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Titre :
Compréhension des contenus visuels par analyse conjointe du contenu et des usages

Résumé :
Dans cette thèse, nous traitons de la compréhension de contenus visuels, qu’il s’agisse

d’images, de vidéos ou encore de contenus 3D. On entend par compréhension la capacité
à inférer des informations sémantiques sur le contenu visuel. L’objectif de ce travail est
d’étudier des méthodes combinant deux approches : 1) l’analyse automatique des contenus
et 2) l’analyse des interactions liées à l’utilisation de ces contenus (analyse des usages, en
plus bref).

Dans un premier temps, nous étudions l’état de l’art issu des communautés de la vision
par ordinateur et du multimédia. Il y a 20 ans, l’approche dominante visait une compréhen-
sion complètement automatique des images. Cette approche laisse aujourd’hui plus de place
à différentes formes d’interventions humaines. Ces dernières peuvent se traduire par la con-
stitution d’une base d’apprentissage annotée, par la résolution interactive de problèmes
(par exemple de détection ou de segmentation) ou encore par la collecte d’informations im-
plicites issues des usages du contenu. Il existe des liens riches et complexes entre supervision
humaine d’algorithmes automatiques et adaptation des contributions humaines via la mise
en oeuvre d’algorithmes automatiques. Ces liens sont à l’origine de questions de recherche
modernes : comment motiver des intervenants humains ? Comment concevoir des scénarii
interactifs pour lesquels les interactions contribuent à comprendre le contenu manipulé ?
Comment vérifier la qualité des traces collectées ? Comment agréger les données d’usage
? Comment fusionner les données d’usage avec celles, plus classiques, issues d’une analyse
automatique ? Notre revue de la littérature aborde ces questions et permet de positionner
les contributions de cette thèse. Celles-ci s’articulent en deux grandes parties.

La première partie de nos travaux revisite la détection de régions importantes ou sail-
lantes au travers de retours implicites d’utilisateurs qui visualisent ou acquièrent des con-
tenus visuels. En 2D d’abord, plusieurs interfaces de vidéos interactives (en particulier
la vidéo zoomable) sont conçues pour coordonner des analyses basées sur le contenu avec
celles basées sur l’usage. On généralise ces résultats en 3D avec l’introduction d’un nou-
veau détecteur de régions saillantes déduit de la capture simultanée de vidéos de la même
performance artistique publique (spectacles de danse, de chant etc.) par de nombreux
utilisateurs.

La seconde contribution de notre travail vise une compréhension sémantique d’images
fixes. Nous exploitons les données récoltées à travers un jeu, Ask’nSeek, que nous avons
créé. Les interactions élémentaires (comme les clics) et les données textuelles saisies par
les joueurs sont, comme précédemment, rapprochées d’analyses automatiques des images.
Nous montrons en particulier l’intérêt d’interactions révélatrices des relations spatiales entre
différents objets détectables dans une même scène. Après la détection des objets d’intérêt
dans une scène, nous abordons aussi le problème, plus ambitieux, de la segmentation.
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Title:
Combining Content Analysis with Usage Analysis to better understand visual contents

Abstract:
This thesis focuses on the problem of understanding visual contents, which can be

images, videos or 3D contents. Understanding means that we aim at inferring semantic
information about the visual content. The goal of our work is to study methods that
combine two types of approaches: 1) automatic content analysis and 2) an analysis of how
humans interact with the content (in other words, usage analysis).

We start by reviewing the state of the art from both Computer Vision and Multime-
dia communities. Twenty years ago, the main approach was aiming at a fully automatic
understanding of images. This approach today gives way to different forms of human inter-
vention, whether it is through the constitution of annotated datasets, or by solving problems
interactively (e.g. detection or segmentation), or by the implicit collection of information
gathered from content usages. These different types of human intervention are at the heart
of modern research questions: how to motivate human contributors? How to design in-
teractive scenarii that will generate interactions that contribute to content understanding?
How to check or ensure the quality of human contributions? How to aggregate human con-
tributions? How to fuse inputs obtained from usage analysis with traditional outputs from
content analysis? Our literature review adresses these questions and allows us to position
the contributions of this thesis.

In our first set of contributions we revisit the detection of important (or salient) regions
through implicit feedback from users that either consume or produce visual contents. In
2D, we develop several interfaces of interactive video (e.g. zoomable video) in order to
coordinate content analysis and usage analysis. We also generalize these results to 3D by
introducing a new detector of salient regions that builds upon simultaneous video recordings
of the same public artistic performance (dance show, chant, etc.) by multiple users.

The second contribution of our work aims at a semantic understanding of fixed images.
With this goal in mind, we use data gathered through a game, Ask’nSeek, that we created.
Elementary interactions (such as clicks) together with textual input data from players are,
as before, mixed with automatic analysis of images. In particular, we show the usefulness of
interactions that help revealing spatial relations between different objects in a scene. After
studying the problem of detecting objects on a scene, we also adress the more ambitious
problem of segmentation.
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Chapter 1

Introduction

1.1 Understanding visual content

Understanding visual content is one of the key challenges that computer scientists have been
facing for many years. In this Thesis, the term visual content is used to encompass the
different forms of digital representations of the world that can be interpreted by the human
eye. These representations are often distorted (e.g. by a perspective transformation),
noisy, imprecise or even incomplete. In the field of computer vision, understanding visual
content could be defined as “the attempt to infer properties of the world from its digital
representations”. In the multimedia paradigm, visual content is often augmented with
correlated data of a different nature, such as audio (e.g. a video’s soundtrack) or text (e.g.
metadata). In its essence, understanding means inferring semantic knowledge from the
visual content (Figure fig:intro-mca).

Figure 1.1: Multimedia Content Analysis

1.2 Historical Perspective

The original goal for visual content understanding was to design a system that could “make
computers see”. Applications were mainly focused on designing autonomous systems that
could use an artificial vision to perform automatic tasks. These applications where there-
fore mostly targetting robotics. At the time, because of the limit in ressources (CPU,
memory) and digital material available, researchers were concentrating their efforts on im-
ages. Consider for example the problem of object segmentation. Approaches focused on
finding objects boundaries using edge detectors [Canny 1986], or on determining regions
[Vincent 1991] that are candidate objects. Figure 1.2 shows the cover of a book on com-
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puter vision from Ayache [Ayache 1991]. This figure describes an inside scene understanding
algorithm that has clearly no semantic meaning, but rather a metrological purpose.

Figure 1.2: Cover photo of Nicholas Ayache’s book (Artificial vision for mobile robots,
[Ayache 1991])

This was in a nutshell the state of the art 20 years ago. The end of the nineties saw
digital cameras become a common device. The first digital camera was invented in 1975
(by Steven Sasson in Kodak), but the market for digital cameras started to flourish in the
mid-90s.This progress, parallel to the emergence of the Internet, allowed large scale photo
sharing platforms to be created. Webshots (in 1999) and Yahoo Photos (2000) were the first
Internet platforms where users could upload, share and exchange digital pictures. In 1997,
the website shareyourworld.com became the first video sharing platform. It eventually
shut down in 2001 due to bandwidth issues.

Ten years ago, in 2004, understanding visual content had a completely different meaning
than in 1994. Because of the rising amount of available visual content, the challenges that
researchers had to face shifted a little bit. Of course, the computer vision community along
with newly formed multimedia community were still interested in the problems of designing
effective systems for artifical vision and multimedia content analysis. But the growing
quantity of images and videos introduced new problems : how to efficiently index all this
data ? And then how to efficiently access the data ? Technical challenges such as streaming
or retrieval became central and involve, at different scales, at least a partial understanding
of the content. As for object segmentation, in ten years the researchers had considerably
changed the way they approached the problem. The massive redundancy of visual content
(e.g. images on Flickr) allowed for new formulations of difficult problems. For example,
the co-segmentation problem is a variant of segmentation in which the images to segment
contain a common object. Even reformulated, these problems remain hard and some efforts
focused on techniques of interactive segmentation : since automatic algorithms often failed
to differentiate one region from another, people looked for ways to have humans guide them

2
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with simple interactions (GrabCut, 2004). Another branch of the community followed a
general trend that had appeared during the nineties: supervised machine learning. The idea
was to manually segment a set of images, then train algorithms to expand this information
to other images.

The Berkeley BSDS300 (2001) was one of the early efforts made to gather annotations
on a set of images. It was later followed by the PASCAL Visual Objects Challenge (VOC,
[Everingham 2010]) which involved thousands of images, and has now made room for the
ImageNet challenge, which contains hundreds of thousands of images. This evolution is
representative of a general trend: since 2004 everything went bigger. Flickr, and then
Facebook, became leaders for photo sharing. In 2013, there were 350 million pictures
uploaded every day on Facebook1. In the mean time, Youtube led the development of
video sharing. The statistics page on www.youtube.com claims that there are 100 hours of
video uploaded on Youtube every minute.

These observations lead us to the present. Today in 2014, Big Data has become a trendy
buzzword. The applications involving visual content are numerous, but we are nowhere near
what scientists were rooting for 20 years ago: a complete and automatic understanding of
the visual contents is still far from becoming reality. Artificial vision is still very far from
achieving performances that are even comparable to the human vision system. Richard
Szeliski stresses at the beginning of his recent book [Szeliski 2011] that “the dream of
having a computer interpret an image at the same level as a two-year old remains elusive”.
Computers can achieve honorable performances in problems that are constrained and simple
enough, for which a priori models are accurate enough. But mostly humans are much more
efficient in problems that involve even a little bit of semantic knowledge.

It is also worthy to note that most applications of modern visual content analysis are
human centric. In security (e.g. video surveillance, traffic monitoring, etc.) current algo-
rithms are designed to help a human operator but can not replace him. In the medical
domain (doctor), in automotive safety (driver) or in special effects (graphist designer),
current visual content analysis offers only an assistance to humans.

In a meeting organized at ACM Multimedia 2003 also known as the ACM SIGMM re-
treat, it was clearly stated [Rowe 2005] that “research that incorporates the user is more
difficult because human behavior is so variable. Nevertheless, the goal of nearly all multi-
media application is to solve a problem for a user”. Almost ten years after this meeting,
the same opinion leader, L. A. Rowe [Rowe 2013], reinforces this idea and reviews observed
progress based on the 20th anniversary panel at ACM Multimedia 2012 “Coulda, Woulda,
Shoulda: 20 years of Multimedia Opportunities” : “although it was not discussed, retreat
participants understood that humans would become assistants to computer algorithms (e.g.
Amazon Mechanical Turk) and computers would grow more important as assistants to hu-
mans (e.g. Apple Siri)”.

In this context, it is only natural to see that approaches where users participate and

1http://www.businessinsider.com/facebook-350-million-photos-each-day-2013-9
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help computers are now flourishing. The question now is not whether humans can help
the machine, but how they can do it. In this spirit, conferences such as HComp (since
2009) and CrowdMM (since 2012) bring together researchers that study the problems that
are inherent to human involvement: how to motivate humans to contribute? How to bring
together inputs from different humans? How to cope with errors from humans?

An even more recent trend study how the complementarity between humans and com-
puters should push scientists to devise methods where they work together. The firstly held
ECCV’14 workshop HMCV (Human-Machine Communication for Visual Recognition and
Search) is one of the first initiatives in this direction. A particular work in this domain on
the problem of fine-grained object categorization [Branson 2014] is particularly enlighten-
ing. In this paper called “The ignorant led by the blind”, the authors devise interactions
between a human who does not know the main features of all different species of birds (the
ignorant) and a computer whose artificial visual system is too imprecise to recognize the
features (the blind). By designing proper interactions and underlying model, the authors
build a convincing categorization system that use both human and computer capabilities.

1.3 Thesis contributions and outline

In this dissertation we present and contribute to a part of these works that tries to make
the human and the machine work together. We believe that humans are necessary since
they bring the semantics that computers are not capable of having yet, and that automatic
approaches can facilitate, reduce and correct human inputs. Together, content analysis and
usage analysis can achieve high performance, and maybe reach the original goal of our field
of study: understanding visual content.

This thesis introduces three main contributions.
First, we present a detailed review of the state of the art on the combination of content

analysis and usage analysis. We choose to categorize the different types of combination in
two types. We believe there are content analysis algorithms that humans can help perform-
ing better. In this context we define different paradigms for human intervention (Crowd-
sourcing, Human Computation) and present the challenges raised by these techniques. On
the other hand, there are content analysis algorithms that allow human interventions to
be more efficient. We focus on this section on interactive techniques for segmentation
and recognition, as well as on interfaces that build on content analysis to create improved
interactions for humans.

Our second contribution is a set of new saliency detection techniques that are based
on an analysis of humans’ interactions with various interfaces as well as content analysis
techniques. Saliency detection aims at detecting a visual content’s regions that attract
the human’s eyes, and we argue that the use of some interfaces can implicitly reveal these
regions. We build saliency maps for videos based on an analysis of browsing traces of a
Zoomable Video player. We then build 3D saliency maps (or interest maps) by looking

4



at how humans film a scene. We propose applications for these objects, including video
retargeting, video mashup and 3D query of a video.

Finally we study the problem of interactive segmentation, first by proposing a new
interface for crowdsourced interactive segmentation called Click’n’Cut. We show that our
interface can be very efficient for crowdsourcing segmentation. We then go a step further
and study how to perform an implicit crowdsourcing for segmentation. We introduce a
Game With A Purpose (GWAP) called Ask’nSeek, that allows to gather textual and spatial
information about images. We present an algorithm for both object detection and figure-
ground segmentation based on these traces, and show promising results.
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Chapter 2

Related Work
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2.1 When humans help Content Analysis

In the context of this dissertation, we use the term Content analysis in the way it is used
and understood in the multimedia community. To illustrate, the call for papers of the Mul-
timedia Analysis track at the ACM Multimedia 2013 conference refers to content analysis as
“information extraction and processing from multimedia data”. In this document we will be
limiting ourselves to visual content only, such as image, video and 3D content. Restricting
ourselves to visual content is not really a limitation with respect to the challenges brought
by multimedia data: we’ll manipulate video streams along with clickstreams (produced by
the users) or many simultaneously recorded video streams which are, in essence, multimedia
data.

In this context, content analysis consists in asking the following questions: Is it possible
to automatically categorize the objects present in the content? Can we determine the
precise position of each of these objects? Can we understand what the content is about ?

Figure 2.1: Challenges in visual content analysis: original image and saliency as computed
by [Itti 1998] (top), object detection and object segmentation (bottom).

These questions have led researchers to define a number of problems that have been at
the heart of communities such as computer vision, image processing or multimedia. Here
is a non exhaustive list of these problems for images (illustrated in figure 2.1), as they were
introduced in the PASCAL VOC [Everingham 2010].
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• Classification: given a visual content (typically image or video), the problem of classi-
fication consists in determining the classes of objects that are present on the content.

• Object detection: given a visual content, object detection consists in locating instances
of semantic objects on the content, usually under the form of a bounding box.

• Image segmentation: this task consists in associating to every pixel of an image (or of
each frame of a video) a semantic label. This is one of the ultimate goals of computer
vision.

• Action Classification: this task consists in finding the action(s) performed by a char-
acter in an image (e.g. jumping, riding a bike, phoning etc.).

Associated problems for video understanding can be naturally derived from the previous
list. They lead to even more challenging issues such as video (object) segmentation, event
detection and so forth. In the same spirit, automatic segmentation of 3D content is also
a generalization of the image segmentation problem. In all cases (image, video, 3D), seg-
mentation has been a hard challenge for years: besides the intrinsic difficulty of an inverse
formulation (converting visual digital data into information about a physical object), the
ultimate objective is to recover semantic information (e.g. object or scene decomposition
in semantically meaningful parts).

Historically, these challenges have been adressed progressively. The first digital image
was created in 1957 (it was a scanned picture of a baby) and the first digital camera was
invented in 1975 (by Steven Sasson, at Eastman Kodak). The analysis of digital images
by computers soon became a prominent research subject, first in the signal processing and
pattern recognition communities, then in the computer vision community and finally in
multimedia, in which it is part of more general multi-modal analysis.

As already written in the introduction, researchers were looking for fully automatic
approaches to perform content analysis or, in other words, for solutions to replace humans
in visual analysis tasks. The idea was really to "make computers see", and the applications
that were targeted were mainly focused on robotics. The hope was to give robots a detailed
enough perception of their environment in order to be able to move and perform tasks
automatically.

With the progressive increasing of the amount of data (digital images were still rare
twenty years ago, before the development of mass produced digital cameras), researchers
understood that the problem of content analysis was very difficult. Many approaches had
been developed and worked well on some images, but were ineffective on others. Researchers
started to get confronted with the fundamental problem of semantics: how to infer complex
scene’s descriptions from a multidimensional (generally ranging from 2D to 4D) signal?

Since automatic algorithms were failing to solve these complicated research problems
because of the lack of semantics, researchers have started to investigate a simple way to
get semantics: bringing humans into the loop. All the content analysis tasks cited earlier,
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which are rather difficult to perform for computers, are mostly straightforward to humans.
This simple fact was the basis of a new trend in which computers take human knowledge
into account to automatically perform content understanding tasks.

Besides interactive vision or many sophisticated human-in-the-loop approaches that we
review in the second part of this chapter, we identified an early exploitation of human exper-
tise through the supervised learning paradigm. In the following section, we briefly explain
how human experts can annotate learning datasets and how machine learning techniques
have attempted, by inference, to bridge the semantic gap between automatically computed
low-level information and high-level expertise from the annotators.

2.1.1 Supervised Machine Learning

The mid-nineties saw an explosion in the number of methods based on Supervised Machine
Learning algorithms. Supervised Machine Learning is a form of artificial intelligence, where
algorithms are designed to learn the solution of a problem from annotated data in order
to later be able to solve the problem on a different set of data. Machine Learning had
a dedicated session in CVPR 1997 (in computer vision), and later started to become a
prominent keyword in ACM Multimedia (in the multimedia community) in 2001. These
methods already existed before, but were often using synthetic data as a training set. The
originality of the methods that became popular at the end of the 1990s was that the training
set was annotated by humans. This is a first answer to the lack of semantics encountered
in previous efforts in content analysis. In this context, semantic information is brought by
human annotations, learned by algorithms and finally expanded to new data.

Prediction Models. Machine Learning is a broad topic which encompasses very differ-
ent approaches which generally fit well with the general principle exposed in the following
schema:

f ∈ X → prediction model h → ŷ = h(f) ∈ Y

In supervised machine learning, a prediction model (h) is the unknown entity. This
predictor may sometimes take a mathematical form (e.g. h may be a function with un-
known parameters) but may also be seen as procedural (e.g. a decision tree with unknown
structure). In any case, the prediction model aims at automatically predicting a high-level
(e.g. semantic) information ŷ = h(f) from a low-level feature vector f (e.g. visual de-
scriptors). Before being used on a test set of new visual data, the quality of this inference
process is first guaranteed on a learning set. A learning set is a set of supervised labeled
instances {(fi, yi)}i=1...n for which a human expert has manually bridged the gap between
each low-level stimulus fi (e.g. an image or a compact representation of it) and the asso-
ciated high-level information (e.g. a semantic label). Such learning sets (or ground truth
annotated datasets) are extremely useful to the research community to learn predictors and
evaluate them. As a consequence, releasing annotated datasets or annotating tools is now
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considered a valuable contribution to the community.
Ground truth datasets. To illustrate this trend, consider for example the problem of

object recognition. There have been several efforts to create annotated datasets. In 2004,
Li et al. introduced the Caltech 101 dataset [Fei-Fei 2004], which includes images of 101
different classes. This dataset was later expanded to reach 256 classes.

Starting in 2005, the PASCAL Visual Object Challenge [Everingham 2010] provided not
only annotated ground truth, but also an online platform for benchmarking the algorithms.
The challenge ran from 2005 to 2012, starting with 4 classes and 1,578 images and ending
up with 20 classes and 11,530 images.

More recently, since the end of the PASCAL Challenge, a similar challenge called
ILSVRC (Imagenet Large Scale Visual Recognition Challenge) has appeared, bringing the
annotated datasets to the next level. In 2014, the challenge includes 456,567 images and
200 classes, which is still far from the estimated number of visual categories observed in
real life (20K-30K according to [Biederman 1987]).

Performances. All these datasets have favored advances in the object recognition field,
by providing common test sets to ease inter-methods comparison, as well as furnishing huge
amounts of annotated data. But these benchmarks also give an insight about the main
limitation of methods based on the supervised machine learning paradigm: algorithms can
only be as good as the training set allows them to be, and the nature of the testing set
can lead to deceiving results. Figure 2.2 shows the evolution of the best performances by
class in the PASCAL object detection over the four last years of the challenge. The overall
performance went from 0.3 to 0.4 in four years, which is a significant improvement but still
very far from what could be considered good results.

Figure 2.2: Evolution of the performances in the PASCAL VOC object detection challenge.
The values plotted correspond to the best performer for each class at each year.

Consider for example the Regionlets algorithm by Wang et al [Wang 2013b]. In this
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method, the authors propose a new object representation that is based on a hierarchy of
rectangular regions and sub-regions (referred to as regionlets). The model is then trained
using a boosting algorithm and is used as a detector on the test data. This algorithm
exhibits results that place it among the top performers in the state of the art. However the
mean of Average Precision that is achieved on the PASCAL dataset only reaches 41.7% and
drops to 14.7 % on the much larger Imagenet dataset. This illustrates several facts: 1) a
supervised learning algorithm’s performance is very dependent on the dataset; 2) a larger
training set will not necessarily improve the algorithm’s performance and 3) results on 200
classes are still very poor, and we are far from achieving a similar result on all existing
classes of objects.

Supervised learning techniques are still close to the historical goal of computer vision
researchers, which was to design fully automatic algorithms that would perform content
analysis. Indeed, humans intervene only at the beginning of the process to train the algo-
rithm. Once trained, the algorithm is capable of functioning on its own, without humans.

Annotation tools.
As a consequence, the interactions between humans (the annotators) and the comput-

ers or algorithms are limited to the annotation phase in the supervised machine learning
paradigm. Many visual annotation tools have been created to support the creation of
ground truth datasets (for which a workshop was created [Spampinato 2012]).. The survey
by [Dasiopoulou 2011] discusses this matter in depth and compares some important tools for
image annotation (Caliph [Lux 2003, Lux 2009], PhotoStuff [Halaschek-Wiener 2005], Ak-
tivemedia [Chakravarthy 2006], Kat [Saathoff 2008] and LabelMe [Russell 2008]) and some
representative tools for video annotation (ViPER-GT [Doermann 2000], Anvil [Kipp 2010]
and LabelMe video [Yuen 2009].

Without paraphrasing the survey from [Dasiopoulou 2011], our own analysis will put
the emphasis on the coherence between these tools and the supervised learning prediction
schema:

f ∈ X → prediction model h → ŷ = h(f) ∈ Y

Many reviewed image annotation tools (like PhotoStuff, Aktivemedia or Kat, among
others) use semantic web technologies and ontologies to properly manage the semantic space
Y. LabelMe [Russell 2008] simply uses free text and keywords without any strong constraint
on Y. Caliph [Lux 2003] also uses free text while ensuring a MPEG-7 compatibility. For
the video annotation tools, free text is also allowed in LabelMe video [Yuen 2009] and XML
formats are used both in VIPER-GT and Anvil.

When considering the input space X of the predictor, some tools (like Kat [Saathoff 2008])
host plugin modules to compute low-level visual descriptors. These computations must be
done over precise image regions when the annotation is made at object level: figure 2.3
shows the LabelMe interface where polygons are manually drawn to annotate the image at
object level. Most of the tools integrate a polygon coding technique to handle these anno-
tations and also support propagation of polygons in the case of video annotation. However,
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these propagation techniques are not content-aware in the sense adopted by more recent
tools to be reviewed later in this chapter.

Figure 2.3: LabelMe interface.

A supervised learning approach may succeed in automating a vision task if the visual
representation space X is well chosen. It should be representative, discriminative and
compact. The visual descriptor should also be adapted to support a priori knowledge such
as a prior distribution over X (in the deep-learning sense) or a specialized description for
specific objects/scenes/tasks. For instance, specific descriptors can be devised when the
interesting visual objects are humans (with applications in analysis of people or crowd,
human action recognition, human interactions).

When a supervised learning approach fails, mainly two elements are questionable. First
of all, the visual representation space X can be insufficient to discriminate several high-level
concepts. For example, in their inspiring work [Vondrick 2013], the authors explain what
goes wrong when a feature like SIFT fails to see what it should. Second, the dataset itself
could explain the failure. The size of the training set could be a limitation if the ground
truth doesn’t sample enough strategic regions like: (i) low density areas in X , (ii) areas
in X where the decision boundaries between categories from Y lies. Last but not least,
the annotations could be noisy and the bad quality of labeled data could be the source
of failure. Key questions are then raised: how many annotators should be enrolled? How
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many experts? How to motivate them? Should several annotations be collected for the
same image? The next section presents an analysis of the answers to such questions by an
emerging research community.

2.1.2 Human Computation / Crowdsourcing

In parallel to the development of machine learning, there was another trend that started
in the 2000s, which was called human computation. The idea is to break a complicated
problem that computers can not solve into incremental tasks that are very easy for humans
to do, and then find a way to actually make some humans do it. In this paradigm, humans
participate in every step of the algorithm which is completely different in nature from
supervised learning techniques. This idea was promoted in Luis Von Ahn’s work about
online security, called ReCAPTCHA [Von Ahn 2008b].

Figure 2.4: The ReCAPTCHA user interface. The left word is computer generated and the
right word is extracted from a book to be digitalized.

The concept of CAPTCHA (Completely Automated Public Turing test to tell Com-
puters and Humans Apart) was already well known in the security community. Since the
point of CAPTCHAs is to come up with challenges that humans can solve but that can
not be solved by computers (to prevent, for example, massive email account creations for
spamming), Von Ahn took a problem that remained challenging (OCR) and had the idea
to use the words that computers failed to recognize automatically as a CAPTCHA (see
Figure 2.4). By doing so, Von Ahn achieved two goals: 1) securing web platforms and 2)
getting humans instead of computers to perform OCR.

In his PhD dissertation called Human Computation [Von Ahn 2005], Von Ahn defined
human computation as a paradigm for utilizing processing power to solve problems that
computers cannot yet solve. This definition is very close to another concept which emerged
around the same period, and that is called Crowdsourcing. Introduced in the Wired mag-
azine by Jeff Howe [Howe 2006], Crowdsourcing is the act of taking a job traditionally
performed by a designated agent (usually an employee) and outsourcing it to an undefined,
generally large group of people in the form of an open call.

These two definitions only differ on the matter of the nature of the task that is con-
sidered. In human computation the task is originally devoted to a computer, whereas in
crowdsourcing the task is originally performed by a single human. In both cases, it involves
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outsourcing the task to a group of people, gathering the answers and deducing a final solu-
tion out of it. These two concepts have become so important that they now correspond to
actual communities: the HComp conference (about human computation) has been running
since 2009, and the CrowdMM workshop (about Crowdsourcing) is organized since 2012.

The survey from Quinn and Bederson [Quinn 2011] tries to categorize algorithms that
fall into these definitions, and use six components of these methods to categorize them.
Since in this dissertation we are more interested in the challenges posed by these methods,
we will detail only two fundamental aspects:

• Incentive: how to motivate users to perform the tasks?

• Quality Control: how to check the rightfulness of users input?

Table 2.1: Users incentives in Crowdsourcing and Human Computation

Incentive Example
Intrinsic Enjoyment GWAP

Motivation Social development GWAP
Personal Development Duolingo

Extrinsic Payment Mechanical Turk
Motivation Action Significance Tomnod
Implicit via Interface Zoomable Video

Security ReCAPTCHA

Incentives. The first challenge that researchers have to face is to motivate users.
Kaufmann and Schulze [Kaufmann 2011] have conducted a study on Amazon Mechanical
Turk to understand the reasons that make workers participate in tasks. Not surprisingly,
authors found out that payment was the main incentive for workers on Amazon Mechanical
Turk. They also established that intrinsic motivation is more important to workers than
extrinsic motivation. In addition, they proposed a classification of incentives that is similar
to the Open Source community incentives categorization. In this dissertation, since we are
interested in tasks that target visual content analysis, we only discuss relevant categories
in this context. Table 2.1 detail the three main types of incentives: intrinsic motivation,
extrinsic motivation and implicit motivation.

Intrinsic motivation regroups the reasons that invest the workers personnally on the
tasks. Enjoyment is an obvious intrinsic incentive: when users have fun while performing
a task, they are less likely to cheat and more likely to do more tasks. Games With A
Purpose (GWAP) are a class of platforms that try to trade users enjoyment for useful
input data. We will give more details about GWAPs later in this chapter, since this is
an avenue we have chosen to explore in our work. Social development can also be an
intrinsic motivation for workers. The possibility to meet new people, join a community and
maybe make new friends is a strong incentive. Multi-player GWAPs are once again a good
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example of this phenomenom. Personal development covers tasks from which workers will
gain competences. A recent example is Duolingo, a website/app created by Luis Von Ahn.
Duolingo presents itself as a website to learn languages, but is designed to benefit from
users while they learn and use their input to automatically translate texts.

Workers can also have extrinsic motivations to complete tasks. The most common one
is money: users get paid to complete tasks. Many websites provide a platform to connect
requesters (that propose a task) and workers. One of the most famous of such websites is
Amazon Mechanical Turk, created in 2005. When writing this thesis, we observerd that
more than 200,000 tasks (also known as HIT, Human Intelligence Task) were available at
the same time. Others similar platforms include Samasource, Microworkers, Crowdflower
etc. InnoCentive is a similar platform in which requesters are companies and workers have
to submit creative solutions to industrial problems. Although requesters offer a reward, the
nature of the tasks proposed on InnoCentive provide an additional incentive to workers:
action significance. Indeed some of the tasks could potentially benefit society, and this
makes workers feel useful to their community which is a strong motivation. Another recent
illustration of this phenomenon can be seen on http://www.tomnod.com/nod/challenge/

mh370_indian_ocean. This website proposes workers to look for the vanished flight MH370
from Malaysian Airlines. (see Figure 2.5)

Figure 2.5: Interface of the tomnod website to localize the missing MH 370 plane.

Finally it is also possible that workers participate in tasks without even knowing it.
This can occur for example when workers use an interface to consume content, like the
zoomable wideo that we will describe in section 3.1 of this thesis. Another case of implicit
motivation is the use of security measures, for which a previously introduced example is
the ReCAPTCHA application, from Luis Von Ahn.

Since incentive is such a central challenge when creating a crowdsourcing/human com-
putation task, one can wonder which incentive leads to the best results in terms of quality
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and informativeness of traces. The most obvious fact is that incentives are task-dependent.
It is not always possible to design an interface for which users will implicitly solve prob-
lems, as well as creating a GWAP that will help solving a particular problem. Payment is
often the simpler solution, since it allows collecting a large amount of data rather quickly.
Conversely, since workers are paid to do a task, they will be more likely to try to cheat
the system to earn more easily. Mao et al. [Mao 2013] published a comparison of the
work done by volunteers against turkers. They selected a task proposed on Zooniverse, a
crowdsourcing website where citizens volunteer do tedious tasks to help science projects.
They proposed the same task on Amazon Mechanical Turk, and observed a similar quality
of traces. They also tried different methods to pay the workers: per task, for time spent,
and per annotation. They observed that workers were less precise when paid per task, and
in average spent less time to perform the tasks. Conversely, when workers were paid per
time (for a fixed time spent on doing the task), both their precision and their recall rates
increased, but the time they spent per task was also higher. Araujo [Araujo 2013] studied
traces from the website 99 designs where requesters post artistic challenges (e.g. creating
logos) and workers submit their proposal. At the end of the challenge, the requester chooses
the best answer and rewards the worker. It can also happen that the requester is not happy
with the results, in which case nobody receives the reward. Araujo found that the number
of workers was a key parameter to the quality of the winning design. For a given fixed
price, the more workers participate in the challenge, the better the winner is. A somehow
surprising result is that for a fixed number of participants, increasing the reward does not
lead to a better quality for the winning design.

