
HAL Id: tel-04261614
https://theses.hal.science/tel-04261614v2

Submitted on 27 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methods and tools for the integration of formal
verification in domain-specific languages

Faiez Zalila

To cite this version:
Faiez Zalila. Methods and tools for the integration of formal verification in domain-specific languages.
Performance [cs.PF]. Institut National Polytechnique de Toulouse - INPT, 2014. English. �NNT :
2014INPT0092�. �tel-04261614v2�

https://theses.hal.science/tel-04261614v2
https://hal.archives-ouvertes.fr

En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (INP Toulouse)
Discipline ou spécialité :

Sûreté de Logiciel et Calcul à Haute Performance

Présentée et soutenue par :
M. FAIEZ ZALILA

le mardi 9 décembre 2014

Titre :

Unité de recherche :

Ecole doctorale :

METHODS AND TOOLS FOR THE INTEGRATION OF FORMAL
VERIFICATION IN DOMAIN-SPECIFIC LANGUAGES

Mathématiques, Informatique, Télécommunications de Toulouse (MITT)

Institut de Recherche en Informatique de Toulouse (I.R.I.T.)
Directeur(s) de Thèse :
M. YAMINE AIT AMEUR

M. XAVIER CREGUT

Rapporteurs :
M. HASSAN MOUNTASSIR, UNIVERSITE DE FRANCHE COMTE

M. PIERRE-ETIENNE MOREAU, UNIVERSITE DE LORRAINE

Membre(s) du jury :
1 M. FRANÇOIS VERNADAT, INSA TOULOUSE, Président
2 M. BENOIT COMBEMALE, UNIVERSITE RENNES 1, Membre
2 M. MARC PANTEL, INP TOULOUSE, Membre
2 M. XAVIER CREGUT, INP TOULOUSE, Membre

ii

Remerciements

La réalisation d’une thèse est un travail qui nécessite beaucoup d’ambition, d’enthousiasme
et de patience. En effet ce travail n’aurait jamais pu être réalisé sans le soutien d’un grand
nombre de personnes.

Je tiens à remercier en premier lieu mes chers encadrants Marc Pantel et Xavier Crégut
pour la confiance qu’ils m’ont accordée en acceptant d’encadrer mon stage de Master
Recherche et ce travail doctoral.

J’étais vraiment chanceux d’être entouré par l’humanité, la gentillesse et la grande cul-
ture générale et scientifique de Marc Pantel. Je le remercie infiniment pour sa compréhen-
sion, son investissement et sa disponibilité de jour comme de nuit.

Un éternel merci à Xavier Crégut. Merci pour ta disponibilité, ton écoute, ta sympathie,
tes conseils et la justesse de tes critiques qui ont guidé mes réflexions et qui ont fait de cette
période une formation à la recherche très intéressante et l’objet d’un travail intense. Pour
tout cela je vous suis infiniment redevable.

Merci à Yamine Ait-Ameur qui a accepté d’être mon directeur de thèse.

Je remercie Pierre-Etienne Moreau et Hassan Mountassir pour m’avoir fait l’honneur
d’être rapporteurs de cette thèse. Je suis honoré pour l’intérêt qu’ils ont porté à ce travail.

Mes vifs remerciements à François Vernadat et Benoît Combemale qui ont bien accepté
d’être examinateurs de cette thèse. Je leur exprime ma profonde reconnaissance d’être des
membres du jury.

Je tiens à remercier tous les membres du laboratoire IRIT et l’ensemble du personnel de
l’IRIT pour leur assistance administrative et logistique ainsi que pour leur sympathie et je
pense particulièrement à nos chères secrétaires à Sylvie Eichen, Sylvie Armengaud-Metche
et Audrey Cathala.

J’ai une pensée également pour tous les membres de l’équipe ACADIE et toutes les per-
sonnes avec qui j’ai partagé mon bureau: Florent, Arnaud, et Ning.

Mes vifs remerciements vont également à tous les amis ceux qui sont en Tunisie et qui
m’encouragent toujours, ou que j’ai connu ici en France.

iii

Je dédie cette thèse
à mes parents pour leur soutien et leur encouragement

à ma sœur et son mari pour leurs conseils et aides
et à ma fiancée pour avoir supporté mon stress.

Faiez Zalila

MÉTHODES ET OUTILS POUR L’INTÉGRATION DE LA VÉRIFICATION

FORMELLE POUR LES LANGAGES DÉDIÉS

Résumé

Les langages dédiés de modélisation (DSMLs) sont de plus en plus utilisés dans les phases
amonts du développement des systèmes complexes, en particulier pour les systèmes cri-
tiques embarqués. L’objectif est de pouvoir raisonner très tôt dans le développement sur
ces modèles et, notamment, de conduire des activités de vérification et validation (V&V).
Une technique très utilisée est la vérification des modèles comportementaux par explo-
ration exhaustive (model-checking) en utilisant une sémantique de traduction pour constru-
ire un modèle formel à partir des modèles métiers pour réutiliser les outils performants
disponibles pour les modèles formels. Définir cette sémantique de traduction, exprimer les
propriétés formelles à vérifier et analyser les résultats nécessite une expertise dans les méth-
odes formelles qui freine leur adoption et peut rebuter les concepteurs. Il est donc nécessaire
de construire pour chaque DSML, une chaîne d’outils qui masque les aspects formels aux
utilisateurs.

L’objectif de cette thèse est de faciliter le développement de telles chaînes de vérification.
Notre contribution inclut 1) l’expression des propriétés comportementales au niveau métier
en s’appuyant sur TOCL (Temporal Object Constraint Language), une extension temporelle
du langage OCL; 2) la transformation automatique de ces propriétés en propriétés formelles
en réutilisant les éléments clés de la sémantique de traduction; 3) la remontée des résultats
de vérification grâce à une transformation d’ordre supérieur et un langage de description
de correspondance entre le domaine métier et le domaine formel et 4) le processus associé
de mise en œuvre.

Notre approche a été validée par l’expérimentation sur un sous-ensemble du langage
de modélisation de processus de développement SPEM, et sur le langage de commande
d’automates programmables Ladder Diagram, ainsi que par l’intégration d’un langage
formel intermédiaire (FIACRE) dans la chaîne outillée de vérification. Ce dernier point per-
met de réduire l’écart sémantique entre les DSMLs et les domaines formels.

mots clés: Ingénierie dirigée par les modèles (IDM), Langage dédié de modélisation
(DSML), vérification et validation (V&V), Object Constraint Language (OCL), vérification
formelle, vérification de modèle par exploration exhaustive, sémantique translationnelle,
traçabilité, remontée de vérification

Institut de Recherche en Informatique de Toulouse - UMR 5505

vii

Faiez Zalila

METHODS AND TOOLS FOR THE INTEGRATION OF FORMAL

VERIFICATION IN DOMAIN-SPECIFIC LANGUAGES

Abstract

Domain specific Modeling Languages (DSMLs) are increasingly used at the early phases
in the development of complex systems, in particular, for safety critical systems. The goal
is to be able to reason early in the development on these models and, in particular, to ful-
fill verification and validation activities (V&V). A widely used technique is the exhaustive
behavioral model verification using model-checking by providing a translational semantics
to build a formal model from DSML conforming models in order to reuse powerful tools
available for this formal domain.

Defining a translational semantics, expressing formal properties to be assessed and
analysing such verification results require such an expertise in formal methods that it re-
stricts their adoption and may discourage the designers. It is thus necessary to build for
each DSML, a toolchain which hides formal aspects for DSML end-users.

The goal of this thesis consists in easing the development of such verification toolchains.
Our contribution includes 1) expressing behavioral properties in the DSML level by rely-
ing on TOCL (Temporal Object Constraint Language), a temporal extension of OCL; 2) An
automated transformation of these properties on formal properties while reusing the key
elements of the translational semantics; 3) the feedback of verification results thanks to a
higher-order transformation and a language which defines mappings between DSML and
formal levels; 4) the associated process implementation.

Our approach was validated by the experimentation on a subset of the development
process modeling language SPEM, and on Ladder Diagram language used to specify pro-
grammable logic controllers (PLCs), and by the integration of a formal intermediate lan-
guage (FIACRE) in the verification toolchain. This last point allows to reduce the semantic
gap between DSMLs and formal domains.

keywords: Model Driven Engineering (MDE), Domain specific Modeling Language
(DSML), verification and validation (V&V), Object Constraint Language (OCL), Formal ver-
ification, Model checking, Translational semantics, Traceability, Verification feedback.

Institut de Recherche en Informatique de Toulouse - UMR 5505

ix

x Faiez Zalila

Contents

Remerciements iii

Introduction 1

0.1 Context and challenges . 4

0.2 Description of the thesis contributions . 5

0.3 Outline of this thesis . 6

I State of the Art 9

1 Model-driven Engineering 11

1.1 Model and Metamodel . 13

1.2 Model-driven Architecture . 14

1.2.1 The MDA approach . 14

1.2.2 The MDA architecture . 16

1.3 Model Transformation . 18

1.3.1 Model transformation types . 19

1.3.2 Model transformation languages . 20

2 Domain-specific Modeling Languages 23

2.1 Different elements defining a DSML . 25

2.1.1 Abstract syntax of a DSML . 26

2.1.2 Concrete syntax of a DSML . 27

2.1.3 Behavioral semantics for a DSML . 28

2.2 Model verification for DSMLs . 29

3 SPEM as a DSML 33

3.1 Verification of SPEM models . 34

xi

Contents

3.1.1 Time Petri nets, SE-LTL and Tina toolbox 35

3.1.2 Translational semantics of SPEM into Petri nets 37

3.1.3 Expressing and generating formal properties 38

3.1.4 Performing the formal verification . 39

3.1.5 Implementation of the approach . 41

3.2 Towards the definition of an eXecutable DSML (xDSML) 42

3.2.1 The Executable DSML pattern . 42

3.2.1.1 Domain Definition MetaModel (DDMM) 43

3.2.1.2 State Definition MetaModel (SDMM) 43

3.2.1.3 Event Definition MetaModel (EDMM) 44

3.2.1.4 Trace Management MetaModel (TM3) 44

3.2.2 Application of the Executable DSML pattern to TPN 45

3.3 The evaluation of the approach . 45

3.3.1 Resolved MDE disadvantages . 46

3.3.2 Unresolved formal methods disadvantages 47

3.4 Goals . 48

3.4.1 DSML end-user expectations . 48

3.4.2 DSML expert and designer expectations 48

II Contribution 51

4 Expressing and verifying behavioral properties 53

4.1 The expression of behavioral properties . 55

4.1.1 The temporal extension of OCL . 55

4.1.1.1 always operator . 56

4.1.1.2 eventually operator . 56

4.1.1.3 next operator . 56

4.1.1.4 until operator . 57

4.1.1.5 release operator . 57

4.1.1.6 precedence operators . 57

4.1.2 The Query Definition MetaModel (QDMM) extension 57

4.1.3 Implementation . 61

4.2 Translation of behavioral properties . 62

4.2.1 The proposed approach to translate behavioral properties 63

4.2.2 The generation of formal properties . 69

xii Faiez Zalila

Contents

4.3 Related works . 69

5 Feedback verification results 71

5.1 Defining a backward transformation . 73

5.2 The use of bidirectional transformation . 75

5.2.1 Bidirectional Model Transformation with GROUNDTRAM 75

5.2.1.1 Data Model . 76

5.2.1.2 Bidirectional Transformations 76

5.2.2 Combining the Executable DSML pattern with the GROUNDTRAM

framework . 77

5.2.3 Implementation . 79

5.2.4 Synthesis and discussion . 80

5.3 FEVEREL: Feedback Verification Results Language 80

5.3.1 Motivations . 81

5.3.2 Architecture of FEVEREL . 82

5.3.3 Implementation of FEVEREL language 83

5.3.4 Syntaxes and semantics of FEVEREL . 84

5.4 Related works . 87

6 Building a verification framework for an executable DSML 89

6.1 Architecture of the verification framework for a new DSML 91

6.2 The generation of a verification framework for a new DSML 92

6.2.1 Identification of different actors . 93

6.2.2 The process of DSML verification framework generation 93

6.3 Dependencies between DSML verification framework elements 94

6.4 Guidelines for validating the verification toolchain 96

6.5 Conclusion . 98

III Validation of the approach 99

7 Application of the approach using an intermediate language 101

7.1 The Fiacre Language . 103

7.2 Expressing behavioral properties on FIACRE level 105

7.3 Integrating the FIACRE language in the verification toolchain 108

7.4 Connecting the FIACRE level with the TINA toolbox 108

7.4.1 The generation of traceability information between FIACRE and TTS . 109

Formal Verification Integration Approach for DSL xiii

Contents

7.4.2 Feedback verification results on the FIACRE level 113

7.5 Adapting the XSPEM toolchain to FIACRE . 115

7.5.1 Connecting FIACRE properties capabilities with the TOCL tooling . . 116

7.5.2 Translational semantics XSPEM2FIACRE 116

7.5.3 Defining and translating TOCL properties 118

7.5.4 The feedback of verification results . 119

8 Formal verification of PLC programs 123

8.1 Specification of PLC programs . 125

8.1.1 PLCs and the IEC 61131-3 standard . 126

8.1.2 Ladder Diagram (LD) . 126

8.1.3 A Control System Example . 129

8.2 Modeling and Verification of PLC programs . 130

8.2.1 Modeling PLC programs with the FIACRE language 130

8.2.2 Existing PLC Verification toolchain . 131

8.3 Application of the integration of the hidden verification activity for LD diagram135

8.3.1 Expressing behavioral properties . 135

8.3.2 Introducing behavioral extensions . 139

8.3.3 Feedback verification results . 140

8.4 Conclusion . 141

Conclusion 143

IV Appendices 153

A Related publications 155

Bibliography 156

List of Figures 168

xiv Faiez Zalila

Introduction

Résumé
Cette introduction présente le contexte général, les défis et la contribution de cette thèse.

Durant la dernière décennie, l’ingénierie dirigée par les modèles (IDM, MDE en
anglais) a été exploitée pour améliorer le développement des systèmes critiques embarqués.
L’utilisation des modèles dans le contexte industriel améliore le processus de développe-
ment car il permet aux utilisateurs de disposer de langages spécifiques de leur domaine
donc plus naturels à utiliser que les langages d’implémentation (logiciel, matériel). Cette
approche s’appuie sur l’utilisation des langages dédiés de modélisation (DSMLs) qui possè-
dent des capacités pour décrire un système en utilisant les concepts du domaine considérés.

Cependant, concevoir un DSML est toujours un défi car il nécessite à la fois des con-
naissances du domaine et l’expertise de développement d’un langage. Un des éléments im-
portants pour définir un DSML est la vérification et la validation (V&V) car les DSMLs
sont largement utilisés dans les premières phases du développement de systèmes critiques
embarqués. L’utilisation des méthodes formelles pour vérifier de tels systèmes a donné des
résultats prometteurs dans le contexte industriel et a suscité l’intérêt des concepteurs de
système (les utilisateurs d’un DSML) pour appliquer ces technologies dans des projets in-
dustriels réels.

Le coût de développement des outils de V&V est considérable. Par conséquent, il est
approprié de s’appuyer sur une sémantique translationnelle qui traduit la syntaxe abstraite
du DSML vers un domaine sémantique existant, généralement un langage formel, et permet
ainsi de réutiliser les puissants outils (simulateurs, vérificateurs de modèle ou model-checkers
en anglais) disponibles dans ce domaine.

Cependant, la majorité des concepteurs de systèmes ne maîtrisent pas ces langages
formels orientés vérification. Il est donc nécessaire d’intégrer les outils associés dans des
chaînes de vérification outillées qui masquent les aspects formels aux concepteurs qui peu-
vent alors se concentrer sur leurs DSMLs.

L’outil attendu doit remplir plusieurs conditions dont certaines ont été déjà remplies
grâce aux technologies de l’IDM comme la définition des modèles en utilisant un éditeur
dédié, la vérification de leur conformité au DSML (métamodèle augmenté de contraintes
OCL). L’utilisateur du DSML doit également être en mesure de définir les propriétés com-
portementales en utilisant les concepts de son domaine, puis de les vérifier sur ses modèles.
Enfin, l’utilisateur final du DSML veut comprendre les résultats de la vérification, en parti-

1

Introduction

culier quand une propriété échoue, sans avoir à plonger dans le côté formel. Ces différents
besoins doivent être mis en œuvre pour chaque nouveau DSML. Par conséquent, il est im-
portant de faciliter la tâche du concepteur de DSML. Ces concepteurs devraient avoir une
telle méthode complète et les outils nécessaires pour intégrer l’activité de vérification facile-
ment pour un nouveau DSML.

La contribution principale de cette thèse vise à faciliter l’intégration de la vérification
formelle dans la conception des DSMLs et, plus particulièrement, à donner la possibilité à
l’utilisateur final du DSML de vérifier ses modèles sans avoir à se préoccuper des aspects
formels et outils associés.

Le premier objectif de notre travail est d’aider les experts et les concepteurs des DSMLs
à exprimer des propriétés comportementales au niveau DSML. Pour atteindre cet ob-
jectif, notre première contribution consiste à mettre en œuvre une extension temporelle
d’OCL correspondant à TOCL. En général, les syntaxes abstraites et concrètes d’un DSML
ne contiennent pas tous les éléments nécessaires pour exprimer des propriétés comporte-
mentales puisque ces informations apparaissent seulement au cours de l’exécution. Donc,
nous devons identifier et modéliser les différentes informations qui seront utilisées lors de
l’expression des propriétés comportementales.

Notre deuxième objectif consiste à traduire les propriétés comportementales en pro-
priétés du domaine formel. Nous fournissons une transformation de modèle d’ordre
supérieur (HOT) qui engendre une transformation de modèle produisant les propriétés
formelles correspondantes. Ces transformations s’appuient sur la sémantique translation-
nelle utilisée.

Le troisième objectif consiste à aider le concepteur du DSML à interpréter les résul-
tats de vérification obtenus au côté formel. Notre but est de fournir une solution générique
qui peut être appliquée sur tout DSML et tout langage formel et qui est indépendante de
la façon dont la sémantique translationnelle a été codée. Nous fournissons un langage de
programmation dédié (DSPL), nommé FEVEREL (Feedback Verification Results Language)
qui permet de définir des correspondances entre les informations d’exécution du niveau
DSML et celles du niveau formel. Ensuite, nous proposons une transformation d’ordre
supérieur (HOT) qui génère automatiquement une transformation de modèle correspon-
dante qui transforme les résultats de la vérification vers le niveau métier.

Le quatrième objectif de cette thèse concerne le côté méthodologique de définition
et d’utilisation d’une chaîne outillée de vérification d’un DSML. Il est recommandé
que l’intégration peut se faire d’une manière bien structurée. Ceci permet par exemple
d’identifier quel type d’information doit être mis à jour lorsque le domaine formel est sub-
stitué par un autre ou lorsque la sémantique translationnelle est mise à jour.

Notre dernière contribution consiste à récapituler les différents éléments de l’activité de
vérification pour un nouveau DSML. Ceci fournit une vue de haut niveau sur l’intégration
de la vérification formelle pour un nouveau DSML. Elle identifie la manière dont le con-
cepteur d’un DSML se comporte quand il choisit de changer une telle partie de la chaîne
outillée de vérification. En outre, le concepteur d’un DSML a encore des difficultés à intégrer
la vérification formelle en raison de l’écart sémantique entre les DSMLs et les sémantiques
des domaines formels. Par conséquent, sur la base de la méthode proposée, nous avons dé-

2 Faiez Zalila

Introduction

cidé de valider notre approche par l’intégration d’un langage formel intermédiaire dans la
chaîne de vérification outillée afin de réduire cet écart sémantique.

Formal Verification Integration Approach for DSL 3

Introduction

0.1 Context and challenges

In the last decade, Model Driven Engineering (MDE) has been used to improve the devel-
opment of safety critical systems. The use of models in the industrial context improves the
current development process for experts and users by creating rigorous models and thus
reducing the costs. Indeed, the MDE aims to provide languages close to users domains and
easier to use than implementation ones (software, hardware). This approach relies on the
use of Domain specific Modeling Languages (DSMLs) that have the capabilities to describe a
system using its domain concepts.

However, designing a DSML is still a challenging and time-consuming task because it
requires both domain knowledge and language development expertise. To design a DSML,
the domain expert explains different requirements that should be achieved. Based on these
requirements, software language designers must implement different DSML concerns like
the abstract syntax, the concrete syntax and the DSML semantics. Finally, the domain expert
should validate whether DSML requirements are respected by software language designers
[CGS12].

One of these DSML requirements is model verification and validation (V&V) because
DSMLs are widely used in the early phases of the development of safety critical systems.
These activities are key features to assess the conformance of the future system to its safety
and liveness requirements. Verification activity based on formal methods of safety critical
embedded systems has produced very promising results in the industrial context and raised
the interest of system designers (DSML end-users) up to the application of these technolo-
gies in real size projects [BVWW09, WL03, Lec09].

As an example, TOPCASED1 is a research and development project started in 2005 in the
French “Aerospace Valley” cluster that gathers academic and industrial partners [FGC+06].
It is dedicated to the development of open source Computer Assisted Software Engineering
(CASE) toolset for the development of safety critical aeronautic, automotive and space em-
bedded systems. Such developments will range from system and architecture specifications
to software and hardware implementation through equipment definition.

TOPCASED addresses modeling languages, both domain specific ones (SAM, EAST-ADL,
AADL, and SDL2) and general purpose ones (SYSML, UML, etc.) and associated tools like
graphical and textual editors, documentation generators, validation through model anima-
tion, verification through model checking, version management, traceability, etc.

As the cost of developing new V&V tools is significant, it is appropriate to introduce a
translational semantics for DSMLs which is provided as a mapping from the abstract syntax
(metamodel) of the DSML to an existing semantic domain, usually a formal language, in
order to reuse powerful tools (simulator or model-checker) available for this domain [MP10,
HR04].

However, most system designers do not master these specific verification-oriented for-
mal languages. It is thus mandatory to embed the associated tools in automated verification

1Toolkit In OPen source for Critical Applications & SystEms Development, www.topcased.org
2Specification and Description Language: is an object-oriented formal language developed and standardized by The

International Telecommunication Standardization Sector (ITU-T)

4 Faiez Zalila

0.2. Description of the thesis contributions

toolchains that allow designers to focus on their usual DSMLs, hiding all formal aspects but
still enjoying the benefits of the powerful tools.

The expected tool has to fulfill several requirements. Some are already achieved thanks
to MDE technologies: defining models using a dedicated editor and checking its confor-
mance to the DSML as well as to OCL constraints. The DSML end-user must also be able
to define behavioral properties using the concepts of its domain and then to verify whether
these properties hold or not [on the models]. Finally, the DSML end-user wants to under-
stand verification results, when a property fails, without having to dive in the formal side.

These different requirements should be implemented for each new DSML. Therefore,
it is important to ease the DSML designer task. DSMLs designers should have such a
complete method and the necessary tools to integrate easily verification activity for a new
DSML.

0.2 Description of the thesis contributions

Our global thesis contribution aims to ease the integration of the formal verification in the
design of DSMLs and, more particularly, it consists in giving the possibility for the DSML
end-user to verify its models without having to deal with formal aspects and their related
tools underlying the verification activity.

The first goal of our work is to help DSML expert and designers to express behavioral
properties at the DSML level and their related elements. To achieve this objective, our first
contribution consists in implementing a temporal extension of Object Constraint Language
(OCL) corresponding to TOCL as proposed by Paul Ziemann and Martin Gogolla in [ZG02]
that allows the DSML expert and designer to express the behavioral properties to assert and
their related elements. Usually the DSML abstract and concrete syntaxes do not contain all
necessary elements to express behavioral properties as they relate to the information existing
only during the execution which is not most of the time modelled by the abstract syntax. So,
we need to identify different kind of information that should be added during the expression
of the behavioral properties.

Our second goal consists in managing the expressed behavioral properties. We provide a
higher-order model transformation (HOT) that generates a model transformation producing
the corresponding formal properties. So, we explain our proposed translation to automati-
cally generate formal properties and we stress the elements on which this translation relies.

The third objective consists in assisting the DSML designer to manage verification re-
sults obtained on the formal side. Our purpose is to provide a generic solution which can be
applied on any DSML and any formal domain and which is independent of how the trans-
lational semantics was coded. We provide such a domain-specific programming language
(DSPL), named FEVEREL (Feedback Verification Results Language) that allows to define a
mapping between the DSML runtime information and the formal one. Then, we provide
a higher-order transformation (HOT) that generates automatically a corresponding model
transformation which transforms verification results from the formal side into the DSML
one.

Formal Verification Integration Approach for DSL 5

Introduction

Chapter 3
Current status of
the integrating of

verification activity
on SPEM running

case-study

Chapter 4
The expression
and the verification
of DSML behavioral
properties

Chapter 5
The feedback
of verification
results into the
DSML level

Chapter 6
The methodological
way to integrate
easily the verification
activity for a new
DSML

Chapter 7
The introduction
of an intermediate
language in the
verification
toolchain

Chapter 8
The validation of the
approach by applying
our proposed
contributions on a
Ladder Diagram (LD)

FinishToStart

FinishToStart

FinishToStart

FinishToStart

FinishToStart FinishToStart

Figure 1 — Towards a generic approach to integrate formal verification for DSMLs

The fourth objective concerns the methodological side of defining and using the verifi-
cation toolchain for a new DSML. It is recommended that the integration can be done in a
well-structured way. It allows for example to identify what kind of information should be
updated when the formal domain is substituted by another one or when the translational
semantics is updated. Our last contribution consists in summarizing different verification
activity elements. It provides a high level view of the integration of formal verification for a
new DSML. It identifies how the DSML designer behaves when he chooses to change such
a part of the verification toolchain.

Furthermore, the DSML designer still has difficulties to integrate formal verification due
to the semantic gap between DSMLs and formal semantics domains. Therefore, based on the
proposed method, we decided to validate our approach by integrating a formal intermediate
language in the verification toolchain in order to reduce this gap.

0.3 Outline of this thesis

This part gives a brief summary of this thesis which is composed of 8 chapters and struc-
tured into 3 parts:

• Part 1: State of the Art

– Chapter 1 introduces the technical background related to the modeling world by
presenting the model-driven engineering (MDE), the model driven architecture
(MDA) and model transformations.

– Chapter 2 presents the notion of domain-specific modeling language (DSML),
the different required elements (abstract syntax, concrete syntax and semantics)
to build it and the related verification activities.

– Chapter 3 explains the running case-study which is considered as the pivot case-
study of our work during this thesis. It relies on the Software Process Engineering
Metamodel (SPEM). We present the proposed verification activity. Based on this
approach, we discuss the missing elements to obtain a seamless approach to ensure
the verification activity for DSMLs.

6 Faiez Zalila

0.3. Outline of this thesis

• Part 2: Contribution

– Chapter 4 handles the first identified problematic which is the expression and the
verification of behavioral properties. We show our proposed language to express
behavioral properties at the DSML level. Then we explain our proposed transla-
tion to automatically generate formal properties.

– Chapter 5 deals with the feedback of verification results problematic. It intro-
duces our proposed language to manage verification results (FEVEREL) and the
proposed solution to transform formal verification results into DSML ones.

– Chapter 6 represents from a methodological viewpoint, the integration of the
verification activity for a new DSML and explains how to obtain a DSML veri-
fication framework. It stresses the dependencies between the different verification
activity parts and details the variant and invariant aspects when such an element
in the verification activity toolchain changes.

• Part 3: Validation of the approach

– Chapter 7 introduces an intermediate formal language in the verification
toolchain to reduce the semantic gap between DSMLs and formal languages. We
apply the methodology presented in the previous chapter, by substituting the for-
mal target language, to show the generic aspects of our approach.

– Chapter 8 validates our approach by applying our proposed contributions on a
DSML named Ladder Diagram (LD) used to model Programmable Logic Con-
trollers (PLCs). It consists in formalizing generic properties at the LD level and
feeding back verification results at the LD level in order to be understood by do-
main engineers.

Figure 1 shows a process model that describes the principal contributions of this the-
sis. Dependencies between activities correspond to the possible paths for reading this
manuscript. Finally, we conclude this thesis and we outline future directions for re-
search.

Formal Verification Integration Approach for DSL 7

Introduction

8 Faiez Zalila

Part

State of the Art

9

1 Model-driven Engineering

Résumé
Ce premier chapitre présente le cadre théorique et technique de cette thèse. Il détaille les
notions clés de l’IDM.

Durant la dernière décennie, l’IDM a été utilisée pour améliorer le processus de
développement des logiciels en réduisant la complexité des différentes phases de
développement, en élevant le niveau d’abstraction dans la spécification d’un programme
et en permettant les activités de V&V dans les phases amont. L’IDM est appliquée avec suc-
cès dans de nombreux domaines comme l’automobile et l’aéronautique. L’idée principale de
l’IDM consiste à considérer les modèles comme l’artefact principal pour le développement
des systèmes. Un modèle est une vue abstraite d’un système qui permet de comprendre le
système modélisé et répondre à des questions connexes. Il est défini conformément à un
métamodèle qui introduit un métalangage permettant d’exprimer des modèles. La définition
d’un métamodèle est le processus de métamodélisation (c’est-à-dire la définition d’un lan-
gage).

En 2001, le consortium international Object Management Group (OMG) a normalisé l’IDM
et a proposé l’approche Model Driven Approach (MDA) comme une méthode pour appliquer
l’IDM. L’approche MDA est fondée sur la séparation des préoccupations. Elle permet de
modéliser séparément les aspects métiers et techniques d’un système. Cette initiative vise
à normaliser l’utilisation de modèles en fournissant un ensemble d’outils et de méthodes
comme MetaObjectFacility (MOF), Unified Modeling Language (UML), XML Metadata In-
terchange (XMI), Object Constraint Language (OCL), etc. L’approche MDA repose sur une
architecture de métamodélisation à quatre niveaux. Un premier niveau, M0, nommé aussi
le niveau d’instance, correspond au monde réel. Il décrit le système concret. Ce dernier est
représenté sous forme de modèles au niveau M1 (le niveau modèle). Ces modèles sont con-
formes à leurs métamodèles du niveau M2. Un métamodèle définit un domaine de connais-
sance. Ces métamodèles eux-mêmes sont conformes au méta-métamodèle MOF (niveau M3)
qui est un métamodèle décrivant un langage de métamodélisation.

Un des processus importants dans le contexte de l’IDM est la transformation de modèle.
Elle permet d’automatiser la manipulation des modèles et consiste à produire un modèle
cible à partir d’un modèle source (on dit M2M, modèle à modèle) conformément à une déf-
inition de transformation. Dans ce chapitre, nous présentons une classification des transfor-
mations de modèle en nous appuyant sur la nature des métamodèles de la transformation

11

Model-driven Engineering

(transformations exogènes ou endogènes) et le niveau d’abstraction des modèles manip-
ulés (transformations verticales ou horizontales). Un cas particulier de transformation est
la transformation de modèle à texte (M2T) (génération de code, documentation, etc). Une
transformation est elle-même un modèle et peut être l’entrée ou le résultat d’une trans-
formation, cette dernière est dite transformation d’ordre supérieur (HOT). À la fin de ce
chapitre nous citons quelques exemples de langages de transformation de modèles : ATL,
Kermeta et QVT.

12 Faiez Zalila

1.1. Model and Metamodel

In the last decade, Model Driven Engineering (MDE) has been used to improve the soft-
ware development process by reducing the complexity of different development phases, by
raising the level of abstraction in the program specification and by introducing early V&V
activities. MDE is applied successfully in many domains like automotive and aeronautics.

The principal idea in MDE consists in considering models as the main artifact for de-
veloping systems. A model is an abstract view of a system which allows to understand the
modelled system and answer to related questions. It is defined in conformance to a meta-
model which defines a language enabling to express models [Béz06]. Defining a metamodel
is the process of metamodeling (i.e. language definition).

In 2001, the Object Management Group’s (OMG) standardized the MDE and proposed
the MDA approach as a method for applying MDE.

One of the most important processes in the MDE context is the model transformation. It
consists in producing a target model from a source model conforming to a transformation
definition [MVG06].

In this chapter, we present different notions of the MDE. First, we introduce the notion
of model, metamodel, and metamodeling (section 1.1). Then, we show the MDA approach
proposed by the OMG and its architecture (section 1.2). Section 1.3 defines the concept of
model transformation and its different kinds. In addition, we show existing tools for model
transformation.

1.1 Model and Metamodel

Since the sixties, Object technologies are based on the basic principle "Everything is an ob-
ject". It has provided more simplicity, generality and power of integration of this technology
for which two core relations are identified: the inheritance (inheritsFrom) and the instantia-
tion (instanceOf). This direction has been followed when the MDE appeared with the basic
principle ("Everything is a model") [Béz05]. The MDE aims at increasing the abstraction level
in the development process by the use of models in the different development phases. In the
MDE, the notion of a model is the core of the development.

Several definitions of the notion of model can be identified in the literature. Minsky in
[Min68] proposed the following definition: « To an observer B, an object A* is a model of an
object A to the extent that B can use A* to answer questions that interest him about A.» In [BG01],
another definition of a model was proposed. We consider below this definition.

Definition 1. A model is a representation or an abstraction of a (part of a) system. It can be used,
instead of the real system, to answer questions that can be asked about this system.

Based on this definition, a first principle for the MDE was identified [Béz04]. It is the rep-
resentation (representedBy) relation between a system and a model (the bottom of Figure 1.1).
Once we choose to represent a system with a model, it is mandatory to specify how we can
define a model. It is done through a language which obviously is a model, called metamodel.

Definition 2. A metamodel is a model that defines a language to specify conforming models
[OMG06]. It is thus a modeling language.

Formal Verification Integration Approach for DSL 13

Model-driven Engineering

SystemModel

Metamodel

representedBy

conformsTo

Figure 1.1 — MDE core relations

A metamodel allows to formalize a domain, its concepts and the relations between
them. The metamodel becomes the core of the different development phases for this do-
main [JCV12].

The notion of metamodel allows to identify a second kind of relation in the MDE con-
text between a model and a metamodel. It is the conformance (conformsTo) relation shown
vertically in Figure 1.1. A model conforms to its metamodel.

1.2 Model-driven Architecture

In 2001, the OMG launched a software design approach for MDE named model driven
architecture (MDA) [OMG03a]. The MDA approach is based on the seperation of concerns.
It allows to separately take into account business and technical aspects of a system due to
the modeling process. This initiative aims to standardize the use of models by providing a
set of tools and methods.

1.2.1 The MDA approach

The MDA can be defined as the OMG vision for application of the MDE. It consists in
defining a software framework to use models in the software development. Therefore, sev-
eral standards have been proposed in this approach like:

• The Meta Object Facility (MOF) provides the elementary constructs to define metamod-
els, to extend or to modify existing ones. It conforms to itself [OMG06].

• The Unified Modeling Language (UML) is a general purpose modeling language
(GPML). It was proposed as a graphical modeling language for the design of a soft-
ware system. It is an object oriented modeling language that includes a set of graphical
notations to design the structural and the dynamic views of a system [OMG07b]. It
has been extended to provide more than 14 different kinds of diagrams (for UML 2.3
[OMG10]) and can be further extended with the profile reflexive facilities. This format

14 Faiez Zalila

1.2. Model-driven Architecture

CIM

PIM PDM

PSM

Processing

Code

Figure 1.2 — The Y schema of the MDA approach

has been extended by UML-DI (Diagram Interchange) to embed graphical data related
to diagrams.

• The XML1 Metadata Interchange (XMI) is a standard for exchanging metadata infor-
mation via XML. It complements the UML modeling languages by defining an inter-
change format based on XML. The XMI ensures the interoperability and serialization
techniques for models [OMG11b].

• The Object Constraint Language (OCL) is a textual constraint language that completes
the specification which may be ambiguous due to the graphical notation of modeling
languages [OMG12].

The main goal of the MDA is to separate different system considerations during the
development process. For instance, it aims at distinguishing between the specification and
the implementation of a system in order to ease the maintenance. As shown in Figure 1.2,
several types of models can be identified:

• Computational Independant Model (CIM): defines the requirements that describe func-
tional needs for an application.

• Platform Independent Model (PIM): represents the design of the system without any im-
plementation consideration. It allows to give a structural and a dynamic view of the
system, always regardless of any technical design of the system.

• Platform Description Model (PDM): specifies the platform model of the implementation
(J2EE, .Net, PHP, etc.).

1eXtensible Markup Language

Formal Verification Integration Approach for DSL 15

Model-driven Engineering

M3metameta
model
(MOF)

M2

M1

M0

metamodel
(UML, SPEM, ...)

model
(UML models, ...)

"real" world
represented by

coforms to

coforms to

coforms to

Figure 1.3 — MDA layers

• Platform Specific Model (PSM): is the closest model to the code. It can be the result of
combining the PIM with the PDM.

The code, in the MDA approach, is usually automatically generated from different models
that represent a system. They are not only a visual way to ease the understanding of the
application but also a productive and pivot element in the MDA process.

1.2.2 The MDA architecture

The MDA is based on the four-layer metamodeling architecture as shown in Figure 1.3. The
M0 layer, named also instance level, corresponds to the real world. It describes the concrete
system. It is abstracted as models in the M1 layer (the model level). These models conform to
their metamodels given in the M2 layer. A metamodel defines a knowledge domain. These
metamodels conform to the MOF metametamodel (M3 layer).

Definition 3. A metametamodel is a metamodel that describes a metamodeling language. It provides
a set of constructs that allow to define modeling languages. It conforms to itself.

Figure 1.4 shows a concrete modeling example conforming to the four layers of the MOF
architecture. It illustrates this architecture by modeling the file system. The bottom shows
a real file system as observed by the user. It represents the real world. This file system can
be abstracted as a model which is proposed in the M1 layer: the model layer. This model
conforms to a metamodel that defines the concepts of this domain. It introduces the concept
of Filesystem which represents the whole system, a set of notions like Drive, File, etc. and the
relations between them like composition and inheritance. This metamodel conforms to the
MOF metametamodel. Dashed arrows shows the conformance relation between the model
and the metamodel on the one hand and between the metamodel and the MOF metameta-
model on the other hand.

The MOF standard offers elementary constructs which allow to describe metamodels.
There are a lot of frameworks aligned on OMG’s MOF: Eclipse-EMF/Ecore [BSE03], AM-
MA/KM3 [JB06] or Kermeta [MFJ05]. These languages have the required concepts to define
new metamodels. For instance, they provide constructors for structural elements (Class). A

16 Faiez Zalila

1.2. Model-driven Architecture

Filesystem

Drive

Sync

Folder

name: String
File

Shorcut

*
contents target

source target

*
drives

*
syncs

PrincipalDisk

ThesisManuscript

Desktop

ThesisManuscrit.pdf

TM.lnk

target

BackupDisk

BackupThesis

ThesisManuscrit.pdf

M0
Real
world

M1
Model

M2
Metamodel

represented by represented by

M3
Metametamodel

name: String
NamedElement

Type

DataType

isAbstract: Boolean = false

Class

TypedElement

Boolean

String

Natural�

lower: Natural��= 1
upper : Natural��= 1
isOrdered : Boolean = false
isComposite: Boolean =
false default: String = ""

Property

1
type

0..*
superClass 0..1

opposite

owner

{ordered} 0..*
ownedAttribute

Figure 1.4 — A concrete modeling use-case

Class is composed of characteristic properties (Property). A property is considered as a ref-
erence if it is typed by another class (TypedElement) and an attribute when it is typed by a
primitive type (Boolean, String or Natural).

Formal Verification Integration Approach for DSL 17

Model-driven Engineering

Ab
st

ra
ct

io
n

le
ve

ls

L0
L1

L2

Ms Mt

L0
L1

L2

Ab
st

ra
ct

io
n

le
ve

ls

L3

Ms

Mt

MMs

Ms

MMt

 Mt

conform to conform to

Exogenous transformation

Ms Mt

MM

conform to

Endogenous transformation

Horizontal transformation Vertical transformation

Optimization,
Simplification,
Normalization
Refactoring

Language migration,
Serialization Code generation

Refinement

Mt

Ms

Reverse Engineering

Figure 1.5 — Model transformation types and their main uses

Metamodel

Model M2T

<<conformsTo>>

Figure 1.6 — Model-to-text transformation

1.3 Model Transformation

The MDE considers the "model" notion as a key artifact and the core of the development
process. So, it is necessary to ease the use of the defined models. Model transformation is
a central concept in the MDA approach. It provides a mechanism to automate the manip-
ulation of models. It is considered as programs that take models as inputs and build new
models as outputs.

In this section, we describe the various kinds of model transformations (subsection 1.3.1).
Then, we present, briefly, some model transformation languages used by the MDE commu-
nity.

18 Faiez Zalila

1.3. Model Transformation

1.3.1 Model transformation types

A model-to-model (M2M) transformation is the generation process of a target model (Mt),
conforming to a target metamodel (MMt), from a source model (Ms) conforming to a source
metamodel (MMs).

In the literature, there are many proposed criteria to classify model transformations. One
of the classification criteria is the nature of the transformation metamodels. Two kinds of
model transformation can be identified in this field:

• exogenous model transformation: where the input and output models conform to different
metamodels. This kind of transformation allows to migrate from a model written in
one language to another (language migration). In addition, this kind of transformation
can synthesize a high-level specification into a lower-level. This use corresponds to the
code generation process where the design models are translated into the source code.
Furthermore, this transformation kind eases extracting a higher-level specification from
a lower-level one (Reverse engineering).

• endogenous model transformation: where the input and output models conform to the
same metamodel. MMs and MMt are the same. This kind of transformation has several
utilities. For instance, it aims to optimize the performance of a model while preserv-
ing its semantics (Optimization). In addition, it can improve the internal structure of the
software in order to improve its quality characteristics without changing its external ob-
servable behavior (Refactoring). Another purpose of the endogenous transformation is
the simplification and the normalization which mean decreasing the syntactic complexity
of a model. Finally, this kind of transformation can refine an abstract specification into
a more concrete specification (the refinement).

Another kind of classification criteria can be studied is the abstraction level of different mod-
els manipulated during a transformation. Two kinds of model transformation are identified:

• A vertical transformation is a transformation where the source and target models belong
to two different levels of abstraction. A typical example is the code generation where the
abstraction level decreases during this process.

• A horizontal transformation is a transformation where the abstraction levels of the source
and the target model are the same. A typical example is the refactoring.

Figure 1.5 shows an orthogonal classification of model transformation based on both cited
classification criteria.

There are many other classification criteria for model transformations like the supported
target type (a transformation which allows generating texts from source models (Figure 1.6)
is named model-to-text (M2T) transformation) and the directionality of a transformation
which can be unidirectional (only from source to target) or bidirectional (a transformation
can be applied from source to target and from target to source). Several studies are proposed
in [Bie10, MVG06] to list different model transformation classification criteria.

