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Abstra&

Automatic formal verification such as model checking faces the combinatorial explosion issue, and thus
limits its application in industrial projects. This issue is caused by the explosion of the number of states
during system’s execution , as it may easily exceed the amount of available computing or storage resources.

This thesis designs and experiments a set of methods for the development of scalable verification tools
based on the property-driven approach. We propose efficient approaches based on model checking to ver-
ify real-time requirements expressed in large scale UML-MARTE real-time system designs. We rely on the UML
and its profile MARTE as the end-user modeling language, and on the Time Petri Net (TPN) as the verification
language. The main contribution of this thesis is the design and implementation of a property-driven verifi-
cation methodology dedicated to real-time properties verification for UML-MARTE real-time software designs.
We validate this method using an avionic use case and its user requirements. This method was implemented
as a prototype toolset that includes five contributions: definition of real-time property specific execution
semantics for UML-MARTE architecture and behavior models; specification of real-time requirements relying
on a set of verification dedicated atomic real-time property patterns; real-time property specific observer-
based model checking approach in TPN; real-time property specific state space reduction approach for TPN;

and fault localization approach in model checking.



Résumé

Les techniques formelles de la famille « vérification de modeles » (« model checking ») se heurtent au
probléme de l'explosion combinatoire. Ceci limite les perspectives d’exploitation dans des projets indus-
triels. Ce probléme est provoqué par la combinatoire dans la construction de l'espace des états possibles
durant I'exécution des systémes modélisés. Le nombre d’états pour des modéles de systemes industriels
réalistes dépasse réguliérement les capacités des ressources disponibles en calcul et stockage.

Cette these défend I'idée qu'il est possible de réduire cette combinatoire en spécialisant les outils pour
des familles de propriétés. Elle propose puis valide expérimentalement un ensemble de méthodes pourle
développement de ce type d'outils en suivant une approche guidée par les propriétés appliquée au contexte
temps réel. Il s’agit donc de construire des outils d’analyse performants pour des propriétés temps réel qui
soient exploitables pour des modeles industriels de taille réaliste. Les langages considérés sont, d'une part
UML étendu par le profil MARTE pour la modélisation par les utilisateurs, et d’autre part les réseaux de pétri
temporisés comme support pour la vérification. Les propositions sont validées sur un cas d’étude indus-
triel réaliste issu du monde avionique : 'étude de la latence et la fraicheur des données dans un systeme de
gestion des alarmes exploitant les technologies d’Avionique Modulaire Intégrée. Ces propositions ont été
mise en oeuvre comme une boite a outils qui intégre les cinq contributions suivantes: la définition de la
sémantique d’exécution spécifiques aux propriétés temps réel pour les modeéles d’'architecture et de com-
portement spécifiés en UML/MARTE; la spécification des exigences temps réel en s'appuyant sur un ensemble
de patrons de vérification atomiques dédiés aux propriété temps réel; une méthode itérative d'analyse a
base d'observateurs pour des réseaux de Petri temporisés; des techniques de réduction de I'espace d’états
spécifiques aux propriétés temps réel pour des Réseaux de Petri temporisés; une approche pour I'analyse
des erreurs détectées par « vérification des modeéles » en s’appuyant sur des idées inspirées de la « fouille
de données » (« data mining » ).
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Introduction

RESUME

Le premier chapitre introduit la contexte de recherche, les défis et les contributions de cette thése. Les sys-
témes embarquées temps réels jouent un role clé dans de nombreuses facettes de la vie quotidienne. Cer-
tains sont des applications spécialisées de grande échelle dans les domaines critiques tels que I'avionique,
l'aérospatial, la défense, le nucléaire, 'automobile, la santé et le matériel médical. Ils doivent donc satisfaire
de fortes exigences concernant la sécurité et la fiabilité. Tout manquement a ces exigences peut entrainer
des conséquences graves en terme de pertes matérielles et de sécurité des personnes. La sécurité et la fi-
abilité des systemes temps réels dépendent fortement de la satisfaction des exigences temps réel, a la fois
pour les aspects qualitatifs et quantitatifs. L'état de I'art actuel des connaissances propose que ces exigences
soient vérifiées et validées en utilisant des méthodes formelles en combinaison avec l'ingénierie dirigée
par les modeles. Les méthodes formelles sont des techniques issues des mathématiques pour la spécifi-

cation, le conception, la programmation et la vérification des systémes matériels et logiciels. L'utilisation
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d’approches mathématiques permet d'obtenir une plus grande assurance en ce qui concerne la fiabilité et
la robustesse d’un systéme.

Les techniques formelles de la famille « vérification de modéles » (« model checking ») sont bien
adaptées a une exploitation industrielle car elles permettent une automatisation compléte des activités de
vérification etla synthese de contre exemples en cas de non satisfaction des exigences. Mais elles se heurtent
au probléme de I'explosion combinatoire qui impose la construction de modeles dédiés a la vérification de
chaque exigence et limite les perspectives d’exploitation dans des projets de grande taille. Ce probleme est
lié & la combinatoire dans la construction de l'espace des états possibles durant I'exécution des systemes
modélisés. Le nombre d’états pour des modéles de systémes industriels réalistes dépasse réguliérement les
ressources disponibles en calcul et stockage.

En s’appuyant sur la pratique actuelle de la « vérification de modeles » consistant a construire des mod-
eles dédiés a chaque vérification, cette thése défend I'idée qu’il est possible de réduire cette combinatoire
en spécialisant les outils selon des familles de propriétés. Elle propose puis valide expérimentalement un
ensemble de méthodes pour le développement de ce type d'outils en suivant une approche guidée par les
propriétés appliquée pour le contexte temps réel. Il sagit donc de construire des outils d’analyse perfor-
mants pour des propriétés temps réel qui soient exploitables pour des modéles industriels de taille réaliste.
Les langages considérés sont, d'une part UML étendu par le profil MARTE pour la modélisation par les utilisa-
teurs, et d’autre part les réseaux de pétri temporisés comme support pour la vérification. Les propositions
effectuées sont validées en exploitant un cas d’étude industriel réaliste issu du monde avionique : I'étude
de la latence et la fraicheur des données dans un systeme de gestion des alarmes exploitant les technolo-
gies dAvionique Modulaire Intégrée. Ces propositions ont été mise en oeuvre sous la forme d’une boite
a outils qui intégre les cinq contributions suivantes: la définition de la sémantique d’exécution spécifique
aux propriétés temps réel pour les modéles d’architecture et de comportement spécifiés en UML/MARTE; la
spécification des exigences temps réel en s'appuyant sur une traduction vers un ensemble de patrons de véri-
fication atomiques dédiés aux propriété temps réel; une méthode itérative d’analyse a base d'observateurs
pour des réseaux de Petri temporisés; des techniques de réduction de I'espace d’états spécifiques aux pro-
priétés temps réel pour des Réseaux de Petri temporisés; une approche pour 'analyse des erreurs détectées
par « vérification des modeles » en sappuyant sur des idées inspirées de la « fouille de données » (« data

mining » ).

16



1.1. SAFETY CRITICAL REAL-TIME SYSTEM DEVELOPMENT

This thesis designs and experiments a set of methods for the development of scalable verification tools
based on a property-driven approach. It develops efficient approaches based on model checking to verify

real-time requirements expressed in large scale UML-MARTE real-time system designs.

1.1  SAFETY CRITICAL REAL-TIME SYSTEM DEVELOPMENT

Real-time embedded systems play a key role in many facets of daily life. Some are specialized and large
scale applications in the critical domains such as avionics, aerospace, defense, nuclear power, motor ve-
hicles, health and medical equipment and thus have strong requirements concerning system’s safety and
reliability. Any failure could cause serious consequences that may result in massive material losses or en-
danger human safety. [Neugs ] listed a large amount of accidents and disasters caused by errors in real-time
systems. Ifit is possible to avoid these failures, large efforts and costs would be saved. In June 1996, the first
flight of Ariane 5 launcher ended in failure caused by an overflow error. About 37 seconds after ignition,
the rocket broke and self destruction was initiated. This accident led to a 370 million dollars cost [Liog6].
In December 1999, the last telemetry from Mars Polar Lander was sent. Just prior to cruise stage separa-
tion and the subsequent atmospheric entry, no further signals were received from the spacecraft. The most
likely cause of this mishap was different interpretations of floating point data, which was implicitly specified
as meters by NASA and implemented as feet by Rockwell Collins. This accident led to a 165 million dol-
lars loss [BCAAoo]. For systems where failure is unacceptable, reliable software is mandatory. Thus safe
and efficient techniques are required to detect errors and thus avoid the accidents in such systems. The re-
search context and main motivation of this work is how to design and implement safe and reliable real-time

systems.

1.2 MODEL DRIVEN ENGINEERING

Model-Driven Engineering (MDE) targets the improvement of the reliability and efficiency of the traditional
software engineering by introducing models and early verification and validation (V & V) including the use
of formal methods. It has evolved over the last 20 years and achieved success in many domains. Models are
reduced/abstract representations of real systems that selectively remove some semantics to highlight the
remaining expected properties from a given point of view. In the context of safety critical systems, models

can be used during the requirement engineering process to derive the requirements for a system, during the
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1.2. MODEL DRIVEN ENGINEERING

design process to describe the intended system to the implementation engineers, to verify and validate the
properties, to automatically generate software, and also to document the system’s structure and behavior
after implementation.

The V-model [FMos ] is a software development process broadly adopted in the industry to illustrate
the various activities involved in the development of software and their ideal sequencing. In this thesis, we
rely on the multi V-model (see Fig. 1.2.1) proposed in the MeMvaTEx methodology [ABD 07, ABB"08]
to illustrate the use of MDE for developing real-time systems. In order to generate reliable software, the V'
& V activities are performed at each phase of the system development lifecycle. The architecture design
is the phase to define the hardware and software architectures which is referred to as high-level design. It
should involve a briefand abstract functionality of each module, their interface relationships, dependability,
architecture diagrams, etc. The detailed design model can also be called module or function design model,

where the low-level design including detailed functional logic of the module can be specified.

Time Line

Figure 1.2.1: V-Model in Model-Driven Engineering

From the current practice, the architecture is usually modeled using Domain Specific Languages (DSL)
such as AADL and EAST-ADL or specific diagrams in a General Purpose Language (GPL) such as uML Compos-

ite Structure Diagram, while the detailed design is usually modeled using DSL such as Simulink/ Stateflow
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1.3. FORMAL METHODS

and SCADE or specific GPL diagrams such as UML Activity, State Machine diagrams, or ALF (Action Language
for Foundational UML). The main purpose of our work is to propose efficient and effective formal verifica-
tion tools to ease the use of MDE when developing large scale real-time systems. More precisely, this work
targets the use of UML-MARTE in the early phases of MDE, that corresponds to the Architecture Design phase in
the multi V-model (the grey box part in Fig. 1.2.1).

1.3 FORMAL METHODS

Formal Methods (FM) are mathematically based techniques for the specification, development and verifi-
cation of software and hardware systems. The use of mathematical analysis can contribute to the reliability
and robustness of a design [Holg7a]. Verification methodologies such as model checking, abstract inter-
pretation, automated proof, etc. provide rules for inferring useful information from the specification. The
conjunction of MDE and FMis a promising answer to the development of real-time systems, which makes it
feasible to assess system’s requirements since the early phases of system lifecycle and to iteratively improve
the models according to the verification results.

However, automatic formal verification such as model checking faces the combinatorial explosion issue.
This limits its application in industrial projects [ CE82, HP94]. This issue is caused by the exponential num-
ber of generated states during system’s execution that may easily exceed the amount of available computing

or storage resources.

1.4 METHODOLOGY: PROPERTY DRIVEN APPROACH

UML (Unified Modeling Language) [OMG11c] was developed to provide a common language for specifi-
cation, modeling and documentation in the software development process in the 1990s. Today, UML is the
industry standard for software modeling and specification. MARTE (Modeling and Analysis of Real-Time
and Embedded Systems) [OMGog] provides support for specification, design, and V & V for real-time
and embedded system. We use the term UML-MARTE in the whole thesis to indicate the specification lan-
guage.

As UML is a semi-formal language which exhibits ambiguous and imprecise (in terms of mathematical
precision) semantics, most of the requirements expressed in UML models cannot be directly assessed using

formal methods. Therefore, providing a formal executable semantics is now a common approach used to
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1.5. REAL-TIME REQUIREMENTS

assess the user requirements in UML models. There exists a number of formal languages dealing with real-
time analysis issues, such as Timed Automata [AD94] and several extended Petri Nets such as Timed Petri
Nets [RH80, Zubg1], Stochastic Timed Petri Net [FENo91 ], Time Petri Net (TPN) [MF76], etc. Our work
relies on TPN as the execution model, and uses the TINA toolset as the analysis toolbox.

From the viewpoint of methodology, our work is based on the pioneering work [CCG " 07] by Combe-
male et al. Aimed to define all the steps from the property specification to effective verification, they in-
troduced in [CCG ™ o7] a generic approach to define the operational semantics (a semantics of observ-
able events) built upon the properties expressed at the metamodel level. They illustrated this contribution
through a simple process description language: SIMPLEPDL on which a set of temporal properties were
expressed. Property-driven means that the formal activities in the development process are based on the
purpose of property-verification-ease. From a language point of view, a precise definition of model ele-
ments behavior allows the execution of behavioral models with respect to the intended requirements that
must be assessed.

We follow the same methodology proposed by Combemale et al., and propose a property-driven frame-
work dedicated to real-time property verification for UML-MARTE real-time designs. A key objective in our
work is to assess this property driven approach on a large scale system relying on industrial modeling lan-

guages, requirements and use cases.

1.5 REAL-TIME REQUIREMENTS

A real-time system is a system whose correct operation depends on both the results produced by the system and
the time at which these results are produced [ Som10]. The safety and reliability of real-time systems strongly
depend on the satisfaction of its real-time requirements, in both qualitative and quantitative aspects. Ac-
cording to the survey collected from the industrial partners in several collaborative projects such as projects

P!, TOPCASED %, OPEES®, QUARTEFT *, SPICES °, SPACIFY ¢, HiMoCo 7 and CESAR ¥, we list some examples of in-

"http://www.open-do.org/projects/p/

2http: //www.topcased.org/

*http://www.opees.org/

*http://projects.laas.fr/fiacre/
Shttp://www.spices-itea.org/public/news.php
®http://spacify.gforge.enseeiht.fr/

7http :/ /www.systematic-paris-region.org/fr/projets/himoco
Shttp:/ /www.cesarproject.eu/
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1.5. REAL-TIME REQUIREMENTS

dustrial real-time requirements in Table 1.5.1. To simplify the expression, we use E,, E, and E, to denote

events, and [a,b] to denote a time interval.

Table 1.5.1: Examples of Real-Time Requirements

’ No.‘ Real-Time Requirements

1 E, must be sent after the reception of E,.
A task cannot be executed after the emission of E,.
The third occurrence of E; must be sent between the reception of E, and the emission of E;.

A system state holds for at least #n time unit (t.u.)

A system state holds for at most # t.u. after the emission of E,.

If E, is sent, E, must be received after the emission of E, within [a,b].
E, is received more than n times after the reception of E, within [a,b].
E, and E, must be sent simultaneously, within time tolerance §.

The execution of a task must start after the reception of E, within [a,b] in each period.

= O [0 O\ p W B

(]

If E, has been received, E, must be sent before the reception within [a,b] in each period.

-
[

The worst case execution time of a task is n t.u. in each periodic execution.

In Table 1.5.1, the requirements 1 - 3 are related to the logical time, while 4 - 11 are related to the physical
time. The requirements 9 -11 are applicable to systems with periodic execution. Regarding the logical time
requirements, there exist many works to specify and assess real-time properties using logic formulae. In
the context of this thesis, we focus on the physical time (quantitative) properties in finite state concurrent
reactive systems. These real-time requirements are critical, and thus their correctness must be guaranteed
at any cost. Appropriate development processes, methods and tools are expected to enable the efficient
verification, and to help the users to improve their designs when the errors have been detected. However,
in today’s highly competitive industrial market, the scale and complexity of safety critical real-time sys-
tem are rapidly increasing due to the growth of functional and non-functional requirements. For instance,
since Airbus A300, the number of software control systems has been increased to add new functionality
such as flight envelop protection, ground proximity warning and traffic collision avoidance for improved
safety [ITIo7]. Consequently, verification of the real-time requirements for real-time system development
is becoming more and more difficult and expensive. Therefore, although many progresses in the last 20

years, how to design and implement highly safety critical real-time system and in the meanwhile control
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1.6. CHALLENGES

the development cost is still an open problem in both industry and academia.

1.6 CHALLENGES

The key obstacle that prevents a wide application of model checking in the industry is the scalability is-
sue. The classic verification methodology usually encounters scalability issue very quickly along with the
growth of system size. A complex system usually has thousands and even millions of states and transi-
tions. Although a huge part of the impossible transition firing sequences is eliminated during the building
of system’s behavior, the probable permutation of all others is still a very large number that easily causes
combinatorial state space explosion.

Although many formal verification languages such as Petri Net [ Pet62 ] and Automata [Sal8s ] and their
analysis tools are theoretically mature enough, the efficient application for real size systems is still an open
question. As the scalability issues introduced by the combinatorial explosion problem is still one of the
bottlenecks, the industrial partners would rather verify and validate the requirements using traditional fi-
nal system tests. Another key issue is effective fault analysis for the verification failures. Once an error
has occurred, effective debug information is expected to be derived from the verification results to help
the designers improve their designs. The challenges in this work can be summarized as the following five

aspects:

« Challenge 1: Specification, implementation and validation of a real-time property specific
execution semantics for UML-MARTE models that allows scalable verification. As revealed by a
number of surveys, even the most recent versions of the UML specification suffer from multiple am-
biguities, inconsistency and incompleteness regarding the semantics of the language for the formal
verification purpose. This is a major problem for MDE because the semantics contained in the user
models will be directly propagated to the verification models. A formal execution semantics should
thus be defined. The manner the execution semantics is defined is one of the important factors that
impact the verification efficiency, especially for the large scale system development. The optimal ex-
ecution semantics only preserves minimal property-relevant semantics. This may reduce the risk of

combinatorial state explosion problem during model checking.

« Challenge 2: Need for practical real-time requirement specification method for verification

purpose. Many studies have shown that most of the real-time requirements are composite proper-
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1.6. CHALLENGES

ties based on a set of elementary patterns. Dwyer et al. defined the pioneer qualitative time patterns.
Afterwards, Konrad et al. extended Dwyer’s patterns by adding quantitative time extensions. These
property patterns aimed to ease the expression of end-user time requirements, but usually they are
not semantically atomic. These property specifications need to be decomposed into a set of atomic
property elements to improve the verification efficiency. A property specification method that can
ease the verification is needed to bridge this gap. CCSL, as a clock constraint specification language,
can express event-based logical properties in the UML-MARTE models. A real-time property specifica-
tion method is needed to map the requirements expressed using Dwyer’s and Konrad’s patterns or

the CCSL to the verification-ease property patterns.

Challenge 3: Need for scalable model checking support for the verification of real-time prop-
erties in TPN model. Despite the significant investment of research and development effort into
state-of-the-art industrial MDE tools, model checking remains an expensive resource-consuming de-
velopment method that requires special skills. The TINA model checking toolset supports logic for-
mulae LTL and CTL for analyzing qualitative properties. To verify quantitative properties in large scale
systems, an efficient real-time property analysis approach based on LTL, CTL or other logic formulae
is required. The real-time property specific model checking approach should rely on the observer

techniques, which transforms quantitative problems to reachability problems.

Challenge 4: Need for property-specific state space reduction method. Combinatorial state
space explosion issue in current TPN model checking approach limits its application. Many tech-
niques have been studied to reduce the size of state space using different abstractions. These tech-
niques usually provide generic abstraction methods to reduce the size of state space for all kinds of
properties. In this work, a real-time property specific reduction technique is used to improve the

scalability in TPN model checking.

Challenge 5: Need for failure analysis approach to locate the origin of fault. The generation of
counterexamples in case a formula is violated is a key service provided by model checkers. Coun-
terexamples produced by model checkers often stand for error traces, which represent sequences of
system states and transitions and are therefore usually lengthy and difficult to understand. The ori-
gin of error might be anywhere along these traces and even a combination of transitions that are not

contiguous, thus it requires a lengthy analysis by designers. The automatic fault localization analysis
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relying on the error traces in model checking is still an interesting challenge.

1.7 CONTRIBUTIONS

In this Ph.D work, our objective is to propose a set of property-driven methods used to efficiently assess
the real-time requirements in large scale concurrent reactive real-time systems. We rely on the UML and its
profile MARTE as the end-user modeling language, and on the TPN as the verification language. The main con-
tribution of this thesis is the design and implementation of a property-driven verification prototype toolset
dedicated to real-time properties verification for UML-MARTE real-time software designs [ GP12a, GPC14c].
We validate this toolset using an avionic use case and its user requirements. This research shows that the
property-driven approach allows a better verification scalability. The architecture of the toolset is described

in Fig. 1.7.1, which consists of five tools:

1. System Model Mapping Tool: Definition of real-time property specific execution semantics
for UML-MARTE architecture and behavior models [GPC12b]. With respect to the expected real-
time requirement, we have defined the real-time property specific execution semantics for UML-MARTE
architecture model (composite structure diagram) and behavior models (activity and state machine
diagrams). The definition of execution semantics follows the property-driven approach. The ex-
ecution semantics allows to map UML-MARTE entities to TPN models, which makes UML model exe-
cutable and analyzable by the TINA toolset. This mapping conforms to the UML specification 2.4.1

[OMGu1 1c]. It abstracts the system in order to provide more scalable verification.

2. Property Specification Tool: Specification of real-time requirements relying on a set of real-
time property patterns [GPC12a, GP12b]. From the viewpoint of requirement assessment, we
advocate that the qualitative property patterns proposed by Dwyer and the quantitative property
patterns proposed by Konrad are not semantically atomic. We have defined a set of real-time prop-
erty patterns that contains the atomic property elements. These property patterns can be directly
used to specify real-time requirements. The properties expressed using Dwyer/Konrad’s patterns
and CCSL languages can also be automatically translated to the verification targeted atomic property

elements, which will then be assessed using the observer-based verification approach.
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Figure 1.7.1: UML-MARTE Real-Time Properties Verification Architecture

3. Property Verification Tool: Real-Time property specific observer-based model checking ap-
proach in TPN [GP12a]. The TINA model checking toolset that our work relies on can express qual-
itative properties on LTL and CTL logic formulae, but not the quantitative properties. To assess the
real-time properties in an efficient manner, we define a set of event-based TPN observers and state-
based tts observers, which will be associated to the TPN system under observation. These observers
express the same semantics as the atomic elements defined in the real-time property patterns. The
proposed observer-based approach allows to generate the high abstraction state class graph that only
preserves marking information using the tina state space generation tool from the TINA toolset. It
relies on the accessibility assertions in the modal y-calculus (MMC) and the muse model checker from

the TINA toolset.
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4. Property Specific Reduction Tool: Real-Time property specific state space reduction approach
for TPN[GP14]. We propose this property specific reduction tool to eliminate the property-irrelevant
TPN structures and to build an equivalent of the property-relevant TPN structures in the system model.
The reduction tool exploits the commutativity of TPN sub-nets which result in the same property-
specific behavior before expanding the whole state class graph. The equivalent has less states and

transitions, and thus directly reduces the scale of computation.

5. Fault Localization Tool: Fault localization approach in model checking [GPC14a, GPC14b,
GNP13b, GNP13a, GNP15]. We propose an automated faultlocalization approach based on model
checking to ease and accelerate the debugging by locating and ranking the suspicious elements in a
model when a safety property is unsatisfied. Inspired by the TF-IDF (term frequency-inverse docu-
ment frequency) measure and the Kullback-Leibler Divergence theory, we propose a suspicious-
ness factor to rank the potentially faulty transitions. We apply this approach to property specific
TPN model on which the observer-based verification approach is performed to obtain all the faulty
execution traces and the violation states in the state class graph preserving markings. Based on the

mapping semantics from UML to TPN, the faulty transitions is back-traced from TPN to UML.

1.8 THE STRUCTURE OF THE THESIS

The thesis is structured into 4 parts containing 9 chapters (including this introduction), and 2 appendix

complementing the main parts with additional information.
« Part 1: Introduction

— Chapter 1 introduces an overview of the thesis.

— Chapter 2 presents the state of the art of existing approaches.
« Part2: Contributions to property-driven approaches

— Chapter 3 introduces the definition of mapping semantics from UML-MARTE architectural and

behavioral models to TPN models. (Contribution 1)

— Chapter 4 presents a set of verification dedicated atomic real-time property specification pat-
terns, and use it to translate the properties expressed using Dwyer/Konrad’s patterns and the

ccsL. (Contribution 2)
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— Chapter 5 proposes the observer-based model checking approach to verify the real-time prop-
erty patterns in TPN. (Contribution 3)

— Chapter 6 presents the property specific state space reduction approach for TPN models. (Con-

tribution 4)
« Part 3: Contribution to fault localization approach

— Chapter 7 proposes the automatic failure analysis approaches in model checking. (Contribu-

tion s)

o Part 4: Industrial application & Conclusion

Chapter 8 uses an avionic case study, which is a part of the flight management system requiring
latency and freshness real-time properties to test our toolset. The scalability test shows that the

proposed approaches are capable to analyze large scale systems.

Chapter 9 concludes the main parts of the thesis and outlines future directions for research.

Appendix A gives the coverage library for mapping UML-MARTE to TPN model.

Appendix B contains the library for mapping real-time requirements expressed by Dwyer/Konrad’s

patterns to the proposed real-time property patterns.
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State of the Art

RESUME

Le deuxiéme chapitre présente les informations sur 'état de l'art concernant les méthodes exploitées dans

les chapitres suivants. Celui-ci comporte les éléments essentiels pour les travaux réalisés dans ce thése :

« Lingénierie dirigée par les modeles (IDM). Celle-ci vise a augmenter la fiabilité et lefficacité de
l'ingénierie traditionnelle du logiciel en exploitant des modeéles exprimés dans des langages dédiés
aux différents aspects d'un développement logiciel, des méthodes de validation et vérification des
dits modéles, y compris I'exploitation de méthodes formelles, et des moyens de transformations au-

tomatiques de modéles.

« Lamodélisation de systemes temps réels. Les travaux présentés dans cette thése exploitent la nota-
tion UML (Unified Modeling Language) étendue par le profil MARTE (Modeling and Analysis of Real

Time and Embedded systems) pour la modélisation au niveau utilisateur. Cette partie en présente
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les aspects nécessaires a la lecture du manuscrit.

La spécification formelle pour les systémes temps réels. Les travaux réalisés sappuient sur les méth-
odes formelles pour décrire un systéme, analyser son comportement et évaluer ses propriétés. Plusieurs
formalismes traitent de I'analyse des propriétés temps réels. Nous présentons ici les automates tem-

porisés et les réseaux de Petri temporisés et les outils correspondants.

Les transformations de modeles. Celles-ci permettent de manipuler automatiquement les diftérents
modéles intervenants dans le développement d’un systéme, et d’établir les liens entre les diftérents
aspects et niveaux d’abstraction. Celles-ci peuvent étre mis en oeuvre de différentes maniére. Dans
cette these, nous utilisons le langage de programmation Java et les outils « Eclipse Modeling Frame-
work » pour transformer le modeéle utilisateur (en UML/MARTE) en modeéle de vérification (en réseau

de Petri temporisé). Cela facilitera I'intégration des différents outils de la boite a outils.

La vérification formelle des systémes temps réels. Cette tiche détermine si un systéme satisfait ses
exigences lorsque ces deux éléments sont spécifiés formellement. Nous présentons les différentes
approches pour la vérification temps réel et comparons les trois grandes classes de techniques ap-
pliquées dans la vérification formelle: I'analyse statique, la preuve de théoréme et la vérification de

modéles.

Laréduction del'espace d’état dansla vérification de modeles. Ces techniques de vérification formelle
souffrent du probléme de I'explosion combinatoire de I'espace d’états. De nombreux travaux se sont
consacrés a la recherche de solutions efficaces. Nous discutons dans cette partie des différentes
stratégies de réduction couramment utilisées: analyse symbolique a base de diagramme de décision

(BDD), réduction d’'ordres partiels, raisonnement compositionnel, abstraction et symétrie.

Lanalyse des contre exemples de vérification des modeéles. La génération de contre exemple lorsqu’une
exigence n'est pas satisfaite est un service essentiel fourni par les vérificateurs de modéle. Un contre
exemple est une trace d'exécution qui ne satisfait pas les exigences attendues. Nous présentons dans
cette partie certains techniques d’assistance a la localisation des erreurs en fonction des contre ex-
emples obtenus. Ces techniques visent a indiquer un ensemble d’éléments suspects dans le modéle

sans les classer.
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Cette état del'art permet de conclure que, d’une part, nous pouvons proposer différentes méthodes pour
réduire l'espace d’état lors de la vérification de modeles : définir une sémantique d’exécution dulangage util-
isateur UML/MARTE spécifiques a une famille de propriété; spécifier les exigences utilisateurs par traduction
vers un ensemble de patrons de vérification atomiques; vérifier les propriétés en utilisant des observateurs;
réduire I'espace d’état en sappuyant sur les caractéristiques de la famille de propriétés considérée; et d'autre
part, nous pouvons proposer un facteur de classement pour améliorer la précision de l'aide a la localisation

des erreurs dans la vérification de modéles.
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2.1. MODEL-DRIVEN ENGINEERING

This chapter presents the background information and the state of the art related to the approaches de-
tailed in the following chapters. The information contained in this chapter includes the introduction about
model-driven engineering, modeling, specification, transformation and verification methods for real-time
systems, information about the state space reduction techniques in model checking, details about the fault
localization related feedback approaches in model checking. We conclude at last on the state of the art to

explain why we choose to develop this work.

2.1 MODEL-DRIVEN ENGINEERING

Model-Driven Engineering (MDE) targets the improvement of the reliability and efficiency of the traditional
software engineering by introducing models and early verification and validation (V & V) including the use
of formal methods. It has evolved over the last 20 years and achieved success in many domains. Models are
reduced/abstract representations of real systems that selectively remove some semantics to highlight the
remaining expected properties from a given point of view. In the context of safety critical systems, models
can be used during the requirement engineering process to derive the requirements for a system, during
the design process to describe the intended system to the implementation engineers, to verify and validate
the properties, to automatically generate execution code, and also to document the system’s structure and
behavior after implementation.

Model Driven Architecture (MDA) [OMGo1 ] is an important software design approach for MDE launched
by the Object Management Group (OMG) in 2001. It is based on the standards uML, Meta Object Facility
(MoF) [OMGu11a], XML Metadata Interchange (xMI) [OMG11b], and the Common Warehouse Meta-
model (CwM) [OMGo3 ]. MDA provides a template for model-driven development processes and summarizes
best practices and design patterns.

The work in this thesis is involved in the OPEES" and P* projects. Project P aims to support MDE of high-
integrity embedded real-time system by providing an open code generation framework. It is able to verify
the semantic consistency of systems described using safe subsets of heterogeneous modeling languages,
ranging from behavioral to architectural languages and presenting a synchronous and asynchronous se-
mantics (Simulink Stateflow/MATLAB, Scicos, SysML, MARTE, UML); generate optimized source code for

multiple programming (Ada, C/C++) and synthesis (VHDL, SystemC) languages; support a multi-domain

12

*http://www.open-do.org/projects/p/
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(avionics, space, and automotive) certification process by providing open qualification material. Project
OPEES aims to settle a community and build the necessary means and enablers to ensure long-term avail-
ability of innovative engineering technologies in the domain of dependable / critical software-intensive
embedded systems. The goal is to build an ecosystem in the open source frame which provides a set of

processes and guidelines for tools/components maturation, verification and qualification.

Summary. In the context of this thesis, we aim to design and experiment a set of methods for the devel-
opment of scalable verification tools based on the property-driven approach. Our focus is on the analysis
of the real-time systems in the architectural models specified by the modeling languages SysML, UML and
MARTE.

2.2 MODELING OF REAL-TIME SYSTEMS

System modeling is the process of developing abstract models of a system, with each model providing a different
view or perspective of that system. Building models which faithfully represent complex real-time system is a non
trivial problem and a prerequisite to the application of formal analysis techniques. We may develop different mod-
els to represent the system from different perspectives, such as an external perspective for modeling the context or
environment of the system, an interaction perspective for modeling the interactions between a system and its en-
vironment, a structural perspective for modeling the organization of a system or the structure of the data, and a
behavior perspective for modeling the dynamic behavior of the system and how it responds to events. [Som10]

Architecture Description Languages (ADL) have been used to model software system architecture since
the 1990s. An architecture is the set of significant decisions about the organization of a software system, the selec-
tion of the structural elements and their interfaces by which the system is composed, together with their behavior
as specified in the collaborations among those elements, the composition of these structural and behavioral ele-
ments into progressively larger subsystems, and the architectural style that guides this organization [BRJos]. A
real-time software system is a system whose correct operation depends on both the results produced by the
system and the time at which these results are produced. To deal with embedded real-time systems, some
domain specific ADLs have been defined, such as AADL [FGHo6] and EAST-ADL [DSLT "o4]. UML is also a
possible solution to address real-time embedded systems.

