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Résumé

Les amplications optimales d'énergie de structures quasiment alignées dans le sens de l'écoulement sont calculées dans le cas d'un sillage paralléle, d'un sillage synthètique faiblement non-paralléle et du sillage d'un cylindre. Il a été observé que de très grandes amplications d'énergie peuvent être supportés par ces sillages. L'amplication d' énergie s'accroît avec la longueur d'onde des perturbations en envergure à l'exception du sillage du cylindre pour lequel l'accroissement d'énergie est maximal pour λ z ≈ 5 -7 D. Les structures ampliées de manière optimale sont les streaks uctuant dans le sens de l'ècoulement. Il est montré que ces streaks sont capables de supprimer complètement l'instabilité absolue d'un sillage parallèle lorsqu'ils sont déclenchés avec une amplitude nie. L'instabilité globale d'un sillage faiblement non-parallèle et celle du sillage d'un cylindre peuvent être complètement supprimées par des streaks d'amplitude modeste. L'énergie de contrôle requise pour stabiliser le sillage est trés faible lorsque les perturbations optimales sont utilisées, et il est montré qu'elle est toujours plus faible que celle qui devrait être utilisée pour un contrôle uniforme en envergure (2D). Il est aussi montré que la dépendance du taux de croissance est quadratique et que, par conséquent, les classiques analyses de sensibilité au premier ordre ne permettent pas de prédire la grande ecacité de la technique de contrôle par streaks.

La dernière partie de ce travail livre des résultats préliminaires sur l'étude expérimentale du contrôle par streaks dans le cas du sillage turbulent d'un corps 3D. Il est montré que les streaks forcés articiellement dans la zone d'instabilité absolue de l'écoulement sont capables de modier la dynamique du sillage.

Chapter 1

Introduction 1 Industrial context

On the verge of an environmental and energetical crisis, car manufacturers have to meet with regulations imposed by CAFE (Corporate Average Fuel Emission) whose main objective is to reduce their average CO 2 emission from 132.2 g/km in 2012 to 95 g/km in 2020. While huge improvements could be achieved with new engines (e.g. 3 cylinders), a large amount of fuel could be saved by lowering the penalty introduced by drag (the force exerted on a body which opposes to its motion).

The main sources of drag for cars lay in tyres and aerodynamics. Drag due to tyres increases linearly with the speed of the vehicle, while the aerodynamic drag dependence is quadratic. Typically, aerodynamic drag becomes larger than the tyres drag at 70 km/h and it is more than 70% of the total drag above 90 km/h (see gure 1.1). Aerodynamic drag can be decomposed into viscous drag and pressure drag. Viscous drag is due to friction of the ow over the surface of the body while pressure drag is due to momentum losses occurring in separated ow regions which induce a dierence between the pressure exerted on the front and the rear of the body. For streamlined bodies such as e.g. airplanes or submarines at the cruise speed, the separated ow regions, if there are any, are very small so the main source of resistance to motion is viscous drag while the remaining amount is pressure drag and induced drag. Conversely, for blu (i.e. non streamlined) bodies the opposite is true and the main source of drag is pressure drag.

One way to reduce the drag penalty could be to design highly streamlined cars. Nevertheless, this approach fails to cope with practical constraints such as habitability, ergonomics, safety, cooling not mentioning style. For those reasons car manufacturers let designers and architects draw the main shapes and optimize their aerodynamic properties afterwards.

In this context, in a previous investigation founded by PSA, Pujals et al. (2010b) obtained a substantial drag reduction (10% on the total drag) using a suitable distribution of small cylindrical elements placed on the roof of a simplied vehicle model (the so-called Ahmed body). The small cylinders, which were immersed in the boundary layer, were used to generate low energy spanwise periodic streamwise vortices which induced the streamwise growth of spanwise periodic (3D) regions of high and low streamwise velocity (the so-called streamwise streaks). The presence of the streaks was instrumental in suppressing the ow separation of the slanted ( 25o ) rear surface of the Ahmed body, as shown in gure 1.2, and therefore reducing the total pressure drag. A fundamental idea used by Pujals et al. (2010b) and in other previous studies (e.g. Cossu & Brandt, 2002, 2004;[START_REF] Fransson | Experimental and theoretical investigation of the non-modal growth of steady streaks in a at plate boundary layer[END_REF]Fransson et al., , 2005Fransson et al., , 2006) ) was to force `optimal' streamwise vortices which lead to the streamwise streaks of maximum energy via the lift-up eect (Landahl, 1980;Schmid & Henningson, 2001). The control strategy used by Pujals et al. (2010b), however, was ineective for high slant angles and therefore for the case of blunt trailing edges, such as those of monospace cars, vans or trucks. The main questions that has motivated the present work were: Can the approach of Pujals et al. (2010b) be modied to control massive separations around bodies with a blunt 2. BLUFF BODY WAKES trailing edge? If yes, how?

In the case of blunt trailing edge the large scale vortex shedding developing in the wake is the main source of pressure drag. A digression is therefore necessary to summarize the state of the art on the understandings of the origins of vortex shedding in blu body wakes as well as the strategies attempted to date in order to control it.

Blu body wakes

Blu bodies are typically characterized by boundary layer separation leading to wide wakes whose cross-stream size is comparable to that of the body. The massive ow separation of blu bodies and the complex vortex dynamics which develops in the wake lead to a signicant decrease of the pressure recovery on the rear part of the body and therefore to a dramatic increase of the pressure drag as well as undesirable unsteady loads.

The basic physics of blu body wakes is best understood in two-dimensional ows, the canonical case study being the circular cylinder wake. Assuming the ow to be incompressible and viscous, the relevant control parameter is the Reynolds number Re = U ∞ D/ν (where U ∞ is the velocity, D is the diameter of the body and ν is the kinematic viscosity of the uid). For Re ≤ 47 the ow is steady and symmetric but above above 47 two-dimensional vortices are periodically shed in the wake (von Kármán vortex shedding, see gure 1.3). In correspondence to the onset of vortex shedding the base pressure coecient (C pb ) at the aft of the cylinder, which is strongly correlated with the pressure drag, shows a sharp decrease, as shown in gure 1.4. Further increase of the Reynolds number leads to an increasingly three-dimensional and Source: Van Dyke (1982). complex structure of the wake. This feature of blu-bodies wake ows remains observed for larger Reynolds numbers, even if modulated by turbulence and trying to quantify their impact [START_REF] Cantwell | An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder[END_REF] reports that for circular cylinder's near wake a percentage around 45% of the velocity uctuations are due to the coherent structures at Re ≈ 10 5 . plot of base pressure coecient is particularly useful as a basis for discussion of the various ow regimes. The base pressure coecient is surprisingly sensitive to the process of vortex formation in the near wake, which itself is aected strongly by the evolution of various 2D and 3D wake instabilities, as Reynolds numbers are varied. Source: [START_REF] Williamson | Vortex dynamics in the cylinder wake[END_REF].

The vortex shedding's origins can be tracked back to the instability of the wake developing donwstream of the blu body. The wake velocity proles in the near wake become unstable at very low Reynolds number values (Re ≈ 6) and for Re ≥ 25 this instability becomes suciently strong to develop against the mean ow (absolute instability). Further increase of the Reynolds number leads then to creation of a nite region of absolute instability that can destabilize the whole wake acting as a `wave-maker' (Chomaz et al., 1988;Monkewitz, 1988;Huerre & Monkewitz, 1990). The resulting self sustained oscillations are triggered by the wavemaker region, and are then amplied donwnstream in the convectively unstable region (see chapter 2 for more details).

Control of 2D wakes

The main goal of active (with energy input) and passive (without energy input) blu body control strategies has been to attenuate or quench vortex shedding. The most investigated framework is, again, that of two-dimensional (2D) wakes.

3.1

2D control Many dierent strategies have been tested in order to reduce shedding using spanwise uniform (2D) control. The main goal of these control strategies is to reduce the absolute instability in 3. CONTROL OF 2D WAKES 5 the wave-maker region. This reduction can be e.g. achieved by base bleed as shown by Schumm et al. (1994) (see gure 1.5) or base suction as shown by [START_REF] Leu | Control of global instability in a non-parallel near wake[END_REF]. However, these active control techniques require large levels of bleeding (≈ 0.2 U ∞ ) or suction (≈ 0.46 U ∞ ) to stabilize the shedding. We will see in the next section that control based on 3D perturbations requires much less energy to achieve the same goal. A 2D passive control technique which has received a lot of attention is based on the placement of a thin control wire in the near wake of the cylinder which is able to suppress the shedding in the laminar regime (Re ≤ 80), as shown by [START_REF] Strykowski | On the formation and suppression of vortex shedding at low Reynolds numbers[END_REF]. A convincing theoretical interpretation of the stabilizing mechanism has been recently advanced and is based on the rst-order sensitivity analysis of the global instability with respect to basic ow modications (Chomaz, 2005;Giannetti & Luchini, 2007). In these studies it was shown that the control wire must be placed in the wavemaker region of the wake which roughly corresponds to the region of absolute instability. First-order sensitivity analyses are also useful to compute the wake modications which optimally reduce the absolute growth rate (Hwang & Choi, 2006) and have been applied to a host of other ows such as the one behind a backward facing step [START_REF] Barbagallo | Closedloop control of unsteadiness over a rounded backward-facing step[END_REF] or the ow in a wall cavity [START_REF] Yamouni | Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity ow: a global stability analysis[END_REF].

The 2D wire control technique has been recently extended to the turbulent case where large drag reductions have been achieved (see e.g. [START_REF] Sakamoto | An optimum suppression of uid forces by controlling a shear layer separated from a square prism[END_REF]Parezanovi¢ & Cadot, 2009a[START_REF] Khalighi | Unsteady aerodynamic ow investigation around a simplied square-back road vehicle with drag reduction devices[END_REF][START_REF] Cadot | Passive drag control of a turbulent wake by local disturbances[END_REF].

3D control

A second class of control techniques (3D control) is based on the spanwise periodic modulation of the wake. In the case of passive control these modications can be obtained by modulating the blu body geometry, as shown in gure 1.6. In particular, Zdravkovich (1981) (panel a) applied an helical strake to a circular cylinder geometry while [START_REF] Tanner | Reduction of base drag[END_REF] (panel b) studied a segmented trailing edge. Tombazis & Bearman (1997) installed a spanwise wavy modulation of the blunt trailing edge on a cigar shaped body (panel c) followed by Bearman & Owen (1998) who tested the wavy modication on the front stagnation face (panel d). Both these technique were later combined by Darekar & Sherwin (2001). Tabs placed at the edge of the blunt surface have been used by Park et al. (2006) (panel g). Vortex shedding suppression can also be achieved using active control in the form of blowing and suction through slots placed on the blu body surface, as shown by Kim & Choi (2005). (g,h) small-size tab. Source Choi et al. (2008) All the techniques above mentioned can be characterized by the amplitudes and the spanwise wavelength of the control. The amplitude can be the blowing suction coecient used by Kim & Choi (2005), the height of the tabs of Park et al. (2006) or the amplitude of the leading and trailing edge modulations used by Darekar & Sherwin (2001). Minimal amplitudes to either suppress vortex shedding or achieve a determined base pressure reduction typically correspond to y-symmetric (varicose) forcing with well dened optimal spanwise wavelengths.

In the case of the circular cylinder, for example, the optimal spanwise wavelength is 5 -7 D at least up to Re = 3900. 3D control techniques have proven to be highly ecient and to be eective in a very large range of Reynolds numbers. Kim & Choi (2005) obtained a 20% reduction of the total drag at Re = 100 with a bleeding coecient of C ν = 0.0012, much smaller than the C ν = 0.04 required by 2D forcing. Park et al. (2006) obtained, with the optimal tabs conguration, a ≈ 30% increase of the base pressure in a high Reynolds numbers regime (Re = 20 000 -80 000).

The theoretical understanding of the mechanisms underlying 3D control is much less developed than for 2D control. Most of the explanations have been advanced in terms of vortex dynamics in the wake. Very recently, however, important progress has been made from a stability theory perspective. In particular, Hwang et al. (2013) have shown that spanwise periodic modulations of the 2D wake prole (that we interpret as streamwise streaks) have a stabilizing action on the absolute instability. They, however, did also show that the rst order sensitivity of 3D perturbations is zero and that 2D perturbations are predicted to be more ecient than 3D ones in the framework of their analysis. The apparent contradiction of these results with the experimental observations prompts for further investigation of this issue.

About this thesis

Nowadays, most cars are of hatchback or squareback type [START_REF] Hucho | Aerodynamics of road vehicles[END_REF], meaning their rearend can be considered as blunt. Many studies being either theoretical or experimental have proven the ability of 3D actuation (albeit not being necessarily streaks) to perform ow 4. ABOUT THIS THESIS control on various geometries (most of them still being 2D ones). Consequently, the main question motivating the present work is: can streaks be used to eciently manipulate massive separations past blu bodies? If that is so, how do they act on the dynamics of such wakes?

The rst part of our investigation has focused on the computation of optimal perturbations sustained by dierent types of 2D wakes. Are those optimal perturbations streamwise vortices evolving into streamwise streaks? If that is so, are they highly amplied? Could they be used for control purpose? Do they have some stabilizing eect on the unstable mode responsible for vortex shedding just like the spanwise modulations studied by Hwang et al. (2013)?

Keeping in mind some possible application of this strategy to automotive geometries, we then have to investigate how could such perturbations be forced on a 3D blu body with a blunt rear-end at high Reynolds number. Can roughness elements be used in the spirit of Fransson et al. (2005) or Pujals et al. (2010b)? Can they really (i.e. in a wind tunnel experiment) act on the shedding mode? What are the relevant parameters of actuation?

The present manuscript is organized as follow: in chapter 2 we briey recall the main concepts related to stability analyses that we will use throughout the thesis. In chapter 3, we describe the three base-ows we will consider as prototypes of wake ows with increasing complexity. Chapter 4 and 5 are devoted to respectively optimal perturbations sustained by those base-ows and their stabilizing eect on the unstable shedding mode when they are enforced. Chapter 6 gives some new insight on the sensitivity analysis while chapter 7 eventually presents the results of an experimental validation on a simplied 3D blu body geometry. Chapter 8 gives a summary of all our conclusions on this study and discuss them.

Chapter 2

Background

In this chapter the main instability concepts that will we used in the following are briey recalled.

Stability and instabilities of parallel open ows

We closely follow Huerre & Monkewitz (1990) in introducing the concepts of absolute and convective instability in parallel ows. Consider the evolution of small perturbations of a parallel steady basic ow U = [U (y), 0, 0], a Fourier-Laplace transform of the linearized equations leads to examine normal mode solutions of the type u(x, y, t) = u(α, y) e i (α x-ω t) , where α is the wavenumber for the streamwise direction x, ω is the complex frequency and variations in the spanwise direction z are, at this stage, neglected. The normal modes satisfy a dispersion relation D(ω, α) = 0 which can be associated to a spatio-temporal linear operator L(x, t) through an inverse Laplace-Fourier transform. The stability properties of the basic ow are revealed by the analysis of the Green function G(x, t) (linear impulse response) of L which satises:

L G(x, t) = δ(x) δ(t), (2.1) where δ denotes the Dirac delta function.The ow is linearly stable if: lim t→∞ G(x, t) = 0 ∀ x/t = constant, (2.2) while it is linearly unstable if: lim t→∞ G(x, t) = ∞ along at least one ray x/t = constant. (2.3) Following standard denitions initially used in plasma physics [START_REF] Landau | Fluid mechanicspergamon[END_REF][START_REF] Briggs | Active procedures to control the ow past the ahmed body with a 25 degree rear window[END_REF][START_REF] Bers | Linear waves and instabilities[END_REF], an unstable basic ow is said to be convectively unstable if: lim t→∞ G(x, t) = 0 along the ray x/t = 0, (2.4) while it is absolutely unstable if: lim t→∞ G(x, t) = ∞ along the ray x/t = 0.

(2.5) For convectively unstable ows, therefore, the perturbations are not unstable enough to overcome the downstream advection and grow against the ow, while the opposite is true for 10 CHAPTER 2. BACKGROUND absolutely unstable ows (see gure 2.1 for a sketch). However, convectively unstable ows can largely amplify, in the downstream direction, periodic perturbations that would be applied at a xed spatial station. Indeed, the spatial stability problem is well dened in convectively unstable ows while it is not in absolutely unstable ows. 

Global instabilities in non-parallel ows

Global stability analysis deals with steady non-parallel basic ows U = [U (x, y), V (x, y), 0].

Small perturbations to non-parallel basic ows satisfy the linearized Navier-Stokes equations that we formally write as ∂φ/dt = L N S φ, where φ is the perturbation state vector and L N S is the linearized Navier-Stokes operator. The streamwise inhomogeneity of the basic ow precludes the use of the Fourier transform in the streamwise direction x. The global eigenvalues s and associated global modes φ(x, y) satisfy the global eigenvalue problem s φ = L N S φ. The ow is globally stable if the real part of all eigenvalues is negative s r < 0 while it is globally unstable if at least one eigenvalue has positive real part s r > 0.

In the case where the basic ow is only weakly non-parallel, it makes sense to try to relate the global stability properties of the basic ow to the local stability properties of the parallel basic ows obtained by extending to innity the local prole U (X, y), where the slow variable X is considered as a parameter and no more an eigenfunction direction.

An important relation has been established between local and global instabilities at the end of the 80ies. Chomaz et al. (1988) have shown that the existence of a pocket of absolute instability is a necessary but not sucient condition to the onset of amplied global oscillation. The region of absolute instability must reach a critical size in order for resonances to occur. These conclusions, found on the generalized linear Ginzburg-Landau model, have been conrmed by the local stability analyses of wakes (Monkewitz, 1988) and in many other ows (Huerre & Monkewitz, 1990), and by a rigorous asymptotic analysis of the linearized Navier-Stokes equations [START_REF] Monkewitz | Global linear stability analysis of weakly non-parallel shear ows[END_REF]. For instance, for the circular cylinder wake, Monkewitz (1988) nds a transition from local stability to local convective instability at Re ≈ 6, a region of local absolute instability appears at Re ≈ 25 before the onset of the global instability at Re 1 = 47 as an Hopf bifurcation (Provansal et al., 1987; Sreenivasan et al., 1987). At the onset of the global instability the region of absolute instability coincides approximately with the recirculation region, which extends to ≈ 4 D downstream the cylinder. AMPLIFICATION 11 These ndings relate the appearance of a global instability, e.g. inducing the vortex shedding in the circular cylinder wake, to the existence of a `wave-maker', the absolute instability region, where unstable waves can travel upstream and downstream and are therefore allowed to resonate. The wave-maker action is spatially amplied downstream in the convectively unstable region and nally damped in the further downstream stable region leading to the characteristic shapes of linear global modes.

NON-MODAL ENERGY

The relation between local and global instability is also essential for ow control applications. In order to stabilize the global instability, and therefore the vortex shedding, it is sucient to reduce enough, the region of local absolute instability in the near wake.

Non-modal energy amplication

The amplication of streamwise streaks in shear ows is physically explained by the lift-up eect (see e.g. Schmid & Henningson, 2001). Their amplication is, however, not explained by the classical modal stability analysis as it is not associated to an unstable mode. Indeed, in the small amplitudes approximation, streamwise streaks decay when t → ∞ (or x → ∞ in the spatial framework) and are therefore only transiently amplied. The mathematical explanation of the streaks transient energy growth is related to the non normality of the linear operator L in initial value problems of the type dφ/dt = L φ. The question is: can some structures be transiently amplied in an asymptotically linearly stable system? Assuming that the eigenvalues s of L are all simple and using the modal decomposition φ = m ψ (m) q m the kinetic energy of the perturbations K = φ 2 /2 can be expressed as:

φ 2 = m n ψ (m) , ψ (n) q * m q n = m n ψ (m) , ψ (n) q * m (0)q n (0)e (s (m) * +s (n) )t ,
where ., . is the inner product of the considered state space. If L is a normal operator the eigenfunctions are orthogonal and all the modes are uncoupled. The last relation reduces to

φ 2 = ψ (m) 2 |q m (0)| 2 e 2s (m)
r t and if the whole spectrum is stable, energy can only decreases for all times. So a necessary condition for the existence of transient growth is the operator L is non-normal.

The transient energy growth is easily understood by geometric construction on a simple system with state vector φ = (φ 1 , φ 2 ) and non-orthogonal eigenfunctions ψ (1) and ψ (2) both corresponding to stable eigenvalues. As shown in gure 2.2, for this system, consider a unit length initial condition f dened as the dierence between two non orthogonal eigenfunctions, ψ (1) and ψ (2) . As time progresses the eigenfunction components decrease. The vector f transiently increases in length and aligns itself with the least stable eigenfunction direction.

Of course in the limit of large times f will decrease to zero.

Depending on the `shape' of the initial condition, therefore, non-normal linear systems can sustain transient energy growths. An important question is that of nding the `most dangerous' initial condition leading to the maximum energy growth. The optimal energy amplication G(t), dened as:

G (t) = max φ 0 =0 φ (t) 2 φ 0 2 , (2.6)
is the envelope of all the possible growth curves that can be realized by the system. At each specic target time corresponds a dierent initial condition. But it is labeled like optimal initial condition φ (opt) 0 the one that leads to the maximum transient energy growth which is obtained at t = t max . The optimally amplied structures are then those computed for the response of the system at t max .

G max = max t G(t),
Let us illustrate the computation of optimal energy growths on the following simple linear initial value problem mimicking the dynamics of streaks (φ 1 ) and vortices (φ 2 ) in parallel shear ows (see e.g. [START_REF] Farrell | Generalized stability theory. part I: Autonomous operators[END_REF]Schmid & Henningson, 2001):

d dt φ 1 φ 2 = -2 3Re 1 0 -1 5Re φ 1 φ 2 .
(2.7)

The system is completed by the initial conditions φ 1 (0) = φ From the already mentioned literature about the lift-up eect we know that the optimal initial structures are streamwise elongated spanwise periodic vortices while the optimally amplied structures are streaks. Those two structures, the initial and the optimal response, can be seen as orthogonal between them, since the former have the normal and the spanwise components of the velocity non zero and the latter has as only non zero components the downstream one. The same behavior can be found if the vector φ 0 = [0 1] is given like initial condition of the system (2.7). At t = t max and Re = 25 the optimal response will be φ = [0.9998 0.0187] which can be easily proved to be orthogonal to the initial condition.

G(t) is easily computed as the norm e L t with standard MATLAB or Scilab routine. In this chapter we introduce three wakes used in our study by order of increasing complexity: a parallel model wake, a weakly non-parallel `synthetic' wake and the circular cylinder wake.

Below, we describe in more details the stability properties of such ows as well as their uncontrolled dynamics. Their optimal perturbations and the stabilization of these basic ows will be discussed in chapters 4 and 5 respectively.

Monkewitz's model parallel wakes

The parallel wake basic ows we consider are dened by U 2D = [U M (y), 0, 0], where U M is the velocity prole proposed by [START_REF] Monkewitz | Absolute instability in the near-wake of twodimensional blu bodies[END_REF] and Monkewitz (1988) and used in a number of successive studies including e.g. those of Delbende & Chomaz (1998) 

U M (y) = 1 + Λ 2 1 + sinh 2N (y sinh -1 1) -1 , ( 3.1) 
where

Λ = (U * c -U * ∞ )/(U * c + U * ∞ )
, and U * c and U * ∞ are the centerline and the free stream velocity, respectively. The streamwise velocity prole U (y) is made dimensionless with respect to the reference velocity

U * ref = (U * c + U * ∞ )/2.
The spatial coordinates are made dimensionless with respect to the reference length δ * which is the distance from the centreline to the point where the velocity is equal to U * ref .

The Reynolds number used in the study of these parallel wakes is dened as Re = U * ref δ * /ν. In addition to the Reynolds number, the parameters dening the basic ow and its stability are Λ and N . The velocity ratio Λ controls the depth of the wake: Λ = -1 e.g. corresponds to zero centerline velocity. The shape factor N prescribes the ratio of the mixing layer thickness to the wake width: N = ∞ denes a top-hat wake bounded by two vortex sheets and N = 1 which leads to the standard sech 2 y wake (see gure 3.1). Monkewitz (1988) studied the linear stability of this model of wakes as a function of Re, Λ and N . One of the most salient results, reported in the right panel of gure 3.1, is the boundary of the absolute instability region in parameter space. For N -1 = 0 (i.e. N = ∞) the proles are mainly convectively unstable for the considered range of Λ at a given Reynolds number. Then when N -1 increases around the value 0.5 (i.e. N = 2) the range of Λ where the prole are absolutely unstable increases. Then for larger values around N -1 ≈ 1, the region of absolutely instability for lower Reynolds number decreases with a rate higher than those CHAPTER 3. A TALE OF THREE 2D WAKES: THE PROLOGUE for larger Reynolds number. Monkewitz (1988) conrms the existence of a region of absolute instability in the near wake at the onset of the global instability by associating the streamwise evolution of the nonparallel wake to a path in the Re, Λ, N parameter space. When N and Λ changes the velocity prole can be easily adapted to the particular downstream position of the wake's development. Right panel, absolute instability boundary in the Λ-N -1 plane for dierent Reynolds number indicated close to the curves (A stands for absolutely unstable while C stands for convectively unstable). Source: Monkewitz (1988).

In the following we will use as a case-study the velocity prole corresponding to the values Re = 50, Λ = -1 and N = 1 corresponding to a strong absolute instability.

We have analyzed the stability properties of the considered wake by post processing the linear impulse response obtained by DNS (see appendix A). The temporal analysis shows that the maximum growth rate ω i,max is equal to 0.256, the parallel wake is then clearly strongly unstable. The 2D parallel wake (case A for the parallel analysis in the followings chapters) shows to be absolutely unstable with an absolute growth rate σ(v = 0) = 0.073 and a wavepacket trailing edge velocity v -= 0.089. These values are in good agreement with Monkewitz (1988).

2 A weakly non-parallel `synthetic' wake [START_REF] Triantafyllou | Absolute instabilities and selfsustained oscillations in the wake of circular cylinders[END_REF] have shown that non-parallel wakes can sustain vortex shedding even in the absence of the blu-body generating the wake. `Synthetic' wakes have therefore been used to investigate theoretical concepts in a simplied setting (see e.g. [START_REF] Pier | Nonlinear self-sustained structures and fronts in spatially developing wake ows[END_REF]. The synthetic wake is generated by enforcing a Monkewitz's prole at the inow boundary in a DNS. The numerical integration domain is chosen wide and long enough to avoid numerical artifacts (see appendix A). The parameters of the inow prole are N = 1 and Λ = -1.35, which ensures a small upstream recirculation region. The Reynolds number is based on the inow wake prole Re = U * ref (x = 0) δ(x = 0)/ν. The basic ow is found as a steady solution of the Navier-Stokes equations with enforced cross-stream-symmetry. It corresponds to a weakly non-parallel wake which slowly diuses while evolving downstream (see gure 3.2(a)).

THE CIRCULAR CYLINDER WAKE AT LOW REYNOLDS NUMBER

If the cross-stream-symmetry condition is removed, the synthetic wake sustains a global instability and periodic vortex shedding for Re 39. In the following we will consider the globally unstable case at Re = 50 where shedding is observed (see gure 3.2(b)). The global stability properties of this basic ow are retrieved from the integration of the linearized Navier-Stokes equations, as explained in appendix A. At Re = 50, the most unstable linear global mode has a growth rate of s r = 0.0325. 3 The circular cylinder wake at low Reynolds number

The third case considered is the widely studied circular cylinder wake in the unstable regime at low values of the Reynolds number. As for the synthetic wake, the basic ow is a steady solution of the Navier-Stokes equations obtained upon enforcement of the y-symmetry condition. The basic solution corresponds to the symmetric steady ow with a recirculation region behind the circular cylinder. We have veried that the main characteristics of the computed basic ow, such as the drag coecient or the length of the separation bubble, are in agreement with those found by e.g. Fornberg (1980), Dennis & Chang (1970) and Giannetti & Luchini (2007).

If the y symmetry constraint is removed, the ow displays the well known periodic vortex shedding (see gure 3.3). We have checked that, in the unstable regime, the values of the drag coecient and the Strouhal number are in good agreement with previous results (in particular with Kim & Choi (2005) at Re = 100).

Like for the synthetic wake case, the global instability of the basic ow is studied by integrating in time the linearized Navier-Stokes equation. The computed linear growth rates of the uncontrolled 2D cylinder wake are reported in table 3.1 with all the Reynolds number considered.