Formal Verification Integration Approach for DSL 19

Model-driven Engineering

MMs MMt

Ms Mt

Ms2Mt
<<conformsTo>>

<<conformsTo>>

MM

<<conformsTo>>

<<conformsTo>>

<<conformsTo>>

<<conformsTo>>

MOF
metametamodel

<<conformsTo>>

Figure 1.7 — Model transformation process

Model transformations have been used in many different domains and their popularity
is growing due to their increasing success to handle complex applications and processing in
these domains. The evolution of the MDE is characterized by considering model transfor-
mations as an integral part of the developed system. So, model transformations can be them-
selves generated as traditional programs. Due to the basic principle of MDE ("Everything is
a model"), a new concept was proposed: transformation model. A transformation model can
be created, modified, extended via a transformation. The transformation model conforms
to a transformation metamodel (Figure 1.7) which conforms to the MOF metametamodel
[BBG+06]. Considering model transformations as models eases their manipulation using
model transformations named Higher-Order Transformations (HOT).

Definition 4. A higher-order transformation is a model transformation that manipulates other model
transformations. It means that the input and/or output models are themselves model transformations.

1.3.2 Model transformation languages

Since the appearance of the MDE and the MDA, many model transformation languages
have been proposed. First, there are generic model transformation languages like the EMF
API 2 for Java where the model transformation is coded as a Java program. Then, a set of
specific model transformation languages are proposed such as:

Kermeta [MFJ05] is defined as a meta-modeling, object-oriented and aspect-oriented pro-
gramming language. It uses EMF tools to define programs which are also models, to
specify transformations of models, to specify constraints on these models, and to exe-
cute them.

ATL (Atlas Transformation Language) is a hybrid transformation language (declarative
and imperative). The declarative style of ATL allows to simplify complex transfor-

2Application Programming Interface

20 Faiez Zalila

1.3. Model Transformation

Black
Box

Operational
Mappings

Relations

Core

RelationToCore
Transformation

Figure 1.8 — QVT standard architecture

mations algorithms. The imperative constructs allow to specify mappings that are too
hard to be defined declaratively. ATL allows to define a model-to-model transformation
(named Module) and model-to-text transformation (named Query). An ATL model-to-
model transformation is composed of rules that define how source model elements are
handled to create and to initialize the elements of target models. ATL is defined both as
a metamodel and as a textual concrete syntax [JABK08].

QVT (Query/View/Transformation) is the OMG standard language for specifying model
transformations [OMG11a]. The QVT metamodel conforms to the MOF. It uses the
Object Constraint Language (OCL) to navigate on models. QVT defines three transfor-
mation languages: (1) QVT Relations which is a declarative model transformation lan-
guage. It supports the specifications of bidirectional model transformations. (2) QVT
Core which is a low-level declarative model transformation language. It provides a
foundation for the QVT Relations semantics which is defined as a transformation from
Relations to Core. (3) QVT Operational Mappings which is an imperative model trans-
formation language. It extends the Relations with imperative constructs. The speci-
fied transformations are unidirectional. Finally, the QVT architecture has a mechanism
called Black Box for invoking transformation facilities expressed in other languages (Fig-
ure 1.8).

Many other model transformation languages exist. We give some and their references: ETL
(Epsilon Transformation Language) [KPP08], VIATRA2 [VB07], Tom [BCMP12], etc.

Formal Verification Integration Approach for DSL 21

Model-driven Engineering

22 Faiez Zalila

2 Domain-specific Modeling
Languages

Résumé
Dans le contexte de l’IDM, les modèles jouent un rôle prédominant durant le processus de
développement. Par conséquent, il est naturel de formaliser la définition d’un domaine en
terme de ses concepts et des relations entre eux sous forme d’un métamodèle, qui représente
une vue de haut niveau du monde réel. La métamodélisation consiste à définir un métamod-
èle (nommé également un langage de modélisation) qui représente l’ensemble des modèles
conformes à ce langage.

Il y a deux paradigmes qui guident le développement de ces langages de modélisation:
la modélisation généraliste (general-purpose modeling en anglais (GPM)) et la modélisa-
tion dédiée à un domaine (domain-specific modeling en anglais (DSM)). La GPM consiste
à utiliser un langage de modélisation généraliste (general-purpose modeling language en
anglais (GPML)) pour représenter plusieurs aspects d’un système sous forme d’un modèle.
Un GPML est un langage de modélisation (et éventuellement son outillage) qui peut être
appliqué à n’importe quel domaine. UML est un exemple typique de GPML utilisé pour
modéliser une grande variété de systèmes. La DSM est une méthode de génie logiciel pour
concevoir et développer des systèmes en s’appuyant sur de nombreux modèles différents
correspondants aux différents aspects d’un système. Elle consiste à utiliser un langage dédié
à un domaine (domain-specific language en anglais (DSL)) pour définir (une partie d’) un
système. Un langage de modélisation dédié (domain-specific modeling language en anglais
(DSML)) est un DSL utilisé pour modéliser tels systèmes. Contrairement à un GPML, un
DSML capture les concepts d’un domaine spécifique.

L’utilisation de DSML a bien mérité sa place intéressante dans la communauté de
génie logiciel. Il inclut des concepts de haut niveau qui correspondent aux termes réels de
l’utilisateur final du domaine.

Pour concevoir un DSML, trois éléments de base devraient être définis: une syntaxe
abstraite qui représente la structure du langage, des syntaxes concrètes (textuelles ou
graphiques) qui décrivent des représentations spécifiques du DSML et plusieurs séman-
tiques qui fournissent le sens des éléments définis au langage. Comme nous ciblons les sys-
tèmes critiques embarqués, les activités de vérification et validation (V&V) sont essentielles.
Nous devons fournir des outils de haute qualité pour les utilisateurs finaux des DSMLs.
La vérification de modèle est une étape critique dans le processus de développement. Elle

23

Domain-specific Modeling Languages

consiste à évaluer la conformité des modèles conçus en s’appuyant sur la sémantique du
DSML.

24 Faiez Zalila

2.1. Different elements defining a DSML

In the MDE context, models play a dominant role during the development process.
Hence, it was natural to define more abstract models, named metamodels, that represent
high-level views of the real worlds. Metamodeling defines a metamodel (named also a
modeling language) that represents the whole class of models conforming to this language
[BCW12].

There are two paradigms that guide the development of such modeling languages:
general-purpose modeling (GPM) and domain-specific modeling (DSM).

GPM consists in using a general-purpose modeling language (GPML) to represent multiple
aspects of a system as a model. A GPML is a modeling language (and eventually its tooling)
which can be applied to any domain. UML is a typical example of GPML used to model a
wide variety of systems.

The DSM is a software engineering methodology to design and develop systems relying
on many different models corresponding to the various aspects in a system. It consists in us-
ing a domain-specific language (DSL) to define a (part of a) system. DSLS have been widely
used in the different computer science fields like HTML1 markup language for Web page
development, SQL2 to query databases, etc. A domain-specific modeling language (DSML) is a
DSL used to model such systems. In contrast to GPML, DSML captures the concepts of a
specific domain.

The use of DSML has well earned its interesting place in the software engineering com-
munity. First, a GPML may only provide generic modeling concepts far from the end-user
domain ontology. In addition, it may provide all the potential modeling concepts and over-
whelm the end-user that will have many different ways of modeling the same artifact. How-
ever, a DSML includes high-level concepts that correspond to the real terms of the user do-
main. In addition, a DSML is developed with its specific graphical or textual syntax which
is more near to the user knowledge and with its specific constraints that check the validity
of defined models [Fra11].

As we target the development of tools for safety critical systems, the reliability of the
designed tools is crucial. To ensure the suitability of the DSMLs and their related tools, it
is necessary to introduce the verification technique to the developed modeling languages. It
consists in checking whether DSML conforming models behave as expected.

In this chapter, we detail different required elements to design a DSML. We illustrate
them on a DSML for describing processes based on the Software Process Engineering Meta-
model (SPEM) [OMG07a]. Then, we explain different approaches proposed to perform model
verification in the DSML context.

2.1 Different elements defining a DSML

To design a DSML, three core elements should be defined: an abstract syntax that repre-
sents the structure of the language, concrete syntaxes that describe specific representations
of the DSML and several semantics that provide the meaning of the elements defined in the

1Hypertext Markup Language
2Structured Query Language

Formal Verification Integration Approach for DSL 25

Domain-specific Modeling Languages

startToStart
startToFinish
finishToStart
finishToFinish

<<enumeration>>
WSType

name: String
minTime : Int
maxTime : Int

Process

name : String
minTime : Int
maxTime : Int

WorkDefinition
linkType : WSType

WorkSequence

Parameter

name : String
count : Int

Resource

0 .. * workDefinitions

1 successor

0 .. * workSequences

1 predecessor linkToSuccessor 0 .. *

linkToPredecessor 0 .. *

0..* parameters

1 workDefinition

1 resource 0..* resources

Figure 2.1 — An extract of SPEM

language and must be consistent.

2.1.1 Abstract syntax of a DSML

An abstract syntax defines the structure of a language, the whole language concepts and
their relationships. It is defined using a metamodeling framework, based on the MOF
metametamodel, like the Eclipse-EMF/Ecore.

Many abstract syntaxes currently available also targets other uses like being the inputs
for other tools and thus can suffer from other requirements and thus get away from the ini-
tial purpose of giving a simple and minimal definition of domain concepts and relations.
As a well known example, the UML metamodels suffer from many requirements like inter-
change formats, diagrams supports, factorisation, etc.

SPEM is an OMG standard defined in order to specify and describe software and system
development processes. A subset of the SPEM 2.0 is shown in Figure 2.1. It defines the
concepts of Process composed of (1) a set of activities (WorkDefinition) performed during the
process, (2) a set of dependencies (WorkSequence) that define temporal dependency relations
(causality constraints) between activities and (3) a set of resources (Resource) allocated to
activities (Parameter).

WorkDefinitions are related thanks to the WorkSequence concept, whose attribute linkType
specifies when an activity can be started or finished. The values of kind are defined by the
WSType enumeration. A WorkSequence value follows the stateToAction pattern (startToFinish
type means that the target activity can only finish when the source activity has been started).

As for the majority of modeling languages and due to the lack of expressivity of the
graphical representation of metamodeling languages, the proposed SPEM metamodel does
not capture the whole DSML requirements. For example, the requirement "workdefini-
tion names have to be unique within a process" cannot be captured by the SPEM meta-
model. Therefore, the DSML metamodel should be extended with well-formedness proper-
ties which must be respected by the conforming models. OCL [OMG12] is the OMG stan-
dard proposed to define such properties on models. It is a general-purpose textual formal
language. OCL constraints are first order logic formulas defined as invariants for each spe-

26 Faiez Zalila

2.1. Different elements defining a DSML

cific type associated to metaclasses (context). Its library defines the primitive and collection-
related types and their predefined operations. In addition, OCL has an universal quantifier
f orAll and an existential quantifier exists and other iterators (select, one, etc.).

OCL allows to define structural properties at the metamodel level in order to validate
them on the conforming models. To assess these properties, the DSML end-user can use
OCL checkers like for example the Eclipse OCL checker 3.

Considering the SPEM metamodel, Listing 2.1 defines an OCL property which verifies
whether the workdefinitions’ names are unique on a process. In addition, the OCL property
shown in the Listing 2.2 verifies the non-reflexivity of a worksequence.

context Process
inv names_uniqueness :
self . workDefinitions

−>forAll (wd1, wd2|wd1 <> wd2 implies wd1.name <> wd2.name)
Listing 2.1 — OCL property verifying the uniqueness of workdefinitions’ names

context WorkDefinition
inv not_reflexive :
self . predecessor <> self . successor

Listing 2.2 — OCL property verifying the non-reflexivity of a worksequence

These properties define the static (or structural) semantics. It corresponds to defining
restrictions on the structure of DSML conforming models.

2.1.2 Concrete syntax of a DSML

A concrete syntax describes a specific representation of the DSML used to display models
to end users. It can be either a textual or graphical representation. It eases the use of the ab-
stract syntax concepts and thus the creation of DSML conforming models. Several projects
provide tools to implement textual concrete syntaxes for DSLS like Xtext4, TCS5, or EMF-
Text6 or graphical concrete syntaxes like Graphical Modeling Framework7 (GMF), Sirius8

and Graphiti9.

Figure 2.2 shows an example of a process model. It corresponds to a simplified devel-
opment process composed of four activities, each represented with an ellipse: Programming,
Designing, Test case writing and Documenting.

The “finishToStart” dependency between Designing and Programming means that Pro-
gramming can only be started when Designing has been finished. Documenting and Test-
CaseWriting can start once Designing is started (startToStart) and Documenting cannot finish
if Designing is not finished (finishToFinish).

3http://www.eclipse.org/modeling/mdt/?project=ocl
4http://www.eclipse.org/Xtext/
5http://www.eclipse.org/gmt/tcs/
6http://www.emftext.org/
7http://eclipse.org/gmf-tooling/
8http://www.eclipse.org/sirius/
9http://www.eclipse.org/graphiti/

Formal Verification Integration Approach for DSL 27

Domain-specific Modeling Languages

2

2
2

finishToFinish

Programming

Documenting

TestCaseWriting

Designing

startToStart finishToStart startToStart

Developer

count = 3
2

1

Designer

count = 2
2

1

Computer

count = 31

startToStart

finishToFinish

Figure 2.2 — A SPEM development process

1 process Development {
2 wd Designing (Designer (2) , Computer (2))
3 wd Documenting (Designer (1) , Computer (1))
4 wd Programming (Developer (2) , Computer (2))
5 wd TestCaseWriting (Developer (1) , Computer (2))
6 ws finishToFinish from Designing to Documenting
7 ws startToStart from Designing to Documenting
8 ws finishToStart from Designing to Programming
9 ws startToStart from Designing to TestCaseWriting

10 ws finishToFinish from Programming to TestCaseWriting
11 ws startToStart from TestCaseWriting to Programming
12 rs Designer (2)
13 rs Developer (3)
14 rs Computer (3)
15 }

Listing 2.3 — A textual formalization of the SPEM development process

The dependencies put between Programming and TestCaseWriting enforce a test driven
development: programming can only start when test cases are already started and, obvi-
ously, test case writing can only be finished when programming is finished in order to take
into account test coverage.

Rounded rectangles represent resources with their amounts (2 Designers, 3 Developers
and 3 Computers). Dashed arrows indicate how many occurrences of a resource an activity
requires. On Figure 2.2, Programming needs two developers and two computers. Resources
are allocated when an activity starts and freed when it finishes.

A concrete textual syntax for SPEM can be defined with Xtext. A possible formalization
of the SPEM development process can be shown in Listing 2.3.

2.1.3 Behavioral semantics for a DSML

Usually, the behavioral semantics is neglected in the definition of a language. However, as
we focus on executable DSML, it is a key feature to define the behavior of a model during

28 Faiez Zalila

2.2. Model verification for DSMLs

the execution. It extends the static semantics defined on the DSML metamodel which is
independent of the execution of a model and can be defined as well-formedness properties
expressed with OCL. It is usually implicit as the names of the concepts and relations in the
abstract syntax usually carry an intended meaning related to the semantics. However, if we
want to correctly understand the signification of a DSML conforming model, it is mandatory
to introduce an explicit semantics for the DSML that rigorously defines the meaning of
the different DSML constructs. In addition, as we target the critical embedded systems in
the POLARSYS project10, the semantics of a DSML becomes a mandatory element to verify
and to validate models defined earlier in the development process. There exists two main
approaches to define a behavioral semantics [CRC+06]:

• operational semantics (the left side of Figure 2.3): It is expressed in the same technical
space used for the definition of the DSML abstract syntax. It describes the execution
of a model as a sequence of models expressed in the same language extended to rep-
resent the state of the execution at a given step in time. This approach requires the
extension of the DSML abstract syntax with the required elements to store the execu-
tion information. In the MDE context, to express an operational semantics, two kinds of
approaches are proposed. The first one consists in using meta-programming languages
like Kermeta or the EMF API for Java to specify imperatively the behavior of different
language constructs. This approach extends metaclasses with operations that describe
the evolution of a model. The second approach is based on endogenous model transfor-
mations expressed on the abstract syntax using a model transformation language like
ATL. It allows to declaratively define the behavior as a state transition system based on
possible model states.

• denotational (translational) semantics (the right side of Figure 2.3): It is expressed in a
technical space different from the DSML one. The target paradigm should be defined
rigorously and adapted to the construction of powerful tools for analysis (like model-
checking tools, simulators tools). In the MDE context, it consists in defining an exoge-
nous model transformation that maps the DSML abstract syntax into the formal do-
main to allow the use of the corresponding tools in this formal domain. We detail this
aspect for SPEM in the chapter 3.

2.2 Model verification for DSMLs

As we target safety critical systems, verification and validation (V&V) activities are manda-
tory. We need to provide high quality tools for DSML end-users in that purpose. Model
verification is a critical step in the development process. It consists in assessing the confor-
mance of the designed models to the requirements relying on the DSML semantics.

A lot of activities have been conducted in the last 20 years regarding the integration of
formal V&V for DSML (see [BGHM05, BCL+01, RKK08, RL12, Rus11, DMGB09, GdLMD09,
RKK08, PIM09, GCKK06]).

10http://polarsys.org/

Formal Verification Integration Approach for DSL 29

Domain-specific Modeling Languages

DSML

Abstract
syntax

Rules or
Operations

Operational
semantics

DSML

Abstract
syntax

translational
semantics FormalDomain

Abstract
syntax

Figure 2.3 — Operational versus translational semantics

We only detail three appropriate activities that are considered as generic solutions. Most
of the existing ones are similar to these three.

In [RL12], a formal approach based on the K semantic framework is proposed to define
DSMLs. It helps the DSML designer in formalizing DSML elements using the MDE techni-
cal space (metamodels for the DSML abstract syntax, OCL constraints for the static seman-
tics and model transformations for operational semantics). In fact, the approach proposes a
textual language to encode the DSML metamodel and another one to define its conform-
ing models. The DSML operational semantics is encoded with KMRL language (K Model-
Rewrite Language) which is a mixed declarative/imperative language for model rewriting.
Different operational semantics elements are defined as endogenous model transformation
rules. Then, the whole DSML definition in mapped using the Rascal metaprogramming lan-
guage [KSV09] into the K semantic framework [RS10] to benefit from K’s execution engine
and formal analysis tools. Therefore, an executable semantics is generated. All formal as-
pects are hidden for the DSML designer who handles only high-level tools proposed in the
approach. To perform the verification activity, a KMRL rule is added as an observer which
verifies on the executable semantics whether it holds and generates verification results.

In [Rus11], a formal approach is proposed to define and analyse DSMLs. The approach
consists in representing DSML metamodels and their conforming models as a Maude speci-
fication [CDE+07]. The operational semantics, defined as an endogenous model transforma-
tion, is encoded in Maude as rewrite rules. To ask a Maude specification whether a DSML
conforming model behaves as expected, the question is formulated as a Maude command.

Defining an operational semantics for a DSML does not show interesting results to guar-
antee the verification activity because it requires defining a domain-specific model-checker
providing an efficient encoding of the state and the execution relation which is not realistic.
Most approaches proposed in the literature to deal with the integration of model verification
in a metamodeling process are based on defining a translational semantics for the DSML.

In [DMGB09], the authors propose an approach to assist designers in the definition of
a behavioral semantics and thus the verification specification for DSMLs using visual lan-
guages. In fact, the approach consists in specifying the behavior of the DSML as transforma-
tion rules using AGG [Bey92]. AGG is a rule-based visual language supporting an algebraic
approach to graph transformation. Each AGG transformation defines the behavior for one

30 Faiez Zalila

2.2. Model verification for DSMLs

of the state transitions. It is thus sufficient to describe the whole behavior of the DSML. The-
ses AGG transformations are extended to build a sequence of state changes. These sequence
definitions explain the related elements to the execution (the expected transition, the order
and the condition of the execution). This information is defined using an activity diagram.

The verification process maps different DSML definition elements (structural and be-
havioral ones) into an Alloy specification [JSS01]. For instance, the DSML structural ele-
ments are transformed into Alloy abstract signatures, the graph transformation rules and
their related activity diagrams are mapped into Alloy predicates, the DSML conforming
model is transformed into an Alloy concrete signature and finally, a verification task is de-
fined as an Alloy assert. The complete Alloy specification is then checked to find whether it
is correct. Otherwise, a counter-example is generated.

Formal Verification Integration Approach for DSL 31

Domain-specific Modeling Languages

32 Faiez Zalila

3 SPEM as a DSML

Résumé
Dans ce chapitre, nous allons présenter l’étude de cas qui servira à illustrer notre travail.
Nous présentons les travaux de vérification faits par Benoît Combemale pendant sa thèse
de doctorat. Il propose une approche par métamodélisation pour exprimer la sémantique
d’exécution d’un DSML en fournissant une sémantique translationnelle. Cette approche est
appliquée à la vérification et à la simulation de modèles de processus exprimés en utilisant
le langage SPEM (Software Process Engineering Metamodel).

La sémantique translationnelle de SPEM cible un domaine sémantique formel, qui est
les réseaux de Petri temporels (TPN), afin de réutiliser des outils de vérification de modèle
(model-checking) existants fournis par la boîte à outils TINA. Nous détaillons les différents
travaux effectués pour faciliter l’intégration de la vérification formelle pour un DSML afin
d’engendrer automatiquement les propriétés comportementales formelles dans le format
approprié pour le model-checker. L’idée consiste à écrire manuellement une transformation
de modèle à texte en ATL qui accepte un modèle conforme au DSML et génère les propriétés
comportementales formelles. Nous montrons également les résultats de vérification obtenus
au niveau formel et obtenus automatiquement grâce au model-checker SELT de la boîte à
outils TINA.

En outre, nous présentons un parton de métamodélisation proposé par le même auteur
dont le but est d’assister l’expert du DSML à expliciter toutes préoccupations différentes
de la sémantique d’exécution d’un DSML et de favoriser la définition d’outils génératifs et
ainsi faciliter l’intégration des outils pour de nouveaux DSMLs.

Cette approche présente de nombreux avantages comme l’utilisation des outils puissants
mais aussi quelques inconvénients car l’actuel état de l’intégration ne cache pas intégrale-
ment les aspects formels. On évaluera cette approche en montrant ce qui est acquis par cette
intégration et en détaillant ses inconvénients. Enfin, nous concluons en soulignant l’objectif
de notre travail d’étendre l’approche existante afin de nous attaquer aux inconvénients iden-
tifiés. Ces objectifs ont été fixés par rapport aux attentes du concepteur, de l’expert et des
utilisateurs finaux d’un DSML. Ils consistent principalement à faciliter l’expression des pro-
priétés comportementales au niveau DSML, produire les propriétés formelles depuis ces
propriétés comportementales et remonter les résultats de vérification vers le niveau DSML
depuis le niveau formel.

33

SPEM as a DSML

IN this chapter, we will introduce the running case-study which aims to illustrate our
work. We present the verification task defined by Benoît Combemale in his PhD thesis

[Com08]. He proposes a metamodeling approach to express the execution semantics of a
DSML thanks to a translational semantics. It is applied to the verification and the simula-
tion of process models expressed with SPEM.

The translational semantics for SPEM targets a formal semantics domain, which is time
Petri nets (TPN), in order to reuse existing model-checking tools provided by the TINA tool-
box [BRV04]. We relate different works done to ease the integration of formal verification for
DSML by automatically generating formal behavioral properties in the appropriate format
for the model checker.

In addition, we present a metamodeling pattern proposed by the same author whose
purpose is to explicit different concerns of the execution semantics of a DSML and to favor
the definition of generative tools and thus ease the integration of tools for new DSMLs.

This approach has many advantages but also some drawbacks which will be detailed.
Finally, we conclude by stressing the aim of our work to extend the existing approach in
order to tackle identified disadvantages.

3.1 Verification of SPEM models

SPEM has been considered as a running case-study to experiment verification and valida-
tion (V&V) activities within the TOPCASED project [Pan07].

Because the TOPCASED toolkit addresses safety critical systems, Verification and Val-
idation (V&V) activities are of primary importance and should be performed as early as
possible in the development process and particularly at design time on the various models.
The aim is both to reduce the development costs and to provide higher quality systems.

Validation is performed through model animation [CCP+10]: the system designer who
is the DSML end-user builds a model using a graphical editor and can execute it according
to scenarios. The runtime data produced by these executions is displayed as decorations of
the graphical representation of the model or thanks to a dedicated view. Model animation is
thus very similar to source level debugging for software. Scenario driven model execution
runs through a single path in the set of all possible executions for the model. The use of
several scenarios provides a coverage of the various possible executions but this validation
is usually not exhaustive.

Verification means checking whether models, which are conforming to the DSML, reflect
the DSML requirements. Two kinds of properties are investigated: structural properties and
temporal properties [CGCT07]. Once the SPEM structural properties are expressed and ver-
ified with an OCL checker, behavioral properties, also named temporal properties, must be
addressed. They allow to verify the model during execution to check whether it behaves as
expected.

The DSML expert may be interested in general properties not specific to a given process
model. For the SPEM example, he may want to check whether a process model may finish or
not (P1 requirement). A process finishes if all its activities finish while respecting constraints

34 Faiez Zalila

3.1. Verification of SPEM models

imposed by dependencies and resource allocation. If these properties hold, the DSML end-
user may want to get a terminating scenario and use it to pilot the process execution.

The DSML end-user may also want to verify properties that are specific to a particular
process model. As an example, considering the process model of Figure 2.2, he might want
to know if in all cases Documenting is finished before Designing is finished (P2).

To assess these properties, model execution is required. The adopted approach in the
literature consists in defining a translational semantics into a well-formed mathematical
technical space in order to reuse existing powerful tools like model-checkers, simulators,
etc.

3.1.1 Time Petri nets, SE-LTL and Tina toolbox

In this study, the technical space of time Petri nets is chosen to formally express the SPEM
semantics. We have also chosen to express our temporal properties as SE-LTL formulae
(State/Event Linear Temporal Logic) over the time Petri net associated to a SPEM model.
Then, we manipulate them within the TINA toolkit.

Time Petri nets (or TPN) [MF76] is one of the most widely used model for the specifica-
tion and verification of real-time systems. TPNs are Petri nets in which a non-negative real
interval Is(t), with rational end-points, is associated with each transition t of the net [MF76].
When a transition is enabled, a clock starts and the transition can only be fired when the
clock is in the transition time interval. This ensures decidable verification for bounded Petri
nets which is not the case for temporal automaton.

Definition 5. A TPN is a tuple 〈P, T, Pre, Post, m0, Is〉, in which 〈P, T, Pre, Post, m0〉 is a Petri
net, and Is : T→ I+ is the static interval function.

P is the set of places, T is the set of transitions, Pre, Post : T → P→ N+ are the precondi-
tion and postcondition functions, m0 : P→ N+ is the initial marking. I+ is the set of nonempty real
intervals with nonnegative rational end-points. The right one might be infinite ∞.
Let R+ be the set of nonnegative reals. For i ∈ I+, ↓i denotes its left end-point, and ↑ i its right
end-point (if i bounded) or ∞. For any θ ∈ R+ , i −̇ θ denotes the interval { x - θ| x ∈ i ∧ x ≥ θ }.

States and the temporal state transition relation t@θ−−→ are defined as follow:

Definition 6. A state of a TPN is a pair s= (m, I) in which m is a marking and I is a function
called the interval function. Function I : T→ I+ associates a temporal interval with every transition
enabled at m.

We write (m, I) t@θ−−→ (m’, I’) if θ ∈ R+ and:

1. m ≥ Pre(t) ∧ θ ≥ ↓I(t) ∧ (∀ k ∈ T)(m ≥ Pre(k)⇒ θ ≤ ↑ I(k))

2. m = m’ - Pre(t) + Post(t)

3. (∀ k ∈ T)(m’ ≥ Pre(k)⇒

Formal Verification Integration Approach for DSL 35

SPEM as a DSML

name : String
PetriNet

weight : Int
kind : ArcKind

Arc

name : String

Node

initialtokenCount : Int

Place

min_time : Int
max_time : Int

Transition

- normal
- readArc

<<enumeration>>
ArcKind

source

target

1

1

arcs
nodes

0..* 0..*

outgoings
0..*

incomings
0..*

Figure 3.1 — Time Petri net metamodel

I’(k) = if k 6= t ∧ m - Pre(t) ≥ Post(t)
then I(k) −̇ θ

else Is(k))

TPN metamodel The TPN metamodel is shown in Figure 3.1. It is composed of nodes
(Node) that denote places (Place) or transitions (Transition). Nodes are linked together by
arcs (Arc). Arcs can be normal ones or read-arcs (ArcKind). The attribute initialtokenCount
specifies the number of tokens consumed in the source node or produced in the target one
(in case of a read-arc, it is only used to check whether the source place contains at least the
specified number of tokens). Finally, a time interval can be expressed on transitions.

Model-Checking For this study, we use State/Event LTL (SE-LTL) [CCO+04], a linear
time temporal logic supporting both state and transition properties. The modeling frame-
work consists of labeled Kripke structures (the state class graph in our case), which are
directed graphs in which states are labeled with atomic propositions and transitions are
labeled with actions.

Formulae Φ of State/Event LTL are defined according to the following minimal gram-
mar:

Φ ::= p | a | ¬Φ | Φ ∨ Φ |© Φ | � Φ | ♦ Φ | Φ U Φ

Let’s show some SE-LTL properties:

(For all paths)
P P holds at the beginning of the path,
© P P holds at the next step,
� P P globally holds in all steps,
♦ P P holds in a future step,
P U Q P holds until a step is reached where Q holds

where a path, named also execution, is a possible infinite sequence alternating states and
transitions.

36 Faiez Zalila

3.1. Verification of SPEM models

count = c

r: Resource c

 quantity = q
p: Parameter

wd: WorkDefinition

r: Resource

wd_start wd_finish

q q

minTime = min
maxTime : max

wd: WorkDefinition
wd_finishedwd_notStarted wd_running

wd_finishwd_start

wd_started

 linkType = lt
ws: WorkSequence

wd1: WorkDefinition

wd2: WorkDefinition
wd2_start wd2_finish

wd1_started wd1_finished

if (lt = startToFinish) if (lt = finishToStart)

if (lt = finishToFinish)if (lt = startToStart)

r

r

Figure 3.2 — The translational semantics of SPEM into TPN

Tina Toolbox for Time Petri Nets Verification [BRV04] is a toolbox for edition and
analysis of Petri Nets and Time Petri nets, developed by the OLC group of LAAS/CNRS.
Among its available tools, we rely in this work on:

• nd (NetDraw): graphical or textual editor for (Time) Petri Nets, including a simulator.

• TINA: this tool, with the same name of the toolbox, allows the construction of reach-
ability graphs and Kripke transitions systems - useful for the verification by model-
checking - from Petri Nets, for example.

• selt: allows the user to provide SE-LTL formulas and verify if the Kripke transitions
system - generate by TINA- satisfies them. When a property is not verified, the tool
returns a counterexample - which can be simulated by TINA.

3.1.2 Translational semantics of SPEM into Petri nets

Several translational semantics for SPEM can be defined according to the level of details in
the execution that we want to model and the kind of properties we want to assess. Thus,
Benoît Combemale advocates in [CCG+07] that defining the translational semantics should
be property-driven to favor the definition of a minimal semantics, that will allow to answer
to the questions the user may ask about his models. This approach has been developed and
experimented by Ning Ge in her PhD [Ge14]. Our work targets processes, methods and tools
to ease its implementation.

Here is some rationale behind the translational semantics shown in Figure 3.2. A
WorkDefinition is translated into four places characterizing its state (notStarted, started, run-
ning and finished) linked by two transitions. These transitions model the actions that we want

Formal Verification Integration Approach for DSL 37

SPEM as a DSML

to observe on a workdefinition: one can start a workdefinition and then finish it. A workdef-
inition is considered started if it is either running or finished. This is recorded by the place
named started.

A WorkSequence becomes a read-arc1 from one place of the source workdefinition (either
started or finished) to a transition of the target workdefinition (either start or finish) according
to the kind of WorkSequence (linkKind attribute). A resource becomes a place whose initial
marking (initialtokenCount) corresponds to its count. Each Parameter element is translated
into two arcs, the first one to take resources when the concerned workdefinition starts and
the second one to release them when the workdefinition finishes.

3.1.3 Expressing and generating formal properties

Based on the translational semantics of SPEM into TPN, temporal properties on a SPEM
model can be automatically generated into formal ones expressed on TPN model.

Taking the SPEM model described in the Figure 2.2, it is mandatory to generate a SE-
LTL file holding the formulas to be verified . It is shown in Listing 3.1 and contains three key
elements.

First, a finished_process operator is defined. It formalizes the P1 requirement defined pre-
viously. In TPN, a SPEM process is finished if and only if all its workdefinitions are fin-
ished. According to the defined translational semantics, it can be shown as the conjunction
of finished states of its workdefinitions. (one token in the corresponding finished place of the
workdefinition).

Then, a SE-LTL property states that a process can never be finished. If it is satisfied, it
means that the process cannot be finished, and if it is not satisfied, the process can finish
and the model checker would exhibit a counter example that corresponds to a scenario that
finishes the process and thus all its activities.

Finally, a second SE-LTL property indicates whether a process can finish. If it does not
hold, a counter-example that explains the deadlock is generated.

op finished_process = T /\ Designing_finished /\ Documenting_finished /\
Programming_finished /\ TestCaseWriting_finished ;

[] (− (finished_process)) ;
<> finished_process ;

Listing 3.1 — The expected LTL properties

To obtain these properties, previous works [CCBV07, Com08] consist in defining an ATL
query which generates SE-LTL formulas on the TPN model from a SPEM model. It is shown
in Listing 3.2. This query generates a SE-LTL file named finished.ltl (line 1). It combines at the
same time: SE-LTL syntax elements as operators (always, eventually, etc.), OCL expressions
which query a SPEM model and some elements related to the defined translational seman-
tics. All these elements ease the automatic generation of SE-LTL properties. Running this

1A read-arc only checks that there is enough tokens in the input place but those tokens are not withdrawn
when the transition is fired.

38 Faiez Zalila

3.1. Verification of SPEM models

Figure 3.3 — A graphical TPN model generated by performing the translational semantics
on the SPEM model shown in Figure 2.2

query with the SPEM model shown in Figure 2.2 allows to generate LTL properties shown
in Listing 3.1.

1 query finished=thisModule . generateLTL () . writeTo (’/SPEM/finished . l t l ’) ;
2

3 helper def : generateLTL () : String=
4 −− the finished operator
5 ’op finished_process = T ’ . concat (SPEM! WorkDefinition . al l Instances ()
6 −>i t e r a t e (wd; acc : String= ’ ’ |
7 acc . concat (’ /\\ ’ + wd.name + ’ _finished ’)) + ’ ;\n\n ’
8

9 −− properties :
10 −− willNeverFinish
11 + ’ [] (− (finished_process)) ;\n ’
12

13 −− willEventuallyFinish
14 + ’<> finished_process ;\n\n ’) ;

Listing 3.2 — An ATL query to generate SE-LTL properties on the TPN model

3.1.4 Performing the formal verification

Once the different steps mentioned above are performed, we can now proceed to the formal
verification using the TINA toolbox and more precisely the SELT model checker. Listing 3.3
shows the results produced by the SELT model-checker when verifying the properties of
Listing 3.1 on the TPN (Figure 3.3) corresponding to the process model of Figure 2.2.

Because the first property evaluates to true, we can conclude that the corresponding

Formal Verification Integration Approach for DSL 39

SPEM as a DSML

SPEM process cannot be finished.

Furthermore, the second property which queries whether a process may finish does
not hold. the SELT model checker builds a counter example explaining the deadlock. The
counter-example contains a set of traces showing the evolution of the TPN during the formal
verification (state keyword). A trace is a finite sequence of the system states capturing the
system during execution. Each trace shows the actual marking of different states. Between
each couples of successive traces, it is shown a TPN event corresponding to the fired TPN

transitions (lines 8, 11, 14, 17 and 20). The last event (line 24) is an internal event in the SELT

model-checker which corresponds to the deadlock.

The counter-example indicates that Designing workdefinition starts (Designing_start) and
finishes (Designing_finish). Then, Documenting workdefinition starts (Documenting_start) and
finishes (Documenting_finish). TestCaseWriting workdefinition starts (TestCaseWriting_start)
but does not finish. Finally, there is a deadlock in the counter example (L.deadlock). Test-
CaseWriting cannot be finished because it requires Programming to be finished. However,
Programming cannot be started because a Computer is missing.

1 operator finished : prop
2 0.000s
3 TRUE
4 0.001s
5 FALSE
6 state 0: Computer*3 Designer*2 Designing_notStarted Developer*3 Documenting_notStarted
7 Programming_notStarted TestCaseWriting_notStarted
8 −Designing_start−>
9 state 1: Computer Designing_running Designing_started Developer*3 Documenting_notStarted

10 Programming_notStarted TestCaseWriting_notStarted
11 −Designing_finish−>
12 state 2: Computer*3 Designer*2 Designing_finished Designing_started Developer*3
13 Documenting_notStarted Programming_notStarted TestCaseWriting_notStarted
14 −Documenting_start−>
15 state 3: Computer*2 Designer Designing_finished Designing_started Developer*3 Documenting_running
16 Documenting_started Programming_notStarted TestCaseWriting_notStarted
17 −Documenting_finish−>
18 state 4: Computer*3 Designer*2 Designing_finished Designing_started Developer*3 Documenting_finished
19 Documenting_started Programming_notStarted TestCaseWriting_notStarted
20 −TestCaseWriting_start−>
21 * [accepting] state 5: L . dead Computer Designer*2 Designing_finished Designing_started Developer*2
22 Documenting_finished Documenting_started Programming_notStarted
23 TestCaseWriting_running TestCaseWriting_started
24 −L . deadlock−>
25 state 5: L . dead Computer Designer*2 Designing_finished Designing_started Developer*2
26 Documenting_finished Documenting_started Programming_notStarted TestCaseWriting_running
27 TestCaseWriting_started
28 0.001s

Listing 3.3 — A TPN counter example explaining the deadlock

If we add a computer and run again the formal verification, the first property fails and
the second property holds. Analyzing the counter example, the SELT model checker gener-
ates a terminating scenario that finishes the process and thus all its activities. The scenario in
Listing 3.4 shows a first part already generated in the previous counter-example (Listing 3.3),
before the deadlock occurs, extended with the start of Programming (Programming_start) be-
cause there is now enough computer, thenProgramming finishes (Programming_finish) and,
finally, TestCaseWriting can finish (TestCaseWriting_finish).

40 Faiez Zalila

3.1. Verification of SPEM models

1 operator finished : prop
2 0.000s
3 FALSE
4 state 0: Computer*4 Designer*2 Designing_notStarted Developer*3 Documenting_notStarted
5 Programming_notStarted TestCaseWriting_notStarted
6 −Designing_start−>
7 state 1: Computer*2 Designing_running Designing_started Developer*3 Documenting_notStarted
8 Programming_notStarted TestCaseWriting_notStarted
9 −Designing_finish−>

10 state 2: Computer*4 Designer*2 Designing_finished Designing_started Developer*3
Documenting_notStarted Programming_notStarted TestCaseWriting_notStarted

11 −Documenting_start−>
12 state 3: Computer*3 Designer Designing_finished Designing_started Developer*3 Documenting_running

Documenting_started Programming_notStarted TestCaseWriting_notStarted
13 −Documenting_finish−>
14 state 4: Computer*4 Designer*2 Designing_finished Designing_started Developer*3 Documenting_finished

Documenting_started Programming_notStarted TestCaseWriting_notStarted
15 −TestCaseWriting_start−>
16 state 5: Computer*2 Designer*2 Designing_finished Designing_started Developer*2 Documenting_finished

Documenting_started Programming_notStarted TestCaseWriting_running TestCaseWriting_started
17 −Programming_start−>
18 state 6: Designer*2 Designing_finished Designing_started Documenting_finished Documenting_started

Programming_running Programming_started TestCaseWriting_running TestCaseWriting_started
19 −Programming_finish−>
20 state 7: Computer*2 Designer*2 Designing_finished Designing_started Developer*2 Documenting_finished

Documenting_started Programming_finished Programming_started TestCaseWriting_running
TestCaseWriting_started

21 −TestCaseWriting_finish−>
22 state 8: L . dead Computer*4 Designer*2 Designing_finished Designing_started Developer*3

Documenting_finished Documenting_started Programming_finished Programming_started
TestCaseWriting_finished TestCaseWriting_started

23 −L . deadlock−>
24 state 9: L . dead Computer*4 Designer*2 Designing_finished Designing_started Developer*3

Documenting_finished Documenting_started Programming_finished Programming_started
TestCaseWriting_finished TestCaseWriting_started

25 [accepting al l]
26 0.002s
27 TRUE
28 0.001s

Listing 3.4 — A TPN terminating scenario

3.1.5 Implementation of the approach

As shown in Figure 3.4, the proposed approach contains three steps. The first step con-
sists of a translational semantics implemented using the ATL transformation language. An
ATL module (SPEM2TPN.atl) describes the transformation from a SPEM model (myPro-
cess.spem as shown in Figure 2.2) to a TPN model (myProcess.tpn as shown in Figure 3.3)
and, an ATL query (TPN2Tina.atl) generates the textual model (myProcess.net) used by the
TINA tools from a TPN model. Obviously, this ATL query is independent of the translational
semantics.

Based on the defined translational semantics, the second step consists in automatically
generating formal properties (properties.ltl as shown in Listing 3.1) thanks to an ATL query
(SPEM2LTL.atl as shown in Lisitng 3.2)

Once both steps are performed, the SELT model checker of the TINA toolbox can be used
to generate verification results as a counter-example for properties that do not hold (re-

Formal Verification Integration Approach for DSL 41

SPEM as a DSML

Tina

SPEM
.ecore

TPN
.ecore

myProcess
.spem

myProcess
.tpn

SPEM2TPN
.atl

myProcess
.net

<<conformsTo>>
<<conformsTo>>

ATL
(M2M)

TPN2Tina
.atl

properties
.ltl

ATL
(M2T)

SPEM2LTL
.atl

ATL
(M2T)

<<uses>>

results
.scn

Figure 3.4 — An approach to verify behavioral properties on a process model conforming
to SPEM using TPN

sults.scn as shown in Listing 3.3 and Listing 3.4).

3.2 Towards the definition of an eXecutable DSML (xDSML)

As shown in the last subsection, model executability is a key concern in MDE to introduce
behavioral V&V in the development process. It illustrates the evolution of the model over
time. The definition of the execution semantics for DSMLs requires extending the DSML
metamodel with the necessary elements to capture the additional dynamic information from
the execution. To help in the extension of a new DSML with runtime information, we choose
to refer to the Executable DSML pattern proposed in [CCP12].

3.2.1 The Executable DSML pattern

The Executable DSML pattern was proposed as a general and reusable approach to assist the
DSML expert in the definition of an execution semantics for a DSML. It allows to make
explicit the various concerns from the execution of DSMLs.

It targets the automation of the implementation of DSML tools for V&V. It has been pro-
posed to ease the development of V&V tools in the TOPCASED project. It eases the model
V&V by providing graphical model animation for DSMLs [CCP+10]. In the following, we
detail different elements of the Executable DSML pattern illustrated with the SPEM meta-
model.

