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Abstra&

Automatic formal verification such as model checking faces the combinatorial explosion issue, and thus
limits its application in industrial projects. This issue is caused by the explosion of the number of states
during system’s execution , as it may easily exceed the amount of available computing or storage resources.

This thesis designs and experiments a set of methods for the development of scalable verification tools
based on the property-driven approach. We propose efficient approaches based on model checking to ver-
ify real-time requirements expressed in large scale UML-MARTE real-time system designs. We rely on the UML
and its profile MARTE as the end-user modeling language, and on the Time Petri Net (TPN) as the verification
language. The main contribution of this thesis is the design and implementation of a property-driven verifi-
cation methodology dedicated to real-time properties verification for UML-MARTE real-time software designs.
We validate this method using an avionic use case and its user requirements. This method was implemented
as a prototype toolset that includes five contributions: definition of real-time property specific execution
semantics for UML-MARTE architecture and behavior models; specification of real-time requirements relying
on a set of verification dedicated atomic real-time property patterns; real-time property specific observer-
based model checking approach in TPN; real-time property specific state space reduction approach for TPN;

and fault localization approach in model checking.



Résumé

Les techniques formelles de la famille « vérification de modeles » (« model checking ») se heurtent au
probléme de l'explosion combinatoire. Ceci limite les perspectives d’exploitation dans des projets indus-
triels. Ce probléme est provoqué par la combinatoire dans la construction de l'espace des états possibles
durant I'exécution des systémes modélisés. Le nombre détats pour des modéles de systemes industriels
réalistes dépasse réguliérement les capacités des ressources disponibles en calcul et stockage.

Cette these défend I'idée qu'il est possible de réduire cette combinatoire en spécialisant les outils pour
des familles de propriétés. Elle propose puis valide expérimentalement un ensemble de méthodes pourle
développement de ce type d'outils en suivant une approche guidée par les propriétés appliquée au contexte
temps réel. Il s’agit donc de construire des outils d’analyse performants pour des propriétés temps réel qui
soient exploitables pour des modeles industriels de taille réaliste. Les langages considérés sont, d'une part
UML étendu par le profil MARTE pour la modélisation par les utilisateurs, et d’autre part les réseaux de pétri
temporisés comme support pour la vérification. Les propositions sont validées sur un cas d’étude indus-
triel réaliste issu du monde avionique : 'étude de la latence et la fraicheur des données dans un systeme de
gestion des alarmes exploitant les technologies d’Avionique Modulaire Intégrée. Ces propositions ont été
mise en oeuvre comme une boite a outils qui intégre les cinq contributions suivantes: la définition de la
sémantique d’exécution spécifiques aux propriétés temps réel pour les modeéles d’'architecture et de com-
portement spécifiés en UML/MARTE; la spécification des exigences temps réel en s'appuyant sur un ensemble
de patrons de vérification atomiques dédiés aux propriété temps réel; une méthode itérative d'analyse a
base d'observateurs pour des réseaux de Petri temporisés; des techniques de réduction de I'espace d’états
spécifiques aux propriétés temps réel pour des Réseaux de Petri temporisés; une approche pour I'analyse
des erreurs détectées par « vérification des modeéles » en s’appuyant sur des idées inspirées de la « fouille
de données » (« data mining » ).
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Introduction

RESUME

Le premier chapitre introduit la contexte de recherche, les défis et les contributions de cette thése. Les sys-
témes embarquées temps réels jouent un role clé dans de nombreuses facettes de la vie quotidienne. Cer-
tains sont des applications spécialisées de grande échelle dans les domaines critiques tels que I'avionique,
l'aérospatial, la défense, le nucléaire, 'automobile, la santé et le matériel médical. Ils doivent donc satisfaire
de fortes exigences concernant la sécurité et la fiabilité. Tout manquement a ces exigences peut entrainer
des conséquences graves en terme de pertes matérielles et de sécurité des personnes. La sécurité et la fi-
abilité des systemes temps réels dépendent fortement de la satisfaction des exigences temps réel, a la fois
pour les aspects qualitatifs et quantitatifs. L'état de I'art actuel des connaissances propose que ces exigences
soient vérifiées et validées en utilisant des méthodes formelles en combinaison avec l'ingénierie dirigée
par les modeles. Les méthodes formelles sont des techniques issues des mathématiques pour la spécifi-

cation, le conception, la programmation et la vérification des systémes matériels et logiciels. L'utilisation
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d’approches mathématiques permet d'obtenir une plus grande assurance en ce qui concerne la fiabilité et
la robustesse d’un systéme.

Les techniques formelles de la famille « vérification de modéles » (« model checking ») sont bien
adaptées a une exploitation industrielle car elles permettent une automatisation compléte des activités de
vérification etla synthese de contre exemples en cas de non satisfaction des exigences. Mais elles se heurtent
au probléme de I'explosion combinatoire qui impose la construction de modeles dédiés a la vérification de
chaque exigence et limite les perspectives d’exploitation dans des projets de grande taille. Ce probleme est
lié a la combinatoire dans la construction de l'espace des états possibles durant I'exécution des systemes
modélisés. Le nombre d’états pour des modéles de systémes industriels réalistes dépasse réguliérement les
ressources disponibles en calcul et stockage.

En s’appuyant sur la pratique actuelle de la « vérification de modeles » consistant a construire des mod-
eles dédiés a chaque vérification, cette thése défend I'idée qu’il est possible de réduire cette combinatoire
en spécialisant les outils selon des familles de propriétés. Elle propose puis valide expérimentalement un
ensemble de méthodes pour le développement de ce type d'outils en suivant une approche guidée par les
propriétés appliquée pour le contexte temps réel. Il sagit donc de construire des outils d’analyse perfor-
mants pour des propriétés temps réel qui soient exploitables pour des modéles industriels de taille réaliste.
Les langages considérés sont, d'une part UML étendu par le profil MARTE pour la modélisation par les utilisa-
teurs, et d’autre part les réseaux de pétri temporisés comme support pour la vérification. Les propositions
effectuées sont validées en exploitant un cas d’étude industriel réaliste issu du monde avionique : I'étude
de la latence et la fraicheur des données dans un systeme de gestion des alarmes exploitant les technolo-
gies dAvionique Modulaire Intégrée. Ces propositions ont été mise en oeuvre sous la forme d’une boite
a outils qui intégre les cinq contributions suivantes: la définition de la sémantique d’exécution spécifique
aux propriétés temps réel pour les modéles d’architecture et de comportement spécifiés en UML/MARTE; la
spécification des exigences temps réel en s'appuyant sur une traduction vers un ensemble de patrons de véri-
fication atomiques dédiés aux propriété temps réel; une méthode itérative d’analyse a base d'observateurs
pour des réseaux de Petri temporisés; des techniques de réduction de I'espace d’états spécifiques aux pro-
priétés temps réel pour des Réseaux de Petri temporisés; une approche pour 'analyse des erreurs détectées
par « vérification des modeles » en sappuyant sur des idées inspirées de la « fouille de données » (« data

mining » ).
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1.1. SAFETY CRITICAL REAL-TIME SYSTEM DEVELOPMENT

This thesis designs and experiments a set of methods for the development of scalable verification tools
based on a property-driven approach. It develops efficient approaches based on model checking to verify

real-time requirements expressed in large scale UML-MARTE real-time system designs.

1.1  SAFETY CRITICAL REAL-TIME SYSTEM DEVELOPMENT

Real-time embedded systems play a key role in many facets of daily life. Some are specialized and large
scale applications in the critical domains such as avionics, aerospace, defense, nuclear power, motor ve-
hicles, health and medical equipment and thus have strong requirements concerning system’s safety and
reliability. Any failure could cause serious consequences that may result in massive material losses or en-
danger human safety. [Neugs ] listed a large amount of accidents and disasters caused by errors in real-time
systems. Ifit is possible to avoid these failures, large efforts and costs would be saved. In June 1996, the first
flight of Ariane 5 launcher ended in failure caused by an overflow error. About 37 seconds after ignition,
the rocket broke and self destruction was initiated. This accident led to a 370 million dollars cost [Liog6].
In December 1999, the last telemetry from Mars Polar Lander was sent. Just prior to cruise stage separa-
tion and the subsequent atmospheric entry, no further signals were received from the spacecraft. The most
likely cause of this mishap was different interpretations of floating point data, which was implicitly specified
as meters by NASA and implemented as feet by Rockwell Collins. This accident led to a 165 million dol-
lars loss [BCAAoo]. For systems where failure is unacceptable, reliable software is mandatory. Thus safe
and efficient techniques are required to detect errors and thus avoid the accidents in such systems. The re-
search context and main motivation of this work is how to design and implement safe and reliable real-time

systems.

1.2 MODEL DRIVEN ENGINEERING

Model-Driven Engineering (MDE) targets the improvement of the reliability and efficiency of the traditional
software engineering by introducing models and early verification and validation (V & V) including the use
of formal methods. It has evolved over the last 20 years and achieved success in many domains. Models are
reduced/abstract representations of real systems that selectively remove some semantics to highlight the
remaining expected properties from a given point of view. In the context of safety critical systems, models

can be used during the requirement engineering process to derive the requirements for a system, during the
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1.2. MODEL DRIVEN ENGINEERING

design process to describe the intended system to the implementation engineers, to verify and validate the
properties, to automatically generate software, and also to document the system’s structure and behavior
after implementation.

The V-model [FMos ] is a software development process broadly adopted in the industry to illustrate
the various activities involved in the development of software and their ideal sequencing. In this thesis, we
rely on the multi V-model (see Fig. 1.2.1) proposed in the MeMvaTEx methodology [ABD 07, ABB"08]
to illustrate the use of MDE for developing real-time systems. In order to generate reliable software, the V'
& V activities are performed at each phase of the system development lifecycle. The architecture design
is the phase to define the hardware and software architectures which is referred to as high-level design. It
should involve a briefand abstract functionality of each module, their interface relationships, dependability,
architecture diagrams, etc. The detailed design model can also be called module or function design model,

where the low-level design including detailed functional logic of the module can be specified.

Time Line

Figure 1.2.1: V-Model in Model-Driven Engineering

From the current practice, the architecture is usually modeled using Domain Specific Languages (DSL)
such as AADL and EAST-ADL or specific diagrams in a General Purpose Language (GPL) such as uML Compos-

ite Structure Diagram, while the detailed design is usually modeled using DSL such as Simulink/ Stateflow
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1.3. FORMAL METHODS

and SCADE or specific GPL diagrams such as UML Activity, State Machine diagrams, or ALF (Action Language
for Foundational UML). The main purpose of our work is to propose efficient and effective formal verifica-
tion tools to ease the use of MDE when developing large scale real-time systems. More precisely, this work
targets the use of UML-MARTE in the early phases of MDE, that corresponds to the Architecture Design phase in
the multi V-model (the grey box part in Fig. 1.2.1).

1.3 FORMAL METHODS

Formal Methods (FM) are mathematically based techniques for the specification, development and verifi-
cation of software and hardware systems. The use of mathematical analysis can contribute to the reliability
and robustness of a design [Holg7a]. Verification methodologies such as model checking, abstract inter-
pretation, automated proof, etc. provide rules for inferring useful information from the specification. The
conjunction of MDE and FMis a promising answer to the development of real-time systems, which makes it
feasible to assess system’s requirements since the early phases of system lifecycle and to iteratively improve
the models according to the verification results.

However, automatic formal verification such as model checking faces the combinatorial explosion issue.
This limits its application in industrial projects [ CE82, HP94]. This issue is caused by the exponential num-
ber of generated states during system’s execution that may easily exceed the amount of available computing

or storage resources.

1.4 METHODOLOGY: PROPERTY DRIVEN APPROACH

UML (Unified Modeling Language) [OMG11c] was developed to provide a common language for specifi-
cation, modeling and documentation in the software development process in the 1990s. Today, UML is the
industry standard for software modeling and specification. MARTE (Modeling and Analysis of Real-Time
and Embedded Systems) [OMGog] provides support for specification, design, and V & V for real-time
and embedded system. We use the term UML-MARTE in the whole thesis to indicate the specification lan-
guage.

As UML is a semi-formal language which exhibits ambiguous and imprecise (in terms of mathematical
precision) semantics, most of the requirements expressed in UML models cannot be directly assessed using

formal methods. Therefore, providing a formal executable semantics is now a common approach used to

19



1.5. REAL-TIME REQUIREMENTS

assess the user requirements in UML models. There exists a number of formal languages dealing with real-
time analysis issues, such as Timed Automata [AD94] and several extended Petri Nets such as Timed Petri
Nets [RH80, Zubg1], Stochastic Timed Petri Net [FENo91 ], Time Petri Net (TPN) [MF76], etc. Our work
relies on TPN as the execution model, and uses the TINA toolset as the analysis toolbox.

From the viewpoint of methodology, our work is based on the pioneering work [CCG ™" 07] by Combe-
male et al. Aimed to define all the steps from the property specification to effective verification, they in-
troduced in [CCG ™ 07] a generic approach to define the operational semantics (a semantics of observ-
able events) built upon the properties expressed at the metamodel level. They illustrated this contribution
through a simple process description language: SIMPLEPDL on which a set of temporal properties were
expressed. Property-driven means that the formal activities in the development process are based on the
purpose of property-verification-ease. From a language point of view, a precise definition of model ele-
ments behavior allows the execution of behavioral models with respect to the intended requirements that
must be assessed.

We follow the same methodology proposed by Combemale et al., and propose a property-driven frame-
work dedicated to real-time property verification for UML-MARTE real-time designs. A key objective in our
work is to assess this property driven approach on a large scale system relying on industrial modeling lan-

guages, requirements and use cases.

1.5 REAL-TIME REQUIREMENTS

A real-time system is a system whose correct operation depends on both the results produced by the system and
the time at which these results are produced [ Som10]. The safety and reliability of real-time systems strongly
depend on the satisfaction of its real-time requirements, in both qualitative and quantitative aspects. Ac-
cording to the survey collected from the industrial partners in several collaborative projects such as projects

P!, TOPCASED %, OPEES®, QUARTEFT *, SPICES °, SPACIFY ¢, HiMoCo 7 and CESAR ¥, we list some examples of in-

"http://www.open-do.org/projects/p/

2http: //www.topcased.org/

*http://www.opees.org/

*http://projects.laas.fr/fiacre/
Shttp://www.spices-itea.org/public/news.php
®http://spacify.gforge.enseeiht.fr/

7http :/ /www.systematic-paris-region.org/fr/projets/himoco
Shttp:/ /www.cesarproject.eu/
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1.5. REAL-TIME REQUIREMENTS

dustrial real-time requirements in Table 1.5.1. To simplify the expression, we use E,, E, and E, to denote

events, and [a,b] to denote a time interval.

Table 1.5.1: Examples of Real-Time Requirements

’ No.‘ Real-Time Requirements

1 E, must be sent after the reception of E,.
A task cannot be executed after the emission of E,.
The third occurrence of E; must be sent between the reception of E, and the emission of E;.

A system state holds for at least #n time unit (t.u.)

A system state holds for at most # t.u. after the emission of E,.

If E, is sent, E, must be received after the emission of E, within [a,b].
E, is received more than n times after the reception of E, within [a,b].
E, and E, must be sent simultaneously, within time tolerance §.

The execution of a task must start after the reception of E, within [a,b] in each period.

= O [0 O\ p W B

(]

If E, has been received, E, must be sent before the reception within [a,b] in each period.

-
[

The worst case execution time of a task is n t.u. in each periodic execution.

In Table 1.5.1, the requirements 1 - 3 are related to the logical time, while 4 - 11 are related to the physical
time. The requirements 9 -11 are applicable to systems with periodic execution. Regarding the logical time
requirements, there exist many works to specify and assess real-time properties using logic formulae. In
the context of this thesis, we focus on the physical time (quantitative) properties in finite state concurrent
reactive systems. These real-time requirements are critical, and thus their correctness must be guaranteed
at any cost. Appropriate development processes, methods and tools are expected to enable the efficient
verification, and to help the users to improve their designs when the errors have been detected. However,
in today’s highly competitive industrial market, the scale and complexity of safety critical real-time sys-
tem are rapidly increasing due to the growth of functional and non-functional requirements. For instance,
since Airbus A300, the number of software control systems has been increased to add new functionality
such as flight envelop protection, ground proximity warning and traffic collision avoidance for improved
safety [ITIo7]. Consequently, verification of the real-time requirements for real-time system development
is becoming more and more difficult and expensive. Therefore, although many progresses in the last 20

years, how to design and implement highly safety critical real-time system and in the meanwhile control
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1.6. CHALLENGES

the development cost is still an open problem in both industry and academia.

1.6 CHALLENGES

The key obstacle that prevents a wide application of model checking in the industry is the scalability is-
sue. The classic verification methodology usually encounters scalability issue very quickly along with the
growth of system size. A complex system usually has thousands and even millions of states and transi-
tions. Although a huge part of the impossible transition firing sequences is eliminated during the building
of system’s behavior, the probable permutation of all others is still a very large number that easily causes
combinatorial state space explosion.

Although many formal verification languages such as Petri Net [ Pet62 ] and Automata [Sal8s ] and their
analysis tools are theoretically mature enough, the efficient application for real size systems is still an open
question. As the scalability issues introduced by the combinatorial explosion problem is still one of the
bottlenecks, the industrial partners would rather verify and validate the requirements using traditional fi-
nal system tests. Another key issue is effective fault analysis for the verification failures. Once an error
has occurred, effective debug information is expected to be derived from the verification results to help
the designers improve their designs. The challenges in this work can be summarized as the following five

aspects:

« Challenge 1: Specification, implementation and validation of a real-time property specific
execution semantics for UML-MARTE models that allows scalable verification. As revealed by a
number of surveys, even the most recent versions of the UML specification suffer from multiple am-
biguities, inconsistency and incompleteness regarding the semantics of the language for the formal
verification purpose. This is a major problem for MDE because the semantics contained in the user
models will be directly propagated to the verification models. A formal execution semantics should
thus be defined. The manner the execution semantics is defined is one of the important factors that
impact the verification efficiency, especially for the large scale system development. The optimal ex-
ecution semantics only preserves minimal property-relevant semantics. This may reduce the risk of

combinatorial state explosion problem during model checking.

« Challenge 2: Need for practical real-time requirement specification method for verification

purpose. Many studies have shown that most of the real-time requirements are composite proper-
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1.6. CHALLENGES

ties based on a set of elementary patterns. Dwyer et al. defined the pioneer qualitative time patterns.
Afterwards, Konrad et al. extended Dwyer’s patterns by adding quantitative time extensions. These
property patterns aimed to ease the expression of end-user time requirements, but usually they are
not semantically atomic. These property specifications need to be decomposed into a set of atomic
property elements to improve the verification efficiency. A property specification method that can
ease the verification is needed to bridge this gap. CCSL, as a clock constraint specification language,
can express event-based logical properties in the UML-MARTE models. A real-time property specifica-
tion method is needed to map the requirements expressed using Dwyer’s and Konrad’s patterns or

the CCSL to the verification-ease property patterns.

Challenge 3: Need for scalable model checking support for the verification of real-time prop-
erties in TPN model. Despite the significant investment of research and development effort into
state-of-the-art industrial MDE tools, model checking remains an expensive resource-consuming de-
velopment method that requires special skills. The TINA model checking toolset supports logic for-
mulae LTL and CTL for analyzing qualitative properties. To verify quantitative properties in large scale
systems, an efficient real-time property analysis approach based on LTL, CTL or other logic formulae
is required. The real-time property specific model checking approach should rely on the observer

techniques, which transforms quantitative problems to reachability problems.

Challenge 4: Need for property-specific state space reduction method. Combinatorial state
space explosion issue in current TPN model checking approach limits its application. Many tech-
niques have been studied to reduce the size of state space using different abstractions. These tech-
niques usually provide generic abstraction methods to reduce the size of state space for all kinds of
properties. In this work, a real-time property specific reduction technique is used to improve the

scalability in TPN model checking.

Challenge 5: Need for failure analysis approach to locate the origin of fault. The generation of
counterexamples in case a formula is violated is a key service provided by model checkers. Coun-
terexamples produced by model checkers often stand for error traces, which represent sequences of
system states and transitions and are therefore usually lengthy and difficult to understand. The ori-
gin of error might be anywhere along these traces and even a combination of transitions that are not

contiguous, thus it requires a lengthy analysis by designers. The automatic fault localization analysis
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relying on the error traces in model checking is still an interesting challenge.

1.7 CONTRIBUTIONS

In this Ph.D work, our objective is to propose a set of property-driven methods used to efficiently assess
the real-time requirements in large scale concurrent reactive real-time systems. We rely on the UML and its
profile MARTE as the end-user modeling language, and on the TPN as the verification language. The main con-
tribution of this thesis is the design and implementation of a property-driven verification prototype toolset
dedicated to real-time properties verification for UML-MARTE real-time software designs [ GP12a, GPC14c].
We validate this toolset using an avionic use case and its user requirements. This research shows that the
property-driven approach allows a better verification scalability. The architecture of the toolset is described

in Fig. 1.7.1, which consists of five tools:

1. System Model Mapping Tool: Definition of real-time property specific execution semantics
for UML-MARTE architecture and behavior models [GPC12b]. With respect to the expected real-
time requirement, we have defined the real-time property specific execution semantics for UML-MARTE
architecture model (composite structure diagram) and behavior models (activity and state machine
diagrams). The definition of execution semantics follows the property-driven approach. The ex-
ecution semantics allows to map UML-MARTE entities to TPN models, which makes UML model exe-
cutable and analyzable by the TINA toolset. This mapping conforms to the UML specification 2.4.1

[OMGu1 1c]. It abstracts the system in order to provide more scalable verification.

2. Property Specification Tool: Specification of real-time requirements relying on a set of real-
time property patterns [GPC12a, GP12b]. From the viewpoint of requirement assessment, we
advocate that the qualitative property patterns proposed by Dwyer and the quantitative property
patterns proposed by Konrad are not semantically atomic. We have defined a set of real-time prop-
erty patterns that contains the atomic property elements. These property patterns can be directly
used to specify real-time requirements. The properties expressed using Dwyer/Konrad’s patterns
and CCSL languages can also be automatically translated to the verification targeted atomic property

elements, which will then be assessed using the observer-based verification approach.
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Figure 1.7.1: UML-MARTE Real-Time Properties Verification Architecture

3. Property Verification Tool: Real-Time property specific observer-based model checking ap-
proach in TPN [GP12a]. The TINA model checking toolset that our work relies on can express qual-
itative properties on LTL and CTL logic formulae, but not the quantitative properties. To assess the
real-time properties in an efficient manner, we define a set of event-based TPN observers and state-
based tts observers, which will be associated to the TPN system under observation. These observers
express the same semantics as the atomic elements defined in the real-time property patterns. The
proposed observer-based approach allows to generate the high abstraction state class graph that only
preserves marking information using the tina state space generation tool from the TINA toolset. It
relies on the accessibility assertions in the modal y-calculus (MMC) and the muse model checker from

the TINA toolset.
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1.8. THE STRUCTURE OF THE THESIS

4. Property Specific Reduction Tool: Real-Time property specific state space reduction approach
for TPN[GP14]. We propose this property specific reduction tool to eliminate the property-irrelevant
TPN structures and to build an equivalent of the property-relevant TPN structures in the system model.
The reduction tool exploits the commutativity of TPN sub-nets which result in the same property-
specific behavior before expanding the whole state class graph. The equivalent has less states and

transitions, and thus directly reduces the scale of computation.

5. Fault Localization Tool: Fault localization approach in model checking [GPC14a, GPC14b,
GNP13b, GNP13a, GNP15]. We propose an automated faultlocalization approach based on model
checking to ease and accelerate the debugging by locating and ranking the suspicious elements in a
model when a safety property is unsatisfied. Inspired by the TF-IDF (term frequency-inverse docu-
ment frequency) measure and the Kullback-Leibler Divergence theory, we propose a suspicious-
ness factor to rank the potentially faulty transitions. We apply this approach to property specific
TPN model on which the observer-based verification approach is performed to obtain all the faulty
execution traces and the violation states in the state class graph preserving markings. Based on the

mapping semantics from UML to TPN, the faulty transitions is back-traced from TPN to UML.

1.8 THE STRUCTURE OF THE THESIS

The thesis is structured into 4 parts containing 9 chapters (including this introduction), and 2 appendix

complementing the main parts with additional information.
« Part 1: Introduction

— Chapter 1 introduces an overview of the thesis.

— Chapter 2 presents the state of the art of existing approaches.
« Part2: Contributions to property-driven approaches

— Chapter 3 introduces the definition of mapping semantics from UML-MARTE architectural and

behavioral models to TPN models. (Contribution 1)

— Chapter 4 presents a set of verification dedicated atomic real-time property specification pat-
terns, and use it to translate the properties expressed using Dwyer/Konrad’s patterns and the

ccsL. (Contribution 2)
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1.8. THE STRUCTURE OF THE THESIS

— Chapter 5 proposes the observer-based model checking approach to verify the real-time prop-
erty patterns in TPN. (Contribution 3)

— Chapter 6 presents the property specific state space reduction approach for TPN models. (Con-

tribution 4)
« Part 3: Contribution to fault localization approach

— Chapter 7 proposes the automatic failure analysis approaches in model checking. (Contribu-

tion s)

o Part 4: Industrial application & Conclusion

Chapter 8 uses an avionic case study, which is a part of the flight management system requiring
latency and freshness real-time properties to test our toolset. The scalability test shows that the

proposed approaches are capable to analyze large scale systems.

