainties is studied. If strong, q2 independent contributions are neglected
in the model-dependent approach, the hadronic parameter could mimic NP effects in the
C9 WC. On the contrary, the data-driven approach could absorb potential NP effects.

The real part of the WC ratio C ′7/C7 is evaluated by a global fit in C7 and C ′7. The
combination of the measurements from BaBar, Belle and LHCb in different decay channels
is consistent with the SM prediction, as presented in figure 1.12.

1.3 Λ0
b → pK−`+`− decays

As seen in the previous section, the B anomalies in BFs and angular observables sug-
gest a deviation of the WCs from the SM values. For validating or refuting the measured
deviations, it is important to perform measurements in different b → s`+`− decay chan-
nels. In this work, the lightest b-baryon, the Λ0

b , is studied. It decays via an electroweak
penguin loop or box diagram to an excited Λ baryon, denoted as Λ∗, and a muon pair,
as depicted in the dominant diagrams in Fig. 1.13. The Λ∗ baryon decays via the strong
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Figure 1.13 – Dominant diagrams of the Λ0
b → Λ(→ pK−)`+`− decay.

interaction to a proton and a kaon. The ground-state Λ resonance, denoted as Λ0, is
forbidden to decay to the pK− final state due to energy conservation.

1.3.1 Motivation

Up-to-date most of the measurements of b → s`+`− transitions are performed in b-
meson decays. b-baryons carry spin, contrary to the B0 and B+ mesons, and give, thus,
access to complementary information. Additionally, b-baryons possess a different hadronic
environment than b-mesons. All in all, it is urgent to exploit the potential of b-baryon
decay channels. This is the reason why for the first time an angular analysis of Λ0

b →
pK−`+`− decays is attempted. Another reason is the availability of theoretical predictions
for the differential decay width and the form factors for specific Λ∗ resonances. Therefore,
a measurement of the angular observables could be compared to those predictions.

1.3.2 Experimental state of the art

An LFU test has already been performed in Λ0
b → pK−`+`− decays using data collected

by the LHCb experiment during Run 1 and 2016 [95]. The q2 bin in-between 0.1 and
6.0 GeV2/c4 has been analyzed. RpK has been found to be compatible with the SM, as
shown in fig 1.11. The mpK− spectrum of the muon mode was measured to be as shown
in Fig. 1.14 [106]. The muon mode was chosen, because of the larger yields compared to
the electron mode. A peak around the Λ(1520) resonance mass is distinguishable. The
yields have been extrapolated in Ref. [107] to be within 0.1 < q2 < 3.0 GeV2/c4 of about
50 events using the total Run 1 and 2 datasets. Therefore, a limited data sample size
is available. A detailed amplitude analysis over the full pK− mass spectrum would be
extremely difficult to realise with the current precision.

In 2015, LHCb published an angular analysis of Λ0
b → pK−J/ψ(→ µ+µ−) decays. This

measurement uses the full Run 1 data sample, it amounts to an integrated luminosity of
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Figure 1.14 – The Λ(1520) resonance is visible “by eye” in the background subtracted
pK− mass spectrum measured by the LFU analysis in Λ0

b → pK−µ+µ−

decays [106].

3 fb−1 collected in pp collisions at 7 and 8TeV center-of-mass energies. Given the high
yields of the Λ0

b → pK−J/ψ(→ µ+µ−) decay mode, it is used as the control mode of the
studied decay [4]. The angular fit of the pK− mass spectrum is shown in Fig. 1.15. A lot of
resonances with different quantum numbers are present. With the expected yields in the
rare mode, fitting the full pK− mass spectrum would be very challenging. Therefore, the
focus is set on the narrow Λ(1520) resonance, which dominates the mpK− spectrum. The
Λ(1405) and Λ(1600) resonances are underlying the Λ(1520) peak. A small contribution
from the Λ(1800) is present, too. All three of them are spin-1/2 resonances, as listed in
table 1.1.

A priori, there is no evidence that the spectrum looks the same in the rare mode as in
the J/ψ resonant mode. However, the mpK− shape in Fig. 1.14 and 1.15 show a similar
structure “by eye”. Unfortunately, no better comparison can be provided, since no full
angular analysis has been performed up-to-date due to the small sample size.

In the amplitude analysis of Λ0
b → pK−J/ψ(→ µ+µ−) decays, a pentaquark state was

discovered [4]. This pentaquark state is visible in Fig. 1.16. It is expected to be reduced
by the tight cut on mpK around the Λ(1520) resonance.

The LHCb collaboration measured the polarisation of the Λ0
b baryon with the data

collected during Run 1 and 2015-16 in Λ0
b → Λ0J/ψ decays, produced in pp collisions [108].

The Λ0
b production polarisation was found to be consistent with zero. In this thesis, the

polarisation will always be taken as null.
A BF and angular analysis of Λ0

b → Λ0µ+µ− decays have been published with the
Run 1 and Run 1 plus 2015-16 dataset collected by the LHCb experiment [65, 109]. The
ground-state Λ resonance is noted by Λ0 to distinguish it from the excited Λ∗ resonances
in the pK− mass spectrum. Since the Λ0 resonance decays via the weak interaction to
pπ−, it is long-lived, and its decay vertex is usually situated outside of the VELO detector.
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Ref. [4].
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Resonance JP Overall status NK̄

Λ(1380) 1/2− ** X
Λ(1405) 1/2− **** X
Λ(1520) 3/2− **** X
Λ(1600) 1/2+ **** X
Λ(1670) 1/2− **** X
Λ(1690) 3/2− **** X
Λ(1710) 1/2+ * X
Λ(1800) 1/2− *** X
Λ(1810) 1/2+ *** X
Λ(1820) 5/2+ **** X
Λ(1830) 5/2− **** X
Λ(1890) 3/2+ **** X
Λ(2000) 1/2− * X
Λ(2050) 3/2− * X
Λ(2070) 3/2+ * X
Λ(2080) 5/2− * X
Λ(2085) 7/2+ ** X
Λ(2100) 7/2− **** X
Λ(2110) 5/2+ *** X
Λ(2325) 3/2− * X
Λ(2350) 9/2+ *** X
Λ(2585) ? * X

Table 1.1 – Spin, parity and the overall status of the Λ∗ resonances are listed. The
status goes from poorly known (*) to established resonances (****). The
last column indicates if the decay to NK̄ ∈ {pK−, nK0} have already been
detected. Taken from Ref. [21].
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In addition to the different decay topologies, the theoretical predictions of the BF and
angular distribution differ due to the different masses and quantum numbers.

In parallel to the angular analysis, treated in this thesis, a branching fraction meas-
urement of Λ0

b → Λ(1520)µ+µ− decays was prepared [60] with the full LHCb dataset from
Run 1 and 2. A common strategy was adopted, in order to align the q2 definitions, the
selection and the corrections. The reason is the desired comparability of the differential
BF measurement and the angular observables.

q2 interval [ GeV2/c4] NΛ(1520)µ+µ−
dB(Λ0

b→Λ(1520)µ+µ−)
dq2 [10−8 GeV−2c4]

0.1− 3.0 96± 18 1.89± 0.35± 0.19± 0.36
3.0− 6.0 138± 18 2.42± 0.32± 0.17± 0.45
6.0− 8.0 65± 14 1.58± 0.36± 0.16± 0.30

11.0− 12.5 59± 14 2.07± 0.47± 0.26± 0.39
15.0− 17.0 12± 5 0.57± 0.24± 0.13± 0.11
1.1− 6.0 175± 21 1.95± 0.23± 0.16± 0.37

Table 1.2 – The measured differential branching fractions and yields of
Λ0
b → Λ(1520)µ+µ− decays are listed per q2 bin (from Ref. [60]). The

uncertainties are split into the statistical (first), systematic uncertainty
(second) and the uncertainties due to the knowledge of the Λ0

b → pK−J/ψ
and J/ψ → µ+µ− branching fractions (third uncertainty).

The differential BF values and the measured yields are collected in Tab. 1.2. The
presence of only 12 ± 5 Λ0

b → Λ(1520)µ+µ− decays in the high q2 bin is challenging for
performing an angular analysis. A comparison of the measured differential BFs and the
SM predictions are presented in Fig. 1.17. The SM predictions differ from each other, such
that no conclusion about the agreement with the measured values can be drawn. In the
high-q2 bin, the predictions are less model-dependent and consistency with the measured
differential BF values is found.

As it will be shown in the next section, the current SM predictions of the angular
observables are more coherent with each other.

1.3.3 Differential decay width of Λ0
b → Λ(1520)`+`− decays

To perform an angular analysis in Λ0
b → Λ(1520)µ+µ− decays, the decay angles need to

be defined first. The decay angles are defined in the helicity basis, following the definition
in Ref. [65, 109, 111]. A sketch of the angle definition is shown in Fig. 1.9 and their
calculation is described in appendix I.
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Figure 1.17 – The differential branching fraction of the Λ0
b → Λ(1520)µ+µ− decays in

bins of q2 [60], drawn in the full range in the linear (top) and logarithmic
scale (bottom left) and a zoom into the high-q2 bin (bottom right). The
error bars represent the statistical (black), systematic (gray) and the
B(Λ0

b → pK−J/ψ) uncertainties (green). The boxes indicate the SM
predictions using different form factors. Form factors from the
non-relativistic Quark Model (NRQM) [6] are presented in red, the
light-front Quark Model (LFQM) form factors [110] are used in the orange
prediction, and the green boxes indicate the prediction using the joint
Lattice QCD and dispersive bound form factor prediction [8]. Because of
the availability of the Lattice QCD prediction [7] only in a limited range,
it is represented as a continuous blue band.
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As it will be discussed in subsection 1.3.2, the pK− mass spectrum is composed of
a multitude of Λ∗ resonances with different spin and parity properties. The differential
decay width and the angular observables depend on the spin of the Λ∗ resonances.

The studied Λ(1520) resonance is a JP = 3/2− state. The full differential decay width
of the Λ0

b baryon decaying to a Λ∗ resonance with spin J = 3
2 has been calculated in Ref. [5]

by neglecting the lepton masses. It can be expressed by the decay angles (θ`, θp, φ) and
the di-lepton invariant mass q2 as

8π
3

d4Γ
dq2d cos θ`d cos θpdφ

= cos2 θp
(
L1c cos θ` + L1cc cos2 θ` + L1ss sin2 θ`

)
+ sin2 θp

(
L2c cos θ` + L2cc cos2 θ` + L2ss sin2 θ`

)
+ sin2 θp

(
L3ss sin2 θ` cos2 φ+ L4ss sin2 θ` sinφ cosφ

)
+ sin θp cos θp cosφ(L5s sin θ` + L5sc sin θ` cos θ`)
+ sin θp cos θp sinφ(L6s sin θ` + L6sc sin θ` cos θ`). (1.53)

The differential decay width including the lepton masses has been calculated in Ref. [112]
and agrees with the above-presented expression in the limit m` → 0.

For a Λ∗ resonance with the same spin, but opposite parity, equation 1.53 stays the
same. However, the vector and axial-vector helicity amplitudes are swapped, which res-
ults in different hadronic transversity amplitudes Aj, Bj. Those hadronic transversity
amplitudes are absorbed in the angular coefficients Li and defined in Ref. [5].

The CP-symmetries and asymmetries are defined as shown in Eq. 1.47 and 1.48. The
differential decay width

dΓ
dq2 = 1

3(L1cc + 2L1ss + 2L2cc + 4L2ss + 2L3ss) (1.54)

is used as normalisation of the angular observables. The fraction of longitudinal polarised
Λ∗ baryons is defined as

FL = 1− 2 L1cc + 2L2cc

L1cc + 2L1ss + 2L2cc + 4L2ss + 2L3ss
. (1.55)

An optimised angular observable represents the leptonic forward-backwards asymmetry

A`FB = 3
2

L1c + 2L2c

L1cc + 2L1ss + 2L2cc + 4L2ss + 2L3ss
, (1.56)

which is especially sensitive to NP.
Ref. [107] presents a simplification of the angular distribution using the heavy quark
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limit mb →∞, which is expressed as

8π
3

d4(Γ + Γ̄)
dq2d cos θ`d cos θpdφ

' 1
4
(
1 + 3 cos2 θp

)
(L1c cos θ` + L1cc cos2 θ` + L1ss sin θ2

` ). (1.57)

Several form factor predictions are available to predict the hadronic contributions 17.
These are hidden inside the angular coefficients Li. Some form factors are predicted by a
non-relativistic Quark Model (QM) and numerically extracted from the full quark model
wave function [6].

The first principles form factor prediction comes from Lattice QCD because the QCD
is calculated on the lattice [7,113]. An important cross-check of the Lattice QCD results
is the form factor prediction of the Heavy Quark Expansion [114]. In the expansion terms
of next-to-leading-orderO(αs) corrections and next-to-leading-powerO(1/mb) corrections
has been included. Unknown parameters are fixed through a fit to the Lattice QCD form
factors. This calculation could detect a wrong sign in the tensor and pseudo-tensor form
factors in the Lattice QCD publication and provides, thus, an important crosscheck.

Unfortunately, the Lattice QCD form factor prediction is only available in a high q2

region, which is defined in the interval of [16.0, 16.8] GeV2/c4. With the available data
sample size, this window is too tight for an angular analysis. Using the Lattice QCD
predictions with SCET, endpoint [115] and dispersive bound relations, the form factor
predictions of Ref. [8] are achieved. The advantage of those is the availability of predictions
in the low-q2 region. Nevertheless, it would be great to have Light-Cone Sum Rule (LCSR)
predictions in the low-q2 region in the future.

The open source package flavio is useful to calculate combinations of several observ-
ables and global fits. I implemented the differential decay width, expressed in Eq. 1.53,
in flavio. QM and Lattice QCD form factor predictions from Ref. [6,113] are available.
For the QM form factor predictions, uncertainties of 10% are applied on the form factors
f0,⊥,t and 30% on fg, following the proposition in Ref. [5]. The angular observables A`FB,
FL and the CP -symmetric and asymmetric observables can be accessed. The distributions
of the differential BF, A`FB and S1cc are shown in Fig. 1.18. The SM and an NP model
are drawn. The NP model is defined by CNP

9 = −1.11, which was supported by the data
in the past. A separation between the SM and NP distributions with the QM form factor
prediction is visible. While the Lattice QCD prediction of the BF and the S1cc observable
agrees with the SM QM prediction within two Standard deviations, the predictions of the
A`FB observable deviate by about three Standard deviations.

17. However, there is no theoretical basis for the factorization in the Λ0
b decay, so that form factors are

not guaranteed to give a good description of the hadronic dynamics.
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Figure 1.18 – Differential BF, A`FB and S1cc predictions in the full q2 region, using the
non-relativistic Quark Model form factors [6] for the SM case and an NP
case with CNP

9 = −1.11, are compared with the distributions based on the
Lattice QCD form factor predictions [7, 113], which are drawn only in the
q2 range of their validity.
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Figure 1.19 – The angular observables A`FB and S1cc are drawn in bins of q2, using the
form factor predictions from Lattice QCD, the joint Lattice and dispersive
bound, plus the Quark Model (QM) prediction. The q2 bin between 16
and 16.8GeV2/c4 is added, because of the validity of the Lattice QCD form
factors in this range only. For comparison, the Lattice QCD form factor
predictions have been extrapolated to the q2 ∈ [15, 16.8]GeV2/c4 bin.

The angular observables are aimed to be measured in bins of q2. The measurement
is foreseen in the q2 bins [0.1, 3.0], [3.0, 6.0], [6.0, 8.0], [11.0, 12.5], [15.0, 17.0] GeV2/c4. The
SM predictions of the QM and the joint Lattice QCD and dispersive bound prediction
are depicted for these bins in Fig. 1.19. They are compatible with each other within one
Standard deviation.

The Lattice QCD prediction is only available for the q2 ∈ [16, 16.8]GeV2/c4 bin. There-
fore, the Lattice QCD and QM predictions in this bin has been added. In this bin, the
two predictions are calculated to differ by about 3 Standard deviations. An extrapolation
of the Lattice QCD prediction to the full high q2 bin has been drawn, too. This one is
compatible with the QM and joint Lattice QCD and dispersive bound prediction within
one Standard deviation. Therefore, the theoretical predictions are compatible with each
other within one Standard deviation in all of the q2 bins, which are aimed to be measured.
This underlines the better consistency of the angular observable predictions than the BF
predictions.

To conclude, deviations between the measurements and SM predictions are observed in
the BFs and angular observables of b→ sµ+µ− decays. In this thesis, an angular analysis
is attempted to be measured in a new decay channel, namely the Λ0

b → Λ(1520)µ+µ−

decays. In this chapter, the signal process was presented, including all the particles
and interactions involved. The theoretical predictions of the angular observables and the
differential BF are shown. Theoretically difficult to predict are the non-perturbative QCD
contributions, which are encoded in the form factors. In spite of the difficulty, several
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form factor predictions exist for the signal decay. Using different form factor predictions,
the angular observables seem to be consistent. Nevertheless, additional theoretical input,
as for example LCSR for factor predictions, would be helpful for the future. Previous
measurements indicated the presence of spin-1/2 Λ∗ resonances below the Λ(1520) peak,
which needs to be considered later as well.
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Chapter 2

The LHCb experiment

The technical design report of the Large Hadron Collider beauty (LHCb)
experiment, situated at the Large Hadron Collider (LHC), was already published in
2003 [116]. The initial aim of LHCb was focused on CKM and CP violation measure-
ments but also on the study of rare decays of b- and c-hadrons. This motivation leads
to a detector design as a forward spectrometer, covering the regions where b-hadrons are
predominantly produced while keeping the construction cost small. Moreover, the elec-
tronics can be placed outside of the detector, which protects them from radiation damage
and limits the multiple scattering of particles inside the detector.

The first section is dedicated to the LHC machine and the proton acceleration. Since
b-hadrons are studied in this thesis, it is necessary to understand the b-hadron production
in the hadronic environment of the LHC, which is explained in Sec. 2.2. The LHCb
experiment is situated at the LHC ring, recording pp collisions. The data recorded from
2011 on is still being analysed. The main analysis of this thesis is the angular analysis of
Λ0
b → Λ(1520)µ+µ− decays, which is performed with the full LHCb dataset of Run 1 and

2. The LHCb detector during this period is described in Sec. 2.3.

In view of the data-taking in Run 3 with five times higher instantaneous luminosity,
the LHCb detector is undergoing a significant upgrade. In order to help with the com-
missioning of the upgraded detector, 2022 data is studied in Ch. 5 of this thesis. This
analysis is using B+ → K+J/ψ(→ e+e−) and B+ → K+ψ(2S)(→ e+e−) decays. For this
purpose, the Upgrade LHCb detector is discussed in Sec. 2.4.
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2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a circular hadron accelerator and collider, provid-
ing the highest centre-of-mass energy in the world. The LHC is part of the CERN facility,
located at the French-Swiss border, close to Geneva. The CERN accelerator complex is
sketched in Fig. 2.1.

Figure 2.1 – The CERN accelerator complex during Run 2 is depicted. Taken from
Ref. [117].

The initial design of the LHC aims to deliver proton-proton collisions at a centre-of-
mass energy of

√
s = 14TeV. However, the highest centre-of-mass energy reached to date

was 13.6TeV during Run 3. The LHC has a circumference of 26.7 km and is situated
underground.
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The LHC provides proton-proton collisions, which are studied in this thesis. However,
heavy ions, such as lead, can also be collided at the LHC. The protons are extracted from
hydrogen atoms by stripping down the valence electron via an electric field. The protons
are accelerated starting from the Linear Accelerator (LINAC) 2. After the LINAC 2, the
protons have an energy of 450 MeV and are injected into the Proton Synchrotron Booster
(PSB). The PSB is a circular accelerator, which brings the proton energy up to 1.4 GeV.
The next circular accelerator is the Proton Synchrotron (PS), where the protons reach
an energy of 25 GeV and are already separated into bunches of approximately 1.5× 1011

protons each. These bunches are spaced by at least 25 ns. The next acceleration happens
in the Super Proton Synchrotron (SPS), where the proton energy increases to 450 GeV.
Reaching this energy, the proton bunches are injected into the LHC. At maximum 2808
bunches can be injected into the LHC per beam.

As a side note, the acceleration scheme for heavy ions differs from the above-described
one. The acceleration process of heavy ions starts in the LINAC 3. Afterwards, they are
injected into the PS and continue the acceleration in the same way as the protons.

In Run 3, the acceleration process is revisited. LINAC 2, responsible for the initial
acceleration of protons, is replaced by LINAC 4. The new machine accelerates singly
negatively charged hydrogen ions H− up to 160 GeV in LINAC 4 before stripping off
their electrons. Protons are then injected into the PSB. The advantage of the LINAC 4
working principle is the ability to pack the protons more densely, which will be essential
for the high-luminosity LHC in Run 4.

The LHC ring is sketched in Fig. 2.2. The proton bunch injection into the LHC ring
happens at the interaction points 2 and 8. The two “trains” of proton bunches then
circulate clockwise and anticlockwise in a vacuum of 10× 10−10 to 10× 10−11 mbar. The
purpose of the vacuum is to avoid beam-gas interactions as much as possible.

The LHC ring can be separated into eight octants, which are each composed of a
curved “arc” and a straight “insertion” section. The proton beams are bent in the arcs by
1232 superconducting dipole magnets, producing a magnetic field strength of 8.33T. The
dipole magnets need to be cooled down to 1.9K by superfluid helium in order to enable
their superconductivity. Quadropole magnets are employed to focus the proton beams
vertically and horizontally. Higher-order magnets are used to correct for an unwanted
beam spread caused by perturbations of the beam dynamics.

In the insertion regions of the LHC, either particle physics experiments or beam instru-
mentation devices are placed. Interaction point 4 is equipped with eight superconducting
radio-frequency (RF) cavities for each beam, accelerating the proton beams from 450GeV
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Figure 2.2 – The layout of the LHC during Run 2 is sketched. The two beams are
depicted in red and blue. The comment “low-β” refers to a small
transversal size of the beam. Taken from Ref. [118].
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to their final beam energy and compensating for the energy loss induced by synchrotron
radiation. In addition, the RF cavities focus the beam in the longitudinal direction. Out-
lier protons are removed at the interaction points 3 and 7 by collimators. A block of
stainless-steel-jacketed concrete is built up at interaction point 6, into which the beams
are dumped at the end of each LHC fill or in case of operational problems.

At the locations of the particle detectors, the proton beams cross each other, and the
proton bunches collide. The following four particle detectors are installed at the LHC:

• The ALICE experiment [119], situated at the interaction point 2, is specialised
in QCD physics and studies of the Quark-Gluon plasma in heavy-ion collisions.
• The interaction points 1 and 5 are occupied by the ATLAS [120] and CMS de-
tector [121], covering nearly the full solid angle. Both of them are general-purpose
detectors aiming to study a wide range of physics. They are particularly suited
for high-pT physics, direct searches for NP, Higgs-boson physics and determining
the top-quark properties. Furthermore, both experiments have a flavour physics
program. However, the absence of a detector identifying charged hadrons, the tight
trigger thresholds, the high track multiplicity and the large pp interaction rate per
bunch crossing are the primary constraints of the flavour physics programme of
these two experiments.
• The LHCb forward spectrometer [122], described in Sec. 2.3, is placed at inter-

action point 8. Although the LHCb detector was constructed mainly for precision
measurements in flavour physics, LHCb is outperforming itself and showing an ex-
cellent performance also in other physics fields, such as e.g. electroweak and QCD
physics.

By circulating in the LHC ring, the beams deplete with time because of the pp-collisions
and the collimation. As a result, the luminosity of frontal collisions is exponentially re-
duced during the LHC “fill”. During Run 1 and 2, the ATLAS and CMS experiments
exploited the maximal instantaneous luminosity. At the LHCb experiment, the “luminos-
ity levelling” enables a stable instantaneous luminosity of Linst = 4× 1032 cm−2s−1 during
most of the fill. The luminosity is levelled by adapting the overlap of the two beams, which
controls the average number of visible pp-interactions per bunch crossing 〈µ〉. During the
Run 1 and 2, the 〈µ〉 was set to about 1 [123]. A sketch of the working principle of the
luminosity levelling is depicted in Fig. 2.3. In addition, the instantaneous luminosities for
the different experiments during Run 1 are presented.

The advantages of levelling the instantaneous luminosity are the stable data-taking
conditions, a reduction of the radiation damage of the detector, and a more straightfor-
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Figure 2.3 – The decrease of the instantaneous luminosity for ATLAS and CMS and the
luminosity levelling of LHCb is shown for a long LHC fill in Run 1. Taken
from Ref. [124].

ward particle reconstruction. For Run 3 and 4, the LHCb experiment will be operated at
an instantaneous luminosity of factor 5 higher than in Run 2, which will be discussed in
Sec. 2.4.

2.2 Production of b-hadrons at the LHC

The LHCb detector is built as a forward spectrometer rather than a hermetic detector
such as ATLAS and CMS. This choice is motivated by the b-hadron production at the
LHC, which will be explained further in this section.

Protons comprise the (uud) valence quarks, integrated into a sea of gluons and quark-
antiquark pairs, so-called sea quarks. The constituents of those compound objects are
called partons. The hadronic environment of pp collisions provokes less clean conditions
than those available in electron-positron collisions. In the high-energetic pp collisions at
the LHC, parton interactions are the most probable. b quarks are primarily produced by
gluon fusion gg → bb and quark-antiquark annihilation qq → bb. The distinct momenta
of the interacting partons, combined with the great difference between the LHC centre-
of-mass energy and the b-quark mass, results in a boost towards the forward or backward
direction, defined as the tangential to the beam axis at the collision point.
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As a side note, the boost of b and c quarks is an important feature since it causes
a larger displacement of b and c hadron decay vertices in the LHCb detector. Particles
or resonances produced directly in the pp interaction vertex are called “prompt”, while
displaced (secondary) particles or resonances originate from decays of c or b hadrons. This
property will be important in Ch. 5.5.1.
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Figure 2.4 – (a) The geometrical acceptance of simulated bb quark pairs from
gluon-gluon fusion and quark-anti-quark annihilation at

√
s = 14 TeV is

shown. All bb quark pairs in red are inside the LHCb acceptance. (b) The
geometrical acceptance of the LHCb detector is compared to that of a
general-purpose detector. Both plots are taken from Ref. [125].

The forward design of the LHCb detector allows containing 27% of the produced b

or b quarks and 24% of the bb quark pairs despite the reduced solid angle [125] 1. The
geometrical acceptance of the LHCb detector is depicted in Fig. 2.4. The polar angle of the
b or b direction to the beam axis is indicated by θ, while η represents their pseudorapidity
defined as

η = − ln tan θ2 . (2.1)

A pseudorapidity range of 2 < η < 5 is covered by the LHCb detector. The LHCb detector
acceptance has only a small overlap with the general-purpose detector, giving access to
an uncommon phase space.

1. In comparison, 49% of b or b quarks and 41% of bb quark pairs are produced in the acceptance of
a general-purpose detector, covering nearly the full solid angle [125].
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As described in Ch. 1.1, the b and b quarks hadronise immediately into hadrons. The
hadronisation fractions fu, fd, fs and fc express the probability of a b (b) to hadronise into
a B±,

( )

B0 ,
( )

B0
s and B±c mesons. The fractions decrease with the additional quark mass

and scale roughly as 4:4:1:0.01. The production fraction of the B0
s meson, averaged over

its kinematics, is measured in pp collisions at 13 TeV within the LHCb acceptance [126]
to be

fs
fu + fd

= 0.122± 0.006. (2.2)

The most abundantly produced b baryon is the Λ0
b baryon, which decay is studied in this

thesis. The Λ0
b hadronisation fraction was found in Ref. [126, 127] to depend on the Λ0

b

transverse momentum. Its average hadronisation fraction at 13 TeV was published by the
LHCb collaboration [126] to be

fΛ0
b

fu + fd
= 0.259± 0.018. (2.3)

Those production fractions will be needed to estimate the background yield in Ch. 3.3.6.
It is important to note that the hadronic environment at the LHC and the high centre-
of-mass energy enable the LHCb experiment to study Λ0

b baryons, which have not been
produced at B factories yet.

2.3 The LHCb detector during Run 1 and 2

As mentioned previously, the LHCb experiment is placed at the interaction point 8
of the LHC ring. A sketch of the detector with its subsystems is presented in Fig. 2.5.
The coordinate system within the LHCb detector has its origin placed at the interaction
point. The z-axis is set parallel to the direction of the clockwise circulating beam. In
order to be right-handed, the x-direction points towards the inside of the LHC ring, while
the y-axis is oriented upwards. To facilitate their installation, most of the subdetectors
are separated into two halves depending on their x position. The A-side is situated at
x > 0, and the C-side is installed at x < 0.

The LHCb detector design was optimised for studying b- and c-hadron decays. Un-
stable particles decay inside the Vertex Locator (VELO). Long-lived particles such as K0

S,
Λ0 and Ξ− may decay outside of the VELO detector [106]. In the LHCb jargon, particles,
which do typically not decay within the LHCb detector, are called stable particles. Those
stable particles are namely the charged pions π+, charged kaons K+, protons p, electrons
e−, muons µ−, photons γ and deuterons d [106].
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Figure 2.5 – Sketch of the LHCb detector during Run 1 and 2. Taken from Ref. [128]

To perform precision measurements, an accurate determination of the interaction ver-
tices and the particle tracks is crucial. Operation of the vertex and tracking detectors in
LHCb is explained in Sec. 2.3.1. Flavour physics measurements require reliable particle
identification (PID), which is handled by a system of several PID detectors. Their func-
tioning is described in Sec. 2.3.2. Another essential element is the trigger that allows
filtering for interesting events in a wide bandwidth of physics areas. The employed trig-
ger system is treated in Sec. 2.3.3.

2.3.1 Tracking detectors

Tracking detectors are essential in measuring b- and c-hadron decays since they provide
the position of the primary and secondary vertices. The distance between those can be
parametrised as flight distance or decay time. This property enables triggering on such
decays and helps to suppress backgrounds. Moreover, charged particle tracks provide a
momentum measurement by the curvature of the particle tracks in a magnetic field. In
LHCb, the magnetic field is provided by a dipole magnet, which is treated in Sec. 2.3.1.

The working principle of tracking detectors is based on the fact that charged particles
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interact with the detector material. The energy deposed in the sensitive layers of the
subdetectors is referred to as “hit”. Tracking algorithms are optimised to identify patterns
of hits originating from the same particle and reconstruct them as tracks.

The closest tracking detector to the pp interaction region is the VELO. It provides the
vertex information of unstable particles. Long-lived particles may decay outside of the
VELO. To measure precisely the momenta of stable charged particles, as well as to re-
construct the decays of long-lived particles, hits from other tracking detectors are needed.
The Tracker Turicensis (TT) is situated in front of the magnet. Three tracking stations,
T1 – 3, are placed right after the magnet. Each of the subsystems will be discussed in
detail in this section. At first, the dipole magnet is treated since its magnetic field affects
the whole detector. Then, the functioning of the tracking detectors is explained from the
detector closest to the interaction point to the farthest.

The Dipole Magnet

As stated before, the dipole magnet is an indispensable ingredient in retrieving a
momentum estimate of charged particles. The Lorentz force bends charged particle tra-
jectories. The magnetic field is applied in y direction, causing a bending in the horizontal
plane. The direction of the curvature indicates the sign of the particle charge.

In general, the stronger the applied magnetic field, the better the momentum resolution
of the charged particles. An outstanding momentum resolution implies an improved
mass resolution for particles with negligible natural widths. This also helps with the
reduction of background contributions. Another factor is considered for the choice of the
best magnetic field strength. Only a small field should be applied on the Ring Imaging
Cherenkov (RICH) detector 1 to provide good functioning [129]. A dipole magnet with
an integrated field strength of By = 4Tm is retained, resulting in a momentum resolution
of ∆p/p = 0.3% if p is within 5 – 200 GeV/c [129].

A sketch of the LHCb magnet is provided in Fig. 2.6. The nomenclature of the different
charged particle tracks is indicated. The tracks used in this analysis are the long tracks,
which start in the VELO detector and cross the whole tracking system. Downstream
tracks are produced outside of the VELO detector. They traverse the TT to the T1 - 3
stations.

The interesting feature of dipole magnets is the ability to switch the polarisation.
LHCb is operated with MagUp and MagDown polarisations, allowing the reduction of po-
tential sources of coordinate-dependent systematic biases, which is particularly important
for CP violation measurements.
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Figure 2.6 – The strength of the magnetic field component By inside the detector and
the curvature of the different track types. Taken from Ref. [124].
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Vertex Locator

The VELO detector is a silicon-strip detector [130]. It comprises two halves, the
A- and C-side. 21 modules of each type are arranged in z-direction, such that charged
particles, which are produced at z = 0 and directed within 1.6 < η < 4.9, cross at least six
modules. Two supplementary “veto” stations are installed, permitting to remove events
with high multiplicity. The VELO setup is shown in Fig. 2.7.
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Figure 2.7 – Sketch of the relative locations of the VELO modules, plus the two veto
stations, along the beam axis and their opened and closed position in the
x-y plane. Taken from Ref. [131].

During the beam injection in the LHC and the proton acceleration, the two VELO
halves are separated by 6 cm. The VELO is called to be in an “open” position, which
protects it from radiation damage by outlier hadrons in the beam. Cooling the VELO
modules to -5◦C is another measure to reduce the radiation-induced damage. Only when
stable beams are reached the VELO is “closed”. The inner distance between the sens-
itive layer of the sensor and the beam is 8.2mm only. The two overlapping sensors are
illustrated in Fig. 2.8.

Each module is shaped as a semicircle and comprises a R-sensor and φ sensor. The
radial distance measurement is provided by the R-sensor, for which the strips are arranged
in a circular direction. The φ sensor determines the azimuthal angle via radially aligned
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Figure 2.8 – An illustration of the VELO modules, separated in the R- and φ-sensor.
Taken from Ref. [122].

strips. The sensors are read out in several segments in order to reduce occupancy. The φ
sensor is divided into two sectors, and the R sensor into four. The small strip sizes and
the large number of strips and modules enable the high precision needed to determine the
vertex and track position. The resolution of one hit is evaluated in Ref. [124] to be within
5 and 25µm.

The VELO is placed in a secondary vacuum, separated from the beam vacuum, in
order to shield the detector from noise caused by radio-frequency (RF) interferences from
the beam. The secondary vacuum is separated by a so-called RF foil. The RF foil is
0.5mm thin since its thickness impacts the vertex resolution. The reason is the multiple
scattering, which particles undergo by traversing material and deviates them from the
initial track directory. Therefore, it is beneficial to reduce the amount of detector material
crossed by studied particles. The material budget in the VELO detector corresponds to
only about 1/6 of the radiation length, granting the superb momentum resolution in
LHCb.

Tracker Turicensis

The Tracker Turicensis (TT) is a large-area silicon-strip detector. It is composed of
two rectangular modules with two layers each, as depicted in Fig. 2.9. On each of the
layers, the strips are arranged in the vertical direction, enabling a better momentum
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Figure 2.9 – Assembling of the four rectangular layers of the TT stations. The four
colours represent different modules of several sensors, which are read out
together. Taken from Ref. [128].

resolution in the bending plane. The occupancy is reduced by dividing each layer into
different readout sectors. The two middle layers are rotated by ±5◦ with respect to the
first and last layers. The tilting improves the x and y momentum measurement and the
reduction of fake tracks, which are wrongly reconstructed tracks by combining random
or unrelated hits. The resolution of a single hit was determined in 2012 to be about
61µm [132]. Another goal of the TT subdetector is its use in the Run 2 tracking. The
additional hits in the TT stations accelerate the track reconstruction algorithm [133].

Downstream tracking stations

The purpose of the downstream tracking stations [134] is the position measurement
after the magnet, which is necessary to determine the bending of the charged particle
track. As discussed before, the momentum is calculated from the bending.

Three downstream tracker stations are installed, which are called T1 – 3. A sketch of
the construction is shown in Fig. 2.10. The two different colours indicate the two detection
techniques used. In violet, the silicon-strip tracker elements are drawn. Because of its
position close to the beam pipe, this detector part is named inner tracker (IT). The
silicon-strip trackers cover the region characterised by high track multiplicity. Four boxes
are positioned in a circle around the beam pipe, while the longer side is located in the x
direction. Each T station consists of four layers of vertically placed silicon strips arranged
in the same way as in the TT. The hit resolution of the x coordinate equals 54µm in
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Figure 2.10 – The small trackers represent the TT, while the large rectangles are the
T1-3 tracking stations. While the silicon trackers are coloured violet, the
straw tubes are marked in turquoise. Taken from Ref. [122].

2012 [132].
The turquoise colour illustrates the outer tracker (OT), covering the regions with

lower track multiplicity. The OT is based on the technology of straw drift tubes, having a
diameter of 4.9mm. The length of those tubes varies between 2.5 and 4m. As the strips,
the tubes are oriented upwards. Their composition resembles that of the TT stations
since the OT stations consist of four layers each. The inner layers are again tilted by
±5◦. Charged particles passing through the OT ionise the gas. The time-of-flight of the
ionisation electrons in the tube, measured by its front-end electronics, and the physical
boundaries of each straw tube indicate the x and y positions. The x-position of a hit in
the OT is resolved with an uncertainty of 200µm [135]. In Run 2, the resolution could
be improved to 170µm thanks to the real-time alignment [134].

2.3.2 Particle identification

As shown in the previous section, the trajectories of charged particles are reconstructed
as tracks. However, the identity of those particles is not known from the tracking system,
nor is there information about neutral particles. The particle identification (PID) denotes
the assignment of a hypothesis on the nature of the track or a neutral particle. In flavour
physics experiments, the PID is crucial since it permits to distinguish between different
exclusive decay modes of a certain unstable particle.

In typical particle physics experiments, such as LHCb, several subdetectors are em-
ployed, relying on different physics phenomena to identify particles. The PID inform-
ation is retrieved by combining the information from those subsystems, as sketched in
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Fig. 2.11. The first employed detector type is the tracking detector, determining the
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Figure 2.11 – The detection and identification principle of typical particle detectors from
the inner to the outer subdetectors. Taken from Ref. [136].

track (and charge) of charged particles. Afterwards, the electromagnetic calorimeter sys-
tem is installed, where photons, electrons and positrons are usually stopped. Since these
particles transmit nearly all of their energy, the electromagnetic calorimeter provides an
energy measurement of those particles. Although hadrons deposit a part of their energy
in the electromagnetic calorimeter, they tend to penetrate into the hadronic calorimeter,
which is made of more dense material. Muons, being minimally-ionising particles at the
LHC energies, are not stopped by the calorimeter system, but pass to the muon stations.
Muons have, therefore, rather clean signatures and are unambiguously identified.

Through the simplified detector setup in Fig. 2.11, there is no reliable way to distin-
guish between different hadrons. For this reason, two Ring Imaging Cherenkov (RICH)
detectors have been installed in LHCb. Several subdetector outputs are combined in order
to optimise PID variables. In the following, the subdetectors serving to determine the
particle identity are explained, starting from the ones closest to the interaction point to
the outer ones.

Ring Imaging Cherenkov detectors

The working principle of Ring Imaging Cherenkov detectors (RICH) relies on Cheren-
kov radiation. The Cherenkov light is produced by particles, travelling at a speed v higher
than the phase velocity of light in this medium cn with refraction index n. Cherenkov
light is emitted in a cone with angle θ around the particle trajectory. The Cherenkov
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angle θ is related to the particle speed v via the equation

cos θ = c

nv
. (2.4)

In LHCb, θ is measured by two different RICH detectors RICH 1 and 2, placed forward
and downstream of the magnet. The layout of the two detectors in Run 2 is sketched
in Fig. 2.12. In Run 1, RICH 1 possessed additional volumes filled with aerogel, which
was eliminated at the end of Run 1 due to its performance decrease in high-multiplicity
events [137]. RICH 1 is filled with CF4 gas, having a refraction index of 1.0014, and

(a) RICH 1 (b) RICH 2

Figure 2.12 – Design of the RICH 1 (left) and RICH 2 (right) detectors during Run 2.
Taken from Ref. [137].

is well suited for measuring Cherenkov angles of particles with momenta between 2 and
60GeV/c. CF4 gas with n = 1.0005 is inserted in the second RICH detector, RICH 2.
RICH 2 is employed for Cherenkov cone measurements of particles with high momenta
p & 15GeV/c. It covers only the high-η region of −3 < η < 5, which is the typical
flight direction of particles with a large forward boost. The interplay of the two detectors
permits the PID determination in a broad momentum range.

The emitted Cherenkov light is deflected by spherical and flat mirrors, directing them
to a matrix of Hybrid Photon Detectors (HPDs). The size of the HPDs is 2.5× 2.5mm2.
To protect the HPDs from the magnetic field and from radiation damage, the HPDs are
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situated outside of the LHCb detector acceptance, secured by a metal shield. Dedicated
algorithms reconstruct the Cherenkov ring and retrieve θ.

The angle θ alone does not permit a conclusion about the particle type. Only in
combination with the momentum estimate p from the tracking detectors the mass of the
particle identity can be obtained. The performance of the RICH 1 detector to discriminate
between particles is plotted in Fig. 2.13.

Figure 2.13 – Reconstructed Cherenkov angle θ in the RICH 1 detector as a function of
the particle momentum p. Taken from Ref. [138].

The hadronic and electromagnetic calorimeter

While the tracking detectors are intended to contribute as little as possible to the
material budget, calorimeters are designed to stop particles. Therefore, a large material
budget is necessary. The interactions of high-energy electrons, photons and hadrons with
the dense calorimeter material produce showers of secondary particles. Those cascades
propagate further until the nearly entire kinetic energy of the particle is transmitted.
Charged particles, including those produced in the showers, cause an excitation of the
scintillator atoms. In the deexcitation of those atoms, scintillation light is created, which
is collected by photomultipliers. The total energy is obtained by integrating over the
energy of all the shower particles.

The LHCb experiment possesses a calorimeter system located upstream of the tracking
stations and the RICH 2. Four different detectors are assembled, relying all on scintil-
lating material. The first one is the Scintillating Pad Detector (SPD), followed by the
PreShower detector (PS), the electromagnetic calorimeter (ECAL) and the hadronic calor-
imeter (HCAL). An illustration of this assembly is presented in Fig. 2.14. The SPD and
PS are both scintillation pad detectors. They are separated by a lead plate, which is
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Figure 2.14 – The composition of the calorimeter system during Run 1 and 2 is
sketched, and the expected energy deposit of different particle types is
indicated. Taken from Ref. [139].

2.5 radiation lengths thick, but only ≈ 0.06 hadronic interaction lengths. As a result,
photons and electrons are likely to start showering in the PS, while hadrons are not. Hits
in the SPD detector indicate the presence of a charged particle [140], which discriminates
between photons and electrons. The ECAL, placed behind the PS, is built with alternat-
ing scintillator and lead absorber plates, which is known under the “shaslik” design. With
a length of 25 radiation lengths, the ECAL design permits to contain the whole electro-
magnetic showers. Hadrons start showering in the ECAL and continue in the HCAL,
which has a thickness of about 5.6 hadronic interaction lengths. The HCAL is made of
iron and scintillation tiles. ECAL and HCAL are both segmented in regions with different
granularity as a function of the distance from the beam pipe. The ECAL possesses three
of them, while the HCAL is separated into two.

The ECAL and HCAL are important not only for assigning a particle identity but
also for providing a position measurement. Furthermore, the calorimeters are essential
ingredients for the hardware trigger since it searches for clusters with high transverse
energy, ET. In Ref. [141,142], the ECAL energy resolution, measured in GeV, is given by

σE
E

= 10%√
E

+ 1%. (2.5)

The energy measurement is especially important for photons due to the absence of tracks.
The exactness of the electron’s energy measurement is discussed later. The energy res-
olution provided by the HCAL is worse than the precision on the obtained momentum
estimate p from the tracking stations [141,142].

The electron reconstruction in LHCb is especially challenging since electrons emit
plenty of bremsstrahlung photons by interacting with the detector material [143]. Bremsstrahlung
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Figure 2.15 – Bremsstrahlung emission in LHCb before and after the magnet. Taken
from Ref. [144].

emission before the magnet region has the problem that the magnetic field bends the elec-
tron track while the photon direction is not influenced. Therefore, the photon ends up in a
different cell of the electromagnetic calorimeter compared to the electron cluster. Due to
the photon emission, the electron momentum is estimated to be lower than its true value.
However, the electron energy over momentum ratio, E/p, used for electron identification
is unaffected [106]. An algorithm is employed to recuperate the energy of the emitted
photons, as depicted in Fig. 2.15. Via the slope of the e± track, the four-momentum
of the photon is reconstructed and added to the electron [143]. However, occasionally,
random photons may be attached to the electrons, leading to over-estimation of their
momenta [143]. Furthermore, the energy resolution of the calorimeter is worse compared
to the resolution of the tracking system. Therefore, even in the case of correct recovery
of bremsstrahlung photons, the resolution on the electron momentum is worse compared
to the resolution on momenta of other charged particles in LHCb. Emissions after the
magnet region do not affect the energy measurement since the photon energy deposit
happens in the same cell of the electromagnetic calorimeter. In addition, the momentum
estimation is performed before the emission and is unaffected.

