
HAL Id: tel-04262123
https://theses.hal.science/tel-04262123v2
Submitted on 14 Nov 2016 (v2), last revised 27 Oct 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Property driven verification framework: application to
real time property for UML MARTE software design

Ning Ge

To cite this version:
Ning Ge. Property driven verification framework: application to real time property for UML MARTE
software design. Modeling and Simulation. Institut national polytechnique de Toulouse (INPT);
Institut de Recherche en Informatique de Toulouse (IRIT), Université Paul Sabatier, 118 route de
Narbonne, 31062 Toulouse cedex 9, 2014. English. �NNT : �. �tel-04262123v2�

https://theses.hal.science/tel-04262123v2
https://hal.archives-ouvertes.fr

En vue de l'obtention du

'2&725$7�'(�/
81,9(56,7��'(�728/286(
Délivré par :

Institut National Polytechnique de Toulouse (INP Toulouse)
Discipline ou spécialité :

Sureté de Logiciel et Calcul à Haute Performance

Présentée et soutenue par :
0PH�1,1*�*(

le mardi 13 mai 2014
Titre :

Unité de recherche :

Ecole doctorale :

PROPERTY DRIVEN VERIFICATION FRAMEWORK : APPLICATION TO
REAL TIME PROPERTY FOR UML MARTE SOFTWARE DESIGN.

Mathématiques, Informatique, Télécommunications de Toulouse (MITT)

Institut de Recherche en Informatique de Toulouse (I.R.I.T.)
Directeur(s) de Thèse :

M. MARC PANTEL
M. YAMINE AIT AMEUR

Rapporteurs :
M. FRÉDÉRIC MALLET, UNIVERSITE DE NICE SOPHIA ANTIPOLIS

M. KAMEL BARKAOUI, CNAM PARIS
Membre(s) du jury :

1 M. FERHAT KHENDEK, UNIVERSITE CONCORDIA MONTREAL, Président
2 M. FREDERIC BONIOL, INP TOULOUSE, Membre
2 M. MARC PANTEL, INP TOULOUSE, Membre
2 M. PHILIPPE DHAUSSY, ENSTA BRETAGNE, Membre
2 M. SILVANO DAL ZILIO, LAAS TOULOUSE, Membre
2 M. YAMINE AIT AMEUR, INP TOULOUSE, Membre

Acknowledgments

The work presented in this thesis has been completed in the ACADIE team in IRIT, with the financial

support from the French Ministry of Industry through the ITEA OPEES project and the FUI P project.

The experience as a Ph.D student is full of excitement and adventure. At the endmoment, I wish to express

my gratitude to my supervisors, colleagues and families.

First and foremost I offer my sincerest gratitude to my principal supervisor Marc Pantel for the con-

tinuous support of my Ph.D study and research, for his patience, motivation, enthusiasm, and immense

knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have

imagined having a better supervisor and mentor for my Ph.D study. I offer the same gratitude to Yamine

Aït Ameur for accepting to be the director of my thesis, and to Xavier Crégut for accepting to be co-

supervisor of my thesis. Their good advice and support have been invaluable, for which I am extremely

grateful.

I express the deepest appreciation to Kamel Barkaoui, professor at Cedric Cnam Paris, and Frédéric

Mallet, associate professor (HDR) at Université de Nice Sophia Antipolis for accepting to examine my

Ph.Dwork. I express the sameappreciation toFerhatKhendek, professor atConcordiaUniversity, Philippe

Dhaussy, associate professor (HDR) at ENSTABretagne, Frédéric Boniol, professor atUniversité INPT

and ONERA Toulouse, and Silvano Dal Zilio, full time researcher at LAAS-CNRS for accepting to be

the jury members. I extendmy gratitude for their constructive comments and open discussions duringmy

Ph.D work and on the defense of the thesis.

In this Ph.D study, I had the opportunity to discuss my work with Bernard Berthomieu, Silvano Dal

Zilio andFrançois Vernadat at LAAS. I have greatly benefited from their advice and unsurpassed knowl-

edge of model checking and formal verification. I am deeply grateful to all of them.

I would like to offermy thank toMichaël Lauer and Frédéric Boniol for their permission to use the case

2

study they developed.

I would like to offer my special thank to Shin Nakajima, professor at National Institute of Informatics

in Japan, with whom I have worked 3 months during the research internship, for his insightful comments

and suggestions on my research directions. I would like to thank Aurélie Hurault for her support and

encouragement in this internship.

I thank all the colleagues at IRIT, with special attention to Sylvie Eichen and Sylvie Armengaud-

Metche. They are always available to help me manage the administrative problems. Thanks so much to

both for their kindness and efficiency. I also thank a lot to all members of ACADIE team. I would like to

express my gratitude to Philippe Quélinnec, Mamoun Filali, Jean-Paul Bodeveix, Philippe Mauran,

Xavier Thirioux, Meriem Quederni and Mounira Kezadri for their advice during my Ph.D study and

their kindness. I want to thank the colleges sharing the same office with me: Arnaud, Florent and Faiez. It

was a pleasure to work with them.

I cannot finish without thanking with all my heart my parents, for their support, encouragement and

love throughout my whole life.

At last, I reserve my final thanks to you, Hongyu, my best friend, soul-mate and dear husband. Thank

you for your continued andunfailing love, support andunderstandingmypersistence in the research career.

3

Abstract

Automatic formal verification such asmodel checking faces the combinatorial explosion issue, and thus

limits its application in industrial projects. This issue is caused by the explosion of the number of states

during system’s execution , as it may easily exceed the amount of available computing or storage resources.

This thesis designs and experiments a set of methods for the development of scalable verification tools

based on the property-driven approach. We propose efficient approaches based onmodel checking to ver-

ify real-time requirements expressed in large scale UML-MARTE real-time system designs. We rely on the UML

and its profile MARTE as the end-usermodeling language, and on theTimePetri Net (TPN) as the verification

language. Themain contribution of this thesis is the design and implementation of a property-driven verifi-

cationmethodology dedicated to real-timeproperties verification for UML-MARTE real-time software designs.

We validate thismethodusing an avionic use case and its user requirements. Thismethodwas implemented

as a prototype toolset that includes five contributions: definition of real-time property specific execution

semantics for UML-MARTE architecture and behavior models; specification of real-time requirements relying

on a set of verification dedicated atomic real-time property patterns; real-time property specific observer-

basedmodel checking approach in TPN; real-time property specific state space reduction approach for TPN;

and fault localization approach in model checking.

1

Résumé

Les techniques formelles de la famille « vérification de modèles » (« model checking ») se heurtent au
problème de l’explosion combinatoire. Ceci limite les perspectives d’exploitation dans des projets indus-
triels. Ce problème est provoqué par la combinatoire dans la construction de l’espace des états possibles
durant l’exécution des systèmes modélisés. Le nombre d’états pour des modèles de systèmes industriels
réalistes dépasse régulièrement les capacités des ressources disponibles en calcul et stockage.

Cette thèse défend l’idée qu’il est possible de réduire cette combinatoire en spécialisant les outils pour
des familles de propriétés. Elle propose puis valide expérimentalement un ensemble de méthodes pour le
développement de ce type d’outils en suivant une approche guidée par les propriétés appliquée au contexte
temps réel. Il s’agit donc de construire des outils d’analyse performants pour des propriétés temps réel qui
soient exploitables pour des modèles industriels de taille réaliste. Les langages considérés sont, d’une part
UML étendu par le profil MARTE pour la modélisation par les utilisateurs, et d’autre part les réseaux de pétri
temporisés comme support pour la vérification. Les propositions sont validées sur un cas d’étude indus-
triel réaliste issu du monde avionique : l’étude de la latence et la fraicheur des données dans un système de
gestion des alarmes exploitant les technologies d’Avionique Modulaire Intégrée. Ces propositions ont été
mise en oeuvre comme une boite à outils qui intègre les cinq contributions suivantes: la définition de la
sémantique d’exécution spécifiques aux propriétés temps réel pour les modèles d’architecture et de com-
portement spécifiés en UML/MARTE; la spécification des exigences temps réel en s’appuyant sur un ensemble
de patrons de vérification atomiques dédiés aux propriété temps réel; une méthode itérative d’analyse à
base d’observateurs pour des réseaux de Petri temporisés; des techniques de réduction de l’espace d’états
spécifiques aux propriétés temps réel pour des Réseaux de Petri temporisés; une approche pour l’analyse
des erreurs détectées par « vérification des modèles » en s’appuyant sur des idées inspirées de la « fouille
de données » (« data mining »).

2

Contents

Acknowledgments 1

Abstract 2

Résumé 3

Table of Contents 8

List of Figures 13

I Introduction 14

1 Introduction 15
1.1 Safety Critical Real-Time System Development . 17
1.2 Model Driven Engineering . 17
1.3 Formal Methods . 19
1.4 Methodology: Property Driven Approach . 19
1.5 Real-Time Requirements . 20
1.6 Challenges . 22
1.7 Contributions . 24
1.8 The Structure of the Thesis . 26

2 State of the Art 28
2.1 Model-Driven Engineering . 31
2.2 Modeling of Real-Time Systems . 32
2.3 Formal Specification of Real-Time Systems . 34

2.3.1 Timed Automata . 35
2.3.2 Time Petri Net . 36

2.4 Model Transformation . 38

3

CONTENTS

2.5 Verification of Real-Time Systems . 39
2.5.1 Static Analysis . 40
2.5.2 Theorem Proving . 41
2.5.3 Model Checking . 42

2.6 State Space Reduction of Model Checking . 46
2.6.1 Symbolic Model Checking with OBDD . 46
2.6.2 Partial Order Reduction . 47
2.6.3 Compositional Reasoning . 48
2.6.4 Abstraction . 48
2.6.5 Symmetry . 49

2.7 Model Checking Feedback . 49
2.8 Conclusion . 52

II Contribution to Property-Driven Approaches 53

3 SemanticMapping from UML-MARTE to Property-Specific TPN 54
3.1 Introduction . 58
3.2 Property-Driven Approach . 61

3.2.1 Core Idea . 61
3.2.2 Principles of Semantic Mapping . 63

3.3 Composite Structure Diagram Mapping Semantics . 64
3.3.1 Part & Role . 65
3.3.2 Port & Interface . 66
3.3.3 Connector . 67

3.4 Activity Diagram Mapping Semantics . 68
3.4.1 Semantic Mapping Pattern . 69
3.4.2 Control Nodes . 69
3.4.3 Action . 73
3.4.4 Object Nodes . 78
3.4.5 Connections . 83

3.5 State Machine Diagram Mapping Semantics . 84
3.5.1 Event Processing & Event Pool . 86
3.5.2 State in General . 90
3.5.3 Flattening Semantics . 91
3.5.4 Mapping Semantics . 102

3.6 Resource Mapping Semantics . 117
3.6.1 Generic Resource Scheduling . 118

4

CONTENTS

3.6.2 Non-preemptive Resource Scheduling . 119
3.6.3 Preemptive Resource Scheduling . 120

3.7 Time Semantics in Multi-Clock Modeling . 121
3.8 Discussion . 123

3.8.1 Verification of Model Transformation . 123
3.8.2 Boundedness and Decidability Issue . 124

3.9 Conclusion . 126

4 Specification of Real-Time Property 128
4.1 Introduction . 131
4.2 Preliminaries . 133

4.2.1 Qualitative & Quantitative Property . 133
4.2.2 Occurrence & Predicate & Scope . 133
4.2.3 Event & State . 134

4.3 Property Pattern Approach . 134
4.3.1 Qualitative Property Patterns . 135
4.3.2 Real-Time Suffix . 136

4.4 Catalog of Real-Time Property Patterns . 137
4.4.1 Occurrence Modifier . 138
4.4.2 Basic Event Modifier . 139
4.4.3 Basic Predicate . 141
4.4.4 Basic Scope Modifiers . 142

4.5 Metamodel and Mapping Library . 143
4.6 Pattern Composition : Application to CCSLConstraints 143

4.6.1 What is CCSL . 143
4.6.2 Time Tolerance in Verification . 144
4.6.3 Specification of CCSLConstraints . 144
4.6.4 Specification of CCSL-based Task Level Constraints 150

4.7 Conclusion . 154

5 Property Verification based on TPN/ttsObservers 157
5.1 Introduction . 161
5.2 Design Principles of TPN/ttsObservers . 163

5.2.1 Structure of Observer . 163
5.2.2 Soundness of Observer . 164
5.2.3 Efficiency of Observer . 165

5.3 Catalog of TPN/ttsObservers . 166
5.3.1 Event Modifier Observers . 166

5

CONTENTS

5.3.2 Basic Predicate Observers . 169
5.3.3 Scope Modifier Observers . 173
5.3.4 Occurrence Modifiers . 174

5.4 Observer-based Verification Example . 175
5.4.1 Example Verification . 175
5.4.2 Verification Result . 176

5.5 Computing Bound Value of Quantitative Property . 177
5.5.1 WCET Property Verification . 178
5.5.2 Computation of WCET Bound Value . 178
5.5.3 Discussion: K-ary Searching Algorithm . 179
5.5.4 Discussion: Cavity in Computation of Bound Value 179

5.6 Verification Scalability . 180
5.6.1 On-the-Fly Model Checking . 180
5.6.2 State Abstraction . 180

5.7 Conclusion . 181

6 Real-Time Property- Specific Reduction for TPN 183
6.1 Introduction . 186
6.2 Reduction for Property-Irrelevant Structures . 189

6.2.1 Relevancy Analysis for TPN Extended with Data Handling 190
6.2.2 Algorithm for Reducing Property-Irrelevant Structure 192

6.3 Reduction for Property-Relevant Structures . 194
6.4 Reduction using Topology-Implicit Semantic Equivalence 196

6.4.1 Redundant Zero-Time Patterns . 197
6.4.2 Sequential Encapsulation Pattern . 201

6.5 Reduction using Behavioral Equivalence . 202
6.5.1 Example of Behavioral Equivalence . 202
6.5.2 Approach Overview . 203
6.5.3 One-Way-Out Behavioral Equivalence Pattern 204
6.5.4 Generic Behavioral Equivalence Pattern . 209
6.5.5 Discussion . 212

6.6 Conclusion . 214

III Contribution to Fault Localization 220

7 Automated Fault Localization inModel Checking 221
7.1 Introduction . 225
7.2 Problem Statement . 227

6

CONTENTS

7.2.1 Abstraction Issue . 227
7.2.2 Fault Localization Issue . 228
7.2.3 Existing Works . 228
7.2.4 Proposed Solution . 229

7.3 Preliminaries . 230
7.3.1 Reachability Graph & Violation States . 230
7.3.2 Error Traces . 230
7.3.3 Kullback–Leibler Divergence Applied to Textual Documents 231
7.3.4 Term Frequency - Inverse Document Frequency 232

7.4 Ranking Suspicious Faulty Transitions . 233
7.4.1 Core Idea . 233
7.4.2 Fault Localization Example . 234
7.4.3 TC-ITC Algorithm . 235

7.5 Experiments . 240
7.5.1 Automated Test Bed . 240
7.5.2 Evaluation of Efficiency . 241
7.5.3 Evaluation of Effectiveness . 242

7.6 Back-Tracing Fault Transitions in UML . 242
7.7 Conclusion . 243

IV Industrial Application&Conclusion 245

8 Application to FlightManagement System 246
8.1 Introduction . 248
8.2 Case Study: Flight Management System . 249

8.2.1 Integrated Modular Avionics . 249
8.2.2 Avionics Full-Duplex Switched Ethernet . 250
8.2.3 Functions . 251
8.2.4 Real-Time Requirements . 254

8.3 Modeling and Semantics . 256
8.3.1 Abstraction of AFDXNetwork . 256
8.3.2 Architecture Model . 258
8.3.3 Behavior Model . 258
8.3.4 Real-Time Requirement Specification . 262

8.4 Mapping UML-MARTE to TPNModel . 262
8.4.1 Mapping of the Latency Functional Chain . 262
8.4.2 Mapping of the Freshness Functional Chain . 263

7

CONTENTS

8.5 Verification of Real-Time Property . 264
8.6 Scalability Tests . 266

8.6.1 Experiments on the Latency Functional Chain 267
8.6.2 Experiments on the Freshness Functional Chain 268

8.7 Comparison to the Results in the Work of Lauer . 268
8.8 Conclusion . 270

9 Conclusion 271
9.1 Fulfillment of Objectives . 274
9.2 Application of Research Results . 276
9.3 Future Research Directions . 277

9.3.1 Short Term Activities . 277
9.3.2 Resource scheduling semantics mapping . 277
9.3.3 Future Research Direction for Property Specific Reduction Approach 278
9.3.4 Verification of Model Transformation . 279
9.3.5 Application of the Approaches to Other Modeling Language 280

A Appendix A:
Coverage Library: Mapping UML-MARTE to TPN 281
A.1 Coverage Library of Composite Structure Diagram . 282
A.2 Coverage Library of Activity Diagram . 283
A.3 Coverage Library of State Machine Diagram . 284

B Appendix B:
Mapping Library: Real-Time Property Pattern 285
B.1 Pattern Mapping Library . 286
B.2 Scope Mapping Library . 288

Appendix 281

Bibliography 289

8

Listing of figures

1.2.1 V-Model in Model-Driven Engineering . 18
1.7.1 UML-MARTE Real-Time Properties Verification Architecture 24

2.2.1 Architecture of MARTE Profile . 34
2.3.1 Timed Automata Example . 35
2.3.2 Time Petri Net Example . 37

3.3.1 Mapping Semantics for Part . 65
3.3.2 Mapping Semantics for Port . 66
3.3.3 Example of Port Allocation Semantics . 67
3.3.4 Mapping Semantics for CSD Connector . 67
3.3.5 Mapping Semantics for CSD Connection . 68
3.4.1 Generic Semantic Pattern of Activity Elements . 69
3.4.2 Initial Node & Flow Final Mapping Semantics . 70
3.4.3 Activity Final Node Mapping Semantics . 70
3.4.4 Fork Node & Join Node Mapping Semantics . 71
3.4.5 Decision Node & Merge Node Mapping Semantics . 72
3.4.6 Event-trigger Action Mapping Semantics . 75
3.4.7 Time-trigger Action Pattern . 75
3.4.8 Time-trigger Action Mapping Semantics . 76
3.4.9 Upper Bound Mapping Semantics . 79
3.4.10Input Pin Mapping Semantics . 81
3.4.11Output Pin Mapping Semantics . 81
3.4.12Central Buffer Mapping Semantics . 82
3.4.13DataStore Mapping Semantics . 83
3.4.14Control Flow Mapping Semantics . 83
3.4.15Object Flow Mapping Semantics . 84
3.5.1 Event Categories Example: System & Environment . 87
3.5.2 Event Pool Model . 89

9

LISTINGOF FIGURES

3.5.3 Default Entry Flattening Semantics for Simple Composite State 92
3.5.4 Explicit Entry Flattening Semantics for Simple Composite State 93
3.5.5 Shallow History Entry Flattening Semantics for Simple Composite State 94
3.5.6 Entry Point Entry Flattening Semantics for Simple Composite State 95
3.5.7 Default Exit Flattening Semantics for Simple Composite State 95
3.5.8 Explicit Exit Flattening Semantics for Simple Composite State 96
3.5.9 Exit Point Exit Flattening Semantics for Simple Composite State 96
3.5.10Final State Exit Flattening Semantics for Simple Composite State 97
3.5.11Default Entry Flattening Semantics for Orthogonal Composite State 98
3.5.12Explicit Entry Flattening Semantics for Orthogonal Composite State 99
3.5.13Default Exit Flattening Semantics for Orthogonal Composite State 99
3.5.14Explicit Exit Flattening Semantics for Orthogonal Composite State 100
3.5.15Final State Exit Flattening Semantics for Orthogonal Composite State 100
3.5.16Fork & Join Pseudostate Flattening Semantics . 102
3.5.17Run-to-Completion Semantics . 104
3.5.18Do/Exit/Entry/Effect Behavior . 105
3.5.19Local Transition Mapping Semantics . 107
3.5.20Abstract Local Transition Mapping Semantics . 107
3.5.21Internal Transition Mapping Semantics . 108
3.5.22Single Trigger Transition Mapping Semantics . 108
3.5.23Multiple Trigger Mapping Semantics . 109
3.5.24Mapping Semantics: Event Pool Clearance Mechanism 110
3.5.25Final State Mapping Semantics . 112
3.5.26Initial Pseudostate and Outgoing Transition Mapping Semantics 113
3.5.27Terminate Pseudostate Mapping Semantics . 113
3.5.28Choice Pseudostate Mapping Semantics . 115
3.5.29Junction Pseudostate Mapping Semantics . 116
3.5.30Fork Pseudostate Mapping Semantics . 117
3.5.31Join Pseudostate Mapping Semantics . 117
3.6.1 Generic Resource Scheduling Mapping Semantics . 119
3.6.2 Non-Preemptive Resource Scheduling Semantics . 120
3.6.3 Preemptive Resource Scheduling Semantics . 121
3.8.1 Verification of Model Transformation . 124

4.3.1 Pattern Hierarchy . 135
4.4.1 Temporal Property Verification Pattern System . 138
4.4.2 ith Occurrence of E . 139
4.4.3 kTimes Occurrence Delay of E . 139

10

LISTINGOF FIGURES

4.4.4 Sub-Occurrence of E . 140
4.4.5 T after System Initialization . 140
4.4.6 T after E . 140
4.4.7 Entering and Exiting event of State . 141
4.6.1 Example of Sub-clock . 146
4.6.2 Example of Tight Sub-clock . 146
4.6.3 Example of Equality . 148
4.6.4 Example of Strict Precedence . 148
4.6.5 Example of Precedence . 149
4.6.6 Example of Alternation . 149
4.6.7 Example of Synchronization . 150
4.6.8 Coincidence Constraint . 151
4.6.9 Synchronization Constraint . 151
4.6.10Exclusion Temporal Constraint . 152
4.6.11Sub-occurrence Constraint . 153
4.6.12Precedence Constraint . 153
4.7.1 Metamodel of Temporal Property Pattern . 156

5.2.1 Observer Structure . 164
5.3.1 Generic Observer Pattern . 166
5.3.2 Event Observer: ith Occurrence of E . 167
5.3.3 Event Observer: kTimes Occurrence Delay of E . 167
5.3.4 Event Observer: Sub-occurrence kTimes Slower than E 168
5.3.5 Event Observer: Time Passed since System Initialization 168
5.3.6 Event Observer: Time Passed since E . 168
5.3.7 Event Observer: Starting and Ending Event of S . 169
5.3.8 Predicate Observer Pattern . 169
5.3.9 Predicate Observer: Occurrence of Ei . 170
5.3.10Predicate Observer: Occurrence of E is bounded . 170
5.3.11Predicate Observer: Same Frequency between EA and EB 171
5.3.12Predicate Observer: Minimum Time Interval between EA and EB 172
5.3.13Predicate Observer: Maximum Time Interval between EA and EB 172
5.3.14Predicate Observer: Time Duration of State . 173
5.3.15Scope Observer: Before E & After E . 174
5.3.16Scope Observer: Between two Events . 174
5.4.1 Observer-based Verification Example . 175
5.4.2 Verification of Example . 176
5.4.3 Reachability Graph of Verification Example . 177

11

LISTINGOF FIGURES

5.5.1 Property Computation Example: WCET . 178
5.5.2 Cavity Discussion Example . 179

6.2.1 Relevancy between System Components . 189
6.2.2 Time Divergence Issue . 190
6.2.3 Relevant Structure for TPNTransition . 191
6.2.4 Relevant Structure for TPN Place . 191
6.2.5 Example of Propagation of Property-Relevant TPN Structure 194
6.4.1 Redundant Zero-Time Pattern: Sequential . 197
6.4.2 Redundant Zero-Time Pattern: Indirect Initialization 198
6.4.3 Redundant Zero-Time Pattern: Shorten Cycle . 200
6.4.4 Sequential Encapsulation Pattern . 201
6.5.1 Example of Behavioral Equivalence . 203
6.5.2 Example Result of Behavioral Equivalence . 203
6.5.3 Overview of Behavior Equivalence Approach . 204
6.5.4 Reduction pattern of Behavioral Equivalence . 205
6.5.5 Example of Refinement . 209
6.5.6 Generic Behavioral Equivalence Pattern . 210
6.5.7 Example of Impact and Impacted Sets . 211
6.5.8 Behavioral Equivalence Pattern: Hole on Time Interval 212
6.5.9 Behavioral Equivalence Pattern: Deal with Hole on Time Interval 213

7.3.1 Error Trace Example . 231
7.4.1 Comparison to TF-IDF . 234
7.4.2 Example of Fault Localization Algorithm . 234
7.4.3 Cycle on Error Traces . 235
7.4.4 Verification of Fault Localization Example . 236
7.4.5 Reachability Graph of Fault Localization Example . 237
7.4.6 Feedback of Fault Localization Example . 238

8.2.1 Architecture of the Case Study . 250
8.2.2 Functional Chain: Sporadic Response to Request . 253
8.2.3 Functional Chain: Production of Periodic Data . 253
8.2.4 Latency Real-Time Requirement . 254
8.2.5 Freshness Real-Time Requirement . 255
8.3.1 Abstract Network of Case Study . 257
8.3.2 UML-MARTE Architecture for Latency Real-Time Property 258
8.3.3 UML-MARTE Architecture for Freshness Real-Time Property 258
8.3.4 UML-MARTE Behavior for Latency Real-Time Property . 259

12

LISTINGOF FIGURES

8.3.5 UML-MARTE Behavior for Freshness Real-Time Property 260
8.4.1 Mapping Result of System Related to Latency Property 263
8.4.2 Mapping Result of System Related to Freshness Property 264
8.5.1 TPNObserver for Latency and Freshness Property . 265
8.6.1 Architecture with Scalability Parameters . 266
8.6.2 Solving Time of Scalable Latency Property . 268
8.6.3 Solving Time of Freshness Property . 270

13

Part I

Introduction

14

1
Introduction

Résumé

Le premier chapitre introduit la contexte de recherche, les défis et les contributions de cette thèse. Les sys-
tèmes embarquées temps réels jouent un rôle clé dans de nombreuses facettes de la vie quotidienne. Cer-
tains sont des applications spécialisées de grande échelle dans les domaines critiques tels que l’avionique,
l’aérospatial, la défense, le nucléaire, l’automobile, la santé et le matériel médical. Ils doivent donc satisfaire
de fortes exigences concernant la sécurité et la fiabilité. Tout manquement à ces exigences peut entraîner
des conséquences graves en terme de pertes matérielles et de sécurité des personnes. La sécurité et la fi-
abilité des systèmes temps réels dépendent fortement de la satisfaction des exigences temps réel, à la fois
pour les aspects qualitatifs et quantitatifs. L’état de l’art actuel des connaissances propose que ces exigences
soient vérifiées et validées en utilisant des méthodes formelles en combinaison avec l’ingénierie dirigée
par les modèles. Les méthodes formelles sont des techniques issues des mathématiques pour la spécifi-
cation, le conception, la programmation et la vérification des systèmes matériels et logiciels. L’utilisation

15

d’approches mathématiques permet d’obtenir une plus grande assurance en ce qui concerne la fiabilité et
la robustesse d’un système.

Les techniques formelles de la famille « vérification de modèles » (« model checking ») sont bien
adaptées à une exploitation industrielle car elles permettent une automatisation complète des activités de
vérification et la synthèsede contre exemples en casdenon satisfactiondes exigences. Mais elles seheurtent
au problème de l’explosion combinatoire qui impose la construction de modèles dédiés à la vérification de
chaque exigence et limite les perspectives d’exploitation dans des projets de grande taille. Ce problème est
lié à la combinatoire dans la construction de l’espace des états possibles durant l’exécution des systèmes
modélisés. Le nombre d’états pour des modèles de systèmes industriels réalistes dépasse régulièrement les
ressources disponibles en calcul et stockage.

En s’appuyant sur la pratique actuelle de la « vérification demodèles » consistant à construire desmod-
èles dédiés à chaque vérification, cette thèse défend l’idée qu’il est possible de réduire cette combinatoire
en spécialisant les outils selon des familles de propriétés. Elle propose puis valide expérimentalement un
ensemble de méthodes pour le développement de ce type d’outils en suivant une approche guidée par les
propriétés appliquée pour le contexte temps réel. Il s’agit donc de construire des outils d’analyse perfor-
mants pour des propriétés temps réel qui soient exploitables pour des modèles industriels de taille réaliste.
Les langages considérés sont, d’une part UML étendu par le profil MARTE pour la modélisation par les utilisa-
teurs, et d’autre part les réseaux de pétri temporisés comme support pour la vérification. Les propositions
effectuées sont validées en exploitant un cas d’étude industriel réaliste issu du monde avionique : l’étude
de la latence et la fraicheur des données dans un système de gestion des alarmes exploitant les technolo-
gies d’Avionique Modulaire Intégrée. Ces propositions ont été mise en oeuvre sous la forme d’une boite
à outils qui intègre les cinq contributions suivantes: la définition de la sémantique d’exécution spécifique
aux propriétés temps réel pour les modèles d’architecture et de comportement spécifiés en UML/MARTE; la
spécificationdes exigences temps réel en s’appuyant sur une traduction vers un ensemble depatrons de véri-
fication atomiques dédiés aux propriété temps réel; une méthode itérative d’analyse à base d’observateurs
pour des réseaux de Petri temporisés; des techniques de réduction de l’espace d’états spécifiques aux pro-
priétés temps réel pour des Réseaux de Petri temporisés; une approche pour l’analyse des erreurs détectées
par « vérification des modèles » en s’appuyant sur des idées inspirées de la « fouille de données » (« data
mining »).

16

1.1. SAFETY CRITICAL REAL-TIME SYSTEMDEVELOPMENT

This thesis designs and experiments a set of methods for the development of scalable verification tools
based on a property-driven approach. It develops efficient approaches based on model checking to verify
real-time requirements expressed in large scale UML-MARTE real-time system designs.

1.1 Safety Critical Real-Time System Development

Real-time embedded systems play a key role in many facets of daily life. Some are specialized and large
scale applications in the critical domains such as avionics, aerospace, defense, nuclear power, motor ve-
hicles, health and medical equipment and thus have strong requirements concerning system’s safety and
reliability. Any failure could cause serious consequences that may result in massive material losses or en-
danger human safety. [Neu95] listed a large amount of accidents and disasters caused by errors in real-time
systems. If it is possible to avoid these failures, large efforts and costs would be saved. In June 1996, the first
flight of Ariane 5 launcher ended in failure caused by an overflow error. About 37 seconds after ignition,
the rocket broke and self destruction was initiated. This accident led to a 370 million dollars cost [Lio96].
In December 1999, the last telemetry from Mars Polar Lander was sent. Just prior to cruise stage separa-
tion and the subsequent atmospheric entry, no further signals were received from the spacecraft. Themost
likely cause of thismishapwas different interpretations of floating point data, whichwas implicitly specified
as meters by NASA and implemented as feet by Rockwell Collins. This accident led to a 165 million dol-
lars loss [BCAA00]. For systems where failure is unacceptable, reliable software is mandatory. Thus safe
and efficient techniques are required to detect errors and thus avoid the accidents in such systems. The re-
search context andmainmotivation of this work is how to design and implement safe and reliable real-time
systems.

1.2 Model Driven Engineering

Model-DrivenEngineering (MDE) targets the improvement of the reliability and efficiency of the traditional
software engineering by introducingmodels and early verification and validation (V&V) including the use
of formal methods. It has evolved over the last 20 years and achieved success inmany domains. Models are
reduced/abstract representations of real systems that selectively remove some semantics to highlight the
remaining expected properties from a given point of view. In the context of safety critical systems, models
can be used during the requirement engineering process to derive the requirements for a system, during the

17

1.2. MODEL DRIVEN ENGINEERING

design process to describe the intended system to the implementation engineers, to verify and validate the
properties, to automatically generate software, and also to document the system’s structure and behavior
after implementation.

The V-model [FM95] is a software development process broadly adopted in the industry to illustrate
the various activities involved in the development of software and their ideal sequencing. In this thesis, we
rely on the multi V-model (see Fig. 1.2.1) proposed in the MeMVaTEx methodology [ABD+07, ABB+08]
to illustrate the use of MDE for developing real-time systems. In order to generate reliable software, the V
& V activities are performed at each phase of the system development lifecycle. The architecture design
is the phase to define the hardware and software architectures which is referred to as high-level design. It
should involve a brief and abstract functionality of eachmodule, their interface relationships, dependability,
architecture diagrams, etc. The detailed designmodel can also be calledmodule or function designmodel,
where the low-level design including detailed functional logic of the module can be specified.

R
equirem

ents R
eq
ui
re
m
en
ts

V
&
V

A
rchitecture

D
esign A

rc
hi
te
ct
ur
e

D
es
ig
n
V
&
V

D
etailed

D
esign D

et
ai
le
d

D
es
ig
n
V
&
V

C
ode

G
eneration

C
od
e
G
en
er
at
io
n

V
&
V

R
eq
ui
re
m
en
ts

V
&
V

D
et
ai
le
d

D
es
ig
n
V
&
V

A
rc
hi
te
ct
ur
e

D
es
ig
n
V
&
V

A
rc
hi
te
ct
ur
e

D
es
ig
n
V
&
V

R
eq
ui
re
m
en
ts

V
&
V

R
eq
ui
re
m
en
ts

V
&
V

Time Line

Figure 1.2.1: V-Model in Model-Driven Engineering

From the current practice, the architecture is usually modeled using Domain Specific Languages (DSL)
such as AADL and EAST-ADL or specific diagrams in aGeneral Purpose Language (GPL) such as UMLCompos-
ite Structure Diagram, while the detailed design is usually modeled using DSL such as Simulink/ Stateflow

18

1.3. FORMALMETHODS

and SCADE or specific GPL diagrams such as UMLActivity, StateMachine diagrams, or ALF (Action Language
for Foundational UML). The main purpose of our work is to propose efficient and effective formal verifica-
tion tools to ease the use of MDE when developing large scale real-time systems. More precisely, this work
targets the use of UML-MARTE in the early phases of MDE, that corresponds to the Architecture Design phase in
the multi V-model (the grey box part in Fig. 1.2.1).

1.3 Formal Methods

Formal Methods (FM) are mathematically based techniques for the specification, development and verifi-
cation of software and hardware systems. The use of mathematical analysis can contribute to the reliability
and robustness of a design [Hol97a]. Verification methodologies such as model checking, abstract inter-
pretation, automated proof, etc. provide rules for inferring useful information from the specification. The
conjunction of MDE and FM is a promising answer to the development of real-time systems, which makes it
feasible to assess system’s requirements since the early phases of system lifecycle and to iteratively improve
the models according to the verification results.

However, automatic formal verification such asmodel checking faces the combinatorial explosion issue.
This limits its application in industrial projects [CE82,HP94]. This issue is caused by the exponential num-
ber of generated states during system’s execution thatmay easily exceed the amount of available computing
or storage resources.

1.4 Methodology: Property Driven Approach

UML (Unified Modeling Language) [OMG11c] was developed to provide a common language for specifi-
cation, modeling and documentation in the software development process in the 1990s. Today, UML is the
industry standard for software modeling and specification. MARTE (Modeling and Analysis of Real-Time
and Embedded Systems) [OMG09] provides support for specification, design, and V & V for real-time
and embedded system. We use the term UML-MARTE in the whole thesis to indicate the specification lan-
guage.

As UML is a semi-formal language which exhibits ambiguous and imprecise (in terms of mathematical
precision) semantics, most of the requirements expressed in UMLmodels cannot be directly assessed using
formal methods. Therefore, providing a formal executable semantics is now a common approach used to

19

1.5. REAL-TIME REQUIREMENTS

assess the user requirements in UML models. There exists a number of formal languages dealing with real-
time analysis issues, such as Timed Automata [AD94] and several extended Petri Nets such as Timed Petri
Nets [RH80, Zub91], Stochastic Timed Petri Net [FFN91], Time Petri Net (TPN) [MF76], etc. Our work
relies on TPN as the execution model, and uses the TINA toolset as the analysis toolbox.

From the viewpoint of methodology, our work is based on the pioneering work [CCG+07] byCombe-
male et al. Aimed to define all the steps from the property specification to effective verification, they in-
troduced in [CCG+07] a generic approach to define the operational semantics (a semantics of observ-
able events) built upon the properties expressed at the metamodel level. They illustrated this contribution
through a simple process description language: SimplePDL on which a set of temporal properties were
expressed. Property-driven means that the formal activities in the development process are based on the
purpose of property-verification-ease. From a language point of view, a precise definition of model ele-
ments behavior allows the execution of behavioral models with respect to the intended requirements that
must be assessed.

We follow the samemethodology proposed byCombemale et al., and propose a property-driven frame-
work dedicated to real-time property verification for UML-MARTE real-time designs. A key objective in our
work is to assess this property driven approach on a large scale system relying on industrial modeling lan-
guages, requirements and use cases.

1.5 Real-Time Requirements

A real-time system is a system whose correct operation depends on both the results produced by the system and
the time at which these results are produced [Som10]. The safety and reliability of real-time systems strongly
depend on the satisfaction of its real-time requirements, in both qualitative and quantitative aspects. Ac-
cording to the survey collected from the industrial partners in several collaborative projects such as projects
P ¹, TOPCASED ², OPEES³, QUARTEFT ⁴, SPICES ⁵, SPACIFY ⁶, HiMoCo ⁷ and CESAR ⁸, we list some examples of in-

¹http://www.open-do.org/projects/p/
²http://www.topcased.org/
³http://www.opees.org/
⁴http://projects.laas.fr/fiacre/
⁵http://www.spices-itea.org/public/news.php
⁶http://spacify.gforge.enseeiht.fr/
⁷http://www.systematic-paris-region.org/fr/projets/himoco
⁸http://www.cesarproject.eu/

20

1.5. REAL-TIME REQUIREMENTS

dustrial real-time requirements in Table 1.5.1. To simplify the expression, we use E1, E2 and E3 to denote
events, and [a,b] to denote a time interval.

Table 1.5.1: Examples of Real-Time Requirements

No. Real-Time Requirements
1 E1 must be sent after the reception of E2.
2 A task cannot be executed after the emission of E1.
3 The third occurrence of E1 must be sent between the reception of E2 and the emission of E3.
4 A system state holds for at least n time unit (t.u.)
5 A system state holds for at most n t.u. after the emission of E1.
6 If E1 is sent, E2 must be received after the emission of E1 within [a,b].
7 E1 is received more than n times after the reception of E2 within [a,b].
8 E1 and E2 must be sent simultaneously, within time tolerance δ.
9 The execution of a task must start after the reception of E1 within [a,b] in each period.
10 If E1 has been received, E2 must be sent before the reception within [a,b] in each period.
11 The worst case execution time of a task is n t.u. in each periodic execution.

InTable 1.5.1, the requirements 1 - 3 are related to the logical time, while 4 - 11 are related to the physical
time. The requirements 9 -11 are applicable to systems with periodic execution. Regarding the logical time
requirements, there exist many works to specify and assess real-time properties using logic formulae. In
the context of this thesis, we focus on the physical time (quantitative) properties in finite state concurrent
reactive systems. These real-time requirements are critical, and thus their correctness must be guaranteed
at any cost. Appropriate development processes, methods and tools are expected to enable the efficient
verification, and to help the users to improve their designs when the errors have been detected. However,
in today’s highly competitive industrial market, the scale and complexity of safety critical real-time sys-
tem are rapidly increasing due to the growth of functional and non-functional requirements. For instance,
since Airbus A300, the number of software control systems has been increased to add new functionality
such as flight envelop protection, ground proximity warning and traffic collision avoidance for improved
safety [ITI07]. Consequently, verification of the real-time requirements for real-time system development
is becoming more and more difficult and expensive. Therefore, although many progresses in the last 20
years, how to design and implement highly safety critical real-time system and in the meanwhile control

21

1.6. CHALLENGES

the development cost is still an open problem in both industry and academia.

1.6 Challenges

The key obstacle that prevents a wide application of model checking in the industry is the scalability is-
sue. The classic verification methodology usually encounters scalability issue very quickly along with the
growth of system size. A complex system usually has thousands and even millions of states and transi-
tions. Although a huge part of the impossible transition firing sequences is eliminated during the building
of system’s behavior, the probable permutation of all others is still a very large number that easily causes
combinatorial state space explosion.

Althoughmany formal verification languages such as Petri Net [Pet62] andAutomata [Sal85] and their
analysis tools are theoretically mature enough, the efficient application for real size systems is still an open
question. As the scalability issues introduced by the combinatorial explosion problem is still one of the
bottlenecks, the industrial partners would rather verify and validate the requirements using traditional fi-
nal system tests. Another key issue is effective fault analysis for the verification failures. Once an error
has occurred, effective debug information is expected to be derived from the verification results to help
the designers improve their designs. The challenges in this work can be summarized as the following five
aspects:

• Challenge 1: Specification, implementation and validation of a real-time property specific
execution semantics for UML-MARTE models that allows scalable verification. As revealed by a
number of surveys, even the most recent versions of the UML specification suffer from multiple am-
biguities, inconsistency and incompleteness regarding the semantics of the language for the formal
verification purpose. This is a major problem for MDE because the semantics contained in the user
models will be directly propagated to the verification models. A formal execution semantics should
thus be defined. The manner the execution semantics is defined is one of the important factors that
impact the verification efficiency, especially for the large scale system development. The optimal ex-
ecution semantics only preserves minimal property-relevant semantics. This may reduce the risk of
combinatorial state explosion problem during model checking.

• Challenge 2: Need for practical real-time requirement specification method for verification
purpose. Many studies have shown that most of the real-time requirements are composite proper-

22

1.6. CHALLENGES

ties based on a set of elementary patterns. Dwyer et al. defined the pioneer qualitative time patterns.
Afterwards, Konrad et al. extended Dwyer’s patterns by adding quantitative time extensions. These
property patterns aimed to ease the expression of end-user time requirements, but usually they are
not semantically atomic. These property specifications need to be decomposed into a set of atomic
property elements to improve the verification efficiency. A property specification method that can
ease the verification is needed to bridge this gap. CCSL, as a clock constraint specification language,
can express event-based logical properties in the UML-MARTEmodels. A real-time property specifica-
tion method is needed to map the requirements expressed using Dwyer’s and Konrad’s patterns or
the CCSL to the verification-ease property patterns.

• Challenge 3: Need for scalablemodel checking support for the verification of real-time prop-
erties in TPN model. Despite the significant investment of research and development effort into
state-of-the-art industrial MDE tools, model checking remains an expensive resource-consuming de-
velopment method that requires special skills. The TINA model checking toolset supports logic for-
mulae LTL and CTL for analyzingqualitative properties. Toverify quantitative properties in large scale
systems, an efficient real-time property analysis approach based on LTL, CTL or other logic formulae
is required. The real-time property specific model checking approach should rely on the observer
techniques, which transforms quantitative problems to reachability problems.

• Challenge 4: Need for property-specific state space reduction method. Combinatorial state
space explosion issue in current TPN model checking approach limits its application. Many tech-
niques have been studied to reduce the size of state space using different abstractions. These tech-
niques usually provide generic abstraction methods to reduce the size of state space for all kinds of
properties. In this work, a real-time property specific reduction technique is used to improve the
scalability in TPNmodel checking.

• Challenge 5: Need for failure analysis approach to locate the origin of fault. The generation of
counterexamples in case a formula is violated is a key service provided by model checkers. Coun-
terexamples produced by model checkers often stand for error traces, which represent sequences of
system states and transitions and are therefore usually lengthy and difficult to understand. The ori-
gin of error might be anywhere along these traces and even a combination of transitions that are not
contiguous, thus it requires a lengthy analysis by designers. The automatic fault localization analysis

23

1.7. CONTRIBUTIONS

relying on the error traces in model checking is still an interesting challenge.

1.7 Contributions

In this Ph.D work, our objective is to propose a set of property-driven methods used to efficiently assess
the real-time requirements in large scale concurrent reactive real-time systems. We rely on the UML and its
profile MARTE as the end-usermodeling language, and on the TPN as the verification language. Themain con-
tribution of this thesis is the design and implementation of a property-driven verification prototype toolset
dedicated to real-time properties verification for UML-MARTE real-time software designs [GP12a, GPC14c].
We validate this toolset using an avionic use case and its user requirements. This research shows that the
property-driven approach allows a better verification scalability. The architecture of the toolset is described
in Fig. 1.7.1, which consists of five tools:

1. System Model Mapping Tool: Definition of real-time property specific execution semantics
for UML-MARTE architecture and behavior models [GPC12b]. With respect to the expected real-
time requirement, wehave defined the real-timeproperty specific execution semantics for UML-MARTE
architecture model (composite structure diagram) and behavior models (activity and state machine
diagrams). The definition of execution semantics follows the property-driven approach. The ex-
ecution semantics allows to map UML-MARTE entities to TPN models, which makes UML model exe-
cutable and analyzable by the TINA toolset. This mapping conforms to the UML specification 2.4.1
[OMG11c]. It abstracts the system in order to provide more scalable verification.

2. Property Specification Tool: Specification of real-time requirements relying on a set of real-
time property patterns [GPC12a, GP12b]. From the viewpoint of requirement assessment, we
advocate that the qualitative property patterns proposed by Dwyer and the quantitative property
patterns proposed by Konrad are not semantically atomic. We have defined a set of real-time prop-
erty patterns that contains the atomic property elements. These property patterns can be directly
used to specify real-time requirements. The properties expressed using Dwyer/Konrad’s patterns
and CCSL languages can also be automatically translated to the verification targeted atomic property
elements, which will then be assessed using the observer-based verification approach.

24

1.7. CONTRIBUTIONS

TPN

Reduced
Observer TPN MMC

TPN Model CheckingTag Property
Pattern Result

Architecture/
Behavior
Mapping

Observer TPN
Generation

Iteration
Tag

Property Pattern
Result

Real-Time Property
Specification

Verification
Result

Computation

Real-Time Property
Verification Result

Feedback
Generation

System Model
Real-Time

Requirement
Architecture

Model
Behavior

Model

UML Real-Time Software Model

Timing Property
Pattern

Timing Property
Pattern

Real-Time
Property Patterns

1

5

3

2

3

3

Observer
TPN

Tag Property
Pattern Result
Interpretation

3

TPN
Reduction

4

Figure 1.7.1: UML-MARTE Real-Time Properties Verification Architecture

3. Property Verification Tool: Real-Time property specific observer-based model checking ap-
proach in TPN [GP12a]. The TINAmodel checking toolset that our work relies on can express qual-
itative properties on LTL and CTL logic formulae, but not the quantitative properties. To assess the
real-time properties in an efficient manner, we define a set of event-based TPN observers and state-
based tts observers, which will be associated to the TPN system under observation. These observers
express the same semantics as the atomic elements defined in the real-time property patterns. The
proposed observer-based approach allows to generate the high abstraction state class graph that only
preserves marking information using the tina state space generation tool from the TINA toolset. It
relies on the accessibility assertions in themodal μ-calculus (MMC) and the musemodel checker from
the TINA toolset.

25

1.8. THE STRUCTURE OF THE THESIS

4. PropertySpecificReductionTool: Real-Timepropertyspecificstatespacereductionapproach
forTPN [GP14]. Wepropose this property specific reduction tool to eliminate theproperty-irrelevant
TPN structures and tobuild an equivalent of the property-relevant TPN structures in the systemmodel.
The reduction tool exploits the commutativity of TPN sub-nets which result in the same property-
specific behavior before expanding the whole state class graph. The equivalent has less states and
transitions, and thus directly reduces the scale of computation.

5. Fault Localization Tool: Fault localization approach in model checking [GPC14a, GPC14b,
GNP13b,GNP13a,GNP15]. Wepropose anautomated fault localizationapproachbasedonmodel
checking to ease and accelerate the debugging by locating and ranking the suspicious elements in a
model when a safety property is unsatisfied. Inspired by the TF-IDF (term frequency-inverse docu-
ment frequency)measure and the Kullback–Leibler Divergence theory, we propose a suspicious-
ness factor to rank the potentially faulty transitions. We apply this approach to property specific
TPN model on which the observer-based verification approach is performed to obtain all the faulty
execution traces and the violation states in the state class graph preserving markings. Based on the
mapping semantics from UML to TPN, the faulty transitions is back-traced from TPN to UML.

1.8 The Structure of the Thesis

The thesis is structured into 4 parts containing 9 chapters (including this introduction), and 2 appendix
complementing the main parts with additional information.

• Part 1: Introduction

– Chapter 1 introduces an overview of the thesis.

– Chapter 2 presents the state of the art of existing approaches.

• Part 2: Contributions to property-driven approaches

– Chapter 3 introduces the definition of mapping semantics from UML-MARTE architectural and
behavioral models to TPNmodels. (Contribution 1)

– Chapter 4 presents a set of verification dedicated atomic real-time property specification pat-
terns, and use it to translate the properties expressed using Dwyer/Konrad’s patterns and the
CCSL. (Contribution 2)

26

1.8. THE STRUCTURE OF THE THESIS

– Chapter 5 proposes the observer-basedmodel checking approach to verify the real-time prop-
erty patterns in TPN. (Contribution 3)

– Chapter 6 presents the property specific state space reduction approach for TPNmodels. (Con-
tribution 4)

• Part 3: Contribution to fault localization approach

– Chapter 7 proposes the automatic failure analysis approaches in model checking. (Contribu-
tion 5)

• Part 4: Industrial application&Conclusion

– Chapter 8 uses an avionic case study, which is a part of the flightmanagement system requiring
latency and freshness real-time properties to test our toolset. The scalability test shows that the
proposed approaches are capable to analyze large scale systems.

– Chapter 9 concludes the main parts of the thesis and outlines future directions for research.

– Appendix A gives the coverage library for mapping UML-MARTE to TPNmodel.

– AppendixBcontains the library formapping real-time requirements expressedbyDwyer/Konrad’s
patterns to the proposed real-time property patterns.

27

2
State of the Art

Résumé

Le deuxième chapitre présente les informations sur l’état de l’art concernant les méthodes exploitées dans
les chapitres suivants. Celui-ci comporte les éléments essentiels pour les travaux réalisés dans ce thèse :

• L’ingénierie dirigée par les modèles (IDM). Celle-ci vise à augmenter la fiabilité et l’efficacité de
l’ingénierie traditionnelle du logiciel en exploitant des modèles exprimés dans des langages dédiés
aux différents aspects d’un développement logiciel, des méthodes de validation et vérification des
dits modèles, y compris l’exploitation de méthodes formelles, et des moyens de transformations au-
tomatiques de modèles.

• La modélisation de systèmes temps réels. Les travaux présentés dans cette thèse exploitent la nota-
tion UML (Unified Modeling Language) étendue par le profil MARTE (Modeling and Analysis of Real
Time and Embedded systems) pour la modélisation au niveau utilisateur. Cette partie en présente

28

les aspects nécessaires à la lecture du manuscrit.

• La spécification formelle pour les systèmes temps réels. Les travaux réalisés s’appuient sur les méth-
odes formellespourdécrireun système, analyser soncomportement et évaluer sespropriétés. Plusieurs
formalismes traitent de l’analyse des propriétés temps réels. Nous présentons ici les automates tem-
porisés et les réseaux de Petri temporisés et les outils correspondants.

• Les transformations demodèles. Celles-ci permettent demanipuler automatiquement les différents
modèles intervenants dans le développement d’un système, et d’établir les liens entre les différents
aspects et niveaux d’abstraction. Celles-ci peuvent être mis en oeuvre de différentes manière. Dans
cette thèse, nous utilisons le langage de programmation Java et les outils « EclipseModeling Frame-
work » pour transformer le modèle utilisateur (en UML/MARTE) en modèle de vérification (en réseau
de Petri temporisé). Cela facilitera l’intégration des différents outils de la boîte à outils.

• La vérification formelle des systèmes temps réels. Cette tâche détermine si un système satisfait ses
exigences lorsque ces deux éléments sont spécifiés formellement. Nous présentons les différentes
approches pour la vérification temps réel et comparons les trois grandes classes de techniques ap-
pliquées dans la vérification formelle: l’analyse statique, la preuve de théorème et la vérification de
modèles.

• La réductionde l’espaced’état dans la vérificationdemodèles. Ces techniquesdevérification formelle
souffrent du problème de l’explosion combinatoire de l’espace d’états. De nombreux travaux se sont
consacrés à la recherche de solutions efficaces. Nous discutons dans cette partie des différentes
stratégies de réduction couramment utilisées: analyse symbolique à base de diagramme de décision
(BDD), réduction d’ordres partiels, raisonnement compositionnel, abstraction et symétrie.

• L’analysedes contre exemplesdevérificationdesmodèles. Lagénérationdecontre exemple lorsqu’une
exigence n’est pas satisfaite est un service essentiel fourni par les vérificateurs de modèle. Un contre
exemple est une trace d’exécution qui ne satisfait pas les exigences attendues. Nous présentons dans
cette partie certains techniques d’assistance à la localisation des erreurs en fonction des contre ex-
emples obtenus. Ces techniques visent à indiquer un ensemble d’éléments suspects dans le modèle
sans les classer.

29

Cetteétat de l’art permetde conclure que, d’unepart, nouspouvonsproposer différentesméthodespour
réduire l’espace d’état lors de la vérificationdemodèles : définir une sémantique d’exécutiondu langage util-
isateur UML/MARTE spécifiques à une famille de propriété; spécifier les exigences utilisateurs par traduction
vers un ensemble de patrons de vérification atomiques; vérifier les propriétés en utilisant des observateurs;
réduire l’espace d’état en s’appuyant sur les caractéristiques de la famille de propriétés considérée; et d’autre
part, nous pouvons proposer un facteur de classement pour améliorer la précision de l’aide à la localisation
des erreurs dans la vérification de modèles.

30

2.1. MODEL-DRIVEN ENGINEERING

This chapter presents the background information and the state of the art related to the approaches de-
tailed in the following chapters. The information contained in this chapter includes the introduction about
model-driven engineering, modeling, specification, transformation and verification methods for real-time
systems, information about the state space reduction techniques in model checking, details about the fault
localization related feedback approaches in model checking. We conclude at last on the state of the art to
explain why we choose to develop this work.

2.1 Model-Driven Engineering

Model-DrivenEngineering (MDE) targets the improvement of the reliability and efficiency of the traditional
software engineering by introducingmodels and early verification and validation (V&V) including the use
of formal methods. It has evolved over the last 20 years and achieved success inmany domains. Models are
reduced/abstract representations of real systems that selectively remove some semantics to highlight the
remaining expected properties from a given point of view. In the context of safety critical systems, models
can be used during the requirement engineering process to derive the requirements for a system, during
the design process to describe the intended system to the implementation engineers, to verify and validate
the properties, to automatically generate execution code, and also to document the system’s structure and
behavior after implementation.

ModelDrivenArchitecture (MDA) [OMG01] is an important software design approach for MDE launched
by the Object Management Group (OMG) in 2001. It is based on the standards UML, Meta Object Facility
(MOF) [OMG11a], XML Metadata Interchange (XMI) [OMG11b], and the Common Warehouse Meta-
model (CWM) [OMG03]. MDAprovides a template formodel-drivendevelopment processes and summarizes
best practices and design patterns.

The work in this thesis is involved in the OPEES¹ and P³ projects. Project P aims to support MDE of high-
integrity embedded real-time system by providing an open code generation framework. It is able to verify
the semantic consistency of systems described using safe subsets of heterogeneous modeling languages,
ranging from behavioral to architectural languages and presenting a synchronous and asynchronous se-
mantics (Simulink Stateflow/Matlab, Scicos, SysML, MARTE, UML); generate optimized source code for
multiple programming (Ada, C/C++) and synthesis (VHDL, SystemC) languages; support a multi-domain

¹²
³http://www.open-do.org/projects/p/

31

2.2. MODELINGOF REAL-TIME SYSTEMS

(avionics, space, and automotive) certification process by providing open qualification material. Project
OPEES aims to settle a community and build the necessary means and enablers to ensure long-term avail-
ability of innovative engineering technologies in the domain of dependable / critical software-intensive
embedded systems. The goal is to build an ecosystem in the open source frame which provides a set of
processes and guidelines for tools/components maturation, verification and qualification.

Summary. In the context of this thesis, we aim to design and experiment a set of methods for the devel-
opment of scalable verification tools based on the property-driven approach. Our focus is on the analysis
of the real-time systems in the architectural models specified by the modeling languages SysML, UML and
MARTE.

2.2 Modeling of Real-Time Systems

System modeling is the process of developing abstract models of a system, with each model providing a different
view or perspective of that system. Building models which faithfully represent complex real-time system is a non
trivial problem and a prerequisite to the application of formal analysis techniques. Wemay develop different mod-
els to represent the system from different perspectives, such as an external perspective for modeling the context or
environment of the system, an interaction perspective for modeling the interactions between a system and its en-
vironment, a structural perspective for modeling the organization of a system or the structure of the data, and a
behavior perspective for modeling the dynamic behavior of the system and how it responds to events. [Som10]

Architecture Description Languages (ADL) have been used tomodel software system architecture since
the 1990s. An architecture is the set of significant decisions about the organization of a software system, the selec-
tion of the structural elements and their interfaces by which the system is composed, together with their behavior
as specified in the collaborations among those elements, the composition of these structural and behavioral ele-
ments into progressively larger subsystems, and the architectural style that guides this organization [BRJ05]. A
real-time software system is a systemwhose correct operation depends on both the results produced by the
system and the time at which these results are produced. To deal with embedded real-time systems, some
domain specific ADLs have been defined, such as AADL [FGH06] and EAST-ADL [DSLT+04]. UML is also a
possible solution to address real-time embedded systems.

The Unified Modeling Language (UML) was developed and standardized by the OMG in 1997 to provide
a common language for specification, modeling and documentation in the software development process.

32

2.2. MODELINGOF REAL-TIME SYSTEMS

In many senses, it was a success, because it established a standardized, graphical and easy-to-use notation
modeling system which was comprehensive enough to capture all major aspects of software engineering.
Today, UML is the industry standard for software modeling. As UML by itself was only a documentation and
modeling standard, early UML tools were graphical editors used for communication rather than a central
key technology of model-driven development. Although UMLwas not intended to be an ADL, the expressive
capability of architecture by UML is more than any ADLs. UML provides large, useful and extensible set of
predefined constructs, and meanwhile it has more potential for substantial formal analysis tool support.
For this reason, UML can be used as an ADL.

UML has many kinds of diagrams and so supports the creation of different types of system model. How-
ever, a survey in 2007 [ES07] showed that most users of the UML thought that five diagram types could
represent the essentials of a system: Activity diagrams, which define the activities involved in a process or
in data processing; Class diagrams, which describe the static structure of a system by showing the system’s
classes, their attributes, operations (or methods), and the relationships among objects. State machine dia-
grams, which specify how the system reacts to the internal and external events; Sequence diagrams, which
show interactions between actors and the system and between system components; Use case diagrams,
which give the interactions between a system and its environment.

In the context of this thesis, since we are concerned with real-time property verification of concurrent
reactive systems, we rely on the composite structure diagrams to specify the system architecture, and use
the activity and state machine diagrams to specify the system behavior. The composite structure diagrams
describe the internal structure of a class and the collaborations that this structure allows. Compared to
the static-structured class diagram, composite structure diagram could be used to specify the behavior of
collaborations.

Since the introduction of an extension language called UML Profile for Schedulability, Performance and
Time (SPT) [OMG05a], UML enables the users to capture time and performance requirements, to assess
those properties from early design models. However, practical experience with SPT revealed shortcomings
within the profile in terms of expressive power and flexibility. MARTE (Modeling and Analysis of Real-Time
and Embedded Systems) [OMG09] is intended to replace SPT to provide support for specification, design,
verification/validation for real-time and embedded systems. It provides foundations for the model-based
development. The architecture of the MARTE profile is shown in Fig. 2.2.1 [OMG09]. The shared package
MARTE Foundation provides common concerns such as time and the use of concurrent resources; the pack-
age MARTE Design Model models the features of real-time embedded systems using the extensions GCM

33

2.3. FORMAL SPECIFICATIONOF REAL-TIME SYSTEMS

(Generic Component Modeling), HLAM (High-Level Application Modeling), SRM (Software Resource
Modeling), andHRM(HardwareResourceModeling). The analysis features are supported by the package
MARTE Analysis Model, which provides a generic package GQAM (Generic Quantitative Analysis Model-
ing) and two specific analysis domains SAM (Schedulability Analysis Modeling) and PAM (Performance
Analysis Modeling). These first two specific analysis domains are entirely concerned with time, however
the profile structure allows for adding additional analysis domains, such as power consumption, memory
use or reliability.

MARTE Foundations

<<profile>>
NFP

<<profile>>
Time

<<profile>>
GRM

<<profile>>
Alloc

MARTE Design Model

<<profile>>
GCM

<<profile>>
HLAM

<<profile>>
SRM

<<profile>>
HRM

MARTE Analysis Model

<<profile>>
GQAM

<<profile>>
SAM

<<profile>>
PAM

<<profile>>
CoreElements

Figure 2.2.1: Architecture of MARTE Profile

Summary. In the context of the thesis, we use the term UML-MARTE to indicate the specification language.

2.3 Formal Specification of Real-Time Systems

As revealed by a number of surveys [Kob99], even the most recent versions of the UML specification suffer
from multiple ambiguities and problems regarding the precise semantics of the language. This is a major
problem for model-centric development which highly relies on precise modeling techniques, as the infor-
mation contained in the user model will be directly propagated to the verification model.

34

2.3. FORMAL SPECIFICATIONOF REAL-TIME SYSTEMS

Formal specifications are mathematical languages used to describe a system, analyze its behavior and
help assess its properties. There exists a number of formal languages dealing with real-time analysis is-
sues, such as Timed Automaton [AD94] and several extended Petri nets such as Timed Petri Nets [RH80,
Zub91], Stochastic Timed Petri Net [FFN91], Time Petri Net [MF76], etc, among which Time Petri Net
and Timed Automata are the most prominent.

2.3.1 TimedAutomata

Timed automaton (TA) was introduced by Alur andDill [AD94]. A timed automaton is a finite automaton
extended with a set of dense time clocks, which are real-valued variables. A timed automaton evolves con-
tinuously and synchronously along with their physical clocks. In a timed automaton, each transition has a
guard (a constraint over clock value or events) which indicates when such transition can be fired and a set
of clocks to be reset when the transition is fired.

Example 2.1 (Timed Automaton) TheTimed Automaton in Fig. 2.3.1 models the processing of a task, where
clk is a clock. After the reception of a signal proc, the automaton spends at least tproc_min t.u. in the location Init, and
then transits to the location Processing. Then, it emits the signal free_proc if the processing time does not exceed
tproc_max, otherwise, it emits error_proc.

Wait Init Processing

proc? clk = 0 clk ≥ tproc_min

 clk ≤ tproc_max, ;ee_proc!

clk > tproc_max, error_proc!

Figure 2.3.1: Timed Automata Example

Modeling and verification tools such as UPPAAL⁴ and KRONOS⁵ are based on timed automaton.

⁴http://www.uppaal.org/
⁵http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/index-english.html

35

2.3. FORMAL SPECIFICATIONOF REAL-TIME SYSTEMS

2.3.2 Time Petri Net

Time Petri Nets [MF76] extends Petri Nets with timing constraints on the firing of transitions. Here we
use the formal definition of Time Petri Net from [CR06] to explain its syntax and semantics.

Definition 2.1 (Time Petri Net) A Time Petri Net (TPN) T is a tuple ⟨P,T, •(.), (.)•,M0, (α, β)⟩, where:

• P = {p1, p2, ..., pm} is a finite set of places;

• T = {t1, t2, ..., tn} is a finite set of transitions;

• •(.) ∈ (NP)T is the backward incidence mapping;

• (.)• ∈ (NP)T is the forward incidence mapping;

• M0 ∈ NP is the initial marking;

• α ∈ (Q≥0)
T and β ∈ (Q≥0 ∪ ∞)T are respectively the earliest and latest firing time constraints for

transitions.

Following the definition of enabledness in [BD91], a transition ti is enabled in a markingM iffM ≥ •(ti)
and α(ti) ≤ vi ≤ β(ti) (vi is the elapsed time since ti was last enabled). There exists a global synchronized
clock in the whole TPN, and α(ti) and β(ti) correspond to the local clock of ti. The local clock of each tran-
sition is reset to zero once the transition becomes enabled. The predicate ↑ Enabled(tk,M, ti) is satisfied if
tk is enabled by the firing of transition ti from markingM, and false otherwise.

↑ Enabled(tk,M, ti) = (M− •(ti) + (ti)• ≥ •(tk)) ∧ ((M− •(ti) < •(tk)) ∨ (tk = ti)) (2.1)

Example 2.2 (Time Petri Net) An example of Time Petri Net (presented in Fig. 2.3.2) models concurrent
execution of a process. Compared toPetriNets, the transitions inTimePetri net are extendedwith a time constraint
that controls their firing time. Pinit is the place holding an initial token. Through the fork transitionTfork, concurrent
task1 (Texe1) and task2 (Texe2) start at the same time within respective execution time [11,15] t.u. and [19,27]
t.u.. The time constraint uses a local clock which starts once a transition becomes enabled. Until meeting join state
(Pjoin), the system will exit (Texit) or restart (Trestart) the whole execution according to the running time.

36

2.3. FORMAL SPECIFICATIONOF REAL-TIME SYSTEMS

[0,0] [3,10]

2

[11,15]

[19,27]Pinit Tfork

Task2_running

Task1_running

Task2_ends

Task1_ends

Pjoin Texit Pexit

]10, ∞]

2

Trestart

Figure 2.3.2: Time Petri Net Example

Time Petri Nets are widely used to formally capture the temporal behavior of concurrent real-time
systems due to their easy-to-understand graphical notation and the available analysis tools, such as TINA⁶
[BRV04], INA ⁷, Roméo ⁸, etc. Time Petri Nets are suitable for correctness, dependability, performance
and timing analysis in early stages of design. Throughout the thesis, we use Time Petri Nets as the verifica-
tion language for UML-MARTEmodels.

