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Introduction

General context

Vortex shedding from a bluff body immersed in a flow is accompanied by unsteady forces exerted by the fluid on the body. In the case of flexible bodies with bluff crosssection, these unsteady forces may lead to structural vibrations. Vortex-induced vibrations (VIV) occur when the body oscillation and the unsteady wake synchronize, a mechanism referred to as lock-in. The wide variety of systems subjected to VIV is illustrated in figure 1. Large amplitude vibrations of offshore risers (figure 1(a)), heat exchanger tubes, bridges and chimneys may lead to fatigue or even failure of these structures; understanding and prediction of VIV are thus crucial in this context. Other consequences of vibrations, as noise generation and drag increase, may also be detrimental to industrial systems. On the other hand, structural vibrations may be desired, as in the context of flow energy harvesting, where VIV can be used as a mechanical energy converter in air (figure 1(b)) and water [START_REF] Grouthier | On the efficiency of energy harvesting using vortex-induced vibrations of cables[END_REF]). A surprising application of VIV may be [START_REF] Norberg | Fluctuating lift on a circular cylinder: review and new measurements[END_REF].

found in arts, since these vibrations are the key mechanism behind the singing of aeolian harps (figure 1(c)).

Vortex shedding past a circular cylinder

The circular cylinder has often been used as a paradigm of bluff geometries. The flow past a circular cylinder is characterized by the Reynolds number, Re = ρU D/µ, where D is the cylinder diameter, U is the oncoming flow velocity, ρ is the fluid density and µ is the fluid viscosity. The transition from a symmetric steady wake to an antisymmetric unsteady wake accompanied by the alternate shedding of counter-rotating vortices occurs at Re ≈ 47. The associated vortex street pattern is illustrated in figure 2(a). Even though the flow behavior greatly varies when the Reynolds number is increased, the vortex shedding phenomenon persists up to very high Reynolds numbers. Therefore, most of the systems involving an immersed bluff body involve vortex shedding. The nondimensional vortex shedding frequency, also called Strouhal frequency, varies as a function of the Reynolds number, as shown in figure 2(b). The vortex shedding phenomenon is accompanied by unsteady fluid forces. In particular, a significant unsteady cross-flow force (i.e. perpendicular to the oncoming flow), occurring at the Strouhal frequency, is exerted on the body. The amplitude of the cross-flow force greatly varies as a function of Re.

therefore, the lock-in condition is generally used as a criterion that defines VIV among other flow-induced vibrations. Wake-body synchronization can occur in conditions where the Strouhal frequency and the structure natural frequency significantly depart from each other. For a given Strouhal frequency, the structure may therefore vibrate over a wide range of natural frequencies, called the lock-in range. The width of the lock-in range, as well as the evolution of the oscillation amplitude and frequency over this range, are difficult to predict.

The wide range of applications of VIV as well as the complexity of their physical behavior have motivated a number of studies, as reviewed by [START_REF] Bearman | Vortex shedding from oscillating bluff bodies[END_REF], [START_REF] Sarpkaya | A critical review of the intrinsic nature of vortex-induced vibrations[END_REF], [START_REF] Williamson | Vortex-induced vibrations[END_REF] and [START_REF] Païdoussis | Fluid-Structure Interactions: Cross-Flow-Induced Instabilities[END_REF]. Even though most of real systems subjected to VIV involve flexible slender bodies (figure 1), VIV have been extensively studied through the canonical problem of a rigid circular cylinder mounted on an elastic support allowing oscillations in the cross-flow direction (e.g. [START_REF] Feng | The measurement of vortex-induced effects in flow past stationary and oscillating circular and D-section cylinders[END_REF][START_REF] Hover | Forces on oscillating uniform and tapered cylinders in crossflow[END_REF][START_REF] Khalak | Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[END_REF][START_REF] Govardhan | Modes of vortex formation and frequency response of a freely vibrating cylinder[END_REF][START_REF] Blackburn | A complementary numerical and physical investigation of vortex-induced vibration[END_REF][START_REF] Shiels | Flow-induced vibration of a circular cylinder at limiting structural parameters[END_REF][START_REF] Leontini | The beginning of branching behaviour of vortex-induced vibration during two-dimensional flow[END_REF]. This simplified configuration allows to study the synchronized oscillations with a limited number of structural parameters and vibration modes. The behavior of this system has been thoroughly described, as reviewed in chapter 1. In particular, large amplitude vibrations occur over a well-defined range of the reduced velocity (lock-in range), defined as the inverse of the oscillator natural frequency normalized by the cylinder diameter and oncoming flow velocity. The vibration amplitude exhibits a bell-shaped evolution as a function of the reduced velocity, and maximum amplitudes of the order of one body diameter are generally observed. The alteration of this typical behavior when moving towards conditions closer to those encountered in natural or industrial systems is a crucial issue, of which many aspects remain to be clarified. This motivates the present work.

Outline

The organization of the present work is schematized in figure 3. The canonical problem of a cylinder immersed in a uniform flow and free to oscillate in the cross-flow direction is represented in the upper-left corner of the figure. Both the structural and flow properties are varied in order to depart from this paradigm. Overall, four different physical configurations are considered. Three configurations involve a circular cylinder immersed in a uniform flow. They differ by the degrees of freedom of the body, which may be allowed to oscillate in the in-line, cross-flow, or both directions. These configurations are studied for an intermediate Reynolds number (Re = 3900), in order to take into account the effect of an early turbulent flow regime on the flow-structure system response. A fourth configuration involves a circular cylinder, immersed in a shear flow at lower Reynolds number (Re = 100), and allowed to oscillate in both the in-line and cross-flow directions. The exploration of these physical configurations allows to address several aspects, which are summarized hereafter. Numerical simulation of VIV in the early turbulent regime. Numerical simulation is a useful tool to study VIV: it provides a simultaneous vision of the wake patterns, fluid forcing and body responses, which allows a coupled analysis of the flow-structure system. However, most of the numerical works concerning VIV have been dedicated to low Reynolds number configurations, even though the Reynolds number is known to have a significant impact on the system behavior [START_REF] Govardhan | Defining the âĂŸmodified griffin plotâĂŹin vortex-induced vibration: revealing the effect of Reynolds number using controlled damping[END_REF][START_REF] Raghavan | Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports[END_REF][START_REF] Bearman | Circular cylinder wakes and vortex-induced vibrations[END_REF]. Recent studies have shown that with the improvement of numerical methods and the development of computational resources, the investigation of VIV in the turbulent regime via numerical simulation becomes possible (e.g. [START_REF] Al-Jamal | Vortex-induced vibrations using large eddy simulation at a moderate Reynolds number[END_REF][START_REF] Lucor | Vortex mode selection of a rigid cylinder subject to VIV at low mass-damping[END_REF][START_REF] Sarkar | Numerical investigation of the turbulent energy budget in the wake of freely oscillating elastically mounted cylinder at low reduced velocities[END_REF][START_REF] Navrose | Free vibrations of a cylinder: 3-D computations at Re= 1000[END_REF][START_REF] Lee | Coupled delayed-detached-eddy simulation and structural vibration of a self-oscillating cylinder due to vortex-shedding[END_REF][START_REF] Zhao | Three-dimensional numerical simulation of vortex-induced vibration of an elastically mounted rigid circular cylinder in steady current[END_REF]. The present work aims at contributing to this effort. In particular, the response of the flow-structure system is predicted by direct numerical simulation (DNS) in the early turbulent regime (Re = 3900).

Impact of the oscillator degrees of freedom. Previous studies have shown that adding a degree of freedom in the in-line direction, viz. the direction aligned with the current, can considerably alter the cross-flow response [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF]. However, several aspects of the two-degree-of-freedom VIV remain to be addressed. In this work, the responses of the flow-structure system in the early turbulent regime is analyzed over a range of reduced velocities. Particular attention is paid to the phasing and spectral content of the fluid forces and flow-structure energy transfer. The two-degreeof-freedom system responses are compared to the responses obtained when the cylinder is only free to oscillate in the in-line or in the cross-flow direction. The relative influence of body motions, in both directions, on the fluid forces, is examined, and in-line/cross-flow motion interactions are analyzed in order to shed some light on the two-degree-of-freedom system responses.

Three-dimensional flow patterns downstream of an oscillating cylinder. The DNS approach involves the prediction of the three-dimensional flow around the cylinder.

In previous works concerning wakes of oscillating bodies, the flow patterns observed in the plane perpendicular to the body axis have been thoroughly studied [START_REF] Williamson | Vortex formation in the wake of an oscillating cylinder[END_REF]. The patterns emerging in the third direction, in the early turbulent regime, are analyzed in the present work. In particular, the spanwise patterns are quantified in terms of amplitude and wavelength. The streamwise evolution of these quantities is explored, and the impact of body motion is investigated.

Impact of symmetry breaking. Real physical systems subjected to VIV are usually less symmetric than a circular cylinder immersed in a uniform current. Previous studies have emphasized the impact of breaking the system symmetry (e.g. [START_REF] Bourguet | Flow-induced vibrations of a rotating cylinder[END_REF]. In the present work, the effect of symmetry breaking on the flow-structure system is studied by immersing the circular cylinder in a linear planar shear flow, i.e. a flow linearly sheared in the cross-flow direction. The flow regimes observed in the fixed body case are first analyzed over a range of shear rates. In the case where the body is free to oscillate, several flow-structures regimes are identified in the shear rate -reduced velocity parameter space; their properties are explored.

The present document is organized as follows. A review of prior works concerning cross-flow VIV of rigid cylinders is proposed in chapter 1. The numerical method and post-processing tools employed in this work are described in chapter 2. Two chapters are dedicated to the two-degree-of-freedom VIV of the circular cylinder at Re = 3900. The flow-structure interaction aspects are examined in chapter 3; chapter 4 is dedicated to the analysis of the three-dimensional wake. Chapter 5 focuses on the study of the one-versus two-degree-of-freedom VIV at Re = 3900. The VIV of the circular cylinder immersed in a planar shear flow are addressed in chapter 6. The principal findings of this work are summarized in a last section. During the last decades, vortex-induced vibrations have been extensively studied through the canonical problem of a rigid circular cylinder free to oscillate in the cross-flow direction. While considerably simplified compared to real systems subjected to VIV, this system remains complex, since its behavior depends on four independent parameters related to flow and structural properties. The evolutions of body response and fluid forces as functions of these parameters have been addressed in many studies, though some aspects remain to be clarified. An important contribution to the study of VIV comes from forced oscillation experiments, which provide the evolutions of fluid forces as functions of the body trajectory. 

Physical problem

Physical configuration

A schematic view of the system is shown in figure 1.1. A circular cylinder of diameter D is immersed in a uniform flow and mounted on an elastic support allowing oscillations in the cross-flow direction. The body axis (z axis) is located at (x, y) = (0, 0) in quiescent fluid. The oscillator is characterized by the body mass per unit length ρ c , the structural stiffness k y and damping c y . The non-dimensional natural frequency of the oscillator in vacuum is f nat = D/2πU k y /ρ c . The flow is characterized by its velocity U , density ρ f and dynamic viscosity µ. The fluid is assumed to be Newtonian and incompressible. All physical quantities are made non-dimensional by D, U and ρ f . The Reynolds number is based on the oncoming flow velocity and cylinder diameter, Re = ρ f U D/µ. The fluid force coefficient in the cross-flow direction is defined as C y = 2F y /ρ f DU 2 , where F y denotes the span-averaged fluid force in the cross-flow direction. The body dynamics is governed by a forced second-order oscillator equation,

ζy + γ y m ζy + 2π U * 2 ζ y = C y 2m , (1.1)
where ζ y , ζy and ζy denote the non-dimensional body displacement, velocity and acceleration, γ y = c y /ρ f U D is the non-dimensional structural damping, U * = 1/f nat is the reduced velocity and m = ρ c /ρ f D 2 is the non-dimensional body mass.

Physical parameters

In the present formulation (1.1), the system behavior depends on four non-dimensional independent parameters: m, γ y , U * and Re. The physical parameters used to characterize 1.1 Physical problem the system may slightly differ from one study to the other. Some aspects are clarified hereafter:

• In a number of experimental studies, the reduced velocity is based on the natural frequency of the oscillator in still fluid. In air, this frequency is assumed to be close to f nat . However, the natural frequency in water, denoted by f nat,w , may significantly differ from f nat . Therefore, a distinct notation, U † , is used in the following to denote the reduced velocity based on f nat,w (U † = 1/f nat,w ).

• In studies concerning VIV, a typical approach consists in determining the evolution of the system response over a range of reduced velocities, while keeping the other parameters constant. However, it is common in experimental studies to vary the Reynolds number together with the reduced velocity, when the latter is varied through the oncoming flow velocity.

• The damping ratio ν y = γ y U * /4πm is frequently used to characterize the structural damping.

• The flow-structure mass ratio, m * = ρ c / π 4 D 2 ρ f = 4m/π, is another way to characterize the body mass.

The relative influence of the system parameters is discussed in §1.6 and §1.7.

Harmonic analysis

Assuming that the flow-structure system exhibits a periodic response, the physical quantities can be expressed as Fourier series. In particular, force and displacement write

ζ y = ∞ n=0 ζ n y = ∞ n=0
ζ yn sin(2πnf 1 t + φ ζyn ), (1.2a)

C y = ∞ n=0 C n y = ∞ n=0
C yn sin(2πnf 1 t + φ Cyn ), (1.2b) where f 1 denotes the fundamental frequency of the flow-structure response. Note that f 1 is generally different than f nat . In practice, the body oscillation is often dominated by a first harmonic component ζ 1 y , as discussed in §1.2. Each Fourier component of force (C n y ) and displacement (ζ n y ) is solution of a projection of the dynamics equation (1.1). In particular, the first harmonics of the force and displacement verify

ζ1 y + γ y m ζ1 y + 2π U * 2 ζ 1 y = C 1 y 2m .
(1.

3)

The fluid force C 1 y may be decomposed in components in phase with the first harmonics of body acceleration ( ζ1 y ) and velocity ( ζ1 y ), namely

C 1 y = C y1 cos(φ C y1 -φ ζ y1 ) sin(2πf t + φ ζ y1 )
in phase with ζ1

y + C y1 sin(φ C y1 -φ ζ y1 ) cos(2πf t + φ ζ y1 )
in phase with ζ1 y .

(1.4)

The first term of (1.4) provides additional inertia (positive or negative) to the oscillator. Therefore, it is often described through an effective added mass coefficient, as discussed in §1.6. The second term of (1.4) relates to the energy transfer between the flow and the oscillator. Following (1.3) and (1.4), the first harmonics of the force and displacement verify

4πγ y f 1 ζ y1 = C y1 sin(φ C y1 -φ ζ y1 ), (1.5) 
and

8π 2 mζ y1 (f 2 nat -f 2 1 ) = C y1 cos(φ C y1 -φ ζ y1 ).
(1.6)

Physical quantities

The physical quantities used in this chapter are described hereafter:

• The body displacements in the x and y directions are denoted by ζ x and ζ y .

• The fluid force coefficients in the x and y directions are denoted by C x and C y .

• Since body oscillation is generally reported to be close to mono-frequency, the structural response is often described in terms of typical response amplitude and frequency, referred to as ζ m y and f y in this chapter. In the case where the cylinder is forced to oscillate, ζ m y and f y denote the amplitude and frequency of the forced oscillations.

• The frequency ratios in vacuum and water are defined as f * y = f y /f nat and f † y = f y /f nat,w .

• The oscillation frequency is used to define the true reduced velocity, U * t = 1/f y .

• The peak value of a quantity Ψ observed over a range of reduced velocities (or excitation frequencies) is denoted by Ψ .

• Ψ denotes the time-averaged value of a quantity Ψ.

• Ψ denotes the root-mean-square (RMS) value of the fluctuations of Ψ around its time-averaged value.

Structural response

Structural response at high mass and damping

One of the first studies concerning the structural response of an elastically mounted circular cylinder was carried out by [START_REF] Feng | The measurement of vortex-induced effects in flow past stationary and oscillating circular and D-section cylinders[END_REF]. These experiments were done in a wind tunnel; therefore, the oscillator is characterized by a large mass ratio (m * = 258). Moreover, the structural damping is relatively high. The evolution of the structural response in the minimum damping case of [START_REF] Feng | The measurement of vortex-induced effects in flow past stationary and oscillating circular and D-section cylinders[END_REF] is plotted in figure 1.2 as a function of the reduced velocity. Large-amplitude oscillations occur over a well-defined range of reduced velocities (figure 1.2(a)). The oscillation amplitude exhibits a bell-shaped evolution as a function of the reduced velocity. Peak amplitudes close to 0.5 body diameter are observed. Two branches are identified, the initial (IB) and lower (LB) branches, following the terminology of [START_REF] Khalak | Dynamics of a hydroelastic cylinder with very low mass and damping[END_REF]. The evolution of the oscillation frequency ratio (f * y = f y /f nat ) as a function of U * is shown in figure 1. 2(b). No significant variations of f * y are noted over the region of vibrations: the body frequency remains close the natural frequency of the oscillator. The oscillation frequency f y thus decreases as a function of U * . The evolution of the wake frequency is also indicated in the plot. When no significant vibrations occur, the wake frequency is close to the Strouhal frequency. However, in the region of large-amplitude vibrations, the wake frequency matches the frequency of body oscillations, emphasizing the mechanism of wake-body synchronization which characterizes VIV. The range of wake-body synchronization coincides with the range of large-amplitude vibrations. This range is called the lock-in range. Williamson (1997) Feng (1968) Figure 1.3: Structural response at low mass and damping (Khalak and Williamson, 1997a): (a) oscillation amplitude and (b) frequency ratio as functions of the reduced velocity. m * = 2.4, ν y = 0.0045 and Re ∈ [5000,16000]. In (a), amplitudes reported by [START_REF] Feng | The measurement of vortex-induced effects in flow past stationary and oscillating circular and D-section cylinders[END_REF] are plotted for comparison purpose.

f nat f nat,w f s t Khalak &
Structural response at low mass and damping Khalak and Williamson (1997a) performed similar experiments at lower mass and damping, in a water tank. The oscillation amplitudes obtained in their experiments are reported in figure 1. 3(a), and compared to those of [START_REF] Feng | The measurement of vortex-induced effects in flow past stationary and oscillating circular and D-section cylinders[END_REF]. Large-amplitude vibrations occur over a much wider range of reduced velocities when the structural mass and damping are decreased. Moreover, peak amplitudes up to one body diameter are measured at low mass and damping, i.e. about twice the amplitudes reported by [START_REF] Feng | The measurement of vortex-induced effects in flow past stationary and oscillating circular and D-section cylinders[END_REF]. The peak amplitude region is associated with a new branch of response, called the upper branch (U B) (Khalak and Williamson, 1997a) . The evolution of the frequency ratio in water (f † y ) is shown in figure 1. 3(b). The oscillation frequency significantly departs from both the Strouhal frequency and the oscillator natural frequency over the lock-in range. f † y globally increases as a function of the reduced velocity. The oscillation frequency f y decreases as a function of U † , as shown by the increasing difference between f y and f st as U † is increased. [START_REF] Hover | Forces on oscillating uniform and tapered cylinders in crossflow[END_REF]. In this figure, the reduced velocity is denoted by V rn . m * = 3.1, ν y = 0.04 and Re ≈ 3800. [START_REF] Hover | Forces on oscillating uniform and tapered cylinders in crossflow[END_REF] performed an experiment similar to that of Khalak and Williamson (1997a). The spectral content of the body displacement obtained in their experiment is shown in figure 1. 4. Except near the boundaries of the lock-in range, the body oscillation is close to mono-frequency. A similar behavior has been reported in the region of peak oscillation amplitudes by [START_REF] Khalak | Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[END_REF], [START_REF] Govardhan | Modes of vortex formation and frequency response of a freely vibrating cylinder[END_REF], [START_REF] Blackburn | A complementary numerical and physical investigation of vortex-induced vibration[END_REF], [START_REF] Shiels | Flow-induced vibration of a circular cylinder at limiting structural parameters[END_REF]. 

Spectral content of the response

Fluid forces

Effect of body oscillation on fluid forces

Fluid forces are altered as the body oscillates. This is shown in the experimental measurements of Khalak and Williamson (1997a), reported in figure 1.5. In this experimental set up, the Reynolds number ranges from 5000 to 16000. At comparable Reynolds number, the expected ranges of the fluid forces in the fixed body case are C y,f ∈ [0.1, 0.45] [START_REF] Norberg | Fluctuating lift on a circular cylinder: review and new measurements[END_REF] and C x,f ∈ [0.9, 1.2] [START_REF] Wieselsberger | New data on the laws of fluid resistance[END_REF], approximately. These ranges are indicated by the gray areas in figure 1. 5(a,b). The forces are generally amplified in comparison with the fixed body case. In order to connect the evolution of the fluid forces with the structural response, the oscillation amplitudes are plotted in figure 1. 5(c). It is noted that the fluid forces are particularly amplified in the region of peak oscillation 
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Mercier (1973) Sarpkaya ( 1978) [START_REF] Gopalkrishnan | Vortex-induced forces on oscillating bluff cylinders[END_REF] Sarpkaya (1995) Vikestad (1998) Khalak & Williamson (1997) Carberry ( 2005 amplitudes (upper branch). The fluctuating in-line force is also amplified in this region (Khalak and Williamson, 1997a). The forces rapidly decrease near the boundaries of the lock-in range. In the high reduced velocity region, Khalak and Williamson (1997a) noted that C y may be lower than C y,f . Figure 1.5(b) also suggests that C x < C x,f in the low reduced velocity region (U * = 2). The reduction of C x by a high-frequency and low-amplitude cross-flow oscillation can be noted in a number of studies [START_REF] Anagnostopoulos | Numerical investigation of response and wake characteristics of a vortex-excited cylinder in a uniform stream[END_REF][START_REF] Sarpkaya | Hydrodynamic damping, flow-induced oscillations, and biharmonic response[END_REF][START_REF] Blackburn | A study of two-dimensional flow past an oscillating cylinder[END_REF][START_REF] Anagnostopoulos | Numerical study of the flow past a cylinder excited transversely to the incident stream. part 1: lock-in zone, hydrodynamic forces and wake geometry[END_REF], even though this aspect is generally not much discussed.

Amplification of the time-averaged in-line force

Apart from the above mentioned case of high-frequency oscillations, cross-flow oscillations generally amplify the time-averaged in-line force. Since the time-averaged in-line force is of practical importance in many industrial systems, this aspect has received a particular attention in prior works. C x has often been reported to be mainly impacted by the oscillation amplitude. [START_REF] Bishop | The lift and drag forces on a circular cylinder oscillating in a flowing fluid[END_REF] noted that the time-averaged in-line force "for any Reynolds number increases with increase in the amplitude ratio". On the basis of his forced oscillation experiments, [START_REF] Sarpkaya | Fluid forces on oscillating cylinders[END_REF] observed that C x follows a linear evolution as a function of the oscillation amplitude, namely

C x = C x,f (1 + 2ζ m y ), (1.7)
where C x,f is the force measured in the fixed body case at the same Reynolds number. A similar trend was also found by [START_REF] Blevins | Flow-induced vibration[END_REF]. [START_REF] Khalak | Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[END_REF] mentioned that such linear trend "suggests that the mean drag [i.e. in-line force] is approximately proportional to the apparent projected area mapped out by the oscillating body". In figure 1. 6(a), the force amplification ( C x /C x,f ) issued from a series of free and forced oscillation experiments [START_REF] Mercier | Large amplitude oscillations of a circular cylinder in a low-speed stream[END_REF][START_REF] Sarpkaya | Fluid forces on oscillating cylinders[END_REF][START_REF] Gopalkrishnan | Vortex-induced forces on oscillating bluff cylinders[END_REF][START_REF] Sarpkaya | Hydrodynamic damping, flow-induced oscillations, and biharmonic response[END_REF][START_REF] Vikestad | Multi-frequency response of a cylinder subjected to vortex shedding and support motions[END_REF]Khalak and Williamson, 1997a;[START_REF] Carberry | Controlled oscillations of a cylinder: forces and wake modes[END_REF] is plotted as a function of the oscillation amplitude.1 Even though a certain scatter is noted between the data, a reasonable collapse on relation (1.7) is obtained. However it should be emphasized that, as suggested by [START_REF] Sarpkaya | Fluid forces on oscillating cylinders[END_REF], the above mentioned trend is only valid when considering the maximum force C x , and should not be generalized to C x . In both free and forced oscillation experiments, C x is generally noted when the oscillation frequency is close to f st ('transition region' described by [START_REF] Carberry | Controlled oscillations of a cylinder: forces and wake modes[END_REF]). Therefore, the data plotted in figure 1.6(a) may be issued from a relatively narrow range of oscillation frequencies. The effect of the oscillation frequency is depicted in figure 1. 6(b), where the values of C x /C x,f obtained over the lock-in range by [START_REF] Mercier | Large amplitude oscillations of a circular cylinder in a low-speed stream[END_REF], [START_REF] Gopalkrishnan | Vortex-induced forces on oscillating bluff cylinders[END_REF], [START_REF] Sarpkaya | Hydrodynamic damping, flow-induced oscillations, and biharmonic response[END_REF], [START_REF] Vikestad | Multi-frequency response of a cylinder subjected to vortex shedding and support motions[END_REF] and [START_REF] Carberry | Controlled oscillations of a cylinder: forces and wake modes[END_REF] are added to the plot. C x globally increases as a function of ζ m y . However, a significant scatter is noted between the data, emphasizing that the effect of the oscillation frequency on C x is generally of the same order of magnitude as the effect of the oscillation amplitude, as also shown by [START_REF] Carberry | Controlled oscillations of a cylinder: forces and wake modes[END_REF].

Phasing of the cross-flow force

Expressions (1.5) and (1.6) show that the structural response is connected to the phase difference between the fluid force and body displacement, ∆φ = φ C y1 -φ ζ y1 . In his experiments, [START_REF] Feng | The measurement of vortex-induced effects in flow past stationary and oscillating circular and D-section cylinders[END_REF] noted that the transition between the initial and lower branches (figure 1.2) was accompanied by a jump in ∆φ. Since then, this aspect has been reported in a number of studies (e.g. [START_REF] Brika | Vortex-induced vibrations of a long flexible circular cylinder[END_REF][START_REF] Govardhan | Modes of vortex formation and frequency response of a freely vibrating cylinder[END_REF]. A typical evolution of ∆φ as a function of the reduced velocity, reported by [START_REF] Hover | Forces on oscillating uniform and tapered cylinders in crossflow[END_REF], is shown in figure 1.7(a). A phase shift from 0 • to 180 • is indeed noted in the transition region between the upper and lower branches, close to U * = 6. Otherwise, ∆φ remains constant and equal to 0 • in the low reduced velocity region, and 180 • in the high reduced velocity region.

When the structural damping is small, the value of the phase difference can be predicted by (1.5). Indeed, when γ y = 0, expression (1.5) becomes According to (1.6), the value of ∆φ relates with the sign of

C y1 sin(∆φ) = 0, ( 1 
f nat -f 1 , ∆φ =0 • when f 1 < f nat , (1.10a) ∆φ =180 • when f 1 > f nat .
(1.10b)

As shown in figure 1. 3(b), the body frequency (f y , equal to f 1 if body motion is harmonic) crosses the natural frequency within the lock-in range: in the low reduced velocity region, f 1 < f nat , and the expected phase difference is ∆φ = 0 • ; on the other hand, ∆φ = 180 • is expected in the high reduced velocity region. This is consistent with the evolution of ∆φ in figure 1.7(a). A phase jump is also noted when the body is forced to oscillate. This is shown in figure 1.7(b), where the phase difference ∆φ issued from a series of experimental studies collected by [START_REF] Carberry | Controlled oscillations of a cylinder: forces and wake modes[END_REF] are plotted as functions of f st /f y . In this plot, the overall range of Reynolds numbers is equal to [2000,60000]. In all cases, a phase jump occurs when the oscillation frequency is close to a critical frequency slightly lower than f st . This phase jump has been reported to be accompanied by significant changes in the wake pattern [START_REF] Zdravkovich | Modification of vortex shedding in the synchronization range[END_REF][START_REF] Ongoren | Flow structure from an oscillating cylinder. Part 1. Mechanisms of phase shift and recovery in the near wake[END_REF][START_REF] Gu | Timing of vortex formation from an oscillating cylinder[END_REF][START_REF] Carberry | Controlled oscillations of a cylinder: forces and wake modes[END_REF].

Wake patterns

The flow is altered as the body oscillates. In particular, when the properties of body motion are varied (amplitude and frequency), qualitative changes are noted in the way [START_REF] Williamson | Vortex formation in the wake of an oscillating cylinder[END_REF]; (c) P+S pattern [START_REF] Williamson | Vortex-induced vibrations[END_REF]. Figure 1.9: Map of the synchronized wake patterns in the (U * t , ζ m y ) domain, identified downstream of a cylinder forced to oscillate in the cross-flow direction [START_REF] Williamson | Vortex formation in the wake of an oscillating cylinder[END_REF]. A/D denotes the non-dimensional oscillation amplitude (ζ m y ), and λ/D is equivalent to the true reduced velocity (U * t = 1/f y ).

vorticity is shed from the body and reorganizes as vortices in the wake. A variety of wake patterns have been identified in prior studies. Some pattern visualizations downstream of a cylinder free or forced to oscillate in the cross-flow direction are shown in figure 1.8. [START_REF] Williamson | Vortex formation in the wake of an oscillating cylinder[END_REF] examined the wake of a circular cylinder forced to oscillate in the cross-flow direction. They identified a variety of wake patterns in the (U * t , ζ m y ) domain, as shown in figure 1.9. The 2S pattern is found in the region of low amplitudes and low reduced velocities. It is characterized by the shedding of two counterrotating vortices per oscillation cycle. A visualization of the 2S pattern is shown in figure 1.8(a). At higher amplitudes and reduced velocities, the 2P pattern is identified: two pairs of counter-rotating vortices are shed per oscillation cycle (figure 1.8(b)). The third pattern depicted in figure 1.9 is the P+S pattern. This asymmetric pattern, which emerges in the high-amplitude region, consists in the shedding of one pair of counter-rotating vortices plus a single vortex per oscillation cycle (figure 1.8(c)).

In their forced oscillation experiments, [START_REF] Bishop | The lift and drag forces on a circular cylinder oscillating in a flowing fluid[END_REF] pointed out the existence of a rapid change in the behavior of the cross-flow fluid force when the oscillation frequency crosses a critical value (see figure 10 in their paper for instance). The phase jump associated with this event has already been discussed in figure 1.7 The region of transition of the cross-flow fluid force reported by [START_REF] Bishop | The lift and drag forces on a circular cylinder oscillating in a flowing fluid[END_REF] is indicated by the dashed lines (I and II ) in figure 1.9. Their proximity with the 2S -2P transition suggests that the quantitative jump in the fluid force is connected to qualitative changes in the wake pattern. This has been supported by several studies (e.g. [START_REF] Blackburn | A study of two-dimensional flow past an oscillating cylinder[END_REF][START_REF] Carberry | Forces and wake modes of an oscillating cylinder[END_REF][START_REF] Carberry | Controlled oscillations of a cylinder: forces and wake modes[END_REF].

By visualizing the wake past a freely vibrating cylinder, [START_REF] Brika | Vortex-induced vibrations of a long flexible circular cylinder[END_REF] found a connection between the wake patterns and the branches of the VIV response (figure 1.2): the initial and upper branches were respectively accompanied by the 2S and 2P patterns. This connection was confirmed by [START_REF] Govardhan | Modes of vortex formation and frequency response of a freely vibrating cylinder[END_REF], who also identified a 2P pattern in the upper branch. However, the P+S pattern has never been reported in the case of free oscillations.

Forced oscillation experiments

Forced oscillation experiments are very useful to investigate the effect of body motion on the flow behavior. The most common configuration studied over the last decades is a circular cylinder forced to oscillate harmonically in the cross-flow direction. Such configuration allows to study the relative effects of amplitude and frequency of body motion on the flow (wake synchronization, vortex patterns, fluid forces), and connect them to free oscillation experiments. Results issued from forced oscillation experiments have already been presented in §1.3 and §1.4. Some complementary aspects are presented hereafter. [START_REF] Cheng | Lock-in phenomena on a single cylinder with forced transverse vibration. Flow-Induced Vibration and Wear[END_REF] determined the lock-in region of a cylinder forced to oscillate in the cross-flow direction. The boundaries of this region in the (U * t , ζ m y ) domain are plotted in figure 1.10(a). The lock-in region is bounded in both directions: no synchronization is observed outside a certain range of oscillation frequencies, even at high oscillation amplitudes. The frequency range of lock-in depends on the oscillation amplitude; it generally includes the wake frequency in the fixed body case (f st ).

Lock-in region

Since VIV occur through lock-in, the lock-in region in figure 1.10(a) is expected to encompass the vibration region of a freely oscillating system. The oscillation amplitudes and frequencies issued from a series of free-oscillation experiments are reported in the figure for comparison purpose. Even though the overall frequency range of vibrations (1/f y ∈ [4,10]) roughly matches the lock-in region determined by [START_REF] Cheng | Lock-in phenomena on a single cylinder with forced transverse vibration. Flow-Induced Vibration and Wear[END_REF], many free-vibration data are located outside the predicted lock-in region. Several aspects may explain these discrepancies. First, in this example the forced oscillations are limited to harmonic motion; possible multi-frequency responses of the system can therefore not be predicted. Then, the flow-structure system exhibits a gradual desynchronization in the high reduced velocity region, as described in chapter 3. The upper limit of the lock-in region in figure 1.10(a) is thus expected to be sensitive to the definition of lock-in employed by [START_REF] Cheng | Lock-in phenomena on a single cylinder with forced transverse vibration. Flow-Induced Vibration and Wear[END_REF]. Finally, the differences observed in the peak amplitude region may be related to Reynolds number effects, as discussed in §1.7. [START_REF] Sarpkaya | A critical review of the intrinsic nature of vortex-induced vibrations[END_REF]. In (b), V r denotes the true reduced velocity; the force component in phase with body acceleration (respectively body velocity) is referred to as C a (respectively C d ), and the 'phase angle' denotes the phase difference between the force and body displacement ∆φ. averaged in-line force, as already discussed in §1. 3, and (ii) the alteration of phasing and magnitude of the fluctuating cross-flow force. Figure 1.10(b) shows the evolution of the magnitude of the force components in phase with body acceleration (C a in the figure) and velocity (C d in the figure) over a range of the true reduced velocity [START_REF] Sarpkaya | A critical review of the intrinsic nature of vortex-induced vibrations[END_REF]. The phase difference ∆φ = φ C y1 -φ ζ y1 , denoted by 'phase angle', is also reported in the plot. A phase jump, similar to that described in §1.3, is noted. As expected from (1.4), the phase jump is accompanied by a sign change of C a .

Effect of body motion on fluid forces

Even though variations of the oscillation amplitude are expected to alter the magnitude of the fluid force components, the data reported in figure 1.10(b) may indicate the typical trend of C a and C d as functions of the reduced velocity in the elastically mounted case. On the basis of (1.6), the evolution of C a can be connected to the response frequency of the freely oscillating cylinder (figure 1.3). In the low reduced velocity region, C a is positive and f 1 < f nat . At higher reduced velocities, C a is negative and remains close to constant. In (1.6), f 2 nat -f 2 1 may thus be expected to hardly vary in this region; this is consistent with the results of figure 1.3. The force component in phase with body velocity relates to the energy transfer between the flow and the body. In figure 1.10(b), a positive energy transfer (i.e. positive C d ) is noted over a range of oscillation frequencies close to 1/f y = 6. Free oscillations may thus be expected in this region. This is consistent with 3). [START_REF] Gopalkrishnan | Vortex-induced forces on oscillating bluff cylinders[END_REF] carried out forced oscillation experiments similar to those reported [START_REF] Sarpkaya | A critical review of the intrinsic nature of vortex-induced vibrations[END_REF]. By covering ranges of oscillation amplitudes and frequencies, he produced two-dimensional maps of fluid forces in phase with body acceleration and velocity. These maps, reproduced from his thesis, are shown in figure 1.11. On the basis of such experimental data, combined with expressions (1.5) and (1.6), one is able, for a given set of structural parameters, to predict the response of a freely vibrating body, under the assumption that the body response remains close to sinusoidal [START_REF] Morse | Steady, unsteady and transient vortexinduced vibration predicted using controlled motion data[END_REF]. However, the fluid forces (and body response) are expected to be impacted by variations of the Reynolds number ( §1.7). Therefore, an accurate prediction of the response is only possible if the Reynolds number remains close to that considered in the forced-oscillation experiments.