The muon stations

The LHCb detector comprises five muon stations, M1 – 5 [145]. M1 is placed forward
of the calorimeter system, permitting a fast and accurate estimate of the muon traverse
momentum, which is essential for the hardware trigger, as described in Sec. 2.3.3. M2 –
5 are situated downstream of the calorimeter. Thanks to their finer granularity, the M2
and M3 muon stations achieve the best position resolution. As a result, these two stations
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played a crucial role in the muon pT estimation for the hardware trigger [146], while the
main goal of the outer M4 and M5 stations was the muon identification since only muons
with pT > 6GeV/c pass through them.

Since the inner part of the first muon station is exposed to higher multiplicities and
radiation damage, a Gas Electron Multiplier technique is used [147]. The rest of M1 and
the four other muon stations are equipped with multi-wire proportional chambers. Both
detector types are classified as proportional ionisation chambers. The working principle
is based on gas ionisation by traversing charged particles. The electrons, freed by the
ionisation process, are amplified and collected at the anode. The two chambers are filled
with the same gas components, while the individual proportions change between the M1
station and M2 – 5. In between stations M2 – 5, iron plates are installed to limit the cross-
ing of all five stations to muons with p ≥ 6GeV/c in order to reduce the misidentification
rates further.

Figure 2.16 – Muon station layout in the yz (a) and xy plane (b). Taken from Ref. [145].

The layout of the muon stations is depicted in Fig. 2.16. On the right plot, the
rectangular areas R1 – 4 indicate different granularity regions. In general, the granularity
of the detector increases the closer the position to the beam pipe. However, a better
resolution of the x coordinate is chosen for a better momentum estimate. In the precisest
stations M2 – 3, the best hit position resolution in the x-direction equals 4mm and 10mm
in the y-direction [145].
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Figure 2.17 – Kaon identification performance during Run 1 (left) and Run 2
(right) [138,148].

Particle identification variables

Combining the PID information of the RICH detectors, the calorimeters and the muon
stations, a log-likelihood is calculated, which indicates the probability of a track to be a
specific particle x. In analysis, the difference of the log-likelihoods of the particle to be
particle x and a pion is usually employed, which is named DLLxπ in this thesis. The kaon
and proton identification performances are shown for the proton and kaon in Fig. 2.17
and Fig. 2.18 2.

It can be seen that at low and high momentum, the PID is less reliable, which is
especially visible for the proton identification in the top plot of Fig. 2.18 and Fig. 2.17.
The reason for the small PID efficiency at low particle momentum is that below the
p = 9.3GeV/c threshold, neither protons nor kaons create a Cherenkov ring (see Fig. 2.13).
As a consequence, no reliable kaon-proton separation is possible. In the Λ0

b → pK−µ+µ−

angular analysis, the proton is required to exceed this momentum threshold.

Another PID variable is available, which is called ProbNN, in the rest of this thesis.
It is based on a neural network [149]. As input for the neural network training served
the information of all LHCb subdetectors, including also the tracking detectors. As an
output of this neural network, each charged ID hypothesis can receive a score from 0 to
1. In Ref. [58,94], the ProbNN variable has been seen to be more powerful in suppressing
misidentification background contributions. In the presented analysis, requirement on the
DLL and the ProbNN variables are applied (see Ch. 3).

2. The variable ∆LL(K-π) in the figures is called DLLKπ in this thesis. The same holds for the
variables DLLpK and DLLpπ variables.
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Figure 2.18 – Proton identification performance during Run 1 (left) and Run 2 (right),
compared with the rate of kaon (top) and pion (bottom) misidentification
as protons [138,148].
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2.3.3 Trigger

The proton bunch spacing of 25 ns results in a bunch crossing rate of 40MHz at the
LHC. Due to the LHC bunch filling scheme, not all bunches collide at the LHCb position,
and the rate is reduced to 30MHz. On one hand, the detector cannot be read out at
such rates, and, on the other hand, saving all of the bunch crossings, called “events” in
the jargon, is expensive. As a consequence, the data has to be filtered. Triggers are
employed to select interesting events and reduce the data rate to O(10) kHz [150]. The
LHCb trigger system is optimised to select typical signatures of b and c-hadron decays.

The Run 2 trigger architecture in LHCb has been sketched in Fig. 2.19. The first
stage is the hardware trigger L0. Selected events pass the software selections by the High-
Level-Triggers (HLT) 1 and 2. The different trigger steps are discussed in the following.

Figure 2.19 – Illustration of the trigger and offline analysis architecture during Run 2.
Taken from Ref. [133].

Hardware trigger

The first stage of the LHCb trigger system in Run 1 and 2 is the hardware trigger
L0. Its aim is to reduce the rate to about 1MHz within a decision time of maximal
4µs [151] by retaining events with highly energetic candidates. The reason for this is that
the decay products from b hadron decay are likely to be highly energetic due to the large
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b hadron mass. As a significant fraction of b hadrons decays into final states containing
muons, providing a clean signature, the L0 trigger searches for tracks in the muon stations
with high pT, or dimuon candidates with a high product of muon pT. Furthermore, the
triggers on hadrons, electrons and photons are fired if clusters with high ET are present
in the calorimeter. If the ET or pT threshold is succeeded, the event is passed to the
HLT 1 trigger. The L0 trigger vetoes events with high multiplicity, which would exceed
the HLT 1 trigger decision time [152], by requiring the number of hits in the SPD to
be inferior to 600 in Run 1 and 450 in Run 2 for most of the triggers. This rejection is
motivated by the fact that the number of b meson decays selected in the offline analysis
decreases with an increasing number of SPD hits [152]. At high multiplicity, the PID and
tracking performances worsen, making background rejection less reliable.

Software-based high-level trigger

After passing the L0 trigger, selected events are handed over to the software-based
trigger. The first one, HLT 1, reconstructs the final state partially by performing a track
and primary vertex (PV) fit [153]. A selection of track quality, particle momentum and
PV displacement is applied, optimised for b- and c-hadron decays. Muons are already
identified in the HLT 1 step. The HLT 1 trigger reduces the rate to O(10) kHz.

In HLT 2, the events are reconstructed using the additional calorimeter and RICH
responses. Furthermore, a more complete track reconstruction is performed. In Run 1, a
simplified online reconstruction is followed by a more complete online reconstruction. In
Run 2, the event reconstruction was performed fully online. To optimise the computational
resources and to provide the needed computing time, events with positive HLT 1 decisions
are saved to a buffer. The HLT 2 reconstruction and selection took place when the data-
taking was on hold, e.g. in between the LHC fills or technical shutdowns [133]. Another
advantage of the buffer introduced in Run 2 is that alignment and calibration tasks are
run in “real-time”, improving the HLT 2 reconstruction [133]. The HLT 2 selection is
separated into inclusive and exclusive strategies. Inclusive HLT 2 trigger lines retain
events with certain topologies, while exclusive lines are optimised for specific final states.
In this thesis, the HLT 2 trigger lines are based on an inclusive selection. If the event or
decay is selected in the HLT 2 step, it is saved to disk. During Run 1 the output rate was
5 kHz, while in Run 2 a rate of 12.5 kHz was allocated.

The selection of inclusive lines is broad, because of which the dataset is extensive.
To prevent each analysis from running on all of the data, an offline preselection step is
introduced, which is called stripping. The stripping selection ("line") used in the angular
analysis of this thesis is optimised for selection of Λ0

b → pK−µ+µ− decays, as explained
in Sec. 3.2.2.
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2.4 The upgraded LHCb detector

During Run 3 and 4, the instantaneous luminosity at the LHCb experiment is planned
to be levelled at 2 × 1033 cm−2s−1. The higher luminosity levelling is supposed to cause
an increase of the 〈µ〉 value to 5.2. In preparation for Run 3, the LHCb detector under-
went a major upgrade to keep up with the data acquisition rate and the radiation damage.

A considerable change is the removal of the hardware trigger by a fully software-based
trigger, which aims to achieve similar efficiencies for hadrons and lepton. Bremsstrahlung
photons are already attached in the HLT 1 trigger stage, which is beneficial for b→ s`+`−

analyses. The new trigger strategy is sketched in Fig. 2.20. The track reconstruction
begins in a GPU-based HLT 1 trigger, implemented in the Allen software, which reads
out the full detector. For this purpose, the front-end electronics of all subdetectors are
replaced. The HLT 1 trigger decision is based on partially reconstructed events. Selected
events are saved in a buffer, where the real-time alignment and calibration can be directly
run and applied. Afterwards, the HLT 2 trigger, as part of the Moore software, takes
over the full event reconstruction and the HLT 2 selection. If the HLT 2 trigger fires,
the events are saved to tape. As for Run 1 and 2, an additional offline selection step is
introduced for inclusive HLT 2 selections, which is called sprucing.

Figure 2.20 – Sketch of the trigger and offline analysis architecture during Run 3. Taken
from Ref. [154].

The LHCb Upgrade I detector [155,156] is equipped with a new vertex detector. This
new vertex detector uses silicon pixels instead of silicon strips, permitting a better granu-
larity for coping with the higher multiplicity and the increase of the ghost rate [157]. The
modules are again split into A- and C-side, but constructed as L-shape. The modules
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enclose the beam with a distance of 5.1mm only. The positioning of the 26 layers is
tuned to enhance the impact parameter resolution, which is improved by 40% for tracks
possessing a first hit at z > 300mm [157] and the track efficiencies, changing from 97.8%
for long-tracks in Run 2 to 99.4% in Run 3 3 [157].

In addition, the TT stations are planned to be replaced by the Upstream Tracker
(UT), aimed to reduce the ghost rate and to improve the momentum resolution [158].
Its design is based on a finer granularity of the silicon strips and a stronger radiation
hardness. However, the installation took place at the beginning of 2023, and, therefore,
after the last weekend of data-taking in 2022, which is analysed in Ch. 5.

The IT and OT subdetectors are replaced by the Scintillating Fiber Tracker, which
itself is composed of three stations. Instead of silicon strips, scintillating fibres are ar-
ranged in four layers slightly tilted towards each other. The detector aims a hit efficiency
of 99% while keeping the noise rate down to 10% [158]. The hit resolution in the xz plane
is planned to be less than 10µm [158].

Finally, the optics of the RICH 1 detector is renewed, which results in a larger image
area and in a reduced peak occupancy [159]. To be able to read out the RICH detectors
in time, the HPDs are exchanged by multi-anode photomultipliers.

At the time of the thesis writing, the LHCb Upgrade I detector is still in commissioning.
However, first steps of an analysis of early Run 3 data has been conducted with the data
collected in 2022 and will be presented in Ch. 5.

3. Note that in this calculation are performed with B0 → K∗µ+µ− decays. In addition, the interac-
tions per pp collision ν are 2 in the Run 2 case and 7.6 in the Run 3 case.
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Chapter 3
Selection of Λ0

b → Λ(1520)µ+µ− decays

In order to improve the readers’ experience, the analysis of Λ0
b → Λ(1520)µ+µ− decays

is split into two chapters. The first one presents the selection of the signal process of
interest and the second one covers the angular analysis itself.

In the first section, the analysis strategy is explained, describing the choice of the
data and simulation samples. Afterwards, the q2 binning is defined. Since a blinded
analysis is performed, the blinding procedure is explained. Since the LHCb experiment
records a myriad of decays, the dataset needs to be filtered in order to obtain the rare
Λ0
b → Λ(1520)µ+µ− decays. The selection criteria are found in the second section of this

chapter. Different background contributions are studied and eliminated when possible.
Unfortunately, the simulation samples do not model perfectly well the recorded data.
Therefore, corrections of the simulation samples are derived, which are explained in the
third section. In the last section, the fit to the pK−µ+µ− invariant mass spectrum is
shown, and the Λ0

b yields are estimated.

3.1 Analysis strategy

The following section is dedicated to clarifying the analysis idea and the strategy, in-
cluding the q2 binning and the blinding of the angular observables (explained in Sec. 3.1.2).
Furthermore, the data and simulation samples used in this analysis are stated.

3.1.1 Summary of the analysis idea

To deal with the numerous overlapping Λ∗ resonances in the pK− invariant mass
spectrum, the analysis focuses on the narrow and resonant Λ(1520) peak, where theory
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predictions are available [5, 6, 113]. A window of about ±50 MeV/c2 has been put in
place around the Λ(1520) pole mass. Nevertheless, the spin-1/2 Λ∗ resonances and their
interferences need to be considered in the angular fit.

This analysis aims to measure the angular observables A`FB and S1cc. Both are the CP
averaged angular observables of the Λ0

b and Λ0
b decay. The leptonic forward-backwards

asymmetry has been found in Ref. [5,107] to be especially sensitive to NP effects. The ex-
isting predictions of the angular observables for the signal decay are presented in Fig. 1.19.
Although different form factor predictions are used, the angular observable values are con-
sistent with each other.

The well-known dataset of Λ0
b → pK−J/ψ(→ µ+µ−) decays is used as a control mode

of the analysis. Since the yields of the Λ0
b → pK−ψ(2S)(→ µ+µ−) decay are closer to the

rare mode, it is used as a control mode, too.
The background level in the signal mode is reduced by a dedicated selection. It includes

the applied vetoes to reduce specific backgrounds and a multivariate analysis technique to
suppress the combinatorial background. Instead of modelling the background distribution
in the angular fit, the remaining combinatorial background is subtracted by the sWeight

technique [160]. Due to the different angular distributions of the Λ∗ resonances and their
interferences, the angular fit is the main challenge of the analysis. Fitting the background-
subtracted angular distribution reduces the number of parameters in the angular fit.

3.1.2 Blinding strategy

An analysis result can be biased, even unconsciously, by expecting a particular out-
come. To prevent this bias, blinded analyses are performed. The idea is not to “have a
look” at the result until the analysis is frozen. Such a blind analysis is performed in this
thesis.

To not unblind the BF measurement [60], which was done in parallel with this work,
the high-q2 bin and the efficiencies were blinded until permission to unblind was given.
For the angular analysis, the angular fit values of A`FB and S1cc are kept blind in the
rare mode. To do so, it was decided to perform the angular fit but keep the fit values
and projections of the Λ(1520) fit component blind. Unblinding the angular observables
and fit projects can be asked for after freezing the analysis and studying the dominant
systematic uncertainties.

3.1.3 Data and simulation samples

The analyzed dataset was collected by the LHCb experiment in pp collisions during
Run 1 and Run 2, which correspond to the data-taking periods of 2011-12 and 2015-18.
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The integrated luminosity and the centre-of-mass energy per data-taking year are given
in table 3.1. The total integrated luminosity of the data-taking periods of Run 1 and 2
correspond to approximately 3 and 6 fb−1. The total Run 1 and 2 dataset is used for the
presented analysis.

Year
√
s [TeV] L [fb−1]

2011 7 1.1
2012 8 2.1
2015 13 0.3
2016 13 1.7
2017 13 1.7
2018 13 2.2

Table 3.1 – The centre-of-mass energy
√
s and corresponding integrated luminosities L

collected by the LHCb experiment are listed per year of data taking.

Simulation samples are necessary to evaluate the properties of a given process and their
response in the LHCb detector. To correctly reproduce what is happening in the detector,
the pp collisions and the quark hadronisation need to be generated. This is done using
the Monte Carlo (MC) generator Pythia [161] with a configuration developed explicitly
for the LHCb experiment [162]. The decay of the produced particles, in the signal case of
the Λ0

b baryon, is modelled by EvtGen [163]. Photos adds Final-State radiation to the
process [164]. All particles, which do not belong to the signal process, are only generated
using Pythia. The interactions of the particles with the detector are described by the
Geant4 software [165, 166]. To match the data, the generator-level simulated dataset
needs to be reconstructed in the same way as the data sample. Therefore, the emulated
detector response is digitised by the Boole package. The L0 and HLT trigger responses
are mimicked by the Moore software. The reconstruction is performed in the simulation
in the same way as in the data. The conceptual difference between data and simulation
is that in simulation, the nature of generator-level particles is known.

Simulation samples of the signal process, Λ0
b → Λ(1520)(→ pK−)µ+µ−, are used

in this analysis. Those are generated for the full Run 1 and 2 data taking. Since the
theoretical prediction of this decay is form-factor-dependent and subject to recent changes,
the analysis is based on phase space simulation samples. The phase space model describes
a simulation procedure where the decay probability is constant in the helicity angles of the
decay. 1 This means that after the generation, the distribution in the simulation sample
is flat in each of the helicity angles of the decay. The flat generator-level distributions

1. The Λ0
b → pK−µ+µ− decay angle definition in the helicity frame is sketched in Fig. 1.9. More

details can be found in App. I.
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of the helicity angles in the Λ0
b → Λ(1520)(→ pK−)µ+µ− decay are shown in Fig. 3.1.

Those simulation samples are important for selecting the signal decay, deciding on the
Λ0
b mass shape model and extracting the angular acceptance. The simulation sample size

corresponds to one million events per year during Run 1 and two million events per year
for the Run 2 data taking. The selection and reconstruction is supposed to affect the
phase-space simulation sample and the simulation sample with the theoretical prediction
the same. However, a systematic uncertainty will be assigned for the change of the Λ0

b

mass shape by using the simulation samples based on the theoretical prediction.
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Figure 3.1 – Generator-level distributions in the Λ0
b → Λ(1520)(→ pK−)µ+µ− phase

space simulation sample, representing the data-taking period of 2016.

In the simulation samples, the true identity of the reconstructed particles is known.
Therefore, the reconstructed particle can be truth-matched to the truth particle if they
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share 70% of the hits in the detector. The same mass hypothesis needs to be assigned to
the reconstructed particle as to the generated one [167]. Additionally, they are checked to
originate from the same parent particle created in the pp collision. In this thesis, the truth-
matching criterium translates into being associated with the correct true PID hypothesis
and originating from an actual Λ0

b baryon. The proton and kaon are additionally asked
to originate from a true Λ(1520) resonance. This “truth matching” method is referred to
as TrueID matching [167].
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Figure 3.2 – Generator level distributions of the Λ0
b → pK−J/ψ(→ µ+µ−) phase space

2016 simulation sample.

Simulation samples for the Λ0
b → pK−J/ψ(→ µ+µ−) control mode are available for the

entire data-taking period. Λ0
b → pK−ψ(2S)(→ µ+µ−) samples are prepared for the data-

taking years 2012 and 2016. Both control mode samples show a phase space distribution
in the decay angles and the pK− invariant mass, while the cc resonance is present in the
dilepton system, as shown in Fig. 3.2. Samples with a phase space distribution in the Λ∗

mass spectrum and the dimuon mass, denoted by Λ0
b → pK−µ+µ− samples, are available

for the data taking years 2012, 2017 and 2018. The resonant pK− invariant mass struc-
ture is a priori not known in the rare, and the ψ(2S) modes since no amplitude analysis
has been performed with those decay modes yet. However, the spectrum is well-known
in the J/ψ mode [4]. A dedicated model to reproduce the realistic resonant structure in
the pK− and pJ/ψ invariant mass spectra is available and calculated in subsection 3.4.1.

Simulation samples of the background decays are employed to estimate the size of
the background contribution and extract the background shape of non-negligible contri-
butions. A particular background is the double hadron swapped misidentification of the
proton and kaon in the Λ0

b → pK−µ+µ− decay as kaon and proton. A simulation sample
is constructed by reconstructing the true protons, emerging from the Λ0

b signal decay, as
kaons and vice versa.
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To evaluate the background contribution from cascade decays, simulation samples
of Λ0

b → Λ+
c (→ pK−π+)π− decays are found to be convenient and are available for

the data-taking years 2012 and 2016. The Λ+
c baryon decay model includes the non-

resonant decay, as well as decays via the K∗0 and ∆(1232)++ resonances. In addition,
Λ0
b → Λ+

c (→ pK−π+)µ−νµ decays are simulated to represent the data-taking in the year
2016. The Λ0

b → Λ+
c (→ Λ(1520)(→ pK−)µ+νµ)π− simulation sample models decays via

the Λ(1520) resonance with the data-taking conditions during 2012.

Samples of B0 → K∗(892)0(→ K+π−)µ+µ− decays are simulated with the data-taking
conditions of the year 2012. The resonant B0 → K∗(892)0J/ψ and B0 → K∗(892)0ψ(2S)
decays are generated and are available for the years 2012 and 2016. Non-resonant K+π−

decay can be studied with phase space 2012 and 2016 simulation samples in the J/ψ mode.

B0
s → K+K−µ+µ− simulation samples are produced with a K+K− phase space model

for rare dimuon decays and via a J/ψ or ψ(2S) resonance. The simulation samples mod-
elling the resonant mode are available for the data-taking years 2012 and 2016. For rare
B0
s → K+K−µ+µ− decays, only a simulation sample exists for the data-taking year 2012.

More details about the simulation samples can be found in Appendix A.

3.1.4 The q2 binning

In order to have comparable results, the q2 binning is aligned between the angular
analysis and the BF measurement [60]. The q2 binning is listed in Tab. 3.2. Although
the phase space ends at q2 ≈ 16.8GeV2/c4, the upper limit of the high-q2 bin is defined
by 17.0GeV2/c4. This cut aims to prevent a reduction of the sample size by an inaccurate
q2 resolution. Since the BF measurement only measures 29 Λ0

b candidates in this bin [60],
an angular fit is not feasible with this dataset. The tree-level b → ccs decays dominate
by far the electroweak penguin contribution. The q2 bins of the cc resonances are defined
to be broad, such that the bins contain their whole tails.

In supplementary, the measurement of the angular observables is planned in a broader
q2 bin to facilitate comparisons between decay modes. In this bin, the φ(1020) resonance
is excluded [21], even though its contribution is found to be negligible, as seen in Fig. 3.3.
The φ resonance is composed of a ss̄ quark pair and possesses a mass and width of
mφ = 1019MeV/c2 and Γφ = 4MeV [21].

In Fig. 3.3, the resonant pK− invariant mass spectrum is presented for the rare mode.
The narrow and dominant Λ(1520) resonance is distinguishable. Even though the combin-
atorial background is not fully removed, the resonant structure in the rare mode visually
resembles the one measured in the J/ψ mode (see Fig. 1.15).
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Bin q2 interval [GeV2/c4 ]
below-J/ψ 1 0.1− 3.0
below-J/ψ 2 3.0− 6.0
below-J/ψ 3 6.0− 8.0

J/ψ 8.0− 11.0
mid-q2 11.0− 12.5
ψ(2S) 12.5− 15.0
high-q2 15.0− 17.0

integrated 1.1− 6.0

Table 3.2 – Dilepton invariant mass squared, q2, bin definitions.
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Figure 3.3 – The q2 distribution in the rare mode after vetoing the J/ψ and ψ(2S) mass
regions is shown on the left. The corresponding pK− invariant mass
distribution is shown on the right. Apart from the cut on the pK−
invariant mass spectrum, the full selection is applied, which will be
described later in this chapter. The pK−µ+µ− invariant mass is required to
be within a mass window of ±30MeV/c2 around the Λ0

b pole mass in order
to minimise the background contribution.
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3.2 Signal candidate selection

The pp collisions at the LHC produce a multitude of different particles. Since the LHCb
experiment cannot save all the events, interesting ones are selected. The tool that decides
which events are interesting is called the trigger, and it is tuned to be as fast and versatile
as possible. The trigger requirements for selecting the signal process are described in the
first subsection. The preselection, mainly based on kinematic variables and loose PID
criteria, is presented in the second subsection. Specific backgrounds are studied in the
third subsection. The combinatorial background is suppressed by a multivariate classifier,
which is presented in the fourth subsection.

3.2.1 Trigger requirements

During Run 1 and 2, the first trigger stage was the hardware trigger (L0). Its decision
was based on the response of the calorimeter and the muon stations (see Ch.2). In the fi-
nal state of the signal process, two muons, a proton and a kaon are present. In the control
mode, the final state is identical, and therefore, the same trigger selection is used. Since
muons have a clean signature in the LHCb detector, the L0 trigger decision is based on
the muon system. For our mode of interest, it searches for high transverse momenta, pT,
muon or di-muon candidates in the muon stations [168]. The hardware and the software
trigger decision is based on the signal particles (TOS = trigger on signal).

The first stage of the software trigger, denoted as High-Level Trigger (HLT) 1 (see
Ch. 2.3.3), takes decisions based on the properties of tracks within the detector. It is
optimised to retain b-hadron decay signatures, such as tracks, which are displaced from
the primary vertex. The trigger selections, employed in the presented analysis, are listed
in Tab. 3.3. The trigger lines, jargon for trigger selections, differ between Run 1 and
2. While in Run 1 events with a generic displaced track or muon track are picked by a
cut-based selection, a multivariate analysis (MVA) is employed during Run 2 to select
one- or two-track signatures. Through the re-optimisation between Run 1 and 2, a higher
signal efficiency is achieved.

The HLT 2 trigger preserves events based on the event topology. During Run 1, a
bonsai Boosted Decision Tree (BDT) [169] selected b-hadron decays to N particles. b-
hadrons are long-lived due to the weak decays. Therefore, their decay vertex or secondary
vertex (SV) is well separated from the collision point, the b-hadron production vertex or
primary vertex (PV). N denotes two, three or four particles. Because of the presence of
four particles in the final state, trigger lines with N = 2, 3 and 4 are considered connected
with a logical “or”. Looser displacement and kinematic criteria are applied by the HLT 2
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Trigger Run 1 Run 2
L0 Muon, DiMuon

HLT 1 TrackAllL0, TrackMVA,
TrackMuon TwoTrackMVA

HLT 2 Topo(2,3,4)BodyBBDT, Topo(2,3,4)Body,
TopoMu(2,3,4)BodyBBDT TopoMu(2,3,4)Body

Table 3.3 – Trigger lines used to select the signal and control mode of the analysis.

trigger if at least one of those tracks is identified as a muon. The same principle is adopted
in Run 2 by the MatrixNet algorithm [170,171].

3.2.2 Preselection

After being retained by the trigger selection, the data are saved. Since individual
analyses do not need the full dataset, another selection separates the data into different
streams depending on its event properties. This preselection is called stripping. Events
are saved on disk if selected by the stripping. In the following analysis, the stripping
selection B2LLXBDT_Lb2mumuPKLine is used, which improves the purity by a BDT
algorithm. The BDT classifier is trained on the square root of the significance of the
impact parameter, computed as a difference of the χ2 of the primary vertex fit with
and without the probed track. The BDT is additionally trained on the logarithm of
the transverse momenta of all involved particles. Furthermore, the square root of the
significance of the Λ0

b , J/ψ, and the Λ∗ flight distances, being calculated as the χ2 of the
distance between the origin and decay vertex of the particle, are used in the training.
Another input feature is the angle between the Λ0

b direction and the sum of the final-state
particle four momenta. The stripping line requires the criteria specified in Tab. 3.4. The
definitions of the employed variables are collected in the Glossary.

In the preselection, the particle identification (PID) requirements are tightened further
via the ProbNN and DLL variables in order to suppress misidentification backgrounds.
To ensure good particle identification, all final state particles are required to have hits in
the RICH detector. Since protons can only be distinguished from charged kaons above the
momentum threshold of 9.3 GeV/c, they are required to exceed the momentum threshold.
Since the PID calibration samples are based on specific particle momenta, particles below
the momenta cannot be calibrated. Therefore, they need to be aligned accordingly. The
same selection requirements are applied on both of the muons in order not to disturb the
symmetry of the angular distribution.
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Particle Stripping Preselection Calibration sample

µ

Run 1:
hasMuon, isMuon hasRich pT > 800MeV/c
Probghost-track < 0.5 ProbNNmu > 0.1 p > 3GeV/c
pT > 200MeV/c p > 3GeV/c

χ2
IP > 1 DLLµπ > −5 Run 2:

p > 3GeV/c

µ+µ−
m < 5GeV/c2

χ2
vertex < 16

χ2
DOCA < 30

p

hasRich Run 1:
ProbNNp > 0.05 ProbNNp > 0.2 pT > 250MeV/c

Probghost-track < 0.4 ProbNNk < 0.8
pT > 300MeV/c ProbNNpi < 0.7

χ2
IP > 4 p > 9.3GeV/c Run 2:

DLLpπ > −5 -

K−

hasRich
ProbNNk > 0.1 ProbNNk > 0.2 Run 1+2:

Probghost-track < 0.4 ProbNNp < 0.8 p > 2GeV/c
pT > 300MeV/c p > 2GeV/c pT > 250MeV/c

χ2
IP > 4 DLLKπ > −5

pK−
m < 5.6GeV/c2

χ2
vertex < 25

Λ0
b

m ∈ [4.0, 6.8]GeV/c2

χ2
vertex/ndof < 25 pT ∈ [1, 25]GeV/c
χ2
IP < 400 χ2

DTF/ndof < 100
DIRA > 0.999
χ2
decay-length > 0

General Stripping BDT > −0.11
nPV ≥ 1

Table 3.4 – The stripping and preselection criteria are specified. Since the PID
calibration samples are cut on particle momenta, only particles with higher
momenta can be calibrated.
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3.3 Background studies

Decays of b hadrons are relatively clean experimentally due to their exceptionally long
lifetime, which separates well hadrons from the pp interaction point and hadrons from b

hadron decays. Therefore, most background sources are expected to originate from true
b hadrons. Even if the background decays are mainly suppressed by the selection, they
may be enhanced in comparison to the rarity of the signal decay, for example, because
of a higher production fraction of the parent particle or higher rate of its decay at tree-
level. To give the order of magnitude, b→ s`+`− decays have BFs of the order 10−6 and
b → c`−ν` transitions of the order 10−3. This is the reason why all of the background
sources need to be characterised precisely. Generally, four different background types are
distinguished.

1. Random combinations of particle tracks are grouped under the term combinator-
ial background. As this background is the most abundant, several strategies are
employed to reduce it.

2. The second background type is due to misidentified particles. Thanks to the clean
signature of the muon tracks in the detector, lepton misidentification is supposed
to be small and the misidentification of the involved hadrons is expected to be
dominant. Mostly single, but also double misidentification occurs 2.

3. The third background type is composed by over-reconstructed decays. Although
an actual b hadron decay is present, a random particle is attached to the b hadron
decay vertex. Supplementary misidentification of the final state particles increases
the probability of falling into the signal b hadron mass window.

4. The partially reconstructed background composes the fourth background category.
It is emerging from multibody decays, where some particles are not reconstructed.
The particularity of the partially reconstructed background is the missing energy
in the decay. The difficulty of this background type is its final state being identical
to the one of the signal decay.

In the following, each of the above-mentioned background types is studied in detail. The
considered decays are specified, and their occurrence is quantified in the rare and resonant
decay modes. Different strategies to suppress these backgrounds are employed.

2. The misidentification of more than two particles is rather unlikely, but would be tackled likewise
by fighting against single and double misidentification backgrounds.
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3.3.1 Combinatorial background

The combinatorial background denotes the combination of random tracks. Since in
Λ0
b → pK−J/ψ decays, strong constraints on the resonant masses are present, the combin-

atorial background is mainly composed by a true J/ψ or ψ(2S) resonance combined with
random hadrons. Above the pK−µ+µ− mass threshold, the combinatorial background
distribution is continuous and not peaking. In the rare mode, the mass threshold value is
1643MeV/c2 and in the J/ψ mode 4530MeV/c2, due to the large mass of the J/ψ resonance.

In contrast to the Λ0
b → pK−J/ψ decays, the origin and the momentum of the particles

are not constrained in combinatorial background events. This property can be used
to distinguish between signal and combinatorial background. Instead of cutting in the
multidimensional variable space, a multivariate analysis technique (MVA) is employed to
separate them. MVA techniques are more powerful than cut-based methods. The MVA
technique used in this analysis is called Boosted Decision Tree (BDT) with Gradient
boosting from the TMVA package [172], providing good discrimination with little tuning
and a short processing time.

Concept of the Gradient Boosted Decision Tree technique

A BDT is a machine-learning technique 3, employed to solve binary classification prob-
lems. Representative samples of the signal and background classes are identified. The
BDT is trained on the input variables of those samples, called features ~x.

The working principle of decision trees is sketched in Fig. 3.4. In each node, the BDT
splits the dataset into xi < c and xi > c. The best-separating feature xi and the best cut
value c are calculated by a separation index. The range of each input feature is scanned,
and the separation index is calculated. The index is weighted by the fraction of events
present in the corresponding node. The splitting criterium is chosen according to the
maximal separation index of the parent and child nodes. A stop criterion defines when
the splitting stops. Stop criteria are, for example, the minimal fraction of events present
in a node or the maximal depth of a tree. The final nodes are called leaf nodes. In those
leaf nodes, the events are classified into signal and background depending on the most
represented class.

The BDT technique does not rely on one tree only but on a forest, which is an ensemble
of many trees. The aim is to improve the BDT performance and to achieve a higher
resistance against statistical fluctuations. In the training of the succeeding tree, higher
event weights are attributed to previously misclassified events. The final model response
is the weighted sum of the different BDT output values. The gradient boost algorithm

3. This discussion is based on Ref. [172,173].
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Figure 3.4 – The working principle of the Gradient Boosted Decision Tree technique
(taken from Ref. [174]).

optimises the weights of the BDT outputs and the misclassified events in order to reduce
the difference between the BDT response and the proper class inheritance. The BDT
output value is situated between -1 an 1, corresponding to a classification of an event
as background- and signal-like. The whole gradient boosted BDT training procedure is
illustrated in Fig. 3.4.

The gradient boosted BDT algorithm is the further development of the AdaBoost al-
gorithm, which is strongly influenced by outliers and mislabelled data events. Calculating
the gradient of the binomial log-likelihood loss function makes the gradient boosted BDT
algorithm more robust [172]. The robustness can be enhanced with smaller shrinkage
values, which limits the learning rate in individual tree training.

A resampling procedure, called stochastic gradient boosting, is employed to improve
the BDT classification. Random subsamples of the training dataset are used to grow the
trees. The fraction of events added to each tree training can be indicated by the user.
All the configuration parameters of the machine learning technique, which are set by the
user, are grouped under the term hyperparameters. The separation index, the number of
grid points and the stop criterion are some examples. A so-called model is composed of
a set of features and hyperparameters.

The performance of the BDT is evaluated with an independent test sample. A good
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BDT performs well on the training as on the test samples; neither under- nor overfitting
should occur. While underfitting describes the choice of a too-simplistic model, which
cannot account for the complexity of the data, a too-complex choice leads to overfitting,
manifesting differences between the performance of the training and test samples. Both
of them are non-optimal configurations. An appropriate capacity can be reached by
optimizing the hyperparameters and the choice of features.

BDT training

The BDT of this analysis is shared with the differential branching fraction analysis
of Ref. [60] in order to get comparable results. The 2016 Λ0

b → Λ(1520)µ+µ− simulation
sample is chosen as a signal proxy. Partially reconstructed b-hadron decays are expected
to be primarily present in the lower mass sideband of the Λ0

b peak. Therefore, the far
upper mass sideband, defined as the pK−µ+µ− mass region above 6GeV/c2, is a proxy
for the combinatorial background. Both are processed using events passing the L0Muon
hardware trigger and the PID requirements of Tab. 3.4. The stripping requirements are
removed from the simulation sample since they already contain a BDT. Having an inde-
pendently trained BDT against combinatorial background limits the potential problems.
Because of the need to remove the stripping requirements, the training is only performed
on one data-taking year, which is chosen to be one of the Run 2 years due to the higher
integrated luminosity.

To remove the long background tail in the χ2
DTF/ndof variable is required to be be-

low 100. χ2
DTF/ndof represents the quality of the decay-tree fit performed by the De-

cayTreeFitter algorithm. The same criterion is part of the preselection. The training
is performed on the combined q2 region of [0.1, 8] and [11, 12.5]GeV2/c4. The test and
training samples are split randomly. In total, 0.1 million signal events and 0.7 million
background events are used in the training.

The input features of the simulation sample are not corrected to match the data shape,
which is expected to have a negligible effect. Input features, which separate signal and
background, are chosen according to their separation power. An extensive set of kinematic
and decay topological variables are tested. The final set is reduced to the most important
features, listed in Tab. 3.5. The signal and background distributions of the input features
are found in App. C.1.

The most important feature is the logarithm of the decay tree fit. The other features
are χ2 of the impact parameter of the track with respect to the PV, the flight distance
with respect to the PV and the decay vertex quality. DIRA indicates the cosine of the
direction angle between the vector pointing from the particle’s production vertex to its
decay vertex and the vector sum of the momenta of its decay particles.
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Input features Importance [×10−2]

PV-constraint logχ2
DTF/ndof 7.613

log pT(K−) 7.075
log pT(p) 6.786
logχ2

IP(Λ∗) 6.151
logχ2

IP(p) 5.901
logχ2

vertex(Λ0
b) 5.730

logχ2
FD(µ+µ−) 5.423

logχ2
IP(K−) 5.377

log pT(Λ0
b) 5.375

logχ2
IP(Λ0

b) 5.169
logχ2

IP(µ+) 5.166
logχ2

IP(µ−) 4.982
logχ2

IP(µ+µ−) 4.616
log arccosDIRA(Λ0

b) 4.295
logχ2

FD(Λ0
b) 4.289

logχ2
vertex(Λ∗) 3.549

logχ2
vertex(µ+µ−) 3.207

Table 3.5 – The input features, which are used in the final BDT training, are listed with
decreasing importance.

The correlation of the features is represented in Fig. 3.5 for the signal proxy. The
correlation in the background dataset and the difference between the signal and back-
ground correlation is shown in App. C.2. A strong correlation can be seen in the signal
dataset. Since the signal and background datasets show different correlation strengths, all
the variables are kept, allowing an additional possibility to distinguish the two datasets.

It was seen that using the max{pT(µ+), pT(µ−)} feature in the training improves the
BDT performance but introduces a non-negligible deformation of the angular distribution.
A deformation of the angular distribution is preferred to be avoided when performing
an angular analysis. This is the reason why this feature is removed. The optimised
hyperparameters are listed in Tab. 3.6.

The output values of the BDT classifier for signal (red) and background events (blue)
are shown in Fig. 3.6. The distributions are separated into training and test datasets. The
indicated separation is determined depending on the number of signal NS and background
events NB in each bin i, which is mathematically expressed as

S =
M∑
i=1

(NS(i)−NB(i))2

NS(i) +NB(i) . (3.1)

The separation power is compatible between the training and test datasets within one
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Figure 3.5 – The correlation of the features is presented for signal events. The
correlation in the background sample and the difference between the signal
and background are shown in Fig. C.4.

standard deviation. Therefore, no overtraining was detected.
In order to simplify the analysis, the same BDT classifier was used for all data-taking

periods and q2 bins. No k-folding was employed, but the same BDT is applied to the
whole data and simulation dataset.

BDT optimisation

The signal efficiency, εsignal, and background rejection rate, 1 − εbkg, is calculated at
different BDT output values. Everything above the cut value is interpreted as being
signal, and everything below is classified as background. The curve relating the signal
efficiency and the background rejection rate is called Receiver Operating Characteristics,
abbreviated as the ROC curve. The area under the ROC curve (AUC) is a measure of
the BDT performance. The best performance is characterised by a high signal efficiency
while keeping a high background rejection rate. In other words, the higher the AUC, the
better the BDT. The ROC curve of the final BDT is plotted in Fig. 3.7.

The optimal BDT cut value is evaluated by scanning the BDT output value range
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Function Hyperparameter Value
Architecture Number of trees 1000
Splitting Separation index used to determine the best splitting Gini index

Number of grid points 20
Training Signal to background ratio used in the training 1

Learning rate per tree training 0.10
Stochastic gradient boosting True
Fraction of events for random subsampling to grow trees 0.6

Stop criterion Minimum percentage of events in a leaf node 2.5%
Maximal depth of trees 2

Table 3.6 – Hyperparameters of the BDT training [172].
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Figure 3.6 – The BDT output values for signal and background events, comparing the
separation of the test and training samples. The separation power is
comparable, and no overtraining is found.
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Figure 3.7 – ROC curve of the final BDT.
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from 0.9 to 1 in steps of 0.002. The figure of merit,

FoM = NS√
NS +NB

, (3.2)

is calculated at each cut value. NS,B denote the number of signal and background events
passing the BDT requirement. The signal and background yields are obtained by a
pK−µ+µ− invariant mass fit in data by applying a BDT cut value of 0.9. A double-
sided Crystal Ball function models the Λ0

b mass peak, and the combinatorial background
is described by an exponential. A scale factor is calculated by building a ratio between
the BDT cut efficiency in the 2016 Λ0

b → Λ(1520)µ+µ− simulation sample and the signal
yield in data. This scale factor is needed for obtaining the number of signal events at
other BDT working points. After applying the BDT to all data-taking periods, the figure
of merit is calculated and drawn in Fig. 3.8. The final cut value is chosen to be 0.99, which

Figure 3.8 – The significance is drawn as a function of different BDT cut values for the
data-taking years 2012, 2016, 2017 and 2018. The final cut value is
highlighted as a red vertical line [60].

is close to the maximum of the figure of merit obtained for the data-taking years of Run 2
and just before the drop in the significance of the data-taking year 2012. The data-taking
years are not retrained in order to prevent differences between the data-taking years. The
figure of merit for 2011 and 2015 are not evaluated separately since the data sample sizes
are the smallest. The BDT cut is applied in the following to reduce the combinatorial
background and to visualise the remaining background components best. However, the
combinatorial background is still not fully reduced and will be modelled in the mass fit.

88



3.3.2 Misidentification backgrounds

The different background contributions are studied with a data-driven approach, using
the entire dataset collected during Run 1 and 2 by the LHCb detector. The preselection is
applied, which includes the requirements listed in table 3.4 and the BDT cut. The samples
are split into the rare, J/ψ and ψ(2S) mode. To increase the statistics, the rare mode
combines all the q2 bins in the non-resonant region. The definition of the q2 intervals is
itemised in table 3.2.

Even though tight cuts on the invariant pK− and pK−µ+µ− mass distributions are
imposed in this analysis, for the purpose of this study, none of them is applied to better
evaluate the background composition. Since the pK− mass window of [1470, 1570]MeV
may reduce some of the backgrounds, its suppression power is evaluated during this sec-
tion. The labels full pK− and Λ(1520) indicate the applied requirement on the pK−

invariant mass.
The background contributions are investigated by substituting the mass hypothesis of

specific particles while preserving the measured momentum vector. A new invariant mass
of a combination of the final state particles can be computed. Peaking structures point,
in most cases, to physical backgrounds.

Hadron misidentification

The hadron misidentification background is mainly originating from the misidentific-
ation of one or both hadrons in the final state as protons, kaons or pions. The RICH
detectors contribute to particle identification. However, in the low and high momentum
regions, the information of the RICH detectors is less reliable. Since protons have the
highest momentum threshold to create a Cherenkov ring in the RICH detectors, their
identification is non-reliable at low momentum. Fig. 2.18 shows the misidentification
probability of kaons and pions as protons against the correct identification rate of actual
protons. Only above a momentum threshold of 9.3GeV/c the proton PID information is
reliable. In the preselection, the proton is required to exceed this momentum threshold.
Although the misidentification efficiency is expected to be the highest for protons, low-
and high-momentum kaons can also be misidentified, as seen in Fig. 2.17.

Combining the different misidentification possibilities, the single and double misiden-
tification backgrounds are listed in Tab. 3.7. Because of the higher probability of single
misidentification background, it will be treated first. However, one has to keep in mind
that the meson production fractions and branching fractions are often higher than the
ones of the signal decay, which can cause a significant contribution. Only neutral b-hadron
decays are considered in the table since the trace of charged b-hadron decays would be

89



Misidentification Decay mode Occurrence
K → p B0

s → K+K−µ+µ− Abundant. φ resonance vetoed.

π → p
B0 → π+K−µ+µ− Rather abundant.
B0
s → π+K−µ+µ− Small, since CKM-suppressed.

p→ K
B0 → pp̄µ+µ− Rare, since b→ dµ+µ− transition.
B0
s → pp̄µ+µ− Rare, since suppressed by nature of QCD.