Chapter 9 concludes the main parts of the thesis and outlines future directions for research.

Appendix A gives the coverage library for mapping UML-MARTE to TPN model.

Appendix B contains the library for mapping real-time requirements expressed by Dwyer/Konrad’s

patterns to the proposed real-time property patterns.
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State of the Art

RESUME

Le deuxiéme chapitre présente les informations sur 'état de l'art concernant les méthodes exploitées dans

les chapitres suivants. Celui-ci comporte les éléments essentiels pour les travaux réalisés dans ce thése :

« Lingénierie dirigée par les modeles (IDM). Celle-ci vise a augmenter la fiabilité et lefficacité de
l'ingénierie traditionnelle du logiciel en exploitant des modeéles exprimés dans des langages dédiés
aux différents aspects d'un développement logiciel, des méthodes de validation et vérification des
dits modéles, y compris I'exploitation de méthodes formelles, et des moyens de transformations au-

tomatiques de modéles.

« Lamodélisation de systemes temps réels. Les travaux présentés dans cette thése exploitent la nota-
tion UML (Unified Modeling Language) étendue par le profil MARTE (Modeling and Analysis of Real

Time and Embedded systems) pour la modélisation au niveau utilisateur. Cette partie en présente
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les aspects nécessaires a la lecture du manuscrit.

La spécification formelle pour les systémes temps réels. Les travaux réalisés sappuient sur les méth-
odes formelles pour décrire un systéme, analyser son comportement et évaluer ses propriétés. Plusieurs
formalismes traitent de I'analyse des propriétés temps réels. Nous présentons ici les automates tem-

porisés et les réseaux de Petri temporisés et les outils correspondants.

Les transformations de modeles. Celles-ci permettent de manipuler automatiquement les diftérents
modéles intervenants dans le développement d’un systéme, et d’établir les liens entre les diftérents
aspects et niveaux d’abstraction. Celles-ci peuvent étre mis en oeuvre de différentes maniére. Dans
cette these, nous utilisons le langage de programmation Java et les outils « Eclipse Modeling Frame-
work » pour transformer le modeéle utilisateur (en UML/MARTE) en modeéle de vérification (en réseau

de Petri temporisé). Cela facilitera I'intégration des différents outils de la boite a outils.

La vérification formelle des systémes temps réels. Cette tiche détermine si un systéme satisfait ses
exigences lorsque ces deux éléments sont spécifiés formellement. Nous présentons les différentes
approches pour la vérification temps réel et comparons les trois grandes classes de techniques ap-
pliquées dans la vérification formelle: I'analyse statique, la preuve de théoréme et la vérification de

modéles.

Laréduction del'espace d’état dansla vérification de modeles. Ces techniques de vérification formelle
souffrent du probléme de I'explosion combinatoire de I'espace d’états. De nombreux travaux se sont
consacrés a la recherche de solutions efficaces. Nous discutons dans cette partie des différentes
stratégies de réduction couramment utilisées: analyse symbolique a base de diagramme de décision

(BDD), réduction d’'ordres partiels, raisonnement compositionnel, abstraction et symétrie.

Lanalyse des contre exemples de vérification des modeéles. La génération de contre exemple lorsqu’une
exigence n'est pas satisfaite est un service essentiel fourni par les vérificateurs de modéle. Un contre
exemple est une trace d'exécution qui ne satisfait pas les exigences attendues. Nous présentons dans
cette partie certains techniques d’assistance a la localisation des erreurs en fonction des contre ex-
emples obtenus. Ces techniques visent a indiquer un ensemble d’éléments suspects dans le modéle

sans les classer.
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Cette état del'art permet de conclure que, d’une part, nous pouvons proposer différentes méthodes pour
réduire l'espace d’état lors de la vérification de modeles : définir une sémantique d’exécution dulangage util-
isateur UML/MARTE spécifiques a une famille de propriété; spécifier les exigences utilisateurs par traduction
vers un ensemble de patrons de vérification atomiques; vérifier les propriétés en utilisant des observateurs;
réduire I'espace d’état en sappuyant sur les caractéristiques de la famille de propriétés considérée; et d'autre
part, nous pouvons proposer un facteur de classement pour améliorer la précision de l'aide a la localisation

des erreurs dans la vérification de modéles.
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2.1. MODEL-DRIVEN ENGINEERING

This chapter presents the background information and the state of the art related to the approaches de-
tailed in the following chapters. The information contained in this chapter includes the introduction about
model-driven engineering, modeling, specification, transformation and verification methods for real-time
systems, information about the state space reduction techniques in model checking, details about the fault
localization related feedback approaches in model checking. We conclude at last on the state of the art to

explain why we choose to develop this work.

2.1 MODEL-DRIVEN ENGINEERING

Model-Driven Engineering (MDE) targets the improvement of the reliability and efficiency of the traditional
software engineering by introducing models and early verification and validation (V & V) including the use
of formal methods. It has evolved over the last 20 years and achieved success in many domains. Models are
reduced/abstract representations of real systems that selectively remove some semantics to highlight the
remaining expected properties from a given point of view. In the context of safety critical systems, models
can be used during the requirement engineering process to derive the requirements for a system, during
the design process to describe the intended system to the implementation engineers, to verify and validate
the properties, to automatically generate execution code, and also to document the system’s structure and
behavior after implementation.

Model Driven Architecture (MDA) [OMGo1 ] is an important software design approach for MDE launched
by the Object Management Group (OMG) in 2001. It is based on the standards uML, Meta Object Facility
(MoF) [OMGu11a], XML Metadata Interchange (xMI) [OMGu11b], and the Common Warehouse Meta-
model (CwM) [OMGo3 ]. MDA provides a template for model-driven development processes and summarizes
best practices and design patterns.

The work in this thesis is involved in the OPEES" and P* projects. Project P aims to support MDE of high-
integrity embedded real-time system by providing an open code generation framework. It is able to verify
the semantic consistency of systems described using safe subsets of heterogeneous modeling languages,
ranging from behavioral to architectural languages and presenting a synchronous and asynchronous se-
mantics (Simulink Stateflow/MATLAB, Scicos, SysML, MARTE, UML); generate optimized source code for

multiple programming (Ada, C/C++) and synthesis (VHDL, SystemC) languages; support a multi-domain

12

*http://www.open-do.org/projects/p/
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2.2. MODELING OF REAL-TIME SYSTEMS

(avionics, space, and automotive) certification process by providing open qualification material. Project
OPEES aims to settle a community and build the necessary means and enablers to ensure long-term avail-
ability of innovative engineering technologies in the domain of dependable / critical software-intensive
embedded systems. The goal is to build an ecosystem in the open source frame which provides a set of

processes and guidelines for tools/components maturation, verification and qualification.

Summary. In the context of this thesis, we aim to design and experiment a set of methods for the devel-
opment of scalable verification tools based on the property-driven approach. Our focus is on the analysis
of the real-time systems in the architectural models specified by the modeling languages SysML, UML and
MARTE.

2.2 MODELING OF REAL-TIME SYSTEMS

System modeling is the process of developing abstract models of a system, with each model providing a different
view or perspective of that system. Building models which faithfully represent complex real-time system is a non
trivial problem and a prerequisite to the application of formal analysis techniques. We may develop different mod-
els to represent the system from different perspectives, such as an external perspective for modeling the context or
environment of the system, an interaction perspective for modeling the interactions between a system and its en-
vironment, a structural perspective for modeling the organization of a system or the structure of the data, and a
behavior perspective for modeling the dynamic behavior of the system and how it responds to events. [Som10]

Architecture Description Languages (ADL) have been used to model software system architecture since
the 1990s. An architecture is the set of significant decisions about the organization of a software system, the selec-
tion of the structural elements and their interfaces by which the system is composed, together with their behavior
as specified in the collaborations among those elements, the composition of these structural and behavioral ele-
ments into progressively larger subsystems, and the architectural style that guides this organization [BRJos]. A
real-time software system is a system whose correct operation depends on both the results produced by the
system and the time at which these results are produced. To deal with embedded real-time systems, some
domain specific ADLs have been defined, such as AADL [FGHo6] and EAST-ADL [DSLT "o4]. UML is also a
possible solution to address real-time embedded systems.

The Unified Modeling Language (UML) was developed and standardized by the OMG in 1997 to provide

a common language for specification, modeling and documentation in the software development process.
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2.2. MODELING OF REAL-TIME SYSTEMS

In many senses, it was a success, because it established a standardized, graphical and easy-to-use notation
modeling system which was comprehensive enough to capture all major aspects of software engineering.
Today, UML is the industry standard for software modeling. As UML by itself was only a documentation and
modeling standard, early UML tools were graphical editors used for communication rather than a central
key technology of model-driven development. Although UML was not intended to be an ADL, the expressive
capability of architecture by UML is more than any ADLs. UML provides large, useful and extensible set of
predefined constructs, and meanwhile it has more potential for substantial formal analysis tool support.

For this reason, UML can be used as an ADL.

UML has many kinds of diagrams and so supports the creation of different types of system model. How-
ever, a survey in 2007 [ESo7] showed that most users of the UML thought that five diagram types could
represent the essentials of a system: Activity diagrams, which define the activities involved in a process or
in data processing; Class diagrams, which describe the static structure of a system by showing the system’s
classes, their attributes, operations (or methods), and the relationships among objects. State machine dia-
grams, which specify how the system reacts to the internal and external events; Sequence diagrams, which
show interactions between actors and the system and between system components; Use case diagrams,
which give the interactions between a system and its environment.

In the context of this thesis, since we are concerned with real-time property verification of concurrent
reactive systems, we rely on the composite structure diagrams to specify the system architecture, and use
the activity and state machine diagrams to specify the system behavior. The composite structure diagrams
describe the internal structure of a class and the collaborations that this structure allows. Compared to
the static-structured class diagram, composite structure diagram could be used to specify the behavior of
collaborations.

Since the introduction of an extension language called UML Profile for Schedulability, Performance and
Time (SPT) [OMGosa], UML enables the users to capture time and performance requirements, to assess
those properties from early design models. However, practical experience with SPT revealed shortcomings
within the profile in terms of expressive power and flexibility. MARTE (Modeling and Analysis of Real-Time
and Embedded Systems) [OMGoo] is intended to replace SPT to provide support for specification, design,
verification/validation for real-time and embedded systems. It provides foundations for the model-based
development. The architecture of the MARTE profile is shown in Fig. 2.2.1 [OMGog]. The shared package
MARTE Foundation provides common concerns such as time and the use of concurrent resources; the pack-

age MARTE Design Model models the features of real-time embedded systems using the extensions GCM
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2.3. FORMAL SPECIFICATION OF REAL-TIME SYSTEMS

(Generic Component Modeling), HLAM (High-Level Application Modeling), SRM (Software Resource
Modeling), and HRM (Hardware Resource Modeling). The analysis features are supported by the package
MARTE Analysis Model, which provides a generic package GQAM (Generic Quantitative Analysis Model-
ing) and two specific analysis domains SAM (Schedulability Analysis Modeling) and PAM (Performance
Analysis Modeling). These first two specific analysis domains are entirely concerned with time, however
the profile structure allows for adding additional analysis domains, such as power consumption, memory

use or reliability.

MARTE Foundations
I 1 — 1 1
<<profile>> <<profile>> <<profile>> <<profile>> <<profile>>
CoreElements NFP Time GRM Alloc
) )
| |
MARTE Design Model MARTE Analysis Model
1 1 1
<<profile>> <<profile>> <<profile>>
GCM HLAM GQAM Q
A \
1 1 1 / — 1
<<profile>> <<profile>> <<profile>> <<profile>>
SRM HRM SAM PAM

Figure 2.2.1: Architecture of MARTE Profile

Summary. In the context of the thesis, we use the term UML-MARTE to indicate the specification language.

2.3 FORMAL SPECIFICATION OF REAL-TIME SYSTEMS

As revealed by a number of surveys [Kobgg], even the most recent versions of the UML specification suffer
from multiple ambiguities and problems regarding the precise semantics of the language. This is a major
problem for model-centric development which highly relies on precise modeling techniques, as the infor-

mation contained in the user model will be directly propagated to the verification model.
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2.3. FORMAL SPECIFICATION OF REAL-TIME SYSTEMS

Formal specifications are mathematical languages used to describe a system, analyze its behavior and
help assess its properties. There exists a number of formal languages dealing with real-time analysis is-
sues, such as Timed Automaton [ADo4 ] and several extended Petri nets such as Timed Petri Nets [ RH8o,
Zubg1], Stochastic Timed Petri Net [FENg1 ], Time Petri Net [MF76], etc, among which Time Petri Net

and Timed Automata are the most prominent.

2.3.1 Timed Automata

Timed automaton (TA) was introduced by Alur and Dill [AD94]. A timed automaton is a finite automaton
extended with a set of dense time clocks, which are real-valued variables. A timed automaton evolves con-
tinuously and synchronously along with their physical clocks. In a timed automaton, each transition has a
guard (a constraint over clock value or events) which indicates when such transition can be fired and a set

of clocks to be reset when the transition is fired.

Example 2.1 (Timed Automaton) The Timed Automaton in Fig. 2.3.1 models the processing of a task, where
clkis a clock. After the reception of a signal proc, the automaton spends at least tyoc_min t.u. in the location Init, and
then transits to the location Processing. Then, it emits the signal free_proc if the processing time does not exceed

toroc_maxs otherwise, it emits error_proc.

Wait Init Processing
> (M >
proc? clk =0 ck = tproc_min
ck < tproc_max, free_proc!
clk > tproc max, €rror_proc!
] y

Figure 2.3.1: Timed Automata Example

Modeling and verification tools such as UPPAAL* and KRONOS® are based on timed automaton.

4http: //www.uppaal.org/
*http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/index-english.html
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2.3.2 Time Petri Net

Time Petri Nets [MF76] extends Petri Nets with timing constraints on the firing of transitions. Here we

use the formal definition of Time Petri Net from [ CR0o6] to explain its syntax and semantics.
Definition 2.1 (Time Petri Net) A Time Petri Net (TPN) T is a tuple (P, T, *(.), (.)®, M,, (a, B)), where:
o P={p,,ps, ..., pm} is a finite set of places;
o T=A{t, t,, ..., t,} is a finite set of transitions;
« *(.) € (N”)T is the backward incidence mapping;
o (.)* € (NP)T is the forward incidence mapping;
« M, € NP is the initial marking;

a € (Qso)Tand B € (Qs, U 00)T are respectively the earliest and latest firing time constraints for

*

transitions.

Following the definition of enabledness in [BDg1], a transition t; is enabled in a marking Miff M > *(t;)
and a(t;) < v; < B(t;) (v; is the elapsed time since t; was last enabled). There exists a global synchronized
clock in the whole TPN, and a(#;) and f(t;) correspond to the local clock of t;. The local clock of each tran-
sition is reset to zero once the transition becomes enabled. The predicate T Enabled(t, M, t;) is satisfied if

ti is enabled by the firing of transition ¢; from marking M, and false otherwise.
1 Enabled(t,, M,t;) = (M — *(t)+ (£)* > () A (M= *(t) < *(t))V (. = 1)) (2.1)

Example 2.2 (Time Petri Net) An example of Time Petri Net (presented in Fig. 2.3.2) models concurrent
execution of a process. Compared to Petri Nets, the transitions in Time Petrinet are extended with a time constraint
that controls their firing time. Pi; is the place holding an initial token. Through the fork transition Ty, concurrent
task, (Texe) and task, (Tey.,) start at the same time within respective execution time [11,15] tu. and [19,27]
t.u.. The time constraint uses a local clock which starts once a transition becomes enabled. Until meeting join state

( ij-,,), the system will exit (T,t) or restart (Tyestart) the whole execution according to the running time.
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Task1_running [11,15] 110, o0]
O—) Trestart
[0,0] Task1_ends 2 [3,10]
Pinit fork [19,27] P. . T

: join exit Pexit

Task2_running Task2 ends

Figure 2.3.2: Time Petri Net Example

Time Petri Nets are widely used to formally capture the temporal behavior of concurrent real-time
systems due to their easy-to-understand graphical notation and the available analysis tools, such as TINAS
[BRVo4], INA 7, Roméo ¥ etc. Time Petri Nets are suitable for correctness, dependability, performance
and timing analysis in early stages of design. Throughout the thesis, we use Time Petri Nets as the verifica-
tion language for UML-MARTE models.

TINA allows data handling on TPN to perform classic imperative programming by adding common fea-
tures like variable (of type integer and boolean) definition and arithmetic operation to each transition. The
variable’s value set extends the transitions and states in the reachability graph, which unifies the verification
processes and makes it transparent to the TPN user while enlarging the modeling capability. An integer
property from the state making can also be associated with the integer variables. These marking variables
can only be read but not written. The formalism of TPN that is extended with arithmetic guards and actions
that manipulate this set of variables is called Time Transition Systems (tts)®. Each transition in a tts has

two associated functions:

« PRE represents an arithmetic guard: the transition will be enabled only when the TPN’s marking and

time preconditions and the guard are satisfied.

o AcT is the performed actions when the transition is fired. It can modify the variables that are used

to compute the guards.

6http: //projects.laas.fr/tina/
"http://www2.informatik.hu-berlin.de/ starke/ina.html

8http: //romeo.rts-software.org/

"We use tts to distinguish from Timed Transition System (TTS)
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An example of tts extends Ex. 2.2 by adding PRE(T,y.,) ={Ptask.=0} and ACT(Tere;) = {X=10} on
transition T,.,. When the number of token in the place Ty, is zero, Ty, can be fired. Once T, is fired,

variable X is set to 10.

Summary. In the context of this thesis, we rely on the Time Petri Nets as the verification model. The end-
user UML-MARTE model will be mapped to the Time Petri Net model to allow the formal analysis by model
checking. The mapping work is realized using the model transformation techniques introduced in the next

section.

2.4 MODEL TRANSFORMATION

Model transformations are one of the central elements in MDE. They allow the automated processing and
manipulation of multi-level models, and determine the propagation of information through various levels of
abstraction and representation formats. They are used in MDA to translate system specification from abstract
models to others, e.g. from platform-independent models into platform-specific ones or from models into
an executable language.

Model transformation can be implemented in a number of ways [CHo3]: by using a programming
language such as Java or C++, by using a model transformation dedicated language and corresponding
tools, or by a combination of native programs and hybrid transformations. We present some commonly
used model transformation languages: QVT, ATL, and Kermeta.

QuT (Query/View/Transformation) [OMGo8] is a model-to-model transformation standard adopted
by OMG in 2007. It evaluates the expressions over a model to filter and select elements (Query), creates a new
model from the original model (View), and finally expresses the transformation rules (Transformation)
between both models. It uses the Object Constraint Language (0cL) [OMGosb] as mapping language
and MOF as definition language. Model transformation engines that conforms to the QVT standard include
for example SmartQuT [ABD " 08], QuTo [QVTog], etc.

ATL (ATLAS Transformation Language) [JAB " 06] is a model transformation language specified as both
a metamodel and a textual concrete syntax. An ATL transformation program is composed of rules that
describe how to create and initialize the elements of the target models. The transformation rules can be
fully declarative, hybrid, or fully imperative. It allows expressing simple mappings between the source and

target model elements. ATL was one of the experimental languages designed during the writing of the QVT
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proposal.

kermeta [FHN " 06] is an executable metamodeling language which allows describing both the struc-
ture and the behavior of models. It supports EMF-based metamodeling, constraint checking, transformation
and behavior support. The source models and metamodels are explicitly loaded and stored, and then the
target elements are explicitly instantiated and added to the target model. Kermeta supports reflection, ex-

ception handling, object-orientation and aspect-orientation.

Summary. In the context of this thesis, we use the programming language JAVA to transform the end-user

model to the verification model. This will ease the integration of different tools in the whole toolset.

2.5 VERIFICATION OF REAL-TIME SYSTEMS

Verification of a system is the task that determines whether the system is built according to its explicit spec-
ification. Verification assesses the end products against its requirements and ensures that it will perform
as specified. Model-based verification allows detecting errors earlier and preventing their propagation to
later phases in the development. Since verification is conducted all along the development cycle, it pro-
vides manages with continuous and comprehensive information about the quality and progress of the de-
velopment effort. The clients can also be given an incremental preview of system performances with the
opportunity to make early adjustments to their requirements.

In practice, real-time property verification in MDE is implemented in 2 manners: simulation and formal
verification. Simulation is relatively inexpensive in terms of execution time. But it only validates and verifies
the behavior of concurrent systems for parts of possible computation paths. Several existing works have
achieved success in the analysis of real-time systems. Contrasting to simulation, formal verification is a
systematic process that uses mathematical reasoning to verify that the design intent is preserved in the
implementation.

Cheddar '° [SLNMo4] is a real time scheduling tool designed for checking task temporal constraints
of a real-time application/system described with AADL. It allows to specify systems composed of several
processors which own tasks, shared resources, buffers that exchange messages. It provides a framework
which implements most of the classic real time scheduling theory methods. The framework includes many

feasibility tests and simulation tools. The tests can be applied to check that task response times are met

"%http://beru.univ-brest.fr/ singhoff/cheddar/index.html
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and that buffers have bounded size. SynDEx ' is a system level computer-aided design tool intended to
optimize the implementation, under real-time constraints, of embedded control applications onto multi-
component architectures built from several processors and specific interconnected integrated circuits. It
specifies and formally verifies software applications implemented on hardware. It analytically computes a
schedule that matches the constraint (correct-by-construction) and generates optimized distributed real-
time code thanks to formal verification and exploration of possible implementations manually, or auto-
matically with optimization heuristics, based on multi-periodic distributed real-time scheduling analyses.
UML-MAST '? [MDHo1] is a methodology and a set of tools for modeling and analyzing real-time systems
expressed in UML. It provides an discrete-event simulator to assess the timing behavior of applications, in-
cluding worst-case schedulability analysis for hard timing requirements and discrete-event simulation for
soft timing requirements. MARTE2MAST ' [MC11] is a tool that enables the extraction of schedulability anal-
ysis models and their direct analysis, which is similar to the methodology of UML-MAST but the modeling
constructs are those defined in the MARTE standard. It supports analysis using simulation tools and static
analysis.

There exists some other real-time property verification approaches such as the one based on Integer
Linear Programming (ILP). Lauer et al. [LEBP11a] used a modeling approach for Integrated Modular
Avionic (IMA) based on the tagged signal model [LSV97] and the abstraction of networks. The tag system
was then transformed into an ILP problem. They proposed evaluation method for the end-to-end real-time
properties based on ILP, and obtained optimal results.

Formal methods allow specifying a system’s requirements, designing an implementation, and assessing
its consistency, completeness, and correctness in a mathematical fashion. There are three main classes of

techniques used in formal verification: static analysis, theorem proving and model checking.

2.5.1  Static Analysis

Static analysis [Kil73 ] is used to perform type checking and optimization in compilers, bug-finding in pro-
grams, and some formal verification on programs. When performing formal verification of property, it
defines and proves a property of possible behaviors of a complex program without running the program.

It's common to approximate or abstract information, e.g. instead of the natural numbers o, 1, 2, ..., we could

"http://www.syndex.org/
12http ://mast.unican.es/umlmast/
3http://mast.unican.es/umlmast/marte2mast/

40



2.5. VERIFICATION OF REAL-TIME SYSTEMS

use zero, small, big. Sound approximations include all the behaviors and reachable states of the real system,
but are easier to compute.

Abstract interpretation [ CC77] is a theory of sound approximation of the semantics of programs. It can
be viewed as a partial execution of a program which collects information about its semantics (e.g. control-
flow, data-flow) without performing all the computations. Static analysis is a main concrete application
of abstract interpretation, which was first used in compilers for program optimization with FORTRAN
[BBB"57]in 1954.

The advantages of static analysis include high efficiency for handling large systems, no need for the en-
vironment model (input/output, libraries, etc), and high degree of automation. The shortcomings include
the production of false alarm caused by the imprecision, and the limitation for verifying dynamic variables
because the analysis is not dynamic. Currently, there are approaches [Erno3 ] that compare static analysis
and dynamic analysis to combine them in the verification.

The properties checked by static analysis are usually implicit, such as uninitialized variables, division by

o, index of array out of bounds, overflow/underflow, null pointer dereference, etc.

2.5.2 Theorem Proving

Theorem proving [Ruso1] is a set of techniques to prove that an implementation satisfies its specification
by mathematical deduction. The correctness claims are formulated as a mathematical theorems, which are
then proved either manually or automatically with the help of a proof assistant such as Pvs [ORR " 96], HoL4
[SNo8], Isabelle [Pauoo], Coqg [DFH " 91], etc. The automated theorem proving started in the 1960s.

The program and its execution context are first described using some appropriate language, which is
then translated into logical formulae. The expected behavior is then itself described by a formula of the
same language. The proof of correctness is then partly handwritten and synthesized. It is finally checked
with the theorem prover by using a set of axioms and inference rules. Many different kinds of logic are used:
propositional logic, first-order logic, and also non-classical logic and higher-order logic, etc.

Although theorem proving is sometimes able to prove the property fully automatically, it is more com-
mon that many human interventions are needed. Theorem-proving-based verification is thus very seldom
fully automatic. In practice, theorem proving can only be used by experts. The construction of a proof may
take lots of time, and might even be impossible as expressive logics are usually incomplete.

Another shortcoming with theorem proving is that it is not particularly good in providing debugging
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information, that is, information as feedback to help locate errors in the system or expected behavior. Usu-
ally, when a proof fails, we often have to manually trace the invariant or variant that cannot be proved nor
displayed, and analyze the reason of proof failure. Therefore, the debugging process is indirect.