TINA allows data handling on TPN to perform classic imperative programming by adding common fea-
tures like variable (of type integer and boolean) definition and arithmetic operation to each transition. The
variable’s value set extends the transitions and states in the reachability graph, which unifies the verification
processes and makes it transparent to the TPN user while enlarging the modeling capability. An integer
property from the state making can also be associated with the integer variables. These marking variables
can only be read but not written. The formalism of TPN that is extended with arithmetic guards and actions
that manipulate this set of variables is called Time Transition Systems (tts)⁹. Each transition in a tts has
two associated functions:

• Pre represents an arithmetic guard: the transition will be enabled only when the TPN’s marking and
time preconditions and the guard are satisfied.

• Act is the performed actions when the transition is fired. It can modify the variables that are used
to compute the guards.

⁶http://projects.laas.fr/tina/
⁷http://www2.informatik.hu-berlin.de/ starke/ina.html
⁸http://romeo.rts-software.org/
⁹We use tts to distinguish from Timed Transition System (TTS)

37

2.4. MODEL TRANSFORMATION

An example of tts extends Ex. 2.2 by adding Pre(Texe1) ={Ptask2=0} and Act(Texe1) = {X=10} on
transition Texe1. When the number of token in the place Ttask2 is zero, Texe1 can be fired. Once Texe1 is fired,
variable X is set to 10.

Summary. In the context of this thesis, we rely on the Time Petri Nets as the verification model. The end-
user UML-MARTE model will be mapped to the Time Petri Net model to allow the formal analysis by model
checking. Themapping work is realized using themodel transformation techniques introduced in the next
section.

2.4 Model Transformation

Model transformations are one of the central elements in MDE. They allow the automated processing and
manipulationofmulti-levelmodels, anddetermine thepropagationof information throughvarious levels of
abstraction and representation formats. They are used in MDA to translate system specification from abstract
models to others, e.g. from platform-independent models into platform-specific ones or from models into
an executable language.

Model transformation can be implemented in a number of ways [CH03]: by using a programming
language such as Java or C++, by using a model transformation dedicated language and corresponding
tools, or by a combination of native programs and hybrid transformations. We present some commonly
used model transformation languages: QVT, ATL, and Kermeta.

QVT (Query/View/Transformation) [OMG08] is a model-to-model transformation standard adopted
by OMG in 2007. It evaluates the expressions over amodel to filter and select elements (Query), creates a new
model from the original model (View), and finally expresses the transformation rules (Transformation)
between both models. It uses the Object Constraint Language (OCL) [OMG05b] as mapping language
and MOF as definition language. Model transformation engines that conforms to the QVT standard include
for example SmartQVT [ABD+08], QVTo [QVT09], etc.

ATL (ATLASTransformationLanguage) [JAB+06] is amodel transformation language specifiedasboth
a metamodel and a textual concrete syntax. An ATL transformation program is composed of rules that
describe how to create and initialize the elements of the target models. The transformation rules can be
fully declarative, hybrid, or fully imperative. It allows expressing simple mappings between the source and
target model elements. ATL was one of the experimental languages designed during the writing of the QVT

38

2.5. VERIFICATIONOF REAL-TIME SYSTEMS

proposal.
Kermeta [FHN+06] is an executable metamodeling language which allows describing both the struc-

ture and the behavior ofmodels. It supports EMF-basedmetamodeling, constraint checking, transformation
and behavior support. The source models and metamodels are explicitly loaded and stored, and then the
target elements are explicitly instantiated and added to the target model. Kermeta supports reflection, ex-
ception handling, object-orientation and aspect-orientation.

Summary. In the context of this thesis, we use the programming language JAVA to transform the end-user
model to the verification model. This will ease the integration of different tools in the whole toolset.

2.5 Verification of Real-Time Systems

Verification of a system is the task that determines whether the system is built according to its explicit spec-
ification. Verification assesses the end products against its requirements and ensures that it will perform
as specified. Model-based verification allows detecting errors earlier and preventing their propagation to
later phases in the development. Since verification is conducted all along the development cycle, it pro-
vides manages with continuous and comprehensive information about the quality and progress of the de-
velopment effort. The clients can also be given an incremental preview of system performances with the
opportunity to make early adjustments to their requirements.

In practice, real-time property verification in MDE is implemented in 2 manners: simulation and formal
verification. Simulation is relatively inexpensive in termsof execution time. But it only validates and verifies
the behavior of concurrent systems for parts of possible computation paths. Several existing works have
achieved success in the analysis of real-time systems. Contrasting to simulation, formal verification is a
systematic process that uses mathematical reasoning to verify that the design intent is preserved in the
implementation.

Cheddar ¹⁰ [SLNM04] is a real time scheduling tool designed for checking task temporal constraints
of a real-time application/system described with AADL. It allows to specify systems composed of several
processors which own tasks, shared resources, buffers that exchange messages. It provides a framework
which implements most of the classic real time scheduling theorymethods. The framework includesmany
feasibility tests and simulation tools. The tests can be applied to check that task response times are met

¹⁰http://beru.univ-brest.fr/ singhoff/cheddar/index.html

39

2.5. VERIFICATIONOF REAL-TIME SYSTEMS

and that buffers have bounded size. SynDEx ¹¹ is a system level computer-aided design tool intended to
optimize the implementation, under real-time constraints, of embedded control applications onto multi-
component architectures built from several processors and specific interconnected integrated circuits. It
specifies and formally verifies software applications implemented on hardware. It analytically computes a
schedule that matches the constraint (correct-by-construction) and generates optimized distributed real-
time code thanks to formal verification and exploration of possible implementations manually, or auto-
matically with optimization heuristics, based on multi-periodic distributed real-time scheduling analyses.
UML-MAST ¹² [MDH01] is a methodology and a set of tools for modeling and analyzing real-time systems
expressed in UML. It provides an discrete-event simulator to assess the timing behavior of applications, in-
cluding worst-case schedulability analysis for hard timing requirements and discrete-event simulation for
soft timing requirements. MARTE MAST ¹³ [MC11] is a tool that enables the extraction of schedulability anal-
ysis models and their direct analysis, which is similar to the methodology of UML-MAST but the modeling
constructs are those defined in the MARTE standard. It supports analysis using simulation tools and static
analysis.

There exists some other real-time property verification approaches such as the one based on Integer
Linear Programming (ILP). Lauer et al. [LEBP11a] used a modeling approach for Integrated Modular
Avionic (IMA) based on the tagged signal model [LSV97] and the abstraction of networks. The tag system
was then transformed into an ILP problem. They proposed evaluationmethod for the end-to-end real-time
properties based on ILP, and obtained optimal results.

Formal methods allow specifying a system’s requirements, designing an implementation, and assessing
its consistency, completeness, and correctness in a mathematical fashion. There are three main classes of
techniques used in formal verification: static analysis, theorem proving and model checking.

2.5.1 Static Analysis

Static analysis [Kil73] is used to perform type checking and optimization in compilers, bug-finding in pro-
grams, and some formal verification on programs. When performing formal verification of property, it
defines and proves a property of possible behaviors of a complex program without running the program.
It’s common to approximate or abstract information, e.g. instead of the natural numbers 0, 1, 2, ..., we could

¹¹http://www.syndex.org/
¹²http://mast.unican.es/umlmast/
¹³http://mast.unican.es/umlmast/marte2mast/

40

2.5. VERIFICATIONOF REAL-TIME SYSTEMS

use zero, small, big. Sound approximations include all the behaviors and reachable states of the real system,
but are easier to compute.

Abstract interpretation [CC77] is a theory of sound approximation of the semantics of programs. It can
be viewed as a partial execution of a program which collects information about its semantics (e.g. control-
flow, data-flow) without performing all the computations. Static analysis is a main concrete application
of abstract interpretation, which was first used in compilers for program optimization with FORTRAN
[BBB+57] in 1954.

The advantages of static analysis include high efficiency for handling large systems, no need for the en-
vironmentmodel (input/output, libraries, etc), and high degree of automation. The shortcomings include
the production of false alarm caused by the imprecision, and the limitation for verifying dynamic variables
because the analysis is not dynamic. Currently, there are approaches [Ern03] that compare static analysis
and dynamic analysis to combine them in the verification.

The properties checked by static analysis are usually implicit, such as uninitialized variables, division by
0, index of array out of bounds, overflow/underflow, null pointer dereference, etc.

2.5.2 TheoremProving

Theorem proving [Rus01] is a set of techniques to prove that an implementation satisfies its specification
by mathematical deduction. The correctness claims are formulated as a mathematical theorems, which are
thenproved eithermanually or automaticallywith the help of a proof assistant such as PVS [ORR+96], HOL
[SN08], Isabelle [Pau00], Coq [DFH+91], etc. The automated theorem proving started in the 1960s.

The program and its execution context are first described using some appropriate language, which is
then translated into logical formulae. The expected behavior is then itself described by a formula of the
same language. The proof of correctness is then partly handwritten and synthesized. It is finally checked
with the theoremprover by using a set of axioms and inference rules. Many different kinds of logic are used:
propositional logic, first-order logic, and also non-classical logic and higher-order logic, etc.

Although theorem proving is sometimes able to prove the property fully automatically, it is more com-
mon that many human interventions are needed. Theorem-proving-based verification is thus very seldom
fully automatic. In practice, theorem proving can only be used by experts. The construction of a proof may
take lots of time, and might even be impossible as expressive logics are usually incomplete.

Another shortcoming with theorem proving is that it is not particularly good in providing debugging

41

2.5. VERIFICATIONOF REAL-TIME SYSTEMS

information, that is, information as feedback to help locate errors in the system or expected behavior. Usu-
ally, when a proof fails, we often have to manually trace the invariant or variant that cannot be proved nor
displayed, and analyze the reason of proof failure. Therefore, the debugging process is indirect.

Theorem proving allows the verification of the largest family of properties. It can cope with infinite
state spaces of types. Theorem proving can be used in association with model checking by automatically
generating a finite abstraction of the system to be verified. This method allows to decrease the complexity
of the system and to resolve the undecidable boundedness problem [BCN98].

2.5.3 Model Checking

Model checking involves the design of a more abstract finite-state modelM, and the use of requirement ϕ
expressed in temporal logics. Amodel checking problem requires to assess whether a givenmodel satisfies
a given property by searching state s ofM:

M, s |= ϕ (2.2)

Pioneer work in the model checking of temporal logic formulae was done by E. M. Clarke and E. A.
Emerson [EC80, CE82, CES86] and by J. P. Queille and J. Sifakis [QS82]. Clarke, Emerson, and Sifakis
shared the 2007 Turing Award for their work on model checking.

In this part, as this thesis relies on model checking, we present its key principles (Section 2.5.3.1), the
Kripke structure (Section 2.5.3.2), the temporal logic (Section 2.5.3.3), themodel checking tools (Section
2.5.3.4) and discuss its strengths and weaknesses (Section 2.5.3.5).

2.5.3.1 Model Checking Principles

Applying explicit-state model checking to a design relies on fours phases:

• System formal specification This phase builds a formal model from a design as input of model
checker. This conversion can be a simple translation task or an abstraction work that eliminates ir-
relevant details. It can be partly or fully automated. It is common to use Labeled Transition Systems
(LTS) as verification model that are equivalent to Kripke structure. [CGP99]

• Property statementThis phase builds a formal model of the requirement (expected properties) in
some logical formalism. It is common to use temporal logic, which can assert how the behavior of the

42

2.5. VERIFICATIONOF REAL-TIME SYSTEMS

system evolves over symbolic time.

• Model checkingThis phase runs model checker to build all the execution paths and assess the sat-
isfaction of expected properties by searching some desired (undesired) states. The verification by
model checking is automatic and able to terminate if the state space is finite.

• Feedback analysis If the property is not satisfied in some executions, the model checker generates
a counterexample. The counterexample is thus an error trace. It can be used to analyze the reason
of error by simulation or other techniques, and furthermore to refine and adapt the design or the
property.

2.5.3.2 Kripke Structure

The state of a system is used to describe its status at a specific time instant. The behavior of a system
can be seen as a finite or infinite set of transitions between the states. We use Kripke structures (ktz) to
describe system’s behavior. We recall the definition of Kripke structure from [CGP99, HC96].

Definition 2.2 (Kripke Structure) A Kripke structure M over a set of atomic propositions AP is a 4 tuple
M = (S, S0,R, L) where

• S is a finite set of states.

• S0 ⊆ S is the set of initial states.

• R ⊆ S× S is a transition relation that must be left total, that is, for every state s ⊆ S there is a state s′ ⊆ S
such that R(s, s′).

• L : S → 2AP is a function that labels each state with the AP that are true in that state.

A path in a Kripke modelM can be an infinite sequence

ρ = s0, s1, s2, ... ∈ S∗

such that s0 ∈ S0 and (si, si+1) ∈ R.
A state s is reachable inM if there is a path from one of the initial states to s. This path is then finite.

43

2.5. VERIFICATIONOF REAL-TIME SYSTEMS

2.5.3.3 Temporal Logic

Temporal logic was first introduced byArthur Prior in [Pri57]. It describes the property of the ordering
of events in time for LTS, and therefore canbeused to specify the behavior of a reactive systemand to specify
the properties to be assessed for a given LTS.

Linear Temporal Logic (LTL) [Pnu77] is built from a finite set of atomic propositions, a set of logical
operators negation (¬), conjunction (∧) and union (∨), constants true (⊤) and false (⊥), and the tem-
poral operatorsG for always (□), F for eventually (♢), X for next (⃝),U for until,W for weak until, and
R for release.

Regarding the expressiveness of LTL, since LTL is propositional logic, i.e. it contains no quantification
over variables, it can not specify quantitative properties, but only logical properties.

Metric Temporal Logic (MTL) [Koy90] is an extension of LTL over a discrete time line to support the
specification of relative-time and real-time constraints. MTL contains time-constrained operators: always
(□), eventually (♢), next (⃝), strong until (U), and weak until (W).

2.5.3.4 Model Checking Tools

Many model checking tools have been developed to assess temporal logic formulae over labeled tran-
sition systems/Kripke structures. In this part, we present three widely used model checking tools: TINA,
UPPAAL and SPIN.

TINA (TIme petri Net Analyzer) [BRV04] is a toolbox for the edition and analysis of Petri Nets, in-
cluding inhibitor and read arcs, Time Petri Nets, including priorities and stopwatches, and an extension of
Time Petri Nets with data handling called Time Transition Systems (tts) (that should not be mistaken
with Henzinger’s Timed Transition System (TTS)). TINA toolset includes the following tools: nd as editor
and GUI for Petri nets, Time Petri nets and automata; tina for construction of reachability graphs; sift for
construction and checking of reachability graph on-the-fly; selt as a State/Event LTLmodel checker;muse
as a state-eventmodal μ-calculusmodel checker; plan as an tool for computing the firing time of transitions
or an example firing schedule (also called path); play as a simulator of the net described in any of formats
.net, .ndr, .tpn, .pnml or .tts; and etc.

The tool tina provides various state space abstractions for Time Petri net (state class graph), following
the techniques discussed in [BM83, BD91, Ber01, BV03]. Depending on the abstraction option selected,
the construction preservesmarkings, states, LTL properties, or CTL * (a super set of computational tree logic
(CTL) and LTL) properties of the concrete state space of the Time Petri Nets.

44

2.5. VERIFICATIONOF REAL-TIME SYSTEMS

UPPAAL ¹⁴ [BDL04] is an integrated toolbox for editing and analyzing real-time systems modeled as
networks of timed automata, extended with data types (bounded integers, arrays, user defined functions,
etc.). UPPAAL consists of three main parts: a description language, a simulator and a model checker.

UPPAAL cancheck invariant and reachability properties by exploring the state spaceof a system, i.e. reach-
ability analysis in terms of symbolic states represented by constraints. UPPAAL uses a simplified version of
CTL to specify property, where the query language consists of path formulas and state formulas. State for-
mulas describe individual states, whereas path formulas quantify over paths or traces of the model. Path
formula can be classified into reachability, safety and liveness. Each formula to be verified is transformed
into a timed automata and composed with the system. If the property is not satisfied a counter-example is
generated.

SPIN ¹⁵ [Hol97b] is themodel checker formodels of distributed software systems. It supports the analy-
sis ofmodel described in PROMELA language [Hol90]. SPIN can be used as a full LTLmodel checking system,
supporting all correctness requirements expressible in LTL, but it can also be used as an efficient on-the-fly
verifier for more basic safety and liveness properties. Many of the latter properties can be expressed, and
verified, without the use of LTL. Correctness properties can be specified as system or process invariants
(using assertions), as LTL, as formal Büchi automata, or more broadly as general omega-regular properties
in the syntax of SPIN.

2.5.3.5 Strengths andWeaknesses ofModel Checking

Strengths. Compared to theorem proving, model checking techniques are fully automatic, and do not
requiremanual effort to construct the proofs. Another prominent advantage is thatmodel checkers provide
better feedback than other techniques. A counter example is providedwhen the property is not verified and
this may help to find the origin of the error.

Weaknesses. Model checking can run into limitations due to the combinatorial state explosion problem.
The number of states in the behavior of systemmodel may easily exceed the amount of available resources.
Several effective methods have been developed to handle this problem (see Section 2.6), however models
of realistic systemsmay still be too large to fit limited resources. In practice, it is possible to use appropriate
abstraction that preserves the information needed to assess a given property to reduce the state space. The
user needs to build an appropriate finite-state model that fits the verification technology, which is also one

¹⁴http://www.uppaal.org/
¹⁵http://spinroot.com/spin/what.html/

45

2.6. STATE SPACE REDUCTIONOFMODEL CHECKING

of the objectives of this thesis.

Summary. In the context of this thesis, we rely on the TPN as the verificationmodel and on the TINA toolset
as the verification tools. Oneof the objectives is to provide efficientmeans to assess the real-timeproperties
expressed with observers and accessibility assertions relying on high abstract state class graphs to reduce
the cost of model checking.

2.6 State Space Reduction of Model Checking

Model checking techniques areuser friendly as theyprovidebetter automation anderror analysis thanother
techniques. Unfortunately, they suffer from state space explosion that can make it seem useless for large-
scale systems. Indeed, in some systems, the size of a state space tends to grow exponentially in the number
of its processes and variables, where the base of the exponentiation depends on the number of local states a
processhas and thenumberof values a variablemay store, andon somekindof ”tightness”of the connection
between the components of the system i.e, the extent towhich the local states of components are dependent
of the local states of other components [Val98].

Many works were motivated to find effective solutions to state space explosion problem. There have
been several major advances in addressing this problem. Most often, the advanced state space reduction
takes advantage of details of the specific verification query. In this section, we discuss some commonly
used state space reduction strategies: symbolic model checking with BDD (see Section 2.6.1), partial or-
der reduction (see Section 2.6.2), compositional reasoning (see Section 2.6.3), abstraction (see 2.6.4) and
symmetry (see Section 2.6.5.

2.6.1 SymbolicModel Checking withOBDD

In 1987, McMillan [BCM+92, McM93] acknowledged that the use of a symbolic representation for the
state transition graphs allowed verifying much larger systems. Contrasting to the original implementation
of model checking algorithm that represents explicitly the transition relations, symbolic model checking
approach represents and manipulates a finite state transition system symbolically as a Boolean functions.
The symbolic representation is based on Bryant’s Ordered Binary Decision Diagram (OBDD) [Bry86].

Symbolic model checking can reduce the state space of explicit model checking, as it avoids explicitly

46

2.6. STATE SPACE REDUCTIONOFMODEL CHECKING

constructing the state graph of the system. By using OBDD, any finite-state system can be encoded using a set
{b1, b2, ...bn} of binary variables. Sets of states, for example the set of initial states, can then be represented
as propositional formulas over {b1, b2, ...bn}, and sets of pairs of states, such as the pairs (s, t) labeled with
action α can be represented as propositional formulas over {b1, b2, ...bn, b′1, b′2, ...b′n}. There exists many
redundancies in the decision tree that can be removed by combining isomorphic sub-trees (producing a
directed acyclic graph from the tree) and eliminating nodes with identical sub-trees [Mer01]. The model
checking algorithm is based on computing fixpoints of predicate transformers that are obtained from the
transition relation. The fixpoints are sets of states that represent various temporal properties of the system.
In this way, the process of checking a propositional formula is to follow the path labeled with the boolean
values for each of the inputs.

Most reduction methods were aimed to reduce the number of states. In symbolic model checking, the
size of OBDDdepends critically on the variable ordering, not on the total number of states. OBDDhas achieved
many successes especially in circuit design, as can be seen from the survey [MT98].

2.6.2 Partial Order Reduction

In asynchronous concurrent systems, most of the activities in different processes are performed indepen-
dently, without a globally synchronization. The most successful techniques for dealing with this problem
are based on the partial order reduction [CGP99, GvLH+96, GP93, Pel94, Val91].

Themain idea of partial order reduction is to construct a reduced state graph by eliminating the unnec-
essary behaviors. This method is based on the dependency relations that exist between the transitions of a
system. It exploits the commutativity of concurrently executed transitions, which result in the same state
when executed in different orders. The reduction method then specifies the set of transitions that should
be included in the reduced state graph. The reduced behavior is a subset of the behavior of the full state
graph. Thus it does not add any information to the behavior of a system.

Manyexperiments showed that the state space for asynchronous concurrent systems canbe significantly
reduced. Different partial order reduction approaches works based on three different type of subsets of
states: the stubborn sets [Val91], the persistent sets [GP93] and the ample sets [Pel94]. These techniques
contain similar ideas, and only differ on details.

47

2.6. STATE SPACE REDUCTIONOFMODEL CHECKING

2.6.3 Compositional Reasoning

Compositional reasoning reduction techniques are considered effective in systemswithmodular structures
whenmultiple processes are running in parallel. Themain idea is a divide and conquer strategy that divides
the whole specification into small parts and verify each part independently from the others.

The use of compositional reasoning follows three steps: first decompose the system specification into
local properties that describe the behavior of small parts of the system; second, check each of the local
properties using only the smallest part of system that it describes; finally, perform a conjunction of the
local properties to derive the result for the full system.

Usually the system components exhibit dependencies to each other, which implies that the simple com-
positional reasoning is not feasible in such systems. Therefore, some assumptions about the behavior of
other components are neededwhen verifying a property onone component. This strategy is called assume-
guarantee reasoning [MC81, Jon83, Pnu85, GL94].

The main issues in compositional reasoning are how to devise proper assumptions and how to develop
new proof rules. Some works were aimed to automatically generate the assumptions [CGP03, NMA08].
The assumption generation is based onmachine leaning that uses the counterexamples generated bymodel
checkers as the training data.

2.6.4 Abstraction

Abstraction reduction techniques [CGL94] are usually applied to systems that rely on data manipulations
involved in the states. They attempts to reduce the state space by performing abstraction on the set of
data and the operations applied to data. Two commonly used abstraction techniques are cone of influence
reduction and data abstraction.

The technique of cone of influence reduction focuses on the total number of variables. It attempts to
eliminate the variables that do not influence the verification of expected properties. As a consequence, a
system description is simplified by referring only to the minimum set of variables, and the state space is
reduced as states include these variables.

The technique of data abstraction focuses on the values of data. It attempts to find a mapping between
the actual data values and a smaller set of abstract data values. By extending this mapping to states and
transitions, it is possible to obtain a smaller abstract system that simulates the original system. Abstraction
techniques are usually related to static analysis and abstract interpretation.

48

2.7. MODEL CHECKING FEEDBACK

2.6.5 Symmetry

Symmetry reduction techniques [ID96,CEFJ96, ES96] are usually used in systems that exhibit topological
symmetric identical components that are coupled to each other, e.g. redundant processes. The state space
reduction approaches based on symmetrymake use of the identical or isomorphic processes in a system to
reduce the identical states in the state transition graph. Intuitively speaking, the behavior of a component
can be replaced by the stored behavior of its identical component.

The construction of symmetry state space and its use in verification have been applied to Petri nets
[Jen96], to CTL * model checking [CEFJ96, ES96], to Büchi automata [ES97, GS97], etc.

Summary. In the context of this thesis, instead of the generic reduction approaches presented in the above
parts, we aim to provide property-specific reduction methods, which are dedicated to a new abstraction
preserving all semantics related to real-time properties, while eliminating the others.

2.7 Model Checking Feedback

The generation of counterexamples in case a formula is violated is a key service provided by model check-
ers. A counterexample is a trace of execution that does not satisfy the expected properties. Several works
investigated the algorithms for generating [CV03] and understanding [GKL04a, BBDC+09] counterex-
amples. Some work [ZCP13] builds failure scenarios for end user models using error traces. To diagnose
a system design, generating a counterexample can be used to detect a fault, but the counterexamples pro-
duced by model checkers often stand for error traces in the verification model, which represent sequences
of state changes and are therefore usually lengthy and difficult to understand, even worst with reduction
and abstraction. More precisely, the origin of error might be anywhere along the error trace, thus requir-
ing a lengthy analysis by designers. The ultimate goal is to trace the counterexample back to the designers’
model in order to help fault detection, analysis and correction.

Fault localization is dedicated to monitoring a system, identifying when a fault has occurred, and pin-
pointing the location of the fault. Onemain fault localization approach derives the faults from somemodel,
classified into the category Model-Based fault localization, which can be applied in MDE. In model-based
fault localization, the system model may be mathematical, or knowledge based, including observer-based
approach, parity-space approach, parameter identification based methods, etc [Din08]. The efficiency

49

2.7. MODEL CHECKING FEEDBACK

and accuracy of model-based fault localization depends on the appropriate abstraction and reasonable as-
sumptions. On the basis of a survey [Ali12], the major fault localization approaches are classified into 5
categories: program slicing [Wei81, AH90, GBF99], spectra-based fault localization [RBDL97, RtPR03,
JHS02a], statistical inference [LYF+05], delta debugging [ZH02] and model checking. In this thesis, we
discuss the techniques that use counterexamples that do not satisfy the expected behavior and try to locate
the origin of faults in the model checking.

Automated fault localization in model checking intends to ease and accelerate debugging by indicating
the suspicious components in the model. Current automated fault localization techniques usually either
produce a set of suspicious statements without any particular ranking, or they use a suspiciousness factor
and then rank all statements according it.

According to the survey [Ali12], we discuss the following important fault localization techniques.

• Contrasting counterexamples with good traces using a single counterexample [BNR03] pro-
posed to analyze fault localization using one counterexample that violated the desired properties in
a particular case. Whenever a counterexample is found, the approach compared the error trace de-
rived from the counterexample to all the good traces that satisfied the property. On the observed
error and good traces, the transitions that led to the deviation from good traces are marked as suspi-
cious transitions. This technique has been implemented in the SLAMmodel checker [BR01].

• Using multiple counterexamples [GV03] introduced an approach that relies on multiple coun-
terexamples. It defined the traces that started from initial states and ended with error states as neg-
ative traces, and the traces that did not take the error state as previous state as positive traces. The
analysis approach denoted the transitions that existed in all positive traces, the transitions that ap-
peared in all negative traces, the transitions that existed in one of positive traces but not in any nega-
tive traces, and the transitions that appeared in one of negative traces, but not in any positive traces.
The algorithm then used the above marked transitions to define the cause of failure. This method
has been implemented in Java PathFinder [HP00].

• Distance metrics [Gro04] proposed to define a distance between the error trace and the passing
traces, which are traces in passing test cases that satisfy the requirements. Thedistancewas then used
to find the closest passing trace to the counterexample. The causes of error were then derived from
the comparison results between the closest successful trace and the counterexample. This method
was implemented in explain tool [GKL04b].

50

2.7. MODEL CHECKING FEEDBACK

• Abstract counterexamples [CGS04] reliedon aprediction that not all components of amodelwere
involved in a specific property when performing model checking. It marked the states that actually
affected the property. The algorithm was the same as explain, except that it used predicates when
comparing error traces and passing traces. This technique has been implemented in the MAGICmodel
checker [CCG+04].

• Reduction toMax-SATMax-SAT (MaximumSatisfaction) problem [Zim78] is the problemof de-
termining the maximum number of satisfied clauses of a given boolean formula. [JM11b] proposed
an approach that transformed fault localization problem to the Max-SAT problem. It used only one
failing trace and the corresponding input to build the Max-SAT formulation. This method has been
implemented in the BugAssist tool [JM11a].

All of the above 5 techniques were aimed to produce a set of suspicious statements without any partic-
ular ranking. The precision of fault localization can be improved by devising a suspiciousness factor and
then ranking all suspicious statements according to it. There exist some works [JHS02b, AADW09] based
on the suspiciousness factor.

To evaluate the success of a fault localization algorithm, some important criteria should be measured,
such as effectiveness, precision, informativeness, efficiency, performance, scalability and informationusage.
Here we explain the most significant measurements: effectiveness and efficiency.

• EffectivenessAn effective fault localizationmethod should point out the origin of failure. The effec-
tiveness can be evaluated by the precision. According to the survey [WD09], the effectiveness can be
assessed by a score EXAM in terms of the percentage of statements that have to be examined until the
first statement containing the fault is reached [EWDC10, WQ09, WSQG08, WWQZ08]. A similar
score using the percentage of the program that need not be examined to find a faulty statement has
been defined in [CZ05, JH05, RtPR03]. These two scores provide the same information, but the
EXAM score is more direct and easier to understand. In this work, we use the EXAM score to assess the
effectiveness of our approach, which is the percentage of transitions that have to be examined until
the first faulty transition is found.

• EfficiencyThe fault localization techniques inmodel checking, like other techniques, should termi-
nate in a timely manner, limited by some resource constraints. The efficiency can be assessed by the
scalability and the performance.

51

2.8. CONCLUSION

Summary. In the context of this thesis, we aim to provide an automated fault localization approach based
on model checking to ease and accelerate the debugging by locating and ranking the suspicious elements
in a model when a safety property is unsatisfied.

2.8 Conclusion

This Ph.D work aims to design and implement a toolset used to verify real-time requirements in large scale
UML-MARTE real-time designs. To deal with large scale systems, the main problem of verification techniques
based on model checking is the combinatorial state explosion problem. It is interesting to adapt existing
techniques or to construct new ones to prevent the combinatorial explosion in the process of real-time re-
quirement verification. Based upon this purpose, the toolset should offer the following real-time property-
specific tools, each of which can contribute to the prevention of the combinatorial state explosion:

• the tool for defining execution semantics to end user models (in our case UML-MARTE) and thenmap-
ping it to the execution model (in our case TPN)

• the tool for formally specify real-time requirements

• the tool for reduce the state space

• the tool for efficiently assessing the real-time properties using model checking

• the tool for feeding back the origin of errors in the model if a safety property is unsatisfied.

52

Part II

Contribution to Property-DrivenApproaches

53

3
SemanticMapping from UML-MARTE to

Property-Specific TPN

Résumé

UML, le langagedemodélisationunifié, est un langagegénéralistequi doit permettredemodélisern’importe
quel type de logiciel. Pour une activité particulière, il suffit en général d’un sous ensemble du langage
adapté pour les experts qui l’exploiteront. De plus, pour exploiter des méthodes de vérification formelle,
il faut choisir un sous-ensemble adapté à la traduction vers ce type de modèle. Nous avons sélectionné
un sous-ensemble des diagrammes UML adapté à la modélisation de la structure et du comportement
d’architectures logicielles temps réel. Ce chapitre présente la méthodologie de l’approche « dirigée par les
propriétés », qui constitue la base de notre contribution en terme de sémantique de traduction. L’objectif
est de traduire automatiquement le sous-ensemble retenu des modèles UML-MARTE dans le formalisme
des réseau de Petri temporisés pour permettre une vérification efficace de propriétés temps réels. Il s’agit de

54

ne conserver de la sémantique d’UML-MARTEque le niveau de détail adéquat pour vérifier ces propriétés
dans le but de réduire l’espace d’états lors de la vérification de modèles. Les diagrammes UML considéré
sont « structure composite » (composite structure), « machine à états » (state machine) et « activité »
(activity). La communication entre les éléments peut être synchrone ou asynchrone. Du point de vue des
horloges, comme le modèle sémantique des réseaux de Petri temporisés repose sur une horloge globale,
nous considérons en premier lieu des systèmes mono-horloge donc des systèmes synchrones au sens des
horloges. Afin de modélisation des systèmes multi-horloges, nous introduisons une notion de dérive de
l’horloge pour lier les différents horloges indépendantes à l’horloge de référence. Ceci permet de simuler
plusieurs horloges asynchrones. Les exigences considérés étant les propriétés temps réels dans la concep-
tion de l’architecture, les valeurs des objets sont ignorées lors de la traduction des modèles. Seul le type et
le nombre d’occurrences des objets sont considérés.

Les contributions principales de ce chapitre se résument en :

• Spécification de la sémantique d’exécution pour les digrammes de structure composite. Ce dia-
gramme relie les comportements des sous-systèmes à travers les moyens de communication. La
sémantique d’exécution traite donc les entités Part, Port et Connector.

• Spécification de la sémantique d’exécution pour les diagrammes d’activité. Le diagramme d’activité
explicite le flot de contrôle (séquencement, coordination, …) d’éléments de grain plus fin. La sé-
mantique d’exécution prend en compte les noeuds de contrôle, les actions déclenchés par événe-
ment et par le temps, les objets et les connexions. Afin de normaliser la sémantique d’exécution pour
le comportement asynchrone, nous étendons la sémantique d’origine des actions pour exprimer un
comportement cyclique à l’aide du profilMARTE que nous traduisons en réseau de Petri temporisé.
Il s’agit d’un modèle d’exécution classique pour les systèmes réactives asynchrones.

• Spécification de la sémantique d’exécution pour des diagrammes demachines d’état. Le diagramme
de machine à état comportemental (behavioral state machine) est traité. La sémantique est explic-
itée en deux étapes. D’une part, les états hiérarchiques et les régions orthogonales n’apportent pas
d’expressivité en terme de sémantique. Ils servent seulement à faciliter la modélisation de systèmes
complexes. De telles machines peuvent être « aplaties » en exploitant des constructions des dia-
grammes d’activité. D’autre part, les machines à état « plates » comportant des état simples, des
états finaux, des transitions et des pseudo non imbriquées sont traduits en réseaux de Petri tempo-
risés.

55

• Spécification de la sémantique d’exécution pour les ordonnancements des ressources. Dans ce tra-
vail, nousne cherchonspas à fournir la sémantiquede toutespolitiquesd’ordonnancementde ressource
mais d’assurer que l’ordonnancement est réalisable dans le pire cas. Nous proposons donc un algo-
rithme d’ordonnancement générique avec possibilité de préemption. La spécification et la vérifica-
tion en exploitant des politiques d’ordonnancement spécifiques pourront être traitées comme une
extension de ces travaux.

56

TPN

Reduced
Observer TPN MMC

TPN Model CheckingTag Property
Pattern Result

Architecture/
Behavior
Mapping

Observer TPN
Generation

Iteration
Tag

Property Pattern
Result

Real-Time Property
Specification

Verification
Result

Computation

Real-Time Property
Verification Result

Feedback
Generation

System Model
Real-Time

Requirement
Architecture

Model
Behavior

Model

UML Real-Time Software Model

Timing Property
Pattern

Timing Property
Pattern

Real-Time
Property Patterns

1

5

3

2

3

3

Observer
TPN

Tag Property
Pattern Result
Interpretation

3

TPN
Reduction

4

Progress
Map
1: Property-Driven Semantic Mapping

This chapter introduces the property-driven methodology, which provides the basis for the semantic
mapping contributions in this thesis (Progress map 1). Property-driven mapping is aimed to map the end
user source models (UML-MARTE in our case) to the target verification models (TPN in our case) on the basis
of real-time property verification (Challenge 1 in page 22). The mapping consists in defining a dynamic
semantics (a semantics of observable events) built upon the properties to be verified. To reduce the size of
state space during the verification, the mapping eliminates the semantics irrelevant to the target property,
while preserving a minimal set of property-relevant semantics. According to the target real-time property
family, a denotational semantics is provided as amapping from UML-MARTE architecture diagram (composite
structure) and behavior diagrams (activity and state machine) to TPN. In addition, a generic scheduling
algorithm with a preemption option is defined. (Contribution 1 in page 24)

57

3.1. INTRODUCTION

3.1 Introduction

UML, by its nature, was intended to be a general purpose softwaremodeling language, and as such, is not sim-
ple enough to be efficiently used by non-software experts. Many research works propose DSMLs (Domain
Specific Modeling Languages) based on UML relying on profiles for different types of systems and different
system engineering processes. For the purpose of this thesis, we have selected a large enough subset of UML
diagrams and diagram elements for modeling real-time software architecture and behavior. We focus on
the semantic mapping from the UMLmodel to the verification model.

Methodology. From the viewpoint ofmethodology, ourwork is basedon the pioneerwork [CCG+07] by
Combemale et al. Aimed to define all the steps from the property specification to effective verification, they
introduced in [CCG+07] a generic approach todefine theoperational semantics (a semantics of observable
events) built upon the properties expressed at the metamodel level. Their contribution was introduced
through a simple process description language: SimplePDL on which a set of temporal properties, e.g a
workdefinition must start after another workdefinition is finished, were expressed. Property-driven means
that the formal activities in thedevelopment process are basedon thepurpose of property-verification-ease.

Related work. Currently there are many projects that have made great effort to define restrictions for
UML. This is not the main concern of this thesis. We rely on the UML specification 2.4.1 [OMG11c] and the
commonly accepted interpretation to define a formal semantics for the related UML subset.

Executable UML (fUML) [OMG13] aims to support a variety of different execution paradigms and envi-
ronments. It is based on a very restricted subset of UML 2.4.1 that only handles parts of the activity diagram.
fUML provides precise definition of the execution semantics at implementation level such as the type of
variables, while in the work of this thesis, we focus on the operational semantics at verification level, i.e,
implementation details should be eliminated in order to ensure the efficient formal verification.

Some works like [Cra05] studied the semantics of state machine, and provided the result of a com-
parative literature review on approaches to formally capture the semantics of UML state machines, and the
underlying formalism of the approaches e.g., mathematical models (transition systems, abstract state ma-
chine, Petri Net, etc), rewriting systems and translation approaches.

Someexistingworks [LGMC04,TMH08,BBBB11,YYSQ10,AMCN09,CMC+08,MPFA06,MCBD02]
have defined mapping semantics from UML diagrams to Petri Nets for verification purpose. The works

58

3.1. INTRODUCTION

[LGMC04,TMH08,BBBB11] focusedon themeasurementof system’s performance, or on the verification
of correctness and inter-diagram consistency, or the cancellation and advanced synchronization patterns in
untimed UML diagrams. Thework [YYSQ10]mapped UML-MARTE activity diagram toTimedColor Petri Net
with Inhibitor Arc to provide a possible foundation for analyzing time properties. This method focused on
the mapping semantics of object flows. Colored Petri Nets (CPN) can ease the semantic mapping for data
related elements, but to our knowledge there is no appropriate verification tools that handles the combi-
natorial state explosion problem. [MCBD02] presented a translation of untimed state machine diagram
into Generalized Stochastic Petri Nets (GSPNs). This allows the qualitative and quantitative analysis of
systems that are described using UML SMD by means of GSPN tools.

[AMCN09, CMC+08] relied on TPN to map SysML-MARTE activity and state machine diagrams to TPN

with energy constraints to estimate the energy consumption and execution time of the system. This map-
ping is not generic, as it can only assess the execution time of the system. [MPFA06] defined a mapping
for a restricted class of activity diagrams toTime Petri Nets to assess the quality of allocations of the system
functionality. It provided a support for verifying deadline on activities.

Compared to the above related works, our semantic mapping targets the family of real-time properties,
which is easier to encounter the combinatorial state explosion problem than the structural and temporal
properties. Because the physical time behaviors will generate much more states than the logical behaviors
in state class graphs. We do not target a new mapping completely different from the existing ones. On
the other hand, it is impossible to define new mapping semantics for the UML elements like the initial, final
nodes, as their semantics are very restricted. Our purpose is to define a mapping semantics by TPN for a
relatively complete subset of UML-MARTE diagrams and diagram elements, and to apply thismapping seman-
tics to a large scale systems to efficiently verify real-time properties. Therefore, we will adapt some of the
execution semantics defined in the above related works, in order to improve the verification scalability.

Modeling Context. UML-MARTE can be used to model a wide range of real-time systems. It is not the main
purpose of this thesis to cover all the modeling details of real-time systems. Therefore, before presenting
our contributions, we need to clarify the modeling context in this work.

• Synchronous&Asynchronous: The systems that we are interested in are the concurrent real-time
systems. From the viewpoint of message passing, we allow both synchronous and asynchronous
communication modeling between different parts of the system. From the viewpoint of clock, as
the TPN model provides a common synchronous clock, the modeling context allows synchronous

59

3.1. INTRODUCTION

clock by default. To analyze quantitative properties, it usually needs for a reference clock, then the
other clock aremapped to this reference. In order to enable themodeling of asynchronous clocks, we
introduce the concepts of clock rate, drifts and offset to map multiple clocks to the reference clock,
which is a simulation of multiple asynchronous clocks.

• Cyclic execution: Cyclic execution is a very common pattern for real-time systems that implement
control & command to interact with the real world. An event-trigger cyclic execution can be simply
specifiedusing an action and a loop section. It is activated by the readiness of the data and the control
flow. However, for the time-trigger execution, the activation of an action is controlled by the data,
control flow and the rising edge of the cycle period. Although the semantics of offset and period
can be modeled using MARTE profile, the whole behavior can be modeled in various ways. In order
to ensure a standard mapping semantics, we decide to extend the original semantics for the action
node defined in UML activity diagram. The original semantics of an action focuses on event-trigger
behavior. We extend it by defining a time-trigger semantics using the MARTE profile, and then map it
to the TPN model. This pattern is very general in the reactive asynchronous system, and thus can be
reused in the modeling and verification. This issue is detailed in Section 3.4.3.2.

• Object Value Issue: As the object values do not affect the verification result of real-time proper-
ties in the architecture design of V-model (see page 18 in Chapter 1), they are ignored during the
semantic mapping. Only type and the occurrence number of the objects are considered. This issue
is detailed in Section 3.4.4.

• Simplification on the use of MARTE: In order to simplify themodeling andmapping works, we have
used some simplifications on the use of MARTE profile. This simplification does not impact the exe-
cution semantics in TPN.

• Resource scheduling: In real-time systems, the behavior shares and consumes the resources such
as the CPU, memory, bus. The scheduling policy applied by the scheduler will impact the real-time
requirements. As modeling of scheduler policy is not the main concern of this thesis, we do not
aim to provide mapping semantics for any specific policy. Instead, we propose a generic scheduling
algorithm with preemption option, which is used to decide for the given time T, which resource
instance(s) will be allocated to which requester(s).

60

3.2. PROPERTY-DRIVEN APPROACH

Contributions. We aim to provide not only effective but also efficient property verification using the ex-
ecution semantics derived from the mapping. Our contributions in this chapter are summarized as below:

• According to the expected real-time property family, we have defined the operational semantics for
mapping UML-MARTE architecture diagram (composite structure) and behavior diagrams (activity and
state machine) to the property-specific TPNmodel. The mapping library is provided in Appendix A.
For some untimed UML elements not influencing real-time properties, such as Initial, Join, Fork
and Merge nodes in the activity diagram, the target TPN semantics can be standardized and homo-
geneous for all families of the properties. For the timed UML elements, the mapping eliminates the
semantics irrelevant to the target property, while preserves a minimal set of property-relevant se-
mantics to reduce the size of state space in the verification.

• A generic scheduling algorithm including a preemption option is defined. This scheduling algo-
rithm is used to decide for the given time T, which resource instance(s) will be allocated to which
requester(s).

In this chapter, we give an overview of the property-driven approach in Section 3.2; then define the
semantic mapping for composite structure diagram (Section 3.3), activity diagram (Section 3.4) and state
machine diagram (Section 3.5); then we propose a mapping semantics for a generic scheduling algorithm
including optional preemption (Section 3.6); we discuss the verification of model transformation and
boundedness issues for the TPN with inhibitor arcs in Section 3.8; at last the time semantics in multi-clock
modeling is discussed (Section 3.7).

3.2 Property-Driven Approach

3.2.1 Core Idea

Combemale et al. presented in [CCG+07] a property-driven approach for specifying and checking behav-
ioral properties. The approach defined all the steps from the property specification to effective verification.
Property-driven means that the formal activities in the development process are based on the purpose of
property-verification-ease. Their contribution was introduced through a simple process description lan-

61

3.2. PROPERTY-DRIVEN APPROACH

guage: SimplePDL on which a set of temporal properties were expressed. Combemale et al. defined the
following steps to assess the properties relying on TPN and LTL:

1. The first step is to characterize the properties by the expert. The properties can be structural, tempo-
ral and quantitative ones according to SimplePDL. The structural ones are static construction rules
that can be defined and checked by the use of OCL.The temporal ones are those properties that should
be satisfied in every model execution. One example is a given process in SimplePDL should effec-
tively terminate. The quantitative ones target the specification or synthesis of critical paths of execu-
tions in terms of minimal or maximal resource consumption such as the worst case execution time
or resource use. ¹

2. The second step is to characterize a finite set of states for the metamodel entities from the property.
For example, a workdefinition can either be not started, started or finished, and there is a notion of
time and clock associated with each workdefinition.

3. Relying on these states, an observable abstraction of the generic operational semantics of the design
model with respect to the properties is defined. This operational semantics makes the designmodel
executable and thus analyzable by model checkers.

4. The fourth step expresses the property to be checked in the design model. For example, temporal
properties can be expressed using TOCL (an extension of OCL with temporal operators) at the meta-
model level. This has been implemented by Zalila in [ZCP12].

5. The fifth step formally expresses the operational semantics using the verificationmodel TPN, and also
formally expresses the property using LTL. The semantics is defined as a mapping from SimplePDL
to TPN. The mapping can be implemented using model transformations, which are written in ATL in
the work of Combemale and Zalila.

6. The final step performs the LTL properties checking on the TPN model using the TINA toolset. The
feedback of properties results can be automatically computed using the transformation model de-
fined during the translation SimplePDL2PetriNet.

¹As the quantitative ones are more complicated, they illustrated their approaching using the structural and temporal prop-
erties.

62

3.2. PROPERTY-DRIVEN APPROACH

In the context of this thesis, we follow the same methodology proposed by Combemale, and propose
a property-driven mapping semantics to translate UML-MARTEmodels to the real-time property specific TPN
models for the verificationpurpose. As theTPNmodels containing real-time semantics are easy to encounter
the combinatorial state explosion problem, its mapping semantics needs to be property-specific, which
preserves minimal property-relevant semantics.

Firstly, the real-time properties need to be characterized. For the second and third steps, as this work
concerns the quantitative time properties, it is not as simple as the temporal or structural properties to
characterize a finite set of states. As the quantitative time properties cannot be directly assessed using logic
formulae such as LTL, CTL, the operational semantics built upon observable states/transitions needs to be
defined using the standard observer techniques. In the fourth step, properties are expressed using a set of
real-time property patterns defined in Chapter 4. Fifth, The operational semantics is formally expressed
using the verification model TPN, associated observers and the logic formulae (Chapter 5). At last, the
property expressed with logic formulae is checked using the model checker.

We do not follow exactly the same steps as the original work of Combemale, especially for the second,
third, and fourth steps. Moreover, we add a new step for property specific state space reduction (Chapter
6) before the model checking, which aims to reduce the state space of model checking and thus improve
the efficiency of verification.

3.2.2 Principles of SemanticMapping

The semantic mapping approach for UML-MARTE is driven by the real-time properties that we plan to assess.
The mapping should respect the following 5 principles:

1. The mapping rules for a UML entity may change according to the family of properties.

2. For some untimed UML elements not influencing real-time properties, the target TPN semantics is
intuitive, and can be standardized and homogeneous for all families of the properties, and can be
derived from the previously existing mappings.

3. Themapping rule should guarantee the consistency between high-level user models and lower-level
verification models. However, a correct mapping does not imply a full semantics preservation, but
rather to ensure asmuch as possible the scalability of verificationwhile being correct according to the
UML specification. For example, for the timed UML elements, the mapping eliminates the semantics

63

3.3. COMPOSITE STRUCTURE DIAGRAMMAPPING SEMANTICS

irrelevant to the target property, while preserving a minimal set of property-relevant semantics to
reduce the size of state space in the verification.

4. The target TPNmodels should guarantee high performance verification, especially for large scale ap-
plications. Therefore, the mapping semantics should allow the TPN models to perform high-level
abstraction to ease the generation of the state class graph during the model checking. In our case,
we aim to generate the state class graph preserving onlymarking information (theminimal size state
class graph), but not LTL information. This means the TPN model derived from the mapping must
not possess the priority arcs. The priority arcs may ease the modeling work, but a TPN model with
them is not allowed to generate state class graph preserving only marking information.

5. In order, first to be able to automate themodelmapping process, and then to keep a simplemapping,
a trade-off must be made to allow an easy assembly of the TPN mapping results for each UML entity.
It seems that the verification efficiency would be decreased by this trade-off. But it in fact can be
compensated later by a state space reduction phase that eliminates the elements irrelevant to the
verification.

3.3 Composite Structure Diagram Mapping Semantics

The basic purpose of architecture model is to connect different sub-system behavior models and create a
system-level model, by means of communication media. The objective of the mapping is to replace each
architecture model’s entities by its relevant behavior model while respecting a context-based naming con-
vention and their structural relations.

Composite Structure Diagram (CSD) is a kind of static structure diagram. It specifies the internal structure of
a class, including its interaction points to other parts of the system, and the architecture of all parts managed by
this class. CSD is used to explore run-time instances of interconnected instances collaborating over communications
links. (page 183 of UML Spec.)

Themost significant entities in CSD are Part, Port and Connector. Theothers (Interface, Role) remain
important, but either only disposing of static semantics for syntax consistency verification (e.g. Interface
related nodes), or having ambiguities in common modeling work as its semantics differs according to the
scenario (e.g. Role related nodes). In this section, we define the mapping semantics for the Part, Port and
Connector and explain in detail why the others are not involved.

64

3.3. COMPOSITE STRUCTURE DIAGRAMMAPPING SEMANTICS

3.3.1 Part &Role

A collaboration describes a structure of collaborating elements (roles), each performing a specialized function,
which collectively accomplish some desired functionality. (page 190 of UML Spec.) A Part declares that an in-
stance of this classifier may contain a set of instances by composition. All such instances are destroyed when the
containing classifier instance is destroyed. (page 206 of UML Spec.)

Part is an element that represents a set of one or more instances which are owned by a containing clas-
sifier instance. There is a tiny semantic difference between Part and Role. Role is a logical concept for a
collection of functionality while Part is a physical instance that implements a collection of functionality.
One Part can play different roles in the system simultaneously, and one Role could be played by only one
Part at one time, but possible by different parts when time changes. For example, rear wheel and front
wheel are two different roles in a car system, although they are designed to accept the same type of part
(standard wheel) to implement. Therefore, we only consider the mapping semantics for Part in our work.

As a classifier can be either primitive or structural, the Part can also be primitive and structural (see
Fig. 3.3.1). The Part itself is not mapped to any explicit TPN structure. Its semantics is mapped through
the inner behaviors or structures. The mapping type provided by Fig. 3.3.1 is used to define the mapping
semantics for ports and connectors in for following sections.

No Explicit

Inner Structure

Port1

Port2

Primitive Structural

Port1

Node Type

Part

Notation

partName:
ClassName

Mapping Type

Figure 3.3.1: Mapping Semantics for Part

Fromthe viewpoint of semanticmapping, a structuredbehavior is describedby its inner structure, while
a primitive behavior is described by its associated behavior model. In the structural Part, the architecture
model could be considered as a tree-like structure, and the mapping process is based on a recursive tree-
analysis approach. Each Part can bemapped to a TPNmodel, with inner behavior derived from the classifier
or associated behavior model. These TPNmodels are then connected through the communication medias.

65

3.3. COMPOSITE STRUCTURE DIAGRAMMAPPING SEMANTICS

In ourwork, wemap thewhole systemmodel to one TPNmodel containing all the parts and communication
medias, in order to ease the analysis afterwards.

3.3.2 Port & Interface

A Port represents an interaction point between a classifier instance and its environment or between a classifier
instance and instances it may contain. Ports are connected to properties (parts) of the classifier by connectors
through which requests can be made to invoke the behavioral features of a classifier. (page 203 of UML Spec.)
The interfaces associated with a port specifies the nature of the interactions that may occur over a port. (page 202
of UML Spec.)

A Port can appear on the boundary of a contained part, a class or a composite structure. A port may
specify the services a classifier provides as well as the services it requires from its environment. An In-

terface is similar to a class with restrictions. All interface operations are public and abstract, and do not
provide any default implementation. Both Port and Interface are often used to model interaction point.
The logical view could be described by the interface, which specifies the provided service while its physi-
cal view is often modeled by port, which implements the specification. In our work, we only consider the
mapping semantics for Port. A port is mapped to a place in the TPNmodels, as shown in Fig. 3.3.2.

Node Type

Port

Notation Mapping Semantics

portName:
ClassifierName

Figure 3.3.2: Mapping Semantics for Port

Allocation of ports. To define themapping semantics for the allocation of ports, we need to continue the
discussion of primitive and structural parts mentioned in the previous section.

In the primitive part, the ports are in fact a semantic synonym for the Input/Output Pin of its inner
behavior models; while in the structural part, they are a data buffer between the composites in CSD. In
the former cases, an allocation semantics should be defined between the ports and the Input/Output Pin.
Similarly, in the later case, the allocation semantics should also be defined, but between the ports on the
container part and the ports on the inner parts. This allocation semantics is specified using the MARTE pro-
file: MARTE::MARTE_Foundations::Alloc::Allocation. Fig. 3.3.3 provides an example of this allocation

66

3.3. COMPOSITE STRUCTURE DIAGRAMMAPPING SEMANTICS

in the primitive part. In its mapping semantics, the input pin is mapped to the same place of its associated
port, and the output pin is mapped to the same TPN place as its associated port.

Part

Port1

Port2

<<AllocatedFrom>>

<<AllocatedFrom>>

Action A

InputPin

OutputPin

Figure 3.3.3: Example of Port Allocation Semantics

3.3.3 Connector

Connectors specify links that enables communication between two or more instances. Each connector may be at-
tached to two or more connectable elements, each representing a set of instances. (page 197 of UML Spec.)

If the type of the connector is omitted, the type is inferred based on the connector. (page 197 of UML Spec.) In
the context of this thesis, the type of the connector is always omitted during the modeling.

A connector ismapped to a transitionwith time constraint [tmin, tmax] and relevant TPN arcs that connect
the TPN places mapped from associated ports or Input/Output Pin (Fig. 3.3.4), where [tmin, tmax] is the
communication time specified by the following MARTE stereotype

MARTE::MARTE_Foundations::GRM::CommunicationMedia::Packet T.

Path Type

Connector

Notation Mapping TPN

[tmin,tmax]

Figure 3.3.4: Mapping Semantics for CSD Connector

Allocation of connection. A connector consists of at least two connector ends, each representing the participa-
tion of instances of the classifiers typing the connectable elements attached to this end. The set of connector ends
is ordered. (page 197 of UML Spec.) Therefore, the connector end can be a part or a port. From a semantic

67

3.4. ACTIVITY DIAGRAMMAPPING SEMANTICS

mapping point of view, there exist three kinds of connections: connection between two end ports, between
two parts, and between one port and one part.

Similar to the allocation of ports, we recommend a modeling convention using the following MARTE

stereotype to specify the allocation semantics between the connector ends:

MARTE::MARTE_Foundations::Alloc::Allocated

Fig. 3.3.5 provides the mapping semantics for these three kinds of connections respectively, where the
ports and pins are mapped to TPN ports connected by the connector transitions.

Part1
Port1

Part2
Port2

<<AllocatedFrom>>

<<Packet T>>

Part2

Action A
InputPin

Part1

Port1 <<Packet T>>

Part2

Action B
InputPinPart1

Action A
OutputPin

<<Packet T>>

<<AllocatedFrom>>

Path Type

Connection
(between
two ports)

Notation Mapping Semantics

Connection
(between

port and part)

Connection
(between
two parts)

[tmin,tmax]

[tmin,tmax]

[tmin,tmax]

<<AllocatedFrom>>

Figure 3.3.5: Mapping Semantics for CSD Connection

3.4 Activity Diagram Mapping Semantics

Activity modeling emphasizes the sequence and conditions for coordinating lower-level behaviors. These are com-
monly called control flow and object flow models. The actions coordinated by activity models can be initiated
because other actions finish executing, because objects and data become available, or because events occur external
to the flow. (page 319 of UML Spec.) The main elements in UML activity diagram (AD) behavior model are
control nodes, actions, objects, and connection elements.

68

3.4. ACTIVITY DIAGRAMMAPPING SEMANTICS

3.4.1 SemanticMapping Pattern

In order to automate the assembly of the TPN elements mapped from UML-AD elements, a generic semantic
pattern (Fig. 3.4.1) is defined. Only the TPN elements (transition, place, arc) in solid line belong to the
mapping result of a given UML-AD element; those in dotted line are themapping results of other connected AD
elements. The TPNmapped fromall the ADnodes except time-trigger actions, object nodes and connections.
A target node could contain a set of transitions represented by T_IN at the beginning to connect with other
predecessor structures. In the same manner, a set of places represented by P_OUT could exist in the end to
connect with its successor structures.

Transition-place structure

T_IN

[0,0]

P_OUT

Figure 3.4.1: Generic Semantic Pattern of Activity Elements

3.4.2 Control Nodes

The mapping of some control nodes is intuitive, as Petri Net was the main inspiration for AD in the early
versions of UML. Thus TPN possesses a similar semantics to the main control nodes (branch, concurrent,
sequence, etc). For the pair of dual control nodes, the mapping results in TPN are also dual.

3.4.2.1 Initial Node& Flow Final Node

Activity Initial node and FlowFinal node are dual nodes for control flow token. An initial node is a
control node at which flow starts when the activity is invoked. (page 405 of UML Spec.) As the starting point of
the diagram, Initial node emits the initial control flow token. An initial node does not have any prede-
cessors.

A flow final node is a final node that terminates a flow. (page 402 of UML Spec.) FlowFinal node destroys
the control flow token of one flow. A flow final node does not have any successors. Themapping semantics
for this pair of nodes are shown in Fig. 3.4.2. Based on themapping pattern introduced in the Section 3.4.1,
initial node does not have any T_IN and flow final node does not have any P_OUT.

69

3.4. ACTIVITY DIAGRAMMAPPING SEMANTICS

Node Type

Initial Node

Notation Mapping TPN

P_OUT

Flow Final

[0,0]

T_IN

Figure 3.4.2: Initial Node & Flow Final Mapping Semantics

3.4.2.2 Activity Final Node

An ActivityFinal node is a final node that stops all flows in an activity. (page 335 of UML Spec.) Activ-

ityFinal node requires the immediate termination of all the activity flows and the destruction of all the
control tokens. From the semantic mapping point of view, this means that all the activity flows should be
terminated once the activity final node receives the control flow token.

In TPN, this ”sudden exit” semantics is implemented using inhibitor arcs. An inhibitor arc enforces the
precondition that the transition may only fire when the place is empty. Thus, when the activity node re-
ceives its token, all the transitions cannot be fired any more. The mapping semantics is thus defined as Fig.
3.4.3: each TPN transition in the activity is connected to the ActivityFinal node using an inhibitor arc.
The decidability issue of the TPNwith inhibitor arcs will be discussed in Section 3.8.

[0,0] P_OUT

T_IN

Each TPN
transition is
linked to an
inhibitor arc.

Node Type

Activity Final

Notation Mapping TPN

...

Figure 3.4.3: Activity Final Node Mapping Semantics

70

3.4. ACTIVITY DIAGRAMMAPPING SEMANTICS

3.4.2.3 ForkNode& JoinNode

Fork and Join are dual nodes for concurrent control flow. A Fork node is a control node that splits a flow
into multiple concurrent flows. The edges coming into and out of a fork node must be either all object flows or all
control flows. (page 403 of UML Spec.) Fork node denotes the beginning of concurrent processing.

A Join node is a control node that synchronizes multiple flows. A join node has one outgoing edge. If a join
node has an incoming object flow, it must have an outgoing object flow, otherwise, it must have an outgoing control
flow. (page 409 of UML Spec.) Join node denotes the end of concurrent processing. All flows going into a
Join node must provide a control token before processing may continue.

In the context of this thesis, we only focus on Fork and Join nodes for the control flows. The mapping
semantics is defined in Fig. 3.4.4.

Node Type

Fork Node

Notation Mapping TPN

Join Node

...

...

[0,0]

T_IN

P_OUT

[0,0]

T_IN

P_OUT

...

...

Figure 3.4.4: Fork Node & Join Node Mapping Semantics

3.4.2.4 DecisionNode&MergeNode

Decision and Merge are dual nodes for branch control. The mapping semantics is defined in Fig. 3.4.5.
A decision node accepts tokens on an incoming edge and presents them to multiple outgoing edges. Which of

the edges is actually traversed depends on the evaluation of the guards on the outgoing edges. (page 386 of UML

71

3.4. ACTIVITY DIAGRAMMAPPING SEMANTICS

Spec.)
The outgoing control flows of a decision node usually include guard conditions which will allow the

control of flow if the guard condition is met. The guard conditions are ignored in the mapping semantics.
The reason is detailed in the following part (page 78).

A merge node is a control node that brings together multiple alternate flows. It is not used to synchronize
concurrent flows but to accept one among several alternate flows. The edges coming into and out of a merge node
must be either all object flows or all control flows. All tokens offered on incoming edges are offered to the outgoing
edge. There is no synchronization of flows or joining of tokens.(page 415 of UML Spec.)

Merge node brings together multiple alternate incoming flows. It is not used to synchronize concurrent
flows but to accept one among several alternate flows but only one token can be accepted. In the TPN of
Merge node, if two incoming flows arrive at the same time, the place P_OUTwill have two tokens. As a Merge
node has a single outgoing edge, which maps to a single TPN arc, this enforces that the two tokens in P_OUT

are consumed one by one. Thus this mapping semantics conforms the standard specification of UML.

T_IN

P_OUT

T_IN

[0,0]

[0,0]

[0,0]

[0,0]

P_OUT

Node Type

Decision Node

Notation Mapping TPN

Merge Node

...

...

...

...

Figure 3.4.5: Decision Node & Merge Node Mapping Semantics

72

3.4. ACTIVITY DIAGRAMMAPPING SEMANTICS

3.4.3 Action

An Action represents a single step within an activity, that is, one that is not further decomposable within the
activity. As a piece of structure within an activitymodel, it is a single discrete element; as a specification of behavior
to be performed, it may invoke a referenced behavior that is arbitrarily complex. (page 335 of UML Spec.)

UML-AD generalizes more than 50 types of concrete actions. Basic actions include those that perform
operation calls, signal sends, and direct behavior invocations. In this thesis, we focus on the abstract action
(page 259 of UML Spec.), all action executions will be executions of specific kinds of actions. When the
action executes, and what its actual inputs are, is determined by the concrete action and the behaviors in
which it is used.

The activity diagram can be used to model low-level behavior for both event-trigger and time-trigger
requests. Except where noted, an action can only begin execution when it has been offered control tokens on all
incoming control flows and all its input pins have been offered object tokens sufficient for their multiplicity. (page
336 of UML Spec.) This semantics is usually the case for event-trigger requests. For time-trigger requests,
the action can begin execution when it has been offered control tokens on all incoming control flows, all its
input pins have been offered object tokens sufficient for their multiplicity, andmoreover it has been offered
the rising edge of the periodic clock.

Cyclic execution is a very common pattern for real-time systems that implement control & command
to interact with the real world. An event-trigger cyclic execution can be simply specified using an event-
trigger action and a loop section. Although the semantics of offset and period can bemodeled using MARTE
profile, the whole time-trigger behavior can be modeled in various ways. In order to ensure a standard
mapping semantics, we decide to extend the original semantics for the action, which focuses on event-
trigger behavior. We extend it by defining a time-trigger semantics using the MARTE profile, and thenmap it
to the TPNmodel. This time-trigger action is very general in reactive systems, and thus can be reused in the
modeling and verification.

3.4.3.1 Event-trigger ActionMapping Semantics

An action begins execution by accepting all the offers of control and object tokens allowed by input pin multi-
plicity. When the execution of an action is complete, it offers control tokens on its outgoing control flows and object
tokens from its output pins. An event-trigger action will not begin execution until all of its input conditions
are satisfied. The completion of the execution of an event-trigger action may enable the execution of a set

73

3.4. ACTIVITY DIAGRAMMAPPING SEMANTICS

of successor nodes and actions that take their inputs from the outputs of the action.
An event-trigger actionmay have sets of incoming and outgoing activity edges that specify control flows

and data flows from and to other nodes. As the sequencing of actions are controlled by control edges and
object flow edges within activities, which carry control and object tokens respectively, an action must con-
tain inner behaviors for waiting/releasing control flow token and receiving/sending object. In addition,
although in this thesis we focus on the verification of software system, it will be useful to keep an interface
for the schedulability analysis on hardware systems in the future research, whichmeans that some resource
states are needed. Therefore, we add the extra behaviors of waiting/releasing resources in the mapping
semantics for an action.

An event-trigger action can thus be defined as a 5-tuple (I,C,T,R,D), in which:

• I refers to identification, which is derived from its behavior semantics. Only two actions with exactly
the same behavior can have the same identification.

• C refers to behavioral context. If an action is reused in different activities, then they should be labeled
with the same identification, and different context name.

• T refers to time measure, e.g. the minimum and maximum execution time.

• R refers to resource usage. The execution of an action will go on only when its required resources are
ready and allocated to it. More precisely, the resource usage is a set of <R,N>, which indicates that
for a given resource type R, the action requiresN of its available instances.

• D refers to data section. It contains both inputs and outputs. The data are transferred by the Input
Pins and Output Pins.

