
HAL Id: tel-04261798
https://theses.hal.science/tel-04261798

Submitted on 27 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Involvement of auxin in the arbuscular mycorrhizal
symbiosis in tomato

Mohammad Etemadi-Shalamzari

To cite this version:
Mohammad Etemadi-Shalamzari. Involvement of auxin in the arbuscular mycorrhizal symbiosis in
tomato. Vegetal Biology. Institut National Polytechnique de Toulouse - INPT, 2014. English. �NNT :
2014INPT0075�. �tel-04261798�

https://theses.hal.science/tel-04261798
https://hal.archives-ouvertes.fr


En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (INP Toulouse)
Discipline ou spécialité :

Développement des Plantes

Présentée et soutenue par :
M. MOHAMMAD ETEMADI-SHALAMZARI

le lundi 17 novembre 2014

Titre :

Unité de recherche :

Ecole doctorale :

INVOLVEMENT OF AUXIN IN THE ARBUSCULAR MYCORRHIZAL
SYMBIOSIS IN TOMATO

Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB)

Laboratoire Génomique et biotechnologie des fruits (G.B.F.)
Directeur(s) de Thèse :

M. MOHAMED ZOUINE
M. JEAN-PHILIPPE COMBIER

Rapporteurs :
M. LAURENT LAPLAZE, IRD MONTPELLIER

Mme FRANZISKA KRAJINSKI, UNIVERSITAT HANNOVRE

Membre(s) du jury :
1 M. LAURENT LAPLAZE, IRD MONTPELLIER, Président
2 M. JEAN-PHILIPPE COMBIER, CNRS TOULOUSE, Membre
2 M. MOHAMED ZOUINE, INP TOULOUSE, Membre



` 

i | P a g e  
 

Acknowledgement 

I would like to thank to my PhD advisors, Mohamed Zouine and Jean-Philippe 

Combier, for supporting me during these past three years. I appreciate all Mohamed 

contributions of time, ideas and to make my Ph.D. experience stimulating. Jean-Phillippe is 

someone you will never forget once you meet him. I hope that I could be as lively, 

enthusiastic, and energetic as Jean-Philippe and to someday be able to command an audience 

as well as he can. It has been an honor to be his first Ph.D. student. He has been supportive 

and has given me the freedom to pursue various projects without objection. He has also 

provided insightful discussions about the research.  

I want to express my special thanks to Professor Guillaume Bécard who never turned 

down my requests for guidance and thanks to all his supports. 

I also have to thank the members of my Ph.D. committee, Valerie Legué, Christophe 

Roux, Soizic Rochange, Mondher Bouzayen and Corinne Delalande for their helpful 

career advice and suggestions in general. I am also very grateful to Dominique 

Lauressergues for his scientific advice and knowledge and many insightful discussions and 

suggestions. He is my primary resource for getting my questions answered. I think of him as 

a big brother. I would like to thank Brigitte Lafforgue for being supportive throughout my 

time here and for helping me. 

I will be thankful to Myco and GBF teams for friendship relation they have and their 

hospitality. I also thank my collaborators, Caroline Gutjahr, Ton Timmers, Carole Bassa, 

Saida Danoun, Sylvie Fournier, Virginie Puech, Benoit Van Der Rest, Jean-Malo 

Couzigou, Bruno Guillotin and Matthieu Lauvernier.  

 I thank my friends (too many to list here but you know who you are!) for providing 

support and friendship that I needed.  

I especially thank my mother, father, and brother. My hard-working parents have 

sacrificed their lives for my brother and myself and provided unconditional love and care. I 

love them so much, and I would not have made it this far without them. My brother has been 

my best friend all my life and thanks him for all his advice and support. I know I always have 

my family to count on when times are rough.  

http://www.oalib.com/search?kw=Dominique%20Lauressergues&searchField=authors
http://www.oalib.com/search?kw=Dominique%20Lauressergues&searchField=authors
http://www.oalib.com/search?kw=Dominique%20Lauressergues&searchField=authors


` 

ii | P a g e  
 

The best outcome from these past three years is finding my best friend, soul-mate, and 

wife. I married the best person out there for me. Atieh has been a true and great supporter and 

has unconditionally loved me during my good and bad times. These past several years have 

not been an easy ride, both academically and personally. I truly thank Atieh for sticking by 

my side, even when I was irritable and depressed.  

 

 

 

 

 

 

 

 

 

 



` 

iii | P a g e  
 

Abstract 

Most land plant species live in symbiosis with arbuscular mycorrhizal (AM) fungi. This is 

a very ancient symbiosis dating back to 450 million years. AM fungi are soil fungi that 

belong to the Glomeromycota. They are present in most terrestrial ecosystems. Thus they can 

be considered as an integral root component of plants. They form essential functional 

structures called arbuscules in root cortical cells at which mineral nutrients are released to the 

plant in exchange of sugars. The phytohormone auxin is involved in many developmental 

processes in plants, including apical dominance, tropisms, vascular patterning and lateral root 

formation. The main objective of our work was to investigate further the role of auxin in the 

mycorrhizal developmental process. We already know that AM symbiosis stimulates the 

lateral root formation in host plants, which could be due to modification of auxin metabolism, 

transport or perception. The microRNAs (miRNAs) are ~21-nucleotides noncoding RNAs 

that target corresponding mRNA transcripts for cleavage and transcriptional repression. 

Several miRNAs interact with auxin signaling and among them miR393 that targets auxin 

receptors. We investigated the role of miR393 in AM root colonization. In Solanum 

lycopersicum (Solanaceae), Medicago truncatula (Fabaceae) and Oryza sativa (Poaceae), 

expression of the precursors of the miR393 was down-regulated during mycorrhization. In 

addition DR5-GUS, a reporter for auxin response, was found to be preferentially expressed in 

root cells containing arbuscules. By over-expressing miR393 in roots and therefore down-

regulating auxin receptor genes, arbuscules could not develop normally. As components of 

auxin receptor complexes, Aux/IAA proteins play a major role in auxin signaling pathway by 

repressing the activity of ARF type transcription factors. We checked the expression of 25 

AUX/IAA genes in AM roots. Among them, we focused on IAA27 that was significantly up-

regulated during the early stages of AM symbiosis. IAA27 down-regulation in plants led to a 

strong decrease of AM colonization and arbuscule abundance. We showed by different 

approaches that the positive regulation of mycorrhization by IAA27 was linked to 

strigolactone biosynthesis. Overall these results strongly support the hypothesis that auxin 

signaling plays an important role both in the early stage of mycorrhization and in the 

arbuscule formation. 
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Résumé 

La plupart des espèces végétales terrestres vivent en symbiose avec les champignons 

mycorhiziens à arbuscules (MA). Il s'agit d'une symbiose très ancienne datant de plus de 400 

millions d'années. Les champignons MA sont des champignons du sol qui appartiennent aux 

Gloméromycètes. Ils sont présents dans la plupart des écosystèmes terrestres. Ainsi, ils 

peuvent être considérés comme une composante intégrale des racines des plantes. Ils forment 

dans les cellules racinaires corticales des structures fonctionnelles essentielles appelées 

arbuscules où ils apportent à la plante des minéraux nutritifs en échange de sucres. L'auxine 

est une phytohormone impliquée dans de nombreux processus de développement des plantes, 

y compris la dominance apicale, les tropismes, la structuration vasculaire et la formation de 

racines latérales. Le principal objectif de notre travail était d'étudier de manière approfondie 

le rôle de l'auxine dans le processus de développement des mycorhizes. On sait déjà que la 

symbiose MA stimule la formation de racines latérales dans les plantes hôtes, ce qui pourrait 

être due à une modification du métabolisme de l'auxine, de son transport ou de sa perception. 

Les microARNs (miARNs) sont des molécules d‟ARN non codantes de ~ 21 nucléotides 

capables de réprimer l‟expression de gènes en ciblant et clivant spécifiquement leur ARNm 

correspondant. Plusieurs miARNs interagissent avec la signalisation de l'auxine et parmi eux 

miR393 qui cible les récepteurs à l'auxine. Nous avons étudié le rôle de miR393 dans la 

colonisation mycorhizienne. Nous mettons en évidence que chez Solanum lycopersicum 

(Solanacées), Medicago truncatula (Fabaceae) et Oryza sativa (Poaceae), l'expression des 

précurseurs de miR393 diminue lors de la mycorhization. En outre nous montrons que DR5-

GUS, un gène rapporteur de réponse à l‟auxine, est préférentiellement exprimé dans les 

cellules de la racine contenant les arbuscules. En sur-exprimant miR393 dans les racines et 

donc en régulant négativement l‟expression des gènes de récepteurs à l'auxine, nous montrons 

également que les arbuscules ne se développent pas normalement. En tant que composantes 

des complexes récepteurs d'auxine, les protéines Aux/IAA jouent un rôle majeur dans la voie 

de signalisation de l'auxine en réprimant l'activité des facteurs de transcription de type ARF. 

Nous avons vérifié dans des racines de tomate mycorhizées l'expression de 25 gènes 

AUX/IAA. Nous nous sommes concentrés sur IAA27 dont l‟expression est induite lors des 

premiers stades de la symbiose MA. Nous observons qu‟une répression par ARNi de 

l‟expression de IAA27 dans des plants de tomate conduit à une forte diminution de la 

colonisation MA et du nombre des arbuscules. Puis nous montrons par des approches 

différentes que la régulation positive de la mycorhization par IAA27 est liée à la biosynthèse 
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des strigolactones. Globalement, ces résultats appuient fortement l'hypothèse selon laquelle la 

signalisation de l'auxine joue un rôle important aussi bien dans le stade précoce de la 

mycorhization que dans la formation des arbuscules. 
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1. Arbuscular mycorrhizal symbiosis 

Arbuscular mycorrhizal (AM) symbiosis represents a vital component in plant 

ecosystems; it is widely distributed in natural environments and concerns more than 80% of 

land plant species, from the liverworts to the angiosperms (Smith and Read, 2008). The term 

mycorrhiza derives from the Greek words “fungus” and “root” which describes a very ancient 

and mutualistic association between plant roots and soil fungi of the Glomeromycetes phylum 

(Smith and Read, 2008). Plants can survive without their fungal symbionts, but AM fungi 

function as obligate biotrophs. AM fungi have a significant role in absorbing soil nutrients, 

especially phosphate, with their mycelium growing around the roots. These nutrients are then 

provided to their plant host through specific intraradical, highly branched, structures called 

arbuscules (Smith and Read, 2008). In return they get their carbon source from their plant 

host. They also improve plant resistance to various biotic and abiotic stresses (Smith and 

Read, 2008). For these reasons the AM symbiosis greatly improves plant fitness and plant 

productivity (Fig. 1), and there is great expectation that AM symbiosis might be exploited in 

tomorrow‟s agriculture for its potentially high environmental and economic value.  

The establishment of AM symbiosis involves different steps of fungal development (Fig. 

2). Precontact stage (also referred to as presymbiotic stage) is characterized by an intense 

hyphal-branching triggered by plant-derived exudates including strigolactones (SLs) 

(Akiyama et al., 2005; Besserer et al., 2006). During this early stage AM fungi produce Myc 

factors (MFs) such as lipochito-oligosaccharides (LCOs) and COs (Maillet et al., 2011; Genre 

et al., 2013) that induce in roots the common symbiotic signaling pathway, a pathway also 

activated in the nodulation process (reviewed by Oldroyd, 2013). 