Theorem proving allows the verification of the largest family of properties. It can cope with infinite
state spaces of types. Theorem proving can be used in association with model checking by automatically
generating a finite abstraction of the system to be verified. This method allows to decrease the complexity

of the system and to resolve the undecidable boundedness problem [BCNg8].

2.5.3 Model Checking

Model checking involves the design of a more abstract finite-state model M, and the use of requirement ¢
expressed in temporal logics. A model checking problem requires to assess whether a given model satisfies

a given property by searching state s of M:

M;s ): ¢ (2.2)

Pioneer work in the model checking of temporal logic formulae was done by E. M. Clarke and E. A.
Emerson [EC80, CE82, CES86] and by J. P. Queille and J. Sifakis [QS82]. Clarke, Emerson, and Sifakis
shared the 2007 Turing Award for their work on model checking.

In this part, as this thesis relies on model checking, we present its key principles (Section 2.5.3.1), the
Kripke structure (Section 2.5.3.2), the temporal logic (Section 2.5.3.3), the model checking tools (Section
2.5.3.4) and discuss its strengths and weaknesses (Section 2.5.3.5).

2.5.3.1  Model Checking Principles

Applying explicit-state model checking to a design relies on fours phases:
« System formal specification This phase builds a formal model from a design as input of model
checker. This conversion can be a simple translation task or an abstraction work that eliminates ir-

relevant details. It can be partly or fully automated. It is common to use Labeled Transition Systems

(LTS) as verification model that are equivalent to Kripke structure. [CGP99]

« Property statement This phase builds a formal model of the requirement (expected properties) in

some logical formalism. It is common to use temporal logic, which can assert how the behavior of the
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system evolves over symbolic time.

« Model checking This phase runs model checker to build all the execution paths and assess the sat-
isfaction of expected properties by searching some desired (undesired) states. The verification by

model checking is automatic and able to terminate if the state space is finite.

« Feedback analysis If the property is not satisfied in some executions, the model checker generates
a counterexample. The counterexample is thus an error trace. It can be used to analyze the reason

of error by simulation or other techniques, and furthermore to refine and adapt the design or the

property.
2.5.3.2 Kripke Structure

The state of a system is used to describe its status at a specific time instant. The behavior of a system
can be seen as a finite or infinite set of transitions between the states. We use Kripke structures (ktz) to

describe system’s behavior. We recall the definition of Kripke structure from [ CGP9g, HC96].

Definition 2.2 (Kripke Structure) A Kripke structure M over a set of atomic propositions AP is a 4 tuple
M = (S,S,, R, L) where

.

S is a finite set of states.
« So C Sis the set of initial states.

« R C S X Sisatransition relation that must be left total, that is, for every state s C S there is a states’ C S
such that R(s, s).

o L: S — 2% isafunction that labels each state with the AP that are true in that state.

A path in a Kripke model M can be an infinite sequence
P = So,5,5,... €S

such thats, € S, and (s;, s;1,) € R.
A state s is reachable in M if there is a path from one of the initial states to s. This path is then finite.
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2.5.3.3 Temporal Logic

Temporal logic was first introduced by Arthur Prior in [Pris7]. It describes the property of the ordering
of eventsin time for LTS, and therefore can be used to specify the behavior of a reactive system and to specify
the properties to be assessed for a given LTS.

Linear Temporal Logic (LTL) [Pnu77] is built from a finite set of atomic propositions, a set of logical
operators negation (), conjunction (A) and union (V), constants true (T ) and false (L), and the tem-
poral operators G for always ([J), F for eventually ({), X for next (()), U for until, W for weak until, and
R for release.

Regarding the expressiveness of LTL, since LTL is propositional logic, i.e. it contains no quantification
over variables, it can not specify quantitative properties, but only logical properties.

Metric Temporal Logic (MTL) [Koy9o] is an extension of LTL over a discrete time line to support the
specification of relative-time and real-time constraints. MTL contains time-constrained operators: always
(0), eventually (¢), next (), strong until (U), and weak until (W).

2.5.3.4 Model Checking Tools

Many model checking tools have been developed to assess temporal logic formulae over labeled tran-
sition systems/Kripke structures. In this part, we present three widely used model checking tools: TINA,
UPPAAL and SPIN.

TINA (TIme petri Net Analyzer) [BRVo4] is a toolbox for the edition and analysis of Petri Nets, in-
cluding inhibitor and read arcs, Time Petri Nets, including priorities and stopwatches, and an extension of
Time Petri Nets with data handling called Time Transition Systems (tts) (that should not be mistaken
with Henzinger’s Timed Transition System (TTS)). TINA toolset includes the following tools: nd as editor
and GUI for Petri nets, Time Petri nets and automata; tina for construction of reachability graphs; sift for
construction and checking of reachability graph on-the-fly; selt as a State/Event LTL model checker; muse
as a state-event modal y-calculus model checker; plan as an tool for computing the firing time of transitions
or an example firing schedule (also called path); play as a simulator of the net described in any of formats
.anet, .ndr, .tpn, .pnml or .tts; and etc.

The tool tina provides various state space abstractions for Time Petri net (state class graph), following
the techniques discussed in [BM83, BD91, Bero1, BVo3]. Depending on the abstraction option selected,
the construction preserves markings, states, LTL properties, or CTL * (a super set of computational tree logic

(cTL) and LTL) properties of the concrete state space of the Time Petri Nets.
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UPPAAL '* [BDLo4] is an integrated toolbox for editing and analyzing real-time systems modeled as
networks of timed automata, extended with data types (bounded integers, arrays, user defined functions,
etc.). UPPAAL consists of three main parts: a description language, a simulator and a model checker.

UPPAAL can checkinvariant and reachability properties by exploring the state space of a system, i.e. reach-
ability analysis in terms of symbolic states represented by constraints. UPPAAL uses a simplified version of
CTL to specify property, where the query language consists of path formulas and state formulas. State for-
mulas describe individual states, whereas path formulas quantify over paths or traces of the model. Path
formula can be classified into reachability, safety and liveness. Each formula to be verified is transformed
into a timed automata and composed with the system. If the property is not satisfied a counter-example is
generated.

SPIN'* [Holg7b] is the model checker for models of distributed software systems. It supports the analy-
sis of model described in PROMELA language [Holoo]. SPIN can be used as a full LTL model checking system,
supporting all correctness requirements expressible in LTL, but it can also be used as an efficient on-the-fly
verifier for more basic safety and liveness properties. Many of the latter properties can be expressed, and
verified, without the use of LTL. Correctness properties can be specified as system or process invariants
(using assertions), as LTL, as formal Biichi automata, or more broadly as general omega-regular properties

in the syntax of SPIN.
2.5.3.5 Strengths and Weaknesses of Model Checking

Strengths. Compared to theorem proving, model checking techniques are fully automatic, and do not
require manual effort to construct the proofs. Another prominent advantage is that model checkers provide
better feedback than other techniques. A counter example is provided when the property is not verified and
this may help to find the origin of the error.

Weaknesses. Model checking can run into limitations due to the combinatorial state explosion problem.
The number of states in the behavior of system model may easily exceed the amount of available resources.
Several effective methods have been developed to handle this problem (see Section 2.6), however models
of realistic systems may still be too large to fit limited resources. In practice, it is possible to use appropriate
abstraction that preserves the information needed to assess a given property to reduce the state space. The

user needs to build an appropriate finite-state model that fits the verification technology, which is also one

14http: //www.uppaal.org/
Shttp://spinroot.com/spin/what.html/
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of the objectives of this thesis.

Summary. In the context of this thesis, we rely on the TPN as the verification model and on the TINA toolset
as the verification tools. One of the objectives is to provide efficient means to assess the real-time properties
expressed with observers and accessibility assertions relying on high abstract state class graphs to reduce

the cost of model checking.

2.6 STATE SPACE REDUCTION OF MODEL CHECKING

Model checking techniques are user friendly as they provide better automation and error analysis than other
techniques. Unfortunately, they suffer from state space explosion that can make it seem useless for large-
scale systems. Indeed, in some systems, the size of a state space tends to grow exponentially in the number
ofits processes and variables, where the base of the exponentiation depends on the number oflocal states a
process has and the number of values a variable may store, and on some kind of "tightness” of the connection
between the components of the system i.e, the extent to which the local states of components are dependent
of the local states of other components [Valo8].

Many works were motivated to find effective solutions to state space explosion problem. There have
been several major advances in addressing this problem. Most often, the advanced state space reduction
takes advantage of details of the specific verification query. In this section, we discuss some commonly
used state space reduction strategies: symbolic model checking with BDD (see Section 2.6.1), partial or-
der reduction (see Section 2.6.2), compositional reasoning (see Section 2.6.3 ), abstraction (see 2.6.4) and

symmetry (see Section 2.6.5.

2.6.1 Symbolic Model Checking with OBDD

In 1987, McMillan [BCM ™92, McMog3] acknowledged that the use of a symbolic representation for the
state transition graphs allowed verifying much larger systems. Contrasting to the original implementation
of model checking algorithm that represents explicitly the transition relations, symbolic model checking
approach represents and manipulates a finite state transition system symbolically as a Boolean functions.
The symbolic representation is based on Bryant’s Ordered Binary Decision Diagram (0BDD) [Bry86].

Symbolic model checking can reduce the state space of explicit model checking, as it avoids explicitly
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constructing the state graph of the system. By using 0BDD, any finite-state system can be encoded using a set
{b,,b,, ...b,} of binary variables. Sets of states, for example the set of initial states, can then be represented
as propositional formulas over {b,, b, ...b, }, and sets of pairs of states, such as the pairs (s, t) labeled with
action a can be represented as propositional formulas over {b,,b,, ...b,, b, b, ...b/ }. There exists many
redundancies in the decision tree that can be removed by combining isomorphic sub-trees (producing a
directed acyclic graph from the tree) and eliminating nodes with identical sub-trees [Mero1]. The model
checking algorithm is based on computing fixpoints of predicate transformers that are obtained from the
transition relation. The fixpoints are sets of states that represent various temporal properties of the system.
In this way, the process of checking a propositional formula is to follow the path labeled with the boolean

values for each of the inputs.

Most reduction methods were aimed to reduce the number of states. In symbolic model checking, the
size of 0BDD depends critically on the variable ordering, not on the total number of states. 0BDD has achieved

many successes especially in circuit design, as can be seen from the survey [MTo8].

2.6.2 Partial Order Reduction

In asynchronous concurrent systems, most of the activities in different processes are performed indepen-
dently, without a globally synchronization. The most successful techniques for dealing with this problem

are based on the partial order reduction [CGP99, GYLH " 96, GP93, Pelg4, Valg1].

The main idea of partial order reduction is to construct a reduced state graph by eliminating the unnec-
essary behaviors. This method is based on the dependency relations that exist between the transitions of a
system. It exploits the commutativity of concurrently executed transitions, which result in the same state
when executed in different orders. The reduction method then specifies the set of transitions that should
be included in the reduced state graph. The reduced behavior is a subset of the behavior of the full state

graph. Thus it does not add any information to the behavior of a system.

Many experiments showed that the state space for asynchronous concurrent systems can be significantly
reduced. Different partial order reduction approaches works based on three different type of subsets of
states: the stubborn sets [Valg1], the persistent sets [ GP93 ] and the ample sets [Pelo4 ). These techniques

contain similar ideas, and only differ on details.
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2.6.3 Compositional Reasoning

Compositional reasoning reduction techniques are considered effective in systems with modular structures
when multiple processes are running in parallel. The main idea is a divide and conquer strategy that divides
the whole specification into small parts and verify each part independently from the others.

The use of compositional reasoning follows three steps: first decompose the system specification into
local properties that describe the behavior of small parts of the system; second, check each of the local
properties using only the smallest part of system that it describes; finally, perform a conjunction of the
local properties to derive the result for the full system.

Usually the system components exhibit dependencies to each other, which implies that the simple com-
positional reasoning is not feasible in such systems. Therefore, some assumptions about the behavior of
other components are needed when verifying a property on one component. This strategyis called assume-
guarantee reasoning [MC81, Jon83, Pnu8s, GLo4].

The main issues in compositional reasoning are how to devise proper assumptions and how to develop
new proof rules. Some works were aimed to automatically generate the assumptions [ CGPo3, NMAo8].
The assumption generation is based on machine leaning that uses the counterexamples generated by model

checkers as the training data.

2.6.4 Abstraction

Abstraction reduction techniques [ CGL94] are usually applied to systems that rely on data manipulations
involved in the states. They attempts to reduce the state space by performing abstraction on the set of
data and the operations applied to data. Two commonly used abstraction techniques are cone of influence
reduction and data abstraction.

The technique of cone of influence reduction focuses on the total number of variables. It attempts to
eliminate the variables that do not influence the verification of expected properties. As a consequence, a
system description is simplified by referring only to the minimum set of variables, and the state space is
reduced as states include these variables.

The technique of data abstraction focuses on the values of data. It attempts to find a mapping between
the actual data values and a smaller set of abstract data values. By extending this mapping to states and
transitions, it is possible to obtain a smaller abstract system that simulates the original system. Abstraction

techniques are usually related to static analysis and abstract interpretation.
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2.6.5 Symmetry

Symmetry reduction techniques [[D96, CEF]96, ES96] are usually used in systems that exhibit topological
symmetric identical components that are coupled to each other, e.g. redundant processes. The state space
reduction approaches based on symmetry make use of the identical or isomorphic processes in a system to
reduce the identical states in the state transition graph. Intuitively speaking, the behavior of a component
can be replaced by the stored behavior of its identical component.

The construction of symmetry state space and its use in verification have been applied to Petri nets

[Jeno6], to CTL * model checking [ CEF]96, ES96], to Biichi automata [ES97, GS97], etc.

Summary. In the context of this thesis, instead of the generic reduction approaches presented in the above
parts, we aim to provide property-specific reduction methods, which are dedicated to a new abstraction

preserving all semantics related to real-time properties, while eliminating the others.

2.7 MODEL CHECKING FEEDBACK

The generation of counterexamples in case a formula is violated is a key service provided by model check-
ers. A counterexample is a trace of execution that does not satisfy the expected properties. Several works
investigated the algorithms for generating [CVo3] and understanding [ GKLo4a, BBDC " 09] counterex-
amples. Some work [ZCP13] builds failure scenarios for end user models using error traces. To diagnose
a system design, generating a counterexample can be used to detect a fault, but the counterexamples pro-
duced by model checkers often stand for error traces in the verification model, which represent sequences
of state changes and are therefore usually lengthy and difficult to understand, even worst with reduction
and abstraction. More precisely, the origin of error might be anywhere along the error trace, thus requir-
ing a lengthy analysis by designers. The ultimate goal is to trace the counterexample back to the designers’
model in order to help fault detection, analysis and correction.

Fault localization is dedicated to monitoring a system, identifying when a fault has occurred, and pin-
pointing the location of the fault. One main fault localization approach derives the faults from some model,
classified into the category Model-Based fault localization, which can be applied in MDE. In model-based
fault localization, the system model may be mathematical, or knowledge based, including observer-based

approach, parity-space approach, parameter identification based methods, etc [Dino8]. The efficiency
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and accuracy of model-based fault localization depends on the appropriate abstraction and reasonable as-
sumptions. On the basis of a survey [Ali12], the major fault localization approaches are classified into s
categories: program slicing [Wei81, AHgo, GBF99], spectra-based fault localization [RBDL97, RtPRo3,
JHSo2a], statistical inference [LYF " 05 ], delta debugging [ZHo2] and model checking. In this thesis, we
discuss the techniques that use counterexamples that do not satisfy the expected behavior and try to locate
the origin of faults in the model checking.

Automated fault localization in model checking intends to ease and accelerate debugging by indicating
the suspicious components in the model. Current automated fault localization techniques usually either
produce a set of suspicious statements without any particular ranking, or they use a suspiciousness factor
and then rank all statements according it.

According to the survey [Ali12], we discuss the following important fault localization techniques.

. Contrasting counterexamples with good traces using a single counterexample [BNRo3 ] pro-
posed to analyze fault localization using one counterexample that violated the desired properties in
a particular case. Whenever a counterexample is found, the approach compared the error trace de-
rived from the counterexample to all the good traces that satisfied the property. On the observed
error and good traces, the transitions that led to the deviation from good traces are marked as suspi-

cious transitions. This technique has been implemented in the SLAM model checker [BRo1].

. Using multiple counterexamples [ GVo3] introduced an approach that relies on multiple coun-
terexamples. It defined the traces that started from initial states and ended with error states as neg-
ative traces, and the traces that did not take the error state as previous state as positive traces. The
analysis approach denoted the transitions that existed in all positive traces, the transitions that ap-
peared in all negative traces, the transitions that existed in one of positive traces but not in any nega-
tive traces, and the transitions that appeared in one of negative traces, but not in any positive traces.
The algorithm then used the above marked transitions to define the cause of failure. This method

has been implemented in Java PathFinder [HPoo].

- Distance metrics [ Groo4] proposed to define a distance between the error trace and the passing
traces, which are traces in passing test cases that satisfy the requirements. The distance was then used
to find the closest passing trace to the counterexample. The causes of error were then derived from
the comparison results between the closest successful trace and the counterexample. This method

was implemented in explain tool [GKLo4b].
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« Abstract counterexamples [ CGSo4] relied on a prediction that not all components of a model were
involved in a specific property when performing model checking. It marked the states that actually
affected the property. The algorithm was the same as explain, except that it used predicates when

comparing error traces and passing traces. This technique has been implemented in the MAGIC model
checker [CCGto4].

« Reduction to Max-SAT Max-SAT (Maximum Satisfaction) problem [Zim78] is the problem of de-
termining the maximum number of satisfied clauses of a given boolean formula. [JM11b] proposed
an approach that transformed fault localization problem to the Max-SAT problem. It used only one
failing trace and the corresponding input to build the Max-SAT formulation. This method has been
implemented in the BugAssist tool [JM11a].

All of the above § techniques were aimed to produce a set of suspicious statements without any partic-
ular ranking. The precision of fault localization can be improved by devising a suspiciousness factor and
then ranking all suspicious statements according to it. There exist some works [JHSo2b, AADWog] based
on the suspiciousness factor.

To evaluate the success of a fault localization algorithm, some important criteria should be measured,
such as effectiveness, precision, informativeness, efficiency, performance, scalability and information usage.

Here we explain the most significant measurements: effectiveness and efficiency.

« Effectiveness An effective fault localization method should point out the origin of failure. The effec-
tiveness can be evaluated by the precision. According to the survey [WDog ], the effectiveness can be
assessed by a score EXAM in terms of the percentage of statements that have to be examined until the
first statement containing the fault is reached [EWDC10, WQo9, WSQGo8, WWQZo8]. A similar
score using the percentage of the program that need not be examined to find a faulty statement has
been defined in [CZos, JHos, RtPRo3]. These two scores provide the same information, but the
EXAM score is more direct and easier to understand. In this work, we use the EXAM score to assess the
effectiveness of our approach, which is the percentage of transitions that have to be examined until

the first faulty transition is found.

« Efficiency The fault localization techniques in model checking, like other techniques, should termi-
nate in a timely manner, limited by some resource constraints. The efficiency can be assessed by the

scalability and the performance.
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2.8. CONCLUSION

Summary. In the context of this thesis, we aim to provide an automated fault localization approach based
on model checking to ease and accelerate the debugging by locating and ranking the suspicious elements

in a model when a safety property is unsatisfied.

2.8 CONCLUSION

This Ph.D work aims to design and implement a toolset used to verify real-time requirements in large scale
UML-MARTE real-time designs. To deal with large scale systems, the main problem of verification techniques
based on model checking is the combinatorial state explosion problem. It is interesting to adapt existing
techniques or to construct new ones to prevent the combinatorial explosion in the process of real-time re-
quirement verification. Based upon this purpose, the toolset should offer the following real-time property-

specific tools, each of which can contribute to the prevention of the combinatorial state explosion:

the tool for defining execution semantics to end user models (in our case UML-MARTE) and then map-

ping it to the execution model (in our case TPN)
« the tool for formally specify real-time requirements
« the tool for reduce the state space

the tool for efficiently assessing the real-time properties using model checking

the tool for feeding back the origin of errors in the model if a safety property is unsatisfied.
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Contribution to Property-Driven Approaches
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Semantic Mapping from UML-MARTE to
Property-Specific TPN

RESUME

UML, le langage de modélisation unifié, est un langage généraliste qui doit permettre de modéliser n'importe
quel type de logiciel. Pour une activité particuliére, il suffit en général d’'un sous ensemble du langage
adapté pour les experts qui I'exploiteront. De plus, pour exploiter des méthodes de vérification formelle,
il faut choisir un sous-ensemble adapté a la traduction vers ce type de modeéle. Nous avons sélectionné
un sous-ensemble des diagrammes UML adapté a la modélisation de la structure et du comportement
d’architectures logicielles temps réel. Ce chapitre présente la méthodologie de I'approche « dirigée par les
propriétés », qui constitue la base de notre contribution en terme de sémantique de traduction. L'objectif
est de traduire automatiquement le sous-ensemble retenu des modéles UML-MARTE dans le formalisme

des réseau de Petri temporisés pour permettre une vérification efficace de propriétés temps réels. Il s’agit de
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ne conserver de la sémantique ' UML-MARTE que le niveau de détail adéquat pour vérifier ces propriétés
dans le but de réduire l'espace d’états lors de la vérification de modeles. Les diagrammes UML considéré
sont « structure composite » (composite structure), « machine a états » (state machine) et « activité »
(activity). La communication entre les éléments peut étre synchrone ou asynchrone. Du point de vue des
horloges, comme le modéle sémantique des réseaux de Petri temporisés repose sur une horloge globale,
nous considérons en premier lieu des systémes mono-horloge donc des systémes synchrones au sens des
horloges. Afin de modélisation des systémes multi-horloges, nous introduisons une notion de dérive de
I'horloge pour lier les différents horloges indépendantes a I'horloge de référence. Ceci permet de simuler
plusieurs horloges asynchrones. Les exigences considérés étant les propriétés temps réels dans la concep-
tion de l'architecture, les valeurs des objets sont ignorées lors de la traduction des modéles. Seul le type et
le nombre d'occurrences des objets sont considérés.

Les contributions principales de ce chapitre se résument en :

« Spécification de la sémantique d’exécution pour les digrammes de structure composite. Ce dia-
gramme relie les comportements des sous-systémes a travers les moyens de communication. La

sémantique d’exécution traite donc les entités Part, Port et Connector.

« Spécification de la sémantique d’exécution pour les diagrammes d’activité. Le diagramme d’activité
explicite le flot de contréle (séquencement, coordination, ...) d’éléments de grain plus fin. La sé-
mantique d’exécution prend en compte les noeuds de controle, les actions déclenchés par événe-
ment et par le temps, les objets et les connexions. Afin de normaliser la sémantique d’exécution pour
le comportement asynchrone, nous étendons la sémantique d'origine des actions pour exprimer un
comportement cyclique a l'aide du profil MARTE que nous traduisons en réseau de Petri temporisé.

Il s’agit d'un modele d’exécution classique pour les systémes réactives asynchrones.

« Spécification de la sémantique d’exécution pour des diagrammes de machines d’état. Le diagramme
de machine a état comportemental (behavioral state machine) est traité. La sémantique est explic-
itée en deux étapes. D’une part, les états hiérarchiques et les régions orthogonales n'apportent pas
d’expressivité en terme de sémantique. Ils servent seulement a faciliter la modélisation de systemes
complexes. De telles machines peuvent étre « aplaties » en exploitant des constructions des dia-
grammes dactivité. D’autre part, les machines a état « plates » comportant des état simples, des
états finaux, des transitions et des pseudo non imbriquées sont traduits en réseaux de Petri tempo-

risés.
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o Spécification de la sémantique d’exécution pour les ordonnancements des ressources. Dans ce tra-
vail, nous ne cherchons pas a fournirla sémantique de toutes politiques d'ordonnancement de ressource
mais d’assurer que l'ordonnancement est réalisable dans le pire cas. Nous proposons donc un algo-
rithme d'ordonnancement générique avec possibilité de préemption. La spécification et la vérifica-
tion en exploitant des politiques d'ordonnancement spécifiques pourront étre traitées comme une

extension de ces travaux.
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Progress Map 1: Property-Driven Semantic Mapping

This chapter introduces the property-driven methodology, which provides the basis for the semantic
mapping contributions in this thesis (Progress map 1). Property-driven mapping is aimed to map the end
user source models (UML-MARTE in our case) to the target verification models (TPN in our case) on the basis
of real-time property verification (Challenge 1 in page 22). The mapping consists in defining a dynamic
semantics (a semantics of observable events) built upon the properties to be verified. To reduce the size of
state space during the verification, the mapping eliminates the semantics irrelevant to the target property,
while preserving a minimal set of property-relevant semantics. According to the target real-time property
family, a denotational semantics is provided as a mapping from UML-MARTE architecture diagram (composite
structure) and behavior diagrams (activity and state machine) to TPN. In addition, a generic scheduling

algorithm with a preemption option is defined. (Contribution 1 in page 24)
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3.1 INTRODUCTION

UML, by its nature, was intended to be a general purpose software modeling language, and as such, is not sim-
ple enough to be efficiently used by non-software experts. Many research works propose DSMLs (Domain
Specific Modeling Languages) based on UML relying on profiles for different types of systems and different
system engineering processes. For the purpose of this thesis, we have selected a large enough subset of UML
diagrams and diagram elements for modeling real-time software architecture and behavior. We focus on

the semantic mapping from the UML model to the verification model.