π → K Λ0
b → pπ−µ+µ−

Rare, since b→ dµ+µ− transition
or via long-lived, weakly decaying Λ0.

p↔ K Λ0
b → K+p̄µ+µ− Present, but small.

p→ K, π → p Λ0
b → π+p̄µ+µ− Rare, as above.

π → K, π → p
B0
s → π+π−µ+µ− Rare, since suppressed by nature of QCD.

B0 → π+π−µ+µ− Rare, since b→ dµ+µ− transition.
π → K, K → p B0 → K+π−µ+µ− Small, since double misidentification.

Table 3.7 – The possible contributing background decay modes, due to hadron
misidentification, are tabulated and their abundance is evaluated, implying
the preselection requirements.

visible in the detector 4.
As a reminder, the ground state Λ baryon is decaying via the weak decay to pπ and

is, thus, long-lived. Because of its long lifetime, it is expected to pass only rarely the
selection criteria that require all four tracks to originate from the Λ0

b decay vertex.
The importance of all the hadron misidentification modes is listed in Tab. 3.7. The

modes with the mention “rare” are seen to be negligible. In the following, only the misid-
entification decay modes are presented that have been classified as non-negligible. Hadron
misidentification is supposed to be quasi-independent of the invariant mass spectrum of
the leptons. Therefore, they are supposed to occur in the rare as in the resonant mode.

The K → p misidentification background is studied at first. In Fig. 3.9, the
invariant pK−`+`− mass distribution by exchanging the proton mass hypothesis with the
kaon mass is represented in the J/ψ and ψ(2S) bins. The vertical band indicates the
Λ0
b → pK−µ+µ−, and the horizontal line originates from B0

s → K+K−µ+µ− decays. The
nominal BDT cut is removed for the plots in the top row and only applied to the bottom.
The large lighter regions of the combinatorial background are significantly suppressed by
the BDT.

Focusing on the K+K− mass spectrum in a window of ±30MeV/c2 around the B0
s

mass and vetoing the Λ0
b signal and B0 → K∗0µ+µ− decay, the distributions in Fig. 3.10

4. In principle, a charged b-hadron track could be misassigned to another vertex, which would lead
to the mis-reconstruction of a neutral b-hadron decay. Because of the cleanness of the Λ0

b signal, this
possibility has been neglected.
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Figure 3.9 – Replacing the proton mass hypothesis by the kaon mass, the horizontal
band of the B0

s decay appears. Because of the bigger sample size, the J/ψ
(left) and the ψ(2S) (right) bins are shown. No BDT requirement is
applied on the top but is on the bottom row. The large continuous lighter
regions originate from the combinatorial background and are shrinking with
the nominal cut on the BDT output value.
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are obtained. The J/ψ mode is represented in the total pK− mass spectrum on the left
and the rare mode in the Λ(1520) mass window on the right. The φ(1020) resonance
dominates the spectrum. In addition, the broader f ′2(1525) resonance is present, but it is
outside of the Λ(1520) mass window.

Thanks to the abundant and narrow φ resonance, the decay can be vetoed with the
requirement |m(pK−)p←K − 1020| > 12MeV/c2. It needs to be noted that the tail of the
φ resonance, the non-resonant decay and the decay via higher mass resonances remain.
The φ resonance veto is applied in the following to improve the sensitivity to other misid-
entification backgrounds. The diagonal band in the lower right plot of Fig. 3.9 originates
from the double misidentification of K → p and π → K in B0 → K+π−µ+µ− decays.

Via π → p misidentification, B0
(s) → K−π+µ+µ− decays pass the selection criteria.

Figure 3.11 shows the distribution of the invariant pK−µ+µ− mass, substituting the proton
mass by a pion mass, against the invariant pK−µ+µ− mass. B0

(s) → K−π+µ+µ− decays
appear as a horizontal band.

To investigate if the B0
(s) decays can be vetoed, theK−π+ invariant mass distribution is

exemplary for the J/ψ mode, drawn in Fig. 3.12. A tight cut around theB0 mass is applied.
To ensure the presence of B0 → K−π+µ+µ− decays only, a veto of Λ0

b → pK−µ+µ− and
B0
s → K+K−µ+µ− decays is put in place. The mass windows and vetoes are always of
±30 MeV/c2 around the corresponding b-hadron mass.

Two resonances are particularly visible. These are namely the abundant K∗(892)0 and
the rarer K∗2(1430)0 resonance. The K∗2(1430)0 resonance is removed by applying the cut
around the Λ(1520) mass. In the ψ(2S) bin, the K−π+ structure is the same. However,
in the rare mode, no K∗2(1430)0 peak is visible due to the small sample size. A small effect
of the implied mass requirements is visible in the low-mass region, originating from the φ
veto.

The B0
s → K−π+µ+µ− decays are Cabibbo suppressed and expected to be rare. The

invariant mass distributions of the K−π+ system are shown in Fig. 3.13. Both resonant q2

bins are depicted. Again, their contribution is enriched by focusing on the B0
s mass and

vetoing the other decay modes. Nevertheless, much fewer events are present in the B0
s

than in the B0 mass window. The distribution has no strong peaking structure. Implying
the pK− mass requirements reduces its occurrence further.

A diagonal band appears in the 2D representation, mainly in the ψ(2S) bin. This one
results from B0

s → K+K−µ+µ− decays, even after vetoing the φ mass.

The p↔ K misidentification swap is a double misidentification background, which
is expected to be small. Due to the final state being precisely the same as in the signal
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Figure 3.10 – In a window around the B0
s mass, with vetoed Λ0

b → pK−µ+µ− and
B0 → K∗0µ+µ− contributions, the narrow φ resonance is distinguishable
in the rare and resonant modes. The J/ψ (top), ψ(2S) (middle) and the
rare mode (bottom) are drawn. The high-mass K+K− structure, which is
present in the full pK− mass window (left), is reduced by requiring a
window around the Λ(1520) mass (right).
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Figure 3.11 – The misidentified B0
(s) → K−π+µ+µ− background decays via the J/ψ (left)

and ψ(2S) (right) resonance are shown as horizontal bands. No
requirement on the pK− mass was made.
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Figure 3.12 – K−π+ invariant mass distribution in a mass window around the B0

invariant mass. The Λ0
b → pK−µ+µ− and B0

s → K+K−µ+µ− decays are
vetoed.

94



500 1000 1500 2000
]2c [MeV/π ←p 

)-m(pK

0

50

100

150

200

250

300

350
)2 c

C
an

di
da

te
s 

/ (
18

 M
eV

/ LHCb Preliminary
-19 fb

Preselection
- mode, full pKψJ/

500 1000 1500 2000
]2c [MeV/π ←p 

)-m(pK

0

5

10

15

20

25

30

35

)2 c
C

an
di

da
te

s 
/ (

18
 M

eV
/ LHCb Preliminary

-19 fb
Preselection

-(2S) mode, full pKψ

Figure 3.13 – The mπ+K− spectrum of B0
s → K−π+µ+µ− decays in the J/ψ and ψ(2S)

bin. The distributions are obtained by selecting decays within the
B0
s → K−π+µ+µ− mass window by vetoing Λ0

b → pK−µ+µ− and
B0
s → K+K−µ+µ− decays.

decay, it is a particularly dangerous background. Because of the big sample size of the
J/ψ mode, the presence of the p ↔ K swapped misidentification of the signal decay
is the best distinguishable in this bin, as seen in Fig. 3.14. After applying the particle
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Figure 3.14 – The mass distribution of the p↔ K swapped misidentification of the
signal decay is shown in the J/ψ bin in the full pK− mass window (left)
and in the Λ(1520) mass window (right).

identification requirements, the contribution is small, and the requirement of the Λ(1520)
window suppresses the background additionally.

The K → p and π → K double misidentification background is contributing,
too. While in the J/ψ and rare modes, the contribution is only slightly visible, a clear
horizontal band appears in the ψ(2S) mode, as illustrated in Fig. 3.15. By applying the
Λ(1520) mass window, the background contribution is significantly reduced.
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Figure 3.15 – The B0 → K+π−µ+µ− double misidentification background is visible in
the ψ(2S) mode. The distribution is drawn in the full pK− spectrum
(left) and the Λ(1520) mass window (right), which reduces its occurrence.

Lepton misidentification

In contrast to the hadron misidentification background, the lepton misidentification
background is supposed to differ in the resonant and rare modes. Due to its abundance
and the strict kinematic constraints of the J/ψ and ψ(2S) mass, it is supposed to be
negligible in the resonant regions but not in the rare mode.

Two different types of lepton misidentification backgrounds are listed in this chapter.
The first type comes from cc resonances, where one of the muons is misidentified as a
hadron. Those are separated into K− → µ− and p → µ+ misidentifications. The second
group are the “cascade” decays, where two charged-current weak decays of the Λ0

b are
succeeded. The decay is either into a semileptonic or purely hadronic final state. In
the semileptonic case, missing energy due to the neutrino is present and causes a shift
in the Λ0

b mass. This is the reason why the semileptonic decay is expected to be less
problematic. The π → µ misidentification results only in a slight mass shift, and a clear
peak is supposed to be seen at the pole mass of the intermediate particle. In our case,
the intermediate particle is either a Λ+

c baryon or a D0 meson.

The µ− → K− misidentification background is only appearing in the rare mode
because of the tight mass constraints in the resonant q2 bins. In Fig. 3.16, the J/ψ peak is
present in the m(K−µ+)K←µ distribution. After the Λ(1520) mass cut, the contribution
is significantly reduced. Nevertheless, the J/ψ mass is vetoed in the rare mode. The veto
is expressed as |m(K−µ+)K→µ − 3097| > 35MeV/c2.
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Figure 3.16 – The J/ψ peak is slightly visible in the m(K−µ+)K←µ mass spectrum on
the left, but disappearing by imposing the pK− mass requirements on the
right.

µ+ → p misidentification may lead to J/ψ peaks in the m(pµ−)p←µ distribution.
The distribution is shown in Fig. 3.17. In the reduced pK− mass window, the J/ψ peak
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Figure 3.17 – The J/ψ peak is barely visible in the m(pµ+)p←µ mass spectrum on the
left, but disappearing by imposing the pK− mass requirements on the
right.

is barely visible. Therefore, it is not vetoed.

Cascade Λ0
b decays via the Λ+

c baryon group together Λ0
b → Λ+

c π
− and Λ0

b →
Λ+
c µ
−νµ decays. The Λ+

c baryon, itself, decays either into pK−π+ or pK−µ+νµ. Hadronic
decays, which pass the selection, have a pion misidentified as a muon. Hadronic Λ+

c decays
are clearly visible as a straight line in the pK−µ+ distribution. Fig. 3.18 presents the rare
mode, where the Λ+

c baryon is the most abundant. Due to the missing energy of the
neutrino, the semileptonic decays appear at lower pK−µ+ masses. An enhancement is
especially perceptible after cutting on the pK− mass.
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Figure 3.18 – The pK−µ+ distribution reveals a horizontal band of hadronic Λ+
c decays

as a function of the pK−µ+µ− mass in the full pK− mass spectrum (left)
and the Λ(1520) mass window (right).

In the one-dimensional projection of the pK−µ+ mass, drawn in Fig. 3.19, the narrow
hadronic decay of the Λ+

c baryon is visible. Semileptonic decays cause a bulk at low
pK−µ+ masses. In the resonant q2 bins, a tiny Λ+

c mass peak is perceptible in the one-
dimensional distribution.
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Figure 3.19 – In the rare mode, the pK−µ+ mass distribution is clearly peaking at the
Λ+
c baryon mass.

Cascade decays can arise in combination with p↔ K swapped misidentification. The
corresponding m(pK−µ+)p↔K distribution is shown in Fig. 3.20. No sharp Λ+

c mass peak
is seen, neither in the 1D, nor in the 2D distribution, but potential semileptonic decays
are supposed to be present in the left bulk.

The vetoes m(pK−µ+) > 2320MeV/c2 and m(pK−µ+)p↔K > 2320MeV/c2 are pro-
posed to suppress the hadronic and semileptonic decays of the Λ+

c baryon, without and
with misidentification swap of the proton and kaon. The vetoes are investigated in sub-
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Figure 3.20 – The pK−µ− distribution combined with swapping the proton and kaon
mass hypothesis is shown in the rare mode. The full pK− mass window is
shown on the left and the Λ(1520) mass window is depicted on the right.

section 3.3.5.

Λ0
b cascade decays into the pD0π− and pD0µνµ final state are likewise con-

sidered. The D0 meson can either decay into K−π+, where the pion is misidentified as a
muon, or into K−µ+νµ, where the missing neutrino causes an important energy loss. The
K−π+ mass, substituting the muon mass hypothesis by a pion, is plotted in Fig. 3.21.
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Figure 3.21 – The K−µ+ mass distribution by replacing the muon mass hypothesis by a
pion with (right) and without (left) the pK− mass requirements.

The D0 mass peak is only visible without pK− mass requirements. In the same plot,
the J/ψ mass peak appears at high masses. Implying the Λ(1520) mass window removes
both of them. In the resonant modes, the cascade decay is neither appearing in the 1D
nor the 2D projections.

Since a veto on the lower mass sideband, would remove too much background, only
a veto of the D0 pole mass is applied. The veto is formulated as |m(K−µ+) − 1865| >
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20MeV/c2 and is only used in the rare mode. Semileptonic decays are supposed to be
removed by requiring the pK−µ+µ− invariant mass to succeed 5500MeV/c2 and by impos-
ing the Λ(1520) mass window. The corresponding two-dimensional distribution is shown
in Fig. 3.22.
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Figure 3.22 – The separation of the D0 meson and the Λ0
b baryon mass with (right) and

without (left) the pK− mass requirements is presented in the rare mode.

3.3.3 Over-reconstructed background
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Figure 3.23 – B+ → K+µ+µ− decays associated with a random proton are present in
the ψ(2S) mode without requirements on the pK− mass (left), but not in
the Λ(1520) mass window (right).

Decays of b hadrons that share the same final state as the signal decays due to a wrong
association of an additional particle are referred to as “over-reconstructed backgrounds”.
A candidate for such a background is the B+ → K+µ+µ− decay, where a random pro-
ton is associated. This decay is only appearing in the ψ(2S) mode, which is depicted in
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Fig. 3.23. It is interesting to see that the horizontal band originating from B+ → K+µ+µ−

decays disappears by requiring the Λ(1520) mass window. Although the visible band in
the ψ(2S) bin is outside of the Λ0

b mass window, a veto of m(Kµ+µ−) < 5200MeV/c2 is
suggested to remove all of those background contributions in all of the q2 bins.
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Figure 3.24 – Over-reconstructed B+ → K+µ+µ− decays combined with a K → p
misidentification cause a horizontal band at the B+ mass in the full pK−
window of the ψ(2S) mode (left), which is disappearing in the Λ(1520)
mass window (right).

Over-reconstructed B+ → K+µ+µ− decays may appear combined with K → p misid-
entification. This background is investigated in Fig. 3.24. The background decay is again
only visible in the ψ(2S) mode within the whole pK− mass window. To ensure the removal
of those background events, a veto of m(pµ+µ−)p←K < 5200MeV/c2 is proposed.

3.3.4 Partially reconstructed background

The partially reconstructed background includes all decays, where certain final state
particles are lost, leading to a reconstructed final state identical to that of the signal.
This can happen in case certain particles are not reconstructed or if they are outside of
the LHCb acceptance. Usually, the lost final state particles are photons or neutral pions.
However, it is also possible to lose a pair of charged particles. Loosing a single charged
particle is not probable because of the Cabiboo-suppression of the rare pK−π+µ+µ− decay,
and the low production rate of Ξ−b and Ω−b decays [175–177]. Lost particles with masses
higher than the pion mass are not considered due to the large shift in the pK−µ+µ−

invariant mass.
Two types of partially reconstructed backgrounds are considered. The first one arises

from the hadronic part of the decay, while the second one originates from the leptonic
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system. As for the misidentification background, the hadronic partially reconstructed
background is supposed to have similar properties in the rare and resonant modes. How-
ever, the partially reconstructed background emerging from the dilepton system is only
present in the resonant mode.
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Figure 3.25 – The pK−µ+µ− invariant mass in the J/ψ and ψ(2S) mode. On the J/ψ
distribution, tight PID requirements are implied to visualise the
Ξ0
b → pK−J/ψ(→ µ+µ−) peak. The partially reconstructed background is

mostly present in the low Λ0
b mass sideband.

In order to study better the partially reconstructed background, misidentification back-
grounds are vetoed. In the J/ψ bin, the proton and the kaon are required to pass the tight
PID cuts of ProbNNh > 0.8 (h = p,K). The partially reconstructed background is visible
as a bump in the logarithmic scaled pK−µ+µ− mass distribution, depicted in Fig. 3.25.
The step-function-like distribution in the J/ψ mode emerges probably from the variable
ranges set in the BDT. In the J/ψ mode, Cabibbo-suppressed Ξ0

b → pK−J/ψ(→ µ+µ−)
decays are peaking close to the signal peak.

Partially reconstructed background originating from the hadronic system

The emission of an additional neutral pion or photon from the hadronic system is sup-
pressed in non-resonant decays. Decays via a resonance, e.g. Λ0

b → pK∗−(K−π0)µ+µ− 5,
might be enhanced with respect to the non-resonant case. Another resonant decay could
contribute, namely the Λ0

b → ∆+(→ pπ0)K−µ+µ− 6 decay. Potential contributions from
higher excited Λ∗ resonances to lower excited Λ∗ resonances and a neutral pion are isospin
suppressed.

Radiative decays of higher excited Λ∗ or K∗0 resonances to lower states are less prob-
able because of the ample available phase space for strong decays. This is the reason why

5. This decay has not been observed yet. However, b → s`+`− decays with the K∗− resonance have
been encountered in the RK and RK∗ analyses [58,94].

6. This decay has not been observed yet.
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radiative contributions from the hadronic system are considered to be negligible.

To conclude, the highest probability of partially reconstructed backgrounds of hadronic
nature have Λ0

b → pK−π0µ+µ− decays, where the π0 arise from decays of excited K∗−

resonances or ∆+ baryons. All the other background decays are heavily suppressed.

Partially reconstructed background due to the dilepton system

Partially reconstructed background could arise from decays of higher charmonium
resonances. In the J/ψ bin, the dominating contribution comes from χc1,2 → J/ψγ

and ψ(2S) → J/ψπ+π− decays, where the γ or the π+π− are lost. Decays of higher
charmonium(-like) resonances as χc1(3872) have invariant mass peaks significantly shif-
ted from the Λ0

b mass peak. In Ref. [95], the peak has been situated in simulation to
be below 4900MeV/c2. In the ψ(2S) mode, the ψ(4360) and ψ(4660) have been seen to
decay into ψ(2S)π+π− [21], but due to the energy conservation Λ0

b baryons cannot decay
into Λ(1520) and one of the excited ψ resonances. Photon radiation in the J/ψ → µ+µ−γ

decays is the most probable for low-energetic photons. Because of the narrowness of the
J/ψ mass peak in µ+µ− invariant mass spectrum, it does not leak into the rare q2 bins.

In summary, partially reconstructed background decays due to the dilepton system
are supposed to be the most important in the J/ψ resonant mode and less critical in the
ψ(2S) mode. In the rare mode, it does not occur at all.

3.3.5 Impact of the vetoes on the angular distribution

The impact of the vetoes on the angular distribution is tested with the Λ0
b → Λ(1520)µ+µ−

simulation sample. The simulation samples are fully corrected to match the data samples,
according to section 3.4. The goal of this exercise is to evaluate if there is a distortion of
the angular distribution and if the distortion can be described by the angular acceptance.
For this study, the preselection, the BDT requirement and the Λ(1520) mass window are
requested.

At first, the veto on the φ resonance is applied. The angular distribution with the veto
(blue) is shown in Fig. 3.26 and compared to the distribution without veto (yellow). The
cos θp distribution is distorted by the φ veto in the J/ψ, ψ(2S) and rare mode. However,
the distribution is not changing a lot, and the angular acceptance is therefore assumed to
catch the distortion. The signal efficiency of the φ veto is about 94%.

Afterwards, the deformation with the Λ+
c veto with and without misidentification is

investigated. The formulation of the corresponding vetoes is m(pK−µ+) > 2320MeV/c2
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Figure 3.26 – Impact of φ veto on the cos θp distribution, exemplary for the J/ψ (left)
and rare mode (right).

and m(pK−µ+)p↔K > 2320MeV/c2. The angular distribution of cos θ` before and after
the application of the veto is plotted in Fig. 3.27. The Λ+

c veto without misidentification
removes low values in the cos θ` distribution, while the Λ+

c veto with misidentification
cuts away high cos θ` values. A fit would be, therefore, only possible in a reduced range
of −0.8 < cos θ` < 0.8. However, this reduces the sensitivity of the angular observ-
ables. In Fig. 3.18, the Λ+

c decays are mostly present at low pK−µ+µ− masses. Requiring
m(pK−µ+µ−) > 5500MeV/c2 in addition to the Λ(1520) mass window removes many
hadronic and semileptonic decays of the Λ+

c baryon. Therefore, it was decided not to ap-
ply the Λ+

c veto in the following. The remaining yields are estimated in subsection 3.3.6.

The two following vetoes are only applied in the rare mode. Those are namely the J/ψ
and the D0 veto. By vetoing the J/ψ mass, originating from muon to kaon misidentific-
ation, the signal efficiency of the veto is 99%. A small deformation of cos θp can be seen
in Fig. 3.28. Since the deformation is so small, the angular acceptance should be able to
catch the shape.

The D0 veto impacts the angular distribution of cos θ`, too. However, it removes only
a few events, and the change of the distribution is supposed to be modelled by the angular
acceptance. The cos θ` distribution can be seen in Fig. 3.28. The signal efficiency of the
veto is about 98% in the rare q2 region.

The last veto removes overreconstruced background decays combined with and without
hadron misidentification. Since the background decays are situated at higher pK−µ+µ−

masses, the veto does not impact the angular distribution. The signal efficiency is, thus,
100%.

In summary, the φ, J/ψ and the D0 veto disturb the angular distribution. However,
the deformation is expected to be eventually modelled by the angular acceptance, and
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Figure 3.27 – Impact of the Λ+
c veto on the cos θ` distribution in the J/ψ, ψ(2S) and the

rare mode. The Λ+
c veto without misidentification is responsible for the

removal of low cos θ` values, while the Λ+
c veto combined with the hadron

misidentification swap removes high cos θ` values.
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Figure 3.28 – The J/ψ (left) and the D0 (right) vetoes deform the angular distribution
of the rare mode only slightly.

105



therefore the vetoes are maintained. The total efficiency amounts to about 94% in the
resonant modes and 91% in the rare q2 bin. Λ+

c decays cannot be vetoed safely without
introducing the need for a cut on the cos θ` distribution, but they are seen to be situated
mostly outside of the Λ0

b mass window.

3.3.6 Background yield estimation

After having sighted all the contributing backgrounds, the question of how many back-
ground events will still be present within the Λ0

b and Λ(1520) mass window is addressed
in this subsection. The equation to calculate the yield is written as

Ndecay = L × 2σbb̄ × fXb × B(decay)× εtot(decay). (3.3)

Since the bb̄ cross section, σbb̄, is used in the formula above, the possibility of b baryon
and b antibaryon production has to be accounted for by multiplying it with a factor of
two. The b hadron production fraction fXb describes the probability of the b quark to
hadronise into a b hadron Xb.

A large uncertainty comes from the production cross-section of bb̄ pairs. It is, thus,
advantageous to calculate the yield by a ratio of two different background decay modes,
in which the cross-section σbb̄ and the luminosity, L, cancels out. The J/ψ control mode
is chosen to act as the normalisation channel. The background yield is expressed as

Ndecay =
Ndata
Λ0
b
→pK−J/ψ(→µ+µ−)

εtot(Λ0
b → pK−J/ψ(→ µ+µ−))

fXb
fΛ0

b

εtot(decay)Btot(decay)
Btot(Λ0

b → pK−J/ψ(→ µ+µ−)) . (3.4)

The number of data events in the Λ0
b → pK−J/ψ(→ µ+µ−) decay are evaluated in the

full pK− mass window in order to match the measured branching fraction B(→ pK−J/ψ).
Btot represents the BF of the full decay chain. Similarly, εtot denotes the total efficiencies.
All of the components are explained in the following.

Efficiencies

Efficiencies are extracted with the help of the simulation samples. The total efficiencies
are calculated via

εtot = εgeom × εfilt × εreco × εsel. (3.5)

The geometrical efficiency εgeom depends on the number of tracks in the detector. Since
neutrinos do not leave a track, they are ignored. Photons originating from Final-State
Radiation are simulated in the simulation samples by Photos, but they are not recon-
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structed. The studied backgrounds have the same number of tracks as the control mode,
because of which the geometrical efficiency drops out in the ratio. To save disk space,
simulation samples can be filtered by the stripping selection while removing the PID
requirements. The PID cuts can, thus, be evaluated more precisely using data-driven
techniques. The filtering efficiency is noted with εfilt. Most of the samples are unfiltered.
The only filtered simulation sample consists of Λ0

b → Λ+
c (→ pK−π+)µ−νµ decays. The

filtering efficiency is provided by the LHCb simulation group and values εfilt = 4.03%.
The product of the reconstruction and selection efficiency εreco× εsel is evaluated together
with the help of the formula

εreco × εsel = N truth-matched, selected, reweighted
reco

N reweighted
truth

. (3.6)

The multiple candidate removal is applied to the reconstructed samples before extracting
the yields. Since this section aims to estimate the number of background events, the back-
ground samples are not reweighted. In general, the kinematics and topology of b-mesons
are better described in the simulation than for b-baryons. Neglecting the reweighting for
the backgrounds is supposed to have a negligible effect.

As a reminder, all of the simulation samples used to calculate the reconstruction
and selection efficiencies are presented in the subsection 3.1.3 of this chapter and in
appendix A. The resulting total efficiencies, εtot, extracted from these simulation samples,
are listed in Tab. 3.8.

To simplify the decay description, the J/ψ and ψ(2S) resonances are imposed to decay
into a muon pair. Similarly, the decays Λ(1520) → pK− and K∗(892)0 → K+π− are
implicitly meant.

The efficiencies in the ψ(2S) signal mode are expected to be higher than in the J/ψ
mode since high energetic muons are passing easier the selection criteria. The amount of
the p ↔ K misidentification swapped Λ0

b → Λ(1520)ψ(2S) decays is about 3.5% of the
not misidentified decays in the year 2012 and 0.6% in the year 2016. The average over
the total Run 1 and 2 datasets lead to a percentage of about 1.6%, which is neglected.

The efficiencies of zero result from the PID requirements on the muons, which reject all
misidentified pions. The Λ0

b → Λ+
c (→ Λ(1520)µ+νµ)π− decay has a higher efficiency, due

to the true Λ(1520) resonance. Therefore, this decay is not impacted by the requirements
on the pK− mass, contrary to the induced efficiency loss for simulation samples, showing
a phase space distribution in the pK− invariant mass spectrum.
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Decay mode εtot,2012 [10−5] εtot,2016 [10−5] εtot,2017 [10−5]

Λ0
b → pK−J/ψ 2237.10± 29.81 2819.70± 8.76 2995.37± 14.26

Λ0
b → Λ(1520)ψ(2S) 696.60± 5.36 717.27± 3.87 -

Λ0
b → Λ(1520)ψ(2S), p↔ K misID 24.04± 1.07 4.64± 0.34 -

Λ0
b → Λ+

c (→ pK−π+)π− 0.0 0.0 -
Λ0
b → Λ+

c (→ pK−π+)µ−νµ - 0.0 -
Λ0
b → Λ+

c (→ Λ(1520)µ+νµ)π− 0.59± 0.34 - -
B0 → K+π−µ+µ− - - 0.33± 0.19
B0 → K∗(892)0J/ψ 10.61± 0.34 17.02± 0.41 -
B0 → K+π−J/ψ 1.35± 0.18 1.93± 0.42 -
B0 → K∗(892)0ψ(2S) 7.43± 0.47 14.04± 0.64 -
B0
s → K+K−µ+µ− 2.78± 0.46 2.57± 0.46 -

B0
s → K+K−J/ψ 25.81± 1.44 15.49± 0.46 -

B0
s → K+K−ψ(2S) 80.14± 3.29 37.65± 1.78 -

Table 3.8 – The total efficiencies, εtot, are given in order of 10−5 for the data-taking
periods 2012, 2016 and 2017. The total efficiencies are the input of the
background yield calculation.

Branching fractions

To get reliable results, the same decay should be used for the efficiency calculation
and the measured branching fraction. However, this is not always feasible because of
missing measurements and a complicated resonant structure. The B0 → K+π−µ+µ−, the
B0
s → K+K−µ+µ− and the B0

s → K+K−ψ(2S) decay are simulated with a phase space
model, but the BFs are only known for the decay via the K∗(892)0 and φ resonance. In
those cases, the resonant BFs are used.

The BFs are taken from Ref. [21] when available. If the BF is not available in Ref. [21],
the determination is explained explicitly. In the rare mode, the BF measurement are
performed usually in bins of q2. The measurement of the B0 → K∗µ+µ− BF in the
[1.0, 6]GeV2/c4 bin is used since it covers a wide q2 region and is comparable to the q2

bin of [1.1, 6.0]GeV2/c4, which is intended to be explored in this analysis. The BF of the
B0
s → φµ+µ− decay is not part of Ref. [21]. However, the BF in the q2in[1.1, 6]GeV2/c4

bin is published in Ref. [66].
Since the Λ0

b → Λ+
c `ν` BF is measured in Ref. [21] for the electronic and muonic decay

mode together, the BF of the muonic decay only is approximated by half of the above-
cited measurement. The BF of the Λ+

c → Λ(1520)e+νe decay has been determined in
Ref. [178]. Because of the lack of other measurements, it is approximated to be the same
in the muonic decay mode.
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The total BFs are summarised in Tab. 3.9. Rates of all subsequent decays are multi-
plied by each other.

Decay mode Btot
Λ0
b → pK−J/ψ (1.91± 0.37) · 10−5

Λ0
b → Λ(1520)ψ(2S) (5.28± 1.36) · 10−7

Λ0
b → Λ+

c (→ pK−π+)π− (3.08± 0.41) · 10−4

Λ0
b → Λ+

c (→ pK−π+)µ−νµ (1.95± 0.54) · 10−3

Λ0
b → Λ+

c (→ Λ(1520)µ+νµ)π− (1.13± 0.68) · 10−6

B0 → K+π−µ+µ− (1.148± 0.073) · 10−7

B0 → K∗(892)0J/ψ (5.0± 1.0) · 10−5

B0 → K+π−J/ψ (6.86± 0.34) · 10−5

B0 → K∗(892)0ψ(2S) (3.11± 0.44) · 10−6

B0
s → K+K−µ+µ− (1.41± 0.25) · 10−10

B0
s → K+K−J/ψ (4.71± 0.44) · 10−8

B0
s → K+K−ψ(2S) (2.04± 0.52) · 10−7

Table 3.9 – The total branching fractions of the considered decay modes are collected in
the table.

Production fractions

Another property is needed to calculate the background yields. The missing part is the
fraction of b quarks, which hadronise into a specific b hadron. The production fractions
fΛ0

b
and fs have been measured by the LHCb collaboration in Ref. [126], as discussed

in Ch. 2.2, and particularly in Eq. 2.3 and 2.2. These fractions are averaged over the
kinematics of the hadrons. By assuming isospin symmetry in B mesons, the production
fractions fu and fd are equal. Since the ratio of the production fractions is needed, they
are obtained via

fd
fΛ0

b

= 1
2

(
fΛ0

b

2fd

)−1

= 1
2

(
fΛ0

b

fu + fd

)−1

, (3.7)

fs
fΛ0

b

=
(

fs
fu + fd

)(
fΛ0

b

fu + fd

)−1

. (3.8)

Yields

The estimation of the background yields is based on the knowledge of the Λ0
b →

pK−J/ψ yield. The yields are extracted from data by fitting the pK−µ+µ− invariant
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mass in the J/ψ bin. Using Eq. 3.4, the signal and background yields are estimated. The
final yields are collected in tab 3.10.

Decay mode 2012 2016 2017

Λ0
b → pK−J/ψ (measured) 18, 735± 157 31, 130± 199 31, 848± 201

Λ0
b → Λ(1520)ψ(2S) 162± 44 220± 60 -

Λ0
b → Λ(1520)ψ(2S), p↔ K misID 6± 2 1.4± 0.4 -

Λ0
b → Λ+

c (→ pK−π+)π− 0.0± 0.0 0.0± 0.0 -
Λ0
b → Λ+

c (→ pK−π+)µ−νµ - 0.0± 0.0 -
Λ0
b → Λ+

c (→ Λ(1520)µ+νµ)π− 0.3± 0.2 - -
B0 → K+π−µ+µ− - - 0.04± 0.02
B0 → K∗(892)0J/ψ 451± 93 951± 196 -
B0 → K+π−J/ψ 79± 19 148± 44 -
B0 → K∗(892)0ψ(2S) 20± 5 49± 11 -
B0
s → K+K−µ+µ− 0.0± 0.0 0.0± 0.0 -

B0
s → K+K−J/ψ 0.25± 0.06 0.20± 0.05 -

B0
s → K+K−ψ(2S) 3.4± 0.9 2.1± 0.5 -

Table 3.10 – The Λ0
b → pK−J/ψ yields are obtained with a fit to data. Having those

yields, the signal and background yields are estimated.

The contributions of the cascade decays are negligible due to the mass and PID re-
quirements. As stated before, the signal decay with p ↔ K misidentification swap is of
only 1.7%, by extrapolating to the full Run 1 and 2 datasets. Similarly, B0

s → K+K−µ+µ−

decays are negligible in the rare, J/ψ and ψ(2S) modes. However, it needs to be kept in
mind that the simulation here is based on a phase space model in the K+K− mass rather
than the φ tail, which is mostly present in data.

In the rare mode, the B0 → K+π−µ+µ− yield is negligible. Since the Λ0
b → pK−J/ψ

yield is measured in the full pK− mass window, the measured yield in the Λ(1520) mass
window is taken as a comparison. Then, the B0 → K∗(892)0J/ψ yield is about 7% of the
signal yield in the year 2012 and 9% in the year 2016. In the ψ(2S) mode, the contribution
is estimated to be about 14% and 20%. The contribution of B0 → K+π−µ+µ− decays is
negligible in the rare mode. Therefore, the B0 decay needs to be modelled in the pK−J/ψ
and pK−ψ(2S) invariant mass fits.
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3.3.7 Summary of the background treatment

To conclude, the hadron misidentification backgrounds are the main backgrounds in
this analysis. The dominant one is the B0

s → φ(→ K+K−)µ+µ− background, which can
be vetoed. The veto is applied to all of the bins. The B0 → K∗µ+µ− background is the
second important background. While the yields are negligible in the rare mode, they are
not in the resonant modes.

The lepton misidentification backgrounds are mostly important in the rare mode. The
J/ψ peak in the K−µ+ invariant mass spectrum can be vetoed. Similarly, the cascade
backgrounds are strongly reduced by the PID requirements on the muons. Semileptonic
Λ0
b decays via a D0 resonance are vetoed. However, the veto of semileptonic Λ0

b decays via
a Λ+

c resonance cuts away the endpoints of the cos θ` spectrum and is therefore not ap-
plied. It was seen to have a small contribution only due to the presence at small pK−µ+µ−

masses.

Which decay? Veto formulation? Which mode?
B0
s → φ(→ K+K−)µ+µ− |m(pK−)p←K − 1020| > 12MeV/c2 all
J/ψ peak in K−µ+ |m(K−µ+)K→µ − 3097| > 35MeV/c2 rare mode

Cascade Λ0
b via D0 → K−π+ m(K−µ+)± 20MeV/c2 rare mode

B+ → K+µ+µ− m(Kµ+µ−) < 5200MeV/c2 all
B+ → K+µ+µ−, K → p misID m(pµ+µ−)p←K < 5200MeV/c2 all

Table 3.11 – Summary of the employed vetoes.

Over-reconstructed backgrounds are vetoed, even if they are mostly outside of the mass
windows. The same procedure is repeated for over-reconstructed backgrounds combined
with misidentification. All of the vetoes are summarised in Tab. 3.11. Applying them
removes 5.5% of the signal candidates in the resonant mode and 8.2% in the rare mode.

Partially reconstructed backgrounds, being produced in the hadronic system, are sus-
pected to arise dominantly from Λ0

b decays, where a π0 arises from the decay of an excited
K∗− resonance or a ∆+ baryon. The dilepton system can be a source of partially recon-
structed backgrounds, but only in the resonant mode. A photon or a charged pion pair,
coming from the decay of a higher charmonium resonance, could be lost. The partially
reconstructed backgrounds are expected to be present mostly at low pK−µ+µ− masses.

Finally, the combinatorial background is strongly reduced by a BDT. Nevertheless,
some of it remains and will be modelled in the Λ0

b mass fit.
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3.4 Simulation sample corrections

In the previous chapter, the efficiencies are estimated with simulation samples by using
correction weights. Those correction weights are important to get a perfect agreement
between data and simulation samples in the signal decay, as well as in the control mode.
Besides the luminosity weight, the corrections of the simulation samples are shared with
Ref. [60]. All of them are applied sequentially. The first correction improves the de-
scription of the Dalitz structure in Λ0

b → pK−J/ψ decays. Since the Λ0
b → pK−J/ψ

simulation samples are generated with a phase space model, they need to be corrected for
the resonant structure in the pK− and pJ/ψ mass.

Other corrections are necessary to have the most precise data description possible.
Since the lifetime and transverse momentum of the Λ0

b baryon are known to deviate in
the simulation sample, each of them has a correction weight, which is determined in a
data-driven way. External factors such as the track multiplicity can influence the response
and are corrected, too. Since the three variables are linearly uncorrelated, the correction
order is not important.

The particle identification has slightly different behaviour in the data than in the
simulation samples. Therefore, instead of placing cuts on the PID variables in the Λ0

b →
Λ(1520)µ+µ− and Λ0

b → pK−J/ψ simulation samples, special PID weights are determined
to model the PID response in data.

Another correction is needed for the hardware trigger response. The discrepancies are
corrected with the TISTOS method [179]. All of the weights are determined in the signal
and control mode for the generator and reconstruction level simulation samples.

Before adding the simulation samples of different years together, a luminosity weight
is introduced to scale the sample to the correct luminosity ratio. Each of the corrections
is further described in this section.

3.4.1 Decay model correction

The resonant structure in the pK− and pJ/ψ invariant mass is well known, thanks to
the amplitude analysis of Ref. [4]. Based on the so-called pentaquark analysis, weights are
calculated as a function of the truth particle four-momenta. The weights are extracted
for the generator and reconstruction level simulation samples. These weights can only
be determined in the J/ψ mode. The complex two-dimensional structure obtained in the
pentaquark analysis is presented in Fig. 1.15. It can be compared to the distributions
obtained with the decay model correction, shown in Fig. 3.29.

The rare mode simulation samples do not need a weight since they are generated
for the Λ(1520) resonance. Unfortunately, the pK− invariant mass distribution is not
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Figure 3.29 – Generator level distributions of the Λ0
b → pK−J/ψ(→ µ+µ−) of the 2016

simulation sample with and without decay model correction weights.

measured in the ψ(2S) mode. Therefore, the phase space pK− invariant mass cannot be
reweighted in the Λ0

b → pK−ψ(2S) simulation samples.

3.4.2 The Λ0
b baryon lifetime correction

In the generation of the simulation samples, a certain value of the Λ0
b lifetime, τΛ0

b
, is

implied. The generated lifetime values differ from the latest measurements, reported in
the PDG [21]. The different lifetime values are summarised in tab 3.12.

τΛ0
b
[fs] 2011 2012 2015 2016 2017 2018

Λ0
b → pK−J/ψ 1451.000 1424.702 1451.000 1451.000 1451.000 1451.000

Λ0
b → Λ(1520)µ+µ− 1424.702 1424.702 1451.000 1451.000 1451.000 1451.000

PDG 1464.316

Table 3.12 – Λ0
b lifetimes used in the generation of the different simulation samples,

compared to the latest measurements in the PDG [21].

The simulation samples are reweighted by the weight w(t), which is a function of the
simulated lifetimes τsim and the PDG value τPDG. It is defined as

w(t) =
1

τPDG
exp

(
− t
τPDG

)
1
τsim

exp
(
− t
τsim

) . (3.9)

The Λ0
b lifetime is reweighted in the generator and reconstruction level simulation samples.
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3.4.3 Event multiplicity correction

The event multiplicity is known to be described incorrectly in the simulation. Usually,
the number of tracks in an event, nTracks, or the number of hits in the scintillating pad
detector, nSPDHits, is taken as a proxy to correct for these discrepancies. The nSPDHits
variable is an input of the hardware trigger lines L0Muon and L0DiMuon. Correcting
the nSPDHits variable introduces even higher discrepancies in other multiplicity variables
because of the data simulation mismatch of the M1 muon station modelling. This is the
reason, why the correction was performed, based on the nTracks variable.
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Figure 3.30 – The raw and corrected nTracks distribution of the Λ0
b → pK−J/ψ

simulation sample are drawn. Those are compared to the sWeightted data
distributions for the years 2012 (left) and 2016 (right).

The nTracks distribution differs between the different data taking years and is, thus,
calculated per year. Fig. 3.30 shows the discrepancy of the nTracks distribution in the
simulation samples and the data, for the years 2012 and 2016. A correction is calcu-
lated after applying the preselection, the decay model and the lifetime correction on the
simulation samples. The corrected nTracks distribution matches better the data.

Since the generator level distributions of the signal and control mode simulation
samples are found to be similar, the corrections, derived from the control mode, are
applied to the signal decay, as well. The corresponding distributions are shown in ap-
pendix D.1. Splitting the events, selected by the L0Muon and L0DiMuon trigger line,
reveals a discrepancy between the two distributions. Since the measurement is performed
in the two categories together, the small sample size, and in order to follow the same
strategy as the BF measurement [60], the corrections are chosen to be identical.
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3.4.4 Kinematic correction

The transverse momentum of the Λ0
b is another variable, which is known to be mis-

modelled in the simulation. Especially the dependence of the Λ0
b production fraction on

the transverse Λ0
b momentum is badly described in simulation [126]. Consequently, cor-

rection weights are derived for the Λ0
b transverse momenta in simulation for each of the

data taking years, based on the sWeightted Λ0
b → pK−J/ψ(→ µ+µ−) data. The weights,

calculated for the control mode, are applied to the signal mode, too. The advantage of
this procedure is the availability of large sample size and the statistical independence of
the J/ψ mode with respect to the signal data sample.
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Figure 3.31 – The data distribution of the pT(Λ0
b) is compared to the distributions of the

corrected and uncorrected simulation samples of the data-taking year 2012
(left) and 2016 (right).

The effect of the correction weights on the pT(Λ0
b) distribution is illustrated in Fig. 3.31.

More comparisons can be found in App. D.2.

3.4.5 Correction of the particle identification response

The fifth quantity, which needs to be corrected, is the particle identification (PID)
response. The difference in the PID performance in simulation and in data is due to the
RICH detector and µ station response, in particular, due to detector misalignments and
under-estimated multiplicity of secondary particles in the simulation. The PIDCalib
package [180] provides the calibration samples to evaluate the efficiency of the final state
particle identification.

Clean samples of two- or three-body decays are collected in parallel to the regular data
taking. Strict requirements on the “tag” particle ensure the cleanness of the sample, while
the PID efficiency is tested on the “probe” particle which has no prior PID requirements
applied. The background is subtracted via the sPlot technique [160]. The number of
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events in the sWeightted data sample, passing the PID requirements, with respect to
the initial sWeightted sample, indicates the PID efficiency. The simulation sample is
extended by per-event weights, accounting for the PID efficiency. Those PID weights
can be extracted as a function of kinematic variables if the size of the calibration sample
allows.

Calibration samples

Crucial for the PID correction is the choice of the calibration sample. The kinematic
range of the particles in the signal sample has to overlap sufficiently with those of the
calibration sample. The calibration samples are listed in Tab. 3.13.

Particle Run 1 sample Run 2 sample Decay description
Lam0 (default) P (default) Λ0 → pπ−

p IncLc IncLc Λ+
c → pK−π+ inclusive

- P_LcfB Λ0
b → Λ+

c (→ pK−π+)`−ν`
Dst (default) K (default) D∗+ → D0(→ K−π+)π+

K - K_DsPhi D+
s → φ(→ K+K−)π+

Jpsi (default) Mu_B_Jpsi J/ψ → µ+µ− from b hadron decays
µ - Mu (default) J/ψ → µ+µ− decays

- Mu_nopt J/ψ → µ+µ− without pT cuts

Table 3.13 – Name and decay description of the PID calibration samples, collected to
correct the simulation samples of Run 1 and Run 2.