42 Faiez Zalila

3.2. Towards the definition of an eXecutable DSML (xDSML)

DDMM

startToStart
startToFinish
finishToStart
finishToFinish

<<enumeration>>
WSType

name: String
minTime : Int
maxTime : Int

Process

name : String
minTime : Int
maxTime : Int

WorkDefinition
linkType : WSType

WorkSequence

Parameter

name : String
count : Int

Resource

0 .. * workDefinitions

1 successor

0 .. * workSequences

1 predecessor linkToSuccessor 0 .. *

linkToPredecessor 0 .. *

0..* parameters

1 workDefinition

1 ressource 0..* ressources

1 workDefinition

SDMM

state: ExecutionState
WorkDefinition

notStarted
running
finished

<<enumeration>>
ExecutionState

0..* dynamic_wds

<<merge>>

Figure 3.5 — Introducing the SDMM extension on the SPEM metamodel

3.2.1.1 Domain Definition MetaModel (DDMM)

The Domain Definition MetaModel (DDMM) is the usual metamodel. It provides the key con-
cepts of the considered domain and their relationships. It is the metamodel defined with
metamodeling language like ECORE, KM3, etc. This metamodel can be extended with static
constraints to assess structural properties.

Usually, this metamodel lacks information related to the execution of model. For exam-
ple, the state of a workdefinition or the number of available resources are not represented.

For SPEM, the original metamodel shown in Figure 2.1 is the DDMM. It shows only
static information related to the structure of a modeling language (meta-classes, relation-
ships, etc.).

3.2.1.2 State Definition MetaModel (SDMM)

The State Definition MetaModel (SDMM) defines the runtime information i.e., information
that changes during the model execution. It is related to the DDMM by the «merge» prede-
fined package operator [OMG06].

During the execution of a model, additional data may be generated. This information
shows the state of a model during its execution. To record these data, a possible extension
to the DDMM can be defined.

Figure 3.5 shows the first extension, the SDMM which defines the runtime information,
that is the data that model the state of the model at runtime and that are not part of the

Formal Verification Integration Approach for DSL 43

SPEM as a DSML

<<merge>>DDMM

EDMM
SPEMEvent

WorkDefinitionEvent

StartWD FinishWD

startToStart
startToFinish
finishToStart
finishToFinish

<<enumeration>>
WSType

name: String
minTime : Int
maxTime : Int

Process

name : String
minTime : Int
maxTime : Int

WorkDefinition
linkType : WSType

WorkSequence

Parameter

name : String
count : Int

Resource

0 .. * workDefinitions

1 successor

0 .. * workSequences

1 predecessor linkToSuccessor 0 .. *

linkToPredecessor 0 .. *

0..* parameters

1 workDefinition

1 ressource 0..* ressources

1 workDefinition

SDMM

state: ExecutionState
WorkDefinition

notStarted
running
finished

<<enumeration>>
ExecutionState

0..* dynamic_wds

<<merge>>

<<merge>>

Figure 3.6 — Defining different events can be captured on the SPEM metamodel

DDMM.

For SPEM, the SDMM includes the achievement state of a workdefinition which is either
not started, running or finished.

3.2.1.3 Event Definition MetaModel (EDMM)

The Event Definition MetaModel (EDMM) implements the concrete stimuli of the DSML that
makes a conforming model evolves. Concrete EDMM events are in relation with events re-
lated to the defined formal semantics. These events allow to show how a DSML conforming
model evolves.

Figure 3.6 introduces a second extension, EDMM, which describes stimuli that make the
model evolve. They are modeled as events. Start a WorkDefinition or Finish a WorkDefinition
are examples of such SPEM events.

3.2.1.4 Trace Management MetaModel (TM3)

The Trace Management MetaModel (TM3) defines elements to model a scenario (either an in-
put scenario or the trace of a particular execution) as a sequence of event occurrences. It
is given in Figure 3.7. TM3 is not specific to one particular DSML as it only relies on the
abstract Event concept. It allows to represent a scenario as a succession of domain-specific
events that are already defined in the EDMM.

44 Faiez Zalila

3.3. The evaluation of the approach

<<
im

po
rt>

>

<<merge>>DDMM

EDMM
SPEMEvent

WorkDefinitionEvent

StartWD FinishWD

TM3

Scenario

Trace
name : String
date : Int
Internal : Boolean

RuntimeEvent

startToStart
startToFinish
finishToStart
finishToFinish

<<enumeration>>
WSType

name: String
minTime : Int
maxTime : Int

Process

name : String
minTime : Int
maxTime : Int

WorkDefinition
linkType : WSType

WorkSequence

Parameter

name : String
count : Int

Resource

0 .. * workDefinitions

1 successor

0 .. * workSequences

1 predecessor linkToSuccessor 0 .. *

linkToPredecessor 0 .. *

0..* parameters

1 workDefinition

1 ressource 0..* ressources

0 .. *
traces

0..*
 runtimeEvents

1 workDefinition

SDMM

state: ExecutionState
WorkDefinition

notStarted
running
finished

<<enumeration>>
ExecutionState

0..* dynamic_wds

<<merge>>

<<merge>>

Figure 3.7 — The Executable DSML pattern applied into the SPEM metamodel

3.2.2 Application of the Executable DSML pattern to TPN

In order to explicit the execution of a TPN model, it is also required to extend the seman-
tic domain of TPN. Its metamodel is composed of several parts (Figure 3.8). The DDMM
describes the abstract syntax of TPN shown previously in Figure 3.1.

The SDMM (State Definition Metamodel) defines an attribute to capture the current
count of tokens in a place.

Finally, the EDMM defines only one event FireTransitionEvent and, obviously, the TM3
is the same as the one presented for XSPEM, as it is DSML-independent.

3.3 The evaluation of the approach

The adopted approach in this work consists in verifying the behavior of DSML models
thanks to model checking techniques. It was performed using model transformation tech-
niques to define a translational semantics from the DSML (SPEM) to a formal language
(TPN) in order to benefit of the TINA toolbox capabilities.

Combining user-friendly and automation from the MDE with rigorous and powerful
formal method technique allows to capitalize on advantages of both approaches. Neverthe-
less, both approaches have drawbacks that have to be tackle down in order to gain maxi-
mum benefits from their coupling. These are detailed here after.

In [GRS10], a study was developed to show capabilities by combining formal methods
and MDE techniques to ease model-driven system design and analysis. In addition, differ-
ent disadvantages of this combination were detected. Based on the presented approach of

Formal Verification Integration Approach for DSL 45

SPEM as a DSML

SDMM

Place
tokenCount : Int

<<import>>EDMM
PetriNetEvent

FireTransitionEvent

TM3

tracesruntimeEvents 0..*0..*

Scenario

Trace
name : String
date : Int
Internal : Boolean

RuntimeEvent

<<merge>>

DDMM

name : String
PetriNet

weight : Int
kind : ArcKind

Arc

name : String

Node

initialtokenCount : Int

Place

min_time : Int
max_time : Int

Transition

- normal
- readArc

<<enumeration>>
ArcKind

source

target

1

1

arcsnodes
0..* 0..*

outgoings
0..*

incomings
0..*

firedTransition

<<merge>> <<merge>>

1..*

dynamic_Places

Figure 3.8 — The application of the Executable DSML pattern into the TPN metamodel

SPEM verification models, we show different resolved disadvantages. Next, we detail what
disadvantages still needs to be solved for the DSML end-user and also for the DSML expert
and designer.

3.3.1 Resolved MDE disadvantages

MDE technologies promote models as first-class artifacts. Metamodeling is a key feature of
the MDE paradigm. It already provides means to define the abstract syntax of DSMLs as
metamodels, complete them by static properties, and textual and graphical concrete syn-
taxes. However, the semantics definition of these languages appears as a crucial challenge.

Therefore, lack of semantics can be considered as a major disadvantage of the MDE
approach. In the presented work of SPEM models verification using TPN, this disad-
vantage was solved by providing a translational semantics into a rigorous mathemati-
cal technical space which is TPN. An operational semantics could also have been defined
[CCP+10, CHJ+12]. However, the validity of different proposed semantics is still a challenge
because it lacks a reference semantic for each DSML that can be used to check whether dif-
ferent defined semantics respect it.

A second disadvantage can appear for the MDE approach, which is the unfitness for
model analysis. Due to the lack of semantics for metamodel-based languages, performing
model analysis is not possible. It can be considered as a consequence of the first cited disad-
vantage whose resolution can be a way to resolve the second one. Thus, this disadvantage

46 Faiez Zalila

3.3. The evaluation of the approach

has disappeared after connecting the TINA toolbox to the DSML through the translational
semantics and then verifying the generated TPN. If the formal formulas (properties.ltl) don’t
hold, SELT model-checker exhibits a counter example (results.scn): a specific execution of
the model that leads to a state where the property is not satisfied.

3.3.2 Unresolved formal methods disadvantages

The application of formal methods (especially, model checking and static analysis tech-
niques) for the verification of safety critical embedded systems has produced very good
results due to their rigorous mathematical foundations and raised the interest of system de-
signers up to the application of these technologies in real size projects. They allow to detect
errors and bugs at earlier phases of the development process.

However, these methods usually rely on complex specific verification-oriented formal
languages that most system designers do not master. Their mathematical nature makes
defining translational semantics a more difficult task for the developer due to the semantic
gap between these formal languages and metamodeling languages (general-purpose lan-
guages or domain-specific languages).

In the presented work, this disadvantage does not appear clearly due to the simplicity
of the subset of the SPEM language chosen for the case study. However, once we decide to
define a translational semantics for more complex metamodeling languages where it is ex-
pected to show data exchange or time constraints, it becomes a barrier for DSML designers
to understand and translate high-level constructs to low-level formal languages.

A second disadvantage is the lack of tools: formal methods most of the time don’t offer
easy-to-use tools to assist a developer during the development process. Also, most of com-
bination approaches do not target the integration of formal methods in a seamless manner
which hides all formal aspects for the system designer.

The approach proposed in Combemale PhD thesis does not offer a hidden use of formal
methods for DSML end-users. In addition, for the DSML expert and designer, it is not easy
(1) to express the behavioral properties on the formal side and (2) to define the ATL query
to generate behavioral properties. In addition, (3) the DSML end-user cannot define specific
behavioral properties for its models. For him, editing the ATL query is a hard task because
he generally does not have strong background on formal verification technologies.

The last emerged disadvantage concerns the lack of integration: it is required to inte-
grate formal methods and their associated tools to ease their use and, thus, to benefit from
the formal verification results. The most relevant drawback in the presented approach con-
cerns verification results: the DSML end-user cannot interpret the generated verification
results by the SELT model checker because he does not have (and should not acquire) a solid
knowledge on formal languages and associated tools.

Formal Verification Integration Approach for DSL 47

SPEM as a DSML

3.4 Goals

This PhD thesis will illustrate our proposals to overcome these disadvantages for the use of
formal methods to verify DSML models. We aim, on the one hand, to provide a seamless
approach for the DSML end-user to integrate formal verification in a MDE process, and on
the other hand, to target a DSML-independent approach, for the DSML expert and designer,
that favors the definition of generative tools and thus eases the integration of tools for new
DSMLs. We will classify the goals relative to the appropriate actors.

3.4.1 DSML end-user expectations

After designing a DSML conforming model, the DSML end-user usually wants to assess
that the model has the expected properties. To ensure a good performance for this task, it
is mandatory to provide him with a kind of DSML verification framework to assist him
during this work.

First, (1) this framework should provide a toolchain which verifies automatically be-
havioral requirements formalized previously by the DSML expert and designer. This step
shows whether the model behaves as expected.

Second, (2) it should allow the DSML end-user to formalize another kind of behavioral
properties, named specific properties, which are specific to a given model.

Finally, (3) the DSML verification framework should provide the DSML end-user with
verification results. These results should be relative to the already defined model in order to
ease their understanding and, thus, to allow their corrections.

To summarize, the expected framework should only show to the DSML end-user dif-
ferent elements which interact with his model without revealing the formal aspects. These
ones should be hidden to provide a seamless framework.

3.4.2 DSML expert and designer expectations

The DSML expert and designer handle the generation of the DSML verification framework.
This work contains three key tasks: 1) defining the various requirements that should be
verified, 2) defining the translational semantics from the DSML abstract syntax to a for-
mal language which should ease the express of the behavioral requirements, 3) expressing
generic behavioral properties and easing the definition of specific behavioral properties by
the DSML end-user, and finally, 4) managing the feedbacks of verification results into the
DSML level.

As we aim to facilitate the development of CASE tools for new DSML and, thus, we fo-
cus on generic and generative approaches advocated by MDE, we decide to assist the DSML
expert and designer during his work by providing the necessary tooling and methodology.

It is mandatory to choose the appropriate target tools in order to map the DSML abstract
syntax elements. We try to help the DSML designer to reduce the semantic gap between the
DSML and low-level formal methods by introducing an intermediate formal level.

48 Faiez Zalila

3.4. Goals

Next, we aim to resolve the current lack of tools by providing a high-level tooling to ease
the definition of behavioral properties (generic and specific ones) and how to manage theme
to generate formal properties automatically.

Finally, in order to ease the integration of tools for new DSMLs and instead of defining
an ad-hoc way to manage the feedback of verification results for each DSML, we propose
to provide for the DSML designer some techniques and tools to support him during this
critical step.

Formal Verification Integration Approach for DSL 49

SPEM as a DSML

50 Faiez Zalila

Part

Contribution

51

4 Expressing and verifying
behavioral properties

Résumé
Dans la première partie de cette thèse, nous avons présenté les notions de base autour la mé-
tamodélisation et la vérification de modèle. Ensuite, nous avons montré notre étude de cas
qui permet de souligner les différents avantages de l’intégration de la vérification formelle
dans un processus de métamodélisation. De plus, nous avons identifié les différents élé-
ments manquants pour obtenir une approche transparente pour vérifier les propriétés com-
portementales génériques (liées au métamodèle du DSML) sur des modèles conformes au
DSML.

L’un de ces éléments manquants est la spécification et la transformation générique de
propriétés comportementales sur les DSMLs. En fait, il est indispensable de fournir pour
l’expert et le concepteur d’un DSML les outils nécessaires pour interroger un modèle, for-
maliser les propriétés comportementales et ensuite les traduire pour pouvoir les vérifier en
utilisant des outils de model-checking. En outre, ces outils devraient également faciliter au
utilisateur final du DSML la spécification de ses propriétés comportementales spécifiques à
ses modèles sur lesquels elles seront évaluées.

Ainsi, il est obligatoire de fournir un langage approprié pour exprimer des propriétés
comportementales et de compléter le patron de métamodélisation appliqué au DSML pour
identifier les requêtes que l’utilisateur souhaitera poser sur le modèle en cours d’exécution.
Nous présentons dans ce chapitre notre première contribution qui vise faciliter l’expression
des propriétés comportementales au niveau du DSML et leur traduction vers le niveau
formel.

Nous détaillons les différentes étapes proposées pour automatiser ce travail. Tout
d’abord, en se basant sur une proposition de Paul Ziemann et Martin Gogolla, nous met-
tons en œuvre une extension temporelle de OCL, appelée TOCL, qui permet de définir les
propriétés comportementales. On s’intéresse principalement aux opérateurs temporels ori-
entés futur (always, eventually, next, etc.). En outre, nous étendons le patron de métamodéli-
sation en explicitant la définition des requêtes liées à l’exécution d’un modèle conforme à
un DSML sous la forme du QDMM (Query Definition MetaModel). Ces requêtes peuvent
être exprimées en utilisant l’éditeur de propriétés TOCL.

Nous décrivons ensuite comment traduire automatiquement ces propriétés formelles

53

Expressing and verifying behavioral properties

pour qu’elles puissent être vérifiées par le model-checker. Cette traduction s’appuie sur une
abstraction de la sémantique de traduction utilisée.

Nous concluons ce chapitre par une comparaison avec les travaux relatifs.

54 Faiez Zalila

4.1. The expression of behavioral properties

IN the first part of this thesis, we have presented basic notions around metamodeling and
model verification. Then, we have shown our running case-study which allows to point

out different advantages of integrating formal verification on metamodeling tasks. In addi-
tion, we have identified different missing elements to obtain a seamless approach to ver-
ify generic (related to the DSML metamodel) behavioral properties on DSML conforming
models.

One of these missing elements is the specification and the verification of behavioral prop-
erties on DSMLs. In fact, it is mandatory to provide for the DSML expert and the DSML
designer the required tools to query a model, to formalize the behavioral properties and
then to translate them in order to be verified later using model-checking tools. In addition,
these tools should also ease for the DSML end-user the specification of his model-specific
behavioral properties to assess them on DSML conforming models [ZCP12].

Thus, it is mandatory to provide a suitable language to express behavioral properties
based on extensions of the DSML metamodel because the current proposed implementation
of the Executable DSML pattern in Combemale PhD does not favor the definition of this kind
of information. We present in this chapter our first contribution which targets easing the
expression of behavioral properties at the DSML level and their translation to the formal
level.

We detail the different steps proposed to automate this task. First, based on a proposal
by Paul Ziemann and Martin Gogolla in [ZG02], we implement a temporal extension of the
Object Constraint Language (OCL) [OMG03b] which allows to define behavioral properties.
In addition, another kind of information must be modeled in the Executable DSML pattern. It
provides the DSML queries related to the runtime of a DSML conforming model. We intro-
duce this additional extension for the Executable DSML pattern named the Query Definition
MetaModel (QDMM). These DSML queries can be expressed using the proposed temporal
extension of OCL (TOCL) editor.

Then, it is mandatory to verify these formalized properties. We explain the proposed
translation to automatically generate the corresponding formal properties of the model
checker.

We conclude this chapter by a comparison with related work.

4.1 The expression of behavioral properties

4.1.1 The temporal extension of OCL

OCL is used to define structural properties on models. Initially, It was considered as a con-
straint language to overcome the limitations of the graphical notation of UML but quickly
it became a key feature of any MDE technique [CG12]. OCL a formal language to express
side-effect-free constraints. It provides navigation operators to access the content of models,
collection operations and quantifiers (universal/existential) to define first order logic statements.

Nowadays, OCL is used as a language component to implement several MDE tech-
niques like model transformations (as ATL, QVT [OMG11a], etc.), well-formedness rules to

Formal Verification Integration Approach for DSL 55

Expressing and verifying behavioral properties

pp p p p

Figure 4.1 — The always temporal operator

p

Figure 4.2 — The eventually temporal operator

define new domain specific languages (as OCLinEcore1) and code generation templates (as
ACCELEO2).

It is now a widely known language and a few temporal extensions of OCL have been
proposed in order to specify event-based behavioral properties whereas OCL only targets
structural properties. We have chosen to rely on TOCL (Temporal OCL) and especially on
the proposal from [ZG02] as the syntax of this extension is quite natural for OCL users. It
introduces usual future-oriented temporal operators such as always, sometimes, next, exist-
sNext as well as their past-oriented duals. In the following, we list different adopted tem-
poral operators. We illustrate them with diagrams showing the evolution of the execution
during time (an execution path) starting from the current state.

4.1.1.1 always operator

The always operator, named also Globally, is a unary temporal operator in SE-LTL. It is sym-
bolised by � or G. As shown in Figure 4.1, � p means that p has to hold on the entire
subsequent path.

4.1.1.2 eventually operator

The eventually operator, named also Finally, is a unary temporal operator in SE-LTL. It is
symbolised by ♦ or F. As shown in Figure 4.2, ♦ p means that p holds sometimes in the
future.

4.1.1.3 next operator

The next operator is a unary temporal operator in SE-LTL. It is symbolised by © or X. As
shown in Figure 4.3,© p means that p has to hold in the next state.

1The OCLinEcore language provides a textual concrete syntax that makes both ECORE and OCL accessible
to users., http://wiki.eclipse.org/MDT/OCLinEcore

2http://www.acceleo.org/pages/home/en

56 Faiez Zalila

4.1. The expression of behavioral properties

p

Figure 4.3 — The next temporal operator

ppp q

Figure 4.4 — The until temporal operator

4.1.1.4 until operator

The until operator is a binary temporal operator in SE-LTL. It is symbolised by U. As shown
in Figure 4.4, p U q means that p holds until q holds.

4.1.1.5 release operator

The release operator is a binary temporal operator in SE-LTL. It is symbolised by R. As shown
in Figure 4.5, p R q informally means that q is true until p becomes true, or q is true forever.

4.1.1.6 precedence operators

The precedes operator is a binary temporal introduced in [CCG+07] to ease expressing tem-
poral properties. It is defined using the previous ones: p precedes q = always !(q) until p. This
definition forces obtaining p immediately after the last q. We propose to define an additional
operator, before, that has the following definition: p before q = always !(q) until eventually p

4.1.2 The Query Definition MetaModel (QDMM) extension

The current implementation of the Executable DSML pattern provides different concerns to
perform model validation using graphical model animators since SDMM and EDMM in-
troduce the required information to express the execution semantics.

In our context of model verification, three key features appear: 1) the model to be ver-
ified, 2) temporal properties to be assessed and 3) verification results. Up to now, the Exe-

qqq q, p

qq q q q

Figure 4.5 — The release temporal operator

Formal Verification Integration Approach for DSL 57

Expressing and verifying behavioral properties

DDMM

Domain Definition MetaModel

QDMM

Query Definition
MetaModel

<<merge>>

SDMM

State Definition
MetaModel

<<merge>>

<<implement>>

Figure 4.6 — The Query Definition MetaModel (QDMM)

cutable DSML pattern provides mandatory extensions to explicit only two features: the model
and its execution. It does not offer the possibility to formalize temporal properties to be as-
sessed.

Specifying temporal properties is typically based on the model execution which cannot
be expressed using the metamodeling technologies. To ease the expression of behavioral
properties, we refer to the Property-Driven Approach defined in [CCG+07] and experimented
in [Ge14]. This approach consists in defining abstract dynamic semantics based on the prop-
erties expressed at the metamodel level.

We propose to extend the DSML metamodel to ease expressing behavioral properties.
Therefore, we propose to introduce an additional extension which allows to capture differ-
ent queries that can be asked on DSML conforming models. We named it the Query Definition
MetaModel (QDMM).

Two kinds of queries are identified: primitive queries and non-primitive queries.

Primitive queries are related to the translational semantics. They are based on how the
DSML designer chooses to encode DSML constructs into the formal model constructions
(states, variables, etc.). They are related also to the chosen formal property language.

The non-primitive queries are related to either primitive queries or other non-primitive
ones.

The QDMM is a kind of abstract view of the SDMM: it defines queries that can be asked
on the DSML conforming model. SDMM may be seen as a way to implement the QDMM
by choosing a set of attributes (like a Java class implements a Java interface).

Figure 4.6 shows the architecture of the QDMM extension. It is related to the DDMM
by the «merge» predefined package operator and by the «implement» package operator with
the SDMM.

58 Faiez Zalila

4.1. The expression of behavioral properties

DSML
.ecore

myModel
.dsml

formal
model

Translational
semantics

<<conformsTo>>

DSML
.tocl

<<extend>>

DSML
.ocl <<extend>>

<<use>>

formal
properties

<<extend>>

Semantic
domain

<<conformsTo>>

Figure 4.7 — Expressing behavioral properties on the DSML level

Once the TOCL editor is generated, it is possible to formalize DSML queries and behav-
ioral properties. Figure 4.7 shows our approach to assist the DSML expert and the DSML
designer in order to perform this task. For XSPEM, they should perform a set of steps to
correctly implement SPEM queries.

1. First, the DSML expert explicits in natural language the expected behavioral properties
to be assessed on SPEM models: Does a SPEM model finish? A SPEM process finishes
if all its activities finish while respecting constraints imposed by dependencies and re-
source allocations. If a SPEM process finishes, the verification process should produce
a possible terminating scenario that shows a possible execution of the SPEM process.
Otherwise, it should produce a counter-example showing a deadlock that forbids the
SPEM process to finish.

2. Then, based on the expected behavioral properties, he identifies informally different
queries to be defined. Figure 4.8 shows the SDMM of WorkDefinition, obtained by ap-
plying the Executable DSML pattern to SPEM. It defines an attribute state that can be
used to implement the queries isStarted() and isFinished() from QDMM. An additional
isFinished() query can also be defined for Process meta-class.

3. Now, the DSML expert may formalize the DSML non-primitive queries and behavioral
properties. Listing 4.1 shows a possible formalization of these queries using the TOCL
editor. First, he imports the DSML metamodel (lines 1-2). Then, he formalizes different
expected behavioral properties. Two behavioral properties are identified: The first one,
willNeverFinish, explains that a SPEM process cannot always be finished, and the sec-
ond one willEventuallyFinish defines that a SPEM process can eventually finish. These
two behavioral properties are defined based on the isFinished() query on SPEM Process
(lines 13-16). It formalizes the fact that a process is finished whether all its activities are
finished. It is a non-primitive query because it relies on another SPEM query. Until now,
the isFinished() query (lines 4-5) of WorkDefinition meta-class cannot be defined because
it is a primitive query and it depends on the translational semantics.

Formal Verification Integration Approach for DSL 59

Expressing and verifying behavioral properties

1 module spem;
2 import " http ://Spem" as SPEM
3
4 // SPEM queries
5 context SPEM! WorkDefinition def : isFinished () : String=
6 //
7 ;
8
9 context SPEM! WorkDefinition def : isStarted () : String=

10 //
11 ;
12
13 context SPEM! Process def : isFinished () : String =
14 s e l f . workDefinitions
15 −>forAll (wd|wd. isFinished ()) ;
16
17 // SPEM behavioral properties
18 context SPEM! Process inv willNeverFinish :
19 always not s e l f . isFinished ()
20
21 context SPEM! Process inv willEventuallyFinish :
22 eventually s e l f . isFinished ()

Listing 4.1 — Formalization of SPEM queries and their related behavioral properties

4. Then, the DSML designer implements the translational semantics in order to be able
to answer the queries. It maps the DSML metamodel into a semantic domain. Then,
it should ease the formalization of identified primitive queries. For our running case-
study explained in chapter 3, in order to verify behavioral properties on models de-
signed on a DSML for describing processes based on SPEM, we have chosen to im-
plement a translational semantics for SPEM into a formal semantics domain, which is
time Petri nets (TPN), in order to reuse the existing model-checking tools provided by
the TINA toolbox [BRV04]. Behavioral properties target the evolution of the model over
time.

5. Finally, the DSML designer formalizes different primitive queries based on the imple-
mented translational semantics. The isFinished() query of WorkDefinition meta-class re-
turns a string which refers to the corresponding generated TPN place which charac-
terizes the finished state for a workdefinition. A workdefinition wd1 is finished when
the corresponding place which characterizes the finished state (wd1_finished) obtain a
token. The isStarted() query of WorkDefinition meta-class returns a string which refers
to the corresponding generated TPN place which characterizes the started state for a
workdefinition. A workdefinition wd1 is started when the corresponding place which
characterizes the started state (wd1_started) obtain a token.

The queries on WorkDefinition are primitive because they are defined based on the trans-
lational semantics, whereas isFinished() on Process may be defined from the other ones.
Listing 4.2 shows the implementation of these primitives queries.

1 context SPEM! WorkDefinition def : isFinished () : String=
2 s e l f .name+ ’ _finished ’
3 ;
4
5 context SPEM! WorkDefinition def : isStarted () : String=
6 s e l f .name+ ’ _started ’
7 ;

Listing 4.2 — Formalization of SPEM primtive queries

60 Faiez Zalila

4.1. The expression of behavioral properties

DDMM

QDMM

isStarted()
isFinished()

WorkDefinition

startToStart
startToFinish
finishToStart
finishToFinish

<<enumeration>>
WSType

name: String
minTime : Int
maxTime : Int

Process

name : String
minTime : Int
maxTime : Int

WorkDefinition
linkType : WSType

WorkSequence

Parameter

name : String
count : Int

Resource

0 .. * workDefinitions

1 successor

0 .. * workSequences

1 predecessor linkToSuccessor 0 .. *

linkToPredecessor 0 .. *

0..* parameters

1 workDefinition

1 ressource 0..* ressources

isFinished()

Process

<<merge>>

SDMM

state: ExecutionState
WorkDefinition

notStarted
running
finished

<<enumeration>>
ExecutionState

<<merge>>

<<
im

pl
em

en
t>

>
Figure 4.8 — The application of QDMM extension for XSPEM

4.1.3 Implementation

We have chosen SimpleOCL3 as a core language for implementing our temporal extension
of OCL. SimpleOCL is an embeddable OCL implementation for inclusion in transformation
languages for the EMF Transformation Virtual Machine (EMFTVM).

The tool creator, Dennis Wagelaar4, clarifies the reason for the choice of developing a
new OCL tool instead of reusing one of the existing OCL tools in Eclipse5.

He said that the different proposed implementations of OCL like MDT-OCL [Wil10] and
Dresden-OCL6 use the pivot approach which consists in defining two metamodels: the first
metamodel is for parsing, the second one for representing the standard OCL metamodel.
This approach makes things more complex for higher-order transformations (HOT), because
it is mandatory to first transform from the concrete syntax to the pivot metamodel, do the
HOT, then transform back to the concrete syntax metamodel.

This reason coincides fully with our needs. In addition, SimpleOCL meets the need to
have an ATL-style implementation of an OCL editor. It is justified by the necessity to de-
velop languages (DSLs, query languages) using higher-order transformations (HOT), the
generation of a model transformation becomes easy. The similarity of the OCL part of both
metamodels makes the language designer more focused on the functional part of his lan-
guage. However, the OCL part will be managed with identity transformation rules.

Based on the SimpleOCL concrete syntax and metamodel, we have chosen to implement
this extension using Xtext. In addition, we perform several modifications on the SimpleOCL
grammar in order to support our requirements.

As SimpleOCL supports only OCL def definitions, we have extended it with an addi-

3https://code.google.com/a/eclipselabs.org/p/simpleocl/
4http://www.micallefwagelaar.be/dennis/doku.php/start
5http://modeling-languages.com/simpleocl-tool/
6http://www.dresden-ocl.org/

Formal Verification Integration Approach for DSL 61

Expressing and verifying behavioral properties

tional rule (OclInvariant) in order to support OCL invariants. The definition declarations
allow to define queries and their related methods and the invariants allow to formalize be-
havioral (or temporal) properties based on the defined queries.

To introduce temporal expressions, we identify two kinds of expressions: temporal bi-
nary expressions and temporal unary expressions. The temporal binary operators, until,
release, precedes and before, are defined using BinaryTemporalOp rule.

The second one is defined using the UnaryOpCallExp rule. The UnaryTemporalOp rule
defines unary temporal operators always, eventually and next.

4.2 Translation of behavioral properties

Until now, we have shown what we provide for the DSML expert and designer to ease
the expression of behavioral properties and their related queries in the DSML side. First, he
should extend his DSML metamodel with the appropriate queries which can be assessed on
DSML conforming models and then, using the developed TOCL editor, he can implement
the body of these queries and their related behavioral properties. This step is mandatory but
it is not sufficient. It should be completed by the necessary tooling in charge of automatically
generating the corresponding formal behavioral properties.

The TOCL editor provides a high-level layer to formalize different concerns to express
behavioral properties. It is based on a well-known language which is OCL. In this section,
we discuss different challenges to be handled and we explain our approach to perform this
translation. The formalized queries and their related behavioral properties should be trans-
lated into the formal layer. This task cannot be handled as a classical one-to-one mapping
for the following reasons:

1. The gap between user and verification languages. User domain TOCL properties are
expressed in order to extend the DSML abstract syntax with behavioral properties.
These properties must be translated into the formal verification level (LTL for exam-
ple). The gap is due to the fact that TOCL behavioral properties are expressed on the
metamodeling level (in the DSML metamodel) and usually generated properties will
be verified on a formal model (an instance of formal metamodel). Therefore, the TOCL
behavioral properties for a DSML should be written once and verified on all DSML
conforming models.

2. OCL is designed as a general-purpose language for expressing all kinds of (meta)model
query and evaluating specification requirements. It allows to assess well-formedness
properties. However, in our approach, OCL is extended in order to be transformed
later into verification technical space. It consists of a code generation task. For example,
the body of the universal quantifier forAll of OCL is supposed to be an OCL expres-
sion which returns a boolean value. However, in our implementation of TOCL, this
kind of OCL expressions should return a string related to the chosen formal properties
language. So, it is mandatory to classify what kind of iterators should be preserved and
what kind of iterators should be extended.

62 Faiez Zalila

4.2. Translation of behavioral properties

DSML
.ecore

myModel
.dsml

formal
model

Translational
semantics

<<conformsTo>>

DSML
.tocl

<<extend>>

DSML
.ocl <<extend>>

<<use>>

formal
properties

<<extend>>

Semantic
domain

<<conformsTo>>

TOCL2ATL ATL2FL
1 2

FormalOperators

Figure 4.9 — Translating DSML behavioral properties on the formal side

3. The amount of information that must be handled is important. First, It includes the
temporal aspect introduced through the extension. Second, it contains both OCL inv

and def declarations. Finally, it includes primitive queries related to the translational
semantics, non-primitive queries and their related behavioral properties.

4.2.1 The proposed approach to translate behavioral properties

Due to the previous reasons, the process of the generation of formal behavioral properties is
more complex than a classical mapping. It relies on a higher-order transformation as illus-
trated on Figure 4.9 (and detailed here after).

The first transformation TOCL2ATL is independent of any DSML. It is a higher-order
transformation that generates a model-to-text transformation, named ATL2FL which is
specific for each DSML. FL suffix corresponds to the chosen formal property language.
TOCL2ATL allows to resolve the semantic gap between both metamodeling and modeling
levels. First, this transformation unpacks some OCL iterators whose body returns a boolean
value in order to support defined DSML queries. Second, It converts TOCL expressions
which correspond to formal formulas into OCL expressions.

Let’s detail the different steps to generate the specific transformation ATL2FL and what
is the mandatory information to finally generate formal behavioral properties. To illustrate
it, we refer to our XSPEM case-study.

Formal Verification Integration Approach for DSL 63

Expressing and verifying behavioral properties

Dealing with OCL iterators to support QDMM Using Xtext, we have syntactically ex-
tended the OCL grammar to support temporal operators in the TOCL editor. However, it
is not sufficient to generate formal behavioral properties. There are some OCL constructs
which must be extended semantically. One of these ones is the iteration over collections
operators that are characterized by accepting an expression as parameter and returning a
boolean value.

The syntax used to call an iterative expression is the following:
source->operation_name(iterators | body)

• source corresponds to the iterated collection.

• iterators correspond to declared iterator variables.

• body corresponds to an expression applied on iterators variables .

The purpose here is not to evaluate the value of the iterating operator but to translate them
to their corresponding expressions in the formal side. We are interested in iterating operators
which returns a boolean value and whose body also returns a boolean value. Three operators
are identified: forAll, exists and one.

The forAll operator is the universal quantifier of OCL. It returns a boolean value stating
whether the body evaluates to true for all elements of the source collection.

The exists operator is the existential quantifier of OCL. It returns a boolean value stat-
ing whether the body evaluates to true for at least one element of the source collection.

The one operator returns a boolean value stating whether there is exactly one element of
the source collection for which the body evaluates to true.

OCL provides a generic iterating operation called iterate(). Its syntax is shown in
Listing 4.3.

1 source−>i t e r a t e (i terator , accumulator_declaration = init_exp |
2 body
3)

Listing 4.3 — The syntax of iterate() operator in OCL

This iterate() operation expression has an iterator, an accumulator and a body. The ac-
cumulator corresponds to an initialized variable declaration where the resulting values are
stored. The body of an iterate() expression is an expression that should make use of both
the declared iterator and accumulator. The value returned by an iterate() expression cor-
responds to the value of the accumulator variable once the last iteration has been performed.

The iterate() operation is the most fundamental and complex of the loop operations.
All other iterating operations can be described as a special case of iterate() operation
[WK03]. For example, Listing 4.4 shows the implementation of the sum() operation which
results in the sum of the elements of a set of integers using the iterate() operation.

1 Set {1 ,2 ,3}−> i t e r a t e (i : Integer , sum: Integer = 0 | sum + i)

Listing 4.4 — The implementation of the sum() operation using the iterate() operation

64 Faiez Zalila

4.2. Translation of behavioral properties

When generating the higher order transformation, we rewrite the previously cited oper-
ators (forAll, exists and one) using the iterate() operation in order to be able to gener-
ate the string that corresponds to the textual syntax of this expression in the formal property
language.

The universal quantifier is denoted by the logical operator symbol ∀. The expression:
∀xP(x), denotes the universal quantification of the atomic formula P(x). The expression
means: "For all x, P(x) holds". ∀x means all the objects x in the universe. If this is followed
by P(x) then the meaning is that P(x) is true for every object x in the universe. If the number
of elements in the universe is finite then the universal quantification ∀xP(x) is equivalent to
the conjunction: P(x1) ∧ P(x2) ∧ P(x3) ∧ ... ∧ P(xn).

Based on this notation, we decide to rewrite each forAll operator containing an OCL
expression related to defined DSML queries into an iterate() expression.

Let’s consider an expression using the forAll operator (Listing 4.5) which defines an
expression related to a DSML queries.

1 elements−>forAll (i t e r a t o r| <expression−related−to−dsml−queries >)

Listing 4.5 — The forAll iterative operator syntax in OCL

This expression will be transformed into an iterate() expression as shown in Listing 4.6.
It iterates the expression related to DSML queries on the elements sequence separated by
the conjunction operator of the formal language chosen to map DSML abstract syntax. The
first iteration consists only in printing the related expression (line 3 and then line 8) in the
accumulator but the subsequent iterations consists in concatenating the accumulator with
the conjunction operator and the related expression (line 5 and then line 8).

1 elements−>i t e r a t e (i t e r a t o r ; accumulator : String = ’ ’ |
2 i f accumulator = ’ ’ then
3 accumulator
4 else
5 accumulator + <formal−language−conjunction−operator>
6 endif
7 +
8 <expression−related−to−dsml−queries>
9)

Listing 4.6 — The redefinition of forAll operator using an iterate() expression

For our XSPEM case-study, the forAll operator is used to express that a SPEM process is
finished if and only if all its workdefinitions are finished (lines 13-16 of Listing 4.1). List-
ing 4.7 show a concrete redefinition of this operator with the iterate() operator generated
from the TOCL definition of the isFinished() non-primitive query (lines 13-16 in Listing 4.1).

1 helper context SPEM! Process def : isFinished () : String =
2 s e l f . workDefinitions
3 −>i t e r a t e (wd; wd_res : String = ’ ’ |
4 i f wd_res = ’ ’ then
5 wd_res
6 else
7 wd_res + thisModule . and
8 endif
9 +

10 wd. isFinished ()
11) ;

Listing 4.7 — The iterate() expression generated from the forAll operator

Formal Verification Integration Approach for DSL 65

Expressing and verifying behavioral properties

The second operator is the existential quantifier exists. It is denoted by the logical op-
erator symbol ∃. The expression: ∃xP(x), denotes the existential quantification of the atomic
formula P(x). The expression could also be understood as: "There exists an x such that P(x)"
or "There is at least one x such that P(x)". ∃x means at least one object x in the universe. If
this is followed by P(x) then the meaning is that P(x) is true for at least one object x of the
universe. If the number of elements in the universe is finite, then the existential quantifica-
tion ∃xP(x) is equivalent to the disjunction: P(x1) ∨ P(x2) ∨ P(x3) ∨ ... ∨ P(xn).

Based on this notation, we decide to rewrite each exists operator containing an OCL
expression related to defined DSML queries into an iterate() expression.

Let’s consider an expression using the exists operator (Listing 4.8) which defines an
expression related to a DSML queries.

1 elements−>exis t s (i t e r a t o r| <expression−related−to−dsml−queries >)

Listing 4.8 — The exists iterative operator syntax in OCL

This expression will be transformed into an iterate() expression as shown in Listing 4.9.
It iterates the expression related to DSML queries on elements sequence separated by the
disjunction operator of the formal language chosen to map DSML abstract syntax. The first
iteration consists only in printing the related expression (line 3 and then line 8) in the ac-
cumulator but the subsequent iterations consists in concatenating the accumulator with the
disjunction operator and the related expression (line 5 and then line 8).

1 elements−>i t e r a t e (i t e r a t o r ; accumulator : String = ’ ’ |
2 i f accumulator = ’ ’ then
3 accumulator
4 else
5 accumulator + <formal−language−disjunction−operator>
6 endif
7 +
8 <expression−related−to−dsml−queries>
9)

Listing 4.9 — The iterate() expression generated from the exists operator

The last operator is the uniqueness quantifier. It is denoted by the logical operator sym-
bol ∃!. The expression: ∃!xP(x), denotes the existential quantification of the atomic formula
P(x). The expression could also be understood as: "There exists exactly one x such that P(x)".
∃!x means exactly one object x in the universe. If this is followed by P(x) then the meaning
is that P(x) is true for exactly one object x of the universe. If the number of elements in the
universe is finite, then the uniqueness quantification ∃!xP(x) is equivalent to:

P(x1) ∧ ¬ (P(x2) ∨ P(x3) ∨ P(x4) ∨ ... ∨ P(xn))

∨ P(x2) ∧ ¬ (P(x1) ∨ P(x3) ∨ P(x4) ∨ P(x5) ∨ ... ∨ P(xn))

∨ P(x3) ∧ ¬ (P(x1) ∨ P(x2) ∨ P(x4) ∨ P(x5) ∨ P(x6) ∨ ... ∨ P(xn))

∨ P(xn) ∧ ¬ (P(x1) ∨ P(x2) ∨ P(x3) ∨ ... ∨ P(xn−1)).

Based on this notation, we decide to rewrite each one operator containing an OCL ex-
pression related to defined DSML queries into an iterate() expression.

Let’s consider an expression using one operator (Listing 4.10) which defines an expres-
sion related to a DSML queries.

66 Faiez Zalila

4.2. Translation of behavioral properties

1 elements−>one(i t e r a t o r| <expression−related−to−dsml−queries >)

Listing 4.10 — The one iterative operator syntax in OCL

This expression will be transformed into an iterate() expression as shown in Listing 4.11.
It iterates the expression related to DSML queries on elements sequence separated by the
disjunction operator of the formal language chosen to map DSML abstract syntax.

1 elements−>i t e r a t e (i tera tor1 ; accumulator1 : String = ’ ’ |
2 i f accumulator1 = ’ ’ then
3 accumulator1
4 else
5 accumulator1 + <formal−language−disjunction−operator>
6 endif
7 + <expression−related−to−dsml−queries>
8 + <formal−language−conjunction−operator>
9 + <formal−language−negation−operator>

10 + ’ (’
11 + elements−>excluding (i tera tor1)
12 −>i t e r a t e (i tera tor2 ; accumulator2 : String = ’ ’ |
13 i f accumulator2 = ’ ’ then
14 accumulator2
15 else
16 accumulator2 + <formal−language−disjunction−operator>
17 endif
18 + <expression−related−to−dsml−queries>
19)
20 + ’) ’
21)

Listing 4.11 — The iterate() expression generated from the one operator

Handling TOCL expressions to ease the generation of formal properties In addition
to the redefinition of such OCL iterators which ease the generation of behavioral proper-
ties, temporal expressions are another kind of TOCL features should also be handled in the
higher-order transformation TOCL2ATL.

As we aim to generate formal behavioral properties, it is mandatory to handle ex-
pressions which combine DSML queries and temporal expressions (binary and unary ex-
pressions). These expressions should be translated into an OCL conjunction expression
where the operator is translated into the use of the corresponding formal operator in the
FormalOperators library.