Methodology. From the viewpoint of methodology, our work is based on the pioneer work [CCG " 07] by
Combemale et al. Aimed to define all the steps from the property specification to effective verification, they
introduced in [CCG " 07] a generic approach to define the operational semantics (a semantics of observable
events) built upon the properties expressed at the metamodel level. Their contribution was introduced
through a simple process description language: SIMPLEPDL on which a set of temporal properties, e.g a
workdefinition must start after another workdefinition is finished, were expressed. Property-driven means

that the formal activities in the development process are based on the purpose of property-verification-ease.

Related work. Currently there are many projects that have made great effort to define restrictions for
UML. This is not the main concern of this thesis. We rely on the UML specification 2.4.1 [OMG11c] and the
commonly accepted interpretation to define a formal semantics for the related UML subset.

Executable UML (fuML) [OMG13] aims to support a variety of different execution paradigms and envi-
ronments. It is based on a very restricted subset of UML 2.4.1 that only handles parts of the activity diagram.
fUML provides precise definition of the execution semantics at implementation level such as the type of
variables, while in the work of this thesis, we focus on the operational semantics at verification level, i.e,
implementation details should be eliminated in order to ensure the efficient formal verification.

Some works like [Craos] studied the semantics of state machine, and provided the result of a com-
parative literature review on approaches to formally capture the semantics of UML state machines, and the
underlying formalism of the approaches e.g., mathematical models (transition systems, abstract state ma-
chine, Petri Net, etc), rewriting systems and translation approaches.

Some existing works [LGMCo4, TMHo8,BBBB11,YYSQ10, AMCNog, CMC 08, MPFA06, MCBDo2]

have defined mapping semantics from UML diagrams to Petri Nets for verification purpose. The works
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[LGMCo4, TMHo8, BBBB11 ] focused on the measurement of system’s performance, or on the verification
of correctness and inter-diagram consistency, or the cancellation and advanced synchronization patterns in
untimed UML diagrams. The work [YYSQ10] mapped UML-MARTE activity diagram to Timed Color Petri Net
with Inhibitor Arc to provide a possible foundation for analyzing time properties. This method focused on
the mapping semantics of object flows. Colored Petri Nets (CPN) can ease the semantic mapping for data
related elements, but to our knowledge there is no appropriate verification tools that handles the combi-
natorial state explosion problem. [MCBDoz] presented a translation of untimed state machine diagram
into Generalized Stochastic Petri Nets (GSPNs). This allows the qualitative and quantitative analysis of
systems that are described using UML SMD by means of GSPN tools.

[AMCNog, CMC ™ 08] relied on TPN to map SysML-MARTE activity and state machine diagrams to TPN
with energy constraints to estimate the energy consumption and execution time of the system. This map-
ping is not generic, as it can only assess the execution time of the system. [ MPFA06] defined a mapping
for arestricted class of activity diagrams to Time Petri Nets to assess the quality of allocations of the system
functionality. It provided a support for verifying deadline on activities.

Compared to the above related works, our semantic mapping targets the family of real-time properties,
which is easier to encounter the combinatorial state explosion problem than the structural and temporal
properties. Because the physical time behaviors will generate much more states than the logical behaviors
in state class graphs. We do not target a new mapping completely different from the existing ones. On
the other hand, it is impossible to define new mapping semantics for the UML elements like the initial, final
nodes, as their semantics are very restricted. Our purpose is to define a mapping semantics by TPN for a
relatively complete subset of UML-MARTE diagrams and diagram elements, and to apply this mapping seman-
tics to a large scale systems to efficiently verify real-time properties. Therefore, we will adapt some of the

execution semantics defined in the above related works, in order to improve the verification scalability.

Modeling Context. UML-MARTE can be used to model a wide range of real-time systems. It is not the main
purpose of this thesis to cover all the modeling details of real-time systems. Therefore, before presenting

our contributions, we need to clarify the modeling context in this work.

« Synchronous & Asynchronous: The systems that we are interested in are the concurrent real-time
systems. From the viewpoint of message passing, we allow both synchronous and asynchronous
communication modeling between different parts of the system. From the viewpoint of clock, as

the TPN model provides a common synchronous clock, the modeling context allows synchronous
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clock by default. To analyze quantitative properties, it usually needs for a reference clock, then the
other clock are mapped to this reference. In order to enable the modeling of asynchronous clocks, we
introduce the concepts of clock rate, drifts and offset to map multiple clocks to the reference clock,

which is a simulation of multiple asynchronous clocks.

« Cyclic execution: Cyclic execution is a very common pattern for real-time systems that implement
control & command to interact with the real world. An event-trigger cyclic execution can be simply
specified using an action and aloop section. Itis activated by the readiness of the data and the control
flow. However, for the time-trigger execution, the activation of an action is controlled by the data,
control flow and the rising edge of the cycle period. Although the semantics of offset and period
can be modeled using MARTE profile, the whole behavior can be modeled in various ways. In order
to ensure a standard mapping semantics, we decide to extend the original semantics for the action
node defined in UML activity diagram. The original semantics of an action focuses on event-trigger
behavior. We extend it by defining a time-trigger semantics using the MARTE profile, and then map it
to the TPN model. This pattern is very general in the reactive asynchronous system, and thus can be

reused in the modeling and verification. This issue is detailed in Section 3.4.3.2.

« Object Value Issue: As the object values do not affect the verification result of real-time proper-
ties in the architecture design of V-model (see page 18 in Chapter 1), they are ignored during the
semantic mapping. Only type and the occurrence number of the objects are considered. This issue

is detailed in Section 3.4.4.

« Simplification on the use of MARTE: In order to simplify the modeling and mapping works, we have
used some simplifications on the use of MARTE profile. This simplification does not impact the exe-

cution semantics in TPN.

+ Resource scheduling: In real-time systems, the behavior shares and consumes the resources such
as the CPU, memory, bus. The scheduling policy applied by the scheduler will impact the real-time
requirements. As modeling of scheduler policy is not the main concern of this thesis, we do not
aim to provide mapping semantics for any specific policy. Instead, we propose a generic scheduling
algorithm with preemption option, which is used to decide for the given time T, which resource

instance(s) will be allocated to which requester(s).
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Contributions. We aim to provide not only effective but also efficient property verification using the ex-

ecution semantics derived from the mapping. Our contributions in this chapter are summarized as below:

« According to the expected real-time property family, we have defined the operational semantics for
mapping UML-MARTE architecture diagram (composite structure) and behavior diagrams (activity and
state machine) to the property-specific TPN model. The mapping library is provided in Appendix A.
For some untimed UML elements not influencing real-time properties, such as Initial, Join, Fork
and Merge nodes in the activity diagram, the target TPN semantics can be standardized and homo-
geneous for all families of the properties. For the timed UML elements, the mapping eliminates the
semantics irrelevant to the target property, while preserves a minimal set of property-relevant se-

mantics to reduce the size of state space in the verification.

« A generic scheduling algorithm including a preemption option is defined. This scheduling algo-
rithm is used to decide for the given time T, which resource instance(s) will be allocated to which

requester(s).

In this chapter, we give an overview of the property-driven approach in Section 3.2; then define the
semantic mapping for composite structure diagram (Section 3.3), activity diagram (Section 3.4) and state
machine diagram (Section 3.5); then we propose a mapping semantics for a generic scheduling algorithm
including optional preemption (Section 3.6); we discuss the verification of model transformation and
boundedness issues for the TPN with inhibitor arcs in Section 3.8; at last the time semantics in multi-clock

modeling is discussed (Section 3.7).

3.2 PROPERTY-DRIVEN APPROACH

3.2.1  Coreldea

Combemale et al. presented in [CCG ' 07] a property-driven approach for specifying and checking behav-
ioral properties. The approach defined all the steps from the property specification to effective verification.
Property-driven means that the formal activities in the development process are based on the purpose of

property-verification-ease. Their contribution was introduced through a simple process description lan-
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guage: SIMPLEPDL on which a set of temporal properties were expressed. Combemale et al. defined the

following steps to assess the properties relying on TPN and LTL:

. The first step is to characterize the properties by the expert. The properties can be structural, tempo-

ral and quantitative ones according to SIMPLEPDL. The structural ones are static construction rules
that can be defined and checked by the use of 0CL. The temporal ones are those properties that should
be satisfied in every model execution. One example is a given process in SIMPLEPDL should effec-
tively terminate. The quantitative ones target the specification or synthesis of critical paths of execu-
tions in terms of minimal or maximal resource consumption such as the worst case execution time

or resource use. !

The second step is to characterize a finite set of states for the metamodel entities from the property.
For example, a workdefinition can either be not started, started or finished, and there is a notion of

time and clock associated with each workdefinition.

. Relying on these states, an observable abstraction of the generic operational semantics of the design

model with respect to the properties is defined. This operational semantics makes the design model

executable and thus analyzable by model checkers.

The fourth step expresses the property to be checked in the design model. For example, temporal
properties can be expressed using TOCL (an extension of 0CL with temporal operators) at the meta-

model level. This has been implemented by Zalila in [ZCP12].

. 'The fifth step formally expresses the operational semantics using the verification model TPN, and also

formally expresses the property using LTL. The semantics is defined as a mapping from SiMpLEPDL
to TPN. The mapping can be implemented using model transformations, which are written in ATL in

the work of Combemale and Zalila.

The final step performs the LTL properties checking on the TPN model using the TINA toolset. The
feedback of properties results can be automatically computed using the transformation model de-

fined during the translation SIMPLEPDL2PETRINET.

'As the quantitative ones are more complicated, they illustrated their approaching using the structural and temporal prop-

erties.
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3.2. PROPERTY-DRIVEN APPROACH

In the context of this thesis, we follow the same methodology proposed by Combemale, and propose
a property-driven mapping semantics to translate UML-MARTE models to the real-time property specific TPN
models for the verification purpose. As the TPN models containing real-time semantics are easy to encounter
the combinatorial state explosion problem, its mapping semantics needs to be property-specific, which
preserves minimal property-relevant semantics.

Firstly, the real-time properties need to be characterized. For the second and third steps, as this work
concerns the quantitative time properties, it is not as simple as the temporal or structural properties to
characterize a finite set of states. As the quantitative time properties cannot be directly assessed using logic
formulae such as LTL, CTL, the operational semantics built upon observable states/transitions needs to be
defined using the standard observer techniques. In the fourth step, properties are expressed using a set of
real-time property patterns defined in Chapter 4. Fifth, The operational semantics is formally expressed
using the verification model TPN, associated observers and the logic formulae (Chapter 5). At last, the
property expressed with logic formulae is checked using the model checker.

We do not follow exactly the same steps as the original work of Combemale, especially for the second,
third, and fourth steps. Moreover, we add a new step for property specific state space reduction (Chapter
6) before the model checking, which aims to reduce the state space of model checking and thus improve

the efficiency of verification.

3.2.2 Principles of Semantic Mapping

The semantic mapping approach for UML-MARTE is driven by the real-time properties that we plan to assess.

The mapping should respect the following s principles:
1. The mapping rules for a UML entity may change according to the family of properties.

2. For some untimed UML elements not influencing real-time properties, the target TPN semantics is
intuitive, and can be standardized and homogeneous for all families of the properties, and can be

derived from the previously existing mappings.

3. The mapping rule should guarantee the consistency between high-level user models and lower-level
verification models. However, a correct mapping does not imply a full semantics preservation, but
rather to ensure as much as possible the scalability of verification while being correct according to the

UML specification. For example, for the timed UML elements, the mapping eliminates the semantics
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irrelevant to the target property, while preserving a minimal set of property-relevant semantics to

reduce the size of state space in the verification.

4. The target TPN models should guarantee high performance verification, especially for large scale ap-
plications. Therefore, the mapping semantics should allow the TPN models to perform high-level
abstraction to ease the generation of the state class graph during the model checking. In our case,
we aim to generate the state class graph preserving only marking information (the minimal size state
class graph), but not LTL information. This means the TPN model derived from the mapping must
not possess the priority arcs. The priority arcs may ease the modeling work, but a TPN model with

them is not allowed to generate state class graph preserving only marking information.

5. Inorder, first to be able to automate the model mapping process, and then to keep a simple mapping,
a trade-off must be made to allow an easy assembly of the TPN mapping results for each UML entity.
It seems that the verification efficiency would be decreased by this trade-off. But it in fact can be
compensated later by a state space reduction phase that eliminates the elements irrelevant to the

verification.

3.3 COMPOSITE STRUCTURE DIAGRAM MAPPING SEMANTICS

The basic purpose of architecture model is to connect different sub-system behavior models and create a
system-level model, by means of communication media. The objective of the mapping is to replace each
architecture model’s entities by its relevant behavior model while respecting a context-based naming con-
vention and their structural relations.

Composite Structure Diagram (CSD) is a kind of static structure diagram. It specifies the internal structure of
a class, including its interaction points to other parts of the system, and the architecture of all parts managed by
this class. CSD is used to explore run-time instances of interconnected instances collaborating over communications
links. (page 183 of UML Spec.)

The most significant entities in CSD are Part, Port and Connector. The others (Interface, Role) remain
important, but either only disposing of static semantics for syntax consistency verification (e.g. Interface
related nodes), or having ambiguities in common modeling work as its semantics differs according to the
scenario (e.g. Role related nodes). In this section, we define the mapping semantics for the Part, Port and

Connector and explain in detail why the others are not involved.
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3.3.1 Part & Role

A colLaboration describes a structure of collaborating elements (roles), each performing a specialized function,
which collectively accomplish some desired functionality. (page 190 of UML Spec.) A Part declares that an in-
stance of this classifier may contain a set of instances by composition. All such instances are destroyed when the
containing classifier instance is destroyed. (page 206 of UML Spec.)

Part is an element that represents a set of one or more instances which are owned by a containing clas-
sifier instance. There is a tiny semantic difference between Part and Role. Role is a logical concept for a
collection of functionality while Part is a physical instance that implements a collection of functionality.
One Part can play different roles in the system simultaneously, and one Role could be played by only one
Part at one time, but possible by different parts when time changes. For example, rear wheel and front
wheel are two different roles in a car system, although they are designed to accept the same type of part
(standard wheel) to implement. Therefore, we only consider the mapping semantics for Part in our work.

As a classifier can be either primitive or structural, the Part can also be primitive and structural (see
Fig. 3.3.1). The Part itself is not mapped to any explicit TPN structure. Its semantics is mapped through
the inner behaviors or structures. The mapping type provided by Fig. 3.3.1 is used to define the mapping

semantics for ports and connectors in for following sections.

Node Type Notation Mapping Type
.. Port I — 7777
partName: No Explicit o 7?7 EL B 7‘? L
Part ClassName Inner Structure ‘—ﬁa - Port;
Porty _ 1
Primitive Structural

Figure 3.3.1: Mapping Semantics for Part

From the viewpoint of semantic mapping, a structured behavior is described by its inner structure, while
a primitive behavior is described by its associated behavior model. In the structural Part, the architecture
model could be considered as a tree-like structure, and the mapping process is based on a recursive tree-
analysis approach. Each Part can be mapped to a TPN model, with inner behavior derived from the classifier

or associated behavior model. These TPN models are then connected through the communication medias.
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In our work, we map the whole system model to one TPN model containing all the parts and communication

medias, in order to ease the analysis afterwards.

3.3.2 Port & Interface

A Port represents an interaction point between a classifier instance and its environment or between a classifier
instance and instances it may contain. Ports are connected to properties (parts) of the classifier by connectors
through which requests can be made to invoke the behavioral features of a classifier. (page 203 of UML Spec.)
The interfaces associated with a port specifies the nature of the interactions that may occur over a port. (page 202
of UML Spec.)

A Port can appear on the boundary of a contained part, a class or a composite structure. A port may
specify the services a classifier provides as well as the services it requires from its environment. An In-
terface is similar to a class with restrictions. All interface operations are public and abstract, and do not
provide any default implementation. Both Port and Interface are often used to model interaction point.
The logical view could be described by the interface, which specifies the provided service while its physi-
cal view is often modeled by port, which implements the specification. In our work, we only consider the

mapping semantics for Port. A port is mapped to a place in the TPN models, as shown in Fig. 3.3.2.

Node Type Notation Mapping Semantics

portName:
Port ClassifierName ] Q

Figure 3.3.2: Mapping Semantics for Port

Allocation of ports. To define the mapping semantics for the allocation of ports, we need to continue the
discussion of primitive and structural parts mentioned in the previous section.

In the primitive part, the ports are in fact a semantic synonym for the Input/Output Pin of its inner
behavior models; while in the structural part, they are a data buffer between the composites in CSD. In
the former cases, an allocation semantics should be defined between the ports and the Input/Output Pin.
Similarly, in the later case, the allocation semantics should also be defined, but between the ports on the
container part and the ports on the inner parts. This allocation semantics is specified using the MARTE pro-

file: MARTE : :MARTE_Foundations: :Alloc: :Allocation. Fig. 3.3.3 provides an example of this allocation
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in the primitive part. In its mapping semantics, the input pin is mapped to the same place of its associated

port, and the output pin is mapped to the same TPN place as its associated port.

<<AllocatedFrom>> __InputPin Part
Porty| +--------------- ]
o — Action A @
P------- - +| | Port 1
<<AllocatedFrom>>

OutputPin

Figure 3.3.3: Example of Port Allocation Semantics

3.3.3 Connector

Connectors specify links that enables communication between two or more instances. Each connector may be at-
tached to two or more connectable elements, each representing a set of instances. (page 197 of UML Spec.)

If the type of the connector is omitted, the type is inferred based on the connector. (page 197 of UML Spec.) In
the context of this thesis, the type of the connector is always omitted during the modeling.

A connector is mapped to a transition with time constraint [t,,;,, tma,] and relevant TPN arcs that connect
the TPN places mapped from associated ports or Input/Output Pin (Fig. 3.3.4), where [tpin, tmax] is the

communication time specified by the following MARTE stereotype

MARTE : :MARTE_Foundations: :GRM: :CommunicationMedia: :Packet T.

Path Type Notation Mapping TPN

[tmin’tmaxJ

Connector
——

Figure 3.3.4: Mapping Semantics for CSD Connector

Allocation of connection. A connector consists of at least two connector ends, each representing the participa-
tion of instances of the classifiers typing the connectable elements attached to this end. The set of connector ends

is ordered. (page 197 of UML Spec.) Therefore, the connector end can be a part or a port. From a semantic
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mapping point of view, there exist three kinds of connections: connection between two end ports, between

two parts, and between one port and one part.

Similar to the allocation of ports, we recommend a modeling convention using the following MARTE

stereotype to specify the allocation semantics between the connector ends:
MARTE : :MARTE_Foundations::Alloc::Allocated

Fig. 3.3.5 provides the mapping semantics for these three kinds of connections respectively, where the

ports and pins are mapped to TPN ports connected by the connector transitions.

Path Type Notation Mapping Semantics

Connection <<AllocatedFrom>> [tmin'tmaxJ
(between Port <<Packet T>> Porty N Y
Partl Part2 N N

two ports)
Connection 5 InputPin Part2 N (tmintmax] -
(between <<AllocatedFrom>> .—> Action A O 1 jHI—N: )
port and part) “<<Packet T>> o o

Connection | | Partl OutputPin [51 - | <<AllocatedFrom>> _ _|_ £ Inputh art2 R [tmintmax] N
(between @~ ActionA T.(@)  <<PacketT>> T Action B { \HI’)‘/ )
two parts) - =

Figure 3.3.5: Mapping Semantics for CSD Connection

3.4 AcCTIVITY DIAGRAM MAPPING SEMANTICS

Activity modeling emphasizes the sequence and conditions for coordinating lower-level behaviors. These are com-
monly called control flow and object flow models. The actions coordinated by activity models can be initiated
because other actions finish executing, because objects and data become available, or because events occur external
to the flow. (page 319 of UML Spec.) The main elements in UML activity diagram (AD) behavior model are

control nodes, actions, objects, and connection elements.
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3.4.1 Semantic Mapping Pattern

In order to automate the assembly of the TPN elements mapped from UML-AD elements, a generic semantic
pattern (Fig. 3.4.1) is defined. Only the TPN elements (transition, place, arc) in solid line belong to the
mapping result of a given UML-AD element; those in dotted line are the mapping results of other connected AD
elements. The TPN mapped from all the AD nodes except time-trigger actions, object nodes and connections.
A target node could contain a set of transitions represented by T_IN at the beginning to connect with other
predecessor structures. In the same manner, a set of places represented by P_0UT could exist in the end to

connect with its successor structures.

< 0o

/il‘—> Transition—place structure *)Oi

T_IN P_OUT

Figure 3.4.1: Generic Semantic Pattern of Activity Elements

3.4.2 Control Nodes

The mapping of some control nodes is intuitive, as Petri Net was the main inspiration for AD in the early
versions of UML. Thus TPN possesses a similar semantics to the main control nodes (branch, concurrent,

sequence, etc). For the pair of dual control nodes, the mapping results in TPN are also dual.
3.4.2.1 Initial Node & Flow Final Node

Activity Initial node and FlowFinal node are dual nodes for control flow token. An initial node is a
control node at which flow starts when the activity is invoked. (page 405 of UML Spec.) As the starting point of
the diagram, Initial node emits the initial control flow token. An initial node does not have any prede-
cessors.

A flow final node is a final node that terminates a flow. (page 402 of UML Spec.) FlowFinal node destroys
the control flow token of one flow. A flow final node does not have any successors. The mapping semantics
for this pair of nodes are shown in Fig. 3.4.2. Based on the mapping pattern introduced in the Section 3.4.1,

initial node does not have any T_IN and flow final node does not have any P_ouT.
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Node Type Notation Mapping TPN

[

Initial Node . @ >

P_OUT
[0,0]
; N

Flow Final @ s f>l

T_IN

Figure 3.4.2: Initial Node & Flow Final Mapping Semantics

3.4.2.2 Activity Final Node

An ActivityFinal node is a final node that stops all flows in an activity. (page 335 of UML Spec.) Activ-
ityFinal node requires the immediate termination of all the activity flows and the destruction of all the
control tokens. From the semantic mapping point of view, this means that all the activity flows should be
terminated once the activity final node receives the control flow token.

In TPN, this "sudden exit” semantics is implemented using inhibitor arcs. An inhibitor arc enforces the
precondition that the transition may only fire when the place is empty. Thus, when the activity node re-
ceives its token, all the transitions cannot be fired any more. The mapping semantics is thus defined as Fig.
3.4.3: each TPN transition in the activity is connected to the ActivityFinal node using an inhibitor arc.

The decidability issue of the TPN with inhibitor arcs will be discussed in Section 3.8.

Node Type Notation Mapping TPN
I \
[0,0] POUT | 4|  EachTPN |
Activity Final @ = transitionis |
I‘) Lo linkedtoan |
[ inhibitor arc. !
T_IN } | }

Figure 3.4.3: Activity Final Node Mapping Semantics

70



3.4. ACTIVITY DIAGRAM MAPPING SEMANTICS

3.4.2.3 Fork Node & Join Node

Fork and Join are dual nodes for concurrent control flow. A Fork node is a control node that splits a flow
into multiple concurrent flows. The edges coming into and out of a fork node must be either all object flows or all
control flows. (page 403 of UML Spec.) Fork node denotes the beginning of concurrent processing.

A Join node is a control node that synchronizes multiple flows. A join node has one outgoing edge. If a join
node has an incoming object flow, it must have an outgoing object flow, otherwise, it must have an outgoing control
flow. (page 409 of UML Spec.) Join node denotes the end of concurrent processing. All flows going into a
Join node must provide a control token before processing may continue.

In the context of this thesis, we only focus on Fork and Join nodes for the control flows. The mapping

semantics is defined in Fig. 3.4.4.

Node Type Notation Mapping TPN
P_OUT

—>
Fork Node 5 ﬁ
—>
— 5
Join Node : .
—

Figure 3.4.4: Fork Node & Join Node Mapping Semantics

3.4.2.4 Decision Node & Merge Node

Decision and Merge are dual nodes for branch control. The mapping semantics is defined in Fig. 3.4.5.
A decision node accepts tokens on an incoming edge and presents them to multiple outgoing edges. Which of

the edges is actually traversed depends on the evaluation of the guards on the outgoing edges. (page 386 of UML
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Spec.)

The outgoing control flows of a decision node usually include guard conditions which will allow the
control of flow if the guard condition is met. The guard conditions are ignored in the mapping semantics.
The reason is detailed in the following part (page 78).

A merge node is a control node that brings together multiple alternate flows. It is not used to synchronize
concurrent flows but to accept one among several alternate flows. The edges coming into and out of a merge node
must be either all object flows or all control flows. All tokens offered on incoming edges are offered to the outgoing
edge. There is no synchronization of flows or joining of tokens.(page 415 of UML Spec.)

Merge node brings together multiple alternate incoming flows. It is not used to synchronize concurrent
flows but to accept one among several alternate flows but only one token can be accepted. In the TPN of
Merge node, if two incoming flows arrive at the same time, the place P_oUT will have two tokens. As aMerge
node has a single outgoing edge, which maps to a single TPN arc, this enforces that the two tokens in P_oUT

are consumed one by one. Thus this mapping semantics conforms the standard specification of UML.

Node Type Notation Mapping TPN

M

4>
[0,0] P_OUT// o
Decision Node

/X
T
.