Effect of structural parameters: mass and damping

As observed in figure 1.3, the body mass and structural damping greatly alter the response. In particular, two main effects are noted when mass and damping are decreased: the peak amplitude of the response significantly increases, and the lock-in range tends to widen.

The mass-damping parameter

In prior works, the first aspect mentioned above has often been addressed by plotting the peak amplitude observed over the lock-in range ( ζ m y ) as a function of a prod- [START_REF] Williamson | Vortex-induced vibrations[END_REF]). In the low mass-damping region in (b), two amplitudes are indicated, corresponding to the amplitudes of the lower and upper branches. uct of the mass and damping ratio, referred to as the Scruton number [START_REF] Scruton | On the wind-excited oscillations of stacks, towers and masts[END_REF] (S c = π/2(m * ν y )). [START_REF] Griffin | Vortex-excited cross-flow vibrations of a single cylindrical tube[END_REF] obtained a good collapse of ζ m y issued from various experimental studies as a function of the Skop-Griffin parameter, S G = 2π 3 f 2 st (m * ν y ). The original plot issued from his paper is shown in figure 1.12(a). The oscillation amplitude increases when S G is decreased, and a plateau region is noted in the low-S G range. The choice of a mass-damping parameter to predict the peak amplitude ζ m y is discussed hereafter.

On the basis of expression (1.5), and assuming that ν y = 0, the oscillation amplitude can be expressed as follows:

ζ y1 = C y1 sin(φ C y1 -φ ζ y1 ) 16π 2 mν y U * f 1 . (1.11)
It is noted empirically, as for instance in the data reported by Khalak and Williamson (1997a) (figure 1.3), that the peak oscillation amplitudes occur when the oscillation frequency is close to the Strouhal frequency and to the natural frequency,

f 1 ≈ f st ≈ f nat .
Therefore, the peak amplitude may be expressed as follows, assuming that

U * /f 1 ≈ 1/f 2 st : ζ m y ≈ C y1 sin(φ C y1 -φ ζ y1 ) 2S G .
(1.12)

Under such assumptions, and neglecting the effect of the Reynolds number on C y1 sin(φ C y1φ ζ y1 ), the maximum amplitude of response is expected to only depend on the massdamping parameter S G . This is supported by the collapse of the data in figure 1.12(a).

A more recent data compilation reported by [START_REF] Williamson | Vortex-induced vibrations[END_REF], including lower masses and damping ratios, is shown in figure 1.12(b). The mass-damping parameter employed in the plot is equivalent to m * ν y , with the present notations. At low mass and damping, two branches of the lock-in region are associated with large-amplitude oscillations (upper and lower branches), as already observed in figure 1.3. The maximum amplitudes measured in both branches are indicated in figure 1.12(b). It appears that amplitudes in the lower branch rapidly reach a plateau as m * ν y is decreased. The corresponding non-dimensional maximum amplitude is close to 0.6. However, amplitudes in the upper branch continuously increase as m * ν y decreases, and no saturation is observed in the parameter space covered in the figure.

The physical relevance of using a combined mass-damping parameter to characterize the oscillator was questioned by [START_REF] Sarpkaya | A critical review of the intrinsic nature of vortex-induced vibrations[END_REF]: "there is no compelling reason to combine m * with ζ [i.e. ν y ]", "they should not be combined to form a new parameter (or to eliminate an independent parameter)". It sounds indeed counter-intuitive that varying the inertia of the system is equivalent to varying its damping, i.e. its capacity to dissipate mechanical energy. However, it should be emphasized that the damping ratio, ν y = U * γ y /π 2 m * , is not independent from the body mass. On the other hand, the massdamping parameter, m * ν y = U * γ y /π 2 , is independent from the body mass. In order to avoid confusion on its physical meaning, the parameter m * ν y may be called the reduced damping, as in [START_REF] Blevins | Flow-induced vibration[END_REF].

The reduced damping does not eliminate the body mass from the system parameters. However, the collapse of the peak amplitudes as functions of the reduced damping in figure 1.12 does suggest that ζ m y is not impacted by the body mass. This aspect is discussed in the following.

Effect of structural parameters on the lock-in range

Another effect of varying structural mass and damping of the system is the widening of the lock-in range, i.e. the range of reduced velocities where significant oscillations are observed, as noted in figure 1.3. This is shown in figure 1.13(a), which represents the response amplitude issued from a series of experimental works, with various structural mass and damping, as a function of U * . A significant scatter is noted between the data. In particular, the upper limit of the lock-in range greatly varies from one study to the other.

In their experiments, Khalak and Williamson (1997a) varied the structural damping while keeping the body mass constant. They observed that the lock-in range was not impacted by this variation, and concluded that the lock-in range was mostly determined by the body mass. Differences in the width of the vibration region are reduced when plotting the response amplitude as a function of the true reduced velocity (following the terminology of [START_REF] Moe | The lift force on a cylinder vibrating in a current[END_REF]), U * t = 1/f y , i.e. the reduced velocity based on the oscillation frequency. This is shown in figure 1. 13(b), where the region of lock-in is roughly the same in all experiments. In particular, the upper limit of the lock-in region remains close to U * t ≈ 9 in the range of masses, dampings and Reynolds numbers covered by the collected data.

Since f y generally decreases as a function of U * (figure 1.3), the upper limit of the lockin range is associated with a minimum oscillation frequency f y,c , below which no vibrations are observed. The reduced velocity U * c at which this critical frequency is reached by the Figure 1.13: Effect of mass and damping on the lock-in range: evolution of the response amplitude issued from a series of experimental studies with various structural masses and dampings as a function of (a) the reduced velocity and (b) the true reduced velocity. In the data from [START_REF] Govardhan | Modes of vortex formation and frequency response of a freely vibrating cylinder[END_REF] and [START_REF] Khalak | Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[END_REF], amplitudes obtained for different structural masses and dampings are indicated by different symbol colors.

system can be expressed as follows (see (1.6)):

U * c = 1 f 2 y,c + C y1 cos(φ C y1 -φ ζ y1 ) 8π 2 mζ y1 . (1.13)
It is noted that U * c depends on the body mass m. As cos(φ C y1 -φ ζ y1 ) tends to be negative at high reduced velocities (figure 1.7(a)), U * c is expected to increase when m is decreased. This corresponds to a widening of the lock-in range, as shown in figure 1.13(a). [START_REF] Govardhan | Resonance forever: existence of a critical mass and an infinite regime of resonance in vortex-induced vibration[END_REF] found that the upper frequency of the lock-in region f y,c can never be reached by the system when the body mass is lower than a critical mass m crit . In this case, the system undergoes high-amplitude vibrations over an infinite range of U * , as shown in 1.13(a). This is further discussed hereafter.

Effect of structural parameters on the response amplitude

In the following, the effect of structural parameters on the response amplitude is discussed on the basis of the forced-oscillation results of [START_REF] Morse | Steady, unsteady and transient vortexinduced vibration predicted using controlled motion data[END_REF]. The maps of fluid forces extracted from their paper are shown in figure 1.14. Figure 1.14(a) shows iso-contours of C y1 sin(φ C y1 -φ ζ y1 ), i.e. the magnitude of the force component in phase with body velocity. The force in phase with body acceleration is described trough the effective added mass coefficient, defined as

C my = - 2 π C y ζy ζy 2 .
(1.14)

The added mass coefficient obtained by considering only the first harmonic of force and displacement, is expressed as

C 1 my = C y1 cos(φ C y1 -φ ζ y1 ) 2π 3 f 2 1 ζ y1
.

(1.15)

The iso-contours of C 1 my in the amplitude-frequency domain are shown in figure 1.14(b). The structural response of an elastically mounted cylinder can be predicted by coupling the data reported in figure 1.14 with expressions (1.5) and (1.6). First, the case of an undamped system is considered (γ y = 0). Expression (1.5) becomes (1.16) indicating that time-averaged energy transfer from the flow to the body vanishes. Introducing the effective added mass coefficient, expression (1.6) becomes

C y1 sin(φ C y1 -φ ζ y1 ) = 0,
f 2 1 m + π 4 C 1 my m = f 2 nat .
(1.17)

In each map of figure 1.14, a black line has been added on the original plot to emphasize the zero mean energy transfer contour. This contour outlines the possible states allowed by the energy equation (1.16). Three branches are identified, namely the initial, upper and lower branches, as in the freely vibrating case described in figure 1.3. Considering a particular state {ζ p y1 , f p 1 } on the zero mean energy contour, the corresponding added mass coefficient C p m is determined on the basis of figure 1.14(b). This state can be reached by the freely oscillating system only if there is a reduced velocity U * p satisfying (1.17), which may be re-written as follows:

U * p2 = 1 f p 1 2 m m + π 4 C p m . (1.18) It appears that (1.18) has a solution only if m > -π 4 C p m .
Several consequences can be deduced from this property:

• All regions of the zero mean energy contour of figure 1.14(a) can be reached by a body of infinite mass, including the peak amplitude region.

• In the initial and upper branches, the added mass is always positive (figure 1.14(b)); since m > 0, these regions can thus always be reached by the system for any body mass. Therefore, the body mass does not impact the peak response amplitude observed over the lock-in range ( ζ m y ).

• In the lower branch, a negative and close to constant effective added mass is noted, C 1 m ≈ -0.35. Therefore, the lower branch cannot be reached by freely vibrating systems with a body mass lower than a critical mass, m crit ≈ 0.28 [START_REF] Morse | The effect of Reynolds number on the critical mass phenomenon in vortex-induced vibration[END_REF]. The existence of this critical mass was pointed out by [START_REF] Govardhan | Modes of vortex formation and frequency response of a freely vibrating cylinder[END_REF]. The consequence of the disappearance of the lower branch when m < m crit is that the body response exhibits high amplitude oscillations over an infinite range of reduced velocities (figure 1.13(a)).

The concept of critical mass also allows to predict the behavior of an oscillator with zero stiffness, or equivalently infinite reduced velocity. In this case, the system response must verify m = -π 4 C p m [START_REF] Govardhan | Resonance forever: existence of a critical mass and an infinite regime of resonance in vortex-induced vibration[END_REF]. When m > m crit , no significant vortex-induced response of the body is expected. However, the body is expected to vibrate as its mass crosses the critical mass. This behavior is consistent with that of a freely falling or rising circular cylinder [START_REF] Horowitz | Dynamics of a rising and falling cylinder[END_REF].

When γ y > 0, it can be deduced from (1.5) and figure 1.14(a) that the possible states of the freely vibrating system are shifted towards lower oscillation amplitudes compared to the zero mean energy contour. In the high reduced velocity region (lower branch), this amplitude decrease is accompanied by an increase of the (negative) effective added mass coefficient. The critical mass is thus expected to decrease as a function of γ y : m crit (γ y = 0) < m crit (γ y = 0). When m > m crit , the possible states {ζ p y1 , f p 1 }, given by (1.5), only depend on γ y . In particular, the peak amplitude ζ m y1 remains independent from the body mass. [START_REF] Morse | The effect of Reynolds number on the critical mass phenomenon in vortex-induced vibration[END_REF] determined the evolution of the critical mass as a function of the Reynolds number (Re ∈ [100, 30000]), by considering the typical value of C my found in the lower branch in a number of experimental studies performed at low structural damping (γ y ≈ 0). Their results suggest that m crit (γ y ≈ 0) < 0.45 over the considered range of Reynolds numbers. Assuming that, as in the present example, m crit (γ y = 0) < m crit (γ y = 0), this suggests that ζ m y1 remains independent from the body mass over the range Re ∈ [100, 30000], as far as m > 0.45.

Effect of Reynolds number

The impact of the Reynolds number on the peak response amplitude has been well documented by [START_REF] Klamo | On the maximum amplitude for a freely vibrating cylinder in cross-flow[END_REF] and [START_REF] Govardhan | Defining the âĂŸmodified griffin plotâĂŹin vortex-induced vibration: revealing the effect of Reynolds number using controlled damping[END_REF]. Figure 1. 15(a), reproduced from [START_REF] Govardhan | Defining the âĂŸmodified griffin plotâĂŹin vortex-induced vibration: revealing the effect of Reynolds number using controlled damping[END_REF], shows the evolution of ζ m y as a function of the Reynolds number, at very low structural damping, issued from a number of numerical and experimental studies. Two regions with distinct behaviors are noted in the plot. In the low-Re region (Re < 200, labeled as laminar in the plot), ζ m y is close to constant as a function of Re. A significant impact of Re on the oscillation amplitude is noted at higher Re. [START_REF] Govardhan | Defining the âĂŸmodified griffin plotâĂŹin vortex-induced vibration: revealing the effect of Reynolds number using controlled damping[END_REF] observed a good collapse of the data on ζ m y = log 10 (0.41Re 0.36 ), as indicated in figure 1. 15(a). Since the study of [START_REF] Govardhan | Defining the âĂŸmodified griffin plotâĂŹin vortex-induced vibration: revealing the effect of Reynolds number using controlled damping[END_REF], higher Reynolds number experiments have been carried out by [START_REF] Ding | Lift and damping characteristics of bare and straked cylinders at riser scale Reynolds numbers[END_REF], [START_REF] Raghavan | Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports[END_REF] and [START_REF] Belloli | Force and wake analysis on a single circular cylinder subjected to vortex induced vibrations at high mass ratio and high Reynolds number[END_REF]. = log 10 (0.41Re 0.36 ) suggested by [START_REF] Govardhan | Defining the âĂŸmodified griffin plotâĂŹin vortex-induced vibration: revealing the effect of Reynolds number using controlled damping[END_REF]. is slightly lower than the fit function proposed by [START_REF] Govardhan | Defining the âĂŸmodified griffin plotâĂŹin vortex-induced vibration: revealing the effect of Reynolds number using controlled damping[END_REF]. This may be due to an effect of the structural damping, which is not negligible in the experiments of [START_REF] Belloli | Force and wake analysis on a single circular cylinder subjected to vortex induced vibrations at high mass ratio and high Reynolds number[END_REF]. The values of ζ m y obtained by [START_REF] Ding | Lift and damping characteristics of bare and straked cylinders at riser scale Reynolds numbers[END_REF] and [START_REF] Raghavan | Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports[END_REF] fall well above the fit function obtained at lower Reynolds numbers, as also noted by [START_REF] Bearman | Circular cylinder wakes and vortex-induced vibrations[END_REF]. This suggests a steeper evolution of ζ m y at higher Reynolds numbers. The effect of the Reynolds number on the body response in this region remains to be clarified.

The evolution of the amplitude as a function of U * is also altered by the Reynolds number. In both the experiments of [START_REF] Raghavan | Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports[END_REF] and [START_REF] Belloli | Force and wake analysis on a single circular cylinder subjected to vortex induced vibrations at high mass ratio and high Reynolds number[END_REF], the response is mainly composed of two branches, namely the initial and upper The methodology employed in the present work is described in this chapter. The behavior of the coupled flow-structure system is predicted by direct numerical simulation. The simulations are performed with the finite volume code Fine/Open. The flow-structure coupling is based on a mapping approach, that avoids domain deformation; it is implemented in the solver through the OpenLabs module of Fine/Open. The present numerical approach has been validated in various configurations, involving a cylinder either fixed or subjected to VIV, in the laminar and early turbulent regimes. Several post-processing tools are employed to analyze the simulation results. Spectral analysis techniques are used to analyze the spectral content of time-dependent quantities such as body displacements and fluid forces. Additional tools are employed for the analysis of the flow patterns.

Flow-structure solver

The Fine/Open flow solver

The Fine/Open solver is a finite volume code developed by Numeca (www.numeca.com). It allows to simulate a variety of flow configurations. In the present work, the incompressible Navier-Stokes solver is used. The non-dimensional incompressible Navier-Stokes equations can be expressed as follows:

∇ • V =0, (2.1a) ∂V ∂t + (V • ∇)V = -∇P + 1 Re ∇ 2 V , (2.1b)
where V and P are the non-dimensional flow velocity and pressure, t is the non-dimensional time, and Re is the Reynolds number based on the oncoming flow velocity and cylinder diameter. It is recalled that all the physical quantities are non-dimensionalized by the oncoming flow velocity, fluid density and cylinder diameter. The pressure-velocity coupling is ensured by an artificial compressibility method, first introduced by [START_REF] Chorin | A numerical method for solving incompressible viscous flow problems[END_REF] and later improved by [START_REF] Turkel | Preconditioned methods for solving the incompressible and low speed compressible equations[END_REF] and [START_REF] Choi | The application of preconditioning in viscous flows[END_REF] by preconditioning the flow equations. This method, initially proposed to compute steady solutions, can also be used to solve time-dependent problems by using a dual-time stepping technique [START_REF] Belov | A new implicit algorithm with multigrid for unsteady incompressible flow calculations[END_REF].

Artificial compressibility

A general overview of the artificial compressibility method proposed by Chorin (1967) is presented hereafter. In order to ensure the pressure-velocity coupling between (2.1a) and (2.1b), a flow pressure derivative is added to (2.1a), namely

δ ∂P ∂t * + ∇ • V =0, (2.2a) ∂V ∂t * + (V • ∇)V = -∇P + 1 Re ∇ 2 V . (2.2b)
The parameter δ is called the artificial compressibility. Due to the presence of the pressure derivative in (2.2a), time-dependent solutions of (2.2) are not physically relevant. Therefore, the physical time t is replaced by a pseudo-time variable t * in (2.2). If (2.2) converges to a steady state solution as t * increases, the resulting steady flow is independent of δ and satisfies the divergence free constraint. The artificial compressibility method can therefore be used to compute steady solutions of (2.1). When expressions (2.2) are discretized, the properties of the resulting discretized equations, such as stability and convergence rate, depend on the parameter δ. More generally, it is said that δ alters the condition number of the physical problem. This is the key idea of preconditioning, which aims at altering time-dependant parts of the flow equations in order to obtain a new equation system well-conditioned for numerical simulation.

Preconditioning method [START_REF] Turkel | Preconditioned methods for solving the incompressible and low speed compressible equations[END_REF] generalized the artificial compressibility method by allowing pressure derivative terms in all equations of (2.1). The general form of the preconditioned equations can be expressed as follows:

Γ -1 ∂q ∂t * + ∇ • F + ∇ • G = 0, (2.3) 
where q = [P, V x , V y , V z ] T and F and G are the flux matrices,

F =           V x V y V z V 2 x + P V x V y V x V z V x V y V 2 y + P V y V z V x V z V y V z V 2 z + P           , G = - 1 Re                  0 0 0 ∂V x ∂x ∂V x ∂y ∂V x ∂z ∂V y ∂x ∂V y ∂y ∂V y ∂z ∂V z ∂x ∂V z ∂y ∂V z ∂z                  .
(2.4)

Γ denotes the preconditioning matrix. In the Fine/Open flow solver, Γ -1 writes [START_REF] Hakimi | Preconditioning methods for time dependent Navier-Stokes equations. Application to environmental and low speed flows[END_REF])

Γ -1 =                1 b 2 0 0 0 (1 + a) V x b 2 1 0 0 (1 + a) V y b 2 0 1 0 (1 + a) V z b 2 0 0 1                , ( 2.5) 
where a and b are the preconditioning parameters. In [START_REF] Hakimi | Preconditioning methods for time dependent Navier-Stokes equations. Application to environmental and low speed flows[END_REF], the general formulation of the method also includes the preconditioning of the energy equation. The formulation has been simplified here in the case of an incompressible and newtonian fluid, for which the energy equation is not coupled with momentum and mass equations.

In practice, a is set equal to -1. The preconditioned equations are thus analogous to Chorin's equations (2.2). The parameter b is defined through a coefficient b * and a reference velocity

V ref , such that b 2 = b * V 2 ref .
(2.6)

In the present computations, V ref is set equal to the oncoming flow velocity. The optimal (i.e. fast convergence, stability) value of b * depends on the Reynolds number [START_REF] Hakimi | Preconditioning methods for time dependent Navier-Stokes equations. Application to environmental and low speed flows[END_REF]. In the present computations, b * is set to 30 for Re = 100 (chapter 6), and to 3 for Re = 3900 (chapters 3, 4 and 5).

Spatial discretization

The spatial discretization is based on a cell centered finite volume approach. The viscous fluxes are determined with a second-order purely central scheme. The inviscid fluxes are computed with a second-order central scheme with a scalar artificial dissipation term. The artificial dissipation method is described in details in [START_REF] Jameson | Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[END_REF] and [START_REF] Hakimi | Preconditioning methods for time dependent Navier-Stokes equations. Application to environmental and low speed flows[END_REF]. The artificial dissipation term depends on two user-defined parameters. Optimal values of these parameters have been chosen in order to ensure the solution accuracy.

Time integration

A dual-time technique is employed to compute time-dependent solutions. The method consists in solving a pseudo-stationary problem at each physical time step. The general form of the equations can be written as

Γ -1 ∂q ∂t * + I 1 ∂q ∂t + ∇ • F + ∇ • G = 0, (2.7) 
where I 1 designates the matrix

I 1 =      0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1      . (2.8)
The finite volume formulation of (2.7) can be expressed as

Ω Γ -1 ∂q ∂t * dΩ + Ω I 1 ∂q ∂t dΩ + S F • dS + S G • dS = 0, (2.9)
where Ω designates a steady volume and S its external surface. A second order implicit time integration is performed by discretizing the time derivative of the solution vector with a second order backward scheme:

Ω ∂q ∂t dΩ n+1 = Ω 3q l -4q n + q n-1 2∆t dΩ, (2.10)
where ∆t is the physical time step, q l is the current solution vector, and q n and q n-1 are the solution vectors at the previous time steps. Equation (2.9) is treated as a steady state problem: (2.11) where R(q l ) is the residual,

∂q l ∂t * Ω + R(q l ) = 0,
R(q l ) = Γ Ω I 1 3q l -4q n + q n-1 2∆t dΩ + Γ S F (q l ) • dS + Γ S G(q l ) • dS (2.12)
A each inner time step, q l is updated by integrating equation 2.11 with a Runge-Kutta method. The pseudo-time step is defined by the Courant number. When a pseudosteady solution is reached (∂q l /∂t * = 0), the solution vector q l satisfies the Navier-Stokes equations (2.1), and the physical time can be updated. In practice, the end of an inner loop is based on a convergence criterion on R(q l ), or a pre-defined number of inner iterations. The latter method was employed in the present simulations.

Acceleration techniques

Several techniques are implemented in Fine/Open in order to enhance the convergence rate:

• Local time stepping, used for steady state computations and unsteady computations with dual time stepping. It allows to drive the solution to the steady state at the fastest rate compatible with the stability condition.

• Implicit residual smoothing, as proposed by [START_REF] Jameson | Solution of the euler equations for complex configurations[END_REF], allows the use of higher Courant number. The implicit residual smoothing is not used for high Reynolds number computations (chapters 3, 4 and 5).

• Multigrid strategy, which damps low frequency errors.

Flow-structure coupling

A cylinder of arbitrary cross-section is immersed in a cross-flow. The body axis is aligned with the z direction, and the body is free to oscillate in the x and y directions. The body dynamics in the i direction (x or y) is governed by a second order oscillator equation: .13) where ζi , ζi and ζ i are the non-dimensional acceleration, velocity and displacement of the body in the i direction, γ is the non-dimensional structural damping, m is the nondimensional body mass, U * is the reduced velocity, and C i the fluid force coefficient in the i direction. The reader is referred to §3.2.1 for a detailed description of the physical system. Equation (2.13) is integrated following a similar algorithm than that employed for the fluid equations. The coupling between body equations (2.13) and fluid equations (2.1) is ensured by mapping the flow variables in the frame attached to the body axis, in translation with respect to the laboratory frame. The frame motion results in the appearance of inertial terms in the fluid equations, which are treated as source terms through the OpenLabs module of Fine/Open.

ζi + γ m ζi + 2π U * 2 ζ i = C i 2m , ( 2 

Time integration

The body dynamics in the i direction is described by the vector p i = [ ζi , ζ i ] T . The dynamics equation (2.13) may be expressed as follows: 

dp i dt + A + M p i = 0, (2.14) with A =      - C i 2m 0      , M =       γ m 2π U * 2 -1 0       . ( 2 
dp i dt * + dp i dt + A + M p i = 0, (2.16) 
The second order time integration is performed by discretizing the time derivative with a second order backward scheme: .17) where p l i is denotes the current solution vector, and p n i and p n-1 i denote the previous solutions. The physical time step ∆t is equal to the time step of the fluid solver. Equation (2.16) is treated as a steady state problem,

dp i dt n+1 = 3p l i -4p n i + p n-1 i 2∆t , ( 2 
dp l i dt * + R s (p l i ) = 0, (2.18) where R s (p l i ) is the residual, R s (p l i ) = 3p l i -4p n i + p n-1 i 2∆t + A + M p i . (2.19)
Equation (2.18) is then integrated in pseudo time t * using an explicit Euler method until the pseudo-steady solution is reached: .20) where ∆t * is the pseudo-time step of the structural solver.

p l+1 i = p l i -∆t * R s (p l i ), ( 2 
V ∞ =    1 0 0    (x,y,z) V b =    ζx ζy 0    (x,y,z) x y x c y c ζ x ζ y
Laboratory frame

V ∞ c =    1 -ζx -ζy 0    (xc,yc,zc) V b c =   0 0 0   (xc,yc,zc) x c y c
Body frame

x c = x -ζ x y c = y -ζ y z c = z t c = t V c = V -V b P c = P Figure 2
.1: Schematic view of the mapping approach.

Mapping of the flow variables

The flow-structure coupling is performed through a mapping approach that avoids domain deformation [START_REF] Newman | A direct numerical simulation study of flow past a freely vibrating cable[END_REF]. The mapping aims at transposing the flow variables from the laboratory frame (x, y) to the body frame (x c , y c ), as illustrated in figure 2.1. In the laboratory frame, the flow is governed by the Navier-Stokes equations (2.1). The non-dimensional far field velocity V ∞ is steady and aligned with the x axis. A no-slip condition is imposed at the body surface; therefore, the non-dimensional fluid velocity at the surface V b equals the body velocity. The mapping approach consists in a frame change accompanied by a change of the flow variables:

         x c = x -ζ x y c = y -ζ y z c = z t c = t and            V cx = V x -ζx V cy = V y -ζy V cz = V z P c = P .
(2.21) Time and space derivatives are expressed as follows:

                               ∂ ∂x c = ∂ ∂x ∂ ∂y c = ∂ ∂y ∂ ∂z c = ∂ ∂z ∂ ∂t c = ∂ ∂t + ζx ∂ ∂x + ζy ∂ ∂y . (2.22)
The transformed Navier-Stokes equations write:

∇ • V c =0, (2.23a) ∂V c ∂t c + (V c • ∇)V c = -∇P c + 1 Re ∇ 2 V c + S(x c , tc). (2.23b)
The source term, S(x c , tc) = [ ζx , ζy ] T , takes into account the frame motion.

Implementation in OpenLabs

The OpenLabs module in Fine/Open allows to customize a number of aspects of the computation, such as modifying the flow equations, changing the boundary conditions, adding new transport equations, etc. In the present computations, the OpenLabs module is used to solve the oscillator equations (2.13) and to ensure the flow-structure coupling through the addition of a source term in the flow equations. These modifications are done through a resource file which is compiled before each computation. In this file, several physical quantities are defined. The resource file is organized in several sections. Each section corresponds to a certain type of physical quantities. The different sections used in the present simulations are the following:

• Constants: to set constant parameters. Structural parameters involved in (2.13) are set in this section.

• Global quantities: to define integrated quantities. This section is used to compute the fluid forces.

• Algebraic expressions: to define new quantities through their mathematical expressions. The oscillator equation (2.13) is integrated by defining (2.20) as an algebraic expression.

• Boundary conditions: to customize boundary conditions. This allows to define the unsteady far field boundary conditions related to the frame motion.

• Source terms: to add source terms to the flow equations. The flow-structure coupling is achieved through the source term S (2.23b).

The quantities defined in OpenLabs are computed at each inner time step. The inner loop of the solver may thus be summarized as follows:

• 1. Current solution vectors q l and p l i are known.

• 2. The flow residual R(q l ) (2.12) is determined.

• 3. The new flow solution vector q l+1 is computed by integrating (2.11).

• 4. The fluid forces (C x and C y ) are computed. Steps 2 and 3 are performed by the flow solver, while steps 4 to 6 are carried out by OpenLabs.

Validation results

Re = 100, fixed body case The flow past a fixed cylinder is computed at Re = 100. The flow is discretized on a non-structured mesh in a two-dimensional rectangular computational domain. The mesh is composed of 85 × 10 3 cells. The physical time step is ∆t = 0.1 and 50 inner iterations are performed at each time step. Periodic boundary conditions are used in the cross-flow direction. A Dirichlet boundary condition is used at the inlet of the domain, and an outflow condition is used at the outlet.

The Strouhal frequency, time-averaged in-line force coefficient and maximum crossflow force coefficient are reported in table 2.1. Results issued from prior works are also reported in the table, for comparison purpose. The present results are in agreement with prior studies. Re = 100, free vibrations The response of a circular cylinder of mass m = 10, free to oscillate in the cross-flow direction without structural damping is computed at Re = 100. The mesh is the same as in the fixed body case. An unsteady Dirichlet boundary condition is used at the inlet of the domain and is updated at each inner iteration according to the velocity of the frame moving with the body. The oscillator is initially at rest, and the initial position of the cylinder is set to its equilibrium position in quiescent fluid. The time series of the body displacement at U * = 6 is plotted in figure 2.2(a). The oscillation amplitude rapidly grows and reaches a constant value close to 0.5 body diameters. A selected time series of the body acceleration is plotted in figure 2.2(b). According to the dynamics equation (2.13), the body acceleration should verify ζy (t) = C(t), with

C(t) = Cy 2m -( 2π U * ) 2 ζ y .
The consistence of the body response with the dynamics equation is examined by plotting C(t) in figure 2.2(b). It can be seen that ζy (t) matches C(t), emphasizing that the resolution of (2.13) is well converged.

Figure 2.3 shows the evolution of the oscillation amplitude ζ m y as a function of U * . Significant oscillations occur over a well-defined range of U * , and amplitudes up to 0.6 diameters are noted. The amplitudes are compared to those obtained with the spectral h/p element code Nektar [START_REF] Bourguet | Flow-induced vibrations of a rotating cylinder[END_REF]. Both codes lead to very similar results. This confirms the reliability of the present simulation approach.

Other validation results. Other validation results are reported in the present thesis.

In particular, the results presented in chapters 3, 4 and 5 confirm the reliability of the present simulations in the early turbulent regime (Re = 3900). In the fixed body case, the Strouhal frequency (f st = 0.21) and the time-averaged in-line force (C x ≈ 0.9) match prior experimental results [START_REF] Wieselsberger | New data on the laws of fluid resistance[END_REF][START_REF] Norberg | Fluctuating lift on a circular cylinder: review and new measurements[END_REF]. Some aspects of the near wake are examined in chapter 4. The frequency of the shear-layer vortices is found to be close to that expected at this Reynolds number (figure 4.21). The typical wavelength of the flow in the spanwise direction is also in agreement with prior studies (figure 4.18). The structural responses observed when the body in mounted on an elastic support have also been compared to prior experimental studies. In the case where the body is only free to oscillate in the cross-flow direction, the body response is in agreement with the data of Hover et al. (1998) (figure 5.3). When in-line oscillations are also allowed, the two-degree-of-freedom system responses and the associated fluid forces are close to those reported by [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF] (chapter 3).

Principal post-processing tools

The physical analysis of the numerical results is based on signal processing tools which are described hereafter. Most of the post-processing was carried out using the Python language with Numpy and Scipy libraries. The Tecplot software was also used for flow visualizations. The spectral analysis tools, used to analyze the spectral content of timedependent quantities such as body displacements, fluid forces, or any flow quantity measured at some point in the fluid domain, are presented in §2.2.1. Some tools employed for the analysis of the flow patterns are described in §2.2.2.

Spectral analysis

Spectral analysis of the physical quantities is performed with several signal processing tools. The Fourier transform, Hilbert transform, and short-time Fourier transform are briefly presented in the following. In order to illustrate their properties, these tools are applied to canonical functions. Three functions are considered: 

s 1 (t) =a1 sin(2πf 1 t) + a 3 sin(6πf 1 t + π 3 ) (2.24a) s 2 (t) =a1 sin(2πf 1 t + 2a 1 sin( π 4 f 1 t)) (2.24b) s 3 (t) =a1 sin(2πf 1 t + 2a 1 sin( π 4 f 1 t)) + a 3 sin(6πf 1 t + π 3 ). (2.24c) -2 -1 0 1 2 0 2 4 6 8 10 s 3 a 1 t × f 1 (c) -2 -1 0 
i (t) = f 1 + a 1 4 f 1 cos( π 4 f 1 t).
The third function, s 3 , is composed of a first and a third harmonic. The first harmonic is frequency modulated; its frequency is equal to f i .

Fourier transform

The Fourier transform projects the signal on a basis of orthogonal sinusoidal functions. The Fourier transforms of the functions (2.24) are computed using the fft module of Numpy which is based of the Fast Fourier Transform algorithm (FFT). The spectral amplitudes of signals s 1 , s 2 and s 3 are shown in figure 2.5. The spectral content of s 1 is well captured by the FFT: two well-defined peak frequencies, equal to f 1 and 3f 1 , appear in the spectrum. However, the spectra of the frequency modulated signals (s 2 and s 3 ) do not provide a clear vision of the properties of the original signals. In figure 2 number of peaks (sidebands) are noted in the vicinity of the carrier frequency (f 1 ). The modulation frequency (f 1 /8), is not identified in the spectrum. The sidebands correspond to linear combinations of the carrier and modulation frequencies. Similar sidebands are noted in the spectrum of s 3 (figure 2.5(c)). The third harmonic is well captured by the FFT.

.5(b), a 0 1 0 1 2 3 4 | ŝ1 | a1 f /f 1 (a) 0 1 0 1 2 3 4 | ŝ2 | a1 f /f 1 (b) 0 1 0 1 2 3 4 | ŝ3 | a1 f /f 1 (c)

Hilbert transform

The analytic representation of a real signal s, denoted by s a , can be expressed as s a (t) = s(t) + iH(s(t)). H(s) designates the Hilbert transform of s, H(s(t)) = 1 πt * s(t), where * denotes the convolution product. An advantage of the analytic representation is that its exponential form, s a (t) = S a (t)e iφ (t) , allows to identify the instantaneous amplitude (S a ) and phase (φ) of the signal.

The instantaneous frequency of the signal can then be expressed as f = 1 2π dφ dt . The analytic representations of s 1 , s 2 and s 3 are computed using the hilbert function of the signal module of Scipy. Time series of the instantaneous frequencies of s 1 , s 2 and s 3 are plotted in figure 2.6. In each plot, colored lines indicate the instantaneous frequencies of the harmonic contributions defined in (2.24). When the signal is mono-frequency, the instantaneous frequency is well captured by the method, as seen in figure 2.6(b). However, in the case of multi-frequency signals (figure 2.6(a,b)), the presence of the higher harmonics results in high-frequency oscillations of the instantaneous frequency. In order to analyze the instantaneous spectral content of multi-frequency signals, a time-frequency analysis can be performed.

Time-frequency analysis

A time-frequency analysis of signals s 1 , s 2 and s 3 is performed with the short-time Fourier transform (STFT). It consists in computing the Fourier transform of local sections of the entire signal, in order to determine its instantaneous spectral content. A local segment is obtained by multiplying the original signal by a Hamming window (hamming function of Numpy). The evolution of the spectrum as a function of time is then obtained by sliding the window function over the entire signal. Due to the short time windowing, low-frequency contributions may be filtered out by the STFT. The cut off frequency is determined by the size of the Hamming window. The spectral amplitudes of signals s 1 , s 2 and s 3 (figure 2.5) have shown that the lowest spectral contributions of significant amplitudes were close to f 1 . Therefore, the size of the Hamming window was set to 2/f 1 .

f f 1 t × f 1 (a) f f 1 t × f 1 (b) f f 1 t × f 1 (c)
Figure 2.7 shows iso-contours of the spectral amplitudes computed with the STFT (spectrogram) for the three signals s 1 , s 2 and s 3 . In the three cases, the signal properties are well captured by the method. In particular, regions of peak spectral amplitudes are consistent with the expected instantaneous frequencies of the first and third harmonics.

