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Résumé iii

Contrôle optimal et incitations pour des systèmes décentralisés de type champ moyen
Résumé

Cette thèse traite la résolution théorique et numérique de problèmes d’optimisation de type champ moyen. Un premier
problème de contrôle champ moyen est formulé, avec contrainte de congestion, modélisant le chargement optimal d’une
grande flotte de véhicules électriques. Les conditions d’optimalités sont identifiées comme un système d’équations aux
dérivées partielles couplées, similairement à ceux obtenus dans les jeux à champ moyen. Le problème est résolu numéri-
quement par un algorithme primal-dual. Un premier résultat sur la régularité des solutions est exploité pour caractériser
le problème comme la limite d’un problème de contrôle avec grand nombre de véhicules. Les multiplicateurs de Lagrange
associés à la contrainte de congestion sont bornés, permettant d’obtenir une meilleure régularité, de type Lipschitz, des
solutions et d’approximer numériquement le problème dual.
Dans un second temps, une méthode d’approximation et de résolution numérique d’un problème de contrôle stochastique
convexe de grande dimension est développée. Un algorithme d’optimisation distribué est proposé et la convergence vers
une solution du problème est démontrée. La méthode et l’algorithme sont étudiés et appliqués à un problème de contrôle
de processus markoviens déterministes par morceaux, une formulation équivalente au problème de contrôle champ moyen
étudié en première partie.

Mots clés : contrôle champ moyen ; chargement intelligent ; approximation numérique ; contrôle stochastique ; optimi-
sation distribuée ; flexibilité diffuse.

Abstract

This thesis studies the theoretical resolution and numerical approximation of mean field optimization problems. First,
a mean field optimal control with congestion constraints is formulated, modeling the optimal charging of a large fleet of
electrical vehicles. Optimality conditions are identified as a system of coupled partial differential equations, similarly to
those obtained in mean field games. The problem is numerically solved by a primal-dual algorithm. A first result on the
regularity of the solutions is exploited to characterize the problem as the mean field limit of an optimal control problem
with a large number of vehicles. The Lagrange multipliers of the congestion constraint are proved to be bounded. This
result enables to obtain a better regularity of Lipschitz type of the solutions and to numerically approximate the dual
problem.
Secondly, an approximation method and a numerical method for a high dimensional convex stochastic control problem
are developed. A distributed algorithm is proposed, whose convergence to a solution is proved. Finally, the method and
the algorithm are analyzed and applied to a control problem of piecewise deterministic Markov processes, a formulation
that is equivalent to the mean field control problem introduced in the first part.

Keywords: mean field control; smart charging; numerical approximation; stochastic control; distributed optimization;
diffuse flexibility
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Place du Maréchal De Lattre De Tassigny – 75016 Paris – France



iv Résumé



Remerciements

Je tiens tout d’abord à remercier Roland Malhamé et Francisco Silva d’avoir accepté d’être les rapporteurs
de ma thèse. Leur lecture attentive et leurs commentaires m’ont été d’une aide précieuse. Je remercie également
Yves Achdou, Jean-David Benamou et Roxana Dumitrescu de m’avoir fait l’honneur de prendre part au jury
de cette thèse.
Je tiens à exprimer toute ma gratitude à mes directeurs et encadrants Pierre Cardaliaguet et Cheng Wan.
Je vous remercie de m’avoir accompagné avec autant de bienveillance, fidélité et de patience durant ces trois
années.

Je souhaite également remercier Clémence Alasseur, Frédéric Bonnans et Nadia Oudjane, qui m’ont beaucoup
appris et qui ont été présents tout au long de cette thèse, malgré les épreuves. Je salue également nos deux
coauteurs Antonio De Paola et Vincenzo Trovato, qui m’ont fait confiance en décembre 2018.

Je remercie Ghislain Hallez et Julien Loron, chefs du groupe R36 et Jean-Baptiste Bart, chef du département
Osiris. Votre souci de la bonne cohésion du groupe et de l’épanouissement de chacun m’ont permis d’avancer
dans ma thèse dans un climat de confiance et d’émulation.

Je souhaite remercier mes collègues d’EDF, avec une pensée particulière pour l’ensemble du groupe R36. Je
pense notamment aux doctorants qui m’ont précédé Paulin, Adèle, Margarita et Maxime (à qui je dois toujours
un PC), mais également à la relève : Naomi, Bianca, Lucas, Alexandre et enfin Quentin, avec qui j’ai pu ramer
au sens propre comme figuré. Je remercie également Guilhem, pour toutes ces discussions dans la navette qui
rendent le transport bien plus agréable entre Porte d’Orléans et Saclay. J’aimerais remercier Riadh Zorgati,
mon co-bureau, dont l’humour et les récits de voyage m’ont permis d’avoir de vrais moments de décompression.
Je remercie également Maximilien, Ksenia et Saad, avec qui l’aventure à EDF à commencer ensemble il y a
4 ans en tant que stagiaire. Je remercie également Joseph qui me donne l’occasion de citer ici cette phrase
de Bernanos : "Les petites choses n’ont l’air de rien, mais elles donnent la paix”. Je remercie Thomas, avec
qui ça a été un plaisir de travailler sur le contrôle des PPDM...DPMP...PDMP ! Je remercie également les
équipes administratives d’EDF, Sylvie Malézieux, Christelle Roger et Christelle Boyer. Enfin, je remercie tout
spécialement Thomas Deschatre, qui fut mon premier contact d’EDF et qui me donna envie d’y postuler. Ce
contact n’aurait d’ailleurs probablement jamais eu lieu sans un quant, d’une célèbre banque française, qui me
déconseillant d’aller faire une thèse chez eux lors d’un forum, eu cette parole prophétique : "tu veux faire de la
recherche ? Eh bien, va voir EDF !".

Je remercie également les chercheurs, doctorants et post-doctorants du CEREMADE, avec qui j’ai passé de
très bons moments, comme à l’école d’Hiver. Merci en particulier à mes frères de thèse Samuel, à qui je dois
beaucoup, dont de nombreux conseils, allants des restaurants mexicains de Chicago aux techniques de MFC
les plus sophistiquées, et à Raphaël avec qui j’ai beaucoup apprécié échanger sur nos travaux. Je remercie mes
co-bureaux : Adrien, Claudia, Quan, Lucas et Lydia, et l’ensemble des doctorants avec qui j’ai pu partager des
pauses à Dauphine : Lorenzo, unique camarade cifre à Dauphine pendant deux ans, Charly, qui m’a partagé
bien plus d’informations sur l’état du réseau électrique en France que ce que je pouvais connaître, Jean Paul,
que j’espère retrouver très prochainement derrière les fourneaux rue Folie-Fericourt, Théo, Songbo, Antoine,
Yueh-Sheng, João, Marie-Julie, Diego Alejandro, Ruan, Grégoire, Adechola, et la connection italienne Giovanni,
Danièle, Donato et Umberto. Je remercie également les équipes administratives du CEREMADE, César Faivre
et Isabelle Bellier.

Je remercie l’équipe du Laboratoire du Fime, avec une pensée toute particulière pour Damien, son travail de
cohésion et son secours providentiel. Les séminaires du Fime m’ont beaucoup apporté tout au long de ma thèse,
en m’ouvrant à différentes problématiques en lien avec l’industrie de l’énergie, la finance et le développement
durable. Je remercie également l’Institut Louis Bachelier, qui m’a permis de soutenir dans un cadre exceptionnel.

Je souhaite remercier l’ensemble des chercheurs et doctorants avec qui j’ai pu échanger lors des différentes
conférences, qu’elles soient virtuelles ou non. Je salue tout spécialement Laurent Pfeiffer, Pierre Lavigne et Kang



vi Remerciements

Liu, que j’ai eu la joie de croiser à de très nombreuses reprises.
Je suis reconnaissant envers le département de l’IMSI de l’Université de Chicago de m’avoir accueilli pendant

plusieurs semaines et d’avoir ainsi donné l’occasion à ma thèse de prendre une dimension internationale.
Je remercie sincèrement tous ceux grâce à qui le télétravail fut plus agréable, notamment SGDP et P.Thibaut

ainsi que le centre Garnelles, dont l’accueil a toujours été très chaleureux. Je remerciement l’ensemble de mes
amis et colocataires avec qui j’ai traversé ces trois années, et qui m’ont vu passer par des états tout à fait
différents. Je ne peux d’ailleurs finir ces remerciements sans faire un clin d’oeil à l’inimitable Anne H. et à son
soutien très spontané !

Enfin, je remercie tout particulièrement Apolline pour son soutien sans faille, ses conseils et sa patience en
or au cours de ces trois années. Je remercie mes grands-parents, ma tante Isabelle et oncle Philippe pour leur
accueil et toutes leurs petites attentions. Je remercie mes parents et mes soeurs Laure et Marie, pour toute leur
affection.



Contents

Résumé iii

Remerciements v

Contents vii

1 Introduction 1
1.1 Context of the electrical network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Architecture of the electricity grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Production-consumption equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Impact of the renewable energy source penetration . . . . . . . . . . . . . . . . . . . . . . 3

1.2 EV flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Challenges arised by the electrification of the vehicle fleets . . . . . . . . . . . . . . . . . 3
1.2.2 Potential of flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Quantification and exploitation of the flexibility . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Different mathematical tools for flexibility management in the literature . . . . . . . . . . . . . 5
1.3.1 Centralized control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Distributed Optimization of a Centralized Problem . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 Bi-level optimization, game and pricing incentive approaches . . . . . . . . . . . . . . . . 7
1.3.4 Focus on McKean-Vlaslov Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Contents of the manuscript and summary of the main results . . . . . . . . . . . . . . . . . . . 11
1.4.1 Chapter 2: Optimality conditions of an optimal control problem for the continuity equation

arising in smart charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Chapter 3: Computation and implementation of an optimal mean field control for smart

charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.3 Chapter 4: Regularity of Lagrange multipliers for a mean field control problem arising in

smart charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.4 Chapter 5: Mean field approximation of an optimal control problem for the continuity equa-

tion arising in smart charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.5 Chapter 6: Decomposition of convex high dimensional aggregative stochastic control prob-

lems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.6 Chapter 7: A decentralized algorithm for a MFC problem of Piecewise Deterministic Markov

Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 Contenu du manuscrit et présentation des principaux résultats (en français) . . . . . . . . . . . 21

1.5.1 Chapitre 2 : Conditions d’optimalité d’un problème de contrôle optimal de l’équation de
continuité survenant dans un problème de charge intelligente . . . . . . . . . . . . . . . . 21

1.5.2 Chapitre 3 : Calcul et implémentation d’un contrôle optimal champ moyen pour un problème
de charge intelligente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.3 Chapitre 4 : Régularité des multiplicateurs de Lagrange d’un problème de contrôle champ
moyen survenant dans un problème de charge intelligente . . . . . . . . . . . . . . . . . . 24

1.5.4 Chapitre 5 : Approximation champ moyen d’un problème de contrôle optimal d’une équation
de continuité intervenant dans un problème de charge intelligente . . . . . . . . . . . . . 25

1.5.5 Chapitre 6 : Décomposition d’un problème stochastique agrégatif convexe de grande dimen-
sion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



viii Contents

1.5.6 Chapitre 7 : Un algorithme décentralisé pour un problème de contrôle champ moyen de
processus de Markov déterministes par morceaux . . . . . . . . . . . . . . . . . . . . . . 29

List of publications, proceedings and preprints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Optimality conditions of an optimal control problem for the continuity equation arising
in smart charging 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.1 Contributions, methodology and literature . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 Assumptions and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Notations and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Existence of an optimal solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4 Analysis of the Hamilton-Jacobi equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 The Hamilton-Jacobi equation for continuous valued data . . . . . . . . . . . . . . . . . . 40
2.4.2 The Hamilton-Jacobi equation for measure valued data . . . . . . . . . . . . . . . . . . . 43
2.4.3 Analysis of weak solution of the Hamilton-Jacobi equation (2.5) . . . . . . . . . . . . . . 44

2.5 The dual problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6 Characterization of the minimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6.1 Proof of Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.6.2 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7 Sensitivity analysis of the value of the optimization problem w.r.t. the data . . . . . . . . . . . 54
2.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Computation and implementation of an optimal mean field control for smart charging 59
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1 Relative literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1.2 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 EV population dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.1 Evolution of the system in continuous settings . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.2 Discrete settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 The optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 The Chambolle-Pock algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 Case study: Response to peak and off peak hours pricing problem . . . . . . . . . . . . . . . . 63

3.5.1 Example 1: Aggregative switching costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.2 Example 2: Local switching costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Regularity of Lagrange multipliers for a mean field control problem arising in smart
charging 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Contributions and Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Main results and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 The penalized problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Link between the constrained and the penalized problems . . . . . . . . . . . . . . . . . . . . . 80
4.5 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.6 Numerical approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6.1 Convergence results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.6.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.7.1 Weak solution of the continuity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



Contents ix

5 Mean field approximation of an optimal control problem for the continuity equation arising
in smart charging 99
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.1 The n PEVs control problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.2 The mean field control problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.3 Convergence result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Equivalence between Eulerian and Lagrangian finite population control problems . . . . . . . . 105
5.3.1 Eulerian problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.2 Proof of the superposition principale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Construction of the empirical distribution and of the jump measure from n PEVs trajectories 107
Construction of n PEVs trajectories from a couple of measure (m,E) . . . . . . . . . . . 108

5.4 The convergence result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.1 Γ-lower limit result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.2 Upper bound of the value of the finite population problem . . . . . . . . . . . . . . . . . 115

Transfer procedure for a finite number of PEVs using a mean field control . . . . . . . . 115
Proof of Theorem 5.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Proof of Theorem 5.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.3 Proof of Theorem 5.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Decomposition of convex high dimensional aggregative stochastic control problems 125
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.1.2 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.1.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Approximating the optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3 Dualization and Decentralization of Problem (P2) . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.4 Stochastic Uzawa and Sampled Stochastic Uzawa algorithms . . . . . . . . . . . . . . . . . . . 132

6.4.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.4.2 Analysis of the algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5 Application to stochastic control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.5.1 Continuous time setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

On the well-posedness of (P1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.5.2 Discrete time setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.6 A numerical example: the LQG (Linear Quadratic Gaussian) problem . . . . . . . . . . . . . . 140
6.7 Price-based coordination of a large population of thermostatically controlled loads . . . . . . . 142

6.7.1 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.7.2 Decentralized implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7 A decentralized algorithm for a MFC problem of Piecewise Deterministic Markov Pro-
cesses 149
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2 Problem formulation and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.3 Dual approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.3.1 Proof of Theorem 7.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.3.2 Proof of Theorem 7.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.4 Stochastic Uzawa Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.5.1 Definition of the use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.5.2 Algorithm parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163



x Contents

Bibliography 167



Chapter 1

Introduction

Outline of the current chapter

1.1 Context of the electrical network 2
1.1.1 Architecture of the electricity grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Production-consumption equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Impact of the renewable energy source penetration . . . . . . . . . . . . . . . . . . 3

1.2 EV flexibility 3
1.2.1 Challenges arised by the electrification of the vehicle fleets . . . . . . . . . . . . . . 3
1.2.2 Potential of flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Quantification and exploitation of the flexibility . . . . . . . . . . . . . . . . . . . . 5

1.3 Different mathematical tools for flexibility management in the literature 5
1.3.1 Centralized control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Distributed Optimization of a Centralized Problem . . . . . . . . . . . . . . . . . . 6
1.3.3 Bi-level optimization, game and pricing incentive approaches . . . . . . . . . . . . 7
1.3.4 Focus on McKean-Vlaslov Optimal Control . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Contents of the manuscript and summary of the main results 11
1.4.1 Chapter 2: Optimality conditions of an optimal control problem for the continuity

equation arising in smart charging . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Chapter 3: Computation and implementation of an optimal mean field control for

smart charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.3 Chapter 4: Regularity of Lagrange multipliers for a mean field control problem arising

in smart charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.4 Chapter 5: Mean field approximation of an optimal control problem for the continuity

equation arising in smart charging . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.5 Chapter 6: Decomposition of convex high dimensional aggregative stochastic control

problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.6 Chapter 7: A decentralized algorithm for a MFC problem of Piecewise Deterministic

Markov Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 Contenu du manuscrit et présentation des principaux résultats (en français) 21

1.5.1 Chapitre 2 : Conditions d’optimalité d’un problème de contrôle optimal de l’équation
de continuité survenant dans un problème de charge intelligente . . . . . . . . . . . 21

1.5.2 Chapitre 3 : Calcul et implémentation d’un contrôle optimal champ moyen pour un
problème de charge intelligente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.3 Chapitre 4 : Régularité des multiplicateurs de Lagrange d’un problème de contrôle
champ moyen survenant dans un problème de charge intelligente . . . . . . . . . . 24

1.5.4 Chapitre 5 : Approximation champ moyen d’un problème de contrôle optimal d’une
équation de continuité intervenant dans un problème de charge intelligente . . . . . 25

1.5.5 Chapitre 6 : Décomposition d’un problème stochastique agrégatif convexe de grande
dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1



2 CHAPTER 1. Introduction

Figure 1.1 – A high-level structure of the current power grid. Source [257]

1.5.6 Chapitre 7 : Un algorithme décentralisé pour un problème de contrôle champ moyen
de processus de Markov déterministes par morceaux . . . . . . . . . . . . . . . . . 29

List of publications, proceedings and preprints 31

The aim of this chapter is to show the motivations and the context of this dissertation, and to present the
main contributions. Section 1.1 provides an overview of the on-going changes and new challenges arising in the
electrical network. Next, after a presentation of the electric mobility, we sketch some reasons why it is crucial
to coordinate the charge of electrical vehicle fleets in Section 1.2. Section 1.3 is devoted to the mathematical
optimization problems and their resolution in energy management. Then, we provide a brief account on the
theory of Mean Field Control (MFC for short). More precisely, we present some classical results about the MFC
of Itô processes and some applications in flexibility management for the electrical gird. Finally, we summarize
the contributions of each chapter in Section 1.4.

1.1 Context of the electrical network

1.1.1 Architecture of the electricity grid
The electrical network has a grid structure, connecting electricity production facilities with consumers. It

allows the distribution of electricity, mainly in a three phase AC current. Among others, one can identify five
main components of the grid: generation, transmission, substations, distribution and consumption. The gen-
eration refers to the means of electricity production. It is divided into two categories: centralized production
by, for example, nuclear, gas, coal, hydro power plants, wind farms and solar panels fields, and decentralized
production such as by rooftop solar panels. The centralized means of production are characterized by a large
scale production and a great distance between the production site and the consumption site, while decentralized
ones refer to local electricity production. The transmission part is made up of power lines and aims at trans-
porting high voltage electricity over long distance, while minimizing losses. The substation part is composed
of transformers and is meant for stepping up (for transmission) or reducing (for local distribution) the voltage.
The distribution constitutes the part of the electrical network that serves the consumers. The consumption
refers to industrial, commercial and residential use. An architecture of the gird is represented, in a simplified
manner, in Figure 1.1. The work presented in this dissertation is focused on both the decentralized production
and the consumption embedded in the distribution part of the electrical grid.

1.1.2 Production-consumption equilibrium
The proper functioning of the electricity grid depends on the balance between the power production and

consumption. Since electricity can be stored to a very limited extent, demand and supply must be kept
constantly in balance. Fluctuations and imbalance can occur due to unpredictable demand or to the randomness
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of the electricity production of renewable source of energy (RES for short). In case of insufficient or excessive
electricity supply compared to the demand, if the imbalance is uncontrolled, a blackout (or power outage) can
occur. Such a situation can have dramatic effects, several hours or days can be necessarily to restore a functional
network. In 2003, 56 million of Italians were plunged into darkness for several hours due to a faulty transmission
of electricity from Switzerland to Italy [239]. To avoid such a situation, a system operator is responsible for
electricity balancing. In Europe, an Electricity Balancing Guideline entered into force on December 2017,
and provides operational and commercial rules to obtain efficient balancing mechanisms on the national and
international level [224].

A common signal to measure the equilibrium between power consumption and production is the utility
frequency. The generators connected to the same electrical synchronous gird must rotate at the same frequency.
This frequency is set up at 60 Hz in the US and at 50 Hz in general in the rest of the world. A small imbalance
between the generation and the consumption directly causes a deviation of the frequency. For this reason,
fluctuations from the standard frequency are closely monitored: a decrease in the frequency indicates that the
consumption is larger than the production, and an increase means the opposite. Frequency response refers to
the mechanisms developed to stabilize the electric grid frequency.

Demand response (DR for short) denotes the regulation of power consumption from the consumer side in
response to an external signal. As an example, peak and off peak hour pricing has been used for decades to
coordinate the consumption and to avoid congestion effects. So far, industrial sites and “major” tertiary sites
have played a significant role in DR for the frequency regulatory. Although adjusting the residential consumption
in real time is a more difficult task, the development of smart grids makes it increasingly plausible for consumers
to take part in the demand and frequency response, via domestic controllable loads.

1.1.3 Impact of the renewable energy source penetration
Next decades will be marked by deep changes on the electrical network. To deal with climate change,

industrialized countries plan to close coal and gas power plan, and to compensate with an increase of RES in
the electrical mix. While the share of RES was about 19.7% in 2019 in the European Union, it is planned to
be at least 40% in 2030 [104].

The anticipation of the RES penetration in the energy generation mix is crucial to mitigate imbalance
between the electricity production and consumption. The main concerns are about variable energy sources,
such as online and offline wind generation power plants and solar panels. One can expect challenges in terms
of balance (e.g. insufficient short- and long-term generation adequacy), stability (e.g. decreasing level of
inertia and frequency control reserves), flow (e.g. missing visibility and controllability of RES generation) and
quality (e.g. increasing harmonic distortions and local voltage excursions). A review of the impacts of RES
on the distribution network can be found in [243] and the references therein. The economical impacts of RES
penetration on the economy [98, 144, 153] and on the electricity price [143, 157, 197] are also important fields
of study. Among the solutions proposed to mitigate these aftermaths, an efficient and coordinated control of
local storage and flexible devices, such as water heaters and fridges, shows good results [132]. In this context,
the control of the charge of electric vehicle has drawn attention over the last decade.

1.2 EV flexibility

The effort to diminish the gas emission also impacts transportation modes. While car transportation is
responsible for 19% of the total greenhouse gas emission in the European Union in 2017 [102], electrical vehicles
(EVs for short) are seen as a solution to decarbonize the transport. The actual proportion of EVs in the
European Union among newly registered private vehicles is equal to 11% [103]. Since the European Union has
approved the ban on new fossil-fuel cars from 2035, this share is expected to drastically increase over the next
few years. Projection of the worldwide sales of EVs is displayed in Figure 1.2.

1.2.1 Challenges arised by the electrification of the vehicle fleets
While numerous benefits in terms of greenhouse gas emission are expected, the replacement of gas vehicles

by electric ones induces a broad range of challenges to the electricity grid. The main concern is about the
effects of uncoordinated load of a large population of EVs (i.e., EVs starting to charge their battery as soon as
they are parked) on the electricity grid. It is now well understood how EVs can drastically increase the peak of
consumption and affect the electrical network [89, 181, 205, 213, 267]. For instance, it has been assessed that
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Figure 1.2 – Worldwide EV sales projection. Source: Statista, May 2022 [244]

peak demand can be increased in UK by around 17.9% if only 10% of the vehicles are EVs with uncoordinated
load [214], and around 56% in Belgium for a share of 30% of uncoordinated EVs [70]. The installed production
capacity may not match the peak demand [262], which may significantly increase the electricity price. According
to [136], a penetration of 10% of the EVs can cause an increase of up to 22% of the monthly electric bill. Power
loss and voltage deviation [186, 240] are also expected in the uncoordinated load scenarios. While voltage
stability is crucial for the reliability of the power grids, a voltage deviation around 10% for a penetration of 30%
of EVs in Belgium has been estimated in [70]. The overload of transformers can also result from uncoordinated
EVs charge [6], leading to an increase of the internal temperature [219] and the aging [215] of the transformer.
Harmonic distortions of the distribution network frequency [199], due to haphazard energy consumption of EVs,
is also foreseeable. Such distortions can induce equipment ageing [6, 130, 215]. More details and references
about the drawbacks of uncoordinated charge of EVs can be found in [134, 152, 240, 271]. To anticipate these
consequences, the notion of smart charging has emerged over the last few years to designate the new methods
dedicated to the dispatch of the available energy in the most effective way for the charging of EVs.

1.2.2 Potential of flexibility

While the previous paragraph is devoted to the issues caused by uncoordinated loads of EVs, we present
in this paragraph why it is possible to coordinate EV charging and give details on the potential benefits. We
expect that the coordination of the charge of EVs fleet would deal with the challenges cited above, and also
have a positive impact on the electricity grid by providing services to balance the electrical network. Recent
surveys about the statistical characteristics of the load charge of EVs during the days tend to show that plugged
electrical vehicles (PEVs for short) are most of the time not charging. According to [270], in average, less than
20% of the time plugged is for actual charging. In [91], the authors correlate the flexibility of a PEV to the
sojourn time of this PEV that is longer than the time required to (fully) charge the battery. Their definition of
flexibility is close to the one in [154]. The potential of a DR resulting from the flexibility is computed. Based on
real data, this potential is assimilated to the maximal load that can be reached or subtracted by a coordinated
large fleet of PEVs. In [273], the authors first estimate the nominal consumption of a fleet of EVs, obtained
by solving an optimization problem taken into account the price of electricity. Then, the (potential) flexibility
for an EV at a time t is characterized by two variables: a level up (non negative variable) and a level down
(negative variable) consumption. The impact of different electricity tariffs on the flexibility potential of electric
vehicles is studied. More generally, the flexibility can be understood as a potential shift of energy consumption
over the time.

Although the existence of an energy consumption flexibility of EVs has now been well established, such a
flexibility has an impact on the electricity grid only when it is exploited within a collective behavior. It turns
out that the total flexibility of a fleet in a coordinated scenario can be different from the sum of all the individual
flexibility. Thus, it is crucial to dissociate the sum of individual flexibilities from the practically exploitable
aggregate flexibility. Next paragraph describes the benefits for the electrical network of a coordination of the
charge of EVs.
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1.2.3 Quantification and exploitation of the flexibility

Studies on the flexibility coordination aims at understanding how the flexibility of an aggregate population
of EVs exploits the potential of flexibility of each EV, in order to achieve a common goal (load flatten, RES con-
sumption etc). Usually, flexibility coordination is analyzed through an optimization problem and is determined
for a very specific situation. In [228], the authors first estimate the nominal consumption of a fleet of EVs based
on real world data. Then, they exploit the flexibility of the EVs by solving an optimization problem, where the
overall population of EVs is controlled in a centralized way to follow a signal of consumption (based on RES
surplus) or to flatten the curve of consumption. Then, three flexibility indicators are analyzed, to indicate how
much the flexibility potential of each EV has been exploited to optimize the criteria. The defined indicators
are: the amount of transferable energy without threatening customer convenience, the fraction of time used
for flexibility and the maximum allowable delay for the energy consumption. This in-depth analysis enables to
understand which aspect of the EV flexibility is more useful, depending on the DR objectives.

The benefits of the coordination of EV charge has been studied extensively over the last decade. A coor-
dination drastically reduces the above-described threats, but also facilitates the penetration of the RES in the
electricity grid. The Vehicle-to-Grid (V2G for short) technology is a key element to understand the potential of
EVs in ancillary services. It allows vehicles to discharge power out of the battery to the grid. It is assessed in
[201] that a 64 kWh Nissan LEAF can furnish enough electricity for an average Japanese home’s energy needs
for four days. When combined with a rooftop solar panel, the authors in [258] estimate that a 32 kWh EV can
supply up to 300 hours backup duration household. The increasing capacity of batteries leads to consider fleets
of EVs as non negligible virtual battery, which can be exploited in case of power outage for instance. PEVs are
expected to take part in ancillary services such as frequency and voltage regulation [180, 208, 250, 269, 278],
peak shaving [259], valley filling [117], spinning reserve [182, 207] and demand side management [191]. The
management of EV fleets to integrate RES is currently an important field of research. Some strategies and
scenarios are explored such as peak shaving combined with renewable generation [183], frequency regulation in
a context of RES [1, 150], regulation of voltage fluctuations due to RES [255], synergy with wind [100, 175, 217],
synergy with photovoltaic [29, 248, 260], and generation cost reduction [227]. A recent survey from ENEDIS
[101] shows that, in return for a discout, 63% of people in France are willing to postpone their recharging in
order to relieve the power grid during peak consumption periods.

We underline that the benefits cited above highly depends on the quality of the adopted mathematical
models and on the optimization methods. In the next paragraphs, we introduce the mathematical aspects of
the coordination of large fleets of EVs, and more generally of the flexible load management.

1.3 Different mathematical tools for flexibility management in the
literature

In a context of energy management, different models and mathematical approaches have been proposed to
design efficient coordination mechanisms [263]. One can categorize coordination schemes into different classes of
problems, such as: centralized control, distributed optimization or game theoritic models. Each category answers
to different challenges and involves different mathematical tools. In most of models, each vehicle or flexible device
is described by a state variable (level of the battery, internal temperature etc) and a control variable (electricity
consumption or production level, charge or discharge of the battery etc). Accordingly on the scheme, this
control can be transmitted by an external agent (such as an aggregator), or computed locally by each device,
based an external signal (designed by an aggregator or the market). Different forms of control can depend on
the characteristics of the electricity grid. The choice of the model and of the mathematical tools depends on
several elements, such as the number of interacting devices on the electrical network, the non convexity of the
problem, the computation time, the need of infrastructures in order to support communication with the devices,
etc. Next paragraphs are devoted to a short review of the literature about schemes, optimization methods and
algorithms used to coordinate flexible devices.
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Figure 1.3 – Centralized optimization scheme

1.3.1 Centralized control

Centralized optimization control problems, for the energy management of N units of flexible devices, are
often of the form:

inf
(x1,...,xN )∈XN

J(x1, . . . , xN ),

s.t. G(x1, . . . , xN ) ⩽ 0,
(1.3.1)

where xi is the control of the ith device, X is a vector space, J is the objective function and G is a constraint
function. Problem (1.3.1) can model a smart charging problem with N EVs to charge in a parking over a period.
The variable xi denotes the charging power profile of the ith EV. The constraint G(x1, . . . , xN ) is a coupling
constraint at the level of the site such as the maximum power, and J(x1, . . . , xN ) is the sum of local costs of EVs
(e.g. electricity consumption cost, penalty for insufficient charging) and of global level cost (e.g. cost of carbon
dioxide emission). Historically, energy management problems close to Problem (1.3.1) were solved centrally, by
a central planner coordinating the population of flexible devices. The central planner collects information from
the devices, solves an optimization problem and sends the optimal control to each device (see Figure 1.3). See
e.g. [216] for a centralized control problem in smart charging.

Convexity assumptions on the model (e.g. J and G being convex) enable to rely on convex optimization
theory [99]. A large variety of existence and uniqueness results can be used to deal with Problem (1.3.1), as
well as algorithms converging to a minimizer. If J is smooth enough with a Lipschitz continuous gradient,
one can implement the gradient descent or projected gradient descent that are classically applied in such a
framework. If J is twice-differentiable, Newton’s method or quasi-Newton can also be applied. By the Dynamic
Programming Principle [28], one can obtain a time decomposition of the problem, assuming the Markov property
of the system. This method can be applied both in deterministic and in stochastic settings. Under continuous
linear-convex assumptions, the Stochastic Dual Dynamic Programming algorithm (SDDP) [209] allows to get
upper and lower bounds of the value function, using polyhedral approximations. This technique is efficient for
central optimization problem having a medium sized population of devices N ⩽ 30 [59].

Note that in the non convex settings, heuristic algorithms can be directly applied to find a solution to
Problem (1.3.1), such as genetic algorithm [125], simulated annealing [261] or machine learning algorithms
[138].

The main issues encountered by centralized methods are scalability (e.g. w.r.t. communication), computation
and privacy. When the number of devices N is large, a majority of the optimization methods may fail to solve
Problem (1.3.1) (e.g. Dynamic Programming suffers from the curse of dimensionality [20]). A classical approach
to tackle these issues is to decompose the centralized problem into a distributed optimization problem.

1.3.2 Distributed Optimization of a Centralized Problem

The last decades are characterized by a large penetration of flexible devices and local sources of energy
generation, increasing the complexity and the dimensionality of Problem (1.3.1). In addition, some local infor-
mation cannot be communicated to the central planner for privacy reasons. By assuming the convexity of the
data, Problem (1.3.1) can be decomposed into problems of smaller sizes, leading to distributed schemes. In a
distributed scheme, flexible devices can communicate with each other and with the central planner. Each device
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Figure 1.4 – Distributed optimization scheme

computes its own control, with a view to cooperate in minimizing a global objective function.
Most of decomposition techniques adopted to obtain a distributed problem from a centralized one, rely on

dual decomposition. In the Lagrangian decomposition method, the constraint is relaxed and the Lagrangian
function of the problem is introduced. The saddle-point of the Lagrangian can be numerically estimated by
applying the Uzawa algorithm which is an iterative method. If the coupling form of the variables is additive, each
iteration consists in solving decoupled sub-problems (w.r.t. the state and control variables of the agents). From a
practical point of view, the central planner computes the optimal Lagrange multiplier (based on the knowledge of
the agents parameter) and sends it to each agent that can compute locally its optimal control (see Figure 1.4). In
a stochastic framework, the Dual Approximation Dynamic Programming (DADP) [123, 172] can be implemented
to deal with stochastic constraint. This method is characterized by a price decomposition of the problem, where
the stochastic constraints are projected on subspaces such that the associated Lagrangian multiplier is adapted
for dynamic programming. Then the optimal multiplier is estimated by implementing Uzawa algorithm. DADP
has been applied in different cases, such as storage management problem for electrical production in [14, 123]
and hydro valley management [59]. In Chapter 6 of this dissertation, we provide a decomposition method
for a stochastic optimization problem that is in the same vein as DADP. The Alternating Direction Method
of Multipliers (ADMM) [115] is a decomposition algorithm based on the augmented Lagrangian that can be
efficiently applied when the cost function is separable in the state and control variables. This method has been
tested to solve smart charging problems in [220]. The Lagrangian decomposition may fail to solve Problem
(1.3.1) when the objective function is not additive and separable w.r.t. the state and control variables. In
such a case, it is possible to solve the problem with the Auxiliary Problem Principle method introduced in [73].
This approach consists in approaching the non additive cost function by an additive one and to solve successive
auxiliary problems in a decentralized way. An algorithm is defined from this method and is proved to converge
to the solution of the optimization problem [73]. This technique has been applied in [92] for the control of
decentralized units of renewable energy sources.

It is possible to define distributed protocols to solve Problem (1.3.1) without relying on dual decomposition.
Problem (1.3.1) can be decentralized by means of Benders decomposition [26]. This method, that consists
in performing a resource decomposition, has been applied to smart charging in [272]. In the context of high
dimensional multistage stochastic optimization problem, the author in [60] have provided theoretical bounds
for the price and resource decomposition methods, as well as numerical simulations for microgrids optimal
management.

Finally, if Problem (1.3.1) is unconstrained, gradient descent based techniques such as block coordinate
descent [254] or random coordinate descent [198] may tackle this problem in a decentralized way, by computing
the gradient only on some directions.

1.3.3 Bi-level optimization, game and pricing incentive approaches

In the centralized schemes and distributed approaches described in the previous paragraphs, the devices
cooperate with the central planner in order to achieve a common goal. Although these models cover a large
set of situations, they are not adapted to model competition among the devices. When each device has its
own objective function to minimize and competes with the other devices to have an access to energy, a game
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theoretical approach can be suitable to model this situation. Then, a common method for the central planner
to coordinate the population of competing devices is to adopt price incentive approaches. The central planner
aims at determining the best price to achieve a particular goal. This price can depend on the control decision
of each device, introducing a game among the devices [68, 189, 279]. In a context of smart grids and demand
response, the authors in [149] investigate the theoretical properties and computational aspects of the hourly
billing mechanism. In a mean field framework, the author in [126] show the existence and uniqueness of the
price that coordinates the agents to satisfy a global energy consumption constraint over the time in a electricity
market framework.

Chapters 2 to 5 study a centralized control problem to coordinate the charging of a large fleet of EVs. In these
chapters, the central planner computes the optimal control and communicates to each EV the instants where it
has to switch to a certain mode of charging (idle, fast charging, V2G, etc...). In Chapters 6 and 7, centralized
control problems are also formulated, but we propose a decomposition method to solve these problems. The
method employed heavily rely on the Lagrangian decomposition and the Uzawa algorithm. Since Chapters 2 to
5 deal with a MFC problem, a brief presentation of MFC is given next.

1.3.4 Focus on McKean-Vlaslov Optimal Control
A large part of this dissertation (Chapters 2-5 and 7) is focused on the optimal control of a large population

of hybrid processes (hybrid in the sense that the state of the process is composed of a discrete variable and
a continuous variable). Due to the large number of processes, classical optimization methods and algorithms
may fail to solve this problem. To deal with the high dimensionality of the problem, a mean field control
problem is introduced. Although our work in this thesis concerns hybrid processes, a short introduction about
McKean-Vlaslov optimal control problems is provided in this paragraph in order to expose the main questions,
techniques and results arising in MFC theory. The finite population problem is formulated as well as the MFC
problem. Some classical results on the characterization of the minimizers and on the convergence of the finite
population problem are given. Finally, we mention some algorithms that have been successfully applied to solve
MFC problems. These techniques have motivated and inspired the work presented in this thesis for the MFC
of hybrid processes.

The finite population problem We consider the most basic settings for this formal introduction. Let
N ∈ N Itô processes be controlled by a central planner and taking values in Rd. The state of the process indexed
by i ∈ {1, . . . , N} is controlled by the feedback function αi : [0, T ] ×

(
Rd
)N 7→ Rd and denoted by Xi,αi

. The
dynamics is given, for any t ∈ [0, T ], by

dXi,αi

t = αitdt+
√
2dW i

t , (1.3.2)

where W 1, . . . ,WN are independent Brownian motions in Rd. The law of the initial state Xi
0 is the given

distribution µ0 ∈ P(Rd). Let mN be the empirical distribution of the population of processes, defined by

mN (t) :=
1

N

N∑
i=1

δ
Xi,αi

t

. The cost function JN is given by:

JN (α) :=
1

N

N∑
i=1

E

[∫ T

0

αit
2

2
+ F (t,mN (t))dt+G(Xi,αi

T ,mN (T ))

]
, (1.3.3)

where α := (α1, . . . , αN ). The central planner aims at solving

inf
α
JN (α). (PN )

This problem can be seen as an instance of Problem (1.3.1). The central planner can represent an aggregator
controlling a collection of consumers or flexibility in a centralized way. The state variableXi can typically denote
the temperature of a heating or a cooling device, or the level of battery of a storing device. The control α usually
refers to a power consumption or production. Functions F and G are coupling costs, encoding aggregate costs.

The mean field limit problem Though agents in Problem (PN ) are exchangeable (i.e. agents constitute
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an homogeneous population, sharing the same dynamics parameters, initial distribution and local cost if any),
it becomes almost impossible to solve the system for a very large number of agents. In the limit case N →∞,
a classical way to understand the asymptotic behavior of the system is to consider its mean behavior. To this
end, we focus on a representative agent, controlled by α : [0, T ]× Rd 7→ Rd, which evolves according to

dXα
t = αtdt+

√
2dWt, (1.3.4)

where W is a Brownian motions in Rd and X0 a random variable whose distribution is µ0. The objective
function J is defined by

J(α) := E

[∫ T

0

αt
2

2
+ F (t,m(t))dt+G(Xα

T ,m(T ))

]
,

where m(t) is the law of Xt. The mean field control problem is

inf
α
J(α). (PMFC)

Problem (PMFC) goes beyond the frame of the standard theory of stochastic control due to the non linearity
w.r.t. the law m(t) in the objective function.

The mean field limit approximation raises several questions:
(i) How can the minimizers of Problem (PMFC) be characterized?
(ii) Which algorithms can be implemented to numerically solve Problem (PMFC)?
(iii) Does the finite population control problem (Pn) converge to the mean field problem (PMFC) and in which

sens?
(iv) Which regularity of the solutions can be expected when one considers constraints on the distribution m

in Problem (PMFC)?
These questions emerged in the specific case of MFC of Itô processes and several answers have been provided.

Characterization of the minimizers of the mean field problem. We derive formally the optimality
conditions of Problem (PMFC) in some specific settings. We assume that there exists f and g such that, for

any t ∈ [0, T ],
δF (t)

δµ
= f(t) and

δG

δµ
= g, where the notion of derivative on the Wasserstein space of a map

H : P(Rd) 7→ R is the one introduced in [52]. Inspired by the seminal work of Benamou-Brenier in [21] in
optimal transport, the variable w := αm is introduced to obtain a convex problem, equivalent to Problem
(PMFC), and to apply Fenchel-Rockaffelar duality theorem [99]. The law m of the solution of the SDE (1.3.4)
satisfies the following Fokker-Planck equation on [0, T ]× Rd:

∂tm−∆m+ div(w) = 0, (1.3.5)

with the initial condition m(0) = µ0. Let J̃ be defined by

J̃(m,w) :=

∫ T

0

∫
Rd

ℓ(w(t, x),m(t, x))m(t, x)dxdt+

∫ T

0

F (t,m(t))dt+

∫
Rd

G(x,m(T, x))dx, (1.3.6)

where

ℓ(a, b) :=


a2

2b
if b > 0 and a ⩾ 0,

0 if a = b = 0,

+∞ otherwise.

Problem (PMFC) is equivalent to the following optimal control problem with PDE constraints:

inf
(m,w)

J̃(m,w)

where (m,w) is a weak solution of (1.3.5).
(P̃MFC)

One can apply a linearization procedure as in [39, Proposition 3] to Problem (P̃MFC). Then, relying on the
convexity of the linearized problem, it is possible to introduce its Lagrangian and to apply Fenchel-Rockaffelar
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duality theorem. In the same vein as in [21], one can show that if a couple (m,α) is a solution of (P̃MFC), there
exists a function φ, which can be interpreted as the Lagrangian multiplier of (1.3.5), such that α = ∇φ and
(m,φ) is a solution to the following PDE system:

−∂tφ−∆φ+
1

2
|∇φ|2 = f(t, x,m(t)) in (0, T )× Rd,

∂tm−∆m− div(m∇φ) = 0 in (0, T )× Rd,
m(0) = µ0 and φ(T ) = g(x,m(T )) in Rd.

(1.3.7)

The existence of a solution of such a system is established in general frameworks, while the uniqueness depends
on the monotonicity of F and G [167]. System (1.3.7) allows to deduce regularity results on the solution (m,α)
of Problem (PMFC). In these specific settings, the solutions (φ,m) are bounded and belong to C1,2((0, T )×Rd),
with one bounded continuous derivative in time and two bounded continuous derivatives in space [39, 82].

System (1.3.7) typically arises in the Mean Field Game (MFG for short) Theory. This class of problems,
introduced by Lasry and Lions [166, 167, 168] and Huang, Malhamé and Caines [145, 146], describes the
interaction among a large population of identical and rational agents in competition. The duality approach
is close to the so-called variational approach used in MFG theory in [53], where the weak solution of the
MFG system is characterized as the minimizer of some optimal control of Hamilton-Jacobi and Fokker-Planck
equations. It has been widely applied to solve potential games [39]. This approach allows to use optimization
techniques to prove the existence and uniqueness of the solution of MFG and MFC problems. We refer to [5, 25,
40, 54, 202] and the references therein. Note that under specific regularity, convexity and growth assumptions
on the data, Problem (PMFC) can be solved using an extension of the Pontryagin maximum principle [56].
This method introduces a forward-backward system of stochastic diferential equations to express the necessary
condition for optimality.

Chapter 2 of the dissertation defines a MFC problem of hybrid processes and aims at providing a system of
optimality conditions (question (i)) that is similar to the system (1.3.7).

Connection with the finite population problem. The convergence of the finite population problem
(PN ) to the MFC problem (PMFC) is proved in the breakthrough [163], where the author relies on a relaxed
formulation of both problems to show the convergence of the value of the finite population problem to the value
of the MFC problem. This result is extended to the case with common noise in [94] and with interactions of
the agents with the joint distribution of the state and control in [93]. In the specific case with constraints in
law, the convergence of the value of the finite population problem with almost sure constraint to the value of
the MFC problem has been proved in Chapter 5 of [80]. In a setting with both idiosyncratic and common noise
in the dynamics of the agents, a convergence rate of the value function of the finite population problem to the
value function of the MFC problem is obtained in [51]. The connection between the finite population problem
and the mean field problem introduced in Chapter 2, is established in Chapter 5 of the dissertation (question
(iii)).

Constraint in law. Due to the potential applications in economy, finance or energy management, Problem
(PMFC) has also been studied with additional constraints on the law of the distribution. In [81], the author
provides the optimality conditions of a MFC problem with a terminal condition on the distribution. Optimality
conditions and Lipschitz regularity results are given in [82] for MFC problems with constraints of the form
Ψ(m(t)) ⩽ 0, for any t ∈ [0, T ], where Ψ is a smooth convex function over the Wasserstein space of probability
measures. A similar problem is tackled with a level-set approach in [121]. This method enables to consider
common noise in the dynamics and to perform numerical approximation. In the deterministic case, where there
is no diffusion in the dynamics (1.3.4), MFG problems with hard congestion on the density is first introduced
in [230], and solved [55] using a variational approach. In [35], the author formulates a Pontryagin principle
stated in the Wasserstein space to solve the optimal control of a continuity equation with terminal and running
constraints. Chapter 4 of this dissertation follows the path initiated in [46] and adapted in [82] for MFC
problems of Itô processes, to obtain regularity results on the Lagrange multiplier and on the solutions (question
(iv)) of the MFC problem defined in Chapter 2.

Numerical simulations. Different techniques can be used to numerically solve (PMFC). One can discretize
the PDE system (1.3.7) using finite difference scheme [2] and then exploit the convex structure of the problem
to apply a primal-dual algorithm. In the specific case of second order MFG with strongly convex running
cost, a rate of convergence is obtained for the theta-scheme [33]. In [40, 41] the Chambolle-Pock algorithm
[67] is implemented to solve variational MFG problems. Following works in optimal transport theory, the



1.4. Contents of the manuscript and summary of the main results 11

Augmented Lagrangian algorithm can be performed to solve MFC problems [5, 23, 25]. MFG problems can
also be numerically approximated by using an entropy minimizing approach and applying a variant of the
Sinkhorn algorithm [24]. Based on the forward-backward stochastic differential equations characterization, the
McKean-Vlasov control problem can be solved numerically using neural network techniques [120]. Relying
on the application of the Chambolle-Pock algorithm to MFC problems in the articles cited above, numerical
approximations of the MFC problem of hybrid processes introduced in Chapter 2 are performed and analyzed in
Chapter 3 of the thesis (question (ii)). In Chapter 4, a numerical scheme, that is shown to converge, is proposed
to numerically approximate the dual problem of the optimization introduced in Chapter 2.

Applications The mean field approximation of a population of controlled processes has been applied in a
context of energy management and smart charging. In [124] the author develop a decentralized control scheme,
based on a mean field approximation, to coordinate the consumption of Thermostatically Controlled Loads
(TCLs). A MFG problem is formulated in [85] to model a large population of TCLs in competition. In [121],
the author solves numerically an optimal storage of wind-generated electricity, modelled by a MFC problem
of Itô porcesses with common noise and running constraint on the law of the processes. A similar problem
of optimal storage is formulated in a MFG framework [7]. Mean field control and game models also arise in
economics [3, 4]. Chapters 3,4 and 7 of the dissertation numerically solve MFC problems in a context of smart
charging.

1.4 Contents of the manuscript and summary of the main results

In this PhD thesis, we first focus on the mathematical modelling for the optimal charging of a large fleet
of electric vehicles. In Chapter 2, we formulate the optimal charging problem as a MFC problem of hybrid
processes. We provide the characterization of the solutions as well as regularity results. Chapter 3 is dedicated
to the numerical approximation of the mean field control problem investigated in Chapter 2 and its application
to smart charging. Chapter 4 studies the regularity of the Lagrange multipliers introduced in Chapter 2. A
L∞ estimate is obtained for the Lagrange multipliers associated with the congestion constraint on the state
distribution. This result is used to establish the convergence of a numerical scheme to solve the MFC problem
introduced in Chapter 2. Chapter 5 aims at justifying the mean field approach adopted in the previous chapters
of the dissertation, by showing the convergence, when the number of agent goes to infinity, of the value of the
finite population control problem to the value of the MFC problem introduced in Chapter 2. The convergence
of the solution of the finite population to a solution of the MFC problem is also provided. Another model is
studied in Chapter 6, which considers a high dimensional convex stochastic control problem, with heterogenous
agents. A modified problem is introduced, whose optimal control is under some reasonable assumptions, an
ε-optimal solution of the original problem. We also present a decentralized algorithm whose convergence to
the solution of the modified problem is established. Finally, Chapter 7 provides a decentralized approach for
the mean field control problem of a population of Piecewise Deterministic Markov processes. The algorithm
introduced in Chapter 6 is shown to converge in these particular settings and simulations to coordinate the
charging of a large fleet of electric vehicles are presented.

Each of the chapters 2,3,5,6 and 7 is based on a journal article that has been accepted or submitted for
publication, or for a conference proceeding reviewed and accepted. Chapter 4 is based on a working paper that
will be soon submitted to a journal for publication.

• Chapter 2 is based on the preprint [233], submitted for publication.

• Chapter 3 is based on the conference paper [238] presented at the 2021 IEEE Conference on Innovative
Smart Grid Technologies (ISGT).

• Chapter 4 is based on the working paper [235].

• Chapter 5 is based on the preprint [234], submitted for publication.

• Chapter 6 is based on the journal paper [236], accepted for publication in Applied Mathematics & Opti-
mization.

• Chapter 7 is based on the preprint [237], submitted for publication.
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1.4.1 Chapter 2: Optimality conditions of an optimal control problem for the
continuity equation arising in smart charging

This chapter is focused on the mathematical modeling and the characterization of the solutions of the optimal
charging of a large population of identical plug-in electric vehicles (PEVs) with hybrid state variables (continuous
and discrete). A mean field optimal control problem of hybrid processes with congestion constraints is introduced
and studied. Since the seminal work by Benamou and Brenier [21] in optimal transport, the analysis of the
optimilatiy conditions of mean field control problems heavily relies on the duality theory [110, 265]. This duality
approach is revisited in the so-called variational approach used in MFG theory in [53], where the weak solution
of the MFG system is characterized as the minimizer of some optimal control of Hamilton-Jacobi and Fokker-
Planck equations. This approach allows to use optimization techniques to prove the existence and uniqueness
of the solution of MFG and MFC problems. We refer to [5, 25, 40, 54, 202] and the references therein. The
application of the variational approach is also motivated by the numerical resolution of MFG problems [23, 40,
41]. In this chapter we deal with a congestion constraint on the measure. MFG with density constraints is first
investigated in [230] where the density of the population of a first order MFG problem does not exceed a given
threshold, then in [190] where stationary second order MFGs are considered and in [55] for first order MFGs.
A MFG problem in a finite state space and discrete time settings with congestion constraint is studied in [32],
also by variational methods. The articles cited above looked only at problems with either continuous or discrete
state variables, while we consider hybrid state variables.

More precisely, the problem takes the following form. We consider a finite time interval [0, T ] and a hybrid
state space equal to the product [0, 1]× I, where I is a finite space. The continuity equation is given by:

∂tmi + ∂s(mibi) = −
∑
j ̸=i

(αi,jmi − αj,imj) on I × (0, T )× (0, 1),

mi(0) = m0
i on I × [0, 1],

(1.4.1)

where m ∈ C0([0, T ],P([0, 1] × I)), m0 ∈ P([0, 1] × I) is the given initial distribution, b : I × [0, 1] → R is a
velocity field and is given, and the control α : I × I × [0, T ]× [0, 1]→ R+ is a jump intensity. The distribution
m is subject to the following congestion constraints:

mi(t, [0, 1]) ⩽ Di(t) ∀(i, t) ∈ I × [0, T ], (1.4.2)

where D : [0, T ]→ R∗
+ is given. The objective function J is defined as follows:

J(m,α) :=
∑
i∈I

∫ T

0

∫ 1

0

(
ci(t, s) +

∑
j∈I,j ̸=i

L(αij(t, s))
)
mi(t, ds)dt+

∑
i∈I

∫ 1

0

gi(s)mi(T, ds). (1.4.3)

The purpose of this chapter is to study the optimization problem:

inf
m,α

J(m,α)

where (m,α) is a weak solution of (1.4.1) and satisfies (1.4.2).
(P )

This work is motivated by the optimal charging of a population of PEVs controlled by a central planner. The
continuous variable s ∈ [0, 1] in (1.4.1) represents the level of battery of a PEV. The discrete variable i ∈ I
represents the mode of charging (e.g. idling, charging, discharging, etc...). For any (t, s, i) ∈ [0, T ]× [0, 1]×I, the
value mi(t, s) represents the proportion of PEVs at time t at state (s, i). The given velocity field bi(s) denotes the
power of charge or discharge of a PEV in mode i and with battery level s. For any (t, s, i, j) ∈ [0, T ]×[0, 1]×I×I,
the value αi,j(t, s) denotes the jump intensity of PEVs from the state (s, i) to the state (s, j) at time t. The
congestion constraint (1.4.2) avoids high demand of energy at each moment over the period. The cost function
L in (1.4.3) penalizes high values of α. It aims at avoiding the synchronization of jumps of the PEVs and the
consequent instability of the electrical network. The value ci(t, s) corresponds to the instantaneous cost per
PEV to pay at time t ∈ [0, T ) at state (s, i); gi(s) is the final cost per PEV to pay at state (s, i).

The main result of this chapter is the following system of optimality conditions

Theorem 1.4.1. Assume there exists ε0 > 0 such that:

ε0 < Di(t)−m0
i ([0, 1]) ∀(t, i) ∈ [0, T ]× I,
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then (m,α) is a solution to (P ), if and only if there exists a pair (φ, λ) ∈
(
Lip([0, T ]× I × [0, 1]) +BV ([0, T ]×

I)
)
×M+([0, T ] × I) such that αi,j = H ′(φi − φj) and (φ, λ,m) is a weak solution of the following system on

[0, T ]× I × [0, 1]: 

−∂tφi − bi∂sφi − ci − λi +
∑

j∈I,j ̸=i

H(φj − φi) = 0

∂tmi + ∂s(mibi) +
∑
j ̸=i

(H ′(φi − φj)mi −H ′(φj − φi)mj) = 0

mi(0, s) = m0
i (s), φi(T, s) = gi(s)∫ 1

0

mi(t, ds)−Di(t) ⩽ 0, λi ⩾ 0∑
i∈I

∫ T

0

(∫ 1

0

mi(t, ds)−Di(t)

)
λi(dt) = 0

(S)

where H is the Fenchel conjugate of L and H ′ its derivative.

The function φ can be understood as the Lagrange multiplier associated with the dynamic constraint (1.4.1),
and the measure λ as the Lagrange multiplier associated with the congestion constraint (1.4.2). A duality
approach is adopted to obtain (S). More explicitly, we relax the dynamics (1.4.1) and the congestion constraint
(1.4.2). Given the Hamilton-Jacobi equation on (0, T )× (0, 1)× I:

−∂tφi − bi∂sφi − ci(t, s)− λi +
∑

j∈I,j ̸=i

H(φj − φi) ⩽ 0 on (0, T )× (0, 1)× I,

φi(T ) ⩽ gi on [0, 1]× I,
(1.4.4)

the resulting relaxed problem is then expressed as the dual of the following convex problem

inf
(φ,λ)

λ∈M+([0,T ]×I)

∑
i∈I

∫ 1

0

−φi(0, s)m0
i (ds) +

∫ T

0

Di(t)λi(dt)

s.t. (φ, λ) sub solution of (1.4.4).

(D)

The regularity properties of φ ∈ Lip([0, T ]× [0, 1]× I)+BV ([0, T ]× I), for any weak solution (λ, φ,m) of (S),
is obtained under suitable assumptions on the data b, g and c. As a result, the optimal control α is bounded and
Lipschitz continuous in space uniformly w.r.t. the time variable, and the measure m is in Lip([0, 1],P([0, 1]×I)).
We show that, if the initial distribution m0 is absolutely continuous w.r.t. the Lebesgue measure and has a
smooth density, then the measure m is absolutely continuous w.r.t. the Lebesgue measure and its density is
Lipschitz continuous. These regularity results will be exploited in Chapter 5 to establish the connection between
the finite population problem and the mean field one. Finally, regularity results on the Lagrange multipliers
(φ, λ) are enhanced in Chapter 4, where we show that the absolutely continuous part of λ is a L∞ function and
its singular part a Dirac mass at final time T .

1.4.2 Chapter 3: Computation and implementation of an optimal mean field con-
trol for smart charging

In this chapter, we propose an algorithm to solve numerically the mean field optimal control problem
introduced in Chapter 2. An implementation procedure is presented and tested in a use case with a finite
number of electrical vehicles. A mean field control problem, that is equivalent to problem (P ), up to a change of
variable, is discretized, with time and space steps respectively ∆t and ∆s (satisfying T = NT∆t and 1 = Nh∆s).
The variable mk,ℓ

i denotes the proportion of vehicles in mode i ∈ I with a state of charge (SoC for short) lying
in [ℓ∆s, (ℓ+ 1)∆s) at time tk := k∆t, Ek,ℓi,j is the frequence of switches from mode i to mode j for PEVs with
a SoC lying in [ℓ∆s, (ℓ+ 1)∆s) at time tk. A splitting method is applied to discretize the continuity equation.
The variable mk+ 1

2 ,ℓ
i is introduced to first take into account the transfers of PEVs from one mode to another:

m
k+ 1

2 ,ℓ
i := mk,ℓ

i +∆t
∑

j∈I\{i}

Ek,ℓj,i − E
k,ℓ
i,j . (1.4.5)
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The convection (induced by the charging rate b) is then considered by applying an upwind scheme

mk+1,ℓ
i −mk+ 1

2 ,ℓ
i

∆t
+
F k,ℓi − F k,ℓ−1

i

h
= 0, (1.4.6)

where F k,ℓi depends on mk
i and on the sign of bi. The congestion constraint (1.4.2) is discretized by

Nh∑
j=0

mk,j
i ∆s ⩽ Di(tk) ∀i ∈ I, k ∈ {0, . . . , NT }, (1.4.7)

and a final constraint is considered instead of a final cost

∑
i∈I

s∑
ℓ=0

mNT ,ℓ
i = 0 ∀i ∈ I. (1.4.8)

The discretized cost is of the form

J̄(m,E) :=

NT−1∑
k=0

∑
i∈I

pki

Nh−1∑
ℓ=0

mk,ℓ
i ∆s∆t+

NT−1∑
k=0

∑
i,j∈I
i̸=j

Θi,j(m
k
i , E

k
i,j)∆t.

where pi can be considered as an electricity cost or a reward, and Θi,j : R2 7→ R is a convex function w.r.t.
both variable. The discretized optimization problem is

inf
m∈RNm ,E∈RNE

J̄(m,E)

(m,E) are subject to (1.4.5)− (1.4.8).
(1.4.9)

This finite dimensional problem is solved using the Chambolle-Pock algorithm. This algorithm is introduced in
[67] and belongs to the class of primal-dual algorithms. It has been successfully applied to finite dimensional
MFG in [32] and to discretized MFG problems [40]. Two optimization problems having the structure of (1.4.9)
but with different cost functions are numerically solved. The objective of these examples is to understand and
analyze how the central planner responds to different peak and off-peak pricing, and to compare different ways
to penalize transfers. We show that certain functions Θ allow to avoid both multiple switches per PEV and
synchronization effects among the population of PEVs.

1.4.3 Chapter 4: Regularity of Lagrange multipliers for a mean field control prob-
lem arising in smart charging

This chapter is devoted to the regularity analysis of the Lagrange multiplier λ associated with the constraint
(1.4.2) of Problem (P ). The regularity of the Lagrange multipliers is motivated in the litterature for several
reasons: to improve the regularity of the solution of some optimal control problems, to obtain second order
optimality conditions or to establish the convergence of some numerical methods. Due to the continuity of the
state variables, the Lagrange multipliers are expected to be Borel measures for pure state pointwise constraints,
see for e.g. [61, 218]. For elliptic and parabolic control problems, the Lavrentiev regularization, consisting in
transforming the pure state constraints into mixed control-state constraints, enables to prove the existence of
Lagrange multipliers in L2 or even in L∞, see [251] and the references therein. In this chapter we follow a
penalization approach that has been first developed in the context of optimal control with state constraints in
finite dimension in [47], where the authors apply the Maximum Principle on the penalized problem to obtain
optimality conditions on the original problem with state constraints. Since then, this method has been exploited
to MFG problems with constraints on agents state [12, 46]. Recently, the penalizing method has been extended
to the optimal control of the Fokker-Planck equation with smooth density constraints in [82]. The author gives
the system of optimality conditions for non-linear cost and constraint functionals of the measure variable, and
shows the existence of a Lagrange multiplier in L∞ and the Lipschitz continuity of the optimal controls. Such
regularity results on the solutions of a constrained problem are consistent with the results obtained originally
for control problem of finite dimensional processes [135].

Considering the optimization problem (P ) introduced in Chapter 2 and the associated optimality conditions
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stated in Theorem 1.4.1, the main result of this chapter is the following theorem.

Theorem 1.4.2. If the parameter D of the congestion constraint (1.4.2) is time independent, then for any
solution (m,α) of Problem (P ), there exists (φ, λ) ∈ Lip([0, T ] × [0, 1] × I) ×M+([0, T ] × I) and (λac, β) ∈
L∞((0, T )× I,R+

)
×R|I|

+ such that (φ, λ,m) is a weak solution of the system (S) and λ satisfies, for any i ∈ I,

λi = λaci L+ βiδT ,

where L denotes the Lebesgue measure on [0, T ] and δT the Dirac measure at time T ∈ R+.

This result is obtained by introducing a penalized problem. First, for any i ∈ I the function Ψi is defined,
for any µ ∈ P([0, 1]× I), by:

Ψi(µ) := µi([0, 1])−Di. (1.4.10)

Then, considering the penalization parameters ε, δ > 0, the penalized objective function is given by

Jε,δ(m,α) := J(m,α) +

∫ T

0

1

ε

∑
i∈I

Ψ+
i (m(t))dt+

1

δ

∑
i∈I

Ψ+
i (m(T )), (1.4.11)

where, for any i ∈ I and t ∈ [0, T ], Ψ+
i (m(t)) := max

(
0,Ψi(m(t))

)
. The penalized problem is:

inf
(m,α)

Jε,δ(m,α)

where (m,α) is a weak solution of (1.4.1).
(P ε,δ)

The first step of the proof is to show that if a couple (m,α) is a solution of Problem (P ε,δ), then there exists
(φ, λ, β) ∈ Lip([0, T ]× I × [0, 1])× L∞([0, T ]× I,R+)× (R+)

|I| such that αi,j = H ′(φi − φj) on {mi > 0} and
(φ, λ, β,m) is a weak solution of the following system on [0, T ]× [0, 1]× I:

−∂tφi − bi∂sφi − ci −
λi
ε

+
∑

j∈I,j ̸=i

H(φi − φj) = 0,

∂tmi + ∂s(mibi) +
∑
j∈I

H ′(φi − φj)mi −H ′(φj − φi)mj = 0,

mi(0) = m0
i , φi(T ) = gi +

βi
δ
,

(Sε,δ)

where (λ, β) satisfies

λi(t) =

 0 if Ψi(m(t)) < 0,
∈ [0, 1] if Ψi(m(t)) = 0,
1 if Ψi(m(t)) > 0,

βi :=

 0 if Ψi(m(T )) < 0,
∈ [0, 1] if Ψi(m(T )) = 0,
1 if Ψi(m(T )) > 0.

The system of optimality conditions (Sε,δ) is obtained by following the linearization method developed in [39]
and applied for penalized control problems [82].

The second step of the proof consists in showing that for ε > 0 and δ > 0 small enough, any solution of
Problem (P ε,δ) satisfies the congestion constraint (1.4.2), i.e. one has for any solution (m,α) of Problem (P ε,δ)
that Ψi(m(t)) ⩽ 0, for any (i, t) ∈ I × [0, T ]. This result follows the proof by contradiction developed in [47].
Consequently, for ε > 0 and δ > 0 small enough, Problem (P ε,δ) and Problem (P ) have the same solutions.

A first consequence of Theorem 1.4.2 is that any optimal control α of Problem (P ) is in Lip([0, T ]×[0, 1]×I2).
Secondly, it enables to propose a numerical scheme to solve Problem (D). An explicit finite difference scheme is
used to discretize the Hamilton-Jacobi equation (1.4.4) and the convergence of the solutions of the discretized
problems to a solution of Problem (D) is proved. Finally, we are able to build a sequence of weak solutions of
the continuity equation (1.4.1) {(mn, αn)}n, based on the solutions of the discretized problems, that converges
to a solution of Problem (P ), when the time and space steps converge to 0.
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1.4.4 Chapter 5: Mean field approximation of an optimal control problem for the
continuity equation arising in smart charging

This chapter deals with the optimal control of a finite population of hybrid processes, modeling the optimal
charging of a large population of identical PEVs. We prove the convergence, when the number of PEVs goes to
infinity, of the solutions and that of the value of a sequence of the finite population problems respectively to a
solution and the value of Problem (P ), introduced in Chapter 2. The connection between the optimal control
of a large population of agents and a mean field control problem is first established in [112], in the specific
case where the dynamics of each agent is described by an ODE. The convergence of the value and that of the
solutions of the optimal control of a finite population of interacting McKean-Vlasov dynamics, to the value
and that a solution of a mean field optimal control problem, is proved in [163] in fairly general settings (the
results hold for degenerate diffusion). Convergence results in stochastic settings can be found in [51, 93, 94]. In
deterministic settings, the Eulerian, Lagrangian and Kantorovich formulations of a finite population and a mean
field control problems are studied in [62], and the convergence of the value functions of the finite population
Lagrangian and Eulerian problems are established. In a finite state space setting, the rate of convergence of the
value function of the finite population problem to the value function of the mean field problem is proved to be of
order 1/

√
n in [64]. While problems in the literature deal with either continuous or discrete state variables, this

work addresses the analysis of the mean field limit of hybrid processes. A particularity of the model developed
in this chapter is that the nature of the dynamics in the finite population problem is different from that in the
mean field problem. While the switches are controlled and deterministic in the finite population setting, the
jumps of the discrete variable of each process are stochastic and the control is on the transition rate in the mean
field problem. Also, a congestion constraint is considered in the optimization problem, which is unusual among
the existing literature studying mean field limit of control problems (see however [66] for results in deterministic
settings and [80, Chapter 4] for results in stochastic settings).

In the finite population model, we consider a population of n PEVs (n ∈ N∗) controlled by a central planner,
with the same state space [0, 1] × I where I is a finite set, as in Chapter 2, and with a time interval [0, T ].
A time and space discretization depending on n is introduced, with time step ∆tn and space step ∆sn (both
indexed by the superscript n), such that Nn

T := T/∆tn and Nn
s := 1/∆sn are integers. The time mesh is

{0, tn1 , . . . , tnk+1, . . . , T} with tnk := k∆tn, for any k ∈ {0, . . . , Nn
T }. The space mesh is {0, yn1 , . . . , ynp , . . . , 1} with

ynp := p∆sn, for any p ∈ {0, . . . , Nn
s }. Each vehicle ℓ is described by its state variable xℓt := (iℓt, s

ℓ
t) ∈ I × [0, 1],

with a given initial datum xℓ0 = (iℓ0, s
ℓ
0). The discrete variable iℓ, denoting the mode of charging, can switch

deterministically and only at fixed times in {tn1 , · · · , tnNn
T−1}, while the continuous variable sℓ, representing the

SoC, is governed by an ODE depending on the mode of charging. Between two jumps of the variable iℓ, i.e.
within each interval [tnk , t

n
k+1), the dynamics of xℓ is deterministic and is given by:

iℓt = iℓtnk ,
dsℓt
dt

= b(iℓt, s
ℓ
t) for any t ∈ [tnk , t

n
k+1) and with sℓtnk = lim

τ↑tnk
sℓτ . (1.4.12)

The population of n processes is subject to the same congestion constraints as (1.4.2) in Chapter 2,

1

n

n∑
ℓ=1

1i(i
ℓ
t) ⩽ Di(t) ∀(i, t) ∈ I × [0, T ]. (1.4.13)

We denote by (i,s) the set of n trajectories {(iℓ, sℓ)}1⩽ℓ⩽n satisfying (1.4.12) and (1.4.13). The objective function
J n for the finite population problem is defined by:

J n(i,s) := 1

n

n∑
ℓ=1

∫ T

0

c(t, iℓt, s
ℓ
t)dt+ g(iℓT , s

ℓ
T ) +

∑
i,j∈I,j ̸=i

Nn
T−1∑
k=1

Nn
s −1∑
p=0

L

(
Qk,pi,j (i,s)

∆t

)
∆tQk,pi (i,s),

where Qk,pi,j (i,s) is the proportion of PEVs among the processes with a state in {i} × [ynp , y
n
p+1) that switch

their discrete state i to j at time tnk , and Qk,pi (i,s) is the proportion of PEVs among the overall population of
processes that has a state in {i} × [ynp , y

n
p+1) at time tnk

− (just before the jumps). The purpose of this chapter
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is to study the mean field limit of the following finite population optimal control problem:

inf
(i,s)
J n(i,s). (Pn)

The main result of this chapter is the following theorem, where Problem (P ) is introduced in Chapter 2.

Theorem 1.4.3. There exists K > 0 such that, for any n ∈ N,

val(Pn)−
K

n
1
3

⩽ val(P ) ⩽ lim inf
N→∞

val(PN ).

To prove the second inequality, i.e. val(P ) ⩽ lim inf
N→∞

val(PN ), we introduce for any set of n trajectories (i,s)
the empirical distribution mn of the processes and the empirical measure En of the switches:

mn(t) :=
1

n

n∑
ℓ=1

δ(iℓt,sℓt) and Eni,j :=
1

n

n∑
ℓ=1

Nn
T−1∑
k=1

1i(i
ℓ
tnk

−)1j(i
ℓ
tnk
)δtnk ⊗ δsℓtn

k

. (1.4.14)

We show that, for any (i,s), (mn, En) is a weak solution of the continuity equation

∂tm
n
i + ∂s(m

n
i bi) = −

∑
i,j∈I,j ̸=i

(Eni,j − Enj,i) on I × (0, T )× (0, 1). (1.4.15)

We introduce the cost function

Jn(m,E) :=
∑
i∈I

∫ T

0

∫ 1

0

ci(t, s)mi(t, ds)dt+
∑
i∈I

∫ 1

0

gi(s)mi(T, ds)

+
∑

i,j∈I,i̸=j

Nn
T−1∑
k=1

Nn
s −1∑
p=0

L

(
Ei,j({tk}, [ynp , ynp+1))

∆tnmi(tnk
−, [ynp , y

n
p+1))

)
∆tnmi(t

n
k
−, [ynp , y

n
p+1)).

By applying a superposition principle, which is a reminiscent of the one in [62], we show that the problem

inf
(m,E)

Jn(m,E)

s.t. (m,E) is a weak solution of (1.4.15) and m statisfies (1.4.2),
(1.4.16)

is equivalent to Problem (Pn). By compactness and lower semi-continuity arguments, we obtain that

val(P ) ⩽ lim inf
n→∞

inf
(m,E)

Jn(m,E) = lim inf
n→∞

inf
(i,s)
J n(i,s). (1.4.17)

Then, the first inequality in Theorem 1.4.3, i.e. val(Pn) −
K

n
1
3

⩽ val(P ), is obtained by using the regularity

results derived in Chapter 2. We show that by implementing a mean field optimal control α to a finite population
of n hybrid processes, one can obtain the following estimate between the empirical distribution of the finite
population mn and the optimal mean field distribution m,

W(m(t),mn(t)) = O
( 1

n
1
3

)
∀t ∈ [0, T ],

where W is the 1-Wasserstein distance. The previous estimate and the equivalence between problems (1.4.16)
and (Pn) enables to obtain the inequality

inf
(i,s)
J n(i,s)− C

n
1
3

⩽ inf
(m,α)

J(m,α). (1.4.18)

The convergence of the value of Problem (Pn) to the value of Problem (P ) is a consequence of the previous
inequality and of (1.4.17). In addition, by compactness arguments, we show that a subsequence of solutions
{(mn, En)}n of the Problem (1.4.16) weakly converges to (m,αm), where (m,α) is a solution of (P ).
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1.4.5 Chapter 6: Decomposition of convex high dimensional aggregative stochas-
tic control problems

We consider the framework of convex high dimensional stochastic control problems, in which the controls are
aggregated in the cost function. As a first contribution, we introduce a modified problem, whose optimal control
is under some reasonable assumptions an ε-optimal solution of the original problem. As a second contribution,
we present a decentralized algorithm whose convergence to the solution of the modified problem is established.
Finally, we study the application of the developed tools in an engineering context, studying a coordination
problem for large populations of domestic thermostatically controlled loads (TCLs). We highlight that, while
we propose in Chapter 3 a deterministic and centralized algorithm to solve an optimal control problem in infinite
dimension with aggregated state constraints introduced in Chapter 2, this chapter develops a stochastic and
decentralized algorithm. Finally, contrary to the model presented in Chapter 2, the homogeneity of the agents
is not assumed.

This work is motivated by its potential applications to the distributed coordination of flexible electrical
appliances, to support power system operation in a context of increasing penetration of renewables. This
chapter is related to the work of De Paola et al. [84], where a distributed solution is presented for the operation
of a population of n = 2 × 107 refrigerators providing frequency support and load shifting. The potential
practical application of our work also considers a large population of TCLs which, as extension to [84], have
stochastic dynamics. The proposed approach is able to minimize the overall system costs in a distributed way,
with each TCL determining its optimal power consumption profile in response to price signals.

The considered problem belongs to the class of stochastic control: looking for strategies minimizing the
expectation of an objective function under specific constraints. The Dynamic Programming Principle [28] and
the SDDP are not suitable in our settings due to the number of agents. To tackle this type of high dimensional
problems, it is natural to investigate decomposition techniques in the spirit of the Dual Approximation Dynamic
Programming (DADP) [123, 172]. This approach is characterized by a price decomposition of the problem, where
the stochastic constraints are projected on subspaces such that the associated Lagrangian multiplier is adapted
for dynamic programming. Then the optimal multiplier is estimated by implementing Uzawa’s algorithm. In
this chapter, in the same vein as DADP, we propose a price decomposition approach restricted to deterministic
prices. This new approach takes advantage of the large population number in order to introduce an auxiliary
problem where the coupling term is purely deterministic. The present chapter aims at solving problem (P1)
involving a large number n of agents indexed by i ∈ {1, · · · , n}, of the form:

(P1)


min
u∈U

J(u)

J(u) := E

[
F0

( 1
n

n∑
i=1

ui(ωi, ω−i)
)
+

1

n

n∑
i=1

Gi
(
ui(·, ω−i), ωi

)]
.