The Unified Modeling Language (UML) was developed and standardized by the OMG in 1997 to provide

a common language for specification, modeling and documentation in the software development process.
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In many senses, it was a success, because it established a standardized, graphical and easy-to-use notation
modeling system which was comprehensive enough to capture all major aspects of software engineering.
Today, UML is the industry standard for software modeling. As UML by itself was only a documentation and
modeling standard, early UML tools were graphical editors used for communication rather than a central
key technology of model-driven development. Although UML was not intended to be an ADL, the expressive
capability of architecture by UML is more than any ADLs. UML provides large, useful and extensible set of
predefined constructs, and meanwhile it has more potential for substantial formal analysis tool support.

For this reason, UML can be used as an ADL.

UML has many kinds of diagrams and so supports the creation of different types of system model. How-
ever, a survey in 2007 [ESo7] showed that most users of the UML thought that five diagram types could
represent the essentials of a system: Activity diagrams, which define the activities involved in a process or
in data processing; Class diagrams, which describe the static structure of a system by showing the system’s
classes, their attributes, operations (or methods), and the relationships among objects. State machine dia-
grams, which specify how the system reacts to the internal and external events; Sequence diagrams, which
show interactions between actors and the system and between system components; Use case diagrams,
which give the interactions between a system and its environment.

In the context of this thesis, since we are concerned with real-time property verification of concurrent
reactive systems, we rely on the composite structure diagrams to specify the system architecture, and use
the activity and state machine diagrams to specify the system behavior. The composite structure diagrams
describe the internal structure of a class and the collaborations that this structure allows. Compared to
the static-structured class diagram, composite structure diagram could be used to specify the behavior of
collaborations.

Since the introduction of an extension language called UML Profile for Schedulability, Performance and
Time (SPT) [OMGosa], UML enables the users to capture time and performance requirements, to assess
those properties from early design models. However, practical experience with SPT revealed shortcomings
within the profile in terms of expressive power and flexibility. MARTE (Modeling and Analysis of Real-Time
and Embedded Systems) [OMGoo] is intended to replace SPT to provide support for specification, design,
verification/validation for real-time and embedded systems. It provides foundations for the model-based
development. The architecture of the MARTE profile is shown in Fig. 2.2.1 [OMGog]. The shared package
MARTE Foundation provides common concerns such as time and the use of concurrent resources; the pack-

age MARTE Design Model models the features of real-time embedded systems using the extensions GCM
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(Generic Component Modeling), HLAM (High-Level Application Modeling), SRM (Software Resource
Modeling), and HRM (Hardware Resource Modeling). The analysis features are supported by the package
MARTE Analysis Model, which provides a generic package GQAM (Generic Quantitative Analysis Model-
ing) and two specific analysis domains SAM (Schedulability Analysis Modeling) and PAM (Performance
Analysis Modeling). These first two specific analysis domains are entirely concerned with time, however
the profile structure allows for adding additional analysis domains, such as power consumption, memory

use or reliability.

MARTE Foundations
I 1 — 1 1
<<profile>> <<profile>> <<profile>> <<profile>> <<profile>>
CoreElements NFP Time GRM Alloc
) )
| |
MARTE Design Model MARTE Analysis Model
1 1 1
<<profile>> <<profile>> <<profile>>
GCM HLAM GQAM Q
A \
1 1 1 / — 1
<<profile>> <<profile>> <<profile>> <<profile>>
SRM HRM SAM PAM

Figure 2.2.1: Architecture of MARTE Profile

Summary. In the context of the thesis, we use the term UML-MARTE to indicate the specification language.

2.3 FORMAL SPECIFICATION OF REAL-TIME SYSTEMS

As revealed by a number of surveys [Kobgg], even the most recent versions of the UML specification suffer
from multiple ambiguities and problems regarding the precise semantics of the language. This is a major
problem for model-centric development which highly relies on precise modeling techniques, as the infor-

mation contained in the user model will be directly propagated to the verification model.
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Formal specifications are mathematical languages used to describe a system, analyze its behavior and
help assess its properties. There exists a number of formal languages dealing with real-time analysis is-
sues, such as Timed Automaton [ADo4 ] and several extended Petri nets such as Timed Petri Nets [ RH8o,
Zubg1], Stochastic Timed Petri Net [FENg1 ], Time Petri Net [MF76], etc, among which Time Petri Net

and Timed Automata are the most prominent.

2.3.1 Timed Automata

Timed automaton (TA) was introduced by Alur and Dill [AD94]. A timed automaton is a finite automaton
extended with a set of dense time clocks, which are real-valued variables. A timed automaton evolves con-
tinuously and synchronously along with their physical clocks. In a timed automaton, each transition has a
guard (a constraint over clock value or events) which indicates when such transition can be fired and a set

of clocks to be reset when the transition is fired.

Example 2.1 (Timed Automaton) The Timed Automaton in Fig. 2.3.1 models the processing of a task, where
clkis a clock. After the reception of a signal proc, the automaton spends at least tyoc_min t.u. in the location Init, and
then transits to the location Processing. Then, it emits the signal free_proc if the processing time does not exceed

toroc_maxs otherwise, it emits error_proc.

Wait Init Processing
> (M >
proc? clk =0 ck = tproc_min
ck < tproc_max, free_proc!
clk > tproc max, €rror_proc!
] y

Figure 2.3.1: Timed Automata Example

Modeling and verification tools such as UPPAAL* and KRONOS® are based on timed automaton.

4http: //www.uppaal.org/
*http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/index-english.html
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2.3.2 Time Petri Net

Time Petri Nets [MF76] extends Petri Nets with timing constraints on the firing of transitions. Here we

use the formal definition of Time Petri Net from [ CR0o6] to explain its syntax and semantics.
Definition 2.1 (Time Petri Net) A Time Petri Net (TPN) T is a tuple (P, T, *(.), (.)®, Ms, (a, B)), where:
o P={p,,ps, ..., pm} is a finite set of places;
o T=A{t, t,, ..., t,} is a finite set of transitions;
« *(.) € (N”)T is the backward incidence mapping;
o« (.)* € (NP)T is the forward incidence mapping;
« M, € NP is the initial marking;

a € (Qso)Tand B € (Qs, U 00)T are respectively the earliest and latest firing time constraints for

*

transitions.

Following the definition of enabledness in [BDg1], a transition t; is enabled in a marking Miff M > *(t;)
and a(t;) < v; < B(t;) (v; is the elapsed time since t; was last enabled). There exists a global synchronized
clock in the whole TPN, and a(#;) and f(t;) correspond to the local clock of t;. The local clock of each tran-
sition is reset to zero once the transition becomes enabled. The predicate T Enabled(t, M, t;) is satisfied if

ti is enabled by the firing of transition ¢; from marking M, and false otherwise.
1 Enabled(t,, M,t;) = (M — *(t)+ (£)* > *(t) A (M= *(t) < *(t)) V (= t)) (2.1)

Example 2.2 (Time Petri Net) An example of Time Petri Net (presented in Fig. 2.3.2) models concurrent
execution of a process. Compared to Petri Nets, the transitions in Time Petrinet are extended with a time constraint
that controls their firing time. Py is the place holding an initial token. Through the fork transition Ty, concurrent
task, (Texe) and task, (Tey.,) start at the same time within respective execution time [11,15] tu. and [19,27]
t.u.. The time constraint uses a local clock which starts once a transition becomes enabled. Until meeting join state

( ij-,,), the system will exit (T,it) or restart (Tyestart) the whole execution according to the running time.
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Task1_running [11,15] 110, o0]
O—) Trestart
[0,0] Task1_ends 2 [3,10]
Pinit fork [19,27] P. . T

: join exit Pexit

Task2_running Task2 ends

Figure 2.3.2: Time Petri Net Example

Time Petri Nets are widely used to formally capture the temporal behavior of concurrent real-time
systems due to their easy-to-understand graphical notation and the available analysis tools, such as TINAS
[BRVo4], INA 7, Roméo ¥ etc. Time Petri Nets are suitable for correctness, dependability, performance
and timing analysis in early stages of design. Throughout the thesis, we use Time Petri Nets as the verifica-
tion language for UML-MARTE models.

TINA allows data handling on TPN to perform classic imperative programming by adding common fea-
tures like variable (of type integer and boolean) definition and arithmetic operation to each transition. The
variable’s value set extends the transitions and states in the reachability graph, which unifies the verification
processes and makes it transparent to the TPN user while enlarging the modeling capability. An integer
property from the state making can also be associated with the integer variables. These marking variables
can only be read but not written. The formalism of TPN that is extended with arithmetic guards and actions
that manipulate this set of variables is called Time Transition Systems (tts)®. Each transition in a tts has

two associated functions:

« PRE represents an arithmetic guard: the transition will be enabled only when the TPN’s marking and

time preconditions and the guard are satisfied.

o AcT is the performed actions when the transition is fired. It can modify the variables that are used

to compute the guards.

6http: //projects.laas.fr/tina/
"http://www2.informatik.hu-berlin.de/ starke/ina.html

8http: //romeo.rts-software.org/

*We use tts to distinguish from Timed Transition System (TTS)
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An example of tts extends Ex. 2.2 by adding PRE(T,y.,) ={Ptask.=0} and ACT(T ;) = {X=10} on
transition T,.,. When the number of token in the place Ty, is zero, Ty, can be fired. Once T, is fired,

variable X is set to 10.

Summary. In the context of this thesis, we rely on the Time Petri Nets as the verification model. The end-
user UML-MARTE model will be mapped to the Time Petri Net model to allow the formal analysis by model
checking. The mapping work is realized using the model transformation techniques introduced in the next

section.

2.4 MODEL TRANSFORMATION

Model transformations are one of the central elements in MDE. They allow the automated processing and
manipulation of multi-level models, and determine the propagation of information through various levels of
abstraction and representation formats. They are used in MDA to translate system specification from abstract
models to others, e.g. from platform-independent models into platform-specific ones or from models into
an executable language.

Model transformation can be implemented in a number of ways [CHo3]: by using a programming
language such as Java or C++, by using a model transformation dedicated language and corresponding
tools, or by a combination of native programs and hybrid transformations. We present some commonly
used model transformation languages: QVT, ATL, and Kermeta.

QuT (Query/View/Transformation) [OMGo8] is a model-to-model transformation standard adopted
by OMG in 2007. It evaluates the expressions over a model to filter and select elements (Query), creates a new
model from the original model (View), and finally expresses the transformation rules (Transformation)
between both models. It uses the Object Constraint Language (0cL) [OMGosb] as mapping language
and MOF as definition language. Model transformation engines that conforms to the QVT standard include
for example SmartQuT [ABD " 08], QuTo [QVTog], etc.

ATL (ATLAS Transformation Language) [JAB " 06] is a model transformation language specified as both
a metamodel and a textual concrete syntax. An ATL transformation program is composed of rules that
describe how to create and initialize the elements of the target models. The transformation rules can be
fully declarative, hybrid, or fully imperative. It allows expressing simple mappings between the source and

target model elements. ATL was one of the experimental languages designed during the writing of the QVT
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proposal.

kermeta [FHN " 06] is an executable metamodeling language which allows describing both the struc-
ture and the behavior of models. It supports EMF-based metamodeling, constraint checking, transformation
and behavior support. The source models and metamodels are explicitly loaded and stored, and then the
target elements are explicitly instantiated and added to the target model. Kermeta supports reflection, ex-

ception handling, object-orientation and aspect-orientation.

Summary. In the context of this thesis, we use the programming language JAVA to transform the end-user

model to the verification model. This will ease the integration of different tools in the whole toolset.

2.5 VERIFICATION OF REAL-TIME SYSTEMS

Verification of a system is the task that determines whether the system is built according to its explicit spec-
ification. Verification assesses the end products against its requirements and ensures that it will perform
as specified. Model-based verification allows detecting errors earlier and preventing their propagation to
later phases in the development. Since verification is conducted all along the development cycle, it pro-
vides manages with continuous and comprehensive information about the quality and progress of the de-
velopment effort. The clients can also be given an incremental preview of system performances with the
opportunity to make early adjustments to their requirements.

In practice, real-time property verification in MDE is implemented in 2 manners: simulation and formal
verification. Simulation is relatively inexpensive in terms of execution time. But it only validates and verifies
the behavior of concurrent systems for parts of possible computation paths. Several existing works have
achieved success in the analysis of real-time systems. Contrasting to simulation, formal verification is a
systematic process that uses mathematical reasoning to verify that the design intent is preserved in the
implementation.

Cheddar '° [SLNMoy4] is a real time scheduling tool designed for checking task temporal constraints
of a real-time application/system described with AADL. It allows to specify systems composed of several
processors which own tasks, shared resources, buffers that exchange messages. It provides a framework
which implements most of the classic real time scheduling theory methods. The framework includes many

feasibility tests and simulation tools. The tests can be applied to check that task response times are met

"%http://beru.univ-brest.fr/ singhoff/cheddar/index.html
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and that buffers have bounded size. SynDEx ' is a system level computer-aided design tool intended to
optimize the implementation, under real-time constraints, of embedded control applications onto multi-
component architectures built from several processors and specific interconnected integrated circuits. It
specifies and formally verifies software applications implemented on hardware. It analytically computes a
schedule that matches the constraint (correct-by-construction) and generates optimized distributed real-
time code thanks to formal verification and exploration of possible implementations manually, or auto-
matically with optimization heuristics, based on multi-periodic distributed real-time scheduling analyses.
UML-MAST '? [MDHo1] is a methodology and a set of tools for modeling and analyzing real-time systems
expressed in UML. It provides an discrete-event simulator to assess the timing behavior of applications, in-
cluding worst-case schedulability analysis for hard timing requirements and discrete-event simulation for
soft timing requirements. MARTE2MAST ' [MC11] is a tool that enables the extraction of schedulability anal-
ysis models and their direct analysis, which is similar to the methodology of UML-MAST but the modeling
constructs are those defined in the MARTE standard. It supports analysis using simulation tools and static
analysis.

There exists some other real-time property verification approaches such as the one based on Integer
Linear Programming (ILP). Lauer et al. [LEBP11a] used a modeling approach for Integrated Modular
Avionic (IMA) based on the tagged signal model [LSV97] and the abstraction of networks. The tag system
was then transformed into an ILP problem. They proposed evaluation method for the end-to-end real-time
properties based on ILP, and obtained optimal results.

Formal methods allow specifying a system’s requirements, designing an implementation, and assessing
its consistency, completeness, and correctness in a mathematical fashion. There are three main classes of

techniques used in formal verification: static analysis, theorem proving and model checking.

2.5.1  Static Analysis

Static analysis [Kil73 ] is used to perform type checking and optimization in compilers, bug-finding in pro-
grams, and some formal verification on programs. When performing formal verification of property, it
defines and proves a property of possible behaviors of a complex program without running the program.

It's common to approximate or abstract information, e.g. instead of the natural numbers o, 1, 2, ..., we could

"http://www.syndex.org/
12http ://mast.unican.es/umlmast/
3http://mast.unican.es/umlmast/marte2mast/
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use zero, small, big. Sound approximations include all the behaviors and reachable states of the real system,
but are easier to compute.

Abstract interpretation [ CC77] is a theory of sound approximation of the semantics of programs. It can
be viewed as a partial execution of a program which collects information about its semantics (e.g. control-
flow, data-flow) without performing all the computations. Static analysis is a main concrete application
of abstract interpretation, which was first used in compilers for program optimization with FORTRAN
[BBB"57]in 1954.

The advantages of static analysis include high efficiency for handling large systems, no need for the en-
vironment model (input/output, libraries, etc), and high degree of automation. The shortcomings include
the production of false alarm caused by the imprecision, and the limitation for verifying dynamic variables
because the analysis is not dynamic. Currently, there are approaches [Erno3 ] that compare static analysis
and dynamic analysis to combine them in the verification.

The properties checked by static analysis are usually implicit, such as uninitialized variables, division by

o, index of array out of bounds, overflow/underflow, null pointer dereference, etc.

2.5.2 Theorem Proving

Theorem proving [Ruso1] is a set of techniques to prove that an implementation satisfies its specification
by mathematical deduction. The correctness claims are formulated as a mathematical theorems, which are
then proved either manually or automatically with the help of a proof assistant such as Pvs [ORR " 96], HoL4
[SNo8], Isabelle [Pauoo], Coqg [DFH " 91], etc. The automated theorem proving started in the 1960s.

The program and its execution context are first described using some appropriate language, which is
then translated into logical formulae. The expected behavior is then itself described by a formula of the
same language. The proof of correctness is then partly handwritten and synthesized. It is finally checked
with the theorem prover by using a set of axioms and inference rules. Many different kinds of logic are used:
propositional logic, first-order logic, and also non-classical logic and higher-order logic, etc.

Although theorem proving is sometimes able to prove the property fully automatically, it is more com-
mon that many human interventions are needed. Theorem-proving-based verification is thus very seldom
fully automatic. In practice, theorem proving can only be used by experts. The construction of a proof may
take lots of time, and might even be impossible as expressive logics are usually incomplete.

Another shortcoming with theorem proving is that it is not particularly good in providing debugging

41



2.5. VERIFICATION OF REAL-TIME SYSTEMS

information, that is, information as feedback to help locate errors in the system or expected behavior. Usu-
ally, when a proof fails, we often have to manually trace the invariant or variant that cannot be proved nor
displayed, and analyze the reason of proof failure. Therefore, the debugging process is indirect.

Theorem proving allows the verification of the largest family of properties. It can cope with infinite
state spaces of types. Theorem proving can be used in association with model checking by automatically
generating a finite abstraction of the system to be verified. This method allows to decrease the complexity

of the system and to resolve the undecidable boundedness problem [BCNg8].

2.5.3 Model Checking

Model checking involves the design of a more abstract finite-state model M, and the use of requirement ¢
expressed in temporal logics. A model checking problem requires to assess whether a given model satisfies

a given property by searching state s of M:

M;s ): ¢ (2.2)

Pioneer work in the model checking of temporal logic formulae was done by E. M. Clarke and E. A.
Emerson [EC80, CE82, CES86] and by J. P. Queille and J. Sifakis [QS82]. Clarke, Emerson, and Sifakis
shared the 2007 Turing Award for their work on model checking.

In this part, as this thesis relies on model checking, we present its key principles (Section 2.5.3.1), the
Kripke structure (Section 2.5.3.2), the temporal logic (Section 2.5.3.3), the model checking tools (Section
2.5.3.4) and discuss its strengths and weaknesses (Section 2.5.3.5).

2.5.3.1  Model Checking Principles

Applying explicit-state model checking to a design relies on fours phases:
« System formal specification This phase builds a formal model from a design as input of model
checker. This conversion can be a simple translation task or an abstraction work that eliminates ir-

relevant details. It can be partly or fully automated. It is common to use Labeled Transition Systems

(LTS) as verification model that are equivalent to Kripke structure. [CGP99]

« Property statement This phase builds a formal model of the requirement (expected properties) in

some logical formalism. It is common to use temporal logic, which can assert how the behavior of the
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system evolves over symbolic time.

« Model checking This phase runs model checker to build all the execution paths and assess the sat-
isfaction of expected properties by searching some desired (undesired) states. The verification by

model checking is automatic and able to terminate if the state space is finite.

« Feedback analysis If the property is not satisfied in some executions, the model checker generates
a counterexample. The counterexample is thus an error trace. It can be used to analyze the reason

of error by simulation or other techniques, and furthermore to refine and adapt the design or the

property.
2.5.3.2 Kripke Structure

The state of a system is used to describe its status at a specific time instant. The behavior of a system
can be seen as a finite or infinite set of transitions between the states. We use Kripke structures (ktz) to

describe system’s behavior. We recall the definition of Kripke structure from [ CGP9g, HC96].

Definition 2.2 (Kripke Structure) A Kripke structure M over a set of atomic propositions AP is a 4 tuple
M = (S,S,, R, L) where

.

S is a finite set of states.
« So C Sis the set of initial states.

« R C S X Sisatransition relation that must be left total, that is, for every state s C S there is a states’ C S
such that R(s, s).

o L: S — 2% isafunction that labels each state with the AP that are true in that state.

A path in a Kripke model M can be an infinite sequence
P = So,5,5,... €S

such thats, € S, and (s;, s;1,) € R.
A state s is reachable in M if there is a path from one of the initial states to s. This path is then finite.
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2.5.3.3 Temporal Logic

Temporal logic was first introduced by Arthur Prior in [Pris7]. It describes the property of the ordering
of eventsin time for LTS, and therefore can be used to specify the behavior of a reactive system and to specify
the properties to be assessed for a given LTS.

Linear Temporal Logic (LTL) [Pnu77] is built from a finite set of atomic propositions, a set of logical
operators negation (), conjunction (A) and union (V), constants true (T ) and false (L), and the tem-
poral operators G for always ([J), F for eventually ({), X for next (), U for until, W for weak until, and
R for release.

Regarding the expressiveness of LTL, since LTL is propositional logic, i.e. it contains no quantification
over variables, it can not specify quantitative properties, but only logical properties.

Metric Temporal Logic (MTL) [Koy9o] is an extension of LTL over a discrete time line to support the
specification of relative-time and real-time constraints. MTL contains time-constrained operators: always
(0), eventually (¢), next (), strong until (U), and weak until (W).

2.5.3.4 Model Checking Tools

Many model checking tools have been developed to assess temporal logic formulae over labeled tran-
sition systems/Kripke structures. In this part, we present three widely used model checking tools: TINA,
UPPAAL and SPIN.

TINA (TIme petri Net Analyzer) [BRVo4] is a toolbox for the edition and analysis of Petri Nets, in-
cluding inhibitor and read arcs, Time Petri Nets, including priorities and stopwatches, and an extension of
Time Petri Nets with data handling called Time Transition Systems (tts) (that should not be mistaken
with Henzinger’s Timed Transition System (TTS)). TINA toolset includes the following tools: nd as editor
and GUI for Petri nets, Time Petri nets and automata; tina for construction of reachability graphs; sift for
construction and checking of reachability graph on-the-fly; selt as a State/Event LTL model checker; muse
as a state-event modal y-calculus model checker; plan as an tool for computing the firing time of transitions
or an example firing schedule (also called path); play as a simulator of the net described in any of formats
.anet, .ndr, .tpn, .pnml or .tts; and etc.

The tool tina provides various state space abstractions for Time Petri net (state class graph), following
the techniques discussed in [BM83, BD91, Bero1, BVo3]. Depending on the abstraction option selected,
the construction preserves markings, states, LTL properties, or CTL * (a super set of computational tree logic

(cTL) and LTL) properties of the concrete state space of the Time Petri Nets.
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UPPAAL '* [BDLo4] is an integrated toolbox for editing and analyzing real-time systems modeled as
networks of timed automata, extended with data types (bounded integers, arrays, user defined functions,
etc.). UPPAAL consists of three main parts: a description language, a simulator and a model checker.

UPPAAL can checkinvariant and reachability properties by exploring the state space of a system, i.e. reach-
ability analysis in terms of symbolic states represented by constraints. UPPAAL uses a simplified version of
CTL to specify property, where the query language consists of path formulas and state formulas. State for-
mulas describe individual states, whereas path formulas quantify over paths or traces of the model. Path
formula can be classified into reachability, safety and liveness. Each formula to be verified is transformed
into a timed automata and composed with the system. If the property is not satisfied a counter-example is
generated.

SPIN'* [Holg7b] is the model checker for models of distributed software systems. It supports the analy-
sis of model described in PROMELA language [Holoo]. SPIN can be used as a full LTL model checking system,
supporting all correctness requirements expressible in LTL, but it can also be used as an efficient on-the-fly
verifier for more basic safety and liveness properties. Many of the latter properties can be expressed, and
verified, without the use of LTL. Correctness properties can be specified as system or process invariants
(using assertions), as LTL, as formal Biichi automata, or more broadly as general omega-regular properties

in the syntax of SPIN.
2.5.3.5 Strengths and Weaknesses of Model Checking

Strengths. Compared to theorem proving, model checking techniques are fully automatic, and do not
require manual effort to construct the proofs. Another prominent advantage is that model checkers provide
better feedback than other techniques. A counter example is provided when the property is not verified and
this may help to find the origin of the error.

Weaknesses. Model checking can run into limitations due to the combinatorial state explosion problem.
The number of states in the behavior of system model may easily exceed the amount of available resources.
Several effective methods have been developed to handle this problem (see Section 2.6), however models
of realistic systems may still be too large to fit limited resources. In practice, it is possible to use appropriate
abstraction that preserves the information needed to assess a given property to reduce the state space. The

user needs to build an appropriate finite-state model that fits the verification technology, which is also one

14http: //www.uppaal.org/
Shttp://spinroot.com/spin/what.html/
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of the objectives of this thesis.

Summary. In the context of this thesis, we rely on the TPN as the verification model and on the TINA toolset
as the verification tools. One of the objectives is to provide efficient means to assess the real-time properties
expressed with observers and accessibility assertions relying on high abstract state class graphs to reduce

the cost of model checking.

2.6 STATE SPACE REDUCTION OF MODEL CHECKING

Model checking techniques are user friendly as they provide better automation and error analysis than other
techniques. Unfortunately, they suffer from state space explosion that can make it seem useless for large-
scale systems. Indeed, in some systems, the size of a state space tends to grow exponentially in the number
ofits processes and variables, where the base of the exponentiation depends on the number oflocal states a
process has and the number of values a variable may store, and on some kind of "tightness” of the connection
between the components of the system i.e, the extent to which the local states of components are dependent
of the local states of other components [Valo8].

Many works were motivated to find effective solutions to state space explosion problem. There have
been several major advances in addressing this problem. Most often, the advanced state space reduction
takes advantage of details of the specific verification query. In this section, we discuss some commonly
used state space reduction strategies: symbolic model checking with BDD (see Section 2.6.1), partial or-
der reduction (see Section 2.6.2), compositional reasoning (see Section 2.6.3 ), abstraction (see 2.6.4) and

symmetry (see Section 2.6.5.

2.6.1 Symbolic Model Checking with OBDD

In 1987, McMillan [BCM 92, McMog3] acknowledged that the use of a symbolic representation for the
state transition graphs allowed verifying much larger systems. Contrasting to the original implementation
of model checking algorithm that represents explicitly the transition relations, symbolic model checking
approach represents and manipulates a finite state transition system symbolically as a Boolean functions.
The symbolic representation is based on Bryant’s Ordered Binary Decision Diagram (0BDD) [Bry86].

Symbolic model checking can reduce the state space of explicit model checking, as it avoids explicitly
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constructing the state graph of the system. By using 0BDD, any finite-state system can be encoded using a set
{b,,b,, ...b,} of binary variables. Sets of states, for example the set of initial states, can then be represented
as propositional formulas over {b,, b,, ...b, }, and sets of pairs of states, such as the pairs (s, t) labeled with
action a can be represented as propositional formulas over {b,,b,, ...b,, b, b, ...b/ }. There exists many
redundancies in the decision tree that can be removed by combining isomorphic sub-trees (producing a
directed acyclic graph from the tree) and eliminating nodes with identical sub-trees [Mero1]. The model
checking algorithm is based on computing fixpoints of predicate transformers that are obtained from the
transition relation. The fixpoints are sets of states that represent various temporal properties of the system.
In this way, the process of checking a propositional formula is to follow the path labeled with the boolean

values for each of the inputs.

Most reduction methods were aimed to reduce the number of states. In symbolic model checking, the
size of 0BDD depends critically on the variable ordering, not on the total number of states. 0BDD has achieved

many successes especially in circuit design, as can be seen from the survey [MTo8].

2.6.2 Partial Order Reduction

In asynchronous concurrent systems, most of the activities in different processes are performed indepen-
dently, without a globally synchronization. The most successful techniques for dealing with this problem

are based on the partial order reduction [CGP99, GYLH " 96, GP93, Pelg4, Valg1].

The main idea of partial order reduction is to construct a reduced state graph by eliminating the unnec-
essary behaviors. This method is based on the dependency relations that exist between the transitions of a
system. It exploits the commutativity of concurrently executed transitions, which result in the same state
when executed in different orders. The reduction method then specifies the set of transitions that should
be included in the reduced state graph. The reduced behavior is a subset of the behavior of the full state

graph. Thus it does not add any information to the behavior of a system.

Many experiments showed that the state space for asynchronous concurrent systems can be significantly
reduced. Different partial order reduction approaches works based on three different type of subsets of
states: the stubborn sets [Valg1], the persistent sets [ GP93 ] and the ample sets [Pelo4 ). These techniques

contain similar ideas, and only differ on details.
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2.6.3 Compositional Reasoning

Compositional reasoning reduction techniques are considered effective in systems with modular structures
when multiple processes are running in parallel. The main idea is a divide and conquer strategy that divides
the whole specification into small parts and verify each part independently from the others.

The use of compositional reasoning follows three steps: first decompose the system specification into
local properties that describe the behavior of small parts of the system; second, check each of the local
properties using only the smallest part of system that it describes; finally, perform a conjunction of the
local properties to derive the result for the full system.

Usually the system components exhibit dependencies to each other, which implies that the simple com-
positional reasoning is not feasible in such systems. Therefore, some assumptions about the behavior of
other components are needed when verifying a property on one component. This strategyis called assume-
guarantee reasoning [MC81, Jon83, Pnu8s, GLo4].

The main issues in compositional reasoning are how to devise proper assumptions and how to develop
new proof rules. Some works were aimed to automatically generate the assumptions [ CGPo3, NMAo8].
The assumption generation is based on machine leaning that uses the counterexamples generated by model

checkers as the training data.

2.6.4 Abstraction

Abstraction reduction techniques [ CGL94] are usually applied to systems that rely on data manipulations
involved in the states. They attempts to reduce the state space by performing abstraction on the set of
data and the operations applied to data. Two commonly used abstraction techniques are cone of influence
reduction and data abstraction.

The technique of cone of influence reduction focuses on the total number of variables. It attempts to
eliminate the variables that do not influence the verification of expected properties. As a consequence, a
system description is simplified by referring only to the minimum set of variables, and the state space is
reduced as states include these variables.

The technique of data abstraction focuses on the values of data. It attempts to find a mapping between
the actual data values and a smaller set of abstract data values. By extending this mapping to states and
transitions, it is possible to obtain a smaller abstract system that simulates the original system. Abstraction

techniques are usually related to static analysis and abstract interpretation.
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2.6.5 Symmetry

Symmetry reduction techniques [[D96, CEF]96, ES96] are usually used in systems that exhibit topological
symmetric identical components that are coupled to each other, e.g. redundant processes. The state space
reduction approaches based on symmetry make use of the identical or isomorphic processes in a system to
reduce the identical states in the state transition graph. Intuitively speaking, the behavior of a component
can be replaced by the stored behavior of its identical component.

The construction of symmetry state space and its use in verification have been applied to Petri nets

[Jeno6], to CTL * model checking [ CEF]96, ES96], to Biichi automata [ES97, GS97], etc.

Summary. In the context of this thesis, instead of the generic reduction approaches presented in the above
parts, we aim to provide property-specific reduction methods, which are dedicated to a new abstraction

preserving all semantics related to real-time properties, while eliminating the others.

2.7 MODEL CHECKING FEEDBACK

The generation of counterexamples in case a formula is violated is a key service provided by model check-
ers. A counterexample is a trace of execution that does not satisfy the expected properties. Several works
investigated the algorithms for generating [CVo3] and understanding [ GKLo4a, BBDC " 09] counterex-
amples. Some work [ZCP13] builds failure scenarios for end user models using error traces. To diagnose
a system design, generating a counterexample can be used to detect a fault, but the counterexamples pro-
duced by model checkers often stand for error traces in the verification model, which represent sequences
of state changes and are therefore usually lengthy and difficult to understand, even worst with reduction
and abstraction. More precisely, the origin of error might be anywhere along the error trace, thus requir-
ing a lengthy analysis by designers. The ultimate goal is to trace the counterexample back to the designers’
model in order to help fault detection, analysis and correction.

Fault localization is dedicated to monitoring a system, identifying when a fault has occurred, and pin-
pointing the location of the fault. One main fault localization approach derives the faults from some model,
classified into the category Model-Based fault localization, which can be applied in MDE. In model-based
fault localization, the system model may be mathematical, or knowledge based, including observer-based

approach, parity-space approach, parameter identification based methods, etc [Dino8]. The efficiency
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and accuracy of model-based fault localization depends on the appropriate abstraction and reasonable as-
sumptions. On the basis of a survey [Ali12], the major fault localization approaches are classified into s
categories: program slicing [Wei81, AHgo, GBF99], spectra-based fault localization [RBDLg7, RtPRo3,
JHSo2a], statistical inference [LYF " 05 ], delta debugging [ZHo2] and model checking. In this thesis, we
discuss the techniques that use counterexamples that do not satisfy the expected behavior and try to locate
the origin of faults in the model checking.

Automated fault localization in model checking intends to ease and accelerate debugging by indicating
the suspicious components in the model. Current automated fault localization techniques usually either
produce a set of suspicious statements without any particular ranking, or they use a suspiciousness factor
and then rank all statements according it.

According to the survey [Ali12], we discuss the following important fault localization techniques.

. Contrasting counterexamples with good traces using a single counterexample [BNRo3 ] pro-
posed to analyze fault localization using one counterexample that violated the desired properties in
a particular case. Whenever a counterexample is found, the approach compared the error trace de-
rived from the counterexample to all the good traces that satisfied the property. On the observed
error and good traces, the transitions that led to the deviation from good traces are marked as suspi-

cious transitions. This technique has been implemented in the SLAM model checker [BRo1].

. Using multiple counterexamples [ GVo3] introduced an approach that relies on multiple coun-
terexamples. It defined the traces that started from initial states and ended with error states as neg-
ative traces, and the traces that did not take the error state as previous state as positive traces. The
analysis approach denoted the transitions that existed in all positive traces, the transitions that ap-
peared in all negative traces, the transitions that existed in one of positive traces but not in any nega-
tive traces, and the transitions that appeared in one of negative traces, but not in any positive traces.
The algorithm then used the above marked transitions to define the cause of failure. This method

has been implemented in Java PathFinder [HPoo].