The kinematic requirements of the calibration samples are summarised in Tab. 3.4.
Since particles outside of this kinematic range cannot be calibrated, the selection is aligned
with those requirements present in the calibration samples.

In the default proton calibration sample, protons emerge far from the primary vertex,
due to the long flight distance of the Λ0 baryons. In the signal decay, the Λ∗ reson-
ances have a much shorter flight distance and the protons are produced earlier. The
proton production region impacts the PID efficiency. This is the reason why protons
are calibrated with inclusive Λ+

c → pK−π+ samples. Because of the lack of calibration
samples for the data-taking year 2015, calibrations are exceptionally calculated based on
Λ0
b → Λ+

c (→ pK−π+)`−ν` decays, despite its smaller sample size.
In Run 2, low-momentum protons with pT < 1000MeV/c are not covered by the

employed calibration sample. Therefore, the corrections of low-momentum protons are
calculated with the default Λ0 sample. A corresponding systematic uncertainty for the cal-
ibration with the Λ0 sample in this particular case will enter the systematic uncertainties
due to the simulation correction, as described in Sec. 4.3.
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The kaon PID calibration is performed with the default kaon calibration samples.
During Run 1, the muon PID efficiencies are extracted from the default muon calibration
sample. For Run 2, the J/ψ → µ+µ− calibration sample without pT requirements is
chosen. For the analysis, the availability of many low momentum muons is important
since such requirements have a large impact on the deformation of the cos θ` distribution.

The PID of muons with low transverse momentum of pT < 800MeV/c cannot be calib-
rated in Run 1 with the above-listed calibration samples. The PID efficiency corrections
are, thus, calculated with an artificial sample, as explained later in this section.

Efficiency map binning

The PID response is a function of the particle properties, in particular the momentum
and pseudo-rapidity of the particle, as well as the event multiplicity 7. Because of the
mismodelling of the nTracks variable, no multiplicity variable has been used in the binning.
Moreover, the event multiplicity of the signal sample should be similar to the one of
the calibration sample, as both are b-hadron decays and, thus, using the average PID
efficiency should be sufficient. The PID efficiency is calculated as a two-dimensional
map of momentum p and pseudorapidity η. Dividing the calibration sample in a three-
dimensional map would decrease the statistical power in each bin and lead to an increase
in uncertainties. Nevertheless, the corrected PID efficiencies are plotted in bins of the
nTracks variable, as presented in Fig. 3.32.

Figure 3.32 – The total PID efficiency for Λ0
b → pK−J/ψ decays are shown as a function

of the nTracks distribution.

The binning is optimised with the PIDCalib Binning Scheme Optimiser. It bal-
ances describing the efficiency variations well enough while keeping the amount of data per

7. The higher the event multiplicity, the more difficult is the association of the Cherenkov photons to
the original particle, especially when the Cherankov rings are overlapping or when the subdetectors are
misaligned.
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bin large enough to avoid fluctuations. The binning procedure used in this analysis starts
with N isopopulated bins. If the efficiency difference between two bins is smaller than
3σ, the bins are merged. A complementary binning procedure is considered to calculate
the systematic uncertainties. The difference to the previous method is the initialisation
with equally-sized bins. The PID efficiency maps, as well as the prerequirements on the
calibration samples, are listed in App. D.4 and App. D.3. To be consistent with the
preselection requirement on the proton momentum, a boundary at p = 9.3GeV/c is set
by hand in the final proton binning scheme.

PID calibration for low momentum muons in Run 1

Low transverse momentum muons have no calibration sample in Run 1. The strip-
ping line Stripping_LowPTMuID_JpsiFromBLowPT was designed to study PID
efficiencies of low-momentum muons in Run 1. However, it was not yet part of the official
PIDCalib package, but it was used to reproduce a PID calibration efficiency map.

Particle Requirement
Probe µ χ2

IP > 25
isMuon == 1
pT > 1000MeV/cTag µ

χ2
IP > 45

|m− 3096.92| < 200MeV/c2

χ2
vertex/ndof < 5
χ2
FD > 225J/ψ

DIRA > 0.9995

Table 3.14 – Selection criteria of the LowPTMuID_JpsiFromBLowPT stripping
line, which was used to calibrate the PID response for low-momentum
muons.

The stripping requirements, listed in Tab. 3.14, show that the probe muon is not
required to pass a transverse momentum requirement. In general, loose criteria are applied
on the probe muon and strict ones on the tag muon. J/ψ → µ+µ− decays, originating
from b hadrons, are extracted with the sPlot technique [160]. The signal component
is described by a double-sided Crystal-ball (DSCB) function, while the combinatorial
background is modelled by an exponential. The tail parameters of the DSCB are fixed
after the fit to the simulation sample. The data fits are shown in Fig. 3.33.

The kinematic ranges of the Λ0
b → Λ(1520)µ+µ− and the Λ0

b → pK−J/ψ(→ µ+µ−)
samples are checked against the range of the calibration sample. The comparison is plotted
in Fig. 3.34.
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Figure 3.33 – The data fit of J/ψ → µ+µ− decays from b hadrons is shown. A stripping
line without pT requirements on the probe muon are used to study the
PID efficiencies of low momentum muons. The fits are performed
separately per muon charge and data-taking year.

Figure 3.34 – The muon pseudorapidity and momentum are plotted for the
Λ0
b → Λ(1520)µ+µ− and the Λ0

b → pK−J/ψ(→ µ+µ−) sample with the
condition of pT(µ) < 800 in red. Muons from the artificial calibration
sample are represented in black. On the left (right) side, the distribution
is shown for the data-taking year 2011 (2012). For better visualisation,
only a subsample of the calibration events is plotted.
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The kinematic regions of the two decay modes overlap. Therefore, calibrating the
Λ0
b → Λ(1520)µ+µ− decay with the Λ0

b → pK−J/ψ(→ µ+µ−) decay mode is judged to be
applicable. Therefore, the PID efficiencies of the low-momentum muons are calculated in
bins of the momentum p and the pseudorapidity η with the formula

εPID =
∑
iwi(after PID cut applied on probe)∑
iwi(before PID cut applied on probe) . (3.10)

The sPlot weights wi are extracted before and after the combination of the PID cuts
MC12TuneV3_ProbNNmu > 0.1, PIDmu > −5 and isMuon == 1 by a logical “and”.
PID efficiency maps are filled with the obtained εPID in the same muon binning scheme
as before by separating them depending on the magnet polarity.

Figure 3.35 – The PID efficiency maps (MagDown) to calibrate low pT muons are shown
for the year 2011 (left) and 2012 (right).

To check the reliability of the obtained PID efficiency maps, the muon PID efficiency
is compared in the overlapping bins. The comparison is made between the PIDCalib
procedure, presented in Sec. D.4, and the one with the artificial calibration sample, shown
in Fig. 3.35. The efficiency ratio is drawn in Fig. 3.36.

3.4.6 Hardware trigger correction

In the simulation samples, the emulation of a single L0 trigger threshold is applied
per year. However, the L0 trigger threshold varies in data over time, following the rate
of the LHC collisions. The mismodelling of the hardware trigger response is corrected in
a data-driven way by the TISTOS method [179]. Therefore, the number of events, which
are triggered independently of the signal decay NTIS are evaluated 8. The events out of
the NTIS subsample, being triggered on the signal decay, NTIS&&TOS, are measured, too 9.

8. The requirement on the Λ0
b is translated into «L0MuonTIS || L0PhotonTIS || L0HadronTIS ||

L0ElectronTIS».
9. The corresponding criteria are «L0MuonTOS || L0DiMuonTOS».
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Figure 3.36 – The ratio of the muon PID efficiencies between the PID maps from the
PIDCalib package and the corrections from the artificial calibration
sample in the overlapping bins.

The efficiency is built as the ratio of the number of events, written as

εTOS = NTIS&&TOS

NTIS
. (3.11)

NTIS is obtained by fitting the pK−J/ψ invariant mass. The number of TOS events in this
subsample is obtained from the sum of their sWeights. The efficiency εTOS is extracted
on data and simulation, applying the full selection on both. The correction weights are
used in the simulation sample. The dependence of the efficiency on kinematic variables is
checked. The final correction is defined as the ratio

wL0 = εdataTOS
εMC
TOS

. (3.12)

Since the trigger response is a function of the muon momentum, the hardware trigger
correction is calculated in bins of max{pT(µ+), pT(µ−)}. The binning is chosen to be
one-dimensional only. Another choice would be a two-dimensional binning in pT(µ+) and
pT(µ−). The advantage is a larger sample size in the low max{pT(µ+), pT(µ−)} bins, where
the data-MC difference is the largest. However, a systematic uncertainty is attributed to
the different binning schemes, entering the systematic budget of the simulation corrections
(see Sec.4.3). The final corrections are shown in Fig. 3.37.

After applying the hardware trigger corrections, the TISTOS efficiencies of the HLT 1
and HLT 2 triggers are calculated in the Λ0

b → pK−J/ψ simulation and data sample,
which are found to be compatible. The HLT 1 and HLT 2 efficiencies are presented in
Fig. 3.38 and Fig. 3.39. The trend of the HLT 1 efficiency in Run 1 is the same in data as
in simulation, but an overall shift of 3% is observed. Given that the HLT 2 efficiencies are
well represented without correcting for the shift in the HLT 1 efficiencies, no systematic
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Figure 3.37 – Hardware trigger correction weights as a function of the maximal muon
momentum for the different data taking years.
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Figure 3.38 – Comparison of the HLT 1 efficiency in the control mode in data (black)
and simulation (red).

uncertainty is assigned for this effect.

Figure 3.39 – Comparison of HLT2 efficiencies in the control mode in data (black) and
simulation (red).

3.4.7 Luminosity weight

Small differences in the invariant mass of the Λ0
b candidate have been seen in the signal

simulation samples between the different Run periods, as visible in Fig. 3.40. Those can
originate from higher pile-up conditions, which lead to worse momentum and impact
parameter resolution. In addition, differences in the particle reconstruction cause changes
of the Λ0

b mass tails. Therefore, it was decided to introduce weights, which scale the
simulation samples from different year periods as it is expected from the luminosity for
each year Ly, given in Tab.3.1. The weights are then calculated as

wy = Ly∑
i Li
× Ny∑

j Nj

. (3.13)
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Figure 3.40 – Comparison of Λ0
b invariant mass distribution in the rare q2 region of the

Λ0
b → pK−µ+µ− simulation samples (left) and the J/ψ bin of the

Λ0
b → pK−J/ψ samples (right).

Ny denotes the number of entries in the specific simulation sample.
For most of the background simulation samples, only the years 2012 and 2016 are

available. For most of the decays, there is no big difference between the two years.
Only for the B0

s → K+K−J/ψ and B0
s → K+K−ψ(2S) simulation samples an important

discrepancy is visible, as shown in Fig. 3.41. This discrepancy is probably due to the
lower momentum of the protons in Run 1 than in Run 2, because of the center-of-mass
energy. Moreover, the aerogel was employed in Run 1. Therefore, the proton PID differs
at low momentum, causing a difference between the 2012 and 2016 simulation samples.
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Figure 3.41 – Comparison of Λ0
b invariant mass distribution in the background

simulation samples of the B0
s → K+K−J/ψ (left) and the

B0
s → K+K−ψ(2S) (right) decay for the years 2012 and 2016.

The comparisons for other decays can be found in the App.B. Nevertheless, the lu-
minosity weights are calculated for all samples to be consistent. The luminosity weight
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calculation is this time formulated as

w2012 = LRun 1∑
i Li
× N2012∑

j∈{2012,2016}Nj

, (3.14)

w2016 = LRun 2∑
i Li
× N2016∑

j∈{2012,2016}Nj

. (3.15)

Because of the small data sample size, the data and simulation samples for different
data-taking years are merged. The sizes of the simulation samples are initially not scaled
to the expected luminosity. Therefore, it is essential to use the luminosity weight.

3.4.8 Impact of the correction weights on the angles

In this section, the impact of the correction weights on the angular distributions is
studied. The first weight is the decay model weight, which exists only for the J/ψ mode.
Its application has a large impact on the angular distributions, as shown in Fig. 3.42.
The decay model weight needs to be applied on both generator and reconstruction level
samples. However, since these weights modify the assumption of flat generated angles,
the decay model weights are not taken into account in the calculation of the angular
acceptance.
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Figure 3.42 – Effect of the decay model correction weights on the angular and pK−
invariant mass distributions in the J/ψ mode.

All the other correction weights are tested on Λ0
b → Λ(1520)µ+µ− and Λ0

b → pK−J/ψ
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phase space simulation samples. In summary, the correction weights have only a tiny
impact on the angular distributions. Neither the lifetime weights, the hardware trigger
weights, the PID weights nor the multiplicity weights have an impact on the angles. The
correction of the Λ0

b transverse momentum causes a slight change of the cos θp distribution.
The impact is represented in Fig. 3.43, where it is exemplarily shown for the rare mode.
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Figure 3.43 – Effect of the pT(Λ0
b) correction weights on the cos θp distribution, which is

checked with the Λ0
b → Λ(1520)µ+µ− simulation sample in the rare q2

region.

The last weight is the luminosity weight, which impacts the cos θp and cos θ` distri-
butions slightly, as seen in Fig. 3.44. All of the weights are applied consecutively. The
effect of the correction weights on the angular distributions is considered in the angular
acceptance calculation, presented in Ch. 4.1.
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Figure 3.44 – Effect of the luminosity correction weights on the cos θp and cos θ`
distributions, plotted with the Λ0

b → Λ(1520)µ+µ− simulation sample in
the rare q2 region.
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3.5 The Λ0
b mass fit

As discussed in section 3.3, certain background decays cannot be vetoed. Therefore,
they must be modelled in the unbinned maximum likelihood fit of the pK−µ+µ− invariant
mass. The shapes of the background components are extracted from simulation samples,
which are assumed to model the data well, and subsequently fixed in fits to data. Each
of the components is described in the following.

3.5.1 Signal component

The model of Λ0
b → Λ(1520)µ+µ− decays is called “signal component”, in the following.

Since the same model is used to describe Λ0
b → Λ(1520)J/ψ and Λ0

b → Λ(1520)ψ(2S)
decays, they are exceptionally included under the term “signal”, even they are control
modes.

The Hypatia 2 function [9] describes the signal, which is composed of a generalised
hyperbolic core and two Crystal-Ball-like tails. The Hypatia function has been seen to
describe the pK−µ+µ− invariant mass distribution in simulation slightly better than the
double-sided Crystal-Ball function: the pulls, defined as

Pull = ydatai − yfiti
∆yi

, (3.16)

are closer to zero. The data points are marked as ydatai and have an uncertainty ∆yi. The
fit value at the same point is represented by yfiti . Nevertheless, the Crystal-Ball function
gives a good description, too. Therefore, it will be used as an alternative model for the
systematic uncertainty estimation of the Λ0

b mass modelling in Ch. 4.3.
The hyperbolic core of the Hypatia 2 function has a mean µ and a width parameter

σ, which depends on the asymmetry parameter β. The core shape is defined by λ and
ζ. The shape parameter ζ is fixed to the value 0.1 because of the strong correlation to
the other parameters. Each of the tails has a parameter defining their start α and their
shape n.

J/ψ mode

In the J/ψ and ψ(2S) modes, the dilepton invariant mass can be constrained explicitly
to the known mass of the respective cc resonance, which improves the mass resolution
significantly. The J/ψ constraint improves the resolution of the lepton momenta, which
propagates to the J/ψ resolution and consequently the Λ0

b resolution. The fits to the
pK−J/ψ invariant mass with and without J/ψ constraint are compared in Fig. 3.45. The
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fully corrected Λ0
b → pK−J/ψ simulation samples are used for this comparison.

5400 5500 5600 5700 5800
]2c) [MeV/-µ+µ-m(pK

5−

0

5

Pu
lls

5400 5500 5600 5700 5800
]2c) [MeV/{-}µ+µ-m(pK

0

5000

10000

15000

20000

25000

30000)2 c
C

an
di

da
te

s/
(5

 M
eV

/ LHCb Simulation preliminary
4c/2[8, 11] GeV∈2q

5400 5500 5600 5700 5800
]2c) [MeV/-µ+µ-m(pK

5−

0

5

Pu
lls

5400 5500 5600 5700 5800
]2c) [MeV/{-}µ+µ-m(pK

1

10

210

310

410

510

)2 c
C

an
di

da
te

s/
(5

 M
eV

/ LHCb Simulation preliminary
4c/2[8, 11] GeV∈2q

5400 5500 5600 5700 5800
]2c) [MeV/-µ+µ-m(pK

5−

0

5

Pu
lls

5400 5500 5600 5700 5800
]2c) [MeV/{-}µ+µ-m(pK

0

10000

20000

30000

40000

50000

60000

70000

80000)2 c
C

an
di

da
te

s/
(5

 M
eV

/ LHCb Simulation preliminary
4c/2[8, 11] GeV∈

ΨJ/
2q

5400 5500 5600 5700 5800
]2c) [MeV/-µ+µ-m(pK

5−

0

5

Pu
lls

5400 5500 5600 5700 5800
]2c) [MeV/{-}µ+µ-m(pK

1

10

210

310

410

510

610)2 c
C

an
di

da
te

s/
(5

 M
eV

/ LHCb Simulation preliminary
4c/2[8, 11] GeV∈

ΨJ/
2q

Figure 3.45 – The J/ψ-unconstrained (top) and J/ψ-constrained (bottom) pK−µ+µ−

invariant mass fits to the fully corrected Λ0
b → pK−J/ψ simulation sample

are shown in the J/ψ bin. The scale of the y axis is linear on the left plot
and logarithmic on the right plot.

The pulls of the unconstrained fit are all situated close to zero. Therefore, the signal
model describes well the signal peak in the simulation sample. The pulls of the J/ψ-
constrained fit are more spread. The kink in the distribution of the simulation sample at
5720 MeV/c2 is not well described by the fit.

The resulting fit parameter values of the two fits are collected in Tab. 3.15. Since it
is a weighted unbinned maximum likelihood fit, the parameter errors are estimated by
using the asymptotic error calculation [181]. The resolution is, as expected, significantly
reduced in the constrained fit. In addition, a shift in the mean value of the Λ0

b mass
can be perceived. The tail parameters are for both fits of the same order of magnitude.
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Parameter J/ψ-unconstrained J/ψ-constrained
µ [MeV/c2 ] 5623.42± 0.27 5620.00± 0.08
σ [MeV/c2 ] 17.33± 0.18 7.11± 0.09

αL 2.22± 0.04 2.11± 0.05
nL 1.19± 0.04 1.90± 0.05
αR 2.32± 0.14 1.93± 0.05
nR 3.27± 0.28 2.00± 0.05
λ −3.18± 0.19 −2.50± 0.13
β −0.01139± 0.00110 −0.00163± 0.00213

Table 3.15 – The rounded resulting fit parameter values of the J/ψ-unconstrained and
J/ψ-constrained Λ0

b mass fits in the J/ψ mode are listen in this table.

However, it needs to be noted that the parameters of the J/ψ-unconstrained Λ0
b mass fit

have larger uncertainties than in the J/ψ-constrained case. The value of β indicates a
higher asymmetry in the unconstrained fit.

ψ(2S) mode

Due to the lack of decay model weights for the Λ0
b → pK−ψ(2S) simulation sample, the

Λ0
b → Λ(1520)µ+µ− simulation sample served to model the unconstrained Λ0

b mass peak in
the ψ(2S) mode. The ψ(2S)-constrained Λ0

b mass fit is performed on the Λ0
b → pK−ψ(2S)

simulation sample. The fits are depicted in Fig. 3.46. Both fits describe well the mass
distribution of the simulated sample. The ψ(2S) distributions visually resemble those of
the J/ψ mode. The similarity is especially visible in the unconstrained fit, which underlines
that the Λ0

b → Λ(1520)µ+µ− sample provides in the ψ(2S) mass region a good description
of the Λ0

b mass peak, originating from Λ0
b → Λ(1520)ψ(2S) decays.

For the fit, the asymmetry parameter β is fixed to the value obtained in the J/ψ mode
fit, such that the resolution can be compared between the two q2 bins. The resulting
parameter values are collected in Tab. 3.16. The values of the tail parameters are similar
between the constrained and unconstrained fits, up to a slight difference in the nL para-
meter. The mean of the ψ(2S) fits is of the same order of magnitude as the J/ψ fits. The
resolution is better in the constrained case and similar in the unconstrained case.

Rare mode

In the rare q2 bins, the Λ0
b → Λ(1520)µ+µ− simulation sample is used for the fits,

although the fits are performed in each of the q2 bins separately. The fits of the simulated
pK−µ+µ− invariant mass in the rare q2 bins are presented in Fig. 3.47. The resulting fit
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Figure 3.46 – The pK−µ+µ− invariant mass fits to the fully corrected
Λ0
b → Λ(1520)µ+µ− simulation sample in the ψ(2S) bin and the fit of the

ψ(2S)-constrained Λ0
b mass to the Λ0

b → pK−ψ(2S) simulation sample are
shown.
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Figure 3.47 – The pK−µ+µ− invariant mass fits of the fully corrected
Λ0
b → Λ(1520)µ+µ− simulation sample are shown. The fits are performed

in all q2 bins of the rare mode.
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Parameter ψ(2S)-unconstrained ψ(2S)-constrained
µ [MeV/c2 ] 5623.71± 0.08 5619.82± 0.02
σ [MeV/c2 ] 17.91± 0.22 6.26± 0.10

αL 2.27± 0.06 2.26± 0.11
nL 1.40± 0.07 2.38± 0.10
αR 2.51± 0.11 2.64± 0.23
nR 2.94± 0.31 2.97± 0.20
λ −3.10± 0.22 −1.88± 0.07
β fixed to −0.01139 fixed to −0.00163

Table 3.16 – The rounded fit parameter values of the Λ0
b mass in simulation in the ψ(2S)

bin are listen in this table. A ψ(2S) constraint is applied on the Λ0
b mass

for comparison.

values are listed in the tables 3.17 and 3.18.

Parameter q2 ∈ [0.1, 3]GeV2/c4 q2 ∈ [3, 6]GeV2/c4 q2 ∈ [6, 8]GeV2/c4

µ [MeV/c2 ] 5623.54± 0.05 5623.38± 0.05 5623.24± 0.07
σ [MeV/c2 ] 16.84± 0.15 17.09± 0.12 17.38± 0.25

αL 2.49± 0.08 2.13± 0.03 2.079± 0.006
nL 1.16± 0.16 1.75± 0.11 1.91± 0.06
αR 2.32± 0.05 2.35± 0.05 2.52± 0.51
nR 2.11± 0.12 2.31± 0.12 2.26± 0.57
λ −3.55± 0.22 −3.38± 0.15 −3.12± 0.70
β fixed to −0.01139 fixed to −0.01139 fixed to −0.01139

Table 3.17 – The resulting parameter values from the pK−µ+µ− invariant signal mass fit
in the low q2 bins. In the fit to data, the shape parameters are fixed to
these values.

The resolution, σ, and mean, µ, values are all of the same order of magnitude. The ab-
solute Λ0

b mass mean is slightly shifted with respect to the known world-average value [21].
The shape parameters are fixed in the fit to the data, while the mean and the resolution
remain free-floating.

3.5.2 The B0 → K∗0µ+µ− background component

As seen in Ch. 3.3.6, the B0 → K∗0J/ψ contribution cannot be neglected in the
Λ0
b → Λ(1520)J/ψ decay. Therefore, a one-dimensional kernel estimation PDF models

this background by a superposition of Gaussian, which is also called RooKeysPdf. The
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Parameter q2 ∈ [1, 6]GeV2/c4 q2 ∈ [11, 12.5]GeV2/c4

µ [MeV/c2 ] 5623.42± 0.04 5623.34± 0.09
σ [MeV/c2 ] 17.15± 0.10 17.73± 0.23

αL 2.29± 0.04 2.04± 0.06
nL 1.44± 0.10 2.09± 0.25
αR 2.40± 0.04 2.48± 0.12
nR 2.17± 0.10 2.77± 0.35
λ −3.27± 0.12 −3.22± 0.25
β fixed to −0.01139 fixed to −0.01139

Table 3.18 – The resulting parameter values of pK−µ+µ− signal fit in the larger low q2

bin and the bin between the two cc resonances. In the fit to data, the
shape parameters are fixed to these values.

shape of this background is extracted from B0 → K∗0J/ψ simulation samples, as drawn
in Fig. 3.48. To prevent edge effects, when fitting to these simulated samples, the mass
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Figure 3.48 – Extraction of the shape of the B0 → K∗J/ψ background contribution from
B0 → K∗J/ψ simulation samples in the J/ψ-unconstrained (left) and
J/ψ-constrained (right) pK−µ+µ− invariant mass fit.

range is chosen to be broader than in the signal fit, and the MirrorBoth option is turned
on. This background shape is used later in the fit to data, where only the yields stay free
floating. Therefore, the normalisation of the distribution can change, but no mass shift
be introduced.

This background needs to be modelled in the ψ(2S) bin as well. The shape of the
B0 → K∗0ψ(2S) contribution is extracted from simulation samples, following a similar
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procedure. The final shape is shown in Fig. 3.49. In the ψ(2S) mode, the B0 bump in
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Figure 3.49 – Extraction of the shape of the B0 → K∗ψ(2S) background contribution
from B0 → K∗ψ(2S) simulation samples in the ψ(2S)-unconstrained (left)
and ψ(2S)-constrained (right) pK−µ+µ− invariant mass fit.

the pK−µ+µ− spectrum is moving closer to the Λ0
b mass peak than in the J/ψ bin.

In the BF analysis of Λ0
b → Λ(1520)µ+µ− decays [60], the misidentification background

is not accounted for in the nominal fit. However, the difference between the nominal fit and
the fit, including the misidentification background modelling, contributes as systematic
uncertainty. In this analysis, the background is chosen to be modelled in the control mode
because of the contribution calculated in Tab. 3.10, while it is obtained to be negligible
in the rare mode.

3.5.3 The B0
s → K+K−µ+µ− background component

After including the B0 → K∗0J/ψ background component, the fit of the pK−J/ψ in-
variant mass did not converge. Enlarging the φ veto to ±30MeV/c2 around the resonance
helps the convergence of the fit with a B0 → K∗0J/ψ component. Unfortunately, em-
ploying such a veto leads to an 8.8% loss of signal efficiency. Although the core of the
φ resonance is vetoed, the tail of this resonance cannot be neglected. This is the reason
why it is concluded that the B0

s → K+K−J/ψ background needs to be modelled in the
J/ψ mode.

The background shape is extracted from B0
s → K+K−J/ψ simulation samples and

modeled by a RooKeysPdf. The final result can be seen in Fig. 3.50. The similar compon-
ent is also modelled in the ψ(2S) mode, since the contribution is expected to be higher
due to its larger relative branching fraction in the ψ(2S) mode. The B0

s → K+K−ψ(2S)
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Figure 3.50 – Extraction of the shape of the B0
s → K+K−J/ψ background contribution

from B0
s → K+K−J/ψ simulation samples in the J/ψ-unconstrained (left)

and J/ψ-constrained (right) K+K−µ+µ− invariant mass fit.

shape is presented in Fig. 3.51. Similarly to the B0 case, the B0
s bump moves closer to

the Λ0
b mass peak.

3.5.4 Combinatorial background component

To prevent the misidentification background from catching up some of the combin-
atorial background, the combinatorial background shape is evaluated in five bins of the
BDT. The low BDT region [−1.0,−0.9] is excluded since other backgrounds populate
it, and the shape is not exponential anymore. In the high BDT region of [0.9, 1.0], the
B0
s → K+K−µ+µ− and the B0 → K∗0µ+µ− backgrounds are present. Therefore, this

region is also excluded from the background evaluation.
The Λ0

b mass is described by a bifurcated Crystal-Ball distribution. The shape para-
meters and the resolution are fixed to those obtained from the fit to the simulation sample.
The Λ0

b mean stays free-floating in the J/ψ fits and is fixed in the ψ(2S) fits to the value
obtained from the J/ψ fit due to a lower amount of Λ0

b decays. The combinatorial back-
ground is modelled with an exponential. The fits are performed in a pK−µ+µ− invariant
mass window of [5350, 5900]MeV/c2.

The fits of the ψ(2S)-constrained pK−µ+µ− invariant mass are presented in Fig. 3.52.
The fits to the J/ψ-constrained mass are collected in App. F, in addition to the fits to the
unconstrained pK−µ+µ− invariant mass in J/ψ and ψ(2S) bins.

The resulting slope values, τ , of the exponential are collected in Tab. 3.19 for the fits
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Figure 3.51 – Extraction of the shape of the B0
s → K+K−ψ(2S) background

contribution from B0
s → K+K−ψ(2S) simulation samples in the

ψ(2S)-unconstrained (left) and ψ(2S)-constrained (right) K+K−µ+µ−

invariant mass fit.
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Figure 3.52 – Combinatorial background shape in the ψ(2S)-constrained bin is obtained
by fitting the ψ(2S)-constrained pK−µ+µ− invariant mass in bins of the
BDT. The fit results per each BDT bins are listed in Tab. 3.20.
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in the J/ψ mode. The τ parameters obtained from the J/ψ-constrained and unconstrained
fits are compatible with each other within one standard deviation.

BDT bin τJ/ψ [ c2

MeV ] τJ/ψ-constrained [ c2

MeV ]
[−0.9,−0.6] −0.00176± 0.00007 −0.00177± 0.00007
[−0.6,−0.2] −0.00187± 0.00010 −0.00190± 0.00010
[−0.2, 0.2] −0.00198± 0.00012 −0.00192± 0.00012
[0.2, 0.6] −0.00223± 0.00012 −0.00207± 0.00012
[0.6, 0.9] −0.00222± 0.00010 −0.00221± 0.00010

Table 3.19 – The resulting τ parameter values, by fitting the combinatorial background
in different bins of the BDT. The fits to the J/ψ-constrained and
unconstrained pK−µ+µ− invariant mass are performed in the J/ψ bin.

The resulting slope values, τ , of the ψ(2S) mode fits are collected in Tab. 3.20. The τ
parameters from the ψ(2S)-constrained and unconstrained fits have larger discrepancies
at low BDT output values than the τ values in the J/ψ case. However, compatibility of at
most two standard deviations is reached. The ψ(2S) bins contain a smaller data sample
size than the J/ψ bin and a larger fluctuation, which are the origin of larger uncertainties
of the τ parameters.

BDT bin τψ(2S) [ c2

MeV ] τψ(2S)-constrained [ c2

MeV ]
[−0.9,−0.6] −0.00103± 0.00014 −0.00112± 0.00014
[−0.6,−0.2] −0.00078± 0.00021 −0.00111± 0.00021
[−0.2, 0.2] −0.00160± 0.00028 −0.00168± 0.00027
[0.2, 0.6] −0.00174± 0.00029 −0.00193± 0.00029
[0.6, 0.9] −0.00189± 0.00027 −0.00182± 0.00026

Table 3.20 – The resulting τ parameter values, by fitting the combinatorial background
in different bins of the BDT. A fit of the ψ(2S)-constrained and
unconstrained pK−µ+µ− invariant mass is performed in the ψ(2S) bin.

The resulting τ values are plotted in Fig. 3.53 for the different q2 bins. A fit is
performed to the τ values as a function of the BDT value, which permits to extrapolate
the τ parameter to the signal region in the BDT ∈ [0.99, 1.0] bin. The resulting values
are listed in Tab. 3.21.

The τ values in J/ψ-constrained and unconstrained bins are compatible within one
standard deviation. Their uncertainty is 2-3 times smaller than for the ψ(2S) bins. The
τ values in the ψ(2S)-constrained and unconstrained bins are compatible within one
standard deviation. The τ value will be fixed in the ψ(2S) fit to these extrapolated values.
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Figure 3.53 – The τ parameters, obtained by fitting the combinatorial background in
bins of the BDT, are drawn.

Bin Extrapolated τ value [ c2

MeV ]
J/ψ −0.00234± 0.00014
J/ψ-constrained −0.00226± 0.00013
ψ(2S) −0.00212± 0.00032
ψ(2S)-constrained −0.00206± 0.00030

Table 3.21 – The extrapolated τ values in the different q2 bins. They are obtained by
fitting the τ values in the different BDT bins and extrapolating it to the
interval of BDT ∈ [0.99, 1.0].
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It will be seen in the data fits that the resulting τ value of the J/ψ-unconstrained fit agrees
within one standard deviation with the extrapolated value. In contrast, a discrepancy of
six standard deviations is seen in the J/ψ-constrained case.

3.5.5 Data fits

In data, the ratio of the signal and background components depends on the q2 bin.
This is the reason why the fit strategy is explained separately for each of the q2 regions.

J/ψ mode

Fits to the J/ψ-constrained and unconstrained pK−µ+µ− invariant mass distribution
are performed. Both of them are composed of a signal component and an exponential for
the combinatorial background component. The yield and the slope of the exponential are
free-floating. Furthermore, B0 → K∗0J/ψ and B0

s → K+K−J/ψ decays are part of the fit
model. Their relative yields are extracted from data.

To extract the relative yields of the misidentification backgrounds, the proton mass
hypothesis is substituted in the fully selected data sample, and separate fits are performed
to the J/ψ-constrained invariant mass distributions of the K−π+µ+µ−, K+K−µ+µ− and
the p ↔ K swapped misidentification decays. Λ0

b → pK−J/ψ decays are vetoed, as
well as other misidentification backgrounds. For example, in the fit to the K+π−J/ψ

distribution, an additional veto of B0
s → K+K−J/ψ decays is implemented. Each of the

vetoes is of about ±30MeV around the known respective b-hadron mass. For the swapped
double hadron misidentification background, both of the B meson background decays are
vetoed.

In App. E, the fits to the B0 and the B0
s misidentification backgrounds, as well as

the pK− swapped double misidentification background, are shown. The resulting relative
yields are

r
J/ψ
B0
s

= NB0
s→K+K−J/ψ

NB0→K∗0J/ψ
= 0.72± 0.04, (3.17)

r
J/ψ
p↔K = Np↔K

NΛ0
b
→pK−J/ψ

= 0.0211± 0.0014. (3.18)

The fraction rJ/ψB0
s
above obtained is smaller than the one obtained in the RpK analysis [95]

and the BF analysis [60], which are extrapolated to the full Run 1 and 2 dataset 1.25±0.12
and 0.98± 0.09. Since the PID variables were retrained for Run 2, the ratio could differ
between Run 1 and 2. Particularly in Ref. [97, 98], a difference between the background
compositions in Run 1 and 2 has been observed. It needs to be kept in mind that imposing
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the pK− mass window removes the contribution of the f ′2(1525), as it was seen in Sec. 3.3.
However, for the two referenced analyses, a contribution of f ′2(1525) is present. Due to
the similar shape of the two contributions, it is better to fix their relative fraction rJ/ψB0

s
in

the data fits to the number obtained in Eq. 3.17.
The fraction r

J/ψ
p↔K is compatible within two standard deviations with the fraction

obtained by the RpK analysis, extrapolated to the full Run 1 and 2 dataset [95]. An
extrapolation is performed because of the different proton PID requirements in the RpK

analysis and yields a value of 0.0190 ± 0.0013. Therefore, the tighter PID requirements
in the RpK analysis are compensated by the narrower pK− mass window in this analysis.
Combining the obtained fractions of the BF measurement [60] for the Run 1 and 2 dataset
leads to a fraction of rJ/ψp↔K = 0.033 ± 0.002. This fraction is expected to be bigger than
ours due to the wider pK− mass window. Because this fraction is at 2% level, it is
neglected in the final fit.

The data fits of the Λ0
b mass distribution are presented in Fig. 3.54. The J/ψ-

constrained and unconstrained mass fits are both plotted. The fit to the unconstrained
mass describes well the data distribution. In the fit to the J/ψ-constrained Λ0

b mass,
a peak of the Ξ0

b baryon is slightly visible. However, the misidentification background
shapes represent less good the data shape since it has pulls deviating from zero at around
5500MeV/c2 and 5850MeV/c2. The deviation seems to originate from an imprecise back-
ground shape modelling.

Parameter J/ψ-unconstrained J/ψ-constrained
µ [MeV/c2 ] 5623.96± 0.10 5619.81± 0.04
σ [MeV/c2 ] 19.94± 0.12 7.97± 0.04

Nsig 44302± 251 43373± 222
Ncombi 9196± 256 8639± 233
NB0 4798± 162 5755± 129
NB0

s
3455± 225 4144± 248

NΞ0
b

- 84± 27

τ [ c2

MeV ] −0.00240± 0.00013 −0.00310± 0.00016

Table 3.22 – The resulting parameter values and yields are listed separately for the
results of the J/ψ-unconstrained and J/ψ-constrained Λ0

b mass fits in data.

The fit values are summarised in Tab. 3.22. The Λ0
b mass mean is in the unconstrained

case about 4 MeV/c2 away from the mass in the PDG [21], while in the constrained case,
the difference is of only about 0.2MeV/c2. As expected, the mass resolution is significantly
worse in the unconstrained case. The slope of the exponential is compatible within one
standard deviation with the extrapolated τ for the J/ψ-unconstrained fit. The τ value of
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Figure 3.54 – The fits of the J/ψ-unconstrained (top) and J/ψ-constrained (bottom)
pK−µ+µ− data samples are shown. The scale is linear on the left and
logarithmic on the right.
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the J/ψ-constrained fit is six standard deviations away from the extrapolated value. The
reason for this is probably that the left shoulder of the misidentification background does
fit the data worse, which is observable by the spikes in the pull distribution. Due to the
worse background shape modelling, the B0 and the B0

s background yields are higher in
the J/ψ-constrained fit. To compensate, the signal and combinatorial background yields
are about four standard deviations lower. Nevertheless, the yield difference is only about
2% with respect to the signal yield.

In the J/ψ-unconstrained fit, the yield of the combinatorial background is measured
to be 20% of the signal yield. As expected, it is the dominant background. The yield of
the B0 → K∗0J/ψ decay is about 11% of the signal decay yield, and the B0

s → K+K−J/ψ

decays 8%. These numbers are slightly higher than their estimation. In the following, the
J/ψ-unconstrained Λ0

b mass fit is used predominantly as the control mode. The decision
is based on better mass fit modelling and the similarity of the procedure with the one
employed in the rare mode. Despite the different procedures in extracting sWeights, the
angular distributions should be similar.

Although the fit convergence is optimised with the negative log-likelihood, the final
fit quality is evaluated by the χ2 per degree of freedom. The χ2/ndof value of the J/ψ-
unconstrained Λ0

b mass fit is 1.08 and 2.09 in the constrained case. Both of them are
reasonably close to unity. However, the closeness of the χ2/ndof value of the unconstrained
fit to unity reflects the excellent fit quality.

ψ(2S) mode

It is an interesting cross-check to test the fitting procedure in the ψ(2S) bin since it is
a resonant mode but with lower yields. The fitting procedure is similar to the J/ψ mode.

The relative fraction of B0 → K∗0ψ(2S) yields has been calculated in this chapter to
be higher than in the J/ψ mode. Therefore, this background is not negligible. Therefore,
the fraction of background decays is extracted in data and calculated to be of

r
ψ(2S)
B0
s

= NB0
s→K+K−ψ(2S)

NB0→K∗0ψ(2S)
= 1.2± 0.2, (3.19)

r
ψ(2S)
p↔K = Np↔K

NΛ0
b
→pK−ψ(2S)

= 0.023± 0.012. (3.20)

The interplay of a higher branching fraction of the B0
s → K+K−ψ(2S) decay and a

lower branching fraction of the B0 → K∗0ψ(2S) with comparison to the J/ψ mode, a
higher rψ(2S)

B0
s

value is expected. The fraction r
ψ(2S)
p↔K is compatible within one standard

deviation with the rJ/ψp↔K fraction. Since it is measured to be very small, the swapped
misidentification of the proton and kaon background is not part of the fit model.
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Figure 3.55 – The data fit of the pK−µ+µ− invariant mass spectrum with (right) and
without (left) ψ(2S) constraint is shown in the ψ(2S) bin.

Both the B0
s → K+K−ψ(2S) and the B0 → K∗0ψ(2S) decays are modelled in the

fit. Their relative fraction is fixed to the data-driven fraction estimation in Eq. 3.19. The
slope of the combinatorial background is fixed to the value calculated in Tab. 3.21, in
order to ensure the correct background yield calculation.

As shown in App. G.2, the resolution of the Λ0
b in the ψ(2S) unconstrained pK−µ+µ−

invariant mass fit, is as broad as in the J/ψ unconstrained fit. Because of the re-
duced phase-space, a smaller resolution is expected. This is why the resolution of the
ψ(2S)-unconstrained fit, σψ(2S), has been fixed to a function of the resolution of the J/ψ-
unconstrained fit, σJ/ψ, which is expressed as

σψ(2S) = σJ/ψ

√√√√mΛ0
b
−mp −mK− −mψ(2S)

mΛ0
b
−mp −mK− −mJ/ψ

= 13.54 (3.21)

The final fit projection is drawn in Fig. 3.55. The resulting yields are summarised in
Tab. 3.23. The signal yields are compatible within one standard deviation. The individual
background yields are compatible within up to three standard deviations. The resolutions
of the constrained fits in the J/ψ, and ψ(2S) regions are difficult to compare since the
DecayTreeFitter algorithm adapts the momenta of the final state particles in the J/ψ
mode, while this algorithm is not used in the ψ(2S) constraint.

The ratio of the Λ0
b yields in the ψ(2S) mode and the J/ψ mode are for the constrained

and unconstrained fit of (1.67 ± 0.07)% and (1.67 ± 0.08)%. The ratio is compared to
the results of previous analyses in Tab. 3.24. As can be seen, this analysis has a smaller
Λ0
b → pK−ψ(2S) yield than the previous analyses. Compared to the others, this analysis
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Parameter ψ(2S)-unconstrained ψ(2S)-constrained
µ [MeV/c2 ] 5623.68± 0.70 5619.87± 0.26
σ [MeV/c2 ] fixed to 13.52 6.98± 0.38

Nsig 741± 35 724± 32
Ncombi 701± 50 814± 50
NB0 341± 26 306± 24
NB0

s
409± 75 367± 68

τ [ c2

MeV ] fixed to −0.00212 fixed to −0.00206

Table 3.23 – The resulting parameter values and yields of the unconstrained and
constrained pK−ψ(2S) invariant mass fit in data are listed in this table.

focuses on the Λ(1520) resonance, while the others analyze the full pK− invariant mass
spectrum. In addition, the full Run 1 and 2 datasets are analyzed.

Run1 2016
Ref. [95] (2.48± 0.12)% (2.43± 0.12)%
Ref. [182] (2.74± 0.13)%
Ref. [60] (2.62± 0.16)% (2012) (2.64± 0.13)%

This analysis (1.67± 0.08)%

Table 3.24 – Ratio of Λ0
b → pK−ψ(2S) yields over the Λ0

b → pK−J/ψ yields.

The χ2/ndof of the fit to the unconstrained pK−ψ(2S) invariant mass distribution is
1.29, and in the constrained fit it is about 0.92, which are both reasonably close to one.

Rare q2 bins

The dominant background in the rare mode is the combinatorial one, which is modelled
by an exponential. Contributions from B0 → K+π−µ+µ− and B0

s → K+K−µ+µ− decays
are calculated to be negligible, but their yield uncertainties are large in comparison to
their yields. It has been decided to choose the lower bound of the Λ0

b mass window to be
5540MeV/c2, such that the exponential could eventually include contributions from B0

and B0
s decays in the bins below the J/ψ resonance. Due to the small data sample size,

the expected tininess of the background contribution and the large uncertainties of the
theoretical predictions in this q2 region, the description is acceptable.

The width of the Hypatia 2 function, describing the signal, is found to vary in the
different q2 bins. Thanks to the large data sample size in the J/ψ bin, the resolution of
the Λ0

b mass peak is well-known in this bin. However, the Λ0
b mass resolution depends
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Figure 3.56 – The scale factor α of the ratio of the Λ0
b mass width in the different q2

bins in the simulation sample.

on the available phase space and has, therefore, to be scaled by a scale factor. The scale
factor α is the ratio of the Λ0

b mass resolutions of the simulation samples, which has been
calculated as shown in Fig. 3.56. The full formula is written as

σdatarare = ασdataJ/ψ , (3.22)

α = σMC
rare
σMC
J/ψ

. (3.23)

In the data fits to the rare mode, the mean of the Λ0
b mass distribution changed

depending on the different q2 bin. Since there is no physical reason for this variation, the
mean has been fixed to the value obtained in the J/ψ bin. This effect is accounted for as
systematic uncertainty.