A similar analysis can be performed using the continuous wavelet transform (CWT). The wavelet transform can be computed using the signal module of Scipy (cwt function) or the wavelets module (https://github.com/emanuele/cwt/blob/master/Wavelets.py). Both STFT and CWT have been used in the present work and have generally produced similar results. 

Flow analysis

Span-and phase-averaging

Prior works concerning VIV have shown that vibration regimes are related with distinct wake patterns observed in the plane perpendicular to the body axis. An instantaneous (x, y) slice of the flow may not be sufficient to identify a pattern. This is particularly true at high Reynolds numbers, were irregular fluctuations of the flow quantities are superimposed to the dominant vortex pattern. This is shown in figure 2.8(a), which represents a (x, y) slice colored by iso-contours of the spanwise vorticity in the wake of a cylinder subjected to VIV. Two strong vortices may be identified in the figure: a counter-clockwise (blue) vortex, close to x = 4, and a clockwise (orange) vortex, close to x = 6. However, they are accompanied by small-scale vortices which may not be part of the dominant vortex pattern.

In order to identify a space-and time-consistent wake pattern, a span-and phaseaveraging technique is employed. The phase averaging consists in averaging the flow solutions at instants intersecting a given region of the phase space { ζy , ζ y }. Iso-contours of the span-and phase-averaged spanwise vorticity are plotted in figure 2.8(b). The phase averaging is performed over 4 oscillation cycles. For each cycle, a series of 5 snapshots close to the phase {ζ y = 0, ζy > 0} are selected. The phase-averaged field is thus computed with 20 snapshots. In comparison with figure 2.8(a), the dominant vortex pattern appears very clearly. 

Spatial Hilbert transform

It has been shown in §2.2.1 that the Hilbert transform provides the instantaneous amplitude and frequency of a time-dependent signal. Similarly, the Hilbert transform can be used to determine the local wavelength of a space-dependent quantity. This is used in chapter 4 to determine the dominant spanwise wavelength of the flow.

An example is presented in figure 2.9. The streamwise flow vorticity ω x is measured along a spanwise line placed in the wake of the body. The instantaneous spanwise distribution of ω x is plotted in figure 2.9(a). ω x fluctuates along the body length. The analytic representation of ω x is computed with the Hilbert transform. The evolution of the local phase is shown in figure 2.9(b). The global trend of the local phase is close to linear as a function of z. This suggests the existence of a dominant wavelength in the spanwise fluctuations of ω x . The local wavelength is defined as λ l z = 2π dφ/dz . The probability density function (PDF) of λ l z along the body length, denoted by P, is plotted in figure 2.9(c). A well-defined dominant wavelength appears in the PDF.

Q-criterion

It has been shown in figure 2.8 that a satisfactory visualization of wake pattern in the (x, y) plane can be obtained using spanwise vorticity contours. However, the visualization of the three-dimensional patterns at high Reynolds numbers may be challenging. [START_REF] Hunt | Eddies, streams, and convergence zones in turbulent flows[END_REF] proposed a technique to identify a vortex in a three-dimensional flow. Their method is based on the Q-criterion, defined as

Q = 1 2 [|Ω| 2 -|S| 2 ], (2.25) 
where Ω and S are the vorticity and strain-rate tensors, and | | designates the Euclidean norm. A vortex is defined as a region where Q > 0, i.e. where the norm of the vorticity tensor dominates that of the rate of strain [START_REF] Haller | An objective definition of a vortex[END_REF]. An example of three-dimensional flow downstream of a cylinder subjected to VIV is presented in figure 2.10. Figure 2.10(a) represents iso-surfaces of the streamwise vorticity. In figure 2.10(b), an iso-surface of the Q-criterion is colored by iso-contours of the streamwise vorticity. The Q-criterion captures the vortical structures developing in any direction and gives a finer vision of the three-dimensional vortices in the wake. As reviewed in chapter 1, the system composed of a circular cylinder immersed in a current and allowed to oscillate in the cross-flow direction has been thoroughly studied during the last decades. The system behavior when the body is free to oscillate in both directions is explored in this chapter. Most of prior numerical studies concerning VIV have been dedicated to low Reynolds number flows. In the following, the flow-structure system is analyzed in the early turbulent regime (Re = 3900). Based on the numerical approach described in chapter 2, the system responses are computed over a range of the reduced velocity encompassing the lock-in range, i.e. where body motion and flow unsteadiness are synchronized. The analysis of the principal flow-structure interaction aspects has been the object of a paper published in the Journal of Fluids and Structures [START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re = 3900[END_REF]. The article is reported hereafter.

Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re = 3900

Simon Gsell, Rémi Bourguet, Marianna Braza Institut de Mécanique des Fluides de Toulouse, UMR 5502 CNRS-INPT-UPS, Allée du Prof. Camille Soula, F-31400 Toulouse, France

Abstract

The vortex-induced vibrations of an elastically mounted circular cylinder are investigated on the basis of direct numerical simulations. The body is free to move in the in-line and cross-flow directions. The natural frequencies of the oscillator are the same in both directions. The Reynolds number, based on the free stream velocity and cylinder diameter, is set to 3900 and kept constant in all simulations. The behavior of the coupled flow-structure system is analyzed over a wide range of the reduced velocity (inverse of the natural frequency) encompassing the lock-in range, i.e. where body motion and flow unsteadiness are synchronized. The statistics of the structural responses and forces are in agreement with prior experimental results. Large-amplitude vibrations develop in both directions. The in-line and cross-flow oscillations are close to harmonic; they exhibit a frequency ratio of 2 and a variable phase difference across the lock-in range. Distinct trends are noted in the force-displacement phasing mechanisms in the two directions: a phase difference jump associated with a sign change of the effective added mass and a vibration frequency crossing the natural frequency is observed in the cross-flow direction, while no phase difference jump occurs in the in-line direction. Higher harmonic components arise in the force spectra; their contributions become predominant when the cylinder oscillates close to the natural frequency. The force higher harmonics are found to impact the transfer of energy between the flow and the moving body, in particular, by causing the emergence of new harmonics in the energy transfer spectrum.

Introduction

Vortex shedding from a bluff body immersed in a flow is accompanied by unsteady forces exerted by the fluid on the body. In the case of flexible bodies with bluff crosssection, these unsteady forces may lead to structural vibrations. Vortex-induced vibrations (VIV) occur when the body oscillation and the unsteady wake synchronize, a mechanism referred to as lock-in. VIV are encountered in a variety of natural and industrial systems. In civil and offshore engineering, these vibrations lead to fatigue or even failure of the structures and their prediction is thus crucial. On the other hand, VIV can also be used as mechanical energy converter in the context of flow energy harvesting (e.g. [START_REF] Grouthier | On the efficiency of energy harvesting using vortex-induced vibrations of cables[END_REF]. The physical analysis and the prediction of VIV have motivated a number of studies, as reviewed by [START_REF] Bearman | Vortex shedding from oscillating bluff bodies[END_REF]; [START_REF] Sarpkaya | A critical review of the intrinsic nature of vortex-induced vibrations[END_REF]; [START_REF] Williamson | Vortex-induced vibrations[END_REF]; [START_REF] Païdoussis | Fluid-Structure Interactions: Cross-Flow-Induced Instabilities[END_REF].

During the last decades, VIV have been extensively studied through the canonical problem of a rigid circular cylinder elastically mounted or forced to oscillate in the crossflow direction, as a paradigm of more complex configurations (e.g. [START_REF] Feng | The measurement of vortex-induced effects in flow past stationary and oscillating circular and D-section cylinders[END_REF][START_REF] Mittal | A finite element study of incompressible flows past oscillating cylinders and aerofoils[END_REF][START_REF] Hover | Forces on oscillating uniform and tapered cylinders in crossflow[END_REF][START_REF] Khalak | Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[END_REF][START_REF] Govardhan | Modes of vortex formation and frequency response of a freely vibrating cylinder[END_REF][START_REF] Carberry | Forces and wake modes of an oscillating cylinder[END_REF][START_REF] Blackburn | A complementary numerical and physical investigation of vortex-induced vibration[END_REF][START_REF] Shiels | Flow-induced vibration of a circular cylinder at limiting structural parameters[END_REF][START_REF] Leontini | The beginning of branching behaviour of vortex-induced vibration during two-dimensional flow[END_REF]. Significant body vibrations occur on a well-defined range of the reduced velocity, which is defined as the inverse of the oscillator natural frequency nondimensionalized by the inflow velocity and the body diameter. In this range called lock-in range, the body oscillation frequency is the same as the unsteady wake frequency. The body response amplitude exhibits a bell-shaped evolution as a function of the reduced velocity. For large mass ratio between the body and the fluid, and large damping, two branches of response are observed, the initial and lower branches (following the terminology of [START_REF] Khalak | Dynamics of a hydroelastic cylinder with very low mass and damping[END_REF]). Decreasing the mass ratio and damping results in the appearance of an upper branch, between the initial and lower branches (Khalak andWilliamson, 1997a, 1999). The vibration amplitudes are larger in the upper branch and may reach one cylinder diameter. When the mass ratio is large, the lock-in frequency significantly departs from the Strouhal frequency (i.e. the shedding frequency downstream of a stationary body) but it remains close to the natural frequency of the oscillator, as observed in the experiments of [START_REF] Feng | The measurement of vortex-induced effects in flow past stationary and oscillating circular and D-section cylinders[END_REF]. At lower mass ratios, the lock-in frequency can shift away from the natural frequency of the oscillator; such deviation may be connected to the variability of the effective added mass related to the unsteady fluid forces [START_REF] Moe | The lift force on a cylinder vibrating in a current[END_REF]Khalak and Williamson, 1997a).

Previous studies have shown that adding a degree of freedom in the in-line direction, viz. the direction aligned with the current, can considerably alter the cross-flow response.

In their experiments, [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF] (referred to as J&W in this paper) identified an amplification of the cross-flow vibration in the upper branch, called superupper branch, with amplitudes up to 1.5 diameters. In the in-line direction, the maximum amplitudes are close to 0.3 diameters. [START_REF] Dahl | Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds numbers[END_REF] pointed out the effect of the ratio between the in-line and cross-flow natural frequencies on the system responses.

Numerical simulation is a useful tool to study VIV: it provides a simultaneous vision of the wake patterns, fluid forcing and body responses, which allows a coupled analysis of the flow-structure system. However, the numerical simulation of VIV in conditions close to those encountered in nature or in the experimental works remains challenging. In particular, the simulation of flows at high Reynolds number (Re, based on the inflow velocity and the cylinder diameter) requires massive computational resources and often, additional modeling (e.g. turbulence closure). This explains why most of the numerical works concerning VIV have been dedicated to low Reynolds number configurations, even though the Reynolds number is known to have a significant impact on the system behavior [START_REF] Govardhan | Defining the âĂŸmodified griffin plotâĂŹin vortex-induced vibration: revealing the effect of Reynolds number using controlled damping[END_REF][START_REF] Raghavan | Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports[END_REF][START_REF] Bearman | Circular cylinder wakes and vortex-induced vibrations[END_REF]. Recent studies have shown that with the improvement of numerical methods and the development of computational resources, the investigation of VIV in the turbulent regime via numerical simulation becomes possible (e.g. Al-Jamal and Dalton, 2004; Lucor et al., 2005; [START_REF] Sarkar | Numerical investigation of the turbulent energy budget in the wake of freely oscillating elastically mounted cylinder at low reduced velocities[END_REF][START_REF] Navrose | Free vibrations of a cylinder: 3-D computations at Re= 1000[END_REF][START_REF] Lee | Coupled delayed-detached-eddy simulation and structural vibration of a self-oscillating cylinder due to vortex-shedding[END_REF][START_REF] Zhao | Three-dimensional numerical simulation of vortex-induced vibration of an elastically mounted rigid circular cylinder in steady current[END_REF]. The present work aims at contributing to this effort.

In the present study, the response of an elastically mounted circular cylinder free to move in the in-line and cross-flow directions is investigated on the basis of direct numerical simulation (DNS) results, at Re = 3900. This value of the Reynolds number was often selected in prior studies concerning flows past fixed cylinders as a typical case of the early turbulent regime (e.g. [START_REF] Beaudan | Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number[END_REF]. The fluid-structure system behavior is computed over a wide range of reduced velocities encompassing the lock-in range. The Reynolds number is kept constant in all simulations so that the reduced velocity is the only varying parameter. The DNS approach involves the prediction of the three-dimensional flow around the cylinder, as illustrated in figure 3.1, which represents an instantaneous iso-surface of the Q criterion [START_REF] Hunt | Eddies, streams, and convergence zones in turbulent flows[END_REF] colored by iso-contours of the spanwise vorticity around a cylinder subjected to VIV. However, this paper does not aim at providing a detailed analysis of the three-dimensional wake patterns; instead, the objective here is to focus on the interaction between the moving body and the flow through the span-averaged fluid forces, with a particular attention paid to the phasing and spectral content of the forcing and flow-structure energy transfer.

The methodology employed in this work is described in §3. 

Physical model and numerical method

The physical system considered in this study is presented in §3.2.1. The numerical method is described in §3.2.2 and data post-processing in §3.2.3.

Physical system

A sketch of the physical configuration is presented in figure 3.2. An elastically mounted circular cylinder of diameter D and mass per unit length ρ c is immersed in a cross-flow. The flow is characterized by its velocity U , density ρ f and dynamic viscosity µ. The Reynolds number based on U and D, Re = ρ f U D/µ, is set to 3900. The flow dynamics is governed by the three-dimensional incompressible Navier-Stokes equations. The cylinder is free to oscillate in the in-line (x axis) and cross-flow (y axis) directions. The structural stiffness and damping ratio in the i direction (x or y) are designated by k i and ξ i . All the physical quantities are made non-dimensional by D, U and ρ f . The non-dimensional cylinder displacement, velocity and acceleration in the i direction are denoted by ζ i , ζi and ζi . The force coefficient in the i direction is defined as 2 , where F i denotes the span-averaged force in the i direction. The non-dimensional mass is defined as m = ρ c /ρ f D 2 ; it is set to 2. The body dynamics in the i direction is governed by a forced second-order oscillator equation:

C i = 2F i /ρ f DU
ζi + 4πξ i U * i ζi + 2π U * i 2 ζ i = C i 2m . (3.1)
The reduced velocity in the i direction is defined as

U * i = 1/f nat,i , where f nat,i is the non-dimensional natural frequency in vacuum, f nat,i = D/2πU k i /ρ c .
In the following, the structural stiffnesses are the same in both directions; the reduced velocity and natural frequency of the oscillator are referred to as Table 3.1: Influence of the numerical parameters on the cross-flow vibration frequency, time-averaged and RMS fluid force coefficients at U * = 6 (region of maximum vibration amplitudes). For each case, the relative variation with respect to the case of reference (case 1) is indicated in brackets.

U * = U * x = U * y and f nat = f nat,x = f nat,y . k y ξ y k x ξ x U , ρ f , µ x y z D ρ c Figure 3.2: Sketch of the physical configuration. Case Mesh Cells (×10 6 ) L z n z ∆t f y C x C x C y 1 M1 6 
The damping ratio is set equal to zero in both directions to allow maximum amplitude oscillations (ξ i = 0).

Numerical method

The behavior of the coupled flow-structure system is predicted by direct numerical simulation of the three-dimensional Navier-Stokes equations over a range of U * . The computations are performed with the finite-volume code Numeca Fine/Open (www.numeca.com) which employs a preconditioned multigrid method [START_REF] Liu | Preconditioned multigrid methods for unsteady incompressible flows[END_REF]. The viscous fluxes are determined with a second-order purely central scheme and the inviscid fluxes are computed with a second-order central scheme with a scalar artificial dissipation term [START_REF] Jameson | Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[END_REF]. A second-order time integration is performed using a dual-time stepping method and a Runge-Kutta scheme.

The Navier-Stokes equations are expressed in the cylinder frame which avoids any grid deformation. The frame motion is taken into account by adding inertial terms in the Navier-Stokes equations [START_REF] Newman | A direct numerical simulation study of flow past a freely vibrating cable[END_REF]. At each time step, equations (6.1) are solved implicitly following the same iterative pseudo-time integration scheme as for the fluid equations. The right hand side terms of (6.1) as well as the inertial terms added in the fluid equations are updated at each inner iteration.

The flow is discretized on a non-structured grid in a rectangular computational domain. The cylinder is placed at (x, y) = (0, 0). It is recalled that the lengths are nondimensionalized by D. The domain extends from x = -30 at the inlet to x = 90 at the outlet, and from y = -30 to y = 30 in the cross-flow direction. The spanwise length of the cylinder is discussed in the following. Periodic boundary conditions are used in the spanwise and cross-flow directions. An unsteady Dirichlet boundary condition is used at the inlet of the domain and is updated at each inner iteration according to the velocity of the frame moving with the body. In the present computations, the free stream velocity in the moving frame always remains positive and a standard outflow condition is used at the outlet. All the computations are initialized with a static body.

A convergence study has been performed in order to set the numerical parameters. Some results are reported in table 3.1. The cross-flow vibration frequency and fluid forces obtained for different sets of numerical parameters are compared at U * = 6 (i.e. in the range of maximum vibration amplitudes, as shown in §3.3.1). In this table and in the following, denotes the time-averaging operator and designates the root-mean-square (RMS) value. Three grids are considered. In grids M 1 and M 2, the spanwise length of the cylinder is set to 3 diameters (from z = -1.5 to z = 1.5). The grid M 1 is composed of 6 × 10 6 cells. The grid size in the wall-normal direction at the cylinder surface is ∆n = 1.5 × 10 -3 . The grid M 2 presents a finer resolution around the body and a larger number of cells n z in the spanwise direction; it is composed of 11.5 × 10 6 cells. The grid M 1 bis presents the same resolution as M 1 but the spanwise length of the cylinder is set to 10 diameters (20 × 10 6 cells). The effect of the time step ∆t is also investigated. As part of the dual-time stepping method, the time integration is made through a series of subiterations; a number of 50 sub-iterations has been found sufficient to ensure convergence of the inner loop. The reference set of parameters considered for comparison in table 3.1 is case 1. In case 2, the refined mesh M 2 is used with the same time step as in case 1. In case 3, the mesh M 2 is also used but the time step is divided by 2. In case 4, the mesh M 1 bis is used and the other numerical parameters are the same as in case 1. In all cases, the relative variation of the results with respect to case 1 does not exceed 1.6%. The numerical parameters of case 1 were selected in this study. In addition to the above convergence study, the simulation results are compared, in the next section, to experimental data reported by [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF] for a similar physical system; as shown in the following, the present numerical results match the experimental data, which confirms the reliability of the simulation approach.

The simulations were performed on 72 computer cores. The time per iteration was approximately equal to 2.25 minutes. Depending on the reduced velocity, between 5000 and 20000 iterations were necessary to obtain statistical convergence of the physical quantities. In order to cover the range of reduced velocities under study, 12 cases were simulated.

Data processing

The amplitudes of motion ζ m

x and ζ m y are defined as the average of the highest 10% of the response amplitudes, as in [START_REF] Dahl | Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds numbers[END_REF]; [START_REF] Hover | Forces on oscillating uniform and tapered cylinders in crossflow[END_REF]. In the in-line direction, the displacement fluctuation

ζ x = ζ x -ζ x is considered to calculate the amplitude.
The Hilbert transform is used to determine the instantaneous phase and frequency of the forces and displacements (Huera-Huarte and [START_REF] Huera-Huarte | Wake structures and vortex-induced vibrations of a long flexible cylinder -part 1: dynamic response[END_REF]. Considering a real signal s which is a function of time t, the analytic signal is defined as s a (t) = s(t)+iH(s(t)), where H(s) is the Hilbert transform of s. In exponential form, the analytic signal is written as s a (t) = S a (t)e iφ (t) , where S a and φ are the instantaneous amplitude and instantaneous phase of s. The instantaneous frequency is defined as f = (1/2π) × (dφ/dt). As generally done in this context (e.g. [START_REF] Cagney | Streamwise vortex-induced vibrations of cylinders with one and two degrees of freedom[END_REF][START_REF] Grouthier | On the efficiency of energy harvesting using vortex-induced vibrations of cables[END_REF][START_REF] Narendran | Vortex-induced vibrations of elastically mounted circular cylinder at Re of the O(10 5 )[END_REF], the signals were high-pass filtered in order to avoid low-frequency fluctuations which are not occurring through lock-in. The cut off frequency is equal to half of the time-averaged body oscillation frequency. A span and phase averaging of the flow quantities is used in order to determine the wake patterns in §3.3.2. The phase averaging is performed over 4 oscillation cycles. For each cycle, a series of 5 snapshots close to the targeted phase are selected. The phase-averaged fields are thus computed with 20 snapshots.

Results

The results of the present work are reported in this section. The body responses in both directions are described in §3.3.1. The structural oscillations develop under wakebody synchronization, which is the object of §3.3.2. The fluid forces are analyzed in §3.3.3.

Body responses

Figure 3.3 depicts the responses of the body over the range of reduced velocities investigated. The amplitudes of displacement in both directions are presented and compared with the experimental results of J&W. It is recalled that in the paper of J&W the reduced velocity is based on the oscillator natural frequency in water while the natural frequency in vacuum is used to define U * in the present paper; the results of J&W reported in figure 3.3 have been adapted to match the present definition of U * . The Reynolds number in the experiments ranges from 1000 to 15000, and can thus differ from the value in the present simulations (Re = 3900). Otherwise, the present system is comparable to the experimental system of J&W. In particular, the mass ratio m exp ≈ 2 and the low structural damping ratio ξ exp ≈ 0.5 × 10 -2 in the experiments are close to the present configuration. The three branches of response reported by J&W can be identified in the present numerical results: the initial branch (IB), the upper branch (U B) and the lower branch (LB). In the initial branch, the cross-flow amplitudes are in agreement with the data of J&W (figure 3.3(a)). In the upper branch, the maximum amplitude predicted by the simulation at U * = 6.5 (about 1.2D) is lower than the amplitude measured experimentally at the same reduced velocity; it is recalled that some deviations are expected due to the difference in the value of Re. Between U * = 6.5 and U * = 7, the oscillation amplitude sharply decreases. In the lower branch, numerical and experimental results are in agreement for U * < 11. For higher reduced velocities, the cross-flow amplitudes predicted by the simulations are higher than in the experiments. This range of reduced velocities corresponds to the onset of the desynchronized state (described in §3.3.2) and has been observed to be very sensitive to structural damping. As the effect of structural damping is not directly the object in this study (here the damping is set to zero), this aspect is briefly addressed in appendix 3.A. Overall, the cross-flow amplitudes issued from the simulations and the experiments are consistent over the lock-in range. In the in-line direction, the simulations are in agreement with the data of J&W (figure 3.3(b)). Substantial amplitudes of in-line oscillation are noted in the initial and upper branches. In the lower branch, the in-line amplitudes are small compared to those occurring in the cross-flow direction, but still they are not negligible. The cross-flow frequency ratio f * y = f y /f nat is plotted in figure 3.3(c). The present results match the experimental data of J&W. The oscillator natural frequency f nat and the wake frequency in the static body case (Strouhal frequency, St) are indicated by dashed lines in this plot. It can be observed that the response of the fluidstructure system significantly departs from these frequencies, as also mentioned in prior studies. In the following, the behavior of the system in the three branches of response will be illustrated by considering three representative values of the reduced velocity, U * = 3, 6 and 9, i.e. one typical case for each branch (figure 3.3(a)).

Figure 3.4 exemplifies the mechanisms of synchronization between the in-line and cross-flow displacements, in the three branches of response. In figure 3.4(a), selected time series of the fluctuating in-line and cross-flow displacements are plotted as functions of the non-dimensional time t, for the above mentioned values of U * . The corresponding trajectories of the body in the (x, y) plane are depicted in figure 3.4(b). Figure 3.4(c) shows the histograms of the instantaneous in-line/cross-flow response frequency ratio f x /f y . The instantaneous frequencies are determined via the Hilbert transform as explained in §3.2.3. In each plot, the time-averaged value of f x /f y is indicated by a dashed line. Despite a certain variability in the histogram shapes, the in-line response frequency is, on average, twice the cross-flow response frequency, for all studied cases. This ratio is expected due to the symmetry of the physical system with respect to the (0, x, z) plane. The body thus exhibits figure-eight and crescent-shaped trajectories, as observed in figure 3.4(b). Considering an average frequency ratio f x /f y = 2, the phase difference between the in-line and cross-flow displacements can be defined as θ = φ ζx -2φ ζy , where φ ζx and φ ζy are the instantaneous phases of the in-line and cross-flow displacements. The histograms of θ are plotted in figure 3.4(d). For the three reduced velocities considered, the histograms exhibit a sharp and symmetric aspect. The time-averaged value of θ, indicated by a vertical dashed line in each plot, varies as a function of the reduced velocity, as also observed in previous studies. The values of θ are related to the shape of the orbits shown in figure 3.4(b). When the body follows a figure-eight path, two types of orbits may be identified: if the body moves downstream (respectively upstream) when reaching the extremes of its cross-flow motion, the orbit is referred to as clockwise (respectively counter-clockwise), as defined by [START_REF] Dahl | Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds numbers[END_REF]. Clockwise orbits appear in the range θ ∈]90 • , 270 • [ while counter-clockwise orbits appear in the range θ ∈

[0 • , 90 • [ ∪ ]270 • , 360 • ].
The values θ = 90 • and θ = 270 • correspond to crescent-shaped orbits. As shown in figure 3.5 which represents the evolution of θ as a function of the reduced velocity, the body tends to exhibit clockwise orbits in the initial and upper branches and counter-clockwise orbits in the lower branch. The values of θ are consistent with the experimental results of J&W, also reported in figure 3.5.

The spectral contents of the body displacements are quantified for the three selected values of U * in figure 3.6. In these spectra and in the following, the spectral amplitude is normalized by the amplitude of the highest peak and the frequencies are scaled by the time-averaged value of the cross-flow vibration frequency. In the in-line direction, the displacement appears to be essentially harmonic. All the spectra are dominated by a peak at f = 2f y . At U * = 9, a broadband low-frequency bump of limited magnitude appears close to f = f y , suggesting a loss of symmetry in the wake. Such symmetry breaking may be related to the appearance of asymmetric vortex shedding patterns [START_REF] Williamson | Vortex formation in the wake of an oscillating cylinder[END_REF], or to asymmetric low-frequency modulations of the wake. In the cross-flow direction, small amplitude third harmonic contributions are noted at U * = 3 and U * = 6, but the spectra are dominated by the frequency f = f y . Overall, the displacements in both directions remain very close to harmonic functions; this is verified over the entire range of U * investigated. A harmonic modeling of the displacements thus appears to be a reasonable approximation which will be adopted in §3.3.3.

Wake-body synchronization

Visualizations of the span-and phase-averaged spanwise vorticity in the wake of the cylinder are shown in figure 3.7(a), for the three selected values of U * . In these plots, ζ y = 0 and the body is moving upward. Different wake patterns may be identified following the classification introduced by [START_REF] Williamson | Vortex formation in the wake of an oscillating cylinder[END_REF]. In the initial and upper branches, a 2S wake pattern is noted while a 2P pattern is observed in the lower branch. This is consistent with the observations of [START_REF] Navrose | Free vibrations of a cylinder: 3-D computations at Re= 1000[END_REF] (at Re = 1000) but not with the visualizations of J&W, who observed a 2T pattern (two triplets of vortices shed per oscillation period) in the upper branch instead of 2S. A 2T pattern was also observed by [START_REF] Dahl | Resonant vibrations of bluff bodies cause multivortex shedding and high frequency forces[END_REF] and [START_REF] Zhao | Numerical simulation of two-degree-of-freedom vortexinduced vibration of a circular cylinder close to a plane boundary[END_REF], at Re = 10000 and Re = 7500. In order to clarify the impact of the oscillation amplitude and Reynolds number on the emergence of the 2T pattern, a forced oscillation simulation was performed. All parameters of the body motion (amplitudes, frequencies, phase difference) were set to match the trajectory observed by J&W in the peak amplitude region, while the Reynolds number was kept equal to 3900. The 2T pattern did not appear in this forced oscillation case. This additional simulation suggests that the emergence of the 2T pattern could be determined by the value of the Reynolds number. The spectra of the cross-flow velocity in the wake of the cylinder at (x, y, z) = (10, 0, 0) are plotted in figure 3.7(b). Even if the wake pattern differs from one reduced velocity to the other, all velocity spectra are very similar. In each branch of response, the velocity spectrum is dominated by the body vibration frequency (f y ): the body and the wake are synchronized. The lock-in condition is established in all studied cases. In the higher range of U * , the flow-structure system transitions towards the desynchronized state (Khalak and Williamson, 1997a). This can be observed in the velocity spectra presented in figure 3.8. At U * = 10, the spectral content of the cross-flow velocity in the wake is still dominated by the body oscillation frequency, but a small bump appears in the spectrum close to the Strouhal frequency, St = 0.21 [START_REF] Norberg | Effects of Reynolds number and a low-intensity freestream turbulence on the flow around a circular cylinder[END_REF], indicated by a red line. The Strouhal frequency and the vibration frequency are not commensurable. The contribution of the bump around the Strouhal frequency tends to increase at
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Figure 3.8: Spectra of the cross-flow velocity of the flow at (x, y, z) = (10, 0, 0), in the higher range of U * . In each plot, a red line indicates the vortex shedding frequency in the static body case (i.e. Strouhal frequency). and, at U * = 14, the vibration and Strouhal frequencies exhibit comparable contributions to the wake spectral content, which confirms the emergence of the desynchronized state in this range of U * .

Fluid forces

Statistics and spectral analysis Figure 3.9 presents the RMS values of the force coefficient in the cross-flow (C y ) and inline (C x ) directions, as well as the time-averaged in-line force coefficient (C x ), as functions U * . The three branches of response identified in figure 3.3, can also be noted in figure 3.9. In the static body case, the RMS values of the fluctuating forces in the cross-flow and in-line directions remain small, i.e. close to 0.08 [START_REF] Norberg | Fluctuating lift on a circular cylinder: review and new measurements[END_REF] and 0.03 [START_REF] Ouvrard | Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids[END_REF][START_REF] Afgan | Large eddy simulation of the flow around single and two side-by-side cylinders at subcritical Reynolds numbers[END_REF] respectively. The fluctuating forces are substantially amplified when the body vibrates. The mean drag also increases in comparison with the static body case, for which the value of C x is close to 0.9 [START_REF] Wieselsberger | New data on the laws of fluid resistance[END_REF]. The data of J&W have been reported in figure 3.9 for comparison purpose. The RMS values of the force coefficients predicted by the simulations match the experimental results. The values of the mean drag tend to be higher in the simulations than in the experiments but the trends of C x over the lock-in range remain very close.

The fluctuating drag force coefficient C x is analyzed in figure 3.10. In figure 3.10(a), time series of C x are plotted for the three values of U * previously selected (one in each branch of response). The corresponding spectra are shown in figure 3.10(b). The frequency content differs from one reduced velocity to the other. At U * = 3, the spectrum is composed of two distinct peaks: a fourth harmonic and a sixth harmonic. A broadband low-frequency content of small amplitude also appears close to f = 2f y , i.e. the frequency at which the in-line oscillation occurs. It should be mentioned that at U * = 3, the fluctuating drag almost vanishes, as shown in figure 3.9. The magnitude of the second harmonic component of C x is very small and the contributions of the other components thus dominate the spectrum. At U * = 6 and U * = 9, the second harmonic component clearly dominates the spectrum; a small fourth harmonic contribution can be noted at U * = 6 while no higher harmonic components appear at U * = 9. The evolutions of the second (C x2 ) and fourth (C x4 ) harmonic amplitudes over the lock-in range are plotted in figure 3.10(c). The magnitude of the fourth harmonic component is significant principally in the upper branch. In this region, the maximum relative contribution of the fourth harmonic with respect to the second harmonic, C x4 /C x2 , is close to 0.15. At U * = 3, this relative contribution is very large (C x4 /C x2 ≈ 5.5) as the second harmonic of the force tends to vanish in this region.

A similar analysis is performed in the cross-flow direction. Time series of the fluctuating lift force coefficient C y are plotted in figure 3.11(a), for the three selected values of the reduced velocity and the corresponding spectra are presented in figure 3.11(b). In all three cases, the spectral content is dominated by the first harmonic contribution. However, the presence of a third harmonic peak can also be noted. The existence of higher harmonics, and particularly the possible occurrence of a large third harmonic contribution in the spectrum of the cross-flow force have been reported in previous works [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF][START_REF] Vandiver | Insights on vortex-induced, traveling waves on long risers[END_REF][START_REF] Dahl | Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds numbers[END_REF]. The variations of the first (C y1 ) and third (C y3 ) harmonic amplitudes of the lift force as functions of U * are plotted in figure 3.11(c). The third harmonic component exhibits large magnitudes in the upper branch. In this region, the relative contribution of the third harmonic with respect to the first harmonic may reach 0.4.

C xn C x4 C x2 U * (c) 5 5.5 6 C x2 C x4 C x4 /C x2
In previous works, the presence of higher harmonics in the fluid forcing has been related to several mechanisms. Force higher harmonics may be connected with multivortex shedding patterns (e.g. 2T pattern, [START_REF] Dahl | Resonant vibrations of bluff bodies cause multivortex shedding and high frequency forces[END_REF]). Such wake patterns are not observed in the present results. Higher harmonics may also arise due to the variation of the angle between the x axis and the oncoming flow velocity seen by the body as it oscillates, as discussed by [START_REF] Wang | A non-linear fluid force model for vortex-induced vibration of an elastic cylinder[END_REF] and [START_REF] Wu | A review of recent studies on vortex-induced vibrations of long slender cylinders[END_REF]. The low magnitude of Assuming the force and displacement in the i direction to be periodic, both quantities can be expressed as Fourier series,

C yn C y3 C y1 U * (c) C y1 C y3 C y3 /C y1
ζ i = ∞ n=0 ζ in sin(2πnf 1 t + φ ζ in ), (3.2a) C i = ∞ n=0 C in sin(2πnf 1 t + φ C in ), (3.2b) 
where f 1 denotes the frequency of the first harmonic component of the cross-flow vibra-tion. Expression (6.1) leads to

φ C in -φ ζ in = 0 • or 180 • (3.3) and 4π 2 ζ in [f 2 nat -n 2 f 2 1 ] = C in 2m cos(φ C in -φ ζ in ). (3.4)
Expression (3.4) indicates that the n th harmonic of the force tends to vanish when the frequency of the n th harmonic of the displacement approaches the natural frequency. This contributes to the large values of C y3 /C y1 in the region where the cross-flow oscillation frequency crosses the natural frequency (figure 3.3(c)). In the in-line direction, the oscillation frequency (twice the cross-flow response frequency in figure 3.3(c)) is very close to the natural frequency at U * = 3; as expected from (3.4), the second harmonic of the in-line force coefficient vanishes in this region and the relative contribution of the higher harmonic, C x4 /C x2 , is large (figure 3.10(c)).

The phase difference between the fluid forcing and the body displacement is examined in the following. The instantaneous phase difference in the i direction is expressed as φ C i -φ ζ i with φ C i the instantaneous phase of the force determined via the Hilbert transform. Figure 3.12(a) shows the histograms of the instantaneous phase differences for the three selected values of the reduced velocity. The above defined phase difference is only relevant if the force and the displacement occur at the same frequency, viz. a substantial component appears at the oscillation frequency in the force spectrum. If not, the phase difference monotonically varies as a function of time and no distinct time-averaged value emerges in the histogram. This is the case for φ Cx -φ ζx at U * = 3, where the second harmonic of the in-line force coefficient vanishes. Otherwise, the histograms exhibit sharp shapes centered on well-defined time-averaged values of the phase difference, which are reported in figure 3.12(b).