- Distance metrics [ Groo4] proposed to define a distance between the error trace and the passing
traces, which are traces in passing test cases that satisfy the requirements. The distance was then used
to find the closest passing trace to the counterexample. The causes of error were then derived from
the comparison results between the closest successful trace and the counterexample. This method

was implemented in explain tool [GKLo4b].
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« Abstract counterexamples [ CGSo4] relied on a prediction that not all components of a model were
involved in a specific property when performing model checking. It marked the states that actually
affected the property. The algorithm was the same as explain, except that it used predicates when

comparing error traces and passing traces. This technique has been implemented in the MAGIC model
checker [CCGto4].

« Reduction to Max-SAT Max-SAT (Maximum Satisfaction) problem [Zim78] is the problem of de-
termining the maximum number of satisfied clauses of a given boolean formula. [JM11b] proposed
an approach that transformed fault localization problem to the Max-SAT problem. It used only one
failing trace and the corresponding input to build the Max-SAT formulation. This method has been
implemented in the BugAssist tool [JM11a].

All of the above § techniques were aimed to produce a set of suspicious statements without any partic-
ular ranking. The precision of fault localization can be improved by devising a suspiciousness factor and
then ranking all suspicious statements according to it. There exist some works [JHSo2b, AADWog] based
on the suspiciousness factor.

To evaluate the success of a fault localization algorithm, some important criteria should be measured,
such as effectiveness, precision, informativeness, efficiency, performance, scalability and information usage.

Here we explain the most significant measurements: effectiveness and efficiency.

« Effectiveness An effective fault localization method should point out the origin of failure. The effec-
tiveness can be evaluated by the precision. According to the survey [WDog ], the effectiveness can be
assessed by a score EXAM in terms of the percentage of statements that have to be examined until the
first statement containing the fault is reached [EWDC10, WQo9, WSQGo8, WWQZo8]. A similar
score using the percentage of the program that need not be examined to find a faulty statement has
been defined in [CZos, JHos, RtPRo3]. These two scores provide the same information, but the
EXAM score is more direct and easier to understand. In this work, we use the EXAM score to assess the
effectiveness of our approach, which is the percentage of transitions that have to be examined until

the first faulty transition is found.

« Efficiency The fault localization techniques in model checking, like other techniques, should termi-
nate in a timely manner, limited by some resource constraints. The efficiency can be assessed by the

scalability and the performance.
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2.8. CONCLUSION

Summary. In the context of this thesis, we aim to provide an automated fault localization approach based
on model checking to ease and accelerate the debugging by locating and ranking the suspicious elements

in a model when a safety property is unsatisfied.

2.8 CONCLUSION

This Ph.D work aims to design and implement a toolset used to verify real-time requirements in large scale
UML-MARTE real-time designs. To deal with large scale systems, the main problem of verification techniques
based on model checking is the combinatorial state explosion problem. It is interesting to adapt existing
techniques or to construct new ones to prevent the combinatorial explosion in the process of real-time re-
quirement verification. Based upon this purpose, the toolset should offer the following real-time property-

specific tools, each of which can contribute to the prevention of the combinatorial state explosion:

the tool for defining execution semantics to end user models (in our case UML-MARTE) and then map-

ping it to the execution model (in our case TPN)
« the tool for formally specify real-time requirements
« the tool for reduce the state space

the tool for efficiently assessing the real-time properties using model checking

the tool for feeding back the origin of errors in the model if a safety property is unsatisfied.

52



Part 11

Contribution to Property-Driven Approaches
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Semantic Mapping from UML-MARTE to
Property-Specific TPN

RESUME

UML, le langage de modélisation unifié, est un langage généraliste qui doit permettre de modéliser n'importe
quel type de logiciel. Pour une activité particuliére, il suffit en général d’'un sous ensemble du langage
adapté pour les experts qui I'exploiteront. De plus, pour exploiter des méthodes de vérification formelle,
il faut choisir un sous-ensemble adapté a la traduction vers ce type de modeéle. Nous avons sélectionné
un sous-ensemble des diagrammes UML adapté a la modélisation de la structure et du comportement
d’architectures logicielles temps réel. Ce chapitre présente la méthodologie de I'approche « dirigée par les
propriétés », qui constitue la base de notre contribution en terme de sémantique de traduction. L'objectif
est de traduire automatiquement le sous-ensemble retenu des modéles UML-MARTE dans le formalisme

des réseau de Petri temporisés pour permettre une vérification efficace de propriétés temps réels. Il s’agit de
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ne conserver de la sémantique ' UML-MARTE que le niveau de détail adéquat pour vérifier ces propriétés
dans le but de réduire l'espace d’états lors de la vérification de modeles. Les diagrammes UML considéré
sont « structure composite » (composite structure), « machine a états » (state machine) et « activité »
(activity). La communication entre les éléments peut étre synchrone ou asynchrone. Du point de vue des
horloges, comme le modéle sémantique des réseaux de Petri temporisés repose sur une horloge globale,
nous considérons en premier lieu des systémes mono-horloge donc des systémes synchrones au sens des
horloges. Afin de modélisation des systémes multi-horloges, nous introduisons une notion de dérive de
I'horloge pour lier les différents horloges indépendantes a I'horloge de référence. Ceci permet de simuler
plusieurs horloges asynchrones. Les exigences considérés étant les propriétés temps réels dans la concep-
tion de l'architecture, les valeurs des objets sont ignorées lors de la traduction des mode¢les. Seul le type et
le nombre d'occurrences des objets sont considérés.

Les contributions principales de ce chapitre se résument en :

« Spécification de la sémantique d’exécution pour les digrammes de structure composite. Ce dia-
gramme relie les comportements des sous-systémes a travers les moyens de communication. La

sémantique d’exécution traite donc les entités Part, Port et Connector.

« Spécification de la sémantique d’exécution pour les diagrammes d’activité. Le diagramme d’activité
explicite le flot de contréle (séquencement, coordination, ...) d’éléments de grain plus fin. La sé-
mantique d’exécution prend en compte les noeuds de controle, les actions déclenchés par événe-
ment et par le temps, les objets et les connexions. Afin de normaliser la sémantique d’exécution pour
le comportement asynchrone, nous étendons la sémantique d'origine des actions pour exprimer un
comportement cyclique a l'aide du profil MARTE que nous traduisons en réseau de Petri temporisé.

Il s’agit d'un modele d’exécution classique pour les systémes réactives asynchrones.

« Spécification de la sémantique d’exécution pour des diagrammes de machines d’état. Le diagramme
de machine a état comportemental (behavioral state machine) est traité. La sémantique est explic-
itée en deux étapes. D’une part, les états hiérarchiques et les régions orthogonales n'apportent pas
d’expressivité en terme de sémantique. Ils servent seulement a faciliter la modélisation de systemes
complexes. De telles machines peuvent étre « aplaties » en exploitant des constructions des dia-
grammes dactivité. D’autre part, les machines a état « plates » comportant des état simples, des
états finaux, des transitions et des pseudo non imbriquées sont traduits en réseaux de Petri tempo-

risés.
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o Spécification de la sémantique d’exécution pour les ordonnancements des ressources. Dans ce tra-
vail, nous ne cherchons pas a fournirla sémantique de toutes politiques d'ordonnancement de ressource
mais d’assurer que l'ordonnancement est réalisable dans le pire cas. Nous proposons donc un algo-
rithme d'ordonnancement générique avec possibilité de préemption. La spécification et la vérifica-
tion en exploitant des politiques d'ordonnancement spécifiques pourront étre traitées comme une

extension de ces travaux.
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Progress Map 1: Property-Driven Semantic Mapping

This chapter introduces the property-driven methodology, which provides the basis for the semantic
mapping contributions in this thesis (Progress map 1). Property-driven mapping is aimed to map the end
user source models (UML-MARTE in our case) to the target verification models (TPN in our case) on the basis
of real-time property verification (Challenge 1 in page 22). The mapping consists in defining a dynamic
semantics (a semantics of observable events) built upon the properties to be verified. To reduce the size of
state space during the verification, the mapping eliminates the semantics irrelevant to the target property,
while preserving a minimal set of property-relevant semantics. According to the target real-time property
family, a denotational semantics is provided as a mapping from UML-MARTE architecture diagram (composite
structure) and behavior diagrams (activity and state machine) to TPN. In addition, a generic scheduling

algorithm with a preemption option is defined. (Contribution 1 in page 24)
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3.1 INTRODUCTION

UML, by its nature, was intended to be a general purpose software modeling language, and as such, is not sim-
ple enough to be efficiently used by non-software experts. Many research works propose DSMLs (Domain
Specific Modeling Languages) based on UML relying on profiles for different types of systems and different
system engineering processes. For the purpose of this thesis, we have selected a large enough subset of UML
diagrams and diagram elements for modeling real-time software architecture and behavior. We focus on

the semantic mapping from the UML model to the verification model.

Methodology. From the viewpoint of methodology, our work is based on the pioneer work [CCG " 07] by
Combemale et al. Aimed to define all the steps from the property specification to effective verification, they
introduced in [CCG " 07] a generic approach to define the operational semantics (a semantics of observable
events) built upon the properties expressed at the metamodel level. Their contribution was introduced
through a simple process description language: SIMPLEPDL on which a set of temporal properties, e.g a
workdefinition must start after another workdefinition is finished, were expressed. Property-driven means

that the formal activities in the development process are based on the purpose of property-verification-ease.

Related work. Currently there are many projects that have made great effort to define restrictions for
UML. This is not the main concern of this thesis. We rely on the UML specification 2.4.1 [OMG11c] and the
commonly accepted interpretation to define a formal semantics for the related UML subset.

Executable UML (fuML) [OMG13] aims to support a variety of different execution paradigms and envi-
ronments. It is based on a very restricted subset of UML 2.4.1 that only handles parts of the activity diagram.
fUML provides precise definition of the execution semantics at implementation level such as the type of
variables, while in the work of this thesis, we focus on the operational semantics at verification level, i.e,
implementation details should be eliminated in order to ensure the efficient formal verification.

Some works like [Craos] studied the semantics of state machine, and provided the result of a com-
parative literature review on approaches to formally capture the semantics of UML state machines, and the
underlying formalism of the approaches e.g., mathematical models (transition systems, abstract state ma-
chine, Petri Net, etc), rewriting systems and translation approaches.

Some existing works [LGMCo4, TMHo8,BBBB11, YYSQ10, AMCNog, CMC ™08, MPFA06, MCBDo2]

have defined mapping semantics from UML diagrams to Petri Nets for verification purpose. The works
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[LGMCo4, TMHo8, BBBB11 ] focused on the measurement of system’s performance, or on the verification
of correctness and inter-diagram consistency, or the cancellation and advanced synchronization patterns in
untimed UML diagrams. The work [YYSQ10] mapped UML-MARTE activity diagram to Timed Color Petri Net
with Inhibitor Arc to provide a possible foundation for analyzing time properties. This method focused on
the mapping semantics of object flows. Colored Petri Nets (CPN) can ease the semantic mapping for data
related elements, but to our knowledge there is no appropriate verification tools that handles the combi-
natorial state explosion problem. [MCBDoz] presented a translation of untimed state machine diagram
into Generalized Stochastic Petri Nets (GSPNs). This allows the qualitative and quantitative analysis of
systems that are described using UML SMD by means of GSPN tools.

[AMCNog, CMC ™ 08] relied on TPN to map SysML-MARTE activity and state machine diagrams to TPN
with energy constraints to estimate the energy consumption and execution time of the system. This map-
ping is not generic, as it can only assess the execution time of the system. [MPFAo06] defined a mapping
for arestricted class of activity diagrams to Time Petri Nets to assess the quality of allocations of the system
functionality. It provided a support for verifying deadline on activities.

Compared to the above related works, our semantic mapping targets the family of real-time properties,
which is easier to encounter the combinatorial state explosion problem than the structural and temporal
properties. Because the physical time behaviors will generate much more states than the logical behaviors
in state class graphs. We do not target a new mapping completely different from the existing ones. On
the other hand, it is impossible to define new mapping semantics for the UML elements like the initial, final
nodes, as their semantics are very restricted. Our purpose is to define a mapping semantics by TPN for a
relatively complete subset of UML-MARTE diagrams and diagram elements, and to apply this mapping seman-
tics to a large scale systems to efficiently verify real-time properties. Therefore, we will adapt some of the

execution semantics defined in the above related works, in order to improve the verification scalability.

Modeling Context. UML-MARTE can be used to model a wide range of real-time systems. It is not the main
purpose of this thesis to cover all the modeling details of real-time systems. Therefore, before presenting

our contributions, we need to clarify the modeling context in this work.

« Synchronous & Asynchronous: The systems that we are interested in are the concurrent real-time
systems. From the viewpoint of message passing, we allow both synchronous and asynchronous
communication modeling between different parts of the system. From the viewpoint of clock, as

the TPN model provides a common synchronous clock, the modeling context allows synchronous
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clock by default. To analyze quantitative properties, it usually needs for a reference clock, then the
other clock are mapped to this reference. In order to enable the modeling of asynchronous clocks, we
introduce the concepts of clock rate, drifts and offset to map multiple clocks to the reference clock,

which is a simulation of multiple asynchronous clocks.

« Cyclic execution: Cyclic execution is a very common pattern for real-time systems that implement
control & command to interact with the real world. An event-trigger cyclic execution can be simply
specified using an action and aloop section. Itis activated by the readiness of the data and the control
flow. However, for the time-trigger execution, the activation of an action is controlled by the data,
control flow and the rising edge of the cycle period. Although the semantics of offset and period
can be modeled using MARTE profile, the whole behavior can be modeled in various ways. In order
to ensure a standard mapping semantics, we decide to extend the original semantics for the action
node defined in UML activity diagram. The original semantics of an action focuses on event-trigger
behavior. We extend it by defining a time-trigger semantics using the MARTE profile, and then map it
to the TPN model. This pattern is very general in the reactive asynchronous system, and thus can be

reused in the modeling and verification. This issue is detailed in Section 3.4.3.2.

« Object Value Issue: As the object values do not affect the verification result of real-time proper-
ties in the architecture design of V-model (see page 18 in Chapter 1), they are ignored during the
semantic mapping. Only type and the occurrence number of the objects are considered. This issue

is detailed in Section 3.4.4.

« Simplification on the use of MARTE: In order to simplify the modeling and mapping works, we have
used some simplifications on the use of MARTE profile. This simplification does not impact the exe-

cution semantics in TPN.

+ Resource scheduling: In real-time systems, the behavior shares and consumes the resources such
as the CPU, memory, bus. The scheduling policy applied by the scheduler will impact the real-time
requirements. As modeling of scheduler policy is not the main concern of this thesis, we do not
aim to provide mapping semantics for any specific policy. Instead, we propose a generic scheduling
algorithm with preemption option, which is used to decide for the given time T, which resource

instance(s) will be allocated to which requester(s).
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Contributions. We aim to provide not only effective but also efficient property verification using the ex-

ecution semantics derived from the mapping. Our contributions in this chapter are summarized as below:

« According to the expected real-time property family, we have defined the operational semantics for
mapping UML-MARTE architecture diagram (composite structure) and behavior diagrams (activity and
state machine) to the property-specific TPN model. The mapping library is provided in Appendix A.
For some untimed UML elements not influencing real-time properties, such as Initial, Join, Fork
and Merge nodes in the activity diagram, the target TPN semantics can be standardized and homo-
geneous for all families of the properties. For the timed UML elements, the mapping eliminates the
semantics irrelevant to the target property, while preserves a minimal set of property-relevant se-

mantics to reduce the size of state space in the verification.

« A generic scheduling algorithm including a preemption option is defined. This scheduling algo-
rithm is used to decide for the given time T, which resource instance(s) will be allocated to which

requester(s).

In this chapter, we give an overview of the property-driven approach in Section 3.2; then define the
semantic mapping for composite structure diagram (Section 3.3), activity diagram (Section 3.4) and state
machine diagram (Section 3.5); then we propose a mapping semantics for a generic scheduling algorithm
including optional preemption (Section 3.6); we discuss the verification of model transformation and
boundedness issues for the TPN with inhibitor arcs in Section 3.8; at last the time semantics in multi-clock

modeling is discussed (Section 3.7).

3.2 PROPERTY-DRIVEN APPROACH

3.2.1  Coreldea

Combemale et al. presented in [CCG ' 07] a property-driven approach for specifying and checking behav-
ioral properties. The approach defined all the steps from the property specification to effective verification.
Property-driven means that the formal activities in the development process are based on the purpose of

property-verification-ease. Their contribution was introduced through a simple process description lan-
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guage: SIMPLEPDL on which a set of temporal properties were expressed. Combemale et al. defined the

following steps to assess the properties relying on TPN and LTL:

. The first step is to characterize the properties by the expert. The properties can be structural, tempo-

ral and quantitative ones according to SIMPLEPDL. The structural ones are static construction rules
that can be defined and checked by the use of 0CL. The temporal ones are those properties that should
be satisfied in every model execution. One example is a given process in SIMPLEPDL should effec-
tively terminate. The quantitative ones target the specification or synthesis of critical paths of execu-
tions in terms of minimal or maximal resource consumption such as the worst case execution time

or resource use. !

The second step is to characterize a finite set of states for the metamodel entities from the property.
For example, a workdefinition can either be not started, started or finished, and there is a notion of

time and clock associated with each workdefinition.

. Relying on these states, an observable abstraction of the generic operational semantics of the design

model with respect to the properties is defined. This operational semantics makes the design model

executable and thus analyzable by model checkers.

The fourth step expresses the property to be checked in the design model. For example, temporal
properties can be expressed using TOCL (an extension of 0CL with temporal operators) at the meta-

model level. This has been implemented by Zalila in [ZCP12].

. 'The fifth step formally expresses the operational semantics using the verification model TPN, and also

formally expresses the property using LTL. The semantics is defined as a mapping from SiMpLEPDL
to TPN. The mapping can be implemented using model transformations, which are written in ATL in

the work of Combemale and Zalila.

The final step performs the LTL properties checking on the TPN model using the TINA toolset. The
feedback of properties results can be automatically computed using the transformation model de-

fined during the translation SIMPLEPDL2PETRINET.

'As the quantitative ones are more complicated, they illustrated their approaching using the structural and temporal prop-

erties.
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In the context of this thesis, we follow the same methodology proposed by Combemale, and propose
a property-driven mapping semantics to translate UML-MARTE models to the real-time property specific TPN
models for the verification purpose. As the TPN models containing real-time semantics are easy to encounter
the combinatorial state explosion problem, its mapping semantics needs to be property-specific, which
preserves minimal property-relevant semantics.

Firstly, the real-time properties need to be characterized. For the second and third steps, as this work
concerns the quantitative time properties, it is not as simple as the temporal or structural properties to
characterize a finite set of states. As the quantitative time properties cannot be directly assessed using logic
formulae such as LTL, CTL, the operational semantics built upon observable states/transitions needs to be
defined using the standard observer techniques. In the fourth step, properties are expressed using a set of
real-time property patterns defined in Chapter 4. Fifth, The operational semantics is formally expressed
using the verification model TPN, associated observers and the logic formulae (Chapter 5). At last, the
property expressed with logic formulae is checked using the model checker.

We do not follow exactly the same steps as the original work of Combemale, especially for the second,
third, and fourth steps. Moreover, we add a new step for property specific state space reduction (Chapter
6) before the model checking, which aims to reduce the state space of model checking and thus improve

the efficiency of verification.

3.2.2 Principles of Semantic Mapping

The semantic mapping approach for UML-MARTE is driven by the real-time properties that we plan to assess.

The mapping should respect the following s principles:
1. The mapping rules for a UML entity may change according to the family of properties.

2. For some untimed UML elements not influencing real-time properties, the target TPN semantics is
intuitive, and can be standardized and homogeneous for all families of the properties, and can be

derived from the previously existing mappings.

3. The mapping rule should guarantee the consistency between high-level user models and lower-level
verification models. However, a correct mapping does not imply a full semantics preservation, but
rather to ensure as much as possible the scalability of verification while being correct according to the

UML specification. For example, for the timed UML elements, the mapping eliminates the semantics
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irrelevant to the target property, while preserving a minimal set of property-relevant semantics to

reduce the size of state space in the verification.

4. The target TPN models should guarantee high performance verification, especially for large scale ap-
plications. Therefore, the mapping semantics should allow the TPN models to perform high-level
abstraction to ease the generation of the state class graph during the model checking. In our case,
we aim to generate the state class graph preserving only marking information (the minimal size state
class graph), but not LTL information. This means the TPN model derived from the mapping must
not possess the priority arcs. The priority arcs may ease the modeling work, but a TPN model with

them is not allowed to generate state class graph preserving only marking information.

5. Inorder, first to be able to automate the model mapping process, and then to keep a simple mapping,
a trade-off must be made to allow an easy assembly of the TPN mapping results for each UML entity.
It seems that the verification efficiency would be decreased by this trade-off. But it in fact can be
compensated later by a state space reduction phase that eliminates the elements irrelevant to the

verification.

3.3 COMPOSITE STRUCTURE DIAGRAM MAPPING SEMANTICS

The basic purpose of architecture model is to connect different sub-system behavior models and create a
system-level model, by means of communication media. The objective of the mapping is to replace each
architecture model’s entities by its relevant behavior model while respecting a context-based naming con-
vention and their structural relations.

Composite Structure Diagram (CSD) is a kind of static structure diagram. It specifies the internal structure of
a class, including its interaction points to other parts of the system, and the architecture of all parts managed by
this class. CSD is used to explore run-time instances of interconnected instances collaborating over communications
links. (page 183 of UML Spec.)

The most significant entities in CSD are Part, Port and Connector. The others (Interface, Role) remain
important, but either only disposing of static semantics for syntax consistency verification (e.g. Interface
related nodes), or having ambiguities in common modeling work as its semantics differs according to the
scenario (e.g. Role related nodes). In this section, we define the mapping semantics for the Part, Port and

Connector and explain in detail why the others are not involved.
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3.3.1 Part & Role

A colLaboration describes a structure of collaborating elements (roles), each performing a specialized function,
which collectively accomplish some desired functionality. (page 190 of UML Spec.) A Part declares that an in-
stance of this classifier may contain a set of instances by composition. All such instances are destroyed when the
containing classifier instance is destroyed. (page 206 of UML Spec.)

Part is an element that represents a set of one or more instances which are owned by a containing clas-
sifier instance. There is a tiny semantic difference between Part and Role. Role is a logical concept for a
collection of functionality while Part is a physical instance that implements a collection of functionality.
One Part can play different roles in the system simultaneously, and one Role could be played by only one
Part at one time, but possible by different parts when time changes. For example, rear wheel and front
wheel are two different roles in a car system, although they are designed to accept the same type of part
(standard wheel) to implement. Therefore, we only consider the mapping semantics for Part in our work.

As a classifier can be either primitive or structural, the Part can also be primitive and structural (see
Fig. 3.3.1). The Part itself is not mapped to any explicit TPN structure. Its semantics is mapped through
the inner behaviors or structures. The mapping type provided by Fig. 3.3.1 is used to define the mapping

semantics for ports and connectors in for following sections.

Node Type Notation Mapping Type
.. Port I — 7777
partName: No Explicit o 7?7 EL B 7‘? L
Part ClassName Inner Structure ‘—ﬁa - Port;
Porty _ 1
Primitive Structural

Figure 3.3.1: Mapping Semantics for Part

From the viewpoint of semantic mapping, a structured behavior is described by its inner structure, while
a primitive behavior is described by its associated behavior model. In the structural Part, the architecture
model could be considered as a tree-like structure, and the mapping process is based on a recursive tree-
analysis approach. Each Part can be mapped to a TPN model, with inner behavior derived from the classifier

or associated behavior model. These TPN models are then connected through the communication medias.
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In our work, we map the whole system model to one TPN model containing all the parts and communication

medias, in order to ease the analysis afterwards.

3.3.2 Port & Interface

A Port represents an interaction point between a classifier instance and its environment or between a classifier
instance and instances it may contain. Ports are connected to properties (parts) of the classifier by connectors
through which requests can be made to invoke the behavioral features of a classifier. (page 203 of UML Spec.)
The interfaces associated with a port specifies the nature of the interactions that may occur over a port. (page 202
of UML Spec.)

A Port can appear on the boundary of a contained part, a class or a composite structure. A port may
specify the services a classifier provides as well as the services it requires from its environment. An In-
terface is similar to a class with restrictions. All interface operations are public and abstract, and do not
provide any default implementation. Both Port and Interface are often used to model interaction point.
The logical view could be described by the interface, which specifies the provided service while its physi-
cal view is often modeled by port, which implements the specification. In our work, we only consider the

mapping semantics for Port. A port is mapped to a place in the TPN models, as shown in Fig. 3.3.2.

Node Type Notation Mapping Semantics

portName:
Port ClassifierName ] Q

Figure 3.3.2: Mapping Semantics for Port

Allocation of ports. To define the mapping semantics for the allocation of ports, we need to continue the
discussion of primitive and structural parts mentioned in the previous section.

In the primitive part, the ports are in fact a semantic synonym for the Input/Output Pin of its inner
behavior models; while in the structural part, they are a data buffer between the composites in CSD. In
the former cases, an allocation semantics should be defined between the ports and the Input/Output Pin.
Similarly, in the later case, the allocation semantics should also be defined, but between the ports on the
container part and the ports on the inner parts. This allocation semantics is specified using the MARTE pro-

file: MARTE : :MARTE_Foundations: :Alloc: :Allocation. Fig. 3.3.3 provides an example of this allocation
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in the primitive part. In its mapping semantics, the input pin is mapped to the same place of its associated

port, and the output pin is mapped to the same TPN place as its associated port.

<<AllocatedFrom>> __InputPin Part
Porty| +----------—----- ]
o — Action A @
P------ - +| | Port 1
<<AllocatedFrom>>

OutputPin

Figure 3.3.3: Example of Port Allocation Semantics

3.3.3 Connector

Connectors specify links that enables communication between two or more instances. Each connector may be at-
tached to two or more connectable elements, each representing a set of instances. (page 197 of UML Spec.)

If the type of the connector is omitted, the type is inferred based on the connector. (page 197 of UML Spec.) In
the context of this thesis, the type of the connector is always omitted during the modeling.

A connector is mapped to a transition with time constraint [t,,;,, tma,] and relevant TPN arcs that connect
the TPN places mapped from associated ports or Input/Output Pin (Fig. 3.3.4), where [tyin, tmax] is the

communication time specified by the following MARTE stereotype

MARTE : :MARTE_Foundations: :GRM: :CommunicationMedia: :Packet T.

Path Type Notation Mapping TPN

[tmin’tmaxJ

Connector
——

Figure 3.3.4: Mapping Semantics for CSD Connector

Allocation of connection. A connector consists of at least two connector ends, each representing the participa-
tion of instances of the classifiers typing the connectable elements attached to this end. The set of connector ends

is ordered. (page 197 of UML Spec.) Therefore, the connector end can be a part or a port. From a semantic

67



3.4. ACTIVITY DIAGRAM MAPPING SEMANTICS

mapping point of view, there exist three kinds of connections: connection between two end ports, between

two parts, and between one port and one part.

Similar to the allocation of ports, we recommend a modeling convention using the following MARTE

stereotype to specify the allocation semantics between the connector ends:
MARTE : :MARTE_Foundations::Alloc::Allocated

Fig. 3.3.5 provides the mapping semantics for these three kinds of connections respectively, where the

ports and pins are mapped to TPN ports connected by the connector transitions.

Path Type Notation Mapping Semantics

Connection <<AllocatedFrom>> [tmin'tmaxJ
(between Port <<Packet T>> Porty N Y
Partl Part2 N N

two ports)
Connection 5 InputPin Part2 N (tmintmax] -
(between <<AllocatedFrom>> .—> Action A O 1 jHI—N: )
port and part) “<<Packet T>> o o

Connection | | Partl OutputPin [51 - | <<AllocatedFrom>> _ _|_ £ Inputh art2 R [tmintmax] N
(between @~ ActionA T.(@)  <<PacketT>> T Action B { \HI’)‘/ )
two parts) - =

Figure 3.3.5: Mapping Semantics for CSD Connection

3.4 AcCTIVITY DIAGRAM MAPPING SEMANTICS

Activity modeling emphasizes the sequence and conditions for coordinating lower-level behaviors. These are com-
monly called control flow and object flow models. The actions coordinated by activity models can be initiated
because other actions finish executing, because objects and data become available, or because events occur external
to the flow. (page 319 of UML Spec.) The main elements in UML activity diagram (AD) behavior model are

control nodes, actions, objects, and connection elements.
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3.4.1 Semantic Mapping Pattern

In order to automate the assembly of the TPN elements mapped from UML-AD elements, a generic semantic
pattern (Fig. 3.4.1) is defined. Only the TPN elements (transition, place, arc) in solid line belong to the
mapping result of a given UML-AD element; those in dotted line are the mapping results of other connected AD
elements. The TPN mapped from all the AD nodes except time-trigger actions, object nodes and connections.
A target node could contain a set of transitions represented by T_IN at the beginning to connect with other
predecessor structures. In the same manner, a set of places represented by P_0UT could exist in the end to

connect with its successor structures.

< 0o

/il‘—> Transition—place structure *)Oi

T_IN P_OUT

Figure 3.4.1: Generic Semantic Pattern of Activity Elements

3.4.2 Control Nodes

The mapping of some control nodes is intuitive, as Petri Net was the main inspiration for AD in the early
versions of UML. Thus TPN possesses a similar semantics to the main control nodes (branch, concurrent,

sequence, etc). For the pair of dual control nodes, the mapping results in TPN are also dual.
3.4.2.1 Initial Node & Flow Final Node

Activity Initial node and FlowFinal node are dual nodes for control flow token. An initial node is a
control node at which flow starts when the activity is invoked. (page 405 of UML Spec.) As the starting point of
the diagram, Initial node emits the initial control flow token. An initial node does not have any prede-
cessors.

A flow final node is a final node that terminates a flow. (page 402 of UML Spec.) FlowFinal node destroys
the control flow token of one flow. A flow final node does not have any successors. The mapping semantics
for this pair of nodes are shown in Fig. 3.4.2. Based on the mapping pattern introduced in the Section 3.4.1,

initial node does not have any T_IN and flow final node does not have any P_ouT.
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Node Type Notation Mapping TPN

[

Initial Node . @ >

P_OUT
[0,0]
i N

Flow Final @ s f>l

T_IN

Figure 3.4.2: Initial Node & Flow Final Mapping Semantics

3.4.2.2 Activity Final Node

An ActivityFinal node is a final node that stops all flows in an activity. (page 335 of UML Spec.) Activ-
ityFinal node requires the immediate termination of all the activity flows and the destruction of all the
control tokens. From the semantic mapping point of view, this means that all the activity flows should be
terminated once the activity final node receives the control flow token.

In TPN, this "sudden exit” semantics is implemented using inhibitor arcs. An inhibitor arc enforces the
precondition that the transition may only fire when the place is empty. Thus, when the activity node re-
ceives its token, all the transitions cannot be fired any more. The mapping semantics is thus defined as Fig.
3.4.3: each TPN transition in the activity is connected to the ActivityFinal node using an inhibitor arc.

The decidability issue of the TPN with inhibitor arcs will be discussed in Section 3.8.

Node Type Notation Mapping TPN
I \
[0,0] POUT | 4|  EachTPN |
Activity Final @ = transitionis |
I‘) Lo linkedtoan |
[ inhibitor arc. !
T_IN } | }

Figure 3.4.3: Activity Final Node Mapping Semantics
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3.4.2.3 Fork Node & Join Node

Fork and Join are dual nodes for concurrent control flow. A Fork node is a control node that splits a flow
into multiple concurrent flows. The edges coming into and out of a fork node must be either all object flows or all
control flows. (page 403 of UML Spec.) Fork node denotes the beginning of concurrent processing.

A Join node is a control node that synchronizes multiple flows. A join node has one outgoing edge. If a join
node has an incoming object flow, it must have an outgoing object flow, otherwise, it must have an outgoing control
flow. (page 409 of UML Spec.) Join node denotes the end of concurrent processing. All flows going into a
Join node must provide a control token before processing may continue.

In the context of this thesis, we only focus on Fork and Join nodes for the control flows. The mapping

semantics is defined in Fig. 3.4.4.

Node Type Notation Mapping TPN
P_OUT

—>
Fork Node 5 ﬁ
—>
— 5
Join Node : .
—

Figure 3.4.4: Fork Node & Join Node Mapping Semantics

3.4.2.4 Decision Node & Merge Node

Decision and Merge are dual nodes for branch control. The mapping semantics is defined in Fig. 3.4.5.
A decision node accepts tokens on an incoming edge and presents them to multiple outgoing edges. Which of

the edges is actually traversed depends on the evaluation of the guards on the outgoing edges. (page 386 of UML
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Spec.)

The outgoing control flows of a decision node usually include guard conditions which will allow the
control of flow if the guard condition is met. The guard conditions are ignored in the mapping semantics.
The reason is detailed in the following part (page 78).

A merge node is a control node that brings together multiple alternate flows. It is not used to synchronize
concurrent flows but to accept one among several alternate flows. The edges coming into and out of a merge node
must be either all object flows or all control flows. All tokens offered on incoming edges are offered to the outgoing
edge. There is no synchronization of flows or joining of tokens.(page 415 of UML Spec.)