An atomic event-trigger action execution completes without interruption. However, it may stop to wait
for the shared resources or transferred data. Therefore, an action is separated in 5 phases: activity ready,
resource ready, input ready, output released and resource released, which are mapped to 5 TPN states. The map-
ping semantics is illustrated by Fig. 3.4.6.

The input resources are linked to transition Require_Res, and the output resources are linked to tran-
sition Release_Res. The resources are specified using MARTE profile. The details about the resource and
the scheduling analysis are presented in the Section 3.6. The input data-related flows (Input Pin or Ob-
ject Flow) are linked to transition Wait_Input, and the output data-related flows (Output Pin or Object

74

3.4. ACTIVITY DIAGRAMMAPPING SEMANTICS

[0,0] [0,0] [0,0]

T_IN P_OUT

[0,0] [0,0]

Activity
ready

Resource
ready

Input
ready

Output
Released

Resource
released

ENDREQUIRE_RES WAIT_INPUT SEND_OUTPUT RELEASE_RES

[min,max]

Node Type

Action Node
(event-trigger)

Notation Mapping TPN

<<TimedProcessing>>

r Resourcei Input o Output

Figure 3.4.6: Event-trigger Action Mapping Semantics

Flow) are linked to transition Send_Output. The transition Send_Output also represents the execu-
tion of the action after the control flow, resource and input objects are all ready, on which the execution
time is expressed by the time constraint [min,max]. This execution time constraint is specified using the
MARTE profile: MARTE::MARTE_Foundations::Time::TimedProcessing

3.4.3.2 Time-trigger ActionMapping Semantics

For time-trigger requests, the sequencing of actions is controlled by both the control and object flows
and the periodic clock. Before giving its mapping semantics, we first explain the commonly used time-
trigger pattern in Fig. 3.4.7. Precisely, when a new cycle starts, if the input (e.g. Input A) is ready, the
time-trigger actionwill start the execution and generate the output (output A) in the sameway as an event-
trigger action does. Nevertheless, if at this time the input is not yet available (e.g. input B), the time-trigger
action will not wait but just ignore the current cycle, then retry the execution at the next cycle and produce
the output (Output B).

Input A Input BOutput A Output B

cycle cycle cycle t

Figure 3.4.7: Time-trigger Action Pattern

A time-trigger action is defined by a 7-tuple (I,C,T,R,D,Off, P), where:

• The first 5-tuples (I,C,T,R,D) are the same as event-trigger action.

75

3.4. ACTIVITY DIAGRAMMAPPING SEMANTICS

• Off refers to the offset. Before the first period starts, a time-trigger action can hold during the offset
with respect to the local system’s initial time.

• P refers to the period of the action. The action will be activated at the rising edge of the period, and
then its input readiness is checked.

The mapping semantics is illustrated by Fig. 3.4.8. The MARTE profile allows to specify the real-time
semantics relevant to time-trigger systems:

• Offset: MARTE::MARTE_DesignModel::HLAM::RtSpecification::occKind::PeriodicPattern(Phase)

• Execution Time: MARTE::MARTE_Foundations::Time::TimedProcessing

• Period: MARTE::MARTE_DesignModel::HLAM::RtSpecification::occKind::PeriodicPattern(Period)

Suppose that the given time-trigger action will handle n Input Pins and generatemOutput Pins. In the
mapping semantics defined by Fig. 3.4.8, in order to ease the explanation, we assume there are 2 input pins
and 3 output pins.

[O#,O#]

[0,0] [0,0]

OFFSET

Input
Ready

[0,0][0,0]

Hold Wait

[min,max]

OutputPin1

OutputPin2

OutputPin3

IN_1 IN_ALLIN_2

InputPin1 InputPin2

[P,P]

PERIOD

IN_NO

EXEC

Loop Control

Execution

Node Type

Action Node
(time-trigger)

Notation Mapping TPN

<<TimedProcessing>>

<<RtSpecification>>
occKind = PeriodicPattern

(period=[]; phase=[];

occurrences=-1)

Figure 3.4.8: Time-trigger Action Mapping Semantics

The processing steps are as follows:

76

3.4. ACTIVITY DIAGRAMMAPPING SEMANTICS

1. Once it enters into theLoopControl section after the activation of offset, the action enters the place
Hold and will select its execution path when the rising edge of period arrives.

2. The selection is due to the input readiness at themoment: for the given n input pins, there will be 2n

possibility of input readiness. As there are 2 input pins in Fig. 3.4.8, 4 possible paths are constructed:
no input ready (transition In_No), only input1 is ready (transition In_1), only input2 is ready (tran-
sition In_2), both input1 and input2 are ready (transition In_All). The mapping semantics for the
data readiness is obvious. Take the transition In_1 for example. When theplace InputPin1 has tokens
while the place InputPin2 has not, the transition is enabled by the read arc from the place InputPin1
and the inhibitor arc from the place InputPin2, and meanwhile a token is filled in the placeWait.

3. Once the period time P t.u. passes, the transition Period is fired, and the asynchronous behavior
comes back to theHold state.

4. When both input data are ready, the transition In_All is fired, and the place Waint and the place
Input Ready in theExecution section are both filledwith tokens. Itmeans that the processing of data
can start and the activity waits for the processing of next cycle.

5. The processing executes betweenmin andmax t.u. on the transition Exec and produces the output
data.

The scenariowith resource usage for time-trigger actions relies on the sameprinciple. Suppose the given
time-trigger action have n input pinswhile r resourcesmust be available to start the execution. Therewill be
2n+r paths to choose: for each input readiness combination, there will always be a resource readiness com-
bination to associate with. The Execution section will be connected to the transition standing for the path
that both inputs and resources are available. This mapping semantics specifies exactly the same behaviors
as described in the time-trigger action pattern (Fig. 3.4.7).

Time-Triggered systems are easy to encode and do not have state explosion problems. The cost do
not depend on the number of inputs or resources. The semantic mapping itself does not introduce extra
semantics. Suppose in a systems, a time-trigger action relies on 5 types of resource and 10 types of input
data. In each period, if one of them is not ready, the action will not enter into the Input Ready state.

77

3.4. ACTIVITY DIAGRAMMAPPING SEMANTICS

3.4.4 Object Nodes

An object node is an abstract activity node that is part of defining object flow in an activity. An object node is an
activity node that indicates an instance of a particular classifier, possibly in a particular state, may be available at
a particular point in the activity. Object nodes can be used in a variety of ways, depending on where objects are
flowing from and to, as described in the semantics sub clause. (page 421 of UML Spec.)

There are 5 types of object nodes in the activity diagram: pin nodes (InputPin and OutputPin), Cen-
tralBuffer node, DataStore node, ActivityParameter node, and Expansion node. We provide mapping
semantics for the pin, CentralBuffer and DataStore nodes. The other two are related to the structural
organization, but not the behavior. They will not affect the verification of real-time properties.

The most important aspect for object nodes semantic mapping is to keep the object type dependency
and the object values in the TPN. To keep the object type dependency, each type of object can be considered
as a variable in the memory and represented by a TPN place. However, if the object values are also kept, it
will be very expensive to generate the state class graph during the model checking. This work ignores the
object values in the object nodes, which is reasonable for the verification of real-time properties. This issue
is detailed in the following part, then we provide the mapping semantics for the upper bound of object
node, as it is a common feature for all types of object nodes, at last we provide the mapping semantics for
each type of object nodes.

3.4.4.1 Discussion onObject Value Issue

Each type of object can be considered as a variable in the memory and represented by a TPN place. Ide-
ally, the upper bound and the object values of object nodes are mapped using tts variables (tts has been
presented in the section 2.2 of Chapter 2). For example, if the upper bound of an object node isN, we can
define N variables to represent each value. During the model checking, the N variables will generate 2N

markings, which will lead to a combinatorial explosion problem. Therefore, it is very expensive to keep the
object values during model checking.

On the other hand, this issue is not a concern in the verification of the architecture design. The object
values can be used as input of an action or an activity to compute the output value, or be used to compute
the guards for the outgoing flows. The first one is the concern in the verification of detailed design in the
V-model, not the architectural design. In the second case, the object value is not a concern either. We
illustrate it using the decision node as an example. In the semantic mapping of decision node (page 72),

78

3.4. ACTIVITY DIAGRAMMAPPING SEMANTICS

we have ignored the guard conditions. One of the principles of model checking is to check all the possible
execution traces in amodel. Theguard conditions limit the execution traces relyingonobject values. Only if
all the possible values are available, the execution traces will be complete. The guard conditions are ignored
to make sure that all the possible execution traces can be checked. The only side-effect is that it may cause
false alarms. This compromise is a must for the model checking techniques. Otherwise, the combinatorial
explosion problem is easily met.

3.4.4.2 Upper Bound of Object Node

Theupper bound of an object node is the maximum number of tokens allowed in the node. Objects cannot flow
into the node if the upper bound is reached. (page 422 of UML Spec.) The upper bound is a common feature
in all types of object nodes. By default, the upper bound value is not defined in UML. This means that the
object node is unbounded. We define its mapping semantics and use it in the mapping semantics for the
object nodes.

Here we need to explicitly define the meaning of ”object cannot flow into the node”. If the object node
works like a buffer, itmeans that the newobject value is blocked and thus cannot enter into the object node.
Otherwise, if the object nodeworks like a store, the new object value should enter into the object node and
replace the old one. Thus, we definemapping semantics for upper bound of buffer-like and store-like object
nodes respectively in Fig. 3.4.9.

[0,0]

Nb+1

Nb

Nb+1
pobj

Treset

Nb

(a) Bu'er-like Object Node (b) Store-like Object Node

pobj

Nb+1

Tout

Figure 3.4.9: Upper Bound Mapping Semantics

Assume the upper bound isNb. The place Pobj represents the object node. For buffer-like object node
(Fig. 3.4.9 (a)), an inhibitor arc between Pobj and its incoming transition will limit the incoming tokens.
Once Pobj accumulatesNb tokens, the inhibitor arc will prevent the (Nb + 1)th token to enter in Pobj, until
some tokens in Pobj are consumed by the outgoing transitions.

For store-like object node (Fig. 3.4.9 (b)), the (Nb + 1)th token should be allowed to enter into Pobj,

79

3.4. ACTIVITY DIAGRAMMAPPING SEMANTICS

thus the weight on the inhibitor arc is Nb + 1, instead of Nb. However, this (Nb + 1)th token will replace
the Nth

b token already in the store, thus the transition Treset and its incoming and outgoing arcs are added.
This structure ensures that once Pobj accumulatesNb+ 1 tokens, it is immediately reduced toNb. This reset
function does not take any time. A potential firing conflict might occur between the transitions Tout and
Treset when both of them are enabled. According to the feature of store-like object nodes, the Tout should
have the priority. This can be solved by adding a priority arc between Treset and Tout. However, the TPN

with priority arcs does not support the generation of state class graph with markings, and thus will largely
increase the size of state space. We do not recommend the use of priority arcs. The priority between Treset

and Tout in fact impacts the values of the object read by Tout. As the values of object nodes are ignored in
this work, this priority can also be ignored here.

The InputPin and OutputPinwork in both buffer-like and store-likemanner. The CentralBuffer node
works in the buffer-like manner. The DataStore node works in the store-like manner. We will detail their
use in the following sections.

3.4.4.3 Input Pin&Output Pin

A pin is a typed element andmultiplicity element that provides values to actions and accepts result values from
them. (page 287 of UML Spec.) Basically, a pin is mapped to a TPN place. Then the multiplicity and upper
bound of tokens should be considered.

Input pins are object nodes that receive values fromother actions through object flows. (page 406of UMLSpec.)
Anaction cannot start execution if an input pin has fewer values than the lowermultiplicity. The uppermultiplicity
determines the maximum number of values that can be consumed by a single execution of the action. (page 279
of UML Spec.) In the context of this thesis, we limit the modeling capacity by making the lower and upper
multiplicity have equal value.

80

3.4. ACTIVITY DIAGRAMMAPPING SEMANTICS

Node Type

InputPin

Notation Mapping TPN

m
Nb

(a) Bu'er-like (b) Store-like

[0,0]

Nb+1

Nb

Nb+1
pobj

m

Tout

Figure 3.4.10: Input Pin Mapping Semantics

Fig. 3.4.10 shows the mapping semantics for InputPin. If the InputPin is bounded byNb, both buffer-
like and store-like upper boundedmapping semantics are defined. Themultiplicity ismapped to theweight
m on the normal arc between Pobj and Tout.

Output pins are object nodes that deliver values to other actions through object flows. (page 425of UMLSpec.)
For each execution, an action cannot terminate itself unless it can put at least as many values on its output pins as
required by the lower multiplicity on those pins. The values are actually put in the pins once the action completes.
Values that may remain on the output pins from previous executions are not included in meeting this minimum
multiplicity requirement. (page 287 of UML Spec.)

Node Type

OutputPin

Notation Mapping TPN

m
Nb

(a) Bu'er-like (b) Store-like

[0,0]

Nb+1

Nb

Nb+1
pobj

m

Tout

Figure 3.4.11: Output Pin Mapping Semantics

Fig. 3.4.11 shows the mapping semantics for OutputPin. If the OutputPin is bounded by Nb, both
buffer-like and store-like upper bounded mapping semantics are defined.

3.4.4.4 Central Buffer Node

A central buffer node is an object node for managing flows from multiple sources and destinations. It accepts
tokens from upstream object nodes and passes them along to downstream object nodes. Central buffer nodes give

81

3.4. ACTIVITY DIAGRAMMAPPING SEMANTICS

additional support for queuing and competition between flowing objects. (page 377 of UML Spec.)
The behavior of CentralBuffer is like a transient storage. Its mapping semantics is defined in Fig.

3.4.12. If the InputPin is bounded by Nb, the upper bound mapping semantics is the same as the buffer-
like semantics defined in Fig. 3.4.9 (a). The CentralBuffer nodes do not have a multiplicity feature. The
incoming and outgoing transitions of the object place Pobj are the transitionsmapped from the object flows
(see object flow mapping semantics in Section 3.4.5).

A1

A2

A3

A4

«centralBu+er»

Node Type

CentralBu1er

Notation Mapping TPN

p1:Obj

p2:Obj

p3:Obj

p4:Obj

p1

p2

p3

p4

Nb

Nb

Pobj

Figure 3.4.12: Central Buffer Mapping Semantics

3.4.4.5 DataStore Node

A data store node is a central buffer node for non-transient information. A data store keeps all tokens that
enter it, copying them when they are chosen to move downstream. Incoming tokens containing a particular object
replace any tokens in the object node containing that object. (page 385 of UML Spec.)

The mapping semantics is defined in Fig. 3.4.13. If the InputPin is bounded by Nb, the upper bound
mapping semantics is the same as the store-like semantics defined in Fig. 3.4.9 (b). The DataStore nodes
do not have a multiplicity feature either.

The tokens flowing out of DataStore nodes are copies of tokens that remain in the DataStore node, so
the values behave as if they are being read from the store. Here the ”read object” semantics is defined using
the read arc. This mapping semantics will guarantee that data persists in the current execution of activity,
because the tokens in the place Pobj will not be consumed through the read arc.

A state explosion issuemaybe causedby the DataStorenode. If thedesignmodel doesnotmake explicit
the mechanism of disabling the use of DataStore, the data in it will be read infinitely many times, which
leads to an unbounded error, i.e. the places P3 and P4 in Fig. 3.4.13 may become unbounded. Therefore,

82

3.4. ACTIVITY DIAGRAMMAPPING SEMANTICS

A1

A2

A3

A4

«dataStore»

Node Type

DataStore

Notation Mapping TPN

p1:Obj

p2:Obj

p3:Obj

p4:Obj

p1

p2

p3

p4

Pobj

[0,0]

Nb+1 Nb

Nb+1

Nb+1

Figure 3.4.13: DataStore Mapping Semantics

when the UMLmodel is designed, we need to be careful to use the DataStore. The mechanism for enabling
and disabling the DataStore is a must to ensure the system is bounded.

3.4.5 Connections

A connection can be either control flow or object flow.
A control flow is an edge that starts an activity node after the previous one is finished. Objects and data cannot

pass along a control flow edge. Tokens offered by the source node are all offered to the target node. (page 382 of
UML Spec.) ControlFlow shows the flow of control from one node to the next. Control flow is mapped to
an arc from the place POUT of its source to the transition TIN of its target (Fig. 3.4.14).

Path Type

ContorlFlow

Notation Mapping TPN

Pout Tin

Figure 3.4.14: Control Flow Mapping Semantics

An object flow is an activity edge that can have objects or data passing along it. (page 416 of UML Spec.)
The mapping semantics of object flow is defined in Fig. 3.4.15. An object flow is mapped to a transition
and its incoming and outgoing arcs. The following MARTE stereotype is used to specify the communica-
tion time of object flow: MARTE::MARTE_Foundations::GRM::CommunicationMedia::Packet T.This time
specification is mapped to the time constraint on the TPN transition.

83

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

[min,max]

Path Type

ObjectFlow

Notation Mapping TPN

Figure 3.4.15: Object Flow Mapping Semantics

3.5 State Machine Diagram Mapping Semantics

The State Machine package defines a set of concepts that can be used for modeling discrete behavior through finite
state- transition systems. In addition to expressing the behavior of a part of the system, state machines can also
be used to express the usage protocol of part of a system. These two kinds of state machines are referred to here
as behavioral state machines and protocol state machines. Behavioral state machine can be used to model the
behavior of individual entities (e.g., class instances). The state machine formalism described in this sub clause is
an object-based variant of Harel statecharts [Har87]. Protocol state machines are used to express usage protocols.
Protocol state machines express the legal transitions that a classifier can trigger. (page 551 of UML Spec.)

Protocol state machine is generally used to specify the classifier’s behavior along with object’s lifecycle
or protocol usage. It specifieswhich operations of the classifier can be called inwhich state andunderwhich
condition, thus specifying the allowed call sequences on the classifier’s operations. Protocol state machine
can be simply considered as a specialization of behavioral state machine. Therefore in the context of this
thesis, we only provide the mapping semantics for behavioral state machine, and all state machine (SMD)
wording refers in fact to the behavioral state machine.

State machines can be used to express the behavior of part of a system. Behavior is modeled as a traversal of a
graph of state nodes interconnected by one or more joined transition arcs that are triggered by the dispatching of
series of (event) occurrences. During this traversal, the state machine executes a series of activities associated with
various elements of the state machine. (page 589 of UML Spec.)

Semantically speaking, the SMD defined in UML is an extension of Mealy machines [Mea55] and Moore
machines [Moo56] that allows actions both on transition and state entry/exit. The activities can eventually
depend on several resources to enable its execution. To define the mapping semantics for SMD, we first give
a quick overview of the elements in SMD:

• Vertex: A vertex is an abstraction of a node in a state machine graph. In general, it can be the source or

84

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

destination of any number of transitions. (page 608 of UML Spec.)

• Transition: A transition is a directed relationship between a source vertex and a target vertex. (page 597
of UML Spec.)

• State: A state models a situation during which some (usually implicit) invariant condition holds. Three
kinds of states are distinguished: simple state, composite state and submachine state. (page 575 of UML
Spec.)

• Pseudostate: A pseudostate is an abstraction that encompasses different types of transient vertices in the
state machine graph. (page 565 of UML Spec.) According to specific semantics, the following kinds
of pseudostates are distinguished: initial, deep history, shallow history, join, fork, junction, choice,
entry/exit point and terminate pseudostates.

• Final state: A special kind of state signifying that the enclosing region is completed. (page 557 of UML
Spec.)

• Region: A region is an orthogonal part of either a composite state or a state machine. It contains states
and transitions. (page 573 of UML Spec.)

Event pool and run-to-completion: The event pool for the state machine is the event pool of the instance
according to the behavioral context classifier. The semantics of event occurrence processing is based on the run-
to-completion (RTC) assumption, interpreted as run-to-completion processing. The processing of a single event
occurrence by a state machine is known as a run-to-completion step. (page 590 of UML Spec.) During semantic
mapping, the event pool and the RTC issues should be explicitly specified.

Flattening and mapping semantics: Hierarchically nested states and orthogonal regions do not extend
the semantic expressiveness. They help the designer in the writing of sophisticated models for complex
systems. Other evolutions with respect to classical state diagram introduce some common elements from
activity diagram, like fork/join, choice and junction. This is originally aimed to allow designer to model
synchronization and control flow between SMDs in a more intuitive way. Without them, these behaviors
can only be modeled as a group of emit/received events. Nevertheless, these pseudostates do not either
extend the semantic expressiveness of SMD.

85

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

Flattening word is used when the mapping requires converting a nested SMD to an unnested SMD, which
will ease the mapping afterwards. The final target is to have a SMD with only simple states, final states, tran-
sitions and unnested pseudostates.

Mapping word is only used for translating an unnested SMDmodel to a TPNmodel.

In this section, we first explicit the semantics of event pool (Section 3.5.1), then provides some general
semantics for states in Section 3.5.2, then provide the flattening semantics (Section 3.5.3), at last provide
the mapping semantics (Section 3.5.4).

3.5.1 Event Processing&Event Pool

Before presenting the flattening and mapping method, some important event related semantics must be
clarified: the meaning of events, the processing method of events, and the event pool in state machines.

3.5.1.1 Event & Event Type

The detection of an (event) occurrence by an object may cause a behavioral response. For example, a state
machine may transition to a new state upon the detection of the occurrence of an event specified by a trigger owned
by the state machine, or an activity may be enabled upon the receipt of a message. When an event occurrence is
recognized by an object, it may have an immediate effect or the event may be saved in an event pool and have a
later effect when it is matched by a trigger specified for a behavior. (page 454 of UML Spec.)

Without specific priority, there are two categories of events defined in the system: external event and
internal event. Internal events are local ones which are emitted explicitly in the system, either from the same
statemachine instance, or from an other instance of the same statemachine, or from an instance of a differ-
ent state machine. External events are events whose reception target is defined in the system specification,
but not its emission source. For example, in an aircraft system (Fig. 3.5.1), the radio system’s job is to gen-
erate a call received event to the onboard computer when it receives a phone call from outside. In this case,
the phone call is an external event and the call received is an internal event.

It is important to distinguish these two event types because for a fixed period, external events are con-
sidered as infinite in terms of occurrence and without any information of arrival time. The internal events,
however, has a finite occurrence bound because they are generated by a finite system. In the context of this
thesis, we suppose the occurrence of both system events and environment events is finite.

86

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

Aircra& System

Environment

Radio

System

Onboard

Computer

Call receivedPhone call

Figure 3.5.1: Event Categories Example: System & Environment

3.5.1.2 Event Processing

Toclarify howevents are processed in statemachines, we should first answer the following six questions:

• Q1: How an event occurrence is processed between concurrent state machines? Can this event oc-
currence be processed simultaneously by these state machines?

• Q2: How an event occurrence is processed between concurrent states in orthogonal regions? Can
this event occurrence be processed simultaneously by these regions?

• Q3: How an event occurrence is processed between concurrent states in the same region? Can this
event occurrence be processed simultaneously by these states?

• Q4: How successive event occurrences are processed? Can an event occurrence be processed con-
currently with the previous event occurrence?

• Q5: How an event occurrence is processed within a stable state in a state machine? Can the state
machine pass between two states without finishing the processing of an event occurrence?

• Q6: Howaneventoccurrence is processedby twoconflict transitionsoriginating fromthe same state?
Can both transitions fire simultaneously?

The UML Specification 2.4.1 provides explicit semantics for the questions Q2 − Q6, while the question Q1
is not explicitly defined.

Answers for Q2 and Q3: An event occurrence can be processed simultaneously by the orthogonal
regions, but it cannot be processed simultaneously by the states in the same regions. In the presence of
orthogonal regions it is possible to fire multiple transitions as a result of the same event occurrence— as many as
one transition in each region in the current state configuration. In case where one or more transitions are enabled,

87

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

the state machine selects a subset and fires them. Which of the enabled transitions actually fire is determined by
the transition selection algorithm described below. The order in which selected transitions fire is not defined. Each
orthogonal region in the active state configuration that is not decomposed into orthogonal regions (i.e., “bottom-
level” region) can fire atmost one transition as a result of the current event occurrence. When all orthogonal regions
have finished executing the transition, the current event occurrence is fully consumed, and the run-to-completion
step is completed. (page 591 of UML Spec.)

Answer or Q4: Anevent occurrence cannot be processed concurrentlywith the previous event oc-
currence.The semantics of event occurrence processing is based on the run-to-completion assumption, interpreted
as run-to-completion processing. Run-to-completion processing means that an event occurrence can only be taken
from the pool and dispatched if the processing of the previous current occurrence is fully completed. (page 590 of
UML Spec.)

Answer for Q5: Thestatemachine cannot pass between two stateswithout finishing the processing
of an event occurrence. The processing of a single event occurrence by a state machine is known as a run-to-
completion step. Before commencing on a run-to-completion step, a state machine is in a stable state configuration
with all entry/exit/internal activities (but not necessarily state (do) activities) completed. The same conditions
apply after the run-to-completion step is completed. Thus, an event occurrence will never be processed while the
statemachine is in some intermediate and inconsistent situation. The run-to-completion step is the passage between
two state configurations of the state machine. (page 590 of UML Spec.)

Answer for Q6: Only one transition can be fired when two transitions originating from the same
states are conflict. It was already noted that it is possible for more than one transition to be enabled within a
state machine. If that happens, then such transitions may be in conflict with each other. For example, consider the
case of two transitions originating from the same state, triggered by the same event, but with different guards. If
that event occurs and both guard conditions are true, then only one transition will fire. In other words, in case of
conflicting transitions, only one of them will fire in a single run-to-completion step. (page 591 of UML Spec.)

For the Q1, as the UML specification does not explicitly define an event occurrence can be processed si-
multaneously by two concurrent state machines, or can only be processed by one of the state machines in
conflict, we should suppose both cases are possible. We discuss these two cases in the following section for
event pool.

88

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

3.5.1.3 Event Pool

The event pool for the state machine is the event pool of the instance according to the behavior context classifier,
or the classifier owning the behavioral feature for which the state machine is a method. (page 590 of UML Spec.)

We provide the explicit semantics for the above two kinds of event pool in Fig. 3.5.2. In (a), each state
machine instance has an event pool, while in (b), the classifier owning the state machines has a universal
event pool.

State Machine A

Event Pool A

dequeue

Internal

events

Events Dispatcher

dispatch

State Machine B

Event Pool B

dequeue

Internal

events

dispatch

System

External events

State Machine A

Universal Event Pool

State Machine B

System

External events

(a) (b)

dequeue dequeueInternal

events

Internal

events

Event b Queue
Event Y Pool

Event X PoolP P

Q Q

Figure 3.5.2: Event Pool Model

According to the above analysis for the question Q1, both event pool semantics in (a) and (b) are ex-
pected tobe able tohandle bothpossible cases: an event occurrence canbeprocessed either simultaneously
by two concurrent state machine or only by one of the state machine in conflict. However, the semantics
in (a) can only handle the former one, while the semantics in (b) can handle both, as analysis below.

The semantics in (a) signifies that each state machine instance (not including submachine state) is dy-
namically equipped with an event pool during execution. All events, no matter external events or internal
events, will first be dispatched globally via the system’s events dispatcher, then stored in this event pool.
The events will be consumed sequentially by state machines. This semantics can handle the case such that
state machines can process an event occurrence simultaneously. For example, an event occurrence of type
P is sent to the system with concurrent state machine A and state machine B. Pwill be multi-dispatched to

89

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

both A and B. If both A and B are waiting for P, their transitions can fire simultaneously at the moment of
reception. However, when several state machines compete for the same event occurrence, this semantics
will not work. For example, when P is sent to A and B. P is not consumed neither by A nor by B for the
given instant. The dispatcher does not know P should be dispatched to which event pool. The dispatcher
must make a decision to multi-dispatch P to both A and B, otherwise, the whole system is blocked. Then,
the conflict semantics between A and B is lost.

The semantics in (b) can solve this problem. In (b), the systemhas only one universal event pool, where
all the events are pending to be consumed. If there is competition, the dequeue mechanism will decide
randomly which state machine will get the event instance at this given instant. The universal event pool
cannot be really a unique pool at system-level, because different state machine can react to the events in a
concurrent way. State machineA is expecting an event instance of type P, and state machine B is expecting
one of typeQ; event instance P is pending beforeQ. If there is only one event pool, B cannot start handling
Q until A dequeues P, which violates the original concurrent semantics. The universal event pool is in fact
a set of event pool which are instantiated by event type.

Capacity limit of event pool. Another important implicit semantics of event pools is that they have a
limited capacity. Sometimes an event arrives at an inconvenient time, when state machines are in a state
that cannot handle this event. Inmany cases, the nature of the event is such that it can be postponed, within
limits, until the system enters another state, in which it is better prepared to handle the original event. This
limits is the fundamental guarantee for a real finite state system tobehave as expectedwithout poolmemory
explosion. Once the capacity is reached, either the new appended event will be ignored, or the old pending
events will be dropped off. All kinds of clearance mechanisms are possible in real system design. In the
context of this thesis, two general strategy are discussed in the section 3.5.4.5: time out and size out. But for
the verification purpose, we suppose the event instances of the given system is restricted to the capacity of
event pool, otherwise, it is considered as a design error.

3.5.2 State inGeneral

As some flattening semantics is based on the inner behaviors of states, before discussing the flattening se-
mantics, we provide some general semantics for states.
Active States A state can be active or inactive during execution. A state becomes active when it is entered as a

90

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

result of some transition, and becomes inactive if it is exited as a result of a transition. A state can be exited and
entered as a result of the same transition (e.g., self transition). (page 579 of UML Spec.)

StateEntryandExitWhenever a state is entered, it executes its entry behavior before any other action is executed.
Conversely, whenever a state is exited, it executes its exit behavior as the final step prior to leaving the state. (page
579 of UML Spec.)

Behavior in State (do-activity)The behavior represents the execution of a behavior, that occurs while the state
machine is in the corresponding state. The behavior starts executing upon entering the state, following the entry
behavior. If the behavior completes while the state is still active, it raises a completion event. In case where there
is an outgoing completion transition (see below) the state will be exited. Upon exit, the behavior is terminated
before the exit behavior is executed. If the state is exited as a result of the firing of an outgoing transition before the
completion of the behavior, the behavior is aborted prior to its completion. (page 579 of UML Spec.)

3.5.3 Flattening Semantics

The purpose of flattening is to convert a nested SMD to an unnested SMD, and therefore ease the mapping
afterwards. The final target is to have a SMD with only simple states, final states, transitions (local and in-
ternal) and unnested pseudostates. During the flattening, not only will the topology change, but also the
actions associatedwith original states and transitionswill bemodified. Thenested SMD elements handled by
the flattening include: regions, states (composite state and submachine state), external transitions, nested
pseudostates (entry/exit point, shallow/deep history, and fork/join). We start discussing from the com-
posite state, which exhibitsmore complex semantics than the other elements. The key to flattening a nested
structure is todefine the entering and exiting semantics from the topmost vertices to the innermost vertices.

A composite state either contains one region or is decomposed into two ormore orthogonal regions. Each region
has a set of mutually exclusive disjoint sub-vertices and a set of transitions. A given state may only be decomposed
in one of these twoways. A composite state is either a simple composite state (with just one region) or an orthogonal
state (with more than one region). (page 576 of UML Spec.) We first discuss the flattening semantics for the
simple composite state, and then discuss the flattening semantics for the orthogonal composite state.

91

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

3.5.3.1 Simple Composite State

A substate is defined as the state enclosed within a region of a composite state. When a substate does
not contain any other state, it is called direct substate; otherwise, it is referred to as an indirect substate. A
semantic variation point about the default entry rule is defined in the specification of UML.

Semantic variationpoint (default entry rule) If a transition terminates on an enclosing state and the enclosed
regions do not have an initial pseudostate, the interpretation of this situation is a semantic variation point. In some
interpretations, this is considered an ill-formed model. That is, in those cases the initial pseudostate is mandatory.

An alternative interpretation allows this situation and it means that, when such a transition is taken, the state
machine stays in the composite state, without entering any of the regions or their substates. (page 576 of UML
Spec.)

In the context of this thesis, we use the former interpretation: the initial pseudostate is mandatory in
such cases.
Entering a non-orthogonal composite stateThe specification of UML differentiates the following cases:

• Default entryGraphically, this is indicated by an incoming transition that terminates on the outside edge
of the composite state. In this case, the default entry rule is applied (see Semantic variation point (default
entry rule)). If there is a guard on the trigger of the transition, it must be enabled (true). (A disabled
initial transition is an ill-defined execution state and its handling is not defined.) The entry behavior of
the composite state is executed before the behavior associated with the initial transition. (page 580 of UML
Spec.)

The flattening semantics is defined as Fig. 3.5.3. The default entry rule is applied: the outside state
A transits to the outgoing state of the initial pseudostate (substate B).

A
B

A B
R1

Nested Machine

Simple
Composite State

Default Entry
(with Initial node)

Notation Fla@ening Semantics

Composite State

a a

Figure 3.5.3: Default Entry Flattening Semantics for Simple Composite State

92

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

• Explicit entry If the transition goes to a substate of the composite state, then that substate becomes active
and its entry code is executed after the execution of the entry code of the composite state. This rule applies
recursively if the transition terminates on a transitively nested substate. (page 580 of UML Spec.)

The flattening semantics is defined as Fig. 3.5.4. As the transition from stateA goes to the substateB,
then B becomes active, and the entry code of the composite state is executed before the entry code
of B.

A B
A BR1

Nested Machine

Simple

Composite State

Explicit Entry

Notation Fla:ening Semantics

Composite State

entry entryB

entry; entryB
b

b

Figure 3.5.4: Explicit Entry Flattening Semantics for Simple Composite State

• Shallow history entry If the transition terminates on a shallow history pseudostate, the active substate
becomes the most recently active substate prior to this entry, unless the most recently active substate is the
final state or if this is the first entry into this state. In the latter two cases, the default history state is entered.
This is the substate that is target of the transition originating from the history pseudostate. (If no such
transition is specified, the situation is ill-defined and its handling is not defined.) If the active substate
determined by history is a composite state, then it proceeds with its default entry. (page 580 of UML Spec.)

Since shallow history is a reference to the most recent substate, the flattening algorithm must have
a mechanism to remember which is the most recent substate. As illustrated in Fig. 3.5.5, in the flat-
tened version, the shallow history does not exist any more. It is replaced by some newly defined
guards and actions on the associated transitions. More precisely, a variable last active (LAST) under
the namespace of the given composite hierarchy is declared for this composite state, and all the in-
ner transitions which will cause the substate to be activated/deactivated will have a supplementary
action: record which substate is the most recent activated. The default value of the variable LAST
when no substate has ever been activated is to use the initial pseudostate. All incoming and outgoing
transitions of the shallow history will be copied and linked to each substate, with a supplementary
guard defined: only when the target state is themost recent activated state will the guard be enabled.

93

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

All these guard conditions are mutually exclusive, thus at any time at most only one of these incom-
ing/outgoing copies will be able to fire. The guard on the outgoing copies are optional as they will
always be evaluated as true.

Nested Machine

Simple

Composite State

Shallow History

entry

Notation Fla8ening Semantics

H B

A

Composite State

R1

C BA C
LAST == 1

LAST == 2

LAST := 2

D

D
LAST == 1 LAST == 2

Figure 3.5.5: Shallow History Entry Flattening Semantics for Simple Composite State

• Deep history entryThe rule here is the same as for shallow history except that the rule is applied recur-
sively to all levels in the active state configuration below this one. (page 580 of UML Spec.)

A deep history is like the shallow history with an extended behavior that can remember any level of
nesting of the composite states. However, as the flattening process will run in a bottom-up way, it
means that for each deep history, all its sibling substates have already been flattened, which makes it
semantically and structurally equal to a shallow history. The only difference is that when doing the
transition copy, shallow history can only cover the flattened substates originally at the same level,
while deep history can cover all of them without restriction.

The values of variable LAST is from 1 to n, where n is the sum of direct substate numbers in the
enclosing composite states configured by the deep history pseudostate.

• Entry point entry If a transition enters a composite state through an entry point pseudostate, then the
entry behavior is executed before the action associatedwith the internal transition emanating from the entry
point. (page 580 of UML Spec.)

The flattening semantics is defined as Fig. 3.5.6. For a transition entering a composite state, no mat-
ter if it directly links to the composite state or bypasses through entry point, the entry action of the
composite state must always be executed. Compared to the direct connection, the extra semantics
introduced by the entry point is the trigger on the outgoing transition of the entry point. To keep

94

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

this trigger, we define a special state Sentry to represent the entry point. Sentry has an entry behavior
(the entry behavior of the composite state), but no do or exit behaviors.

BA
BA

entry

Composite State

Nested Machine

Simple

Composite State

Entry point entry

Notation Fla7ening Semantics

entryB

R1
 entryB

Sentrya b
a b

entry

Figure 3.5.6: Entry Point Entry Flattening Semantics for Simple Composite State

Exiting a non-orthogonal composite state
When exiting from a composite state, the active substate is exited recursively. This means that the exit activities

are executed in sequence starting with the innermost active state in the current state configuration. (page 581 of
UML Spec.) According to the UML specification, the following exiting cases are differentiated:

• Default exit As the UML specification does not define default exit rule, by default it is considered a
well-formed model without explicit exiting notation. The default exit semantics is defined as Fig.
3.5.7. The outgoing transition of the composite state is copied as the outgoing transition of each
inner substates except the initial pseudostate.

CA A B

R1

Nested Machine

Simple

Composite State

Default Exit

Notation Fla;ening Semantics

Composite State

B C
c

c

c

Figure 3.5.7: Default Exit Flattening Semantics for Simple Composite State

• Explicit exit If the transition goes to the outer state of the composite state, then that outer state
becomes active and the exit code of the substate is executed before the execution of the exit code of
the composite state. The flattening semantics is defined as Fig. 3.5.8.

95

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

BA
A B

R1

Nested Machine

Simple

Composite State

Explicit Exit

Notation Fla8ening Semantics

Composite State

exit
exitA

exitA;exit
b

b

Figure 3.5.8: Explicit Exit Flattening Semantics for Simple Composite State

• Shallow history & deep history exitThe shallow history and deep history exit have been defined
in the entry parts.

• Exitpoint exit If, in a composite state, the exit occurs through an exit point pseudostate the exit behavior of
the state is executed after the behavior associated with the transition incoming to the exit point. (page 581
of UML Spec.) An exit point pseudostate is an exit point of a state machine or composite state. Entering
an exit point within any region of the composite state or state machine referenced by a submachine state
implies the exit of this composite state or submachine state and the triggering of the transition that has this
exit point as source in the state machine enclosing the submachine or composite state. (page 567 of UML
Spec.) The flattening semantics is defined as Fig. 3.5.9.

A B
BA

exit

Composite State

Nested Machine

Simple

Composite State

Exit point exit

Notation Fla6ening Semantics

exit
A

R1 a b Sexit
a b

exitA exit

Figure 3.5.9: Exit Point Exit Flattening Semantics for Simple Composite State

Entry point and Exit point are dual semantic elements to describe compositional event handling
border. Similar to entry pseudostate, a special state Sexit is defined to represent the exit point. Sexit
has an exit behavior (the exit behavior of the composite state), but no entry or do behaviors.

• Final state exit A special kind of state signifying that the enclosing region is completed. If the enclosing
region is directly contained in a state machine and all other regions in the state machine also are completed,

96

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

then it means that the entire state machine is completed. (page 557 of UML Spec.)

The flattening semantics is defined as Fig. 3.5.10. To keep the trigger on the incoming transition
of the final state, a special state Sfinal is defined to represent it. Sfinal has an exit behavior (the exit
behavior of the composite state), but no entry or do behaviors.

A
B

Composite State

R1 BA

Nested Machine

Simple

Composite State

Final state exit

Notation Fla7ening Semantics

exit
A

exit

a
b a b

exitA

S*nal

exit

Figure 3.5.10: Final State Exit Flattening Semantics for Simple Composite State

Flatteningsemantics for theactionsandguardson transitions In the aboveflattening semantics, if there
are actions defined on the outgoing transition of inner exit state, they will be sequentially combined to the
target flattened transition. The guards will also be integrated by conjunction.

3.5.3.2 Orthogonal Composite State

Regions address the modeling of concurrency. The word orthogonal implies that each region in the
composite state is executed concurrently. When several sub-systems are executed concurrently, thenumber
of state in the whole system is the product of the number of state in each concurrent sub-system. This
leads to a combinatorial increase in the number of state of the associated state machine. This feature can be
considered as a redundant semanticmodeling element taking the ideaof Part from the composite structure
diagram, except that its scope is inside the state machine. Although the orthogonal regions do not add any
semantic expressiveness to classic state diagrams, its flattening semantics requires some details.

We propose a flattening semantics for orthogonal composite states using Fork & Join pseudostates. Ac-
cording to the UML specification, the fork and join pseudostates can only be used in orthogonal regions. For
the flattening purpose, we need to allow them to be use in the non-orthogonal structure. This adaption
does not change the behavdonk semantics of the state machine.
Entering an orthogonal composite stateWhenever an orthogonal composite state is entered, each one of its
orthogonal regions is also entered, either by default or explicitly. If the transition terminates on the edge of the

97

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

composite state, then all the regions are entered using default entry. If the transition explicitly enters one or more
regions (in case of a fork), these regions are entered explicitly and the others by default. (page 581 of UML Spec.)

We provide the flattening semantics for the default and explicit entries.

• Default entry By default, each concurrent region starts executing from the initial pseudostates. In-
stead of linking the incoming transition to the outgoing states of the initial pseudostate, a fork pseu-
dostate is created as a delegate to maintain the concurrent semantics. The flattening semantics is
defined as Fig. 3.5.11, where the outgoing transition of state A links to the fork pseudostate. Com-
pletion transitions are created, called anonymous transitions. They have no defined event triggering
them. This means that such transition will immediately fire when a state being the source of a com-
pletion transition becomes active. These anonymous transitions link the fork nodes to the target
substates of the initial nodes. All the entry/do/exit behaviors of substates and sub transitions are
kept as-is.

R1

Composite State

A

D E

B C
Fork

A

B Cc

b

D Ee

dR2

b

a

d

e

Nested Machine

Orthogonal

Composite State

Default Entry

Notation Fla?ening Semantics

a
a

Figure 3.5.11: Default Entry Flattening Semantics for Orthogonal Composite State

• Explicit entry If the transitions goes to substates in one or more regions (in case of a fork), this
explicit entry is defined as Fig. 3.5.12, where the fork node links the explicit substates through the
anonymous transitions.

Exiting an orthogonal composite stateWhen exiting from an orthogonal state, each of its regions is exited.
After that, the exit activities of the state are executed. (page 581 of UML Spec.)

98

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

A

D E

C B
Fork

c

b

d

e

Nested Machine

Orthogonal

Composite State

Explicit Entry

Notation Fla:ening Semantics

a

R1

Composite State

A

B C
c

b

D E
e

d

R2

a

Figure 3.5.12: Explicit Entry Flattening Semantics for Orthogonal Composite State

Three kinds of exit semantics are provided: default, explicit and final state exits. We only handle the exit
semantics here, while the entry semantics has been handled in the previous part.

• Default exitThe flattening semantics for default exit is defined as Fig. 3.5.13.

R1

Composite State

F
F

B Cc

b

D Ee

dR2 D

E

C

B

bc

d e

f

f

f

f

f

Nested Machine

Orthogonal

Composite State

Default Exit

Notation Fla?ening Semantics
Join

Join

Join

Join

Figure 3.5.13: Default Exit Flattening Semantics for Orthogonal Composite State

For the outgoing transitions, aCartesian product of join pseudostates is created, using the join node’s
outgoing transition to hold the original semantics of the composite state’s outgoing transition (blue
ones). At any time when the composite state is active, only one of these composed join node will be
enabled to respond to the outgoing trigger.

• Explicit exitThe flattening semantics for the explicit exit is defined as Fig. 3.5.14. Only the explicit

99

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

substates in a region are combined with the substates in non-explicit regions and then linked to the
join nodes.

R1

Composite State

F

FB Cc

b

D Ee

dR2 D

E

C

B

bc

d e

f
f

f

Nested Machine

Orthogonal

Composite State

Explicit Exit

Notation Fla<ening Semantics

Join

Join

Figure 3.5.14: Explicit Exit Flattening Semantics for Orthogonal Composite State

• Final state exit The flattening semantics for the final state exit is defined as Fig. 3.5.15. A special
state Sfinal is created for the final state. The combination of Sfinal and the substates in other regions
are linked to the join nodes.

R1

Composite State

F
F

B Cc

b

D d

R2

C

B

bc

d

f
f

f

Nested Machine

Orthogonal

Composite State

Final State Exit

Notation Fla<ening Semantics

Join

Join
D

S.nal

Figure 3.5.15: Final State Exit Flattening Semantics for Orthogonal Composite State

100

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

3.5.3.3 Submachine State

A submachine state is semantically equivalent to a composite state. The regions of the submachine statemachine
are the regions of the composite state. The entry, exit, and behavior actions and internal transitions are defined as
part of the state. Submachine state is a decomposition mechanism that allows factoring of common behaviors and
their reuse. (page 576 of UML Spec.)

The only semantic difference, in terms of RTC, is when a submachine state is nested, whether it is used
in behavioral state machine or in protocol state machine.

In behavioral statemachine (as integrated)At each reuse, the submachine state structure is copied to the
nested structure. Therefore it is in fact a part of its root state machine, which means it must respect the
same run-to-completion processing as the other parts. In this case, a submachine state can share the same
flattening semantics for composite state.

In protocol statemachine (as communicated)The states of protocol state machines are exposed to the users
of their context classifiers. A protocol state represents an exposed stable situation of its context classifier: When an
instance of the classifier is not processing any operation, users of this instance can always know its state configura-
tion. (page 577 of UML Spec.)

In this scenario, each time the submachine state is entered, a new instance will be implicitly created to
handle the event coming afterward. Therefore the given submachine state will have an independent run-
to-completion scope. Its inner events can be handled concurrently with those at root state machine level.

In the context of this thesis, we only focus on behavioral state machines, thus the second case will not
be discussed. By default, we rely on the submachine states in the behavioral state machine (as integrated)
for the semantic mapping afterwards.

3.5.3.4 Fork& Join Pseudostates

Join vertices serve to merge several transitions emanating from source vertices in different orthogonal regions.
The transitions entering a join vertex cannot have guards or triggers. (page 567 of UML Spec.)

Fork vertices serve to split an incoming transition into two ormore transitions terminating on orthogonal target
vertices (i.e., vertices in different regions of a composite state). The segments outgoing from a fork vertex must not
have guards or triggers. (page 567 of UML Spec.)

Fork pseudostate models the execution of concurrent aspects in transitions. The incoming transition

101

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

is split into two or more transitions terminating on orthogonal target vertex. Join pseudostate is the dual
element of fork. Because these twoelements are always usedwithinorthogonal regions, thewayorthogonal
regions are flattened will impact the meaning of fork & join.

We have discussed the use of fork nodes in the explicit exit for orthogonal composite state (Fig. 3.5.14).
For the region flattening algorithm using fork and join pseudostates, as the concurrent execution and syn-
chronization are provided by the fork and join nodes respectively, the regions can be removed without
jeopardizing the original semantics (Fig. 3.5.16).

R1

Composite State

D

B

CR2

Nested Machine

Fork & Join

Pseudostates

Notation Fla9ening Semantics

A

Fork Join

D

B

C

A

Fork Join

Figure 3.5.16: Fork & Join Pseudostate Flattening Semantics

3.5.4 Mapping Semantics

After flattening, the remaining SMD elements forwhich themappingmust be defined are: State (simple state),
Final state, Transition (local and internal), and Pseudostates (Initial, Terminate, Junction, adapted Choice, Fork
& Join without regions) .

The objective is to map the unnested SMD to a TPN, which formally defines its execution semantics. The
relatively complicated semantics for the unnested SMD is the transitions and states involving inner behaviors
such as effect, exit, entry anddo. On theother hand, the run-to-completion (RTC)processingmust beunder
consideration.

We first present some general semantics for the transitions and states in Section 3.5.4.1. The mapping
semantics for the RTC semantics and the inner behaviors are respectively provided in Section 3.5.4.2 and
Section 3.5.4.3. We define the mapping semantics for states and transitions in Section 3.5.4.4, and discuss
the clearance mechanisms for the event pool in Section 3.5.4.5. As a special kind of simple state, the map-

102

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

ping semantics for final states is provided in Section 3.5.4.6. At last, themapping semantics for pseudostates
is provided in Section 3.5.4.7.

3.5.4.1 Transition& State in General

A transition is a directed relationship between a source vertex and a target vertex. It may be part of a com-
pound transition, which takes the state machine from one state configuration to another, representing the complete
response of the state machine to an occurrence of an event of a particular type. (page 597 of UML Spec.) A tran-
sition can be associated with several triggers (the triggers may fire the transition), at most one guard and
at most one effect behavior. From the viewpoint of the target and source states, there exist three kinds of
transitions: external, internal and local transitions:

• Internal implies that the transition, if triggered, occurs without exiting or entering the source state. Thus, it
does not cause a state change. (page 606 of UML Spec.)

• Local implies that the transition, if triggered, will not exit the composite (source) state, but it will apply to
any state within the composite state, and these will be exited and entered. (page 606 of UML Spec.)

• External implies that the transition, if triggered, will exit the source vertex. (page 606 of UML Spec.)

Transitions and states for mapping In the flattening step, all the external transitions have been flattened
to local transitions. Therefore, we only need to providemapping semantics for the local and internal transi-
tions. Theflattening semantics for composite states and submachine states has been defined in the previous
section, thus there exists only simple states in the unnested SMD.

3.5.4.2 Run-to-Completion (RTC) Semantics

Run-to-completionprocessingThesemantics of event occurrence processing is based on the run-to-completion
assumption, interpreted as run-to-completion processing. Run-to-completion processing means that an event oc-
currence can only be taken from the pool and dispatched if the processing of the previous current occurrence is fully
completed. (page 590 of UML Spec.)

Run-to-completion stepBefore commencing on a run-to-completion step, a statemachine is in a stable state
configuration with all entry/exit/internal activities (but not necessarily state (do) activities) completed. The same
conditions apply after the run-to-completion step is completed. Thus, an event occurrence will never be processed

103

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

while the state machine is in some intermediate and inconsistent situation. The run-to-completion step is the pas-
sage between two state configurations of the state machine. (page 590 of UML Spec.)

We use the Fig. 3.5.17 to illustrate the mapping for the RTC semantics. In order to explain the execution
sequence, the UML notation only has two states A, B, and the transition between them. In state A, the do and
exit activities are defined. In state B, the entry and do activities are defined. The transition has a trigger, a
single guard and an effect action.

TGuard

[0,0]

PRE[Guard]

RTC Step:

ExitA -> E:ect -> EntryB

Prtc

Trtc
Ppool

[0,0]

doA doB

A B
doA/ExitA EntryB/doB

trigger
[Guard]

E-ect

RTC
Semantics

Notation Mapping SemanticsSemantics

Figure 3.5.17: Run-to-Completion Semantics

The execution sequence which ensures the RTC step is described as follows:

1. The transition is triggered by the event arrival. At this moment, the event instance has not yet been
consumed.

2. The guard constraint on the SMD transition is evaluated. If it is satisfied, the event instance is con-
sumed, otherwise the event instance will stay in the event pool and the SMD transition will not fire.

3. When the transition matches both preconditions to fire, the following actions will successively exe-
cute:

(a) the exit behavior of the source state A

(b) the effect action defined on the SMD transition

(c) the entry behavior of the target state B

The mapping semantics for the RTC semantics contains both the RTC processing and RTC step. The
squares in dotted line stand for respectively the behaviors of doA, RTC step, and doB. The SMD transition

104

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

T is mapped to a pair of TPN transitions (Tguard and Trtc) with intermediate behaviors RTC step and a RTC
place Prtc. The place Prtc has an initial token. It is used to indicate whether the RTC processing is finished.
TheTGuard transition inherits the guard constraint fromT using the Pre functions of tts. If there is a single
trigger onT, the place Ppool is used as the event pool for the target type of event occurrence. If the event ar-
rives but the guard is not satisfied, the event occurrence will not be dispatched, thus stays in the event pool.
According to the semantics of RTC step, after the trigger and the guard of transitions are both satisfied, the
behaviors of ExitA, Effect and EntryB must be executed sequentially without interruption. When Prtc has a
token, it means the RTC processing is finished. Meanwhile, the doB behavior can be executed.

3.5.4.3 Do/Exit/Entry/Effect BehaviorsMapping

The optional entry/do/exit/effect behaviors in a state or on a transition need to be mapped to TPN. In
the context of this thesis, the inner behavior can be an activity diagram or an unnested state machine or an
action language expression (C in our prototype). We use the mapping semantics in Fig. 3.5.18 for these
behaviors.

Behavior

(a) Behavior (b) Behavior using abstraction

[tmin, tmax]

Figure 3.5.18: Do/Exit/Entry/Effect Behavior

In figure (a), the framebehavior stands for the activity of entry/do/exit/effect. If the inner behaviorwill
not impact or be impacted by the other parts of the whole system, this behavior can be abstracted using a
TPN transition, which gives theminimum andmaximum execution time of this behavior, as shown in figure
(b). To generalize our discussion, we use the figure (a) as the mapping semantics for the inner behaviors.

Initialization of Inner Behaviors The initialization of the do/exit/entry/effect inner behaviors is intu-
itive, which means it starts from the initial node in the activity or state machine.

Terminationof InnerBehaviorsAs the entry/exit/effect behaviors are atomic and cannot be interrupted
by the firing of transitions or by the other external behaviors, they will complete the behaviors and produce

105

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

a completion event. In the activity diagram, either when all the flows reach the Flow Final nodes, or when
the whole activity reaches the Activity Final node, then the completion event will be produced. In the
unnested state machine, either when all the Final states are reached, or when the Termination pseudostate
is reached, then the completion event will be produced.

However, the do behavior is more complex. Thebehavior represents the execution of a behavior, that occurs
while the statemachine is in the corresponding state. Thebehavior starts executing upon entering the state, following
the entry behavior. If the behavior completes while the state is still active, it raises a completion event. In case where
there is an outgoing completion transition the state will be exited. Upon exit, the behavior is terminated before the
exit behavior is executed. If the state is exited as a result of the firing of an outgoing transition before the completion
of the behavior, the behavior is aborted prior to its completion. (page 579 of UML Spec.)

Therefore, the termination of do behavior must satisfy two semantics:

• If the behavior completes while the state is still active, it raises a completion event.

• If the state is exited as a result of the firing of an outgoing transition before the completion of the
behavior, the behavior is aborted prior to its completion.

The first semantics is similar to the termination semantics for the other behaviors. We focus on the sec-
ond semantics. To model this interruption semantics in TPN, as we do not know when the do activity is
interrupted by the firing of the outgoing transitions, all possible behavior should bemodeled. A stopwatch
arc can be used for this purpose, but this will potentially lead to the state space explosion problem in the
model checking. On the other hand, in the context of this thesis, as we focus on real-time embedded sys-
tems, it is reasonable to forbid this arbitrary interruption. All the behaviors in the critical systems mus be
explicitly specified. If the do activity can be interrupted, the interruption point must be predefined in the
specification. From this point of view, in the context of this thesis, we only adopt the first semantics, which
means the outgoing transitions can be fired only if the do activity is completed.

3.5.4.4 Mapping semantics for Transition& State

This section provides the mapping semantics for local/internal transitions and simple states, and then
discusses the mapping semantics for single and multiple triggers on the transitions.

Local Transition. The mapping semantics for the local transition and its associated states is illustrated by
Fig. 3.5.19. In the SMD model, state A contains DoA and ExitA activities, and state B contains EntryB and

106

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

DoB activities. The transition from A to B contains at most one trigger (multiple triggers will be discussed
later), a guard and an effect action.

A

B

PdoneA PdoneB
TGuard

[0,0]
PRE[Guard] ExitA E6ectT EnrtyBDoA DoB

P:redT PexitedA Pe6ectedT PenteredB

Prtc

Trtc PrtcBPrtcA

Unnested SMD

States &
Local Transition

Notation Mapping Semantics

DoA/ExitA

EntryB/DoB

Ppool

(trigger)
[Guard]

E?ect

[0,0]

Figure 3.5.19: Local Transition Mapping Semantics

In the mapping semantics, the chain [place PrtcA -> behavior DoA -> place PdoneA] models that state A
has completed its do activity. The SMD transition T is mapped to a pair of TPN transitions (Tguard and Trtc)
with intermediate places and behaviors. The place Prtc has an initial token. It is used to indicate whether
the RTC processing is finished. When Prtc has a token, it means the RTC processing is finished. The TGuard

transition inherits the guard constraint fromT using the Pre functions of tts. If there is a single trigger on
T, the placePpool is used as the event pool for the target type of event occurrence. If the event arrives but the
guard is not satisfied, the event occurrence will not be dispatched, thus stays in the event pool. When T is
fired (represented by the place PfiredT), the activities ExitA, EffectT and EntryB are executed. After entering
state B (represented by the place PenteredB), the transition Trtc produces a RTC event through the place Prtc.
Meanwhile, theDoB behavior can be executed.

We provide a mapping semantics for the local transition with abstraction in Fig. 3.5.20. The DoA be-
havior is abstracted as the transition TdoA with minimum and maximum execution time [t1, t2]. Similarly,
the ExitA, EffectT, EntryB activities are abstracted together using the transition Trtc, and the DoB activity is
abstracted using the transition TdoB.

Internal Transition. An internal transition can be seen as a special kind of local transition without entry
and exit behaviors, and the source and target states are the same one. Fig. 3.5.21 illustrates its mapping

107

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

A

B

PdoneA PdoneB
TGuard

[0,0]
PRE[Guard]

TdoA TdoBP3redT

Prtc

Trtc PrtcBPrtcA

Unnested SMD

States &
Local Transition

(abstraction)

Notation Mapping Semantics

DoA/ExitA

EntryB/DoB

Ppool

(trigger)
[Guard]

E@ect

[t3, t4] [t5, t6][t1,t2]

Figure 3.5.20: Abstract Local Transition Mapping Semantics

semantics. According to its semantics, the exit and entry activities are eliminated, and the transition Trtc is
linked to the place Prtc of itself.

A

PdoneA TGuard

[0,0]
PRE[Guard] E2ectTDoA

P6redT Pe2ectedT TrtcPrtcA

Unnested SMD

States &
Internal

Transition

Notation Mapping Semantics

DoA

PrtcPpool
(trigger)
[Guard]

E?ect

[0,0]

Figure 3.5.21: Internal Transition Mapping Semantics

Single Trigger Transition. The mapping semantics for the single trigger transition is illustrated by Fig.
3.5.22. The event pool place Ppool receives instances of event a from all the producers, and then provides to
all the consumers.

MultipleTriggerTransition. Wehave discussed the processing semantics formultiple triggers transition
at the beginning of this section (see the answer for Q6 in page 88): Only one transition can be firedwhen
two transitions originating from the same states are conflict. If a transition has several possible triggers
to enable it, they are under an exclusive ”or” logic, which is represented by duplicating the SMD transition.

108

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

A

B

TGuard

PRE[Guard]

Trtc

Unnested SMD

States &
Transition

with
One Trigger

Notation Mapping Semantics

trigger a
[Guard]
(E?ect)

...
[0,0]

Ppool

a1 an

...

Prtc

PdoneA PrtcB[0,0]

Figure 3.5.22: Single Trigger Transition Mapping Semantics

Thecopied transitionswill inherit the same guard and behaviorswhile keeping respectively the single event
trigger. The mapping semantics for the single trigger transition is illustrated by Fig. 3.5.23. In the TPN, the
duplicated SMD transitions are mapped to two guard transitions Tguard_a and Tguard_b. As the event pool is
instantiated by event type, in this case, two event pool places Ppool_a and Ppool_b are created to receive re-
spectively the instances of events a and b. More precisely, if both events a and b are available at themoment
to trigger the transition, as only one event can be finally consumed after transition’s firing (ensured by the
shared place PdoneA), it is up to the event dispatch mechanism to decide the priority. The UML specification
does not give any details about this priority definition, therefore in the context of this thesis, it is assumed
that the dispatch is arbitrary.

3.5.4.5 Event Pool ClearanceMechanisms

When explicit events are introduced, the impact of event pool must be considered. The pool, instanti-
ated by event type, is represented by a single empty place for the whole system, not for each state machine
instance. (This has been discussed in the section 3.5.1.3)This place, with a global visibility of a given event
type, on the one hand can consolidate all the emission of the system, and on the other hand can dispatch
event instances with competition mechanism for all event consumers. We provide the mapping semantics
for the single trigger and the multiple trigger transitions.

As mentioned at the beginning of the section, once an event pool concept is introduced, the clearance
mechanismmust be defined. Otherwise for those events whichwill arrive always at inappropriate time, the
pool would keep growing and produce an overflow, especially for those systems which are designed to run

109

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

A

B

TGuard_a

PRE[Guard]

Trtc_a

Unnested SMD

States &
Transition

with
Multi Trigger

Notation Mapping Semantics

trigger a,b
[Guard]
(EAect)

...
[0,0]

Ppool_a

a1 an

...
Prtc_a

TGuard_b

PRE[Guard]

Trtc_b

...

[0,0]

Ppool_b

b1 bm

... Prtc_b

PdoneA

PrtcB
[0,0]

[0,0]

Figure 3.5.23: Multiple Trigger Mapping Semantics

infinitely. In the context of this thesis, two generic strategies are proposed and implemented: time out and
size out strategies (Fig. 3.5.24):

[0,0]

Event X
Queue

[0,0]

Time out
strategy

Size out
strategy

[0,0]

Event X
Queue

[0,0]

[t,t]
clear

[0,0]

Event X
Queue

[0,0]

[0,0]
clear

K

TGuard1 TGuardN

TGuard1 TGuardN

TGuard1 TGuardN

Figure 3.5.24: Mapping Semantics: Event Pool Clearance Mechanism

110

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

• Time Out Strategy: This solution (Fig. 3.5.24, right top) adds an outgoing TPN transition to the
event pool place, with execution time [t,t] in which t is the maximum time that an event instance
could stay in the pool if not consumed. The new TPN transition clear will compete event with real
event consumers, which means if an event can be handled at a given time, it is not guaranteed to
be handled because the event pool may be cleared before. This violates the original semantics and
therefore need constraints to forbid the clear to compete events with normalTGuard transitions.

TINA tool box offers the analysis of TPN with priorities, which is a kind of constraints between tran-
sitions, called transition priority. The blue arrows in Fig. 3.5.24 stand for this: the source transition
(TGuard1, ..., TGuardN) will always be prior to the target transition (clear) if both are enabled. Thus
the event pool will only clear the time out event when there is no state machine at the ready state to
receive it.

• Size Out Strategy: This solution removes event instances from the event pool when it reaches its
maximal capacity (see Fig. 3.5.24, right bottom). This strategy should provide a detailed dequeue
policy, like FIFO, LRU, etc. However, since for different event instance, their use is always the same
in terms of triggering the corresponding state machines. Therefore the only criteria that matters
(which can influence system’s behavior) is the event instance number in the pool.

Like time out strategy, this solution adds an outgoing clear transition to the event pool place, but
with a different execution time [0,0]. This implies that once the pool is full, the clearance work
will start immediately. Of course it will encounter the same problem of token competition if no
transition priority is defined. The control of pool’s capacity is implemented by a read arc from pool
place to clear, usingK as the capacity parameter.

• Without Clearance Mechanisms: The time out and size out strategy in TPN introduce priority
arcs. TINA supports different abstraction used for building state class graph. A TPN with priority
arc will be unfolded using state preservation abstractions. Without priority arcs, amarking preserva-
tion abstraction is possible. The marking preservation abstraction is the highest abstraction, which
makes the model checking more efficient. If the priority arcs are supposed to be avoided, the clear-
ancemechanism can be replaced by on-the-fly checking to allow detecting potential overflows. This
method simply observes the arrived event amount in the event pool. If the amount is out of bound,
the on-the-fly checking stops. It indicates that the system design itself possibly has some vulnerabil-

111

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

ity in the interaction with the environment.

In the context of this thesis, we do not use any clearancemechanisms for the event pools. Instead, in the
real-time critical systems, we take as granted the event instances of the given system are always restricted to
the capacity of event pool, otherwise, this is a design error.

3.5.4.6 Final State

Final state is a special kind of state signifying that the enclosing region is completed. If the enclosing region is
directly contained in a state machine and all other regions in the state machine also are completed, then it means
that the entire state machine is completed. (page 557 of UML Spec.)

In the flattening step, the final states in regions have been flattened and replaced by a special state Sfinal
with triggers but no entry or do activity (see pages 3.5.3.1 and 3.5.3.2). The final states in the topmost
region are kept. These final states are mapped to a TPN place without initial token or outgoing transitions,
as shown in Fig. 3.5.25.

Unnested SMD

Final State

Notation Mapping Semantics

Figure 3.5.25: Final State Mapping Semantics

3.5.4.7 Pseudostates

Wediscuss themapping semantics for the initial, terminate, junction, choice, fork and join pseudostates
in this section. The mapping semantics for the initial and terminate pseudostates is simple. The mapping
semantics for the fork and join pseudostates is not complex either, as they have the same behaviors as ex-
isting TPN elements. Themapping semantics for the junction and choice pseudostates needs to be detailed,
as the RTC processing is relatively complicated for the compound transitions constructed with them. The
definition of a common semantics is a key point of the semantic mapping: Transitions outgoing pseudostates
may not have a trigger (except for those coming out of the initial pseudostate). (page 598 of UML Spec.) This
point is important when mapping the junction, choice, fork and join nodes.

Initial. An initial pseudostate represents a default vertex that is the source for a single transition to the default

112

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

state of a composite state. There can be at most one initial vertex in a region. (page 566 of UML Spec.)
An initial pseudostate activates the state machine instance at the beginning. It is represented by a place

with one token andnooutgoing transitions. Theoutgoing transitionfrom the initial vertexmay have a behavior,
but not a trigger or guard (page566of UMLSpec.). As theoutgoing transition fromthe initial vertex is specific,
we provide the mapping semantics for the initial pseudostate and its outgoing transition in Fig. 3.5.26.