Re

L R s r 50 3.1 D 0.010 75 4.6 D 0.095 100 6.2 D 0.123 Table 3.1: Considered cases for the circular cylinder's wake. L R is the value of the recirculation region of the steady unstable basic ow, while s r is the global growth rate. 

Chapter 4

Optimally amplied streamwise streaks in wakes 1 Optimal temporal energy growth in parallel wakes

We begin with optimal temporal energy growths of streamwise perturbations sustained by the parallel wake U 2D = [U M (y), 0, 0], with U M (y) given in eq. (3.1) and the parameters specied in the chapter 3. The considered Reynolds numbers range from 25 to 100.

As it is well known (see e.g. Schmid & Henningson, 2001), in parallel ows, because of the translational invariance, optimal growths can be computed separately for each Fourier mode of the perturbation velocity eld u(α, y, β, t) e i(αx+βz) . The optimal energy growths, dened in (2.6), are based on the usual energy density norm u 2 = (1/V ref ) V | u| 2 dV. For the considered values of Re the wake is unstable. For e.g. Re 25 an unstable region exists in the plane (α -β) centered on the two dimensional perturbations (β = 0) and with 0 < α 1.75.

Optimal transient growths will be computed for streamwise uniform perturbations which are linearly stable. Streamwise uniform perturbations are considered both because they are the most transiently amplied in stable wall-bounded shear ows and because they well mimic the perturbations that would be spatially forced by steady passive devices.

Since the basic ow is symmetric with respect to the plane y = 0, the perturbations are separated in two separate classes: varicose [for which u(-y) = u(y), v(-y) = -v(y), w(-y) = w(y)], and sinuous (whit the opposite symmetries). Standard numerical algorithms, validated in previous investigations (see appendix A) are used to compute the optimal growths and the associated optimal perturbations for α = 0 and wavenumbers β in the range 0.1 -2.

From the analysis of Gustavsson (1991) it is expected that for streamwise uniform perturbations G max and t max are proportional respectively to Re 2 and Re (see also gure 2.3). This is indeed veried by the present computed growths of varicose and sinuous perturbations as shown in gure 4.1. The maximum growths G max and the associated t max are also seen to increase with the perturbation spanwise wavelength λ z = 2π/β apparently without bound, similarly to what is observed e.g. in vortex columns in unbounded domains by Pradeep & Hussain (2006) and [START_REF] Antkowiak | Transient energy growth for the LambOseen vortex[END_REF]. From gure 4.1 it is also seen that varicose perturbations are slightly less amplied than the sinuous ones.

Similarly to what was found in wall-bounded shear ows, optimal initial conditions corre-V ref = 2δLxLz, δ as dened for the Monkewitz's prole and Lx and Lz the non dimensional size in the downstream and spanwise directions respectively. When the spanwise wavenumber β is decreased (the spanwise wavelength λ z = 2π/β is increased), the size of optimal perturbations increases both in the spanwise and in the normal direction y. The velocity of optimal varicose initial vortices is e.g. non negligible up to y ≈ λ z , which highlights the diculty of forcing optimal perturbations with low values of β in practical applications.

We conclude that high energy streaks can be eciently amplied by parallel wakes at moderate Re.

2 Optimal spatial energy growth in weakly non parallel synthetic wakes

The analysis developed for parallel wakes based on temporal optimal perturbations has provided essential informations on the physics of streaks amplication in wakes. Some important questions are however left unanswered by this preliminary analysis. For instance, it is not a priori clear that large energy amplications can be obtained in non-parallel wakes at low Reynolds numbers; indeed, the downstream wake diusion not only reduces the basic ow shear fuelling the transient growth but also increases the local spanwise wavenumber which has a further stabilizing inuence.

A second problem is that in practical applications, spatial energy growths must be considered and that the algorithm used to compute them ideally should be extendible to real applications where the body is present. This has led us to design an algorithm which, to our knowledge, has never been used before in this context and which is also highly ecient and scalable and can be extended to real wakes congurations (we will show results for the circular cylinder's wake in section 3). This algorithm, described in appendix B, is based on basic ow wake streamwise velocity is reported in grey-scale with white corresponding to the freestream velocity and dark gray to zero (wake centreline). a set of independent DNS of the linearized equations whose output is used to compute the energy growths in a subspace. The number of DNS is increased until convergence is achieved.
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The spatial optimal growth is computed as follows. Instead of considering the temporal energy growth of streamwise uniform initial perturbations (given at t = 0) as in the parallel case, we consider the downstream energy growth of steady perturbations injected at x = 0 (inow boundary). As in the temporal analysis it was found that the most amplied perturbations consist in streamwise vortices, the following inlet conditions are considered: u 0 = (u 0 , v 0 , w 0 ) = (0, ∂ψ/∂z, -∂ψ/∂y). Single-harmonic spanwise periodic perturbations can be considered without loss of generality: ψ = f (y) sin(βz). As we will see in chapter 5, varicose perturbations (mirror-symmetric with respect to the y = 0 plane) are the most ecient for control purposes (Choi et al., 2008;Hwang et al., 2013) even if they are slightly less amplied than sinuous ones. Therefore we enforce f (-y) = -f (y) which induces varicose streaks. For this case, the spatial optimal energy growth is dened as: m = 1, . . . , M . We have found well suited the set f m = sin(2mπy/L y ), where the numerical box extends from -L y /2 to L y /2 in the y direction. Optimal energy growths have been computed for a set of spanwise wavenumbers β increasing M until a precision of 1% or higher on G max was achieved. The convergence of the optimal growth curves with increasing M is quite fast, and this holds for all the considered values of β, as can be seen in gure 4.3. Well converged results, with relative variations below 1% are obtained with only M = 16 terms. It is also seen how, consistently with results form the local analysis above, the maximum growth G max = max x G(x) increases with increasing spanwise wavelength λ z = 2π/β, i.e. with decreasing β, gure 4.3(b).

G(x) = max u 0 e(x) e 0 , ( 4 
The optimal inow perturbations (x = 0) and the maximum response (x = x max ) associated to the maximum growth G max obtained for β = 1 are reported in gure 4.4. The optimal inow perturbations consist in two rows of vortices on each side of the y = 0 plane, with opposite rotation on each side. These vortices induce the growth of y-symmetric (varicose) streaks.

The observed trends are in agreement with those found in our previous local analysis (see section 1). However, the maximum spatial growth rates obtained in the non-parallel case are smaller than the temporal ones obtained at the same β under the frozen and parallel ow approximation. This is not surprising because the nominal values of β and Re of the non-parallel results are based on the properties of the wake prole at the inow (x = 0). These values would be dierent downstream, e.g at x max , if based on properties of the wake computed at the local x value. As the dimensional reference length δ * (x) (the y * value where U * 2D (y * ) = U * ref ), increases with x, a dimensionless wavenumber β = β * δ * based on the local scale, would increase going downstream. As the maximum growth rate is a decreasing function of β (see gure 4.1), it is not surprising that the maximum growth rates are smaller than the ones that would be obtained if the wake was parallel. Therefore the results of the present analysis should be compared to the ones of the local analysis obtained at larger values of β. components of optimal vortices (arrows forced at the inow (x = 0) and of the streamwise u component of the corresponding optimal streaks (contour-lines) at x = x max for Re = 50, β = 1. The streamwise velocity at the inow U 0 (y) is also reported in grey-scale with white corresponding to the freestream velocity and dark grey to zero (wake centreline).

Optimal blowing and suction on the circular cylinder

The analysis developed on the weakly non parallel synthetic wake has shown its potential for sustaining large spatial energy growths where upstream vortices lead to the spatial transient amplication of high energy streamwise streaks. This mechanism is of general nature because it has been obtained in the absence of the body. However, an important issue unaddressed is how optimal steady vortices can be forced, in practical applications, on the body surface. We addressed this questions for the canonical case of the circular cylinder's wake. For this ow, we want to understand if large spatial energy amplications can be obtained by using control on the cylinder surface at low Reynolds numbers. Many questions arise in this case. How do these optimal amplications relate to those obtained for the idealized non-parallel wake? Does an optimally amplied nite spanwise wavelength exist in this case? If so, what is its value and how does this value compare to spanwise wavelengths that minimize the control energy? What is the minimum energy required to stabilize the global instability?

The theoretical setting considered in the previous section for the case of the non parallel synthetic wake can be easily applied, with the proper corrections, to the present case. The perturbations are always assumed to be varicose and they are introduced via radial blowing and suction u w (θ, z) modulated along the span of the cylinder .

The optimal spatial energy amplication G(x) is the one dened in eq. (4.1) with:

e(x) = 1 π λ z ∞ -∞ λz 0 u • u dy dz e w = 1 2 π λ z 2π 0 λz 0 u 2 w dθ dz, (4.2)
θ is the azimuthal coordinate. where e(x) is the energy at a given x-position and e w is the input energy injected at body's surface. The computation of the optimal distribution u opt w (θ, z) is based on the same algorithm used for the synthetic wake (see appendix B).

As the basic ow U 2D is spanwise invariant and the equations linear, single-harmonic spanwise periodic perturbations can be considered without loss of generality: u w (θ, z) = f (θ) sin(2πz/λ z ) with f (-θ) = f (θ) which leads to varicose streaks. A standard cosine series expansion in θ is used leading to the choice b (m) w (θ, z) = cos(m θ) sin(2πz/λ z ) (where m = 0, . . . , M ) for the set of linearly independent input conditions used in the algorithm described in appendix B. Also here, optimal energy growths have been computed by increasing M until a precision of 1% or higher on G max was achieved for a set of spanwise wavelengths λ z .

Typical G(x) and G max (λ), as well as their convergence history, obtained for Re = 75 are reported in gure 4.5. From the gure it is seen that the optimal growths are converged with more than 1% precision with only M = 6 terms. The computations have been repeated at Re = 50 and Re = 100. The convergence of the results with M is similar to the Re = 75 case. As shown in Figure 4.6, the main eect of an increase of Re is to increase the optimal amplications G max and then to slightly increase the position x max where this maximum is attained. The large amplications found are consistent with those found in the previous investigations mentioned in this chapter but also with those of Abdessemed et al. (2009) who found optimal temporal energy amplications of the order of 10 -10 2 for initial perturbations with 4 λ z 8 at Re = 45. From gure 4.6(b) is it also seen that x max is an increasing function of λ z . The most amplied wavelengths are reported in table 4.1.

The radial distributions u opt w (θ) of the blowing and suction u opt w (θ) sin(2πz/λ z ) are shown in Figure 4.7. They correspond to spanwise periodic blowing and suction with a maximum near θ ≈ ±90 o and minima at the bow and the stern of the cylinder. The variations of u opt w (θ) with λ z and Re are small and may be neglected in a rst approximation. As shown in Figure 4.8, the spanwise periodic blowing and suction induce counter-rotating streamwise vortices which decay downstream while forcing the growth of varicose streamwise streaks.

Also in this relatively complicated ow, therefore, the main mechanism at play seems to be Optimal perturbations in the cylinder wake: Cross-stream (y -z) view of the velocity perturbations forced by the blowing and suction at Re = 75, λ z = 2π at the three selected streamwise stations: x = 1/2 (cylinder stern, panel a), x = x max /2 (midway to the position of maximum streak amplitude, panel b) and x = x max (position of maximum streak amplitude, panel c). The scales with which are plotted the streamwise u (streamwise streaks, contour-lines) and the cross-stream v-w components (streamwise vortices, arrows) are the same in all panels. The reference 2D basic ow streamwise velocity U 2D (y) is also reported in grey-scale with light grey corresponding to the freestream velocity and dark grey the minimum velocity (wake centreline). the lift-up eect.

The fact that optimal values of the wavelength λ z exist is a remarkable dierence with the case of the weakly non parallel wake. Since the weakly non parallel wake is an unbounded ow no limitation on the size of the structure in the normal direction was given and so G max was a monotonic function of λ z . In the present case a strong limitation, which aicts (positively) also the number of components of the base for the calculus of the optimal perturbations, is that the control is localized on the body's surface. So nite eective extension in y direction can be attained, and therefore a maximum value of G max is reached in correspondence of a particular λ z .

Chapter 5

Stabilizing eect of streaks

The inuence of nite amplitude streaks on the wake's stability is developed in two separate steps following the approach used in a number of previous studies (Reddy et al., 1998;Andersson et al., 2001;Brandt et al., 2003;Cossu & Brandt, 2004;Park et al., 2011). First, nonlinear `streaky wakes' are computed by enforcing linear optimal perturbations with nite amplitude and integrating the nonlinear Navier-Stokes equations. We will address in the future to `streaky' basic ow U 3D to indicate the superimposition of the eects of the primary perturbations, those which give birth to streaks, on the 2D wake, U 2D . U 3D is a spanwise modulated basic ow which presents alternating regions of high speed donwstream velocity and region of low speed donwstream velocity. Then, the linear stability analysis of the computed basic ows is assessed by considering the evolution of the small secondary perturbations superposed to those streaky basic ows. Finally, non-linear simulations, where secondary perturbations are no more required to be small, are used to conrm the results of the linear analysis in the nonlinear regime.

1 Non linear streaky basic ows Streaky parallel wakes. The optimal linear perturbations (streamwise vortices) described in chapter 4, are now considered with nite initial amplitude A 0 and are used as initial condition U 3D0 (y, z) = U M (y) + A 0 u (opt) 0 (y, z). The nonlinear Navier-Stokes equations are then numerically integrated for the selected initial conditions (see appendix A for details on the numerical simulations) providing a family of basic ows U 3D (y, z, t, A 0 ), parametrized by A 0 for the considered Reynolds number Re = 50. The streaks are characterized by their amplitude which is measured extending the standard denition of Andersson et al. (2001):

A s (t, A 0 ) = max y,z U 3D (y, z, t) -U 2D (y) -min y,z U 3D (y, z, t) -U 2D (y) 2 (max y U 2D (y) -min y U 2D (y)) (5.1)
In this denition the streak amplitude is dened as half the maximum deviation of the streaky 3D prole from the reference 2D prole divided by the maximum velocity variation of the Finite amplitude A0 have to be associated to the optimal initial perturbations to allow an increasing amplitude in the considered wake. The optimal initial conditions (see chapter 4.1) are normalized such as u (opt) 0 = 1. Given this assumption, if e0 is the level of energy associated to the initial condition for the parallel wake, A0 = √ e0. For more details about the explicit expression we remind to the section with papers attached to the manuscript. 5.1 for the legend of cases and the associated initial amplitudes A 0 . inow 2D reference prole.

In gure 5.1 are reported the nonlinear streaks amplitude temporal evolutions for Re = 50 and β = 1 for varicose and sinuous perturbations of selected amplitudes. Case A corresponds to the reference two-dimensional wake prole U M (y) (no streaks) while cases B, C and D are obtained by increasing the initial optimal perturbation amplitude A 0 . The plots show the temporal transient growth and the increasing level of amplitude when higher amplitude A 0 are considered (see table 5.1).

In gure 5.2 are shown the cross-stream section of the streaky varicose and sinuous case D basic ows. and sinuous case. Varicose perturbations are symmetric to respect the normal direction and, since they are modulated in the spanwise direction, regions where the wake thickness is thicker are followed by regions where it is thinner. Sinuous perturbations are instead antisymmetric to respect the normal direction and high and low speed streaks show the same wake thickness.

Streaky non parallel synthetic and cylinder's wakes. Non-parallel synthetic streaky (3D) wake basic ows U 3D (x, y, z; A 0 ) are computed by enforcing at x = 0 the inow condition U = U 0 (y)e x + A 0 u In both cases, as the streaky solution may be unstable, the symmetry with respect y = 0 plane is enforced, exactly as done to compute the spatial developing natural basic ow U 2D .

Similarly as for the case of parallel wake, the optimal perturbations can be normalized such as u (opt) 

0 = 1.
If e0 is the level of energy associated to the boundary inlet for the weakly non parallel wake, A0 = √ e0.

! Finite amplitude Aw associated to the optimal blowing and suction (see chapter 4.3) can be normalized such as u (opt) w = 1. Then Aw = √ ew with ew as previously dened. A 0 is the nite initial amplitude given to the linear optimal perturbations. A s,max is the maximum streak amplitude reached in the nonlinear numerical simulation. Case A corresponds to the reference two-dimensional wake prole U M (y). Cases B, C and D are obtained by increasing A 0 .
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The spatial evolution of the streaks is monitored using the amplitude denition:

A s (x) = max y,z U 3D (x, y) -U 2D (x, y) -min y,z U 3D (x, y) -U 2D (x, y) 2U ref , ( 5.2) 
where U ref = 2Λ for the synthetic wake and U ref = U ∞ for the circular cylinder wake. The nonlinear streaks amplitude evolution A s (x) associated to the velocity elds U 3D are reported in gure 5.3 for selected increasing perturbation amplitudes of the boundary optimal input.

The parameters of the selected cases are reported in tables 5.2 for the synthetic and the cylinder wake respectively.

In the cylinder case we consider the intermediate Reynolds number Re = 75 and the spanwise wavelength λ z = 2π. For the considered Reynolds numbers the maximum streaks amplitudes are reached inside the region of absolute instability of the reference 2D wake (x 5 at Re = 75). The basic ows consist in increasingly streaky wakes (see gure 5.4). A s (x = 2.7) is the amplitude of the streaks in the middle of the absolute instability region.

A 0 A s (x = 2.7)% A s,max % A 0 0 0 B 0.
On the right panel the streaky basic ows for the circular cylinder's wake. A w is the nite amplitude of the optimal blowing and suction corresponding to the rms value of the blowingsuction velocity and u w,max is the maximum absolute value of the blowing or suction velocity.

A s,max is the maximum streak amplitude reached in the wake. The stability of both fundamental modes, having same spanwise periodicity λ z as the basic ow and subharmonic modes, having instead a periodicity of 2 λ z is analyzed at once by performing the numerical simulations in a spanwise-periodic domain of length L z = 2λ z ; this domain contains two low-high speed streak pairs. Only one initial pulse is therefore enforced at t = 0 in the `doubled' domain. The growth rates of fundamental and subharmonic, symmetric and antisymmetric modes can be separated using spanwise Fourier transforms (see appendix A).

The temporal growth rate curves ω i (α) are reported in panels a and c of gure 5.5. The 2D reference wake, case A is linearly unstable with a maximum growth rate ω i,max = 0.256. When streaks of increasing amplitude are forced the maximum growth rate is reduced. The leading modes have same symmetries as basic ow proles (fundamental-symmetric) and varicose streaks are found to be more eective in stabilizing the temporal instability. For instance, ω i,max is reduced by ≈ 12% using varicose streaks with A s ≈ 10% (case D -V ar) and by 10% for sinuous streaks with A s ≈ 18% (case D -Sin).

The spatio-temporal growth rate σ(v) curves are reported in panels b and d of gure 5.5. The 2D reference wake (case A) is absolutely unstable with an absolute growth rate σ(v = 0) = 0.073 and the wave-packet trailing-edge traveling upstream with velocity v -= -0.089. The absolute growth-rate is reduced when streaks of increasing amplitude are forced and can become negative for suciently large streaks amplitudes transforming the absolute instability into a convective instability. Varicose streaks are found more eective in stabilizing the absolute instability than sinuous streaks. The varicose streak D -V ar with A s ≈ 10% is already convectively unstable while amplitudes above A s ≈ 18% (case D -Sin) are necessary for sinuous streaks to drive the instability from absolute to convective. For sinuous streaks, the leading modes in the σ(v) curves are fundamental-symmetric (same symmetries as the basic ow streaks in the spanwise direction). For varicose streaks fundamental symmetric modes are the leading ones except for large amplitude streaks at suciently small values of v where subharmonic-antisymmetric modes are dominating and therefore rule the quenching of the absolute instability.

Suppression of the global instability in non parallel wakes

The linear global stability analysis for the spatially developing wakes (synthetic and circular cylinder's wake) is performed via a direct numerical simulation of the Navier-Stokes equations linearized upon the 3D streaky basic ows U 3D . In section 2, for the local stability analysis, it was shown that for large streaks amplitudes, the dominant absolute mode is subharmonic, i.e. its spanwise wavelength is twice that of the basic ow streaks. We therefore integrate the linearized equations in a domain including two basic ow streaks wavelengths (L z = 2λ z ). For the reference 2D wake (case A for both the non parallel wake), a random solenoidal perturbation velocity eld is chosen as initial condition on the secondary perturbations and the integration is continued in time until the emergence of the unstable global mode. This perturbation eld is then re-normalized to a small amplitude and used as initial condition for all the considered cases. The global eigenvalue is then computed, as explained in appendix A, checking the temporal growth of the global perturbation kinetic energy.

Non parallel synthetic wake. The linear global stability of the streaky synthetic wake is studied at a Reynolds number Re = 50 and λ z = 2π (corresponding to β = 1). The temporal evolution of the global perturbation kinetic energy is reported in gure 5.6(a). After an initial transient extending to t ≈ 70, the dependence of E on time is exponential (a straight line in the lin-log scales used in the gure), where the rate of growth or of decay is twice the growth rate of the global mode. As anticipated in chapter 3, the reference 2D wake (case A) is strongly linearly unstable at Re = 50. The forcing of 3D linearly optimal perturbations of increasing amplitude has a stabilizing eect on the global instability. The growth rate is rst reduced for low amplitude streaks (cases B and C), is then rendered quasi-neutral (case D) and nally completely stable for suciently large streak amplitudes (case E). In the neutral and stable case the streaks amplitudes A s (x = 2.7), measured in the middle of the absolute instability region of the reference 2D wake, are respectively of ≈ 5% and ≈ 7% (see table 5.2). These values are not far from the ≈ 8% value at which the absolute instability was completely quenched in our previous local stability analysis. Also remark that, in the present non-parallel case A s is given in terms of the entrance reference maximum ∆U 2D (x = 0), but if it was based on the local value of ∆U 2D (x) which is decreased with x, this would result in even larger downstream values of A s . The stabilization of the global mode therefore appears to be associated to a strong reduction of the pocket of absolute instability that drives the global mode oscillations in the 2D reference case. These results conrm, for the st time, to our knowledge, that the vortex shedding suppression obtained by forcing streamwise streaks is associated to the suppression of the linear global instability. Circular cylinder's wake The global linear stability of the streaky cylinder's wake is examined by integrating in time the Navier-Stokes equations linearized with respect to the considered U 3D (x, y, z; A 0 ) (see table 5.2 for the considered cases). As shown in gure 5.6(b), E (t) grows exponentially in time, after the extinction of the initial transient. For Re = 75, the reference 2D wake (case A) is linearly unstable. In the presence of increasing amplitudes of blowing and suction and therefore of increasing amplitudes of the streaks, the growth rate of the global mode is initially reduced (cases B and C) to become negative for case D as shown in gure 5.6(b) for λ z = 2 π.

The dependence on the spanwise wavelength λ z of the critical amplitudes A c for which the global instability is suppressed is reported in Figure 5.7 in terms of both A w and A s,max . For Re = 75, the spanwise wavelength minimizing the control amplitudes necessary for the stabilization of the global instability is λ z ≈ 6. While when the Reynolds number is increased to Re = 100, the spanwise wavelength minimizing the control amplitudes is reduced to λ z ≈ 5.3. These results are in very good agreement with those of Kim & Choi (2005) who nds that the minimum drag is achieved for λ z = 5 -6 (but at the fastest rate for λ z = 6) at Re = 80 and for λ z = 4 -5 (but at the fastest rate for λ z = 5) at Re = 100. Smaller energy is required to suppress the global instability when using blowing and suction instead of localized blowing and suction (0.62% instead of 8% of U ∞ in terms of maximum blowing/suction velocity and 5.6 10 -5 instead of 1.2 10 -3 in terms of momentum coecient of forcing C µ = 2πA 2 w at Re = 100). This is not surprising given the observed large dierences in energy gains obtained using these dierent distributions of blowing and suction.

For all the considered spanwise wavenumbers, largest streaks amplitudes are required to stabilize the global instability at Re = 100 than at Re = 75. This is expected, because at Re = 100 the global mode is more unstable than at Re = 50 and it can be expected that largest streaks amplitudes are required to quench it. However, the amplitudes of the blowing and suction, required to stabilize the global instability are smaller at Re = 100 than at Re = 75, for all the considered λ z . The increase of energy amplication of the control due to the lift-up associated to an increase in Reynolds number (see gure 4.6a) therefore overcomes the increase of control action necessary to quench the more unstable global mode. In other words, the results reported in gure 5.7(a) conrm the essential role played by the non-normal amplication of streaks in the stabilization of the global instability.

Non linear simulations

The eect of the forcing of 3D linear optimal perturbations for the non parallel wakes are here presented in the nonlinear regime. The same grids used in linear simulations for the stability analysis have been used in the nonlinear ones. Let us rst consider the case of the non parallel synthetic wake. The permanent harmonic self-sustained state supported by the reference 2D wake is allowed to develop. For the case of the synthetic wake, this 2D (spanwise uniform) self-sustained state is then given as an initial condition in the presence of the optimally amplied streaks of increasing amplitude. As expected from the linear analysis, the global level of oscillations in the wake is reduced when the amplitude of the enforced optimal perturbations is increased (see gure 5.8(a)). A stable steady streaky wake is found for case E, where the oscillations are completely suppressed. Snapshots of the streamwise velocity in the y = 0 plane are reported in gure 5.9 for all the considered cases. For the Streamwise perturbation velocity u(x, y = 0, z) in the y = 0 symmetry plane in the permanent regime (t = 250). The reference 2D case A is reported in panel a, while cases B, C, D and E, obtained by increasing the amplitude A 0 of the inow optimal perturbations, are reported in panels b to e (top to bottom). Case A displays self-sustained periodic oscillations of 2D structures in the wake. These structures become increasingly 3D and of smaller rms value for increasing values of the enforced A 0 (cases B to D). The oscillations are completely suppressed in case E where the stable streaky basic ow is observed after transients are extinguished.

Chapter 6

A sensitive issue

1 The rst order sensitivity paradox

The stabilization induced by some control action, such as e.g. basic ow modications, is usually characterized by the the rst-order sensitivity of the considered growth rate γ with respect to the amplitude of the control A dened in the limit of small control amplitudes as µ 1 = dγ/dA| A=0 (see e.g. Alizard et al., 2010). So far, rst-order sensitivity analyses have mainly dealt with 2D control. Hwang et al. ( 2013) have shown that the rst order sensitivity of the absolute growth rate to 3D spanwise periodic modications of the basic ow is zero. This represents a paradox. Indeed, according to this analysis 2D perturbations are expected to be more ecient than 3D ones while exactly the opposite is observed (see e.g. Kim & Choi, 2005). This apparent paradox is not explained by possible shortcomings of the local stability analysis because it is easy to show that the sensitivity of the global growth rate to 3D spanwise periodic modications of the basic ow is also zero. Indeed, following e.g. Bottaro et al. (2003) and Chomaz (2005), let us denote by L 2D the Navier-Stokes operator linearized near the basic ow U 2D and by w, s, w + respectively its leading global mode, eigenvalue and adjoint global mode. For very small values of the amplitude of optimal perturbations, the basic ow is modied by a small amount δU = U 3D -U 2D that induces a small change δL in the linear operator. The rst order change of the leading eigenvalue induced by this small variation is δs =< w + , δLw > / < w + , w > where the inner product is dened as follow:

< a, b >= Lx 0 Ly/2 -Ly/2 Lz 0 a • b dx dy dz.
The variation in δL induced by δU consists only in spanwise periodic terms as δU is itself spanwise periodic. As the global and adjoint modes of the unperturbed operators are spanwise uniform, it follows that < w + , δLw >= 0 and therefore that δs=0. This is not the case for 2D (spanwise uniform) perturbations of U for which the rst-order variation of the leading eigenvalue is, in general, non-zero.

We therefore remain with some unanswered questions. Is it really true that 3D control is more ecient than 2D control? If yes, why is 3D control more ecient than 2D control? If yes, is this only due to the more ecient forcing of 3D perturbations which partially exploits the lift-up eect? What is the leading order dependence of growth rates on the 3D control amplitude? Is it quadratic, as found by Hwang et al. (2013) for small values of A, also at large values of A where stabilization is achieved? Is it quadratic also in the non-parallel case? Is there a range where 2D perturbations are more ecient than 3D ones? 2 Quadratic sensitivity and 3D control eciency in parallel wakes Hwang et al. (2013) show that for small streaks amplitude the sensitivity to spanwise-sinusoidal (3D) basic ow perturbations depends quadratically on their amplitudes. To ascertain if these predictions extend to the considered nonlinear streaks and to the maximum temporal growth rate sensitivity, we report in gure 6.1 the dependence of the maximum growth rate ω i,max and of the wave-packet trailing edge velocity v -on the streak amplitude A s . We also consider the eect on stability of a 2D (spanwise uniform) perturbation with a prole u 2D (y) equal to the high-speed varicose streak prole û(y) (see Del Guercio et al., 2014c, for details).