Quality Control. Controlling the quality of workers inputs is really the most important
challenge in crowdsourcing and human computation. It is indeed necessary to discard as
much noisy data as possible, in order for the algorithms based on this data to perform as
well as possible. Typically noisy data can come from three different sources [Oleson 2011]:
scammers, insufficient attention and incompetent workers. Scammers voluntarily try to
cheat the system (e.g. to maximize their profit while minimizing their effort). Incompetent
workers do not understand the task description and therefore produce a lot of noisy data.
Finally workers with insufficient attention understand the task but get tired or confused
and do some random mistakes. There are many policies that can help reduce the number
of noisy inputs. These policies can be applied either before, during, or after the task.

Before the task, it is very important to make sure that the workers fully understand
what they have to do. This helps limiting the amount of noise due to incompetent workers.
First, it helps to have a tutorial explaining all commands, and showing examples of both
good and bad inputs. Gottlieb et al [Gottlieb 2012] explain how, in the difficult context of
video geo-location, several rounds of testing convinced them to setup a tutorial that showed
workers how to perform the task on an example. In addition to having a tutorial, it is also
important to have gold standard data, i.e. tasks for which the answer is already known.
Such data can be used to display messages to workers when they do a wrong annotation on
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these tasks. Oleson et al [Oleson 2011] introduce the concept of programmatic gold, which
consists in generating gold standard from crowd-generated data.

There are also several mechanisms that can limit noisy data to be produced by workers.
First, mechanisms that rely on an agreement from several humans working independently
and simultaneously on the same task considerably limit this issue. Both input and output
agreements have been formally defined by Luis Von Ahn [Von Ahn 2008a] in the context
of Games With A Purpose. Output agreement consists in accepting an answer if two
workers agree (independently and simultaneously) on this answer. This process is used for
example in the ESP game [Von Ahn 2004]. In input agreement, two workers are presented
(independently and simultaneously) with one input each, and their goal is to find out
whether this input is the same or not (figure 2.7). An example of this process can be
found in the game Tag-A-Tune [Law 2007]. This agreement concept is interesting because
it takes a conjunction of incidents for noisy data to appear. Either two spammers have
to find a way to cheat together (which may be difficult), or two workers have to make the
same mistake at the same time which is highly unlikely. Similarly, one can also devise tasks
that involve some workers validating or correcting another worker’s tasks. In the Natural
Language Processing community, Bernstein et al. [Bernstein 2010] even formalized a “crowd
programming pattern”: Find-Fix-Verify. This pattern consists in having one worker look
for candidate errors (the context is the research and correction of spelling mistakes), then
have a second worker correct the mistakes and finally have a third worker validate it. An
example of the use of this pattern in visual content analysis has been given by Su et al
[Su 2012], in the context of ground truth creation object detection. For a given label, one
worker has to create bounding boxes around this object in some images, then a second
worker can tweak the bounding boxes position and size so that they fit the object perfectly,
and finally a third worker validates the boxes. Another way to ensure data quality is to
make workers annotate data for which the answer is already known, thus providing an easy
way to detect scammers and incompetent workers. This method is also known as Ground
Truth Seeding.

Finally, the most evident moment to detect noisy inputs is after the data collection. First
a statistical analysis of the data can help discarding bad inputs. In their experiments, Mao
et al [Mao 2013] determined that is was not normal that workers spent less than 5 seconds
on a task or produced more than 8 annotations per task, which helped them discarding
bad workers (of course these values are task-dependent). In the same spirit, when a task is
assigned to more than one worker it makes sense to use a majority vote or robust estimators
(such as median) to find a suitable answer while eliminating outliers. More elaborated
noise correction algorithms have also been proposed. Ipeirotis et al. [Ipeirotis 2010] use an
EM-based algorithm to find both the errors of the workers and a measure of the workers’
reliability.

To add a little bit of perspective to this problem, it is worthy mentioning the work
of Grier [Grier 2011] who argues in his paper that human computation is not a new idea,
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Figure 2.6: Interface of the ESP game [Von Ahn 2004]

and that similar paradigms have been going on for centuries which just did not involve
any computer. The author analyzes the example of the Mathematical Tables Project, an
organization that went on from 1938 to 1948 and produced tables of mathematical functions.
The team that managed this organization claimed their work was mistake free, thanks to
careful planning and constant effort to prevent any error. Grier lists four lessons that
should benefit the current human computation community. First, there should always be
an estimate of the result of a task that is assigned to a human. Second, there have to be
multiple policies put into place to detect errors. Also, a result should always be computed
at least twice by different methods. And finally, all possible sources of errors should be
identified before starting a campaign.

We will not go through all examples of crowdsourcing and human computation in the
multimedia analysis community because of the tediousness of the task. However, we will
detail two categories of algorithms that are interesting to study in order to establish some
context for this thesis’s contributions.

2.1.3 A step towards our contributions

.
In this section we focus our related work analysis on two main subjects, that are of

interest for the rest of the dissertation. First we study how to infer Regions of Interest from
an analysis of users’ behavior, in order to contextualize the work we present in Part I. We
also focus on Games With A Purpose, as we will present in Part II our contribution in this
domain.
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Crowdsourcing User interest. Finding Regions of Interest is a difficult problem that
involves basic semantic understanding of a content. We will later present in chapter 3 our
contributions in this domain, which are based on crowdsourcing. We hereby review the
related works.

A first basic idea is to extract ROIs by directly analyzing regions gazed by a user. In
their work, Ukita et. al use an eye-mark recorder system to track user gaze. Important
objects, including moving objects, can be detected and tracked by analyzing the gaze of the
users [Ukita 2005]. Shamma et. al proposed a similar approach: they gather information
about what is being watched from a user community to understand the content of the video
[Shamma 2007].

These works are clearly related to the research topics on implicit feedback. Inspired by
the definitions from Diane Kelly [Kelly 2003], implicit feedback can be defined as informa-
tion about users, their needs and content preferences that is obtained unobtrusively, by
monitoring their behavior and interactions with systems and content.

Bringing this idea into the multimedia community, Syeda-Mahmood and Ponceleon col-
lect implicit feedback from the users by analyzing the playback interactions in the temporal
domain (play, fast-forward, pause). They use it to infer the most interesting temporal seg-
ments from the video [Syeda-Mahmood 2001]. This pioneer work inspired many subsequent
papers among which we can mention the one from [Gkonela 2014]. In this paper a heuristic
user modeling is used as a substitute for the initial HMM (hidden Markov model) from
Syeda-Mahmood and Ponceleon.

In our group, we also contributed formal models to understand implicit feedback in
multimedia use cases: Plesca et al. [Plesca 2008a] used MDP models (Markov Decision
Processes) and POMDP (Partially Observable Markov Decision Processes) to interpret
interaction sequences (e.g. clickstreams). Moreover, from a metadata perspective, implicit
feedback signals can be converted into implicit descriptors (e.g. user interest descriptor) as
shown in [Plesca 2008b].

Xie et al [Xie 2005] have also studied mobile image browsers and the (implicit) power
of the associated interactions. They found that on small displays, users tend to use more
zooming and scrolling actions in order to view interesting regions in detail. From this fact,
they designed a specific ROI extraction model (figure 2.7) from still images and so-called
user interest maps. We use a similar idea to infer ROIs from a zoomable video player’s
browsing traces in our own contributions.

GWAP. In a similar fashion, games can be used to implicitly collect useful data for
visual content understanding. The idea of using games with the purpose of collecting
useful data for computer vision has been brought first by Luis von Ahn and his ESP game
[Von Ahn 2004]. In that game, two players look at the same image and try to agree on a
description of the image by typing words. They score points when they manage to type
the same word, and in this case the word becomes part of the tags describing the image.
This game has been initially devised to address the problem of constructing ground truth
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Figure 2.7: A result from [Xie 2005]: a user interest map obtained through the analysis of
zooming interactions on a mobile device.

database for training computer vision algorithms. It is worth noticing that the feedback
from the gamers is also implicit to some extent: they play for fun and not for labeling
images. In the same spirit, Peekaboom [Von Ahn 2006], a subsequent and complementary
game, goes a step further since it consists in locating objects (labeled by ESP) in a given
image. Two players are again paired randomly: while one player reveals parts of the image,
the other (who initially sees nothing from the image) has to guess the correct associated
label. In chapter 6 we introduce the Ask’nSeek game, that can help collecting data that is
equivalent to both ESP and Peekaboom traces.

In 2009, Ho et al. postulated that the cooperative nature of the ESP game has a
number of limitations, including the generation of less specific or diverse labeling results,
and proposed a competitive game for image annotation: KissKissBan [Ho 2009]. Their
game uses a couple, whose objective is the same as the players in the ESP Game (i.e., to
guess what the partner is typing), but introduces the role of blocker, a third party who has
7 seconds to provide a list of blocked words, which contains the words he thinks couples
might match on. They show that the resulting have higher entropy than the ones produced
by the ESP game (used as baseline for comparison), and are, therefore, more diverse.

More recently, Steggink and Snoek [Steggink 2011] presented the Name-It-Game, an
interactive region-based image annotation game, whose labels are semantically enhanced
by means of the WordNet ontology. Name-It is a two-player game in which players switch
roles (either revealer or guesser) after each turn. The revealer is shown an image and
a list of words, from which he selects an object name, chooses the definition (obtained
via WordNet) that best describes the sense in which that word is used in that particular
image, and outlines the object of interest using a combination of polygonal and freehand
segmentation, in order to progressively reveal an object in an image to the guesser. The
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guesser has to guess the name of the object (or a synonym) and may ask for hints during
the guessing process.

In another recent effort, Ni et al. [Feng 2012] have designed P-HOG (Purposive Hidden-
Object-Game), a single-player game in which the goal is to locate an object that has been
artificially embedded (i.e., hidden) within an image by drawing a bounding box around it.

More recently a game called Flash the fish has been introduced in [Di Salvo 2013]. This
game enables an easy and fast acquisition of video annotations. The users’ clicks (or points)
allow to locate fishes in the video but are not accurate and dense enough to properly segment
the animals in the video clips. An interesting idea that we also followed in our own GWAP
Ask’nSeek [Carlier 2012], is then to combine the clickstream from a game (e.g. Flash the
fish) with content analysis (simple object segmentation in [Di Salvo 2013]). This is what
we call combining “usage analysis” with “content analysis” in this thesis. The second half
of this chapter investigates how content analysis can complement human interactions.

2.2 When Content Analysis assists humans

In the previous section, we discussed how experts may supervise automatic content analysis
based on machine learning. We also showed how to enroll and manage a crowd of annota-
tors to perform human computation, explicitly or implicitly. We have reviewed some tools
with dedicated interfaces which ease the injection of high-level (i.e. semantic) expertise
while annotating a visual content. The ergonomics of such interfaces are important in all
situations but they especially matter in crowdsourcing scenarios, when non-experts may be
enrolled as annotators. Recently many content-aware visual interfaces have appeared, par-
ticularly in the Human-Computer Interaction community. These works demonstrate that
content analysis may enrich the interfaces, improve their ergonomics and eventually assist
the interacting users by moderating their cognitive involvement. Content-aware annotation
tools emerged in this context, leading to a very interesting closed loop:

• content-aware interfaces integrate content analysis to assist human annotators,

• human annotators assist content analysis through their interactions.

This is why human-in-the-loop approaches are now emerging both in computer vision
and multimedia leading to new opportunities and technical challenges [Grauman 2014].
In this second half of our related work chapter, we give an overview of this flourishing
topic. We first discuss influential content-aware visual interfaces (section 2.2.1) before
focusing on content-aware annotation tools (section 2.2.2). The latter is strongly related
to interactive segmentation models that we address in section 2.2.3. Finally, we review the
most important humans-in-the-loop approaches with a particular focus on active learning
techniques in section 2.2.4.
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2.2.1 Content-Aware Video Interfaces

In this paragraph, we highlight several content-aware interfaces for interactive video. Analy-
sis of video content to detect and track objects is highlighted by Goldman et al. [Goldman 2008]
as enabler for new interaction paradigms to browse and manipulate video. Examples include
dynamic video annotation and video navigation by direct manipulation. Direct manipula-
tion, also discussed by Dragicevic et al. [Dragicevic 2008], allows control of video playback
and access of nearby frames by directly clicking and dragging on moving objects in the
image space. In this context, moving ROIs must be first detected and tracked by computer
vision techniques. Figure 2.8 illustrates the idea of direct video manipulation.

Figure 2.8: Direct video manipulation [Dragicevic 2008]

Content analysis also enables hypervideo links [Shipman 2008], where links associated
to moving video objects allows a quick access to additional content.

Many new interactions are made possible by ROI detection, a fundamental problem in
content analysis. ROI are commonly detected using visual attention models. The works
by Goferman et al. [Goferman 2012], Han et al. [Han 2006] and Itti et al. [Itti 1998] are
representative in ROI detection on still images.

ROI detection can be applied to the temporal dimension; for example, it can consist
in looking for interesting space-time regions within a video. Detection of interesting or
important video segments (or shots) enables new video interactions such as those proposed
in the Smart Player [Cheng 2009]. The Smart Player adjusts the video playback speed based
on a predicted level of interest for each video shots. Both inter-frame motion estimations
and shot boundary detections are used to support automated fast-forwarding during less
interesting shots.

Vliegendhart et al. proposed the LikeLines interface [Vliegendhart 2012] which, in ad-
dition to the classical video interface, displays a heatmap of temporal regions of interest.
Users can use this LikeLine to browse the video, and their interactions are used to refine
the LikeLine which was initialized with content analysis.

In one of our recent work [Riegler 2014], we combined a tool to annotate videos with a
zoomable video player and the LikeLine interface. The resulting interface is a powerful tool
to create (for example) tutorial videos, that will then benefit from the LikeLine mechanism.
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Figure 2.9: The Smart Player Interface [Cheng 2009] (left) illustrated by scenic car driving
(right): a typical driver would go slowly to watch beautiful landscapes and faster when the
scenery is boring.

2.2.2 Content-Aware Annotation Interfaces

The previous examples illustrate how a smart use of content analysis can improve interfaces
ergonomics or create new interactions. In the image and video annotation community,
interfaces are also more and more content-aware as we will explain in this section.

Table 2.2 confronts the tools -cited in the previous section- for image and video analysis
and more recent interfaces that include content analysis. This non-exhaustive table is
nevertheless quite representative of the current state of the art.

Image annotation Video annotation
Without Caliph [Lux 2003, Lux 2009] ViPER-GT [Doermann 2000]
Content PhotoStuff [Halaschek-Wiener 2005] Anvil [Kipp 2010]
Analysis LabelMe [Russell 2008]) LabelMeVideo [Yuen 2009]

Content-Aware M-ontoMat-Annotizer [Petridis 2006] SVAS [Schallauer 2008]
Interfaces Markup-SVG [Kim 2011] PerLa [Kavasidis 2013]

Table 2.2: Annotation Interfaces with/without content analysis

As a general comment, one common feature of many annotation interfaces is a segmen-
tation tool, which allows a quick annotation of candidates segments or regions. Considering
the difficulty already mentioned earlier of the segmentation problem, many methods can be
used for such a task. The tools usually either propose candidate segmentations among which
the annotator can choose and annotate a segment; or it can also integrate a sursegmentation
of the visual content (e.g. a superpixels partition).

The MarkupSVG tool [Kim 2011] is interesting because of its use of the SVG format
as well as content-aware annotation features. It includes several Segmentation Assist Ac-
tion Modules, based on active contours or on Conditional Random Fields (which work at
the superpixel level, using superpixels segmentation from [Comaniciu 2002] or [Shi 2000]).
Modules can be easily integrated in the MarkupSVG interface, as can be seen on the screen-
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shot of this interface in figure 2.10.

Figure 2.10: Markup SVG - an online content-aware annotation tool [Kim 2011]

The M-ontoMat-Annotizer [Petridis 2006] is an older tool which integrates a Visual
Descriptor Extractor (namely the aceToolbox) that can extract descriptors in regions an-
notated by the user and bind them to semantic descriptors at the segment level.

The Semantic Video Annotation Suite (SVAS) [Schallauer 2008] developped at the Joan-
neum Research Institute in Austria integrates video manipulation tools and particularly a
shot and keyframe detector. The integrated Semantic Video Annotation Tool (SVAT)
assists annotators to locate specific regions in a keyframe with automatic image segmenta-
tion. It also provides a matching service to automate the detection of similar video objects
throughout the entire video content. The power of the tool relies on the complementarity
between content analysis algorithms (e.g. that detects sometimes too many keyframes) and
the users’ interactions (who can manually add or delete keyframes).

The recent PerLa [Kavasidis 2013] (for video annotation) also identifies candidates seg-
ments thanks to active contours algorithms. In addition PerLa embeds mechanisms for the
propagation of annotations that are considerably more sophisticated than the polygones
propagation techniques reported in section 2.1.

2.2.3 Interactive Segmentation

The annotation tools we have reviewed in the last section integrate visual content analysis
algorithms that assist the annotator. We have seen in particular that automatic segmen-
tation functionalities were very useful. The development of content-aware annotation tools
is therefore closely related to interactive segmentation techniques (for images as well as
videos and 3D content). The most popular interaction in interactive segmentation is un-
doubtedly the scribble. It consists in asking users to draw continuous lines that constraint
the algorithms to distinguish between an object’s foreground and the background.

Figure 2.11 illustrates the use of such scribbles in the iCoseg interface for co-segmentation
from [Batra 2011]. Blue scribbles are indicating foreground objects, whereas red scribbles
indicate background elements.
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Figure 2.11: Scribbles in ICoSeg [Batra 2011]

Even for such simple interactions, there are many questions that arise for a user: How
many scribbles are necessary? Are there optimal locations for scribbles? Should background
or foreground scribbles be favored? Only users’ experience and expertise can allow them to
interact efficiently with scribble-based interactive segmentation algorithms.

The foundational proposal in this domain was based on graph cuts [Boykov 2001]. The
algorithm considers every pixel as a node in a graph, connected to their spatial neighbors
by an edge whose weight depends on the visual similarity between pixels. In addition, every
pixel node is also connected to two special terminal nodes, each of them representing an
object or background label. Segmenting an object is equivalent to finding the min cut of the
graph, that is, those edges that once disconnected minimizes an energy function defined on
the two resulting sub-graphs. The user is expected to manually label some pixels (through
scribbles) to make the operation possible.

Other types of scribbles are sometimes used. In [Yang 2010], the authors proposed a
new type of scribbles providing soft segmentation constraints. This input type allows a user
to draw some “strokes” to indicate the region that the boundary should pass through.

Figure 2.12: Comparison between classical scribbles (left) and injection of soft strokes in
green (right) [Yang 2010]
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The graph cuts approach has been later expanded by other authors. A relevant contri-
bution was GrabCut [Rother 2004], an adaptation of the algorithm to color images which
applies an iterative minimization that reduces the user interaction. In this case the algo-
rithm relies on an initial labelling of background pixel by drawing a bounding box around
the object. The resulting segmentation can be edited using additional scribbles. A more
recent work [Gulshan 2010] has introduced geometrical constraints in the resulting shapes
so that the final segments adjust better to some priors.

Other solutions [Wang 2005] [Noma 2012] [McGuinness 2013] [Lee 2014] avoid the com-
putational load of a pixel-to-pixel segmentation by working with unsupervised image seg-
mentations performed offline. These solutions strongly rely on the region boundaries defined
by the segmentation algorithm, as they are assumed to capture all the semantics in the im-
age. These initial image partitions are usually configured to generate over-segmentations
from the semantic point of view, so that all object contours are included, but also many
additional ones which are to be removed through the interaction process. The process of
mapping user interaction to regions in the partitions is trivial, so that the pixel labels are
assigned to their corresponding region. For example, in [Wang 2005] a video is preprocessed
with a mean shift segmentation to later expand user scribbles with the min-cut algorithm.

Hierarchical image partitions have been repeatedly used in this domain because they
provide an expansion criterion for the seeds [Salembier 2000] [Adamek 2006] [Arbelaez 2008]
[Giro-i Nieto 2013]. These image representations correspond to a tree whose leaves are the
regions of a fine partition of the image and the root correspond to the whole image. Every
node in the tree correspond to a new region resulting from the merge of two regions from
a lower level. When one or multiple labels are assigned to a leaf node, the merging history
contained in the tree provides a decision criterion about their expansion to their neighboring
regions.

The comparative study in [McGuinness 2010] indicated similar accuracy labels for Grab-
Cut [Rother 2004] and hierarchical solutions [Salembier 2000] [Adamek 2006], but a faster
response for the latter ones.

All these works that focused on image interactive segmentation have later been gen-
eralized to video segmentation [Price 2009, Chen 2012] and to 3D content segmentation
[Price 2011, Malmberg 2012].

On the related topic of object co-segmentation, which consists in segmenting the same
object in multiple images that feature this object, it is worth describing iCoseg [Batra 2010].
In this paper, the authors also allow users to draw scribbles on images to annotate back-
ground and foreground. The scribbles on one image are used to co-segment all images that
show the same object. In addition, the authors use an active learning formulation that al-
lows the system to automatically detect the areas that would lead to the most informative
scribbles, and propose it to the users. This active recommendation system is illustrated in
figure 2.13 where a candidate region for a next scribble is suggested to the user. This region
is identified as the most discriminant one by the computer vision algorithm.
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Figure 2.13: Next scribble region suggestion in ICoSeg [Batra 2011]

This algorithm belongs to a class of approaches known as active learning: the human
annotation is guided by the algorithm’s suggestions, making the algorithm active in its
learning process. Other recent works have performed interactive segmentation while follow-
ing active learning guidelines [Wang 2013a].

In the next section we give a more detailed overview of the utilization of active learning
techniques in works that emphasize on the collaboration between a content analysis system
and users.

2.2.4 Active Learning and Humans-in-the-loop approaches

Figure 2.14: The pool-based active learning loop from [Settles 2010]

As suggested by figure 2.14, the ultimate level of interaction between automatic content
analysis and human annotations takes the form of a closed loop. The fundamental idea of
active learning techniques is to try to obtain the best possible inference performances (on
a test set, i.e. new, unlabelled data) for a supervised learning system that can be modelled
as:

f ∈ X → prediction model h → ŷ = h(f) ∈ Y
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but with a reduced learning set {(fi, yi)}i=1...n (i.e. with n as small as possible). To achieve
this goal, the learning data is actively and sequentially chosen by the algorithm which
then requests to a human expert (or oracle, see figure 2.14) the annotation of this training
data. It has been shown in section 2.1.2 that gathering annotated data (by crowdsourcing
from example) can be a tedious and costly process. It is not efficient (and sometimes
counterproductive) to use redundant annotation data when an oracle can provide more
insightful data at the same cost. It seems natural that the algorithm which is actually
building the classifier should determine the annotations to request from an expert. The
algorithms usually determine the next query by optimizing one of many possible criteria.
These criteria, which have for the most part a solid mathematical background, are explained
in more details in Burr Settles survey [Settles 2010].

The general intuitive idea is that a good annotation should reduce the potential am-
biguities of the prediction model. There are several strategies that can guide the choice
of the next query. The uncertainty sampling technique consists in querying annotations
yj ∈ Y of data fj located around frontiers between different categories, as predicted by
h. In pool-based sampling, algorithms define and evaluate an informativeness (or utility)
measure to choose from a pool of unlabeled data which one would bring the most useful
(or informative) annotation.

There are many more strategies identified by [Settles 2010]:

• Query by commitee: this approach involves maintaining a committee of prediction
models {h1, h2, . . . hC} all trained on the current labeled data {(fi, yi)}i=1...n but
representing complementary hypotheses. Each prediction model is allowed to vote for
incorporating a new unlabeled data picked out from a pool of K query candidates
fn+1 . . . fn+1K . The most informative query is considered to be the candidate about
which they most disagree.

• Expected model change: in this strategy, the selected instance is the one that would
imply the greatest change of the model if we knew its label (e.g the greatest impact
on the current parameters of h if its is parametric ).

• Expected error reduction: as clearly suggested by its name, the selected instance is
the one that best reduces the expected prediction error (EPE) of h on new data (e.g.
minimizing Ef ,y[l(h(f), y)] for a given loss l).

• Variance reduction: in this case, the instance minimizes the variance term hidden
(along with the bias) in the expected prediction error EPE.

• Density-weighted methods: in this strategy, minimizing the generalization error (i.e.
EPE) or reducing its variance related portion is only done for representative instances
according to a modeled distribution p(X ) of f features in input space X . Outlying
instances lying in low density areas are then avoided.
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All those approaches have an interesting potential to limit the human involvement during
annotation and to only trigger queries to humans where it is most crucial. Besides these
multiple strategies, Settles also discusses practical questions about how to use non-experts
(or even noisy experts) in active learning. Key questions are: when should the algorithm
decide to query for the potentially noisy label of new unlabeled instances? When should
it query for repeated labels to dnoise an existing uncertain training instance? How does
annotation quality vary over time? etc.

Several recent studies implement active learning techniques to build annotated visual
datasets. Kristen Grauman, in her very recent publication [Vijayanarasimhan 2014], ex-
tends a CVPR’11 publication where she presented, with Vijayanarasimhan, an active learn-
ing approach for live learning of object detectors. The basic idea is to use active learning to
train window-based detectors based on SVMs. This is actually challenging since the object
extents (i.e. the windows sizes) are unknown in the unlabeled instances. In other words
the active learning is done at the level of an object and not at the level of entire image.
An immediate interpretation of the previously introduced active learning principles would
lead to evaluate all possible windows within an image in order to choose the most uncertain
(following the uncertainty sampling idea). This is impossible since it would lead to ex-
haustively evaluating a prohibitively large unlabeled pool of instances. Instead, a jumping
window method speeds up the candidate windows generation. This generation is further
improved using a hashing scheme and the active selection is eventually performed with a
SVM margin criterion (which encodes the uncertainty). We clearly see that content analysis
(i.e. the current margin for any instance) assists the subsequent human interventions in a
closed loop (figure 2.14).

The same authors also investigated active learning for video annotations [Vijayanarasimhan 2012].
Manually segmenting and labeling video objects is tedious and we already underlined the
need for propagation techniques to alleviate many difficulties. In [Vijayanarasimhan 2012],
active learning is used to actively select the keyframe on which pixel level annotations will
be manually done before propagation. The raised research questions are the following: how
many keyframes should be optimally labelled? Which keyframes should be annotated? Fol-
lowing the previous active learning methods, the authors typically look for the most useful
frames such that some expected labeling errors are minimized. Their method keeps the
number of selected frames low and ensures that after propagation minimal human interven-
tion is required.

In [Kovashka 2011], the same group from Austin introduces new possibilities for actively
teaching object recognition systems. The key idea is that different queries can help: why
should we systematically ask questions like “what is the category of this image ?”, “what is
this object ?” In [Vijayanarasimhan 2014], we already saw that querying at object level (and
not at image level) can be an interesting functionality. More generally, the queries in active
learning shouldn’t be seen as monolithic or indivisible. Kovashka et al. [Kovashka 2011]
propose to actively select image annotation requests among object category labels and
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attribute labels. By object labels, they mean usual object names like house, phone, dog,
etc. whereas attribute labels might include emphwooden, furry, red, etc.. Using both types
of query they try to reduce total uncertainty for multi-class object predictions. During one
active learning loop a human may be asked to name an object and then may be asked to
state whether a particular attribute is present in the next cycle. It is worth noticing that
accounting for dependencies between labels on the same image is not straightforward yet
useful in active learning.

In the same spirit, selecting the best type of active query in a humans-in-the-loop
approach for object recognition has been investigated in depth within visipedia project.
Visipedia (see http://www.vision.caltech.edu/visipedia/) is a joint project between
Pietro Perona’s Vision Group at Caltech and Serge Belongie’s Vision Group at UCSD.
Visipedia, short for “Visual Encyclopedia”, is an augmented version of Wikipedia, where
pictures are first-class citizens alongside text. The goals of Visipedia include creation of
hyperlinked, interactive images embedded in Wikipedia articles, scalable representations of
visual knowledge, largescale machine vision datasets, and visual search capabilities. Toward
achieving these goals, Visipedia advocates interaction and collaboration between machine
vision and human users and experts.

Figure 2.15: Fine-grained object recognition [Branson 2010]

In one of the visipedia sub-projects, object recognition is investigated under its so-called
fine-grained variant. Fine-grained object recognition consists in differentiating different sub-
categories in a same class. In the works we describe here, the authors study the case of
birds species. In this example, object recognition would consist in recognizing that the
object is a bird, and fine- grained recognition would consist in recogning to what specie the
bird belongs to (figure 2.15). Fine-grained recognition is a very hard problem, since the
objects the algorithms must differentiate look alike: they have the same shape, the same
attributes, sometimes even the same color and texture.

Distinguishing between finch and bunting is difficult for most people (see part B of figure
2.15), but is doable by people with the appropriate expertise. The key idea is that answering
alternative questions of part C (yellow belly ? vs. blue belly ? is also feasible for non-experts
and can definitely help a computer recognition system. In [Branson 2010], the proposed
classification method can be seen as a visual version of the 20 questions game, where
questions based on simple visual attributes are posed interactively (http://www.20q.net).

31

http://www.vision.caltech.edu/visipedia/
http://www.20q.net


Figure 2.16: [Branson 2010] Visual recognition with humans in the loop

For Branson et al. the goal is to identify the true class while minimizing the number of
questions asked, using the visual content of the image. Incorporating user input drives
up recognition accuracy to levels that are good enough for practical applications; at the
same time, computer vision reduces the amount of human interaction required. Following
active learning rules, the resulting humans-in-the-loop system is able to handle difficult,
large multi-class problems with tightly-related categories. In figure 2.16, the conditional
distribution over fine-grained classes is illustrated. The optimized sequence of questions
obviously allows to reduce the distribution entropy and eventually converges towards a
reliable recognition. This work has been integrated in [Branson 2014] with an interactive
labeling of deformable-part model presented in [Branson 2011].

In the visipedia project, the quality of the crowdsourced labels has also be studied. An
online algorithm has been proposed in [Welinder 2010] to determine the most likely value
of the expected labels from multiple noisy annotations. As a by-product the algorithm
produces an estimate of annotator expertise and reliability. It actively selects which images
to label based on the uncertainty of their estimated ground truth values, and the desired
level of confidence.

To conclude this section in which we reviewed closed loop techniques where content
analysis helps making the optimal decisions about human interventions (e.g. annotations,
responses to well chosen queries), we can get back to the key message highlighting that
humans become assistants to computer algorithms and, reciprocally, computer algorithms
improve human efficiency. By mingling the power of crowdsourcing and the potential of au-
tomatically computed informations (edge detection, trimaps computation, object candidate
production), Vittayakorn and Hays [Vittayakorn 2011] defend powerful annotation scoring
functions that practically bridge the gap between both halves of our related work chapter.

2.3 Summary and Conclusion

In this chapter we have reviewed part of the state of the art in visual content understanding.
We have focused our attention on techniques that involve humans at some point in the
process. Involving humans in such tasks is probably the only way to go beyond the semantic
gap that still remains a challenge in many domains.

First we have explained how annotation interfaces allow the gathering of large visual
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content datasets augmented with ground truth solutions to visual content understanding
problems. We have shown how these datasets can then be used, in the supervised machine
learning paradigm, as training data for content analysis to learn how to associate high
level information to low-level visual features. We have also described the emergence of
new communities that study the problems inherent to the process of outsourcing tasks to a
crowd of users. The challenges of motivating users as well as controlling their inputs quality
have been explored. And we have finally briefly introduced a class of algorithms that try
to infer knowledge from implicit users interactions.

Then we have shown how the traditional content analysis techniques could come handy
in helping users annotating content. We have described annotation tools that diminish
the need for users contributions by either providing assistance (e.g. candidate segments to
be annotated) or expanding users inputs (e.g. segments propagation in PerLa). We also
reviewed algorithms for interactive segmentation and co-segmentation that try to minimize
the amount of interactions needed from users while obtaining the best possible segments.
And we have concluded by describing one of the latest tendencies in visual content un-
derstanding, that takes advantage of the active learning paradigm to request only optimal
annotations from users.