Listing 4.12 shows an abstract view of a temporal unary expression formalized using our
TOCL editor and Listing 4.13 shows the generated expression.

1 <temporal−operator> <unary−expression>

Listing 4.12 — A unary temporal expression

1 <formal−language−temporal−operator> + <redefined−unary−expression>

Listing 4.13 — A translation of a TOCL unary temporal expression into a string concate-
nation in OCL

For our XSPEM case-study, the temporal expressions are used to define temporal invari-
ants. Line 19 of Listing 4.1 shows a temporal expression that specifies that a SPEM model
will never finish. Listing 4.14 shows the generated concatenation expression. always, not,
LeftBrace and RightBrace refer to different attributes defined in the formal operators li-
brary.

Formal Verification Integration Approach for DSL 67

Expressing and verifying behavioral properties

1 thisModule . always
2 + thisModule . LeftBrace
3 + thisModule . not + thisModule . LeftBrace + s e l f . isFinished () + thisModule . RightBrace
4 + thisModule . RightBrace

Listing 4.14 — The willNeverFinish() invariant generated in the ATL level

In addition, we handle boolean expressions which should be transformed into string
concatenation expression. Based on the returned type of an operand, we decided to rewrite
the corresponding expression in the generated ATL2FL transformation. This targets only
boolean operators: the negation operator not, the conjunction operator and, the disjunction
operator or and the implication operator implies.

For our SPEM case study, once the DSML designer formalizes his DSML queries and
their related behavioral properties based on the defined translational semantics which tar-
gets the TPN technical space and the TINA toolbox, we perform the higher-order transfor-
mation TOCL2ATL. It generates a model-to-text transformation ATL2LTL (LTL is the chosen
formal property language) shown in Listing 4.15.

1 query SPEM_Properties = thisModule . generateLTL () . writeTo (’SPEM/BehavioralProperties . l t l ’) ;
2
3 uses LTLOperators ;
4
5 helper context SPEM! WorkDefinition def : isFinished () : String =
6 s e l f .name + ’ _finished ’ ;
7
8 helper context SPEM! WorkDefinition def : isStarted () : String =
9 s e l f .name + ’ _started ’ ;

10
11 helper context SPEM! Process def : isFinished () : String =
12 s e l f . workDefinitions
13)−>i t e r a t e (wd; wd_res : String = ’ ’ |
14 i f wd_res = ’ ’ then
15 wd_res
16 else
17 wd_res + thisModule . and
18 endif + wd. isFinished ()
19) ;
20
21 helper context SPEM! Process def : willNeverFinish () : String =
22 ’op willNeverFinish_ ’ + SPEM! Process . a l l Instances ()−>indexOf (s e l f) . toString () + ’ = ’ +
23 thisModule . always + thisModule . LeftBrace + thisModule . not + thisModule . LeftBrace + s e l f . isFinished ()
24 + thisModule . RightBrace + thisModule . RightBrace + ’ ; \n ’
25 +
26 ’ willNeverFinish_ ’ + SPEM! Process . a l l Instances ()−>indexOf (s e l f) . toString () + ’ ; ’ ;
27
28 helper context SPEM! Process def : willEventuallyFinish () : String =
29 ’op willEventuallyFinish_ ’ + SPEM! Process . a l l Instances ()−>indexOf (s e l f) . toString () + ’ = ’
30 + thisModule . eventually + thisModule . LeftBrace + s e l f . isFinished () + thisModule . RightBrace + ’ ; \n ’
31 +
32 ’ willEventuallyFinish_ ’ + SPEM! Process . a l l Instances ()−>indexOf (s e l f) . toString () + ’ ; ’ ;
33
34 helper def : generateLTL () : String =
35 SPEM! Process . a l l Instances ()−> c o l l e c t (instance_Process |instance_Process . willNeverFinish())−> f l a t t e n ()
36 −>i t e r a t e (input_Process ; res_Process : String = ’ ’ |res_Process + input_Process+ ’\n ’)
37 +
38 SPEM! Process . a l l Instances ()−> c o l l e c t (instance_Process |instance_Process . willEventuallyFinish())−> f l a t t e n ()
39 −>i t e r a t e (input_Process ; res_Process : String = ’ ’ |res_Process + input_Process + ’\n ’) ;

Listing 4.15 — The generated ATL2LTL transformation

68 Faiez Zalila

4.3. Related works

Let’s detail different parts of this transformation. First, it uses a predefined
LTLOperators library which contains LTL operators as ATL attributes (FormalOperators
in Figure 4.9). Next, it contains a set of helpers which correspond to DSML queries: isFin-
ished() (lines 4-5) and isStarted() (lines 6-7) for WorkDefinition, and isFinished() for Process.
Then, there are two helpers which correspond to TOCL invariants: willNeverFinish() (line
19) and willEventuallyFinish() (line 25). Finally, a global helper named generateLTL() (line 31)
concatenates different helpers which correspond to TOCL invariants. It is the entry point
helper of this query (line 1). This one takes a DSML conforming model and generates its
corresponding formal properties.

4.2.2 The generation of formal properties

Running the higher-order transformation TOCL2ATL has allowed to generate the second
transformation ATL2FL. This last model-to-text transformation is an ATL query. It imports
the FormalOperators library defined previously.

The formal operators library The last two subsections have shown the core of the higher-
order transformation TOCL2ATL that generates another transformation ATL2FL. As we aim
giving the DSML designer a higher-order tools to implement verification tasks for a DSML,
it is mandatory to define a library which contains formal operators as ATL attributes. An
ATL attribute can be viewed as a constant. It defines the concrete syntax of formal operators
given by the chosen verification toolkit.

For example, listing 4.16 shows the always attribute defined for the TINA toolbox and
its SELT model-checker.

1 helper def : always : String= ’ [] ’ ;

Listing 4.16 — An always attribute

The generated transformation ATL2FL accepts a DSML conforming model and generates
behavioral properties in the formal side. Taking the SPEM model defined in the Figure 2.2,
the corresponding generated LTL properties are shown in Listing 4.17.

1 op willNeverFinish =
2 [](−(Designing_finished /\ Documenting_finished /\ Programming_finished /\ TestCaseWriting_finished)) ;
3 willNeverFinish ;
4
5 op willEventuallyFinish =
6 <> (Designing_finished /\ Documenting_finished /\ Programming_finished /\ TestCaseWriting_finished) ;
7 willEventuallyFinish ;

Listing 4.17 — The generated LTL properties

4.3 Related works

The problem of the specification and verification of behavioral properties for DSMLs has
been widely addressed by the software engineering community. Different approaches are
proposed to ease the expression of behavioral properties.

Formal Verification Integration Approach for DSL 69

Expressing and verifying behavioral properties

To verify BPEL service composition schemas, [YMH+06] proposes a property specifi-
cation language based on ontologies and named PROPOLS and an associated approach to
the verification of BPEL schemas. This approach allows composition of the patterns defined
by Matthew Dwyer in [DAC98]. These patterns are close to TOCL temporal operators and
composition corresponds to OCL operators. To guide the semantic mapping of PROPOLS
properties, the authors choose to append directly semantic annotations to the WSDL file.
For the verification process, a semantic equivalent Total and Deterministic Finite State Au-
tomata (TDFA) is built for every pattern property and for the BPEL schema, a finite and
deterministic Labeled Transition Systems model is generated. Finally, the compliance of the
BPEL schema to the PROPOLS properties is then checked.

The proposed approach allows to specify high-level properties conforming to Dwyer
patterns. Compared to our approach, it can be classified as a specific approach focusing on
BPEL schemas. To adapt it to another modeling language, it is mandatory to express require-
ments on the semantic mapping. In our approach, the QDMM provides a generic meta-
modeling extension which allows to capture different possible queries asked on a DSML
conforming model.

In [MWVD13], an approach named ProMoBox is proposed. It assists the DSML engineer
in the specification and verification properties at the DSML level. The ProMoBox contains
three metamodels: the first one allows to specify the quantification which can be the univer-
sal one or the existential one. The second metamodel is the temporal pattern which is defined
based on the Dwyer’s specification patterns. The third one is the structural pattern which
allows to query a model. The approach consists in matching the DSML classical metamodel
with the three languages of ProMoBox. Therefore, a specific property language is generated
for each DSML. Then, the ProMoBox model is transformed into LTL formulas using model-
to-text transformation. They don’t refer to the translation of the design model into Promela.
The authors state that the current implementation of their approach can be shown as very
near to the formal side. They aim to go one step higher in the abstraction level by providing
a DSML for their use-case. In addition, it is necessary to connect each DSML to the Pro-
MoBox. For us, we separate the design level and the implementation one. Our contribution,
the QDMM extension, replies to this need by defining an additional information can be
asked on a design model and the TOCL editor allows to formalize behavioral properties. In
[MDL+14], the ProMoBox approach was extended with additional sub-languages annotated
with the runtime information that eases the generation of LTL properties from a ProMoBox
specification.

The cited approaches aim to express high-level behavioral properties. However, the pro-
posed technologies requires additional knowledge for a designer who is already familiar-
ized with OCL technologies. We think that the TOCL implementation is easier for the
DSML designer introducing different required elements to express behavioral properties
in the metamodel level.

70 Faiez Zalila

5 Feedback verification results

Résumé
Nous avons proposé dans le chapitre précédent un langage pour exprimer des propriétés sur
les DSMLs qui sont automatiquement traduites en propriétés formelles pour être vérifiées
par les outils de model-checking. Dans ce chapitre, nous abordons la remontée des résultats
de la vérification.

En effet, notre objectif est que l’utilisateur final du DSML qui n’est pas à avoir de con-
naissance particulière des langages et outils de vérification s’attend à une approche trans-
parente qui cache et intègre de manière transparente les outils associés dans des chaînes
d’outils de vérification tout en profitant des avantages de ces méthodes puissantes. Aussi, il
est nécessaire de traduire les résultats obtenus au niveau formel en résultat au niveau du do-
maine de l’utilisateur (le DSML). Le défi consiste donc à tirer le meilleur des outils formels
de sorte que l’utilisation ne soit pas affaiblie par les aspects formels non cachés.

Par conséquent, une tâche essentielle pour les concepteurs d’un DSML est de remonter
les résultats de la vérification générés par les outils de model-checking. La remontée des
résultats de vérification rend l’utilisation des méthodes formelles plus prometteuse pour les
utilisateurs finaux.

Dans la littérature, ce problème est soit non traité, soit il est résolu par des solu-
tions codées en dur ou ad-hoc. Par conséquent, dans cette partie, nous proposons une ap-
proche pour résoudre ce problème en fournissant, à la fin, une solution générale d’un outil
générique.

Tout d’abord, nous expérimentons la définition d’une transformation dans le sens in-
verse (du formel vers le DSML) selon les extensions du patron de métamodélisation ap-
pliquées sur les deux niveaux. Ensuite, nous avons expérimenté les transformations de mod-
èle bidirectionnelles. Ce type de transformation permet de combiner à la fois la sémantique
translationnelle avec la gestion de retour des résultats de vérification.

Nous appliquons ces deux approches dans notre étude de cas de la vérification des mod-
èles SPEM en utilisant les TPN. Nous discutons aussi de la généralité de ces approches et le
genre de solution qui devrait être proposée pour obtenir une solution générique. Enfin, nous
présentons notre langage dédié proposé qui permet de définir séparément les correspon-
dances entre les événements du niveau DSML et leurs correspondants au niveau formel.

71

Feedback verification results

DSML
model

Formal
model

Translational
semantics

Formal
scenario

Feedback
verification

results

DSML
scenario

xDSML
semanics

xDSML
DDMM

xDSML
TM3

: <<conformsTo>>

Formal
semanics

Formal
DDMM

Formal
TM3

model-
checker

Figure 5.1 — Overview of the feedback of verification results in the DSML V&V context

WE have proposed in the previous chapter a language to express properties on a do-
main specific model which are automatically translated into formal ones and checked

by the tools. In this chapter, we address the feedback of verification results.

Indeed, DSML end-user who is familiar with DSML concepts should not be required to
have a solid knowledge on formal languages and associated tools. The challenge is thus to
leverage formal tools so that the use is not burdened with formal aspects.

This one expects a seamless approach which hides and embeds transparently the associ-
ated tools in automated verification toolchains while enjoying the benefits of these powerful
methods. Therefore, one critical task for the DSML designers is getting back verification re-
sults generated by the model-checking tools. The feedback of verification results make the
use of formal methods more hopeful for end-users.

Figure 5.1 shows the expected framework to integrate a hidden formal verification ap-
proach for a new DSML. It extends the translational semantics which maps a DSML con-
forming model into a formal model with the feedback of verification results from the formal
side into the DSML one.

It is mandatory to ease for the DSML designer the feedback of verification results and
assist him to generate a DSML verification framework while reducing development costs.
However, in the literature, this problem is either not handled or it is resolved by hard-coded
or ad-hoc solutions. Therefore, in this part, we propose an approach to overcome this prob-
lem by providing in the end a general tool-independent solution.

First, we experiment the definition of a backward transformation based on the executable
extension from the Executable DSML pattern introduced both on the DSML and formal sides.

Second, we have experimented bidirectional model transformations. This kind of trans-
formation allows to combine the translational semantics with the management of the feed-

72 Faiez Zalila

5.1. Defining a backward transformation

back of verification results.

We apply both approaches within our case-study of the verification of the SPEM con-
forming models using TPN. We discuss also about the generality of these approaches and the
kind of solution that should be proposed to obtain a generic solution. Finally, we show our
proposed domain-specific programming language (DSPL) which allows to define separately
the mapping between DSML events and their corresponding ones at the formal level.

5.1 Defining a backward transformation

To feedback the verification results to the DSML level, we have initially chosen to define a
model-based toolchain to manage verification results generated by the TINA toolbox. Fig-
ure 5.2 illustrates this approach: the top of the figure recall the translational semantics and
the bottom explains how verification results are analysed to feedback results at the DSML
level.

Using Xtext, we analyze the output of the SELT model-checker and produce a TPN sce-
nario (results.tpnscn in Figure 5.2) which conforms to the TM3 extension of the TPN meta-
model.

Listing 5.1 gives the TPN scenario corresponding to the verification output generated by
the SELT model-checker shown in Listing 3.4. This scenario is an instance of the TM3 and
EDMM metamodeling extensions defined at the TPN level. It shows a succession of TPN

events which consist in firing TPN transitions (instances of the FireTransitionEvent meta-class
in the EDMM of TPN).

1 FireTransitionEvent Designing_start
2 FireTransitionEvent Designing_finish
3 FireTransitionEvent Documenting_start
4 FireTransitionEvent Documenting_finish
5 FireTransitionEvent TestCaseWriting_start
6 FireTransitionEvent Programming_start
7 FireTransitionEvent Programming_finish
8 FireTransitionEvent TestCaseWriting_finish

Listing 5.1 — A TPN scenario corresponding to the verification results generated by the
SELT model-checker shown in Listing 3.4

The TPN scenario is then transformed to an XSPEM scenario. The transformation (TP-
NSCN2SPEMSCN.atl in Figure 5.2) converts transition firing events FireTransitionEvent to
XSPEM events, either start (StartWD) or finish (FinishWD) a WorkDefinition. The naming
conventions are used to decode the fired transition names and produce the corresponding
XSPEM events and their target workdefinitions.

Listing 5.2 shows an ATL rule (PNEventToStartWD) which allows to produce a XSPEM
StartWD event from a TPN FireTransitionEvent one. It consists in selecting a TPN FireTran-
sitionEvent instance whose name ends with ’_start’, to compute a substring prefix of its
name (line 11), and, finally to select the workdefinition whose name corresponds to the sub-
string (line 12).

Formal Verification Integration Approach for DSL 73

Feedback verification results

SPEM
.ecore

TPN
.ecore

myProcess
.spem

myProcess
.tpn

SPEM2TPN
.atl

myProcess
.net

<<conformsTo>>
<<conformsTo>> TPN2Tina

.atl

properties
.ltl

results
.scnresults

.tpnscn

TPNSCN2
SPEMSCN

.atl
results

.spemscn

<<refersTo>><<refersTo>>

Figure 5.2 — Feedback verification results generated by the TINA toolbox into the SPEM
level

1 r u l e PNEventToStartWD {
2 from
3 tpn_ev : TPNScenario ! F i r e T r a n s i t i o n E v e n t (
4 tpn_ev . name . endsWith (’ _ s t a r t ’)
5)
6 using {
7 s t a r t I n d e x : I n t e g e r = tpn_ev . name . indexOf (’ _ s t a r t ’) ;
8 }
9 to

10 startWD : SPEMScenario ! StartWD (
11 name <− tpn_ev . name . subs t r ing (1 , s t a r t I n d e x) ,
12 workdef in i t ion <− thisModule . getWorkDefinit ion (startWD . name)
13)
14 }

Listing 5.2 — An ATL rule to generate a StartWD event from a FireTransitionEvent one

The XSPEM scenario corresponding to the previous TPN one is shown on Listing 5.3.

The main goal of our work consists in facilitating the feedback of verification results gen-
erated from the model-checker. Therefore, we refer to the Executable DSML pattern which
augments the DSML abstract syntax with behavioral aspects in order to capture runtime
information. In this work, we decide to encode manually the feedback transformation. This
backward transformation can be not obvious and thus include errors. Therefore, we pro-
pose, in the next section, to unify the two transformations to achieve feedback by backward
evaluation of the unified bidirectional model transformation.

1 StartWD Designing
2 FinishWD Designing
3 StartWD Documenting
4 FinishWD Documenting
5 StartWD TestCaseWriting
6 StartWD Programming
7 FinishWD Programming
8 FinishWD TestCaseWriting

Listing 5.3 — A SPEM scenario corresponding to the TPN scenario shown in Listing 5.1

74 Faiez Zalila

5.2. The use of bidirectional transformation

5.2 The use of bidirectional transformation

Bidirectional model transformations are an appropriate candidate [Ste08] to feedback au-
tomatically verification results from the formal side to the DSML. It is a mechanism that
maintains the consistency between two (or more) artifacts [CFH+09, HSST11]: when one
evolves, the other is updated to reflect the changes.

Bidirectional model transformations aim to unify the two unidirectional transformations
into one bidirectional definition. In fact, the translational semantics can be performed due to
the forward evaluation and the feedback of the verification results is achieved by backward
evaluation of the unified transformation.

We reuse the taxonomy proposed in [FGM+07] which consists of the forward transfor-
mation get to obtain target artifact t from source artifact s, and backward transformation put
from the pair of updated target t′ and original source s, to obtain updated source s′.

According to Figure 5.1, the source model in this framework is the model conforming
to a DSML DDMM. We identify it as a DSML Model. The translational semantics defined
in the DSML verification context is shown as the Forward transformation in the bidirectional
model transformation framework. This transformation allows to map the DSML Model into
a formal one in order to generate a formal model understood by model-checkers. It corre-
sponds to the target model in the bidirectional model transformation framework. It is shown
as a Formal Model. Verification of models using model checking provides execution results
only in the target technical space when the verification fails.

Updating the target model in the bidirectional model transformation framework, cor-
responds, in the DSML model verification context, to produce the verification information
in the formal target model (Formal scenario). The Backward transformation allows to feedback
runtime information into the DSML level. A DSML scenario is generated.

The overviews of both approaches are broadly similar in terms of model and manip-
ulated information. This eases the use of bidirectional model transformation in the DSM
verification context.

To adopt this solution, we introduce a collaboration framework between the GROUND-
TRAM bidirectional model transformation system [HHI+11, HHI+13] and the Executable
DSML pattern.

5.2.1 Bidirectional Model Transformation with GROUNDTRAM

GROUNDTRAM is a well-behaved, language-based (functional), compositional (allows inter-
mediate models), text based bidirectional modeling framework based on bidirectionalized
graph transformations [HHI+10]. It has been actively used in several fields, including recent
attempts in co-evolution of models and code in software engineering [YLH+12], as well as
in a collaboration framework for model development in synthetic biology [WKH13].

A notable alternative graph transformation based framework would be those based on
Triple Graph Grammars [SK08]. We have chosen GROUNDTRAM for the ease of composi-
tions in transformations.

Formal Verification Integration Approach for DSL 75

Feedback verification results

Process
name

workdefinitions

String "p1"

WorkDefinition name String "Designing"

Figure 5.3 — An edge-labelled graph for a SPEM model

PetriNet

nodes

nodes
arcs

Place
name

initialtokenCount

Transition name

Arc
kind

weight

source

target

String "Designing_notStarted"
Int 1

String "Designing_start"

ArcKind "normal"
Int 1

Place

Transition

Figure 5.4 — An edge-labelled graph for a TPN model

We introduce in the rest of this section the features of GROUNDTRAM that are relevant
to our approach.

5.2.1.1 Data Model

Graphs that represent models in GROUNDTRAM are rooted and edge-labelled. All the infor-
mation is stored in edge labels and node identifiers have no particular meanings. They are
just unique identifiers. Outgoing edges of a node are not ordered.

The graph in Figure 5.3 represents a subset of the SPEM model in Figure 2.2 with only
one workdefinition ”Designing” and the graph in Figure 5.4 represents a corresponding
TPN model with just one place and one transition and an arc between them. Models are rep-
resented in a modular way. For example, nodes and arcs of the TPN model are represented
by subgraphs under edges labelled nodes and arcs, respectively.

5.2.1.2 Bidirectional Transformations

Transformations in GROUNDTRAM are written in UnQL+, an extension of select-where style
graph query language UnQL[BFS00] with constructs for replacement, extension and dele-
tion of subgraphs specified by regular expressions over paths from the root.

The forward interpretation (get), if given the graph of SPEM in Figure 5.3 as its in-
put (bound to global variable $db), outputs the TPN in Figure 5.4 (without the bold part),
where where part (selectively) extracts labels or subgraphs using regular path patterns
and binds them to variables (the name of the workdefinition ”Designing” under the path
Process.workdefinition.....String from the root is bound to $name), and select part
constructs the results using these bindings (subgraphs encoding places and transitions are
constructed using the names derived from the workdefinition name).

After the forward transformation, user can modify the resulting target. The backward
transformation takes this updated target as well as the original source to propagate these
changes back to the source.

The target updates are propagated via variable bindings. The source is given as a binding

76 Faiez Zalila

5.2. The use of bidirectional transformation

select {PetriNet:{nodes:{Place: {name:{String:{$name^"_notStarted":{}}},
initialtokenCount:{Int:{1:{}}}}},

nodes:{Transition:{name:{String:{$name^"_start":{}}}}}}}
where {Process.workdefinitions.WorkDefinition.name.String:{$name:{}}} in $db

Listing 5.4 — UnQL+ transformation from SPEM to TPN

of variable $db. The forward transformation interprets the UnQL+ program under this bind-
ing, which is extended by the bindings introduced by where and related clauses. Backward
transformation updates these bindings according to the updates of the target.

GROUNDTRAM supports back propagations of edge-renaming, edge deletions and sub-
graph insertions by separate algorithms (commands).

Note that several edge renamings may have to be propagated by separate backward
transformations. For example, suppose we simultaneously edit two subgraphs that are pro-
duced via different subexpressions in the transformation that share a variable. Then during
the backward transformation, two instances of updated bindings of the variable are pro-
duced and merged [HHI+10]. If both of the bindings are different, an error reporting incon-
sistent updates is signaled.

Bidirectional transformation usually propagates updates uniquely, meaning that user
does not have much control on the propagation in case of multiple possibilities. However,
users can design transformations that ease the intended propagation. In our work, propa-
gation of verification results is achieved by extending the original transformation to embed
subgraphs that encode event sequence information as shown in the next subsection.

5.2.2 Combining the Executable DSML pattern with the GROUNDTRAM frame-
work

Combining these two different approaches may encounter some obstacles. This is due to
the difference in the "nature" of the exchanged information. In the Executable DSML pat-
tern, the information is modeled using Eclipse Modeling Framework (EMF) [SBPM08] with
XMI Schema, but the GROUNDTRAM platform is used to do bidirectional transformation for
graphs.

This gap between these two different levels can affect the expressiveness of the ex-
changed information. Taking an example in Figure 5.5, we show an edge-labelled graph
that defines an XSPEM process graph conforming to a subset of the SPEM model shown
in Figure 2.2. It only contains two workdefinitions Programming and TestCaseWriting and
two worksequences between them. This SPEM process is extended with a scenario which
is composed of a set of events (in the dashed rectangles). It represents the scenario shown
in the end of Listing 5.3 (lines 5-8). In our approach, this graph corresponds to the Updated
DSML Source Model. The Process sub-graph is the source model and the Scenario sub-graph
is the information propagated from the modified formal target model.

Right now, we can say that the integration of Executable DSML pattern in the GROUND-
TRAM framework is advantageous and suitable. However, an important information is miss-

Formal Verification Integration Approach for DSL 77

Feedback verification results

{&}
41

40 39
38

37

36
35

33

32

31

30

29

28 24

23

22

21

20

19

1817

16

15

14

13
12

1110

9 8

7

6

5

4

3

2

1

0

ScenarioProcess

worksequences
worksequences

workdefinitions workdefinitions

name

runtimeEvents

runtimeEvents

runtimeEventsruntimeEventsString
"p1"

WorkDefinition

WorkDefinition

name

WorkSequence
successor predecessor

linkType

WorkSequence

successorpredecessor

linkType

34

27

26

25

name

String

"Programming"

String

"TestCaseWriting"String

"startToStart"

WorkDefinition

WorkDefinition

String

"finishToFinish"

WorkDefinition WorkDefinitionStartEventFinishEvent

StartEvent FinishEvent

workdefinition

WorkDefinition

workdefinition WorkDefinition

workdefinition
WorkDefinition workdefinition

WorkDefinition

Figure 5.5 — An edge-labelled graph for an XSPEM process enriched with verification
results

ing which is the order of events. Using this representation, we can show events which com-
pose the scenario but we cannot identify which is the first event, the second event, etc.

To resolve this major problem, the application of Executable DSML pattern should be ex-
tended to capture the order. Two kinds of solution are proposed: the first one consists in
adding a next reference in the RuntimeEvent meta-class of the TM3 to itself and the second
solution consists in adding an attribute in the same meta-class. We choose to add an integer
attribute in the DSML RuntimeEvent meta-classes, named "rank", to capture events’ order
in the DSML scenario because it is more easy in the backward transformation to rename an
edge than to add another one. Consequently, this extension in the DSML level, should also
be defined in the formal level in order to capture the rank information in the formal level
and after feedback of this information into the DSML level.

These extensions are done in both the DSML (XSPEM EDMM) and the formal levels
(TPN EDMM) to capture the order of events. Now, we can manipulate graphs which contain
the complete information. This allows to use the Executable DSML pattern in the GROUND-
TRAM framework consistently.

So, according to the Executable DSML pattern applied into the SPEM standard, the idea
consists of creating, for each workdefinition, two events ("StartWD" and "FinishWD") that
are initialized with rank =0. The update of this information corresponds to modifying the
rank value of an XSPEM event with the rank value of the corresponding TPN event. This
operation entails renaming edges that encode rank attributes of several events in the gen-
erated scenario simultaneously. However, as we said in the subsection 5.2.1, simultaneous
edge-renamings may signal an error reporting inconsistent updates during the backward
transformation.

Therefore, we propose to apply and propagate the modification of these different rank

78 Faiez Zalila

5.2. The use of bidirectional transformation

{&}
53

52

51
50

49

48
47 45

44

43

42

41

40

36

35

34

33

32

31

3029

28

27

26

25
24

2322 21 20

19

15

14

10

9

5

4

0

Scenario
Process

worksequences

worksequences
workdefinitions

workdefinitions

name

runtimeEvents

runtimeEvents

runtimeEvents

runtimeEvents

String

"p1"

WorkDefinition WorkDefinition

name

WorkSequence

successor predecessor

linkType

WorkSequence

successorpredecessor

linkType

46

39

38

37

name

String

"Programming"

String

"TestCaseWriting"

String

"startToStart"

WorkDefinitionWorkDefinition

String

"finishToFinish"

WorkDefinition
WorkDefinition

StartEventFinishEvent
StartEvent

FinishEvent

workdefinition
WorkDefinition

workdefinition

WorkDefinition

workdefinitionWorkDefinition workdefinition

WorkDefinition

3

2

1

Int

4

rank

8

7

6

Int

1

rank

18

17

16

Int

2

rank

13

12

11

Int

3

rank

Figure 5.6 — An edge-labelled graph for an XSPEM process enriched with verification
results and adapted into the Executable DSML pattern

attribute values step by step. Thus, after generating the formal scenario with the model
checker, we 1) modify the earliest event in the formal model, 2) propagate this modifica-
tion into the DSML model using the backward transformation, 3) take the updated DSML
source model as a new DSML source model, 4) re-transform it into a formal target model
and return to step 1) until the whole scenario has been propagated. This method allows not
only to feedback the complete scenario, but also to simulate the execution of the model.

Figure 5.6 shows an edge-labelled graph that defines an XSPEM process that represents
the XSPEM model extended with a complete scenario which is composed of a set of events
whose rank attribute values are updated with the indexes of events in the scenario (in the
dashed rectangles). They represent the scenario shown in Listing 5.3.

5.2.3 Implementation

In this subsection, we introduce the implementation of our approach using the GROUND-
TRAM framework.

Once the bidirectional transformation XSPEM2TPN.unql+ is defined, it should be com-
pleted with the mandatory tooling to integrate DOT models, the native representation for-
mat in the GROUNDTRAM toolset, with model verification tooling and especially TINA tool-
box. Figure 5.7 shows the complete overview of our approach. The generated DOT formal
target model is parsed using an existing DOT Xtext grammar1. An XMI formal target model
is generated. Using a model-to-text ATL transformation, a textual TPN is built to be used by
the SELT model checker of the TINA toolbox in order to verify whether the temporal property
is verified. If not, a counter example is generated. Using a model-to-model ATL transforma-
tion, we update the XMI formal target model and it generates the XMI formal modified tar-
get model. Next, we define a model-to-text ATL transformation to produce the DOT formal

1http://code.google.com/p/emfmodelvisualizer/source/browse/galileo/trunk/org.

openarchitectureware.vis.graphviz/src/org/openarchitectureware/vis/graphviz/Dot.xtext

Formal Verification Integration Approach for DSL 79

Feedback verification results

ATL
(M2M)

GroundTram

SPEM
source
model

TPN
target
model

Forward
transformation

Modified
TPN

target
model

Backward
transformation

Updated
SPEM
source
model

Xtext
TPN

target
model

(XMI format)

Graph2Tina
.atl

ATL
(M2T)

Tina
Process.net

results.scn
TPNTarget

2ModifiedTPN
.atl

ATL
(M2M)

XMI2Dot.atl

Modified TPN
target
model

(XMi format)

Figure 5.7 — A complete overview of the integration of the Executable DSML pattern with
GROUNDTRAM framework in the context of DSML V&V

modified target model. Finally, using the backward evaluation of our XSPEM2TPN.unql+
transformation, the DOT DSML updated source model is generated.

5.2.4 Synthesis and discussion

The adopted approaches to ease the feedback of verification results from the formal level
after performing model-checking to the DSML level consist in either defining a backward
transformation or unifying both transformation into one bidirectional transformation.

Based on both EDMM extensions, these approaches allow to define a kind of mapping
between both levels using model transformations techniques. First, The backward trans-
formation takes a formal scenario as a succession of formal events and using naming con-
ventions, a corresponding scenario in the DSML level is generated. Second, we proceed to
bidirectional transformations which allow to define a well-behaved bidirectional transfor-
mation combining the translational semantics and the manage of verification results. These
proposed solutions are still ad-hoc and do not resolve the main problem for the DSML
designer which is obtaining a generic suitable tool to proceed the feedback of verification
results. In the next section, we introduce a language to express additional information that
ease the feedback of verification results.

5.3 FEVEREL: Feedback Verification Results Language

We have shown in the two previous sections, possible solutions to deal with the feedback
of verification results into the DSML level. According to the Figure 5.1, the first approach
encodes manually the backward transformation and the second one shows that we can com-
bine both the translational semantics with the feedback of the verification results in a bidi-
rectional transformation.

We have experimented the generation of the backward transformation from the transla-
tional semantics. This solution consists in analysing the ATL implementation of the transla-
tional semantics [ZCP13b]. The drawback is that it is strongly coupled to ATL and forbid to
use another transformation language.

80 Faiez Zalila

5.3. FeVeReL: Feedback Verification Results Language

Executable
DSML

<<import>>

<<merge>>

DDMM

Domain
Definition

MetaModel
QDMM

Queries
Definition

MetaModel

EDMM

Events
Definition

MetaModel

TM3

Trace
Managment
MetaModel

<<merge>>

SDMM

States
Definition

MetaModel
<<merge>>

<<merge>>

<<implement>>

DSML
designer

Model
transformation

TOCL
editor

FeVeReL
editor implements

<<uses>>

<<uses>>

<<uses>> implements

implements

Figure 5.8 — Towards the generation of a DSML verification framework

The previous approaches do not answer to the DSML designer needs. They are ad-hoc
approaches and depend especially on the used technology to implement the translational
semantics. Therefore, it is mandatory to offer the DSML designer a high-level abstraction
with the appropriate tooling which allows to manage the feedback regardless of how the
translational semantics is implemented and, then, generate the model transformation which
feedbacks the verification results.

In this section, we will introduce our proposal to ease, for the DSML designer, the feed-
back of verification results from the formal to the DSML levels. It is the Feedback Verifi-
cation Results Language (FEVEREL). We start by showing the motivation to develop it and
then its architecture. Next, we show adopted patterns to implement our DSPL and how they
can ease its support. Next, we detail different DSPL elements: its abstract syntax, its textual
concrete syntax and its semantics. Finally, we conclude this section by an application of our
DSPL on the case-study of the verification of SPEM conforming models using TPN.

5.3.1 Motivations

One of key tasks for the definition of useful V&V activities for new DSMLs is feeding back
to the DSML end-user verification results generated in the formal side by model checking
tools. The DSML designer should guarantee this function. It consists in generating a sce-
nario showing the execution of the model at the DSML level.

Actually, the DSML designer can define a model-to-model transformation which injects
a formal scenario and generates a DSML scenario. However, this transformation can be
complex and the DSML designer may fail to develop it because the mapping between events
of both sides can be sophisticated. Also, as we aim to use the Executable DSML pattern to ex-
plicit different DSML concerns and the TOCL editor to define queries for a DSML based
on the defined translational semantics, it is more suitable to go on in the same way by pro-
viding a DSPL based on OCL to explain how DSML events can be observed in the formal

Formal Verification Integration Approach for DSL 81

Feedback verification results

FeVeReL
model

FormalScenario
2DSMLScenario

Formal language
metamodel

Formal language
semantics metamodel

DSML metamodel

DSML semantics
metamodel

<<extends>><<extends>>

Formal
scenario

<<conformsTo>>

Formal
model

<<refersTo>>

<<conformsTo>>

DSML
scenario

<<conformsTo>>

DSML
model

<<refersTo>>

<<conformsTo>>

inModeloutModel

DSML
designer

DSML
end-user

<<defines>>

<<defines>>

<<obtains>>

Figure 5.9 — Architecture of FEVEREL

side.

Figure 5.8 shows our approach to ease the DSML designer tasks to generate a complete
DSML verification framework for the DSML end-user. First, using model transformation
techniques, The DSML designer implements the translational semantics which allows to
map DSML abstract syntax (DSML DDMM) into a semantic domain. Next, based on the
defined translational semantics, he implements the DSML queries (DSML QDMM) using
the TOCL editor in order to automatically generate formal ones. Finally, to get back ver-
ification results generated in the formal side, the DSML designer has to define mappings
between DSML events modeled in the DSML EDMM and their corresponding ones in the
formal side.

The adopted approach aims to separate the implementation of different concerns for the
DSML designer. Each element of the DSML metamodel has its specific tool to be imple-
mented. This result intersects with the Executable DSML pattern that favors the definition of
generative tools and thus eases the integration of tools for new DSMLs.

5.3.2 Architecture of FEVEREL

FEVEREL is a domain-specific language proposed for a DSML designer to manage verifi-
cation results. It allows to define how a DSML event can be observed at the formal level.
The architecture of FEVEREL is shown in Figure 5.9. The entry-point is a FEVEREL model
defined by the DSML designer. A FEVEREL editor serves as an interface to ease the DSML
designer task. According to the Figure 5.1, we decided to automatically generate the second
transformation which manage verification results from a FEVEREL model.

Based on the DSML metamodel, the formal language metamodel and theirs semantic
metamodels, the DSML designer defines a mapping between DSML events defined in the
EDMM of the DSML and their corresponding elements in the formal side (FEVEREL model
in Figure 5.9).

For example, FEVEREL allows to specify that the SPEM StartWD event of a wokdefi-

82 Faiez Zalila

5.3. FeVeReL: Feedback Verification Results Language

DSL Base
language

Standard
operations

Figure 5.10 — The piggyback pattern

nition wd can be observed when there is a FireTransitionEvent instance in the TPN scenario
whose name is the concatenation of wd with ’_start’.

From a FEVEREL model, a model to model transformation (FormalSce-
nario2DSMLScenario in Figure 5.9) is automatically generated. This transformation
translates verification results (Formal scenario in Figure 5.9) generated by model checking
tools into a DSML scenario easier to understand by the DSML end-user.

Due to this architecture, the DSML designer obtains a suitable tool to define mapping
between events. He does not deal with technical aspects of a model transformation. The
DSML designer aims to describe how a DSML behavioral element can be observed in the
formal side relying on behavioral extensions of both sides and the defined translational
semantics which maps the abstract syntax of the DSML into the formal ones.

5.3.3 Implementation of FEVEREL language

A DSL (whether it is a DSML or a DSPL) design should be suitable for the user and espe-
cially corresponds to his abilities in software engineering. In many cases, designing a new
DSL is one of the core challenges of modern software engineering as it is an error-prone and
time consuming task [KKP+09].

So, it is mandatory to adopt strategies to design such DSLs in order to ease the definition
of the abstract and concrete syntaxes and the semantics. In [Spi01], a study was developed
which introduces eight DSL design patterns. To develop the FEVEREL DSPL, we choose to
implement two patterns: the piggyback pattern and the source to source transformation
pattern.

The piggyback pattern (Figure 5.10) proposes the use of an existing language as a hosting
base for the new DSL. This hosting language can be a general-purpose language which offers
to the DSL standardization and powerfulness and makes it more user-friendly. The DSL
can, therefore, share common syntactical elements such as expression handling, operations,
arithmetic and logic operators, etc.

The source to source transformation pattern (Figure 5.11) allows to implement efficiently
a DSL translator. It can be used to ease the implementation of a DSL and to help the DSL
designer by leveraging the facilities provided by existing language tools. The DSL code can
be translated using an appropriate translation process into the source code of the existing
language. Available tools for the existing language are then used to host the generated code.

Formal Verification Integration Approach for DSL 83

Feedback verification results

DSL code DSL
complilation

Host language
code

Figure 5.11 — The source to source transformation pattern

For the DSML designer, the expected tool should be a user-friendly tool, close in syn-
tax and semantics to his skills and correspond to his casual capabilities like metamodeling
techniques using ECORE, expressing constraint languages with OCL.

Figure 5.12 shows the implementation of the FEVEREL language. It implements the pig-
gyback pattern with OCL as base language (the blue dashed arrow).

The second part of the implementation of FEVEREL language concerns the translation
part (the red dashed arrows).

The source to source transformation pattern has been used to ease the burden of
implementation. We have chosen the ATL transformation language as a host language
(ATL.ecore) because we aim to automatically generate an ATL model transformation from
a FEVEREL model. Source to source transformation pattern intersects with an interesting
MDE technique which is higher-order transformations technique. Therefore, the DSPL com-
pilation is considered as a higher-order model transformation (FeVeReL2ATL.atl).

Combining the piggyback pattern with the source to source transformation pattern
shows two advantages. First, a big part of the translation is the identity. As we use (1) OCL
as a base language to implement our DSML and (2) the ATL which is based on OCL as a
host language to apply source to source transformation pattern, the translation is focused
on the domain-specific elements. Second, often DSMLs evolve and can be extended. So,
an eventual extension of FEVEREL will be easily adopted by a DSML designer because he
only needs to update the semantics with new domain-specific elements by extending the
higher-order transformation while the OCL part is unchanged.

5.3.4 Syntaxes and semantics of FEVEREL

In this subsection, we will detail the elements of our implemented DSPL. We illustrate it
with the XSPEM case-study. Let’s consider the translational semantics proposed in the chap-
ter 3 and the two applications of the Executable DSML pattern on the SPEM metamodel (Fig-
ure 3.7) and the TPN metamodel (Figure 3.8).

Listing 5.5 shows the use of FEVEREL in this case-study. First, it is mandatory to declare
different DSML metamodels (lines 2-3). DSMLMetamodel represents the classical metamodel
of the DSML. DSMLSemantics extends the first metamodel with the application of the Exe-
cutable DSML pattern on the DSML. In addition, we declare formal language metamodels.
FormalLanguageMetamodel shows the abstract syntax of the formal metamodel, and the For-

84 Faiez Zalila

5.3. FeVeReL: Feedback Verification Results Language

ATL.ecoreDSPL

FeVeReL

Language

ocl

Object
Constraint
Language

atl

Atlas
Transformation

Language

FeVeReL2ATL.atl

Figure 5.12 — Implementation of FEVEREL DSPL

malLanguageSemantics shows the behavioral extension done on the initial metamodel.

Now, we are ready to explicit different mappings between events. The first mapping
named StartWD_As_Transition (lines 10-21) (respectively FinishWD_As_Transition (lines 24-
35)) shows how a StartWD (a FinishWD) event of a workdefinition in the DSML level can
be observed in the formal level.

In fact, this event corresponds to an instance of the FireTransitionEvent meta-class,
captured in the formal scenario, whose name of its fired transition is the concatenation of the
concerned workdefinition name to ’_start’ (line 19) (respectively ’_finish’ (line 23)).

1 // DSML metamodels declaration
2 import " http ://SPEM/1.0 " as DSMLMetamodel
3 import " http ://SPEMSemantics/1.0 " as DSMLSemantics
4
5 // Formal language metamodels declaration
6 import " http ://TPN" as FormalLanguageMetamodel
7 import " http ://TPNSemantics" as FormalLanguageSemantics
8
9 // The mapping between the StartWD event and the corresponding one in the TPN level

10 events mapping StartWD_As_Transition :
11
12 DSMLEvent swd_event : DSMLSemantics . StartWD(
13 date <− tpn_event . date
14)
15
16 maps
17
18 FormalEvent tpn_event : FormalLanguageSemantics . FireTransitionEvent (
19 tpn_event . f iredTransit ion .name = swd_event . workdefinition .name+ ’ _s tar t ’
20)
21 end events mapping
22
23 // The mapping between the FinishWD event and the corresponding one in the TPN level
24 events mapping FinishWD_As_Transition :
25
26 DSMLEvent fwd_event : DSMLSemantics . FinishWD (
27 date <− tpn_event . date
28)
29
30 maps
31
32 FormalEvent tpn_event : FormalLanguageSemantics . FireTransitionEvent (
33 tpn_event . f iredTransit ion .name = fwd_event . workdefinition .name+ ’ _f inish ’
34)
35 end events mapping

Listing 5.5 — The definition of events mappings using FEVEREL in the case-study of the
verification of SPEM models using TPN

Formal Verification Integration Approach for DSL 85

Feedback verification results

FeVeReL

OCL

Ecore

Model

name: String
Import

name:String
EventsMapping

1..*
imports

1..*
eventsMappings

DSMLStream

FormalStream

DSMLStreamElement

FormalStreamElement

name: String
DSMLEvent

name: String
FormalEvent

dsmlStream formalStream

1..*
dsmlStreamElements

1..*
formalStreamElements

import import

EPackage

package

EClassifier

EClass

name: String
ENamedElement

OclExpression

class

body

class

feature: String
Binding0..*

bindingsbody

Figure 5.13 — The metamodel of FEVEREL DSPL

The use of the FEVEREL language offers for the DSML designer a more structured tool to
specify how verification results should be brought back to the DSML level. Based on the
defined translational semantics and both extensions, he can easily define a kind of mapping
based on OCL to identify which formal event corresponds to a DSML one.