Merge Node 7<>—> /\i — —)IHQ—)

Figure 3.4.5: Decision Node & Merge Node Mapping Semantics

72



3.4. ACTIVITY DIAGRAM MAPPING SEMANTICS

3.4.3 Action

An Action represents a single step within an activity, that is, one that is not further decomposable within the
activity. As a piece of structure within an activity model, it is a single discrete element; as a specification of behavior

to be performed, it may invoke a referenced behavior that is arbitrarily complex. (page 335 of UML Spec.)

UML-AD generalizes more than 5o types of concrete actions. Basic actions include those that perform
operation calls, signal sends, and direct behavior invocations. In this thesis, we focus on the abstract action
(page 259 of UML Spec.), all action executions will be executions of specific kinds of actions. When the
action executes, and what its actual inputs are, is determined by the concrete action and the behaviors in

which it is used.

The activity diagram can be used to model low-level behavior for both event-trigger and time-trigger
requests. Except where noted, an action can only begin execution when it has been offered control tokens on all
incoming control flows and all its input pins have been offered object tokens sufficient for their multiplicity. (page
336 of UML Spec.) This semantics is usually the case for event-trigger requests. For time-trigger requests,
the action can begin execution when it has been offered control tokens on all incoming control flows, all its
input pins have been offered object tokens sufficient for their multiplicity, and moreover it has been offered

the rising edge of the periodic clock.

Cyclic execution is a very common pattern for real-time systems that implement control & command
to interact with the real world. An event-trigger cyclic execution can be simply specified using an event-
trigger action and a loop section. Although the semantics of offset and period can be modeled using MARTE
profile, the whole time-trigger behavior can be modeled in various ways. In order to ensure a standard
mapping semantics, we decide to extend the original semantics for the action, which focuses on event-
trigger behavior. We extend it by defining a time-trigger semantics using the MARTE profile, and then map it
to the TPN model. This time-trigger action is very general in reactive systems, and thus can be reused in the

modeling and verification.
3.4.3.1 Event-trigger Action Mapping Semantics

An action begins execution by accepting all the offers of control and object tokens allowed by input pin multi-
plicity. When the execution of an action is complete, it offers control tokens on its outgoing control flows and object
tokens from its output pins. An event-trigger action will not begin execution until all of its input conditions

are satisfied. The completion of the execution of an event-trigger action may enable the execution of a set
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of successor nodes and actions that take their inputs from the outputs of the action.

An event-trigger action may have sets of incoming and outgoing activity edges that specify control flows
and data flows from and to other nodes. As the sequencing of actions are controlled by control edges and
object flow edges within activities, which carry control and object tokens respectively, an action must con-
tain inner behaviors for waiting/releasing control flow token and receiving/sending object. In addition,
although in this thesis we focus on the verification of software system, it will be useful to keep an interface
for the schedulability analysis on hardware systems in the future research, which means that some resource
states are needed. Therefore, we add the extra behaviors of waiting/releasing resources in the mapping
semantics for an action.

An event-trigger action can thus be defined as a s-tuple (I, C, T, R, D), in which:

Irefers to identification, which is derived from its behavior semantics. Only two actions with exactly

the same behavior can have the same identification.

o Crefers to behavioral context. Ifan action is reused in different activities, then they should be labeled

with the same identification, and different context name.
o T refers to time measure, e.g. the minimum and maximum execution time.

« Rrefers to resource usage. The execution of an action will go on only when its required resources are
ready and allocated to it. More precisely, the resource usage is a set of <R, N>, which indicates that

for a given resource type R, the action requires N of its available instances.

o D refers to data section. It contains both inputs and outputs. The data are transferred by the Input

Pins and Output Pins.

An atomic event-trigger action execution completes without interruption. However, it may stop to wait
for the shared resources or transferred data. Therefore, an action is separated in 5 phases: activity ready,
resource ready, input ready, output released and resource released, which are mapped to 5 TPN states. The map-
ping semantics is illustrated by Fig. 3.4.6.

The input resources are linked to transition REQUIRE REs, and the output resources are linked to tran-
sition RELEASE RES. The resources are specified using MARTE profile. The details about the resource and
the scheduling analysis are presented in the Section 3.6. The input data-related flows (Input Pin or Ob-

ject Flow) are linked to transition WarT _INPUT, and the output data-related flows (Output Pin or Object
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Node Type Notation Mapping TPN
‘ Activity Resource Input Output Resource ]
ready re ready Released released ‘
[min,max]
Action Node <~<TimedProcessing>> I Q_>I Q_:I Q_)I Q_»I Q_)I Q
(event-trigger)
T_IN ‘ Require_REs WAIT InvUT SEND OUTl/U\T - ReLeasE_Res ENDJ P_OUT
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1 Input \ r ) Resource N o ‘Output

Figure 3.4.6: Event-trigger Action Mapping Semantics

Flow) are linked to transition SEND_OuTpUT. The transition SEND_OUTPUT also represents the execu-
tion of the action after the control flow, resource and input objects are all ready, on which the execution
time is expressed by the time constraint [min,max]. This execution time constraint is specified using the

MARTE proﬁle: MARTE: :MARTE_Foundations::Time: :TimedProcessing
3.4.3.2 Time-trigger Action Mapping Semantics

For time-trigger requests, the sequencing of actions is controlled by both the control and object flows
and the periodic clock. Before giving its mapping semantics, we first explain the commonly used time-
trigger pattern in Fig. 3.4.7. Precisely, when a new cycle starts, if the input (e.g. Input A) is ready, the
time-trigger action will start the execution and generate the output (output A) in the same way as an event-
trigger action does. Nevertheless, if at this time the input is not yet available (e.g. input B), the time-trigger
action will not wait but just ignore the current cycle, then retry the execution at the next cycle and produce

the output (Output B).

Input A Output A Input B Output B

! | ! !

l«—— cycle — >l cycdle — >l cycle — 5

Y

Figure 3.4.7: Time-trigger Action Pattern
A time-trigger action is defined by a 7-tuple (I, C, T, R, D, Off, P), where:
« The first 5-tuples (I, C, T, R, D) are the same as event-trigger action.
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o Off refers to the offset. Before the first period starts, a time-trigger action can hold during the offset

with respect to the local system’s initial time.

« Prefers to the period of the action. The action will be activated at the rising edge of the period, and

then its input readiness is checked.

The mapping semantics is illustrated by Fig. 3.4.8. The MARTE profile allows to specify the real-time

semantics relevant to time-trigger systems:
o Offset: MARTE: :MARTE_DesignModel: :HLAM: :RtSpecification::occKind: :PeriodicPattern(Phase)
« Execution Time: MARTE: :MARTE_Foundations::Time: :TimedProcessing
« Period: MARTE: :MARTE_DesignModel: :HLAM: :RtSpecification::occKind: :PeriodicPattern(Period)

Suppose that the given time-trigger action will handle n Input Pins and generate m Output Pins. In the
mapping semantics defined by Fig. 3.4.8, in order to ease the explanation, we assume there are 2 input pins

and 3 output pins.

Node Type Notation Mapping TPN
———————————————————————————— ‘
| Loop Control !
! |
[off,0f] Hold (PP] Wait !
<<TimedProcessing> | | ® '  ,» ~—~—~ &8  —/—~ 7 ST
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Figure 3.4.8: Time-trigger Action Mapping Semantics

The processing steps are as follows:
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. Once it enters into the Loop Control section after the activation of offset, the action enters the place

Hold and will select its execution path when the rising edge of period arrives.

. The selection is due to the input readiness at the moment: for the given n input pins, there will be 2"
possibility of input readiness. As there are 2 input pins in Fig. 3.4.8, 4 possible paths are constructed:
no input ready (transition IN_No), only input, is ready (transition IN_1), only input, is ready (tran-
sition IN_2), both input, and input, are ready (transition IN_ArL). The mapping semantics for the
datareadinessis obvious. Take the transition IN_1 for example. When the place InputPin, has tokens
while the place InputPin, has not, the transition is enabled by the read arc from the place InputPin,
and the inhibitor arc from the place InputPin,, and meanwhile a token is filled in the place Wait.

. Once the period time P t.u. passes, the transition PERIOD is fired, and the asynchronous behavior

comes back to the Hold state.

. When both input data are ready, the transition IN_ALL is fired, and the place Waint and the place
Input Ready in the Execution section are both filled with tokens. It means that the processing of data

can start and the activity waits for the processing of next cycle.

. The processing executes between min and max t.u. on the transition EXEc and produces the output

data.

The scenario with resource usage for time-trigger actions relies on the same principle. Suppose the given

time-trigger action have n input pins while r resources must be available to start the execution. There will be

2" paths to choose: for each input readiness combination, there will always be a resource readiness com-

bination to associate with. The Execution section will be connected to the transition standing for the path

that both inputs and resources are available. This mapping semantics specifies exactly the same behaviors

as described in the time-trigger action pattern (Fig. 3.4.7).

Time-Triggered systems are easy to encode and do not have state explosion problems. The cost do

not depend on the number of inputs or resources. The semantic mapping itself does not introduce extra

semantics. Suppose in a systems, a time-trigger action relies on 5 types of resource and 10 types of input

data. In each period, if one of them is not ready, the action will not enter into the Input Ready state.
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3.4.4 Object Nodes

An object node is an abstract activity node that is part of defining object flow in an activity. An object node is an
activity node that indicates an instance of a particular classifier, possibly in a particular state, may be available at
a particular point in the activity. Object nodes can be used in a variety of ways, depending on where objects are

flowing from and to, as described in the semantics sub clause. (page 421 of UML Spec.)

There are 5 types of object nodes in the activity diagram: pin nodes (InputPin and OutputPin), Cen-
tralBuffer node, DataStore node, ActivityParameter node, and Expansion node. We provide mapping
semantics for the pin, CentralBuffer and DataStore nodes. The other two are related to the structural

organization, but not the behavior. They will not affect the verification of real-time properties.

The most important aspect for object nodes semantic mapping is to keep the object type dependency
and the object values in the TPN. To keep the object type dependency, each type of object can be considered
as a variable in the memory and represented by a TPN place. However, if the object values are also kept, it
will be very expensive to generate the state class graph during the model checking. This work ignores the
object values in the object nodes, which is reasonable for the verification of real-time properties. This issue
is detailed in the following part, then we provide the mapping semantics for the upper bound of object
node, as it is a common feature for all types of object nodes, at last we provide the mapping semantics for

each type of object nodes.
3.4.4.1 Discussion on Object Value Issue

Each type of object can be considered as a variable in the memory and represented by a TPN place. Ide-
ally, the upper bound and the object values of object nodes are mapped using tts variables (tts has been
presented in the section 2.2 of Chapter 2). For example, if the upper bound of an object node is N, we can
define N variables to represent each value. During the model checking, the N variables will generate 2~
markings, which will lead to a combinatorial explosion problem. Therefore, it is very expensive to keep the

object values during model checking.

On the other hand, this issue is not a concern in the verification of the architecture design. The object
values can be used as input of an action or an activity to compute the output value, or be used to compute
the guards for the outgoing flows. The first one is the concern in the verification of detailed design in the
V-model, not the architectural design. In the second case, the object value is not a concern either. We

illustrate it using the decision node as an example. In the semantic mapping of decision node (page 72),
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we have ignored the guard conditions. One of the principles of model checking is to check all the possible
execution traces in amodel. The guard conditions limit the execution traces relying on object values. Onlyif
all the possible values are available, the execution traces will be complete. The guard conditions are ignored
to make sure that all the possible execution traces can be checked. The only side-effect is that it may cause
false alarms. This compromise is a must for the model checking techniques. Otherwise, the combinatorial

explosion problem is easily met.
3.4.4.2 Upper Bound of Object Node

The upper bound of an object node is the maximum number of tokens allowed in the node. Objects cannot flow
into the node if the upper bound is reached. (page 422 of UML Spec.) The upper bound is a common feature
in all types of object nodes. By default, the upper bound value is not defined in UML. This means that the
object node is unbounded. We define its mapping semantics and use it in the mapping semantics for the
object nodes.

Here we need to explicitly define the meaning of "object cannot flow into the node”. If the object node
works like a buffer, it means that the new object value is blocked and thus cannot enter into the object node.
Otherwise, if the object node works like a store, the new object value should enter into the object node and
replace the old one. Thus, we define mapping semantics for upper bound of buffer-like and store-like object

nodes respectively in Fig. 3.4.9.

Pobj

[——
C

(a) Buffer-like Object Node (b) Store-like Object Node

Figure 3.4.9: Upper Bound Mapping Semantics

Assume the upper bound is Nj,. The place P,;; represents the object node. For buffer-like object node
(Fig. 3.4.9 (a)), an inhibitor arc between P,;; and its incoming transition will limit the incoming tokens.
Once P,}; accumulates N, tokens, the inhibitor arc will prevent the (N, + 1)th token to enter in Py, until
some tokens in Pob]- are consumed by the outgoing transitions.

For store-like object node (Fig. 3.4.9 (b)), the (N}, + 1)”1 token should be allowed to enter into P,
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thus the weight on the inhibitor arc is N}, + 1, instead of Nj,. However, this (N, + 1) token will replace
the Nf,h token already in the store, thus the transition T, and its incoming and outgoing arcs are added.
This structure ensures that once P,;; accumulates Nj, + 1 tokens, it is immediately reduced to Nj. This reset
function does not take any time. A potential firing conflict might occur between the transitions T,,; and
T'eset when both of them are enabled. According to the feature of store-like object nodes, the T, should
have the priority. This can be solved by adding a priority arc between T and T,,;. However, the TPN
with priority arcs does not support the generation of state class graph with markings, and thus will largely
increase the size of state space. We do not recommend the use of priority arcs. The priority between T
and T,, in fact impacts the values of the object read by T,,;. As the values of object nodes are ignored in

this work, this priority can also be ignored here.

The InputPin and OutputPin work in both buffer-like and store-like manner. The CentralBuffer node
works in the buffer-like manner. The DataStore node works in the store-like manner. We will detail their

use in the following sections.

3.4.4.3 InputPin & Output Pin

A pin is a typed element and multiplicity element that provides values to actions and accepts result values from
them. (page 287 of UML Spec.) Basically, a pin is mapped to a TPN place. Then the multiplicity and upper

bound of tokens should be considered.

Input pins are object nodes that receive values from other actions through object flows. (page 406 of UML Spec.)
An action cannot start execution if an input pin has fewer values than the lower multiplicity. The upper multiplicity
determines the maximum number of values that can be consumed by a single execution of the action. (page 279
of UML Spec.) In the context of this thesis, we limit the modeling capacity by making the lower and upper

multiplicity have equal value.
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Node Type Notation Mapping TPN
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(a) Buffer-like (b) Store-like

Figure 3.4.10: Input Pin Mapping Semantics

Fig. 3.4.10 shows the mapping semantics for InputPin. If the InputPin is bounded by N, both buffer-
like and store-like upper bounded mapping semantics are defined. The multiplicity is mapped to the weight
m on the normal arc between Pyy; and Toy.

Output pins are object nodes that deliver values to other actions through object flows. (page 425 of UML Spec.)
For each execution, an action cannot terminate itself unless it can put at least as many values on its output pins as
required by the lower multiplicity on those pins. The values are actually put in the pins once the action completes.
Values that may remain on the output pins from previous executions are not included in meeting this minimum

multiplicity requirement. (page 287 of UML Spec.)

Node Type Notation Mapping TPN

Np+l

Pobj T

OutputPin : IE

______

Np+1
[0,0]
(a) Buffer-like (b) Store-like

Figure 3.4.11: Output Pin Mapping Semantics

Fig. 3.4.11 shows the mapping semantics for OutputPin. If the OutputPin is bounded by N, both

buffer-like and store-like upper bounded mapping semantics are defined.
3.4.4.4 Central Buffer Node

A central buffer node is an object node for managing flows from multiple sources and destinations. It accepts

tokens from upstream object nodes and passes them along to downstream object nodes. Central buffer nodes give
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additional support for queuing and competition between flowing objects. (page 377 of UML Spec.)

The behavior of CentralBuffer is like a transient storage. Its mapping semantics is defined in Fig.
3.4.12. If the InputPin is bounded by N;, the upper bound mapping semantics is the same as the buffer-
like semantics defined in Fig. 3.4.9 (a). The CentralBuffer nodes do not have a multiplicity feature. The
incoming and outgoing transitions of the object place P,;; are the transitions mapped from the object flows

(see object flow mapping semantics in Section 3.4.5).

Node Type Notation Mapping TPN

P1:0bj P3:0bj PN |
A . [ > |
1 [ A3 > >
«centralBuffers N L/ L
< in |n <
2 / N | | ’ \
NV )1 Np, U - )l\ h

P2:0bj P4:0bj N

CentralBuffer

Figure 3.4.12: Central Buffer Mapping Semantics

3.4.4.5 DataStore Node

A data store node is a central buffer node for non-transient information. A data store keeps all tokens that
enter it, copying them when they are chosen to move downstream. Incoming tokens containing a particular object
replace any tokens in the object node containing that object. (page 385 of UML Spec.)

The mapping semantics is defined in Fig. 3.4.13. If the InputPin is bounded by N}, the upper bound
mapping semantics is the same as the store-like semantics defined in Fig. 3.4.9 (b). The DataStore nodes
do not have a multiplicity feature either.

The tokens flowing out of DataStore nodes are copies of tokens that remain in the DataStore node, so
the values behave as if they are being read from the store. Here the "read object” semantics is defined using
the read arc. This mapping semantics will guarantee that data persists in the current execution of activity,
because the tokens in the place P,;; will not be consumed through the read arc.

A state explosion issue may be caused by the DataStore node. If the design model does not make explicit
the mechanism of disabling the use of DataStore, the data in it will be read infinitely many times, which

leads to an unbounded error;, i.e. the places P, and P, in Fig. 3.4.13 may become unbounded. Therefore,
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Node Type Notation Mapping TPN
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Figure 3.4.13: DataStore Mapping Semantics

when the UML model is designed, we need to be careful to use the DataStore. The mechanism for enabling

and disabling the DataStore is a must to ensure the system is bounded.

3.4.5 Connections

A connection can be either control flow or object flow.

A control flow is an edge that starts an activity node after the previous one is finished. Objects and data cannot
pass along a control flow edge. Tokens offered by the source node are all offered to the target node. (page 382 of
UML Spec.) ControlFlow shows the flow of control from one node to the next. Control flow is mapped to

an arc from the place Poyr of its source to the transition Tyy of its target (Fig. 3.4.14).

Path Type Notation Mapping TPN

7N [

[}

ContorlFlow

Figure 3.4.14: Control Flow Mapping Semantics

An object flow is an activity edge that can have objects or data passing along it. (page 416 of UML Spec.)
The mapping semantics of object flow is defined in Fig. 3.4.15. An object flow is mapped to a transition
and its incoming and outgoing arcs. The following MARTE stereotype is used to specify the communica-
tion time of object flow: MARTE : :MARTE_Foundations: :GRM: : CommunicationMedia: :Packet T. Thistime

specification is mapped to the time constraint on the TPN transition.
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Path Type Notation Mapping TPN
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Figure 3.4.15: Object Flow Mapping Semantics

3.5 STATE MACHINE DIAGRAM MAPPING SEMANTICS

The State Machine package defines a set of concepts that can be used for modeling discrete behavior through finite
state- transition systems. In addition to expressing the behavior of a part of the system, state machines can also
be used to express the usage protocol of part of a system. These two kinds of state machines are referred to here
as behavioral state machines and protocol state machines. Behavioral state machine can be used to model the
behavior of individual entities (e.g, class instances). The state machine formalism described in this sub clause is
an object-based variant of Harel statecharts [Har87]. Protocol state machines are used to express usage protocols.
Protocol state machines express the legal transitions that a classifier can trigger. (page 551 of UML Spec.)

Protocol state machine is generally used to specify the classifier’s behavior along with object’s lifecycle
or protocol usage. It specifies which operations of the classifier can be called in which state and under which
condition, thus specifying the allowed call sequences on the classifier’s operations. Protocol state machine
can be simply considered as a specialization of behavioral state machine. Therefore in the context of this
thesis, we only provide the mapping semantics for behavioral state machine, and all state machine (SMD)
wording refers in fact to the behavioral state machine.

State machines can be used to express the behavior of part of a system. Behavior is modeled as a traversal of a
graph of state nodes interconnected by one or more joined transition arcs that are triggered by the dispatching of
series of (event) occurrences. During this traversal, the state machine executes a series of activities associated with
various elements of the state machine. (page 589 of UML Spec.)

Semantically speaking, the SMD defined in UML is an extension of Mealy machines [Meas s ] and Moore
machines [Moos6] that allows actions both on transition and state entry/exit. The activities can eventually
depend on several resources to enable its execution. To define the mapping semantics for SMD, we first give

a quick overview of the elements in SMD:
o Vertex: A vertex is an abstraction of a node in a state machine graph. In general, it can be the source or
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destination of any number of transitions. (page 608 of UML Spec.)

« Transition: A transition is a directed relationship between a source vertex and a target vertex. (page 597

of UML Spec.)

. State: A state models a situation during which some (usually implicit) invariant condition holds. Three
kinds of states are distinguished: simple state, composite state and submachine state. (page 575 of UML
Spec.)

« Pseudostate: A pseudostate is an abstraction that encompasses different types of transient vertices in the
state machine graph. (page 565 of UML Spec.) According to specific semantics, the following kinds
of pseudostates are distinguished: initial, deep history, shallow history, join, fork, junction, choice,

entry/exit point and terminate pseudostates.

- Final state: A special kind of state signifying that the enclosing region is completed. (page 557 of UML
Spec.)

« Region: A region is an orthogonal part of either a composite state or a state machine. It contains states

and transitions. (page 573 of UML Spec.)

Event pool and run-to-completion: The event pool for the state machine is the event pool of the instance
according to the behavioral context classifier. The semantics of event occurrence processing is based on the run-
to-completion (RTC) assumption, interpreted as run-to-completion processing. The processing of a single event
occurrence by a state machine is known as a run-to-completion step. (page 590 of UML Spec.) During semantic

mapping, the event pool and the RTC issues should be explicitly specified.

Flattening and mapping semantics: Hierarchically nested states and orthogonal regions do not extend
the semantic expressiveness. They help the designer in the writing of sophisticated models for complex
systems. Other evolutions with respect to classical state diagram introduce some common elements from
activity diagram, like fork/join, choice and junction. This is originally aimed to allow designer to model
synchronization and control flow between SMDs in a more intuitive way. Without them, these behaviors
can only be modeled as a group of emit/received events. Nevertheless, these pseudostates do not either

extend the semantic expressiveness of SMD.
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Flattening word is used when the mapping requires converting a nested SMD to an unnested SMD, which
will ease the mapping afterwards. The final target is to have a SMD with only simple states, final states, tran-
sitions and unnested pseudostates.

Mapping word is only used for translating an unnested SMD model to a TPN model.

In this section, we first explicit the semantics of event pool (Section 3.5.1), then provides some general
semantics for states in Section 3.5.2, then provide the flattening semantics (Section 3.5.3), at last provide

the mapping semantics (Section 3. 5.4).

3.5.1 Event Processing & Event Pool

Before presenting the flattening and mapping method, some important event related semantics must be

clarified: the meaning of events, the processing method of events, and the event pool in state machines.
3.5.1.1 Event & Event Type

The detection of an (event) occurrence by an object may cause a behavioral response. For example, a state
machine may transition to a new state upon the detection of the occurrence of an event specified by a trigger owned
by the state machine, or an activity may be enabled upon the receipt of a message. When an event occurrence is
recognized by an object, it may have an immediate effect or the event may be saved in an event pool and have a
later effect when it is matched by a trigger specified for a behavior. (page 454 of UML Spec.)

Without specific priority, there are two categories of events defined in the system: external event and
internal event. Internal events are local ones which are emitted explicitly in the system, either from the same
state machine instance, or from an other instance of the same state machine, or from an instance of a differ-
ent state machine. External events are events whose reception target is defined in the system specification,
but not its emission source. For example, in an aircraft system (Fig. 3.5.1), the radio system’s job is to gen-
erate a call received event to the onboard computer when it receives a phone call from outside. In this case,
the phone call is an external event and the call received is an internal event.

It is important to distinguish these two event types because for a fixed period, external events are con-
sidered as infinite in terms of occurrence and without any information of arrival time. The internal events,
however, has a finite occurrence bound because they are generated by a finite system. In the context of this

thesis, we suppose the occurrence of both system events and environment events is finite.
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Environment

Aircraft System
Phone call Radio Call received Onboard
d System Computer

Figure 3.5.1: Event Categories Example: System & Environment

3.5.1.2 Event Processing

To clarify how events are processed in state machines, we should first answer the following six questions:

« Q,: How an event occurrence is processed between concurrent state machines? Can this event oc-

currence be processed simultaneously by these state machines?

« Q,: How an event occurrence is processed between concurrent states in orthogonal regions? Can

this event occurrence be processed simultaneously by these regions?

« Q;: How an event occurrence is processed between concurrent states in the same region? Can this

event occurrence be processed simultaneously by these states?

+ Q,: How successive event occurrences are processed? Can an event occurrence be processed con-

currently with the previous event occurrence?

+ Q;: How an event occurrence is processed within a stable state in a state machine? Can the state

machine pass between two states without finishing the processing of an event occurrence?

« Qs: Howan event occurrence is processed by two conflict transitions originating from the same state?

Can both transitions fire simultaneously?