All these works perfectly contextualize our own contributions. In the same spirit, we
have studied how to infer semantic knowledge (Regions of Interest) from implicit user
interactions. This set of contributions constitute part I of this dissertation. The regions
of interest are then used to feed several applications such as video retargeting or video
mashups, and to build new interfaces that can also be used to gather mroe information
about the contents (zoomable video player, video query interface).

In the part II of this thesis, we study problems that require a higher level of semantic
information: object detection and image segmentation. We are interested in particular in
comparing the performances of different classes of users, such as experts and non-experts.
We also introduce a Game With A Purpose through which users provide information about
images. We study how this tool for collecting implicit users interactions can be used to per-
form image segmentation and object detection, and we address this fundamental question:
what are the benefits and drawbacks of implicit interactive techniques?
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Part I

Regions of Interest Detection
from the Crowd
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Regions of Interest Detection from the
Crowd: Overview'
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Detecting the Regions of Interest (referred to as ROI from now on) of a visual content
usually constitutes the first step towards understanding their visual content. This
problem can be mapped to the saliency detection problem, in which algorithms try
to model the human vision system to detect regions (within images or videos) that
will attract the human eye’s attention. ROI and saliency detection typically produce
outputs that are similar in nature. A saliency map (resp. an interest map) is a black
and white image that indicate for each pixel its level of saliency (resp. of interest).
The main difference is that an interest map has more semantic meaning than a saliency
map, since the notion of interest implies that the content has been understood – even
partially – by humans.
In this part, we argue that ROIs can be inferred through an analysis of how humans
interact with visual information (images or videos) through specific interfaces. We
also show that an automatic analysis of the image or video brings additional and
complementary information, which makes the combination of usage analysis with
content analysis very relevant in this context.
Our contributions are divided into two chapters. In chapter 3 we focus on the inter-
faces and algorithms to produce interest maps, both in 2D and in 3D. In chapter 4,
we present and evaluate some applications that benefit from interest maps.
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Detecting regions of interest (ROI) is a fundamental step for visual content understand-
ing. First it reduces the complexity of the task since understanding a visual content’s ROI
should be sufficient to understand the content itself. In addition the detected ROI contain
enough semantic information to be used in an application, as will be shown in chapter 4.

ROI detection is a difficult problem because it involves - at least partially - a semantic
understanding of the scene. It also implies a knowledge of the consumer’s (the human who
watches the visual content) motivations. How to know what users would find interesting if
we do not know why they watch the content in the first place?

Since it is very hard to perform ROI detection automatically, a natural idea is therefore
to involve humans in the process. The task of determining ROI is rather simple to a human.
The only issue is that the notion of interest is subjective, and very much dependent of each
individual. This means that ROI determined by one user may not be valid for the majority
of users.

This is why in this chapter we will describe how to find ROI by engaging a crowd of
users. The contributions of many different users (a process known as “human computation”)
allows us to produce a more accurate list of ROI. In this chapter, we also present how to
obtain the contributions from users in an implicit manner, through the use of interfaces.
We use a Zoomable Video Player in sections 3.1.2 and 3.2.1, and we argue in section 3.3
that the collective actions of shooting videos at a public event reveals the humans interest
on the scene.
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3.1 Crowdsourcing ROI using Zoomable Video Player

3.1.1 Zoomable Video

Zoomable video is a term coined by Ngo et. al [Quang Minh Khiem 2010] to refer a video
that is encoded and stored at multiple resolutions and supports dynamic cropping and
random access into the spatial region in the video. Besides normal operation in the temporal
dimension such as play, pause, fast forward, a zoomable video supports two new types of
operation: zoom and pan. Users view a zoomable video with a display size that is smaller
than the maximum resolution of the video (see figure 3.1). Zooming allows users to magnify
a selected region in the video without loss of resolution (up to a maximum zoom level) and
panning allows user to move the zoomed in region spatially around the video. Zooming and
panning can occur even when the video is playing.

Figure 3.1: A use case scenario for the zoomable video player.

Zoomable videos are very helpful in situations where display devices are computation-
ally constrained by the ability to decode and render high resolution video. Zoomable videos
are also useful in cases where devices have access to streamed video over a low bandwidth
network interface, resulting in the inability to stream bandwidth intensive high resolution
video. Traditionally, computational and bandwidth constraints have been handled by scal-
ing down the video temporally, spatially and in quality. Such an approach would result in
loss of information, despite the fact that the capture devices were able to record the video at
very high resolution. Zoomable video provides an alternative where users can select regions
of interest from a low resolution video and view these regions at higher resolution. Such
a scheme can satisfy both bandwidth and computational constraints in a more scalable
fashion.

A zoomable video system can be built using a bit-stream switching architecture. The
high resolution video is encoded at multiple resolutions. The lowest resolution video is first
accessed and displayed to the user. When a user wishes to view a specific region at a higher
resolution, user’s intent is represented as a rectangular viewport. This viewport is first
mapped to a higher resolution layer. Then a region corresponding to the specified viewport

41



is cropped from the higher resolution layer, and presented to the user.
The key requirement is the ability for dynamic cropping, which can be a challenge in

encoded video. Methods to handle dynamic cropping and other issues related to streaming
of zoomable video have been presented in [Quang Minh Khiem 2010].

The fundamental idea of our work is that users, when provided with a zoomable video
player, will use it to visualize the regions they are the most interested in. In other words by
interacting with the player, users choose to restrict their viewing window to a smaller and
more interesting sub-region of the frame, thus pointing out the ROI. This idea is similar in
essence to the works introduced in section 2.1.3.

3.1.2 Zoomable Video Player and Data Collection

We first describe how we collected a first generation of traces (in 2010) of viewports selected
by users via our zoomable video player.

Figure 3.2: User interface of the zoomable video player

Figure 3.2 shows a screenshot of the zoomable video player. A video display of size
320 × 180 can be found on top. The small view display simulates the scenario where a
video is watched under resource constraints (low bandwidth, or small screen size, or low
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decoding capability). The lower left corner of the interface contains a thumbnail window
of size 160× 90. The thumbnail always display a scaled down version of the source video.
The user’s viewport is shown in white whenever users zoom in, to provide the users with
the context. A viewport is a rectangular window that materializes the region currently
visualized by a user. The lower right corner shows some control buttons where the users
can click to zoom and pan, as an alternative to using the mouse.

Video sequences in our system are of a HD resolution (1920 × 1080). By default (zoom
level 0), the video is scaled down for playback in the video display. At this zoom level, the
user can view the whole video, although with a lower level of detail. Five levels of zoom are
supported (levels 1 to 5). Viewing a region at a higher zoom level is equivalent to viewing a
cropped region of size 320 × 180 from a higher resolution version of the video. For instance,
at zoom level 5, users see a 320 × 180 region from the original source video. At zoom level
4, users see a 640 × 360 region from the original HD video scaled down to fit the 320 ×
180 window. Users can use either the + or − buttons or the scroll wheel on the mouse to
zoom in and out.

Users, after zooming in, can drag the mouse on the video display to pan. They may
also use the arrow buttons for finer grain control of the panning. Users can pan anywhere
within the content of the original HD video.

Despite using user interfaces that are similar to those used by other zooming interfaces
(e.g., Google Earth), we found in our initial deployment that many users tend to play
around with the different possibilities of the user interface. To prevent this, we have asked
the users that use our system to watch an instructional video, showing them on how to use
the interface. After watching the video, we force our users to go through a small practice
session, in which they are asked to complete a step-by-step tutorial on how to use the user
interface. The practice session must be completed before users can start watching any
zoomable video.

The system logs all mouse and keyboard operations performed by the users, along
with their timestamp, when they watch the zoomable video (the interactions from practice
sessions are not logged). From these logs, one can replay the users’ zoom and pan action,
as well as determine the viewport of each user on each frame.

3.1.3 Region of Interest Modeling

We now describe how we detect and model the ROI from the logs of users’ interactions
with a zoomable video player. We first construct a user interest map by aggregating the
selected viewing regions from multiple viewers. This user interest map, or heat map, might
yield multiple hotspots – regions that are popularly viewed by the users. The challenge
then is to extract ROIs based on these hotspots. With the video retargeting application in
mind (section 4.1), we also want to extract some viewports of interest (see second row of
figure 3.3). Viewports of interest are regions that contain one or several ROIs and that are
candidates to appear in the retargeted video.
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Figure 3.3: Approach overview: four frames and a few viewports (first column), heatmaps
and detected viewport of interest (second column), retargeted frames including reframing
techniques (last column). (Note that the lecturer’s eye are redacted for anonymous review).

User interest map construction
During playback, for any frame, each user chooses a rectangular viewing window (i.e.,

viewport) via zoom and pan. We observed that users naturally center the window (e.g. the
focus) on their preferred regions. Thus each pixel from a viewing window does not have
the same interest level. The closer a pixel is to the window’s center, the higher should its
contribution to the user interest map be. In line with previous work [Han 2006], we model
the pixel-wise interest levels using gaussian probability density functions (pdf). Figure 3.4
illustrates our method. A viewing window centered on µ = (u, v)T is shown superposed
on a frame. We also plot the gaussian pdf with the same center and a covariance matrix
Σ that fits well with the viewing window. Theoretically the matrix Σ is chosen such that
the ellipse whose equation is dM (x, µ)2 = (x − µ)TΣ−1(x − µ) = 13.8 is tangent to the
viewing window VW1. As a consequence, we have a gaussian weight at each pixel and a
gaussian elliptical footprint for the associated viewing window (Figure 3.4). Now we have
to aggregate the data from multiple viewers to produce our user interest map. We simply
blend the footprints by accumulating gaussian weights and normalize the result by dividing

1The threshold comes from the Mahalanobis distance d2
M ∼ χ2

2 such that ∀x ∈ VW P{dM (x, µ)2) ≤
13.8} ≥ 0.999
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it by the number of windows involved for each pixel.

Figure 3.4: Gaussian weights within a viewing window

Middle column of Figure 3.3 shows typical heat maps: the dark areas represent less
popular regions in the video frame, whereas brighter areas have cumulated many votes and
highlight preferred regions of interest. The clustering of hotspots indicates that users tend
to agree on the most interesting regions, with only a slight variations on zoom factor and
focus. Less important ROIs may differ from viewer to viewer. Another heat map example
is given by Figure 3.5, extracted from another test video (depicting a magic trick). At this
stage the reader should ignore the green annotations, to be explained later.

Figure 3.5: Viewports for a magic trick video (left) and multiple starts of Mean Shift,
converging to two modes (right), on the corresponding user interest map.

Modeling ROIs as a Gaussian Mixture Model
The next step is to extract ROIs. There are many possible techniques to detect and

model ROIs of a heat map. Huang et al. [Huang 2009] cite three main approaches: a simple
binary mask, a set of focus points (FOA - focus of attention), an importance map viewed
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as a probability density function using a mixture distribution. We favor the letter in this
work, and in the whole chapter.

We used Gaussian Mixture Models (GMM) to model interest maps because of their
multiple good properties:

• Easy aggregation of different contributions.

• Natural emergence of the concept of popularity for a ROI.

• Approximation of any interest distribution.

• Extension to higher dimensions (see section 3.3 for an example of the use of 3D GMM).

• Simplification (reduction of the number of gaussians in the mixture).

GMM simplification is one of the key aspects of our work, since we aggregate contribu-
tions of multiple users and extract a few (typically, from 1 to 4) ROIs. The main drawback
of GMM is the complexity of the estimation of its multiple parameters: we explain later in
this section how we proceed.

Keeping in mind our video retargeting application (in section 4.1.2 we will see that
modeling the ROI dynamics using a mixture model proves to be rather simple), we aim
at modeling the heat map at frame t as a GMM involving K ROIs. We assume that the
interest location variable x ∈ R2 leading to a heat map follows a GMM pdf:

p(x|θt) =
K∑
j=1

ωt,j p(x|µt,j ,Σt,j) (3.1)

where ωt,j are the relative importance weights of the K ROIs considered at frame t
and subject to ωt,j > 0 and

∑K
j=1 ωt,j = 1. Each ROI’s density is a normal probability

distribution :

p(x|µt,j ,Σt,j) =

exp

−1
2(x− µt,j)TΣt,j−1(x− µt,j)


(2π) |Σt,j |1/2 (3.2)

where µt,j and Σt,j are the moments of the jth gaussian ROI at frame t. The global
set of parameters for frame t is θt = {ωt,1 . . . ωt,K , µt,1 . . . µt,K ,Σt,1 . . .Σt,K}. One may
think that it is straightforward to estimate θt by EM (Expectation Maximization) but a
major question that remains is the correct value for K (the number of ROIs). This can
be formally expressed as a model selection problem [Huang 2009] but we actually show
that a non parametric clustering technique and a smart method for the covariance matrix
estimation fits better our need.

Parameters estimation and ROI detection
We use the Mean Shift Clustering technique [Comaniciu 2002] to automatically find the

K modes (peaks of the heat map) and to subsequently assign pixel locations to the associ-
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ated K clusters. The basic Mean Shift procedure starts from a pixel point and converges
towards a stationary point of the density function (see the green traces corresponding to
multiple starts on the figure 3.5 (bottom)). The set of all pixels that converge to the same
mode defines a cluster. The method does not require prior knowledge except one parameter:
the kernel bandwidth. A value of ξd = 60 pixels was selected since it is the right distance
to separate significantly different viewing windows in full HD images.

Once we have the modes µt,j , we also need good covariance matrices that produce ROIs
well centered around the modes and small enough (in order to get a good attention window).
We estimate each Σt,j with the Minimum Covariance Determinant (MCD) estimator. This
estimator is basically a robust estimator that allows to cope with outlying or spread data.
Its principle consists in finding a covariance matrix able to capture a maximum amount of
interest while having the smallest area. As previously mentioned, the area is proportional
to the covariance determinant that is minimized by our MCD estimation for Σt,j . Moreover,
the weigths ωt,j are taken proportional to the clusters’ sizes. The GMM parameters set θt
is now fully defined. Figure 3.5 (top) shows two gaussians centered on the two modes (red
points). Each gaussian is represented by a set of iso-values, the biggest one being tangent
to the detected rectangular ROI.

3.1.4 Evaluation

We choose to evaluate our ROIs through the video retargeting use case. Indeed the visual
quality and interestingness of a retargeted video - computed as described in section 4.1 -
depends a lot on the quality of the ROIs. In other words, validating our video retargeting
algorithm will also validate the quality of our ROIs. We present such an evaluation in
section 4.1.4.

Nevertheless, we can say a few words about the zoomable video player introduced ear-
lier (section 3.1.2). We have tested the player in multiple user studies ([Carlier 2010b,
Quang Minh Khiem 2010, Carlier 2010a, Carlier 2011a]). The videos we have used during
these studies share important features: they are HD videos (1920× 1080 pixels) shot with
fixed cameras. We worked on 5 different sets of videos:

• Lectures: they feature a teacher who comments slides and writes on a board (e.g.
figure 3.3).

• Magic tricks: they feature a magician along with his assistant who performs simple
tricks (e.g. figure 3.5).

• Gymnastic: this video features a group of performers who dance on a mat (e.g. figure
3.2).

• Longjump: these videos feature the end of a runway and a sand pit where an athlete
is jumping (e.g. figure 3.12).
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• Coffeelounge: this video features a group of persons interacting in a coffee lounge (e.g.
3.7).

We learned two principal facts from these studies. First our zoomable video player
(figure 3.2) offers too many ways of doing the same interaction. Very few users utilize
the inferior components of the interface (the thumbnail and the buttons). Users tend to
interact directly on the video frame, very much like they would interact on an image. In
the subsequent version (see section 3.2) of the zoomable video player, we removed these
components.

A second interesting result that came out of the studies is the difficulty to interact with
a video that displays a lot of movement. Typically, the lectures videos have a very static
content: the teacher seldom moves, and often stays at the same position to write on the
board for example. Users dis not have any problems to interact on these videos. Conversely,
the sports videos (such as Gymnastic or Longjump) feature moving objects of interest, that
force users to interact heavily in order to keep the ROIs in their viewports.

This issue is at the heart of the work presented in the next section, in which we introduce
interactions based on content analysis to help users visualize moving objects.

3.1.5 Summary and Conclusion

We have introduced an algorithm to produce user interest maps from a zoomable video
player’s browsing history. Since users tend to naturally zoom into interesting regions within
the videos, this aspect can be exploited, allowing us to use the aggregation of users’ view-
ports to build interest maps. We then detect the hotspots of this interest map using the
Mean-Shift algorithm, to obtain a set of ROIs. The ROIs are modelled by a mixture of
Gaussians where each Gaussian is associated to an ROI.

In section 4.1 we will explain how we use the resulting ROIs to produce a retargeted
video. This work was published at ACM Multimedia 2010 [Carlier 2010a].

Note that the ROI detection presented here is only based on an analysis of users’ in-
puts. It seems a good idea to include some automatically inferred information about the
video. This is the purpose of the next section, in which we will bias users’ interactions by
introducing content-based recommended viewports.
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3.2 Content-Aware Zoomable Video Player

In this section, we introduce a new zoomable video player that features recommendations.
The recommendations aim at providing easier users’ interactions, and are computed us-
ing content analysis. In a second phase, recommendations are recomputed to take into
account interest maps obtained from users’ interactions. We show in our evaluations that
the new zoomable video interface with recommendations is helpful to users, and that the
combination of content analysis with user interest maps gives the best recommendations.

3.2.1 Recommended Viewports in Zoomable Video

(a) Original Frame (b) Saliency Map

(c) Motion Map (d) Face Map

Figure 3.6: Content Analysis

This section gives an introduction to the notion of recommended viewport in zoomable
video. We describe how a user would interact with the zoomable video using recommended
viewport, and defer the discussion of how the recommended viewport is computed to the
next section.

Recommended Viewport A key feature in our proposed interaction is the recom-
mended viewport, which corresponds to interesting objects or events in the video, and is a
region in the video that the user is likely to zoom into. Hovering the mouse over a recom-
mended viewport reveals a white semi-transparent rectangular box (see figure 3.7). The
user can zoom into the region by left-clicking the recommended viewport with the mouse
button. When the mouse cursor hovers over one or more recommended viewports that
overlap, only the most important recommended viewport is shown.
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Figure 3.7: Zoomable Video Interface with Recommended Viewports

Users can left click outside of a recommended viewport to zoom in. In this case, the
new viewport of the user is placed such that the center of the viewport is the coordinate of
the mouse click. Right-clicking anywhere of the video zooms out.

The recommended viewport automatically moves to track a moving object of interest.
If the user’s current viewport is one that matches the recommended viewport (by clicking
inside a recommended viewport), the user viewport pans automatically along with the
recommended viewport.

One design decision we make is to limit the number of recommended viewports per zoom
level to three. While using recommended viewport helps users to place their viewport easily
with a single mouse click, it also restricts the viewport placement. Presenting too many
recommended viewports to the users is not only too inflexible, but can also be confusing.
We choose the value of three since we observe that in a typical video there are rarely more
than three events of interest at the same time. Of course, this number can be configured
to be higher depending on the content.

Implementation We implemented our interface on a Web browser using HTML5. The
webpage is minimalist in design, and shows only a video canvas of size 320 × 180 and a
play/pause button along with the current playback time. Videos of resolution 1920× 1080
are loaded along with a JSON file that contains the recommended viewports. A Javascript
crops and scale the video for display in the canvas, as well as highlights the recommended
viewport according to the JSON file (when hovered by the mouse).
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A critical ingredient to the success of our approach is the quality of the recommended
viewports. In the next two sections, we detail how we combine content analysis and crowd-
sourcing to compute the recommended viewports.

3.2.2 Content-based Analysis

The recommended viewports are determined based on a sequence of content analysis steps.
We use saliency, and motion in the frame as the two main criteria to determine the possible
regions of interest (ROI), which then serve as the recommended viewports. In cases where a
face can be detected, face position is used as an additional criterion. Saliency is determined
using the visual saliency features described in [Montabone 2010]. These features have shown
good results for human detection, and hence the saliency is biased towards the presence of
human or human-like objects in the video. Figure 3.6(b) shows an example saliency map.

Motion saliency is based on a moving average of frame differences and is similar to the
work in [Wang 2009]. A single channel disparity image of two successive frames is added to
a moving average and used in place of the current frame. As a result the long-term motion
pattern is available in a single frame. Figure 3.6(c) shows what a motion saliency map looks
like.

Face detection, for both frontal and profile faces, is done using the Viola-Jones face
detector [Viola 2001]. We track faces across frames using a hue histogram of the detected
face, with the CAMShift algorithm. Figure 3.6(d) shows the result of face detection.

Importance Maps Each video frame is now represented by three maps, one for each
criteria mentioned above. The pixel values are single channel quantities ranging between 0
and 1. The frames representing the three criteria are linearly combined to give an importance
map I. Dittrich et al [Dittrich 2013] explain in their work that linear combination is not
the only possibility for the combination, but is the most often used.

The weights assigned for linear combination may be obtained in many ways. One
approach is to weigh all criteria equally. Alternatively, one may analyze each video and
determine the weights empirically. In our experiments, we use empirically derived weights
0.7 for motion, 0.2 for saliency, and 0.1 for faces. Finally, a more formal approach would be
to use a training-testing model with least squares approximation for the solution. Let Si,j
, Mi,j , Fi,j represent the saliency, motion, and face measures for the pixels at i, j in their
respective maps. Then I(i, j) is αSi,j+βMi,j+γFi,j . Further, if we have N ROIs generated
by human subjects as described in [Ngo 2011], and the probability pi of a user choosing the
ith ROI is known, then the problem of finding weights may be written as the solution to
a linear system of equations Ax = P . Here xT = [α, β, γ], PT = [p1, p2, ..., pN ] and A is a
N × 3 matrix. Each element ai,1 in the first column of A represents the cumulative sum
of saliency of all pixels in the ith ROI. Similarly the second and the third columns are for
motion and face values. The least squares solution to Ax = P is computed by the classic
Moore-Penrose pseudo inverse.

Clustering of Important Regions The next step is to cluster pixel elements in the
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(a) Bad Cut (b) Good Cut

Figure 3.8: Frames Showing a Bad Cut and a Good Cut

importance map to reveal regions that are candidate ROIs. The pixel elements in the
importance map of every image are selected based on a threshold. Selected pixels are
clustered using Mean-Shift ([Comaniciu 2002]) clustering algorithm. We chose a 60 pixels
bandwidth in our implementation since it allows to detect significantly different viewports
in 1920 × 1080 videos. Once clustering is performed, the candidate ROIs are determined
at each zoom level. All ROIs at a particular zoom level have the same dimensions, i.e., the
dimension of the corresponding viewport at that zoom level.

A ROI is a good candidate if it encloses as many cluster points as possible without
leaving out cluster points. Hence we need a measure to quantify the extent to which a
viewport cuts a cluster into two or more parts. We define a term called the cut of a
viewport. If a viewport does not cut a cluster, then its cut is very high. The concept of
using a cut has been proposed in earlier work [Itti 1998, Liu 2006, El-Alfy 2007], but we
use the notion of cut in conjunction with clustering to minimize cuts to the top portion of
an object. Such an approach is better suited to aesthetically present human-like objects
without cutting body parts. Figure 3.8(a) shows a case where the viewport cuts the clusters
into two parts. There is a cluster region enclosed within the viewport, and the remaining
cluster points fall outside the viewport. The region within the viewport encloses the lower
part of two human subjects whose presence may be identified by the structure of the clusters
shown. Hence, this viewport should be penalized. On the other hand figure 3.8(b) shows a
viewport cutting a cluster such that the upper portion of the human subjects is enclosed,
and the lower portions are cut out of the scene. This viewport should be treated favourably
in comparison to the previous case. Hence the cut of a viewport should also account for
how the cut is performed.

We now formally define how the cut is computed. For a frame f , let Cf represent all
the cluster centroids in f . Let E(c), where c ∈ Cf , be the set of pixels clustered around
centroid c. Then CUT (Vf , f), the cut of viewport Vf with top left coordinate (vx, vy) and
height h (See also Fig 3.9(a)), is a measure for the extent to which E(c) is fully contained
within Vf :

CUT (Vf , f) =
∑
c∈Cf

∑
p∈E(c) W (p, Vf )∑

c∈Cf
|E(c)|
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(a) Coordinates (b) Cut Weights

Figure 3.9: Viewport Coordinate System and Weight Assignment for a Cut

where W (p, Vf ) with p at coordinate (x, y) is given by

W (p, Vf ) =


1 ifp ∈ Vf

1− ε ify > vy + h

φ ify < vy

ρ otherwise

and 1 > 1 − ε >> ρ > φ (See also Fig 3.9(b)). CUT (Vf , f) reaches a maximum value of
one when Vf contains all cluster points.

Our goal is to find the best viewports that maximize CUT (Vf , f). This step is achieved
by evaluating all candidate viewports and selecting a few that have the highest value of
cut.

Tubing: Finding Recommended Viewports over Time Viewports change in every
frame. When users select a recommended viewport in a frame, the same viewport may not
be optimal when recommended in the next frame. The system has to switch to a nearest
viewport, causing a virtual camera shake. To minimize the irritation caused by frequent and
abrupt change in viewport position, we compute an optimal strategy to switch viewports
while maintaining a smooth, linear transition of the viewport position. Such a linear change
manifests as a virtual camera pan.

To compute a virtual camera pan, we first designate some frames in the video as key
frames. All frames falling between two key frames constitute a shot. The viewport is allowed
to linearly change position within the shot. We expect the viewport at the beginning of a
shot to smoothly change to a viewport at the end of the shot.

In our implementation, we use one key frame every 20 frames. There is a trade off
involved in the choice of inter key frame distance. More key frames would lead to less
stable viewport (more shaky) and fewer key frames would lead to less optimal recommended
viewports (the reason for which will become clear later).

There are multiple candidate viewports at different zoom levels at the beginning and at
the end of a shot. We can choose different combination of the starting viewport and ending
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viewport. Each of these combinations result in a spatial-temporal trajectory of viewports
across the frames in between the two key frames. We refer to this trajectory as a tube.
Since we linearly interpolate the viewports in a tube, a viewport in an intermediate frame
may not be the optimal viewport for that frame (as determined by the cut).

Our goal is therefore to find a good tube that gives good overall viewport quality across
all frames in the tube. To this end, we define four metrics to evaluate the quality of the
tube. Given a tube T =< Vf , Vf+1, . . . Vf+N > we first consider the cut metric, which
is used to prevent violation of aesthetic rules, especially for human body. We define the
cut of a tube as the sum of all cuts of viewports in the tube. Second, we consider the
importance of the tube, and define the heat of a tube as the sum of all importance value
in every viewport Vi,i∈f...f+N in the tube, i.e., the pixel values in the importance map of
each frame that falls in the viewport. Third, we consider the temporal coherence of a tube.
We aim at preserving the motion of foreground objects within a tube. We proceed as in
[Beleznai 2006] and track our clusters over time by mode seeking. A given cluster is tracked
across l frames creating a temporal chain of cluster centroids < cj , cj+1, . . . cj+l >id that
starts at frame j. Each chain is assigned an unique id, and every cluster whose centroid is
part of this chain is labelled with that same id. With this simple method clusters might
split or merge as we track, creating new chains. This is not an issue as it is not required
to precisely track and segment objects to ensure temporal consistency [Wang 2009]. The
temporal coherence of a tube can then be computed. For every pair of viewports Vf ′ and
Vf ′+i in the tube, a score proportional to i is added to the tube’s coherence value COH(T )
every time clusters with the same id can be found in both Vf ′ and Vf ′+i2 The coherence
is then normalized to range into [0, 1]. Finally, we consider the spatial displacement of the
tube. We define the regularity of the tube as the measure for rate of change of the viewport
positions within the tube. We compute regularity as

e−
‖vf−vf+N‖2

2
N2 ,

where vf and vf+N are the initial and final viewport positions respectively, and N is the
number of frames in the tube T . This metric penalizes large displacement of viewports
with an exponential weighting function.

To find the set of good tubes between two key frames, all possible tubes are computed
and assigned a score by simply summing the four metrics. The top k tubes with the highest
scores are chosen and form the recommended viewports between the two key frames (we
use k = 3 in our implementation). An example of the result of creating tubes is shown as
viewport sequences in figure 3.10.

2COH(T ) ∝
∑f+N

i=f

∑
c∈Vi∩Ci

∑f+N

k=i+1 φ(c, k) where φ(c, k) = k− f if the cluster centroid c has an id
that can be found among the ids present in Vk.
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Figure 3.10: Viewport sequences showing Tubes. Tube-A is a long tube showing a scene
where a person in motion is followed. Tube-B and Tube-C are other candidate Tubes
rejected by the Tubing algorithm. Tube-B is short and has a low Regularity measure, while
Tube-C is not only short but also has a lower cut value that manifests as a not so aesthetic
framing

3.2.3 Combining Content-Based Analysis and Crowdsourcing

Using the approach detailed in the previous section, we have viewports to recommend
to users (step 3 of Fig 3.11). We then start collecting user interaction traces with our
zoomable interface. The goal is to find an approach to refine the content based viewport
recommendation with the user selected viewports.

+

1 2 3

4

5

6 7

Figure 3.11: Overview of Approach

While zooming with the interface, each user selects a viewport at a given frame f . This
viewport Vf is a rectangle whose top left corner is positioned at (vx, xy) and is of size
(w, h). The viewport crops the important region the user is interested in. Since the level of
interest of each cropped pixel differs with respect to its position within the viewport, as in
[Carlier 2010a] we assume that users naturally center the viewport on the most interesting
area. We then model the interest within a viewport as a gaussian pdf being centered at
µ = (vx+w/2, vy+h/2) with a covariance Σ constrained to the dimensions of the viewport:

Σ ∝
(

w2/4 0
0 h2/4

)
and

∫
Vf
N (µ,Σ) = 0.99.

A user interest map UIMf associated with frame f is then crowdsourced by accu-
mulating the interest levels from multiple users. If we collect K viewport traces from
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K users who have zoomed on f , a gaussian mixture model can be computed such that
UIMK

f = 1/K
∑K
k=1N (µk,Σk).

The first image in Figure 3.12 shows K = 16 viewports selected by users while watching
a long jump video with our interface. The second image shows the associated user interest
map generated using the gaussian mixture model described earlier. In this example, users
focus on the sand pit because they were asked to estimate the length of the jump.

With this simple formulation, the user interest map computation stabilizes after only 10
or 15 users. We observed that the KL-divergence KL(UIMK+1

f ||UIMK
f ) is negligible for

K ≥ 15. Note that in this paper we do not consider any sequential estimation of the user
interest map where a weight could be used to de-emphasize old traces in a time-varying
context.

Figure 3.12: Creating user interest maps

As shown on step 5 of Fig 3.11, we then use the implicit feedback from users as another
modality in the computation of importance map. We merge user interest maps with content-
based importance maps by assigning them an equal weight. How to properly weight remains
an open question: we plan to study the performances of different (either static or dynamic)
weighting strategies in our future work. Yet experiments presented in the next section show
that this simple strategy already demonstrates significant success. Indeed by applying the
algorithms presented in section 3.2.2 to this new importance map, we obtain updated
recommended viewports that match intention of the users better.

3.2.4 Evaluation

Video Sequences. We use two types of videos to assess our work. The longjump videos
are about 30 second long and feature an athlete running and jumping in a sand pit.

The coffeelounge video is longer and semantically more complex. Fig 3.7 summarizes
the action taking place in a coffee lounge. At the beginning of the video, two people are
sitting in the foreground on blue sofas (times 0:01 and 0:03). A new person in orange
sweater is then entering the scene, and loses his keys while removing his wallet from his
pocket (time 0:10), before reaching the coffee machine and staying there (time 0:12). At
the same time, one of the two seated people picks up the keys (time 0:16) and hands it
over to his friend who leaves the scene. After this theft, a fourth person arrives and goes
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to the coffee machine (time 0:38), after leaving his wallet on the same table as the person
in orange (see also Fig 3.10). At the end of the video, the two people from time 1:00 (Fig
3.7) take their wallets and leave the scene, leaving the thief alone in the room.