As indicated by expressions (3.3) and (3.4), the phase difference between the n th harmonics of force and displacement (0 • or 180 • ), is related to the sign of f nat -nf 1 . In the in-line direction, the displacement frequency remains lower than the natural frequency, i.e. f nat -2f 1 ≤ 0 in (3.4). A phase difference equal to 180 • is thus expected between the 2 nd harmonics of force and displacement over the entire range of U * investigated. This is verified in figure 3.12(b). In the cross-flow direction, the body oscillation frequency crosses the natural frequency during the upper-lower branch transition. A phase difference jump from 0 • to 180 • can be predicted in this region, which is confirmed by the results reported in figure 3.12(b).

Effective added mass

In the i direction, the effective added mass coefficient induced by the fluid force in phase with the body acceleration can be defined as follows: 

C mi = - 2 π C i ζi ζ2 i . ( 3 
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.12: Phase differences between force and displacement, in both directions: (a) histograms of the instantaneous phase differences for three selected values of the reduced velocity and (b) time-averaged phase differences as functions of the reduced velocity.

The corresponding values are plotted in figure 3.13 as functions of the reduced velocity.

The added mass coefficients follow the same trend in both directions: they decrease with U * in the initial and upper branches, and are almost constant in the lower branch. However, while the in-line added mass remains negative over the entire range of U * under study, the sign of the cross-flow added mass changes during the upper-lower branch transition. The partial added mass coefficient obtained by considering only the n th harmonics of force and displacement in the i direction can be expressed as:

C n mi = C in cos(φ C in -φ ζ in ) 2π 3 n 2 f 2 1 ζ in . (3.6)
In the case of purely sinusoidal displacement occurring at frequency nf 1 , the effective added mass coefficient verifies C n mi = C mi . The values of C 2 mx and C 1 my are plotted in figure 3.13 for comparison purpose. In both directions, the added mass coefficient C mi is generally close to the sinusoidal case. As shown in (3.6), assuming periodic force and displacement, the sign of the partial added mass associated with the dominant vibration frequency relates to the force-displacement phase difference at this frequency. This is consistent with the fact that the sign change of the added mass in the cross-flow direction coincides with the phase difference jump of the cross-flow force. Using (3.6), expression (3.4) can be written as

nf 1 = f nat m m + π 4 C n mi . (3.7)
Expression (3.7) emphasizes the link between the body response frequency and the effective added mass; it also provides a relation between the partial added mass coefficients in different directions. For periodic responses, the coefficients C 2 mx and C 1 my verify the relation (3.8) provides an approximated relation between C mx and C my , as shown in figure 3.13 where a red dashed line indicates the approximated values of the in-line added mass coefficient.

C 2 mx = - 3m π + C 1 my 4 . (3.8) Considering that C mx ≈ C 2 mx and C my ≈ C 1 my , expression

Energy transfer

The instantaneous energy transfer in the i direction is quantified via the power coefficients In the absence of structural damping, the time-averaged energy transfer vanishes in each direction. However, the instantaneous energy transfer is generally different from zero.

C ei = C i ζi . ( 3 
The RMS values of the power coefficients are plotted in figure 3.14(a). The maximum RMS value is higher in the cross-flow direction than in the in-line direction. The peaks of energy transfer do not appear at the same reduced velocities in both directions. The instantaneous energy transfer induced by the n th harmonics of force and displacement can be measured via the partial power coefficient

C n ei = πnf 1 ζ in C in [sin(φ C in -φ ζ in ) + sin(4πnf 1 t + φ C in + φ ζ in )]. (3.10)
It should be mentioned that C n ei does not designate the n th harmonic of C ei . In the case of sinusoidal force and displacement at frequency nf 1 , C n ei is equal to C ei . As shown by expression (3.10), the fluctuating energy transfer is expected to occur at twice the frequency of the body response. Therefore, the phase difference between energy transfer and body displacement can be defined as φ C ei -2φ ζ i . The values of the time-averaged phase differences in both directions, as functions of the reduced velocity, are reported in figure 3.14(b). Assuming that

C ei is close to C n ei , the phase difference is approximately equal to φ C in + φ ζ in -2φ ζ in = φ C in -φ ζ in .
In the sinusoidal case, the phase difference between energy transfer and displacement is the same as the phase difference between force and displacement, i.e. 0 • or 180 • . Comparison of figures 3.14(b) and 3.12(b) shows that the simulation results corroborate the above analysis, except in the upper branch where the phase difference in the cross-flow direction slightly departs from the expected value (0 • ); this deviation can be explained by the presence of significant higher harmonic components in the forcing which alter the instantaneous energy transfer, as discussed in the following.

The spectra of the instantaneous power coefficients in both directions and for the three selected values of U * are presented in figure 3.15. All the spectra exhibit a peak at twice the body oscillation frequency in the direction being considered, except at U * = 3, where, as previously mentioned, the second harmonic of the in-line force coefficient vanishes. It can be noted that other harmonics with significant amplitudes emerge in the spectra. In the in-line direction, a lower harmonic peak at f = 2f y and a higher harmonic peak at f = 6f y appear. In the cross-flow direction, a higher harmonic peak arises at f = 4f y ; it reaches half the magnitude of the dominant peak for U * = 6.

The presence of substantial lower/higher harmonics in C ei spectra raises the question of the influence of the force higher harmonics on the energy transfer. This aspect is addressed by focusing on the effect of the third harmonic of C y . The instantaneous energy transfer induced by the first and the third harmonics of the cross-flow force can be quantified through the following partial power coefficient (as in (3.10), a single harmonic of displacement, the first harmonic, is considered):

C 1,3 ey =πf 1 ζ y1 C y1 sin(φ C y1 -φ ζ y1 ) +πf 1 ζ y1 C y1 sin(4πf 1 t + φ C y1 + φ ζ y1 ) + πf 1 ζ y1 C y3 sin(4πf 1 t + φ C y3 -φ ζ y1 ) +πf 1 ζ y1 C y3 sin(8πf 1 t + φ C y3 + φ ζ y1 ).
(3.11)

Compared to C 1 ey , C 1,3 ey includes two new terms depending on C y3 : a first one which modifies the second harmonic component of the energy transfer, and a second one which results in the emergence of a fourth harmonic component. On the basis of the spectral amplitudes and phases of the cross-flow force and displacement, the spectral amplitudes of the energy transfer issued from (3.10) and (3.11) are computed and compared to the actual spectra in figure 3.15. The amplitudes issued from (3.11) (orange circles) provide a satisfactory prediction. In particular, the magnitude of the fourth harmonic is well captured, which confirms that this higher harmonic component of the energy transfer is closely related to the third harmonic of C y . The amplitudes of the second harmonic predicted via (3.10) are indicated by blue triangles in figure 3.15. Comparison of the blue triangles and the orange circles emphasizes the influence of the third harmonic of C y on the second harmonic of the energy transfer. At U * = 3 and U * = 9, this influence remains small. In contrast, the impact of the third harmonic is major at U * = 6: by neglecting this harmonic of the force, the amplitude of energy transfer is dramatically overestimated. Similar observations can be made in the in-line direction where the existence of a fourth harmonic of C x impacts the spectral component of C ex at f = 4f y , but is also connected to the appearance of a second and a sixth harmonics in the energy transfer. These examples highlight two effects of the force higher harmonics on the flow-structure energy transfer: (i) the alteration of the spectral component occurring at twice the body oscillation frequency and (ii) the emergence of other (higher or lower) harmonics.

Conclusion

The two-degree-of-freedom VIV of a circular cylinder have been studied at Re = 3900, on the basis of direct numerical simulation results. It should be recalled that most of the numerical works concerning VIV have been dedicated to lower Reynolds number configurations. A detailed physical analysis of the coupled flow-structure system has been performed over a wide range of the reduced velocity, encompassing the lock-in range. The statistics of the body displacements and fluid forces are in agreement with prior experimental results reported by [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF] for a comparable system. The present numerical results confirm the occurrence of large-amplitude VIV in both directions in the range of moderate Re, as well as the shape of the response, which is composed of three branches. The body oscillations are close to harmonic and the timeaveraged frequency ratio between the in-line and cross-flow motions is equal to 2. The phase difference between the in-line and cross-flow motions varies across the lock-in range; the body tends to exhibit clockwise figure-eight orbits in the initial and upper branches versus counter-clockwise orbits in the lower branch.

The fluid forcing was particularly examined, with a special attention paid to its phasing and spectral content. The in-line and cross-flow forces are greatly amplified in comparison with the static body case. A jump of the phase difference between the cross-flow force and displacement is found to occur in the transition region between the upper and lower branches, when the vibration frequency crosses the oscillator natural frequency; this jump is also associated with a sign change of the effective added mass. In contrast, no phase difference jump appears in the in-line direction where the vibration frequency remains larger than the natural frequency and the effective added mass is negative. Higher harmonic components naturally arise in the force spectra once the cylinder oscillates; in both directions, their relative contributions to the forcing may become significant when the body vibrates close to the oscillator natural frequency, i.e. when the amplitude of the force at the vibration frequency tends to vanish. The higher harmonics of the forces are found to directly impact the energy transfer between the flow and the vibrating body: they induce modulations of the dominant spectral component and result in the emergence of other harmonics in the energy transfer spectrum.

The results found herein concern a physical system that is considerably simplified compared to those usually encountered in applications, especially in the fields of civil and ocean engineering where VIV often involve slender flexible bodies (e.g. cables, mooring lines) exposed to non-uniform flows. In this context, the structures may exhibit multi-frequency responses, composed of several excited structural wavelengths. Some connections with the present findings may however be established, as for instance the amplification of fluid forces or the variability of the effective added mass, which have also been reported for long flexible cylinders [START_REF] Chaplin | Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current[END_REF][START_REF] Huera-Huarte | On the force distribution along the axis of a flexible circular cylinder undergoing multi-mode vortex-induced vibrations[END_REF][START_REF] Bourguet | Lock-in of the vortexinduced vibrations of a long tensioned beam in shear flow[END_REF]. Even in the case of broadband multi-frequency VIV, it was shown that the lock-in phenomenon remains a locally mono-frequency event since the vortex shedding is generally synchronized with a single vibration frequency at each point of the span [START_REF] Bourguet | Distributed lock-in drives broadband vortex-induced vibrations of a long flexible cylinder in shear flow[END_REF]; the present observations could thus provide insights for the elaboration of semi-empirical models to predict slender body VIV in more complex physical configurations.

This effect of structural damping on the body response amplitude is consistent with the data reported by [START_REF] Gopalkrishnan | Vortex-induced forces on oscillating bluff cylinders[END_REF], on the basis of forced oscillation experiments. In figure 3.14 of his thesis, time-averaged energy transfer contours are plotted in the frequency-amplitude domain. A schematic view of this plot is presented in figure 3.16(c). The zero mean energy contour (C ey = 0) represents the possible states of a freely oscillating body without structural damping. The gradient of C ey close to this contour provides information on the shift that the system will undergo if structural damping is introduced, i.e. forcing the time-averaged energy transfer between the flow and the body to be positive. In particular, the gradient of C ey in the amplitude direction (ordinate axis of the map) determines the impact of structural damping on the free response amplitude. In a high gradient region, the structural damping is expected to have a limited impact on the response amplitude. In a low gradient region (e.g. high reduced velocity range, viz. low frequency range in the data of [START_REF] Gopalkrishnan | Vortex-induced forces on oscillating bluff cylinders[END_REF]), the structural damping is expected to have a major impact on the response amplitude. This brief analysis may explain the differences observed in the high reduced velocity range between the present results, obtained without structural damping, and the experimental data of J&W, in which the structural damping is small but not negligible (ξ exp ≈ 0.5%). 

Abstract

The three-dimensional flow past a circular cylinder, either fixed or subjected to vortexinduced vibrations, is analyzed on the basis of direct numerical simulation results. The Reynolds number, based on the cylinder diameter and oncoming flow velocity, is set to 3900. In the case where the body is free to oscillate, different regions of the lock-in range, i.e. where body motion and flow unsteadiness are synchronized, are considered.

In the fixed body case, the three-dimensionality of the flow is characterized qualitatively by the presence of small-scale vortices elongated in the plane perpendicular to the cylinder axis (planar vortices). Flow patterns emerging in the spanwise direction are analyzed quantitatively in terms of amplitude and wavelength as functions of the streamwise distance. The peak amplitude of cross-flow vorticity fluctuations along the span is found in the region of formation of the large-scale spanwise wake vortices. In the near region (detached shear layers), the spanwise wavelength significantly decreases as a function of the streamwise distance. The opposite trend in noted further downstream. The evolution of the spanwise wavelength is continuous.

The spanwise patterns are altered when the body oscillates. In the shear-layer region, body motion appears to enhance the development of planar vortices close to the body. This is associated with an increase of the spanwise pattern amplitudes in this region. An alteration of the wavelength is also noted. It is connected to a decrease of the thickness of the separating shear layers when the body oscillates, in relation with a variation of the instantaneous Reynolds number taking into account body velocity. Further in the wake, no significant alteration of pattern amplitude and wavelength is observed. This suggests a relative independence of the spanwise patterns, with respect to body motion, in spite of the major distortions of the wake in the plane normal to the cylinder axis.

Introduction

The wake downstream of a circular cylinder has often been used as a paradigm of bluff body wakes, and it was addressed in a number of studies, as reviewed by [START_REF] Roshko | Perspectives on bluff body aerodynamics[END_REF] and [START_REF] Williamson | Vortex dynamics in the cylinder wake[END_REF]. In the case where the body oscillates in the current, flow patterns emerging under wake-body synchronization have been widely described in the plane normal to the cylinder axis [START_REF] Williamson | Vortex formation in the wake of an oscillating cylinder[END_REF]. Flow patterns developing in the spanwise direction are investigated in the present work.

The flow past a fixed circular cylinder may be decomposed in three shear-flow regions [START_REF] Williamson | Vortex dynamics in the cylinder wake[END_REF], namely the attached boundary layers, the separated shear layers and the wake. A variety of flow regimes can be observed depending on the Reynolds number (Re) based on the cylinder diameter and oncoming flow velocity. These regimes are generally related to successive transitions of the shear-flow regions. The transition from a symmetric steady wake to an antisymmetric unsteady wake accompanied by the alternate shedding of counter-rotating vortices occurs at Re ≈ 50. This two-dimensional flow pattern persists up to Re ≈ 200. Above this critical value, the three-dimensional transition of the wake occurs through two successive flow regimes with distinct spanwise wavelengths (Williamson, 1996a). The first regime (mode A) is associated with a spanwise wavelength of about four body diameters. The second regime (mode B), which relates to the emergence of streamwise vortices stretched between primary wake vortices, exhibits a wavelength close to one body diameter. Comparable spanwise wavelengths have been identified at higher Reynolds number by [START_REF] Mansy | Quantitative measurements of threedimensional structures in the wake of a circular cylinder[END_REF]) (Re ∈ [300, 2200]), [START_REF] Wu | An experimental investigation of streamwise vortices in the wake of a bluff body[END_REF]Wu et al. ( , 1996a) ) (Re ∈ [200, 1800]), [START_REF] Lin | Three-dimensional patterns of streamwise vorticity in the turbulent near-wake of a cylinder[END_REF] (Re = 10000), [START_REF] Chyu | Evolution of patterns of streamwise vorticity in the turbulent near wake of a circular cylinder[END_REF] (Re = 10000) and [START_REF] Hayakawa | Three-dimensionality of organized structures in a plane turbulent wake[END_REF] (Re = 13000).

The transition of the separated shear layers occurs at Reynolds numbers greater than about 1000. It consists in the emergence of small-scale spanwise vortices comparable to those observed in plane mixing layers. Since the early work of [START_REF] Bloor | The transition to turbulence in the wake of a circular cylinder[END_REF], the analysis of shear-layer vortices, and in particular the measurement of their shedding frequency, has motivated a number of studies [START_REF] Braza | Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder[END_REF][START_REF] Wei | Secondary vortices in the wake of circular cylinders[END_REF][START_REF] Norberg | Effects of Reynolds number and a low-intensity freestream turbulence on the flow around a circular cylinder[END_REF][START_REF] Unal | On vortex formation from a cylinder. part 1. the initial instability[END_REF][START_REF] Prasad | The instability of the shear layer separating from a bluff body[END_REF][START_REF] Kim | An immersed-boundary finite-volume method for simulations of flow in complex geometries[END_REF][START_REF] Rajagopalan | Flow around a circular cylinderâĂŤstructure of the near wake shear layer[END_REF][START_REF] Thompson | The shear-layer instability of a circular cylinder wake[END_REF][START_REF] Dong | A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake[END_REF][START_REF] Rai | A computational investigation of the instability of the detached shear layers in the wake of a circular cylinder[END_REF]. The appearance of shear-layer vortices is accompanied by the three-dimensional transition of the shear layer. This was pointed out by [START_REF] Wei | Secondary vortices in the wake of circular cylinders[END_REF], who observed a threedimensional distortion of the shear-layer vortices in the range Re ∈ [2500, 4500]. Similar patterns were observed by [START_REF] Rai | A computational investigation of the instability of the detached shear layers in the wake of a circular cylinder[END_REF] at Re = 3900.

The streamwise evolution of the flow spanwise wavelength was measured experimentally by [START_REF] Mansy | Quantitative measurements of threedimensional structures in the wake of a circular cylinder[END_REF] and [START_REF] Chyu | Evolution of patterns of streamwise vorticity in the turbulent near wake of a circular cylinder[END_REF]. Both studies reported a rapid increase of the wavelength as a function of the streamwise distance in the region of formation of the wake vortices. The small wavelength (about 0.5 body diameters) measured close to the body was suggested to be related to the three-dimensional transition of the shear-layers.

Prior works concerning flows past circular cylinders often mentioned the similarities between the three-dimensional transition of wakes and that of plane mixing layers (e.g. [START_REF] Williamson | Vortex dynamics in the cylinder wake[END_REF]. Indeed, mixing layers exhibit streamwise vortices stretched between primary shear-layer vortices which are qualitatively close to those observed downstream of a cylinder (see for instance visualizations of [START_REF] Lasheras | On the origin and evolution of streamwise vortical structures in a plane, free shear layer[END_REF][START_REF] Bernal | Streamwise vortex structure in plane mixing layers[END_REF][START_REF] Metcalfe | Secondary instability of a temporally growing mixing layer[END_REF]. Similarities are expected between a separated shear layer and a plane mixing layer. The experimental results of [START_REF] Bernal | Streamwise vortex structure in plane mixing layers[END_REF] suggest that the initial ratio (i.e. at the onset of streamwise vortices) between spanwise and streamwise wavelengths in a turbulent mixing layer tends to remain close to 2/3 under various ex-perimental conditions. This ratio matches the most-amplified spanwise wavelength found by [START_REF] Pierrehumbert | The two-and three-dimensional instabilities of a spatially periodic shear layer[END_REF] and is confirmed by the experimental results of [START_REF] Huang | Small-scale transition in a plane mixing layer[END_REF]. [START_REF] Williamson | Scaling of streamwise vortices in wakes[END_REF] suggested that a constant spanwise-vs streamwise-wavelength ratio may also exist in the wake region of a cylinder: a spanwise wavelength close to one body diameter is reported over a wide range of Reynolds numbers where the streamwise wavelength related to the spanwise wake vortices remains close to constant. In the detached shear layers, both streamwise and spanwise wavelengths are expected to scale with the boundary-layer thickness at separation, and should therefore vary as functions of the Reynolds number [START_REF] Williamson | Scaling of streamwise vortices in wakes[END_REF]. By applying the 2/3 wavelength ratio to an estimated streamwise wavelength based on experimental measurements of the shear-layer frequency, [START_REF] Williamson | Scaling of streamwise vortices in wakes[END_REF] and Wu et al. (1996a) suggested that the spanwise wavelength λ z in the separated shear layers should vary as λ z /D ∝ 1/ √ Re, where D denotes the cylinder diameter. This trend is supported by the results of [START_REF] Mansy | Quantitative measurements of threedimensional structures in the wake of a circular cylinder[END_REF]. The predicted decrease of the shear-layer wavelength as a function of the Reynolds number is consistent with the existence of distinct spanwise wavelengths in the shear-layer and wake regions at high Reynolds numbers [START_REF] Mansy | Quantitative measurements of threedimensional structures in the wake of a circular cylinder[END_REF][START_REF] Chyu | Evolution of patterns of streamwise vorticity in the turbulent near wake of a circular cylinder[END_REF]. However, it is not clear whether λ z remains constant along the shear layer separating from the body. Measurements of the spanwise wavelength in the early stage of mixing layer development [START_REF] Jimenez | A spanwise structure in the plane shear layer[END_REF][START_REF] Huang | Small-scale transition in a plane mixing layer[END_REF][START_REF] Bell | Measurements of the streamwise vortical structures in a plane mixing layer[END_REF] have indeed shown that λ z exhibits significant variations as a function of the streamwise distance. This aspect remains to be addressed in the case of a shear layer separating from a bluff body.

When the cylinder is free or forced to oscillate in the flow, the wake is greatly altered in comparison with the fixed body case. [START_REF] Williamson | Vortex formation in the wake of an oscillating cylinder[END_REF] have described a variety of wake patterns in the plane perpendicular to the axis of a cylinder oscillating in the cross-flow direction. A transverse oscillation is generally expected to decrease the three-dimensionality of the flow. For instance, body motion increases the critical Reynolds number above which three-dimensional flow regimes appear [START_REF] Leontini | Three-dimensional transition in the wake of a transversely oscillating cylinder[END_REF]. At higher Reynolds number, body oscillation enhances the synchronization of the vortex shedding along the span, thus increasing the spanwise correlation length of any quantity measured at the surface of the body [START_REF] Bearman | An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders[END_REF].

In figure 4.1, a visualization of the three-dimensional wake downstream of a cylinder either fixed (figure 4.1(a)) or subjected to vortex-induced vibrations (figure 4.1(b)) at Re = 3900 is presented. In figure 4.1(b), the body exhibits free oscillations in both the in-line and cross-flow directions, i.e. the directions parallel and perpendicular to the oncoming flow. In-line and cross-flow oscillation amplitudes are close to 0.3 and 1.2 body diameters. The crescent-shaped trajectory of the body is indicated in the figure. This qualitative overview of the flow does not suggest a decrease of the wake threedimensionality in the oscillating body case. Significant differences are however visible, especially in the shear layer region, suggesting an alteration of the three-dimensional patterns when the body oscillates. This aspect is addressed in the present work.

In the present study, the spanwise patterns emerging in the flow past a fixed or freely vibrating cylinder are analyzed at Re = 3900. The impact of body motion on the spanwise patterns is investigated in conditions naturally arising when the body is free to oscillate, by considering a cylinder subjected to vortex-induced vibrations (VIV). The principal flowstructure interaction aspects of the problem have been examined in [START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re = 3900[END_REF], and similar systems have been studied by [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF], [START_REF] Dahl | Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds numbers[END_REF], [START_REF] Navrose | Free vibrations of a cylinder: 3-D computations at Re= 1000[END_REF] and [START_REF] Cagney | Streamwise vortex-induced vibrations of cylinders with one and two degrees of freedom[END_REF]. Figure 4.2 shows the evolution of the body responses as functions of the reduced velocity U * , defined as the inverse of the natural frequency of the oscillator. In this plot, amplitudes and frequencies are made non-dimensional by the cylinder diameter and oncoming flow velocity. Largeamplitude oscillations occur over a well-defined range of reduced velocities, called the lockin range (figure 4.2(a,b)). In this range, the dominant frequency of the wake unsteadiness matches the body oscillation frequency [START_REF] Bearman | Vortex shedding from oscillating bluff bodies[END_REF][START_REF] Sarpkaya | A critical review of the intrinsic nature of vortex-induced vibrations[END_REF][START_REF] Williamson | Vortex-induced vibrations[END_REF][START_REF] Païdoussis | Fluid-Structure Interactions: Cross-Flow-Induced Instabilities[END_REF] 

Method

The physical system and numerical method are presented in §4.2.1 and the data processing approach is described in §4.2.2. 

Method

Physical system and numerical method

The physical system is analogous to that described in [START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re = 3900[END_REF]. A sketch of the physical configuration is presented in figure 4.3. A circular cylinder of diameter D is immersed in a cross-flow. The body axis (z-axis) is located at (x, y) = (0, 0) in quiescent fluid. The flow is characterized by its velocity U , density ρ f and dynamic viscosity µ. All the physical quantities are made non-dimensional by D, U and ρ f . The Reynolds number based on U and D, Re = ρ f U D/µ, is set to 3900. In the flexibly mounted body case, the cylinder is mounted on an elastic support allowing oscillations in the in-line (x-axis) and cross-flow (y-axis) directions. The oscillator is characterized by the body mass per unit length ρ c and structural stiffnesses (k x and k y ) and dampings (c x and c y ) in both directions. The cylinder displacement, velocity and acceleration in the in-line (respectively cross-flow) direction are denoted by ζ x , ζx and ζx (respectively ζ y , ζy and ζy ). The body dynamics is governed by a forced second-order oscillator equation [START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re = 3900[END_REF]. The structural damping is set to zero (c x = c y = 0), and the structural stiffnesses are the same in both directions (k x = k y = k). The non-dimensional body mass is defined as m = ρ c /ρ f D 2 ; it is set to 2. The natural frequency of the oscillator f nat = D/2πU k/ρ c is used to define the reduced velocity U * = 1/f nat . Three values are considered here, U * = 3, 6 and 9.

The behavior of the coupled flow-structure system is predicted by direct numerical simulation of the three-dimensional Navier-Stokes equations. A detailed convergence study has been performed in order to set the numerical parameters [START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re = 3900[END_REF]. Additional results concerning the influence of the mesh on the spanwise wavelengths are reported in appendix 4.A. The flow is discretized on a non-structured grid in a rectangular computational domain. The domain extends from x = -30 at the inlet to x = 90 at the outlet, and from y = -30 to y = 30 in the cross-flow direction. It is recalled that the lengths are non-dimensionalized by D. The spanwise length of the cylinder is set to 10 diameters (from z = -5 to z = 5). Periodic boundary conditions are used in the spanwise and cross-flow directions. Each (x, y) slice of the mesh is composed of 150000 cells. The grid size in the wall-normal direction at the cylinder surface is ∆n = 1.5 × 10 -3 . In the spanwise direction, 300 cells are considered (∆z = 0.033). The total number of cells is

η x c ξ y c V in 1 -ζx -ζy L - 1 (η p ) L + 1 (η p ) L + 2 (x p ) L - 2 (x p )
Shear layers Wake vortices equal to 45 × 10 6 .

Data processing

The three-dimensionality of the flow is analyzed along spanwise lines. Two types of lines are considered: L 1 , located in the shear layers, and L 2 , further in the wake. A schematic view of the locations of L 1 and L 2 is presented in figure 4.4. (x c , y c ) denotes the frame attached to the cylinder axis, in translation with respect to the (x, y) frame. A tracking method is used to capture the instantaneous position of the shear layers. A similar method was employed by [START_REF] Rai | A computational investigation of the instability of the detached shear layers in the wake of a circular cylinder[END_REF] and is extended here to the case of oscillating bodies. The method involves a new frame (η, ξ). This frame is attached to the axis of the body, and the η-axis (respectively ξ-axis) is parallel (respectively normal) to the instantaneous oncoming flow velocity V in , defined as

V in = [V in,x , V in,y ] = [1 -ζx , -ζy ].
A separated shear layer, is defined as an iso-surface V η = 0.75|V in | in the near-wake region, where V η is the η-component of the velocity field. A line L 1 is defined as a line η = η p in the above defined iso-surface. Lines L 1 in the upper (ξ > 0) and lower (ξ < 0) shear layers are denoted by L + 1 and L - 1 . Lines L2 are fixed in the laboratory frame (x, y). Their streamwise position is denoted by x p , and their cross-flow position is set to match the region of minimum (respectively maximum) span-and time-averaged spanwise vorticity, i.e. the region crossed by clockwise (respectively counter-clockwise) wake vortices. Upper (y > 0) and lower (y < 0) lines are denoted by L + 2 and L - 2 . When the positive and negative wake vortices are aligned (U * = 3, figure 4.5), the cross-flow position of L 2 is set to zero.

The flow quantities measured along lines L 1 and L 2 are averaged over selected time series. A time-averaging operator is applied to lines L 2 . Due to the system symmetry, the averaging involves both L + 2 and L - 2 . The time-averaged value of a quantity Ψ(x, t) at streamwise distance x p is defined as

< Ψ > t,L 2 (xp) = 1 2(t 1 -t 0 )   t 1 t 0 Ψ L + 2 (xp) dt + t 1 t 0 Ψ L - 2 (xp) dt   , ( 4.1) 
where Ψ L + 2 (xp) and Ψ L - 2 (xp) are the values of Ψ on lines L + 2 (x p ) and L - 2 (x p ), and [t 0 , t 1 ] is the time window. On the other hand, a phase-averaging technique is used on lines L 1 in order to get consistent comparisons between the different cases, as discussed in §4.4. The phase is based on the cross-flow displacement of the body. The symmetry of the system is taken into account when computing the phase-averaged value: the shear layer at phase φ is expected to be the same as the opposite shear layer at phase φ + π. The phase-averaged value of a quantity Ψ(η, t) at streamwise distance η p is defined as

< Ψ > φ p,L 1 (ηp) = 1 2   < Ψ > φ p,L + 1 (ηp) + < Ψ > φ+π p,L - 1 (ηp)   , ( 4.2) 
where < > φ p,L + 1 (ηp) and < > φ p,L - 1 (ηp) denote the phase-averaged values at phase φ on lines L + 1 (η p ) and L - 1 (η p ), which are obtained over 3 oscillation cycles. For each cycle, series of 5 snapshots close to the selected phase are considered for averaging.

The spanwise patterns of the flow are analyzed by considering the distribution of the cross-flow component of the flow vorticity along lines L 1 (body frame) and L 2 (laboratory frame), ω ξ and ω y . The amplitudes of the spanwise fluctuations along lines L 1 and L 2 are defined as

A z1 (η p ) = < ω ξ > φ p,L 1 (ηp) , (4.3a) A z2 (x p ) = < ω y > t,L 2 (xp) , (4.3b) 
where denotes the root-mean-square in the spanwise direction. The Hilbert transform is used to compute the local spanwise wavelength of vorticity fluctuations. Considering a vorticity signal ω(z), the analytic signal is defined as ω a (z) = ω(z) + iH ω (z), where H ω is the Hilbert transform of ω. In exponential form, the analytic signal is written ω a (z) = Ω(z)e iφ (z) , where Ω and φ are the local amplitude and local phase of ω. The local spanwise wavelength is then defined as λ l z (ω) = 2π dφ/dz . The probability density function (PDF) of λ l z along the body length is denoted by P(λ l z ). The local wavelengths of ω ξ and ω y and their PDF are computed on lines L 1 and L 2 . The averaged spanwise wavelengths are based on the PDF averaged along selected time series,

λ z1 (η p ) =< P λ l z (ω ξ ) > φ p,L 1 (ηp) , (4.4a) λ z2 (x p ) =< P λ l z (ω y ) > t,L 2 (xp) , (4.4b)
where denotes the average of the 10% most frequent wavelengths in the PDF.

An overview of the wake

The flow patterns observed in the (x, y) plane are depicted in figure 4.5, which shows iso-contours of the span-averaged spanwise vorticity in the fixed and oscillating body cases. The positions of the lines L + 2 , used in the following to analyze the spanwise patterns in the wake, are indicated in the plots. In the fixed body case (figure 4.5(a)), the wake exhibits a typical von Kármán vortex street pattern. Vortex formation occurs close to x = 3. Upstream, a well-defined shear-layer region can be noted. The (x, y) flow pattern is altered when the body oscillates, as previously discussed in [START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re = 3900[END_REF] on the basis of span-and phase-averaged visualizations. Following the terminology of [START_REF] Williamson | Vortex formation in the wake of an oscillating cylinder[END_REF], a 2S pattern is identified for U * = 3 and 6, while a 2P pattern is noted for U * = 9. Significant variations of the length scales of the wake are also noted. For instance, the streamwise wavelength of the spanwise vortices for U * = 9 is roughly twice larger than that observed in the fixed body case. The cross-flow width of the wake also varies from one case to the other. The alteration of wake length scales in the (x, y) plane is further discussed in §4.4.3. Vortex formation tends to occur closer to the body when it oscillates. This is consistent with prior visualizations of the flow past oscillating bodies (e.g. [START_REF] Carberry | Controlled oscillations of a cylinder: forces and wake modes[END_REF].

The three-dimensionality of the flow can be illustrated by the magnitude of the vortic- ity in the (x, y) plane. The projection of the vorticity vector in the (x, y) plane is referred to as planar vorticity and is denoted by ω p . The patterns of ω p in the (x, y) plane are examined in figure 4.6, which shows iso-contours of the span-averaged planar vorticity magnitude, |ω p | = ω 2 x + ω 2 y , in the four studied cases. In the fixed body case (figure 4.6(a)), the planar vorticity is concentrated close to the spanwise vortices (figure 4.5(a)), but also in regions connecting consecutive wake vortices. This pattern is consistent with the mechanism of vorticity stretching between wake vortices described in prior works [START_REF] Wu | An experimental investigation of streamwise vortices in the wake of a bluff body[END_REF]Williamson, 1996a). The behavior of the planar vorticity is globally analogous when the body oscillates. In all studied cases, the region of maximum planar vorticity is located close to the body. However, it appears that the vorticity magnitude in the vicinity of the detached shear layers is much lower in the fixed body case than in oscillating body cases.

The flow patterns emerging in the third (z) direction are analyzed in the following. A visualization of the three-dimensional wake is presented in figure 4.7. In the four studied cases, an iso-surface of the Q-criterion is colored by iso-contours of the cross- plane. Therefore, these flow structures are referred to as planar vortices in the following, in reference to their (x, y) orientation. Planar vortices are observed in both fixed and oscillating body cases. While body motion is generally expected to decrease the threedimensionality of the flow, the 'density' of planar vortices in the wake and their magnitude do not significantly vary from one case to the other. The planar vortices tend to be more regularly aligned in the (x, y) plane when the body oscillates. This suggests that body motion may homogenize the three-dimensional patterns in the spanwise direction. Planar vortices are generally observed over the entire body length at any streamwise distance. Localized regions without planar vortices may however be encountered (U * = 9), suggesting spanwise amplitude modulations of the three-dimensional patterns.

A closer view of the three-dimensional flow in the shear-layer region is presented in figure 4.8. A higher value of the Q-criterion is used in comparison with figure 4.7 to highlight the dominant patterns encountered close to the body. In order to connect the three-dimensional patterns with the flow in the (x, y) plane, slices of the domain at z = 0 colored by iso-contours of the spanwise vorticity are also shown in each case. In the fixed body case (figure 4.8(a)), elongated planar vortices appear in the region of formation of the spanwise wake vortices. However, no vortices are noted in the shear-layer region. More planar vortices seem to develop in the oscillating body cases (the Q-criterion level is kept constant in all cases). For U * = 3 (figure 4.8(b)), planar vortices are identified between the cylinder and the forming wake vortex. This suggests that body motion enhances the formation of planar vortices in the shear-layer region. This is confirmed by the visualization for U * = 6 (figure 4.8(c)), where the large distance between the cylinder and the forming wake vortex allows to identify a well-defined shear layer region in the (x, y) plane. This region is characterized by a number of planar vortices distributed along the body length. A similar pattern is noted for U * = 9 (figure 4.8(d)). The association of body motion with the emergence of planar vortices in the shear-layer region is consistent with figure 4.6, where an increase of the span-averaged planar vorticity magnitude was noted close to the body when it oscillates.

The three-dimensional flow close to the cylinder is analyzed by tracking the shear layers separating from its surface, as described in §4.2.2. An example of the tracking output for U * = 6, i.e. in the case of maximum oscillation amplitudes, is shown in figure 4.9. In figure 4.9(a,c,e), the evolution of the shear layers as the body oscillates is visualized by plotting iso-contours of the span-averaged spanwise vorticity at three instants of an oscillation cycle. The shear layers are strongly deformed. In this example, where the body is moving downwards, a well-defined upper shear layer (blue) can be identified. In contrast, the lower shear layer (orange) is very short and does not clearly separate from the body. The span-averaged position of the surface captured by the tracking method is indicated by red dots in figure 4.9(a,c,e). The captured surface coincides with the location of the shear layer. The corresponding three-dimensional surface is shown at each instant in figure 4.9(b,d,f). In figure 4.9(b), a short shear layer detaches from the body. As the body moves downwards (figure 4.9(d,f)), the shear layer develops: its length increases and a spanwise wake vortex is being formed. This development is accompanied by a significant three-dimensional deformation of the shear layer.