The projections of the fit in data can be seen in Fig. 3.57. The pulls in all these fits are
close to zero. In the q2 bin between 6 and 8GeV2/c4, a statistical fluctuation is the reason
why the Λ0

b mass peak in data seems to be a bit lower than the maximum of the total fit
lineshape. The corresponding fit parameter values and yields are listed in Tab. 3.25 and
3.26.

The slope of the exponential, τ , is compatible within one standard deviation between
all of the bins. The χ2 of the fits are all below unity, in-between 0.43 and 0.92. This means
that the fit tends to describe the data slightly too well for the available data sample size.

In summary, the pK−µ+µ− invariant mass is fitted in the rare, J/ψ and ψ(2S) mode.
All of the fits describe well the data. The J/ψ and ψ(2S)-constrained and unconstrained
fits are compared with each other. The J/ψ-unconstrained fit has pulls closer to zero,
which is the reason why the unconstrained fits are retained as a reference.
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Figure 3.57 – The pK−µ+µ− invariant mass fits performed on data, separately for each
of the q2 bins in the rare mode.
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Parameter q2 ∈ [0.1, 3]GeV2/c4 q2 ∈ [3, 6]GeV2/c4 q2 ∈ [6, 8]GeV2/c4

µ [MeV/c2 ] fixed to 5623.96 fixed to 5623.96 fixed to 5623.96
σ [MeV/c2 ] fixed to 16.80 fixed to 17.07 fixed to 17.34

Nsig 145± 14 135± 14 97± 13
Nbkg 335± 116 332± 113 452± 166

τ [ c2

MeV ] −0.0074± 0.0018 −0.0073± 0.0018 −0.0092± 0.0019

Table 3.25 – The resulting parameter values and yields of the pK−µ+µ− fit in data are
shown for the low q2 bins in the non-resonant region.

Parameter q2 ∈ [1.1, 6]GeV2/c4 q2 ∈ [11, 12.5]GeV2/c4

µ [MeV/c2 ] fixed to 5623.96 fixed to 5623.96
σ [MeV/c2 ] fixed to 16.93 fixed to 17.71

Nsig 189± 17 94± 11
Nbkg 656± 166 156± 69

τ [ c2

MeV ] −0.0079± 0.0014 −0.0061± 0.0024

Table 3.26 – The resulting parameter values and yields of the pK−µ+µ− fit in data are
shown for the larger bin in the low q2 region and the q2 bin in-between the
two cc resonances.
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The pK−µ+µ− invariant mass fits are used to assign sWeights, which are per-event-
weights, corresponding to the signal probability of each of these events. With these
sWeights, the backgrounds can be subtracted from the data distributions, which are not
correlated to the pK−µ+µ− invariant mass. The correlation with the pK−µ+µ− invariant
mass is checked in the following section.

3.5.6 Correlations with the pK−µ+µ− invariant mass

Performing an angular fit on the sWeightted data [160] is only valid if the correlations
are negligible between the pK−µ+µ− invariant mass, where the sWeights are extracted,
and the variables of the angular fit. Therefore, the linear correlation is estimated in data
by calculating the Pearson coefficient in each of the q2 bins.

The absolute value of the correlation between the pK−µ+µ− invariant mass and the
angles is in all bins smaller or equal to 1%. The corresponding correlation plots are in
App. H. The biggest correlation is between the pK−µ+µ− and the pK− invariant mass, due
to the momentum resolution of the hadrons. Over- or under-estimating the momentum
of one of the hadrons leads to a higher value of m(pK−µ+µ−) and the m(pK−). The
corresponding correlation is at most 3%. The two-dimensional histograms, which are
used to calculate the correlation, are shown in Fig. 3.58.

The correlations are judged to be small enough to perform an angular fit on the
sWeighted dataset. Consequently, sWeights are calculated for all bins and added to the
data distributions.
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Figure 3.58 – The two-dimensional distributions of the pK−µ+µ− and pK− invariant
masses are plotted in the different q2 bins. No strong correlation is found
between the two mass distributions.
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Chapter 4
Angular analysis of Λ0

b → Λ(1520)µ+µ−

decays

This chapter focuses on the development and set-up of the angular analysis. The final
aim is to measure observables in data such as A`FB and S1cc in bins of q2. The prerequisite
is a fully selected and background-substracted data sample, which has been obtained as
described in the previous chapter. The trigger, reconstruction and selection introduce a
deformation of the angular distribution referred to as “angular acceptance”. This distor-
tion is accounted for with dedicated event weights, also described in this chapter.

The angular fit is developed based on our current knowledge of theoretical predictions.
The angular fit is composed of many building blocks. The first blocks come from our
theory predictions of the Λ0

b → Λ(1520)µ+µ− transition. However, one also needs to
account for additional spin 1/2 resonances. Furthermore, it is crucial to account for the
interferences between the different Λ∗ resonances as they impact the shape of the angular
distributions and, ultimately, the observables which will be measured, as shown later in
this chapter. There are no theoretical predictions of the values of the possible interferences
between the different Λ∗ resonances. Therefore, dedicated Monte-Carlo samples with
different interference schemes are employed to study these effects and their impact on
the angular observables. Finally, it is also essential to state that the development of the
angular fit is very much an iterative process and far from being a linear one.

4.1 Angular acceptance

The angular acceptance denotes the angular shape, which is introduced by require-
ments such as trigger, reconstruction and selection of the Λ0

b → Λ(1520)µ+µ− decay. For
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example, selections on the transverse momentum of the muons have been identified to
distort heavily the distribution of the cos θ` angle. As a result, the angular acceptance is
extracted separately for each of the studied q2 bins.

The distortion of the angular shape can be easily extracted from phase-space simu-
lation samples, which are produced to be flat in the helicity angles cos θ`, cos θp and φ.
The Λ0

b → Λ(1520)µ+µ− phase-space simulation sample is used in the rare mode. In the
ψ(2S) mode, two different approaches are studied. The angular acceptance is extracted
from the Λ0

b → pK−ψ(2S) simulation samples when applying the background subtraction
weights, sWeights, from the ψ(2S)-constrained Λ0

b mass fit. If the sWeights are obtained
in the ψ(2S) bin from the unconstrained Λ0

b mass fit, the angular acceptance is extracted
from the Λ0

b → Λ(1520)µ+µ− simulated samples. This procedure is employed due to the
lack of Λ0

b → Λ(1520)ψ(2S) simulation samples and to cross-check the two approaches.
The angular acceptance in the J/ψ bin is calculated from the Λ0

b → pK−J/ψ phase-space
simulation sample. No decay model weights are applied since they distort the angular
distribution, as seen in Ch. 3.4.8.

4.1.1 Angular acceptance model

An acceptance model treating the correlation between the angles correctly is set up,
although a linear correlation of at most 2% between the decay angles has been calcu-
lated. The non-factorised angular acceptance is calculated via the Method of Moments
(MoM) [183]. The advantage of this method, in comparison to likelihood fits, is an un-
biased result, even with a small sample size.

In the following, the principle of the MoM and the extraction of the angular acceptance
with the MoM are explained. The input for the calculation is the data points xi from a
distribution P , which depend on the parameter θ. The mean of the sample tends towards
its expectation value with increasing sample size as

x = 1
n

n∑
i=1

yi
n→∞−−−→ 〈x〉 =

∫ +∞

−∞
xP (x|θ)dx = k(θ). (4.1)

k(θ) represents a function of θ. Equating the sample mean x and its expectation value
〈x〉 results into

x = k(θ̂), (4.2)

where θ̂ is the estimate of the parameter θ. The idea of the method is to get θ̂ by
calculating the mean of a certain distribution.

The method can be extended to a function of the data points f(x), which translates
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into studying the distribution of one variable y. The mean of a function f(x) is then
written out as

〈y〉 = 〈f(x)〉 =
∫ +∞

−∞
f(x)P (x|θ)dx. (4.3)

This described technique can be used to extract the angular acceptance ε. It depends on
the three angles ~Ω = (cos θp, cos θ`, φ) and the q2 region. The sample mean is now denoted
by M and is calculated as

〈M〉 =
∫
f(cos θp, cos θ`, φ, q2)ε(cos θp, cos θ`, φ, q2|ck,l,m,n)d~Ωdq2. (4.4)

The angular acceptance can be expressed in terms of Legendre Polynomials PL as

ε(cos θp, cos θ`, φ, q2|ck,l,m,n) =
∑

k,l,m,n

ck,l,m,nPL,k(cos θp)PL,l(cos θ`)PL,m(φ)PL,n(q2). (4.5)

As a result, the correlations between the different variables are considered correctly. The
function f(x) is expressed by Legendre Polynomials in cos θp, cos θ`, φ and q2. The
advantage of this choice is that the orthogonality relation of Legendre Polynomials,

∫ 1

−1
PL,m(x)PL,m′(x)dx = 2

2m+ 1δm,m
′ , (4.6)

can be used to simplify the expression in Eq. 4.5 to

〈Mk,l,m,n〉 = 1∑
iwi

N∑
i=1

wiP
i
L,k(cos θp)P i

L,l(cos θ`)P i
L,m(φ)P i

L,n(q2) (4.7)

=
( 2

2k + 1

)( 2
2l + 1

)( 2
2m+ 1

)( 2
2n+ 1

)
ck,l,m,n. (4.8)

In conclusion, a product of Legendre Polynomials of the angles and q2 is calculated for all
data points. By summing over all data points N , an estimate of the parameters ck,l,m,n
can be accessed. With those parameters, the angular acceptance is reconstructed.

Fourier polynomials can be used as an alternative for Legendre polynomials to para-
metrise the angular acceptance. The Fourier polynomials can be written as

PF,m(x) =

cos mx
2 if m is even

sin (m+1)x
2 if m is odd.

(4.9)

The order of the Fourier polynomials m is a non-negative integer. Their advantage is
the periodicity, which is important for the φ angle. The integral over the product of two
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Fourier polynomials reads

fmm′ =
∫ π

−π
PF,m(x)PF,m′(x)dx =


0 if m 6= m′

π if m = m′ 6= 0

2π if m = m′ = 0.

(4.10)

Therefore, the Fourier polynomials are still orthogonal but not normalised to one.
The final angular acceptance parameters are, thus, expressed as

ck,l,m,n = 1∑
iwi

N∑
i=1

wi

[
P i
L,k(cos θp)P i

L,l(cos θ`)P i
F,m(φ)P i

L,n(q2)

×
(

2k + 1
2

)(
2l + 1

2

)
fmm′

(2n+ 1
2

)]
. (4.11)

The advantage of the described acceptance parametrisation is the need for fewer polyno-
mials to describe the φ shape sufficiently.

4.1.2 Extraction of the angular acceptance event weights

The nominal angular acceptance model contains Legendre polynomials up to order
eight for describing the shape of the cos θp variable. The cos θ` angle is described by even
Legendre polynomials up to order four. The φ distribution is modelled by even Fourier
polynomials up to order four. The angular acceptance is extracted in bins of q2. Since
the bins are relatively small, the q2 distribution is not included in the acceptance model.

The angular shapes of the fully selected and corrected Λ0
b → Λ(1520)µ+µ− and Λ0

b →
pK−J/ψ phase space simulation samples are presented in Fig. 4.1, exemplarily for one of
the rare q2 bin and the J/ψ bin. The projections of the angular acceptance model are
illustrated as a red line. The acceptance models in all the other q2 bins are shown in
App. M.1. The angular acceptance is calculated for each data event, and the inverse is
saved in the data sample as per event weight. To cross-check the angular acceptance, the
angular acceptance weights are calculated for the simulation sample, too. In this case,
the inverse of the acceptance weights is called “correction weights” to distinguish it from
the data sample.

Applying the correction weights on the simulation samples should lead to a flat dis-
tribution. In Fig. 4.2, the phase space simulation samples with the entire selection and
all the corrections are shown for two q2 bins. All the other q2 bins are listed in App. M.2.
The application of the correction weights leads, as expected, to a flat distribution.

In conclusion, the angular acceptance is extracted from phase space simulation samples.
The event weights have been validated and will be used in the angular fit on data.
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Figure 4.1 – The distributions of the Λ0
b → Λ(1520)µ+µ− phase space simulation

samples after the full selection and the corrections are shown in blue for the
q2 ∈ [3, 6]GeV2/c4 bin in the top row. On the bottom row, the angular
acceptance of the J/ψ bin is shown, which is extracted from the
Λ0
b → pK−J/ψ phase space simulation sample. The projections of the

angular acceptance model are drawn as a red line.
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Figure 4.2 – The angular distributions of phase space simulation samples after the
selection and corrections are shown in yellow. The angles with the
correction weights are drawn in violet. On the top, the q2 ∈ [3, 6]GeV/c2

bin is drawn, and the J/ψ bin is on the bottom.
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4.2 Development of the angular fit model

In this section, the angular fit model is developed step by step. It starts with the
description and simplification of the angular fit component describing Λ0

b → Λ(1520)µ+µ−

decays. The second section treats the inclusion of the spin-1/2 Λ∗ resonances. Finally,
the interferences between the Λ∗ resonances are accounted for in the fit model.

4.2.1 Angular fit model of Λ0
b → Λ(1520)µ+µ− decays

The first building block to construct the angular fit model of the Λ0
b → Λ(1520)µ+µ−

decays is the differential decay width, stated in Eq. 1.57 in Sec. 1.3.3. Since the Λ0
b and Λ̄0

b

decays are measured together, the differential decay width is CP averaged. The leptonic
forward-backwards asymmetry, A`FB, referred to as AFB,3/2 in the rest of the text, is the
main observable of interest as it carries the highest sensitivity to NP. The differential
decay width in the heavy-quark limit (see Ch.1.3.3) is expressed as

8π
3

d4(Γ + Γ̄)
dq2d cos θ`d cos θpdφ

' 1
4

(
S1ss sin2 θ` + S1cc cos2 θ` + 4

3A
`
FB,3/2 cos θ`

)
×
(
1 + 3 cos2 θp

)
. (4.12)

The final fit model is a normalised probability density function (PDF). As a result, the
observables S1ss can be expressed as a function of S1cc. The angular PDF of the Λ0

b →
Λ(1520)µ+µ− decay is written as

PDFang,3/2 = 1
4

((
1− 1

2S1cc

) (
1− cos2 θ`

)
+ S1cc cos2 θ` + 4

3A
`
FB,3/2 cos θ`

)
×
(
1 + 3 cos2 θp

)
. (4.13)

The angular observables, which are aimed to be extracted, are marked in red. The
derived angular PDF is based on the assumption to be within the heavy quark limit (see
Ch. 1.2.2). The PDF is tested on Monte-Carlo samples, which are generated with the
full angular differential decay width. The quark model form factors were used in the
generation [6]. The values of the angular observables are fixed to the computed flavio
values in order to check the consistency with the data points. The plots are shown on
the left in Fig. 4.3. The pulls show a good agreement between the dedicated MC sample,
generated with the full differential decay width, and the angular PDF in the heavy-quark
limit, where the angular observables are fixed to the values obtained by flavio.
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Figure 4.3 – The dedicated MC samples of the Λ0
b → Λ(1520)µ+µ− decays are compared

to three different fit models, where the observable values are fixed to the
theoretical prediction. The fit models are the angular PDF in the
heavy-quark limit (left), the full PDF integrated over φ (middle) and the
full PDF integrated over φ, but with ε3 set to zero (right). The
distributions are in the q2 bin in the interval of [3, 6]GeV2/c4.

157



Two alternative models have been tested. Instead of assuming the heavy-quark limit,
both models are obtained by integrating the full differential decay width over the φ angle
to reduce the number of observables and to obtain a better fit stability. The calculation
is described in App. J. The φ integrated PDF is written as

PDFang,3/2 = π
(1

8(6− 2S1ss − S1cc) + 1
3(2A`FB,3/2 + ε3) cos θ`

)
+π8 (6− 10S1ss + S1cc) cos2 θ`

+π
(3

8(6S1ss + S1cc − 2) + (2A`FB,3/2 − ε3) cos θ`
)

cos2 θp

+3π
8 (5S1cc − 2S1ss − 2) cos2 θ` cos2 θp. (4.14)

The full φ integrated PDF represents the second configuration. It depends on the ob-
servables S1cc, S1ss, A`FB,3/2 and ε3. However, the most NP-sensitive observable remains
A`FB,3/2. The same check has been performed as before. Fixing the angular observables
to the flavio values, the angular distributions correspond to the distributions of the MC
samples generated with the full differential decay width. The full PDF integrated over the
φ angle is shown in the centre plots in Fig. 4.3. Again, a good agreement is seen between
the distribution in the MC sample and the PDF integrated of the φ angle.

We have shown in the previous chapter that with the current Run 1 and 2 datasets, we
typically expect about a hundred candidates in each q2 bin. With this in mind, we have
to make sure that we reduce the complexity of the fit i.e. the number of free parameters,
as much as possible. Hence, the values of ε3, from Eq. 4.14, have been calculated with the
flavio implementation, listed in Tab. 4.1. In each of the bins, the ε3 value is smaller or

q2 bin [GeV2/c4 ] ε3 value
q2 ∈ [0.1, 3] −0.0001± 0.0003
q2 ∈ [3, 6] −0.0006± 0.0083
q2 ∈ [6, 8] −0.0012± 0.0055
q2 ∈ [11, 12.5] −0.0035± 0.0033
q2 ∈ [1.1, 6] −0.0004± 0.0006

Table 4.1 – The SM prediction of the ε3 values, using the flavio implementation with
the quark model form factors. They are compatible with zero within two
Standard deviations.

equal to 1% of the A`FB,3/2 prediction. In addition, the ε3 values are compatible with zero
within at most two standard deviations. This is why ε3 is set to zero in a third angular
PDF configuration. The test with the full PDF integrated over the φ angle and setting
ε3 to zero is shown on the right in Fig. 4.3. The MC sample and the PDF integrated over
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Figure 4.4 – The cos θ` contribution of the dedicated Λ0
b → Λ(1520)µ+µ− MC samples

are shown for the different q2 bins in the rare mode.

the φ angle, and setting ε3 to zero, are agreeing well.
All three fit models describe well the Monte-Carlo sample. The angular PDF in the

heavy-quark limit, Eq. 4.13, is chosen to be the default model since the number of free
parameters is the smallest. The angular fit in the heavy quark limit is performed in
all of the rare q2 bins. The corresponding cos θ` and cos θp projections are presented in
Fig. 4.4 and 4.5. The angular fit is only performed in the rare q2 bins because the angular
distribution in the J/ψ and ψ(2S) control mode is a priori not known and the MC samples
do not describe the cc contribution.

4.2.2 Inclusion of other Λ∗ resonances in the fit model

In the pK− mass window around the Λ(1520) resonance which carries a spin 3/2,
several other Λ∗ resonances contribute. In Ref. [4], these have been identified to be mainly
the Λ(1405) and the Λ(1600) resonance, as visible in Fig. 1.15. A small contribution of
the Λ(1800) is visible, too. However, all of those resonances possess a spin of 1/2. For
simplification, it was decided to treat the spin-1/2 Λ∗ resonances together in one fit
component.

To the best of our knowledge, no theoretical predictions are available for Λ∗ 1/2
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Figure 4.5 – The cos θp contribution of the dedicated Λ0
b → Λ(1520)µ+µ− MC samples

are shown for the different q2 bins in the rare mode.

resonances, decaying strongly into a proton and a kaon. The only prediction is the
differential decay width of Λ0

b → Λ0`+`− decays with the weakly decaying ground state
Λ0 [10], which is written as

8π
3

d4Γ
dq2d cos θ`d cos θpdφ

=
(
K1c cos θ` +K1cc cos2 θ` +K1ss sin2 θ`

)
+
(
K2c cos θ` +K2cc cos2 θ` +K2ss sin2 θ`

)
cos θp

+ (K3sc sin θ` cos θ` +K3s sin θ`) sin θp sinφ
+ (K4sc sin θ` cos θ` +K4s sin θ`) sin θp cosφ. (4.15)

The Ki terms represent the angular coefficients. Since the strongly decaying Λ∗ res-
onances are studied, the differential decay width can be simplified. All the angular coeffi-
cients dependent on the weak decay parameter α vanish. K1ss, K1cc and K1c are the only
non-vanishing angular coefficients.

As before, the differential decay width is CP averaged and normalised. In addition,
the forward-backwards asymmetry of the spin-1/2 Λ∗ resonances A`FB,1/2 is introduced.
The angular PDF, describing the Λ0

b → Λ∗J=1/2µ
+µ− contribution is expressed as
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Figure 4.6 – Testing the fit model of the spin-1/2 Λ∗ resonances on the mixture of the
Monte-Carlo samples of Λ0

b → Λ(1405)µ+µ− and Λ0
b → Λ(1600)µ+µ−

decays.

PDFang,1/2 = 1
2 (1−K1cc) sin2 θ` +K1cc cos2 θ` + 2

3A
`
FB,1/2 cos θ`. (4.16)

For convenience, even after CP averaging, the observable name K1cc is kept, in order
to distinguish it from S1cc. Compared to the Λ(1520) contribution, the distribution of
cos θp is flat. It is essential to keep in mind that both of the PDFs are symmetric in cos θp.

Monte-Carlo samples are generated for the Λ(1405) and Λ(1600) resonances. As they
are treated together, the fit model is tested on the merged Λ(1405) and Λ(1600) MC
samples. A fit has been performed in Fig. 4.6. The Λ∗J=1/2 fit model describes well the
shape of the joint MC samples.

Adding the pK− invariant mass to the fit model

The angular PDFs in Eq. 4.13 and 4.16 have a similar shape in cos θ`. Only the cos θp
distributions differ. To help the fit distinguish the resonances, it is necessary to introduce
another fit dimension. Thanks to the pK− invariant mass, the fit entangles the Λ(1520)
and the Λ∗J=1/2 contribution. Therefore, the fraction of the Λ∗ resonances f3/2 is well
known.

The Λ(1520) resonance is modelled with a relativistic Breit-Wigner distribution (BW),
which describes the mass distribution of unstable intermediate resonant states [21, 184,
185]. This complex mass distribution is introduced in order to describe well the shape
of the Λ(1520) resonance. However, the BW is only a valid description for narrow reson-
ances situated far from the mass thresholds and other resonances with the same quantum
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numbers, which is the case for the Λ(1520) resonance. The relativistic BW amplitude is
written as

BW(mpK) = 1
M2

Λ∗ −m2
pK − iMΛ∗Γ(mpK) , (4.17)

where

Γ(mpK) = ΓΛ∗
(
p(mpK)
p(MΛ∗)

)2LΛ∗→pK+1
MΛ∗

mpK

F 2
Λ∗→pK(p(mpK), p(MΛ∗)). (4.18)

The BW pole mass is marked as MΛ∗ and its pole width with ΓΛ∗ . The BW pole mass
and width only agree with the resonance mass and width if the resonances are narrow
and well separated from other resonances. The Λ(1520) resonance is close to the Λ(1405)
and Λ(1600) resonances, which can affect the BW pole mass and width.

The relativistic Breit-Wigner contains barrier factors, which act as an angular mo-
mentum barrier of low angular momenta of the decay products. Those momenta are
namely the Λ∗ momentum in the Λ0

b restframe, denoted as p, and the K− momentum in
the Λ∗ restframe, expressed with q. Those barrier factors are the ratio of the momentum
at a certain pK− mass value with respect to the momentum at the pole mass. Those
are scaled by the orbital angular momentum L. LΛ∗→pK denotes the orbital angular mo-
mentum difference between the proton and kaon in the Λ∗ → pK− decay. The orbital
angular momentum between the Λ∗ and the dimuon system in the Λ0

b → Λ∗µ+µ− decay
is written as LΛb→Λ∗µµ.

Positive values of the orbital angular momentum L cause rapid growth with increasing
momenta p and q. This growth is stopped with the help of the Blatt-Weisskopf form factors
F [186]. The Blatt-Weisskopf form factors are a function of the momenta of the decay
products and the interaction radius of the decaying particle r.

Due to the choice of rectangular phase-space variables (mpK , cos θ`, cos θp, φ), the re-
lativistic Breit-Wigner formula needs to be multiplied by the momenta p and q. Those
daughter momenta in the rest frame of the mother particle are calculated via the formula

p(mpK) =

√
(m2

pK −M2
1 −M2

2 )2 − 4M2
1M

2
2

2mpK

, (4.19)

where M1,2 denote the masses of the daughters.
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The full relativistic BW lineshape is written as

BWrel(mpK)2 = q(mpK)p(mpK)
[(
q(mpK)
q(MΛ∗)

)LΛb→Λ∗µµ
(
p(mpK)
p(MΛ∗)

)LΛ∗→pK

× FΛb→Λ∗µµ(q(mpK), q(MΛ∗), rΛb)
FΛ∗→pK(p(mpK), p(MΛ∗), rΛ∗)
M2

Λ∗ −m2
pK − iMΛ∗Γ(mpK)

]2

. (4.20)

The fit of the pK− invariant mass distribution of the dedicated Λ0
b → Λ(1520)µ+µ−

simulation samples with the real part of the full relativistic BW lineshape is shown in
Fig. 4.7.
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Figure 4.7 – The pK− invariant mass distribution of the dedicated Λ0
b → Λ(1520)µ+µ−

simulation samples is fitted by the full relativistic Breit-Wigner in different
q2 bins in the rare mode.

The Λ(1520) mass peak is especially well described in the q2 bins below the J/ψ

resonance since the pulls are close to zero. The Λ(1520) mass peak in the q2 bin in-
between the two cc resonances, the pulls follow an s-like distribution within +5 and -5σ.

For large data samples, the fitting algorithm has no problem finding the mean,MΛ(1520),
and the width of the resonance ΓΛ(1520). However, with a smaller sample size, a simpli-
fied BW function converges better. In this simplified BW version, the barrier factors, the
Blatt-Weisskop form factors and the momentum factors are replaced by the pK− invariant
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mass and the Γ(mpK), which can be written as

BWrel(mpK)2 = mpKΓ(mpK)
[M2

Λ∗ −m2
pK − iMΛ∗Γ(mpK)]2 . (4.21)

The fits of the pK− invariant mass distribution with the simplified BW are shown in
Fig. 4.8. The pulls are slightly farther from zero than in the complete description. How-
ever, given the size of the data samples that we will be fitting for, the overall size of the
discrepancy observed in these pulls is likely to be negligible.
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Figure 4.8 – The pK− invariant mass distribution of the realistic Λ0
b → Λ(1520)µ+µ−

samples is fitted by the simplified relativistic Breit-Wigner.

As in the generator EvtGen, the interaction radii of rΛb = 0.003 and rΛ∗ = 0.005MeV−1

are fixed. The orbital angular momentum LΛ∗→pK can only take the value of two.
LΛb→Λ∗µµ can take the integer values 0, 1 and 2. Only the lowest orbital angular mo-
mentum is retained and fixed in the future. The same was done in the generation of the
dedicated Monte-Carlo samples [187]. The pole mass and width of the Λ(1520) resonance
stay free-floating.

The spin-1/2 Λ∗ resonances are modelled with Chebyshev polynomials, which have the
advantage of being orthogonal. The dedicated simulation samples have a large sample
size, because of which a polynomial up to order three is used. For the fit of real data, a

164



polynomial with fewer orders can model the pK− invariant mass distribution.
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Figure 4.9 – The pK− invariant mass distribution of the two spin-1/2 Λ∗ resonance
mixture in the dedicated MC samples.

The pK− invariant mass distribution in the dedicated MC samples is plotted in
Fig. 4.9, where the Λ(1405) and the Λ(1600) resonances are mixed. Their occurrence
is generated according to the differential branching fractions of the specific Λ0

b → Λ∗µ+µ−

decays using the Quark Model form factors [6] (described in Ch. 1.3.3). The branching
fraction of the Λ∗ → pK− decays is taken from Ref. [21]. However, as it will be seen in
Fig. 4.14, the fraction of Λ(1520) resonances in the pK− invariant mass window varies
significantly across the different q2 bins, which implies that the composition of Λ(1405)
and Λ(1600) resonances could differ in the different q2 bins.

Fit model combining Λ(1520) and Λ∗J=1/2 resonances

Combining the Λ(1520) with the spin-1/2 Λ∗ resonances, the total fit model for the
pK− invariant mass is written as

PDFpKmass = f3/2|BWrel(mpK)|2 + (1− f3/2)Polynomial(mpK). (4.22)

165



1.48 1.5 1.52 1.54 1.56
]2) [GeV/c-m(pK

5−

0

5

Pu
lls

1.48 1.5 1.52 1.54 1.56

]2) [GeV/c-m(pK

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

)2
N

or
m

al
iz

ed
 e

nt
ri

es
 / 

(0
.0

05
 G

eV
/c 4/c2[0.1, 3] GeV∈2MC generator               q

Total
(1520)Λ
1/2Λ

1.48 1.5 1.52 1.54 1.56
]2) [GeV/c-m(pK

5−

0

5

Pu
lls

1.48 1.5 1.52 1.54 1.56

]2) [GeV/c-m(pK

0

0.02
0.04

0.06
0.08

0.1
0.12

0.14
0.16

0.18
0.2

0.22
0.24)2

N
or

m
al

iz
ed

 e
nt

ri
es

 / 
(0

.0
05

 G
eV

/c 4/c2[3, 6] GeV∈2MC generator               q

Total
(1520)Λ
1/2Λ

1.48 1.5 1.52 1.54 1.56
]2) [GeV/c-m(pK

5−

0

5

Pu
lls

1.48 1.5 1.52 1.54 1.56

]2) [GeV/c-m(pK

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18
0.2

0.22
0.24

)2
N

or
m

al
iz

ed
 e

nt
ri

es
 / 

(0
.0

05
 G

eV
/c 4/c2[6, 8] GeV∈2MC generator               q

Total
(1520)Λ
1/2Λ

1.48 1.5 1.52 1.54 1.56
]2) [GeV/c-m(pK

5−

0

5

Pu
lls

1.48 1.5 1.52 1.54 1.56

]2) [GeV/c-m(pK

0

0.02

0.04

0.06
0.08

0.1

0.12

0.14

0.16
0.18

0.2

0.22

0.24)2
N

or
m

al
iz

ed
 e

nt
ri

es
 / 

(0
.0

05
 G

eV
/c 4/c2[11, 12.5] GeV∈2MC generator               q

Total
(1520)Λ
1/2Λ

1.48 1.5 1.52 1.54 1.56
]2) [GeV/c-m(pK

5−

0

5

Pu
lls

1.48 1.5 1.52 1.54 1.56

]2) [GeV/c-m(pK

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

)2
N

or
m

al
iz

ed
 e

nt
ri

es
 / 

(0
.0

05
 G

eV
/c 4/c2[1.1, 6] GeV∈2MC generator               q

Total
(1520)Λ
1/2Λ

Figure 4.10 – The projections of the pK− invariant mass fit to the dedicated MC
samples in the different q2 bins.

To test the fit model, the individual MC samples of the Λ(1405), Λ(1520) and Λ(1600)
resonances have been added together, without considering possible interferences. The
fraction of Λ(1520) resonances is kept to be approximately 80%, as it was extrapolated
from the pK− mass spectrum in Fig. 1.15. Fitting the dedicated MC samples in the
different q2 bins yields the fit projections drawn in Fig. 4.10.

The pK− mass distribution is well described by the new fit model. The resulting fit
parameters of the polynomial are shown in Tab. 4.2. The fraction of Λ(1520) decays varies

q2 bin [GeV2/c4 ] f3/2 a1 a2 a3

[0.1, 3] 0.794± 0.027 0.06± 0.12 0.13± 0.16 0.08± 0.11
[3, 6] 0.845± 0.015 0.03± 0.08 0.15± 0.12 0.021± 0.08
[6, 8] 0.849± 0.012 −0.28± 0.07 0.21± 0.10 0.10± 0.07

[11, 12.5] 0.853± 0.009 −0.58± 0.07 0.25± 0.08 0.03± 0.05
[1.1, 6] 0.837± 0.013 0.04± 0.07 0.13± 0.10 0.022± 0.07

Table 4.2 – The resulting values of the fraction of Λ(1520) decays and the shape of the
polynomial in the different q2 bins.

slightly in the different q2 bins. The shape parameter a2 and a3 are compatible with zero
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Figure 4.11 – The projections of the angular fit to the dedicated MC samples without
interference effects in the q2 ∈ [6, 8]GeV2/c4 bin.

within four standard deviations. However, the sample size is much larger in the dedicated
MC sample, where one million events are present than the sample size of approximately
100 events expected in the less populated q2 bins in the data.

The total angular PDF can be constructed in the same way. It appears as

PDFang = f3/2

4

(1− 1
2S1cc

) (
1− cos2 θ`

)
+ S1cc cos2 θ` + 4

3A
`
FB,3/2 cos θ`

(1 + 3 cos2 θp
)

+ (1− f3/2)
(1

2 (1−K1cc)
(
1− cos2 θ`

)
+K1cc cos2 θ` + 2

3A
`
FB,1/2 cos θ`

)
(4.23)

The angular terms K1cc and A`FB,1/2 carry the information of all the remaining spin
1/2 resonances. Given the size of the available data samples, as discussed before, we do
not attempt to have an individual description of the spin 1/2 resonances and they are all
treated together.

The angular coefficients depend on the q2 bin. The different dependencies of the
Λ(1520) and the spin-1/2 Λ∗ resonances on the cos θp variable is not enough to separate
the two components. Therefore the pK− invariant mass is introduced as an additional fit
dimension. Instead of fitting all three dimensions at once (mpK , cos θ`, cos θp ) in bins of
q2, the fit is performed independently in each q2 bin, in order to prevent a potential bias
of the f3/2 fraction. The fit is executed in the following order:

1. Fit the pK− mass spectrum with the PDFpKmass to extract the fraction of Λ0
b →

Λ(1520)µ+µ− decays, namely f3/2.

2. Fit the angles cos θ` and cos θp with the PDFang to extract the angular observables
of interest, as well as the interferences.

The fit projections are shown in Fig. 4.11, for instance in the q2 ∈ [6, 8]GeV2/c4 bin.
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As indicated by the pulls, the fit describes well the angular distribution.
To conclude, the angular fit model including spin-1/2 resonances and the Λ(1520)

resonance has been developed. The pK− invariant mass is fitted first to determine the
fraction of Λ(1520) resonances. By naively combining the individual samples with the
different resonances, the fit describes well the dedicated simulation samples. However,
the interference effects are not considered in the fit.

4.2.3 Interferences between the Λ∗ resonances

Due to the presence of different Λ∗ resonances, it is not sufficient to only model the
resonances. It is important to consider the overlap of their amplitudes, which is expressed
via interference terms. This overlap cannot be predicted by theory, but only be determined
by experiments. A “dedicated” generator has been developed in parallel with this work
by LHCb colleagues [187]. It was employed to generate samples with different interference
schemes and allow us to establish how they must be accounted for in the angular fit as
will be shown in this chapter.

Generation of dedicated simulation samples

For the generation of dedicated simulation samples, the full differential decay width
of Λ0

b → Λ∗`+`− decays, including Λ∗ resonances up to spin 5
2 and their interferences, has

been worked out in Ref. [187].
Since the strength of the interference terms is not predicted by theory, a Monte-Carlo

generator was developed [187]. Random combinations of the strong phase differences
e±i(ϕΛ(1520)−ϕΛ(X)) are generated to test the different interference hypotheses. In table 4.3,
the values of the different phase differences ∆ϕX := ϕΛ(1520) − ϕΛ(X) are listed.

Phase combination ∆ϕ1405 ∆ϕ1600

0 0.00π 0.00π
1 1.38π 1.93π
2 1.10π 1.61π
3 0.43π 0.62π
4 0.06π 1.38π
5 1.41π 0.70π

Table 4.3 – Monte Carlo samples are generated based on the following random phase
combinations, which are defined as two phases ∆ϕ1405 and ∆ϕ1600 with
respect to the Λ(1520) resonance.

The Monte-Carlo distributions of the different phase combinations are shown in Fig. 4.12.
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The distributions of the Monte-Carlo samples, which are mixtures of different Λ∗ states,
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Figure 4.12 – The mpK , q2, cos θ` and cos θp distributions are drawn for the different
Monte-Carlo samples with interfering Λ(1405), Λ(1520) and Λ(1600)
resonances, which are generated with random phase combinations 0− 5.

overlap in the mpK , q2 and cos θ` distribution. In the mass distributions, only interference
terms between resonances with the same spin and parity appear. However, the distri-
bution of cos θp changes significantly depending on the sample. This demonstrates that
the interference terms cannot be neglected, but need to be considered in the angular fit
model.

Fit model with interferences

Interferences occur in-between the two spin-1/2 resonances as well as between one of
the spin-1/2 and the Λ(1520) resonance. These interference effects introduce a shift of
the cos θp distribution, as shown in Fig. 4.12. In Ref. [187], it was worked out that the
interference terms can be constant, linear and quadratic in cos θp.

Since interferences appear between the three resonances, the best approach would be
to have a third component for the interference effects. Since this parametrisation requires
many interference parameters and the expected data sample size, it was decided to include
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the interference terms in one of the two PDFs. The following three different configurations
have been tested.

1. The first strategy is to multiply the interference terms to the PDFang,1/2. Taking
into account the normalisation of the interference terms, the PDF can be expressed
as

PDFInt1/2
ang

= f3/2

(1− 1
2S1cc

) (
1− cos2 θ`

)
+ S1cc cos2 θ` + 4

3A
`
FB,3/2 cos θ`


×
(1

4 + 3
4 cos2 θp

)
+ (1− f3/2)

(1
2 (1−K1cc)

(
1− cos2 θ`

)
+K1cc cos2 θ` + 2

3A
`
FB,1/2 cos θ`

)
×
(3− i2

3 + i1 cos θp + i2 cos2 θp

)
. (4.24)

2. The second configuration includes the interference terms in the PDFang,3/2. After
taking into account the normalisation of the interference terms, the PDF takes the
shape of

PDFInt3/2
ang = f3/2

(1− 1
2S1cc

) (
1− cos2 θ`

)
+ S1cc cos2 θ` + 4

3A
`
FB,3/2 cos θ`


×
((1

4 −
j2

3

)
+ j1 cos θp +

(3
4 + j2

)
cos2 θp

)
(4.25)

+ (1− f3/2)
(1

2 (1−K1cc)
(
1− cos2 θ`

)
+K1cc cos2 θ` + 2

3A
`
FB,1/2 cos θ`

)
.

The two configurations above require that both of the angular PDFs of the spin-1/2 and
the Λ(1520) component stay individually positive. Given that the size of the interference
effects can a priori be large, the requirement of the positivity of the individual interferences
is not necessarily guaranteed.

3. In this third option, the PDFInt1/2
ang of Eq. 4.25 is taken, but instead of implement-

ing two separated PDFs, the entire PDF is coded in one file 1. The advantage
of this procedure is that the fit is able to converge even with large interference
parameters.

1. Instead of using RooAddPDF, everything is encoded in one RooAbsPDF.
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The fits with each of those configurations are tested in the following on the dedicated
Monte-Carlo samples.

Fit of dedicated simulation samples with the fit configuration 1

At first, the pK− invariant mass fit has been performed on the dedicated Monte-Carlo
samples with the different phase differences. An example of phase combination 0 is shown
in Fig. 4.13. A polynomial of order three is used. The pulls are close to zero. The

1.48 1.5 1.52 1.54 1.56
]2) [GeV/c-m(pK

5−

0

5

Pu
lls

1.48 1.5 1.52 1.54 1.56

]2) [GeV/c-m(pK

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18)2
N

or
m

al
iz

ed
 e

nt
ri

es
 / 

(0
.0

05
 G

eV
/c 4/c2[0.1, 3] GeV∈2MC generator               q

Total
(1520)Λ
1/2Λ

1.48 1.5 1.52 1.54 1.56
]2) [GeV/c-m(pK

5−

0

5

Pu
lls

1.48 1.5 1.52 1.54 1.56

]2) [GeV/c-m(pK

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2)2
N

or
m

al
iz

ed
 e

nt
ri

es
 / 

(0
.0

05
 G

eV
/c 4/c2[3, 6] GeV∈2MC generator               q

Total
(1520)Λ
1/2Λ

1.48 1.5 1.52 1.54 1.56
]2) [GeV/c-m(pK

5−

0

5

Pu
lls

1.48 1.5 1.52 1.54 1.56

]2) [GeV/c-m(pK

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

)2
N

or
m

al
iz

ed
 e

nt
ri

es
 / 

(0
.0

05
 G

eV
/c 4/c2[6, 8] GeV∈2MC generator               q

Total
(1520)Λ
1/2Λ

1.48 1.5 1.52 1.54 1.56
]2) [GeV/c-m(pK

5−

0

5

Pu
lls

1.48 1.5 1.52 1.54 1.56

]2) [GeV/c-m(pK

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

)2
N

or
m

al
iz

ed
 e

nt
ri

es
 / 

(0
.0

05
 G

eV
/c 4/c2[11, 12.5] GeV∈2MC generator               q

Total
(1520)Λ
1/2Λ

1.48 1.5 1.52 1.54 1.56
]2) [GeV/c-m(pK

5−

0

5

Pu
lls

1.48 1.5 1.52 1.54 1.56

]2) [GeV/c-m(pK

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

)2
N

or
m

al
iz

ed
 e

nt
ri

es
 / 

(0
.0

05
 G

eV
/c 4/c2[1.1, 6] GeV∈2MC generator               q

Total
(1520)Λ
1/2Λ

Figure 4.13 – The projections of the pK− invariant mass fit of the dedicated MC
samples with the phase combination 0 in the different q2 bins.

pK− mass shape of the spin-1/2 Λ∗ resonances seem predominantly linear, which could
be used later to simplify the model when fitting samples of smaller sizes. The resulting
fit parameters, by fitting the dedicated samples with different phase combinations, are
collected in Fig. 4.14.

First, it is visible that the fit results of the different phase combinations are compatible.
The interferences do not change the pK− mass distribution. This is the reason why the fit
results are supposed to be compatible with each other. The fraction of Λ(1520) resonances
seems primarily compatible with the generated value.

Interestingly, f3/2 depends strongly on the q2 bin. a1 differs between the different q2

bins, while a2 and a3 are mostly constant between the different bins. The polynomial
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Figure 4.14 – Plot of the resulting mass parameter in the different q2 bins by fitting the
dedicated Monte Carlo samples with the different interference hypotheses.

172



parameter a1 is distributed between 0.95 and 0.25, while the absolute values of the poly-
nomial parameters a2 and a3 are smaller or equal to 0.1. These values are judged to
be negligible in comparison to the a1 parameter. The error bars are based on the large
Monte Carlo sample size and are not scaled to the smaller realistic yields expected in
data. Therefore, an increase in the error bars is expected as compatibility with zero.
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Figure 4.15 – The cos θ` projections of the fit to the dedicated MC samples with the
interference hypotheses 0 (top left) to 5 (bottom right) in the
q2 ∈ [6, 8]GeV2/c4 bin. Fit model 1 is used, in which the interference terms
are part of the spin-1/2 PDF.

After extracting the f3/2 parameter, the angular fit is performed. Exemplarily, the
angular distributions are shown in Fig. 4.15 and 4.16 for the q2 ∈ [6, 8]GeV2/c4 bin.
The angular fit projections of all the other q2 bins are shown in App. K.1. The cos θ`
distribution stays as seen previously, the same in the different q2 bins. The projection
of the Λ1/2 contribution and the Λ(1520) contribution has the same shape. This is the
reason why a fit has difficulties in separating them.

The interferences have an impact on the cos θp distribution. While in this configura-
tion, the Λ(1520) contributions stay symmetric, the spin-1/2 PDF is now accounting for
the shift of the distribution. To correctly describe the shape, the spin-1/2 PDF, including
the interference terms, takes negative values in some projections. This behaviour under-
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Figure 4.16 – The cos θp projections of the fit to the dedicated MC samples with the
interference hypotheses 0 (top left) to 5 (bottom right) in the
q2 ∈ [6, 8]GeV2/c4 bin. Fit model 1 is used, in which the interference terms
are multiplied with the spin-1/2 PDF.
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lines the strength of the interference parameters. This observation motivated adding the
interference terms to the PDF describing the Λ(1520) resonance.
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Figure 4.17 – The resulting fit parameters of the angular fit with the fit model 1, which
multiplies the interference terms to the PDF of the spin-1/2 Λ∗ resonances.

The resulting parameter values of the fit to the dedicated Monte-Carlo samples with
different interference hypotheses are plotted in Fig. 4.17. The fit results of the most
important parameter, A`FB, are close to the generated values. This closeness can be seen
for all of the q2 bins. The uncertainties are minor because of the huge Monte-Carlo sample
size. The fit values of the parameter S1cc are close to the generated values.