Then AM fungi make hyphopodia on the root surface (Bastmeyer et al., 2002) from 

which hyphae enter the roots through prepenetration apparatus (PPA; Genre et al. 2008): root 

cell structures which guides the fungus through epidermal cells. 

These hyphae grow intercellularly along the root axis and, via the induction of PPA-like 

structures in inner cortical cells (Genre et al., 2008); they differentiate in root cortical cells 

tree shape, highly branched, structures called arbuscules (Parniske, 2008). Arbuscule 

formation involves significant root cellular re-structuring, including the synthesis of a 

plasmalemma-derived periarbuscular membrane (PAM). The PAM is formed around the 

fungal cell wall and creates a periarbuscular space and a large surface area for nutrient 

exchange (Harrison, 2012). In cortical cells, arbuscules are functional for only few days. 

Arbuscular branches become fragile and shrink. Then, the phosphate transporters disappear 
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within few hours. The collapse of arbuscules occurs in the subsequent days (Kobae and Hata, 

2010). Kobae and Fujiwara (2014) showed that cells with collapsed arbuscules were rarely 

recolonized to host new arbuscules. Rather, de novo colonization occurs in close tissue 

contributing to the expansion of root colonization.  

 

 

 

Figure 1. Growth responses of wild type papaya due to the inoculation with arbuscular 

mycorrhizal fungi (AMF) after 90 days. AMF 7: Funneliformis constrictum, Claroideoglomus 

etunicatum, G. aggregatum, Acaulospora sp. 1 and Glomus sp1; AMF Mix: Glomus sp. 1, Glomus sp. 

2, Glomus sp. 3, and Glomus sp. 4;  Glomus Zac-19: Claroideoglomus claroideum, Rhizophagus 

diaphanus, and G. Albidum (from Alarcón et al., 2012) 

 

Vesicles are storage structures of the fungus that can also be formed between or within 

the root cortical cells.  

Finally, from its mycelium extending out of the root, the fungus produces asexual spores 

in the soil (Dalpé et al., 2005; Parniske, 2008). These spores are the resting living forms used 

by the fungus for its propagation. 
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Figure 2. Arbuscular mycorrhizal (AM) symbiosis in flowering plants. (1) The plant root and the 

AM fungus exchange symbiotic signals that activate the symbiotic program of the other partner. (2) 

The AM fungus develops a hyphopodium on the surface of the root epidermis. (3) The plant allows 

inter- and intracellular colonization of the root. (4) In cortical cells, the fungus forms highly branched 

arbuscules, surrounded by the plant plasma membrane, which are specific interfaces optimized for 

nutrient exchange. (5) Finally, the host plant controls the spatial colonization of the root. 

Abbreviation: Myc-LCOs, mycorrhizal lipochito-oligosaccharides (from Delaux et al., 2013). 

 

1.1. Arbuscule development 

During arbuscule development that is linked with important changes in plant cellular 

structure and function, cortical cells are dramatically reprogrammed by the symbiotic 

stimulation (Harrison, 2012) (Fig. 4). Regarding the combination of plant and AM fungal 

species, two morphological patterns in arbuscule formation have been reported. Arum-type 

colonization is defined as intercellular hyphal spread, tree-shaped and terminal arbuscules in 

cortical cells which are the case in most legumes. Paris-type colonization requires hyphal 

passage from cell to cell as well as intracellular hyphal coils that later differentiate into 

intercalary arbuscules (Bonfante and Genre, 2008; Gutjahr and Parniske, 2013) (Fig. 3).  

Upon direct hyphal contact with cortical cells, separated PPA-like endoplasmic 

reticulums (ER) accumulate in inner cortical cells (Genre et al., 2008). PPA guides the hypha 

to enter in the middle of the inner cortical cells where arbuscule branching begin (Genre et 

al., 2008). During arbuscule branching, the ER surrounds the developing arbuscule and both 

actin filaments and microtubules bundle around the arbuscule branches accumulate 
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(Blancaflor et al., 2001; Genre et al., 2008; Pumplin and Harrison, 2009). In addition, vacuole 

deformation and nucleus movement to the center of the cell is observed during arbuscule 

development (Fester et al., 2001; Lohse et al., 2005; Pumplin and Harrison, 2009). Each 

branch of the arbuscule is surrounded with the plant-derived periarbuscular membrane 

(PAM) which prevents the direct contact with plant cytoplasm. Thus, during arbuscule 

development, the plant-membrane surface increases which makes the nutrient and metabolite 

exchanges most efficient between symbiotic partners (Pumplin& Harrison 2009). 

 

 

 

Figure 3. Root colonization by AM fungi. The scheme summarizes the main features of AM fungal 

development and root colonization patterns in angiosperms. (a) Arum-type colonization. (b) Paris-

type colonization (from Bonfante and Genre, 2008). 

 

1.1.2. Transcriptional reprogramming during arbuscule development 

Transcription profiling after laser microdissection of arbuscular mycorrhizal roots 

shows that the expression of hundreds of genes is modified in arbuscule-containing cells 

(Gomez et al., 2009; Hogekamp et al., 2011; Gaude et al., 2012). The most induced 

transcripts belong to transport processes, transcriptional regulation, and lipid metabolism 

(Gaude et al., 2012). Also, Gaude et al. (2012) by comparing the non-colonized cortical cells 

of mycorrhizal roots with cortical cells of non-mycorrhizal roots show significant 

transcriptional differences between them. These results could be interpreted by the presence 

of intraradical hyphae in non-colonized cortical cells of mycorrhizal roots and/or 
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transcriptional reprogramming of cortex cells during AM symbiosis (Gutjahr and Parniske, 

2013). This would be compatible with the expression patterns of AM-specific marker such as 

SCP, Bcp1 and SbtM1, which are activated in cells containing intracellular hyphae and 

during PPA formation (Liu et al., 2003; Hohnjec et al., 2005; Pumplin and Harrison, 2009; 

Takeda et al., 2009; Takeda et al., 2012). All together it seems that arbuscule formation is 

characterized by at least two waves of gene expression. The first wave of gene is induced 

prior to and during arbuscule formation, such as SCP or SbtM1. The second wave is 

characterised by genes that are induced during arbuscule formation and in arbuscule-

containing cells, such as PT4, Cel1, STR, and STR2 (Fig. 4) (Harrison et al., 2002; Liu et al., 

2003; Zhang et al., 2010; Gutjahr and Parniske, 2013). 

 

1.1.3. Genes required for arbuscule formation  

According to symbiotic plant mutants, arbuscule development can be arrested in 

different stages. Five distinct stages are defined due to arbuscule morphological analyses of 

these mutants (reviewed by Gutjahr and Parniske, 2013) (Fig. 4a, b).  

PPA structure and fungal cell entry are the first two stages that generate the arbuscule 

trunk formation. The first stage starts with CSSP genes CYCLOPS/IPD3 and CCaMK/DMI3 

which are activated by Myc-LCOs and second and third require VAPYRIN/PAM1. Complete 

absence of arbuscules have been observed in (ccamk, cyclops, vapyrin) mutants or single 

hyphal bulges that enter cortical cells (pam1) (Demchenko et al., 2004; Kistner et al., 2005; 

Sekhara Reddy et al., 2007; Yano et al., 2008; Pumplin et al., 2010). Silencing of vesicle-

associated membrane proteins (VAMPs), head to dwarf (stage III) arbuscules, showing 

transition stage IV of arbuscular development (Ivanov et al., 2012; Lota et al., 2013). 

Importantly, this silencing demonstrates that fungal growth and branching are limited by 

PAM synthesis and so are regulated by the plant.  

The fourth stage describes mature arbuscules that develop from the birdsfoot stage 

through continuous hyphal branching. Two half-size ABC transporter genes mutation or 

down-regulation lead to arbuscule developmental arrest at the birdsfoot step (Zhang et al., 

2010). RAM2 is encoding a glycerol-3-phosphate acyl transferase (GPAT), needed for 

colonization of the root by mycorrhizal fungi, as it is both necessary for appropriate 

hyphopodia and arbuscule branching (Wang et al., 2012). Kunitz protease inhibitor (KPI106) 

and a serine carboxypeptidase (SCP1) control arbuscular mycorrhiza development in the root 
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cortex. Both proteins are only induced during mycorrhiza formation and belong to large 

families whose members are also mycorrhiza-specific (Rech et al. 2013). A default of the 

transcription factor gene ERF1 generated stunted arbuscules and blocked at the birdsfoot step 

(Devers et al., 2013), raising the possibility that ERF1 regulates genes that require to be 

expressed to enable arbuscule branching (Gutjahr and Parniske, 2013). 

 

 

 

 

Figure 4. (a) Five different genetically separable stages in arbuscule development.  (I) prepenetration 

apparatus (PPA) structure, displayed here by a conically arranged microtubule array; (II) cell entry 

and formation of the arbuscule trunk; (III) birds foot, a stage identified by weak and low-order 

branching; (IV) mature arbuscule, defined by thin, higher-order branches; (V) collapsed arbuscule, 

characterized by septa, which disconnect this senescence stage from the remaining hyphal network. 

(b) Genes required for the progression to distinct stages of arbuscule development are listed in white 

boxes. PT4 and OsPT13 are required for arbuscule maintenance, and they delay the progress to 

senescence stage IV (as signified by the inhibition sign) (from Gutjahr and Parniske, 2013). 

 

 

 

1.2. Phytohormones and arbuscular mycorrhizal symbiosis 

b 

a 

a 

b 
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The establishment of AM symbiosis is connected with changes in root cells as well as in 

fungal hyphae development. Environmental and physiological condition of host plants affect 

on both developmental structures of AM fungi and the percentage of plant root colonization. 

This indicates that mycorrhizal establishment is, at least partly, under plant control. 

Phytohormones and hormone signaling pathways have important roles in plant development 

and response to biotic and abiotic stresses. So explaining how phytohormones manage AM 

development will provide direction into understanding how plants organize AM symbiosis 

(Gutjahr, 2014). 

 

1.2.1. Jasmonic acid (JA) 

Jasmonic acid is implicated in the plant's systemic response to necrotrophic pathogen 

attack (see review by Ballaré, 2011). Since AM fungal hyphae penetrate plant cells, this has 

led to questions regarding its involvement in the regulation of AM development.  

Several studies by different groups have been done, but they have not reported completely 

coherent results. Ludwig-Müller et al. (2002) showed a clear reduction of AM colonization 

by high levels of JA and Regvar et al. (1996) showed an increase in AM colonization with 

low levels of JA. These results represent the negative role of JA in AM symbiosis. In the 

other hand increasing JA level by repeated wounding promoted AM colonization (Landgraf 

et al., 2012) and using antisense expression of the allene oxide cyclase gene to down-regulate 

JA level delayed AM colonization (Isayenkov et al., 2005). These observations suggest a 

positive role for jasmonate in AM development. Tejeda-Sartorius et al. (2008) and Herrera-

Medina et al. (2008) showed, respectively, that the JA-deficient spr2 mutant was defective in 

AM colonization whereas the JA-insensitive mutant jai-1had an increased AM colonization. 