A visualization of the three-dimensional shear layer separating from the upper side body is presented in figure 4.10, in the four studied cases. In the oscillating body cases, the snapshots are shown for ζ y = 0 and the body moving downwards, i.e. the phase at which a developed shear layer has been observed for U * = 6 (figure 4.9). The length of the shear layer varies from one case to the other, as already noted in figure 4.5. In the fixed body case, the cross-flow vorticity, which is used to color the shear layer surface, exhibits spanwise patterns similar to those observed by [START_REF] Rai | A computational investigation of the instability of the detached shear layers in the wake of a circular cylinder[END_REF] at the same Reynolds is depicted in figure 4.11(c,e,g) for U * = 3, 6 and 9. Since the shear layer may be substantially deformed or shortened once the body moves, an additional criterion is employed to confirm that lines L 1 are located in a high vorticity region: some samples are discarded, based on the magnitude of the spanwise vorticity ω z , averaged along the considered spanwise line; below a given level, the line is not representative of a shear layer region. Discarded samples are indicated by striped areas in figures 4.11(c) and 4.11(e) (U * = 3 and 6). Well-defined spanwise patterns are noted in the three oscillating body cases. As in the fixed body case, the spatio-temporal patterns are mainly perpendicular to the body axis. The shear-layer vortices, observed in the fixed body case, are also noted for U * = 9, even though less clearly defined. For U * = 3 and 6, the absence of such vortices may be related to the short life-time of the detached shear layers.

The time series of the cross-flow vorticity further in the wake (line L + 2 (x p = 5)) in the four studied cases are shown in figure 4.11(b,d,f,h). It is recalled that the cross-flow position of L + 2 varies from one case to the other (figure 4.5). In the fixed body case (figure 4.11(b)), spanwise patterns appear over the entire body length. While long-lasting patterns are observed in the shear layers (figure 4.11(a)), the patterns observed in the wake fluctuate in time. A time-periodic amplitude modulation of the patterns is noted. This modulation confirms that the planar vorticity is not homogeneously distributed in the (x, y) plane: it concentrates in the spanwise vortices and in regions connecting the spanwise vortices (figure 4.6). The time period of pattern modulation observed in figure 4.11 matches the spanwise vortex shedding frequency. Similar patterns are observed in the oscillating body cases.

Quantitative analysis of the spanwise patterns

In the following, the spanwise patterns observed qualitatively in §4.3 are analyzed by quantifying the amplitudes (A z1 and A z2 ) and wavelengths (λ z1 and λ z2 ) of the crossflow vorticity fluctuations in the spanwise direction. These quantities are defined in §4.2.2. Their streamwise evolution is examined by varying the locations of L 1 and L 2 . In order to analyze time-consistent features of the flow, the amplitudes and wavelengths are averaged over selected time series. The averaging procedures are detailed in §4.2.2. For data obtained along lines L 2 , a simple time-averaging is applied. Discontinuous time series are obtained in the shear-layer region in some cases. A phase-averaging technique is employed in this region (L 1 ). In §4.4.1 and §4.4.2, the analysis is performed for {ζ y = 0, ζy < 0}. This choice is relevant for comparison between the studied cases, since they all exhibit a well-developed upper shear layer at this phase (figure 4.10). The impact of the selected phase on the wavelength will be discussed in §4.4.3.

Amplitude of spanwise fluctuations

The streamwise evolution of A z1 and A z2 is shown in figure 4.12. In the fixed body case, an increase of the spanwise fluctuation amplitude as a function of the streamwise distance is observed in the shear layer. The maximum amplitude is noted further in the In the oscillating body cases, the amplitudes are determined when {ζ y = 0, ζy < 0} ( §4.2.2). wake, close to x = 3. This is consistent with figure 4.6(a). The streamwise evolution of A z1 and A z2 in the oscillating body cases is also reported in figure 4.12. For U * = 3 and 9, the range of η is limited to η ∈ [0, 1] since the shear layer does not extend further downstream. The amplitudes of spanwise fluctuations in the shear layer are significantly altered when the body oscillates. The amplitudes are generally larger in this region under body motion. For instance, the peak amplitude of A z1 for U * = 6 is roughly 6 times larger than in the fixed body case. This confirms the observations made on the visualizations of figure 4.8. Moreover, distinct evolutions of A z1 are noted as functions of the streamwise distance. For U * = 3 and U * = 6, A z1 rapidly reaches a maximum value, and then decreases as a function of η. For U * = 9, the amplitude continuously increases as a function of η. However, the rate at which the amplitude increases changes close to η = 0.5. Some differences are also noted further in the wake (L2), in the range x ∈ [2,4]. In particular, the local maximum near x = 3 in the fixed body case is only observed for U * = 9. For U * = 3 and 6 the region of peak amplitudes is shifted upstream. This may be related to the upstream shift of the wake vortex formation region at these reduced velocities. Further downstream (x > 4), amplitudes are close in all studied cases. The evolutions of A z1 and A z2 suggest that the alteration of the spanwise fluctuations, associated with body motion, is mostly localized close to the body, in the shear layer region.

Wavelength of spanwise fluctuations

The local wavelength of the spanwise pattern is determined using the Hilbert transform, as described in §4.2.2. At each instant, the probability density functions (PDF) of the local wavelengths along lines L 1 and L 2 are computed. The time series of the PDF on L + 1 (η p = 1) and L + 2 (x p = 5) are shown in figure 4.13 in the four studied cases. Well-defined and close to constant dominant wavelengths are identified in the shear-layer region in all cases. A dominant wavelength is also identified further in the wake (figure 4.13(b,d,f,h)), even though the PDF exhibit broader peaks than in the shear layer region.

The evolution of the spanwise wavelength as a function of the streamwise distance in the fixed body case is depicted in figure 4.14. Distinct trends are noted in the shearlayer and wake regions: in the shear layer, the wavelength decreases as a function of the streamwise distance, while the opposite trend is noted further downstream. A minimum wavelength close to 0.5 diameters is noted around x = 3. In their experiments, [START_REF] Mansy | Quantitative measurements of threedimensional structures in the wake of a circular cylinder[END_REF] and [START_REF] Chyu | Evolution of patterns of streamwise vorticity in the turbulent near wake of a circular cylinder[END_REF] reported a rapid change of the spanwise wavelength close to the region of formation of the spanwise wake vortices. Their data are plotted in figure 4.14. The data of [START_REF] Mansy | Quantitative measurements of threedimensional structures in the wake of a circular cylinder[END_REF] are presented for two crossflow positions; the wavelengths reported by [START_REF] Chyu | Evolution of patterns of streamwise vorticity in the turbulent near wake of a circular cylinder[END_REF] are averaged in the cross-flow direction. The wavelength jump observed by [START_REF] Chyu | Evolution of patterns of streamwise vorticity in the turbulent near wake of a circular cylinder[END_REF] at x ≈ 1 is very similar to that reported by [START_REF] Mansy | Quantitative measurements of threedimensional structures in the wake of a circular cylinder[END_REF] at x ≈ 2 and y = 1. Considering the difference of Re (Re = 600 and 10 4 ), distinct vortex formation lengths are expected in the wake. This may justify the shift observed in the streamwise location of the wavelength jump. However, the data of [START_REF] Mansy | Quantitative measurements of threedimensional structures in the wake of a circular cylinder[END_REF] show a different behavior at y = 0.5, where no jump is observed in the range of streamwise distances considered in their study. This suggests a significant impact of the cross-flow position on the measured wavelength close to the body. The present approach is different, since the wavelength is tracked in the shear layers, where patterns of significant amplitude are expected to be found. In the fixed body case, the cross-flow position of the upper shear layer is close to y = 0.5 (figure 4.5).

The global trend of λ z2 in the range x ∈ [4,10] is comparable to that reported by [START_REF] Mansy | Quantitative measurements of threedimensional structures in the wake of a circular cylinder[END_REF]. However, the wavelengths are significantly lower is the present study. This suggests an impact of the Reynolds number on the spanwise wavelength in the wake region.

The evolution of the spanwise wavelength as a function of the streamwise distance in the fixed and oscillating body cases is depicted in figure 4.15. A similar evolution is noted in all studied cases. In the shear layer region, the minimum spanwise wavelength is lower in the oscillating body cases. Even though differences are noted, as for instance at x = 5, the alteration of λ z2 remains small in the wake region. In particular, the variation of the spanwise wavelength, in this region, when the body oscillates is negligible compared to the variation of the (x, y) typical length scales of the wake, as discussed in §4.4.3. The distinct trends observed in the shear-layer and wake regions confirm that the spanwise patterns are differently altered in these regions, when the body oscillates. 

Discussion

Mechanism of spanwise fluctuation amplification. In order to predict the formation of planar vortices downstream of the body, [START_REF] Wu | An experimental investigation of streamwise vortices in the wake of a bluff body[END_REF] proposed that the vorticity behavior could be modeled using a vortex filament approach. In their model, a vortex line, located in the detached shear layer and initially aligned with the z axis, exhibits a localized kink in response to any flow disturbance. When approaching the forming wake vortex, the distorded line is stretched, resulting in the formation of planar vortices. A peak of planar vorticity is thus expected to be found in the region of formation of the spanwise wake vortices [START_REF] Wu | Three-dimensional vortex structures in a cylinder wake[END_REF]. Some aspects of the present results may corroborate this model. A streamwise increase of the spanwise pattern amplitude is indeed observed close to the body in the fixed body case (figure 4.12). The maximum amplitude, close to x = 3, is found in the region of formation of the wake vortices (figure 4.5(a)). In the oscillating body cases, a substantial amplification of the spanwise fluctuations has been noted in the shear layers. On the basis of the model of [START_REF] Wu | An experimental investigation of streamwise vortices in the wake of a bluff body[END_REF], a possible mechanism at the origin of this amplification may be the additional stretching induced by body motion. Such mechanism would mainly impact the flow close to the body, which is consistent with the present results. Transient behavior of the shear layers. A schematic view of the boundary layer separating from the body is presented in figure 4.16. The tangential flow velocity is denoted by V t . The non-dimensional momentum thickness at separation is defined as

δ s = nm 0 V t V m 1 - V t V m dn, (4.5)
where n is the distance normal to the wall at the separation point and V m is the maximum velocity of the boundary layer, reached at a distance n m from the wall. In the fixed body case, a typical value of δ s is 0.0065. In plane mixing layers, the flow generally exhibits a transient behavior before reaching a self-similar regime associated with a linear growth of the shear layer thickness as a function of the streamwise distance [START_REF] Hussain | Effects of the initial condition on the axisymmetric free shear layer: Effects of the initial momentum thickness[END_REF]. The streamwise distance associated with the transient regime is of the order of a few hundred times the initial momentum thickness. Considering δ s as an initial momentum thickness, the transient regime of the detached shear layers in the fixed body case is thus expected to extend over a few cylinder diameters1 . Therefore, the separated shear layers observed downstream of the body are in a transient regime. In the case of plane mixing layers, the transient regime is accompanied by significant variations of the amplitude and wavelength of the spanwise pattern [START_REF] Jimenez | A spanwise structure in the plane shear layer[END_REF][START_REF] Bell | Measurements of the streamwise vortical structures in a plane mixing layer[END_REF]: in particular,

t n δ s n m V m V t

Boundary layer

Shear layer the early development of the mixing layer is accompanied by a decrease of the spanwise wavelength. This is consistent with the behavior of the shear layers identified in the present cases (figure 4.15).

Scaling of λ z1 with δ s and effect of Re i . The spanwise wavelength of the detached shear layer may be expected to scale with the momentum thickness at separation. This aspect is examined in figure 4.17(a), which shows the streamwise evolution of the spanwise wavelength normalized by δ s in the four studied cases. In the oscillating body cases, δ s and λ z1 are considered when {ζ y = 0, ζy < 0}, i.e. the phase at which the spanwise patterns have been analyzed in §4.4.1 and §4.4.2. In all cases, a transient region is noted for low streamwise distances. Significant differences are noted between the studied cases in this transient region. In particular, the length of the transient region varies from one case to the other, even when it is normalized by δ s , as done in figure 4.17(a). However, it appears that all the wavelengths tend to collapse in a plateau region. In this region, the wavelength is λ z1 /δ s ≈ 77 in all studied cases. The present results thus suggest that the spanwise wavelength in the plateau region scales with the momentum thickness of the boundary layer, the latter being altered when the body moves.

When the body oscillates, the magnitude of the instantaneous oncoming flow velocity |V in | fluctuates. This results in a variation of the instantaneous Reynolds number, defined as

Re i = ρ|V in |D µ = Re (1 -ζx ) 2 + ζy 2 . (4.6)
The possible connection between the boundary layer thickness and Re i is examined in figure 4.17(b). In the oscillating body cases, Re i is computed at the same phase as in figure 4.17(a), for {ζ y = 0, ζy < 0}. The boundary layer thickness appears to decrease as a function of Re i . In the fixed body case, [START_REF] Bloor | The transition to turbulence in the wake of a circular cylinder[END_REF] suggested that the thickness of the boundary layer separating from a cylinder varies as plotted in figure 4.17(b). The results of figure 4.17 suggest that the alteration of the spanwise wavelength in the shear layers when the body oscillates may be related to an effect of the instantaneous Reynolds number, which alters the boundary layers and therefore the resulting detached shear layers.

δ s ∝ Re -1/2 . ( 4 
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Comparison with prior works. In figure 4.18, the wavelengths measured in prior works in the fixed body case are plotted as functions of the Reynolds number and compared with the present results. The spanwise wavelength globally decreases as a function of the Reynolds number. Figure 4.17 suggests that the variation of the instantaneous Reynolds number may justify the alteration of the spanwise wavelength in the shear layers when the body oscillates. The phase-averaged wavelength has been computed for various values of the phase for U * = 3, 6 and 9. The wavelengths obtained for η = 1, a distance at which the plateau region is generally reached (figure 4.15), are reported in figure 4.18 as functions of Re i . For U * = 3 and 6, the variation of the wavelength tends to follow the above mentioned trend as a function of Re i . For U * = 9, the wavelengths are very close to those observed in the fixed body case; this is expected since Re i remains close to 3900 at this reduced velocity. The dispersion of the wavelengths for U * = 9 and U * = 3 and 6 however suggests that the wavelength does not only depend on Re i . λ z2 versus typical length scales in the (x, y) plane. Body motion is also accompanied by a significant reorganization of the flow pattern further in the wake (figure 4.5). In order to analyze the evolution of the wake pattern in the (x, y) plane, the streamwise In previous works, the wavelength was measured at x = 3 [START_REF] Mansy | Quantitative measurements of threedimensional structures in the wake of a circular cylinder[END_REF], x ≈ 4 (Wu et al., 1996a) and x = 0.5 [START_REF] Chyu | Evolution of patterns of streamwise vorticity in the turbulent near wake of a circular cylinder[END_REF]. In the present cases, wavelengths at η = 1 are reported. In the oscillating body cases, spanwise wavelengths obtained at various phases are plotted as functions of Re i .

wavelength and cross-flow width of the wake are computed. The streamwise wavelength relates to the streamwise distance between primary wake vortices. It is defined as

λ x (x p ) =< V av x > t,L 2 (xp) /f y , (4.8)
where V av x is the span-averaged in-line flow velocity and f y is the vortex shedding frequency. The cross-flow width of the wake, which relates to the cross-flow distance between primary wake vortices, is defined as are the cross-flow positions of lines L + 2 and L - 2 . The relative variation of λ z2 with λ x is depicted in figure 4.19(a), for x > 4 (wake region). The streamwise wavelength ranges from 3.5 to 7.5 diameters. In comparison, the relative variation of the spanwise wavelength is very small (λ z2 ∈ [0.6, 0.8]). No particular trend is noted between both quantities. The variation of λ z2 as a function of λ y is shown in figure 4.19(b). It is recalled that for U * = 3, y L + 2 (and therefore λ y ) was set to zero due to the alignment of the wake vortices along the x axis ( §4. noted. The range of λ y is very large compared to the range of λ z2 . The results reported in figure 4.19 suggest that the alteration of the flow pattern in the spanwise direction is relatively independent from the distortion of the wake in the (x, y) plane.

λ y (x p ) = y L + 2 (x p ) -y L - 2 (x p ), ( 4 

Summary

The three-dimensional flow downstream of a fixed or freely vibrating cylinder at Re = 3900 has been analyzed on the basis of direct numerical simulation results.

In the fixed body case, the three-dimensionality of the flow is characterized qualitatively by the presence of small-scale vortices elongated in the (x, y) plane (planar vortices). The spanwise pattern emerging in the flow has been studied in terms of amplitude and wavelength of vorticity fluctuations in the spanwise direction. The fluctuation amplitude increases as a function of the streamwise distance in the shear-layer region and reaches a maximum in the spanwise vortex formation region; the amplitude then decreases further in the wake. The spanwise wavelength decreases as a function of the streamwise distance in the shear layers. A minimum wavelength is observed in the region of peak fluctuation amplitude, and the wavelength then slowly increases further in the wake. A continuous streamwise evolution of the wavelength is noted. Moreover, even though the wavelength depends on the streamwise position, wavelengths measured in the shear-layer and wake regions have a comparable order of magnitude. The trends of the amplitude and wavelength as functions of the streamwise distance in the shear layers present some connections with the evolution of plane mixing layers.

The alteration of the three-dimensional patterns once the body oscillates has been examined by considering three cases of free oscillations covering wide ranges of oscillation amplitudes and frequencies. Distinct trends were noted in the shear-layer and wake regions.

In the shear-layer region, flow visualizations indicate that body motion tends to enhance the formation of planar vortices. This is supported by the quantitative analysis, which shows that spanwise fluctuation amplitudes are larger in oscillating body cases. The streamwise evolution of the spanwise wavelength is similar to that noted in the fixed body case. However, lower wavelengths are noted in the oscillating body cases. The spanwise wavelength is found to scale with the boundary layer momentum thickness at separation, which is altered by body motion. A possible origin of the boundary layer alteration is the variation of the instantaneous Reynolds number as the body oscillates. The evolution of the spanwise wavelength as a function of the instantaneous Reynolds number is comparable to that observed in the fixed body case.

In the wake region, body oscillations are accompanied by an apparent homogenization of the three-dimensional patterns along the body length. Despite this qualitative alteration, no significant quantitative impact of body motion on the spanwise patterns was noted: amplitudes and wavelengths remain close in all cases. The persistence of spanwise pattern properties is particularly striking when considering the major alteration of the wake in the (x, y) plane, when the body oscillates. In particular, the spanwise wavelength appears to be independent of the streamwise wavelength associated with the primary wake vortices. This suggests that spanwise patterns in the wake mainly depends on the Reynolds number. Cell number
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Figure 4.20: Effect of the mesh on the spanwise wavelengths downstream of the body: evolutions of λ z1 (η p = 1) and λ z2 (x p = 10) as functions of the number of cells, in the oscillating body case for U * = 6 (peak oscillation amplitudes).

Appendix 4.B. Spectral analysis of the shear layers

When the Reynolds number based on the cylinder diameter and oncoming flow velocity is larger than 1000 approximately, shear-layer vortices may develop downstream of the body. These vortices were detected by [START_REF] Bloor | The transition to turbulence in the wake of a circular cylinder[END_REF] by measuring velocity fluctuations close to the detached shear layers. She suggested that the ratio between the shear-layer frequency (f sl ) and vortex shedding frequency (f st ) varies as Re 0.5 . The evolution of this ratio as a function of Re has been discussed in a number of studies [START_REF] Braza | Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder[END_REF][START_REF] Wei | Secondary vortices in the wake of circular cylinders[END_REF][START_REF] Norberg | Effects of Reynolds number and a low-intensity freestream turbulence on the flow around a circular cylinder[END_REF][START_REF] Unal | On vortex formation from a cylinder. part 1. the initial instability[END_REF][START_REF] Prasad | The instability of the shear layer separating from a bluff body[END_REF][START_REF] Kim | An immersed-boundary finite-volume method for simulations of flow in complex geometries[END_REF][START_REF] Rajagopalan | Flow around a circular cylinderâĂŤstructure of the near wake shear layer[END_REF][START_REF] Thompson | The shear-layer instability of a circular cylinder wake[END_REF][START_REF] Dong | A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake[END_REF][START_REF] Rai | A computational investigation of the instability of the detached shear layers in the wake of a circular cylinder[END_REF]. A more accurate relation, obtained by fitting many measurements over a wide range of Reynolds numbers, was proposed by [START_REF] Prasad | The instability of the shear layer separating from a bluff body[END_REF]:

f sl /f st = 0.0235Re 0.67 . (4.10)
The trace of shear-layer vortices was noted in the fixed body case (figure 4.11). Figure 4.21 shows the span-averaged power spectral density (PSD) of the spanwise vorticity in the shear layer at (x, y) = (0.32, 0.53). The frequencies are normalized by the vortex shedding frequency (f st = 0.21). At Re = 3900, the frequency ratio predicted by ( 4 first frequency is equal to f st . The second peak is equal to 6.5f st , which is close to the shear-layer frequency predicted by (4.10).
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One-vs twodegree-of-freedom vortex-induced vibrations When the body is free to oscillate in both directions (chapters 3 and 4), interactions may exist between the in-line and cross-flow oscillations. This aspect is examined in the present chapter, by performing a combined analysis of the system responses when the cylinder is either allowed to oscillate in the in-line, cross-flow, or both directions. The system responses are computed over a wide range of the reduced velocity, in the early turbulent regime (Re = 3900). The structural responses, fluid forces, and flow patterns are analyzed, and a discussion is proposed to shed some light on the interaction mechanisms between in-line and cross-flow motions in the two-degree-of-freedom case.

Introduction

Vortex-induced vibrations have been widely studied through the paradigm of the circular cylinder mounted on an elastic support allowing oscillations in the cross-flow direction (chapter 1). Significant vibrations occur over a well-defined range of the reduced velocity, called the lock-in range. The oscillation amplitude typically exhibits a bell-shaped evolution as a function of the reduced velocity. The peak oscillation amplitudes are observed in the intermediate reduced velocity region (U * ≈ 6).

The response of a cylinder free to move in the in-line direction has also been addressed in several studies [START_REF] Aguirre | Flow Induced, In-line Vibrations of a Circular Cylinder[END_REF][START_REF] Naudascher | Flow-induced streamwise vibrations of structures[END_REF][START_REF] Okajima | Flow-induced in-line oscillation of a circular cylinder[END_REF][START_REF] Cagney | Wake modes of a cylinder undergoing free streamwise vortex-induced vibrations[END_REF]. In-line oscillations are known to occur in the low reduced velocity region. The response is characterized by two branches, separated by a region of low-amplitude oscillations. The peak response amplitudes are comparable in both branches; they are typically of the order of 0.1 body diameters. [START_REF] Cagney | Streamwise vortex-induced vibrations of cylinders with one and two degrees of freedom[END_REF] studied the effect of adding a cross-flow degree of freedom on the body response in the low reduced velocity region. No cross-flow oscillations were noted in the first branch region. In the second branch region, cross-flow oscillations with amplitudes similar to that noted in the in-line direction, are observed. In both branches, the in-line response is almost unaltered compared to the one-degree-of-freedom case.

The effect of the addition of an in-line degree of freedom on the cross-flow response in the intermediate reduced velocity region has been emphasized by [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF]. When the structural mass and damping are small, large-amplitude in-line oscillations are superimposed to the cross-flow oscillations, and the body typically exhibits figure-eight-shaped trajectories [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF][START_REF] Dahl | Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds numbers[END_REF][START_REF] Navrose | Free vibrations of a cylinder: 3-D computations at Re= 1000[END_REF][START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re = 3900[END_REF]. The in-line oscillations are accompanied by an increase of the cross-flow oscillation amplitudes, compared to the one-degree-of-freedom case. The amplification is particularly significant in the intermediate reduced velocity region, where the amplitudes of in-line and cross-flow oscillations are maximum. The alteration of the in-line response due to cross-flow oscillations in this region remains to be addressed.

In this chapter, the one-versus two-degree-of-freedom response of a circular cylinder is investigated in the intermediate reduced velocity region. The response of the flowstructure system is predicted by direct numerical simulation over a range of the reduced velocity, in cases where the cylinder is free to oscillate in the in-line, cross-flow, or both directions. The structural responses, fluid forces, and flow patterns are analyzed in order to point out the principal differences between the one-and two-degree-of-freedom system behaviors. A fluid force model is proposed in order to analyze the relative impact of the in-line and cross-flow oscillations on the fluid forces. The model emphasizes some possible mechanisms related to the in-line versus cross-flow motion interactions, shedding some light on the two-degree-of-freedom response.

The present chapter is organized as follows. The methodological aspects of this work are described in §5.2. The results are presented in §5.3. The main differences observed between the one-and two-degree-of-freedom responses are discussed in §5.4. The principal findings of this work are summarized in §5.5.

Method

Physical system

A sketch of the physical configuration is presented in figure 5.1(a). An elastically mounted circular cylinder of diameter D and mass per unit length ρ c is immersed in a cross-flow. The flow is characterized by its velocity U , density ρ f and dynamic viscosity µ. The Reynolds number based on U and D, Re = ρ f U D/µ, is set to 3900. The flow dynamics is governed by the three-dimensional incompressible Navier-Stokes equations. The cylinder is mounted on an elastic support that may allow oscillations in the inline (x axis), cross-flow (y axis), or both directions, as schematized in figure 5.1(b); the three corresponding configurations are referred to as IL, CF and IL+CF. The structural stiffness and damping ratio in the i direction (x or y) are designated by k i and ξ i . All the physical quantities are made non-dimensional by D, U and ρ f . The non-dimensional cylinder displacement, velocity and acceleration in the i direction are denoted by ζ i , ζi and ζi . The force coefficient in the i direction is defined as 2 , where F i denotes the span-averaged force in the i direction. The non-dimensional mass is defined as m = ρ c /ρ f D 2 ; it is set to 2. The body dynamics in the i direction is governed by a forced second-order oscillator equation:

C i = 2F i /ρ f DU
ζi + 4πξ i U * i ζi + 2π U * i 2 ζ i = C i 2m .
(5.1)

The reduced velocity in the i direction is defined as U * i = 1/f nat,i , where f nat,i is the non-dimensional natural frequency in vacuum, f nat,i = D/2πU k i /ρ c . In the two-degreeof-freedom case (IL+CF ), the structural stiffnesses are the same in both directions; the reduced velocity and natural frequency of the oscillator are referred to as

U * = U * x = U * y and f nat = f nat,x = f nat,y .
In the one-degree-of-freedom cases (IL and CF ), the reduced velocity U * i is referred to as U * , and f nat,i is designated by f nat . The damping ratio is set equal to zero in both directions to allow maximum amplitude oscillations (ξ i = 0).

Numerical method and data processing

The behavior of the coupled flow-structure system is predicted by direct numerical simulation of the three-dimensional Navier-Stokes equations. The numerical method and numerical parameters are identical to those employed in chapter 3.

The reliability of the simulation approach was illustrated in chapter 3, where the twodegree-of-freedom system responses and associated fluid forces have been found to be in agreement with the experimental results of [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF]. In addition, the simulation results in the CF case are compared, in §5.3.1, to experimental data reported by [START_REF] Hover | Forces on oscillating uniform and tapered cylinders in crossflow[END_REF] for a similar physical system; as shown in the following, the present numerical results match the experimental data.

Physical quantities are analyzed over time series of more than 20 oscillation cycles, collected after convergence of the structural response. The maximum amplitudes of motion ζ m

x and ζ m y are defined as the average of the highest 10% of the response amplitudes. The dominant frequency of the fluid force in the i direction, based on the Fourier transform of C i , is denoted by f i . The frequency ratio is defined as f * i = f i /f nat . The time-averaged value of C i is denoted by C i , and C i = C i -C i designates the fluctuating part of C i . The root-mean-square value of C i is denoted by C i . As in [START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re = 3900[END_REF], the signals were high-pass filtered in order to avoid low-frequency fluctuations which are not occurring through lock-in.

Fluid force modeling

A fluid force model is proposed in the following; it is used to discuss the present results in §5.4. The model involves the frame (η, ξ), already presented in chapter 4, and schematized in figure 5.2. This frame is attached to the axis of the body, and the η axis (respectively ξ axis) is parallel (respectively normal) to the instantaneous oncoming flow velocity V in , defined as 

V in = [V in,x , V in,y ] = [1 -ζx , -
C x = C η cos(α) -C ξ sin(α), (5.3a) C y = C η sin(α) + C ξ cos(α).
(5.3b)

The model assumes that C η and C ξ are modulated by the fluctuating oncoming flow velocity V in . In particular, a dimensional analysis suggests a scaling of the fluid forces with the square of the oncoming flow velocity, Ψ = |V in | 2 , which is expressed as a function of the body velocity:

Ψ = (1 -ζx ) 2 + ζy 2 .
(5.4)

The modulation of the fluid force coefficients by Ψ is expressed as follows:

C η = L η (Ψ)C η,f , (5.5a) C ξ = L ξ (Ψ)C ξ,f , (5.5b)
where L η and L ξ are linear functions of Ψ. Their slopes are designated by κ η and κ ξ , and their constants are given by the fixed body case condition, L η (1) = L ξ (1) = 1. The fluid force coefficients may then be expressed as follows: (5.6a)

C η = 1 + κ η (Ψ -1) C η,f ,
C ξ = 1 + κ ξ (Ψ -1) C ξ,f . (5.6b)
In the fixed body case, the fluid forces are assumed to be harmonic:

C η,f = C η,f + C η,f,2 sin(4πf 1 t + φ C η,f,2 ), (5.7a) C ξ,f = C ξ,f,1 sin(2πf 1 t + φ C ξ,f,1
), (5.7b) where f 1 denotes the dominant frequency of the wake unsteadiness. When the body oscillates under the condition of wake-body synchronization, f 1 is equal to the dominant frequency of the cross-flow motion (cases CF and IL+CF ), and/or is equal to half of the frequency of the in-line motion (cases IL and IL+CF ) [START_REF] Cagney | Streamwise vortex-induced vibrations of cylinders with one and two degrees of freedom[END_REF][START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re = 3900[END_REF]. The square of the oncoming flow velocity is expressed as follows (neglecting higher harmonic terms):

Ψ = Ψ + Ψ 2 sin(4πf 1 t + φ Ψ 2 ).
(5.8)

Gathering (5.6), (5.7) and ( 5.8), the fluid force coefficients in the (η, ξ) frame may be modeled as follows:

C η = 1 + κ η (Ψ -1) C η,f + 1 2 κ η Ψ 2 C η,f,2 cos(φ Ψ 2 -φ C η,f,2 ) +κ η C η,f Ψ 2 sin(4πf 1 t + φ Ψ 2 ) + 1 + κ η (Ψ -1) C η,f,2 sin(4πf 1 t + φ C η,f,2 ) - 1 2 κ η Ψ 2 C η,f,2 cos(8πf 1 t + φ Ψ 2 + φ C η,f,2 ),
(5.9)

and

C ξ = 1 + κ ξ (Ψ -1) C ξ,f,1 sin(2πf 1 t + φ C ξ,f,1 ) + 1 2 κ ξ Ψ 2 C ξ,f,1 cos(2πf 1 t + φ Ψ 2 -φ C ξ,f,1 ) - 1 2 κ ξ Ψ 2 C ξ,f,1 cos(6πf 1 t + φ Ψ 2 + φ C ξ,f,1 ).
(5.10)

In the above model, the fluid forces are modulated by two kinematic quantities related to body motion: α and Ψ. This is discussed in §5.4.

Results

The results obtained in the present work are reported in this section. The body responses in the one-and two-degree-of-freedom cases are described in §5. 

Structural response

The structural responses obtained in the three studied cases (IL, CF and IL+CF ) are depicted in figure 5.3. In the CF case, the oscillation amplitudes observed for U * < 9 match the experimental data of Hover et al. (1998) (figure 5.3(a)). The peak amplitude, noted close to U * = 5, is approximately equal to 0.8 diameters. For U * > 9, the oscillation amplitudes reported by [START_REF] Hover | Forces on oscillating uniform and tapered cylinders in crossflow[END_REF] rapidly decrease down to 0.2 diameters, while significant vibrations are still observed in the present results. As shown in [START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re = 3900[END_REF], the body response is particularly sensitive to structural damping in the high reduced velocity region: a small structural damping can substantially decrease the response amplitude in this region. In the experiments of [START_REF] Hover | Forces on oscillating uniform and tapered cylinders in crossflow[END_REF], the structural damping is small but still not negligible; this may explain the differences observed with the present results. The cross-flow response is globally amplified when the in-line degree of freedom is added to the system, as previously noted by [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF]. This is shown by the oscillation amplitudes obtained for the case IL+CF, also reported in figure 5.3(a). In this case, the peak oscillation amplitude, noted close U * = 6, is equal to 1.2 diameters, approximately. This is slightly lower than the maximum amplitude reported by [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF]. Otherwise, the cross-flow amplitude globally matches the experimental results. Differences in the high reduced velocity region may be related to an effect of the structural damping, as mentioned above. The in-line oscillation amplitudes obtained in cases IL and IL+CF are plotted in figure 5.3(b). In the IL+CF case, the amplitudes match those reported by [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF]. Small oscillations are noted in the low reduced velocity region. This region has been thoroughly analyzed by [START_REF] Cagney | Streamwise vortex-induced vibrations of cylinders with one and two degrees of freedom[END_REF]; they found that the in-line vibrations are not altered by the addition of the cross-flow degree of freedom. This is corroborated by the present results for U * = 3. However, distinct behaviors are noted between cases IL and IL+CF at higher reduced velocities: in the IL case, no vibrations are observed, while significant oscillations are noted in the IL+CF case, especially around U * = 6. In this region, which coincides with the region of peak crossflow oscillation amplitudes, in-line oscillation amplitudes up to 0.3 diameters are noted. For U * > 7, in-line oscillations rapidly decrease, even though residual oscillations of low amplitudes are still observed.

The frequency of the body response is examined in figure 5.3(c), which shows the evolution of the frequency ratios in both directions as functions of the reduced velocity. In the IL case, the oscillations noted around U * = 3 occur at a frequency close to the natural frequency of the oscillator. Otherwise, the frequency of the residual oscillations matches the frequency of the in-line fluid force in the fixed body case, equal to twice the Strouhal frequency (i.e. shedding frequency in the fixed body case). In the CF case, the oscillation frequency remains close to the Strouhal frequency in the range U * ∈ [3,6]. At higher reduced velocities, the frequency ratio reaches a plateau, and the oscillation frequency significantly departs from the Strouhal frequency. In the IL+CF case, the in-line response frequency is equal to twice the cross-flow response frequency over the considered range of U * [START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re = 3900[END_REF]. For U * = 3, the cross-flow response frequency is close to the Strouhal frequency; the in-line response frequency equals that observed in the IL case. At higher reduced velocities, the oscillation frequency follows two clearlydefined branches, each one involving a close to constant frequency ratio. In the first branch (U * ∈ [4,6]), f * y < 1; in the second branch (U * > 7), the cross-flow response frequency ratio matches that observed in the CF case, and f * y > 1.

Fluid forces

The statistics of the fluid force coefficients obtained in the three studied cases are examined in figure 5.4. In the IL case, no oscillations occur for U * ≥ 4, and the force statistics are close to those observed in the fixed body case. An overview of figure 5.4 shows that the fluid forces are generally amplified when the body oscillates. Differences between the one-and two-degree-of-freedom cases are principally concentrated in the intermediate reduced velocity region (U * ∈ [4,8]): for U * = 3, the fluid force statistics in the IL+CF case are close to those noted in the IL case; for U * > 8, they tend to match those noted in the CF case.

In figure 5.4(a), the time-averaged in-line force coefficient is plotted as a function of the reduced velocity. In the fixed body case, C x ≈ 0.9. The results obtained in the one-degree-of-freedom cases suggest that both in-line and cross-flow oscillations tend to increase C x . For U * = 3, it appears that small in-line oscillations (ζ m x ≈ 0.1) can double the value of C x compared to the fixed body case.