Let’s detail different FEVEREL elements:

Syntax The FEVEREL syntax is defined using Xtext. A subset of the FEVEREL metamodel
is shown in Figure 5.13. A Model is composed of a set of imports for the concerned meta-
models. In addition, it contains a set of mappings between events (eventsMappings). An
eventsMapping is characterized by an identifier. It describes a mapping between an obser-
vation events kind in the DSML side (DSMLStream) and its corresponding one in the formal
level (FormalStream).

A DSMLStream contains a set of elements (DSMLStreamElement) which allow to structure
a possible observation of events. Currently, a DSMLStreamElement is only one event. Exten-
sions to more events are part of future work. A DSMLEvent is characterized by an identifier.
It refers to a meta-class in the metamodel of the DSML semantic extension. In addition, it
defines a set of bindings (Binding) which specify the initialization of a feature (an attribute
or a reference) of a DSML event using an expression (body).

In the formal side, as in the DSML side, a FormalStream contains only one event. A For-
malEvent has an identifier. It refers to a meta-class of a formal event in the formal semantic
extension. It contains also an OCL expression (body). It could also contain several events
thus allowing n-to-m mapping for language whose semantics are not structurally aligned.

Semantics As shown in the subsection 5.3.3, FEVEREL has a translational semantics. We
choose to map the FEVEREL abstract syntax into the well-known model transformation
language ATL. Let’s detail the main transformation rules:

86 Faiez Zalila

5.4. Related works

• Each EventsMapping is translated into:

1. an ATL helper. Its context is the super type of all kind of events in the EDMM
extension of the formal metamodel. It does not contain parameters. The returned
type of this helper corresponds to a set of elements in the DSML DDMM on which
the DSMLEvent is instantiated. The body of this helper is shown as a selection of a
subset from all instances of this element in the DSML DDMM for which the body
of the FormalEvent evaluates to true.

2. a lazy rule. Its source pattern is the element in the DSML DDMM on which the
DSMLEvent is instantiated and its different features (features) defined in the DSM-
LEvent. The target pattern creates an instance of the DSMLEvent with different
features declared in the source pattern.

• The FEVEREL Model is translated into ATL rules. Its source pattern is a formal scenario
(an instance of the Scenario meta-class in the TM3 of the formal metamodel). Its target
pattern is a DSML scenario (an instance of the Scenario meta-class in the TM3 of the
DSML metamodel). It aims to produce a DSML scenario from the formal one. The
formal scenario is iterated using an iterate expression. The iterated variable which
is the current instance of the FormalEvent will check, by calling the helper generated
previously, whether there are elements in the DSML DDMM which satisfy the body of
the helper. According to this result, the lazy rule will be called for each element of the
returned subset and with its corresponding features.

This translation, FeVeReL2ATL is implemented using ATL which has several facilities to
implement higher-order transformations.

This approach follows the previous one experimented to define the behavioral proper-
ties on the DSML level and generate formal ones in the formal level. The most important
point is that the DSML designer will be guided to generate a kind of "DSML verification
framework" for each DSML. It is a structured approach to generate this framework based
on the Executable DSML pattern.

5.4 Related works

The problem of integrating formal verification into the design of DSMLs has been widely
addressed by the MDE community. However, the analysis feedback at the DSML level prob-
lem is typically either ignored or resolved by defining ad-hoc or hard-coded solutions. For
example, in [OO+12], authors propose an approach, named Metaviz, based on the real-time
systems specification and validation tool set IFx-OMEGA. It is designed to ease the visual-
ization of the simulation trace. The goal is to assist the user in the Interactive Simulation task
by refining this step with a diagnosis process built around visualization concepts. It consists
in feeding back verification results at OMEGA level. Thus, It can be considered as an ad-
hoc approach. An eventual application of the Executable DSML pattern on both domains can
ease the integration of our FEVEREL language in their approach. On the other hand, a few
number of works handling the feedback with general solutions exists in the literature.

Formal Verification Integration Approach for DSL 87

Feedback verification results

In [CGR11], authors introduce an algorithm requiring the DSML’s semantics to be de-
fined formally, and a relation R to be defined between states of the DSML and states of the
target language.

The DSML designer must provide as input a natural-number bound n, which estimates a
difference of granularity between the semantics of the DSML and the semantics of the target
language. However, we don’t think that DSML designer, for who it is difficult to use formal
methods and verification, can define this important information to feedback verification
results.

Hegedüs et al. [HBRV10] propose a technique for the back propagation of the simulation
traces based on change-driven model transformations from traces generated by SAL model
checking framework to the specific animator named BPEL Animation Controller.

So, they define a change-driven model transformation which consumes changes of the
Petri nets simulation run and produces a BPEL process execution using traceability infor-
mation generated while running the translational semantics defined previously. In this case,
after defining the runtime extension for both levels (BPEL and Petri nets) and the transla-
tional semantics, the DSML designer is invited to define 1) a change command metamodel
for Petri nets and BPEL and also 2) the backward change-driven transformation. In our ap-
proach, we try to give for the DSML designer a high-level tool to define mapping between
events.

In [GdLMD09], a domain-specific visual language called BaVeL is designed. It allows
defining how a verification result soulhd be reflected in terms of the original notation. It is
based on triple graphical patterns.

This approach requires an additional information which is the mappings (named also
traces) relating the source and target models and created during the running the transla-
tional semantics. This framework could even be implemented using the QVT model trans-
formation language as it creates traces between the source and target models. Usually,
DSML designers choose to encode the translational semantics as a code generation process
(model-to-text transformation) instead of a model-to-model transformation. So, this infor-
mation is missed. In our approach this information is optional but not an essential one. The
DSML designer decides if it is required to generate model transformation traces to ease
the feedback with FEVEREL. He must import the mappings metamodel in his FEVEREL
specification.

88 Faiez Zalila

6 Building a verification framework
for an executable DSML

Résumé
Les deux chapitres précédents ont présenté nos contributions pour étendre la chaîne outil-
lée de vérification pour un nouveau DSML avec les éléments nécessaires pour exprimer des
propriétés comportementales au niveau du DSML et pour générer les propriétés formelles
correspondantes; puis pour remonter les résultats de vérification du niveau formel vers le
niveau DSML. Nous avons ainsi une approche pour définir une sémantique d’exécution
pour les DSMLs et l’outillage nécessaire pour obtenir une chaîne outillée complète qui en-
richit un DSML avec les capacités de V&V.

Pour faciliter le développement d’un framework de vérification pour des nouveaux
DSMLs, nous avons suivi une approche dirigée par des exemples pour obtenir à la fin les
outils appropriés pour les experts d’un DSML, le concepteur d’un DSML et les utilisateurs
finaux d’un DSML. Au début, nous avons écrit les propriétés comportementales attendues
au niveau formel manuellement et nous les avons testées avec la boîte à outils TINA. Ensuite,
pour les générer, nous avons commencé par écrire manuellement la transformation modèle
à texte. Cette solution n’aide pas l’expert du DSML dans la spécification et la mise en œuvre
de ses propriétés comportementales. Il s’attend à obtenir un langage plus approprié pour
les spécifier. Par conséquent, nous avons identifié les différents éléments qui peuvent être
capitalisés. Le QDMM a donc été identifié. En outre, nous avons défini une extension tem-
porelle du langage OCL, appelée TOCL, puis nous avons spécifié comment les différentes
constructions de TOCL doivent être transformées en ATL afin de générer la transformation
modèle à texte.

Pour faciliter la remontée des résultats de vérification pour le concepteur du DSML,
nous avons commencé par la spécification de plusieurs couples de modèles conformes
à un DSML et les scénarios attendus présentés sous forme d’une succession ordonnée
d’événements du DSML (des instances de l’EDMM du DSML). Ensuite, nous avons écrit
manuellement la transformation de retour pour engendrer ces scénarios automatiquement.
Si cette solution est fonctionnelle, elle oblige les utilisateurs à savoir écrire les transforma-
tions de retour nécessaires. Il semble plus judicieux de fournir un langage qui permet à
l’utilisateur de spécifier le retour en s’appuyant sur les extensions apportées par le patron
de métamodélisation. Les transformations sont alors engendrées automatiquement de cette
description.

89

Building a verification framework for an executable DSML

Ce chapitre est organisé comme suit. La section 6.1 montre un aperçu complet d’un
framework de vérification pour un DSML. La section 6.2 introduit le processus requis pour
générer un framework de vérification pour un nouveau DSML et souligne les interactions
nécessaires entre les différents acteurs. La section 6.3 explique les dépendances entre les dif-
férents éléments d’un framework généré. La section 6.4 montre la validité de notre approche.
Enfin, nous concluons à la section 6.5.

90 Faiez Zalila

6.1. Architecture of the verification framework for a new DSML

BOTH previous chapters introduced our contributions to extend the verification
toolchain for a new DSML by the elements to express user level behavioral proper-

ties and generate the corresponding formal ones; and then to feedback verification results
from the formal level to the DSML user one. We proposed an approach to introduce the ex-
ecutability aspect for DSMLs and the required tooling to obtain a complete toolchain which
empowers a DSML with V&V capabilities [ZCP13a, ZCP14].

To ease the development of a verification framework for a new DSMLs, we followed an
example-driven approach to obtain at the end the appropriate tools for the DSML experts,
DSML designer and DSML end-users. At first, we wrote the expected behavioral properties
manually and we tested them with the TINA toolbox. Then, to generate them, we started by
writing manually the model-to-text transformation. This solution does not help the DSML
expert in specifying and implementing his behavioral properties. He expects obtaining a
more suitable language to specify them. Consequently, we identified different elements that
can be abstracted and capitalized. The QDMM was thus identified. In addition, we defined
a temporal extension of OCL and then we specified how different TOCL constructs should
be translated to ATL in order to generate the model-to-text transformation.

To ease the feedback of verification results for the DSML designer, we started by spec-
ifying several pairs of DSML conforming models and the expected scenarios shown as an
ordered set of DSML events (instances of the DSML EDMM). Then, we wrote manually the
backward transformation to generate these scenarios. This solution is repetitive and does not
seem to coincide with users needs. They aim to obtain a small language to specify how this
feedback should be done based on runtime extensions previously specified.

In this chapter, we propose a method to build such a tool chain and we explain the
interactions with the concerned actors, the DSML expert, the Formal Methods expert and
the DSML designer. It is appropriate to give for these concerned actors a complete overview
of our approach and how to use it to build a verification framework for a new DSML.

This chapter is organized as follows. Section 6.1 shows a complete overview of a DSML
verification framework. Section 6.2 introduces the required process to generate a verification
framework for a new DSML and stress the required interactions between different actors.
Section 6.3 explains the dependencies between different elements of the generated frame-
work. Section 6.4 shows the validity of our approach. Finally, we conclude in section 6.5.

6.1 Architecture of the verification framework for a new DSML

Figure 6.1 shows a complete overview of a verification framework for a new DSML with its
different ingredients.

Blue boxes show the different required elements that the DSML designer should imple-
ment to generate a verification framework for a new DSML. Yellow boxes show the different
generic elements provided for him to translate his specifications into the appropriate for-
mat. These ones may rely on generated elements (the green boxes). The DSML verification
framework can be subdivided into three levels.

The first level concerns the mapping of DSML conforming models (myModel.dsml) into

Formal Verification Integration Approach for DSL 91

Building a verification framework for an executable DSML

DSML
.ecore

myModel
.dsml

formal
model

Translational
semantics

<<conformsTo>>

DSML_properties
.tocl

<<extend>>

formal
properties

<<extend>>

Semantic
domain

<<conformsTo>>

TOCL2ATL ATL2FL
1 2

FormalOperators

model-checking
tools

DSML
behavioral
properties

<<
in

cl
ud

e>
>

queries

<<use>><<use>>

DSML
primitive
queries

DSML non
primitive
queries

formal
counter-
example

FeVeReL2ATL

FormalScenario
2DSMLScenario

DSML
verification

results

<<referTo>>

DSMLEvents
.fvrl

1

2

Figure 6.1 — An overview of a generated verification framework for a new DSML

the semantic domain (formal model). It is implemented by the translational semantics to gener-
ate a formal model in the input format of model-checking tools.

The second level concerns the expression of DSML behavioral properties and the gen-
eration of the corresponding formal ones. It uses the TOCL editor to define DSML queries
and their related behavioral properties (DSML _properties.tocl). We provide the mandatory
generic tooling (TOCL2ATL) to generate a DSML-specific query (ATL2FL) which takes a
DSML conforming model and generates the corresponding formal properties. Before that,
once the formal language is chosen, it is required to define the library of formal operators
(FormalOperators) to ease the generation of formal properties.

The third level concerns the feedback of verification results. The DSML designer pro-
vides mappings to explain how DSML events can be observed in the formal side. We pro-
vide a generic HOT transformation (FeVeReL2ATL) that generates a model-to-model trans-
formation that transforms formal counter-example into DSML verification results.

6.2 The generation of a verification framework for a new DSML

In this section, we focus on the generation of a verification framework for a new DSML.
First, we identify the different actors who participate in this process. Then, we explain the
complete process to generate the framework and the different interactions between con-
cerned actors.

92 Faiez Zalila

6.2. The generation of a verification framework for a new DSML

DSML Expert DSML DesignerFormal methods Expert

list behavioral
properties to
be verified

Choose the
appropriate

formal language
and tools

possible

Implement the
translational
semantics

Implements
DSML primitives

queries

Feedback
verification

results

impossible

Specify
DSML

queries

Specify the
translational
semantics

Specify
runtime

extensions

Specify DSML
abstract and

concrete syntaxes
and structural

properties

Figure 6.2 — DSML verification framework generation process

6.2.1 Identification of different actors

Let’s identify different actors who are involved in the development of a DSML verification
framework.

6.2.2 The process of DSML verification framework generation

The DSML Expert is the domain specialist. He defines the DSML which meets the DSML
end-user needs. He must create a metamodel for a new language and the tooling (structural
properties, concrete syntaxes, editors). Here we focus on the verification activity. The DSML
expert identifies the kind of behavioral properties (safety and liveness) that should be veri-
fied on models. In doing so, he specifies the queries that are needed to express these DSML
properties. These queries are expressed in the QDMM. The Formal Methods Expert is a
specialist in formal methods. He has technical and theoretical skills on several techniques
and tools used to perform verification activity. He defines the outline of the translational
semantics based on the DSML expert needs.

The DSML Designer is a software language specialist. He has capabilities in the MDE
and formal methods domains. He implements verification activity for a new DSML. First,

Formal Verification Integration Approach for DSL 93

Building a verification framework for an executable DSML

he implements the translational semantics according to the specification proposed by the
Formal methods expert and validated by the DSML expert. Then, he implements different
DSML extensions to build the DSML verification framework.

The main steps that are part of the DSML verification framework generation are shown
in Figure 6.2 and explained here after. It shows the organisational process to generate the
DSML verification framework and interactions between concerned actors.

The starting point of the process is performed by the DSML expert. He defines the ab-
stract and concrete syntaxes of the DSML. In addition, he implements structural properties
related to the DSML conforming models. This step focus only on structural aspects of the
DSML. It defines the entry point to apply our contributions which aim to add the possibility
to verify formally and automatically behavioral properties while hiding all formal aspects
for the DSML end-users.

Now, the DSML expert can start the process of integration of the behavioral verification
tool for his DSML. At first, he must specify his needs by identifying informally the behav-
ioral properties to verify on DSML conforming models. Then, he can formalize these prop-
erties using the TOCL editor. This step allows to identify and specify the different queries
that are defined in the QDMM. This information helps the DSML end-user to assess the
model during execution. Thereafter, the DSML expert defines such pairs of models that do
not verify his properties and also the expected verification results which are shown as a
scenario containing a set of DSML events triggered and DSML states observed during the
execution. Thereby, the EDMM and SDMM runtime extensions are defined.

Next, the Formal Methods expert and the DSML expert collaborate to choose the ap-
propriate formal language and tool to specify the translational semantics for this DSML
based on the expected behavioral properties. Then, they specify together the translational
semantics.

Therefore, the DSML designer implements the specified translational semantics which
provides the observers required by the identified queries. It consists in mapping the abstract
syntax elements of the DSML into the chosen formal language. Furthermore, he must im-
plement the previously identified primitive queries which specify observers that should be
available in the formal model. In addition, the DSML designer must define different behav-
ioral extensions (EDMM and SDMM) on the formal level. He extends them with the nec-
essary tools to transform the model-checker results into a formal scenario. These tools are
defined at once but reused for other DSML toolchains. The last step concerns the feedback
of verification results. The DSML designer should define a mapping between the formal
events and their corresponding ones in the DSML level. The DSML verification framework
is defined when all these steps are performed.

6.3 Dependencies between DSML verification framework ele-
ments

Once the verification framework has been developed, several modifications can be proposed
to improve it like verifying new kinds of properties, capturing other kinds of events or

94 Faiez Zalila

6.3. Dependencies between DSML verification framework elements

[no additional queries required]

Verify
additional
properties

Define
additional
properties

Specify
additional

queries

Define
additional

non-primitive
queries

Specify
additional
primitive
queries

[additional
queries
required]

[additional
non-primitive
queries
required]

[requires
additional
primitive
queries]

Update the
translational
semantics

Define
additional
primitive
queries

[no translational
semantics
changes
required]

[translational
semantics
changes
required]queries

specifications

Figure 6.3 — Additional behavioral properties verification process

queries, reusing another simulator or formal tools, etc. In the following, we provide a non
exhaustive list of possible modifications on the DSML verification framework and identify
their impacts on its different related DSML verification framework elements:

1. The DSML expert or the DSML end-user needs to assess additional behavioral prop-
erties: it is required to check whether these ones require defining additional queries. If
the existing queries are not enough to define these properties, then, additional queries
should be specified. These queries can be primitive or non-primitive ones. The defini-
tion of primitive queries requires checking whether the translational semantics should
be updated. Figure 6.3 shows the activity diagram illustrating this process.

2. An eventual evolution in the translational semantics to target additional properties
might be needed: the primitive queries and the events mappings can be affected by this
change. If this is the case, it is mandatory to update their definitions. For example, in the
translational semantics from SPEM to TPN shown in chapter 3, if the DSML designer
chooses to encode the finished place differently, he should also update the XSPEM re-
lated primitive query isFinished(). Figure 6.4 shows the translational semantics change
process.

3. If the DSML designer chooses to change the target formal language, it is mandatory to
update the formalOperators library in order to correctly generate behavioral properties in
the formal side because the formal operators symbols change between different model-
checking tools. For example, the binary temporal operator implies is coded in TINA

as =>, but in Promela language1, the input format of SPIN model-checker [Hol03], it
is defined as ->. In addition, the runtime extensions (EDMM and SDMM) and the
required tools to generate a formal scenario must be updated in the formal side. Finally,
it is necessary to update the translational semantics.

4. A possible evolution on the model-checker or the use of another one. This change

1http://spinroot.com/spin/Man/Intro.html

Formal Verification Integration Approach for DSL 95

Building a verification framework for an executable DSML

Update the
translational
semantics

Update
primitive
queries

no changes on primitive queries required

changes on primitive queries required

primitive
queries

Update
events

mappings

no changes on events mappings required

changes on events mappings required

events
mappings

Figure 6.4 — Update the translational semantics process

requires only adapting the provided tooling defined by the DSML designer to generate
the scenario on the formal side.

To summarize these relations, Figure 6.5 shows different dependency relations between
different verification framework elements.

6.4 Guidelines for validating the verification toolchain

Defining a translational semantics is a highly creative activity which requires high skills
both in the formal language and in the DSML to find an efficient mapping between both
languages as well as in transformation techniques. We thus only provide guidelines to favor
the definition of a correct transformation.

A first guideline is the obligation to define for each QDMM primitive query the corre-
sponding formal property language (like LTL) fragment. QDMM queries are thus a kind of
checklist that ensures that all aspects of interest for the DSML end-user have indeed been
modeled on the formal side.

A second guideline to validate the translational semantics consists in formalizing invari-
ants on the DSML using TOCL and then automatically translating them on the formal side.
These ones assert semantics properties of the DSML that must be preserved by the encod-
ing. There might be pre-post conditions for each EDMM and a protocol state machine for
the EDMM. If they fail, an error is detected (either in the translation, the invariants or the
queries implementations). Let’s illustrate this with our XSPEM translational semantics into
TPN.

Listing 6.1 shows the possible formalization of some invariants using our TOCL editor.
The first mutex invariant (lines 9-10) checks whether different workdefinition’s states are
mutually exclusive. We define additional primitive queries (isRunning() and isReady()2) to
enable to capture different XSPEM workdefinition’s states and thus to formalize the mutex
invariant.

2It corresponds to the _isNotStarted place in the TPN model

96 Faiez Zalila

6.4. Guidelines for validating the verification toolchain

Executable DSML

DSML.tocl

DSML
behavioral
properties

QDMM

<<use>><<use>>

DSML
primitive
queries

DSML non
primitive
queries

FormalDomain

Translational
semantics

EventsMappings

EDMM

Events

SDMM

States

DDMM

Abstract syntax

model-checking
tools

Formal
operators

<<
de

pe
nd

 o
n>

>

<<
de

pe
nd

 o
n>

>

<<depend on>>

<<
de

pe
nd

 o
n>

>

<<depend on>>

TM3

Scenario
and traces

DSML primitive
queries

specification

<<depend on>>

<<implement>>

EDMM

Events

SDMM

States

TM3

Scenario
and traces

Figure 6.5 — A Dependencies view of the generation of behavioral properties

1 // Additional primitive queries
2 context SPEM! WorkDefinition def : isRunning () : String=
3 s e l f .name+ ’_running ’ ;
4
5 context SPEM! WorkDefinition def : isReady () : String=
6 s e l f .name+ ’ _notStarted ’ ;
7
8 // Translational semantics validation
9 context SPEM! WorkDefinition inv mutex :

10 always (s e l f . isReady () or s e l f . isRunning () or s e l f . isFinished ())
11
12 context SPEM! WorkDefinition inv precedence_same_workdefinition :
13 s e l f . isStarted () before s e l f . isFinished ()
14
15 context SPEM! WorkSequence inv precedence_between_different_workdefitions :
16 i f (s e l f . linkType = # startToStart)
17 then
18 s e l f . predecessor . isStarted () before s e l f . successor . isStarted ()
19 else
20 i f (s e l f . linkType = #startToFinish)
21 then
22 s e l f . predecessor . isStarted () before s e l f . successor . isFinished ()
23 else
24 i f (s e l f . linkType = # finishToStart)
25 then
26 s e l f . predecessor . isFinished () before s e l f . successor . isStarted ()
27 else
28 s e l f . predecessor . isFinished () before s e l f . successor . isFinished ()
29 endif
30 endif
31 endif

Listing 6.1 — Validation of the translational semantics of XSPEM into TPN

The second validation invariant, precedence_same_workdefinition (lines 12-13) checks whether
the execution semantics of each XSPEM workdefinition is preserved. It means that each
workdefinition can finish only if it was started. The last validation invariant, prece-
dence_between_workdefitions (lines 15-31) checks whether the different dependency con-
straints expressed via the linkType attribute of WorkSequence, are preserved during the exe-
cution. For example, if the linkType of a worksequence is startToFinish (line 22), the workdef-

Formal Verification Integration Approach for DSL 97

Building a verification framework for an executable DSML

inition predecessor should be started before that the workdefiniton successor finishes.

The validation invariants must be defined by the DSML expert to help the DSML de-
signer in implementing the translational semantics. In addition, the DSML must complete
the required additional queries primitive queries.

This additional specification can be translated using our TOCL tooling to generate their
corresponding LTL ones that must be assessed on TPN models generated from XSPEM con-
forming models.

6.5 Conclusion

We have presented an user-oriented approach to integrate behavioral verification tools on a
new DSML in order to assist the DSML designer into the building of a verification frame-
work for a new DSML. This framework allows the DSML end-user to verify safety and
liveness properties on executable models. We give the required steps to generate this kind
of framework and what are the different need exchanges between concerned actors. This
framework should hide different formal methods particularities to the DSML end-user who
masters only his domain notions. Then, we present a complete overview of such a verifica-
tion framework for a new DSML. We show dependencies between the different elements
of the verification framework in order to explicit the actions the DSML designer must un-
dertake when some evolutions are required. Finally, we have provided some elements to
validate the verification toolchain.

98 Faiez Zalila

Part

Validation of the approach

99

7 Application of the approach
using an intermediate language

Résumé
Nous avons proposé dans la partie précédente une approche générique pour intégrer
l’activité de vérification à un nouveau DSML. Cependant, cette approche s’appuie sur la
définition d’une sémantique translationnelle qui peut être complexe quand il y a un écart
sémantique important entre le DSML et le domaine formel.

Pour réduire cet écart, un langage intermédiaire peut être introduit dans la chaîne out-
illée de vérification. Il fournit un haut niveau d’abstraction pour les formalismes de vérifi-
cation utilisés dans les différentes boîtes à outils. Les transformations entre ces langages et
les outils formels sont définies une seule fois et sont partagées par tous les DSMLs. FIACRE

[BBF+08] est un exemple d’un tel langage intermédiaire. C’est un langage de spécification
formelle qui vise à la fois les aspects comportementaux et de synchronisation des systèmes
temps réel. Il a été conçu comme langage cible dans le projet TOPCASED pour les transfor-
mations de modèles de différents DSMLs tels que AADL, BPEL ou SDL (Figure 7.1).

L’intégration s’appuie sur notre étude méthodologique proposée au chapitre 6. Elle con-
siste à substituer le domaine formel par un autre, plus proche de la sémantique des DSMLs.

Dans ce chapitre, on introduit FIACRE comme un langage intermédiaire dans une chaîne
de vérification afin de réduire l’écart sémantique entre les DSMLs et les langages formels
grâce aux constructions de haut niveau de FIACRE. Ceci illustre également la généricité de
notre approche puisqu’on substitue le langage formel cible initial, TPN, par un autre, FI-
ACRE. La première section introduit le langage FIACRE et l’illustre avec une implémentation
de l’algorithme de Peterson d’exclusion mutuelle. En outre, on montre ce qu’offre FIACRE

pour spécifier et implémenter des propriétés comportementales.

La section 7.3 montre les différentes extensions comportementales (EDMM et SDMM)
de FIACRE introduites par l’application du patron de métamodélisation. Ces extensions sont
indispensables pour l’intégration de FIACRE dans la chaîne de vérification. La section 7.4
décrit comment intégrer FIACRE d’une manière transparente dans notre approche pour con-
struire une chaîne outillée de vérification. On explique les étapes requises pour remonter les
résultats de vérification depuis les langages formels de bas niveau vers le langage intermé-
diaire FIACRE.

Finalement, en s’appuyant sur notre étude méthodologique (chapitre 6), la section 7.5

101

Application of the approach using an intermediate language

montre les étapes nécessaires d’évolution quand on choisit de substituer le langage formel
TPN par FIACRE dans la chaîne de vérification des modèles SPEM.

102 Faiez Zalila

7.1. The Fiacre Language

WE have proposed a generic approach to integrate the verification activity for a new
DSML in the previous part. However, this approach relies on the definition of the

translational semantics which may be complex when there is a big semantic gap between
the DSML and the formal domain.

To bridge this gap, an intermediate language can be integrated in the verification
toolchain. It provides a high-level of abstraction of the verification formalism used in the
various toolsets. Transformations between it and formal tools are the defined once and
shared for all DSMLs. FIACRE [BBF+08] is an example of such an intermediate language.
It is a formal specification language that targets both the behavioral and timing aspects of
real-time systems. It was designed as the target language in the TOPCASED project for model
transformations from different DSMLs such as AADL, BPEL or SDL (Figure 7.1).

This integration is based on our methodological study proposed in chapter 6. It consists
in substituting the formal domain by another one closer to DSMLs semantics.

In this chapter, we introduce FIACRE as an intermediate language in the verification
chain in order to reduce the semantic gap between DSMLs and formal languages thanks to
the high level constructs which are part of FIACRE. This also illustrates the genericity of our
approach as we substitute the initial target formal language, TPN, by another one, FIACRE.
The first section introduces the FIACRE language and illustrates it with an implementation
of the Peterson’s exclusion algorithm. In addition, we show how we can specify behavioral
properties at the FIACRE level.

Section 7.3 shows different behavioral extensions (EDMM and SDMM) done on FIACRE

by applying the Executable DSML pattern in order to integrate it in the verification toolchain.
Section 7.4 describes how we can transparently integrate FIACRE in our approach to build a
verification toolchain. We explain the required steps to feedback verification from low-level
formal languages to the FIACRE intermediate language.

Finally, based on our methodological contribution explained in the chapter 6, the sec-
tion 7.5 shows the required steps when we choose to substitute the TPN by FIACRE for the
verification of SPEM models.

7.1 The Fiacre Language

FIACRE is a french acronym for an Intermediate Format for Embedded Distributed Compo-
nents Architecture. It was designed as the target language for model transformations from
different DSMLs such as AADL [CBF+10], PLC [FDQDR+11] or SDL [CBG+08] targeting
different verification languages and toolset like TINA and CADP.

FIACRE is a formal language to represent both the behavioral and timing aspects of sys-
tems, in particular embedded and distributed systems, in formal verification and simulation
purposes. FIACRE is built around two notions:

• Processes describe the behavior of sequential components. A process is defined by a set
of control states, each associated with a piece of program. FIACRE contains different de-
terministic constructs available in classical programming languages like assignments,

Formal Verification Integration Approach for DSL 103

Application of the approach using an intermediate language

if-then-else conditionals, while loops, and sequential compositions. In addition, it pro-
vides two non deterministic constructs: non deterministic choice (select operator) and
non deterministic assignments. Communication between processes is ensured via ports,
and jumping to a next state is done with the to or loop operators.

• Components describe the composition of processes, possibly in a hierarchical manner.
A component is defined as a parallel composition of instantiated components and/or
processes communicating through ports and shared variables. The notion of component
also allows first to restrict the access mode and visibility of shared variables and ports,
then to associate timing constraints with communications, and last to define priority
between communication events.

AADL SDL UML SysML

CADP Tina

AADL SDL UML SysML

Fiacre - language

CADP Tina

Model Transformation

Compilation

Figure 7.1 — FIACRE as intermediate language to reduce complexity when targeting sev-
eral formal toolboxes from modeling languages

We give in Listing 7.1 an implementation of Peterson’s algorithm [Pet81] with FIACRE. It
is a concurrent programming algorithm for the mutual exclusion that allows two processes
to share a single-use resource without conflict, using only shared memory for communica-
tion.

The algorithm uses two variables, flag and turn. A true value of flag indicates that the
process wants to enter in the critical section. The variable turn holds the identifier (0 for P0

and 1 for P1) of the process whose is allowed to access.

To implement this algorithm with FIACRE, a type declaration id is defined (line 3). It
allows to identify different processes. In addition, a type declaration flag is defined (line 5)
in order to declare a boolean array of size 2.

1 / * Types * /
2
3 type id is 0 . . 1
4
5 type f lag is array 2 of bool
6
7 / * Processes * /
8
9 process Proc (pid : id , &flag : flag , &turn : id) is

10 states idle , waits , CS
11 from idle

104 Faiez Zalila

7.2. Expressing behavioral properties on Fiacre level

12 f lag [pid] := true ;
13 turn := 1 − pid ;
14 to waits
15
16 from waits
17 on not (f lag [1 − pid] and turn = 1 − pid) ;
18 to CS
19
20 from CS
21 / * do something in the c r i t i c a l s e c t i o n * /
22 f lag [pid] := false ;
23 to idle
24
25 / * Main component * /
26
27 component Main is
28 var f lag : f lag := [false , false] ,
29 turn : id := 0
30
31 par
32 Proc (0 , &flag , &turn)
33 || Proc (1 , &flag , &turn)
34 end
35
36 / * Entry point f o r v e r i f i c a t i o n * /
37
38 Main

Listing 7.1 — An implementation of Peterson’s algorithm with FIACRE

Next, a Proc process is defined. It has three parameters: its identifier (pid), the flag shared
array and the turn shared variable. In addition, it contains three states idle, waits and CS (to
specify the critical section) (line 10).

Three transitions are declared to explain the behaviour of a process. The first one (lines
11-14) indicates that the process wants to enter in the critical section.

The variable turn holds the identifier of the process whose turn it is and then the process
waits to enter in the critical section. Next, a second transition (lines 16-18) is defined to
specify the entering in the critical section.

The entrance in the critical section is granted for P0 process if P1 does not want to enter
its critical section and if P1 has given priority to P0 by setting turn to 0. The third transition
(lines 20-23) allows to do something during the critical section, updates the flag value and
returns to the initial state.

Then, a main component is defined. It declares shared variables and instantiates two
Proc process instances. Finally, the entry point for the verification is specified (line 38).

7.2 Expressing behavioral properties on FIACRE level

An intermediate language, introduced in the verification toolchain, will be considered for
the DSML designer as the formal target level. So, it is mandatory that it offers the capability
to express behavioral properties.

During the QUARTEFT project, a language was designed to specify behavioral and tem-
porized properties at the FIACRE level. The designed language is implemented around two

Formal Verification Integration Approach for DSL 105

Application of the approach using an intermediate language

TINA
toolboxFiacre

Frac TTS
Specification

CADP
toolbox

Flac LOTOS
Specification

Figure 7.2 — The tooling around the FIACRE language

fundamental concepts: observable events and properties.

Observable events concern naming unambiguously components, processes, ports and
variables of a FIACRE program and their related events which can be observed for each
FIACRE element. To identify them, first, it is mandatory to identify the concerned process
instance. It is done thanks to a path that identifies one single process instance. A FIACRE pro-
gram should contain a main component which corresponds to the verification entry point.
A process/component instance can be referred to the main component by an hierarchical
manner using indices which allow to differentiate two instances of the same componen-
t/process [Abi12]. In Listing 7.1, "Main/1" means that we refer to the first instance in the
Main component (line 32).

Then, the instance should be related to an observable event. Four kinds of events can be
designated:

• path/state s returns true if the process instance identified by path is in state s.

• path/value p returns true if predicate p is true in the process instance identified by path.

• path/tag t is the set of transitions of the process instance identified by path bearing tag
t. A tag is a kind of FIACRE statement inserted in a FIACRE process of form "#ident".

• path/event p is the set of transitions interacting on port p declared in the component
identified by path.

Based on the observable events, a FIACRE program can be extended with properties. We
can identify three kind of properties: general properties, LTL properties and real time prop-
erties. General properties can check if a system has a deadlock-free situation, if infinitely
often an observable event is true or if an observable event is mortal. LTL properties use
logic operators and temporal operators and real time properties that use the hierarchical
classification borrowed from Dwyer [DAC98] extended with a notion of "timing modifiers"
[Abi12]. A FIACRE description may include declarations of properties and "assert" direc-
tives.

106 Faiez Zalila

7.2. Expressing behavioral properties on Fiacre level

In this thesis, we focus only on general and LTL properties. Listing 7.2 extends the FI-
ACRE program shown in Listing 7.1 with general and LTL properties.

The first property named ddlfree (lines 4-5) verifies the absence of deadlock in the pro-
gram.

The second property is a LTL property (named mutex in lines 8-9). It verifies whether the
mutual exclusion occurs. It means that always both process instances (Main/1 and Main/2)
cannot be in their critical sections (CS states) at the same time.

A third property is defined to verify the fairness of the program (lines 12-14). It verifies
for each process instance if always when it sets its flag to true, then eventually this instance
enters in critical section (CS state).

The fourth property (lines 17-18) verifies the isIdle concept: if the process P0 does not set
its flag to true, then it will never enter into the critical section.

Finally, we define a infoften property (lines 21-22) which verifies whether process P0 in-
finitely often enters into the critical section.

1 / * P r o p e r t i e s * /
2
3 / * Absence o f deadlock * /
4 property ddlfree is deadlockfree
5 assert ddlfree
6
7 / * Mutual exc lus ion * /
8 property mutex is l t l [] not ((Main/1/state CS) and (Main/2/state CS))
9 assert mutex

10
11 / * f a i r n e s s * /
12 property access is l t l ([] (Main/1/value flag [0] => <> Main/1/state CS)
13 and [] (Main/1/value flag [1] => <> Main/2/state CS))
14 assert access
15
16 / * i s I d l e * /
17 property i s Id le is l t l (([] Main/1/value (not f lag [0])) => ([] not Main/1/state CS))
18 assert idling
19
20 / * i n f o f t e n * /
21 property infoften is l t l ([] <> Main/1/state CS)
22 assert infoften

Listing 7.2 — Related behavioral properties on the implementation of Peterson’s algo-
rithm with FIACRE

Now, the complete FIACRE description is specified. FIACRE is also the source language of
compilers into two verification toolboxes: TINA and CADP [GLMS11]. We rely in our exper-
iments on the first toolbox. Using the FRAC compiler (the FIACRE compiler for the TINA

toolbox), a FIACRE program is compiled into a generalization of TPN with data variables,
guards, actions and priorities associated to transitions (Time Transition System (TTS)) that is
one of the input formats accepted by the TINA toolbox (Figure 7.2).

Formal Verification Integration Approach for DSL 107

Application of the approach using an intermediate language

xDSML2

xDSML1

DSML1

DSML2

Behavioral
extensions

Fiacre TTS Model-
checking

tools

Behavioral
extensions

Figure 7.3 — The integration of FIACRE in the verification toolchain

7.3 Integrating the FIACRE language in the verification toolchain

The FIACRE language is shown as a high level formal language which allows to design a
formal model and to specify behavioral properties. It is considered as a target formal lan-
guage. To integrate it in the verification toolchain, several steps are required. The first one
consists in providing different behavioral extensions conforming to the Executable DSML
pattern. These extensions allow to capture different additional information captured during
the execution (Figure 7.3).

Figure 7.4 shows an abstract view of the FIACRE EDMM. We have identified four kinds
of events:

• the move of a process instance (StateEvent) which can leave a state (ExitEvent) or enter
into another state (EnterEvent).

• the change of the value of a variable in a process instance (VariableEvent).

• a communication through a port (PortEvent). It can be shown as a SynchronisationEvent,
a ReceiveEvent or a SendEvent.

• carrying a tag (TagEvent).

The FIACRE SDMM is shown in Figure 7.5. It includes two kinds of runtime information that
can be generated during the execution of a FIACRE model: the current value (Expression) of
a FIACRE variable (Pattern) and the current state (currentState) of an instance of a process.
Referring to a FIACRE instance consists in collecting the ordered set of instances which leads
from the main component to it (Path). Therefore, we add a reference (currentState) between
the Path meta-class and the StateDeclaration meta-class.

7.4 Connecting the FIACRE level with the TINA toolbox

Integrating an intermediate language in a verification toolchain has significant advantages:
(a) reducing the semantic gap between DSMLs and formal languages and (b) sharing parts

108 Faiez Zalila

7.4. Connecting the Fiacre level with the Tina toolbox

date: Int
Event

StateEvent

VariableEvent

PortEvent

TagEvent

EnterEvent

ExitEvent

ReceiveEvent

SynchronisationEvent

SendEvent

Figure 7.4 — Different kind of events in FIACRE

of the translation from DSMLs to formal languages (the intermediate to formal part). How-
ever, the feedback of the verification results should be made in two steps: a first one from
the low-level formalism to the intermediate level and, then, from the intermediate level to
the DSML.

In this section, we are interested in the feedback from low-level formal language (TTS) to
the intermediate formal language (FIACRE) (the red arrow from TPN behavioral extensions
to FIACRE behavioral extensions in Figure 7.3).

After performing the formal verification, it is mandatory to feedback this information, at
first, to the FIACRE level then to the DSML one. However, this feedback is not trivial because
it is not easy to find such a mapping between TTS specifications and FIACRE models.

Our proposal to feedback verification results, the FEVEREL language, could be an inter-
esting candidate to perform this feedback but it is not the case as its current implementation
supports only generating one DSML event from a formal event (1-to-1 mapping) or a partial
format of the 1-to-n mapping which generates, from a formal event, a set of DSML events
that are instances of the same DSML event meta-class. In addition, we do not know what is
done during the compilation performed by the FRAC compiler. The amount of information
handled during this compilation is important and FRAC is mostly a black-box tool. Further-
more, the semantic gap between TTS and FIACRE is wide and complicates the expression of
such a mapping between both levels. Therefore, additional information are required: trace-
ability information. These information contain what happened during the compilation. They
give the correspondence between FIACRE elements (variables, ports, statements, etc.) and
the generated ones in the TPN (states, transitions, etc.). In the following, we detail different
required steps to feedback verification results from the TPN into the FIACRE level.

7.4.1 The generation of traceability information between FIACRE and TTS

The traceability information consists in storing a set of relations (named also mappings) be-
tween the corresponding source and target model elements in order to reuse them to verify

Formal Verification Integration Approach for DSL 109

Application of the approach using an intermediate language

Path

<<from DDMM>>
ExpressioncurrentValue

<<from DDMM>>
Pattern

<<from DDMM>>
InstanceDeclaration

instance

1

1..*

<<from DDMM>>
StateDeclarationcurrentState

1

Figure 7.5 — The FIACRE SDMM

and validate software life-cycle. Several traceability approaches are proposed in the liter-
ature [GaG07]. For example, in [KPP06], authors introduce an approach named embedded
traceability. In this one, the traceability elements are embedded inside the target models. For
[Jou05], the traceability information are considered as a model, more precisely as an addi-
tional target model of a transformation program. For us, we choose the last one as it allows
to separate different level of modeling.

To produce the traceability information, it is possible to extend the FRAC compiler to
produce such an artifact which contains this mapping. As the FRAC compiler is not trivial
to modify in order to generate an additional information to save a mapping, we considered
it as a black box.

Furthermore, thanks to a specific option of the FRAC compiler (-G), it is possible to ob-
tain an intermediate textual format of a FIACRE program that presents a hybrid TTS managed
during the compilation. We name it instantiated FIACRE . It contains TPN specifications (tran-
sitions, states, priorities, . . .) and data processing (guards, assignments, . . .) and can thus be
used to generate traceability links between TTS and the original FIACRE program.