Here the noise ω := (ω1, . . . , ωn) belongs to Ω := Πni=1Ω
i, where (Ωi,F i, µi) is a probability space, and (Ω,F , µ)

is the corresponding product probability space. Each decision variable ui is F-measurable (and not only F i-
measurable), square summable with value in a Hilbert space U. Also, U := Πni=1Ui where Ui is, for i = 1 to
n, a closed convex subset of L2(Ω,U). The cost function is the sum of a coupling term F0 : U → R, function

of the aggregate strategies
1

n

n∑
i=1

ui, and local terms functions of the local decision ui and local noise ωi with

Gi : L
2(Ωi,U)×Ωi → R. The numerical difficulty of Problem (P1) is related to the randomness of the aggregate

term 1
n

∑n
i=1 u

i involved in the coupling function F0. We introduce the set of decentralized controls:

Û :=

n∏
i=1

Ûi, where Ûi := {ui ∈ Ui |ui is T 1 ⊗ . . .⊗F i ⊗ T i+1 ⊗ . . .⊗ T n −measurable}, (1.4.19)

where T j is the trivial σ-field {∅,Ωj}. If the control u is decentralized, since the variance of the sum of
independent random variables is equal to the sum of the variances of these random variables, the aggregate
term 1

n

∑n
i=1 u

i can be approximated by 1
n

∑n
i=1 Eui when n is large enough. The following approximation of
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Problem (P1) is introduced:

(P2)


min
u∈U

J̃(u)

J̃(u) := F0

(
1

n

n∑
i=1

Eui
)

+
1

n
E

[
n∑
i=1

Gi(u
i(·, ω−i), ωi)

]
.

We first show that, without loss of optimality in Problem (P2), one can restrict the control set U to Û . We
denote by (P̂2), the minimization problem associated with the objective function J̃ and with the feasible set Û .
Problem (P̂2) can be written as:

(P̂ ′
2)



min
u∈Û,v∈U

J̄(u, v),

J̄(u, v) := F0(v) +
1

n
E

[
n∑
i=1

Gi(u
i, ωi)

]
,

s.t
1

n

n∑
i=1

Eui − v = 0.

As a first contribution, this chapter shows that under some convexity and regularity assumptions on F0 and
(Gi)i∈{1,...,n}, any solution of Problem (P2) is an εn-solution of (P1), with εn → 0 when n → ∞. In addition,
we will see that an approach of price decomposition for (P2), based on the formulation (P̂ ′

2), is tractable for
dynamical problems, since the minimization of the Lagrangian obeys to dynamic programming principle. Since
computing the dual cost of (P̂ ′

2) is expensive, we propose Stochastic Uzawa and Sampled Stochastic Uzawa
algorithms relying on the Robbins-Monroe algorithm, in the spirit of the stochastic gradient. Their convergence
is established, based on the proof provided by [119] for the convergence of the stochastic gradient in a Hilbert
space. We check the effectiveness of the Stochastic Uzawa algorithm on a linear quadratic Gaussian framework,
and we apply the Sampled Stochastic Uzawa algorithm to a model of power system, inspired by the work of A.
De Paola et al. [84].

1.4.6 Chapter 7: A decentralized algorithm for a MFC problem of Piecewise
Deterministic Markov Processes

This chapter aims at extending the decentralized approach developed in Chapter 6 to a non-convex frame-
work, with unbounded controls, allowing for more realistic dynamics ruling the evolution of each agent state. In
particular, we are interested in the aggregative control of Piecewise Deterministic Markov Processes (PDMPs
for short) in a mean field control framework. PDMPs are introduced in [83] as a class of non-diffusion stochas-
tic models, mixing random jumps and deterministic dynamics between jumps. Our first contribution lies in
the originality of the proof of a saddle point existence which follows a completely different path from the one
developed in Chapter 6. In particular, we make use of regularity results on the solution of the Hamilton-Jacobi
equation arising in optimal control of PDMPs developed in Chapters 2 and 4, to show the existence of a saddle
point of our Lagrangian problem. Our second contribution consists in proving that the Stochastic Uzawa Algo-
rithm proposed in Chapter 6 is still providing a converging sequence of controls in this new setting involving
the PDMP dynamics which violates the convexity conditions originally exploited. Finally, an application to the
smart charging of a fleet of PEVs by an aggregator illustrates the performance and the interest of the approach.
Similarly to Chapters 2-5, the state of each EV is composed of a discrete and a continuous variable and a
mean field assumption is considered. However, while the MFC problem of hybrid state variables in Chapters
2 and 5 is formulated as an optimal control of partial differential equation problem, and numerically approx-
imated in a deterministic and centralized manner, this chapter focuses on stochastic techniques and relies on
the decentralized and stochastic algorithm proposed in Chapter 6 to solve this MFC problem.

More precisely, we consider the time interval [0, T ] with T > 0 and a population of n independent and
identically distributed processes, controlled by a central planner via a common feedback control α that belongs
to the space of feedbacks A. The state of an agent, controlled by the jump intensity α, is given at time t
by Xα

t = (Y αt , Z
α
t ) with Y αt ∈ I and Zαt ∈ [0, 1]. As in Chapter 2, the discrete variable Y α represents the

charging mode of a vehicle and the continuous variable Zα represents the SoC. The process Xα is said to be a
PDMP(b, α), if Y α is a jump process with values in I switching spontaneously at jump times {Tαk }k∈N, given by
a Poisson process with intensity α, while Zα follows a deterministic dynamics between two consecutive jumps
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Zαt = ϕTα
k ,Z

α
Tα
k

(Y αTα
k
, t) for t ∈ [Tαk , T

α
k+1), where the flow ϕ is the unique solution of the ordinary differential

equation:
∂tϕτ,z(j, t) = b(j, ϕτ,z(j, t)) with ϕτ,z(j, τ) = z ,

and b is a function given. The objective function J is defined by:

J(α) :=

∫ T

0

f
(
t,E[p(t,Xα

t )]
)
dt+

∫ T

0

E

c(t,Xα
t ) +

∑
j∈I

L(αj(t,X
α
t ))

 dt+ E [g(Xα
T )] ,

where Xα is a PDMP(b, α) and the function f represents a coupling cost depending on the expectation of
p(t,Xα

t ) (p being a smooth function). This chapter is dedicated to the following problem:

min
α∈A

J(α). (Ppdmp)

Considering a non linear function f , the cost function J is nonlinear w.r.t E
[
p(t,Xα

t )
]
, consequently Problem

(Ppdmp) goes beyond the scope of optimal control of PDMP. The existence of a solution to Problem (Ppdmp)
is established. We propose to numerically solve Problem (Ppdmp) by applying the Stochastic Uzawa Algorithm
introduced in Chapter 6. This algorithm generates the sequence of control {αk}k whose convergence to a solution
of Problem (Ppdmp) is proved. This result can not be obtained by a direct application of the convergence results
in Chapter 6, which relies on additional assumptions that are not verified in this framework that involves
unbounded controls and PDMP dynamics.
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1.5 Contenu du manuscrit et présentation des principaux résultats
(en français)

Cette thèse porte principalement sur la modélisation mathématique d’un problème de chargement optimal
d’une flotte de véhicules électriques. Nous formulons le problème de chargement optimal comme un problème
de contrôle champ moyen au Chapitre 2. Nous obtenons une caractérisation des solutions ainsi que des résultats
de régularité. Le Chapitre 3 est dédié à l’approximation numérique du problème de contrôle champ moyen
examiné au Chapitre 2, et à son application à un problème de charge intelligente. Le Chapitre 4 étudie la
régularité des multiplicateurs de Lagrange introduits au Chapitre 2. Une estimation L∞ est obtenue pour
le multiplicateur de Lagrange associé à la contrainte de congestion sur la distribution des états. Ce résultat
est exploité pour démontrer la convergence d’un schéma numérique introduit au Chapitre 2. Le Chapitre 5
a pour objectif de justifier l’approche champ moyen adoptée aux deux précédents chapitres du manuscrit, en
démontrant la convergence, quand le nombre d’agents tend vers l’infini, de la valeur du problème de contrôle
avec un nombre fini d’agents vers la valeur du problème de contrôle optimal introduit au Chapitre 2. La
convergence de la suite de solutions des problèmes avec population finie vers une solution du problème de
contrôle champ moyen est également obtenue. Un autre modèle est étudié au Chapitre 6, dans lequel un
problème convexe stochastique de grande dimension, avec une population d’agents hétérogènes, est étudié. Une
version modifiée du problème est introduite, dont le contrôle optimal est, sous certaines conditions raisonnables,
un contrôle ε-optimal pour le problème initial. Nous présentons également un algorithme décentralisé dont
la convergence vers la solution du problème modifié est établie. Enfin, le Chapitre 7 propose une approche
décentralisée pour le problème de contrôle champ moyen de Processus de Markov Déterministes par Morceaux
(PDMP). La convergence de l’algorithme introduit au Chapitre 6 est démontrée dans ce cadre particulier et
des simulations illustrant la coordination du chargement d’une flotte importante de véhicules électriques sont
présentées. Chacun des chapitres 2,3,5,6 et 7 est basé sur un article de recherche qui a été accepté ou soumis
pour publication dans une revue scientifique ou à une conférence. Le Chapitre 4 est basé sur un document de
travail qui sera bientôt soumis à une revue scientifique.
• Le Chapitre 2 est basé sur la prépublication [233], soumise à une revue pour publication.
• Le Chapitre 3 est basé sur l’article de conférence [238] présenté lors de la conférence 2021 IEEE Conference

on Innovative Smart Grid Technologies (ISGT).
• Le Chapitre 4 est basé sur le document de travail [235].
• Le Chapitre 5 est basé sur la prépublication [234], soumise à une revue pour publication.
• Le Chapitre 6 est basé sur l’article [236], publié dans la revue Applied Mathematics & Optimization.
• Le Chapitre 7 est basé sur la prépublication [237], soumise à une revue pour publication.

1.5.1 Chapitre 2 : Conditions d’optimalité d’un problème de contrôle optimal de
l’équation de continuité survenant dans un problème de charge intelligente

Ce chapitre se focalise sur la modélisation mathématique et la caractérisation des solutions d’un problème de
chargement optimal d’une flotte importante de véhicules électriques rechargeables (PEVs), avec variables d’état
hybrides (continue et discrète). Un problème de contrôle champ moyen de processus hybrides avec contraintes
de congestion est introduit puis étudié. Depuis le travail fécond de Benamou et Brenier [21] en transport
optimal, l’analyse des conditions d’optimalité d’un problème de contrôle champ moyen s’appuie largement sur
le principe de dualité [110, 265]. L’approche par dualité est revisitée par l’approche variationnelle utilisée en Jeux
à Champ Moyen (MFG) dans [53], où la solution faible d’un système MFG est caractérisée comme la solution
d’un problème de contrôle optimal d’une équation d’Hamilton-Jacobi et d’une équation de continuité. Cette
approche permet d’exploiter des techniques d’optimisation pour obtenir des résultats d’existence et d’unicité à
des problèmes de contrôle et de jeux à champ moyen. Nous nous référons à [5, 25, 40, 54, 202] et aux références
qui y figurent. L’utilisation de l’approche variationnelle est également motivée par l’approximation numérique
des problèmes de MFG [23, 40, 41]. Dans ce chapitre nous considérons une contrainte de congestion sur la
mesure. Les problèmes MFGs avec contraintes de congestion ont été pour la première fois étudiés dans [230], où
la densité de la population d’agents ne peut dépasser un certain seuil, puis dans [190] où un système MFG du
second ordre stationnaire est examiné et dans [55] pour les MFGs du premier ordre. La méthode variationnelle
est également appliquée dans [32] pour résoudre un problème de MFG avec espace d’état fini, temps discret
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et contraintes de congestion. Contrairement aux articles cités ci-dessus qui considèrent des problèmes avec
variables d’état continues ou discrètes, nous étudions dans ce chapitre un problème avec variables hybrides.

Plus précisément, le problème se formule de la façon suivante. Nous considérons un intervalle de temps
fini [0, T ] et un espace d’état hybride égal au produit [0, 1] × I, où I est un espace d’état fini. L’équation de
continuité est donnée par :

∂tmi + ∂s(mibi) = −
∑
j ̸=i

(αi,jmi − αj,imj) sur I × (0, T )× (0, 1),

mi(0) = m0
i sur I × [0, 1],

(1.5.1)

où m ∈ C0([0, T ],P([0, 1] × I)), m0 ∈ P([0, 1] × I) est donnée et est la distribution initiale, b : I × [0, 1] → R
est un champ de vitesse, et le contrôle α : I × I × [0, T ]× [0, 1]→ R+ est une intensité de sauts. La distribution
m est soumise à la contrainte de congestion suivante :

mi(t, [0, 1]) ⩽ Di(t) ∀(i, t) ∈ I × [0, T ], (1.5.2)

où D : [0, T ]→ R∗
+ est donnée. La fonction objectif J est définie par :

J(m,α) :=
∑
i∈I

∫ T

0

∫ 1

0

(
ci(t, s) +

∑
j∈I,j ̸=i

L(αij(t, s))
)
mi(t, ds)dt+

∑
i∈I

∫ 1

0

gi(s)mi(T, ds). (1.5.3)

L’objectif de ce chapitre est d’étudier le problème d’optimisation :

inf
m,α

J(m,α)

où (m,α) est une solution faible de (1.5.1) et satisfait (1.5.2).
(P )

Ce travail est motivé par le chargement optimal d’une population de PEVs contrôlée par un planificateur
central. La variable continue s ∈ [0, 1] dans (1.5.1) représente le niveau de batterie du véhicule. La variable
discrète i ∈ I représente le mode chargement (par exemple inactif, chargement, déchargement, etc...). Pour
tout (t, s, i) ∈ [0, T ]× [0, 1]× I, la valeur mi(t, s) représente la proportion de PEVs à l’instant t et à l’état (s, i).
Le champ de vitesse bi(s) désigne la puissance de charge du PEV en mode i et avec un niveau de batterie s.
Pour tout (t, s, i, j) ∈ [0, T ]× [0, 1]× I× I, la quantité α correspond à l’intensité de sauts des PEVs depuis l’état
(s, i) vers l’état (s, j) à l’instant t. La contrainte de congestion (1.5.2) permet d’éviter de fortes demandes en
puissance à chaque instant au cours de la période. La fonction objectif (1.5.3) pénalise les grandes valeurs de
α. Cette pénalisation a pour objectif d’éviter la synchronisation des sauts des PEVs et l’instabilité sur le réseau
électrique qui en résulte. La quantité ci(t, s) correspond au coût instantané pour un PEV, à l’instant t et à
l’état (s, i) et gi(s) est le coût final par PEV à l’état (s, i). Le principal résultat de ce chapitre est le système
de conditions d’optimalité suivant.

Theorem 1.5.1. S’il existe ε0 > 0 tel que :

ε0 < Di(t)−m0
i ([0, 1]) ∀(t, i) ∈ [0, T ]× I,

alors (m,α) est une solution de (P ), si et seulement si, il existe une paire (φ, λ) ∈
(
Lip([0, T ] × I × [0, 1]) +

BV ([0, T ] × I)
)
×M+([0, T ] × I) tel que αi,j = H ′(φi − φj) et (φ, λ,m) est une solution faible du système

suivant sur [0, T ]× I × [0, 1] :

−∂tφi − bi∂sφi − ci − λi +
∑

j∈I,j ̸=i

H(φj − φi) = 0

∂tmi + ∂s(mibi) +
∑
j ̸=i

(H ′(φi − φj)mi −H ′(φj − φi)mj) = 0

mi(0, s) = m0
i (s), φi(T, s) = gi(s)∫ 1

0

mi(t, ds)−Di(t) ⩽ 0, λi ⩾ 0∑
i∈I

∫ T

0

(∫ 1

0

mi(t, ds)−Di(t)

)
λi(dt) = 0

(S)
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où H est la conjuguée de Fenchel de L et H ′ sa dérivée.

La fonction φ peut être comprise comme le multiplicateur de Lagrange associé à la contrainte sur la dy-
namique du système (1.5.1), et la mesure λ comme le multiplicateur de Lagrange associé à la contrainte de
congestion (1.5.2). Le système (S) est obtenu via une approche par dualité. Plus précisément, la dynamique
(1.5.1) et la contrainte de congestion (1.5.2) sont relaxées. Étant donné l’équation d’Hamilton-Jacobi sur
(0, T )× (0, 1)× I :

−∂tφi − bi∂sφi − ci(t, s)− λi +
∑

j∈I,j ̸=i

H(φj − φi) ⩽ 0 sur (0, T )× (0, 1)× I,

φi(T ) ⩽ gi sur [0, 1]× I,
(1.5.4)

le problème relaxé obtenu est ensuite exprimé comme le problème dual du problème convexe suivant :

inf
(φ,λ)

λ∈M+([0,T ]×I)

∑
i∈I

∫ 1

0

−φi(0, s)m0
i (ds) +

∫ T

0

Di(t)λi(dt)

s.t. (φ, λ) sous solution de (1.5.4).

(D)

Pour toute solution faible (λ, φ,m) de (D), la régularité de φ ∈ Lip([0, T ]×[0, 1]×I)+BV ([0, T ]×I) est obtenue
sous certaines hypothèses sur les données du problème b, g et c. Il en résulte que le contrôle optimal α est borné
et Lipschitz continu par rapport à la variable d’espace, de façon uniforme par rapport à la variable temporelle,
et la distribution m appartient à Lip([0, 1],P([0, 1]×I)). De plus, nous montrons que si la distribution initial m0

est absolument continue par rapport à la mesure de Lebesgue et a une une densité continûment dérivable, alors
la mesure m est absolument continue par rapport à la mesure de Lebesgue et a une densité Lischitz continue.
Ces résultats de régularité sont exploités au Chapitre 5 afin d’établir un lien entre le problème avec population
finie et le problème de limite champ moyen. Enfin, les résultats de régularité sur les multiplicateurs de Lagrange
(φ, λ) sont améliorés au Chapitre 4, où nous montrons que la partie absolument continue de λ est une fonction
L∞ et que sa partie singulière est une masse de Dirac à l’instant final T .

1.5.2 Chapitre 3 : Calcul et implémentation d’un contrôle optimal champ moyen
pour un problème de charge intelligente

Dans ce chapitre, nous proposons un algorithme afin de résoudre numériquement le problème de contrôle
champ moyen introduit au Chapitre 2. Une procédure d’implémentation est présentée et testée dans une étude
de cas avec un nombre fini de véhicules. Un problème de contrôle champ moyen, qui est équivalent au problème
(P ), à un changement de variables près, est discrétisé, avec comme pas en temps et espace respectifs ∆t et ∆s

(satisfaisant T = NT∆t et 1 = Nh∆s). La variable mk,ℓ
i désigne la proportion de véhicules en mode i ∈ I avec

un niveau de batterie (SoC) compris dans [ℓ∆s, (ℓ+ 1)∆s) à l’instant tk := k∆t, Ek,ℓi,j est la fréquence de saut
du mode i vers le mode j pour les PEVs avec un SoC compris dans [ℓ∆s, (ℓ+1)∆s) à l’instant tk. L’équation de
continuité est discrétisé en considérant deux étapes successives. La variable mk+ 1

2 ,ℓ
i est tout d’abord introduite

pour prendre en compte les transferts des PEVs vers et depuis le mode i :

m
k+ 1

2 ,ℓ
i := mk,ℓ

i +∆t
∑

j∈I\{i}

Ek,ℓj,i − E
k,ℓ
i,j . (1.5.5)

La convection (induite par la vitesse de chargement b) est ensuite prise en compte en appliquant un schéma de
type upwind

mk+1,ℓ
i −mk+ 1

2 ,ℓ
i

∆t
+
F k,ℓi − F k,ℓ−1

i

h
= 0, (1.5.6)

où F k,ℓi dépend de mk
i et du signe de bi. La contrainte de congestion (1.5.2) est discrétisée par :

Nh∑
j=0

mk,j
i ∆s ⩽ Di(tk) ∀i ∈ I, k ∈ {0, . . . , NT }, (1.5.7)
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et une contrainte finale, et non un coût final, est considérée

∑
i∈I

s∑
ℓ=0

mNT ,ℓ
i = 0 ∀i ∈ I. (1.5.8)

Le coût discrétisé est de la forme :

J̄(m,E) :=

NT−1∑
k=0

∑
i∈I

pki

Nh−1∑
ℓ=0

mk,ℓ
i ∆s∆t+

NT−1∑
k=0

∑
i,j∈I
i̸=j

Θi,j(m
k
i , E

k
i,j)∆t.

où p peut être considéré comme un coût de consommation de l’électricité ou comme une récompense, et Θi,j :
R2 7→ R est une fonction convexe par rapport aux deux variables. Le problème d’optimisation discrétisé est de
la forme :

inf
m∈RNm ,E∈RNE

J̄(m,E)

(m,E) satisfait (1.4.5)− (1.4.8).
(1.5.9)

Ce problème d’optimisation de dimension finie est résolu numériquement en appliquant l’algorithme de Chambolle-
Pock. Cet algorithme est introduit dans [67] et appartient à la classe des algorithmes primal-dual. Il a été
implémenté avec succès à un problème de MFG de dimension finie [32] et à un problème de MFG discrétisé
[40]. Deux problèmes d’optimisation ayant la même structure que (1.5.9), mais avec des fonctions de coût
différentes, sont résolus numériquement. L’objectif de ces exemples est de comprendre et d’analyser comment
le planificateur central répond à une tarification heures pleines - heures creuses, et de comparer les résultats
selon la façon dont les transferts ont été pénalisés. Nous montrons que certains types de fonction Θ permettent
d’éviter à la fois de nombreux changements de mode de chargement par PEV et des effets de synchronisation
parmi la population de PEVs.

1.5.3 Chapitre 4 : Régularité des multiplicateurs de Lagrange d’un problème de
contrôle champ moyen survenant dans un problème de charge intelligente

Ce chapitre est dédié à l’analyse de la régularité du multiplicateur de Lagrange λ associé à la contrainte
de congestion (1.5.2) du Problème (P ). L’analyse de la régularité des multiplicateurs de Lagrange est présente
dans la littérature pour différentes raisons : pour améliorer la régularité des solutions de problèmes de contrôle
optimal, pour obtenir des conditions d’optimalité du second ordre ou pour établir des résultats de convergence
pour certaines méthodes numériques. En raison de la continuité de la variable d’état par rapport à la variable
temporelle, les multiplicateurs de Lagrange pour les contraintes sur état sont a priori des mesures de Borel, voir
par exemple [61, 218]. Pour les problèmes de contrôle elliptique et parabolique, la régularisation de Lavren-
tiev, consistant à modifier des contraintes sur état en des contraintes mixtes contrôle-état, permet de prouver
l’existence de multiplicateurs de Lagrange dans L2 ou même dans L∞, voir [251] et les références y figurants.
Dans ce chapitre, nous suivons l’approche par pénalisation qui fut d’abord développée pour un problème de
contrôle optimal de dimension finie avec contraintes sur l’état dans [47], où les auteurs appliquent le Principe de
Maximum au problème pénalisé pour obtenir des conditions d’optimalité au problème initial avec contraintes sur
l’état. Depuis, cette méthode a été exploitée pour des problèmes MFG avec contraintes de densité sur l’état des
agents [12, 46]. Récemment, la méthode par pénalisation a été étendue au problème de contrôle optimal d’une
équation de Fokker-Planck avec contraintes sur la densité dans [82]. L’auteur obtient un système de conditions
d’optimalité pour des contraintes et des fonctions de coûts non linéaires par rapport à la distribution des états,
et montre l’existence d’un multiplicateur de Lagrange dans L∞ ainsi que la continuité Lipschitz des contrôles
optimaux. De tels résultats de régularité sur des problèmes avec contraintes sont consistants avec des résultats
obtenus précédemment dans la littérature pour des problème de contrôle sur des processus de dimension finie
[135].

Le principal résultat de ce chapitre porte sur le problème d’optimisation (P ) introduit au Chapitre 2 et sur
le système de conditions d’optimalité énoncé dans le Théorème 1.4.1.

Theorem 1.5.2. Si la fonction D, intervenant dans la contrainte de congestion (1.4.2), est indépendante du
temps, alors pour toute solution (m,α) du Problème (P ) il existe (φ, λ) ∈ Lip([0, T ]× [0, 1]×I)×M+([0, T ]×I)
et (λac, β) ∈ L∞((0, T ) × I,R+

)
× R|I|

+ , tel que (φ, λ,m) est une solution faible du système (S) et λ satisfait,
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pour tout i ∈ I,
λi = λaci L+ βiδT ,

où L désigne la mesure de Lebesgue sur [0, T ] et δT la mesure de Dirac à l’instant T ∈ R+.

Ce résultat est obtenu en introduisant un problème pénalisé. Pour cela, la fonction Ψi est définie pour tout
i ∈ I et tout µ ∈ P([0, 1]× I) par :

Ψi(µ) := µi([0, 1])−Di. (1.5.10)

Étant donné les paramètres de pénalisation ε, δ > 0, la fonction objectif du problème pénalisé est donnée par :

Jε,δ(m,α) := J(m,α) +

∫ T

0

1

ε

∑
i∈I

Ψ+
i (m(t))dt+

1

δ

∑
i∈I

Ψ+
i (m(T )), (1.5.11)

où pour tout i ∈ I et t ∈ [0, T ], Ψ+
i (m(t)) := max

(
0,Ψi(m(t))

)
. Le problème pénalisé est :

inf
(m,α)

Jε,δ(m,α)

où (m,α) est une solution faible de (1.4.1).
(P ε,δ)

La première étape de la preuve est de montrer que si le couple (m,α) est une solution du Problème (P ε,δ), alors
il existe (φ, λ, β) ∈ Lip([0, T ]× I × [0, 1])×L∞([0, T ]× I,R+)× (R+)

|I| tel que αi,j = H ′(φi−φj) sur {mi > 0}
et (φ, λ, β,m) est une solution faible, sur [0, T ]× [0, 1]× I, du système

−∂tφi − bi∂sφi − ci −
λi
ε

+
∑

j∈I,j ̸=i

H(φi − φj) = 0,

∂tmi + ∂s(mibi) +
∑
j∈I

H ′(φi − φj)mi −H ′(φj − φi)mj = 0,

mi(0) = m0
i , φi(T ) = gi +

βi
δ
,

(Sε,δ)

où (λ, β) satisfait

λi(t) =

 0 si Ψi(m(t)) < 0,
∈ [0, 1] si Ψi(m(t)) = 0,
1 si Ψi(m(t)) > 0,

βi :=

 0 si Ψi(m(T )) < 0,
∈ [0, 1] si Ψi(m(T )) = 0,
1 si Ψi(m(T )) > 0.

Le système de conditions d’optimalité (Sε,δ) est obtenu en suivant la méthode de linéarisation développée
dans [39] et appliquée à un problème de contrôle pénalisé dans [82]. La seconde étape de la preuve consiste à
montrer que pour ε > 0 et δ > 0 suffisamment petits, toute solution du Problème (P ε,δ) satisfait la contrainte
de congestion (P ε,δ), c’est à dire, pour toute solution (m,α) du Problème (P ε,δ), on a Ψi(m(t)) ⩽ 0, pour
tout (i, t) ∈ I × [0, T ]. Ce résultat suit les étapes de la preuve par contradiction développée dans [47]. Par
conséquent, pour ε > 0 et δ > 0 suffisamment petits, le Problème (P ε,δ) et le Problème (P ) ont les mêmes
solutions. Une première conséquence du Théorème 1.5.2 est que tout contrôle optimal α pour le Problème
(P ) est dans Lip([0, T ] × [0, 1] × I2). Deuxièmement, ce théorème permet de proposer un schéma numérique
pour résoudre le Problème (D). Un schéma explicite de différences finies est utilisé pour discrétiser l’équation
d’Hamilton-Jacobi (1.5.4) et la convergence des solutions du problème discrétisé vers une solution du Problème
(D) est démontrée. Enfin, à partir des solutions du problème discrétisé, nous proposons une suite {(mn, αn)}n
de solutions faibles de l’équation de continuité (1.5.1), qui convergent vers une solution du Problème (P ), quand
les pas en temps et espace du problème discrétisé tendent vers 0.

1.5.4 Chapitre 5 : Approximation champ moyen d’un problème de contrôle opti-
mal d’une équation de continuité intervenant dans un problème de charge
intelligente

Ce chapitre traite d’un problème de contrôle optimal d’une population finie de processus hybrides, modélisant
le chargement optimal d’une flotte importante et homogène de PEVs. Nous démontrons la convergence, quand le
nombre de PEVs tend vers l’infini, de la suite de solutions et de la suite des valeurs des problèmes d’optimisation
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avec population finie, vers respectivement une solution et la valeur du Problème (P ), introduit au Chapitre 2.
Le lien entre une suite de problèmes de contrôle optimal d’une grande population d’agents et un problème de
contrôle champ moyen fut établi pour la première fois dans [112], dans le cas spécifique où la dynamique de
chaque agent est décrite par une équation aux dérivées ordinaires (EDO). La convergence de la valeur et des
solutions du problème de contrôle optimal d’une population finie en interaction via une dynamique de type
McKean-Vlasov, vers la valeur et une solution d’un problème de contrôle champ moyen, est démontré dans
[163], dans un cadre général (les résultats sont également valables pour des diffusions dégénérées). Des résultats
de convergence dans un cadre stochastique peuvent être trouvés dans [51, 93, 94]. Dans un cadre déterministe,
les formulations Eulérienne, Lagrangienne et de Kantorovich d’un problème de contrôle avec population finie et
la comparaison avec la limite de type champ moyen du problème sont étudiées dans [62], et la convergence de
la fonction valeur, des problèmes de type Lagrangien et Eulérien avec population finie, est démontrée quand le
nombre d’agents tend vers l’infini. Le taux de convergence de la fonction valeur du problème avec un nombre
fini d’agents vers la fonction valeur du problème de contrôle champ moyen est de l’ordre de 1/

√
n, dans le cas

d’un problème avec espace d’état fini [64]. Alors qu’une majeure partie des problèmes traités dans la littérature
ont des variables d’état uniquement discrètes ou uniquement continues, notre travail porte sur l’analyse de la
limite champ moyen de processus hybrides. Une spécificité du modèle étudiée dans ce chapitre porte sur la
nature de la dynamique des agents du problème de contrôle avec population finie, qui se révèle être différente de
la dynamique des agents du problème de contrôle champ moyen. Alors que les instants de sauts sont contrôlés
et déterministes dans le problème avec population finie, les sauts de la variable discrète sont stochastiques et
le contrôle est sur le taux de transition dans le problème champ moyen. De plus, une contrainte de congestion
est considérée dans le problème d’optimisation étudié, ce qui est inhabituel parmi la littérature existante sur
les limites de champ moyen de problèmes de contrôle (voir cependant [66] pour des résultats dans un cadre
déterministe et [80, Chapter 4] pour des résultats dans un cadre stochastique).

Dans le modèle avec population finie, nous considérons une population de n PEVs (n ∈ N∗), contrôlée par
un planificateur central, ayant le même espace d’état [0, 1]× I, où I est un ensemble fini, comme au Chapitre 2,
et avec comme horizon en temps [0, T ]. Une discrétisation en temps et en espace dépendant de n est introduite,
avec comme pas en temps ∆tn et en espace ∆sn (tous deux indexés par l’exposant n), tel que Nn

T := T/∆tn

et Nn
s := 1/∆sn sont des entiers. Le maillage en temps est {0, tn1 , . . . , tnk+1, . . . , T} avec tnk := k∆tn, pour tout

k ∈ {0, . . . , Nn
T }. Le maillage en espace est {0, yn1 , . . . , ynp , . . . , 1} avec ynp := p∆sn, pour tout p ∈ {0, . . . , Nn

s }.
Chaque véhicule ℓ est décrit pas la variable d’état xℓt := (iℓt, s

ℓ
t) ∈ I× [0, 1], avec comme état initial xℓ0 = (iℓ0, s

ℓ
0).

La variable discrète iℓ, désignant le mode de chargement, peut sauter de façon déterministe et uniquement à
certains instants {tn1 , · · · , tnNn

T−1}, alors que la variable continue sℓ, représentant le niveau de batterie (SoC), est
régie par une EDO dans laquelle intervient le mode de chargement. Entre deux instants de sauts de la variable
discrète iℓ, c’est-à-dire au sein de chaque intervalle [tnk , t

n
k+1), la dynamique de xℓ est déterministe et donnée

par :

iℓt = iℓtnk ,
dsℓt
dt

= b(iℓt, s
ℓ
t) pour tout t ∈ [tnk , t

n
k+1) et avec sℓtnk = lim

τ↑tnk
sℓτ . (1.5.12)

La population de n processus est soumise à la même contrainte de congestion que (1.5.2) du Chapitre 2,

1

n

n∑
ℓ=1

1i(i
ℓ
t) ⩽ Di(t) ∀(i, t) ∈ I × [0, T ]. (1.5.13)

Nous désignons par (i,s), l’ensemble des n trajectoires {(iℓ, sℓ)}1⩽ℓ⩽n satisfaisant (1.5.12) et (1.5.13). La fonction
objectif J n du problème avec une population finie est donnée par :

J n(i,s) := 1

n

n∑
ℓ=1

∫ T

0

c(t, iℓt, s
ℓ
t)dt+ g(iℓT , s

ℓ
T ) +

∑
i,j∈I,j ̸=i

Nn
T−1∑
k=1

Nn
s −1∑
p=0

L

(
Qk,pi,j (i,s)

∆t

)
∆tQk,pi (i,s),

où Qk,pi,j (i,s) est la proportion de PEVs dont la variable d’état discrète saute de i vers j, parmi les processus avec
un état dans {i} × [ynp , y

n
p+1), à l’instant tnk , et Qk,pi (i,s) est la proportion de PEVs dont la variable d’état est

dans {i} × [ynp , y
n
p+1) parmi l’ensemble de la population à l’instant tnk

− (avant de potentiels sauts). L’objectif
de ce chapitre est d’étudier la limite de champ moyen du problème de contrôle optimal avec population finie
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suivant :
inf
(i,s)
J n(i,s). (Pn)

Le principal résultat de ce chapitre est le théorème suivant, où le Problème (P ) est introduit au Chapitre 2.

Theorem 1.5.3. Il existe K > 0 tel que, pour tout n ∈ N,

val(Pn)−
K

n
1
3

⩽ val(P ) ⩽ lim inf
N→∞

val(PN ).

Pour obtenir la seconde inégalité, c’est à dire val(P ) ⩽ lim inf
N→∞

val(PN ), nous introduisons pour tout ensemble

de n trajectoires (i,s), la distribution empirique mn de la population de processus et la mesure empirique En

des sauts :

mn(t) :=
1

n

n∑
ℓ=1

δ(iℓt,sℓt) et Eni,j :=
1

n

n∑
ℓ=1

Nn
T−1∑
k=1

1i(i
ℓ
tnk

−)1j(i
ℓ
tnk
)δtnk ⊗ δsℓtn

k

. (1.5.14)

Nous montrons que, pour tout (i,s), (mn, En) est une solution faible de l’équation de continuité

∂tm
n
i + ∂s(m

n
i bi) = −

∑
i,j∈I,j ̸=i

(Eni,j − Enj,i) on I × (0, T )× (0, 1). (1.5.15)

Nous introduisons la fonction de coût

Jn(m,E) :=
∑
i∈I

∫ T

0

∫ 1

0

ci(t, s)mi(t, ds)dt+
∑
i∈I

∫ 1

0

gi(s)mi(T, ds)

+
∑

i,j∈I,i̸=j

Nn
T−1∑
k=1

Nn
s −1∑
p=0

L

(
Ei,j({tk}, [ynp , ynp+1))

∆tnmi(tnk
−, [ynp , y

n
p+1))

)
∆tnmi(t

n
k
−, [ynp , y

n
p+1)).

En appliquant le principe de superposition, qui est une variante de celui établie dans [62], nous montrons que
le problème

inf
(m,E)

Jn(m,E)

tel que (m,E) est une solution faible de (1.5.15) et m satisfait (1.5.2),
(1.5.16)

est équivalent au Problème (Pn). L’utilisation d’arguments de compacité et de continuité semi-inférieur permet
d’obtenir :

val(P ) ⩽ lim inf
n→∞

inf
(m,E)

Jn(m,E) = lim inf
n→∞

inf
(i,s)
J n(i,s). (1.5.17)

De plus, la première inégalité dans le Théorème 1.5.3, c’est à dire val(Pn) −
K

n
1
3

⩽ val(P ), est obtenue en

utilisant les résultats de régularité établis au Chapitre 2. Nous montrons qu’en implémentant un contrôle de
type champ moyen α à une population de n processus hybrides, nous pouvons obtenir l’estimation suivante
entre la distribution empirique de la population finie mn et la distribution optimale du problème champ moyen
m,

W(m(t),mn(t)) = O
( 1

n
1
3

)
∀t ∈ [0, T ],

où W est la distance de Wasserstein-1. L’inégalité précédente et l’équivalence entre les problèmes (1.5.16) et
(Pn) permettent d’obtenir l’inégalité

inf
(i,s)
J n(i,s)− C

n
1
3

⩽ inf
(m,α)

J(m,α).

La convergence de la valeur du Problème (Pn) vers la valeur du Problème (P ) est une conséquence de l’inégalité
précédente et de (1.5.17). De plus, par des arguments de compacité, nous montrons qu’une sous-suite des
solutions {(mn, En)}n du Problème (1.5.16) converge faiblement vers (m,αm), où (m,α) est une solution du
Problème (P ).
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1.5.5 Chapitre 6 : Décomposition d’un problème stochastique agrégatif convexe
de grande dimension

Nous considérons le cadre des problèmes de contrôle stochastique convexe et de grande dimension, dans
lesquels les contrôles sont agrégés dans la fonction de coût. En guise de première contribution, nous introduisons
un problème modifié, dont le contrôle optimal est, sous certaines hypothèses standards, une solution ε-optimal du
problème originel. La seconde contribution est la présentation d’un algorithme décentralisé dont la convergence
vers une solution du problème modifié est démontrée. Enfin, nous étudions l’application des outils développés
dans un contexte d’ingénierie, en étudiant un problème de coordination de grandes populations d’appareils de
consommation domestiques contrôlés par thermostat (TCL). Alors qu’au Chapitre 3 un algorithme déterministe
et centralisé est proposé pour résoudre un problème de contrôle optimal en dimension infinie avec des contraintes
d’état agrégées (introduit au chapitre 2), ce chapitre développe un algorithme stochastique et décentralisé. Enfin,
contrairement au modèle présenté au chapitre 2, l’homogénéité des agents n’est pas supposée. Ce travail est
motivé par ses applications potentielles au contrôle distribué de flexibilités diffuses, afin de soutenir l’équilibre du
système électrique dans un contexte d’augmentation des énergies renouvelables. Ce chapitre est lié aux travaux
de De Paola et al. [84], dans lequel une solution distribuée est présentée pour le contrôle d’une population de
n = 2 × 107 réfrigérateurs, assurant de la réponse en fréquence et du déplacement de charge. L’application de
notre travail à ce problème de contrôle prend également en compte une grande population de TCL qui, comme
extension au modèle de [84], ont une dynamique stochastique. L’approche proposée est capable de minimiser les
coûts globaux du système de manière distribuée, chaque TCL déterminant son profil optimal de consommation
d’énergie en réponse à un signale de prix.

Le problème étudié dans ce chapitre appartient à la classe du contrôle stochastique : on cherche des stratégies
minimisant l’espérance d’une fonction objective en prenant en compte certaines contraintes. Le principe de la
programmation dynamique [28] et la SDDP ne sont pas adaptés à notre situation en raison du grand nombre
d’agents. Afin de traiter ce type de problèmes de grande dimension, il est naturel d’étudier les techniques de
décomposition dans l’esprit de la DADP [123, 172]. Cette approche se caractérise par une décomposition par
les prix du problème, où les contraintes stochastiques sont projetées sur des sous-espaces choisis tels que le
multiplicateur de Lagrange associé est adapté à la programmation dynamique. Le multiplicateur optimal est
ensuite estimé numériquement en implémentant l’algorithme d’Uzawa. Dans ce chapitre, dans la même veine
que la DADP, nous proposons une approche de décomposition par les prix mais limitée aux prix déterministes.
Cette nouvelle approche tire parti du grand nombre d’agents, permettant d’introduire un problème auxiliaire
dans lequel le terme de couplage est purement déterministe.

Ce chapitre a pour but de résoudre le Problème (P1), impliquant un grand nombre d’agents n indexés par
i ∈ {1, · · · , n}, et de la forme :

(P1)


min
u∈U

J(u)

J(u) := E

[
F0

( 1
n

n∑
i=1

ui(ωi, ω−i)
)
+

1

n

n∑
i=1

Gi
(
ui(·, ω−i), ωi

)]
.

Le bruit ω := (ω1, . . . , ωn) appartient à Ω := Πni=1Ω
i, où (Ωi,F i, µi) est un espace probabilisé, et (Ω,F , µ) est

l’espace probabilisé produit correspondant. Chaque variable de décision ui est F-mesurable (et non uniquement
F i-mesurable), de carré sommable à valeur dans l’espace de Hilbert U. On définit U := Πni=1Ui, où Ui est,
pour i ∈ {1, . . . , n}, un sous ensemble de L2(Ω,U) convexe et fermé. La fonction de coût est la somme d’un

terme de couplage F0 : U → R, qui est fonction de l’agrégat des stratégies
1

n

n∑
i=1

ui, et de termes locaux, qui

sont fonctions des décisions locales ui et du bruit local ωi, avec Gi : L2(Ωi,U) × Ωi → R. La difficulté dans
la résolution numérique du Problème (P1) est liée à l’aléa du terme agrégatif 1

n

∑n
i=1 u

i, qui intervient dans la
fonction couplante F0. Nous introduisons l’ensemble des contrôles décentralisés :

Û :=

n∏
i=1

Ûi, où Ûi := {ui ∈ Ui |ui is T 1 ⊗ . . .⊗F i ⊗ T i+1 ⊗ . . .⊗ T n −mesurable}, (1.5.18)

où T j est la tribu triviale {∅,Ωj}. Si le contrôle u est décentralisé, puisque la variance d’une somme de variables
aléatoires indépendantes est égale à la somme des variances de ces variables, le terme agrégé 1

n

∑n
i=1 u

i peut
être approximé par 1

n

∑n
i=1 Eui pour n suffisamment grand. L’approximation suivante du Problème (P1) est
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introduite :

(P2)


min
u∈U

J̃(u)

J̃(u) := F0

(
1

n

n∑
i=1

Eui
)

+
1

n
E

[
n∑
i=1

Gi(u
i(·, ω−i), ωi)

]
.

Nous montrons tout d’abord, sans perte d’optimalité du Problème (P2), que l’on peut restreindre l’ensemble
des contrôles admissibles U à Û . Nous désignons par (P̂2), le problème d’optimisation lié à la minimisation de
la fonction J̃ sur l’ensemble Û . Le Problème (P̂2) peut être écrit comme :

(P̂ ′
2)



min
u∈Û,v∈U

J̄(u, v),

J̄(u, v) := F0(v) +
1

n
E

[
n∑
i=1

Gi(u
i, ωi)

]
,

sous contrainte
1

n

n∑
i=1

Eui − v = 0.

La première contribution de ce chapitre est d’établir que sous certaines hypothèses de convexité et de
régularité sur F0 et (Gi)i∈{1,...,n}, toute solution du Problème (P2) est une εn-solution de (P1), avec εn → 0
quand n→∞.

De plus, nous montrons qu’une approche de décomposition par les prix du Problème (P2), basée sur la
formulation du Problème (P̂ ′

2), peut être résolue par programmation dynamique, puisque la minimisation du
Lagrangien satisfait le principe de la programmation dynamique. Le calcul du coût dual de (P̂ ′

2) étant coûteux,
nous proposons les algorithmes Stochastic Uzawa et Sampled Stochastic Uzawa qui s’appuient sur l’algorithme
de Robbins-Monroe, dans l’esprit du gradient stochastique. La convergence de ces deux algorithmes est établie,
en s’appuyant sur la preuve fournie par [119] pour la convergence du gradient stochastique dans un espace
de Hilbert. Nous vérifions l’efficacité de l’algorithme Stochastic Uzawa dans un cadre Linéaire Quadratique
Gaussien, et nous appliquons l’algorithme Sampled Stochastic Uzawa à un problème de coordination d’une
population importante de TCLs, en s’inspirant des travaux d’A. De Paola et al. [84].

1.5.6 Chapitre 7 : Un algorithme décentralisé pour un problème de contrôle
champ moyen de processus de Markov déterministes par morceaux

Ce chapitre vise à étendre l’approche décentralisée développée au Chapitre 6 à un cadre non convexe, avec des
contrôles non bornés, permettant une dynamique plus réaliste modélisant l’évolution de l’état de chaque agent.
En particulier, nous nous intéressons au contrôle agrégé des processus de Markov déterministes par morceaux
(PDMP) dans un cadre de contrôle champ moyen. Les PDMP sont introduits dans [83] comme une classe de
modèles stochastiques non diffusifs, mélangeant des sauts aléatoires et une dynamique déterministe entre les
sauts. Notre première contribution réside dans l’originalité de la preuve de l’existence d’un point selle qui suit
une méthode complètement différente que celle développée dans le Chapitre 6. En particulier, nous utilisons les
résultats de régularité sur la solution de l’équation de Hamilton-Jacobi qui apparaît dans le contrôle optimal
des PDMP obtenus dans les Chapitres 2 et 4, afin de montrer l’existence d’un point selle de notre problème
Lagrangien. Notre deuxième contribution consiste à prouver que l’algorithme d’Uzawa stochastique proposé
dans le Chapitre 6 fournit toujours une suite convergente de contrôles, dans ce cadre spécifique impliquant
la dynamique des PDMPs qui ne respecte pas les conditions de convexité exploitées au Chapitre 6. Enfin,
nous présentons une application de cette méthode et de l’algorithme à la recharge intelligente d’une flotte de
PEVs par un agrégateur afin d’illustrer la performance et l’intérêt de l’approche. Similairement aux Chapitres
2-5, l’état de chaque véhicule électrique est composé d’une variable discrète et d’une variable continue et une
hypothèse de type champ moyen sur la population est prise en compte. Cependant, alors que le problème de
contrôle champ moyen des variables d’état hybrides dans les Chapitres 2 et 5 est formulé comme un problème
de contrôle optimal d’une équation différentielle aux dérivées partielles, et est approché numériquement par un
algorithme déterministe et centralisé, ce chapitre se concentre sur les techniques d’optimisation stochastiques
et s’appuie sur l’algorithme décentralisé et stochastique proposé au Chapitre 6 pour résoudre ce problème de
contrôle champ moyen.

Plus précisément, nous considérons l’intervalle de temps [0, T ] avec T > 0 et une population de n processus
indépendants identiquement distribués, contrôlés par un planificateur central via un contrôle commun α qui
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appartient à l’espace de contrôle feedback A. L’état d’un agent, contrôlé par l’intensité de sauts α, est donné
à l’instant t par Xα

t = (Y αt , Z
α
t ) avec Y αt ∈ I et Zαt ∈ [0, 1]. Comme au Chapitre 2, la variable discrète Y α

représente le mode de chargement du véhicule et la variable continue Zα représente le niveau de batterie. Un
processus Xα est un PDMP(b, α) si Y α est un processus à sauts, à valeurs dans I, sautant spontanément à des
instants aléatoires {Tαk }k∈N, donnés par un processus de Poisson avec intensité α, alors que Zα a une dynamique
déterministe entre deux sauts consécutifs Zαt = ϕTα

k ,Z
α
Tα
k

(Y αTα
k
, t) pour t ∈ [Tαk , T

α
k+1), où le flot ϕ est l’unique

solution de l’EDO :
∂tϕτ,z(j, t) = b(j, ϕτ,z(j, t)) avec ϕτ,z(j, τ) = z ,

et b est une fonction donnée. La fonction objectif J est définie par :

J(α) :=

∫ T

0

f
(
t,E[p(t,Xα

t )]
)
dt+

∫ T

0

E

c(t,Xα
t ) +

∑
j∈I

L(αj(t,X
α
t ))

 dt+ E [g(Xα
T )] ,

où Xα est un PDMP(b, α) et la fonction f représente un coût de couplage, dépendant de l’espérance de p(t,Xα
t )

(p étant une fonction continûment dérivable). Ce chapitre est dédié au problème suivant

min
α∈A

J(α). (Ppdmp)

La fonction f est supposée non linéaire, et ainsi la fonction de coût J est également non linéaire par rapport à
E
[
p(t,Xα

t )
]
. Ainsi, le Problème (Ppdmp) va au-delà du cadre du contrôle optimal de PDMP. L’existence d’une

solution au Problème (Ppdmp) est établie. Nous proposons une approche numérique pour résoudre le Problème
(Ppdmp), en appliquant l’algorithme Stochastic Uzawa introduit au Chapitre 6. Cet algorithme permet de
générer une suite de contrôles {αk}k dont la convergence vers une solution au Problème (Ppdmp) est démontrée.
Ce résultat ne peut être obtenu par une application direct des résultats de convergence établis au Chapitre 6,
qui s’appuient sur des hypothèses supplémentaires de convexité qui ne sont pas vérifiées dans le cadre présent,
qui implique des contrôles non bornés et des dynamiques de PDMP.
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Chapter 2

Optimality conditions of an optimal
control problem for the continuity
equation arising in smart charging
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2.1 Introduction

This article studies the optimal control of a first order continuity equation with a reaction term under state
constraints. Let us consider a finite time interval [0, T ] and a mixed state space equal to the product [0, 1]× I,
where I is a finite space, the cardinality of which is denoted by |I|. The continuity equation is given by:

∂tmi(t, s) + ∂s(mi(t, s)bi(s)) = −
∑
j ̸=i

(αi,j(t, s)mi(t, s)− αj,i(t, s)mj(t, s)) (i, t, s) ∈ I × (0, T )× (0, 1),

mi(0, s) = m0
i (s) (i, s) ∈ I × [0, 1],

(2.1.1)
where m : [0, T ] → P([0, 1] × I) is a curve of probability distribution, m0 ∈ P([0, 1] × I) is the given initial
distribution, b : I×[0, 1]→ R is a velocity field, and the control α : I×I×[0, T ]×[0, 1]→ R+ is a jump intensity.
The notion of weak solution of (2.1.1) is specified in Definition 2.3.1. We further assume that b vanishes at the
boundary of [0, 1] so that the mass conservation in I× [0, 1] is guaranteed without forcing a boundary condition.

33
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The distribution m is subject to the following congestion constraints:

mi(t, [0, 1]) ⩽ Di(t) ∀(i, t) ∈ I × [0, T ], (2.1.2)

where D : [0, T ]→ R∗
+ is given. The objective function J is defined as follows:

J(m,α) :=
∑
i∈I

∫ T

0

∫ 1

0

(
ci(t, s) +

∑
j∈I,j ̸=i

L(αij(t, s))
)
mi(t, ds)dt+

∑
i∈I

∫ 1

0

gi(s)mi(T, ds). (2.1.3)

Our purpose is to study the optimization problem:

inf
m,α

J(m,α), where (m,α) is a weak solution of (2.1.1) and satisfies (2.1.2). (2.1.4)

Our work is initially motivated by the optimal charging of a population of PEVs controlled by a central planner.
The continuous variable s ∈ [0, 1] in (2.1.1) represents the level of battery of a PEV. The discrete variable i ∈ I
represents the mode of charging (e.g. idling, charging, discharging, etc...). For any (t, s, i) ∈ [0, T ]× [0, 1]×I, the
value mi(t, s) represents the proportion of PEVs at time t at state (s, i). The given velocity field bi(s) denotes the
power of charge or discharge of a PEV in mode i and with battery level s. For any (t, s, i, j) ∈ [0, T ]×[0, 1]×I×I,
the value αi,j(t, s) denotes the jump intensity of PEVs from the state (s, i) to the state (s, j) at time t. The
control α is required to be a non-negative measurable function. The congestion constraint (2.1.2) avoids high
demand of energy at each moment over the period. The cost function L penalizes high values of α. It aims
at avoiding the synchronization of jumps of the PEVs and the consequent instability of the electrical network.
The value ci(t, s) corresponds to the cost per PEV to pay at time t ∈ [0, T ) at state (s, i); gi(s) is the final cost
per PEV to pay at state (s, i). Numerical results of Problem (2.1.4) applied to smart charging can be found
in [238]. Problem (2.1.4) can be interpreted heuristically as an approximation of the limit case N → ∞ of
an optimal switching problem of N PEVs. Combinatorial techniques as well as optimal control tools may fail
to solve problems with large population of PEVs, due to the curse of dimensionality [20]. To overcome these
difficulties, a continuum of PEVs can be considered, leading to the techniques of the optimal control of PDE.
The connection between the finite population problem and the mean field problem is addressed in a companion
paper [234] by the author.

2.1.1 Contributions, methodology and literature

Contributions This paper makes three main contributions.
First we prove the existence of solutions of Problem (2.1.4).
Second, we derive optimality conditions of Problem (2.1.4). More precisely, let H denote the Fenchel

conjugate of L and H ′ denote the derivative of H, we show that, if (m,α) is a solution of (2.1.4), then there
exists a pair (φ, λ) such that, for any i, j ∈ I, αi,j = H ′(φi−φj), and (φ, λ,m) is a weak solution of the following
system: 

−∂tφi − bi∂sφi − ci − λi +
∑

j∈I,j ̸=i

H(φi − φj) = 0 on (0, T )× (0, 1)× I

∂tmi + ∂s(mibi) +
∑
j ̸=i

H ′(φi − φj)mi −H ′(φj − φi)mj = 0 on (0, T )× (0, 1)× I

mi(0, s) = m0
i (s), φi(T, s) = gi(s) on (0, 1)× I∫ 1

0

mi(t, ds)−Di(t) ⩽ 0, λ ⩾ 0 on [0, T ]× I∑
i∈I

∫ T

0

(∫ 1

0

mi(t, ds)−Di(t)

)
λi(dt) = 0.

(2.1.5)

The function φ is the Lagrange multiplier associated to the dynamic constraint (2.1.1), and the measure λ is
associated to the congestion constraint (2.1.2). The first equation in (2.1.5) is a backward Hamilton-Jacobi
equation. The existence, uniqueness and characterization of weak solutions of the backward Hamilton-Jacobi
equation are investigated in the paper. The second equation in (2.1.5) is a forward continuity equation, where
the control α, defined by αi,j = H ′(φi − φj), is optimal. The measure λ is non-negative and finite. The last
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equality in (2.1.5) ensures that the congestion constraint (2.1.2) is satisfied.
Third, we obtain regularity property for any weak solution (λ, φ,m) of (2.1.5). We prove that, under suitable

assumptions on the data b, g and c, the multiplier φ is in Lip([0, T ]× [0, 1]× I) + BV ([0, T ]× I). As a result,
the optimal control α is bounded and Lipschitz continuous in space uniformly w.r.t. the time variable and the
measure m is in Lip([0, 1],P([0, 1] × I)). We show that if the initial distribution m0 is absolutely continuous
w.r.t. the Lebesgue measure and has a smooth density, then the measure m is absolutely continuous w.r.t. the
Lebesgue measure and has Lipschitz continuous density.

Methodology The existence of an optimal solution is established by compactness arguments (see for e.g.
[21]). We adopt a duality approach to obtain (2.1.5). More explicitly, we relax the dynamics (2.1.1) and the
congestion constraint (2.1.2). The resulting relaxed problem is then expressed as the dual of another convex
problem. We show that the system (2.1.5) is the optimality condition of Problem (2.1.4).

Literature Solving the optimal control of a Fokker-Planck equation by means of the duality theory has
been well known since decades [110, 265]. Our work follows the method developed in the seminal work by
Benamou and Brenier [21] for optimal transport problems. In [21], a continuity equation is controlled with
initial and final constraints; optimality conditions are obtained as a system of PDEs close to (2.1.5). Similar
method and results also in optimal transport are derived in [50]. More recently, this approach was applied to
solve on optimal control problem of a Fokker-Planck equation under state constraints in the Wasserstein space
[81, 82], where Lipschitz regularity results of the optimal control are proved.

The optimality conditions (2.1.5) typically arises in the Mean Field Game (MFG for short) Theory. This
class of problems, introduced by Lasry and Lions [166, 167, 168] and Huang, Malhamé and Caines [145, 146],
describes the interaction among a large population of identical and rational agents in competition. Mean Field
Control (MFC for short) and MFG theories have been extensively used over the last few years as a mathematical
tool in electrical engineering. More specifically, the optimal control of PDEs applied to smart charging can be
found in [170, 241], and to the management of a population of thermostatically controlled loads in [122, 195].

Conversely, the duality approach is close to the so-called variational approach used in MFG theory in [53],
where the weak solution of the MFG system is characterized as the minimizer of some optimal control of
Hamilton-Jacobi and Fokker-Planck equations. This approach allows to use optimization techniques to prove
the existence and uniqueness of the solution of MFG and MFC problems. We refer to [5, 25, 40, 54, 202] and
the references therein. Besides, the variational approach allows to apply optimization algorithms to numerically
solve MFG problems [23, 41, 40].

Note that different optimality conditions for control problems in the space of probability measures can be
derived by using a kind of Pontryagin Maximum Principle [36, 35].

A particularity of this paper is to deal with a congestion constraint (2.1.2) on the measure. Two kinds of
congestion effects are explored in the MFG and MFC frameworks. On the one hand, “soft congestion" increases
the cost of velocity of the agents in areas with high density. On the other hand, “hard congestion" constraints
impose density constraints, e.g. m ⩽ m̄ at any point (t, s). The variational approach yields good results
when applied to MFC [5] and MFG with “soft congestion" in a stationary framework [105], as well as to MFG
problems dealing with “hard congestion" constraints. This was first investigated in [230] where the density of the
population did not exceed a given threshold, then in [190] where stationary second order MFGs were considered.
In [55], a price which is imposed on the saturated zone to make the density satisfy the constraints is obtained.
In the same vein as the work of Benamou and Brenier [21], “hard congestion" constraints were examined in
optimal transport [45]. We highlight that our paper deals with aggregate “hard congestion" constraints on the
measure m (2.1.2), i.e., our constraint is less restrictive than a constraint of the type m ⩽ m̄ a.e..

Besides, we consider a mixed state space with continuous and discrete state variable. This setting has
seldomly been investigated in the MFG literature. Indeed, the articles cited in the paragraphs above looked only
at continuous state variables. The resulting continuity equation (2.1.1) contains a term of reaction, indicating
mass transfers between states in I. Such PDEs also arised in [10] to model the mean field limit of Piecewise
Deterministic Markov Proccesses (PDMP for short). The velocity was controlled in [10]. Here, we control the
intensity of the jump α, but the velocity b is given. A MFG problem with discrete time and state space was
explored in [129] and applied to socio-economic sciences in [127]. The uniqueness of the solution of a finite state
MFG was discussed in [17] and the convergence of the N -player game to the mean field model as N →∞ was
obtained in [128]. Mixed state spaces in a MFG framework were studied in [108, 107], where a major player can
switch his state on a finite state space and minor players decide their stopping time. A MFG problem in a finite
state space and discrete time settings with “hard congestion" was studied in [32], also by variational methods.
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Some of our regularity results, namely that α is Lipschitz continuous w.r.t. s, and the density of m w.r.t.
the Lebesgue measure is Lipschitz continuous when m0 is absolutely continuous w.r.t. the Lebesgue measure,
are unusual. We believe that it is mainly due to the linearity of the Hamilton-Jacobi equation w.r.t. ∂sφ. These
results will be used in a companion work [234] to quantify the mean field limit of the model. The time regularity
of φ may not be improved as far as we have no more regularity results on λ. The function φ is discontinuous
at each atom of the measure λ. Regularity results about the multiplier of the density constraint can be found
in the literature: in [55], the authors showed some BV estimates on the pressure, whereas L∞ estimates for
the price were proved in [82] and [169] in the special case of a quadratic Hamiltonian in a MFG problem. The
Sobolev regularity of the solution of a first order MFG was established in [177] and improved in [232]; also see
[133].

Organization of the paper The paper is organized as follows. In Section 2.2, we present our assumptions
and main results. The existence of a solution of Problem (2.1.4) is established in Section 2.3. In Section 2.4,
which is independent of the other sections, we show the existence, uniqueness and regularity of weak solution of
the Hamilton-Jacobi equation in (2.1.5). In Section 2.5, we return to Problem (2.1.4) and develop the duality
approach. We formulate its Lagrangian relaxation and show it is the dual problem of another convex problem.
We obtain the optimality conditions (2.1.5) of Problem (2.1.4) in Section 2.6. The Lipschitz continuity of the
value of Problem (2.1.4) w.r.t. the data (m0, D) is proved in Section 2.7. We recall basic statements about
weak solutions of (2.1.1) in Appendix 2.8.

2.2 Assumptions and main results

2.2.1 Notations and Assumptions

Notations The space of Borel, positive and bounded measures on a space A is denoted by M+(A) and
the space of Borel probability measures on a space A is denoted by P(A). For any measure µ ∈ M([0, T ]) and
0 ⩽ t1 < t2 ⩽ T , we set

∫ t2
t1
µ(dt) := µ([t1, t2]). Given a set S, for any function f defined on I × S and any

measure µ ∈M(S × I), we use the notations fi(x) := f(i, x) for any (i, x) ∈ I × S and µi(S) := µ({i} × S) for
any (i, S) ∈ I ×B(S), where B(S) denotes the Borel algebra. Similarly, for any function g defined on I × I ×S
and any measure ν ∈ M(S × I × I), we use the notations gi,j(x) := g(i, j, x) for any (i, j, x) ∈ I × I × S
and νi,j(S) := µ({i} × {j} × S) for any (i, j, S) ∈ I2 × B(S). If S is a metric space, let Lip(S) denote
the vector space of bounded and Lipschitz continuous maps f : S → R. For any µ ∈ C0([0, T ],P([0, 1])), let
L2
µ([0, T ]×R) := {f : [0, T ]×R 7→ R,

∫ T
0

∫ 1

0
f(t, s)2µ(t, ds)dt < +∞}. We denote byW the Wasserstein distance

on P([0, 1]× I), defined by W(µ, ρ) := sup {
∑
i∈I
∫ 1

0
φ(µ−ρ) |φ is 1−Lipschitz from [0, 1]× I to R}. We recall

that if a function φ is 1-Lipschitz continuous from [0, 1] × I to R, then |φ(x, i) − φ(x, j)| ⩽ 1 for any i, j ∈ I.
The dual of a normed space X is denoted by X∗. We consider the space Ω := P([0, 1]× I)×C0(I × [0, T ],R∗

+).
For any ε > 0, we define the subspace Ωε of Ω, by

Ωε :=
{
(µ, f) ∈ Ω | ε < inf

t∈[0,T ],i∈I
fi(t)− µi([0, 1])

}
. (2.2.1)

We consider the following spaces for any δ > 0:

M+
δ ([0, T ]× I) :=

{
µ ∈M+([0, T ]× I) |µ([0, T ]× I) ⩽ δ

}
,

C0
δ ([0, T ]× I,R+) :=

{
f ∈ C0([0, T ]× I,R+) |

∫ T

0

∑
i∈I

fi(t)dt ⩽ δ
}
.

For any δ > 0, the space C0
δ ([0, T ]× I,R+) can be considered as a subspace ofM+

δ ([0, T ]× I) in the sense that,
for any f ∈ C0

δ ([0, T ]× I,R+), we have fL ∈M+
δ ([0, T ]× I), where L is the Lebesgue measure on [0, T ].

Assumptions The following assumptions are in force throughout the paper.
1. For any i ∈ I, bi ∈ C1(R) with bi(s) = 0 for any s ̸∈ (0, 1).
2. The initial distribution of (2.1.1) m0 ∈ P(R× I) is such that supp(m0

i ) ⊂ [0, 1] for any i ∈ I .
3. There exists ε0 > 0 such that the parameter D of (2.1.2) and m0 satisfy (m0, D) ∈ Ωε0 .
4. For any i ∈ I, it is assumed that ci ∈ C1([0, T ]× [0, 1]) and gi ∈ C1([0, 1]).
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5. L : R→ R̄ is a convex function, defined by:

L(x) :=

 l(x) if x > 0,
0 if x = 0,
+∞ otherwise,

where l ∈ C1(R+,R+) is an increasing strongly convex function bounded from above by a quadratic
function. More explicitly, there exists C > 0 such that for any x ∈ R+:

x2

C
− C ⩽ l(x) ⩽ C(x2 + 1),

where the first inequality is due to the strong convexity of l.

The function H being the Fenchel conjugate of L, by Assumption 5, H is non-decreasing, non-negative, and H ′ is
Lipschitz continuous on R. For any λ ∈M+([0, T ]×I), ψ ∈ L2([0, T ]×[0, 1]×I), (t, τ, s, i, j) ∈ [0, T ]2×[0, 1]×I2,
we define Hλ by:

Hλ(i, j, t, τ, s, ψ) := H
(
(ψi − ψj)(τ, St,si (τ)) +

∫ T

τ

(λi − λj)(dr)
)
. (2.2.2)

By Assumption 1, for any s ∈ [0, 1], i ∈ I and t ∈ [0, T ], there exists a unique St,si satisfying the ODE below
dSt,si (τ)

dτ
= bi(S

t,s
i (τ)), τ ∈ [0, T ],

St,si (t) = s.

(2.2.3)

Since b ∈ C1([0, 1]× I), we recall that the flow Si satisfies the following equation for any (i, τ, t, s) ∈ I× (0, T )×
(0, T )× (0, 1):

∂xS
τ,x
i (t) = exp(

∫ t

τ

b′i(S
τ,x
i (r))dr). (2.2.4)

Remark 2.2.1. The main role of Assumptions 1 and 2 is to ensure that the support of the weak solution of
(2.1.1) is contained in [0, 1] over the period [0, T ] (cf. Lemma 2.8.1 in Appendix 2.8). Assumption 3 provides
an estimate on λ([0, T ]× I) for any weak solution (φ, λ,m) of (2.1.5) and ensures that the control α = 0 is an
admissible control. Correspondingly, the feasible set of Problem (2.1.4) is not empty. Regularity results of the
weak solutions of the system (2.1.5) are derived thanks to the assumptions formulated on c and g in Assumption
4.

2.2.2 Main results

We introduce, for a given λ ∈M+([0, T ]× I), the Hamilton-Jacobi equation on (0, T )× (0, 1)× I:

−∂tφi(t, s)− bi(s)∂sφi(t, s)− ci(t, s)− λi(t) +
∑

j∈I,j ̸=i

H((φj − φi)(t, s)) = 0 (t, s, i) ∈ (0, T )× (0, 1)× I,

φi(T, s) = gi(s) (s, i) ∈ [0, 1]× I.
(2.2.5)

We define the function Ã for any (φ, λ) ∈
(
Lip([0, T ]× [0, 1]× I) +BV ([0, T ]× I)

)
×M+([0, T ]× I) by:

Ã(φ, λ) :=
∑
i∈I

∫ 1

0

−φi(0+, s)m0
i (ds) +

∫ T

0

Di(t)λi(dt). (2.2.6)

The following Theorem summarizes the main results of the paper.

Theorem 2.2.1. Problem (2.1.4) has a solution. Furthermore, the minimizers have the following properties:

1. If (m,α) is a minimizer of Problem (2.1.4) and (φ, λ) ∈ (Lip([0, T ] × [0, 1] × I) + BV ([0, T ] × I)) ×
M+([0, T ]× I) is such that Ã(φ, λ) = −J(m,α), then (φ, λ,m) is a weak solution of (2.1.5) in the sense
of Definition 2.6.1, and αi,j = H ′(φi − φj) on {mi > 0} for any i, j ∈ I.
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2. Conversely, if (φ, λ,m) is a weak solution of (2.1.5) in the sense of Definition 2.6.1, then there exists α,
defined for any i, j ∈ I by: αi,j := H ′(φi − φj) on {mi > 0}, such that (m,α) is a minimizer of (2.1.4)
and Ã(φ, λ) = −J(m,α).

3. If (m,α) is a minimizer of Problem (2.1.4), then for any i, j ∈ I αi,j and ∂sαi,j are both in L∞([0, T ]×
[0, 1]), and m ∈ Lip([0, T ],P([0, 1]× I)).

The existence of a solution of Problem (2.1.4) is stated in Lemma 2.3.3. The characterization of a solution,
i.e., Theorem 2.2.1.1-2, is given by Theorem 2.6.1. For this, we adopt a duality approach which is developed in
Section 2.5. In particular, we introduce a convex problem, the dual of which is Problem (2.1.4) up to a change
of variable (cf. Theorem 2.5.1). The Lipschitz continuity of m stated in Theorem 2.2.1.3 is deduced from the
regularity of φ, which is derived in Section 2.4, and Proposition 2.8.1. The proof of Theorem 2.2.1 is finally
given in Section 2.6.2.

Further regularity results on the solution of Problem (2.1.4) are obtained with additional conditions on the
initial distribution m0.

Proposition 2.2.1. If the initial distribution m0 is absolutely continuous w.r.t. the Lebesgue measure with a
density in C1([0, 1] × I), then any solution (m,α) of Problem (2.1.4) is such that m is absolutely continuous
w.r.t. the Lebesgue measure on [0, T ]× [0, 1], and has a density in Lip([0, T ]× [0, 1]× I).

The proof of Proposition 2.2.1 is given in Section 2.6.2.

2.3 Existence of an optimal solution

We introduce in this section a convex problem that is equivalent to (2.1.4). Standard compactness arguments
are used to show the existence of an optimal solution (see for e.g. [21]). The definition of a weak solution of
(2.1.1) is specified below.

Definition 2.3.1. A pair (m,α) satisfies (2.1.1) in the weak sense if t ∈ [0, T ] 7→ m(t, ·) ∈ P(R × I) is
continuous, for any i, j ∈ I with i ̸= j, it holds that αi,j ∈ L2

mi
([0, T ] × R) and for any test function ϕ ∈

C∞
c ([0, T ]× R× I), we have:∑

i∈I

∫
R
ϕi(T, s)mi(T, ds)− ϕi(0, s)m0

i (ds)

=

∫ T

0

∫
R

∑
i∈I

(∂tϕi(t, s) + bi(s)∂sϕi(t, s))mi(t, ds) +
∑

j∈I,j ̸=i

(ϕj(t, s)− ϕi(t, s))αi,j(t, s)mi(t, ds)dt.

Remark 2.3.1. Using Assumptions 1 and 2, Lemma 2.8.1 in Appendix 2.8 states that, for any weak solution
(m,α) of (2.1.1) in the sense of Definition 2.3.1, the measure mi(t, ·) has its support contained in [0, 1] for any
(t, i) ∈ [0, T ] × I. Thus, we will consider throughout the paper only weak solutions (m,α) of (2.1.1) satisfying
m(t, ·) ∈ P([0, 1]× I) for any t ∈ [0, T ].

Problem (2.1.4) being not convex w.r.t. the variables (m,α), for any i, j ∈ I with i ̸= j, we make a change
of variables Ei,j := αi,jmi. We now rewrite the continuity equation (2.1.1):

∂tmi(t, s) + ∂s(mi(t, s)bi(s)) = −
∑

j∈I,j ̸=i

(Ei,j(t, s)− Ej,i(t, s)) (i, t, s) ∈ I × (0, T )× (0, 1)

mi(0, s) = m0
i (s) (i, s) ∈ I × [0, 1],

(2.3.1)

where Ei,j ∈M+([0, T ]× [0, 1]) is such that Ei,j ≪ mi, with
dEi,j
dmi

= αi,j and
dEi,j
dmi

∈ L2
mi

([0, T ]× [0, 1]). For

any (m0, D) ∈ Ω satisfying Assumption 3, we introduce the set:

S(m0, D) :=
{(m,E) such that Ei,j ≪ mi ∀i, j ∈ I, (m,α) satisfies (2.3.1) in the weak sense, where

αi,j :=
dEi,j
dmi

, with additional constraints:
∫ 1

0

mi(t, ds) ⩽ Di(t) ∀(i, t) ∈ I × [0, T ], and
dEi,j
dmi

⩾ 0

}
.

(2.3.2)
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From Assumption 3, the set S(m0, D) is not empty. Indeed, denoting by (m, 0) a weak solution of (2.1.1) with
control α ≡ 0, the distribution m satisfies that, for any (t, i) ∈ [0, T ] × I, mi(t, [0, 1]) = m0

i ([0, 1]) < Di(t).
Thus, (m, 0) ∈ S(m0, D). We define the function J̃ on S(m0, D) by:

J̃(m,E) :=
∑
i∈I

∫ T

0

∫ 1

0

ci(t, s)mi(t, ds)dt+

∫ T

0

∫ 1

0

∑
i,j∈I,j ̸=i

L

(
dEi,j
dmi

(t, s)

)
mi(t, ds)dt+

∑
i∈I

∫ 1

0

gi(s)mi(T, ds),

(2.3.3)
where the function L is defined in Assumption 5. Since m(t) is a probability measure for any t ∈ [0, T ], by

Assumption 4, the first and last integrals in (2.3.3) are well defined. Since
dEi,j
dmi

∈ L2
mi

([0, T ] × [0, 1]) and

l is bounded by a quadratic function according to Assumption 5, the second integral in (2.3.3) is also well
defined. Thus, for any (m,E) ∈ S(m0, D), the quantity J̃(m,E) is finite. The following optimization problem
is considered:

inf
(m,E)∈S(m0,D)

J̃(E,m). (2.3.4)

For any γ > 0, we define the subset Sγ(m0, D) of S(m0, D) by:

Sγ(m0, D) :=

(m,E) ∈ S(m0, D)
∣∣∣ ∑
(i,j)∈I,i̸=j

∫ T

0

∫ 1

0

L

(
dEi,j
dmi

(t, s)

)
mi(t, ds)dt ⩽ γ

 . (2.3.5)

For any (m,E) ∈ Sγ(m0, D), the next lemma provides a Hölder regularity property on m.

Lemma 2.3.1. For any γ > 0, there exists a positive constant Cγ such that, for any (m,E) ∈ Sγ(m0, D), m is
1

2
-Hölder continuous with constant Cγ from [0, T ] to P([0, 1]× I) (endowed with the Wasserstein distance W).