Merge node brings together multiple alternate incoming flows. It is not used to synchronize concurrent
flows but to accept one among several alternate flows but only one token can be accepted. In the TPN of
Merge node, if two incoming flows arrive at the same time, the place P_oUT will have two tokens. As aMerge
node has a single outgoing edge, which maps to a single TPN arc, this enforces that the two tokens in P_oUT

are consumed one by one. Thus this mapping semantics conforms the standard specification of UML.

Node Type Notation Mapping TPN

M

4>
[0,0] P_OUT// o
Decision Node

/X
T
.

Merge Node 7<>—> /\i — —)IHQ—)

Figure 3.4.5: Decision Node & Merge Node Mapping Semantics
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3.4.3 Action

An Action represents a single step within an activity, that is, one that is not further decomposable within the
activity. As a piece of structure within an activity model, it is a single discrete element; as a specification of behavior

to be performed, it may invoke a referenced behavior that is arbitrarily complex. (page 335 of UML Spec.)

UML-AD generalizes more than so types of concrete actions. Basic actions include those that perform
operation calls, signal sends, and direct behavior invocations. In this thesis, we focus on the abstract action
(page 259 of UML Spec.), all action executions will be executions of specific kinds of actions. When the
action executes, and what its actual inputs are, is determined by the concrete action and the behaviors in

which it is used.

The activity diagram can be used to model low-level behavior for both event-trigger and time-trigger
requests. Except where noted, an action can only begin execution when it has been offered control tokens on all
incoming control flows and all its input pins have been offered object tokens sufficient for their multiplicity. (page
336 of UML Spec.) This semantics is usually the case for event-trigger requests. For time-trigger requests,
the action can begin execution when it has been offered control tokens on all incoming control flows, all its
input pins have been offered object tokens sufficient for their multiplicity, and moreover it has been offered

the rising edge of the periodic clock.

Cyclic execution is a very common pattern for real-time systems that implement control & command
to interact with the real world. An event-trigger cyclic execution can be simply specified using an event-
trigger action and a loop section. Although the semantics of offset and period can be modeled using MARTE
profile, the whole time-trigger behavior can be modeled in various ways. In order to ensure a standard
mapping semantics, we decide to extend the original semantics for the action, which focuses on event-
trigger behavior. We extend it by defining a time-trigger semantics using the MARTE profile, and then map it
to the TPN model. This time-trigger action is very general in reactive systems, and thus can be reused in the

modeling and verification.
3.4.3.1 Event-trigger Action Mapping Semantics

An action begins execution by accepting all the offers of control and object tokens allowed by input pin multi-
plicity. When the execution of an action is complete, it offers control tokens on its outgoing control flows and object
tokens from its output pins. An event-trigger action will not begin execution until all of its input conditions

are satisfied. The completion of the execution of an event-trigger action may enable the execution of a set
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of successor nodes and actions that take their inputs from the outputs of the action.

An event-trigger action may have sets of incoming and outgoing activity edges that specify control flows
and data flows from and to other nodes. As the sequencing of actions are controlled by control edges and
object flow edges within activities, which carry control and object tokens respectively, an action must con-
tain inner behaviors for waiting/releasing control flow token and receiving/sending object. In addition,
although in this thesis we focus on the verification of software system, it will be useful to keep an interface
for the schedulability analysis on hardware systems in the future research, which means that some resource
states are needed. Therefore, we add the extra behaviors of waiting/releasing resources in the mapping
semantics for an action.

An event-trigger action can thus be defined as a s-tuple (I, C, T, R, D), in which:

Irefers to identification, which is derived from its behavior semantics. Only two actions with exactly

the same behavior can have the same identification.

o Crefers to behavioral context. Ifan action is reused in different activities, then they should be labeled

with the same identification, and different context name.
o T refers to time measure, e.g. the minimum and maximum execution time.

« Rrefers to resource usage. The execution of an action will go on only when its required resources are
ready and allocated to it. More precisely, the resource usage is a set of <R, N>, which indicates that

for a given resource type R, the action requires N of its available instances.

o D refers to data section. It contains both inputs and outputs. The data are transferred by the Input

Pins and Output Pins.

An atomic event-trigger action execution completes without interruption. However, it may stop to wait
for the shared resources or transferred data. Therefore, an action is separated in 5 phases: activity ready,
resource ready, input ready, output released and resource released, which are mapped to 5 TPN states. The map-
ping semantics is illustrated by Fig. 3.4.6.

The input resources are linked to transition REQUIRE REs, and the output resources are linked to tran-
sition RELEASE RES. The resources are specified using MARTE profile. The details about the resource and
the scheduling analysis are presented in the Section 3.6. The input data-related flows (Input Pin or Ob-

ject Flow) are linked to transition WarT _INPUT, and the output data-related flows (Output Pin or Object
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Node Type Notation Mapping TPN
‘ Activity Resource Input Output Resource ]
ready re ready Released released ‘
[min,max]
Action Node <<TimedProcessing>> I Q_>I Q_:I Q_)I Q_»I Q_)I Q
(event-trigger)
T_IN ‘ Require_REs WAIT InvuT SEND OUTl/U\T - ReLeasERes ENDJ P_OUT
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Figure 3.4.6: Event-trigger Action Mapping Semantics

Flow) are linked to transition SEND_OuTpUT. The transition SEND_OUTPUT also represents the execu-
tion of the action after the control flow, resource and input objects are all ready, on which the execution
time is expressed by the time constraint [min,max]. This execution time constraint is specified using the

MARTE proﬁle: MARTE: :MARTE_Foundations::Time: :TimedProcessing
3.4.3.2 Time-trigger Action Mapping Semantics

For time-trigger requests, the sequencing of actions is controlled by both the control and object flows
and the periodic clock. Before giving its mapping semantics, we first explain the commonly used time-
trigger pattern in Fig. 3.4.7. Precisely, when a new cycle starts, if the input (e.g. Input A) is ready, the
time-trigger action will start the execution and generate the output (output A) in the same way as an event-
trigger action does. Nevertheless, if at this time the input is not yet available (e.g. input B), the time-trigger
action will not wait but just ignore the current cycle, then retry the execution at the next cycle and produce

the output (Output B).

Input A Output A Input B Output B

! | ! !

l«—— cycle — >l cycdle — >l cycle — 5

Y

Figure 3.4.7: Time-trigger Action Pattern
A time-trigger action is defined by a 7-tuple (I, C, T, R, D, Off, P), where:
« The first 5-tuples (I, C, T, R, D) are the same as event-trigger action.
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o Off refers to the offset. Before the first period starts, a time-trigger action can hold during the offset

with respect to the local system’s initial time.

« Prefers to the period of the action. The action will be activated at the rising edge of the period, and

then its input readiness is checked.

The mapping semantics is illustrated by Fig. 3.4.8. The MARTE profile allows to specify the real-time

semantics relevant to time-trigger systems:
o Offset: MARTE: :MARTE_DesignModel: :HLAM: :RtSpecification::occKind: :PeriodicPattern(Phase)
« Execution Time: MARTE: :MARTE_Foundations::Time: :TimedProcessing
« Period: MARTE: :MARTE_DesignModel: :HLAM: :RtSpecification::occKind: :PeriodicPattern(Period)

Suppose that the given time-trigger action will handle n Input Pins and generate m Output Pins. In the
mapping semantics defined by Fig. 3.4.8, in order to ease the explanation, we assume there are 2 input pins

and 3 output pins.

Node Type Notation Mapping TPN
———————————————————————————— ‘
| Loop Control !
! |
[off,0f] Hold [PP] Wait !
<<TimedProcessing> | | ® ' — » ~—~—~ &8  —/—~ 7 ST
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Figure 3.4.8: Time-trigger Action Mapping Semantics

The processing steps are as follows:
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. Once it enters into the Loop Control section after the activation of offset, the action enters the place

Hold and will select its execution path when the rising edge of period arrives.

. The selection is due to the input readiness at the moment: for the given n input pins, there will be 2"
possibility of input readiness. As there are 2 input pins in Fig. 3.4.8, 4 possible paths are constructed:
no input ready (transition IN_No), only input, is ready (transition IN_1), only input, is ready (tran-
sition IN_2), both input, and input, are ready (transition IN_ArL). The mapping semantics for the
datareadinessis obvious. Take the transition IN_1 for example. When the place InputPin, has tokens
while the place InputPin, has not, the transition is enabled by the read arc from the place InputPin,
and the inhibitor arc from the place InputPin,, and meanwhile a token is filled in the place Wait.

. Once the period time P t.u. passes, the transition PERIOD is fired, and the asynchronous behavior

comes back to the Hold state.

. When both input data are ready, the transition IN_ALL is fired, and the place Waint and the place
Input Ready in the Execution section are both filled with tokens. It means that the processing of data

can start and the activity waits for the processing of next cycle.

. The processing executes between min and max t.u. on the transition EXEc and produces the output

data.

The scenario with resource usage for time-trigger actions relies on the same principle. Suppose the given

time-trigger action have n input pins while r resources must be available to start the execution. There will be

2" paths to choose: for each input readiness combination, there will always be a resource readiness com-

bination to associate with. The Execution section will be connected to the transition standing for the path

that both inputs and resources are available. This mapping semantics specifies exactly the same behaviors

as described in the time-trigger action pattern (Fig. 3.4.7).

Time-Triggered systems are easy to encode and do not have state explosion problems. The cost do

not depend on the number of inputs or resources. The semantic mapping itself does not introduce extra

semantics. Suppose in a systems, a time-trigger action relies on 5 types of resource and 10 types of input

data. In each period, if one of them is not ready, the action will not enter into the Input Ready state.
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3.4.4 Object Nodes

An object node is an abstract activity node that is part of defining object flow in an activity. An object node is an
activity node that indicates an instance of a particular classifiet, possibly in a particular state, may be available at
a particular point in the activity. Object nodes can be used in a variety of ways, depending on where objects are

flowing from and to, as described in the semantics sub clause. (page 421 of UML Spec.)

There are s types of object nodes in the activity diagram: pin nodes (InputPin and OutputPin), Cen-
tralBuffer node, DataStore node, ActivityParameter node, and Expansion node. We provide mapping
semantics for the pin, CentralBuffer and DataStore nodes. The other two are related to the structural

organization, but not the behavior. They will not affect the verification of real-time properties.

The most important aspect for object nodes semantic mapping is to keep the object type dependency
and the object values in the TPN. To keep the object type dependency, each type of object can be considered
as a variable in the memory and represented by a TPN place. However, if the object values are also kept, it
will be very expensive to generate the state class graph during the model checking. This work ignores the
object values in the object nodes, which is reasonable for the verification of real-time properties. This issue
is detailed in the following part, then we provide the mapping semantics for the upper bound of object
node, as it is a common feature for all types of object nodes, at last we provide the mapping semantics for

each type of object nodes.
3.4.4.1 Discussion on Object Value Issue

Each type of object can be considered as a variable in the memory and represented by a TPN place. Ide-
ally, the upper bound and the object values of object nodes are mapped using tts variables (tts has been
presented in the section 2.2 of Chapter 2). For example, if the upper bound of an object node is N, we can
define N variables to represent each value. During the model checking, the N variables will generate 2~
markings, which will lead to a combinatorial explosion problem. Therefore, it is very expensive to keep the

object values during model checking.

On the other hand, this issue is not a concern in the verification of the architecture design. The object
values can be used as input of an action or an activity to compute the output value, or be used to compute
the guards for the outgoing flows. The first one is the concern in the verification of detailed design in the
V-model, not the architectural design. In the second case, the object value is not a concern either. We

illustrate it using the decision node as an example. In the semantic mapping of decision node (page 72),
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we have ignored the guard conditions. One of the principles of model checking is to check all the possible
execution traces in amodel. The guard conditions limit the execution traces relying on object values. Onlyif
all the possible values are available, the execution traces will be complete. The guard conditions are ignored
to make sure that all the possible execution traces can be checked. The only side-effect is that it may cause
false alarms. This compromise is a must for the model checking techniques. Otherwise, the combinatorial

explosion problem is easily met.
3.4.4.2 Upper Bound of Object Node

The upper bound of an object node is the maximum number of tokens allowed in the node. Objects cannot flow
into the node if the upper bound is reached. (page 422 of UML Spec.) The upper bound is a common feature
in all types of object nodes. By default, the upper bound value is not defined in UML. This means that the
object node is unbounded. We define its mapping semantics and use it in the mapping semantics for the
object nodes.

Here we need to explicitly define the meaning of "object cannot flow into the node”. If the object node
works like a buffer, it means that the new object value is blocked and thus cannot enter into the object node.
Otherwise, if the object node works like a store, the new object value should enter into the object node and
replace the old one. Thus, we define mapping semantics for upper bound of buffer-like and store-like object

nodes respectively in Fig. 3.4.9.

Pobj

[——
C

(a) Buffer-like Object Node (b) Store-like Object Node

Figure 3.4.9: Upper Bound Mapping Semantics

Assume the upper bound is Nj,. The place P;; represents the object node. For buffer-like object node
(Fig. 3.4.9 (a)), an inhibitor arc between P,;; and its incoming transition will limit the incoming tokens.
Once P,}; accumulates N, tokens, the inhibitor arc will prevent the (N, + 1)th token to enter in Py;, until
some tokens in Pob]- are consumed by the outgoing transitions.

For store-like object node (Fig. 3.4.9 (b)), the (N}, + 1)”1 token should be allowed to enter into P,
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thus the weight on the inhibitor arc is N}, + 1, instead of Nj,. However, this (N, + 1) token will replace
the Nf,h token already in the store, thus the transition T, and its incoming and outgoing arcs are added.
This structure ensures that once P,;; accumulates Nj, + 1 tokens, it is immediately reduced to Nj. This reset
function does not take any time. A potential firing conflict might occur between the transitions T,,; and
T'eset when both of them are enabled. According to the feature of store-like object nodes, the T, should
have the priority. This can be solved by adding a priority arc between T and T,,;. However, the TPN
with priority arcs does not support the generation of state class graph with markings, and thus will largely
increase the size of state space. We do not recommend the use of priority arcs. The priority between T
and T,,; in fact impacts the values of the object read by T,,;. As the values of object nodes are ignored in

this work, this priority can also be ignored here.

The InputPin and OutputPin work in both buffer-like and store-like manner. The CentralBuffer node
works in the buffer-like manner. The DataStore node works in the store-like manner. We will detail their

use in the following sections.

3.4.4.3 InputPin & Output Pin

A pin is a typed element and multiplicity element that provides values to actions and accepts result values from
them. (page 287 of UML Spec.) Basically, a pin is mapped to a TPN place. Then the multiplicity and upper

bound of tokens should be considered.

Input pins are object nodes that receive values from other actions through object flows. (page 406 of UML Spec.)
An action cannot start execution if an input pin has fewer values than the lower multiplicity. The upper multiplicity
determines the maximum number of values that can be consumed by a single execution of the action. (page 279
of UML Spec.) In the context of this thesis, we limit the modeling capacity by making the lower and upper

multiplicity have equal value.
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Node Type Notation Mapping TPN
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[0,0]
(a) Buffer-like (b) Store-like

Figure 3.4.10: Input Pin Mapping Semantics

Fig. 3.4.10 shows the mapping semantics for InputPin. If the InputPin is bounded by N, both buffer-
like and store-like upper bounded mapping semantics are defined. The multiplicity is mapped to the weight
m on the normal arc between Pyy; and Toy.

Output pins are object nodes that deliver values to other actions through object flows. (page 425 of UML Spec.)
For each execution, an action cannot terminate itself unless it can put at least as many values on its output pins as
required by the lower multiplicity on those pins. The values are actually put in the pins once the action completes.
Values that may remain on the output pins from previous executions are not included in meeting this minimum

multiplicity requirement. (page 287 of UML Spec.)

Node Type Notation Mapping TPN

Np+l

Pobj T

OutputPin : IE

______

Np+1
[0,0]
(a) Buffer-like (b) Store-like

Figure 3.4.11: Output Pin Mapping Semantics

Fig. 3.4.11 shows the mapping semantics for OutputPin. If the OutputPin is bounded by N, both

buffer-like and store-like upper bounded mapping semantics are defined.
3.4.4.4 Central Buffer Node

A central buffer node is an object node for managing flows from multiple sources and destinations. It accepts

tokens from upstream object nodes and passes them along to downstream object nodes. Central buffer nodes give
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additional support for queuing and competition between flowing objects. (page 377 of UML Spec.)

The behavior of CentralBuffer is like a transient storage. Its mapping semantics is defined in Fig.
3.4.12. If the InputPin is bounded by N;, the upper bound mapping semantics is the same as the buffer-
like semantics defined in Fig. 3.4.9 (a). The CentralBuffer nodes do not have a multiplicity feature. The
incoming and outgoing transitions of the object place P,;; are the transitions mapped from the object flows

(see object flow mapping semantics in Section 3.4.5).

Node Type Notation Mapping TPN

P1:0bj P3:0bj P |
A . [ > |
1 (] A3 > >
«centralBuffers N L/ L
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2 / N | | ’ \
NV )1 Np, U - )l\ h

P2:0bj P4:0bj N

CentralBuffer

Figure 3.4.12: Central Buffer Mapping Semantics

3.4.4.5 DataStore Node

A data store node is a central buffer node for non-transient information. A data store keeps all tokens that
enter it, copying them when they are chosen to move downstream. Incoming tokens containing a particular object
replace any tokens in the object node containing that object. (page 385 of UML Spec.)

The mapping semantics is defined in Fig. 3.4.13. If the InputPin is bounded by N}, the upper bound
mapping semantics is the same as the store-like semantics defined in Fig. 3.4.9 (b). The DataStore nodes
do not have a multiplicity feature either.

The tokens flowing out of DataStore nodes are copies of tokens that remain in the DataStore node, so
the values behave as if they are being read from the store. Here the "read object” semantics is defined using
the read arc. This mapping semantics will guarantee that data persists in the current execution of activity,
because the tokens in the place P,;; will not be consumed through the read arc.

A state explosion issue may be caused by the DataStore node. If the design model does not make explicit
the mechanism of disabling the use of DataStore, the data in it will be read infinitely many times, which

leads to an unbounded error;, i.e. the places P, and P, in Fig. 3.4.13 may become unbounded. Therefore,
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Node Type Notation Mapping TPN
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Figure 3.4.13: DataStore Mapping Semantics

when the UML model is designed, we need to be careful to use the DataStore. The mechanism for enabling

and disabling the DataStore is a must to ensure the system is bounded.

3.4.5 Connections

A connection can be either control flow or object flow.

A control flow is an edge that starts an activity node after the previous one is finished. Objects and data cannot
pass along a control flow edge. Tokens offered by the source node are all offered to the target node. (page 382 of
UML Spec.) ControlFlow shows the flow of control from one node to the next. Control flow is mapped to

an arc from the place Poyr of its source to the transition Tyy of its target (Fig. 3.4.14).

Path Type Notation Mapping TPN

7N [

[}

ContorlFlow

Figure 3.4.14: Control Flow Mapping Semantics

An object flow is an activity edge that can have objects or data passing along it. (page 416 of UML Spec.)
The mapping semantics of object flow is defined in Fig. 3.4.15. An object flow is mapped to a transition
and its incoming and outgoing arcs. The following MARTE stereotype is used to specify the communica-
tion time of object flow: MARTE : :MARTE_Foundations: :GRM: : CommunicationMedia: :Packet T. Thistime

specification is mapped to the time constraint on the TPN transition.
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Path Type Notation Mapping TPN
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Figure 3.4.15: Object Flow Mapping Semantics

3.5 STATE MACHINE DIAGRAM MAPPING SEMANTICS

The State Machine package defines a set of concepts that can be used for modeling discrete behavior through finite
state- transition systems. In addition to expressing the behavior of a part of the system, state machines can also
be used to express the usage protocol of part of a system. These two kinds of state machines are referred to here
as behavioral state machines and protocol state machines. Behavioral state machine can be used to model the
behavior of individual entities (e.g, class instances). The state machine formalism described in this sub clause is
an object-based variant of Harel statecharts [Har87]. Protocol state machines are used to express usage protocols.
Protocol state machines express the legal transitions that a classifier can trigger. (page 551 of UML Spec.)

Protocol state machine is generally used to specify the classifier’s behavior along with object’s lifecycle
or protocol usage. It specifies which operations of the classifier can be called in which state and under which
condition, thus specifying the allowed call sequences on the classifier’s operations. Protocol state machine
can be simply considered as a specialization of behavioral state machine. Therefore in the context of this
thesis, we only provide the mapping semantics for behavioral state machine, and all state machine (SMD)
wording refers in fact to the behavioral state machine.

State machines can be used to express the behavior of part of a system. Behavior is modeled as a traversal of a
graph of state nodes interconnected by one or more joined transition arcs that are triggered by the dispatching of
series of (event) occurrences. During this traversal, the state machine executes a series of activities associated with
various elements of the state machine. (page 589 of UML Spec.)

Semantically speaking, the SMD defined in UML is an extension of Mealy machines [Meass ] and Moore
machines [Moos6] that allows actions both on transition and state entry/exit. The activities can eventually
depend on several resources to enable its execution. To define the mapping semantics for SMD, we first give

a quick overview of the elements in SMD:
o Vertex: A vertex is an abstraction of a node in a state machine graph. In general, it can be the source or
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destination of any number of transitions. (page 608 of UML Spec.)

« Transition: A transition is a directed relationship between a source vertex and a target vertex. (page 597

of UML Spec.)

. State: A state models a situation during which some (usually implicit) invariant condition holds. Three
kinds of states are distinguished: simple state, composite state and submachine state. (page 575 of UML
Spec.)

« Pseudostate: A pseudostate is an abstraction that encompasses different types of transient vertices in the
state machine graph. (page 565 of UML Spec.) According to specific semantics, the following kinds
of pseudostates are distinguished: initial, deep history, shallow history, join, fork, junction, choice,

entry/exit point and terminate pseudostates.

- Final state: A special kind of state signifying that the enclosing region is completed. (page 557 of UML
Spec.)

« Region: A region is an orthogonal part of either a composite state or a state machine. It contains states

and transitions. (page 573 of UML Spec.)

Event pool and run-to-completion: The event pool for the state machine is the event pool of the instance
according to the behavioral context classifier. The semantics of event occurrence processing is based on the run-
to-completion (RTC) assumption, interpreted as run-to-completion processing. The processing of a single event
occurrence by a state machine is known as a run-to-completion step. (page 590 of UML Spec.) During semantic

mapping, the event pool and the RTC issues should be explicitly specified.

Flattening and mapping semantics: Hierarchically nested states and orthogonal regions do not extend
the semantic expressiveness. They help the designer in the writing of sophisticated models for complex
systems. Other evolutions with respect to classical state diagram introduce some common elements from
activity diagram, like fork/join, choice and junction. This is originally aimed to allow designer to model
synchronization and control flow between SMDs in a more intuitive way. Without them, these behaviors
can only be modeled as a group of emit/received events. Nevertheless, these pseudostates do not either

extend the semantic expressiveness of SMD.
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Flattening word is used when the mapping requires converting a nested SMD to an unnested SMD, which
will ease the mapping afterwards. The final target is to have a SMD with only simple states, final states, tran-
sitions and unnested pseudostates.

Mapping word is only used for translating an unnested SMD model to a TPN model.

In this section, we first explicit the semantics of event pool (Section 3.5.1), then provides some general
semantics for states in Section 3.5.2, then provide the flattening semantics (Section 3.5.3), at last provide

the mapping semantics (Section 3. 5.4).

3.5.1 Event Processing & Event Pool

Before presenting the flattening and mapping method, some important event related semantics must be

clarified: the meaning of events, the processing method of events, and the event pool in state machines.
3.5.1.1 Event & Event Type

The detection of an (event) occurrence by an object may cause a behavioral response. For example, a state
machine may transition to a new state upon the detection of the occurrence of an event specified by a trigger owned
by the state machine, or an activity may be enabled upon the receipt of a message. When an event occurrence is
recognized by an object, it may have an immediate effect or the event may be saved in an event pool and have a
later effect when it is matched by a trigger specified for a behavior. (page 454 of UML Spec.)

Without specific priority, there are two categories of events defined in the system: external event and
internal event. Internal events are local ones which are emitted explicitly in the system, either from the same
state machine instance, or from an other instance of the same state machine, or from an instance of a differ-
ent state machine. External events are events whose reception target is defined in the system specification,
but not its emission source. For example, in an aircraft system (Fig. 3.5.1), the radio system’s job is to gen-
erate a call received event to the onboard computer when it receives a phone call from outside. In this case,
the phone call is an external event and the call received is an internal event.

It is important to distinguish these two event types because for a fixed period, external events are con-
sidered as infinite in terms of occurrence and without any information of arrival time. The internal events,
however, has a finite occurrence bound because they are generated by a finite system. In the context of this

thesis, we suppose the occurrence of both system events and environment events is finite.
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Environment

Alircraft System
Phone call Radio Call received Onboard
d System Computer

Figure 3.5.1: Event Categories Example: System & Environment

3.5.1.2 Event Processing

To clarify how events are processed in state machines, we should first answer the following six questions:

« Q,: How an event occurrence is processed between concurrent state machines? Can this event oc-

currence be processed simultaneously by these state machines?

« Q,: How an event occurrence is processed between concurrent states in orthogonal regions? Can

this event occurrence be processed simultaneously by these regions?

« Q;: How an event occurrence is processed between concurrent states in the same region? Can this

event occurrence be processed simultaneously by these states?

+ Q,: How successive event occurrences are processed? Can an event occurrence be processed con-

currently with the previous event occurrence?

+ Q;: How an event occurrence is processed within a stable state in a state machine? Can the state

machine pass between two states without finishing the processing of an event occurrence?

« Qs: Howan event occurrence is processed by two conflict transitions originating from the same state?

Can both transitions fire simultaneously?

The UML Specification 2.4.1 provides explicit semantics for the questions Q, — Qs, while the question Q,
is not explicitly defined.

Answers for Q, and Q,: An event occurrence can be processed simultaneously by the orthogonal
regions, but it cannot be processed simultaneously by the states in the same regions. In the presence of
orthogonal regions it is possible to fire multiple transitions as a result of the same event occurrence — as many as

one transition in each region in the current state configuration. In case where one or more transitions are enabled,
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the state machine selects a subset and fires them. Which of the enabled transitions actually fire is determined by
the transition selection algorithm described below. The order in which selected transitions fire is not defined. Each
orthogonal region in the active state configuration that is not decomposed into orthogonal regions (i.e., “bottom-
level” region) can fire at most one transition as a result of the current event occurrence. When all orthogonal regions
have finished executing the transition, the current event occurrence is fully consumed, and the run-to-completion

step is completed. (page 591 of UML Spec.)

Answer or Q,: An event occurrence cannot be processed concurrently with the previous event oc-
currence. The semantics of event occurrence processing is based on the run-to-completion assumption, interpreted
as run-to-completion processing. Run-to-completion processing means that an event occurrence can only be taken

from the pool and dispatched if the processing of the previous current occurrence is fully completed. (page 590 of
UML Spec.)

Answer for Q,: The state machine cannot pass between two states without finishing the processing
of an event occurrence. The processing of a single event occurrence by a state machine is known as a run-to-
completion step. Before commencing on a run-to-completion step, a state machine is in a stable state configuration
with all entry/exit/internal activities (but not necessarily state (do) activities) completed. The same conditions
apply after the run-to-completion step is completed. Thus, an event occurrence will never be processed while the
state machine is in some intermediate and inconsistent situation. The run-to-completion step is the passage between

two state configurations of the state machine. (page s90 of UML Spec.)

Answer for Qs: Only one transition can be fired when two transitions originating from the same
states are conflict. It was already noted that it is possible for more than one transition to be enabled within a
state machine. If that happens, then such transitions may be in conflict with each other. For example, consider the
case of two transitions originating from the same state, triggered by the same event, but with different guards. If
that event occurs and both guard conditions are true, then only one transition will fire. In other words, in case of

conflicting transitions, only one of them will fire in a single run-to-completion step. (page 591 of UML Spec.)

For the Q,, as the UML specification does not explicitly define an event occurrence can be processed si-
multaneously by two concurrent state machines, or can only be processed by one of the state machines in
conflict, we should suppose both cases are possible. We discuss these two cases in the following section for

event pool.
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3.5.1.3 EventPool

The event pool for the state machine is the event pool of the instance according to the behavior context classifier,
or the classifier owning the behavioral feature for which the state machine is a method. (page 590 of UML Spec.)
We provide the explicit semantics for the above two kinds of event pool in Fig. 3.5.2. In (a), each state

machine instance has an event pool, while in (b), the classifier owning the state machines has a universal

event pool.
External events External events

i_S_ysTenTn____ ‘1, ________ : r§y§er_n___' ‘1, ________ :

: Events Dispatcher | : Universal Event Pool J |

| | — | e fEmim o |

: dispatch dispatch | : p—| EventXPool [ p |
| f _‘ |

| Internal [MEyentPool A Internal ["Eyent Pool B | | |

| events events | | T T | |

I dequeue dequeue | | Internal dequeue Internal  dequeue |

I ‘1' I [ events l' events l' |

| v Lo |

| |

| State Machine A [ State Machine B : | State Machine A State Machine B ] :

] S L S ——

(@) (b)

Figure 3.5.2: Event Pool Model

According to the above analysis for the question Q,, both event pool semantics in (a) and (b) are ex-
pected to be able to handle both possible cases: an event occurrence can be processed either simultaneously
by two concurrent state machine or only by one of the state machine in conflict. However, the semantics
in (a) can only handle the former one, while the semantics in (b) can handle both, as analysis below.

The semantics in (a) signifies that each state machine instance (not including submachine state) is dy-
namically equipped with an event pool during execution. All events, no matter external events or internal
events, will first be dispatched globally via the system’s events dispatcher, then stored in this event pool.
The events will be consumed sequentially by state machines. This semantics can handle the case such that
state machines can process an event occurrence simultaneously. For example, an event occurrence of type

Pis sent to the system with concurrent state machine A and state machine B. P will be multi-dispatched to
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both A and B. If both A and B are waiting for P, their transitions can fire simultaneously at the moment of
reception. However, when several state machines compete for the same event occurrence, this semantics
will not work. For example, when P is sent to A and B. P is not consumed neither by A nor by B for the
given instant. The dispatcher does not know P should be dispatched to which event pool. The dispatcher
must make a decision to multi-dispatch P to both A and B, otherwise, the whole system is blocked. Then,
the conflict semantics between A and B is lost.

The semantics in (b) can solve this problem. In (b), the system has only one universal event pool, where
all the events are pending to be consumed. If there is competition, the dequeue mechanism will decide
randomly which state machine will get the event instance at this given instant. The universal event pool
cannot be really a unique pool at system-level, because different state machine can react to the events in a
concurrent way. State machine A is expecting an event instance of type P, and state machine B is expecting
one of type Q; event instance P is pending before Q. If there is only one event pool, B cannot start handling
Q until A dequeues P, which violates the original concurrent semantics. The universal event pool is in fact

a set of event pool which are instantiated by event type.

Capacity limit of event pool. Another important implicit semantics of event pools is that they have a
limited capacity. Sometimes an event arrives at an inconvenient time, when state machines are in a state
that cannot handle this event. In many cases, the nature of the event is such that it can be postponed, within
limits, until the system enters another state, in which it is better prepared to handle the original event. This
limits is the fundamental guarantee for a real finite state system to behave as expected without pool memory
explosion. Once the capacity is reached, either the new appended event will be ignored, or the old pending
events will be dropped off. All kinds of clearance mechanisms are possible in real system design. In the
context of this thesis, two general strategy are discussed in the section 3.5.4.5: time out and size out. But for
the verification purpose, we suppose the event instances of the given system is restricted to the capacity of

event pool, otherwise, it is considered as a design error.

3.5.2 State in General

As some flattening semantics is based on the inner behaviors of states, before discussing the flattening se-
mantics, we provide some general semantics for states.

Active States A state can be active or inactive during execution. A state becomes active when it is entered as a
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result of some transition, and becomes inactive if it is exited as a result of a transition. A state can be exited and

entered as a result of the same transition (e.g, self transition). (page 579 of UML Spec.)

State Entry and Exit Whenever a state is entered, it executes its entry behavior before any other action is executed.
Conversely, whenever a state is exited, it executes its exit behavior as the final step prior to leaving the state. (page

579 of UML Spec.)

Behavior in State (do-activity) The behavior represents the execution of a behavior, that occurs while the state
machine is in the corresponding state. The behavior starts executing upon entering the state, following the entry
behavior. If the behavior completes while the state is still active, it raises a completion event. In case where there
is an outgoing completion transition (see below) the state will be exited. Upon exit, the behavior is terminated
before the exit behavior is executed. If the state is exited as a result of the firing of an outgoing transition before the
completion of the behavior, the behavior is aborted prior to its completion. (page 579 of UML Spec.)

3.5.3 Flattening Semantics

The purpose of flattening is to convert a nested SMD to an unnested SMD, and therefore ease the mapping
afterwards. The final target is to have a SMD with only simple states, final states, transitions (local and in-
ternal) and unnested pseudostates. During the flattening, not only will the topology change, but also the
actions associated with original states and transitions will be modified. The nested SMD elements handled by
the flattening include: regions, states (composite state and submachine state), external transitions, nested
pseudostates (entry/exit point, shallow/deep history, and fork/join). We start discussing from the com-
posite state, which exhibits more complex semantics than the other elements. The key to flattening a nested

structure is to define the entering and exiting semantics from the topmost vertices to the innermost vertices.