We consider v -and not σ(v = 0) as a measure of the absolute or convective nature of the instability because the used numerical method (impulse response analysis) does not provide well converged results for negative growth rates.

The amplitude As of this 2D basic ow modication is dened by eq. ( 5.2) but removing the 1/2 factor that accounted for the presence of high and low speed streaks.

From gure 6.1 it is seen that indeed ω i,max and v -depend quadratically on A s when considering streaky basic ow modications but linearly when considering a 2D basic ow modication. The conclusions of Hwang et al. (2013) are therefore conrmed by the present results and extended to much higher amplitudes where the absolute instability is completely suppressed.

Considering the stabilization of the maximum temporal growth rate, the quadratic sensitivity of the streaks to A s even if it gives a weaker eect than 2D basic ow modications at very small streaks amplitudes, can provide a larger eect at larger A s . This is not the case for the quenching of absolute instability, where 2D basic ow modications are able to drive v - to positive values for lower A s values than 3D basic ow modications, as already remarked by Hwang et al. (2013).

As the streaks have been forced using linearly optimal initial conditions, it is interesting to analyze the dependence of the stabilizing actions not in terms of the basic ow distortion amplitude A s but on the amplitude A 0 of the initial perturbation. This dependence is also reported in gure 6.1, where, again quadratic and linear sensitivities of ω i,max and v -on A 0 are observed for 3D and 2D basic ow perturbations respectively. In term of A 0 , the optimal 3D perturbations are much more eective than 2D perturbations in stabilizing the ow. This is not surprising because, in rst approximation, a factor of

√

2G max is gained trough the liftup eect when forcing optimal 3D control using optimal initial vortices instead of enforcing the 2D prole with the same streak shape. For the considered case for instance the absoluteconvective instability transition is enforced with optimal 3D streaks with values of A 0 roughly ten times smaller than those necessary when using 2D basic ow modications (one hundred times smaller in terms of the control kinetic energy).

3 Quadratic sensitivity and 3D eciency in non parallel wakes

In the case of non-parallel wakes one has to investigate the variations of the global growth rate with respect to the control amplitude. Let us rst consider the case of the synthetic wake.

The dependence of the global growth rate s r on the inow optimal perturbation amplitude A 0 is plotted in gure 6.2(a). The dependence of s r on the amplitude of the streaks is reported as a function of A s (x = 2.7) in the middle of the absolute instability region, gure 6.2 (panels (b) and (c) for a zoom). In the same gures the variation of s r induced by a 2D perturbation of the basic ow is also reported for comparison. ! From these gures it is clearly seen how the rst order sensitivities ds r /dA 0 and ds r /dA s computed for A 0 = A s = 0 are zero for the 3D perturbations and non-zero for the 2D perturbations as predicted by the rst order sensitivity analysis. According to a rst-order sensitivity analysis one would expect 2D perturbations to be more eective than 3D ones in quenching the global instability, but the opposite is observed. 3D perturbations stabilize the global mode at a value of A s (x = 2.7) more than ve times smaller than for 2D perturbations, and more than ten times smaller in terms of A 0 .

Similar results are found in the case of the circular cylinder's wake at Re = 75 for various λ z and are reported in gure 6.3. In this case, in addition to the amplitude of the blowing and ! The 2D perturbation has the same y shape as the optimal streak shape in the middle of the absolute instability region (x = 2.7) but is uniform instead of periodic in the spanwise direction. For this 2D perturbation, A0 is unambiguously dened and As is dened as the maximum associated ∆U taken at x = 2.7. suction A w , the results are expressed also in terms of the maximum streaks amplitude A s,max which is reached inside the absolute region.

In order to compare 3D and 2D controls, we have computed the growth rate variations induced by spanwise uniform (2D) wall blowing and suction " with m = 1 azimuthal dependence U w = A 2D cos(θ). This 2D control has zero net mass ux and is associated to bleeding in the wake, which is known to eciently reduce the absolute growth rate Monkewitz (1988). The quadratic relation of the global growth rate s r is here again found both for the amplitude of the blowing and suction A w and the amplitude of the streaks A s,max while the curve for the 2D control is well approximated by a straight line. Therefore, the considered 2D perturbations are more stabilizing than the optimal 3D ones only for A s,max 14%, corresponding to the negligible A w ≈ 0.005. As already observed in the previous sections, a higher eciency of 3D perturbations is expected in terms of A w , because they can exploit the energy gain associated to the lift-up eect, which is a 3D mechanism. We have also veried that qualitatively similar results are obtained for a few other shapes of the 2D forcing. These results are in accordance with the nding of Kim & Choi (2005) that 3D perturbations are more eective than 2D ones in suppressing vortex shedding.

The last remark regards a dierence between the sensitivity analysis for the parallel case and those for the non parallel wakes. Even if both the analyses conrm a quadratic sensitivity of the stability properties, the stabilization of the global instability by 3D perturbations is more ecient than the 2D perturbations not only in term of A w , which could be expected from the lift-up eect implication, but also in term of the streaks amplitude contrary to what is observed in the parallel case. " The analogous of the streak amplitude is dened, for the 2D perturbation as the maximum of the basic ow streamwise velocity variation induced by the 2D suction.

Chapter 7

Eects of streaks forcing on a turbulent wake past a 3D blu body

In this section we present an extension of the control by streaks approach. In order to t to automotive motivations, this experimental study is conducted on a 3D blu body for a Reynolds number lying in the turbulent regime. Anyway these results are preliminary and therefore need further conrmations.

Motivations

The squareback body proposed by Ahmed et al. (1984), see gure 7.1, is a generic car model aimed at studying the wake of squareback car geometries. The dynamics of such wake ow have recently proved to be even richer than what we thought since, depending on the ground clearance, it can feature a global oscillation of the wake due to the interaction of the opposed shear layers as well as a bistable behaviour, see e.g. [START_REF] Grandemange | Analysis and control of three-dimensional turbulent wakes[END_REF].

Flow control past such 3D bodies usually involves active blowing and suction [START_REF] Rouméas | Analysis and control of the near-wake ow over a square-back geometry[END_REF][START_REF] Wassen | Simulation of active drag reduction for a square-back vehicle[END_REF][START_REF] Briggs | Active procedures to control the ow past the ahmed body with a 25 degree rear window[END_REF], the use of vortex generators [START_REF] Aider | Drag and lift reduction of a 3d blu-body using active vortex generators[END_REF] or aps [START_REF] Khalighi | Experimental and computational study of unsteady wake ow behind a blu body with a drag reduction device[END_REF][START_REF] Beaudoin | Drag and lift reduction of a 3d blu body using aps[END_REF][START_REF] Fourrié | Blu-body drag reduction using a deector[END_REF] used to change the orientation of the ow close to the separation point, this latter being the approach used for real cars optimization with spoilers or diusers. Another control strategy based on reducing the activity of the oscillating global mode of 3D axisymmetric body has proved to be ecient in the laminar régime [START_REF] Weickgenannt | Control of vortex shedding in an axisymmetric blu body wake[END_REF][START_REF] Sevilla | Vortex shedding in high Reynolds number axisymmetric blu-body wakes: local linear instability and global bleed control[END_REF]).

Experimental set-up

The experiments have been conducted in the PSA Peugeot Citroën in-house facility in the Aerodynamics Department in Vélizy. The wind-tunnel is of closed-return type with a 0.8 m long test section and a 0.3 m×0.3 m cross-sectional area. The temperature can be kept constant and uniform within ±0.5 o C. The contraction ratio is 8 and the velocity can be controlled from 7m s -1 up to 45m s -1 . In the following, we denote by x, y and z the streamwise, wall-normal and spanwise directions respectively and by U , V and W the associated velocity components.

The model used here is a squareback Ahmed body. It is L = 150 mm long, W = 68 mm wide and its height is H = 50 mm hence respecting the proportions of a full scale Ahmed body (see e.g. [START_REF] Ahmed | Some salient features of the time-averaged ground vehicle wake[END_REF]. In order to get rid of ground eects and to focus mainly on the shedding activity, the body is hung in the middle of the test section with 8 wires whose diameter is 0.7 mm (see gure 7.2). The free stream velocity is set to U 0 = 9 m s -1 leading to a Reynolds number based on the height of the body of Re H = U 0 H/ν = 30000. The origin of the axis is taken at mid-width and mid-height of the blunt rear-end of the model. Velocity measurements are performed with Particle Image Velocimetry (PIV) and hot-wire anemometry (HW). The PIV system is Dantec's Dynamic Studio associated with a 120mJ Nd:Yag double cavity laser and a 4M px FlowSense CCD camera, both being placed on tra-verse systems in order to enable quick changes of the measurement plane. For each plane or conguration, a collection of 2000 pairs of images was acquired at a frequency of 7Hz and then post-processed using 32 × 32 interogation window with 50% overlap leading to elds of view of 300mm × 300mm with a spatial resolution of 2.4 mm × 2.4 mm. Time-resolved velocities are obtained with a hot-wire probe oriented to get the streamwise component U . The probe is a Dantec 55R01 type xed on a 55H22 support, the whole system being placed on a 3D traverse system and connected to Dantec's StreamWare device. Data are acquired at a sampling frequency of 2.5kHz over a 10 minutes period of time.

Natural ow case

The time averaged streamwise velocity component U/U 0 is depicted in the panel (a) of gure 7.3 for the plane symmetry z = 0. The ow is from left to right, the model being depicted as the white rectangle on the left part of the gure, and the streamwise component of the velocity has been scaled with the free stream velocity. A large recirculation region (shown as the black dashed line) is present up to x R /H = 1.45. The boundary layer thickness at the trailing edge of the model is around δ 99 /H ≈ 0.32 (i.e. δ 99 ≈ 16mm). Panels (b), (c) and (d) of gure 7.3 respectively display the < u 2 >, < v 2 > and < u v > components of the Reynolds stresses.

As expected, the near wake experiences high levels of uctuations due to the shear layers developing from the separation edge; the maximum value being < u

2 > max /U 2 0 = 0.045, < v 2 > max /U 2 0 = 0.031 and < u v > max /U 2 0 = 0.02.
In order to conrm that these uctuations can be ascribed to some coherent wake motion, we conducted hot-wire measurements in the shear layers and some other locations on the wake as displayed in gure 7.4 for two downstream positions: x 1 = 3 H and x 2 = 5 H (measurements inside the recirculation bubble have been conducted but did not show any evidence of a global mode, according to [START_REF] Kiya | Turbulent elliptic wakes[END_REF], they are not shown here for sake of conciseness).

The autopower spectra for each measurement location are displayed on gure 7.5, the left panel standing for x 1 while the right one stands for x 2 . As one can see, dierent behavior can be observed depending on the location of the probe in the cross-ow plane. Placing the probe on each of two shear layer originating from the top and bottom faces of the model (respectively locations A and B), power spectral densities (PSD) clearly show a peak around St H1 = f 1 * H/U 0 = 0.17 (corresponding to a frequency f 1 = 30 Hz). Looking at the spectral behavior on the lateral shear layers (points C and D), PSD show a peak around St H2 = 0.12 (corresponding to f 2 = 21 Hz).

Similar behavior as already been observed by [START_REF] Kiya | Turbulent elliptic wakes[END_REF] 

A s = U HSS (x, Y /k = 0.5) -U LSS (x, Y /k = 0.5) 2U 0 ,
where U HSS (resp. U LSS ) is the streamwise velocity in a high (resp. low) speed streaks, being maximum in the recirculation region and of value ≈ 10%.

x/λ y/λ 

Analysis of the Controlled case

Looking for some eect on the global shedding, we investigate how those streaks act on the quantities we looked at in the section dedicated to the natural ow. Hence, giving a look at the time averaged streamwise velocity displayed on panel (a) of gure 7.8, we can observe a large increase of the recirculation bubble, its length changing from x r = 1.45H in the natural case to 1.9H in the controlled case. In addition, the use of streaks tends to drasticaly lower the intensity of uctuations in the whole wake (see panels (b), (c) and (d)), their maximum value dropping to < u 2 > max /U 2 0 = 0.027, < v 2 > max /U 2 0 = 0.017 and < u v > max /U 2 0 = 0.007.

All these observations indicate a strong weakening of the shear layers dynamics in presence of streaks.

Autopower spectra for the controlled wake are displayed on gure 7.9. The PSD show a decrease of the amplitude of both peaks, indicating that streaks seem to alter the global shedding process.

Dealing with drag reduction, Pujals et al. (2010b) emphasize the relevance of the parameter X 0 . According to their study and to our conclusions, the major eect of streaks on the baseow is expected when their amplitude reaches its maximum value close to the ow feature we want to control (i.e. separation point in the case of a marginal separation, absolute instability region in the case of large scale shedding), the prescribed value being 4λ according to Pujals et al. (2010a ,b). Indeed, changing the location of the four arrays over the model would have a strong impact on the results. In gure 7.10 we have reported maps of < u v > /U 2 0 as well as the U = 0 line for X 0 locations ranging from X 0 = 4 λ (panel (a)) to X 0 = λ (panel (d)). Hence, moving arrays closer to the near wake region (X 0 = 4λ to 3λ i.e. the maximum amplitude of streaks moving towards the absolute instability region), the eect of streaks on the dynamics becomes more obvious : the intensity of uctuations sharply decreases. Moving arrays even closer to the rear-end, streaks still reduce uctuations but in smaller proportion.

The same conclusions can be drawn concerning the recirculation length which increases until X 0 = 3λ and then starts to decrease. The evolution of the most relevant quantities are summarized in table 7.1 conrming there is an optimal position X 0 . In this chapter, we study the ow past a squareback Ahmed body wihtout ground eect for a Reynolds number Re H = 30000. The natural ow case shows a mean recirculation region extending up to x R /H = 1.45 as well as some large scale unsteady activity in the wake. HW measurements in the shear layers show two peaks of energy around St H1 = 0.17 (upper and bottom shear layers) and St H2 = 0.12 (two lateral shear layers).

X 0 A s,max (x = 0.75H) x r /H < u 2 > max /U 2 0 < v 2 > max /U 2 0 < u v > max /U
When streaks are articially forced on the model surface using suitably designed roughness elements arrays, the dynamics of the wake can be altered. Hence, time averaged ow for the controlled case show a increased recirculation bubble (see gure 7.11 These results are, however, preliminary. Further investigations are required in order to draw general conclusions.

Chapter 8

Conclusions

It is useful to summarize here the main motivations and the main results of this thesis.

Summary of the motivations of this study. One of the main motivations of this study is the industrial need to reduce the pressure drag of cars of prescribed shape. Reducing pressure drag, and therefore fuel consumption and gas emissions is particularly important in the actual delicate moment for the automotive market which is aiming at performance increase. The There is an rich literature on the control of vortex shedding in the wake of blu bodies.

Most of the theoretically based investigations on vortex shedding control have considered the 2D control of 2D wakes. In this case, the suppression of the shedding has been related to the stabilization of the absolute instability. However, 2D control, even if well understood, is usually less ecient than 3D control which, on the contrary, is less understood and mainly in terms of vortex dynamics. The recent study of Hwang et al. (2013), however, led to a breakthrough by proving that low amplitude streaks induce a decrease of the absolute growth rate in parallel wakes. It was however not clear if the streaks considered by Hwang et al.

(2013) could completely stabilize the absolute instability and if they could stabilize the global instability in a non-parallel wake. As the lift-up eect is inherently 3D, in this study, we had not only to qualify and quantify the optimal amplication of streaks in wakes, but also to push forward the theoretical interpretation of 3D control.

Parallel wakes. In the rst part of the study, published in the Journal of Fluid Mechanics (Del Guercio et al., 2014c), we have computed the optimal temporal transient energy growths sustained by a parallel Monkewitz's wake at Re = 50. We have shown that the optimal initial conditions consist of streamwise vortices and the most amplied perturbations are streamwise streaks. The optimal energy growths have been shown to scale on Re 2 and increase with the spanwise wavelength λ z of the perturbations. We have then investigated the stabilizing action on the temporal and absolute instabilities of nonlinear streaks forced by nite amplitude optimal perturbations. We have shown that the absolute instability can be completely stabilized with relatively small amplitudes of the streaks, therefore extending the initial ndings of Hwang et al. (2013). We have also shown that, because of the large energy amplication associated with the lift-up eect, it is much more ecient to force the initial vortices than to directly force the streaks in order to implement the control. These results have been very encouraging because they give, at least in this simplied case, armative answers to the initial questions motivating this study: Yes, optimal streaks can be very eciently forced in wakes.

Yes, the absolute instability at the origin of vortex shedding can be stabilized by the optimal streaks. Yes, the use of optimal initial vortices leads to a very ecient control.

An additional question was that of the compared eciencies of 2D and 3D perturbations. Hwang et al. (2013) had shown that the rst order sensitivity of the absolute growth rate to 3D spanwise periodic modications of the basic ow is zero, while it is not for 2D perturbations. For the small streaks amplitudes they considered they indeed found that 2D perturbations were more eective, in terms of streak amplitude, than 3D ones in the stabilization of the absolute instability. This nding was in apparent contradiction with the results of Kim & Choi (2005) who found that 3D blowing and suction is more ecient than 2D blowing and suction in suppressing the shedding in a circular cylinder wake. Our initial guess was that an important stabilizing role could be played by the 2D nonlinear mean ow distortion induced by the 3D streaks, as in boundary layers (Cossu & Brandt, 2002). This guess was proved wrong by an analysis of the energy production terms who showed that the nonlinear mean ow distortion is not the main mechanism responsible for the stabilization. The explanation must be therefore already present in the linearized context. A key result that we found using optimal perturbations is that when growth rates reductions induced by 2D and 3D control are expressed in terms of the initial perturbation amplitude (instead that in terms of nal streaks amplitudes) 3D perturbations appear to be much more ecient that 2D one in reducing temporal and absolute growth rates.

The non-parallel synthetic wake. Encouraged by the positive results found on parallel wakes we have considered optimal spatial amplications in non-parallel wakes. An important preliminary step has been the design and the validation of an adjoint-free, subspace-based algorithm for the computation of the optimal spatial energy growths of perturbations forced by inow or wall boundary conditions. This algorithm, described in appendix B, is based on a set of independent simulations of the linearized Navier-Stokes equations. The algorithm is scalable because additional simulations can be added to the set of the already computed ones in order to increase the accuracy of the results. The convergence of the algorithm has proven quite fast in the considered cases, with converged results obtained with O(10) independent simulations. Another advantage of the algorithm is that it is implemented as a post-processing of DNS-based results and does not require the modication of the DNS codes to e.g. implement the solution of adjoint equations.

In the second part of the study published in Physics of Fluids (Del Guercio et al., 2014a ) we have therefore introduced the use of this new algorithm to compute optimal spatial transient energy growths of steady inow varicose perturbations sustained by a weakly non-parallel wake. The considered wake is `synthetic' because it is generated by an inow condition and not directly by a blu body, therefore removing the complications related to the boundary conditions on the body and to the strong non-parallelism of real wakes. We nd that the considered non-parallel wake sustains signicant optimal spatial transient growths. The maximum growths and the downstream positions where these are achieved increase with the spanwise wavelength of the perturbations, in agreement with what found in parallel wakes. The optimal inlet and most amplied perturbations are similar to the ones found in the parallel case. The non-parallelism leads to a downstream increase of the local wavenumber of the perturbations and therefore induces a stabilizing eect on the energy growth.

We have found that the strong linear global instability of the uncontrolled basic ow can be completely suppressed by forcing optimal perturbations with nite amplitudes. Nonlinear simulations validate this nding in the nonlinear regime. To our knowledge this is the rst direct proof that the suppression of vortex shedding by 3D control is due to the stabilization of the linear global instability. We have then shown that the rst order sensitivity of the global growth rate on the control amplitude is zero and that the growth rate reductions are proportional to the square of the control amplitude up to the stabilizing amplitudes. We also show that in this non-parallel case 2D perturbations are less ecient than 3D ones to stabilize the wake not only in terms of inow perturbation (control) amplitude but also in terms of streaks amplitudes and this despite the respective linear and quadratic sensitivity on the control amplitude.

The circular cylinder's wake. In the third part of the thesis, published in a second paper in the Journal of Fluid Mechanics (Del Guercio et al., 2014b) we have considered the circular cylinder's wake. The forcing of optimal perturbations is realized through spanwise periodic blowing and suction at the wall. In this case the big questions are: is this forcing ecient to generate the streamwise vortices that will induce the streamwise streaks? Are the optimal streaks ecient in stabilizing the global instability? The answers are more positive than initially expected. First, we nd that very large spatial transient energy growths are achieved in this conguration. Maximum growths and the position where they are achieved increase with the Reynolds number. Maximum optimal amplication of blowing and suction is achieved for spanwise wavelengths λ z in the range 5D-7D at the considered Reynolds numbers ranging from 50 to 100. Furthermore, for these spanwise wavelengths, the maximum growth is reached inside the absolute instability (wave-maker) region of the wake. The fact that G max is not an always increasing function of λ z is related to the fact that optimal perturbations corresponding to large spanwise wavelengths are very `tall' and therefore expensive to force from the wall. The nite most amplied λ z therefore represent the optimal compromise between two antagonist behaviors of the higher amplication and of the higher cost of optimal perturbations at large λ z .

We have then investigated the inuence on the linear global instability of the nite amplitude optimal blowing and suction. A key result is that the critical control amplitude A w required to suppress the global instability is reduced by an increase of Re (from 75 to 100). This was not expected because the global instability is stronger at Re = 100 than at Re = 75.

However, this result can be explained by recalling that as the maximum energy growths increase with the Reynolds number the cost of the control decreases with Re. The decreasing cost of the optimal energy amplication, related to the lift-up eect physics, is therefore able to overcome the increase of the growth rate of the global instability. Finally, also in this case, 3D optimal perturbations are much more ecient than 2D blowing and suction in achieving the complete stabilization of the global mode. The sensitivity of the global mode growth rate to the 3D control is, also in this case, quadratic.

Eectiveness of the `optimal growth to control' approach. A key result of these three rst parts of the thesis is to show that forcing optimal vortices instead of directly forcing the streaks in parallel and non-parallel wakes is much more ecient and that the energy amplication associated to this process plays a key role in the stabilization. Our results therefore extend to 2D wakes the approach already tested in boundary layers where linearly optimal streamwise vortices were forced to induce streaks and stabilize 2D unstable Tollmien-Schlichting waves and delay transition to turbulence (Cossu & Brandt, 2002, 2004;Fransson et al., 2005Fransson et al., , 2006)). Of course, it remains to be shown that this technique is also as eective in the case of 3D and/or turbulent wakes. This is the object of current intensive investigation.

Experimental study of a 3D wake. In the given time it has not been possible to theoretically and numerically investigate the case of 3D wakes or to extend our results to the turbulent regime similarly to what e.g. done in turbulent boundary layers and channel ows.

It has been, however, possible to begin to test some of our ideas in some experiments on the control of a turbulent 3D blu body wake. Since no optimal perturbations for these wakes are available at this time, the design of the perturbations has been semi-empirical and driven by the knowledge acquired through studying 2D wakes. A crown of roughness elements placed around the sides of the body allowed us to stimulate the creation of streaks on the shear layer of the turbulent mean wake prole. This turned out to inuence the properties of the wake: (a) the length of the recirculation bubble is increased, (b) velocity uctuations in the shear layers are reduced, (c) the amplitude of the peaks associated with the shedding mode is also reduced. These results are, however, preliminary and require further investigations. For instance, we should better verify the reduction of the uctuations and check that the coherent mode's spectral peak is global and not simply related to a downstream shift of the coherent structures. Also, many questions remain unanswered at this stage. What happens when the ground is taken into account? Is the streaks inuence relevant also at larger Reynolds numbers? These are a few points that would be interesting to investigate. (1993), or nding the correct value of the growth rate of the most unstable mode of the Bickley jet (see e.g. [START_REF] Drazin | Hydrodynamic stability[END_REF].

Simulations of parallel wakes

In the case of the parallel wakes, simulation have been used to compute non linear streaky basic ows (non linear solver) and the impulse response (linear solver).

The ow is solved inside the domain [0,

L x ] × [-L y /2, L y /2] × [0, L z ]
that is discretized using a grid with N x and N z equally spaced points in the streamwise and spanwise directions respectively. N y points are used in the y direction using a stretching which allows to density points in the region where the basic ow shear is not negligible. Typically, results have been obtained using L x = 124, L y /2 = 10, L z = 2π and N x = 300, N y = 160, N z = 24 with ∆x = 0.4, ∆z = 0.26 and a minimum ∆y = 0.01 on the symmetry axis and a maximum ∆y = 0.1 near the free-stream boundary. Periodic boundary conditions have been enforced in the streamwise and spanwise directions and zero normal gradients of velocity and pressure have been enforced at the free stream boundaries (|y| = L y /2). An increase of L y /2 from 10 to 15 or an increase of the number of points from N y = 160 to N y = 320 did not aect the energy density more than 2%. Simulations of non parallel synthetic wakes Numerical simulations of the Navier-Stokes equations have been used to compute the 2D weakly non-parallel basic ow (non-linear equations with y-symmetry enforced), the optimal perturbations of the 2D wake (linearized equations), the nonlinear streaky basic ows (nonlinear equations with y-symmetry enforced) and the global linear stability of these basic ows (with the linearized equations).

The ow is solved inside the domain [0,

L x ] × [-L y /2, L y /2] × [0, L z ]
that is discretized using a grid with N x and N z equally spaced points in the streamwise and spanwise directions respectively. N y points are used in the y direction using stretching to density points in the region where the basic ow shear is not negligible. Dierent grids have been used to compute optimal linear perturbations of dierent spanwise wavenumbers, as reported in table A.1. Nonlinear streaky basic ows for β = 1 have been computed using the same grid used for the computation of the linear optimals at the same β.

β L z = λ z N z
For the linear and nonlinear simulations of the perturbations to the 3D streaky basic ows, however, the domain is doubled in the y direction ([-L y /2, L y /2] instead of [0, L y /2]) as the y symmetry is no more enforced. The box is also doubled in the spanwise direction (L z = 2λ z ) in order to include subharmonic perturbations. The corresponding N y and N z are also doubled leading to a grid with L x = 124, L y /2 = 10, L z = 4π, N x = 300, N y = 160,N z = 48 with ∆x = 0.4, ∆z = 0.26 and a minimum ∆y = 0.01 on the symmetry axis and a maximum ∆y = 0.1 near the freestream boundary.

Simulations of the circular cylinder's wake

The ow is solved in a C-type domain centred on the cylinder with L x , L y and L z streamwise, transverse and spanwise extensions respectively (see gure A.1). Several preliminary tests guided us to the choice L x = 70 and L y = 80, with, L z = λ z for the optimization studies and L z = 2λ z for the global stability analysis and the nonlinear simulations; this has allowed us to take in account the inuence of the subharmonic modes, as detailed following in the text. The grid density is increased in the x -y plane in the regions of high shear. N x = 300 and N y = 200 points were used in the streamwise and transverse directions respectively, with ∆x min = 0.01, ∆x max = 0.2, ∆y min = 0.01 and ∆y max = 0.2 inside the internal sub-blocks.

A uniform grid spacing is used in the spanwise direction always with ∆z ≈ 0. within 1% accuracy those found by Kim & Choi (2005) and Giannetti & Luchini (2007) in the 2D case and in the range of considered Reynolds numbers. Extending the domain size in the streamwise direction to L x = 100 or in the transverse direction to L y = 100 does not improve much these results. For 3D simulations we have veried in a few selected cases (in particular the M = 1 direct numerical simulations in the optimization studies) that the perturbation energy (used to compute global growth rates) does not change by more than 1% when the number of grid points is doubled in the spanwise direction.