The root-mean-square (RMS) value of the fluctuating in-line force coefficient is plotted in figure 5.4(b). The CF case indicates a major amplification of C x when the body oscillates in the cross-flow direction, compared to the fixed body case. As discussed in the following, this may be connected to the large-amplitude in-line oscillations observed in the IL+CF case (figure 5.3(b)). An increase of C x , even though less pronounced than in the CF case, is also noted in the IL case for U * = 3. C x is generally larger in the two-degree-of-freedom case in the intermediate reduced velocity region. In particular, the peak of C x in this region is approximately twice larger in the IL+CF case than in the CF case.
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The evolution of C y is depicted in figure 5.4(c). As shown by the results obtained in the one-degree-of-freedom cases, both in-line and cross-flow oscillations tend to amplify C y . The result obtained for U * = 3 in the IL case shows that small-amplitude in-line oscillations can lead to a substantial increase of C y . Except for U * = 4, the cross-flow force is globally amplified in the IL+CF case compared to one-degree-of-freedom cases.

The spectral content of the fluid forces in the range U * ∈ [4,8], i.e. where the principal differences between the one-and two-degree-of-freedom cases are noted, is investigated in figure 5.5. In the IL case, the spectrum of C x exhibits a relatively broad-band frequency content around f /f y = 2 (figure 5.5(a)). In the cross-flow direction (figure 5.5(b)), the spectrum exhibits a sharper aspect, and a clearly-defined peak is noted at f /f y = 1. In cases where significant body oscillations occur in this range of U * (cases CF and IL+CF, figure 5.5(c-f)), all the spectra are dominated by a peak frequency, equal to 2f y in the in-line direction, and to f y in the cross-flow direction. Higher harmonic contributions are also noted. In particular, a fourth harmonic (4f y ) appears in C x spectrum, and a third harmonic (3f y ) is noted in C y spectrum. The relative contribution of the third harmonic in the C y spectrum is particularly large in the IL+CF case for U * = 6 (figure 5.5(f)) (40% of the first harmonic amplitude).

The magnitudes of the principal spectral components of the in-line (C x2 and C x4 ) and cross-flow (C y1 and C y3 ) forces are plotted in figure 5.6 as functions of the reduced velocity, in the three studied cases. In both directions, the evolution of the dominant spectral component magnitude (C x2 and C y1 ) is similar to that of the RMS value of the entire signal (C x and C y , figure 5.4(b,c)). In the in-line direction (figure 5.6(a)), the magnitude of the fourth harmonic component remains small compared to C x2 . An amplification of the fourth harmonic is visible for U * = 5 and 6 in the IL+CF case; otherwise, C x4 is negligible. In the cross-flow direction (figure 5.6(b)), a large-amplitude third harmonic component arises in the IL+CF case in the intermediate reduced velocity region, as already noted in figure 5.5(f). For U * = 3, the IL case results indicate a significant amplification of the third harmonic when the body oscillates in the in-line direction. A lower amplification is noted in the IL+CF case at this reduced velocity, even though the in-line response is similar in this case (figure 5.3(b)). This suggests that the low-amplitude cross-flow oscillations occurring in the IL+CF case tend to decrease C y3 .

Flow patterns

As shown in §5.3.1 and §5.3.2, differences in body responses and fluid forces between the one-and two-degree-of-freedom cases are particularly pronounced in the intermediate 122
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reduced velocity region. The flow behavior in this region is depicted in figure 5.7, which represents iso-contours of the span-averaged spanwise vorticity in the IL, CF and IL+CF cases for U * = 6. In the IL case (figure 5.7(a)), the body is almost stationary and the flow exhibits a typical vortex street pattern, similar to that observed in the fixed body case. The flow is significantly altered when the body oscillates, as noted in the CF and IL+CF cases (figure 5.7(b,c)). In particular, the cross-flow width of the wake increases, and the wake vortices form closer to the body, as also noted in chapter 4. The vortex pattern in the IL+CF case was examined in [START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re = 3900[END_REF], on the basis of spanand phase-averaged visualizations; a 2S pattern was identified. No significant changes are noted in the CF case.

An analysis of the fluid forces shows that their viscous part is negligible compared to the component induced by the pressure at the body surface. Therefore, the fluid forces are closely connected to the span-averaged wall-pressure coefficient, C p (θ) = P av w (θ)/ρ f U 2 , where P av w is the span-averaged wall pressure, and θ is the angle measured from the x axis (figure 5.8(a)). In particular, the fluctuating fluid forces relate to the fluctuating part of C p ( C p ). The patterns of C p (θ) are investigated in figure 5.8 for U * = 6. A selected time series of C p (θ) in the IL case is plotted in figure 5.8(b). The spatio-temporal pattern is antisymmetric. A similar pattern is observed in the fixed body case. The pattern is characterized by an alternating positive/negative pressure fluctuation on the lower and upper sides of the cylinder. The pressure fluctuations occur at the cross-flow force frequency, as shown by the spectrum in figure 5.8(c). The peak amplitudes of the pressure fluctuations are encountered near the top and bottom of the body (θ = π/2 and θ = 3π/2). The wall-pressure pattern is significantly altered when the body oscillates in the cross-flow direction (figure 5.8(d,e)): in the spectrum, the first harmonic contribution (f /f y = 1) exhibits four peak amplitude regions, while only two peaks are noted in the IL case. A second harmonic contribution also appears close to the base of the cylinder (θ ≈ 0 or 2π). This may be connected to the significant in-line force fluctuations noted in this case (figure 5.4(b)). The wall-pressure pattern in the IL+CF case also differs from those observed in the IL and CF cases (figure 5.8(f,g). Only two peak regions are noted at f /f y = 1. The spatial structure of the second harmonic contribution presents some similarities with the CF case. A small third harmonic contribution may also be noted. It may relate to the third harmonic observed in the cross-flow force in this case (figure 5.6).

The wall-pressure patterns may also be studied in the frame aligned with the instantaneous oncoming flow velocity (η, ξ). In this frame, the angle θ b is measured from the η axis, as schematized in figure 5.9(a). The patterns are depicted in figure 5.9(b-g), for U * = 6. In the IL case (figure 5.9(b,c)), the angle of the instantaneous oncoming flow (α) vanishes, and the pressure pattern in the (η, ξ) frame is identical to that observed in the (x, y) frame. The patterns observed in the CF and IL+CF cases are altered by the frame change. In the CF case (figure 5.9(d,e)), the spatial structure of the first harmonic contribution, which consists of two peak regions near the top and the bottom of the cylinder, is comparable to that noted in the IL case. The second harmonic contribution, already noted in the (x, y) frame, is still visible in the (η, ξ) frame. A low-amplitude third harmonic contribution may also be identified in the spectrum. The pattern observed in the IL+CF case (figure 5.9(f,g)) is globally comparable. In particular, the spatial structure 123 Chapter 5 : One-vs two-degree-of-freedom vortex-induced vibrations of the first harmonic contribution in the spectrum is similar to those observed in the IL and CF cases.

The analysis of the wall-pressure patterns shows that some similarities may appear between the one-and two-degree-of-freedom cases, when considering the flow in the (η, ξ) frame. Since the wall pressure is closely connected to the fluid forces, it seems relevant to investigate the fluid forces in this frame. This is the object of the next section.

Discussion

The results reported in §5.3 show that the body response and fluid force in a given direction (x or y) are substantially impacted by the existence of a degree-of-freedom in the perpendicular direction (y or x). This is particularly striking in the in-line direction, where body oscillations in the intermediate reduced velocity region only occur if crossflow motion is allowed. Cross-flow amplitudes are also altered by the in-line degree of freedom in this region, since a 50% increase of the peak oscillation amplitude is noted between cases CF and IL+CF. This is accompanied by significant changes in the fluid forces. In particular, the two-degree-of-freedom response is characterized by the presence of large-amplitude higher harmonics in the fluid force spectra.

These aspects are discussed in the following on the basis of the fluid force model presented in §5.2.3. In this model, the fluid forces are supposed to be impacted by two kinematic quantities related to body motion: α and Ψ. The angle α is the angle between the x axis and the instantaneous oncoming flow velocity. It relates to the cross-flow motion of the body, since α = 0 when ζy = 0. However, both in-line and cross-flow oscillations alter the value of α in the IL+CF case (see (5.2)). The evolution of the maximum angle α (α m ) as a function of the reduced velocity is plotted in figure 5.10(a), in the three studied cases. As expected, α vanishes in the IL case. Large values of α m are noted in the cases where cross-flow oscillations occur. In both the CF and IL+CF cases, the region of peak α m matches the region of peak oscillation amplitudes. The values of α m are generally larger in the IL+CF case. In this case, angles up to 0.9 radians (≈ 50 • ) are noted.

The second kinematic quantity, Ψ, relates to the magnitude of the instantaneous oncoming flow velocity. When the body is fixed, Ψ = 1. It may substantially depart from this value when the body oscillates. A spectral analysis of Ψ shows that the fluctuating part of Ψ mainly occurs at twice the cross-flow force frequency. The values of Ψ and Ψ 2 are plotted in figure 5.10(b) as functions of the reduced velocity, for the three studied cases. In the IL case, Ψ is almost unaltered by the in-line oscillations occurring for U * = 3. However, it significantly increases in cases CF and IL+CF, especially in the intermediate reduced velocity region. In the IL+CF case, a maximum increase of 50% is noted in comparison with the fixed body case. Ψ 2 is also altered when the body oscillates. Both in-line and cross-flow oscillations tend to increase Ψ 2 , as shown by the results obtained in the IL and CF cases. The largest values of Ψ 2 are observed in the two-degree-of-freedom case; in the region of peak oscillation amplitudes (U * ≈ 6), Ψ 2 may be as large as Ψ in the fixed body case (Ψ 2 ≈ 1).

The possible connections between the variations of the kinematic quantities (α, Ψ) and the flow-structure system response are investigated in the following.

Angle α and body response

According to (5.3), C x and C y result from the combined contributions of the fluid forces C η and C ξ , respectively parallel and perpendicular to the instantaneous oncoming flow. Therefore, the fluid force in the i direction (x or y) can be expressed as follows: (5.11) where D i (D x = C η cos(α), D y = C η sin(α)) denotes the drag-like contribution to C i , in reference to its alignment with the instantaneous oncoming flow, and L i (L x = -C ξ sin(α), L y = C ξ cos(α)) denotes the lift-like contribution. In the fixed body case, C x = D x and C y = L y . Assuming that C i , D i and L i are periodic functions of time, they may be decomposed as Fourier series,

C i = D i + L i ,
C i = +∞ n=0 C in sin(2πnf 1 t + φ C in ), (5.12a 
)

D i = +∞ n=0 D in sin(2πnf 1 t + φ D in ), (5.12b 
)

L i = +∞ n=0 L in sin(2πnf 1 t + φ L in ).
(5.12c)

The magnitude of the n th harmonic of C i relates to the n th harmonics of D i and L i , and may be expressed as follows: The results reported in figure 5.4(b) reveal a major amplification of the fluctuating in-line force when the body oscillates in the cross-flow direction. According to (5.11), this amplification may relate to two effects: an amplification of D x related to body motion, and the appearance of a lift-like contribution (L x ) induced by the angle α. The spectral analysis reported in figure 5.5 shows that the fluctuating part of C x is dominated by a second harmonic contribution. According to (5.13), the magnitude of this harmonic can be expressed as

C in = D in cos(φ D in -φ C in ) + L in cos(φ L in -φ C in ). ( 5 
C x2 U * (b) D x2 cos(φ D x2 -φ C x2 ) L x2 cos(φ L x2 -φ C x2 ) C x2
C x2 = D x2 cos(φ D x2 -φ C x2 ) + L x2 cos(φ L x2 -φ C x2 ).
(5.14)

The relative contributions of the different terms of (5.14) are represented in figure 5.11, in the CF and IL+CF cases. In the CF case (figure 5.11(a)), the lift-like contribution is clearly predominant, especially in the region of peak amplitudes of C x2 . For U * = 4 and 5, the drag-like contribution is even negative: it tends to decrease the amplitude 
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.12: Drag-and lift-like contributions to the fluctuating cross-flow force: evolutions of the three terms of (5.15) in the (a) CF and (b) IL+CF cases, as functions of the reduced velocity.

of the in-line force. At higher reduced velocity, both contributions are positive, but the relative contribution of L x to C x2 remains larger than 70%. This result suggests that the large amplitude of the fluctuating in-line force noted in figure 5.4(b), in the CF case, is mostly related to a lift-like contribution associated with the angle α. A similar behavior is observed in the IL+CF case (figure 5.11(b)). The large amplitude in-line force induced by the lift-like contribution when the body is subjected to cross-flow oscillations suggests that the large amplitude in-line body oscillations in the IL+CF case could be mainly induced by the cross-flow motion.

A similar analysis is performed in the cross-flow direction. According to (5.13), the magnitude of the first harmonic of C y writes

C y1 = D y1 cos(φ D y1 -φ C y1 ) + L y1 cos(φ L y1 -φ C y1 ).
(5.15)

The relative contributions of the different terms of (5.15) are shown in figure 5.12, in the CF and IL+CF cases. In both cases, the drag-like contribution to C y1 is negligible. 

Amplification of the fluid forces

The modulation of the fluid forces, expressed in the (η, ξ) frame, by the instantaneous oncoming flow velocity, has been modeled in §5.2.3. Following this model, the timeaveraged fluid force aligned with the instantaneous oncoming flow can be expressed as

C η = (1 -κ η )C η,f + κ η C η,f Ψ + 1 2 κ η C η,f,2 cos(φ Ψ 2 -φ C η,f,2 )Ψ 2 .
(5.16)

In (5.16), C η depends on both the time-averaged and fluctuating parts of Ψ (Ψ and Ψ 2 ). However, the contribution of the term related to Ψ is expected to be predominant, especially when Ψ >> Ψ 2 . In this case, C η is expected to exhibit a linear trend as a 

C η ≈ C η,f + κ η C η,f (Ψ -1).
(5.17)

The evolution of C η (issued from the simulations) as a function of Ψ-1 is plotted in figure 5.13(a). The trend suggested by (5.17) is generally confirmed when Ψ >> Ψ 2 (dark-blue symbols). As shown in figure 5.13(b), C x is closely connected to C η . The modulation of C η by Ψ may thus contribute to the increase of C x observed when the body oscillates (figure 5.4(a)).

The fluid force model also provides a trend for the fluid force perpendicular to the instantaneous oncoming flow, C ξ . According to (5.10), the magnitude of the first harmonic follows

C ξ1 =(1 -κ ξ )C ξ,f,1 cos(φ C ξ,f,1 -φ C ξ1 ) +κ ξ C ξ,f,1 Ψ cos(φ C ξ,f,1 -φ C ξ1 ) + 1 2 κ ξ C ξ,f,1 Ψ 2 sin(φ C ξ1 -φ Ψ 2 + φ C ξ,f,1 ).
(5.18)

The third term of (5.18) may be neglected if Ψ >> Ψ 2 . Under this assumption, C ξ1 is expected to follow a linear trend as a function of Ψ,

C ξ1 ≈ C ξ,f,1 cos(φ C ξ,f,1 -φ C ξ1 ) + κ ξ C ξ,f,1 cos(φ C ξ,f,1 -φ C ξ1 )(Ψ -1). (5.19)
This is in reasonable agreement with the results reported in figure 5.14(a), when Ψ >> Ψ 2 (dark-blue symbols). Two points, even though colored in blue in the figure, depart from the linear trend. They are issued from the CF and IL+CF cases for U * = 4, i.e. near the boundary of the lock-in range, where the responses are less regular. As shown in figure 5.14(b), the amplification of C ξ1 is generally accompanied by an increase of C y1 . Therefore, the modulation of C ξ1 by the instantaneous oncoming flow velocity may play a role in the alteration of the cross-flow response by the in-line oscillations, in the two-degree-of-freedom case: Ψ tends to increase with the in-line oscillations, regardless the phasing between the in-line and cross-flow motions. This can be shown by considering harmonic body oscillations:

ζ x =ζ x2 sin(4πf 1 t + φ ζ x2 ), (5.20a) ζ y =ζ y1 sin(2πf 1 t + φ ζ y1 ).
(5.20b)

Combining (5.4) with (5.20) leads to

Ψ = 1 + 2π 2 f 2 1 4ζ 2 x2 + ζ 2 y1 , (5.21) 
which confirms that Ψ increases as a function of ζ x amplitude.

Third harmonic of the cross-flow force

Another striking feature of the two-degree-of-freedom system (IL+CF case) is the emergence of large-amplitude higher harmonics in the fluid forces (figure 5.6). The largeamplitude third harmonic appearing in the cross-flow force is addressed in the following. According to (5.13), the magnitude of the third harmonic of the cross-flow force may be expressed as a function of the drag-and lift-like contributions,

C y3 = D y3 cos(φ D y3 -φ C y3 ) + L y3 cos(φ L y3 -φ C y3 ).
(5.22)

The relative contributions of the different terms of (5.22) 

C y3 U * D y3 cos(φ D y3 -φ C y3 ) L y3 cos(φ L y3 -φ C y3 ) C y3
C ξ3 cos(φ C ξ3 -φ C y3 ).
The fluid force model presented in §5.2.3 predicts the emergence of a third harmonic in C ξ . According to (5.10), the magnitude of the third harmonic is expected to follow a linear trend as a function of Ψ 2 ,

C ξ3 = 1 2 κ ξ Ψ 2 C ξ,f,1 . (5.23)
The evolution of C ξ3 as a function of Ψ 2 is plotted in figure 5.16(a). The increasing trend of C ξ3 with Ψ 2 is confirmed, even though it may slightly depart from linearity. As shown in figure 5.16(b), C y3 is closely connected to C ξ3 . The above analysis suggests that a mechanism of modulation of the fluid forces by the instantaneous oncoming flow velocity may justify the appearance of a third harmonic in the cross-flow force. As shown in figure 5.10, small in-line oscillations may be accompanied by a major increase of Ψ 2 (IL case, U * = 3). Therefore, the large-amplitude in-line oscillations observed in the IL+CF case close to U * = 6 may be closely connected to the large-amplitude third harmonic noted in the cross-flow force. 

Summary

The one-versus two-degree-of-freedom vortex-induced vibrations of a circular cylinder have been studied at Re = 3900, on the basis of direct numerical simulation results. Three configurations have been considered, in which the body is allowed to oscillate in the in-line (IL case), cross-flow (CF case), or both directions (IL+CF ). The flow-structure system responses have been computed over a wide range of reduced velocities.

The differences between the one-and two-degree-of-freedom system behaviors are particularly pronounced in the intermediate reduced velocity region, i.e. the range where large-amplitude cross-flow vibrations occur. Three features are particularly remarkable. First, large-amplitude in-line oscillations occur in the IL+CF case, while no vibrations are noted in the IL case in this region. Second, these in-line oscillations are accompanied by a substantial amplification of the cross-flow response, compared to the CF case. Third, the two-degree-of-freedom responses are associated with the emergence of large-amplitude higher harmonics in the fluid force spectra; the magnitude of the third harmonic of the cross-flow force may reach 40% of the first harmonic magnitude.

The similarities noted, between the different configurations, in the wall-pressure patterns analyzed in the frame aligned with the instantaneous oncoming flow velocity motivate an analysis of the fluid forces in this frame. The fluid forces are decomposed in components parallel and normal to the instantaneous oncoming flow direction; their contributions to C x and C y are referred to as drag-like and lift-like contributions. When the body oscillates in the cross-flow direction, the lift-like contribution induces a major amplification of the fluctuating in-line force. This mechanism may explain the large-amplitude in-line oscillations observed in the IL+CF case, thus suggesting that the in-line oscillations are induced by the cross-flow motion.

A fluid force model, involving a modulation of the forces by the instantaneous oncoming flow velocity, provides a reasonable prediction of the alteration of the fluid forces when the body oscillates. In particular, the model shows how in-line oscillations can considerably increase the magnitudes of the first and third harmonics of the force perpendicular to the instantaneous oncoming flow. This may relate to the amplification of the cross-flow response, and cross-flow force third harmonic, in the IL+CF case compared to the CF case.

Vortex-induced vibrations of a cylinder in planar shear flow
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Introduction

When a bluff body is immersed in a cross-current, an unsteady wake with vortex shedding can develop. If the body is flexible or flexibly mounted, the fluctuating forces associated with wake unsteadiness may lead to vibrations of the body. These structural responses, referred to as vortex-induced vibrations (VIV), involve a mechanism of synchronization, or lock-in, between body motion and vortex formation. VIV are a typical problem of fluid-structure interaction with a number of practical implications in engineering applications; they have been the object of many research works, as collected in [START_REF] Bearman | Vortex shedding from oscillating bluff bodies[END_REF], [START_REF] Sarpkaya | A critical review of the intrinsic nature of vortex-induced vibrations[END_REF], [START_REF] Williamson | Vortex-induced vibrations[END_REF] and [START_REF] Païdoussis | Fluid-Structure Interactions: Cross-Flow-Induced Instabilities[END_REF].

VIV have been extensively studied through the canonical problem of a rigid circular cylinder immersed in uniform flow and free to oscillate in the cross-flow direction, i.e. the direction normal to the oncoming flow [START_REF] Feng | The measurement of vortex-induced effects in flow past stationary and oscillating circular and D-section cylinders[END_REF][START_REF] Hover | Forces on oscillating uniform and tapered cylinders in crossflow[END_REF][START_REF] Khalak | Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[END_REF][START_REF] Govardhan | Modes of vortex formation and frequency response of a freely vibrating cylinder[END_REF][START_REF] Blackburn | A complementary numerical and physical investigation of vortex-induced vibration[END_REF][START_REF] Shiels | Flow-induced vibration of a circular cylinder at limiting structural parameters[END_REF][START_REF] Leontini | The beginning of branching behaviour of vortex-induced vibration during two-dimensional flow[END_REF]. Significant body oscillations occur over a well-defined range of values of the reduced velocity, defined as the inverse of the oscillator natural frequency non-dimensionalized by the inflow velocity and body diameter. In this range, called the lock-in range, the body oscillation frequency is equal to the vortex shedding frequency. The lock-in frequency (i.e. frequency of the flow-structure system within the lock-in range) can significantly depart from the oscillator natural frequency, but also from the vortex shedding frequency in the fixed body case (Strouhal frequency). The oscillation amplitude generally exhibits a bell-shaped evolution as a function of the reduced velocity. Peak amplitudes of the order of one body diameter can be observed, depending on the structural properties (e.g. structure/fluid mass ratio, structural damping; Khalak and Williamson (1997a)) and Reynolds number (Re), based on the inflow velocity and body diameter [START_REF] Govardhan | Defining the âĂŸmodified griffin plotâĂŹin vortex-induced vibration: revealing the effect of Reynolds number using controlled damping[END_REF]. When the body is also free to oscillate in the in-line direction (i.e. the direction parallel to the oncoming flow), VIV naturally arise in this direction [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF][START_REF] Dahl | Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds numbers[END_REF][START_REF] Navrose | Free vibrations of a cylinder: 3-D computations at Re= 1000[END_REF][START_REF] Cagney | Streamwise vortex-induced vibrations of cylinders with one and two degrees of freedom[END_REF]. The cross-flow response of the oscillator may be substantially altered by the addition of the in-line degree of freedom, and in-line vibrations with amplitudes up to half a diameter may be observed. However, at low Reynolds number, the in-line oscillation amplitude remains small, typically one or two orders of magnitude lower than the cross-flow response amplitude for Re < 200 [START_REF] Prasanth | Vortex-induced vibrations of a circular cylinder at low Reynolds numbers[END_REF]. The frequency ratio between the in-line and cross-flow vibrations is generally equal to 2, as expected due to the symmetry of the system.

Real physical systems where VIV are encountered are usually less symmetric than a circular cylinder immersed in a uniform current and their behavior may thus differ from that noted in this canonical configuration. Previous studies have emphasized the impact of breaking the system symmetry, for example by forcing the circular body to rotate about its axis [START_REF] Bourguet | Flow-induced vibrations of a rotating cylinder[END_REF], by placing it close to a side wall [START_REF] Zhao | Numerical simulation of two-degree-of-freedom vortexinduced vibration of a circular cylinder close to a plane boundary[END_REF] or by considering a non-circular cross-section [START_REF] Nemes | The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack[END_REF]. Typical effects of such symmetry breaking are the emergence of asymmetric wake patterns, the appearance of a time-averaged cross-flow force and the change of frequency ratio between the in-line and cross-flow forces and body oscillations. Another type of structural responses, referred to as movement-induced vibrations, may also arise in this context. These responses are due to an aerodynamic instability where the motion of the body tends to enhance the energy transfer from the flow to the structure, without lock-in [START_REF] Païdoussis | Fluid-Structure Interactions: Cross-Flow-Induced Instabilities[END_REF]. In the present work, the axial symmetry of the body geometry is preserved but the crossflow symmetry of the flow-structure system is broken by immersing the circular cylinder in linear planar shear flow, i.e. a flow linearly sheared in the cross-flow direction.

The case of a fixed circular cylinder placed in planar shear flow has been addressed experimentally [START_REF] Kiya | Vortex shedding from a circular cylinder in moderate-Reynolds-number shear flow[END_REF][START_REF] Kwon | Experimental investigation of uniformshear flow past a circular cylinder[END_REF][START_REF] Sumner | On uniform planar shear flow around a circular cylinder at subcritical Reynolds number[END_REF][START_REF] Cao | Vortex shedding and aerodynamic forces on a circular cylinder in linear shear flow at subcritical reynolds number[END_REF] and numerically [START_REF] Jordan | Laminar flow past a circle in a shear flow[END_REF][START_REF] Tamura | Numerical study on viscous shear flow past a circular cylinder[END_REF][START_REF] Yoshino | The numerical solution of flow around a rotating circular cylinder in uniform shear flow[END_REF][START_REF] Chew | Numerical study of a linear shear flow past a rotating cylinder[END_REF][START_REF] Lei | A finite difference solution of the shear flow over a circular cylinder[END_REF][START_REF] Kang | Uniform-shear flow over a circular cylinder at low Reynolds numbers[END_REF][START_REF] Cao | Numerical simulation of Reynolds number effects on velocity shear flow around a circular cylinder[END_REF]. These prior studies, which mainly focused on linear shear, quantified the evolution of the vortex shedding frequency and time-averaged fluid forces as functions of the shear parameter (β), defined as the inflow velocity gradient normalized by the cylinder diameter and the oncoming flow velocity at the center of the body. A time-averaged cross-flow force, oriented from the high velocity side of the body to the low velocity side and whose magnitude tends to increase with β, was observed in previous works. In the in-line direction, the positive time-averaged force was usually found to decrease as the shear parameter is increased. Some contradictory results were however reported in comparable Reynolds number ranges, for example an increase of the time-averaged in-line force with the shear parameter [START_REF] Tamura | Numerical study on viscous shear flow past a circular cylinder[END_REF], and no clear trend was identified concerning the effect of the shear on the vortex shedding frequency. The suppression of vortex shedding beyond a critical value of the shear parameter, observed by [START_REF] Kiya | Vortex shedding from a circular cylinder in moderate-Reynolds-number shear flow[END_REF] and [START_REF] Tamura | Numerical study on viscous shear flow past a circular cylinder[END_REF], but also by [START_REF] Cheng | Numerical simulation of flow around a square cylinder in uniform-shear flow[END_REF] in the case of a square cylinder, for Re < 200, was generally not reported in other works. In sheared current, the Reynolds number is defined based on the inflow velocity at the center of the body. Due to experimental constraints and to avoid numerical issues related to the linear increase of the inflow velocity far from the body, the dimension of the flow domain was often restrained in the cross-flow direction, leading to large values of the blockage ratio (i.e. ratio between the body diameter and the width of the test section or computational domain). [START_REF] Kang | Uniform-shear flow over a circular cylinder at low Reynolds numbers[END_REF] suggested that the influence of the blockage ratio may justify the above mentioned discrepancies. The different regimes of the unconfined flow past a fixed circular cylinder still need to be clarified, especially for large values of the shear parameter.

The problem of a flexibly mounted circular cylinder immersed in planar shear flow has received much less attention than the fixed body case. Through numerical simulations, [START_REF] Zhang | An in-depth study on vortexinduced vibration of a circular cylinder with shear flow[END_REF], [START_REF] Singh | Impact of transverse shear on vortex induced vibrations of a circular cylinder at low reynolds numbers[END_REF] and [START_REF] Tu | Flow-induced vibration on a circular cylinder in planar shear flow[END_REF] studied the impact of the shear on VIV. They reported that the structural response amplitudes tend to increase with the shear parameter. They also noted a switch from figure-eight shaped trajectories of the body to ellipsoidal orbits, when β is increased, in relation with the alteration of the in-line/cross-flow response frequency ratio induced by the symmetry breaking. Shear parameters up to 0.4 were studied by [START_REF] Zhang | An in-depth study on vortexinduced vibration of a circular cylinder with shear flow[END_REF] and [START_REF] Singh | Impact of transverse shear on vortex induced vibrations of a circular cylinder at low reynolds numbers[END_REF], for a single value of the reduced velocity. [START_REF] Tu | Flow-induced vibration on a circular cylinder in planar shear flow[END_REF] considered different values of the reduced velocity but a maximum shear parameter equal to 0.1. Previous works thus provide a partial vision of the flow-structure system behavior in the shear parameter-reduced velocity domain. In particular, a wide interval of reduced velocities remains to be explored for β > 0.1, i.e. in the range of moderate to high values of the shear parameter.

In the present study, the case of a circular cylinder, either fixed or elastically mounted, and immersed in linear planar shear flow is examined on the basis of numerical simulation results, at Reynolds number 100. In order to shed light on the successive regimes of the flow (fixed body case) and flow-structure system (elastically mounted body case), a range of shear parameter values up to 0.4 is considered, in a large flow domain avoiding any blockage effects. In the elastically mounted body case, the cylinder is free to oscillate in the in-line and cross-flow directions and a range of reduced velocities, encompassing the lock-in range in the absence of shear, is investigated.

The paper is organized as follows. The physical model and the numerical method are described in §6.2. The flow in the fixed body case is studied in §6.3. The behavior of the flow-structure system in the elastically mounted body case is analyzed in §6.4. The principal findings of the present work are summarized in §6.5.

Physical model and numerical method

The physical configuration and its modeling are described in §6.2.1. The numerical method employed and its validation are presented in §6.2.2.

Physical system

A sketch of the physical configuration is presented in figure 6.1. A circular cylinder of diameter D is immersed in linear planar shear flow. The body axis is aligned with the z axis. The problem is studied in two dimensions, in the (x, y) plane, and the oncoming flow is parallel to the x axis. The coordinates x and y are non-dimensionalized by D. The dimensional oncoming flow velocity is given by U ∞ = {u ∞ , 0} T = {u 0 (1 + βy), 0} T , where u 0 is the free-stream velocity at the center of the cylinder and β is the non-dimensional shear parameter, β = (du ∞ /dy)/u 0 . The Reynolds number based on u 0 and D, Re = ρ f u 0 D/µ, where ρ f and µ are the fluid density and dynamic viscosity, is set to 100. The two-dimensional incompressible Navier-Stokes equations are employed to predict the flow dynamics.

In the elastically mounted body case, the cylinder is free to oscillate in the in-line (x axis) and cross-flow (y axis) directions. The origin of the (x, y) frame coincides with the position of the body axis when the oscillator is at rest in quiescent fluid. The oscillator is characterized by the body mass per unit length ρ c and the structural stiffnesses and damping ratios in both directions, k i and ξ i , where the subscript i designates the x or y direction. All the physical quantities are non-dimensionalized by D, u 0 and ρ f . The non-dimensional mass is defined as m = ρ c /ρ f D 2 ; it is set to 2. The non-dimensional cylinder displacement, velocity and acceleration in the i direction are denoted by ζ i , ζi and ζi . The force coefficient in the i direction is defined as

C i = 2F i /ρ f Du 2 0
, where F i denotes the sectional fluid force in the i direction. The body dynamics in the i direction is governed by a forced, second-order oscillator equation:

k y ξ y k x ξ x D ρ c x y z ρ f , µ, U ∞
ζi + 4πξ i U * i ζi + 2π U * i 2 ζ i = C i 2m . ( 6.1) 
The reduced velocity in the i direction is defined as U * i = 1/f nat,i , where f nat,i is the nondimensional natural frequency in vacuum, f nat,i = D/2πu 0 k i /ρ c . In the following, the structural stiffnesses are the same in both directions and the reduced velocity and natural frequency of the oscillator are referred to as U * = U * x = U * y and f nat = f nat,x = f nat,y . The damping ratio is set equal to zero in both directions to allow maximum amplitude oscillations (ξ i = 0).

The behavior of the flow-structure system is explored in the (β,U * ) parameter space. The shear parameter ranges from 0 to 0.4 and the reduced velocity from 2 to 14. The same range of β is considered in the fixed body case.

Numerical method

A general mapping approach for moving bodies in non-uniform flow, that avoids domain deformation and keeps uniform free-stream conditions is introduced. The mapping is decomposed in three steps, as depicted in figure 6.2. At step 1, the system is described in the laboratory frame (x, y). The cylinder axis is located at {ζ x , ζ y } T (x,y) and is moving with velocity { ζx , ζy } T (x,y) . The (x c , y c ) frame, attached to the body axis and in translation with respect to the (x, y) frame, is indicated in the sketch. The flow is governed by the two-dimensional incompressible Navier-Stokes equations,

∇ • V =0, (6.2a) ∂V ∂t + (V • ∇)V = -∇P + 1 Re ∇ 2 V, (6.2b 
)

1 x y y c x c ζ y ζ x V b = ζ x ζ y (x,y) V ∞ = 1 + βy 0 (x,y)
Non-uniform free-stream condition Laboratory frame

2 V b u = ζ x -βy ζ y (x,y) V ∞ u = 1 0 (x,y)
x c y c x y Uniform free-stream condition Laboratory frame

3 V b c = -βy 0 (xc,yc) V ∞ c = 1 -ζ x -ζ y (xc,yc) x c y c
Uniform free-stream condition Body frame where t is the non-dimensional time and V and P denote the non-dimensional velocity and pressure fields. Far from the body, the non-dimensional free-stream velocity V ∞ is given by the shear flow condition. A no-slip condition is imposed at the body surface; therefore, the non-dimensional velocity of the fluid at the surface, V b , is equal to the body velocity. A change of the flow variables is considered at step 2. The new velocity field V u is associated with a uniform far field condition V ∞ u and a non-uniform condition at the body surface V b u . At step 3, the system is described in the body frame (x c , y c ). This frame change is accompanied by a new change of the flow variables. In the resulting formulation, the system is seen as a stationary cylinder immersed in a uniform but timedependent flow. A new set of boundary conditions, V ∞ c and V b c , is obtained. Substituting x, y, t, V and P by x c , y c , t c , V c and P c in (6.2), the transformed Navier-Stokes equations can be expressed as follows:

Vu = V + -βy 0 Pu = P xc = x -ζx yc = y -ζy tc = t Vc = Vu + -ζ x -ζ y Pc = Pu
∇ • V c =0, (6.3a) ∂V c ∂t c + (V c • ∇)V c = -∇P c + 1 Re ∇ 2 V c + S. (6.3b)
The source term S takes into account the frame motion and the shear of the oncoming flow. The x and y components of S are given by

S x = -ζx -β(y c + ζ y ) ∂V cx ∂x c -β(V cy + ζy ), (6.4a 
)

S y = -ζy -β(y c + ζ y ) ∂V cy ∂x c , ( 6.4b) 
where V cx and V cy are the x and y components of V c . In the fixed body case, the same formulation is employed, with ζ i = ζi = ζi = 0. Equations ( 6.3) are solved numerically. The computations are performed with the finite-volume code Numeca Fine/Open (www.numeca.com) which employs a preconditioned multigrid method [START_REF] Liu | Preconditioned multigrid methods for unsteady incompressible flows[END_REF]. Viscous and inviscid fluxes, as well as the source term S are computed via second-order schemes. A second-order time integration is performed using a dual-time stepping method with a Runge-Kutta scheme. At each time step, the structural dynamics equations (6.1) are solved implicitly following the same pseudo-time integration scheme as for the fluid equations.