A composite state either contains one region or is decomposed into two or more orthogonal regions. Each region
has a set of mutually exclusive disjoint sub-vertices and a set of transitions. A given state may only be decomposed
in one of these two ways. A composite state is either a simple composite state (with just one region) or an orthogonal
state (with more than one region). (page 576 of UML Spec.) We first discuss the flattening semantics for the

simple composite state, and then discuss the flattening semantics for the orthogonal composite state.
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3.5.3.1 Simple Composite State

A substate is defined as the state enclosed within a region of a composite state. When a substate does
not contain any other state, it is called direct substate; otherwise, it is referred to as an indirect substate. A

semantic variation point about the default entry rule is defined in the specification of UML.

Semantic variation point (default entry rule) If a transition terminates on an enclosing state and the enclosed
regions do not have an initial pseudostate, the interpretation of this situation is a semantic variation point. In some
interpretations, this is considered an ill-formed model. That is, in those cases the initial pseudostate is mandatory.

An alternative interpretation allows this situation and it means that, when such a transition is taken, the state
machine stays in the composite state, without entering any of the regions or their substates. (page 576 of UML
Spec.)

In the context of this thesis, we use the former interpretation: the initial pseudostate is mandatory in
such cases.

Entering a non-orthogonal composite state The specification of UML differentiates the following cases:

« Default entry Graphically, this is indicated by an incoming transition that terminates on the outside edge
of the composite state. In this case, the default entry rule is applied (see Semantic variation point (default
entry rule)). If there is a guard on the trigger of the transition, it must be enabled (true). (A disabled
initial transition is an ill-defined execution state and its handling is not defined.) The entry behavior of
the composite state is executed before the behavior associated with the initial transition. (page 580 of UML
Spec.)

The flattening semantics is defined as Fig. 3.5.3. The default entry rule is applied: the outside state
A transits to the outgoing state of the initial pseudostate (substate B).

Nested Machine Notation Flattening Semantics
Simple 4 Composite State
Composite State Rk R, a
Default Entry H
(with Initial node)

Figure 3.5.3: Default Entry Flattening Semantics for Simple Composite State
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« Explicit entry If the transition goes to a substate of the composite state, then that substate becomes active
and its entry code is executed after the execution of the entry code of the composite state. This rule applies

recursively if the transition terminates on a transitively nested substate. (page 580 of UML Spec.)

The flattening semantics is defined as Fig. 3.5.4. As the transition from state A goes to the substate B,
then B becomes active, and the entry code of the composite state is executed before the entry code
of B.

Nested Machine Notation Flattening Semantics

Simple (—_ Composite State

Composite State Ry A b B
b B
Explicit Entry ‘% entry; entryp
\e nt ry entryg

Figure 3.5.4: Explicit Entry Flattening Semantics for Simple Composite State

« Shallow history entry If the transition terminates on a shallow history pseudostate, the active substate
becomes the most recently active substate prior to this entry, unless the most recently active substate is the
final state or if this is the first entry into this state. In the latter two cases, the default history state is entered.
This is the substate that is target of the transition originating from the history pseudostate. (If no such
transition is specified, the situation is ill-defined and its handling is not defined.) If the active substate
determined by history is a composite state, then it proceeds with its default entry. (page 580 of UML Spec.)

Since shallow history is a reference to the most recent substate, the flattening algorithm must have
a mechanism to remember which is the most recent substate. As illustrated in Fig. 3.5.s, in the flat-
tened version, the shallow history does not exist any more. It is replaced by some newly defined
guards and actions on the associated transitions. More precisely, a variable last active (LAST) under
the namespace of the given composite hierarchy is declared for this composite state, and all the in-
ner transitions which will cause the substate to be activated/deactivated will have a supplementary
action: record which substate is the most recent activated. The default value of the variable LAST
when no substate has ever been activated is to use the initial pseudostate. All incoming and outgoing
transitions of the shallow history will be copied and linked to each substate, with a supplementary

guard defined: only when the target state is the most recent activated state will the guard be enabled.
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All these guard conditions are mutually exclusive, thus at any time at most only one of these incom-
ing/outgoing copies will be able to fire. The guard on the outgoing copies are optional as they will

always be evaluated as true.

Nested Machine Notation Flattening Semantics
Simple Composite State \ LAST == D LAST ==
Composite State LAST —— (JT LAST =2
Shallow History C A B
entry LAST ==2 A

Figure 3.5.5: Shallow History Entry Flattening Semantics for Simple Composite State

« Deep history entry The rule here is the same as for shallow history except that the rule is applied recur-
sively to all levels in the active state configuration below this one. (page 580 of UML Spec.)

A deep history is like the shallow history with an extended behavior that can remember any level of
nesting of the composite states. However, as the flattening process will run in a bottom-up way, it
means that for each deep history, all its sibling substates have already been flattened, which makes it
semantically and structurally equal to a shallow history. The only difference is that when doing the
transition copy, shallow history can only cover the flattened substates originally at the same level,

while deep history can cover all of them without restriction.

The values of variable LAST is from 1 to n, where n is the sum of direct substate numbers in the

enclosing composite states configured by the deep history pseudostate.

« Entry point entry If a transition enters a composite state through an entry point pseudostate, then the
entry behavior is executed before the action associated with the internal transition emanating from the entry

point. (page 580 of UML Spec.)

The flattening semantics is defined as Fig. 3.5.6. For a transition entering a composite state, no mat-
ter if it directly links to the composite state or bypasses through entry point, the entry action of the
composite state must always be executed. Compared to the direct connection, the extra semantics

introduced by the entry point is the trigger on the outgoing transition of the entry point. To keep
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this trigger, we define a special state S,,,, to represent the entry point. S,,, has an entry behavior

(the entry behavior of the composite state), but no do or exit behaviors.

Nested Machine Notation Flattening Semantics
Simple ( Composite State \
Composite State RE b 5 Ry [ Sentry b [ B J
i nt entry;
Entry point entry entry entry B

Figure 3.5.6: Entry Point Entry Flattening Semantics for Simple Composite State

Exiting a non-orthogonal composite state
When exiting from a composite state, the active substate is exited recursively. This means that the exit activities
are executed in sequence starting with the innermost active state in the current state configuration. (page 581 of

UML Spec.) According to the UML specification, the following exiting cases are differentiated:

« Default exit As the UML specification does not define default exit rule, by default it is considered a
well-formed model without explicit exiting notation. The default exit semantics is defined as Fig.
3.5.7. The outgoing transition of the composite state is copied as the outgoing transition of each

inner substates except the initial pseudostate.

Nested Machine Notation Flattening Semantics

Simple / Composite State
Composite State

% —
DetuuttExie | | @A -[] | ()| @A)

Figure 3.5.7: Default Exit Flattening Semantics for Simple Composite State

« Explicit exit If the transition goes to the outer state of the composite state, then that outer state
becomes active and the exit code of the substate is executed before the execution of the exit code of

the composite state. The flattening semantics is defined as Fig. 3.5.8.
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Nested Machine Notation Flattening Semantics
Simp]e / Composite State N
. R b
Composite State 1 "
ici i Alb B exit 5 jexit
Explicit Exit eg exit, ) ® A

Figure 3.5.8: Explicit Exit Flattening Semantics for Simple Composite State

« Shallow history & deep history exit The shallow history and deep history exit have been defined
in the entry parts.

- Exitpoint exit If, in a composite state, the exit occurs through an exit point pseudostate the exit behavior of
the state is executed after the behavior associated with the transition incoming to the exit point. (page 581
of UML Spec.) An exit point pseudostate is an exit point of a state machine or composite state. Entering
an exit point within any region of the composite state or state machine referenced by a submachine state
implies the exit of this composite state or submachine state and the triggering of the transition that has this
exit point as source in the state machine enclosing the submachine or composite state. (page 567 of UML

Spec.) The flattening semantics is defined as Fig. 3.5.9.

Nested Machine Notation Flattening Semantics

( Composite State

Simple
. — 5
Composite State .
Exit point exit ‘ h%ﬁ. exit 5 exit
exit

Figure 3.5.9: Exit Point Exit Flattening Semantics for Simple Composite State

Entry point and Exit point are dual semantic elements to describe compositional event handling
border. Similar to entry pseudostate, a special state S,,; is defined to represent the exit point. S,,;

has an exit behavior (the exit behavior of the composite state), but no entry or do behaviors.

- Final state exit A special kind of state signifying that the enclosing region is completed. If the enclosing

region is directly contained in a state machine and all other regions in the state machine also are completed,
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then it means that the entire state machine is completed. (page 557 of UML Spec.)

The flattening semantics is defined as Fig. 3.5.10. To keep the trigger on the incoming transition
of the final state, a special state S,q is defined to represent it. Sg,, has an exit behavior (the exit

behavior of the composite state), but no entry or do behaviors.

Nested Machine Notation Flattening Semantics

Si 1 ( Composite State
imple

b
Composite State E @J—%. .% Sﬁni‘t1
. > A ex1
exit
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exit

Figure 3.5.10: Final State Exit Flattening Semantics for Simple Composite State

Flattening semantics for the actions and guards on transitions In the above flattening semantics, if there
are actions defined on the outgoing transition of inner exit state, they will be sequentially combined to the

target flattened transition. The guards will also be integrated by conjunction.
3.5.3.2 Orthogonal Composite State

Regions address the modeling of concurrency. The word orthogonal implies that each region in the
composite state is executed concurrently. When several sub-systems are executed concurrently, the number
of state in the whole system is the product of the number of state in each concurrent sub-system. This
leads to a combinatorial increase in the number of state of the associated state machine. This feature can be
considered as aredundant semantic modeling element taking the idea of Part from the composite structure
diagram, except that its scope is inside the state machine. Although the orthogonal regions do not add any
semantic expressiveness to classic state diagrams, its flattening semantics requires some details.

We propose a flattening semantics for orthogonal composite states using Fork & Join pseudostates. Ac-
cording to the UML specification, the fork and join pseudostates can only be used in orthogonal regions. For
the flattening purpose, we need to allow them to be use in the non-orthogonal structure. This adaption
does not change the behavdonk semantics of the state machine.

Entering an orthogonal composite state Whenever an orthogonal composite state is entered, each one of its

orthogonal regions is also entered, either by default or explicitly. If the transition terminates on the edge of the
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composite state, then all the regions are entered using default entry. If the transition explicitly enters one or more
regions (in case of a fork), these regions are entered explicitly and the others by default. (page 581 of UML Spec.)

We provide the flattening semantics for the default and explicit entries.

« Default entry By default, each concurrent region starts executing from the initial pseudostates. In-
stead of linking the incoming transition to the outgoing states of the initial pseudostate, a fork pseu-
dostate is created as a delegate to maintain the concurrent semantics. The flattening semantics is
defined as Fig. 3.5.11, where the outgoing transition of state A links to the fork pseudostate. Com-
pletion transitions are created, called anonymous transitions. They have no defined event triggering
them. This means that such transition will immediately fire when a state being the source of a com-
pletion transition becomes active. These anonymous transitions link the fork nodes to the target

substates of the initial nodes. All the entry/do/exit behaviors of substates and sub transitions are

kept as-is.
Nested Machine Notation Flattening Semantics
4 Composite State h b
Ry b
Orthogonal ? ® B s { C ] Fork .%
Composite State a J
Default Entry i i{z 7777777777 d | .%.%I\
® " - °F a
- %

Figure 3.5.11: Default Entry Flattening Semantics for Orthogonal Composite State

- Explicit entry If the transitions goes to substates in one or more regions (in case of a fork), this
explicit entry is defined as Fig. 3.5.12, where the fork node links the explicit substates through the

anonymous transitions.

Exiting an orthogonal composite state When exiting from an orthogonal state, each of its regions is exited.

After that, the exit activities of the state are executed. (page 581 of UML Spec.)
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Nested Machine Notation Flattening Semantics
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Figure 3.5.12: Explicit Entry Flattening Semantics for Orthogonal Composite State
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Explicit Entry a I

Three kinds of exit semantics are provided: default, explicit and final state exits. We only handle the exit

semantics here, while the entry semantics has been handled in the previous part.

« Default exit The flattening semantics for default exit is defined as Fig. 3.5.13.

Nested Machine Notation Flattening Semantics

Composite State

Orthogonal H C

Composite State| | - - - i
Default Exit Ry

Figure 3.5.13: Default Exit Flattening Semantics for Orthogonal Composite State

For the outgoing transitions, a Cartesian product of join pseudostates is created, using the join node’s
outgoing transition to hold the original semantics of the composite state’s outgoing transition (blue
ones). At any time when the composite state is active, only one of these composed join node will be

enabled to respond to the outgoing trigger.

« Explicit exit The flattening semantics for the explicit exit is defined as Fig. 3.5.14. Only the explicit
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substates in a region are combined with the substates in non-explicit regions and then linked to the

join nodes.
Nested Machine Notation Flattening Semantics
Composite State
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Orthogonal P@ =
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Explicit Exit | | Ry

Figure 3.5.14: Explicit Exit Flattening Semantics for Orthogonal Composite State

- Final state exit The flattening semantics for the final state exit is defined as Fig. 3.5.15. A special

state S is created for the final state. The combination of Sg,,; and the substates in other regions

are linked to the join nodes.

Nested Machine Notation Flattening Semantics

Composite State
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Figure 3.5.15: Final State Exit Flattening Semantics for Orthogonal Composite State
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3.5.3.3 Submachine State

A submachine state is semantically equivalent to a composite state. The regions of the submachine state machine
are the regions of the composite state. The entry, exit, and behavior actions and internal transitions are defined as
part of the state. Submachine state is a decomposition mechanism that allows factoring of common behaviors and
their reuse. (page 576 of UML Spec.)

The only semantic difference, in terms of RTC, is when a submachine state is nested, whether it is used

in behavioral state machine or in protocol state machine.

In behavioral state machine (as integrated) At each reuse, the submachine state structure is copied to the
nested structure. Therefore it is in fact a part of its root state machine, which means it must respect the
same run-to-completion processing as the other parts. In this case, a submachine state can share the same

flattening semantics for composite state.

In protocol state machine (as communicated) The states of protocol state machines are exposed to the users
of their context classifiers. A protocol state represents an exposed stable situation of its context classifier: When an
instance of the classifier is not processing any operation, users of this instance can always know its state configura-
tion. (page 577 of UML Spec.)

In this scenario, each time the submachine state is entered, a new instance will be implicitly created to
handle the event coming afterward. Therefore the given submachine state will have an independent run-
to-completion scope. Its inner events can be handled concurrently with those at root state machine level.

In the context of this thesis, we only focus on behavioral state machines, thus the second case will not
be discussed. By default, we rely on the submachine states in the behavioral state machine (as integrated)

for the semantic mapping afterwards.
3.5.3.4 Fork & Join Pseudostates

Join vertices serve to merge several transitions emanating from source vertices in different orthogonal regions.
The transitions entering a join vertex cannot have guards or triggers. (page 567 of UML Spec.)

Fork vertices serve to split an incoming transition into two or more transitions terminating on orthogonal target
vertices (i.e., vertices in different regions of a composite state). The segments outgoing from a fork vertex must not
have guards or triggers. (page 567 of UML Spec.)

Fork pseudostate models the execution of concurrent aspects in transitions. The incoming transition
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is split into two or more transitions terminating on orthogonal target vertex. Join pseudostate is the dual
element of fork. Because these two elements are always used within orthogonal regions, the way orthogonal
regions are flattened will impact the meaning of fork & join.

We have discussed the use of fork nodes in the explicit exit for orthogonal composite state (Fig. 3.5.14).
For the region flattening algorithm using fork and join pseudostates, as the concurrent execution and syn-
chronization are provided by the fork and join nodes respectively, the regions can be removed without

jeopardizing the original semantics (Fig. 3.5.16).

Nested Machine Notation Flattening Semantics

Composite State

Fork & Join
Pseudostates

Fork B Join
< (o]
C

Figure 3.5.16: Fork & Join Pseudostate Flattening Semantics

3.5.4 Mapping Semantics

After flattening, the remaining SMD elements for which the mapping must be defined are: State (simple state),
Final state, Transition (local and internal), and Pseudostates (Initial, Terminate, Junction, adapted Choice, Fork
& Join without regions) .

The objective is to map the unnested SMD to a TPN, which formally defines its execution semantics. The
relatively complicated semantics for the unnested SMD is the transitions and states involving inner behaviors
such as effect, exit, entry and do. On the other hand, the run-to-completion (RTC) processing must be under
consideration.

We first present some general semantics for the transitions and states in Section 3.5.4.1. The mapping
semantics for the RTC semantics and the inner behaviors are respectively provided in Section 3.5.4.2 and
Section 3.5.4.3. We define the mapping semantics for states and transitions in Section 3.5.4.4, and discuss

the clearance mechanisms for the event pool in Section 3.5.4.5. As a special kind of simple state, the map-
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ping semantics for final states is provided in Section 3.5.4.6. At last, the mapping semantics for pseudostates

is provided in Section 3.5.4.7.
3.5.4.1 Transition & State in General

A transition is a directed relationship between a source vertex and a target vertex. It may be part of a com-
pound transition, which takes the state machine from one state configuration to another, representing the complete
response of the state machine to an occurrence of an event of a particular type. (page 597 of UML Spec.) A tran-
sition can be associated with several triggers (the triggers may fire the transition), at most one guard and
at most one effect behavior. From the viewpoint of the target and source states, there exist three kinds of

transitions: external, internal and local transitions:

o Internal implies that the transition, if triggered, occurs without exiting or entering the source state. Thus, it

does not cause a state change. (page 606 of UML Spec.)

« Local implies that the transition, if triggered, will not exit the composite (source) state, but it will apply to
any state within the composite state, and these will be exited and entered. (page 606 of UML Spec.)

« External implies that the transition, if triggered, will exit the source vertex. (page 606 of UML Spec.)

Transitions and states for mapping In the flattening step, all the external transitions have been flattened
to local transitions. Therefore, we only need to provide mapping semantics for the local and internal transi-
tions. The flattening semantics for composite states and submachine states has been defined in the previous

section, thus there exists only simple states in the unnested SMD.
3.5.4.2 Run-to-Completion (RTC) Semantics

Run-to-completion processing The semantics of event occurrence processing is based on the run-to-completion
assumption, interpreted as run-to-completion processing. Run-to-completion processing means that an event oc-
currence can only be taken from the pool and dispatched if the processing of the previous current occurrence is fully
completed. (page 590 of UML Spec.)

Run-to-completion step Before commencing on a run-to-completion step, a state machine is in a stable state
configuration with all entry/exit/internal activities (but not necessarily state (do) activities) completed. The same

conditions apply after the run-to-completion step is completed. Thus, an event occurrence will never be processed
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while the state machine is in some intermediate and inconsistent situation. The run-to-completion step is the pas-
sage between two state configurations of the state machine. (page 590 of UML Spec.)

We use the Fig. 3.5.17 to illustrate the mapping for the RTC semantics. In order to explain the execution
sequence, the UML notation only has two states A, B, and the transition between them. In state A, the do and
exit activities are defined. In state B, the entry and do activities are defined. The transition has a trigger, a

single guard and an effect action.

Semantics Notation Mapping Semantics
// h N
\\ /l
. P = /\
T trigger ool
RTC A . [Guard] — B r?,,, rtc
Semantics | doa/Bxity] “pe o " [Entryg/dog) | 1 ‘d !
|
| OA [0,0 ‘ Exit 5 -> Effect -> EntryB ! ét °B |

[

PRE Guard] [0,0]

Figure 3.5.17: Run-to-Completion Semantics

The execution sequence which ensures the RTC step is described as follows:

1. The transition is triggered by the event arrival. At this moment, the event instance has not yet been

consumed.

2. The guard constraint on the SMD transition is evaluated. If it is satisfied, the event instance is con-

sumed, otherwise the event instance will stay in the event pool and the SMD transition will not fire.

3. When the transition matches both preconditions to fire, the following actions will successively exe-

cute:

(a) the exit behavior of the source state A
(b) the effect action defined on the SMD transition

(c) the entry behavior of the target state B

The mapping semantics for the RTC semantics contains both the RTC processing and RTC step. The
squares in dotted line stand for respectively the behaviors of dos, RTC step, and dog. The SMD transition

104



3.5. STATE MACHINE DIAGRAM MAPPING SEMANTICS

T is mapped to a pair of TPN transitions ( Touara and T, ) with intermediate behaviors RTC step and a RTC
place P,.. The place P, has an initial token. It is used to indicate whether the RTC processing is finished.
The Tgyqrq transition inherits the guard constraint from T using the PRE functions of tts. Ifthere is a single
trigger on T, the place P,,,; is used as the event pool for the target type of event occurrence. If the event ar-
rives but the guard is not satisfied, the event occurrence will not be dispatched, thus stays in the event pool.
According to the semantics of RTC step, after the trigger and the guard of transitions are both satisfied, the
behaviors of Exits, Effect and Entryg must be executed sequentially without interruption. When P, has a

token, it means the RTC processing is finished. Meanwhile, the dog behavior can be executed.
3.5.4.3 Do/Exit/Entry/Effect Behaviors Mapping

The optional entry/do/exit/effect behaviors in a state or on a transition need to be mapped to TPN. In
the context of this thesis, the inner behavior can be an activity diagram or an unnested state machine or an

action language expression (C in our prototype). We use the mapping semantics in Fig. 3.5.18 for these

behaviors.
Ltmin’ tmaxJ
o= 0 S
(a) Behavior (b) Behavior using abstraction

Figure 3.5.18: Do/Exit/Entry/Effect Behavior

In figure (a), the frame behavior stands for the activity of entry/do/exit/effect. If the inner behavior will
not impact or be impacted by the other parts of the whole system, this behavior can be abstracted using a
TPN transition, which gives the minimum and maximum execution time of this behavior, as shown in figure

(b). To generalize our discussion, we use the figure (a) as the mapping semantics for the inner behaviors.

Initialization of Inner Behaviors The initialization of the do/exit/entry/effect inner behaviors is intu-

itive, which means it starts from the initial node in the activity or state machine.

Termination of Inner Behaviors As the entry/exit/effect behaviors are atomic and cannot be interrupted

by the firing of transitions or by the other external behaviors, they will complete the behaviors and produce
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a completion event. In the activity diagram, either when all the flows reach the Flow Final nodes, or when
the whole activity reaches the Activity Final node, then the completion event will be produced. In the
unnested state machine, either when all the Final states are reached, or when the Termination pseudostate
is reached, then the completion event will be produced.

However, the do behavior is more complex. The behavior represents the execution of a behavior, that occurs
while the state machine is in the corresponding state. The behavior starts executing upon entering the state, following
the entry behavior. If the behavior completes while the state is still active, it raises a completion event. In case where
there is an outgoing completion transition the state will be exited. Upon exit, the behavior is terminated before the
exit behavior is executed. If the state is exited as a result of the firing of an outgoing transition before the completion
of the behavior, the behavior is aborted prior to its completion. (page 579 of UML Spec.)

Therefore, the termination of do behavior must satisfy two semantics:
o If the behavior completes while the state is still active, it raises a completion event.

« If the state is exited as a result of the firing of an outgoing transition before the completion of the

behavior, the behavior is aborted prior to its completion.

The first semantics is similar to the termination semantics for the other behaviors. We focus on the sec-
ond semantics. To model this interruption semantics in TPN, as we do not know when the do activity is
interrupted by the firing of the outgoing transitions, all possible behavior should be modeled. A stopwatch
arc can be used for this purpose, but this will potentially lead to the state space explosion problem in the
model checking. On the other hand, in the context of this thesis, as we focus on real-time embedded sys-
tems, it is reasonable to forbid this arbitrary interruption. All the behaviors in the critical systems mus be
explicitly specified. If the do activity can be interrupted, the interruption point must be predefined in the
specification. From this point of view, in the context of this thesis, we only adopt the first semantics, which

means the outgoing transitions can be fired only if the do activity is completed.
3.5.4.4 Mapping semantics for Transition & State

This section provides the mapping semantics for local/internal transitions and simple states, and then

discusses the mapping semantics for single and multiple triggers on the transitions.

Local Transition. The mapping semantics for the local transition and its associated states is illustrated by

Fig. 3.5.19. In the SMD model, state A contains Do, and Exit, activities, and state B contains Entryg and
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Doy activities. The transition from A to B contains at most one trigger (multiple triggers will be discussed

later), a guard and an effect action.

Unnested SMD | Notation Mapping Semantics
A
Do A/ Exit A
Trte PrtcB PdoneB

States & (trigger)

Local Transition|  [Gvard] Q Q—il »Q Q—)
Effect
v N . 00] /
B
Entryg/Dog

,,,,,,

Figure 3.5.19: Local Transition Mapping Semantics

In the mapping semantics, the chain [place P4 -> behavior Do, -> place Pyopea ] models that state A
has completed its do activity. The SMD transition T is mapped to a pair of TPN transitions ( Tguard and Ty)
with intermediate places and behaviors. The place P, has an initial token. It is used to indicate whether
the RTC processing is finished. When P, has a token, it means the RTC processing is finished. The Tgy4q
transition inherits the guard constraint from T using the PRE functions of tts. If there is a single trigger on
T, the place Py, is used as the event pool for the target type of event occurrence. If the event arrives but the
guard is not satisfied, the event occurrence will not be dispatched, thus stays in the event pool. When T 'is
fired (represented by the place PﬁredT) , the activities Exit4, Effectr and Entryg are executed. After entering
state B (represented by the place Pepteredn), the transition T, produces a RTC event through the place Py.
Meanwhile, the Dog behavior can be executed.

We provide a mapping semantics for the local transition with abstraction in Fig. 3.5.20. The Doy be-
havior is abstracted as the transition T4,4 with minimum and maximum execution time [t1, t2]. Similarly,
the Exit,, Effectr, Entryg activities are abstracted together using the transition T, and the Dog activity is

abstracted using the transition T'g,p.

Internal Transition. An internal transition can be seen as a special kind of local transition without entry

and exit behaviors, and the source and target states are the same one. Fig. 3.5.21 illustrates its mapping
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Unnested SMD | Notation Mapping Semantics
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Figure 3.5.20: Abstract Local Transition Mapping Semantics

semantics. According to its semantics, the exit and entry activities are eliminated, and the transition T is

linked to the place P, of itself.

Unnested SMD Notation Mapping Semantics
P
(trigger) P ool, _ '
States & [gga“:] Prtca PdoneA b TGuard PﬁredT PeffectedT Trtc
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Internal \
Transition A /
ffffff o
A | Dop | PRE[Guard] : EffectT !

Figure 3.5.21: Internal Transition Mapping Semantics

Single Trigger Transition. The mapping semantics for the single trigger transition is illustrated by Fig.

3.5.22. The event pool place Py, receives instances of event a from all the producers, and then provides to

all the consumers.

Multiple Trigger Transition. We have discussed the processing semantics for multiple triggers transition
at the beginning of this section (see the answer for Q4 in page 88): Only one transition can be fired when
two transitions originating from the same states are conflict. If a transition has several possible triggers

to enable it, they are under an exclusive “or” logic, which is represented by duplicating the SMD transition.
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Unnested SMD | Notation Mapping Semantics
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Figure 3.5.22: Single Trigger Transition Mapping Semantics

The copied transitions will inherit the same guard and behaviors while keeping respectively the single event
trigger. The mapping semantics for the single trigger transition is illustrated by Fig. 3.5.23. In the TPN, the
duplicated SMD transitions are mapped to two guard transitions Tgyaq o and Tgyaerg . As the event pool is
instantiated by event type, in this case, two event pool places Ppy,1 4 and Py, 1 are created to receive re-
spectively the instances of events a and b. More precisely, if both events a and b are available at the moment
to trigger the transition, as only one event can be finally consumed after transition’s firing (ensured by the
shared place P,n.4), it is up to the event dispatch mechanism to decide the priority. The UML specification
does not give any details about this priority definition, therefore in the context of this thesis, it is assumed

that the dispatch is arbitrary.
3.5.4.5 EventPool Clearance Mechanisms

When explicit events are introduced, the impact of event pool must be considered. The pool, instanti-
ated by event type, is represented by a single empty place for the whole system, not for each state machine
instance. ('This has been discussed in the section 3.5.1.3) This place, with a global visibility of a given event
type, on the one hand can consolidate all the emission of the system, and on the other hand can dispatch
event instances with competition mechanism for all event consumers. We provide the mapping semantics

for the single trigger and the multiple trigger transitions.

As mentioned at the beginning of the section, once an event pool concept is introduced, the clearance
mechanism must be defined. Otherwise for those events which will arrive always at inappropriate time, the

pool would keep growing and produce an overflow, especially for those systems which are designed to run
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Figure 3.5.23: Multiple Trigger Mapping Semantics

infinitely. In the context of this thesis, two generic strategies are proposed and implemented: time out and

size out strategies (Fig. 3. 5.24):

Time out
strategy
N /
N % #
4 —F
TGuard1 EventX TGuardN
Queue
- —>I— —> - — —>
[0,0] [0,0] Size out
strategy

Figure 3.5.24: Mapping Semantics: Event Pool Clearance Mechanism
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« Time Out Strategy: This solution (Fig. 3.5.24, right top) adds an outgoing TPN transition to the
event pool place, with execution time [t,t] in which t is the maximum time that an event instance
could stay in the pool if not consumed. The new TPN transition clear will compete event with real
event consumers, which means if an event can be handled at a given time, it is not guaranteed to
be handled because the event pool may be cleared before. This violates the original semantics and

therefore need constraints to forbid the clear to compete events with normal T gyarq transitions.

TINA tool box offers the analysis of TPN with priorities, which is a kind of constraints between tran-
sitions, called transition priority. The blue arrows in Fig. 3.5.24 stand for this: the source transition
(T Guardss -+ Tauaran) Will always be prior to the target transition (clear) if both are enabled. Thus
the event pool will only clear the time out event when there is no state machine at the ready state to

receive it.

« Size Out Strategy: This solution removes event instances from the event pool when it reaches its
maximal capacity (see Fig. 3.5.24, right bottom). This strategy should provide a detailed dequeue
policy, like FIFO, LRU, etc. However, since for different event instance, their use is always the same
in terms of triggering the corresponding state machines. Therefore the only criteria that matters

(which can influence system’s behavior) is the event instance number in the pool.

Like time out strategy, this solution adds an outgoing clear transition to the event pool place, but
with a different execution time [0,0]. This implies that once the pool is full, the clearance work
will start immediately. Of course it will encounter the same problem of token competition if no
transition priority is defined. The control of pool’s capacity is implemented by a read arc from pool

place to clear, using K as the capacity parameter.

« Without Clearance Mechanisms: The time out and size out strategy in TPN introduce priority
arcs. TINA supports different abstraction used for building state class graph. A TPN with priority
arc will be unfolded using state preservation abstractions. Without priority arcs, a marking preserva-
tion abstraction is possible. The marking preservation abstraction is the highest abstraction, which
makes the model checking more efficient. If the priority arcs are supposed to be avoided, the clear-
ance mechanism can be replaced by on-the-fly checking to allow detecting potential overflows. This
method simply observes the arrived event amount in the event pool. If the amount is out of bound,

the on-the-fly checking stops. It indicates that the system design itself possibly has some vulnerabil-
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ity in the interaction with the environment.

In the context of this thesis, we do not use any clearance mechanisms for the event pools. Instead, in the
real-time critical systems, we take as granted the event instances of the given system are always restricted to

the capacity of event pool, otherwise, this is a design error.
3.5.4.6 Final State

Final state is a special kind of state signifying that the enclosing region is completed. If the enclosing region is
directly contained in a state machine and all other regions in the state machine also are completed, then it means
that the entire state machine is completed. (page 557 of UML Spec.)

In the flattening step, the final states in regions have been flattened and replaced by a special state S,
with triggers but no entry or do activity (see pages 3.5.3.1 and 3.5.3.2). The final states in the topmost
region are kept. These final states are mapped to a TPN place without initial token or outgoing transitions,

as shown in Fig. 3.5.25.

Unnested SMD Notation Mapping Semantics
Final State @ O

Figure 3.5.25: Final State Mapping Semantics

3.5.4.7 Pseudostates

We discuss the mapping semantics for the initial, terminate, junction, choice, fork and join pseudostates
in this section. The mapping semantics for the initial and terminate pseudostates is simple. The mapping
semantics for the fork and join pseudostates is not complex either, as they have the same behaviors as ex-
isting TPN elements. The mapping semantics for the junction and choice pseudostates needs to be detailed,
as the RTC processing is relatively complicated for the compound transitions constructed with them. The
definition of a common semantics is a key point of the semantic mapping: Transitions outgoing pseudostates
may not have a trigger (except for those coming out of the initial pseudostate). (page 598 of UML Spec.) This

point is important when mapping the junction, choice, fork and join nodes.

Initial. An initial pseudostate represents a default vertex that is the source for a single transition to the default
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state of a composite state. There can be at most one initial vertex in a region. (page 566 of UML Spec.)

An initial pseudostate activates the state machine instance at the beginning. It is represented by a place
with one token and no outgoing transitions. The outgoing transition from the initial vertex may have a behavior,
but not a trigger or guard (page 566 of UML Spec.). As the outgoing transition from the initial vertexis specific,

we provide the mapping semantics for the initial pseudostate and its outgoing transition in Fig. 3.5.26.

Unnested SMD Notation Mapping Semantics
Initial &
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. i ‘— A—> A —>
Outgoing Transition ) < : ) > | N

Figure 3.5.26: Initial Pseudostate and Outgoing Transition Mapping Semantics

Terminate. Entering a terminate pseudostate implies that the execution of this state machine by means of its
context object is terminated. The state machine does not exit any states nor does it perform any exit actions other
than those associated with the transition leading to the terminate pseudostate. (page 567 of UML Spec.)