In general it seems that JA (or derivatives such as methyl jasmonate) can have a range of 

effects on mycorrhizal colonization, from positive to inhibitory, depending on plant species, 

dose, timing and nutritional conditions (see review by Gutjahr and Paszkowski, 2009). 

 

 

 

 

1.2.2. Gibberellic acid (GA) 
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GA is a phytohormone that controls many aspects of plant growth and development and 

also influences responses to abiotic and biotic stresses (Hauvermale et al., 2012; Hou et al., 

2013). Transcriptome analyses highlight significant changes in the expression of genes 

encoding proteins involved in gibberellic acid (GA) biosynthesis, degradation and signaling 

during AM symbiosis (Gomez et al., 2009; Guether et al., 2009; GarcíaGarrido et al., 2010; 

Hogekamp et al., 2011). It has been reported that GA levels increase significantly in 

mycorrhizal roots (Shaul-Keinan et al., 2002), while GA treatment repressed the arbuscule 

number (El Ghachtouli et al., 1996). DELLA proteins are central players in GA signaling. 

They repress GA responses and restrain the growth (Sasaki et al., 2003; Harberd et al., 2009). 

Floss et al. (2013) showed that DELLA proteins are required for arbuscule formation (Fig. 5). 

Arbuscule formation is severely diminished in a M. truncatula Mtdella1/Mtdella2 double 

mutant and GA treatment of wild-type roots phenocopies the della double mutant (Floss et 

al., 2013). 

 

 

 

 

 

Figure 5. AM phenotype of della1/della2 roots colonized by Glomus versiforme. (A and B) Laser-

scanning confocal microscope images of G. versiforme in della1/ della2 (A) and wild-type (B) roots 

(from Floss et al., 2013). 

 

 

 

1.2.3. Cytokinins (CK) 
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Cytokinins play a critical role in regulating the proliferation and differentiation of plant 

cells. They are known as essential regulators of the plant root system, as they are involved, 

antagonistically to auxin, in the control of lateral root organogenesis (Sakakibara, 2006; 

Marhavý et al., 2011). Same as auxin, during the establishment of symbiosis, they repress 

defense responses of the host (Ludwig-Müller, 2010). Foo et al. (2013) suggested that CKs 

might not be required in the regulation of AM development. However, several plants which 

are colonized by AM fungi accumulate more CKs than non-mycorrhizal plants (Allen et al., 

1980; Drüge and Schönbeck, 1992; van Rhijn et al., 1997; Torelli et al., 2000; Shaul-Keinan 

et al., 2002). Cytokinin-like substances have been shown to be produced by axenically grown 

mycelium of Glomus mosseae (Barea and Azcon-Aguilar, 1982). So, participation of AM 

fungi to regulation of the host CK level is possible but unclear (Barker and Tagu, 2000). A 

perfect balance between auxin and CK effects are necessary for proper developmental output 

(Marhavý et al., 2011). However, the inconsistency between high CK content and high 

branching found in some potential AM-host plants grown under high Pi or colonized by AM 

fungi is still unclear (Fusconi, 2013). 

 

1.2.4. Abscisic acid (ABA) 

ABA-deficient tomato mutants (sitiens) which have lower endogenous ABA levels are 

affected in the Rhizophagus irregularis colonization (Herrera-Medina et al., 2007). The 

results of the authors showed not only a reduction in the frequency and intensity of 

colonization in the mutant roots, but also less well-developed arbuscular morphology. They 

showed that frequency and intensity of colonization are completely restored by ABA 

application. ABA seems to play an important role in the development of the complete 

arbuscule and its functionality. However, part of this effect of ABA deficiency on fungal 

infection could be caused by an increased ethylene production in these mutants (Herrera-

Medina et al., 2007). Other experiments on sitiens and with another ABA-deficient mutant, 

notabilis, as well as the use of transgenic plants and ethylene and ABA biosynthesis 

inhibitors supported the hypothesis that ABA deficiency enhances ethylene levels, which 

negatively regulates mycorrhizal intensity/ hyphal colonization (Martín Rodriguez et al., 

2010; Martín-Rodríguez et al., 2011). 

1.2.5. Ethylene (ET) 
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Ethylene plays an important role in adjusting internal and external signals, as well as in 

some stress responses and interaction of plants with other organisms (López-Ráez et al., 

2010; Lei et al., 2011). ET and salicylic acid function as negative regulators of AM symbiosis 

(Gamalero et al., 2008; Ludwig-Müller, 2010). Ethylene inhibits the induced expression of 

early symbiotic genes by germinating spore exudates (GSE) (Mukherjee and Ané, 2011). In 

addition, an active ET inhibitory effect has been observed on fungus entry into roots and on 

intraradical fungal spread (Martín-Rodríguez et al., 2011; Mukherjee and Ané, 2011). 

Ethylene inhibits root elongation by reducing cell elongation synergistically with auxin 

(reviewed by Muday et al., 2012). However, it also acts antagonistically to auxin by 

inhibiting lateral root (LR) formation in the earliest stages of the LR initiation (reviewed by 

Fukaki and Tasaka, 2009; Lewis et al., 2011; Muday et al., 2012). The reduced level of ET 

found in AM plants is, therefore, in agreement with the increased branching of the colonized 

roots (Fusconi, 2013). 

 

1.2.6. Strigolactone (SL) 

Strigolactones (SLs) function as stimulants of the germination of seeds of parasitic plants, 

such as Orobanche spp. and Striga spp. (Cook et al., 1966). Also, SLs act as signals that 

stimulate hyphal branching (Akiyama et al., 2005), spore germination and growth of AM 

fungi, via the activation of the fungal respiratory metabolism (Besserer et al., 2006; Besserer 

et al., 2008) (Fig. 6).  

Furthermore, SLs function as phytohormones which are synthesized principally in the 

lower parts of the stem and the roots (Gomez-Roldan et al., 2008; Umehara et al., 2008; 

Kohlen et al., 2011). They inhibit shoot branching and regulate root development (Ruyter-

Spira et al., 2011; Kapulnik et al. 2011; Seto et al., 2012; Brewer et al., 2013). Several genes, 

isolated from both mono- and dicots, are involved in SL synthesis and signaling (Fig. 7). 

Strigolactone biosynthetic pathway is beginning with a carotenoid substrate that will be 

converted by D27, an iron-containing protein involved in the strigolactone biosynthetic 

pathway in rice, and carotenoid cleavage dioxygenases (CCD7, CCD8) to a compound called 

carlactone (Fig. 7, 8c, Lin et al., 2009). MAX1, encoding a cytochrome P450 CYP711A1 

protein, is involved in the production of SLs and has been proposed to act on a mobile 

substrate downstream of CCD7 and CCD8 (Stirnberg et al., 2002; Booker et al., 2005, Fig. 

7).  CCD7/CCD8 are expressed mainly in the root while the highest activity of MAX1 is 



` 

12 | P a g e  
 

found in all vascular-associated tissue throughout the plant (Sorefan et al., 2003; Booker et 

al., 2004; Booker et al., 2005). SL production in roots is controlled by the GRAS proteins 

NODULATION SIGNALING PATHWAY1 (NSP1) and NSP2. These two transcription 

factors are required for the full expression of DWARF27 (D27) (Liu et al., 2011). 

 

 

 

 

Figure 6. Strigolactones stimulate the germination of parasitic seeds and the hyphal branching 

arbuscular mycorrhizal fungi. Host plant exudes strigolactones into the soil, which activate dormant 

parasitic plant seed to germinate. If the germinating seed is close enough to the host root, it will 

establish a parasitic interaction. Strigolactones are sensed by the hypha of an arbuscular mycorrhizal 

fungus. In response to strigolactones, the hypha will branch extensively (adapted from  Parniske, 

2008). 

 

Colonization levels of L. japonicus NSP1, and of M. truncatula NSP1 and NSP2 mutants 

are lower than in the wild-types, possibly because of the decreased production of 

strigolactone, while arbuscule morphology remains normal (Lauressergues et al., 2012; 

Delaux et al., 2013; Takeda et al., 2013). Colonization of L. japonicus NSP1 mutants could 

not be recovered by exogenous application of GR24 (Takeda et al., 2013). Hence, NSP1 is 

expected to perform additional roles in AM development (Gutjahr, 2014). In general plant 
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mutants that produce lower amount of SLs are affected in AM fungal colonization (Gomez-

Roldan et al., 2008; Koltai et al., 2010; Liu et al., 2011; Gutjahr et al., 2012; Kretzschmar et 

al., 2012). SL-insensitive mutants also exhibit mycorrhizal phenotypes. MAX2/D3/RMS4 is a 

putative component of the SL receptor complex and is required for AM symbiosis (Yoshida 

et al., 2012; Foo et al., 2013). Colonization blocking at the epidermis, unusual hyphopodia on 

the root surface and fewer arbuscules have been observed in rice dwarf3 (d3) mutant roots. 

These phenotypes suggest that MAX2/D3/RMS4-mediated signaling is more likely needed in 

the epidermis rather than in the cortex (Yoshida et al., 2012). In contrast, AM colonization of 

the rice d14 dwarf mutant, which is another SL-insensitive mutant with a defect in a gene of 

the /-hydrolase family (Arite et al., 2009), was higher than in the wild type (Yoshida et al., 

2012).Overall these observations suggest that SLs are playing important roles in the AM 

symbiosis, and much more work will be necessary to explain the different mechanisms 

involved. 

 

 

 

 

Figure 7. Schematic representation of the SL biosynthesis and signaling pathway for the control of 

shoot branching with genes so far identified in the four model species (boxed) (from de Saint Germain 

et al., 2013). 
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Figure 8. Chemical structures of strigolactones, karrikin and carlactone: (a) structure of the 

strigolactone 5-deoxystrigol; (b) structure of karrikin; (c) structure of carlactone. Note the butenolide 

moiety shared by these three compounds (Zhang et al., 2013). 

 

1.2.7 Auxin 

Auxin is a principal regulator of plant growth and developmental processes. It promotes plant 

cell division and elongation and it is the primary regulator of lateral root (LR) formation 

(Fukaki and Tasaka, 2009; De Smet et al., 2011; Muday et al., 2012; Vanstraelen and 

Benkova, 2012). The involvement of auxin in mycorrhizal plants has been suggested 

considering that AM colonization generally increases root branching (Ludwig-Müller, 2010; 

Hanlon and Coenen, 2011; Sukumar et al., 2013). It has been shown that the application of 

auxin can increase spore germination and hyphal growth, and influence the rate of 

colonization (Ludwig-Müller, 2010). Moreover, auxin is suspected to be needed inside the 

host roots for the early stages of AM formation (Hanlon and Coenen, 2011) and for 

controlling the SL levels (Foo et al., 2013). Some studies have revealed that auxin level in 

plant tissues can increase in colonized roots (Ludwig-Müller, 2010), but with no correlation 

with the amount of colonizing fungus (Jentschel et al., 2007; Ludwig-Müller, 2010). Torelli 

et al. (2000) have shown that the level of indole-3-acetic acid (IAA), the major endogenous 

auxin, increases in the mycorrhizal roots of leeks, perhaps explaining the typical modification 

of the root system architecture with more branched and shorter adventitious roots generally 

observed during mycorrhization (Berta et al., 1990; Trotta et al., 1991). Given that in soybean 

roots grown in a split-root system, the accumulation of IAA is only occurring in roots 

growing in the inoculated side, it seems that AM colonization does not increase IAA 

systemically (Meixner et al., 2005). 