Unnested SMD

Initial &

Outgoing Transition

Notation Mapping Semantics

E"ect
A

E"ect
A

Figure 3.5.26: Initial Pseudostate and Outgoing Transition Mapping Semantics

Terminate. Entering a terminate pseudostate implies that the execution of this state machine by means of its
context object is terminated. The state machine does not exit any states nor does it perform any exit actions other
than those associated with the transition leading to the terminate pseudostate. (page 567 of UML Spec.)

The terminate pseudostate is similar to the activity final node in the activity diagram. It is represented
by a place without initial token. In order to stop all the executions in the state machine, the inhibitor arcs
are used to link all the TPN transitions, as shown in Fig. 3.5.27. Once the terminate place is filledwith token,
the inhibitor arcs will halt all the transitions.

Unnested SMD

Terminate

Pseudostate

Notation Mapping Semantics

Each TPN transition

is linked from an

inhibitor arc.

...

Figure 3.5.27: Terminate Pseudostate Mapping Semantics

Junction &Choice. Junction and choice pseudostates are both used to chain multiple transitions. Junc-
tion vertices are used to construct static conditional branches while choice vertices are used to construct

113

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

dynamic conditional branches. The distinction between these two conditional branches is reflected in the
RTC processing.

In compound transitions involving multiple guards, all guards are evaluated before a transition is triggered,
unless there are choice points along one or more of the paths. The order in which the guards are evaluated is not
defined. If there are choice points in a compound transition, only guards that precede the choice point are evaluated
according to the above rule. Guards downstream of a choice point are evaluated if and when the choice point is
reached (using the same rule as above). In other words, for guard evaluation, a choice point has the same effect as
a state. (page 600 of UML Spec.)

Therefore, if there are choice points in a compound transition, guards downstream of a choice point are
evaluated if and when the choice point is reached. If there are junction points in a compound transition,
both guards that precede a junction point and the guards downstream of the junction point are evaluated
before the junction point is reached. The RTC processing means that an event occurrence can only be taken
from the pool and dispatched if the processing of the previous current occurrence is fully completed. (page 590 of
UML Spec.) This RTC semantics must be ensured during the semantic mapping.

Choice verticeswhich, when reached, result in the dynamic evaluation of the guards of the triggers of its outgoing
transitions. This realizes a dynamic conditional branch. It allows splitting of transitions into multiple outgoing
paths such that the decision on which path to take may be a function of the results of prior actions performed in
the same run- to-completion step. If more than one of the guards evaluates to true, an arbitrary one is selected. If
none of the guards evaluates to true, then the model is considered ill-formed. (To avoid this, it is recommended to
define one outgoing transition with the predefined “else” guard for every choice vertex.) (page 567 of UML Spec.)

The mapping semantics for the choice node is illustrated in Fig. 3.5.28. To simplify the discussion, we
suppose there is no exit behavior in stateA, and there is no entry behavior in statesB andC.Thechoicenode
is mapped to the TPN place Pchoice. The transition TguardA and the behavior EffectA stands for the behavior
of the incoming transition of choice node. If the incoming transition has a single trigger, the place Ppool is
used to represent the event pool. Once the RTC step is finished, the RTC token refills both the places PrtcB
and PrtcC. This mapping semantics guarantees that the behavior of EffectA may impact the guards on the
outgoing transitions. Meanwhile, it ensure the RTC processing.

Junction vertices are semantic-free vertices that are used to chain together multiple transitions. They are used
to construct compound transition paths between states. For example, a junction can be used to converge multiple
incoming transitions into a single outgoing transition representing a shared transition path (this is known as a

114

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

A

B C

GuardB
E'ectB

GuardC
E'ectC

Unnested SMD

Choice

Pseudostate

Notation Mapping Semantics

TGuardB

PRE[GuardB]

TrtcB[0,0]

PrtcB

TGuardC

PRE[GuardC]

TrtcC[0,0]

PrtcC

Pchoice PrtcB

TGuardA

PrtcC
[0,0]

trigger

GuardA
E'ectA

E7ectA

E7ectB E7ectC

PdoneA

PRE[GuardA]

Ppool

[0,0]

[0,0]

Figure 3.5.28: Choice Pseudostate Mapping Semantics

merge). Conversely, they can be used to split an incoming transition into multiple outgoing transition segments
with different guard conditions. This realizes a static conditional branch. (In the latter case, outgoing transitions
whose guard conditions evaluate to false are disabled. A predefined guard denoted “else”may be defined for atmost
one outgoing transition. This transition is enabled if all the guards labeling the other transitions are false.) (page
566 of UML Spec.)

The mapping semantics for the junction node is illustrated by Fig. 3.5.29. As the guards are evaluated
before the firing of incoming transitions, the guards on each conditional branch are combined. In the fig-
ure, GuardA and GuardB are combined in one branch, while GuardA and GuardC are combined in another
branch. As the trigger is on the incoming transition, the event pool placePpoolA provides events to both tran-
sitions TGuardAB and TGuardAC. This mapping semantics guarantees that all guards are evaluated statically
before the firing of transitions. Meanwhile, it ensures the RTC processing.

Fork & Join. Fork vertices serve to split an incoming transition into two or more transitions terminating on
orthogonal target vertices (i.e., vertices in different regions of a composite state). The segments outgoing from a
fork vertex must not have guards or triggers. (page 567 of UML Spec.)

The mapping semantics for the fork node is illustrated by Fig. 3.5.30. To simplify the discussion, the
exit behavior of state A and the entry behaviors of states B/C are omitted. The fork node is mapped to

115

3.5. STATEMACHINE DIAGRAMMAPPING SEMANTICS

A

B C

GuardB
E(ectB

GuardC
E(ectC

Unnested SMD

Junction

Pseudostate

Notation Mapping Semantics

TrtcB

TrtcC

PrtcB

TGuardAB

PrtcC
[0,0]

E2ectA

E2ectB

E2ectC

PdoneA

PRE[GuardA;GuardC]

Ppool

PrtcAB

PrtcAC

TGuardAC

E2ectA

PRE[GuardA;GuardB]

[0,0]
triggerA
GuardA
E(ectA

[0,0]

[0,0]

Figure 3.5.29: Junction Pseudostate Mapping Semantics

a TPN transition Tfork (blue color) with time constraint [0,0]. The RTC processing needs to be explicitly
mapped. TheRTC ismapped to theplacesPrtcB andPrtcCwhich link transitionsTrtcB andTrtcC to the common
transition TGuard where the guard of incoming transition is specified using Pre[Guard]. This mapping
semantics ensures that only when both outgoing transitions complete, will the compound transition finish
the RTC processing.

Unnested SMD

Fork

Pseudostate

Notation Mapping Semantics

A

B C

E"ectB E"ectC

triggerA
GuardA
E"ectA

TrtcB

TrtcC

PrtcB

TGuard

PrtcC

E.ectB E.ectC

PdoneA

Ppool

PrtcC

E.ectA

PRE[Guard]

[0,0]

PrtcB

Tfork

[0,0]

[0,0]

[0,0]

Figure 3.5.30: Fork Pseudostate Mapping Semantics

Join vertices serve to merge several transitions emanating from source vertices in different orthogonal regions.

116

3.6. RESOURCEMAPPING SEMANTICS

The transitions entering a join vertex cannot have guards or triggers. (page 567 of UML Spec.)

The mapping semantics for the join node is illustrated by Fig. 3.5.31. To ease the discussion, the exit
behaviors of state A/B and the entry behavior of states C are omitted. The join node is mapped to the
transitionTGuardC, which is also the guard transition. As the incoming transitions cannot have triggers, the
RTC place PrtcC links the transition TrtcC to the guard transition TGuardC. As all the incoming and outgoing
transition of join node do not have triggers, it is not necessary to maintain the RTC semantics here.

Unnested SMD

Join

Pseudostate

Notation Mapping Semantics

TrtcC PrtcC

TGuardC

PdoneB

PdoneA

E1ectA

PRE[GuardC]

[0,0]

C

A B

E"ectA E"ectB

GuardC

E"ectC

E1ectA

E1ectB

[0,0]

Figure 3.5.31: Join Pseudostate Mapping Semantics

3.6 Resource Mapping Semantics

In the UML-MARTE model, the behaviors (activity and state machine) consumes the resources such as the
CPU, the memory, etc. The scheduling policy applied by the scheduler will impact the real-time require-
ments. Thus, if the target system relies on some external resources, the real-time behavior for the resources
scheduling needs to be explicitly specified in the TPNmodel.

The MARTE profile MARTE::MARTE_Foundations::GRM::Scheduler:schedPolicy provides some typical
scheduling policies for real-time embedded systems, such as Earliest Deadline First, FIFO, Fixed Priority,
Least Laxity First, Round Robin, Time Table Driven. It also allows users to define their own scheduling
policy. Mapping semantics for these well-known scheduling policies to TPN model could introduce some
semantic ambiguities. For example, when using Fixed Priority scheduling policy, there is no explicit indi-
cation in the UML-MARTE level to specify what should be the scheduler’s behavior if two requests have the

117

3.6. RESOURCEMAPPING SEMANTICS

same priority; but as this information ismandatory for the TPNmodeling, then a semantic gap is potentially
created.

Besides, the exact behavior of some dynamic scheduling policy could not be mapped to TPN in a triv-
ial way. For example the EDF/preemptive policy always need to compute for each reassignment cycle
the process which is the closest to its deadline. This requires a dynamic comparison between the amount
clock/time state of each transition and the given reference, which is unfeasible neither in classical TPN nor
in TPNwith data extension.

Asmodeling of scheduler policy is not the focus of this thesis, we do not aim in our work to provide the
mapping semantics for any specific scheduling policy. Instead, we propose a generic scheduling algorithm
with preemption option. This scheduling algorithm is used to decide for the given time T, which resource
instance(s) will be allocated to which requester(s).

3.6.1 Generic Resource Scheduling

A resource is a 3-tuple (I, S,Q), in which:

• I refers to identification, which indicates the type of the resource.

• S is the scheduler used to respond to the requirement of the resource. A scheduler has a preemption
option.

• Q is the instance amount of the provided resource.

For example, a 4-core CPUwith preemptive scheduling policy is modeled as (CPU-CORE, preemption, 4).
In the MARTE profile, the following properties are used to specify the resource, scheduler and allocations:

• Preemption: MARTE::MARTE_Foundations::GRM::Scheduler:isPreemptible

• Scheduling policy: MARTE::MARTE_Foundations::GRM::Scheduler:schedPolicy

• Resource amount: MARTE::MARTE_Foundations::GRM::Resource:resMult

• Required amount: MARTE::MARTE_Foundations::GRM::Scheduler:resMult

• Allocations: MARTE::MARTE_Foundatins::Alloc::Allocate

118

3.6. RESOURCEMAPPING SEMANTICS

A generic resource scheduling semantic pattern is defined as shown in Fig. 3.6.1. The content of the square
in dotted line is a behavior model consuming the target resource in a preemptive or non-preemptive man-
ner. In this thesis, we only provide themapping semantics for the resource scheduling in an activity diagram
using event-trigger actions. The samemapping principle is applicable to the other kinds of behavior model
(time-trigger actions in the activity and state machine).

Resource Usage
(Preemptive/Non-preemptive)

(scheduler policy)

Q

Resource Type

Resource

Scheduling

Pa5ern

Notation Mapping TPN

<<Resource>>
resMult: Q

NR NR

<<Scheduler>>
isPreemptible

schedPolicy

resMult: NR

<<Allocate>>

Figure 3.6.1: Generic Resource Scheduling Mapping Semantics

3.6.2 Non-preemptive Resource Scheduling

Themapping semantics for the non-preemptive resource scheduling in the activity diagram using an event-
trigger action is illustrated by Fig. 3.6.2. The mapping semantics for the event-trigger action has been pre-
sented in page 75. The resource place Pres containsQ instances of a given type of resource. Pres linked to the
transition Require_Res represents the fact that the given action requires NR instances of resource, and
Pres linked from the transition Release_Res represents the fact that theNR instances of resources should
be released and returned to the resource place.

3.6.3 Preemptive Resource Scheduling

TPNwith stopwatch are commonly used to copewith preemptivemodeling. However, it is very expensive in
terms of reachability graph generation when performing themodel checking to assess real-time properties.

119

3.6. RESOURCEMAPPING SEMANTICS

[0,0] [0,0] [0,0]

T_IN P_OUT

[0,0] [0,0]

Activity
ready

Resource
ready

Input
ready

Output
Released

Resource
released

ENDREQUIRE_RES WAIT_INPUT SEND_OUTPUT RELEASE_RES

[min,max]

Scheduling Type

Action Node
(event-tigger)

Non-preemptive
Resource
Scheduling

Notation Mapping TPN

QNR NR
Pres

<<Resource>>
resMult: Q

<<Scheduler>>
isPreemptible: Non-preemptive

resMult: NR

<<Allocate>>

<<Allocate>>

Figure 3.6.2: Non-Preemptive Resource Scheduling Semantics

We propose a solution to mitigate this issue. The objective is to model the same semantics without using
stopwatch mechanism. The idea is to use the time slice of the preemptive scheduler as the time unit to
segregate the action’s execution. The transition of execution (with time constraint [tmin, tmax]) is divided
into the structure presented in Fig. 3.6.3. The resource place Pres containingQ instances connects to each
transition (the two direction arrows in blue color) to represent the preemptive scheduling, where

• ts is the time slice of the scheduler;

• K = ⌊tmin/ts⌋ is the minimal number of occurrence times of ts;

• S = ⌊tmax/ts⌋ is the maximal number of occurrence times of ts;

• A = tmin − K · ts stands for the left time from tmin after K occurrence of ts;

• B = tmax − S · ts stands for the left time from tmax after S occurrence of ts.

The frameK represents the possible execution time [tmin, (K+1)·ts[; theK+1 frame represents the possible
execution time [(K+ 1) · ts, (K+ 2) · ts[; the last S frame represents the possible execution time [S · ts, tmax].
All the execution time from tmin to tmax is covered. We give an example (Ex. 3.1) to explain the mapping
semantics.

Example 3.1 (Preemptive Scheduling Example) Suppose the execution time of a given action is [10, 20],
and the time slice of the scheduler is 3. According to the above mapping semantics, K = 3, S = 6, A = 1, and B = 2.
The possible execution time and slice occurrences are listed in the Table 3.6.1.

120

3.7. TIME SEMANTICS INMULTI-CLOCKMODELING

Input
Ready

[0,B]

S

Output
Released

Q

[ts,ts][ts,ts][ts,ts]

...

K+2 ...

[0,ts）[ts,ts][ts,ts][ts,ts]

...K+1

[A,ts）[ts,ts][ts,ts]

...K

[0,ts）

Scheduling Type

Action Node
(event-tigger)
Preemptive
Resource
Scheduling

Notation Mapping TPN

<<Resource>>
resMult: Q

<<Scheduler>>
isPreemptible

Preemptive

resMult: NR

<<Allocate>>

<<Allocate>>

Figure 3.6.3: Preemptive Resource Scheduling Semantics

Table 3.6.1: Preemption Scheduling Example

Frame K (K = 3, 4, 5, 6) Execution Time Slice Occurrence Time Point
3 [10, 12[3, 6, 9
4 [12, 15[3, 6, 9, 12
5 [15, 18[3, 6, 9, 12, 15
6 [18, 20] 3, 6, 9, 12, 15, 18

3.7 Time Semantics in Multi-Clock Modeling

For real-time analysis in multi-clock modeling, one of the clocks must be a reference clock. Then, other
clocks can be compared with this reference clock. Clock tick is the smallest unit of time recognized by a
device. Clock drift refers to the phenomena where a clock does not tick exactly at the same time as the
reference clock. From the viewpoint of real-time analysis, the main difference between single-clock and
multi-clock modeling is that the clock drifts should be taken into account in multi-clock modeling environ-
ment. In single-clock modeling, it is not mandatory to distinguish the notions of tick and clock cycle (the
amount of time between two ticks of a clock), because the difference between the clock cycle and the phys-
ical time is of the same proportion for both clock cycle and tick at any given time. If a clock drift occurs, it is

121

3.7. TIME SEMANTICS INMULTI-CLOCKMODELING

also effective for every part in the system. In multi-clock modeling, however, the semantic mapping need
to exhibit a correct semantics for clock drifts as each clock drifts independently from the others.

The main idea is to assume a global physical clock and project each time consumption and drift on this
precise time reference. In our study, we use the physical time notion as the exact reference for both single-
clock and multi-clock modeling. The physical time and the verification tools we rely on both dense time
and discrete, thus our approach can handle both dense time and discrete time problems.

In the single-clock context, the measured execution time is directly used after a global normalization of
the time units. For example, if actionA takes [3.4, 4.7]ms and actions B [78.9, 463.5] μs, the corresponding
min time and max time on the TPN transition are respectively [34000, 47000] and [789, 4635], with the
common unit of 0.1 μs to keep all the results natural numbers. All time values in time constraints should be
integers, as the TINAmodel checker requires this convention.

In themulti-clock context, themeasured execution time needs to be first mapped to tick numbers from
the global physical clock, and then the physical model time is deduced by associating each clock’s drift.
We use the same example but respectively give the corresponding clock properties: let clocks A and B
theoretically tick every 1 μs, and their backward drift and forward drift are both 1%, therefore action A’s
tick number is [3400, 4700] and action B’s is [78.9, 463.5]. As tick number must be integer, a rounding
strategy must be designed without introducing unreasonable conversion error. We use the floor function
for tmin and ceiling function for tmax. Therefore, we have A for [3400, 4700] and B for [78, 464] as tick
numbers after the rounding. It is possible to take a more precise unit, but the more precise the more states
will be created when analyzing the real-time properties, because it increases the time difference between
the max and min time values. Thus there exist a compromise between the precision and the scalability of
verification.

As the corresponding tick time range is [0.99, 1.01] μs due to the mentioned clock property, action’s
physical time duration is computed bymultiplying this range and action’s tick number range. Following the
same principle of unit normalization, the final min time and max time are [336600, 4747000] and [7821,
46763] respectively, with the commonunit of 0.01 μs. Comparedwith the actions inmono-clockmodeling,
the precision of execution time is increased.

The drawback is that, as the method assumes each component has an independent clock, it can be too
constraining for those devices which share a clock in a multi-clock modeling. The reason why we decided
to choose this abstraction is that in the verification view point, this will only lead to a false-violation, which
means if a time property is verified under independent-clock hypothesis, it must also be true for a shared-

122

3.8. DISCUSSION

clock system. This sufficient but not necessary condition in practicemayonly cause a performance trade-off
in system design, but never gives out a wrong verification result when property’s proof is positive.

3.8 Discussion

3.8.1 Verification ofModel Transformation

Theautomaticmodel transformation referred to in this work is in fact a semanticmapping, which preserves
all the property-related semantics of the source UML-MARTE model. Regarding the objective of the verifica-
tion of real-time properties at architecture level, this abstraction is justified because it is not mandatory to
preserve all the information, for example, the object values.

A concern with this method is whether the model transformation (semantic mapping) is correct. In
other words, how to verify this model transformation (semantic mapping). Indeed, this is a crucial ques-
tion.

What to verify? Some surveys of the state-of-the-art about the verification of code generation [Dav03,
Nec11] and the verification of model transformation [CS13, PSS98] summarized the following expected
properties:

• Language-related properties includes terminate, determinism, typing, and preservation of execu-
tion semantics properties.

• Transformation-related properties includes source/target conformance, syntax relations, seman-
tics relations and functional behaviors properties.

The verification of model transformation for the UML-MARTEmodel is not trivial. Generally, the best way
to verify if the model transformation preserves the intended semantics is to compare the state space graph
of the source and target formal models. As shown in Fig 3.8.1, a formal specification must then be defined
for UML models as a reference semantics. The execution semantics is then compared with this reference
semantics. However, sinceUML is semi-formal, a formal definition is needed to establish the reference, which
is one of the work in this thesis. Our proposal relies on a translation to a formal model instead of a direct
formal specification of an operational semantics that would allow to build the state space at the UML level.
This does not change the fundamental issue: how to validate this formal specification?

123

3.8. DISCUSSION

UML

Execution Semantics

 Expected Behavior Property

Validation by Testing and Proof Reading

Formal SpeciBcation
tracability

Consistency

Figure 3.8.1: Verification of Model Transformation

A solution may mitigate the problem by mapping the UML-MARTEmodel to different formal models and
verifying if they converge into the same formal semantics. Nevertheless, whether the semantics is lost be-
tween a semi-formal model and a formal one can only be assessed using testing and human proof reading.

Another possible solution is derived from translation validation that have been experimented for the
same purpose for AADL in the QUARTEFT project. Thismethod allows to verify that some important intended
behavioral properties conform to the execution semantics. For example, we can define TPN observers to
assess the run-to-completion processing semantics. More precisely, when an event occurrence is being
processed, the other occurrences of this event cannot be accepted. However, when the behavior property
specification and the execution semantics are both wrong in the same way, this method does not work.
Then some test cases must be used to validate the execution semantics.

As a future research direction, the expected behavior properties would be defined and used to verify the
conformance between the execution semantics and the behavior specification. This can validate some key
execution semantics in the UMLmodels.

3.8.2 Boundedness andDecidability Issue

The main objective of this thesis is to propose a set of methods that may improve the efficiency of model
checking in order to verify properties in large scale systems. The mapping translates the end user model to
the verification model, on which the desired properties will be assessed. We need to discuss here whether
the proposed mapping semantics can ensure boundedness and decidability in the verification TPNmodels.

Before discussing this issue, we recall the research background of this thesis. We rely on the UML-MARTE
design models that have finite states and finite event occurrences. In other words, the design model is
bounded. In fact, a practical correct engineering system must be K-bounded, otherwise it is not possible
to implement it with limited resources. Therefore instead of checking the boundedness, it becomes a K-

124

3.8. DISCUSSION

boundedness problem for this thesis. Since K-bounded TPN without stopwatch arcs is decidable, and no
stopwatch is used in themodel mapping, therefore this mapping will not introduce any unboundedness or
undecidability.

A TPN is bounded if the marking of each place is bounded by some integer. [BV07] In the semantic mapping
method, we have used inhibitor arcs for theActivity Final andObject nodes in the activity diagram, and the
Terminate pseudostate in the state machine diagram. The question is whether the inhibitor arcs will make
the TPNmodel unbounded.

We need to discuss this problem taking into account the following two aspects:

• Inhibitor arcs in Activity Final nodes andTerminate pseudostates. Themapping semantics are
defined respectively in page 70 and page 113. In this case, the inhibitor arcs are used to terminate all
the transitions in the TPNmodel when the whole system enters the final flow state, which potentially
decrease the size of the state space of a TPNmodel.

When the control flows have not yet arrived at the final TPN place, this place is empty, which means
it cannot affect the behavior of the control/data flows. Once the final flow place is filled, all the
transitions in thewhole TPNmodel are stopped, and thus no new tokens can be produced. Therefore,
the TPNmodel is still bounded.

• Inhibitor arcs in object nodes. The mapping semantics is defined from page 79 to page 83. In
data flows, the TPN place representing UML object node will become unbounded only in the follow-
ing cases: the producer of tokens continues to send tokens to the object TPN place, while the speed
of consumption is rather slow. Obviously, this is caused by a boundedness design error. A well
designed real-time system must avoid generating an unbounded amount of data or must possess a
clearancemechanism to restrict the capacity of the object store. Therefore, before verifying real-time
properties, a verification on boundedness should be performed.

State reachability and boundedness is proven to be undecidable for arbitrary TPN. However, state reachability
is decidable for bounded TPN, which is sufficient for virtually all practical purposes. [GLM+05]Therefore, in the
context of this thesis, as the TPNmodel is bounded, and the state reachability is decidable.

125

3.9. CONCLUSION

3.9 Conclusion

This chapter presented themethodology for the property-driven approach, which provides the basis for our
semantic mapping contributions. The objective is to automatically map UML-MARTE models to executable
TPNmodels on which efficient model checking can be performed afterwards to verify real-time properties.

The main contributions of the current chapter are summarized as follows:

1. Specification of themapping semantics for composite structure diagrams (Section 3.3).
The composite structure diagram connects different sub-system behaviors through the communica-
tion medias. The mapping semantics is provided for the entities Part, Port and Connector.

2. Specification of themapping semantics for activity diagrams (Section 3.4) [GPC12b].
The activity diagram emphasizes the sequence and conditions for coordinating lower-level behav-
iors. Themapping semantics is provided for the UML-AD control nodes, event-trigger and time-trigger
actions, objects, and connections. In order to standardize the mapping semantics for the asyn-
chronous behavior, we extend the original semantics for action by defining an asynchronous seman-
tics using the MARTE profile, and then map it to the TPN model. It is a general pattern in the reactive
asynchronous system, and thus can be reused in the modeling and verification.

3. Specification of themapping semantics for statemachine diagrams (Section 3.5).
We investigate the behavioral state machine in this thesis. Two aspects are considered when the
mapping semantics is defined. First, hierarchically nested states and orthogonal regions do not ex-
tend the semantic expressiveness. They help the designer in the writing of sophisticated models for
complex systems. The nested SMD can be converted to an unnested SMD.This is the work of flattening.
Second, the unnested SMDwith only simple states, final states, transitions and unnested pseudostates
are mapped to the TPNmodel. This is the work of mapping.

4. Specification of themapping semantics for resource scheduling (Section 3.6).
In this work, we do not aim to provide the mapping semantics for any specific scheduling policy.
Instead, we propose a generic scheduling algorithm with preemption option. This scheduling algo-
rithm is used to decide for the given timeT, which resource instance(s) will be allocated towhich re-
quester(s). The specification and verification of specific scheduling policies can be a future research
work.

126

3.9. CONCLUSION

5. Implementation of the tool for semanticmapping in the property-driven verification toolset.
Themapping semantics defined in this chapter has been implemented as a tool in the real-time prop-
erty verification toolset. The implementation coverage library is provided in Appendix A.

127

4
Specification of Real-Time Property

Résumé

Les langages de modélisation doivent fournir des éléments pour décrire la structure et le comportement
des systèmes ainsi que leurs exigences. Plusieurs approches ont été proposées pour les propriétés temps
réels : des extensions des logiques exploitées par les outils de vérification telles LTL, CTL, mu-calcul qui
sont éloignées du point de vue utilisateur du système; des patrons de propriétés issus d’une analyse du
domaine comme ceux proposés par Dwyer et Konrad; des relations d’ordre partiel entre les événements se
produisant dans le système comme la partie CCSL (ClockConstraint Specification Language) du standard
MARTE. Ces deux dernières approches ont été conçues pour l’utilisateur final et ne sont pas forcément
adaptées à une mise en oeuvre efficace pour les outils de vérification de modèle. Ce chapitre définit un
ensembleminimal depatronsdepropriétés temps réel atomiquesqui serautilisé pour traduire les propriétés
qualitatives et quantitatives temps réel exprimées par le concepteur. L’objectif est de faciliter les activités
de vérification sans réduire l’expressivité des spécifications.

128

Selon les exigences exprimées dans plusieurs projets de recherche impliquant de nombreux partenaires
industriels, les besoins en termede vérification de propriétés temps réel comprennent: les pires etmeilleurs
temps d’exécution, les pires et meilleurs temps de traversée des moyens de communication, la durée d’un
état, les contraintes liées à la synchronisation, la coïncidence, la précédence, etc.

Ces exigences peuvent être sémantiquement décomposées en un ensemble de propriétés élémentaires
que nous appelons les patrons de propriété pour la vérification. Ils peuvent faciliter l’utilisation de méth-
odes formelles en particulier pour les utilisateur non-experts en fournissant des solutions récurrentes à la
spécification et la vérification. Ils permettent de décomposer des propriétés complexes comme une com-
position de propriétés élémentaires qui reposent sur un plus petit espace d’état et réduisent ainsi le coût de
vérification.

Les patrons de propriété habituels sont dérivés du travail de Dwyer et Konrad. Ils ciblent l’expressivité
pour les utilisateurs finaux qui spécifient les exigences temps réel, mais ne garantissent généralement pas
l’atomicité sémantique ou la facilité de la vérification. Nous proposons un ensemble minimal de patrons
atomiques de propriétés temps réel dans le but de diminuer la complexité de la vérification. L’intégralité
des exigences temps réel exprimées par des patrons de Dwyer et Konrad et une part importante de celles
exprimées en CCSL peuvent être traduites sous la forme d’une composition de ces patrons élémentaires.
Cette décomposition est automatique et donc transparente aux utilisateurs.

Ces patrons de propriété sontminimaux parce qu’ils sont sémantiquement atomiques et ne peuvent pas
être exprimés sous la formed’une composition d’autre éléments atomiques. Nous fournissons la traduction
despatronsdeDwyer etKonrad. Cela signifiequenospatronsdepropriété atomique sont sémantiquement
complet par rapport aux travaux de Dwyer et Konrad.

Nous avons également traduit une partie de la spécification de CCSL ainsi qu’une variante de CCSL
basée sur les tâches en nos patrons de propriétés. C’est une seconde illustration de l’expressivité des patrons
que nous proposons.

129

TPN

Reduced
Observer TPN MMC

TPN Model CheckingTag Property
Pattern Result

Architecture/
Behavior
Mapping

Observer TPN
Generation

Property Pattern
Result

Real-Time Property
Specification

Verification
Result

Computation

Real-Time Property
Verification Result

Feedback
Generation

System Model
Real-Time

Requirement
Architecture

Model
Behavior

Model

UML Real-Time Software Model

Timing Property
Pattern

Timing Property
Pattern

Real-Time
Property Patterns

1

5

3

2

3

3

Observer
TPN

Tag Property
Pattern Result
Interpretation

3

TPN
Reduction

4

Iteration
Tag

Progress
Map
2: Property Specification using Real-Time Property Patterns

This chapter defines a minimal set of real-time property patterns used to specify both qualitative and
quantitative real-time properties, for the purpose of verification-ease and semantic completeness (Progress
map 2). Classic property patterns based onDwyer’s andKonrad’s pattern systems target expressiveness for
the end-users that specify real-time requirements, but this usually doesnot ensure that they are semantically
atomic or easy to verify (Challenge 2 in page 22). We define a minimal set of atomic real-time property
patterns in the order to decrease the verification complexity. All end-user dedicated real-time requirements
are expressed as compositionsof thesepatterns. Thecommonrequirements basedonDwyer’s andKonrad’s
patterns and CCSL languagewill be automaticallymapped to our patterns using a predefinedmetamodel and
amapping library. We also define a small extension for task level CCSL specification and translate them into
our property patterns (Contribution 2 in page 22). All the patterns defined in this chapter will be checked

130

4.1. INTRODUCTION

in an efficient way using the proposals in Chapter 5.

4.1 Introduction

According to the user’s point of view expressed in several collaborative research projects involving indus-
trial partners such as P ¹, TOPCASED ², OPEES³, QUARTEFT ⁴, SPICES ⁵, SPACIFY ⁶, and CESAR ⁷, etc, the real-time
requirements commonly used in a real-time concurrent system include theworst/best case execution time,
worst/best case traversal time, state duration, the scheduling related constraints such as synchronization,
precedence, coincidence, etc. [Kop11]. These requirements can be semantically decomposed into a set of
elementary properties that we call property patterns. Design patterns are widely used in many engineer-
ing domains, because they are thought as a means of leveraging the experience of expert system designers
[VHJG95]. Property patterns can fulfill a similar purpose: on one hand ease the use of formal methods
especially for the non-expert users by providing the recurrent solutions to specification and verification
problem; and on the other hand decompose complex properties into a set of simpler ones that rely on a
smaller state space and thus decrease the verification cost.

In this chapter, we present a set of real-time property patterns used to specify real-time requirements.

Property based onDwyer’s and Konrad’s works
Dwyer et al. initially proposedqualitative temporal propertypatterns forfinite-state verification [DAC98,

DAC99]. They focused on logical time properties, thus no concept of quantitative real-time constraints
such as time interval anddurationwere present in their pattern system. Dwyer et. al. also performed a large-
scale study inwhich specifications containingover 500 temporal requirementswere collected and analyzed.
Theynoticed that over 90%of these couldbe classifiedunder oneof the proposedpatterns [DAC99], which
encouraged others to use Dwyer’s pattern system and to extend this study.

The followingworksonquantitative timepropertypatterns [KC05,GL06,ADZLB12]extendedDwyer’s
patterns, with additional real-time constraints. In [KC05], Konrad created mappings of quantitative time

¹http://www.open-do.org/projects/p/
²http://www.topcased.org/
³http://www.opees.org/
⁴http://projects.laas.fr/fiacre/
⁵http://www.spices-itea.org/public/news.php
⁶http://spacify.gforge.enseeiht.fr/
⁷http://www.cesarproject.eu/

131

4.1. INTRODUCTION

property patterns into three real-time temporal logics: MTL,TCTL [Alu91], and RTGIL [MRK+97], and then
defined a pattern template to ease the reuse. [GL06] provided a catalogue of patterns for real-time ex-
tension that handled a less expressive set of patterns (without some modifiers). Also based on Dwyer’s
property patterns, [ADZLB12] proposed a set of real-time properties that introduced the time constraints
Interval andDuration, using 4 scope modifiers and 4 categories of patterns. They did not implement all the
scope and categories (e.g. Precedence, Bounded Existence, Chain Response and Chain Precedence), because
they aimed to apply their approach on the modeling language Fiacre⁸ [BBF+07], which does not require
all the patterns but only the most commonly used ones.

From the viewpoint of property verification, we advocate that the property patterns in Dwyer’s pattern
system are not atomic. Let’s take a end-to-end real-time requirement as example (see Ex. 4.1).

Example 4.1 (Verification Pattern Example) For events A andB,Within time interval I ([Tmin, Tmax]), the
real-time property is Exist A After BWithin I. Its semantics can be represented by the logic formula:

(¬ B)∨ (B∧ A∧ (TAB ≥ Tmin)∧ (TAB ≤ Tmax)),

where TAB is the time interval from the first occurrence of A to the first occurrence of B. It can be decomposed into
3 atomic properties: Exist B, TAB ≥ Tmin and TAB ≤ Tmax.

Property based on CCSL

UML by itself is an untimed model. Many extensions were proposed inside and outside OMG. MARTE was
introduced to provide a generic time expressiveness. To explicit keywords that denote usual concepts of
the domain (periodic, sporadic, sampling, etc),Mallet et al. introduced theClockConstraint Specification
Language (CCSL) [AM08]. It offers a rich set of constructs to specify time requirements and constraints
based on sets of instantaneous clocks (events) and clock constraints.

Need for a verification-ease property specificationmethod
Relying on the decomposition in Ex. 4.1, the real-time requirements can be translated to and checked

with a set of atomic properties. We aim to define such aminimal set of atomic property patterns that targets
the ease of both specification and verification. The properties expressed using Dwyer/Konrad’s patterns

⁸http://projects.laas.fr/fiacre/

132

4.2. PRELIMINARIES

and CCSL languages can be automatically translated to the verification targeted atomic property elements,
which will then be assessed using the observer-based verification approach.

Weexplain somecore concepts inSection4.2, thengive aquickoverviewofpropertypattern approaches
in Section 4.3. We introduce the catalog of real-time property patterns in Section 4.4. The metamodel
of real-time property pattern and the mapping library are presented in Section 4.5. In order to assess the
expressivenessof the real-timeverificationpatterns,weapplyour approach toCCSL constraints, andpropose
a small extension based on CCSL to deal with the task level constraints in Section 4.6.

4.2 Preliminaries

Before defining the pattern-based approach, it is mandatory to clarify some core concepts used in the spec-
ification: qualitative & quantitative property, occurrence & predicate & scope, event & state.

4.2.1 Qualitative&Quantitative Property

Real time is a quantitative notion of time that is measured using a physical (real) clock. In contrast to real
time, logical (virtual) time deals with a qualitative notion of time that is expressed using event ordering
relation such as before, after, sometimes, eventually, precedes, etc. A real-time system verification implies that
all quantitative and qualitative time requirements should be satisfied. Real time can be seen as a particular
case of logical timewhere the events generatedby a physical clock are taken as time reference. In the context
of this thesis, we focus on the quantitative time properties because, on the one hand, the qualitative aspects
have been studied in many works; and, on the other hand, the introduction of physical clocks will increase
the complexity of model checking, which is the problem we aim to study using property driven approach.

4.2.2 Occurrence&Predicate& Scope

A common pattern for specifying a property is composed of three elements: occurrence, predicate and
scope. Predicate describes what must occur, and scope describes when it must occur. Occurrence is a con-
cept about the bounded existence. The occurrence of a predicate could be specified as existence, absence,
always (exist), or (exist) bounded occurrence. Given a temporal property Exist A After BWithin I, Exist
is the occurrence, A is the predicate, while After B Within I is the scope.

133

4.3. PROPERTY PATTERN APPROACH

4.2.3 Event& State

Theverification of end-user requirements covers three levels of model: the designmodel (UML in our case),
the verification model (TPN in our case), and the model checking state class graph (marking graph in our
case). We should distinguish the concepts of event and state from these three levels.

An event is an instantaneous and atomic occurrence of an action at a point in time. Relying on different
model granularities, an event can be:

• At UMLmodel level:

– A communication event: send, receive, read, write, etc.

– The execution of a transition from one state to another

• TPNmodel level: a TPN transition.

• State class graph level: a transition between states.

State is a universal concept through the whole system, regardless of the modeling granularity. A state
represents a situation during which some invariant conditions hold. The system remains in the state for
some time.

Before presenting the details about the proposed property pattern approach, we need to clarify a con-
vention on the use of event and state. In the pioneer work of Dwyer et al., a complete set of qualitative
property patterns were defined targeting specification activities. Thus, there was no need to distinguish
the use of event and state in the predicate and scope. For example, when a property is specified as Exist A
Before B. A and B could be state or event. From the viewpoint of verification, the predicate Exist A is sup-
posed to support both state and event. Nevertheless, to avoid ambiguity, the scope Before a state is usually
understood asBefore the enter event of the state. Therefore, using scopewith state is only a specification re-
quirement, while it is redundant for the verification. For this reason, in the context of this thesis, the scope
in a property can only be used with events, while the predicate can be used both with events and states.

4.3 Property Pattern Approach

Dwyer’s property pattern system was based on eight patterns (Absence, Existence, Bounded Existence, Prece-
dence, Response, Chain Precedence and Chain Response) and five scope modifiers (Global, Before, After, Be-

134

4.3. PROPERTY PATTERN APPROACH

tween andAfter-Until). Konrad andCheng extendedDwyer’s patterns to specify both qualitative and quan-
titative requirements. Konrad’s property patterns are organized in an hierarchy in Fig. 4.3.1 [KC05], where
the grey frame part corresponds to Dwyer’s patterns.

Speci&cation

Qualitative Quantitative

Occurrence Order Duration Periodic
Quantitative

Order

Absence Existence Precedence
Chain

Precedence

ResponseUniversality
Bounded

Existence

Chain

Response

Maximum

Duration

Bounded

Recurrence

Bounded

Response

Minimum

Duration
Bounded

Invariance

Type

Catalog

PaCern

Classi&cation

by Dwyer

Figure 4.3.1: Pattern Hierarchy

4.3.1 Qualitative Property Patterns

Dwyer’s qualitative patterns are briefly described as follows. In the descriptions, for brevity, we use the term
predicate to mean a state in which the given state formula is true, or an event from the given disjunction of events
occurrences.

• Absence A given predicate must not occur within a scope.

• Existence A given predicate must occur within a scope.

• Bounded Existence A given predicate must occur k times within a scope. Variants of this pattern
specify at least k occurrences and at most k’ occurrences of a state/event.

• Universality A given predicate occurs throughout a scope.

• Precedence A predicate P must always be preceded by a predicateQ within a scope.

135

4.3. PROPERTY PATTERN APPROACH

• Response A predicate P must always be followed by a predicateQ within a scope.

• Chain Precedence A sequence of states/events P1, ..., Pn must always be preceded by a sequence of
states/eventsQ1, ..., Qm. This pattern is a generalization of the Precedence pattern.

• Chain Response A sequence of states/events P1, ..., Pn must always be followed by a sequence of
states/eventsQ1, ..., Qm. This pattern is a generalization of theResponse pattern.

In our work, we focus on the first six patterns, because the chain patterns can be split into the atomic
verification patterns. Moreover, the bounded existence, precedence, and response patterns can be specified
using absence, existence, and universality patterns and some basic predicates.

The five qualitative scope modifiers defined by Dwyer are:

• GlobalThe predicate must hold during the whole system execution.

• BeforeThe predicate must hold up to a given event.

• AfterThe predicate must hold after the occurrence of a given event.

• Between The predicate must hold between the occurrence of event P and the occurrence of event
Q.

• After-Until Similar to Between, but the predicate must hold even if eventQ never occurs.

To represent the periodic semantics, we add a new scope modifier Periodically:

• PeriodicallyThe predicate must hold at least once every period.

4.3.2 Real-Time Suffix

As shown in Fig. 4.3.1, five quantitativemodifiers were introduced inKonrad’s quantitative temporal prop-
erty patterns: MinimumDuration, MaximumDuration, Bounded Recurrence, Bounded Response andBounded
Invariance.

In our work, considering that the specification should ease the verification and the composition of
atomic patterns, instead of quantitativemodifiers, we introduce three real-time suffixes to use together with
somepredicates and scopes. These real-time suffixes have equivalent semantics to the ones defined byKon-
rad.

136

4.4. CATALOGOF REAL-TIME PROPERTY PATTERNS

• At leastThe predicate must hold at least T t.u.. This suffix is used together with state predicate.

• AtmostThe predicate must hold at most T t.u.. This suffix is used together with state predicate.

• Within The predicate must hold within time interval I ([Tmin, Tmax]). This suffix is used together
with scope Before and After.

With these suffixes and new scope Periodically, we can specify real-time properties such as:

• Exist event A After event BWithin I;

• Always state S holds At least (Atmost)T t.u. Before event E;

• Absent event A Precedes event B, Periodically.

After clarifying the patterns and scopemodifiers, all the real-time requirements in real-time reactive sys-
tems can be specified by combining these patterns, scope modifiers and real-time suffixes. The translation
is given in the Appendix B.

4.4 Catalog of Real-Time Property Patterns

This catalog covers the atomic verification patterns used to check real-time requirements. In the context
of the thesis, as we rely on model checking for the verification, we focus on finite-state systems, whose
execution time can be finite or infinite.

The common method to specify a property for a given system is composed of two aspects: pattern and
scope. In the whole system’s state graph, the scope operator is first executed to select all states that belong
to this scope. These state candidates are then qualified by the given pattern definition. In order to ease the
verification, we define a minimal set of patterns (including predicates and scopes). All the other real-time
requirements are in fact a composition of these elementary patterns.

Our real-time property patterns can specify all the requirements based on Dwyer’s pattern system with
additional quantitative time suffixes. We provide the translation from all possible Dwyer’s and Konrad’s
property patterns to our patterns in Appendix B. Since it is proved that 90% of real-time requirements can
be specified using Dwyer’s patterns, we can say that most real-time requirements are also covered by our
approach.

137

4.4. CATALOGOF REAL-TIME PROPERTY PATTERNS

In the proposed pattern system (see Fig. 4.4.1), the real-time requirements will be specified using real-
timeproperty patterns (either atomic patternor composite pattern). Composite patterns canbe easily build
using binary operators (or, and, imply). Atomic patterns contain three elements: occurrence modifier, basic
predicate and scope modifier. Basic predicates are based on state and event modifiers while scope modifiers
are only based on event modifiers.

Atomic Pa*ern

Event Modi2erState

Scope Modi2erBasic PredicateOccurrence Modi2er

Real-Time Property

Composite Pa*ern

Real-Time

Property Pa0ern

Figure 4.4.1: Temporal Property Verification Pattern System

In the following section, we define the set of occurrence modifiers, event modifiers, basic predicates,
and scope modifiers.

4.4.1 OccurrenceModifier

Occurrence modifiers are used to specify the occurrence times of given event/state modifiers within some
scope. All the temporal properties are in one of the three cases: Exist, Absent, and Always:

• Exist predicate in Scope: the given predicatemust occur within a scope.

• Absent predicate in Scope: the given predicatemust not occur within a scope.

• Always predicate in Scope: the given predicate occur through a whole scope.

138

4.4. CATALOGOF REAL-TIME PROPERTY PATTERNS

4.4.2 Basic EventModifier

Predicates are based on events and states. An event can be an atomic element E, but in most context it is
more complex structure, e.g. event Ei is the ith occurrence of event E. After analyzing possible usage of the
event in a temporal property, we propose the following basic event modifiers. The event modifiers can be
extended, which means the basic event E can be replaced by the other event modifiers.

• Ei The ith occurrence of E (Fig. 4.4.2). When using this modifier, the occurrence of Emust be finite
under the observed execution. Whether an event is finite or not is checked by a predicate presented
in the following section. In the context of this thesis, E1 stands for the first occurrence of E, while E
stands for the event type. By default, when no occurrence is specified, E is regarded as E1.

E
1

E
i

t

E
2 ...

Figure 4.4.2: ith Occurrence of E

• E−k: The event standing for the delay of k times occurrence of event E (Fig. 4.4.3). This event mod-
ifier will be used to specify the temporal property between E and the event of its delay occurrence,
etc.

E
1

E
i

t

E
k

E'
i-k

t

E'
1 ...

E
k+1

E'
2

Figure 4.4.3: k Times Occurrence Delay of E

• E/k: The event standing for the occurrence of the same event E but ticking k times slower than E
(Fig. 4.4.4). is This modifier will be used to specify sub-occurrences of E, etc.

139

4.4. CATALOGOF REAL-TIME PROPERTY PATTERNS

E
1

E
2k

t

E
k... ...

E'
2

t

E'
1

Figure 4.4.4: Sub-Occurrence of E

• I+T:T t.u. measured from the initialization of the system for verifying theworst/best case execution
time of a system (Fig. 4.4.5).

E+T

t

I

0 T

Figure 4.4.5: T after System Initialization

• E+T: T t.u. after E (Fig. 4.4.6). When using this modifier, the occurrence of Emust be finite. This
modifier will be used to specify the scope within and the predicate at least (at most). For example,
after Ewithin I ([tmin, tmax]) will be specified as after E+ tmin and before E+ tmax.

E E+T

t
T0+TT0

Figure 4.4.6: T after E

• SS: The event standing for entering state S (Fig. 4.4.7).

• SE: The event standing for exiting state S (Fig. 4.4.7).

140

4.4. CATALOGOF REAL-TIME PROPERTY PATTERNS

SS
s

SE

t

Figure 4.4.7: Entering and Exiting event of State

4.4.3 Basic Predicate

Basic predicates are based on events and states. An event stands for the above eventmodifiers or composite
events. In the temporal properties, we are concerned with the following basic predicates:

• O(Ei) =True: Ei has occurred.

• isFinite(E) =True: The occurrence of event E is finite.

• Freq(EA) ·NA =Freq(EB) ·NB : There exists equivalent occurrences betweenEA andEB. This pred-
icate is used to verify the temporal properties in periodic scheduling, in both finite and infinite time
execution. Usually, it appears together with the scope Periodically. Suppose two periodic events
EA and EB exhibit respectively occurrence frequency FA and FB. There exists minimal coefficients
NA andNB (NA,NB ∈ Z+) that makes FA · NA = FB · NB. NA andNB can be computed using the
Least Common Multiple (lcm) and the Greatest Common Divisor (gcd).

NA =
lcm(FA, FB)

gcd(lcm(FA, FB), FA)
(4.1)

Nb =
lcm(FA, FB)

gcd(lcm(FA, FB), Fb)
(4.2)

A temporal property may require to limit the time difference between two periodic events. If these
two events exhibit the same frequency, NA and NB are equal. Otherwise, NA and NB should be
introduced to identify the corresponding occurrence between EA and EB.

• T(EA, EB) > t: Semantically, it is equivalent to T(EA) - T(EB) > t. If EA and EB have equivalent
occurrences, the time interval between each equivalent occurrences of EA and EB isAt least t+1 t.u..
This predicate can be used together with scope Periodically. If EA and EB occur only once, T(EA,

141

4.4. CATALOGOF REAL-TIME PROPERTY PATTERNS

EB)> t stands for T(E1
A, E1

B)> t. The event EA and EB can be refined using event modifiers, such as
T(E/k

A , EB), to specify more complex temporal property.

• T(EA, EB) < t: Semantically, it is equivalent to T(EA) - T(EB) < t. If EA and EB have equivalent
occurrences, the time interval between each equivalent occurrences of EA and EB isAtmost t-1 t.u..
This predicate can be used together with scope Periodically. If EA and EB occur only once, T(EA,
EB)< t stands for T(E1

A, E1
B)< t. The event EA and EB can be refined using event modifiers, such as

T(E/k
A , EB), to specify more complex temporal property.

• S = True : The state S holds.

• D(S)≥ t : The duration of a given S is At least t t.u..

• D(S)< t: The duration of a given S is Atmost t-1 t.u..

4.4.4 Basic ScopeModifiers

• Global: the scope is the whole system execution.

• Before Ei: Before the ith occurrence of E. When using this scope, isFinite(E)must be true.

• After Ei: After the ith occurrence of E. When using this scope, isFinite(E)must be true.

• Between EA and EB: If EA and EB are infinite, the scope between should be redefined as between
the equivalent occurrences of EA and EB. The event EA and EB can be refined using event modifiers,
such as Between E/k

A and E−m
B , to specify more complex temporal property. If EA and EB occur only

once, Between EA and EB t stands betwwen E1
A and E1

B. The event EA and EB can be refined using
event modifiers, such as between E/k

A andEB, to specify more complex temporal property.

The scope After EA Until EB can be represented by the above ones:

• When EB occurs after EA, it is equivalent to Exist EB After EA ∧ Between EA and EB;

• When EB does not occurs after EA, it is equivalent to Absent EB After EA ∧ After EA.

142

4.5. METAMODEL ANDMAPPING LIBRARY

4.5 Metamodel and Mapping Library

All temporal properties basedonDwyer’s patternswith additional quantitative time suffixes canbemapped
to our patterns. The complete mapping library is provided in Appendix B.

We present in Fig. 4.7.1 the metamodel of the proposed pattern system. It is defined within Eclipse
modeling Framework (EMF) to ease the integration with UMLmodels.

Relying on this metamodel andmapping library, the mapping process can be performed automatically.

4.6 Pattern Composition : Application to CCSLConstraints

In order to assess the expressiveness of the real-time verification patterns, we apply our approach to a com-
monly used temporal property specification language: CCSL from the UML MARTE standard. We first intro-
duce what is CCSL in Section 4.6.1, then present the concept of time tolerance in verification in Section
4.6.2. The CCSL constraints are then translated using the proposed real-time property patterns in Section
4.6.3. We have defined task level constraints based on CCSL. These constraints are specified using our veri-
fication patterns in Section 4.6.4.

4.6.1 What is CCSL

UML by itself is an untimed model. Many extensions were proposed inside and outside OMG. MARTE was in-
troduced to provide a generic time expressiveness. To explicit keywords that denote usual concepts of the
domain (periodic, sporadic, sampling, etc), Mallet et al. introduced the Clock Constraint Specification
Language (CCSL) [MAL10]. It offers a rich set of constructs to specify time requirements and constraints
based on sets of instantaneous clocks (events) and clock constraints. The property pattern that we have
defined in the previous parts can also be expressed by CCSL.

A CCSL specification consists of clock declarations and a set of binary clock relations. These relations
apply to clocks or clock expressions. CCSL constraints are classified into four categories:

1. coincidence-based constraints (also known as synchronous constraints),

2. precedence-based constraints (also known as asynchronous constraints),

3. mixed constraints, which combine synchronous and asynchronous constraints,

143

4.6. PATTERNCOMPOSITION : APPLICATION TO CCSL CONSTRAINTS

4. NFP (NonFunctionalProperty) chronometric constraints, which is pertinent for chronometric clocks
only and used for quantitative timed properties.

TimeSquare: The CCSLparser is provided in the tool TimeSquare⁹, which is aModelDevelopmentKit (MDT)
provided as a set of Eclipse plugins. TimeSquare allows to define CCSL constraints in the UML models, and
then simulate these constraints using the generated model traces in Papyrus MDT¹⁰.

4.6.2 TimeTolerance in Verification

CCSL deals with logical time. It defines the coincidence between two clocks A and B as they occur at the
same time, which indicates T(A) − T(B) = 0 . Although the coincidence means that something occurs
simultaneously (with no time difference), in real-time system the strict simultaneous property is rarely
achieved. Thus, the design requirements are usually associated with time tolerance. In order to be more
realistic, we introduce the concept of time tolerance for all CCSL-based constraints. The time tolerance is
denoted by δ, which can be expressed using the NFP chronometric constraints.

4.6.3 Specification of CCSLConstraints

Thereal-time property patterns proposed in ourwork can be seen as a translation bridge between the front-
end specification language (inour case theproperties inDwyer’s andKonrad’sworks) and theback-endver-
ification language (in our case TPN observers and the logic formulae). CCSL is also a front-end specification
language for expressing the event-based real-time properties. Therefore, the CCSL constraints can be trans-
lated to our property patterns in order to be verified using the model checking afterwards. In this section,
we translate the CCSL coincidence-based constraints (sub-clocking and tight sub-clocking), precedence-
based constraints (precedence and strict precedence) and their derived constraints (equality, exclusion,
alternation, and synchronization) using our property patterns.

Chronometric constraints are special kinds of logical constraints, with a specific clock called IdealClock
or Real-Time clock in CCSL. In our discussion, the coincidence-based and precedence-based constraints are
extended by the physical clocks (denoted by the time tolerance δ) using the NFP chronometric constraints.

⁹http://timesquare.inria.fr/
¹⁰https://www.eclipse.org/papyrus/

144

4.6. PATTERNCOMPOSITION : APPLICATION TO CCSL CONSTRAINTS

Theoriginal definitions of the CCSL constraints are referenced from thework ofMallet et al. in [MAL10,
AM09].

Clock A clock is a 5-tuple ⟨I,≺,D, λ, u⟩, where

• I is a set of instants,

• ≺ is a quasi-order relation on I , named strict precedence,

• D is a set of labels,

• λ : I → D is a labeling function,

• u is often called tick, it can be processorCycle as well or any other logical activation of a behavior.

The ordered set ⟨I,≺⟩ is the temporal structure associated with the clock. ≺ is a total, irreflexive, and
transitive binary relation on I .

A discrete-time clock is a clock with a discrete set of instants I . Since I is discrete, it can be indexed
by natural numbers in a fashion that respects the ordering on I: let N∗ = N\{0}, idx : I → N∗, ∀i ∈
I, idx(i) = k if and only if i is the kth instant in I .

Time Structure A time structure (TS) is a pair ⟨C,≼⟩ where C is a set of clocks,≼ is a binary relation on∪
c∈C Ic, named precedence,≼ is reflexive and transitive. From≼we derive four new relations:

• Coincidence (≡ ≜≼ ∩ ≼−1),

• Strict precedence (≺ ≜≼ \ ≡),

• Independence (∥ ≜ ≼ ∪ ≼−1), and

• Exclusion (# ≜≺ ∪ ≺−1).

4.6.3.1 CCSLCoincidence-based Constraints

There exists amapping h fromIa toIb which is injective and order preserving. a is said to be a sub-clock
of b, and b is a super-clock of a.

145

4.6. PATTERNCOMPOSITION : APPLICATION TO CCSL CONSTRAINTS

Sub-clocking Let a, b be two clocks. The clock relation a isSubClockOf b means that a is a sub-clock of
b (denoted as a

⊂ b). This means that each instant in a is coincident with exactly one instant in b. An
example of sub-clocking is given by Fig. 4.6.1. a isSubClockOf b iff:(

(∀k ∈ N∗, a[k] ∈ Ia)(∃l ∈ N∗, b[l] ∈ Ib)(a[k]≡TSb[l] = h(a[k]))
)
∧(

(∀k1, k2 ∈ N∗, a[k1], a[k2] ∈ Ia)(a[k1]≺a[k2] ⇒ h(a[k1])≺h(a[k2]))
) (4.3)

b

a

a b⊂

Figure 4.6.1: Example of Sub-clock

Specification using real-time property pattern:(
(∀k ∈ N∗, ak ∈ Ia)(∃l ∈ N∗, bl ∈ Ib)

(
(T(ak, bl) < δ) ∧ (T(bl, ak) < δ)

))
∧(

(∀k1, k2 ∈ N∗, ak1 , ak2 ∈ Ia)(T(ak2 , ak1) > δ ⇒ T(h(ak2), h(ak1)) > δ)
) (4.4)

Tight sub-clocking a

⊂+ b is a sub-clocking relation in which the image of Ia by h is an interval of Ib. An
example of tight sub-clocking is given by Fig. 4.6.2. a

⊂+ b iff:(
(∃j ∈ N)(∀k ∈ N∗, a[k] ∈ Ia)

(
(b[j+ k] ∈ Ib) ∧ (a[k]≡TSb[j+ k])

))
∧(

(∀k1, k2 ∈ N∗, a[k1], a[k2] ∈ Ia)(a[k1]≺a[k2] ⇒ h(a[k1])≺h(a[k2]))
) (4.5)

146

4.6. PATTERNCOMPOSITION : APPLICATION TO CCSL CONSTRAINTS

b

a

a b⊂+

Figure 4.6.2: Example of Tight Sub-clock

Specification using real-time property pattern:(
(∃j ∈ N)(∀k ∈ N∗, ak ∈ Ia)

(
(bj+k ∈ Ib) ∧ (T(ak, bj+k) < δ) ∧ (T(bj+k, ak) < δ)

))
∧(

(∀k1, k2 ∈ N∗, a[k1], a[k2] ∈ Ia)(T(ak2 , ak1) > δ ⇒ T(h(ak2), h(ak1)) > δ)
) (4.6)

4.6.3.2 Derived Coincidence-based Constraints

Exclusion a exclusiveWith b (denoted as a

b) means that a and b have no coincidence instants. a
exclusiveWith b iff.

(∀j ∈ N∗, a[j] ∈ Ia)(∀k ∈ N∗, b[k] ∈ Ib)
(
¬(a[j]≡TSb[k])

)
(4.7)

Specification using real-time property pattern:

(∀j ∈ N∗, aj ∈ Ia)(∀k ∈ N∗, bk ∈ Ib)

(
¬
(
(T(aj, bk) < δ) ∨ (T(bk, aj) < δ)

))
(4.8)

Equality a = b is a typical synchronous clock relation derived from tight sub-clocking.

a = b⇔ (a

⊂+ b)∧ (b

⊂+ a)

Hence, there is a bijection between instants of a and b. This bijection is order preserving and the instants
are point-wise coincidence: ∀k ∈ N∗, a[k]≡b[k]. An example of equality is given by Fig. 4.6.3. a = b iff:(

(∀k ∈ N∗, a[k] ∈ Ia)
(
(b[k] ∈ Ib) ∧ (a[k]≡TSb[k])

))
∧(

(∀k ∈ N∗, b[k] ∈ Ib)
(
(a[k] ∈ Ia) ∧ (a[k]≡TSb[k])

)) (4.9)

147

4.6. PATTERNCOMPOSITION : APPLICATION TO CCSL CONSTRAINTS

b

a

a b=

Figure 4.6.3: Example of Equality

Specification using real-time property pattern:(
(∀k ∈ N∗, ak ∈ Ia)

(
(bk ∈ Ib) ∧ (T(bk, ak) < δ) ∧ (T(ak, bk) < δ)

))
∧(

(∀k ∈ N∗, bk ∈ Ib)
(
(ak ∈ Ia) ∧ (T(bk, ak) < δ) ∧ (T(ak, bk) < δ)

)) (4.10)

4.6.3.3 CCSLPrecedence-based Constraints

The clock constraint Precedence distinguishes two forms: the strict precedence and the non strict
precedence. Intuitively, this means that each instant in b follows one instant in a.

Strict precedence: An example of strict precedence is given by Fig. 4.6.4. a strictly precedes b (denoted a
 ϒ b) iff:

(∀i ∈ Ib)(k = idxb(i)) =⇒ (a[k]≺TSb[k])) (4.11)

a

b

a b~

Figure 4.6.4: Example of Strict Precedence

Specification using real-time property pattern:

(∀i ∈ Ib)(k = idxb(i)) =⇒ (T(bk, ak) > δ) (4.12)

148

4.6. PATTERNCOMPOSITION : APPLICATION TO CCSL CONSTRAINTS

Precedence An example of precedence is given by Fig. 4.6.5. a precedes b (denoted as a
 ϒ b) iff:

(∀k ∈ N∗, b[k] ∈ Ib)
(
(a[k] ∈ I(a)) ∧ (a[k]≼TSb[k])

)
(4.13)

a

b

a b

ϒ

Figure 4.6.5: Example of Precedence

Specification using real-time property pattern:

(∀k ∈ N∗, bk ∈ Ib)

(
(T(bk, ak) > δ) ∨

(
(T(ak, bk) < δ′) ∧ (T(bk, ak) < δ′)

))
(4.14)

4.6.3.4 Derived Precedence-based Constraints

AlternationAnexampleof alternation is givenbyFig. 4.6.6. A time structureTSsatisfiesaalternatesWith
b (denoted as a

~ b) iff:

(∀i ∈ I(a))(k = idxa(i)) =⇒ (a[k]≺TSb[k] ∧ b[k]≺TSa[k+ 1]) (4.15)

a

b

a b~

Figure 4.6.6: Example of Alternation

Specification using real-time property pattern:

(∀i ∈ I(a))(k = idxa(i)) =⇒
(
(T(bk, ak) > δ) ∧ (T(ak+1, bk) > δ)

)
(4.16)

149

4.6. PATTERNCOMPOSITION : APPLICATION TO CCSL CONSTRAINTS

Synchronization An example of synchronization is given by Fig. 4.6.7. A time structure TS satisfies a
synchronizesWith b (denoted as a b) iff:

(∀k ∈ N∗)(a[k]≺TSb[k+ 1]) ∧ (b[k]≺TSa[k+ 1]) (4.17)

a

b

a b

Figure 4.6.7: Example of Synchronization

Specification using real-time property pattern:

(∀k ∈ N∗)
(
(T(bk+1, ak) > δ) ∧ (T(ak+1, bk) > δ)

)
(4.18)

4.6.4 Specification of CCSL-based Task Level Constraints

Theconcept of event is regarded as a clock in CCSL. In the scheduling of reactive systems, some task temporal
constraints are required. A task in the scheduling is defined as the smallest computable unit, which con-
sumes time and modifies resources (consumes and produces). It contains two inner events, AS (starting
event) and AE (ending event). A task could be executed infinitely or finitely according to the design. Task
properties can be expressed as relations such as two tasks must be coincident in each period during the
infinite-time scheduling.

4.6.4.1 Coincidence Constraint

Definition 4.1 (Coincidence) Tasks A and B are coincident iff the nth occurrence of A occurs simultaneously
with the nth occurrence of B (n ∈ N). It is equivalent to say that the nth occurrence of AS occurs simultaneously
with the nth occurrence of BS , and the nth occurrence of AE occurs simultaneously with the nth occurrence of BE . In
Fig. 4.6.8(a), A and B are coincident, but they are not coincident in (b) due to the overlap between Ai

E and B
i+1
S .

150

4.6. PATTERNCOMPOSITION : APPLICATION TO CCSL CONSTRAINTS

Ai Ai+1

Bi Bi+1

δ δ δ

（a）Coincidence(A,B,δ) = true

δ δ

δ

(b) Coincidence(A,B,δ) = false

Bi Bi+1

A

B

Ai Ai+1

Figure 4.6.8: Coincidence Constraint

Specification 4.1 (Coincidence Constraint)
(Freq(AS) = Freq(BS)) ∧ (Freq(AE) = Freq(BE))

(T(Ai
S,Bi

S) < δ) ∧ (T(Ai
E,Bi

E) < δ)
(T(Ai+1

S ,Bi
E) > δ) ∧ (T(Bi+1

S ,Ai
E) > δ)

4.6.4.2 Synchronization Constraint

Definition 4.2 (Synchronization) Synchronization is a weakened coincidence relation without preventing a
simultaneously execution. The only concern is that the execution order must persist. In Fig. 4.6.9(a), A and B are
synchronized, but they are not synchronized in (b) due to the overlap between Ai

E and B
i+1
S .

Ai Ai+1

Bi Bi+1

δ

δ

(a) Synchronization(A,B, δ) = true

Ai Ai+1

Bi+1

δ

δ

(b) Synchronization(A,B, δ) = false

Bi

A

B

Figure 4.6.9: Synchronization Constraint

151

4.6. PATTERNCOMPOSITION : APPLICATION TO CCSL CONSTRAINTS

Specification 4.2 (Synchronization Constraint)
(Freq(AS) = Freq(BS)) ∧ (Freq(AE) = Freq(BE))

(T(Ai+1
S ,Bi

E) > δ) ∧ (T(Bi+1
S ,Ai

E) > δ)

4.6.4.3 Exclusion Constraint

Definition 4.3 (Exclusion) Task A and B are excluded iff all the presence of A does not occur simultaneously
with any presence of B. It could be considered as another form of coincidence with some time offset. As In Fig.
4.6.10 (a) task A and B are excluded, but in (b) they are not excluded due to the overlap between Ai

E and B
j+1
S

Ai Ai+1

Bj Bj+1

δδδ

(a) Exclusion(A,B, δ) = true

Ai Ai+1

Bj+1

δδδ

(b) Exclusion(A,B, δ) = false

Bj

A

B

Figure 4.6.10: Exclusion Temporal Constraint

Specification 4.3 (Exclusion Constraint)
T(Bj

S,Ai
S) > δ ⇒ (T(Bj

S,Ai
E) > δ) ∧ (T(Ai+1

S ,Bj
E) > δ)

T(Bj
S,Ai

E) > δ ⇒ T(Ai+1
S ,Bj

E) > δ
T(Bj

E,Ai
S) > δ ⇒ T(Bj

S,Ai
E) > δ

T(Bj
E,Ai

E) > δ ⇒ (T(Bj
S,Ai

E) > δ) ∧ (T(Ai+1
S ,Bj

E) > δ)

4.6.4.4 Sub-occurrence Constraint

Definition 4.4 (Sub-occurrence) Task B is a sub-occurrence of task A, iff B is k (k ∈ N+) times slower than
A, which indicates the ith occurrence of A and the jth occurrence of B occur simultaneously, where always j ⩽ i. In
Fig. 4.6.11 (a) B is the sub-occurrence of A, while in (b) is not due to the overlap between Ai+1

S and Bj
E.