2 Fundamental and subharmonic, symmetric and antisymmetric modes

All the numerical simulations of the evolutions of the perturbations to the given basic ows are performed in a spanwise-periodic domain of length twice that of the basic ow streaks L z = 2λ z where λ z = 2π/β. The perturbations can be decomposed into the contributions of fundamental and subharmonic modes, and be can further be decomposed into symmetric and antisymmetric with respect to the y = 0 plane. The fundamental modes with an even symmetry (same as that of the basic ow streaks) are of the form with β F k = kβ, where β is the wavenumber of the basic ow streaks.

u(y, z) = ∞ k=1 ũk (y) cos β F k z; v(y, z) = ∞ k=1 ṽk (y) cos β F k z; w(y, z) = ∞ k=1 wk (y) sin β F k z.
Fundamental modes with opposite symmetry admit the expansion:

u(y, z) = ∞ k=1 ũk (y) sin β F k z; v(y, z) = ∞ k=1 ṽk (y) sin β F k z; w(y, z) = ∞ k=1 wk (y) cos β F k z.
For subharmonic modes the spanwise periodicity of the disturbances is twice that of the basic ow and therefore we dene β S k = [(k + 1)/2]β. Subharmonic symmetric modes are expanded as

u(y, z) = ∞ k=1 ũk (y) cos β S k z; v(y, z) = ∞ k=1 ṽk (y) cos β S k z; w(y, z) = ∞ k=1 wk (y) sin β S k z.
while subharmonic antisymmetric modes admit the expansion:

u(y, z) = ∞ k=1 ũk (y) sin β S k z; v(y, z) = ∞ k=1 ṽk (y) sin β S k z; w(y, z) = ∞ k=1 wk (y) cos β S k z.
Given a perturbation velocity eld, e.g obtained from linearized DNS, the respective contributions of the fundamental and subharmonic, symmetric/antisymmetric modes to the total eld can be retrieved by a straightforward partitioning of the spanwise discrete Fourier transform of the velocity eld into odd-even harmonic real-imaginary parts. Consider the generic perturbation variable q(x, y, z, t). Concerning the temporal stability analysis, in order to determine the dependence of the temporal growth rate ω i on the (real) streamwise wavenumber α, the amplitude spectrum of q(x, y, z, t) is dened as

Q(α, t) = Ly/2 -Ly/2 Lz 0 |q(α, y, z, t)| 2 dy dz 1/2 , (A.1)
where q(α, y, z, t) is the Fourier transform of the variable q in the streamwise direction. The asymptotic exponential regime is attained for large times where the leading temporal mode emerges with growth rate ω i well approximated by:

ω i (α) ∼ ∂ ∂t ln Q(α, t), t → ∞, (A.2)
which can be numerically computed by the nite dierence approximation

ω i (α) ≈ ln[ Q(α, t 2 )/ Q(α, t1)] t 2 -t 1 . (A.
3)

The selected times t 1 and t 2 in the above approximation need to be suciently large to ensure the extinction of transients. Hence the temporal stability of the basic ow is determined by the maximum growth rate ω i,max , which establishes that the basic ow is temporally stable if ω i,max < 0 while unstable if ω i,max > 0.

The spatio-temporal stability analysis considers the development of the impulse response wave packet along x/t = v rays, which is equivalent to the investigation of modes of real group velocity v. The initial impulse is numerically approximated, in terms of stream function, as:

ψ (x, y, z) = A II e - (x-x 0 ) 2 2σ 2 x - (y-y 0 ) 2 2σ 2 y - (z-z 0 ) 2 2σ 2 z , (A.4)
which is the three-dimensional extension of the initial condition used by Delbende & Chomaz (1998) for the same type of analysis of 2D wakes. We computed the linear impulse response by direct numerical simulation of the Navier-Stokes equations linearized near the given frozen basic ow.

The corresponding perturbation velocity components are given by (u , v , w ) = (∂ψ/∂y, -∂ψ/∂x, 0) and the amplitude A II is set suciently small to avoid overows during the linear simulation.

The parameters σ x = 0.83, σ y = 0.83 and σ z = 0.30 have been chosen small enough to reproduce a localized impulse within the limits of a good resolution. The impulse is centered in x 0 , y 0 , z 0 , chosen to ensure that no particular symmetry is preserved by the initial condition.

The use of the Hilbert transform allows to demodulate the wave packet and dene its amplitude unambiguously with respect to spatial phase oscillations. To this end, the analytical complex eld variable q H (x, y, z, t) associated with q(x, y, z, t) through the x-convolution * is dened as q(x, y, z, t) = δ(x) + i πx * q(x, y, z, t).

(A.5)
where the symbol designates the convolution operator with respect to x. The complex eld q(x, y, z, t) generalizes the complex exponential representation of a sine wave to an arbitrary real function q(x, y, z, t). In wavenumber space, equation (A.5) reduces to q H (α, y, z, t) = 2H(α)q(α, y, z, t), (A.6) where H(α) is the Heavyside unit-step function. In other words, the Fourier transform of the analytical eld is obtained by setting to zero all the Fourier modes of negative streamwise wavenumber. The integration of the analytical eld q H in the cross-stream (y, z) plane then yields the amplitude Q dened by

Q(x, t) = Ly/2 -Ly/2 Lz 0 |q H (x, y, z, t)| 2 dy dz 1/2 . (A.7)
According to steepest-descent arguments Bers (1983), the long-time behaviour of the wave packet along each spatio-temporal ray

x/t = v is Q(x, t) ∝ t -1/2 e i[α(v)x-ω(v)t] , t → ∞, (A.8)
where α(v) and ω(v) represent the complex wavenumber and frequency travelling at the group velocity v. In (A.8), the real part of the exponential

σ(v) = ω i (v) -k x,i (v)v (A.9)
denotes the spatio-temporal growth rate observed while traveling at the velocity v and it can be evaluated for large t directly from the amplitude Q in (A.8) as

σ(v) ∼ ∂ ∂t ln[t 1/2 Q(vt, t)] (A.10)
that can be approximated with .11) to which apply the same considerations discussed about.

σ(v) ≈ ln[Q(vt 2 , t 2 )/Q(vt 1 , t 1 )] t 2 -t 1 + ln(t 2 /t 1 ) 2 (t 2 -t 1 ) , (A
For unstable basic ow σ(v) > 0 in the range [v -, v + ], where v -and v + are respectively the trailing edge and leading edge velocity of a downsteam traveling wavepacket. The absolute growth rate σ(v = 0) denes the nature convective or absolute of the unstable wavepacket, indeed for σ(v = 0) < 0, i.e.: v -> 0, the basic ow is convectively unstable, while for σ(v = 0) > 0, i.e.: v -< 0, it is absolutely unstable. 

E = 1 V ref Lx 0 Ly/2 -Ly/2 Lz 0 φ • φ dx dy dz, (A.12)
where V ref is the reference volume of the computational domain and L x , L y and L z are the size in the downstream, normal and spanwise direction respectively.

In a linear framework, after an initial transient, the most unstable global mode will emerge:

E ≈ φ 1 , φ 1 e 2 s 1 r t .
5 Computing optimal temporal energy growths in parallel wakes Optimal growths G(t, α, β) are computed along quite standard lines, described e.g. in Schmid & Henningson (2001). The linearized Navier-Stokes equations are recast in terms of the crossstream velocity and vorticity v-η. The system satised by Fourier modes v(y, t; α, β)e i(αx+βz) , η(y, t; α, β)e i(αx+βz) is the standard Orr-Sommerfeld-Squire system (see e.g. Schmid & Henningson, 2001):

∇ 2 ∂ v ∂t = L OS v; ∂ η ∂t = -iβ dU dy v + L SQ η (A.13)
where the Orr-Sommerfeld and Squire operators are:

L OS = -iα U (D 2 -k 2 ) - d 2 U dy 2 + 1 Re (D 2 -k 2 ) 2 , (A.14) L SQ = -iαU + 1 Re (D 2 -k 2 ), (A.15)
and where D denotes d/dy and k 2 = α 2 + β 2 . The system is discretized on grid of N y points uniformly distributed in [-L y /2, L y /2]. Dierentiation matrices based on second-order accurate nite dierences have been used to discretize the Orr-Sommefeld-Squire system.

Most of the results have been obtained with N y = 201 and L y ranging from 20 to 120 for the perturbations with the smallest spanwise wavenumbers (largest spanwise wavelengths).

The results do not change if N y is doubled to 401 and L y is increased by half. We have also veried that the results do not change if dierentiation matrices based on Fourier series instead of nite dierences discretization provided that L y is large enough. The distretization has also been validated against temporal growth rates of Bickley jets available in the literature.

Once the linear operator is discretized, standard methods and codes already used in previous investigations (e.g. Lauga & Cossu, 2005;Pujals et al., 2009;Cossu et al., 2009) are used to compute the optimal growth and the associated optimal perturbations.

Appendix B

An adjoint-free subspace reduction algorithm to compute optimal spatial amplications in non-parallel wakes

As discussed in chapter 4 we have not found in the literature any algorithm suitable to compute the optimal spatial growths in blu body wakes that could be used to compute e.g. the optimal blowing and suction on the body skin. Previous computations of optimal spatial growths such as those of [START_REF] Andersson | Optimal disturbances and bypass transition in boundary layers[END_REF] or Luchini (2000) were based on direct-adjoint methods developed under the assumption of the streamwise parabolicity of the equations. In those computations the variable t was essentially replaced by the variable x. This has led us to design a new algorithm. The main idea is to approximate the linear response of the system to inow or wall forcing in a subspace, compute optimal growths in this subspace, and achieved convergence by increasing the subspace dimension. The set of states with which the subspace is built consists in the set of steady perturbation velocity elds corresponding to a set of linearly independent inow boundary conditions or wall forcings (e.g. blowing and suctions).

Let us introduce the algorithm for the case of the weakly non-parallel synthetic wake. We denote by U 2D the 2D basic ow obtained using U 0 (y) as inlet velocity prole. Consider then the steady perturbations u of U 2D obtained by perturbing the inlet prole U 0 (y) with steady inow perturbations u 0 (y, z). In particular, spanwise periodic perturbations of wavelength λ z are considered.

Let us now decompose the inlet perturbation on a set of linearly independent functions b (m) 0 , in practice limited to M terms, as:

u 0 (y, z) = M m=1 q m b (m) 0 (y, z). (B.1)
Under the assumption of small perturbations, the steady response to the inow perturbations satises the steady linearized Navier-Stokes equations. Denoting by b (m) (x, y, z) the perturbation velocity eld obtained using b (m) 0 (y, z) as inlet perturbation, from the linearity of the operator follows that:

u(x, y, z) = M m=1 q m b (m) (x, y, z), (B.2)
where the coecients q m are the same used in (B.1). The spatial optimization problem dened by equation (4.1) can therefore be approximated in terms of the M -dimensional control vector 67 q as: G(x) = max q q T H(x)q q T H 0 q ,

(B.3)
where the components of the symmetric matrices H(x) and H 0 are:

H mn (x) = 1 2δλ z ∞ -∞ λz 0 b (m) (x, y, z) • b (n) (x, y, z) dy dz, (B.4) H 0,mn = 1 2δλ z ∞ -∞ λz 0 b (m) 0 (y, z) • b (n) 0 (y, z) dy dz. (B.5)
Within this formulation G(x) is easily found as the largest (real) eigenvalue µ max of the generalized M ×M eigenvalue problem µH 0 w = Hw. The corresponding eigenvector is the optimal set of coecients q (opt) maximizing the kinetic energy amplication at the selected streamwise station x. The corresponding inlet perturbation is u

(opt) 0 (y, z) = M m=1 q (opt) m b (m)
0 (y, z). In the limit M → ∞ the approximated solution converges to the exact solution. The computational cost to reach convergence are, in practical cases, are limited to a nite dimension of the subspace M .

The algorithms is easily extended to the computation of the optimal blowing and suction on the circular cylinder. The control radial velocity enforced at the cylinder surface u w (θ, z) is decomposed on a set of linearly independent functions b (m) w , in practice limited to M terms, as:

u w (θ, z) = M m=1 q m b (m)
w (θ, z). In this case the matrices H(x) and H w become:

H mn (x) = 1 πλ z ∞ -∞ λz 0 b (m) (x, y, z) • b (n) (x, y, z) dy dz; (B.8) H w,mn = 1 2πλ z λz 0 2π 0 b (m) w (θ, z) b (n) w (θ, z) dθ dz. (B.9)
Then the procedure to compute G(x) follows the same steps discussed above and the corresponding eigenvector q (opt) is the set of optimal coecients maximizing the kinetic energy amplication at the selected streamwise station x and the corresponding optimal blowing and suction is given by u

(opt) w (θ, z) = M m=1 q (opt) m b (m) w (θ, z).
Article 1 We show that optimal perturbations artificially forced in parallel wakes can be used to completely suppress the absolute instability and to reduce the maximum temporal growth rate of the inflectional instability. To this end we compute optimal transient energy growths of stable streamwise uniform perturbations supported by a parallel wake for a set of Reynolds numbers and spanwise wavenumbers. The maximum growth rates are shown to be proportional to the square of the Reynolds number and to increase with spanwise wavelengths with sinuous perturbations slightly more amplified than varicose ones. Optimal initial conditions consist of streamwise vortices and the optimally amplified perturbations are streamwise streaks. Families of nonlinear streaky wakes are then computed by direct numerical simulation using optimal initial vortices of increasing amplitude as initial conditions. The stabilizing effect of nonlinear streaks on temporal and spatiotemporal growth rates is then determined by analysing the linear impulse response supported by the maximum amplitude streaky wakes profiles. This analysis reveals that at Re = 50, streaks of spanwise amplitude A s ≈ 8 %U ∞ can completely suppress the absolute instability, converting it into a convective instability. The sensitivity of the absolute and maximum temporal growth rates to streak amplitudes is found to be quadratic, as has been recently predicted.

As the sensitivity to two-dimensional (2D, spanwise uniform) perturbations is linear, three-dimensional (3D) perturbations become more effective than the 2D ones only at finite amplitudes. Concerning the investigated cases, 3D perturbations become more effective than the 2D ones for streak amplitudes A s 3 %U ∞ in reducing the maximum temporal amplification and A s 12 %U ∞ in reducing the absolute growth rate. However, due to the large optimal energy growths they experience, 3D optimal perturbations are found to be much more efficient than 2D perturbations in terms of initial perturbation amplitudes. Despite their lower maximum transient amplification, varicose streaks are found to be always more effective than sinuous ones in stabilizing the wakes, in accordance with previous findings.

Key words: absolute/convective instability, flow control, wakes/jets † Email address for correspondence: carlo.cossu@imft.fr first published online 13 December 2013)

Introduction

Vortex shedding in the wake of bluff bodies is a robust feature associated with undesirable unsteady loads and mean drag increase on the body. An important, enduring research effort aims at understanding the mechanisms by which the shedding self-sustains and how it could be attenuated or even suppressed. In the circular cylinder wake, the canonical flow used to test theories and control concepts, the shedding sets in at a critical Reynolds number (≈47) via a global instability. Selfsustained oscillations associated with global instability are supported by a finite region of local absolute instability near the body (see e.g. Chomaz, Huerre & Redekopp 1988;Huerre & Monkewitz 1990).

Different techniques have been proposed to suppress vortex shedding in twodimensional wakes, among which an effective one is based on three-dimensional (3D) wake perturbations. Indeed, it has long been known that wrapping a helical cable around a cylinder (e.g. Zdravkovich 1981) or designing spanwise periodic trailing or leading edges of blunt bodies (starting with Tanner 1972, and followed by many others) can attenuate two-dimensional (2D) vortex shedding with a beneficial effect on mean drag and unsteady force peak fluctuations. We refer the reader to the review by Choi, Jeon & Kim (2008) for a clear discussion of these previous results and the associated references.

At low Reynolds numbers, 3D forcing can lead to the complete suppression of vortex shedding when spanwise wavelengths of the 3D perturbations are in the range of ≈1-6 diameters. In addition, 3D perturbations are found to require smaller perturbation amplitudes than spanwise uniform (2D) perturbations (Kim & Choi 2005). The nature and characteristics of the observed stabilizing effects have been mainly interpreted in terms of vorticity dynamics. Hwang, Kim & Choi (2013) (but see also Choi et al. 2008) have put forward an appealing explanation based on linear stability analysis. These authors convincingly show that spanwise modulations of parallel wake profiles lead to an attenuation of the absolute instability growth rate in a range of perturbation wavelengths than is in accordance with experimental and direct numerical simulation (DNS) findings. They also show that varicose perturbations are more effective than sinuous ones, in accordance with previous results of [START_REF] Kim | Active control of turbulent flow over a model vehicle for drag reduction[END_REF], Kim & Choi (2005) and Park et al. (2006), and that for the amplitudes they consider, the absolute instability is far more sensitive to 2D than to 3D perturbations. However, from their study, it is not clear whether absolute instability can be completely suppressed and what is the effect of wake modulations on the maximum temporal growth rate of the instability, which affects the mode amplification in the convective region. Furthermore, in this previous analysis, a shape assumption is made on the 3D basic flow modification that neglects the nonlinear deformations appearing at moderate perturbation amplitudes.

A related problem, with a similar mathematical structure but quite different physical mechanisms involved, is that of stabilization of 2D boundary layers. In particular, Cossu & Brandt (2002, 2004) found that optimal 3D spanwise modulations (streamwise streaks) of the 2D Blasius boundary layer developing on a flat plate have a stabilizing effect on the 2D Tollmien-Schlichting instability, which develops above the critical Reynolds number. The optimal 3D perturbations used to control the boundary layer are those leading to the maximum energy growth in the linear approximation. Optimal spanwise periodic counter-rotating streamwise vortices are used to induce the transient growth of spanwise periodic streamwise streaks associated with spanwise modulations of the streamwise velocity profile. The optimal energy growth in this process is of O(Re 2 ) (see e.g. Gustavsson 1991). The linearly optimal vortices were then used, with finite amplitude, as input in fully nonlinear Navier-Stokes simulations to compute nonlinearly saturated streaks. The 2D (spanwise averaged) modification of the boundary layer profile induced by the 3D streaks plays a crucial role in the stabilization (Cossu & Brandt 2002). This 2D modification is not captured by simply adding linear streaks to the boundary layer profile. It was also found that a key stabilizing role is played by the work of Reynolds shear stresses against the spanwise basic flow shear Cossu & Brandt (2004). The stabilizing action of streaks on TS waves and the effective delay of transition to turbulence using this technique was later confirmed experimentally (Fransson et al. 2005(Fransson et al. , 2006)).

Inspired by the type of analysis developed for boundary layers, one may therefore wonder if similar conclusions can be reached in plane 2D wakes. Some natural questions that arise are as follows. Can large transient energy growths of spanwise periodic perturbations be supported by 2D wakes? If yes, how does the maximum energy growth scale with the Reynolds number? Do nonlinearly saturated streamwise streaks have a stabilizing effect on the wake inflectional instability? If yes, what level of growth rate reductions can be attained? Do nonlinearly saturated optimal streamwise streaks have a stabilizing effect on the wake absolute instability? How would these effects relate to those described by Hwang et al. (2013)? Is it possible to completely suppress the absolute instability? Does the nonlinear spanwise mean (2D) flow distortion play an important role in the stabilizing mechanism? How is the stabilizing effect related to the work of Reynolds stresses? The scope of the present investigation is to try to answer these questions.

The analysis will be developed on parallel wake profiles proposed by Monkewitz (1988), which have been used as a laboratory for stability analyses of plane wakes in a number of previous studies, such as those of Delbende & Chomaz (1998), Hwang & Choi (2006) and Hwang et al. (2013). The advantage of this approach is that the results are genuinely related to the wake structure, and not to the specific generating body's surface shape and physics.

After a brief description of the problem setup, given in § 2, the optimal energy growths, inputs and outputs supported by the considered wake profiles are computed and discussed in § 3. The temporal and spatiotemporal stability of nonlinear streak profiles issued by linear optimal initial conditions is analysed in § 4. A summary and discussion of the main results are reported in § 5. Details of the method used in the computation of optimal energy growths, in the direct numerical simulations and in the extraction of the temporal and spatiotemporal stability results from the numerical simulation of the impulse response are given in the Appendix.

Mathematical model

In the following, essentially two kinds of basic flows will be considered. The first type is the usual (spanwise uniform i.e. 2D) parallel wake U M = {U M (y), 0, 0}, where the streamwise velocity profile U M (y) is the one proposed by Monkewitz (1988):

U M (y) = 1 + Λ 2 1 + sinh 2N (ysinh -1 1) -1 , (2.1) with Λ = (U * c -U * ∞ )/(U * ∞ + U * c
), U * c the centreline and U * ∞ the free stream velocity (dimensional variables are starred). The velocity profile U M is made dimensionless with respect to the reference velocity

U * ref = (U * c + U * ∞ )/2.
The spatial coordinates are made dimensionless with respect to the reference length δ * , which is the distance from the centreline to the point where the 2D wake velocity is equal to U * ref .

In the G. D. Guercio, C. Cossu and G. Pujals following we consider the value Λ = -1, corresponding to a zero centreline velocity, which has been used by Delbende & Chomaz (1998) and Hwang et al. (2013), for example, and the shear concentration parameter value N = 1, which corresponds to the same shear profile as the Bickley jet. The U M (y) profile obtained with these parameters is shown in figure 3(a).

In addition to the standard 2D wakes, the stability of spanwise modulated 3D 'streaky wakes' U = {U(y, z), 0, 0} will be considered in the following (where we let x denote the streamwise direction, y the transverse and z the spanwise one). For both types of wake profiles, the evolution of perturbations u , p to the basic flow wake U, P is ruled by the Navier-Stokes equations, written in perturbation form as

∇ • u = 0, (2.2) ∂u ∂t + (∇U)u + (∇u )U + (∇u )u = -∇p + 1 Re ∇ 2 u . (2.
3)

The flow is assumed incompressible and the fluid viscous with kinematic viscosity ν.

The Reynolds number Re = U * ref δ * /ν is based on the characteristic velocity and length scale of the basic flow which are used to make dimensionless velocities and lengths. In the linearized stability framework the term (∇u )u is neglected.

Optimal perturbations of 2D wakes

The first step of our analysis consists in finding the optimal initial perturbations leading to the maximum amplification of the kinetic energy of the response at time t. For parallel basic flows the optimal growths of Fourier modes u(α, y, β, t)e i(αx+βz) of streamwise and spanwise wavenumbers α and β can be considered separately. The optimal temporal energy amplification G is defined, in the usual way, as the ratio of the kinetic energy density associated with u at time t to the kinetic energy of the initial condition u 0 optimized over non-zero u 0 , G(α, β, t) = sup u 0 u 2 / u 0 2 , where

u 2 = (1/V ref ) V | u| 2 dV and V ref = 2δL
x L z in the present case. Two-dimensional parallel wakes, like the one defined in (2.1), are unstable to inflectional instabilities if Re is not too small. For the values Re 25 considered in this study, an unstable region exists in the (α, β) plane centred around the 2D (β = 0) unstable waveband 0 < α 1.75. In this study we are not interested in the optimal amplification of unstable perturbations but in their stabilization by optimally amplified stable disturbances. We will therefore consider the optimal growth of streamwise uniform (α = 0) perturbations, both because they mimic the perturbations that would be spatially forced by steady passive devices and because they are linearly stable.

As the U M profile is symmetric with respect to y = 0, perturbations to this profile are separated into varicose perturbations, for which u(-y) = u(y), v(-y) =v(y), w(-y) = w(y), and sinuous perturbations that have opposite symmetry properties. Standard methods, described in § A.1, have been used to compute G(t) for both varicose and sinuous perturbations for Re = 25, 50 and 100 and for spanwise wavenumbers β ranging from 0.1 to 2 with α = 0. For all these parameters the computed G(t) curves typically have a single maximum G max (α = 0, β, Re) = sup t G(t, α = 0, β, Re), attained at t max , and tend to zero for large times. The maximum optimal growths G max computed for sinuous perturbations are reported in figure 1(a) as a function of β for the selected Reynolds numbers. From this figure it is seen how G max increases with Re. From the analysis of Gustavsson (1991) it is expected that for streamwise uniform perturbations G max and t max are proportional to Re 2 and Re respectively. This is indeed verified for both G max (see figure 1b) and t max (not shown). The maximum growths G max and the associated t max are also seen to increase with the perturbation spanwise wavelength λ z = 2π/β, at least in the λ z range examined.

Varicose perturbations follow the same trend as sinuous ones, with the same Re scaling and a similar increase with λ z of G max , but are slightly less amplified than sinuous perturbations, as shown in figure 1(b).

Similar to what has been found in wall-bounded shear flows, optimal initial conditions correspond to spanwise periodic streamwise vortices while the most amplified perturbations correspond to spanwise periodic streamwise streaks. Optimal perturbations computed for Re = 50 and β = 1 are reported in figure 2. In the case of varicose perturbations (figure 2a), there are two antisymmetric rows of vortices on each side of the wake symmetry axis inducing symmetric streaks, while in the case of sinuous perturbations (figure 2b), a single row of vortices centred on the wake symmetry axis induces antisymmetric streaks. When the spanwise wavenumber β is decreased (the spanwise wavelength λ z = 2π/β is increased), the size of optimal perturbations increases in both the spanwise and the normal direction y, as shown in figure 3. The velocity of optimal varicose initial vortices is, non-negligible up to y ≈ λ z , which highlights the difficulty of forcing optimal perturbations with low values of β in practical applications such as those based on the body's leading and trailing edge deformation (Bearman & Owen 1998;Darekar & Sherwin 2001, e.g.) or on blowing and suction (Kim & Choi 2005).

Influence of streaks on wake stability

4.1. Basic flow streaky wakes Nonlinear streaky wakes are computed following the same rationale used in previous studies of the stability of streaks in wall-bounded flows, such as those of Reddy et al. (1998), Andersson et al. (2001), Brandt et al. (2003), Cossu & Brandt (2004) and Park, Hwang & Cossu (2011). Optimal linear perturbations (streamwise vortices) with finite initial amplitude A 0 are used as initial condition U I 0 (y, z) = U M (y) + A 0 u 
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Cross-stream view of the v -w components of optimal initial vortices (arrows) and of the u component of the corresponding maximally amplified streak (contour lines) for Re = 50 and β = 1, α = 0. Optimal varicose perturbations are reported in (a), while sinuous ones are reported in (b). The 2D basic flow wake streamwise velocity is shown in grey-scale, with white corresponding to the free stream velocity and dark grey to zero (wake centreline). 1 for the legend of cases and the associated initial amplitudes A 0 .
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A s (t, A 0 ) = 1 2 max y,z (U I (y, z, t, A 0 ) -U M (y)) -min y,z (U I (y, z, t, A 0 ) -U M (y)) max y U M (y) -min y U M (y) . (4.1) (a)
Case 1. The nonlinear streaky wakes considered. A 0 is the finite initial amplitude given to the linear optimal perturbations. A s,max is the maximum streak amplitude reached in the nonlinear numerical simulation. Case A corresponds to the reference two-dimensional wake profile U M (y). Cases B, C and D are obtained by increasing A 0 .

A B-Var C-Var D-Var B-Sin C-Sin D-Sin A 0 0 1.25×10 -2 1.94×10 -2 3.00×10 -2 2.00×10 -2
In figure 4 we display the temporal evolution of the amplitudes of nonlinear streaks for Re = 50 and β = 1, for varicose and sinuous perturbations of selected amplitudes. As reported in table 1, case A corresponds to the reference two-dimensional wake profile U M (y) (no streaks), while cases B, C and D are obtained by increasing the initial optimal perturbation amplitude A 0 .

In the following we will analyse the local spatiotemporal instability properties of the streaky wake profiles 'frozen' at the time of maximum streak amplitude, following the approach used by Reddy et al. (1998), Andersson et al. (2001), Brandt et al. (2003), Cossu & Brandt (2004) and Park et al. (2011), among others. The local analysis is justified by the fact that streaks decay slowly (for example, the varicose D streak changes its amplitude by ≈4 % in t ≈ 50) when compared to the fast growth of unstable perturbations (typical maximum growth rates are of the order of 1/4, and therefore during t ≈ 50 they would have been amplified by a factor of e 50/4 ≈ 270 000). The streaky basic flows corresponding to the varicose and sinuous case D are reported in figure 5.

Stability analysis based on linear impulse response

The linear stability properties of streaky wake profiles, including the convective or absolute nature of any instability, are revealed by the analysis of the linear impulse response (Green's function) that they support. The basic flow is linearly stable if the amplitude of impulse response tends to zero as t → ∞ and unstable otherwise. In the unstable case, the instability is absolute if the impulse response amplitude grows in the position of the initial pulse, while it is convective if it grows while being advected
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Cross-stream view of case D varicose (a) and sinuous (b) nonlinear streaky wake basic flows. Contour lines, iso-levels of the total streamwise velocity U I (y, z) extracted at the time of maximum amplitude (black circles in figure 4); arrows, v-w components of optimal initial vortices given as initial condition at t = 0.

by the flow but eventually tends to zero in the position of the initial pulse (Huerre & Monkewitz 1990).