Proof. The proof relies on classical arguments for the time regularity of weak solutions of the continuity equation
(see [9]) and on the estimate, for any t, τ ∈ [0, T ] with t ⩽ τ ,(∫ τ

t

∫ 1

0

Ei,j(t, ds)dt

)2

⩽ (τ − t)
∫ τ

t

∫ 1

0

∑
i,j∈I,j ̸=i

(
dEi,j
dmi

(t, s)

)2

mi(τ, ds)dτ

⩽ C

∫ T

0

∫ 1

0

L

(
dEi,j
dmi

(t, s)

)
mi(t, ds)dt+ C

⩽ Cγ ,

where the first inequality is obtained by Cauchy-Schwarz inequality, Cγ := C(γ + 1) and C > 0 is the constant
defined in Assumption 5.

The next lemma is useful to show that any minimizing sequence of (2.3.4) is relatively compact.

Lemma 2.3.2. For any γ > 0, the subset Sγ(m0, D) is relatively compact in C([0, T ],P([0, 1]×I))×M+([0, T ]×
[0, 1]× I2)), where M+([0, T ]× [0, 1]× I2)) is endowed with the weak∗-convergence.

Proof. The compactness is derived from Lemma 2.3.1 and standard arguments in Optimal Transport [231].

Lemma 2.3.3. Problem (2.3.4) admits a solution. Consequently, Problem (2.1.4) has a solution.

Proof. Existence of a solution of (2.3.4) is a consequence of Lemma 2.3.2 and of the l.s.c. of J̃ w.r.t. the
topology induced by C([0, T ],P([0, 1] × I)) ×M([0, T ] × [0, 1] × I2) (where M([0, T ] × [0, 1] × I2) is endowed
with the weak∗-convergence). Since Problem (2.1.4) is equivalent to Problem (2.3.4) up to a change of variable,
the existence of a solution is straightforward.

2.4 Analysis of the Hamilton-Jacobi equation

The purpose of this section is to study weak solutions of the Hamilton-Jacobi equation (2.2.5) when λ is in
M+([0, T ] × I). It is divided into three subsections. Section 2.4.1 is devoted to the analysis of the following
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equation on (0, T )× (0, 1)× I

−∂tψi(t, s)− bi(s)∂sψi(t, s)− ci(t, s) +
∑

j∈I,j ̸=i

H

(
(ψi − ψj)(t, s) +

∫ T

t

(λi − λj)(dr)

)
= 0,

ψi(T, ·) = gi.

(2.4.1)

for a given λ ∈ C0
δ ([0, T ]× I,R+). Then, equation (2.4.1) is studied for a given λ ∈ M+

δ ([0, T ]× I) in Section
2.4.2. Finally, we obtain in Section 2.4.3 the existence and the uniqueness of the solution to (2.2.5) by using
the solution of (2.4.1).

2.4.1 The Hamilton-Jacobi equation for continuous valued data
The main result of this subsection is the following.

Proposition 2.4.1. For any λ ∈ C0
δ ([0, T ]× I,R+), there exists a unique ψλ ∈ C1([0, T ]× [0, 1]× I) satisfying,

for any (t, s, i) ∈ [0, T ]× [0, 1]× I,

ψλi (t, s) =

∫ T

t

∑
j∈I,j ̸=i

−Hλ(i, j, t, τ, s, ψλ) + ci(τ, S
t,s
i (τ))dτ + gi(S

t,s
i (T )). (2.4.2)

In addition, ψλ is the unique classical solution of (2.4.1) on [0, T ]× [0, 1]× I.

We recall that the definition of Hλ is given in (2.2.2). The next lemma states that a function ψ satisfies
(2.4.2) if and only if it is a classical solution of (2.4.1).

Lemma 2.4.1. For any λ ∈ C0([0, T ]× I,R+) and t0 ∈ [0, T ), a function ψ ∈ C1((t0, T ]× [0, 1]× I) satisfies
equation (2.4.2) on [t0, T ]× [0, 1]× I if and only if it is a solution of (2.4.1) on (t0, T ]× [0, 1]× I.

Proof. If ψ ∈ C1((t0, T ]× [0, 1]× I) satisfies (2.4.2), then ψ(T, ·) = g and by computing the partial derivatives
in space and time of ψ, one obtains that ψ is a solution of (2.4.1) on (t0, T ]× (0, 1)× I.

Conversely, if ψ ∈ C1((t0, T ] × [0, 1] × I) is a solution of (2.4.1) then, by the method of characteristics one
deduces that ψ is a solution of (2.4.2) on [t0, T ]× [0, 1]× I.

Before proving Proposition (2.4.1), we need the following estimate on solutions of the Hamilton-Jacobi
equation.

Lemma 2.4.2 (A priori estimate). For any δ > 0, there exists M > 0 such that, for any λ ∈ C0
δ ([0, T ]× I,R+)

and any t0 ∈ [0, T ), if ψ ∈ C1((t0, T ]× [0, 1]× I) satisfies (2.4.1) on (t0, T ]× (0, 1)× I, then ∥ψ∥∞ < M .

Proof. Let us define M := ∥g∥∞ + T (∥c∥∞ + |I|H(δ)) + 1 and, for any (t, s, i) ∈ [t0, T ]× [0, 1]× I,

ui(t, s) := −∥g∥∞ − (T − t)(∥c∥∞ + |I|H(δ)),
ūi(t, s) := ∥g∥∞ + (T − t)(∥c∥∞ + |I|H(δ)).

We note that ∥u∥∞ < M and ∥ū∥∞ < M . One has, for any (t, s, i) ∈ (t0, T ]× [0, 1]× I,

−∂tui(t, s) ⩽ −
∑

j∈I,j ̸=i

H

(∫ T

τ

(λi − λj)(r)dr

)
+ ci(t, s)

−∂tūi(t, s) ⩾ −
∑

j∈I,j ̸=i

H

(∫ T

τ

(λi − λj)(r)dr

)
+ ci(t, s).

(2.4.3)

We will show that ψ is bounded by u and ū. For any t ∈ (t0, T ], we define:

γ(t) = max
(x,i)∈[0,1]×I

(ui − ψi)(t, x) and (xt, it) ∈ argmax
(x,i)∈[0,1]×I

(ui − ψi)(t, x).

Since u is independent of x and i, we have (xt, it) ∈ argmin
(x,i)∈[0,1]×I

ψi(t, x). On the one hand, if xt ∈ {0, 1}, then

bit(xt) = 0. On the other hand, if xt ∈ (0, 1), then ∂sψit(t, xt) = 0. Therefore, one has bit(xt)∂s(uit(t, xt) −
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ψit(t, xt)) = 0. Since u and ψ are Lipschitz continuous in time uniformly in (s, i), γ is also Lipschitz continuous
and thus differentiable a.e. on (t0, T ]. Using the Envelop Theorem [193, Theorem 1], γ is absolutely continuous
on (t0, T ] and, for a.e. t ∈ (t0, T ], inequality (2.4.3) and equality (2.4.1) give:

γ′(t) = ∂t(uit(t, xt)− ψit(t, xt))

⩾
∑

j∈I,j ̸=it

H

(∫ T

τ

(λi − λj)(r)dr

)
−H

(
(ψi − ψj)(τ, St,si (τ)) +

∫ T

τ

(λi − λj)(r)dr

)
.

Since for any j ∈ I we have ψit(t, xt) ⩽ ψj(t, xt) and uit(t, xt) = uj(t, xt), the fact that H is non decreasing
implies:

H

(
ψit(t, xt)− ψj(t, xt) +

∫ T

τ

(λit − λj)(r)dr

)
⩽ H

(∫ T

τ

(λit − λj)(r)dr

)
,

and thus, γ′(t) ⩾ 0. Since γ(T ) < 0, we deduce that ψ > u on (t0, T ] × [0, 1] × I. With similar arguments,
one obtains ū > ψ on (t0, T ] × [0, 1] × I. Therefore, according to the definition of u and ū, we have, for any
(t, s, i) ∈ (t0, T ]× [0, 1]× I :

−M < ψi(t, s) < M. (2.4.4)

Proposition 2.4.1 will be proved by a fixed point argument. For this, we need several lemmas. We fix the
constant M > 0 associated to δ > 0 from Lemma 2.4.2. The constant κ > 0 is defined below and depends only
on M, ∥b′∥∞, T and |I|. We consider the space

C0,1([0, T ]× [0, 1]× I) := {f ∈ C0([0, T ]× [0, 1]× I) | ∂sfi ∈ C0([0, T ]× [0, 1]× I)},

endowed with the norm ∥ · ∥κ0,1 defined by:

∥f∥κ0,1 := ∥f∥κ∞ + ∥∂sf∥κ∞,

where, for any h ∈ C0([0, T ]× [0, 1]× I),

∥h∥κ∞ := sup
(t,s,i)∈[0,T ]×[0,1]×I

|hi(t, s)e−κ(T−t)|.

The space (C0,1([0, T ] × [0, 1] × I), ∥ · ∥κ0,1) is a Banach space. We fix C0 > 0 and C1 > 0 to be chosen below,
where C0 depends on ∥∂sc∥∞, ∥g′∥∞, ∥b′∥∞ and C1 depends on M, δ, T and |I|. We look for a solution in the
space Σ defined by:

Σ :=
{
f ∈ C0,1([0, T ]× [0, 1]× I)

∣∣ ∥f∥∞ ⩽M + 1 and ∥∂sf(t, ·)∥∞ ⩽ C0e
C1(T−t) ∀t ∈ [0, T ]

}
.

Remark 2.4.1. The set Σ is bounded and closed and therefore complete w.r.t. the topology induced by the norm
∥ · ∥κ0,1.

In this subsection, we are looking for a solution of (2.4.1) as a fixed point of the map Γλ := (Γλi )i∈I , which
is defined on C0,1([0, T ]× [0, 1]× I) by

Γλi (ϕ)(t, s) :=

∫ T

t

∑
j∈I,j ̸=i

−Hλ(i, j, t, τ, s, ϕ) + ci(τ, S
t,s
i (τ))dτ + gi(S

t,s
i (T )). (2.4.5)

Since the function H is not necessarily bounded on R, we need to introduce a smooth truncation F ∈
C1(R, [−M − 1, M + 1]) to obtain a fixed point in Σ. The function F is defined on R such that F ′ ⩾ 0,
∥F ′∥∞ ⩽ 1 and:

F (x) :=

 −M − 1 if x ⩽ −(M + 2),
x if −M − 1/2 ⩽ x ⩽M + 1/2,
M + 1 if M + 2 ⩽ x.

(2.4.6)
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Finally, we define the function Πλ by:

∀ϕ ∈ Σ, Πλ(ϕ) := (Πλ1 (ϕ), . . . ,Π
λ
|I|(ϕ)) where Πλi (ϕ) := (F ◦ Γλi )(ϕ) ∀i ∈ I.

The following lemma states that Πλ maps Σ into itself.

Lemma 2.4.3. For a suitable choice of the constants C0 and C1, one has Πλ(ϕ) ∈ Σ for any ϕ ∈ Σ.

Proof. Let ϕ ∈ Σ and, for any i ∈ I, σi := Γλi (ϕ). We have σ ∈ C0,1([0, T ]× [0, 1]×I). We need to show that, for
any t ∈ [0, T ], ∥∂sσ(t, ·)∥∞ ⩽ C0e

C1(T−t). According to the definition of Γλi , we have, for any (i, t) ∈ I × [0, T ],

∥∂sσi(t, ·)∥∞ ⩽ ∥∂sS∥∞K
∫ T

t

∑
i,j∈I

∥∂s(ϕj − ϕi)(t, ·)∥∞dt+ T∥∂sS∥∞∥∂sc∥∞ + ∥∂sS∥∞∥g′∥∞

⩽
C0C

C1
eC1(T−t) + C,

where K := sup
x∈[−2M−δ,2M+δ]

|H ′(x)| and C > 0 is a positive constant which depends on ∥∂sS∥∞, ∥∂sc∥∞, ∥g′∥∞,

|I|, T and K. Choosing carefully C0 and C1 depending on C, one obtains that, for any (i, t) ∈ I × [0, T ],

∥∂sσi(t, ·)∥∞ ⩽ C0e
C1(T−t).

Finally, from the definition of F in (2.4.6), the function Π(ϕ) = (F (σ1), . . . , F (σ|I|)) is in Σ.

The existence of a fixed point of Πλ in Σ is established in the following lemma.

Lemma 2.4.4. For a suitable choice of the constant κ, the function Πλ admits a unique fixed point ψλ ∈ Σ.
In addition, we have ψλ ∈ C1([0, T ]× [0, 1]× I).

Proof. Let ϕ1, ϕ2 ∈ Σ. Since ϕ1 and ϕ2 are bounded by M + 1, one has, for any (t, s, i) ∈ [0, T ]× [0, 1]× I,

|Γλi (ϕ1)(t, s)− Γλi (ϕ
2)(t, s)| ⩽

∑
j∈I,j ̸=i

∫ T

t

|Hλ(i, j, t, τ, s, ϕ1)−Hλ(i, j, t, τ, s, ϕ2)| dτ

⩽ C
∑
j∈I

∫ T

t

|ϕ1j (τ, S
t,s
i (τ))− ϕ2j (τ, S

t,s
i (τ))| dτ

⩽ ∥ϕ1 − ϕ2∥κ∞
Ceκ(T−t)

κ
,

(2.4.7)

where C > 0 is a constant depending on δ, |I| and sup
x∈[−2(M+1)−δ,2(M+1)+δ]

|H ′(x)|. Since H ′ is Lipschitz contin-

uous on [−2(M + 1), 2(M + 1)], one has, for any (t, s, i) ∈ [0, T ]× [0, 1]× I,

|∂s(Γλi (ϕ1)(t, s)− Γλi (ϕ
2)(t, s))| ⩽

∑
j∈I,j ̸=i

∫ T

t

|∂sHλ(i, j, t, τ, s, ϕ1)− ∂sHλ(i, j, t, τ, s, ϕ2)| dτ

⩽ ∥ϕ1 − ϕ2∥κ0,1
Keκ(T−t)

κ
,

(2.4.8)

where K > 0 is a constant that depends on |I|, T, ∥b′∥∞,M,C0, C1 and on the bound and the Lipschitz constant
of H ′ on [−2(M + 1)− δ, 2(M + 1) + δ]. From (2.4.7) and (2.4.8), one obtains that:

∥Γλ(ϕ1)− Γλ(ϕ2)∥κ0,1 ⩽ max(C0/κ,K/κ)∥ϕ1 − ϕ2∥κ0,1.

Choosing κ > max(C0,K) and the function F being non expensive, one deduces that the function Πλ is a
contraction on Σ and that it admits a unique fixed point ψλ ∈ Σ. By the definitions of Πλ and Σ, it is
straightforward that ψλ ∈ C1([0, T ]× [0, 1]× I).

We now turn to the proof of Proposition 2.4.1.
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Proof of Proposition 2.4.1. Let t0 ∈ [0, T ] be the minimum time such that ∥ψλ(t, ·)∥∞ ⩽ M + 1/2 for any
t ∈ [t0, T ]. Since ∥ψλi (T, ·)∥∞ = ∥gi∥∞ < M for any i ∈ I and ψλ is continuous, the time t0 is smaller than T .
The function ψλ is a fixed point of Γλ on [t0, T ] and thus, ψλ is a solution of (2.4.2) on [t0, T ]× [0, 1]× I. By
Lemma 2.4.1, we deduce that ψλ satisfies (2.4.1) on (t0, T ] × [0, 1] × I. If t0 = 0, then the conclusion follows.
If t0 > 0, then ∥ψλ(t0, ·)∥∞ = M + 1/2. By Lemma 2.4.2, one also has ∥ψλ(t0, ·)∥∞ ⩽ M . Hence, there is a
contradiction. Therefore, ψλ is a solution of (2.4.2) and a classical solution of (2.4.1) on [0, T ]× [0, 1]× I.

Remark 2.4.2. One can show that ∥∂tψλ∥∞ + ∥∂sψλ∥∞ is bounded by a function that is non-decreasing w.r.t.
the variable δ. Indeed, by Lemma 2.4.3 and its proof, ∥∂sψλ∥∞ is bounded by C0e

C1T where C0 and C1 depend
on M and on δ by the definition of M in Lemma 2.4.2. By Lemma 2.4.1, ψλ is a classical solution of (2.4.1).
Therefore,

∥∂tψλ∥∞ ⩽ ∥b∥∞∥∂sψλ∥∞ + ∥c∥∞ + sup
x∈[−2M−δ,2M+δ]

|H(x)|.

Thus, ∥∂tψλ∥∞ is bounded by a non-decreasing function of δ.

2.4.2 The Hamilton-Jacobi equation for measure valued data

In this subsection, we prove

Proposition 2.4.2. For any λ ∈ M+([0, T ] × I), there exists a unique ψλ ∈ Lip([0, T ] × [0, 1] × I) satisfying
that, for any (t, s, i) ∈ [0, T ]× [0, 1]× I,

ψλi (t, s) =

∫ T

t

∑
j∈I,j ̸=i

−Hλ(i, j, t, τ, s, ψλ) + ci(τ, S
t,s
i (τ))dτ + gi(S

t,s
i (T )). (2.4.9)

In addition, the map λ 7→ ψλ is continuous fromM+([0, T ]× I), endowed with the weak topology, to C0([0, T ]×
[0, 1]× I), endowed with the norm ∥ · ∥∞.

We recall that the definition ofHλ, with λ ∈M+([0, T ]×I), is given in (2.2.2). The proof of Proposition 2.4.2
relies on the results of the previous subsection. We define the map Θ : C0

δ ([0, T ]×I,R+)→ C1([0, T ]× [0, 1]×I)
by:

Θ : λ 7→ ψλ, (2.4.10)

where ψλ is given by Proposition 2.4.1. We know from Proposition 2.4.1 that Θ is well defined on C0([0, T ]×
I,R+). We want to show that Θ can be continuously extended to a function defined on M+

δ ([0, T ] × I) with
values in Lip([0, T ]× [0, 1]× I). We define the distance D onM+([0, T ]× I) by

D(λ, µ) :=
∫ T

0

∑
i∈I

∣∣∣∣∣
∫ T

t

(λi − µi)(dτ)

∣∣∣∣∣ dt+∑
i∈I

∣∣∣∣∣
∫ T

0

(λi − µi)(dt)

∣∣∣∣∣ . (2.4.11)

Remark 2.4.3. If a sequence {λn}n in M+
δ ([0, T ] × I) converges w.r.t. the weak topology in M+([0, T ] × I)

to λ ∈ M+
δ ([0, T ] × I), then lim

n→∞
D(λn, λ) = 0. Indeed, since {λn}n weakly converges to λ, then lim

n→∞
(λni −

λi)([t, T ]) = 0 for any i ∈ I, a.e. t ∈ [0, T ] and t = 0. Applying the dominated convergence theorem, the
conclusion follows.

The next remark will be useful to extend the domain of Θ.

Remark 2.4.4. The space C0
δ ([0, T ] × I,R+) is dense in M+

δ ([0, T ] × I) w.r.t. the topology induced by D.
More precisely, for any λ ∈ M+

δ ([0, T ] × I), there exists a sequence {λn}n in C0
δ ([0, T ] × I,R+), such that

lim
n→∞

D(λ, λnL) = 0 (where L is the Lebesgue measure on [0, T ]).

Lemma 2.4.5. The map Θ can be extended to a Lipschitz continuous map from M+
δ ([0, T ]× I), endowed with

distance D, to C0([0, T ] × [0, 1] × I), endowed with the norm ∥ · ∥∞. In addition we have Θ(λ) ∈ Lip([0, T ] ×
[0, 1]× I) for any λ ∈M+

δ ([0, T ]× I).

Proof. We need to show that there exists a constant C > 0 such that, for any λ1, λ2 ∈ C0
δ ([0, T ] × I,R+), we

have: ∥Θ(λ1) − Θ(λ2)∥∞ ⩽ CD(λ1, λ2). Since H is locally Lipschitz, there exists a constant K > 0 such that,
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for any (t, s, i) ∈ [0, T ]× [0, 1]× I,

|Θ(λ1)i(t, s)−Θ(λ2)i(t, s)|

= |ψλ
1

i (t, s)− ψλ
2

i (t, s)|

=

∣∣∣∣∣∣
∑

j∈I,j ̸=i

∫ T

t

Hλ1

(i, j, t, τ, s, ψλ
1

)−Hλ2

(i, j, t, τ, s, ψλ
2

)dτ

∣∣∣∣∣∣
⩽ |I|

∑
j∈I

K

∫ T

t

(
|ψλ

1

j (τ, St,si (τ))− ψλ
2

j (τ, St,si (τ))|+ |
∫ T

τ

λ1j (r)dr −
∫ T

τ

λ2j (r)dr|

)
dτ.

Taking the supremum over I × [0, 1] yields:

∥ψλ
1

(t, ·)− ψλ
2

(t, ·)∥∞

⩽ |I|2
∫ T

t

K∥ψλ
1

(τ, ·)− ψλ
2

(τ, ·)∥∞dτ + |I|2Ksup
i∈I

∫ T

t

|
∫ T

τ

λ1i (r)dr −
∫ T

τ

λ2i (r)dr|dτ

⩽ |I|2
∫ T

t

K∥ψλ
1

(τ, ·)− ψλ
2

(τ, ·)∥∞dτ + |I|2KD(λ1, λ2).

Then, by applying Gronwall Lemma to t 7→ ∥ψλ
1

(t, ·)− ψλ
2

(t, ·)∥∞, one has, for any t ∈ [0, T ],

∥ψλ
1

(t, ·)− ψλ
2

(t, ·)∥∞ ⩽ CD(λ1, λ2), (2.4.12)

where the constant C > 0 depends on δ,K, T and |I|. Therefore,

∥Θ(λ1)−Θ(λ2)∥∞ = ∥ψλ
1

− ψλ
2

∥∞ ⩽ CD(λ1, λ2).

From the previous inequality and Remark 2.4.4, the map Θ can be continuously extended to a Lipschitz con-
tinuous map fromM+

δ ([0, T ]× I) to C0([0, T ]× [0, 1]× I).
Finally, we approximate λ ∈M+

δ ([0, T ]× I) by a sequence in {λn}n in C0
δ ([0, T ]× I,R+) w.r.t. the distance

D. One has that {Θ(λn)}n is uniformly Lipschitz continuous on [0, T ] × [0, 1] × I according to Remark 2.4.2.
Thus, Θ(λ) is in Lip([0, T ]× [0, 1]× I).

Proof of Proposition 2.4.2. The proposition is a direct consequence of Lemma 2.4.5.

Remark 2.4.5. By Remark 2.4.2 and Lemma 2.4.5, one can show that for any λ ∈M+([0, T ]×I), the solution
ψλ of (2.4.9) is such that, max(∥ψλ∥∞, ∥∂sψλ∥∞) depends only on H, b, c, g and λ([0, T ]× I).

2.4.3 Analysis of weak solution of the Hamilton-Jacobi equation (2.5)

For any λ ∈ M+([0, T ] × I), we consider the function Lλ ∈ BV ([0, T ] × I) defined for any i ∈ I and any
t ∈ [0, T ] by:

Lλi (t) := λi([t, T ]). (2.4.13)

We introduce the notion of weak solution for equation (2.2.5).

Definition 2.4.1. For a given λ ∈ M+([0, T ] × I), a function φ defined from [0, T ] × [0, 1] × I to R is a
weak solution of equation (2.2.5) if φ − Lλ is in Lip([0, T ] × [0, 1] × I) and if, for any test function f ∈
C1([0, T ]× [0, 1]× I),∫ 1

0

φi(0, s)fi(0, s)ds−
∫ 1

0

gi(s)fi(T, s)ds+

∫ T

0

∫ 1

0

(∂tfi(t, s) + ∂s(fi(t, s)bi(s)))φi(t, s)dsdt

+

∫ T

0

∫ 1

0

 ∑
j∈I,j ̸=i

H(φi(t, s)− φj(t, s))− ci(t, s)

 fi(t, s)dtds−
∑
i∈I

∫ T

0

∫ 1

0

fi(t, s)dsλi(dt)

= 0,

(2.4.14)
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where φi(0, ·) is understood in the sense of trace.

Remark 2.4.6. 1. There is no boundary condition in (2.4.14). This is due to the fact that b(0) = b(1) = 0,
involving a null incoming flow in the domain [0, 1].

2. Since φ is in BV ([0, T ]× I) + Lip([0, T ]× [0, 1]× I), φ(0, ·) exists in the sense of trace. In addition, φ is
bounded and thus, it belongs to L2([0, T ]× [0, 1]× I) so that the integrals in (2.4.14) exist.

3. The final condition in (2.2.5) is misleading. Indeed, any weak solution φ of (2.2.5) in the sense of
Definition 2.4.1 satisfies φi(T, ·) = gi(·) + Lλi (T ), where φi(T, ·) and Lλi (T ) are in the sense of trace.
Thus, φi(T, ·) ⩾ gi(·).

The main result of this subsection is the following.

Theorem 2.4.1. Let λ ∈M+([0, T ]×I). A function φ ∈ Lip([0, T ]×[0, 1]×I)+BV ([0, T ]×I) is the unique weak
solution of (2.2.5) in the sense of Definition 2.4.1, if and only if it satisfies that, for any (t, s, i) ∈ [0, T ]×[0, 1]×I,

φi(t, s) =

∫ T

t

∑
j∈I,j ̸=i

−H((φi − φj)(τ, St,si (τ))) + ci(τ, S
t,s
i (τ))dτ + Lλi (t) + gi(S

t,s
i (T )). (2.4.15)

Theorem 2.4.1 is a consequence of Lemmas 2.4.7 and 2.4.8. Lemma 2.4.7 shows that a function satisfying
(2.4.15) is a weak solution of (2.2.5). Lemma 2.4.8 shows the converse. In what follows, for any λ ∈M+([0, T ]×
I), we define ψλ as in Proposition 2.4.2 and define φλ ∈ Lip([0, T ]× [0, 1]× I) +BV ([0, T ]× I) by:

φλ := ψλ + Lλ. (2.4.16)

Remark 2.4.7. For any λ ∈M+([0, T ]× I), φλ is a solution of (2.4.15) on [0, T ]× [0, 1]× I if and only if ψλ

is a solution of (2.4.9) on [0, T ] × [0, 1] × I. According to Remark 2.4.5, the quantity max(∥φλ∥∞, ∥∂sφλ∥∞)
depends on λ([0, T ]× I).

Lemma 2.4.6. For any λ ∈M+([0, T ]× I), there exists a sequence {(λn, φn)}n such that
(i) {λn}n is in C0([0, T ]× I,R+) and converges to λ w.r.t. the weak topology in M+([0, T ]× I),
(ii) for any n ∈ N, φn is a classical solution of (2.2.5) associated to λn on (0, T )× (0, 1)× I
(iii) we have lim

n→∞
∥φλ(t, ·)− φn(t, ·)∥∞ = 0 for a.e. t ∈ [0, T ] and lim

n→∞
∥φλ(0, ·)− φn(0, ·)∥∞ = 0.

Proof. We consider a sequence {λn}n in C0([0, T ] × I,R+) that weakly converges to λ. We set ψn := ψλ
n

,
where ψλ

n

is defined by Proposition 2.4.2, and φn := ψn + Lλ
n

. By Lemma 2.4.1, for any n ∈ N, ψn is a
classical solution of (2.4.1). Then, for any n ∈ N, φn is a classical solution of (2.2.5) associated to λn on
(0, T )× (0, 1)× I. The weak convergence of {λn}n implies:

lim
n→∞

Lλ
n

(t) = Lλ(t) for a.e. t ∈ [0, T ] and lim
n→∞

Lλ
n

(0) = Lλ(0).

By Proposition 2.4.2, {ψn}n converges to ψλ w.r.t. the norm ∥ · ∥∞. Then, the two previous equalities imply
that:

lim
n→∞

∥φλ(t, ·)− φn(t, ·)∥∞ = 0 for a.e. t ∈ [0, T ] and lim
n→∞

∥φλ(0, ·)− φn(0, ·)∥∞ = 0.

Lemma 2.4.7. For any λ ∈M+([0, T ]× I), φλ is a weak solution of (2.2.5) in the sense of Definition 2.4.1.

Proof. We consider a sequence {λn, φn}n defined as in Lemma 2.4.6. For any n ∈ N, φn is a classical solution
of (2.2.5). Thus, for any test function f ∈ C1([0, T ]× [0, T ]× I):∫ 1

0

φni (0, s)fi(0, s)ds−
∫ 1

0

gi(s)fi(T, s)ds+

∫ T

0

∫ 1

0

(∂tfi(t, s) + ∂s(fi(t, s)bi(s)))φ
n
i (t, s)dsdt

+

∫ T

0

∫ 1

0

 ∑
j∈I,j ̸=i

H(φni (t, s)− φnj (t, s))− ci(t, s)

 fi(t, s)dtds−
∑
i∈I

∫ T

0

∫ 1

0

fi(t, s)dsλ
n
i (t)dt

= 0.

(2.4.17)
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The conclusion follows by using Lemma 2.4.6, the continuity of H, the limit of (2.4.17) when n tends to infinity
and by applying the dominated convergence theorem.

The next lemma states the converse of Lemma 2.4.7.

Lemma 2.4.8. For any (λ, φ) ∈M+([0, T ]×I)×(Lip([0, T ]×[0, 1]×I)+BV ([0, T ]×I)), if φ is a weak solution of
(2.2.5) associated to λ in the sense of Definition 2.4.1, then φ satisfies (2.4.15) for any (t, s, i) ∈ [0, T ]×[0, 1]×I.

Proof. Let φ be a weak solution of (2.2.5) associated to λ. Let β ∈ C1([0, T ]× [0, 1]× I,R) be a test function.
Then,∫ 1

0

φi(0, s)βi(0, s)ds−
∫ 1

0

gi(s)βi(T, s)ds+

∫ T

0

∫ 1

0

(∂tβi(t, s) + ∂s(βi(t, s)bi(s)))φi(t, s)dsdt

+

∫ T

0

∫ 1

0

 ∑
j∈I,j ̸=i

H(φi(t, s)− φj(t, s))− ci(t, s)

βi(t, s)dtds−
∑
i∈I

∫ T

0

∫ 1

0

βi(t, s)dsλi(dt)

= 0.

(2.4.18)

We choose the function β such that there exist θ ∈ C∞([0, T ]× [0, 1]× I) and ξ ∈ C∞([0, 1]× I) satisfying:

∂tβi(t, s) + ∂s(βi(t, s)bi(s)) = θi(t, s) for any (t, s, i) ∈ (0, T )× (0, 1)× I,
βi(0, ·) = ξi(·) for any (s, i) ∈ [0, 1]× I. (2.4.19)

The function β is given by for any (t, s, i) ∈ [0, T ]× [0, 1]× I,

βi(t, s) =

∫ t

0

θi(τ, S
t,s
i (τ)) exp

(
−
∫ t

τ

b′i(S
t,s
i (r))dr

)
dτ + ξi(S

t,s
i (0)) exp

(
−
∫ t

0

b′i(S
t,s
i (τ))dτ

)
.

To simplify (2.4.18), we introduce, for any i ∈ I the following functions νi and πi, satisfying βi = νi + πi: for
any (t, s) ∈ [0, T ]× [0, 1],

νi(t, s) :=

∫ t

0

θi(τ, S
t,s
i (τ)) exp

(
−
∫ t

τ

b′i(S
t,s
i (r))dr

)
dτ and πi(t, s) := ξi(S

t,s
i (0)) exp

(
−
∫ t

0

b′i(S
t,s
i (τ))dτ

)
.

Setting h(t, s) :=
∑

j∈I,j ̸=i

H(φi(t, s)−φj(t, s))−ci(t, s) for any (t, s, i) ∈ [0, T ]× [0, 1]×I, we have h ∈ L1((0, T )×

(0, 1)). By switching the order of integration, and applying the change of variable x = St,si (τ) and equality
(2.2.4), one has:∫ T

0

∫ 1

0

h(t, s)νi(t, s)dtds =

∫ T

0

∫ 1

0

∫ t

0

h(t, s)θi(τ, S
t,s
i (τ)) exp

(
−
∫ t

τ

b′i(S
t,s
i (r))dr

)
dτds dt

=

∫ T

0

∫ 1

0

θi(τ, x)

∫ T

τ

h(t, Sτ,xi (t)) exp

(
−
∫ t

τ

b′i(S
τ,x
i (r))dr

)
∂xS

τ,x
i (t)dt dx dτ,

=

∫ T

0

∫ 1

0

θi(τ, x)

∫ T

τ

h(t, Sτ,xi (t))dt dx dτ.

(2.4.20)
By the same computations, for any i ∈ I, one has:∫ 1

0

gi(s)νi(T, s)ds =

∫ T

0

∫ 1

0

gi(S
τ,x
i (T ))θi(τ, x)dsdτ, (2.4.21)

∫ T

0

∫ 1

0

h(t, s)πi(t, s)dtds =

∫ 1

0

ξi(x)

∫ T

0

h(t, S0,x
i (t))dtdx, (2.4.22)

∫ 1

0

gi(s)πi(T, s)ds =

∫ 1

0

ξi(x)gi(S
0,x
i (T ))dx, (2.4.23)
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and: ∫ T

0

∫ 1

0

βi(t, s)dsλi(dt) =

∫ T

0

∫ 1

0

ξi(τ, x)L
λ
i (τ)dxdτ +

∫ 1

0

ξi(x)L
λ
i (0)dx. (2.4.24)

Using (2.4.20), (2.4.22), (2.4.23), (2.4.24) and (2.4.19), equality (2.4.18) becomes:

∫ 1

0

ξi(s)

φi(0, s) + ∫ T

0

∑
j∈I,j ̸=i

H((φi − φj)(τ, S0,s
i (τ)))− ci(τ, S0,s

i (τ))dτ − Lλi (0)− gi(S
0,s
i (T ))

 ds

+

∫ T

0

∫ 1

0

θi(t, s)

φi(t, s) + ∫ T

t

∑
j∈I,j ̸=i

H((φi − φj)(τ, St,si (τ)))− ci(τ, St,si (τ))dτ − Lλi (t)− gi(S
t,s
i (T ))

 dsdt

= 0.

This equality holds for any test functions θi and ξi. Then, one has for any s ∈ [0, 1]:

φi(0, s) =

∫ T

0

∑
j∈I,j ̸=i

−H((φi − φj)(τ, S0,s
i (τ))) + ci(τ, S

0,s
i (τ))dτ + Lλi (0) + gi(S

0,s
i (T )),

and forn any (t, s) ∈ [0, T ]× [0, 1]:

φi(t, s) =

∫ T

t

∑
j∈I,j ̸=i

−H((φi − φj)(τ, St,si (τ))) + ci(τ, S
t,s
i (τ))dτ + Lλi (t) + gi(S

t,s
i (T )).

With the above lemmas, the proof of Theorem 2.4.1 is straightforward.

Proof of Theorem 2.4.1. The proof is a direct consequence of Lemmas 2.4.7 and 2.4.8. The uniqueness of a
weak solution is deduced by Remark 2.4.7. Indeed, since ψλ is the unique solution of (2.4.9), φλ is the unique
solution of (2.4.15) and thus, the unique weak solution of (2.2.5) in the sense of Definition 2.4.1.

2.5 The dual problem

In this section, an optimization problem (2.5.3) is introduced. Using tools from convex analysis [99], we
show that this problem is in duality with (2.3.4). We consider the following spaces:

E0 = C1([0, T ]× [0, 1]× I)× C0([0, T ]× I) and E1 := C0([0, T ]× [0, 1]× I)× C0([0, T ]× [0, 1]× I2).

Given (φ, λ) ∈ E0, we consider the following inequality:

−∂tφi(t, s)− bi(s)∂sφi(t, s)− ci(t, s)− λ(t) +
∑

j∈I,j ̸=i

H((φi − φj)(t, s)) ⩽ 0 on (0, T )× (0, 1)× I,

φi(T, ·) ⩽ gi on (0, 1)× I.
(2.5.1)

The set K0 is defined by: K0 := {(φ, λ) ∈ E0, λ ⩾ 0 and φ satisfies (2.5.1) associated to λ}. We introduce the
function A, defined on K0 by :

A(φ, λ) :=
∑
i∈I

∫ 1

0

−φi(0, s)m0
i (ds) +

∫ T

0

λi(t)Di(t)dt, (2.5.2)

and the following problem is considered:
inf

(φ,λ)∈K0

A(φ, λ). (2.5.3)

Lemma 2.5.1. inf
(φ,λ)∈K0

A(φ, λ) is finite.
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Proof. Let (φ, λ) ∈ K0. Since φ is in C1([0, T ] × [0, 1] × I) and satisfies (2.5.1), using that H is non negative,

we have, for any (i, s) ∈ I × [0, 1], φi(0, s) ⩽ T∥c∥∞ +

∫ T

0

λi(τ)dτ + ∥g∥∞. Setting Q := −|I|(T∥c∥∞ + ∥g∥∞),

one has:

Q+
∑
i∈I

∫ T

0

λi(t)

(
Di(t)−

∫ 1

0

m0
i (ds)

)
dt ⩽ A(φ, λ).

Since λ ⩾ 0, we deduce from the Assumption 3 and previous inequality that Q ⩽ inf
(φ,λ)∈K0

A(φ, λ).

We consider the linear and bounded function Λ : E0 → E1 defined by: Λ(φ, λ) := (∂tφ + b∂sφ + λ̃,∆φ),
where ∂tφ + b∂sφ := (∂tφi + bi∂sφi)i∈I , ∆φ := (∆φi,j)(i,j)∈Ĩ with ∆φi,j = φj − φi and, for any (s, i) ∈
[0, 1]× I, λ̃i(·, s) := λi(·). The linear function Λ∗ : E∗

1 → E∗
0 is the adjoint operator of Λ. The functional F is

defined, for any (φ, λ) ∈ E0, by

F(φ, λ) :=


∑
i∈I

∫ 1

0

−φi(0, s)m0
i (ds) +

∫ T

0

Di(t)λi(t)dt if φi(T, ·) ⩽ gi and λi ⩾ 0 ∀i ∈ I,

+∞ otherwise.

Using that:

⟨(m,E),Λ(φ, λ)⟩E∗
1 ,E1

=
∑
i∈I

∫ 1

0

∫ T

0

(∂tφi(t, s) + bi(s)∂sφi(t, s))mi(ds, t) +
∑

j∈I,j ̸=i

(φj(t, s)− φi(t, s))Ei,j(t, ds)dt

+
∑
i∈I

∫ T

0

∫ 1

0

mi(t, ds)λ̃i(t, s)dt,

defining F∗ as the Fenchel conjugate of F , we have:

F∗ (Λ∗(m,E)) :=



∫ 1

0

∑
i∈I

gi(s)mi(T, ds) if (m,E) is a weak solution of (2.3.1)

and
∫ 1

0

mi(t, ds) ⩽ Di(t) ∀(t, i) ∈ [0, T ]× I,

+∞ otherwise.

For any (x, y) ∈ E1, the functional G is defined by:

G(x, y) :=

 0 if − ci(t, s)− xi(t, s) +
∑

j∈I,j ̸=i

H(−yi,j(t, s)) ⩽ 0 ∀(t, s, i) ∈ (0, T )× (0, 1)× I,

+∞ otherwise.

Then, for any (φ, λ) ∈ E0, it holds:

G(Λ(φ, λ)) :=


0 if − ci(t, s)− ∂tφi(t, s)− bi(t, s)∂sφi(t, s)− λ̃i(t, s) +

∑
j∈I,j ̸=i

H(−∆φi,j(t, s)) ⩽ 0

∀(t, s, i) ∈ (0, T )× (0, 1)× I,

+∞ otherwise.

Using that L(x) = H∗(x), one can show, as in [21] for the quadratic case, that, for any (v, w) ∈ R2,

sup
a,b∈R

{av + bw; a+H(b) ⩽ 0} =


L(
w

v
)v if v > 0 and w ⩾ 0,

0 if v = 0 and w = 0,
+∞ otherwise.
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Then, with similar computations as in [53, Lemma 4.3], for any (m,E) ∈ E′
1, we have:

G∗(−(m,E))

= sup
(x,y)∈E1

∑
i∈I

∫ T

0

∫ 1

0

−xi(t, s)mi(t, ds)dt−
∑
j ̸=i

yi,j(t, s)Ei,j(t, ds)dt− G(x, y)

= sup
(x,y)∈E1

∑
i∈I

∫ T

0

∫ 1

0

(−xi(t, s)− ci(t, s) + ci(t, s))mi(t, ds)−
∑
j ̸=i

yi,j(t, s)Ei,j(t, ds)dt− G(x, y)

=
∑
i∈I

∫ T

0

∫ 1

0

ci(t, s)mi(t, ds)dt+ sup
(x,y)∈E1

∑
i∈I

∫ T

0

∫ 1

0

xi(t, s)mi(t, ds) +
∑
j ̸=i

yi,j(t, s)Ei,j(t, ds)dt

−G(−x− c,−y)

=



∫ T

0

∫ 1

0

∑
i∈I

ci(t, s)mi(t, ds) +
∑
j ̸=i

L

(
dEi,j
dmi

(t, s)

)
mi(t, ds)dt if m > 0, E ⩾ 0 and E ≪ m,

0 if m = 0 and E = 0,

+∞ otherwise.

(2.5.4)

The following lemma shows the constraint qualification for Problem (2.5.3).

Lemma 2.5.2. There exists (φ, λ) ∈ E0 such that F(φ, λ) <∞ and G is continuous at Λ(φ, λ).

Proof. Let φ and λ be such that, for any (t, s, i) ∈ [0, T ]× [0, 1]× I,

φi(t, s) = −max
i∈I

(∥gi∥∞)− 1,

and
λi(t) := ∥ci∥∞ + 1,

Functions φ and λ being constant, it holds that (φ, λ) ∈ E0 and F(φ, λ) <∞. Also, from the choice of φ and
λ, it follows that, for any i ∈ I, s ∈ [0, 1] and t ∈ [0, T ],

−ci(t, s)− ∂tφi(t, s)− bi(t, s)∂sφi(t, s)− λi(t, s) +
∑

j∈I,j ̸=i

H(φi(t, s)− φj(t, s)) < 0.

Thus, G is continuous at Λ(φ, λ).

The main result on the duality of this section is the following.

Theorem 2.5.1. We have:
inf

(φ,λ)∈K0

A(φ, λ) = − inf
(m,E)∈S(m0,D)

J̃(m,E)

Proof. On can observe that:

inf
(φ,λ)∈K0

A(φ, λ) = inf
(φ,λ)∈E0

F(φ, λ) + G(Λ(φ, λ)),

and
inf

(m,E)∈S(m0,D)
J̃(m,E) = inf

(m,E)∈E∗
1

F(Λ∗(m,E)) + G∗(−(m,E)),

Using Lemmas 2.5.2 and 2.5.1, the conclusion follows by applying the Fenchel-Rockafellar duality theorem
[99].

For any (φ, λ) ∈ (Lip([0, T ]× [0, 1]× I) +BV ([0, T ]× I))×M+([0, T ]× I), we define the function

Ã(φ, λ) :=
∑
i∈I

∫ 1

0

−φi(0, s)m0
i (ds) +

∫ T

0

Di(t)λi(dt). (2.5.5)
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Proposition 2.5.1. There exists λ ∈M+([0, T ]× I) such that:

Ã(λ, φλ) = inf
(ϕ,µ)∈K0

A(ϕ, µ),

where φλ is defined in (2.4.16).

Before proving this result, we need the following lemma.

Lemma 2.5.3. For any K > 0, there exists a constant C > 0 such that, for any (φ, λ) ∈ K0 satisfying
A(φ, λ) ⩽ K, we have: ∑

i∈I

∫ T

0

λi(t)dt ⩽ C.

Proof. Let K ∈ R∗
+ and (φ, λ) ∈ K0 be such that A(φ, λ) ⩽ K. Since (φ, λ) ∈ K0, one can show, as in the proof

of Lemma 2.5.1, that, for any (i, s) ∈ I × [0, 1],

φi(0, s) ⩽ T∥c∥∞ + ∥g∥∞ +
∑
i∈I

∫ T

0

λi(t)dt.

Therefore, recalling that A(φ, λ) ⩽ K:

∑
i∈I

∫ T

0

λi(t)(Di(t)−mi([0, 1]))dt ⩽ K + T∥c∥∞ + ∥g∥∞.

From Assumption 3, there exists ε0 > 0 such that Di(t) − mi([0, 1]) > ε0 for any (t, i) ∈ [0, T ] × I. Setting
C := (K + T∥c∥∞ + ∥g∥∞)/ε0, we have: ∑

i∈I

∫ T

0

λi(t)dt ⩽ C.

We are now ready to prove Proposition 2.5.1.

Proof of Proposition 2.5.1. Let {(ϕn, λn)}n be a minimizing sequence of (2.5.3). For any n ∈ N, we consider
φn the classical solution of (2.2.5) associated to λn. Since φn is a classical solution and ϕn satisfies (2.5.1) on
[0, T ]×[0, 1]×I, we can easily check that the following comparison holds: φn ⩽ ϕn. Thus, A(φn, λn) ⩽ A(ϕn, λn)
for any n ∈ N. Therefore, {(φn, λn)}n is also a minimizing sequence and, there exist K > 0 and n0 > 0 such

that for any n ⩾ n0 one has A(φn, λn) ⩽ K. From Lemma 2.5.3, the sequence {
∑
i∈I

∫ T

0

λni (t)dt}n is uniformly

bounded. Thus, a subsequence of {λn}n weakly converges to a measure λ ∈ M+([0, T ] × I) w.r.t. the weak
topology inM+([0, T ]× I). We set φλ := Θ(λ) +Lλ and φn := Θ(λn) +Lλ

n

for any n ∈ N, where Θ is defined
in (2.4.10). By the same arguments as in the proof of Lemma 2.4.6, one has lim

n→∞
∥φλ(0, ·)− φn(0, ·)∥∞ = 0 up

to a subsequence of {φn}n and, therefore, we have:

lim
n→∞

A(φn, λn) = Ã(φλ, λ),

and the conclusion follows.
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2.6 Characterization of the minimizers

The purpose of this section is to define and characterize the solutions of Problem (2.3.4). We show that the
following system gives optimality conditions for (2.3.4):

−∂tφi − bi∂sφi − ci − λi +
∑

j∈I,j ̸=i

H(φi − φj) = 0 on (0, T )× (0, 1)× I,

∂tmi + ∂s(mibi) +
∑
j ̸=i

H ′(φi − φj)mi −H ′(φj − φi)mj = 0 on (0, T )× (0, 1)× I,

mi(0, s) = m0
i (s), φi(T, s) = gi(s) on (0, 1)× I,∫ 1

0

mi(t, ds)−Di(t) ⩽ 0, λ ⩾ 0 on [0, T ]× I,∑
i∈I

∫ T

0

(∫ 1

0

mi(t, ds)−Di(t)

)
λi(dt) = 0.

(2.6.1)

The notion of weak solutions of system (2.6.1) is given in the following definition.

Definition 2.6.1. A triplet (φ, λ,m) ∈ (Lip([0, T ]×[0, 1]×I)+BV ([0, T ]×I))×M+([0, T ]×I)×C0([0, T ],P([0, 1]×
I)) is called a weak solution of (2.6.1) if it satisfies the following conditions:

1. The function φ is a weak solution of (2.2.5), associated to λ in the sense of Definition 2.4.1;
2. m satisfies the continuity equation:

∂tmi + ∂s(mibi) +
∑
j ̸=i

H ′(φi − φj)mi −H ′(φj − φi)mj = 0, mi(0, ·) = m0
i ,

in the sense of Definition 2.3.1, with αi,j := H ′(φi − φj);
3. it holds that, for any t ∈ [0, T ],∫ 1

0

mi(t, ds)−Di(t) ⩽ 0 and
∑
i∈I

∫ T

0

(∫ 1

0

mi(t, ds)−Di(t)

)
λi(dt) = 0.

Remark 2.6.1. Since φ ∈ Lip([0, T ]× [0, 1]× I) + BV ([0, T ]× I) and H ′ is Lipschitz continuous, the control
αi,j := H ′(φi−φj) is bounded on [0, T ]× [0, 1]× I and ∂sαi,j ∈ L∞([0, T ]× [0, 1]). Thus, αi,j is in L2

mi
([0, T ]×

[0, 1]) and the forward equation in (2.6.1) makes sense.

The following theorem states the optimality conditions of Problem (2.3.4).

Theorem 2.6.1. 1. If (m,E) ∈ S(m0, D) is a minimizer of Problem (2.3.4), and φ a weak solution of
(2.2.5) in the sense of Definition 2.4.1 associated to λ satisfying Ã(φ, λ) = inf

(ϕ,µ)∈K0

A(ϕ, µ), then (φ, λ,m)

is a weak solution of (2.6.1) and
dEi,j
dmi

= H ′(φi − φj) on {mi > 0} for any i, j ∈ I.

2. Conversely, if (φ, λ,m) is a weak solution of (2.6.1), then Ã(φ, λ) = inf
(ϕ,µ)∈K0

A(ϕ, µ) and there exists E,

defined for any i, j ∈ I by
dEi,j
dmi

:= H ′(φi − φj), such that (m,E) ∈ S(m0, D) is a minimizer of (2.3.4).

Remark 2.6.2. If (φ, λ,m) is a weak solution of (2.6.1), then (φ, λ) is a minimizer of a relaxed version of
Problem (2.5.3), i.e. (φ, λ) is the minimum of Ã over the space (Lip([0, T ] × [0, 1] × I) + BV ([0, T ] × I)) ×
M+([0, T ]× I).

2.6.1 Proof of Theorem 6.1
Before the proof of Theorem 2.6.1, we make the following remark.

Remark 2.6.3. For any λ ∈M+([0, T ]×I) and any (m,E) ∈ S(m0, D) one has −J̃(m,E) ⩽ Ã(φλ, λ). Indeed,
considering a sequence {(λn, φn)}n defined as in Lemma 2.4.6 and using the proof of Theorem 2.5.1, we get:
−J̃(m,E) ⩽ A(φn, λn) and, therefore, −J̃(m,E) ⩽ Ã(φλ, λ).
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Proof of Theorem 2.6.1. 1. By Theorem 2.5.1, one has:

inf
(φ̂,λ̂)∈K0

A(φ̂, λ̂) = − inf
(m̂,Ê)∈S(m0,D)

J̃(m̂, Ê),

and thus ∑
i∈I

∫ 1

0

gimi(T )− φi(0)m0
i +

∫ T

0

Diλi +

∫ T

0

∫ 1

0

ci +∑
j ̸=i

L

(
dEi,j
dmi

)mi = 0. (2.6.2)

We want to show that Ei,j = H ′(φi − φj)mi. We consider a sequence {(λn, φn)}n defined as in Lemma 2.4.6.
For any n ∈ N, φn is smooth enough to be a test function for the weak formulation of (2.1.1) satisfied by m.
According to Lemma 2.4.6 and the fact that D ∈ C0([0, T ]× I), it holds that, for any n ∈ N and i ∈ I,

∑
i∈I

∫ 1

0

gimi(T )− φi(0)m0
i +

∫ T

0

λiDi

= lim
n→∞

∑
i∈I

∫ 1

0

gimi(T )− φni (0)m0
i +

∫ T

0

Diλ
n
i

= lim
n→∞

∑
i∈I

∫ T

0

∫ 1

0

∂tφni + bi∂s(φ
n
i ) +

∑
j∈I,j ̸=i

(φnj − φni )
dEi,j
dmi

mi +

∫ T

0

λni Di

= lim
n→∞

∑
i∈I

∫ T

0

∫ 1

0

−ci + ∑
j∈I,j ̸=i

H(φni − φnj ) +
∑

j∈I,j ̸=i

(φnj − φni )
dEi,j
dmi

mi +

∫ T

0

λni

(
Di −

∫ 1

0

mi

)
.

By the previous equality and (2.6.2),

lim
n→∞

∑
i∈I

∫ T

0

∫ 1

0

 ∑
j∈I,j ̸=i

H(φni − φnj ) + L

(
dEi,j
dmi

)
+ (φnj − φni )

dEi,j
dmi

mi +

∫ T

0

λni

(
Di −

∫ 1

0

mi

)
= 0.

According to Lemma 2.4.6, for a.e. t ∈ [0, T ], the sequence {φ(t, ·)}n converges uniformly to φ. By the continuity
of H and the dominated convergence theorem, we get

∫ T
0

∫ 1

0
miH(φni − φnj ) converges to

∫ T
0

∫ 1

0
miH(φi − φj)

for any i, j ∈ I. Since (m,E) is a solution of (2.3.4), J̃(m,E) is finite. Then one can show that, for any i, j ∈ I,∫ T
0

∫ 1

0
Ei,j <∞. Applying dominated convergence theorem, we can show that:

∫ T
0

∫ 1

0
(φnj −φni )Ei,j converges to∫ T

0

∫ 1

0
(φj −φi)Ei,j . Since, for any i ∈ I, the map t 7→ Di(t)−

∫ 1

0

mi(t, ds) is continuous, the weak convergence

of λn to λ in M+([0, T ]× I) gives:

lim
n→∞

∑
i∈I

∫ T

0

λni

(
Di −

∫ 1

0

mi

)
=
∑
i∈I

∫ T

0

λi

(
Di −

∫ 1

0

mi

)
.

Thus,

∫ T

0

∫ 1

0

 ∑
j∈I,j ̸=i

H(φi − φj) + L

(
dEi,j
dmi

)
+ (φj − φi)

dEi,j
dmi

mi +

∫ T

0

λi

(
Di −

∫ 1

0

mi

)
= 0. (2.6.3)

Since λ ⩾ 0 and
∫ 1

0

mi(t, ds) ⩽ Di(t) for any t ∈ [0, T ], one has, for any i ∈ I and t ∈ [0, T ],

0 ⩽
∫ T

0

(
Di(t)−

∫ 1

0

mi(t, ds)

)
λi(dt). (2.6.4)

Recalling that L∗(p) = H(p), we have L(p) +H(q) − pq ⩾ 0 for any p, q ∈ R. Thus, by inequality (2.6.4) and
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equality (2.6.3), one deduces∑
j∈I,j ̸=i

H(φi − φj) + L

(
dEi,j
dmi

)
+ (φj − φi)

dEi,j
dmi

= 0 m− a.e..

Therefore,
dEi,j
dmi

(t, s) = H ′(φi(t, s)− φj(t, s)) m− a.e. , (2.6.5)

and inequality (2.6.4) becomes an equality. Thus,
∫ T
0

(
Di −

∫ 1

0
mi(t, ds)

)
λi(dt) = 0. By equality (2.6.5), the

properties of H and the fact that φ ∈ Lip([0, T ] × [0, 1] × I) + BV ([0, T ] × I), one has
dEi,j
dmi

∈ L∞([0, T ] ×

[0, 1]) and ∂s

(dEi,j
dmi

)
∈ L∞((0, T ) × (0, 1)). Thus, by Proposition 2.8.1 in Appendix, we deduce that m ∈

Lip([0, T ],P([0, 1]× I)).
2. We assume now that (λ, φ,m) is a weak solution of (2.6.1). Since φ is in Lip([0, T ]×[0, 1]×I)+BV ([0, T ]×

I) and λ is a finite measure, the quantity Ã(φ, λ) is well defined. We want to show that Ã(φ, λ)+ J̃(m,E) = 0.
We approximate (λ, φ) by the sequence {(λn, φn)}n defined in Lemma 2.4.6.(1). For any n, φn is smooth enough
to be considered as a test function for the equation (2.1.1) satisfied in the weak sense by m. We have, for any
i ∈ I,

∑
i∈I

∫ 1

0

gimi(T )− φni (0)m0
i +

∑
i∈I

∫ T

0

∫ 1

0

−mibi∂sφ
n
i −mi∂tφ

n
i +

∑
j∈I,j ̸=i

(φni − φnj )H ′(φi − φj)mi = 0. (2.6.6)

For any i ∈ I, φni is a classical solution of (2.2.5) associated to λn. Multiplying (2.2.5) by mi, summing over I
and integrating over [0, T ]× [0, 1], we have:

∑
i∈I

∫ T

0

∫ 1

0

−mi∂tφ
n
i −mibi∂sφ

n
i −mici −miλ

n +
∑

j∈I,j ̸=i

H(φni − φnj )mi = 0. (2.6.7)

Combining (2.6.6) and (2.6.7) yields

∑
i∈I

∫ 1

0

gimi(T )− φni (0)m0
i +

∑
i∈I

∫ T

0

∫ 1

0

cimi + λnimi +mi

∑
j∈I,
j ̸=i

H ′(φi − φj)(φni − φnj )−H(φni − φnj )

 = 0.

Since (φ, λ,m) is a weak solution of (2.6.1), by Lemma 2.4.6, and letting n tend to infinity, one deduces:

∑
i∈I

∫ 1

0

gimi(T )−φi(0)m0
i+
∑
i∈I

∫ 1

0

Diλi+
∑
i∈I

∫ T

0

∫ 1

0

cimi+mi

∑
j∈I,
j ̸=i

H ′(φi − φj)(φi − φj)−H(φi − φj)

 = 0.

By the definition of L and H, we have:

∑
i∈I

∫ 1

0

gimi(T )− φi(0)m0
i +

∑
i∈I

∫ 1

0

Diλi +
∑
i∈I

∫ T

0

∫ 1

0

cimi +mi

 ∑
j∈I,j ̸=i

L(H ′(φi − φj))

 = 0.

By the definition of Ã in (2.5.5) and J̃ in (2.3.3), we have Ã(φ, λ) + J̃(m,E) = 0. Finally, by Remark 2.6.3,
one deduces that (m,E) is a minimizer of (2.3.4).
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2.6.2 Proof of Theorem 2.1

We are now ready to prove our main theorem by using Theorem 1 and applying the change of variable

αi,j :=
dEi,j
mi

.

Proof of Theorem 2.2.1. The existence of a solution to Problem (2.1.4) is given by Lemma 2.3.3.
1 This statement is proved by Theorem 2.6.1.1
2 This point is given by Theorem 2.6.1.2.
3 The uniform bound on α and ∂sα are deduced by Theorem 2.2.1.1, using the fact that H has a globally

Lipschitz continuous gradient and that φ is in Lip([0, T ] × [0, 1] × I) + BV ([0, T ] × I). The time regularity of
m is obtained by Proposition 2.8.2 in Appendix 2.8.

We now prove Proposition 2.2.1.

Proof of Proposition 2.2.1. Let (m,α) be a solution of Problem (2.1.4) and µ0 be the density of m0 w.r.t.
the Lebesgue measure. By a fixed point argument, it is easy to check that there exists a unique solution
µ ∈ Lip([0, T ]× [0, 1]× I) of the following equation on [0, T ]× [0, 1]× I:

µi(t, s) = µ0
i (S

t,s
i (0)) +

∫ t

0

µi(τ, S
t,s
i (τ))∂sbi(S

t,s
i (τ))dτ

+

∫ t

0

∑
j∈I,j ̸=i

−αi,j(τ, St,si (τ))µi(τ, S
t,s
i (τ)) + αj,i(τ, S

t,s
i (τ))µj(τ, S

t,s
i (τ))dτ.

(2.6.8)

Denote by L the Lebesgue measure on [0, T ] × [0, 1]. The conclusion follows by proving that µL is the unique
weak solution of (2.1.1).

2.7 Sensitivity analysis of the value of the optimization problem w.r.t.
the data

In this section we study how the value of Problem (2.1.4) depends on the initial distributionm0 ∈ P([0, 1]×I)
and on the parameter D ∈ C0([0, T ]× I,R∗

+) of the constraint (2.1.2). We endow the space Ω := P([0, 1]× I)×
C0(I × [0, T ],R∗

+) with the distance DΩ defined by:

DΩ((m
0, D), (m̄0, D̄)) :=W(m0, m̄0) + ∥D − D̄∥∞,

where W is the Wasserstein distance on P([0, 1]× I). We recall that the definition of Ωε is given in (2.2.1). For
any ε > 0 we consider the function V : Ωε → R defined by:

V(m0, D) := inf
(m,E)∈S(m0,D)

J̃(m,E), (2.7.1)

where the set S(m0, D) is defined in (2.3.2).
The main result of this section is the following proposition, which shows the Lipschitz continuity of the value

of the problem (2.1.4) w.r.t. the initial distribution and the congestion constraint (2.1.2).

Proposition 2.7.1. For any ε > 0, V is Lipschitz continuous on Ωε w.r.t. the distance DΩ.

To prove the proposition, we need to introduce some lemmas. For any (m0, D) ∈ Ωε, we consider the
function A[m0, D] : C0([0, T ]× [0, 1]× I)× C0([0, T ]× I,R+)→ R defined by:

A[m0, D](φ, λ) :=
∑
i∈I

∫ 1

0

−φi(0, s)m0
i (ds) +

∫ T

0

λi(t)Di(t)dt.

The following result gives some properties of the function V.

Lemma 2.7.1. For any ε > 0, the function V is bounded independently of ε, convex and l.s.c. on Ωε.
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Proof. Let ε > 0 and C := (T∥c∥∞+∥g∥∞). By the definition of V in (2.7.1), one can show, for any (m0, D) ∈ Ωε,
that |V(m0, D)| ⩽ C. For any (m0, D) ∈ Ωε, the duality result in Theorem 2.5.1 gives

V(m0, D) = sup
(φ,λ)∈K0

−A[m0, D](φ, λ). (2.7.2)

Since V is the supremum of continuous and linear functions, we deduce that V is convex and l.s.c. on Ωε.

For any ε > 0 and (m0, D) ∈ Ωε, we know by Proposition 2.5.1 that there exists (φm
0,D, λm

0,D) ∈
(Lip([0, T ] × [0, 1] × I) + BV ([0, T ] × I)) × M+([0, T ] × I) such that φm

0,D is a weak solution of (2.2.5),
in the sense of Definition 2.4.1, associated to λm

0,D and such that (φm
0,D, λm

0,D) satisfies:

∑
i∈I

∫ 1

0

φm
0,D

i (0, s)m0
i (ds)−

∫ T

0

Di(t)λ
m0,D
i (dt) = − inf

(φ,λ)∈K0

A[m0, D](φ, λ) = V(m0, D).

The next lemma provides an estimate on φm
0,D and λm

0,D for any ε > 0 and (m0, λ) ∈ Ωε.

Lemma 2.7.2. For any ε > 0, there exists C > 0 such that, for any (m0, D) ∈ Ωε,

max
(
∥φm

0,D∥∞, ∥∂sφm
0,D∥∞, λm

0,D(I × [0, T ])
)
⩽ C.

Proof. Let ε > 0 and (m0, D) ∈ Ωε. According to Lemma 2.7.1, there exists a constant K > 0, independent of
ε, such that

∑
i∈I
∫ 1

0
φm

0,D
i (0, s)m0

i (ds) −
∫ T
0
Di(t)λ

m0,D
i (dt) < K. Thus, by using same arguments as in the

proof of Lemma 2.5.3 and setting K̃ := (K + T∥c∥∞ + ∥g∥∞)/ε, one obtains:

λm
0,D(I × [0, T ]) ⩽ K̃. (2.7.3)

By Remark 2.4.7 and the previous inequality, there exists a constant C̃, which depends on K̃, such that
∥φm

0,D∥∞ and ∥∂sφm
0,D∥∞ are bounded by C̃. The conclusion follows by setting C := max(C̃, K̃).

We are now ready to prove the Lipschitz regularity of V.

Proof of Proposition 2.7.1. Let ε > 0 and (m0, D), (m̄0, D̄) ∈ Ωε. By the definition of V in (2.7.1) and Lemma
2.7.2, one has:

V(m0, D)

⩽
∑
i∈I

∫ 1

0

φm
0,D

i m̄0
i (ds)−

∑
i∈I

∫ T

0

D̄i(t)λ
m0,D
i (dt) + ∥∂sφm

0,D∥∞W(m0, m̄0) + λm
0,D(I × [0, T ])∥D − D̄∥∞

⩽ V(m̄0, D̄) + CDΩ((m
0, D), (m̄0, D̄)),

where C > 0 is a constant defined in Lemma 2.7.2. Similarly, we have:

V(m̄0, D̄) ⩽ V(m0, D) + CDΩ((m
0, D), (m̄0, D̄)).

The conclusion follows.

2.8 Appendix

Some properties of the weak solution of the continuity equation (2.1.1) are derived in this subsection.
Assumptions in Section 2.1 are in force in the Appendix. A first result on the support of the solution is
established in Lemma 2.8.1.

Lemma 2.8.1. For any weak solution (α,m) of (2.1.1) in the sense of Definition 2.3.1, m(t) has a support
contained in [0, 1]× I for any t ∈ [0, T ].



56CHAPTER 2. Optimality conditions of an optimal control problem for the continuity equation arising in smart charging

Proof. Let ε > 0 and φε ∈ C∞
c ([0, T ]× R× I) such that, for any t ∈ [0, T ] and i ∈ I,

φεi (t, s) ∈ [0, 1], ∀s ∈ R; φεi (t, s) = 0, ∀s ∈ R \ (−1− ε, 2 + ε); and φεi (t, s) = 1 ∀s ∈ [−1, 2].

Since m is a weak solution of (2.1.1), b satisfies Assumption 1, and φi = φj for any i, j ∈ I, we deduce that, for
any t ∈ (0, T ),

d

dt

∫
R

∑
i∈I

φεi (t, s)mi(t, ds) =

∫
R

∑
i∈I

∂sφ
ε
i (t, s)bi(s)mi(t, ds)

=

∫ −1

−1−ε

∑
i∈I

∂sφ
ε
i (t, s)bi(s)mi(t, ds) +

∫ 2+ε

2

∑
i∈I

∂sφ
ε
i (t, s)bi(s)mi(t, ds)

= 0.

(2.8.1)

By (2.8.1) and the continuity of m, we deduce that t 7→
∫
R

∑
i∈I

φεi (t, s)mi(t, ds) is constant on [0, T ]. Let ε

tend to +∞, it holds that t 7→
∫
R

∑
i∈I

mi(t, ds) is constant over [0, T ]. Then, we have for any t ∈ (0, T ),∫
R

∑
i∈I

mi(t, ds) =

∫
R

∑
i∈I

m0
i (ds) = 1. Now let us show that

∫ 1

0

∑
i∈I

mi(t, ds) = 1. Let ε > 0 and ψε be another

test function in C∞
c ([0, T ]× R× I) such that, for any t ∈ [0, T ] and i ∈ I,

ψεi (t, s) = 0, ∀s ∈ R \ (−ε, 1 + ε); ∂sψ
ε
i (t, s) ⩾ 0, ∀s ∈ (−ε, 0); ∂sψ

ε
i (t, s) ⩽ 0, ∀s ∈ (1, ε);

and ψεi (t, s) = 1, ∀s ∈ [0, 1].

By the same computation as in (2.8.1) and Assumption 1, one has, for any t ∈ (0, T ),

d

dt

∫
R

∑
i∈I

ψεi (t, s)mi(t, ds) =

∫ 0

−ε

∑
i∈I

∂sψ
ε
i (t, s)bi(s)mi(t, ds) +

∫ 1+ε

1

∑
i∈I

∂sψ
ε
i (t, s)bi(s)mi(t, ds) ⩾ 0.

Thus, t 7→
∫
R

∑
i∈I

ψεi (t, s)mi(t, ds) is non-decreasing on [0, T ]. Taking the limit ε→ 0, the map t 7→
∫ 1

0

∑
i∈I

mi(t, ds)

is also non-decreasing on [0, T ]. Finally, for any t ∈ [0, T ]: 1 =

∫ 1

0

∑
i∈I

mi(0, ds) ⩽
∫ 1

0

∑
i∈I

mi(t, ds) ⩽∫
R

∑
i∈I

mi(t, ds) = 1.

For any pair of weak solution (m,α) of (2.1.1), the next lemma provides some regularity on m if α and ∂sα
are bounded.

Lemma 2.8.2. Let m0 ∈ P([0, 1]× I) and (m,α) be a weak solution of (2.1.1) in the sense of Definition 2.3.1,
with α ∈ L∞([0, T ]× I × I × [0, 1],R+) . Then, m belongs to Lip([0, T ],P([0, 1]× I)) with a Lipschitz constant
independent of m0.

Proof. As in Lemma 2.3.1, following standards arguments and computations from Optimal Transport [9], one
can show that, for any t, t̃ ∈ [0, T ],

W(m(t, ·),m(t̃, ·)) ⩽ |t− t̃|(|I|∥b∥∞ + ∥α∥∞).

The conclusion follows.

Finally, the next Proposition states that, for any α, the existence and uniqueness of an m such that (m,α)
is a weak solution of (2.1.1).

Proposition 2.8.1. Let m0 ∈ P([0, 1]×I) and α ∈ L∞([0, T ]×I×I×[0, 1]) satisfy ∂sα ∈ L∞([0, T ]×I×I×[0, 1]).
Then, there exists a unique m ∈ Lip([0, T ],P([0, 1] × I) such that (m,α) is a weak solution of (2.1.1) in the
sense of Definition 2.3.1.
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Proof. The existence and uniqueness of a weak solution are proved in [71] for controls α that are continuous in
space and time independent. The extension of this result to bounded controls that are measurable in time is
straightforward.
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3.1 Introduction

EVs penetration in the global automotive market is a phenomenon observed since few years. Integration of
electric mobility needs to be prepared, in the context of energy transition and penetration of renewable energy.
If correctly managed, PEV fleets can be considered as a non negligible virtual battery, and thus, be a resource
to strengthen the stability and the performance of the electrical network. PEV fleets can take part in ancillary
services such as frequency and voltage regulation [250], peak shaving [259], valley filling [117] and [182], spinning
reserve [207] and demand side management [191]. However, a non coordinated power demand of PEVs, can
disrupt the energy balance on the electrical network during peak hours [181].

The present paper analyses the optimal strategy, for a central planner aiming at controlling a large population
of PEVs and minimizing the overall operational costs, in a context of limited power supply and mitigation of
synchronization effects of the power demand. Combinatorial techniques as well as optimal control tools fail to
solve problems with large population of PEVs, due to the curse of dimension [20]. To overcome these difficulties,
a continuum of PEVs is considered in this paper, leading to optimal control of PDE techniques. The SoC is a
relative quantity that indicates the ratio of the remaining capacity to the present maximum available capacity
of the battery. The population is assumed to be homogeneous, in the sense that the batteries of the PEVs share
the same characteristic (battery capacity, charging rate, etc.). The problem is solved numerically, in discrete
time and space settings, by applying the Chambolle-Pock algorithm [67]. The state of each vehicle is composed
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of two variables: the SoC of its battery s ∈ [0, 1] and its charging mode i ∈ K. The charging mode of a vehicle
indicates its charging rate (not charging, charging in fast or slow mode, etc.). Besides, all the charging terminals
are supposed to be identical with discrete charging rates.

3.1.1 Relative literature
Both convex optimization methods [117], [276] and non convex optimization methods [159] have been applied

to determine the optimal charging scheduling for a fleet of PEVs. Heuristic approaches have also been proposed
to get minimum charging cost [49]. To deal with large fleets of PEVs in a market based framework, the mean
field game theory has been applied in the context of smart charging [77], [204]. Also, the control-oriented
aggregate load PDE modeling has been first investigated to model a large number of homogeneous PEVs, in a
framework different from optimization. It has been successfully applied in [15] where the aggregate charging
power of PEVs is adapted to highly intermittent renewable power, and in [97] to perform renewable power
tracking. Optimal control of PDE for smart charging has been studied in a linear optimization framework in
[170], where PEV fleet provide regulation and vehicle-to-grid (V2G) services, and in [241] where the optimal
dispatch of an autonomous fleet of taxis is analyzed, to serve passengers and electric power demand during
outages. Optimal control of PDE is adopted in a linear quadratic framework in [171], combined with Model
Predictive Control (MPC) techniques, to solve the optimization problem of smart charging in real time.

3.1.2 Our contributions
In this paper, a strategy to charge a large population of PEVs, over a finite period of time, is given by

optimal control of PDE techniques. Among the existing literature, [170] and [171] are most close to our paper.
However, contributions are different in several regards. Our paper innovates in the mitigation of charging cycles
per PEVs and synchronization effect in a PDE-based model framework. Indeed, the synchronization of PEVs
can disrupt energy balance on the electrical network [256], while high charging frequency, is responsible for
stronger battery aging and degradation [88]. Two different cost functions, used to mitigate the effects described
above, are analyzed in the two case studies, at the end of the paper. This penalization leads us to consider
convex cost functions in contrast to linear and quadratic ones in [170] and [171]. A constraint on the aggregate
of the load is considered as well as constraints on the SoC of the PEVs at the final moment of the period, while
[170] considers an aggregate constraint on the V2G service in the linear case only. Furthermore, to the best of
our knowledge, our paper is the first one to apply the Chambolle-Pock algorithm, to solve a constraint problem
of optimal control of PDE in the context of EV smart charging.

The remainder of this paper is organized as follows. Section 3.2 presents the evolution of the system in a
continuous time and space and then in discrete time and space settings. The optimization problem is formulated
in Section 3.3 and the Chambolle-Pock algorithm is introduced in Section 3.4. Section 3.5 is dedicated to two
case studies, in a peak and off-peak hours pricing framework, and the results are analyzed.

3.2 EV population dynamics

3.2.1 Evolution of the system in continuous settings
The density of the PEVs at time t ∈ [0, T ], in mode i ∈ K and SoC s ∈ [0, 1], is denoted by mi(t, s), and its

corresponding flow switching to mode j Ei,j(t, s). The instantaneous charging rate for an PEV with a SoC s
and in mode i is bi(s). The set K is finite, and I := card(K) denotes the cardinality of K. By choosing the flow
E, the central planner controls how PEVs switch from one charging mode to another. The total population of
EV is supposed constant over the period [0, T ], with no departures or arrivals. From the conservation law, and
using similar arguments as in [171], the evolution of mi over the period [0, T ] is given for all i ∈ K by:

∂tmi(t, s) + ∂s(mi(t, s)bi(s)) = −
∑

j∈K\{i}

(Ei,j(t, s)− Ej,i(t, s)). (3.2.1)

with the initial condition :
mi(0, ·) = m̄0

i , (3.2.2)

where m̄0
i is the given initial distribution of the SoC for EVs in mode i. Two constraints are examined in this

paper. A congestion constraint, for which for any mode i, the total proportion of EV is bounded above by
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D̄i ⩾ 0: ∫ 1

0

mi(t, s)ds ⩽ D̄i ∀t ∈ [0, T ]. (3.2.3)

Inequality (3.2.3) stands for the limited power constraint. A minimal SoC s ⩾ 0 for all EV at the final moment
T is imposed: ∑

i∈K

∫ s

0

mi(T, s)ds = 0. (3.2.4)

This constraint ensures that all EV are sufficiently charged at the end of the period.