The terminate pseudostate is similar to the activity final node in the activity diagram. It is represented
by a place without initial token. In order to stop all the executions in the state machine, the inhibitor arcs
are used to link all the TPN transitions, as shown in Fig. 3.5.27. Once the terminate place is filled with token,

the inhibitor arcs will halt all the transitions.

Unnested SMD Notation Mapping Semantics
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Figure 3.5.27: Terminate Pseudostate Mapping Semantics

Junction & Choice. Junction and choice pseudostates are both used to chain multiple transitions. Junc-

tion vertices are used to construct static conditional branches while choice vertices are used to construct
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dynamic conditional branches. The distinction between these two conditional branches is reflected in the

RTC processing.

In compound transitions involving multiple guards, all guards are evaluated before a transition is triggered,
unless there are choice points along one or more of the paths. The order in which the guards are evaluated is not
defined. If there are choice points in a compound transition, only guards that precede the choice point are evaluated
according to the above rule. Guards downstream of a choice point are evaluated if and when the choice point is
reached (using the same rule as above). In other words, for guard evaluation, a choice point has the same effect as
a state. (page 600 of UML Spec.)

Therefore, if there are choice points in a compound transition, guards downstream of a choice point are
evaluated if and when the choice point is reached. If there are junction points in a compound transition,
both guards that precede a junction point and the guards downstream of the junction point are evaluated
before the junction point is reached. The RTC processing means that an event occurrence can only be taken
from the pool and dispatched if the processing of the previous current occurrence is fully completed. (page 590 of

UML Spec.) This RTC semantics must be ensured during the semantic mapping.

Choice vertices which, when reached, result in the dynamic evaluation of the guards of the triggers of its outgoing
transitions. This realizes a dynamic conditional branch. It allows splitting of transitions into multiple outgoing
paths such that the decision on which path to take may be a function of the results of prior actions performed in
the same run- to-completion step. If more than one of the guards evaluates to true, an arbitrary one is selected. If
none of the guards evaluates to true, then the model is considered ill-formed. (To avoid this, it is recommended to
define one outgoing transition with the predefined “else” guard for every choice vertex.) (page 567 of UML Spec.)

The mapping semantics for the choice node is illustrated in Fig. 3.5.28. To simplify the discussion, we
suppose there is no exit behavior in state A, and there is no entry behavior in states B and C. The choice node
is mapped to the TPN place P yoic.. The transition Tgyrq4 and the behavior Effect, stands for the behavior
of the incoming transition of choice node. If the incoming transition has a single trigger, the place P,,,; is
used to represent the event pool. Once the RTC step is finished, the RTC token refills both the places P,
and P,c. This mapping semantics guarantees that the behavior of Effect, may impact the guards on the

outgoing transitions. Meanwhile, it ensure the RTC processing.

Junction vertices are semantic-free vertices that are used to chain together multiple transitions. They are used
to construct compound transition paths between states. For example, a junction can be used to converge multiple

incoming transitions into a single outgoing transition representing a shared transition path (this is known as a
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Figure 3.5.28: Choice Pseudostate Mapping Semantics

merge). Conversely, they can be used to split an incoming transition into multiple outgoing transition segments
with different guard conditions. This realizes a static conditional branch. (In the latter case, outgoing transitions
whose guard conditions evaluate to false are disabled. A predefined guard denoted “else” may be defined for at most
one outgoing transition. This transition is enabled if all the guards labeling the other transitions are false.) (page

566 of UML Spec.)

The mapping semantics for the junction node is illustrated by Fig. 3.5.29. As the guards are evaluated
before the firing of incoming transitions, the guards on each conditional branch are combined. In the fig-
ure, Guard, and Guardg are combined in one branch, while Guard, and Guard¢ are combined in another
branch. As the trigger is on the incoming transition, the event pool place P,,014 provides events to both tran-
sitions Tguardap and Tguaraac. This mapping semantics guarantees that all guards are evaluated statically

before the firing of transitions. Meanwhile, it ensures the RTC processing.

Fork & Join. Fork vertices serve to split an incoming transition into two or more transitions terminating on
orthogonal target vertices (i.e, vertices in different regions of a composite state). The segments outgoing from a
fork vertex must not have guards or triggers. (page 567 of UML Spec.)

The mapping semantics for the fork node is illustrated by Fig. 3.5.30. To simplify the discussion, the
exit behavior of state A and the entry behaviors of states B/C are omitted. The fork node is mapped to
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a TPN transition T, (blue color) with time constraint [0,0]. The RTC processing needs to be explicitly
mapped. The RTC is mapped to the places P,;.5 and P,;.c which link transitions T’ and T to the common
transition Tgy,.rq where the guard of incoming transition is specified using PRE[Guard]. This mapping

semantics ensures that only when both outgoing transitions complete, will the compound transition finish

the RTC processing.

Figure 3.5.29: Junction Pseudostate Mapping Semantics

Unnested SMD Notation Mapping Semantics
— P
(— pool
I A JI TitcB PrtcB
trigger o Q_) o N
Fork Guard N
or Effect, NN e A [0,0]
Pseudostate & ! NI, ! | Effectp | | ‘ | Effectc |
- H 7y TreC
Effecty Effect; PdoneA o “N
Y .
| |
| B ) | c ) [0,0] rtcC

Join vertices serve to merge several transitions emanating from source vertices in different orthogonal regions.

Figure 3.5.30: Fork Pseudostate Mapping Semantics
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The transitions entering a join vertex cannot have guards or triggers. (page 567 of UML Spec.)

The mapping semantics for the join node is illustrated by Fig. 3.5.31. To ease the discussion, the exit
behaviors of state A/B and the entry behavior of states C are omitted. The join node is mapped to the
transition T'g,,r4c, which is also the guard transition. As the incoming transitions cannot have triggers, the
RTC place Py c links the transition T, to the guard transition Tgygr4c. As all the incoming and outgoing

transition of join node do not have triggers, it is not necessary to maintain the RTC semantics here.
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Figure 3.5.31: Join Pseudostate Mapping Semantics

3.6 RESOURCE MAPPING SEMANTICS

In the UML-MARTE model, the behaviors (activity and state machine) consumes the resources such as the
CPU, the memory, etc. The scheduling policy applied by the scheduler will impact the real-time require-
ments. Thus, if the target system relies on some external resources, the real-time behavior for the resources
scheduling needs to be explicitly specified in the TPN model.

The MARTE profile MARTE : :MARTE_Foundations: :GRM: : Scheduler:schedPolicy provides some typical
scheduling policies for real-time embedded systems, such as Earliest Deadline First, FIFO, Fixed Priority,
Least Laxity First, Round Robin, Time Table Driven. It also allows users to define their own scheduling
policy. Mapping semantics for these well-known scheduling policies to TPN model could introduce some
semantic ambiguities. For example, when using Fixed Priority scheduling policy, there is no explicit indi-

cation in the UML-MARTE level to specify what should be the scheduler’s behavior if two requests have the
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3.6. RESOURCE MAPPING SEMANTICS

same priority; but as this information is mandatory for the TPN modeling, then a semantic gap is potentially
created.

Besides, the exact behavior of some dynamic scheduling policy could not be mapped to TPN in a triv-
ial way. For example the EDF/preemptive policy always need to compute for each reassignment cycle
the process which is the closest to its deadline. This requires a dynamic comparison between the amount
clock/time state of each transition and the given reference, which is unfeasible neither in classical TPN nor
in TPN with data extension.

As modeling of scheduler policy is not the focus of this thesis, we do not aim in our work to provide the
mapping semantics for any specific scheduling policy. Instead, we propose a generic scheduling algorithm
with preemption option. This scheduling algorithm is used to decide for the given time T, which resource

instance(s) will be allocated to which requester(s).

3.6.1 Generic Resource Scheduling

A resource is a 3-tuple (I, S, Q), in which:
o Irefers to identification, which indicates the type of the resource.

o Sis the scheduler used to respond to the requirement of the resource. A scheduler has a preemption

option.
« Qis the instance amount of the provided resource.

For example, a 4-core CPU with preemptive scheduling policy is modeled as (CPU-CORE, preemption, 4).

In the MARTE profile, the following properties are used to specify the resource, scheduler and allocations:
« Preemption: MARTE: :MARTE_Foundations: :GRM: :Scheduler:isPreemptible
« Scheduling policy: MARTE : :MARTE_Foundations: :GRM: :Scheduler:schedPolicy
« Resource amount: MARTE: :MARTE_Foundations: :GRM: :Resource:resMult
« Required amount: MARTE: :MARTE_Foundations: :GRM: : Scheduler:resMult
« Allocations: MARTE: :MARTE_Foundatins::Alloc::Allocate
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3.6. RESOURCE MAPPING SEMANTICS

A generic resource scheduling semantic pattern is defined as shown in Fig. 3.6.1. The content of the square
in dotted line is a behavior model consuming the target resource in a preemptive or non-preemptive man-
ner. In this thesis, we only provide the mapping semantics for the resource scheduling in an activity diagram
using event-trigger actions. The same mapping principle is applicable to the other kinds of behavior model

(time-trigger actions in the activity and state machine).

Resource Type Notation Mapping TPN
<<Resource>>
resMult: Q I |
Resource ‘ Resource Usage ‘
) <<Allocate>> ! ‘ (Preemptive/Non-preemptive) ‘
Scheduling ! \ (scheduler policy) ‘
Pattern <<Scheduler>> I N AR 1
isPreemptible
schedPolicy
resMult: N

Figure 3.6.1: Generic Resource Scheduling Mapping Semantics

3.6.2 Non-preemptive Resource Scheduling

The mapping semantics for the non-preemptive resource scheduling in the activity diagram using an event-
trigger action is illustrated by Fig. 3.6.2. The mapping semantics for the event-trigger action has been pre-
sented in page 75. The resource place P, contains Q instances of a given type of resource. P, linked to the
transition REQUIRE_RES represents the fact that the given action requires Ny instances of resource, and
P, linked from the transition RELEASE REs represents the fact that the Ny instances of resources should

be released and returned to the resource place.

3.6.3 Preemptive Resource Scheduling

TPN with stopwatch are commonly used to cope with preemptive modeling. However, it is very expensive in

terms of reachability graph generation when performing the model checking to assess real-time properties.
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Scheduling Type Notation Mapping TPN
Cj ‘77 T e in; T Cupr e |
Action Node <<Allocate>> ready ready ready Released released ‘
. 1 0,0] [min,max] [0,0]
(event'tlgger) <<Resource>>
Non-preemptive resMult: Q I#Q_)I‘)Q—)I‘)Q—)I > ©—> Q—)I Q
Resource <<Allocate>> '?‘

REeLEASE_RES ENliP OouT

Scheduling

1
<<Scheduler>>
isPreemptible: Non-preemptive
resMult: N

Figure 3.6.2: Non-Preemptive Resource Scheduling Semantics

We propose a solution to mitigate this issue. The objective is to model the same semantics without using
stopwatch mechanism. The idea is to use the time slice of the preemptive scheduler as the time unit to
segregate the action’s execution. The transition of execution (with time constraint [£in, tmax]) is divided
into the structure presented in Fig. 3.6.3. The resource place P, containing Q instances connects to each

transition (the two direction arrows in blue color) to represent the preemptive scheduling, where
« t, is the time slice of the scheduler;
o K = |tyin/t;] is the minimal number of occurrence times of £;
o S = |tmax/t;| is the maximal number of occurrence times of t;
e« A = t,;, — K- t,stands for the left time from t,,;, after K occurrence of t;
e B=1t,,, — S -t stands for the left time from ¢,,,, after S occurrence of t;.

The frame K represents the possible execution time [f,,, (K+1) - £[; the K+1frame represents the possible
execution time [(K+1) - t;, (K+ 2) - ;[; the last S frame represents the possible execution time [S - t;, t,nq)-
All the execution time from f,,;, to t,uay is covered. We give an example (Ex. 3.1) to explain the mapping

semantics.

Example 3.1 (Preemptive Scheduling Example) Suppose the execution time of a given action is [10, 20],
and the time slice of the scheduler is 3. According to the above mapping semantics, K=3,S=6,A=1,and B = 2.

The possible execution time and slice occurrences are listed in the Table 3.6.1.
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Scheduling Type Notation Mapping TPN
A
I
Action Node <<Allocate>>| Output
. L Rel d
(event-tigger) <<Resource>> ease
Preemptive resMult: Q
Resource
scheduling <<Allocate> >!
<<Sche|duler> >
isPreemptible
Preemptive
resMult: N

Figure 3.6.3: Preemptive Resource Scheduling Semantics

Table 3.6.1: Preemption Scheduling Example

Frame K (K=13, 4,5,6) | Execution Time | Slice Occurrence Time Point
3 [10, 12[ 36,9
4 [12,15] 3,6,9,12
3 [15,18] 3,6,9,12,15
6 [18,20] 3,6,9,12,15,18

3.7 TIME SEMANTICS IN MULTI-CLOCK MODELING

For real-time analysis in multi-clock modeling, one of the clocks must be a reference clock. Then, other
clocks can be compared with this reference clock. Clock tick is the smallest unit of time recognized by a
device. Clock drift refers to the phenomena where a clock does not tick exactly at the same time as the
reference clock. From the viewpoint of real-time analysis, the main difference between single-clock and
multi-clock modeling is that the clock drifts should be taken into account in multi-clock modeling environ-
ment. In single-clock modeling, it is not mandatory to distinguish the notions of tick and clock cycle (the
amount of time between two ticks of a clock), because the difference between the clock cycle and the phys-

ical time is of the same proportion for both clock cycle and tick at any given time. If a clock drift occurs, it is
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also effective for every part in the system. In multi-clock modeling, however, the semantic mapping need
to exhibit a correct semantics for clock drifts as each clock drifts independently from the others.

The main idea is to assume a global physical clock and project each time consumption and drift on this
precise time reference. In our study, we use the physical time notion as the exact reference for both single-
clock and multi-clock modeling. The physical time and the verification tools we rely on both dense time
and discrete, thus our approach can handle both dense time and discrete time problems.

In the single-clock context, the measured execution time is directly used after a global normalization of
the time units. For example, if action A takes [ 3.4, 4.7] msand actions B [78.9, 463.5] ps, the corresponding
min time and max time on the TPN transition are respectively [34000, 47000] and [789, 4635 ], with the
common unit of 0.1 ys to keep all the results natural numbers. All time values in time constraints should be
integers, as the TINA model checker requires this convention.

In the multi-clock context, the measured execution time needs to be first mapped to tick numbers from
the global physical clock, and then the physical model time is deduced by associating each clock’s drift.
We use the same example but respectively give the corresponding clock properties: let clocks A and B
theoretically tick every 1 ys, and their backward drift and forward drift are both 1%, therefore action A’s
tick number is [3400, 4700] and action B’s is [78.9, 463.5]. As tick number must be integer, a rounding
strategy must be designed without introducing unreasonable conversion error. We use the floor function
for t,,;, and ceiling function for t,,,,. Therefore, we have A for [3400, 4700] and B for [78, 464] as tick
numbers after the rounding. It is possible to take a more precise unit, but the more precise the more states
will be created when analyzing the real-time properties, because it increases the time difference between
the max and min time values. Thus there exist a compromise between the precision and the scalability of
verification.

As the corresponding tick time range is [0.99, 1.01] ys due to the mentioned clock property, action’s
physical time duration is computed by multiplying this range and action’s tick number range. Following the
same principle of unit normalization, the final min time and max time are [336600, 4747000] and [7821,
46763 ] respectively, with the common unit of 0.01 ys. Compared with the actions in mono-clock modeling,
the precision of execution time is increased.

The drawback is that, as the method assumes each component has an independent clock, it can be too
constraining for those devices which share a clock in a multi-clock modeling. The reason why we decided
to choose this abstraction is that in the verification view point, this will only lead to a false-violation, which

means if a time property is verified under independent-clock hypothesis, it must also be true for a shared-
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clock system. This sufficient but not necessary condition in practice may only cause a performance trade-off

in system design, but never gives out a wrong verification result when property’s proof is positive.

3.8 DiscussioN

3.8.1 Verification of Model Transformation

The automatic model transformation referred to in this work is in fact a semantic mapping, which preserves
all the property-related semantics of the source UML-MARTE model. Regarding the objective of the verifica-
tion of real-time properties at architecture level, this abstraction is justified because it is not mandatory to
preserve all the information, for example, the object values.

A concern with this method is whether the model transformation (semantic mapping) is correct. In
other words, how to verify this model transformation (semantic mapping). Indeed, this is a crucial ques-
tion.

What to verify? Some surveys of the state-of-the-art about the verification of code generation [Davo3,
Nec11] and the verification of model transformation [CS13, PSS98] summarized the following expected

properties:

 Language-related properties includes terminate, determinism, typing, and preservation of execu-

tion semantics properties.

« Transformation-related properties includes source/target conformance, syntax relations, seman-

tics relations and functional behaviors properties.

The verification of model transformation for the UML-MARTE model is not trivial. Generally, the best way
to verify if the model transformation preserves the intended semantics is to compare the state space graph
of the source and target formal models. As shown in Fig 3.8.1, a formal specification must then be defined
for UML models as a reference semantics. The execution semantics is then compared with this reference
semantics. However, since UML is semi-formal, a formal definition is needed to establish the reference, which
is one of the work in this thesis. Our proposal relies on a translation to a formal model instead of a direct
formal specification of an operational semantics that would allow to build the state space at the UML level.

This does not change the fundamental issue: how to validate this formal specification?
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| Formal Specification |

i | tracability
[ ! A Consistency

L~ UML —|>| Expected Behavior Property| 1

V| Execution Semantics |

| Validation by Testing and Proof Reading |

Figure 3.8.1: Verification of Model Transformation

A solution may mitigate the problem by mapping the UML-MARTE model to different formal models and
verifying if they converge into the same formal semantics. Nevertheless, whether the semantics is lost be-
tween a semi-formal model and a formal one can only be assessed using testing and human proof reading.

Another possible solution is derived from translation validation that have been experimented for the
same purpose for AADL in the QUARTEFT project. This method allows to verify that some important intended
behavioral properties conform to the execution semantics. For example, we can define TPN observers to
assess the run-to-completion processing semantics. More precisely, when an event occurrence is being
processed, the other occurrences of this event cannot be accepted. However, when the behavior property
specification and the execution semantics are both wrong in the same way, this method does not work.
Then some test cases must be used to validate the execution semantics.

As a future research direction, the expected behavior properties would be defined and used to verify the
conformance between the execution semantics and the behavior specification. This can validate some key

execution semantics in the UML models.

3.8.2 Boundedness and Decidability Issue

The main objective of this thesis is to propose a set of methods that may improve the efficiency of model
checking in order to verify properties in large scale systems. The mapping translates the end user model to
the verification model, on which the desired properties will be assessed. We need to discuss here whether
the proposed mapping semantics can ensure boundedness and decidability in the verification TPN models.

Before discussing this issue, we recall the research background of this thesis. We rely on the UML-MARTE
design models that have finite states and finite event occurrences. In other words, the design model is
bounded. In fact, a practical correct engineering system must be K-bounded, otherwise it is not possible

to implement it with limited resources. Therefore instead of checking the boundedness, it becomes a K-
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boundedness problem for this thesis. Since K-bounded TPN without stopwatch arcs is decidable, and no
stopwatch is used in the model mapping, therefore this mapping will not introduce any unboundedness or

undecidability.

A TPN is bounded if the marking of each place is bounded by some integer. [BVo7] In the semantic mapping
method, we have used inhibitor arcs for the Activity Final and Object nodes in the activity diagram, and the
Terminate pseudostate in the state machine diagram. The question is whether the inhibitor arcs will make

the TPN model unbounded.

We need to discuss this problem taking into account the following two aspects:

« Inhibitor arcs in Activity Final nodes and Terminate pseudostates. The mapping semantics are
defined respectively in page 70 and page 113. In this case, the inhibitor arcs are used to terminate all
the transitions in the TPN model when the whole system enters the final flow state, which potentially

decrease the size of the state space of a TPN model.

When the control flows have not yet arrived at the final TPN place, this place is empty, which means
it cannot affect the behavior of the control/data flows. Once the final flow place is filled, all the
transitions in the whole TPN model are stopped, and thus no new tokens can be produced. Therefore,

the TPN model is still bounded.

« Inhibitor arcs in object nodes. The mapping semantics is defined from page 79 to page 83. In
data flows, the TPN place representing UML object node will become unbounded only in the follow-
ing cases: the producer of tokens continues to send tokens to the object TPN place, while the speed
of consumption is rather slow. Obviously, this is caused by a boundedness design error. A well
designed real-time system must avoid generating an unbounded amount of data or must possess a
clearance mechanism to restrict the capacity of the object store. Therefore, before verifying real-time

properties, a verification on boundedness should be performed.

State reachability and boundedness is proven to be undecidable for arbitrary TPN. However, state reachability
is decidable for bounded TPN, which is sufficient for virtually all practical purposes. [GLM " 05 ] Therefore, in the
context of this thesis, as the TPN model is bounded, and the state reachability is decidable.
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3.9 CONCLUSION

This chapter presented the methodology for the property-driven approach, which provides the basis for our
semantic mapping contributions. The objective is to automatically map UML-MARTE models to executable
TPN models on which efficient model checking can be performed afterwards to verify real-time properties.

The main contributions of the current chapter are summarized as follows:

1. Specification of the mapping semantics for composite structure diagrams ( Section 3.3).
The composite structure diagram connects different sub-system behaviors through the communica-

tion medias. The mapping semantics is provided for the entities Part, Port and Connector.

2. Specification of the mapping semantics for activity diagrams (Section 3.4) [GPC12b].
The activity diagram emphasizes the sequence and conditions for coordinating lower-level behav-
iors. The mapping semantics is provided for the UML-AD control nodes, event-trigger and time-trigger
actions, objects, and connections. In order to standardize the mapping semantics for the asyn-
chronous behavior, we extend the original semantics for action by defining an asynchronous seman-
tics using the MARTE profile, and then map it to the TPN model. It is a general pattern in the reactive

asynchronous system, and thus can be reused in the modeling and verification.

3. Specification of the mapping semantics for state machine diagrams (Section 3.5).
We investigate the behavioral state machine in this thesis. Two aspects are considered when the
mapping semantics is defined. First, hierarchically nested states and orthogonal regions do not ex-
tend the semantic expressiveness. They help the designer in the writing of sophisticated models for
complex systems. The nested SMD can be converted to an unnested SMD. This is the work of flattening.
Second, the unnested SMD with only simple states, final states, transitions and unnested pseudostates

are mapped to the TPN model. This is the work of mapping.

4. Specification of the mapping semantics for resource scheduling (Section 3.6).
In this work, we do not aim to provide the mapping semantics for any specific scheduling policy.
Instead, we propose a generic scheduling algorithm with preemption option. This scheduling algo-
rithm is used to decide for the given time T, which resource instance(s) will be allocated to which re-
quester(s). The specification and verification of specific scheduling policies can be a future research

work.

126



3.9. CONCLUSION

5. Implementation of the tool for semantic mapping in the property-driven verification toolset.
The mapping semantics defined in this chapter has been implemented as a tool in the real-time prop-

erty verification toolset. The implementation coverage library is provided in Appendix A.
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Specification of Real-Time Property

RESUME

Les langages de modélisation doivent fournir des éléments pour décrire la structure et le comportement
des systemes ainsi que leurs exigences. Plusieurs approches ont été proposées pour les propriétés temps
réels : des extensions des logiques exploitées par les outils de vérification telles LTL, CTL, mu-calcul qui
sont éloignées du point de vue utilisateur du systéme; des patrons de propriétés issus d'une analyse du
domaine comme ceux proposés par Dwyer et Konrad; des relations d’'ordre partiel entre les événements se
produisant dans le systéme comme la partie CCSL (Clock Constraint Specification Language) du standard
MARTE. Ces deux dernieres approches ont été congues pour I'utilisateur final et ne sont pas forcément
adaptées a une mise en oeuvre efficace pour les outils de vérification de modéle. Ce chapitre définit un
ensemble minimal de patrons de propriétés temps réel atomiques qui sera utilisé pour traduire les propriétés
qualitatives et quantitatives temps réel exprimées par le concepteur. Lobjectif est de faciliter les activités

de vérification sans réduire I'expressivité des spécifications.
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Selon les exigences exprimées dans plusieurs projets de recherche impliquant de nombreux partenaires
industriels, les besoins en terme de vérification de propriétés temps réel comprennent: les pires et meilleurs
temps d’exécution, les pires et meilleurs temps de traversée des moyens de communication, la durée d’'un
état, les contraintes liées a la synchronisation, la coincidence, la précédence, etc.

Ces exigences peuvent étre sémantiquement décomposées en un ensemble de propriétés élémentaires
que nous appelons les patrons de propriété pour la vérification. Ils peuvent faciliter I'utilisation de méth-
odes formelles en particulier pour les utilisateur non-experts en fournissant des solutions récurrentes a la
spécification et la vérification. Ils permettent de décomposer des propriétés complexes comme une com-
position de propriétés élémentaires qui reposent sur un plus petit espace d’état et réduisent ainsi le cotit de
vérification.

Les patrons de propriété habituels sont dérivés du travail de Dwyer et Konrad. Ils ciblent I'expressivité
pour les utilisateurs finaux qui spécifient les exigences temps réel, mais ne garantissent généralement pas
l'atomicité sémantique ou la facilité de la vérification. Nous proposons un ensemble minimal de patrons
atomiques de propriétés temps réel dans le but de diminuer la complexité de la vérification. L'intégralité
des exigences temps réel exprimées par des patrons de Dwyer et Konrad et une part importante de celles
exprimées en CCSL peuvent étre traduites sous la forme d'une composition de ces patrons élémentaires.
Cette décomposition est automatique et donc transparente aux utilisateurs.

Ces patrons de propriété sont minimaux parce qu’ils sont sémantiquement atomiques et ne peuvent pas
étre exprimés sous la forme d’'une composition d’autre éléments atomiques. Nous fournissons la traduction
des patrons de Dwyer et Konrad. Cela signifie que nos patrons de propriété atomique sont sémantiquement
complet par rapport aux travaux de Dwyer et Konrad.

Nous avons également traduit une partie de la spécification de CCSL ainsi qu'une variante de CCSL
basée sur les tiches en nos patrons de propriétés. C'est une seconde illustration de I'expressivité des patrons

que nous proposons.

129



UML Real-Time Software Model

Real-Time
Requirement

~ Real-Time Property
GO TP Sy Specification A\
Property Patterns

o

Progress Map 2: Property Specification using Real-Time Property Patterns

This chapter defines a minimal set of real-time property patterns used to specify both qualitative and
quantitative real-time properties, for the purpose of verification-ease and semantic completeness (Progress
map 2). Classic property patterns based on Dwyer’s and Konrad’s pattern systems target expressiveness for
the end-users that specify real-time requirements, but this usually does not ensure that they are semantically
atomic or easy to verify (Challenge 2 in page 22). We define a minimal set of atomic real-time property
patterns in the order to decrease the verification complexity. All end-user dedicated real-time requirements
are expressed as compositions of these patterns. The common requirements based on Dwyer’s and Konrad’s
patterns and CCSL language will be automatically mapped to our patterns using a predefined metamodel and
a mapping library. We also define a small extension for task level CCSL specification and translate them into

our property patterns (Contribution 2 in page 22). All the patterns defined in this chapter will be checked
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in an efficient way using the proposals in Chapter s.

4.1 INTRODUCTION

According to the user’s point of view expressed in several collaborative research projects involving indus-
trial partners such as P !, TOPCASED 2, OPEES®, QUARTEFT *, SPICES °, SPACIFY ¢, and CESAR’, etc, the real-time
requirements commonly used in a real-time concurrent system include the worst/best case execution time,
worst/best case traversal time, state duration, the scheduling related constraints such as synchronization,
precedence, coincidence, etc. [Kop11]. These requirements can be semantically decomposed into a set of
elementary properties that we call property patterns. Design patterns are widely used in many engineer-
ing domains, because they are thought as a means of leveraging the experience of expert system designers
[VH]Gos]. Property patterns can fulfill a similar purpose: on one hand ease the use of formal methods
especially for the non-expert users by providing the recurrent solutions to specification and verification
problem; and on the other hand decompose complex properties into a set of simpler ones that rely on a
smaller state space and thus decrease the verification cost.

In this chapter, we present a set of real-time property patterns used to specify real-time requirements.

Property based on Dwyer’s and Konrad’s works

Dwyer etal. initially proposed qualitative temporal property patterns for finite-state verification [DAC98,
DACg9]. They focused on logical time properties, thus no concept of quantitative real-time constraints
such as time interval and duration were present in their pattern system. Dwyer et. al. also performed alarge-
scale study in which specifications containing over soo temporal requirements were collected and analyzed.
They noticed that over 90% of these could be classified under one of the proposed patterns [DACo9 ], which
encouraged others to use Dwyer’s pattern system and to extend this study.

The following works on quantitative time property patterns [KCos, GLo6, ADZLB12] extended Dwyer’s

patterns, with additional real-time constraints. In [KCos ], Konrad created mappings of quantitative time

1http ://www.open-do.org/projects/p/
*http://www.topcased.org/
*http://www.opees.org/
*http://projects.laas.fr/fiacre/
Shttp://www.spices-itea.org/public/news.php
6http: //spacify.gforge.enseeiht.fr/

"http:/ /www.cesarproject.eu/
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property patterns into three real-time temporal logics: MTL,TCTL [Alug1 ], and RTGIL [MRK " 97], and then
defined a pattern template to ease the reuse. [GLo6] provided a catalogue of patterns for real-time ex-
tension that handled a less expressive set of patterns (without some modifiers). Also based on Dwyer’s
property patterns, [ADZLB12] proposed a set of real-time properties that introduced the time constraints
Interval and Duration, using 4 scope modifiers and 4 categories of patterns. They did not implement all the
scope and categories (e.g. Precedence, Bounded Existence, Chain Response and Chain Precedence), because
they aimed to apply their approach on the modeling language Fiacre® [BBF" 07], which does not require
all the patterns but only the most commonly used ones.

From the viewpoint of property verification, we advocate that the property patterns in Dwyer’s pattern

system are not atomic. Let’s take a end-to-end real-time requirement as example (see Ex. 4.1).

Example 4.1 (Verification Pattern Example) For events A and B, Within time interval I ([T pin, Tinax]), the
real-time property is Exist A After B Within L. Its semantics can be represented by the logic formula:

(ﬁ B) \% (B NAN (TAB Z Tmin) A (TAB S Tmax))}

where T g is the time interval from the first occurrence of A to the first occurrence of B. It can be decomposed into

3 atomic properties: Exist B, Tap > Typin and Tap < Tpgy.

Property based on cCSL

UML by itself is an untimed model. Many extensions were proposed inside and outside OMG. MARTE was
introduced to provide a generic time expressiveness. To explicit keywords that denote usual concepts of
the domain (periodic, sporadic, sampling, etc), Mallet et al. introduced the Clock Constraint Specification
Language (ccsL) [AMo8]. It offers a rich set of constructs to specify time requirements and constraints

based on sets of instantaneous clocks (events) and clock constraints.

Need for a verification-ease property specification method
Relying on the decomposition in Ex. 4.1, the real-time requirements can be translated to and checked
with a set of atomic properties. We aim to define such a minimal set of atomic property patterns that targets

the ease of both specification and verification. The properties expressed using Dwyer/Konrad’s patterns

Shttp://projects.laas.fr/fiacre/
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and cCsL languages can be automatically translated to the verification targeted atomic property elements,
which will then be assessed using the observer-based verification approach.

We explain some core conceptsin Section 4.2, then give a quick overview of property pattern approaches
in Section 4.3. We introduce the catalog of real-time property patterns in Section 4.4. The metamodel
of real-time property pattern and the mapping library are presented in Section 4.5. In order to assess the
expressiveness of the real-time verification patterns, we apply our approach to CCSL constraints, and propose

a small extension based on CCSL to deal with the task level constraints in Section 4.6.

4.2 PRELIMINARIES

Before defining the pattern-based approach, it is mandatory to clarify some core concepts used in the spec-

ification: qualitative & quantitative property, occurrence & predicate & scope, event & state.

4.2.1  Qualitative & Quantitative Property

Real time is a quantitative notion of time that is measured using a physical (real) clock. In contrast to real
time, logical (virtual) time deals with a qualitative notion of time that is expressed using event ordering
relation such as before, after, sometimes, eventually, precedes, etc. A real-time system verification implies that
all quantitative and qualitative time requirements should be satisfied. Real time can be seen as a particular
case of logical time where the events generated by a physical clock are taken as time reference. In the context
of this thesis, we focus on the quantitative time properties because, on the one hand, the qualitative aspects
have been studied in many works; and, on the other hand, the introduction of physical clocks will increase

the complexity of model checking, which is the problem we aim to study using property driven approach.

4.2.2 Occurrence & Predicate & Scope

A common pattern for specifying a property is composed of three elements: occurrence, predicate and
scope. Predicate describes what must occur, and scope describes when it must occur. Occurrence is a con-
cept about the bounded existence. The occurrence of a predicate could be specified as existence, absence,
always (exist), or (exist) bounded occurrence. Given a temporal property Exist A After B Within I, Exist
is the occurrence, A is the predicate, while After B Within I is the scope.
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4.2.3 Event & State

The verification of end-user requirements covers three levels of model: the design model (UML in our case),
the verification model (TPN in our case), and the model checking state class graph (marking graph in our
case). We should distinguish the concepts of event and state from these three levels.

An event is an instantaneous and atomic occurrence of an action at a point in time. Relying on different

model granularities, an event can be:
« AtuML model level:

— A communication event: send, receive, read, write, etc.