Interaction Techniques. We built four variants of user interfaces for zoomable video.
The version we proposed section is denoted as RC+U, which stands for Recommendation
based on Content and Usage.

To study the effect of combining usage analysis with content analysis, we setup a version
of the user interface that uses only recommended viewport computed using content analysis,
without considering user access pattern. We call this version RC (Recommendation based
on Content). This version is equivalent to the output of Step 3, after the process described
in Section 3.2.2.

The third variant of the user interface we setup is called NR, which stands for No
Recommendation. The purpose is to study the effects of presenting recommended viewport
to the users. All interaction elements in this user interface remains the same, except that
the recommended viewports are removed. This interface is equivalent to the one introduced
in the previous section 3.1.

Finally, we setup a variant of the interface which we refer to as NZ, standing for No
Zoom. We use NZ in one of our control experiments. NZ does not allow any zooming or
panning.

Methodology. We evaluate the three successive versions (NR, RC and RC+U) of our
interface by conducting the following user study. In our experiments, the user traces from
RC are used to compute the recommended viewports of RC+U.

We assign tasks to users where zooming may be useful. We ask them to estimate the
jump length in the longjump videos and we ask them if there are key thefts and/or wallets
thefts in coffeelounge.

First we provide a first group of users with NZ, which plays only the low resolution
(320×180 px) version of the video sequences without any interaction. We want to evaluate
how well users answer the questions without zooming.

The core of the user study involves comparing the three versions of our interface: NR,
RC and RC+U using three independent set of 20 users Users0, Users1 and Users2.

Except for NZ where no interaction is available, we always start our user studies with
a learning phase. We first demonstrate the features of the interface, and then observe how
users interact with our training video (one of the longjump videos). We never continue the
study without explicitly reminding the user of interactions he/she did not try.

Then we explain to users what task they have to complete while viewing the next video
clips. We always present the clips in the same order: longjump and coffeelounge. We collect
a user’s answers at the end of each clip. We let users watch the video as many times as they
want and we record every interaction into a database. In average the test lasted between 8
and 10 minutes for each participant.

Participants. We collected traces from 16 females and 54 males (total 70 participants),
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with an age ranging between 19 and 55 years old. Among these users, 10 were presented
NZ and 20 each were presented other interfaces.

Number of Interactions. We analyze the traces to count the number of user inter-
actions in each of NR, RC, and RC+U. Figure 3.13 shows the results. We first observed
that there is no significant difference in the number of zooms, but the number of pans when
using NR is on average almost twice as much as RC+U. Since pans are used mostly to
position the viewport correctly, this results show that the recommended viewport is useful
in reducing the number of interactions. The number of pans for RC+U is also less than RC,
indicating that the quality of recommended viewports for RC+U is better, as users pan less
using RC+U. This point will be further elaborated in the next result.

Note that coffeelounge lasts 1 minute 22 seconds while longjump2 (one of the longjump
videos) is only 35 seconds long, and this explains the difference in the number of panning
for each video.
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Figure 3.13: Number of panning events per view session

Number of Recommended Viewport Selected. To further compare the recom-
mended viewports between RC and RC+U, we analyze the trace at one particular event in
the coffeelounge video, to understand how the recommended viewport are clicked.

When Users1 zoom on the coffeelounge video (with RC), the recommended viewports are
clicked 45% of the time. The remaining 55% clicks are outside the recommended viewports
(Table 3.1). The first row of Table 3.2 gives insights into the distribution of zoom levels of
those 45% clicks. It shows that users rarely zoom to the maximum level (i.e. close-ups).
This result highlights the importance of the relationship between content semantic and
participants’ tasks. In this task, automatically detected close-ups are not useful enough to
successfully complete the task.

However, RC+U exhibits better performance regarding the number of recommended
viewports clicked like we see on the second row of Table 3.1. The ratio of clicks on recom-
mended viewports and outside shows that recommended viewports are more relevant. This
underlines the interest of combining content analysis with crowdsourcing to learn better
ROIs. Moreover, learning better ROIs affects the distribution of zoom levels, summarized
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by Table 3.2. As shown below, emergence of task-relevant close-ups encourages users to
zoom more when needed.

We observe the same phenomenon on longjump2. Recommended viewports in RC are
not really selected by users (only 18%, see first row of Table 3.1). But once combined with
user maps, new recommended viewports are twice as much clicked by users (40%).

Video longjump2 coffeelounge
RC 18% 45%

RC+U 40% 55%

Table 3.1: Percentage of clicks in recommended viewports for RC and RC+U

Interface 960× 540 px 640× 360 px 320× 180 px
RC 73.2% 25.6% 1.2%

RC+U 24.6% 42.5% 32.9%

Table 3.2: Size of the recommended viewports clicked by users on coffeelounge

In summary, we found that integrating user interest maps to improve the relevance
of recommended viewports yields a better recommendation. Users more often used the
recommended viewports resulting in lower number of panning events.

Understanding Video Content. Previous results show that recommended viewports
from RC+U are selected more often than the ones from RC, but does it mean that it helps
them understand the content better? The answer, as shown in this paragraph, is yes.

Table 3.3 presents users’ answers to the questions based on the task specific to cof-
feelounge. As a reminder, we asked users whether or not a key was stolen (the correct
answer is yes), and whether or not a wallet was stolen (the correct answer is no). Whereas
it is quite easy to spot the theft of the key even without zooming, there is an ambiguity
with regard to the wallets (it may appear as if they were exchanged). Zooming in to the
region of the wallets help resolve this ambiguity.

We noticed that 70% users who see the video at a low resolution (NZ) spot the key theft,
whereas only 50% identify that no wallets have been stolen. We actually observed during
the study that users tried to guess the answer because they could not see accurately, and
indeed the answers were equally distributed as yes and no. This result provides us with a
lower bound to compare interfaces NR, RC and RC+U.

The percentage of good answers is higher with NR thanks to the zooming functionality,
especially for the wallets question (70% of good answers). However results are disappointing
for RC. Guiding users with recommendations is potentially double-edged: since they follow
the recommendations (Table 3.1), the quality of their answers is correlated to the relevance
of the recommended viewports with respect to the task. About the specific wallets task, it
is understandable that content analysis alone fails to detect the region around the wallets
as one of the prominent ROIs.

We get the best answers with RC+U, which combines content analysis and crowdsourc-
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ing. Indeed we observe in Fig 3.14 that crowdsourcing complements content analysis to
create a new recommended viewport located on the wallets.

Interface NZ NR RC RC+U
Is there a key stolen ? 70% 75% 70% 85%

Is there a wallet stolen ? 50% 70% 50% 75%

Table 3.3: Percentage of right answers to the questions

Figure 3.14: Example of ROIs emerging in RC+U: close-up on the wallets in coffeelounge
and sand pit in longjump2.

We do not discuss the answers to the task for longjump2 because the task is not dis-
criminant enough to create differences in the quality of answers when different interfaces
are used. As the users have a very specific task in the longjump2 video, i.e to identify the
length of the jump, the length of the jump is localized to the sand-pit. Hence users directly
zoom into the region enclosing the sand-pit irrespective of the interface used. However
consistent with coffeelounge task, we observed the emergence of a recommended viewport
particularly suited to the task (see Fig 3.14). Conversely some recommended viewports
have a low interest with respect to the assigned task and have not be selected by Users1.
As a consequence, they disappeared in RC+U making our video interface adaptive and
user-centric.

3.2.5 Summary and Conclusion

In this section we have introduced the novel concept of recommended viewports in the
context of zoomable video. The recommended viewports provide an assistance to the users,
by indicating them which candidate regions they might be interested in zooming into. We
have shown how to combine the content analysis (in our case, a combination of saliency,
motion, and face detection) with an analysis of the interface usages (as introduced in the
section 3.1) to improve the quality of the recommended viewports. This work was published
in [Carlier 2011a].

In this work, content analysis serves two purposes. First, it provides a temporary solu-
tion to the problem of ROI detection when we do not have traces of users’ interactions yet.

60



Figure 3.15: User interest maps computed on the same video at the same time interval
through two different interfaces. On top, the interface with recommended viewports de-
scribed in section 3.2.1 was used ; below, the interface described in section 3.1.2 was used.

Second, it helps biasing users interactions (through recommended viewports) which even-
tually positively affects the quality of the resulting user interest maps. For example, when
an ROI is moving, our algorithm based on content analysis (including motion detection)
will probably generate a recommended viewport that automatically follows the ROI. In
that case, the resulting user interest maps will benefit from the recommendations because
users tend to watch the ROI through the recommended viewport. With the zoomable video
player described in section 3.1, users would have to manually pan in order to follow the ROI
which would result in an imprecise user interest maps (figure 3.15, bottom row). Thanks
to the recommended viewports, the resulting user interest maps is more insightful: ROIs
are well focused and appear clearly (figure 3.15, top row).

In the next section, we consider the problem of estimating a 3D user interest map from
videos shot by multiple users.
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3.3 Crowdsourcing 3D Interest Maps using multiple
synchroneous video streams

In the previous section, we have explained how to find ROIs using a combination of content
analysis and users behavior analysis. It was reasonable to use content analysis since in
the use cases we considered, the ROIs were often salient, and/or moving, and/or people
(recognizable via face detection). We also took advantage of the assumption that users
often zoom in on a region when they are interested in it. Zoomable video is thus a good
ROI detector.

In the same spirit than zoomable video, there are other actions a user can make to
manifest their interest towards a visual content’s region. Taking a picture is a good example
of such actions: one usually takes a picture to remember a happy moment, or capture a
beautiful landscape, etc. In any case, the picture reveals the interest of the photographer
who made the effort to grab a camera and shoot a scene.

In this section, we consider the common use case of public performances where many
people in the audience are filming the scene (figure 3.16). We generalize our previous
contributions to build 3D interest maps that model the crowd’s level of interest in the 3D
space. These 3D interest maps are computed based on usage analysis (the users shooting
videos from the scene) and on content analysis, as we will now explain in details.

3.3.1 What is a 3D Interest Map?

Understanding and predicting user interest is a key issue in many multimedia applications.
In order to efficiently compress, store, retrieve, transmit, recommend, display any media
item, it is helpful to estimate users’ level of interest in it.

Beyond saliency. In some situations, user interest and attention are guided by a
task to be performed, in other free-viewing situations a user may subjectively gaze at
most interesting items. In the latter sense, a saliency map associated with an image often
serves as a gaze predictor and can be interpreted as a 2D map with a type of "interest
level" (preferably normalized, between 0 and 1) assigned to each pixel. Unfortunately 2D
saliency models still fall short of predicting semantically interesting objects perfectly. With
a 3D content in mind, one can formally define a 3D saliency map by generalization and
determine saliency at a given 3D voxel by how different this voxel is from its surround
in color, orientation, depth etc. Similar to many 2D saliency models, this generalized 3D
saliency estimation does not integrate any semantics and is a poor interest predictor for a
3D scene like the one depicted in Figure 3.17. In this example, a semantic definition of the
interest (in 3D) would probably assign the highest interest level to the voxels located on
the soloist in front of the band, an intermediate interest value to voxels located on others
musicians and low interest to voxels located on the background buildings. We devised our
3D interest maps with this objective in mind.

Our 3D interest maps are innovative for several reasons. First, we infer 3D interest
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Figure 3.16: A dance performance from RagAndFlag dataset. Cameras 1 to 6 are located
around the stage at ground level. Camera 7 shoots this picture (zoom position 8) and
occasionally zoom into the red rectangle (zoom position 7). A 3D interest map is drawn
in white in the 3D space and also in the 2D image space after re-projection of the 3D map
(with black background).

Figure 3.17: Central focus assumption on the BrassBand dataset.

information from the multiple view geometry of simultaneous video recordings: it is an
original 3D generalization of 2D saliency maps. Indeed, a 3D interest map is richer than
several saliency maps computed from the original video recordings: as shown later, the
correspondences between salient areas seen in range views are naturally established when
re-projecting the components of the 3D interest maps. Another important difference with
traditional saliency models is that we do not need to predict where the spectators would gaze
at – we can simply observe it. We can see a user’s camera as a third eye that he focuses
towards the parts of the scene that he is most interested in. Our 3D interest levels are
somehow “crowdsourced” from many videographers and we assume that the semantically
important portions of the scene can be statistically revealed by analyzing the selected view
frustums (originated by zoom, pan and framing decisions). If many videographers focus
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towards “the most interesting” musician (e.g., the soloist) shown in Figure 3.17, a bit of
semantically motivated interest is revealed.

A formal approach to 3D interest maps. We now formally introduce the notion
of 3D interest map. We define a 3D interest map with respect to a given time instant, and
hence we consider a set of J images corresponding to synchronized video frames3 taken
from J cameras capturing the same scene from different angles at this instant. We assume
that the camera projection matrices Pj , j = 1..J , with respect to some Euclidean projective
representation, are given.

We also assume that we have the 2D regions of interest (ROI) in the J range views at
our disposal. Note that the simplest user’s ROI in a view can be drawn from the central
fixation assumption [Tatler 2007], in which it corresponds to an elliptic region centered at
the principal point (i.e., at the point where the optical axis meets the image plane). Such
elliptic regions are shown in blue in Figure 3.17 for two cameras. Even if this assumption
will be relaxed later, it makes sense as it seems natural that the user tends to shot by
steering the camera optical axis towards the scene hot spots.

viewing
cone

ROI
boundary

viewing
line

camera

voxel

Figure 3.18: Viewing cone back-projecting a 2D ROI (in blue) and viewing line back-
projecting a 2D point (in yellow); see text.

The key ingredient for defining a 3D interest map is the notion of viewing cones. A
viewing cone is the back-projection of a 2D ROI, i.e., the generalized cone in 3D space that
is the assemblage of 3D lines passing through the camera center and every pixel on the 2D
ROI boundary (see figure 3.18). For the k-th elliptic ROI (k = 1..K) in view j, referred
to as Ejk, the corresponding viewing cone can be defined in the projective 3D space by its

3Both the synchronization and the calibration are supposed to be, at least approximately, available for
the J cameras.
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order-4 symmetric homogeneous matrix [Hartley 2003, p199]

Λ(Ejk) = (Pj)T EjkPj (3.3)

where Ejk is the order-3 symmetric homogeneous matrix of the ellipse [Hartley 2003, p30]
describing the boundary of Ejk, and Pj is the projection matrix of camera j. In the situation
illustrated by Figure 3.17, we have one elliptic ROI centered in each view with J = K. In
the more general situation, multiple ROIs in a view are allowed (as explained in the next
section).

We now partition the 3D scene into a set of voxels S = {vi}i∈I . The intersection of
viewing cones in 3D (as suggested by Figure 3.20) reveals a region where the voxels are
seen by many cameras and can be considered as interesting for that reason. Hence, we can
introduce a measure of interest of a voxel vi by looking at how often it is seen. If we let E
be the set of all 2D ROIs and E(vi) ⊂ E be a subset that depends on vi, this 3D interest
level is related to the 2D ROIs through the following definition:

Int(vi) = 1
|E|

∑
E∈E(vi)

Vol(Λ(E) ∩ vi)
Vol(vi)

(3.4)

where Vol(a) stands for the 3D volume of the considered 3D regions in argument a. As
the quantity Vol(Λ(E) ∩ vi) computes the volume of intersection of vi with the viewing
cone through E, the measure (3.4) is maximum when E(vi) = E and vi is entirely include
in all ROIs of E , giving Int(vi) = 1. It is minimum when vi is not included in any ROI,
giving Int(vi) = 0. The intermediate values measure how often a given voxel is partially or
completely seen.

We will say that the measure of interest (3.4) is (only) geometrically consistent when
E(vi) = E and is (both geometrically and) photometrically consistent when E(vi) ⊂ E is
the subset in which vi is (at least partially) visible. In our context, a voxel vi is said to
be visible with respect to a set of ROIs E ′ ⊂ E if there are pixels in each ROI of E ′ such
that (i) all their back-projections as 3D viewing lines cut vi (see figure 3.18) and (ii) the
neighborhoods of all these pixels are photometrically consistent in the views. It is straight
forward to compute a geometrically consistent measure of interest, by intersecting all the
cones associated with E ; it is the information brought by the users and no sophisticated
computer vision algorithm is required. Nevertheless, due to many inter-voxels occlusions,
only a subset of viewing cones associated with E are really seeing a visible voxel, which
motivates the notion of photometrically consistent measure of interest. In Figure 3.21, the
red voxel that is located at the intersection of the frustums of the three cameras is only
visible (i.e., not occluded) in one frustum. Even if seen by all cameras, this red voxel is
clearly not the most interesting since in fact only one user is seeing it. The method to
determine E(vi), the subset of 2D ROIs in which vi is visible, will be tackled in the next
section.
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At this step, it is natural to consider the distribution of interest among the voxels
through an histogram and subsequently introduce a normalized interest measure derived
from (3.4) as

Ĩnt(vi) = Int(vi)/
∑
i∈I

Int(vi). (3.5)

Définition 1 We call a 3D interest map the limit form of the 3D histogram with voxels
as bins (diagonal length ∆l→ 0) with respect to the normalized measure of interest (3.5).

In other words, if the voxels decrease in size and become infinitesimally small, the normalized
measure of interest (3.5) behaves like a continuous probability density function.

Finally, we will model our 3D interest map (in our implementation and due to its
generality) as a 3D Gaussian Mixture Model (3D GMM) with a satisfying number G of
mixed components:

Ĩnt(v) =
G∑
g=1

wgN (v;µg, Σg) (3.6)

where v is now a 3D point (seen as an infinitesimally small voxel), N is the 3D Gaussian
density, and wg, µg, Σg are the weights and parameters of the 3D mixture. We detail the
estimation of these parameters in the next section.

A GMM is flexible enough to approximate closely any multi-modal density of 3D interest.
Using GMM, the estimated 3D interest map can also be re-projected in the image spaces
to play the role of J dependent 2D interest maps associated with the J cameras (see also
the right part of the red rectangle in Figure 3.16).

Figure 3.19: 2D elliptic ROIs, as computed in Step (1) of our algorithm, on the RagAnd-
Flag dataset.

3.3.2 3D Interest Map Computation

In this section, we present a method to build a 3D interest map using several synchronized
videos shooting the same scene. The proposed algorithm (see Algorithm 3.1) is broken
down in two successive estimations: a Gaussian mixture is first computed to produce a
geometrically consistent 3D interest map (Steps (1)-(3)). The intuition behind this first
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step is to triangulate 3D interesting regions (Figure 3.20) from automatically detected 2D
regions of interest (Figure 3.18). At this step, the 3D interest map (i.e. the Gaussian
mixture) is coarse. The map is then refined into a final photometrically consistent one
(Steps (4)-(6)). These last steps are made possible thanks to the constraints brought the
coarse intermediate 3D interest map.

Algorithm 3.1: Computation of a GMM-based 3D interest map.
(1) Compute Kj ellipses of interest Ejk for each view j
(2) Compute the intersection of visual cones
(3) Estimate a geometrically consistent 3D GMM
(4) Re-project it to get 2D GMM in image spaces
(5) Compute 2D Masks serving as PMVS input
(6) Estimate the final photometrically consistent 3D GMM from PMVS output

Detection of Ellipses (1). In this step, we look for 2D regions that are likely to contain
interesting objects. These regions will then be used, as an implementation of Equation 3.4,
to produce the cones as explained in the previous section. Many algorithms exist for such
a task, from saliency maps to object detectors (face or body detectors would fit our use
case).

At this stage, we do not need a high precision on these ellipses of interest, since they
are primarily a way of reducing the complexity of the following steps. We therefore choose
to use off-the-shelf OpenCV blob tracker, which uses standard algorithms for foreground
detection (we use a temporal window of 15 frames) followed by blobs detection and tracking,
considering the connected components of the foreground mask. In other words, we rely
mostly on the apparent motion to detect the ellipses of interest, which is coherent with our
use case of live performances. An example of the output of this algorithm can be seen on
Figure 3.19. Note that the detected ellipses are not matched between views.

It is possible that the apparent motion is too low to detect ellipses based on the previ-
ously explained algorithm. In that case, we build on our assumption that users naturally
tend to focus their camera towards objects of interest. We therefore consider an ellipse of
area Ac centered on the camera frame, as shown on Figure 3.17. If the cumulated area of
the ellipses of interest detected during Step (1) of our algorithm is less than Ac/2, then we
empirically consider that there is insufficient apparent motion on the scene and switch to
the central focus assumption.

Intersection of Visual Cones (2). At this stage, only a geometrically consistent 3D
interest map can be computed. Indeed, we have no information about the visibility of a
detected 2D ellipse number k in view j (Ejk in Section 3.3.1’s formalism) in other views
j′ 6= j. We use Equation (3.4) with E(vi) = E for defining a first coarse 3D interest map.
In other words, the basic idea is to intersect cone-pairs Λ(Ejk1

) and Λ(Ej
′

k2
) for all pairs of

views (j, j′) and for all pairs of 2D ROIs (Ejk1
, Ej
′

k2
) in these views.

The algorithm for intersecting two visual cones, related to cameras j and j′ and 2D
ROIs Ejk1

and Ej
′

k2
, is as follows:
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1. In image j, generate M random points inside the ellipse Ejk1
and back-project each of

these points p as a 3D line Ljp, through p and the camera center.

2. Compute the two intersection points where line Ljp meets the viewing cone Λ(Ej
′

k2
)

associated with image j′. This step can be achieved very efficiently when formulated
with projective geometry4.

3. If such intersection points exist, discretize the line segment, whose endpoints are these
two points, into T points so that image j yields MT 3D points.

4. Repeat 1-3 by switching the roles of cameras j and j′.

Now, given a sequence of J views, we can apply the above algorithm for each of the
1
2J(J − 1) distinct image-pairs and each pair of detected ellipses that can be formed in the
image-pairs. Indeed, Figure 3.19 shows a pair of images for which 5 (left image) and 4
ellipses were detected, which means that, in this particular example, 20 cones intersections
are computed. Note that all cones do not necessarily intersect, so 20 cones intersections is
an upper bound. The result of this step is a cloud of 3D points with denser regions where
the interest is locally high.

Figure 3.20: Intersection of visual cones (BrassBand dataset).

4Let x ∈ R3 be the homogeneous vector of an image point x. The 3D line, back-projection of x, can be
given by a 3D point function X : R → R4 defined by X(µ) = ((µx− p4)T M−T , 1)T , using the projection
matrix decomposition P = [M | p4] ([Hartley 2003, p162]). The line cuts a cone Λ at two points X(µ1) and
X(µ2) where µ1 and µ2 are the two real roots of the quadratic polynomial X(µ)T ΛX(µ).
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Figure 3.20 illustrates this step on our BrassBand dataset, for which there is few move-
ment on the scene. As a consequence, cones are generated based on the central focus
assumption. Thus, there is one cone per camera. We can see on the figure the 3D points
(in blue) that are generated in the cones intersection.

3D GMM Estimation (3). Based on the obtained 3D data points, we now estimate
the first interest density (a 3D GMM) given by Equation (3.6). Since we do not know the
number G of Gaussian modes and we have no initial parameter estimates, it is delicate to
adopt a standard Expectation-Maximization technique. We use Mean-Shift density estima-
tor [Comaniciu 2002] that is devised to iteratively detect the unknown distribution modes
along with the data points that belong to the cluster associated with each mode. The hard
assignment between data points and modes given by Mean-Shift then allows us to trivially
estimate each weight wg (ratio of points assigned to the jth cluster vs. total number of
data points) and each parameter: both µg and Σg are estimated with maximum likelihood
formulas.

Mean-Shift clustering is only controlled by one scale parameter: the bandwidth. The-
oretically, the bandwidth compromises between bias and variance of the estimator. In
practice, it can be understood as the distance allowed between peaks of the distribution.
At the current level (Step (3) in algorithm 3.1), however, the data points located at the
intersection of the visual cones (see also Figure 3.20) do not fit with any recognizable shape
(e.g. human performers). It is discriminative enough to select a relatively large bandwidth
to detect the modes of our first 3D interest map: we typically choose h = 2m in our
experiments.

Re-projection to 2D GMM (4). Using a GMM in 3D allows the 3D interest maps
to be re-projected in the J views. Such re-projection helps with the visualization and
the evaluation of the 3D interest maps in the experimental section. See the second row
of Figure 3.22 for an example. Note that the 3D multi-modal distribution also appears
as a multi-modal density in 2D. Flandin and Chaumette [Flandin 2002] define a model
providing, for every 3D point of the scene, the probability that it belongs to an object
of interest. They introduce several propagating rules for Gaussian uncertainties, such as
subspace projection and back-projection of a distribution from 2D to 3D. Their 4th rule
can be reused in our case to characterize the 2D GMM in image spaces resulting from the
perspective projection of our 3D interest maps. Modeling the interest with Gaussian allows
us to switch back and forth between 3D and 2D.

PMVS Masks Computation (5). We now aim at making the 3D interest map more
discriminative. As said before, we used Equation (3.4) with E(vi) = E , leading to a first
coarse estimate. To refine it, we must determine whether a voxel is visible or not in a view.
In Figure 3.21, we already noticed (cf. Section 3.3.1) that the red voxel that is located at
the intersection of the viewing cones is the most interesting according to a geometrically
consistent measure of interest but it should not be considered as the most interesting with
a photometrically consistent measure: its red color is not occluded in only one view. The
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blue voxel is more interesting (seen from several views with photometrically consistent
blue projections). In our implementation, this consistence is brought by a constrained 3D
reconstruction. This can be achieved very efficiently using multi-view stereo software such
as PMVS [Furukawa 2010] that is devised to propagate photometric consistency.

Given the extreme difficulty of wide-baseline multiple-view correspondences in our set-
up, we use the re-projected GMM to produce 2D masks that will constrain and guide the 3D
reconstruction algorithm. For each image, we binarize the 2D GMM (i.e. the 3D Interest
maps re-projection) in order for the mask to contain 95% of the information from the GMM.
Results of this step can be visualized on the third row in Figure 3.22. As shown in the
experiments, PMVS outputs denser 3D reconstructed points in the most interesting regions
(e.g. around the human performers) thanks to the 2D masks guidance. The role of the
“crowdsourced” masks is quantitatively evaluated in Section 3.3.3.

Final Estimation from PMVS Output (6). The PMVS software takes as input the
camera projection matrices along with the masks computed during the previous step, and
outputs a set of reconstructed 3D points. These points respect the photometric consistency.
Note that we need to provide a parameter to PMVS, called the level, which specifies the
resolution at which the input images will be processed. We set the level to 4, which
means the image resolution considered is 120 × 68. This choice significantly speeds-up the
computation as well as limits the influence of a bad synchronization on the quality of our
results. Similarly to Step (4) of the algorithm, we then estimate the parameters of a 3D
GMM to model the final 3D interest map. In our public event use case, if we ideally aim
at estimating a separate mode for each dancer or singer, the bandwidth for the Mean-Shift
clustering should be selected as h = 60cm to typically separate two humans standing next
to each other. The re-projection of our refined 3D interest map is shown on the fourth row
in Figure 3.22.

3.3.3 Evaluation

To evaluate our proposed 3D interest maps, we first introduce three useful datasets and
briefly explain our experimental set-up. The interest maps obtained from our experiments
are then compared against saliency maps in the 2D image space (a comparison in 3D is
difficult to visualize).

3.3.3.1 Dataset

We present in this subsection the data we have worked on and that we use to evaluate our
approach.

RagAndFlag. This dataset consists of videos filmed with seven cameras simultaneously
(see Figure 3.16). This dataset presents a challenging scenario where the cameras have very
diverse viewing angles and the videos depict a highly dynamic outdoor scene with variable
lightning and about 50 moving objects (dancers). We use this dataset to test our mashup
application.
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Figure 3.21: The red voxel has the highest geometrically consistent measure of interest
(included in the three viewing cones) but a low photometrically consistent measure (only
visible in one).

Fukuoka. This dataset consists of five video clips of a 5-minute dance show. These
videos are interesting because they have been captured by fixed cameras, are of high resolu-
tion, and because the scene has features that make the camera parameters estimation easier
(the floor is composed of colored concentric circles). The scene is complicated though, due
to the fact that the performers are very close from each other, they are all wear the same
uniform, and they move and occlude each other frequently. The five cameras in this dataset
are all located in the same area, just in front of the scene which makes it a difficult scenario
for our algorithm.

BrassBand. This dataset depicts a more static scene with eight musicians close to each
other, moving occasionally. Seven cameras are spread around the scene: three are fixed on
a tripod and four are handheld (shot with smartphones) with little movement.

3.3.3.2 3D Interest Map Accuracy

In this section, we evaluate the accuracy of the reconstructed 3D interest maps.
We start by providing the reader with the parameters we use in our experiments. We

use a radius of one fifth of the focal length to produce the cones-based 3D interest map.
We also set the parameters M = T = 10.

We calibrate the cameras for each dataset using specific patterns (orange squares in Ra-
gAndFlag, concentric circles in BrassBand and Fukuoka) on the planar stages. Know-
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Figure 3.22: Results on the RagAndFlag dataset. For each row, from top to bottom:
(i) original images; (ii) re-projected 3D interest maps computed by intersecting viewpoint
frustums (cones maps); (iii) masks used as an input to PMVS; (iv) our final results; (v)
manually generated ground truth binary masks; and (vi) state-of-the-art saliency map,
computed using Goferman’s method [Goferman 2012]

ing the plane-to-image homography associated to a given plane in the scene, we can (un-
der standard assumptions: square pixels, and centered principal point) compute the focal
length [Hartley 2003] and then the camera pose [Sturm 2000]. The average re-projection er-
ror of our calibration is computed to be 2.2 pixels on 1920×1080 images, which is acceptable
for our application.

We synchronize the videos using an algorithm from Shrestha et. al [Shrestha 2010] and
observe an average error 7.25 frames (0.25 sec).

Examples of our results on the RagAndFlag dataset can be seen in Figure 3.22. In
this figure, original images are introduced in the top row; the output of Steps (1)-(3) from
our algorithm (i.e. a geometrically consistent version of the 3D interest maps computed
from the cones intersection) is shown in the second row. This version will be referred as
cones maps in the following paragraphs. The third row shows the masks that are inferred
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Figure 3.23: Results on the Fukuoka dataset: top row, original images ; second row, our
3D interest maps ; third row, state-of-the-art saliency map, as computed by Goferman
([Goferman 2012]) ; and fourth row, manually generated ground truth binary masks

from the cones maps, as described in Step (4) of our algorithm. The forth row shows the
final output of our algorithm, the 3D interest maps. We manually created ground truth
masks to evaluate the 3D interest maps, and these ground truth masks are exposed on
the 5th row. Finally results from a state-of-the-art saliency algorithm by Goferman et.
al [Goferman 2012] are shown on the 6th row.

Similar results are presented for BrassBand in Figure 3.24. Due to space limitations
we only present original images, our final 3D interest maps, Goferman saliency, and the
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Figure 3.24: Results on the BrassBand dataset. For each row, from top to bottom: (i)
original images; (ii) our 3D interest maps; (iii) state-of-the-art saliency map, as computed
by Goferman [Goferman 2012]; and (iv) manually generated ground truth binary masks.

ground truth masks in these figures.

We can observe on all these figures that our 3D interest maps are very precise: almost
all regions that are highlighted as salient are recognized as part of some objects of interest.

On the other hand, our results sometimes do not recall all objects of interest. This is
especially true for the Fukuoka dataset, in which some of the performers are not recognized
as salient by our algorithm, due to the particular configuration of cameras poses that
prevents full reconstruction of the scene. Indeed the cameras are very close from each
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other, which results in very similar viewpoints and in performers being occluded in all the
views. The results on BrassBand and RagAndFlag are better since the cameras in these
two datasets are spread all over the scene, which means that the performers are always
visible in some images.