The linear impulse response is computed by direct numerical simulation of the Navier-Stokes equations linearized near the frozen streaky basic flow profiles U I (y, z, t, A 0 ) described in § 4.1. To mimic forcing by a delta function in time and space, the initial condition is defined in terms of a 2D stream function as

ψ (x, y, z) = A II e -((x-x 0 ) 2 /2σ 2 x )-((y-y 0 ) 2 /2σ 2 y )-((z-z 0 ) 2 /2σ 2 z ) , (4.2)
which is the three-dimensional extension of the initial condition used by Delbende & Chomaz (1998) for the same type of analysis of 2D wakes. The corresponding perturbation velocity components are given by (u , v , w ) = (∂ψ/∂y, -∂ψ/∂x, 0) and the amplitude A II is set sufficiently small to avoid overflows during the linear simulation. The parameters σ x = 0.83, σ y = 0.83 and σ z = 0.30 have been chosen small enough to reproduce a localized impulse within the limits of a good resolution. The impulse is centred at x 0 = 62, y 0 = 1, z 0 = π/4, ensuring that no particular symmetry is preserved by the initial condition.

According to standard Floquet theory (see e.g. [START_REF] Nayfeh | Nonlinear Oscillations[END_REF], normal modes of the spanwise periodic basic flow of spanwise wavelength λ z may be sought in the form q(x, y, z, t) = q(y, z)e i(αx+γβz-ωt) , (4.3) where q is the generic flow variable. γ ∈ [0, 1/2] is the detuning parameter and ω is the complex frequency. Hwang et al. (2013) found absolute instabilities in spanwise modulated wakes only for fundamental (γ = 0) and subharmonic (γ = 1/2) modes. Fundamental modes have the same spanwise periodicity λ z as the basic flow, while subharmonic modes have periodicity 2λ z . Both types of mode will be considered together by performing numerical simulations in a spanwise periodic domain of length L z = 2λ z . In this framework, the spanwise z-variable is an eigenfunction direction just as the transverse y variable. Note that only one initial pulse is enforced at t = 0 in the given 'doubled' domain. The growth rates of fundamental and subharmonic, symmetric and antisymmetric modes can be separated using spanwise Fourier transforms. In particular, fundamental modes have harmonics with wavenumbers β (F) n = nβ, while for subharmonic modes β (S) n = (n + 1/2)β with n = 1, 2, . . . and where β is the spanwise wavenumber of the basic flow streaks (fundamental wavenumber). Further details are given in § A. [START_REF] Huerre | Local and global instabilities in spatially developing flows[END_REF].

The temporal growth rate curves ω i (α) are extracted from the numerically computed impulse response as described in § A.4 and are reported in figure 6. The 2D reference wake, case A, as is well known, is linearly unstable with a maximum growth rate ω i,max = 0.256. When streaks of increasing amplitude are forced, the maximum growth rate is reduced. The leading modes have the same symmetries in z as basic flow profiles (fundamental-symmetric in the terminology of § A.3), and varicose streaks are found to be more effective at stabilizing the temporal instability. For instance, ω i,max is reduced by ≈12 % using varicose streaks with A s ≈ 10 % (case D-Var) and by 10 % for sinuous streaks with A s ≈ 18 % (case D-Sin).

The absolute or convective nature of the instability can be determined from the spatiotemporal growth rate σ (v), which is the temporal growth rate observed by an observer travelling along the spatiotemporal ray x/t = v. For the considered wake profiles, which are unstable, σ > 0 in the range v ∈ [v -, v + ], where v -and v + G. D. Guercio, C. Cossu and G. Pujals are respectively the trailing and leading edge velocities of the wave packet. In the present situation, therefore, the instability is absolute for σ (v = 0) > 0, i.e. if v -< 0. The maximum value of σ corresponds to the maximum temporal growth rate ω i,max . The σ (v) curves have been extracted from the numerically computed impulse responses following the standard procedure explained in § A.4, which has already been used by Delbende & Chomaz (1998) and Brandt et al. (2003) and [START_REF] Lombardi | Growth and instability of a laminar plume in a strongly stratified environment[END_REF], among others; these are shown in figure 6. The 2D reference wake (case A) is absolutely unstable with an absolute growth rate σ (v = 0) = 0.073 and the wave-packet trailing-edge travelling upstream with velocity v -= -0.089. The absolute growth rate is reduced when streaks of increasing amplitude are forced, and can become negative for sufficiently large streak amplitudes transforming the absolute instability into a convective instability. Varicose streaks are found to be more effective at stabilizing the absolute instability than sinuous streaks. The varicose streak D-Var with A s ≈ 10 % is already convectively unstable, while amplitudes above A s ≈ 18 % (case D-Sin) are necessary for sinuous streaks to drive the instability from absolute to convective. For sinuous streaks, the leading modes in the σ (v) curves are fundamental-symmetric (the same symmetries as the basic flow streaks in the spanwise direction). For varicose streaks, fundamental-symmetric modes are the leading ones, except for large-amplitude streaks at sufficiently small values of v, where subharmonic-antisymmetric modes are dominant and therefore control the quenching of the absolute instability.

Sensitivity to basic flow modifications and cost of the stabilization

By an asymptotic (small-amplitude) sensitivity analysis, Hwang & Choi (2006) have shown that the absolute growth rate variation depends linearly on the amplitude of spanwise uniform (2D) perturbations of the basic flow. Hwang et al. (2013) show that the sensitivity to spanwise sinusoidal (3D) basic flow perturbations depends quadratically on their amplitudes. To verify whether these predictions extend to the nonlinear streaks considered and to maximum temporal growth rate sensitivity, we report in figure 7 the dependence of the maximum growth rate ω i,max and of the wave-packet trailing edge velocity v -on the streak amplitude A s . We consider v - and not σ (v = 0) as a measure of the absolute or convective nature of the instability because the numerical method used (impulse response analysis) does not provide wellconverged results for negative growth rates. We also consider the effect on the stability of a 2D (spanwise uniform) perturbation with a profile u 2D (y) equal to the high-speed varicose streak profile u(y). The amplitude A s of this 2D basic flow modification is defined by (4.1), but removing the 1/2 factor that accounted for the presence of highand low-speed streaks. From figure 7 it is seen that ω i,max and v -do indeed depend quadratically on A s for streaky basic flow modifications, but linearly for a 2D basic flow modification. The conclusions of the sensitivity analysis of Hwang et al. (2013) are therefore confirmed by the present results, despite the fact that in our computations, for increasing A s nonlinear streaks change not only their amplitude but also, slightly, their shape. Considering the stabilization of the maximum temporal growth rate, the quadratic sensitivity of the streaks to A s , even if it gives a weaker effect than 2D basic flow modifications at very small streak amplitudes, can provide a larger effect at larger A s . This is not the case for the quenching of absolute instability, where 2D basic flow modifications are able to drive v -to positive values for lower A s values than 3D basic flow modifications, as already remarked by Hwang et al. (2013). However, as the streaks have been forced using linearly optimal initial conditions, it is interesting to analyse the dependence of the stabilizing actions not only on the basic flow distortion A (2D) spanwise uniform perturbation has been also considered for comparison. Symbols denote data points, while lines are linear and quadratic best fits to the data points.

amplitude A s but on the amplitude A 0 of the initial perturbation based on energy density:

A 2 0 = 1 2δL x L z L x 0 ∞ -∞ L z 0 u 0 • u 0 dx dy dz. (4.4)
This dependence is also reported in figure 7, where, again quadratic and linear sensitivities of ω i,max and v -on A 0 are found for 3D and 2D basic flow perturbations respectively. When the amplitude of initial conditions is considered, however, optimal 3D perturbations are shown to be more effective than 2D perturbations at stabilizing the flow. This is not surprising because, in a first approximation, a factor of √ 2G max is gained through the lift-up effect when forcing optimal 3D streaks using optimal initial vortices instead of enforcing the 2D profile with the same streak shape. For the presently considered case, for instance, the absolute-convective instability transition is enforced with optimal 3D streaks with values of A 0 more than six times smaller than those necessary when using 2D basic flow modifications (one hundred times smaller in terms of kinetic energy). Note also that the lift-up amplitude gain increases like Re (like Re 2 in terms of energy), and therefore the cost of forcing 3D perturbations of given amplitude decreases when the Reynolds number is increased. These results suggest that the key ingredient of the success of wake control strategies based on 3D flow modifications mainly relies on the large energy gains associated with the lift-up effect. Comparison of maximum growth rate ω i,max and of the wave-packet trailing edge velocity v -computed for the unperturbed wake (case A, profile U M (y)), the genuine varicose streak D (profile U M (y) + ∆U(y, z)) and the 'synthetic' streaks D-Var (with profile U M (y) + ∆U(y)), D-Var (with profile U M (y) + ∆U(y, z)) and D lin -Var (with profile U M (y) + ∆U lin (y, z)).

5. Analysis of the stabilizing mechanism 5.1. Role of streaks' 2D mean flow distortion in the stabilizing mechanism In § 4.2 it has been shown that the forcing of streaks has a stabilizing effect on ω i,max and v -. One important question concerns the stabilizing mechanism. In the case of the stabilization of boundary layer instability it was found that a crucial role was played by the (nonlinear) spanwise mean flow distortion. Following Cossu & Brandt (2002), we therefore separate the wake distortion ∆U(y, z) = U(y, z) -U M (y) induced by the streaks into the spanwise averaged part ∆U(y) and the spanwise varying part ∆U(y, z) = ∆U(y, z) -∆U(y). Nonlinear effects are necessary to generate ∆U(y). To evaluate the respective effects of the spanwise periodic streak component ∆U and of the basic flow spanwise mean distortion ∆U, we have repeated the impulse response analysis on the artificial basic flows D-Var and D-Var obtained by taking into account only the spanwise varying or the spanwise uniform part of the basic flow distortion, i.e. U D = U M + ∆U and U D = U M + ∆U. The values of ω i,max and of v -pertaining to these artificial basic flows are compared to those obtained for the genuine streaky wake D-Var in table 2. From this table it is seen that, in contrast to what is found in boundary layers, the streaks' stabilizing action is not to be attributed to the 2D mean flow distortion ∆U(y) but to its 3D spanwise varying part ∆U, which is, for example, able to quench the absolute instability on its own. To understand whether streak deformations due to nonlinearities are relevant in the stabilization mechanism, the additional synthetic streaky wake D lin -Var has been considered. Its velocity profile U M (y) + ∆U lin (y, z) is obtained by adding the linear optimal streak profile to the reference 2D wake with the same amplitude as streak D. The results show that the stabilization induced by this linear streak is comparable to that induced by both ∆U and the full streak ∆U, which are all able to quench the absolute instability.

Analysis of kinetic energy production and dissipation terms

Further insight into the mechanism by which the streaks stabilize the wake inflectional instability can be gained by the analysis of the different terms contributing to temporal growth of total perturbation kinetic energy, which is the well-known Reynolds-Orr equation (see e.g. Schmid & Henningson 2001):

1 2 d dt V u • u dV = - V u ⊗ u : ∇U dV - 1 Re V ∇u : ∇u dV . (5.1) 
This equation states that the rate of change of perturbation kinetic energy is given by the sum of a production term, given by the work of Reynolds stresses against the 3. Maximum temporal growth rates and normalized kinetic energy production and dissipation components pertaining to the varicose streaky wakes.

basic flow shear, and a dissipation term, which is always negative. Cossu & Brandt (2004) have shown that for perturbations in the form of normal modes u(y, z)e i(αx-ωt) , the Reynolds-Orr equation reduces to the following decomposition for the temporal growth rate:

ω i = P y 2 K + P z 2 K - D 2 K , (5.2) 
with the definitions

K = 1 λ z λ z 0 ∞ -∞ ( u u * + v v * + w w * ) dy dz, (5.3) 
P y = 1 λ z λ z 0 ∞ -∞ -( u v * + u * v) ∂U ∂y dy dz, (5.4) 
P z = 1 λ z λ z 0 ∞ -∞ -( u w * + u * w ) ∂U ∂z dy dz, (5.5) 
D = 1 λ z λ z 0 ∞ 0 2( ξ ξ * + η η * + ζ ζ * ) dy dz, (5.6) 
where u = ( u, v, w ) are the three velocity components of the normal mode and ( ξ , η, ζ ) the corresponding vorticity components. The different terms of (5.2) have been computed for the varicose streaky wakes considered in § 4 and are reported in table 3 in correspondence to the most amplified streamwise wavenumber α max for which the maximum growth rate ω i,max is obtained. As it is well known, the instability of the 2D reference wake is explained by the large production term P y , which exceeds the dissipation term D when the Reynolds number is not exceedingly low. The forcing of streaks induces a stabilizing effect on all the components contributing to the growth rate. Not only is the P y production term reduced and the dissipation term increased, but the additional production term P z comes into play with a stabilizing effect. The stabilizing action on all the terms increases when the streak amplitude is increased and is of the same order of magnitude for all terms.

6. Summary of the main results and discussion 6.1.

Summary of main results

Concerning optimal energy growth of stable perturbations supported by 2D parallel wakes, in the first part of the study we have shown the following.

G. D. Guercio, C. Cossu and G. Pujals (i) Parallel 2D wakes can sustain large transient growths of 3D streamwise uniform perturbations that are linearly stable. For instance, the maximum growth supported by perturbations of spanwise wavelength λ z = 2π (β = 1) is G max = 70 at Re = 50. (ii) The maximum energy growth is proportional to Re 2 in accordance with what is observed in other shear flows. Therefore, for instance, at Re = 100 the maximum energy growth of λ z = 2π perturbations is four times larger (G max = 280) than at Re = 50. (iii) Maximum energy growth also increases with spanwise perturbation wavelengths (i.e. for decreasing β), but in this case optimal perturbations correspond to structures of ever larger cross-stream extension that would probably be difficult to enforce in practical applications. This result is similar to what is observed, for example, in vortex columns in unbounded domains (Pradeep & Hussain 2006). (iv) The most amplified perturbations are sinuous. Varicose perturbations are slightly less amplified (but by less than a factor of two). Optimal initial perturbations consist of streamwise vortices that induce the growth of streamwise streaks that modulate the wake's streamwise velocity in the spanwise direction. The crossstream shape of the width of the wake is sinuous or varicose depending on the enforced perturbations.

In the second part of the study, we analysed the influence on stability of nonlinear streak modulations of the wake enforced by optimal initial streamwise vortices of increasing amplitude. The specific values β = 1, Re = 50 were considered. We have shown the following.

(i) Nonlinear streamwise streaks induced by optimal initial vortices reduce both the maximum temporal growth rate and the absolute growth rate of the inflectional instability. (ii) Varicose streaks are more stabilizing than sinuous streaks of the same amplitude. (iii) It is possible to suppress the absolute instability with small streak amplitudes (A s ≈ 8 %U ∞ ). (iv) The decrease of the maximum growth rate and of the absolute instability depends quadratically on the amplitude of streaks and on the amplitude of initial perturbations used to force them. (v) When compared to 2D basic flow perturbations, whose stabilizing effect is linearly proportional to their amplitude, 3D varicose streak perturbations are more efficient in terms of amplitude A s , when A s 3 %U ∞ with respect to maximum temporal amplification and A s 12 %U ∞ when absolute growth rates are considered. However, when the comparison is made in terms of the required initial perturbation amplitude A 0 , optimal 3D perturbations are much more efficient than 2D perturbations (more than six times). This is due to the efficiency of the lift-up effect leading to large energy growths, with the efficiency increasing with Reynolds number. Varicose perturbations remain more efficient than sinuous ones even when their initial amplitude A 0 is considered, despite the fact that their optimal linear growth is lower. (vi) Contrary to what is observed in the stabilization of boundary layers by streaks, the spanwise averaged nonlinear mean-flow distortion induced by nonlinear streaks does not play a crucial role in the stabilization. The spanwise oscillating part of the streaks plays the most important role, with optimal linear streak shapes as effective as nonlinear streak shape in the stabilization.

(vii) The decomposition of the maximum temporal growth rate into the different components due to energy production and dissipation shows that the streaks' stabilizing action acts on all these components by increasing the energy dissipation, reducing the 2D-type energy production and inducing a stabilizing (negative) energy production term related to the work of Reynolds stress against basic flow spanwise shear.

Discussion

As discussed in § 1, the second part of the study is strongly related to a set of previous investigations on vortex shedding, quenching or weakening enforced via 3D basic flow modulations. The stabilizing effect we find is indeed in agreement with numerous previous studies showing that spanwise modulations of the bluff body shape or spanwise modulated blowing and suction can have a stabilizing effect on vortex shedding (see Choi et al. 2008). In particular, in a very recent investigation, Hwang et al. (2013) have shown that 3D spanwise modulations of the 2D wake streamwise velocity reduce the absolute growth rate of unstable perturbations supported by Monkewitz (1988) wake profiles. Our results confirm the findings of Hwang et al. (2013), and in particular the stabilizing effect on absolute instability, the fact that varicose perturbations are more effective than sinuous ones, and the quadratic sensitivity of the absolute growth rate to the amplitude of 3D basic flow modifications. However, we extend their investigation by showing that by using streaks of moderate but still not excessive amplitudes, absolute instability can be completely suppressed, and not only reduced. Also, more insight into the stabilizing mechanism has been given by its analysis in terms of spanwise mean and oscillating contributions to the stabilization and in terms of respective contributions of the work of Reynolds stresses and of the dissipation to the stabilizing mechanism. The main conclusion here is that the success of vortex shedding 3D basic flow modifications can be attributed both to the very efficient amplification of streamwise streaks that ultimately stabilize the flow and to the quadratic dependence of the stabilization on their amplitude. This quadratic dependence, which is a weak point at very low amplitudes, allows high sensitivity to 3D basic flow modifications at larger amplitudes, where practically relevant effects are attained.

Another relevant result that extends what was previously known is that not only absolute growth rates but also maximum temporal growth rates are reduced by enforcing optimal streaks. The growth rate reductions we have documented are moderate, but probably much larger reductions can be achieved by forcing streaks of only slightly larger amplitude, thanks to the quadratic sensitivity of the growth rate reductions on streak amplitudes (see figure 7). As both optimal perturbations, maximum energy growth supported by parallel 2D wakes and modal growth rates of parallel 3D wakes are unchanged by the addition of a uniform velocity, our results, except for the absolute instability analysis, directly extend to, say, jets with the same shear profile.

Only parallel wakes have been considered in the present investigation, both because the main interest is on local stability properties, and also for the sake of conciseness and clarity. It will nonetheless be important to complete the study by computing optimal perturbations in a non-parallel spatial stability setting, similar to what has been done for boundary layers by Andersson, Berggren & Henningson (1999), for example, and to assess the influence of those optimal perturbations on global stability. As unstable global modes in non-parallel wakes are sustained by a pocket of local absolute instability, it is expected that forcing streaks of sufficiently large amplitude G. D. Guercio, C. Cossu and G. Pujals could stabilize the global instability. Such a stabilizing action is, however, not expected to apply to situations where the basic flow non-parallelism alters the nature of the global instability, such as in wakes developing behind rotating cylinders [START_REF] Pralits | Three-dimensional instability of the flow around a rotating circular cylinder[END_REF]). These issues are currently under close scrutiny. The present analysis is also currently being extended to the turbulent case where 3D mean flow modifications are also effective at attenuating von Kármán vortex shedding (e.g. Kim & Choi 2005), proceeding along the same lines as in wall-bounded shear flows (Cossu, Pujals & Depardon 2009;Pujals et al. 2009;Hwang & Cossu 2010;Pujals, Depardon & Cossu 2010).

The flow is solved inside the domain [0, L x ] × [-L y /2, L y /2] × [0, L z ], which is discretized using a grid with N x and N z equally spaced points in the streamwise and spanwise directions respectively. N y points are used in the y direction using a stretching that allows us to increase point density in the region where the basic flow shear is not negligible. Typically, results have been obtained using L x = 124, L y /2 = 10, L z = 2π and N x = 300, N y = 160, N z = 24 with x = 0.4, z = 0.26 and a minimum of y = 0.01 on the symmetry axis and a maximum of y = 0.1 near the free stream boundary. Periodic boundary conditions have been used in the streamwise and spanwise directions and zero normal gradients of velocity and pressure have been enforced at the free stream boundaries (|y| = L y /2). An increase of L y /2 from 10 to 15 or an increase of the number of points from N y = 160 to N y = 320 did not affect the energy density more than 2 %. Also, the combined results of the DNS and the stability analysis algorithms described below have been checked against existing results both for the temporal stability analysis (temporal growth rates of the Bickley jet) and the temporal and spatiotemporal growth rates of Monkewitz profiles.

A.3. Fundamental and subharmonic, symmetric and antisymmetric modes

As mentioned in § 4.2, the numerical simulations of the linear impulse response are performed in a spanwise periodic domain of length twice that of the basic flow streaks L z = 2λ z where λ z = 2π/β. The impulse response can be decomposed into the contributions of fundamental and subharmonic modes, which can be further decomposed into symmetric and antisymmetric. The fundamental modes with an even symmetry (the same as that of the basic flow streaks) are of the form with β F k = kβ, where β is the wavenumber of the basic flow streaks:

u(y, z) = ∞ k=1 ũk (y) cos β F k z, v(y, z) = ∞ k=1 ṽk (y) cos β F k z, w(y, z) = ∞ k=1 wk (y) sin β F k z. ( A 4) 
Fundamental modes with the opposite symmetry admit the expansions

u(y, z) = ∞ k=1 ũk (y) sin β F k z, v(y, z) = ∞ k=1 ṽk (y) sin β F k z, w(y, z) = ∞ k=1 wk (y) cos β F k z. ( A 5) 
For subharmonic modes the spanwise periodicity of the disturbances is twice that of the basic flow, and therefore we define

β S k = [(k + 1)/2]β. Subharmonic-symmetric modes are expanded as u(y, z) = ∞ k=1 ũk (y) cos β S k z, v(y, z) = ∞ k=1 ṽk (y) cos β S k z, w(y, z) = ∞ k=1 wk (y) sin β S k z, ( A 6) 
while subharmonic-antisymmetric modes admit the expansions

u(y, z) = ∞ k=1 ũk (y) sin β S k z, v(y, z) = ∞ k=1 ṽk (y) sin β S k z, w(y, z) = ∞ k=1 wk (y) cos β S k z. ( A 7) 
Given a perturbation velocity field, obtained from linearized DNS, for example, the respective contributions of the fundamental and subharmonic, symmetric and

I. INTRODUCTION

Two-dimensional wakes behind bluff bodies support robust self-sustained vortex shedding for sufficiently large Reynolds numbers. The onset of self-sustained oscillations is associated to a global instability supported by a finite region of local absolute instability in the near wake. 1-3 There is a continued interest in controlling vortex shedding because, in addition to inducing unsteady loads on the body, it also leads to an increase of the mean drag.

Spanwise periodic (3D) perturbations of spanwise uniform (2D) wakes, e.g., obtained with periodic modulations of the trailing and/or leading edge of the bluff body 4-7 or spanwise periodic blowing and suction 8 can attenuate and even suppress vortex shedding and reduce the associated undesired drag and unsteady loads (see, e.g., Ref. 9 for a review). Recently, important progress has been made in the understanding of this stabilizing action from a linear stability perspective: Hwang et al. 10 show that appropriate 3D spanwise periodic perturbations of 2D absolutely unstable wake profiles lead to a reduction of the absolute growth rate. This reduction is observed for a range of spanwise wavelengths that is in accordance with experimental results, just as the fact that varicose perturbations are more stabilizing than sinuous ones. However, the question of the higher efficiency of 3D perturbations when compared to 2D ones in reducing the absolute growth rate was left partially open by this study. It is indeed known that lower rates of 3D blowing and suction, compared to 2D one, are required to suppress shedding in a cylinder wake. 8 This seems to contrast the fact that the first-order sensitivity of the absolute instability growth rate with respect to 3D spanwise periodic modifications of the basic flow is zero, 10, 11 therefore predicting that, at first order, 2D perturbations are more effective than 3D ones in reducing the absolute growth rate. A partial explanation of the higher efficiency of 3D perturbations when compared to 2D ones has been given in another recent study 12 where we show that parallel "frozen" 2D wakes can support the large temporal amplification of streamwise streaks from stable spanwise periodic and streamwise uniform streamwise vortices via the lift-up effect. 13, 14 The optimal perturbations leading to the optimal amplification of the streaks were computed and it was shown that varicose streaks of relatively small amplitude are able to completely quench the absolute instability. 12 It was also shown that the initial amplitude of optimal 3D perturbations necessary to quench the absolute instability is much smaller than the initial amplitude required by 2D perturbations.

Many questions were however left unanswered by the local temporal analysis developed in our previous investigation. 12 For instance, can optimal spatial amplifications be large in spatially diffusing wakes? The answer is not a priori clear because the wake diffusion not only reduces the basic flow shear fuelling the transient growth but also increases the local spanwise wavenumber of the perturbation, which is known from local analysis to reduce the growth. Another question is: are 3D optimal perturbations more efficient than 2D ones in stabilizing a global instability? The answer to this question is not obvious because finite downstream distances are needed to attain the maximum energy growth, while the pocket of absolute instability that needs to be controlled is located upstream, and therefore it is not clear how efficient optimal perturbations can be in quenching the absolute instability. The scope of the present study is to answer these questions by considering the spatial optimal perturbations and their influence on the global stability of non-parallel wakes.

An "artificial" wake, left free to spatially develop downstream the enforced inflow wake profile, is introduced as reference 2D basic flow in Sec. III. The use of such a basic flow allows us to find results which are independent of the specific body shape generating the wake and of the particular devices used to generate the optimal perturbations. The optimal spatial perturbations of this non-parallel wake are computed in Sec. IV following the procedure described in Sec. II. These optimal perturbations are defined as the perturbation profiles enforced at the inflow station that lead to the optimal energy amplification G(x) at the downstream station x. This definition is quite different from that of optimal initial or inflow conditions leading to the optimal temporal energy amplification 15, 16 G(t). Optimal spatial energy amplifications have already been computed in non-parallel boundary layers by using direct-adjoint methods exploiting the parabolic nature of the boundary layer equations. 17, 18 Here we choose to specifically design an alternative scalable optimization method (see Sec. II) that does not rely on the parabolic nature of the equations and that does not require the explicit computation of adjoint operators. The influence of forcing optimal perturbations on the global linear stability is investigated in Sec. V. The results of fully nonlinear simulations that validate these results in the nonlinear regime are reported in Sec. V D, while the used numerical methods are summarized in the Appendix.

II. PROBLEM FORMULATION

In this section the mathematical formulation of the analysis performed in the paper is briefly introduced. The formulation is general and can be applied to other non-parallel shear flows. Specific details about the particular wake profile and perturbations used in this study are mentioned in Secs. III-V.

A reference two-dimensional (2D) non-parallel plane basic flow U 2D (x, y) is obtained as a steady solution of the Navier-Stokes equations with inflow boundary condition U = U 0 (y)e x given at x = 0 and free-stream conditions U → U ∞ e x given as y → ±∞. We denote by x, y, and z the streamwise, cross-stream, and spanwise coordinates and by e x , e y , e z the associated unit vectors. The Reynolds number Re = U * re f δ * /ν is based on the characteristic velocity and length associated to U 0 (y) and on the kinematic viscosity ν of the fluid. The non-parallel basic flow U 2D = U (x, y)e x + V (x, y)e y is invariant to translations and reflections in the spanwise coordinate z (it is therefore two-dimensional or 2D). (y, z) given at x = 0. u (opt) 0 is normalized to unit x-local energy so that e (0) = A 2 0 for u = U 3D -U 2D (see the definition of e in Eq. ( 3)). In general, it is not guaranteed that the linear optimal perturbations are also (nonlinearly) optimal at finite amplitude. However, for the present purpose of open-loop control, this is not a problem as long as they are still largely amplified. Using strictly optimal perturbations is also not critical because it is not likely that strictly optimal perturbations can be forced in a real flow and there is no guarantee that they would be also the optimal ones in reducing the global mode growth rate. The global linear stability of the U 3D basic flows is then analysed by integrating in time the linearized form of the Navier-Stokes equations ( 1) and ( 2) in perturbation form with U = U 3D . After the extinction of transients, the leading global mode emerges inducing an exponential growth or decay of the solution. The global growth rate is then deduced from the slope of the global energy amplification curve.