The generated value of the fit parameters of the spin-1/2 PDF, AFB,1/2 and K1cc, are
not precisely known since it is a mixture of different resonances and only in a reduced
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pK− mass window. However, the fit values are compatible with each other. By eye, the
maximum number of standard deviations is five.

The interference parameter can get high strength values of up to three. Since the
interference parameters are not at all compatible with zero, the necessity to take the
interferences into account is underlined again.

To conclude, the fit results of this configuration are coherent with the generated values
and each other. Unfortunately, the fits of the J/ψ and ψ(2S) control modes did not
converge. The source seems to come from the high values of the interference parameters
and the negative spin-1/2 PDF.

Fit of dedicated simulation samples with the fit configuration 2
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Figure 4.18 – The cos θ` projections of the fit to dedicated simulation samples with the
interference hypotheses 0 (top left) to 5 (bottom right) in the
q2 ∈ [6, 8]GeV2/c4 bin. Fit model number 2 is used, in which the
interference terms are included in the Λ(1520) angular PDF.

In configuration 2, the dedicated Monte-Carlo samples are fit with the PDFInt3/2
ang ,

defined in Eq. 4.25. The dedicated Monte-Carlo samples are fitted again. The projections
in the q2 ∈ [6, 8]GeV2/c4 bin are shown in Fig. 4.18 and 4.19. The remaining q2 bins are
presented in App. K.2.
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Figure 4.19 – The cos θp projections of the fit to the dedicated simulation samples with
the interference hypotheses 0 (top left) to 5 (bottom right) in the
q2 ∈ [6, 8]GeV2/c4 bin. Fit model number 2 is used, in which the
interference terms are included in the Λ(1520) angular PDF.
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The pulls of the projections in cos θ` and cos θp are both distributed around zero. In
this fit configuration, the PDF of the Λ1/2 contributions is flat. Since the interference
terms are part of the more common Λ(1520) contribution, none of the PDFs get negative.
The fit values are shown in Fig. 4.20.
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Figure 4.20 – The resulting fit parameters of the angular fit with the fit model 2, which
includes the interference terms in the PDF of the Λ(1520) resonance.

Generally, the fit values of the fit parameters AFB, AFB,1/2, S1cc and K1cc are the same
between the two configuration. The fit parameter values are still close to the generated
values, but the values are slightly more distributed and have larger uncertainties. This
behavior is especially visible for the S1cc and K1cc observables. As expected, the values of
the interference parameters j1 and j2 are different from the i1 and i2 parameters.
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To conclude, the parametrisation of the angular fit model with the PDFInt3/2
ang has the

advantage that none of the PDFs are getting negative in the presence of large interference
contributions. The drawback of this parametrisation is the existence of larger uncertainties
than for the fit configuration 1.

Fit of dedicated simulation samples with the fit configuration 3

The idea of the third fit configuration is to use the best working fit model, which is
model 1, and adapt it such that none of the PDFs can get negative. This is done by coding
the full PDF as one singular PDF, avoiding constraints on the positivity of its components.
The disadvantage of this method is that the components cannot be separated and only
the total PDF is drawn.
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Figure 4.21 – The cos θ` projection of the angular fit in the q2 ∈ [6, 8]GeV2/c4 bin. The
dedicated Monte-Carlo samples with the interference hypotheses 0 (top
left) to 5 (bottom right) are drawn. The fit model number 3 is chosen,
because of which the only projection is the total one.

The fit projections are shown in Fig. 4.21 and 4.22 for the q2 ∈ [6, 8]GeV2/c4 bin. The
projections of the angular fits in the remaining q2 bins are shown in App. K.2. The fit
projections in cos θ` and cos θp describe well the dedicated Monte-Carlo samples with the
different interference hypotheses.

The resulting fit parameters are plotted in Fig. 4.23. A good agreement between the
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Figure 4.22 – The cos θp projection of the angular fit in the different q2 bins. The
dedicated Monte-Carlo samples with the interference hypothesis 0 are
drawn. The fit model number 3 is chosen, because of which the only
projection is the total one.
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Figure 4.23 – The resulting parameter values by fitting the dedicated Monte-Carlo
samples with the fit model 3.
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fit parameters, A`FB,3/2 and S1cc, and their generated values is found. The fit values of the
nuisance parameter, A`FB,1/2 and K1cc, agree within one standard deviation. In general,
the resulting fit values are comparable to the ones of the other two fit models, especially
the ones obtained with the fit configuration 1.

In summary, the third fit configuration describes well the Monte-Carlo simulations. It
is worth emphasising that from this study, one can conclude that the values of the lepton
asymmetries remain stable with respect to different interferences schemes, as shown in
fig 4.23. Compared to model 1, the advantage of this third configuration is that the spin-
1/2 PDF does not become negative. Therefore, this fit configuration will be used as a
baseline for the rest of this thesis.

4.2.4 Two-dimensional scan of the angular PDF

Since probabilities cannot be negative, the angular PDF has to be positive in the full
phase space spanned by cos θp and cos θ`. If the PDF becomes negative, RooFit [188] the
fitting framework used in this analysis, which is built on top of Minuit [189], “struggles”
to find a minimum. This is the reason why the sign of the angular PDF is scanned.

For this scan, the observable values are set to those received by the fit to the dedicated
simulation samples with phase combination 0. Then, two observables are varied in 101
equidistant steps between the minimum and maximum. At each observable value, cos θp
and cos θ` are scanned using a grid of 101 equidistant points in each of the angles. If the
PDF stays positive for the whole scan, the value one is assigned. A negative PDF value
is represented by the value zero.

The PDF scan in the q2 ∈ [6, 8]GeV2/c4 bin is shown in Fig. 4.24 and 4.25. The scans
in all the other rare q2 bins are presented in App. L. The negative PDF regions are marked
in grey and the initial observable values are drawn as red dots.

The scan of the angular PDF shows that minor variations of the observable values
result in a negative PDF. The A`FB,3/2 versus S1cc plot shows an especially closeness to the
physical boundary. This behaviour complicates the convergence of the fitting algorithm.

4.2.5 Data fits of the control modes

The studies on the dedicated Monte-Carlo samples allowed us to establish a good
model for the mpK line shape as well as the angles. The next step is to test our setup on
data by taking into account backgrounds and angular acceptances. The control mode fit
is a crucial test in order to determine the fit convergence on a large data sample, before
fitting the rare signal.
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Figure 4.24 – The first part of the two-dimensional scan of the angular PDF of the fit
configuration 3. The starting values are taken from the fit result of the
dedicated simulation samples with phase combination 0 in the
q2 ∈ [6, 8]GeV2/c4 bin, which is marked in red. The grey zone corresponds
to the region, where the angular PDF gets negative.

Applying the sWeights on the data yields a background subtracted distribution. By
adding, then, the angular acceptance weights on the data corrects for the shape introduced
by the trigger, selection and corrections weights. This enables to perform a maximum
likelihood fit on the sWeightted and acceptance corrected dataset [190]. The angular fit
is tested on both control modes i.e. Λ0

b → Λ(1520)J/ψ and Λ0
b → Λ(1520)ψ(2S). Given

that the leptonic part of the control modes occurs via well-known very narrow resonances
(J/ψ or ψ(2S)), mass constraints can be applied to these resonances when computing the
Λ0
b invariant mass fit and thus improving the mass resolution of the Λ0

b → Λ(1520)J/ψ
and Λ0

b → Λ(1520)ψ(2S) distributions. Given that it is not expected that the angular
observables of interest vary when running the final angular fit on these two configurations,
it is interesting to perform both fits as additional cross-checks.

Angular fit of the Λ0
b → Λ(1520)J/ψ control mode

In the previous chapter, the third fit configuration is determined to work the best.
This third fit configuration is, thus, tested to fit the pK− invariant mass and the angular
distribution in the sWeightted and acceptance corrected data. Two data fits are com-
pared. To the first one, sWeights from the J/ψ-constrained Λ0

b mass fit are applied on the
data, while in the second case, the data is background subtracted with sWeights from
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Figure 4.25 – The second part of the two-dimensional scan of the angular PDF of the fit
configuration 3. The starting values are taken from the fit result of the
dedicated simulation samples in the q2 ∈ [6, 8]GeV2/c4 bin, which is
marked in red. The grey zone corresponds to the region where the angular
PDF gets negative.
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Figure 4.26 – The m(pK−), cos θ` and cos θp fit projections are drawn. The fit is
performed in the J/ψ bin, with sWeights from the J/ψ-constrained
(bottom) and unconstrained (top) pK−µ+µ− invariant mass fit.

the J/ψ-unconstrained Λ0
b mass fit.

As described previously, a fit to the pK− mass spectrum is performed first to get the
fraction of Λ(1520) resonances. To avoid any bias of the f3/2 fraction, the Breit-Wigner
pole mass and width are fixed in the pK− mass fit to the values used in Ref. [191] and [60].
However, a tiny bias is seen in the pseudo-experiments later in this section, and its size is
evaluated in App. N.3. This bias has been corrected before fitting the angular observables.

The final fit projections are drawn in Fig. 4.26. The pulls of the m(pK−), cos θ` and
cos θp fit projections are distributed around zero. While the shape of the pK− invariant
mass fit and the cos θp fit projection are similar between the two fits, the shape of the
cos θ` distribution has small differences. The cos θ` distribution with the sWeights from
the J/ψ unconstrained fit case is relatively flat and slightly parabolic in the constrained
case. The values of the K1cc and S1cc observables are a bit different in the two cases.

The fit parameter values are collected in Tab. 4.4. The goal of the pK− invariant
mass fit is the extraction of the fraction of Λ(1520) resonances. Consequently, it is re-
assuring that both fits yield f3/2 fractions, which are compatible with each other within
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Parameter J/ψ unconstrained J/ψ constrained
MΛ∗ [MeV/c2] fixed to 1518.5 fixed to 1518.5
ΓΛ∗ [MeV] fixed to 15.7 fixed to 15.7
f3/2 0.493± 0.005 0.500± 0.005
a1 0.220± 0.014 0.270± 0.014
A`FB,3/2 0.010± 0.008 0.008± 0.008
S1cc 0.642± 0.015 0.609± 0.014
A`FB,1/2 −0.004± 0.009 0.001± 0.009
K1cc 0.354± 0.008 0.332± 0.008
i1 −0.387± 0.016 −0.364± 0.016
i2 −2.180± 0.031 −2.137± 0.032

Table 4.4 – The resulting parameter values and yields of the mass and angular fits in the
J/ψ bin are listed in this table. The fits are performed by applying the
sWeights extracted from the J/ψ-unconstrained (left) and J/ψ-constrained
(right) pK−µ+µ− invariant mass fits in data.

one standard deviation. In the SM, the b→ ccs transitions are expected to possess van-
ishing leptonic forward-backwards asymmetries. In the J/ψ mode, the measured forward-
backwards asymmetries, A`FB,3/2 and A`FB,1/2, are compatible with zero within two stand-
ard deviations. This holds for the angular fits with both sWeight configurations, obtained
from the J/ψ constrained and unconstrained Λ0

b mass. The interference parameters i1,2
are incompatible with zero, which highlights the importance of taking them into account.

While the A`FB asymmetries in the two sWeight configurations are compatible with
each other within one standard deviation, the observables S1cc andK1cc are three standard
deviations away in both configurations, which could be explained by a strong correlation
of the two observables (see Tab. 4.6). The interference terms agree within two standard
deviations. In Tab. 4.5, the linear correlation coefficients between the pK− mass fit
parameters in the J/ψ bin are given. The fraction f3/2 is nearly uncorrelated from the
coefficient of the first-order polynomial term, a1, which describes the spin-1/2 Λ∗ resonance
contribution.

The strongest correlations of the angular fit parameters, which are in the following
case anti-correlations, are mostly between the asymmetries A`FB,3/2 and A`FB,1/2, and
between the observables S1cc and K1cc. Both pairs show the same cos θ` dependence in
the PDFang,3/2 and PDFang,1/2. The correlations in the J/ψ-constrained case show similar
behaviour. A fit with decorrelated observables was tested but did not show any improve-
ment. Therefore, the previously described fit remains the baseline.
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f3/2 a1

f3/2 1.000 -0.141
a1 -0.141 1.000

Table 4.5 – The linear correlation coefficients, derived by Minuit [189], between the
different pK− invariant mass fit parameters are listed exemplarily for the fit
in the J/ψ mode. The employed sWeights are obtained from the
J/ψ-unconstrained Λ0

b mass fit.

A`FB,3/2 S1cc A`FB,1/2 K1cc i1 i2

A`FB,3/2 1.000 -0.017 -0.414 0.017 -0.016 0.012
S1cc -0.017 1.000 0.017 -0.417 -0.035 0.033
A`FB,1/2 -0.414 0.017 1.000 -0.014 0.020 -0.008
K1cc 0.017 -0.417 -0.014 1.000 0.053 -0.047
i1 -0.017 -0.036 0.020 0.053 1.000 -0.120
i2 0.012 0.033 -0.008 -0.047 -0.120 1.000

Table 4.6 – The linear correlation coefficients, derived by Minuit [189], between the
different angular fit parameters are given exemplarily for the fit in the J/ψ
mode. The employed sWeights are obtained from the J/ψ-unconstrained Λ0

b

mass fit.

The fit stability can be tested by generating Monte-Carlo (MC) samples based on the
data fit results. To distinguish those MC samples from other simulation samples, they
are called “pseudo-datasets”. Those pseudo-datasets are fitted in the same way as the
data, and the pulls are calculated according to Eq. 3.16. A large number of such pseudo-
experiments are performed to quantify the fit stability. The pull distribution itself is fitted
with a Gaussian. An unbiased fit has a Gaussian mean compatible with zero. A Gaussian
width compatible with one indicates a good coverage of the confidence interval.

Such pseudo-experiments have been performed in the J/ψ bin, while the fit results are
obtained by applying sWeights from the J/ψ-unconstrained Λ0

b mass fit. The results with
sWeights from the J/ψ-constrained Λ0

b mass fit can be looked up in App. N.1. In total,
1000 pseudo-experiments are performed. The size of the pseudo-dataset corresponds to
the Λ0

b yield in the corresponding J/ψ bin. At first, the pK− invariant mass fit parameters
are tested, as shown in Fig. 4.27.

The fraction f3/2 is biased by 5σ, while the a1 slope is well estimated. Since the f3/2

value is part of the angular fit, the value needs to be corrected. The parameter uncertain-
ties are well covered. A test has been performed by generating pseudo-experiments with
the J/ψ mass parameters combined with the ψ(2S) yield. The pulls of the f3/2 fraction
are well-behaved, as seen in App. N.3. This cross-check indicates the smallness of the
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Figure 4.27 – The pull distributions of the pK− invariant mass fit parameters, based on
the fit results in the J/ψ bin. One thousand pseudo-experiments are
generated. The pulls of the fraction f3/2 and the slope parameter a1 are
plotted.

observed bias.

In the second step, pseudo-experiments are generated to test the angular fit. In the
generation of each pseudo-dataset, the fraction f3/2 is fixed to the value obtained in the
previous pK− invariant mass fit. The angular fit results in the J/ψ bin serve as starting
values for generating the angular pseudo-datasets. The pull distributions of the angular
observables are shown in Fig. 4.28.

The pulls of the forward-backwards asymmetries, A`FB,3/2 and A`FB,1/2, are well be-
haved. The S1cc observable is unbiased, but the uncertainties are slightly underestimated.
The remaining nuisance parameters are reasonably well estimated.

In summary, the angular fit model has been validated on data in the J/ψ bin, which
has a large data sample size. The angular fit has been performed on the sWeightted,
and acceptance corrected data sample, while the sWeights are extracted from the J/ψ-
constrained and unconstrained Λ0

b mass fit. The forward-backwards asymmetries A`FB,3/2
and A`FB,1/2 vanish in both configurations, as expected. A bias of the fraction f3/2 is
observed, which has been corrected before performing the angular fit. The size of the bias
has been tested to be tiny and not visible with a sample size corresponding to the ψ(2S)
yield. The pull distributions of the angular observables are well-behaved.
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Figure 4.28 – The pull distributions of the angular observables are shown. One
thousand pseudo-experiments are generated based on the angular fit
results in the J/ψ bin.
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Angular fit of the Λ0
b → Λ(1520)ψ(2S) control mode

The fit procedure of the Λ0
b → Λ(1520)ψ(2S) decay is similar to the one of the J/ψ

mode. Testing the fit procedure on the ψ(2S) mode is interesting since the data sample
size is closer to the rare mode. The angular distribution in the sWeightted and acceptance
corrected data is fitted by applying sWeights obtained in the ψ(2S)-unconstrained and
constrained Λ0

b mass fit. The angular fits of both configurations are shown in Fig. 4.29.

1480 1500 1520 1540 1560
]2) [GeV/c-m(pK

5−

0

5

Pu
lls

1480 1500 1520 1540 1560

]2) [GeV/c-m(pK

0

10

20

30

40

50

60

70)2
E

nt
ri

es
 / 

(5
.0

 G
eV

/c LHCb preliminary Total
(1520)Λ
1/2Λ

4c/2[12.5, 15] GeV∈2, q-19fb

1− 0.5− 0 0.5 1
lθcos

5−

0

5

Pu
lls

1− 0.5− 0 0.5 1

lθcos

0

5

10

15

20

25

30

35

40
E

nt
ri

es
 / 

0.
1

LHCb preliminary
Total4c/2[12.5, 15] GeV∈2, q-19fb

1− 0.5− 0 0.5 1
pθcos

5−

0

5

Pu
lls

1− 0.5− 0 0.5 1

pθcos

0

5

10

15

20

25

30

35

40

45

E
nt

ri
es

 / 
0.

1

LHCb preliminary
Total4c/2[12.5, 15] GeV∈2, q-19fb

1480 1500 1520 1540 1560
]2) [GeV/c-m(pK

5−

0

5

Pu
lls

1480 1500 1520 1540 1560

]2) [GeV/c-m(pK

0

10

20

30

40

50

60

)2
E

nt
ri

es
 / 

(5
.0

 G
eV

/c LHCb preliminary Total
(1520)Λ
1/2Λ

4c/2[12.5, 15] GeV∈
(2S)Ψ

2, q-19fb

1− 0.5− 0 0.5 1
lθcos

5−

0

5

Pu
lls

1− 0.5− 0 0.5 1

lθcos

0

5

10

15

20

25

30

35

40

E
nt

ri
es

 / 
0.

1

LHCb preliminary
Total4c/2[12.5, 15] GeV∈

(2S)Ψ
2, q-19fb

1− 0.5− 0 0.5 1
pθcos

5−

0

5

Pu
lls

1− 0.5− 0 0.5 1

pθcos

0

5

10

15

20

25

30

35

40

45

E
nt

ri
es

 / 
0.

1
LHCb preliminary

Total4c/2[12.5, 15] GeV∈
(2S)Ψ

2, q-19fb

Figure 4.29 – The m(pK−), cos θ` and cos θp fit projections are drawn for the fit of the
ψ(2S) control mode. On the top, the sWeights are extracted from the
pK−µ+µ− unconstrained invariant mass fit and on the bottom, from the
ψ(2S) constrained mass fit.

Both ψ(2S) fits look visually similar. For both fit configurations, the pulls are con-
sistent with zero. The corresponding fit results are listed in Tab. 4.7. All fit parameters
are compatible in the two sWeight configurations within one standard deviation. The
forward-backwards asymmetries, A`FB,3/2 and A`FB,1/2, are consistent with zero within at
most two standard deviations. While the interference parameter i1 is compatible with
zero, i2 is ten standard deviations away from being negligible. Although the interference
parameter i2 takes in the J/ψ and ψ(2S) mode a value of about -2, the strength of the
interference terms cannot be extrapolated to the rare q2 bins since the fraction of Λ(1405)
versus Λ(1600) resonances may change and impact the interference parameter values.
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Parameter ψ(2S) unconstrained ψ(2S) constrained
MΛ∗ [MeV/c2] fixed to 1518.5 fixed to 1518.5
ΓΛ∗ [MeV] fixed to 15.7 fixed to 15.7
f3/2 0.361± 0.043 0.365± 0.040
a1 −0.095± 0.110 0.031± 0.097
A`FB,3/2 −0.143± 0.094 −0.053± 0.124
S1cc 0.454± 0.146 0.455± 0.252
A`FB,1/2 0.055± 0.067 0.048± 0.072
K1cc 0.478± 0.056 0.464± 0.071
i1 0.016± 0.097 0.024± 0.116
i2 −1.909± 0.211 −1.952± 0.210

Table 4.7 – The resulting parameter values and yields of the pK− invariant mass fit and
the angular fit in the ψ(2S) bin are listed in this table. The fits are
performed by applying the sWeights extracted from the
ψ(2S)-unconstrained (left) and ψ(2S)-constrained (right) pK−µ+µ−

invariant mass fits in data.
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Figure 4.30 – Pseudo-experiments are generated based on the pK− invariant mass fit in
the ψ(2S) bin in data, employing the sWeights from the unconstrained Λ0

b

mass fit. The pull distributions of the f3/2 fraction and the a1 parameter
are drawn.
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The pK− invariant mass fit is tested by performing pseudo-experiments. The sWeight

configuration without a ψ(2S)-constraint is shown in this section, while the ψ(2S)-constrained
case is added to App. N.2. The resulting pull distributions are shown in Fig. 4.30. The
pull of the f3/2 fraction has a Gaussian mean and width compatible with zero and one,
respectively, within one standard deviation. The polynomial parameter a1 is unbiased,
and its uncertainty is well estimated.

Pseudo-experiments are also performed for the angular fit in the ψ(2S) bin, in the same
manner as in the J/ψ mode (see above in Sec. 4.2.5). The results are shown in Fig. 4.31.
The pull distributions of the angular observables AFB,3/2 and S1cc show a Gaussian mean
two and three standard deviations away from zero. The confidence intervals of the angular
observables are well-covered. The same trend can be seen in the pulls of the nuisance
parameters.

To conclude, the angular fit to the sWeightted and acceptance corrected data con-
verges in the ψ(2S) bin. However, the angular observables AFB,3/2 and S1cc are slightly
biased.

4.2.6 The sWeightted data fits in the rare mode

In this section, the angular fit procedure is applied in the rare q2 bins. The fit is
performed on sWeightted and acceptance corrected data, but the angular observables
are kept blind. This procedure has been chosen because of the observed fit convergence
problems.

All of the pK− invariant mass fits converge reliably. On the contrary, the angular fit
terminates in most of the q2 bins with a fit status of 4, indicating that Migrad did not
converge. In the q2 ∈ [3, 6]GeV2/c4 bin, the fit terminates without any problem, but one
of the fit parameter values reaches the parameter limit. The resulting fit projections are
shown in Fig. 4.32 and 4.33

Although the non-convergence, the pulls are distributed around zero. Due to the small
sample size, some bins become negative. For checking if the problem arises from unexpec-
ted behaviour of the sWeights and acceptance weights, their distributions are examined.
The sWeight and acceptance weight distributions are shown in App. M.5 and M.3. It can
be seen that the negative entries result from the sWeights, needed to subtract the back-
ground contribution. No surprisingly high weight could be found neither in the sWeight

nor the acceptance weight distribution.

For testing purposes, a constant shift was added independently to the weights. While
a shift of the acceptance weights does not change anything, a shift of the sWeights by at
least 0.8 helps the fit to converge properly. The fits are illustrated in Fig. 4.34 and 4.35.
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Figure 4.31 – The pull distributions of the angular observables after generating 1000
pseudo-experiments in the ψ(2S) bin, using the sWeights from the
unconstrained Λ0

b mass fit, are shown.
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Figure 4.32 – The fit projections of the pK− invariant mass, cos θ` and cos θp angles for
the three narrow q2 bins below the J/ψ resonance.
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Figure 4.33 – The fit projections of the pK− invariant mass, cos θ` and cos θp angles for
the q2 bin in-between the cc resonances and the large q2 bin.

From this check, it has been concluded that the convergence problem results from the
combination of the small data sample size, the negative sWeights and the angular PDF
getting easily negative, which is shown in sec 4.2.4. What probably happens is that when
the fit gets stuck in forbidden regions of the phase space, the negative entries and the
small data sample size are not powerful enough to pull the fit into a stable and positive
region. The change of the angular shape by applying sWeights and acceptance weights
on data have been checked in App. M.5, but no unexpected behaviour has been spotted.

4.2.7 Rethinking of the combinatorial background treatment in
the rare mode

Another possibility to perform an angular fit avoiding sWeights is to model the
combinatorial background. The high sideband of the pK−µ+µ− invariant mass above
5700GeV/c2 in data is used as a proxy of the combinatorial background. In Fig. 4.36, it
can be seen that the combinatorial background sample size is small by using the nominal
selection. To increase the size of the combinatorial background sample, and consequently
the fit stability, the BDT cut is loosened to 0.9. The pK− invariant mass shape of this
sample is shown in Fig. 4.37 for the different q2 bins in the rare mode.
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Figure 4.34 – The fit projections of the pK− invariant mass and angles in the narrow q2

bins below the cc resonances, which converge after applying a shit of 0.8
to the sWeights.
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Figure 4.35 – The projections of the pK− invariant and angular fits in the q2 bin
between the cc resonances and the large q2 bin, which are converging after
applying a shit of 0.6 to the sWeights.
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Figure 4.36 – With the nominal BDT cut, keeping only events above 0.99, the data
sample size of the combinatorial background is tiny in all q2 bins in the
rare mode.
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Figure 4.37 – The pK− invariant mass model for the combinatorial background in the
different rare q2 bins. The BDT cut is loosened to 0.9 in order to increase
the data sample size.

198



A first-order polynomial was chosen to model the combinatorial background’s pK−

invariant mass shape. The values of the Chebyshev polynomial parameter c1 are listed in
Tab. 4.8 for the different q2 bins. Four different BDT cut values between -0.99 and 0.5
are tested to extract the c1 parameter, in order to cross-check the validity of loosening
the BDT cut, as well as the consistency with other cut values. The resulting values are
checked to be consistent within, at most, two standard deviations. The BDT cut value of
0.9 has been picked, by balancing the increase of the data sample size with the closeness
of the nominal BDT cut, with which the background contributions were evaluated.

c1

q2 ∈ [0.1, 3]GeV2/c4 0.06± 0.17
q2 ∈ [3, 6]GeV2/c4 −0.06± 0.16
q2 ∈ [6, 8]GeV2/c4 −0.06± 0.18
q2 ∈ [11, 12.5]GeV2/c4 −0.12± 0.19
q2 ∈ [1.1, 6]GeV2/c4 −0.02± 0.13

Table 4.8 – The value of the first order polynomial parameter describing the
combinatorial background’s pK− invariant mass shape in the different rare
q2 bins.

Since the combinatorial background is supposed to possess uncorrelated cos θ` and
cos θp distributions, the angular shape of the combinatorial background is modelled by
a product of two Chebyshev polynomials. Both polynomials are restricted to order two,
thanks to good modelling of the angular shape in the different q2 bins. The full model
can be written out as

PDFcombi = PolyO2(cos θp)× PolyO2(cos θ`). (4.26)

The shape is again extracted from the high pK−µ+µ− invariant mass sideband in data,
but the angular acceptance weights are applied in this case. The angular shapes of the
combinatorial background in cos θ` and cos θp are drawn in Fig. 4.38 and 4.39. The binning
is chosen in order to minimise the number of empty bins.

The pulls of the angular projections are within an interval of ±5σ. The angular shape
parameters to model the combinatorial background are listed in Tab. 4.9.

The combinatorial background component is included in the fit model by fixing the
shape parameters to the values presented in Tab. 4.9. Its fraction fcombi is fixed in the
different q2 bins to the value listed in Tab. 4.10. The fraction of combinatorial background
is calculated from the Λ0

b mass fits, shown in Fig. 3.57 and described in Sec. 3.5.5.
The pK− invariant mass and angular fit projections, including the combinatorial back-

ground and the signal component, are drawn in Fig. 4.40 and 4.41. With this new fit
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Figure 4.38 – The cos θ` projection of the combinatorial background shape in the
different rare q2 bins.

c`,1 c`,2 cp,1 cp,2

q2 ∈ [0.1, 3]GeV2/c4 −0.02± 0.19 0.59± 0.11 −0.16± 0.20 −0.16± 0.20
q2 ∈ [3, 6]GeV2/c4 −0.41± 0.15 0.28± 0.13 −0.56± 0.14 0.21± 0.13
q2 ∈ [6, 8]GeV2/c4 −0.21± 0.17 −0.18± 0.19 −0.52± 0.16 0.15± 0.15
q2 ∈ [11, 12.5]GeV2/c4 −0.45± 0.18 0.12± 0.18 −0.38± 0.22 −0.17± 0.23
q2 ∈ [1.1, 6]GeV2/c4 −0.29± 0.13 0.27± 0.11 −0.35± 0.12 0.03± 0.12

Table 4.9 – The values of the angular shape parameters to describe the combinatorial
background in the different rare q2 bins are shown in this table.

fcombi

q2 ∈ [0.1, 3]GeV2/c4 0.24± 0.105
q2 ∈ [3, 6]GeV2/c4 0.24± 0.010
q2 ∈ [6, 8]GeV2/c4 0.31± 0.14
q2 ∈ [1.1, 6]GeV2/c4 0.29± 0.09
q2 ∈ [11, 12.5]GeV2/c4 0.21± 0.11

Table 4.10 – The values of the combinatorial background fractions in the different q2

bins are summarised in this table.
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Figure 4.39 – The shape of the combinatorial background in cos θp is plotted for the
different rare q2 bins.

model, the angular fit converges in all the q2 bins. The pulls of the fit projections are
distributed around zero for all the different q2 bins.

Pseudo-experiments are performed for this new fit model in the rare mode. Up to now,
the combinatorial background shape and the fraction of the combinatorial background,
which are extracted from data, are fixed in the pseudo-experiment generation. As for
the control modes, pseudo-experiments are first generated for the pK− invariant mass.
The resulting value of the f3/2 fraction from each pK− mass pseudo-experiment is then
injected in the generation of the angular pseudo-dataset. The pull distributions of the a1

parameter and the f3/2 fraction are shown in Fig. 4.42 - 4.46.
The f3/2 fraction is well-behaved in the q2 ∈ [0.1, 3]GeV2/c4 and the q2 ∈ [3, 6]GeV2/c4

bin. In the q2 ∈ [3, 6]GeV2/c4 bin, the pull distribution of the nuisance parameter a1

does not follow a Gaussian distribution, as visible in Fig. 4.43. The source of this large
distribution could be the small amount of spin-1/2 Λ∗ resonances in this q2 bin. The wide
parameter value distribution causes many events to end up at the parameter limit. The
parameter error cannot be well estimated there and is probably the origin of the second
peak in the a1 error distribution.

Enlarging the ranges of the a1 parameter and the f3/2 fraction leads to the parameter
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Figure 4.40 – The projections of the pK− invariant mass and angular fits in the narrow
q2 bin below the cc resonances. In the fit model, a component of the
combinatorial background is added to the description of the Λ(1520) and
spin-1/2 Λ∗ resonances.
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Figure 4.41 – The projections of the pK− invariant mass and angular fit projections in
the q2 bin between the cc resonances and the large q2 bin. In the fit
model, a component of the combinatorial background is added to the
description of the Λ(1520) and spin-1/2 Λ∗ resonances.
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Figure 4.42 – The pull distributions of the mass parameters after generating 1000
pseudo-experiments are shown. The initial parameter values are taken
from the fit result in the q2 ∈ [0.1, 3]GeV2/c4 bin.
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Figure 4.43 – The pull distributions of the mass parameters after generating 1000
pseudo-experiments are shown. The initial parameter values are taken
from the fit result in the q2 ∈ [3, 6]GeV2/c4 bin.

and error distributions in Fig. N.7, in App. N.4. The parameter and error distributions
are more Gaussian-like. However, a strong bias and a misestimation of the uncertainty of
the f3/2 fraction are observed. Since the angular fit is based on a good knowledge of the
f3/2 fraction, the larger parameter range option has been discarded.

The pull distribution of Fig. 4.44 indicates a good estimation of the f3/2 value and
slight underestimation of the uncertainty in the q2 ∈ [6, 8]GeV2/c4 bin. In the contrary,
the nuisance parameter a1 is less well estimated in this q2 bin. Fig. 4.45 shows that the
f3/2 fraction is unbiased in the q2 ∈ [11, 12.5]GeV2/c4 bin. The uncertainties are slightly
underestimated. The pull distribution of the a1 nuisance parameter is reasonable. In the
q2 ∈ [1.1, 6]GeV2/c4 bin, the central value of the f3/2 fraction is well estimated, but its
uncertainty is slightly underestimated. The nuisance parameter a1 is unbiased but has
overestimated uncertainties.

In the second step, pseudo-experiments are generated to evaluate the angular fit. Since
the initial observable values are taken from the angular fit result, the parameter plots are
removed in order to keep the angular observable values blind. The pull distributions can
be seen in Fig. 4.47 - 4.51. The Gaussian fit of the pull distributions has been removed
because it did not converge.

In the q2 ∈ [0.1, 3]GeV2/c4 bin, the pull distributions of the angular observables A`FB,3/2
and S1cc follow a Gaussian-like distribution. Visually a strong bias of both angular observ-
ables is visible. The width of S1cc pull distribution is large, which indicates an additional
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Figure 4.44 – The pull distributions of the mass parameters after generating 1000
pseudo-experiments are shown. The initial parameter values are taken
from the fit result the q2 ∈ [6, 8]GeV2/c4 bin.
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Figure 4.45 – The pull distributions of the mass parameters after generating 1000
pseudo-experiments are shown. The initial parameter values are taken
from the fit result in the q2 ∈ [11, 12.5]GeV2/c4 bin.
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Figure 4.46 – The pull distributions of the mass parameters after generating 1000
pseudo-experiments are shown. The initial parameter values are taken
from the fit result in the q2 ∈ [1.1, 6]GeV2/c4 bin.

underestimation of its uncertainties. Fig. 4.48 shows the pull distributions of the angular
observables in the q2 ∈ [3, 6]GeV2/c4 bin. Visually the pull distributions of the angu-
lar observables A`FB,3/2 and S1cc seem to be centred around zero and have a width close
to one. However, a bias of the nuisance parameters is observed. The pull distributions
of the angular fit in the q2 ∈ [6, 8]GeV2/c4 bin are evaluated. The angular observables
A`FB,3/2 and S1cc seem visually to be a bit biased. In the q2 ∈ [11, 12.5]GeV2/c4 bin, the
pull distribution of the A`FB,3/2 observable looks Gaussian-like, the S1cc pull distribution
shows some peaking structure. This could indicate the existence of several minima. The
nuisance parameter distributions are Gaussian-like but seem to be strongly biased. In
the q2 ∈ [1.1, 6]GeV2/c4 bin, pseudo-experiments are generated based on the angular fit
result, too. The pull distributions of the A`FB,3/2 and S1cc observables follow a Gaussian
distribution, and a small bias is visually distinguishable.

To conclude, the angular fits on the sWeightted and acceptance corrected data have
convergence problems in the rare q2 bins. The convergence issues arise due to the negative
sWeights and the small data sample size. The angular PDF seems to get lost in negative
PDF regions and does not find a stable minimum. To overcome the issue, an offset was
added to the sWeights, which leads to converging angular fits. Up-to-date, no analysis
in LHCb was published with a similar data sample size and a fit of sWeightted data.
Instead of sWeighting the data, the combinatorial background is modelled in the rare
mode. With this additional component in the fit model, the angular fits converge in all
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Figure 4.47 – The pull distributions of the angular fit parameters are shown. One
thousand pseudo-experiments are generated with the initial parameter
values from the angular fit in the q2 ∈ [0.1, 3]GeV2/c4 bin.
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Figure 4.48 – The pull distributions of the angular fit parameters are shown. One
thousand pseudo-experiments are generated with the initial parameter
values from the angular fit in the q2 ∈ [3, 6]GeV2/c4 bin.
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Figure 4.49 – The pull distributions of the angular fit parameters are shown. One
thousand pseudo-experiments are generated with the initial parameter
values from the angular fit in the q2 ∈ [6, 8]GeV2/c4 bin.
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Figure 4.50 – The pull distributions of the angular fit parameters are shown. One
thousand pseudo-experiments are generated with the initial parameter
values from the angular fit in the q2 ∈ [11, 12.5]GeV2/c4 bin.
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Figure 4.51 – The pull distributions of the angular fit parameters are shown. One
thousand pseudo-experiments are generated with the initial parameter
values from the angular fit in the q2 ∈ [1.1, 6]GeV2/c4 bin.
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the rare q2 bins.
For the analysis, a good estimation of the f3/2 fraction is crucial. A tiny bias of the

f3/2 fraction is observed in the narrow q2 bins below the cc resonances. A slight underes-
timation of the f3/2 uncertainties is seen in three rare q2 bins. Due to the small sample
size and the fact that the angular PDF gets easily negative, the angular observables are
strongly biased, and their uncertainties are underestimated. Further statistical treatments
will be necessary to correct the biases and properly evaluate the uncertainties. For ex-
ample, techniques such as Feldman Cousins scans [192] may be employed for estimating
the statistical uncertainties.

4.3 Systematic uncertainties

The performed measurement could be potentially biased. The bias is evaluated in the
systematic uncertainties. While statistical uncertainties decrease with a more extensive
data sample size, systematic uncertainties do not necessarily decrease. In the described
analysis, systematic uncertainties are introduced through the Λ0

b baryon mass fit, the an-
gular acceptance and the angular fit.

The systematic uncertainties, which are collected in the Λ0
b baryon mass fit category,

originate from eventually contributing peaking backgrounds, as B0
s → K+K−µ+µ− and

B0 → K∗µ+µ− decays. Another source is the model of the Λ0
b mass peak, which could be

changed. For an alternative Λ0
b mass peak modelling, a Crystal-ball function can be used

instead of a Hypatia 2 function. Another possibility would be a Λ0
b mass model by two

Crystal-ball functions with a shared mean.

Systematic uncertainties could arise from the angular acceptance. Possible effects
could be the choice of the order of the angular acceptance modelling and properties related
to the imperfections of the simulation sample. The imperfections mainly arise from the
limited simulation sample size and the simulation-data corrections. Alternative angular
acceptance models are planned to be tested. The orders of the Polynomial and Fourier
functions can be changed. In addition, the requirement on the angles cos θ` and φ to be
symmetric could be lifted. Different angular acceptances are obtained by applying altern-
ative corrections to the simulation samples. A different binning scheme for the L0 trigger
correction and another PID efficiency map could be used. However, as seen in Sec. 3.4.8,
the change of the angular shape due to the simulation corrections is small.

The systematic uncertainties linked to the angular fit include the modelling of the
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combinatorial background. Simplifying the angular PDF, which describes the Λ(1520) res-
onance in the heavy-quark limit, has been checked in Ch. 4.2.1 not to cause any deviation.
However, the assumption of this test is that the QM form factors describe well the angular
distribution. Another systematic effect could be caused by the interference model. The
effect of the resonances depend on their spin and parity. Since a component describing
the spin-1/2 resonances is implemented in the angular fit model, eventual contributions of
additional spin-1/2 resonances would be treated correctly. Spin-3/2 resonances, heavier
than the Λ(1520) resonance, could contribute. The closest one is the Λ(1690). Since the
spin and the parity of the Λ(1690) resonance are the same as the Λ(1520), the angular
fit model accommodates it. Contributions of higher spin resonances are not included
in the angular fit. However, the lightest ones are, according to Ref. [193], the Λ(1820),
Λ(1830) and the Λ(2080) resonances, which are supposed to be well separated from the
Λ(1520) mass window, as shown in Fig. 1.15. However, interference effects between the
included resonances with the spin-5/2 resonance could impact the angular distribution.
The remaining bias of the angular observables is evaluated with pseudo-experiments.

The angular shape of the combinatorial background can be alternatively described by
a two-dimensional RooKeysPDF distribution. Furthermore, the proxy of the combinator-
ial background can be changed by modifying the BDT requirement and the pK−µ+µ−

invariant mass threshold to define the high Λ0
b mass sideband.

The importance of the systematic uncertainties is estimated based on the published
results of the angular analysis in B0

s → φµ+µ− decays [80]. The similarity of the angular
analysis of B0

s decays and the Λ0
b → Λ(1520)µ+µ− decays is that in both cases, an angular

fit of a neutral b-hadron decay is performed. In particular, the wide q2 ∈ [1.1, 6]GeV2/c4

bin is chosen as a reference.
The estimated magnitudes of the systematic uncertainties with respect to the statist-

ical uncertainties are listed in Tab. 4.11. The maximal uncertainty fraction for all of the
angular observables in the q2 ∈ [1.1, 6]GeV2/c4 bin is presented. Assuming the same sys-
tematic effect as in the B0

s → φµ+µ− analysis, the highest systematic uncertainty arises
from the simulation corrections, which change the angular acceptance shape. The ac-
ceptance order, the PID correction and the limited simulation statistics cause an inferior
effect.

The second highest systematic uncertainty is due to the Λ0
b mass peak modelling,

which impacts the sWeights or the fraction of the combinatorial background, fcombi. A
systematic uncertainty will have to be evaluated for the modelling of the Λ (1520) Breit-
Wigner as well as the underlying shape of the spin 1/2 resonances.

Contributions of additional Λ∗ resonances and their interferences could cause a system-
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Source ∆usys/∆ustat [%]
Signal mass model 6.2
Angular acceptance order 0.3
Simulation correction 9.6
PID correction 1.1
Angular background model 5.6

Table 4.11 – The dominating sources of systematic uncertainties expected to contribute
are listed. Their maximal systematic uncertainty with respect to the
statistical uncertainty, called ∆usys/∆ustat, is taken from Ref. [80] in the
q2 ∈ [1.1, 6]GeV2/c4 bin. The sources are separated into those related to
the mass fit (1st section), the angular acceptance (2nd section) and the
angular fit (3rd section).

atic bias. In the presented analysis, Λ∗ resonances of spin 5/2 and higher are neglected.
While their occurrence is expected to be tiny in the Λ(1520) mass window, interferences
with the spin-5/2 resonances could cause a systematic deviation. However, the importance
of this effect cannot be estimated with the B0

s → φµ+µ− analysis.
Another significant contribution is supposed to originate from the modelling of the

angular background shape.

Considering that a proper evaluation of the systematic uncertainties will follow, a
first comparison with similar, previously published analysis is useful. In summary, by
comparing the angular analysis ofB0

s → φµ+µ− decays, the highest systematic uncertainty
arises from the simulation corrections, which impact the angular acceptance. The second
highest systematic uncertainty is estimated to originate from the signal mass model. The
third important acceptance originates from the background model in the angular fit. From
this it can be concluded that the measurement discussed in this thesis will be dominated
by statistical uncertainties.

4.4 Implications and prospects

In this chapter, the angular PDF describing the angular shape of the Λ(1520) resonance
has been implemented for the first time. Since the spin-1/2 resonances, namely Λ(1405)
and Λ(1600) resonances, cannot be fully separated from Λ(1520) resonance, they must
be modelled as well. The corresponding PDF is developed and included in the angular
fit model. Due to the resemblance of the two PDFs, the pK− invariant mass is used to
help with the separation between the Λ∗ contributions. The interferences between the
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resonances have been studied and cause a non-negligible effect. Therefore, additional
interference terms are introduced in the angular PDF in order to cope with the observed
change in the cos θp distribution.

The sWeight method is used to subtract the backgrounds in data. In the control
modes, the data fits converge on the sWeightted and acceptance corrected data. How-
ever, the angular fits suffer in the rare bins from the small data sample size. Furthermore,
the SM predictions of the angular observables are situated close to the negative limit
of the angular PDF, with which the fit has difficulties to cope with. This is why the fit
strategy in the rare mode is changed. The sWeight method is replaced by introducing low
levels of combinatorial background and modelling it in the angular distributions. With
the combinatorial background model, the fit converges in all the q2 bins in the rare mode.
The pseudo-experiments indicate possible biases of the angular observable values, which
need to be corrected.

In the future, more data will be needed to increase the precision of the angular ob-
servables measurements and test accurately the possible presence of New Physics effects
in this decay. Additionally with more data, one could also consider deriving an angular
PDF without using the Heavy Quark limit model, for instance, or exploring information
from the other resonances that populate the Λ0

b → pK−µ+µ− spectrum.
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Chapter 5
First look at 2022 data

The 5th of July 2022 marked the official launch of the LHC Run 3, starting pp collisions
with an unprecedented world record centre-of-mass energy of

√
s = 13.6TeV. To cope with

the increase of the instantaneous luminosity from L = 2−4×1032 1
cm2s in Run 1 and 2 by an

order of magnitude to L = 2× 1033 1
cm2s in Run 3, the LHCb detector underwent a major

upgrade. During the year 2022, the installation of most of the upgraded subdetectors
took place.