3.2.2 Discrete settings

The continuous case leads to optimal control of partial differential equations, which is beyond of the scope
of this paper, and will be discussed in another coming article. The dynamics of the PEVs population are now
considered in a discrete settings to get a finite dimensional optimization problem that can be solved numerically.
Let h > 0 and ∆t > 0 be such that Nh and NT are integers, with Nh := 1/h and NT := T/∆t. For any
k ∈ {0, . . . , NT } and ℓ ∈ {0, . . . , Nh − 1}, m̃k,ℓ

i denotes the proportion of vehicles in mode i ∈ K with a SoC
lying in [ℓh, (ℓ+1)h) at time tk, Ẽ

k,ℓ
i,j the flow from mode i to mode j for PEVs with a SoC lying in [ℓh, (ℓ+1)h)

at time tk. The space and time steps h and ∆t are taken to satisfy the Courant–Friedrichs–Lewy condition (see
[142]), knowing that bi has a constant sign:

max
i∈K

(∥bi∥∞)∆t ⩽ h.

This inequality makes sure that m̃k+1,ℓ
i is positive in (3.2.6) and (3.2.7). The evolution of m̃ is described by

the discretization of (3.2.1). A splitting method is applied here. The variable m̃k+ 1
2 ,ℓ

i is introduced to first take
into account the transfers from one mode to another:

m̃
k+ 1

2 ,ℓ
i := m̃k,ℓ

i +∆t
∑

j∈K\{i}

Ẽk,ℓj,i − Ẽ
k,ℓ
i,j . (3.2.5)

The evolution of the batteries is then considered. An upwind scheme, commonly used in finite volume methods
[142], is applied. The scheme depends on the sign of bi, supposed constant. If bi ⩾ 0, then:

m̃k+1,ℓ
i − m̃k+ 1

2 ,ℓ
i

∆t
+
F k,ℓi − F k,ℓ−1

i

h
= 0, (3.2.6)

where F k,ℓi = bi(xℓ+ 1
2
)m̃k+ 1

2 ,ℓ and xℓ := (ℓ+ 1/2)h. If bi ⩽ 0:

m̃k+1,ℓ
i − m̃k+ 1

2 ,ℓ
i

∆t
+
Bk,ℓi −B

k,ℓ−1
i

h
= 0, (3.2.7)

where Bk,ℓi = bi(xℓ+ 1
2
)m̃k+ 1

2 ,ℓ+1. The initial condition is given by:

m̃0,ℓ
i =

1

h

∫ xℓ+h/2

xℓ−h/2
m̄0
i (s)ds (3.2.8)

To guarantee the positivity of m̃k+ 1
2 ,ℓ

i in (3.2.5), values of {Ẽi,j}i,j are constrained by:

Nh−1∑
j∈K,j ̸=i

Ẽk,ℓi,j ∆t− m̃
k,ℓ
i ⩽ 0. (3.2.9)
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For any i ∈ K and k ∈ {0, . . . , NT }, the constraint (3.2.3) is discretized by:

Nh∑
j=0

m̃k,j
i h ⩽ D̄i, (3.2.10)

Finally, the constraint of the minimal final SoC is expressed by:

∑
i∈K

sh∑
ℓ=0

m̃NT ,ℓ
i = 0, (3.2.11)

where sh = ⌈s/h⌉, and ⌊a⌋ is the largest integer smaller than or equal to a.

3.3 The optimization problem

The optimization problem has the following form:

inf
m̃∈RNm ,Ẽ∈RNE

J(m̃, Ẽ)

subject to (3.2.5)− (3.2.11),
(3.3.1)

where:

J(m̃, Ẽ) :=

NT−1∑
k=0

∑
i∈K

pki

Nh−1∑
ℓ=0

m̃k,ℓ
i h∆t+

NT−1∑
k=0

∑
i,j∈K
i̸=j

Θi,j(m̃
k
i , Ẽ

k
i,j)∆t.

The objective function J is the sum of two terms: the first one is the cost of electricity and the second one
penalizes transfers. The quantity pki is the average cost of electricity (in e/kWh) over the period [tk, tk+1] for
charging in mode i. The convex functions Θi,j are considered to deal with synchronization of PEVs and high
charging frequency. Two examples are exposed in Section 3.5, where different choices of Θi,j are investigated to
penalize the flow of transfers. The cost function J is convex but not necessarily linear or quadratic. The next
section presents the algorithm applied to solve (3.3.1).

3.4 The Chambolle-Pock algorithm

The Chambolle-Pock algorithm is a first-order primal-dual algorithm for non-smooth, convex optimization
problems with known saddle-point structure. This algorithm shows good results on similar optimization prob-
lems to (3.3.1) in [40].

The Chambolle-Pock algorithm is introduced in [67] to solve an optimization problem of the form:

min
y∈RN

φ(y) + ψ(y), (3.4.1)

and its associated dual:
min
σ∈RN

φ∗(−σ) + ψ∗(σ), (3.4.2)

where φ : RN → R ∪ {+∞} and ψ : RN → R ∪ {+∞} are proper, convex and lower semi-continuous (l.s.c.)
functions. Let ŷ and σ̂ be respective solutions of (3.4.1) and (3.4.2). The proximal operator proxf of a function
f at a point x ∈ RN is defined by:

proxf (x) := argmin
z∈RN

1

2
∥z − x∥22 + f(z).

Problem (3.4.1) can be solved using the following primal-dual algorithm:

1. Fix θ ∈ [0, 1], γ > 0 and τ > 0 such that γτ < 1.

2. Initialization: (y0, ỹ0, σ0) ∈ RN × RN × RN .
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3. For any iteration k, knowing (yk, ỹk, σk), the following steps are executed:
— σk+1 = proxγψ∗(σk + γỹk)

— yk+1 = proxτφ(y
k − τσk+1)

— ỹk+1 = yk+1 + θ(yk+1 − yk)
Using [67, Theorem 1], (yk, σk) converges to (ŷ, σ̂). The following variables are introduced: Nm := (NT +1)NhI
and NE := NTNhI(I − 1). The functions φ : RNm × RNE → R and ψ : RNm × RNE → R are defined by:

φ(m̃, Ẽ) :=

{
J(m̃, Ẽ) if (m̃, Ẽ) satisfy (3.2.9)− (3.2.11)
+∞

and

ψ(m̃, Ẽ) :=

{
0 if (m̃, Ẽ) satisfy (3.2.5)− (3.2.8)
+∞

The function ψ constraints the variables (m̃, Ẽ) to satisfy the discretized dynamics. The function φ ensures
charging requests and system constraints are satisfied.

3.5 Case study: Response to peak and off peak hours pricing problem

This section presents two optimization problems having the structure of (3.3.1) but with different cost
functions. The Chambolle-Pock algorithm is applied in each example, with parameters θ = γ = 0.5 and τ = 1.8.
In both cases, a central planner controls a large fleet of PEVs located on the same node of the distribution grid.
The site has a non flexible and deterministic electrical demand due to other (non-EV) electric usages: it may
include some EV charging and other electricity consumption that are not controlled by the central planner.
Only two modes of charging are considered: K := {0, 1}. At each time step, the central planner can decide the
proportion of PEVs being charged in mode 0 i.e., no charging, or in mode 1. A power PON = 20kW is delivered
to each EV in mode 1 while no power in mode 0. The charging rate in mode 1 is defined by: b1(s) = 1/9000 for
all s ∈ [0, 0.75) and b1(s) = (1− s)/2700 for all s ∈ [0.75, 1]. An EV needs approximately 3h to perform a full
charging cycle in mode 1. To take into account the self-discharge for non charging vehicles, it is set: b0(0) = 0
and b0(s) = 2.6× 10−6 for any s ∈ (0, 1]. A fixed population of PEVs is considered over a period of [0, T ], with
T = 5h. The discretization parameters are ∆t = 450 seconds and h = 0.05. All PEVs must have a SoC greater
or equal to s = 0.7 at the end of the period. It is assumed that price of electricity depends on peak and off-peak
hours. Both problems share the same structure but have distinct transfers costs, price signals and congestion
constraints. The objective of these examples is to understand and analyze how the central planner responses to
different prices and to different ways to penalize transfers. In the first example, the cost penalizes at each time
step a quadratic form of the aggregate transfers of PEVs in the same mode, while in the second one it penalizes
at each time step the aggregate of transfers of PEVs in the same mode with the same SoC. It is assumed that
the central planner knows in advance: the SoC of each vehicle at time 0, the average price of electricity and the
maximal proportion of EV in mode 1 D̄k

1 .

3.5.1 Example 1: Aggregative switching costs
In this example, the functions Θ1,0 and Θ0,1, are defined by:

Θi,j(m̃
k
i , Ẽ

k
i,j) := θ

(
Nh−1∑
ℓ=0

Ẽk,ℓi,j h

)2

, (3.5.1)

where θ = 10. This cost aggregates the control Ẽ in the SoC space. At each time step, this function penalizes

large values of
Nh−1∑
ℓ=0

Ẽk,ℓi,j . The price of electricity p used for the simulation is displayed in Figure 3.2. The entire

time period is composed of three different periods: two periods of peak hours and one period of off-peak hours.
The minimum SoC at the end of the period is s = 0.7 and the maximum proportion of vehicles that can be in
mode 1 is constant over the time: D̄1 = 1/2. The proportion of vehicle per charging mode over the period [0, T ]
is displayed in Figure 3.1. The comparison of Figures 3.1 and 3.2 shows that PEVs charge mainly during the
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.

off-peak hours, when the price is lower. The maximum proportion D̄1 of PEVs in mode 1 is attained during
all the off-peak period. The constraint is binding during all the off-peak hours. The transfers from one mode
to another are progressive over the time, avoiding large penalization. The average number of changes per EV
(obtained by summing all the flows E over the time and space state) equals 2.75. It indicates that around 2/3
of PEVs switch only twice, from mode 0 to 1 and then from mode 1 to 0 once charged, and that 1/3 of PEVs
switch twice to mode 1. The initial and final empirical distribution of the SoC of the EV batteries are displayed
in Figure 3.3. At time t = 0h all SoC are between 0.2 and 0.6 while at time t = 5h almost all the SoC are at
level 0.7.

3.5.2 Example 2: Local switching costs
In this example, the functions Θ1,0 and Θ0,1, are defined by:

Θi,j(m̃
k
i , Ẽ

k
i,j) :=

Nh−1∑
ℓ=0

f(m̃k,ℓ
i , Ẽk,ℓi,j )h, (3.5.2)

where

f(a, b) :=


θi,jb+ θ̃i,j

b2

a
if a > 0 and b ⩾ 0,

0 if a = 0 and b = 0,
+∞ otherwise,

(3.5.3)

with θi,j = 0.04 and θ̃i,j = 20. Such functions are known to be convex and lower semi-continuous [22]. These
costs are considered as local because not aggregated w.r.t. the SoC space. The functions Θi,j penalize large
control values of Ẽ (through the term θ̃i,jb

2/a) as well as small ones (through the term θi,jb). Thus, large
flows and numerous small flows between modes are penalized, at each time and space step. The considered
price of electricity p over the period is displayed in Figure 3.5. The price signal is composed of two periods of
peak hours (between 0h and 1h and between 2h30 and 3h30) and two periods of off-peak hours. No more than
1/3 of PEVs can be in mode 1 at the same time (D̄1 = 1/3). The initial and final distributions of the SoC of
PEVs are displayed in Figure 3.6. While all PEVs start in mode 0 with a SoC between 0.2 and 0.6, the control
computed by the algorithm enables to charge all EV to a SoC of 0.7. Thus, the minimum SoC constraint at
final time is satisfied. Figure 3.4 shows the proportion of PEVs per mode over the period. The constraint of
at most 1/3 of PEVs in mode 1 is satisfied. As in the previous case, one can observe, on Figures 3.4 and 3.5,
that the PEVs charge only during the off-peak hours. No synchronization effects among the EV population are
observed. Transfers are progressive over the time. For instance, the first off-peak period starts at time t = 1h:
at that moment the proportion of vehicles at mode 1 starts to increase progressively. It reaches the upper limit
D̄1, before the mid-term of the first off-peak period. The average number of changes per EV equals 1.89. It
shows that majority of PEVs switch only two times. These observations highlight that the penalization on the
transfers manage to avoid synchronization effects and excessive changes between different charging modes. The
Chambolle-Pock Algorithm has required 5 times fewer iterations in the second example than in the first one.
This is due to the quadratic term in (3.5.1) penalizing the transfers from the same mode. However, this makes
the cost function (3.5.1) more adapted to situations, where it is primordial to avoid synchronization effects.
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3.6 Conclusion

This paper proposes a PDE-based model to control a large fleet of PEVs. The problem solved minimizes
the cost of electricity consumption as well as the number of transfers between modes of charging. Aggregate
constraints on the distribution of PEVs at any time and minimal SoC constraint at the final moment are
considered. The Chambolle-Pock algorithm is applied to obtain numerical solution in the two case studies.
Thanks to this algorithm, we are able to deal with non quadratic and non differentiable objective functions. Two
different transfer penalization functions are studied. In both cases, the constraints are satisfied, the aggregate
consumption of PEVs is important only during the off-peak hours and the average number of transfers per PEV
is low.
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4.1 Introduction

This article studies the regularity of solutions for an optimal control problem of a first order continuity
equation with a reaction term, under congestion constraints. A numerical approximation of the problem is also
proposed and analyzed. This work is motivated by its potential application to optimally charge a very large
population of plug-in electric vehicles (PEVs) controlled by a central planner. A finite time interval [0, T ] and
a mixed state space equal to the product [0, 1] × I, where I is a finite space, are considered. The objective
function J is defined as follows:

J(m,α) :=
∑
i∈I

∫ T

0

∫ 1

0

(
ci(t, s) +

∑
j∈I,j ̸=i

L(αij(t, s))
)
mi(t, ds)dt+

∑
i∈I

∫ 1

0

gi(s)mi(T, ds), (4.1.1)
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where m : [0, T ] → P([0, 1] × I) is a continuous curve of probability distribution and the control α : I × I ×
[0, T ]× [0, 1]→ R+ is a jump intensity, that is square-integrable w.r.t. m. The continuity equation is given by:

∂tmi(t, s) + ∂s(mi(t, s)bi(s)) = −
∑

j∈I,j ̸=i

(αi,j(t, s)mi(t, s)− αj,i(t, s)mj(t, s)) (i, t, s) ∈ I × (0, T )× (0, 1),

mi(0, s) = m0
i (s) (i, s) ∈ I × [0, 1],

(4.1.2)
where m0 ∈ P([0, 1] × I) is the given initial distribution and b : I × [0, 1] → R is a velocity field vanishing
at the boundary of [0, 1] so that the mass conservation in I × [0, 1] is guaranteed without forcing a boundary
condition. The notion of weak solution of (4.1.2) is specified in Definition 4.2.1. The distribution m is subject
to the following congestion constraints:

mi(t, [0, 1]) ⩽ Di ∀(i, t) ∈ I × [0, T ], (4.1.3)

where Di > 0 is given. We introduce the admissible set, which depends on the initial distribution m0 and on
the congestion parameter D,

E(m0, D) := {(m,α) such that α ⩾ 0, (m,α) satisfies (4.1.3) and is a weak solution of (4.1.2)} . (4.1.4)

In [233], we have studied the optimization problem:

inf
(m,α)∈E(m0,D)

J(m,α). (P )

As explained in [233], a pair (m,α) is a solution of (P ), if and only if there exists (φ, λ) ∈ (Lip([0, T ]× [0, 1]×
I)+BV ([0, T ]× I))×M+([0, T ]× I) such that αi,j = H ′(φi−φj) on {mi > 0} and (φ, λ,m) is a weak solution
of the following system

−∂tφi − bi∂sφi − ci − λi +
∑

j∈I,j ̸=i

H(φi − φj) = 0 on (0, T )× (0, 1)× I

∂tmi + ∂s(mibi) +
∑
j ̸=i

H ′(φi − φj)mi −H ′(φj − φi)mj = 0 on (0, T )× (0, 1)× I

mi(0, s) = m0
i (s), φi(T, s) = gi(s) on (0, 1)× I∫ 1

0

mi(t, ds)−Di ⩽ 0, λ ⩾ 0 on [0, T ]× I∑
i∈I

∫ T

0

(∫ 1

0

mi(t, ds)−Di

)
λi(dt) = 0.

(4.1.5)

The function φ is the Lagrange multiplier associated to the dynamic constraint (4.1.2), and the measure λ is
associated to the congestion constraint (4.1.3). The first equation in (4.1.5) is a backward Hamilton-Jacobi
equation and the second a forward continuity equation, where the control α, defined by αi,j = H ′(φi − φj),
is optimal. The measure λ is non-negative and finite. The last equality in (4.1.5) ensures that the congestion
constraint (4.1.3) is satisfied. This characterization further enables to deduce regularity properties on the
solutions of Problem (P ). We recall these results in Section 4.2.1. Our work aims at obtaining better regularity
results by studying the regularity of the Lagrange multiplier λ in (4.1.5) associated with the congestion constraint
(4.1.3). Our results are then exploited to numerically approximate the solutions of Problem (P ).

Problem (P ) models the optimal charge a very large population of PEVs controlled by a central planner (see
[234, 233, 238]). It is proved in [234] that Problem (P ) is the mean field limit of a problem arising in smart
charging. The convergence of the solution and that of the value of a sequence of finite population problems
respectively to a solution and the value of Problem (P ) are established. In [238], Problem (P ) is numerically
solved and implemented to a finite population of PEVs in a centralized manner. More explicitly, the central
planner solves the centralized optimal charging problem (P ) and then sends the control to each PEV (time of
switches and the mode of charging to select for each PEV). However, there is no proof of convergence of solutions
of the discretized problem to a solution of Problem (P ). Based on the main results of this article (stated in
section 4.2.2), we propose in Section 4.6.2 a numerical approximation of Problem (P ) for a smart charging
problem, that differs from the numerical approach developed in [238]. While the numerical approximation of
Problem (P ) in [238] relies on a primal-dual algorithm, a dual approach is adopted in Section 4.6.2, which
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enables to estimate the Lagrange multiplier associated with the constraint (4.1.3).

4.1.1 Contributions and Literature
Contributions

The first and main contribution of this work is to show that there exists a Lagrange multiplier λ, associated
with the congestion constraints (4.1.3), belonging to L∞. As a second contribution, we show that any optimal
control α of Problem (P ) is Lipschitz continuous. Finally, as a third contribution, this paper proposes a
numerical method to approximate solutions of Problem (P ), and establishes the convergence. This method
enables to estimate, with a convergence rate, the value of Problem (P ).

Methodology

A penalized problem is first introduced, where the constraint on the density (4.1.3) is relaxed and replaced
by an additional penalizing term in the objective function. We then characterize the solution of this penalized
problem as the weak solution of a system of two coupled PDEs similar to (4.1.5). Then, we show that, for
sufficiently large penalizing terms, the penalized problem and Problem (P ) have the same solutions. The
regularity of the Lagrange multipliers are derived from the system of optimality conditions of the penalized
problem. The Lipschitz continuity of any optimal control α of Problem (P ) is a direct consequence of the
regularity of the Lagrange multipliers.

To numerically approximate solutions of Problem (P ), we first propose to numerically solve a convex opti-
mization problem (Problem (D) that is introduced in Section 4.2.1) and whose dual problem is Problem (P ). We
introduce an explicit finite difference numerical scheme to discretize the Hamilton-Jacobi equation of Problem
(D). The convergence of the sequence of solutions of the discretized problems to a solution of Problem (D),
when the time and space steps converge to 0, is obtained by compactness arguments and by exploiting the L∞

bound of the Lagrange multiplier of the congestion constraint (4.1.3). Then, the solutions of the discretized
problems are used to build a sequence that converges to a solution of Problem (P ), when the time and space
steps converge to 0.

Literature review

The system (4.1.5) of optimality conditions of Problem (P ) are derived in [233] using a Lagrangian relaxation
and duality arguments. This system of PDEs is close to the systems arising in Mean Field Game (MFG) Theory
(see [145, 146, 166, 167, 168]). Relying on the so-called variational approach, MFG problems with constraints
on the density are studied for first order MFG in [55] and second order MFG in [190]. Other techniques, inspired
from the optimal control theory in finite dimension, have been extended to infinite dimensional control problems
with state constraints, to characterize the solutions. Firstly, in [151] the authors study the notion of viscosity
solutions in the Wasserstein space to obtain an Hamilton-Jacobi-Bellman equation associated with the control
problem. The reader can refer to [63] and the references therein. Secondly, the Pontryagin principle approach
has been adapted to the framework of control problems in the space of probability measures [35, 36, 38].

The optimal control of a Fokker-Planck equation is strongly related to stochastic optimal control problems
with constraints on the probability distribution. The optimality conditions of a stochastic control problem with
terminal constraints in law are given in [81]. In the specific case of constraints on the expectation, necessary and
sufficient optimality conditions are proved in [211], and first and second order optimality conditions are given in
[114, 113]. Problem (P ) can be formulated as a mean field control problem of Piecewise Deterministic Markov
Processes (PDMPs), where the continuity equation (4.1.2) describes the evolution of the probability measure
[71]. In [74, 75], the authors consider the optimal control of PDMP where the constraints are written as infinite
horizon expected discounted costs. In [187, 188], an optimal control of hybrid processes is studied, where the
constraints concern the jumping instants. Finally, a mean field control problem of PDMP with constraints on
the expectation is studied and numerically solved in [237].

This work is mainly concerned with the regularity of the Lagrange multipliers arising from the system of
optimality conditions obtained in [233]. An extensive literature exists about the regularity of the Lagrange
multipliers for constrained control problems. These studies are motivated by the analysis of second order
optimality conditions or by the investigation of the convergence of some numerical methods. Due to the
continuity of the state variables, the Lagrange multipliers are expected to be Borel measures for pure state
pointwise constraints (see for e.g. [61, 218]). For elliptic and parabolic control problems, the Lavrentiev
regularization, consisting in transforming the pure state constraints into mixed control-state constraints, enables
to prove the existence of Lagrange multipliers in L2 or even in L∞ (see [11, 27, 192, 223] and the references
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therein). For first order MFG problems with hard congestion (e.g. ρ ⩽ 1), prior works on the incompressible
Euler’s equations enable to show that, the absolutely continuous part of the Lagrange multiplier associated with

the congestion constraint is in L
d

d−1

loc ((0, T )× Td), while its singular part is supported on {T} × Td [55]. When
the Hamiltonian is quadratic, a L∞ estimate on the absolutely continuous part of the Lagrange multiplier is
found in [169], using techniques from optimal transport. In [13], the authors show the Lipschitz continuity of a
Lagrange multiplier associated with a market clearing condition in a MFG problem of first order. This result is
obtained by introducing a variational formulated on the space of Radon positive measures.

In this article, we follow a penalization approach that has been first developed in the context of optimal
control with state constraints in finite dimension in [47], where the authors apply the Maximum Principle on the
penalized problem to obtain optimality conditions on the original problem with state constraints. This method
is exploited in [46] to derive the smooth regularity of the solutions of the optimal control problem with state
constraints, extending some well known results about the Lipschitz regularity of the solutions [31, 116, 135].
The authors use this result to extend regularity results of MFG problems with constraints on agents’ state.
The penalization technique is used in [12] to obtain optimality conditions and regularity results of a MFG
problem inspired by crowd motion (agents seeking to exit a region in minimal time) with state constraints.
Finally, the penalizing method has been extended to the optimal control of the Fokker-Planck equation with
smooth density constraints in [82]. The author gives the system of optimality conditions for non-linear cost and
constraint functionals of the measure variable, and shows the existence of a Lagrange multiplier in L∞ and the
Lipschitz continuity of optimal controls. The same author establishes in his PhD thesis [80] the convergence of
the sequence of the value of a finite population problem with almost sure constraints to the value of the mean
field control problem with constraints in the Wasserstein space, when the number of agents goes to infinity.

The numerical method adopted in this work relies on a convex problem that is in duality with Problem
(P ). This approach is close to primal-dual algorithms. Such algorithms have been successfully implemented
to numerically approximate mean field control problems with congestion constraints. In [41, 40], proximal
algorithms enable to handle second order MFG with local constraints on the measure. The ADMM algorithm
is used to solve MFG problems of first or second order with constraints on the distribution in [25, 40]. Note
that ADMM and Chambolle-Pock algorithms show good results for finite dimensional MFG with congestion
constraints [32]. Such constrained MFG problems can also be numerically approximated by using an entropy
minimizing approach and applying a variant of the Sinkhorn algorithm [24]. A level set reformulation [30] of
constrained mean field control problems is studied in [121], and is shown to be particularly suitable for numerical
approximations using machine learning algorithms.

The rest of this paper is organized as follows. In Section 4.2 we provide some preliminary results and the
main results of the paper. The penalized problem is introduced in Section 4.3 and its optimality conditions are
given. The link between Problem (P ) and the penalized problem is established in Section 4.4 for smooth initial
distribution. Section 4.5 is devoted to the proof of the main results. In Section 4.6, the regularity results on
the Lagrange multipliers are used to find a numerical approximation of the solutions of Problem (P ). Finally,
some results on the solutions of the continuity equation (4.1.2) are given in Appendix 4.7.

4.2 Main results and assumptions

Notations The space of Borel, positive and bounded measures on a space A is denoted byM+(A) and the
space of Borel probability measures on a space A is denoted by P(A). For any measure µ ∈ M+([0, T ]) and
0 ⩽ t1 < t2 ⩽ T , we set

∫ t2
t1
µ(dt) := µ([t1, t2]). We denote by δT ∈M+([0, T ]) the Dirac mass at T . Given a set

S and the finite space I, for any function f defined on I×S and any measure µ ∈M(S×I), we use the notations
fi(x) := f(i, x) for any (i, x) ∈ I ×S and µi(S) := µ({i}×S) for any (i, S) ∈ I ×B(S), where B(S) denotes the
Borel algebra. Similarly, for any function g defined on I × I ×S and any measure ν ∈M(S × I × I), we use the
notations gi,j(x) := g(i, j, x) for any (i, j, x) ∈ I×I×S and νi,j(S) := µ({i}×{j}×S) for any (i, j, S) ∈ I2×B(S).
If S is a metric space, let Lip(S) denote the vector space of bounded and Lipschitz continuous maps f : S → R.
For any µ ∈ C0([0, T ],P([0, 1])), let L2

µ([0, T ]×R) := {f : [0, T ]×R 7→ R,
∫ T
0

∫ 1

0
f(t, s)2µ(t, ds)dt < +∞}. The

Lebesgue measure on R is denoted by L. We denote by W the Wasserstein distance on P([0, 1] × I), defined
by W(µ, ρ) := sup {

∑
i∈I
∫ 1

0
φ(µ− ρ) |φ is 1− Lipschitz from [0, 1]× I to R}. We recall that if a function φ is

1-Lipschitz continuous from [0, 1] × I to R, then |φ(x, i) − φ(x, j)| ⩽ 1 for any i, j ∈ I. For any optimization
problem (P), we denote by val(P) the value of this problem.

Assumptions The following assumptions are in force throughout the paper.
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1. For any i ∈ I, bi ∈ C2(R) with bi(s) = 0 for any s ̸∈ (0, 1).

2. We assume that supp(m0
i ) ⊂ [0, 1] for any i ∈ I.

3. The parameter D is in (R∗
+)

|I| and there exists ε0 > 0 such D and m0 satisfy for any i ∈ I, ε0 <
Di −m0

i ([0, 1]).

4. For any i ∈ I, it is assumed that ci ∈ C1([0, T ]× [0, 1]) and gi ∈ C1([0, 1]).

5. L : R→ R̄ is a convex function, defined by:

L(x) :=

 l(x) if x > 0,
0 if x = 0,
+∞ otherwise,

where l ∈ C1(R+,R+) is an increasing strongly convex function bounded from above by a quadratic
function. More explicitly, there exists C > 0 such that for any x ∈ R+:

x2

C
− C ⩽ l(x) ⩽ C(x2 + 1),

where the first inequality is due to the strong convexity of l.

6. Let H be the Fenchel conjugate of L. We assume that there exists CH > 0 such that for any x ∈ R∗
+:

1

CH
⩽ H ′′(x) ⩽ CH . (4.2.1)

The function H being the Fenchel conjugate of L, by Assumption 5, H is non-decreasing, non-negative, and
H ′ is Lipschitz continuous on R.

Remark 4.2.1. As explained in [233], the main role of Assumptions 1 and 2 is to ensure that the support
of the weak solution of (4.1.2) is contained in [0, 1] over the period [0, T ]. Assumption 3 provides an estimate
on λ([0, T ] × I) for any weak solution (φ, λ,m) of (4.1.5) and ensures that the control α = 0 is an admissible
control. Correspondingly, the feasible set of Problem (P ) is not empty. It is also used to obtain uniform bounds,
independently of the penalization parameters of the penalized problem, on ∥α∥∞ and ∥∂sα∥∞ for any optimal
control α of the penalized problem. It is possible to extend the results of the paper to a congestion parameter
D that is continuous and piecewise linear. The Assumptions 4 and 5 on c, g and L enable to obtain regularity
results of the weak solutions of the Hamilton-Jacobi equation in the system (4.3.5). Finally, the bounds on H ′′

in Assumption 6 are used to obtain estimates on ∂tα, for any optimal control α of the penalized problem.

4.2.1 Preliminary results

The main results obtained in [233] on Problem (P ) are recalled in this section. We start by stating the
notion of weak solution of the continuity equation (4.1.2).

Definition 4.2.1. A pair (m,α) satisfies (4.1.2) in the weak sense if m ∈ C0
(
[0, T ],P([0, 1]×I)

)
, for any i, j ∈ I

with i ̸= j, it holds that αi,j ∈ L2
mi

([0, T ]× [0, 1],R+) and for any test function ϕ ∈ C∞
c ([0, T ]× [0, 1]× I), we

have: ∑
i∈I

∫ 1

0

ϕi(T, s)mi(T, ds)− ϕi(0, s)m0
i (ds)

=

∫ T

0

∫ 1

0

∑
i∈I

(∂tϕi(t, s) + bi(s)∂sϕi(t, s))mi(t, ds) +
∑

j∈I,j ̸=i

(ϕj(t, s)− ϕi(t, s))αi,j(t, s)mi(t, ds)dt.

For a given λ ∈M+([0, T ]× I), the following Hamilton-Jacobi equation is considered on (0, T )× (0, 1)× I:

−∂tφi(t, s)− bi(s)∂sφi(t, s)− ci(t, s)− λi(t) +
∑

j∈I,j ̸=i

H((φj − φi)(t, s)) = 0 (t, s, i) ∈ (0, T )× (0, 1)× I,

φi(T, s) = gi(s) (s, i) ∈ [0, 1]× I.
(4.2.2)
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For any λ ∈M+([0, T ]× I), the function Lλ ∈ BV ([0, T ]× I) is defined, for any i ∈ I and any t ∈ [0, T ], by:

Lλi (t) := λi([t, T ]). (4.2.3)

We introduce the notion of weak sub-solution and solution for equation (4.2.2).

Definition 4.2.2. For a given λ ∈ M+([0, T ]× I), a function φ defined from [0, T ]× [0, 1]× I to R is a weak
solution (sub-solution) of equation (4.2.2) if φ − Lλ is in Lip([0, T ] × [0, 1] × I) and if, for any test function
f ∈ C1([0, T ]× [0, 1]× I) (f ∈ C1([0, T ]× [0, 1]× I,R+)),∫ 1

0

φi(0, s)fi(0, s)ds−
∫ 1

0

gi(s)fi(T, s)ds+

∫ T

0

∫ 1

0

(∂tfi(t, s) + ∂s(fi(t, s)bi(s)))φi(t, s)dsdt

+

∫ T

0

∫ 1

0

 ∑
j∈I,j ̸=i

H(φi(t, s)− φj(t, s))− ci(t, s)

 fi(t, s)dtds−
∑
i∈I

∫ T

0

∫ 1

0

fi(t, s)dsλi(dt)

= (⩽) 0,

(4.2.4)

where φi(0, ·) is understood in the sense of trace.

Remark 4.2.2. The final condition in (4.2.2) is misleading. Indeed, any weak solution (sub-solution) φ of
(4.2.2), associated with a measure λ ∈ M+([0, T ] × I), in the sense of Definition 4.2.2 satisfies φi(T, ·) = (⩽
)gi(·) + Lλi (T ), where φi(T, ·) and Lλi (T ) are in the sense of trace.

By [233, Theorem 4.1], if φ is a weak solution of (4.2.2) associated with the measure λ ∈ M+([0, T ] × I),
then it satisfies, for any (t, s, i) ∈ [0, T ]× [0, 1]× I,

φi(t, s) =

∫ T

t

∑
j∈I,j ̸=i

−H((φi − φj)(τ, St,si (τ))) + ci(τ, S
t,s
i (τ))dτ + Lλi (t) + gi(S

t,s
i (T )), (4.2.5)

where St,si is the unique solution of the ODE below
dSt,si (τ)

dτ
= bi(S

t,s
i (τ)), τ ∈ [0, T ],

St,si (t) = s.

(4.2.6)

We introduce the problem

inf
(φ,λ),

λ∈M+([0,T ]×I)

∑
i∈I

∫ 1

0

−φi(0+, s)m0
i (ds) +

∫ T

0

Diλi(dt),

where φ is a weak sub-solution of (4.2.2) associated with λ

(D)

where φi(0+, ·) is understood in the sense of trace.
The notion of weak solution of the PDE system (4.1.5) is given in the next definition.

Definition 4.2.3. A triplet (φ, λ,m) ∈ (Lip([0, T ]×[0, 1]×I)+BV ([0, T ]×I))×M+([0, T ]×I)×C0([0, T ],P([0, 1]×
I)) is called a weak solution of (4.1.5) if it satisfies the following conditions:

1. The function φ is a weak solution of (4.2.2), associated with λ in the sense of Definition 4.2.2;
2. m satisfies the continuity equation:

∂tmi + ∂s(mibi) +
∑
j ̸=i

H ′(φi − φj)mi −H ′(φj − φi)mj = 0, mi(0, ·) = m0
i ,

in the sense of Definition 4.2.1, with αi,j := H ′(φi − φj) on {mi > 0};
3. it holds that, for any t ∈ [0, T ],∫ 1

0

mi(t, ds)−Di(t) ⩽ 0 and
∑
i∈I

∫ T

0

(∫ 1

0

mi(t, ds)−Di(t)

)
λi(dt) = 0.
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We have the following results on the optimality conditions of Problem (P ), from [233, Theorem 2.1, Remark
6.2].

Theorem 4.2.1. Problem (P ) has a solution and satisfies

val(P ) = −val(D). (4.2.7)

Furthermore, the minimizers have the following properties:
1. If (m,α) is a minimizer of Problem (P ) and (φ, λ) a minimizer of Problem (D), then (φ, λ,m) is a weak

solution of (4.1.5) in the sense of Definition 4.2.3, and αi,j = H ′(φi − φj) on {mi > 0} for any i, j ∈ I.
2. Conversely, if (φ, λ,m) is a weak solution of (4.1.5) in the sense of Definition 4.2.3, then there exists α,

defined for any i, j ∈ I by: αi,j := H ′(φi − φj) on {mi > 0}, such that (m,α) is a minimizer of (P ) and
(φ, λ) a minimizer of Problem (D).

3. If (m,α) is a minimizer of Problem (P ), then for any i, j ∈ I αi,j and ∂sαi,j are both in L∞([0, T ]× [0, 1]),
and m ∈ Lip([0, T ],P([0, 1]× I)).

4. If the initial distribution m0 is absolutely continuous w.r.t. the Lebesgue measure with a density in
C1([0, 1] × I), then any solution (m,α) of Problem (P ) is such that m is absolutely continuous w.r.t.
the Lebesgue measure on [0, T ]× [0, 1], and has a density in Lip([0, T ]× [0, 1]× I).

In this article, we show that there exists (φ, λ,m) that is a weak solution of (4.1.5), where the absolutely
continuous part of λ w.r.t. the Lebesgue measure is in L∞((0, T ) × I) and its singular part a Dirac mass at
time t = T , and φ is in Lip([0, T ] × [0, 1] × I). Consequently, any optimal control α of Problem (P ) is in
Lip([0, T ]× [0, 1]× I2). Based on these results, we provide in Section 4.6 a numerical scheme to solve Problem
(D) and approximate solutions of Problem (P ).

4.2.2 Main results
The main result of this paper is the following theorem, providing regularity results on a solution of Problem

(D).

Theorem 4.2.2. There exists a solution (φ∗, λ∗) ∈ Lip([0, T ] × [0, 1] × I) ×M+([0, T ] × I) of Problem (D)
such that there exists (λ, β) ∈ L∞([0, T ]× I,R+)× (R+)

|I| satisfying, for any i ∈ I:

λ∗i = λiL+ βiδT .

In addition, ∥λ∥∞ and ∥β∥∞ only depend on |I|, b, c, g, L,D and ε0.

Remark 4.2.3. The fact that the singular part of the Lagrange multiplier is supported on {T} and the L∞

regularity of the absolutely continuous part of the Lagrange multiplier are expected. Similar results are established
for first order MFG problems with constraints of the type ρ ⩽ 1 a.e. in [55, 169] and for mean field control
problems with smooth constraints in law [82].

Remark 4.2.4. We show in Corollary 4.5.1 that if the final cost function g is independent w.r.t. the discrete
variable, i.e. there exists f ∈ C1([0, 1]) such that gi = f for any i ∈ I, then β = 0. From a practical perspective,
this assumption makes sense. In the optimal charging problem of a fleet of PEVs, PEVs are penalized only on
the basis of their state of charge, independently on their mode of charging, at the end of the period.

Remark 4.2.5. The time continuity of the Lagrange multiplier λ∗ can not be a priori expected. Indeed, one
can consider the following counter example in dimension 1 (there is no continuous variable in the state of each
agent):

— I := {0, 1}
— c0 > 0, c1 < 0 and g0 = g1 = 0

— D0 > 1 and D1 < 1.
— m0

1 = D1 − ε and m0
0 = 1−m0

1, with ε such that 0 < ε ⩽ D1.
Then, one can show that λ1(t) = 1m1(t)=D1

(t)(c0 − c1).

A direct consequence of Theorem (4.2.2) is to improve the regularity results on the solution of Problem (P )
given in Theorem 4.2.1.
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Corollary 4.2.1. If (m,α) is a minimizer of Problem (P ), then α ∈ Lip([0, T ]× [0, 1]× I2).

Proof. This result is a consequence of Theorem 4.2.2 and point 1 of Theorem 4.2.1.

4.3 The penalized problem

The penalized problem is introduced in this section and the optimilaty conditions of this problem are derived.
We first introduce, for any i ∈ I the function Ψi, defined for any µ ∈ P([0, 1]× I), by:

Ψi(µ) := µi([0, 1])−Di. (4.3.1)

A distribution m ∈ C0([0, T ],P([0, 1] × I)) satisfies constraint (4.1.3) if and only if Ψi(m(t)) ⩽ 0 for any (i, t)
in I × [0, T ]. By the definition of Ψ, one has for any µ ∈ P([0, 1]× I) and i ∈ I,

δΨi
δm

(µ, j, s) = 1i(j)− µi([0, 1]). (4.3.2)

For any ε, δ > 0, we consider the function

Jε,δ(m,α) := J(m,α) +

∫ T

0

1

ε

∑
i∈I

Ψ+
i (mi(t))dt+

1

δ

∑
i∈I

Ψ+
i (mi(T )), (4.3.3)

where Ψ+
i (µ) = max

(
0,Ψi(µ)

)
, for any µ ∈ P([0, 1]× I) and i ∈ I. The penalized problem is:

inf
(m,α)

Jε,δ(m,α)

(m,α) is a weak solution of (4.1.2).
(P ε,δ)

Lemma 4.3.1. For any ε, δ > 0, Problem (P ε,δ) has a solution.

Proof. The proof is essentially the same as [233, Lemma 3.3].

By the previous lemma, for any ε, δ > 0, there exists a solution (mε,δ, αε,δ) of Problem (P ε,δ). Let (λ, β) ∈
L∞((0, T )× I,R+)× (R+)

|I|, we consider the Hamilton-Jacobi equation on [0, T ]× [0, 1]× I

−∂tφi − bi∂sφi − ci −
∑
j∈I

λε,δj (t)

ε

δΨj
δm

(mε,δ(t), i, s) +
∑

j∈I,j ̸=i

H
(
φi − φj

)
= 0,

φi(T, ·) = gi +
∑
j∈I

βε,δj
δ

δΨj
δm

(mε,δ(T ), i, ·).
(4.3.4)

A weak solution of (4.3.4) is a function in Lip([0, T ]× [0, 1]×I) that satisfies (4.3.4) in the sense of distributions.
The main result of this section is the following proposition, which provides optimality conditions of Problem

(P ε,δ).

Proposition 4.3.1. For any ε, δ > 0, Problem (P ε,δ) has a solution, and for any solution (mε,δ, αε,δ), there
exists (φε,δ, λε,δ, βε,δ) ∈ Lip([0, T ] × [0, 1] × I) × L∞([0, T ] × I,R+) × (R+)

|I|, such that (φε,δ, λε,δ,mε,δ) is a
weak solution of the following system on [0, T ]× [0, 1]× I,

−∂tφε,δi − bi∂sφ
ε,δ
i − ci −

∑
j∈I

λε,δj
ε

δΨj
δm

(mε,δ(t), i, s) +
∑

j∈I,j ̸=i

H(φε,δi − φ
ε,δ
j ) = 0 on (0, T )× (0, 1)× I

∂tm
ε,δ
i + ∂s(m

ε,δ
i bi) +

∑
j ̸=i

H ′(φε,δi − φ
ε,δ
j )mε,δ

i −H
′(φε,δj − φ

ε,δ
i )mε,δ

j = 0 on (0, T )× (0, 1)× I

mε,δ
i (0, s) = m0

i (s), φ
ε,δ
i (T, s) = gi(s) +

∑
j∈I

βε,δj
δ

δΨj
δm

(mε,δ(T ), i, s) on (0, 1)× I,

(4.3.5)
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where φ solves the Hamilton-Jacobi in the weak sense and the continuity equation is understood in the sense of
Definition 4.2.1. The optimal control feedback αε,δ and φε,δ satisfy dt⊗mε,δ(t, ds)-almost everywhere,

αε,δi,j = H ′(φε,δi − φ
ε,δ
j ), (4.3.6)

and (λε,δ, βε,δ) is such that,

λε,δi (t) :=


0 if mε,δ

i (t, [0, 1]) < Di

∈ [0, 1] if mε,δ
i (t, [0, 1]) = Di

1 if mε,δ
i (t, [0, 1]) > Di,

and βε,δi :=


0 if mε,δ

i (T, [0, 1]) < Di

∈ [0, 1] if mε,δ
i (T, [0, 1]) = Di

1 if mε,δ
i (T, [0, 1]) > Di.

(4.3.7)

Remark 4.3.1. The system of optimality conditions (4.3.5) is close to the system (4.1.5). However, any weak
solution (φε,δ, λε,δ,mε,δ) of the system (4.3.5) does not necessarily satisfy∫ 1

0

mε,δ
i (t, ds)−Di ⩽ 0 and

∑
i∈I

∫ T

0

(∫ 1

0

mε,δ
i (t, ds)−Di

)
λ̄i(t)dt = 0,

where λ̄i(t) :=
∑
j∈I

λε,δj
ε

δΨj
δm

(mε,δ(t), i, s).

The next Lemma, which states that any solution of the penalized problem is a solution of a linearized
problem, is a key step to prove Proposition 4.3.1. The following remark will be useful for the proof of this
lemma.

Remark 4.3.2. As stated in [233, Section 3], by applying the change of variable Ei,j := αi,jmi, it is possible
to introduce a convex problem, where the minimization is over the couples (m,E) and the objective function is

J̃(m,E) := J(m,
dE

dm
), that is equivalent to Problem (P ). One can show that the function J̃ is weakly lower

semi continuous w.r.t. the couple of variables (m,E).

Lemma 4.3.2. Let ε, δ > 0 and (mε,δ, αε,δ) be a solution of (P ε,δ), then there exist λε,δ ∈ L∞([0, T ]× I,R+)
and βε,δ ∈ (R+)

|I| such that

λε,δi (t) :=


0 if mε,δ

i (t, [0, 1]) < Di

∈ [0, 1] if mε,δ
i (t, [0, 1]) = Di

1 if mε,δ
i (t, [0, 1]) > Di,

and βε,δi :=


0 if mε,δ

i (T, [0, 1]) < Di

∈ [0, 1] if mε,δ
i (T, [0, 1]) = Di

1 if mε,δ
i (T, [0, 1]) > Di,

(4.3.8)

and (mε,δ, αε,δ) minimizes the linearized cost function J lε,δ, defined by:

J lε,δ(m,α) :=

J(m,α) +
∑
i∈I

∫ T

0

∫ 1

0

∑
j∈I

λε,δj (t)

ε

δΨj
δm

(mε,δ(t), i, s)

mi(t, ds)dt+
∑
i∈I

∫ 1

0

∑
j∈I

(
βε,δj
δ

δΨj
δm

(mε,δ(T ), i, s)

)
mi(T, ds).

(4.3.9)
over the pair (m,α) satisfying the continuity equation (4.1.2) in the sense of Definition 4.2.1.

Proof. The proof follows the same steps as the proof of [82, Lemma 3.2]. For the sake of completeness, we
reproduce it, by adapting this proof to our particular framework.

We consider a family {un}n∈N of functions in C2([0, 1]× I) such that for any µ, µ̄ ∈ P([0, 1]× I), we have:

µ = µ̄ ⇔ ∀n ∈ N
∑
i∈I

∫ 1

0

uni (s)(µi − µ̄)(ds) = 0.

We define the function q : P([0, 1]× I)× P([0, 1]× I) 7→ R by

q(µ, µ̄) :=
∑
n∈N

∣∣∣∑i∈I
∫ 1

0
uni (s)(µ− µ̄)(ds)

∣∣∣2
2n(1 + ∥un∥2∞ + ∥Dun∥2∞)

.
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It is straightforward that the function q satisfies, for any µ, µ̄ ∈ P([0, 1]× I),

q(µ, µ̄) ⩾ 0,

and
q(µ, µ̄) = 0 if and only if µ = µ̄.

One can observe that, for any µ, µ̄ ∈ P([0, 1]× I),

δq

δµ
(µ, µ̄, i, x) =

∑
n∈N

∑
j∈I
∫ 1

0
unj (s)(µj − µ̄j)(ds)

2n(1 + ∥un∥2∞ + ∥Dun∥2∞)

(
uni (x)−

∑
j∈I

∫ 1

0

unj (s)µj(ds)
)
,

and ∑
i∈I

∫ 1

0

δq

δµ
(µ, µ̄, i, x)µi(dx) = 0 and

δq

δµ
(µ, µ, ·, ·) = 0.

We consider the optimization problem

inf
(α,m)

Jε,δ(m,α) +

∫ T

0

q(m(t),mε,δ(t))dt

where (m,α) is a weak solution of (4.1.2).
(4.3.10)

By the definition and properties of q, is straightforward that (mε,δ, αε,δ) is a solution of the above problem and
that for any other solution (m,α), we have mε,δ = m.

For any h > 0, let γh : R→ R+ be such that:
γh ∈ C2(R),
γh(x) = max(0, x) in R \ [−h, h],
sup
x∈R
|γ′h(x)| ⩽ 1,

lim
h→0

sup
x∈R
|γh(x)−max(0, x)| → 0 ⩽ 1.

For any i ∈ I and h > 0, we define the function Ψi,h(µ) := γh(Ψi(µ)), for any µ ∈ P([0, 1]× I). The following
regularized function is introduced

Jε,δ,h(m,α) := J(m,α) +
1

ε

∑
i∈I

∫ 1

0

Ψi,h(m(t))dt+
1

δ

∑
i∈I

Ψi,h(m(T )).

Applying similar arguments as in the proof of [233, Lemma 3.3], one can show that, for any h > 0, the problem

inf
(α,m)

Jε,δ,h(m,α) +

∫ T

0

q(m(t),mε,δ(t))dt

where (m,α) is a weak solution of (4.1.2),
(4.3.11)

has a solution (mε,δ,h, αε,δ,h). Following [233, Section 3] and Remark 4.3.2, by compactness arguments, there
exists (m′, α′) such that m′ ∈ C0([0, T ],P([0, 1]× I)) and α′ ∈ L2

m′([0, T ]× [0, 1]× I2,R+), {(mε,δ,h, αε,δ,h)}h,
and {mε,δ,h}h converges, up to a subsequence, w.r.t. the Wasserstein distance uniformly in time to m′ and
{αε,δ,hmε,δ,h}h weakly converges to α′m′ in M+([0, T ] × [0, 1] × I2), when h converges to 0. Now we want to
show that m′ is equal to mε,δ. To this end, it is enough to obtain:∫ T

0

q(m′(t),mε,δ(t))dt = 0.
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Since (mε,δ,h, αε,δ,h) is a solution of (4.3.11), one has:

Jε,δ(m
′, α′) +

∫ T

0

q(m′(t),mε,δ(t))dt− Jε,δ(mε,δ, αε,δ)

= Jε,δ,h(m
ε,δ,h, αε,δ,h) +

∫ T

0

q(mε,δ,h(t),mε,δ(t))dt− Jε,δ,h(mε,δ, αε,δ)

+Jε,δ(m
′, α′)− Jε,δ,h(mε,δ,h, αε,δ,h) +

∫ T

0

q(m′(t),mε,δ(t))dt−
∫ T

0

q(mε,δ,h(t),mε,δ(t))dt

+Jε,δ,h(m
ε,δ, αε,δ)− Jε,δ(mε,δ, αε,δ)

⩽ Jε,δ(m
′, α′)− Jε,δ,h(mε,δ,h, αε,δ,h) +

∫ T

0

q(m′(t),mε,δ(t))dt−
∫ T

0

q(mε,δ,h(t),mε,δ(t))dt

+Jε,δ,h(m
ε,δ, αε,δ)− Jε,δ(mε,δ, αε,δ).

(4.3.12)

The weak convergence, uniformly in time, of a subsequence of {mε,δ,h}h to m′, implies that

lim
h→0

∫ T

0

q(m′(t),mε,δ(t))dt−
∫ T

0

q(mε,δ,h(t),mε,δ(t))dt = 0.

By the definition of γh, one has

lim
h→0

Jε,δ,h(m
ε,δ, αε,δ)− Jε,δ(mε,δ, αε,δ) = 0.

By the two previous equalities, one gets when h tends to 0 in (4.3.12),

Jε,δ(m
′, α′) +

∫ T

0

q(m′(t),mε,δ(t))dt− Jε,δ(mε,δ, αε,δ) ⩽ Jε,δ(m
′, α′)− lim inf

h→0
Jε,δ,h(m

ε,δ,h, αε,δ,h). (4.3.13)

We seek to show that Jε,δ(m′, α′)− lim inf
h→0

Jε,δ,h(m
ε,δ,h, αε,δ,h) ⩽ 0. Since

lim
h→0

1

ε

∑
i∈I

∫ T

0

(
Ψhi (m

ε,δ,h(t))−Ψ+
i (m

ε,δ,h(t))
)
dt+

1

δ

∑
i∈I

(
Ψhi (m

ε,δ,h(T ))−Ψ+
i (m

ε,δ,h(T ))
)
= 0,

one deduces that lim inf
h→0

Jε,δ,h(m
ε,δ,h, αε,δ,h) = lim inf

h→0
Jε,δ(m

ε,δ,h, αε,δ,h). One can prove that Jε,δ is convex

and l.s.c. w.r.t. to the couple of variables (m,αm). Then, by Remark 4.3.2, the weak convergence, up to a
subsequence, of {(mε,δ,h, αε,δ,hmε,δ,h)}h to (mε,δ, αε,δmε,δ), yields lim inf

h→0
Jε,δ,h(m

ε,δ,h, αε,δ,h) ⩾ Jε,δ(m
ε,δ, αε,δ).

Therefore, by taking the limit in inequality (4.3.13), one gets∫ T

0

q(m′(t),mε,δ(t))dt = 0,

and thus, m′ = mε,δ.

Now we need to prove that (m′, α′) minimizes the function (4.3.9) over the pair (m,α) satisfying the conti-
nuity equation (4.1.2) in the sense of Definition 4.2.1. We introduce the linearized cost J lε,δ,h, defined by:

J lε,δ,h(m,α) :=

J(m,α) +
∑
i∈I

∫ T

0

∫ 1

0

∑
j∈I

λε,δj (t)

ε

δΨhj
δm

(mε,δ,h(t), i, s)

mi(t, ds)dt+
∑
i∈I

∫ 1

0

∑
j∈I

(
βε,δj
δ

δΨhj
δm

(mε,δ,h(T ), i, s)

)
mi(T, ds).

Since the function Jε,δ,h is convex w.r.t. the couple (m,αm) (see Remark 4.3.2), and using the convexity and
differentiability of q, one can show that (mε,δ,h, αε,δ,h) minimizes the problem

inf
(α,m)

J lε,δ,h(m,α) +

∫ T

0

δq

δµ
(mε,δ,h(t),mε,δ(t))dt

where (m,α) is a weak solution of (4.1.2),
(4.3.14)
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where
δq

δµ
is the derivative of q w.r.t. the first probability measure.

By the definition of γh, for any h > 0 and i ∈ I, the map t 7→ γ′h(Ψi(m
ε,δ,h(t))) is in L∞([0, T ]). Then by

convergence of {mε,δ,h}h to m′, the sequence of maps t 7→ γ′h(Ψi(m
ε,δ,h(t))) weakly∗ converges in L∞([0, T ]), up

to a sub-sequence, to a map λi ∈ L∞([0, T ]) that satisfies (4.3.8), when h tends to 0. By 4.3.2, the convergence
of {mε,δ,h}h to m′ w.r.t. the Wasserstein distance uniformly in time and the fact that m′ = mε,δ, one has, for
any i ∈ I and any m ∈ C0([0, T ],P([0, 1]× I)),

lim
h→0

∥∥∥∥∥∥
∑
j∈I

∫ 1

0

(δΨi
δm

(mε,δ,h(·), j, s)− δΨi
δm

(mε,δ(·), j, s)
)
mj(·, ds)

∥∥∥∥∥∥
∞

= 0.

Thus, one deduces, that up to a sub-sequence, for any i ∈ I and m ∈ C0([0, T ],P([0, 1]× I)),

lim
h→0

∫ T

0

∑
j∈I

∫ 1

0

δΨhi
δm

(mε,δ,h(t), j, s)mj(t, ds)dt = lim
h→0

∫ T

0

γ′h
(
Ψi(m

ε,δ,h(t))
)∑
j∈I

∫ 1

0

δΨi
δm

(mε,δ,h(t), j, s)mj(t, ds)dt

=

∫ T

0

λi(t)
∑
j∈I

∫ 1

0

δΨi
δm

(mε,δ(t), j, s)mj(t, ds)dt.

Applying similar arguments, one can show that, for any i ∈ I, there exists βi ∈ (R+)
|I| satisfying (4.3.8) and that

1

δ

∑
j∈I

∫ 1

0

δΨhi
δm

(mε,δ,h(T ), j, s)mj(T, ds) converges, up to a sub-sequence, to
βi
δ

∑
j∈I

∫ 1

0

δΨi
δm

(mε,δ(T ), j, s)mj(T, ds),

for any m ∈ C0([0, T ],P([0, 1] × I)), when h tends to 0. Therefore, for any pair (m,α) weak solution of the
continuity equation (4.1.2), the sequence {J lε,δ,h(m,α)}h converges, up to a sub-sequence, to J lε,δ(m,α) (where

the function J lε,δ is defined in (4.3.9)) when h tends to 0. The quantity
δq

δµ
in (4.3.14) is equal to 0 when h

tends to 0, by the convergence of {mε,δ,h}h to m′ and the fact that
δq

δµ
(m,m, i, x) = 0 for any (i, x) ∈ I × [0, 1].

Then, one deduces that (m′, α′) is an infinimum of

inf
(m,α)

J lε,δ(m,α)

where (m,α) is a weak solution of (4.1.2),
(4.3.15)

Since (mε,δ, αε,δ) is a solution to the penalized problem (P ε,δ) and that m′ = mε,δ, one has

∑
i,j∈I,j ̸=i

∫ T

0

∫ 1

0

L(αε,δi,j (t, s))m
ε,δ
i (t, ds) ⩽

∑
i,j∈I,j ̸=i

∫ T

0

∫ 1

0

L(α′
i,j(t, s))m

ε,δ
i (t, ds),

and thus, J lε,δ(m
ε,δ, αε,δ) ⩽ J lε,δ(m

ε,δ, α′). Since (mε,δ, α′) is a solution of (4.3.15), (mε,δ, αε,δ) is also a solution
of (4.3.15).

Remark 4.3.3. By the proof of Proposition 4.3.2, one has
∑
i∈I

∫ 1

0

φε,δi (0, s)m0
i (ds) = J lε,δ(m

ε,δ, αε,δ). In addi-

tion, by the definition of
δΨj
δm

and of J lε,δ, we have J lε,δ(m
ε,δ, αε,δ) = J(mε,δ, αε,δ) and thus,

∑
i∈I

∫ 1

0

φε,δi (0, s)m0
i (ds) =

J(mε,δ, αε,δ)

We can now prove the main result of the section.

Proof of Proposition 4.3.1. The existence of a solution is given by Lemma 4.3.1. Let (mε,δ, αε,δ) be a solution
of Problem (P ε,δ) and (λε,δ, βε,δ) be defined from Lemma 4.3.2. By [233, Theorem 4.1], there exists φε,δ ∈
Lip([0, T ]× [0, 1]× I) that is a weak solution of (4.3.4) associated with (λϵ, βε,δ).

One can approximate λε,δ by a sequence {λε,n}n in C0([0, T ]× I,R+), such that {λε,n}n converges to λε,δ

w.r.t. the norm ∥ · ∥2. Then by [233, Lemma 4.6], there exists a sequence {φε,n}n in C1([0, T ]× [0, 1]× I) such
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that, for any n ∈ N, φε,n is a weak solution of (4.3.4) associated with (λε,n, βε,δ). By [238, Lemma 4.6], one
can show that {φε,n}n converges to φε,δ w.r.t. the norm ∥ · ∥∞. Since mε,δ is a weak solution of (4.1.2), taking,
for any n ∈ N, φε,n as a test function, one obtains by considering the limit n to infinity, that

∑
i∈I

∫ T

0

φε,δi (0, s)m0
i (ds) =

∑
i,j∈I
j ̸=i

∫ T

0

∫ 1

0

(
(φε,δi (t, s)− φε,δj (t, s))αε,δi,j (t, s)−H(φε,δi (t, s)− φε,δj (t, s))

)
mε,δ
i (t, s)

+
∑
i∈I

(∫ T

0

∫ 1

0

ci(t, s)m
ε,δ
i (t, ds)dt+

∫ 1

0

gi(s)m
ε,δ
i (T, ds)

)
.

(4.3.16)

By Assumption 5, L is convex and H is the Fenchel conjugate of L, then one deduces that, for any (i, j, t, s) ∈
I2 × [0, T ]× [0, 1],

(φε,δi (t, s)− φε,δj (t, s))αε,δi,j (t, s)−H(φε,δi (t, s)− φε,δj (t, s)) ⩽ L(αε,δi,j (t, s)).

By the previous inequality and using that, for any i ∈ I and t ∈ [0, T ],
∑
j∈I

∫ 1

0

δΨi
δm

(mε,δ, i, s)mε,δ
i (t, ds) = 0,

equality (4.3.16) becomes ∑
i∈I

∫ T

0

φε,δi (0, s)m0
i (ds) ⩽ J lε,δ(m

ε,δ, αε,δ), (4.3.17)

where the equality holds if and only if one has, dt⊗mε,δ(t, ds)-almost everywhere,

αε,δi,j (t, s) = H ′(φε,δi (t, s)− φε,δj (t, s)
)
. (4.3.18)

To prove that (4.3.18) hold dt⊗mε,δ(t, ds)-almost everywhere, we need show the converse inequality of (4.3.17).
We consider the control ᾱi,j := H ′(φε,δi − φ

ε,δ
j ) and the distribution m̄ such that (m̄, ᾱ) is a weak solution of

(4.1.2). The existence of such m̄ is guaranteed by the fact that ᾱ ∈ Lip([0, T ]× [0, 1]×I2) and by Lemma (4.7.2)
in Appendix. Since (m̄, ᾱ) is a weak solution of (4.1.2), by applying similar arguments as the ones to obtain
(4.3.16), one obtains, by approximating φε,δ with a sequence of test functions {φε,n}n, that can be considered
as a sequence of test functions for the continuity equation (4.1.2),

∑
i∈I

∫ T

0

φε,δi (0, s)m0
i (ds) =

∑
i∈I

∫ T

0

∫ 1

0

(
ci(t, s) +

∑
j∈I

λε,δj (t)

ε

δΨj
δm

(mε,δ(t), i, s)
)
m̄i(t, s)

+
∑

i,j∈I,j ̸=i

∫ T

0

∫ 1

0

(
(φε,δi (t, s)− φε,δj (t, s))ᾱi,j(t, s)−H(φε,δi (t, s)− φε,δj (t, s))

)
m̄i(t, s)

+
∑
i∈I

∫ T

0

(
gi(s) +

∑
j∈I

βε,δj
δ

δΨj
δm

(mε,δ(T ), i, s)
)
m̄i(T, ds).

(4.3.19)
By the definition of H and ᾱ, one has dt⊗mε,δ(t, ds)-almost everywhere,

(φε,δi (t, s)− φε,δj (t, s))ᾱi,j(t, s)−H(φε,δi (t, s)− φε,δj (t, s)) = L(ᾱi,j(t, s)).

By previous equality, equality (4.3.19) becomes

∑
i∈I

∫ T

0

φε,δi (0, s)m0
i (ds) = J lε,δ(ᾱ, m̄).

By inequality (4.3.17) and the previous inequality, one deduces that

∑
i∈I

∫ T

0

φε,δi (0, s)m0
i (ds) = J lε,δ(m

ε,δ, αε,δ),



80CHAPTER 4. Regularity of Lagrange multipliers for a mean field control problem arising in smart charging

and thus, one has dt⊗mε,δ(t, ds)-almost everywhere

αε,δi,j = H ′(φε,δi − φ
ε,δ
j ).

The system (4.3.5) is obtained by using previous equality in the continuity equation (4.1.2) satisfied by (mε,δ, αε,δ).

4.4 Link between the constrained and the penalized problems

We assume in this section that the initial distribution m0 of the continuity equation (4.1.2) has a density in
C1([0, 1] × I) w.r.t. the Lebesgue measure. The main result of this section is the following theorem. It states
that for δ > 0 and ε > 0 small enough, Problem (P ε,δ) and Problem (P ) have the same solutions. The constants
in these sections are denoted by C > 0 and might change from line to line. We highlight that all the constants
in this section depend on the data of the problem (i.e. the functions b, L, c and g and the constant ε0 > 0
defined in Assumption 3). The only dependence w.r.t. to the initial distribution m0 is through the term ε0 in
Assumption 3. Finally, we use the same notations as in Section 4.3, for any δ, ε > 0, we denote by (mε,δ, αε,δ)
a solution of Problem (P ε,δ).

Theorem 4.4.1. If the initial distribution m0 has a density in C1([0, 1]× I) w.r.t. the Lebesgue measure, then
there exists ε∗, δ∗ > 0 such that for any (ε, δ) ∈ (0, ε∗)× (0, δ∗), Problem (P ε,δ) and Problem (P ) have the same
solutions.

This theorem is proved later in this section. The key point of the proof consists in showing that for δ > 0 and
ε > 0 small enough, any solution (mε,δ, αε,δ) of Problem (P ε,δ) satisfies the congestion constraint (4.1.3). By
Proposition 4.3.1 in Section 4.3 and Theorem 4.4.1, one obtains the following optimality conditions of Problem
(P ).

Corollary 4.4.1. If the initial distribution m0 has a density in C1([0, 1]× I) w.r.t. the Lebesgue measure, then
for any solution (m,α) of Problem (P ), there exists (φ, λ, β) ∈ Lip([0, T ] × I × [0, 1]) × L∞([0, T ] × I,R+) ×
(R+)

|I| such that αi,j = H ′(φi − φj) on {mi > 0} and (φ, λ,m) is a weak solution of the following system on
[0, T ]× [0, 1]× I:

−∂tφi − bi∂sφi − ci −
∑
j∈I

λj
δΨj
δm

(m(t), i, s) +
∑

j∈I,j ̸=i

H(φi − φj) = 0 on (0, T )× (0, 1)× I,

∂tmi + ∂s(mibi) +
∑

j∈I,j ̸=i

H ′(φi − φj)mi −H ′(φj − φi)mj = 0 on (0, T )× (0, 1)× I,

mi(0) = m0
i , φi(T ) = gi +

∑
j∈I

βj
δΨj
δm

(m(T ), i, ·) on (0, 1)× I,

(4.4.1)

where φ is a weak solution of the Hamilton-Jacobi equation associated with (λ, β) and m satisfies the continuity
equation in the sense of Definition 4.2.1. In addition, (λ, β) satisfies

λi(t) =

{
0 if mi(t, [0, 1]) < Di,
λi(t) ∈ R+ if mi(t, [0, 1]) = Di,

and βi :=

{
0 if mi(T, [0, 1]) < Di,
βi ∈ R+ if mi(T, [0, 1]) = Di.

In addition, ∥λ∥∞ and ∥β∥∞ only depend on |I|, b, c, g, L,D and ε0.

The proof of the above corollary is at the end of this section.
The assumption, that m0 has a density in C1([0, 1]×I) w.r.t. the Lebesgue measure, enables to apply Lemma

4.7.2 in Appendix 4.7 and to simplify the computation of the time derivatives of the function t 7→ Ψi
(
mε,δ(t)

)
.

However, this regularity condition on the initial distribution is not crucial, Theorem 4.4.1 and Corollary 4.4.1
can be extended to any initial distribution in P([0, 1]× I). For the sake of concision, we omit this extension.

The next Lemma provides uniform estimates for the solutions of Problem (P ε,δ) and for the weak solutions
of the system (4.3.5) in Proposition (4.3.1).
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Lemma 4.4.1. There exists C > 0, such that for any ε, δ > 0 and any solution (mε,δ, αε,δ) of Problem (P ε,δ),
the triplet (φε,δ, λε,δ, βε,δ) defined in Proposition 4.3.1 satisfies:

∑
i∈I

∫ T

0

λε,δi (t)

ε
dt+

∑
i∈I

βε,δi
δ

⩽
C

ε0
, (4.4.2)

∥∂sφε,δ∥∞, ∥φε,δ∥∞ ⩽ C, (4.4.3)

∥∂sαε,δ∥∞, ∥αε,δ∥∞ ⩽ C, (4.4.4)

where ε0 > 0 is defined in Assumption 3.

Proof. Let ρ ∈ C1([0, T ]×[0, 1]×I) be a solution of the continuity equation ∂tρi+∂s(biρi) = 0 on [0, T ]×[0, 1]×I,
with initial distribution m0. Since φε,δ is a weak solution of the Hamilton-Jacobi equation, one has using ρ as
a test function:

∑
i∈I

∫ 1

0

φε,δi (0, s)m0
i (ds)−

gi(s) +∑
j∈I

βε,δj
δ

δΨj
δm

(mε,δ(T ), i, s)

 ρi(T, s)ds

=
∑
i∈I

∫ T

0

∫ 1

0

ci(t, s) +∑
j∈I

λε,δj (t)

ε

δΨj
δm

(mε,δ(t), i, s)−
∑

j∈I,j ̸=i

H((φε,δi − φ
ε,δ
j )(t, s))

 ρi(t, s) dtds.

By rearranging the terms in the previous equality, one has:

−
∑
i∈I

∫ 1

0

∑
j∈I

βε,δj
δ

δΨj
δm

(mε,δ(T ), i, s)ρi(T, s)ds−
∑
i∈I

∫ T

0

∫ 1

0

∑
j∈I

λε,δj (t)

ε

δΨj
δm

(mε,δ(t), i, s)ρi(t, s) dsdt

= −
∑
i∈I

∫ 1

0

φε,δi (0, s)m0
i (ds) +

∑
i∈I

∫ T

0

∫ 1

0

ci(t, s)− ∑
j∈I,j ̸=i

H((φε,δi − φ
ε,δ
j )(t, s))

 ρi(t, s) dtds+
∑
i∈I

∫ 1

0

gi(s)ρi(T, s)ds.

Since, for any y, x ∈ R we have −H(x) ⩽ xy + L(y),

−
∑
i∈I

∫ 1

0

∑
j∈I

βε,δj
δ

δΨj
δm

(mε,δ(T ), i, s)ρi(T, s)ds−
∑
i∈I

∫ T

0

∫ 1

0

∑
j∈I

λε,δj
ε

δΨj
δm

(mε,δ(t), i, s)ρi(t, s) dsdt

⩽ −
∑
i∈I

∫ 1

0

φε,δi (0, s)m0
i (ds) +

∑
i∈I

∫ T

0

∫ 1

0

ci(t, s) + ∑
j∈I,j ̸=i

L(0)

 ρi(t, s) dtds+
∑
i∈I

∫ 1

0

gi(s)ρi(T, s)ds

⩽ −
∑
i∈I

∫ 1

0

φε,δi (0, s)m0
i (ds) + J(ρ, 0).

By Remark 4.3.3, one has
∑
i∈I

∫ 1

0

φε,δi (0, s)m0
i (ds) = J(mε,δ, αε,δ). Since L(0) = 0 and g and c are uniformly

bounded, there exists a constant C > 0, independent of ε and δ, such that:

−C ⩽ inf
(m,α)

J(m,α) ⩽ J(mε,δ, αε,δ),

where (m,α) weak solution of (4.1.2)
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consequently, one has −
∑
i∈I

∫ 1

0

φε,δi (0, s)m0
i (ds) ⩽ C. Thus, there exists C > 0 such that

−
∑
i∈I

∫ 1

0

∑
j∈I

βε,δj
δ

δΨj
δm

(mε,δ(T ), i)ρi(T )ds−
∑
i∈I

∫ T

0

∫ 1

0

∑
j∈I

λε,δj
ε

δΨj
δm

(mε,δ(t), i, s)ρi(t, s) dsdt ⩽ C. (4.4.5)

Since, for any j ∈ I, Ψj is convex, one has, for any t ∈ [0, T ]:

Ψj(m
ε,δ(t))−Ψj(ρ(t)) ⩽ −

∑
i∈I

∫ 1

0

∑
j∈I

δΨj
δm

(mε,δ(t), i, s)ρi(t, s)ds.

By Assumption 3, one has for any t ∈ [0, T ] and j ∈ I, that Ψj(ρ(t)) < −ε0 < 0. Since βε,δj ⩾ 0 and λε,δj (t) ⩾ 0,
for any j ∈ I and t ∈ [0, T ], inequality (4.4.5) becomes

∑
i∈I

∫ 1

0

∑
j∈I

(
ε0 +Ψj(m

ε,δ(T ))
)βε,δj
δ
ρi(T )ds+

∑
i∈I

∫ T

0

∫ 1

0

∑
j∈I

λε,δj
ε

(
ε0 +Ψj(m

ε,δ(t))
)
ρi(t) dsdt ⩽ C.

By definition of λ and β in (4.3.8), we have βε,δj Ψj(m
ε,δ(T )) ⩾ 0 and λε,δj (t)Ψj(m

ε,δ(t)) ⩾ 0, for any j ∈ I and
t ∈ [0, T ]. Then, the previous inequality gives:

∑
i∈I

∫ 1

0

∑
j∈I

ε0
βε,δj
δ
ρi(T )ds+

∑
i∈I

∫ T

0

∫ 1

0

∑
j∈I

λε,δj
ε
ε0ρi(t) dsdt ⩽ C.

Estimate (4.4.2) follows by dividing the previous inequality by ε0.
By [233, Remark 4.7]), the quantities ∥∂sφ∥∞ and ∥φ∥∞ depend on the data of the problem and on∑

i∈I

∫ T

0

λε,δi (t). Thus, inequality (4.4.3) is derived from estimate (4.4.2). Since αε,δi,j = H ′(φε,δi − φε,δj ), in-

equality (4.4.4) is deduced from the property of Lipschitz continuity of H ′ and from (4.4.3).

We consider the function Ψ̄ : P([0, 1]× I)→ R+, defined by:

Ψ̄(µ) =
∑
i∈I

Ψ+
i (µ). (4.4.6)

The constant ε∗ > 0 is defined in Lemma 4.4.5 and δ∗ > 0 in Lemma 4.4.2. Theorem 4.4.1 is proved using a
contradiction argument. We assume that there exist (ε, δ) ∈ (0, ε∗)× (0, δ∗), a solution (mε,δ, αε,δ) of Problem
(P ε,δ) and an instant t ∈ (0, T ), such that one has:

Ψ̄(mε,δ
i (t)) > 0. (4.4.7)

Then, we can define 0 < tε,δ < tε,δ < t̄ε,δ ⩽ T such that:

Ψ̄(mε,δ(tε,δ)) = 0,

Ψ̄(mε,δ(t)) ⩾ 0 ∀t ∈ [tε,δ, t̄ε,δ],

Ψ̄(mε,δ(tε,δ)) = sup
t∈[tε,δ,t̄ε,δ]

Ψ̄(mε,δ(t)),

Ψ̄(mε,δ(t̄ε,δ)) = 0 or t̄ε,δ = T.

(4.4.8)

The contradiction is established in Proposition 4.4.1, where it is proven that for any ε < ε∗ and δ < δ∗, there
is no t ∈ (0, T ) satisfying (4.4.7). We first show, in the next lemma, that for any δ < δ∗, the constraint (4.1.3)
is satisfied at the final time. Then, by the estimates obtained in Lemma 4.4.1, other estimates are derived in
Lemma 4.4.3 on any ∂tαε,δ. These results are exploited in Lemma 4.4.5 to show that for any ε < ε∗, the second
order time derivative of Ψ̄ is non negative a.e. on (tε,δ, t̄ε,δ). Finally, the proof of Proposition 4.4.1 is a direct
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consequence of this lemma.

Lemma 4.4.2. There exists δ∗ > 0 such that for any ε > 0 and δ ∈ (0, δ∗), we have Ψ̄(mε,δ(T )) ⩽ 0.

Proof. This is a direct consequence of Lemma 4.4.1. If Ψ̄(mε,δ(T )) > 0, then by (4.3.7) βε,δi = 1, and for any

δ < δ∗ :=
Diε

0

C
, where C is defined in Lemma 4.4.1, inequality (4.4.2) is not satisfied.

By the definition of Ψi in (4.3.1) and using the continuity equation (4.1.2) satisfied by (mε,δ, αε,δ), one has
for any t ∈ (tε,δ, tε,δ):

d

dt
Ψi(m

ε,δ(t)) =
∑

j∈I,j ̸=i

∫ 1

0

−αε,δi,j (t, s)m
ε,δ
i (t, ds) + αε,δj,i (t, s)m

ε,δ
j (t, ds). (4.4.9)

By (4.3.6), the fact that φε,δ ∈ Lip([0, T ]×[0, 1]×I) and Assumption 5 on L, one has αε,δ ∈ Lip([0, T ]×[0, 1]×I2).