III. NON PARALLEL 2D REFERENCE WAKE

The 2D reference wake is computed by enforcing as inflow boundary condition the following well studied 2 wake profile:

U 0 (y) = 1 + 2 1 + sinh 2N (y sinh -1 1) -1 , ( 10 
) with = (U * c -U * ∞ )/(U * ∞ + U * c )
, where U * c is the centreline and U ∞ * the freestream velocity (dimensional variables are starred). The velocity U 0 is made dimensionless with respect to the reference velocity

U * re f = (U * c + U * ∞ )/2.
The spatial coordinates are made dimensionless with respect to the reference length δ * 0 that is the distance from the centreline to the point where the 2D wake velocity is equal to U * re f , computed at the inflow. We set = -1.35 to ensure a small recirculation in the upstream region of the wake. For = -1.35, the wake is globally unstable when Re 39 (not shown). In the following we will consider the value Re = 50 for which numerical simulation (see the Appendix for the numerical details) shows strong self-sustained oscillations in the wake (see Fig. 1(b)). As at Re = 50 the only unstable global mode is sinuous (antisymmetric with respect to the y = 0 axis), the unstable basic flow U 2D is computed by direct temporal integration by enforcing the y-symmetry of the solutions (otherwise a Newton-based continuation method would have been required). The reference basic flow is shown in Fig. 1(a). It can be seen how the basic flow vorticity, which is maximum at x = 0 with peaks at y ≈ ±1, slowly diffuses downstream. 

IV. OPTIMAL SPATIAL ENERGY GROWTH

Optimal steady inlet perturbations of U 2D maximizing the spatial energy amplification G(x) are computed following the procedure described in Sec. II. Our previous investigation of the optimal temporal energy growth in parallel wakes 12 has shown that the most amplified spanwise periodic and streamwise uniform (corresponding to steady in our spatial framework) perturbations consist in streamwise vortices inducing the growth of streamwise streaks. We therefore consider inlet conditions of the type: u 0 = (u 0 , v 0 , w 0 ) = (0, ∂ψ/∂z, -∂ψ/∂y). Single-harmonic spanwise periodic perturbations can be considered without loss of generality: ψ = f(y)sin (βz). As varicose perturbations (mirror-symmetric with respect to the y = 0 plane) are the most efficient for control, 9, 10, 12 even if they are slightly less amplified than sinuous ones, 12 we enforce f (-y) = -f(y) which leads to varicose streaks. The set of linearly independent inflow conditions used in Eq. ( 5) is chosen as b (m) 0 (y, z) = (0, ∂ψ (m) /∂z, -∂ψ (m) /∂ y) with ψ (m) = f m (y)sin (βz) and f m (y) = -f m (y) for m = 1, . . . , M. We have found well suited the set f m (y) = sin (2mπ y/L y ), where the numerical box extends from -L y /2 to L y /2 in the y direction.

Optimal energy growths have been computed for a set of spanwise wavenumbers β increasing M until a precision of 1% or higher on G max was achieved (see also the Appendix for the numerical details of the computations). The computed optimal energy growth curves G(x, β) are reported in Fig. 2(a). It is seen how, consistently with results form the local analysis, 12 both the maximum growth G max = max x G(x) and the position x max where it is attained increase with increasing spanwise wavelength λ z = 2π /β, i.e. with decreasing β (see also panel (b) of the same figure). The convergence of the optimal growth curves with increasing M is quite fast, and this for all the considered values of β, as can be seen in Fig. 3. Well converged results, with relative variations below 1% are obtained with only M = 16 terms. Cross-stream (y-z) view of the cross-stream v 0 -w 0 components of optimal vortices (arrows) forced at the inflow (x = 0) and of the streamwise u component of the corresponding optimal streaks (contour-lines) at x = x max for Re = 50, β = 1. The 2D basic flow wake streamwise velocity at the inflow U 0 (y) is also reported in grey-scale with white corresponding to the freestream velocity and dark grey the minimum velocity (wake centreline).

The optimal inflow perturbations (x = 0) and the maximum response (x = x max ) associated to the maximum growth G max obtained for β = 1 are reported in Fig. 4. The corresponding velocity profiles are reported in Fig. 5, where additional values of β are also considered. The optimal inflow perturbations consist in two rows of counter-rotating vortices on each side of the y = 0 plane, with opposite rotation on each side. These vortices induce the growth of y-symmetric (varicose) streaks. From Fig. 5 it can be seen how, for increasing spanwise wavelengths λ z (decreasing β), the size of optimal perturbations increases in the normal (y) direction (and of course also in the spanwise z direction).

The observed trends are in agreement with those found in our previous local analysis. 12 However, the maximum spatial growth rates obtained in the non-parallel case are smaller than the temporal ones obtained at the same nominal β under the frozen and parallel flow approximation. This is not surprising because the nominal values of β and Re of the non-parallel results are based on the properties of the wake profile at the inflow (x = 0). As the dimensional reference length δ * (x) (the y * Del Guercio, Cossu, and Pujals Phys. Fluids 26, 024110 (2014) the dominant absolute mode is subharmonic, i.e., its spanwise wavelength is twice that of the basic flow streaks. This is taken in due consideration by integrating the linearized equations in a domain including two basic flow streaks wavelengths (L z = 2λ z ). Noisy initial conditions on u are given for the reference 2D wake (case A). The unstable global mode emerging for large times in the reference 2D wake is then used, upon normalization of its amplitude, as initial condition on u in simulations with the increasingly streaky basic flows B,...,E.

The temporal evolution of the global perturbation kinetic energy Fig. 6(b). After an initial transient extending to t ≈ 70, the dependence of E on time is exponential (a straight line in the lin-log scales used in the figure ), where the rate of growth or of decay is twice the growth rate of the global mode.

E = 1 2δL x L z L x 0 L y /2 -L y /2 L z 0 u • u dx dy dz is reported in
As anticipated (see, e.g., Fig. 1(b)) the reference 2D wake (case A) is strongly linearly unstable at Re = 50. The forcing of 3D linearly optimal perturbations of increasing amplitude has a stabilizing effect on the global instability. The growth rate first reduced for low amplitude streaks (cases B and C) is then rendered quasi-neutral (case D) and finally completely stable for sufficiently large streak amplitudes (case E).

In the neutral and stable case the streaks amplitudes A s (x = 2.7), measured in the middle of the absolute instability region of the reference 2D wake, are respectively of ≈5% and ≈7%. These values are not far from the ≈8% value at which the absolute instability was completely quenched in our previous local stability analysis. 12 Also remark that, in the present non-parallel case A s is given in terms of the entrance reference maximum U 2D (x = 0), but if it was based on the local value of U 2D (x) which is decreased with x, this would result in even larger downstream values of A s . The stabilization of the global mode therefore appears to be associated to a strong reduction of the pocket of absolute instability that drives the global mode oscillations in the 2D reference case. A local stability analysis of the basic flow profiles extracted at x = 2.7 (not shown) indeed confirms that the local absolute growth rate is reduced with increasing streak amplitudes and that it is completely quenched by streak E.

C. Sensitivity of the global growth rate to the amplitude of 3D optimal structures 1. The first order sensitivity of the global growth rate to streaks is zero

In previous studies based on local stability analyses, 10, 11 it was shown that the sensitivity of the absolute growth rate to 3D spanwise periodic modifications of the basic flow is zero. The argument developed in the local absolute instability analysis is easily extended to the global stability analysis of the nonparallel wake and proceeds as follows. Denote by L 2D the Navier-Stokes operator linearized near the 2D basic flow U 2D . For small values of the inflow amplitude of optimal perturbations, the basic flow is modified by a small amount δU = U 3D -U 2D that induces a small change δL in the linear operator. At first order, the change of the leading eigenvalue induced by this small variation is 20, 21 2) it is seen that the variation δL induced by δU consists only in spanwise periodic terms as δU is itself spanwise periodic. As w 2D and w † 2D do not depend on z, it follows 22 that w † , δLw = 0 and therefore that δs = 0. This is not the case for 2D (spanwise uniform) perturbations of U for which the variation of the leading eigenvalue is, in general, non-zero.

Effective sensitivity of global growth rate to spanwise periodic basic flow modifications and comparison with 2D modifications

We now consider the observed dependence of the most unstable global mode on the control amplitude. Such a control amplitude is unequivocally defined in terms of inflow optimal perturbation FIG. 8. Dependence of the growth rate of the global eigenvalue s r on the inflow optimal perturbation amplitude A 0 (panel (a)) and on the streak amplitude A s (x = 2.7) measured in the centre of the absolute region of the reference 2D wake (panels (b) and (c) for a zoomed plot). A spanwise uniform perturbation (2D) has been also considered for comparison. Symbols denote data points, while lines are best fits to the data points.

amplitudes A 0 . The dependence of the global growth rate s r on the inflow optimal perturbation amplitude A 0 is displayed in Fig. 8(a). If this dependence is also to be reported in term of streaks amplitudes, for the considered streaks with β = 1, it makes no sense to report it in terms of A s,max because this value is attained far downstream, in the convectively unstable region. We instead take as an indicator of the "useful" streak amplitude the amplitude of the streaks in the middle of the absolute region of the unperturbed flow A s (x = 2.7). The dependence of s r on this amplitude is reported in Fig. 8 (panels (b) and (c) for a zoom).

In the same figures the variation of the growth rate s r induced by a 2D perturbation of the basic flow is also reported for comparison. The 2D perturbation has the same y shape as the optimal streak shape in the middle of the absolute region (x = 2.7) but is uniform instead of periodic in the spanwise direction. For this 2D perturbation, A 0 is unambiguously defined and A s is defined as the maximum associated U taken at x = 2.7.

From the figures it is clearly seen how the first order sensitivities ds r /dA 0 and ds r /dA s computed for A 0 = A s = 0 are zero for the 3D perturbations and non-zero for the 2D perturbations as predicted by the first order sensitivity analysis. According to a first-order sensitivity analysis one would expect the 2D perturbations to be more effective than 3D ones in quenching the global instability, but exactly the opposite is observed. Indeed, 2D perturbations are more effective than 3D ones in reducing s r only for very small perturbation amplitudes, while the opposite is observed for larger amplitudes where the higher order dependence of s r on A 0 and A s induces more important reductions of s r . We indeed find that 3D perturbations stabilize the global mode at a value of A s (x = 2.7) more than five times smaller, and more than ten times smaller in terms of A 0 . A higher efficiency of 3D perturbations was expected for results expressed in terms of A 0 , due to the gain associated with the lift-up of the 3D optimal perturbations. However, such a result was somehow unexpected when expressing the growth rate reductions in terms of A s .

D. Nonlinear simulations

Non-linear simulations of the full Navier-Stokes equations have finally been performed to assess the effect of the inflow forcing of 3D optimal perturbations in the nonlinear regime. The same grid used in linear simulations has been used in the nonlinear ones. In a first simulation, the permanent harmonic self-sustained state supported by the reference 2D wake is allowed to develop. This 2D (spanwise uniform) self-sustained state is then given as an initial condition to simulations in the presence of the optimal perturbations (streaky wakes) of increasing amplitude. As expected from the linear analysis, the global perturbation kinetic energy E associated to the self-sustained oscillations in the wake is reduced when the amplitude of the enforced optimal perturbations is increased (see Fig. 9). A stable steady streaky wake is found for case E, where the oscillations are completely suppressed. Temporal evolution E (t) of the total perturbation kinetic energy, integrated over the whole computational box, supported by the streaky wakes, normalized to the E A of the reference 2D wake. The results are issued from nonlinear simulations where the permanent periodic state supported by the reference 2D wake is given as initial condition. In the presence of optimal perturbations of increasing amplitude, the amplitude of self-sustained oscillations is initially reduced (cases B, C, D), up to their complete suppression (case E).

Snapshots of the perturbation streamwise velocity in the y = 0 plane are reported in Fig. 10 for all the considered cases. For the reference 2D wake (case A), the self-sustained state is spanwise uniform (2D) with structures corresponding to standard von Kármán vortices. These vortical structures become increasingly modulated in the spanwise direction for increasing amplitudes A 0 of the forcing. Unsteady structures are completely suppressed for case E, where the basic flow streamwise streaks remain the only visible structures in the wake.

VI. SUMMARY AND DISCUSSION

In this study the optimal amplifications supported by an "artificial" non-parallel unstable 2D wake have been computed and their influence on the stability of the wake have been investigated by a global stability analysis. The main results can be summarized as follows:

r The energy of steady, symmetric spanwise periodic streamwise vortices forced at the inflow boundary can be significantly amplified downstream leading to large amplitude varicose streamwise streaks. r An increase of the spanwise wavelength λ z of the perturbations leads to larger energy amplification and to taller (in y) optimal structures. r The used optimization technique, based on the simulation of the responses to a set of linearly independent inflow forcings, has proved very flexible. Only 16 simulations of independent forcings were needed to obtain accuracies higher than 1% on the optimal energy growths. r The unstable global mode of the reference 2D wake at Re = 50 is completely stabilized when optimal inflow perturbations (vortices) are forced with sufficiently large amplitude. r The results of first order local sensitivity analyses 10, 11 are easily extended to the non-parallel case to show that the sensitivity of the 2D global mode eigenvalue to 3D spanwise periodic modifications of the basic flow is zero, while it is in general non-zero for 2D modifications. r 3D optimal perturbations require smaller amplitudes than a reference 2D forcing to quench the global instability, and this both in terms of rms-amplitude of the inflow forcing and in terms of the basic flow distortion amplitude measured in the centre of the absolute instability region of the reference 2D wake. This is in contrast with the prediction of the sensitivity analysis.

The trends observed for the optimal energy amplification and the associated optimal perturbations in the non-parallel case are in qualitative agreement with those found in the local stability analysis. 12 In particular, the shapes of the optimal inputs (streamwise vortices) and those of the optimal outputs (streamwise streaks) are very similar for both analyses. When comparing the results, care must however be exerted in, e.g., selecting the appropriate spanwise wavenumbers to compare, as the local dimensionless wavenumber keeps increasing while going downstream in the non-parallel wake. Using the wavenumber made dimensionless with respect to the inflow reference length, the growths in the non-parallel wake appear smaller than the ones that would be predicted by keeping the wake frozen and parallel.

The fact that the linear global instability can be suppressed by optimal spanwise perturbations is in agreement with the idea that these 3D perturbations efficiently reduce the local absolute growth in the wave-maker region of the flow. 10, 12 It also extends to flows with an "oscillator" dynamics 3, 21 the control strategy based on the forcing of optimally amplified streaks that has been successfully used to stabilize convectively unstable waves in non-parallel boundary layers. 23-26 In this type of control strategy, optimal vortices are forced which then efficiently generate the streaks leading in fine to 024110-13 Del Guercio, Cossu, and Pujals Phys. Fluids 26, 024110 (2014) the stabilization. This control technique is much more efficient than directly forcing the stabilizing streaks because the lift-up effect is used as an amplifier of the control action. Otherwise, much larger forcing amplitudes would be required to directly force the streaks. The conclusions concerning the sensitivity analysis are, we believe, probably the most relevant of this study. According to a first order sensitivity analysis, the 3D spanwise periodic forcing or modification of the basic flow with amplitude A is less effective than a 2D one with the same amplitude because the sensitivity of 3D perturbations is zero (growth rate reductions ∼A 2 , with zero derivative in A = 0), while the 2D sensitivity is not zero (growth rate reductions ∼A). While these conclusions are correct for very small amplitudes A of the basic flow modifications, they are not correct for larger amplitudes where the parabola-shaped growth rate reductions (3D control) have grown larger than the straight line ones (2D control). In our specific case this cross-over happens at very small amplitudes of the forcing, of the order of 1/10 of the amplitude required for stabilization by 3D modifications and of the order of 1/100 of the one required by 2D modifications. Considering that these results have been obtained at a Reynolds number only 20% above the critical value for global instability, this means that except in very weakly unstable situations, where small control amplitudes suffice to stabilize the perturbations, a first order sensitivity leads to misleading conclusions when the stabilizing efficiency of 3D and 2D perturbations is compared.

An important question, left for future study, is how to force optimal perturbations in the presence of the bluff body. As already mentioned, many ways to modulate wakes in the spanwise direction have been already implemented, among which, the sinusoidal indentation of the leading and/or the trailing edge of the body, 4-7 and the spanwise periodic blowing and suction at the wall surface. 8 The achieved wake modulations are strikingly similar to the streaky wakes investigated in the present study, suggesting that, just like in boundary layers, the optimal streaks represent a sort of "attractor" of the spanwise modulated solutions. However, it is not clear which of these strategies, if any, predominantly uses vortices to force the streaks instead of directly forcing the streaks. It would also be interesting to investigate the optimal amplification and the control efficiency of periodic inflow perturbations. Additional work is granted on these issues. The steady, spanwise-periodic, symmetric (varicose) optimal blowing and suction that maximizes energy amplification in the circular cylinder wake is computed at Reynolds numbers ranging from 50 to 100. It is found that the cylinder wake can sustain large energy amplifications that are associated with the generation by the optimal blowing and suction of streamwise vortices near the cylinder, which then induce the transient spatial growth of high-energy streamwise streaks further downstream. The most amplified perturbations have spanwise wavelengths ranging from five to seven times the cylinder diameter at the Reynolds numbers considered, with the corresponding optimal streaks reaching their maximum amplitude in the near wake, inside the pocket of absolute instability which sustains the global instability. The optimal blowing and suction is shown to stabilize the global linear instability.

The most stabilizing spanwise wavelengths are in good agreement with previous findings. The amplitude of optimal blowing and suction required to suppress the global instability decreases when the Reynolds number Re is increased from 75 to 100. This trend reveals the key role played by the non-normal amplification of the streaks in the stabilization process, which is able to overcome the increase of the uncontrolled global growth rate with Re. Finally, it is shown that the global instability can be suppressed with control amplitudes smaller than those required by 2-D (spanwise-uniform) control. This result is not what would be expected from first-order sensitivity analyses, which predict a zero sensitivity of the global instability to spanwise-periodic control and, in general, a non-zero sensitivity to spanwise-uniform control.

Introduction

There is continuing interest in the control of self-sustained oscillations in bluff-body wakes, the archetype of which is the circular cylinder wake. The steady flow around a circular cylinder undergoes a Hopf bifurcation at Reynolds number Re ≈ 48, leading to robust periodic self-sustained oscillations in the wake associated with the shedding of two-dimensional (spanwise-uniform) von Kármán vortices. The Hopf bifurcation occurs in correspondence to a linear global instability driven by a pocket of local absolute instability in the near wake (Chomaz, Huerre & Redekopp 1988;Monkewitz 1988). Different approaches to suppressing these self-sustained oscillations have been studied, which can be classified into 2-D (spanwise-uniform) and 3-D (typically spanwise-periodic) control (Choi, Jeon & Kim 2008). Examples of 3-D control were given by Tanner (1972), Tombazis & Bearman (1997), Bearman & Owen (1998) and Darekar & Sherwin (2001), among others, who have shown that suitable spanwise-periodic modulations of the bluff-body geometry weaken and can even suppress the vortex shedding in the wake. Kim & Choi (2005) obtained similar results using spanwise-periodic blowing and suction (the reader is referred to the article by Choi et al. 2008 for a complete review of these results).

In addition to early interpretations of the stabilizing effect of 3-D control on 2-D wakes in terms of vortex dynamics, arguments based on general linear stability concepts have been advanced recently. In particular, it has been shown by Hwang, Kim & Choi (2013) that the local absolute growth rate of standard wake profiles can be reduced with suitable spanwise-periodic modulations of the streamwise velocity. This stabilizing effect is observed for shapes and spanwise wavelengths which are in agreement with previous observations. A mathematically similar, but physically different, application of 3-D control is encountered in boundary layers where the 3-D spanwise-periodic modulations of the streamwise velocity are called 'streamwise streaks'. [START_REF] Kachanov | Experimental investigation of a relaxing boundary layer[END_REF] found that streamwise streaks have a stabilizing effect on the primary 2-D instability of the flat-plate boundary layer. In the context of wall-bounded shear flows, it is well known that a very efficient way to generate streamwise streaks is to force low-energy streamwise vortices that fuel the growth of the streamwise streaks through the lift-up effect (see [START_REF] Moffatt | The interaction of turbulence with strong wind shear[END_REF]Ellingsen & Palm 1975;[START_REF] Landahl | On sublayer streaks[END_REF]. In this process the energy of the vortices can be amplified by a factor proportional to Re 2 to give high-energy streaks (Gustavsson 1991). The precise shape of optimal vortices leading to optimally amplified streaks can be computed using standard optimization techniques and is associated with very large energy amplifications. Cossu & Brandt (2002, 2004) proposed using optimal vortices to force the stabilizing streaks, and showed that the primary 2-D instability of flat-plate boundary layers can be strongly stabilized in this way. The experiments of Fransson et al. (2006) show that transition to turbulence can be delayed by using this 3-D control technique.

Seeking to extend the approach used for boundary layers to bluff-body wakes, we recently computed the optimal streamwise uniform perturbations sustained by parallel absolutely unstable wakes (Del Guercio, Cossu & Pujals 2014a) and showed that, also in wakes, the optimal input consists of streamwise vortices and the optimal output consists of greatly amplified streamwise streaks. These optimally amplified streaks were shown to reduce the absolute growth rate and for sufficiently large amplitudes to completely suppress it, suggesting that global instabilities could be suppressed by quenching the wave-maker region in the near wake. To confirm this intuition, nonparallel model wakes with a finite region of absolute instability have been considered in a follow-up study (Del Guercio, Cossu & Pujals 2014b). Optimal downstream energy amplifications of steady perturbations were computed for these model wakes. It was found that inlet steady vortices (the control) can give rise to greatly amplified streaks downstream and that these streaks have a stabilizing effect on the global instability, leading to its suppression with sufficiently large control amplitudes.

By considering idealized non-parallel model wakes (as done in Del Guercio et al. 2014b), it is possible to analyse the streak generation and the global instability control independently of the specific body generating the wake. However, this approach does not address the issue of how optimal steady vortices can be forced in practical applications. Some interesting questions therefore remain unanswered. Can large spatial energy amplifications be obtained by using a control device placed on the cylinder surface at low Reynolds numbers, e.g. ranging from 50 to 100? How do these optimal amplifications relate to those obtained for the idealized non-parallel wake? Does an optimally amplified finite spanwise wavelength exist in this case? If so, what is its value and how does this value compare to spanwise wavelengths that minimize the control energy? What is the minimum energy required to stabilize the global instability at Reynolds numbers ranging from, e.g., 50 to 100? How does the distribution of optimal blowing and suction compare with distributions used in previous investigations? How much can the control energy be reduced by using optimal forcing? Another issue which has been addressed only partially by previous investigations is the comparative efficiency of spanwise-uniform (2-D) and spanwise-periodic (3-D) control for stabilization of the global instability. Hwang et al. (2013) had shown that the sensitivity of the absolute growth rate of parallel wakes to 3-D modulations of the basic flow is zero, whereas it is in general not zero for 2-D modulations. They therefore suggested that the higher efficiency of 3-D control, as observed by Kim & Choi (2005), for example, should be attributed to the higher efficiency of the forcing of 3-D perturbations as compared to 2-D ones. Del Guercio et al. (2014b) extended these sensitivity analysis results to global instabilities, showing that the first-order sensitivity of the global growth rate to 3-D modulations of the basic flow is also zero. They found that, despite this prediction, optimal 3-D perturbations are more efficient than 2-D ones in reducing the global growth rate in terms of both control energy and streak amplitude. It is currently unknown whether these conclusions can be extended to 'real' highly non-parallel wakes where the streaks would be forced by perturbations applied to the bluff-body surface.

The present study aims to answer the questions discussed above. To this end, we compute the optimal spanwise-periodic distributions of steady blowing and suction applied to the cylinder surface which maximize the perturbation energy at selected downstream stations. This approach is different from those where optimal initial or inflow conditions leading to the optimal temporal energy amplification are sought (see, e.g., Abdessemed et al. 2009 for the specific case of the circular cylinder). As detailed in § 2.1, the 3-D optimal blowing and suction and the associated optimal streaks are computed using a subspace reduction technique based on a set of independent simulations of the linearized Navier-Stokes equations. The results of the optimization, as well as their dependence on the spanwise wavelength and the Reynolds number, are discussed in § 3. The effect of finite-amplitude optimal blowing and suction on the growth rate of the unstable global mode is analysed in § 4. To this end, streaky wake basic flows are first computed by using finite-amplitude optimal forcing in nonlinear simulations; then, their linear stability is assessed by integration of the Navier-Stokes equations linearized near these streaky basic flows. The control sensitivity and efficiency are also discussed in § 4. Finally, nonlinear simulations are performed to validate the results of the linear stability analysis, as reported in § 4.6. The results and their implications are discussed in § 5.

Problem formulation

Mathematical formulation

We consider the flow of an incompressible viscous fluid of density ρ and kinematic viscosity ν past a circular cylinder of diameter D whose z axis is orthogonal to the free-stream velocity U ∞ e x (where e x is the unit vector oriented parallel to the x axis). The Navier-Stokes equations governing the flow read as follows:

∇ • u = 0, (2.1) ∂u ∂t + u • ∇u = -∇p + 1 Re ∇ 2 u, (2.2) 
where u and p and the dimensionless velocity and pressure fields and Re = U ∞ D/ν is the Reynolds number. The velocity, pressure, lengths and times have been made dimensionless with U ∞ , ρU 2 ∞ , D and D/U ∞ , respectively. On the cylinder surface we enforce a radial velocity distribution u w = u(r = 1/2, θ , z) = u w (θ , z)e r , where e r is the radial unit vector.

The reference basic flow U 2D (x, y) is obtained as a steady solution of the Navier-Stokes equations (2.1) and (2.2) in the case where no velocity is forced on the cylinder surface (u w = 0); U 2D = U(x, y)e x + V(x, y)e y is invariant with respect to translations and reflections in the spanwise coordinate z and is therefore two-dimensional (2-D).

In the first part of our study, which deals with linear optimal spatial perturbations of U 2D , we consider steady perturbations u of U 2D obtained by forcing a steady small radial velocity distribution u w (θ, z)e r on the cylinder surface. These perturbations satisfy the Navier-Stokes equations rewritten in perturbation form, i.e.

∇ • u = 0, (2.3) 
∂u ∂t + u • ∇U + U • ∇u + u • ∇u = -∇p + 1 Re ∇ 2 u , (2.4) 
using U = U 2D as the basic flow and neglecting the nonlinear term u • ∇u , which makes the perturbation equations linear. In the following, we will consider steady, spanwise-periodic perturbations of wavelength λ z , which are of particular interest in open-loop flow control applications. The (input) kinetic energy density per spanwise wavelength of the radial flow forced at the cylinder boundary is, in dimensionless form,

e w = 1 2πλ z λ z 0 2π 0 (u w ) 2 dθ dz, (2.5) 
while the (output) local perturbation kinetic energy density at the station is

e (x) = 1 πλ z ∞ -∞ λ z 0 u • u dy dz. (2.6)
The optimal spatial energy amplification of wall-control forcing is

G(x) = max u w e (x) e w . ( 2 

.7)

To compute G(x) and the associated optimal wall perturbation, we follow an approach similar to the one recently applied to synthetic non-parallel wakes (Del Guercio et al. 2014b), which is summarized below. The control radial velocity enforced at the cylinder surface u w (θ, z) is decomposed using a set of linearly independent functions b (m) w , in practice limited to M terms, as

u w (θ, z) = M m=1 q m b (m) w (θ , z). (2.8)
If the perturbation velocity field obtained using b (m) w (θ , z) as the input perturbation is denoted by b (m) (x, y, z), from linearity it follows that u (x, y, z) = M m=1 q m b (m) (x, y, z), (2.9) where the coefficients q m are the same ones as in (2.8). The optimal energy growth, defined in (2.7), can therefore be approximated by .10) where q is the M-dimensional control vector and the components of the symmetric matrices H(x) and H w are

G(x) = max q q T H(x)q q T H w q , ( 2 
H mn (x) = 1 πλ z ∞ -∞ λ z 0 b (m) (x, y, z) • b (n) (x, y, z) dy dz, (2.11) 
H w,mn = 1 2πλ z λ z 0 2π 0 b (m) w (θ , z) b (n) w (θ , z) dθ dz. (2.
12)

The G(x) in (2.10) is easily found as the largest eigenvalue µ max of the generalized M × M eigenvalue problem µH w w = Hw. The corresponding eigenvector q (opt) is the set of optimal coefficients maximizing the kinetic energy amplification at the selected streamwise station x, and the corresponding optimal blowing and suction is given by u

(opt) w (θ , z) = M m=1 q (opt) m b (m) w (θ, z).
The maximum growth is then defined as G max = max x G(x).