The flow is discretized on a non-structured grid in a rectangular computational domain. The cylinder is located at (x c , y c ) = (0, 0). The domain extends from x c = -L x /2 to x c = L x /2 in the in-line direction and from y c = -L y /2 to y c = L y /2 in the cross-flow direction. An unsteady far field condition based on the Riemann invariants is used at the external boundaries of the domain and is updated at each inner iteration, according to the velocity of the frame attached to the body. A non-uniform Dirichlet condition is used at the body surface. All the computations are initialized with a fixed body immersed in uniform flow.

A convergence study has been carried out in the fixed and elastically mounted body cases in order to set the numerical parameters. As an important effect of the blockage ratio was reported in the literature [START_REF] Kang | Uniform-shear flow over a circular cylinder at low Reynolds numbers[END_REF], particular attention was paid to the size of the computational domain. Some convergence results obtained in the elastically mounted body case have been selected and are presented in table 6.1. The root-meansquare values (RMS) of the body displacement fluctuations and the dominant cross-flow oscillation frequencies f y , obtained for three sets of numerical parameters, are compared for (β, U * ) = (0.15, 6) and (β, U * ) = (0.4, 6), i.e. for an intermediate value of the shear parameter and for the largest value studied in this work, at a reduced velocity where the cylinder exhibits large amplitude vibrations, as shown in §6.4.1. In this table and in the following, the symbol designates the RMS value of the variable fluctuation about its time-averaged value. Three grids are considered. All grids present the same resolution and only differ by the size of the computational domain. The grid resolution has been the object of a separate convergence study. Different time steps ∆t and numbers of inner iterations n i are considered in this table. For β = 0.15, significant discrepancies are noted between cases 1 and 2, while the results obtained in cases 2 and 3 are comparable. For β = 0.4, the responses show very low sensitivity to the numerical parameters, and the results obtained in the three cases are similar. The proximity of the responses in cases 2 and 3, for β = 0.15 and β = 0.4, illustrates the convergence of the results with respect to the numerical parameters. The numerical parameters of case 2 were selected in this study. The corresponding grid is composed of 65 × 10 3 cells. Complementary results on blockage effect and comparison with prior studies are presented in appendix 6.A.

The analyses reported in this paper are based on time series of more than 50 cycles of the system, collected after convergence of the time-averaged and RMS values of the fluid force coefficients. 

Fixed cylinder

The flow around the fixed cylinder immersed in sheared current is investigated over a range of β in this section. The evolution of the fluid forces as functions of the shear parameter is examined in §6.3.1. Different flow regimes are identified. They are analyzed in §6.3.2.

Fluid forces

The time-averaged fluid force coefficients are plotted as functions of β in figure 6.3(a). In this plot and in the following, designates the time-averaged value. In the in-line direction, the time-averaged force globally decreases as the shear parameter is increased. Three branches can be identified (I, II and III ). In the first branch (I, β ∈ [0, 0.2]), C x slowly decreases as a function of β. A similar trend was observed by [START_REF] Lei | A finite difference solution of the shear flow over a circular cylinder[END_REF], [START_REF] Kang | Uniform-shear flow over a circular cylinder at low Reynolds numbers[END_REF] and [START_REF] Cao | Numerical simulation of Reynolds number effects on velocity shear flow around a circular cylinder[END_REF] in the same range of β, at comparable Reynolds numbers. As the shear parameter is increased above 0.2, C x reaches the second branch (II, β ∈ [0.2, 0.3]), with substantially lower values than in the first branch. In this second branch, C x remains close to constant as a function of β. C x is also constant in the third branch, which corresponds to the range β ∈ [0. 3, 0.4]. A negative time-averaged force is noted in the cross-flow direction. The three branches are less clearly defined but still visible in the evolution of C y . In the first branch, C y linearly decreases as a function of β; this evolution is consistent with the data reported in previous works. At higher shear (second and third branches), C y is close to constant. The RMS values of the force coefficient fluctuations are plotted in figure 6.3(b). In the first branch, the force fluctuations tend to increase with the shear. Distinct trends are noted during the transition between the first and second branches: C y abruptly drops while C x slightly increases. In the second branch, the force fluctuations increase as functions of β in both directions. Residual oscillations can be noted up to β = 0.33 approximately, but the force fluctuations tend to vanish in the third branch. The spectral contents of the fluctuating fluid forces are examined in figure 6.4, which represents, for each direction, the power spectral density (PSD) of the force coefficient as a function of β. Unless otherwise stated, the spectral analyses reported in this paper are based on the Fourier transform of the entire time series collected after convergence. When the oncoming flow is uniform (β = 0), the fluid forces are dominated by a single frequency (i.e. sinusoidal) and the in-line force fluctuations occur at twice the cross-flow force frequency, as expected due to the cross-flow symmetry of the configuration. For β > 0, the symmetry is broken and a spectral component emerges, at the cross-flow force frequency, in the spectrum of C x ; the relative contribution of this new component increases as a function of β and it becomes predominant close to β = 0.1.

The three branches identified above on the basis of the force time-averaged values are associated with distinct frequency contents. The force frequencies slightly decrease as functions of β in the first branch region (I in figure 6.3(a)). After a non-monotonic behavior around β = 0.2, they reach a plateau in the second branch region (II ) where they are found to be much lower than in the first branch. In the second branch, other harmonics appear in the force spectra. In the cross-flow direction, their amplitudes are limited and C y remains close to harmonic. The relative contribution of each harmonic to C x spectrum varies as a function of β and the resulting signal is generally not harmonic.

For β > 0.3, in the third branch region (III ), the force fluctuations tend to disappear and the PSD are not computed. The analysis of the fluid forces suggests that the flow undergoes three successive regimes within the range of β under study. These regimes are investigated in the following.

Flow regimes

A schematic view of the evolution of the cross-flow force dominant frequency (f Cy ) as a function of β is presented in figure 6.5(a). The three regions of the parameter space identified in §6.3.1 (I, II and III ) are indicated in this plot. A typical value of β is selected in each region in order to describe the main properties of the corresponding flow regime.

The flow regime associated with region I (β ∈ [0, 0.2]), referred to as regime I in the following, is examined in figure 6.5(b), for β = 0.1. Time series of the cross-flow force coefficient and spanwise vorticity (ω z ) at (x, y) = (10, 0) are plotted over a period of C y (1/f Cy , where, as mentioned above, f Cy denotes the dominant frequency of C y ). Both quantities are close to sinusoidal and oscillate at the same frequency. Instantaneous vorticity fields at four selected instants are presented below the time series. Vorticity contours are centered on the background vorticity induced by the oncoming shear (ω z = -β). It can be noted that the shear slightly alters the antisymmetric nature of the wake pattern, as also reported in previous works [START_REF] Kang | Uniform-shear flow over a circular cylinder at low Reynolds numbers[END_REF][START_REF] Cao | Numerical simulation of Reynolds number effects on velocity shear flow around a circular cylinder[END_REF]; in particular, the negative (blue) vortices are convected faster than the positive (orange) ones. However, the alternating vortex shedding pattern remains globally comparable to the vortex street developing in uniform flow and the shedding frequency, equal to f Cy , is close to that observed for β = 0.

The second region emphasized in figure 6.5(a) corresponds to the range β ∈ [0.2, 0.3]. The associated flow regime (regime II ) is depicted in figure 6.5(c), for β = 0.25. The dominant frequency of C y , which is substantially lower than in the first region, is used to define the time interval over which the time series are plotted. Other harmonic contributions appear in this region, as previously noted in the forces spectra (figure 6.4). The structure of the wake differs from the pattern observed in region I. The typical length scales of the shear layers and wake vortices are larger in the present regime. Moreover, the wake does not exhibit a vortex street pattern: the positive (orange) vortices, as the vortex shed in snapshot 1, are not convected downstream; instead, they remain close to the body and rapidly dissipate. The vortex shedding frequency can be established based of the shedding of the negative (blue) vortices. It coincides with f Cy , which is also the dominant frequency of ω z . The lower harmonic component identified in figure 6.4(b) implies that two consecutive shedding periods are not exactly identical. However, the impact of the low harmonic component on the flow appears to be limited and no significant alteration of the wake pattern is noted from one period of shedding to the other.

The third region (regime III ) identified in figure 6.5(a) corresponds to the range β ∈ [0. 3, 0.4]. In this region, the fluid force fluctuations vanish and the wake exhibits a steady triangular pattern, as illustrated in figure 6.5(d), for β = 0.4. This triangular pattern is similar to that reported by [START_REF] Cheng | Numerical simulation of flow around a square cylinder in uniform-shear flow[END_REF] in the case of a square cylinder, but it was not previously observed for a circular cylinder. The residual oscillations of the fluid forces that persist around β = 0.33 (figure 6.3(b)) are not associated with vortex shedding but with a smooth, low-amplitude undulation of the triangular wake pattern, which completely disappears once the shear parameter is further increased.

A joint visualization of an instantaneous vorticity field and instantaneous streamlines is presented in figure 6.6(a-c), for three selected values of β, one for each flow regime. The streamlines reveal the presence of a saddle point in the flow, at a variable distance from the body. The analytical solution of the inviscid flow around a circular cylinder placed in sheared current predicts the existence of a saddle point located at (x, y) = (0, y inv s ), where y inv s < 0 and |y inv s | decreases as a function of β [START_REF] Batchelor | An introduction to fluid dynamics[END_REF]. The position of the saddle point in the inviscid solution is indicated by a diamond symbol in the plots. The time-averaged values of the saddle point coordinates (x s , y s ) and the RMS values of their fluctuations are plotted in figure 6.6(d,e). The saddle point issued from the present viscous simulation is shifted downstream; its time-averaged in-line position tends to zero as the shear increases. The time-averaged cross-flow position of the saddle point is close to the position predicted by the inviscid solution (gray dashed line in figure 6.6(d)). Overall, the saddle point gets closer to the body as β increases. In regime II (figure 6.6(b)), the positive vortices appear to be trapped in the saddle point region. It can be noted that in regime III (figure 6.6(c)), the lower corner of the steady triangular wake pattern coincides with the position of the saddle point. Large amplitude oscillations of the saddle point position are observed in regime II (figure 6.6(e)), where the saddle point is in close proximity to the recently shed vortices; these oscillations occur at the vortex shedding frequency. In the two other regimes, the saddle point does not oscillate: in regime I, the saddle point is far from the unsteady wake; in regime III, the wake is steady.

To summarize, the flow past the fixed cylinder exhibits three distinct regimes in the range β ∈ [0, 0.4]. In regime I, for β ∈ [0, 0.2], the flow dynamics, including the vortex shedding frequency (typical frequency, f I = 0.16) and the wake pattern, remains close to that observed in uniform current. The main impact of the shear in this first regime concerns the shift of the in-line/cross-flow force frequency ratio and the appearance of a negative time-averaged force in the cross-flow direction. A second unsteady flow regime is uncovered for β ∈ [0.2, 0.3]. This regime (II ) is associated with a major reduction of the vortex shedding frequency (typical frequency, f II = 0.075) and a reconfiguration of the wake which exhibits a pronounced asymmetry compared to the vortex street developing in regime I. The forces are substantially altered by the shear, in particular, C x significantly decreases. The flow unsteadiness is synchronized with an oscillation of the saddle point appearing close to the body, a phenomenon that is not observed in the other regimes. For β ∈ [0.3, 0.4], in regime III, the flow is found to be steady and the wake is characterized by a triangular pattern whose lower corner is the (stationary) saddle point.

The impact of the shear on the flow-structure system behavior, once the body is free to oscillate, is studied in the next section.

Elastically mounted cylinder

This section focuses on the case where the cylinder, immersed in a sheared current, is elastically mounted and free to vibrate in both directions. The behavior of the flowstructure system is analyzed over the same range of β as in the fixed body case addressed in the previous section. An overview of the structural responses is presented in §6.4.1. The different flow-structure interaction regimes are examined in §6.4.2.

Structural responses

The time-averaged displacements of the body as functions of β and U * are plotted in figure 6.7. By considering the time-averaged form of the structure dynamics ( 6 The maximum amplitudes of body oscillations, ζ m x and ζ m y , defined as the average of the highest 10% of the displacement fluctuation amplitudes [START_REF] Hover | Forces on oscillating uniform and tapered cylinders in crossflow[END_REF], are plotted as functions of β and U * in figure 6.8(a,b). These plots emphasize the impact of the shear on the oscillatory responses. In each direction, the peak amplitude of the response tends to increase with β. The amplification is particularly pronounced in the in-line direction x and ζ m y . The region of large-amplitude vibrations, defined as the region of the (β,U * ) parameter space where A > 0.15, is indicated by a striped area in figure 6.8(c). Large-amplitude vibrations occur over the entire range of β investigated, even beyond β = 0.3 where a steady flow was observed in the fixed body case ( §6.3). At low shear, for β < 0.2 approximately, largeamplitude vibrations develop on a relatively narrow range of U * comparable to that noted in uniform flow. This range rapidly widens around β = 0.2. For β ≥ 0.2, large-amplitude vibrations occur up to the maximum reduced velocity considered in this study (U * = 14).

The different regimes of the flow-structure system are explored in the following.

Flow-structure interaction regimes

Three regimes of the flow-structure system are encountered outside the region of largeamplitude vibrations. Compared to the fixed body case where the regimes characterize the flow dynamics only, the present regimes characterize both the flow dynamics and the structural responses; that is why another nomenclature is adopted here. Regarding the structural responses, the three regimes are associated with low-amplitude vibrations or no vibrations. Regarding the flow dynamics, these regimes are similar to those previously described in the fixed body case ( §6.3), i.e. the flow and fluid forcing features identified in the absence of body motion are not altered by the low-amplitude oscillations. Two unsteady flow regimes, similar to regime I and regime II, develop for β ∈ [0, 0.2] and β ∈ [0.2, 0.3] approximately; they are called regime L and regime H in reference to the low and high values of the shear parameter in the corresponding ranges. Beyond β = 0.3, the flow reaches a steady regime, called regime S, which is similar to regime III in the fixed body case. The areas of the parameter space associated with regimes L, H and S, are indicated in figure 6.8(c).

To illustrate the similarity between the present regimes and the regimes observed in the fixed body case, the time-averaged value of the in-line force coefficient and its dominant frequency, in selected points of the parameter space (colored symbols in figure 6.8(c)), are reported in figures 6.3(a) and 6.4(a). The results obtained in the fixed and elastically mounted body cases are very close. The slight differences can be attributed to the fact that, in the elastically mounted body case, the existence of a negative time-averaged force in the cross-flow direction induces a shift of the cylinder cross-flow position and thus, a slight modification of the effective Reynolds number and shear parameter seen by the body.

Within the region of large-amplitude vibrations, three other regimes of the flowstructure system are uncovered. These regimes can be clearly identified on the basis of the structural response frequency. The cross-flow response frequency ratio, defined as f * y = f y /f nat with f y the dominant frequency of ζ y (based on the Fourier transform of the entire time series), is plotted as a function of β and U * in figure 6.9; only the points located in the region of large-amplitude vibrations (striped area in figure 6.8(c)) are considered in this plot.

In the low-shear region (β < 0.2), the impact of the shear on the response frequency is limited and the frequencies collapse; the corresponding branch is called VL (i.e. vibratory, low shear). On this branch, the response frequency, close to f I (a typical frequency of the fixed body flow regime I, f I = 0.16) at low reduced velocities, deviates from this frequency and gets closer to the oscillator natural frequency (f * y ≈ 1) as U * is increased. In the high-shear region (β ≥ 0. f II (a typical frequency of the fixed body flow regime II, f II = 0.075) and f nat . Two distinct branches appear as functions of the reduced velocity: a low-frequency branch and a high-frequency branch; these branches are referred to as VH1 and VH2 (vibratory, high shear, 1 and 2). At low reduced velocities (branch VH1 ), the influence of β on the response frequency is small. In contrast, the value of the shear parameter is found to have a significant effect on f y close to the transition between branches VH1 and VH2, and in branch VH2.

The regimes occurring in the large-amplitude vibration region are named after the three branches identified above, i.e. VL, VH1 and VH2. The regions of the parameter space associated with these regimes are indicated in figure 6.10(a), and the regimes appearing outside the large-amplitude vibration region are also recalled in this figure. . In (a), a plain black line delimitates the large-amplitude vibration region identified in figure 6.8(c); a striped area indicates the region of irregular responses studied in §6.4.2; blue symbols denote the points examined in figures 6.12,6.14 and 6.15. In (b), the same color code as in (a) is used in order to distinguish the different regimes.

flow oscillation amplitude remains larger than 0.3 diameters. In regime VH2, the force fluctuations are small in comparison with regimes VL and VH1. Their amplitudes, close to constant, are comparable to and even lower than in the fixed body case, in spite of the vibrations.

The time-averaged in-line force (not plotted here) is generally amplified within the region of large-amplitude vibrations. This explains why the actual time-averaged in-line displacement is usually larger than the estimate based on C x in the fixed body case (figure 6.7(a)). The amplification of C x is particularly pronounced in regime VH1 where it can reach three times the fixed body case value.

The regimes associated with large-amplitude responses of the body are further investigated hereafter.

Low shear -Regime VL

The low-shear part (β < 0.2) of the large-amplitude vibration area is characterized by regime VL (figure 6.10(a)). The maximum amplitudes of the cylinder oscillations in this region are plotted as functions of the reduced velocity, for selected values of β, in figure 6.11. As previously mentioned, the influence of the shear on the response amplitudes differs in each direction: the cross-flow response is hardly impacted, while the in-line response amplitude significantly increases as a function of β. For β > 0, the peak amplitudes are observed at the same reduced velocity in both directions (U * = 5). The response amplitude exhibits a typical bell-shaped evolution as a function of U * in the cross-flow direction; a much sharper evolution can be noted in the in-line direction.

The cylinder displacements are generally periodic in this region of the parameter space; the cross-flow responses are close to sinusoidal (frequency f y ) and the in-line responses may involve two harmonic components, 2f y and f y . The trajectories of the cylinder in the peak amplitude region are shown in figure 6.11(a). In uniform flow (β = 0), the in-line oscillation occurs at twice the cross-flow response frequency (2f y ) and the body exhibits a figure-eight trajectory, with clockwise motion in the lower loop and counter-clockwise motion in the upper loop. As β increases, the upper loop of the orbit tends to disappear, resulting in a clockwise, raindrop-shaped trajectory for β = 0.05. For β = 0.1, the body exhibits a clockwise ellipsoidal trajectory. The transition from figure-eight to ellipsoidal orbits as the shear is increased is related to the emergence and amplification of a spectral component at the cross-flow response frequency (f y ), in the spectrum of ζ x , i.e. a switch from 2 to 1 in the ratio of the in-line and cross-flow response dominant frequencies. This phenomenon was also reported in previous works under comparable symmetry breaking (e.g. [START_REF] Tu | Flow-induced vibration on a circular cylinder in planar shear flow[END_REF]. Some aspects of regime VL are illustrated in figure 6.12, for (β, U * ) = (0.1, 6). Selected time series of the body displacements and spanwise vorticity in the wake, at (x, y) = (10, 0), are presented in figure 6.12(a). The vorticity signal appears to be sinusoidal and synchronized with body motion, which is, as mentioned above, sinusoidal in the cross-flow direction and composed of two harmonics in the in-line direction. This is confirmed in figure 6 in the plot). The condition of lock-in is thus established. The flow pattern downstream of the vibrating cylinder is visualized in figure 6.12(c). The wake is characterized by a vortex street whose antisymmetry is slightly perturbed by the shear, a pattern comparable to that observed in regime L, outside the large-amplitude vibration region, and in regime I, in the fixed body case (figure 6.5(b)). The saddle point, located at y s ≈ -10, remains far from the body wake and does not significantly oscillate.

A systematic analysis shows that the above observations, concerning the response frequency content, the lock-in condition and the global shape of the wake pattern, can be extended to the entire region of the (β,U * ) parameter space where regime VL is found to occur. 

High shear -Regimes VH1 and VH2

Two regimes of the flow-structure system are encountered in the high-shear part (β ≥ 0.2) of the large-amplitude vibration region: a low-frequency ratio regime in the lower range of U * , VH1, and a high-frequency ratio regime in the higher range of U * , VH2 (figure 6.10(a)). The maximum amplitudes of the cylinder oscillations in this part of the parameter space are plotted as functions of the reduced velocity in figure 6.13. Regimes VH1 and VH2 are indicated in this figure. The largest amplitudes of vibration, as previously noted, 2 and 1.3 diameters in the in-line and cross-flow directions, are observed under regime VH1, close to the transition region with regime VH2, where the amplitudes are found to rapidly decrease. The U * range associated with regime VH1 tends to widen as a function of β, as also illustrated in figure 6.10(a).

The cylinder trajectories for β = 0.3 and U * ∈ {6, 9, 12} are represented in figure 6.13(a). The dominant frequencies of the responses are generally the same in the inline and cross-flow directions and the body exhibits clockwise ellipsoidal orbits. The periodicity of the trajectories varies from one point to the other. For U * = 6 (regime VH1 ), the in-line and cross-flow responses are sinusoidal; the resulting orbit is periodic. For U * = 12 (regime VH2 ), the responses are also periodic but contain sub-harmonic components of non-negligible magnitudes, in particular at f x /4 and f y /4 (f x and f y are the dominant frequencies); the resulting trajectory is periodic but its period spans over four loops of body motion. A selected loop is represented in black in figure 6.13(a), while the other loops appear in gray. For U * = 9, close to the transition between regimes VH1 and VH2, the cylinder responses and the associated orbit are found to be aperiodic. A typical loop of the trajectory is plotted in black. Aperiodic oscillations appear to be a generic feature of the VH1 -VH2 transition. The region of the parameter space where such irregular responses are encountered is indicated by a striped area in figure 6.10(a). The behavior of the flow-structure system in this region is more specifically analyzed in §6.4.2.

Additional properties of regime VH1 are examined in figure 6.14, for (β, U * ) = (0.3, 6). As for regime VL in figure 6.12, selected time series of the body displacements and spanwise vorticity, are presented in figure 6.14(a). Contrary to the in-line and cross-flow oscillations of the cylinder which are sinusoidal, the vorticity signal, still periodic, exhibits higher harmonic contributions, as shown in the spectrum in figure 6.14(b). The dominant frequency of ω z coincides with the body motion frequency: the present vibrations also develop under the lock-in condition. The flow structure is depicted at four selected instants in figure 6.14(c). As expected from the results obtained at high shear in the fixed cylinder case (figure 6.6(b)), the saddle point is close to the body. The wake pattern is greatly altered by the shear in comparison with regime VL; it resembles the patterns previously described in regime H, and in regime II in the fixed body case (figure 6.5(c)). In particular, the positive (orange) vortices are trapped in the saddle point region until they completely dissipate. Up to three positive vortices are found to coexist close to the saddle point. This phenomenon is illustrated in snapshot 3 of figure 6.14(c), where the positive vortices are labeled in their order of appearance. The negative (blue) vortices are convected downstream; their shedding period matches the dominant frequency of ω z and the body response frequency. As in regimes II and H, the position of the saddle point is found to oscillate; its oscillation is synchronized with vortex shedding (and body motion through lock-in).

A typical case of regime VH2, (β, U * ) = (0.3, 12), is considered in figure 6.15. As mentioned in the description of the cylinder trajectory (figure 6.13(a)), the structural oscillations are periodic but not sinusoidal. In figure 6.15(a), the time series are plotted over a time interval equal to the period of the response spectra, i.e. 4/f x = 4/f y . As also observed in regimes VL and VH1, the vorticity signal is periodic and synchronized with body motion; its contains different harmonic contributions but its dominant frequency is equal to the dominant vibration frequency (figure 6.15(b)). The lock-in condition is established and the wake structure (figure 6.15(c)) appears to be globally comparable to that previously described in regime VH1, including the well-defined shedding of the negative vortices, at frequency f y , and the synchronized oscillation of the saddle point position. Some minor differences in the vortex dynamics can be noted between both regimes. The coexistence of several positive vortices in the saddle point region is less clearly defined in the present case. In addition, the emergence of sub-harmonic components of the dominant frequency implies that two successive oscillation/shedding cycles (of period 1/f y ) are not strictly identical; no significant alteration of the wake pattern is however noted from one cycle to the other. The properties reported in the above selected cases highlight persistent features of regimes VH1 and VH2, which are generally observed in the corresponding regions of the (β,U * ) parameter space. These regimes, which also develop under the lock-in condition, are accompanied by a profound reorganization of the flow, compared to regime VL. Even if the wake patterns encountered in regimes VH1 and VH2 are comparable, the associated structural responses substantially differ, both by their magnitudes and their spectral contents: the responses exhibit larger amplitudes and are mainly sinusoidal in regime VH1 while they often involve multiple harmonic contributions, including significant subharmonics, in regime VH2. In the following, focus is placed on the transition region between these two regimes. 

Transition between regimes VH1 and VH2

The cylinder trajectories plotted in figure 6.13(a) show that the responses, which are generally periodic in regimes VH1 and VH2, may become irregular in the transition region between these two regimes. To illustrate the periodicity of the responses, the phase portraits (velocity versus displacement) and Poincaré maps of the cross-flow response are plotted in figure 6.16, for β = 0.3 and U * ∈ {6, 9, 12}, i.e. one typical case of each regime and a case located in the transition region. Time series of more than 50 oscillation cycles are considered and the Poincaré maps are obtained by selecting the instants of the time series where ζy = 0 and ζy > 0 (red dots in the phase portraits). For U * = 6 and U * = 12 (figure 6.16(a,b)), the phase portraits are periodic; one and four points appear in the Poincaré maps, respectively, as expected since the response is sinusoidal in the former case and periodic with some f y /4 component contribution in the latter case. A distinct behavior is noted for U * = 9 (figure 6.16(c)): the phase portrait is aperiodic and a cloud of points appears in the Poincaré map. As previously mentioned, such aperiodic responses, also observed in the in-line direction, are common in the VH1 -VH2 transition region (striped area in figure 6.10(a)).

In order to shed some light on the nature of the aperiodic oscillations, a time-frequency analysis of the cross-flow displacement is presented in figure 6.17 behavior of the system; in addition, the short-time Fourier transform tends to filter the amplitude modulations occurring over the sampling window, viz. the peak amplitudes are not well captured by this approach. The existence of two peaks in the histogram indicates that the system exhibits an intermittent behavior and switches from one state to the other. The two peaks appear to be connected in the histogram, which suggests that the transitions between the two states are relatively smooth; the time series plotted in figure 6.17(a) corroborates this observation. The occurrence of intermittent responses in the transition region between regimes VH1 and VH2 raises the question of the persistence of the lock-in condition in this context. Wake-body synchronization in the intermittent case is briefly addressed in figure 6.18, which represents, for (β, U * ) = (0.3, 9), the instantaneous frequency ratio of the crossflow displacement (f i * y ), as well as the instantaneous frequency ratio of the spanwise vorticity at (x, y) = (10, 0) (f i * ω ), over a selected time interval indicated in figure 6.17(b). The instantaneous frequency ratio of ω z is computed using short-time Fourier transform, similarly to f i * y . It appears that f i * y and f i * ω exhibit comparable evolutions, with a time lag τ approximately equal to 10 time units. This observation suggests that body oscillation and wake unsteadiness remain synchronized, even in the case of intermittent responses.

Conclusion

The system composed of a circular cylinder, either fixed or elastically mounted, and placed in linear planar shear flow, has been investigated on the basis of numerical simulations. Wide ranges of values of the shear parameter (β ∈ [0, 0.4]) and reduced velocity (U * ∈ [2,14]) were considered, at Reynolds number 100.

The elastically mounted cylinder exhibits free vibrations in the in-line and cross-flow directions. Large-amplitude structural oscillations develop over a region of the (β,U * ) parameter space that encompasses the entire range of β under study, and a range of U * that widens as β increases. The principal features of the system, outside and within the large-amplitude vibration region, are summarized hereafter.

Outside the large-amplitude vibration region, the system exhibits three successive regimes as a function of β. Regarding the flow behavior and fluid forcing properties, these regimes are similar to the three regimes identified in the fixed body case.

For β ∈ [0, 0.2], in regime L (regime I in the fixed body case), the flow dynamics, including the vortex shedding frequency and the wake pattern, is comparable to that observed in uniform current. The most noticeable effects of the shear are the shift of the in-line/cross-flow force frequency ratio, from 2 to 1, and the appearance of a negative time-averaged force in the cross-flow direction.

A second unsteady flow regime, referred to as regime H (regime II in the fixed body case) occurs for β ∈ [0.2, 0.3]. It is characterized by a pronounced asymmetry of the wake structure with contrasted dynamics of the positive and negative vortices, and by a substantial decrease of the vortex shedding frequency. The saddle point, which appears close to the body, is found to oscillate and its motion is synchronized with flow unsteadiness; such oscillations are not observed in the other regimes. The shear has a major impact on the fluid forces in this regime; for example it induces a large reduction of the time-averaged in-line force.

For β ∈ [0.3, 0.4], in regime S (regime III in the fixed body case), the flow is steady and the wake exhibits a triangular pattern whose lower corner coincides with the saddle point.

Within the large-amplitude vibration region, three distinct regimes of the flow-structure system are uncovered. In all regimes, body motion and flow unsteadiness are synchronized, i.e. the lock-in condition is established.

In the low-shear part of the parameter space, for β ∈ [0, 0.2], the first large-amplitude vibration regime encountered, referred to as regime VL, is characterized by a limited influence of the shear on the system behavior. It develops over a relatively narrow range of U * which remains close to that reported in uniform current. The flow pattern, fluid force properties and cross-flow response are also comparable to that observed for β = 0. The main impact of the shear concerns the amplification of the in-line response and the transition from figure-eight to ellipsoidal orbits as β is increased, i.e. shift from 2 to 1 of the in-line/cross-flow response frequency ratio.

The range of U * over which large-amplitude responses develop rapidly widens around β = 0.2 and it reaches the maximum reduced velocity considered in this study (U * = 14), for β ≥ 0.2. For β ∈ [0.2, 0.4], two large-amplitude vibration regimes are identified: a low-frequency ratio regime in the lower range of U * , regime V H1, and a high-frequency ratio regime in the higher range of U * , regime V H2. Structural vibrations thus develop beyond β = 0.3, where a steady flow was observed in the fixed body case.

The wake patterns encountered in regimes V H1 and V H2 are comparable and resemble the asymmetric pattern associated with regime H. The saddle point position oscillates; it is synchronized with vortex shedding and body motion through lock-in. Even if the flow patterns observed in regimes VH1 and VH2 are comparable, the associated vibrations and forces clearly differ. The peak amplitudes of body responses and fluid forces appear in regime VH1. The response amplification is particularly pronounced in the in-line direction where the oscillations reach 2 body diameters versus 0.03 diameters in uniform flow. A maximum amplitude of 1.3 diameters is noted in the cross-flow direction. The vibrations are mainly sinusoidal in this regime. In contrast, much lower amplitudes of vibration are observed in regime VH2 and the responses, still periodic, often involve several harmonic contributions, including significant sub-harmonics. The force fluctuations are small in comparison with regimes VL and VH1.

The responses of the system are generally periodic, except in the transition region between regimes VH1 and VH2, where aperiodic, intermittent oscillations are found to occur; even in this case, body motion and wake unsteadiness appear to remain synchronized.

Conclusion

The vortex-induced vibrations (VIV) of a rigid circular cylinder have been investigated on the basis of direct numerical simulation. Several configurations, departing from the thoroughly studied paradigm of a body immersed in a uniform current and allowed to oscillate in the cross-flow direction, have been considered.

Most of prior numerical studies concerning VIV have been dedicated to low Reynolds number configurations, even though the Reynolds number is known to have a significant impact on the system behavior [START_REF] Govardhan | Defining the âĂŸmodified griffin plotâĂŹin vortex-induced vibration: revealing the effect of Reynolds number using controlled damping[END_REF][START_REF] Raghavan | Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports[END_REF][START_REF] Bearman | Circular cylinder wakes and vortex-induced vibrations[END_REF]. In the present work, the system behavior has been examined in the early turbulent regime; the Reynolds number was set to 3900. A detailed physical analysis of the two-degree-of-freedom system responses has been performed over a wide range of values of the reduced velocity, encompassing the lock-in range, i.e. where body oscillations and wake unsteadiness are synchronized. The structural responses and fluid force statistics predicted by the simulations match prior experimental results reported by [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF] for a comparable system. Large-amplitude oscillations occur in both directions. The body oscillations are close to harmonic and the time-averaged frequency ratio between the in-line and cross-flow motions is equal to 2; accordingly, the cylinder exhibits figure-eight-shaped trajectories. Higher harmonic components arise in the force spectra. In both directions, their relative contributions to the forcing may become significant when the body vibrates close to the oscillator natural frequency, i.e. when the amplitude of the force at the vibration frequency tends to vanish. The higher harmonics are found to impact the energy transfer between the flow and the body: they induce modulations of the dominant spectral component and result in the emergence of other harmonics in the energy transfer spectrum.

Body motion is accompanied by an alteration of the flow. The wake patterns emerging downstream of an oscillating cylinder have been well documented in the plane perpendicular to the body axis ((x, y) plane) [START_REF] Williamson | Vortex formation in the wake of an oscillating cylinder[END_REF]. In the present work, focus was placed on the flow patterns developing in the third direction, in the above mentioned early turbulent regime. In addition to the two-degree-of-freedom system, the fixed body case was also considered for comparison purpose. A qualitative overview of the wake shows that its three-dimensionality is essentially characterized by the presence of small-scale vortices elongated in the (x, y) plane (planar vortices). The spanwise patterns emerging in the flow have been studied in terms of amplitudes and wavelengths of vorticity fluctuations in the spanwise direction; this approach allows to clarify the streamwise evolution of the flow three-dimensionality. When the body oscillates, the spanwise patterns are differently altered in the shear-layer and wake regions. In the shear-layer region, spanwise fluctuation amplitudes are larger in oscillating body cases. This corroborates the trend noted in flow visualizations, which suggest that body motion enhances the formation of planar vortices close to the body. The spanwise wavelength is also altered when the body oscillates; it is found to scale with the boundary layer momentum thickness at separation, which is altered by body motion. A possible origin of the boundary layer alteration is the variation of the instantaneous Reynolds number as the body oscillates. In contrast, no significant impact of body motion on the spanwise patterns was noted in the wake region. The persistence of spanwise pattern properties is particularly striking when considering the major alteration of the wake in the (x, y) plane, when the body oscillates.

When the body is free to oscillate in both directions, interactions may exist between the in-line and cross-flow responses. This aspect has been explored through a combined analysis of the system responses when the cylinder is either allowed to oscillate in the in-line, cross-flow, or both directions. The analysis was carried out in the early turbulent regime (as previously, Re = 3900). The large-amplitude in-line oscillations occurring in the two-degree-of-freedom case are not observed when the body is restrained to move in the in-line direction, thus suggesting that these oscillations are principally induced by the cross-flow motion. Conversely, the cross-flow oscillations are influenced by the in-line response. A fluid force model, involving a modulation of the forces in the frame aligned with the instantaneous oncoming flow velocity, was presented to explain these phenomena. The model, which shows how oscillations in a given direction (x or y) can modulate the dominant spectral component of the force in the perpendicular direction (y or x), may also explain the presence of large-amplitude higher harmonics in the forces, in the two-degree-of-freedom case.

Real physical systems subjected to VIV are usually less symmetric than a circular cylinder immersed in a uniform current. The impact of symmetry breaking on the system behavior has been investigated by immersing the cylinder in a current linearly sheared in the cross-flow direction. The flow-structure system responses have been analyzed over wide ranges of reduced velocities and shear rates. The Reynolds number, based on the oncoming flow velocity at the center of the body and on its diameter, was set to a lower value equal to 100. In the absence of large-amplitude vibrations, and in the fixed body case, three successive regimes are encountered as functions of the shear rate. The impact of the shear is found to be relatively limited in the low-shear region. In contrast, a major reconfiguration of the wake is noted in the intermediate-shear region. In the high-shear region, the flow is steady and the wake exhibits a triangular pattern. Free vibrations of large amplitudes arise in a region of the parameter space that encompasses the entire range of shear rates and a range of reduced velocities that widens as the shear increases; therefore, vibrations appear beyond the limit of steady flow in the fixed body case. Three distinct regimes are encountered. In all regimes, body motion and flow unsteadiness are synchronized (lock-in condition). The first regime is found in the low-shear region, where the system behavior remains close to that observed in uniform current. The main impact of the shear in this region concerns the amplification of the in-line response and the transition from figure-eight to ellipsoidal orbits. Two regimes are uncovered at higher shear rates, in the low and high reduced velocity regions. In the first regime, the structural responses, which remain close to sinusoidal, are considerably amplified compared to those arising in uniform current. Lower amplitude and multi-harmonic responses are noted in the second regime. Aperiodic, intermittent oscillations are found to occur in the transition region between both regimes; it appears that wake-body synchronization persists in this case.