 Concentration of Indole-3-butyric acid (IBA) also increased in maize (Kaldorf and 

Ludwig-Müller, 2000; Fitze et al., 2005) and in M. truncatula (Ludwig-Müller and Güther, 
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2007) when inoculated with AM fungi. IBA acts as a storage form of IAA as it can be 

converted to IAA that is required for root development (reviewed by Simon and Petrasek, 

2011). Moreover, exogenous IBA mimicked the root phenotype of AM plants which raises 

the possibility that increase IBA concentration during AM symbiosis could be involved in 

AM root morphogenesis (Kaldorf and Ludwig-Müller, 2000).   

The levels of amide conjugates of IAA and IBA are shown to increase in the roots of 

maize inoculated with Rhizophagus irregularis (Fitze et al., 2005). Specifically, accumulation 

of transcripts for a putative IAA-amidosynthetase and an auxin-responsive GH3-like protein 

mainly in arbuscule containing cells are reported (Fiorilli et al., 2009). The function of auxin 

conjugates in AM roots is unclear, but, they are suggested to be implicated in the AM 

development and in the control of the fungus morphogenesis (Fiorilli et al., 2009). Induction 

of putative ARFs is found during AM symbiosis in maize, rice and M. truncatula, but not in 

L. japonicus (reviewed by Formey et al., 2012). However, comparative transcriptomic 

analysis among these plant species has not detected any common orthologous auxin-specific 

genes involved in root development of AM-colonized plants (Formey et al., 2012). Several 

ectomycorrhizal species are able to synthesize auxin (Niemi et al., 2002, Splivallo et al., 

2009). IAA-overproducing mutant of Hebeloma cylindrosporum can form greater 

mycorrhizal associations than the wild-type strain, suggesting a direct role for auxin in 

establishing mycorrhizal associations (Tranvan et al., 2000). Production of auxin by distinct 

groups of microorganisms maintains a role of auxin as a potential signal for communication 

with host plants (Sukumar et al., 2013). All these data point to the probable involvement of 

auxin in AM root branching. Furthermore, they could also indicate the existence of different 

regulations of auxin homeostasis and response pathways, possibly on the basis of the plant 

species as suggested by Formey et al., (2012). 
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2. Introduction about auxin 

Auxin plays essential roles through the whole life of the plant such as plant cell division, 

cell elongation and cell differentiation. It has a prominent influence on the final shape and 

function of cells and tissues in all higher plants. First study of auxin comes from the 

investigation of coleoptiles bending toward a light source (Darwin, 1880). The signal 

perceived by coleoptile tip could be transported from the tip to another part of the plant where 

it induced growth response (Went, 1928). This chemical signal termed auxin has been 

identified as Indole-3-acetic acid (IAA) (Kögl et al., 1934). Indole-3-acetic acid (IAA), 

phenylacetic acid (PAA) (Koepfli et al., 1938) and 4-chloroindole-3-acetic acid (4-Cl-IAA) 

(Porter and Thimann, 1965) are known as endogenous auxins in plant. Except IAA, functions 

and mechanisms of action of other active auxins have not been well described (reviewed by 

Simon and Petrasek, 2011).  Related auxin functions are regulated at the multiple levels: 

auxin homeostasis (Biosynthesis, conjugation and degradation), polar transport and signal 

transduction (Fig. 9).  

  

2.1. Indole-3-acetic acid (IAA) 

Among the plant endogenous auxins, the role and mechanism of action of IAA is best 

studied and understood. There is two major routes for IAA biosynthesis: tryptophan (Trp)-

dependent and Trp-independent pathways which are reviewed by Mano and Nemoto, (2012).  

 

2.1.1. The Trp-independent pathway 

It has been shown that Trp mutants in Arabidopsis thaliana and maize represented no 

differences in free IAA level compare with control plants (Wright et al., 1991; Normanly et 

al., 1993), which shows that IAA can be synthesized in the absence of Trp and it might 

contribute to auxin homeostasis (Chandler, 2009; Normanly, 2010). Indole-3-glycerol 

phosphate or indole is the likely precursor in Trp-independent IAA biosynthesis, but little is 

known about the corresponding biochemical pathway and potential intermediates and 

enzymes (Ouyang et al., 2000; Zhang et al., 2008). 
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2.1.2. The Trp-dependent pathway 

The Trp-dependent pathway was the most studied. Several Trp-dependent auxin 

biosynthesis pathways contribute to IAA levels, including the indole-3-acetaldoxime (IAOx), 

the indole-3-acetamide (IAM), the indole-3-pyruvic acid (IPyA) and the tryptamine (TAM) 

pathways.  

 

2.1.2.1. The indole-3-acetaldoxime (IAOx) pathway 

IAOx that is known to act as a precursor for defense compounds such as camalexin 

(CAM)  and indoleglucosinolates (IGs)  (Bak et al., 2001; Zhao et al., 2002; Mikkelsen et al., 

2004; Hansen and Halkier, 2005; Normanly, 2010) is also used to produce IAA (Zhao et al., 

2002; Sugawara et al., 2009). It has been suggested that IAOx pathway  exist only in 

crucifers (Sugawara et al., 2009); but IAN as a downstream intermediate of this pathway has 

been detected in maize (Bak et al., 1998). The cytochrome P450 enzymes CYP79B2 and 

CYP79B3 are responsible for the conversion of Trp to IAOx (Hull et al., 2000; Mikkelsen et 

al., 2000; Zhao et al., 2002). The over expression of CYP79B2 leads to the increase of IGs 

(Mikkelsen et al., 2000; Zhao et al., 2002), IAN (Zhao et al., 2002), and free IAA (Zhao et 

al., 2002) levels. Conversely, the cyp79b2 cyp79b3 double mutant shows a decrease of IAOx 

(Zhao et al., 2002; Sugawara et al., 2009), IAN (Zhao et al., 2002; Sugawara et al., 2009) and 

free IAA (Zhao et al., 2002). Taken together, these results suggest that IAN is a downstream 

intermediate of the IAOx pathway. However the enzymatic steps between IAOx and IAN 

have not yet been identified. It has been thought that plant nitrilases convert indole-3-

acetonitrile into the plant growth hormone indole-3-acetic acid (IAA) but this view has 

changed considerably in the last few years (reviewed by Piotrowski, 2008). Recent work on 

plant nitrilases has shown them to be involved not only in converting IAN to IAA but also in 

the process of cyanide detoxification. Nitrilase genes (AtNIT1–AtRNIT4) have been isolated 

from Arabidopsis thaliana (Bartling et al., 1992; Bartel and Fink, 1994; Bartling et al., 1994; 

Hillebrand et al., 1996; Hillebrand et al., 1998). AtNIT1, 2, and 3 gene products were thought 

to participate in the conversion of IAN to IAA (Bartling et al., 1992; Bartling et al., 1994). 

AtNIT4 represents an important detoxification mechanism (Howden et al., 2009). All plants 

possess at least one nitrilase that is homologous to the nitrilase 4 isoform of Arabidopsis 

thaliana (Piotrowski, 2008).   
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Figure 9. Schematic view of IAA homeostasis, auxin polar transport and auxin signaling.  The 

biosynthesis of IAA precursors, such as IGP for tryptophan independent auxin biosynthesis pathway 

and Trp for tryptophan dependant IAA biosynthesis pathway, takes place in plastids. Trp, the primary 

IAA precursor, is generated via the Chorismate pathway. The subsequent Trp-dependent IAA 

biosynthesis pathways are located in the cytosol. Four putative pathways for Trp-dependent IAA 

biosynthesis in higher plants is shown: the IAOx, IAM, IPA and TRM pathways. The enzymes known 

to operate in each pathway are shown in complete arrows with the name, and the unknown enzymes 

are shown by dashed-arrow with question mark sign. Pathways for IAA degradation and conjugation. 

IAA can be conjugated to amino acids and sugars. Some IAA conjugates can be regarded as storage 

forms that can be hydrolysed to form free IAA. Solid arrows indicate pathways in which the enzymes, 

genes or intermediates are known, and arrows with the question mark indicate pathways that are not 

well defined.  TIR1/AFB auxin receptor is an F-box protein that forms an SCF E3 ubiquitin ligase 

complex between SKP (ASK1) and cullin1 (CUL1). SCFTIR1/AFB catalyzes the ubiquitination of 

auxin/IAA proteins (Aux/IAAs) in the presence of auxin. The activity of the auxin response factor 

(ARF) transcription factors is blocked by Aux/IAA bound to TOPLESS (TPL). Auxin is bound in the 

small cavity formed between TIR1 and Aux/IAA. The auxin-induced degradation of Aux/IAA 

repressors recovers the ARF activity and activates the transcription of auxin-responsive genes (auxin 
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response element, AuxRE: TGTCTC). Auxin-binding protein 1 (ABP1) is an ER-localized protein, 

but small amounts of functional ABP1 protein act at the plasma membrane as an auxin receptor. 

Scheme view of ABCBs and PINs as efflux auxin carrier proteins and AUX1/LAX as influx auxin 

carrier protein. ER marks endoplasmic reticulum which PIN, PIN Like (PILs) and ABP1 seems to be 

placed on its cell membrane. 

 

2.1.2.2. The indole-3-acetamide (IAM) pathway 

IAM, another source of auxin, is present in many plant species such as Arabidopsis 

thaliana, maize, rice and tobacco (Sugawara et al., 2009; Novák et al., 2012). cyp79b2 

cyp79b3 double mutant shows a decrease of IAM level (Sugawara et al., 2009), which is 

consistent with IAOx contributing to IAM levels. IAOx has been detected in few species such 

as Arabidopsis thaliana and Brassica campestris (Ludwig-Müller and Hilgenberg, 1988; 

Sugawara et al., 2009; Novák et al., 2012) in which IAM has been detected in many species, 

suggest that IAM also produce independently from IAOx (Sugawara et al., 2009). IAM can 

be converted to active auxin through IAM hyrolases (AMIDASE) (Pollmann et al., 2003; 

Nemoto et al., 2009). Indole-3-acetamide hydrolase (AMI) function in conversion of indole-

3-acetamide (IAM) into indole-3-acetic acid (IAA), which were thought to exist only in 

bacteria (reviewed by (Mano et al., 2010). AMI is similar at the amino acid sequence level to 

translocon (Toc64), a 64 kDa chloroplast outer membrane protein, while these two genes 

remain evolutionary different from each other (Sohrt and Soll, 2000; Chew et al., 2004; 

Qbadou et al., 2007; Schlegel et al., 2007).  TOC64 contains an inactive amidase domain 

(Sohrt and Soll, 2000; Kalanon and McFadden, 2008), a C-terminal tetratricopeptide repeat 

(TPR) motif (Sohrt and Soll, 2000; Lee et al., 2004; Schlegel et al., 2007; Kalanon and 

McFadden, 2008) and also an N-terminal transmembrane region (TM) that is essential and 

sufficient for the targeting to the chloroplasts (Sohrt and Soll, 2000; Qbadou et al., 2007; 

Kalanon and McFadden, 2008). Comparing to TOC64, AMI includes an active amidase 

domain, but does not contain TM region and TPR domains (Mano et al., 2010). 