Listing 7.3 shows the instantiated FIACRE program corresponding to the FIACRE pro-
gram shown in Listing 7.1. First, it starts with the declaration of different data types (line 1).
Then, it defines the main instantiated process which contains the whole traceability infor-
mation. Its identifier corresponds to the different instantiated processes in the FIACRE pro-
gram (line 3). Different instantiated states are declared using the states keyword (line 6).
An instantiated state identifier follows this structure "p_i_st" where p is an identifier that
corresponds to a FIACRE process, t is also an identifier that corresponds to a state declared
in the p process and i is an integer that corresponds to the rank of this process instance in
the main component. Instantiated variables are defined using the var keyword (line 8) and
initialized. They follow this structure "p_i_vt" where p and i correspond respectively to the
FIACRE process and its instance, and t corresponds to the declared variable. Lines 10 and 11
show the initial states of process instances. Then, a set of instantiated transitions are defined.
The signature of an instantiated transition (Trans keyword) has an identifier, a label, a root
and a tag.

110 Faiez Zalila

7.4. Connecting the Fiacre level with the Tina toolbox

Fiacre
model

TTS
specification

Instantiated
Fiacre
model

-GLinked
Fiacre
model

refers to

refers to

Figure 7.6 — The generation of the traceability information between FIACRE and TTS

1 type a0 is array 2 of bool
2
3 process Proc_2_Proc_1
4 is
5
6 states Proc_2_sCS , Proc_2_swaits , Proc_2_sidle , Proc_1_sCS , Proc_1_swaits , Proc_1_sidle
7
8 var Main_1_vflag : a0 := [false , false] , Main_1_vturn : char := 0
9

10 ini t
11 to Proc_1_sidle , Proc_2_sidle
12
13 Trans : : Proc_1_t0 & Main
14 from Proc_1_sidle
15 Main_1_vflag [0] := true ;
16 Main_1_vturn := 1 ;
17 to Proc_1_swaits
18 in [0 , . . . [
19
20 Trans : : Proc_1_t1 & Main
21 from Proc_1_swaits
22 on not ((Main_1_vflag [1] and (Main_1_vturn = 1))) ;
23 to Proc_1_sCS
24 in [0 , . . . [
25
26 Trans : : Proc_1_t2 & Main
27 from Proc_1_sCS
28 Main_1_vflag [0] := false ;
29 to Proc_1_sidle
30 in [0 , . . . [
31
32 Trans : : Proc_2_t0 & Main
33 from Proc_2_sidle
34 Main_1_vflag [1] := true ;
35 Main_1_vturn := 0 ;
36 to Proc_2_swaits
37 in [0 , . . . [
38
39 Trans : : Proc_2_t1 & Main

Formal Verification Integration Approach for DSL 111

Application of the approach using an intermediate language

40 from Proc_2_swaits
41 on not ((Main_1_vflag [0] and (Main_1_vturn = 0))) ;
42 to Proc_2_sCS
43 in [0 , . . . [
44
45 Trans : : Proc_2_t2 & Main
46 from Proc_2_sCS
47 Main_1_vflag [1] := false ;
48 to Proc_2_sidle
49 in [0 , . . . [

Listing 7.3 — The instantiated FIACRE model of the implementation of Peterson’s algo-
rithm with FIACRE

The identifier of the instantiated transition is then generated in the TTS description as a TPN

transition. The label is an optional attribute. It corresponds to a FIACRE port if this transition
has a port processing (a synchronisation via a port, the sending or reception of information).
The root corresponds to the main component. In our case, it corresponds to the component
Main. Finally, the tag identifies whether the transition carries a tag.

The instantiated transition body starts with the from keyword. It shows its initial states.
The body contains a set of statements which correspond to performed actions (especially
updates on variables’ values) and eventually choose a next state using the jump statement
to. The instantiated transition ends with a time interval for its execution. This interval has
the same semantics as in TPN.

The generated textual artifact, instantiated FIACRE, shows interesting elements for the
traceability. However, it is not sufficient to be considered as a traceability information. It is
necessary to extend this artifact to refer to both sides, TPN and FIACRE. Figure 7.6 shows
our approach to extend the instantiated FIACRE with the required information to obtain a
complete traceability of the FRAC compiler. In fact, using Xtext, we define a textual grammar
to parse the instantiated FIACRE. This one is derived from the FIACRE one.

Through an ATL transformation [JK06], based on the instantiated FIACRE model, the
initial FIACRE model and the generated TPN model in the TTS specification, links are added
between the FIACRE and TPN levels to generate a traceability model named linked FIACRE

model. Its metamodel is similar to the instantiated one (generated by Xtext). It is enriched
with references towards TPN and FIACRE appropriate elements.

Thanks to naming conventions and the hierarchical manner used to describe the compo-
sition of components and processes, traceability between FIACRE and TPN elements is made
possible. A subset of the Linked FIACRE metamodel can be shown in Figure 7.7.

Now, the linked FIACRE model supports a traceability model in order to feedback veri-
fication results.

Let’s explain what kind of information is added through this model transformation.

For each instantiated state (line 6 of Listing 7.3), we add two references: the first one
refers to the ith instance of the p process in the composition of the main component and the
second one refers to the t state in the p process in the FIACRE specification. Each FIACRE state
is prefixed with s. For example, for the instantiated state Proc_1_sidle, the first one refers to
the first instance of the Proc process in the Main component (line 32 of Listing 7.1) and the
second one refers to the idle state in the Proc process in the FIACRE specification (line 10 of

112 Faiez Zalila

7.4. Connecting the Fiacre level with the Tina toolbox

InstantiatedFiacre TPNFiacre

InstantiatedTransition

read: Boolean
InitialState

1..* initial

name: String
StateDeclaration

min_time : Int
max_time : Int

Transition
transition

1 state

name: String
StateDeclaration

1 state

name: String
VariableDeclaration

Path

name: String
VariableDeclaration

InstanceDeclaration

1 variable
1 path

1 path0..*
instance

Figure 7.7 — A subset of the Linked FIACRE metamodel

Listing 7.1).

For instantiated variables, it is almost the same approach except that when p is a compo-
nent, we refer to it. Each FIACRE variable is prefixed with v. For the Main_1_vflag instanti-
ated variable, we add a reference to the Main component and another one to the flag shared
variable in the same component (line 28 in Listing 7.1).

Finally, we handle on the instantiated transitions. For each one, we add a reference to the
corresponding TPN transition.

In this way, we produce a complete traceability model between both sides. This trace-
ability model allows to ease the feedback of verification results from the TPN level to the
FIACRE level.

7.4.2 Feedback verification results on the FIACRE level

Once the traceability information is produced, it is easier to feedback verification results
to the FIACRE level. We focus only on triggered events, instances of the FIACRE EDMM.
Figure 7.8 illustrates our approach to produce a FIACRE scenario. In fact, the SELT model-
checker produces a TPN counter-example for a violated property. Using the tooling shown
in subsection 5.1, a TPN scenario is generated. Then, we define a M2M transformation using
ATL which takes the traceability model (linked FIACRE model) and the TPN scenario, and
generates a FIACRE scenario. This transformation takes each transition in the TPN scenario
and collects the corresponding FIACRE events based on the traceability model. The gener-
ation of FIACRE events is guided by the type of the occurred statement in the traceability
model. In fact, a from statement corresponds to leaving a FIACRE state (an instance of Ex-
itEvent meta-class), an assignment statement corresponds to updating the value of a FIACRE

variable (an instance of VariableEvent meta-class) and a to statement means the entering of
an instance process into a new state (EnterEvent).

The instantiated FIACRE does not offer the required information to identify the
port events (synchronisation, send and receive) on processes instances neither on sub-
components. It just gives the synchronisation on a port in the main component (an instance
SynchronisationEvent meta-class). For the TagEvent, an instantiated transition can have a tag

Formal Verification Integration Approach for DSL 113

Application of the approach using an intermediate language

Fiacre
model

Frac

TTS
specification

TINA

Linked
Fiacre
model

refers to

refers to

TPN
scenario

Fiacre
scenario

refers to

refers to

Figure 7.8 — The generation of the verification results on the FIACRE level

declaration which specifies carrying a tag, but, it does not specify the order of the execution.
So, we decided to omit TagEvents.

1 operator ddlfree : prop
2 0.000 s
3 TRUE
4 0.001 s
5 operator mutex : prop
6 0.000 s
7 TRUE
8 0.001 s
9 operator access : prop

10 0.000 s
11 TRUE
12 0.001 s
13 operator idling : prop
14 0.000 s
15 TRUE
16 0.001 s
17 operator infoften : prop
18 0.000 s
19 FALSE
20 state 0 : Proc_1_sidle Proc_2_sidle Main_w3
21 −Proc_1_t0−>
22 state 1 : Proc_1_swaits Proc_2_sidle { Main_1_vflag . at [0] } Main_1_vturn Main_w1
23 −Proc_1_t1−>
24 state 2 : Proc_1_sCS Proc_2_sidle { Main_1_vflag . at [0] } Main_1_vturn Main_w1
25 −Proc_1_t2−>
26 state 3 : Proc_1_sidle Proc_2_sidle Main_1_vturn Main_w3
27 −Proc_2_t0−>
28 state 4 : Proc_1_sidle Proc_2_swaits { Main_1_vflag . at [1] } Main_w3 Main_w2
29 −Proc_2_t1−>
30 state 12: Proc_1_sidle Proc_2_sCS { Main_1_vflag . at [1] } Main_w3 Main_w2
31 −Proc_2_t2−>
32 * [accepting] state 13: Proc_1_sidle Proc_2_sidle Main_w3
33 −Proc_2_t0−>

114 Faiez Zalila

7.5. Adapting the xSPEM toolchain to Fiacre

34 state 14: Proc_1_sidle Proc_2_swaits { Main_1_vflag . at [1] } Main_w3 Main_w2
35 −Proc_2_t1−>
36 state 16: Proc_1_sidle Proc_2_sCS { Main_1_vflag . at [1] } Main_w3 Main_w2
37 −Proc_2_t2−>
38 state 13: Proc_1_sidle Proc_2_sidle Main_w3
39 0.001 s

Listing 7.4 — Verification results generated in the TPN level for the Peterson’s algorithm

Let’s illustrate the feedback of verification results from the TPN level into the FIACRE

level with the Peterson’s algorithm. It corresponds to the FIACRE model shown in Listing 7.1
and the corresponding properties shown in Listing 7.2. The FRAC compiler generates a TTS

specification from the full FIACRE program. Using the TINA toolbox and especially the SELT

model-checker, the output of the verification is shown in Listing 7.4. This output shows that
all properties are verified except the last one (infoften property). The counter-example (lines
20-38) shows an infinite loop (lines 32-38) which does not reach the appropriate element. It
means that there is a possible execution where infinitely often the process P0 does not enter
into the critical section. Then, we perform different required steps to feedback verification
results on FIACRE level. Listing 7.5 shows a subset of the corresponding FIACRE scenario. It
is a succession of FIACRE events.

Another kind of verification result is the traces which is related to the SDMM part of the
Executable DSML pattern. For the traces, the SELT output offers the possibility to obtain only
FIACRE states (via TPN places). However, data values are lost. To obtain the complete traces,
it is mandatory to simulate the obtained scenario via the command line stepper simulator
play1 of the TINA toolbox.

We are working on the integration of the output of the play simulator in order to obtain
full traces on the FIACRE layer.

1 ExitEvent { path : Main/2 , state : id le }
2 PatternEvent { pattern : f lag [1] , expression : true }
3 PatternEvent { pattern : turn , expression : 0}
4 EnterEvent { path : Main/2 , state : waits }
5 ExitEvent { path : Main/2 , state : waits }
6 EnterEvent { path : Main/2 , state : id le }
7 ExitEvent { path : Main/2 , state : id le }
8 PatternEvent { pattern : f lag [1] , expression : false }
9 EnterEvent { path : Main/2 , state : id le }

Listing 7.5 — A subset of the FIACRE scenario corresponding to the verification results
generated by SELT model-checker shown in Listing 7.4

7.5 Adapting the XSPEM toolchain to FIACRE

In this section, we apply the integration of an intermediate language on the XSPEM case
study. Based on the proposed verification toolchain from chapter 3. As detailed in chapter 6
(section 6.3), this integration consists in changing the formal target domain. Therefore, it is
necessary, at first, to update the formalOperators library corresponding to the FIACRE lan-
guage. Then, a translational semantics should be implemented. It maps the XSPEM meta-
model to the FIACRE level. It is mandatory to give the new implementation of the primitive

1http://projects.laas.fr/tina/manuals/play.html

Formal Verification Integration Approach for DSL 115

Application of the approach using an intermediate language

queries (subsection 7.5.3) and the events mappings (subsection 7.5.4) for this new transla-
tional semantics as shown in chapter 6 (section 6.3).

In this section, we detail these different required elements to integrate the FIACRE lan-
guage in the verification toolchain.

7.5.1 Connecting FIACRE properties capabilities with the TOCL tooling

FIACRE plays the role of the formal language from the DSML designer viewpoint. To reuse
the TOCL editor, the definition of temporal operators traduction has to be updated. List-
ing 7.6 shows the implementation of FIACRE operators as strings showing their encodings.

helper def : always : String= ’ [] ’ ;
helper def : eventually : String= ’ <> ’ ;
helper def : next : String= ’ () ’ ;
helper def : " not " : String= ’ not ’ ;
helper def : "and" : String= ’ and ’ ;
helper def : " or " : String= ’ or ’ ;
helper def : " implies " : String= ’ => ’ ;
helper def : unt i l : String= ’ unt i l ’ ;
helper def : release : String= ’ release ’ ;

Listing 7.6 — The coding of FIACRE operators

7.5.2 Translational semantics XSPEM2FIACRE

The translational semantics consists in defining a mapping from the DSML, that is XSPEM,
to the formal language, that is FIACRE.

Here is some rationale behind this translational semantics. We illustrate it with some
elements in the FIACRE program corresponding to the updated version of the XSPEM model
of Figure 2.2 with an additional Computer resource.

Each workdefinition is translated to one FIACRE process with the same name. Such a
process is composed of three states (notStarted, running and finished) and two transitions
(from notStarted to running and then from running to finished). Transition between the states
depends on the worksequences and thus on the state of the predecessor workdefinition.
Thus, it is necessary to store the current states of different workdefinitions.

Based on the QDMM of XSPEM, a FIACRE type called WDQueries was defined to rep-
resent the two queries on WorkDefinition of interest for the XSPEM end-user and to express
causality constraints. It is a record type composed of the two boolean fields isStarted and
isFinished.

type WDQueries i s record / / f rom QDMM
i s S t a r t e d : bool ,
i s F i n i s h e d : bool

end

WDsQueries defines an array of WDQueries storing the state of all workdefinitions of
an XSPEM process. It is an argument for every workdefinition process. This was defined

116 Faiez Zalila

7.5. Adapting the xSPEM toolchain to Fiacre

mainly to implement dependencies because a FIACRE process cannot inspect the current
state of other processes.

type WDsQueries i s array 4 of WDQueries end

Named constants are defined to ease the reading of the FIACRE program by avoiding the
use of meaningless integers to identify a workdefinition.

const DesigningWD : i n t i s 0
const ProgrammingWD : i n t i s 1
const DocumentingWD : i n t i s 2
const TestCaseWritingWD : i n t i s 3

The WDsQueries variable is updated when a transition of a workdefinition process is
fired. For example, on the transition from the notStarted state to the running state, the isStarted
variable is set to true.

Furthermore, one workdefinition can only be started when required resources are avail-
able. As for workdefinitions, we have modeled resources queries as an array. Array elements
are integers because there is no need of a record as there is only one query on Resource meta-
class.

RessourceTab defines an array of integer storing the available count of each resource.

type RessourceTab i s array 3 of i n t

As for workdefinitions, named constants are defined to ease identifying resources.

const DesignerR : i n t i s 0
const DeveloperR : i n t i s 1
const ComputerR : i n t i s 2

XSPEM causality constraints are mapped into a FIACRE conditional statement that checks
whether the FIACRE processes corresponding to the previous workdefinitions have reached
the expected state. For example, because of the startToStart constraint between Designing and
Documenting, conditional statement checks whether workdefinition Designing is started. It
verifies also whether each required resource has the available amount to run this workdefi-
nition. If the condition evaluates to false, nothing happens else the current state becomes
running, the state of this workdefinition is updated, and the available resources are de-
creased. The following process gives the Programming workdefinition translated into FIACRE
specification.

process Programming
(&WorkDefinition : ProcessWDQueries , &Ressource : RessourceTab) i s

s t a t e s notStar ted , running , f i n i s h e d

from n o tS t a r t ed
i f (WorkDefinition [$ (DesigningWD)] . i s F i n i s h e d and

WorkDefinition [$ (TestCaseWritingWD)] . i s S t a r t e d and
Ressource [$ (DeveloperR)] >=2 and
Ressource [$ (ComputerR)] >=2)

then
Ressource [$ (DeveloperR)] := Ressource [$ (DeveloperR)] − 2 ;
Ressource [$ (ComputerR)] := Ressource [$ (ComputerR)] −2;
WorkDefinition [$ (ProgrammingWD)] . i s S t a r t e d := t rue ;
to running

e lse
loop

Formal Verification Integration Approach for DSL 117

Application of the approach using an intermediate language

end i f

from running
WorkDefinition [$ (ProgrammingWD)] . i s F i n i s h e d := t rue ;
Ressource [$ (DeveloperR)] := Ressource [$ (DeveloperR)] + 2 ;
Ressource [$ (ComputerR)] := Ressource [$ (ComputerR)] +2;
to f i n i s h e d

The FIACRE component Main consists in instantiating one FIACRE process for each
workdefinition in the XSPEM process (here four processes for Designing, Programming, Doc-
umenting and TestCaseWriting) with the array that stores workdefinitions’ states (initially all
workdefinitions are not started and not finished). In addition, it initializes available amounts
for different resources.

component Main i s
var

WorkDefinition : ProcessWDQueries := [{ i s S t a r t e d =fa lse , i s F i n i s h e d = f a l s e } ,
{ i s S t a r t e d =fa lse , i s F i n i s h e d = f a l s e } ,
{ i s S t a r t e d =fa lse , i s F i n i s h e d = f a l s e } ,
{ i s S t a r t e d =fa lse , i s F i n i s h e d = f a l s e }] ,

Ressource : RessourceTab := [2 , 3 , 4]

par
Designing (&WorkDefinition ,& Ressource)

|| Programming (&WorkDefinition ,& Ressource)
|| Documenting (&WorkDefinition ,& Ressource)
|| TestCaseWriting (&WorkDefinition ,& Ressource)
end

This translational semantics is defined as a model to model (M2M) transformation ex-
pressed in ATL [JK06]. Then, using the textual grammar of FIACRE defined using Xtext, we
generate the FIACRE textual model, the input of the FRAC compiler.

7.5.3 Defining and translating TOCL properties

Once the translational semantics is defined, it is mandatory to define different primitive
queries of the verification toolchain.

According to our approach (chapter 6), when the target formal property language
changes, primitive queries should be updated. Non-primitive queries and behavioral prop-
erties do not change because they only depend on the DSML and other queries. Listing 7.7
shows the implementation of XSPEM queries. These queries ask whether a corresponding
workdefinition is in the appropriate state based on the defined translational semantics.

1 module spem;
2 import " http ://Spem" as SPEM
3
4 // SPEM queries
5 context SPEM! WorkDefinition def : isFinished () : String=
6 ’Main/1/value WorkDefinition [$ (’ + s e l f .name + ’ id)] . isFinished ’ ;
7
8 context SPEM! WorkDefinition def : isStarted () : String=
9 ’Main/1/value WorkDefinition [$ (’ + s e l f .name + ’ id)] . isStarted ’ ;

Listing 7.7 — Formalization of SPEM queries based on the translational semantics de-
fined on FIACRE

118 Faiez Zalila

7.5. Adapting the xSPEM toolchain to Fiacre

Based on the defined tooling TOCL2ATL, a model-to-text transformation is generated.
This later takes a XSPEM model and generates properties at the FIACRE level. Based on the
SPEM model defined in Figure 2.2, the corresponding generated properties are shown here:

property wil lNeverFinish i s l t l
([] (not (Main/1/value WorkDefinition [$ (DesigningWD)] . i s F i n i s h e d

and Main/1/value WorkDefinition [$ (ProgrammingWD)] . i s F i n i s h e d
and Main/1/value WorkDefinition [$ (DocumentingWD)] . i s F i n i s h e d
and Main/1/value WorkDefinition [$ (TestCaseWritingWD)] . i s F i n i s h e d

)))

property w i l l E v e n t u a l l y F i n i s h i s l t l
<> (Main/1/value WorkDefinition [$ (DesigningWD)] . i s F i n i s h e d

and Main/1/value WorkDefinition [$ (ProgrammingWD)] . i s F i n i s h e d
and Main/1/value WorkDefinition [$ (DocumentingWD)] . i s F i n i s h e d
and Main/1/value WorkDefinition [$ (TestCaseWritingWD)] . i s F i n i s h e d)

Once the complete FIACRE specification is generated, different translation and formal
verification steps are performed.

7.5.4 The feedback of verification results

The SELT model-checker shows that the first property, willNeverFinish, does not hold
and a TPN counter-example is generated (Listing 7.8). Conforming to the process shown in
subsection 7.3, the verification results are produced at the FIACRE level.

1 FireTransitionEvent Designing_1_t0
2 FireTransitionEvent Designing_1_t2
3 FireTransitionEvent Documenting_1_t0
4 FireTransitionEvent Documenting_1_t2
5 FireTransitionEvent TestCaseWriting_1_t0
6 FireTransitionEvent Programming_1_t0
7 FireTransitionEvent Programming_1_t2
8 FireTransitionEvent TestCaseWriting_1_t2

Listing 7.8 — A TPN scenario generated by SELT model-checker

Listing 7.9 shows a concrete view of the corresponding FIACRE scenario. It represents the
verification results shown for the DSML designer. It contains a set of FIACRE events, in-
stances of FIACRE EDMM meta-classes (Figure 7.4). Each five events (lines 1-5, lines 6-10,
etc.) corresponds to the ith TPN event.

Therefore, the DSML designer can use them to generate DSML verification results.
1 ExitEvent { path : Main/1 , state : notStarted }
2 PatternEvent { pattern : Ressource [0] , expression : Ressource [0] − 2}
3 PatternEvent { pattern : Ressource [2] , expression : Ressource [2] − 2}
4 PatternEvent { pattern : WorkDefinition [0] . isStarted , expression : true }
5 EnterEvent { path : Main/1 , state : running }
6 ExitEvent { path : Main/1 , state : running }
7 PatternEvent { pattern : WorkDefinition [0] . isFinished , expression : true }
8 PatternEvent { pattern : Ressource [0] , expression : Ressource [0] + 2}
9 PatternEvent { pattern : Ressource [2] , expression : Ressource [2] + 2}

10 EnterEvent { path : Main/1 , state : f inished }
11 ExitEvent { path : Main/3 , state : notStarted }
12 PatternEvent { pattern : Ressource [0] , expression : Ressource [0] − 1}
13 PatternEvent { pattern : Ressource [2] , expression : Ressource [2] − 1}

Formal Verification Integration Approach for DSL 119

Application of the approach using an intermediate language

14 PatternEvent { pattern : WorkDefinition [2] . isStarted , expression : true }
15 EnterEvent { path : Main/3 , state : running }
16 ExitEvent { path : Main/3 , state : running }
17 PatternEvent { pattern : WorkDefinition [2] . isFinished , expression : true }
18 PatternEvent { pattern : Ressource [0] , expression : Ressource [0] + 1}
19 PatternEvent { pattern : Ressource [2] , expression : Ressource [2] + 1}
20 EnterEvent { path : Main/3 , state : f inished }
21 ExitEvent { path : Main/4 , state : notStarted }
22 PatternEvent { pattern : Ressource [1] , expression : Ressource [1] − 1}
23 PatternEvent { pattern : Ressource [2] , expression : Ressource [2] − 2}
24 PatternEvent { pattern : WorkDefinition [3] . isStarted , expression : true }
25 EnterEvent { path : Main/4 , state : running }
26 ExitEvent { path : Main/2 , state : notStarted }
27 PatternEvent { pattern : Ressource [1] , expression : Ressource [1] − 2}
28 PatternEvent { pattern : Ressource [2] , expression : Ressource [2] − 2}
29 PatternEvent { pattern : WorkDefinition [1] . isStarted , expression : true }
30 EnterEvent { path : Main/2 , state : running }
31 ExitEvent { path : Main/2 , state : running }
32 PatternEvent { pattern : WorkDefinition [1] . isFinished , expression : true }
33 PatternEvent { pattern : Ressource [1] , expression : Ressource [1] + 2}
34 PatternEvent { pattern : Ressource [2] , expression : Ressource [2] + 2}
35 EnterEvent { path : Main/2 , state : f inished }
36 ExitEvent { path : Main/4 , state : running }
37 PatternEvent { pattern : WorkDefinition [3] . isFinished , expression : true }
38 PatternEvent { pattern : Ressource [1] , expression : Ressource [1] + 1}
39 PatternEvent { pattern : Ressource [2] , expression : Ressource [2] + 2}
40 EnterEvent { path : Main/4 , state : f inished }

Listing 7.9 — A FIACRE scenario corresponding to the verification results generated by
SELT model-checker shown in Listing 7.8

Using the FEVEREL language, he must define a mapping between FIACRE events and the
corresponding ones in the XSPEM level. Listing 7.10 shows a possible implementation of
this mapping.

1 import " http ://spemSemantics/1.0 " as DSMLSemantics
2 import " http :// fiacreSemantics /1.0 " as FormalSemantics
3 import " http ://spemDDMM/1.0 " as DSMLAS
4 import " http ://www. topcased . org/f iacre/xtext/Fiacre " as FormalAS
5
6 events mapping swd2t :
7 DSMLEvent swd: DSMLSemantics . StartWD(
8 date <− ev1 . date
9)

10 maps
11 FormalEvent ev1 : FormalSemantics . EnterEvent (
12 ev1 . s ta te .name = ’running ’ and
13 FormalAS !Model . a l l Instances ()−> f i r s t () . root . body . blocks
14 −>indexOf (ev1 . path . instances−>f i r s t ())
15 =
16 DSML! Process . a l l Instances ()−> f i r s t () . workDefinitions
17 −>indexOf (swd. workdefinition)
18)
19 end events mapping
20
21 events mapping fwd2te :
22 DSMLEvent fwd: DSMLSemantics . FinishWD (
23 date <− ev2 . date
24)
25 maps
26 FormalEvent ev2 : FormalSemantics . EnterEvent (
27 ev2 . s ta te .name = ’ finished ’ and
28 FormalAS !Model . a l l Instances ()−> f i r s t () . root . body . blocks

120 Faiez Zalila

7.5. Adapting the xSPEM toolchain to Fiacre

29 −>indexOf (ev2 . path . instances−>f i r s t ())
30 =
31 DSML! Process . a l l Instances ()−> f i r s t () . workDefinitions
32 −>indexOf (fwd. workdefinition)
33)
34 end events mapping

Listing 7.10 — The definition of events mappings using FEVEREL in the case-study of the
verification of SPEM models using FIACRE

We choose to refer to FIACRE EnterEvent instances to generate the corresponding ones
in the XSPEM level. To generate a StartWD (lines 7-8) (respectively FinishWD (lines 22-23))
event in the XSPEM side, we choose to refer to EnterEvent whose state is running (line 12)
(respectively finished (line 27)) and the index of the unique instance of path in the composition
of Main component corresponds to the index of the related workdefinition in the XSPEM
process.

This FEVEREL model is then transformed using the FEVEREL tooling into an ATL
model transformation which takes the FIACRE scenario as input and generates a XSPEM
scenario shown in Listing 7.11.

1 StartWD Designing
2 FinishWD Designing
3 StartWD Documenting
4 FinishWD Documenting
5 StartWD TestCaseWriting
6 StartWD Programming
7 FinishWD Programming
8 FinishWD TestCaseWriting

Listing 7.11 — A SPEM scenario generated from the FIACRE one shown in Listing 7.9

Formal Verification Integration Approach for DSL 121

Application of the approach using an intermediate language

122 Faiez Zalila

8 Formal verification of PLC
programs

Résumé
Le but de ce chapitre est de valider notre approche pour tirer parti de l’activité de vérifi-
cation pour tout utilisateur final d’un DSML. On vise alors un nouveau domaine qui est
les automates programmables industriels (APIs), ou les Programmable Logic Controllers
en anglais (PLCs). un API est un type particulier d’ordinateur utilisé pour automatiser les
processus industriels.

Les APIs sont des ordinateurs industriels dédiés, conçus pour contrôler des machines et
des processus. L’aspect critique des éléments conçus rend la plupart des défaillances catas-
trophiques pour la sécurité des équipements et des humains. De ce fait, il est nécessaire de
les vérifier afin de détecter les éventuels problèmes le plus tôt possible durant le processus
de développement. Actuellement, l’activité de vérification des APIs s’effectue en utilisant la
technique de test qui est extrêmement coûteuse en temps d’une part et très incomplète pour
les systèmes complexes d’autre part. Par conséquent, les techniques de vérification formelle
peuvent être considérées comme un candidat valable pour assurer la sûreté et l’efficacité des
systèmes contrôlés.

Le Langage Ladder, ou Ladder Diagram (LD) en anglais, est le langage de modélisation
le plus utilisé pour concevoir les APIs. Il possède une structure graphique qui rend la dé-
tection des erreurs plus difficile. Par conséquent, l’utilisation des méthodes formelles (par
exemple la vérification formelle par exploration exhaustive des modèles) devient obligatoire
pour la sûreté et l’exactitude des systèmes conçus.

Dans des travaux précédents, une chaîne de transformation a été définie à partir de
LD vers le langage intermédiaire FIACRE afin de vérifier des propriétés comportementales
génériques liées au langage LD. Par contre, ces propriétés sont exprimées directement en
LTL et les résultats de vérification sont uniquement générés au niveau formel. Cette inté-
gration partielle des méthodes formelles ne correspond pas aux attentes des utilisateurs de
LD parce que la notation formelle des résultats de vérification est loin des pratiques in-
dustrielles. En outre, pour le concepteur LD, exprimer les propriétés comportementales au
niveau formel ne correspond pas à ses propres capacités.

Dans ce chapitre, on applique notre approche à la vérification des APIs. Cela consiste
à formaliser des propriétés génériques au niveau LD en utilisant l’outillage TOCL, générer

123

Formal verification of PLC programs

automatiquement les propriétés formelles correspondantes et remonter les résultats de véri-
fication pour qu’ils soient utilisables par les utilisateurs finaux.

Ce chapitre introduit d’abord les notions d’API et de LD illustrées avec une étude de cas
industrielle ainsi que les propriétés comportementales attendues. Elles seront modélisées
au niveau LD. On expliquera brièvement la chaîne de vérification ad-hoc existante pour le
langage LD. On expliquera alors l’intégration de nos contributions pour étendre la chaîne
outillée de vérification et pour cacher totalement les aspects formels pour les utilisateurs
finaux du langage LD. Cette intégration s’appuie sur l’application du patron de métamod-
élisation sur le métamodèle du langage LD afin d’identifier les requêtes, les événements et
les états qui peuvent être observés à ce domaine.

124 Faiez Zalila

8.1. Specification of PLC programs

The purpose of this chapter is to validate our approach for leveraging verification ac-
tivities to any DSML end-user. We thus address a new domain, the Programmable Logic
Controllers (PLCs). A PLC is a special purpose computer used to automate industrial pro-
cesses.

PLCs are industry-dedicated computers designed to control machines and processes.
The critical aspect of the designed elements makes most failure occurrence catastrophic for
equipments and human safety. Thereby, it is mandatory to verify them in order to detect
eventual issues as early as possible during the development process. Currently, the verifi-
cation activity of PLCs is performed using testing which is an extremely costly and time-
consuming method on the one hand and highly incomplete for complex systems on the
other hand. Therefore, formal verification techniques can be considered as an meaningful
candidate to ensure safety and efficiency to the controlled systems.

Ladder Diagram (LD) is one of the most used modeling languages to design PLCs. It has
a graphical structure which makes error detection more difficult. Hence, the use of formal
methods (model-checking for example) becomes mandatory for to the safety and correctness
of the designed systems.

In previous works [FdQdS+11, FDQDR+11], a transformation chain has been defined
from LD to the FIACRE intermediate language in order to verify generic behavioral proper-
ties related to the LD domain. However, these properties are expressed directly using LTL
and the verification results are only generated in the formal level. This current partial in-
tegration of formal methods does not correspond to the LD users expectations because the
formal notation of the verification results is far from the industrial practices. In addition, for
the LD designer, expressing behavioral properties in the formal side does not correspond to
his own capabilities.

In this chapter, we apply our contributions to extend the integration of formal methods
for the verification of PLC programs. It consists in formalizing generic properties at the LD
level using the TOCL tooling, generating automatically their corresponding formal proper-
ties and managing verification results in order to be understood by LD system designers.

We first introduce the PLC and the LD notions illustrated with an industrial case-study,
as well as the expected behavioral properties to be modelled for LD. Then, we briefly
show the verification activity introduced for the LD language proposed in [FdQdS+11,
FDQDR+11]. Finally, we show how we can apply our contributions to extend the verifi-
cation toolchain and hide the whole formal aspects for LD end-users. This integration is
obviously based on the application of the Executable DSML pattern on the LD metamodel to
identify the queries, events and states that can be observed on this side.

8.1 Specification of PLC programs

In this section, we introduce the PLCs, the IEC 61131-3 standard [Com03] and the LD pro-
gramming language. We illustrate it with a Control System use-case shown in [Ben08]. We
discuss the behavioral properties which must be verified for the LD domain.

Formal Verification Integration Approach for DSL 125

Formal verification of PLC programs

8.1.1 PLCs and the IEC 61131-3 standard

A PLC is a special purpose industrial computer used for automation of industrial processes.
A PLC program has several inputs and outputs. Designing a PLC program helps to control
the state of the outputs depending on the configuration of the related inputs and its inter-
nal state. It is designed to support severe conditions as electrical noise, and resistance to
vibration and impact [BCC+08].

The PLC execution follows a cycle started by copying the state of the whole inputs into
the memory. Then, the core program runs and produces in the memory a temporary table of
all outputs. When this program finishes, the table is written to the outputs and a new cycle
starts. This cycle repeats as long as the PLC is running [BCC+08].

The IEC 61131-3 is an international standard of the International Eletrotechnical Com-
mission that regulates the programming languages for PLCs. It introduces five different
programming languages: Instruction List (IL), Structured Text (ST), Function Blocks Dia-
grams (FBD), Sequential Function Chart (SFC) and Ladder Diagram (LD). A PLC program
can be written using one or more of these languages. Theirs semantics are not rigorously
defined, and certain definitions can contain several ambiguities.

8.1.2 Ladder Diagram (LD)

The LD language is the most used language for programming PLCs. It is one of the two
graphical languages described by the IEC 61131-3 standard, and it is based on the relay
logic.

Figure 8.1 shows a simple example of a LD program. A LD program has two vertical
rails and a set of horizontal lines (rungs) between them. Each rung is read from the left, con-
taining input instructions, to the right which represents the output instruction. Each rung
represents a boolean equation. Two kinds of constructs can be identified: contacts, named
also relays, and coils. The relays, represented graphically by two bars | |, are input instruc-
tions associated to a program variables. They participate in forming the boolean function to
calculate the new value of their rung outputs, using and boolean operation when they are
placed in series and or boolean operation when they placed in parallel. A diagonal line is
placed in the middle of symbols as in |/| to indicate that the negated value of the variable
is used. The coils, shown as two parentheses (), represent the output variables, and they,
unlike the relays, do modify the value of the associated variables [Car12]. In addition to the
shown simple elements of LD, several complex ones like function blocks can be found in the
complete documentation [Com03].

The LD program shown in Figure 8.1 represents the boolean equations:
C = (A ∨ C) ∧ ¬B and D = C.

To model LD programs, a LD metamodel shown in Figure 8.2, is proposed to define the
concepts of a Program composed of (1) a set of variables (Variable) and (2) a set of rungs
(Rung). The Variable meta-class represents a declared LD variable in the LD program. Only
boolean variables are handled. It is characterized by a name, a value and a kind (inOutKind)
to specify whether it is an input, an output or a memory (mem).

126 Faiez Zalila

8.1. Specification of PLC programs

| A B C |

+--------| |----+---|/|-------()-----+

| | |

| C | |

+--------| |----+ |

| |

| C D |

+--------| |------------------()-----+

Figure 8.1 — Simple LD example

A LD rung (Rung) is composed of one or more elements (Element) and semi-rungs
(SemiRung). Two different rungs cannot share the same elements. A rung has only an in-
teger attribute (index). it allows to order the rungs in the LD program. A SemiRung allows
to model each part of a LD rung. They are introduced to deal with LD programs that use
Functional Blocks. Each semi rung has paths (Path).

Two kinds of elements are defined: BasicElement and ComplexElement. A BasicElement can
be a Coil which is always a result (Result) or a Contact which is always an operator (Oper-
ator). Each basic element is characterized by a kind (CoilKind for a Coil and ContactKind for
a Contact). A ComplexElement can be a function or a function block in a LD program. It is
characterized by a kind to specify the type of the function. The Functions enumeration can be
extended to include additional standard functions and function blocks. Complex elements
are composed of inputs (Input), outputs (Output) and internal variables (InternalVariable).
Like any PLC program, the execution of the LD diagram is shown as consecutive cycles,
called execution cycle or just Scan, composed of three steps: The first one consists in reading
the input variables from the sensors connected with the LD program. Then, a calculating
process is performed. Related to the rung input function and the values of input variables
stored in the previous step, the new values of intern memory and output variables of the
program are generated. This computation is made following the rungs from top to bottom,
and from left to right. Finally, the third step is the writing of output variables - that have
been calculated before - in PLC actuators.

A designed LD program may not be the appropriate one which reflects the expected
specification of the system. So, a LD program may contain several errors that affect its ex-
ecution. Therefore, it is necessary to introduce verification activities as early as possible to
ensure the correctness of the designed program.

Two types of properties are identified: generic properties and specific properties. Generic
properties are only based on the LD concepts. One of the important generic properties to be
verified on an LD program is the absence of race conditions [AFS98]. A race condition is an
undesirable situation that occurs when a device or system attempts to perform two or more
operations in parallel, because of the nature of the device or system, the operations must
be done in the proper sequence in order to be done correctly. A race condition occurs in an
LD program when under fixed inputs and function block states, one or more outputs keep
changing their values.

Formal Verification Integration Approach for DSL 127

Formal verification of PLC programs

Figure 8.2 — LD metamodel

To verify this kind of property a possible formalization is proposed in [Ben08,
FDQDR+11]. First, a stability concept for inputs and outputs is proposed. A LD variable
is stable means that its value does not change: it is always True or always False. Using LTL, a
possible definition is the following:

Definition 7. A LD variable called v is stable if ((� vTrue ∨ � vFalse))

A LD program is free of race conditions if, when the inout variables are kept stable, all
output variables and memories will stabilize.

Definition 8. A LD program is free of race condition if � (stableinputs =⇒ ♦ stableoutputs).
stableinputs represents a logical conjunction between all input variables stability condition and
stableoutputs represents a logical conjunction between the stability condition of all output and mem-
ories.

In the LD example of Figure 8.3, the variable A is an input, C and D are memories, B and
E are outputs. It can be seen that even if A is kept stable, the variables C, D and E will not
stabilize, thus it is an example of race condition. This kind of problem is sometimes difficult
to detect with traditional techniques, and bugs not detected during the test period can be
very costly to correct later.

Specific properties are related to the specific system being designed. In [Car12], a possi-
ble specification of these properties has been proposed.

128 Faiez Zalila

8.1. Specification of PLC programs

| A B |

+--------| |------------------()-----+

| C D |

+--------|/|------------------()-----+

| D C |

+--------| |------------------()-----+

| C E |

+--------| |------------------()-----+

Figure 8.3 — Simple example of races in LD

Figure 8.4 — Draw of the elevation system

8.1.3 A Control System Example

To illustrate the concepts of modeling with LD language, we describe a control system used
in [Ben08]. It represents an elevation system with pneumatic actuators inserted in a box
transportation plant as showed in Figure 8.4. When a box arrives in the lower conveyor
(sensor 1S0), the cylinder 1A retracts, allowing the box to slide over the elevation table (sen-
sor 2S0). After that, the cylinders 2A, 1A and 3A will sequentially extend, occasioning the
elevation and expulsion of the box in the upper conveyor. Finally the cylinders 2A and 3A
retract simultaneously. In this state the system is ready to receive an other box.

In addition to sensors 1S0 and 2S0, the elevation system is composed by the instrumen-
tation presented in Figure 8.5. The activation of coils Y1, Y3 and Y5 results in the extension
of cylinders 1A, 2A and 3A respectively, while the activation of coils Y2, Y4 and Y6 results in
the retraction of these cylinders. Sensors 1S2, 2S2 and 3S2, are activated when cylinders 1A,
2A and 3A respectively are completely extended. Sensors 1S1 and 2S1 are activated when
cylinders 1A and 2A are completely retracted.

In Figure 8.6 is presented an LD program that can be used to control this plant.

Formal Verification Integration Approach for DSL 129

Formal verification of PLC programs

Figure 8.5 — Sensors and actuators of the elevation system

| 1S0 2S1 Y2 |

+----| |-----| |--------------()-----+

| 1S1 2S0 Y3 |

+----| |-----| |--------------()-----+

| 2S2 Y1 |

+----| |----------------------()-----+

| 1S2 Y6 Y5 |

+----| |-----|/|--------------()-----+

| 3S2 1S2 Y6 |

+----| |--+--|/|--------------()-----+

| Y6 | |

+----| |--+ |

| 3S2 1S2 Y4 |

+----| |--+--|/|--------------()-----+

| Y6 | |

+----| |--+ |

Figure 8.6 — LD program to control the elevation system

8.2 Modeling and Verification of PLC programs

We now describe the proposed approach in [FDQDR+11] for the formal verification of PLC
programs. First, we explain the architecture of a system with FIACRE. Then, we present the
proposed PLC verification toolchain. Finally, we illustrate the proposed approach with the
control system example shown in the subsection 8.1.3.

8.2.1 Modeling PLC programs with the FIACRE language

Figure 8.7 shows the architecture of a system defined with FIACRE. It is the composition
of the PLC controller with the Plant. They are designed as FIACRE components. FIACRE

is based on synchronous component communication. So, it is mandatory to introduce an
intermediate Glue component to ensure the asynchronous behavior between the plant and
the controller.

For the PLC execution cycle, three activities are identified: input reading, program exe-
cution and output writing. They occur sequentially. First, the PLC reads sensor device infor-
mation available on its input interface and in the end, writes actuator device commands on

130 Faiez Zalila

8.2. Modeling and Verification of PLC programs

Sensors

Actuators

PLANTGLUE

Input
Process

Output
Process

PLC

Execution
Cycle

ProcessOther
Function

Block
Process

Function
Block

Process
TON

Figure 8.7 — Modeling the system in FIACRE

its output interface, linked with the plant to be controlled.