152

4.6. PATTERNCOMPOSITION : APPLICATION TO CCSL CONSTRAINTS

Ai

(a) Sub-Occurrence(A,B, δ) = true (b) Sub-Occurrence(A,B, δ) = false

δ δ δ δ

Ai+1 Ai+k

Bj Bj+1

Ai

δ δ δ

Ai+1 Ai+2

Bj Bj+1

overlap

A

B

Ai+k-1...

Figure 4.6.11: Sub-occurrence Constraint

Specification 4.4 (Sub-occurrence Constraint)
(Freq(Ai/k

S) = Freq(Bj
S)) ∧ (Freq(Ai/k

E) = Freq(Bj
E))

(T(Ai/k
S ,Bj

S) < δ) ∧ (T(Ai/k
E ,Bj

E) < δ) ∧ (T(Ai/k+1
S ,Bj

E) > δ) ∧ (T(Bj+1
S ,Ai/k

E) > δ)

4.6.4.5 Precedence Constraint

Definition 4.5 (Precedence) Task A precedes task B iff at any time, the occurrence time of A is superior or
equal to the occurrence time of B. This implies Ai

S must precede Bi
S, however it is not necessary to also have Ai

E

precedes Bi
S in all context. Three strictness levels are defined, L1(least strict), L2(strict), L3(most strict) (see Fig.

4.6.12).

Ai

Bi

δ

(a) Precedence(A,B, δ, L1) = true

A

B

Ai

Bi

δ

(b) Precedence(A,B, δ, L2) = true

δ

Ai

Bi

(c) Precedence(A,B, δ, L3) = true

δ

Figure 4.6.12: Precedence Constraint

153

4.7. CONCLUSION

Specification 4.5 (Precedence Constraint)
L1 : T(Bi

S,Ai
S) > δ

L2 : (T(Bi
S,Ai

S) > δ) ∧ (T(Bi
E,Ai

E) > δ)
L3 : T(Bi

S,Ai
E) > δ

4.7 Conclusion

Classic property patterns based onDwyer’s andKonrad’s pattern systems target expressiveness for the end-
users that specify real-time requirements, but this usually does not ensure that they are semantically atomic
or easy to verify. We define a minimal set of atomic real-time property patterns in the order to decrease
the verification complexity. All end-user dedicated real-time requirements are expressed as compositions
of these patterns. The proposed set of property patterns is minimal because its elements are semantically
atomic and cannot be expressed as a composition of other atomic elements. We provide the translation
from all possible Dwyer’s and Konrad’s property patterns to our property patterns. This means our atomic
property patterns are semantically complete with respect to Dwyer’s and Konrad’s work. The common
requirements based on Dwyer’s and Konrad’s patterns will be automatically mapped to our patterns using
a predefined metamodel and a mapping library. Our property patterns decompose complex properties
into a set of simpler ones that rely on a smaller state space and thus decrease the verification cost. We also
rely on these elementary patterns for event-based CCSL specification and a small extension for task-based
CCSL specification, which is one of the standardized specifications of timedmodel in MARTE. All the patterns
defined in this chapter will be checked in an efficient way using the proposals in Chapter 5.

The main contributions of the current chapter are summarized as follows:

1. Real-time requirement specification relying on real-time property patterns.
We have defined a minimal set of atomic real-time property patterns to specify real-time require-
ments. These patterns target verification easiness. We propose to specify a temporal property using
occurrencemodifiers, basic eventmodifiers, basic predicates and basic scopemodifiers. The compo-
sition of these elements covers all the properties based onDwyer’s qualitative patterns and Konrad’s
quantitative patterns, and the CCSL part of UML MARTE standard.

2. Automatically mapping real-time requirements to real-time property patterns.
All the temporal properties basedonDwyer’s patternswith additional real-time suffixes canbemapped

154

4.7. CONCLUSION

to our patterns. The completemapping library is provided in Appendix B.Themetamodel is defined
within Eclipse modeling Framework (EMF) to ease the integration with UML model. Relying on this
metamodel and the mapping library, the mapping process is performed automatically.

3. Applying real-time property patterns to CCSL-based task constraints. [GPC12a]
CCSLdealswith logical time. Basedon CCSL, we have introduced the concept of time tolerance, which
is amandatory for the real systemmodeling. We have translated CCSL constraints using our real-time
property patterns. In the scheduling of reactive systems, some task temporal constraints are required.
We propose a small extension of CCSL constraints to deal with the task level constraints, and then
specify them using the real-time property patterns.

4. Implementation of real-time property specification tool in the verification toolset. The prop-
erty specification tool has been implemented in the verification toolset. This tool allows to auto-
matically translate real-time requirements based on Dwyer’s and Konrad’s work into our property
patterns. It is also possible to parse and translate CCSL constraints into our property patterns. For
now, the prototype of this tool does not cover all the property mapping. It will be completed in the
near future.

155

4.7. CONCLUSION

Figure 4.7.1: Metamodel of Temporal Property Pattern

156

5
Property Verification based on TPN/ttsObservers

Résumé

Ce chapitre propose une approche pour la vérification demodèles spécifiés en réseaux de Petri temporisés
exploitant des observateurs pour évaluer la satisfaction des patrons élémentaires de propriété temps réel
proposé dans le chapitre précédent.

La plupart des exigences qualitatives exprimées par les utilisateurs industriels peuvent être traduites
formellement en exploitant les patrons de propriété de Dwyer en utilisant différents formalismes logiques.
De nombreux outils de vérification permettent d’évaluer les propriétés spécifiées dans ces formalismes.
Les exigences quantitatives exprimées en utilisant les patrons de Konrad peuvent aussi être spécifiées de
la même façon en exploitant des extensions temporisées des formalismes logiques. Ces méthodes de spé-
cification pour les propriétés quantitatives sont intéressantes théoriquement pour étudier la complétude
des formalismes, mais leur utilisation pratique est limitée en raison de la capacité des outils de vérification.
Ces outils ne fournissent pas de le même support pour les propriétés quantitatives que pour les propriétés

157

qualitatives. Habituellement, ce problème est résolu en utilisant des observateurs : des parties de modèle
qui conduisent dans des états particulier si les contraintes sur le temps sont satisfaites. La satisfaction des
propriétés temporisées est alors réduites à l’accessibilité de ces états . Les observateurs sont exécutés en
même temps que le modèle en cours d’évaluation. L’accessibilité est alors exprimée par des formules de
logique non temporise. Les contributions de ce chapitre sont :

• Les exigences temps réel sont exprimées en utilisant un ensembleminimal demodificateurs élémen-
taires (occurrence, événement, prédicat de base, et domaine), qui sont sémantiquement atomiques.
Toutes les propriétés temps réel exprimées à l’aide des patrons de Dwyer et Konrad et une partie
de celles exprimées en CCSL peuvent être traduites en ces modificateurs élémentaires. L’ensemble
d’observateurs proposés dans ce chapitre correspond à cesmodificateurs élémentaires. Pour préciser
les deux dernières phrases: Ces observateurs sont atomiques et ne peuvent pas être exprimés avec
les autres observateur. Les autres observateurs sont obtenus par composition des observateurs élé-
mentaires. L’ensemble des observateurs estminimal et complet par rapport aux patrons de propriété
définis dans le chapitre 4.

• Etant donné qu’ils sont ajoutés dans le modèle du système, les observateurs peuvent augmenter la
taille de l’espace d’état, parce qu’ils introduisent de nouveaux états et de nouvelles transitions. Ces
structures d’observation supplémentaires, bien que que nemodifiant pas la sémantique originale du
système, peuvent changer la taille de l’espace d’états, et du graphe des classes d’états généré et donc
influencer sur les performances de la vérification. Il est donc nécessaire de concevoir des observa-
teurs qui minimisent cet impact. Par contre, cela peut demander d’exploiter des caractéristiques des
réseaux de Petri temporisés qui peuvent réduire les capacités d’abstraction du graphe d’état, ce qui
conduit à un coût beaucoup plus élevé pour la vérification. Par conséquent, la conception de ces
observateurs doit effectuer un compromis entre ces deux aspects. Dans cette thèse, la priorité est de
préserver le niveau le plus élevé d’abstraction du graphe d’état, puis de minimiser ensuite le nombre
de transitions et d’états introduits par les observateurs.

• Lors d’une vérification de modèle classique, l’utilisateur attend une réponse positive ou négative
concernant la satisfaction de l’exigence exprimée. Pour les propriétés quantitatives, toutefois, les
utilisateurs souhaitent souvent déterminer les bornes exactes de satisfaction d’une propriété et pas
seulement vérifier que les bornes proposées sont correctes. Nous proposons une méthode itéra-

158

tive dichotomique pour approcher progressivement les bornes exactes en combinant la vérification
à base d’observateurs avec un moteur de recherche dichotomique.

159

TPN

Reduced
Observer TPN MMC

TPN Model CheckingTag Property
Pattern Result

Architecture/
Behavior
Mapping

Observer TPN
Generation

Property Pattern
Result

Real-Time Property
Specification

Verification
Result

Computation

Real-Time Property
Verification Result

Feedback
Generation

System Model
Real-Time

Requirement
Architecture

Model
Behavior

Model

UML Real-Time Software Model

Timing Property
Pattern

Timing Property
Pattern

Real-Time
Property Patterns

1

5

3

2

3

3

Observer
TPN

Tag Property
Pattern Result
Interpretation

3

TPN
Reduction

4

Iteration
Tag

Progress
Map
3: Observer-based Real-Time Property Verification

In this chapter, we introduce a TPN/tts observer-based verification approach to assess the satisfaction
of real-time property patterns defined in the previous chapter (Progress map 3). Temporal logics such as
TCTL can be used to express real-time properties, but are limited in practice due to the capability of model
checking tools we are relying on (Challenge 3 in page 22). Usually the end users are more capable to use
observers than logical formulae. Our approach adds 12 event-based TPN observers and 4 state-based ob-
servers in the observed system to check each real-time property pattern using the accessibility assertions
in the modal μ-calculus (MMC) and the muse model checker from the TINA toolset. This observer-based
verification approach takes advantage of high abstraction of state class graph to minimize model checking
complexity, and thereby improve the verification efficiency. This verification approach can also be used as
to search for the bound values for properties such as BCET/WCET.Thismay help the users improve and refine

160

5.1. INTRODUCTION

their design model. (Contribution 3 in page 24)

5.1 Introduction

Aqualitative time requirement can bemapped toDwyer’s property patterns using various logic formalisms.
For example, the property Exist S responds to P is specified as EG(P ⇒ AF(S)) in CTL or as♢(P ⇒ ♢S)
in LTL. Many model checking tools allow to check properties specified in these formalisms. Therefore,
qualitative time properties expressed using Dwyer’s patterns can be assessed with the help of these tools.

A quantitative time requirement expressed using Konrad’s patterns can also be specified in a similar
way. For example, the time-bounded response property Exist S responds to P within k t.u. can be specified
as EG(P ⇒ AF<k(S)) in TCTL. Such a specification method for quantitative properties are interesting for
theoretical purpose, but its practical use would be limited due to the capability of model checking tools
we are relying on, as these tools do not provide the same support for timed temporal logics as for untimed
temporal logics.

Usually, the above problem is solved using observers. Observers are executed concurrently with the
model under assessment. Some transitions will be fired and the expected states will be reached if and only
if some timed conditions are satisfied. These behaviors will be observed to check the satisfaction of real-
time properties.

In Chapter 3, we have mapped UML-MARTE to TPN models, used to assess the expected real-time prop-
erties. In this chapter, we present the real-time property verification approach based on TPN observers.
The observer approach is commonly used in model checking. A similar work is carried out by Abid et
al. [AZB13]. Before comparing the work of Abid and our works, the concept of Time Transition System
should be precised. We have presented in the state of the art (see Section 2.3.2) that TINA toolset allows
data handling on TPN based on classical imperative programming by adding common features like guard
variable definition andmodification to each transition. The variable’s value set is composed of an extension
of reachability graph’s state, which unifies the verification processes andmakes it transparent to the TPN user
while enlarging the modeling capacity. The TPN with data handling and priority extension is called Time
Transition System (tts). Each transition in tts has two associated functions:

• Pre represents a transition guard: the transition will be enabled only when both TPN’s marking pre-
condition and the guard are satisfied.

161

5.1. INTRODUCTION

• Act is performed when the transition is fired. It can modify the data that are used to compute the
guards.

In the work of Abid et al., a set of observers was defined using the expressiveness of tts. They did
not give an automatic method to generate observers. Rather, they defined a set of observers at tts level
for their property patterns. After selecting the ”most efficient ones”, they proved that the observers were
correct. Their observers largely rely on the priority arc in tts. This degrades the abstraction level when
generating state class graph for model checking. In our work, we distinguish the state-based and event-
based observers. According to the real-time property patterns defined in Chapter 4, most of the real-time
requirements target the events, and the others target the states. We design and implement the event-based
observers at TPN level (12 observers), the state-based observers at tts level (4 observers), and select the
”most efficient ones”. The criteria for efficiency is the time and resource consumed by a TPN system and
its observers. Our observers take advantage of the highest abstraction (marking abstraction in our case)
provided by TINA toolset to minimize the size of the state space in the generated state class graph.

Some relatedworksdefinedTPNobservers for verifying somespecificproperties. Theworkof [GDRA+12]
proposed a worst case time interval TPN observer. However, this observer added extra semantics to the ob-
served system, which leaded to a change on the system’s original behavior. According to our understand-
ing, this extra semantics should be avoided. Compared to this work, our work focuses on a set of observers,
which can be used to verify all the real-time requirements specified using the pattern system of Dwyer and
Konrad or CCSL. From this point of view, the proposed set of observers is complete.

The contributions of this chapter are summarized as follows:

• First, the proposed set of atomic observers is complete andminimal. As presented in Chapter
4, a real-time requirement is expressed using a set of elementary modifiers (occurrence, event, basic
predicate and scope modifiers), which are semantically atomic. The set of elementary modifiers is
minimal, whichmeans all the real-time properties expressed usingDwyer’s and Konrad’s patterns or
CCSL can be specified using our elementary modifiers. The proposed set of observers corresponds
to these elementary modifiers. Therefore, the observers are atomic and composable. The set of ob-
servers is minimal and complete.

• Second, the observers can minimize the size of the state space in the generated state class
graph. As an additional part added in the original system, the observers will increase system’s orig-
inal state space, because they introduce some possible execution traces related to the observation.

162

5.2. DESIGN PRINCIPLES OF TPN/TTSOBSERVERS

These additional observer structures, althoughdonot add extra semantics or removeoriginal seman-
tics for system’s behavior, they can change the size of state space of the generated state class graph and
thus impact the performance of themodel checking. The less transitions an observer is composed of,
the better performance will the model checking achieve. Nevertheless, minimizing the transitions
in an observer may require to use some TPN/tts features which may degrade of abstraction level of
state class graph. The lower the abstraction level is, the worse the performancewill be. Therefore ob-
server designmust promote a trade-off between the above two aspects. In our approach, the priority
is keeping the highest abstraction (marking abstraction) of the state class graph, then minimize the
transitions in the observers. We rely on the μ-calculus and the muse model checker from the TINA

toolset to assess the real-time properties based on our proposed observers.

• Third, use observers to compute the bound values of quantitative property. When performing
model checking, an observer can give an answer such as Yes or No for the satisfaction of the given
property. For quantitative properties, however, users usually expect to know, instead of whether the
property is bounded by [tmin, tmax], that the exact bound of the property[tmin, tmax]. In order to fill
this gap of usage, we propose an iterative dichotomymethod that will gradually approach the bound
value by combining the observer with a binary search engine.

We introduce the catalog of TPN/tts observers in Section 5.3; present the verification process using a
running example in Section 5.4; present the computation benefit of the observer approach in Section 5.5;
at last we explain the method used to guarantee verification scalability in Section 5.6.

5.2 Design Principles of TPN/ttsObservers

5.2.1 Structure ofObserver

A TPN/tts observer is a complementary structure linked to or independent from the original system. As
shown in Fig. 5.2.1, in order to assess an event-based real-time property, a TPN/tts observer is associ-
ated with the original system, by adding arcs to the transition TA in component A and the transition TB

in component B. If the real-time property is based on states, the tts observers are independent from the
system (represented by the dotted links in Fig. 5.2.1). Theobserver contains a placePtester, which can assess
that the real-time property is satisfied using the accessibility assertions in the state-event modal μ-calculus

163

5.2. DESIGN PRINCIPLES OF TPN/TTSOBSERVERS

(MMC) formulae in ktz format. MMC allows to check whether a marking exists and whether a transition is
fireable in the ktz. According to the real-time requirement, one or more MMC formulae are generated, such
as□(Ptester = 1) or ♢(Ptester = 0), etc. The MMC formulae will be checked on-the-fly using the musemodel
checker from the TINA toolset.

We do not use the LTL formulae. To use LTL, we need to generate the state class graph preserving LTL

semantics, which is less abstract than the state class graph preserving marking semantics and thus will de-
crease the analysis efficiency.

TPN Structure TPN Structure

TPN Structure

Component A TPN Component B TPN

TPN Observer

[0,0] [0,0]

TA TB

ptester

Figure 5.2.1: Observer Structure

5.2.2 Soundness ofObserver

The soundness heremeans that the observers should not impact the system’s behavior by introducing extra
semantics or removing original semantics. We ensure this principle by designing the TPN observers asso-
ciated with the TPN transitions, but not TPN place. Indeed, associating with places would add or remove
tokens and may change system’s execution traces.

The manner that the observers are associated with the transitions in this approach does not impact the
systembehavior. As shown in theobserver structureofFig. 5.2.1, theTPNobserver links fromthe transitions
of the system components. It works as a ”read-only” mode. Thus, no extra TPN tokens or time constraints
will be added to the original system. As the tts observers are independent from the system, it will not
introduce extra behavioral semantics to the system either.

164

5.2. DESIGN PRINCIPLES OF TPN/TTSOBSERVERS

5.2.3 Efficiency ofObserver

As model checking may require a huge amount of resource, the design and implementation of the efficient
observers must follow four principles to ensure the generation of smaller state space:

• First, the system model with integrated observers should be able to perform the possible highest
abstraction (marking abstraction in our case) when generating the state class graph. This high ab-
straction state class graphmust preserve all the information related to the verification of the targeted
property.

This principle is ensured by designing the observers using the TPN/tts features acceptable by the
state class graph preserving marking. For example, we cannot use the priority arc, which is an ex-
tended element of tts. It allows to set priorities between the TPN transitions, and this feature makes
the design of observers much easier. However, when generating the state class graph at marking ab-
straction level using the tina tool, the priority arcs cannot be preserved. Therefore, in our work, we
design observers without priority arcs to ensure that the marking abstraction can be performed. As
we verify the properties using observers, this transforms quantitative problems to reachability prob-
lems. Weuse the μ-calculus (MMC) as the logic formalism in themodel checker muse. The reachability
graph generating from themarking abstraction contains all the mandatory reachability information.
In other words, it preserves all the information related to the verification of the targeted real-time
properties.

• Second, the state/transition number of the added TPN/tts observers should be as small as possible
to minimize the size of the state space of the system integrated with observers.

There exist many different methods to define the same observer. The use of some kinds of TPN arcs
may ease the design, but may also generate more states/transitions in the state class graph. There
are five kinds of arcs in TPN: regular, read, inhibitor, stopwatch and stopwatch inhibitor arcs. The
stopwatch and stopwatch inhibitor arcs may increase the state/transition graph size. Therefore, in
our work, we do not use these two to reduce the size of the state space.

• Third, the checking of each property pattern must be independent in terms of state class graph gen-
eration to promote parallel computation. This principle is also used to ensure the performance of
the property verification.

165

5.3. CATALOGOF TPN/TTSOBSERVERS

5.3 Catalog of TPN/ttsObservers

According to the requirement specification patterns defined in Chapter 4, an atomic real-time property
consists of three parts: an occurrencemodifier, a predicate and a scope. Predicates are based on events and
states, while scopes areonlybasedonevents. Theobservers are supposed tohave three classifications: event
modifier observer, basic predicate observer and scope modifier observer. These three kinds of observers
are specified in this section. The occurrence modifiers are not used as observers, their uses are illustrated
after the definition of observers.

5.3.1 EventModifierObservers

Predicates are based on events and states. An event can be atomic or composite ones. We regard the event
compositions as event modifiers. An example of composite event is given here: t t.u. after event Ei−k. This
composite event is built from three event modifiers: Ei (the ith occurrence of event E), Ei−k (the kth occur-
rence delay of current event Ei), and Ei−k + t (the t t.u. from current event Ei−k).

To ease the composition of event modifiers, first of all we define a generic event observer pattern (see
Fig. 5.3.1). E is an observable transition (standing for an event) in the system model. The frameObserver
contains the observer structure that links transitionE to transitionE′. E′ stands for the target eventmodifier
of the observer, and it works also as an extensible transition used to connect other observers if required.

E E
'

TPN

Structure

Observer

Figure 5.3.1: Generic Observer Pattern

5.3.1.1 Ei: ith Occurrence of E

When using this modifier, the occurrence of E under observation must be finite under the observed
execution. The observer in Fig. 5.3.2 represents this event modifier. When E has occurred i times, the
place Pocc will have accumulated i tokens, then the transition Ei will be enabled. This makes the transition

166

5.3. CATALOGOF TPN/TTSOBSERVERS

Ei become the ith occurrence of eventE. The place Ponce with one token controls the occurrence times of Ei.
By default, Ei occurs only once. The place Ponce can also be removed to allow Ei occurringmore than once.

E

i

[0,0]

EiPocc

Ponce

Figure 5.3.2: Event Observer: ith Occurrence of E

5.3.1.2 E−k: kth OccurrenceDelay of E

The transition E−k stands for the delay of k times occurrence of event E. In other words, E−k represents
the event that delays k times occurrence compared toE. In Fig. 5.3.3, the place Pocc contains the tokens that
represent the number of occurrence of E. Each time Pocc has accumulated k tokens, the read arc will enable
the transition E−k that will consume one token from Pocc marking.

E

[0,0]
k

E-kPocc

Figure 5.3.3: Event Observer: k Times Occurrence Delay of E

5.3.1.3 E/k: kTimes Slower Sub-occurrence of E

The transition E/k stands for the sub-occurrence of event E, with a frequency k times slower than E.
When E occurs k times, E/k will be enabled once. In Fig. 5.3.4, each time when the place Pocc accumulates
k tokens, the transition E/k is fired. Simultaneously, all the k tokens in place Pocc are consumed.

167

5.3. CATALOGOF TPN/TTSOBSERVERS

E

k

[0,0]

E/k
Pocc

Figure 5.3.4: Event Observer: Sub-occurrence k Times Slower than E

5.3.1.4 I+t: Time Passed Since System Initialization

I+T stands for the absolute time instant measured from the initial state of the system. In Fig. 5.3.5, the
observer consists of two parts. One is the place PInit that stands for the initialization of the whole system.
As Pinit has not ingoing arcs, it starts at the same instant as all other initial places of the system. The other is
the transition E′ that represents the moment when time has passed t t.u. since system’s initialization.

[t, t]PInit

E'

Figure 5.3.5: Event Observer: Time Passed since System Initialization

5.3.1.5 E+t: Time Passed Since E

E+ t stands for the moment when t t.u. has passed since each occurrence of E (see Fig. 5.3.6).

E

[t,t]

E'

Figure 5.3.6: Event Observer: Time Passed since E

168

5.3. CATALOGOF TPN/TTSOBSERVERS

5.3.1.6 SS &SE: Entering and Exiting Events of a State

This observer is used to represent the entering and exiting events of a given system state. It uses the date
manipulation functions of tts. A state referred to in the observer corresponds to a marking assertion. In
Fig. 5.3.7, the transitions SS and SE represent respectively the entering and exiting events of state S. When
a system enters the targeted state S, the assertion S in the Pre condition of the transition SS is true, which
will enable SS. The token in place PS transits to place PE. Similarly, when the system exits state S, the the
assertion¬S in the Pre condition of the transition SE becomes true, thus SE is enabled.

SE

[0,0] [0,0]

SS

PRE [S] PRE [¬S]
PS

PE

Figure 5.3.7: Event Observer: Starting and Ending Event of S

5.3.2 Basic PredicateObservers

The pattern of predicate observers is defined in Fig. 5.3.8. The transition EM is a(n) (composite) event
modifier. The TPN structure stands for the observer structure. Each predicate observer is verified using one
or several MMC assertions.

E
M

TPN

Structure

!!"#$%%&'()*+%

Observer

Figure 5.3.8: Predicate Observer Pattern

5.3.2.1 O(Ei) = true: Ei has occurred

In Fig. 5.3.9, the placePocc linked from transitionEM is used to observe the occurrence times of an event.
Once the transition EM is fired, the token in place Pocc will be observed. The MMC assertion Pocc ≥ i is used

169

5.3. CATALOGOF TPN/TTSOBSERVERS

to check whether EM’s ith occurrence has occurred.

E
M

Pocc
!"##$%$&

Figure 5.3.9: Predicate Observer: Occurrence of Ei

5.3.2.2 isFinite(E) =True: BoundedOccurrence of E

This predicate is used to detect whether the occurrence of an event is finite. In Fig. 5.3.10, the place Pocc
accumulates the occurrence times of eventEM. If the transitionOverflow is not fired, it signifies no overflow
is detected, because EM does not exceed the bound Occmax (a predefined threshold value). We conclude
that EM is bounded during system’s execution.

EM

Occmax

TOver(ow

[0,0]

Pocc
!"

#$%&'()*

Figure 5.3.10: Predicate Observer: Occurrence of E is bounded

5.3.2.3 Freq(EA) ·NA = Freq(EB) ·NB: Equivalent Occurrence between EA and EB

This predicate is used to identify equivalent occurrences between two periodic events with different (or
equal) frequencies. Suppose two periodic events EA and EB exhibit respectively occurrence frequency FA
and FB. There exists minimal coefficients NA and NB (NA,NB ∈ Z+) that makes FA · NA = FB · NB.
NA andNB can be computed using the Least Common Multiple (lcm) and the Greatest Common Divisor
(gcd).

NA =
lcm(FA, FB)

gcd(lcm(FA, FB), FA)
(5.1)

170

5.3. CATALOGOF TPN/TTSOBSERVERS

Nb =
lcm(FA, FB)

gcd(lcm(FA, FB), Fb)
(5.2)

A real-time property may require to limit the time difference between two periodic events. If these two
events exhibit the same frequency, NA and NB are equal. Otherwise, NA and NB should be introduced to
identify the corresponding occurrence between EA and EB.

In Fig. 5.3.11, places TesterA and TesterB accumulate respectively the occurrence times of EA and EB.
The tokens in Tester places will be consumed through the transition Diff when the tokens in TesterA are
superior or equal toNA and the tokens inTesterB are superior or equal toNB. OnceTesterA containsNA+ 1
tokens, it stands forEA executes at least one occurrence faster thanEB. This exceptionwill be detected using
theOverflow transitions. The checking assertion is: ¬(OverflowA ∨ OverflowB).

TesterB EBEA TesterA

[0,0]NA+1

Over/owA Over/owB

[0,0] [0,0]

Di4

NA NB

NB+1

!"#$%&'()*+,∨ #$%&'()*-.

Figure 5.3.11: Predicate Observer: Same Frequency between EA and EB

5.3.2.4 T(EA, EB)> t: MinimumTime Interval between Events

This observer is used to check that the time interval between the equivalent occurrences of EA and EB is
at least t. EA and EB can be periodic or aperiodic. Semantically, it is equivalent to T(EA) - T(EB)> t. It has
a similar structure as the observer for equivalent occurrence between events, except that a transitionTDelay

is added. TDelay stands for the time delay for event EA. The following MMC assertion should be satisfied to
check this predicate: ¬(OverflowA ∨ OverflowB) ∧ ¬((TesterB = NB) ∧ (TesterA < NA)). When EA and
EB are aperiodic,NA = NB = 1.

171

5.3. CATALOGOF TPN/TTSOBSERVERS

TesterA EAEB TesterB [0, 0]

Over0owB Over0owA
[0,0] [0,0]

[t, t]

NB NA

NB+1 NA+1

!"#$%&'()*+,∨ #$%&'()*-.∧,,

!"/%01%&-23-,∧,/%01%&+43+.

TDelay

Figure 5.3.12: Predicate Observer: Minimum Time Interval between EA and EB

5.3.2.5 T(EA, EB)< t: MaximumTime Interval between Events

This observer is used to check the time interval between the equivalent occurrences of EA and EB is at
most t. Semantically, it corresponds to T(EA) - T(EB) < t. The following assertion should be satisfied:
¬OverflowB.

If the assertion¬(OverflowA ∨ OverflowB) is true, then |T(EA) - T(EB)|< t is satisfied. When EA and
EB are aperiodic,NA = NB = 1.

TesterB EBEA
TesterA [0,0]

Over/owA Over/owB

[t, t] [t, t]

NA NB

NA NB

!"#$%&'()*
+

Figure 5.3.13: Predicate Observer: Maximum Time Interval between EA and EB

5.3.2.6 D(S)≥ t: MinimumTimeDuration of State

The most direct and efficient way of designing observer for state duration is to use the Pre function
of TPN. In Fig. 5.3.14, the transition with constraint [t,t] will fire when state S holds at least t t.u.. The
transition with constraint [0,0] will fire when state S does not hold any more. This transition is used to

172

5.3. CATALOGOF TPN/TTSOBSERVERS

clear the marking in Tester place, because state S may hold several times in the whole system’s execution.
The MMC assertion of checking is: S ∧ (Tester = 1)

[t,t]

TesterPRE [S]

PRE [¬S]

[0,0]

!"#$%&'(#(∧ ()*+&*,(-(.$

!"#$/&'(#(∧ ()*+&*,(-(0$

Figure 5.3.14: Predicate Observer: Time Duration of State

5.3.2.7 D(S)< t: MaximumTimeDuration of State

Themaximumtimedurationof stateuses the sameobserver as theminimumtimeduration(Fig. 5.3.14),
but different assertion: S ∧ (Tester = 0).

5.3.3 ScopeModifierObservers

Scope modifiers include Global, Before Ei, After Ei, and Between EA and EB.

5.3.3.1 Global

Global scopemodifier does not need an observer in TPN.When applied in the verification, it is sufficient
to indicate that the scope is all states of the whole TPN, denoted asA.

5.3.3.2 Before Ei &After Ei

The scopes before and after are represented by the same observer (Fig. 5.3.15) but different logic for-
mulae. The place Tester accumulates the occurrence times of event E. We use Tester < i (Ei has not yet
occurred) to check Before Ei and use Tester ≥ i (Ei has occurred) to check After Ei.

5.3.3.3 Between EA and EB

Between EA and EB means between the equivalent occurrences of EA and EB. If both EA and EB are
periodic events, their occurrence frequencies must be equal. If EA and EB occur only one time, by default

173

5.3. CATALOGOF TPN/TTSOBSERVERS

E

Tester

!"#$%&'($)#$%'*'+

,$"-%$&'($)#$%'.'+

Figure 5.3.15: Scope Observer: Before E & After E

their frequencies are equal.
InFig. 5.3.16, the placesTesterA andTesterB accumulates thedifferenceof theoccurrence times between

EA and EB. The observer (TesterA = 1) ∧ (TesterB = 0) stands for Between EA and EB.

TesterB EBEA TesterA [0,0]
!"#$"%

&'
(')

'
∧ !"#$"%

*'
('+

Figure 5.3.16: Scope Observer: Between two Events

5.3.4 OccurrenceModifiers

An occurrence modifier can be Exist, Absent, and Always. It is used together with predicates and scopes to
assess a real-time property. The use of observers is not mandatory. Assume that in the state class graph,
N(P) is the number of states that match the predicate P,N(S) is the number of states that match the scope
S, and N(P ∧ S) is the number of states that match both the predicate and the scope. According to the
semantics of Exist, Absent, Always defined in Chapter 4, we have the following assertions:

• Exist Predicate in Scope:

{
N(P ∧ S) ≥ 1 if N(S) > 0;
True if N(S) = 0.

• Absent Predicate in Scope: N(P ∧ S) = 0

• Always Predicate in Scope: N(P ∧ S) = N(S)

174

5.4. OBSERVER-BASED VERIFICATION EXAMPLE

Note: When N(S) = 0, according to classical semantics ¹, the predicates for Exist, Absent and Always
should be true. The assertion of Absent and Always satisfies this definition by default. The assertion of
Exist is extended by adding the assertion ”True, if N(S)=0”.

5.4 Observer-based Verification Example

We illustrate the observer-based verification method using a simple example (see Ex. 5.1).

Example 5.1 (Observer-based Verification Example) In Fig. 5.4.1, two concurrent processes are specified
in the TPNmodel. Both of them execute only once. The desired real-time propertyP isAlwaysEA AfterEBWithin
[1, 2]t.u..

EA EB

[5,10] [3,7]

P0

P1

P2

P3

Figure 5.4.1: Observer-based Verification Example

5.4.1 Example Verification

The first step is to verify whether P is satisfied using observer-based approach. P is a safety property. It
can be mapped to a real-time property pattern presented in Chapter 4, where the occurrence modifier is
Always, predicate is EA occurs, and scopemodifier isAfter EB Within I.The scopeAfter EB Within [tmin, tmax]
should be mapped to Between EB + tmin and EB + tmax (consulting Appendix B).

According to the observers presented above, we add a composite observer onEB and an atomic observer
on EA (see 5.4.2). The composite observer consists of three atomic observers:

¹If the scope is false, the predicate is always true.

175

5.4. OBSERVER-BASED VERIFICATION EXAMPLE

• obs1: T1 linked from EB/P4 stands for event modifier EB + tmin,

• obs2: T2 linked from EB/P5 stands for event modifier EB + tmax,

• obs3: P6/T3/P7 linked from T1/T2 observes the scope modifier Between T1 and T2.

obs4 is the atomic observer associated to EA. It observes the occurrence of EA. Then the property P

EA EB

[5,10] [3,7]

P0

P1

P2

P3

[1,1]

[2,2]

[0,0]

P4

P5

P6

P7

T1

T2

T3

Obs1

Obs2

Obs3

Observer

Obs4

P8

Figure 5.4.2: Verification of Example

(Always EA After EB Within [1,2]) will be verified using the following MMC formulae:

• The predicate (EA occurs) assertion P is P8.

• The scope (After EB Within [1,2]) assertion S is P6 ∧ ¬P7.

• According to the definition of occurrence modifier Always, ifN(P ∧ S) = N(S),P is satisfied.

5.4.2 Verification Result

Theabove MMC assertion is checkedon the TPNmodel (with observers) using themodel checker muse. Mark-
ing abstraction is used to generate state class graph. It generates ktz format reachability graph with 10
states and 13 transitions (Fig. 5.4.3)). When checking assertion P∧ S, there is one satisfied state (S5), thus
N(P ∧ S) = 1. When checking assertion S, there are 2 satisfied states (S4 and S5), thus N(S) = 2. As
N(P ∧ S) ̸= N(S), propertyP fails.

176

5.5. COMPUTING BOUNDVALUEOF QUANTITATIVE PROPERTY

 P0P2 P1P2P8

P0P3

P4P5

P0P3

P1P3

P4P5P8

 P0P3

P5P6

P1P3

P6P7P8

P0P3

P6P7

P1P3P8

P1P3

P5P6P8

EA

EB

EB

EA

T1

T1

EA

T2

T2

EA

T3

T3

EA

S0 S1 S3

S2 S5 S7 S9

S4 S6 S8

Figure 5.4.3: Reachability Graph of Verification Example

N(P ∧ S) < N(S) implies the state(s) satisfying ¬P ∧ S is(are) violation state(s). Therefore, check
¬P1 ∧ P6 ∧ ¬P7, and the result shows there exist one violation state in ktz. It is the state S4 with marking
P0P3P5P6.

5.5 Computing Bound Value of Quantitative Property

When performing model checking, an observer can give an answer such as Yes or No for the satisfaction
of the given property. For quantitative properties, however, instead of whether the property is bounded by
[tmin, tmax], the users usually expect to know what are the exact bounds [tmin, tmax] for that property. The
property pattern verification approach not only can check the satisfaction of the property, but also can be
extended to compute the bound value of the quantitative property. This provides an assistant to help the
users refine and improve their design model.

This service is implemented using an iterativemethod (shown in the progressmap 3) that will gradually
approach the bound values by combining the observer into a binary search engine.

In order to find the lower bound of the given quantitative property P , a series of qualitative property
Always P > k in scope Global will be recurrently assessed by the model checker. If for k the answer is true,
but for k − 1 the answer is false, the lower bound is then k (assuming P belongs to natural number). The
same principle is applied to search the upper bound value by changing the query fromP > k toP < k.

To search the exact value as a natural number is like searching for a element in an ordered set. In order to
minimize the search time, a binary search strategy is used. This reduces the computation complexity from

177

5.5. COMPUTING BOUNDVALUEOF QUANTITATIVE PROPERTY

O(N) toO(log2 N), whereN is the predefined lower(upper) bound that should be large enough to cover
all quantitative property’s values in practice.

In a parallel computation environment, the search strategy can be more optimal. Given K CPU, the
number of check will be reduced fromO(log2 N) toO(logK N).

We take the example of Worst Case Execution Time (WCET) to explain the search algorithm.

Example 5.2 (WCETComputation) The real-time property to be computed is: WCET of event E.

5.5.1 WCETProperty Verification

First of all, the expected property is specified using the set of real-time property patterns. This property is
interpreted by the occurrencemodifier: Always, the predicate: Maximum time interval between Init andE,
and the scopemodifier: Global. The observer is given in Fig. 5.5.1. With this observer, we use the following

TesterB ETesterA [0,0]

Over/owA Over/owB

[t, t] [t, t]

Init [0, 0]

Figure 5.5.1: Property Computation Example: WCET

assertion to check WCET < t, where A represents the whole state space of the given TPN model including
the observers.

N(¬(OverflowA ∨ OverflowB) ∧ A) = N(A)

5.5.2 Computation of WCETBoundValue

If WCET < t is true, then the WCETmight be lower than t. We use a binary search algorithm to compute the
bound value.

178

5.5. COMPUTING BOUNDVALUEOF QUANTITATIVE PROPERTY

If WCET < t
2 is true, the bound value must be in the time interval [1, t2], otherwise, the bound value must

be in the time interval [t
2 , t]. According to these results, the next search will be performed on one of them

until we find the exact WCET value.

5.5.3 Discussion: K-ary Searching Algorithm

K-ary searching algorithm follows the same principle: in each iteration, the original range [a, b] will be
divided into K sections: [a, a+(b-a)/K], [a+(b-a)/K, a+2(b-a)/K], ..., [a+(K-1)(b-a)/K, b]. To simplify
the discussion, we call theminimal value in each interval as vmin, and call themaximal value as vmax. Among
theseK sections, only one sectionwill have themodel checking result such that WCET< vmin is false and WCET

< vmax is true. Therefore the new range for the next iteration is [vmin, vmax]. If vmax-vmin = 1, the iteration is
over and the WCET is vmax. For generalization, the initial range is always [0, N], where N is the predefined
lower(upper) bound that should be large enough to cover all quantitative property’s value in practice.

5.5.4 Discussion: Cavity in Computation of BoundValue

Aconcern about this searchmethod is the risk introducedby cavity intervals. Anexample is given to explain
this concern (see Ex. 5.3).

Example 5.3 (Cavity Discussion) The execution time of a given system is specified as two time intervals [2,8]
and [12,18] (see Fig. 5.5.2). The propertyP (WCET < 20) is proved as true. Now the exact bound value of WCET
is required, which is 18.

2 181280 20

1 2

10 15

0

Figure 5.5.2: Cavity Discussion Example

Binary search algorithm is used to compute this exact bound value. Firstly, in the assertion WCET < t,
t is set to be 10, which falls in the cavity [8,12]. Since there exists execution time [12,18], the transition
Overflow in the observer (Fig. 5.5.1) will fire. The checking for WCET < 10 is thus false. Then we need to

179

5.6. VERIFICATION SCALABILITY

check WCET < 15, whose checking result is also false. Then we try WCET < 18, which is still false. At last we
try WCET < 19, whose result is true. The exact bound value is thus 18.

This example shows that the search algorithm using observers in model checking is sound even in the
presence of cavities in the specified execution time.

5.6 Verification Scalability

Model checking techniques suffer from the state space explosion problem thatmakes it seem less useful for
large-scale systems. In some systems, the size of the state space of the system grows exponentially along
with the number of processes and variables. In our work, we use several methods to ensure the verifica-
tion scalability, including property-driven semantic mapping (introduced in Chapter 3), on-the fly model
checking (Section 5.6.1), state abstraction (Section 5.6.2), and TPN reduction (Chapter 6).

5.6.1 On-the-FlyModel Checking

The model checking toolset TINA embeds natively on-the-fly features.
On-the-fly methods allow the model checking to be performed without having the reachability graph

fully generated. The property is checked along with the reachability graph’s expansion. Once the property
can already be cited as false according to the partial reachability graph, the check is suspended and the ver-
ification result become available immediately. Although in worst cases, all patterns (exist, absent, always)
need a full generation to decide whether the property is satisfied, it would practically reduce both time and
resource for general cases.

When the system behaviormatches Exist pattern or violateAbsent andAlways pattern, the computation
stops once it finds the first matched or violated state, thus it can stop earlier than classical method. The
improvement of performance is obvious. However in worst cases, the footprint of checking property at
every expansion step might make the whole computation time longer than classical methods.

5.6.2 State Abstraction

State abstraction is a technique applied at model checker level. Instead of preserving all possible states in
the reachability graph to prepare for the verification, it proposes a series of abstraction for original states
which can reduce the state expansion and therefore globally limit the memory footprint of computation.

180

5.7. CONCLUSION

Some properties of the system are guaranteed to be preserved in this abstracted version of the reachability
graph.

Theperformanceof abstraction is decidedmainlybywhichkindsof propertywewant topreserveduring
the computation. Usually, the more universal the coverage is, the less abstraction of state can be done. We
rely in this work on a model checker that makes a trade-off between the generality of method appliance
(shouldbe capable to verifymostof the commonproperties) and the abstraction ratio (shouldbe enough to
make verificationmore scalable against larger system). In other words, themore properties can be verified,
the less scalable the verification can be. Comparing to on-the-fly, the advantage of state abstraction is that it
can reduce both computation time and resource in a stable way. This feature is important because industry
deployment needs performance robustness.

TINA provides various state space abstractions for TPN state class graphs, following the techniques dis-
cussed in [BM83, BD91, Ber01, BV03]. All observers defined in this chapter do not require the preser-
vation of the LTL/CTL/CTL * semantics in reachability graph because the assertion of pattern’s satisfaction
works onmarking abstraction level, which does not required to preserve the firing sequence of transitions.
Therefore the state abstraction level that we use is the highest possible comparing to our knowledge of the
current theoretical progress in the TPN field.

5.7 Conclusion

This chapter presented a TPN/tts observer-based verification approach for checking real-time property
patterns. Temporal logics such as TCTL can be used to express real-time properties, but such a logic for-
malism is limited in practice due to the capability of model checking tools we are relying on. Our approach
adds efficient TPN/tts observers in the observed system to check each real-time property pattern. This
observer-based verification approach takes advantage of high abstraction of state class graph to minimize
model checking complexity, and thereby improve the verification efficiency. The verification approach
can also be used as a computation method to search bound values for properties. This may help the users
quickly adapt and refine their design model.

The main contributions of the current chapter are summarized as follows:

1. First, the proposed set of atomic observers is complete andminimal. As presented in Chapter
4, a real-time requirement is expressed using a set of elementary modifiers (occurrence, event, basic
predicate and scope modifiers), which are semantically atomic. The set of elementary modifiers is

181

5.7. CONCLUSION

minimal, whichmeans all the real-time properties expressed usingDwyer’s and Konrad’s patterns or
CCSL can be specified using our elementary modifiers. The proposed set of observers corresponds
to these elementary modifiers. Therefore, the observers are atomic and composable. The set of ob-
servers is minimal and complete.

2. Second, the observers can minimize the size of the state space in the generated state class
graph. As an additional part added in the original system, the observers will increase system’s orig-
inal state space, because they introduce some possible execution traces related to the observation.
This additional observer structures, although do not add extra semantics or remove original seman-
tics for system’s behavior, they can change the size of state space of the generated state class graph and
thus impact the performance of themodel checking. The less transitions an observer is composed of,
the better performance will the model checking achieve. Nevertheless, minimizing the transitions
in an observer may require to use some TPN/tts features which may degrade of abstraction level of
state class graph. The lower the abstraction level is, the worse the performancewill be. Therefore ob-
server designmust promote a trade-off between the above two aspects. In our approach, the priority
is keeping the highest abstraction (marking abstraction) of the state class graph, then minimize the
transitions in the observers. We rely on the μ-calculus and the muse model checker from the TINA

toolset to assess the real-time properties based on our proposed observers.

3. Third, use observers to compute the bound values of quantitative property. When performing
model checking, an observer can give an answer such as Yes or No for the satisfaction of the given
property. For quantitative properties, however, users usually expect to know, instead of whether the
property is bounded by [tmin, tmax], that the exact bound of the property[tmin, tmax]. In order to fill
this gap of usage, we propose an iterative dichotomymethod that will gradually approach the bound
value by combining the observer with a binary search engine.

182

6
Real-Time Property- Specific Reduction for TPN

Résumé

Ce chapitre propose une approche spécifique aux propriétés temps réels pour réduire l’espace d’état du
réseau de Petri temporisé avant de générer le graphe d’états pour la vérification.

La vérification demodèle pour des systèmes asynchrones rencontre souvent des problèmes de passage à
l’échelle car le nombre d’états dans l’execution du système augmente généralement exponentiellement avec
la taille du système. Un système réaliste contient donc souventun très grandnombred’états et de transitions
possibles. Lesméthodes de vérification classiques rencontrent souvent ce problème car elles suivent le but,
plus oumoins explicite, que de nombreuses propriétés de natures différentes seront évaluées en s’appuyant
sur le même graphe d’états. Cette idée impose de construire les systèmes de transition les plus concrets
et précis pour évaluer ensuite toute nature de propriétés. Les méthodes de réduction existantes suivent
généralement cette philosophie pour préserver un espace d’état complet. Ces méthodes génériques ont
améliorées significativement l’efficacité de la vérification demodèles, mais leurs améliorations sont de plus

183

en plus difficiles. Nous proposons de mettre de côté l’universalité des propriétés vérifiées, et d’introduire
des méthodes de réduction spécifiques aux propriétés.

Les idées principales de cette partie sont, d’une part d’éliminer les parties du réseau dePetri sans rapport
avec la propriété qui doit être vérifiée, et d’autres part de remplacer certaines parties pertinentes pour la
propriété par des réseaux équivalents vis à vis de cette propriété mais conduisant à un plus petit nombre
d’états et de transitions. La dépendance entre une partie dans un réseau de Petri temporisé et la propriété
d’accessibilité considérée est dérivée de la causalité entre les transitions et les états dans le graphe d’états.
Ceci impose une analyse basée sur la construction du graphe d’états qui est paradoxale car si nous pouvons
générer le graphe d’états, il n’est plus nécessaire de le réduire. Nous proposons donc d’utiliser une sur-
approximation de cette causalité sous la forme de la dépendance structurelle interne au réseau en imposant
la divergence temporelle des parties éliminées et substituées.

Nous proposons, d’une part un algorithme pour rechercher dans un réseau de Petri les parties sans rap-
port avec les places, transitions et variables dont dépendent la propriété cible, et d’autre part un algorithme
pour réduire les autres parties du réseau tout en préservant la propriété cible. La méthode de réduction
pour les structures dont dépend la propriété consiste à diviser le réseau en sous-réseau de plus petite taille
dont les relations avec le réseau global sont minimales, puis à construire une abstraction de chaque sous-
réseau lorsqu’il présente un comportement régulier par rapport aux propriétés temps réels considérées. Ce
comportement régulier est une abstraction de toutes les traces dans le graphe d’état du point de vue des
observations. Nous proposons plusieurs structures régulières possibles et nous utilisons notreméthode de
vérification pour montrer que la structure régulière permet de remplacer le sous-réseau et pour en calculer
les caractéristiques temporisées. Cette approche est pertinente en terme de coût de vérification par la na-
ture combinatoire de cette-ci : le coût de vérification sur une partie est en général beaucoup plus faible que
le coût global. Il est donc possible d’étudier plusieurs structures régulières pour chaque partie du réseau
avant que le coût cumulé soit supérieur au coût de vérification du réseau complet. Cette approche permet
de réduire la taille de l’espace de chaque sous-réseau et de rendre calculable l’espace d’états du réseau com-
plet avec les parties réduites avec les ressources usuellement disponibles . Cette méthode a donné de bons
résultats expérimentaux pour la vérification des propriétés temps réel au niveau desmodèles d’architecture.
Ces travaux devront maintenant être étendus et expérimentés pour d’autres familles de propriétés et de
systèmes.

184

TPN

Reduced
Observer TPN MMC

TPN Model CheckingTag Property
Pattern Result

Architecture/
Behavior
Mapping

Observer TPN
Generation

Property Pattern
Result

Real-Time Property
Specification

Verification
Result

Computation

Real-Time Property
Verification Result

Feedback
Generation

System Model
Real-Time

Requirement
Architecture

Model
Behavior

Model

UML Real-Time Software Model

Timing Property
Pattern

Timing Property
Pattern

Real-Time
Property Patterns

1

5

3

2

3

3

Observer
TPN

Tag Property
Pattern Result
Interpretation

3

Iteration
Tag

TPN
Reduction

4

Progress
Map
4:Real-Time Property-Specific State Space Reduction

In the current chapter, we propose the real-time property-specific TPN reduction approach applied be-
fore generating the state class graph to verify the real-time properties usingmodel checking (ProgressMap
4). The verification of concurrent asynchronous systems usingmodel checking usually encounter scalabil-
ity problems very quickly along with the growth of system size (Challenge 4 in page 22). Our proposal is
to build an equivalent of the original TPN, which exhibits the same property-specific behavior, and has less
transitions and states. This reduces directly the scale of computation before generating the state space. The
proposed reductionmethod is basedon similar ideas as the partial order reduction, which is aimed at reduc-
ing the size of the state space that needs to be searched. The partial order reduction exploits the commuta-
tivity of concurrent executed transitionswhich result in the same statewhenexpanding the state class graph.
Our approach exploits the commutativity of sub-nets of TPNwhich result in the same property-specific be-

185

6.1. INTRODUCTION

havior before expanding the state class graph. The approach is based on classic TPN model extended with
data manipulation (tts) provided by the TINA toolset. To exploit the property-specific reduction, first a
property relevance algorithm is applied to eliminate parts of property-irrelevant TPN structures, then the
topology-implicit semantic equivalence and behavioral equivalence patterns are applied to identify the re-
ducible sub-nets and reduce them using equivalent sub-nets. (Contribution 4 in page 24)

6.1 Introduction

The key issue that prevents a wide application of model checking in the industry is the scalability with
respect to the size of the target system. A common system usually has thousands and even millions of
states and transitions. Although a huge part of impossible transition firing sequences are eliminated during
the building of system’s behavior, the probable permutation of all others is still a very large number that will
easily lead to combinatorial state space explosion.

Classic verificationmethodologiesusually encounter scalability issue veryquickly alongwith thegrowth
of system size, because it follows an implicit purpose: once the reachability graph is generated, it can be
reused to verify many different properties of the system, just by changing the assessed logic formulas. This
consideration requires to build themost concrete andprecise transition system tobeused to assess any kind
of properties. It makes sense if the assessed system does not change often the states and if there is a large
number of requirements to assess. However, it is well known that the generation of state class graph for
large scale models is the most expensive phase in terms of resource and time consumption. Theoretically,
generating the reachability graph only once seems to be resource-saving by eliminating the effort of re-
generating. However, this global-resource-saving principle implies an assumption that is sometimes false:
that it will always be possible to generate the reachability graph with common available resources. The ex-
isting state space reductionmethods, partial order reduction [Val91, GvLH+96], compositional reasoning
[MC81, GL94], symmetry [CEFJ96, ES96], abstraction techniques [CGL94], on-the-fly model checking
[Hol96, BRV04], etc., usually follow the same philosophy to produce a complete state space that preserves
the mandatory semantics that allow the verification of all kinds of properties. These generic reduction
methods have effectively improved the efficiency of model checking techniques. But their improvement is
becoming more and more difficult. We thus might put aside the universality of the semantics expressed in
the transition systems that allow to assess all kinds of properties, and take into account property specific
reduction methods.

186

6.1. INTRODUCTION

A typical system will run with a large amount of transitions and make the above prerequisites hard to
maintain. The fundamental reason why this computation-oriented approach is not scalable is because it
tries to preserve all information for the verification afterwards. In the context of the thesis, we focus on
state space reduction approaches related to TPN models dedicated to real-time property verification. In
Chapter 3 and Chapter 5, we have presented the use of the following approaches:

• Modeling abstraction: If the designer is sure that some components will not impact the property,
there components will not be modeled.

• Mapping abstraction: After defining the execution semantics for the end-usermodel, the property-
specific systemmodel (UML-MARTEmodel) ismapped to theproperty-specific verificationmodel (TPN
model), which contains all the property-specific behaviors. Part of property-irrelevant information
is eliminated using this abstraction.

• State abstraction: The tool tina provides abstraction options for the generated state class graph,
which preserves different information. All observers defined in the precedent chapter do not re-
quire preserving the LTL/CTL/CTL * semantics in the state class graph because the logic assertions
used to verify the properties require only the marking feature of the state class graph. Therefore, the
state abstraction option used is the highest possible (marking abstraction) comparing to the current
theoretical progress in TPN field, and the logic assertions are accessibility assertions.

• On-the-fly checking: Using on-the-fly model checking provided by the siftmodel checker.

Both on-the-fly and state abstraction techniques focus on reducing state space when performingmodel
checking. Another reasonable thinking is to build an equivalent of the original TPN in term of property-
specific behavior, but with less states and transitions. This reduces directly the scale of computation before
expanding the state space. The assessed TPN will be reduced in several appropriate ways according to the
target properties before being sent to the model checker.

Our approach focuses on the following contributions:

• The core idea of our proposal is to eliminate the property-irrelevant structures in a TPNmodel, then
substitute the property-relevant structures by an equivalentwith less states and transitions. The TINA
toolset supports extended TPN with data handling called Time Transition Systems (tts), including
the precondition function Pre and the action function Act. Our approach is based on this new TPN

feature.

187

6.1. INTRODUCTION

• The modeling and mapping abstractions only eliminate part of property-irrelevant behaviors. The
relevancy between a TPN structure and the target property is decided by the causality between TPN

transitions and states in the state class graph. In other words, measuring precisely the causality be-
tween TPN transitions requires a state class graph-based analysis. This leads to the following paradox
that if we are able to generate the state class graph for the given TPN before the reduction, wemay not
need to reduce it any more. The solution is to use an over-approximation of causality, i.e. use TPN’s
structure dependence to deduce the causality. The relevance between two transitions at TPN level
is the necessary condition that they are causally dependent. We propose an algorithm to search the
TPN structures irrelevant to all the places, transitions and variables referred to by the target property,
and reduce those structures irrelevant to the property.

• The property-relevant structure is reduced using the commutativity of sub-net in the TPN model
which results in the same property-specific behavior. For some sub-net patterns recurring frequently
in an asynchronous system, we define the topology-implicit semantic equivalence patterns to iden-
tify these sub-net and substitute them by the equivalent sub-net that exhibits the same property-
specific behavior. This part of work is similar to the existing work of [SB96]. The work [SB96]
targeted a general TPN model, while we define some new patterns that are derived from the asyn-
chronous system.

• The topology-implicit semantic equivalence patterns are in fact simple behavior equivalent patterns.
In some cases, it is complex to detect and extract a localized topology pattern. A novel real-time
property-specific reductionmethod is proposed in this chapter. Thismethod first identifies the pos-
sibly reducible sub-net, and then builds an equivalent net which exhibits the same property-specific
behavior as the original net. Before substituting the equivalent sub-net, we use refinement functions
to ensure that the substitution is correct.

In this chapter, Section 6.2 analyzes the relevancy between system components under observation and
present reductionmethod for property-irrelevant TPN structures; Section 6.3 gives anoverviewof property-
specific reduction method; Section 6.4 presents the topology-implicit semantic equivalence patterns; Sec-
tion 6.5 illustrates the method using behavioral equivalence.

188

6.2. REDUCTION FOR PROPERTY-IRRELEVANT STRUCTURES

6.2 Reduction for Property-Irrelevant Structures

In a complex system, there areusuallymanycomponents running concurrently. Somearepseudo-concurrent
because they are eventually synchronized somewhere by data exchange. Others are of real-concurrent,
for example, redundant sensors/actuators.

Fig. 6.2.1 is an example showing the relevancy between TPN system components integrated with prop-
erty observers. It is shown that those real concurrent components are separated non connected graph (A
and C in Fig. 6.2.1), and those pseudo-concurrent components are weakly connected graph with explicit
cuts (B, E, D, F in Fig. 6.2.1).

A

B

C

D

ETPN Model

F

Obs

Obs

Figure 6.2.1: Relevancy between System Components

The TPN observers (points in A and B) for the given property are attached on sub-TPN A and B. If we
are sure there is no places, transitions or variables referred to by the observers in A and B, we can remove
C completely from the TPNmodel. The removal of Cwill not impact the observation in A and B.

The time divergence issue introduced by TPNmust be discussed here. SupposeC is simply composed by
the following structure in Fig. 6.2.2. As the time constraint of transitionT is zero, this infinite loop does not
consume time. Thisbehaviorblocks the time for thewhole system. Thetransitions in theother components
will never be activated if they are tagged with strictly positive time bound. Thus, we must ensure that the
time is able to evolve inour target TPNmodel. In this case, the timedivergence inCmust be ensuredbefore it
is removed. Another solution is to avoid the time divergence issue in themodeling phase (in our case UML).
The UML model represents an abstraction of the real system’s behavior. The time divergence problem only
occurs in the TPN system, because besides possessing their own clocks, the asynchronous TPN components
also sharing a common clock. According to the mapping semantics defined in Chapter 3, if C does not

189

6.2. REDUCTION FOR PROPERTY-IRRELEVANT STRUCTURES

exchange data with the other parts in the UML model, no transitions or places will be added between them
in the TPN model. In other words, C is also independent in the TPN model. Therefore, if a component is
independent in TPN, we can deduce that it is also independent in UML. Meanwhile, if it is not relevant to the
observer, it can be removed from both the UML and the TPNmodels.

P

[0,0]

T

Figure 6.2.2: Time Divergence Issue

Once C is removed from the original TPN, the construction of state class graph will become easier be-
cause the number of transitions in the systemhas been reduced. The same action canbe takenonDbecause
B does not depend onD’s behavior due to the uni-directional cut from B toD. On the other hand, the re-
duction of E or Fmay change the observer’s result (i.e. the original property of the system that we want to
verify) of B because they have outgoing cuts to B.

The above illustration on relevancy between componentswith integrated observers gives twoprinciples
to define a formal method to reduce those property-irrelevant structures:

• Identification: Property-irrelevant sub-TPN can be identified by analyzing observer’s dependency.

• Reduction: Property-irrelevant sub-TPN can be removed without changing the property.

6.2.1 Relevancy Analysis for TPNExtendedwithDataHandling

Therelevancy between a TPN structure and the target property canbemeasuredprecisely using the causality
between TPN transitions and states in the state class graph. Thismeasurement leads to the following paradox
that if we are able to generate the state class graph for the given TPN before the reduction, we may not need
to reduce it any more. The solution is to use an over-approximation of causality, i.e. use TPN structure
dependence to deduce the causality. The relevance between two transitions at TPN level is the necessary
condition that they are causally dependent.

The behavior of a transition depends on its pre-conditions. In classic TPN, it refers to the incoming
places of the transition. For example, in Fig. 6.2.3 (a), only P1 and P2 will impact T’s behavior. In other

190

6.2. REDUCTION FOR PROPERTY-IRRELEVANT STRUCTURES

words, whenever P3 will obtain markings or lose markings won’t change the particular time sequence that
T will fire. The direct outgoing transitions of T’s incoming places, i.e. T1 can also create dependencies,
because with conflict, the time thatT1 fires will eventually change that of T. In the context of extended tts

feature, the dependency between variables must also be included. Fig. 6.2.3 (b) shows that all transitions
manipulating the variables (placemarking is also taken into account as variables)whichhas been referenced
in the precondition (Pre) of a property-relevant transition are alsomarked as property-relevant. Therefore,
TY,TX, and P4 are tagged as relevant.

PRE: (X > 5)
∨ (Y > 2) ∨ (P4 = 1)

ACT: X := 1ACT: Y := 1

(a) Classic TPN (b) Classic TPN with Data (2S)

P1

P2

P3

T TY TX P4

T

T1

Figure 6.2.3: Relevant Structure for TPN Transition

Thespecification of a place dependency is quite simple. All incoming and outgoing transitions are taken
into account, because both of them impact the marking of the place. Since tts extends only transition’s
semantic, the identification of the property-relevant elements for a given place in TPN with or without tts
feature are done in the same way. (Fig. 6.2.4)

PT1

T2

T3

Figure 6.2.4: Relevant Structure for TPN Place

191

6.2. REDUCTION FOR PROPERTY-IRRELEVANT STRUCTURES

6.2.2 Algorithm for Reducing Property-Irrelevant Structure

According to the above analysis on relevant structures of TPN (with data) transition and place, we propose
an algorithm to automate the reduction of irrelevant structures. Before providing the algorithm, we define
three core functions.
Transitiondependency searchF(t)=<ST, SP>: F(t) extracts, for a given transition t, its direct dependent
transition set ST and place set SP,

• SP = S′
P ∪ S′′

P

• S′
P = •t

• S′′
P = {pl|pl ∈ Pre(t).vP} (vP are the places used as variables)

• ST = {tr|Act(tr).variables ⊆ Pre(t).variables}

where •t are ingoing places of the given transition t.

Place dependency searchG(p) = <ST>: G(p) extracts, for a given place p, its direct dependent transition
set ST,

• ST = •p ∪ p•

where •p and p• are respectively ingoing and outgoing transitions of the given place p.

Property dependency search I(P) = <P,T>: I(P) extracts, for a given target propertyP , its dependent
place set P and dependent transition set T. A property is assessed using TPN observers and logic formulas
(in our case μ-calculus (MMC)). P and T are the set of places and transitions that respectively contains all
the sets of place and transition in TPN observers (resp. OP andOT), the sets of place and transition directly
attached to observers (resp. ψP and ψT) and the sets of place and transition referred to in logic formulas
MMC (resp. ϕP and ϕT), then

• P = OP ∪ ψP ∪ ϕP

• T = OT ∪ ψT ∪ ϕT

192

6.2. REDUCTION FOR PROPERTY-IRRELEVANT STRUCTURES

Wepresent thepseudo-codeof the algorithm(seeAlgo. 1) for searchingproperty-relevant andproperty-
irrelevant structures. The TPN system is defined as a set of places/transitions (SP ∪ ST). The arcs are com-
bined in the ingoings and outgoings of places and transitions. The input data are TPNmodel with observers
(OP ∪OT) and logic formulas MMC corresponding to the target propertyP . The desired outputs are the set
of property-relevant structure and the set of property-irrelevant structure.

Data: System SP ∪ ST and observersOP ∪ OT, propertyP
Result: Sr, Sir
<SP

r ,ST
r > := I(P)

while not all elements in SP
r and in ST

r have been tagged do
p = SP

r .getUntagged() ;
ST
r .addAll(G(p)) ;

p.tag() ;
t = ST

r .getUntagged() ;
SP
r .addAll(F(t).SP) ;

ST
r .addAll(F(t).ST) ;

t.tag() ;
end
Sr = <SP

r ,ST
r > ;

Sir = Sr ;
Algorithm 1: Relevant and Irrelevant TPN Structures Search

The search starts from the places and transitions depending on property, including TPN observers, tran-
sitions directly attached to observers, and places/transitions referred to by MMC logic formulas. Therefore,
initially SP

r := P and ST
r := T. The following iterative process tags the relevant elements using predefined

functions F(t) andG(p). If not all the elements in SP
r or ST

r have been tagged as property-relevant:

• p = ST
r .getUntagged(): Get each place p not tagged from SP

r .

• ST
r .addAll(G(p)): Search dependent transitions of p and add them in ST

r .

• p.tag(): Tag place p as property-relevant structure.

• t = ST
r .getUntagged(): Get each transition t not tagged from ST

r .

• SP
r .addAll(F(t).SP), ST

r .addAll(F(t).ST): Search dependent places and transitions of p and add
them in SP

r and ST
r .

193

6.2. REDUCTION FOR PROPERTY-IRRELEVANT STRUCTURES

• p.tag(): Tag t as property-relevant structure.

In the end, the property-relevant set is the pair of the sets of relevant place and relevant transition; the
property-irrelevant set is complementary to property-relevant set.

The algorithm that identifies all property-relevant and property-irrelevant elements through relevancy
propagation is illustrated below using an example (see Ex. 6.1).

Example 6.1 (Relevancy Propagation Example) Fig. 6.2.5 (a) is the original system TPN model, with ob-
server Pobs and the property assertion to be checked is Pobs = 1. We use Algo. 1 to tag the property-relevant
structures and eliminate the property-irrelevant structure.