 

 

2.1.2.3. The indole-3-pyruvic acid (IPA) pathway 

It seems that the IPA pathway is the main contributor of free IAA. Each step of this 

pathway from Trp to IAA has been identified (reviewed by Zhao, 2012 and Mano and 
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Nemoto, 2012). IPA pathway converts IPA to IAA in two-step process. The first process 

consists in a conversion of Trp to IPA via TRYPTOPHAN AMINOTRANSFERASE OF 

ARABIDOPSIS (TAA) family and its close homologues, TRYPTOPHAN 

AMINOTRANSFERASE RELATED, TAR1 and TAR2 (Stepanova et al., 2008; Tao et al., 

2008; Yamada et al., 2009; Zhou et al., 2011). The second process is the conversion of IPA to 

IAA via YUCCA (YUC) family of flavin monooxygenases activity (Mashiguchi et al., 2011; 

Stepanova et al., 2011; Won et al., 2011). TAA1 encodes an aminotransferase that converts 

tryptophan to IPA and is closely related to TRYPTOPHAN AMINOTRANSFERASE 

RELATED 1 to 4 genes (TAR1-4) which make them as a five-member gene family 

(Stepanova et al., 2008; Tao et al., 2008).  TAA1 that is localized in the cytoplasm and the 

TAR1 proteins do not contain the N-terminal extension, but TAR2–TAR4 proteins contain an 

N-terminal extension that are predicted to be a signal peptide (Stepanova et al., 2008; Tao et 

al., 2008). These findings show that TAR1 could be a paralogue of TAA1 and the function of 

TAR2-4 proteins is different from TAA1 and TAR1 (Mano and Nemoto, 2012). The YUC 

gene, encodes a flavin monooxygenase-like enzyme, responsible for the conversion of IPA to 

IAA in A. thaliana (Mashiguchi et al., 2011; Stepanova et al., 2011; Won et al., 2011). 

Orthologous genes of YUC have been found in other plants as reviewed by Mano and 

Nemoto, (2012). YUC proteins belong to a multigene family that includes 11 members in A. 

thaliana (YUC1-YU11) and appear to have overlapping functions (Zhao et al., 2001; Cheng 

et al., 2006, 2007). Genetic, enzymatic, and metabolite-based evidences indicated that TAA 

and YUC families function in the same auxin biosynthetic pathway in A. thaliana. It was 

proposed that the TAA1–YUC pathway is „the main auxin biosynthesis pathway in A. 

thaliana‟ (Mashiguchi et al., 2011). Indole-3-acetaldehyde (IAD) can be an intermediate in 

this pathway. It has been identified in several plant species (Ernstsen and Sandberg, 1986; 

Quittenden et al., 2009; Novák et al., 2012) and has previously been hypothesized to be an 

auxin precursor (reviewed by Mano and Nemoto, 2012).  

 

2.1.2.4. The tryptamine (TAM) pathway 

The TAM pathway has recently been proposed as one of the IAA biosynthetic 

pathways (reviewed by Mano and Nemoto, 2012). Compare with IAA and Trp, TAM is 

found in very low level (Quittenden et al., 2009; Novák et al., 2012) and is produced by the 

activity of Tryptophan decarboxylase (TDC) enzyme. It is possible that TAM could function 

both as a precursor for IAA and in indole alkaloid and serotonin biosynthesis in different 
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plant species (Quittenden et al., 2009; Mano and Nemoto, 2012). IAD application increased 

the IAA levels (Larsen, 1949, 1951; Bower et al., 1978; Koshiba et al., 1996; Tsurusaki et al., 

1997) which raises the possibility that IAD can be converted to IAA directly in planta. It has 

been suggested that the ALDEHYDE OXIDASE1 (AO1) enzyme converts IAD into IAA 

(Seo et al., 1998) however the putative role of IAD has recently been questioned  (reviewed 

by Korasick et al., 2013). 

 

2.2.   Auxin conjugation and degradation 

Free IAA levels can be adjusted via conversion into IBA or conjugation to amides or 

esters (Rosquete et al., 2012). Auxin conjugates are generally considered as temporary 

storage of inactive IAA, releasing the free active hormone upon hydrolysis (Fluck et al., 

2000). Auxin-conjugation is tissue-specific and strongly regulated. Indeed, genes involved in 

auxin conjugates synthesis and hydrolysis display tissue specific expression pattern and are 

regulated by abiotic and biotic stress and hormone treatments (Ludwig-Muller, 2011). Also, 

auxin can be deactivated by oxidation. The primary oxidation forms of auxin are likely to be 

2-oxo-indoleacetic acid (OxIAA), OxIAAaspartate, and O-glucoside. 

 

2.3. Auxin transport 

Auxin can be transported by diffusion (passive movement) and by auxin transporter 

(active movement) (Reviewed by (Zazimalova et al., 2010)). IAA is largely protonated in the 

apoplasts and can pass through the plasma membrane via diffusion into the cell. Once in the 

cytosol, it is mainly deprotonated due to the higher pH, and the resulting charged molecule 

(IAA-) is membrane impermeable. This concept is the basis of the chemiosmotic polar 

diffusion model or chemiosmotic hypothesis (Rubery and Sheldrake, 1974; Raven, 1975; 

Goldsmith, 1977). As anionic auxins cannot diffuse across the plasma membrane, thus they 

require the activity of transporters at the plasma membrane to exit the cells and ameliorate 

this bottleneck. Up to date some auxin carrier families have been identified, such as AUXIN-

RESISTANT 1/LIKE AUX1 (AUX1/LAX) influx carriers, PIN-FORMED (PIN) and ATP-

BINDING CASSETTE (ABCB) auxin efflux carriers which mediate auxin distribution 

(Reviewed by Zazimalova et al., 2010). A major mechanism that regulates auxin distribution 
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is polar auxin transport mediated by PIN and AUX/LAX proteins, which control cellular 

auxin efflux and influx, respectively (Vanneste and Friml, 2009). Their asymmetric 

distribution across cells and tissues results in directional auxin flow and establishment of 

auxin gradients (Wisniewska et al., 2006; Bainbridge et al., 2008; Swarup et al., 2008; 

Petrasek and Friml, 2009). A. thaliana contains eight PIN proteins (Paponov et al., 2005), of 

which several are involved directly in creation of auxin gradients that control diverse 

developmental processes such as embryogenesis, organ initiation, vascular tissue 

differentiation and tropisms (Petrasek and Friml, 2009). Similarly, there are four AUX/LAX 

proteins in A. thaliana, with the best characterized, AUX1, mediating high-affinity auxin 

uptake (Kerr and Bennett, 2007; Bainbridge et al., 2008; Swarup et al., 2008). Auxin 

signaling regulates cell responses to the different auxin levels that are formed by a 

combination of auxin metabolism and transport. 

 

2.4. Auxin receptors 

Auxin is perceived by two separate classes of receptors:1- transport inhibitor response 1 

(TIR1, or auxin-related F-box (AFB)), that controls the transcriptional responses to auxin 

(reviewed by Mockaitis and Estelle, 2008 and Chapman and Estelle, 2009); 2- The auxin-

binding protein 1 (ABP1), which regulates a broad diversity of growth and developmental 

processes in plants (reviewed by Tromas et al., 2010).  The discovery of SCF/TIR1 that 

promotes the degradation of the Aux/IAA proteins was a significant breakthrough in plant 

hormone signaling. The Arabidopsis thaliana genome encodes five F-box proteins sharing 

50–70% sequence identity with TIR1. These proteins have been named auxin signaling F-box 

protein 1 to 5 (AFB1– AFB5). Genetic and biochemical studies have implicated these 

proteins in auxin signaling (Dharmasiri et al., 2005; Walsh et al., 2006). Moreover, the 

diminution of the radio-labeled IAAs level in extracts from mutants lacking TIR1 and AFB1–

3, confirmed that these proteins are very likely to function as auxin receptors (Mockaitis and 

Estelle, 2008).  

ABP1 is involved in a wide variety of auxin-dependent responses, including early 

responses at the plasma membrane, regulation of gene expression, cell division and cell 

expansion (Shi and Yang, 2011). ABP1 is important throughout the life of plants, including 

embryogenesis, and differentially affects the cells depending on the developmental context. 



` 

23 | P a g e  
 

Comparative analysis of the A. thaliana ABP1 sequence against available genome sequence 

databases of land plants revealed that ABP1 is present in all species from bryophytes to 

flowering plants thus highlighting the significance of its function. All experimental data 

support that ABP1 is a crucial component of auxin signaling and can be considered as the 

auxin binding subunit of a plasma membrane auxin receptor (Tromas et al., 2010). Tromas et 

al. (2013) recently reported that ABP1 is a negative regulator of the SCF (TIR1/AFB) 

pathway and is genetically upstream of TIR1/AFBs. 

2.5. Auxin Signaling 

 

2.5.1.  Transcriptional auxin signaling 

One important pathway involving auxin receptor TIR1 and linking auxin perception 

to gene expression is now well established. In the corresponding  model, high concentration 

of IAA in the cells leads to the ubiquitination of AUXIN RESISTANT/INDOLE-3-ACETIC 

ACID INDUCIBLE (Aux/IAA) proteins by the TIR1/AFB subunit of the SCF
TIR1/AFB

 

ubiquitin ligase and the degradation of Aux/IAA proteins by the 26S proteasome, which then 

releases the Aux/IAA-mediated inhibition of AUXIN RESPONSE FACTORs (ARFs) and 

allows these transcription factors to modulate the expression of their target genes (Fig. 10 

reviewed by Chapman and Estelle, 2009).  

 

2.5.1.1. Aux/IAA and TPL co-repressor gene families 

Aux/IAA genes have been found in many plant species but not in bacteria, animal or 

fungi and are probably unique to plants. All Aux/IAA members have been identified in 

Arabidopsis thaliana, maize, rice, poplar, sorghum and tomato (Audran-Delalande et al., 

2012). Their identification was performed thanks to sequence similarity with already known 

Aux/IAA genes. According to the diversity of Aux/IAA-related phenotypes and the size of 

the family, it has been suggested that Aux/IAAs are excellent candidates for providing 

specificity in auxin responses (Lokerse and Weijers, 2009). Most Aux/IAAs have four 

domains: auxin-induced degradation through interaction with TIR1/AFBs (DII) and 

dimerization with the ARFs and other IAAs (DIII and DIV). Aux/IAAs inhibit the activity of 

ARFs by recruiting the co-repressor TOPLESS (TPL) and related proteins (TPRs) through an 
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ethylene response factor-associated amphiphilic repression (EAR) motif in domain I 

(Szemenyei et al., 2008). The interactions at each of these domains may act as tuning knobs 

to specify the output properties for a given auxin signal (Pierre-Jerome et al., 2013).  In 

tomato, six full-length SlTPL genes were identified, as well as additional three pseudo genes 

with incomplete coding sequences (Hao et al., 2014).   Protein–protein interaction between 

TOPLESS and auxin/indole-3-acetic acid (Aux/IAA) proteins shows the two classes of 

TOPLESS. One group such as SlTPL1, SlTPL3, SlTPL4, which are interacting with the most 

of Aux/IAA, and another group e.g. SLTPL6, with limited capacity for interaction with these 

protein partners (Hao et al., 2014). 