The main component in FIACRE shows the complete system. It is a parallel composi-
tion of PLC, plant and glue components. The PLC component is obtained by instantiating
the execution cycle process which includes basic LD elements (as rungs, contacts, coils) and
function blocks (FB) processes (as timers, counters, etc.). The FIACRE code of the PLC com-
ponent is obtained from the translation of IEC language representations. The glue compo-
nent is made up of an input process and an output process representing respectively sensor
and actuator interfaces. The plant component is the result of the composition of processes
which represent the behavior of each equipment.

8.2.2 Existing PLC Verification toolchain

The existing PLC verification toolchain is the following one. Using a PLC editor, PLC pro-
grams can be defined. Then, using ATL, a translator is defined which maps the LD model
into a FIACRE specification. It is linked by a composer module with the plant and glue FI-
ACRE models, resulting in the FIACRE system representation. Finally, using the FRAC com-
piler, the full FIACRE specification is compiled into a TTS specification [FDQDR+11]. As
future works, it can be interesting to define a DSML to model the plant and the glue and
then translate them to FIACRE.

In [FDQDR+11], behavioral properties are specified with LTL despite it is not the ap-
propriate manner to specify them for the PLC program designer because temporal logic is
far from industrial practices. So, the aim is to be able to automatically generate these for-
mulas from the desired property specifications, written by process and control engineers in
accordance with the practice of each application domain.

In our work, we focus only on the generic part which concerns the translational approach
of LD models into FIACRE specifications. First, the LD designers choose to define an index-
Out type to identify uniquely each output variable. An arrayIn type is defined to store the
current value for each input variable and an arrayOut type is defined to store the current
value for each output variable.

Formal Verification Integration Approach for DSL 131

Formal verification of PLC programs

type indexOut i s 0 . . 4
type arrayIn i s array 7 of bool
type arrayOut i s array 5 of bool

Then, Input and Output processes are defined.
process Input [sendVar : out bool] i s s t a t e s varTrue , varFa lse
i n i t to varFa lse

from varFa lse
s e l e c t

sendVar ! f a l s e ; loop
[]
sendVar ! t rue ; to varTrue

end

from varTrue
s e l e c t

sendVar ! t rue ; loop
[]
sendVar ! f a l s e ; to varFa lse

end

process Output [rece iveVar : in arrayOut] (arrayIndexVar : indexOut)
i s s t a t e s varTrue , varFa lse
var outputsVarsArray : arrayOut

i n i t to varFa lse

from varFa lse
rece iveVar ? outputsVarsArray ;
i f outputsVarsArray [arrayIndexVar] then

to varTrue
e lse

loop
end

from varTrue
rece iveVar ? outputsVarsArray ;
i f outputsVarsArray [arrayIndexVar] then

loop
else

to varFa lse
end

Each process has two states: varTrue for the true value and varFalse for the false value.

Then, the input glue process InputGlue is defined. It receives the sensor values from the
plant component, stores them and sends them to the PLC component (more precisely to the
execution cycle process) at the beginning of each cycle.

The output process receives output values obtained from PLC components at the end
of the execution cycle process, stores them and sends them to the actuators of the plant
components. The designers choose to implement it when the specific part of the plant is
added.

In addition, the execution cycle process Scan is defined. The PLC execution cycle process
begins with a reading transition which receives an array of input data from the glue input
process. The rungs of the LD are represented as states. Transitions allow moving from one
rung to another; a zero delay is assumed for each transition. From the last rung of the LD,
an array of output data is sent to the glue output process in a writing transition which
is followed by a silent transition (wait) corresponding to the restart of cycle, after a delay
corresponding to its period.

process Scan [port Inputs : in arrayIn , portOutputs : out arrayOut]

132 Faiez Zalila

8.2. Modeling and Verification of PLC programs

i s s t a t e s i n i t i a l , wri t ing , f i n a l , rung_1 , rung_2 , rung_3 , rung_4 , rung_5 , rung_6
var
varsIn : arrayIn , v1S0 : bool := fa lse , v2S1 : bool := fa lse , v1S1 : bool := fa lse ,
v2S0 : bool := fa lse , v2S2 : bool := fa lse , v1S2 : bool := fa lse , v3S2 : bool := fa lse ,
Y1 : bool := fa lse , Y2 : bool := fa lse , Y3 : bool := fa lse , Y4 : bool := fa lse ,
Y5 : bool := fa lse , Y6 : bool := f a l s e

i n i t to i n i t i a l

from i n i t i a l
port Inputs ? varsIn ;
v1S0 := varsIn [0] ;
v2S1 := varsIn [1] ;
v1S1 := varsIn [2] ;
v2S0 := varsIn [3] ;
v2S2 := varsIn [4] ;
v1S2 := varsIn [5] ;
v3S2 := varsIn [6] ;

to rung_1

from writ ing
portOutputs ! [Y1 , Y2 , Y3 , Y4 , Y5] ;

to f i n a l

from f i n a l
wait [1 , 1] ;
to i n i t i a l

from rung_1
wait [0 , 0] ;
Y2 := v2S1 and v1S0 ;

to rung_2

from rung_2
wait [0 , 0] ;
Y3 := v2S0 and v1S1 ;

to rung_3

from rung_3
wait [0 , 0] ;
Y1 := v2S2 ;

to rung_4

from rung_4
wait [0 , 0] ;
Y5 := not Y6 and v1S2 ;
to rung_5

from rung_5
wait [0 , 0] ;
Y6 := Y6 and not v1S2 or not v1S2 and v3S2 ;
to rung_6

from rung_6
wait [0 , 0] ;
Y4 := Y6 and not v1S2 or not v1S2 and v3S2 ;
to writ ing

The Scan process is instantiated in the PLC component.

component PLC [port Inputs : in arrayIn , portOutputs : out arrayOut] i s
par * in

−> Scan [port Inputs , portOutputs]
end

In addition, an Inputs component is defined. It instantiates the InputGlue process with a set
of Input process. Each instance corresponds to an input LD variable.

component Inputs [wri te Inputs : out arrayIn , readOutputs : in arrayOut] i s
port
v1S0Port : in out bool in [0 , 0] ,
v2S1Port : in out bool in [0 , 0] , v1S1Port : in out bool in [0 , 0] ,
v2S0Port : in out bool in [0 , 0] , v2S2Port : in out bool in [0 , 0] ,

Formal Verification Integration Approach for DSL 133

Formal verification of PLC programs

v1S2Port : in out bool in [0 , 0] , v3S2Port : in out bool in [0 , 0]
par * in

−> InputGlue [wri te Inputs , readOutputs , v1S0Port , v2S1Port ,
v1S1Port , v2S0Port , v2S2Port , v1S2Port , v3S2Port]

||
−> Input [v1S0Port]
||
−> Input [v2S1Port]
||
−> Input [v1S1Port]
||
−> Input [v2S0Port]
||
−> Input [v2S2Port]
||
−> Input [v1S2Port]
||
−> Input [v3S2Port]

end

Then, the Outputs component allows to instantiate the Output process for each output LD
variable.

component Outputs [readOutputs : in arrayOut] i s
par * in

−> Output [readOutputs] (0)
||
−> Output [readOutputs] (1)
||
−> Output [readOutputs] (2)
||
−> Output [readOutputs] (3)
||
−> Output [readOutputs] (4)

end

Both Inputs and Outputs components are instantiated in the generic Plant component.

component Plant [wri te Inputs : out arrayIn , readOutputs : in arrayOut] i s
par * in

−> Inputs [wri te Inputs , readOutputs]
||
−> Outputs [readOutputs]

end

Finally, the main component, named Elevation, is defined. It instantiates the Plant and PLC
components. The complete FIACRE specification is automatically generated. The specific
part of the Plant component with the OutputGlue process are added manually by a com-
poser module.

component Elevat ion i s
port port Inputs : in out arrayIn in [0 , 0] , portOutputs : in out arrayOut in [0 , 0]
par * in

−> PLC [port Inputs , portOutputs]
||
−> Plant [portInputs , portOutputs] end

In our work, we are interested only in the generic property part and how to specify and
verify it.

134 Faiez Zalila

8.3. Application of the integration of the hidden verification activity for LD diagram

8.3 Application of the integration of the hidden verification activ-
ity for LD diagram

In this section, we apply our contribution on the integration of the hidden formal verifica-
tion activity for LD diagrams. As shown in chapter 6, several additional elements should
be added to extend the verification framework for the LD language. First, we introduce
the required behavioral extensions on the LD metamodel based on the extended version of
the Executable DSML pattern. Then, we propose the formalization of the behavioral proper-
ties and their related queries on the LD metamodel to generate their corresponding formal
properties. Finally, we define a FEVEREL model based on the translational semantics of LD
metamodel into FIACRE language in order to feedback verification results generated at the
FIACRE level to the LD level.

8.3.1 Expressing behavioral properties

The first step for the LD expert consists in specifying the behavioral properties and their
non-primitive queries. Listing 8.1 shows a possible implementation of these elements using
our TOCL editor. First, the LD expert defines the signature of isTrue() (lines 5-7) and isFalse()
(lines 9-11) queries. However, their bodies cannot be implemented yet because they are re-
lated to the specification of the translational semantics of LD into the semantics domain.
They will be completed by the LD designer. The isStable() query (lines 13-15) can be defined
because it is a non-primitive query.

Once the different queries are defined, he can express the behavioral property named
FreeRaceCondition (lines 19-30).

Now, the LD designer in collaboration with the FIACRE expert and the LD expert should
define the translational semantics of the LD language. This semantics should highlight the
required elements to complete the specification of the primitive queries bodies. We consider
the translational semantics shown in section 8.2 which maps the LD concepts into the FI-
ACRE semantics domain.

Once the translational semantics is defined, the LD designer can complete the specifi-
cation of LD primitive queries. These queries should be implemented based on the target
properties language which is FIACRE properties.

Listing 8.2 shows a possible specification of LD primitive queries. Let’s explain this spec-
ification for both LD queries. If a LD variable is an input or an output, it has the true (re-
spectively false) value when its corresponding instance (FIACRE Input instance in the FI-
ACRE Inputs component for a LD input variable and FIACRE Output instance in the FIACRE

Outputs component for a LD output variable) is in the varTrue (respectively varFalse) state.
Otherwise, if it is a memory variable, it has the true (respectively false) value when its cor-
responding boolean variable in the Scan process has a true (respectively false) value. This
specification should be extended with the required elements to complete the generation of
the FIACRE properties.

1 module LadderQDMM;
2 import ’ http ://newladder/ ’ as ladder

Formal Verification Integration Approach for DSL 135

Formal verification of PLC programs

3
4 // Ladder queries
5 context ladder ! Variable def : isTrue () : String=
6 //abstract query
7 ;
8
9 context ladder ! Variable def : isFalse () : String=

10 //abstract query
11 ;
12
13 context ladder ! Variable def : i sStable () : String=
14 always s e l f . isTrue () or always s e l f . i sFalse ()
15 ;
16
17 // Ladder behavioral properties
18
19 context ladder ! Variable
20 inv FreeRaceCondition :
21 i f (s e l f . inOutKind <> #input)
22 then
23 always
24 (ladder ! Variable . a l l Instances ()−> se lec t (v|v . inOutKind=#input)
25 −>forAll (var_input|var_input . i sStable ())
26 implies
27 eventually s e l f . i sStable ())
28 else
29 true
30 endif

Listing 8.1 — LD behavioral properties and their non-primitive queries

1 context ladder ! Variable def : isTrue () : String=
2 i f (s e l f . inOutKind <> #mem)
3 then
4 s e l f . getInstancePath ()+ ’ s ta te varTrue ’
5 else
6 thisModule . getScanPath ()+ ’ value ’ + s e l f .name
7 endif
8 ;
9

10 context ladder ! Variable def : isFalse () : String=
11 i f (s e l f . inOutKind <> #mem)
12 then
13 s e l f . getInstancePath ()+ ’ s ta te varFalse ’
14 else
15 thisModule . getScanPath ()+ ’ value (’ + not s e l f .name + ’) ’
16 endif ;

Listing 8.2 — Formalization of LD primitive queries

Listing 8.3 shows additional OCL definitions defined to produce the corresponding path
for each observable element in the FIACRE side. These definitions should take into account
the defined translational semantics and the hierarchical structure to describe the composi-
tion of components and processes in FIACRE.

1 context ladder ! Variable def : getindex () : Integer =
2 i f s e l f . inOutKind = #input then
3 ladder ! Variable . a l l Instances ()−> se lec t (v |v . inOutKind = #input)−>indexOf (s e l f)
4 else
5 ladder ! Variable . a l l Instances ()−> se lec t (v | v . inOutKind <> #input)−>indexOf (s e l f)
6 endif ;
7
8 context ladder ! Variable def : getVariableInstance () : Integer =

136 Faiez Zalila

8.3. Application of the integration of the hidden verification activity for LD diagram

9 i f s e l f . inOutKind = #input then
10 s e l f . getindex () + 1
11 else
12 s e l f . getindex ()
13 endif ;
14
15 def : getMain () : String=
16 ladder ! Program . al l Instances ()−> f i r s t () . name+ ’/ ’
17 ;
18
19
20 def : getPLCInstanceInMain () : String=
21 ’1/ ’
22 ;
23 def : getScanInstanceInPLC () : String=
24 ’1/ ’
25 ;
26 def : getScanPath () : String=
27 thisModule . getMain()+ thisModule . getPLCInstanceInMain ()+ thisModule . getScanInstanceInPLC ()
28 ;
29
30 def : getPlantInstanceInMain () : String=
31 ’2/ ’
32 ;
33 def : getOutputsInstanceInPlant () : String=
34 ’2/ ’
35 ;
36 def : getInputsInstanceInPlant () : String=
37 ’1/ ’
38 ;
39 def : getInputsPath () : String=
40 thisModule . getMain()+ thisModule . getPlantInstanceInMain ()+ thisModule . getInputsInstanceInPlant ()
41 ;
42
43 def : getOutputsPath () : String=
44 thisModule . getMain()+ thisModule . getPlantInstanceInMain ()+ thisModule . getOutputsInstanceInPlant ()
45 ;
46
47 context ladder ! Variable def : getInstancePath () : String=
48 i f s e l f . inOutKind = #input
49 then
50 thisModule . getInputsPath ()
51 else
52 thisModule . getOutputsPath ()
53 endif
54 + s e l f . getVariableInstance ()
55 + ’/ ’
56 ;

Listing 8.3 — Completing the TOCL specification for LD

Once different elements related to the specification of behavioral properties are defined,
the LD designer can proceed to generate the corresponding ones at the FIACRE level. As
explained in the chapter 4, The complete TOCL specification is transformed into an ATL
query which takes a LD model as input and generates the corresponding FIACRE properties.

1 property FreeRaceCondition_8 i s l t l (

2 [] ((([] (Elevation/2/1/2/state varTrue) or [] (Elevation/2/1/2/state varFalse))

3 and ([] (Elevation/2/1/3/state varTrue) or [] (Elevation/2/1/3/state varFalse))

4 and ([] (Elevation/2/1/4/state varTrue) or [] (Elevation/2/1/4/state varFalse))

5 and ([] (Elevation/2/1/5/state varTrue) or [] (Elevation/2/1/5/state varFalse))

6 and ([] (Elevation/2/1/6/state varTrue) or [] (Elevation/2/1/6/state varFalse))

7 and ([] (Elevation/2/1/7/state varTrue) or [] (Elevation/2/1/7/state varFalse))

Formal Verification Integration Approach for DSL 137

Formal verification of PLC programs

8 and ([] (Elevation/2/1/8/state varTrue) or [] (Elevation/2/1/8/state varFalse))

9 => <> (([] (Elevation/2/2/1/state varTrue) or [] (Elevation/2/2/1/state varFalse)))

10)))

11 assert FreeRaceCondition_8

12 property FreeRaceCondition_9 i s l t l (

13 [] ((([] (Elevation/2/1/2/state varTrue) or [] (Elevation/2/1/2/state varFalse))

14 and ([] (Elevation/2/1/3/state varTrue) or [] (Elevation/2/1/3/state varFalse))

15 and ([] (Elevation/2/1/4/state varTrue) or [] (Elevation/2/1/4/state varFalse))

16 and ([] (Elevation/2/1/5/state varTrue) or [] (Elevation/2/1/5/state varFalse))

17 and ([] (Elevation/2/1/6/state varTrue) or [] (Elevation/2/1/6/state varFalse))

18 and ([] (Elevation/2/1/7/state varTrue) or [] (Elevation/2/1/7/state varFalse))

19 and ([] (Elevation/2/1/8/state varTrue) or [] (Elevation/2/1/8/state varFalse))

20 => <> (([] (Elevation/2/2/2/state varTrue) or [] (Elevation/2/2/2/state varFalse)))

21)))

22 assert FreeRaceCondition_9

23 property FreeRaceCondition_10 i s l t l (

24 [] ((([] (Elevation/2/1/2/state varTrue) or [] (Elevation/2/1/2/state varFalse))

25 and ([] (Elevation/2/1/3/state varTrue) or [] (Elevation/2/1/3/state varFalse))

26 and ([] (Elevation/2/1/4/state varTrue) or [] (Elevation/2/1/4/state varFalse))

27 and ([] (Elevation/2/1/5/state varTrue) or [] (Elevation/2/1/5/state varFalse))

28 and ([] (Elevation/2/1/6/state varTrue) or [] (Elevation/2/1/6/state varFalse))

29 and ([] (Elevation/2/1/7/state varTrue) or [] (Elevation/2/1/7/state varFalse))

30 and ([] (Elevation/2/1/8/state varTrue) or [] (Elevation/2/1/8/state varFalse))

31 => <> (([] (Elevation/2/2/3/state varTrue) or [] (Elevation/2/2/3/state varFalse)))

32)))

33 assert FreeRaceCondition_10

34 property FreeRaceCondition_11 i s l t l (

35 [] ((([] (Elevation/2/1/2/state varTrue) or [] (Elevation/2/1/2/state varFalse))

36 and ([] (Elevation/2/1/3/state varTrue) or [] (Elevation/2/1/3/state varFalse))

37 and ([] (Elevation/2/1/4/state varTrue) or [] (Elevation/2/1/4/state varFalse))

38 and ([] (Elevation/2/1/5/state varTrue) or [] (Elevation/2/1/5/state varFalse))

39 and ([] (Elevation/2/1/6/state varTrue) or [] (Elevation/2/1/6/state varFalse))

40 and ([] (Elevation/2/1/7/state varTrue) or [] (Elevation/2/1/7/state varFalse))

41 and ([] (Elevation/2/1/8/state varTrue) or [] (Elevation/2/1/8/state varFalse))

42 => <> (([] (Elevation/2/2/4/state varTrue) or [] (Elevation/2/2/4/state varFalse)))

43)))

44 assert FreeRaceCondition_11

45 property FreeRaceCondition_12 i s l t l (

46 [] ((([] (Elevation/2/1/2/state varTrue) or [] (Elevation/2/1/2/state varFalse))

47 and ([] (Elevation/2/1/3/state varTrue) or [] (Elevation/2/1/3/state varFalse))

48 and ([] (Elevation/2/1/4/state varTrue) or [] (Elevation/2/1/4/state varFalse))

49 and ([] (Elevation/2/1/5/state varTrue) or [] (Elevation/2/1/5/state varFalse))

50 and ([] (Elevation/2/1/6/state varTrue) or [] (Elevation/2/1/6/state varFalse))

51 and ([] (Elevation/2/1/7/state varTrue) or [] (Elevation/2/1/7/state varFalse))

52 and ([] (Elevation/2/1/8/state varTrue) or [] (Elevation/2/1/8/state varFalse))

53 => <> (([] (Elevation/2/2/5/state varTrue) or [] (Elevation/2/2/5/state varFalse)))

54)))

55 assert FreeRaceCondition_12

56 property FreeRaceCondition_13 i s l t l (

57 [] ((([] (Elevation/2/1/2/state varTrue) or [] (Elevation/2/1/2/state varFalse))

58 and ([] (Elevation/2/1/3/state varTrue) or [] (Elevation/2/1/3/state varFalse))

59 and ([] (Elevation/2/1/4/state varTrue) or [] (Elevation/2/1/4/state varFalse))

60 and ([] (Elevation/2/1/5/state varTrue) or [] (Elevation/2/1/5/state varFalse))

61 and ([] (Elevation/2/1/6/state varTrue) or [] (Elevation/2/1/6/state varFalse))

62 and ([] (Elevation/2/1/7/state varTrue) or [] (Elevation/2/1/7/state varFalse))

63 and ([] (Elevation/2/1/8/state varTrue) or [] (Elevation/2/1/8/state varFalse))

64 => <> (([] (Elevation/1/1/value Y6) or [] (Elevation/1/1/value (not (Y6)))))

65)))

66 assert FreeRaceCondition_13

Listing 8.4 — The generated FIACRE properties for the elevation system

Listing 8.4 shows the FIACRE properties corresponding to the LD elevation system given in
Figure 8.6.

Once the FIACRE model corresponding to a LD model and its related properties are gen-
erated, the formal verification can be performed. The full FIACRE specification is translated
by the FRAC compiler into a TTS specification, the accepted input of the TINA toolbox. The

138 Faiez Zalila

8.3. Application of the integration of the hidden verification activity for LD diagram

DDMM
(subset)

name:String

Program

index: Integer

Rung

name: String
inOutKind: InOutKind
initialValue: Boolean

Variable
1..* rungs1..* variables

EDMM

name:String

LDEvent

VariableEvent

RungEvent

SDMM

newValue:Boolean

ChangeEvent

ExecuteEvent

1
 v

ar
ia

bl
e

1
 r

un
g

TM3

QDMM

isStable()
isTrue()
isFalse()

Variable

currentValue: Boolean

Variable

Scenario

name: String
date: Integer
internal: Boolean

RuntimeEvent

Trace
1..* runtimeEvents 1..* traces

dynamic_variables 1..*

merge

im
po

rt

merge

merge

m
er

ge

im
pl

em
en

t
Figure 8.8 — The executable LD (xLD)

verification of the FIACRE program shows that the LD model shown in Figure 8.6 is free of
race condition.

8.3.2 Introducing behavioral extensions

In order to integrate the complete verification activity for LD, the LD designer should define
different behavioral extensions for its domain even before implementing the translational
semantics.

It consists in introducing different behavioral extensions related to the verification and
the execution of a LD programs. Figure 8.8 shows a possible implementation of an exe-
cutable LD metamodel (xLD). The DDMM defines the abstract syntax of LD domain. The
SDMM defines an additional attribute to record the current value of a LD variable (current-
Value) during the execution of a LD program. Therefore, for the QDMM, two queries may be
identified on Variable metaclass : isFalse() and isTrue(). In order to verify generic behavioral
properties for LD, an additional query, isStable(), is defined to ask whether a LD variable is
stable or not. To show how a LD model evolves, two LD events are identified: execute a LD
rung (ExecuteEvent) and change the value of a LD variable (ChangeEvent). Finally, the TM3
is the same as the one presented for XSPEM and TPN, as it is DSML-independent.

Formal Verification Integration Approach for DSL 139

Formal verification of PLC programs

8.3.3 Feedback verification results

The last work for the LD designer during the integration of the hidden formal verification
for its domain consists in feeding back verification results generated in the formal level. In
chapter 7, we have shown how we feedback verification results from the TPN level to the
FIACRE one. The LD designer now should complete the second step by defining the appro-
priate mappings between LD events (defined in the LD EDMM) and their corresponding
ones in the FIACRE level using FEVEREL.

1 import " http ://ladderSemantics /1.0 " as LadderSemantics
2 import " http :// fiacreSemantics /1.0 " as FormalSemantics
3 import " http ://newladder/1.0 " as Ladder
4 import " http ://www. topcased . org/f iacre/xtext/Fiacre " as Formal
5
6 events mapping EnterEvent2ChangeEvent :
7 DSMLEvent ch_e : LadderSemantics . ChangeEvent
8 (value <− i f en_e . s ta te .name = ’ varFalse ’ then fa lse else true endif)
9 maps

10 FormalEvent en_e : FormalSemantics . EnterEvent (
11 Formal ! ComponentDeclaration . al l Instances ()−> se lec t (c|c .name= ’Outputs ’)
12 −>f i r s t () . body . blocks−>indexOf (en_e . path . instances−>l a s t () . instance)
13 =
14 Ladder ! Program . al l Instances ()−> f i r s t () . variables−>se lec t (c|c . inOutKind= #output)
15 −>indexOf (ch_e . variable)
16 and
17 Formal ! ComponentDeclaration . al l Instances ()−> se lec t (c|c .name= ’Outputs ’)
18 −>f i r s t () . body . blocks−>indexOf (en_e . path . instances−>l a s t () . instance) > 0
19)
20 end events mapping
21
22 events mapping ChangeEvent2ExecuteEvent :
23 DSMLEvent ex_e : LadderSemantics . ExecuteEvent
24 maps
25 FormalEvent ch_e : FormalSemantics . ExitEvent (
26 i f (ch_e . s ta te .name. startsWith (’rung ’)) then
27 ch_e . s ta te .name. substring (6 , 6) . toInteger ()
28 =
29 Ladder ! Program . al l Instances ()−> f i r s t () . rungs−>indexOf (ex_e . rung)
30 else
31 fa l se
32 endif
33)
34 end events mapping

Listing 8.5 — The definition of events mappings for the verification of LD models using
FIACRE

Listing 8.5 shows a possible specification of these mappings. The first one consists in spec-
ifying the ChangeEvent of a LD variable. This event is triggered when the corresponding
FIACRE process instance (Output process instance in the Outputs component for output LD
variables) changes its state. The mapping consists in verifying whether the index of the LD
variable corresponds to the index of the FIACRE instance in the FIACRE EnterEvent. The value
attribute of the generated LD ChangeEvent is initialized based on the state of the FIACRE

EnterEvent (line 8). The second mapping concerns capturing the execution of a LD rung Ex-
ecuteEvent. It is observed when the Scan process instance enters in the corresponding state.
Entering in the state rung_i corresponds to the ith rung in the LD program.

140 Faiez Zalila

8.4. Conclusion

Once the mappings are defined, the feedback of verification results can be performed.
For example, in the LD model shown in Figure 8.3, the E output variable does not stabilize.
Listing 8.6 shows a subset of the generated counter-example.

1 ExecuteEvent {1 }
2 ExecuteEvent {2 }
3 ExecuteEvent {3 }
4 ExecuteEvent {4 }
5 ChangeEvent {E , true }
6 ExecuteEvent {1 }
7 ExecuteEvent {2 }
8 ExecuteEvent {3 }
9 ExecuteEvent {4 }

10 ChangeEvent {E , fa l se }
11 ExecuteEvent {1 }
12 ExecuteEvent {2 }
13 ExecuteEvent {3 }
14 ExecuteEvent {4 }
15 ChangeEvent {E , true }

Listing 8.6 — The definition of events mappings for the verification of LD models using
FIACRE

8.4 Conclusion

In this chapter, we have proposed a possible implementation of a verification toolchain for
LD language. This toolchain allows to provide a seamless approach to verify whether LD
programs behave as expected while hiding all formal aspects for industrial users. Using
our TOCL proposal and its tooling, we have successfully implemented different required
behavioral properties in LD level and then translated them into the formal side. This gener-
ation of formal properties is guided by the proposed translational semantics and thus by the
proposed queries. Next, using our FEVEREL proposal and its tooling, we define the required
mappings to feedback verification results from the formal side into the LD one.

Formal Verification Integration Approach for DSL 141

Formal verification of PLC programs

142 Faiez Zalila

Conclusion

Résumé
Cette conclusion résume les résultats obtenus durant cette thèse et présente des perspectives
de ce travail.

Le défi relevé par cette thèse était d’intégrer les activités de vérification formelle dans
le processus de développement des DSMLs. L’approche adoptée est basée sur la définition
d’une sémantique translationnelle d’un DSML vers un domaine sémantique formel afin
de réutiliser les outils puissants (simulateur ou vérificateur par exploration exhaustive des
modèles) disponibles dans ce domaine.

Notre contribution consiste à faciliter l’intégration de l’activité de vérification formelle
dans l’outillage d’un DSML tout en gardant tous les aspects formels cachés pour les utilisa-
teurs finaux. Cette caractéristique est un élément clé pour le succès de l’utilisation de la véri-
fication formelle par exploration exhaustive des modèles par des non experts. En outre, les
modèles formels de vérification sont produits en s’appuyant sur des modèles formels inter-
médiaires qui sont eux-mêmes générés à partir des modèles conformes à un DSML. La fig-
ure 8.9 montre l’architecture d’un vérificateur d’un DSML comme proposé dans [VDW12].
Le concepteur d’un DSML se concentre sur les préoccupations de son DSML et les tra-
ductions nécessaires vers le niveau intermédiaire (la partie rouge). Ainsi, pour l’expert du
DSML et l’utilisateur final ne doivent se concentrer que sur leur domaine sans avoir à se
préoccuper d’un autre domaine, formel ou IDM.

Connecter deux domaines différents, les méthodes formelles et l’IDM, était encore un
défi quand l’objectif est de fournir une approche générique et non spécifique à un seul
DSML. Le principal intérêt de notre approche est de permettre l’utilisation des outils puis-
sants de la vérification de modèle pour évaluer les modèles au plus tôt dans le processus
de développement. Notre approche fournit des outils appropriés pour intégrer facilement
la vérification comportementale pour les DSMLs.

Notre contribution consiste également à cacher aux utilisateurs finaux des DSMLs cette
sémantique translationnelle ainsi que d’autres aspects formels liés au domaine formel ciblé.
Ce travail est basé sur un patron de métamodélisation (Executable DSML pattern) qui favorise
la définition d’outils génératifs, et facilite ainsi l’intégration des outils pour de nouveaux
DSMLs.

Nous avons suivi une approche dirigée par les cas d’utilisation comme c’est fait couram-
ment en IDM. Nous avons sélectionné un cas d’utilisation approprié qui permet de valider

143

Conclusion

notre proposition. Nous avons développé des outils ad-hoc ciblant la généricité. Nous avons
proposé des transformations d’ordre supérieur (HOT) pour produire les outils qui ont été
prototypés manuellement. Nos principales contributions sont les suivantes:

• Dans le chapitre 4, nous fournissons, pour les différents acteurs concernés, un langage
approprié (TOCL), sous forme d’une extension temporelle du langage OCL, proche
de leurs connaissances en IDM pour définir les différents éléments nécessaires pour
exprimer des propriétés comportementales au niveau DSML. Nous proposons une ex-
tension supplémentaire au patron de métamodélisation, nommé le métamodèle de déf-
inition de requête (QDMM), afin de spécifier les différentes requêtes possibles qui peu-
vent être demandées à un modèle conforme à un DSML durant son exécution. L’éditeur
TOCL permet à l’expert du DSML de définir à la fois les propriétés comportementales
attendues et les requêtes du DSML.

• Le deuxième problème abordé dans cette thèse est la remontée des résultats de vérifica-
tion qui sont obtenus au niveau formel générés par les outils d’exploration exhaustive
des modèles. Ils ont besoin d’être mis à profit à l’utilisateur final pour les compren-
dre, même s’il n’a pas de compétences en méthodes formelles. Dans le chapitre 5, nous
proposons une approche basée sur les modèles pour faciliter la remontée des résultats
de vérification pour le concepteur d’un DSML. Ce processus est basé sur les exten-
sions comportementales définies lors de l’application du patron de métamodélisation
(Executable DSML pattern) à la fois au DSML et au langage formel choisi. Après avoir
écrit manuellement la transformation de retour et expérimenté les transformations de
modèle bidirectionnelles, nous avons proposé une solution plus adaptée à l’utilisateur:
un langage dédié pour spécifier la remontée des informations. Ce langage, nommé
FEVEREL (Feedback Verification Results Language en anglais), permet de définir des
correspondances entre les événements du DSML et les événements du niveau formel.
Le but de ce langage consiste à utiliser OCL pour spécifier comment un événement du
niveau DSML peut être observé au niveau formel. Ensuite, notre approche s’appuie sur
l’utilisation d’une transformation d’ordre supérieur qui accepte un modèle FEVEREL et
génère une deuxième transformation de modèle. Cette dernière produit un scénario au
niveau DSML à partir des résultats de la vérification générés dans le niveau formel.

• Nous avons proposé une méthode pour construire un framework de vérification pour
un nouveau DSML. Nous avons expliqué les étapes à réaliser par les différents acteurs
concernés pour produire un framework de vérification pour un DSML. En outre, nous
avons montré les différents scénarios possibles pour adapter un framework de vérifi-
cation lors du changement de certaines de ses composantes. Enfin, nous avons fourni
plusieurs lignes directrices pour la validation de l’ensemble des outils de vérification
en utilisant notre proposition de TOCL.

• Un autre problème qui doit être abordé est le fossé sémantique entre les DSMLs et les
langages formels qui peut rendre difficile la définition de la sémantique translationnelle.
Ainsi, nous avons adapté la chaîne d’outils de vérification afin d’intégrer le langage
intermédiaire FIACRE. Intégrer FIACRE comme un langage formel nécessite étendre sa
syntaxe abstraite avec les événements (dans le EDMM) et les états (dans le SDMM) qui

144 Faiez Zalila

Conclusion

peuvent être capturés lors de l’exécution. Puis, en utilisant FIACRE comme un nouveau
langage formel cible permet de valider notre approche.

Les travaux de cette thèse visent un problème essentiel : l’intégration des méthodes
formelles d’une manière transparente en IDM sous forme des outils de V&V pour les
DSMLs. Ils ouvrent plusieurs perspectives :

• Intégrer d’autres langages de propriétés dans l’éditeur TOCL : Notre éditeur TOCL et
son outillage prennent actuellement en considération la logique LTL pour spécifier les
propriétés comportementales et leur génération en propriétés formelles. Toutefois, cette
extension temporelle limite les experts d’un DSML et les concepteurs à modéliser leurs
propriétés comportementales uniquement avec les opérateurs de LTL. Pour lever cette
limite, l’éditeur TOCL pourrait être étendu afin d’accepter des logiques formelles sup-
plémentaires comme CTL [EC82] et les patrons de Dwyer [DAC98]. En outre, il serait
utile d’intégrer plusieurs langages de propriété dans notre approche en proposant une
approche générique (XOCL2X) qui donne les spécifications et les outils nécessaires pour
étendre le langage OCL et supporter d’autres langages (étiquetés X). Dans cet esprit, il
sera intéressant de fournir des langages de propriété plus proches des utilisateurs fin-
aux des DSMLs qui s’appuient sur des modèles de propriétés ressemblant aux langages
naturels.

• Étendre la remontée des résultats de vérification: Actuellement, la remontée des résul-
tats de vérification se concentre sur les événements du DSML (instances de l’EDMM
du DSML). Elle consiste à définir les correspondances entre les événements du DSML
et les événements correspondants au niveau formel en utilisant le langage FEVEREL.
Les résultats de la vérification sont générés sous forme d’une succession d’événements
(un scénario). FEVEREL pourra être étendu pour remonter également les états, et
l’intégralité de trace d’exécution (les événements et des états) générés par le model-
checker.

De plus, à la remontée des événements, il est parfois nécessaire de recourir aux états
précédents et suivants pour spécifier la correspondance des événements appropriés
parce que les événements générés dans le côté formel peuvent ne pas contenir toutes
les informations nécessaires à la remontée au niveau DSML. En outre, il est obligatoire
d’étendre le langage FEVEREL pour supporter des correspondances plus sophistiquées
comme la correspondance 1-à-n et la correspondance m-à-n. Pour adapter le langage
FEVEREL à cette approche, il devrait être nécessaire de choisir le patron approprié pour
capturer les événements. Complex Event Processing (CEP) [BK09] sera un candidat in-
téressant pour le faire.

• Compléter l’approche de processus de construction le framework de vérification pour
un nouveau DSML : Enfin, il serait utile pour l’expert du DSML et le concepteur
de fournir un outil pour combiner les différents éléments liés à l’activité de vérifica-
tion (EDMM, SDMM et QDMM) qui peuvent être montrés comme une spécification
complète qui est utilisée pour (1) spécifier la sémantique translationnelle à travers les
relations entre ces différents éléments, (2) la valider en définissant des conditions de
pré-post qui peuvent être évaluées après la mise en oeuvre, (3) mettre en œuvre les

Formal Verification Integration Approach for DSL 145

Conclusion

propriétés comportementales et (4) remonter des résultats de la vérification. Il peut être
intéressant de générer à partir de cette spécification un squelette de la sémantique trans-
lationnelle, la requête de génération des propriétés comportementales au niveau formel,
et la transformation de retour des résultats de vérification.

146 Faiez Zalila

Conclusion

THIS conclusion summarizes the results obtained during this PhD and presents perspec-
tives for this work.

Our approach helps in integrating formal verification in the DSML tooling while keep-
ing all formal aspects hidden to the end-users. This characteristic is a key feature for the
success of the use of model checking techniques by non expert. Furthermore, the formal
verification models are produced relying on intermediate formal models that are generated
from the DSML models. Figure 8.9 shows the architecture of a DSML model-checker as
proposed in [VDW12]. The DSML designer focuses on the DSML concerns and their map-
pings into the intermediate level (the red part). Thus, both the DSML expert and the DSML
end-user only need to focus on their domain without dealing with the formal domain or the
MDE domain.

Connecting two different domains, formal methods and MDE, was still a challenge es-
pecially when we target providing a generic approach and not an ad-hoc one that focuses
on one specific formal domain to assess models designed in one specific DSML.

The most important advantage of our approach is the use of powerful tools to assess
models as early as possible in the development process. Our approach provides appropri-
ate tools to integrate easily the behavioral verification for DSMLs while hiding all formal
aspects to end-users.

Main contributions and discussions
The main goal of this thesis was to integrate formal verification activities in the develop-
ment process of DSMLs. The adopted approach is based on the definition of a translational
semantics from the DSML to a formal semantic domain in order to reuse the powerful tools
(simulator or model-checker) available in this domain.

Our contribution consists in hiding to the DSML end-users this translational semantics
as well as other formal aspects related to the targeted formal domain. This work is based
on a metamodeling pattern for executable DSML (Executable DSML pattern) that favors the
definition of generative tools proposed by Combemale et al. and slightly extended in this
work, and thus eases the integration of tools for new DSMLs.

We have followed a use case driven approach as commonly done in MDE. We have
selected an appropriate use case that allows to validate the proposal. We have developed
ad-hoc tools targeting genericity. We have proposed higher-order transformations (HOTs)
to produce the tools that were manually prototyped. Our main contributions are as follows.

Expressing DSML behavioral properties
DSML experts and end-users must be able to define the properties they want to assess on
their models. In chapter 4, we provide, for the different actors concerned by the use of a
DSML, a suitable language (TOCL), as a temporal extension of the OCL standard, close to
their knowledge in the MDE domain to define different required elements to express be-
havioral properties at the DSML level. We propose an additional extension to the Executable
DSML pattern, named Query Definition MetaModel (QDMM), to specify different possible
queries that can be asked on a DSML conforming model during its execution. The TOCL
editor allows the DSML expert to define both expected behavioral properties and DSML

Formal Verification Integration Approach for DSL 147

Conclusion

model-checking
tools

DSML
model

DSML
properties

Intermediate
model

Intermediate
properties

Formal
model

Formal
properties

Formal
verification

results

Intermediate
verification

results

DSML
verification

results

Figure 8.9 — The architecture of a domain-specific model checker

queries. These queries are either non-primitive and can be directly implemented; or prim-
itive that can only be specified. Then, the DSML designer defines these primitive queries
based on the implemented translational semantics. This tool can also be used to specify
properties targeting specific models that are assessed at the DSML end-user request. In
addition, we provide the necessary tooling to generate the corresponding formal properties.
The tooling is provided as a higher-order transformation that generates at first an ATL query
from the TOCL specification. This generated query accepts a DSML conforming model and
generates the corresponding formal properties which are, along with the formal models
(generated by running the translational semantics), the input elements of the model-checker
that performs the formal verification.

To obtain this generic tool, we have started by manually writing these properties in the
formal side. Then, in order to automatically generate them, we have written an ATL query
that accepts a DSML conforming model. Finally, as we aimed to obtain a suitable tool to
express behavioral properties, we developed the TOCL tool to automatically generate the
ATL query. We extended the Executable DSML pattern to support the "query" notion.

In our approach, expressing behavioral properties at the DSML level with the TOCL
editor is still partial because it only allows the use of the linear temporal logic as we only
provide the tooling that targets the LTL language in the formal side. The DSML expert
may need to target other temporal logics. The current tooling is parameterized in order
to be able to target other temporal languages. As the TOCL language is still low-level for
some DSML end-users that can have difficulties with OCL, it might be needed to define a
domain-specific language for the properties.

Feedback verification results on the DSML level
The second problem addressed in this PhD is the feedback of verification results which are
obtained in the formal side after performing the verification by model-checking tools. They
need to be leveraged in order for the end-user to understand them even if he has no skills
in formal methods. In chapter 5, we propose a model-based approach to ease the feedback
of the verification results for the DSML designer. This process is based on the runtime ex-
tensions defined during the application of the Executable DSML pattern both at the DSML
and the formal levels. At first, we focus either on encoding manually the backward model

148 Faiez Zalila

Conclusion

transformation or on providing a bidirectional model transformation that defines both the
translational semantics and the feedback verification results. These solutions are ad-hoc for
the DSML designer and do not fully address his needs. Then, we propose a DSPL, named
FEVEREL, using Xtext to define mappings between formal events and DSML events. The
purpose of this language consists in using OCL to specify how a DSML event can be ob-
served at the formal level. Then, our approach relies on a generic higher-order transforma-
tion that accepts a FEVEREL mapping and generates a model-to-model transformation. This
latter produces a DSML scenario from the verification results generated in the formal side.

Our work follows an example driven approach to finally obtain the FEVEREL proposal.
At first, we started by studying how we obtain verification results in DSML level. The first
experiments were specific to the implementation of the translational semantics and also to
the DSML abstract syntax. As our experiments progressed in [ZCP13b, ZCP13a], we became
aware that mapping information was required. The mapping specified using FEVEREL can
generate only one DSML event (1-to-1 mapping) or a set a DSML events (1-to-n mapping)
that are instances of the same DSML event meta-class. However, it fails so far to define
a general 1-to-n mappings or m-to-n mappings. In addition, sometimes the mappings be-
tween events are not sufficient to feedback verification results. Additional information re-
lated to the state of the formal model before and after triggering the formal event can be
required to define a full mapping that eases the feedback of verification results. It was pos-
sible to add two references between the RuntimeEvent and Trace meta-classes in the TM3
(each event has a previous and a next trace showing the current state of the model during
execution) to access this information.

Process to build a verification framework for a new DSML
Based on both proposed contributions, in chapter 6, we focused on the methodological side
to build a verification framework for a new DSML. We have explained the performed steps
by the different concerned actors to produce a verification framework for a DSML. In addi-
tion, we have showed the different possible scenarios to adapt the verification framework
when some of its components change. Finally, we have provided several guidelines for val-
idating the verification toolchain using our TOCL proposal.

This process targets the definition of new verification toolchain. It could be adapted if
the transformation is already available. However, it does not fit if the transformation is a
black-box, which was experimented in the following part.