We can see also on Figure 3.22 that cones maps (2nd row) are more precise than Gofer-
man’s saliency maps (last row). This is the reason why we do not simply use state-of-the-art
saliency maps and binarize it to produce the 2D masks. Though the recall from saliency
maps is quite high, the precision is insufficient to efficiently serve as a mask for PMVS.

In order to numerically estimate the quality of our 3D interest maps, we compare
these projections against manually created masks and also against Goferman’s algorithm
[Goferman 2012], which is top-ranked in the benchmark from [Borji 2012]. Before com-
menting on the results, please note that a salient region do not necessary imply that it is
interesting or important, two attributes that require an understanding of the semantic of
the content and the users’ intention and are difficult to infer from the visual content alone.
So the good predictions by Goferman’s detector shown in the second row of the BrassBand
results come from a lucky coincidence: the musicians are semantically important and their
appearance is contrasted enough to make them salient.

In order to quantitatively evaluate our results, we follow the methodology from [Borji 2012]
and estimate a precision-recall (PR) curve by varying a threshold on the interest values and
generating a binary saliency map for each value of the threshold. These experiments have
been conducted on four types of interest maps: our final 3D interest maps, Goferman
saliency, cones maps (see above) and a version of our interest maps we call No Masks. No
Masks is computed by applying the PMVS algorithm to our data without inputting the
masks based on the cones intersection, and estimating 3D interest maps from the set of
points obtained from PMVS. We evaluate this version to prove the importance of Steps (1)
to (5) in our algorithm.

Figure 3.25: Averaged precision-recall curves on RagAndFlag (top) and BrassBand
(bottom)

We created ground truth masks for 12 instants in our datasets, and resulting PR curves
are displayed in Figure 3.26. Our 3D interest maps spectacularly outperforms Goferman’s
algorithm on the RagAndFlag dataset, which can be explained by the small size of the
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regions of interest (see Figure 3.16: the crowd is far from the scene) and the high variety
in contrast of many background elements (the mat, the buildings, etc.). Our 3D interest
maps is also better than Goferman in the BrassBand dataset, but the saliency detection
is more performant in this case. Indeed the objects of interest are very salient in the images
from BrassBand, since most of the musicians are wearing red colors.

Results on cones and no masks are also not as good as our 3D interest maps, which
validates the importance of both steps in our approach. It is interesting, however, to note
that cones maps is more precise than Goferman on the curves. This validates our choice to
use cones maps to compute the PMVS masks (Step (5) in our algorithm) instead of just using
a saliency map, because the more precise the masks are, the less noisy the reconstructed
points are and therefore the more precise our 3D interest maps are. In addition, it takes
less than a second to compute cones maps whereas Goferman’s saliency takes 5 seconds per
image on GPU.

Figure 3.26: Averaged precision-recall curves on Fukuoka

The results on the Fukuoka dataset are less good. The precision of cones is low whereas
its recall is quite high. In fact the cones interest maps occupies almost the entire frame.
This happens because the cameras are located very close from each other, and therefore
the cones intersect on a large 3D regions. This camera positioning also makes the 3D
reconstruction very difficult since a lot of ROI are occluding each other: this explains the
low recall for our final 3D interest maps.

3.3.4 Summary and Conclusion

In this section we have extended the concept of interest maps to the 3D space, using the
same Gaussian mixture model to model the ROIs. The algorithm relies on a combination
of an analysis of users’ behavior (what do they film?) materialized by the videos that are
produced, and of content analysis through the 3D reconstruction software that we use.

In this particular case, crowdsourcing provides a first solution which, though imprecise,
allows for content analysis to perform better and to be more efficient. Content analysis is
also a way to refine the user interest maps. The resulting user interest maps are comparable
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to the ones produced by state-of-the-art saliency techniques.
The main challenges and limitations of our work are the strong assumptions about

estimation of the camera poses and synchronization between them. In our experiments,
cameras were calibrated from a single view in order to avoid to match features between
views, as we benefited from the existence of geometric patterns lying on the stage ground.
In many man-made environments, it might be worthwhile to calibrate the camera by auto-
matically detecting vanishing points corresponding to orthogonal directions. Multiple tags
and projected patterns (e.g. multiple tags or projections on the walls behind the stage) also
have the potential for solving this problem.

This work (to appear in [Carlier 2014]) ends the chapter on crowd-based ROI detection.
In the next chapter we study several applications of user interest maps that benefit from
the rich semantic information contained within the maps.
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In this chapter, we describe how some applications can benefit from the ROIs that we
built using the techniques described in chapter 3. We focus on three different applications.

First we present how the problem of video retargeting can be interestingly solved using
interest maps. Video retargeting refers to the problem of modifying a video so that it fits
a given display size. It can involve changing the aspect ratio, or simply decreasing the
resolution of the video. In section 4.1, we focus on a branch of retargeting techniques that
use cropping techniques to fit the video to it new size. Our algorithm builds upon the user
interest maps created in section 3.1 in order to generate an automatically zooming and
panning video retargeting.

Then we show how the 3D interest maps can help build better video mashups. A video
mashup is the act of taking a set of simultaneously recorded videos and generating a new
video by selecting and editing together sequences from the original videos. In addition to
selecting, at a given time instant, the best video to be displayed, some mashup algorithms
also select a subregion of the frame to zoom into. Our 3D interest maps, created in section
3.3, can help this process in two different ways: first it indicates the Regions of Interest
(ROI) to zoom into, and second it also allows to map ROIs from one video to another,
allowing for smooth transitions. We describe our method in section 4.2.

Finally we introduce in section 4.3 an experimental application of inter-video navigation
via ROI querying. A user of this interface is given the ability to select an ROI in the video
they are watching, and the system finds and displays another synchroneous video that best
shows the selected ROI. This application relies on the 3D interest maps built in section 3.3.
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4.1 Video Retargeting

In this section we explain our algorithm for retargeting a video based on user interest
maps computed from a zoomable video player browsing traces (see section 3.1). We start
with a review of the related work in video retargeting and cinematographic techniques for
automatic video generation, then explain our approach and how we evaluate our results.

4.1.1 Related work

To automatically retarget a video, Liu et al. [Liu 2006] analyzes a candidate set of cropping
windows and chooses an optimal cropping window that minimizes a distortion function to
crop the video before it is scaled. The cropping window can change with motion in the
video and is therefore adaptive. In the context of ROI detection and tracking for stored
video playback, there have been attempts to model the ROI [Fan 2003] based on the amount
of motion. Such models could help determine the ROI, without human interaction with
a display device. Multi-scale cropping [El-Alfy 2007] dealt with automated tracking of
multiple ROIs defined by motion change. The aim was to minimize the number of ROI
trajectories within the video while covering all the ROIs.

To retarget general movies, careful handling is required for camera motion: the ini-
tial cinematography must be preserved and motion artifacts must be avoided [Liu 2006].
With our videos captured from a fixed HD camera, aesthetic reframing and transitions are
however required. Cinematography is an art and only informal rules are described to film
various scenes [Arijon 1991]. These informal rules rather led to more heuristic than formal
models in computer science. For instance, researchers in virtual reality and game design
employed cinematographic rules for real-time positioning of the virtual camera [He 1996].
Automating the film-making process for computer animation with a virtual cinematogra-
phy system [Li 2005] is also a challenge. Declarative language like Declarative Camera
Control Language have been devised for that purpose. Formal attempts were made by
MPEG7 standard (ISO/IEC 15938-5:2003) to specify tools for describing video editing seg-
ment, shots and different types of transition. In a computer vision context, Doubek et al.
[Doubek 2004] also explore the use of some basic cinematographic rules for selecting the
best view available in a camera network. They then crop the selected views with a vir-
tual zoom and interpolate novel views to finally produce one attractive video stream from
many coming simultaneously from the network. Automatic video retargeting can benefit
from cinematography. Gleicher et al. [Gleicher 2008] propose to improve apparent camera
movements in order to better follow cinematographic conventions. For example, they use
virtual pans to better show moving objects.

4.1.2 Generating and Editing Shots

Thanks to our GMM-based models, ROI can be detected for each frame. The next question
is how to deal with the temporal dimension. In this section, we first model the ROI
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dynamics. Then we produce shots highlighting the most preferred areas. Finally, these
shots will be enhanced (section 4.1.3) using reframing techniques in the last stage of our
approach.

Graph-based dynamics. Regions of interest are different from frame to frame. The
viewers usually follow moving attentional objects or focus on particular areas due to their
semantic content. Let us consider the magic trick video (figure 3.5): at a given moment the
viewer is orally encouraged to pay attention to a dice or to a card in order to understand
the trick. We observed that most of the viewers actually follow such instructions and zoom
into the expected visual area. Such a scenario naturally leads to time-varying ROIs both in
position and shape. Additionally, split, merge and delete occur within our set of gaussian
components as a natural consequence of ROI splitting, merging and disappearing.
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Figure 4.1: ROI dynamics graphs: full graph (top), MST graph (middle) and MST after
cuts (bottom)

In order to model all these variations, we use a graph-based approach. Figure 4.1 (top
row) shows the beginning of a video sequence where the jth detected ROI at frame t is
a graph node denoted 〈t, j〉. Only five frames are shown and there are only two ROIs by
frame except for the 4th and a 5th where a third one appears. Since we will later need a
tree structure for the graph, we introduce a virtual frame 0. More precisely, our set of ROIs
is represented as a weighted directed graph where an edge is formed between every pair of
ROI in subsequent frames (eg. [〈t, j〉, 〈t + 1, i〉]). The edge set is noted E. The weight wd
of an edge between two ROIs is initially set as the euclidean distance between their modes:
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wd(〈t, j〉, 〈t + 1, i〉) is the distance between the ROI 〈t, j〉 (located on mode µt,j) and the
ROI 〈t+ 1, i〉 (located on µt+1,i):

wd(〈t, j〉, 〈t+ 1, i〉) = ||µt,j − µt+1,i||. (4.1)

Moreover, we add a few more attributes to label the ROI nodes and to assess the ROI
variations. Each ROI node 〈t, j〉 can be labeled with the associated weight ωt,j . The weight
variation between two subsequent ROIs can also be measured by :

wω(〈t, j〉, 〈t+ 1, i〉) = |ωt,j − ωt+1,i|. (4.2)

Similarly, each node 〈t, j〉 can be associated with the area associated with the covariance
matrix π

√
det(Σt,j). The area variation between two subsequent ROIs can be evaluated

by :
wa(〈t, j〉, 〈t+ 1, i〉) = π.|

√
det(Σt,j)−

√
det(Σt+1,i)|. (4.3)

Shot segmentation. In order to group related and subsequent ROIs into shots1, we
seek a partition of the set of nodes where some consistency measure in a subset is high.
Our approach consists in two steps :

• compute a Minimum Spanning Tree according to wd weights,

• cut some edges to produce consistent candidate shots.

Figure 4.2: Minimum Spanning Tree (MST)

A Minimum Spanning Tree (MST) is an acyclic subset T of edges selected from the edge
set E of the initial graph. For now, let us consider that our graph is undirected. The MST
edges T connect all the ROI nodes such that their total weight is minimum :

wd(T ) =
∑

[〈t,j〉,〈t+1,i〉]∈T

wd(〈t, j〉, 〈t+ 1, i〉). (4.4)

1A shot is a single stream of images, uninterrupted by editing.
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The second row of figure 4.1 presents an MST of the full graph. Removed edges are
those with the highest weight values. To get it, we apply a simplified version of Prim’s
algorithm that takes the particular structure of our graph into account (no edge between
ROIs at the same frame). Figure 4.2 also presents an MST on our lecture video. The figure
suggests the motion of the speaker walking leftwards in the scene by using ghost effects. All
the nodes of the graph of ROIs are plotted in cyan. The MST edges are displayed in black
(same color coding as the one used in figure 4.1). Long edges can be observed on figure 4.2
when the speaker moves quickly leftwards. Long edges are characterized by an important
wd weight.

The middle graph of figure 4.1 (MST) can be interpreted as follows. One moving
attentional object is present in the frames 1-5. Our ROIs (MST nodes) are able to track
it along the tree. For example, the object is tracked by ROIs 〈1.2〉, 〈2.1〉, 〈3.1〉, 〈4.3〉 and
〈5.2〉 from which we deduce a single stream of cropped images (focused on the object): a
tracking shot. In order to produce it automatically, the system has to decide to cut the edge
between node 〈3.1〉 → 〈4.1〉. In other words, producing shots can be viewed as splitting the
MST tree.

A tree can be cut into two disjoint set by simply removing an edge. The third row
of figure 4.1 shows a MST after the cuts. Once again, removed edges are those with the
highest weight. Then we form three shots (in red, blue and green). Similarily, figure 4.3
presents the MST of figure 4.2 after the cuts. In our application we cut the edges with large
wd weights. The threshold we use is also the bandwidth parameter of Mean-Shift clustering
technique that aims at distinguishing separate ROIs:

Cut[〈t, j〉, 〈t+ 1, i〉] if wd(〈t, j〉, 〈t+ 1, i〉) > ξd (4.5)

Figure 4.3 presents the 5 shots we obtained from our lecture video. Shot 1, 3 and 4
present the teacher speaking in the middle of the classroom in the first part of the sequence.
Shot 2 is focused on the whiteboard. Shot 5 tracks the speaker motion. Figure 4.4 shows
the shots on the timeline.

As a refinement, for each shot, we also identify a few candidate positions for possible
new cuts to be used in the next step. For instance, shot 1 can be further refined at frame
37 and 51. These possible new cuts are identified by high values of wa(〈t, j〉, 〈t + 1, i〉) or
wω(〈t, j〉, 〈t+ 1, i〉).

Compositing Shots. The final result we obtain from the graph is a sequence of shots to
be edited. For each temporal interval between two possible cuts and among possible shots,
we select the best one given a selection criterion. In figure 4.4, the considered intervals
are [1, 6], [6, 37] etc. Each interval may be covered by several shots. The simplest selection
criterion may be the average weight of the shot divided by its duration. In other words, this
strategy selects the most popular shots. Other more complex strategies may be imagined.
For example, the selection may favor shots with higher motion.
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Figure 4.3: Shots after the MST cuts

1 6 37 40 51 77 89 112 129

shot 1 [1,89] 

shot 2 [1,129] 

shot 3 [6,37] shot 4 [40,51] shot 5 [77,112] 

Figure 4.4: Timeline [1,129] and possible shots

4.1.3 Reframing Techniques

We now have a sequence of shots that represents a reframed version of our input video. The
quality of this video is suboptimal. User studies (section 4.1.4) show that this automatically
produced version is not pleasant to watch since it is too shaky. This is mainly due to
annoying visual jumps coming from translational and scale noise.

Therefore we use reframing techniques aiming at (1) stabilizing shots to correct for this
noise (lack of aesthetics) and (2) reestablishing shots to establish the scene context before
moving to close shots (loss of important context information).

Simple Guidelines. Before detailing our reframing techniques, let us introduce some
good editing practices that we followed. We start by systematically keeping the initial
aspect ratio (16/9) for the generated framing. Shots may be produced at different scales.
An extreme long shot (ELS) is a framing close to the initial full HD format (ranging from
1920 × 1080 to 1600 × 900). The long shot (LS) is a smaller framing (width from 1600 to
1100) useful to make a rather stable shot that can easily cover movement without reframing.
The medium shot (MS) is the most popular and its width ranges from 1100 to 700. Finally,
close-up (CU: width from 700 to 400) and extreme close-up (ECU: width < 400) are smaller
framings for showing details. Regarding the duration of the shots, we do not impose strong
constraints since the decision to extend a shot can be as effective as the decision to cut it.
We simply ensure that handled shots include at least 10 frames. Generally speaking we try
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Figure 4.5: Reframing on two shots

to produce a retargeted video that maintains a clear and continuous action. Therefore we
follow the general style of continuity editing [Arijon 1991].

Bottom-up Reframing. At the bottom level (individual shot-level) we stabilize each
shot to ensure its spatial continuity. This stabilization is a two-step process. First we
classify the shot into fixed, zooming or dolly types of shots. In a fixed shot, the focus does
not change. A zooming shot results only from an optical zoom into an object. In a dolly
shot, the camera is moving as if it was mounted on a train track, parallel to the scene
(pan-like motion). Some mixed shots exhibit combinations of these types.

In the second step, each shot is stabilized according to its type. For example, in the
zoom shot of figure 4.5, the zoom level of each frame of a zoom shot is interpolated using the
values of the first and last frame. For a detected fixed shot, since there are small variations
of the focus, we modify the center of each frame using the average center.

Once we stabilize each shot individually, we work at the upper level (inter-shot level) in
order to smooth out the transitions between shots. In our example, if there is a discontinuity
of the viewport center of frames fj and fj+1, we create an additional short mixed shot that
interpolates both the zoom and position of the center.

Additionally, also at the upper level, we apply another technique called reestablishing
shot (RS). A RS is often a medium or medium-long shot. It usually follows a close-up and
is used to help the viewer better understand the context. In other words, it reminds the
audience the position of the viewport inside the scene. The figure 3.3 (third row) shows a
RS. The first shot shows a close-up on the speaker and the third is a close-up on a very
different ROI (the left board). Our system automatically produced a RS in between, upon
the detection of a ROI (the left hotspot of the third shot, representing the left board) that
was not visible during the first shot (left hotspot). Therefore the user is presented with a
medium RS before the second close-up.

4.1.4 Results

To evaluate our proposed crowd-sourced video retargeting, we posted several videos for
users to watch through our zoomable video player (see figure 3.2). The videos are recorded
in high definition using a fixed camera. The video sequences posted has a range of different
content, ranging from lecture, sports, and magic tricks. Within a period of two weeks, we
collected traces from 53 user sessions (one session for each viewed video). A total of 11183
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interaction events are logged.

Retargeted versions of the video are created using the algorithms described in the previ-
ous sections. In this section, we present results for three video sequences. The first two are
magic tricks videos, which we refer to as the card trick and the dice trick video respectively.
The third video sequence is a video of a rhythmic gymnastics movement (introduced by fig-
ure 3.2 and 4.7), which we refer to as the gymnastic video. We first describe the retargeted
videos and compare our results with saliency-based methods. An analysis of the different
shot types, along with their distributions is then performed. We show that the distribution
of shot types in the retargeted video is consistent with those of the collected traces. Then,
we carried out a user study to assess the quality of the retargeted shots (4.1.5).

Retargeted Video. We now describe two sample videos that our method produced.
We qualitatively compare our results with results generated by using visual attention mod-
els. Resulting videos are available at
http://www.youtube.com/user/AutoZap.

Figure 4.8 shows a selected set of original (HD) video frames and their corresponding
retargeted frames from the dice trick video. In this trick, the magician is challenged to find
the correct dice number. He gives instructions to the girl: put the dice in the black box (2
first rows), show the dice number to the camera (rows 3-5), close the box and put it down
on the table (row 6). He returns to the table (row 7) and continues (row 8-9). One should
notice the close-up on the dice number (row 5). Another relevant close-up (row 8) emerged
and focused on the box: the critical object of interest for understanding the trick. Just
after, the reestablishing shot helps to put the user into context for the rest of the trick.

We first highlight some shots of interest region in our video that is hard to be reproduced
by existing approaches. The close-up shot on the dice number (row 5) in the retargeted
video sequence is synchronized with the instructions of the magician (“show the dice to the
audience”). Doing this automatically with content-based approach would require speech
recognition to understand what the magician has said and object recognition to identify
the dice within the scene. Both are hard problems that are challenging to solve. This
example stresses the importance of leveraging user behavior to generate retargeted shots,
since users naturally follows the instruction of the magician and zoom in to see the dice.

Figure 4.6 shows an example of salient regions in the dice trick video, computed using
Matlab SaliencyToolbox[Walther 2006], which is based on visual attention model, particu-
larly, color, intensity, and orientation. The left shows a frame from the video with salient
regions enclosed in yellow. The right shows the heatmap indicating the salient regions.
This example shows that the most salient region in the video, according to the visual atten-
tion model is the back of the magician, followed by the hand, a deck of cards on the table
(which is not even used in this trick), and finally the dice. This example illustrate that
visual attention model is not sufficient for detecting interest regions in the video sequence.

The interest regions detected using visual attention model on the gymnastic video is
shown in Figure 4.7 to further illustrate the efficacy of our approach. The gymnastic video
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Figure 4.6: Outputs from the saliency toolbox.

Figure 4.7: Visual Attention Models vs. our ROI

is a wide angle shot of a gymnastic contest, with five gymnasts performing on the floor,
surrounded by audience, judges, and officials. The top image shows the results obtained by
the SaliencyToolbox. The salient regions detected include doors, windows, notice boards,
posters, and some audience. The most interesting part of this video, however, is the gym-
nasts. While the SaliencyToolbox managed to detect the gymnasts as salient regions, this
detection is only possible after the option which gives skin colors more weight is turned on.
On the other hand, our method correctly detect the gymnasts as the ROI (the middle fig-
ure). The bottom figure shows another frame from the same sequence, with moving regions
highlighted, as detected using the blob tracking algorithm in OpenCV. Visual attention
model that assumes motion as a salient feature would have overestimated the number of
interesting regions in the frame. In this example, besides the gymnasts, motions of audience
and other gymnasts standing-by are also detected.

Properties of Retargeted Shots. Having described two of our retargeted video
sequences, we now present some of their properties. Table 4.1 summarizes the distribution
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of shot types as captured by our logs. Shot types are classified into classes, ranging from
extreme long shot (ELS) to extreme close-up (ECU). The variety of observed shot types is
a clear indication that users effectively used the zoom and scroll video interface for a better
viewing experience. Shot distributions are not very similar among the three video sequences,
since they are strongly related to the content. The Card Trick exhibits numerous close-
ups (CU) and extreme close-up (ECU), since the user is explicitly and orally encouraged to
gaze at playing cards. These results confirm the importance of the semantic of the contents.
This statement is also verified by a detailed analysis of the gymnastic video: users who were
relatives of one of the gymnasts tended to track her by using close-ups.

shot ELS LS MS CU ECU
Dice Trick 17% 26% 29% 19% 9%
Card Trick 13% 25% 13% 24% 25%
Gymnastic 8% 23% 26% 31% 12%

Table 4.1: Statistics on shot types

Table 4.2 compares various versions of retargeted shots for the dice video sequence.
The first row (“User Traces”) shows the previously discussed shot types ratios (in %).
The following rows present shot distributions for various versions of our retargeted video.
The second row (“Final”) is our final retargeted version that includes reframing techniques
(Section 4.1.3) and the MCD estimator (see Section 3.1.3). The third row (“No RT”) is
the retargeted version without reframing techniques produced with MCD. The fourth row
(“ML”) corresponds to an alternative version without reframing techniques produced with
Maximum Likelihood (ML) covariance estimator instead of MCD.

The shot distributions of various versions provide some insights into how our method
works. First, we see that the shot distribution for “Final” and “User Traces” are slightly
different. Less ELS exist for “Final” due to the retargeting that favors LS and MS. Indeed,
the retargeted version shows that for the dice video, all ELS shots can be effectively replaced
by smaller shots. We will see in the next section that the user studies proved the effectiveness
of this editing, since most of them are satisfied with the quality. The number of ECUs
doubles. Second, using ML (commonly used in GMMs models), tend to produce bigger
shots. This result justifies our preference of MCD over ML for estimating the covariance
matrices. The final retargeted dice trick includes more CUs and ECUs since it focuses on a
small object of interest (the dice), which are not found if ML is used. A remarkable result
is 54% LS, 27% = 13 + 14 close-ups of the “No RT” version. We can understand the cause
by watching the produced video: the focus changes rapidly from close-ups to the LS. This
is smoothed out by the “Final’ version around MS thanks to reframing techniques.

4.1.5 Evaluation

Recall that the goal of video retargeting is to produce a visually pleasant, yet informative
video for a small display. To assess if our results have achieved the two goals of video
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Shots from ELS LS MS CU ECU
User Traces 17% 26% 29% 19% 9%

Final 0% 32% 38% 12% 18%
No RT 1% 54% 18% 13% 14%
ML 27% 32% 20% 19% 2%

Table 4.2: Statistics on shot types for different retargetings.

retargeting, we conducted a user study, comparing retargeted video from our method with
two other video sequences produced from the same video.

Video Sequences. We choose the dice trick video as the clip for user study. As
a ground truth, we compare our retargeted video (denoted crowdsourced) to a version of
retargeted video produced by an expert user (denoted expert). This ground truth retargeted
video is produced by having the expert, who is well aware of the video content and user
interface, to watch the video using our zoomable video player. His choices of viewports
are used as input to produce the ground truth. On the opposite, we use either one of un-
retargeted video (i.e., always in zoom level 0, denoted nozoom), a retargeted video generated
from a chosen user trace (user), and a retargeted video produced after Section 4.1.2 without
reframing technique (noRT). The chosen user trace is a typical trace (zooming and panning
to regions similar to our retargeted video), except for a short time when the user is not able
to find the dice and has to zoom out and in again to refocus on the dice in the video.

Methodology. We show three videos in random order to each participant. The expert
and crowdsourced versions are always shown, whereas the third video is randomly chosen
from one of the remaining: nozoom, user or noRT. Users are asked to watch the video clips
and to rate the editing quality of the video. A user may watch the video as many times
as he wants. We assess the quality of the retargeted video by asking our participants the
following questions: (i) Is the editing quality of each video reasonable? (ii) Does the video
manage to convey the important information to understand the events in the video? The
participants are asked to rate each video in a rating of 1 (poorest) to 5 (best), as well as to
make qualitative comments on the video.

Participants. The user study involves 48 participants (28 Male, 20 Female). 16% of
the participants have a prior experience in video editing or cinematography. 18 participants
are presented noRT and user versions, 12 are presented nozoom.

Results. Respectively 87% and 79% of the participants find the editing quality of expert
and crowdsourced reasonable. Only 21% of users find the third video reasonable. Among
the possible third video, nozoom is found to be most reasonable (41%), while noRT is the
least reasonable (5%). 22% of users find the user video reasonable.

The expert and crowdsourced versions of the retargeted video have an average rating of
3.6 each. The rating for the third videos averaged to be only 2.35 (2.11 for noRT, 2.33
for user, 2.75 for nozoom). There is no significant differences between the ratings made by
users with experience in video editing and cinematography. These users rated expert 3.5,
crowdsourced 3.3, and the third sets of video 2 on average.
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Figure 4.8: Retargeted video: selected frames (top) and retargeted frames (bottom)
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When asked if the video managed to convey useful information, expert scores the highest
with affirmative answers from 79% of users, followed closely by crowdsourced. Interestingly,
66% of the participants who watched user thinks that it still manages to convey useful
information. Surprisingly, none of the 12 users who watch nozoom found it useful. The
last two results validate the importance of retargeting, and validates the usefulness of user
traces in choosing important regions to watch, even when it is done by only one single user.
Only 38% of users found that noRT managed to be useful.

The results above shows that our crowdsourced version is only slightly worse than the
video retargeted manually by an expert user.

4.1.6 Summary and Conclusion

In this section, we have proposed an automated approach to retarget a high-resolution
video for display on small screens by exploiting user interest maps. This approach relies
on: (i) historical user traces to select regions that effectively convey the message of the
video; and (ii) cinematography rules to improve the visual quality of the retargeted video.
Our usage-based approach is a natural complement to previous retargeting methods based
on content analysis. A user study with 48 participants showed that the retargeted video
produced manually by an expert is only slightly better than those produced automatically
using our approach.
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4.2 Video Mashup

In this section we demonstrate the richness of 3D interest maps, by using the information
obtained in section 3.3 to build video mashups. We start by reviewing the related work,
then explain how we generate a video mashup based on the 3D interest maps and finally
evaluate our results.

4.2.1 Definition and Related Work

The goal of video mashup is to automatically create a temporally continuous video of an
event by splicing together different clips from simultaneously recorded videos of the event,
usually shot from a diverse set of angles. A video mashup system aims to replace a human
director, and therefore a successful video mashup system should produce videos that are
interesting to watch, logically coherent, and cover the important scene that happens during
the event.

Figure 4.9: Screenshot of the Jiku Director.

One of the state-of-the-art systems for video mashup is Jiku Director [Nguyen 2013]
(figure 4.9), which focuses on mashing up videos captured with handheld mobile devices.
Jiku Director uses an online algorithm [Saini 2012] to produce the mashup, following a
shot-change pattern learn from professional, human-edited, video. The system also filters
out bad quality videos through simple feature analysis and try to increase the diversity of
shorts in the mashup by not selecting clips from the same devices when possible.

Jiku Director, however, is limited in two ways. First, it always uses the video clips
recorded by users “as-is” without any cropping and scaling, nor introducing any camera
movement. As a result, the camera shots in the resulting video is limited to the movement
made by the user while recording the video. Furthermore, since the videos are recorded
by audiences of an event, the shots are most of type of long/medium shots. The resulting
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mashup is lacking in diversity of shot types. Second, when Jiku Director introduces a cut,
its only consideration is the shot angle (viewing direction of the camera) and shot length
(distance of the camera from the stage), without considering the subjects or narrative.

One way to overcome the first limitation is to analyze salient features from each video
independently and model the importance of the content. Jiku Director could then in-
troduce virtual camera movement (zooming effects and dolly shots) by cropping out the
region-of-interests (ROIs) from the videos. This approach is similar to that adopted by
Carlier [Carlier 2010a]. This approach, however, could not overcome the second limitation,
as there is no way to associate an object of interest that appears in one video clip with
another object of interest that appears in another clips.

The proposed 3D interest map allows us to identify such association for objects that
appears in the same time instance across two video clips. Furthermore, using the objects’
bounding boxes and interest levels, we can add camera movements to pan from one object
to another, and to zoom in for close-up shots of the objects, producing better mashups.
The rest of this section describes how we make use of 3D interest map in designing a new
video mashup algorithm.

4.2.2 Computing Bounding Boxes

The first step of our mashup algorithm is to compute bounding boxes that contains the
most interesting regions of the videos. Since our 3D interest maps are modeled by GMM,
one bounding box for each Gaussian in the mixture can be produced easily.

The mashup application, however, needs stable bounding boxes that are tracked over
time. The algorithm described in Section 3.3.2, however, applies at every time instant
without considering temporal consistency. Therefore, to produce bounding boxes for the
mashup applications, we change the last step of our algorithm (clustering a 3D point cloud)
and compute the bounding boxes in the 4D space (3D and time). This is actually equivalent
to building a 4D user interest maps! We augment the 3D points with a fourth coordinate
that corresponds to their frame index, and apply the Mean-Shift algorithm to this 4D point
cloud. We compute a bounding box for each cluster that contains all points of the cluster
for its entire duration. The bounding boxes are stable over time by construction and can
be mapped in all videos. An example of this output can be seen on Figure 4.10. Note that
all bounding boxes are constrained to be of the same aspect ratio as the original video.

4.2.3 Mashup Heuristics

With the set of bounding boxes, we now present a simple algorithm for video mashups to
illustrate the power of 3D interest map.

Note that 3D interest map cannot be computed online, but as we will later compare our
results with Jiku Director’s, which is an online algorithm, we choose to design our mashup
algorithm to be online as well, with no knowledge of future frames beyond the current
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Figure 4.10: Bounding boxes computed from our 3D interest maps. Bounding boxes of the
same color are corresponding to the same object of interest.

selected shots.
Our algorithm take, as input, the set of object of interests computed from 3D interest

map. For each object appearing in each frame, we have its bounding box, x-y coordinate
and depth of its centroid in each frame. The output of our algorithm will be a sequence of
shots (t, j, B, m), where t is the beginning time of the shot, j is the camera to choose the
shot from, B is the set of regions of interest to use in this shot, and m is the virtual camera
movement in this shot.

We use the same decision matrix used by Jiku Director to decide Camera j in each shot.
Once j is fixed, we determine t, B, and m as follows. We first define a scene as a sequence
of shots with logical coherence. For instance, a scene can start with a wide angle shot,
followed by a zoom in shot to an object x, followed by a close up shot of x. We limit the
length of the scene to containing no more than Ns shots (we use Ns = 3).