 

 

 

 

 

Figure 10. Transcriptional auxin signaling. When auxin is perceived by its receptor TIR1, the 

affinity for the Aux/IAA proteins increases. The Aux/IAAs are subsequently ubiquitinated and 

degraded by the 26S proteasome. The ubiquitination of Aux/IAAs in A. thaliana involves a ubiquitin 

activating enzyme (E1, not shown), ubiquitin conjugating enzyme (E2), and the ubiquitin ligase (E3) 

SCFTIR1 that consists of a cullin protein, an RBX protein, one of the Arabidopsis SKP1(ASK) 

proteins, and the F-Box protein TIR1. Under low auxin concentrations, the Aux/IAA proteins bind 

and inhibit the ARF proteins by recruiting the TPL corepressor. When auxin levels rise, the Aux/IAA 

proteins are ubiquitinated and degraded, thereby releasing the ARF proteins to exert their function as 

transcriptional activators or repressors (from Moller and Weijers, 2009). 
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2.5.1.2. ARF gene family 

Interaction of ARF transcription factors with the AUX/IAA repressors and TPL co-

repressors mediates the auxin sensitivity (Guilfoyle et al., 1998; Tiwari et al., 2003; Wong 

and Struhl, 2011). Most of the ARF members display three conserved domains, an amino-

terminal DNA binding domain (DBD) and domains III and IV at their carboxy-terminal part 

(Guilfoyle et al., 1998; Tiwari et al., 2003). The ARF DBD is a plant-specific B3-type 

domain, which is found in lots of plant transcription factors (Guilfoyle et al., 1998). The 

binding of ARF to DNA is facilitated by the presence of carboxy-terminal parts in ARF 

proteins (Ulmasov et al., 1999; Tiwari et al., 2003). The ARF binding to DNA occurs by the 

recognition of specific DNA elements called AuxRE (TGTCTC or TGTCCC) which allow 

activation or repression of auxin-responsive genes (Ulmasov et al., 1999). Among the 23 

ARFs in A. thaliana, only five are classified as transcriptional activators and the rest as 

repressors.   

ARFs were classified as repressors based on the shared absence of glutamine enrichment 

in their middle regions (Guilfoyle et al., 1998; Ulmasov et al., 1999; Tiwari et al., 2003). The 

amino acid sequences of domains III and IV present at their carboxy-terminal part are related 

to Aux/IAA proteins. ARFs can either form ARF homodimers or Aux/IAA-ARF 

heterodimer. Nevertheless domains III and IV are absent in four AtARFs: ARF3, ARF13, 

ARF17 and ARF23, suggesting that these proteins cannot interact with Aux/IAAs (Guilfoyle 

et al., 1998; Liscum and Reed, 2002) (Fig. 11). 22 different ARFs are identified regarding 

tomato (Solanum lycopersicum) reference genome (Zouine et al., 2014). The ARFs can be 

regulated by ethylene and auxin which suggests their potential contribution to signaling 

pathways of these two hormones (Zouine et al., 2014). The complexity of the expression of 

ARF genes at the transcriptional and post-transcriptional levels enables auxin to manage a 

wide range of physiological processes in a highly precise and coordinated manner (Zouine et 

al., 2014). 

 

2.5.2. Non-transcriptional auxin signaling 

Auxin signaling machinery that is involved in non-transcriptional regulation is not well 

characterized. Knowledge of the signaling components and the physiological events involved 
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in this rapid auxin response is limited. Auxin-binding protein 1 (ABP1) is one of the receptor 

candidates implicated in non-transcriptional auxin signaling (Hayashi, 2012). 

 

 

 

 

Figure 11. Structure of ARF family in Arabidopsis thaliana. ARFs 5, 6, 7, 8, 29 are activators, and 

the rest of ARFs in A. thaliana are repressors except ARF 23 whose function is unknown. Among the 

repressors, some doesn‟t have the III and IV domain: ARF 3, 13, 17.  

 

 

2.6.  Auxin signaling is regulated by miRNAs 

MicroRNAs (miRNAs) are ~21 nucleotide noncoding RNAs and have important roles in 

nutrient homeostasis, development, abiotic and biotic stress responses via interactions with 

specific target mRNAs (Meyers et al., 2008). miRNAs negatively regulate expression of 

target genes by mRNA cleavage or inhibition of translation (Lanet et al., 2009). Moreover, 

miRNAs regulate the auxin signalling, and it seems to be conserved among many plant 

species (Sanan-Mishra et al., 2013).  A complicated interaction between auxin levels and 

miRNAs has been indicated during plant development (Fig. 12). Auxin and miRNAs 

independently regulate the ARF levels to direct normal growth and development of aerial 

organs as well as lateral root production.  

miR393 targets the auxin receptors consisting of the four closely related F-box genes, 

including the auxin receptor TIR1, AFB1, AFB2, and AFB3 by guiding the cleavage of their 
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mRNAs (Ruegger et al., 1998; Gray et al., 2001; Sunkar and Zhu, 2004). miR393 is also 

known to target At3g23690, a basic helix-loop helix transcription factor that is homologous 

to GBOF-1 from tulip, which is annotated as an auxin-inducible gene. The role of miR393 in 

plant susceptibility to microbes was first described in Arabidopsis thaliana when miR393-

mediated down-regulation of auxin receptors (TIR1, AFB1-3) led to the suppression of auxin 

signaling and to a higher resistance of the plant (Navarro et al., 2006). Later, Navarro et al. 

(2008) found that the Pseudomonas syringae effector proteins that promote the bacterial 

infection, targeted the miR393 pathway.  It has been demonstrated that ARF10, ARF16 and 

ARF17 are regulated by miR160 (Rhoades et al., 2002; Bartel and Bartel, 2003). miR160 

regulated ARF17 acts directly to repress GH3.5 and DFL1/GH3.6 transcripts providing an 

important mechanism for controlling levels of free IAA. ARF10 and ARF16 dictate the root 

cap cell formation to control the direction of root tip growth. In the absence of miR160-

mediated regulation of ARF10 and ARF16, severe developmental abnormalities occur 

(Mallory et al., 2005; Wang et al., 2005). These include abnormal embryos, defects in root 

growth, leaf curling, serrated laminas, early flowering with altered floral morphology and 

reduced fertility (Mallory et al., 2005). miR167 negatively regulates the expression of ARF6 

and ARF8 (Mallory et al., 2005; Sorin et al., 2005; Williams et al., 2005). The miR167 

guided cleavage of ARF8 transcript apparently negatively regulates free IAA levels by 

controlling GH3-like early auxin responsive gene expression (Tian et al., 2004). miR164 is 

known to target five members of the NAM/ATAF/CUC (NAC) domain transcription factor 

family (Rhoades et al., 2002; Guo et al., 2005). Of these, NAC1 is involved in modulating 

lateral root development (Mallory et al., 2004; Mallory et al., 2004; Guo et al., 2005; Hibara 

et al., 2006). NAC1 acts downstream of TIR1 to transmit auxin signals promoting lateral root 

emergence. NAC1 is a transcriptional activator of the auxin-responsive genes DBP (DNA 

Binding Protein of unknown function) (Xie et al., 2000). In addition miR390 indirectly 

controls the ARF2, ARF3 and ARF4 regulated leaf patterning, developmental timing and 

lateral root initiation (Fahlgren et al., 2006; Marin et al., 2010; Yoon et al., 2010). 
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Figure 12. A schematic representation showing the mutual constrain exerted by miRNA 

and auxin cascade on each other. The bluntly ended lines depict the repression activity, 

while arrows represent activational processes. ARF auxin response factor; TIR1 transport 

inhibitor response 1; SCF Complex Skp1, Cullin, and F-box protein-type complex; ARE 

auxin response element; CUC cup-shaped cotyledon; Aux/IAA auxin/indole-3-acetic acid; 

TPL topless (from Sanan-Mishra et al., 2013). 

 

2.7. Auxin-responsive genes 

Small auxin-up RNAs (SAURs), Aux/IAAs and a group of GH3 proteins are three known 

gene families that are rapidly induced by auxin (Hagen and Guilfoyle 2002). 
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2.7.1. Gretchen Hagen3 (GH3) gene family 

Gretchen Hagen3 (GH3) was first identified in Glycine max (soybean) as an early 

auxin-responsive gene (Hagen and Guilfoyle, 1985). Based on GH3 genes sequence 

similarities and the substrate specificities of their products, they are classified into three 

groups (I, II, and III) in Arabidopsis thaliana (Staswick et al., 2002; Staswick and Tiryaki, 

2004). Among these three groups, Group II were demonstrated to be active on IAA and 

functions in a negative feedback regulation of IAA concentration (Staswick et al., 2002; 

Staswick et al., 2005). Group II GH3s conjugate extra IAA to amino acids, either for storage 

or degradation (Staswick et al., 2005). Recent research has shown a reduction of auxin 

content by over-expressing GH3, (Zhang et al., 2009). According to the A. thalina microarray 

data, Yuan et al. (2013) reported that in Group II enzymes AtGH3.1, AtGH3.2, AtGH3.3, and 

AtGH3.4 were raised over 10-fold after IAA treatment. AtGH3.5 and AtGH3.6 were induced 

just 2.5-fold to 8-fold; however, AtGH3.9 and AtGH3.17 expression displayed no significant 

changes in response to auxin (Okrent and Wildermuth, 2011; Yuan et al., 2013).  Kumar et al. 

(2012) identify fifteen genes encoding GH3 members in tomato and among them only 11 

SlGH3s were up-regulated by exogenous auxin treatment (Kumar et al., 2012). 

 

2.7.2.  Small Auxin-Up RNA (SAUR) 

SAUR genes are originally characterized in soybean (McClure and Guilfoyle, 1987) 

and currently count 82 members together with SAUR-like genes on the TAIR website 

(www.arabidopsis.org) in Arabidopsis thaliana (Markakis et al., 2013). Although many 

SAUR genes have been identified in different plant species, only some of them have been 

functionally characterized. SAUR members have been reported to be localized in membrane 

and/or cytoplasm (Chae et al., 2012; Spartz et al., 2012). Their expression could be induced 

within 2 to 5 min by active auxin, indicating that auxin plays an important role in 

transcriptional regulation of SAUR genes (McClure and Guilfoyle, 1987; Kong et al., 2013). 

In addition, many SAUR genes are also regulated posttranscriptional due to a highly 

conserved downstream (DST) element in their 3'-untranslated region (UTR) that contributes 

to mRNA instability in an auxin-independent manner (Newman et al., 1993; Park et al., 

2012). Therefore, regulation of SAURs may occur at the transcriptional, posttranscriptional 

and protein levels (Esmon et al., 2006; Spartz et al., 2012). SAURs negatively influence 

synthesis of auxin and proteins for polar auxin transport (Kant et al., 2009; Kant and 
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Rothstein, 2009). 99 members of SAUR gene family are characterized in tomato which some 

of them response to exogenous IAA treatment (Wu et al., 2012). It has been shown that 

abiotic (cold, salt and drought) stresses significantly modified transcript levels of Sl-SAURs 

genes (Wu et al., 2012). 
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Aim of the study 

The objective of my research was to understand the relation between auxin and AM 

symbiosis (Fig. 13). 