Analyses of data collected at the start of Run 3 are necessary to help the commission-
ing of the upgraded detector and to spot problems or missing features as early as possible.
Since the upgraded LHCb detector is operated without a hardware trigger, Early Meas-
urements (EMs) are especially important for testing the Real-Time-Analysis trigger and
reconstruction at 30MHz.

In the scope of this thesis, 2022 data are analysed in order to prepare a measurement
of the Rψ(2S) ratio, asserting lepton flavour universality between electrons and muons in
tree-level b meson decays. The utility of this measurement is further explained in Sec. 5.1
of this chapter. The Upgrade simulation samples and their conditions are described in
Sec. 5.2. Due to the change in the trigger strategy, new trigger selections (“lines”) have
been implemented for Run 3. The efficiency of several Run 3 trigger lines has been
compared in Sec. 5.3. Before analysing the data, a preselection is applied, as explained
in Sec. 5.4. It includes the description of the employed multivariate classifier, which
is trained to discriminate between the abundant combinatorial background and signal.
Having obtained the fully selected data sample, the e+e− and K+e+e− invariant mass
peaks are fitted. sWeights are extracted based on these fits, with which the background
can be statistically subtracted from the data. This technique enables a direct comparison
of Run 3 data and simulation, which is presented in Sec. 5.6.
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5.1 Role of the Rψ(2S) measurement for Lepton Fla-
vour Universality tests

Lepton Flavour Universality (LFU) tests examine the coupling of the electroweak bo-
sons to different lepton families. Because of the rarity of b → s`+`− decays and the
additional experimental challenge to reconstruct τ leptons, LFU tests in electroweak pen-
guin decays at LHCb are usually performed as ratios of the muonic over electronic decay
modes. The robustness of these analyses is validated with the abundant tree-level b→ cc̄s

transitions, where the cc resonance decays either to e+e− or to µ+µ−.
In this thesis, an EM is prepared testing LFU using resonant B+ → K+`+`− decays.

In order to demonstrate the understanding of the reconstruction and selection efficiencies
in the muonic and electronic final states, existing LFU measurements [58,94] perform the
measurement of

rJ/ψ = B(B+ → K+J/ψ(→ µ+µ−))
B(B+ → K+J/ψ(→ e+e−)) . (5.1)

Since the branching fractions of the J/ψ → µ+µ− and the J/ψ → e+e− decays are measured
to be equal [21], the rJ/ψ ratio has to be unity.

At LHCb LFU tests are measured as double-ratios of the rates of muonic over electronic
b → s`+`− decays, normalised by the rJ/ψ ratio. The double ratio approach, enabled by
the established LFU in J/ψ → `+`− decays, permits the cancellation of most of the
systematic uncertainties. Another validation step performed in LFU tests is to measure
the double-ratio of branching fractions involving resonant ψ(2S) decays instead of the
rare signal decays. This double-ratio is called Rψ(2S) ratio and can be written as

Rψ(2S) = B(B+ → K+ψ(2S)(→ µ+µ−))
B(B+ → K+J/ψ(→ µ+µ−))

/
B(B+ → K+ψ(2S)(→ e+e−))
B(B+ → K+J/ψ(→ e+e−)) . (5.2)

Since no NP is expected to be present in the ψ(2S) → e+e− and ψ(2S) → µ+µ− decay
modes, the Rψ(2S) double-ratio is expected to be equal to unity. Through the Rψ(2S)

measurement, the stability of the double-ratio approach and the understanding of the
reconstructed data in a different kinematic region is demonstrated.

The measurement of the Rψ(2S) double-ratio is planned to be performed with “early
data” because it is a crucial test of the electron and muon efficiencies. As described in
Ch. 2.4, the PS and SPD subdetectors are removed in Run 3, due to the replacement of
the L0 hardware trigger and their minor role in the fully software-based trigger. Since
coincidence in the SPD, PS, and the ECAL was used to improve electron-photon separ-
ation in Run 1 and 2, it is crucial to demonstrate that electron identification in Run 3

218



does not suffer from this change. The foreseen benefit of the fully software-based trigger
is the efficient triggering of decay modes with electrons in the final state by eliminating
the hardware trigger that searched for signatures in the electromagnetic calorimeter with
high transversal energy ET. However, the occupancy of the electromagnetic calorimeter
is higher than that of the muon stations, which is mainly due to abundant production
of π0s in the pp collisions. This is illustrated by the pT thresholds for electrons 1 that
were about 2700MeV/c in 2012 and 2400MeV/c in 2016, while muons were triggered with
pT of only 1700MeV/c in 2012 and 1800MeV/c in 2016 [194, 195]. One change in the
fully software-based trigger in Run 3 is that electrons are triggered via the tracking sta-
tions, not the electromagnetic calorimeter [195], which permits lowering the ET threshold
and would be beneficial for LFU measurements. Another advantage for electrons is that
bremsstrahlung photons are already attached at the HLT 1 step, leading to an expected
improvement in the electron trigger efficiency in Run 3 compared to Run 1 and 2 due to
the recovery of the lost energy.

Another motivation to perform the Rψ(2S) measurement on data is that tree-level
b → cc̄s decays possess a significantly larger branching fraction than rare b → s`+`−

decays. Therefore, these decays can be measured even with a comparably small amount
of accumulated data. With a very rough back-of-the-envelope computation, it was shown
that a dataset corresponding to an integrated luminosity of about 2 fb−1 would be needed
to improve the world average precision on the Rψ(2S) measurement. Furthermore, the
Rψ(2S) measurement establishes the successful operation of the trigger system and a sig-
nificant part of the analysis chain since the rare and resonant decay modes pass through
the same Run 3 trigger selections.

5.2 2022 simulated samples

To prepare the analysis of the 2022 data, Upgrade simulation samples generated with
the Run 3 conditions are necessary. Because LHCb is still in the commissioning phase
at the time when this thesis is being written, the data-taking conditions are not stable
yet. Typically, it is expected that many versions of the simulation will be produced as
the understanding of the new detector develops. For completeness and whenever possible,
the software versions are specified.

1. For better comparison with the muon pT trigger threshold, the electron pT threshold is calculated
by considering mec

2 << ET.
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5.2.1 Upgrade simulation and data samples

SimulatedB+ → K+J/ψ(→ `+`−) andB+ → K+ψ(2S)(→ `+`−) decays are generated
for the electronic and muonic final states. The event types of the different samples are
summarised in Tab. 5.1. The signal decay is a sequential decay of a scalar particle S to

Event type Decay mode
12153001 B+ → K+J/ψ(→ e+e−)
12143001 B+ → K+J/ψ(→ µ+µ−)
12153012 B+ → K+ψ(2S)(→ e+e−)
12143020 B+ → K+ψ(2S)(→ µ+µ−)

Table 5.1 – Event types of the different signal simulation samples.

a vector V and a scalar, where the vector decays to two leptons L. The employed model
is abbreviated by SV S and V LL.

The simulation samples are generated with version 10aU1. Collisions at a centre-of-
mass energy of

√
s = 14TeV are simulated with both magnet polarities, which is higher

than the actual centre-of-mass energy of
√
s = 13.6TeV reached in Run 3. The average

number of visible proton-proton interactions per bunch crossing, µ, is estimated to be
around 5.3. The time in between two bunch crossings is set to 25 ns in order to emulate
the conditions in the pp collisions. The HLT trigger selection of the Moore software
version v54r0 produces the simulation samples. The final nTuples are produced by the
DaVinci software with version v63r0.

During the last weekend of the data taking in 2022, pp collisions at
√
s = 13.6TeV were

recorded for both magnet polarities. Only the runs that are flagged to be of good quality
were used in this analysis. A number of features listed below made this data sample
“special”. The average number of visible proton-proton interactions per bunch crossing is
2.2, which is lower than the one used in the simulation sample and data-taking conditions
foreseen for Run 3. The integrated luminosity of this dataset corresponds to 27 pb−1. The
detector-alignment conditions AlignmentV10_2023_05_09_LHCP, which were the
latest ones at the time of this thesis, were used.

One difference between simulation and data is that the Upgrade simulation samples
were originally generated, including the Upstream Tracker (UT) reconstruction. Due to
delays in its production, the UT could only be installed at the beginning of 2023. Two
reconstruction algorithms for long tracks without the UT information were developed by
LHCb colleagues to operate the detector reconstruction in the absence of the UT. The
data used in this thesis are reconstructed with the forward tracking algorithm without
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UT [196] 2. The tracking efficiency without the UT worsens only by 1 - 2% for long tracks.
The main impact of missing the UT studied in Ref. [196], is found to be predominantly
the rate of misreconstructed tracks. This “ghost rate”, estimated using B0

s → φ(→
K+K−)φ(→ K+K−) decays, increases by a factor of 2 - 3, which is shown in Fig. 5.1.

Figure 5.1 – A comparison of the forward tracking algorithm with and without UT as
(a) a function of the momentum p and (b) the transverse momentum pT.
Taken from Ref. [196].

The VELO detector was fully closed around the beam during the last data-taking
weekend in 2022. A drift of one side of the VELO was observed during a short data-
taking period. A dedicated alignment procedure was applied and updated frequently to
correct for this effect at the first level trigger HLT 1.

Figure 5.2 – The fit of the prompt di-muon invariant mass spectrum with Run 3 data in
the vicinity of the J/ψ resonance. Taken from Ref. [197].

Unfortunately, the muon stations were not fully time-aligned during those runs. The
misalignment of the readout time with respect to the bunch crossing and propagation

2. This is indicated in the Run database by the activity tag “PHYSICS|TrackingForward”.
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time through the detector leads to a loss in the overall muon hit efficiency. For illustra-
tion, the fit to the prompt J/ψ → µ+µ− decays are presented in Fig. 5.2. The obtained
J/ψ → µ+µ− yield is roughly estimated to be in the run 8404, a factor 50 smaller than
expected. The latest improvement in the tracking-system alignment enables obtaining a
resolution on the J/ψ mass which is comparable to but slightly worse than the resolution
of (11.55±0.05)MeV/c2 in Run 1 and 2 [198]. The total yields in this dataset were too low
to observe individual fully-reconstructed b-hadron decays. This is why the decay modes
that include muons were not yet analysed in the context of this work.

In summary, the main differences (comparisons will be shown in Sec. 5.6) between the
data and simulation samples are attributed to originate from the use of the UT in the
reconstruction algorithm, the not-yet-optimal general detector performance, the imperfect
detector alignment and the different µ value. The change in the centre-of-mass energy is
expected to have minor impacts on the descriptive quality of the simulation. Due to the
suboptimal time alignment of the muon stations, b decays with muons in the final state
were not studied yet.

5.3 Trigger and reconstruction in Run 3

The physics program at the LHCb experiment extends from measuring the properties
of high-transverse-momentum jets to the study of soft QCD, such as the production of K0

S

and Λ0 particles. The difficulty of the trigger task is to cover a wide range of physics while
keeping a high efficiency on each of the signal decays and coping with the limitations of
the processable bandwidth.

The Run 1 and 2 trigger system causes saturation of the hadron yields for large instant-
aneous luminosities, which is inappropriate for the instantaneous luminosities foreseen for
Run 3. During Run 1 and 2, the hardware trigger was based on the calorimeter system
and muon station information. Dropping the hardware trigger allows the tracking system
information to be used additionally in Run 3, which enables to trigger not only on signa-
tures with high (transverse) particle momenta and energies but also the displacements of
the secondary vertices with respect to the primary vertices.

5.3.1 Overview of the processing chain in Run 3

At the start of this analysis, the simulated signal decays are produced following the
processing steps indicated below. This allows the reprocessing of the simulation samples
based on the improvements of the trigger software. Nowadays, the software changes are
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less frequent, allowing “central” productions of the LHCb simulation samples. While the
simulated signal decays follow the processing chain:

xDigi HLT 1−−−−→
Allen

DST HLT 2−−−−→
Moore

DST Sprucing−−−−−→
Moore

DST Tupling−−−−−→
DaVinci

.root,

the processing chain of the data sample reads:

RAW HLT 1−−−−→
Allen

MDF HLT 2−−−−→
Moore

MDF Sprucing−−−−−→
Moore

DST Tupling−−−−−→
DaVinci

.root .

The data samples are reconstructed with the Moore version v54r7 and produced with
the DaVinci version v63r4.

5.3.2 HLT 1 lines

The HLT 1 lines are optimised to maintain high b hadron efficiencies and at the same
time to fulfil the bandwidth requirements. As a result, it is essential to test the HLT 1
efficiencies for different decays, in order to discover inefficiencies at an early stage. In this
work, the HLT 1 efficiency to select B+ → K+J/ψ(→ e+e−) decays is studied. A total of
five lines are compared, which trigger either on the final state electrons or the overall event
topology. All of the lines employ first a requirement on the global event, only accepting
events where the occupancy in the tracking stations is below a given threshold 3, which
(75.9± 0.8)% of the events pass [196].

The DisplacedDielectron line focuses on displaced electron tracks that can be com-
bined to form one secondary vertex with a significant displacement from any primary ver-
tex in the event. The SingleHighPtElectron line isolates single tracks that are consistent
with being of electron type and that have high transverse momenta. Furthermore, there
are three different lines that employ multivariate techniques. The TrackElectronMVA line
uses a classifier trained specifically on electron tracks coming from b hadron decays. A
more inclusive approach is followed by the TrackMVA line [199], which works similarly to
the former but does not specifically use electron tracks as training input. Lastly, there
is the TwoTrackMVA line that specifically uses a combination of two tracks as input [199].
All the MVA lines are trained to utilise tracking information related to reconstruction
quality and kinematics in order to obtain a positive trigger decision.

The efficiency of the lines is evaluated both on simulated signal decays and real data
collected by the LHCb experiment during the last weekend of data-taking in 2022. The

3. Currently the global event cut is enforced using information from the SciFi, after the UT installation,
high-occupancy events in the UT are planned to be removed, too.
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efficiencies determined on simulation are computed without truth matching the simula-
tion, therefore the numbers could be subject to small changes. Their orders of magnitude
are, however, to be trusted.

In data, the percentage of signal events triggered by each of the different trigger lines
is calculated after applying the full selection, discussed in the following section. In order
to subtract contributions from backgrounds, such as random combinations of tracks that
form the same final state as the signal, a statistical subtraction of these events is performed
using the sWeight method. This allows to study the fraction of events that are exclusively
triggered by a single trigger line.

Tab. 5.2 summarises the efficiencies for the different trigger lines found from simulated
signal decays and the fractions of events triggered by different lines in real data. The
multivariate lines are found to be most efficient in selecting the signal decays. Their
architecture allows to utilise most information about the event and therefore are best at
accepting signal decays. The MVA lines will be the most important lines discussed in the
following.

Line efficiency on simulation [%] (exclusive) fraction in data [%]
DisplacedDielectron 16.5± 0.7 27% (2%)
SingleHighPtElectron 5.7± 0.4 15% (2%)
TrackElectronMVA 34.9± 0.9 62% (15%)
TrackMVA 26.9± 0.8 45% (5%)
TwoTrackMVA 38.7± 0.9 65% (14%)

Table 5.2 – Summary of HLT 1 efficiencies for the different lines, discussed in the text.
The efficiencies are determined using simulated signal decays and real data,
where on real data the percentage of background subtracted candidates
triggered (exclusively) by the given line is quoted.

5.3.3 HLT 2 lines and sprucing

As part of my role as Real-Time-Analysis and Early Measurement Task Force liaison
of the Rare Decays (RD) Working Group (WG), I acted as link between the physics WG
and the RD WG, informing the physics WG about the changes and progress with respect
to Run 3. With the liaison team, our duty was to review the HLT 2 trigger and sprucing
lines. The lines needed to be optimised to achieve a high efficiency while limiting the rates
to a processable level. A total of 335 HLT 2 and 88 sprucing lines were commissioned,
which cover the full RD physics program.

In order to have a consistent selection on the signal and control modes, the same
trigger and sprucing lines select B+ → K+J/ψ(→ e+e−) and B+ → K+ψ(2S)(→ e+e−)
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decays as the B+ → K+e+e− decays. For validation purposes and redundancy in one of
the most important decay modes, two strategies exist to select the electronic B+ decays
via a cc resonance.

The first one is the inclusive selection strategy. An inclusive HLT 2 line, selecting
three-body decays with two electrons in the final state. A sprucing line selecting the
specific signal decay is followed. The employed lines are listed below.

1. Hlt2_InclDetDiElectron(_3Body) is the name of the inclusive HLT 2 line in full
stream, which saves the full event and not only the triggered particles. It is a
neural network trained on detached dielectron signatures. The second line exploits
additionally the three-body decay topology.

2. The SpruceRD_BuToKpEE sprucing line is a cut-based selection line, optimised for
retaining specifically B+ → K+e+e− decays.

The advantage of the inclusive procedure is that decays, which are not triggered by an
exclusive line, can be recuperated at a later stage. This includes improving the trigger
efficiencies on standard candle modes such as B+ → K+`+`− but can extend to flavour
tagging or studying new decay modes with novel analysis techniques as they are being
developed.

The second one is the exclusive selection strategy. An exclusive HLT 2 line is
employed, selecting specifically B+ → K+e+e− decays.

1. The corresponding HLT 2 line is called Hlt2RD_BuToKpEE, which applies a cut-
based selection.

2. Afterwards, the event is processed via a pass-through sprucing line. The pass-
through line does not perform another selection; its implementation permits to
treat inclusively and exclusively selected events in the same way.

While the inclusive HLT 2 lines are kept as generic as possible, the exclusive HLT 2 lines
are adapted to the specific decay mode. The advantage of this strategy is a higher signal
efficiency given a lower bandwidth, but the downside is a higher risk in case of problems
since isolation information, additional candidates, including bremsstrahlung photons, or
flavour tagging cannot be recovered.

This is the reason why the performances of both strategies are evaluated. In the
simulation samples, 13% of theB+ → K+J/ψ(→ e+e−) decays pass the exclusive selection.
The 20% of the signal decays are selected by the inclusive HLT 2 line, but only 56% of
them pass the sprucing. Therefore, the inclusive strategy with a total efficiency of 11% is
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Figure 5.3 – Invariant mass of the K+`+`− system for the electronic and muonic
B+ → K+J/ψ decays is compared after applying the full selection to the
simulation samples. On the left, the exclusive selection is shown, whereas
the right side depicts the inclusive strategy.

inferior to the exclusive selection. This can be explained by the fact that the selections
of the sprucing lines are not optimised yet.

The K+`+`− invariant mass distributions of the simulation samples are illustrated for
the different selection strategies in Fig. 5.3. The electronic and muonic B+ → K+J/ψ

decay modes are compared and, as expected, the decay modes with muons in the final
state have a betterm(K+`+`−) resolution. Note, that the invariant mass peaks are plotted
by applying a J/ψ constraint in the reconstruction.

5.4 Selection

This section outlines the selection used to purify the collected data. It is identical for
the B+ → K+J/ψ(→ e+e−) and B+ → K+ψ(2S)(→ e+e−) decays in order to keep differ-
ences between the kinematic regions at a minimum. The selection is split into two parts:
a preselection stage and a BDT, employed to suppress the combinatorial background
contribution specifically.

5.4.1 Preselection

The preselection focuses on selecting characteristic properties of the B+ decays while
retaining a high signal efficiency and removing specific background sources discussed here-
after. Mainly the selection employs cuts on the final-state particle momenta and a loose
kaon PID condition. A challenging background is formed by so-called clone tracks that
appear if a given set of VELO hits is associated with different sets of hits in the tracking
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stations. This effectively creates two tracks in the detector from one track in the VELO.
Since the bremsstrahlung emission and multiple scattering in the detector material cause
a comparatively poor track quality, decays with electrons are subject to many clone con-
tributions. Clone tracks typically have a very small opening angle between two tracks, as
their VELO segment is shared. Requiring an opening angle between two tracks superior
to 0.5mrad in the lab frame aims to remove the clone track contribution. All of the
requirements are listed in Tab. 5.3. Electron PID requirements are avoided at this stage
because the PID variables are not optimised yet and as it will be shown in Fig. 5.15 and
5.16, the DLLeπ variable differs between data and simulation.

Preselection Requirement
pT(e±) > 500MeV/c
pT(K+) > 400MeV/c
DLLK−π(K−) > 5
θ(e+, e−) > 0.5mrad
θ(e+, K+) > 0.5mrad
θ(K+, e−) > 0.5mrad

Table 5.3 – The preselection criteria, based on particle momenta, kaon PID and clone
track removal.

The truth information is accessible in the simulation samples. The so-called “truth-
matching” procedure checks if the assigned particle hypothesis matches the known gener-
ated true particle ID. Not only correctly matched decays are retained, but also correctly
identified particles, where radiative losses are missed, are allowed. In the simulation
sample, this category appears to contribute about 1/3 of the pure signal category.

5.4.2 Multivariate selection to remove combinatorial background

A BDT, based on the XGBoost algorithm, is employed to suppress the combinatorial
background. The B+ → K+J/ψ(→ e+e−) simulation sample serves as the signal proxy.
The combinatorial background is represented by the high B+ mass sideband, defined as
m(K+e+e−) > 5600 MeV/c2. The distributions of the input features for discriminating
between signal and background are sketched in Fig. 5.4. The signal and combinatorial
background distributions are drawn in blue and red, respectively.

The BDT training is performed separately on the odd and even event numbers. The
respective other sample is used to test the BDT performance, on which the training is then
applied. The advantage of this method is that the BDT output is not applied to the same
sample which was used for its training. The relative importance of the input features in
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Figure 5.4 – The B+ → K+J/ψ(→ e+e−) signal (S) and combinatorial background (B)
distributions of the input features are drawn. The training is shown, which
is composed of events with even event numbers.
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the BDT training is detailed in App. P.1, the most important features are the significance
of the flight distance and the impact parameter of the B+. The hyperparameters are
optimised to be the ones in Tab. 5.4.

Function Hyperparameter Value
Architecture Number of trees 100
Training Tree construction algorithm exact

Feature selector cyclic
Signal to background ratio used in the training 1
Learning rate per tree training 0.1
Evaluation metric minimised during gradient boosting NLL
Fraction of events for random subsampling to grow trees 0.75

Stop criterion Maximal depth of trees 2

Table 5.4 – The hyperparameter values set in the BDT training. NLL stands for
negative log-likelihood.

The ROC curves of the training and testing of the two BDTs are shown in Fig. 5.5. The
training curves have an area under the curve (AUC) score of around 0.984 and 0.985, while
the AUC of the testing curves are about 0.01 less than in the training. This indicates a
slightly worse performance of the BDTs on the training sample. However, the AUC values
are consistent between the two BDTs.
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Figure 5.5 – The training and testing ROC curves of the BDTs trained on even (left)
and odd event numbers (right). The area under the curve (AUC) is
marked, too.

The signal and background distributions of the BDT output value are presented in
Fig. 5.6, indicating that the training and testing performances are similar. With the help
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of Fig. 5.6, the BDT cut value has been chosen to be 0.7 in order to preserve the majority
of the signal while rejecting most of the background.
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Figure 5.6 – The train and testing distributions of the BDTs trained on even (left) and
odd event numbers (right).

5.5 Invariant mass fits

After applying the full selection, the number of decays retained is evaluated by an
invariant mass fit. At first, decay candidates involving displaced J/ψ and ψ(2S) vertices,
called secondary J/ψ or ψ(2S), are isolated in the data. The majority of these originate
from the decay of a b- or c-hadron, as discussed in Ch. 2.2 and are therefore containing the
signal of interest for this work. Afterwards, extended unbinned maximum likelihood fits
of the B+ mass are performed in the J/ψ and ψ(2S) mass-constrained K+e+e− invariant
mass spectra.

The bremsstrahlung emission of the electrons and its subsequent recovery impact the
shape of the mass peaks. Therefore, the fits are usually performed per bremsstrahlung
category separately. The “Brem 0” category denotes that no bremsstrahlung photon was
recovered for either the electron or for the positron. If either the electron or positron
receives one recovered bremsstrahlung photon, the event is part of the “Brem 1” category.
Finally, the “Brem 2” category designates events where a bremsstrahlung photon is as-
signed to the electron and the positron. All three bremsstrahlung sub-categories together
are denoted by “all Brem”.
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5.5.1 Secondary J/ψ → e+e− and ψ(2S)→ e+e− decays

In the fit of the e+e− invariant mass spectrum, the J/ψ and ψ(2S) mass peaks are
modelled by a double-sided Crystal-Ball function and the combinatorial background is
described by an exponential. The same model is used for fitting the spectrum in different
bremsstrahlung categories. In order to illustrate the goodness of fit for the chosen model,
an unbinned maximum likelihood fit to the e+e− invariant mass in simulation is presented
in Fig. 5.7.
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Figure 5.7 – The fit of the e+e− invariant mass in the B+ → K+J/ψ(→ e+e−)
simulation sample is shown for the different bremsstrahlung categories.

The B+ → K+J/ψ(→ e+e−) simulation sample is used to fix the shape parameters of
the double-sided Crystal-Ball distribution. The parameter values are listed in Tab. 5.5.
The mean of the J/ψ peak determined in the Brem sub-categories is consistent within two
standard deviations with the value found in the “all Brem” category. The resolution of
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Parameter “All Brem” “Brem 0” “Brem 1” “Brem 2”
mJ/ψ [MeV/c2] 3058± 3 3068± 5 3059± 5 3051± 4
σJ/ψ [MeV] 43± 5 23± 3 43± 6 72± 9

αL 0.29± 0.04 0.12± 0.03 0.24± 0.04 0.63± 0.10
nL 4.6± 0.6 3.7± 1.3 6± 2 4.4± 0.9
αR 0.93± 0.10 5± 5 1.3± 0.2 1.0± 0.2
nR 3.5± 0.3 10± 26 2.9± 0.5 4.8± 1.3

Table 5.5 – The values of the shape parameters of the J/ψ mass peak in the
B+ → K+J/ψ(→ e+e−) simulation sample are tabulated. The fit is
performed separately in different bremsstrahlung categories.

the J/ψ resonance, σ, is the smallest for the “Brem 0” category. The resolution increases
by nearly a factor of two for the “Brem 1” category and a factor of 3 for the “Brem
2” category. This behaviour is attributed to the change of the behaviour of the right
tail depending on the bremsstrahlung category. While it is really sharp in the “Brem 0”
category, it evolves to be nearly symmetric to the left tail in the “Brem 2” category.

The ψ(2S) resonance is modelled using the same mass model as the J/ψ, with its
centre shifted according to the mass difference obtained from Ref. [21]. Owing to the
small number of ψ(2S) decays in the data, the resolution of the signal shape for the ψ(2S)
model is shared with the J/ψ. The remaining background is modelled by an exponential.
The fits to the data are visualised in Fig. 5.8. The pulls are distributed around zero,
indicating the good quality of the fit. In order to account for the known differences
between simulation and data, a shift of the mean of the J/ψ mass peak with respect to the
parameter determined from simulation is introduced. This shift is observed to be about
10MeV/c2, indicating the discussed misalignment between data and simulation. The
results of the fits in the different bremsstrahlung categories are listed in Tab. 5.6. The sum

Parameter “All Brem” “Brem 0” “Brem 1” “Brem 2”
NJ/ψ 1356± 41 192± 14 618± 27 558± 27
Nψ(2S) 118± 17 18± 6 48± 11 56± 12
Nbkg 103± 28 12± 7 70± 19 6± 2

mJ/ψ [MeV/c2] 3048± 2 3071± 4 3052± 3 3029± 6
σJ/ψ [MeV] 33.7± 1.4 13.0± 1.4 30± 2 78± 5
τ [10−5 c2

MeV ] 0± 3 0± 41 0± 6 0± 55

Table 5.6 – The J/ψ and ψ(2S) fit results are listed for the different bremsstrahlung
categories.
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Figure 5.8 – The fit of the e+e− invariant mass in data is shown for the different
bremsstrahlung categories.
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of the individual yields in the “Brem 0 – 2” categories is consistent within one standard
deviation with the yield in the “all Brem” category. The ratio of the ψ(2S)→ e+e− yield
with respect to the J/ψ → e+e− yield is measured to be 0.087±0.012. Note that the ratio
is not corrected for the reconstruction and selection efficiencies in the different kinematic
ranges.

5.5.2 B+ → K+J/ψ(→ e+e−) decays

This section presents the analysis of B+ → K+J/ψ(→ e+e−) decays in the Run 3
LHCb dataset. To select the J/ψ resonance, the squared invariant mass of the dilepton
system, q2, is required to be within [6, 11]GeV2/c4. The q2 bin employed here is broader
than the corresponding one in the angular analysis of the Λ0

b → Λ(1520)J/ψ decays (see
Ch. 3). This choice is made in order to account for the radiative tails caused by miss-
ing or over-reconstructing bremsstrahlung photons, as by the imperfect resolution of the
electromagnetic calorimeter. The K+e+e− invariant mass is modelled by a double-sided
Crystal-Ball function. The excellent description of the mass spectrum when using this
model is presented in Fig. 5.9. The model parameters are obtained through an unbinned
maximum likelihood fit to the B+ → K+J/ψ(→ e+e−) simulation sample.

Parameter “All Brem” “Brem 0” “Brem 1” “Brem 2”
mB+ [MeV/c2] 5274.9± 0.7 5274± 2 5275.3± 1.0 5275.1± 0.8
σB+ [MeV] 16.8± 1.1 15± 2 15± 2 18.6± 1.4

αL 0.62± 0.05 0.48± 0.11 0.53± 0.08 0.77± 0.08
nL 4.9± 0.5 6± 2 4.8± 0.7 4.8± 0.8
αR 1.02± 0.08 1.15± 0.18 0.94± 0.13 1.06± 0.11
nR 3.9± 0.4 3.0± 0.7 3.5± 0.5 5.0± 1.0

Table 5.7 – The parameter values of the B+ mass peak in the B+ → K+J/ψ(→ e+e−)
simulation sample are listed. The fit is performed separately in different
bremsstrahlung categories.

The result of the fit to simulation is presented in Tab. 5.7. The tail parameters of the
B+ mass-peak model are fixed in the fit to data, while the B+ mass mean and its resolution
stay free-floating, allowing to account for differences between simulation and data. Up to
now, the considered backgrounds constitute only combinatorial background, originating
from random combinations of tracks that form the same final state as the signal. The
combinatorial background is modelled by an exponential function. Partially reconstructed
backgrounds and misidentified backgrounds are neglected at this early stage. The fits to
the B+ mass in data are depicted in Fig. 5.10.
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Figure 5.9 – The fits to the J/ψ mass-constrained K+e+e− invariant mass in the
B+ → K+J/ψ(→ e+e−) simulation sample are shown for the different
bremsstrahlung categories.
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Figure 5.10 – The fit to the J/ψ-constrained K+e+e− invariant mass in data, shown for
the different bremsstrahlung categories.
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The goodness of fit is illustrated by the pulls of the data fits that are distributed
randomly around zero. The only minor imperfection is given by a bump at approximately
5320 MeV/c2 that appears in the “all Brem” and “Brem 1” categories only. A larger data
sample is needed to identify its origin.

The fit parameter values for the different bremsstrahlung categories are listed in
Tab. 5.8. The sum of the yields in the “Brem 0 – 2” categories is consistent with the
fit in the “all Brem” category within one standard deviation. The mean of the B+ mass
distribution is consistent between the different Brem categories within three standard
deviations. However, bremsstrahlung losses impact the B+ mean and can, in principle,
differ in the different Brem categories. The signal peak resolution and the exponential
slope parameter are consistent in the Brem subcategories within two standard deviations
with the respective values in the “all Brem” category, confirming the observed behaviour
in simulation.

Parameter “All Brem” “Brem 0” “Brem 1” “Brem 2”
NB+ 632± 30 94± 11 299± 21 241± 18
Nbkg 320± 24 46± 9 129± 17 143± 15

mB+ [MeV/c2] 5277± 2 5281± 3 5283± 2 5280± 2
σB+ [MeV] 14.8± 1.0 12± 2 14± 2 17± 2
τ [10−3 c2

MeV ] −4.0± 0.4 −2.3± 0.9 −4.7± 0.9 −4.1± 0.6

Table 5.8 – Yields and resulting parameter values of the K+e+e− invariant mass fit in
data. The fits are performed in the J/ψ bin and separated into different
bremsstrahlung categories.

5.5.3 B+ → K+ψ(2S)(→ e+e−) decays

In this section, the B+ → K+ψ(2S)(→ e+e−) decays are studied. They are isolated by
changing the q2 requirement to be within [11, 15]GeV2/c4. Because of the lack of a large
B+ → K+ψ(2S)(→ e+e−) simulation sample, the K+e+e− mass shape is determined
by an unbinned maximum likelihood fit to the J/ψ-constrained B+ → K+J/ψ(→ e+e−)
simulation sample, as discussed in the previous section. After fixing the shape parameters,
a fit to the ψ(2S)-constrained K+e+e− mass is performed. The fit to the data is visualised
in Fig. 5.11 and its results summarised in Tab. 5.9. Despite the challenges connected to
the small data sample size, the fit converges and describes the data well.

The ratio of the B+ → K+ψ(2S) over the B+ → K+J/ψ yields gives a fraction of
0.027 ± 0.008, which is not efficiency-corrected up to now. Ref. [58, 94] quotes a ratio of
0.0745 ± 0.0010 analysing the full Run 1 and 2 datasets, including all trigger categories.
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Figure 5.11 – The ψ(2S)-constrained K+e+e− invariant mass fitted in data. Since the
amount of data is so small, the B+ mass fit is only performed in all Brem
categories together.

The measured ratio in the Run 3 dataset is 6σ away from the published ratio. A difference
could originate from a better trigger efficiency in Run 2 for the ψ(2S) mode than for the
J/ψ mode. In Run 3, the trigger on low pT electrons is improved. Those are supposed to
be more abundant in the J/ψ mode due to the smaller phase space. Such a big difference,
however, is not explained by the trigger efficiency, highlighting the importance of double-
checking this ratio with a larger dataset.

Parameter Fit value
NB+ 17± 5
Nbkg 12± 5

mB+ [MeV/c2] 5277± 2
σB+ [MeV] 6± 4
τ [ c2

MeV ] −0.0010± 0.0002

Table 5.9 – The resulting parameter values and yields of the ψ(2S)-constrained K+e+e−

invariant mass fit in data.

In summary, 1356 ± 41 secondary J/ψ → e+e− decays are found in the “all Brem”
category of the 2022 data. This yield is more than double the number of B+ → K+J/ψ(→
e+e−) decays observed in the data sample. A small contribution of ψ(2S)→ e+e− decays
is found, too. The yield of B+ → K+ψ(2S)(→ e+e−) amounts to about 14% of all
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observed ψ(2S)→ e+e− decays in 2022 data.

5.6 Comparison of variable distributions in simula-
tion and sWeightted data

In order to evaluate the quality of the descriptive power of the simulation used to gen-
erate B+ → K+J/ψ(→ e+e−) decays, a comparison between the simulation and data is
performed. For this purpose, sWeights are extracted from the fit to the K+J/ψ(→ e+e−)
invariant mass spectrum in the “all Brem” category. The sWeights allow subtracting the
background component from the data distributions, enabling a comparison of the data
and the simulation. Plotting the distributions in simulation and sWeightted data results
in the distributions shown in Fig. 5.12 - 5.16. A full overview of comparisons also in
other variables is presented in App. P.2. The comparison starts with variables related to
the B+ meson and continues with the Kaon, the J/ψ, and finishes discussing the electrons.

The variable distributions related to the B+ meson are presented in Fig. 5.12. Im-
mediately noticeable is that the PV positions in x and y direction (xPV, yPV) are shifted
by (∆x,∆y) = (1, 0.45)mm in the data with respect to the simulation sample. This is
due to the fact that during the data taking, the beam was off-axis, while the VELO was
almost centred around the beam, shifted by only 0.1mm. The distribution of the PV po-
sition in z-direction, zPV is thinner in the data than in the simulation sample, potentially
originating from the smaller value of µ.

The distributions of the flight distance, FD(B+), and the decay time of the B+ meson,
τ(B+), are well represented in the simulation sample. The impact parameter χ2 distri-
bution (χ2

IP) shows slight differences at low values, but more data is needed to evaluate if
this is a statistical effect.

The mean of the distributions of the z-component of the momentum, pz(B+), as well
as the energy of the B+ meson, E(B+), seem to be situated at higher values in the data
sample compared to simulation, but more data is needed to quantify the effect. It will be
seen later that the detector had been less efficient in data than in simulation. The shift
in energy and pz indicates that only more energetic events passed the trigger selection.

The distributions of η (η(B+)) and the x-, y-projections of the momentum (px(B+),
py(B+)) are slightly shifted in data, which could be related to an acceptance effect from
the off-axis beam. It should be noted that the accurate simulation of the kinematics of
B+ mesons is challenging in the kinematic region covered by LHCb, being known to un-
derestimate average momenta also in Run 2 simulation. This highlights the importance
of further tuning the Pythia generator when moving forward with Run 3.
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Figure 5.12 – Comparison of the variable distributions related to the B+ meson in the
B+ → K+J/ψ(→ e+e−) simulation sample and the sWeightted data.
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Figure 5.13 – Comparison of the variable distributions related to the K+ meson in the
B+ → K+J/ψ(→ e+e−) simulation sample and the sWeightted data.
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The properties of the detected K+ mesons from B+ decays are shown in Fig. 5.13.
The discussion of the modelling starts with parameters related to the track reconstruction.
The number of hits associated to the K+ track, Nhits(K+), features a smaller mean in the
data sample. On the one hand, fewer hits are caused by the missing UT. On the other
hand, the SciFi and VELO subdetectors are less efficient in real data taking, which can
be seen in the numbers of SciFi and VELO hits (NScifi,hits(K+), NVelo,hits(K+)), peaking
in data at lower values. The observed smaller efficiency in data is induced from certain
modules in the VELO detector being off, as well as tracker misalignment. Also, the track
χ2 distribution, χ2

track(K+), is peaking at lower values in the data sample, which could
be induced by the lower number of hits in the detector. The χ2

track/ndof(K+) is peaking,
as expected, at one, and its width seems to be slightly smaller in the simulation sample,
which is expected to scale with 1/

√
ndof. This strengthened the hypothesis of missing

hits in data compared to the simulation sample.

Similar to the B+, the η, px and py distributions are slightly shifted in data. However,
the pz distribution is consistent between data and simulation. Therefore, it is likely that
the observed shift of the B+ pz originates from the electrons.

Even though the performance of the PID variables is not optimised yet, the distribu-
tions of Probghost-track, DLLK−π and ProbNNK are similar in data and simulation. The
ProbNNK distribution in simulation has a second bump at 0.9991, while it seems in data,
given the sample size, to be purely exponential. Experience has shown that the accurate
simulation of the PID response is a particularly challenging part of the simulation at
LHCb, which is crucial since the PID information is used broadly across analyses. The
effect of the second peak needs to be re-evaluated after the PID optimisation and using a
larger data sample.

The variables related to the J/ψ resonance are presented in Fig. 5.14. The fractions
of the Brem categories are similar in data and simulation. The data has a fraction of about
0.018 dielectron pairs less in the “Brem 0” category, about 0.025 events less are present in
the “Brem 1” category, and approximately 0.007 more entries are situated in the “Brem 2”
category. The effect of the higher “Brem 2” category is probably due to the better
identification of electrons when radiated bremsstrahlung photons are recovered. The
lower efficiency in the “Brem 1” category is explained by the loss of the bremsstrahlung
photon, combined with a lower electron identification efficiency. The additional events in
the “Brem 0” category could indicate a small fraction of misidentification backgrounds
which end up in this category.

The q2 distribution, which is m2
J/ψ, is peaking at slightly lower values in data and

possesses a shorter right tail. The same effect has been seen by fitting the e+e− invariant
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Figure 5.14 – Comparison of the variable distributions related to the J/ψ resonance in
the B+ → K+J/ψ(→ e+e−) simulation sample and the sWeightted data.
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mass in data, which is situated at approximately 10 MeV/c2 lower values than in the
simulation sample.

The χ2
vertex/ndof and the χ2

IP of the dielectron candidates are well represented in the
simulation sample. Also, the J/ψ momenta and pseudorapidity are subject to a shift in
simulation relative to data. The px distribution, however, is well represented. The pz
distribution is shifted to higher values and is, thus, expected to be the reason for the shift
in the pz distribution for the B+ meson.
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Figure 5.15 – Comparison of the variable distributions related to the e+ in the
B+ → K+J/ψ(→ e+e−) simulation sample and the sWeightted data.

The detector hits of the electron and positron tracks in Fig. 5.15 and Fig. 5.16 underline
the not-yet optimised detector efficiency. The CLUSTERMATCH variable is derived by
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calculating the two-dimensional χ2 value of a reconstructed track matched to a calorimeter
cluster. It is crucial to the accuracy of the simulated PID variables, as they utilise this
information among others. The distributions of the CLUSTERMATCH variable in data
and in simulation differ, with a bigger disagreement observed in the positron case. This
can be identified as a good starting point to improve the description of electron and
positron PID in simulation. In a future iteration of this analysis, the BDT suppressing
the combinatorial background explained in Sec. 5.4.2 should not be trained on this poorly
modelled variable.

The electron and positron χ2
track variables possess a peak at lower values in data than

in simulation. The impact parameter distributions of the electron and positron are similar
in data and simulation. The momentum in x-direction has a Mexican hat shape in the
electron distribution and is peaking at zero for the positron. Since the distribution in
the simulation sample is the same for px(e−) and px(e+) and in between the two shapes,
the difference in the data sample seems to be only a statistical effect. The shape of the
positron and electron momenta distribution in y-direction are both Mexican-hat-like. For
the electron and positron, the pz distribution peaks at higher values in data, causing the
shift in the pz momenta of the J/ψ and the B+.

The electron and positron PID variables Probghost-track and ProbNNe are well modelled,
while the DLLe−π differs in data and simulation. This could be explained by the DLLe−π
being directly related to the badly described CLUSTERMATCH variable, whereas the
ProbNNe variables combine more information into a PID score.

In conclusion, the performance of the Upgrade I LHCb detector in 2022 data is in a
reasonably good state, given the many challenges faced at the moment. Many topological
and kinematic variables have matching distributions in data and simulation within the
statistical limitation of the current study. What needs to be optimised in the future is the
spatial and time alignment, as well as the performances of the individual sub-detectors.
The off-axis position of the beam could affect the acceptance of the decay topology but
will need to be studied further with corresponding simulation samples. The PID variables
agree overall in simulation and data, except for the particularly challenging DLLe−π vari-
able, which could be improved by a better description of the CLUSTERMATCH variable.

5.7 Outlook

The results from this analysis are dominated by the statistical precision of the 2022
dataset. Therefore, it is of central importance to collect more data in order to clarify some
of the posed questions in this work. The data-taking in 2023 was subject to a couple of
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Figure 5.16 – Comparison of the variable distributions related to the e− in the
B+ → K+J/ψ(→ e+e−) simulation sample and the sWeightted data.
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unforeseen challenges, outlined in the following.
At the beginning of 2023, an incident occurred involving the VELO detector. Before

the LHC declares stable beams, the VELO detector is normally in an open position for
safety reasons. It is situated in a secondary vacuum, which is isolated from the beam
vacuum by a thin RF foil. A safety system balances the vacuum to be within -5 and
+2mbar with respect to the beam vacuum. In case of a pressure difference between
the two vacuums of more than 10mbar, the safety system is supposed to balance. This
limit has been reached by warming the VELO detector. A defect in the relay caused
a malfunctioning of the protection system. The vacuum was balanced in the wrong
direction, leading to a pressure difference of about 200mbar between the two vacuums.
The high pressure caused a permanent plastic deformation of the RF foil towards the
beam vacuum.

The VELO detector is luckily not damaged by the incident. However, a tomography
of the RF foil showed that closing of up to 32mm distance to the beam was safe in order
to prevent the RF-boxes from A- and C-side from touching each other. As a reference,
the closed detector has an opening of a 5mm distance from the beam.

Moreover, a movement of the VELO motion system of about 1 − 2mm in x and y

direction has been detected, which is caused by a loose screw. As a result, the VELO
was kept constantly in a half-closed position, which is 24.5mm far from the beam. This
incident and its repercussions have sensitively affected the operations of LHCb in 2023,
resulting in a reduced acceptance due to the VELO being in a half-open position.

During the 2022 data-taking, the muon stations were not time aligned precisely, and
the reconstruction efficiency of final states with muons was lower than expected. During
2023, the muon station time alignment is progressing, enabling the extension of the ana-
lysis to the muon modes. In addition, the UT subdetector was installed in the year and
technical stop and is now undergoing commissioning. The UT will help this analysis by
suppressing the rate of ghost tracks.