The UML Specification 2.4.1 provides explicit semantics for the questions Q, — Qs, while the question Q,
is not explicitly defined.

Answers for Q, and Q,: An event occurrence can be processed simultaneously by the orthogonal
regions, but it cannot be processed simultaneously by the states in the same regions. In the presence of
orthogonal regions it is possible to fire multiple transitions as a result of the same event occurrence — as many as

one transition in each region in the current state configuration. In case where one or more transitions are enabled,
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the state machine selects a subset and fires them. Which of the enabled transitions actually fire is determined by
the transition selection algorithm described below. The order in which selected transitions fire is not defined. Each
orthogonal region in the active state configuration that is not decomposed into orthogonal regions (i.e., “bottom-
level” region) can fire at most one transition as a result of the current event occurrence. When all orthogonal regions
have finished executing the transition, the current event occurrence is fully consumed, and the run-to-completion

step is completed. (page 591 of UML Spec.)

Answer or Q,: An event occurrence cannot be processed concurrently with the previous event oc-
currence. The semantics of event occurrence processing is based on the run-to-completion assumption, interpreted
as run-to-completion processing. Run-to-completion processing means that an event occurrence can only be taken

from the pool and dispatched if the processing of the previous current occurrence is fully completed. (page 590 of
UML Spec.)

Answer for Q,: The state machine cannot pass between two states without finishing the processing
of an event occurrence. The processing of a single event occurrence by a state machine is known as a run-to-
completion step. Before commencing on a run-to-completion step, a state machine is in a stable state configuration
with all entry/exit/internal activities (but not necessarily state (do) activities) completed. The same conditions
apply after the run-to-completion step is completed. Thus, an event occurrence will never be processed while the
state machine is in some intermediate and inconsistent situation. The run-to-completion step is the passage between

two state configurations of the state machine. (page s90 of UML Spec.)

Answer for Qs: Only one transition can be fired when two transitions originating from the same
states are conflict. It was already noted that it is possible for more than one transition to be enabled within a
state machine. If that happens, then such transitions may be in conflict with each other. For example, consider the
case of two transitions originating from the same state, triggered by the same event, but with different guards. If
that event occurs and both guard conditions are true, then only one transition will fire. In other words, in case of

conflicting transitions, only one of them will fire in a single run-to-completion step. (page 591 of UML Spec.)

For the Q,, as the UML specification does not explicitly define an event occurrence can be processed si-
multaneously by two concurrent state machines, or can only be processed by one of the state machines in
conflict, we should suppose both cases are possible. We discuss these two cases in the following section for

event pool.
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3.5.1.3 EventPool

The event pool for the state machine is the event pool of the instance according to the behavior context classifier,
or the classifier owning the behavioral feature for which the state machine is a method. (page 590 of UML Spec.)
We provide the explicit semantics for the above two kinds of event pool in Fig. 3.5.2. In (a), each state

machine instance has an event pool, while in (b), the classifier owning the state machines has a universal

event pool.
External events External events

i_S_ysTenTn____ ‘1, ________ : r§y§er_n___' ‘1, ________ :

: Events Dispatcher | : Universal Event Pool J |

| | — | e fEmim o |

: dispatch dispatch | : p—| EventXPool [ p |
| f _‘ |

| Internal [MEyent Pool A Internal ["Eyent Pool B | | |

| events events | | T T | |

I dequeue dequeue | | Internal dequeue Internal  dequeue |

I ‘1' I [ events l' events l' |

| v Lo |

| |

| State Machine A [ State Machine B : | State Machine A State Machine B ] :

] S L S ——

(@) (b)

Figure 3.5.2: Event Pool Model

According to the above analysis for the question Q,, both event pool semantics in (a) and (b) are ex-
pected to be able to handle both possible cases: an event occurrence can be processed either simultaneously
by two concurrent state machine or only by one of the state machine in conflict. However, the semantics
in (a) can only handle the former one, while the semantics in (b) can handle both, as analysis below.

The semantics in (a) signifies that each state machine instance (not including submachine state) is dy-
namically equipped with an event pool during execution. All events, no matter external events or internal
events, will first be dispatched globally via the system’s events dispatcher, then stored in this event pool.
The events will be consumed sequentially by state machines. This semantics can handle the case such that
state machines can process an event occurrence simultaneously. For example, an event occurrence of type

Pis sent to the system with concurrent state machine A and state machine B. P will be multi-dispatched to
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both A and B. If both A and B are waiting for P, their transitions can fire simultaneously at the moment of
reception. However, when several state machines compete for the same event occurrence, this semantics
will not work. For example, when P is sent to A and B. P is not consumed neither by A nor by B for the
given instant. The dispatcher does not know P should be dispatched to which event pool. The dispatcher
must make a decision to multi-dispatch P to both A and B, otherwise, the whole system is blocked. Then,
the conflict semantics between A and B is lost.

The semantics in (b) can solve this problem. In (b), the system has only one universal event pool, where
all the events are pending to be consumed. If there is competition, the dequeue mechanism will decide
randomly which state machine will get the event instance at this given instant. The universal event pool
cannot be really a unique pool at system-level, because different state machine can react to the events in a
concurrent way. State machine A is expecting an event instance of type P, and state machine B is expecting
one of type Q; event instance P is pending before Q. If there is only one event pool, B cannot start handling
Q until A dequeues P, which violates the original concurrent semantics. The universal event pool is in fact

a set of event pool which are instantiated by event type.

Capacity limit of event pool. Another important implicit semantics of event pools is that they have a
limited capacity. Sometimes an event arrives at an inconvenient time, when state machines are in a state
that cannot handle this event. In many cases, the nature of the event is such that it can be postponed, within
limits, until the system enters another state, in which it is better prepared to handle the original event. This
limits is the fundamental guarantee for a real finite state system to behave as expected without pool memory
explosion. Once the capacity is reached, either the new appended event will be ignored, or the old pending
events will be dropped off. All kinds of clearance mechanisms are possible in real system design. In the
context of this thesis, two general strategy are discussed in the section 3.5.4.5: time out and size out. But for
the verification purpose, we suppose the event instances of the given system is restricted to the capacity of

event pool, otherwise, it is considered as a design error.

3.5.2 State in General

As some flattening semantics is based on the inner behaviors of states, before discussing the flattening se-
mantics, we provide some general semantics for states.

Active States A state can be active or inactive during execution. A state becomes active when it is entered as a
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result of some transition, and becomes inactive if it is exited as a result of a transition. A state can be exited and

entered as a result of the same transition (e.g, self transition). (page 579 of UML Spec.)

State Entry and Exit Whenever a state is entered, it executes its entry behavior before any other action is executed.
Conversely, whenever a state is exited, it executes its exit behavior as the final step prior to leaving the state. (page

579 of UML Spec.)

Behavior in State (do-activity) The behavior represents the execution of a behavior, that occurs while the state
machine is in the corresponding state. The behavior starts executing upon entering the state, following the entry
behavior. If the behavior completes while the state is still active, it raises a completion event. In case where there
is an outgoing completion transition (see below) the state will be exited. Upon exit, the behavior is terminated
before the exit behavior is executed. If the state is exited as a result of the firing of an outgoing transition before the
completion of the behavior, the behavior is aborted prior to its completion. (page 579 of UML Spec.)

3.5.3 Flattening Semantics

The purpose of flattening is to convert a nested SMD to an unnested SMD, and therefore ease the mapping
afterwards. The final target is to have a SMD with only simple states, final states, transitions (local and in-
ternal) and unnested pseudostates. During the flattening, not only will the topology change, but also the
actions associated with original states and transitions will be modified. The nested SMD elements handled by
the flattening include: regions, states (composite state and submachine state), external transitions, nested
pseudostates (entry/exit point, shallow/deep history, and fork/join). We start discussing from the com-
posite state, which exhibits more complex semantics than the other elements. The key to flattening a nested

structure is to define the entering and exiting semantics from the topmost vertices to the innermost vertices.

A composite state either contains one region or is decomposed into two or more orthogonal regions. Each region
has a set of mutually exclusive disjoint sub-vertices and a set of transitions. A given state may only be decomposed
in one of these two ways. A composite state is either a simple composite state (with just one region) or an orthogonal
state (with more than one region). (page 576 of UML Spec.) We first discuss the flattening semantics for the

simple composite state, and then discuss the flattening semantics for the orthogonal composite state.
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3.5.3.1 Simple Composite State

A substate is defined as the state enclosed within a region of a composite state. When a substate does
not contain any other state, it is called direct substate; otherwise, it is referred to as an indirect substate. A

semantic variation point about the default entry rule is defined in the specification of UML.

Semantic variation point (default entry rule) If a transition terminates on an enclosing state and the enclosed
regions do not have an initial pseudostate, the interpretation of this situation is a semantic variation point. In some
interpretations, this is considered an ill-formed model. That is, in those cases the initial pseudostate is mandatory.

An alternative interpretation allows this situation and it means that, when such a transition is taken, the state
machine stays in the composite state, without entering any of the regions or their substates. (page 576 of UML
Spec.)

In the context of this thesis, we use the former interpretation: the initial pseudostate is mandatory in
such cases.

Entering a non-orthogonal composite state The specification of UML differentiates the following cases:

« Default entry Graphically, this is indicated by an incoming transition that terminates on the outside edge
of the composite state. In this case, the default entry rule is applied (see Semantic variation point (default
entry rule)). If there is a guard on the trigger of the transition, it must be enabled (true). (A disabled
initial transition is an ill-defined execution state and its handling is not defined.) The entry behavior of
the composite state is executed before the behavior associated with the initial transition. (page 580 of UML
Spec.)

The flattening semantics is defined as Fig. 3.5.3. The default entry rule is applied: the outside state
A transits to the outgoing state of the initial pseudostate (substate B).

Nested Machine Notation Flattening Semantics
Simple 4 Composite State
Composite State e R, a
Default Entry H
(with Initial node)

Figure 3.5.3: Default Entry Flattening Semantics for Simple Composite State
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« Explicit entry If the transition goes to a substate of the composite state, then that substate becomes active
and its entry code is executed after the execution of the entry code of the composite state. This rule applies

recursively if the transition terminates on a transitively nested substate. (page 580 of UML Spec.)

The flattening semantics is defined as Fig. 3.5.4. As the transition from state A goes to the substate B,
then B becomes active, and the entry code of the composite state is executed before the entry code
of B.

Nested Machine Notation Flattening Semantics

Simple (—_ Composite State

Composite State Ry A b B
b B
Explicit Entry ‘% entry; entryp
\e nt ry entryg

Figure 3.5.4: Explicit Entry Flattening Semantics for Simple Composite State

« Shallow history entry If the transition terminates on a shallow history pseudostate, the active substate
becomes the most recently active substate prior to this entry, unless the most recently active substate is the
final state or if this is the first entry into this state. In the latter two cases, the default history state is entered.
This is the substate that is target of the transition originating from the history pseudostate. (If no such
transition is specified, the situation is ill-defined and its handling is not defined.) If the active substate
determined by history is a composite state, then it proceeds with its default entry. (page 580 of UML Spec.)

Since shallow history is a reference to the most recent substate, the flattening algorithm must have
a mechanism to remember which is the most recent substate. As illustrated in Fig. 3.5.s, in the flat-
tened version, the shallow history does not exist any more. It is replaced by some newly defined
guards and actions on the associated transitions. More precisely, a variable last active (LAST) under
the namespace of the given composite hierarchy is declared for this composite state, and all the in-
ner transitions which will cause the substate to be activated/deactivated will have a supplementary
action: record which substate is the most recent activated. The default value of the variable LAST
when no substate has ever been activated is to use the initial pseudostate. All incoming and outgoing
transitions of the shallow history will be copied and linked to each substate, with a supplementary

guard defined: only when the target state is the most recent activated state will the guard be enabled.
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All these guard conditions are mutually exclusive, thus at any time at most only one of these incom-
ing/outgoing copies will be able to fire. The guard on the outgoing copies are optional as they will

always be evaluated as true.

Nested Machine Notation Flattening Semantics
Simple Composite State \ LAST == D LAST ==
Composite State LAST —— (JT LAST =2
Shallow History C A B
entry LAST ==2 A

Figure 3.5.5: Shallow History Entry Flattening Semantics for Simple Composite State

« Deep history entry The rule here is the same as for shallow history except that the rule is applied recur-
sively to all levels in the active state configuration below this one. (page 580 of UML Spec.)

A deep history is like the shallow history with an extended behavior that can remember any level of
nesting of the composite states. However, as the flattening process will run in a bottom-up way, it
means that for each deep history, all its sibling substates have already been flattened, which makes it
semantically and structurally equal to a shallow history. The only difference is that when doing the
transition copy, shallow history can only cover the flattened substates originally at the same level,

while deep history can cover all of them without restriction.

The values of variable LAST is from 1 to n, where n is the sum of direct substate numbers in the

enclosing composite states configured by the deep history pseudostate.

« Entry point entry If a transition enters a composite state through an entry point pseudostate, then the
entry behavior is executed before the action associated with the internal transition emanating from the entry

point. (page 580 of UML Spec.)

The flattening semantics is defined as Fig. 3.5.6. For a transition entering a composite state, no mat-
ter if it directly links to the composite state or bypasses through entry point, the entry action of the
composite state must always be executed. Compared to the direct connection, the extra semantics

introduced by the entry point is the trigger on the outgoing transition of the entry point. To keep
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this trigger, we define a special state S,,, to represent the entry point. S,,, has an entry behavior

(the entry behavior of the composite state), but no do or exit behaviors.

Nested Machine Notation Flattening Semantics
Simple ( Composite State \
Composite State RE b 5 Ry [ Sentry b [ B J
i nt entry;
Entry point entry entry entry B

Figure 3.5.6: Entry Point Entry Flattening Semantics for Simple Composite State

Exiting a non-orthogonal composite state
When exiting from a composite state, the active substate is exited recursively. This means that the exit activities
are executed in sequence starting with the innermost active state in the current state configuration. (page 581 of

UML Spec.) According to the UML specification, the following exiting cases are differentiated:

« Default exit As the UML specification does not define default exit rule, by default it is considered a
well-formed model without explicit exiting notation. The default exit semantics is defined as Fig.
3.5.7. The outgoing transition of the composite state is copied as the outgoing transition of each

inner substates except the initial pseudostate.

Nested Machine Notation Flattening Semantics

Simple / Composite State
Composite State

% —
DetuattExe | | @A -[] | (]| @A)

Figure 3.5.7: Default Exit Flattening Semantics for Simple Composite State

« Explicit exit If the transition goes to the outer state of the composite state, then that outer state
becomes active and the exit code of the substate is executed before the execution of the exit code of

the composite state. The flattening semantics is defined as Fig. 3.5.8.
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Nested Machine Notation Flattening Semantics
Simp]e / Composite State N
. R b
Composite State 1 "
ici i Alb B exit a jexit
Explicit Exit eg exit, ) ® A

Figure 3.5.8: Explicit Exit Flattening Semantics for Simple Composite State

« Shallow history & deep history exit The shallow history and deep history exit have been defined
in the entry parts.

- Exitpoint exit If, in a composite state, the exit occurs through an exit point pseudostate the exit behavior of
the state is executed after the behavior associated with the transition incoming to the exit point. (page 581
of UML Spec.) An exit point pseudostate is an exit point of a state machine or composite state. Entering
an exit point within any region of the composite state or state machine referenced by a submachine state
implies the exit of this composite state or submachine state and the triggering of the transition that has this
exit point as source in the state machine enclosing the submachine or composite state. (page 567 of UML

Spec.) The flattening semantics is defined as Fig. 3.5.9.

Nested Machine Notation Flattening Semantics

( Composite State

Simple
. — 5
Composite State .
Exit point exit ‘ h%ﬁ. exit 5 exit
exit

Figure 3.5.9: Exit Point Exit Flattening Semantics for Simple Composite State

Entry point and Exit point are dual semantic elements to describe compositional event handling
border. Similar to entry pseudostate, a special state S, is defined to represent the exit point. S,,;

has an exit behavior (the exit behavior of the composite state), but no entry or do behaviors.

- Final state exit A special kind of state signifying that the enclosing region is completed. If the enclosing

region is directly contained in a state machine and all other regions in the state machine also are completed,
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then it means that the entire state machine is completed. (page 557 of UML Spec.)

The flattening semantics is defined as Fig. 3.5.10. To keep the trigger on the incoming transition
of the final state, a special state S,q is defined to represent it. Sg,, has an exit behavior (the exit

behavior of the composite state), but no entry or do behaviors.

Nested Machine Notation Flattening Semantics

Si 1 ( Composite State
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exit
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Figure 3.5.10: Final State Exit Flattening Semantics for Simple Composite State

Flattening semantics for the actions and guards on transitions In the above flattening semantics, if there
are actions defined on the outgoing transition of inner exit state, they will be sequentially combined to the

target flattened transition. The guards will also be integrated by conjunction.
3.5.3.2 Orthogonal Composite State

Regions address the modeling of concurrency. The word orthogonal implies that each region in the
composite state is executed concurrently. When several sub-systems are executed concurrently, the number
of state in the whole system is the product of the number of state in each concurrent sub-system. This
leads to a combinatorial increase in the number of state of the associated state machine. This feature can be
considered as aredundant semantic modeling element taking the idea of Part from the composite structure
diagram, except that its scope is inside the state machine. Although the orthogonal regions do not add any
semantic expressiveness to classic state diagrams, its flattening semantics requires some details.

We propose a flattening semantics for orthogonal composite states using Fork & Join pseudostates. Ac-
cording to the UML specification, the fork and join pseudostates can only be used in orthogonal regions. For
the flattening purpose, we need to allow them to be use in the non-orthogonal structure. This adaption
does not change the behavdonk semantics of the state machine.

Entering an orthogonal composite state Whenever an orthogonal composite state is entered, each one of its

orthogonal regions is also entered, either by default or explicitly. If the transition terminates on the edge of the
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composite state, then all the regions are entered using default entry. If the transition explicitly enters one or more
regions (in case of a fork), these regions are entered explicitly and the others by default. (page 581 of UML Spec.)

We provide the flattening semantics for the default and explicit entries.

« Default entry By default, each concurrent region starts executing from the initial pseudostates. In-
stead of linking the incoming transition to the outgoing states of the initial pseudostate, a fork pseu-
dostate is created as a delegate to maintain the concurrent semantics. The flattening semantics is
defined as Fig. 3.5.11, where the outgoing transition of state A links to the fork pseudostate. Com-
pletion transitions are created, called anonymous transitions. They have no defined event triggering
them. This means that such transition will immediately fire when a state being the source of a com-
pletion transition becomes active. These anonymous transitions link the fork nodes to the target

substates of the initial nodes. All the entry/do/exit behaviors of substates and sub transitions are

kept as-is.
Nested Machine Notation Flattening Semantics
4 Composite State h b
Ry b
Orthogonal ? ® B s { C ] Fork .%
Composite State a J
Default Entry i i{z 7777777777 d | .%.%I\
® " - °F a
- %

Figure 3.5.11: Default Entry Flattening Semantics for Orthogonal Composite State

- Explicit entry If the transitions goes to substates in one or more regions (in case of a fork), this
explicit entry is defined as Fig. 3.5.12, where the fork node links the explicit substates through the

anonymous transitions.

Exiting an orthogonal composite state When exiting from an orthogonal state, each of its regions is exited.

After that, the exit activities of the state are executed. (page 581 of UML Spec.)
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Nested Machine Notation Flattening Semantics
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Figure 3.5.12: Explicit Entry Flattening Semantics for Orthogonal Composite State
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Three kinds of exit semantics are provided: default, explicit and final state exits. We only handle the exit

semantics here, while the entry semantics has been handled in the previous part.

« Default exit The flattening semantics for default exit is defined as Fig. 3.5.13.

Nested Machine Notation Flattening Semantics

Composite State

Orthogonal H C

Composite State| | - - - i
Default Exit Ry

Figure 3.5.13: Default Exit Flattening Semantics for Orthogonal Composite State

For the outgoing transitions, a Cartesian product of join pseudostates is created, using the join node’s
outgoing transition to hold the original semantics of the composite state’s outgoing transition (blue
ones). At any time when the composite state is active, only one of these composed join node will be

enabled to respond to the outgoing trigger.

« Explicit exit The flattening semantics for the explicit exit is defined as Fig. 3.5.14. Only the explicit
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substates in a region are combined with the substates in non-explicit regions and then linked to the

join nodes.
Nested Machine Notation Flattening Semantics
Composite State
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Composite State| | - - - - -~ ____
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Figure 3.5.14: Explicit Exit Flattening Semantics for Orthogonal Composite State

- Final state exit The flattening semantics for the final state exit is defined as Fig. 3.5.15. A special

state S is created for the final state. The combination of Sg,,; and the substates in other regions

are linked to the join nodes.

Nested Machine Notation Flattening Semantics
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Figure 3.5.15: Final State Exit Flattening Semantics for Orthogonal Composite State
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3.5.3.3 Submachine State

A submachine state is semantically equivalent to a composite state. The regions of the submachine state machine
are the regions of the composite state. The entry, exit, and behavior actions and internal transitions are defined as
part of the state. Submachine state is a decomposition mechanism that allows factoring of common behaviors and
their reuse. (page 576 of UML Spec.)

The only semantic difference, in terms of RTC, is when a submachine state is nested, whether it is used

in behavioral state machine or in protocol state machine.

In behavioral state machine (as integrated) At each reuse, the submachine state structure is copied to the
nested structure. Therefore it is in fact a part of its root state machine, which means it must respect the
same run-to-completion processing as the other parts. In this case, a submachine state can share the same

flattening semantics for composite state.

In protocol state machine (as communicated) The states of protocol state machines are exposed to the users
of their context classifiers. A protocol state represents an exposed stable situation of its context classifier: When an
instance of the classifier is not processing any operation, users of this instance can always know its state configura-
tion. (page 577 of UML Spec.)

In this scenario, each time the submachine state is entered, a new instance will be implicitly created to
handle the event coming afterward. Therefore the given submachine state will have an independent run-
to-completion scope. Its inner events can be handled concurrently with those at root state machine level.

In the context of this thesis, we only focus on behavioral state machines, thus the second case will not
be discussed. By default, we rely on the submachine states in the behavioral state machine (as integrated)

for the semantic mapping afterwards.
3.5.3.4 Fork & Join Pseudostates

Join vertices serve to merge several transitions emanating from source vertices in different orthogonal regions.
The transitions entering a join vertex cannot have guards or triggers. (page 567 of UML Spec.)

Fork vertices serve to split an incoming transition into two or more transitions terminating on orthogonal target
vertices (i.e., vertices in different regions of a composite state). The segments outgoing from a fork vertex must not
have guards or triggers. (page 567 of UML Spec.)

Fork pseudostate models the execution of concurrent aspects in transitions. The incoming transition
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is split into two or more transitions terminating on orthogonal target vertex. Join pseudostate is the dual
element of fork. Because these two elements are always used within orthogonal regions, the way orthogonal
regions are flattened will impact the meaning of fork & join.

We have discussed the use of fork nodes in the explicit exit for orthogonal composite state (Fig. 3.5.14).
For the region flattening algorithm using fork and join pseudostates, as the concurrent execution and syn-
chronization are provided by the fork and join nodes respectively, the regions can be removed without

jeopardizing the original semantics (Fig. 3.5.16).

Nested Machine Notation Flattening Semantics

Composite State

Fork & Join
Pseudostates

Fork B Join
< (o]
C

Figure 3.5.16: Fork & Join Pseudostate Flattening Semantics

3.5.4 Mapping Semantics

After flattening, the remaining SMD elements for which the mapping must be defined are: State (simple state),
Final state, Transition (local and internal), and Pseudostates (Initial, Terminate, Junction, adapted Choice, Fork
& Join without regions) .

The objective is to map the unnested SMD to a TPN, which formally defines its execution semantics. The
relatively complicated semantics for the unnested SMD is the transitions and states involving inner behaviors
such as effect, exit, entry and do. On the other hand, the run-to-completion (RTC) processing must be under
consideration.

We first present some general semantics for the transitions and states in Section 3.5.4.1. The mapping
semantics for the RTC semantics and the inner behaviors are respectively provided in Section 3.5.4.2 and
Section 3.5.4.3. We define the mapping semantics for states and transitions in Section 3.5.4.4, and discuss

the clearance mechanisms for the event pool in Section 3.5.4.5. As a special kind of simple state, the map-

102



3.5. STATE MACHINE DIAGRAM MAPPING SEMANTICS

ping semantics for final states is provided in Section 3.5.4.6. At last, the mapping semantics for pseudostates

is provided in Section 3.5.4.7.
3.5.4.1 Transition & State in General

A transition is a directed relationship between a source vertex and a target vertex. It may be part of a com-
pound transition, which takes the state machine from one state configuration to another, representing the complete
response of the state machine to an occurrence of an event of a particular type. (page 597 of UML Spec.) A tran-
sition can be associated with several triggers (the triggers may fire the transition), at most one guard and
at most one effect behavior. From the viewpoint of the target and source states, there exist three kinds of

transitions: external, internal and local transitions:

o Internal implies that the transition, if triggered, occurs without exiting or entering the source state. Thus, it

does not cause a state change. (page 606 of UML Spec.)

« Local implies that the transition, if triggered, will not exit the composite (source) state, but it will apply to
any state within the composite state, and these will be exited and entered. (page 606 of UML Spec.)

« External implies that the transition, if triggered, will exit the source vertex. (page 606 of UML Spec.)