More defined objectives of this project were to investigate the following questions: 

1. Is the auxin signaling pathway involved in the mycorrhization process? 

2. Does the perception of auxin affect the mycorrhization process?  

3. If the host‟s auxin signaling pathway is involved in the mycorrhization process: 

a. What step(s) of this process is (are) particularly concerned 

b. Is there any link between Aux/IAAs and strigolactone biosynthesis during 

mycorrhization? 

 

 

 

 

 

 

 

 

 

Figure 13. The schematic view of our objectives. 
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1. Introduction  

 

Devers et al. (2013) via high throughput (Illumina) sequencing of small RNAs and 

degradome tags of Medicago truncatula roots, disclosed the influence of miRNAs and 

miRNA-mediated mRNA cleavage on root cell during AM symbiosis. However, up to now, 

only a few miRNAs have been functionally characterized during mycorrhizal symbiosis. 

NSP2, a GRAS transcription factor already known for its role during nodulation, has also 

been shown to be required for proper AM fungal colonization (Maillet et al., 2011). miR171h 

is a miRNA that targets NSP2 (Devers et al., 2013), and when it is overexpressed fungal 

colonization is reduced, mimicking the phenotype of the nsp2 mutant (Lauressergues et al., 

2012). In contrast, fungal colonization increases and extends into the root elongation zone in 

transformed roots where the nsp2 gene is modified to be resistant to miR171h cleavage. 

These data have raised the hypothesis that the plant might limit the colonization of AM fungi 

via a miRNA171h-mediated negative regulation of NSP2.  

Another miRNA which affects mycorrhizal colonization is miR396 (Bazin et al., 2013). 

This miRNA is one of the most conserved miRNAs in angiosperms and gymnosperms and 

targets members of the family of growth-regulating factor genes (Debernardi et al., 2012). 

Over-expression of miR396b in roots reduces root growth and mycorrhizal colonization 

(Bazin et al., 2013). 

We have seen in our general introduction that several phytohormones, including auxin, 

are involved in the regulation of mycorrhizal symbiosis (Foo et al., 2013). Because auxin is a 

major regulator of root development and because some miRNAs are involved in auxin 

perception or signaling, my first aim was to investigate whether auxin and auxin-related 

miRNAs could play a role during AM symbiosis. 
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2. Publication  miR393 
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1. Introduction 

 

Auxin signaling pathway has been shown to be needed for the early steps of arbuscular 

mycorrhiza (AM) formation, including during presymbiotic signal exchange (Hanlon and 

Coenen, 2011). Studies on A. thaliana have identified various components of auxin signaling, 

among which the Aux/IAA family of transcriptional regulators (Abel et al., 1995). Aux/IAA 

genes constitute one of the three major groups of primary auxin-responsive genes which also 

include Small Auxin Up RNA (SAUR) and Gretchen Hagen 3 (GH3) (Theologis et al., 1985; 

Oeller et al., 1993). Aux/IAAs are short-lived proteins that contain four conserved domains 

(Reed, 2001). They represent the capacity to function as transcriptional repressors because of 

a conserved leucine motif (LxLxLx) located in the domain I (Tiwari et al., 2004). This 

repression domain is similar to the ethylene-responsive element binding factor-associated 

amphiphilic repression (EAR) (Kagale et al., 2010; Kagale and Rozwadowski, 2010, 2011). It 

is well known that Aux/IAA genes have a double activity, one as a transcriptional regulator, 

and another in the auxin signaling complex. In low level of auxin, Aux/IAAs bind ARFs 

(auxin response factors) through domains III and IV present in both proteins and recruit the 

TOPLESS (TPL) co-repressors, thus blocking ARFs from activating the transcription of their 

target genes (Guilfoyle and Hagen, 2007; Szemenyei et al., 2008).  

Sl-IAA27 protein has a unique motif of unknown function that is present in Sl-IAA9 and 

conserved in monocot and dicot species (Bassa et al., 2012). Sl-IAA27 silencing leads to 

higher auxin sensitivity, altered root development and reduced chlorophyll content in leaves 

(Bassa et al., 2012). Due to the root phenotype of Sl-IAA27, we investigated whether this 

gene could play a role in the mycorrhization.  
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2. Publication 
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3. Complementary results regarding the role of Sl-IAA27 in the AM 

symbiosis 

 

Materials and Methods 

 

Biological materials 

Tomato (Solanum lycopersicum cv. MicroTom) seeds were germinated directly in pots. 

Tomato plants were cultivated in 250 mL pots filled with Oil-Dri US special substrate 

(Damolin) for 12 weeks, in a growth chamber (16h day/8h night, 25℃, 60 µmoles/m
2
/s), and 

watered every 2 days with modified Long Ashton medium containing a low concentration 

(7.5 µM) of phosphate (Balzergue et al., 2011). Rhizophagus irregularis DAOM197198 

sterile spores were purchased from Agronutrition (Carbone, France). Tomato roots were 

inoculated with 400 spores of R. irregularis per plant. Three different lines of IAA27 RNAi 

and IAA27:: GUS seeds of tomato were provided by Corinne Audran-Delalande (Bassa et al., 

2012). 

 

Quantitative RT-PCR analyses 

Total RNA was extracted using a Plant RNeasy Mini kit (Qiagen) according to the 

manufacturer‟s instructions. Total RNA was treated by DNase I (Promega) to remove any 

genomic DNA contamination. Reverse transcription was performed using M-MLV Reverse 

Transcriptase, RNase H Minus, Point Mutant (Promega) on 500 ng of total plant RNA. For 

each experiment, six independent plants or transformants were analyzed. Quantitative PCR 

amplifications were conducted on a Roche LightCycler 480 System (Roche Diagnostics) 

under the following conditions: 95℃ for 5 min, then 45 cycles of 95℃ for 15 sec and 60℃ 

for 1 min. The measured transcripts were normalized to the relative expression value in non-

mycorrhizal roots. Actin was used as reference genes for normalization of gene expression of 

tomato.  
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Histochemical staining and microscopy studies 

X-GLUC (5-Bromo-4-chloro-3-indolyl β-D-glucuronide cyclohexylammonium salt) GUS 

staining was performed as described by Combier et al. (2008). Root sections (50 µm) were 

made using a vibratome VT1000S from samples embedded in 4% agarose. For root 

mycorrhizal phenotyping, roots were cleared in 10% w/v KOH and rinsed in sterile water, 

treated for 30 min with fluorescein-conjugated wheat germ agglutinin (WGA-FITC) 

(Invitrogen), which binds fungal chitin, then washed three times for 10 min in PBS and 

observed using an inverted light microscope or a confocal microscope (Leica). Alternatively, 

they were stained with Schaeffer black ink as described by Vierheilig et al. (1998). 

Quantification of mycorrhizal colonization was performed as described by Trouvelot et al. 

(1986): the frequency (F) of mycorrhiza in the root system and the arbuscule abundance (a) 

(percentage) were calculated in the colonized root sections using Mycocalc software 

(http://www2.dijon.inra.fr/mychintec/Mycocalc-prg/download.html). 

 

Biochemical  

The Myc-LCOs used in this study are an equimolar mix of the four Myc-LCOs LCO-

IV(C16:0), LCO-IV(C16:0,S), LCO-IV(C18:1ΔZ) and LCO-IV(C18:1Δ9Z,S described by 

Maillet et al. (2011), at a final concentration of 10
-7

 M. And COs treatment is used with final 

concentration of 10
-8

.  

 

Statistical analyses 

The mean values for relative gene expression (n=6) or mycorrhization rates (n=15) were 

compared using the Kruskal–Wallis test, and, when significant, a pairwise comparison was 

made using the non-parametric Mann–Whitney test. Asterisks indicate significant differences 

compared to the control (P < 0.05) and error bars represent the standard error of the mean 

(SEM). 

 

 

http://www2.dijon.inra.fr/mychintec/Mycocalc-prg/download.html
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Results 

 

IAA27 expression is induced by the fungus 

 We have already shown, with a qRT-PCR analysis that Sl-IAA27 expression is up-

regulated during mycorrhization (Bassa et al., 2013). In order to confirm this result, and to 

have a visualization of IAA27 expression during mycorrhization, we used a transcriptional 

fusion of the promoter of IAA27 with GUS coding sequence (Bassa et al., 2012). 

Interestingly, whereas the expression of IAA27 was restricted to the primary root and the 

proximal area of secondary roots when non-inoculated (Fig. 1A), the inoculation of roots 

with Rhizophagus irregularis increased expression of IAA27 in extended areas from this 

basal expression, even  before penetration of the fungus in the root, early after inoculation 

(Fig. 1B). Later, when the symbiosis was well-established, the expression pattern was the 

same, i.e. IAA27 expressing in older parts of the roots, but interestingly, not in arbuscule 

containing zones (Fig. 1C, D, E, F). These observations suggest that IAA27 expression is 

induced by diffusible signals released by the fungus. Up to now, two kinds of such fungal 

molecules have been identified, Myc-LCOs and COs (Maillet et al., 2011, Genre et al., 2013). 

To know if IAA27 expression could be modulated by these molecules, we treated pIAA27-

GUS plants with 10
-7

 and 10
-8

 M of Myc-LCOs or COs respectively. However, we detected 

no induction of the expression of IAA27 by these molecules (fig. S1), suggesting that other, 

or additional, fungal signaling molecules are necessary to trigger IAA27 expression. We have 

previously shown that auxin signaling is increased during mycorrhization, and especially in 

arbuscule-containing cells (Etemadi et al., 2014). Because IAA27 expression is down-

regulated by treatment with auxin (Bassa et al., 2012), the lack of expression of IAA27 in 

arbuscule-containing cells might be due to the activation of auxin signaling of these cells. 
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Figure 1. IAA expression with GUS.  IAA27 GUS expression in non-inoculated condition (A).  

IAA27 GUS expression in inoculated condition with R. irregularis (B). IAA27:GUS staining (X-

GLUC) (C,D) and fungal staining of the same root segment using WGA-FITC (E,F).  
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Figure S1. Expression in response to water (left), Myc-LCOs (middle), and COs (right). 