Then, by Lemma 4.7.2 in Appendix, for any j ∈ I, the function t 7→
∫ 1

0

αε,δi,j (t, s)m
ε,δ
i (t, s)ds is Lipschitz

continuous on [0, T ] and therefore, t 7→ Ψi(m
ε,δ(t)) is in C1,1(tε,δ, tε,δ), for any i ∈ I. Consequently, for a.e.

t ∈ (tε,δ, tε,δ), one has:

d2

dt2
Ψi(m

ε,δ(t)) =
∑

j∈I,j ̸=i

d

dt

∫ 1

0

−αε,δi,j (t, s)m
ε,δ
i (t, ds) + αε,δj,i (t, s)m

ε,δ
j (t, ds). (4.4.10)

Based on (4.4.10), we want to obtain bounds on the second order time derivative of each function Ψi. We recall
that by Proposition 4.3.1 and (4.3.2), φε,δ is a weak solution, on [0, T ]× [0, 1]× I, of

−∂tφε,δi − bi∂sφ
ε,δ
i − ci −

λε,δi (t)

ε

(
1−mε,δ

i (t, [0, 1])
)
+

∑
j∈I,j ̸=I

λε,δj (t)

ε
mε,δ
j (t, [0, 1]) +

∑
j∈I,j ̸=i

H(φε,δi − φ
ε,δ
j ) = 0.

(4.4.11)
By (4.4.11) and the uniform bounds of {∥φε,δ∥∞}ε and {∥∂sφε,δi ∥∞}ε in Lemma 4.4.1, there exists C > 0 such
that for a.e. t ∈ [0, T ] and any (i, , j, s) ∈ I × I × [0, 1] :

∂t(φ
ε,δ
i − φ

ε,δ
j )(t, s) ⩽ C +

λε,δj (t)− λε,δi (t)

ε
. (4.4.12)

We set
ε̄ := min

( 1

C2
,

1

(1 + |I|)2
)
, (4.4.13)

where the constant C > 0 comes from inequality (4.4.12). For any (i, j, t) ∈ I2 × [tε,δ, t̄ε,δ], we define:

Aε,δi,j (t) :=
{
s ∈ [0, 1] |φε,δi (t, s) > φε,δj (t, s)

}
. (4.4.14)

Further, for any t ∈ (tε,δ, t̄ε,δ), we consider:

I+(t) :=
{
i ∈ I |Ψi(mε,δ(t)) > 0

}
,

I0(t) :=
{
i ∈ I |Ψi(mε,δ(t)) = 0

}
,

I−(t) :=
{
i ∈ I |Ψi(mε,δ(t)) < 0

}
.

(4.4.15)

At any time t ∈ (tε,δ, t̄ε,δ), we consider the set {i1, . . . , ik, . . . , i|I0(t)|} satisfying:

{i1, . . . , ik, . . . , i|I0(t)|} = I0(t) and 0 ⩽ λε,δi1 (t) ⩽ λε,δi2 (t) ⩽ . . . ⩽ λε,δi|I0(t)|
(t) ⩽ 1.

At any time t ∈ (tε,δ, t̄ε,δ), if I0(t) = ∅, then we define I0,−(t) := I0,+(t) := ∅, otherwise the sets I0,−(t) and
I0,+(t) are defined as follows:

— if λi1(t) >
√
ε, then I0,−(t) = ∅ and I0,+(t) = I0(t).
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— else, if λi|I0(t)|
(t) < 1−

√
ε, then I0,−(t) = I0(t) and I0,+(t) = ∅.

— else, let k∗ ∈ argmax
k∈{1,...,|I0(t)|−1}

λik+1
(t)−λik(t), we set: I0,−(t) = {i1, . . . , ik∗} and I0,+(t) = {ik∗+1, . . . , i|I0(t)|}.

One can observe that, for any ε ∈
(
0, 1(

1+|I|
)2 ), it holds

√
ε ⩽ λik∗+1

(t)− λik∗ (t).

By the definition of I0,+ and I0,−, we have I0 = I0,+ ∪ I0,− and I0,+ ∩ I0,− = ∅. In addition, for any
ε ∈

(
0, 1(

1+|I|
)2 ), we have:

λε,δj (t)− λε,δi (t) ⩽ −
√
ε, ∀(i, j) ∈ (I+(t) ∪ I0,+(t))× (I−(t) ∪ I0,−(t)). (4.4.16)

The definition of the sets I0,+(t) and I0,−(t) is mainly motivated by the following lemma.

Lemma 4.4.3. There exists C > 0 such that for any ε ∈ (0, ε̄), where ε̄ is defined in (4.4.13), for a.e.
t ∈ (tε,δ, t̄ε,δ), any i ∈ I+(t) ∪ I0,+(t), and any j ∈ I−(t) ∪ I0,−(t), one has:

1. for a.e. s ∈ Aε,δi,j (t),

∂tα
ε,δ
i,j (t, s) ⩽ C − 1

C
√
ε
,

2. for a.e. s ∈ Aε,δj,i (t)

−C +
1

C
√
ε
⩽ ∂tα

ε,δ
j,i (t, s).

Proof. Let i ∈ I+(t) ∪ I0,+(t) and j ∈ I−(t) ∪ I0,−(t). By inequality (4.4.16), inequality (4.4.12) becomes, for
any ε ∈ (0, 1/C),

∂t(φ
ε,δ
i − φ

ε,δ
j )(t, s) ⩽ C − 1√

ε
< 0. (4.4.17)

By the previous inequality, for any ε ∈ (0, 1/C), the set {(t, s) ∈ (tε,δ, t̄ε,δ) × [0, 1] |φε,δi (t, s) = φj(t, s)} is
negligible. Then by the definition of αε,δ in (4.3.6), one has, for any i, j ∈ I and for a.e. (t, s) ∈ [0, T ]× [0, 1],

∂tα
ε,δ
i,j =

{
H ′′(φε,δi − φ

ε,δ
j )∂t(φ

ε,δ
i − φ

ε,δ
j ) if φε,δi > φε,δj

0 else.

By the bounds on H ′′ in (4.2.1) and (4.4.17), there exists C > 0 such that one has, for a.e. t ∈ (tε,δ, t̄ε,δ), any
i ∈ I+(t) ∪ I0,+(t), any j ∈ I−(t) ∪ I0,−(t) and a.e. s ∈ Aε,δi,j (t),

∂tα
ε,δ
i,j (t, s) ⩽ C − 1

C
√
ε
.

Similar arguments give, for a.e. t ∈ (tε,δ, t̄ε,δ), any i ∈ I+(t)∪I0,+(t), any j ∈ I−(t)∪I0,−(t) and a.e. s ∈ Aε,δi,j (·):

−C +
1

C
√
ε
⩽ ∂tα

ε,δ
j,i (t, s).

We need the following lemma on the time derivative of
d

dt
Ψi(m

ε,δ(t)).

Lemma 4.4.4. For any non empty P ⊂ I and a.e. t ∈ [0, T ], one has:

∑
i∈P

d2

dt2
Ψi(m

ε,δ(t)) =
∑
i∈P,
j∈I\P

d

dt

∫ 1

0

−αε,δi,j (t, s)m
ε,δ
i (t, ds) + αε,δj,i (t, s)m

ε,δ
j (t, ds).
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Proof. Let P ⊂ I with P ̸= ∅. By equality (4.4.10), one has, for a.e. t ∈ [0, T ],

∑
i∈P

d2

dt2
Ψi(m

ε,δ(t))

=
∑
i∈P

∑
j∈I,j ̸=i

d

dt

∫ 1

0

−αε,δi,j (t, s)m
ε,δ
i (t, ds) + αε,δj,i (t, s)m

ε,δ
j (t, ds)

=
∑
i∈P

∑
j∈P,j ̸=i

d

dt

∫ 1

0

−αε,δi,j (t, s)m
ε,δ
i (t, ds) + αε,δj,i (t, s)m

ε,δ
j (t, ds)

+
∑
i∈P

∑
j∈I\P

d

dt

∫ 1

0

−αε,δi,j (t, s)m
ε,δ
i (t, ds) + αε,δj,i (t, s)m

ε,δ
j (t, ds).

(4.4.18)

Observing that

∑
i∈P

∑
j∈P,j ̸=i

d

dt

∫ 1

0

−αε,δi,j (t, s)m
ε,δ
i (t, ds) + αε,δj,i (t, s)m

ε,δ
j (t, ds)

=
∑
i∈P

∑
j∈P,j ̸=i

d

dt

∫ 1

0

−αε,δi,j (t, s)m
ε,δ
i (t, ds) +

∑
i∈P

∑
j∈P,j ̸=i

d

dt

∫ 1

0

αε,δj,i (t, s)m
ε,δ
j (t, ds)

=
∑
i∈P

∑
j∈P,j ̸=i

d

dt

∫ 1

0

−αε,δi,j (t, s)m
ε,δ
i (t, ds) +

∑
j∈P

∑
i∈P,j ̸=i

d

dt

∫ 1

0

αε,δj,i (t, s)m
ε,δ
j (t, ds)

= 0,

equality (4.4.18) becomes

∑
i∈P

d2

dt2
Ψi(m

ε,δ(t)) =
∑
i∈P,
j∈I\P

d

dt

∫ 1

0

−αε,δi,j (t, s)m
ε,δ
i (t, ds) + αε,δj,i (t, s)m

ε,δ
j (t, ds).

Since t 7→ Ψi(m
ε,δ(t)) is in C1([0, T ]) with a Lipschitz continuous derivative, by the definition of Ψ̄ in (4.4.6),

the function t 7→ Ψ̄(mε,δ(t)) is semiconvex on [0, T ] with a linear modulus. By Alexandroff’s Theorem [48], the
map t 7→ Ψ̄(mε,δ(t)) is twice differentiable a.e. on [0, T ]

Lemma 4.4.5. There exists ε∗ such that, for any ε ∈ (0, ε∗) and a.e. t ∈ (tε,δ, t̄ε,δ), one has:

0 ⩽
d2

dt2
Ψ̄(mε,δ(t)).

Proof. For any i ∈ I, since t 7→ Ψi(m
ε,δ(t)) is in C1([0, T ]) and t 7→ d

dt
Ψi(m

ε,δ(t)) is in Lip([0, T ]), one deduces
that:

d2

dt2
Ψi(m

ε,δ(t)) = 0 for a.e. t ∈ {τ ∈ [0, T ] |Ψi(mε,δ(t)) = 0}.

Thus, for a.e. t ∈ (tε,δ, t̄ε,δ) and any i ∈ I0,+(t), one has

d2

dt2
Ψi(m

ε,δ(t)) = 0,

and thus,
d2

dt2
Ψ̄(mε,δ(t)) =

∑
i∈I+(t)

d2

dt2
Ψi(m

ε,δ(t)) =
∑

i∈I+(t)∪I0,+(t)

d2

dt2
Ψi(m

ε,δ(t)).
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By Lemma 4.4.4, one deduces, for a.e t ∈ (tε,δ, t̄ε,δ),

d2

dt2
Ψ̄(mε,δ(t)) =

∑
i∈I+(t)∪I0,+(t)

j∈I−(t)∪I0,−(t)

d

dt

∫ 1

0

−αε,δi,j (t, s)m
ε,δ
i (t, ds) + αε,δj,i (t, s)m

ε,δ
j (t, ds).

(4.4.19)

For any i, j ∈ I, i ̸= j, we define the functions Ai,j : [tε,δ, tε,δ] 7→ R by:

Ai,j(t) :=

∫ 1

0

αε,δi,j (t, s)m
ε,δ
i (t, ds). (4.4.20)

The quantity Ai,j(t) can be understood as the instantaneous mass transferred from i to j. By (4.4.19) and the
definition of Ai,j , it is straightforward that for a.e. t ∈ (tε,δ, t̄ε,δ), one has:

d2

dt2
Ψ̄(mε,δ(t)) =

∑
i∈I+(t)∪I0,+(t)

j∈I−(t)∪I0,−(t)

− d

dt
Ai,j(t) +

d

dt
Aj,i(t). (4.4.21)

We want to control the sign of Aj,i and Ai,j in the right hand sign of the previous inequality, using Lemma
4.4.3. Since (mε,δ, αε,δ) is a weak solution of the continuity equation (4.1.2), taking [0, T ]× [0, 1]×I ∋ (t, s, p) 7→
1i(p)α

ε,δ
i,j (t, s) as a test function, one deduces that for a.e. t ∈ (tε,δ, t̄ε,δ):

d

dt
Ai,j(t) =

∫ 1

0

(
∂tα

ε,δ
i,j (t, s) + bi(s)∂s(α

ε,δ
i,j (t, s))− α

ε,δ
i,j (t, s)

∑
k∈I,k ̸=i

αε,δi,k(t, s)
)
mε,δ
i (t, ds)

+

∫ 1

0

αε,δi,j (t, s)
∑

k∈I,k ̸=i

αε,δk,i(t, s)m
ε,δ
k (t, ds)

By Lemma 4.7.2 in Appendix, mε,δ
i (t) is absolutely continuous w.r.t. the Lebesgue measure on [0, 1]. We

consider the constant ε∗ > 0 to be smaller than ε̄, that is defined in (4.4.13). Using that for a.e. t ∈ (tε,δ, t̄ε,δ),
the set

{
s ∈ [0, 1] |φε,δi (t, s) = φε,δj (t, s)

}
is negligible, by the bounds on ∥αε,δi,j ∥∞ and ∥∂sαε,δi,j ∥∞ from Lemma

4.4.1 and on ∂tαi,j from Lemma 4.4.3, and using that I =
(
I−(t)∪I0,−(t)

)
∪
(
I+(t)∪I0,+(t)

)
, previous equality

gives:

d

dt
Ai,j(t) ⩽

∫ 1

0

1Aε,δ
i,j (t)

(s)
(
C − 1

C
√
ε

)
mε,δ
i (t, ds) +

∫ 1

0

αε,δi,j (t, s)
∑

k∈I+(t)∪I0,+(t),
k ̸=i

αε,δk,i(t, s)m
ε,δ
k (t, ds)

+

∫ 1

0

αε,δi,j (t, s)
∑

k∈I−(t)∪I0,−(t)

αε,δk,i(t, s)m
ε,δ
k (t, ds).

Summing previous inequality over i ∈ I+(t) ∪ I0,+(t) and j ∈ I−(t) ∪ I0,−(t) and rearranging the terms, one
obtains:∑
i∈I+(t)∪I0,+(t)

j∈I−(t)∪I0,−(t)

d

dt
Ai,j(t) ⩽

∑
i∈I+(t)∪I0,+(t)

j∈I−(t)∪I0,−(t)

∫ 1

0

(
1Aε,δ

i,j (t)
(s)
(
C − 1

C
√
ε

)
+

∑
k∈I+(t)∪I0,+(t),

k ̸=i

αε,δk,j(t, s)α
ε,δ
i,k(t, s)

)
mε,δ
i (t, ds)

+
∑

i∈I+(t)∪I0,+(t)

j∈I−(t)∪I0,−(t)

∫ 1

0

αε,δi,j (t, s)
∑

k∈I−(t)∪I0,−(t)

αε,δk,i(t, s)m
ε,δ
k (t, ds).

(4.4.22)
For any i, j, k ∈ I and any t ∈ [0, T ], the quantity αε,δk,j(t, s)α

ε,δ
i,k(t, s) vanishes over [0, 1] \ Aε,δi,j (t). Indeed, if

αε,δk,j(t, s)α
ε,δ
i,k(t, s) > 0, then s ∈ Aε,δk,j(t) ∩ Aε,δi,k(t) and φε,δj (t, s) < φε,δk (t, s) < φε,δi (t, s) and thus, s ∈ Aε,δi,j (t).

In addition, by Lemma 4.4.1, we have ∥αε,δi,j ∥∞ ⩽ C. Therefore, there exists C > 0 such that the previous
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inequality becomes:

∑
i∈I+(t)∪I0,+(t)

j∈I−(t)∪I0,−(t)

d

dt
Ai,j(t) ⩽

∑
i∈I+(t)∪I0,+(t)

j∈I−(t)∪I0,−(t)

∫ 1

0

1Aε,δ
i,j (t)

(s)
(
C − 1

C
√
ε

))
mε,δ
i (t, ds)

+
∑

i∈I+(t)∪I0,+(t)

j∈I−(t)∪I0,−(t)

∫ 1

0

αε,δi,j (t, s)
∑

k∈I−(t)∪I0,−(t)

αε,δk,i(t, s)m
ε,δ
k (t, ds).

(4.4.23)

The constant ε∗ > 0 is taken as small enough to have
(
C − 1

C
√
ε

)
< 0 for any ε ∈ (0, ε∗). In addition, by the

uniform bound on αε,δ in Lemma 4.4.1, one deduces that, for a.e. t ∈ (tε,δ, t̄ε,δ), any i ∈ I+(t) ∪ I0,+(t) and
any j ∈ I−(t) ∪ I0,−(t),

(C − 1

C
√
ε
)

∫ 1

0

1Aε,δ
i,j (t)

(s)mε,δ
i (t, ds) ⩽ (C − 1

C
√
ε
)

∫ 1

0

αε,δi,j (t, s)

C
mε,δ
i (t, ds) ⩽ (C − 1

C
√
ε
)Ai,j(t). (4.4.24)

By the definition of Aj,i in (4.4.20), the non negativity of αε,δ and its uniform bound in Lemma 4.4.1, there
exists C > 0 such that one has, for a.e. t ∈ (tε,δ, t̄ε,δ), any i ∈ I+(t) ∪ I0,+(t) and any j ∈ I−(t) ∪ I0,−(t),∫ 1

0

αε,δi,j (t, s)
∑

k∈I−(t)∪I0,−(t)

αε,δk,i(t, s)m
ε,δ
k (t, ds) ⩽ C

∑
k∈I−(t)∪I0,−(t)

Ak,i(t). (4.4.25)

By inequalities (4.4.24) and (4.4.25), inequality (4.4.22) becomes, for a.e. t ∈ (tε,δ, t̄ε,δ),∑
i∈I+(t)∪I0,+(t)

j∈I−(t)∪I0,−(t)

d

dt
Ai,j(t) ⩽

∑
i∈I+(t)∪I0,+(t)

j∈I−(t)∪I0,−(t)

(C +
1

C
√
ε
)Ai,j(t) + C

∑
i∈I+(t)∪I0,+(t)

j∈I−(t)∪I0,−(t)

Aj,i(t).
(4.4.26)

Now we want to obtain a lower bound of
d

dt
Aj,i(t) for a.e. t ∈ (tε,δ, t̄ε,δ), any i ∈ I+(t) ∪ I0,+(t) and any

j ∈ I−(t)∪I0,−(t). Since (mε,δ, αε,δ) is a weak solution of the continuity equation (4.1.2), taking [0, T ]× [0, 1]×
I ∋ (t, s, p) 7→ 1i(p)α

ε,δ
i,j (t, s) as a test function, one deduces that for a.e. t ∈ (tε,δ, t̄ε,δ),

d

dt
Aj,i(t) =

∫ 1

0

(
∂tα

ε,δ
j,i (t, s) + bj(s)∂s(α

ε,δ
j,i (t, s))− α

ε,δ
j,i (t, s)

∑
k∈I,k ̸=j

αε,δj,k(t, s)
)
mε,δ
j (t, ds)

+

∫ 1

0

αε,δj,i (t, s)
∑

k∈I,k ̸=j

αε,δk,j(t, s)m
ε,δ
k (t, ds)

Since, for any t ∈ [0, T ], one has
∫ 1

0
αε,δj,i (t, s)

∑
k∈I,k ̸=j α

ε,δ
k,j(t, s)m

ε,δ
k (t, ds) ⩾ 0, by Lemmas 4.4.3 and 4.4.1,

there exists C > 0 such that previous inequality yields, for a.e. t ∈ (tε,δ, t̄ε,δ),

(
− C +

1

C
√
ε

) ∫ 1

0

1Aε,δ
j,i (t)

(s)mε,δ
j (t, ds) ⩽

d

dt
Aj,i(t).

By previous inequality and applying similar arguments as the ones to obtain inequality (4.4.24), there exists
C > 0 such that, for ε∗ > 0 small enough, one has, for a.e. t ∈ (tε,δ, t̄ε,δ), any i ∈ I+(t) ∪ I0,+(t) and any
j ∈ I−(t) ∪ I0,−(t), (

− C +
1

C
√
ε

)
Aj,i(t) ⩽

d

dt
Aj,i(t). (4.4.27)
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By inequalities 4.4.26 and 4.4.27, there exists C > 0 such that inequality 4.4.21 becomes, for a.e. t ∈ (tε,δ, t̄ε,δ),

(
− C +

1

C
√
ε

) ∑
i∈I+(t)∪I0,+(t)

j∈I−(t)∪I0,−(t)

Ai,j(t) +
∑

i∈I+(t)∪I0,+(t)

j∈I−(t)∪I0,−(t)

Aj,i(t)

 ⩽
d2

dt2
Ψ̄(mε,δ(t)).

The constant ε∗ > 0 is defined as small enough to have for any ε ∈ (0, ε∗),

0 ⩽ −C +
1

C
√
ε
.

Since Ai,j ⩾ 0 and Aj,i ⩾ 0, for any t ∈ (tε,δ, t̄ε,δ), if Ψ̄(mε,δ(·)) is twice differentiable at t, one has

0 ⩽
d2

dt2
Ψ̄(mε,δ(t)).

Remark 4.4.1. Since the map t 7→ Ψ̄(mε,δ(t)) is semiconvex on [0, T ], previous lemma implies that t 7→
Ψ̄(mε,δ(t)) is convex on (tε,δ, t̄ε,δ).

Proposition 4.4.1. For any (ε, δ) ∈ (0, ε∗)× (0, δ∗), i ∈ I and t ∈ [0, T ], one has Ψi(m
ε,δ(t)) ⩽ 0.

Proof. Proof by contradiction. Assume there exists (tε,δ, tε,δ, t̄ε,δ) as defined in (4.4.8) for a certain i ∈ I. Then,
there exists τ ∈ (tε,δ, tε,δ) such that

d

dt
Ψ̄(mε,δ(t))

∣∣∣
t=τ

> 0.

By Lemma 4.4.5 and the semiconvexity of Ψ̄, one has
d2

dt2
Ψ̄
(
mε,δ(·)

)
⩾ 0 in the sense of distribution on (tε,δ, tε,δ).

Thus, by previous inequality one deduces that, for a.e. t ∈ [τ, t̄ε,δ],

d

dt
Ψ̄i(m

ε,δ(t))
∣∣∣
t=τ

> 0.

Thus, 0 < Ψ̄(mε,δ(tε,δ)) < Ψ̄(mε,δ(t̄ε,δ)). By Lemma 4.4.2 and the definition of t̄ε,δ and tε,δ in (4.4.8), one
obtains a contradiction.

The main results of this section is a direct consequence of the proposition above.

Proof of Theorem 4.4.1. This theorem is obtained by Proposition 4.4.1.

Proof of Corollary 4.4.1. This result is a direct consequence of Theorem 4.4.1 and of Proposition 4.3.1. The
upper bounds of ∥λ∥∞ and ∥β∥∞ w.r.t. the data of the problem, is derived from the definition of ε∗ in Lemma
4.4.5 and δ∗ in Lemma 4.4.2.

4.5 Proof of the main theorem

The main theorem of the paper, stated in Section 4.2.2, can now be proved.

Proof of Theorem 4.2.2. We proceed in two steps. First, by Corollary 4.4.1 we prove the result for any initial
distribution m0 having a density in C1([0, 1]× I) w.r.t. the Lebesgue measure Then, we extend this result for
any initial distribution m0 in the space P([0, 1]× I).

Let the initial distribution m0 have a density in C1([0, 1] × I) w.r.t. the Lebesgue measure and let (m,α)
be a solution of Problem (P ). Let (φ, λ, β) ∈ Lip([0, T ] × I × [0, 1]) × L∞([0, T ] × I,R+) × (R+)

|I| be defined
from Corollary 4.4.1. We consider λ∗ ∈M+([0, T ]× I), defined, for any i ∈ I, by

λ∗i := λiL+ βiδT . (4.5.1)
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By the definitions of λ and of λ∗, and the fact that
δΨi
δm

(m(t), i, s) = 1−mi(t, [0, 1]), it is straightforward that,
for any t ∈ [0, T ],

0 ⩽ λ∗i (t) and λ∗i (t)
(
Di −mi(t, [0, 1])

)
= 0.

Let φ∗ be the weak solution of the Hamilton-Jacobi equation (4.2.2) associated with λ∗, in the sense of Definition
(4.2.2). To show that (λ∗, φ∗,m) is a weak solution of (4.1.5), it is enough to prove that αi,j = H ′(φ∗

i −φ∗
j ) on

{mi > 0}.
By Theorem 4.4.1, we have αi,j = H ′(φi − φj) on {mi > 0} thus, one needs to verify, for any (i, j, t, s) ∈

I2 × [0, T ]× [0, 1], that φi(t, s)− φj(t, s) = φ∗
i (t, s)− φ∗

j (t, s). Since φ is weak solution of the Hamilton-Jacobi
equation in the PDE system (4.4.1), by [233, Theorem 4.1], one has, for any (i, j, t, s) ∈ I2 × [0, T ]× [0, 1],

φi(t, s)− φj(t, s)

=
∑
p∈I

∫ T

t

−H((φi − φp)(τ, St,si (τ))) +H((φj − φp)(τ, St,sj (τ))) + λp(t)
(δΨp
δm

(m(t), i, s)− δΨp
δm

(m(t), j, s)
)
dτ

+

∫ T

t

ci(τ, S
t,s
i (τ))− cj(τ, St,sj (τ))dτ + gi(S

t,s
i (T ))− gj(St,sj (T )) +

∑
p∈I

βp
(δΨp
δm

(m(T ), i, ·)− δΨp
δm

(m(T ), j, ·)
)
,

(4.5.2)

where the flow St,si is defined in (4.2.6). By equality (4.3.2) satisfied by
δΨp
δm

, one has, for any t ∈ [0, T ],

∑
p∈I

λp(t)
(δΨp
δm

(m(t), i, s)− δΨp
δm

(m(t), j, s)
)
= λi(t)− λj(t),∑

p∈I
βp
(δΨp
δm

(m(T ), i, ·)− δΨp
δm

(m(T ), j, ·)
)
= βi − βj ,

and equality (4.5.2) becomes

φi(t, s)− φj(t, s)

=

∫ T

t

∑
p∈I
−H((φi − φp)(τ, St,si (τ))) +H((φj − φp)(τ, St,sj (τ)))dτ +

∫ T

t

λi(t)− λj(t)dτ

+

∫ T

t

ci(τ, S
t,s
i (τ))− cj(τ, St,sj (τ))dτ + gi(S

t,s
i (T ))− gj(St,sj (T )) + βi − βj ,

(4.5.3)

Since φ∗ is a weak solution of (4.2.2) associated with λ∗, by (4.2.5) and the fact that Lλ
∗

i (T ) = βi (where
Lλ

∗
is defined in (4.2.3) and Lλ

∗
(T ) is understood in the sense of trace), one deduces, for any (i, j, t, s) ∈

I2 × [0, T ]× [0, 1],

φ∗
i (t, s)− φ∗

j (t, s)

=

∫ T

t

∑
p∈I
−H((φ∗

i − φ∗
p)(τ, S

t,s
i (τ))) +H((φ∗

j − φ∗
p)(τ, S

t,s
j (τ)))dτ +

∫ T

t

λi(t)− λj(t)dτ

+

∫ T

t

ci(τ, S
t,s
i (τ))− cj(τ, St,sj (τ))dτ + gi(S

t,s
i (T ))− gj(St,sj (T )) + βi − βj .

(4.5.4)

By Assumption 5, H is locally Lipschitz continuous, then equalities (4.5.3) and (4.5.4) give, for any t ∈ [0, T ],

∑
i,j∈I

∥
(
φj − φi − φ∗

i + φ∗
j )(t, ·)∥∞ ⩽ |I|C

∑
i,j∈I

∫ T

t

∥
(
φj − φi − φ∗

i + φ∗
j )(τ, ·)∥∞dτ,

where C is a Lipschitz constant of H on [−2max(∥φ∥∞, ∥φ∗∥∞), 2max(∥φ∥∞, ∥φ∗∥∞)]. Applying Grownall
Lemma to the previous inequality, one deduces that ∥(φj − φi) − (φ∗

i − φ∗
j )∥∞ = 0 for any i, j ∈ I. Thus,

(φ∗, λ∗) is a solution of Problem (D). The uniform bounds on ∥λ∥∞ and ∥β∥∞ w.r.t. the data of the problem
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is given by Corollary 4.4.1.
We now extend the result to any initial distribution m0 ∈ P([0, 1] × I). One can approximate m0 by a

sequence of measure {m0,n}n, converging to m0 w.r.t. the weak topology in P([0, 1]× I), where for any n ∈ N,
m0,n has a density in C1([0, 1] × I) w.r.t. the Lebesgue measure. By Corollary (4.4.1) and using the first
step of the proof, there exists the sequences {(λn, φ∗,n, βn)}n and {λ∗,n, φ∗,n}n such that for any n, λn is in
L∞((0, T ),×I,R+), λ∗,n is defined by (4.5.1) from λn, βn ∈ (R+)

|I| and φ∗,n is a solution of the Hamilton-Jacobi
equation (4.2.2), associated with λ∗,n.

For N ∈ N large enough, m0,n satisfies Assumption 3 for any n ⩾ N . Thus, By Corollary 4.4.1, there exists
C > 0, that depends on the data of the problem, such that, for any n ⩾ N ,

∥λn∥∞, ∥βn∥n ⩽ C.

Then, there exist (λ, β) ∈ L∞((0, T )×I,R+)×(R+)
|I| such that {λn}n weakly∗ converges, up to a sub sequence,

to λ in L∞((0, T ) × I,R+), and {βn}n converges, up to a sub sequence, to β in (R+)
|I|, where both λ and β

satisfy
∥λ∥∞, ∥β∥n ⩽ C.

We denote by λ∗ the measure defined from λ and β as in (4.5.1). We denote by φ∗ the weak solution of (4.2.2)
associated with λ∗. One can easily show that

lim
n→∞

∫ T

0

∑
i∈I

∣∣∣∣∣
∫ T

t

(λ∗,ni − λ∗i )(dτ)

∣∣∣∣∣ dt+∑
i∈I

∣∣∣∣∣
∫ T

0

(λ∗,ni − λ∗i )(dt)

∣∣∣∣∣ = 0.

Then by using same arguments as in the proof of [233, Lemma 4.6], one can show that {φ∗,n}n converges, up
to a sub sequence, to φ∗, in the sense that

lim
n→∞

∥φ∗,n(0)− φ∗(0)∥∞ = lim
n→∞

∥φ∗,n(t)− φ∗(t)∥∞ = 0 for a.e. t ∈ (0, T ].

Then, one has:

lim
n→∞

∑
i∈I

∫ 1

0

−φ∗,n
i (0+, s)m0,n

i (ds) +

∫ T

0

Diλ
∗,n
i (dt) =

∑
i∈I

∫ 1

0

−φ∗
i (0

+, s)m0
i (ds) +

∫ T

0

Diλ
∗
i (dt).

Recalling that, for any n ∈ N, (φ∗,n, λ∗,n) is a solution of Problem (D), and that, by [233, Proposition 7.1] the
value of Problem (D) is continuous w.r.t. the initial distribution m0 in the weak topology on P([0, 1]× I), one
deduces by previous equality that (φ∗, λ∗) is a solution of Problem (D) with initial distribution m0.

The next corollary provides a sufficient condition to have β = 0 (where β is defined in Theorem 4.4.1).

Corollary 4.5.1. Let (m,α) be a solution of (P ) and let (φ∗, λ∗, λ, β) be defined from Theorem 4.2.2. If there
exists f ∈ C1([0, 1]) such that, gi = f for any i ∈ I, then β = 0.

Proof. We consider the set I0(T ) defined in (4.4.15) and the functions (Ψi)i∈I defined in (4.3.1). By the
definition of β in Theorem 4.2.2 and the system (4.1.5) satisfied by (φ∗, λ∗,m), it is straightforward that βi = 0
for any i ∈ I \ I0(T ). We want to show by a contradiction argument, that βi = 0, for any i ∈ I. By Lemma
4.4.4, one has for a.e. t ∈ [0, T ]

∑
i∈I0(T )

d

dt
Ψi(m(t)) =

∑
i∈I0(t)

j∈I\I0(T )

∫ 1

0

−αi,j(t, s)mi(t, ds) + αj,i(t, s)mj(t, ds)

=
∑

i∈I0(t)
j∈I\I0(T )

∫ 1

0

−H ′(φi(t, s)− φj(t, s))mi(t, ds) +H ′(φj(t, s)− φi(t, s))mj(t, ds).

(4.5.5)
Since φ∗ is a weak solution of (4.2.2) associated with λ∗, by (4.2.5) and the assumption that f = gi, for any
i ∈ I, we have,

φ∗
i (T, s) = f(s) + Lλ

∗

i (T ),
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where Lλ
∗

i (T ) is defined in (4.2.3) and is understood in the sense of trace. Since λ∗i = λiL + δTβi, previous
equality becomes for any i ∈ I

φ∗
i (T, s) = f(s) + βi ∀s ∈ [0, 1].

Thus, one has for any i ∈ I0(T ) and j ∈ I \ I0(T ), that,

φ∗
i (T, s)− φ∗

j (T, s) = βi ⩾ 0 ∀s ∈ [0, 1]. (4.5.6)

We prove the result by a proof by contradiction. Assume that there exists i∗ ∈ I0(T ) such that βi∗ > 0.
Then, by (4.5.6), for any s ∈ [0, 1] and j ∈ I \ I0(T ), one has φ∗

i∗(T, s) − φ∗
j (T, s) > 0. Since i∗ is in I0(t),

mi∗(T, [0, 1]) = Di∗ . For any i ∈ I and P ⊂ I, the map

t 7→
∑
j∈P

∫ 1

0

H ′(φ∗
i (t, s)− φ∗

j (t, s)
)
mi(t, ds),

is Lipschitz continuous on [0, T ]. Consequently, there exists ν > 0 and t̄1 ∈ [0, T ) such that, for any t ∈ (t̄1, T ],∑
j∈I\I0(t)

∫ 1

0

−H ′(φ∗
i∗(t, s)− φ∗

j (t, s)
)
mi∗(t, ds) < −ν,

and ∑
j∈I\I0(t)

∫ 1

0

H ′(φ∗
j (t, s)− φ∗

i∗(t, s)
)
mj(t, ds) = 0.

Similarly, by (4.5.6) and applying similar arguments of Lipschitz continuity, one can show that there exists
t̄2 ∈ (t̄1, T ), such that for any i ∈ I0(T ) \ {i∗} and t ∈ (t̄2, T ], one has

∑
j∈I\I0(t)

∫ 1

0

−H ′(φ∗
i (t, s)− φ∗

j (t, s)
)
mi(t, ds) <

ν

2|I|
,

and ∑
j∈I\I0(t)

∫ 1

0

H ′(φ∗
j (t, s)− φ∗

i∗(t, s)
)
mj(t, ds) <

ν

2|I|
.

Using the four last inequalities, equality (4.5.5) becomes, for a.e. t ∈ (t̄2, T ]∑
i∈I0(T )

d

dt
Ψi(m(t)) < 0.

Since
∑

i∈I0(T )

Ψi(m(T )) = 0, previous inequality gives the contradiction.

4.6 Numerical approximation

In this section we exploit Theorem 4.2.2 to numerically approximate Problem (D). We first introduce
Problem (D̄) that is equivalent to Problem (D). Then, this problem is discretized and we show the convergence
of the solutions of the discretized problems to a solution of Problem (D̄), when the time and space steps converge
to 0. This convergence results is used to build a sequence converging to a solution of Problem (P ) and to provide
an estimate on the value of Problem (P ). Finally, some numerical simulations are displayed in Section 4.6.2.
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4.6.1 Convergence results

Given (λ, β) ∈ L∞((0, T ) × I) × (R+)
|I|, we introduce the following Hamilton-Jacobi equation on (0, T ) ×

(0, 1)× I:

−∂tφi(t, s)− bi(s)∂sφi(t, s)− ci(t, s)− λi(t) +
∑

j∈I,j ̸=i

H((φj − φi)(t, s)) = 0 (t, s, i) ∈ (0, T )× (0, 1)× I,

φi(T, s) = gi(s) + βi (s, i) ∈ [0, 1]× I.
(4.6.1)

A weak solution φ of equation (4.6.1) is a function in Lip([0, T ]× [0, 1]× I) that is a solution of (4.6.1) in the
sense of distributions. We have the following key result.

Lemma 4.6.1. Problem (D) is equivalent to the following problem:

inf
(φ,λ,β),

(λ,β)∈L∞((0,T )×I,R+)×(R+)|I|

∥λ∥∞⩽1/ε∗,∥β∥1⩽C/ε
0

∑
i∈I

∫ 1

0

−φi(0, s)m0
i (ds) +

∫ T

0

Diλi(t)dt+ βiDi,

where φ is a weak sub-solution of (4.6.1) associated with (λ, β)

(D̄)

where the constants C > 0 and ε∗ > 0 depend on the data of the problem and are respectively defined in Lemma
4.4.1 and in Lemma 4.4.5, and the constant ε0 > 0 is defined by Assumption 3.

Proof. This a direct consequence of Theorem 4.2.2.

We propose a time and space discretization of Problem (D̄), based on an explicit finite difference scheme of
the Hamilton-Jacobi equation (4.6.1). Let ∆t > 0 and ∆s > 0 be such that NT := T/∆T and Ns := 1/∆s are
integers. The discretization parameters are defined such that there exists C > 0 and a > 1, independent of ∆t
and ∆s, such that ∆t and ∆s satisfy

∆t

∆s
⩽ C(∆t)a. (4.6.2)

Let (λλλ,βββ) ∈ RNT×|I|
+ ×R|I|

+ . Let i ∈ I, k ∈ {0, . . . , NT − 1} and ℓ ∈ {0, . . . , Ns}, then we consider the system
of inequalities on φφφ ∈ R(NT+1)×(Ns+1)×|I|

−φ
φφi,k+1,ℓ −φφφi,k,ℓ

∆t
− bi(ℓ∆s)

φφφi,k+1,ℓ+1 −φφφi,k+1,ℓ

∆s
− ci((k + 1)∆t, ℓ∆s)

−λλλi,k +
∑

j∈I,j ̸=i

H
(
φφφi,k+1,ℓ −φφφj,k+1,ℓ

)
⩽ 0

if bi(ℓ∆s) ⩾ 0,

−φ
φφi,k+1,ℓ −φφφi,k,ℓ

∆t
− bi(ℓ∆s)

φφφi,k+1,ℓ −φφφi,k+1,ℓ−1

∆s
− ci((k + 1)∆t, ℓ∆s)

−λλλi,k +
∑

j∈I,j ̸=i

H
(
φφφi,k+1,ℓ −φφφj,k+1,ℓ

)
⩽ 0

if bi(ℓ∆s) < 0,

φφφi,NT ,ℓ ⩽ gi(ℓ∆s) + βββi.

(4.6.3)

For any ∆t > 0 and ∆s > 0, we consider the optimization problem

inf
(φφφ,λλλ,βββ),

(λλλ,βββ)∈(R+)NT ×|I|×(R+)|I|

∥λλλ∥∞⩽1/ε∗,∥βββ∥1⩽C/ε
0

∑
i∈I

(
Ns−1∑
ℓ=0

−φφφi,0,ℓm0
i

(
[ℓ∆s, (ℓ+ 1)∆s)

)
+

NT−1∑
k=0

Diλλλi,k + βββiDi

)
,

where φφφ satisfies (4.6.3) associated with (λλλ,βββ)

(D̄∆t,∆s)

For a given (λλλ,βββ) ∈ RNT×|I|
+ ×R|I|

+ , one can prove a comparison principle for the system (4.6.3). More precisely,
let φφφ satisfy (4.6.3) and φ̄φφ also satisfy (4.6.3) but with equalities, then one can show that φφφ ⩽ φ̄φφ. Note that
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the distinction between bi(ℓ∆s) ⩾ 0 and bi(ℓ∆s) < 0 in (4.6.3) is important to get the comparison principle.
Since the objective function of Problem (D̄∆t,∆s) is non increasing w.r.t. the variable φφφ, one can restrict the
admissible set in Problem (D̄∆t,∆s) to variables φφφ satisfying (4.6.3) with equalities. In addition, since the
admissible set for the pair (λλλ,βββ) is compact, one we can restrict the admissible set for the variables (φφφ,λλλ,βββ)
in Problem (D̄∆t,∆s) to a compact set. By the continuity of the objective function, Problem (D̄∆t,∆s) admits
at least a solution. For any ∆t > 0 and ∆s > 0, we denote by (φφφ∆t,∆s,λλλ∆t,∆s,βββ∆t,∆s) a solution of Problem
(D̄∆t,∆s). By the comparison principle for the system (4.6.3), φφφ∆t,∆s satisfies

−
φφφ∆t,∆s
i,k+1,ℓ −φφφ

∆t,∆s
i,k,ℓ

∆t
− bi(ℓ∆s)

φφφ∆t,∆s
i,k+1,ℓ+1 −φφφ

∆t,∆s
i,k+1,ℓ

∆s
− ci((k + 1)∆t, ℓ∆s)

−λλλ∆t,∆si,k +
∑

j∈I,j ̸=i

H
(
φφφ∆t,∆s
i,k+1,ℓ −φφφ

∆t,∆s
j,k+1,ℓ

)
= 0

if bi(ℓ∆s) ⩾ 0,

−
φφφ∆t,∆s
i,k+1,ℓ −φφφ

∆t,∆s
i,k,ℓ

∆t
− bi(ℓ∆s)

φφφ∆t,∆s
i,k+1,ℓ −φφφ

∆t,∆s
i,k+1,ℓ−1

∆s
− ci((k + 1)∆t, ℓ∆s)

−λλλ∆t,∆si,k +
∑

j∈I,j ̸=i

H
(
φφφ∆t,∆s
i,k+1,ℓ −φφφ

∆t,∆s
j,k+1,ℓ

)
= 0

if bi(ℓ∆s) < 0,

φφφ∆t,∆s
i,NT ,ℓ

= gi(ℓ∆s) + βββ∆t,∆s
i .

(4.6.4)

We define β̄∆t,∆s := βββ∆t,∆s and the bounded function λ̄∆t,∆s ∈ L∞([0, T ]× I,R+) by

λ̄∆t,∆si (t) :=

NT−1∑
k=0

λλλ∆t,∆si,k 1[k∆t,(k+1)∆t)(t) for any (i, t) ∈ I × [0, T ]. (4.6.5)

Let φ̄∆t,∆s be the weak solution of (4.6.1) associated with (λ̄∆t,∆s, β̄∆t,∆s). The next theorem states the
convergence of

{
(φ̄∆t,∆s, λ̄∆t,∆s, β̄∆t,∆s)

}
(∆t,∆s)

, up to a subsequence, to a solution of Problem (D̄).

Theorem 4.6.1. The sequence
{
(φ̄∆t,∆s, λ̄∆t,∆s, β̄∆t,∆s)}(∆t,∆s) converges, up to a sub sequence, to a solution

(φ̄, λ̄, β̄) of Problem (D), in the sense that,

lim
∆t,∆s→0

∥φ̄∆t,∆s − φ̄∥∞ = 0

λ̄∆t,∆s
∗
⇀

∆t,∆s→0
λ̄ in L∞([0, T ]× I),

lim
∆t,∆s→0

∥β̄∆t,∆s − β̄∥∞ = 0.

Proof. By the definition of Problem (D̄∆t,∆s), {∥λλλ∆t,∆s∥∞}(∆t,∆s) is uniformly bounded and thus, {∥λ̄∆t,∆s∥∞}(∆t,∆s)
is also uniformly bounded. Then, one can extract a sub-sequence of {λ̄∆t,∆s}(∆t,∆s) weakly∗ converging w.r.t.
the L∞ topology, up to a sub sequence, to an element of L∞((0, T ) × I,R+) denoted by λ̄, when (∆t,∆s)
converges to 0. By the uniform bound of the sequence {λ̄∆t,∆s}(∆t,∆s), one has ∥λ̄∥∞ ⩽ 1/ε∗. Similarly, there
exists β̄ such that a sub-sequence of {β̄∆t,∆s}(∆t,∆s) converges to β̄ in R|I|

+ when (∆t,∆s) converges to 0. We
denote by φ̄ the weak solution of (4.6.1) associated with (λ̄, β̄). Using the weak∗ convergence of {λ̄∆t,∆s}(∆t,∆s)
to λ̄ and the convergence of {β̄∆t,∆s}(∆t,∆s) to β̄, by using the same arguments as in the proof of [233, Lemma
4.6] and the continuity of φ̄ and φ∆t,∆s, one can show that {φ̄∆t,∆s}(∆t,∆s) converges uniformly to φ̄. Now we
want to show that (φ̄, λ̄, β̄) is a solution of Problem (D̄). To do so, we first show that the value of Problem
(D̄∆t,∆s) converges to the value of the objective function of Problem (D̄) evaluated in (φ̄, λ̄, β̄), and then, that
it converges also to the value of Problem (D̄), when (∆t,∆s) converges to 0.
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Let ∆t > 0 and ∆s > 0. By [233, Theorem 4.1], φ̄∆t,∆s satisfies for any (t, s, i) ∈ [0, T ]× [0, 1]× I,

φ̄∆t,∆s
i (t, s) =

∫ T

t

∑
j∈I,j ̸=i

−H((φ̄∆t,∆s
i −φ̄∆t,∆s

j )(τ, St,si (τ)))+ci(τ, S
t,s
i (τ))+ λ̄∆t,∆s(τ)dτ+gi(S

t,s
i (T ))+β∆t,∆s

i ,

(4.6.6)
where the flow St,si is defined in (4.2.6). There exists a constant C > 0, independent of ∆t and ∆s, such that,
since φ̄∆t,∆s ∈ C1([0, T ] × [0, 1] × I), φ̄∆t,∆s satisfies the following inequality for any k ∈ {0, . . . , NT − 1},
(ℓ, i) ∈ {0, . . . , Ns − 1} × I:∣∣∣∣∣∣φ̄∆t,∆s

i (k∆t, ℓ∆s)− φ̄∆t,∆s
i

(
(k + 1)∆t, ℓ∆s

)
+∆t

∑
i ̸=j

H
(
φ̄∆t,∆s
i

(
(k + 1)∆t, ℓ∆s

)
− φ̄∆t,∆s

j

(
(k + 1)∆t, ℓ∆s

))

−∆tbi(ℓ∆s)
φ̄∆t,∆s
i ((k + 1)∆t, (ℓ+ 1)∆s)− φ̄∆t,∆s

i

(
(k + 1)∆t, ℓ∆s

)
∆s

−∆t
(
ci((k + 1)∆t) + λ̄∆t,∆si (k∆t)

)∣∣∣∣∣
⩽ C

(
∆t+∆s+

(∆t)2

∆s

)
.

(4.6.7)

Note that previous equality is still valid if the term
φ̄∆t,∆s
i ((k + 1)∆t, (ℓ+ 1)∆s)− φ̄∆t,∆s

i

(
(k + 1)∆t, ℓ∆s

)
∆s

is

replaced by
φ̄∆t,∆s
i ((k + 1)∆t, ℓ∆s)− φ̄∆t,∆s

i

(
(k + 1)∆t, (ℓ− 1)∆s

)
∆s

.

By the Assumptions 4 and 5 on c and L, the definition of λ̄∆t,∆s in (4.6.5), and equalities (4.6.3) and (4.6.7),
there exists a constant C > 0, independent of ∆t and ∆s, such that one has for any k ∈ {0, . . . , NT − 1},

sup
i∈I,

ℓ∈{0,...,Ns}

|φ̄∆t,∆s
i (k∆t, ℓ∆s)−φφφ∆t,∆s

i,k,ℓ |

⩽
(
1 + C∆t+ C

∆t

∆s

)
sup
i∈I,

ℓ∈{0,...,Ns}

|φ̄∆t,∆s
i ((k + 1)∆t, ℓ∆s)−φφφ∆t,∆s

i,k+1,ℓ|

+C
(
∆t+∆s+

(∆t)2

∆s

)
.

Using that for any (i, ℓ) ∈ I × {0, . . . , Ns} one has φ̄∆t,∆s
i (T, ℓ∆s) = φφφ∆t,∆s

i,NT ,ℓ
, one deduces by comparison, for

any ∆t > 0 and ∆s > 0 small enough and satisfying (4.6.2), that there exists a constant C > 0 such that

sup
i∈I,

ℓ∈{0,...,Ns}
k∈{0,...,Nk}

|φ̄∆t,∆s
i (k∆t, ℓ∆s)−φφφ∆t,∆s

i,k,ℓ | ⩽ C
(
∆t+∆s

)
. (4.6.8)

By [233, Remark 4.7], the quantity ∥∂sφ̄∆t,∆s∥∞ depends on the data of the problem and on
∑
i∈I

∫ T

0

λ̄∆t,∆si (t)dt.

Thus, by the uniform bound on {∥λλλ∆t,∆s∥∞}∆t,∆s}, there exists a constant C, independent of ∆t and ∆s, such
that {∥∂sφ̄∆t,∆s∥∞}(∆t,∆s) is bounded by C. Thus, by (4.6.8), there exists a constant C > 0 such that∣∣∣∣∣∑

i∈I

Ns−1∑
ℓ=0

−φφφ∆t,∆s
i,0,ℓ m0

i

(
[ℓ∆s, (ℓ+ 1)∆s)

)
+

NT−1∑
k=0

Diλλλ
∆t,∆s
i,k + βββ∆t,∆s

i Di

−
∑
i∈I

∫ 1

0

−φ̄∆t,∆s
i (0, s)m0

i (ds) +

∫ T

0

Diλ̄
∆t,∆s
i (t)dt+ β̄∆t,∆s

i Di

∣∣∣∣∣ ⩽ C(∆t+∆s).

(4.6.9)
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Using the convergence of
{
(φ̄∆t,∆s, λ̄∆t,∆s, β̄∆t,∆s)}(∆t,∆s) to (φ̄, λ̄, β̄), previous inequality gives

lim
(∆t,∆s)→0

∑
i∈I

Ns−1∑
ℓ=0

−φφφ∆t,∆s
i,0,ℓ m0

i

(
[ℓ∆s, (ℓ+ 1)∆s)

)
+

NT−1∑
k=0

Diλλλ
∆t,∆s
i,k + βββ∆t,∆s

i Di

= lim
(∆t,∆s)→0

∑
i∈I

∫ 1

0

−φ̄∆t,∆s
i (0, s)m0

i (ds) +

∫ T

0

Diλ̄
∆t,∆s
i (t)dt+ β̄∆t,∆s

i Di

=
∑
i∈I

∫ 1

0

−φ̄i(0, s)m0
i (ds) +

∫ T

0

Diλ̄i(t)dt+ β̄iDi.

Since (φφφ∆t,∆s,λλλ∆t,∆s,βββ∆t,∆s) is a solution of Problem (D̄∆t,∆s), by previous equality, one has

lim
(∆t,∆s)→0

val(D̄∆t,∆s) =
∑
i∈I

∫ 1

0

−φ̄i(0, s)m0
i (ds) +

∫ T

0

Diλ̄i(t)dt+ β̄iDi. (4.6.10)

To conclude the proof, we need to show that the value of Problem (D̄∆t,∆s) converges to the value of Problem
(D̄) when (∆t,∆s) goes to 0. Let (φ̂, λ̂, β̄) be a solution of Problem (D̄). For any ∆t,∆s > 0, satisfy-
ing (4.6.2), we consider (φ̂φφ∆t,∆s, λ̂λλ

∆t,∆s
, β̂ββ

∆t,∆s
) ∈ (R+)

(NT+1)×(Ns+1)×|I| × (R+)
NT×|I| × (R+)

|I|, such that

λ̂λλ
∆t,∆s

i,k :=

∫ (k+1)∆t

k∆t

λ̂i(t)dt, β̂ββ
∆t,∆s

i := β̂i, and φ̂φφ satisfies (4.6.3) associated with (λ̂λλ
∆t,∆s

, β̂ββ
∆t,∆s

). Applying

similar computations as the ones to obtain (4.6.8), there exist C > 0, independent of ∆t and ∆s, such that one
has

sup
i∈I,

ℓ∈{0,...,Ns}
k∈{0,...,Nk}

|φ̂i(k∆t, (ℓ+ 1)∆s)− φ̂φφ∆t,∆s
i,k,ℓ | ⩽ C(∆t+∆s),

and thus, there exists C > 0, independent of ∆t and ∆s, such that∣∣∣∣∣∑
i∈I

Ns−1∑
ℓ=0

−φ̂φφ∆t,∆s
i,0,ℓ m0

i

(
[ℓ∆s, (ℓ+ 1)∆s)

)
+

NT−1∑
k=0

Diλ̂λλ
∆t,∆s

i,k + β̂ββ
∆t,∆s

i Di

−
∫ 1

0

−φ̂i(0, s)m0
i (ds) +

∫ T

0

Diλ̂i(t)dt+ β̂iDi

∣∣∣∣∣ ⩽ C(∆t+∆s).

(4.6.11)

Since (φ̂, λ̂, β̂) is a solution of Problem (D̄∆t,∆s), previous inequality yields

val(D̄∆t,∆s) ⩽ val(D̄) + C(∆t+∆s).

Equality (4.6.10) and previous equality give, when (∆t,∆s) converges to 0,

∑
i∈I

∫ 1

0

−φ̄i(0, s)m0
i (ds) +

∫ T

0

Diλ̄i(t)dt+ β̄iDi ⩽ val(D̄),

Thus, (φ̄, λ̄, β̄) is a solution of Problem (D̄).

For any ∆t,∆s > 0, given a solution (φφφ∆t,∆s,λλλ∆t,∆s,βββ∆t,∆s) of Problem (D̄∆t,∆s), we define the function
ᾱ∆t,∆s ∈ Lip([0, T ]× [0, 1]× I2) by

ᾱ∆t,∆s
i,j := H ′(φ̄∆t,∆s

i − φ̄∆t,∆s
j ). (4.6.12)

By Lemma 4.7 in Appendix 4.7, we denote by m̄∆t,∆s the unique distribution in Lip
(
[0, T ],P([0, 1]× I)

)
such

that (m̄∆t,∆s, ᾱ∆t,∆s) is a weak solution of equation (4.1.2) associated with the initial distribution m0. The
next corollary shows the convergence of {(m̄∆t,∆s, ᾱ∆t,∆s)}(∆t,∆s) to a solution of Problem (P ).
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Corollary 4.6.1. Let ∆t > 0 and ∆s > 0 satisfying (4.6.2). Then there exists a solution (m̄, ᾱ) of Problem
(P ), such that, up to a sub-sequence of {(m̄∆t,∆s, ᾱ∆t,∆s)}(∆t,∆s), one has

lim
∆t,∆s→0

∥ᾱ∆t,∆s − ᾱ∥∞ = 0 (4.6.13)

lim
∆t,∆s→0

∥W
(
m̄∆t,∆s(·), m̄(·)

)
∥∞ = 0, (4.6.14)

lim
∆t,∆s→0

J(m̄∆t,∆s, ᾱ∆t,∆s) = J(m̄, ᾱ). (4.6.15)

Proof. Let ᾱ ∈ Lip([0, T ]× [0, 1]× I2) be defined for any i, j ∈ I, by

ᾱi,j := H ′(φ̄i − φ̄j).

The uniform convergence of {α∆t,∆s}∆t,∆s to ᾱ is a consequence of the definition of α∆t,∆s in (4.6.12) and of
Theorem 4.6.1.

By the convergence of {ᾱ∆t,∆s}(∆t,∆s) and [233, Lemma 8.2], the set {m̄∆t,∆s}(∆t,∆s) is uniformly Lipschitz
from [0, T ] to P([0, 1]× I), where P([0, 1]× I) is endowed with the Wasserstein distance. Then, by the Arzela-
Ascoli Theorem, there exists m̄ ∈ Lip([0, T ],P([0, 1] × I)) such that the set {m̄∆t,∆s}(∆t,∆s) satisfies, up to a
sub-sequence, (4.6.14). Further, m̄ is the only distribution such that (m̄, ᾱ) is a weak solution of (4.1.2) with
initial distribution m0. Equality (4.6.15) is a direct consequence of equalities (4.6.13) and (4.6.14) and of the
definition of J in (4.1.1).

Since (φ̄, λ̄) is a solution of (D), by the definition of ᾱ and the continuity equation (4.1.2) satisfied by
(m̄, ᾱ), (φ, λ,m) is a weak solution of the system (4.1.5). Thus, by Theorem 4.2.1, (m̄, ᾱ) is a solution of
Problem (P ).

Although the sequence {(m̄∆t,∆s, ᾱ∆t,∆s)}(∆t,∆s) converges to a solution of Problem (P ), there is no guar-
anty, for any ∆t,∆s > 0, that (m̄∆t,∆s, ᾱ∆t,∆s) satisfies the constraint (4.1.3).

Finally, we have the following estimate, that is of practical interest to numerically approximate the value of
Problem (P ).

Corollary 4.6.2. There exists a constant C > 0 such that, for any ∆t > 0 and ∆s > 0 satisfying (4.6.2), one
has

−val(D̄∆t,∆s)− C(∆t+∆s) ⩽ val(P ) ⩽ −val(D̄∆t,∆s) + C(∆t+∆s).

Proof. By Lemma 4.6.1 and the equality on the value of Problem (P ) in Theorem 4.2.1, this result is a direct
consequence of inequalities (4.6.9) and (4.6.11) in the proof of Theorem 4.6.1.

Although the value of the constant C in Corollary 4.6.2 is not given, it can be traced back through the
computation.

Remark 4.6.1. Since there is no convergence rate in the convergence of {J(m̄∆t,∆s, ᾱ∆t,∆s)}∆t,∆s to J(m̄, ᾱ)
in (4.6.15) and that it is numerically possible to compute val(D̄∆t,∆s) and J(m̄∆t,∆s, ᾱ∆t,∆s), the main interest
of Corollary 4.6.2 is to make it possible to verify if J(m̄∆t,∆s, ᾱ∆t,∆s) is close to val(P ).

4.6.2 Numerical results

This section illustrates the numerical method developed to approximate Problem (P ) with an example of
smart charging. A central planner aims at optimally charging a large fleet of plug-in electric vehicles (PEVs)
over a finite period horizon [0, T ], with T = 5h. It is assumed that no PEV arrives after t = 0 and leaves before
t = T . In this use case, the discrete variable taking values in I represents the charging mode ofPEVs and the
continuous variable taking value in [0, 1] represents the state of charge (SoC) of PEVs relatively to the maximum
energy capacity of the battery. It is assumed that the set of charging modes is I = {0, 1}, where 0 stands for
idle mode and 1 for charging. The transport term b in the continuity equation represents the charging rate. In
each situation, each mode i ∈ I is characterized by its charging rate b(i, ·) such that

— i = 0 corresponds to a non-charging mode with b0(s) = 0,

— i = 1 corresponds to a charging mode with b1(s) = 0.7× (1− s).
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The initial distribution of the states m0 is concentrated on the mode 0 (i.e. m0
0([0, 1]) = 1)) and is displayed

in Figure 4.3. The running cost c represents a cost of electricity consumption and is such that c0 = 0 and c1
follows a peak and off-peak periods pricing, see Figure 4.2. The function L penalizing the transfers is defined by

L(α) :=
α2

2
. The final cost g penalizes low value of SoC: gi(s) := 40×max(0, 0.75− s)2.Finally, the congestion

parameter D is set as follows: D0 = 1 and D1 = 0.2, meaning that all PEVs can be at the same time in
mode 0 (and thus λλλ∆t,∆s0 = 0) and at most 20% of the PEVs in mode 1. The discretization parameters are
∆s = 0.05 and ∆t = 0.05. The discretized problem (D̄∆t,∆s) is solved using the solver minimize from the
library scipy.optimize [266]. The solution λλλ∆t,∆s1 is displayed in Figure 4.1 (blue curve). From λλλ∆t,∆s1 , we can
build λ̄∆t,∆s1 from (4.6.5), and then φ̄∆t,∆s and (m̄∆t,∆s, ᾱ∆t,∆s) from (4.6.12). The proportion of PEVs in
mode 1 over the time (t 7→ m̄∆t,∆s

1 (t, [0, 1])) is also displayed in Figure 4.1 (red curve). One can observe on this
figure that the congestion constraint (4.1.3) is saturated for the mode 1 during the off-peak periods (between
t = 1h and t = 2h and between t = 3h15 and t = 4h15 in Figure 4.2). As expected, λλλ∆t,∆s1 is non-zero when
the constraint is saturated. The distributions of the level of battery at the initial and final time are plotted in
Figure 4.3, showing the charging of the battery. The average SoC is equal to 0.4 at initial time and to 0.58 at
the end of the period, with less that 3% of PEVs having less than 0.4 level of battery at the final time.
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4.7 Appendix

4.7.1 Weak solution of the continuity equation
The following lemma ensures the existence and uniqueness of a weak solution (m,α) of (4.1.2) whenever α

is in Lip([0, T ]× [0, 1]× I2).

Lemma 4.7.1. Let m0 ∈ P([0, 1] × I)) and α ∈ Lip([0, T ] × [0, ] × I × I). Then, there exists a unique
m ∈ Lip([0, T ],P([0, 1]× I) such that (m,α) is a weak solution of (4.1.2) in the sense of Definition 4.2.1.

Proof. The existence and uniqueness of a weak solution are proved in [71] for controls α that are continuous in
space and time independent. The extension of this result to bounded controls that are measurable in time is
straightforward.

The next lemma provides regularity result of a weak solution (m,α) in the s pecific case of an absolute
continuous initial distribution m0.

Lemma 4.7.2. Let m0 ∈ P([0, 1] × I) be absolutely continuous w.r.t. the Lebesgue measure on [0, 1] and with
a density in C1([0, 1]). Then, for any α ∈ Lip([0, T ] × [0, 1] × I2), there exists a unique distribution m such
that (m,α) is a solution of the continuity equation (4.1.2) in the sense of Definition 4.2.1. The distribution
m is absolutely continuous w.r.t. the Lebesgue measure on [0, T ] × [0, 1] × I, with a density (also denoted m )
belonging to Lip([0, T ]× [0, 1]× I).

Proof. The existence and uniqueness of a weak solution (α,m) are given by Lemma 4.7.1.
We want to show that m is absolutely continuous w.r.t. the Lebesgue measure, with a density belonging to

Lip([0, T ] × [0, 1] × I). Considering the Banach space Lip([0, T ] × [0, 1] × I), endowed with the norm ∥f∥L :=
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Lf +∥f ′∥∞, where Lf is the least Lipschitz constant of f , by applying a fixed point argument, one obtains that
there exists a unique function m̄ ∈ Lip([0, T ]× [0, 1]× I) satisfying, for any (t, s, i) ∈ [0, T ]× [0, 1]× I,

m̄i(t, s) = m̄i(0, S
t,s
i (0)) +

∫ t

0

(
− b′(St,si (τ))−

∑
j∈I,j ̸=i

αi,j(τ, S
t,s
i (τ))

)
m̄i(τ, S

t,s
i (τ))dτ,

+

∫ t

0

∑
j∈I,i̸=i

αj,i(τ, S
t,s
i (τ))

)
m̄j(τ, S

t,s
j (τ),

where Ss,ti [0, T ] 7→ [0, 1] is the solution of the ODE:

d

dt
Ss,ti (τ) = bi(S

s,t
i ) and Ss,ti (t) = s.

Then, one can prove that (m̄, α) is a weak solution of (4.1.2). The regularity of the density of m follows by the
uniqueness of the weak solution of (4.1.2).
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5.1 Introduction

This work is motivated by the optimal charging of a very large population of plug-in electric vehicles (PEVs)
controlled by a central planner. Each PEV is characterised by two variables: a continuous one representing the
state of charge (SoC) of the battery, and a discrete one denoting the mode of charging of the PEV (e.g. idling,
charging, discharging, etc...). The central planner determines when and to which mode of charging of each PEV
switches. In addition to the charging cost, the objective function also contain a term penalizing the switches, in
order to avoid both excessive jumps per PEV and synchronization effects, i.e., simultaneous switches of a large
proportion of PEVs. An optimization problem is considered, where the distribution of the population is subject
to a congestion constraint to avoid large proportion of PEVs having the same regime. Such a control problem
typically arises in parking lots powered by solar energy that can be found in malls, airports, stadiums, hospitals
and other facilities with large parking areas [90]. Since the number n of PEVs is very large, both combinatorial
techniques and optimal control tools may fail to solve the problems, due to the curse of dimensionality [20]. To
overcome these difficulties, one can approximate the problem of n PEVs by considering a continuum of PEVs,
leading to the techniques of optimal control of PDEs and those of convex optimization. The resulting limit
mean field control problem was studied in [233] and numerically solved in [238]. Note that several articles have
already dealt with smart charging problems within a mean field limit framework [76, 196, 206]. Our paper

99
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aims to justify the mean field approximation by proving the convergence of the finite population optimization
problem to the mean field problem, when n tends to infinity.

We point out three important features in our modelling of the PEV charging. First, only a finite number of
charging rates are allowed, because charging is mostly done at discrete rates [200]. This feature was also adopted
for example in [78, 118, 245]. However, these papers did not systematically take into account the switching
cost and congestion constraints, which are the second and third features of our modelling. Indeed, penalizing
switches is crucial because, on the one hand, multiple changes in charging regime causes more intensive battery
aging and degradation [88, 184] whereas, on the other hand, the synchronization of switches of PEVs can
disrupt energy balance on the electrical network [256] and increase instability of distribution transformers [268].
Finally, congestion constraints enable to avoid voltage drops and overloading of transformers [155] caused by
uncoordinated large fleets of PEVs.

The main contribution of this work is the convergence, as n tends to infinity, of the value of the finite popu-
lation problem to the value of the mean field control problem (Theorem 5.2.1). We also prove the convergence
(up to a subsequence) of optimal solutions of the finite population problem to a solution of the mean field
control problem (Theorem 5.2.2).

Let us make some remarks on the method of proof. The finite population problem is first defined in
a Lagrangian point of view, namely that the evolution of the population is described by the trajectory of
each process (PEV). Then, an Eulerian formulation of the problem, which characterizes the evolution of the
population by its state distribution, velocity field and the distribution of the switches of its discrete state,
is introduced and proved to be equivalent to the Lagrangian formulation (Corollary 5.3.1). This result is
obtained thanks to a superposition principle (Theorem 5.3.1), that is a direct adaptation of the one in [62]. The
superposition principle states that any curve of probability measure, solution of the continuity equation, can be
represented as the transport of the initial distribution along an ODE flow. This result was first introduced in
[8] in the Euclidean setting and extended to general metric spaces in [178].

The convergence of the solution and that of the value of the finite population problem in the Eulerian
formulation are achieved in two steps. First, we prove that the lower limit, as n tends to infinity, of the
value of the finite population problem is larger than the value of the mean field control problem, due to the
compactness and lower semi-continuity arguments (Theorem 5.4.1). Second, we show that the value of the
finite population problem is bounded above by the value of the mean field control problem up to a term of
order O(n−1/3) (Theorem 5.4.2). To obtain this bound, a mean field optimal control is implemented to a finite
population of processes and an estimate of the Wasserstein distance between the empirical distribution of the
finite population and the optimal mean field distribution is derived (Theorem 5.4.3). This estimate strongly
relies on the regularity of the optimal control of the mean field control problem. The Lipschitz continuity w.r.t.
the space variable, uniformly in time, of the optimal control has been established in a companion paper [233].
Similar results of Lipschitz regularity of the optimal controls have been studied in the context of mean field
control problem [37, 82].

The mean field limit of a system of n interacting agents is defined as the asymptotic behaviour of the
system when n tends to infinity. The empirical distribution of the system of n agents can be approximated
by a distribution that is a solution of a Vlasov type equation. In the stochastic setting, one often refers
this asymptotic behavior to the notion of propagation of chaos [246]. In the context of optimal control with
deterministic dynamics, the convergence of the solutions of the finite population problem to a solution of the
mean field control problem, was first proved in [112]. The authors applied Γ-convergence techniques [79] and
restricted the result to the particular case of feedback control functions that are locally Lipschitz continuous
in space. The convergence of the value of the optimal control of a finite population of interacting McKean-
Vlasov dynamics to the value of a mean field optimal control problem was proved in [163] in fairly general
settings (the results hold for degenerate diffusion). The convergence results in [112] were obtained without
the restrictions on the control in [111]. In [62], the Eulerian, Lagrangian and Kantorovich formulation of the
finite population and the mean field problems are introduced, and the convergence of the value functions of the
finite population Lagrangian and Eulerian problems were established. More convergence properties in various
deterministic settings can be found in [43, 139] and in the references therein. In a stochastic setting, the results
of [163] were extended to the case with common noise in [94] and with interaction of the agents with joint
distribution of the state and control in [93]. More recently, in a setting with idiosyncratic and common noise
in the dynamic of the agents, a convergence rate of the value function of the finite population problem to the
the value function of the mean field limit problem was derived in [51]. In a finite state space setting, this rate
was proved to be of order 1/

√
n in [64]. Similar results on the value function were obtained in [18] in the case
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of mean field control problem with regime switching in the state dynamics. The Γ-convergence of a control
problem of hybrid processes was proved in [131] in the very specific framework of multi-line traffic. Several
convergence properties of the finite population model to the mean field one are given in [194] for the discrete
time setting with common noise.

Mean field control problems are strongly connected with the mean field game (MFG) problems. This class
of games, introduced by Lasry and Lions [166, 167, 168] and Huang, Malhamé and Caines [145, 146], describes
the interaction among a large population of identical and rational agents in competition. It was first proved
that one can construct ε-Nash equilibrium in the n-player game from mean field models [57, 56, 65, 145].
The convergence of the Nash equilibrium system to the MFG system is closely related to the well-posedness
of the so-called “master equation". Such a property was proved in general settings, with common noise, in
the breakthrough of [52]. The convergence was studied in [109, 162] in the open-loop control framework and
extended in [164] for closed-loop Nash equilibrium, expanding results obtained in [52]. Finally, convergence
results in the finite state settings were obtained in [19, 65, 128, 158]

While problems in the literature deal with either continuous or discrete state variables, this work addresses
the analysis of the mean field limit of hybrid processes. Also, a congestion constraint is considered in the
optimization problem, which is unusual among the existing literature studying mean field limit of control
problems (see however [66] for a Γ−convergence result of an n-agent system to a mean field control problem
with L∞ upper bound on the density of the population). Finally, a particularity of the model in this paper is
that the nature of the dynamics in the finite population problem is different from that in the mean field problem.
While the switches are controlled and deterministic in the finite population setting, the jumps of the discrete
variable of each process are stochastic and the control is on the transition rate in the mean field problem .

The paper is organized as follows. In Section 5.2, we present our assumptions, the n-agent optimal control
problem, the mean field control problem and the main results. The equivalence between the finite population
problem and its Eulerian formulation is established in Section 5.3, as well as the superposition principle. Finally,
the convergence of the solution and that of the value of the finite population problem to the solution and the
value of the mean field problem are proved in Section 5.4.

5.2 Main results

Notations The space of Borel, positive and bounded measures on a space A is denoted by M+(A) and
the space of Borel probability measures on a space A is denoted by P(A). For any measure µ ∈ M([0, T ]) and
0 ⩽ t1 < t2 ⩽ T , we set

∫ t2
t1
µ(dt) := µ([t1, t2]). Given a set S, for any function f defined on S × I and any

measure µ ∈M(S×S×I), we use the notations fi(x) := f(x, i) for any (x, i) ∈ S×I and µi(S) := µ(S×i) for any
(S, i) ∈ B(S)×I, where B(S) denotes the Borel algebra. Similarly, for any function g defined on S×I×I and any
measure ν ∈M(S×S ′×I×I), where S ′ is a set, we use the notations gi,j(x) := g(x, i, j) for any (x, i, j) ∈ S×I2
and νi,j(S, S′) := ν(S×S′×{i}×{j}) for any (S, S′, i, j) ∈ B(S)×B(S ′)× I2. If S is a metric space, let Lip(S)
denote the vector space of bounded and Lipschitz continuous maps f : S → R. For any µ ∈ C0([0, T ],P([0, 1]),
let L2

µ([0, T ]×[0, 1]) := {f : [0, T ]×[0, 1] 7→ R,
∫ T
0

∫ 1

0
f(t, s)2µ(t, ds)dt < +∞}. We denote byW the Wasserstein

distance on P([0, 1]× I), defined by W(µ, ρ) := sup {
∑
i∈I
∫ 1

0
φ(µ− ρ) |φ is 1− Lipschitz from [0, 1]× I to R}.

We recall that if a function φ is 1-Lipschitz continuous from [0, 1]× I to R, then |φ(x, i)− φ(x, j)| ⩽ 1 for any
i, j ∈ I. For any metric space (X, d), we denote by D([0, T ], X) the set of cadlag functions from [0, T ] to X and
by AC([0, T ], X) the set of absolutely continuous functions. For any x ∈ R, ⌊x⌋ denotes the integer truncation
of x. For any n ∈ N, we introduce Pn([0, 1]× I), the set of empirical probability measures on the space [0, 1]× I
defined by

Pn([0, 1]× I) := {µ =
1

n

n∑
ℓ=1

δ(xℓ,iℓ) for some (xℓ, iℓ) ∈ [0, 1]× I},

and similarly we introduce Mn([0, 1]) defined by:

Mn([0, 1]) := {µ =
1

n

n̄∑
ℓ=1

δxℓ for some xℓ ∈ [0, 1] and n̄ ⩽ n}. (5.2.1)
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5.2.1 The n PEVs control problem

We consider a population of n PEVs (n ∈ N∗), a state space [0, 1] × I, where I is a finite set, and a time
interval [0, T ]. We consider a time and space discretization depending on n, with time step ∆tn and space step
∆sn (indexed by the superscript n), such that Nn

T := T/∆tn and Nn
s := 1/∆sn are integers. The time mesh is

{0, tn1 , . . . , tnk+1, . . . , T} with tnk := k∆tn, for any k ∈ {0, . . . , Nn
T }. The space mesh is {0, yn1 , . . . , ynp , . . . , 1} with

ynp := p∆sn, for any p ∈ {0, . . . , Nn
s }. For the sake of simplicity, we write tk and yp instead of tnk and ynp , and

∆s and ∆t instead of ∆sn and ∆tn.