Transitions and states for mapping In the flattening step, all the external transitions have been flattened
to local transitions. Therefore, we only need to provide mapping semantics for the local and internal transi-
tions. The flattening semantics for composite states and submachine states has been defined in the previous

section, thus there exists only simple states in the unnested SMD.
3.5.4.2 Run-to-Completion (RTC) Semantics

Run-to-completion processing The semantics of event occurrence processing is based on the run-to-completion
assumption, interpreted as run-to-completion processing. Run-to-completion processing means that an event oc-
currence can only be taken from the pool and dispatched if the processing of the previous current occurrence is fully
completed. (page 590 of UML Spec.)

Run-to-completion step Before commencing on a run-to-completion step, a state machine is in a stable state
configuration with all entry/exit/internal activities (but not necessarily state (do) activities) completed. The same

conditions apply after the run-to-completion step is completed. Thus, an event occurrence will never be processed
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while the state machine is in some intermediate and inconsistent situation. The run-to-completion step is the pas-
sage between two state configurations of the state machine. (page 590 of UML Spec.)

We use the Fig. 3.5.17 to illustrate the mapping for the RTC semantics. In order to explain the execution
sequence, the UML notation only has two states A, B, and the transition between them. In state A, the do and
exit activities are defined. In state B, the entry and do activities are defined. The transition has a trigger, a

single guard and an effect action.

Semantics Notation Mapping Semantics
// h N
\\ /l
. P = /\
T trigger ool
RTC A . [Guard] — B r?,,, rtc
Semantics | doa/Bxity] “pe o " [Entryg/dog) | 1 i !
|
| OA [0,0 ‘ Exit 5 -> Effect -> EntryB ! ét °B |

[

PRE Guard] [0,0]

Figure 3.5.17: Run-to-Completion Semantics

The execution sequence which ensures the RTC step is described as follows:

1. The transition is triggered by the event arrival. At this moment, the event instance has not yet been

consumed.

2. The guard constraint on the SMD transition is evaluated. If it is satisfied, the event instance is con-

sumed, otherwise the event instance will stay in the event pool and the SMD transition will not fire.

3. When the transition matches both preconditions to fire, the following actions will successively exe-

cute:

(a) the exit behavior of the source state A
(b) the effect action defined on the SMD transition

(c) the entry behavior of the target state B

The mapping semantics for the RTC semantics contains both the RTC processing and RTC step. The
squares in dotted line stand for respectively the behaviors of dos, RTC step, and dog. The SMD transition
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T is mapped to a pair of TPN transitions ( Touara and T, ) with intermediate behaviors RTC step and a RTC
place P,.. The place P, has an initial token. It is used to indicate whether the RTC processing is finished.
The Tgyqrq transition inherits the guard constraint from T using the PRE functions of tts. Ifthere is a single
trigger on T, the place P,,,; is used as the event pool for the target type of event occurrence. If the event ar-
rives but the guard is not satisfied, the event occurrence will not be dispatched, thus stays in the event pool.
According to the semantics of RTC step, after the trigger and the guard of transitions are both satisfied, the
behaviors of Exits, Effect and Entryg must be executed sequentially without interruption. When P, has a

token, it means the RTC processing is finished. Meanwhile, the dog behavior can be executed.
3.5.4.3 Do/Exit/Entry/Effect Behaviors Mapping

The optional entry/do/exit/effect behaviors in a state or on a transition need to be mapped to TPN. In
the context of this thesis, the inner behavior can be an activity diagram or an unnested state machine or an

action language expression (C in our prototype). We use the mapping semantics in Fig. 3.5.18 for these

behaviors.
Ltmin’ tmaxJ
()] oo () S
(a) Behavior (b) Behavior using abstraction

Figure 3.5.18: Do/Exit/Entry/Effect Behavior

In figure (a), the frame behavior stands for the activity of entry/do/exit/effect. If the inner behavior will
not impact or be impacted by the other parts of the whole system, this behavior can be abstracted using a
TPN transition, which gives the minimum and maximum execution time of this behavior, as shown in figure

(b). To generalize our discussion, we use the figure (a) as the mapping semantics for the inner behaviors.

Initialization of Inner Behaviors The initialization of the do/exit/entry/effect inner behaviors is intu-

itive, which means it starts from the initial node in the activity or state machine.

Termination of Inner Behaviors As the entry/exit/effect behaviors are atomic and cannot be interrupted

by the firing of transitions or by the other external behaviors, they will complete the behaviors and produce
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a completion event. In the activity diagram, either when all the flows reach the Flow Final nodes, or when
the whole activity reaches the Activity Final node, then the completion event will be produced. In the
unnested state machine, either when all the Final states are reached, or when the Termination pseudostate
is reached, then the completion event will be produced.

However, the do behavior is more complex. The behavior represents the execution of a behavior, that occurs
while the state machine is in the corresponding state. The behavior starts executing upon entering the state, following
the entry behavior. If the behavior completes while the state is still active, it raises a completion event. In case where
there is an outgoing completion transition the state will be exited. Upon exit, the behavior is terminated before the
exit behavior is executed. If the state is exited as a result of the firing of an outgoing transition before the completion
of the behavior, the behavior is aborted prior to its completion. (page 579 of UML Spec.)

Therefore, the termination of do behavior must satisfy two semantics:
o If the behavior completes while the state is still active, it raises a completion event.

« If the state is exited as a result of the firing of an outgoing transition before the completion of the

behavior, the behavior is aborted prior to its completion.

The first semantics is similar to the termination semantics for the other behaviors. We focus on the sec-
ond semantics. To model this interruption semantics in TPN, as we do not know when the do activity is
interrupted by the firing of the outgoing transitions, all possible behavior should be modeled. A stopwatch
arc can be used for this purpose, but this will potentially lead to the state space explosion problem in the
model checking. On the other hand, in the context of this thesis, as we focus on real-time embedded sys-
tems, it is reasonable to forbid this arbitrary interruption. All the behaviors in the critical systems mus be
explicitly specified. If the do activity can be interrupted, the interruption point must be predefined in the
specification. From this point of view, in the context of this thesis, we only adopt the first semantics, which

means the outgoing transitions can be fired only if the do activity is completed.
3.5.4.4 Mapping semantics for Transition & State

This section provides the mapping semantics for local/internal transitions and simple states, and then

discusses the mapping semantics for single and multiple triggers on the transitions.

Local Transition. The mapping semantics for the local transition and its associated states is illustrated by

Fig. 3.5.19. In the SMD model, state A contains Do, and Exit, activities, and state B contains Entryg and
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Doy activities. The transition from A to B contains at most one trigger (multiple triggers will be discussed

later), a guard and an effect action.

Unnested SMD | Notation Mapping Semantics
A
Do A/ Exit A
Trte PrtcB PdoneB

States & (trigger)

Local Transition|  [Gvard] Q Q—il »Q Q—)
Effect
v N . 100] /
B
Entryg/Dog

,,,,,,

Figure 3.5.19: Local Transition Mapping Semantics

In the mapping semantics, the chain [place P4 -> behavior Do, -> place Pypea ] models that state A
has completed its do activity. The SMD transition T is mapped to a pair of TPN transitions ( Tguard and Ty.)
with intermediate places and behaviors. The place P, has an initial token. It is used to indicate whether
the RTC processing is finished. When P, has a token, it means the RTC processing is finished. The Tgy4q
transition inherits the guard constraint from T using the PRE functions of tts. If there is a single trigger on
T, the place Py, is used as the event pool for the target type of event occurrence. If the event arrives but the
guard is not satisfied, the event occurrence will not be dispatched, thus stays in the event pool. When T 'is
fired (represented by the place PﬁredT) , the activities Exit4, Effectr and Entryg are executed. After entering
state B (represented by the place Pepteredn), the transition T, produces a RTC event through the place P,.
Meanwhile, the Dog behavior can be executed.

We provide a mapping semantics for the local transition with abstraction in Fig. 3.5.20. The Doy be-
havior is abstracted as the transition T4,4 with minimum and maximum execution time [t1, t2]. Similarly,
the Exit,, Effectr, Entryg activities are abstracted together using the transition T, and the Dog activity is

abstracted using the transition Tg,p.

Internal Transition. An internal transition can be seen as a special kind of local transition without entry

and exit behaviors, and the source and target states are the same one. Fig. 3.5.21 illustrates its mapping
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Unnested SMD | Notation Mapping Semantics
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Figure 3.5.20: Abstract Local Transition Mapping Semantics

semantics. According to its semantics, the exit and entry activities are eliminated, and the transition T is

linked to the place P, of itself.

Unnested SMD Notation Mapping Semantics
P
(trigger) P ool, _ '
States & [gga“:] Prtca PdoneA b TGuard PﬁredT PeffectedT Trtc
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Transition A /
ffffff o
A | Dop | PRE[Guard] : EffectT !

Figure 3.5.21: Internal Transition Mapping Semantics

Single Trigger Transition. The mapping semantics for the single trigger transition is illustrated by Fig.

3.5.22. The event pool place P, receives instances of event a from all the producers, and then provides to

all the consumers.

Multiple Trigger Transition. We have discussed the processing semantics for multiple triggers transition
at the beginning of this section (see the answer for Q4 in page 88): Only one transition can be fired when
two transitions originating from the same states are conflict. If a transition has several possible triggers

to enable it, they are under an exclusive “or” logic, which is represented by duplicating the SMD transition.
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Unnested SMD | Notation Mapping Semantics
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Figure 3.5.22: Single Trigger Transition Mapping Semantics

The copied transitions will inherit the same guard and behaviors while keeping respectively the single event
trigger. The mapping semantics for the single trigger transition is illustrated by Fig. 3.5.23. In the TPN, the
duplicated SMD transitions are mapped to two guard transitions Tgyaq o and Tgyerg . As the event pool is
instantiated by event type, in this case, two event pool places Ppy,1 4 and Py, 3 are created to receive re-
spectively the instances of events a and b. More precisely, if both events a and b are available at the moment
to trigger the transition, as only one event can be finally consumed after transition’s firing (ensured by the
shared place Pg,n.4), it is up to the event dispatch mechanism to decide the priority. The UML specification
does not give any details about this priority definition, therefore in the context of this thesis, it is assumed

that the dispatch is arbitrary.
3.5.4.5 EventPool Clearance Mechanisms

When explicit events are introduced, the impact of event pool must be considered. The pool, instanti-
ated by event type, is represented by a single empty place for the whole system, not for each state machine
instance. ('This has been discussed in the section 3.5.1.3) This place, with a global visibility of a given event
type, on the one hand can consolidate all the emission of the system, and on the other hand can dispatch
event instances with competition mechanism for all event consumers. We provide the mapping semantics

for the single trigger and the multiple trigger transitions.

As mentioned at the beginning of the section, once an event pool concept is introduced, the clearance
mechanism must be defined. Otherwise for those events which will arrive always at inappropriate time, the

pool would keep growing and produce an overflow, especially for those systems which are designed to run
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Figure 3.5.23: Multiple Trigger Mapping Semantics

infinitely. In the context of this thesis, two generic strategies are proposed and implemented: time out and

size out strategies (Fig. 3. 5.24):

Time out
strategy
N /
N % #
4 —F
TGuard1 EventX TGuardN
Queue
- —>I— —> - — —>
[0,0] [0,0] Size out
strategy

Figure 3.5.24: Mapping Semantics: Event Pool Clearance Mechanism
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« Time Out Strategy: This solution (Fig. 3.5.24, right top) adds an outgoing TPN transition to the
event pool place, with execution time [t,t] in which t is the maximum time that an event instance
could stay in the pool if not consumed. The new TPN transition clear will compete event with real
event consumers, which means if an event can be handled at a given time, it is not guaranteed to
be handled because the event pool may be cleared before. This violates the original semantics and

therefore need constraints to forbid the clear to compete events with normal T gyarq transitions.

TINA tool box offers the analysis of TPN with priorities, which is a kind of constraints between tran-
sitions, called transition priority. The blue arrows in Fig. 3.5.24 stand for this: the source transition
(T Guardss -+ Tauaran) Will always be prior to the target transition (clear) if both are enabled. Thus
the event pool will only clear the time out event when there is no state machine at the ready state to

receive it.

« Size Out Strategy: This solution removes event instances from the event pool when it reaches its
maximal capacity (see Fig. 3.5.24, right bottom). This strategy should provide a detailed dequeue
policy, like FIFO, LRU, etc. However, since for different event instance, their use is always the same
in terms of triggering the corresponding state machines. Therefore the only criteria that matters

(which can influence system’s behavior) is the event instance number in the pool.

Like time out strategy, this solution adds an outgoing clear transition to the event pool place, but
with a different execution time [0,0]. This implies that once the pool is full, the clearance work
will start immediately. Of course it will encounter the same problem of token competition if no
transition priority is defined. The control of pool’s capacity is implemented by a read arc from pool

place to clear, using K as the capacity parameter.

« Without Clearance Mechanisms: The time out and size out strategy in TPN introduce priority
arcs. TINA supports different abstraction used for building state class graph. A TPN with priority
arc will be unfolded using state preservation abstractions. Without priority arcs, a marking preserva-
tion abstraction is possible. The marking preservation abstraction is the highest abstraction, which
makes the model checking more efficient. If the priority arcs are supposed to be avoided, the clear-
ance mechanism can be replaced by on-the-fly checking to allow detecting potential overflows. This
method simply observes the arrived event amount in the event pool. If the amount is out of bound,

the on-the-fly checking stops. It indicates that the system design itself possibly has some vulnerabil-
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ity in the interaction with the environment.

In the context of this thesis, we do not use any clearance mechanisms for the event pools. Instead, in the
real-time critical systems, we take as granted the event instances of the given system are always restricted to

the capacity of event pool, otherwise, this is a design error.
3.5.4.6 Final State

Final state is a special kind of state signifying that the enclosing region is completed. If the enclosing region is
directly contained in a state machine and all other regions in the state machine also are completed, then it means
that the entire state machine is completed. (page 557 of UML Spec.)

In the flattening step, the final states in regions have been flattened and replaced by a special state S,
with triggers but no entry or do activity (see pages 3.5.3.1 and 3.5.3.2). The final states in the topmost
region are kept. These final states are mapped to a TPN place without initial token or outgoing transitions,

as shown in Fig. 3.5.25.

Unnested SMD Notation Mapping Semantics
Final State @ O

Figure 3.5.25: Final State Mapping Semantics

3.5.4.7 Pseudostates

We discuss the mapping semantics for the initial, terminate, junction, choice, fork and join pseudostates
in this section. The mapping semantics for the initial and terminate pseudostates is simple. The mapping
semantics for the fork and join pseudostates is not complex either, as they have the same behaviors as ex-
isting TPN elements. The mapping semantics for the junction and choice pseudostates needs to be detailed,
as the RTC processing is relatively complicated for the compound transitions constructed with them. The
definition of a common semantics is a key point of the semantic mapping: Transitions outgoing pseudostates
may not have a trigger (except for those coming out of the initial pseudostate). (page 598 of UML Spec.) This

point is important when mapping the junction, choice, fork and join nodes.

Initial. An initial pseudostate represents a default vertex that is the source for a single transition to the default

112



3.5. STATE MACHINE DIAGRAM MAPPING SEMANTICS

state of a composite state. There can be at most one initial vertex in a region. (page 566 of UML Spec.)

An initial pseudostate activates the state machine instance at the beginning. It is represented by a place
with one token and no outgoing transitions. The outgoing transition from the initial vertex may have a behavior,
but not a trigger or guard (page 566 of UML Spec.). As the outgoing transition from the initial vertexis specific,

we provide the mapping semantics for the initial pseudostate and its outgoing transition in Fig. 3.5.26.

Unnested SMD Notation Mapping Semantics
Initial &
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Figure 3.5.26: Initial Pseudostate and Outgoing Transition Mapping Semantics

Terminate. Entering a terminate pseudostate implies that the execution of this state machine by means of its
context object is terminated. The state machine does not exit any states nor does it perform any exit actions other
than those associated with the transition leading to the terminate pseudostate. (page 567 of UML Spec.)

The terminate pseudostate is similar to the activity final node in the activity diagram. It is represented
by a place without initial token. In order to stop all the executions in the state machine, the inhibitor arcs
are used to link all the TPN transitions, as shown in Fig. 3.5.27. Once the terminate place is filled with token,

the inhibitor arcs will halt all the transitions.

Unnested SMD Notation Mapping Semantics
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Figure 3.5.27: Terminate Pseudostate Mapping Semantics

Junction & Choice. Junction and choice pseudostates are both used to chain multiple transitions. Junc-

tion vertices are used to construct static conditional branches while choice vertices are used to construct
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dynamic conditional branches. The distinction between these two conditional branches is reflected in the

RTC processing.

In compound transitions involving multiple guards, all guards are evaluated before a transition is triggered,
unless there are choice points along one or more of the paths. The order in which the guards are evaluated is not
defined. If there are choice points in a compound transition, only guards that precede the choice point are evaluated
according to the above rule. Guards downstream of a choice point are evaluated if and when the choice point is
reached (using the same rule as above). In other words, for guard evaluation, a choice point has the same effect as
a state. (page 600 of UML Spec.)

Therefore, if there are choice points in a compound transition, guards downstream of a choice point are
evaluated if and when the choice point is reached. If there are junction points in a compound transition,
both guards that precede a junction point and the guards downstream of the junction point are evaluated
before the junction point is reached. The RTC processing means that an event occurrence can only be taken
from the pool and dispatched if the processing of the previous current occurrence is fully completed. (page 590 of

UML Spec.) This RTC semantics must be ensured during the semantic mapping.

Choice vertices which, when reached, result in the dynamic evaluation of the guards of the triggers of its outgoing
transitions. This realizes a dynamic conditional branch. It allows splitting of transitions into multiple outgoing
paths such that the decision on which path to take may be a function of the results of prior actions performed in
the same run- to-completion step. If more than one of the guards evaluates to true, an arbitrary one is selected. If
none of the guards evaluates to true, then the model is considered ill-formed. (To avoid this, it is recommended to
define one outgoing transition with the predefined “else” guard for every choice vertex.) (page 567 of UML Spec.)

The mapping semantics for the choice node is illustrated in Fig. 3.5.28. To simplify the discussion, we
suppose there is no exit behavior in state A, and there is no entry behavior in states B and C. The choice node
is mapped to the TPN place P yoic.. The transition Tgyrq4 and the behavior Effect, stands for the behavior
of the incoming transition of choice node. If the incoming transition has a single trigger, the place P,,,; is
used to represent the event pool. Once the RTC step is finished, the RTC token refills both the places P,
and P,c. This mapping semantics guarantees that the behavior of Effect, may impact the guards on the

outgoing transitions. Meanwhile, it ensure the RTC processing.

Junction vertices are semantic-free vertices that are used to chain together multiple transitions. They are used
to construct compound transition paths between states. For example, a junction can be used to converge multiple

incoming transitions into a single outgoing transition representing a shared transition path (this is known as a
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Figure 3.5.28: Choice Pseudostate Mapping Semantics

merge). Conversely, they can be used to split an incoming transition into multiple outgoing transition segments
with different guard conditions. This realizes a static conditional branch. (In the latter case, outgoing transitions
whose guard conditions evaluate to false are disabled. A predefined guard denoted “else” may be defined for at most
one outgoing transition. This transition is enabled if all the guards labeling the other transitions are false.) (page

566 of UML Spec.)

The mapping semantics for the junction node is illustrated by Fig. 3.5.29. As the guards are evaluated
before the firing of incoming transitions, the guards on each conditional branch are combined. In the fig-
ure, Guard, and Guardg are combined in one branch, while Guard, and Guard¢ are combined in another
branch. As the trigger is on the incoming transition, the event pool place P,,014 provides events to both tran-
sitions Tguardap and Tusraac. This mapping semantics guarantees that all guards are evaluated statically

before the firing of transitions. Meanwhile, it ensures the RTC processing.

Fork & Join. Fork vertices serve to split an incoming transition into two or more transitions terminating on
orthogonal target vertices (i.e, vertices in different regions of a composite state). The segments outgoing from a
fork vertex must not have guards or triggers. (page 567 of UML Spec.)

The mapping semantics for the fork node is illustrated by Fig. 3.5.30. To simplify the discussion, the
exit behavior of state A and the entry behaviors of states B/C are omitted. The fork node is mapped to
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a TPN transition T, (blue color) with time constraint [0,0]. The RTC processing needs to be explicitly
mapped. The RTCis mapped to the places P,;.g and P,;.c which link transitions T’ and T to the common
transition Tgy.rq where the guard of incoming transition is specified using PRE[Guard]. This mapping

semantics ensures that only when both outgoing transitions complete, will the compound transition finish

the RTC processing.

Figure 3.5.29: Junction Pseudostate Mapping Semantics

Unnested SMD Notation Mapping Semantics
— P
(— pool
I A JI TrtcB PrtcB
trigger o Q_) o N
Fork Guard N
or Effect, NN e A [0,0]
Pseudostate & ! NI, ! | Effectp | | ‘ | Effect |
- H 7y TreC
Effecty Effect; PdoneA o “N
4 .
| |
| B ) | c ) [0,0] rtcC

Join vertices serve to merge several transitions emanating from source vertices in different orthogonal regions.

Figure 3.5.30: Fork Pseudostate Mapping Semantics
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The transitions entering a join vertex cannot have guards or triggers. (page 567 of UML Spec.)

The mapping semantics for the join node is illustrated by Fig. 3.5.31. To ease the discussion, the exit
behaviors of state A/B and the entry behavior of states C are omitted. The join node is mapped to the
transition T'g,,r4c, which is also the guard transition. As the incoming transitions cannot have triggers, the
RTC place Py c links the transition T, to the guard transition Tgygrdc. As all the incoming and outgoing

transition of join node do not have triggers, it is not necessary to maintain the RTC semantics here.
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Figure 3.5.31: Join Pseudostate Mapping Semantics

3.6 RESOURCE MAPPING SEMANTICS

In the UML-MARTE model, the behaviors (activity and state machine) consumes the resources such as the
CPUj the memory, etc. The scheduling policy applied by the scheduler will impact the real-time require-
ments. Thus, if the target system relies on some external resources, the real-time behavior for the resources
scheduling needs to be explicitly specified in the TPN model.

The MARTE profile MARTE : :MARTE_Foundations: :GRM: : Scheduler:schedPolicy provides some typical
scheduling policies for real-time embedded systems, such as Earliest Deadline First, FIFO, Fixed Priority,
Least Laxity First, Round Robin, Time Table Driven. It also allows users to define their own scheduling
policy. Mapping semantics for these well-known scheduling policies to TPN model could introduce some
semantic ambiguities. For example, when using Fixed Priority scheduling policy, there is no explicit indi-

cation in the UML-MARTE level to specify what should be the scheduler’s behavior if two requests have the
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3.6. RESOURCE MAPPING SEMANTICS

same priority; but as this information is mandatory for the TPN modeling, then a semantic gap is potentially
created.

Besides, the exact behavior of some dynamic scheduling policy could not be mapped to TPN in a triv-
ial way. For example the EDF/preemptive policy always need to compute for each reassignment cycle
the process which is the closest to its deadline. This requires a dynamic comparison between the amount
clock/time state of each transition and the given reference, which is unfeasible neither in classical TPN nor
in TPN with data extension.

As modeling of scheduler policy is not the focus of this thesis, we do not aim in our work to provide the
mapping semantics for any specific scheduling policy. Instead, we propose a generic scheduling algorithm
with preemption option. This scheduling algorithm is used to decide for the given time T, which resource

instance(s) will be allocated to which requester(s).

3.6.1 Generic Resource Scheduling

A resource is a 3-tuple (I, S, Q), in which:
o Irefers to identification, which indicates the type of the resource.

o Sis the scheduler used to respond to the requirement of the resource. A scheduler has a preemption

option.
« Qis the instance amount of the provided resource.

For example, a 4-core CPU with preemptive scheduling policy is modeled as (CPU-CORE, preemption, 4).

In the MARTE profile, the following properties are used to specify the resource, scheduler and allocations:
« Preemption: MARTE: :MARTE_Foundations: :GRM: :Scheduler:isPreemptible
« Scheduling policy: MARTE : :MARTE_Foundations: :GRM: :Scheduler:schedPolicy
« Resource amount: MARTE: :MARTE_Foundations: :GRM: :Resource:resMult
« Required amount: MARTE: :MARTE_Foundations: :GRM: : Scheduler:resMult
« Allocations: MARTE: :MARTE_Foundatins::Alloc::Allocate
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3.6. RESOURCE MAPPING SEMANTICS

A generic resource scheduling semantic pattern is defined as shown in Fig. 3.6.1. The content of the square
in dotted line is a behavior model consuming the target resource in a preemptive or non-preemptive man-
ner. In this thesis, we only provide the mapping semantics for the resource scheduling in an activity diagram
using event-trigger actions. The same mapping principle is applicable to the other kinds of behavior model

(time-trigger actions in the activity and state machine).

Resource Type Notation Mapping TPN
<<Resource>>
resMult: Q T T o |
Resource ‘ Resource Usage ‘
) <<Allocate>> ! ‘ (Preemptive/Non-preemptive) ‘
Scheduling ! \ (scheduler policy) ‘
Pattern <<Scheduler>> I N AR 1
isPreemptible
schedPolicy
resMult: Np

Figure 3.6.1: Generic Resource Scheduling Mapping Semantics

3.6.2 Non-preemptive Resource Scheduling

The mapping semantics for the non-preemptive resource scheduling in the activity diagram using an event-
trigger action is illustrated by Fig. 3.6.2. The mapping semantics for the event-trigger action has been pre-
sented in page 75. The resource place P, contains Q instances of a given type of resource. P, linked to the
transition REQUIRE_RES represents the fact that the given action requires Ny instances of resource, and
P, linked from the transition RELEASE REs represents the fact that the Ny instances of resources should

be released and returned to the resource place.