— The execution of a transition from one state to another
« TPN model level: a TPN transition.
« State class graph level: a transition between states.

State is a universal concept through the whole system, regardless of the modeling granularity. A state
represents a situation during which some invariant conditions hold. The system remains in the state for
some time.

Before presenting the details about the proposed property pattern approach, we need to clarify a con-
vention on the use of event and state. In the pioneer work of Dwyer et al., a complete set of qualitative
property patterns were defined targeting specification activities. Thus, there was no need to distinguish
the use of event and state in the predicate and scope. For example, when a property is specified as Exist A
Before B. A and B could be state or event. From the viewpoint of verification, the predicate Exist A is sup-
posed to support both state and event. Nevertheless, to avoid ambiguity, the scope Before a state is usually
understood as Before the enter event of the state. Therefore, using scope with state is only a specification re-
quirement, while it is redundant for the verification. For this reason, in the context of this thesis, the scope

in a property can only be used with events, while the predicate can be used both with events and states.

4.3 PROPERTY PATTERN APPROACH

Dwyer’s property pattern system was based on eight patterns (Absence, Existence, Bounded Existence, Prece-

dence, Response, Chain Precedence and Chain Response) and five scope modifiers (Global, Before, After, Be-
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tween and After-Until). Konrad and Cheng extended Dwyer’s patterns to specify both qualitative and quan-

titative requirements. Konrad’s property patterns are organized in an hierarchy in Fig. 4.3.1 [KCos ], where

the grey frame part corresponds to Dwyer’s patterns.

Specification

Classification
Type by Dwyer Qualitative Quantitative
. L. Quantitative
Catalog Occurrence Order Duration Periodic Order
Chai Mini Bounded
Absence Existence Precedence amn 1n1m‘um ounde Bounded
Precedence Duration Recurrence Invariance
Pattern |
. . Bounded Chain Maximum Bounded
Universality A Response K
Existence Response Duration Response
Figure 4.3.1: Pattern Hierarchy
4.3.1 Qualitative Property Patterns

Dwryer’s qualitative patterns are briefly described as follows. In the descriptions, for brevity, we use the term

predicate to mean a state in which the given state formula is true, or an event from the given disjunction of events

occurrences.

Absence A given predicate must not occur within a scope.

Existence A given predicate must occur within a scope.

Bounded Existence A given predicate must occur k times within a scope. Variants of this pattern

specify at least k occurrences and at most k’ occurrences of a state/event.

Universality A given predicate occurs throughout a scope.

Precedence A predicate P must always be preceded by a predicate Q within a scope.
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« Response A predicate P must always be followed by a predicate Q within a scope.

« Chain Precedence A sequence of states/events P,, .., P, must always be preceded by a sequence of

states/events Q,, .., Q. This pattern is a generalization of the Precedence pattern.

« Chain Response A sequence of states/events P,, .., P, must always be followed by a sequence of

states/events Q,, .., Q,,. This pattern is a generalization of the Response pattern.

In our work, we focus on the first six patterns, because the chain patterns can be split into the atomic
verification patterns. Moreover, the bounded existence, precedence, and response patterns can be specified
using absence, existence, and universality patterns and some basic predicates.

The five qualitative scope modifiers defined by Dwyer are:

« Global The predicate must hold during the whole system execution.

Before The predicate must hold up to a given event.

« After The predicate must hold after the occurrence of a given event.

« Between The predicate must hold between the occurrence of event P and the occurrence of event
Q
« After-Until Similar to Between, but the predicate must hold even if event Q never occurs.

To represent the periodic semantics, we add a new scope modifier Periodically:

« Periodically The predicate must hold at least once every period.

4.3.2 Real-Time Suffix

As shown in Fig. 4.3.1, five quantitative modifiers were introduced in Konrad’s quantitative temporal prop-
erty patterns: Minimum Duration, Maximum Duration, Bounded Recurrence, Bounded Response and Bounded
Invariance.

In our work, considering that the specification should ease the verification and the composition of
atomic patterns, instead of quantitative modifiers, we introduce three real-time suffixes to use together with
some predicates and scopes. These real-time suflixes have equivalent semantics to the ones defined by Kon-

rad.
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« Atleast The predicate must hold at least T t.u.. This suffix is used together with state predicate.
« At most The predicate must hold at most T t.u.. This suffix is used together with state predicate.

« Within The predicate must hold within time interval I ([T,nin, Tnax]) This suffix is used together
with scope Before and After.

With these suffixes and new scope Periodically, we can specify real-time properties such as:
« Exist event A After event B Within I;
« Always state S holds At least (At most) T t.u. Before event E;
« Absent event A Precedes event B, Periodically.

After clarifying the patterns and scope modifiers, all the real-time requirements in real-time reactive sys-
tems can be specified by combining these patterns, scope modifiers and real-time suffixes. The translation

is given in the Appendix B.

4.4 CATALOG OF REAL-TIME PROPERTY PATTERNS

This catalog covers the atomic verification patterns used to check real-time requirements. In the context
of the thesis, as we rely on model checking for the verification, we focus on finite-state systems, whose
execution time can be finite or infinite.

The common method to specify a property for a given system is composed of two aspects: pattern and
scope. In the whole system’s state graph, the scope operator is first executed to select all states that belong
to this scope. These state candidates are then qualified by the given pattern definition. In order to ease the
verification, we define a minimal set of patterns (including predicates and scopes). All the other real-time
requirements are in fact a composition of these elementary patterns.

Our real-time property patterns can specify all the requirements based on Dwyer’s pattern system with
additional quantitative time suffixes. We provide the translation from all possible Dwyer’s and Konrad’s
property patterns to our patterns in Appendix B. Since it is proved that 90% of real-time requirements can
be specified using Dwyer’s patterns, we can say that most real-time requirements are also covered by our

approach.
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In the proposed pattern system (see Fig. 4.4.1 ), the real-time requirements will be specified using real-
time property patterns (either atomic pattern or composite pattern). Composite patterns can be easily build
using binary operators (or, and, imply). Atomic patterns contain three elements: occurrence modifier, basic
predicate and scope modifier. Basic predicates are based on state and event modifiers while scope modifiers

are only based on event modifiers.

Real-Time
Property Pattern

ik 1

— @ Atomic Pattern | Composite Pattern

i 1

Real-Time Property |@p—|

Occurrence Modifier Basic Predicate Scope Modifier
State Event Modifier

Figure 4.4.1: Temporal Property Verification Pattern System

In the following section, we define the set of occurrence modifiers, event modifiers, basic predicates,

and scope modifiers.

4.4.1 Occurrence Modifier

Occurrence modifiers are used to specify the occurrence times of given event/state modifiers within some

scope. All the temporal properties are in one of the three cases: Exist, Absent, and Always:
« Exist predicate in Scope: the given predicate must occur within a scope.
« Absent predicate in Scope: the given predicate must not occur within a scope.

« Always predicate in Scope: the given predicate occur through a whole scope.
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4.4.2 Basic Event Modifier

Predicates are based on events and states. An event can be an atomic element E, but in most context it is
more complex structure, e.g. event E' is the i occurrence of event E. After analyzing possible usage of the
event in a temporal property, we propose the following basic event modifiers. The event modifiers can be

extended, which means the basic event E can be replaced by the other event modifiers.

« E'The i occurrence of E (Fig. 4.4.2). When using this modifier, the occurrence of E must be finite
under the observed execution. Whether an event is finite or not is checked by a predicate presented
in the following section. In the context of this thesis, E* stands for the first occurrence of E, while E

stands for the event type. By default, when no occurrence is specified, E is regarded as E'.

\]

Figure 4.4.2: it" Occurrence of E

« E7%: The event standing for the delay of k times occurrence of event E (Fig. 4.4.3). This event mod-
ifier will be used to specify the temporal property between E and the event of its delay occurrence,

etc.

gl
— t t t t t

\J

gl E2 - E.i-k
t t t t

\J

Figure 4.4.3: k Times Occurrence Delay of E

« E/F. The event standing for the occurrence of the same event E but ticking k times slower than E

(Fig. 4-4.4). is This modifier will be used to specify sub-occurrences of E, etc.
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Y

Y

Figure 4.4.4: Sub-Occurrence of E

o I+T: T tu. measured from the initialization of the system for verifying the worst/best case execution

time of a system (Fig. 4.4.5).

Y

O—-H
I

Figure 4.4.5: T after System Initialization

o E+T: T tu. after E (Fig. 4.4.6). When using this modifier, the occurrence of E must be finite. This
modifier will be used to specify the scope within and the predicate at least (at most). For example,
after E within I ([t,in, fmax]) will be specified as after E + t,,;, and before E + t,,4,.

E E+T
f

T, To+T

Figure 4.4.6: T after E

« S§5: The event standing for entering state S (Fig. 4.4.7).

« SE: The event standing for exiting state S (Fig. 4.4.7).
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sS S SE
- & y D
t

Figure 4.4.7: Entering and Exiting event of State

4.4.3 BasicPredicate

Basic predicates are based on events and states. An event stands for the above event modifiers or composite

events. In the temporal properties, we are concerned with the following basic predicates:
« O(E’) = True: E' has occurred.
« isFinite(E) = True: The occurrence of event E is finite.

« Freq(E,) - N, =Freq(Ez) - Np : There exists equivalent occurrences between E4 and Eg. This pred-
icate is used to verify the temporal properties in periodic scheduling, in both finite and infinite time
execution. Usually, it appears together with the scope Periodically. Suppose two periodic events
E 4 and Ejp exhibit respectively occurrence frequency F, and Fg. There exists minimal coefficients
N and N (Ny, Np € Z*) that makes F, - Ny = Fp - Np. Ny and Nj can be computed using the
Least Common Multiple (1cm) and the Greatest Common Divisor (gcd).

. lcm(FA,FB)
4 gcd(lem(Fy, Fp), Fa)

(4.1)

1cm(FA, FB)
N, =
gcd(lcm(FA, FB)7 Fb)

(4-2)

A temporal property may require to limit the time difference between two periodic events. If these
two events exhibit the same frequency, N4 and Np are equal. Otherwise, N4 and Ny should be

introduced to identify the corresponding occurrence between E4 and Ep.

« T(E,, Eg) > t: Semantically, it is equivalent to T(E,) - T(Ep) > t. If E4 and Ep have equivalent
occurrences, the time interval between each equivalent occurrences of E4 and Ep is At least t+1 t.u..

This predicate can be used together with scope Periodically. If E4 and Ep occur only once, T(E,,
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Eg) > tstands for T(E}, E}) > t. The event E4 and Ep can be refined using event modifiers, such as
T(Eﬁk, Eg), to specify more complex temporal property.

« T(E,, Eg) < t: Semantically, it is equivalent to T(E,) - T(Ep) < t. If E4 and Ep have equivalent
occurrences, the time interval between each equivalent occurrences of E, and Ep is At most ¢-1 t.u..
This predicate can be used together with scope Periodically. If E4 and Ep occur only once, T(E,,
Eg) < tstands for T(E}, E}) < t. The event E4 and Ep can be refined using event modifiers, such as
T(Eﬁk, Eg), to specify more complex temporal property.

o S =True: The state S holds.
« D(S) > t: The duration of a given S is At least ¢ f.u..

« D(S) < t: The duration of a given S is At most t-1 f.u..

4.4.4 Basic Scope Modifiers
« Global: the scope is the whole system execution.
« Before E': Before the i occurrence of E. When using this scope, isFinite(E) must be true.
. After E': After the i occurrence of E. When using this scope, isFinite(E) must be true.
« Between E, and Eg: If E, and Ej are infinite, the scope between should be redefined as between

the equivalent occurrences of E4 and Eg. The event E, and Eg can be refined using event modifiers,

/

such as Between E Ak and Ez"™, to specify more complex temporal property. If E4 and Eg occur only

once, Between E, and Ejp t stands betwwen E}; and Ej. The event E4 and Ep can be refined using

event modifiers, such as between El/{k andEg, to specify more complex temporal property.

The scope After E4 Until Eg can be represented by the above ones:
« When Eg occurs after Ey, it is equivalent to Exist Eg After E4 A Between E4 and Eg;
« When Eg does not occurs after Ey, it is equivalent to Absent Eg After E4 A After E,.
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4.5 METAMODEL AND MAPPING LIBRARY

All temporal properties based on Dwyer’s patterns with additional quantitative time suffixes can be mapped
to our patterns. The complete mapping library is provided in Appendix B.

We present in Fig. 4.7.1 the metamodel of the proposed pattern system. It is defined within Eclipse
modeling Framework (EMF) to ease the integration with UML models.

Relying on this metamodel and mapping library, the mapping process can be performed automatically.

4.6 PATTERN COMPOSITION : APPLICATION TO CCSL CONSTRAINTS

In order to assess the expressiveness of the real-time verification patterns, we apply our approach to a com-
monly used temporal property specification language: CCSL from the UML MARTE standard. We first intro-
duce what is CCSL in Section 4.6.1, then present the concept of time tolerance in verification in Section
4.6.2. The CCSL constraints are then translated using the proposed real-time property patterns in Section
4.6.3. We have defined task level constraints based on CCSL. These constraints are specified using our veri-

fication patterns in Section 4.6.4.

4.6.1  Whatis ccsL

UML by itself is an untimed model. Many extensions were proposed inside and outside OMG. MARTE was in-
troduced to provide a generic time expressiveness. To explicit keywords that denote usual concepts of the
domain (periodic, sporadic, sampling, etc), Mallet et al. introduced the Clock Constraint Specification
Language (ccsL) [MAL1o]. It offers a rich set of constructs to specify time requirements and constraints
based on sets of instantaneous clocks (events) and clock constraints. The property pattern that we have
defined in the previous parts can also be expressed by cCSL.

A ccsL specification consists of clock declarations and a set of binary clock relations. These relations

apply to clocks or clock expressions. CCSL constraints are classified into four categories:
1. coincidence-based constraints (also known as synchronous constraints),
2. precedence-based constraints (also known as asynchronous constraints),

3. mixed constraints, which combine synchronous and asynchronous constraints,
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4. NFP (Non Functional Property) chronometric constraints, which is pertinent for chronometric clocks

only and used for quantitative timed properties.

TimeSquare: The CCSL parser is provided in the tool TimeSquare®, which is a Model Development Kit (MDT)
provided as a set of Eclipse plugins. TimeSquare allows to define CCSL constraints in the UML models, and

then simulate these constraints using the generated model traces in Papyrus MDT™.

4.6.2 Time Tolerance in Verification

ccsL deals with logical time. It defines the coincidence between two clocks A and B as they occur at the
same time, which indicates T(A) — T(B) = o. Although the coincidence means that something occurs
simultaneously (with no time difference), in real-time system the strict simultaneous property is rarely
achieved. Thus, the design requirements are usually associated with time tolerance. In order to be more
realistic, we introduce the concept of time tolerance for all CCSL-based constraints. The time tolerance is

denoted by &, which can be expressed using the NFP chronometric constraints.

4.6.3 Specification of ccsL Constraints

The real-time property patterns proposed in our work can be seen as a translation bridge between the front-
end specification language (in our case the properties in Dwyer’s and Konrad’s works) and the back-end ver-
ification language (in our case TPN observers and the logic formulae). CCSL is also a front-end specification
language for expressing the event-based real-time properties. Therefore, the CCSL constraints can be trans-
lated to our property patterns in order to be verified using the model checking afterwards. In this section,
we translate the CCSL coincidence-based constraints (sub-clocking and tight sub-clocking), precedence-
based constraints (precedence and strict precedence) and their derived constraints (equality, exclusion,
alternation, and synchronization) using our property patterns.

Chronometric constraints are special kinds of logical constraints, with a specific clock called Ideal Clock
or Real-Time clockin CCSL. In our discussion, the coincidence-based and precedence-based constraints are

extended by the physical clocks (denoted by the time tolerance §) using the NFP chronometric constraints.

9http: //timesquare.inria.fr/
"%https:/ /www.eclipse.org/papyrus/
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The original definitions of the CCSL constraints are referenced from the work of Mallet et al. in [MAL1o0,
AMog].

Clock A clockis a s-tuple (Z, <, D, 1, u), where
« 7 isaset of instants,
« < isa quasi-order relation on Z, named strict precedence,
« Disasetoflabels,
« A :Z — Disalabeling function,
« uis often called tick, it can be processorCycle as well or any other logical activation of a behavior.

The ordered set (Z, <) is the temporal structure associated with the clock. < is a total, irreflexive, and
transitive binary relation on 7.

A discrete-time clock is a clock with a discrete set of instants Z. Since Z is discrete, it can be indexed
by natural numbers in a fashion that respects the ordering on Z: let N* = N\{o},idx: Z — N* Vi ¢
7, idx(i) = kifand only if i is the k™ instant in Z.

Time Structure A time structure (TS) is a pair (C, <) where Cis a set of clocks, < is a binary relation on

U cc Lc, named precedence, < is reflexive and transitive. From < we derive four new relations:

4

Coincidence (= =< N K77),

Strict precedence (< =<\ =),

Independence (|| = < U <), and

Exclusion (# 2< U <),

4.6.3.1 ccsL Coincidence-based Constraints

There exists a mapping h from 7, to Z; which is injective and order preserving. a is said to be a sub-clock

of b, and b is a super-clock of a.
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Sub-clocking Let a, b be two clocks. The clock relation a isSubClockOf b means that a is a sub-clock of
b (denoted as a [c] b). This means that each instant in a is coincident with exactly one instant in b. An

example of sub-clocking is given by Fig. 4.6.1. a isSubClockof b ift:

((Vk e N*,alk] € Z,)(31 € N*, bl] € T,)(a[k]=rsb[]] = h(a[k])))/\

(4.3)
(v, € N, alk], alku] € Z.) (alk]<alk] = h(alk]) <h(alk.])))
b O—O0—0—0
o
a O O O
Figure 4.6.1: Example of Sub-clock
Specification using real-time property pattern:
((Vk e N*,d € Z,)(3 € N*, b} € T,) ((T(ak, b) < §) A (T(V, d¥) < 3)) A
(4-4)

<(v1<1, k, € N*,a" a* € 7,)(T(d",d") > 8§ = T(h(a™), h(d")) > 3))

Tight sub-clocking a [ | b is a sub-clocking relation in which the image of Z, by h is an interval of 7. An
example of tight sub-clocking is given by Fig. 4.6.2. a[c] biff:

((aj € N)(Vk € N*, alk] € T,) ((b[j YK €T,) A (al=rsb]j + k]))) A

(4.5)
((Vkl, k € N, alk], a[k] € Z.)(alk)]<alk,] = h(a[kl])<h(a[k2])))
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Figure 4.6.2: Example of Tight Sub-clock

Specification using real-time property pattern:

((Elj € N)(Vk € N*, d* € Ia)((wk € T,) A (T(a* V) < 8) A (T, d") < 5)))A
(4.6)
<(v1<1, k, € N* a[k,], alk,] € Z,)(T(a",d") > § = T(h(a"™), h(d")) > 5)>

4.6.3.2 Derived Coincidence-based Constraints

Exclusion a exclusiveWith b (denoted as a [#] b) means that a and b have no coincidence instants. a

exclusiveWith biff.
(Vj € N*, afj] € Z,)(Vk € N*, b[K] € T,) (ﬂ(a[j]Est[k])> (4.7)

Specification using real-time property pattern:

(Vj € N*,d € T,)(k € N*, b € T,) <ﬂ<(T(ai, b) < 8) v (T, d) < 5))) (4.8)

Equality a [ =] b is a typical synchronous clock relation derived from tight sub-clocking.

al=-lb<(alc]b) A(b[c]a)

Hence, there is a bijection between instants of a and b. This bijection is order preserving and the instants

are point-wise coincidence: Vk € N*, a[k|=b|k|. An example of equality is given by Fig. 4.6.3. a[=] biff:

((Vk e N*,all] € T,) ((b[k} €T,) A (a[k]—st[k])>>/\
(4-9)
((vzc e N*,b[k] € T) ((a[k] e T) A (a[k}szb[k])>) "
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O) O) O) O)
al=Ib I I I I
a A A A A

Figure 4.6.3: Example of Equality

Specification using real-time property pattern:
((vk e N*, d* € T,) ((b" € T,) A (T, a¥) < 8) A (T(a", b9 < 5)) A
(4.10)
((Vk e N*,b* € T) ((ak € T,) A (T(F, d¥) < 8) A (T(ak, b%) < 5)))

4.6.3.3 CCSL Precedence-based Constraints

The clock constraint Precedence distinguishes two forms: the strict precedence and the non strict

precedence. Intuitively, this means that each instant in b follows one instant in a.

Strict precedence: An example of strict precedence is given by Fig. 4.6.4. a strictly precedes b (denoted a
b) iff:

(Vi € T)(k = idwy (i) = (a[k]<zsb[k])) (411)
a —QO—Oc Q Q—o0
L N VO W ¥

Figure 4.6.4: Example of Strict Precedence

Specification using real-time property pattern:

(Vi € T,) (k = idxy (i)) = (T (b, d") > §) (4.12)
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Precedence An example of precedence is given by Fig. 4.6.5. a precedes b (denoted as a [<] b) iff:

(vk € N*, k] € T,) ((alk] € Z(a)) A (alK] <rsbK]) ) (4.13)
a Q Q- Q Q—O0
aX]b . \Q,\ \\Q,\ EZ . o

Figure 4.6.5: Example of Precedence

Specification using real-time property pattern:
(Vk € N, b* € T,) <(T(b", &) > §)V ((T(ak, b) < 8) A (T, a¥) < 5’))) (4.14)

4.6.3.4 Derived Precedence-based Constraints

Alternation An example of alternation is given by Fig. 4.6.6. A time structure TS satisfies a alternatesWith

b (denoted as a [~] ) iff:

(Vi € Z(a))(k = idx,(i)) = (a[k]<1sblk] A blk|<rsalk + 1]) (4.15)
W s PP
a[~]b N A AN, T N
b — W B Y

Figure 4.6.6: Example of Alternation
Specification using real-time property pattern:
(Vi € Z(a))(k = idx,(i)) = ((T(bk, a) > 8) A (T(d™, b5) > 5)) (4.16)
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Synchronization An example of synchronization is given by Fig. 4.6.7. A time structure TS satisfies a

synchronizesWith b (denoted as a [=] b) iff:

(Vk € N*)(alk]<zsb[k + 1]) A (b[K]<rsalk + 1)) (4.17)
a O O—50—20
aBgb =izl
b Ao AT A,

Figure 4.6.7: Example of Synchronization

Specification using real-time property pattern:

(Vk € N*) ((T(bk“, ) > §) A (T(d", bF) > 5)) (418)

4.6.4 Specification of ccSL-based Task Level Constraints

The concept of event is regarded as a clock in CCSL. In the scheduling of reactive systems, some task temporal
constraints are required. A task in the scheduling is defined as the smallest computable unit, which con-
sumes time and modifies resources (consumes and produces). It contains two inner events, Ag (starting
event) and Ax (ending event). A task could be executed infinitely or finitely according to the design. Task
properties can be expressed as relations such as two tasks must be coincident in each period during the

infinite-time scheduling.
4.6.4.1 Coincidence Constraint

Definition 4.1 (Coincidence) Tasks A and B are coincident iff the n'™ occurrence of A occurs simultaneously
with the n'® occurrence of B (n € N). It is equivalent to say that the n™ occurrence of Ag occurs simultaneously
with the n'* occurrence of Bs, and the n™ occurrence of Ag occurs simultaneously with the n™ occurrence of Bg. In

Fig. 4.6.8(a), A and B are coincident, but they are not coincident in (b) due to the overlap between A% and Bg'™.
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(a) Coincidence(A,B,8) = true (b) Coincidence(A,B,8) = false

Figure 4.6.8: Coincidence Constraint

Specification 4.1 (Coincidence Constraint)
(Freq(AS) = Freq(BS)) A (Freq(AE) = Freq(BE))
(T(As, Bg) < 8) A (T(Ag, Bg) < 8)

(T(A§™, B) > &) A (T(Bs™, Ag) > §)

4.6.4.2 Synchronization Constraint

Definition 4.2 (Synchronization) Synchronization is a weakened coincidence relation without preventing a

simultaneously execution. The only concern is that the execution order must persist. In Fig. 4.6.9(a), A and B are

synchronized, but they are not synchronized in (b) due to the overlap between A% and B

<5 > <S>
| | | |
\ <—8‘—» \<it>\
A A At Al [ i L

\J

B | " g Eernil

(a) Synchronization(A,B, §) = true (b) Synchronization(A,B, §) = false

Figure 4.6.9: Synchronization Constraint

151



4.6. PATTERN COMPOSITION : APPLICATION TO ccst CONSTRAINTS

Specification 4.2 (Synchronization Constraint)
(Freq(As) = Freq(Bs)) A (Freq(Ag) = Freq(Bg))
(T(A5™, Bg) > 8) A (T(Bg™, Ap) > §)

4.6.4.3 Exclusion Constraint

Definition 4.3 (Exclusion) Task A and B are excluded iff all the presence of A does not occur simultaneously
with any presence of B. It could be considered as another form of coincidence with some time offset. As In Fig.
4.6.10 (a) task A and B are excluded, but in (b) they are not excluded due to the overlap between AL, and B}

(a) Exclusion(A,B, §) = true (b) Exclusion(A,B, §) = false

Figure 4.6.10: Exclusion Temporal Constraint

Specification 4.3 (Exclusion Constraint)

T(B}, AL) > § = (T(B}, Ay) > 8) A (T(AS,B) > §)
T(B;, AL) > § = T(AS™,B) > §

T(B,, AL) > § = T(B}, AL) > §

T(Bj, AL) > § = (T(B§, AL) > §) A (T(AS™, By) > §)

4.6.4.4 Sub-occurrence Constraint

Definition 4.4 (Sub-occurrence) Task B is a sub-occurrence of task A, iff Bis k (k € NT) times slower than
A, which indicates the i™ occurrence of A and the j™* occurrence of B occur simultaneously, where always j < i. In

Fig. 4.6.11 (a) B is the sub-occurrence of A, while in (b) is not due to the overlap between A5™ and B;E.
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s ) S 5 5 overlap s 5
I

B pitl B pit!

(a) Sub-Occurrence(A,B, §) = true (b) Sub-Occurrence(A,B, §) = false

Figure 4.6.11: Sub-occurrence Constraint

Specification 4.4 (Sub-occurrence Constraint)

i/k ; i/k i
(Freq(A{") = Freq(BY)) A (Freq(A{") = Freq(By)) - -
(T(AZ¥, BY) < 8) A (T(ALS,By) < 8) A (T(AL, By) > 8) A (T(BE™, AL") > §)

4.6.4.5 Precedence Constraint

Definition 4.5 (Precedence) Task A precedes task B iff at any time, the occurrence time of A is superior or
equal to the occurrence time of B. This implies A must precede Bs, however it is not necessary to also have A
precedes B in all context. Three strictness levels are defined, L, (least strict), L, (strict), L,(most strict) (see Fig.
4.6.12 ).

(a) Precedence(A,B, §, Ll) = true (b) Precedence(A,B, §, L2) =true  (c) Precedence(A,B, §, L3) = true

Figure 4.6.12: Precedence Constraint
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Specification 4.5 (Precedence Constraint)
L, : T(B, Ay) > §

L, : (T(By, Ay) > §) A (T(Bg, Ap) > §)

L, : T(B;,AL) > §

4.7 CONCLUSION

Classic property patterns based on Dwyer’s and Konrad’s pattern systems target expressiveness for the end-
users that specify real-time requirements, but this usually does not ensure that they are semantically atomic
or easy to verify. We define a minimal set of atomic real-time property patterns in the order to decrease
the verification complexity. All end-user dedicated real-time requirements are expressed as compositions
of these patterns. The proposed set of property patterns is minimal because its elements are semantically
atomic and cannot be expressed as a composition of other atomic elements. We provide the translation
from all possible Dwyer’s and Konrad’s property patterns to our property patterns. This means our atomic
property patterns are semantically complete with respect to Dwyer’s and Konrad’s work. The common
requirements based on Dwyer’s and Konrad’s patterns will be automatically mapped to our patterns using
a predefined metamodel and a mapping library. Our property patterns decompose complex properties
into a set of simpler ones that rely on a smaller state space and thus decrease the verification cost. We also
rely on these elementary patterns for event-based CCSL specification and a small extension for task-based
CCSL specification, which is one of the standardized specifications of timed model in MARTE. All the patterns
defined in this chapter will be checked in an efficient way using the proposals in Chapter s.

The main contributions of the current chapter are summarized as follows:

1. Real-time requirement specification relying on real-time property patterns.
We have defined a minimal set of atomic real-time property patterns to specify real-time require-
ments. These patterns target verification easiness. We propose to specify a temporal property using
occurrence modifiers, basic event modifiers, basic predicates and basic scope modifiers. The compo-
sition of these elements covers all the properties based on Dwyer’s qualitative patterns and Konrad’s

quantitative patterns, and the CCSL part of UML MARTE standard.

2. Automatically mapping real-time requirements to real-time property patterns.

All the temporal properties based on Dwyer’s patterns with additional real-time sufhixes can be mapped
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to our patterns. The complete mapping library is provided in Appendix B. The metamodel is defined
within Eclipse modeling Framework (EMF) to ease the integration with UML model. Relying on this

metamodel and the mapping library, the mapping process is performed automatically.

. Applying real-time property patterns to CCSL-based task constraints. [GPC12a]

CcsL deals with logical time. Based on CCSL, we have introduced the concept of time tolerance, which
is a mandatory for the real system modeling. We have translated CCSL constraints using our real-time
property patterns. In the scheduling of reactive systems, some task temporal constraints are required.
We propose a small extension of CCSL constraints to deal with the task level constraints, and then

specify them using the real-time property patterns.

. Implementation of real-time property specification tool in the verification toolset. The prop-
erty specification tool has been implemented in the verification toolset. This tool allows to auto-
matically translate real-time requirements based on Dwyer’s and Konrad’s work into our property
patterns. It is also possible to parse and translate CCSL constraints into our property patterns. For
now, the prototype of this tool does not cover all the property mapping. It will be completed in the

near future.
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Property Verification based on TPN/tts Observers

RESUME

Ce chapitre propose une approche pour la vérification de modéles spécifiés en réseaux de Petri temporisés
exploitant des observateurs pour évaluer la satisfaction des patrons élémentaires de propriété temps réel
proposé dans le chapitre précédent.

La plupart des exigences qualitatives exprimées par les utilisateurs industriels peuvent étre traduites
formellement en exploitant les patrons de propriété de Dwyer en utilisant différents formalismes logiques.
De nombreux outils de vérification permettent d’évaluer les propriétés spécifiées dans ces formalismes.
Les exigences quantitatives exprimées en utilisant les patrons de Konrad peuvent aussi étre spécifiées de
la méme fagon en exploitant des extensions temporisées des formalismes logiques. Ces méthodes de spé-
cification pour les propriétés quantitatives sont intéressantes théoriquement pour étudier la complétude
des formalismes, mais leur utilisation pratique est limitée en raison de la capacité des outils de vérification.

Ces outils ne fournissent pas de le méme support pour les propriétés quantitatives que pour les propriétés
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qualitatives. Habituellement, ce probléme est résolu en utilisant des observateurs : des parties de modele
qui conduisent dans des états particulier si les contraintes sur le temps sont satisfaites. La satisfaction des
propriétés temporisées est alors réduites a l'accessibilité de ces états . Les observateurs sont exécutés en
méme temps que le modéle en cours dévaluation. L'accessibilité est alors exprimée par des formules de

logique non temporise. Les contributions de ce chapitre sont :

« Les exigences temps réel sont exprimées en utilisant un ensemble minimal de modificateurs élémen-
taires (occurrence, événement, prédicat de base, et domaine), qui sont sémantiquement atomiques.
Toutes les propriétés temps réel exprimées a l'aide des patrons de Dwyer et Konrad et une partie
de celles exprimées en CCSL peuvent étre traduites en ces modificateurs élémentaires. Lensemble
d'observateurs proposés dans ce chapitre correspond a ces modificateurs élémentaires. Pour préciser
les deux derniéres phrases: Ces observateurs sont atomiques et ne peuvent pas étre exprimés avec
les autres observateur. Les autres observateurs sont obtenus par composition des observateurs él¢é-
mentaires. Lensemble des observateurs est minimal et complet par rapport aux patrons de propriété

définis dans le chapitre 4.

« Etant donné qu’ils sont ajoutés dans le modele du systéme, les observateurs peuvent augmenter la
taille de I'espace d’état, parce qu’ils introduisent de nouveaux états et de nouvelles transitions. Ces
structures d'observation supplémentaires, bien que que ne modifiant pas la sémantique originale du
systéme, peuvent changer la taille de I'espace d’états, et du graphe des classes d’états généré et donc
influencer sur les performances de la vérification. Il est donc nécessaire de concevoir des observa-
teurs qui minimisent cet impact. Par contre, cela peut demander d’exploiter des caractéristiques des
réseaux de Petri temporisés qui peuvent réduire les capacités d’abstraction du graphe d’état, ce qui
conduit & un cott beaucoup plus élevé pour la vérification. Par conséquent, la conception de ces
observateurs doit effectuer un compromis entre ces deux aspects. Dans cette thése, la priorité est de
préserver le niveau le plus élevé d'abstraction du graphe d’état, puis de minimiser ensuite le nombre

de transitions et d’états introduits par les observateurs.