In the second part of the study, the effect of forcing three-dimensional finiteamplitude optimal perturbations on the global stability is investigated. To this end, first a set of increasingly three-dimensional basic flows U 3D (x, y, z; A w ) is obtained by computing steady solutions of the nonlinear Navier-Stokes equations with boundary conditions u w = A w u (opt) w (θ, z) e r (where u (opt) w is normalized to unit energy so that e w = A 2 w ). The global linear stability of the U 3D basic flows is then analysed by integrating in time the linearized form of the Navier-Stokes equations (2.3) and (2.4) with U = U 3D and enforcing u w = 0. For sufficiently large times, the leading global mode emerges, inducing an exponential growth or decay of the solution. In this regime, the global growth rate is deduced from the slope of the global energy amplification curve.

Numerical methods

Numerical simulations of both the nonlinear and the linearized Navier-Stokes equations were performed using OpenFoam, an open-source finite volume code (see http://www.openfoam.org). The flow is solved in a C-type domain centred on the cylinder with L x streamwise, L y transverse and L z spanwise extensions (see figure 1). Several preliminary tests guided us to the choices L x = 70 and L y = 80, with L z = λ z for the computation of optimal perturbations and nonlinear streaky wakes and L z = 2λ z for the global stability analyses and nonlinear direct numerical simulations used to confirm that the control is effective. The grid density is increased in the x-y plane in regions of high shear. We used N x = 300 and N y = 200 points in the streamwise and transverse directions, respectively, with x min = 0.01, x max = 0.2, y min = 0.01 and y max = 0.2 in the internal mesh blocks. A uniform grid spacing was used in the spanwise direction, always with z ≈ 0. TABLE 1. Spanwise extension L z of the solution domain and the number of points N z used in the spanwise direction for computation of the basic flows and optimal perturbations; L z and N z are doubled for the global stability analysis and for the nonlinear simulations.

Operators) algorithm is used to advance the solution in time. We have verified that with the chosen mesh, the length of the recirculation region of steady symmetric solutions and the drag coefficient both match, within 1 % accuracy, those found by Kim & Choi (2005) and Giannetti & Luchini (2007) in the 2-D case for the range of Reynolds numbers considered. Extending the domain size in the streamwise direction to L x = 100 or in the transverse direction to L y = 100 does not significantly improve the precision of these results. For 3-D simulations we have verified, in a few selected cases with active blowing and suction, that the perturbation energy (from which global growth rates are computed) does not change by more than 1 % when the number of grid points is doubled in the spanwise direction.

Optimal spatial energy amplifications sustained by the 2-D wake

The 2-D cylinder wake steady solution U 2D is the usual one computed in a number of previous studies (see, e.g., Dennis & Chang 1970;Fornberg 1980). It is found that U 2D is stable for Re < Re c ≈ 48. Here, U 2D is computed in the linearly unstable regime, for Re = 50, 75 and 100, by enforcing the y-symmetry of the solutions in direct temporal integrations of the Navier-Stokes equations. We have verified that the length of the recirculation bubble and the value of the separation angle are in good agreement with those found in previous studies.

Distributions of optimal blowing and suction u w (θ , z) which maximize the spatial amplification of perturbation energy are computed following the procedure described in § 2.1. As the basic flow U 2D is spanwise invariant and the equations are linear, single-harmonic spanwise-periodic perturbations can be considered without loss of generality, i.e. u w (θ, z) = f (θ) sin(2πz/λ z ). A number of previous studies have shown that varicose perturbations (which are mirror-symmetric with respect to the y = 0 plane) are the most efficient for control (see, e.g., Darekar & Sherwin 2001;Kim & Choi 2005;Choi et al. 2008;Hwang et al. 2013;Del Guercio et al. 2014a,b), even if they are slightly less amplified than sinuous ones (Del Guercio et al. 2014a). We therefore enforce f (-θ) = f (θ), which leads to varicose streaks. A standard cosine series expansion in θ is used, leading to the choice b (m) w (θ , z) = cos(m θ ) sin(2πz/λ z ) (m = 0, . . . , M) for the set of linearly independent inflow conditions used in (2.8). Optimal energy growths have been computed by increasing M until a precision of 1 % or better on G max was achieved for a set of spanwise wavelengths λ z . Typical G(x) and G max (λ z ) obtained for Re = 75, along with their convergence histories, are reported in figure 2. From the figure one can see that the optimal growths have converged with better than 1 % precision with only M = 6 terms.

The computations have been repeated at Re = 50 and 100. The convergence of the results with increasing M is similar to that in the Re = 75 case. As shown in figure 3, the main effect of an increase in Re is to increase both the maximum amplification G max and the position x max at which this maximum is attained. The large amplifications found are consistent with those found in our previous investigations (Del Guercio et al. 2014a,b) and with those of Abdessemed et al. (2009), who found optimal temporal energy amplifications of the order of 10-10 2 for initial perturbations with 4 λ z 8 at Re = 45. From figure 3(b) it is also seen that x max is an increasing function of λ z . The most amplified wavelengths are found to be λ z = 6.5 for Re = 50, λ z = 5.7 for Re = 75 and λ z = 6.1 for Re = 100, with corresponding optimal streamwise stations x max = 3.4, x max = 3.5 and x max = 3.6.

The radial distributions u (opt) w (θ) of the optimal blowing and suction u (opt) w (θ )× sin(2πz/λ z ) are shown in figure 4. They correspond to spanwise-periodic blowing and suction with a maximum near θ ≈ ±90 • and minima at the bow and the stern of the cylinder. The variations of u (opt) w (θ) with λ z and Re are small and may be neglected in a first approximation. As shown in figure 5, this spanwise-periodic optimal blowing and suction induces counter-rotating streamwise vortices which decay downstream while forcing the growth of varicose streamwise streaks. Also in this relatively complicated flow, therefore, the main mechanism at play seems to be the lift-up effect. The facts that u (opt) w (θ) is maximal at θ ≈ ±90 • (and not at, e.g., θ = 0 and θ = 180 • ) and that the local (in z) net mass flux is not zero (the M = 0 harmonic has an important contribution) suggest that the main effect of the optimal G. Del Guercio, C. Cossu and G. Pujals (not shown), meaning that streaks with essentially the same shape are forced. The main effect of using optimal perturbations is therefore to reduce the input energy for forcing these streaks.

4. Stabilizing effect of finite-amplitude optimal streaks 4.1. A family of steady nonlinear streaky wake basic flows Non-parallel streaky (3-D) wake basic flows U 3D (x, y, z; A w ) are computed by enforcing at the wall the boundary condition U w (θ , z) = A w u (opt) w (θ , z) and then computing the corresponding steady solution of the nonlinear Navier-Stokes equations, as explained in § 2.1. Symmetry with respect to the y = 0 plane is enforced to compute steady solutions which may be unstable. A few cases with increasing A w are selected and listed in table 2. We consider the intermediate Reynolds number Re = 75 and the spanwise wavelength λ z = 2π, which is chosen slightly (≈10 %) larger than its optimal value 5.7 so as to approach the value that minimizes the control energy, as discussed below.

The reference two-dimensional wake profile U 2D is called case A, and cases B, C and D correspond to increasingly streaky wakes, as shown in figure 6. The local streak amplitude is measured with the standard formula of Andersson et al. (2001),

A s (x) = max y,z (U 3D -U 2D ) -min y,z (U 3D -U 2D ) 2U ∞ . ( 4 

.1)

The evolutions A s (x) associated with the velocity fields U 3D corresponding to the four cases are plotted in figure 7(a), and the corresponding maximum streak amplitudes A s,max are listed in table 2. It is interesting that the maximum streak amplitudes are naturally reached inside the region of absolute instability of the reference 2-D wake, which almost coincides with the recirculation region (x 5 at Re = 75). This is good news. Indeed, the global instability has been shown to be sustained by the region

Optimal streaks in the circular cylinder wake Reynolds number is increased to Re = 100, the spanwise wavelength minimizing the control amplitude is reduced to λ z ≈ 5.3, with the value minimizing A w (λ z = 5.4) being very slightly larger than the one minimizing A s,max (λ z = 5.3). These results are in very good agreement with those of Kim & Choi (2005), who found that the minimum drag is achieved for λ z = 5-6 (but at the fastest rate for λ z = 6) at Re = 80, and for λ z = 4-5 (but at the fastest rate for λ z = 5) at Re = 100. Less energy is required to suppress the global instability when using optimal blowing and suction instead of localized blowing and suction (0.62 % instead of 8 % of U ∞ in terms of maximum blowing/suction velocity, and 5.6 × 10 -5 instead of 1.2 × 10 -3 in terms of the momentum coefficient of forcing C µ = 2πA 2 w at Re = 100), which is also confirmed by nonlinear simulations (not shown). This is not surprising given the observed large differences in energy gains obtained using these different distributions of blowing and suction. Despite its higher efficiency, however, the optimal distribution of blowing and suction may be more difficult to realize experimentally than localized blowing and suction.

For all the spanwise wavenumbers considered, larger streak amplitudes are required to stabilize the global instability at Re = 100 than at Re = 75. This is to be expected, because at Re = 100 the global mode is more unstable than at Re = 50, and hence larger streak amplitudes are needed to quench it. However, the amplitudes of the optimal blowing and suction required to stabilize the global instability are smaller at Re = 100 than at Re = 75, for all the λ z considered. The increase in energy amplification of the control due to the lift-up associated with an increase in Reynolds number (see figure 3a) therefore overcomes the larger control action necessary to quench the more unstable global mode. In other words, the results reported in figure 9(a) confirm the essential role played by the non-normal amplification of streaks in stabilization of the global instability. simulations (see § 4.2) are re-examined by switching on the nonlinear terms in the numerical simulations and integrating the equations until a permanent regime develops. In all the cases considered, the permanent regime is periodic in time, except for sufficiently large amplitudes of the optimal blowing and suction, where, as expected from the linear analysis, self-sustained oscillations are quenched. Figure 10 shows that for increasing A w , the mean value of the global perturbation kinetic energy E in the permanent regime is reduced (cases B and C) and is eventually driven to zero for case D. The increasingly three-dimensional nature of the controlled wakes in the permanent regime can be appreciated from figure 11.

Summary and conclusions

In the first part of this study, a subspace reduction method was introduced for the computation of steady, spanwise-periodic, symmetric (varicose) optimal blowing and suction that maximizes the energy amplification at selected streamwise stations in the circular cylinder wake. It has been shown that the energy of the optimal blowing and suction can be greatly amplified in the wake and that the maximum energy amplification and the position at which it is reached are both increasing functions of the Reynolds number.

The azimuthal distribution of the optimal blowing and suction displays a maximum near θ = 90 • , in accordance with the results of Kim & Choi (2005), who found that the optimal position of θ-localized spanwise-periodic blowing and suction is near θ = 90 • . The optimal blowing and suction induces streamwise vortices, which in turn induce the transient spatial growth of highly amplified streamwise streaks. The most amplified spanwise wavelengths λ z range from 5D to 7D at the Reynolds numbers considered, with the corresponding optimal streaks reaching their maximum amplitude at approximately λ z /2 downstream in the wake, well inside the pocket of absolute instability sustaining the global instability. The existence of a finite optimal spanwise wavelength is one of the most notable differences between our results and the case of synthetic wakes studied by Del Guercio et al. (2014b), where the generation mechanism of the optimal vortices by actuation on the body surface was not taken into account. We then investigated the effect on the global linear instability of forcing optimal blowing and suction with finite amplitudes. First, nonlinear simulations were used to compute nonlinear streaky wake basic flows with increasing finite-amplitude optimal blowing and suction. Then, the global stability of these nonlinear streaky wakes was investigated using the linearized equations.

The global mode growth rate is shown to be reduced proportionally to the square of the optimal blowing and suction amplitude and to the square of the maximum amplitude of the associated streaks. Complete stabilization of the global mode is achieved with blowing and suction amplitudes much smaller than those required by 2-D (spanwise-uniform) blowing and suction. This result is not expected from first-order sensitivity analyses, which predict the opposite. Predictions based on first-order sensitivity analyses are therefore to be treated with extreme caution when considering spanwise-periodic controls and, more generally, when far from the Optimal streaks in the circular cylinder wake 587 instability threshold. Indeed, higher-order terms are likely to become more important than linear terms when moderate control amplitudes are considered.

We also show that the optimal blowing and suction amplitude A w required to suppress the global instability decreases when the Reynolds number is increased from 75 to 100, despite the fact that the global instability is stronger at Re = 100 than at Re = 75. This reveals the essential role played by the lift-up effect, which amplifies the control energy with an efficiency that increases with Re; this efficiency increase probably explains why 3-D control of 2-D wakes remains effective far from the critical Reynolds number, and even in the turbulent regime. The spanwise wavelength for which the stabilization is obtained with minimum amplitude is found to decrease from λ z ≈ 6 to λ z ≈ 5 as Re is increased from 75 to 100, in good agreement with the results of Kim & Choi (2005).

The present study also pinpoints the relevance of the role played by streamwise vortices in the very near wake. Indeed, although the analyses of Hwang et al. (2013) show that a key stabilizing role is played by the streaks, here and in our related previous investigations of parallel and non-parallel model wakes (Del Guercio et al. 2014a,b), we show that forcing optimal vortices instead of directly forcing the streaks is much more efficient and that the energy amplification associated with this process plays a key role in the stabilization. In this sense, the present results extend to 2-D wakes the rationale already implemented in boundary layers, where optimal or nearly optimal streamwise vortices were forced to induce streaks able to delay the 2-D Tollmien-Schlichting instability and delay transition to turbulence (Cossu & Brandt 2002, 2004;Fransson et al. 2005Fransson et al. , 2006)). Current effort is directed at extending the present approach to the control of turbulent wakes, in the same spirit as Cossu, Pujals & Depardon (2009), Pujals, Cossu & Depardon (2010a) and Pujals, Depardon & Cossu (2010b).
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 11 Figure 1.1: Relative percentage of the tyre drag and the aerodynamic drag for increasing speed for a city car. Internal source PSA.
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 12 Figure 1.2: Separation control with streaks on an Ahmend body. Time averaged streamwise velocity U/U e around the rear-end in the symmetry plane using PIV. The ow is from left to right. (a) Uncontrolled case. (b) Optimally controlled case with conguration where the streaks on the roof of the Ahmed body are excited at the optimal position found. Source: Pujals et al. (2010b).
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 13 Figure 1.3: The von Kármán vortex shedding in the wake of a circular cylinder, Re = 140.
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 14 Figure 1.4: Plot of base pressure coecient C pb over a large range of Reynolds numbers. A
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 15 Figure 1.5: 2D control. Schematic cross-section of the cylinder with base bleed with D and h that stands for the diameter of the cylinder and the height of the bleed arch. Source Schumm et al. (1994)
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 16 Figure 1.6: 3D forcing by passive means: (a) helical strake, (b) segmented trailing edge, (c) wavy trailing edge, (d) wavy stagnation face, (e) sinusoidal axis, (f ) hemispherical bump, and

Figure 2 . 1 :

 21 Figure 2.1: Sketches of typical impulse responses developing in basic ows which are respectively: (a) stable, (b) convectively unstable, (c) absolutely unstable. Source Huerre & Monkewitz (1990).
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 22 Figure 2.2: Vector example of transient growth. Starting on the left, the vector f is dened as the dierence between the nearly collinear vectors ψ 1 and ψ 2 . During iteration (proceeding to the right of the gure) the vector f gradually turns into the direction of ψ 1 (sketch on the right), but increases substantially in length, before decaying to zero. Thus, the superposition of decaying non orthogonal eigenfunctions can produce, in the short term, growth in the norm of a perturbation. Source: Schmid (2007).

  10 and φ 2 (0) = φ 20 . The eigenvalues s 1 = -2/(3 Re) and s 2 = -1/(5 Re) of L have negative real part indicating linear stability of the system. The eigenvectors are ψ 1 = [1 0] T and ψ 2 = [1 7/(15Re)]
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 233 Figure 2.3: Optimal transient energy growth of a toy system. Panel a: optimal transient energy growth G(t) of the linear operator of the system (2.7). Panel b: rescaled optimal energy growth.
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 31 Figure 3.1: Monkewitz's parallel wake proles. Left panel: F (y) = (1+sinh 2N [y sinh -1 (1)]) -1 . When N and Λ changes the velocity prole can be easily adapted to the particular downstream position of the wake's development. Right panel, absolute instability boundary in the Λ-N -1
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 32 Figure 3.2: Synthetic non parallel wake: spanwise vorticity elds ω z (x, y) associated to the reference 2D non-parallel wake at Re = 50. Top panel: (unstable) basic 2D ow prole obtained by enforcing the y-symmetry of the solution. Bottom panel: Snapshot of the periodic self-sustained state obtained without enforcing the y-symmetry of the solution.
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 33 Figure 3.3: Spanwise vorticity ω z for the ow around a circular cylinder at Re = 75.
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 41 Figure 4.1: Rescaled maximum energy amplications in parallel wakes: rescaled maximum time t max /Re (panel a) and rescaled maximum growth G max /Re 2 (panel b) dependence on β for sinuous and varicose perturbations.
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 42 Figure 4.2: Optimal perturbations of the parallel wake: Cross-stream view of the v opt 0 -w opt 0 components of optimal initial vortices (arrows) and of the u component of the corresponding maximally amplied streak (contour-lines: high speed streaks in whiter lines and low speed streaks in darker lines) for Re = 50 and β = 1, α = 0. Optimal varicose perturbations are reported in the left panel (a), while sinuous ones are reported in the right panel (b). The 2D
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 43 Figure 4.3: Optimal energy growth in the non parallel synthetic wake: convergence of G(x) for β = 1 (panel a) and of the maximum energy growth G max (β) when the number M of linearly independent inow conditions is increased at Re = 50. Well converged results are obtained for M = 16.
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 44 Figure 4.4: Optimal perturbations of the non parallel synthetic wake: view of the crossstream v opt 0 -w opt 0
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 45 Figure 4.5: Optimal energy growth in the circular cylinder's wake: convergence of the optimal energy growth G(x) for λ z = 2π (panel a) and of G max (λ z ) (panel b) at Re = 75 when the number M of linearly independent distributions of wall blowing and suction is increased. Well converged results are obtained for M = 6.
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 46 Figure 4.6: Maximum amplication in the cylinder's wake: dependence on the spanwise wavelength λ z of the maximum transient energy growth G max (panel a) and of the streamwise station x max (panel b) where the maximum is attained for the selected Reynolds numbers Re = 50, Re = 75 and Re = 100.
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 47 Figure 4.7: Circular cylinder wake: Azimuthal distributions u opt w (θ) of the blowing and suction normalized by their maximum value. Panel a: results obtained for a set of spanwise wavelengths λ z at Re = 75. Panel b: distributions pertaining to the most amplied λ z at each considered Reynolds number.

  Figure 4.8: Optimal perturbations in the cylinder wake: Cross-stream (y -z) view of the velocity perturbations forced by the blowing and suction at Re = 75, λ z = 2π at the three selected streamwise stations: x = 1/2 (cylinder stern, panel a), x = x max /2 (midway to the position of maximum streak amplitude, panel b) and x = x max (position of maximum streak amplitude, panel c). The scales with which are plotted the streamwise u (streamwise streaks, contour-lines) and the cross-stream v-w components (streamwise vortices, arrows) are the same in all panels. The reference 2D basic ow streamwise velocity U 2D (y) is also reported in
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 51 Figure 5.1: Streaky parallel wakes: Temporal evolution of nonlinear streaks amplitude A s (t) for selected initial amplitudes A 0 of the initial optimal perturbations and for varicose (left panel a) and sinuous (right panel b) perturbations. For all cases Re = 50 and β = 1. See table5.1 for the legend of cases and the associated initial amplitudes A 0 .

  computing the corresponding steady solution of the (nonlinear) Navier-Stokes equations. The specic values Re = 50 and λ z = 2π are considered. In the case of the circular cylinder the streaky basic ows are computed by enforcing at the wall the boundary condition ! U w (θ, z) = A w u (opt) w (θ, z) and by then computing the corresponding steady solution of the nonlinear Navier-Stokes equations.
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 52 Figure 5.2: Streaky parallel wakes: Cross-stream view of case D varicose (left panel a) and sinuous (right panel b). Contour lines: iso-levels of the total streamwise velocity U I (y, z) extracted at the time of maximum amplitude.
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 5 STABILIZING EFFECT OF STREAKSCase:
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 53 Figure 5.3: Streaky non parallel wakes: Spatial evolution of the streaks amplitudes A s (x) for increasing amplitudes A 0 of the inow optimal perturbations for the non parallel synthetic wake (panel a) and for the circular cylinder streaky wakes (panel b) for increasing amplitudes A w of the blowing and suction.
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 55 Figure 5.5: Stabilization of parallel wakes: Stabilizing eect of varicose (panels a and b) and sinuous (panels c and d) streaks on temporal (panels a and c) and spatio-temporal (panels b and d) growth rates. Case A corresponds to the 2D reference wake while cases B, C and D correspond to increasing streaks amplitudes. The basic ow is absolutely unstable if σ(v = 0) > 0. The presence of symbols on parts of the stability curves denotes the range where subharmonic modes are dominating.
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 56 Figure 5.6: Stabilization of the linear global instability in non-parallel wakes: Temporal evolution of the (global) kinetic energy density of secondary perturbations E (t). Panel a: synthetic wake at Re = 50 and λ z = 2π. Panel b: circular cylinder's wake at Re = 75 and λ z = 2π.
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 575859 Figure 5.7: Stabilization of the linear global instability in the circular cylinder wake: Dependence on the spanwise wavelength of the critical amplitude of the forcing A w,c (panel a) and of the streaks A s,c (panel b), for which the global instability is suppressed. Data pertaining to Re = 75 and Re = 100.
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 61 Figure 6.1: Sensitivity of parallel wakes: dependence of the maximum growth rate ω i,max (panels a and c) and of the wave-packet trailing edge velocity v -(panels b and d) on the streak amplitude A s (panels a and b) and on the initial disturbance amplitude A 0 (panels c and d). Zero amplitudes correspond to the 2D wake reference case A (2D) spanwise uniform perturbation has been also considered for comparison. Symbols denote data points while lines are linear and quadratic best ts to the data points.
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 6263 Figure 6.2: Sensitivity of the non-parallel synthetic wake for λ z = 2 π and Re = 50: dependence of the maximum growth rate of the global eigenvalue s r on the inow optimal perturbation amplitude A 0 (panel a) and on the streak amplitude A s (x = 2.7) measured in the centre of the absolute region of the reference 2D wake (panel b and c for a zoomed plot). A spanwise uniform perturbation (2D) has been also considered for comparison. Symbols denote data points while lines are best ts to the data points.
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 6 Figure 6.3 presents the comparison with the two kinds of control.
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 71 Figure 7.1: Squareback Ahmed body. Panel (a): lateral view, H indicates the height and L the length. Panel (b): rear back side, W stands for the span.

Figure 7 . 2 :

 72 Figure 7.2: Photo of the set up. The ow investing the 3D blu body exits from the vein with uniform velocity U 0 . The reference frame with origin in the center of the back rear surface of the body is also shown.
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 73 Figure 7.3: Time averaged statistics of the natural ow in the symmetry plane z = 0, (a) U/U 0 , (b) < u 2 > /U 2 0 , (c) < v 2 > /U 2 0 and (d) < u v > /U 2 0 . On each panel the U = 0 line is displayed as the black dashed line.
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 74 Figure 7.4: Locations of the hot-wire probe in a cross-ow plane in the wake of the model.
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 75 Figure 7.5: Power Spectral Densities (PSD) measured at the positions exposed in gure 7.4 for the natural case. Panel (a), x 1 = 3 H. Panel (b), x 1 = 5 H. Vertical line indicates the Stroual number St = 0.2.
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 76 Figure 7.6: Schematic exposition of the spatially streaks development on a at plate when cylindrical roughness element of diameter d and height k are positioned in a cross direction with a spacing λ.

Figure 7 .

 7 Figure 7.7 shows a visualization of the time averaged ow measured downstream of one roughness array (the roughness elements are depicted as white disks) at a distance k/2 of the model. The ow is from left to right and the streamwise velocity is scaled with U 0 while both streamwise and wall-normal directions are scaled with the wavelength λ. The black dashed line

Figure 7 . 7 :

 77 Figure 7.7: Time averaged streamwise velocity component U/U 0 shown at a distance from the body Y = 0.5 k.
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 78 Figure 7.8: Time averaged statistics of the controlled ow in the symmetry plane z = 0, (a) U/U 0 , (b) < u 2 > /U 2 0 , (c) < v 2 > /U 2 0 and (d) < u v > /U 2 0 . On each panel the U = 0 line is displayed as the black dashed line. The controlled parameters are k = 9mm, d = 4mm and X 0 = 3λ.
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 779 Figure 7.9: Power Spectral Densities (PSD) measured at the positions exposed in gure 7.4 when the control with roughness elements is considered. Panel (a), x 1 = 3 H. Panel (b), x 1 = 5 H

Figure 7 . 10 :

 710 Figure 7.10: < u v > /U 2 0 distributions in the wake of the model equipped with roughness elements located 4 λ (a), 3 λ (b), 2 λ (c) and λ (d) from the rear-end.

Figure 7 . 11 :

 711 Figure 7.11: Panel (a), recirculation region at z = 0 for the natural ow case and the controlled case. Panel (b), power spectral density measured at x 1 = 3 H in the lower shear layer. Natural ow case is displayed in continuous red line and the controlled case is the green dashed line.

  previous work of Pujals et al. (2010b) did show that ≈ 10% reductions of the total drag can be achieved by forcing the transient growth of streaks in the turbulent boundary layer on the roof of an Ahmed body. The energy of the actuators was amplied by the ow itself through the lift-up eect. It was shown that in that case the streaks suppressed the separation of the slanted (25 o ) rear surface of the Ahmed body. The main questions motivating the present work is: can the approach of Pujals et al. (2010b) be modied to control massive separations around bodies with a blunt trailing edge? If yes, how?

  the Navier-Stokes equations have been performed using the OpenFoam open-source code (see http://www.openfoam.org). The code is based on a nite volume discretization of the Navier-Stokes equation which are solved using the PISO (Pressure Implicit with Splitting of Operator) algorithm (see e.g. Issa, 1986). The second order accurate Crank-Nicolson scheme with automatic time stepping and CFL adaptation is used to advance the solutions in time. Several maximum temporal steps have been tested during the validation to guarantee the agreement with the reference cases. The original code is programmed to solve the Navier-Stokes equation for the total velocity eld, no decomposition are a priori implemented. An important part of my work has consisted in developing and validating a code reformulated in perturbation form and, in particular, the linearized version. These new solvers have been validated e.g. by reproducing the optimal transient growths sustained by laminar channel ows computed by Reddy & Henningson
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  Impulse response analysis in parallel wakesThe techniques used to retrieve the temporal and spatio-temporal stability properties of parallel basic ow from the numerically computed impulse response closely follow the ones used byBrandt et al. (2003), which are the three-dimensional extension of the ones developed byDelbende et al. (1998) andDelbende & Chomaz (1998) for two-dimensional wakes.

(B. 6 )

 6 If the perturbation velocity eld obtained using b (m) w (θ, z) as inlet perturbation is denoted by b (m) (x, y, z), from linearity it follows that u(x, y, z) = M m=1 q m b (m) (x, y, z).

FIGURE 1 .

 1 FIGURE 1. (Colour online) (a) Dependence of the maximum growth rate G max of streamwise uniform (α = 0) sinuous perturbations on the spanwise wavenumber β for three selected Reynolds numbers Re. (b) Rescaled maximum growth rate G max /Re 2 dependence on β for sinuous (solid line, red) and varicose (dashed line, blue) perturbations. The lines correspond to the rescaled Re = 100 data, while the Re = 25 and Re = 50 rescaled data are shown as points. It can be seen how, when rescaled, data obtained at different Re collapse onto the same curve.

= 1 .

 1 The nonlinear Navier-Stokes equations are then numerically integrated for the selected initial conditions (see § A.2 for numerical details), providing

FIGURE 3 .