(a) (b)

PobsT1

T2

T3

T4T5

PobsT1T3

T2

T4T5

p1

p2

p3

p4p5

p1

p2

p3

p4p5

Figure 6.2.5: Example of Propagation of Property-Relevant TPN Structure

The relevancy propagation process is illustrated below, the propagation result is Fig. 6.2.5 (b).

1. Initially, using I(P), the observer place Pobs and its dependent transition T1 are tagged as relevant (here
we use red color as tag).

2. Using F(T1), P2 is tagged.

3. UsingG(P2), T3 is tagged.

4. Using F(T3), P4 is tagged.

5. UsingG(P4), T2 and T4 are tagged.

194

6.3. REDUCTION FOR PROPERTY-RELEVANT STRUCTURES

6. Using F(T2), P3 is tagged.

Theremoval action forproperty-irrelevant structures is trivial. All incomingandoutgoingarcsof property-
irrelevantTPN elementswill bedeleted alongwith the elements themselves beforebeingpassed to themodel
checker. For both Algo. 1 and the removal operation, the complexity isO(N), where N is number of ele-
ments (transition and place) of the given system.

6.3 Reduction for Property-Relevant Structures

The property-relevant structure is reduced using the commutativity of sub-net in the TPN model which
results in the same property-specific behavior. The property-specific reduction method has similar idea to
the partial order reduction.

The partial order reduction [CGP99, GvLH+96] is usually used in asynchronous concurrent systems,
in which most of the activities in different processes are performed independently, without a global syn-
chronization. The most successful techniques for dealing with this problem are based on the partial order
reduction [GP93, Pel94, Val91]. The main idea of partial order reduction is to construct a reduced state
class graph by eliminating the unnecessary behaviors. This method is based on the dependencies that ex-
ist between the transitions of a system. It exploits the commutativity of concurrently executed transitions,
which result in the same state when executed in different orders. The reduction method then specifies the
set of transitions that should be included in the reduced state class graph. The reduced behavior is a subset
of the behavior of the full state class graph. Thus it does not add any information to the behavior of a system.

Compared to thepartial order reduction, theproposedproperty-specific reduction exploits the commu-
tativity of TPN structure before generating the state class graph, which result in the same property-specific
behavior. The partial order reduction is performed at the state class graph level, while the property-specific
reduction is performed at the TPNmodel level.

Another related work [DPC+09, DBRL12] by P. Dhaussy et al. proposed to improve model checking
with context modeling. As requirements are usually related to specific use cases (context), they restricted
the system behavior with a specific surrounding environment (modeling the context) describing the dif-
ferent configurations in which one wants to verify the system. It may take more effort for the engineers to
explicitly and formally express more detailed requirements, but can make the model checking more effi-
cient under a fully specified environment. This additional work may be required anyway with the integra-
tion of the DO-331 Model Based Development and Verification supplement in the safety critical system

195

6.3. REDUCTION FOR PROPERTY-RELEVANT STRUCTURES

development process, which enforces thewriting ofmore precises requirements. They provide theContext
Description Language (CDL) and theObserver Based Prover (OBP) toolset ¹ based on this method. Both of
our works aim to provide property specific reduction methods for formal verification. They focus on the
modeling aspect, while we focus on the verification aspect. Both approaches could be integrated to provide
an even better scalability.

For some sub-net patterns recurring frequently in an asynchronous system, we define the topology-
implicit semantic equivalence patterns to identify these sub-net and substitute them by the equivalent sub-
net that exhibits the same property-specific behavior. This part of work is similar to the existing work of
[SB96, Ber83, B+86, Had90]. Berthelot originally developed set of reduction rules for general Petri nets
[Ber83, B+86]. Haddad extendedBerthelot’s approach toColoredPetri nets [Had90]. Sloan et al. targeted
the patterns in a general TPN model [SB96], while we define some new patterns that are derived from the
asynchronous system.

The topology-implicit semantic equivalence patterns are in fact simple behavior equivalent patterns. In
some cases, it is complex to detect and extract a localized topology pattern. A novel real-time property-
specific reduction method is proposed in this chapter. This method first identifies the possibly reducible
sub-net, and thenbuilds anequivalentnetwhichexhibits the sameproperty-specificbehavior as theoriginal
net. Before substituting the equivalent sub-net, we use refinement functions to ensure that the substitution
is correct.

Before going to the detailed explanations, we define a symbolic system to ease the discussion:

• T+ and T−: for a given transition T, represent respectively T’s outgoing and incoming arcs.

• P+ and P−: for a given place P, represent respectively P’s outgoing and incoming arcs.

• a.P and a.T: for a given arc a, represent respectively a’s associated place P and transition T ²

• card(S): returns the number of elements in set S.

• U(S): if card(S) = 1, returning the unique element in set S.

• TR(N) and PR(N): for a given TPNN, represent respectively the reducible transition and place sets.

¹http://www.obpcdl.org/doku.php
²An arc has unique associated place and transition. Which one is source or target can be ignored here.

196

6.4. REDUCTIONUSING TOPOLOGY-IMPLICIT SEMANTIC EQUIVALENCE

For the property-relevant TPN, we distinguish the reducible and non-reducible structure. The non-
reducible structure is the places and transitions referred to by the observers used to verify the property.
The other parts are all considered as reducible structure.

6.4 Reduction using Topology-Implicit Semantic Equivalence

For property-relevant structures, the most direct reductionmethod is to combine the sequential parts into
reduced ones which have less states and transitions but retains the same properties (real-time, safety, etc.).
Several topology patterns have been developed under this principle along with their corresponding re-
duction rules. All reducible elements must not be those directly associated with properties, including ob-
servers, transitions directly attached to observers, and places/transitions referred to in logic formulas MMC.

The topology-implicit semantic equivalence patterns include:

• Redundant zero-time pattern

– Sequential pattern

– Indirect initialization pattern

– Shorten cycle pattern

• Sequential encapsulation pattern

6.4.1 Redundant Zero-Time Patterns

The objective of these patterns is to reduce the transitions with zero time interval that can increase the
complexity of transition fire sequence’s combination but do not provide any supplementary information
for execution flow (Fig. 6.4.1, Fig. 6.4.2 and Fig. 6.4.3).

6.4.1.1 Sequential Pattern

Identification functionF1(N)=<Ppre,T, Ppost>will identify andgiveout a tripleof TPNelements<Ppre,T, Ppost>
that matches this sequential Redundant Zero-Time Pattern in the given TPNN:

• T ∈ TR(N), Ppre ∈ PR(N), Ppost ∈ PR(N)

197

6.4. REDUCTIONUSING TOPOLOGY-IMPLICIT SEMANTIC EQUIVALENCE

Ppre Ppost

[0,0]

Pr

(a) (b)

T
n1

n2

n3

n4

n1

n2

n3

n4

Figure 6.4.1: Redundant Zero-Time Pattern: Sequential

•

{
card(T+) = card(T−) = 1
card(P+pre) = card(P−post) = 1

•

U(T+).weight = U(T−).weight = 1
U(T−).P = Ppre
U(T+).P = Ppost
U(P+pre).T = U(P−post).T = T

• Ppre.marking = Ppost.marking = 0

• T.minTime = T.maxTime = 0

• IfN is a tts, then Pre(T) = ∅ and Act(T) = ∅

Reduction functionG1(Ppre,T, Ppost,N) = <Pr,N′>will reduce the given triple <Ppre,T, Ppost> in the TPN
N to a new place Pr in the new TPNN′ without zero-interval transition:

• Pr is a newly created place, Pr ̸∈ N

• Pr.marking = 0, Pr ∈ PR(N′)

• P+r = P+post and P−r = P−pre

198

6.4. REDUCTIONUSING TOPOLOGY-IMPLICIT SEMANTIC EQUIVALENCE

n

[0,0]

n k
k

PrPpre Ppost

(a) (b)

T

n1

n2

n3

n4

n1

n2

n3

n4

Figure 6.4.2: Redundant Zero-Time Pattern: Indirect Initialization

6.4.1.2 Indirect Initialization Pattern

Identification functionF2(N)=<Ppre,T, Ppost>will identify and give out a triple elements <Ppre,T, Ppost>
that matches Indirect Initialization Pattern in a given TPNN:

• T ∈ TR(N), Ppre ∈ PR(N), Ppost ∈ PR(N)

•

card(T+) = card(T−) = card(P+pre) = 1
card(P−post) ≥ 1
P−pre = ∅

•

U(T−).P = Ppre
U(T+).P = Ppost
U(P+pre).T = T
T ∈ P−post.T

•

Ppre.marking = U(P+pre).marking
Ppre.marking ≥ 1
Ppost.marking = 0

• T.minTime = T.maxTime = 0

• IfN is a tts, then Pre(T) = ∅ and Act(T) = ∅

199

6.4. REDUCTIONUSING TOPOLOGY-IMPLICIT SEMANTIC EQUIVALENCE

Reduction functionG2(Ppre,T, Ppost,N) = <Pr,N′>will reduce the given triple <Ppre,T, Ppost,N> in TPN

N to a new structure with only one place Pr in the new TPNN′ without zero-interval transition.

• Pr is a newly created place, Pr ̸∈ N

• Pr.marking = U(T+).weight, Pr ∈ PR(N′)

• P+r = P+post and P−r = P−post − {T}

6.4.1.3 Shorten Cycle Pattern

n
[0,0] [t1,t2] [t1,t2]

n

nn

nTenter Texit

(a) (b)

Ppost

Ppre

Tr

n1 n2 n1 n2

Figure 6.4.3: Redundant Zero-Time Pattern: Shorten Cycle

Identification functionF3(N)=<Tenter, Ppre,Texit, Ppost>will giveout a4-tupleof elements<Tenter,Ppre,Texit, Ppost>
that matches Shorten Cycle Pattern in a given TPNN:

• Tenter ∈ TR(N), Texit ∈ TR(N), Ppre ∈ PR(N), Ppost ∈ PR(N)

•

card(T+

enter) = card(T−
exit) = 1

card(P+pre) = card(P−pre) = card(P+post) = card(P−post) = 1
arc ∈ T−

enter =⇒ card(arc.P+) = 1

•

U(T+

enter).P = U(T−
exit).P = Ppost

U(P+pre).T = U(P−post).T = Tenter

U(P−pre).T = U(P+post).T = Texit

Ppre ∈ T+
exit, Ppre ∈ T−

enter

200

6.4. REDUCTIONUSING TOPOLOGY-IMPLICIT SEMANTIC EQUIVALENCE

•

{
Ppre.marking = U(P−pre).weight = U(P+pre).weight = U(P−post).weight = U(P+post).weight
Ppost.marking = 0

• Tenter.minTime = Tenter.maxTime = 0

• IfN is a tts, then Pre(Tenter) = ∅ and Pre(Texit) = ∅

ReductionfunctionG3(Tenter, Ppre,Texit, Ppost,N)=<Tr,N′>will reduce thegiven4-tuple<Tenter, Ppre,Texit, Ppost>
in TPNN to a new structure with only one combined transition Tr in the new TPNN′:

• Tr is a newly created transition, Tr ̸∈ N

• Tr.minTime = Texit.minTime and Tr.maxTime = Texit.maxTime, Tr ∈ TR(N′)

• T+
r = T+

exit − Ppost and T−
r = T−

enter − Ppost

• IfN is a tts, then Act(Tr) = {Act(Tenter);Act(Texit)}

6.4.2 Sequential Encapsulation Pattern

The objective of this pattern is to reduce the transitions by combining sequential transitions into a unique
onewhich encapsulates all necessary information from theoriginal ones (time, preconditions, actions) (see
Fig. 6.4.4).

[t1,t2]

P

[t3,t4]

n n

[t1+t3,t2+t4]

Tpre Tpost T

(a) (b)

n1

n2

n3

n4

n1

n2

n3

n4

Figure 6.4.4: Sequential Encapsulation Pattern

Identification functionF4(N)=<Tpre, P,Tpost>will identify andgiveout a tripleof elements<Tpre, P,Tpost>
that matches Sequential Encapsulation Pattern in a given TPNN:

201

6.5. REDUCTIONUSING BEHAVIORAL EQUIVALENCE

• P ∈ PR(N), Tpre ∈ TR(N), Tpost ∈ TR(N)

•

{
card(P+) = card(P−) = 1 and card(T+

pre) = card(T−
post) = 1

arc ∈ T−
pre =⇒ card(arc.P+) = 1

•

U(P+).weight = U(P−).weight
U(P−).T = Tpre

U(P+).T = Tpost

U(T+
pre).P = U(T−

post).P = P

• P.marking = 0

• IfN is a tts, then Pre(Tpost) = ∅

Reduction functionG4(Ppre,T, Ppost,N) = <Tr,N′>will reduce the given triple <Ppre,T, Ppost,N> in TPN

N to a new structure with only one transition Tr in the new TPNN′:

• Tr is newly created transition, Tr ̸∈ N

• Tr ∈ PR(N′)

• Tr.minTime = Tpre.minTime+Tpost.minTime andTr.maxTime = Tpre.maxTime+Tpost.maxTime

• T+
r = T+

post and T−
r = T−

pre

• IfN is a tts, then Pre(Tr) = Pre(Tpre) and Act(Tr) = {Act(Tpre);Act(Tpost)}

6.5 Reduction using Behavioral Equivalence

The state space reduced by the topology-based patterns is limited. It still requires more reduction to gen-
erate large scale asynchronous systems. A novel reduction method based on property-specific behavioral
equivalence is proposed. The topology-basedmethod follows the sameprinciple that the replacementmust
exhibit the sameproperty-specific behavior (in our case real-time property-specific behavior). We can con-
sider topology-based patterns as a subset of behavioral equivalence method, which focus on a straightfor-
ward behavior patterns.

202

6.5. REDUCTIONUSING BEHAVIORAL EQUIVALENCE

Wefirst provide an example in Section 6.5.1, and then give an overview of the proposal in Section 6.5.2.
The one-way-out and generic behavioral equivalence pattern are respectively provided in Section 6.5.3 and
Section 6.5.4. At last, some issues are discussed in Section 6.5.5.

6.5.1 Example of Behavioral Equivalence

The example from Ex. 6.2 illustrates the key ideas of the behavioral equivalence methods.

Example 6.2 (Example of Behavioral Equivalence) Fig. 6.5.1 is a TPN model that cannot be reduced any
more using topology-implicit semantic equivalence patterns. When generating themarking abstraction reachability
graphfrom this net in TINA, it contains 177 states and 365 transitions. This system can be seen as two parts: part
A standing for the structure in dotted frame, and part B standing for the other parts. Transition t4 is considered as
a portal transition between parts A and B.

Fig. 6.5.2 shows the reduction result using a behavioral equivalence method. Part A is still in the reduced
structure, and part B of original net has been reduced. The reduced TPN only contains 3 states and 3 transitions,
but it exhibits the same behavior as the original net for the outside observer, which looks at the periodic firing time
of the portal transition t5. In both nets, the firing time of t5 exhibits the result in Table 6.5.1. For each occurrence n
(n ∈ N) of fired t5, the firing time interval [minn,maxn] is [5 + 17(n− 1), 10 + 69(n− 1)].

The key idea of behavioral equivalence reduction is to identify TPN structures, then replace it with behavioral
equivalent but reduced structures. The system before reduction and after reduction have the same behavior from
the viewpoint of transition property verification (in our case real-time property verification).

Occurrence Time [tmini , tmaxi] Time Diff [tmini − tmini−1 , tmaxi − tmaxi−1]
0 [0, 0] -
1 [5, 10] [5, 10]
2 [22, 79] [17, 69]
3 [39, 148] [17, 69]
...
n [5+17(n-1), 10+ 69(n-1)] [17, 69]

Table 6.5.1: Example Result: Same Firing Time in Both Net

203

6.5. REDUCTIONUSING BEHAVIORAL EQUIVALENCE

A

Figure 6.5.1: Example of Behavioral Equivalence

t4

[5,10] p1

t1

[17,69] p2p0

t5

[0,0]p5

A

Figure 6.5.2: Example Result of Behavioral Equivalence

6.5.2 ApproachOverview

An overview of the approach is illustrated in Fig. 6.5.3. We first identify and extract the reducible sub-
blocks like A, B, and C from the whole system using Identification functions. These sub-blocks contain
one outgoing and at most one incoming portal TPN transitions. In Fig. 6.5.3, A has one outgoing portal
transition, while B and C have one incoming and one outgoing portal transitions. Then the state space
of the reducible sub-blocks are reduced using the Reduction functions. The reduced sub-blocks (A′,B′,
and C′) are built, and then used to replace the original sub-blocks after their soundness is assessed using
Refinement functions. The Identification, Reduction and Refinement functions rely on the real-time property
specification and observer-based verification approaches from our verification toolset.

204

6.5. REDUCTIONUSING BEHAVIORAL EQUIVALENCE

System

A

A'

B C

B' C'

Figure 6.5.3: Overview of Behavior Equivalence Approach

6.5.3 One-Way-Out Behavioral Equivalence Pattern

Fig. 6.5.4 illustrates the concept of reduction by one-way-out behavioral equivalence. This TPN has 3 sub
blocks: A, B and C. All of the three blocks are property-relevant but also reducible. Both of blocks A and
B have a portal transition TA (resp. TB) to block C. Block A has a feature that it only produces tokens via
its unique boundary transition TA periodically or sporadically. The same characteristic can be found on
block B.Therefore, from the viewpoint of C, regardless the complex inner behaviors of the blocks A and B,
they are nothing but single transitions that may fire regularly under a pattern which sometimes feeds it by
some tokens. This observation gives an opportunity to abstract and redefine this regularity to a fixed TPN

structure that may contains less states and transitions than the one before reduction.

B

A

C

TA

C

[t1,t2]

[t3,t4]

….

[tm,tn]

B

[ti,tj]

[tp,tq]

….

[tx,ty]

A

TB

(a) (b)

Figure 6.5.4: Reduction pattern of Behavioral Equivalence

205

6.5. REDUCTIONUSING BEHAVIORAL EQUIVALENCE

Fig. 6.5.4 (b) shows how the behavioral pattern of a block like A or B can be simplified. Assuming there
is a powerful but invisible observer that will record, for each fired transitionsTA/TB, their occurrence time.
Definitively, each occurrence Ti must have a minimal and maximum time interval bound Tmin

i and Tmax
i .

Tmin
i and Tmax

i are derived by adding BCET (Best Case Execution Time) and WCET (Worst Case Execution
Time) observers on transitions TA/TB respectively. We have presented the method for computing WCET

value in Section 5.5.2 of Chapter 5. The computation method for BCET is similar to the use of observer
composition to represent minimum time interval between Init and current transitions.

The occurrence of TA/TB can be finite (block A) or infinite (block B). The method to check whether a
transition produces finite or infinite occurrence is to add an isFinite(E) observer (presented in Section 5.3.2
of Chapter 5) on the transition.

Finite Occurrence Transition If the occurrence is finite, the abstraction is relatively simple: it can be
represented by a finite sequential section of transitions Tseq = {Ti} (i ∈ N) with adapted time interval
[mini,maxi], (tmin0 = tmax0 = 0) :

• mini = tmini − tmini−1

• maxi = tmaxi − tmaxi−1

Infinite Occurrence Transition If the occurrence is infinite, the above sequential representation is no
longer useful. Nevertheless, as our work focuses on finite-state systems, we can deduce that the original
behavior of block A/B is finite in an infinite time scope. In other words, theremust exist a repeating behav-
ioral pattern in block A/B. In general, such a pattern is composed of a finite sequential section of transitions
Tseq = {Ti} (i ∈ N) and a loop section of transitions Tloop = {Tj} (j ∈ N). The block B in Fig. 6.5.4
illustrates the composition of sequential and loop sections.

In the Fig. 6.5.2 of Ex. 6.2, the part {p0, t4, p1, t1, p2} corresponds to the reduction result of an infinite
occurrence block. p0, t4, p1, t1 is the finite sequential section, and t1, p2 is the infinite loop section.

The reduction method includes 3 functions: identification, reduction and refinement.

Identification function F(N) = <A,Tout> identifies and extracts, for a given TPN N, the sub-net A which
matches the pattern that could be possible reduced (necessary condition) using one-way-out behavioral
equivalence pattern, and the boundary exit transition set Tout:

206

6.5. REDUCTIONUSING BEHAVIORAL EQUIVALENCE

Data: A, t
Result: NS
tmino := 0, tmax0 := 0 ;
NS.add(new Place()) ;
i := o ;
while tHasOcc(i++) do

tmini := getOccBCET(A,t,i) ;
tmaxi := getOccWCET(A,t,i) ;
Ti.min = tmini − tmini−1 ;
Ti.max = tmaxi − tmaxi−1 ;
NS.add(Ti, new Place()) ;

end
Algorithm 2: Building Sequential Section

• A is a strongly connected graph, A ⊂ N, Tout ⊂ A

• ∀p ∈ A, (p ∈ PR(N)) ∧ (p+ ⊂ A) ∧ (p− ⊂ A)

• ∀t ∈ A, (t ∈ TR(N)) ∧ (t− ⊂ A)

• Tout = {t|(t ∈ A) ∧ (t+ ∩ A ̸= ∅)}

Reduction function G(A, t) = <NS,NL> extracts, for a given sub-net A matching the above pattern and
one of the transition t in the Tout set, the equivalent sequential structureNS, and the eventual loop section
NL if the occurrence of t is infinite.

The sub-net A is extracted from the whole system. This function first checks whether the occurrence
of t in sub-net A is finite using the isFinite() observer. The isFinite() observer is given in the section
5.3.2 of chapter 5. In both cases, the tmini and tmaxi are measured using predefined BCET and WCET observers
for the ith occurrence of fired t.

In the finite case, there is only a sequential section NS. The set of sequential transitions Tseq = {Ti}
(i ∈ N) in NS is built using tmini and tmaxi . Each transition Ti in Tseq is associated with a time range
[Ti.min,Ti.max]. The algorithm for building NS from A using the transition t is described in Algo. 2.
Initially, tmino and tmax0 are set as 0. NS starts from an initial place with one token. Whether ti has occurred is
checked using tHasOcc(i) function relying on the observer O(ti). For each new occurrence (i) of fired t, a
pair of BCET and WCET observers are added to t in the sub-netA to compute the tmini and tmaxi . Then the time

207

6.5. REDUCTIONUSING BEHAVIORAL EQUIVALENCE

range [Ti.min,Ti.max] is associated to the transition Ti. Ti is added in NS, and an associated new place
without token is also added inNS.

In the infinite case, the key issue is to identify the occurrence of fired t that divides the sequential section
NS and the loop sectionNL. The algorithmAlgo. 3 is proposed to build theNS andNL sections by searching
for the loop starting transition (loopStartIndex) and the length of loop (loopLength).

Since the occurrence of the fired t is infinite, an occurrence bound value is predefined as occThreshold to
stop the algorithm. Since the Identification functionF(N)uses necessary conditions, the identified sub-net
A is considered as non-reducible if the loop section cannot be found using occThreshold. Another bound
value loopThreshold judges whether the loopStartIndex and the loopLength are found. If the loop pattern
holds for loopThreshold times, it is considered that this division of NS and NL is statistically correct. It
is obvious that no matter how big that loopThreshold is, the assurance cannot reach 100%, because the
execution is infinite. In order to make sure that the replacement refines exactly the same behavior as the
original system, a pre-check (refinement) must be performed before integrating the reduced structure into
the whole system.

Refinement function H(A, t,NS,NL) checks the refinement between the identified reducible sub-net A
and the equivalent net A′ = NS ∪ NL, for a given transition t in Tout, in the following way:

• Let nS be the length of sequential sectionNS, and nL be the length of the loop sectionNL.

• Let Tm
S be themth transition ofNS, and Tk

L be the kth transition ofNL. (m, k ∈ N, 1 ≤ m ≤ nS, 1 ≤
k ≤ nL)

• For the ith firing of t in A, denoted as ti, creates an occurrence observer for ti and adds it to A;

• Creates nS times the predicate observer of maximum time interval; adds these ones between the
event modifier ti (1 ≤ i ≤ nS) in NS and the transition Tm

S (m = i) in NL; checks if the following
assertion holds for all Tm

S : |T(ti)− T(Tm
S)|≤ Tm

S .max− Tm
S .min

• Creates an event modifier tp, (p = (i− nS) mod nL) for the ith fired t in A, and adds the observer of
this modifier to A. As i is infinite, p is also infinite. Thus, tp stands for an infinite event.

• Creates nL times the predicate observer of maximum time interval; adds them between the event
modifier tp in NS and the transitions Tk

L (k = i − nS) in NL; finds all the outgoing arcs of t inside

208

6.5. REDUCTIONUSING BEHAVIORAL EQUIVALENCE

Data: A, t, occThreshold, loopThreshold
Result: NS,NL
tmin0 := 0, tmax0 := 0 ;
NS.add(new Place(1)) ;
occ := 0 ;
while occ++≤ occThreshold do

tminocc := getOccBCET(A,t,occ) ;
tmaxocc := getOccWCET(A,t,occ) ;
for loopStartIndex = 0; loopStartIndex < occ; loopStartIndex ++ do

for loopLength = 1; loopLength≤ occ - loopStartIndex; loopLength ++ do
match : = 0 ;
for index = loopStartIndex; index≤ occ - loopLength; index++ do

if isSame(<tminindex, tmaxindex>, <tminindex+loopLength, tmaxindex+looplength>) then
match++ ;

end
else break;;

end
if match≥ loopThreshold then

for k = 1; k < loopStartIndex; k++ do
Tk.min = tmink − tmink−1 ;
Tk.max = tmaxk − tmaxk−1 ;
NS.add(Tk, new Place()) ;

end
for k = loopStartIndex; k < loopStartIndex + loopLength; k++ do

Tk.min = tmink − tmink−1 ;
Tk.max = tmaxk − tmaxk−1 ;
NL.add(Tk, new Place()) ;
NL.connect(lastPlace, TloopStartIndex) ;

end
return ;

end
end

end
end

Algorithm 3: Building Loop Section

209

6.5. REDUCTIONUSING BEHAVIORAL EQUIVALENCE

A (the outgoing arcs outside A are not included), redirects the sources of these arcs from t to the
”merge” transition in the time interval observer (this will be detailed in the following example Ex.
6.3), perform the same redirection for A′; checks if |T(tp) − T(Tk

L)|≤ (Tk
L.max − Tk

L.min) holds
for all Tk

L.

Whenverifying the loop sectionusing refinement, asA andA′ areboth infinite,wepropose amechanism
to ensure that the refinement is performed between two equivalent occurrence. We use an example (Ex.
6.3) to illustrate this issue and how the refinement works.

Example 6.3 (Example of Refinement) In the Fig. 6.5.5 (a), themodel SA is an identified sub-net of thewhole
system S. EA is the target portal transition. From the viewpoint of EA, the net SA exhibits periodic behavior, with
[3, 10] as the period. SB is the reduced net which exhibits the same property-specific behavior as SA. From the
viewpoint of EB, SB also exhibits periodic behavior with [3,10] as the period. SB does not have the sequential
section but only the loop section with one transition. Before replace SA by SB in S, the refinement is performed to
verify SA and SB have equivalent property-specific behavior.

According to the above steps, as nS = 0, we directly verify the equivalence of the loop section. In SB, nL = 1,
thus, p = 1. In Fig. 6.5.5 (a), E′

A stands for t1. The obs is used to check |E′
A − EB|< 8 between infinitely occurred

E′
A and EB. We check the MMC assertion¬(OverflowA ∨ OverflowB) in the state class graph preserving markings.

The result is false. This is obvious. For example, if each time EA occurs at the instant 2, while EB occurs at instant
10, their occurrences quickly become non equivalent.

This problem is solved using a reset mechanism. In Fig. 6.5.5 (b), we first find all the outgoing arcs inside SA
and SB (here arcs aA and aB). Then we redirect the source of aA from EA to Tmerge, and redirect the source of
aB from EB to Tmerge. In this way, after the comparison of each occurrence, the loop restarts. The MMC assertion
¬(OverflowA∨OverflowB) is true. In this way, it is proved that SB is equivalent to SA in terms of property-specific
behavior.

The reduction will likely make the verification more scalable if the reduced behavior has less states and
transitions. However, this will not always be satisfied and we cannot predict the reduction effectiveness
before refinement. This gain introduces additional costs: the computation of function G() and H(). Al-
though the reachability graph of sub-TPN will be much smaller, bothG() andH() will be executed several
times for a given sub-TPN. In thiswork, in order to avoidmeaningless computation, the identificationof sub-
TPN matching the pattern will only check those strongly connected graphs with more than 10 transitions.

210

6.5. REDUCTIONUSING BEHAVIORAL EQUIVALENCE

PB EB
EA PA [0,0]

Over-owA Over-owB

[8, 8] [8, 8]

[1, 5]

[2, 5] [3,10]

S
A

S
B

Obs

a
A

a
B

E'A

PB EBEA PA [0,0]

Over-owA Over-owB

[8, 8] [8, 8]

[1, 5]

[2, 5] [3,10]

S
A

S
B

Obs

a'
A a'

B

E'A

(a)

(b)

[0,0]

[0,0]

Tmerge

Tmerge

Figure 6.5.5: Example of Refinement

A more sophisticated gain-cost balance strategy could be studied in future works, like pattern recognition
for target sub TPN together with machine learning on their improvement ratio.

6.5.4 Generic Behavioral Equivalence Pattern

The above one-way-out pattern of refinement gives hints for more generic patterns. First of all, a reducible
sub-net must be independent of its surrounding behavioral context. It means that whether this structure is
”knockedout” fromtheoriginalTPNornot, itwill exhibit exactly the samebehaviorwhenever it ismeasured,
in terms of occurrence times, firing time range of each transition and marking bound of each place. This
feature is the key of behavioral equivalence-based reduction because it turns, during model checker’s state
exploration, the combination problem ofO(N ·M) into a divide-and-conquer problem ofO(N +M · δ),
whereN is the state unfolding complexity caused by this sub-net,M is the complexity caused by the other
parts of the TPN, and δ is the complexity introduced by the refined component of the sub-net; it is expected
(and often the case according the early test results) that 1 ≤ δ ≪ N.

Let S be the system TPN, A be the reducible sub-net of S, and C be the complement structure of A in S
(see Fig. 6.5.6 (a)). Once A has been identified, the next task is to convert it into a reduced structure B,

211

6.5. REDUCTIONUSING BEHAVIORAL EQUIVALENCE

which in order to have eventually δ ≪ N. Theoretically, the arcs are the interfaces betweenA/B andC, and
both transition and place can be the portal elements of A/B to connect toC. In this thesis, we chose to use
transitions as the portal elements because most of our observers are event/transition-based. This will ease
both the reduction functionG()whenwe ”knock out”A and find its behavioral equivalence parameters for
building B, and the refinement functionH()when we associate A and B to verify they are equivalent using
observers.

A

C

B

C

P Q P Q

Figure 6.5.6: Generic Behavioral Equivalence Pattern

For the generic behavioral equivalence pattern, the two functionsG() andH() are the same as the one
given for the one-way-out pattern. We focus on how to identify the sub-nets matching this generic pattern.
More precisely, an identification function is proposed to identify the sub-net structures which consist of
two portal transitions such as transitions P and Q in Fig. 6.5.6.

Before presenting the identification function, two transition sets should be predefined.

Definition 6.1 (Impact Set) Le E be a transition in a given TPN system S, the impact set of E is the set of TPN
transitions that impacts the behavior of E in S, noted as SS

E. In other words, E causally depends on the elements in
SS
E.

Definition 6.2 (Impacted Set) Let E be a transition in a given TPN system S, the impacted set of E is the set of
TPN transitions that are impacted by E in S, noted as TS

E. In other words, the elements in TS
E causally depends on

E.

Computation of SS
E and TS

E Computing precisely the causality between TPN’s transitions is a tough task,
which requires a state class graph-based analysis. This leads to the following paradox: if we are able to
generate the reachability graph for the given TPN before the reduction, we may not need to reduce it any

212

6.5. REDUCTIONUSING BEHAVIORAL EQUIVALENCE

more. The solution is to use an over-approximation of causality, i.e. use the TPN’s structure relevance to
deduce the causality. The relevance between two transitions at TPN topology level is the necessary condition
that they are causally dependent. Therefore we can reuse the algorithm Algo. 1 to compute these two sets.

SupposeRE is the set including all relevant transitions of E in a system, we have

• SS
E = RE

• TS
E = {X|E ∈ RX}

We give an example (Ex. 6.4) to illustrate the defined impact and impacted sets.

Example 6.4 (Example of Impact and Impacted Sets) In the net N of Fig. 6.5.7, the target transition is T3.
The impact set SN

T3
is the set of relevant transitions {T2,T4}. The impacted set TN

T3
is computed using the sets of

relevant transitions of the other transitions. For T1, its relevant transitions are {T2,T3,T4}; for T2, its relevant
transitions are {T3,T4}. The transition T4 does not have any relevant transition. As T3 is relevant to T1 and T2,
the impacted setTN

T3
= {T1,T2}.

P0T1

T2

T3

T4

p1

p2

p3

p4p5

Figure 6.5.7: Example of Impact and Impacted Sets

Identification function F2(N) = <A, P,Q> identifies and extracts, for a given TPN N, the sub-net A that
matches the pattern that could be possibly reduced by generic behavioral equivalence pattern, and the pair
of portal transitions P (incoming) andQ (outgoing). SN

P (resp. SN
Q) andTN

P (resp. TN
Q) are the impact and

impacted sets of P (resp. Q). The algorithm Algo. 4 is used in F2(N).

213

6.5. REDUCTIONUSING BEHAVIORAL EQUIVALENCE

Data: N
Result: A, P,Q
forall the transitions L,M ∈ S do

if TN
L ⊂ TN

M then
A = TN

M − TN
L + {L} ;

A′ = A\{L,M} ;
found := true ;
forall the E ∈ A′ do

if ! (TA′
E ⊆ A ∧ SA′

E ⊆ A) then
found = false ;
break ;

end
end
if found then

P = L,Q = M ;
return ;

end
end

end
Algorithm 4:Generic Behavioral Equivalence Pattern Identification

F() guarantees that the whole structureAwill only casually impact partC via transitionQ, andwill only
be casually impacted by part C via transition P in Fig. 6.5.6. Therefore when the refinement is using P and
Q as portal transitions, it will not change the behavior of the whole system.

6.5.5 Discussion

6.5.5.1 Behavior Coverage

In some cases, using the observed minimum/maximum time range to replace the old sub-structure do
not refine fully the original behavior because there might be some ”holes” in this range. For example, a
transition can fire during [10,15] or [20,30], but never during [15,20]. If we use directly [10,30] as the
[min, max] time range in refinement, the real-time behavior is extended. Therefore, a detailed observation
must be taken into account to distinguish the case with and without these time-holes.

For a given observed range [min, max] of transition T at its ith occurrence, the checkk exist Ti between

214

6.5. REDUCTIONUSING BEHAVIORAL EQUIVALENCE

k and k+1 will be executed for all min ≤ k < max. If checkk does not pass, the range will be broken into
two sections: [min, k] and [k+1,max]. To be more general, if checkk1 , checkk2 , ... checkkn do not pass, the
final refined equivalent time ranges of this occurrence will become [min, k1], [k1 + 1, k2], ..., [kn + 1, max].
Accordingly, the sequential transition of the equivalent sub-net will be refined to a sub-structure which
contains all possible fireable time range, but also eliminates those impossible ranges.

Fig. 6.5.9 (a) shows that the transition T in the reduced sub-net A exhibits a firing time range [t3, t4].
But there exists time holes on this time range, as shown in Fig. 6.5.8. The transitionT should be replaced by
the sub-range structure (grey part in Fig. 6.5.9 (b)). In each sequential branch of this structure, the second
transition keeps the firing time constraint, while the first transition with time constraint [0,0] plays a role
ensuring that this branch will be selected and fired equally.

t3 t3' … t4t4'

Figure 6.5.8: Behavioral Equivalence Pattern: Hole on Time Interval

C

[t1,t2]

[t3,t4]

….

A

C

[t1,t2]

[0,0]

….

A'

[0,0]

…

[t3,t3'] [t4',t4]

[tm,tn]

[tm,tn]

(a) (b)

T

Figure 6.5.9: Behavioral Equivalence Pattern: Deal with Hole on Time Interval

215

6.5. REDUCTIONUSING BEHAVIORAL EQUIVALENCE

6.5.5.2 Predict the revenue-over-investment

More specifically, for a given TPN, there might be more than one reducible sub-components available.
Different order of reductionwill eventually impact the global verification time. A trivial strategy used in this
work uses the sub-net’s size (in terms of transition’s number in the sub-net) to rank the order of reduction:
the smaller one will be reduced first.

6.5.5.3 Formal Proof and Future ResearchDirection

In this behavioral equivalent approach, we first identify and extract the reducible sub-blocks from the
whole system using an Identification function. Then the state space of the reducible sub-blocks are reduced
using a Reduction function. The reduced sub-blocks are derived, and are then used to replace the original
sub-blocks after their soundness is assessed using a Refinement function.

At the time of writing this thesis, the Reduction and Refinement functions rely on the real-time property
specification and observer-based verification approaches in our verification toolset. Suppose a reducible
TPN sub-net isNs and its reduced sub-net isN′

s. We use the Reduction function to search for the sequential
and loop sections that are used as the behavioral pattern of Ns, and then verify if this pattern behaves the
sameas the system’s real behavior using theRefinement function. If verified, anN′

s conforming to this pattern
will replace the Ns. The reduction and refinement functions can be formally specified and proved. This
should be further studied in the near future.

On the other hand, once anNs is identified, in order to compute theN′
s, some related TPNobservers need

to be associated to theNs, and the corresponding state class graphs are then generatedm times (m depends
on the behavior ofNs). Indeed, this approach reduces the state space explosion problem in asynchronous
systems using a time–memory tradeoff. But this approach can still be improved by decreasing the time used
for the reduction and refinement. It is possible tobuild the sequential and loop sections forN′

s bygenerating
the state class graph only once and then analyzing its topology structure. This will be an interesting future
research direction.

Boucheneb and Barkaoui proposed in [BB13] an effective method for reducing interleaving semantics
redundancy in the reachability analysis of Time Petri Net. Their work showed that the union of state zones
reached by different interleavings of the same set of transitions is not necessarily a state zone. They estab-
lished sufficient conditions which ensure that this union is a state zone and showed how to compute this
state zone without computing intermediate ones. It is possible to draw lessons from this work and propose
more efficient property specific reduction methods for TPNmodels.

216

6.6. CONCLUSION

6.6 Conclusion

This chapter proposes TPN reduction approaches that are applied before verifying real-time properties by
model checking. The classic verification methodology will encounter scalability problem very quickly
along with the growth of system size, as it follows an implicit purpose: once the reachability graph has
been generated, it can be reused to verify many properties of the system, just by changing the modal logic
formulas. This consideration requires to build the most concrete and precise transition system to be able
to assess any kind of properties. It makes sense if the assessed system does not change often and if there is a
large number of requirements to assess. However, it is well known that the generation of reachability graph
for large scale models is the most expensive phase in terms of resource consumption. Theoretically, gener-
ating reachability graphs only once seems to be resource-saving by eliminating the effort of re-generating.
However, this global-resource-saving principle implies an assumption that is sometimes false: we can gen-
erate the reachability graph with common available resources.

We propose to create models equivalent to the original TPN in terms of property-related system behav-
ior, but with less states and transitions. This reduces directly the model scale before performing state space
generation. Compared to other TPN reduction techniques, our approach focus on the following four con-
tributions:

1. Reduction based on TPNwith datamanipulation features.
The TINA toolset supports extended TPN with data handling called Time Transition Systems (tts),
including the precondition Pre and action Act functions. Our approach is based on this new fea-
ture. When eliminating property-irrelevant structures, all variables and place marking referred by
the property-relevant structures should be preserved.

2. Reduction driven by property verification.
Thereduction is property-driven, whichmeans thatmost structures irrelevant to the verification of a
given property will be eliminated. Compared to existing techniques [SB96], our approach is driven
by property, because TPN systems have been extendedwith property observers. This property-driven
characteristic allows removing much more transitions in the TPN models, which directly signifies
more reduced state space in model checking.

3. Reduction based on topology-implicit semantic equivalence.
We propose practical topology-implicit semantic equivalence reduction patterns which are com-

217

6.6. CONCLUSION

monly found in TPNmodelswith observer structures for real-time property verification. In thiswork,
redundant zero-time patterns and sequential encapsulation patterns are proposed.

4. Reduction based on behavioral equivalence.
In some cases, it is complex to detect and extract a localized topology pattern. However, it is manda-
tory to have the whole TPN reduced. Reduction methods based on behavioral equivalence are pro-
posed. Thesemethods identify sub-TPNwhich exhibits the samebehavior as the original nets. Before
reducing the pattern-matched structures, we use refinement functions to ensure the reduced net cor-
responds exactly to the original behavior.

218

Part III

Contribution to Fault Localization

219

7
Automated Fault Localization inModel Checking

Résumé

Cechapitre présente une approche automatisée d’assistance à la localisation des éléments demodèle partic-
ipants à la non satisfaction des exigences lors de la vérification demodèles. Il s’agit de faciliter et d’accélérer
la mise au point de l’architecture des systèmes temps réels en localisant et en classant les éléments suspects
dans un modèle pour lequel une exigence n’est pas satisfaite.

La génération d’un contre exemple dans le cas où une exigence n’est pas satisfaite est un service essentiel
fourni par les outils de vérification demodèles. Ces contre exemples illustrent des comportements indésir-
ables mais possibles dans le modèle considéré du système. Cette information peut aider les utilisateurs à
corriger la conception défectueuse du système. Cependant, il est généralement très difficile de compren-
dre l’origine de l’échec en utilisant des contre exemples car d’une part ceux-ci sont en général très longs
pour les erreurs qui ne sont pas triviales, et d’autre part une erreur peut résulter d’une combinaison de fac-
teurs. Après identification de l’erreur, il est également complexe d’extraire des contre exemples les indices

220

pour aider à améliorer la conception. Les contre exemples produits par les outils de vérification des mod-
èles sont généralement des traces qui représentent des séquences d’états et de transitions qui conduisent
à un état dans lequel l’exigence n’est pas satisfaite. D’une part, celles-ci sont souvent longues et difficiles à
interpréter car l’origine réelle de l’erreur peut être une transition, voire une combinaison de transitions ap-
paraissant à n’importe quelle position dans la trace, ce qui nécessite une longue analyse par les concepteurs.
D’autre part, les contre exemples ne correspondent qu’à certains scénarios de défaillance spécifique qui ne
sont pas forcément les plus pertinents pour la compréhension et la correction de l’origine de la défaillance.
L’analyse peut être plus précise si elle s’appuie sur l’ensemble des scénarios. L’approche de vérification pro-
posée s’appuie sur l’accessibilité qui construit l’ensemble des traces conduisant dans les états de défaillance
ou ne conduisant pas dans les états souhaités. Elle permet donc de disposer de toutes les informations
exploitables pour l’analyse des échecs.

Ces différents aspects nous permettent de conclure que la transmission aux utilisateurs des seuls contre
exemples n’offre qu’une aide pratique très limitée pour identifier l’origine des défauts et corriger ceux-ci.
Notre objectif est de signaler directement des éléments suspects car ils contribuent à un grand nombre de
scénarios de défaillance. Pour cela, il est nécessaire de localiser et de classer les éléments potentiellement
défectueux dans les modèles en s’appuyant sur les résultats de la vérification.

L’analyse de l’origine des défaillances dans la vérification de modèles est difficile à cause de l’utilisation
d’abstractions. Aumomentde la réduction, le conflit entre la précisiondumodèle et le coûtde la vérification
est un problème clé. L’abstraction est souvent nécessaire dans la vérification pour réduire la taille de l’espace
d’états. Elle élimine certains éléments de la sémantique sans rapport avec les exigencesmais peut également
combiner certains aspects liés à celles-ci. Mais la distinction des parties combinées pourrait aider dans la
compréhension de la défaillance.

Les techniques de localisation des défaillances actuellement disponibles pour la vérification demodèles
produisent généralement un ensemble d’éléments suspects dans les modèles sans classement particulier.
Dans cette partie, nous avons amélioré l’efficacité de l’analyse des défaillances en fournissant un facteur
de suspicion, lorsqu’une exigence n’est pas satisfaite. Inspiré par la théorie de la divergence de Kullback-
Leibler et la technique TF-IDF (Term Frequency - Inverse Document Frequency) une mesure exploitée
dans l’exploration de données textuelles, le facteur de suspicion est utiliser pour classer les transitions sus-
pectes. Nous construisons l’intégralité des traces d’erreur dans le graphe d’accessibilité en utilisant tous les
états de défaillance. Le facteur de suspicion est ensuite calculé en utilisant la contribution à la défaillance
de chaque transition sur toutes les traces d’erreur. Cette contribution est calculée à partir de l’entropie et

221

de l’entropie différentielle de transition. Nous appliquons cette approche aux réseaux de Petri temporisés
et à la méthode de vérification à base d’observateurs pour obtenir toutes les traces d’exécution défaillantes
et les états défaillant dans le graphe d’accessibilité préservant le marquage. L’approche proposée est illus-
trée à l’aide d’une étude de cas simple, et ensuite validé avec des métriques classiques sur un banc d’essai
automatisé qui génère des modèles comportant des interblocages.

222

TPN

Reduced
Observer TPN MMC

TPN Model CheckingTag Property
Pattern Result

Architecture/
Behavior
Mapping

Observer TPN
Generation

Property Pattern
Result

Real-Time Property
Specification

Verification
Result

Computation

Real-Time Property
Verification Result

Feedback
Generation

System Model
Real-Time

Requirement
Architecture

Model
Behavior

Model

UML Real-Time Software Model

Timing Property
Pattern

Timing Property
Pattern

Real-Time
Property Patterns

1

5

3

2

3

3

Observer
TPN

Tag Property
Pattern Result
Interpretation

3

TPN
Reduction

4

Iteration
Tag

Progress
Map
5: Automated Fault Localization in Model Checking

In this chapter, we present an automated fault localization approach based on model checking to ease
andacceleratedebuggingby locating and ranking the suspicious elements in amodelwhena safety property
is unsatisfied (ProgressMap 5). Counterexamples produced bymodel checkers often stand for error traces,
which represent sequencesof systemstates and transitions that areoften lengthy anddifficult tounderstand,
as they provide every steps (or an abstraction of steps) in the execution leading to the violation states. The
origin of error might be anywhere along these traces and even a combination of transitions that are not
contiguous, thus it requires a lengthy analysis by designers (Challenge 5 in page 22). Inspired by the TF-IDF
(term frequency-inverse document frequency) measure and the Kullback–Leibler Divergence theory,
we propose a suspiciousness factor to rank the potentially faulty transitions. We apply this approach to
property-specific TPN model relying on observers-based verification approach presented in Chapter 5 to

223

7.1. INTRODUCTION

provide all the faulty execution traces and the violation states in the marking reachability graph. Based
on the mapping semantics from UML to TPN, the faulty transitions can be back-traced from TPN to UML. The
approach is illustrated using a simple TPN case study, and then further assessed for its effectiveness and
efficiency on an automated test bed. (Contribution 5 in page 24)

7.1 Introduction

One of the designers of model checking E. Clarke wrote in [Cla08]: ”It is impossible to overestimate the
importance of the counterexample feature. The counterexamples are invaluable in debugging complex sys-
tems.” Generating a counterexample in case a formula is violated is a key service provided bymodel check-
ers. As exceptions of requirements, counterexamples are expected to display some unwanted but possible
behaviors of the system to help the user(s) in correcting the faulty system design. However, it is usually
an exhausting work to understand the origin of failure using counterexamples and to extract from them
useful debugging clues to help improving the design. Counterexamples produced bymodel checkers often
stand for error traces, which represent sequences of system states and transitions that are often lengthy and
difficult to understand, as they provide every steps (or an abstraction of steps) in the execution leading
to the violation states. More precisely, the origin of error might be anywhere along these traces and even
a combination of transitions that are not contiguous, thus it requires a lengthy analysis by designers. On
the other hand, the counterexamples derived from the assessment of temporal logic formulae usually only
contain some specific failure scenarios. Even if the toolsets could generate all possible faulty scenarios, this
is not a common feature. Without relying on all the possible error traces, fault analysismight not be precise
enough in most cases.

Based on the above understanding, we advocate that feeding back end users with counterexamples pro-
vides limited help in understanding the origin of defects and in improving model design. Our ultimate
goal is to detect and to provide the designer with ranked suspicious faulty elements. In other words, we
aim to locate and rank the potentially faulty model elements relying on model checking results. The fact
is, although model checking has been developed as a mature and heavily used verification and debugging
technique, the automated fault localization analysis relying onmodel checking results is stillmostly anopen
challenge.

Existing automated fault localization techniques in model checking usually produce a set of suspicious
statements without any particular ranking. In this chapter, we introduce an automated fault localization ap-

224

7.1. INTRODUCTION

proach based on model checking to ease and accelerate debugging by locating and ranking the suspicious
elements in model checking when a safety property is unsatisfied. Inspired by the TF-IDF (term frequency-
inverse document frequency) measure and the Kullback–Leibler Divergence theory, we propose a sus-
piciousness factor to rank the potentially faulty transitions. We construct error traces in the reachability
graph using the violation states. The suspiciousness factor is then computed using the fault contribution of
each transition on all the error traces. The fault contribution is computed using the entropy and differential
entropy of transitions. We apply this approach to Time Petri Net (TPN) models relying on the observers-
based verification approach presented in Chapter 5 to provide all the faulty execution traces and all the
violation states in the state class graph preserving marking. This approach is illustrated using a simple TPN
case study, and then further assessed for its effectiveness and efficiency using an automated test bed.

Compared to existing works, the main contributions are:

• Existing automated fault localization techniques usually produce a set of suspicious statementswith-
out any particular ranking. Our approach uses a suspiciousness factor based on information theory
to rank all statements. Up to now, the current test results have shown that this approach is efficient
and effective.

• It is based on a novel idea according to our knowledge and the communication reviewswe got: using
information theory to compute the entropy and differential entropy of error traces in the state class
graph. We startwith comparing the similarity between information retrieval for documents and fault
localization for error traces. Thenwepropose analgorithmbasedonKullback–Leibler Divergence

to compute fault contribution of TPN transitions on error traces.

• The automated fault localization is applied at the reachability graph level, thus it can be used together
with different verification models (TPN, TA, etc.). It provides fault location feedback for safety prop-
erties.

• It has been integrated in the temporal property verification framework for UML-MARTE real-time de-
signs. This fault localization approach is applied to the property-specific verification models (in our
case TPN). These property-specific TPN models are derived from the end-user model (UML-MARTE)
using the property-specific mapping. After performing the property-specific reduction for TPN, the
marking abstraction state-class graph is generated to assess the temporal propertiesusing theobserver-
based model checking. If the property is dissatisfied, the violated states are used to locate the origin

225

7.2. PROBLEM STATEMENT

of error. Based on themapping semantics from the UMLmodel to the TPNmodel, the faulty transitions
in the marking graph are back-traced from the TPNmodel to the UMLmodel.

This chapter is organized as follows: Section 7.2 states the targeted problem; Section 7.3 gives somepre-
liminaries; Section 7.4 provides an automated fault localization approach based on the reachability graph;
Experimental results derived from a set of test cases are presented in Section 7.5 to assess the effectiveness
and efficiency of the approach; Section 7.6 introduces the algorithm for back-tracing faulty transitions from
the verification model to end user model.

7.2 Problem Statement

7.2.1 Abstraction Issue

Fault localization in model checking is challenging as models usually have concurrent and indeterministic
behaviors with many possible execution traces. These behaviors are mostly related to the use of abstrac-
tion in their design. Without appropriate information, fault localizationmay not be precise enough. Given
a sequential, or synchronized concurrent, program which exhibits less execution traces, various debug-
ging methods are available to detect and locate faulty statements. In model-based diagnosis, the use of
abstraction is mandatory to reduce the state space explosion problem. At the time of writing, the conflict
betweenmodel precision and verification cost is a key issue inmodel checking andmodel-driven engineer-
ing (MDE), therefore a compromise is made to remove the unnecessary information for some verification
purpose while keeping all the property-related information.

There exist mostly three levels of abstraction:

• First, abstraction lies in the designmodels at early phases of MDE. For example, the specificationof the
execution time interval for each action and the condition of transition between actions is enough to
verify the worst-case execution time (WCET) of an activity, while the detailed algorithm of an action
might not be required.

• Secondly, abstraction lies in the mapping from design models to verification models. This one also
targets verification-ease. Theproperty-irrelevant elements can be reduced to decrease the state space
size for model checking.

226

7.2. PROBLEM STATEMENT

• At last, abstraction lies in the reachability graph. Usually, several types of abstraction preserving
different kind of information are provided by model checkers when generating a reachability graph.
In order to scale as much as possible, we choose in our work the highest possible abstraction.

7.2.2 Fault Localization Issue

Sometimes it is difficult, even for seasoned experts, to analyze the fault origin. We take a simple example
(see Ex. 7.1) to illustrate this issue.

Example 7.1 (Fault Localization Example) Assume a system consists of two concurrent processes A and B.
Both execute only once. The execution time is [5,10] for A, and [3,7] for B. The expected temporal propertyP is
Always A After B.

It is obvious thatP is unsatisfied. The design fault occurs either on A or on B. To remove this violation, we can
either replace the time constraint ofAby [8,10], or replace the time constraint of Bby [3,4]. However, without extra
information, A and B exhibit the same suspicion. If an extra information is available, e.g. the best case execution
time (BCET) of B is 5, then the time constraint of B cannot anymore be replaced by [3,4], thus the suspicion of B is
largely decreased.

This example is simple enough to be analyzedmanually, while it is impossible for more complex system
with thousands of transitions. Any modification on a transition may impact the verification result through
time constraint propagation.

7.2.3 ExistingWorks

According to the survey from [Ali12], existing automated fault localization techniques in model checking
usually produce a set of suspicious statements without any particular ranking.

[BNR03] proposed to analyze fault localization using one single counterexample that violated the ex-
pected properties in a particular case. Whenever a counterexample was found, the approach compared the
error trace derived from the counterexample to all the correct traces that conformed to the requirement.
On the observed error and correct traces, the transitions that led to the deviation from correct traces are
marked as suspicious transitions. This technique has been implemented in the SLAMmodel checker [BR01].

[GV03] proposed to rely on multiple counterexamples. It defined the traces that started from initial
states and ended with error states as negative traces, and the traces that did not take the error state as previ-

227

7.2. PROBLEM STATEMENT

ous state as positive traces. It distinguished the transitions that existed in all positive traces; the transitions
that appeared in all negative traces; the transitions that existed in one of positive traces but not in any neg-
ative traces; and the transitions that appeared in one of negative traces, but not in any positive traces. The
algorithm then used the above marked transitions to identify the origin of failure. This method has been
implemented in the Java PathFinder [HP00] toolset.

[Gro04] proposed to define a distance between the error trace and the successful traces. The distance
was then used to find the closest successful trace to the counterexample. The causes of error were then
derived from the comparison results between the closest successful trace and the counterexample. This
method was implemented in the Explain toolset [GKL04b].

[CGS04] extended the concrete distance metric approach of [Gro04] to handle abstract executions of
programs and properties expressed in LTL, resulting in improvements in both the distance metric used and
the expressiveness of explanations over earlier work. This technique has been implemented in the MAGIC

toolset [CCG+04].

[JM11b] proposed an approach that transformed the fault localization problem to aMax-SATproblem.
It used only one failing trace and the corresponding input to build theMax-SAT formulation. Thismethod
has been implemented in the BugAssist toolset [JM11a].

7.2.4 Proposed Solution

Compared to the above existing works, our approach will improve the effectiveness of fault localization by
providing a suspiciousness factor which is used to rank the suspicious transitions in verification models.
The suspiciousness factor is computed using the fault contribution of each transition in the error traces
derived from the reachability graph. Inspired by information retrieval theory, the basic idea is to compute
the entropy and differential entropy of the transitions in the error traces.

At the time of writing, we have not yet combined our approach with the previous related works. This
can be investigated in the future.

228

7.3. PRELIMINARIES

7.3 Preliminaries

7.3.1 Reachability Graph&Violation States

Reachability graphs are used to solve reachability problems inmodel checking. They contain all the states in
the execution of a system and all the transitions between these states. In the TINA toolset, depending on the
selected options, tina builds reachability graphs of different abstraction levels, expressed as Kripke transi-
tion systems (ktz). For example, themarking graph of a bounded Petri Net preservesmarking reachability
properties but not linear time temporal (LTL) properties.

Finding all violation states in the reachability graph is the first step for error localization. There exist two
model checkers in the TINA toolset which provide (partially) this functionality. muse is a modal μ-calculus
model checkerwhich canfind all the violation states against the givenmodal μ-calculus (MMC) formula in the
reachability graph. selt is a State/Event LTLmodel checker which can give one counterexample (therefore
not all the violation states) when the LTL formula is checked as false. If there is a need to find all violation
states for LTL formula, one can apply the büchi automaton translating algorithm by iterating all the states
in the reachability graph.

7.3.2 Error Traces

We aim to compute the fault contribution of each transition in the error traces. The error traces are con-
structed using the violation states in the reachability graph when a safety property is unsatisfied.

Definition 7.1 (Fault Contribution) Fault Contribution (CF) is a suspiciousness factor to evaluate a transi-
tion’s suspicion level. It is used to rank the suspiciousness of transitions.

The first step to locate the fault source is to enumerate all the violation states in the reachability graph.
According to theobserver-basedmodel checking approach for TPNpresented inChapter 5, weuse themark-
ing graph as the reachability graph. A TPN state can be seen as a pair (M,D), in whichM is amarking, andD
is a set of vectors called the firing domain. The MMC formula is used to check the marking existence, such as
(MP = 1) or (MP = 0), whereMP is themarking in the observation placeP. Once the given MMC is violated,
the set of violation states in the reachability graph is built.

229

7.3. PRELIMINARIES

Definition 7.2 (Error Trace) There may exist several paths from the initial state s0 to a violation state sv in the
reachability graph. For all the states {si} on each path, all the outgoing transitions of si are gathered in a set called
error trace π.

We consider not only the transitions on the path that leads from S0 to Sv in the definition of error trace
but also the direct outgoing transitions of all the states in the execution traces that lead to correct states.
Indeed, in TPN, the transitions outgoing from the same place can mutually influence each other. A faulty
transition can change the way a correct transition is fired if they are both outgoings from the same place.
The correct transition will diminish the CF of the faulty transition.

Example 7.2 (Error Trace Example) In Fig. 7.3.1, s0 is initial state, sv is a violation state. In the execution
trace from s0 to sv, there exist four states {s0, s1, s2, s3} (apart from sv). The state s3 is in a correct trace. When the
system is in state s2, it is possible to transit to s7 leading to a correct trace, or to s3 leading to a violation state. If s7
is removed from the graph, s3 will have higher fault contribution for the violation state. The outgoing transitions of
these four states are considered as error traces π, i.e., π = {t0, t1, t2, t1, t5, t4, t2, t3, t4}.

0 41 2 3
Svt1

t0 t2
t3S0

5

8

7

9

t2 t4

t5
t4

6
t1

Figure 7.3.1: Error Trace Example

7.3.3 Kullback–Leibler DivergenceApplied to Textual Documents

Kullback–Leibler Divergence (also called information divergence, information gain, relative entropy)
[KL51] is a fundamental equation of information theory that qualifies the proximity of two probability
distributions.

Definition 7.3 (Kullback–Leibler Divergence) Kullback–Leibler Divergence (KL) is ameasure in statis-
tics that quantifies how close a probability distribution P={pi} is to amodel (or candidate) distributionQ={qi}.

230

7.3. PRELIMINARIES

The KL-divergence of Q from P over a discrete random variable is defined as

DKL(P ∥ Q) =
∑
i

P(i) ln
P(i)
Q(i)

(7.1)

Note: In the above definition, 0 ln 0
0 = 0, 0 ln 0

q = 0, and p ln p
0 = ∞.

Three properties are derived from it:

• Asymmetry: DKL(P ∥ Q) ̸= DKL(Q ∥ P).

• Non-negative: DKL(P ∥ Q) ≥ 0,DKL(P ∥ Q) = 0 if PmatchesQ exactly.

• Additive: If P1, P2 are independent distributions, with the joint distribution P(x, y) = P1(x)P2(y),
andQ,Q1,Q2 likewise, thenDKL(P ∥ Q) = DKL(P1 ∥ Q1) + DKL(P2 ∥ Q2).

Kullback–Leibler Divergence has many applications. We give an example of its application to text
classification [BM98]. A textual document d is a discrete distribution of |d| random variables, where |d|
is the number of terms in the document. Let d1 and d2 be two documents whose similarity we want to
compute. This is done usingDKL(d1 ∥ d2) andDKL(d2 ∥ d1).

7.3.4 TermFrequency - InverseDocument Frequency

Anothermajor application is theTF-IDF (TermFrequency - InverseDocumentFrequency) algorithm[Jon72].
TF-IDF is a numerical statistic which reflects how important a term is for a given document in a corpus
(collection) of documents. It is often used as a weighting factor in information retrieval and text mining.
Variations of the TF-IDFweighting scheme are often used by search engines as a central tool in scoring and
ranking a document’s relevance to a given user query [MRS08].

Suppose we have a collection of English textual documents and aim to determine which documents are
most relevant to the query ”the model checking”. We might start by eliminating documents that do not
contain the three words ”the”, ”model”, and ”checking”, but this still leaves many documents. To further
distinguish them, we might count the number of times each term occurs in each document and sum them
all together; the number of times a term occurs in a document is called its term frequency (TF).

However, as the term ”the” is very common, this might incorrectly emphasize documents which hap-
pen to use the word ”the” more frequently, without giving enough weight to the more meaningful terms

231

7.4. RANKING SUSPICIOUS FAULTY TRANSITIONS

”model” and ”checking”. The term ”the” is not a good keyword to distinguish relevant and non-relevant
documents and terms, unlike the less commonwords ”model” and ”checking”. Hence an inverse document
frequency (IDF) factor is incorporated which diminishes the weight of terms that occur very frequently in
the document set and increases the weight of terms that occur rarely.

To summarize the above explanation, TF-IDF is the product of two statistics, TF and IDF. TF stands for
the frequency of a term in a document, and it reflects how important a term is in this document. IDF stands
for the frequency of a term in different documents, and it reflects how distinguishable a term is to the doc-
ument. The TF-IDF weight for a term both increases with the number of occurrences in a document (TF
component); and the rarity of the term across the entire collection (IDF component).

7.4 Ranking Suspicious Faulty Transitions

Inspiredby theTF-IDF algorithm,wepropose aprobabilistic fault localizationapproachbasedon theKullback–
Leibler Divergence. A relevance weight CF(t) is computed to assess the contribution of a transition t in
the error traces leading to violation states and thus its contribution to the fault.

7.4.1 Core Idea

In the TF-IDF algorithm, each term in the documents will contribute to the semantics of keywords. Some
terms are considered as significant if they are more relevant to the semantics of keywords. This is similar to
the fault contribution caused by a given transition in an error trace in model checking. Fig. 7.4.1 compares
the similarity between semantic contribution of terms in documents and fault contribution of transitions
in error traces. Some terms in documents have closer semantic relation to the keywords, the occurrence
of these terms provide more semantic contributions to the occurrence of keywords. Similarly, the fault
propagation depends on the topology of error traces, the occurrence of some transitions will providemore
fault contributions to the occurrence of violation states.

The semantic contribution of a term in documents is measured by TF-IDF, where TF is the contribution
of a term in single document, and IDF is the contribution of a term in a collection of documents. The fault
contribution to the violation states {svi} caused by a transition t on error traces {π i} can also be evalu-
ated by a similarmeasureCF(t), defined as TC-ITC (TransitionContribution - Inverse Trace Contribution).
CF(t) = TC(t) · ITC(t).

232

7.4. RANKING SUSPICIOUS FAULTY TRANSITIONS

Documents

Error Traces Violation States

Keyword SemanticsTerms

Transitions

Semantic

Contribution

Fault

Contribution

Figure 7.4.1: Comparison to TF-IDF

7.4.2 Fault Localization Example

We use a simple example (see Ex. 7.3) to present the whole fault contribution analysis algorithm.

Example 7.3 (Fault Localization Example) Fig. 7.4.4 (without the observer part) is a TPN model with 10
transitions {t0, t1, ..., t9}. It has two main execution paths (respectively through t1 and t2), both have a loop with
a bound of 2. The expected temporal property is: system’s BCET is bounded within a given time T, i.e. BCET >

T. We aim to automatically identify the potentially faulty transitions, and to rank them according to their fault
contributions to the violation states.

22 t0

[2,8]
t5

[3,5]

t1[0,0]
t2 [0,0] t7

[4,8]

t6

[1,7]

t3
[2,6]

t9
[1,4]

t4
[3,7]

t8
[2,6]

p0

Figure 7.4.2: Example of Fault Localization Algorithm

233

7.4. RANKING SUSPICIOUS FAULTY TRANSITIONS

7.4.3 TC-ITCAlgorithm

7.4.3.1 Building Error Traces

The length of error trace L is defined as the number of states before the violation state sv. The algorithm
for enumerating all the error traces in the reachability graph is trivial, but the impact of state cycles in error
traces needs to be discussed.

The reachability graph in Fig. 7.4.3 contains a state cycle Cs (s1
t1−→ s3

t4−→ s4
t3−→ s1). The error traces

passing through s1 may loop in Cs. Take one error trace as an example, the trace passing through states
s0, s1, s3, s4, s6 is

s0
t0−→ {s1

t1−→ s3
t4−→ s4

t3−→ s1}n
t8−→ s6

where n represents the number of time the cycle is repeated. A repetition will not increase the fault con-
tribution as the system’s behavior is restricted to the three states. Therefore, the cycle can be treated as a
single point represented by a chain of transitions (here t1, t4, t3). In other words, n is taken to be 1.