To determine the current shot starting at time t, the algorithm first needs to decide if
the current shot belongs to the same scene as previous shot, or starts a new scene. If current
scene has reached its limit in number of shots, we simply start a new scene. Otherwise, we
try to see if the current shot fits.

Let Lmax be the maximum possible shot length (we use Lmax = 7s). To determine the
current shot, we look at the bounding boxes and objects for the next Lmax time in the
video shot by camera j.

We prioritize the bounding box of each object by their importance in the scene. Each ob-
ject i has a camera independent importance, I(i, t), which is computed from

∑
j v

j
i (t)/d

j
i (t),

where vji (t) is 1 if object i appears in Camera j at time t; 0 otherwise, and dji (t) is the
depth of the object i from the camera plane of camera j at time t, normalized to 0 and
1. The intuition here is that an object that appears frequently in the collective video clips
and closer to the camera is the more important than those that appears fewer number of
times/far away from cameras.

In each video clip, we compute the camera dependent importance of an object, Ij(i, t) as
I(i, t)/dji (t). The importance of the bounding box is then the sum of the camera dependent
importance of all objects in the bounding box. Note that even though each bounding box
is associated with an object, other objects may appear in the bounding box. Naturally, a
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bounding box that includes multiple important objects becomes important.
Now, we look at the most important bounding boxes in j at each time instance for the

next Lmax seconds. If at the start of the Lmax seconds, the same bounding boxes is used as
the previous shot, we fit the current shot into the same scene, and set B to these bounding
boxes. We may stop the current shot at the time when these bounding boxes disappear.
If a bounding box different from that of previous shot become the most important, we
introduce a new scene, setting B to the new most important bounding box.

It remains to determine m for the current shot. The choice of m can be either: wide
angle shot, close up, move the camera (zoom in, zoom out, or pan). The algorithm follows
the following principles: (i) there should not be frequent camera movement, and (ii) the
choice of m should leads to “fluid” shots: two consecutive close up shots should have the
same object; zooming into an object should be followed by either a close up shot that
include that object or a pan shot moving from that object to something else; a zoom out
shot should be followed by a wide-angle shot; and a pan shot moving from an source object
to a target object should be followed by a zoom out shot from the target, or a close up shot
of the target. In figure 4.11, a video transition from our heuristics illustrates how the 3D
informations can be used for continuity editing.

Figure 4.11: A video transition keeping the same object(s) of interest in focus between two
successive shots from two different cameras.

4.2.4 Evaluation

We now present the methodology and results of our user study to evaluate the quality of
videos produced from our mashup algorithm.

Dataset. We pick the Rag&Flag dataset as the input to our algorithm, as it has the
most dynamic content. We use a 1-minute sequence from the 7-minute video, to limit the
length of the user study, and let users be able to watch the videos several times.

Benchmark. We choose to compare our output with two other methods. The first is the
output from the MoviMash algorithm [Saini 2012]. As MoviMash does not generate virtual
camera movements, we denoted the output from this video as NoVC. We also included the
output from a version of our algorithm that makes use of 2D saliency maps to generate zoom
and pan shots. We use the same saliency detector than the one from step (1) in algorithm
1, by consistency. We track the obtained ROIs with the same technique than the one from
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Figure 4.12: Average responses of the users for the three scenarios: NoVC vs. 2D-VC, NoVC
vs. 3D-VC and 2D-VC vs. 3D-VC

paragraph 4.2.2 except that it is applied in reduced (2D and time) dimension. The difference
between this 2D version and ours is that: (i) the saliency information is computed for each
video individually (without considering 3D scene information from other videos), and (ii)
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no interest information across different videos is available. We denoted the output from this
video as 2D-VC. The output from our algorithm using 3D interest map is denoted as 3D-
VC. Note that the three versions NoVC, 2D-VC, 3D-VC can be downloaded as supplemental
material.

Users. We recruited 30 users (10 female, 20 male, age between 21-43) to participate
in the user studies. All users but one have limited experience with video editing and
production.

Methodology. The user study is conducted online. Users are presented with the
instructions and are told that “the main purpose of the user study is to rate the videos
according to the quality of video editing”. We created two Web pages for our purpose,
each of them displaying two videos. On one of the page, NoVC is displayed along with
either 2D-VC or 3D-VC (the choice is random). On the other page, 2D-VC, and 3D-VC are
displayed. The order of display of the videos is random on both Web pages, to eliminate
bias. The users are allowed to replay the video as many times as they want. A list of rating
criteria are presented to the user below the video, where they are asked to rate the videos
with a rating from 1 (worst) to 5 (best) according to the criteria of (i) the quality of video
editing, (ii) the choice of camera shot, (iii) the interestingness of the video, and (iv) the
likelihood that the user would recommend the video to a friend.

Results. The average responses of the users, along with their 95% confidence interval,
are plotted in Figure 4.12.

The first result that is very clear is that users prefer the versions with virtual camera
movements (2D-VC, 3D-VC) rather than the output from MoviMash (2D-VC). The choice
of camera shot (ii) is the criteria where the difference is the most obvious, which is under-
standable as variety in the choice of shots makes the video more enjoyable to watch.

The interestingness of the video (iii), meaning the capacity of a video to display the
interesting subjects in a scene, is also significantly higher in 3D-VC than in NoVC. This
proves that the 3D interest maps indeed help the mashup algorithm displaying the inter-
esting regions in the videos. Note that 2D-VC also outperforms NoVC with respect to this
criteria but that the difference is less significant. Indeed since the 2D interest maps used
to compute this version are mostly based on apparent motion, the 2D-VC mashup has of-
ten multiple choices of moving regions to display and does not necessarily focus on the
prominent region of interest.

The right diagram of figure 4.12 seems to indicate that 3D-VC performs better than 2D-
VC, however the results can not be proven statistically significant. Indeed, to non-expert
users, the two videos can look similar because the shots dynamics are the same (zoom in,
zoom out, pan).

Therefore we conducted another, much shorter, user study. We asked a different pool
of 45 users to look at three pairs of very short videos, each depicting a transition between
2 shots (e.g. figure 4.11). Each pair consisted in the transition computed by 3D-VC and
by 2D-VC. We displayed the three pairs in random order, and asked users which transition
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Figure 4.13: Second user study (99% confidence intervals)

they preferred. Unlike the results presented in figure 4.12, this study allows to clearly
(statistically significantly) state that the transitions based on the 3D interest maps are
better than the ones based on the 2D interest maps (see figure 4.13).

4.2.5 Summary and Conclusion

In this section we have shown how to generate a video mashup based on 3D user interest
maps. The originality of this approach is that it allows for transitions from one video to
another that are focused on the same regions of interest. Two user studies, with 30 and 40
users respectively, have proven that viewers prefer a mashup generated from the 3D interest
maps.

In the next section, we introduce another application derived from the 3D user interest
maps: navigating between videos by region of interest querying.
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4.3 Querying multiple video streams

In this section, we still consider the use case of public events that are filmed by many users.
This use case produces a set of synchronous videos that reveal 3D ROIs. We explain here
how the 3D interest maps can be used to navigate between the videos.

Figure 4.14: Images of three synchronized videos from the Fukuoka dataset (on the left),
and an example of 2 possible queries (on the right) materialized by a red rectangle and a
blue circle on the image.

The idea of this work is introduced in Figure 4.14. The three images on the left show
frames captured by devices recording the same scene at the same time. Those frames were
extracted from a dataset of five videos depicting a chant-and-dance performance. At that
particular moment, the leader of the band (wearing a white bow on her hair) is singing
alone, and the other performers are dancing by her side. We can build a 3D interest map
from these three images, as described in section 3.3. The rightmost image in Figure 4.14
shows a user interface on the mobile phone. In this figure, the user is viewing the stage
from the right side, and is not able to get a good view of the performance. The user can
issue a query by either tapping on the band leader on his screen (the blue circle) or click
and drag a rectangle surrounding the band leader on his screen (the red rectangle). The
query is sent to the server, which uses the 3D user interest map to find the video that will
best answer the query.

In this section, we introduce the term viewpoint entropy, and explain how the problem of
finding the video that best displays a Region of Interest can be reformulated as maximizing
the viewpoint entropy. We then present a preliminary evaluation of our algorithm.

4.3.1 Viewpoint entropy

To simplify the explanation, we will present our algorithm in the context of a set of J
images Ij , j = 1...J , corresponding to video frames taken from the same time instance from
J cameras filming the same scene from different angles. We denote the cameras as Cj and
we know the projection matrices of the cameras.

Let Iq be the image currently viewed by the user, onto which the user will specify a
region of interest (ROI) Rq. We call Iq the query image and Rq the query region.

For now, we assume that we have a set of K 3D shapes, representing the interesting
objects in the scene (see section 3.3). We back-project Rq onto 3D space, forming a query
volume Vq that is a generalized viewing cone through Rq. We then compute the intersection
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between Vq and the 3D shapes.
After this step, the algorithm selects a subset of 3D shapes Oq that intersects with Vq

(we consider Vq intersects with a 3D shapes if more than 40% of a shape is within Vq). Note
that, it is possible to select a shape corresponding to an object that does not appear in Iq.

The set Oq represents 3D shapes selected by the user through Rq, and ideally, would
correspond to the set of objects of interest in the scene that the user is interested in. What
remains is for the algorithm to return an image that depicts these objects in the “best” way.
To compute this, we use the notation of viewpoint entropy, as inspired by [Vázquez 2001].

For each image Ij , we compute its viewpoint entropy. We adapt the notion of viewpoint
entropy by Vazquez et al. to handle a finite set of 3D shapes and the restricted region of
background visible from Ij . The viewpoint entropy E(Ij) represents the amount of visual
information about the selected 3D shapes Oq in Ij .

Let Ao be the projected area of shape o on Ij , normalized to between 0 and 1 with
respected to the area of Ij . We define Abg as the normalized area in Ij that is not covered
by any shape (i.e., the background).

We define the viewpoint entropy as

E(Ij) = −Abg log2Abg −
∑
o∈Oq

Ao log2Ao (4.6)

A image that depicts all the requested shapes with the same relative projected area
would have the highest entropy. Since the relative projected areas Ai form a probability
distribution, the relative visibility of the background at maximum entropy (log2(|Oq|+ 1))
should be also comparable to the visibility of each shape. In practice, we do not reach this
upper bound and simply maximize E(Ij) over j.

We return the image with the highest entropy as the result of our query. The system
then switch the video stream to the one corresponding to the resulting image.

As clearly mentioned by Vazquez et al. the intervention of A0 helps to handle various
zoom levels (or various distances between the cameras and the scene) among the J candidate
images. The use of the background visibility level gives nearer shapes a higher entropy. In
Figure 4.15, a larger projection of the requested yellow shape increases the entropy of the
best viewpoint (by limiting the information brought by the background).

Figure 4.15 shows a small example illustrating this process. The small red square inside
the image represents the query Rq region. The corresponding query volume Vq intersects
two shapes, shown in blue and yellow, out of three 3D shapes. The image with the highest
entropy (0.75) is selected out of two candidate images.

4.3.2 Evaluation

We evaluate our query application through a user study, since only users can tell if the
answer to a query matches what they want to see. Our user study has the following set up.
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Figure 4.15: A 3D query volume Vq intersecting Kq = 2 shapes and J = 2 candidate
viewpoints.

Images We selected 15 time instants from our three datasets (described in section
3.3.3): Fukuoka, Jiku and BrassBand.

Methodology For each sequence, one of the images is considered being captured by a
user who wants to query the system. On this image, we define five spatial regions corre-
sponding to the actual query we want to evaluate. For each query we ask users which of the
remaining videos they think is the best answer to the query. The order of presentation of
the videos is randomized, as well as the order of the sequences and the order of the queries,
in order to avoid any bias.

We set-up a web based interface, displaying the query (as a red rectangle on one of the
images) and the entire set of videos. Users were asked to look at the query, identify the
objects of interest that were queried and find among the set of videos which one they think
shows best the queried objects of interest. They can then select the video that answers the
query by clicking on it, and then move on to the next query.

Participants. The study involves 35 participants with ages ranging from 20 to 60, and
averaging 30. Among these users, 13 were females and 22 were males. The 35 participants
each answered to 75 queries, which makes a total of 2625 answers.

Results. We say that an user is satisfied by the answer to a query if the answer given
by our algorithm is the same as chosen by the user during the user study. This hypothesis
assumes that users would be satisfied with one answer only, which is not true in general.
For example, in the BrassBand dataset, some of the cameras were located pretty close to
each other, which means that in some cases users would have been satisfied by both videos
as an answer to a query.
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Dataset Level 3
Number of answers 1 2

Fukuoka 30% 63%
Jiku 31% 49%

BrassBand 36% 63%

Table 4.3: Percentage of users that would be satisfied with the result after the 1st and 2nd answer on the
three datasets.

Dataset 1st answer 2nd answer
Fukuoka 61% 80%
Jiku 45% 72%

BrassBand 56% 79%

Table 4.4: Percentage of the users it was possible to please after the 1st and 2nd answer on the three
datasets.

Table 4.3 shows the average percentage of users that are satisfied by the top answer
returned by our algorithm, and by the top two answers returned by our algorithm. The
results are good for the Fukuoka and BrassBand datasets: one third of the users are satisfied
with the top answer and two thirds of users are satisfied by the top two answers. These
results should be compared to the ones introduced in Table 4.4, which shows the maximum
percentage of users that it is possible to satisfy with one answer, and with two.

The remaining users chose different views, which does not necessarily mean they would
not have been pleased with the answer from our system. In fact, in the case of the Fukuoka
andBrassBand datasets, there are often multiple views that would give acceptable answers
to a query, as some cameras are close from each other.

4.3.3 Summary and conclusion

In this section we have shown how to apply the concept of viewpoint entropy to an appli-
cation of region of interest (ROI) querying. Preliminary evaluations have shown promising
results, but they need to be extended to a more extensive real-world setup to determine its
real effectiveness. We already developed a web interface to navigate within a set of videos,
and we plan in future work to evaluate this interface in a user study.
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Part II

Crowd-based semantic analysis
of images
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Crowd-based semantic analysis of images:
Overview'

&

$

%

We have shown in part I how to detect ROI using implicit interactions from a crowd of
users. We have seen how the detected ROI benefit both from user interest maps and
content analysis techniques. We have modeled the user interest maps as Gaussian
mixtures, and have demonstrated a set of applications that take advantage of our
detected ROI.
The main drawback of all the work we have presented in part I is the limited amount
of semantics that is contained in our ROI. Indeed the interactions through which
users contributed to build our user interest maps did not allow them to introduce any
semantic label for example.
In this part, we are adressing the problems of object detection and image segmenta-
tion. Unlike ROI detection, these two problems imply the inference of a lot of semantic
information in order to achieve good results. Whereas in part I our algorithms in-
volved a low level of semantic and users’ attention, in part II we study the level of
cognitive commitment needed from users in order to bring information embedding a
higher semantic level. Ideally we would like to implicitly collect semantic labels (e.g.,
textual of audio labels). But is it possible to implicitly collect that much semantic
information?
We start by introducing a new interactive segmentation interface called Click’n’Cut.
In the corresponding chapter 5, we show how a combination of light interactions (a
few clicks) from users with content analysis techniques can lead to high quality figure-
ground segmentation. Then in chapter 6 we introduce our Game With A Purpose,
Ask’nSeek, through which we collect rich annotations that we use to perform object
detection and image segmentation.
Finally in chapter 7, we use the previously introduced Click’n’Cut and Ask’nSeek
systems to answer these fundamental questions: what is the loss induced by assigning
a task to a crowd of paid workers instead of experts? And what is the loss induced
by assigning the same task to players through a game? How to minimze such losses
using content analysis?

107





Chapter 5

A baseline for Interactive
Segmentation
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In this chapter, we adress the problem of interactive segmentation of images via the
development of an interface called Click’n’Cut. In this scenario and unlike the work intro-
duced in part I, interactions are fully explicit. A user (or a crowd of users) is presented with
a semantic label describing an object and must segment the object using the interactions
proposed by the interface. Users can be experts (in which case we can compare our inter-
face to existing state-of-the-art interactive segmentation interfaces such as [Rother 2004])
or paid workers who do not know anything about image segmentation. In our case, se-
mantic labels are assumed known (a possible way to get the labels is to use the ESP game
[Von Ahn 2004] or an equivalent platform) but we could devise an alternative interface in
which users would enter semantic labels and then interactively segment the corresponding
object.

In this work, we had two main requirements for the interface’s design. First we wanted
to keep users’ interactions at a minimum. Annotations in interactive segmentation are
usually scribbles (see section 2.2.3); we decided to use points instead. Points have the
advantage to be produced quicker than scribbles (which can take a few seconds to draw),
which allows users to rapidly shape an acceptable segmentation mask. We also wanted to
obtain an interface as reactive as possible. The challenge was then, as we have already
discussed in section 2.2.1, to design a content analysis algorithm that was both fast and
efficient to expand users’ interactions.

In this chapter we evaluate segmentation performances of expert users with Click’n’Cut,
in order to obtain a baseline for interactive segmentation. We will then, in the subsequent
chapters, compare the performances of a crowd of paid workers against expert users. Finally
we will compare to this baseline the quality of a segmentation obtained through a new Game
With A Purpose: Ask’nSeek.

5.1 Click’n’Cut: an interface for Interactive figure-ground
Segmentation.

In this section we describe our web interface Click’n’Cut for interactive object segmentation.

5.1.1 Presentation of the interface

Figure 5.1 shows a screenshot of the Click’n’Cut interface. The interface consists in dis-
playing the image that we wish to segment, along with a set of basic interactions (on the
bottom-right of the screen) and a reminder of how the interface works (on the top-right
part of the screen). There is also a description of the object to segment on the top of the
screen, right above the image. On the figure, the object to be segmented is the cat.

The fundamental interactions available to users are the left and right clicks. A left
click on the image indicates a foreground point (in green) whereas a right click on the
image indicates a background point (in red). After each click the current version of the
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Figure 5.1: Screenshot of the Click’n’Cut interface

segmentation is updated and displayed over the image with an alpha value of 0.5 by default.
At any time the user can choose to modify the alpha using the Transparency slider to either
get a better look at the image or to better see the current Foreground mask.

A user can also remove a bad click: just clicking on it again makes it disappear. The
Clear points button removes the entire set of clicks that have been made by the worker.
Finally, once satisfied with the result, the user can go on to the next task by clicking the
Done button.

The user can also choose not to display the points (annotations), in order to have a
clearer view of the current state of the segmentation. The radio buttons “Show points”
serve this purpose.

The number of interactions available to users is voluntarily kept low: we wanted to obtain
an easy-to-use interface with intuitive interactions. We therefore did not implement any
tutorial (we will see later in this chapter that it was not a problem for experts; unfortunately
it became an issue with paid workers as we will show in section 7.1.2).

The interface is implemented using HTML5 features and JavaScript on the client side,
and in Java on the server side. The server side handles the computation of the current best
mask as well as the persistance of workers’ interactions in a database. The mask that is
produced by users via Click’n’Cut is a binary image in which a pixel value is set to 1 (resp.
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0) if the pixels belongs (resp. does not belong) to the object. The algorithm we present in
section 5.2 could be modified to produce probability maps, or tri-maps for example.

The interface is deployed at the following adress: http://carlier.perso.enseeiht.

fr/demos/clickncut.html.

5.1.2 Content-Aware interface

On the server side, an algorithm (introduced in section 5.2) binds the clicks to a pool
of segments that are used to build the object’s mask. The very simple idea behind the
algorithm is that when users label a pixel as foreground (by left-clicking on it), all the
pixels that belong to the same segment (obtained through content analysis) are also labeled
as foreground. Segments can similarly be labeled as background.

We use different granularities for the segments in our algorithm. Large segments allow
to infer a lot of information from a single click but the segmentation quality greatly depends
on the segments quality. Small segments are less informative since they expand the users
annotation to less pixels, however the information propagation is less likely to be wrong
than with large segments.

Superpixels. The term of superpixels has appeared at the beginning of the 2000s. It
could be defined as an intermediate level of abstraction between pixels and objects in a
visual content (usually, authors refer to superpixels for images and supervoxels for videos).
Superpixels can be seen as an oversegmentation of an image, in which each segment regroups
pixels that exhibit a strong colorimetric and/or textural similarity. Originally superpixels
were strongly related to computer vision techniques that used Markov Models. These
methods typically build graphs to solve problems, and using superpixels (instead of pixels)
as nodes for these graphs greatly decreased the complexity and computation time of these
algorithms. Nowadays however, superpixels are widely used as a preliminary step in many
algorithms.

Categorizing this class of algorithms is not easy, since superpixels are almost always
introduced with a specific application in mind. Superpixels attributes are then very depen-
dent of the desired application.

Superpixels can either be very compact to form a regular grid (e.g., [Achanta 2012]) or
have free form to better fit objects boundaries (e.g., [Felzenszwalb 2004]). The number of
desired superpixels can be a parameter (e.g., [Achanta 2012, Shi 2000]) or can be dependent
on some parameters (e.g., [Felzenszwalb 2004, Comaniciu 2002]).

Most of the superpixels algorithms share a common objective though: they aim at
offering the possibility to describe any object on the image as a set of superpixels. This
property is desirable to us; in fact a very simple approach for an interactive segmentation
could be to designate each superpixel as foreground or as background (using foreground
clicks and background clicks, like in Click’n’Cut). Because this approach would still require
a lot of interactions from users (since an object can be composed of hundreds of superpixels),
we also choose to use object candidates in our algorithm.
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Object Candidates.
The concept of object candidates has been made popular by the PASCAL Visual Ob-

ject Challenge [Everingham 2010]. In the object detection challenge, a class of algorithms
emerged as the best performers: the algorithms using deformable-part models. The idea
is to decompose an object into smaller objects called parts whose spatial arrangement can
vary, and to try to detect the object by finding its parts. In this context, it is really impor-
tant to be able to detect regions in an image that are good candidates to be objects. The
problem of object detection is then reformulated as checking whether the candidates fit a
deformable-part model.

Many methods have been proposed to build such object candidates. Carreira et al.
[Carreira 2010] generate candidates using a Parametric version of the Min-Cuts algorithm:
they run Min-Cuts with different set of parameters to obtain a pool of candidates. Then
they rank the candidates by applying a classifier trained using 34 low-level features that
determines whether the candidate has a high probability of being an object or not.

Van de Sande et al. [Van de Sande 2011] build a hierarchy of segments (obtained with an
initial superpixel segmentation from [Felzenszwalb 2004]) using a greedy algorithm. All the
intermediate segments in the hierarchy are then considered as candidate objects. Arbelaez
et al. [Arbeláez 2014] use a similar approach that differs on the superpixel segmentation as
well as on the algorithm used to rank the objects.

In our work we use object candidates along with the underlying superpixel segmentation
in conjunction with users’ clicks. The clicks are used to select the best candidate segment
or combination of segments, as we will explain in the next section.

5.2 Interactive Segmentation

To compute the best mask with respect to a set of f foreground points and b background
points, we adopt the following algorithm.

For each mask m ∈MCG, where MCG is the set of masks computed using the method
from [Arbeláez 2014] (see some examples on figure 5.2: masks can be of various size and
nature), we start by computing two scores fgm and bgm. fgm (resp. bgm) is the number
of foreground (resp. background) points that are correct with respect to m. For example
on figure 5.2 the foreground point (in green) is correct with respect to the masks 1 and 4.

Then if there exists a mask m∗ for which fgm∗ = f and bgm∗ = b then m∗ is the best
possible mask and this is the mask that will be shown to the worker.

Else, it means that no mask is correct with respect to all clicks. In that case, we build
a set of masks M∗ = {m ∈ MCG, bgm = b and fgm > 0}. This means that M∗ contains
the masks that have not been defined as background and for which there is at least one
foreground point. The union of all masks that belong to M∗ form the best mask that is
displayed to the worker.

For example, in the example depicted on figure 5.2, the first mask is the best mask with
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Figure 5.2: Examples of MCG candidates for the image shown in figure 5.1

respect to the two clicks (foreground in green, and background in red) since it is the only
one that is consistent with the two clicks. If the user was to label a pixel on the cat’s head
as foreground, then no mask would be consistent with the three clicks. The best mask
would therefore be the combination of the three first masks which would all be consistent
with the background click and at least one foreground click. The fourth mask on the figure
is clearly identified as too big since it contains a background click.

This simple algorithm presents multiple advantages. First it is very quick to compute
the best mask which makes the interface pleasant to interact with, since the response time
is low. As we will show in the next section, the interface is also very efficient in term of time
needed to converge towards a good segmentation. The major drawback of this algorithm
however is that it relies on the users capacity to produce accurate clicks. Just one wrong
background click can dramatically reduce the segmentation quality.

5.3 Experiments

5.3.1 Protocol

Dataset. The experiments have been conducted on a pool of 101 images. 96 images are
taken from a subset of the Berkeley Segmentation Dataset [Martin 2001], and have been
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augmented with a description of 100 objects that appear on the images (2 images have three
associated objects each). This dataset has originally been proposed by [McGuinness 2010]
in their work on interactive segmentation. In order to study and control the quality of user
traces we have added 5 images from the PASCAL VOC dataset along with a description of
one object per image.

Therefore our image set is composed of 101 images, and there are 105 tasks (objects to
segment) to perform. 5 tasks serve as a gold standard.

The tasks can be divided into four main categories:

• Unique and salient object (see middle image in figure 5.4). Only one instance of
the object to segment is present on the image, and is significantly different than the
background.

• Very small or very big object (see right image in figure 5.5). These tasks feature
objects which are either very small (with respect to the image size), or very large
(they cover almost entirely the image).

• Object similar to the background. The object to segment has similar color and
texture than the background. An example of this can be seen on figure 5.5, in which
the puma’s back and legs are hardly recognizable from the background.

• Multiple instances of the object. The object to segment belongs to a class for
which multiple other representatives appear on the image. The giraffe in figure 5.5
illustrates this category.

Participants. We asked experts (PhD students as well as Professors) from different
computer vision labs to interactively segment the objects using Click’n’Cut. We asked the
experts to try to reach for the best possible segmentation. Users performed the segmentation
of the entire set of 105 tasks, which took them between 30 minutes to 2 hours.

A total of 15 experts (11 Males, 4 Females) participated to this study, with ages ranging
from 19 to 55.

5.3.2 Results

Our interactive segmentation tool was compared with the top two best configurations pro-
posed in [McGuinness 2010]: GrabCut [Rother 2004] and hierarchical partition with BPTs
[Salembier 2000] [Adamek 2006]. The different solutions are assessed in terms of the ac-
curacy vs user time trade-off, where segmentation accuracy is measured with the Jaccard
Index (overlap score) J = P∩GT

P∪GT between the Predicted (P) and Ground Truth (GT) masks.
The graph in Figure 5.3 plots the average Jaccard obtained with the amount of time users
spend creating their annotations. Our experiments indicate that Click’n’Cut (used by ex-
perts) converges more rapidly than the two graph-based approaches, but also that accuracy
saturates sooner in our proposal.
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Figure 5.3: Average Jaccard vs User time.

The quick convergence towards a good segmentation is a natural consequence of the
requirements we expressed at the beginning of the chapter. It takes our expert users a few
clicks to reach a good segmentation result (the 0.8 Jaccard is reached in average in less
than 20 seconds), and also the system provides feedback more quickly than the BPT and
GrabCut approaches to which we compare ourselves. The combination of slower interactions
(scribbles take longer than clicks to produce) as well as slower feedback (our algorithm’s
response is instantaneous compared to GrabCut for example) explains the relative slowness
of state-of-the-art methods compared to our interface.

Figure 5.4 shows the three images for which the expert users obtain the best results
(with an average Jaccard Index of respectively 0.97, 0.98 and 0.98). We can see that the
utilization of Click’n’Cut can lead to almost perfect segmentation masks.

On the other hand, using clicks instead of scribbles also shows its limitation: our expert
users converge towards a 0.90 average Jaccard Index, whereas BPT and GrabCut’s users
reach a 0.93 average Jaccard Index on the same data (figure 5.3). This fact can be under-
stood by looking at the left image in figure 5.4. The mask boundaries are accurate, but
there remain holes inside the mask that need to be filled. This is much easier to achieve with
scribbles than with clicks and that can partly explain the performance difference between
BPT and GrabCut’s method and our method.

Figure 5.5 also gives an interesting insight about the limitations of our approach. The
figure depicts three images for which experts fail to reach an acceptable segmentation (with
an average Jaccard Index of respectively 0.72, 0.70 and 0.71). On the left, the puma is
difficult to segment because of the underlying superpixel segmentation used in the MCG
candidates. Indeed, a big part of the puma is missing in the segmented mask because it is
part of a large superpixel that covers both the puma and the background. In other words, in
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Figure 5.4: Original image and best mask obtained on the three tasks for which experts
produced the best segmentation in average.

this particular case, experts fail because the content analysis algorithm makes it impossible
to reach a good segmentation. The giraffe and camel objects are difficult because they are
small objects, and some of their parts (mostly, the animals’ legs) are so small that they
are either difficult to click on, or not differentiated from the background in the superpixel
segmentation.

In fact, our results clearly show that our algorithm is very performant for the first
category of tasks (unique and salient object) and that two categories are problematic:
very small object and object similar to the background. Our underlying content
analysis algorithm (MCG candidates) performs less good on images of these categories
which limits segmentation quality.

Table 5.1 compares many different algorithms (described in section 2.2.3) performances.
We can see that Click’n’Cut allows users to achieve a very interesting compromise between
segmentation quality and interaction time.

5.4 Summary and Conclusion

In this short chapter we have introduced a new interface for interactive segmentation called
Click’n’Cut. This interface admits very simple interactions -left clicks on foreground, right
clicks on background- and allows expert users to converge in about 30 seconds to a high
performance segmentation (0.9 of average Jaccard Index). The results presented in this
chapter are pending publication in CrowdMM 2014.

In this chapter we have temporarily set aside the notions of human computation and
implicit crowdsourcing, but we will return to it in the two next chapters. We will first
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Figure 5.5: Original image and best mask obtained on the three tasks for which experts
produced the worst segmentation in average.

introduce in chapter 6 a new Game With A Purpose called Ask’nSeek, which has the
potential to generate traces that are similar to Click’n’Cut. We will describe in this next
chapter another application for these traces: object detection.

Click’n’Cut will be used again in chapter 7, but not by experts anymore. We will
investigate whether a crowd of paid workers can achieve similar results than experts when
using our interface. We will also analyze experts traces more in depth.

The results that we have introduced in this chapter will be used as a baseline in order to
evaluate the performance of paid workers on Click’n’Cut, as well as players on Ask’nSeek.
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In this chapter, we introduce a new Game With A Purpose called Ask’nSeek. This
game involves two players interacting with each other on the same image, thus implicitly
producing very rich annotations on this image. The game is interesting because it produces
different types of data such as free text (describing objects on the image), clicks and spatial
relations between clicks and objects.

The data gathered through Ask’nSeek’s playing sessions can be virtually used to help any
computer vision algorithm. In this chapter, we formulate a model that extends annotations
from the game to a set of points obtained through content analysis. This model outputs
labelled bounding boxes, which makes it an object detection algorithm.

The data can also be used (as we will show in chapter 7) for object segmentation using
the same algorithm that has been presented in the previous chapter, at section 5.2.

We first detail Ask’nSeek’s gameplay, then explain our model for object detection and
finally describe our experiments to validate the model.

6.1 Ask’nSeek: a game for object detection and image
segmentation

6.1.1 Presentation of the gameplay

Ask’nSeek is a web-based two players game. The two players have non-symmetric roles; the
first player, called the master, must hide a target region in an image and from that point
should guide the second player, called the seeker, to discover it. The seeker can see the
same image as the master but does not know where the target region has been hidden. His
goal is to find the region by clicking inside it.

Figure 6.1: Example of the game from the seeker’s point of view.
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To do so, the seeker can ask the master for clues. More specifically, the seeker can type
the name of the objects that he sees on the image, and ask the master where the region is
relatively to these objects. Once prompted by the object requested by the seeker, the master
can answer 7 possible answers : on the left of, on the right of, above, below, on, partially on,
can not relate to. Therefore, the seeker can iteratively narrow down the possible locations
for the hidden region on the image.