 3 FIGURE 3. (Colour online) Normalized amplitude of the v(y) component of the optimal initial (t = 0) vortices (b,d) and the u(y) component of the corresponding optimally amplified (t = t max ) streaks (c,e), corresponding to the varicose (b,c) and sinuous (d,e) perturbations, for β = 1. i.e. λ z =6.28 (solid, red). β = 0.5. i.e. λ z = 12.56 (dashed, green). and β = 0.25. i.e. λ z= 25.13 (dotted, blue). The 2D wake basic flow profile U M (y) is also reported in (a) for comparison.

FIGURE 4 .

 4 FIGURE 4. (Colour online) Temporal evolution of nonlinear streak amplitude A s (t) for selected initial amplitudes A 0 of the initial optimal perturbations and for varicose (a) and sinuous (b) perturbations. For all cases, Re = 50 and β = 1. See table1for the legend of cases and the associated initial amplitudes A 0 .

FIGURE 6 .

 6 FIGURE 6. (Colour online) Stabilizing effect of varicose (a,b) and sinuous (c,d) streaks on temporal (a,c) and spatiotemporal (b,d) growth rates of linear perturbations. Case A corresponds to the 2D reference wake while cases B, C and D correspond to increasing streak amplitudes. The basic flow is absolutely unstable if σ (v = 0) > 0. The presence of symbols on parts of the stability curves denotes the range where subharmonic modes are dominating.

FIGURE 7 .

 7 FIGURE 7. (Colour online) Dependence of the maximum growth rate ω i,max (a,c) and the wave-packet trailing edge velocity v -(b,d) on the streak amplitude A s (a,b) and the initial disturbance amplitude A 0 (c,d). Zero amplitudes correspond to the 2D wake reference case. A (2D) spanwise uniform perturbation has been also considered for comparison. Symbols denote data points, while lines are linear and quadratic best fits to the data points.

U

  3D (x, y, z; A 0 ) is obtained by looking for steady solutions of the (nonlinear) Navier-Stokes equations with inflow boundary condition U 0 (y, z) = U 0 (y)e x + A 0 u (opt) 0

FIG. 1 .FIG. 2 .

 12 FIG. 1. Spanwise vorticity fields ω z (x, y) associated to the reference 2D non-parallel wake at Re = 50. (a) (unstable) Basic 2D flow profile obtained by enforcing the y-symmetry of the solution. (b) Snapshot of the periodic self-sustained state obtained without enforcing the y-symmetry of the solution.

FIG. 3 .

 3 FIG.3. Convergence of the optimal energy growth G(x) for β = 1 (panel (a)) and of the maximum energy growth G max (β) (panel (b)) when the number M of linearly independent inflow conditions is increased at Re = 50. Well converged results are obtained for M = 16.

FIG. 5 .

 5 FIG. 5. Normalized amplitude of the v(x = 0, y, z = 0) component (panel (a)) and w(x = 0, y, z = λ z /4) components (panel (b)) of the optimal inflow boundary vortices. The normalized amplitude of the u(x = x max , y, z = 0) streamwise component of the corresponding optimally amplified streaks is plotted in panel (c). Three selected spanwise wavenumbers are considered: β = 0.5 (dashed line, green), β = 1 (solid line, red), and β = 1.5 (dotted line, blue).

FIG. 6 .FIG. 7 .

 67 FIG. 6. Spatial evolution of the streaks amplitudes A s (x) for increasing amplitudes A 0 of the inflow optimal perturbations (panel (a)) and temporal evolution of the global kinetic energy of secondary perturbations E (t) to the considered reference and streaky basic flows (panel (b)). All the results have been obtained for Re = 50 and β = 1.
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  FIG.9. Temporal evolution E (t) of the total perturbation kinetic energy, integrated over the whole computational box, supported by the streaky wakes, normalized to the E A of the reference 2D wake. The results are issued from nonlinear simulations where the permanent periodic state supported by the reference 2D wake is given as initial condition. In the presence of optimal perturbations of increasing amplitude, the amplitude of self-sustained oscillations is initially reduced (cases B, C, D), up to their complete suppression (case E).

FIG. 10 .

 10 FIG.10. Snapshots from fully nonlinear simulations. Streamwise perturbation velocity u (x, y = 0, z) = u(x, y = 0, z) -U 2D (x, y) in the y = 0 symmetry plane in the permanent regime (t = 250). The reference 2D case A is reported in panel (a), while cases B, C, D, and E, obtained by increasing the amplitude A 0 of the inflow optimal perturbations, are reported in panels (b) to (e) (top to bottom). Case A displays self-sustained periodic oscillations of 2D structures in the wake. These structures become increasingly 3D and of smaller rms value for increasing values of the enforced A 0 (cases B to D). The oscillations are completely suppressed in case E where the stable streaky basic flow is observed after transients are extinguished.
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FIGURE 2 .

 2 FIGURE 2. (Colour online) Convergence at Re = 75 of (a) the optimal energy growth G(x) for λ z = 2π and (b) G max (λ z ), as the number M of linearly independent distributions of wall blowing and suction is increased. Well-converged results are obtained with M = 6.

FIGURE 5 .

 5 FIGURE 5. Cross-stream (y-z) view of the velocity perturbations forced by the optimal blowing and suction at Re = 75 with λ z = 2π at three selected streamwise stations: (a) x = 1/2 (cylinder stern); (b) x = x max /2 (midway to the position of maximum streak amplitude); (c) x = x max (position of maximum streak amplitude). The scale used to plot the streamwise u (streamwise streaks, contour lines) and the cross-stream v -w components (streamwise vortices, arrows) is the same in all panels. The reference 2-D basic flow streamwise velocity U 2D (y) is represented in grey-scale with light grey corresponding to the freestream velocity and dark grey corresponding to the minimum velocity (wake centreline).

FIGURE 6 .FIGURE 7 .TABLE 2 .FIGURE 9 .

 6729 FIGURE 6. Distribution of the streamwise velocity U 3D (x, y = 0, z) in the y = 0 symmetry plane of two selected basic flows: (a) the reference 2-D case, i.e. case A; (b) the streaky wake of case C. Contour levels are spaced by u ∞ /20, with low (high) velocities represented by dark (light) grey.

4. 6 .FIGURE 10 .

 610 FIGURE 10. (Colour online) Temporal evolution of the normalized total perturbation kinetic energy density, E (t)/E A , for increasing control amplitudes. The global perturbation kinetic energy E (t) is normalized with respect to the permanent regime value E A of the reference 2-D wake of case A. The results were obtained from fully nonlinear simulations at Re = 75 with λ z = 2π.

FIGURE 11 .

 11 FIGURE 11. Streamwise perturbation velocity u (x, y = 0, z) = u(x, y = 0, z) -U 2D (x, y = 0) in the y = 0 symmetry plane in the permanent regime (t = 450) of the fully nonlinear simulations at Re = 75 for λ z = 2π. (a) The reference 2-D case (case A) displays the usual self-sustained periodic oscillations of 2-D structures in the wake. (b) In the presence of moderate-amplitude 3-D perturbations (case C), the self-sustained periodic oscillations acquire a typical 3-D nature while reducing their r.m.s. amplitude. (c) For sufficiently large 3-D perturbations (case D), the periodic oscillations are completely suppressed and only the forced stable streaks are visible in the wake.
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	A s,max 0	4.35%	6.73%	10.38%	10.27%	15.02%	18.80%
	Table 5.1: Streaky parallel wakes:				

Table 5 .

 5 2: Streaky non parallel wakes: on the left the considered streaky basic ows for the weakly non parallel wake. A 0 is the nite amplitude given, at the inow, to the linear optimal boundary perturbations (vortices) while A s,max is the maximum streak amplitude reached.

					Case:	A w	u w,max % A s,max %
	C D E	057 0.086 0.120 0.171	2.47 3.71 5.20 7.39	10.35 15.15 20.44 27.27	A B C D	0 0.0031 0.0048 0.0080	0 0.75 1.2 2.1	0 10.45 16.16 25.44

Table A

 A 

				Ly/2 N y Lx N x
	0.5	12.57	48	20	240	124	300
	0.75	8.38	48	20	240	124	300
	1	6.28	24	10	160	124	300
	1.25	5.03	24	10	160	124	300
	1.5	4.20	12	10	160	124	300
	1.75	3.60	12	10	160	124	300

.1: Numerical grids used for the computation of optimal perturbations of the weakly non parallel synthetic wake.

Table A .

 A 25 and a number of points summarized in table A.2. We have veried that with the chosen mesh the length of the recirculation region of steady symmetric solutions, and the drag coecient do match Figure A.1: Numerical solution domain for the simulations of the ow around a circular cylinder.Only the boundaries of the grid sub-blocks are reported to keep the gure readable. 2: Simulations of the circular cylinder wake. Spanwise extension L z of the solution domain and number of points N z used in that direction for the computation of the basic ows and of the optimal perturbations. L z and N z are doubled for the global stability analysis and for the nonlinear simulations.

	λ z 12.57 8.37 6.28 5.03 4.20 3.60 3.14
	N z	48	34	24	20	16	14	12

TABLE 2 .
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TABLE I .

 I Considered nonlinear streaky wake basic flows. A 0 is the finite amplitude given, at the inflow, to the linear optimal boundary perturbations (vortices). A s,max is the maximum streak amplitude reached in the nonlinear numerical simulation. Case A corresponds to the reference two-dimensional wake. Cases B, C, D, and E are obtained by increasing A 0 .

	Case	A 0	A s,max (%)	A s (x = 2.7) (%)
	A	0.000	0	0
	B	0.057	10.3	2.5
	C	0.085	15.1	3.7
	D	0.120	20.4	5.2
	E	0.171	27.3	7.4

  δs = w † 2D , δLw 2D / w † 2D , w 2D, where w 2D , s 2D , w † 2D are, respectively, the leading global mode, eigenvalue, and adjoint global mode associated to U 2D , and the standard inner product is defined as a, b =

  25, and the number of points used with each L z is summarized in table 1. The PISO (Pressure Implicit with Splitting of FIGURE 1. Numerical solution domain. For clarity, only the boundaries of the mesh blocks are shown.

	D
	L y
	L x
	L z 12.57 8.37 6.28 5.03 4.20 3.60 3.14 N z 48 34 24 20 16 14 12

QUADRATIC SENSITIVITY AND 3D EFFICIENCY IN NON PARALLEL WAKES
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Appendix. Methods

A.1. Computation of optimal perturbations Optimal growths G(t, α, β) are computed along quite standard lines, described in Schmid & Henningson (2001), for example. The linearized Navier-Stokes equations are recast in terms of the cross-stream velocity and vorticity v-η. The system satisfied by Fourier modes, v(y, t; α, β)e i(αx+βz) , η(y, t; α, β)e i(αx+βz) , is the standard Orr-Sommerfeld-Squire system,

where the Orr-Sommerfeld and Squire operators are

and where D denotes d/dy and k 2 = α 2 + β 2 . The system is discretized on a grid of N y points uniformly distributed in [-L y /2, L y /2]. Differentiation matrices based on second-order accurate finite differences have been used to discretize the Orr-Sommerfeld-Squire system. Most of the results have been obtained with N y = 201 and L y , ranging from 20 to 120 for the perturbations with the smallest spanwise wavenumbers (largest spanwise wavelengths). The results do not change when N y is doubled to 401 and when L y is increased by half. We have also verified that the results do not change if differentiation matrices are based on Fourier series instead of finite differences, provided that L y is large enough. The discretization has also been validated against temporal growth rates of Bickley jets available in the literature. Once the linear operator is discretized, standard methods and codes already used in previous investigations (e.g. Lauga & Cossu 2005;Cossu et al. 2009;Pujals et al. 2009) are used to compute the optimal growth and the associated optimal perturbations.

A.2. Direct numerical simulations Numerical simulations of nonlinear and linearized Navier-Stokes equations have been performed using the OpenFOAM open-source DNS code (see http://www.openfoam. org). We have modified the code to allow for the solution of the Navier-Stokes equation in perturbation form and in order to add a set of additional output data.

G. D. Guercio, C. Cossu and G. Pujals antisymmetric modes to the total field can be retrieved by a straightforward partitioning of the spanwise discrete Fourier transform of the velocity field into odd/even harmonic real/imaginary parts.

A.4. Temporal and spatiotemporal stability analysis from the impulse response

The techniques used to retrieve the temporal and spatiotemporal stability properties of parallel basic flow profile U(y, z) from the numerically computed impulse response closely follow those used by Brandt et al. (2003), which are the three-dimensional extension of those developed by Delbende & Chomaz (1998) and Delbende, Chomaz & Huerre (1998) for two-dimensional wakes.

Consider the generic perturbation variable q(x, y, z, t), already separated into its fundamental and subharmonic, symmetric and antisymmetric parts as described in § A.3. Concerning the temporal stability analysis, in order to determine the dependence of the temporal growth rate ω i on the (real) streamwise wavenumber α, the amplitude spectrum of q(x, y, z, t) is defined as

where q(α, y, z, t) is the Fourier transform of the variable q in the streamwise direction.

The asymptotic exponential regime is attained for large times, where the leading temporal mode emerges with growth rate (imaginary part of ω) well approximated by

which can be numerically computed by the finite difference approximation

The selected times t 1 and t 2 in the above approximation need to be sufficiently large to ensure the extinction of transients. The values used for the presented results have been selected by exploring different pairs t 1 , t 2 until results have satisfactorily converged to less than 1 % relative error.

The spatiotemporal stability analysis considers the development of the impulse response wave packet along x/t = v rays, which is equivalent to the investigation of modes of real group velocity v (see e.g. [START_REF] Huerre | Hydrodynamic instabilities in open flows[END_REF]. The use of the Hilbert transform allows us to demodulate the wave packet and define its amplitude unambiguously with respect to spatial phase oscillations. To this end, the analytical complex field variable q H (x, y, z, t) associated with q(x, y, z, t) through the x-convolution * is defined as [START_REF] Hwang | Control of absolute instability by basic-flow modification in a parallel wake at low Reynolds number[END_REF] In wavenumber space, (A 11) reduces to q H (α, y, z, t) = 2H(α)q(α, y, z, t), (A 12)

Stabilizing effect of streaks in parallel wakes 55 where H(α) is the Heaviside unit-step function. The integration of the analytical field q H in the cross-stream (y, z) plane then yields the amplitude Q defined by [START_REF] Ellingsen | Stability of linear flow[END_REF] According to steepest-descent arguments (e.g. Bers 1983), the long-time behaviour of the wave packet along each spatiotemporal ray x/t = v is

where α(v) and ω(v) represent the complex wavenumber and frequency travelling at the group velocity v. In (A 14), the real part of the exponential

denotes the temporal growth rate observed while travelling at the velocity v, and it can be evaluated for large t directly from the amplitude Q in (A 14) as

which can be approximated with

to which apply the same considerations discussed for (A 10).
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Optimal perturbations of non-parallel wakes and their stabilizing effect on the global instability

Gerardo Del Guercio, 1,2 Carlo Cossu, 1 and Gregory Pujals We compute the spatial optimal energy amplification of steady inflow perturbations in a non-parallel wake and analyse their stabilizing action on the global mode instability. The optimal inflow perturbations, which are assumed spanwise periodic and varicose, consist in streamwise vortices that induce the downstream spatial transient growth of streamwise streaks. The maximum energy amplification of the streaks increases with the spanwise wavelength of the perturbations, in accordance with previous results obtained for the temporal energy growth supported by parallel wakes. A family of increasingly streaky wakes is obtained by forcing optimal inflow perturbations of increasing amplitude and then solving the nonlinear Navier-Stokes equations. We show that the linear global instability of the wake can be completely suppressed by forcing optimal perturbations of sufficiently large amplitude. The attenuation and suppression of self-sustained oscillations in the wake by optimal 3D perturbations is confirmed by fully nonlinear numerical simulations. We also show that the amplitude of optimal spanwise periodic (3D) perturbations of the basic flow required to stabilize the global instability is much smaller than the one required by spanwise uniform (2D) perturbations despite the fact that the first order sensitivity of the global eigenvalue to basic flow modifications is zero for 3D spanwise periodic modifications and non-zero for 2D modifications. We therefore conclude that first-order sensitivity analyses can be misleading if used far from the instability threshold, where higher order terms are the most relevant. Perturbations u to the reference 2D basic flow are ruled by the Navier-Stokes equations in perturbation form:

using U = U 2D as basic flow.

In the first part of the study, dealing with optimal spatial perturbations of U 2D , we consider steady perturbations u of U 2D obtained by perturbing the inlet profile U 0 (y) with steady inflow perturbations u 0 (y, z). We are interested in steady perturbations both because they are spatially stable and because they are of interest in passive control applications. In particular, spanwise periodic perturbations of wavelength λ z will be considered in the following. Considering small perturbations, the nonlinear term (∇u )u can be neglected, which makes the perturbation equations linear. Defining the local perturbation kinetic energy density as

the optimal spatial energy amplification of inflow perturbations is defined as

Different approaches can be used to compute G(x) and the associated optimal inflow perturbation.

We choose here to decompose the inlet perturbation on a set of linearly independent functions b (m) 0 , in practice limited to M terms, as

Denoting by b (m) (x, y, z) the perturbation velocity field obtained using b (m) 0 (y, z) as inlet perturbation, from the linearity of the operator follows that

where the coefficients q m are the same used in Eq. ( 5). The optimization problem in Eq. ( 4) can therefore be recast in terms of the M-dimensional control vector q as

where the components of the symmetric matrices H(x) and H 0 are

Within this formulation G(x) is easily found as the largest eigenvalue μ max of the generalized M × M eigenvalue problem μH 0 w = Hw. The corresponding eigenvector is the optimal set of coefficients q (opt) maximizing the kinetic energy amplification at the selected streamwise station x.

The corresponding inlet perturbation is u

0 (y, z). In the limit M → ∞ the approximated solution converges to the exact solution.

In the second part of the study, the influence of forcing finite amplitude optimal perturbations on linear global stability is investigated. A family of 3D streaky nonlinear non-parallel basic flows 024110-7

Del Guercio, Cossu, and Pujals Phys. Fluids 26, 024110 (2014) value where U * 2D (y * ) = U * re f ) increases with x, a dimensionless wavenumber β = β * δ * based on the local scale would increase going downstream. As the maximum growth rate is a decreasing function of β, it is not surprising that the maximum growth rates are smaller than the ones that would be obtained if the wake was parallel. Therefore, the results of the present analysis should be compared to the ones of the local analysis obtained at larger values of β.

V. STABILIZING EFFECT OF OPTIMALLY FORCED STREAKS ON GLOBAL MODES

In this second part of the study, we investigate the influence of the forcing of optimal perturbations on the linear global stability of the wake. The input parameter of this analysis is the amplitude A 0 of the forcing at the inflow boundary and the output is the linear growth rate s r of the global mode supported by the streaky wake. All the results are obtained for Re = 50 and β = 1. The choice of β = 1 is not completely arbitrary. On the one hand, in order to obtain large energy amplifications, one should choose low values of β. For low β, however, not only would the cross-stream size of the inlet optimal vortices be probably too large to be implemented in practical applications but, even more importantly, large amplitudes of the streaks would be obtained only far downstream (e.g., x max ≈ 120 for β = 0.5). This is a problem because the main scope of the control is to reduce the absolute growth rate in the absolute region which extends up to x ≈ 5. On the other hand, selecting large values of β, in order to have x max in the absolute region, would lead to poor energy amplifications and would exclude any damping in the convective region. The value β = 1 is a good compromise between these two extrema. In particular, as can be seen from Fig. 2(a), the obtained G(x) for β = 1 in the region x 10 are sensibly the same of those obtained for higher β.

A. Streaky wakes basic flows

Non-parallel streaky (3D) wake basic flows U 3D (x, y, z; A 0 ) are computed by enforcing at x = 0 the inflow condition U = U 0 (y)e x + A 0 u (opt) 0 and by then computing the corresponding steady solution of the (nonlinear) Navier-Stokes equations, as explained in Sec. II. The solution, which may be unstable, is obtained by enforcing symmetry with respect to the y = 0 plane, exactly as done to compute U 2D . The local amplitude of the streaks is measured extending the standard definition used in previous studies: 12, 19 A s

In this definition the streak amplitude at the station x is defined as half the maximum deviation of the streaky 3D profile from the reference 2D profile, at the same x station, normalized by the maximum velocity variation of the inflow 2D reference profile. The considered values of A 0 and the obtained values of A s at x max (maximum value of A s ) and in the middle of the absolute instability region (x = 2.7) are reported in Table I, where each considered case is given a literal label. Case A corresponds to the reference two-dimensional wake profile U 2D (no streaks) while cases B, C, D, and E are obtained by increasing the inlet amplitude A 0 of the forced optimal perturbations. The nonlinear streaks amplitude evolution A s (x) associated to the velocity fields U 3D are reported in Fig. 6(a) for the considered cases. From Fig. 7, where streaky basic flows are shown in the symmetry plane y = 0, it is seen how, indeed for increasing A 0 , the wake is increasingly 3D. The effect of nonlinearity is to slightly reduce the maximum energy growth (from ≈20 in the linear small amplitude limit to ≈17-15 for streaks D and E, not shown) and to induce a mean flow distortion that slightly counteracts the effect of the streaks.

B. Linear global stability analysis

The linear global stability analysis is performed via a direct numerical simulation of the Navier-Stokes equations ( 1) and ( 2) linearized upon the 3D streaky basic flows U 3D defined above (Sec. V A). In previous local stability analyses 10, 12 it was shown that for large streaks amplitudes,

APPENDIX: NUMERICAL SIMULATIONS

The Navier-Stokes equations (nonlinear and linearized) have been numerically integrated using OpenFoam, an open-source finite volumes code (see http://www.openfoam.org). The flow is solved inside the domain [0,

that is discretized using a grid with N x and N z equally spaced points in the streamwise and spanwise directions, respectively. N y points are used in the y direction using stretching to densify points in the region where the basic flow shear is not negligible. The fractional step, pressure correction PISO (Pressure Implicit with Splitting of Operators) scheme is used to advance the solutions in time. Different grids have been used to compute optimal linear perturbations of different spanwise wavenumbers, as reported in Table II.

Nonlinear streaky basic flows for β = 1 have been computed using the same grid used for the computation of the linear optimals at the same β. For the linear and nonlinear simulations of the perturbations to the 3D streaky basic flows, however, the domain is doubled in the y direction ([ -L y /2, L y /2] instead of [0, L y /2]) as the y symmetry is no more enforced. Te box is also doubled in the spanwise direction (L z = 2λ z ) in order to include subharmonic perturbations. The corresponding N y and N z are also doubled leading to a grid with L x = 124, L y /2 = 10, L z = 4π , N x = 300, N y = 160, N z = 48 with x = 0.4, z = 0.26 and a minimum y = 0.01 on the symmetry axis and a maximum y = 0.1 near the freestream boundary. blowing and suction is to force the streamwise vortices that will best exploit the lift-up effect.

The existence of a finite optimal value of λ z is probably the most important difference from our previous results pertaining to parallel and non-parallel synthetic wakes, where G max was a monotonic increasing function of λ z (Del Guercio et al. 2014a,b). This difference is due to the fact that in those previous investigations the optimal perturbations could assume any admissible shape in y, and indeed their y-extension increased with λ z . In the present case, because the velocity forcing is localized on the cylinder surface, only a finite effective extension in y can be efficiently attained, and therefore a maximum value of G max is attained in correspondence to the λ z values for which the effective maximum y-extension of the forced functions is reached.

Finally, it is instructive to compare the effects of the optimal distribution of blowing and suction here and the θ-localized one used by Kim & Choi (2005). Simulations of the linearized Navier-Stokes equations show that the maximum energy gain attained with localized blowing and suction located at θ = 90 • is 75 times smaller than the maximum energy gain obtained by using optimal blowing and suction. The two gain curves are, however, nearly indistinguishable if renormalized by the maximum gain of absolute instability, which acts as a wave-maker (see, e.g., Huerre & Monkewitz 1990); this is therefore the region where it is useful to reduce the absolute growth rate. As this reduction is proportional to the square of the streak amplitude, as shown by Hwang et al. (2013) andDel Guercio et al. (2014a), having large-amplitude streaks in the wave-maker region is therefore expected to induce a high control efficiency.

Global linear stability of the streaky wakes

The global linear stability of the nonlinear streaky basic flows is examined by integrating with respect to time the Navier-Stokes equations (2.3) and (2.4), linearized with respect to the U 3D considered. The linearized equations are integrated over a domain including two basic flow streak spanwise wavelengths (L z = 2λ z ) to take into account the potential subharmonic nature of the dominant absolute mode (see Hwang et al. 2013;Del Guercio et al. 2014a,b). For the reference 2-D wake (case A), a random solenoidal perturbation velocity field u is chosen as initial condition and the integration is continued in time until the emergence of the unstable global mode. This global mode is then renormalized to a small amplitude and used as the initial condition for all the cases under consideration. We then monitor the evolution of the global perturbation kinetic energy density E = (1/V ) V u • u dx dy dz, where V is the fluid control volume. As shown in figure 7(b), E (t) grows exponentially in time, after the extinction of the initial transient. In this regime, the exponential growth rate of E is twice that of the most unstable global mode. At the Reynolds number considered, Re = 75, it is already well known that the reference 2-D wake (case A) is linearly unstable. In the presence of increasing amplitudes of optimal blowing and suction and, therefore, increasing amplitudes of the streaks, the growth rate of the global mode is initially reduced (cases B and C), becoming negative for case D. These results confirm for a 'real wake' the scenario already observed in non-parallel model wakes (Del Guercio et al. 2014b) and associated with the weakening or complete suppression of the pocket of absolute instability, in accordance with the conclusions of Hwang et al. (2013) and Del Guercio et al. (2014a).

Sensitivity of the global growth rate to the 3-D control amplitude

Let us now examine the dependence of the growth rate s r on the control amplitude at Re = 75, shown in figure 8 for a selected set of spanwise wavelengths. The amplitude of the control is reported in terms of both the optimal blowing and suction amplitude A w and the maximum streak amplitude A s,max . In all the computed cases, the data s r (A) are well approximated by the quadratic fit s r (Re, λ z , A) = s r,2D (Re) -C(Re, λ z ) A 2 , where s r,2D is the growth rate of the uncontrolled 2-D reference wake, A is the amplitude and C is a constant. Such a quadratic dependence is expected from first-order sensitivity analyses, which predict that for spanwise-periodic basic flow modulations, ds r /dA| A=0 = 0 (see, e.g., Del Guercio et al. 2014b for the global mode sensitivity analysis). That the first-order sensitivity is zero could also have been inferred by observing that changing the sign of A in a spanwise-sinusoidal basic flow modification simply corresponds to a spanwise shift of λ z /2 in physical space, and therefore we must have s r (A) = s r (-A), implying a zero first-order derivative at the origin. expected that 2-D perturbations are more effective than 3-D ones in quenching the global instability. To check whether this is actually the case, we computed the growth rate variations induced at Re = 75 by spanwise-uniform (2-D) wall blowing and suction with m = 1 azimuthal dependence U w = A 2D cos(θ ), which has zero net mass flux and is associated with bleeding in the wake, and is known to efficiently reduce the absolute growth rate (Monkewitz 1988). The s r,2D (A 2D ) curves pertaining to the 2-D control are also plotted in figure 8 for comparison with the 3-D control. The analogue of the streak amplitude is defined for the 2-D perturbation as the maximum of the basic flow streamwise velocity variation induced by the 2-D suction.

As expected, the s r,2D (A 2D ) curve has non-zero slope at A 2D = 0 and is well approximated by a straight line. The 2-D perturbations considered are more stabilizing than the optimal 3-D ones only for A s,max 14 %, corresponding to the negligible A w ≈ 0.005. As already observed by Del Guercio et al. (2014b), a higher efficiency of 3-D perturbations is expected in terms of A w , because such perturbations can exploit the energy gain associated with the lift-up effect, which is a 3-D mechanism. The fact that these 3-D perturbations are also more efficient in terms of basic flow deformation is not a priori obvious. We have verified that qualitatively similar results are obtained for a few other shapes of the 2-D forcing. 4.5. Optimal spanwise wavelengths and amplitudes required for suppression of the global instability The dependence on the spanwise wavelength λ z of the critical amplitudes A c for which the global instability is suppressed is illustrated in figure 9 in terms of both A w and A s,max . At Re = 75, the spanwise wavelength minimizing the control amplitude necessary for the stabilization of the global instability is λ z ≈ 6. The value minimizing A w (λ z = 6.2) is slightly larger than that minimizing A s,max (λ z = 5.9). When the