For any ℓ ∈ {1, . . . , n} and t ∈ [0, T ], the vehicle ℓ is described by its state variable xℓt := (iℓt, s
ℓ
t) ∈ I × [0, 1],

with a given initial datum xℓ0 = (iℓ0, s
ℓ
0). The discrete variable iℓ, denoting the mode of charging, can switch

deterministically and only at fixed times in {t1, · · · , tNn
T−1}, while the continuous variable sℓ, representing the

SoC, is governed by an ODE depending on the mode of charging. Between two jumps of the variable iℓ, i.e.
within each interval [tk, tk+1), the dynamics of xℓ is deterministic and is given by:

iℓt = iℓtk ,
dsℓt
dt

= b(iℓt, s
ℓ
t) for any t ∈ [tk, tk+1) and with sℓtk = lim

τ↑tk
sℓτ , (5.2.2)

where the initial state (iℓ0, s
ℓ
0) is given. Note that there are no switches of iℓ at times t = 0 and t = T . We

further assume that b belongs to C1(I ×R) and vanishes at the boundary of [0, 1], so that the ODE satisfied by
sℓ has a unique solution and sℓ lies in [0, 1]. By (5.2.2), the map t 7→ (iℓt, s

ℓ
t) is cadlag. Given m̄ ∈ Pn([0, 1]× I),

we introduce the set of processes:

Xn(m̄) :=
{
{(iℓ, sℓ)}ℓ∈{1,...,n} ∈

(
D([0, T ], I)× C0([0, T ], [0, 1])

)n | the empirical distribution

of {(iℓ0, sℓ0)}ℓ is equal to m̄ and (iℓ, sℓ) satisfies (5.2.2)
}
.

(5.2.3)

We denote by (i,s) a generic element of Xn(m̄). The population of n processes is subject to the following
congestion constraints:

1

n

n∑
ℓ=1

1i(i
ℓ
t) ⩽ Di(t) ∀(i, t) ∈ I × [0, T ], (5.2.4)

where D : [0, T ]→ R∗
+ is given. The admissible set T n(m̄,D) is defined by:

T n(m̄,D) := {(i,s) ∈ Xn(m̄)| (i,s) satisfies (5.2.4)} . (5.2.5)

Let J n be the objective function, defined by:

J n(i,s) := 1

n

n∑
ℓ=1

∫ T

0

c(t, iℓt, s
ℓ
t)dt+ g(iℓT , s

ℓ
T ) +

∑
i,j∈I,j ̸=i

Nn
T−1∑
k=1

Nn
s −1∑
p=0

L

(
Qk,pi,j (i,s)

∆t

)
∆tQk,pi (i,s), (5.2.6)

where Qk,pi,j (i,s) is the proportion of PEVs among the processes with a state in [yp, yp+1)×{i} that switch their
discrete state i to j at time tk, and Qk,pi (i,s) is the proportion of PEVs among the overall population of processes
that has a state in [yp, yp+1) × {i} at time t−k (just before the jumps). More precisely, Qk,pi (i,s) and Qk,pi,j (i,s)
are defined by:

Qk,pi (i,s) :=
1

n

n∑
ℓ=1

1i(i
ℓ
t−k
)1[yp,yp+1)(s

ℓ
tk
),

Qk,pi,j (i,s) :=


0 if Qk,pi (i,s) = 0,

1

nQk,pi (i,s)

n∑
ℓ=1

1i(i
ℓ
t−k
)1j(i

ℓ
tk
)1[yp,yp+1)(s

ℓ
tk
) otherwise.

Our purpose is to study the mean field limit of the following finite population optimal control problem:

inf
(i,s)∈T n(m̄,D)

J n(i,s). (5.2.7)
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We recall that this work is initially motivated by the optimal charging of a population of plug-in electrical
vehicles (PEVs) controlled by a central planner. The given velocity field b(i, s) denotes the power of charge or
discharge of a PEV in mode i and with battery level s. The congestion constraint (5.2.4) aims at avoiding high
demand of energy at each moment over the period. The value c(t, i, s) in (5.2.6) corresponds to the running
cost of a PEV at state (s, i) and at time t ∈ [0, T ); g(i, s) is the final cost per PEV at state (s, i). The switching

cost L
(
Qk,p

i,j (i,s)
∆t

)
∆tQk,pi (i,s) penalizes large values of Qk,pi,j (i,s), i.e., large proportion of PEVs switching from

a state in [yp, yp+1) × {i} to a state in [yp, yp+1) × {j} at time tk. The normalization by ∆t avoids frequent
jumps. Finally, the multiplication of L(·) by ∆tQk,pi (i,s) normalizes the transition cost and avoids its explosion
when n tends to infinity. The switching costs in (5.2.7) showed good numerical results in [238].

Remark 5.2.1. The definition of J n in (5.2.6) does not take into account the jumps of PEVs with SoC equal
to 1. However, by Assumptions 1 and 2 (specified in Section 5.2.3) it is not possible for a PEV to have a SoC
equal to 1, which justifies our choice.

Remark 5.2.2. Since the number of admissible trajectories is finite and by Assumption 3 (given in Section
5.2.3) non empty, the infinimum is always attained in (5.2.7). Actually, Assumption 3 ensures that the n
processes with no switches for the discrete variable is admissible. We deduce that, for any n ∈ N,

inf
(i,s)∈T n(m̄,D)

J n(i,s) ⩽ T∥c∥∞ + ∥g∥∞. (5.2.8)

5.2.2 The mean field control problem

This section defines the limit model when n tends to infinity. Let (m̄,D) ∈ P([0, 1]× I)×C0([0, T ]× I,R∗
+)

satisfy supp(m̄i) ⊂ (0, 1), for any i ∈ I, and

sup
t∈[0,T ],i∈I

Di(t)− m̄i([0, 1]) ⩽ ε0,

where the constant ε0 > 0 is defined further in Assumption 3. We consider the continuity equation on the pair
(m,E), defined on the domain (0, T )× (0, 1)× I:

∂tmi(t, s) + ∂s(mi(t, s)bi(s)) = −
∑

i,j∈I,j ̸=i

(Ei,j(t, s)− Ej,i(t, s)) (i, t, s) ∈ I × (0, T )× (0, 1)

mi(0, s) = m̄i(s) (i, s) ∈ I × (0, 1).
(5.2.9)

We introduce the density constraint:

mi(t, [0, 1]) ⩽ Di(t) ∀(i, t) ∈ I × [0, T ], (5.2.10)

and the admissible set

S(m̄,D) :=
{
(m,E) |m ∈ C0([0, T ],P([0, 1]× I)), E ∈M+([0, T ]× [0, 1]× I2), Ei,j ≪ mi and

dEi,j
dmi

∈ L2
mi

(0, T )∀i, j ∈ I, (m,E) is a weak solution of (5.2.9) and satisfies (5.2.10)
}
.

The definition of weak solution of (5.2.9) is given by Definition 5.3.1 in Section 5.3. The objective function J
is defined for any (m,E) ∈ S(m̄,D) by:

J(E,m) :=
∑
i∈I

∫ T

0

∫ 1

0

ci(t, s) + ∑
j∈I,j ̸=i

L
(dEi,j

dmi
(t, s)

)mi(t, ds)dt+
∑
i∈I

∫ 1

0

gi(s)mi(T, ds).

The mean field control problem is:
inf

(m,E)∈S(m̄,D)
J(m,E). (5.2.11)

This problem has been studied in [233], where optimality conditions and regularity results on the solutions are
established. The main result of the paper, giving the convergence of Problem (5.2.7) to Problem (5.2.11), is
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described in the next section.

5.2.3 Convergence result
Throughout the paper, we assume the following:

General assumptions
1. For any i ∈ I, bi ∈ C1(R) with bi(s) = 0 for any s /∈ (0, 1).
2. For any n ∈ N and i ∈ I, we assume that m̄n ∈ Pn([0, 1]× I) and supp(m̄n

i ) ⊂ (0, 1).
3. There exists ε0 > 0 such that, for any n ∈ N, ε0 ⩽ inf

(i,t)∈I×[0,T ]
Di(t)− m̄n

i ([0, 1]).

4. For any i ∈ I, ci ∈ C1([0, T ]× [0, 1]) and gi ∈ C1([0, 1]).
5. L : R→ R̄ is a convex function, defined by:

L(x) :=

 l(x) if x > 0
0 if x = 0
+∞ otherwise,

where l ∈ C1(R+,R+) is an increasing strongly convex function, bounded from above by a quadratic
function, i.e. there exist C > 0 such that for any x ∈ R+:

x2

C
− C ⩽ l(x) ⩽ C(x2 + 1),

where the first inequality is due to the strong convexity of l. By convention: L(
0

0
) · 0 := 0.

Remark 5.2.3. The main role of Assumptions 1 and 2 is to ensure that the solution of the ODE in (5.2.2)
takes values in [0, 1]. In addition, the superposition principle formulated in Section 5.3 relies on the regularity
of b stated in Assumption 1. Assumption 3 ensures that the n trajectories with no switch of discrete variable i
are admissible trajectories. Correspondingly, the feasible set T n(m̄,D) of Problem (5.2.7) is not empty. This
assumption also enables to build in Section 5.4.2 admissible trajectories based on a solution of the mean field
control problem. It is possible to replace Assumption 3 by less restrictive conditions. However, for the sake of
clarity, we restrict the analysis to the case with Assumption 3. Regularity results of the solution of the mean
field control problem (5.2.11) are derived from the properties of c, g and L given in Assumptions 4 and 5.
Assumption 5 enables to obtain the compactness of the solutions of the finite population problem and to apply
Γ-convergence techniques in Section 5.4.1.

In the following theorem, we state the convergence of the value of Problem (5.2.7) to the value of Problem
(5.2.11) as n tends to infinity.

Theorem 5.2.1. There exist constants C̃1, C̃2 > 1 such that, if

1

C̃1n
1
3

⩽ ∆t,∆s ⩽
C̃1

n
1
3

, (5.2.12)

and
∆t <

1

C̃2|I|
, (5.2.13)

hold for any n ∈ N∗, then,
1. If {m̄n}n weakly converges to m̄ ∈ P([0, 1]× I), then

inf
(m,E)∈S(m̄,D)

J(m,E) ⩽ lim inf
n→∞

inf
(i,s)∈T n(m̄n,D)

J n(i,s). (5.2.14)

2. There exists C > 0 such that for any n ∈ N:

inf
(i,s)∈T n(m̄n,D)

J n(i,s)− C

n
1
3

⩽ inf
(m,E)∈S(m̄n,D)

J(m,E), (5.2.15)
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where C depends on the data.

The proof of Theorem 5.2.1 is given in Section 5.4.3. To obtain this result, an Eulerian formulation of
Problem 5.2.7 is introduced and proved to be equivalent to Problem 5.2.7 (Corollary 5.3.1) thanks to a super-
position principle (Theorem 5.3.1). Then, the first part of Theorem 5.2.1 is obtained in Section 5.4 by applying
compactness arguments on the sequences of solutions of the Eulerian problem, while the second part directly
derives from Theorem 5.4.2. Inequality (5.2.15) relies on regularity results of the solution of Problem (5.2.11),
that are used to build an admissible control for the Eulerian version of Problem 5.2.7.

Remark 5.2.4. Improving the qualitative inequality (5.2.14) into a quantitative one, as in (5.2.15), seems a
difficult task. The main difficulties come from the constraint (5.2.4) and the lack of regularity of the objective
function J n w.r.t. to the set of trajectories (s, i).

Remark 5.2.5. To obtain the inequality in Theorem 5.2.1.1, one needs that lim
n→∞

∆t = lim
n→∞

∆s = 0. This
condition is ensured by inequality (5.2.12). Inequality (5.2.15), on the other hand, requires (5.2.12) and (5.2.13).

For any n ∈ N, let (in, sn) ∈ T n(m̄n, D) be a solution of Problem (5.2.7). We define the empirical distribution
of the processes mn and the empirical measure of the switches En by:

mn(t) :=
1

n

n∑
ℓ=1

δ(in,ℓ
t ,sn,ℓ

t ), (5.2.16)

and

Eni,j :=
1

n

n∑
ℓ=1

Nn
T−1∑
k=1

1i(i
n,ℓ

t−k
)1j(i

n,ℓ
tk

)δtk ⊗ δsn,ℓ
tk

. (5.2.17)

The next result states the weak convergence of {(mn, En)} to a solution of Problem (5.2.11).

Theorem 5.2.2. Under the assumptions of Theorem 5.2.1, if {m̄n}n weakly converges to m̄ ∈ P([0, 1] × I),
there exists a subsequence of {(mn, En)}n and a solution (m∗, E∗) of Problem (5.2.11) such that, {En}n weakly
converges to E∗ and {mn(t)}n converges in Wasserstein distance uniformly in t ∈ [0, T ] to m∗(t).

The proof of Theorem 5.2.2 is given in Section 5.4.3.

5.3 Equivalence between Eulerian and Lagrangian finite population
control problems

In this section, an Eulerian formulation of Problem (5.2.7) is introduced. The equivalence between the
Lagrangian and the Eulerian formulation relies on a superposition principle, adapted to the problem and stated
in Theorem 5.3.1.

Definition 5.3.1. We say that a pair (m,E) ∈ D([0, T ],P([0, 1] × I)) ×M+([0, T ] × [0, 1] × I × I) satisfies
(5.2.9) in the weak sense if, for any test function ϕ ∈ C1([0, T ]× [0, 1]× I), we have:

∑
i∈I

∫ 1

0

ϕi(T, s)mi(T, ds)− ϕi(0, s)m̄i(ds)

=

∫ T

0

∫ 1

0

∑
i∈I

(∂tϕi(t, s) + bi(s)∂sϕi(t, s))mi(t, ds) +
∑

j∈I,j ̸=i

ϕi(t, s)(Ej,i − Ei,j)(dt, ds).

Let n ∈ N, (m,E) ∈ D([0, T ],Pn([0, 1]× I))×M+([0, T ]× [0, 1]× I2), we consider the following:

supp(Ei,j) ⊂ {tq}1⩽q⩽Nn
T−1 × [0, 1], ∀i, j ∈ I, (5.3.1)

and ∑
j∈I,j ̸=i

Ei,j({tk}, B) ⩽ mi(tk, B), ∀tk ∈ {tq}0⩽q⩽Nn
T

and ∀B ∈ B([0, 1]). (5.3.2)
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The two constraints above are used to characterize the empirical distributionm of the set of processes {(iℓ, sℓ)}1⩽ℓ⩽n
and to characterize the distribution of the jumps E associated to {iℓ}1⩽ℓ⩽n . Constraint (5.3.1) implies that
the support of E is concentrated on the nodes of the time mesh. Thus, the jumps only occur at times in the set
{t1, . . . , tNn

T−1}. Constraint (5.3.2) ensures that the number of switches does not exceed the number of vehicles
at each time and position.

Finally, for any n ∈ N and m̄ ∈ Pn([0, 1]× I), we define the set Qn(m̄) by:

Qn(m̄) :=
{
(m,E) ∈ D([0, T ],Pn([0, 1]× I))×M+([0, T ]× [0, 1]× I2) such that (m,E)

is a weak solution of (5.2.9) with initial distribution m̄, (m,E) satisfies

(5.3.1) and (5.3.2), and Ei,j({tk}, ·) ∈Mn([0, 1]) ∀k ∈ {0, . . . , Nn
T }} .

(5.3.3)

The theorem below is the main result of this section. It highlights the equivalence between the Lagrangian and
the Eulerian points of view, when describing the evolution of the system of n PEVs. It is a reminiscent of the
superposition principle [9].

Theorem 5.3.1 (Superposition principle).

1. For any n ∈ N, m̄ ∈ Pn([0, 1] × I) and (i,s) ∈ Xn(m̄), there exists a pair (mn, En) ∈ Qn(m̄) such that
mn is the empirical distribution of the processes (i,s) and En is that of the jumps over the period [0, T ],
i.e. mn satisfies (5.2.16) and En satisfies (5.2.17).

2. For any n ∈ N, m̄ ∈ Pn([0, 1]× I), and (m,E) ∈ Qn(m̄), there exists (i,s) ∈ Xn(m̄), such that m satisfies
(5.2.16) and E satisfies (5.2.17).

We stress that the processes (i,s) in 2 is not necessary unique. The proof of the theorem is given in section
5.3.2.

5.3.1 Eulerian problem formulation

In this subsection, we describe the Eulerian formulation of the optimal control problem and show that it is
equivalent to the Lagrangian Problem (5.2.7).

We define, for any m̄ ∈ Pn([0, 1]× I) and D ∈ C0([0, T ]× I,R∗
+), the set Sn(m̄,D) by:

Sn(m̄,D) := {(m,E) ∈ Qn(m̄) | (m,E) satisfies (5.2.10)} . (5.3.4)

Remark 5.3.1. For all m̄ ∈ Pn([0, 1] × I) and D ∈ C0([0, T ] × I,R∗
+) satisfying Assumption 3, the sets

Sn(m̄,D) and S(m̄,D) are different. On the one hand, if (m,E) belongs to S(m̄,D), then Ei,j ≪ mi for any
i, j ∈ I and we show below that m is continuous in time. On the other hand, if (m,E) belongs to Sn(m̄,D)
and E ̸= 0, then by (5.3.1) Ei,j is supported by a set of discrete times (and therefore Ei,j ≪ mi cannot hold);
moreover m is discontinuous w.r.t. the time variable.

For any n ∈ N, we define the cost function Jn, for any (m,E) ∈ Sn(m̄,D) by:

Jn(m,E) :=
∑
i∈I

∫ T

0

∫ 1

0

ci(t, s)mi(t, ds)dt+
∑
i∈I

∫ 1

0

gi(s)mi(T, ds)

+
∑

i,j∈I,i̸=j

Nn
T−1∑
k=1

Nn
s −1∑
p=0

L

(
Ei,j({tk}, [yp, yp+1))

∆tmi(tk
−, [yp, yp+1))

)
∆tmi(tk

−, [yp, yp+1)).

(5.3.5)

For any n ∈ N, we consider the optimization problem:

inf
(m,E)∈Sn(m̄,D)

Jn(m,E). (5.3.6)

The following corollary is a direct consequence of Theorem 5.3.1.

Corollary 5.3.1. One has:

inf
(i,s)∈T n(m̄,D)

J n(i,s) = inf
(m,E)∈Sn(m̄,D)

Jn(m,E) .
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Proof. Let (i,s) ∈ T n(m̄,D), then from Theorem 5.3.1.1, there exists (m,E) ∈ Qn(m̄) such that m is the
empirical distribution of (i,s) satisfying (5.2.16) and E is the empirical distribution of the jumps satisfying
(5.2.17). Since (i,s) ∈ T n(m̄,D), we have for any i ∈ I and t ∈ [0, T ]

mi(t, [0, 1]) =
1

n

n∑
ℓ=1

1i(i
ℓ
t) ⩽ Di(t) ∀(i, t) ∈ I × [0, T ] ,

and thus, (m,E) ∈ Sn(m̄,D). For any j ∈ I with i ̸= j, k ∈ {1, . . . , Nn
T − 1} and p ∈ {0, . . . , Nn

s − 1}, one has:

mi(t
−
k , [yp, yp+1)) =

1

n

n∑
ℓ=1

δ(
iℓ
t
−
k

,sℓ
t
−
k

)({i} × [yp, yp+1)) = Qk,pi (i,s),

and

Ei,j({tk}, [yp, yp+1)) =
1

n

n∑
ℓ=1

Nn
T∑

k=1

1i

(
iℓ
t−k

)
1j

(
iℓtk
)
δsℓtk

([yp, yp+1)) = Qk,pi,j (i,s)Q
k,p
i (i,s).

From the two previous equalities, one has for any k ∈ {1, . . . , Nn
T − 1} and p ∈ {0, . . . , Nn

s − 1}:

L

(
Ei,j({tk}, [yp, yp+1))

∆tmi(tk
−, [yp, yp+1))

)
∆tmi(tk

−, [yp, yp+1)) = L

(
Qk,pi,j (i,s)

∆t

)
∆tQk,pi (i,s).

By (5.2.16) and (5.2.17), we have:

1

n

n∑
ℓ=1

∫ T

0

c(t, iℓt, s
ℓ
t)dt =

∑
i∈I

∫ T

0

∫ 1

0

ci(t, s)mi(t, ds)dt and
1

n

n∑
ℓ=1

g(iℓT , s
ℓ
T ) =

∑
i∈I

∫ 1

0

gi(s)mi(T, ds) .

Therefore, it holds:
J n(i,s) = Jn(m,E), (5.3.7)

and
inf

(i,s)∈T n(m̄,D)
J n(i,s) ⩾ inf

(m,E)∈Sn(m̄,D)
Jn(m,E) .

Using Theorem 5.3.1.2 and similar computations as in the first part of this proof, one can obtain the reverse
inequality:

inf
(i,s)∈T n(m̄,D)

J n(i,s) ⩽ inf
(m,E)∈Sn(m̄,D)

Jn(m,E) ,

and the conclusion follows.

Remark 5.3.2. By Remark 5.2.2, there exists a solution to Problem (5.2.7). Thus, by Theorem 5.3.1 and
Corollary 5.3.1, there exists a solution to Problem (5.3.6).

5.3.2 Proof of the superposition principale

Construction of the empirical distribution and of the jump measure from n PEVs trajectories

In this section, we fix n ∈ N∗, m̄ ∈ Pn([0, 1]× I) and (i,s) ∈ Xn(m̄), where Xn(m̄) is defined in (5.2.3).

Lemma 5.3.1. The pair (mn, En) defined in (5.2.16) and (5.2.17) from (i,s) is a weak solution of (5.2.9) and
satisfies (5.3.1) and (5.3.2).

Proof. Using the definition of En in (5.2.17) and mn in (5.2.16), (5.3.1) and (5.3.2) hold. We now show that
(mn, En) is a weak solution of (5.2.9). Since, for any ℓ ∈ {1, . . . , n}, the function t 7→ (iℓ, sℓ) is cadlag, one has
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mn ∈ D
(
[0, T ],Pn([0, 1]× I)

)
. Let φ ∈ C1([0, T ]× [0, 1]× I). One deduces:

∑
i∈I

∫ T

0

∫ 1

0

(∂tφi(t, s) + bj(s)∂sφi(t, s))m
n
i (t, ds)dt

=
1

n

∑
i∈I

n∑
ℓ=1

Nn
T−1∑
k=0

∫ tk+1

tk

(∂tφi(t, s
ℓ
t) + bi(s

ℓ
t)∂sφi(t, s

ℓ
t))1i(i

ℓ
t)dt

=
1

n

∑
i∈I

n∑
ℓ=1

Nn
T−1∑
k=0

(φi(tk+1, s
ℓ
tk+1

)− φi(tk, sℓtk))1i(i
ℓ
tk
)

=
1

n

∑
i∈I

n∑
ℓ=1

φi(T, s
ℓ
T )1i(i

ℓ
0)− φi(0, sℓT )1i(iℓ0) +

1

n

∑
i,j∈I,j ̸=i

n∑
ℓ=1

Nn
T−1∑
k=1

(
φi(tk, s

ℓ
tk
)− φj(tk, sℓtk)

)
1i(i

ℓ
t−k
)1j(i

ℓ
tk
)

=
∑
i∈I

∫ 1

0

(φi(T, s)m
n
i (T, ds)− φi(0, s)m̄n

i (ds)) +

∫ T

0

∫ 1

0

∑
i,j∈I

(φi(t, s)− φj(t, s))Eni,j(ds, dt),

and the conclusion follows.

Construction of n PEVs trajectories from a couple of measure (m,E)

In this subsection, we prove the converse result of Section 5.3.2. Given n ∈ N, m̄ ∈ Pn(I × [0, 1]) and
(m,E) ∈ Qn(m̄), where Qn(m̄) is defined in (5.3.3), we show that there exists (i,s) ∈ Xn(m̄) such that m, the
empirical distribution of (i,s), satisfies (5.2.16) and E, the empirical distribution of the jumps, satisfies (5.2.17).

First, a relation between Ei,j and mi at any time tk is stated in the following lemma.

Lemma 5.3.2. The measure E satisfies for any i ∈ I and any k ∈ {1, . . . , Nn
T − 1}:∑

j∈I,j ̸=i

(
Ei,j({tk}, ds)− Ej,i({tk}, ds)

)
= mi(t

−
k , ds)−mi(tk, ds). (5.3.8)

Proof. Let φ ∈ C1([0, 1]), ε > 0, k ∈ {1, . . . , Nn
T − 1} and ξk,ε ∈ Lip([0, T ]) be such that ξk,ε(t) = 0 outside

[tk − ϵ, tk + ϵ] and:

ξk,ε(t) = 1 +
t− tk
ε

∀t ∈ [tk − ε, tk) and ξk,ε(t) = 1− t− tk
ε

∀t ∈ [tk, tk + ε).

For any i ∈ I, even though (t, s, j) 7→ ξk,ε(t)φ(s)1i(j) is not in C1([0, T ]×[0, 1]×I), it can be considered as a test
function for the equation (5.2.9) because (t, s) 7→ ξk,ε(t)∂sφ(s) is in C0([0, T ]× [0, 1]) and (t, s) 7→ ∂tξ

k,ε(t)φ(s)
in L∞([0, T ]× [0, 1]). Thus,∫ tk+ε

tk−ε

∫ 1

0

(
φ(s)∂tξ

k,ε(t) + bi(s)ξ
k,ε(t)∂sφ(s)

)
mi(t, ds)dt =

∑
j∈I,j ̸=i

∫ 1

0

φ(s)
(
Ei,j({tk}, ds)− Ej,i({tk}, ds)

)
.

(5.3.9)
On the one hand, using the dominated convergence theorem one has:

lim
ε→0

∫ tk+ε

tk−ε

∫ 1

0

bi(s)ξ
k,ε(t)∂sφ(s)mi(t, ds)dt = 0. (5.3.10)

On the other hand, one gets:∫ tk+ε

tk−ε

∫ 1

0

φ(s)∂tξ
k,ε(t)mi(t, ds)dt =

1

ε

(∫ tk

tk−ε

∫ 1

0

φ(s)mi(t, ds)dt−
∫ tk+ε

tk

∫ 1

0

φ(s)mi(t, ds)

)
dt.

Since m is cadlag, one obtains by considering the limit ε→ 0 in the previous equality:

lim
ε→0

∫ tk+ε

tk−ε

∫ 1

0

φ(s)∂tξ
k,ε(t)mi(t, ds) =

∫ 1

0

φ(s)mi(t
−
k , ds)−

∫ 1

0

φ(s)mi(tk, ds).
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Therefore ∑
j∈I,j ̸=i

∫ 1

0

φ(s)
(
Ei,j({tk}, ds)− Ej,i({tk}, ds)

)
=

∫ 1

0

φ(s)
(
mi(t

−
k , ds)−mi(tk, ds)

)
.

Since φ is arbitrary, equality (5.3.8) is satisfied.

We define m̂ : [0, T ] 7→ P([0, 1]) by: m̂(t) :=
∑
i

mi(t). The next lemma states a superposition principle for

m̂.

Lemma 5.3.3. There exists {zℓ}1⩽ℓ⩽n such that, for any ℓ ∈ {1, . . . , n}, zℓ ∈ AC([0, T ], [0, 1]) is solution of:

dzℓt
dt

= v(t, zℓt ) for a.e. t ∈ [0, T ], (5.3.11)

where v : [0, T ]× [0, 1]→ [0, 1] is a Borel vector field and m̂ satisfies:

m̂(t) =
1

n

n∑
ℓ=1

δzℓ(t) ∀t ∈ [0, T ].

Proof. We first show that m̂ is in Lip([0, T ],Pn([0, 1])). Since m(t) ∈ Pn([0, 1] × I), for any t ∈ [0, T ], on has
m̂(t) ∈ Pn([0, 1]). Since (m,E) is a weak solution (5.2.9), taking a test function φ ∈ C1(0, 1) that is 1−Lipschitz
continuous, one has:

d

dt

∫ 1

0

φ(s)m̂(t, ds) =

∫ 1

0

(
∂sφ(s)

)∑
i∈I

bi(s)mi(t, ds).

Since φ is 1−Lipschitz continuous, one deduces:∣∣∣∣ ddt
∫ 1

0

φ(s)m̂(t, ds)

∣∣∣∣ ⩽ ∥b∥∞,
and therefore, for any t, τ ∈ [0, T ]:

W(m̂(t), m̂(τ)) ⩽ |t− τ |∥b∥∞.

Thus, m̂ ∈ Lip([0, T ],Pn([0, 1])) and the conclusion follows from [62, Theorem C.1].

The following lemma gives for each time interval (tk, tk+1) a superposition principle for m.

Lemma 5.3.4. For any k ∈ {0, . . . , Nn
T − 1}, there exists {(ik,ℓ, sk,ℓ)}ℓ∈{1,...,n} such that for any ℓ ∈ {1, . . . , n}

(ik,ℓ, sk,ℓ) ∈ C0([tk, tk+1], I)× C1([tk, tk+1], [0, 1]) and any t ∈ (tk, tk+1):

m(t) =
1

n

n∑
ℓ=1

δ(ik,ℓ
t ,sk,ℓ

t ). (5.3.12)

In addition, for any ℓ ∈ {1, . . . , n} (ik,ℓ, sk,ℓ) satisfies for any t ∈ [tk, tk+1]:

ik,ℓt = ik,ℓtk and
dsk,ℓt
dt

= b(ik,ℓt , sk,ℓt ), (5.3.13)

where the distribution of {(ik,ℓtk , s
k,ℓ
tk

)}ℓ∈{1,...,n} is m(tk).

Proof. For any k ∈ {1, . . . , Nn
T − 1} and test function φ ∈ C1

c ((tk, tk+1) × [0, 1] × I), by (5.2.9) and using that
supp(E) satisfies (5.3.1), one has:

∑
i∈I

∫ tk+1

tk

∫ 1

0

(∂tφi(t, s) + bi(s)∂sφi(t, s))mi(ds, t) = 0.

The existence of {(ik,ℓ, sk,ℓ)}ℓ∈{1,...,n}, which satisfies the dynamics (5.3.13) and equality (5.3.12), follows from
[62, Theorem C.1].
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Sincem ∈ D([0, T ],P([0, 1]×I) and, for any ℓ ∈ {1, . . . , n}, (ik,ℓ, sk,ℓ) ∈ C0([tk, tk+1), I)×C1([tk, tk+1], [0, 1]),
one deduces from the previous lemma that, for any k ∈ {0, . . . , Nn

T − 1},

m(tk) =
1

n

n∑
ℓ=1

δ(ik,ℓ
tk
,sk,ℓ

tk
). (5.3.14)

The next lemma shows that, for any k ∈ {1, . . . , Nn
T −1}, the number of indices ℓ ∈ {1, . . . , n} satisfying sk,ℓ

t−k
= s

is equal to the number of indices ℓ ∈ {1, . . . , n} satisfying sk+1,ℓ
tk

= s.

Lemma 5.3.5. For any k ∈ {0, . . . , Nn
T − 1}, one has:

1

n

n∑
ℓ=1

δsk,ℓ

t
−
k+1

=
1

n

n∑
ℓ=1

δsk+1,ℓ
tk+1

,

where sk,ℓ and sk+1,ℓ are defined in Lemma 5.3.4.

Proof. By Lemmas 5.3.3 and 5.3.4, summing (5.3.12) over I one deduces that, for any t ∈ (tk, tk+1),

1

n

n∑
ℓ=1

δsk,ℓ
t

=
∑
i∈I

mi(t) = m̂(t) =
1

n

n∑
ℓ=1

δzℓt ,

where zℓ is defined in Lemma 5.3.3. Since zℓ is continuous at tk+1 and, sk,ℓ and sk+1,ℓ are respectively cadlag
on [tk, tk+1] and [tk+1, tk+2], the previous equality holds for t = tk+1 and gives the result.

Lemma 5.3.6. For any k ∈ {1, . . . , Nn
T−1}, there exist two collections

{
T k,+i,j (s)

}
i,j∈I, s∈[0,1]

and
{
T k,−i,j (s)

}
i,j∈I, s∈[0,1]

of subsets of {1, . . . n} satisfying:

1. card
(
T k,+i,j (s)

)
= card

(
T k,−i,j (s)

)
= nEi,j(tk, {s}), for any i, j ∈ I with i ̸= j and for any s ∈ [0, 1].

2.
{
T k,+i,j (s)

}
i,j∈I, s∈[0,1]

and
{
T k,−i,j (s)

}
i,j∈I, s∈[0,1]

are partitions of {1, . . . , n}.

Remark 5.3.3. For some s ∈ [0, 1] and i, j ∈ I, the sets T k,+i,j (s) or T k,−i,j (s) can be empty. We maintain the
terminology of "partition" in this case for the sake of simplicity.

Proof. Let k ∈ {1, . . . , Nn
T − 1}, i ∈ I and s ∈ [0, 1]. Let us set:

Rk,−i (s) :=
{
ℓ ∈ {1, . . . , n} | (ik−1,ℓ

t−k
, sk−1,ℓ

t−k
) = (i, s)

}
,

and
Rk,+i (s) :=

{
ℓ ∈ {1, . . . , n} |(ik,ℓtk , s

k,ℓ
tk

) = (i, s)
}
.

The set Rk,−i (s) represents the set of indices of processes defined in Lemma 5.3.4 that have a state equal to
(i, s) at time t−k , just before a possible jump, while Rk,+i (s) represents the set of indices of processes with a
state equal to (i, s) at time tk. By the definition of Rk,−i (s) and Rk,+i (s), and by Lemma 5.3.5, we have, for any
k ∈ {1, . . . , Nn

T − 1},

Rk,−i (s) ∩Rk,−j (s) = ∅ and Rk,+i (s) ∩Rk,+j (s) = ∅ for any i, j ∈ I with i ̸= j, (5.3.15)

card(Rk,−i (s)) = nmi(t
−
k , {s}) and card(Rk,+i (s)) = nmi(tk, {s}), (5.3.16)⋃

s∈[0,1]

⋃
i∈I
Rk,−i (s) =

⋃
s∈[0,1]

⋃
i∈I
Rk,+i (s) = {1, . . . , n}. (5.3.17)

Hence, {Rk,−i (s)}i∈I,s∈[0,1] and {Rk,+i (s)}i∈I,s∈[0,1] are partitions of {1, . . . , n}. The rest of the proof consists in
constructing the sets

{
T k,−i,j (s)

}
j∈I and

{
T k,+i,j (s)

}
j∈I that are respectively a partition of Rk,−i (s) and Rk,+i (s).

We define, for any s ∈ [0, 1], i, j ∈ I with j ̸= i,

cki,j(s) := nEi,j(tk, {s}). (5.3.18)
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We define, for any i ∈ I, cki,i(s) := nmi(tk, {s})−
∑

j∈I,j ̸=i

ckj,i(s). By Lemma 5.3.2, one has:

cki,i(s) = nmi(t
−
k , {s})−

∑
j∈I,j ̸=i

cki,j(s) ⩾ 0, (5.3.19)

where the inequality is obtained by (5.3.2). Since m(tk) ∈ Pn([0, 1] × I) and Ei,j(tk, ·) ∈ Mn([0, 1]), one
has cki,j(s) ∈ N for any i, j ∈ I. By (5.3.16) and (5.3.19), one has, for any i ∈ I and s ∈ [0, 1] such that
mi(t

−
k , {s}) > 0, ∑

j∈I
cki,j(s) = card

(
Rk,−i (s)

)
and

∑
j∈I

ckj,i(s) = card
(
Rk,+i (s)

)
. (5.3.20)

Sorting the elements of Rk,−i (s) and Rk,+i (s) in ascending order, we can now define the collections of subsets{
T k,+i,j (s)

}
i,j∈I, s∈[0,1]

and
{
T k,−i,j (s)

}
i,j∈I, s∈[0,1]

. For any i ∈ I and s ∈ [0, 1], T k,−i,j (s) and T k,+i,j (s) are defined
iteratively for j = 1, . . . , |I|:

— if cki,j(s) = 0, then T k,−i,j (s) = T k,+i,j (s) = ∅;

— otherwise, T k,−i,j (s) is the set of the cki,j(s) with smallest indices of Rk,−i (s)\
⋃

1⩽q<j

T k,−i,q (s) and T k,+i,j (s) is

equal to the set of the cki,j(s) with smallest indices of Rk,+i (s)\
⋃

1⩽q<j

T k,+i,q (s),

we used the convention
⋃

1⩽q<1

T k,−i,q (s) =
⋃

1⩽q<1

T k,+i,q (s) = ∅. By (5.3.20) and their construction, the sets{
T k,+i,j (s)

}
j∈I and

{
T k,−i,j (s)

}
j∈I are well defined and are respectively a partition of Rk,−i (s) and Rk,+i (s). Since

{Rk,−i (s)}i∈I,s∈[0,1] and {Rk,+i (s)}s∈[0,1] are both partitions of {1, . . . , n}, the conclusion follows.

We denote by S(n) the set of permutation in {1, . . . , n}. The next lemma enables to express Ei,j(tk, ·) in
terms of the processes {(ik,ℓ, sk,ℓ)}ℓ∈{1,...,n}.

Lemma 5.3.7. For any k ∈ {1, . . . , Nn
T − 1}, there exists σk ∈ S(n) such that the measure E satisfies, for any

i, j ∈ I and s ∈ [0, 1]:

Ei,j(t
k, {s}) = 1

n
card

({
ℓ ∈ {1, . . . , n} | (ik−1,ℓ

t−k
, sk−1,ℓ

t−k
) = (i, s) and (i

k,σk(ℓ)
tk

, s
k,σk(ℓ)
tk

) = (j, s)
})

,

where the processes {(ik,ℓ, sk,ℓ)}ℓ∈{1,...,n} are defined in Lemma 5.3.4,

Proof. Let σk ∈ S(n) be such that, for any s ∈ [0, 1] and i, j ∈ I, if cki,j(s) > 0, the restriction of σk to T k,−i,j (s) is
a bijective map from T k,−i,j (s) to T k,+i,j (s), where T k,−i,j (s) and T k,+i,j (s) are defined in Lemma 5.3.6. The existence of
such a permutation is guaranteed by the properties of

{
T k,+i,j (s)

}
i,j∈I, s∈[0,1]

and
{
T k,−i,j (s)

}
i,j∈I, s∈[0,1]

established

in Lemma 5.3.6. By the construction of σk, one deduces that, for any non empty set T k,−i,j (s),

T k,−i,j (s) = {ℓ ∈ Rk,−i (s) |σk(ℓ) ∈ Rk,+j (s)
}
,

where Rk,+j (s) and Rk,+j (s) are defined in the proof of Lemma 5.3.6. Finally, one has, for any s ∈ [0, 1] and
i, j ∈ I,

Ei,j(tk, {s}) =
cki,j(s)

n
=

1

n
card(T ki,j(s))

=
1

n
card

({
ℓ ∈ Rk,−i (s) |σk(ℓ) ∈ Rk,+j (s)

})
=

1

n
card

({
ℓ ∈ {1, . . . , n} | (ik−1,ℓ

t−k
, sk−1,ℓ

t−k
) = (i, s) and (i

k,σk(ℓ)
tk

, s
k,σk(ℓ)
tk

) = (j, s)
})

.
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The next lemma shows the existence of n processes, such that m is the empirical measure of these processes
and E is the empirical measure of the jumps of the processes.

Lemma 5.3.8. There exists (i,s) ∈ Xn(m̄), such that m satisfies (5.2.16) and E satisfies (5.2.17).

Proof. For any k ∈ {1, . . . , Nn
T − 1}, we consider the permutation σ̂k ∈ S(n), defined by:

σ̂k := σk ◦ σk−1 ◦ · · · ◦ σ1, (5.3.21)

where σk is defined for any k ∈ {1, . . . , Nn
T − 1} in Lemma 5.3.7. For k = 0, we define σ̂0 by σ̂0(ℓ) = ℓ, for any

ℓ ∈ {1, . . . , n}. For any ℓ ∈ {1, . . . , n}, we consider the processes (iℓ, sℓ) defined on [0, T ] by:

iℓt := i
k,σ̂k(ℓ)
t and sℓt := s

k,σ̂k(ℓ)
t for any t ∈ [tk, tk+1), and iℓT := lim

t→T
iℓt, (5.3.22)

where {(ik,ℓ, sk,ℓ)}ℓ∈{1,...,n} is defined in Lemma 5.3.4. Thus, one has for any k ∈ {0, . . . , Nn
T − 1} and t ∈

[tk, tk+1):
dsℓt
dt

=
ds
k,σ̂k(ℓ)
t

dt
= b(i

k,σ̂k(ℓ)
t , s

k,σ̂k(ℓ)
t ) = b(iℓt, s

ℓ
t),

and
iℓt = i

k,σ̂k(ℓ)
t = i

k,σ̂k(ℓ)
tk

= iℓtk .

By the definitions σ̂k and σk in Lemma 5.3.7, one gets for any ℓ ∈ {1, . . . , n}:

sk,ℓ
t−k+1

= s
k+1,σk(ℓ)
tk+1

,

and therefore:
sℓtk+1

= lim
τ↑tk+1

sℓτ .

Thus, one has for any t ∈ [0, T ):

mn(t) :=
1

n

n∑
ℓ=1

δ(iℓt,sℓt).

Since there is no jump at time t = T and since iℓ and sℓ are continuous at T , equality also holds for t = T .
Finally, by Lemma 5.3.7, one has:

Ei,j =
1

n

n∑
ℓ=1

Nn
T−1∑
k=1

1i(i
k−1,ℓ

t−k
)1j(i

k,σk(ℓ)
tk

)δtk ⊗ δsk−1,ℓ

t
−
k

=
1

n

n∑
ℓ=1

Nn
T−1∑
k=1

1i(i
ℓ
t−k
)1j(i

ℓ
tk
)δtk ⊗ δsℓtk .

Taking (i,s) := {(iℓ, sℓ)}ℓ∈{1,...,n}, one has (i,s) ∈ Xn(m̄) and the conclusion follows.

We are now able to prove Theorem 5.3.1.

Proof of Theorem 5.3.1. This is a direct consequence of Lemmas 5.3.1 and 5.3.8.

5.4 The convergence result

This section is devoted to the proofs of Theorem 5.2.1.1, reformulated in Theorem 5.4.1 and proved in
Section 5.4.1, Theorem 5.2.1.2 reformulated in Theorem 5.4.2 and proved in Section 5.4.2, and Theorem 5.2.2
proved in Section 5.4.3. We assume in this section that the time and space parameters ∆t and ∆s are such that
(5.2.12) and (5.2.13) are satisfied.

5.4.1 Γ-lower limit result

We reformulate the first result of the paper, Theorem 5.2.1.1 in Theorem 5.4.1.
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Theorem 5.4.1. For any sequence {m̄n}n weakly converging to a measure m̄ ∈ P([0, 1] × I) and satisfying
Assumptions 2 and 3, we have:

inf
(m,E)∈S(m̄,D)

J(m,E) ⩽ lim inf
n→∞

inf
(i,s)∈T n(m̄n,D)

J n(i,s). (5.4.1)

The rest of this subsection is dedicated to the proof of Theorem 5.4.1. The proof is based on Lemmas 5.4.1
and 5.4.2, for which we need the following preliminary results.

By Corollary 5.3.1 and Remark 5.3.2 we know that there exists a sequence {(mn, En)}n such that, for any
n ∈ N, (mn, En) ∈ Sn(m̄n, D) and

Jn(mn, En) = inf
(i,s)∈T n(m̄n,D)

J n(i,s).

The proof of Theorem 5.4.1 relies on the existence of a limit point (m∗, E∗) of the sequence {(mn, En)}n that
belongs to the set S(m̄,D). By inequality (5.2.8), we have

∑
i,j∈I

Nn
T−1∑
k=1

Nn
s −1∑
p=0

L

(
Ei,j({tk}, [yp, yp+1))

∆tmi(tk
−, [yp, yp+1))

)
∆tmi(tk

−, [yp, yp+1)) ⩽ C0, (5.4.2)

where the constant C0 > 0 only depends on T , ∥c∥∞ and ∥g∥∞. Inequality (5.4.2) implies that {Eni,j([0, T ] ×
[0, 1])}n is uniformly bounded. Indeed, let t, t̄ ∈ [0, T ], with t ⩽ t̄. If there is no tq ∈ {0, . . . , k∆t, . . . , T}
satisfying t ⩽ tq ⩽ t̄, then by (5.3.1)

∑
i,j∈I E

n
i,j([t, t̄], [0, 1]) = 0. Otherwise, let k1, k2 ∈ {0, . . . , Nn

T } be such
that tk1 −∆t < t ⩽ tk1 ⩽ tk2 ⩽ t̄ < tk2 +∆t. By (5.3.1) and Cauchy-Schwartz inequality, one has:∑

i,j∈I
Eni,j([t, t̄], [0, 1])

2

=

∑
i,j∈I

k2∑
k=k1

Nn
s −1∑
p=0

Eni,j({tk}, [yp, yp+1))

2

⩽

∑
i,j∈I

k2∑
k=k1

Nn
s −1∑
p=0

∆tmn
i (t

−
k , [yp, yp+1))

∑
i,j∈I

k2∑
k=k1

Nn
s −1∑
p=0

(
Eni,j({tk}, [yp, yp+1))

)2
∆tmn

i (t
−
k , [yp, yp+1))


⩽ |I|∆t(k2 − k1 + 1)

∑
i,j∈I

k2∑
k=k1

Nn
s −1∑
p=0

C

(
L
(Eni,j({tk}, [yp, yp+1))

∆tmn
i (t

−
k , [yp, yp+1))

)
+ C

)
∆tmn

i (t
−
k , [yp, yp+1)

⩽ C|I|(t̄− t+∆t)(C0 + C),

(5.4.3)

where the two last inequalities are obtained by Assumption 5 and inequality (5.4.2). Taking t = 0 and t̄ = T ,
one obtains: ∑

i,j∈I
Eni,j([0, T ], [0, 1]) ⩽

√
CT |I|, (5.4.4)

C > is a constant that depends on Assumption 5 and on C0. By (5.4.4), there exists a limit point E∗ ∈
M+([0, T ]× [0, 1]× I2) of the sequence {En}n, w.r.t. the weak topology induced by M+([0, T ]× [0, 1]× I2).

Now we are ready to prove the two lemmas needed for the proof of Theorem 5.4.1. First Lemma states that
{mn}n admits a limit point m∗ ∈ C0([0, T ],P([0, 1]× I).

Lemma 5.4.1. There exists m∗ ∈ C0([0, T ],P([0, 1] × I) such that, up to a subsequence, {mn}n uniformly
converges in time to m∗ w.r.t. the Wasserstein distance W. In addition, (m∗, E∗) is a weak solution of (5.2.9)
with initial data m̄, and it satisfies (5.2.10).

Proof. By (5.4.3) and the continuity equation (5.2.9) satisfied by (mn, En), one has, for any t, t̄ ∈ [0, T ] and
n ∈ N,

W(mn(t),mn(t̄)) ⩽
√
|t− t̄|+∆t

(√
T∥b∥∞ +

√
C|I|

)
.

By adapting the Ascoli-Arzela Theorem, one can deduce the existence of m∗ : [0, T ] → P([0, 1] × I), that is
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1/2-Hölder continuous in time w.r.t. the distance W and, such that, up to a subsquence, {mn}n uniformly
converges in time to m∗ w.r.t. to W. Finally, since (5.2.9) and (5.2.10) are linear w.r.t. the couple (m,E)
and that, for any n ∈ N, (mn, En) is a weak solution of (5.2.9) and satisfies (5.2.10), one can deduce, by the
respective weak convergence of (mn, En) and {m̄n}n to (m∗, E∗) and m̄, that (m∗, E∗) is also a weak solution
of (5.2.9) with initial distribution m̄, and satisfies (5.2.10).

The next lemma states the absolute continuity of E∗ w.r.t. the measure m∗.

Lemma 5.4.2. For any i, j ∈ I, E∗
i,j is absolutely continuous w.r.t. the measure m∗

i . Denoting by α∗
i,j the

Radon-Nikodym derivative of E∗
i,j w.r.t. the measure m∗

i , we have α∗
i,j ∈ L2

m∗
i
([0, T ]× [0, 1]).

Proof. We define for any n ∈ N and i, j ∈ I, the curve of measure m̃n : [0, T ]→ P([0, 1]× I) by:

m̃n
i (t, ds) :=

Nn
T−1∑
k=0

Nn
s −1∑
p=0

1[tk,tk+1)(t)1[yp,yp+1)(s)
mn
i (t

−
k , [yp, yp+1))

∆s
ds. (5.4.5)

By the uniform weak convergence of {mn}n to m∗ in Lemma 5.4.1 and the definition of m̃n, one can show that
for any t ∈ [0, T ], {m̃n(t)}n weakly converges to m∗(t) in P([0, 1]× I). For any n ∈ N and i, j ∈ I, we introduce
αni,j : [0, T )× [0, 1]→ R+:

αni,j(t, s) :=
Eni,j({tk}, [yp, yp+1))

∆tmn
i (t

−
k , [yp, yp+1))

where t ∈ [tk, tk+1) and s ∈ [yp, yp+1), (5.4.6)

and we define the measure Ẽni,j on [0, T ]× [0, 1] by: Ẽni,j(dt, ds) := αni,jm̃
n
i (t, ds)dt. One can observe that:

∑
i,j∈I,i̸=j

Ẽni,j([0, T ]× [0, 1]) =
∑

i,j∈I,i̸=j

Nn
T−1∑
k=0

Nn
s −1∑
p=0

∫ tk+1

tk

∫ yp+1

yp

Eni,j({tk}, [yp, yp+1))

∆s∆t
dtds

=
∑

i,j∈I,i̸=j

Eni,j([0, T ]× [0, 1]).

(5.4.7)

Using the previous equality and (5.4.4), {Ẽni,j}n is tight. Thus, there exists a measure Ẽi,j such that a subse-
quence of {Ẽni,j}n weakly converges to Ẽi,j . We define the function Θ :M+([0, T ] × [0, 1] × I) ×M+([0, T ] ×
[0, 1]× I × I)→ R ∪ {+∞} by:

Θ(m,E) :


∑

i,j∈I,i̸=j

∫ T

0

∫ 1

0

L(αi,j(t, s))mi(dt, ds) if Ei,j ≪ mi and αi,j :=
dEi,j
dmi

with αi,j ⩾ 0,

+∞ otherwise.

The function Θ is convex and l.s.c. w.r.t. the weak topology inM+([0, T ]× [0, 1]× I)×M+([0, T ]× [0, 1]× I2)

(see e.g. [231, Proposition 5.18]). From the definition of Ẽn, it turns out that Ẽni,j ≪ m̃n
i with

dẼni,j
dm̃n

i

= αni,j .

We have:

Θ(m̃n, Ẽn) =
∑
i,j∈I

∫ T

0

∫ 1

0

L(αni,j(t, s))m̃
n
i (t, s)dtds

=
∑
i,j∈I

Nn
T−1∑
k=0

Nn
s −1∑
p=0

L

(
Eni,j({tk}, [yp, yp+1))

∆tmn
i (t

−
k , [yp, yp+1))

)
mn
i (t

−
k , [yp, yp+1))∆t

⩽ C0.

where the constant C0 > 0 is defined in (5.4.2). Using that (mn
i , Ẽ

n
i,j) weakly converges to (m∗

i , Ẽi,j) and by
the previous inequality, one deduces that Θ(m∗, Ẽ) ⩽ C0 and thus, for any i, j ∈ I: Ẽi,j ≪ m∗

i . We now prove
that Ẽi,j = E∗

i,j by showing that Ẽni,j −Eni,j weakly converges to 0 inM+([0, T ]× [0, 1]× I2). By the definition
of Ẽn and (5.4.4) one has Ẽni,j([0, T ] × [0, 1] × I2) = Eni,j([0, T ] × [0, 1] × I2) ⩽

√
CT |I| for any n ∈ N. Let



5.4. The convergence result 115

φ : [0, T ]× [0, 1]→ R be a 1−Lipschitz continuous function. Using (5.4.4), we have:∫ T

0

∫ 1

0

φ(t, s)(αni,j(t, s)m̃
n
i (t, ds)dt− Eni,j(dt, ds))

=

Nn
T−1∑
k=0

Nn
s −1∑
p=0

∫ tk+1

tk

∫ yp+1

yp

φ(t, s)

(
Eni,j({tk}, [yp, yp+1))

∆s∆t
dsdt− Eni,j(dt, ds)

)

⩽
Nn

T−1∑
k=0

Nn
s −1∑
p=0

∫ tk+1

tk

∫ yp+1

yp

∆s+∆t

∆s∆t
Eni,j({tk}, [yp, yp+1))dsdt

⩽ (∆s+∆t)Ei,j([0, T ]× [0, T ])

⩽
√
CT |I|(∆s+∆t),

(5.4.8)

and therefore W(Ẽni,j , E
n
i,j)→ 0. We deduce that E∗

i,j = Ẽi,j and we can define the Radon-Nikodym derivative

α∗
i,j :=

dE∗
i,j

dm∗
i

. Since Θ(m∗
i , E

∗
i,j) <∞, we deduce for any i, j ∈ I that α∗

i,j ∈ L2
m∗

i
([0, T ]×[0, 1]) from Assumption

5.

We can now prove Theorem 5.4.1.

Proof of Theorem 5.4.1. By Lemmas 5.4.1 and 5.4.2, one has that (m∗, E∗) ∈ S(m̄,D). Since c ∈ C1([0, T ] ×
[0, 1]× I) and g ∈ C1([0, 1]× I), by the w.l.s.c. of Θ defined in Lemma 5.4.2, we have:

inf
(m,E)∈S(m̄,D)

J(m,E) ⩽ J(m∗, E∗) ⩽ lim inf
n→∞

Jn(mn, En) = lim inf
n→∞

inf
(i,s)∈T n(m̄n,D)

J n(i,s),

and the conclusion follows.

5.4.2 Upper bound of the value of the finite population problem
We reformulate the second main result of this paper, Theorem 5.2.1.2, in Theorem 5.4.2 and gives a proof.

Theorem 5.4.2. There exist C > 0 such that, for any sequence {m̄n}n in Pn([0, 1]×I) satisfying Assumptions
2 and 3, one has, for any n ∈ N∗,

inf
(i,s)∈T n(m̄n,D)

J n(i,s)− C

n
1
3

⩽ inf
(m,E)∈S(m̄n,D)

J(m,E). (5.4.9)

Theorem 5.4.2 provides an upper bound on the value of Problem (5.2.7). Note that the constants in this
theorem depend on ε0 (defined in Assumption 3) and not on the choice of the sequence {m̄n}n. To prove this
theorem, we first show in Section 5.4.2 how to implement an optimal control of the mean field control problem
to a finite population of PEVs, such that the constraint (5.2.4) is satisfied (Corollary 5.4.1). Then, in Section
5.4.2 we give an estimate of the Wasserstein distance between the resulting empirical distribution of the finite
population of processes and the mean field distribution. Finally, we finish the proof of Theorem 5.4.2 in Section
5.4.2.

Transfer procedure for a finite number of PEVs using a mean field control

The goal of this subsection is to present how a bounded mean field control α can be implemented for a finite
population of PEVs. We provide a convergence rate of the empirical distribution to the mean field distribution.
Let us fix a sequence {m̄n}n of initial distribution in (5.2.9) satisfying Assumptions 2 and 3. We highlight that,
all the constants in this section depend on ε0 and not on the choice of the sequence {m̄n}n. Let N ∈ N be such
that,

N >

(
2C∗

ε0

)3

, (5.4.10)

where C∗ > 0 is introduced later in (5.4.17). For any n ∈ N, we consider (m∗,n, E∗,n), a minimizer of J over the

set S(m̄n, D − C∗/n
1
3 ). We define αn by αni,j :=

dm∗,n
i

dE∗,n
i,j

, for any i, j ∈ I. By Assumption 3 and the definition
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of N in (5.4.10), one has for any n ⩾ N , and (i, t) ∈ I × [0, T ],

(
Di(t)−

C∗

n
1
3

)
−mn

i (0, [0, 1]) ⩽
ε0

2
. (5.4.11)

By the previous inequality and [233, Theorem 2.1], we have αn ∈ L∞([0, T ]× [0, 1]×I2) and, for any (i, j, t, s) ∈
I2 × [0, T ]× [0, 1],

αni,j(t, s) = H ′

(
βni,j(t, s) +

∫ T

t

(λni − λnj )(dτ)

)
, (5.4.12)

where βn ∈ Lip([0, T ]× [0, 1]× I2) and λn ∈ M+([0, T ]× I). By Assumption 5, H ′ is Lipschitz continuous on
R and thus, αn is Lipschitz continuous in space uniformly in time. By [233, Lemma 5.3], the upper bound of
λn([0, T ] × I) only depends on ε0 in (5.4.11) and on the data of the problem. In addition, by [233, Theorem
2.1 ], for any n ∈ N∗, there exists φn(Lip([0, T ] × [0, 1] × I) + BV ([0, T ] × I)) such that αni,j = H ′(φni − φnj ),
where by [233, Remark 4.5], upper bounds on ∥φn∥∞ and ∥∂sφn∥∞ depend on the data of the problem and on
λn([0, T ] × I). Since (5.4.11) is satisfied for any n > N , there exists C̄ > 0 that depends on ε0, such that, for
any n > N ,

max
(
∥αn∥∞, ∥∂sαn∥∞, λn([0, T ]× I)

)
⩽ C̄. (5.4.13)

Transfer procedure We consider n > N PEVs with an initial state distribution m̄n. At each time step
tk ∈ {∆t, . . . ,∆t(Nn

T − 1)} and for any p ∈ {0, . . . , Nn
s − 1}, we apply the following steps:

— We define V k,pi , the set of indices of PEVs in the mode of charging i ∈ I with a SoC in the range [yp, yp+1)

at time tk, and set Nk,p
i := card(V k,pi ).

— The number of PEVs in V k,pi transferred from the mode of charging i ∈ I to the mode j ∈ I at time tk is
denoted by ani,j(k, p) and is defined by: ani,j(k, p) := ⌊∆tαni,j(tk, yp)N

k,p
i ⌋. The transferred vehicles are the

ones with the lowest indices. We denote by T k,pi,j the set of indices of the transferred vehicles. We have:
T k,pi,j ⊂ V

k,p
i .

Remark 5.4.1. By inequalities (5.2.13) and (5.4.13), one has, for any n ∈ N, ∆t ⩽
1

|I|∥αn∥∞
. It implies that,

for any i, k, ℓ,
n∑

j=1,j ̸=i

ani,j(k, p) ⩽ Nk,p
i . Thus, the maximal amount of PEVs with a state in {i}× [yp, yp+1) that

can be transferred is bounded by the total number of PEVs with a state in i× [yp, yp+1).

Remark 5.4.2. One can observe that PEVs with a SoC equal to 1 are not taken into account in the transfer
procedure given above. This is without consequence because, following Remark 5.2.1 and Assumption 2, there is
never a PEV with a SoC equal to 1.

Recall that m̄n ∈ Pn([0, 1] × I) is the initial distribution of the states of the population of PEVs. The
procedure defined above enables to construct a unique set of n processes {(iℓ, sℓ)}ℓ∈{1,...,n} ∈ Xn(m̄n). For any
ℓ ∈ {1, . . . , n} and t ∈ [0, T ], iℓt and sℓt denote respectively the mode of charging and the SoC of the ℓth PEV at
time t. By Theorem 5.3.1, the pair (mn, En) defined by (5.2.16) and (5.2.17) belongs to Qn(m̄n).

There exists a pair (mn, En) ∈ Qn(m̄n) that is the empirical distribution of the states of the population of
PEVs and of the jumps and that satisfies (5.2.16) and (5.2.17). In addition, the following equalities hold, for
any k ∈ {0, . . . , Nn

T − 1}, p ∈ {0, . . . , Nn
s − 1} and i, j ∈ I,

mn
i (t

−
k , [yp, yp+1)) =

Nk,p
i

n
, (5.4.14)

Eni ([tk, tk+1), [yp, yp+1)) =
ani,j(k, p)

n
. (5.4.15)

The theorem below gives an estimate of the Wasserstein distance between m∗,n and mn.
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Theorem 5.4.3. There exists C > 0, such that for any n > N and t ∈ [0, T ],

W(m∗,n(t),mn(t)) ⩽
C

n
1
3

. (5.4.16)

We postpone the proof to Section 5.4.2. As we show below, the rate n−
1
3 in the right hand-side of (5.4.16)

comes from inequality (5.2.12).
Next result shows that the previous theorem enables to find strategies,based on a mean field optimal control,

satisfying the constraint (5.2.4). We now set:

C∗ = C + 1, (5.4.17)

where C > 0 is the constant defined in Theorem 5.4.3.

Corollary 5.4.1. One has, for any n ⩾ N ,

1

n
1
3

⩽ Di(t)−mn
i (t, [0, 1]) ∀(i, t) ∈ I × [0, T ]. (5.4.18)

Proof. Observing that

Di(t)−m∗,n
i (t, [0, 1])−W(m∗,n(t),mn(t)) ⩽ Di(t)−mn

i (t, [0, 1]),

by Theorem 5.4.3 and since (m∗,n, E∗,n) ∈ S(m̄n, D − C∗

n
1
3

), one deduces, for any (i, t) ∈ I × [0, T ],

C∗ − C
n

1
3

⩽ Di(t)−mn
i (t, [0, 1]).

The conclusion follows from the previous inequality and inequality (5.4.17).

Proof of Theorem 5.4.3

We start by stating some preliminary results.

Lemma 5.4.3. For any function φ ∈ C1([0, T ]× [0, 1]× I), we have, for any i ∈ I,∫ T

0

∫ 1

0

(∂tφi(t, s) + bi(t)∂sφi(t, s))m
n
i (t, ds)dt

=

∫ 1

0

φi(T, s)m
n
i (T, ds)− φi(0, s)m̄n

i (ds) +
1

n

Nn
T−1∑
k=1

Nn
s −1∑
p=0

∑
j∈I,j ̸=i

 ∑
ℓ∈Tk,p

i,j

φi(tk, s
ℓ
tk
)−

∑
ℓ∈Tk,p

j,i

φi(tk, s
ℓ
tk
)

 .

Proof. This lemma is a direct consequence of the proof of Lemma 5.3.1.

We introduce m̌n ∈ L1([0, T ]×[0, 1]×I) and α̌n ∈ L∞([0, T ]×[0, 1]×I) defined, for any i, j ∈ I, t ∈ [tk, tk+1)
and s ∈ [yp, yp+1), by:

m̌n
i (t, s) :=

1

∆s
mn
i (tk, [yp, yp+1)) and α̌ni,j(t, s) := αni,j(tk, yp). (5.4.19)

We observe that: m̌n
i (t, s) = Nk,p

i /(∆sn) for any t ∈ [tk, tk+1) and s ∈ [yp, yp+1).

Lemma 5.4.4. There exists C > 0 such that for any n ⩾ N and any function φ ∈ C0([0, T ] × [0, 1] × I) and
i ∈ I, we have:∣∣∣∣∣

∫ T

0

∫ 1

0

φi(t, s)
(
αni,j(t, s)m

n
i (t, ds)− α̌ni,j(t, s)m̌n

i (t, s)ds
)
dt

∣∣∣∣∣ ⩽ C∥φ∥∞(∆s+∆t). (5.4.20)
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Proof. We observe for any i, j ∈ I:∣∣∣∣∣
∫ T

0

∫ 1

0

φi(t, s)
(
αni,j(t, s)m

n
i (t, ds)− α̌ni,j(t, s)m̌n

i (t, s)ds
)
dt

∣∣∣∣∣
=

∣∣∣∣∣∣
Nn

s −1∑
p=0

Nn
T−1∑
k=0

∫ tk+1

tk

(∫ yp+1

yp

φi(t, s)α
n
i,j(t, s)m

n
i (t, ds)−

∫ yp+1

yp

φi(t, s)α
n
i,j(tk, yp)

Nk,p
i

n∆s
ds

)
dt

∣∣∣∣∣∣
⩽ ∥φ∥∞

Nn
s −1∑
p=0

Nn
T−1∑
k=0

∫ tk+1

tk

∣∣∣∣∣∣
 ∑
ℓ∈V k,p

i

αni,j(t, s
ℓ
t)

n

− αni,j(tk, yp)Nk,p
i

n

∣∣∣∣∣∣ dt
= ∥φ∥∞

Nn
s −1∑
p=0

Nn
T−1∑
k=0

∫ tk+1

tk

∣∣∣∣∣∣
∑

ℓ∈V k,p
i

(
αni,j(t, s

ℓ
t)

n
−
αni,j(tk, yp)

n

)∣∣∣∣∣∣ dt.

(5.4.21)

By equality (5.4.12), and the uniform Lipschitz continuity property of H ′ and β, one has, for any ℓ ∈ V k,pi and
t ∈ [tk, tk+1):

|αni,j(t, sℓt)− αni,j(tk, yp)| ⩽ C
(
|βni,j(t, sℓt)− βni,j(tk, yp)|+

∫ t

tk

(λni + λnj )(dτ)
)

⩽ C
(
∆s+∆t+

∫ t

tk

(λni + λnj )(dτ)
)
,

(5.4.22)

where the second inequality is deduced by the fact that, if sℓtk ∈ [yp, yp+1), then |sℓt − yp| ⩽ (∆s+∆t∥b∥∞) for
any t ∈ [tk, tk+1). Summing the previous inequality over ℓ ∈ V k,pi , one has, for any t ∈ [tk, tk+1),∣∣∣∣∣∣

∑
ℓ∈V k,p

i

(
αni,j(t, s

ℓ
t)

n
−
αni,j(tk, yp)

n

)∣∣∣∣∣∣ ⩽ Nk,p
i

n
C
(
∆s+∆t+

∫ t

tk

(λni + λnj )(dτ)
)
. (5.4.23)

By (5.4.23) and (5.4.13), inequality (5.4.21) becomes:∣∣∣∣∣
∫ T

0

∫ 1

0

φi(t, s)
(
αni,j(t, s)m

n
i (t, ds)− α̌ni,j(t, s)m̌ni(t, s)ds

)
dt

∣∣∣∣∣
⩽ ∥φ∥∞

Nn
s −1∑
p=0

Nn
T−1∑
k=0

∫ tk+1

tk

Nk,p
i

n
C
(
∆s+∆t+

∫ t

tk

(λni + λnj )(dτ)
)
dt

⩽ ∥φ∥∞
Nn

T−1∑
k=0

Nn
s −1∑
p=0

Nk,p
i

n
C
(
∆s+∆t+

∫ tk+1

tk

(λni + λnj )(dτ)
)
∆t

⩽ ∥φ∥∞C(∆s+∆t).

Lemma 5.4.5. For any i ∈ I, n ⩾ N and any function φ ∈ C1([0, T ] × [0, 1] × I), with Lipschitz constant
denoted by γφ > 0, we have:∣∣∣∣∣

∫ T

0

∫ 1

0

(∂tφi(t, s) + bi(s)∂sφi(t, s))m
n
i (t, ds)dt−

∫ 1

0

φi(T, s)m
n
i (T, ds)− φi(0, s)m̄n

i (ds)

−
∫ T

0

∫ 1

0

φi(t, s)
(
α̌ni,j(t, s)m̌

n
i (t, s)− α̌nj,i(t, s)m̌n

j (t, s)
)
dtds

∣∣∣∣∣
⩽ C(γφ + ∥φ∥∞)(∆s+∆t+

1

n∆s∆t
).

(5.4.24)
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Proof. Let φ ∈ C1([0, T ]× [0, 1]× I). We observe, for any i, j ∈ I,∫ T

0

∫ 1

0

φi(t, s)
(
α̌ni,j(t, s)m̌

n
i (t, s)− α̌nj,i(t, s)m̌n

j (t, s)
)
dtds

=

Nn
T−1∑
k=0

Nn
s −1∑
p=0

∫ tk+1

tk

∫ yp+1

yp

φi(t, s)

(
αni,j(tk, yp)

Nk,p
i

n∆s
− αnj,i(tk, yp)

Nk,p
j

n∆s

)
dtds

=

Nn
s −1∑
p=0

Nn
T−1∑
k=0

(
∆tαni,j(tk, yp)

Nk,p
i

n∆s
−∆tαnj,i(tk, yp)

Nk,p
j

n∆s

)
1

∆t

∫ yp+1

yp

∫ tk+1

tk

φi(t, s)dtds.

(5.4.25)

Combining Lemma 5.4.3 and the previous equality, we get:∫ T

0

∫ 1

0

(∂tφi(t, s) + bi(s)∂sφi(t, s))m
n
i (t, ds)dt−

∫ 1

0

φi(T, s)m
n
i (T, ds)− φi(0, s)m̄n

i (ds)

−
∫ T

0

∫ 1

0

φi(t, s)
(
α̌ni,j(t, s)m̌

n
i (t, s)− α̌nj,i(t, s)m̌n

j (t, s)
)
dtds

=
1

n

Nn
T−1∑
k=0

Nn
s −1∑
p=0

∑
j∈I,j ̸=i

 ∑
ℓ∈Tk,p

i,j

φi(tk, s
ℓ
tk
)−

∑
ℓ∈Tk,p

j,i

φi(tk, s
ℓ
tk
)


−
Nn

s −1∑
p=0

Nn
T−1∑
k=0

∑
j∈I,j ̸=i

(
∆tαni,j(tk, yp)

Nk,p
i

n∆s
−∆tαnj,i(tk, yp)

Nk,p
j

n∆s

)
1

∆t

∫ yp+1

yp

∫ tk+1

tk

φi(t, s)dtds.

(5.4.26)

We recall that there is no transfer at time t0 = 0 in the transfer procedure described in Section 5.4.2. Thus, to
find an upper bound of (5.4.26), two cases are considered below: k = 0 and k ∈ {1, . . . , Nn

T − 1}.

— If k = 0, we have, for any i, j ∈ I and p ∈ {0, . . . , Nn
s − 1}, that T k,pi,j = ∅. Thus,

∑
ℓ∈Tk,p

i,j

1

n
φi(tk, s

ℓ
tk
) = 0

and

Nn
s −1∑
p=0

∑
j∈I,j ̸=i

∣∣∣∣∣∣∣
∑
ℓ∈Tk,p

i,j

1

n
φi(tk, s

ℓ
tk
)−∆tαni,j(tk, yp)

Nk,p
i

n

1

∆s∆t

∫ yp+1

yp

∫ tk+1

tk

φi(t, s)dtds

∣∣∣∣∣∣∣
=

Nn
s −1∑
p=0

∑
j∈I,j ̸=i

∣∣∣∣∣∆tαni,j(tk, yp)Nk,p
i

n

1

∆s∆t

∫ yp+1

yp

∫ tk+1

tk

φi(t, s)dtds

∣∣∣∣∣
⩽ C̄∥φ∥∞∆t,

(5.4.27)

where the constant C̄ > 0 is defined in (5.4.13).

— For k ∈ {1, . . . , Nn
T − 1}, recalling the definition an in Section 5.4.2, we have, for any i, j, k, p,

|ani,j(k, p)−∆tαni,j(tk, yp)N
k,p
i | ⩽ 1,

and thus, one obtains, for any k ∈ {0 . . . , Nn
T − 1} and p ∈ {0, . . . , Nn

s − 1},∣∣∣∣∣(ani,j(k, p)−∆tαni,j(tk, yp)N
k,p
i

) 1

n∆s∆t

∫ yp+1

yp

∫ tk+1

tk

φi(t, s)dtds

∣∣∣∣∣ ⩽ ∥φ∥∞n .

Since, for any i, j, p, card(T k,pi,j ) = ani,j(k, p), one has from the previous inequality, for any p ∈ {0, . . . , Nn
s −
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1}, ∣∣∣∣∣∣∣
∑
ℓ∈Tk,p

i,j

1

n
φi(tk, s

ℓ
tk
)−∆tαni,j(tk, yp)

Nk,p
i

n

1

∆s∆t

∫ yp+1

yp

∫ tk+1

tk

φi(t, s)dtds

∣∣∣∣∣∣∣
⩽

∣∣∣∣∣∣∣
∑
ℓ∈Tk,p

i,j

1

n∆s∆t

∫ yp+1

yp

∫ tk+1

tk

φi(tk, s
ℓ
tk
)dtds−

ani,j(k, p)

n∆s∆t

∫ yp+1

yp

∫ tk+1

tk

φi(t, s)dtds

∣∣∣∣∣∣∣+
∥φ∥∞
n

⩽

∣∣∣∣∣∣∣
∑
ℓ∈Tk,p

i,j

(
1

n∆s∆t

∫ yp+1

yp

∫ tk+1

tk

(φi(tk, s
ℓ
tk
)− φi(t, s))dtds

)∣∣∣∣∣∣∣+
∥φ∥∞
n

.

(5.4.28)

By the Lipschitz continuity of φ, the definition of ani,j(k, p) and inequality (5.4.13), one gets:∣∣∣∣∣∣∣
∑
ℓ∈Tk,p

i,j

(
1

n∆s∆t

∫ yp+1

yp

∫ tk+1

tk

(φi(tk, s
ℓ
tk
)− φi(t, s))dtds

)∣∣∣∣∣∣∣ ⩽
ani,j(k, p)γφ(∆t+∆s)

n

⩽
(C̄Nk,p

i ∆t+ 1)γφ(∆t+∆s)

n
.

Inequality (5.4.28) becomes:∣∣∣∣∣∣∣
∑
ℓ∈Tk,p

i,j

1

n
φi(tk, s

ℓ
tk
)−∆tαni,j(tk, yp)

Nk,p
i

n

1

∆s∆t

∫ yp+1

yp

∫ tk+1

tk

φi(t, s)dtds

∣∣∣∣∣∣∣
⩽

(C̄Nk,p
i ∆t+ 1)γφ(∆t+∆s) + ∥φ∥∞

n
.

(5.4.29)

By a similar computation, one can show that:∣∣∣∣∣∣∣
∑
ℓ∈Tk,p

j,i

1

n
φi(tk, s

ℓ
tk
)−∆tαnj,i(tk, yp)

Nk,p
j

n

1

∆s∆t

∫ yp+1

yp

∫ tk+1

tk

φi(t, s)dtds

∣∣∣∣∣∣∣
⩽

(C̄Nk,p
j ∆t+ 1)γφ(∆t+∆s) + ∥φ∥∞

n
.

(5.4.30)

Finally, by inequality (5.4.27) and summing (5.4.29) and (5.4.30) over k, p and j, equality (5.4.26) becomes:∣∣∣∣∣
∫ T

0

∫ 1

0

(∂tφi(t, s) + bi(s)∂sφi(t, s))m
n
i (t, ds)dt−

∫ 1

0

φi(T, s)m
n
i (T, ds)− φi(0, s)m̄n

i (ds)

−
∑

j∈I,j ̸=i

∫ T

0

∫ 1

0

φi(t, s)
(
α̌ni,j(t, s)m̌

n
i (t, s)− α̌nj,i(t, s)m̌n

j (t, s)
)
dsdt

∣∣∣∣∣∣
⩽ C̄∥φ∥∞∆t+

∑
j∈I,j ̸=i

Nn
T−1∑
k=1

Nn
s −1∑
p=1

(C̄
(
Nk,p
i +Nk,p

j

)
∆t+ 2)γφ(∆t+∆s) + 2∥φ∥∞

n

⩽ C(γφ + ∥φ∥∞)(∆s+∆t+
1

n∆s∆t
),

(5.4.31)

where the constant C depends on C̄, T and |I|.