The game is cooperative: the goal of the master is to help the seeker find the target’s
location within the allocated time (that is displayed on the upper right part of the interface).

The gameplay is illustrated on figure 6.1. In the game featured on this example, the
seeker first asked the master an indication relative to the dog, and the master answered
that the region is "on the right of the dog". The seeker clicked on the image but not on
the region, so he asked for a second clue, relative to the cat. The master answered that the
region is "on the cat", and the seeker once again did not find the region. He finally got the
indication that the region is "on the cat’s head", and clicked on the right location. Once he
clicks inside the region, the actual location of the region chosen by the master is prompted
to the seeker (before finding it, he could not see it). In other terms, the square only appears
on the image when the seeker managed to click inside it.

6.1.2 Nature of the data

The data collected on Ask’nSeek comes from the interaction between the 2 players, the
master and the seeker. It is important to understand that the input from the 2 players is
different, and brings complementary information about the image.

The seeker provides two kinds of information : textual information, that he types when
describing an object, and spatial information that he brings when clicking on the image to
find the hidden region.

The master on the other hand, provides two kinds of spatial information. The first
information is the location of the hidden region, and the second one is the spatial relation
between the object designated by the seeker and the hidden region. Because the seeker
takes this information into account when clicking on the image, the spatial relation is also
connecting the seeker’s tags and clicks.

We now detail all the types of data provided by the players.
Textual information. The tags that are typed by the seeker are of various forms.

Because the duration of the games is limited, players are tempted to write short tags.
Indeed most of the tags are often composed of one word, which typically refers to an object
of the image or to an object’s part. This can be seen on figure 6.2, in which tags and their
number of occurences are displayed on the right of the associated image. We can see that
the words "tree", "plant" and "tiger" appear as one-word terms, as well as "face", "tail",
or "tongue" which are meronyms of the object "tiger". Analysis of such patterns can help
performing the task of image labelling.

It also happens that the tags are a group of words, which can be either very informative
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Figure 6.2: All games that have been played on one particular image. On the left, the
location of hidden regions is superimposed on the image. On the right, the tags that have
been typed by the seekers, along with their number of occurences.

because they connect two one-word objects ("eye of tiger", "tiger face") or either complicated
to parse ("in between tiger legs"). The analysis of these traces can lead to learn a hierarchy
of objects. On the example, it means that we can retrieve from the traces that tigers have
a face and an eye.

Figure 6.3: On the left, image that illustrates the problematic of multiple instances of the
same object and on the right the tags collected during games associated to the image.

Also when people start using groups of words to designate an object, it usually means
that there are multiple instances of this object. For example figure 6.3 depicts some labels
that appeared on the traces associated to the image on the left. The label "soldier in the
foreground on the left" suggests there are probably soldiers in the background and in the
foreground, and probably more than one soldier in the foreground. Therefore, there is an
interesting relation between the tags’ length and the number of instances of an object.
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Figure 6.4: Saliency map computed from the hidden regions locations.

Finally, considering all different tags of an image and their frequencies can provide
meaningful insight to solve problems like image categorization and objects cooccurences.

Hidden regions. Hidden regions are the regions that are positioned by the master
during Ask’nSeek. Figure 6.4 displays on the middle column the location of all regions
hidden by all masters on two images.

It is interesting to notice that the positions of those squares is not random at all, but
often located on objects of interest. This can be explained by the nature of the game :
because it is cooperative, the master wants the seeker to find the region, so he places it on
rather obvious regions.

This makes the hidden regions good candidates to build saliency maps. To illustrate
this idea, we associate a gaussian footprint to each hidden region and display the associated
mixture of gaussians on the right column of figure 6.4. The result looks very convincing
and would deserve to be investigated more thoroughly.

Spatial relations and clicks. All clicks from the seeker are associated to a spatial
relation (above, below,on the left of,on the right of,on,partially on) and to a tag.

• Above,below,left,right. Figure 6.5 illustrates how we can use these clicks in order to
perform object detection. Red points are all clicks collected above the cat, whereas
blue points are clicks on the right of the cat. The lines correspond to the bounding
boxes we can get for the detection of the object "cat" if we trust completely the traces
(dotted line), or if consider there can be mistakes (full line). To handle the mistakes
in this case, we use the median point (as opposed to the extreme point for the dotted
line) to obtain a more robust estimation of the cat’s position.

• On. Figure 6.6 shows all the "on" points obtained on one image. The distribution of
the points can help to segment some of the objects (hut, man, trees, stick) . The right
image shows "on" points obtained on objects (head, skirt, butt, feet) that are part of
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Figure 6.5: Clicks above (in red) and on the right (in blue) of the cat.

Figure 6.6: "On" clicks collected on one image.
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Figure 6.7: In green, all points that have been clicked "partially on" the urn.

a bigger one ("man").

• Partially On. Figure 6.7 shows all the "partially on" points clicked on the object "urn".
It seems clear that the concept of "partially on" click was not understood the same
by all players. Some click exactly on the border of the object, some click near the
border either inside or outside the object. These traces can nevertheless be used as a
complementary information for object segmentation, in conjunction with foreground
points ("on" clicks) and background points ("above", "below", "left", and "right" clicks).

The power of Ask’nSeek traces relies on their diversity and their complementarity. We
can use them to perform image segmentation of one object, but taking into account that
for each image we have information on multiple objects (see figure 6.6), we can go further
and target image parsing.

The originality of the game logs, that bring in addition to clicks and tags a spatial
relation, can help to learn spatial relations between objects, multiple instances of the same
object, and parts of objects.

Examples from the data. In order to show the potential of Ask’nSeek traces we had
all users play the same image, featuring a cat and a dog and extracted from the PASCAL
dataset. We recorded traces of 99 games on this same image. Figure 6.12 shows the position
of the hidden region of all games. It is very interesting to note that the regions completely
cover the two main objets of the image, namely the cat and the dog. The highest density
of regions is located on the head of both animals.

What is also interesting is that the labels "cat" and "dog" are the two most cited la-
bels, with respectively 67 and 66 occurences each. Note that this is without counting the
occurence of the word "cat" and "dog" in others tags, like "cat’s head" or "dog’s leg".
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Figure 6.8: Seeker clicks relative to the dog, categorized in foreground (yellow) and back-
ground(red).

Figure 6.8 shows all clicks from all seekers relative to the object "dog". Yellow clicks
are "on the dog" where as red clicks are "above", "below", "on the left of" or "on the right
of" the dog. The first thing that comes to sight is that there are mistakes in the clicks.
For example, some yellow clicks are a little bit outside the dog. There is also one of the
background click that is located on the dog. One of the biggest challenges of the processing
of the traces is to be able to detect and eliminate these outliers.

6.2 Object detection

As suggested in the figures 6.5 and 6.8, some objects are more cited than others by the
players (in this case: the cat and the dog). For these most cited prominent objects, we
gather enough spatial information from the traces to be able to detect their location on the
image. In this section we describe the probabilistic model and machine learning strategies
that we use to perform this detection. Due to the relatively small number of training
data points collected during game play (figures 6.5 and 6.8 are misleading in this regard,
because the corresponding image has been played more than 100 times), our strategy lies
within the “semi-supervised clustering with constraints” framework. The idea is to cluster
a set of points, and to associate a cluster to each object. More specifically, we use: (i) the
cluster assumption (“If points are in the same cluster, they are likely to be of the same
class” [Chapelle 2006]) and the semi-supervised smoothness assumption (“If two points in a
high-density region are close, then so should be the corresponding outputs” [Chapelle 2006])
when we take into account the “on” points collected from game logs as well as the points
produced from a superpixel segmentation algorithm; and (ii) the low-density separation
assumption (“The decision boundary should lie in a low-density region” [Chapelle 2006])
when we factor in the “partially on” points from game logs.
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6.2.1 A probabilistic generative model

Our model aims at labeling an image using data from two main sources: game logs and
output of suitable computer vision algorithms, e.g., bottom-up visual saliency maps and
superpixel-based segmentation.

The game logs contain labels as well as ‘on’, ‘partially on’ and ‘left-right-above-below’
relations. Our goal is to label each superpixel with a well-chosen label from a set of candidate
labels [L1, ...LK ]. Examples of labels include foreground objects (e.g., dog, bus) as well as
other semantically meaningful regions within the image (e.g., sky, road).

We formally introduce an observable set Xcv of 2D data points that come from applying
an automatic, unsupervised computer vision technique to the input image. The way these
points are produced will vary depending on the underlying technique, e.g., by applying
density sampling techniques to a saliency map of the image (thereby producing a smaller
set of points, whose density is proportional to the saliency of the surrounding region). These
points lie on the image space Ω = [1, Nrow]× [1, Ncol] ⊂ R2. Intuitively our labeling task is
to assign the points from Xcv to the correct labels, if feasible. Of course, since some of the
salient regions may not map to any of the K most cited labels, the points located in such
regions cannot be assigned any label. This is why we extend our set L of candidate labels
with a dummy label φ which denotes that a given point is not labeled.

L = [L1, ...LK ] ∪ φ = {Ll}l=1...K+1 (6.1)

Similarly we denote X l
on (resp. X l

pon) the 2D points that have been clicked during the
games and identified to be "on" (resp. "partially on") the object label Ll (or l for the sake
of simplicity). So, we handle, as input data, a set X of 2D points :

X = Xcv ∪Xon ∪Xpon (6.2)

As input data we also have all of the "left-right-above-below" relations collected from the
game logs. We follow the notations from the TAS model [Heitz 2008]. The collected rela-
tions are indicator variables Ri,l,r that indicate whether a point xi ∈ X and label l have
relationship r. Arbitrarily r = 1 (resp. r = 2, etc.) stands for xi being "on the left" (resp.
"on the right") of object label l. The set of collected relations is denoted R :

R = {Ri,l,r}xi∈X ,r=1..4,l=1..K (6.3)

So far, we have observable labels plus data and constraints from L, X andR respectively.
Our probabilistic model also includes unobservable (hidden) variables to be estimated for
labeling purposes. First, we need variables corresponding to the assignments of data points
from X to labels from L. As explained later, we will handle soft (or probabilistic) assign-
ments in our Expectation-Maximization algorithm. Secondly, we introduce an unobservable
set of unknown model parameters θ. Our model is a clustering model such that our data
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point set X must be partitioned into K + 1 = Card(L) clusters where K clusters are as-
sociated with the K labels [L1, ...LK ] and the (K + 1)th one is the dummy (or “no label”)
cluster. We look for a mixture model (parametrized by θ) that explains how our observed
data points X have been generated from labeled clusters while respecting the constraints
R. In other words, a mixture model explicitly says that a point x ∈ X could be statistically
generated in K + 1 possible ways leading to a mixture distribution :

Pmix(x|θ) =
K∑
l=1

πl N (x|µl,Σl) + πK+1

v
(6.4)

where K Gaussian distributions (one per label) are mixed with an uniform distribution (1/v
is a constant to be defined) under the control of the mixing proportions πl,∀l ∈ 1 . . .K+ 1.
The parameters θ defining the model are the K 2D locations µl of labeled Gaussian clusters,
the K 2× 2 covariance matrices Σl and the K + 1 mixing weights πl that sum to 1.

Ideally, in such generative model (with a well chosen vector of parameter θ), the data
points from Xcv would be correctly clustered and labeled when they are located within
the K Gaussian components. Moreover, when the points are more likely explained by the
uniform distribution of the mixture (i.e., they are far apart from the Gaussian clusters)
they are not labeled. Learning such a mixture model would be straightforward if we knew
the correct label yi ∈ L for each data point xi ∈ X . In practice, we don’t know these
assignments and want to estimate them for a current (resp. initial) model parameter θc

(resp. θ0). In this context, we will use "soft assignments"

p̂(l|i) = P (yi = l|xi, θc) (6.5)

A set of soft assignments is denoted γ = {p̂(l|i) l ∈ 1 . . .K+1, xi ∈ X} or γc to reinforce
its dependence on the current model θc.

6.2.2 Parameter estimation outline

We estimate our model parameters using the common maximum likelihood estimate (ML).
Given labels L and observable data X and R, the ML estimate is:

θML, γML = arg max
θ,γ

P (X ,R|θ, γ) (6.6)

Equation 6.6 expresses that we look for both the mixture (i.e., the Gaussian clusters)
and the assignments that best explain our data. This principled estimation is very intuitive
and threefold: (i) we compute an initial estimate of the model involving small clusters and
reliable assignments; (ii) we make these clusters grow by propagating the initial assignments
and maximizing the likelihood (equation 6.6); and (iii) the optimization algorithm stops
when the clusters boundaries reach their expected positions, eventually leading to a local
maximum of the likelihood.
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These steps are illustrated in Figure 6.9. In that figure, red circles represent Xon points,
gray crosses denote Xcv points, and blue circles represent Xpon points. The green rectangle
represent the “bounding boxes” obtained by taking into account left-right-above-below spa-
tial relations (see also figure 6.5). The figure only shows Xcv points included in bounding
boxes. The red ellipses denote individual Gaussian distributions, whose center is marked
with a red pin. The clusters are initialized with reliable assignments (Xon points), grow
to include as many Xcv points as possible, and finally stop growing when the constraints
imposed by the Xpon points is reached.

A more detailed explanation of each of the three steps follows.

Initialization. It is straightforward to use "on" points from Xon to start building an
initial model θ0. Indeed, the set of "on" points collected from the game logs can be broken
down into subsets of points located "on" each object label l : Xon = ∪Kl=1X

l
on. Hence if we

consider the nl points xli ∈ X l
on that have been spotted by the gamers as being "on" the

object (label) l, it is easy to estimate both an initial location µ0
l and an initial dispersion

Σ0
l from the standard ML estimates : µ0

l ← 1
nl

∑nl

i=1 x
l
i and Σ0

l ← 1
nl

∑nl

i=1(xli − µ0
l )(xli −

µ0
l )T . In the same spirit, the initial set of soft assignments γ0 can be partially fixed given
Xon and the set of observed relationships R. Obviously, knowing that points from X l

on

are located "on" the object label l can be translated in reliable (i.e. fixed) assignments
p̂(l|i) = P (yi = l|xi) = 1 ∀xli ∈ X l

on. In addition the constraints from R naturally lead to
bounding boxes BBl for each label l such that many impossible assignments can be also
stated p̂(l|i) = P (yi = l|xi) = 0 ∀xli 6∈ BB

l. A particular case also occurs when a point
xi ∈ Xcv is out of all the bounding boxes. In this case we are certain to a “no-label” point:
p̂(K+1|i) = P (yi = K+1|xi) = 1 ∀xi 6∈ ∪l=1,KBBl . All other assignments can be selected
as equiprobable to form a sufficiently good set γ0. Eventually, γ0 also leads to the choice
of the initial mixing proportions to complete the choice of θ0 as detailed later.
Clusters growing. Since the initial Gaussian clusters are concentrated on the "on" points
from the game logs, we then make them grow using an expectation-maximization algorithm.
The first Expectation step improves the initial assignments γ0 by first propagating the
reliable assignments (already established ∀xli ∈ X l

on ) to neighboring points from Xcv.
During this E-step that produces a new set γc of soft assignments, the current model
setting θ0 is fixed. In the subsequent Maximization step, the likelihood is then maximized
with respect to θ given the current assignments γc. A new model is produced and passed
to the next E-step as a current θc and so forth. These iterations (which are further detailed
below) are made to monotonically increase the likelihood until convergence.
Stopping the growth. By construction, the expected image labeling will be deduced from
the K (one per label) Gaussian clusters that are in the process of growing. Therefore, we
have to stop the growth of the clusters in the image space when the clusters of labeled points
reach the boundaries of the associated object. The "partially on" points (from Xpon) can
be used to do so. In the next subsection, we will see that the factorization of our likelihood
(equation 6.6) integrates a simple term that naturally minimizes the distances between the
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Figure 6.9: Parameter estimation using EM algorithm.

"partially on" points (X l
pon) for a given label l and the boundary of the associated cluster. In

our set-up, this boundary is chosen by thresholding the densityN (x|µl,Σl) or the associated
squared Mahalanobis distance d2

M . We formally define the elliptical Gaussian footprint Sl
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of the lth cluster as Sl = {x ∈ Ω|d2
M (x) = (x − µl)TΣ−1

l (x − µl) ≤ ξ}. The threshold ξ is
selected such that P

(
d2
M (x) ≤ ξ |x ∼ N (µl,Σl)

)
= 0.95. Hence the boundary ∂Sl of the lth

cluster is basically ∂Sl = {x|d2
M (x) = ξ}. Stopping the growth of the lth cluster should be

done when its boundary ∂Sl fits well with the locations of the "partially on" points (X l
pon).

6.2.3 EM estimation

This subsection provides further technical details about our actual EM algorithm. First, we
need to formally decompose the likelihood from equation (6.6) into three factors, as follows:

P (X ,R|θ, γ) = P (Xcv ∪Xon|θ)P (Xpon|θ)P (R|γ) (6.7)

The first factor is the conditional probability of generating the observed data Xcv ∪Xon

given the labels and the model parameters. The second factor is the conditional probability
of observing the "partially on" points at the boundaries of the Gaussian clusters (deduced
from the model θ). The third factor assigns a higher probability to the assignments γ
that do not violate the observed relationships R. More precisely, the first factor uses the
common independence assumption for density estimation:

P (Xcv ∪Xon|θ) =
∏

xi∈Xcv∪Xon

Pmix(xi|θ) (6.8)

The second factor P (Xpon|θ) is factorized over the labels as:

∏
l=1...K

P (X l
pon|θ) =

∏
l=1...K

1
Z
exp

− ∑
xi∈Xl

pon

d2(xi, ∂Sl)

 (6.9)

where Z is a normalizer and d2(xi, ∂Sl) measures the distance between a point xi being
"partially on" the object label l and the boundary ∂Sl of the lth cluster as defined in the
previous section (see Stopping the growth paragraph).

The third factor is currently defined as a 0-1 value (although it could be devised in a
more elaborated way). In our current implementation we only manipulate soft assignments
that respect, by construction, the observed relationships R. As explained before (see Ini-
tialization paragraph), by forcing, for each label l, the assignments p̂(l|i) = P (yi = l|xi) =
1 ∀xli ∈ X l

on ("on" points are assigned) as well as p̂(l|i) = P (yi = l|xi) = 0 ∀xli 6∈ BB
l

(labels cannot be found out of bounding boxes) and p̂(K+1|i) = P (yi = K+1|xi ∈ Xcv) =
1 ∀xi 6∈ ∪l=1,KBBl (impossible labelings are set) we get, by definition, P (R|γ) = 1.

The EM algorithm is then implemented as follows:

1. Initialization. k ← 0

• Start initializing the mixture θ(k) and the initial assignments γ(k) as stated earlier
(see Initialization in section 6.2.2)
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• Initialize the mixing proportions

n← Card(X ) and n̂l
(k) ←

∑n
i=1 p̂(l|i)(k) ∀l = 1,K

nno−label ← Card{xi ∈ X |p̂(K + 1|i)(k) = 1}
π

(k)
K+1 ← max(ε, nno−label/n)) with a small ε ≈ 0.05

∀l = 1,K π̂l
(k) ← (1− π(k)

K+1) n̂l
(k)∑K

l=1
n̂l

(k)

2. Repeat.

k ← k + 1

(E) Evaluate the posterior assignment probabilities γ(k) based on the current model
setting θ(k−1), ∀xi ∈ X , ∀l ∈ 1 . . .K + 1

p̂(l|i)(k) ← P (yi = l|xi, θ(k−1)) = `(xi)/Pmix(xi|θ(k−1)) with

`(xi) = π̂l
(k−1)N (xi|µ(k−1)

l ,Σ(k−1)
l ) if l ∈ 1,K and

`(xi) = π̂K+1
(k−1)/v if l = K + 1

where the normalizer v is v = Area(Ω \ ∪Kl=1Sl) 1.

Update π(k)
K+1, n̂l

(k) and then π̂l(k) consistently.

(M) Update the model θ(k) given γ(k):

The baseline approach consists in using a gradient descent for each Gaussian
cluster l given the current estimates µ̂l(k−1) and Σ̂l

(k−1)
:

µ̂l
(k), Σ̂l

(k)
= arg max µl,ΣlP (X ,R|µl,Σl, γ(k)) (6.10)

We use a simpler approach. In standard GMM estimation by EM we could
update the model directly for each label l as:
µ̃l

(k) ← 1
n̂l

(k)

∑n
i=1 p̂(l|i)(k)xi

Σ̃l
(k)
← 1

n̂l
(k)

∑n
i=1 p̂(l|i)(k)(xi − µ̃l(k))(xi − µ̃l(k))T

However these updates (done for all l) may only maximize part of our likeli-
hood (approximately the first factor) and may be not satisfying (especially
when we stop the cluster growths thanks to the second factor). In practice,
instead of a gradient descent, we look for the best cluster location between
µ̂l

(k−1) and µ̃l(k) and do similarly for the covariance matrices. For each label
l, we optimize α ∈ [0, 1] and β ∈ [0, 1] such that µαl = αµ̂l

(k−1) +(1−α)µ̃l(k)

and Σβl = βΣ̂l
(k−1)

+ (1− β)Σ̃l
(k)

actually improve the likelihood:

α∗, β∗ = arg maxα, βP (X ,R|µαl ,Σ
β
l , γ

(k)) (6.11)
1It formally means that the dummy (no-label) uniform density is x 7→ 1Ω\∪lSl

(x)/v and that p̂(K +
1|i)(k) = 0 as soon as xi is in any cluster support Sl
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θ(k) is updated with K new clusters locations µ̂l(k) ← µα
∗

l and covariances
Σ̂l

(k)
← Σβ

∗

l , produced by K optimizations (equation 6.11 for l = 1, .,K)
that make the likelihood monotonically increasing.

Until P (X ,R|θ(k), γ(k)) converge.

6.3 Experiments

6.3.1 Protocol

In this section, we explain how we collected game logs. We used the same pool of images
than on the previous chapter (section 5.3), i.e. 101 images from both the Berkeley dataset
and from the PASCAL dataset.

Players have to watch a tutorial video before playing for the first time. The tutorial only
explains how the game is played, nothing being said about the use of the players’ traces.

Because the game is not widely known yet, we launched 2 successive campaigns of
experiments. For each campaign we indicated to potential players synchronized times during
which they could be connected, so that there would be enough players to be paired up. Every
player was aware of the following guidelines.

Guidelines. You will start each game adopting one of the two possible roles: the master
or the seeker.

If you are the master: your role is to hide a target anywhere inside the image that you
will see on the screen. After that, the seeker will ask for clues related to the objects on
the image, and you will be asked to provide information about the position of the target
related to the object. The possibilities are: on the left of, on the right of, below, above,
partially on, on, or not related to.

If you are the seeker: your role is to find the target that the master has hidden as soon as
possible. In order to do so, you have to ask for clues to the master following this procedure:

You will be asked to type the name of one of the objects in the image, which will be
sent to the master. The master will reply with a hint indicating what is the position of
the hidden target related to the object that you chose. After this, you can try to guess the
position of the target by clicking on the image, following the indications of the master. If
you find it, the game finishes. If you miss, you ask for another clue.

The game goes on until either the seeker finds the target or the time runs out.
Ask’nSeek is a cooperative game; this means that both the master and the seeker have

the same goal: locating the target as fast as possible.
Numbers: A total number of 3,250 games have been started during the 2 campaigns

of experiments. Among these games, there are 240 games that can not be included in the
results, because one of the players left the game before the end of the game. A total of 162
users have played at least 5 games.
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114 out of the remaining 3,010 games finished without the hidden region being found by
the seeker. This means that 96% of the games ended ud with a victory of the players. The
mean duration of a game that has been won is 29 seconds. Adding up the games that went
until the end of the timer (the losses), the average duration of a game is about 33 seconds.

We collected more than 5,000 seeker clicks for a total of 9,063 indications. Indeed, a
click can hold more than one indication. For example in figure 6.1, the winning click from
the seeker is at the same time "on the right of the dog", "on the cat" and "on the cat’s head".
This particular click brings more than just one indication.

Figure 6.10: Distribution of the number of indications per game.

Figure 6.10 shows the distribution of the number of indications per game. A large
number of the games played (almost two thirds) only had one indication. In average there
was 1.6 indications per game (we will comment these numbers more in chapter 7). This
is understandable, as the best strategy to win is to place the hidden region on the most
salient part of an image. For example, as shown on figures 6.4 and 6.12, it is very intuitive
to place a region on the head of any animal or human present on an image. In the case
there are multiple animals, like the cat and the dog for example, then it usually takes more
than only one indication to find the region.

Figure 6.11: Occurences of spatial relations.
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Figure 6.11 shows the distribution of the spatial relations indicated by the master to
the seeker. It is interesting to note that the on spatial relation is by far the most used.
This is a direct consequence of the fact presented above : the master tends to place the
region on the most salient object. Because the seeker also tends to ask a clue relative to
the most salient object, the on spatial relation comes very often. The second interesting
aspect to note is that the above, below, on the left of, and on the right of are almost equally
distributed. This probably means that the position of the salient objects in the dataset is
equally distributed on the images.

Figure 6.12: Location of the hidden regions on the cat and dog image.

6.3.2 Results

In order to test our detection model, we manually process the textual traces. The natural
language processing algorithms that would be necessary to perform this step automatically
are beyond the scope of this thesis. In addition, we test our detection algorithm on images
for which the object is designated by a somtimes complicated description. The description
can be as simple as “hat” and as complicated “topmost fish on the center-right of the image”.
Finally by manually processing the textual labels, we can evaluate the effectiveness of our
model only.

In order to manually annotate the labels, we categorized each label relatively to the
target object as:

• Object: when the label designates the target object.

• Part: when the label designates a part of the target object.

• Other : when the label designates a different object than the target.

• Ambiguous: when the label is not precise or clear enough to be considered a member
of one of the three previous categories.
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For our detection algorithm, we use mainly the points categorized as Object. We also
include the On points from the Part category: points that are on an object’s part are
obviously on the object itself.

In order to build Xcv, we use a saliency map as computed by [Itti 1998] as well as a map
that characterizes the probability of the object’s presence on the image, based on the users
clicks. We describe how we build these maps in section 7.2.2. In a nutshell, these maps
are a simple manner to introduce content analysis techniques (in this case, superpixels) to
expand the information brought by players clicks based on colorimetric cues.

Finally we evaluate our model using a criteria defined in the PASCAL Challenge. We
say an object is detected if the Jaccard Index between the bounding box obtained from our
model and the Ground Truth bounding box is superior to 0.5.

With this definition our algorithm detects 58% of the objects. The average Recall (i.e.,
the percentage of the object that falls into the bounding box) of our detection algorithm is
0.83. The Precision is not applicable in our case, as we always generate only one bounding
box for each object.

Figure 6.13: Results of our detection algorithm (green bounding box). Green points are
clicks on the object, red points are above the object, blue points are partially on the object
and yellow points are on the right of the object.

Figure 6.13 shows examples for which our algorithm works well. The red bounding box
is built from the above, below, left and right points. We can observe in these two examples
that there are no (or very few) errors in the traces which leads to very good results.

Figure 6.13 shows examples for which our algorithm fails to detect the object. On the
left, the lady bug is detected (with a Recall of 1) but the bounding box is too big compared
to the actual size of the bug. The resulting jaccard index is therefore inferior to 0.5 which
means (in the PASCAL sense) that the object is not detected. On the right image, the
object that should have been detected is the right zebra. Unfortunately, most players clicks
are concentrated on the two others zebras. The two only clicks related to the right zebra
are incorrect, which results in an incorrect detection. This scenario tends to happen when
multiple instances of the same object are depicted together on the image.

These figures have been obtained on a particular dataset that was designed to benchmark
segmentation algorithms [McGuinness 2010]. In particular we have the ground truth for
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Figure 6.14: Results of our detection algorithm (green bounding box). Green points are
clicks on the object, magenta points are below the object and yellow points are on the right
of the object.

only one object per image, which does not allow us to test our model in the case of multiple
objects.

Figure 6.15: Results of our detection algorithm on images from the PASCAL VOC dataset.

Figure 6.15 presents the results of our detection algorithm on two images from the
PASCAL VOC dataset ([Everingham 2010]). These results (published in [Carlier 2012])
show that our algorithm can obtain very good results when detecting concurrent objects.

6.4 Summary and Conclusion

In this chapter, we have presented a new Game With A Purpose called Ask’nSeek. This
game allows to implicitly collect textual and spatial data from users.

We described an algorithm for object detection and evaluated it on the same dataset
than Click’n’Cut. We found that our object detection algorithm performs well, even if on
some occasions the users did not provide enough inputs to obtain a satisfying result.

The contributions presented in this chapter have been published in [Carlier 2012]. We
have also shown in [Salvador 2013] how to use Ask’nSeek traces to perform figure-ground
segmentation, following the same method presented in chapter 5. In the next chapter, we
will compare these results to those obtained on Click’n’Cut in order to answer the interesting
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question: Is there a loss induced by the gamification of an interface?
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In this chapter we compare the results and necessary effort required to obtain acceptable
results with the interface/GWAP described in the two previous chapters.

We have shown in chapter 5 that Click’n’Cut is an efficient interface for interactive
segmentation. If properly used, it can lead expert users to produce a very good segmentation
in a matter of seconds, significantly quicker than state-of-the-art algorithms.

The only problem is that experts are expensive. We can not have expert users annotate
thousands of images. Therefore we investigated the ability of non-expert workers (picked
on Microworkers.com) to use Click’n’Cut and obtain similar results. Though less effective,
the workers are also less expensive than experts.

Going further, can we achieve a good segmentation without paying any workers to do
so? How informative are inputs from Ask’nSeek players?

In this chapter we try to answer these questions and explore avenues to reach the
ultimate goal of perfect segmentation with (implicit or explicit) crowdsourcing.
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7.1 A comparative analysis of the user clicks on Click’n’Cut
and Ask’nSeek

In this section we have a closer look at the data we have gathered during our experiments.
First, we start with a quick reminder of the three experiments we conducted, and that we
will study in this section.

• Click’n’Cut - Experts: 15 Computer Vision researchers (Ph.D. students and pro-
fessors) interacted with the Click’n’Cut interface on the 105 tasks (see section 5.3).

• Click’n’Cut - Paid Workers: 20 workers from the platform Microworkers.com

interacted with the Click’n’Cut interface on the 105 tasks.

• Ask’nSeek - Players: 162 players (mostly students) played the Ask’nSeek game on
the number of images they wanted to (see section 6.3.1).

7.1.1 Preliminary figures

Table 7.1 presents a comparison of figures for the three experiments. The first main com-
ment is that the workers produced a lot of clicks. In average the workers clicked more that
twice as many times as the experts on the same images (they were 20 against 15), and ten
times more than the Ask’nSeek players.

Click’n’Cut Click’n’Cut Ask’nSeek
Experts Paid workers Players

# Users 15 20 162
# Clicks 234.4 544.6 51.4

(per image, all 168 FG 345.8 FG 29 FG
users included) 66.4 BG 198.8 BG 21 BG

1.4 Part. On
# Errors 4% 35% 7%

Table 7.1: Comparison of the number of clicks and error rates in the different setups.

Another interesting difference between the different groups of users is the ratio between
foreground (FG) and background (BG) clicks. Expert users on Click’n’Cut mostly produce
foreground clicks (72% of the times). Paid workers also use more foreground clicks but the
ratio is 63%/37%. Finally Ask’nSeek players tend to produce 57% of foreground clicks.

The most spectacular number is the percentage of errors in the clicks. The percentage of
errors is computed as the number of clicks that are badly categorized, i.e. foreground clicks
that are in fact on the background and vice versa. We did not consider the Partially On
clicks in this percentage, as 1) they represent a minority of clicks 2) they are a specificity
of Ask’nSeek, therefore not comparable to Click’n’Cut. We have previously emphasized in
chapter 5 that we wanted to keep the interface as simple as possible, and that we had not
implemented any tutorial for Click’n’Cut. The low error rate on expert traces validates this
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choice, but it seems clear that we should have introduced such a tutorial for paid workers:
it could have helped reducing their error rate.