 

 IAA27 is required for mycorrhization 

 We next investigated whether IAA27 could play a role during mycorrhization. For 

this, we used tomato lines silenced for the expression of IAA27 (Bassa et al, 2012), 

inoculated them with R. irregularis, and harvested them 10 weeks after inoculation. We 

analyzed them as indicated in Trouvelot et al. (1986) and we observed a strong defect in the 

presence of the fungus in the root. As shown in Figure 2, both the colonization rate (F) by the 

fungus and the abundance of arbuscules (a) in colonized sections of the RNAi IAA27 roots, 

were severely decreased when compared to control roots. However, the shape and the size of 

arbuscules in these lines appeared normal (data not shown), suggesting that IAA27 controls 

the root colonization by the fungus but not the arbuscule development.  
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Figure 2. Frequency of colonization and arbuscule abundance decreased in IAA27-RNAi lines. 

frequency (F) of mycorrhization and arbuscule abundance (a) in root system of S. lycopersicum in 

control IAA27-RNAi lines. Error bars represent standard error of the mean (SEM). The asterisks 

indicate a significant difference between the two treatments according to the Kruskal–Wallis test (n = 

6, P < 0.05) 

 

 IAA27 controls NSP1 expression 

We have previously shown that the GRAS transcription factors NSP1 and NSP2 are 

involved in the control of root colonization by the fungus (Maillet et al., 2011; Lauressergues 

et al., 2012; Delaux et al., 2013). In order to identify if there is a link between IAA27 and the 

expression of these genes, we performed expression analysis in mycorrhizal control and 

RNAi IAA27 roots by qRT-PCR. NSP1 expression was lower in mycorrhizal roots of all 

RNAi lines (Fig. S2), whereas NSP2 and miR171h expression were not affected (data not 

shown). Liu et al (2011) have shown that NSP1 regulates the expression of strigolactone 

biosynthesis genes, MAX1 and D27. In the agreement with this, the expression of these two 

genes was also down regulated in roots of the RNAi IAA27 lines (Fig. S2). To determine if 

the lower expression of MAX1 and D27 was simply a consequence of a decrease of root 

colonization, or if this down regulation was more directly linked to the silencing of IAA27, 

we performed the same expression analysis but with non mycorrhizal plants. Even when the 

fungus was absent, NSP1, D27 and MAX1 expression was down regulated in the RNAi 

IAA27 roots compared to control ones (Fig. 3). These data suggest that IAA27 controls the 

biosynthesis of strigolactones by regulating the expression of NSP1.  
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Figure 3. Expression of SL biosynthesis genes on non mycorrhized roots of IAA27RNAi.  

Quantification of the expression of AUX/IAA27 gene in non-mycorrhizal roots of IAA27RNAi 

tomato (S. lycopersicum). The measured transcripts were normalized to the relative expression value 

in control roots. Error bars represent standard error of the mean (SEM). The asterisks indicate 

significant differences between the genotypes according to the Kruskal–Wallis test (n = 6, P < 0.05). 

 

 

 

 

Figure S2. Expression of SL biosynthesis genes on mycorrhized roots of IAA27RNAi.  

Quantification of the expression of AUX/IAA27 gene in mycorrhizal roots of IAA27RNAi tomato (S. 

lycopersicum). The measured transcripts were normalized to the relative expression value in control 

roots. Error bars represent standard error of the mean (SEM). The asterisks indicate significant 

differences between the genotypes according to the Kruskal–Wallis test (n = 6, P < 0.05). 
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 Silencing of IAA27 decreases strigolactone content of the roots 

 To confirm the role of IAA27 in the regulation of strigolactone biosynthesis, we used 

an in vivo assay to quantify root strigolactones based on the stimulation of seed germination 

of the parasitic plant Phelipanche ramosa, a close species of the Orobanche species 

(Pouvreau et al., 2013). Indeed these biological tests using seeds of parasitic plants are a 

hundred time more sensitive than mass spectrometry analyses (Puech-Pages, personal 

communication). Therefore they are more appropriate for strigolactone quantification. We 

analyzed the germination rate of P. ramosa seeds and found a good correlation between the 

quantity of GR24, a synthetic strigolactone, and the germination rate of P. ramosa seeds (Fig. 

S3). Then, we performed a strigolactone extraction of roots according to Gomez-Roldan et al. 

(2008) and treated P. ramosa seeds with the obtained extracts. Whereas the extracts of 

control roots were able to stimulate the germination of P. ramosa seeds as efficiently as 10
-11

 

M GR24, the extract of RNAi roots were nearly 10 fold less active, strongly suggesting than 

these plants were affected in their capacity to produce strigolactones (Fig. 4). 

 

 

 

Figure 4. Decrease orobanche germination in SL extraction of IAA27RNAi. Error bars represent 

standard error of the mean (SEM). The asterisks indicate significant differences between the 

genotypes according to the Kruskal–Wallis test. 
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Figure S3. Phelipanche ramosa seeds germination in response to different concentration of 

GR24.  Error bars represent standard error of the mean (SEM).  

 

Finally, in order to further confirm that the lower mycorrhization observed in the 

IAA27 RNAi lines was a direct consequence of lower strigolactone contents in roots, we 

performed a mycorrhization assay in the presence or not of 10
-7

M GR24. GR24 addition was 

able to complement the mycorrhizal defect of RNAi IAA27 plants (Fig. 5), showing that the 

lower mycorrhization of these plants is indeed due to lower strigolactone content. 

 

 

Figure 5. AM colonization in root of non-treated (-GR24) and treated with GR24 (+GR24). Error 

bars represent standard error of the mean (SEM). Student‟s t-tests were used to compare different 

samples (n = 5, P < 0.05). 
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Discussion 

 

The strong reduction of AM fungal colonization of the AUX/IAA27 RNAi lines suggests 

that AUX/IAA27 is a positive regulator of the AM symbiosis. Given that NSP1, MAX2 and 

D27, three genes involved in the biosynthesis of strigolactones (Liu et al. 2011), were also 

down regulated in the RNAi lines, we propose that AUX/IAA27 positively controls AM 

fungal colonization by activating the synthesis of strigolactones. This hypothesis was 

supported by the observation that a GR24 treatment of the RNAi lines could restore normal 

mycorrhization. The fact that the expression of IAA27 was strongly induced in roots growing 

in the presence of the fungus, even in the absence of root colonization, indicates that 

AUX/IAA27 positively regulates the early stage of AM symbiosis. Our study suggests that 

COs and Myc-LCOs are not the fungal signals activating AUX/IAA27 gene expression 

during the early symbiotic stage. Before concluding that other fungal metabolites are 

involved, additional experiments will have to be performed with a mix of COs and LCOs (in 

case of synergistic action), or with specific LCOs (rather than with a mix), or with different 

molecular LCO/CO concentrations.  

In agreement with the fact that AUX/IAA27 could be a positive regulator of the early 

stage of AM symbiosis, we detected no expression of AUX/IAA27 in later stages of the 

symbiosis such as in arbuscule-containing cells. We know that, in contrast with most 

AUX/IAAs, AUX/IAA27 is down-regulated by auxin (Audran-Delalande et al., 2012). Given 

that, in three plant species, including tomato, Etemadi et al. (2014) found that arbuscule 

formation is under a positive control of auxin, we could hypothesize that in arbuscule-

containing cells, while stimulating arbuscule formation, auxin would also repressed 

AUX/IAA27. This would participate to eventually lower the strigolactone content in roots, as 

it has been shown in well established mycorrhizal plants (Lopez-Raez et al., 2011). Several 

authors have shown in different plant species that auxin is a positive regulator of 

strigolactone biosynthesis (Hayward et al., 2009; Foo et al., 2013). If our hypothesis above is 

correct, both positive and negative regulations of strigolactone synthesis would therefore 

coexist in the later stages of the symbiotic interaction. A more careful spatio-temporal 

investigation will be necessary to decipher where and when these opposite regulations are 

taking place, and if the negative regulation of strigolactone synthesis participates in a local 

autoregulation of AM root colonization. 
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General discussion and perspectives 

 

The role of plant hormones in the development and maintenance of the AM symbiosis has 

been an emerging area of research in recent years. Several studies have shown that most plant 

hormones are more or less directly involved in AM development (Foo et al., 20013; Bucher 

et al., 2014). A great challenge when studying plant hormones is that they regulate a great 

deal of overlapping physiological and developmental plant responses, and some of these plant 

responses can impact indirectly mycorrhizal development and functioning. The aim of my 

Ph.D. was to establish whether auxin and auxin signaling pathways are specifically (directly) 

involved in the arbuscular mycorrhizal development.  

Previous studies have shown in several plant species an elevated auxin level in 

mycorrhizal roots. Some tomato mutants with pleiotropic phenotypes related to impaired 

auxin signaling or transport exhibited a defect in mycorrhizal colonization, but without any 

arbuscule defect (Hanlon and Coenen, 2011). Hanlon and Coenen (2011) proposed that auxin 

signaling is required for presymbiotic plant–fungus interactions in root and that host auxin 

responses guide the exchange of diffusible signals between plant and fungus. This 

proposition is in line with our results suggesting that Aux/IAA27 is a positive regulator of the 

early stage of the AM interaction. Given that ARF proteins interacting with Aux/IAA27 are 

gene activators (recent results in GBF laboratory) we must hypothesize that the activated 

genes are repressors of the early steps of mycorrhization. How IAA27 does regulate 

positively NSP1 transcription is another question. Aux/IAA proteins, including IAA27, have 

no DNA binding domains, suggesting the requirement of intermediate proteic partners to 

activate NSP1 expression. Another hypothesis is that Aux/IAA27 activates indirectly this 

gene by repressing a hypothetical NSP1 repressor. We see that much more work will be 

necessary to elucidate the mechanism by which SlAux/IAA27 positively regulates the early 

steps of AM interaction. 

Our results showing an increase of auxin concentration in arbuscule-containing cells 

(Etemadi et al., 2014) and a substantial defect in arbuscule formation resulting from the 

down-regulation of auxin receptors are also in favor of an active role of auxin signaling in 

later stages of the symbiosis and more specifically for arbuscule development. Moreover, 

contrary to several studies showing that, depending on the plant species, auxin levels increase 

or decrease in mycorrhizal roots, our study shows that this new auxin regulation appears to be 

shared in di- and monocotyledonous plants, supporting evolutionary conservation of this 
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regulation in plants. The promoting effect of auxin-signaling on mycorrhiza formation is in 

line with a study by Navarro et al. (2006) who reported a negative role of auxin signaling in 

plant immunity. Thus, it could be also proposed that root cells that are to be colonized by a 

symbiotic fungus rely on a local reduction of plant immunity. Auxin signalling can repress 

SA levels and SA signaling (Robert-Seilaniantz et al., 2011), so it is possible that AM fungi, 

as biotrophic organisms, developed ways to use auxin-mediated suppression of SA to 

improve the susceptibility of the host (Chen et al., 2007). 

Thus it appears that auxin regulation of the mycorrhization process is a complex, multi 

component, regulation. First, during the early stage of the root-fungus interaction the 

presence of the fungus induces IAA27 expression. We propose that this induction leads to an 

increase of strigolactone synthesis and a promotion of root colonization. An interesting 

challenge is to determine if fungal diffusible signals are involved here and if so, to determine 

what their chemical structures are. Then, the plant would accumulate auxin in arbuscule-

containing cells to promote arbuscule formation. This auxin increase would down regulate 

IAA27 expression as it has been shown in previous studies (Bassa et al., 2012)  and as it is 

revealed in our study by the absence of pIAA27-GUS staining in area of root tissues 

containing arbuscules. We hypothesize that this local down-regulation of IAA27, probably 

associated with a lower strigolactone synthesis, is one reason for the short life time of 

arbuscules and perhaps participates to autoregulate fungal proliferation in neighboring cells. 

How this complex regulation system, occurring in different root tissues and combining 

positive and negative regulation of fungal development, is spatiotemporally controlled, is still 

far from being understood. For further investigation, a more careful cartography of the 

expression pattern of NSP1, MAX2 and D27, and of the strigolactone concentration in 

different tissues, will represent a first step to confirm some of our hypotheses. 
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