0 6

1

2

3

4

5

Sv

t1

t4
t3

t0

t2 t7

t5

t6

t9

t8

SI

Figure 7.4.3: Cycle on Error Traces

To assess the expected temporal property, a TPN observer is added in the example (see Fig. 7.4.4).
This observer is used to check the minimum time interval between two events. The observer is linked to
transition t9 because place p0 is the end place of the running system. The MMC assertion to be checked is:
N(¬(¬p1 ∧ p2)) = NA, whereN(¬(¬p1 ∧ p2)) is the number of states satisfying ¬(¬p1 ∧ p2),NA is the
total number of possible states in the system’s execution.

For the expected property BCET > T, when T = 10, the verification result is False. NA is 39, transition
number is 50, while N(¬(¬p1 ∧ p2)) is 37. Therefore, there exist two violation states (S11 and S23) in the
reachability graph (see Fig. 7.4.5). The error traces are:

234

7.4. RANKING SUSPICIOUS FAULTY TRANSITIONS

22 t0

[2,8]
t5

[3,5]

t1[0,0]
t2[0,0] t7

[4,8]

t6

[1,7]

t3
[2,6]

t9
[1,4]

t4
[3,7]

t8
[2,6]

[T,T]

[0,0] [0,0]

[0,0]

Observer

p1
p2

p
init

p0

2 2

t10 t11

t12 t13

Figure 7.4.4: Verification of Fault Localization Example

π1 = {t0, t1, t2, t5, t10, t3, t9, t10}
π2 = {t0, t1, t2, t4, t10, t7, t9, t10}

π3 = {t0, t1, t2, t5, t10, t3, t6, t10, t5, t10, t3, t10, t9}

7.4.3.2 Transition Contribution

Definition 7.4 (Transition Contribution (TC)) TC is a measure of the occurrence frequency of a transition t
in an error trace π. It reflects a transition’s contribution to violation state sv on π. It is defined to be

TC(t) =
1
M

M∑
i=1

Qi

Li
(7.2)

where Qi is number of occurrence times of t on error trace π i of length Li, and M is the number of error traces.

It uses the raw frequency of a transition in a error trace, i.e. the number of times that transition t occurs
in error trace π .

235

7.4. RANKING SUSPICIOUS FAULTY TRANSITIONS

t1

2

t2

3

t10

4

{t4}t3

5

t10

7

t7

8

{t4}t10
t3

9

t10 t5

10

t9

11

t10t7

13

t8

14

t10 t9

15

t10
t6

16

t3

17

t5

18

t10t8

19

t11

20

t10t3

21

t10 t5

22

t9

23

t6

24

{t4}

25

t7

26

t10t9

27

t9

29

t8

30

t11

31

t11

33

t9

35
t11

37

{t4}
34

t9

36
t11

38

t0
10

t5

6

t6

12

t10 t6

28
t3

32

Figure 7.4.5: Reachability Graph of Fault Localization Example

7.4.3.3 Inverse Trace Contribution

Definition 7.5 (Inverse Trace Contribution ITC) ITC is a measure of whether a transition t is common or
rare among all the error traces derived from all the violation states. It is defined to be

ITC(t) = log2
M

M∑
i=1

Xi

, (7.3)

where Xi =

{
1 if t occurs at least one time in an error trace
0 otherwise

and M is the total number of error traces.

It is obtained by dividing the total number of error traces by the number of error traces containing the
violation, and then taking the logarithm of that quotient.

236

7.4. RANKING SUSPICIOUS FAULTY TRANSITIONS

7.4.3.4 Fault Contribution of Transition

The weight TC-ITC is the product of the above two measures. In some cases, this product is 0, which
does notmean it cannot be the fault source but only implies that the elementsmake the least contributions
to the violation states and have the least probability comparing to the others and should be checked at last.

It is expected that the ranking of faulty possibility computed by the algorithm corresponds to manual
analysis and human intuition, as it was shown for TF-IDF and other applications. We use the example from
Fig. 7.4.4 to illustrate how they are matched. A more detailed automated benchmark is presented in the
next section.

We give the computation result of the example in Fig. 7.4.6. The results show the fault contributions
(normalized for comparing the trend) of each transition when T varies from 5 to 50.

0	

0,05	

0,1	

0,15	

0,2	

0,25	

0,3	

0,35	

0,4	

5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	 31	 32	 33	 34	 35	 36	 37	 38	 39	 40	 41	 42	 43	 44	 45	 46	 47	 48	 49	 50	

N
or
m
al
ize

d	
Fa
ul
ty
	 C
on

tr
ib
u>

on
	

BCET	 Test	 Value

t0	

t1	

t2	

t3	

t4	

t5	

t6	

t7	

t8	

t9	

Figure 7.4.6: Feedback of Fault Localization Example

We explain the results in Fig. 7.4.6 in the following part:

• 1 ≤ T < 5: since the BCET of the system is 5, there will not be any violated state and accordingly no
fault localization will be launched.

• T ≥ 47: since the WCET of the system is 47, the reachability graph will not have any change after this

237

7.4. RANKING SUSPICIOUS FAULTY TRANSITIONS

threshold, therefore the fault contribution of each transition will preserve the same value asT = 47.

• 5 ≤ T < 47: since T represents the expected BCET of the system, all execution with time inferior to
Twill be considered as violation. Without any other information, a reasonable heuristics can then be
derived from this assertion: for BCET property, the less a transition can contribute/has contributed
to the global execution time, the higher risk it will be the fault origin. Another intuition-valid rule
is: when an element holds a more complex function, it has a higher risk to have design faults. To
heuristically quantify the coefficient of these two different types of fault contribution is a subjective
measure often context-dependent. In order to avoid this indecisive discussion, each time we en-
counter this situation in our example, we will just explain the two aspects without trying to combine
them into one score for matching the ranking.

We will now check whether the computed ranking of fault source matches these two references. We
observe in this figure statistical trends that:

– Topologically symmetric pair (t3, t4) has a higher risk to be the fault cause than (t5, t7)
and (t6, t8). Thismatches the heuristic rule because in whichever execution, t3 and t4 will only
contribute once to the global execution time (i.e. [2,6] and [3,7] respectively), while t5, t6, t7
and t8 can at most execute twice and will contribute more (i.e [6,10], [2, 14], [8, 16] and [4,
12] respectively).

– In each symmetric pair of above, t3 ≥ t4, t5 ≥ t7 and t6 ≥ t8. This keeps demonstrating that
it is always the one with the smallest execution time that get more risk to be the faulty one.

– t0, t1, t2 and t9 are equally the least suspicious elements. This conforms to the intuition
because in all execution paths, whether good or bad, t0 and t9 will always be executed therefore
no information added for assessing the risk that they have to be the fault cause. For t1 and t2 it
is a similar approach, because a design fault will either be on the left side or the right side, and
in all execution paths of the left (resp. the right) side, t1 (resp. t2) will always be executed.

– Pair (t5, t7) has a higher risk than (t6, t8). Generally since t6/t8 has smaller execution time
than t5/t7, it shall be more risky to be the error source according to the first heuristic rule.
However, since t5/t7 plays a role that not only postpone the execution (like t6/t8), but also
branch the execution path (t6/t8 do not have this function), their chance to be the fault cause
will be re-distributed and raised as the second rule is engaged.

238

7.5. EXPERIMENTS

7.5 Experiments

To assess the success of a fault localization algorithm, many important criteria should bemeasured, such as
effectiveness, precision, informativeness, efficiency, performance, scalability and information usefulness.
In our work, we assess our approach by using two very significant criteria: effectiveness and efficiency.

Effectiveness. An effective fault localization method should point out the origin of failure. The ef-
fectiveness can be evaluated by the precision. According to the survey [WD09], the effectiveness can be
assessed by a score called EXAM in terms of the percentage of statements that have to be examined until the
first statement containing the fault is reached [EWDC10, WQ09, WSQG08, WWQZ08]. A similar score
using the percentage of the program that need not be examined to find a faulty statement has been defined
in [CZ05, JH05, RtPR03]. These two scores provide the same information, but the EXAM score is more di-
rect and easier to understand. In thiswork, weuse the EXAM score to assess the effectiveness of our approach,
which is the percentage of transitions that have to be examined until the first faulty transition is found.

Efficiency. Thefault localization techniques inmodel checking, like other techniques, should terminate
in a timely manner, limited by some resource constraints. The efficiency can be assessed by the scalability
and the performance.

In order to assess the effectiveness and efficiency of the proposed method, we have designed an auto-
mated test bed.

7.5.1 AutomatedTest Bed

The test bed will randomly generate systems which might have deadlocks, then apply the proposed analy-
sis algorithm and check that it detects the introduced deadlocks. The general scenario we have chosen is
deadlock in systems with concurrent use of resources. The main reason to use this common scenario as
template is because it is relatively easy to create a scalable systemwith deadlock heuristically. Although the
test bed only contains only one property, the effectiveness and efficiency evaluations will be meaningful
for all safety properties, because the approach is based on the analysis of reachability graph.

For a given TPN system S(P,R,M), P are the processes which run infinitely and need a resource before
the next task (a task is represented by a transition); R are resources which are shared by all processes, but
only accessible in an exclusive way;M is a matrix to decide whether process Pi will need to access resource
Rj. Coffman identified four conditions thatmust hold simultaneously in order to have a deadlock [CES71]:

239

7.5. EXPERIMENTS

1. Mutual exclusion conditionThe resources involved are non-sharable.

2. Hold and wait condition A process is currently holding at least one resource and requesting addi-
tional resources which are being held by other processes.

3. No-preemptive condition Resources already allocated to a process cannot be preempted.

4. Circularwait conditionTheprocesses in the system form a circular list or chainwhere each process
in the list is waiting for a resource held by the next process in the list.

According to these conditions, each process is designed to bemoderately consuming the resource, i.e. it
will use its resources exclusively, always release one before locking another. The order in which a resource
is accessed in each process is however random, which establishes the necessary condition of deadlock. In
practice, the first three conditions can be constructed staticallywhenbuilding the test case, while the fourth
one can only be checked dynamically during the system’s execution. Therefore, the generated TPN will not
systematically guarantee that a ”real” deadlock will occur. For example, among the 10,000 generated test
cases that may have only one deadlock, the ”real” deadlock occurs in 400 cases. Among the 10,000 gener-
ated test cases that may have 9 deadlocks, the ”real” deadlocks occur only in one single case.

To improve the success of creating a deadlock in the system, we introduced another mechanism to en-
force deadlocks: randomly let some processes during some tasks forget to release a resource it is locking.
These tasks are then considered as the error source of system’s deadlock.

With a generated system and its already known faulty transitions (release-forgot tasks), the test bed will
apply our method to compute the fault contribution of each task.

7.5.2 Evaluation of Efficiency

We have generated thousands of test cases by assigning P and R values from 5 to 20, creating 1 to 9 faulty
transitions, with all the other parameters totally random. To create systems with deadlocks, we generate
10,000 cases for each fault number from 1 to 9. After examining the circular wait condition, most of these
cases are deadlock-free, therefore the number of deadlocked systems is in fact much smaller than 10,000.
The exact number of deadlock test cases is shown as the second column in Table 7.5.1.

240

7.6. BACK-TRACING FAULT TRANSITIONS IN UML

Table 7.5.1: Efficiency Evaluation

System Evaluation
Fault Num. Deadlocked Systems Av. State/Transition Average Time (s)

1 400 4949 / 15440 2.9092
2 517 2428 / 7130 1.1244
3 500 9884 / 31237 3.3533
4 402 8811 / 26663 2.5998
5 303 6756 / 18247 1.2196
6 504 27094 / 75808 5.064
7 757 104857 / 304741 15.0072
8 100 112306 / 283004 15.0289
9 1 241920 / 583200 36.906

Thetests are performed on a 2.4GHz Intel Core 2Duo processor runningMacOSX10.6.8. The system
parameters and efficiency evaluation results are shown inTable 7.5.1. The average time of evaluation shows
that the approach is efficient for large scale system.

7.5.3 Evaluation of Effectiveness

Theeffectiveness evaluation is shown in Table 7.5.2. We give out EXAM score, EXAM score variance, rank, and
rank variance for the best and worst cases, and then show the average EXAM score and rank. The EXAM score
varies from 0.7% to 13.3% for best cases, and varies from 3.9% to 18.6% for worst cases. In average, EXAM
varies from 2.3% to 15.9% which corresponds to ranking results from 1 to 8. The stability is represented
by the variance result. These experimental results shows our approach is effective. The user only need to
assess 15.9% model elements in the worst case to find the error source.

7.6 Back-Tracing Fault Transitions in UML

In the above automated fault localization approach, we compute fault contribution CF for each transition
in the error traces in the reachability graph. From the viewpoint of designers, the verification model TPN
might be transparent to them, what they expect to get as feedback are guidance information in UML.

241

7.7. CONCLUSION

Table 7.5.2: Effectiveness Evaluation

F. N. Best Case Worst Case Average
EXAM EXAMVar Rank Rank Var EXAM EXAMVar Rank Rank Var EXAM Rank

1 0,13335 0,00134 3,25 1,79 0,18603 0,00244 4,33 1,63 0,15969 3,79
2 0,04229 0,00219 1,1 1,75 0,09574 0,00213 2,11 1,75 0,069015 1,605
3 0,02108 0,00106 0,75 1,52 0,05892 0,0009 1,75 1,52 0,04 1,25
4 0,00722 0,0004 0,26 0,49 0,039 0,00042 1,26 0,49 0,02311 0,76
5 0,02044 0,0017 0,83 2,95 0,0478 0,00162 1,83 2,95 0,03412 1,33
6 0,05369 0,00336 2,46 7,36 0,0766 0,0033 3,46 7,36 0,065145 2,96
7 0,08857 0,00372 4,61 10,9 0,10822 0,0037 5,61 10,9 0,098395 5,11
8 0,13091 0,00099 7,3 3,95 0,14905 0,001 8,3 3,95 0,13998 7,8
9 0,10169 0 6 0 0,11864 0 7 0 0,110165 6,5

In Chapter 3, we have mapped UMLmodels to TPN using property-driven approach. Each element in the
chosen UML diagram has beenmapped to a TPN structure for the purpose of property-verification-ease. The
algorithm to compute fault contribution of a UML element is trivial.

Suppose an UML element E is mapped to a TPN structure S =< P,T >, where P is the set of places and
T is the set of transitions, T = {t1, t2, ..., ti}. Then the fault contribution of E is computed as below:

CF(E) =
∑
i

CF(ti) (7.4)

7.7 Conclusion

Automated failure analysis and fault localization in model checking is a hard problem, due to information
reduction caused bymodel abstraction. Yet, it is a key issue, as providing counterexamples is not enough to
help designers in debuggingmodels. Thismay require a great deal of human effort to locate faulty elements.
Someworks have provided good results by producing a set of suspicious faulty elements without particular
ranking factor.

In this chapter, inspired by the theory of Kullback–Leibler Divergence and its successful application
TF-IDF in datamining, we start with comparing the similarity between information retrieval for documents
and fault localization for error traces. We propose to compute the fault contributions of each transition on

242

7.7. CONCLUSION

error traces. The fault contribution is the product of transition contribution (TC) and inverse trace contri-
bution (ITC). Based on the mapping semantics between UMLmodels and TPNmodel, the faulty transitions
are then back-traced to UML model. The approach is illustrated using a simple case study, and then further
assessed for its effectiveness and efficiency on a designed automated test bed.

The main contributions of the current chapter [GPC14a] is summarized as follows:

1. Existing automated fault localization techniques usually produce a set of suspicious statementswith-
out any particular ranking. Our approach uses a suspiciousness factor based on information theory
to rank all statements. The current test results have shown that our approach is efficient and effective.

2. It is based on a novel idea according to our understanding: using information theory to compute the
entropy anddifferential entropyof error traces in the reachability graph. We startwith comparing the
similarity between information retrieval for documents and fault localization for error traces. Then
we propose an algorithm based on Kullback–Leibler Divergence to compute fault contribution
of TPN transitions on error traces.

3. The automated fault localization is applied at the reachability graph level, thus it can be used together
with different verification models (TPN, TA, etc.) if the verification toolset can provide several (in
not all) erroneous execution traces and violated states. It provides fault location feedback for safety
properties.

4. It has been integrated in the temporal property verification framework for UML-MARTE real-time de-
signs. We apply this fault localization approach to the property-specific verification model (in our
case TPN). This property-specific TPN model is derived from the end-user model (UML-MARTE) using
the property-specific mapping. After performing the property-specific reduction for TPN, the mark-
ing abstraction state-class graph is generated to assess the temporal properties using the observer-
based model checking. If the property is dissatisfied, the violated states are used to locate the origin
of error. Based on themapping semantics from the UMLmodel to the TPNmodel, the faulty transitions
in the marking graph are back-traced from the TPNmodel to the UMLmodel.

243

Part IV

Industrial Application&Conclusion

244

8
Application to FlightManagement System

Résumé

Dans ce chapitre, nous utilisons un cas d’étude avionique développé parMichael Lauer en 2013 pour tester
les différentesméthodes proposées. Il s’agit d’une partie du systèmede gestion de vol FMS (FlightManage-
ment System) . Dans ce cas d’étude, nous étudions les exigences en terme de latence des communications
et de fraîcheur des données.

Les architectures avioniques modulaires intégrées IMA (Integrated Modular Avionic) sont utilisées
pour exécuter un ensemble d’applications partageant des ressources de calcul, appelées modules, commu-
niquant par un réseau partagé AFDX (Avionics Full DupleX switched ethernet) et connecté à un ensemble
de capteurs. Chaque fonction s’exécute au sein d’une partition du module. Le cas d’étude traite d’une
sous-partie du système de navigation dont l’objectif est de contrôler l’affichage d’informations de naviga-
tion sur les écrans de pilotage. Le système de navigation interagit avec l’équipage au travers d’écrans et de
claviers. Sur requête du pilote ou du copilote, saisie au moyen de leurs claviers respectifs, le système doit

245

afficher les informations du prochain point de navigation (way point) sur les écrans multi-fonction (Multi
Function Display). Ces informations sont de deux types: des informations statiques et des informations
dynamiques mises à jour périodiquement. Pour des raisons de sûreté, le FMS repose sur une architecture
redondante. Sur chaque voie de cette redondance, le FMS est composé d’une fonctions KU (Keyboard
and control Unit) comportant le clavier et d’une fonction MFD (Muti Functional Display) comportant
l’écran. Le pilot peut entrer une requête d’affichage d’un point de navigation. Cette requête est reçue par la
fonction KU. La requête est alors transmise aux gestionnaires de vol FM (Flight Manager) qui question-
nent en parallèle la base de données de navigation NDB (Navigation DataBase). Celle-ci retourne aux FM
les informations statiques du point de navigation qui sont ensuite périodiquement enrichies par chaque
FM avec les informations dynamiques calculées en fonction des données de vol (vitesse, position,…) pro-
duites par les centrales inertielles ADIRU (Air Data Inertial Reference Unit). Au final, chaque FM envoie
périodiquement à chaque MFD les informations à afficher. Chaque ADIRU élabore les données de vol à
partir de données de base fournies par des mesures envoyées par des capteurs.

Pour illustrer les exigences que doit satisfaire le système et évaluer nos propositions, nous en présen-
tons deux: l’exigence de latence relative à une chaîne fonctionnelle, et l’exigence de fraîcheur relative à une
chaîne fonctionnelle. L’exigence de latence permet de garantir que le système répond suffisamment rapi-
dement à une sollicitation. L’exigence de fraîcheur permet de garantir qu’une donnée affichée du système
dépend d’informations suffisamment récentes pour être pertinente.

Nous modélisons l’architecture du cas d’étude en utilisant le diagramme de structure composite de
UML-MARTE,puis soncomportement enutilisant lesdiagrammesd’activité etdemachined’état deUML-
MARTE.Lemodèleobtenuest ensuite traduit automatiquement en réseaudePétri temporisé selon l’approche
dédiée aux propriétés temps réels en utilisant la sémantique d’exécution définie dans le chapitre 3. Les ex-
igences temps réels sont spécifiées en utilisant les patrons de propriété définis dans le chapitre 4. Après
avoir réduit l’espace d’état par la méthode de réduction spécifique aux propriétés temps réels définie dans
le chapitre 6, le graphe d’état préservant la sémantiques dumarquage est généré pour évaluer les propriétés
temps réel en utilisant les observateurs dans le réseau de Pétri temporisé défini par le chapitre 5. Les résul-
tats obtenus sont identiques à ceux des travaux de M. Lauer à base de programmation linéaire en variable
entière. Nous réalisons ensuite la même série d’expériences que M. Lauer afin d’évaluer si ce coût est ac-
ceptable sur des système de taille industrielle ce qui est le cas pour ce type de système d’avionique avec une
structure relativement régulière qui se prête bien à la réduction.

246

8.1. INTRODUCTION

In the current chapter, we use an avionic case study, a part of flightmanagement system (FMS), to test the
whole proposal from Part One (Property-driven approaches). In this case study, the latency and freshness
requirements are assessed. We model the property-specific architecture of the case study using UML-MARTE
composite structure, andmodel the property-specific behavior using the activity and the state machine di-
agrams. The UML-MARTEmodel is then mapped to a property-specific TPNmodel using the mapping seman-
tics defined in Chapter 3. The real-time requirements are specified using the property patterns defined in
Chapter 4. After performing the property-specific reduction for TPN presented in Chapter 6, the state-class
graphpreservingmarking semantics is generated to assess the real-timeproperties using the observer-based
model checking (Chapter 5). The experiment results show that our approach is able to analyze large scale
systems more complex than the current real systems implemented in the Airbus A380 FMS.

8.1 Introduction

In the previous chapters, we have presented the contributions, including the property-driven approaches
(the mapping from UML-MARTE to property specific TPN, the real-time property specification patterns, the
real-time property verification based on observers in model checking, and the property specific reduction
for TPN), and the fault localization in model checking. We have implemented and integrated the above
approaches in the UMLMMC (UML-MARTEModel Checking) toolset.

In order to test the whole property-specific proposal, we use an avionic case study investigated by M.
Lauer et al. [Lau12, LEBP11b, LEBP11a, LEPB10], which is a part of a flight management system (FMS).
We rely on the system descriptions provided by Lauer et al.. The latency and freshness requirements are
assessed in the case study. We model the architecture using UML-MARTE composite structure diagram, and
model the behavior using activity and state machine diagrams. The UML-MARTE model is then mapped to
property specific TPNmodel using themapping semantics defined inChapter 3. The real-time requirements
are specified using the property patterns defined in Chapter 4. After performing the property-specific re-
duction for TPN presented in Chapter 6, the marking abstraction state-class graph is generated to assess the
real-time properties using the observer-based model checking (Chapter 5). The experiment results show
that our approach is able to analyze large scale systems more complex than the current real systems imple-
mented in the Airbus A380 FMS.

In this chapter, Section 8.2 describes the FMS case study; Section 8.3 models the case study using UML-
MARTE diagrams; Section 8.4 maps the UML-MARTE model to TPN model; Section 8.5 presents the property

247

8.2. CASE STUDY: FLIGHTMANAGEMENT SYSTEM

verification results; Section 8.6 gives the results of scalability tests; Section 8.7 compares with the works of
Lauer; Section 8.8 gives the conclusions.

8.2 Case Study: Flight Management System

A flight management system (FMS) is a fundamental component of a modern airliner’s avionics. It consists
of twounits, a computer unit and a control display unit. The computer unit is integrated as a function on the
hardware platform IntegratedModular Avionics (IMA).The control display unit provides human/machine
interface for data entry and information display. An FMSmanages part of the displays in the cockpit. It is a
primary function of the in-flight management of the flight plan. It guides the aircraft along the flight plan
using various sensors to determine the aircraft’s position. A flight plan is a sequence of waypoints. From the
cockpit, the FMS provides some information on awaypoint requested by the pilot and periodically refreshes
dynamic data related to this waypoint (distance and estimated time of arrival).

8.2.1 IntegratedModular Avionics

The Integrated Modular Avionics (IMA) architecture is defined in the avionics context for sharing commu-
nication and computation resources while ensuring temporal and spatial segregation. An IMA system is a
platform on which a set of functions is statically mapped. Avionics functions executing on the platform
must fulfill safety requirements, one of them being a strong segregation. For that purpose, airframers and
the ARINC corporation have proposed two standards. The standard ARINC 653 [C+97] specifies the man-
agement of computing resources (named modules): the scheduling of functions on each module is de-
fined off-line by a periodic sequence of slots (named partitions) statically organized in a time-frame named
the MAjor time Frame (MAF). Thus, each function periodically executes at fixed times. Modules however
are globally asynchronous. The standard ARINC 664 [Spe05], implemented in AFDX (Avionics Full-Duplex
Switched Ethernet) [Eng05] networks, describes the management of communication resources (switches
and end-systems). Communication flows are statically segregated into Virtual Links (VL). Each VL is ded-
icated to a single function and implements a traffic shaper. It is characterized by a Bandwidth Allocation
Gap (BAG), i.e., the minimal time interval separating two successive messages on the VL. These two stan-
dards globally define the IMA concept which has been implemented in the Airbus 380 and the Boeing 787
for instance. According to this definition, an IMA platform can be seen as a set of modules, switches and

248

8.2. CASE STUDY: FLIGHTMANAGEMENT SYSTEM

links compliant to these standards.

The architecture of the FMS case study is represented in Fig. 8.2.1. Seven modules, from Module1 to
Module7 (namedM1, ...,M7 afterwards), are used tomap the avionic functions. The functions are described
in the follow part (Section 8.2.3).

Module
1

KU1

MFD1

Module
2

KU2

MFD2

Module
3

FM1

Module
4

FM2

Module
5

ADIRU1

Module
6

ADIRU2

Module
7

NDB

S1

S4 S5

S3S2

RDC1 RDC2

sensor1 sensor2

keyboard1 display2 keyboard2display1

Figure 8.2.1: Architecture of the Case Study

Each function is allocated to a partition of a module. Each partition is described by the following real-
time features: period of repetition, duration of the slot and offset in the MAF. We assume that each function
has a worst case execution time less or equal to the duration of its partition. Allocation of both sides of the
plane are symmetrical. The real-time parameters of modules and RDC are summarized in Table 8.2.1. The
sensors capture the sampling data every 20 ms.

249

8.2. CASE STUDY: FLIGHTMANAGEMENT SYSTEM

Table 8.2.1: Parameters of Partitions

Partition Period Duration Offset Module
KU1 50 25 0 1
MFD1 50 25 25 1
KU2 50 25 0 2
MFD2 50 25 25 2
FM1 60 30 0 3
FM2 60 30 0 4

ADIRU1 60 30 0 5
ADIRU2 60 30 0 6
NDB 100 20 0 7
RDC1 50 10 0 -
RDC2 50 10 0 -

8.2.2 Avionics Full-Duplex Switched Ethernet

The Avionics Full-Duplex Switched Ethernet (AFDX) network is constituted by five switches S1, ... S5. The
variables exchanged between functions through Virtual Links (VL). A VL defines a logical unidirectional
connection from one source end-system to one or more destination end-systems. Each VL has a dedicated
maximum bandwidth. This bandwidth is allocated by the System Integrator. For each VL, the End Sys-
tem should maintain the ordering of data as delivered by a partition, for both transmission and reception
(ordinal integrity).

At the output of the End System, the flow of frames associated with a particular VL is characterized by
two parameters: Bandwidth Allocation Gap (BAG) and Jitter. If the frames experienced no jitter from the
scheduler, the BAG represents the minimum time interval between the first bits of two consecutive frames
from the same VL. Table 8.2.2 lists the parameters of VL used in the case study.

Theparameters of keyboards and sensors are given inTable 8.2.3, including the period time, the traverse
time from sensors to equipments.

250

8.2. CASE STUDY: FLIGHTMANAGEMENT SYSTEM

Table 8.2.2: Parameters of Virtual Links

Virtual Link Source Destination(s) Variable(s) BAG (ms) Route(s)
VL1 KU1 FM1, FM2 wpid1 32 {S1, S2}, {S1, S3}
VL2 KU2 FM1, FM2 wpid2 32 {S1, S2}, {S1, S3}
VL3 FM1 MFD1 wpInfo1, ETA1 8 {S2, S1}
VL4 FM1 NDB query1 16 {S2, S1}
VL5 FM2 MFD2 wpInfo2, ETA2 8 {S3, S1}
VL6 FM2 NDB query2 16 {S3, S1}
VL7 NDB FM1 answer1 64 {S1, S2}
VL8 NDB FM2 answer2 64 {S1, S3}
VL9 RDC1 ADIRU1 pres1 32 {S4}
VL10 RDC2 ADIRU2 pres2 32 {S5}
VL11 ADIRU1 FM1, FM2 speed1 32 {S4, S1, S2}, {S4, S1, S3}
VL12 ADIRU2 FM2, FM1 speed2 32 {S5, S1, S3}, {S5, S1, S2}

Table 8.2.3: Parameters of Captors

Sensor Nature Period (ms) Traverse Time (ms) Equipment
key1 sporadic 60 [0.1, 02] M1

key2 sporadic 60 [0.1, 02] M2

sensor1 sporadic 20 [0.1, 02] RDC1

sensor1 sporadic 20 [0.1, 02] RDC2

8.2.3 Functions

In the cockpit, the pilot and the co-pilot use a personal keyboard and two displays to interact with the
FMS. Information displayed on both screens must be similar although they are not processed by the same
components. The FMS uses a redundant implementation of its functions which are segregated on each side
of the plane (named side 1 and side 2).

There exist two main functional chains in the case study. The first one responds to pilot’s sporadic re-
quest in Fig. 8.2.2. At any time, the pilot can request some information on a given waypoint. The KU1

(Keyboard and Cursor Control Unit) controls the physical device used by the pilot to enter his requests.

251

8.2. CASE STUDY: FLIGHTMANAGEMENT SYSTEM

When KU1 receives a request (req1), it broadcasts wpid1 and wpid2 to the Flight Managers FM1 and FM2

respectively. The FMs manage the flight plan, i.e., the trajectory between successive waypoints. When a
request occurs, both query theNDB (Navigation Database) by sending query1 (resp. query2) to retrieve the
static information on the waypoint such as the latitude and the longitude. The NDB separately answers
each FM by sending a message answer1 (resp. answer2) containing the expected data. Upon reception of
this message, each FM computes two complementary dynamic data: the distance to the waypoint, and the
ETA (Estimated Time of Arrival). These data (wpInfo1 andwpInfo2 resp.) are periodically sent to respective
MFDs (Multi Functional Display) which periodically elaborate the pages to be displayed on the screens.

FM1

FM2 NDB

KU1

FM2

MFD1FM1NDB

MFD2

req1

disp2

disp1

wpInfo2

wpInfo1

answer2

answer1

query2

query1
wpId1

wpId2

Figure 8.2.2: Functional Chain: Sporadic Response to Request

The second functional chain is used to periodically compute flight data (disp1 and disp2 resp.) refreshed
on displays in Fig. 8.2.3. To compute these data, the FMs use the position and the speed of the aircraft
(speed1 and speed2 resp.) which are periodically delivered by theADIRUs (Air Data Inertial Reference Unit).
TheADIRUs determine the speed and position of the aircraft thanks to data (pres1 and pres2 resp.) provided
by sensors. Here, we only consider the data provided by one sensor perADIRU.The sensors communicate
through field networks. Interconnection with the AFDX network is managed by RDCs (Remote Data Con-
centrator).

ADIRU2

FM1

ADIRU1
MFD1

disp1ETA1

speed2

speed1

pres2

pres1

RDC2

RDC1

pres2

pres1

Figure 8.2.3: Functional Chain: Production of Periodic Data

From the above two functional chains in Fig. 8.2.2 and Fig. 8.2.3 we can see that a function can have

252

8.2. CASE STUDY: FLIGHTMANAGEMENT SYSTEM

two behaviors with respect to its data: periodic or sporadic. Sensors,RDCs,ADIRUs andMFDswrite there
output data periodically using the last input data received (thus a data can be used several times before it
is refreshed). For these functions, input data are stored in sampling ports in which data are continuously
overwritten. On the contrary, the KUs and the NDB write there data sporadically in response to inputs.
These functions use queuing ports to store their input data before reading them. The FMs use the two
kinds of behaviors: periodic and sporadic.

8.2.4 Real-TimeRequirements

Because of their critical nature, IMA systems must also satisfy strong real-time requirements. In this case
study, we focus on 2 real-time requirements: latency and freshness.

8.2.4.1 Latency Real-Time Requirement

The latency allows to guarantee that the system responds quick enough to a request. It corresponds to
the time elapsed between an event at the beginning of a functional chain and the first event depending on
it at the end of the chain, i.e. a sporadic input must result in an output before a given amount of time.

Example 8.1 (Latency Requirement Example) An example of latency is given in Fig. 8.2.4. On the func-
tional chain:

req1−→ KU1
wpId1−−→ FM1

query1−−−→ NDB answer1−−−→ FM1
wpInfo1−−−→ MFD1

disp1−−→, the maximum time
between req1 and the first occurrence of disp1 depending on req1 must be inferior to 700 ms.

KU
1

MFD
1

KU
1

MFD
1

KU
1

MFD
1

KU
1

MFD
1

KU
1

MFD
1

KU
1

MFD
1

FM
1

FM
1

FM
1

FM
1

FM
1

NDB NDB NDB

M1

M3

M7

req1[1]

0

15 45

25 50 225

75 195

25 45 125

disp1[5] disp1[6]

l10 240

Figure 8.2.4: Latency Real-Time Requirement

253

8.3. MODELING AND SEMANTICS

8.2.4.2 Freshness Real-Time Requirement

The freshness allows to ensure that a system variable depending on another variable is fresh enough.
There exist two interpretations of the freshness requirement. One targets the time between an event at
the end of a functional chain and the earliest dependent event at the beginning of the chain. The other
corresponds to the time interval between an event at the end of a functional chain and the earliest previous
event of the dependent event at the beginning of the chain. Thework of Lauer et al. followed the former. In
this thesis, we follow the later. Both are reasonable in the context of the case study. We explain the reason
in the following example.

Example 8.2 (Freshness Requirement Example) An example of freshness is given in Fig. 8.2.5. On the
functional chain:

pres1−−→ RDC1
pres1−−→ ADIRU1

speed1−−−→ FM1
ETA1−−→ MFD1

disp1−−→, the worst case of displaying
ETA on the screen by MFDmust not be superior to 400 ms. The former interpretation of freshness corresponds to
interval f1, while the later one corresponds to f2. In the context of this case study, the output disp is used as the data
to display on the screen of the pilots. From the viewpoint of the pilots, since the arrival of disp1[1], the displayed
data on the screen has been updated by disp1[1]. The disp1[1], disp1[2] and disp1[3] all depend on the input pres1[1].
When disp1[1] arrives, the displayed data is updated again, as disp1[4] depends on pres[4]. Therefore, we can use
f1 to measure the freshness between the output disp and its dependent input pres, or use f2 to measure the freshness
between the output disp and the previous one of its dependent input pres.

8.3 Modeling and Semantics

We specify the models of the case study using UML-MARTE. The IMA architecture and AFDX network are spec-
ified using composite structure diagrams; the behavior of each module is specified using activity diagrams
for the functional chain of latency real-time property; the behavior of each module is specified using state
machine diagrams for the functional chain of freshness real-time property. Before modeling the system, an
abstraction of the AFDX network is applied.

8.3.1 Abstraction of AFDXNetwork

We have discussed the importance of abstraction in the former parts. To analyze a large scale IMA system,
the combinatorial complexity of a real-time property takes its root in the asynchronism of themodules, the

254

8.3. MODELING AND SEMANTICS

RDC1

M5

M3

pres1[1]

0 25.010

25

ADIRU1 ADIRU1 ADIRU1

FM1

40 100

FM1 FM1 FM1

160 220

5

295

ETA1[1] ETA1[3]

pres1[1]
pres1[4]

speed1[2]
speed1[3]

KU2 MFD2 KU2 MFD2 KU2 MFD2 KU2 MFD2 KU2 MFD2 KU2 MFD2

5 280
M2

speed1[1]

5

ETA1[2]

disp1[4]disp1[1] disp1[2] disp1[3]

pres1[4]

f1

f2

Figure 8.2.5: Freshness Real-Time Requirement

variability of the execution times and the indeterministic congestion in the network [LEBP11b]. Lauer et
al. showed in [LEPB10] that taking into account all these factors in the evaluation of high level properties is
intractable. They showed in [LEBP11b] that the complexity can be significantly reduced by characterizing
the lower (resp. upper) boundof the network traversal time along the VLpath as a time interval [a, b]. These
bounds are determined by the trajectory approach [MM06] which has been successfully applied to AFDX

networks in [BSF09].

In the FMS case study, Lauer et al. considered that each VLi was abstracted by a timed channel ci [0.12, 2]
(in ms): each frame released by a VLi traffic shaper undergoes a delay between 0.12ms and 2ms to reach its
destination. Note that this abstraction is an over-approximation because the bounds of the timed channels
are determined with an over- approximative technique.

By applying this over-approximation abstraction method, the AFDX network of the case study in 8.2.1
is replaced by the channels in Fig. 8.3.1. The VLs with switches and ports are replaced by 16 temporal
channels, C1, ..., C12. The temporal parameters of each channel are described in Table 8.3.1.

255

8.3. MODELING AND SEMANTICS

Module
1

KU1

MFD1

Module
2

KU2

MFD2

Module
3

FM1

Module
4

FM2

Module
5

ADIRU1

Module
6

ADIRU2

Module
7

NDB

RDC1 RDC2

sensor1 sensor2

keyboard1 display2 keyboard2display1

C3 C5

C12

C'12

C10

C8

C6

C7

C11

C'11

C4C9

C2
C'2C1 C'1

Figure 8.3.1: Abstract Network of Case Study

Table 8.3.1: Characters of Timed Channel

Channel Source Destination Variable(s) BCTT (μs) WCTT (μs)
C1 KU1 FM1 wpid1 298 444
C’1 KU1 FM2 wpid1 298 444
C2 KU2 FM1 wpid2 298 444
C’2 KU2 FM2 wpid2 298 444
C3 FM1 MFD1 wpInfo1, ETA1 310 490
C4 FM1 NDB query1 310 450
C5 FM2 MFD2 wpInfo2, ETA2 310 490
C6 FM2 NDB query2 310 450
C7 NDB FM1 answer1 400 508
C8 NDB FM2 answer2 400 508
C9 RDC1 ADIRU1 pres1 150 156
C10 RDC2 ADIRU2 pres2 150 156
C11 ADIRU1 FM1 speed1 452 584
C’11 ADIRU1 FM2 speed1 452 584
C12 ADIRU2 FM2 speed2 452 584
C’12 ADIRU2 FM1 speed2 452 584

256

8.3. MODELING AND SEMANTICS

Thetraffic shaper is used to express the regulation of the packets on the VL to ensure the BAG.This regula-
tion specifies the relation on the signals of the copy of the data emitted by the VL. According to the abstrac-
tion method proposed in [Lau12], the delay time caused by the traffic shaper is specified as Td = c · BAG,
where BAG is defined in Table 8.2.3 and c = 0...NVL − 1. NVL is the number of VL passing through amodule
on a functional chain which is specified by the system architecture.

8.3.2 ArchitectureModel

Using the above abstract method, we specify respectively the architecture of the system related to the veri-
fication of latency and freshness property using the UML-MARTE composite structure diagram.

The architecture related to latency real-time property is shown in Fig. 8.3.2.

M1:KU_MFD_Module

<<Allocated>> req

<<Allocated>> wpId

<<Allocated>> disp

<<Allocated>> wpInfo

M3:FM_Module

<<Allocated>> wpId

<<Allocated>> query

<<Allocated>> wpInfo

<<Allocated>> anwser

M7:NDB_Module

<<Allocated>> query

<<Allocated>> anwser

<<Communication

Media>>

<<Communication

Media>>

<<Communication

Media>>

<<Communication

Media>>

Figure 8.3.2: UML-MARTE Architecture for Latency Real-Time Property

The architecture related to freshness real-time property is shown in Fig. 8.3.3.

RDC1:RDC

<<Allocated>> pres

M5:ADIRU_Module

<<Allocated>> pres

<<Allocated>> speed

M7:FM_Module

<<Allocated>> speed

<<Communication

Media>>

<<Communication

Media>>

M1:KU_MFD_Module

<<Allocated>> ETA

<<Allocated>> disp

<<Communication

Media>>
<<Allocated>> ETA

Figure 8.3.3: UML-MARTE Architecture for Freshness Real-Time Property

257

8.3. MODELING AND SEMANTICS

8.3.3 BehaviorModel

As a rich modeling language, UML provides many diagrams and modeling entities for the specification of
systems. From the viewpoint of modeling capacity, either activity or state machine diagrams can represent
the system’s abstract behavior. In the context of this thesis, in order to cover all the semantics mapping
methods presented in Chapter 3, both activity and state machine diagrams are used to specify system’s
behavior respectively: system is modeled using activity diagram for verifying latency property, and using
state machine diagram for verifying freshness property.

8.3.3.1 Modeling SystemBehavior for Latency Functional Chain

Each function on avionic modules can bemodeled as an asynchronous action in activity diagrams. The
semantics of asynchronous action implies that only one type of computation occurs from its input to its
output. For a given avionic function, however, it can handle more than one computation during its period.
For example, the functional chain of sporadic response to request(Page 253) indicates that the function
FM1 has two types of computation:

1. Take the waypoint as input (wpId1) and output the query forNDB (query1)

2. Take the answer ofNDB as input (answer1) and output the waypoint’s information (wpInfo1)

Fig. 8.3.4 models the behavior of FM1 module using activity diagram. To model FM1, two separated
asynchronous actions are used. The first one (FM1) is connected to the Pins representingwpId1 and query1,
and the second one (FM1a) to answer1 and wpInfo1. Since they are derived from the same avionic func-
tion, both their period and offset must be the same. According to avionic system’s feature, not all modules
will be powered at exactly the same time. This means not only that the offset for each avionic function will
be probably different, but also that the value of offset is rather an interval than an exact value. In general,
a MARTE::DesignModel::HLAM::RtSpecificationwill be created and shared by several asynchronous ac-
tions if they are derived from the same avionic function. This stereotype contains all information required
for the real-time feature of given asynchronous actions.

8.3.3.2 Modeling SystemBehavior for Freshness Functional Chain

The dependency of values between input and output through a functional chain could also be consid-
ered as a state-transition problem. For each avionic functionFi in a given chain, at any given time t, the valid

258

8.3. MODELING AND SEMANTICS

<<RtSpecification>>
occKind = PeriodicPattern

(period=[60000,60000];
phase=[0,60000];
occurrences=-1)

FM1

<<Allocated>> wpId1

<<TimeProcessing>>

<<Allocated>> query1

FM1a

<<Allocated>> answer1

<<TimeProcessing>>

<<Allocated>> wpInfo1

Figure 8.3.4: UML-MARTE Behavior for Latency Real-Time Property

input value Inputti that Fi depends on is unique. This dependency will not change until the first function F1
on the functional chain generates a new output value, which is propagated to Fi, and Fi generates the cor-
responding new output value when it is reactivated in a period. If we consider depending on a given input
value as a state for an avionic function, then this state will change only when it receives an event standing
for its output value based on the time that the next input is generated. The pre-requisites of the occurrence
of this event are: the next input of Fi has arrived, the next period of Fi starts, and the computation of the
new output is finished. These three pre-requisites are modeled as three states in a state machine diagram.
For simplicity, we consider that the end of the computation happens simultaneously with the generation
of the output by merging them into one event.

The modeling activity is split in two parts: modeling of avionic function and modeling of communica-
tion between functions.

Avionic function Fig. 8.3.5 models the behavior of the FM1 module using state machine diagrams. In the
context of this thesis, each Fi where i > 1 is modeled respectively by a state machine of 7 states. Note: kn1
(resp. kp1) stands for k− 1 (resp. k+ 1), ni (resp. np) stands for next input (resp. next period), and co stands
for computing output.

kn1_ni kn1_np kn1_co k_ni k_np k_co kp1_ni

speed_k

T_k

/send ETA_k

speed_kp1

T_kp1

/send ETA_kp1

Figure 8.3.5: UML-MARTE Behavior for Freshness Real-Time Property

259

8.3. MODELING AND SEMANTICS

• State kn1_ni: Fi depends on Inputk−1, waiting for next input (Inputk)

• State kn1_np: Fi depends on Inputk−1, waiting for next period

• State kn1_co: Fi depends on Inputk−1, computingOutputk

• State k_ni: Fi depends on Inputk, waiting for next input (Inputk+1)

• State k_np: Fi depends on Inputk, waiting for next period

• State k_co: Fi depends on Inputk, computingOutputk+1

• State kp1_ni: Fi depends on Inputk+1, waiting for next input (Inputk+2)

For F1, since it is the root cause that changes the value dependency for the whole chain, it does not have
the first two states. This abstraction of k (k ∈ N) generalizes the problem so the model can handle any
sequence of input/output.

Accordingly, these states are sequentially connected by 6 transitions:

• The transition from state kn1_ni to state kn1_np (same for state k_ni to state k_np):

– Triggered by event representing Inputk

– The effect of the transition takes no time (or no effect)

– No guard is defined

• The transition from state kn1_np to state kn1_co (same for state k_np to state k_co):

– No trigger is defined

– The effect of the transition takes a duration of [0,T], whereT is the period of the avionic func-
tion

– No guard is defined

• The transition from state kn1_co to state k_ni (same for state k_co to state kp1_ni):

– No trigger is defined

260

8.4. MAPPING UML-MARTE TO TPNMODEL

– The effect of the transition takes a duration of [B,W], where B/W is the BCET/WCET of the
avionic function. The effect will equally generate an eventOutputk.

– No guard is defined

Communication
In this applicative scenario, the temporal aspect of transmission via network is not negligible. This can

be modeled, for each pair of Outputk and Inputk, by the connector between module ports using MARTE

stereotype MARTE::MARTE_Foundations::GRM::CommunicationMedia::Package T.

8.3.4 Real-TimeRequirement Specification

Both latency and freshness real-time requirements can be seen as maximum and minimum end-to-end
time between two events, which corresponds to the specification: Always T(EA, EB) < t and Always
T(EA, EB) > t in global execution. In order to test the scalability of the verification strategy, we compute
the exact value of latency and freshness real-timeproperty. Insteadof verifying end-to-endmaximum(min-
imum) time when given an over-estimated value, we compute the bounding value of both requirements.

8.3.4.1 Latency Real-Time Property

Compute WCT (BCT), where always T(req, disp) < WCT(> BCT) in the global execution of the latency
functional chain.

8.3.4.2 Freshness Real-Time Property

Compute WCT (BCT), where always T(req, disp) < WCT(> BCT) in the global execution of the freshness
functional chain.

8.4 Mapping UML-MARTE to TPNModel

8.4.1 Mapping of the Latency Functional Chain

Fig. 8.4.1 is themapping of the latency function chain. The latency real-time requirement refers toModule1
(functions KU1 and MFD1), Module3 (function FM1) and Module7 (function NDB). Module1 starts from

261

8.4. MAPPING UML-MARTE TO TPNMODEL

M3_str

[0,60000]

M1_str

[0,50000]KU1_devitf MFD1_devitf

KU1_offset

[0,0]

MFD1_offset

[25000,25000]

FM1_offset

[0,0]

NDB_input

NDB_data

[0,0] NDB_execp

NDB_exectr

[0,20000]

FM1a_devitf

MFD1_hold

MFD1_data

[0,0] MFD1_execp

KU1_data

[0,0]KU1_execp

KU1_exectr

[0,25000]KU1_output

FM1_data

[0,0]

MFD1_input

SP_inittr

KU1_input SP_initp

KU1_hold MFD1_waitp

KU1_null

[0,0]KU1_waitp

KU1_waittr

[50000,50000]

MFD1_waittr

[50000,50000]

MFD1_null

[0,0]

FM1_holdFM1_waitp

FM1_null

[0,0]

FM1_waittr

[60000,60000]

FM1_inputFM1_execp

FM1_exectr

[0,30000]FM1_output

FM1a_offset

[0,0]

FM1_devitf

FM1a_hold

FM1a_input

M7_sp NDB_devitf

NDB_offset

[0,0] NDB_hold

NDB_null

[0,0] NDB_waitp
NDB_waittr

[100000,100000]

FM1a_MFD1_comm

[310,490]

KU1_FM1_comm

[298,444]

M3_sp

FM1_NDB_comm

[268,310]

M7_str

[0,100000]

NDB_output

M1_sp

NDB_FM1a_comm

[400,508] NDB_bag

NDB_FM1a_bag

[0,64000]

FM1a_exectr

[0,30000]

FM1a_data

[0,0]
FM1a_null

[0,0]

FM1a_waittr

[60000,60000]

FM1a_waitp

FM1a_execp FM1a_output

MFD1_output

MFD1_exectr

[0,25000]

Figure 8.4.1: Mapping Result of System Related to Latency Property

placeM1_sp. Through transitionM1_str, functionsKU1 andMFD1 run periodically, and the offset ofMFD1

is 25ms later than that of KU1. Module3 starts from place M3_sp. As the function FM1 is used twice in
the functional chain, two instances of FM1 with the same offset are generated. Module7 starts from place
M7_sp. The variable produced byNDBwill be sent to FM1. It is possible for the variable to wait for the du-
ration of a BAG before sending through the channel. Thewaiting time of BAG is represented by the transition
NDB_FM1_bag.

262

8.4. MAPPING UML-MARTE TO TPNMODEL

8.4.2 Mapping of the Freshness Functional Chain

FM_take_k_pre

[0,0]

MFD_take_k_pre

[0,0]

RDC_take_k_pre

[0,0]

ADIRU_take_k_pre

[0,0]

ADIRU_take_k_post

[0,0]

ADIRU_kn1_np ADIRU_p5

speed_ink

speed_inkp1

pres_inkp1

RDC_p1

RDC_take_k_post

[0,0]

RDC_kn1_np

RDC_T_k_pre

[0,0]

RDC_p2 RDC_kn1_co RDC_p3 RDC_k_ni RDC_p4 RDC_k_np RDC_p5 RDC_k_co

RDC_output_kp1_post

[0,10000]

RDC_p6 RDC_kp1_ni

RDC_output_kp1_pre

[0,0]

RDC_T_kp1_post

[0,50000]

RDC_T_kp1_pre

[0,0]

RDC_take_kp1_post

[0,0]

RDC_output_k_post

[0,10000]

RDC_T_k_post

[0,50000]

RDC_output_k_pre

[0,0]

RDC_take_kp1_pre

[0,0]

pres_comm1

[150,156]pres_ink

pres_comm2

[150,156] pres_outkp1

ADIRU_p1

ADIRU_T_k_pre

[0,0]

ADIRU_T_k_post

[0,60000]

ADIRU_output_k_pre

[0,0]

ADIRU_output_k_post

[0,30000]

ADIRU_take_kp1_pre

[0,0]

ADIRU_take_kp1_post

[0,0]

ADIRU_T_kp1_pre

[0,0]

ADIRU_T_kp1_post

[0,60000]

ADIRU_output_kp1_pre

[0,0]

ADIRU_output_kp1_post

[0,30000]

ADIRU_p2 ADIRU_kn1_co ADIRU_p3 ADIRU_k_ni ADIRU_p4 ADIRU_k_np ADIRU_k_co ADIRU_p6 ADIRU_kp1_ni

FM_take_k_post

[0,0]

FM_T_k_pre

[0,0]

FM_T_k_post

[0,60000]

FM_output_k_pre

[0,0]

FM_output_k_post

[0,30000]

FM_take_kp1_pre

[0,0]

FM_take_kp1_post

[0,0]

FM_T_kp1_pre

[0,0]

FM_T_kp1_post

[0,60000]

FM_output_kp1_pre

[0,0]

FM_output_kp1_post

[0,30000]

FM_p1 FM_kn1_np FM_p2 FM_kn1_co FM_p3 FM_k_ni FM_p4 FM_k_np FM_p5 FM_k_co FM_p6 FM_kp1_ni

MFD_take_k_post

[0,0]

MFD_T_k_pre

[0,0]

MFD_T_k_post

[0,50000]

MFD_output_k_pre

[0,0]

MFD_output_k_post

[100,25200]

MFD_take_kp1_pre

[0,0]

MFD_take_kp1_post

[0,0]

MFD_T_kp1_pre

[0,0]

MFD_T_kp1_post

[0,50000]

MFD_output_kp1_pre

[0,0]

MFD_output_kp1_post

[100,25200]

MFD_kn1_npMFD_p1 MFD_p2 MFD_kn1_co MFD_p3 MFD_k_ni MFD_p4 MFD_k_np MFD_k_coMFD_p5 MFD_p6 MFD_kp1_ni

ETA_outk

speed_comm2

[452,584] speed_outkp1

RDC_kn1_ni

ADIRU_kn1_ni

FM_kn1_ni

MFD_kn1_ni

ETA_comm1

[310,490]ETA_ink

pres_outk

speed_outk

speed_comm1

[452,584]

ETA_inkp1

ETA_comm2

[310,490] ETA_outkp1

disp_outk disp_outkp1

Figure 8.4.2: Mapping Result of System Related to Freshness Property

Fig. 8.4.2 is the mapping of freshness functional chain. Functions ADIRU, FM, MFD and RDC are
referred in freshness functional chain. Two consecutive output of RDC (pres) are transmitted to ADIRU
function, where variable pres is received and variable speed is transmitted to FM function. After computing
the output variables, ETA is transmitted toMFD function, where the disp variables are computed.

263

8.5. VERIFICATIONOF REAL-TIME PROPERTY

8.5 Verification of Real-Time Property

According to the observer-based model checking verification approach presented in Chapter 5, two ob-
servers are used to compute WCT and BCT of latency and freshness real-time requirements. The observers
are added on corresponding transitions in the original system to compute optimized value of properties
(Fig. 8.5.1).

[tmin,tmin] [0,0]

[tmax,tmax]

[0,0]

[0,25000]

MFD_exectrSP_ini6r

[0,0]

MFD_exectrSP_ini6r

[0,0] [0,25000]

BCT Observer WCT Observer

TPN System

... ...

TPN System

... ...

(a) Best Case of Latency Property (a) Worst Case of Latency Property

TesterA

[0,0] [0,0]

Over>owA Over>owB

TesterB

Over>ow2 2

[tmin,tmin] [0,0]

[tmax,tmax]

[0,0]

[0,25000]

MFD_output_kp1_postRDC_take_k_pre

[0,0] [0,0] [100,25200]

BCT Observer WCT Observer

TPN System

... ...

TPN System

... ...

(a) Best Case of Freshness Property (a) Worst Case of Freshness Property

TesterA

[0,0] [0,0]

Over>owA Over>owB

TesterB

Over>ow2 2

MFD_output_kp1_postRDC_take_k_pre

Figure 8.5.1: TPN Observer for Latency and Freshness Property

The computation results are shown in Table 8.5.1. For latency real-time property, the WCT (resp. BCT)
is 450.4 (reps. 75.2) ms. For freshness real-time property, the WCT (resp. BCT) is 316429 (resp. 1012)
ms. The original system for latency property without TPN observer has 9378 states and 23250 transitions.

264

8.6. SCALABILITY TESTS

TPN observers impact the size of the state space of the original system. The impact depends on tmin and
tmax on the tester transition. By applying the reduction techniques, the number of states and transitions is
significantly reduced. Take the WCT latency property for example, compared to the execution time before
reduction (278.313 s), the execution time is reduced to 2.484 s.

Table 8.5.1: Real-Time Property Verification Results

Property Property
Value (ms)

State/Transition Number Execution Time (s)
Before Reduc. After Reduc. Before Reduc. After Reduc.

Latency
System N/A 9378/23250 N/A N/A N/A
WCT 450.4 67105/145024 9/10 278.313 2.484
BCT 75.2 11162/28922 8/9 43.781 3.719

Freshness
System N/A 53/85 N/A N/A N/A
WCT 316429 259/446 34/44 7.578 3.688
BCT 1012 125/202 54/79 7.360 2.125

8.6 Scalability Tests

Theproposedmethods target large scale systems. We implement a series of experiments to assess whether
the cost of verification is acceptable for large scale systems by extending the case study. We use the same
parameters as the work of [Lau12]: N and P (Fig. 8.6.1). The depth of the case study is extended by
increasingP. Thewidthof the case study is extendedby increasingN. We test the scalability of the proposed
methods by increasing the size of each functional chain using parameters P andN.

8.6.1 Experiments on the Latency Functional Chain

The latency functional chain is enlarged by increasing the number of NDB. Each latency functional chain
traverses P NDB, i.e. 2P+ 3 functions.

L1 =
req1−→ KU1

wpId1−−→ FM1
query1−−−→ NDB1

query2−−−→ ...
queryP−1−−−−→ NDBP−1

queryP−−−→ NDBP

answerP−−−→ NDBP−1
answerP−1−−−−−→ ...

answer2−−−→ NDB1
answer1−−−→ FM1

wpInfo1−−−→ MFD1
disp1−−→

(8.1)

265

8.6. SCALABILITY TESTS

KU1

MFD1

KUN

MFDN

ADIRU11

FM1

ADIRUNP

FMN

NDB1

X

X X

XX

RDC2

sensor2

keyboard1 displayN keyboardNdisplay1

X

RDC1

sensor1

ADIRU1P

NDBP
...

...............

...
...

...........

...........

.........

ADIRUN1

Figure 8.6.1: Architecture with Scalability Parameters

By increasing P from 1 to 11, we give out the property values and solving time by using the proposed
verification and reduction approaches in Table 8.6.1. Most of the time is consumed in the reduction phase.
Once the reduction is finished, the analysis time is faster, even when the binary search method is used to
compute the exact property value. Fig. 8.6.2 shows that the solving time of the case study is almost linear
with respect to theNDB number.

266

8.6. SCALABILITY TESTS

Table 8.6.1: Scalability Test for Latency Property

NDB/Fun. Prop. Val. (ms) S/T (after R.) Reduction
Time (s)

Analysis Time (s) Solving Time (s)
WCT BCT WCT BCT WCT BCT WCT BCT

1/7 75.2 450.4 9/10 8/9 38.049 2.484 1.860 40.533 39,909
2/8 125.2 750.4 9/10 8/9 57.876 2.656 1.883 60.532 59,759
3/9 275.2 1050.4 9/10 6/5 79.813 2.812 2.079 82.625 81,892
4/10 375.2 1350.4 9/10 6/5 102.500 2.906 2.079 105.406 104,579
5/11 425.2 1650.4 9/10 6/5 124.987 3.015 2.102 128.002 127,089
6/12 575.2 1950.4 9/10 6/5 149.359 2.891 2.196 152.250 151,555
7/13 675.2 2250.4 9/10 6/5 169.607 2.953 2.227 172.560 171,834
8/14 725.2 2550.4 9/10 6/5 193.329 3.031 2.250 196.360 195,579
9/15 875.2 2850.4 9/10 6/5 216.239 3.000 2.211 219.239 218,45
10/16 975.2 3150.4 9/10 6/5 239.953 3.047 2.195 243.000 242,148
11/17 1025.2 3450.4 9/10 6/5 263.049 3.188 2.195 266.237 265,244

0	

50	

100	

150	

200	

250	

300	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

So
lv
in
g	
Ti
m
e	
(s
)

NDB	 Number

Latency	 for	 L1

WCT	

BCT	

Figure 8.6.2: Solving Time of Scalable Latency Property

267

8.7. COMPARISON TO THE RESULTS IN THEWORKOF LAUER

8.6.2 Experiments on the Freshness Functional Chain

The freshness functional chain is enlarged by increasing the number of ADIRU1. Each functional chain
traverses P ADIRU1, e.g. P+ 2 functions.

F1 =
pres1−−→ ADIRU1,1

pres2−−→ ADIRU1,2
pres3−−→ ...

presP−−→ ADIRU1,P
speed1−−−→ FM1

ETA1−−→ MFD1
disp1−−→ (8.2)

By increasing the number of ADIRU1 from 1 to 31, we give out the property values and solving time in
Table 8.6.2. The reduction consumes almost no time in this case. The solving time is almost linear to the
ADIRU1 number, as shown in Fig. 8.6.3.

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	

So
lv
in
g	
Ti
m
e	
(s
)

ADIRU1	 Number

Freshness	 for	 F1

bct	

wct	

Figure 8.6.3: Solving Time of Freshness Property

8.7 Comparison to the Results in the Work of Lauer

Thework of Lauer proposed a verificationmethod for end-to-end real-time properties on IMA systems. The
verification method is based on the formal modeling using the tagged signal model, which is then trans-
formed into an Integer Linear Programming (ILP) problem. Upper-bounds of end-to-end properties are

268

8.7. COMPARISON TO THE RESULTS IN THEWORKOF LAUER

Table 8.6.2: Scalability Test of Freshness Property

ADIRU1/Fun.
Prop. Val. (ms) S/T (after R.) Reduction

Time (s)
Solving Time (s)

WCT BCT WCT BCT WCT BCT

1 / 4 316429 1012 34/44 54/79 0 2,125 3,688
2 / 5 406585 1162 67/99 74/113 0 1,968 3,187
3 / 6 496741 1312 123/194 97/153 0 1,844 3,094
4 / 7 586897 1462 187/306 123/199 0 1,906 3,484
5 / 8 677053 1612 253/424 152/251 0 1,797 3,625
6 / 9 767209 1762 326/555 184/309 0 1,953 3,64
7 / 10 857365 1912 403/694 219/373 0 2,172 3,75
8 / 11 947521 2062 484/841 257/443 0 2,344 3,844
9 / 12 1037677 2212 569/996 298/519 0 2,343 3,875
10 / 13 1127833 2362 658/1159 342/601 0 2,39 4,031
11 / 14 1217989 2512 751/1330 389/689 0 2,344 4,406
12 / 15 1308145 2662 848/1509 439/783 0 2,344 4,438
13 / 16 1398301 2812 949/1696 492/883 0 2,406 4,438
14 / 17 1488457 2962 1054/1891 548/989 0 2,343 4,516
15 / 18 1578613 3112 1163/2094 607/1101 0 2,422 4,812
16 / 19 1668769 3262 1276/2305 669/1219 0 2,781 5,109
17 / 20 1758925 3412 1393/2524 734/1343 0 2,734 5,109
18 / 21 1849081 3562 1514/2751 802/1473 0 2,734 5,281
19 / 22 1939237 3712 1639/2986 873/1609 0 2,75 5,563
20 / 23 2029393 3862 1768/3229 947/1751 0 3,016 5,578
21 / 24 2119549 4012 1901/3480 1024/1899 0 3.000 6,609
22 / 25 2209705 4162 2038/3739 1104/2053 0 3,266 6,594
23 / 26 2299861 4312 2179/4006 1187/2213 0 3,39 6,672
24 / 27 2390017 4462 2324/4281 1273/2379 0 3,391 6,953
25 / 28 2480173 4612 2473/4564 1362/2551 0 3,453 7,047
26 / 29 2570329 4762 2626/4855 1454/2729 0 3,765 7,687
27 / 30 2660485 4912 2783/5154 1549/2913 0 4,062 8,25
28 / 31 2750641 5062 2944/5461 1647/3103 0 4,125 8,422
29 / 32 2840797 5212 3109/5776 1748/3299 0 4,25 8,796
30 / 33 2930953 5362 3278/6099 1852/3501 0 4,375 9,406
31 / 34 3021109 5512 3451/6430 1959/3709 0 4,532 9,484

269

8.8. CONCLUSION

computed as optimal solutions of the ILP.They showed on the case study that we reused that the approach
is scalable.

According to the experimental results in the scalability tests by Lauer, for the latency requirement, when
increasing the number ofNDB, the solving time slowly grows when theNDB number is less than 7. After
that, the solving time rapidly grows. In our test, the solving time grows is almost linear with respect to the
NDB number. For the freshness requirement, when increasing the number of ADIRU1, the solving time in
both methods is almost linear with respect to the function number.

8.8 Conclusion

In order to test the whole property-specific proposal, we use an FMS avionic case study investigated by M.
Lauer et al.. We rely on the descriptions provided by Lauer et al.. The latency and freshness real-time
requirements are assessed in the case study. We model the property-specific architecture of the case study
using UML-MARTE composite structure diagram, andmodel the property-specific behavior using activity and
state machine diagrams. The UML-MARTE model is then mapped to property-specific TPN model using the
mapping semantics. The real-time requirements are specified using the property patterns. After performing
the property-specific reduction for TPN presented, the marking abstraction state-class graph is generated to
assess the real-time properties using the observer-based model checking. We increase the length of each
functional chain for both properties. The experiment results show that our approach is able to analyze large
scale systems more complex than the current real systems implemented in the Airbus A380 FMS.

270

9
Conclusion

Résumé

Cette thèse a proposé et expérimenté des méthodes dirigées par les propriétés et un ensemble d’outils as-
sociés pour la vérification des exigences temps réels pour les systèmes critiques industriels à l’aide de tech-
niques de vérification de modèles. Elle s’appuie sur le langage UML et son profil MARTE en tant que
langage utilisateur, et sur les réseaux de Petri temporisés en tant que langage de vérification. Les proposi-
tions ont été validées à l’aide d’un cas d’étude avionique, une partie du système de gestion de vol (FMS)
définie par M. Lauer en 2013, dans lequel les exigences de latence et fraîcheur des données sont éval-
uées. L’approche complète comporte les cinq parties suivantes : la définition de la sémantique d’exécution
spécifiques aux propriétés temps réel pour les modèles d’architecture et de comportement spécifiés en
UML/MARTE; la spécification des exigences temps réel en s’appuyant sur un ensemble de patrons de véri-
fication atomiques dédiés aux propriété temps réel; une méthode itérative d’analyse à base d’observateurs
pour des réseaux de Petri temporisés; des techniques de réduction de l’espace d’états spécifiques aux pro-

271

priétés temps réel pour des réseaux de Petri temporisés; une approche pour l’analyse des erreurs détectées
par « vérification des modèles » en s’appuyant sur des idées inspirées de la « fouille de données » (« data
mining »). Ces propositions ont conduit au développement d’un prototype d’outil qui exploite le langage
JAVA et Eclipse Modeling Framework (EMF).