Lemma 5.4.6. There exists C > 0 such that, for any i ∈ I, n ⩾ N and any function φ ∈ C1([0, T ]× [0, 1]× I),
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with Lipschitz constant denoted by γφ > 0, we have:∣∣∣∣∣−
∫ 1

0

φi(T, s)m
n
i (T, ds)− φi(0, s)mn

i (0, ds) +

∫ T

0

∫ 1

0

(∂tφi(t, s) + bi(s)∂sφi(t, s))m
n
i (t, ds)dt

−
∑

j∈I,j ̸=i

∫ T

0

∫ 1

0

φi(t, s)
(
αni,j(t, s)m

n
i (t, s)− αnj,i(t, s)mn

j (t, ds)
)
dt

∣∣∣∣∣∣
⩽ C(∥φ∥∞ + γφ)(∆t+∆s+

1

n∆s∆t
).

(5.4.32)

Proof. This results is a direct consequence of Lemmas 5.4.4 and 5.4.5.

Remark 5.4.3. Lemma 5.4.6 also holds when T is replaced by any t ∈ (0, T ].

Remark 5.4.4. The term
T

n∆s∆t
on the r.h.s. of the inequality in Lemma 5.4.6, implies to choose carefully

the time and space steps, depending on the number of agents n. To this end, inequality (5.2.12) is crucial.

We can now prove Theorem 5.4.3.

Proof of Theorem 5.4.3. Let ψ ∈ C1([0, 1] × I) and φ ∈ C1([0, T ] × [0, 1] × I) be the classical solution of the
PDE:

∂τφi(τ, s) + bi(s)∂sφi(τ, s) = 0 (τ, s, i) ∈ [0, t]× [0, 1]× I
φi(t, s) = ψi(s) (s, i) ∈ ×[0, 1]× I. (5.4.33)

One has ∥φ∥∞ = ∥ψ∥∞, and denoting by γψ the Lipschitz constant of ψ, for any t ∈ [0, T ] φi(t, ·) is Lipschitz
continuous with Lipschitz constant γψeT∥b′∥∞ . Since (m∗,n, E∗,n) is a weak solution of the continuity equation

(5.2.9) with initial distribution m̄n, and φ a classical solution of (5.4.33), using that αni,j =
dE∗,n

i,j

dm∗,n
i

, we have:

∫ 1

0

ψi(s)m
∗,n
i (t, ds)

=

∫ 1

0

φi(0, s)m
n
i (0, s)ds−

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φi(τ, s)(α
n
i,j(τ, s)m

∗,n
i (τ, ds)− αnj,i(τ, s)m

∗,n
j (τ, ds))dτ.

(5.4.34)

From Lemma 5.4.6 and Remark 5.4.3, we have, for any t ∈ (0, T ]:∫ 1

0

ψi(s)m
n
i (t, ds) ⩽

∫ 1

0

φi(0, s)m
n
i (0, ds)−

∑
j∈I,j ̸=i

∫ t

0

∫ 1

0

φi(t, s)
(
αni,j(t, s)m

n
i (t, s)− αnj,i(t, s)mn

j (t, ds)
)
dt

+C(∥ψ∥∞ + γψe
T∥b′∥∞)(∆t+∆s+

1

n∆s∆t
).

(5.4.35)
From the previous equality and inequality, one deduces:

∑
i∈I

∫ 1

0

ψi(s)(m
∗,n
i (t, ds)−mn

i (t, ds)) ⩽ −
∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φi(τ, s)α
n
i,j(τ, s)(m

∗,n
i (τ, ds)−mn

i (τ, ds))dτ

+
∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φi(τ, s)α
n
j,i(τ, s)(m

∗,n
j (τ, ds)−mn

j (τ, ds))dτ

+C(∥ψ∥∞ + γψ)(∆t+∆s+
1

n∆s∆t
).

(5.4.36)
By inequality (5.4.13), {αn(t, ·)}n>N,t∈[0,T ] is uniformly Lipschitz continuous with constant C̄. Thus, for any
t ∈ [0, T ], (s, i, j) 7→ φi(t, s)αi,j(t, s) is Lipschitz on [0, 1]× I × I with Lipschitz constant C̄(∥ψ∥∞ + γψe

T∥b′∥∞).
We deduce that, for any τ ∈ [0, T ]:

∑
i∈I

∫ 1

0

∑
j∈I,j ̸=i

φi(τ, s)α
n
i,j(τ, s)(m

∗,n
i (τ, ds)−mn

i (τ, ds))dτ ⩽ C̄|I|(∥ψ∥∞ + γψe
T∥b′∥∞)W(m∗,n(τ),mn(τ)).
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Using the previous inequality, equality (5.4.36) becomes:

∑
i∈I

∫ 1

0

ψi(s)(m
∗,n
i (t, ds)−mn

i (t, ds)) ⩽ 2C̄|I|(∥ψ∥∞ + γψe
T∥b′∥∞)

∫ t

0

W(m∗,n(τ),mn(τ))dτ

+C(∥ψ∥∞ + γψe
T∥b′∥∞)(∆t+∆s+

1

n∆s∆t
).

Consider η ∈ Lip([0, 1] × I) with a Lipschitz constant equal to 1 and satisfying ηi(0) = 0 for a certain i ∈ I
(to bound ∥η∥∞). Let {ψm}m be a sequence in C1([0, 1] × I) that is uniformly bounded w.r.t. the Lipschitz
norm and that approximates η w.r.t. the norm ∥ · ∥∞. Since the previous inequality holds for any function ψ
in C1([0, 1]× I), one deduces that:

∑
i∈I

∫ 1

0

ηi(s)(m
∗,n
i (t, ds)−mn

i (t, ds)) ⩽ C

(∫ t

0

W(m∗,n(τ),mn(τ))dτ +∆t+∆s+
1

n∆s∆t

)
,

where C > 0 depends on C̄ and |I|. Since η is arbitrary, one has:

W(m∗,n(t),mn(t)) ⩽ C

(∫ t

0

W(m∗,n(τ),mn(τ))dτ +∆t+∆s+
1

n∆s∆t

)
.

Applying the Grownwall Lemma and usig inequality (5.2.12), there exists C > 0 such that one gets, for any
t ∈ (0, T ],

W(m∗,n(t),mn(t)) ⩽
C

n
1
3

.

Proof of Theorem 5.4.2

We need the following preliminary results.

Lemma 5.4.7. There exists C > 0 such that, for any n ∈ N, the function defined on [0, T ], by

t 7→
∑

i,j∈I,j ̸=i

∫ 1

0

L(αni,j(t, s))m
∗,n
i (t, ds) (5.4.37)

has a total variation on [0, T ] lower than C.

Proof. For any i, j ∈ I and t1, t2 ∈ [0, T ] with t2 > t1, we have:∣∣∣∣∫ 1

0

L(αni,j(t2, s))m
∗,n
i (t2, ds)−

∫ 1

0

L(αni,j(t1, s))m
∗,n
i (t1, ds)

∣∣∣∣
⩽

∣∣∣∣∫ 1

0

L(αni,j(t2, s))(m
∗,n
i (t2, ds)−m∗,n

i (t1, ds))

∣∣∣∣+ ∣∣∣∣∫ 1

0

(L(αni,j(t1, s)− L(αni,j(t2, s)))m
∗,n
i (t1, ds)

∣∣∣∣ .
By (5.4.13) one has that {αni,j}i and {∂sαni,j}n are uniformly bounded. By Assumption 5, one gets that L is
locally Lipschitz continuous and by [233, Theorem 2.1] that m∗,n ∈ Lip([0, T ],P([0, 1] × I)), with a Lipschitz
constant that only depends on ∥b∥∞, T and ∥αn∥∞ . Thus, there exists a constant C > 0 independent of n such
that: ∑

i∈I

∣∣∣∣∫ 1

0

L(αni,j(t2, s))(m
∗,n
i (t2, ds)−m∗,n

i (t1, ds))

∣∣∣∣ ⩽ C|t2 − t1|. (5.4.38)

By (5.4.12), inequality 5.4.13 and the locally Lipschitz continuity of L, one gets∣∣∣∣∫ 1

0

(L(αni,j(t1, s))− L(αni,j(t2, s)))m
∗,n
i (t1, ds)

∣∣∣∣ ⩽ C

∫ 1

0

|αni,j(t1, s)− αni,j(t2, s)|m
∗,n
i (t1, ds)

⩽ C

(
|t1 − t2|+

∫ t2

t1

(λni + λnj )(dτ)

)
.

(5.4.39)
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By inequalities 5.4.13, (5.4.38) and (5.4.39), we deduce that the total variation of the function defined in (5.4.37)
on [0, T ] is bounded by a constant.

Lemma 5.4.8. There exists C > 0 such that, for any n ⩾ N ,

Jn(mn, En) ⩽ J(m∗,n, E∗,n) +
C

n
1
3

. (5.4.40)

Proof of Lemma 5.4.8. By equality (5.4.15), one deduces, for any k ∈ {1, . . . Nn
T−1}, i ∈ I and p ∈ {1, . . . Nn

s −1}
satisfying mn

i (t
−
k , [yp, yp+1)) > 0,∣∣∣∣En([tk, tk+1), [yp, yp+1))

∆tmn
i (t

−
k , [yp, yp+1))

− αni,j(tk, yp)
∣∣∣∣ ⩽ 1

n∆tmn
i (t

−
k , [yp, yp+1))

. (5.4.41)

The function L being locally Lipschitz continous, one has:

∑
i,j

Nn
T−1∑
k=1

Nn
s −1∑
p=0

L
(Eni,j([tk, tk+1), [yp, yp+1))

∆tmn
i (t

−
k , [yp, yp+1))

)
mn
i (t

−
k , [yp, yp+1))∆t

⩽
∑
i,j

Nn
T−1∑
k=0

Nn
s −1∑
p=0

L(αni,j(tk, xℓ))m
n
i (t

−
k , [yp, yp+1))∆t+

C

n∆s∆t
,

(5.4.42)

Now we compare
∑
i,j

Nn
T−1∑
k=0

Nn
s −1∑
p=0

L(αni,j(tk, yp))m
n
i (t

−
k , [yp, yp+1))∆t and

∑
i,j

∫ T

0

∫ 1

0

L(αni,j(t, s))m
∗,n
i (t, ds)dt. Re-

call that, for any i, j ∈ I, s 7→ L(αni,j(t, s)) is Lipschitz continuous on [0, 1] uniformly in time. We have:

∑
i,j

Nn
T−1∑
k=0

Nn
s −1∑
p=0

L(αni,j(tk, yp))m
n
i (t

−
k , [yp, yp+1))∆t ⩽

∑
i,j

Nn
T−1∑
k=0

∫ 1

0

L(αni,j(tk, s))m
n
i (t

−
k , ds)∆t+ C∆s

⩽
∑
i,j

Nn
T−1∑
k=0

∫ 1

0

L(αni,j(tk, s))m
∗,n
i (t−k , ds)∆t+

C

n
1
3

,

(5.4.43)
where the last inequality is obtained by Theorem 5.4.3 and the fact that ∆s = O(n− 1

3 ). From Lemma 5.4.7,

there exits C > 0 such that t 7→
∫ 1

0

L(αni,j)m
∗,n
i (t, ds) has a total variation on [0, T ] lower than C. Applying

classical results on approximation of Riemann sum of bounded total variation functions, we have, for any i, j ∈ I:

Nn
T−1∑
k=0

∫ 1

0

L(αni,j(tk, s))m
∗,n
i (tk, ds)∆t ⩽

∫ T

0

∫ 1

0

L(αni,j(t, s))m
∗,n
i (t, ds)dt+

C

n
1
3

, (5.4.44)

where we used that ∆t = O( 1

n
1
3

). By inequalities (5.4.42), (5.4.43) and (5.4.44), and by the definition of α,

∑
i,j

Nn
T−1∑
k=1

Nn
s −1∑
p=0

L
(Eni,j([tk, tk+1), [yp, yp+1))

∆tmn
i (t

−
k , [yp, yp+1))

)
mn
i (t

−
k , [yp, yp+1))∆t

⩽
∫ T

0

∫ 1

0

L(αni,j(t, s))m
∗,n
i (t, ds)dt+

C

n
1
3

=

∫ T

0

∫ 1

0

L
(dE∗,n

i,j

dm∗,n
i

(t, s)
)
m∗,n
i (t, ds)dt+

C

n
1
3

.

From the previous inequality and Theorem 5.4.3, using that g ∈ C1([0, 1] × I), c ∈ C1([0, T ] × [0, 1] × I) and
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the definition of Jn and J , one has:

Jn(mn, En) ⩽ J(m∗,n, E∗,n) +
C

n
1
3

.

We now turn to the proof of Theorem 5.4.2.

Proof of Theorem 5.4.2. By [233, Proposition 7.1], the value of Problem (5.2.11) is Lipschitz continuous, with
Lipschitz constant CL, w.r.t. the initial distribution m̄ and the congestion constraintD. Then, since (m∗,n, E∗,n)

is a minimizer of J over the set S(m̄n, D − C∗/n
1
3 ), one has:

J(m∗,n, E∗,n) ⩽ inf
(m,E)∈S(m̄n,D)

J(m,E) +
CLC

∗

n
1
3

.

By the previous inequality and Lemma 5.4.8:

Jn(mn, En) ⩽ inf
(m,E)∈S(m̄n,D)

J(m,E) +
C + CLC

∗

n
1
3

. (5.4.45)

By Corollary 5.4.1, one has for any i ∈ I, t ∈ [0, T ] and n ⩾ N , that:

0 ⩽ Di(t)−mn
i (t, [0, 1]),

yielding that (mn, En) ∈ Sn(m̄n, D). It follows from Corollary 5.3.1 and inequality (5.4.45) that there exist
N,C > 0 such that, for any sequence {m̄n}n in Pn([0, 1]× I) satisfying Assumptions 2 and 3, one has, for any
n > N ,

inf
(i,s)∈T n(m̄n,D)

J n(i,s)− C

n
1
3

⩽ inf
(m,E)∈S(m̄n,D)

J(m,E). (5.4.46)

One can consider a constant C > 0 large enough such that previous inequality holds for any n ∈ N∗.

5.4.3 Proof of Theorem 5.2.2
In this section we provide a proof of Theorem 5.2.2, based on the results obtained above in Section 5.4.

Proof of Theorem 5.2.2. The convergence of a subsequence of {(mn, En)} to (m∗, E∗) is given by Lemma 5.4.1.
One obtains that (m∗, E∗) is optimal for Problem (5.2.11) by Theorem 5.2.1 and the proof of Theorem 5.4.1
.
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6.1 Introduction

The present article aims at solving a high dimensional stochastic control problem (P1) involving a large
number n of agents indexed by i ∈ {1, · · · , n}, of the form:

(P1)


min
u∈U

J(u)

J(u) := E

[
F0(

1

n

n∑
i=1

ui(ωi, ω−i)) +
1

n

n∑
i=1

Gi(u
i(·, ω−i), ωi)

]
.

(6.1.1)

Here the noise ω := (ω1, . . . , ωn) belongs to Ω := Πni=1Ω
i, where (Ωi,F i, µi) is a probability space, and

(Ω,F , µ) is the corresponding product probability space. Let ω−i := (ω1, . . . , ωi−1, ωi+1, . . . , ωn) denote an

125
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element of the space Ω−i := Πnj=1,j ̸=iΩ
j . The associated product probability space is (Ω−i,F−i, µ−i), where

F−i := ⊗nj=1,j ̸=iF j and µ−i := Πnj=1,j ̸=iµ
j . Each decision variable ui is a random variable (i.e. is F-measurable),

square summable with value in a Hilbert space U so that u := (u1, . . . , un) belongs to L2(Ω, (U)n). The function
ωi 7→ ui(ωi, ω−i) is denoted by ui(·, ω−i) and is a.s. (in ω−i) F i-measurable and belongs to L2(Ωi,U). Also,
U := Πni=1Ui where Ui is, for i = 1 to n, a closed convex subset of L2(Ω,U). In the application to dynamical
problems, the constraint ui ∈ Ui includes the constraint of adaptation of ui to some filtration. If each ui is a
random variable of ωi, for i = 1 to n, we say that u is a decentralized decision variable.

The cost function is the sum of a coupling term F0 : U→ R, function of the aggregate strategies
1

n

n∑
i=1

ui, and

local terms functions of the local decision ui and local noise ωi with Gi : L2(Ωi,U)× Ωi → R. This framework
aims at containing stochastic optimal control problems, where the states of the agents are driven by independent
noises (see equations (6.5.5) and (6.5.2) developed in Section 6.5).

6.1.1 Motivations

This work is motivated by its potential applications to distributed coordination of large populations of
small agents, with relevant real-world implications in different sectors, from communication networks to power
systems. The application developed in this paper deals with the coordination of flexible electrical appliances, to
support power system operation in a context of increasing penetration of renewables. Among other appliances,
thermostatically controlled loads (e.g. refrigerators, air conditioners etc.) have been investigated in the last few
years, for their intrinsic flexibility and potential for network support. Several papers have already assessed the
potential of demand-side response actions for frequency response services of TCLs [242] and how the population
recovers from significant perturbations [69]. The coordination of TCLs can be performed in a centralized way, like
in [137]. However, this approach raises concerns with respect to the communication requirements and customer
privacy. A common objective can be reached in a fully distributed approach, like in [253], where each TCL is
able to calculate its own actions (ON/OFF switching) to pursue a common objective. This paper is related to
the work of De Paola et al. [84], where each agent represents a flexible TCL device. In [84] a distributed solution
is presented for the operation of a population of n = 2× 107 refrigerators providing frequency support and load
shifting. They adopt a game-theory framework, modelling the TCLs as price-responsive rational agents that
schedule their energy consumption and allocate their frequency response provision in order to minimize their
operational costs. The potential practical application of our work also considers a large population of TCLS
which, as extension to [84], have stochastic dynamics. The proposed approach is able to minimize the overall
system costs in a distributed way, with each TCL determining its optimal power consumption profile in response
to price signals.

6.1.2 Related literature

The considered problem belongs to the class of stochastic control: looking for strategies minimizing the
expectation of an objective function under specific constraints. One of the main approaches proposed in the
literature to tackle this problem is to use random trees: this consists in replacing the almost sure constraints,
induced by non-anticipativity, by a finite number of constraints, in order to get a finite set of scenarios (see
[140] and [226]). Once the tree structure is built, the problem is solved by different decomposition methods
such as scenario decomposition [221] or dynamic splitting [229]. The main objective of the scenario method is
to reduce the problem to an approximated deterministic one. The present paper focuses on high dimensional
noise problems with a large number of time steps, for which this approach is not feasible.

The idea of reducing a single high-dimensional problem to a large number of smaller problems with lower
dimension has been widely studied in the deterministic case. In deterministic and stochastic problems there is the
possibility of using time decomposition thanks to the Dynamic Programming Principle [28], taking advantage
of the Markov property of the system. However, this method requires a specific time structure of the cost
function and is not suitable for problems with high-dimensional state spaces. Under continuous linear-convex
assumptions, one can deal with the curse of dimensionality by using the Stochastic Dual Dynamic Programming
algorithm (SDDP) [209] to get upper and lower bounds of the value function, using polyhedral approximations.
The almost-sure convergence of a broad class of SDDP algorithms has been proven [212], and complexity of
the algorithm can be estimated, in the specific case of Lipschitz continuous value function [165] or by using a
regularization of the value functions [277]. In [173, 203], a stopping criteria based on a dual version of SDDP,
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which gives a deterministic upper-bound for the primal problem, is proposed. SDDP is well-adapted for medium
sized population problems (n ⩽ 30), whereas it fails for problems with large populations (n > 1000) such as
the ones considered in this paper. To tackle this type of high dimensional problems, it is natural to investigate
decomposition techniques in the spirit of the Dual Approximation Dynamic Programming (DADP) [123, 172].
This approach is characterized by a price decomposition of the problem, where the stochastic constraints are
projected on subspaces such that the associated Lagrangian multiplier is adapted for dynamic programming.
Then the optimal multiplier is estimated by implementing Uzawa’s algorithm. To this end in [172], the Uzawa’s
algorithm, formulated in a Hilbert setting, is extended to a Banach space. DADP has been applied in different
cases, such as storage management problem for electrical production in [14, 123] and hydro valley management
[59]. The idea of approaching the primal and dual problems by restricting or relaxing the set of decision variables
has also been proposed in the context of stochastic programming [42, 160] to provide upper and lower bounds for
the considered problem. In the proposed paper, in the same vein as DADP, we propose a price decomposition
approach restricted to deterministic prices. This new approach takes advantage of the large population number
in order to introduce an auxiliary problem where the coupling term is purely deterministic.

6.1.3 Contributions

The numerical difficulty of Problem (P1) is related to the randomness of the aggregate term 1
n

∑n
i=1 u

i

involved in the coupling function F0. Let us introduce the set of decentralized controls:

Û :=

n∏
i=1

Ûi,

where Ûi := {ui ∈ Ui |ui is T 1 ⊗ . . .⊗F i ⊗ T i+1 ⊗ . . .⊗ T n −measurable},
(6.1.2)

where T j is the trivial σ-field {∅,Ωj}. Note that by construction, we can identify Ûi with F i−measurable
functions defined on Ωi. In addition, two decentralized controls ui ∈ Ûi and uj ∈ Ûj , i ̸= j, are independent
random variables. If the control u is decentralized, since the variance of the sum of independent random
variables is equal to the sum of the variances of these random variables, the aggregate term 1

n

∑n
i=1 u

i can be
approximated by 1

n

∑n
i=1 Eui when n is large enough. Let us consider then the following approximation of

Problem (P1):

(P2)


min
u∈U

J̃(u)

J̃(u) := F0

(
1

n

n∑
i=1

Eui
)

+
1

n
E

[
n∑
i=1

Gi(u
i(·, ω−i), ωi)

]
.

(6.1.3)

A first step consists in showing that, without loss of optimality in Problem (P2), one can restrict the control
set U to Û .

Theorem 6.2.1 states the equivalence between Problem (P2) and its decentralized version (P̂2) defined by:

(P̂2)


min
u∈Û

J̃(u)

J̃(u) := F0

(
1

n

n∑
i=1

Eui
)

+
1

n
E

[
n∑
i=1

Gi(u
i, ωi)

]
.

(6.1.4)

Through the article, the circumflex symbolˆwill be used to denote minimization problems w.r.t. decentralized
controls. Problem (P̂2) can be written as:

(P̂ ′
2)


min

u∈Û,v∈U
J̄(u, v),

J̄(u, v) := F0(v) +
1

n
E

[
n∑
i=1

Gi(u
i, ωi)

]
,

s.t g(u, v) = 0,

(6.1.5)

where g : U × U→ U is defined by

g(u, v) :=
1

n

n∑
i=1

Eui − v. (6.1.6)
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Observe that, for any ui ∈ Ûi, Gi(ui, ·) is independent of F−i. As a first contribution, this paper shows that
under some convexity and regularity assumptions on F0 and (Gi)i∈{1,...,n}, any solution of Problem (P2) is an
εn-solution of (P1), with εn → 0 when n→∞. In addition, we will see that an approach of price decomposition
for (P̂2), based on the formulation (P̂ ′

2), is tractable for dynamical problems, since the problem of minimizing
the Lagrangian with deterministic dual variables can be decomposed in subproblems which are solvable by
Dynamic Programming.

Since computing the dual cost of (P̂ ′
2) is expensive, we propose Stochastic Uzawa and Sampled Stochastic

Uzawa algorithms relying on the Robbins-Monroe algorithm, in the spirit of the stochastic gradient. Their
convergence is established, relying on the proof provided by [119] for the convergence of the stochastic gradient
in a Hilbert space. We check the effectiveness of the Stochastic Uzawa algorithm on a linear quadratic Gaussian
framework, and we apply the Sampled Stochastic Uzawa algorithm to a model of power system, inspired by the
work of A. De Paola et al. [84].

6.1.4 Assumptions
Various assumptions needed in the article are listed in this subsection.

Assumption 1. (i) Each set Ui is bounded, i.e. there exists M > 0 such that E∥ui∥2U ⩽ M2, for i ∈
{1, . . . , n}.

(ii) The function ui 7→ Gi(u
i(·, ω−i), ωi) is a.s. non negative, convex and lower semi continuous (l.s.c. for

short). And, for any ui ∈ Ui, the function ω 7→ Gi(u
i(·, ω−i), ωi) is measurable.

(iii) The function F0 is l.s.c. and proper.
(iv) Problem (P1) is feasible.

Assumption 2. The function F0 is convex.

Assumption 3. The function F0 is Gâteaux differentiable with c-Lipschitz derivative.

Assumption 4. (i) The function ui 7→ Gi(u
i, ωi) is for a.a. ωi ∈ Ωi strictly convex on Ûi.

(ii) The function F0 has at least quadratic growth, i.e. there exist C1, C2 > 0 such that for any v ∈ U:

C1∥v∥2U − C2 ⩽ F0(v).

Remark 6.1.1. By Lemma 6.9.1 in Appendix 6.9, if F0 satisfies Assumption 3 then, F0 has at most quadratic
growth, i.e. there exists C > 0 such that for any v ∈ U one has:

F0(v) ⩽ C(∥v∥2U + 1).

We denote by {ρk}k∈N∗ the sequence of step sizes used in the Stochastic Uzawa and Sampled Stochastic
Uzawa algorithms in Section 6.4.

Assumption 5. The sequence {ρk}k∈N∗ is such that: ρk > 0,
∞∑
k=1

ρk =∞ and
∞∑
k=1

(ρk)
2 <∞.

Note that a sequence of the form ρk :=
a

b+ k
, with (a, b) ∈ R∗

+ × R+, satisfies Assumption 5.

Assumption 6. (i) F0 is strongly convex.
(ii) There exists δ > 0 such that for any i ∈ {1, . . . , n} and for a.a. ωi ∈ Ωi, the function Ûi ∋ ui 7→ Gi(u

i, ωi)
is strongly convex with modulus of convexity greater or equal to δ.

Obviously, Assumption 6 is stronger than Assumption 4.

6.2 Approximating the optimization problem

In this section, the link between the values of problems (P1) and (P2) is analyzed.

Lemma 6.2.1. Let Assumptions 1 and 2 hold. Then Problem (P1) has a solution, i.e. J reaches its minimum
over U .
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Proof. The existence of a minimum is proved by considering a minimizing sequence (which exists since (P1)
is feasible) {uk} of J over U . The set U being bounded and weakly close, there exists a subsequence {ukℓ}
which weakly converges to a certain u∗ ∈ U . Using Assumptions 1.(ii) and convexity of F0, it follows that
lim inf J(ukℓ) ⩾ J(u∗) and thus u∗ is a solution of (P1).

We obtain the following Corollary about (P2).

Corollary 6.2.1. If Assumptions 1 and 2 are satisfied, then Problem (P2) has a solution and its value is lower
or equal to the value of Problem (P1) i.e:

inf
u∈U

J̃(u) ⩽ inf
u∈U

J(u).

Proof. Assumption 1.(iv) and convexity of F0 imply that (P2) is feasible. By using the same techniques as in
the proof of Lemma 6.2.1, one can prove that (P2) admits a solution. Using the convexity of F0 and Jensen’s
inequality, one has for any centralized control u ∈ U :

F0(
1

n

n∑
i=1

Eui) ⩽ E[F0(
1

n

n∑
i=1

ui)],

and the conclusion follows from the definition of (P1) in (6.1.1) and (P2) in (6.1.3)

We have the following key result.

Theorem 6.2.1. If Assumption 1 is satisfied, then the decentralized Problem (P̂2) has the same value as the
centralized Problem (P2) i.e.:

inf
u∈Û

J̃(u) = inf
u∈U

J̃(u). (6.2.1)

Proof. Since Û ⊂ U , it is immediate that inf
u∈U

J̃(u) ⩽ inf
u∈Û

J̃(u).

Fix i ∈ {1, . . . , n}, using the definition of conditional expectation, we define ũi ∈ L2(Ωi,U) for any ui ∈ Ui
by:

ũi(ωi) := E[ui(ωi, ω−i)|ωi] =
∫
Ω−i

ui(ωi, ω−i)dµ−i(ω−i) for any ωi ∈ Ωi.

Since Gi is a.s. convex w.r.t. the first variable, Jensen’s inequality gives:

Gi(ũ
i, ωi) ⩽

∫
Ω−i

Gi(u
i(·, ω−i), ωi)dµ−i(ω−i) = E[Gi(ui(·, ω−i), ωi)|ωi] a.s. (6.2.2)

On the other hand (u1, . . . , un) 7→ F0(
1

n

n∑
i=1

Eui) is invariant when taking the conditional expectation, thus:

F0

(
1

n

n∑
i=1

Eui
)

= F0

(
1

n

n∑
i=1

E ũi
)
.

Taking the expectation of (6.2.2), we have inf
u∈Û

J̃(u) ⩽ inf
u∈U

J̃(u), and the conclusion follows.

Remark 6.2.1. In the applications to stochastic control problems (in discrete and continuous time) we have the
constraint of having progressively measurable control policies. Since the set of progressively measurable policies
is closed and convex, this enters in the above framework. In particular, the decentralized policy ũi constructed
in the above proof is progressively measurable.

Remark 6.2.2. By Theorem 6.2.1, for any ε > 0 there exists an ε-optimal solution of Problem (P2) that is a
decentralized control.

Before stating the next result, we need to introduce Problem (P̂1), that corresponds to the minimization of
J , defined in (6.1.1), over the set of decentralized controls Û :

(P̂1)
{

min
u∈Û

J(u).
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Proposition 6.2.1. If Assumption 1 is satisfied and F0 is Lipschitz continuous with constant γ, then any
solution of (P̂2) is an ε-optimal solution of (P̂1) and, conversely, any solution of (P̂1) is an ε-optimal solution
of (P̂2), with ε = 2γM/

√
n.

Proof. Since F0 is Lipschitz continuous with Lipschitz constant γ, it holds for any x, y ∈ U: |F0(x)− F0(y)| ⩽
γ∥x− y∥U. We set for any u ∈ U :

ui := ui − Eui. (6.2.3)

Using the Lipchitz continuity of F0, one has for any u ∈ Û :∣∣∣∣∣E[F0

( 1
n

n∑
i=1

ui
)
− F0

( 1
n

n∑
i=1

Eui
)]∣∣∣∣∣ ⩽ E

∣∣∣∣∣F0

( 1
n

n∑
i=1

ui
)
− F0

( 1
n

n∑
i=1

Eui
)∣∣∣∣∣

⩽
γ

n
E ∥

n∑
i=1

ui∥U.

Using the Jensen’s inequality, for any u ∈ Û , the mutual independence of the centered variables ui and uj for
any j ̸= i and E∥ui∥2U ⩽M2, we get:

γ

n
E ∥

n∑
i=1

ui∥U ⩽
γ

n
E[∥

n∑
i=1

ui∥2U]
1
2 ⩽

γ

n
1
2

M. (6.2.4)

Let û denote a minimizer of (P̂2), then using (6.2.4) for the first and last inequality, for any u ∈ Û it holds:

J(û) ⩽ J̃(û) +
γ

n
1
2

M ⩽ J̃(u) +
γ

n
1
2

M ⩽ J(u) +
2γ

n
1
2

M. (6.2.5)

Similarly, if u∗ is a solution of (P̂1), then for any u ∈ Û one has:

J̃(u∗) ⩽ J(u∗) +
γ

n
1
2

M ⩽ J(u) +
γ

n
1
2

M ⩽ J̃(u) +
2γ

n
1
2

M. (6.2.6)

Theorem 6.2.2. Let Assumptions 1, 2 and 3 be satisfied. Then any solution of Problem (P̂2) is an ε-optimal
solution (where ε = cM2/n) of Problem (P1).

Proof. From Corollary 6.2.1 and Theorem 6.2.1, one has for any û ∈ Û solution of (P̂2) that:

J̃(û) ⩽ inf
u∈U

J(u). (6.2.7)

Since F0 is convex, differentiable, with a c-Lipschitz derivative, one can derive a.s.:

F0(
1

n

n∑
i=1

ûi)− F0(
1

n

n∑
i=1

E ûi)

⩽
1

n
⟨∇F0(

1

n

n∑
i=1

ûi) ,

n∑
i=1

ui ⟩U

=
1

n
⟨∇F0(

1

n

n∑
i=1

ûi)−∇F0(
1

n

n∑
i=1

E ûi) ,
n∑
i=1

ui ⟩U +
1

n
⟨∇F0(

1

n

n∑
i=1

E ûi) ,
n∑
i=1

ui ⟩U

⩽
c

n2
∥

n∑
i=1

ui ∥2U +
1

n
⟨∇F0(

1

n

n∑
i=1

E ûi) ,
n∑
i=1

ui ⟩U,

(6.2.8)

where ui is defined from û as in (6.2.3). From the definition of ui, one obtains:

E

[
⟨∇F0(

1

n

n∑
i=1

E ûi) ,
n∑
i=1

ui ⟩U

]
= 0.
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Since û ∈ Û , controls are mutually independent and bounded a.s. by M , one gets as in (6.2.4):

c

n2
E∥

n∑
i=1

ui ∥2U ⩽
c

n
M2. (6.2.9)

Taking the expectation of the first and last terms of (6.2.8) and then incorporating (6.2.9) and the equality
above, one obtains:

J(û)− J̃(û) ⩽ c

n
M2.

From previous inequality and (6.2.7), we get:

J(û) ⩽ inf
u∈U

J(u) +
c

n
M2. (6.2.10)

Remark 6.2.3. Observe that the value of the centralized Problem (P1) on the l.h.s. of the inequality (6.2.11)
below is upper bounded by the following decentralized problem on the r.h.s of this inequality i.e.

inf
u∈U

J(u) ⩽ inf
u∈Û

J(u). (6.2.11)

Ref. [60] obtains an upper bound for the decentralized problem and a lower bound for the centralized problem.
The upper bound is provided by a resource decomposition approach (with deterministic quantities) while the
lower bound is obtained by a price decomposition approach with deterministic prices (see Equation (28) of [60]).
Theorem 6.2.2 provides an upper bound for Problem (P1) with an a priori quantification of the deviation from
the optimal value which vanishes when the number of agents grows to infinity. Moreover, in Section 6.4 we
provide an original algorithm that allows to approach the solution of the decentralized problem.

Remark 6.2.4. Let û and u∗ be respectively the optimal solutions of problems (P̂2) and (P1). From Jensen’s
inequality and by definition of û we have:

−J(u∗) ⩽ −J̃(u∗) ⩽ −J̃(û).

Adding J(û), one has:
0 ⩽ J(û)− J(u∗) ⩽ J(û)− J̃(u∗) ⩽ J(û)− J̃(û). (6.2.12)

Inequality (6.2.12) allows to compute an upper bound of the "optimality" error J(û) − J(u∗), by evaluating
J(û)− J̃(û).

6.3 Dualization and Decentralization of Problem (P2)

The Lagrangian function associated to the constrained optimization Problem (P̂ ′
2), defined in (6.1.5), is:

L : Û × U× U −→ R̄ defined by:

L(u, v, λ) := J̄(u, v) + ⟨λ, 1
n

n∑
i=1

Eui − v⟩U. (6.3.1)

The dual Problem (D) associated with (P̂ ′
2) is:

(D) max
λ∈U
W(λ), where W(λ) := min

u∈Û,v∈U
L(u, v, λ). (6.3.2)

For any λ ∈ U, it holds:

W(λ) = −F ∗
0 (λ) +

1

n

n∑
i=1

min
ui∈Ûi

E[Gi(ui, ωi)] + ⟨λ,Eui⟩U, (6.3.3)
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where, for any real valued function F defined on U, F ∗ stands for its Fenchel conjugate, defined for x ∈ U by
F ∗(x) := sup

y∈U
⟨x, y⟩U − F (y). The problem is said to be qualified if it is still feasible after a small perturbation

of the constraint, in the following sense:

There exists ε > 0 such that BU(0, ε) ⊂ g(Û ,U), (6.3.4)

where BU(0, ε) is the open ball of radius ε in U, g has been defined in (6.1.6) and g(Û ,U) is the image by g of
Û × U.

Lemma 6.3.1. If Assumption 1 holds, then Problem (P̂ ′
2) is qualified. If Assumption 2 is also satisfied, then

problems (P̂ ′
2) and (D) have the same value, the set of dual solutions S is nonempty and bounded and any primal

solution û satisfies both W (λ̂) = J̃(û) and (û, v̂) ∈ argmin
u∈Û,v∈U

L(λ̂, u, v), with λ̂ ∈ S.

Proof. By Assumption 1.(iv), there exists ǔ feasible for Problem (P1). Then using the definition of g in (6.1.6)

BU(0, ε) ⊂ U = g(ǔ,U) ⊂ g(Û ,U). (6.3.5)

The qualification of (P̂ ′
2) follows. The conclusion follows by [34, Theorem 2.165].

Since the set of admissible controls Û = Û1 × . . . × Ûn is a Cartesian product, if Gi is strictly convex
with respect to its first variable, then each component ûi of the solution û of Problem (P̂2), can be uniquely
determined by solving the following subproblem:

ûi = argmin
ui∈Ûi

{
E
[
Gi(u

i, ωi) + ⟨λ̂, ui⟩U
]}

,

where λ̂ ∈ S.

Remark 6.3.1. By using the same argument as in Theorem 6.2.1, one can prove, for any λ ∈ U:

min
ui∈Ûi

{
E
[
Gi(u

i, ωi) + ⟨λ, ui⟩U
]}

= min
ui∈Ui

{
E
[
Gi(u

i(·, ω−i), ωi) + ⟨λ, ui⟩U
]}
.

(6.3.6)

6.4 Stochastic Uzawa and Sampled Stochastic Uzawa algorithms

This section aims at proposing an algorithm to find a solution of the dual problem (6.3.2).

6.4.1 Preliminary results
Though the below result is well-known and can be found in [141] for functions defined on finite vector spaces,

we adapt the proof to the Hilbert space setting for the sake of completeness.

Lemma 6.4.1. If Assumption 1 and 2 are satisfied, then Assumption 3 holds iff F ∗
0 is strongly convex.

Proof. (i) Let Assumption 3 holds. Since F0 is proper, convex and l.s.c., F ∗
0 is l.s.c. proper. From the Lipschitz

property of the gradient of F0, it holds that dom(F0) = U.
Let s, s̃ ∈ dom(F ∗

0 ) such that there exist λs ∈ ∂F ∗
0 (s) and λs̃ ∈ ∂F ∗

0 (s̃). From the differentiability, l.s.c.
and convexity of F0, it follows that: s = ∇F0(λs) and s̃ = ∇F0(λs̃). By Assumption 3 and the extended
Baillon-Haddad theorem [210, Theorem 3.1], ∇F0 is cocoercive. In other words:

⟨s− s̃, λs − λs̃⟩U = ⟨∇F0(λs)−∇F0(λs̃), λs − λs̃⟩U

⩾
1

c
∥∇F0(λs)−∇F0(λs̃)∥2U

=
1

c
∥s− s̃∥2U,

(6.4.1)

where c is the Lipschitz constant of ∇F0 defined in Assumption 3. Therefore ∂F ∗
0 is strongly monotone, which

implies the strong convexity of F ∗
0 .
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(ii) Conversely, assume that F ∗
0 is proper and strongly convex. Then there exist α, β > 0 and γ ∈ U such that

for any s ∈ dom(F ∗
0 ): F

∗
0 (s) ⩾ α∥s∥2U + ⟨γ, α⟩U − β, and F0 being convex, l.s.c. and proper, for any λ ∈ U it

holds:
F0(λ) ⩽ sup

s∈U
⟨s, λ− γ⟩U − α∥s∥2U + β = ∥λ− γ∥2/(4α) + β. (6.4.2)

Thus, F0 is proper and uniformly upper bounded over bounded sets and therefore is locally Lipschitz. In
addition, from the strong convexity of F ∗

0 and the convexity of F0, for any λ ∈ U, ∂F0(λ) is a singleton. Thus
F0 is everywhere Gâteaux differentiable.

Let λ, µ ∈ U. Since F ∗
0 is strongly convex, the functions F ∗

0 (s)− ⟨λ, s⟩U (resp. F ∗
0 (s)− ⟨µ, s⟩U) has a unique

minimum point sλ (resp. sµ), characterized by: λ ∈ ∂F ∗
0 (sλ) and µ ∈ ∂F ∗

0 (sµ). From the strong convexity

of F ∗
0 , the strong monotonicity of ∂F ∗

0 holds: ⟨µ−λ, sµ−sλ⟩U ⩾
1

c
∥sµ−sλ∥2U, where c > 0 is a constant related

to the strong convexity of F ∗
0 . Using that sλ = ∇F0(λ) and sµ = ∇F0(µ), it holds:

⟨µ− λ,∇F0(µ)−∇F0(λ) ⟩L2(0,T ) ⩾
1

c
∥∇F0(µ)−∇F0(λ)∥2L2(0,T ), (6.4.3)

meaning that ∇F0 is cocoercive. Applying the Cauchy–Schwarz inequality to the left hand side of the previous
inequality, the Lipschitz property of ∇F0 follows.

Lemma 6.4.2. If Assumptions 1, 2 and 3 hold, then W is strongly concave.

Proof. For any λ ∈ U, the expression of W(λ) is given by (6.3.3), where for any i ∈ {1, . . . , n}, λ 7→
inf
ui∈Ûi

EGi(ui, ωi) + ⟨λ,Eui⟩U is concave and, from Lemma 6.4.1, −F ∗
0 is strongly concave. Since the sum

of a concave function and of a strongly concave function is strongly concave, the result follows.

6.4.2 Analysis of the algorithms

Assumptions 1, 2 and 4 are supposed to hold throughout Section 6.4.2. For all i ∈ {1, . . . n}, and λ ∈ U, we
define the optimal control ui(λ):

ui(λ) := argmin
ui∈Ûi

{
E
[
Gi(u

i, ωi) + ⟨λ, ui⟩U
]}
, (6.4.4)

which is well defined since ui → EGi(ui, ωi) is strictly convex.
For any λ ∈ U, the subset V (λ) is defined by:

V (λ) := argmin
v∈U

{F0(v)− ⟨λ, v⟩U}. (6.4.5)

Since F0 is convex and has at least quadratic growth, V (λ) is a non empty subset of U and is reduced to a
singleton if F0 is strictly convex. For any λ ∈ U, we denote by v(λ) an element of V (λ), and for any v(λ) ∈ V (λ),
one has v(λ) ∈ ∂F ∗

0 (λ).
Uzawa’s algorithm seems particularly fitting for this problem. However, at each dual iteration k and any

i ∈ {1, . . . , n}, one would have to compute the quantities E[ui(λk)] for the update of λk+1, which is hard
in practice. Therefore two algorithms are proposed where, at each iteration k, λk+1 is updated thanks to a
realization of ui(λk).

We introduce the function f : U→ U defined by:

f(λ) := g(u(λ), v(λ)) =
1

n

n∑
i=1

Eui(λ)− v(λ). (6.4.6)

By Assumption 4.(ii), F0 has at least quadratic growth, whence F ∗
0 has at most quadratic growth. Indeed, using

the definition of the Fenchel’s conjugate, the fact that F0 has at least quadratic growth, and the Cauchy-Schwarz
inequality, there exist C̄1, C̄2 > 0 such that for any λ ∈ U:

F ∗
0 (λ) ⩽ sup

µ∈U
∥µ∥U∥λ∥U − C̄1∥µ∥2U + C̄2 =

∥λ∥2U
2C̄1

+ C̄2.
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Then using Lemma 6.9.1 in Appendix 6.9 and that v(λ) ∈ ∂F ∗
0 (λ), there exists C > 0 such that for any λ ∈ U:

∥v(λ)∥U ⩽ C(∥λ∥U + 1). (6.4.7)

Using the definition of U , one has 1
n

∑n
i=1 ∥Eui(λ)∥U ⩽ M for any λ ∈ U. Therefore, from the definition of f

in (6.4.6), there exist M1,M2 > 0 such that for any λ ∈ U one has:

∥f(λ)∥2U ⩽M1 +M2∥λ∥2U. (6.4.8)

For any λ ∈ U, we denote by ∂(−W(λ)) the subgradient of −W at λ. Therefore, for any λ ∈ U:

∂(−W(λ)) ∋ −f(λ). (6.4.9)

The iterative algorithm, proposed as an approximation scheme for
λ∗ ∈ argmax

λ
W(λ), is summarized in the Stochastic Uzawa Algorithm 1.

Algorithm 1 Stochastic Uzawa

1: Initialization λ0 ∈ U, set {ρk}k∈N∗ satisfying Assumption 5.
2: k ← 0.
3: for k = 0, 1, . . . do
4: vk ← v(λk) where v(λk) ∈ V (λk) , this set being defined in (6.4.5).
5: ui,k ← ui(λk) where ui(λk) is defined in (6.4.4) for any i ∈ {1, . . . , n}.
6: Generate n independent noises (ω1,k+1, . . . , ωn,k+1), independent also of {ωi,p : 1 ⩽ i ⩽ n, p ⩽ k}.
7: Compute the associated control realization (u1,k(ω1,k+1), . . . , un,k(ωn,k+1)).

8: Y k+1 ← 1

n

n∑
i=1

ui,k(ωi,k+1)− vk.

9: λk+1 ← λk + ρk Y
k+1.

At any dual iteration k of Algorithm 1, Y k+1 is an estimator of

E
[ 1
n

n∑
i=1

ui(λk)(ωi,k+1) − v(λk)
]
. An alternative approach, proposed in the Sampled Stochastic Uzawa Al-

gorithm 2, consists in performing less simulations at each iteration, by taking m < n, at the risk of performing

more dual iterations, to estimate the quantity E
[ 1
n

n∑
i=1

ui(λk)(ωi,k+1)− v(λk)
]
.

Algorithm 2 Sampled Stochastic Uzawa

1: Initialization of m a positive integer and λ̌0 ∈ U, set {ρk}k∈N∗ satisfying Assumption 5.
2: k ← 0.
3: for k = 0, 1, . . . do
4: vk ← v(λ̌k) where v(λ̌k) ∈ V (λ̌k), this set being defined in (6.4.5).
5: Generate m i.i.d. discrete random variables Ik1 , . . . , I

k
m uniformly in {1, . . . , n}.

6: uI
k
j ,k ← uI

k
j (λ̌k) where uI

k
j (λ̌k) is defined in (6.4.4) for any j ∈ {1, . . . ,m}.

7: Generate m independent noises (ω1,k+1, . . . , ωm,k+1), independent also of {ωi,p : 1 ⩽ i ⩽ m, p ⩽ k}.
8: Compute the associated control realization (uI

k
1 ,k(ω1,k+1), . . . , uI

k
m,k(ωm,k+1)).

9: Y̌ k+1 ← 1

m

m∑
j=1

uI
k
j ,k(ωI

k
j ,k+1)− vk

10: λ̌k+1 ← λ̌k + ρkY̌
k+1.

The complexity of the Sampled Stochastic Uzawa Algorithm 2 is proportional to m × K, where K is the
total number of dual iterations and m the number of simulations performed at each iteration. The error
E ∥λk+1 − λ∗∥2U for λ∗ ∈ S (we recall that S is defined by S := argmax

λ∈U
W(λ) and from Lemma 6.3.1 S is non

empty) is the sum of the square of the bias (which only depends on K and not on m) and the variance (which
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both depends on K and m). Therefore, this algorithm enables a bias variance trade-off for a given complexity.
Similarly, for a given error, it enables to optimize the complexity of the algorithm.

The following result establishes the convergence of the Stochastic Uzawa Algorithm 3:

Lemma 6.4.3. Let Assumptions 1, 2, 4 and 5 hold and let {λk}k be a sequence of multipliers generated by
Algorithm 3. Then:

(i) {∥λk − λ∥2U} converges a.s., for all λ ∈ S.

(ii) W(λk) −−−−→
k→∞

max
λ∈U
W(λ) a.s.

(iii) {λk} weakly converges to some λ̄ ∈ S in U a.s.

(iv) If Assumption 3 holds, then a.s. {λk} converges to λ̄ in U, with S := {λ̄}.

The proof follows from [119, Theorem 3.6]. The cited reference (changing minimization in maximization) is
interested in the maximization of a functionW of the specific formW(λ) = EW(λ, ω), where W(·, ω) is concave
a.s. in ω. However, in our setting we cannot in general exhibit such a representation for the dual function W,
defined in (6.3.2). Using the definition of u(λ) in (6.4.4) and v(λ) in (6.4.5), we have W(λ) = EW(λ, ω), where

λ 7→W(λ, ω) := F0(v(λ)) +
1

n

n∑
i=1

Gi(u
i(λ), ωi) + ⟨λ, 1

n

n∑
i=1

ui(λ)− v(λ)⟩U

Note tat W(·, ω) is not a concave function of λ for a.a. ω ∈ Ω. Although our setting does not enter in the
framework considered in [119], the proof of Lemma 6.4.3 follows from an obvious adaptation of the one in [119,
Theorem 3.6]. It is enough to provide the first steps of the proof.

Proof of Lemma 6.4.3. First consider point (i). Let λ ∈ S. For any k, Gk+1 is the filtration defined by:

Gk+1 := σ
(
{ωi,p} : 1 ⩽ i ⩽ n, p ⩽ k + 1}

)
. (6.4.10)

Using the definition of Y k+1 ∈ U line 8 in the Stochastic Uzawa Algorithm 1, we have:

∥λk+1 − λ∥2U = ∥λk + ρkY
k+1 − λ∥2U

= ∥λk − λ∥2U + 2ρk⟨λk − λ, Y k+1⟩U
+(ρk)

2∥Y k+1∥2U.
(6.4.11)

Since Y k+1 is independent from Gk, it follows that:

E[∥Y k+1∥2U|Gk] = E ∥ 1
n

n∑
i=1

ui(λk)(ωi,k+1)− v(λk)∥2U. (6.4.12)

Using previous equality and the inequality (6.4.8), one can easily show that there exists M3,M4 > 0 such that,
for any k ∈ N, one has:

E[∥Y k+1∥2U|Gk] ⩽M1 +M2∥λk∥2U ⩽M3 +M4∥λk − λ∥2U (6.4.13)

Since λk is Gk-measurable and that E[Y k+1|Gk] = f(λk), we have that:

E[∥λk+1 − λ∥2U|Gk]
= ∥λk − λ∥2U + 2ρkE[⟨λk − λ, Y k+1⟩U|Gk)] + (ρk)

2E[∥Y k+1∥2U|Gk]
⩽ ∥λk − λ∥2U + 2ρk⟨λk − λ, f(λk)⟩U + (ρk)

2(M3 +M4∥λk − λ∥2U)
⩽ ∥λk − λ∥2U(1 +M4ρ

2
k) + (ρk)

2M3 − 2ρk(W(λ)−W(λk)).

(6.4.14)

In the last inequality, we used the concavity of W and (6.4.9). The rest of the proof follows [119, Theorem
3.6].
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Recalling the definition of J̄(u, v) in (6.1.5) and of λ̄ in Lemma 6.4.3.(iii), we define ū:

ū := argmin
u∈Û

{
E

[
n∑
i=1

Gi(u
i, ωi) + ⟨λ̄, ui⟩U

]}
. (6.4.15)

Under Assumption 4, Gi is strictly convex w.r.t. the first variable, and then ū is well defined. If F0 is strictly
convex, then V (λ̄) is a singleton and we can write:

v̄ := argmin
v∈U

{
F0(v) + ⟨λ̄, v⟩U

}
. (6.4.16)

Remark 6.4.1. If F0 is convex, by Lemma 6.3.1, there is no duality gap associated to the Lagrangian L defined
in (6.3.1). Further, if F0 is strictly convex, then (ū, v̄, λ̄) is the unique saddle point associated to the Lagrangian
L. Indeed, by Assumption 3, λ̄ is the unique solution of the dual problem (D), by Assumption 4.(i), ū is unique
and by strict convexity of F0, v̄ is also the unique minimizer in the right hand side of (6.4.16).

Theorem 6.4.1. Let the Assumptions 1, 2, 3, 4 and 5 hold, then we have:

(i) {u(λk)} weakly converges a.s. to ū.

Furthermore, if F0 is strictly convex, then from Remark 6.4.1, ū is the unique minimizer of J̃ in Û and:

(ii) J̃(u(λk)) −−−−→
k→∞

J̃(ū) a.s.

(iii) lim sup
k→∞

J(u(λk)) ⩽ inf
u∈U

J(u) + 2 ε a.s. where ε = cM2/n.

Proof. Proof of point (i). By Lemma 6.4.3.(iv), the sequence {λk} is bounded in U. Thus, using inequality
(6.4.7) one deduces that {v(λk)} is also bounded in U. Since the sequence {(u(λk), v(λk))} is bounded in Û ×U,
there exists a weakly convergent subsequence {(u(λθk), v(λθk))} such that:

(u(λθk), v(λθk)) ⇀
k→∞

(uθ, vθ) ∈ Û × U. (6.4.17)

Using the definition of λ 7→ u(λ) in (6.4.4), it holds for any k > 0:

E
[
Gi(ū

i, ωi)) + ⟨λθk , ūi)⟩U
]

⩾ E
[
Gi(u

i(λθk), ωi) + ⟨λθk , ui(λθk)⟩U
)
].

(6.4.18)

Using that ui 7→ Gi(u
i, ωi) is a.s. w.l.s.c. on Ûi and the a.s. convergence of {λk}, resulting from Lemma

6.4.3.(iv), we have from (6.4.18) when k →∞ :

E
[
Gi(ū

i, ωi) + ⟨λ̄, ūi)⟩U
]
⩾ E

[
Gi(u

i,θ, ωi) + ⟨λ̄, ui,θ⟩U
]
. (6.4.19)

Since ū is unique, it follows uθ = ū and (6.4.19) is an equality. Using that every weakly convergent subsequence
of {u(λk)} has the same weak limit ū, (i) is deduced.

Proof of point (ii).
From point (i) and (6.4.19), it follows for any i ∈ {1, . . . , n}:

lim
k→∞

EGi(ui(λk), ωi) = EGi(ūi, ωi). (6.4.20)

Using (6.4.17), the w.l.s.c. of F0, equation (6.4.16), and applying the same previous argument to {v(λk)}, it
holds that:

lim
k→∞

F0(v(λ
k))− ⟨λk, v(λk)⟩U = F0(v̄)− ⟨λ̄, v̄⟩U, (6.4.21)

and v(λk) ⇀
k→∞

v̄.

From the two previous equalities and the a.s. convergence of {λk}, it follows:

lim
k→∞

F0(v(λ
k)) = F0(v̄). (6.4.22)
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Using that (ū, v̄, λ̄) is a saddle point, it follows:

1

n

n∑
i=1

E ūi = v̄. (6.4.23)

From (6.4.22) and (6.4.23), it holds:

lim
k→∞

F0

(
1

n

n∑
i=1

Eui(λk)

)
= F0

(
1

n

n∑
i=1

E ūi
)
. (6.4.24)

Then adding (6.4.20) and (6.4.24): lim
k→∞

J̃(u(λk)) = J̃(ū).

Proof of point (iii). From point (ii), inequality (6.2.10) and Theorem 6.2.2, it holds:

lim sup
k→∞

J(u(λk)) ⩽ lim sup
k→∞

J̃(u(λk)) + ε = inf
u∈U

J̃(u) + ε ⩽ inf
u∈U

J(u) + 2ε. (6.4.25)

Lemma 6.4.4. Let Assumptions 1 and 6.(i) hold, then the function λ 7→ v(λ) is Lipschitz on U.

Proof. From the definition of v in (6.4.5), we have for any λ ∈ U that λ ∈ ∂F0(v(λ)). Thus, for any λ, µ ∈ U,
we have from the strong convexity of F0:{

F0(v(µ)) ⩾ F0(v(λ)) + ⟨λ, v(µ)− v(λ)⟩U + α∥v(µ)− v(λ)∥2U
F0(v(λ)) ⩾ F0(v(µ)) + ⟨µ, v(λ)− v(µ)⟩U + α∥v(λ)− v(µ)∥2U.

(6.4.26)

Adding the two previous inequalities, after simplications, we get:

⟨λ− µ, v(λ)− v(µ)⟩U ⩾ 2α∥v(λ)− v(µ)∥2U. (6.4.27)

Applying the Cauchy-Schwarz inequality and simplifying by ∥v(λ) − v(µ)∥U, we get the desired Lipschitz in-
equality.

Lemma 6.4.5. If Assumptions 1 and 6.(ii) hold, the function λ 7→ u(λ) is Lipschitz on U.

Proof. The proof is similar to the proof of Lemma 6.4.4.

Theorem 6.4.2. Let Assumptions 1, 3, 5, and 6 hold, then: u(λk) −−−−→
k→∞

u(λ̄) a.s.

Proof. The convergence follows from the Lipschitz property of λ 7→ u(λ) (as a result of Assumption 6) associated
with the a.s. convergence of {λk}.

Remark 6.4.2. Note that Lemma 6.4.3 and Theorems 6.4.1 and 6.4.2 still hold when replacing λk by λ̌k and
Y k by Y̌ k (as defined respectively in line 9 and 10 of the Sampled Stochastic Uzawa Algorithm 2). This can be
proved by the same argument, using that Y̌ k is bounded a.s. and E[Y̌ k|Ǧk] = f(λ̌k) for any k, where:

Ǧk = σ
(
{W Ipℓ ,p} : 1 ⩽ ℓ ⩽ m, p ⩽ k}

)
∨ σ
(
{Ipℓ } : 1 ⩽ ℓ ⩽ m, p ⩽ k}

)
, (6.4.28)

with W Ikℓ ,p and Ipℓ defined respectively in line 7 and 5 of the Sampled Stochastic Uzawa Algorithm 2.

Remark 6.4.3. We wish to emphasize that the proposed Algorithm 2 is particularly suitable for practical
distributed implementations in agent-based scenarios. In these cases, the quantity λ can be interpreted as a
common price signal that is broadcast to the independent agents, which in turn compute independently their
optimal solution u(λ) on the basis of their local parameters (step 5).

To illustrate the results, we consider in the next section stochastic control problems in both continuous and
discrete time settings.
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6.5 Application to stochastic control

6.5.1 Continuous time setting

Let (Ω,F ,F,P) be a complete filtered probability space on which
W = (W i)i=1,...,n is a n × d−dimensional Brownian motion such that, for any t ∈ [0, T ] and i ∈ {1, . . . , n},
W i
t takes value in Rd and generates the filtration F = (Ft)0⩽t⩽T . In the considered notation, P stands for

the Wiener measure associated with this filtration and F for the augmented filtration by all P-null sets. The
following notations are used:

X :=

{φ : Ω→ C([0, T ],Rd) |φ(·) isF− adapted, ∥φ∥∞,2 := E sup
1⩽k⩽d
s∈[0,T ]

|φk(s)|2 <∞},

U := L2([0, T ],Rp) := {φ : [0, T ]→ Rp |
∫ T

0

p∑
k=1

|φk(t)|2dt <∞},

For any i ∈ {1, . . . , n}, the feasible set of controls is defined by:

Ui := {v : Ω× [0, T ]→ R, v(·) is F− prog. measurable,
v(ω) ∈ U and vt(ω) ∈ [−Mi,Mi]

p, for a.a. (t, ω) ∈ [0, T ]× Ω}, (6.5.1)

and we set M := max
i∈{1,...,n}

Mi, where Mi > 0.

Each local agent i = 1, . . . , n is supposed to control its state variable through the control process ui ∈ Ui and
is subject to independent uncertainties. More specifically, the state process of each agent, Xi,ui

= (Xi,ui

t )t∈[0;T ],
for i = 1, . . . , n takes values in Rd and follows the dynamics for i ∈ {1, . . . , n}:{

dXi,ui

t = µi(t, u
i
t(·,W i), Xi,ui

t )dt+ σi(t,X
i,ui

t )dW i
t , for t ∈ [0, T ],

Xi,ui

0 = xi0 ∈ Rd;
(6.5.2)

We assume that, for any i, there exist five functions αi ∈ L∞([0, T ],Rd×p), βi, θi ∈ L∞([0, T ],Rd×d), γi ∈
L∞([0, T ],Rd) and ξi ∈ L∞([0, T ],Rd×d×d) such that, for any (t, ν, x) ∈ [0, T ]× [−M,M ]p × Rd:

µi(t, ν, x) = αi(t)ν + βi(t)x+ γi(t) and σi(x, t) = ξi(t)x+ θi(t). (6.5.3)

Without loss of generality, the initial states xi0 are supposed to be deterministic. The process Xi,ui

is F-
progressively measurable. For all i, F i stands for the natural filtration of the Brownian motion W i.

On the well-posedness of (P1)

In this section, we discuss some conditions under which Problem (P1) is well-posed.

Lemma 6.5.1. Let i ∈ {1, . . . , n} and v ∈ Ui be a control process. The map v 7→ Xi,v is linear continuous from
Ui to X and there exists a unique process Xi,v ∈ X satisfying (6.5.2) (in the strong sense) such that, for any
p ∈ [1,∞):

E
[

sup
0⩽t⩽T
1⩽k⩽d

|Xi,v
k,t |

r
]
< C(r, T, x0,K) <∞ . (6.5.4)

Proof. The proof for the existence and uniqueness of a solution of (6.5.2) relies on [185, Theorem 3.6, Chapter
2]. The inequality is a result of [185, Theorem 4.4, Chapter 2 ].

Let F0 : U→ R be a proper, convex and lower semi continuous function, satisfying Assumptions 3 and 4.(ii).
For any i ∈ {1, . . . , n}, we assume that there exists Fi such that the local cost Gi is of the form:

ui 7→ Gi(u
i(·, ω−i), ωi) = Fi(u

i(ωi, ω−i), Xi,ui

(ωi)), (6.5.5)
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where Fi : U × C([0, T ] × Rd) → R+ is a proper and lower semi continuous function. Additional assumptions
are formulated below.

Assumption 7. For any i ∈ {1, . . . , n}:
(i) Fi is jointly convex w.r.t. both variables and strictly convex w.r.t. the first variable.

(ii) there exists a positive integer r such that Fi has r-polynomial growth, i.e there exists K > 0 such that for
any xi ∈ C([0, T ],Rd) and ui ∈ U: |Fi(ui, xi)| ⩽ K(1 + sup

0⩽t⩽T
0⩽k⩽n

|xik,t|r).

Note that if Assumption 7.(i) is satisfied, using the definition of F0 and Fi above in this section, Assumptions
1 to 4 hold.

Remark 6.5.1. It is worth highlighting the following aspects regarding Assumption 7:

1. Assumption 7.(i) is satisfied if there exist

2. Observe that Assumption 7 satisfies Assumptions 1.(ii) and 4.(i)

From now on, Assumption 7 is in force. Now the optimization problems (P c1 ) and (P̂ c2 ) can be clearly defined:

(P c1 )


inf
u∈U

Jc(u)

Jc(u) := E

[
F0(

1

n

n∑
i=1

ui(ω)) +
1

n

n∑
i=1

Fi(u
i(ω), Xi,ui

(ωi))

]
,

(6.5.6)

and

(P̂ c2 )


inf
u∈Û

J̃c(u)

J̃c(u) := F0

(
1

n

n∑
i=1

Eui
)

+
1

n
E

[
n∑
i=1

Fi(u
i(ω), Xi,ui

(ωi))

]
,

(6.5.7)

Using the results of Section 6.2, we can state the following corollary:

Corollary 6.5.1. (i) Problems (P c1 ) and (P̂ c2 ) admit both a unique solution.

(ii) Any optimal solution of Problem (P̂ c2 ) is an ε-optimal solution, where ε = cM2/n, of Problem (P c1 ).

Proof. The proof of point (i) is a specific case of Lemma 6.2.1. Similarly, point (ii) is a particular case of
Theorem 6.2.2.

Remark 6.5.2. A practical example of this type of stochastic optimization problem is illustrated in Section 6.7,
which considers the interactions between a large population of price-responsive self-interested domestic appliances
and a central system operator which has to meet the prescribed levels of demand at minimum generation costs.

6.5.2 Discrete time setting

The main results of the paper are instantiated to the discrete time setting in this subsection. The following
notations are used.

— Let n ∈ N∗ be the number of agents, d, p ∈ N∗ the dimension respectively of their state and control
variables at any time step, and T ∈ N∗ the finite time horizon.

— For any matrix M , its transpose is denoted by M⊤.

— We consider a global noise process as a sequence of independent random variables (W1, . . . ,WT ), where
for any t ∈ {1, . . . , T}, Wt is a vector of d-dimensional independent random variables, with finite variance,
defined on the probability space (Ω,F ,P): Wt := (W 1

t , . . . ,W
n
t ), with W i

t ∈ Rd. For any i ∈ {1, . . . , n}
and t ∈ {1, . . . , T} we define F it := σ(W i

1, . . . ,W
i
t ) and Ft := ⊗ni=1F it .

— The space X is defined by:

X := {x = (x0, . . . , xT ) | ∀t ∈ {0, . . . , T},Rd ∋ xt is
Ft −measurable and E∥xt∥22 <∞}.

(6.5.8)
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— For any i ∈ {1, . . . , n}, we define the space of control U i of agent i by:

U i := {ui = (ui0, . . . , u
i
T−1) | ∀t ∈ {0, . . . , T − 1},Rp ∋ uit is

Ft −measurable and uik(ω) ∈ [−M,M ]p P-a.s.}, (6.5.9)

where M > 0. We finally set U :=

n∏
i=1

U i.

— For any i ∈ {1, . . . , n}, Xi,ui

:= (Xi,ui

0 , . . . , Xi,ui

T ) ∈ X is the state trajectory of agent i controlled by
ui ∈ U i. We have the following dynamics:{

Xi,ui

t+1 = AiXi,ui

t +Biuit +W i
t+1, for t ∈ {0, . . . , T − 1},

Xi,ui

0 = x0 ∈ Rd,
(6.5.10)

where Ai ∈ Rd×d and Bi ∈ Rd×p.
Let F0 : Rp×T → R̄ be proper, lower semi continuous, convex and satisfy Assumptions 3 and 4.(ii). Similarly
to the previous subsection, we assume that, for any i, there exists a function Fi : Rp×T × Rd×T → R such
that Gi and Fi satisfy (6.5.5), and Fi satisfies Assumption 7 for an integer r such that E ∥Wt∥r is finite for any
t ∈ {1, . . . , T}.

Now, for any n ∈ T∗, the optimization problems (P d1 ) and (P̂ d2 ) can be clearly defined:

(P d1 )


inf
u∈U

Jd(u)

Jd(u) := E

[
F0(

1

n

n∑
i=1

ui) +
1

n

n∑
i=1

Fi(u
i, Xi,ui

)

]
,

(6.5.11)

and

(P̂ d2 )


inf
u∈Û

J̃d(u)

J̃d(u) := F0

(
1

n

n∑
i=1

Eui
)

+
1

n
E

[
n∑
i=1

Fi(u
i, Xi,ui

)

]
.

(6.5.12)

In the same spirit as in the previous subsection, we have the following results, which will be useful for the next
section.

Corollary 6.5.2. (i) Problems (P d1 ) and (P̂ d2 ) admit both a unique solution.

(ii) Any optimal solution of Problem (P̂ d2 ) is an ε-optimal solution, where ε = cM2/n, of Problem (P d1 ).

Proof. The proof of point (i) is analogous to the one of Lemma 6.2.1. Similarly, proof of point (ii) is analogous
to the one of Theorem 6.2.2.

One can implement the Stochastic Uzawa (Algo 1) and the Sampled Stochastic Uzawa (Algo 2) in this
discrete time setting with Lemma 6.4.3 and Theorems 6.4.1 and 6.4.2 still ensuring the algorithm convergence.

6.6 A numerical example: the LQG (Linear Quadratic Gaussian)
problem

This section aims at illustrating numerically the convergence of the Stochastic Uzawa (Algo 3) on a simple
example. The speed of convergence of the algorithm is evaluated according to the number of dual iterations and
of agents. A linear quadratic formulation is considered, with n agents in a discrete setting Problem (P̂LQG2 ).
We use the notations of Section 6.5.2.

This framework constitutes a simple test case, since the (deterministic) Uzawa’s algorithm can be performed,
and one can compare the resulting multiplier estimate with the one provided by the Stochastic Uzawa algo-
rithm. All the assumptions required for the convergence of the Stochastic Uzawa (Algo 3) are satisfied for
Problem (P̂LQG2 ). Moreover, the optimal solutions to the local problems (line 5 of Algorithm 1) can be resolved
analytically.
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Problem (P̂LQG2 ) is similar to (P̂ d2 ) defined in (6.5.12) but, in this specific case, the function F0 is a quadratic
function of the aggregate strategies of the agents

F0

(
1

n

n∑
i=1

Eui
)

:=
ν

2

T∑
t=0

(
1

n

n∑
i=1

Euit − rt

)2

, (6.6.1)

where ν > 0 and {rt} is a deterministic target sequence. Similarly, the cost term Fi of the individual agents is
expressed as a quadratic function of their state Xi,ui

and control ui

Fi(u
i, Xi,ui

) :=
1

2

(
T∑
t=0

di(X
i,ui

t )2 + qi(u
i
t)

2

)
+
dfi
2
(Xi,ui

T )2, (6.6.2)

where qi > 0 and di > 0 for any i ∈ {1, . . . , n}. Defining the matrices D = diag(d1, . . . , dn), Q = diag(q1, . . . , qn)
and Df = diag(df1 , . . . , d

f
n), we get:

n∑
i=1

Fi(u
i, Xi,ui

) =
1

2

(
T∑
t=0

Xu⊤
t DXu

t + u⊤t Qut

)
+

1

2
Xu⊤
T DfXu

T , (6.6.3)

where, for any t ∈ {0, . . . , T}, Xu
t := (X1,u1

t , . . . , Xn,un

t ) ∈ Rn is the controlled state vector of all the agents.
Now the optimization Problem (P̂LQG2 ) is clearly defined.

To find the optimal multiplier and control of (P̂LQG2 ), the Stochastic Uzawa Algorithm 3 is applied. In this
specific case, the lines 4 and 6 take respectively the following form at any dual iteration k:

ui(λk) := argmin
ui∈Ûi

{
E

[
1

2

( T∑
t=0

di(X
i,ui

t )2 + qi(u
i
t)

2 + λkt u
i
t

)
+
dfi
2
(Xi,ui

T )2

]}
, (6.6.4)

v(λk) := argmin
v∈RT

{
(

T∑
t=0

ν (vt − rt)2 − λkt vt

}
. (6.6.5)

The optimization problem (6.6.4) solved by each local agent also falls within the LQG framework. One can
solve these problems using the results of [249]. The resolution via Riccati equations of (6.6.4) shows that ui(λk)
is a linear function of the state Xi,ui

and of the price λk. Therefore, in this specific example, one can explicitly
compute E[uit(λk)|Gk] for any t, with Gk as defined in (6.4.10).

Within this described framework, it is possible to implement the (deterministic) Uzawa’s algorithm and use
it as a reference to evaluate the performances of the Stochastic Uzawa algorithm.

Different population sizes n are considered, with n ranging between 1 and 104. Similarly, the algorithm is
stopped after different numbers of dual iteration k, ranging between 10 and 104. In order to evaluate the bias
and variance of the Stochastic Uzawa algorithm, this has been performed over J = 1000 runs.

It is possible to define a Problem (P̂ ′LQG
2 ) and a dual Problem (DLQG) from Problem (P̂LQG2 ) following

the same approach presented in (6.1.5) and (6.3.2) for the definition of (P̂ ′
2) and (D), respectively, from (P̂2).

It can be shown that, for any n, there exists a unique optimal multiplier λ̄n, solution of (DLQG). For any n,
the quantity λk,n,j denotes the dual price computed during the jth simulations (j = 1, . . . , J) of the Stochastic
Uzawa algorithm, after k dual iterations.

For any n, the deterministic multiplier λ̄n is obtained by applying Uzawa’s algorithm, after 104 dual itera-
tions. To this end, we applied the Stochastic Uzawa Algorithm 3, where we ignored the line 8 and we replaced

the update of λk line 9 by: λ̄k+1 ← λ̄k + ρk(
1

n

n∑
i=1

Eui(λ̄k)− v(λ̄k)).

At each dual iteration k, the computation of Eui(λk) is straightforward in this specific case, since ui(λk) is
a linear function of Xi,ui

and λk, as explained in the previous subsection.
The multipliers λk,n,j and λ̄n, obtained by applying the Stochastic Uzawa and Uzawa algorithms, respectively,

are now compared. For any k and n, let bk,n, vk,n and ℓk,n denote an estimation of the bias, the variance and
the L2 norm of the error, respectively, as computed via Monte Carlo method with J simulations. For any k and
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Figure 6.1 – Variance term
log10(vk,n), expressed as a func-
tion of k, for different number of
agents n.
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Figure 6.2 – Variance term
log10(vk,n), expressed as a func-
tion of n, for different number of
iterations k.
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Figure 6.3 – Bias term
log10(∥bk,n∥22), expressed as
a function of k, given the number
of agents n = 104.

n, these quantities are defined as follows:

bk,n :=
1

J

J∑
j=1

λk,n,j − λ̄n,

vk,n :=
1

J

J∑
j=1

∥λk,n,j − λ̄n − bk,n∥22,

ℓk,n := vk,n + ∥bk,n∥22.

Since numerical simulations are based on finite dimensional approximations, it is relevant to compare the
empirical convergence rates, shown in Figures 6.1-6.3, with the associated theoretical asymptotic rates presented
in the literature for a finite dimensional setting.

In Figure 6.1, we observe a behavior in 1/kα (with α ≃ 0.8) of the variance vk,n w.r.t. the number of
iterations k. This rate of convergence is consistent with [95, Theorem 2.2.12, Chapter 2], where the best
asymptotic convergence rate for the Robbins-Monro algorithm is proved to be of the order of 1/k (for the
quadratic error).

In Figure 6.2 we observe a behavior in 1/nβ (with β ≃ 1) of the variance vk,n w.r.t. the number of agents
n. This is expected, following [95, Theorem 2.2.12, Chapter 2] and the observation that the variance of Y k+1 is
of the order of 1/n for any iteration k.

Finally, in Figure 6.3, we note that the bias ∥bk,n∥2 decreases faster than 1/k w.r.t. the number of iterations
k. Thus, for a large number of iterations (k > 0), the dominant term impacting the error lk,n is the variance
vk,n.