Introducing an intermediate language in the verification toolchain
Another problem that must be tackled is the semantic gap between the DSML and formal
languages which may make difficult the definition of the translational semantics. Thus, we
have adapted the verification toolchain to integrate the FIACRE intermediate language. Inte-
grating FIACRE as a formal language requires extending its abstract syntax with the events
(in the EDMM) and the states (in the SDMM) that are of interest during the runtime execu-
tion. Then, using FIACRE as a new target formal language allows to validate our approach
— the architecture of the verification toolchain and method to build or update it.

This integration eases the implementation of the translational semantics for the DSML

Formal Verification Integration Approach for DSL 149

Conclusion

designers. It can be considered as a transformation from a DSML to another formal DSML
(DSMLToDSML). We have identified the various elements that should be updated in the
verification toolchain conforming to the study proposed in chapter 6: the primitive queries
and the events mappings that are both related to the translational semantics.

Perspectives
The works in this PhD targeted a key problem: the integration of hidden formal methods in
MDE as V&V tools for DSMLs. We advocate that our approach allows to ease the building of
the required tools to specify easily the expected behavioral properties on DSML conforming
models and then to obtain the verification results in the DSML domain.

Integrating additional languages in the TOCL editor
Our TOCL editor and its tooling supports the LTL operators to specify DSML behavioral
properties and then to generate the corresponding formal properties. However, this tempo-
ral extension limits the DSML experts and the designers to model their behavioral prop-
erties only with LTL operators. A possible way to avoid this is to extend the TOCL editor
to support additional formal language like CTL [EC82] and Dwyer patterns [DAC98]. This
extension would allow the DSML expert to verify more sophisticated behavioral proper-
ties. It would require extending the TOCL grammar and the higher-order transformation
TOCL2ATL to support these new extensions. In addition, it would be helpful to integrate
more property languages in our approach by proposing a generic approach (XOCL2X) that
gives the mandatory specifications and tools to extend the OCL language and support other
languages (tagged X). In this spirit, it will be interesting to provide property languages closer
to the DSML end-users that rely on property patterns looking like natural language (so
called boilerplate requirements). This specification can be mapped into an eventual XOCL
tool.

Extending the feedback of verification results
The current feedback of verification results focus on DSML events (instances of DSML
EDMM). It consists in defining mappings between DSML events and their correspond-
ing formal ones using our FEVEREL proposal. The generated verification results are shown
as a succession of events (a scenario). This current implementation does not favor the feed-
back of the execution trace (both events and states) generated by the model-checker. It is
necessary to extend the FEVEREL language to support the feedback of states. In addition, to
feedback the DSML events, it is required sometimes to resort to the previous and next states
to specify the appropriate events mapping because events generated in the formal side may
not contain all required information to feedback it in the DSML side. Model checkers may
not build all the data in the states as it relies on the abstraction to reduce the size of the
state space. Other tools can provide these data by running the scenario in a simulator at the
formal or user model level. In addition, it is mandatory to extend the FEVEREL language
to support more sophisticated mappings like full 1-to-n and m-to-n mappings. To adapt the
FEVEREL language to this approach, it should be necessary to choose the appropriate pat-
tern to capture events. Complex Event Processing (CEP) [BK09] should be an interesting
candidate to do that.

150 Faiez Zalila

Conclusion

Complete the process approach to build a verification framework for a new DSML
Finally, it would be helpful for the DSML expert and designer to provide a tool to com-
bine the different fragments related to verification activity (EDMM, SDMM and QDMM)
that can be shown as a full specification which is used to (1) specify the translational se-
mantics with relations between these elements, (2) validate it by defining pre-post condi-
tions that can assessed after the implementation, (3) implement the behavioral properties
and (4) feedback the verification results. It can be interesting to generate from this specifi-
cation a "pseudo" implementation of the translational semantics, the query to generate the
behavioral properties in the formal level, and the transformation to feedback the verification
results.

Formal Verification Integration Approach for DSL 151

Conclusion

152 Faiez Zalila

Part

Appendices

153

A Related publications

International conferences articles

• Faiez Zalila , Xavier Crégut and Marc Pantel. A user-oriented approach to integrate for-
mal verification activity for DSML (regular paper). In : European Congress on Embed-
ded Real Time Software and Systems (ERTS2, 2014), Toulouse, 05/02/2014-09/02/2014,
2014.

• Faiez Zalila, Xavier Crégut, Marc Pantel. A transformation-driven approach to au-
tomate feedback verification results (regular paper). Dans : International Conference
On Model and Data Engineering (MEDI 2013), Amantea, Calabria, Italy, 25/09/13-
27/09/13, Springer, Lecture Notes in Computer Science, p. 266-277, 2013.

• Faiez Zalila, Xavier Crégut, Marc Pantel. Formal Verification Integration Approach for
DSML (regular paper). Dans : ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (MODELS 2013), Miami, 29/09/13-04/10/13,
Springer-Verlag, septembre 2013.

• Faiez Zalila, Xavier Crégut, Marc Pantel. Leveraging formal verification tools for DSML
users: a process modeling case study (regular paper). Dans : ISoLA Symposium On
Leveraging Applications of Formal Methods, Verification and Validation, Amirandes,
Heraclion, Crete, 15/10/12-18/10/12, Vol. 7610, Springer, Lecture Notes in Computer
Science, p. 329-343, 2012.

• Benoit Combemale, Xavier Crégut, Arnaud Dieumegard, Marc Pantel, Faiez Zalila.
MDE through the Formal Verification of Process Models (regular paper). Dans : Educa-
tors’ Symposium@MODELS 2011 - Software Modeling in Education, Wellington, New
Zealand, 18/10/11, Vol. 52, Electronic Communications of the EASST, (en ligne), 2012.

National conferences articles

• Faiez Zalila, Xavier Crégut, Marc Pantel. Verification results feedback for FIACRE inter-
mediate language (student paper). Dans : Conférence en Ingénierie du Logiciel (CIEL
2012), Rennes, France, 19/06/12-21/06/12, IRISA, 2012.

• Faiez Zalila, Xavier Crégut, Marc Pantel. Approche transparente pour la vérification
des modèles métiers Journées sur l’Ingénierie Dirigée par les Modèles, IDM-2011, Lille,
France, Juin 2011.

155

Bibliography

[Abi12] Nouha Abid. Verification of Real Time Properties in Fiacre Language. Thèse de
doctorat, LAAS-CNRS, Toulouse, France, Décembre 2012.

[AFS98] Alexander Aiken, Manuel Fähndrich, and Zhendong Su. Detecting races in
relay ladder logic programs. In Proceedings of the 1st Conference on Tools and
Algorithms for the Analysis and Construction of Systems, March 1998.

[BBF+08] Bernard Berthomieu, Jean-Paul Bodeveix, Mamoun Filali, Patrick Farail,
Pierre Gaufillet, Hubert Garavel, and Frederic Lang. FIACRE: an Interme-
diate Language for Model Verification in the TOPCASED Environment. In 4th

European Congress ERTS Embedded Real-Time Software (2008), January 2008.

[BBG+06] Jean Bézivin, Fabian Büttner, Martin Gogolla, Frederic Jouault, Ivan Kurtev,
and Arne Lindow. Model Transformations? Transformation Models! In Pro-
ceedings of the 9th International Conference on Model Driven Engineering Lan-
guages and Systems, MoDELS’06, pages 440–453, Berlin, Heidelberg, 2006.
Springer-Verlag.

[BCC+08] Darlam Fabio Bender, Benoît Combemale, Xavier Crégut, Jean-Marie Farines,
Bernard Berthomieu, and François Vernadat. Ladder Metamodeling and PLC
Program Validation through Time Petri Nets. In European Conference on Model
Driven Architecture - Foundations and Applications (ECMDA-FA), Berlin, Ger-
many, 09/06/2008-12/06/2008, volume 5095 of Lecture Notes in Computer Science
(LNCS). Springer, 2008.

[BCL+01] Andrea Bondavalli, Mario Dal Cin, Diego Latella, István Majzik, András
Pataricza, and Giancarlo Savoia. Dependability Analysis in the Early Phases
of UML Based System Design. Journal of Computer Systems Science and Engi-
neering, 16:265 – 275, 2001.

[BCMP12] Jean-Christophe Bach, Xavier Crégut, Pierre-Etienne Moreau, and Marc Pan-
tel. Model transformations with tom. In International Workshop on Language
Descriptions, Tools, and Applications, LDTA ’12, Tallinn, Estonia, March 31st -
April 1st, 2012.

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software
Engineering in Practice. Morgan & Claypool Publishers, 1st edition, 2012.

157

Bibliography

[Ben08] Darlam Fabio Bender. Application of the MDE for Modeling and Formal Ver-
ification of PLC Programs written in Ladder Diagram Language. DAS 5511:
Projeto de Fim de Curso, Universidade Federal de Santa Catarina, 2008.

[Bey92] Martin Beyer. AGG 1.0 – Tutorial, 1992.

[Béz04] Jean Bézivin. In Search of a Basic Principle for Model Driven Engineering.
Novatica Journal, Special Issue, 5(2):21–24, 2004.

[Béz05] Jean Bézivin. On the unification power of models. Software & Systems Model-
ing, 4(2):171–188, 2005.

[Béz06] Jean Bézivin. Model Driven Engineering: An Emerging Technical Space. In
Proceedings of the 2005 International Conference on Generative and Transforma-
tional Techniques in Software Engineering, GTTSE’05, pages 36–64, Berlin, Hei-
delberg, 2006. Springer-Verlag.

[BFS00] Peter Buneman, Mary Fernandez, and Dan Suciu. UnQL: A Query Language
and Algebra for Semistructured Data Based on Structural Recursion. The
VLDB Journal, 9(1):76–110, March 2000.

[BG01] Jean Bézivin and Olivier Gerbé. Towards a Precise Definition of the
OMG/MDA Framework. In Proceedings of the 16th IEEE International Confer-
ence on Automated Software Engineering, ASE ’01, pages 273–280, Washington,
DC, USA, 2001. IEEE Computer Society.

[BGHM05] Mikael Buchholtz, Stephen Gilmore, Valentin Haenel, and Carlo Montangero.
End-to-End Integrated Security and Performance Analysis on the DEGAS
Choreographer Platform. In Proceedings of the 2005 International Conference
on Formal Methods, FM’05, pages 286–301, Berlin, Heidelberg, 2005. Springer-
Verlag.

[Bie10] Matthias Biehl. Literature Study on Model Transformations. Technical Report
ISRN/KTH/MMK/R-10/07-SE, Royal Institute of Technology, July 2010.

[BK09] Alejandro P. Buchmann and Boris Koldehofe. Complex event processing. it -
Information Technology, 51(5):241–242, 2009.

[BRV04] Bernard Berthomieu, Pierre-Olivier Ribet, and François Vernadat. The tool
TINA – Construction of Abstract State Spaces for Petri Nets and Time Petri
Nets. International Journal of Production Research, 42(14):2741–2756, 2004.

[BSE03] Franck Budinsky, David Steinberg, and Raymond Ellersick. Eclipse Modeling
Framework : A Developer’s Guide. Addison-Wesley Professional, 2003.

[BVWW09] Thomas Bochot, Pierre Virelizier, Hélène Waeselynck, and Virginie Wiels.
Model Checking Flight Control Systems: the Airbus Experience. In 31st Inter-
national Conference on Software Engineering, ICSE 2009, May 16-24, 2009, Van-
couver, Canada, Companion Volume, pages 18–27, 2009.

158 Faiez Zalila

Bibliography

[Car12] Ana Maria Mainhardt Carpes. Properties of LD Programs: Expression and
Verification. DAS 5511: Projeto de Fim de Curso, Universidade Federal de
Santa Catarina, 2012.

[CBF+10] Tiago Correa, Leandro Buss Becker, Jean-Marie Farines, Jean-Paul Bodeveix,
Mamoun Filali, and François Vernadat. Supporting the Design of Safety Crit-
ical Systems Using AADL. In 15th IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS), pages 331–336, March 2010.

[CBG+08] Agusti Canals, Hugues Bonnin, Sébastien Gabel, Christophe Le Camus, and
Rodrigo Saad. An OpenEmbeDD Experimentation: Transformation from an
SDL Profiled UML Model to a FIACRE Model. In 4th European Congress Em-
bedded Real Time Software (ERTS), January 2008.

[CCBV07] Benoît Combemale, Xavier Crégut, Bernard Berthomieu, and François Ver-
nadat. SimplePDL2Tina : Mise en oeuvre d’une Validation de Modèles de
Processus. In Hermes Sciences/Lavoisier, editor, 3ieme journées sur l’Ingénierie
Dirigée par les Modeles (IDM, in french), pages 86–101, Toulouse, France, 2007.

[CCG+07] Benoît Combemale, Xavier Crégut, Pierre-Loïc Garoche, Xavier Thirioux, and
François Vernadat. A property-driven approach to formal verification of pro-
cess models. In Joaquim Filipe, José Cordeiro, and Jorge Cardoso, editors, 9th

International Conference Enterprise Information Systems (ICEIS) 2007, Funchal,
Madeira, June 12-16, 2007, Revised Selected Papers, volume 12 of Lecture Notes in
Business Information Processing, pages 286–300. Springer, 2007.

[CCO+04] Sagar Chaki, Edmund M. Clarke, Joël Ouaknine, Natasha Sharygina, and Nis-
hant Sinha. State/event-based software model checking. In Eerke A. Boiten,
John Derrick, and Graeme Smith, editors, IFM, volume 2999 of LNCS, pages
128–147. Springer, 2004.

[CCP+10] Xavier Crégut, Benoît Combemale, Marc Pantel, Raphael Faudoux, and
Jonatas Pavei. Generative Technologies for Model Animation in the TOP-
CASED Platform. In 6th European Conference on Modelling Foundations and Ap-
plications (ECMFA), volume 6138 of LNCS, Paris, France, June 2010. Springer.

[CCP12] Benoît Combemale, Xavier Crégut, and Marc Pantel. A Design Pattern to
Build Executable DSMLs and Associated V&V Tools. In Proceedings of the
2012 19th Asia-Pacific Software Engineering Conference - Volume 01, APSEC ’12,
pages 282–287, Washington, DC, USA, 2012. IEEE Computer Society.

[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-
Oliet, José Meseguer, and Carolyn Talcott. All About Maude - a High-
performance Logical Framework: How to Specify, Program and Verify Systems in
Rewriting Logic. Springer-Verlag, Berlin, Heidelberg, 2007.

[CFH+09] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy
Schürr, and James F. Terwilliger. Bidirectional Transformations: A Cross-
Discipline Perspective. In Proceedings of the 2nd International Conference on

Formal Verification Integration Approach for DSL 159

Bibliography

Theory and Practice of Model Transformations, ICMT ’09, pages 260–283, Berlin,
Heidelberg, 2009. Springer-Verlag.

[CG12] Jordi Cabot and Martin Gogolla. Object Constraint Language (OCL): A
Definitive Guide. In Proceedings of the 12th International Conference on Formal
Methods for the Design of Computer, Communication, and Software Systems: Formal
Methods for Model-driven Engineering, SFM’12, pages 58–90, Berlin, Heidelberg,
2012. Springer-Verlag.

[CGCT07] Benoît Combemale, Pierre-Loic Garoche, Xavier Crégut, and Xavier Thirioux.
Towards a Formal Verification of Process Model’s Properties – SimplePDL
and TOCL case study. In 9th International Conference on Enterprise Information
Systems (ICEIS 2007), pages 80–89, Funchal, Madeira - Portugal, June 2007.
INSTICC press.

[CGR11] Benoît Combemale, Laure Gonnord, and Vlad Rusu. A Generic Tool for Trac-
ing Executions Back to a DSML’s Operational Semantics. In Proceedings of the
7th European Conference on Modelling Foundations and Applications, ECMFA’11,
pages 35–51, Berlin, Heidelberg, 2011. Springer-Verlag.

[CGS12] Hyun Cho, Jeff Gray, and Eugene Syriani. Creating Visual Domain-specific
Modeling Languages from End-user Demonstration. In Proceedings of the 4th

International Workshop on Modeling in Software Engineering, MiSE ’12, pages 22–
28, Piscataway, NJ, USA, 2012. IEEE Press.

[CHJ+12] Benoit Combemale, Cécile Hardebolle, Christophe Jacquet, Frédéric
Boulanger, and Benoit Baudry. Bridging the Chasm between Executable
Metamodeling and Models of Computation. In SLE2012 - 5th International
Conference on Software Language Engineering, LNCS. Springer, September 2012.

[Com03] International Electrotechnical Commission. IEC 61131-3: Programmable Con-
trollers – Part 3. Geneva, Switzerland, 2nd edition, 2003.

[Com08] Benoît Combemale. Approche de métamodélisation pour la simulation et la vérifica-
tion de modèle. Thèse de doctorat, Institut National Polytechnique de Toulouse,
Toulouse, France, juillet 2008.

[CRC+06] Benoît Combemale, Sylvain Rougemaille, Xavier Crégut, Frédéric Migeon,
Marc Pantel, Christine Maurel, and Bernard Coulette. Towards a Rigorous
Metamodeling. In 2nd International Workshop on Model-Driven Enterprise Infor-
mation Systems (MDEIS), Paphos, Cyprus, May 2006. INSTICC.

[DAC98] Matthew Dwyer, George S. Avrunin, and James C. Corbett. Property Specifi-
cation Patterns for Finite-State Verification. In Proceedings of the Second Work-
shop on Formal Methods in Software Practice, pages 7–15. ACM Press, 1998.

[DMGB09] Zekai Demirezen, Marjan Mernik, Jeff Gray, and Barrett Bryant. Verification of
DSMLs Using Graph Transformation: A Case Study with Alloy. In Proceedings
of the 6th International Workshop on Model-Driven Engineering, Verification and
Validation, MoDeVVa ’09, pages 3:1–3:10, New York, NY, USA, 2009. ACM.

160 Faiez Zalila

Bibliography

[EC82] E.Allen Emerson and Edmund M. Clarke. Using Branching Time Temporal
Logic to Synthesize Synchronization Skeletons. Science of Computer Program-
ming, 2(3):241 – 266, 1982.

[FDQDR+11] Jean-Marie Farines, Max H. De Queiroz, Vinicius De Rocha, Ana Maria
Carpes, François Vernadat, and Xavier Crégut. A Model-Driven Engineer-
ing Approach to Formal Verification of PLC programs (regular paper). In
Emerging Technologies and Factory Automation (ETFA), Toulouse, France, pages
1–8. IEEE, septembre 2011.

[FdQdS+11] Jean-Marie Farines, Max H. de Queiroz, Mateus F. de Souza, Ana Maria M.
Carpes, and Francçois Vernadat. Modeling and Verification of Plc Programs
by using Fiacre Tool Chain. TOPCASED DAYS 2011, 2011.

[FGC+06] Patrick Farail, Pierre Gaufillet, Agusti Canals, Christophe Le Camus, David
Sciamma, Pierre Michel, Xavier Crégut, and Marc Pantel. The TOPCASED

project: a Toolkit in OPen source for Critical Aeronautic SystEms Design. In
Embedded Real Time Software (ERTS), Toulouse, France, January 2006.

[FGM+07] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.
Pierce, and Alan Schmitt. Combinators for Bidirectional Tree Transforma-
tions: A Linguistic Approach to the View-update Problem. ACM Transactions
on Programming Languages and Systems (TOPLAS) - Special issue on POPL 2005,
29(3), May 2007.

[Fra11] Ulrich Frank. Some guidelines for the conception of domain-specific mod-
elling languages. In Markus Nüttgens, Oliver Thomas, and Barbara Weber,
editors, Enterprise Modelling and Information Systems Architectures: Proceedings
of the 4th International Workshop on Enterprise Modelling and Information Systems
Architectures, EMISA 2011, Hamburg, Germany, September 22-23, 2011, pages
93–106, 2011.

[GaG07] Ismênia Galvão and Arda Goknil. Survey of traceability approaches in model-
driven engineering. In 11th IEEE International Enterprise Distributed Object
Computing Conference EDOC 2007, 15-19 October 2007, Annapolis, Maryland,
USA, pages 313–326, 2007.

[GCKK06] Heather Goldsby, Betty H. C. Cheng, Sascha Konrad, and Stephane Kam-
doum. A Visualization Framework for the Modeling and Formal Analysis
of High Assurance Systems. In Proceedings of the 9th international conference on
Model Driven Engineering Languages and Systems, MoDELS’06, pages 707–721,
Berlin, Heidelberg, 2006. Springer-Verlag.

[GdLMD09] Esther Guerra, Juan de Lara, Alessio Malizia, and Paloma Díaz. Supporting
user-oriented analysis for multi-view domain-specific visual languages. In-
formation & Software Technology, 51(4):769–784, 2009.

Formal Verification Integration Approach for DSL 161

Bibliography

[Ge14] Ning Ge. Property Driven Verification Framework: Application to Real-Time Prop-
erty for UML-MARTE Software Designs. Thèse de doctorat, Institut National
Polytechnique de Toulouse, Toulouse, France, mai 2014.

[GLMS11] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP
2010: A toolbox for the construction and analysis of distributed processes. In
Tools and Algorithms for the Construction and Analysis of Systems - 17th Inter-
national Conference, TACAS 2011, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March
26-April 3, 2011. Proceedings, pages 372–387, 2011.

[GRS10] A. Gargantini, E. Riccobene, and P. Scandurra. Combining Formal Methods
and MDE Techniques for Model-driven System Design and Analysis. Inter-
national journal on advances in software, 3(1,2):1 – 18, 2010.

[HBRV10] Ábel Hegedüs, Gábor Bergmann, István Ráth, and Dániel Varró. Back-
annotation of Simulation Traces with Change-Driven Model Transformations.
In Proceedings of the 2010 8th IEEE International Conference on Software Engi-
neering and Formal Methods, SEFM ’10, pages 145–155, Washington, DC, USA,
2010. IEEE Computer Society.

[HHI+10] Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato, Kazutaka
Matsuda, and Keisuke Nakano. Bidirectionalizing Graph Transformations.
In Proceedings of the 15th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’10, pages 205–216, New York, NY, USA, 2010. ACM.

[HHI+11] Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato, and
Keisuke Nakano. GRoundTram: An Integrated Framework for Develop-
ing Well-Behaved Bidirectional Model Transformations (short paper). In
26th IEEE/ACM International Conference On Automated Software Engineering
(ASE’11), pages 480–483. IEEE, 2011.

[HHI+13] Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato, and Keisuke
Nakano. GRoundTram: An Integrated Framework for Developing Well-
Behaved Bidirectional Model Transformations. Progress in Informatics,
(10):131–148, March 2013. http://dx.doi.org/10.2201/NiiPi.2013.10.7.

[Hol03] Gerard Holzmann. Spin Model Checker, the: Primer and Reference Manual.
Addison-Wesley Professional, first edition, 2003.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Seman-
tics of "Semantics"? Computer, 37(10):64–72, October 2004.

[HSST11] Zhenjiang Hu, Andy Schürr, Perdita Stevens, and James F. Terwilliger.
Dagstuhl seminar on bidirectional transformations (BX). SIGMOD Record,
40(1):35–39, 2011.

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL: A
Model Transformation Tool. Science of Computer Programming, 72(1-2):31 – 39,

162 Faiez Zalila

Bibliography

2008. Special Issue on Second issue of experimental software and toolkits
(EST).

[JB06] Frédéric Jouault and Jean Bézivin. KM3: A DSL for Metamodel Specification.
In Proceedings of the 8th IFIP WG 6.1 International Conference on Formal Methods
for Open Object-Based Distributed Systems, FMOODS’06, pages 171–185, Berlin,
Heidelberg, 2006. Springer-Verlag.

[JCV12] Jean-Marc Jézéquel, Benoît Combemale, and Didier Vojtisek. Ingénierie Dirigée
par les Modèles : des concepts à la pratique. Références sciences. Ellipses, Febru-
ary 2012.

[JK06] Frédéric Jouault and Ivan Kurtev. Transforming models with atl. In Pro-
ceedings of the 2005 International Conference on Satellite Events at the MoDELS,
MoDELS’05, pages 128–138, Berlin, Heidelberg, 2006. Springer-Verlag.

[Jou05] Frédéric Jouault. Loosely coupled traceability for ATL. In In Proceedings of the
European Conference on Model Driven Architecture (ECMDA) workshop on trace-
ability, 2005.

[JSS01] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A Micromodularity
Mechanism. In Proceedings of the 8th European Software Engineering Conference
Held Jointly with 9th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ESEC/FSE-9, pages 62–73, New York, NY, USA, 2001.
ACM.

[KKP+09] Gabor Karsai, Holger Krahn, Class Pinkernell, Bernhard Rumpe, Martin
Schneider, and Steven Völkel. Design Guidelines for Domain Specific Lan-
guages. In Matti Rossi, Jonathan Sprinkle, Jeff Gray, and Juha-Pekka Tolva-
nen, editors, Proceedings of the 9th OOPSLA Workshop on Domain-Specific Mod-
eling (DSM’09), pages 7–13, 2009.

[KPP06] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. Merging Mod-
els with the Epsilon Merging Language (EML). In Proceedings of the 9th Inter-
national Conference on Model Driven Engineering Languages and Systems, MoD-
ELS’06, pages 215–229. Springer-Verlag, Berlin, Heidelberg, 2006.

[KPP08] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. Polack. The Epsilon
Transformation Language. In Proceedings of the 1st International Conference on
Theory and Practice of Model Transformations, ICMT ’08, pages 46–60. Springer-
Verlag, Berlin, Heidelberg, 2008.

[KSV09] Paul Klint, Tijs van der Storm, and Jurgen Vinju. RASCAL: A Domain Specific
Language for Source Code Analysis and Manipulation. In Proceedings of the
2009 Ninth IEEE International Working Conference on Source Code Analysis and
Manipulation, SCAM ’09, pages 168–177, Washington, DC, USA, 2009. IEEE
Computer Society.

Formal Verification Integration Approach for DSL 163

Bibliography

[Lec09] Thierry Lecomte. Applying a formal method in industry: A 15-year trajec-
tory. In Marìa Alpuente, Byron Cook, and Christophe Joubert, editors, Formal
Methods for Industrial Critical Systems, volume 5825 of Lecture Notes in Com-
puter Science, pages 26–34. Springer Berlin Heidelberg, 2009.

[MDL+14] Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Hans
Vangheluwe, and Manuel Wimmer. ProMoBox: A Framework for Gener-
ating Domain-Specific Property Languages. In Benoît Combemale, DavidJ.
Pearce, Olivier Barais, and JurgenJ. Vinju, editors, Software Language Engineer-
ing, volume 8706 of Lecture Notes in Computer Science, pages 1–20. Springer
International Publishing, 2014.

[MF76] Philip M. Merlin and David J. Farber. Recoverability of communication
protocols–implications of a theoretical study. IEEE Transactions on Commu-
nications, 24(9):1036 – 1043, sep 1976.

[MFJ05] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving exe-
cutability into object-oriented meta-languages. In Proceedings of the 8th Inter-
national Conference on Model Driven Engineering Languages and Systems, MoD-
ELS’05, pages 264–278, Berlin, Heidelberg, 2005. Springer-Verlag.

[Min68] Marvin Minsky. Matter, mind, and models. Semantic Information Processing,
pages 425–432, 1968.

[MP10] Janne Merilinna and Juha Pärssinen. Verification and validation in the context
of domain-specific modelling. In Proceedings of the 10th Workshop on Domain-
Specific Modeling, DSM ’10, pages 9:1–9:6, New York, NY, USA, 2010. ACM.

[MVG06] Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transformation. Elec-
tronic Notes in Theoretical Computer Science, 152:125–142, March 2006.

[MWVD13] Bart Meyers, Manuel Wimmer, Hans Vangheluwe, and Joachim Denil. To-
wards Domain-specific Property Languages: The ProMoBox Approach. In
Proceedings of the 2013 ACM Workshop on Domain-specific Modeling, DSM ’13,
pages 39–44, New York, NY, USA, 2013. ACM.

[OMG03a] Object Management Group. Model Driven Architecture (MDA) Guide, v1.0.1,
June 2003.

[OMG03b] OMG. Object Constraint Language (OCL) 2.0, 2003.

[OMG06] OMG. Meta Object Facility (MOF) 2.0 Core, 2006.

[OMG07a] OMG. Software Process Engineering Metamodel (SPEM) 2.0, March 2007.

[OMG07b] OMG. Unified Modeling Language (UML) 2.1.2, 2007.

[OMG10] OMG. UML 2.3 Superstructure, 2010.

[OMG11a] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specifi-
cation, Version 1.1, January 2011.

164 Faiez Zalila

Bibliography

[OMG11b] OMG. OMG MOF 2 XMI Mapping Specification, Version 2.4.1, August 2011.

[OMG12] OMG. OMG Object Constraint Language (OCL), Version 2.3.1, January 2012.

[OO+12] Ileana Ober, Iulian Ober, et al. Seeing errors: model driven simulation trace
visualization. In Model Driven Engineering Languages and Systems, pages 480–
496. Springer, 2012.

[Pan07] Marc Pantel. The TOPCASED project: a Toolkit in OPen source for
Critical Applications & SystEms Design. In Model-Driven Development
Tool Implementers Forum (MDD-TIF), Zurich, 24/06/2007, page (on line),
http://www.dsmforum.org/events/MDD-TIF07/, juin 2007. Domain Spe-
cific Modelling Forum (DSMF).

[Pet81] Gary L. Peterson. Myths About the Mutual Exclusion Problem. Information
Processing Letters, 12(3):115 – 116, 1981.

[PIM09] Patrizio Pelliccione, Paola Inverardi, and Henry Muccini. CHARMY: A
Framework for Designing and Verifying Architectural Specifications. IEEE
Trans. Softw. Eng., 35(3):325–346, May 2009.

[RKK08] Ana-Elena Rugina, Karama Kanoun, and Mohamed Kaâniche. The ADAPT
tool: From AADL architectural models to stochastic petri nets through model
transformation. CoRR, abs/0809.4108, 2008.

[RL12] Vlad Rusu and Dorel Lucanu. A K-based formal framework for domain-
specific modelling languages. In Bernhard Beckert, Ferruccio Damiani, and
Dilian Gurov, editors, Formal Verification of Object-Oriented Software, volume
7421 of Lecture Notes in Computer Science, pages 214–231. Springer Berlin Hei-
delberg, 2012.

[RS10] Grigore Rosu and Traian-Florin Serbanuta. An overview of the K seman-
tic framework. The Journal of Logic and Algebraic Programming, 79(6):397–434,
2010.

[Rus11] Vlad Rusu. Embedding Domain-specific Modelling Languages in Maude
Specifications. SIGSOFT Software Engineering Notes, 36(1):1–8, January 2011.

[SBPM08] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework (2nd Edition). Addison-Wesley, 2008.

[SK08] Andy Schürr and Felix Klar. 15 Years of Triple Graph Grammars. In Hart-
mut Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele Taentzer, edi-
tors, Graph Transformations, volume 5214 of Lecture Notes in Computer Science,
pages 411–425. Springer Berlin Heidelberg, 2008.

[Spi01] Diomidis Spinellis. Notable design patterns for domain specific languages.
Journal of Systems and Software, 56(1):91–99, February 2001.

Formal Verification Integration Approach for DSL 165

Bibliography

[Ste08] Perdita Stevens. Generative and Transformational Techniques in Software
Engineering II. chapter A Landscape of Bidirectional Model Transformations,
pages 408–424. Springer-Verlag, Berlin, Heidelberg, 2008.

[VB07] Dániel Varró and András Balogh. The Model Transformation Language of the
VIATRA2 Framework. Sci. Comput. Program., 68(3):187–207, October 2007.

[VDW12] Willem Visser, Matthew B. Dwyer, and Michael Whalen. The Hidden Models
of Model Checking. Software & Systems Modeling, 11(4):541–555, October 2012.

[Wil10] Edward D. Willink. Re-engineering Eclipse MDT/OCL for Xtext. ECEASST,
36, 2010.

[WK03] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Getting
Your Models Ready for MDA. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2 edition, 2003.

[WKH13] John Wilson-Kanamori and Soichiro Hidaka. A Bidirectional Collaboration
Framework for Bio-Model Development. In 2nd International Workshop on Bidi-
rectional Transformations (BX 2013), 2013.

[WL03] Alan Wassyng and Mark Lawford. Lessons Learned from a Successful Im-
plementation of Formal Methods in an Industrial Project. In Keijiro Araki,
Stefania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods, vol-
ume 2805 of Lecture Notes in Computer Science, pages 133–153. Springer Berlin
Heidelberg, 2003.

[YLH+12] Yijun Yu, Yu Lin, Zhenjiang Hu, Soichiro Hidaka, Hiroyuki Kato, and Lionel
Montrieux. blinkit: Maintaining Invariant Traceability through Bidirectional
Transformations. In ICSE 2012, pages 540–550, Zurich, Switzerland, June
2012.

[YMH+06] Jian Yu, Tan Phan Manh, Jun Han, Yan Jin, Yanbo Han, and Jianwu Wang.
Pattern based property specification and verification for service composition.
In Proceedings of the 7th International Conference on Web Information Systems,
WISE’06, pages 156–168. Springer-Verlag, Berlin, Heidelberg, 2006.

[ZCP12] Faiez Zalila, Xavier Crégut, and Marc Pantel. Leveraging formal verification
tools for dsml users: A process modeling case study. In Proceedings of the
5th International Conference on Leveraging Applications of Formal Methods, Veri-
fication and Validation: Applications and Case Studies - Volume Part II, ISoLA’12,
pages 329–343, Berlin, Heidelberg, 2012. Springer-Verlag.

[ZCP13a] Faiez Zalila, Xavier Crégut, and Marc Pantel. Formal verification integra-
tion approach for dsml. In Ana Moreira, Bernhard Schätz, Jeff Gray, Anto-
nio Vallecillo, and Peter Clarke, editors, Model-Driven Engineering Languages
and Systems, volume 8107 of Lecture Notes in Computer Science, pages 336–351.
Springer Berlin Heidelberg, 2013.

166 Faiez Zalila

Bibliography

[ZCP13b] Faiez Zalila, Xavier Crégut, and Marc Pantel. A transformation-driven ap-
proach to automate feedback verification results. In Alfredo Cuzzocrea and
Sofian Maabout, editors, Model and Data Engineering, volume 8216 of Lecture
Notes in Computer Science, pages 266–277. Springer Berlin Heidelberg, 2013.

[ZCP14] Faiez Zalila, Xavier Crégut, and Marc Pantel. A user-oriented approach to
integrate formal verification activity for DSML (regular paper). In Interna-
tional Conference on Embedded Real Time Software and Systems (ERTS2), Toulouse,
05/02/2014-07/02/2014. SIA/3AF/SEE, février 2014.

[ZG02] Paul Ziemann and Martin Gogolla. An Extension of OCL with Temporal
Logic. In Critical Systems Development with UML – Proceedings of the UML’02
workshop, volume TUM-I0208, pages 53–62, September 2002.

Formal Verification Integration Approach for DSL 167

List of Figures

1 Towards a generic approach to integrate formal verification for DSMLs . . . 6

1.1 MDE core relations . 14

1.2 The Y schema of the MDA approach . 15

1.3 MDA layers . 16

1.4 A concrete modeling use-case . 17

1.5 Model transformation types and their main uses 18

1.6 Model-to-text transformation . 18

1.7 Model transformation process . 20

1.8 QVT standard architecture . 21

2.1 An extract of SPEM . 26

2.2 A SPEM development process . 28

2.3 Operational versus translational semantics . 30

3.1 Time Petri net metamodel . 36

3.2 The translational semantics of SPEM into TPN 37

3.3 A graphical TPN model generated by performing the translational semantics
on the SPEM model shown in Figure 2.2 . 39

3.4 An approach to verify behavioral properties on a process model conforming
to SPEM using TPN . 42

3.5 Introducing the SDMM extension on the SPEM metamodel 43

3.6 Defining different events can be captured on the SPEM metamodel 44

3.7 The Executable DSML pattern applied into the SPEM metamodel 45

3.8 The application of the Executable DSML pattern into the TPN metamodel . . . 46

4.1 The always temporal operator . 56

4.2 The eventually temporal operator . 56

4.3 The next temporal operator . 57

169

List of Figures

4.4 The until temporal operator . 57

4.5 The release temporal operator . 57

4.6 The Query Definition MetaModel (QDMM) . 58

4.7 Expressing behavioral properties on the DSML level 59

4.8 The application of QDMM extension for XSPEM 61

4.9 Translating DSML behavioral properties on the formal side 63

5.1 Overview of the feedback of verification results in the DSML V&V context . . 72

5.2 Feedback verification results generated by the TINA toolbox into the SPEM
level . 74

5.3 An edge-labelled graph for a SPEM model . 76

5.4 An edge-labelled graph for a TPN model . 76

5.5 An edge-labelled graph for an XSPEM process enriched with verification re-
sults . 78

5.6 An edge-labelled graph for an XSPEM process enriched with verification re-
sults and adapted into the Executable DSML pattern 79

5.7 A complete overview of the integration of the Executable DSML pattern with
GROUNDTRAM framework in the context of DSML V&V 80

5.8 Towards the generation of a DSML verification framework 81

5.9 Architecture of FEVEREL . 82

5.10 The piggyback pattern . 83

5.11 The source to source transformation pattern . 84

5.12 Implementation of FEVEREL DSPL . 85

5.13 The metamodel of FEVEREL DSPL . 86

6.1 An overview of a generated verification framework for a new DSML 92

6.2 DSML verification framework generation process 93

6.3 Additional behavioral properties verification process 95

6.4 Update the translational semantics process . 96

6.5 A Dependencies view of the generation of behavioral properties 97

7.1 FIACRE as intermediate language to reduce complexity when targeting sev-
eral formal toolboxes from modeling languages 104

7.2 The tooling around the FIACRE language . 106

7.3 The integration of FIACRE in the verification toolchain 108

7.4 Different kind of events in FIACRE . 109

7.5 The FIACRE SDMM . 110

170 Faiez Zalila

List of Figures

7.6 The generation of the traceability information between FIACRE and TTS . . . 111

7.7 A subset of the Linked FIACRE metamodel . 113

7.8 The generation of the verification results on the FIACRE level 114

8.1 Simple LD example . 127

8.2 LD metamodel . 128

8.3 Simple example of races in LD . 129

8.4 Draw of the elevation system . 129

8.5 Sensors and actuators of the elevation system 130

8.6 LD program to control the elevation system . 130

8.7 Modeling the system in FIACRE . 131

8.8 The executable LD (xLD) . 139

8.9 The architecture of a domain-specific model checker 148

Formal Verification Integration Approach for DSL 171

	Remerciements
	Résumé
	Abstract
	Contents
	Introduction
	0.1 Context and challenges
	0.2 Description of the thesis contributions
	0.3 Outline of this thesis

	Part I. State of the Art
	1 Model-driven Engineering
	1.1 Model and Metamodel
	1.2 Model-driven Architecture
	1.2.1 The MDA approach
	1.2.2 The MDA architecture

	1.3 Model Transformation
	1.3.1 Model transformation types
	1.3.2 Model transformation languages

	2 Domain-specific Modeling Languages
	2.1 Different elements defining a DSML
	2.1.1 Abstract syntax of a DSML
	2.1.2 Concrete syntax of a DSML
	2.1.3 Behavioral semantics for a DSML

	2.2 Model verification for DSMLs

	3 SPEM as a DSML
	3.1 Verification of SPEM models
	3.1.1 Time Petri nets, SE-LTL and Tina toolbox
	3.1.2 Translational semantics of SPEM into Petri nets
	3.1.3 Expressing and generating formal properties
	3.1.4 Performing the formal verification
	3.1.5 Implementation of the approach

	3.2 Towards the definition of an eXecutable DSML (xDSML)
	3.2.1 The Executable DSML pattern
	3.2.1.1 Domain Definition MetaModel (DDMM)
	3.2.1.2 State Definition MetaModel (SDMM)
	3.2.1.3 Event Definition MetaModel (EDMM)
	3.2.1.4 Trace Management MetaModel (TM3)

	3.2.2 Application of the Executable DSML pattern to TPN

	3.3 The evaluation of the approach
	3.3.1 Resolved MDE disadvantages
	3.3.2 Unresolved formal methods disadvantages

	3.4 Goals
	3.4.1 DSML end-user expectations
	3.4.2 DSML expert and designer expectations

	Part II. Contribution
	4 Expressing and verifying behavioral properties
	4.1 The expression of behavioral properties
	4.1.1 The temporal extension of OCL
	4.1.1.1 always operator
	4.1.1.2 eventually operator
	4.1.1.3 next operator
	4.1.1.4 until operator
	4.1.1.5 release operator
	4.1.1.6 precedence operators

	4.1.2 The Query Definition MetaModel (QDMM) extension
	4.1.3 Implementation

	4.2 Translation of behavioral properties
	4.2.1 The proposed approach to translate behavioral properties
	4.2.2 The generation of formal properties

	4.3 Related works

	5 Feedback verification results
	5.1 Defining a backward transformation
	5.2 The use of bidirectional transformation
	5.2.1 Bidirectional Model Transformation with GROUNDTRAM
	5.2.1.1 Data Model
	5.2.1.2 Bidirectional Transformations

	5.2.2 Combining the Executable DSML pattern with the GROUNDTRAM framework
	5.2.3 Implementation
	5.2.4 Synthesis and discussion

	5.3 FEVEREL: Feedback Verification Results Language
	5.3.1 Motivations
	5.3.2 Architecture of FEVEREL
	5.3.3 Implementation of FEVEREL language
	5.3.4 Syntaxes and semantics of FEVEREL

	5.4 Related works

	6 Building a verification framework for an executable DSML
	6.1 Architecture of the verification framework for a new DSML
	6.2 The generation of a verification framework for a new DSML
	6.2.1 Identification of different actors
	6.2.2 The process of DSML verification framework generation

	6.3 Dependencies between DSML verification framework elements
	6.4 Guidelines for validating the verification toolchain
	6.5 Conclusion

	Part III. Validation of the approach
	7 Application of the approach using an intermediate language
	7.1 The Fiacre Language
	7.2 Expressing behavioral properties on FIACRE level
	7.3 Integrating the FIACRE language in the verification toolchain
	7.4 Connecting the FIACRE level with the TINA toolbox
	7.4.1 The generation of traceability information between FIACRE and TTS
	7.4.2 Feedback verification results on the FIACRE level

	7.5 Adapting the XSPEM toolchain to FIACRE
	7.5.1 Connecting FIACRE properties capabilities with the TOCL tooling
	7.5.2 Translational semantics XSPEM2FIACRE
	7.5.3 Defining and translating TOCL properties
	7.5.4 The feedback of verification results

	8 Formal verification of PLC programs
	8.1 Specification of PLC programs
	8.1.1 PLCs and the IEC 61131-3 standard
	8.1.2 Ladder Diagram (LD)
	8.1.3 A Control System Example

	8.2 Modeling and Verification of PLC programs
	8.2.1 Modeling PLC programs with the FIACRE language
	8.2.2 Existing PLC Verification toolchain

	8.3 Application of the integration of the hidden verification activityfor LD diagram
	8.3.1 Expressing behavioral properties
	8.3.2 Introducing behavioral extensions
	8.3.3 Feedback verification results

	8.4 Conclusion

	Conclusion
	Part IV. Appendices
	A. Related publications

	Bibliography
	List of Figures