Les aspects suivants pourront étendre les travaux effectués dans cette thèse :

• Les activités appliquées suivantes pourraient être réalisées à court terme : compléter et améliorer le
prototype d’outil par l’exploitation de CCSL comme langage de spécification de propriétés, expéri-
menter les propositions dans d’autres cas d’étude, comparer l’approche d’analyse des erreurs avec les
méthodes existantes sur d’autres catégories de modèles.

• A moyen terme, les approches proposées pourraient être appliquées pour la même famille de pro-
priétés à d’autres langages de modélisation utilisateur, par exemple AADL et EAST-ADL. ou à des
langages intermédiaires comme FIACRE.

• Egalement à moyen terme, la sémantique d’exécution de l’ordonnancement de ressource pourrait
être spécialisée auxdifférentes stratégieshabituelles. Nous avonsproposéunalgorithmed’ordonnan-
cement générique avec prise en compte de la préemption. Celui-ci décide à qui seront allouées
les ressources et permet d’estimer des pires et meilleurs cas car il autorise toute forme d’allocation.
La prise en compte de la sémantique précise des politiques d’ordonnancement classique permettra
d’améliorer la précision des valeurs estimées.

• A plus long terme, l’approche de réduction spécifique aux propriétés doit être développée à la fois
dans des directions fondamentales et appliquées. Dans cette thèse, nous avons éliminé les struc-
tures sans rapport avec la propriété attendue et combiné les états et transitions de sous-réseaux pour
obtenir une abstraction spécifique à la propriété. La fonction de réduction est utilisée pour identi-
fier la régularité des comportements et construire un remplaçant par le sous-réseau sélectionné. La
fonction de raffinement est utilisée pour vérifier la correction du remplaçant par rapport au réseau
original selon les propriétés considérées. Au moment de rédaction de cette thèse, les fonctions de
réduction et de raffinement reposent sur l’approche de vérification desmodèles exploitant les obser-
vateurs. Cette approchepeut encore être améliorée endiminuant le tempsutilisé pour la réduction et
le raffinement. Il semble possible de construire les remplaçant de sous-réseau en générant le graphe
d’état qu’une seule fois et puis en analysant sa structure. Il serait également souhaitable de prouver

272

une fois pour toute la correction de ces substitutions pour éviter d’effectuer ces vérifications à chaque
exploitation de la méthode.

• A plus long terme également, la vérification des transformation de modèle exploitées devrait être
réalisée. La méthode proposée dans cette thèse repose sur de nombreuses transformations de mod-
èles qui doivent préserver la sémantique desmodèles UML-MARTE et réseau de Petri temporisé. Il
est donc nécessaire de vérifier cette préservation. De nombreuses techniques sont disponibles pour
vérifier ce genre de propriétés pour des langages dont la sémantique est formellement définie. En
ce qui concerne des langages dont il n’existe pas de formalisation de référence tels UML-MARTE,
de nouvelles approches doivent être explorées. Une solution est de traduire le mêmemodèle UML-
MARTE vers différents langages de vérification et de vérifier si celles-ci convergent vers les mêmes
sémantiques formelles. Ceci permet d’obtenir une meilleure confiance dans les différentes interpré-
tations mais ne remplace pas une sémantique formelle de référence. En effet, si toutes les interpré-
tations sont erronées de manière cohérente, rien ne sera mis en évidence même si la diversité des
formalismes permet de réduire le risque. Seuls les tests et la relecture humaine par rapport à la spé-
cification semi-formelle permettent actuellement de pallier à ce soucis mais ces activités ne sont pas
exhaustives. Une variante consiste à exploiter d’autres formes de sémantique en définissant UML-
MARTE sous la forme de propriétés comportementales que doivent satisfaire l’exécution des mod-
èles. Cette approchepeut êtremise enoeuvre simplement en s’appuyant sur la vérificationdemodèle
à chaque traduction et peut être également prouvée une fois pour toute. L’intérêt de cette forme de
sémantique axiomatique est qu’elle est plus proche de la forme des spécifications en langue naturel
et peut s’appuyer sur les travaux existant en ingénierie des exigences pour formaliser des exigences
en langue naturelle.

273

9.1. FULFILLMENTOFOBJECTIVES

This thesis designed and experimented a property-driven methodology and an associated toolset for
the verification of real-time requirements for industrial scale safety critical systems based on model check-
ing tools. It relies on the UML and its MARTE profile as end-user modeling languages, and on the Time Petri
Nets (TPN) as verification language. It was validated using an avionic use case: a subset of a FlightManage-
ment System focusing on latency and freshness requirements. The whole methodology and the prototype
includes five parts: real-time property specific system model mapping, real-time property specification,
observer-based real-time property verification, real-time property specific state space reduction, and auto-
matic fault localization.

As a final conclusion, we summarize the fulfillment of objectives in Section 9.1, and the application of
research results in Section 9.2. We also outline some directions for the future research in Section 9.3.

9.1 Fulfillment of Objectives

Fulfillmentof challenge1: Specification, implementationandvalidationof a real-timeproperty spe-
cific execution semantics for UML-MARTEmodels that allows scalable verification. With respect to the
expected real-time requirement, we have defined a real-time property specific execution semantics for UML-
MARTE architecturemodels (composite structure diagram) and behaviormodels (activity and statemachine
diagrams). The definition of this execution semantics follows the property-driven approach proposed by
Combemale et al. It allows to map UML-MARTE entities to TPN models, which makes UML model executable
and analyzable by the TINAmodel checking toolset. This mapping conforms to the UML specification 2.4.1.
It abstracts the system in order to provide more scalable verification for a specific family of properties. The
full mapping library is given in Appendix A. A generic scheduling algorithm including a preemption option
is also defined. This scheduling algorithm is used to decide for the given timeT, which resource instance(s)
will be allocated to which requester(s).

Fulfillment of challenge 2: Practical real-time requirement specification method for verification
purpose. From the viewpoint of requirement assessment, we advocate that the qualitative property pat-
terns proposed by Dwyer and the quantitative property patterns proposed by Konrad are not semantically
atomic. These property specifications need to be decomposed into atomic elements to improve the veri-
fication efficiency. A property specification method that can ease the verification is needed to bridge this
gap. We have defined a set of atomic real-time property patterns. These property patterns can be directly

274

9.1. FULFILLMENTOFOBJECTIVES

used to specify real-time requirements. The properties expressed usingDwyer/Konrad’s patterns and CCSL

languages can also be automatically translated to the verification targeted atomic property elements, which
will then be assessed using the observer-based verification approach.

Fulfillment of challenge 3: Scalable model checking support for the verification of real-time prop-
erties in TPNmodel. Themodel checking toolset TINA that our work relies on can express qualitative prop-
erties using LTL and CTL logic formulae, but not quantitative properties. To assess the real-time properties
in an efficient manner, we have defined a set of event-based TPN observers and state-based tts observers,
that will be associated to the TPN system under observation. These observers express the same semantics
as the atomic elements defined in the real-time property patterns. The proposed observer-based approach
allows to generate the high abstraction state class graph that only preserves marking information using the
tina state space generation tool from the TINA toolset. It relies on the accessibility assertions in the modal
μ-calculus (MMC) and the musemodel checker from the TINA toolset.

Fulfillment of challenge 4: Property-specific state space reduction method. We propose a property
specific reduction tool to eliminate the property-irrelevant TPN structures and to build an equivalent of the
property-relevant TPN structures in the TPN system model. The reduction tool exploits the commutativity
of TPN sub-nets which results in the same property-specific behavior before expanding the state class graph.
The equivalent has less states and transitions, and thus directly reduces the scale of computation.

Fulfillment of challenge 5: Failure analysis approach to locate the origin of fault. We propose an au-
tomated fault localization approach based onmodel checking to ease and accelerate debugging by locating
and ranking the suspicious elements in amodelwhen a safety property is unsatisfied. Inspired by the TF-IDF
(term frequency-inverse document frequency) measure and the Kullback–Leibler Divergence theory,
we propose a suspiciousness factor to rank the potentially faulty transitions. We apply this approach to
property specific TPN model relying on observers-based verification approach to provide all the faulty ex-
ecution traces and the violation states in the state class graph preserving markings. Based on the mapping
semantics from UML to TPN, the faulty transitions can be back-traced from TPN to UML.

275

9.2. APPLICATIONOF RESEARCH RESULTS

9.2 Application of Research Results

We have implemented the approaches presented in this thesis as the prototype toolset UMLMMC (UML-MARTE
Model Checker). It includes the following tools:

• (RTM)Real-Time property specific system modelMapping tool,

• (RTS)Real-Time property Specification tool,

• (RTV) observer-basedReal-Time property Verification tool

• (RTR)Real-Time property specific state spaceReduction tool,

• (FLMC) automatic Fault Localization tool inModelChecking.

Supported tools.
At the very beginning of this work, we relied on the Topcased¹ (version 5.1.0 under MacOS X 64 bit)

environment for purpose of modeling and development. Our toolset is now compatible with the Papyrus²
(version 0.10.0) and the PolarSys IDE ³ (version 0.7).

For model checking, we rely on the TINA toolset 3.2.0 for Intel Macs under MacOS X 64 bit.

Implementation using JAVA and EMF.
This toolset has been developed using the JAVA language and Eclipse Modeling Framework (EMF) ⁴,

which is amodeling framework and code generation facility for building tools and other applications based
on a structured data model. On the one hand, the JAVA language can ease the integration of tools; on
the other hand, JAVA provides many sophisticated tools for the debugging feature, which is mandatory to
rapidly test and improve the algorithms involved in our approaches. The prototype toolset includes 30264
lines of JAVA code.

¹http://www.topcased.org/
²https://www.eclipse.org/papyrus/
³http://polarsys.org/
⁴https://www.eclipse.org/modeling/emf/

276

9.3. FUTURE RESEARCHDIRECTIONS

9.3 Future Research Directions

Both practical and fundamental aspects can follow the work conducted in this thesis.

9.3.1 Short TermActivities

Before discussing the future research directions, we first summarize the following short term future works:

• The development of the prototype toolset can be further completed and improved. We have pre-
sented that the real-time requirements based on Dwyer’s and Konrad’s works and CCSL constraints
can be automatically transformed to our real-time property patterns. For now, the prototype of this
tool does not cover all the property mapping. It will be completed in the near future.

• In this thesis, we have experimented our approaches on the FMS case study for the end-to-end real-
time requirements. Other industrial case studies should be experimented and used to further val-
idate our proposal. We plan to conduct such activities on railroad signaling system models in the
Open ETCS project ⁵ and on other aeronautic use cases in the P project.

• The fault localization approach can be further experimented and compared with the existing ap-
proaches. Other test beds involving different kinds of errors should be developed. This feedback
analysis approach can be integrated in other model checking tools to help the designer in the failure
analysis.

9.3.2 Resource scheduling semanticsmapping

In the UML-MARTE models, behaviors (activity and state machine) consumes resources such as CPU, mem-
ory, communication resources etc. The scheduling policy applied by the schedulerwill impact the real-time
requirements. Thus, if the target system relies on some external resources, the real-time behavior for the
resources scheduling needs to be explicitly specified in the TPNmodel.

The MARTE profile MARTE::MARTE_Foundations::GRM::Scheduler:schedPolicy provides some typical
scheduling policies for real-time embedded systems, such as Earliest Deadline First, FIFO, Fixed Priority,
Least Laxity First, Round Robin, Time Table Driven. It also allows users to define their own scheduling
policy. Mapping semantics for these well-known scheduling policies to TPN model could introduce some

⁵http://openetcs.org/
277

9.3. FUTURE RESEARCHDIRECTIONS

semantic ambiguities. For example, when using Fixed Priority scheduling policy, there is no explicit in-
dication in the UML-MARTE level to specify what should be the scheduler behavior if two requests have the
same priority; but as this information ismandatory for the TPNmodeling, then a semantic gap is potentially
created. If we do not have full determinism all the time in the UML-MARTEmodels, it is possible to introduce
fairness properties to handle the conflicts in TPNmodels.

Besides, the exact behavior of some dynamic scheduling policy could not be mapped to TPN in a triv-
ial way. For example the EDF/preemptive policy always need to compute for each reassignment cycle
the process which is the closest to its deadline. This requires a dynamic comparison between the amount
clock/time state of each transition and the given reference, which is unfeasible neither in classical TPN nor
in TPNwith data extension.

In this thesis, we have proposed a generic scheduling algorithm with preemption option. This schedul-
ing algorithm is used to decide for the given time T, which resource requester(s) will be allocated by the
resource instance(s). The mapping semantics for specific scheduling policy can be a direction for future
research. Gherbi and Khendek discussed in [GK09] a model transformation enabling the schedulability
analysis in UML-SPT (the predecessor of MARTE) real-time systems and implemented a prototype using ATL.
They also defined a metamodel encapsulating the main information required for the schedulability anal-
ysis. The UML-SPT is then transformed to the target analysis model using this metamodel. The analysis
metamodel and the transformation method could be used by our future work on schedulability analysis.

9.3.3 Future ResearchDirection for Property Specific Reduction Approach

The property-relevant structure is reduced using the commutativity of TPN sub-nets which result in the
same property-specific behavior. The property-specific reduction method relies on similar ideas to partial
order reductions. It can be used for asynchronous concurrent systems, in which most of the activities in
different processes are performed independently, without a globally synchronization.

Wefirst identify and extract the reducible sub-blocks from thewhole systemusing an Identification func-
tion. Then the state space of the reducible sub-blocks are reduced using a Reduction function. The reduced
sub-blocks are derived, and are then used to replace the original sub-blocks after their soundness is assessed
using a Refinement function.

At the time of writing this thesis, the Reduction and Refinement functions rely on the real-time property
specification and observer-based verification approaches in our verification toolset. Suppose a reducible

278

9.3. FUTURE RESEARCHDIRECTIONS

TPN sub-net isNs and its reduced sub-net isN′
s. We use the Reduction function to search for the sequential

and loop sections that are used as the behavioral pattern of Ns, and then verify if this pattern behaves as
the same as the system’s real behavior using the Refinement function. If verified, an N′

s conforming to this
pattern will replaceNs. The reduction and refinement functions can be formally specified and proved. This
should be further studied in the near future.

On the other hand, once an Ns is identified, in order to compute the associated N′
s, some related TPN

observers need to be associated toNs, and the corresponding state class graphs are then generatedm times
(mdepends on the behavior ofNs). Indeed, this approach has reduced the state space explosion problem in
asynchronous systems using a time–memory tradeoff. But this approach can still be improved by decreas-
ing the time used for the reduction and refinement. It is possible to build the sequential and loop sections
forN′

s by generating the state class graph only once and then analyzing its topology structure. This will be
an interesting future research direction.

Boucheneb and Barkaoui proposed in [BB13] an effective method for reducing interleaving semantics
redundancy in the reachability analysis of Time Petri Net. Their work showed that the union of state zones
reached by different interleavings of the same set of transitions is not necessarily a state zone. They estab-
lished sufficient conditions which ensure that this union is a state zone and showed how to compute this
state zone without computing intermediate ones. It is possible to draw lessons from this work and propose
more efficient property specific reduction methods for TPNmodels.

9.3.4 Verification ofModel Transformation

Theautomaticmodel transformation referred to in this work is in fact a semanticmapping, which preserves
all the property-related semantics of the source UML-MARTEmodel. A concern with this method is whether
the model transformation (semantic mapping) is correct. In other words, how to verify this model trans-
formation (semantic mapping). Indeed, this is a crucial question. Some surveys of the state-of-the-art
about the verification of code generation [Dav03, Nec11] and the verification of model transformation
[CS13, PSS98] summarized some expected properties to be verified and possible verification techniques,
as discussed in Section 3.8 of Chapter 3.

The verification of model transformation for the UML-MARTE model is not trivial. Generally, the best
way to verify if the model transformation preserves the intended semantics is to compare the state space
graph of the source and target formal models. A formal semantics must then be defined for UMLmodels as

279

9.3. FUTURE RESEARCHDIRECTIONS

a reference semantics. The execution semantics is then compared with this reference semantics. However,
since UML is semi-formal,a formal definition is needed to establish the reference, which is one of the work
in this thesis. Our proposal relies on a translation to a formal model instead of a direct formal specification
of an operational semantics that would allow to build the state space at the UML level. This does not change
the fundamental issue: how to validate this formal specification?

A solution may mitigate the problem by mapping the UML-MARTEmodel to different formal models and
verifying if they converge into the same formal semantics. Nevertheless, whether the semantics is lost be-
tween a semi-formal model and a formal one can only be assessed using testing and human proof reading.

Another possible solution is derived from translation validation and proof carrying code that have been
experimented for the same purpose for AADL in the QUARTEFT project. This method allows to verify that
some important intended behavioral properties conform to the execution semantics. For example, we can
define TPN observers to assess the run-to-completion processing semantics. More precisely, when an event
occurrence is being processed, the other occurrences of this event cannot be accepted. However, when the
behavior property specification and the execution semantics are both wrong in the same way, this method
does not work. Then some test cases must be used to validate the execution semantics.

As a future research direction, the expected behavior properties would be defined and used to verify the
conformance between the execution semantics and the behavior specification. This can validate some key
execution semantics in the UMLmodels.

9.3.5 Application of the Approaches toOtherModeling Language

The property-driven approaches proposed in this thesis can be applied to other end-user modeling lan-
guage, for example AADL, EAST-ADL, or to intermediate languages like Fiacre. We can assess real-time re-
quirements expressed in these models by following the same approaches: mapping end-user models to
property specific TPNmodels, expressing real-time requirements using the proposed real-time property pat-
terns, reducing TPN state space using property specific reduction, assessing real-time properties relying on
observer-based model checking, and deriving the ranked faulty elements from the feedback analysis.

280

A
Appendix A:

Coverage Library: Mapping UML-MARTE to TPN

281

A.1. COVERAGE LIBRARYOF COMPOSITE STRUCTURE DIAGRAM

A.1 Coverage Library of Composite Structure Diagram

Table A.1.1: Coverage Library of Composite Structure Diagram

Coverage Library: UML-MARTEComposite Structure Diagram
NodeGroup Node Type TPNMapping Coverage

Object

Part
√

Role
Interface

√

Port
√

CollaborationUse

Connections
Connector

√

InterfaceRealization
Role Binding

282

A.2. COVERAGE LIBRARYOF ACTIVITY DIAGRAM

A.2 Coverage Library of Activity Diagram

Table A.2.1: Coverage Library of Activity Diagram

Coverage Library: UML-MARTE Activity Diagram
NodeGroup Node Type TPNMapping Coverage
Common Activity Partition

Control

Initial Node
√

Decision Node
√

Merge Node
√

Fork Node
√

Join Node
√

Activity Final
√

Flow Final
√

Expansion Region
Structured Activity Node
Conditional Node
Interruptible Activity Region
Loop Node
Sequence Node

Actions Action
√

Object

Activity Parameter
Central Buffer

√

DataStore
√

Expansion
Input Pin

√

Output Pin
√

Connections
Control Flow

√

Object Flow
√

Exception Handler

283

A.3. COVERAGE LIBRARYOF STATEMACHINE DIAGRAM

A.3 Coverage Library of State Machine Diagram

Table A.3.1: Coverage Library of State Machine Diagram

Coverage Library: UML-MARTE StateMachineDiagram
NodeGroup Node Type TPNMapping Coverage

Object

Region
√

State
√

Composite State
√

Submachine State
√

ConnectionPointReference
FinalState

√

Pseudostates

Initial
√

Deep History
√

Shallow History
√

Join
√

Fork
√

Junction
√

Choice
√

Entry Point
√

Exit Point
√

Terminate
√

Connections External Transition
√

Local Transition
√

284

B
Appendix B:

Mapping Library: Real-Time Property Pattern

285

B.1. PATTERNMAPPING LIBRARY

B.1 Pattern Mapping Library

Note: E stands for event, S for state, Ss for entering transition of state, Se for exiting transition of state, and
T for time T t.u..

Table B.1.1: Pattern Mapping Library

PatternMapping Library
Pattern Dwyer / Konrad Property Pattern Mapping Result

Absence

Absence of S Absent S
Absence of S at least t AbsentD(S) ≥ t
Absence of S at most t AbsentD(S) < t+ 1
Absence of E AbsentO(E1)

Absence of E at least t Always T(Ei+1, Ei) > t
Absence of E at most t Always T(Ei+1, Ei) < t

Existence

Existence of S Exist S
Existence of S at least t ExistD(S) ≥ t
Existence of S at most t ExistD(S) < t+ 1
Existence of E ExistO(E1)

Existence of E at least t Illegal semantics ¹
Existence of E at most t Illegal semantics ¹

Universality

Universality of S Always S
Universality of S at least t AlwaysD(S) ≥ t
Universality of S at most t AlwaysD(S) < t+ 1
Universality of E Illegal semantic ¹
Universality of E at least t Illegal semantics ¹
Universality of E at most t Illegal semantics ¹

Bounded Existence
K-Bounded Existence of S Illegal semantic ²
K-Bounded Existence of S at least t Illegal semantics ²

Continued on next page

¹Illegal in Dwyer’s and Konrad’s pattern system. An event is instantaneous, without time duration.
²Illegal in system design. A state is not specified by the number of occurrences.

286

B.1. PATTERNMAPPING LIBRARY

Pattern Konrad Property Pattern Mapping Result
K-Bounded Existence of S at most t Illegal semantics ²
K-Bounded Existence of E ExistO(Ek)

K-Bounded Existence of E at least t Illegal semantics ¹
K-Bounded Existence of E at most t Illegal semantics ¹

Precedence

S1 precedes S2 T(SE1 , SS2) > 0
S1 precedes S2 at least t T(SE1 , SS2) > t
S1 precedes S2 at most t T(SE1 , SS2) < t
S precedes E T(Se, E) > 0
S precedes E at least t T(Se, E) > t
S precedes E at most t T(Se, E) < t
E precedes S T(E, Ss) > 0
E precedes S at least t T(E, Ss) > t
E precedes S at most t T(E, Ss) < t
E1 precedes E2 T(E1, E2) > 0
E1 precedes E2 at least t T(E1, E2) > t
E1 precedes E2 at most t T(E1, E2) < t

Response

S1 leads to S2 T(SE1 , SS2) > 0
S1 leads to S2 at least t T(SE1 , SS2) > t
S1 leads to S2 at most t T(SE1 , SS2) < t
S leads to E T(Se, E) > 0
S leads to E at least t T(Se, E) > t
S leads to E at most t T(Se, E) < t
E leads to S T(E, Ss) > 0
E leads to S at least T T(E, Ss) > t
E leads to S at most T T(E, Ss) < t
E1 leads to E2 T(E1, E2) > 0
E1 leads to E2 at least t T(E1, E2) > t
E1 leads to E2 at most t T(E1, E2) < t

287

B.2. SCOPEMAPPING LIBRARY

B.2 Scope Mapping Library

Note: E stands for event, S for state, Ss for entering transition of state, Se for exiting transition of state, and
I for time interval.

Table B.2.1: Scope Mapping Library

ScopeMapping Library
Scope Konrad Property Pattern Mapping Result
Global Global Global

Before Before E Before E1

E’ Before E within I[tmin, tmax] (E’+tmax) After E∧ (E’+tmin) Before E

After
After E After E1

After E within I[tmin, tmax] After (E+ tmin)∧ Before (E+ tmax)

Between Between E1 and E2 Between E1 and E2

Between E1 and E2 within I[tmin, tmax] E2 After (E1 + tmax) ∧ Between (E1 + tmin)
and (E1 + tmax) ∨ E2 Before (E1 + tmax) ∧
Between (E1 + tmin) and E2

After-Until After E1 Until E2 (Exist E2 After E1 ∧ Between E1 and E1) ∨
(Absent E2 After E1 ∧ After E1)

Periodically During each period of E Between E−1 and E

288

Bibliography

[AADW09] Shaimaa Ali, James H Andrews, Tamilselvi Dhandapani, and Wantao Wang. Evaluating the
accuracy of fault localization techniques. In Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, pages 76–87. IEEE Computer Society, 2009.

[ABB+08] AAlbinet, S Begoc, JL Boulanger, OCasse, I Dal, HDubois, F Lakhal, D Louar,MAPeraldi-
Frati, Y Sorel, et al. The memvatex methodology: from requirements to models in automo-
tive application design. In 4th European Congress ERTS (Embedded Real Time Software),
Toulouse, France, 2008.

[ABD+07] Arnaud ALBINET, Jean-Louis Boulanger, Hubert Dubois, Marie-Agnès Peraldi-Frati, Yves
Sorel, Quang-Dao Van, et al. Model-based methodology for requirements traceability in
embedded systems. In Proceedings of 3rd European Conference on Model Driven Architecture®
Foundations and Applications, ECMDA’07, 2007.

[ABD+08] Francis Alizon,Mariano Belaunde, GregoireDupre, BertrandNicolas, Sebastien Poivre, and
Jacques Simonin. Les modèles dans l’action à france télécom avec smartqvt. Génie logiciel,
(85):35–42, 2008.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

[ADZLB12] Nouha Abid, Silvano Dal Zilio, and Didier Le Botlan. Real-time specification patterns and
tools. In Formal Methods for Industrial Critical Systems, pages 1–15. Springer, 2012.

289

BIBLIOGRAPHY

[AH90] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. SIGPLAN Not.,
25(6):246–256, June 1990.

[Ali12] Mohammad Amin Alipour. Automated fault localization techniques; a survey. Technical
report, 2012.

[Alu91] Rajeev Alur. Techniques for automatic verification of real-time systems. PhD thesis, stanford
university, 1991.

[AM08] Charles André and Frédéric Mallet. Clock constraints in uml/marte ccsl. Research Report
RR-6540, INRIA, 2008.

[AM09] Charles André and FrédéricMallet. Specification and verification of time requirements with
ccsl and esterel. InProceedings of the 2009ACMSIGPLAN/SIGBED conference on Languages,
compilers, and tools for embedded systems, LCTES ’09, pages 167–176, New York, NY, USA,
2009. ACM.

[AMCN09] Ermeson Andrade, PauloMaciel, Gustavo Callou, and BrunoNogueira. Amethodology for
mapping sysml activity diagram to time petri net for requirement validation of embedded
real-time systems with energy constraints. In Digital Society, 2009. ICDS’09. Third Interna-
tional Conference on, pages 266–271. IEEE, 2009.

[AZB13] Nouha Abid, Silvano Dal Zilio, and Didier Le Botlan. A verified approach for checking real-
time specification patterns. arXiv preprint arXiv:1301.7531, 2013.

[B+86] Gérard Berthelot et al. Checking properties of nets using transformations. In Advances in
Petri Nets 1985, pages 19–40. Springer, 1986.

[BB13] Hanifa Boucheneb and Kamel Barkaoui. Reducing interleaving semantics redundancy in
reachability analysis of time petri nets. ACMTrans. Embedded Comput. Syst., 12(1):7, 2013.

[BBB+57] John W Backus, Robert J Beeber, Sheldon Best, Richard Goldberg, L Mitchell Haibt, Har-
lan L Herrick, Robert A Nelson, David Sayre, Peter B Sheridan, H Stern, et al. The fortran
automatic coding system. In Papers presented at the February 26-28, 1957, western joint com-
puter conference: Techniques for reliability, pages 188–198. ACM, 1957.

290

BIBLIOGRAPHY

[BBBB11] Sabine Boufenara, Kamel Barkaoui, Faiza Belala, and Hanifa Boucheneb. Mapping uml ac-
tivity diagrams to analyzable petri net models. In Fifth InternationalWorkshop on Verification
and Evaluation of Computer and Communication Systems (VECoS 2011), September 2011.

[BBDC+09] Ilan Beer, ShohamBen-David, HanaChockler, Avigail Orni, andRichardTrefler. Explaining
counterexamples using causality. In Proceedings of the 21st International Conference on Com-
puter Aided Verification, CAV ’09, pages 94–108, Berlin, Heidelberg, 2009. Springer-Verlag.

[BBF+07] Bernard Berthomieu, Jean-Paul Bodeveix, Mamoun Filali, Hubert Garavel, Frédéric Lang,
Florent Peres, Rodrigo Saad, Jan Stoecker, François Vernadat, P Gaufillet, et al. The syntax
and semantics of fiacre. rapport LAAS, 7264, 2007.

[BCAA00] Jet Propulsion Laboratory (U.S.). Special Review Board, J. Casani, United States. National
Aeronautics, and Space Administration. Report on the Loss of theMars Polar Lander andDeep
Space 2 Missions. Jet Propulsion Laboratory, California Institute of Technology, 2000.

[BCM+92] JerryRBurch, EdmundMClarke, KennethLMcMillan, David LDill, andLain-JinnHwang.
Symbolicmodel checking: 1020 states andbeyond. Informationand computation, 98(2):142–
170, 1992.

[BCN98] Stan Budkowski, Ana Cavalli, and Elie Najm. Formal Description Techniques and Protocol
Specification, Testing and Verification, volume 6. Springer, 1998.

[BD91] BernardBerthomieu andMichelDiaz. Modeling and verification of timedependent systems
using time petri nets. IEEE Trans. Softw. Eng., 17(3):259–273, March 1991.

[BDL04] Gerd Behrmann, Alexandre David, and Kim G Larsen. A tutorial on uppaal. In Formal
methods for the design of real-time systems, pages 200–236. Springer, 2004.

[Ber83] G. Berthelot. Transformations et analyse de réseaux de Petri: application au protocoles. Rap-
ports de recherche / Université de Paris-Sud, Laboratoire de recherche en informatique.
LRI, 1983.

[Ber01] Bernard Berthomieu. La méthode des classes d’états pour l’analyse des réseaux temporels.
In 3e congrès Modélisation des Systèmes Réactifs (MSR’2001), pages 275–290, 2001.

291

BIBLIOGRAPHY

[BM83] Bernard Berthomieu and Miguel Menasche. An enumerative approach for analyzing time
petri nets. In Proceedings IFIP. Citeseer, 1983.

[BM98] L Douglas Baker and Andrew Kachites McCallum. Distributional clustering of words for
text classification. In Proceedings of the 21st annual international ACM SIGIR conference on
Research and development in information retrieval, pages 96–103. ACM, 1998.

[BNR03] Thomas Ball, Mayur Naik, and Sriram K Rajamani. From symptom to cause: localizing
errors in counterexample traces. ACM SIGPLANNotices, 38(1):97–105, 2003.

[BR01] Thomas Ball and Sriram K Rajamani. The slam toolkit. InComputer aided verification, pages
260–264. Springer, 2001.

[BRJ05] Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling Language User Guide,
The (2nd Edition) (Addison-Wesley Object Technology Series). Addison-Wesley Professional,
2005.

[BRV04] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool tina - construction of abstract
state spaces for petri nets and time petri nets. International Journal of Production Research,
42(14):2741–2756, 2004.

[Bry86] Randal E Bryant. Graph-based algorithms for boolean function manipulation. Computers,
IEEE Transactions on, 100(8):677–691, 1986.

[BSF09] Henri Bauer, J-L Scharbarg, and Christian Fraboul. Applying and optimizing trajectory ap-
proach for performance evaluation of afdx avionics network. In Emerging Technologies &
Factory Automation, 2009. ETFA 2009. IEEE Conference on, pages 1–8. IEEE, 2009.

[BV03] Bernard Berthomieu and François Vernadat. State class constructions for branching analysis
of time petri nets. In Tools and Algorithms for the Construction and Analysis of Systems, pages
442–457. Springer, 2003.

[BV07] Bernard Berthomieu and Françcois Vernadat. State space abstractions for time petri nets.
Handbook of Real-Time and Embedded Systems, Crc Computer & Information Science Series.
Chapman &Hall, 2007.

292

BIBLIOGRAPHY

[C+97] AirlinesElectronicEngineeringCommittee et al. Arinc specification 653. Aeronautical Radio
Inc, 2551, 1997.

[CC77] PatrickCousot andRadhiaCousot. Abstract interpretation: a unified latticemodel for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of the
4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, POPL ’77,
pages 238–252, New York, NY, USA, 1977. ACM.

[CCG+04] SagarChaki, EdmundMClarke, AlexGroce, Somesh Jha, andHelmutVeith. Modular verifi-
cation of software components in c. Software Engineering, IEEE Transactions on, 30(6):388–
402, 2004.

[CCG+07] BenoîtCombemale, XavierCrégut, Pierre-LoïcGaroche, XavierThirioux, andFrançois Ver-
nadat. A property-driven approach to formal verification of process models. In ICEIS (Se-
lected Papers), volume 12 of Lecture Notes in Business Information Processing, pages 286–300.
Springer, 2007.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skele-
tons using branching-time temporal logic. In Logic of Programs, Workshop, pages 52–71,
London, UK, UK, 1982. Springer-Verlag.

[CEFJ96] Edmund M Clarke, Reinhard Enders, Thomas Filkorn, and Somesh Jha. Exploiting sym-
metry in temporal logic model checking. Formal Methods in System Design, 9(1-2):77–104,
1996.

[CES71] EdwardGCoffman,Melanie Elphick, and Arie Shoshani. System deadlocks. ACMComput-
ing Surveys (CSUR), 3(2):67–78, 1971.

[CES86] E.M.Clarke, E.A. Emerson, andA.P. Sistla. Automatic verificationof finite-state concurrent
systems using temporal logic specifications. ACMTrans. Program. Lang. Syst., 8(2):244–263,
April 1986.

[CGL94] Edmund M Clarke, Orna Grumberg, and David E Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems (TOPLAS), 16(5):1512–1542,
1994.

293

BIBLIOGRAPHY

[CGP99] Edmund M Clarke, Orna Grumberg, and Doron A Peled. Model checking. MIT press, 1999.

[CGP03] JamiesonMCobleigh,DimitraGiannakopoulou, andCorinaSPăsăreanu. Learning assump-
tions for compositional verification. InTools and Algorithms for the Construction and Analysis
of Systems, pages 331–346. Springer, 2003.

[CGS04] Sagar Chaki, Alex Groce, and Ofer Strichman. Explaining abstract counterexamples. In
ACM SIGSOFT Software Engineering Notes, volume 29, pages 73–82. ACM, 2004.

[CH03] Krzysztof Czarnecki and SimonHelsen. Classification ofmodel transformation approaches.
In Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context of the
Model Driven Architecture, volume 45, pages 1–17, 2003.

[Cla08] EdmundMClarke. The birth of model checking. In 25 Years of Model Checking, pages 1–26.
Springer, 2008.

[CMC+08] Ermeson Carneiro, Paulo Maciel, Gustavo Callou, Eduardo Tavares, and Bruno Nogueira.
Mapping sysml state machine diagram to time petri net for analysis and verification of em-
bedded real-time systems with energy constraints. In Advances in Electronics and Micro-
electronics, 2008. ENICS’08. International Conference on, pages 1–6. IEEE, 2008.

[CR06] Franck Cassez and Olivier H. Roux. Structural translation from time petri nets to timed
automata. JSS, 79(10):1456–1468, October 2006.

[Cra05] Michelle LCrane. On the Syntax and Semantics of StateMachines. PhD thesis, Citeseer, 2005.

[CS13] Daniel Calegari andNora Szasz. Verification ofmodel transformations: a survey of the state-
of-the-art. Electronic Notes InTheoretical Computer Science, 292:5–25, 2013.

[CV03] Edmund M. Clarke and Helmut Veith. Counterexamples revisited: Principles, algorithms,
applications. In Verification: Theory and Practice, pages 208–224, 2003.

[CZ05] Holger Cleve and Andreas Zeller. Locating causes of program failures. In Proceedings of the
27th international conference on Software engineering, pages 342–351. ACM, 2005.

294

BIBLIOGRAPHY

[DAC98] Matthew BDwyer, George S Avrunin, and James CCorbett. Property specification patterns
for finite-state verification. InProceedings of the secondworkshop onFormalmethods in software
practice, pages 7–15. ACM, 1998.

[DAC99] MatthewB.Dwyer, George S. Avrunin, and JamesC.Corbett. Patterns in property specifica-
tions for finite-state verification. InProceedings of the 21st International Conference on Software
Engineering, ICSE ’99, pages 411–420. ACM, 1999.

[Dav03] Maulik ADave. Compiler verification: a bibliography. ACM SIGSOFT Software Engineering
Notes, 28(6):2–2, 2003.

[DBRL12] PhilippeDhaussy, Frédéric Boniol, Jean-Charles Roger, and Luka Leroux. Improvingmodel
checking with context modelling. Advances in Software Engineering, 2012:9, 2012.

[DFH+91] GillesDowek, AmyFelty,HugoHerbelin, GérardHuet, BenjaminWerner, Christine Paulin-
Mohring, et al. The coq proof assistant user’s guide: Version 5.6. 1991.

[Din08] Steven X. Ding. Basic ideas, major issues and tools in the observer-based fdi framework. In
Model-based Fault Diagnosis Techniques, pages 13–19. Springer Berlin Heidelberg, 2008.

[DPC+09] Philippe Dhaussy, Pierre Yves Pillain, StephenCreff, Amine Raji, Yves Le Traon, and Benoit
Baudry. Evaluating context descriptions and property definition patterns for software formal
validation. InMoDELS, pages 438–452, 2009.

[DSLT+04] Vincent Debruyne, Françoise Simonot-Lion, Yvon Trinquet, et al. East-adl-an architecture
description language-validation and verification aspects. Architecture Description Language,
2004.

[EC80] E.Allen Emerson and EdmundM. Clarke. Characterizing correctness properties of parallel
programs using fixpoints. In Jaco Bakker and Jan Leeuwen, editors, Automata, Languages
and Programming, volume 85 of Lecture Notes in Computer Science, pages 169–181. Springer
Berlin Heidelberg, 1980.

[Eng05] Condor Enginering. Inc. afdx/arinc 664 tutorial (1500—049), 2005.

295

BIBLIOGRAPHY

[Ern03] Michael D Ernst. Static and dynamic analysis: Synergy and duality. InWODA 2003: ICSE
Workshop on Dynamic Analysis, pages 24–27. Citeseer, 2003.

[ES96] E Allen Emerson and A Prasad Sistla. Symmetry and model checking. Formal methods in
system design, 9(1-2):105–131, 1996.

[ES97] E. Allen Emerson and A. Prasad Sistla. Utilizing symmetry when model-checking under
fairness assumptions: an automata-theoretic approach. ACM Transactions on Programming
Languages and Systems (TOPLAS), 19(4):617–638, 1997.

[ES07] John Erickson and Keng Siau. Theoretical and practical complexity of modeling methods.
Commun. ACM, 50(8):46–51, August 2007.

[EWDC10] WEricWong, VidrohaDebroy, andByoungjuChoi. A family of code coverage-basedheuris-
tics for effective fault localization. Journal of Systems and Software, 83(2):188–208, 2010.

[FFN91] Gerard Florin, Céline Fraize, and Stéphane Natkin. Stochastic petri nets: Properties, appli-
cations and tools. Microelectronics Reliability, 31(4):669–697, 1991.

[FGH06] Peter H Feiler, David P Gluch, and John J Hudak. The architecture analysis & design lan-
guage (aadl): An introduction. Technical report, DTIC Document, 2006.

[FHN+06] Jean-Rémy Falleri, Marianne Huchard, Clémentine Nebut, et al. Towards a traceability
framework formodel transformations in kermeta. InECMDA-TW’06: ECMDATraceability
Workshop, pages 31–40, 2006.

[FM95] Kevin Forsberg and Harold Mooz. The Relationship of System Engineering to the Project
Cycle, 1995.

[GBF99] Tibor Gyimóthy, Árpád Beszédes, and Istán Forgács. An efficient relevant slicing method
for debugging. SIGSOFT Softw. Eng. Notes, 24(6):303–321, October 1999.

[GDRA+12] Karen Godary-Dejean, Romain Richard, Gregory Angles, et al. Lpt-a tool for parametric
tpn validation. In VECoS’2012: 6th International Workshop on Verification and Evaluation of
Computer and Communication Systems, 2012.

296

BIBLIOGRAPHY

[GK09] AbdelouahedGherbi andFerhatKhendek. Fromuml/sptmodels to schedulability analysis:
approach and a prototype implementation using atl. Automated Software Engineering, 16(3-
4):387–414, 2009.

[GKL04a] Alex Groce, Daniel Kroening, and Flavio Lerda. Understanding counterexamples with ex-
plain. In CAV, pages 453–456, 2004.

[GKL04b] Alex Groce, Daniel Kroening, and Flavio Lerda. Understanding counterexamples with ex-
plain. In Computer Aided Verification, pages 453–456. Springer, 2004.

[GL94] Orna Grumberg andDavid E Long. Model checking andmodular verification. ACMTrans-
actions on Programming Languages and Systems (TOPLAS), 16(3):843–871, 1994.

[GL06] Volker Gruhn and Ralf Laue. Patterns for timed property specifications. Electronic Notes in
Theoretical Computer Science, 153(2):117–133, 2006.

[GLM+05] Guillaume Gardey, Didier Lime, Morgan Magnin, et al. Romeo: A tool for analyzing time
petri nets. In Computer Aided Verification, pages 418–423. Springer, 2005.

[GNP13a] Ning Ge, Shin Nakajima, andMarc Pantel. Efficient online analysis of accidental fault local-
ization for dynamic systems using hidden markov model. In Proceedings of the Symposium
onTheory of Modeling & Simulation-DEVS Integrative M&S Symposium, page 16. Society for
Computer Simulation International, 2013.

[GNP13b] Ning Ge, Shin Nakajima, and Marc Pantel. Hidden markov model based automated fault
localization for integration testing. In Software Engineering and Service Science (ICSESS),
2013 4th IEEE International Conference on, pages 184–187. IEEE, 2013.

[GNP15] NingGe, ShinNakajima, andMarc Pantel. Online diagnosis of accidental faults for real-time
embedded systems using a hidden markov model. Simulation, 91(10):851–868, 2015.

[GP93] Patrice Godefroid andDidier Pirottin. Refining dependencies improves partial-order verifi-
cation methods. In Computer Aided Verification, pages 438–449. Springer, 1993.

297

BIBLIOGRAPHY

[GP12a] Ning Ge and Marc Pantel. Time properties verification framework for uml-marte safety
critical real-time systems. In European Conference onModelling Foundations and Applications,
pages 352–367. Springer, 2012.

[GP12b] Ning Ge and Marc Pantel. Verification of synchronization-related properties for uml-marte
rtes models with a set of time constraints dedicated formal semantic. 2012.

[GP14] Ning Ge andMarc Pantel. Real-time property specific reduction for time petri net. In Inter-
nationalWorkshop onPetriNets and Software Engineering (PNSE@PetriNets), pages 165–179,
2014.

[GPC12a] Ning Ge,Marc Pantel, and Xavier Crégut. Formal specification and verification of task time
constraints for real-time systems. In Leveraging Applications of Formal Methods, Verification
and Validation. Applications and Case Studies, pages 143–157. Springer, 2012.

[GPC12b] Ning Ge, Marc Pantel, and Xavier Crégut. Time properties dedicated transformation from
uml-marte activity to time transition system. ACM SIGSOFT Software Engineering Notes,
37(4):1–8, 2012.

[GPC14a] Ning Ge, Marc Pantel, and Xavier Crégut. Automated failure analysis in model checking
based on data mining. In International Conference on Model and Data Engineering, pages 13–
28. Springer, 2014.

[GPC14b] Ning Ge, Marc Pantel, and Xavier Crégut. Probabilistic failure analysis in model valida-
tion &verification. In International Conference on Embedded Real Time Software and Systems
(ERTS), 2014.

[GPC14c] Ning Ge, Marc Pantel, and Xavier Crégut. A uml-marte temporal property verification tool
based on model checking. In International Conference on Embedded Real Time Software and
Systems (ERTS), 2014.

[Gro04] Alex Groce. Error explanation with distance metrics. Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 108–122, 2004.

[GS97] Viktor Gyuris and A Prasad Sistla. On-the-fly model checking under fairness that exploits
symmetry. In Computer Aided Verification, pages 232–243. Springer, 1997.

298

BIBLIOGRAPHY

[GV03] Alex Groce and Willem Visser. What went wrong: Explaining counterexamples. In Model
Checking Software, pages 121–136. Springer, 2003.

[GvLH+96] Patrice Godefroid, J van Leeuwen, J Hartmanis, G Goos, and Pierre Wolper. Partial-order
methods for the verification of concurrent systems: an approach to the state-explosion problem,
volume 1032. Springer Heidelberg, 1996.

[Had90] S. Haddad. A reduction theory for coloured nets. In Grzegorz Rozenberg, editor, Advances
in Petri Nets 1989, volume 424 of Lecture Notes in Computer Science, pages 209–235. Springer
Berlin Heidelberg, 1990.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science of computer pro-
gramming, 8(3):231–274, 1987.

[HC96] G George Edward Hughes and Maxwell John Cresswell. A new introduction to modal logic.
Psychology Press, 1996.

[Hol90] Gerard J Holzmann. Design and validation of protocols. InTutorial Computer Networks and
ISDN Systems. Citeseer, 1990.

[Hol96] Gerard Holzmann. On-the-fly model checking. ACM Computing Surveys (CSUR),
28(4es):120, 1996.

[Hol97a] C Michael Holloway. Why engineers should consider formal methods. In Digital Avionics
Systems Conference, 1997. 16th DASC., AIAA/IEEE, volume 1, pages 1–3. IEEE, 1997.

[Hol97b] Gerard J Holzmann. The model checker spin. Software Engineering, IEEE Transactions on,
23(5):279–295, 1997.

[HP94] Gerard J Holzmann and Doron Peled. An improvement in formal verification. In FORTE,
volume 6, pages 197–211, 1994.

[HP00] Klaus Havelund and Thomas Pressburger. Model checking java programs using java
pathfinder. International Journal on Software Tools for Technology Transfer, 2(4):366–381,
2000.

299

BIBLIOGRAPHY

[ID96] CNorris Ip andDavidLDill. Better verification through symmetry. Formalmethods in system
design, 9(1-2):41–75, 1996.

[ITI07] Jean-Bernard ITIER. A380 integrated modular avionics - the history, objectives and chal-
lenges of the deployment of ima on a380. Technical report, ARTIST2meeting on Integrated
Modular Avionics, 2007.

[JAB+06] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and Patrick Valduriez. Atl: a
qvt-like transformation language. In Companion to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and applications, pages 719–720.ACM,2006.

[Jen96] Kurt Jensen. Coloured Petri nets: basic concepts, analysis methods and practical use, volume 1.
Springer, 1996.

[JH05] James A Jones andMary JeanHarrold. Empirical evaluation of the tarantula automatic fault-
localization technique. In Proceedings of the 20th IEEE/ACM international Conference on Au-
tomated software engineering, pages 273–282. ACM, 2005.

[JHS02a] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test information to
assist fault localization. In Proceedings of the 24th International Conference on Software Engi-
neering, ICSE ’02, pages 467–477, New York, NY, USA, 2002. ACM.

[JHS02b] JamesA Jones,Mary JeanHarrold, and JohnStasko. Visualizationof test information to assist
fault localization. In Proceedings of the 24th international conference on Software engineering,
pages 467–477. ACM, 2002.

[JM11a] Manu Jose and Rupak Majumdar. Bug-assist: assisting fault localization in ansi-c programs.
In Computer Aided Verification, pages 504–509. Springer, 2011.

[JM11b] Manu Jose and Rupak Majumdar. Cause clue clauses: error localization using maximum
satisfiability. In ACM SIGPLANNotices, volume 46, pages 437–446. ACM, 2011.

[Jon72] Karen Sparck Jones. A statistical interpretation of term specificity and its application in re-
trieval. Journal of documentation, 28(1):11–21, 1972.

300

BIBLIOGRAPHY

[Jon83] Cliff B Jones. Specification and design of (parallel) programs. In IFIP congress, volume 83,
pages 321–332, 1983.

[KC05] Sascha Konrad and Betty HC Cheng. Real-time specification patterns. In Proceedings of the
27th international conference on Software engineering, pages 372–381. ACM, 2005.

[Kil73] Gary A. Kildall. A unified approach to global program optimization. In Proceedings of the 1st
annual ACM SIGACT-SIGPLAN symposium on Principles of programming languages, POPL
’73, pages 194–206, New York, NY, USA, 1973. ACM.

[KL51] Solomon Kullback and Richard A Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86, 1951.

[Kob99] Cris Kobryn. Uml 2001: A standardization odyssey. Commun. ACM, 42(10):29–37, 1999.

[Kop11] Hermann Kopetz. Real-time systems: design principles for distributed embedded applications.
Springer, 2011.

[Koy90] RonKoymans. Specifying real-timepropertieswithmetric temporal logic. Real-time systems,
2(4):255–299, 1990.

[Lau12] Michaël Lauer. Une méthode globale pour la vérification d’exigences temps réel - Application à
l’Avionique Modulaire Intégrée. PhD thesis, juin 2012.

[LEBP11a] Michael Lauer, Jérôme Ermont, Frédéric Boniol, and Claire Pagetti. Latency and freshness
analysis on ima systems. In Emerging Technologies & Factory Automation (ETFA), 2011 IEEE
16th Conference on, pages 1–8. IEEE, 2011.

[LEBP11b] Michaël Lauer, Jérôme Ermont, Frédéric Boniol, and Claire Pagetti. Worst case temporal
consistency in integrated modular avionics systems. In High-Assurance Systems Engineering
(HASE), 2011 IEEE 13th International Symposium on, pages 212–219. IEEE, 2011.

[LEPB10] Michaël Lauer, Jérôme Ermont, Claire Pagetti, and Frédéric Boniol. Analyzing end-to-end
functional delays on an ima platform. In Leveraging Applications of Formal Methods, Verifica-
tion, and Validation, pages 243–257. Springer, 2010.

301

BIBLIOGRAPHY

[LGMC04] Juan Pablo López-Grao, JoséMerseguer, and Javier Campos. From uml activity diagrams to
stochastic petri nets: application to software performance engineering. In 4th international
workshop on Software and performance, WOSP ’04, pages 25–36, New York, NY, USA, 2004.
ACM.

[Lio96] J. L. Lions. Ariane 5 flight 501 failure. Technical report, ESA: Ariane 501 Inquiry Board,
1996.

[LSV97] Edward A Lee and Alberto Sangiovanni-Vincentelli. Comparingmodels of computation. In
Proceedings of the 1996 IEEE/ACM international conference on Computer-aided design, pages
234–241. IEEE Computer Society, 1997.

[LYF+05] Chao Liu, Xifeng Yan, Long Fei, JiaweiHan, and Samuel P.Midkiff. Sober: statisticalmodel-
based bug localization. SIGSOFT Softw. Eng. Notes, 30(5):286–295, September 2005.

[MAL10] Frédéric MALLET. Logical time in model-driven engineering (habilitation à diriger des
recherches). 2010.

[MC81] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. Software Engineering,
IEEE Transactions on, (4):417–426, 1981.

[MC11] Julio L.Medina and Álvaro García Cuesta. From composable designmodels to schedulabil-
ity analysis with uml and the uml profile for marte. SIGBED Rev., 8(1):64–68, mar 2011.

[MCBD02] José Merseguer, Javier Campos, Simona Bernardi, and Susanna Donatelli. A compositional
semantics for uml statemachines aimed at performance evaluation. InDiscrete Event Systems,
2002. Proceedings. Sixth International Workshop on, pages 295–302. IEEE, 2002.

[McM93] Kenneth L McMillan. Symbolic model checking. Springer, 1993.

[MDH01] JLMedina, JMDrake, andMGonzálezHarbour. Uml-mast: modeling and analysismethod-
ology for real-time systems developed with uml case tools. In Proceedings of the Fourth Inter-
national Forum on Design Languages, FDL, volume 1, 2001.

[Mea55] GeorgeHMealy. Amethod for synthesizing sequential circuits. Bell SystemTechnical Journal,
34(5):1045–1079, 1955.

302

BIBLIOGRAPHY

[Mer01] Stephan Merz. Model checking: A tutorial overview. InModeling and verification of parallel
processes, pages 3–38. Springer, 2001.

[MF76] P. Merlin and D. Farber. Recoverability of communication protocols–implications of a the-
oretical study. Communications, IEEE Transactions on, 24(9):1036 – 1043, 1976.

[MM06] StevenMartin and PascaleMinet. Worst case end-to-end response times of flows scheduled
with fp/fifo. InNetworking, International Conference on Systems and International Conference
on Mobile Communications and Learning Technologies, 2006. ICN/ICONS/MCL 2006. Inter-
national Conference on, pages 54–54. IEEE, 2006.

[Moo56] Edward F Moore. Gedanken-experiments on sequential machines. Automata studies,
34:129–153, 1956.

[MPFA06] FrédéricMallet, M-A Peraldi-Frati, andCharles André. From uml to petri nets for non func-
tional property verification. In Industrial Embedded Systems, 2006. IES’06. International Sym-
posium on, pages 1–9. IEEE, 2006.

[MRK+97] Louise EMoser, YS Ramakrishna, George Kutty, PMichaelMelliar-Smith, and Laura KDil-
lon. A graphical environment for the design of concurrent real-time systems. ACMTransac-
tions on Software Engineering and Methodology (TOSEM), 6(1):31–79, 1997.

[MRS08] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to infor-
mation retrieval, volume 1. Cambridge university press Cambridge, 2008.

[MT98] Christoph Meinel and Thorsten Theobald. Ordered binary decision diagrams and their sig-
nificance in computer-aided design of vlsi circuits. 1998.

[Nec11] George Necula. Proof-carrying code. Springer, 2011.

[Neu95] Peter G. Neumann. Computer related risks. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 1995.

[NMA08] Wonhong Nam, P Madhusudan, and Rajeev Alur. Automatic symbolic compositional veri-
fication by learning assumptions. Formal Methods in System Design, 32(3):207–234, 2008.

303

BIBLIOGRAPHY

[OMG01] OMG. Model Driven Architecture - A Technical Perspective. Technical report, July 2001.

[OMG03] OMG. CommonWarehouse Metamodel (CWM), March 2003.

[OMG05a] OMG. UML Profile for Schedulability, Performance, and Time Specification, 2005.

[OMG05b] OCL OMG. 2.0 specification. Object Management Group, Final Adopted Specification, 2005.

[OMG08] OMG. Meta object facility (mof) 2.0 query/view/transformation specification version 1.0,
April 2008.

[OMG09] OMG. UML profile for MARTE: modeling and analysis of real-time embedded systems version
1.0, 2009.

[OMG11a] OMG. Meta Object Facility (MOF) Core Specification Version 2.4.1, August 2011.

[OMG11b] OMG. MOF 2 XMIMapping (XMI), August 2011.

[OMG11c] OMG. OMG Unified Modeling Language (OMG UML), Superstructure Specification
(Version 2.4.1). Technical report, Object Management Group, August 2011.

[OMG13] OMG. Semantics of a Foundational Subset for Executable UMLModels (fUML), August 2013.

[ORR+96] Sam Owre, Sreeranga Rajan, John M Rushby, Natarajan Shankar, and Mandayam Srivas.
Pvs: Combining specification, proof checking, andmodel checking. InComputer Aided Ver-
ification, pages 411–414. Springer, 1996.

[Pau00] Lawrence C Paulson. Isabelle: The next 700 theorem provers. arXiv preprint cs/9301106,
2000.

[Pel94] Doron Peled. Combining partial order reductions with on-the-flymodel-checking. InCom-
puter aided verification, pages 377–390. Springer, 1994.

[Pet62] Carl AdamPetri. Kommunikationmit Automaten. PhD thesis, DarmstadtUniversity of Tech-
nology, Germany, 1962.

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science, pages 46–57, 1977.

304

BIBLIOGRAPHY

[Pnu85] Amir Pnueli. In transition from global to modular temporal reasoning about programs. Springer,
1985.

[Pri57] A Prior. Time and modality. 1957. My present modification of the position there stated owes
much to PT Geach’s criticism in the Cambridge Review, page 543, 1957.

[PSS98] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation. In Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 151–166. Springer, 1998.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent systems
in cesar. In Proceedings of the 5th Colloquium on International Symposium on Programming,
pages 337–351, London, UK, UK, 1982. Springer-Verlag.

[QVT09] OMG QVT. Qvto specification, 2009.

[RBDL97] Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. The use of program profiling
for software maintenance with applications to the year 2000 problem. SIGSOFT Softw. Eng.
Notes, 22(6):432–449, November 1997.

[RH80] C.V. Ramamoorthy and G.S. Ho. Performance evaluation of asynchronous concurrent sys-
tems using petri nets. Software Engineering, IEEE Transactions on, SE-6(5):440–449, 1980.

[RtPR03] Manos Renieris and teven P. Reiss. Fault localization with nearest neighbor queries. InASE,
pages 30–39, 2003.

[Rus01] John Rushby. Theorem proving for verification. In Modeling and verification of parallel pro-
cesses, pages 39–57. Springer, 2001.

[Sal85] Arto Salomaa. Computation and automata, volume 25. Cambridge University Press, 1985.

[SB96] Robert H Sloan and Ugo Buy. Reduction rules for time petri nets. Acta Informatica,
33(7):687–706, 1996.

[SLNM04] F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Cheddar: a flexible real time scheduling
framework. Ada Lett., XXIV(4):1–8, nov 2004.

305

BIBLIOGRAPHY

[SN08] Konrad Slind and Michael Norrish. A brief overview of hol4. InTheorem Proving in Higher
Order Logics, pages 28–32. Springer, 2008.

[Som10] Ian Sommerville. Software Engineering. Addison-Wesley, Harlow, England, 9 edition, 2010.

[Spe05] ARINC Specification. 664: Aircraft data network. Technical report, Parts 1, 2, 7. Technical
report, Aeronotical Radio Inc., 2002-2005, 2005.

[TMH08] Yann Thierry-Mieg and Lom-Messan Hillah. Uml behavioral consistency checking using
instantiable petri nets. Innovations in Systems and Software Engineering, 4(3):293–300, 2008.

[Val91] Antti Valmari. A stubborn attack on state explosion. In Computer-Aided Verification, pages
156–165. Springer, 1991.

[Val98] Antti Valmari. The state explosion problem. In Lectures on Petri nets I: Basic models, pages
429–528. Springer, 1998.

[VHJG95] John Vlissides, R Helm, R Johnson, and E Gamma. Design patterns: Elements of reusable
object-oriented software. Reading: Addison-Wesley, 49:120, 1995.

[WD09] WEricWong andVidrohaDebroy. A survey of software fault localization. University of Texas
at Dallas, Tech. Rep. UTDCS-45-09, 2009.

[Wei81] Mark Weiser. Program slicing. In Proceedings of the 5th international conference on Software
engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981. IEEE Press.

[WQ09] W Eric Wong and Yu Qi. Bp neural network-based effective fault localization. International
Journal of Software Engineering and Knowledge Engineering, 19(04):573–597, 2009.

[WSQG08] W Eric Wong, Yan Shi, Yu Qi, and Richard Golden. Using an rbf neural network to locate
program bugs. In Software Reliability Engineering, 2008. ISSRE 2008. 19th International Sym-
posium on, pages 27–36. IEEE, 2008.

[WWQZ08] W Eric Wong, Tingting Wei, Yu Qi, and Lei Zhao. A crosstab-based statistical method for
effective fault localization. In Software Testing, Verification, and Validation, 2008 1st Interna-
tional Conference on, pages 42–51. IEEE, 2008.

306

BIBLIOGRAPHY

[YYSQ10] Nianhua Yang, Huiqun Yu, Hua Sun, and ZhilinQian. Mapping uml activity diagrams to an-
alyzable petri net models. In 10th International Conference on Quality Software (QSIC’2010),
pages 369 –372, july 2010.

[ZCP12] Faiez Zalila, Xavier Crégut, and Marc Pantel. Leveraging formal verification tools for dsml
users: A process modeling case study. In ISoLA (2), pages 329–343, 2012.

[ZCP13] FaiezZalila, XavierCrégut, andMarc Pantel. A transformation-driven approach to automate
feedback verification results. InModel and Data Engineering, pages 266–277. Springer, 2013.

[ZH02] Andreas Zeller andRalfHildebrandt. Simplifying and isolating failure-inducing input. IEEE
Trans. Softw. Eng., 28(2):183–200, February 2002.

[Zim78] H-JZimmermann. Fuzzy programming and linear programmingwith several objective func-
tions. Fuzzy sets and systems, 1(1):45–55, 1978.

[Zub91] WM Zuberek. Timed petri nets definitions, properties, and applications. Microelectronics
Reliability, 31(4):627–644, 1991.

307

	Acknowledgments
	Abstract
	Résumé
	Table of Contents
	List of Figures
	I Introduction
	Introduction
	Safety Critical Real-Time System Development
	Model Driven Engineering
	Formal Methods
	Methodology: Property Driven Approach
	Real-Time Requirements
	Challenges
	Contributions
	The Structure of the Thesis

	State of the Art
	Model-Driven Engineering
	Modeling of Real-Time Systems
	Formal Specification of Real-Time Systems
	Timed Automata
	Time Petri Net

	Model Transformation
	Verification of Real-Time Systems
	Static Analysis
	Theorem Proving
	Model Checking

	State Space Reduction of Model Checking
	Symbolic Model Checking with OBDD
	Partial Order Reduction
	Compositional Reasoning
	Abstraction
	Symmetry

	Model Checking Feedback
	Conclusion

	II Contribution to Property-Driven Approaches
	Semantic Mapping from UML-MARTE to Property-Specific TPN
	Introduction
	Property-Driven Approach
	Core Idea
	Principles of Semantic Mapping

	Composite Structure Diagram Mapping Semantics
	Part & Role
	Port & Interface
	Connector

	Activity Diagram Mapping Semantics
	Semantic Mapping Pattern
	Control Nodes
	Action
	Object Nodes
	Connections

	State Machine Diagram Mapping Semantics
	Event Processing & Event Pool
	State in General
	Flattening Semantics
	Mapping Semantics

	Resource Mapping Semantics
	Generic Resource Scheduling
	Non-preemptive Resource Scheduling
	Preemptive Resource Scheduling

	Time Semantics in Multi-Clock Modeling
	Discussion
	Verification of Model Transformation
	Boundedness and Decidability Issue

	Conclusion

	Specification of Real-Time Property
	Introduction
	Preliminaries
	Qualitative & Quantitative Property
	Occurrence & Predicate & Scope
	Event & State

	Property Pattern Approach
	Qualitative Property Patterns
	Real-Time Suffix

	Catalog of Real-Time Property Patterns
	Occurrence Modifier
	Basic Event Modifier
	Basic Predicate
	Basic Scope Modifiers

	Metamodel and Mapping Library
	Pattern Composition : Application to CCSL Constraints
	What is CCSL
	Time Tolerance in Verification
	Specification of CCSL Constraints
	Specification of CCSL-based Task Level Constraints

	Conclusion

	Property Verification based on TPN/tts Observers
	Introduction
	Design Principles of TPN/tts Observers
	Structure of Observer
	Soundness of Observer
	Efficiency of Observer

	Catalog of TPN/tts Observers
	Event Modifier Observers
	Basic Predicate Observers
	Scope Modifier Observers
	Occurrence Modifiers

	Observer-based Verification Example
	Example Verification
	Verification Result

	Computing Bound Value of Quantitative Property
	WCET Property Verification
	Computation of WCET Bound Value
	Discussion: K-ary Searching Algorithm
	Discussion: Cavity in Computation of Bound Value

	Verification Scalability
	On-the-Fly Model Checking
	State Abstraction

	Conclusion

	Real-Time Property- Specific Reduction for TPN
	Introduction
	Reduction for Property-Irrelevant Structures
	Relevancy Analysis for TPN Extended with Data Handling
	Algorithm for Reducing Property-Irrelevant Structure

	Reduction for Property-Relevant Structures
	Reduction using Topology-Implicit Semantic Equivalence
	Redundant Zero-Time Patterns
	Sequential Encapsulation Pattern

	Reduction using Behavioral Equivalence
	Example of Behavioral Equivalence
	Approach Overview
	One-Way-Out Behavioral Equivalence Pattern
	Generic Behavioral Equivalence Pattern
	Discussion

	Conclusion

	III Contribution to Fault Localization
	Automated Fault Localization in Model Checking
	Introduction
	Problem Statement
	Abstraction Issue
	Fault Localization Issue
	Existing Works
	Proposed Solution

	Preliminaries
	Reachability Graph & Violation States
	Error Traces
	Kullback–Leibler Divergence Applied to Textual Documents
	Term Frequency - Inverse Document Frequency

	Ranking Suspicious Faulty Transitions
	Core Idea
	Fault Localization Example
	TC-ITC Algorithm

	Experiments
	Automated Test Bed
	Evaluation of Efficiency
	Evaluation of Effectiveness

	Back-Tracing Fault Transitions in UML
	Conclusion

	IV Industrial Application & Conclusion
	Application to Flight Management System
	Introduction
	Case Study: Flight Management System
	Integrated Modular Avionics
	Avionics Full-Duplex Switched Ethernet
	Functions
	Real-Time Requirements

	Modeling and Semantics
	Abstraction of AFDX Network
	Architecture Model
	Behavior Model
	Real-Time Requirement Specification

	Mapping UML-MARTE to TPN Model
	Mapping of the Latency Functional Chain
	Mapping of the Freshness Functional Chain

	Verification of Real-Time Property
	Scalability Tests
	Experiments on the Latency Functional Chain
	Experiments on the Freshness Functional Chain

	Comparison to the Results in the Work of Lauer
	Conclusion

	Conclusion
	Fulfillment of Objectives
	Application of Research Results
	Future Research Directions
	Short Term Activities
	Resource scheduling semantics mapping
	Future Research Direction for Property Specific Reduction Approach
	Verification of Model Transformation
	Application of the Approaches to Other Modeling Language

	Appendix
	Appendix A: Coverage Library: Mapping UML-MARTE to TPN
	Coverage Library of Composite Structure Diagram
	Coverage Library of Activity Diagram
	Coverage Library of State Machine Diagram

	Appendix B: Mapping Library: Real-Time Property Pattern
	Pattern Mapping Library
	Scope Mapping Library

	Bibliography