In 2023, about 40 pb−1 of data with reasonable quality has been recorded with a
µ = 1.1. On July 17, 2023 an incident occurred at the LHC, which stopped the data
taking. The collaboration investigates what measurements can be performed with this
“peculiar” dataset.

To sum up, the commissioning of the Run 3 detector is ongoing. Nevertheless, there is
already much useful information obtained with 2022 and soon with 2023 data. The hope
is that 2024 will not be subject to incidents, and LHCb will be able to move to physics
data taking. The continuation of this analysis will then be able to offer valuable insights
into the quality of the data and how to improve the simulation of the new LHCb detector.
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Chapter 6
Conclusion and future prospects

While in the past decades, the Standard Model of Particle Physics was shown to be
a very powerful theory, as of today, it can not explain the matter-antimatter asymmetry
observed in our universe, the hierarchy problem or the nature of Dark Matter. The solu-
tion to those problems is searching for New Physics models (NP) and completing the
SM. Indirect searches in b → s`+`− decays are particularly sensitive to NP since their
potential contributions could contribute significantly to the loop-suppressed SM processes.

The main goal of this thesis is to perform an angular analysis of the Λ0
b → pK−µ+µ−

decays, which gives an insight into b → s`+`− decays of b baryons and probes different
spin-structures than analyses of B meson decays. The leptonic forward-backward asym-
metry, A`FB,3/2, and the angular observable S1cc are aimed to be measured in five bins of
the dimuon invariant mass squared, q2. The presented analysis exploits the Run 1 and 2
datasets collected by the LHCb experiment. Given the data sample size and the available
theoretical predictions, the focus is set on the Λ(1520) resonance.

In the presented analysis, the angular distribution of the Λ(1520) resonance has been
implemented. Previous measurements indicate underlying contributions of spin-1/2 Λ∗

resonances in the studied pK− invariant mass spectrum, namely from the Λ(1405) and
Λ(1600) resonances. Their contribution is included in the angular fit model. The pK−

invariant mass helps in discriminating between the spin-3/2 and spin-1/2 resonances. Due
to the presence of several Λ∗ resonances, interference effects could occur. The interferences
cause a non-negligible shift in the cos θp distribution, which has been incorporated in the
angular fit model.

The data have been corrected for angular acceptance, and the remaining backgrounds
are suppressed using the sWeight technique. The angular fit of the sWeightted and
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acceptance-corrected data is exercised on the Λ0
b → Λ(1520)J/ψ and Λ0

b → Λ(1520)ψ(2S)
control modes, and A`FB values of 0.008±0.008 and −0.053±0.124 are found, respectively.
The measured values are found to be compatible with zero, as one would expect.

The angular fit in the rare mode turned out to be very challenging because of the small
sample size and the presence of the SM observables that are close to the negative limit.
The modelling of the combinatorial background component in the angular fit, instead of
applying sWeights, added stability to the fit model and helped with the fit convergence
issues. Pseudo-experiments indicate possible biases which will be studied more precisely
in the future.

According to previously published analyses of similar decays with datasets of equal
size, the analysis is expected to be statistically dominated. As a consequence, the pre-
cision of the angular observables will be improved with a more extensive dataset, as the
ones which will hopefully be available in future runs of the LHC. In addition, the angular
fit could be performed without the heavy quark limit approximation, enabling the access
of supplementary angular observables. Finally, another possibility would be to enlarge
the pK− invariant mass spectrum and to include more resonances in the angular fit model.

The increase in the instantaneous luminosity will be beneficial for the statistically
limited b→ s`+`− decays. The fully software-based trigger employed in Run 3 is intended
to achieve higher electron efficiencies by triggering on the electron tracks by recovering
the bremsstrahlung photons already at the first trigger step. However, excellent control
of the electron and muon efficiencies is crucial for LFU measurements and needs to be
validated, especially after the removal of the SPD and PS detectors. For this purpose,
a study of B+ → K+J/ψ(→ e+e−) and B+ → K+ψ(2S)(→ e+e−) decays has been
prepared. These decays are selected by the same trigger requirements as the rare decays,
allowing to validate the new trigger strategy. The secondary ψ(2S) → e+e− and B+ →
K+ψ(2S)(→ e+e−) yields are determined for the first time with 2022 data, and compared
with the J/ψ yields. These studies enable the comparison of relevant distributions in the
simulation samples and the background-subtracted data.

In summary, a fairly good agreement is found in the topological and kinematic variables
in data and simulation samples. While most of the PID variables match overall in data
and simulation, the DLLeπ variable shows large disagreements. An improvement of the
spatial and time alignment of the LHCb Upgrade I detector is desirable to exploit its full
potential. This analysis will then be beneficial to monitor the data quality and to improve
the simulations of the upgraded LHCb detector.
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Appendix A

Event types of the simulation samples

The event types and simulation versions of the different simulation samples is listed
in Tab. A.1. To simplify the decay descriptor, some decays are not stated explicitly.
However, the J/ψ and ψ(2S) resonances are always decaying into a muon pair. Similarly,
the decays Λ(1520)→ pK− and K(892)∗0 → K+π− are imposed implicitly.

Decay mode Event type Simulation version (Sim)
2011 2012 2015 2016 2017 2018

Λ0
b → Λ(1520)µ+µ− 15114001 09k 09k 09h 09h 09h 09h

Λ0
b → pK−µ+µ− 15114011 - 09k - - 09h 09h

Λ0
b → pK−J/ψ 15144001 09b 08i 09b 09b 09h 09h

Λ0
b → pK−ψ(2S) 15144011 - 08e - 09b - -

Λ0
b → Λ+

c (→ pK−π+)π− 15364010 - 09d - 09l - -
Λ0
b → Λ+

c (→ pK−π+)µ−νµ 15574001 - - - 09c - -
Λ0
b → Λ+

c (→ Λ(1520)µ+νµ)π− 15574005 - 09l - - - -
B0 → K+π−µ+µ− 11114000 - - - - 09h -
B0 → K∗(892)0J/ψ 11144001 - 08f - 09b - -
B0 → K+π−J/ψ 11144050 - 09k - 09h - -
B0 → K∗(892)0ψ(2S) 11144011 - 09i - 09i - -
B0
s → K+K−µ+µ− 13114007 - 09b - - - -

B0
s → K+K−J/ψ 13144041 - 09h - 09b - -

B0
s → K+K−ψ(2S) 13144044 - 09k - 09k - -

Table A.1 – Event types and simulation versions of the different simulation samples.
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Appendix B

Comparison of background simulation

samples between different years
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Figure B.1 – Comparison of the B0 → K∗0J/ψ (left) and the pK− swapped
misidentification background simulation sample (right) for the years 2012
and 2016 in the J/ψ bin.
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Figure B.2 – Comparison of the B0 → K∗0ψ(2S) (left) and the pK− swapped
misidentification background simulation samples (right) for different years
in the ψ(2S) bin.
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Appendix C

Additionnal plots related to the BDT

training

C.1 Features of the BDT training

The different input variables used in the BDT training are shown in Fig. C.1, C.2 and
C.3. The signal and background distributions in the BDT training are compared. The
definition of the different variables is reminded in the Glossary.

C.2 Correlations between the features in the BDT
training
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Figure C.1 – Features in the BDT related to the kinematics of the particles.
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Figure C.2 – Features in the BDT using the logarithm of the impact parameter χ2

distribution for the different particles.
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Figure C.3 – Features in the BDT related to the event topology.
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Figure C.4 – The correlation of the features for the background proxy is shown on the
top. Those are defined as the pK−µ+µ− high mass sideband. The
difference between the signal and background correlations is shown in the
bottom plot.
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Appendix D

Simulation correction plots

D.1 Multiplicity corrections
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Figure D.1 – nTracks distribution for the data taking year 2012 (left) and 2016 (right)
in Λ0

b → pK−J/ψ simulation and data by focusing on events triggered by
the L0Muon (top) and L0DiMuon (bottom) hardware trigger.
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The simulation data difference of event triggered by the L0Muon trigger and the
L0DiMuon trigger are shown in Fig. D.1. The shape of the data and simulation distri-
butions differ between the two trigger lines. Since the analysis is performed by combining
the two categories and in order to align the procedure with the one in the BF measure-
ment [60], the corrections are chosen to be identical.

Figure D.2 – Comparison of the nTracks distribution for all data taking years in
Λ0
b → pK−J/ψ data (top) and simulation (middle) are shown, as well as

the generator level distributions for the signal and control mode for 2012
and 2016 (bottom).

In Fig. D.2, the nTracks distribution is compared for the different years in data and
simulation. In addition, the generator level distribution of the Λ0

b → Λ(1520)µ+µ− and
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the Λ0
b → pK−J/ψ distributions are compared for the years 2012 and 2016. Both of them

are quite similar.

D.2 Kinematic corrections

Figure D.3 – The corrected Λ0
b transversal momenta in data (top) and simulation

(middle) for all years is compared. Furthermore, the p(T )(Λ0
b) distribution

is shown on generator level for signal and control mode (bottom) for the
years 2012 and 2016.
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D.3 Requirements on the PID calibration samples

Particle PID requirements Initial conditions
MC12TuneV3_ProbNNp>0.2 PT>300

p MC12TuneV3_ProbNNK<0.8 P>2000
MC12TuneV3_ProbNNpi<0.7 hasRich==1

DLLp>-5.0
MC12TuneV3 ProbNNK>0.2 PT>300

K MC12TuneV3_ProbNNp<0.8 P>2000
DLLK>-5.0 hasRich==1

MC12TuneV3_ProbNNmu>0.1 PT>800
µ DLLmu>-5.0 P>3000

IsMuon==1 hasRich==1
InMuonAcc==1

Table D.1 – PIDCalib requirements applied on the calibration samples for Run 1 and
connected by a logical "&&".

D.4 PID efficiency maps

Figure D.4 – PID efficiency maps for the year 2011 with the MagUp magnet
polarisation.
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Particle PID requirements Initial conditions
Brunel_MC15TuneV1_ProbNNp>0.2 Brunel_PT>1000

p Brunel_MC15TuneV1_ProbNNK<0.8 Brunel_P>2000
Brunel_MC15TuneV1_ProbNNpi<0.7 Brunel_HasRich==1.0

Brunel_DLLp>-5.0
Brunel_MC15TuneV1_ProbNNK>0.2 Brunel_PT>300

K Brunel_MC15TuneV1_ProbNNp<0.8 Brunel_P>2000
Brunel_DLLK>-5.0 Brunel_HasRich==1.0

Brunel_MC15TuneV1_ProbNNmu>0.1 Brunel_PT>200
µ Brunel_DLLmu>-5.0 Brunel_P>3000

Brunel_IsMuon==1.0 Brunel_HasRich==1.0
Brunel_InMuonAcc==1.0

Table D.2 – PIDCalib requirements applied on the calibration samples for Run 2 and
connected by a logical "&&".

Figure D.5 – PID efficiency maps for the year 2012 with the MagUp magnet
polarisation.

Figure D.6 – PID efficiency maps for the year 2015 with the MagUp magnet
polarisation.
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Figure D.7 – PID efficiency maps for the year 2016 with the MagUp magnet
polarisation.

Figure D.8 – PID efficiency maps for the year 2017 with the MagUp magnet
polarisation.

Figure D.9 – PID efficiency maps for the year 2018 with the MagUp magnet
polarisation.
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Appendix E

Background fraction estimation from data

A fit of the B0 and the B0
s masses are performed, as visible in the top plots in Fig. E.1.

In the bottom plot, the yield of the pK− swapped double misidentification is shown. The
background is described by an exponential. The signal components are modeled by a
Hypatia 2 function, which shape is extracted from theB0 → K∗0J/ψ, theB0

s → K+K−J/ψ

and the Λ0
b → pK−J/ψ simulation samples and fixed in the data fit.

The fraction of B0
s → K∗0J/ψ decays compared to B0 → K∗0J/ψ decays is

r
K∗0J/ψ
B0
s/B

0 =
NB0

s→K∗0J/ψ
NB0→K∗0J/ψ

= 0.20± 0.02, (E.1)

which is rather small considering the B0 → K∗0J/ψ yield. This the reason why B0
s →

K∗0J/ψ decays are neglected. In a similar manner, the fraction of B0 → K+K−J/ψ decays
is calculated with respect to the yield of B0

s → K+K−J/ψ decays. Its value of

r
K+K−J/ψ
B0/B0

s
= NB0→K+K−J/ψ

NB0
s→K+K−J/ψ

= 0.17± 0.03 (E.2)

is again tiny and, thus, negligible.
To be able to extrapolate the yields to the vetoed region, the veto efficiency needs to

be comparable. The veto efficiency has been checked in the simulation sample. For the
B0 → K∗0J/ψ simulation sample, the veto efficiency is about (34.3±0.8)%, by taking the
statistical error of the yield after the veto as an error. The B0

s → K+K−J/ψ sample has
a veto efficiency of (42 ± 3)%. Therefore, the veto efficiency agrees within 3σ with each
other. For the proton kaon swapped misidentification background, the veto efficiency is
of factor two higher, which is numbers (82± 4)%.
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Figure E.1 – In order to estimate the relative fraction of B0
s → K+K−J/ψ against

B0 → K∗0J/ψ decays and proton kaon swapped misidentification
background versus signal events, they are estimated in data by fitting the
background components in the Λ0

b mass sidebands and by vetoing other
backgrounds.
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For the ψ(2S) mode, the same procedure as in the J/ψ mode is followed. The value
of the background contributions in data is shown in Fig. E.2. The proton kaon swapped
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Figure E.2 – In order to estimate the relative fraction of B0
s → K+K−ψ(2S) versus

B0 → K∗0ψ(2S) decays, and proton kaon swapped misidentification
background versus signal events, they are estimated in data by fitting the
background components in the Λ0

b mass sidebands and by vetoing other
backgrounds.

misidentification background is small in the plots. Its yield is of 11± 5 candidates, which
is compatible with zero within three standard deviations. Since, in addition, the yield of
the B0

s → K∗0ψ(2S) decays is 103±13, ten times bigger than the double misidentification
background, the swapped misidentification background is neglected.

The contribution of B0
s → K∗0ψ(2S) decays in comparison to the decay of the B0 to

the same final state is

r
K∗0ψ(2S)
B0
s/B

0 =
NB0

s→K∗0ψ(2S)

NB0→K∗0ψ(2S)
= 0.09± 0.08, (E.3)
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which is compatible with zero within two standard deviations and, thus, negligible. Sim-
ilarly, the the ratio of B0 → K+K−ψ(2S) decays with respect to the B0

s → K+K−ψ(2S)
decays is

r
K+K−ψ(2S)
B0/B0

s
= NB0→K+K−ψ(2S)

NB0
s→K+K−ψ(2S)

= 0.25± 0.10. (E.4)

This fraction is neglected since it is compatible with zero within three standard deviations.
The efficiency of the different background vetos is calculated with the use of the

simulation samples. The veto efficiency is in the B0 → K∗0ψ(2S) simulation sample
of (40 ± 5)%. This value is compatible within two standard deviations with the veto
efficiency in the J/ψ mode and the efficiency of B0

s → K+K−ψ(2S) decays, which is
(49 ± 3)%. It has to be noted that for the J/ψ and the ψ(2S) mode, the veto efficiency
of B0

s → K+K−µ+µ− decays is slightly higher than the one of B0 → K∗0µ+µ− decays.
The veto efficiency of the double misidentification background is (82± 3)%, which is the
double of the b-meson efficiencies. Although the high veto efficiency, the background yield
in data is small, which is another reason for neglecting this background.
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Appendix F

Combinatorial background shape extraction

To evaluate the shape of the combinatorial background in bins of the BDT, the com-
binatorial background is fitted with an exponential in bins of the BDT. The J/ψ uncon-
strained and constrained pK−µ+µ− invariant mass fits in the different BDT intervals are
shown in Fig. F.1 and F.2.
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Figure F.1 – Combinatorial background shape in the J/ψ bin is obtained by fitting the
pK−µ+µ− invariant mass in bins of the BDT, listed in Tab. 3.19.
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Figure F.2 – Combinatorial background shape in the J/ψ constrained bin by fitting the
J/ψ constrained pK−µ+µ− invariant mass in each of the BDT bins.

The same fits are performed on the pK−µ+µ− invariant mass in the ψ(2S) bin. They
are presented in Fig. F.3
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Figure F.3 – Combinatorial background shape in the ψ(2S) bin is obtained by fitting
the unconstrained pK−µ+µ− invariant mass in the ψ(2S) bin. The fit
results per each BDT bins are listed in Tab. 3.20.
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Appendix G

Additionnal Λ0
b mass fits

G.1 Λ0
b mass fit in the full pK− mass range
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Figure G.1 – The data fit of the pK−µ+µ− invariant mass in the J/ψ bin for the years
2012, 2016 and 2017.
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The mass fits of the pK−µ+µ− invariant mass in the J/ψ bin are needed to calculate
the background yields. Those fits are performed on the 2012, 2016 and 2017 datasets in
Fig. G.1 without any requirement on the pK− invariant mass.

G.2 pK−ψ(2S) unconstrained fit in data without fix-
ing the resolution

The pK−ψ(2S) unconstrained fit in data has been tested with a free-floating resolution.
The corresponding fit is shown in Fig. G.2.
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Figure G.2 – The pK−µ+µ− invariant mass fits are performed on data in the ψ(2S)
mode, letting the resolution free floating.

The corresponding parameters are listed in Tab. G.1. The resolution is supposed to

Parameter ψ(2S) unconstrained
µ [MeV/c2 ] 5625.15± 0.86
σ [MeV/c2 ] 20.18± 1.00

Nsig 909± 44
Ncombi 717± 52
NB0 245± 28
τ fixed to −0.00212

Table G.1 – The resulting parameter values and yields of the unconstrained pK−ψ(2S)
invariant mass fit in data are listed in this table.
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be smaller than in the J/ψ fit, due to the reduced phase-space. However, in this fit, the
resolution takes a large value. This is the reason why the resolution was decided to be
fixed in the nominal data fit, as shown in Ch. 3.5.5.
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Appendix H

Correlation between the angles and the

pK−µ+µ− invariant mass

The linear correlation between the pK−µ+µ− invariant mass and the angles are shown
for the different q2 bins in Fig. H.1, H.2 and H.3. The absolute value of the linear
correlation coefficient between the pK−µ+µ− invariant mass and the angles is in all of the
bins smaller or equal to 1%.
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Figure H.1 – The two-dimensional distributions of the pK−µ+µ− invariant mass and
cos θ` are plotted in the different q2 bins.
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Figure H.2 – The two-dimensional distributions of the pK−µ+µ− invariant mass and
cos θp are plotted in the different q2 bins.
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Figure H.3 – The two-dimensional distributions of the pK−µ+µ− invariant mass and φ
are plotted in the different q2 bins.
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Appendix I
Angle definition in the helicity frame

The decay angles to describe the Λ0
b → pK−µ+µ− decay are defined in the helicity

basis, following the definition in Ref. [65, 109, 111]. A sketch of the angle definition is
shown in Fig. 1.9.

The angle θp is defined as the angle between proton direction in the Λ∗ rest frame and
the flight direction of the Λ∗-baryon in the Λ0

b rest frame. The angle θ` is measured from
the µ+ flight direction in the di-lepton rest frame and the flight direction of the di-lepton
pair in the Λ0

b rest frame.
For calculating the angle in-between the plane spanned by the final state hadrons and

the one defined by the four vectors of the two muons, the normal vectors of the planes
are calculated. The cross product of the Λ∗ direction in the Λ0

b rest frame and the proton
unit vector in the Λ∗ rest frames defines the normal vector of the pK− plane. The normal
vector of the dilepton plane is calculated accordingly. The scalar product of the two
normal vectors are called the cosinus of the φ angle. The cross product of the normal
vector of the muon plane and the pK− plane gives the sinus of the φ angle. Therefore,
the ambiguity can be solved and the φ angle set to + arccos cosφ for sinφ > 0 and in the
contrary to φ := − arccos cosφ.
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Appendix J
Simplification of the full Λ0

b → Λ(1520)`+`−

decay width by φ integration

The differential decay rate of the decay through a Λ∗0-resonance with spin J = 3
2 has

been calculated in Ref. [5] and is presented in equation 1.53.

8π
3

d4Γ
dq2d cos θ`d cos θpdφ

= cos2 θp
(
L1c cos θ` + L1cc cos2 θ` + L1ss sin2 θ`

)
+ sin2 θp

(
L2c cos θ` + L2cc cos2 θ` + L2ss sin2 θ`

)
+ sin2 θp

(
L3ss sin2 θ` cos2 φ+ L4ss sin2 θ` sinφ cosφ

)
+ sin θp cos θp cosφ(L5s sin θ` + L5sc sin θ` cos θ`)
+ sin θp cos θp sinφ(L6s sin θ` + L6sc sin θ` cos θ`). (J.1)

It can be described with the angles (θ`, θp, φ) and the dilepton invariant mass q2.
After the integration, the equation simplifies to

8π
3

d4Γ
dq2d cos θ`d cos θp

= π cos2 θp
(
2L1c cos θ` + 2L1cc cos2 θ` + 2L1ss sin2 θ`

)
+π sin2 θp

(
2L2c cos θ` + 2L2cc cos2 θ` + (2L2ss + L3ss) sin2 θ`

)
. (J.2)

By defining L23 := 2L2ss+L3ss and using the relation sin2 θ = 1−cos2 θ, the probablitiy
density function gets
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8π
3

d4Γ
dq2d cos θ`d cos θp

= π
(
L23 + 2L1c cos θ` + (2L2cc − L23) cos2 θ`

)
+π cos2 θp (2L1ss − L23 + (2L1c − 2L2c) cos θ`)
+π cos2 θp (2L1cc − 2L1ss − 2L2cc + L23) cos2 θ`. (J.3)

The angular coefficients Li show linear dependence of each other, which can be ex-
pressed as :

L2c = 1
4(L1c + ε3) (J.4)

ε3 := −6BΛ∗0(Re(BL
⊥1B

L∗
‖1 )− (L↔ R))

L2cc = 1
4(L1cc + ε1) (J.5)

ε1 := 3BΛ∗0(|BL
‖1|2 + |BL

⊥1|2 + (L↔ R))

L3ss =
√

3
2 BΛ∗0

(
Re(BL

‖1A
L∗
‖1 )− Re(BL

‖1A
L∗
‖1 ) + (L↔ R)

)
(J.6)

L2ss = 1
8(2L1ss + ε1 − 4L3ss) (J.7)

The angular coefficient ε1 appears in equation J.7 and in J.5. Rearranging both equa-
tions and setting ε1 equal, one gets the following relation

L1cc − 2L1ss − 4L2cc + 4L23 = 0. (J.8)

The expression L23 := 2L2ss + L3ss is used for further simplify the equation.

Fitting a distribution is better by using a normalised PDF. For this, after integrating
out the angles the angular PDF dΓ

dq2 , which is written explicitly in equation 1.54, has to
be equal to 1. The second important equation can be expressed as

L1cc + 2L1ss + 2L2cc + 2L23 = 3. (J.9)

The value for the forward-backward asymmetry can additionally be simplified by using
the normalisation condition.

A`FB = 1
2(L1c + 2L2c) = 1

4(3L1c + ε3) (J.10)

Using the expressions in J.8 and J.9, two angular coefficients can be expressed by the

288



other ones. In this case, L2cc and L23 is expressed as seen in equation J.11 - J.12.

L2cc = 1
8(6− 6L1ss − L1cc) (J.11)

L23 = 1
8(6− 2L1ss − 3L1cc) (J.12)

Using this re-expression of the angular coefficients, the over φ integrated PDF can
be simplified to the one shown in equation J.3. This PDF in only dependent on the
observables L1cc, L1ss, A`FB and ε3.

8π
3

d4Γ
dq2d cos θ`d cos θp

= π
(1

8(6− 2L1ss − L1cc) + 1
3(2A`FB + ε3) cos θ`

)
+π8 (6− 10L1ss + L1cc) cos2 θ`

+π
(3

8(6L1ss + L1cc − 2) + (2A`FB − ε3) cos θ`
)

cos2 θp

+3π
8 (5L1cc − 2L1ss − 2) cos2 θ` cos2 θp (J.13)

Since in LHCb, we are only measuring the CP -averaged differential decay rate, the
angular coefficients, become the CP -averaged observables S1cc, S1ss and A`FB, as shown
in Eq. 4.14.

289





Appendix K

The angular fit of dedicated simulation

samples

K.1 Angular fit with the fit model 1

The fit projections of the angular fit with the fit model 1 in the remaining q2 bins are
shown in Fig. K.1 - K.4.

K.2 Angular fit with the fit model 2

The fit projections of the angular fit with the fit model 2 in the remaining q2 bins are
shown in Fig. K.5 - K.8.

K.3 Angular fit with the fit model 3

The fit projections of the angular fit with the fit model 3 in the remaining q2 bins are
shown in Fig. K.9 - K.12.
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Figure K.1 – The cos θ` (1st and 2nd row) and cos θp (3rd and 4th row) projections of the
angular fit with model 1 to the dedicated MC samples with the interference
hypotheses 0 (top left) to 5 (bottom right) in the q2 ∈ [0.1, 3]GeV2/c4 bin.
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Figure K.2 – The cos θ` (1st and 2nd row) and cos θp (3rd and 4th row) projections of the
angular fit with model 1 to the dedicated MC samples with the interference
hypotheses 0 (top left) to 5 (bottom right) in the q2 ∈ [3, 6]GeV2/c4 bin.
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Figure K.3 – The cos θ` (1st and 2nd row) and cos θp (3rd and 4th row) projections of the
angular fit with model 1 to the dedicated MC samples with the interference
hypotheses 0 (top left) to 5 (bottom right) in the q2 ∈ [1.1, 6]GeV2/c4 bin.
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Figure K.4 – The cos θ` (1st and 2nd row) and cos θp (3rd and 4th row) projections of the
angular fit with model 1 to the dedicated MC samples with the
interference hypotheses 0 (top left) to 5 (bottom right) in the
q2 ∈ [11, 12.5]GeV2/c4 bin.
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Figure K.5 – The cos θ` (1st and 2nd row) and cos θp (3rd and 4th row) projections of the
angular fit with model 2 to the dedicated MC samples with the interference
hypotheses 0 (top left) to 5 (bottom right) in the q2 ∈ [0.1, 3]GeV2/c4 bin.
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Figure K.6 – The cos θ` (1st and 2nd row) and cos θp (3rd and 4th row) projections of the
angular fit with model 2 to the dedicated MC samples with the interference
hypotheses 0 (top left) to 5 (bottom right) in the q2 ∈ [3, 6]GeV2/c4 bin.
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Figure K.7 – The cos θ` (1st and 2nd row) and cos θp (3rd and 4th row) projections of the
angular fit with model 2 to the dedicated MC samples with the interference
hypotheses 0 (top left) to 5 (bottom right) in the q2 ∈ [1.1, 6]GeV2/c4 bin.
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Figure K.8 – The cos θ` (1st and 2nd row) and cos θp (3rd and 4th row) projections of the
angular fit with model 2 to the dedicated MC samples with the
interference hypotheses 0 (top left) to 5 (bottom right) in the
q2 ∈ [11, 12.5]GeV2/c4 bin.
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Figure K.9 – The cos θ` (1st and 2nd row) and cos θp (3rd and 4th row) projections of the
angular fit with model 3 to the dedicated MC samples with the interference
hypotheses 0 (top left) to 5 (bottom right) in the q2 ∈ [0.1, 3]GeV2/c4 bin.
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Figure K.10 – The cos θ` (1st and 2nd row) and cos θp (3rd and 4th row) projections of the
angular fit with model 3 to the dedicated MC samples with the
interference hypotheses 0 (top left) to 5 (bottom right) in the
q2 ∈ [3, 6]GeV2/c4 bin.
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Figure K.11 – The cos θ` (1st and 2nd row) and cos θp (3rd and 4th row) projections of the
angular fit with model 3 to the dedicated MC samples with the
interference hypotheses 0 (top left) to 5 (bottom right) in the
q2 ∈ [1.1, 6]GeV2/c4 bin.
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Figure K.12 – The cos θ` (1st and 2nd row) and cos θp (3rd and 4th row) projections of the
angular fit with model 3 to the dedicated MC samples with the
interference hypotheses 0 (top left) to 5 (bottom right) in the
q2 ∈ [11, 12.5]GeV2/c4 bin.
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Appendix L

Two dimensional scan of the angular PDF in

the rare q2 bins

As explained in Ch. 4.2.4, a two-dimensional scan of the angular PDF with the fit con-
figuration 3 is performed. The starting values are taken from the fit result of the dedicated
simulation samples with phase combination 0 (shown in Fig. 4.23) in the corresponding q2

bin, which is marked in red. The grey zone corresponds to the region where the angular
PDF gets negative. The scan has been shown for the q2 ∈ [3, 6]GeV2/c4 in Fig. 4.24 and
4.25. The PDF scans in all the other rare q2 bins are presented in this section.
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Figure L.1 – First part of the two-dimensional scan of the PDF in the
q2 ∈ [0.1, 3]GeV2/c4 bin.
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Figure L.2 – Second part of the two-dimensional scan of the PDF in the
q2 ∈ [0.1, 3]GeV2/c4 bin.
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Figure L.3 – First part of the two-dimensional scan of the PDF in the q2 ∈ [3, 6]GeV2/c4

bin.
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Figure L.4 – Second part of the two-dimensional scan of the PDF in the
q2 ∈ [3, 6]GeV2/c4 bin.
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Figure L.5 – First part of the two-dimensional scan of the PDF in the
q2 ∈ [11, 12.5]GeV2/c4 bin.
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Figure L.6 – Second part of the two-dimensional scan of the PDF in the
q2 ∈ [11, 12.5]GeV2/c4 bin.
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Figure L.7 – First part of the two-dimensional scan of the PDF in the
q2 ∈ [1.1, 6]GeV2/c4 bin.
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Figure L.8 – Second part of the two-dimensional scan of the PDF in the
q2 ∈ [1.1, 6]GeV2/c4 bin.
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Appendix M

Distributions of sWeights and acceptance

weights

M.1 Acceptance models in the remaining q2 bins

The extraction of the acceptance model is described in Ch. 4.1.2. Only the q2 ∈
[3, 6]GeV2/c4 bin and the J/ψ bin are shown in Fig. 4.1. This is the reason why all the
other q2 bins are presented in Fig. M.1.

The distributions of the Λ0
b → Λ(1520)µ+µ− phase space simulation samples after the

full selection and the corrections are shown in blue and the projections of the angular
acceptance model are drawn as a red line. The acceptance model describes well the
distribution in the simulation sample.

M.2 Correction weights in the remaining q2 bins

Fig. 4.2 in Ch. 4.1.2 is a cross check of the acceptance weights. This test is performed
in the q2 ∈ [3, 6]GeV/c2 and J/ψ bin, while all of the other bins are listed in Fig. M.2.

The angular distributions of phase space simulation samples after the selection and
corrections are shown in yellow. The angles with the correction weights are drawn in
violet. As expected, the distribution of the simulation sample gets flat by applying the
correction weights.
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Figure M.1 – The acceptance models in the q2 ∈ [0.1, 3]GeV2/c4 (1st row),
q2 ∈ [6, 8]GeV2/c4 (2nd row), q2 ∈ [11, 12.5]GeV2/c4 (3rd row), ψ(2S) (4th
row) and q2 ∈ [1.1, 6]GeV2/c4 bin (5th row) are plotted.
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Figure M.2 – The simulation sample with and without corrections weights is plotted in
the q2 ∈ [0.1, 3]GeV2/c4 (1st row), q2 ∈ [6, 8]GeV2/c4 (2nd row),
q2 ∈ [11, 12.5]GeV2/c4 (3rd row), ψ(2S) (4th row) and q2 ∈ [1.1, 6]GeV2/c4

bin (5th row).
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M.3 The distribution of the acceptance weights

The distribution of acceptance weights is drawn in Fig. M.3. The acceptance weights
do not have any unreasonable high value and are all positive.
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Figure M.3 – The distribution of the acceptance weights in the different q2 bins.

M.4 The distribution of the sWeights

The values of the sWeights are presented in Fig. M.4. Events in the signal region
do have values around one. The events in the background dominated mass region obtain
small or even negative weights.

M.5 Application of the weights to the pK− invariant
mass and the angles in data

The sWeights and acceptance weights are applied to the pK− invariant mass distri-
bution in data to see the change of the distribution. The corresponding normalised plots
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Figure M.4 – The distribution of the sWeights in the different q2 bins.
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are drawn in Fig. M.5. The acceptance weights do not change the pK− invariant mass
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Figure M.5 – The application of the sWeights and acceptance weights to the pK−
invariant mass distribution in data.

distribution, which is reassuring. The sWeights have, as expected, an impact on the pK−

invariant mass distribution.
The same exercise is performed on the angles, which are shown in Fig. M.6 and M.7.

In the J/ψ bin, the angular acceptance weights have the strongest impact on the angular
distributions, while the change of the distributions due to the sWeights is negligible.
With smaller data sample sizes, the sWeights introduce a more significant effect. This
can be seen in the ψ(2S) and the rare mode. However, the sWeightted data points are
within two standard deviations compatible with the initial and acceptance corrected data
distributions.
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Figure M.6 – The change of the angular data distribution in the control mode by
applying sWeights and acceptance weights.
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Figure M.7 – The change of the angular data distribution in the rare q2 bins by applying
sWeights and acceptance weights.
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Appendix N

Angular fit validation

N.1 Angular fit validation in the J/ψ bin

The angular data fits in the J/ψ mode are shown in Ch. 4.2.5. Pseudo-experiments
are generated for the case, where the sWeights are obtained from the J/ψ unconstrained
Λ0
b mass fit. The pseudo-experiments for the angular fit with the sWeights from the J/ψ

constrained Λ0
b mass fit, are shown in this section.
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Figure N.1 – The pK− mass parameter distributions after generating 1000
pseudo-experiments in the J/ψ bin, where the sWeights are obtained from
the J/ψ constrained Λ0

b mass fit. The pulls of the parameters f3/2 and a1
are plotted.
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Figure N.2 – The distributions of the angular observables after generating 1000
pseudo-experiments in the J/ψ bin, where the sWeights are obtained from
the J/ψ constrained Λ0

b mass fit.
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N.2 Angular fit validation in the ψ(2S) bin

The angular data fit in the ψ(2S) mode are shown in Ch. 4.2.5. Pseudo-experiments
are generated for the case, where the sWeights are obtained from the ψ(2S) unconstrained
Λ0
b mass fit. The pseudo-experiments for the angular fit with the sWeights from the ψ(2S)

constrained Λ0
b mass fit, are shown in this section.
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Figure N.3 – The pK− mass parameter distributions after generating 1000
pseudo-experiments in the ψ(2S) bin, where the sWeights are obtained
from the ψ(2S) constrained Λ0

b mass fit. The pulls of the parameters f3/2
and a1 are plotted.

N.3 Size of f3/2 bias in J/ψ bin

Pseudo-experiments are generated with the J/ψ parameter values but using the ψ(2S)
yields. This test is performed to check the bias on the f3/2 fraction with a lower yield.
The pull distributions are shown in Fig. N.5. The pulls are well-behaved without any
bias, which shows that the bias is only a tiny effect at high yields.

N.4 Fit validation of the rare mode fits with larger
mass parameter range

Pseudo-experiments are performed in the rare mode with a larger range of the a1

parameter and f3/2 fraction in order to prevent the pulls from becoming asymmetric. The
pull distributions are shown in Fig. N.6 - N.10.
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Figure N.4 – The distributions of the angular observables after generating 1000
pseudo-experiments in the ψ(2S) bin, where the sWeights are obtained
from the ψ(2S) constrained Λ0

b mass fit.
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Figure N.5 – The pull distributions of the mass parameters after generating 1000
pseudo-experiments in the J/ψ bin with yields corresponding to those in
the ψ(2S) bin, where the sWeights are obtained from the
J/ψ-unconstrained (top) and constrained (bottom) Λ0

b mass fit.
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Figure N.6 – The pull distributions of the mass parameters after generating 1000
pseudo-experiments are shown, which are based on the fits in the
q2 ∈ [0.1, 3]GeV2/c4 bin.

0.6 0.8 1

3/2f

0

10

20

30

40

50

60

70

80

E
ve

nt
s 

/ (
 0

.0
16

44
11

 )

0.06 0.08 0.1
 Error3/2f

0

20

40

60

80

100

120

140

160

180

E
ve

nt
s 

/ (
 0

.0
01

45
47

 )

4− 2− 0 2 4
 Pull3/2f

0

20

40

60

80

100

120

E
ve

nt
s 

/ (
 0

.2
5 

)

Fit parameters:

 0.030±: -0.2188 µ

 0.021±:  0.846 σ

760 780 800
-log(Likelihood)

0

10

20

30

40

50

60

70

80

E
ve

nt
s 

/ (
 1

.3
56

19
 )

1− 0.5− 0 0.5 1

1a
0

50

100

150

200

250

E
ve

nt
s 

/ (
 0

.0
6 

)

0 1 2
 Error1a

0

20

40

60

80

100

120

140

160

180

E
ve

nt
s 

/ (
 0

.0
65

92
19

 )

4− 2− 0 2 4
 Pull1a

0

50

100

150

200

250

300

350

E
ve

nt
s 

/ (
 0

.2
5 

)

Fit parameters:

 0.030±:  0.178 µ

 0.021±:  0.959 σ

760 780 800
-log(Likelihood)

0

20

40

60

80

100

E
ve

nt
s 

/ (
 1

.8
05

86
 )

Figure N.7 – The pull distributions of the mass parameters after generating 1000
pseudo-experiments are shown, which are based on the fits in the
q2 ∈ [3, 6]GeV2/c4 bin.
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The values and errors of the a1 pull have a more Gaussian shape. However, the value
of the f3/2 pull is strongly biased, and the pull width is 6σ away from one, as shown in
Fig. N.7.
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Figure N.8 – The pull distributions of the mass parameters after generating 1000
pseudo-experiments are shown, which are based on the fits in the
q2 ∈ [6, 8]GeV2/c4 bin.

The Gaussian fit of the a1 parameter pull distribution fails in the q2 ∈ [3, 6]GeV2/c4,
q2 ∈ [6, 8]GeV2/c4 and q2 ∈ [1.1, 6]GeV2/c4 bin.
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Figure N.9 – The pull distributions of the mass parameters after generating 1000
pseudo-experiments are shown, which are based on the converging angular
fits in the q2 ∈ [11, 12.5]GeV2/c4 bin.
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Figure N.10 – The pull distributions of the mass parameters after generating 1000
pseudo-experiments are shown, which are based on the fits in the
q2 ∈ [1.1, 6]GeV2/c4 bin.
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Appendix O

Correlation tables of the angular fit in the

rare mode

f3/2 a1

f3/2 1.000 -0.082
a1 -0.082 1.000
f3/2 1.000 -0.438
a1 -0.438 1.000
f3/2 1.000 -0.018
a1 -0.018 1.000
f3/2 1.000 -0.134
a1 -0.134 1.000
f3/2 1.000 -0.127
a1 -0.127 1.000

Table O.1 – The linear correlation coefficients, derived by Minuit [189], between the
different pK− invariant mass fit parameters are listed for the fit in the
q2 ∈ [0.1, 3], [3, 6], [6, 8], [11, 12.5] and [1.1, 6]GeV2/c4 bins from the top to
the bottom.
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A`FB,3/2 S1cc A`FB,1/2 K1cc i1 i2

A`FB,3/2 1.000 0.104 -0.391 -0.069 0.011 -0.039
S1cc 0.104 1.000 -0.115 -0.883 -0.761 -0.537
A`FB,1/2 -0.391 -0.115 1.000 0.113 0.091 0.026
K1cc -0.069 -0.883 0.113 1.000 0.739 0.503
i1 0.011 -0.761 0.091 0.739 1.000 0.186
i2 -0.039 -0.537 0.026 0.503 0.186 1.000

Table O.2 – The linear correlation coefficients, derived by Minuit [189], between the
different angular fit parameters are given for the fit in q2 ∈ [0.1, 3]GeV2/c4

bin.

A`FB,3/2 S1cc A`FB,1/2 K1cc i1 i2

A`FB,3/2 1.000 0.104 -0.391 -0.069 0.011 -0.039
S1cc 0.104 1.000 -0.115 -0.883 -0.761 -0.537
A`FB,1/2 -0.391 -0.115 1.000 0.113 0.091 0.026
K1cc -0.069 -0.883 0.113 1.000 0.739 0.503
i1 0.011 -0.761 0.091 0.739 1.000 0.186
i2 -0.039 -0.537 0.026 0.503 0.186 1.000

Table O.3 – The linear correlation coefficients, derived by Minuit [189], between the
different angular fit parameters are given for the fit in q2 ∈ [3, 6]GeV2/c4

bin.
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Appendix P

Additional material about the Run 3

analysis

P.1 BDT input feature importance
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Figure P.1 – The feature importance of the BDT, which is trained on even event
numbers.

The impact parameter of the reconstructed B+ track with respect to the best primary
vertex, IP(B+), is the highest listed input feature. With some distance, the lowest im-
portance is attributed to the Bu_MIN_PT variable, which represents the minimum pT
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value of the daughters of the B+ meson. All the other features have approximately similar
importance.

P.2 Additional 2022 data plots

sWeights are extracted from the fit to the B+ mass peak originating from the B+ →
K+J/ψ decay in all Brem categories. Applying those to the data sample leads to back-
ground subtracted distributions. Some selected comparison plots of the sWeightted data
distribution and one of the simulation samples are already mentioned in Ch. 5.6. All the
other comparisons are shown in Fig. P.2 - P.6.

0.99995 0.99996 0.99997 0.99998 0.99999 1
)+DIRA(B

0

0.05

0.1

0.15

0.2

0.25

N
or

m
al

iz
ed

 e
nt

ri
es

 / 
(0

.0
0)

LHCb Preliminary
-127.6 pb

all Brem categories
Data
Simulation

0 10 20 30 40
]3) [10+(B

FD
2χ

0

0.05

0.1

0.15

0.2

0.25

0.3

N
or

m
al

iz
ed

 e
nt

ri
es

 / 
(1

00
0)

LHCb Preliminary
-127.6 pb

all Brem categories
Data
Simulation

0 0.05 0.1 0.15
) [mm]+IP(B

0

0.02

0.04

0.06

0.08

0.1

N
or

m
al

iz
ed

 e
nt

ri
es

 / 
(%

.2
f 

m
m

)

LHCb Preliminary
-127.6 pb

all Brem categories
Data
Simulation

0 2 4 6
)+(B

DOCA
2χ

0

0.05

0.1

0.15

0.2

0.25

0.3

N
or

m
al

iz
ed

 e
nt

ri
es

 / 
(0

.1
0)

LHCb Preliminary
-127.6 pb

all Brem categories
Data
Simulation

0 0.05 0.1 0.15
)+DOCA(B

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

N
or

m
al

iz
ed

 e
nt

ri
es

 / 
(0

.0
0)

LHCb Preliminary
-127.6 pb

all Brem categories
Data
Simulation

0 10 20 30
]c) [GeV/+(B

T
p

0

0.02

0.04

0.06

0.08

0.1

)c
N

or
m

al
iz

ed
 e

nt
ri

es
 / 

(0
.7

0 
G

eV
/

LHCb Preliminary
-127.6 pb

all Brem categories
Data
Simulation

0 100 200 300 400
]c) [GeV/+p(B

0

0.02

0.04

0.06

0.08

0.1

0.12

)c
N

or
m

al
iz

ed
 e

nt
ri

es
 / 

(8
.0

0 
G

eV
/

LHCb Preliminary
-127.6 pb

all Brem categories
Data
Simulation

Figure P.2 – Additional comparisons of the variable distributions related to the B+ in
the B+ → K+J/ψ(→ e+e−) simulation sample and the sWeightted data.
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Figure P.3 – Additional comparisons of the variable distributions related to the K+ in
the B+ → K+J/ψ(→ e+e−) simulation sample and the sWeightted data.
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Figure P.4 – Additional comparison of the variable distributions related to the J/ψ in
the B+ → K+J/ψ(→ e+e−) simulation sample and the sWeightted data.
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Figure P.5 – Additionnal comparison of the variable distributions related to the e+ in
the B+ → K+J/ψ(→ e+e−) simulation sample and the sWeightted data.
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Figure P.6 – Additionnal comparison of the variable distributions related to the e− in
the B+ → K+J/ψ(→ e+e−) simulation sample and the sWeightted data.
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