Beyond the physical analysis of the flow-structure interaction phenomena associated with VIV, the results reported in this thesis may have implications for applications, for example in the domain of civil or offshore engineering. In particular, the present work sheds some light on the mechanisms driving the emergence of higher harmonic components in fluid forcing, and on the possible interactions between the in-line and cross-flow responses; these elements might be useful for the elaboration of semi-empirical models to predict VIV. Moreover, the dramatic impact of the sheared current on the system behavior underlines the importance of considering the possible influence of the actual environmental conditions in VIV prediction models; this includes the asymmetry of the current but more generally any irregularity or time fluctuation of the system properties. Finally, the description of wake structure, of its dynamics, and their alteration under body motion, may provide some insights for the development of VIV suppression devices or, on the contrary, vibration amplification techniques for flow energy harvesting. 1.9 Map of the synchronized wake patterns in the (U * t , ζ m y ) domain, identified downstream of a cylinder forced to oscillate in the cross-flow direction [START_REF] Williamson | Vortex formation in the wake of an oscillating cylinder[END_REF] 1.13 Effect of mass and damping on the lock-in range: evolution of the response amplitude issued from a series of experimental studies with various structural masses and dampings as a function of (a) the reduced velocity and (b) the true reduced velocity. In the data from [START_REF] Govardhan | Modes of vortex formation and frequency response of a freely vibrating cylinder[END_REF] and [START_REF] Khalak | Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[END_REF] 
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 1 Figure 1.1: Schematic view of the physical configuration
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 12 Figure 1.2: Structural response of an elastically mounted circular cylinder in air (Feng, 1968): (a) oscillation amplitude, (b) oscillation frequency ratio and wake frequency ratio as functions of the reduced velocity. m * = 248 and Re ∈ [1 × 10 4 , 5 × 10 4 ].
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 14 Figure 1.4: Power spectra of body displacement at various reduced velocities[START_REF] Hover | Forces on oscillating uniform and tapered cylinders in crossflow[END_REF]. In this figure, the reduced velocity is denoted by V rn . m * = 3.1, ν y = 0.04 and Re ≈ 3800.
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 15 Figure 1.5: Evolution of fluid forces as functions of the reduced velocity (Khalak and Williamson, 1997a): (a) RMS of the cross-flow force coefficient, (b) time-averaged in-line force coefficient and (c) maximum response amplitude. In (a) and (b), gray areas indicate ranges of the fluid forces expected in the fixed body case, C y,f and C x,f . m * = 10.1, ν y = 0.00134 and Re ∈ [5000, 16000].
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 16 Figure 1.6: Amplification of the time-averaged in-line force as a function of the oscillation amplitude: (a) maximum amplification ( C x /C x,f ) and (b) amplification ranges (C x /C x,f , when available) obtained over the lock-in range in free and forced oscillation experiments. The Reynolds number ranges from 2300 to 65000. In each plot, a dashed line indicates the trend predicted by (1.7).
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 1 Figure 1.7: Phase difference ∆φ between the cross-flow fluid force and body displacement: (a) evolution of ζ m y and ∆φ as functions of U * for an elastically mounted cylinder at low structural damping (m * = 3.1, ν y = 0.04, Re ≈ 3800) (Hover et al., 1998); (b) evolution of ∆φ as a function of f st /f y for a cylinder forced to oscillate (ζ m y = 0.5, Re ∈ [2300, 60000]), collected by Carberry et al. (2005). In (b), data of Carberry et al. (2005) obtained for different Reynolds numbers are indicated by a single symbol (downward triangle).

  Figure 1.8: Visualizations of a variety of patterns observed in the wake of a circular cylinder oscillating in the cross-flow direction: (a) 2S pattern (Williamson and Govardhan, 2004); (b) 2P pattern[START_REF] Williamson | Vortex formation in the wake of an oscillating cylinder[END_REF]; (c) P+S pattern[START_REF] Williamson | Vortex-induced vibrations[END_REF].
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  Figure 1.10: Some classical results issued from forced oscillation experiments: (a) boundaries of the lock-in region in the (U * t , ζ m y ) domain determined by Cheng and Moretti (1991) at Re = 1500, compared to regions of free vibrations observed experimentally (data are detailed in figure 1.13); (b) evolution of the cross-flow fluid force as a function of U * t (ζ m y = 0.5, Re = 45000)[START_REF] Sarpkaya | A critical review of the intrinsic nature of vortex-induced vibrations[END_REF]. In (b), V r denotes the true reduced velocity; the force component in phase with body acceleration (respectively body velocity) is referred to as C a (respectively C d ), and the 'phase angle' denotes the phase difference between the force and body displacement ∆φ.

  Figure 1.11: Behavior of the cross-flow fluid force in the amplitude-frequency domain in the forced oscillation experiments of Gopalkrishnan (1993), at Re ≈ 10000: forces in phase with (a) body velocity and (b) body acceleration.

  Figure 1.12: Evolution of the maximum amplitude of response ζ m y as a function of a mass-damping parameter: (a) ζ m y as a function of the Skop-Griffin parameter S G (Griffin, 1980); (b) ζ m y as a function of m * ν y[START_REF] Williamson | Vortex-induced vibrations[END_REF]). In the low mass-damping region in (b), two amplitudes are indicated, corresponding to the amplitudes of the lower and upper branches.
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 1 Figure 1.14: Maps of the fluid force component magnitudes in the (U * t , ζ m y ) domain issued from the forced oscillation experiments of Morse and Williamson (2010) at Re = 4000: (a) force in phase with body velocity and (b) effective added mass coefficient. In this plot, A * is the non-dimensional oscillation amplitude (ζ m y ) and λ * is the true reduced velocity (U * t ). In each plot, a black line has been added on the original plot to indicate the iso-contour C y1 sin(φ C y1 -φ ζ y1 ) = 0.
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 115 Figure 1.15: Evolution of the peak oscillation amplitude as a function of the Reynolds number: (a) original data compilation of Govardhan and Williamson (2006) and (b) compilation updated with recent experimental results obtained at higher Reynolds numbers. In each plot, the black line indicates the fit function ζ m y
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 22 Figure 2.2: Computed structural response at Re = 100 and U * = 6: (a) time series of the body displacement and (b) selected time series of the body acceleration. In (b), the time series of C(t) = Cy 2m -( 2π U * ) 2 ζ y has been added in order to monitor the accuracy of the resolution of the oscillator equation (2.13).
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 23 Figure 2.3: Evolution of the oscillation amplitude of a cylinder free to move in the crossflow direction at Re = 100 as a function of the reduced velocity. Comparison between Nektar and Fine/Open results.
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 25 Figure 2.5: Spectral amplitudes of functions (a) s 1 , (b) s 2 and (c) s 3 obtained with the Fourier transform.
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 26 Figure 2.6: Instantaneous frequencies of functions (a) s 1 , (b) s 2 and (c) s 3 obtained with the Hilbert transform. In each plot, blue and red lines indicate the instantaneous first and third harmonic frequencies defined in (2.24).

Figure 2

 2 Figure 2.7: Iso-contours of the spectral amplitudes obtained with the short-time Fourier transform, for (a) s 1 , (b) s 2 and (c) s 3 . In each plot, blue and red lines indicate the instantaneous first and third harmonic frequencies defined in (2.24).
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 2 Figure 2.8: Iso-contours of spanwise vorticity ω z ∈ [-4 : 4] in the wake of an oscillating cylinder at Re = 3900 and U * = 6 close to the phase {ζ y = 0, ζy > 0}: (a) instantaneous (x, y) slice and (b) span-and phase-averaged snapshot.

Figure 2 . 9 :

 29 Figure 2.9: Quantification of the spanwise wavelength of flow vorticity in the wake with the Hilbert transform: (a) instantaneous distribution of the streamwise vorticity along a spanwise line in the wake, (b) evolution of the local phase along the body length and (c) PDF of the local wavelength.
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 2 Figure 2.10: Visualization of the three-dimensional wake of a circular subjected to VIV: (a) iso-surfaces of the streamwise vorticity (ω x ± 1) and (b) iso-surface of the Q-criterion (Q = 0.1) colored by iso-contours of the streamwise vorticity ω x ∈ [-1, 1]. In (a), black arrows indicate the direction of the oncoming flow. In each plot, the body trajectory is represented by a line at the end of the body.
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Figure 3

 3 Figure 3.1: Three-dimensional wake downstream of a freely vibrating cylinder: instantaneous iso-surface of the Q criterion (Q = 0.1) colored by iso-contours of the spanwise vorticity (ω z ∈ [-0.85, 0.85]) in the region of maximum vibration amplitudes (U * = 6). The trajectory of the cylinder is represented by a line at the end of the body and arrows indicate the direction of the oncoming flow. Part of the computational domain is shown.
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 2 The results are presented in §3.3: the body response is quantified in §3.3.1, the occurrence of wake-body synchro-nization is analyzed in §3.3.2 and the fluid forces are examined in §3.3.3. The principal findings of the present work are summarized in §3.4.
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 33 Figure 3.3: Responses of the body in the range of lock-in: (a) cross-flow and (b) in-line maximum amplitudes of oscillation and (c) cross-low frequency ratio, as functions of the reduced velocity. The results are compared to the experimental data of J&W.
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 34 Figure 3.4: Synchronization between the in-line and cross-flow displacements, for three selected values of the reduced velocity (one in each branch of response): (a) selected time series of the in-line (gray) and cross-flow (black) displacements, (b) trajectories of the body in the (x, y) plane (not at scale), (c) histograms of the frequency ratio f x /f y and (d) histograms of the phase difference θ.
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 35 Figure 3.5: Time-averaged phase difference between the in-line and cross-flow displacements. The values obtained in the present study are compared to the experimental results of J&W.
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 36 Figure 3.6: Spectra of the body displacement in both directions for three selected values of the reduced velocity.
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 3 Figure 3.7: Wake-body synchronization, for three selected values of the reduced velocity: (a) iso-contours of span-and phase-averaged spanwise vorticity in the vicinity of the cylinder and (b) spectra of the cross-flow velocity of the flow at (x, y, z) = (10, 0, 0). In (a), ζ y = 0 and the body is moving upward. Vorticity contours are linearly distributed in the ranges ω z ∈ [-5, 5], ω z ∈ [-4, 4] and ω z ∈ [-3, 3].
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 3 Figure 3.9: Forces acting on the body in the range of lock-in, as functions of the reduced velocity: RMS values of the (a) cross-flow and (b) in-line force coefficients; (c) timeaveraged in-line force coefficient. The results are compared to the experimental data of J&W.
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 3 Figure 3.10: Fluctuating in-line force coefficient: (a) selected time series and (b) spectrum of C x , for three selected values of the reduced velocity; (c) magnitude and relative contribution of the principal spectral components as functions of U * . In (c), the value of C x4 /C x2 at U * = 3 is shown in a sub-plot.
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 3 Figure 3.11: Same as figure 3.10 for the cross-flow force coefficient.
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 3 Figure 3.13: Effective added mass coefficients, in both directions: evolution of C mx , C my , C 2 mx and C 1 my as functions of the reduced velocity. The red dashed line indicates the approximated in-line added mass coefficient given by -3m/π + C my /4.
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 315 Figure 3.14: Instantaneous energy transfer: (a) RMS values of the power coefficients and (b) time-averaged phase differences with the body displacements in both directions as functions of the reduced velocity.
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 3 Figure 3.16: Effect of structural damping on the cross-flow response of the body: Time series of the cross-flow displacement at (a) U * = 6 and (b) U * = 14 before and after addition of structural damping (ξ i = 1%) and (b) schematic view of the connection with a map of energy transfer, adapted from Gopalkrishnan (1993).
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 4 Figure 4.1: Visualization of the three-dimensional patterns downstream of a circular cylinder at Re = 3900: iso-surface of the Q-criterion (Q = 0.1) colored by iso-contours of the streamwise vorticity (ω x ∈ [-1, 1]) in a (a) fixed and a (b) freely oscillating body case (U * = 6). In (a), arrows indicate the direction of the oncoming flow. In (b), the crescentshaped trajectory of the oscillating cylinder is represented by a line at the end of the body.
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 42 Figure 4.2: Structural responses of an elastically mounted rigid circular cylinder subjected to vortex-induced vibrations at Re = 3900: (a) in-line and (b) cross-flow oscillation amplitudes and (c) cross-flow oscillation frequency normalized by f st (i.e. shedding frequency in the fixed body case), as functions of the reduced velocity. Open circles indicate the three typical cases examined in the present work, in addition to the fixed body case.
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 43 Figure 4.3: Sketch of the physical configuration.
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 44 Figure 4.4: Schematic view of spanwise lines L 1 and L 2 along which flow quantities are analyzed.
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 45 Figure 4.5: Flow patterns in the (x, y) plane: iso-contours of the span-averaged spanwise vorticity (ω z ∈ [-2, 2]) in the (a) fixed and (b-d) oscillating body cases, for (b) U * = 3, (c) 6 and (9). In each case, red dots indicate the positions of lines L + 2 . In (b-d), ζ y = 0 and the body is moving downwards.
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 46 Figure 4.6: Flow patterns in the (x, y) plane: iso-contours of the span-averaged planar vorticity magnitude (|ω p | ∈ [0, 2]) in the (a) fixed and (b-d) oscillating body cases, for (b) U * = 3, (c) 6 and (9). In (b-d), ζ y = 0 and the body is moving downwards.
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 47 Figure 4.7: Visualization of the three-dimensional flow: iso-surface of the Q-criterion (Q = 0.1) colored by iso-contours of the cross-flow vorticity (ω y ∈ [-1, 1]) in the (a) fixed and (b-d) oscillating body cases, for (b) U * = 3, (c) 6 and (9). In (b-d), ζ y = 0 and the body is moving downwards.
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 4494 Figure 4.8: Visualization of the three-dimensional flow close to the body: iso-contours of the spanwise vorticity (ω z ∈ [-10, 10]) in the plane z = 0 and iso-surface of the Q-criterion (Q = 10) colored by iso-contours of the cross-flow vorticity (ω y ∈ [-1, 1]) in the (a) fixed and (b-d) oscillating body cases, for (b) U * = 3, (c) 6 and (d) 9.
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 4 Figure 4.11: Time series of the spanwise patterns in the shear layer and wake regions: (a,c,e,g) ω ξ,L + 1 (η=1) and (b,d,g,h) ω y,L + 2 (x=5) in the (a,b) fixed and (c-h) oscillating body cases, for (c,d) U * = 3, (e,f) 6 and (g,h) 9. In (c) and (e), striped areas indicate discarded samples(low vorticity level). Iso-contours are distributed in ranges (a) ω ξ ∈ [-2, 2], (c,e,g) ω ξ ∈ [-10, 10] and (b,d,f,h) ω y ∈ [-2, 2].
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 4 Figure 4.12: Streamwise evolution of A z1 and A z2 in the fixed and oscillating body cases. In the oscillating body cases, the amplitudes are determined when {ζ y = 0, ζy < 0} ( §4.2.2).
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 44 Figure 4.13: PDF of the local spanwise wavelength in the shear layer and wake regions: along lines (a,c,e,g) L + 1 (η p = 1) and (b,d,f,h) L - 2 (x p = 5) in the (a,b) fixed and (c-h) oscillating body cases for (c,d) U * = 3, (e,f) 6 and (g,h) 9. In (c) and (e), striped areas indicate discarded samples (low vorticity level). Iso-contours of the PDF are distributed in the range [0, 2].
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 415 Figure 4.15: Evolution of the spanwise wavelength as a function of the streamwise distance in the fixed and oscillating body cases for U * = 3, 6 and 9. In the oscillating body cases, the wavelengths are determined when {ζ y = 0, ζy < 0} ( §4.2.2).
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 4 Figure 4.16: Schematic view of the boundary layer separating from the cylinder.
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 417 Figure 4.17: Scaling of the shear-layer spanwise wavelength with the momentum thickness of the boundary layer at separation: (a) streamwise evolution of λ z1 normalized by δ s and (b) evolution of δ s as a function of the instantaneous Reynolds number. In (a), a dashed line at λ z1 /δ s = 77 indicates the value of the normalized wavelength in the plateau region.
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 4 Figure 4.18: Evolution of the spanwise wavelength measured close to the body as a function of the Reynolds number: comparison between prior works (fixed body) and present results. In previous works, the wavelength was measured at x = 3[START_REF] Mansy | Quantitative measurements of threedimensional structures in the wake of a circular cylinder[END_REF], x ≈ 4(Wu et al., 1996a) and x = 0.5[START_REF] Chyu | Evolution of patterns of streamwise vorticity in the turbulent near wake of a circular cylinder[END_REF]. In the present cases, wavelengths at η = 1 are reported. In the oscillating body cases, spanwise wavelengths obtained at various phases are plotted as functions of Re i .
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Figure 4 .

 4 Figure 4.19: Typical length scales of the wake pattern in the (x, y) plane and in the spanwise direction: spanwise wavelength as a function of the (a) streamwise wavelength and (b) width of the wake in the four studied cases. In each case, seven points are plotted, corresponding to different streamwise positions in the range x ∈ [4, 10].

  .10) is f sl /f st ≈ 6 (dashed line in figure 4.21). Two peaks are identified in figure 4.21. The 1e
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 4 Figure 4.21: Span-averaged power spectral density (PSD) of the spanwise vorticity in the shear layer at (x, y) = (0.32, 0.53). The frequencies are normalized by the vortex shedding frequency. The dashed line indicates the frequency ratio predicted by (4.10).
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 51 Figure 5.1: Sketch of the physical configuration: (a) general two-degree-of-freedom configuration, and (b) three configurations addressed in this chapter, in which the cylinder is allowed to oscillate in the in-line (IL), cross-flow (CF ), or both directions (IL+CF ).
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 52 Figure 5.2: Sketch of the (η, ξ) frame involved in the fluid force model.

  3.1. The fluid forces are analyzed in §5.3.2, and the flow patterns are examined in §5.3.3.
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 53 Figure 5.3: Evolutions of the structural responses as functions of the reduced velocity: (a) cross-flow oscillation amplitude, (b) in-line oscillation amplitude and (c) in-line and cross-flow frequency ratios, in the three studied cases (IL, CF and IL+CF ). In (a) and (b), the present results are compared to the experimental data of Hover et al. (1998) and Jauvtis and Williamson (2004) (J&W in the figure).
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 54 Figure 5.4: Evolutions of the fluid force statistics as functions of the reduced velocity: (a) time-averaged in-line force coefficient and RMS values of the fluctuating (b) in-line and (c) cross-flow force coefficients, in the three studied cases (IL, CF and IL+CF ).
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 55 Figure 5.5: Spectral content of the fluid forces: spectral amplitudes of the (a,c,e) inline and (b,d,f) cross-flow force coefficients in the (a,b) IL, (c,d) CF and (e,f) IL+CF cases, over a range of reduced velocities. The spectral amplitudes are normalized by the amplitude of the highest peak of the spectrum.
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 56 Figure 5.6: Magnitudes of the principal spectral components of the fluid forces: evolutions of (a) C x2 and C x4 , and (b) C y1 and C y3 , as functions of the reduced velocity, in the three studied cases.
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 57 Figure 5.7: Flow patterns in the cylinder wake in the three studied cases for U * = 6: iso-contours of the span-averaged spanwise vorticity (ω z ∈ [-2, 2]) in the (a) IL, (b) CF and (c) IL+CF cases. In each plot, the body velocity (( ζx 2 + ζy 2 ) 1/2 ) is maximum.
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 555 Figure 5.8: Wall-pressure patterns in the (x, y) frame for U * = 6: (a) definition of the angle θ, (b,d,f) time series and (c,e,g) spectral amplitudes of the fluctuating wall-pressure coefficient C p (θ) in the (b,c) IL, (d,e) CF and (f,g) IL+CF cases. Iso-contours of C p are distributed in the ranges (b) [-0.03, 0.03], (d) [-2.2, 2.2] and (f) [-2.8, 2.8]. The spectra are normalized by the largest peak amplitude.
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 5 Figure 5.11: Drag-and lift-like contributions to the fluctuating in-line force: evolutions of the three terms of (5.14) in the (a) CF and (b) IL+CF cases, as functions of the reduced velocity.
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 5 Figure 5.13: Amplification of the time-averaged in-line force: (a) C η as a function of Ψ-1, and (b) C x as a function of C η , in the three studied cases. In (a), symbols are colored by Ψ/Ψ 2 (high/low values are colored in dark blue/white), and a dashed line indicates the general trend of the data.
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 5 Figure 5.14: Amplification of the cross-flow force: (a) C ξ1 as a function of Ψ -1 and (b) C y1 as a function of C ξ1 , in the three studied cases. In (a), symbols are colored by Ψ/Ψ 2 (high/low values are colored in dark blue/white), and a dashed line indicates the general trend of the data.
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 5 Figure 5.15: Drag-and lift-like contributions to the third harmonic of the cross-flow force: evolutions of the three terms of (5.22) in the IL+CF case as functions of the reduced velocity. A red dashed line indicate the evolution of C ξ3 cos(φ C ξ3 -φ C y3 ).
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 5 Figure 5.16: Amplification of the third harmonic of the cross-flow force: (a) C ξ3 as a function of Ψ 2 , and (b) C y3 as a function of C ξ3 , for the three studied cases.
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 61 Figure 6.1: Sketch of the physical configuration.
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 62 Figure 6.2: Schematic view of the mapping approach.
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 63 Figure 6.3: Fluid force statistics in the fixed body case: (a) time-averaged values of the fluid force coefficients and (b) RMS values of the fluid force coefficient fluctuations as functions of β, in both directions. Colored symbols in (a) represent the values of C x obtained in the elastically mounted body case, in selected points of the (β,U * ) parameter space indicated in figure 6.8(c).
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 64 Figure 6.4: Fluid force spectral content in the fixed body case: PSD of the fluid force coefficient as a function of β, in the (a) in-line and (b) cross-flow directions. For each β, the PSD is normalized by the magnitude of its largest peak. The color levels range from 0 (white) to 1 (black). Colored symbols in (a) represent the dominant frequency of the in-line force obtained in the elastically mounted body case, in selected points of the (β,U * ) parameter space indicated in figure 6.8(c).
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 65 Figure 6.5: Analysis of the three flow regimes identified in the fixed body case: (a) schematic view of the cross-flow force dominant frequency as a function of β; (b,c,d) selected time series of the cross-flow force coefficient (solid) and spanwise vorticity at (x, y) = (10, 0) (dashed), and instantaneous iso-contours of the spanwise vorticity (ω z ∈ [-β -1, -β + 1]) in the vicinity of the body at selected instants (indicated by vertical dashed lines in the time series), for (b) β = 0.1, (c) β = 0.25 and (d) β = 0.4. The black triangle in the snapshots indicates the monitor point where the vorticity is sampled.
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Figure 6 . 6 :

 66 Figure 6.6: Behavior of the saddle point in the vicinity of the body: (a,b,c) instantaneous streamlines and iso-contours of the spanwise vorticity (ω z ∈ [-β -1, -β + 1]) for (a) β = 0.15, (b) β = 0.25 and (c) β = 0.4; (d) time-averaged values of the saddle point coordinates and (e) RMS values of the saddle point coordinate fluctuations, as functions of β. The position of the saddle point in the inviscid solution (0, y inv s ) is indicated by a diamond symbol in (a,b,c) and dashed lines in (d).
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 6 Figure 6.7: Time-averaged displacements of the body: (a) ζ x and (b) ζ y as functions of U * , over a range of β. For each value of β, a dashed line indicates the displacement associated with the time-averaged force in the fixed body case.
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 682 Figure 6.8: Body oscillation amplitudes: maximum (a) in-line and (b) cross-flow response amplitudes as functions of β and U * ; (c) region of large-amplitude responses (striped area) in the (β,U * ) parameter space. The colored symbols in (c) indicate the selected points represented in figures 6.3(a) and 6.4(a).
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 6 Figure 6.9: Cross-flow response frequency ratio in the region of large-amplitude vibrations: f * y as a function of U * , over a range of β. Typical frequencies of the fixed body flow regimes I and II (f I = 0.16 and f II = 0.075), normalized by the oscillator natural frequency, are indicated by dashed lines.
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 6 Figure 6.10: Flow-structure interaction regimes: (a) map of the different regimes in the (β,U * ) parameter space; (b) maximum response amplitudes and RMS values of the fluid force coefficient fluctuations, as functions of β and U * . In (a), a plain black line delimitates the large-amplitude vibration region identified in figure6.8(c); a striped area indicates the region of irregular responses studied in §6.4.2; blue symbols denote the points examined in figures6.12, 6.14 and 6.15. In (b), the same color code as in (a) is used in order to distinguish the different regimes.
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 6 Figure 6.11: Body oscillation amplitudes in the low-shear region: maximum (a) in-line and (b) cross-flow response amplitudes as functions U * , for selected values of β. Regimes L and VL are indicated in the plots. Body trajectories observed close to the peak amplitude responses are plotted in (a) (not at scale).
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 66 Figure 6.12: Analysis of regime VL, (β, U * ) = (0.1, 6): (a) selected time series of the body displacements and spanwise vorticity at (x, y) = (10, 0); (b) spectrum of the spanwise vorticity; (c) instantaneous streamlines and iso-contours of the spanwise vorticity (ω z ∈ [-β -1, -β + 1]) in the vicinity of the body at selected instants (indicated by vertical dashed lines in (a)). In (b), a vertical dashed line denotes the dominant frequency of the cross-flow displacement. In (c), the black triangle in the snapshots indicates the monitor point where the vorticity is sampled.
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 6 Figure 6.14: Same as figure 6.12 for regime VH1, (β, U * ) = (0.3, 6). In (c), the three positive vortices trapped in the saddle point region are labeled (snapshot 3).
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 615 Figure 6.15: Same as figure 6.12 for regime VH2, (β, U * ) = (0.3, 12).
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 6 Figure 6.16: Periodicity of the cross-flow displacement in the high-shear region: phase portrait (upper row) and Poincaré map (lower row) of ζ y for β = 0.3 and (a) U * = 6 (regime VH1 ), (b) U * = 12 (regime VH2 ) and (c) U * = 9 (transition region). In each phase portrait, red dots indicate the points plotted in the Poincaré map.

Figure 6 .

 6 Figure 6.18: Wake-body synchronization in the VH1 -VH2 transition region, (β, U * ) = (0.3, 9): selected time series of the instantaneous frequency ratios of the cross-flow displacement (f i * y ) and spanwise vorticity at (x, y) = (10, 0) (f i * ω ).
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Table 6 .

 6 1: Influence of the domain size, time step and number of inner iterations on the body responses, for U * = 6.

	β	Case L x L y ∆t	n i	ζ x	ζ y	f y
	0.15 0.15	1 2	40 20 0.1 50 0.06 0.41 0.158 60 40 0.1 50 0.23 0.48 0.120
	0.15	3	80 60 0.05 100 0.20 0.44 0.118
	0.4 0.4	1 2	40 20 0.1 50 0.46 0.51 0.123 60 40 0.1 50 0.45 0.51 0.123
	0.4	3	80 60 0.05 100 0.43 0.51 0.123

In[START_REF] Mercier | Large amplitude oscillations of a circular cylinder in a low-speed stream[END_REF],[START_REF] Gopalkrishnan | Vortex-induced forces on oscillating bluff cylinders[END_REF][START_REF] Carberry | Controlled oscillations of a cylinder: forces and wake modes[END_REF], only the values of C x are available. In these cases, the amplification C x /C x,f was determined based on the value of C x,f given by[START_REF] Wieselsberger | New data on the laws of fluid resistance[END_REF] at the same Reynolds number.

It is recalled that δ s is normalized by the body diameter.
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Appendix 3.A. Complements on the impact of structural damping

Previous works have emphasized the effect of structural damping on the response of an elastically mounted cylinder (Khalak and Williamson, 1997b;[START_REF] Klamo | The effects of damping on the amplitude and frequency response of a freely vibrating cylinder in cross-flow[END_REF]; structural damping alters the width of the lock-in range and a very small value of the damping ratio (lower than 1%) may cause a significant reduction of the oscillation amplitude.

In the present simulations, the oscillation amplitudes at high reduced velocities are found to be large compared to the experimental results of J&W (figure 3.3(a)). In order to clarify the influence of structural damping on the body response, the simulations at U * = 6 and U * = 14 have been restarted with a low structural damping ratio, ξ i = 1%. The time series of cross-flow displacement are plotted in figure 3.16. At U * = 6 (figure 3.16(a)), the variation of the oscillation amplitude after addition of structural damping is small. At U * = 14 (figure 3.16(b)), the oscillation amplitude before addition of structural damping is approximately equal to 0.4D. When the damping is added, the oscillation amplitude starts to decrease. After a few cycles, the oscillation amplitude is lower than 0.1D. Body motion is accompanied by an alteration of the flow. This was illustrated in chapter 3, by identifying distinct flow patterns in the plane perpendicular to the body axis, over the lock-in range. The patterns developing in the third direction, in the early turbulent regime (Re = 3900), are examined in this chapter. In addition to the twodegree-of-freedom system, presented in chapter 3, the fixed body case is also considered for comparison purpose. The analysis of the spanwise flow patterns, their streamwise evolution, and their alteration when the body oscillates, is the object a paper currently in preparation. The article is reported hereafter.

Appendix 4.A. Complements on computational mesh convergence

A convergence study has been performed in order to set the numerical parameters of the simulations. In the oscillating body case, the independence of the response with respect to the numerical parameters has been discussed in [START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re = 3900[END_REF]. The effect of the numerical parameters on the spanwise wavelengths measured downstream of the body has been examined in order to ensure the relevance of the present study. The influence of the computational mesh is addressed hereafter.

The values of λ z1 (η p = 1) and λ z2 (x p = 10) obtained for three different meshes in the region of peak oscillation amplitudes (U * = 6) are plotted in figure 4.20. The meshes are composed of 20 × 10 6 , 45 × 10 6 and 80 × 10 6 cells. The number of cells is increased by increasing the grid resolution in the near wake region (x < 15) and increasing the number of cells in the spanwise direction. In the (x, y) plane, the meshes are composed of 10 5 , 1.50 × 10 5 and 2 × 10 5 cells. The numbers of cells in the spanwise direction are equal to 200, 300 and 400. Figure 4.20, shows that the measured wavelengths remain close to constant between the second and the third meshes. The second mesh (45 × 10 6 cells) was chosen for the present simulations. Real physical systems subjected to VIV are usually less symmetric than a circular cylinder immersed in a uniform current (chapters 3, 4 and 5). In the present chapter, the impact of symmetry breaking on the system behavior is investigated by immersing the cylinder in a current linearly sheared in the cross-flow direction. The Reynolds number, based on the oncoming flow velocity at the body center and on its diameter, is set to 100. The flow-structure system behavior, when the body is free to oscillate in both directions, is computed over wide ranges of shear rates and reduced velocities. The fixed body case is also considered. The analysis of the flow (fixed body case) and flow-structure (elastically mounted body case) regimes is the object of an article submitted for publication. The article is reported hereafter.

Abstract

The system composed of a circular cylinder, either fixed or elastically mounted, and immersed in a current linearly sheared in the cross-flow direction, is investigated via numerical simulations. The impact of the shear and associated symmetry breaking is explored over wide ranges of values of the shear parameter (non-dimensional inflow velocity gradient, β ∈ [0, 0.4]) and reduced velocity (inverse of the non-dimensional natural frequency of the oscillator, U * ∈ [2, 14]), at Reynolds number Re = 100; β, U * and Re are based on the inflow velocity at the center of the body and on its diameter.

In the absence of large-amplitude vibrations and in the fixed body case, three successive regimes are identified. Two unsteady flow regimes develop for β ∈ [0, 0.2] (regime L) and β ∈ [0.2, 0.3] (regime H ). They differ by the relative influence of the shear, which is found to be limited in regime L. In contrast, the shear leads to a major reconfiguration of the wake (e.g. asymmetric pattern, lower vortex shedding frequency, synchronized oscillation of the saddle point) and a substantial alteration of the fluid forcing in regime H. A steady flow regime (S ), characterized by a triangular wake pattern, is uncovered for β > 0.3.

Free vibrations of large amplitudes arise in a region of the parameter space that encompasses the entire range of β and a range of U * that widens as β increases; therefore vibrations appear beyond the limit of steady flow in the fixed body case (β = 0.3). Three distinct regimes of the flow-structure system are encountered in this region. In all regimes, body motion and flow unsteadiness are synchronized (lock-in condition). For β ∈ [0, 0.2], in regime VL, the system behavior remains close to that observed in uniform current. The main impact of the shear concerns the amplification of the in-line response and the transition from figure-eight to ellipsoidal orbits. For β ∈ [0.2, 0.4], the system exhibits two well-defined regimes: VH1 and VH2 in the lower and higher ranges of U * , respectively. Even if the wake patterns, close to the asymmetric pattern observed in regime H, are comparable in both regimes, the properties of the vibrations and fluid forces clearly depart. The responses differ by their spectral contents, i.e. sinusoidal versus multi-harmonic, and their amplitudes are much larger in regime VH1, where the in-line responses reach 2 diameters (0.03 diameters in uniform flow) and the cross-flow responses 1.3 diameters. Aperiodic, intermittent oscillations are found to occur in the transition region between regimes VH1 and VH2 ; it appears that wake-body synchronization persists in this case. selected time series of ζ y and the corresponding spectrogram, based on short-time Fourier transform, are plotted in figure 6.17(a,b). For comparison with the results reported in figure 6.9, the frequency is expressed in terms of frequency ratio (f * ), i.e. normalized by the oscillator natural frequency f nat . Substantial amplitude and frequency modulations can be noted in the displacement signal. A first overview suggests that the large oscillation amplitudes are associated with low frequency ratios while the lower oscillation amplitudes are connected to higher frequency ratios.

The instantaneous amplitude ζ i y and instantaneous frequency ratio f i * y of the response are defined as the spectral amplitude and frequency ratio of the dominant peak of the spectrogram. Iso-contours of the histogram of ζ i y and f i * y are plotted in figure 6.17(c); for β = 0.3 and each value of U * , the maximum amplitude ζ m y and dominant frequency ratio f * y are also reported (symbols) and the case under study, U * = 9, is denoted by a white symbol. The histogram confirms the above observation: a dominant peak emerges in the region associated with regime VH1, i.e. high amplitudes and low frequency ratios, and a second peak of lower magnitude can be identified in the region associated with regime VH2, which is characterized by lower amplitudes and higher frequency ratios. The dominant peak of the histogram deviates from the values of ζ m y and f * y obtained for (β, U * ) = (0.3, 9) (white symbol). Such deviation is expected due to the irregular

Appendix 6.A. Complements on the effect of blockage in the fixed body case

The effect of the cross-flow size of the computational domain L y in the fixed body case is illustrated in table 6.2, for β = 0.1. The Strouhal frequency (St) and time-averaged force coefficients are reported for a range of L y and two types of external boundary conditions. The first type (BC1 ) corresponds to the boundary conditions employed in this study, i.e. far field conditions based on the Riemann invariants. The second type (BC2 ) consists of far field conditions on the lateral boundaries of the domain (x c = ±L x /2) and slipwall conditions on the upper and lower boundaries (y c = ±L y /2); this second type of conditions is considered for comparison with previous works, as discussed in the following. The other numerical parameters are the same as the reference parameters described in §6. for L y > 20. This confirms that the size of the flow domain selected in this study (L y = 40) is large enough to avoid any blockage effect.

Numerical results obtained by [START_REF] Lei | A finite difference solution of the shear flow over a circular cylinder[END_REF] and [START_REF] Kang | Uniform-shear flow over a circular cylinder at low Reynolds numbers[END_REF] under large blockage and conditions enforcing no cross-flow velocity on the upper and lower boundaries (i.e. comparable to conditions BC2 ), at the same Reynolds number (Re = 100), are also reported in the table; they are close to the present results obtained with conditions BC2. 
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