3.6.3 Preemptive Resource Scheduling

TPN with stopwatch are commonly used to cope with preemptive modeling. However, it is very expensive in

terms of reachability graph generation when performing the model checking to assess real-time properties.
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Scheduling Type Notation Mapping TPN
Cj ‘77 T e in; T Cupr | Tewme |
Action Node <<Allocate>> ready ready ready Released released ‘
. 1 0,0] [min,max] [0,0]
(event'tlgger) <<Resource>>
Non-preemptive resMult: Q I#Q_)I‘)Q—)I‘)Q—)I > ©—> Q—)I Q
Resource <<Allocate>> '?‘

REeLEASE_RES ENliP OouT

Scheduling

1
<<Scheduler>>
isPreemptible: Non-preemptive
resMult: N

Figure 3.6.2: Non-Preemptive Resource Scheduling Semantics

We propose a solution to mitigate this issue. The objective is to model the same semantics without using
stopwatch mechanism. The idea is to use the time slice of the preemptive scheduler as the time unit to
segregate the action’s execution. The transition of execution (with time constraint [fin, tmax]) is divided
into the structure presented in Fig. 3.6.3. The resource place P, containing Q instances connects to each

transition (the two direction arrows in blue color) to represent the preemptive scheduling, where
« i, is the time slice of the scheduler;
o K = |tyin/t;] is the minimal number of occurrence times of £;
o S = |tmax/t;| is the maximal number of occurrence times of t;
e« A = t,;, — K- t,stands for the left time from t,,;, after K occurrence of t;
e B=1t,,, — S -t stands for the left time from ¢,,,, after S occurrence of t;.

The frame K represents the possible execution time [f,;,, (K+1) - £[; the K+1frame represents the possible
execution time [(K+1) - ;, (K+ 2) - ;[; the last S frame represents the possible execution time [S - t;, t,nqx)-
All the execution time from f,,;, to t,uay is covered. We give an example (Ex. 3.1) to explain the mapping

semantics.

Example 3.1 (Preemptive Scheduling Example) Suppose the execution time of a given action is [10, 20],
and the time slice of the scheduler is 3. According to the above mapping semantics, K=3,S=6,A=1,and B = 2.

The possible execution time and slice occurrences are listed in the Table 3.6.1.
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Scheduling Type Notation Mapping TPN
A
I
Action Node <<Allocate>>| Output
. L Rel d
(event-tigger) <<Resource>> ease
Preemptive resMult: Q
Resource
scheduling <<Allocate> >!
<<Sche|duler> >
isPreemptible
Preemptive
resMult: N

Figure 3.6.3: Preemptive Resource Scheduling Semantics

Table 3.6.1: Preemption Scheduling Example

Frame K (K=13, 4,5,6) | Execution Time | Slice Occurrence Time Point
3 [10, 12[ 36,9
4 [12,15] 3,6,9,12
3 [15,18] 3,6,9,12,15
6 [18,20] 3,6,9,12,15,18

3.7 TIME SEMANTICS IN MULTI-CLOCK MODELING

For real-time analysis in multi-clock modeling, one of the clocks must be a reference clock. Then, other
clocks can be compared with this reference clock. Clock tick is the smallest unit of time recognized by a
device. Clock drift refers to the phenomena where a clock does not tick exactly at the same time as the
reference clock. From the viewpoint of real-time analysis, the main difference between single-clock and
multi-clock modeling is that the clock drifts should be taken into account in multi-clock modeling environ-
ment. In single-clock modeling, it is not mandatory to distinguish the notions of tick and clock cycle (the
amount of time between two ticks of a clock), because the difference between the clock cycle and the phys-

ical time is of the same proportion for both clock cycle and tick at any given time. If a clock drift occurs, it is
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also effective for every part in the system. In multi-clock modeling, however, the semantic mapping need
to exhibit a correct semantics for clock drifts as each clock drifts independently from the others.

The main idea is to assume a global physical clock and project each time consumption and drift on this
precise time reference. In our study, we use the physical time notion as the exact reference for both single-
clock and multi-clock modeling. The physical time and the verification tools we rely on both dense time
and discrete, thus our approach can handle both dense time and discrete time problems.

In the single-clock context, the measured execution time is directly used after a global normalization of
the time units. For example, if action A takes [ 3.4, 4.7] msand actions B [78.9, 463.5] us, the corresponding
min time and max time on the TPN transition are respectively [34000, 47000] and [789, 4635 ], with the
common unit of 0.1 ys to keep all the results natural numbers. All time values in time constraints should be
integers, as the TINA model checker requires this convention.

In the multi-clock context, the measured execution time needs to be first mapped to tick numbers from
the global physical clock, and then the physical model time is deduced by associating each clock’s drift.
We use the same example but respectively give the corresponding clock properties: let clocks A and B
theoretically tick every 1 ys, and their backward drift and forward drift are both 1%, therefore action A’s
tick number is [3400, 4700] and action B’s is [78.9, 463.5]. As tick number must be integer, a rounding
strategy must be designed without introducing unreasonable conversion error. We use the floor function
for t,,;, and ceiling function for t,,,,. Therefore, we have A for [3400, 4700] and B for [78, 464] as tick
numbers after the rounding. It is possible to take a more precise unit, but the more precise the more states
will be created when analyzing the real-time properties, because it increases the time difference between
the max and min time values. Thus there exist a compromise between the precision and the scalability of
verification.

As the corresponding tick time range is [0.99, 1.01] ys due to the mentioned clock property, action’s
physical time duration is computed by multiplying this range and action’s tick number range. Following the
same principle of unit normalization, the final min time and max time are [336600, 4747000] and [7821,
46763 ] respectively, with the common unit of 0.01 ys. Compared with the actions in mono-clock modeling,
the precision of execution time is increased.

The drawback is that, as the method assumes each component has an independent clock, it can be too
constraining for those devices which share a clock in a multi-clock modeling. The reason why we decided
to choose this abstraction is that in the verification view point, this will only lead to a false-violation, which

means if a time property is verified under independent-clock hypothesis, it must also be true for a shared-
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clock system. This sufficient but not necessary condition in practice may only cause a performance trade-off

in system design, but never gives out a wrong verification result when property’s proof is positive.

3.8 DiscussioN

3.8.1 Verification of Model Transformation

The automatic model transformation referred to in this work is in fact a semantic mapping, which preserves
all the property-related semantics of the source UML-MARTE model. Regarding the objective of the verifica-
tion of real-time properties at architecture level, this abstraction is justified because it is not mandatory to
preserve all the information, for example, the object values.

A concern with this method is whether the model transformation (semantic mapping) is correct. In
other words, how to verify this model transformation (semantic mapping). Indeed, this is a crucial ques-
tion.

What to verify? Some surveys of the state-of-the-art about the verification of code generation [Davo3,
Nec11] and the verification of model transformation [CS13, PSS98] summarized the following expected

properties:

 Language-related properties includes terminate, determinism, typing, and preservation of execu-

tion semantics properties.

« Transformation-related properties includes source/target conformance, syntax relations, seman-

tics relations and functional behaviors properties.

The verification of model transformation for the UML-MARTE model is not trivial. Generally, the best way
to verify if the model transformation preserves the intended semantics is to compare the state space graph
of the source and target formal models. As shown in Fig 3.8.1, a formal specification must then be defined
for UML models as a reference semantics. The execution semantics is then compared with this reference
semantics. However, since UML is semi-formal, a formal definition is needed to establish the reference, which
is one of the work in this thesis. Our proposal relies on a translation to a formal model instead of a direct
formal specification of an operational semantics that would allow to build the state space at the UML level.

This does not change the fundamental issue: how to validate this formal specification?
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| Formal Specification |

i | tracability
[ ! A Consistency

L~ UML —|>| Expected Behavior Property| 1

V| Execution Semantics |

| Validation by Testing and Proof Reading |

Figure 3.8.1: Verification of Model Transformation

A solution may mitigate the problem by mapping the UML-MARTE model to different formal models and
verifying if they converge into the same formal semantics. Nevertheless, whether the semantics is lost be-
tween a semi-formal model and a formal one can only be assessed using testing and human proof reading.

Another possible solution is derived from translation validation that have been experimented for the
same purpose for AADL in the QUARTEFT project. This method allows to verify that some important intended
behavioral properties conform to the execution semantics. For example, we can define TPN observers to
assess the run-to-completion processing semantics. More precisely, when an event occurrence is being
processed, the other occurrences of this event cannot be accepted. However, when the behavior property
specification and the execution semantics are both wrong in the same way, this method does not work.
Then some test cases must be used to validate the execution semantics.

As a future research direction, the expected behavior properties would be defined and used to verify the
conformance between the execution semantics and the behavior specification. This can validate some key

execution semantics in the UML models.

3.8.2 Boundedness and Decidability Issue

The main objective of this thesis is to propose a set of methods that may improve the efficiency of model
checking in order to verify properties in large scale systems. The mapping translates the end user model to
the verification model, on which the desired properties will be assessed. We need to discuss here whether
the proposed mapping semantics can ensure boundedness and decidability in the verification TPN models.

Before discussing this issue, we recall the research background of this thesis. We rely on the UML-MARTE
design models that have finite states and finite event occurrences. In other words, the design model is
bounded. In fact, a practical correct engineering system must be K-bounded, otherwise it is not possible

to implement it with limited resources. Therefore instead of checking the boundedness, it becomes a K-
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boundedness problem for this thesis. Since K-bounded TPN without stopwatch arcs is decidable, and no
stopwatch is used in the model mapping, therefore this mapping will not introduce any unboundedness or

undecidability.

A TPN is bounded if the marking of each place is bounded by some integer. [BVo7] In the semantic mapping
method, we have used inhibitor arcs for the Activity Final and Object nodes in the activity diagram, and the
Terminate pseudostate in the state machine diagram. The question is whether the inhibitor arcs will make

the TPN model unbounded.

We need to discuss this problem taking into account the following two aspects:

« Inhibitor arcs in Activity Final nodes and Terminate pseudostates. The mapping semantics are
defined respectively in page 70 and page 113. In this case, the inhibitor arcs are used to terminate all
the transitions in the TPN model when the whole system enters the final flow state, which potentially

decrease the size of the state space of a TPN model.

When the control flows have not yet arrived at the final TPN place, this place is empty, which means
it cannot affect the behavior of the control/data flows. Once the final flow place is filled, all the
transitions in the whole TPN model are stopped, and thus no new tokens can be produced. Therefore,

the TPN model is still bounded.

« Inhibitor arcs in object nodes. The mapping semantics is defined from page 79 to page 83. In
data flows, the TPN place representing UML object node will become unbounded only in the follow-
ing cases: the producer of tokens continues to send tokens to the object TPN place, while the speed
of consumption is rather slow. Obviously, this is caused by a boundedness design error. A well
designed real-time system must avoid generating an unbounded amount of data or must possess a
clearance mechanism to restrict the capacity of the object store. Therefore, before verifying real-time

properties, a verification on boundedness should be performed.

State reachability and boundedness is proven to be undecidable for arbitrary TPN. However, state reachability
is decidable for bounded TPN, which is sufficient for virtually all practical purposes. [GLM " 05 ] Therefore, in the
context of this thesis, as the TPN model is bounded, and the state reachability is decidable.
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3.9 CONCLUSION

This chapter presented the methodology for the property-driven approach, which provides the basis for our
semantic mapping contributions. The objective is to automatically map UML-MARTE models to executable
TPN models on which efficient model checking can be performed afterwards to verify real-time properties.

The main contributions of the current chapter are summarized as follows:

1. Specification of the mapping semantics for composite structure diagrams ( Section 3.3).
The composite structure diagram connects different sub-system behaviors through the communica-

tion medias. The mapping semantics is provided for the entities Part, Port and Connector.

2. Specification of the mapping semantics for activity diagrams (Section 3.4) [GPC12b].
The activity diagram emphasizes the sequence and conditions for coordinating lower-level behav-
iors. The mapping semantics is provided for the UML-AD control nodes, event-trigger and time-trigger
actions, objects, and connections. In order to standardize the mapping semantics for the asyn-
chronous behavior, we extend the original semantics for action by defining an asynchronous seman-
tics using the MARTE profile, and then map it to the TPN model. It is a general pattern in the reactive

asynchronous system, and thus can be reused in the modeling and verification.

3. Specification of the mapping semantics for state machine diagrams (Section 3.5).
We investigate the behavioral state machine in this thesis. Two aspects are considered when the
mapping semantics is defined. First, hierarchically nested states and orthogonal regions do not ex-
tend the semantic expressiveness. They help the designer in the writing of sophisticated models for
complex systems. The nested SMD can be converted to an unnested SMD. This is the work of flattening.
Second, the unnested SMD with only simple states, final states, transitions and unnested pseudostates

are mapped to the TPN model. This is the work of mapping.

4. Specification of the mapping semantics for resource scheduling (Section 3.6).
In this work, we do not aim to provide the mapping semantics for any specific scheduling policy.
Instead, we propose a generic scheduling algorithm with preemption option. This scheduling algo-
rithm is used to decide for the given time T, which resource instance(s) will be allocated to which re-
quester(s). The specification and verification of specific scheduling policies can be a future research

work.
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5. Implementation of the tool for semantic mapping in the property-driven verification toolset.
The mapping semantics defined in this chapter has been implemented as a tool in the real-time prop-

erty verification toolset. The implementation coverage library is provided in Appendix A.
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Specification of Real-Time Property

RESUME

Les langages de modélisation doivent fournir des éléments pour décrire la structure et le comportement
des systemes ainsi que leurs exigences. Plusieurs approches ont été proposées pour les propriétés temps
réels : des extensions des logiques exploitées par les outils de vérification telles LTL, CTL, mu-calcul qui
sont éloignées du point de vue utilisateur du systéme; des patrons de propriétés issus d'une analyse du
domaine comme ceux proposés par Dwyer et Konrad; des relations d’'ordre partiel entre les événements se
produisant dans le systéme comme la partie CCSL (Clock Constraint Specification Language) du standard
MARTE. Ces deux dernieres approches ont été congues pour I'utilisateur final et ne sont pas forcément
adaptées a une mise en oeuvre efficace pour les outils de vérification de modéle. Ce chapitre définit un
ensemble minimal de patrons de propriétés temps réel atomiques qui sera utilisé pour traduire les propriétés
qualitatives et quantitatives temps réel exprimées par le concepteur. Lobjectif est de faciliter les activités

de vérification sans réduire I'expressivité des spécifications.
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Selon les exigences exprimées dans plusieurs projets de recherche impliquant de nombreux partenaires
industriels, les besoins en terme de vérification de propriétés temps réel comprennent: les pires et meilleurs
temps d’exécution, les pires et meilleurs temps de traversée des moyens de communication, la durée d’'un
état, les contraintes liées a la synchronisation, la coincidence, la précédence, etc.

Ces exigences peuvent étre sémantiquement décomposées en un ensemble de propriétés élémentaires
que nous appelons les patrons de propriété pour la vérification. Ils peuvent faciliter I'utilisation de méth-
odes formelles en particulier pour les utilisateur non-experts en fournissant des solutions récurrentes a la
spécification et la vérification. Ils permettent de décomposer des propriétés complexes comme une com-
position de propriétés élémentaires qui reposent sur un plus petit espace d’état et réduisent ainsi le cotit de
vérification.

Les patrons de propriété habituels sont dérivés du travail de Dwyer et Konrad. Ils ciblent I'expressivité
pour les utilisateurs finaux qui spécifient les exigences temps réel, mais ne garantissent généralement pas
l'atomicité sémantique ou la facilité de la vérification. Nous proposons un ensemble minimal de patrons
atomiques de propriétés temps réel dans le but de diminuer la complexité de la vérification. L'intégralité
des exigences temps réel exprimées par des patrons de Dwyer et Konrad et une part importante de celles
exprimées en CCSL peuvent étre traduites sous la forme d'une composition de ces patrons élémentaires.
Cette décomposition est automatique et donc transparente aux utilisateurs.

Ces patrons de propriété sont minimaux parce qu’ils sont sémantiquement atomiques et ne peuvent pas
étre exprimés sous la forme d’'une composition d’autre éléments atomiques. Nous fournissons la traduction
des patrons de Dwyer et Konrad. Cela signifie que nos patrons de propriété atomique sont sémantiquement
complet par rapport aux travaux de Dwyer et Konrad.

Nous avons également traduit une partie de la spécification de CCSL ainsi qu’une variante de CCSL
basée sur les tiches en nos patrons de propriétés. C'est une seconde illustration de I'expressivité des patrons

que nous proposons.
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Progress Map 2: Property Specification using Real-Time Property Patterns

This chapter defines a minimal set of real-time property patterns used to specify both qualitative and
quantitative real-time properties, for the purpose of verification-ease and semantic completeness (Progress
map 2). Classic property patterns based on Dwyer’s and Konrad’s pattern systems target expressiveness for
the end-users that specify real-time requirements, but this usually does not ensure that they are semantically
atomic or easy to verify (Challenge 2 in page 22). We define a minimal set of atomic real-time property
patterns in the order to decrease the verification complexity. All end-user dedicated real-time requirements
are expressed as compositions of these patterns. The common requirements based on Dwyer’s and Konrad’s
patterns and CCSL language will be automatically mapped to our patterns using a predefined metamodel and
a mapping library. We also define a small extension for task level CCSL specification and translate them into

our property patterns (Contribution 2 in page 22). All the patterns defined in this chapter will be checked
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in an efficient way using the proposals in Chapter s.

4.1 INTRODUCTION

According to the user’s point of view expressed in several collaborative research projects involving indus-
trial partners such as P !, TOPCASED 2, OPEES®, QUARTEFT *, SPICES °, SPACIFY ¢, and CESAR’, etc, the real-time
requirements commonly used in a real-time concurrent system include the worst/best case execution time,
worst/best case traversal time, state duration, the scheduling related constraints such as synchronization,
precedence, coincidence, etc. [Kop11]. These requirements can be semantically decomposed into a set of
elementary properties that we call property patterns. Design patterns are widely used in many engineer-
ing domains, because they are thought as a means of leveraging the experience of expert system designers
[VH]Gos]. Property patterns can fulfill a similar purpose: on one hand ease the use of formal methods
especially for the non-expert users by providing the recurrent solutions to specification and verification
problem; and on the other hand decompose complex properties into a set of simpler ones that rely on a
smaller state space and thus decrease the verification cost.

In this chapter, we present a set of real-time property patterns used to specify real-time requirements.

Property based on Dwyer’s and Konrad’s works

Dwyer etal. initially proposed qualitative temporal property patterns for finite-state verification [DAC98,
DACg9]. They focused on logical time properties, thus no concept of quantitative real-time constraints
such as time interval and duration were present in their pattern system. Dwyer et. al. also performed alarge-
scale study in which specifications containing over soo temporal requirements were collected and analyzed.
They noticed that over 90% of these could be classified under one of the proposed patterns [DACo99 ], which
encouraged others to use Dwyer’s pattern system and to extend this study.

The following works on quantitative time property patterns [KCos, GLo6, ADZLB12] extended Dwyer’s

patterns, with additional real-time constraints. In [KCos ], Konrad created mappings of quantitative time

1http ://www.open-do.org/projects/p/
*http://www.topcased.org/
*http://www.opees.org/
*http://projects.laas.fr/fiacre/
Shttp://www.spices-itea.org/public/news.php
6http: //spacify.gforge.enseeiht.fr/

"http:/ /www.cesarproject.eu/
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property patterns into three real-time temporal logics: MTL,TCTL [Alug1 ], and RTGIL [MRK " 97], and then
defined a pattern template to ease the reuse. [GLo6] provided a catalogue of patterns for real-time ex-
tension that handled a less expressive set of patterns (without some modifiers). Also based on Dwyer’s
property patterns, [ADZLB12] proposed a set of real-time properties that introduced the time constraints
Interval and Duration, using 4 scope modifiers and 4 categories of patterns. They did not implement all the
scope and categories (e.g. Precedence, Bounded Existence, Chain Response and Chain Precedence), because
they aimed to apply their approach on the modeling language Fiacre® [BBF" 07], which does not require
all the patterns but only the most commonly used ones.

From the viewpoint of property verification, we advocate that the property patterns in Dwyer’s pattern

system are not atomic. Let’s take a end-to-end real-time requirement as example (see Ex. 4.1).

Example 4.1 (Verification Pattern Example) For events A and B, Within time interval I ([T pin, Tinax]), the
real-time property is Exist A After B Within L. Its semantics can be represented by the logic formula:

(ﬁ B) \% (B NAN (TAB Z Tmin) A (TAB S Tmax))}

where T g is the time interval from the first occurrence of A to the first occurrence of B. It can be decomposed into

3 atomic properties: Exist B, Tap > Ty and Tap < Tpgy.

Property based on cCSL

UML by itself is an untimed model. Many extensions were proposed inside and outside OMG. MARTE was
introduced to provide a generic time expressiveness. To explicit keywords that denote usual concepts of
the domain (periodic, sporadic, sampling, etc), Mallet et al. introduced the Clock Constraint Specification
Language (ccsL) [AMo8]. It offers a rich set of constructs to specify time requirements and constraints

based on sets of instantaneous clocks (events) and clock constraints.

Need for a verification-ease property specification method
Relying on the decomposition in Ex. 4.1, the real-time requirements can be translated to and checked
with a set of atomic properties. We aim to define such a minimal set of atomic property patterns that targets

the ease of both specification and verification. The properties expressed using Dwyer/Konrad’s patterns

Shttp://projects.laas.fr/fiacre/
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and cCsL languages can be automatically translated to the verification targeted atomic property elements,
which will then be assessed using the observer-based verification approach.

We explain some core conceptsin Section 4.2, then give a quick overview of property pattern approaches
in Section 4.3. We introduce the catalog of real-time property patterns in Section 4.4. The metamodel
of real-time property pattern and the mapping library are presented in Section 4.5. In order to assess the
expressiveness of the real-time verification patterns, we apply our approach to CCSL constraints, and propose

a small extension based on CCSL to deal with the task level constraints in Section 4.6.

4.2 PRELIMINARIES

Before defining the pattern-based approach, it is mandatory to clarify some core concepts used in the spec-

ification: qualitative & quantitative property, occurrence & predicate & scope, event & state.

4.2.1  Qualitative & Quantitative Property

Real time is a quantitative notion of time that is measured using a physical (real) clock. In contrast to real
time, logical (virtual) time deals with a qualitative notion of time that is expressed using event ordering
relation such as before, after, sometimes, eventually, precedes, etc. A real-time system verification implies that
all quantitative and qualitative time requirements should be satisfied. Real time can be seen as a particular
case of logical time where the events generated by a physical clock are taken as time reference. In the context
of this thesis, we focus on the quantitative time properties because, on the one hand, the qualitative aspects
have been studied in many works; and, on the other hand, the introduction of physical clocks will increase

the complexity of model checking, which is the problem we aim to study using property driven approach.

4.2.2 Occurrence & Predicate & Scope

A common pattern for specifying a property is composed of three elements: occurrence, predicate and
scope. Predicate describes what must occur, and scope describes when it must occur. Occurrence is a con-
cept about the bounded existence. The occurrence of a predicate could be specified as existence, absence,
always (exist), or (exist) bounded occurrence. Given a temporal property Exist A After B Within I, Exist
is the occurrence, A is the predicate, while After B Within I is the scope.
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4.2.3 Event & State

The verification of end-user requirements covers three levels of model: the design model (UML in our case),
the verification model (TPN in our case), and the model checking state class graph (marking graph in our
case). We should distinguish the concepts of event and state from these three levels.

An event is an instantaneous and atomic occurrence of an action at a point in time. Relying on different

model granularities, an event can be:
« AtuML model level:

— A communication event: send, receive, read, write, etc.

— The execution of a transition from one state to another
« TPN model level: a TPN transition.
« State class graph level: a transition between states.

State is a universal concept through the whole system, regardless of the modeling granularity. A state
represents a situation during which some invariant conditions hold. The system remains in the state for
some time.

Before presenting the details about the proposed property pattern approach, we need to clarify a con-
vention on the use of event and state. In the pioneer work of Dwyer et al., a complete set of qualitative
property patterns were defined targeting specification activities. Thus, there was no need to distinguish
the use of event and state in the predicate and scope. For example, when a property is specified as Exist A
Before B. A and B could be state or event. From the viewpoint of verification, the predicate Exist A is sup-
posed to support both state and event. Nevertheless, to avoid ambiguity, the scope Before a state is usually
understood as Before the enter event of the state. Therefore, using scope with state is only a specification re-
quirement, while it is redundant for the verification. For this reason, in the context of this thesis, the scope

in a property can only be used with events, while the predicate can be used both with events and states.

4.3 PROPERTY PATTERN APPROACH

Dwyer’s property pattern system was based on eight patterns (Absence, Existence, Bounded Existence, Prece-

dence, Response, Chain Precedence and Chain Response) and five scope modifiers (Global, Before, After, Be-
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tween and After-Until). Konrad and Cheng extended Dwyer’s patterns to specify both qualitative and quan-

titative requirements. Konrad’s property patterns are organized in an hierarchy in Fig. 4.3.1 [KCos ], where

the grey frame part cor