6.7 Price-based coordination of a large population of thermostatically
controlled loads

The goal of this section is to demonstrate the applicability of the presented approach for the coordination
of TCLs in the context of flexible power systems. In particular, the problem analyses the daily operation of
a power system with a large penetration of price-responsive TCLs, adopting a modelling framework similar to
[84]. Two distinct elements are considered: i) a system operator, which must schedule a portfolio of generation
assets in order to satisfy the energy demand at a minimum cost, and ii) a population of price-responsive TCLs
that individually determine their ON/OFF power profile in response to price, with the objective of minimizing
their operating cost while fulfilling users’ requirements. Note that the operations of the two elements are
interconnected, since the aggregate power consumption of the TCLs will modify the system-level demand profile
that needs to be accommodated by the system operator.
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6.7.1 Formulation of the problem

In the considered problem, the function F0 represents the minimized power production cost and corresponds
to the resolution of an Unit Commitment (UC) problem. The UC determines generation scheduling decisions
(in terms of energy production and frequency response (FR) provision) in order to minimize the short term
operating cost of the system while matching generation and demand. The demand quantity is the sum of an
inflexible deterministic term (denoted for any time instant t ∈ [0, T ] by D̄(t)) and of a stochastic component
n × UTCL(t), i.e. the product of the population size n and the average demand profile UTCL(t) of the TCL
population.

For simplicity, a Quadratic Programming (QP) formulation in a discrete time setting is adopted for the UC
problem. The central planner disposes of Z generation technologies (gas, nuclear, wind) and schedules their
production and allocates response by slot of 30 min every day. For any j ∈ {1, . . . , Z} and ℓ ∈ {1, . . . , 48},
the quantities Hj(tℓ), Gj(tℓ) and Rj(tℓ) denote respectively the commitment, the power production and the
frequency-response from unit j during the time interval [tℓ, tℓ+1] (all expressed in MWh). The associated vectors
are denoted by H(tℓ) = [H1(tℓ), . . . ,HZ(tℓ)], G(tℓ) = [G1(tℓ), . . . , GZ(tℓ)] and R(tℓ) = [R1(tℓ), . . . , RZ(tℓ)].

The cost sustained at time tℓ by unit j is linear with respect to the commitment Hj(tℓ) and quadratic with
respect to generation Gj(tl) and can be expressed as c1,jHj(tℓ)G

Max
j (tℓ) + c2,jGj(tℓ) + c3,jGj(tℓ)

2. In this
cost expression, GMax

j denotes the production limit allocated by each generation technology, c1,j [£/MWh] is
the no-load cost term, whereas c2,j [£/MWh] and c3,j [£/MW2h] are the production cost coefficients of the
generation technology j. The optimization of F0 must satisfy the following constraints for all ℓ ∈ {1, . . . , 48}
and j ∈ {1, . . . , Z}:

Z∑
j=1

Gj(tℓ)−
∫ tℓ+1

tℓ

(D̄(t) + nUTCL(t))dt = 0, (6.7.1)

0 ⩽ Hj(tℓ) ⩽ 1, (6.7.2)

Rj(tℓ)− rjHj(tℓ)G
max
j (tℓ) ⩽ 0, (6.7.3)

Rj(tℓ)− sj(Hj(tℓ)G
max
j (tℓ)−Gj(tℓ)) ⩽ 0, (6.7.4)

∆GL − Λ
(
D̄(tℓ) + n(ŪTCL(tℓ)− R̄TCL(tℓ)

)
∆fmaxqss − R̂(tℓ) ⩽ 0, (6.7.5)

2∆GLtref td − t2ref R̂(tℓ)− 4∆fref tdĤ(ℓ) ⩽ 0, (6.7.6)

q̄(t)− Ĥ(ℓ)R̂(ℓ) ⩽ 0 (6.7.7)

µ rjHj(tℓ)G
max
j (tℓ)−Gj(tℓ) ⩽ 0, (6.7.8)

where (6.7.1) equals production and aggregated demand (i.e. the system inelastic demand D̄ and the TCL
flexible demand nUTCL). The quantities R̂ and Ĥ denote the total reserve and inertia of the system, respectively,
and are defined for any ℓ ∈ {1, . . . , 48} as:

R̂(tℓ) =

Z∑
j=1

Rj(tℓ) + nRTCL(tℓ),

Ĥ(tℓ) =

Z∑
j=1

hjHj(tℓ)G
max
j − hL∆GL
f0

.

In (6.7.2) it is supposed that, for any generation technology j, the capacity of the single power plant is sig-
nificantly smaller than the total installed capacity. As a result, it is reasonable to consider the continuous
relaxation of the UC problem by assuming Hj(tℓ) ∈ [0, 1].

The amount of response allocated by each generation technology is limited by the headroom rjHj(tℓ)G
max
j (tℓ)

in (6.7.3) and by the slope sj linking the FR with the dispatch level (6.7.4). Constraints (6.7.5) to (6.7.8) deal
with frequency response provision and RTCL (the mean of FR allocated by TCLs). They guarantee secure
frequency deviations following sudden generation loss ∆GL. Inequality (6.7.5) allocates enough FR (with
delivery time td) such that the quasi-steady-state frequency remains above ∆fmaxqss , with Λ accounting for the
damping effect introduced by the loads [161]. The constraint (6.7.7) imposes the maximum tolerable frequency
deviation ∆fnad, following the formulation and methodology presented in [247] and [252]. The rate of change of
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frequency is taken into account in (6.7.6) where at trcf the frequency deviation remains above ∆fref . Constraint
(6.7.8) prevents trivial unrealistic solutions that may arise in the proposed formulation, such as high values of
committed generation Hj(tℓ) in correspondence with low (even zero) generation dispatch Gj(tℓ). The reader
can refer to [84] for more details on the UC problem.

The solution F0 of the UC problem can be defined by the following optimization problem:

F0(UTCL, RTCL) := min
H,G,R

48∑
ℓ=1

Z∑
j=1

c1,jHj(tℓ)G
max
j (tℓ) + c2,jGj(tℓ) + c3,jGj(tℓ)

2, (6.7.9)

subject to equations (6.7.1)-(6.7.8).
Note that the formulation of the present problem does not fulfill all the assumptions presented in Section 6.4.

In particular, the function F0 is not strictly convex, as instead supposed in Theorem 6.4.1.(ii).(iii). Nevertheless,
the numerical simulations of Section 6.7.2 shows that the proposed approach is still able to achieve convergence.

Regarding the modelling of the individual price-responsive TCLs, each TCL i ∈ {1, . . . , n} is characterized
at any time t ∈ [0, T ] by its temperature state Xi,ui

t [◦C] and by its power consumption control uit [W ]. The
thermal dynamic Xi,ui

t of a single TCL i is given by: dXi,ui

t = − 1

γi
(Xi,ui

t −Xi
OFF + ζiu

i
t)dt+ σi dW

i
t , for t ∈ [0, T ],

Xi
0,ui = xi0 ∈ R,

(6.7.10)

where:
— γi is its thermal time constant [s].
— Xi

OFF is the ambient temperature [◦C].
— ζi is the heat exchange parameter [◦C/W ].
— σi is a positive constant [(◦C)s

1
2 ],

— W i is a Brownian Motion [s
1
2 ], independent from W j for any j ̸= i.

For any i ∈ {1, . . . , n}, the set of control Ui is defined by:

Ui := {v : Ω× [0, T ]→ R, v(·) is F− prog. measurable,
v(ω) ∈ U and vt(ω) ∈ {0, PON,i}, for a.a. (t, ω) ∈ [0, T ]× Ω}, (6.7.11)

The TCLs dynamics in (6.7.10) have been derived according to [156], with the addition of the stochastic term
σidW

i
t to account for the influence of the environment (opening/closing of the fridge, environment temperature,

etc.) on the evolution of the TCL temperature.
By combining the objective functions of the systems, the system operator has to solve the following opti-

mization problem:

(PTCL1 )



inf
u∈U

J(u)

J(u) := E

[
F0

(
1

n

n∑
i=1

ui,
1

n

n∑
i=1

ri(u
i, Xi,ui

)

)]

+E

[
1

n

n∑
i=1

∫ T

0

fi(u
i
s, X

i,ui

s )ds+ γi(X
i,ui

T − X̄i)2

]
,

(6.7.12)

The term ri(u
i, Xi,ui

) denotes the maximum amount of FR allocated by the TCL i at time s and can be
expressed as:

ri(u
i, Xi,ui

)(s) := uis
Xi,ui

s −Xi
min

Xi
max −Xi

min

. (6.7.13)

The discomfort term of the single TCL i at time s is denoted by fi(u
i
s, X

i,ui

s ), which takes the following
expression:

fi(u
i
s, X

i,ui

s ) := αi (X
i,ui

s − X̄i)2 + βi((X
i
min −Xi,ui

s )2+ + (Xi,ui

s −Xi
max)

2
+), (6.7.14)

where:



6.7. Price-based coordination of a large population of thermostatically controlled loads 145

— αi(X
i,ui

s − X̄i)2 is a discomfort term penalizing temperature deviations from some comfort target X̄ [◦C],
considering αi [£/h(◦C)2] as a discomfort term parameter.

— βi((X
i,ui

s −Xi
min)

2
+ + (Xi

max −Xi,ui

s )2+) is a penalization term meant to maintain the temperature within
the interval [Xi

min, X
i
max], considering the cost parameter βi [£/s(◦C)2] and the maximum function (a)+ =

max(0, a).

— γi(X
i,ui

T −X̄i)
2 is a terminal cost term meant to impose soft periodic constraints by quadratically penalizing

the deviations of the final temperature state Xi,ui

T with respect to the initial temperature value X̄i,
considering the cost parameter γ [£/s(◦C)2].

Note that the control set U is not convex. We can mention a possible relaxation of the problem by taking
the control in the interval [0, PON,i].

In order to solve (PTCL1 ), the modified Problem (PTCL2 ) is studied:

(PTCL2 )



inf
u∈U

J̃(u)

J̃(u) := F0

(
1

n

n∑
i=1

Eui,
1

n

n∑
i=1

E ri(ui, Xi,ui

)

)

+E

[
1

n

n∑
i=1

∫ T

0

fi(u
i
s, X

i,ui

s )ds+ γi(X
i,ui

T − X̄i)2

]
.

(6.7.15)

6.7.2 Decentralized implementation

The Sampled Stochastic Uzawa Algorithm 2 is applied to solve (PTCL2 ), with m = 317 simulations per
iteration. At each iteration k, the lines 4 and 6 of Algorithm 2 correspond to the solution of a deterministic
UC problem and of an Hamilton Jacobi Bellman (HJB) equation, respectively. The time steps ∆t = 7.6 s and
temperature steps ∆T = 0.15◦C are chosen for the discretization of the HJB equation. Let us note that, at line
6, each TCL solves its own local problem on the basis of the received price signal λk = (pk, ρk):

inf
ui∈Ui

∫ T

0

fi(u
i
s, X

i,ui

s ) + uisp
k
s − ri(ui, Xi,ui

)(s)ρks ds, (6.7.16)

where fi(uis, X
i,ui

s ) is a discomfort term defined in (6.7.14), uisp
k
s can be interpreted as consumption cost and

ri(u
i, Xi,ui

)(s)ρks as fee awarded for FR provision. This implementation has a practical sense: each TCL uses
local information and the received price signals to schedule its power consumption on the time interval [0, T ],
with the objective of minimizing its overall costs. It follows that, with the proposed approach, it is possible to
optimize the total system costs in (PTCL1 ) in a distributed manner, with each TCL acting independently and
pursuing its own cost minimization.

6.7.3 Results

In the proposed case study, the considered generation technologies available in the system are nuclear,
combined cycle gas turbines (CCGT), open cycle gas turbines (OCGT) and wind. The characteristics and
parameters of the UC in this simulation are the same as in [84].

It is assumed that the population of TCLs corresponds to n = 2×107 fridges with built-in freeze compartment
that operate in the system according to the proposed price-based control scheme. For any TCL i, we set the
consumption parameter PON,i = 180W . The values of the TCL dynamic parameters γi and Xi

OFF of (6.7.10)
are equal to the ones considered in [84]. The initial temperatures of the TCLS are selected randomly according
to a uniform probability distribution, considering temperature values between −21◦C and −14◦C. For any
TCL i, the parameters of the individual cost function fi, defined in (6.7.14), are: αi = 0.2 × 10−4 £/s(◦C)2,
βi = 50£/s(◦C)2, X̄i = −17.5◦C and Xmax = −14◦C, Xmin = −21◦C. The parameter βi is intentionally
taken very large to ensure that the TCL temperature remains within the interval [Xi

max, X
i
min]. Note that the

individual problems solved by the TCLs are distinct than the ones in [84] (different terms and parameters).
Simulations are performed for different volatility values σi := 0, 1, 2 (all the TCLs have the same volatility

in the simulations), with σi defined as in (6.7.10). The Sampled Stochastic Uzawa Algorithm is stopped after
75 iterations.
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Figure 6.4 – Total power consumption U and al-
located response R (MW) of the TCLs after 75
algorithm iterations.
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Figure 6.5 – Electricity price p and response availability
price ρ (£/MWh) after 75 algorithm iterations.

The resulting profiles of total power consumption U = nUTCL and total allocated response R = nRTCL by
the TCLs population are reported in Figure 6.4, while the resulting electricity prices p and response availability
prices ρ are shown in Figure 6.5. As observed in [84], the total consumption U is higher when the electricity
price p is lower. Conversely, the total allocated response R is higher when the FR remuneration price ρ is also
higher. This can be observed in particular during the first hours of the day, between 0 and 6 h. The power
consumption U exhibits smaller oscillations during the rest of the day, as the internal temperature of the TCLs
is maintained within feasible levels. Although the prices do not seem to be particularly sensitive with respect
to the volatility parameter σ, the power consumption U and frequency response R are highly correlated to the
volatility of the TCLs temperature.

The TCLs impact on system commitment decisions and consequent energy/FR dispatch levels is also ana-
lyzed and displayed in Figures 6.6 and 6.7. In this analysis, the “flexibility scenario”, obtained with the proposed
optimization strategy and considering flexible price-responsive TCLs, is compared to a “business-as-usual” sce-
nario where the TCL do not respond to external price signals and do not perform any optimization of their costs.
In the “business-as-usual”, we impose RTCL(t) = 0 and we assume that the TCLs operate exclusively according
to their internal temperature Xi,ui

. They switch ON (ui(t) = PON,i) when they reach their maximum feasible
temperature Xi

max and they switch back OFF again (ui(t) = 0) when they reach the minimum temperature
Xi
min. In Figure 6.6, we can clearly observe that TCL’s flexibility allows to increase the contribution of wind

to the energy balance of the system while decreasing the contribution of CCGT both in energy and frequency
response. In the “business-as-usual” scenario, without frequency support by the TCL, the optimal solution
envisages a further curtailment of wind output in favor of an increase in CCGT generation, as wind does not
provide any FR. As expected, the influence of the TCL on the system is larger when the temperature volatility
is lower.

A comparison of the system costs (i.e. UC solution) between the “flexibility scenario” (FS) and the “Business-
as-usual” (BAU) framework is provided in Table 6.1. As expected, costs are lower in the FS, as the flexibility
of the TCLs positively supports system operation, allowing to replace gas generation from OCGT and CCGT
plants with cheaper wind energy. The reduction is higher (about 1.9%) for σ = 0 with respect to the cases with
σ = 1 or σ = 2 (about 1.6% and 1.2%, respectively). This confirms previous indications that TCLs tend to be
more flexible when the volatility of their internal temperature is lower.
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Figure 6.6 – Deviation of generation profiles (MW)
from the “business-as-usual” scenario during the
first hours of the day, considering three different
values of temperature volatility σ.
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Figure 6.7 – Deviation of Frequency Response (MW)
allocated by CCGT technology with respect to the
“business-as-usual” scenario during the first hours of the
day, considering three different values of temperature
volatility σ.

σ = 0 σ = 1 σ = 2

BAU 2.770× 107 2.770× 107 2.772× 107

FS 2.719× 107 2.725× 107 2.740× 107

Table 6.1 – Minimized system costs in (£)
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6.8 Conclusions

Randomness and high dimensionality usually make the resolution of an optimization problem quite difficult.
However, in the specific case of convex aggregative control problems, we have shown that, under independent
noise assumptions, one can take advantage of the high dimension to approximate accurately the original Problem
(P1) by a decentralized Problem (P̂2), whose numerical resolution is more tractable. We highlight the fact that

the approximation error is of order
1

n
, where n is the number of agents. The extension of this approach to

stochastic control problems with common noise or to non convex problems may be challenging but interesting
topics for further work.

6.9 Appendix

Lemma 6.9.1. Let H be a Hilbert space and f : H → R be l.s.c. and convex. The function f has at most
quadratic growth if and only if its subgradient has linear growth.

Proof. Let the subgradient have linear growth, that is, ∥q∥H ⩽ c1(1 + ∥x∥H) whenever x ∈ H and q ∈ ∂f(x).
Then f(x) ⩽ f(0) + ⟨q, x⟩H ⩽ f(0) + ∥q∥H∥x∥H ⩽ c2(1 + ∥x∥2H), so that f has at most quadratic growth.

Conversely, let f have at most quadratic growth. Since f is convex, one has for all x ∈ H and q0 ∈ ∂f(0):

f(x) ⩾ f(0) + ⟨q0, x⟩H ⩾ −c3(1 + ∥x∥2H),

where c3 > 0 depends only on f(0) and q0. Then, using the growth assumption on f and the inequality above,
one gets for all x, y ∈ H and q ∈ ∂f(x):

c4(1 + ∥y∥2H) ⩾ f(y) ⩾ f(x) + ⟨q, y − x⟩H ⩾ −c3(1 + ∥x∥2H) + ⟨q, y − x⟩H .

Take y = x+ αq, with α ∈ (0, 1), we get

2c4(1 + ∥x∥2H + α2∥q∥2H) ⩾ −c3(1 + ∥x∥2H) + α∥q∥2H

so that (α− 2c4α
2)∥q∥2H ⩽ (2c4 + c3)(1 + ∥x∥2H). Take α = 1/(4c4), then α− 2c4α

2 = 1/(8c4) > 0 and then

∥q∥2H ⩽ 8c4(2c4 + c3)(1 + α∥x∥2H)

and the conclusion follows.
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7.1 Introduction

This paper focuses on a specific family of stochastic control problems called "large and aggregative". The
problem consists in optimizing the strategies of a large number of agents, in a random environment, while the
decisions of all the agents interact via the objective function because the latter depends on an "aggregative"
term as the sum of the decisions of all the agents. This type of problem occurs naturally in several fields
of application such as energy management [148], telecommunications [179], portfolio management [174], robot
coordination [58] among others.
To deal with the curse of dimensionality in such high dimensional stochastic control problems, methods based
on the value function, have been developed in the convex setting. For instance, Stochastic Dual Dynamic
Programming [209] relies on polyhedral approximations of the value function providing good performances
for medium sized problems with a number of agents N ⩽ 30. In our case, where the number of agents
is very large N ⩾ 1000, we look more specifically for decentralized solutions, allowing both to respect the
privacy of each agent and to reduce the complexity of the problem. In the particular setting, where controls
are bounded and strong convexity conditions are satisfied, [236] proposed an iterative stochastic algorithm
providing a decentralized solution to such problems. In the same spirit as the Dual Approximate Dynamic
Programming [59], this approach relies on a Lagrangian decomposition technique to obtain a decentralized
solution, but it takes advantage of a mean field approximation to ensure the validity of the approach when the
number of agents is sufficiently large.
This paper aims at extending the decentralized approach developed in [236] to a non-convex framework, with

149
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unbounded controls, allowing for more realistic dynamics ruling the evolution of each agent state. In particular,
we are interested in the aggregative control of Piecewise Deterministic Markov Processes (PDMPs for short),
where the state of each agent is modelled by a PDMP controlled by an unbounded jumps intensity. PDMPs
were introduced in [83] as a class of non-diffusion stochastic models, mixing random jumps and deterministic
dynamics between jumps. This kind of process is used to model a wide broad of phenomena or situations, such
as system reliability and maintenance [87, 274], oil production [275], biology [176, 225] etc. . . The approach
proposed in this paper results in a decentralized algorithm, where at each iteration, each agent is intended to
solve its own small dimensional optimal control problem of PDMP. This type of problem is well known and
has been studied through dynamic programming and related equations [16, 75, 86, 147, 264]. Due to the large
number of agents, the problem is formulated as a Mean Field Control (MFC for short) problem. Relying on the
law of large numbers, the MFC theory consists in controlling a representative agent of the population, where
the interaction between the agents is approximated by the interaction of this representative agent with the
probability distribution of its state or control [56].
This work is particularly motivated by demand-side management in power systems to help balancing between
energy production and consumption. This problem is indeed critical today, due to the increasing share of
uncontrollable energies (wind and solar) in the electricity generation mix, which requires to compensate the
uncontrollable character of the production by controlling the demand. Controlling the sum of the consumption
of each flexible consumer in order to balance the electrical system has already been investigated successfully
in the specific framework of Quadratic Kullback-Leibler control problems [44]. In [238] and [171], a mean field
assumption is also considered to control the charging of a large fleet of electrical vehicles (EVs), leading to the
optimal control of partial differential equation problems.
The novelty of the present paper is to extend the Lagrangian approach proposed in [236], to a particular non-
convex setting with unbounded controls by first establishing the existence of a saddle point and then ensuring
the convergence of the decentralized algorithm. The first contribution lies in the originality of the proof of a
saddle point existence which follows a completely different path than the one developed in [236]. In particular,
we make use of regularity results on the solution of the Hamilton Jacobi equation arising in optimal control
of PDMPs developed in [233] to show the existence of a saddle point of our Lagrangian problem. The second
contribution consists in proving that the Stochastic Uzawa Algorithm proposed in [236] is still providing a
converging sequence of controls, in this new setting involving the PDMP dynamics which violates the convexity
conditions originally exploited. Finally, an application to the smart charging of an electric vehicles fleet by
an aggregator illustrates the performance and the interest of the approach to coordinate the charge of a large
number of electric vehicles in order to track a given target power consumption profile for the whole population
of electrical vehicles.

The outline of this paper is as follows. In Section 7.2, we formulate the optimization problem, the assumptions
and the main results. Section 7.3 presents a dual approach of this problem. The Stochastic Uzawa algorithm
is presented in Section 7.4 and is proved to converge in this setting. Section 7.5 presents simulations of the
coordination of power consumption of a large fleet of electrical vehicles.

In the rest of this section we will list some frequently used notation.

Notation Let X be the state space defined by X := I × [0, 1], where I is a finite set, of cardinality d ∈ N∗.
The space D([0, T ], I) is the space of càdlàg functions from [0, T ] to I. The space C1(X ,R) denotes the set
of real-valued continuously differentiable functions defined on X . The set of Rd+-valued Lipschitz continuous
functions defined on [0, T ] × X is denoted by Lip([0, T ] × X ,Rd+). The space of Borel probability measures on
the space X is denoted by P(A). We recall the definition of the Wasserstein distance, denoted by W, on the
space P(X ):

W(µ, ρ) := sup {
∑
i∈I

∫ 1

0

φ(i, s)(µ(i, ds)− ρ(i, ds)) |φ is 1− Lipschitz from X to R}.

We recall that if a function φ is 1-Lipschitz continuous from X to R, then |φ(i, x)−φ(j, x)| ⩽ 1 for any i, j ∈ I
and x ∈ [0, 1]. The space C([0, T ],P(X )) is endowed with the distance W∥·∥∞ defined by:

W∥·∥∞(m1,m2) := sup
t∈[0,T ]

W(m1(t),m2(t)). (7.1.1)

Let H be an Hilbert space and F be a real valued function defined on H. The convex conjugate of F is denoted
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by F ∗ and is defined for any x ∈ H by F ∗(x) := sup
y∈H
⟨x, y⟩H − F (y).

7.2 Problem formulation and main results

We consider the time interval [0, T ] with T > 0 and a population ofN independent and identically distributed
processes, controlled by a central planner via a common feedback control α. The space of feedbacks, denoted
by A, is defined by

A := {α ∈ C0([0, T ]×X ,Rd+) : ∀i ∈ I, αi(·, i, ·) = 0}, (7.2.1)

and is endowed with the norm ∥ · ∥∞. The state of an agent, controlled by the jump intensity α, is given at
time t by Xα

t = (Y αt , Z
α
t ) with Y αt ∈ I and Zαt ∈ [0, 1]. In the smart charging application in Section 7.5, Y α

represents the charging mode of a vehicle, specifying its discrete charging rate (e.g. i = 0 for not charging, i = 1
for charging and i = −1 for discharging). The continuous variable Zα represents the state of charge (SoC for
short) of an EV, that is the ratio of energy charged into the battery w.r.t. the total capacity of the battery. We
say that the process Xα is a PDMP(b, α) controlled by a feedback control α, if Xα = (Y α, Zα) where Y α is a
jump process with values in I switching spontaneously, at jump times {Tαk }k∈N given by a Poisson process with
intensity α, while Zα follows a deterministic dynamics between two consecutive jumps Zαt = ϕTα

k ,Z
α
Tα
k

(Y αTα
k
, t)

for t ∈ [Tαk , T
α
k+1). For any (τ, t, j, z) ∈ [0, T ] × [τ, T ] × X , the flow ϕ is the unique solution of the ordinary

differential equation:
∂tϕτ,z(j, t) = b(j, ϕτ,z(j, t)) with ϕτ,z(j, τ) = z , (7.2.2)

where b is a function given. To be more specific, following the definition of a PDMP given in [96], knowing Tαk
and Xα

Tα
k
= (Y αTα

k
, ZαTα

k
), one obtains (Tαk+1, X

α
Tα
k+1

) as follows:

Tk+1,j := inf

{
t ⩾ Tk : Ek+1,j <

∫ t

Tk

αj(r,X
α
Tk
)dr

}
Tαk+1 := min

j∈{1,··· ,d}
Tk+1,j

Y αTα
k+1

= min
{
j ∈ {1, · · · , d} : Tk+1,j = Tαk+1

}
ZαTα

k+1
:= ϕY α

Tα
k

(ZαTα
k
, Tαk+1)

Xα
Tα
k+1

= (Y αTα
k+1

, ZαTα
k+1

) ,

where {Ek,j}k,j are independent random variables following an exponential distribution of parameter 1, inde-
pendent of Xα

0 . Indeed, the control process α = (αj)j∈I is such that αj(t, x) represents the intensity rate, at
time t ∈ [0, T ], of jumping into mode j ∈ I when coming from state x ∈ X . We initialize T0 = 0 and at time
t = 0, the law of the couple of random variables (Y α0 , Z

α
0 ) is given by m0 ∈ P(X ). The cost function JN for the

N -agents problem is defined for any α ∈ A by:

JN (α) := E

[∫ T

0

f

(
t,

1

N

N∑
n=1

p(t,Xn,α
t )

)
dt+

1

N

N∑
n=1

G(α,Xn,α)

]
, (7.2.3)

where {Xn,α}n∈{1,...,N} are supposed to be independent PDMP(b, α) driven by d independent exponential
variables. Indeed, for any n ∈ {1, . . . , N}, Xn,α is supposed to be controlled by the common feedback function
α ∈ A only depending on the agent state Xn. Besides, the function G is common to every agent and defined as
the the sum of a running and a terminal cost, such that for any x := (y, z) ∈ D([0, T ], I)×C0([0, T ], [0, 1]), by:

G(α, x) :=

∫ T

0

c(t, xt) +∑
j∈I

L(αj(t, xt))

 dt+ g(xT ).

From a practical point of view, the function f represents a coupling cost depending on the aggregate quantity
1

N

N∑
n=1

p(t,Xn,α
t ), and G the individual cost. In this paper, we focus on the mean field limit control problem,

corresponding to the problem with an infinite population. Thus, we introduce the function J defined, for any
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α ∈ A, by:

J(α) :=

∫ T

0

f (t,E[p(t,Xα
t )]) dt+ E [G(α,Xα)] , (7.2.4)

where Xα is a PDMP(b, α). This paper is dedicated to the following problem:

min
α∈A

J(α). (7.2.5)

As the cost function (7.2.4) is nonlinear w.r.t. the expectation term, E
[
p(t,Xα

t )
]
, via the coupling cost f ,

Problem (7.2.5) goes beyond the scope of optimal control of PDMP. We propose to numerically solve Problem
(7.2.5) by applying the Stochastic Uzawa Algorithm 3, that is detailed in Section 7.4. This algorithm is
introduced in [236] and is a direct application of the stochastic gradient descent algorithm [119]. The main
result of this paper, stated in Theorem 7.2.1, ensures the convergence of the Stochastic Uzawa Algorithm 3 to
the solution of Problem (7.2.5).

Throughout the paper, we assume the following:

General assumptions

1. The vector field b ∈ C1(X ,R) is assumed to vanish at the boundary: b(j, 0) = b(j, 1) = 0 for any j ∈ I.
2. The function p ∈ C1([0, T ] × X ,R) and f : [0, T ] × R → R is a Carathéodory function being lower semi-

continuous (l.s.c. for short), strictly convex and differentiable w.r.t. the second variable. In addition,
there exists a constant Cf > 0 such that, for any (t, x) ∈ [0, T ]× R,

x2

2Cf
− Cf ⩽ f(t, x) ⩽ Cf

x2

2
+ Cf . (7.2.6)

3. For any i ∈ I, it is assumed that ci ∈ C1([0, T ]× [0, 1]) and gi ∈ C1([0, 1]).

4. The function L : R→ R̄ is convex and defined by:

L(x) :=

 l(x) if x > 0,
0 if x = 0,
+∞ otherwise,

where l ∈ C1(R+,R+) is an increasing strongly convex function bounded from above by a quadratic
function. More explicitly, there exists C > 0 such that for any x ∈ R+:

x2

C
− C ⩽ l(x) ⩽ C(x2 + 1),

where the first inequality is due to the strong convexity of l. We denote by H be the convex conjugate of
L. Note that by Assumption 4, H is non-decreasing, non-negative, and H ′ is Lipschitz continuous on R.

Remark 7.2.1. The main role of Assumption 1 is to ensure that the flow defined in (7.2.2) exists and takes
values in [0, 1]. Assumption 2 ensures that

∫ T
0
f (t,E[p(t,Xα

t )]) dt in (7.2.4) is well defined for any α ∈ A. The
continuity of the map α 7→ E[G(α,Xα)] is an automatic consequence of the properties of c, g and L given in
Assumptions 3 and 4.

Remark 7.2.2. The boundary condition on b may seem restrictive. However, if supp(m0) ⊂ I × (0, 1) and the
vector field b is such that, for any i ∈ I, the sign of b(i, ·) is constant, b(i, 0) ⩾ 0 and b(i, 1) ⩽ 0, then there exists
ε > 0 such that P(Zn,αt ∈ (ε, 1− ε)) = 1 for any n ∈ {1, . . . , N}, any α ∈ A and any t ∈ [0, T ]. Therefore, it is
possible to approximate such a vector field b by a smooth function, vanishing at the boundary without modifying
the trajectory of Zn,αt .

The main results of the paper are summarized in the following theorem.

Theorem 7.2.1. Problem 7.2.5 has a solution. Let {αk}k∈N be a sequence in A generated by Algorithm 3 (line
5), then the following assertions hold

(i) The sequence {αk}k∈N converges a.s. to an element of argmin
α∈A

J(α) w.r.t. the norm ∥ · ∥∞.
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(ii) The sequence {J(αk)}k∈N converges a.s. to min
α∈A

J(α).

This theorem can not be obtained by a direct application of [236], which relies on additional assumptions,
that are not verified in the present framework, which involves unbounded controls and PDMP dynamics. The
proof of Theorem 7.2.1 is given in Section 7.4. Before, we introduce and analyze in the next section a dual
problem proved to be equivalent, in some sense, to Problem 7.2.5.

7.3 Dual approach

In the same vein as [236], a Lagrangian decomposition approach is adopted to obtain a decentralized algo-
rithm. Contrary to [236], the specific assumptions of convexity, that ensure the absence of duality gap and the
convergence of the Stochastic Uzawa Algorithm, are not satisfied here. In Sections 7.3 and 7.4, we propose new
theoretical arguments allowing to demonstrate the validity of the approach proposed in [236] in this specific
framework of control of PDMP.

Let F be defined for any v ∈ L2(0, T ) by:

F (v) :=

∫ T

0

f(t, v(t))dt .

Owing to the properties of f , one deduces that function F is l.s.c., strictly convex, differentiable with a Lipschitz
continuous gradient, and it has at least quadratic growth.

Lemma 7.3.1. The problem 
min

α∈A,v∈L2(0,T )
J̄(α, v),

J̄(α, v) := F (v) + E [G(α,Xα)] ,

s.t E[p(t,Xα
t )]− v(t) = 0 a.e on [0, T ] ,

(7.3.1)

is equivalent to Problem (7.2.5).

Proof. The fact that p ∈ C1([0, T ]×X ,R) implies that the map t 7→ E[p(t,Xα
t )] is in L2(0, T ). The equivalence

between the two problems then follows from the definitions of J and J̄ .

Let us introduce the Lagrangian L : A× L2(0, T )× L2(0, T )→ R:

L(α, v, λ) := L1(α, λ) + L2(v, λ) , (7.3.2)

where

L1(α, λ) := G(α,Xα) +

∫ T

0

E[p(t,Xα
t )]λ(t)dt ,

L2(v, λ) := F (v)−
∫ T

0

v(t)λ(t)dt ,

and the associated dual function W : L2(0, T )→ R:

W(λ) := inf
α∈A
L1(α, λ) + inf

v∈L2(0,T )
L2(v, λ). (7.3.3)

The dual problem associated with (7.3.1) consists of the following maximization problem:

max
λ∈L2(0,T )

W(λ). (7.3.4)

The following lemma gives the existence of a unique solution of the dual problem (7.3.4). It is derived from the
assumptions on F and G.
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Lemma 7.3.2. There exists a unique λ̄ ∈ L2(0, T ) such that λ̄ = argmax
λ∈L2(0,T )

W(λ).

Proof. Since F has a Lipschitz continuous gradient, the function λ 7→ F ∗(λ) := sup
v∈L2(0,T )

⟨v, λ⟩−F (v) is strongly

convex and l.s.c. [141], and so is the function λ 7→ − inf
v∈L2(0,T )

L2(v, λ). Similarly, for any λ ∈ L2(0, T ), the map

λ 7→ − inf
α∈A
L1(α, λ) is convex and l.s.c.. One deduces that −W is strongly convex and l.s.c. on L2(0, T ). Thus,

problem (7.3.4) has a unique solution.

The below proposition is a key result, that enables to show the convergence of a sequence {αk}k generated
by Algorithm 7.4 defined in the next section, to a solution of Problem (7.2.5).

Theorem 7.3.1. For any λ ∈ L2(0, T ), argmin
α∈A

L1(α, λ) is not empty. In addition, there exists a selection

λ 7→ α[λ] ∈ argmin
α∈A

L1(α, λ) , (7.3.5)

such that the map L2(0, T ) ∋ λ 7→ α[λ] ∈ A is Lipschitz continuous on any bounded subset of L2(0, T ).

The selection α[λ] ∈ argmin
α∈A

L1(α, λ) is first specified for any λ ∈ L∞(0, T ) in Lemma 7.3.4, and then

extended to any λ ∈ L2(0, T ) in the proof of Theorem 7.3.1. Theorem 7.3.1 allows to prove that the dual
function W is Gâteaux differentiable in L2(0, T ), that is the main argument of the proof of Theorem 7.3.2.
Theorem 7.3.2 gives the existence of a saddle point of the Lagrangian function L. This result provides a
solution of Problem (7.2.5).

Theorem 7.3.2. There is no duality gap associated with Problem (7.3.4), i.e.,

max
λ∈L2(0,T )

W(λ) = min
α∈A,v∈L2(0,T )

J̄(α, v).

Besides, argmin
α∈A

L1(α, λ̄) and argmin
v∈L2(0,T )

L2(v, λ̄) are not empty and, for any ᾱ ∈ argmin
α∈A

L1(α, λ̄) and v̄ ∈

argmin
v∈L2(0,T )

L2(v, λ̄), ((ᾱ, v̄), λ̄) is a saddle point of the Lagrangian L and ᾱ is a solution of Problem (7.2.5).

The main argument for the proof of Theorem 7.3.2 is that the map λ 7→ W(λ) is Gâteaux differentiable
in L2(0, T ). We show that λ 7→ inf

v∈L2(0,T )
L2(v, λ) and λ 7→ inf

α∈A
L1(α, λ) are both differentiable. The second

result is more difficult to prove. Different intermediary results are needed. First, properties of the sub problem
w.r.t. the variable v in the dual problem (7.3.4) are given in Lemma 7.3.3. Then, properties of the sub problem
w.r.t. the variable α are proved in Lemma 7.3.4 in the special case where λ ∈ L∞(0, T ). These properties are
extended in Theorem 7.3.1 to the case where λ ∈ L2(0, T ), with the help of Lemma 7.3.5 and of Lemma 7.6.1 in
Appendix 7.6. Finally, Lemma 7.3.6 shows that the map λ 7→ inf

α∈A
L1(α, λ) is Gâteaux differentiable in L2(0, T ).

These lemmas are stated and proved below.

7.3.1 Proof of Theorem 7.3.1

The next Lemma shows that, for any λ ∈ L2(0, T ), there exists a unique solution v[λ] of the sub problem
and that the map λ 7→ L2(v[λ], λ) is Gâteaux differentiable.

Lemma 7.3.3.
(i) For any λ ∈ L2(0, T ), there exists a unique v[λ] satisfying v[λ] = argmin

v∈L2(0,T )

L2(v, λ).

(ii) The map λ 7→ min
v∈L2(0,T )

L2(v, λ) admits a Gâteaux derivative λ 7→ DL2(v[λ], λ)(·) in L2(0, T ), which

satisfies that, for any µ ∈ L2(0, T ):

DL2(v[λ], λ)(µ) = −
∫ T

0

v[λ](τ)µ(τ)dτ. (7.3.6)
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Proof. (i) Since the map v 7→ F (v) is l.s.c., striclty convex with at least quadratic growth, one can deduce the
existence and uniqueness of v[λ] := argmin

v∈L2(0,T )

L2(v, λ).

(ii) Since the function F is proper, strictly convex and differentiable, classical results from convex analysis
give that its convex conjugate F ∗ is differentiable [141]. Therefore, the map λ 7→ L2(v[λ], λ) is diffenrentiable
on L2(0, T ), with derivative λ 7→ v[λ]

Regularity results about α[λ], defined in (7.3.5), are stated in the next Lemma for any λ ∈ L∞(0, T ).

Lemma 7.3.4. Let λ ∈ L∞(0, T ). Then, one has:

(i) The value function u associated with the stochastic control problem inf
α∈A
L1(α, λ) is the unique solution of

the associated Hamilton-Jacobi-Bellman equation (in the sense of [147, Theorem 3.4]) on [0, T ]×I× [0, 1]:

−∂tu(t, i, z)− b(i, z)∂zu(t, i, z)− c(t, i, z)− λ(t)p(t, i, z)
= inf

(ai,j)j⩾0

∑
j∈I,j ̸=i

L(ai,j) + (u(t, j, z)− u(t, i, z))ai,j , (7.3.7)

with the terminal condition: u(T, i, z) = g(i, z) for any (i, z) ∈ X .

(ii) We set the selection α[λ] ∈ inf
α∈A
L1(α, λ) to be given, for any i, j ∈ I and (t, z) ∈ [0, T ]× [0, 1], by,

α[λ]j(t, i, z) = H ′(u(t, i, z)− u(t, j, z)).
Then, the function α[λ] is in Lip([0, T ]×X ,Rd+).

(iii) The function L∞(0, T ) ∋ λ 7→ α[λ] ∈ A is Lipschitz continuous, w.r.t. the norm ∥ · ∥2, on any bounded
subset of L∞(0, T ).

Remark 7.3.1. The proof of Lemma 7.3.4 essentially relies on [147, Theorem 3.4]. The assumptions needed
for the application of this theorem require bounded running cost in the minimization problem minα∈A L1(α, λ).
Thus, we only consider λ ∈ L∞(0, T ) and not in L2(0, T ) in the statement of Lemma 7.3.4. The extension of
the results of Lemma 7.3.4 for λ ∈ L2(0, T ) is stated in Theorem 7.3.1.

Proof. (i) The problem inf
α∈A
L1(α, λ) is a stochastic control problem of PDMP. Let u be the value function of

this problem, defined on [0, T ]× I × [0, 1] by:

u(t, i, z) := inf
α∈A

∫ T

t

∑
j∈I,j ̸=i

E
[
H
(
αj(τ,X

α
τ )
) ∣∣Xα

t = (i, z)
]
dτ

+

∫ T

t

E
[
c(τ,Xα

τ ) + λ(τ)p(τ,Xα
τ )
] ∣∣Xα

t = (i, z)] dτ

+E
[
g(Xα

T )
∣∣Xα

t = (i, z)
]

for a.e. (t, z) ∈ (0, T )× (0, 1).

By [147, Theorem 3.4], the value function u is the unique function satisfying for a.e. (t, z, i) ∈ (0, T )× I× (0, 1):

lim
h→0

u(t, i, z)− u(t+ h, i, ϕt,z(i, t+ h))

h
= c(t, i, z) + p(t, i, z)λ(t)

+ inf
(ai,j)j⩾0

∑
j∈I,j ̸=i

L(ai,j) + (u(t, j, z)− u(t, i, z))ai,j ,

with u(T, i, z) = g(i, z) on X . By [147] and the definition of ϕ in (7.2.2), u satisfies for any i ∈ I and a.e.
(t, z) ∈ [0, T ]× [0, 1]:

lim
h→0

u(t, i, z)− u(t+ h, i, ϕt,z(i, t+ h))

h
= −(∂tu(t, i, z) + b(i, z)∂zu(t, i, z)).

The conclusion follows from the two previous equalities.
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(ii) By taking the infimum on the r.h.s. of the equation (7.3.7) and recalling that H is the convex conjugate
of L, one obtains that u satisfies for a.e. (t, z, i) ∈ (0, T )× I × (0, 1):

−∂tu(t, i, z)− b(i, z)∂zu(t, i, z)− ci(t, i, z)− λ(t)p(t, i, z) = −
∑

j∈I,j ̸=i

H
(
u(t, i, z)− u(t, j, z)

)
, (7.3.8)

with u(T, i, z) = g(i, z) on X and where x+ := max(0, x). By [233], since λ ∈ L∞ and p ∈ C1([0, T ] × X ,R),
there exists a unique function ū which satisfies for a.e. t ∈ [0, T ] and for any (i, z) ∈ X :

ū(t, i, z) =

∫ T

t

∑
j∈I
−H

(
ū(τ, i, ϕt,z(i, τ))− ū(τ, j, ϕt,z(i, τ))

)
dτ

+

∫ T

t

c(τ, i, ϕt,z(i, τ)) + λ(τ)p(τ, i, ϕt,z(i, τ))dτ + g(i, ϕt,z(i, T )).

Since ū is in Lip([0, T ] × X ), the set of real valued Lipschitz continuous functions defined on [0, T ] × X , ū
satisfies, for a.e. (t, i, z) ∈ [0, T ]×X , the equation (7.3.8). Therefore, ū is the value function associated with the
stochastic control problem inf

α∈A
L1(α, λ). It comes that u = ū. Setting, for any (t, z, i, j) ∈ [0, T ]× [0, 1]× I × I,

α[λ]j(t, i, z) := argmin
a⩾0

L(a) + (u(t, j, z)− u(t, i, z))a = H ′(u(t, i, z)− u(t, j, z)), (7.3.9)

by [147, Theorem 3.4], α[λ] is in argmin
α∈A

L1(α, λ). Since u ∈ Lip([0, T ]×X ), α[λ] is in Lip([0, T ]×X ,Rd+).

(iii) Let k > 0 and λ, µ ∈ L∞(0, T ) be such that ∥λ∥2 ⩽ k and ∥µ∥2 ⩽ k. Then, by the same arguments as
in the proof of [233, Lemma 4.5], there exists a constant K(k, T ) > 0 such that for any (t, i, j, z) ∈ [0, T ]× I ×
I × [0, 1]:

|αj [λ](t, i, s)− αj [µ](t, i, s)| ⩽ K(k, T )∥p∥∞∥λ− µ∥2.

The result follows from taking the supremum over [0, T ]×X of the l.h.s. of the previous inequality.

Lemma 7.3.5 enables to show the continuity of the map (α, λ) 7→ L1(α, λ).

Lemma 7.3.5. The map (α, λ) 7→ L1(α, λ) is continuous on Lip([0, T ]×X ,Rd+)×L2(0, T ), where Lip([0, T ]×
X ,Rd+)× L2(0, T ) is endowed with the norm (α, λ) 7→ ∥α∥∞ + ∥λ∥2.

Proof. Recalling the expression of H, one has for any (α, λ) ∈ Lip([0, T ]×X ,Rd+)× L2(0, T ):

L1(α, λ) =

∫ T

0

∫ 1

0

∑
i∈I

c(t, i, z)mα(t, i, dz)dt+

∫ T

0

∫ 1

0

∑
i∈I

λ(t)p(t, i, z)mα(t, i, dz)dt

+

∫ T

0

∫ 1

0

∑
i,j∈I

L(αj(t, i, z))m
α(t, i, dz)dt+

∫ 1

0

∑
i∈I

g(i, z)mα(T, i, dz).

Let {(αn, λn)}n be a sequence in Lip([0, T ]×X ,Rd+)×L2(0, T ), converging to (α, λ). The convergence of {mαk

}k
to mα, w.r.t. the distance W∥·∥∞ , is derived from Lemma 7.6.1 in Appendix 7.6. Thus, by the regularity of c, g, p
and L in Assumptions 2-4, the maps t 7→

∑
i∈I
∫ 1

0
p(t, i, z)mαn

(t, i, dz), t 7→
∑
i∈I
∫ 1

0
c(t, i, z)mαn

(t, i, dz), t 7→∑
i∈I
∫ 1

0
L(αnj (t, i, z))m

αn

(t, i, dz) converge, w.r.t. the norm ∥ · ∥∞, when n tends to infinity, respectively to t 7→∑
i∈I
∫ 1

0
p(t, i, z)mα(t, i, dz), t 7→

∑
i∈I
∫ 1

0
c(t, i, z)mα(t, i, dz), t 7→

∑
i∈I
∫ 1

0
L(αj(t, i, z))m

α(t, i, dz). Similarly∑
i∈I

∫ 1

0

g(i, z)mαn

(T, i, dz) converges when n tends to infinity to
∑
i∈I

∫ 1

0

g(i, z)mα(T, i, dz). The dominated

convergence theorem and the convergence of {λk}k to λ w.r.t. the norm ∥ · ∥2 achieves the proof.

We are now ready to prove Theorem 7.3.1. The results obtained in Lemma 7.3.4 for any λ ∈ L∞(0, T ) can
now be extended to any λ ∈ L2(0, T ).

Proof of Theorem 7.3.1. Let λ ∈ L2(0, T ). Since L∞(0, T ) is dense in L2(0, T ), one can extract a sequence
{λk}k in L∞(0, T ) converging to λ ∈ L2(0, T ).
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By [233, Remark 4.5], for any k ∈ N∗, the solution uk of (7.3.7) associated with λk is such that upper bounds
on ∥uk∥∞ and ∥∂suk∥∞ depend on the data of the problem and on ∥λk∥2. Since {λk}k is converging w.r.t. the
norm L2(0, T ), the sequence

{
∥λk∥2}k is uniformly bounded. Thus, by the Lipschitz continuity of the map H ′,

guaranteed by Assumption 4, and by equality (7.3.9), the sequence {α[λk]}k is uniformly bounded and uniformly
Lipschitz. By the Ascoli-Arzela Theorem, there exists α̂ ∈ A such that {α[λk]}k uniformly converges, up to a
subsequence, to α̂ ∈ A w.r.t. the norm ∥ · ∥∞. In addition, since {α[λk]}k is uniformly Lipschitz continuous, α̂
is also Lipschitz continuous on [0, T ]×X . Let α ∈ A, by the definition of λ 7→ α[λ], one has, for any k ∈ N,

0 ⩽ L1(α, λ
k)− L1(α[λ

k], λk).

According to Lemma 7.3.5, (α, λ) 7→ L1(α, λ) is continuous on Lip([0, T ] × X ,Rd+) × L2(0, T ). Therefore by
taking the limit k →∞ in the previous inequality, one gets:

0 ⩽ L1(α, λ)− L1(α̂, λ).

Thus, α̂ ∈ argmin
α∈A

L1(α, λ). Defining α[λ] := α̂ and using the uniform convergence of {α[λk]}k to α[λ], we

deduce that λ 7→ α[λ] is continuous from L2(0, T ) to A. Since L∞(0, T ) is dense in L2(0, T ) and λ 7→ α[λ] is
continuous in L2(0, T ), the Lipschitz continuity of λ 7→ α[λ] on any bounded subset of L2(0, T ) is derived from
Lemma 7.3.4.(iii).

7.3.2 Proof of Theorem 7.3.2

Note that rewriting Problem (7.2.5) w.r.t. to the distribution of the states, one can prove Theorem 7.3.2 by
using a change of variable, as it has been done in [233] for a similar problem. To avoid additional notations, we
have preferred to prove Theorem 7.3.2 by means of Theorem 7.3.1.

The next lemma states that the map λ 7→ inf
α∈A
L1(α, λ) is Gâteaux differentiable in L2(0, T ).

Lemma 7.3.6. The map λ 7→ min
α∈A
L1(α, λ) admits a Gâteaux derivative λ 7→ DL1(α[λ], λ)(·) in L2(0, T ), such

that, for any µ ∈ L2(0, T ):

DL1(α[λ], λ)(µ) =

∫ T

0

E
[
p(τ,Xα[λ]

τ )
]
µ(τ)dτ.

Proof. For any λ ∈ L2(0, T ), we recall that the definition of the Gâteaux derivative λ 7→ DL1(α[λ], λ)(·) in the
direction µ ∈ L2(0, T ), if it exists, is:

DL1(α[λ], λ)(µ) := lim
h→0

L1(α[λ+ hµ], λ+ hµ)− L1(α[λ], λ)

h
.

For any h ∈ [0, T ], we have:∫ T

0

E
[
p(τ,Xα[λ+hµ]

τ )
]
)µ(τ)dτ =

L1(α[λ+ hµ], λ+ hµ)− L1(α[λ+ hµ], λ)

h

⩽
L1(α[λ+ hµ], λ+ hµ)− L1(α[λ], λ)

h

⩽
L1(α[λ], λ+ hµ)− L1(α[λ], λ)

h

=

∫ T

0

E
[
p(τ,Xα[λ]

τ )
]
)µ(τ)dτ.

(7.3.10)

Since lim
h→0

λ+hµ = λ in L2(0, T ), it turns out from Theorem 7.3.1 that lim
h→0

α[λ+hµ] = α[λ] ∈ Lip([0, T ]×X ,Rd+)
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w.r.t. the norm ∥ · ∥∞. Since p ∈ C1([0, T ]×X ,R), one deduces by Lemma 7.6.1 in Appendix 7.6:

lim
h→0

∫ T

0

E
[
p(τ,Xα[λ+hµ]

τ )
]
µ(τ)dτ = lim

h→0

∫ T

0

∑
i∈I

∫ 1

0

p(τ, i, z)mα[λ+hµ](τ, i, dz)µ(τ)dτ

=

∫ T

0

∑
i∈I

∫ 1

0

p(τ, i, z)mα[λ](τ, i, dz)µ(τ)dτ

=

∫ T

0

E
[
p(τ,Xα[λ]

τ )
]
µ(τ)dτ.

The conclusion follows by taking the limit h→ 0 in (7.3.10).

We now turn to the proof of Theorem 7.3.2.

Proof of Theorem 7.3.2. According to Lemma 7.3.3.(ii) and Lemma 7.3.6, one has that W is Gâteaux differen-
tiable in L2(0, T ). For any λ ∈ L2(0, T ), the Gâteaux differential of W at λ is denoted by DW(λ)(·) and is
given in the direction µ ∈ L2(0, T ) by:

DW(λ)(µ) =

∫ T

0

(
E
[
p(τ,Xα[λ]

τ )
]
− v[λ](τ)

)
µ(τ)dτ. (7.3.11)

By the definition of λ̄ given in Lemma 7.3.2, it results that 0 ∈ ∂(−W(λ̄)). Since −W is convex and Gâteaux
differentiable, its sub-differential is reduced to a singleton and is equal to −DW. One has, for any µ ∈ L2(0, T ),
by the previous equality:∫ T

0

(
E
[
p(τ,Xα[λ̄]

τ )
]
− v[λ̄](τ)

)
µ(τ)dτ = ⟨∂(−W(λ̄)), µ⟩ = 0.

Therefore, one has for a.e. t ∈ [0, T ]:

E
[
p(τ,X

α[λ̄]
t )

]
− v[λ̄](t) = 0.

By the previous equality, one has L(α[λ̄], v[λ̄], λ̄) = L(α[λ̄], v[λ̄], λ) for any λ ∈ L2(0, T ) and, for any α ∈ A and
v ∈ L2(0, T ), satisfying E[p(t,Xα

t )]− v(t) = 0 a.e on [0, T ], one has:

J(α[λ̄]) = J̄(α[λ̄], v[λ̄]) = L(α[λ̄], v[λ̄], λ̄) ⩽ L(α, v, λ̄) = J̄(α, v) = J(α).

7.4 Stochastic Uzawa Algorithm

While the existence of a unique solution λ̄ of the dual problem (7.3.4) is established in Lemma 7.3.2, we
propose in this section an iterative algorithm converging to λ̄. This algorithm is directly derived from the
gradient descent in Hilbert space [119], and has been introduced in [236] to solve dual problems. This algorithm
is an adaptation of the Uzawa Algorithm in stochastic optimization settings. The sub gradient of the opposite
of the dual function W is estimated by Monte Carlo simulations. Convexity assumptions introduced in [236]
are not satisfied here.

We consider a sequence {ρk}k satisfying
∞∑
k=0

ρk =∞ and
∞∑
k=0

ρ2k <∞ to ensure the convergence. Typically,

consider the sequence defined by ρk =
a

b+ k
with a > 0 and b > 0 chosen empirically to accelerate the

convergence.
The next Lemma shows that it is possible at any iteration k to compute α[λk] defined in line 5 of the

Algorithm 3.

Lemma 7.4.1. For any k ∈ N, λk ∈ L∞(0, T ) a.s..
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Algorithm 3 Stochastic Uzawa

1: Initialization λ0 ∈ L∞(0, T ), set {ρk} and M ∈ N∗

2: k ← 0.
3: for k = 0, 1, . . . do
4: vk ← v[λk] where v[λk] is defined in Lemma 7.3.3.
5: αk ← α[λk] where α[λk] is defined in Lemma 7.3.4.
6: Generate M independent states realizations (X1,αk

, . . . , XM,αk

) independent of previous iterations sim-
ulations.

7: Uk+1 ← vk − 1

M

M∑
j=1

p(·, Xj,αk

· ) .

8: λk+1 ← λk + ρk U
k+1 .

Proof. The proof is done by induction. For k = 0, λ0 is initialized as an element of L∞(0, T ). Assume now that

λk ∈ L∞(0, T ) for an integer k. Since p ∈ C1([0, T ] × X ,R), one has that a.s.
1

M

M∑
j=1

p(·, Xj,αk

· ) ∈ L∞(0, T ).

We show now that v[λk] ∈ L∞(0, T ). Since f is l.s.c., it is a normal integrand. By the exchange property [222,
Theorem 14.60], one has:

inf
v∈L2(0,T )

∫ T

0

f(t, v(t))− v(t)λk(t)dt =
∫ T

0

inf
v∈R

f(t, v)− vλk(t)dt.

and for a.e. t ∈ [0, T ]:
v[λk](t) ∈ argmin

v∈R
f(t, v)− vλk(t). (7.4.1)

For any t ∈ [0, T ], f∗(t, ·) denotes the convex conjugate of f(t, ·). Since for any t ∈ [0, T ], f(t, ·) is strictly
convex and by inequality (7.2.6) has at most quadratic growth, f∗(t, ·) is diferentiable, with linear growth [236,
Lemma A.1]. Then, there exists a constant C > 0, such that for any t ∈ [0, T ] one has:

|∇f∗(t, λ(t))| ⩽ C
(
|λ(t)|+ 1

)
,

where ∇f∗(t, ·) is the derivative of z 7→ f∗(t, z). By (7.4.1), one has, for a.e. t ∈ [0, T ], that v[λk](t) =
∇f∗(t, λ(t)). By previous inequality, one deduces that

∥v[λk]∥∞ ⩽ C
(
∥λk∥∞ + 1

)
. (7.4.2)

The conclusion follows from the definition of λk+1 at line 8 of Algorithm 3, previous inequality and the fact

that a.s.
1

M

M∑
j=1

p(·, Xj,αk

· ) ∈ L∞(0, T ).

The next Lemma provides an estimate on the norm of the gradient of W, that is crucial to show the
convergence of Algorithm 3.

Lemma 7.4.2. There exists C > 0 such that the sequence {Uk+1}k generated by Algorithm 3 (line 7) satisfies,
for any k ∈ N,

E
[
∥Uk+1∥2

]
⩽ C

(
∥λk∥2 + 1

)
.

Proof. By Assumption 2, p is in C1([0, T ] × X ,R) thus, there exists C > 0, such that, for any k ∈ N and
j ∈ {1, . . . ,M}:

E
[
∥p(·, Xj,αk

· )∥2
]
⩽ C.

The conclusion follows from previous inequality, inequality (7.4.2) in the proof of Lemma 7.4.1 and the definition
of Uk+1 at line 7 of Algorithm 3.

The convergence of Algorithm 3 is stated in the next lemma.
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Lemma 7.4.3. The sequence {λk}k, generated by Algorithm 3, converges to λ̄ a.s. in L2(0, T ).

Proof. Since W is concave and Gateau differentiable (proof of Theorem 7.3.2), by Lemma 7.4.2, the proof is a
simple adaptation of the one in [119, Theorem 3.6], as it has been done in [236].

Before to give the proof of the main result of this paper, we need the following regularity result on the
function J .

Lemma 7.4.4. The map J defined in (7.2.4) is continuous on Lip([0, T ]×X ,Rd+).

Proof. By the definition of mα, the map J can be rewritten as:

J(α) =

∫ T

0

f
(
t,
∑
i∈I

∫ 1

0

p(t, i, z)mα(t, i, dz)
)
dt+

∫ T

0

∫ 1

0

∑
i∈I

c(t, i, z)mα(t, i, dz)dt

+

∫ T

0

∫ 1

0

∑
i,j∈I

L(αj(t, i, z))m
α(t, i, dz)dt+

∫ 1

0

∑
i∈I

g(i, z)mα(T, i, dz).

By the regularity of the functions p, c, g and L in Assumptions 2-4 and the continuity of the map α 7→ mα on
Lip([0, T ]×X ,Rd+) stated in Lemma 7.6.1 in Appendix 7.6, one obtains the continuity of J over Lip([0, T ]×X ,Rd+)
w.r.t. the norm ∥ · ∥∞.

We can now prove Theorem 7.2.1.

Proof of Theorem7.2.1. This is a direct consequence of Theorem 7.3.2.
(i) This is a direct consequence of Lemma 7.4.3 and Theorem 7.3.1.
(ii)This is a direct consequence of Theorem 7.2.1.(i) and Lemma 7.4.4.

7.5 Simulations

This section illustrates the results with an example of smart charging. In this use case, the discrete variable
taking values in I represents the charging mode and the continuous variable taking value in [0, 1] represents the
state of charge (SoC) of electrical vehicles (EV) relatively to the maximum energy capacity of the battery.

7.5.1 Definition of the use Case

We consider a large fleet of EVs controlled by a central planner during their charging period [0, T ]. The
goal of the central planner is to provide ancillary services to the transmission grid by controlling the aggregate
consumption profile of the fleet on the time horizon [0, T ]. More specifically, the central planner aims at making
the consumption profile of the fleet to be close to a given profile r = (rt)0⩽t⩽T , supposed to be known on the
whole period [0, T ]. In our simulation we compare two situations. In the first case known as V1G, it is assumed
that the vehicle batteries can only draw electricity from the grid, then the set of charging modes is I = {0, 1},
where 0 stands for idle mode and 1 for charging. In the second case known as V2G, it is assumed that the
batteries can either draw or inject electricity into the grid, then the charging modes are I = {−1, 0, 1}, where
−1 corresponds to injection mode. In each situation, each mode i ∈ I is characterized by its charging rate b(i, ·)
such that

— i = −1 corresponds to a V2G mode with b(−1, z) = −a
4

for z ⩾ 0.25 and b(−1, z) = −az for z ⩽ 0.25,

with a =
2

5
.

— i = 0 corresponds to a non-charging mode with b(0, z) = 0,

— i = 1 corresponds to a charging mode with b(1, z) =
a

4
for z ⩽ 0.75 and b(1, z) = a(1 − z) for z ⩾ 0.75,

with a =
2

5
,
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Figure 7.1 – Representation of the SoC of 10 PDMP
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Figure 7.2 – Decomposition of the cost function

The charging rate b of the batteries has been designed based on industrial data [106]. The state of each
EV, controlled by α, is represented by a PDMP Xα = (Y α, Zα) with Y αt , the charging mode and Zαt , the
SoC of the vehicle at time t. We assume that the power consumption of a vehicle at state (i, z) ∈ X is
equal to its instantaneous charging rate b(i, z). At time t = 0, Y α0 equals 0 or 1 with probability 1/2, while
Zα0 = min(1, |z0|+ 0.15) where z0 ∼ N (0, 0.2).

To ensure customer satisfaction, the final cost g(i, z) := 30× (1− e5(z−0.75))+ penalizes vehicles with a final
SoC z lower than 75%. As previously stated, high values of α are penalized through the cost α2/2 in order to
avoid high frequencies of jumps damaging the batteries. For any t ∈ [0, T ],

c(t, i, z) = 0
p(t, i, z) := b(i, z)

l(a) :=
a2

2

F (v) := κ

∫ T

0

(v(t)− r(t))2dt

with κ = 1000 in order to ensure that the overall consumption is close to the profile r.
The target profile r is a slight modification of the nominal behaviour of the fleet of EVs (without control),

with the same energy consumed over the fixed time horizon [0, T ]. The nominal behaviour corresponds to the
situation where the EVs are not required to fit the target profile and seek only to satisfy their own comfort
(namely F (v) = 0). The idea is to define a realistic target profile so that it is possible for the fleet to follow this
profile while satisfying their charging needs. We consider a population of N = 105 EVs. The optimal control of
Problem (7.2.5) is computed using Algorithm 3.

7.5.2 Algorithm parameters

For the implementation of the algorithm, the line 5 is computed by discretization of the Hamilton Jacobi-
Bellman-Equation III.5 associated with α[λ] defined in III.6 with Nt = 1000 regular points of time and Ns = 400
regular points of SoC. The Lagrangian multipliers λk are obtained after k = 1000 iterations and with M = 1000
realizations and are displayed in Figure 7.4. The initial multiplier is λ0 = 0 and the stepsize sequence is such

that ρk = min(30,
500

1 + k
). For each multiplier λ, the associated optimal strategy α[λ] is computed.

7.5.3 Results

Four periods on Figure 7.3 are distinguished, depending on whether the target profile is above or below the
nominal consumption. The reference profile is displayed in green. EVs are encouraged to consume more than
the nominal consumption during periods P1 and P3, and to consume less during periods P2 and P4. First,
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Figure 7.6 – Evolution of the proportion of vehicles for
V2G

we observe that both V1G (blue line) and V2G (red line) consumptions are close to the profile r (green line).
The main difference lies in P4, where the possibility for the EVs to perform V2G allows the fleet consumption
to stay closer to the target profile. As expected, the profile is better tracked with the V2G mode, due to the
additional degree of liberty. On Figure 7.6 one can observe that V2G is used during periods P2 and P4, when
the profile r is lower than the nominal consumption. Ten trajectories of SoC, generated in the V2G use case, are
represented in Figure 7.1. The green line is an example of a PDMP switching from mode 0 to mode 1 around
t = 0.2h, from mode 1 to mode -1 around t = 2.6h and then from mode -1 to mode 1 around t = 4h. The initial
and final distribution of the SoC of the fleet are displayed on Figures 7.7 and 7.8. While the initial distribution
is the same for both scenarios, one can observe that their final distribution are very closed, and that very few
EVs have a SoC lower than 0.75% in both cases. Thus, the comfort of each agent is weakly impacted by the
V2G mode.

To conclude, the interest of adding V2G is confirmed by the comparison of the optimal cost of each scenario

(Figure 7.2). These optimal costs are decomposed into three parts: the switching cost (
1

2

∫ T

0

∑
j ̸=I

αj(t,X
i,α
t )2dt),

the final cost (g) and the distance to profile (F ). The low value of the final cost (3.6 × 10−4 in the V1G use
case and 4.8 × 10−2 in the V2G one) shows that, despite the tracking objective, EVs have enough battery at
the end of the period, as previously stated. Moreover, this performance is achieved without significant loss in
switching costs, thus preserving fleet batteries.
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Figure 7.7 – Initial and Final SoC in the V1G case Figure 7.8 – Initial and Final SoC in the V2G case

7.6 Appendix

In this section, we provide some classical results about the distribution mα of a process Xα that is a
PDMP(b, α) (the definition of a PDMP(b, α) is given in Section 7.2), when α is in Lip([0, T ] × X ,Rd+). We
introduce the continuity equation on [0, T ]×X :

∂tm(t, i, z) + ∂z(b(i, z)m(t, i, z)) = −
∑
j ̸=i

(αj(t, i, z)m(t, i, z)− αi(t, j, z)m(t, j, z)) (t, i, z) ∈ (0, T )×X ,

mi(0, z) = m0
i (z) (i, z) ∈ X ,

(7.6.1)
where m0 ∈ P(X ) is given. The next definition gives the characterization of weak solutions of (7.6.1).

Definition 7.6.1. A pair (m,α) satisfies (7.6.1) in the weak sense if t ∈ [0, T ] 7→ m(t, ·) ∈ P(X ) is continuous,
for any i, j ∈ I with i ̸= j, it holds that α ∈ L2

mi
([0, T ]× X ,Rd) and for any test function ϕ ∈ C∞

c ([0, T ]× X ),
we have:∑

i∈I

∫ 1

0

ϕi(T, i, z)m(T, i, dz)− ϕ(0, i, z)m0
i (dz)

=

∫ T

0

∫ 1

0

∑
i∈I

(∂tϕ(t, i, z) + b(i, z)∂zϕ(t, i, z))m(t, i, dz) +
∑

j∈I,j ̸=i

(ϕ(t, j, z)− ϕ(t, i, z))αj(t, i, z)m(t, i, dz)dt.

Proposition 7.6.1. Let m0 ∈ P([0, 1] × I), α ∈ Lip([0, T ] × X ,Rd+) and Xα be a PDMP(b, α). Then, the
distribution mα of Xα is the unique distribution such that (mα, α) is a weak solution of (7.6.1) in the sense of
Definition 7.6.1.

Proof. This result is proved in [72] for controls α that are continuous in space and time independent. The
extension of this result to bounded controls that are measurable in time is straightforward.

Continuity results of the map α 7→ mα is presented in the next lemma.

Lemma 7.6.1. The map α 7→ mα is continuous from Lip([0, T ] × X ,Rd+) endowed with the norm ∥ · ∥∞ to
C([0, T ],P(X )), endowed with the distance W∥·∥∞ .

Proof. Let ψ ∈ C1(X ) and let φ ∈ C1([0, T ]×X ) be the classical solution of the PDE:

∂τφ(τ, i, z) + b(i, z)∂sφ(τ, i, z) = 0 (τ, i, z) ∈ [0, t]×X
φ(t, i, z) = ψ(i, z) (i, z) ∈ ×X . (7.6.2)
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One has ∥φ∥∞ = ∥ψ∥∞, and denoting by γψ the Lipschitz constant of ψ, for any t ∈ [0, T ] φ(t, ·, ·) is Lipschitz
continuous with Lipschitz constant γψeT∥b′∥∞ .

Let α, ᾱ ∈ Lip([0, T ] × X ,Rd+). Since Xα is a PDMP(b, α) and X ᾱ is a PDMP(b, ᾱ), by Proposition 7.6.1,
(mα, α) and (mᾱ, ᾱ) are both weak solutions of the continuity equation (7.6.1) on [0, T ] × I × [0, 1]. Then, by
equality (7.6.2), one has:∫ 1

0

∑
i∈I

ψ(i, z)
(
mα(t, i, dz)−mᾱ(t, i, dz)

)
=
∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φ(i, τ, z)
(
− αj(τ, i, z)mα(τ, i, dz) + αi(τ, j, z)m

α(t, j, dz)
)
dτ

+
∑

i∈I,j ̸=i

∫ t

0

∫ 1

0

∑
j∈I

φ(i, τ, z)
(
ᾱj(τ, i, z)m

ᾱ(τ, i, dz)− ᾱi(τ, j, z)mᾱ(τ, j, dz)
)
dτ

=
∑

i∈I,j ̸=i

∫ t

0

∫ 1

0

∑
j∈I

φ(i, τ, z)αj(τ, i, z)
(
mᾱ(τ, i, dz)−mα(τ, i, dz)

)
dτ

+
∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φ(i, τ, z)αj(τ, i, z)
(
mα(τ, j, dz)−mᾱ(τ, j, dz)

)
dτ

+
∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φ(i, τ, z)
(
ᾱj(τ, i, z)− αj(τ, i, z)

)
mᾱ(τ, i, dz)dτ

+
∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φ(i, τ, z)
(
αi(τ, j, z))− ᾱi(τ, j, z)

)
mᾱ(τ, j, dz)dτ

(7.6.3)

Using that φ(t, ·, ·) is Lipschitz continuous with Lipschitz constant γψeT∥b′∥∞ and that α ∈ Lip([0, T ]×X ,Rd+),
there exists L > 0 such that:∑

i∈I

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φ(i, τ, z)αj(τ, i, z)
(
mᾱ(τ, i, dz)−mα(τ, i, dz)

)
dτ ⩽ Lγψe

T∥b′∥∞

∫ T

0

W(mα(τ),mᾱ(τ))dτ,

(7.6.4)∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φ(i, τ, z)αj(τ, i, z)
(
mα(τ, j, dz)−mᾱ(τ, j, dz)

)
dτ ⩽ Lγψe

T∥b′∥∞

∫ T

0

W(mα(τ),mᾱ(τ))dτ.

(7.6.5)

Since α, ᾱ ∈ Lip([0, T ]×X ,Rd+) and that ∥φ∥∞ ⩽ ∥ψ∥∞, one has:

∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φ(i, τ, z)
(
ᾱj(τ, i, z)− αj(τ, i, z)

)
mᾱ(τ, i, dz)dτ ⩽ |I|∥ψ∥∞∥α− ᾱ∥∞, (7.6.6)

∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φ(i, τ, z)
(
αi(τ, j, z))− ᾱi(τ, j, z)

)
mᾱ(τ, j, dz)dτ ⩽ |I|∥ψ∥∞∥α− ᾱ∥∞. (7.6.7)

By inequalities (7.6.4)-(7.6.7), inequality (7.6.3) becomes:∫ 1

0

∑
i∈I

ψ(i, z)
(
mα(t, i, dz)−mᾱ(t, i, dz)

)
⩽ 2|I|∥ψ∥∞∥α− ᾱ∥∞ + 2Lγψe

T∥b′∥∞

∫ t

0

W(mα(τ),mᾱ(τ))dτ.

Since ψ is arbitrary and in C1(X ), previous inequality becomes, for any t ∈ [0, T ],

W(mα(t),mᾱ(t)) ⩽ 2|I|2∥ψ∥∞∥α− ᾱ∥∞ + 2LeT∥b′∥∞

∫ t

0

W(mα(τ),mᾱ(τ))dτ.
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By Gronwall inequality, one deduces that there exists a constant C > 0 such that, for any t ∈ [0, T ],

W(mα(t),mᾱ(t)) ⩽ L∥α− ᾱ∥∞.

Thus, W∥·∥∞(mα,mᾱ) ⩽ L∥α− ᾱ∥∞ and the continuity of α 7→ mα follows.
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ABSTRACT 
 
This thesis studies the theoretical resolution and numerical approximation of mean field 
optimization problems. First, a mean field optimal control with congestion constraints is formulated, 
modeling the optimal charging of a large fleet of electrical vehicles. Optimality conditions are 
identified as a system of coupled partial differential equations, similarly to those obtained in mean 
field games.  The problem is numerically solved by a primal-dual algorithm. A first result on the 
regularity of the solutions is exploited to characterize the problem as the mean field limit of an 
optimal control problem with a large number of vehicles. The Lagrange multipliers of the congestion 
constraint are proved to be bounded. This result enables to obtain a better regularity of Lipschitz 
type of the solutions and to numerically approximate the dual problem. 
 
Secondly, an approximation method and a numerical method for a high dimensional convex 
stochastic control problem are developed. A distributed algorithm is proposed, whose convergence 
to a solution is proved. Finally, the method and the algorithm are analyzed and applied to a control 
problem of piecewise deterministic Markov processes, a formulation that is equivalent to the mean 
field control problem introduced in the first part. 

MOTS CLÉS 
 
Contrôle champ moyen ; Chargement intelligent ; Approximation numérique ; Contrôle 
stochastique ; Optimisation distribuée ; Flexibilité diffuse. 

RÉSUMÉ 
 
Cette thèse traite la résolution théorique et numérique de problèmes d'optimisation de type champ 
moyen. Un premier problème de contrôle champ moyen est formulé, avec contrainte de congestion, 
modélisant le chargement optimal d'une grande flotte de véhicules électriques. Les conditions 
d'optimalités sont identifiées comme un système d'équations aux dérivées partielles couplées, 
similairement à ceux obtenus dans les jeux à champ moyen. Le problème est résolu 
numériquement par un algorithme primal-dual. Un premier résultat sur la régularité des solutions 
est exploité pour caractériser le problème comme la limite d'un problème de contrôle avec grand 
nombre de véhicules. Les multiplicateurs de Lagrange associés à la contrainte de congestion sont 
bornés, permettant d'obtenir une meilleure régularité, de type Lipschitz, des solutions et 
d'approximer numériquement le problème dual. 
 
Dans un second temps, une méthode d'approximation et de résolution numérique d'un problème 
de contrôle stochastique convexe de grande dimension est développée. Un algorithme 
d'optimisation distribué est proposé et la convergence vers une solution du problème est 
démontrée.  La méthode et l'algorithme sont étudiés et appliqués à un problème de contrôle de 
processus markoviens déterministes par morceaux, une formulation équivalente au problème de 
contrôle champ moyen étudié en première partie. 

KEYWORDS 
 
Mean field control; Smart charging; Numerical approximation; Stochastic control; 
Distributed optimization; Diffuse flexibility. 
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