Q&A. Two fundamental questions are immediately raised by these numbers.
Why is there so few clicks in Ask’nSeek compared to Click’n’Cut ?

There are several reasons that explain this difference. First, it takes 2 players to produce
a click in Ask’nSeek (the master and the seeker) whereas only one user is necessary in
Click’n’Cut. Second, the users in Ask’nSeek played an average of 30 games (i.e. images)
each whereas Click’n’Cut users performed the entire set of 105 tasks. Also, Click’n’Cut
users were given the possibility to do as many clicks as they wanted to. Ask’nSeek players
are limited by the 2 minutes timer (which includes the time to type labels, and exchange
indications). The game stops when the seeker finds the target, which occurs after an average
of 1.6 indications per game. Finally, Click’n’Cut users are focused on one object for each
image: the object they have to segment. In Ask’nSeek, the players use all the objects they
can see in the image.

In other words it takes two players to play an average of 30 games that usually produce
1.6 clicks each, and the clicks are not even related to the target object for certain!

Why is there so much errors performed by paid workers on Click’n’Cut and so few by
Ask’nSeek players?
As we will see in the next paragraph, the high error rate of the paid workers on Click’n’Cut
is partly due to a subset of the workers who performed particularly bad. Ask’nSeek players
error rate is much more homogeneous. The fact that Ask’nSeek is a game naturally limits
the impact of some of the usual sources of errors in crowdsourcing. [Oleson 2011] listed
the spammers, the incompetent workers and workers’ insufficient attention as the major
sources of errors. Being a game, Ask’nSeek is relatively safe from spammers (the game
has nothing to offer except for enjoyment; if players do not like the game, they are free
to leave). The players’ attention is kept at a certain level by the non-repetitiveness of the
task. Unlike Click’n’Cut where the task to perform is always the same, Ask’nSeek players
regularly switch roles (from master to seeker) and since the players’ pairing is random,
players interact with different people over time. The major source of errors in Ask’nSeek
is the misunderstanding between the master and the seeker. Misunderstanding can arise
from an imprecise requested object from the seeker (e.g. “fish” in an image where there are
three fishes), or from the master not knowing a word used by the seeker.

7.1.2 A deeper look at clicks and errors in Click’n’Cut

In this paragraph, we take a closer look at user traces on Click’n’Cut to try to understand
the Crowdsourcing loss on Click’n’Cut.

Figure 7.1 shows an analysis of the expert users’ clicks and errors. The numbers are
averaged on all tasks. Expert users produce in average from 7 to 26 clicks per image and it
is interesting to note that for each expert user, the proportion of foreground/background
clicks is fairly similar.
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Figure 7.1: Number of foreground/background clicks (left) and percentage of fore-
ground/background errors (right) per expert user on Click’n’Cut

The right of figure 7.1 presents the percentage of errors on foreground clicks (in blue)
and on background clicks (in red) that are stacked together. Note that these percentages do
not take into account the number of foreground and background clicks, which means that
the mean of the two percentages is not equivalent to the total error rate. It is interesting
to note that the expert’s highest source of errors seems to be the foreground clicks.

Figure 7.2: Histogram of the distribution of error rates per task.

To further understand this phenomenom, let us consider the following numbers. Expert
users have produced 24,611 clicks on 15 ∗ 105 = 1, 575 tasks, and among those clicks there
were 1,042 wrong ones. The 10 tasks (out of 1,575) for which the most errors were made
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account for a total of 372 errors, i.e. more than one third of the errors. This error rate
distribution is visible on figure 7.2, on which we can see that a very large majority of the
tasks had a very low error rate.

Figure 7.3: Two of the tasks that produced a lot of errors. Descriptions associated to the
tasks are: ’Extract just the man’s hat. Do not include the rest of the man or any or any
other objects.’ (left) and ’Extract the topmost fish on the center-right of the image.’ (right)

Figure 7.3 presents two tasks that have created a lot of errors from the experts. On
the left, only the man’s hat should have been segmented. Two experts segmented the man,
which created 100 errors (one tenth of the total number). On the right, the description
of the fish to segment (“topmost fish on the center-right”) was also misunderstood by two
experts.

It is interesting to note that these errors are due to insufficient attention from the
experts. Even experts can make mistakes! This suggests we should always have more than
one expert performing a task (typically in our traces, there were never more than two
experts who misunderstood a task at the same time).

Figure 7.4: Number of foreground/background clicks (left) and percentage of fore-
ground/background errors (right) per paid worker on Click’n’Cut

Figure 7.4 shows the same plot than Figure 7.1 but for paid workers.
The first very obvious fact is that unlike expert users, paid workers have a very het-
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erogeneous way of interacting with Click’n’Cut. 5 workers out of 20 produced a majority
of background clicks, whereas we previously observed that all expert users clicked a higher
number of foreground clicks.

The distribution of the number of clicks is also clearly biaised by one user, who produced
an average of 160 clicks per image (only foreground clicks). The right plot of figure 7.4 also
shows that this particular user (user # 1) made very few errors. We should be careful
with the data from this user since it can affect our results a lot without being statistically
significant.

The biggest difference between paid workers and experts is visible on the right of figure
7.4. There are workers who display an exceptional error rate. Here is a tentative description
of the different types of paid workers (illustrated in figure 7.5):

• Worker # 1, a.k.a. "The painter" produced only foreground clicks, with an exceptional
amount of clicks and an error rate almost equal to 0%. In fact we suspect that this
user misunderstood the interface and believed he had to paint the object with green
clicks.

• Workers # 3 and 5, a.k.a. "The mirrors", have such a high error rate that by inverting
their contributions (considering their background clicks as foreground, and vice versa),
they would actually display a very low error rate! We can only assume that they
misunderstood the task as well, mixing up foreground and background clicks.

• Worker # 8 and 10, a.k.a. "The border guards" produced almost exclusively back-
ground clicks located on the border of the objects.

• Worker # 18, a.k.a. "The surrounder" produced only foreground clicks, and has almost
100% errors. He tried to surrounder the object with foreground clicks, which would
have produced a good result on LabelMe [Russell 2008].

• Worker # 19, a.k.a. "The spammer", randomly placed foreground clicks over the
image so that he would get paid. This worker did the entire set of tasks in less than
5 minutes, whereas it takes from 30 to 60 minutes to a serious user.

• Remaining workers, a.k.a. "The experts", only placed a few well-positioned clicks, and
made a few mistakes due to insufficient attention. These workers exhibit statistics (in
number of clicks and error rate) that are comparable to expert users.

The main lesson of this decomposition is that except for worker # 19 who was just a
spammer, the highest number of errors come from users who did not understand the job
properly. This could have been avoided, or at least limited, with a proper tutorial on gold
standard images that would have taught workers what is a good click and what is a bad
click. Nevertheless we must use the data we collected, and we show in the next paragraph
how to limit the impact of errors.
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Figure 7.5: 6 types of paid workers: "The painter", "The mirror", "The border guard", "The
surrounder", "The spammer" and "The expert".

7.1.3 Filtering errors

First, we will not focus too much on filtering errors from the experts, since they do not
significantly affect the final results.

We start by studying the errors from paid workers. The figures we introduced in the
previous paragraph were computed on the entire set of images. We presented these figures
to help the reader understand the nature of the data we are dealing with, but we can not use
the knowledge we have acquired (for example the classification of the workers) to process
the data.

The only data we can use to filter workers are the traces on the gold standard images,
i.e., the 5 PASCAL images we have introduced to serve as a control dataset. Figure 7.6
displays the error rate per user on the gold standard dataset (in blue) and on the test
dataset (in red).

The good news is there is an obvious correlation between error rates on the gold standard
and on the test set. Of course the correlation is not perfect; for example worker # 7 made
no mistakes on the gold standard set, but on the contrary made more than 30% of mistakes
on the test set.

Nevertheless, we can filter a decent amount of errors by just removing the workers that
are above a threshold of error rate on the gold standard. In figure 7.7, we vary the threshold
that we use to filter users based on the gold standard images. The blue curve (resp. red
curve) represents the error rate of the remaining users on the gold standard (resp. on the
test set).

In the next section we will therefore test 2 thresholds based on this graph. First we will
keep only the users who did less than 50% errors on the gold standard: that makes the total
error rate less around 20% on the gold standard. We will also try the smaller threshold of
20%, which makes the total error rate less than 10% on the gold standard (and on the test
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Figure 7.6: Error rate on the gold standard image (in blue) and on the tasks (in red) for
each worker

Figure 7.7: Evolution of the overall error rate on gold standard images (in blue) and on the
tasks (in red) when filtering users based on a threshold on the gold standard error rate.

data as well).

7.2 Segmentation results

In this section, we comment the results on the figure-ground segmentation task for the three
groups of users: the experts (who serve as a baseline, introduced in chapter 5), the paid
workers and the players (on Ask’nSeek). We are particularly interested in comparing the
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paid workers performance against the experts, in order to estimate a “crowdsourcing loss”.
In the next section we will elaborate more on a “gamification loss” that could explain the
performance difference between the Ask’nSeek players and the Click’n’Cut experts.

7.2.1 Analysis of the results

Click’n’Cut Click’n’Cut Ask’nSeek
Experts Paid workers Players

All users 0.90 0.14 0.44
Users with less than 50% errors on GS 0.90 0.63 0.43
Users with less than 20% errors on GS 0.90 0.82 0.40

Table 7.2: Average Jaccard Index on the test dataset in the three experiments.

Table 7.2 presents the results on the three experiments: Click’n’Cut with experts,
Click’n’Cut with paid workers, and finally Ask’nSeek. We use the Jaccard index as a
measure of the segmentation precision (the Jaccard Index is defined as J = P∩GT

P∪GT between
the Predicted (P) and Ground Truth (GT) masks).

The experts results are computed for each expert separately, and then averaged over all
experts. The results thus mean that one expert will obtain an average of 0.90 jaccard on
each task. Note that filtering experts based on their gold standard performances does not
make a lot of sense, since all experts have an error rate below 10% on the gold standard.

There are many things to be said about these numbers. First and not surprisingly, the
experts obtain the best segmentation score. This is understandable because they are fully
aware that they are performing segmentation (unlike Ask’nSeek players), and they already
know what is a good segmentation and what are the main difficulties to obtain it. In other
words, their experience help them to focus on more meaningful regions to click on than
paid workers for example.

Paid workers’ results are very dependent on the filtering based on the gold standard
images. The results range from 0.14 without filtering (which is very bad) to 0.82 when
keeping users with a low error rate on gold standard images, which is a pretty good result!

Finally, Ask’nSeek results are very low compared to Click’n’Cut experiments. We will
elaborate more on Ask’nSeek results in section 7.3

7.2.2 Improving the paid workers results on Click’n’Cut

In this paragraph, we try to improve the results from paid workers without filtering their
contributions based on the gold standard.

The figures shown on table 7.2 establishes that the method described in section 5.1 for
computing the best mask is not robust enough to noisy clicks to produce optimal quality
results. In addition, filtering workers based on their gold standard error rate does not take
advantage from users like “the mirrors” described in section 7.1. It would be nice to be able
to automatically invert this data and use it as the other good users.
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To test this idea, we have implemented a very simple algorithm. Since we have a lot
of clicks from the workers, we can try to paint a superpixel segmentation with these clicks.
At that point, it seems a better idea to use superpixels than object candidates (like MCG
candidates that we have used until now in our algorithm) because we have a lot of clicks.
We do not need to propagate the users annotation to a lot of neighbouring pixels, therefore
superpixels are a better choice than candidates since they are usually of smaller size: this
will limit the impact of bad clicks. Each superpixel is labelled with a number between
0 (background) and 1 (foreground). To compute these labels we leverage each worker
contribution by a measure of the worker’s confidence, based on this worker’s performance
on the gold standard images. For example, if a worker w has a 5% error rate on the gold
standard images (see figure 7.6), the measure of confidence cw for this worker will be 0.95.
A foreground (resp. background) click brings a contribution to the superpixel of cw (resp.
1− cw).

To limit the influence of the superpixel segmentation, we perform the computation on
several different superpixel segmentations and average the respective results. In our imple-
mentation we used Felzenszwalb’s algorithm [Felzenszwalb 2004] with different parameters
(k varying from 100 to 500).

Figure 7.8: Probability map of object’s presence, based on workers clicks.

Figure 7.8 illustrates the performance of this simple algorithm. The object to be seg-
mented is the brightest region, and we can see traces from noisy clicks when regions in the
background are bright as well.

Thresholding these maps (any value between 0.6 and 0.7 gives good results) and per-
forming a simple hole filling algorithm allows obtaining a final Jaccard Index of 0.83 for the
paid workers. The gain is slight but it is more elegant to handle all users identically, and
not just discard some.

7.2.3 The crowdsourcing loss

The results introduced earlier reveal several facts that could be characterized as crowd-
sourcing loss, i.e. a loss induced by having a task performed by paid workers instead of
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experts.

Figure 7.9: Clicks distribution (foreground in green, background in red) from the experts
(left), from the paid workers (middle), and from the paid workers categorized as experts in
section 7.1.2.

First, the data is obviously more noisy with paid workers than with experts. This can
be visualized in figure 7.9: green and red points are mingled in the central column and well
separated on the left column. This is caused by many factors: spammers, workers who do
not understand the task, a lower attention level, etc. It only reinforces the message from
the related work section: experiments should be carefully designed, there should be several
ways to detect errors (for example we can detect spammers both using gold standard images
and an analysis of the time spent to annotate images), etc.

Second, the best workers from the crowd are still less performant than experts. In our
results section we have presented the results for a filtered crowd (also shown on the right
column of figure 7.9), which altogether performs less good than the average expert. There
are of course several reasons for that (noisy data, lack of knowledge in segmentation) but
this is a fact. In addition, filtering the crowd also leads to a loss of information. Figure
7.9 shows that there are areas in which users (expert and crowd) tend to click more. In
our experience, these high density areas are located on regions where the MCG object
candidates fail to follow the object boundaries. As such, high density areas convey a lot of
information: they can help improving the MCG object candidates for example. Filtering
users, as we can see on the figure, makes these high density areas disappear.

Nevertheless, there is something to be said about a crowdsourcing gain. We do not
exploit this very well for the moment, but something that is very clear from the classification
of paid workers is the diversity and the richness of the clicks collected on our experiments.
We have clicks that completely paint the object, we have clicks on the object’s boundaries,
we have clicks surrounding the object, etc. This information produced by paid workers is
much richer that the one obtained from experts.
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7.3 Understanding the gamification loss

In this section we try to understand why the Ask’nSeek results in segmentation are so poor
compared to the results obtained through the use of Click’n’Cut.

First it is important to note that the results are not so poor. An average Jaccard Index
of 0.44 is already better than the top performers on the PASCAL segmentation challenge,
who consider only 20 classes of objects. In the dataset we have considered, the objects are
more complex and therefore more adapted to evaluate interactive segmentation. Since the
interaction is completely implicit to the users, it is natural that the results are less good on
Ask’nSeek than on Click’n’Cur.

A first very simple reason for Ask’nSeek’s performance is the number of clicks gathered
through the game. We have already commented on this matter in section 7.1 so we will not
say much more about it in this section. However it is important to state here that one of
the limitations of our current approach is the difficulty of text processing. Even by doing
it manually there are many labels that remain hard to categorize, either because they are
not precise enough or because they are not understandable enough. It would be interesting
to study simple ways (e.g., autocompletion, limited vocabulary, and so forth) to make the
natural language processing more straightforward.

Figure 7.10: Clicks distribution (foreground in green, background in red) from the
Ask’nSeek players.

The second reason of Ask’nSeek’s poor performances is the distribution of the seek-
ers’ clicks. Figure 7.10 introduces the foreground and background clicks gathered through
Ask’nSeek on two difficult images in our dataset. On the left image, the entire soldier that
stands on the right should be segmented. We can see that all the foreground clicks are
focused on the soldier’s head. We can make a similar observation on the right image: the
foreground clicks are concentrated into the duck’s head whereas the entire duck should be
segmented in our case.

What is even more interesting is the distribution of the background clicks. We can
see that on Ask’nSeek traces, the background clicks are mostly located on other objects
which is understandable: the seekers predict that the target region is often located on a
salient object, so their clicks are focused on objects (other soldiers, or other ducks in figure
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7.10). When we look at figure 7.9, we can see that background points obtained through
Click’n’Cut are almost always located near the object’s boundaries. This is probably the
key reason that explains the performance loss in Ask’nSeek.

What is interesting is that figure 6.8, which presents the clicks distribution on an image
that has been played 99 times, shows that after a high number of games the clicks are spread
on the entire object. This suggests that having images played a lot could asymptotically
improve the performance of Ask’nSeek traces in segmentation. We have simulated this phe-
nomenon in [Salvador 2013] and obtained a higher average Jaccard Index when augmenting
the number of games per image.

In other words, the gamification loss is a direct consequence of the nature of the game
itself: the players know that the most efficient stategy to win in Ask’nSeek is to place the
target region on an object, and preferably on a salient part of the object (e.g., human’s
face). But then how can we limit the impact of such behaviour?

The answer is simple: we need to modify the gameplay so that the players will not be
always biased towards the same regions of an image. One possibility is to bias the master
towards placing the target regions in different areas of the image. Based on the previous
games’ target position (and some content analysis to determine, for example, which position
could bring the highest amount of information), we could suggest (or forbid) some areas to
the master. Modifying the scoring system would also be approppriate to further encourage
the diversity of the regions locations. These ideas are clearly following the trend that we
have discussed in the related work chapter at section 2.2.4: it falls into the active learning
paradigm.

7.4 Summary and conclusion

In this chapter we have compared the segmentation results in three different setups: Click’n’Cut
used by experts, Click’n’Cut used by a crowd of paid workers and Ask’nSeek played by
many users. Not surprisingly, the experts who use Click’n’Cut exhibit the best results.
The crowd of paid workers produce very noisy inputs, but we have shown how a simple
filtering method based on gold standard images can bring acceptable results. Finally, re-
sults obtained through Ask’nSeek are poor and significantly worse than the results obtained
through Click’n’Cut.

In addition we have tried to define the loss induced by having a crowd of paid workers
perform a segmentation (by comparison to experts). We have seen that the paid workers
are less efficient than expert users in positioning their clicks in meaningful areas. However,
this loss could be compensated by a better of use of the diversity of workers’ profiles that
actually produce a high amount of clicks that are wrong, but that are still informative.

Conversely, Ask’nSeek clicks are not very informative because they are very redundant.
Due to the nature of the games, players are biased towards positioning their clicks on objects
which is not the best strategy for our segmentation algorithm. The challenge we will have to
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face in future work will be to modify the gameplay in order to encourage a higher diversity
of clicks’ positions. We should emphasize however that Ask’nSeek performances should not
be judged only on the particular setup that we have introduced in this chapter. The traces
collected through Ask’nSeek contain rich information for harder tasks like image parsing
since we collect spatial and textual information about many objects of an image at the
same time (see figure 6.15). The work that has been presented in this chapter is still in
progress, and is in fact only partially published. There are many avenues to explore that
we will detail in the conclusion of this thesis.
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Chapter 8

Conclusion

8.1 Contributions

In this thesis we have presented three main contributions.
First we conducted a detailed review of the state of the art in computer vision and

multimedia, in which we explained how in the last ten years a general trend shifted the
traditional "all automatic" paradigm in visual content understanding and placed the human
at the center of algorithms. We therefore studied both how human input could benefit
to content analysis algorithms, as well as how content analysis could assist humans in
producing valuable inputs. This survey first allows to position our twofold contribution
in the literature: crowdsourcing user interest (Part I) and crowd-based semantic image
segmentation (Part II). It also identifies main emerging avenues for further developments
of humans-in-the-loop approaches including the most formal ones (e.g., active learning).

In part I, we have then presented how to compute user interest maps for a video, and
a set of simultaneous video recordings. We explained how humans, when interacting with
visual content on particular interfaces, can implicitly reveal the regions of interest of the
visual content. We also showed that user inputs could be combined with content anal-
ysis in order to obtain better interest maps. For example, we showed how zooming on
a video (through a zoomable video player) can implicitly designate the zoomed region as
more interesting than the rest of the frame. We have then listed and detailed a few ap-
plications of user interest maps, such as video retargeting or video mashups. Some of the
interfaces that we have developed for this work are available on my home page. The basic
zoomable video player (section 3.1) is available on carlier.perso.enseeiht.fr/demos/

zoomable-video/v1.2/coffeelounge.html. Then the zoomable video player with recom-
mended viewports can be tried on carlier.perso.enseeiht.fr/demos/zoomable-video/

v1.1/coffeelounge.html. I have also contributed to including ROI detection software into
an existing video mashup system (Jiku Director, http://liubei.ddns.comp.nus.edu.sg/

jiku/jiku-director.html, to appear in the technical demos of ACM MM’14). The inter-
faces have been designed in HTML5 and javascript.

Finally, we studied in the second part of this thesis problems that require a higher
level of semantics: object detection and figure-ground segmentation. We introduced a new
interface, called Click’n’Cut, to perform interactive segmentation. This interface takes
points (i.e. clicks) as user inputs and allows, thanks to candidates provided by content
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analysis, to converge towards a very good segmentation result in a matter of seconds. We
have then described a Game With A Purpose called Ask’nSeek which produces traces that
can virtually be used for all image understanding problems. We studied how the Ask’nSeek
traces can be used for object detection as well as object segmentation. Finally we have
compared performances of a crowd of paid workers using Click’n’Cut, against a crowd of
gamers playing Ask’nSeek for the task of object segmentation. In that sense, we evaluated
both a crowdsourcing loss and a gamification loss by comparison with our baseline (the
semantic segmentation of images by experts). We found that even if a game allows to gather
traces for free, the very unique nature of the game biases the traces. As a consequence, it
is necessary to include adaptable gameplay mechanisms to push players to provide original
and valuable information, which is closely related to the active learning paradigm.

Current versions of Ask’nSeek (carlier.perso.enseeiht.fr/demos/askandseek.html)
and Click’n’Cut (carlier.perso.enseeiht.fr/demos/clickncut.html) are also accessi-
ble online. There is also a beta version of Ask’nSeek for Android platforms available on
Google Play (https://play.google.com/store/apps/details?id=fr.enseeiht.ubee.

askandseek).

The results presented in this thesis have almost all been obtained thanks to user studies.
In a way this thesis itself can be seen as the result of an intensive 3 years crowdsourcing
campaign.

We have enrolled 70 participants in studies about our original zoomable video player,
introduced in section 3.1 [Carlier 2010b, Carlier 2010a, Quang Minh Khiem 2010]. 48 addi-
tional users participated to the evaluation of the retargeting algorithm presented in section
4.1. We have also recruited 70 users to evaluate our zoomable video player with recom-
mended viewports (section 3.2, [Carlier 2011a, Carlier 2011b]). In addition, there were 75
users who evaluated the mashup video built thanks to 3D interest maps (section 4.2, to
appear in ACM Multimedia 2014) and 30 more to perform the preliminary evaluation of
the query system introduced in section 4.3 (unpublished yet).

As for the Click’n’Cut and Ask’nSeek interfaces, there were 40 players who tried the
original version of Ask’nSeek ([Carlier 2012]) followed by 50 players who tried the second
version of the game ([Salvador 2013]). Finally, 162 players have tested the current version
of Ask’nSeek (section 6.3.1). We have released the traces gathered during these studies to
the french community (to appear in CORESA 2014). As introduced in section 5.3 and 7.1,
there were also 35 users who segmented objects using Click’n’Cut (to appear in CrowdMM
2014).

That makes a total of 580 users who participated in the user studies that allowed us to
evaluate our work through this thesis.
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8.2 Publications and other work

Most of these contributions have been already published. The publications related to this
thesis are as follows:

• A. Carlier, L. Calvet, D. T. Dung, W.T. Ooi, P. Gurdjos, V. Charvillat: 3D interest
maps from simultaneous video recordings to appear in ACM MM’2014

• D. T. Dung, A. Carlier, W.T. Ooi, V. Charvillat Jiku Director 2.0: A Mobile Video
Mashup System with Zoom and Pan Using Motion Maps to appear as a ACMMM’2014
demo paper

• A. Carlier, A. Salvador, X. Giro i Nieto, O. Marques, V. Charvillat: Click’n’Cut:
Crowdsourced Interactive Segmentation with Object Candidates to appear in CrowdMM’2014

• M. Riegler, M. Lux, V. Charvillat, A. Carlier, R. Vliegendhart, M. Larson: VideoJot:
A Multifunctional Video Annotation Tool ICMR’2014

• S. Zhao, W.T. Ooi, A. Carlier, G. Morin, V. Charvillat: Bandwidth Adaptation for
3D Mesh Preview Streaming TOMCCAP 10 (1s)

• A. Carlier, V. Charvillat Un jeu, des images, des clics et du texte : collecte implicite
de données visuelles et sémantiques to appear in CORESA’2014 (french multimedia
conference)

• S. Zhao, W.T. Ooi, A. Carlier, G. Morin, V. Charvillat: 3D Mesh Preview Streaming
MMSys’2013, 178-189

• A. Salvador, A. Carlier, X. Giro i Nieto, O. Marques, V. Charvillat : Crowdsourced
Object Segmentation with a Game CrowdMM’2013

• W.T. Ooi, O. Marques, V. Charvillat, A. Carlier : Pushing the Envelope: Solving
Hard Multimedia Problems with Crowdsourcing IEEE COMSOC MMTC E-Letter,
January 2013.

• A. Carlier, V. Charvillat, O. Marques: Ask’nSeek, A New Game for Object Detection
and Labeling ECCV Workshops(1) 2012, 249-258

• T.P. Nghiem, A. Carlier, G. Morin, V. Charvillat: Enhancing online 3D products
through crowdsourcing CrowdMM’2012, 47-52

• A. Carlier, R. Guntur, V. Charvillat, W.T. Ooi: Combining Content-based Analysis
and Crowdsourcing to Improve User Interaction with Zoomable Video ACMMM’2011,
43-52

• A. Carlier, A. Shafiei, J. Badie, S. Bensiali, W.T. Ooi: COZI: Crowdsourced and
Content-based Zoomable Video Player ACM MM’11, 829-830
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• A. Carlier, V. Charvillat: A propos d’interactions qui permettent d’analyser une vidéo
ORASIS’2011 (french computer vision workshop)

• A. Carlier, V. Charvillat, W.T. Ooi, R. Grigoras et G. Morin: Crowdsourced Auto-
matic Zoom and Scroll for Video Retargeting ACM MM’2010, 201-210

• A. Carlier, R. Guntur, W.T. Ooi: Towards Characterizing Users’ Interaction with
Zoomable Video SAPMIA’2010, 21-24

• N.Q.M. Khiem, R. Guntur, A. Carlier, W.T. Ooi: Supporting Zoomable Video Streams
via Dynamic Region-of-interest Cropping MMSys’2010, 259-270

As suggested by this list, I had the opportunity to collaborate with researchers from
NUS (Singapore), FAU (USA), UPC (Barcelona, Spain), Universität Klagenfurt (Austria)
and many contributions are shared between our group in Toulouse and Wei Tsang Ooi,
Oge Marques and Xavier Giro-i-Nieto. I wish to thank them once again for this prolific
collaboration.

In this collaborative context, I also had the opportunity to work on closely related sub-
jects that were part of other PhD students’ work: Shanghong Zhao (from NUS), and Thi
Phuong Nghiem (from our group). This is why I have put aside a set of contributions about
3D content from my thesis. In [Nghiem 2012] we showed how to crowdsource spatial rela-
tions between a 3D model and its semantic description. This allows to determine keyviews
to visualize the most interesting parts of 3D objects. Recommended views can be crowd-
sourced in a very similar manner than the techniques proposed in the first part of this thesis
(see chapter 3). In addition we studied in [Zhao 2013, Zhao 2014] ways of displaying a 3D
content to a user and adapting this visualization (a camera path) to streaming constraints.

8.3 Future work

The major perspectives for the work presented in this thesis can be divided into three
categories: short term (in the next few months), medium term (in the next two years) and
long term.

Short term perspectives.

• Part I: the 3D interest maps can probably lead to many future work. To begin with,
we should test the video query (section 4.3) on a real setup. Now that the interface
is implemented, we need to study how users interact with this interface and whether
the query results really match users’ intentions.

Regarding the 3D interest maps computation, we would like to develop an approach
in which we would not use the PMVS software (for 3D reconstruction). This software
is not very adapted to our problem, since it provides a point cloud reconstruction
whereas we only need a very coarse reconstruction. Alternatively, we may also rethink
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our work following uncalibrated approaches. The authors of Crowdcam ([Arpa 2013]
exploit sparse feature flows inbetween neighbouring images/cameras and structure
these visual data using distances and angles. In our case, the idea would be to
replace the 3D space - where interest levels are estimated - with descriptor spaces
where relationships between videos crowd- sourced from different cameras could also
be established.

• Part II: our next efforts will focus on trying to automatically find and filter out errors,
in order to improve the detection and segmentation results. We would also like to
develop a video segmentation tool similar to Click’n’Cut. About Ask’nSeek there are
many uses for the traces that we haven’t investigated in details yet, such as trying to
compute saliency maps from the target regions.

Medium term.

• Part I: one of the steps to compute the 3D interest maps is the detection of 2D ROI
in each video. We are using off-the-shelf content analysis algorithms at the moment,
and one other avenue could be to use the methods introduced in sections 3.1 and 3.2.
We can augment the query system introduced in section 4.3 with a zoomable video
interaction, and compute user interest maps out of the gathered traces. Better 2D
interest maps would help produce better 3D interest maps.

The idea that has driven the entire chapter 3 is that users, through the use of inter-
faces, can implicitly reveal information about the content. We could apply this same
idea to our query system: when users watch a video among the entire set of videos,
they implicitly say that they are satisfied with the current video and do not need to
query another better view. In that sense we could devise a measure of the interest of
each video (over time), that we could then use to improve video mashups.

• Part II: one of the major issues we currently have with Ask’nSeek is the text process-
ing. It should be one of our mid-term goals to perform this step automatically. The
next step will be to perform segmentation of several objects at the same time using
Ask’nSeek traces.

There is another avenue that we partially explored in [Carlier 2012]. Ask’nSeek traces
can be very useful to filter false positives from content analysis algorithms. One idea
could be to relax some constraints on the content analysis algorithm, which would
augment the Recall (higher chance to obtain a true positive) but in the mean time
decrease the Precision (higher rate of false positives). We would then use Ask’nSeek
traces to filter out the false positives and increase the Precision. This approach could
be used in object detection and in object segmentation for example.

Long term
Regarding Ask’nSeek, our analysis on section 7.3 encourages us to aim at defining an

active learning setup for the game. We have seen that Ask’nSeek traces are biased towards
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the most prominent objects (and object parts) on the images. We could devise a system
that would determine where to place the target region on an image in order to gain as much
information as possible from the game logs. Then we could bias the master’s choice of the
target region (e.g., by granting more points if the master follows the system’s advice) in
order to gather more informative traces through the Ask’nSeek game. This proposal makes
an ambitious topic that we could share, again, with the UPC and FAU teams.

Concerning the part I (in which all the work we have presented was developed in collab-
oration with Wei Tsang Ooi at NUS), the long term research problem that we target is the
conception of multimedia interactive systems for which we can control the predictability.
Predicting users interactions with a content can greatly assist the adaptive streaming of the
content, as well as improve the Quality of Experience. Predicting users interactions is how-
ever greatly dependent on the degrees of freedom provided by the interactions. For example
a “standard” zoomable video player (as described in section 3.1) is highly unpredictable,
whereas a zoomable video player with recommmended viewports (section 3.2) considerably
reduces the users’ freedom and therefore generates more predictable interactions. In the
future, we want to explore the conception of systems that could adapt their ergonomics (to
network constraints, for example) in order to adapt their predictability which would help
optimizing the Quality of Experience.
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