« Lors d’une vérification de modele classique, l'utilisateur attend une réponse positive ou négative
concernant la satisfaction de l'exigence exprimée. Pour les propriétés quantitatives, toutefois, les
utilisateurs souhaitent souvent déterminer les bornes exactes de satisfaction d'une propriété et pas

seulement vérifier que les bornes proposées sont correctes. Nous proposons une méthode itéra-
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tive dichotomique pour approcher progressivement les bornes exactes en combinant la vérification

a base d'observateurs avec un moteur de recherche dichotomique.
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Progress Map 3: Observer-based Real-Time Property Verification

In this chapter, we introduce a TPN/tts observer-based verification approach to assess the satisfaction
of real-time property patterns defined in the previous chapter (Progress map 3). Temporal logics such as
TCTL can be used to express real-time properties, but are limited in practice due to the capability of model
checking tools we are relying on (Challenge 3 in page 22). Usually the end users are more capable to use
observers than logical formulae. Our approach adds 12 event-based TPN observers and 4 state-based ob-
servers in the observed system to check each real-time property pattern using the accessibility assertions
in the modal y-calculus (MMC) and the muse model checker from the TINA toolset. This observer-based
verification approach takes advantage of high abstraction of state class graph to minimize model checking
complexity, and thereby improve the verification efficiency. This verification approach can also be used as

to search for the bound values for properties such as BCET/WCET. This may help the users improve and refine
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their design model. (Contribution 3 in page 24)

5.1 INTRODUCTION

A qualitative time requirement can be mapped to Dwyer’s property patterns using various logic formalisms.
For example, the property Exist S responds to P is specified as EG(P = AF(S)) in CTL oras {(P = <S)
in LTL. Many model checking tools allow to check properties specified in these formalisms. Therefore,
qualitative time properties expressed using Dwyer’s patterns can be assessed with the help of these tools.

A quantitative time requirement expressed using Konrad’s patterns can also be specified in a similar
way. For example, the time-bounded response property Exist S responds to P within k t.u. can be specified
as EG(P = AF_;(S)) in TCTL. Such a specification method for quantitative properties are interesting for
theoretical purpose, but its practical use would be limited due to the capability of model checking tools
we are relying on, as these tools do not provide the same support for timed temporal logics as for untimed
temporal logics.

Usually, the above problem is solved using observers. Observers are executed concurrently with the
model under assessment. Some transitions will be fired and the expected states will be reached if and only
if some timed conditions are satisfied. These behaviors will be observed to check the satisfaction of real-
time properties.

In Chapter 3, we have mapped UML-MARTE to TPN models, used to assess the expected real-time prop-
erties. In this chapter, we present the real-time property verification approach based on TPN observers.
The observer approach is commonly used in model checking. A similar work is carried out by Abid et
al. [AZB13]. Before comparing the work of Abid and our works, the concept of Time Transition System
should be precised. We have presented in the state of the art (see Section 2.3.2) that TINA toolset allows
data handling on TPN based on classical imperative programming by adding common features like guard
variable definition and modification to each transition. The variable’s value set is composed of an extension
of reachability graph’s state, which unifies the verification processes and makes it transparent to the TPN user
while enlarging the modeling capacity. The TPN with data handling and priority extension is called Time

Transition System (tts). Each transition in tts has two associated functions:

« PRE represents a transition guard: the transition will be enabled only when both TPN’s marking pre-

condition and the guard are satisfied.
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o AcrT is performed when the transition is fired. It can modify the data that are used to compute the

guards.

In the work of Abid et al., a set of observers was defined using the expressiveness of tts. They did
not give an automatic method to generate observers. Rather, they defined a set of observers at tts level
for their property patterns. After selecting the "most efficient ones”, they proved that the observers were
correct. Their observers largely rely on the priority arc in tts. This degrades the abstraction level when
generating state class graph for model checking. In our work, we distinguish the state-based and event-
based observers. According to the real-time property patterns defined in Chapter 4, most of the real-time
requirements target the events, and the others target the states. We design and implement the event-based
observers at TPN level (12 observers), the state-based observers at tts level (4 observers), and select the
“most efficient ones”. The criteria for efficiency is the time and resource consumed by a TPN system and
its observers. Our observers take advantage of the highest abstraction (marking abstraction in our case)
provided by TINA toolset to minimize the size of the state space in the generated state class graph.

Some related works defined TPN observers for verifying some specific properties. The work of[GDRA ™ 12]
proposed a worst case time interval TPN observer. However, this observer added extra semantics to the ob-
served system, which leaded to a change on the system’s original behavior. According to our understand-
ing, this extra semantics should be avoided. Compared to this work, our work focuses on a set of observers,
which can be used to verify all the real-time requirements specified using the pattern system of Dwyer and
Konrad or cCSL. From this point of view, the proposed set of observers is complete.

The contributions of this chapter are summarized as follows:

« First, the proposed set of atomic observers is complete and minimal. As presented in Chapter
4, areal-time requirement is expressed using a set of elementary modifiers (occurrence, event, basic
predicate and scope modifiers), which are semantically atomic. The set of elementary modifiers is
minimal, which means all the real-time properties expressed using Dwyer’s and Konrad’s patterns or
CCSL can be specified using our elementary modifiers. The proposed set of observers corresponds
to these elementary modifiers. Therefore, the observers are atomic and composable. The set of ob-

servers is minimal and complete.

« Second, the observers can minimize the size of the state space in the generated state class
graph. As an additional part added in the original system, the observers will increase system’s orig-

inal state space, because they introduce some possible execution traces related to the observation.
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These additional observer structures, although do not add extra semantics or remove original seman-
tics for system’s behavior, they can change the size of state space of the generated state class graph and
thus impact the performance of the model checking. The less transitions an observer is composed of,
the better performance will the model checking achieve. Nevertheless, minimizing the transitions
in an observer may require to use some TPN/tts features which may degrade of abstraction level of
state class graph. The lower the abstraction level is, the worse the performance will be. Therefore ob-
server design must promote a trade-off between the above two aspects. In our approach, the priority
is keeping the highest abstraction (marking abstraction) of the state class graph, then minimize the
transitions in the observers. We rely on the y-calculus and the muse model checker from the TINA

toolset to assess the real-time properties based on our proposed observers.

« Third, use observers to compute the bound values of quantitative property. When performing
model checking, an observer can give an answer such as YEs or No for the satisfaction of the given
property. For quantitative properties, however, users usually expect to know, instead of whether the
property is bounded by [tyin, tmax], that the exact bound of the property|tyin, tmax). In order to fill
this gap of usage, we propose an iterative dichotomy method that will gradually approach the bound

value by combining the observer with a binary search engine.

We introduce the catalog of TPN/tts observers in Section 5.3; present the verification process using a
running example in Section 5.4; present the computation benefit of the observer approach in Section s5.5;

at last we explain the method used to guarantee verification scalability in Section 5.6.

5.2  DESIGN PRINCIPLES OF TPN/tts OBSERVERS

§.2.1 Structure of Observer

A TPN/tts observer is a complementary structure linked to or independent from the original system. As
shown in Fig. s.2.1, in order to assess an event-based real-time property, a TPN/tts observer is associ-
ated with the original system, by adding arcs to the transition T4 in component A and the transition Tp
in component B. If the real-time property is based on states, the tts observers are independent from the
system (represented by the dotted links in Fig. 5.2.1). The observer contains a place Py, which can assess

that the real-time property is satisfied using the accessibility assertions in the state-event modal y-calculus
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(MMc) formulae in ktz format. MMC allows to check whether a marking exists and whether a transition is
fireable in the ktz. According to the real-time requirement, one or more MMC formulae are generated, such
as [(Pyegter = 1) 0r O(Prester = 0), etc. The MMC formulae will be checked on-the-fly using the muse model
checker from the TINA toolset.

We do not use the LTL formulae. To use LTL, we need to generate the state class graph preserving LTL
semantics, which is less abstract than the state class graph preserving marking semantics and thus will de-

crease the analysis efficiency.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i Component A TPN [0,0] i i [0,0] Component B TPN i
i TPN Structure (_I\ i i I4) TPN Structure i
e T |
=N Vs
TPN Structure

O Prester

TPN Observer

¢

Figure 5.2.1: Observer Structure

5.2.2 Soundness of Observer

The soundness here means that the observers should not impact the system’s behavior by introducing extra
semantics or removing original semantics. We ensure this principle by designing the TPN observers asso-
ciated with the TPN transitions, but not TPN place. Indeed, associating with places would add or remove
tokens and may change system’s execution traces.

The manner that the observers are associated with the transitions in this approach does not impact the
system behavior. As shown in the observer structure of Fig. 5.2.1, the TPN observer links from the transitions
of the system components. It works as a "read-only” mode. Thus, no extra TPN tokens or time constraints
will be added to the original system. As the tts observers are independent from the system, it will not

introduce extra behavioral semantics to the system either.
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s.2.3 Efficiency of Observer

As model checking may require a huge amount of resource, the design and implementation of the efficient

observers must follow four principles to ensure the generation of smaller state space:

« First, the system model with integrated observers should be able to perform the possible highest
abstraction (marking abstraction in our case) when generating the state class graph. This high ab-
straction state class graph must preserve all the information related to the verification of the targeted
property.

This principle is ensured by designing the observers using the TPN/tts features acceptable by the
state class graph preserving marking. For example, we cannot use the priority arc, which is an ex-
tended element of tts. It allows to set priorities between the TPN transitions, and this feature makes
the design of observers much easier. However, when generating the state class graph at marking ab-
straction level using the tina tool, the priority arcs cannot be preserved. Therefore, in our work, we
design observers without priority arcs to ensure that the marking abstraction can be performed. As
we verify the properties using observers, this transforms quantitative problems to reachability prob-
lems. We use the y-calculus (MMC) as the logic formalism in the model checker muse. The reachability
graph generating from the marking abstraction contains all the mandatory reachability information.
In other words, it preserves all the information related to the verification of the targeted real-time

properties.

« Second, the state/transition number of the added TPN/tts observers should be as small as possible

to minimize the size of the state space of the system integrated with observers.

There exist many different methods to define the same observer. The use of some kinds of TPN arcs
may ease the design, but may also generate more states/transitions in the state class graph. There
are five kinds of arcs in TPN: regular, read, inhibitor, stopwatch and stopwatch inhibitor arcs. The
stopwatch and stopwatch inhibitor arcs may increase the state/transition graph size. Therefore, in

our work, we do not use these two to reduce the size of the state space.

o Third, the checking of each property pattern must be independent in terms of state class graph gen-
eration to promote parallel computation. This principle is also used to ensure the performance of

the property verification.
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5.3 CATALOG OF TPN/tts OBSERVERS

According to the requirement specification patterns defined in Chapter 4, an atomic real-time property
consists of three parts: an occurrence modifier, a predicate and a scope. Predicates are based on events and
states, while scopes are only based on events. The observers are supposed to have three classifications: event
modifier observer, basic predicate observer and scope modifier observer. These three kinds of observers
are specified in this section. The occurrence modifiers are not used as observers, their uses are illustrated

after the definition of observers.

5.3.1 Event Modifier Observers

Predicates are based on events and states. An event can be atomic or composite ones. We regard the event
compositions as event modifiers. An example of composite event is given here: t t.u. after event E'*. This
composite event is built from three event modifiers: E (the i occurrence of event E), E* (the k' occur-
rence delay of current event E'), and E* + ¢ (the t t.u. from current event E™F).

To ease the composition of event modifiers, first of all we define a generic event observer pattern (see
Fig. 5.3.1). E is an observable transition (standing for an event) in the system model. The frame Observer
contains the observer structure that links transition E to transition E'. E’ stands for the target event modifier

of the observer, and it works also as an extensible transition used to connect other observers if required.

e ———
! i
i TPN 1
- > Structure” |
|
| I E
Figure 5.3.1: Generic Observer Pattern

5.3.1.1 E': i Occurrence of E

When using this modifier, the occurrence of E under observation must be finite under the observed
execution. The observer in Fig. 5.3.2 represents this event modifier. When E has occurred i times, the

place P, will have accumulated i tokens, then the transition E’ will be enabled. This makes the transition

166



5.3. CATALOG OF 1PN/TTS OBSERVERS

E'become the i occurrence of event E. The place P,,,., with one token controls the occurrence times of E'.

By default, E' occurs only once. The place P, can also be removed to allow E' occurring more than once.

Figure 5.3.2: Event Observer: it" Occurrence of E

s.3.1.2  E%: k" Occurrence Delay of E

The transition E~* stands for the delay of k times occurrence of event E. In other words, E~F represents
the event that delays k times occurrence compared to E. In Fig. 5.3.3, the place P, contains the tokens that
represent the number of occurrence of E. Each time P, has accumulated k tokens, the read arc will enable

the transition E~* that will consume one token from P, marking.

| " [00] 1 |
| 3 un
H—(CO==]
I | |

\ [ P
B Poe  LEE

Figure 5.3.3: Event Observer: k Times Occurrence Delay of E

5.3.1.3 E/*: k Times Slower Sub-occurrence of E

The transition E/* stands for the sub-occurrence of event E, with a frequency k times slower than E.
When E occurs k times, E/* will be enabled once. In Fig. 5.3.4, each time when the place P, accumulates

k tokens, the transition E/* is fired. Simultaneously, all the k tokens in place P, are consumed.
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Figure 5.3.4: Event Observer: Sub-occurrence k Times Slower than E

5.3.1.4 I+t: Time Passed Since System Initialization

I+T stands for the absolute time instant measured from the initial state of the system. In Fig. 5.3.5, the
observer consists of two parts. One is the place Py,;; that stands for the initialization of the whole system.
As P, has not ingoing arcs, it starts at the same instant as all other initial places of the system. The other is

the transition E’ that represents the moment when time has passed t t.u. since system’s initialization.

WAEM |
} PInit i [t, €] : |
| | [ \
\ <:> ‘ ’I o
\ R
| | | \

Figure 5.3.5: Event Observer: Time Passed since System Initialization

§.3.1.5 E+t: Time Passed Since E

E + t stands for the moment when f t.u. has passed since each occurrence of E (see Fig. 5.3.6).

T T T T T N
| IR
I ‘ L
\ <> }I \
E} SNE }

- -

Figure 5.3.6: Event Observer: Time Passed since E
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5.3.1.6 S°&S%: Entering and Exiting Events of a State

This observer is used to represent the entering and exiting events of a given system state. It uses the date
manipulation functions of tts. A state referred to in the observer corresponds to a marking assertion. In
Fig. 5.3.7, the transitions S° and S represent respectively the entering and exiting events of state S. When
a system enters the targeted state S, the assertion S in the PRE condition of the transition SS is true, which
will enable S°. The token in place Pg transits to place Pg. Similarly, when the system exits state S, the the

assertion —S in the PRE condition of the transition S¥ becomes true, thus SF is enabled.

Figure 5.3.7: Event Observer: Starting and Ending Event of S

5.3.2 Basic Predicate Observers

The pattern of predicate observers is defined in Fig. 5.3.8. The transition Ey is a(n) (composite) event
modifier. The TPN structure stands for the observer structure. Each predicate observer is verified using one

or several MMC assertions.

‘Observer |

\ N }
[ _}_ — > Structure |
\

Figure 5.3.8: Predicate Observer Pattern

5.3.2.1 O(E') =true: E has occurred

In Fig. 5.3.9, the place P, linked from transition Ej is used to observe the occurrence times of an event.

Once the transition E) is fired, the token in place P, will be observed. The MMC assertion P,.. > iis used
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to check whether E,/’s i occurrence has occurred.

Figure 5.3.9: Predicate Observer: Occurrence of E

5.3.2.2 isFinite(E) = True: Bounded Occurrence of E

This predicate is used to detect whether the occurrence of an event is finite. In Fig. 5.3.10, the place P,
accumulates the occurrence times of event Ej. If the transition Overflow is not fired, it signifies no overflow
is detected, because Ej; does not exceed the bound Occ,,,, (a predefined threshold value). We conclude

that Ej; is bounded during system’s execution.

———————————————————

,,,,,,,,,,,,,,,,,,

- - T

Figure 5.3.10: Predicate Observer: Occurrence of E is bounded

s.3.2.3 Freq(E,) - N, =Freq(Ep) - Np: Equivalent Occurrence between E, and Eg

This predicate is used to identify equivalent occurrences between two periodic events with different (or
equal) frequencies. Suppose two periodic events E4 and Ep exhibit respectively occurrence frequency F,
and Fp. There exists minimal coefficients N, and Ny (N4, Ny € Z") that makes F, - Ny, = Fg - Nj.

N, and Nj can be computed using the Least Common Multiple (1cm) and the Greatest Common Divisor
(gcd).
o lcm(FA, FB)
4 gcd(1em(Fy, Fp), Fa)

(5.1)
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o lcm(FA,FB)
B gcd(lem(Fy, Fp), Fy)

(5.2)

A real-time property may require to limit the time difference between two periodic events. If these two
events exhibit the same frequency, N4 and Ny are equal. Otherwise, N4 and Ny should be introduced to

identify the corresponding occurrence between E4 and Eg.

In Fig. 5.3.11, places Tester, and Testerg accumulate respectively the occurrence times of E4 and Ep.
The tokens in Tester places will be consumed through the transition Diff when the tokens in Tester, are
superior or equal to N and the tokens in Tester are superior or equal to Ng. Once Tester, contains Ny +1
tokens, it stands for E4 executes at least one occurrence faster than Eg. This exception will be detected using

the Overflow transitions. The checking assertion is: —(Overflow, \V Overflows).

} Overflow A OverﬂowB }

\ [00 ‘

} Ny+l1 [0,0] N B+1 \

\

\

L | e, D feiteﬁt | By | ~(overflon, v overfloug)

Figure 5.3.11: Predicate Observer: Same Frequency between E4 and Ep

5.3.2.4 T(E4, Eg) > t: Minimum Time Interval between Events

This observer is used to check that the time interval between the equivalent occurrences of E4 and Ep is
atleast t. E4 and Ep can be periodic or aperiodic. Semantically, it is equivalent to T(E, ) - T(Ep) > t. Ithas
a similar structure as the observer for equivalent occurrence between events, except that a transition T'pjay
is added. Ty stands for the time delay for event E,. The following MMC assertion should be satisfied to
check this predicate: =(Overflow, V Overflowg) A —((Testers = Ng) A (Testery < N4)). When E, and

Ep are aperiodic, Ny = Np = 1.
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OverﬂowB Overflow A

|
| |
N |
} |
Ng+1
\ N+ Delay }
‘ |
<—I<—© | "~ (overflou, v Overfloug)A |

3 ~(Testerg=Ng A Tester,<Np) !

TesterB Tester A

Figure 5.3.12: Predicate Observer: Minimum Time Interval between E4 and Eg

5.3.2.5 T(E4, Eg) < t: Maximum Time Interval between Events

This observer is used to check the time interval between the equivalent occurrences of E4 and Ej is at
most t. Semantically, it corresponds to T(E,) - T(Eg) < t. The following assertion should be satisfied:
—Overflows.

If the assertion —(Overflow, \V Overflows) is true, then |T(E4) - T(Eg)| < tis satisfied. When E4 and

Ep are aperiodic, Ny = Np = 1.

| |
\ Overflow A OverﬂowB |
| [t, t] \
| |
| \
\
—'—>
By Lo T DO " i“iflz IR L

Figure 5.3.13: Predicate Observer: Maximum Time Interval between E4 and Ep

5.3.2.6 D(S) > t: Minimum Time Duration of State

The most direct and efficient way of designing observer for state duration is to use the PRE function
of TPN. In Fig. 5.3.14, the transition with constraint [t,t] will fire when state S holds at least f t.u.. The

transition with constraint [0,0] will fire when state S does not hold any more. This transition is used to

172



5.3. CATALOG OF 1PN/TTS OBSERVERS

clear the marking in Tester place, because state S may hold several times in the whole system’s execution.

The MMC assertion of checking is: S A (Tester = 1)

Figure 5.3.14: Predicate Observer: Time Duration of State

§.3.2.7 D(S) < t: Maximum Time Duration of State

The maximum time duration of state uses the same observer as the minimum time duration (Fig. 5.3.14),

but different assertion: S A (Tester = o).

5.3.3 Scope Modifier Observers

Scope modifiers include Global, Before E’, After E', and Between E4 and Eg.
5.3.3.1  Global

Global scope modifier does not need an observer in TPN. When applied in the verification, it is sufficient

to indicate that the scope is all states of the whole TPN, denoted as .A.
5.3.3.2 Before E' & After E

The scopes before and after are represented by the same observer (Fig. 5.3.15) but different logic for-
mulae. The place Tester accumulates the occurrence times of event E. We use Tester < i (E' has not yet

occurred) to check Before E' and use Tester > i (E' has occurred) to check After E'.
5.3.3.3 BetweenE, and Eg
Between E, and Ep means between the equivalent occurrences of E, and Eg. If both E4 and Ep are

periodic events, their occurrence frequencies must be equal. If E4 and Eg occur only one time, by default
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Figure 5.3.15: Scope Observer: Before E & After E

their frequencies are equal.
In Fig. 5.3.16, the places Tester, and Testerg accumulates the difference of the occurrence times between

E, and Ep. The observer (Testery = 1) A (Testerg = o) stands for Between E, and Ej.

Figure 5.3.16: Scope Observer: Between two Events

5.3.4 Occurrence Modifiers

An occurrence modifier can be Exist, Absent, and Always. It is used together with predicates and scopes to
assess a real-time property. The use of observers is not mandatory. Assume that in the state class graph,
N(P) is the number of states that match the predicate P, N(S) is the number of states that match the scope
S, and N(P A §) is the number of states that match both the predicate and the scope. According to the

semantics of Exist, Absent, Always defined in Chapter 4, we have the following assertions:

N(PAS)>1 ifN(S)>o;

« Exist Predicate in Scope:
True if N(S) = o.

« Absent Predicate in Scope: N(P A S) = o
« Always Predicate in Scope: N(P A S) = N(S)

174



5.4. OBSERVER-BASED VERIFICATION EXAMPLE

Note: When N(S) = o, according to classical semantics ', the predicates for Exist, Absent and Always
should be true. The assertion of Absent and Always satisfies this definition by default. The assertion of
Exist is extended by adding the assertion "True, if N(S)=0"

5.4 OBSERVER-BASED VERIFICATION EXAMPLE
We illustrate the observer-based verification method using a simple example (see Ex. 5.1).

Example 5.1 (Observer-based Verification Example) In Fig. 5.4.1, two concurrent processes are specified
in the TPN model. Both of them execute only once. The desired real-time property P is Always E o After Eg Within

[1, 2]t.u..

Figure 5.4.1: Observer-based Verification Example

5.4.1 Example Verification

The first step is to verify whether P is satisfied using observer-based approach. P is a safety property. It
can be mapped to a real-time property pattern presented in Chapter 4, where the occurrence modifier is
Always, predicate is E, occurs, and scope modifier is After Eg Within I. The scope After Eg Within [tyn, tmax]
should be mapped to Between Eg + ty,i, and Eg + t,4, (consulting Appendix B).

According to the observers presented above, we add a composite observer on Eg and an atomic observer

on E, (see 5.4.2). The composite observer consists of three atomic observers:

'If the scope is false, the predicate is always true.
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« obs,: T, linked from Eg/P, stands for event modifier Eg + £,
« obs,: T, linked from Eg/P; stands for event modifier Eg + 4,
« obs,: Ps/T,/P, linked from T,/ T, observes the scope modifier Between T, and T,.

obs, is the atomic observer associated to E4. It observes the occurrence of E4. Then the property P

| Observer |
——————————————————— ‘
} ! Obs; Lo Obs;
|
Po ) P g 1 P
| | |
3 C)HI*‘_—‘ﬁ
| ICL BN
EA EB N - : ’]"3

Figure 5.4.2: Verification of Example

(Always E, After Ez Within [1,2]) will be verified using the following MMC formulae:
« The predicate (E4 occurs) assertion P is Pj.
« The scope (After Ez Within [1,2]) assertion Sis Ps A —P,.

« According to the definition of occurrence modifier Always, if N(P A S) = N(S), P is satisfied.

§.4.2 Verification Result

The above MMC assertion is checked on the TPN model (with observers) using the model checker muse. Mark-
ing abstraction is used to generate state class graph. It generates ktz format reachability graph with 10
states and 13 transitions (Fig. 5.4.3)). When checking assertion P A S, there is one satisfied state (S;), thus
N(P A'S) = 1. When checking assertion S, there are 2 satisfied states (S, and S;), thus N(S) = 2. As
N(P A'S) # N(S), property P fails.

176



5.5. COMPUTING BOUND VALUE OF QUANTITATIVE PROPERTY

Figure 5.4.3: Reachability Graph of Verification Example

N(P A S) < N(S) implies the state(s) satisfying =P A S is(are) violation state(s). Therefore, check
—P, N\ Ps N\ —P,, and the result shows there exist one violation state in ktz. It is the state S, with marking

P,P,P P,

5.5 CoMPUTING BOUND VALUE OF QUANTITATIVE PROPERTY

When performing model checking, an observer can give an answer such as YEs or No for the satisfaction
of the given property. For quantitative properties, however, instead of whether the property is bounded by
[tmin, tmax], the users usually expect to know what are the exact bounds [tyin, tmax] for that property. The
property pattern verification approach not only can check the satisfaction of the property, but also can be
extended to compute the bound value of the quantitative property. This provides an assistant to help the
users refine and improve their design model.

This service is implemented using an iterative method (shown in the progress map 3 ) that will gradually
approach the bound values by combining the observer into a binary search engine.

In order to find the lower bound of the given quantitative property P, a series of qualitative property
Always P > k in scope Global will be recurrently assessed by the model checker. If for k the answer is true,
but for k — 1 the answer is false, the lower bound is then k (assuming P belongs to natural number). The
same principle is applied to search the upper bound value by changing the query from P > kto P < k.

To search the exact value as a natural number is like searching for a element in an ordered set. In order to

minimize the search time, a binary search strategy is used. This reduces the computation complexity from
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O(N) to O(log, N), where N is the predefined lower(upper) bound that should be large enough to cover
all quantitative property’s values in practice.

In a parallel computation environment, the search strategy can be more optimal. Given K CPU, the
number of check will be reduced from O(log, N) to O(log, N).
We take the example of Worst Case Execution Time (WCET) to explain the search algorithm.

Example 5.2 (WCET Computation) The real-time property to be computed is: WCET of event E.

5.5.1 WCET Property Verification

First of all, the expected property is specified using the set of real-time property patterns. This property is
interpreted by the occurrence modifier: Always, the predicate: Maximum time interval between Init and E,

and the scope modifier: Global. The observer is given in Fig. 5.5.1. With this observer, we use the following

} Overflow A OverﬂowB }

\ -t

‘ \

| \

| < \ I
| \

\

| Init Tester , [0,0] Testery } E

Figure 5.5.1: Property Computation Example: WCET

assertion to check WCET < t, where A represents the whole state space of the given TPN model including

the observers.

N(—(Overflow, V Overflows) A A) = N(A)

5.5.2 Computation of WCET Bound Value

If WCET < tis true, then the WCET might be lower than t. We use a binary search algorithm to compute the

bound value.
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If WCET < E is true, the bound value must be in the time interval [ 1 ,f] , otherwise, the bound value must
be in the time interval [f , t]. According to these results, the next search will be performed on one of them

until we find the exact WCET value.

5.5.3 Discussion: K-ary Searching Algorithm

K-ary searching algorithm follows the same principle: in each iteration, the original range [a, b] will be
divided into K sections: [a, a+(b-a)/K], [a+(b-a)/K, a+2(b-a)/K], ..., [a+(K-1)(b-a)/K, b]. To simplify
the discussion, we call the minimal value in each interval as v,,;,, and call the maximal value as v,,,,. Among
these K sections, only one section will have the model checking result such that WCET < v,,,;, is false and WCET
< Vg is true. Therefore the new range for the next iteration is [Vmin, Vimax]- If Vimax-Vmin = 1, the iteration is
over and the WCET is v,,,,. For generalization, the initial range is always [0, N], where N is the predefined

lower(upper) bound that should be large enough to cover all quantitative property’s value in practice.

5.5.4 Discussion: Cavity in Computation of Bound Value

A concern about this search method is the risk introduced by cavity intervals. An example is given to explain

this concern (see Ex. 5.3).

Example 5.3 (Cavity Discussion) The execution time of a given system is specified as two time intervals [2,8]
and [12,18] (see Fig. 5.5.2). The property P (WCET < 20) is proved as true. Now the exact bound value of WCET

is required, which is 18.

® @ ©
0 2 8 10 12 15 18 20

Figure 5.5.2: Cavity Discussion Example

Binary search algorithm is used to compute this exact bound value. Firstly, in the assertion WCET < t,
t is set to be 10, which falls in the cavity [8,12]. Since there exists execution time [12,18], the transition

Overflow in the observer (Fig. 5.5.1) will fire. The checking for WCET < 10 is thus false. Then we need to
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check WCET < 15, whose checking result is also false. Then we try WCET < 18, which is still false. At last we
try WCET < 19, whose result is true. The exact bound value is thus 18.
This example shows that the search algorithm using observers in model checking is sound even in the

presence of cavities in the specified execution time.

5.6 VERIFICATION SCALABILITY

Model checking techniques suffer from the state space explosion problem that makes it seem less useful for
large-scale systems. In some systems, the size of the state space of the system grows exponentially along
with the number of processes and variables. In our work, we use several methods to ensure the verifica-
tion scalability, including property-driven semantic mapping (introduced in Chapter 3), on-the fly model

checking (Section 5.6.1), state abstraction (Section 5.6.2), and TPN reduction (Chapter 6).

5.6.1 On-the-Fly Model Checking

The model checking toolset TINA embeds natively on-the-fly features.

On-the-fly methods allow the model checking to be performed without having the reachability graph
fully generated. The property is checked along with the reachability graph’s expansion. Once the property
can already be cited as false according to the partial reachability graph, the check is suspended and the ver-
ification result become available immediately. Although in worst cases, all patterns (exist, absent, always)
need a full generation to decide whether the property is satisfied, it would practically reduce both time and
resource for general cases.

When the system behavior matches Exist pattern or violate Absent and Always pattern, the computation
stops once it finds the first matched or violated state, thus it can stop earlier than classical method. The
improvement of performance is obvious. However in worst cases, the footprint of checking property at

every expansion step might make the whole computation time longer than classical methods.

5.6.2 State Abstraction

State abstraction is a technique applied at model checker level. Instead of preserving all possible states in
the reachability graph to prepare for the verification, it proposes a series of abstraction for original states

which can reduce the state expansion and therefore globally limit the memory footprint of computation.
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Some properties of the system are guaranteed to be preserved in this abstracted version of the reachability
graph.

The performance of abstraction is decided mainly by which kinds of property we want to preserve during
the computation. Usually, the more universal the coverage is, the less abstraction of state can be done. We
rely in this work on a model checker that makes a trade-off between the generality of method appliance
(should be capable to verify most of the common properties) and the abstraction ratio (should be enough to
make verification more scalable against larger system). In other words, the more properties can be verified,
the less scalable the verification can be. Comparing to on-the-fly, the advantage of state abstraction is that it
can reduce both computation time and resource in a stable way. This feature is important because industry
deployment needs performance robustness.

TINA provides various state space abstractions for TPN state class graphs, following the techniques dis-
cussed in [BM83, BDg1, Bero1, BVo3]. All observers defined in this chapter do not require the preser-
vation of the LTL/CTL/CTL * semantics in reachability graph because the assertion of pattern’s satisfaction
works on marking abstraction level, which does not required to preserve the firing sequence of transitions.
Therefore the state abstraction level that we use is the highest possible comparing to our knowledge of the

current theoretical progress in the TPN field.

5.7 CONCLUSION

This chapter presented a TPN/tts observer-based verification approach for checking real-time property
patterns. Temporal logics such as TCTL can be used to express real-time properties, but such a logic for-
malism is limited in practice due to the capability of model checking tools we are relying on. Our approach
adds efficient TPN/tts observers in the observed system to check each real-time property pattern. This
observer-based verification approach takes advantage of high abstraction of state class graph to minimize
model checking complexity, and thereby improve the verification efficiency. The verification approach
can also be used as a computation method to search bound values for properties. This may help the users
quickly adapt and refine their design model.

The main contributions of the current chapter are summarized as follows:

1. First, the proposed set of atomic observers is complete and minimal. As presented in Chapter
4, areal-time requirement is expressed using a set of elementary modifiers (occurrence, event, basic

predicate and scope modifiers), which are semantically atomic. The set of elementary modifiers is

181



5.7. CONCLUSION

minimal, which means all the real-time properties expressed using Dwyer’s and Konrad’s patterns or
CCSL can be specified using our elementary modifiers. The proposed set of observers corresponds
to these elementary modifiers. Therefore, the observers are atomic and composable. The set of ob-

servers is minimal and complete.

2. Second, the observers can minimize the size of the state space in the generated state class
graph. As an additional part added in the original system, the observers will increase system’s orig-
inal state space, because they introduce some possible execution traces related to the observation.
This additional observer structures, although do not add extra semantics or remove original seman-
tics for system’s behavior, they can change the size of state space of the generated state class graph and
thus impact the performance of the model checking. The less transitions an observer is composed of,
the better performance will the model checking achieve. Nevertheless, minimizing the transitions
in an observer may require to use some TPN/tts features which may degrade of abstraction level of
state class graph. The lower the abstraction level is, the worse the performance will be. Therefore ob-
server design must promote a trade-off between the above two aspects. In our approach, the priority
is keeping the highest abstraction (marking abstraction) of the state class graph, then minimize the
transitions in the observers. We rely on the y-calculus and the muse model checker from the TINA

toolset to assess the real-time properties based on our proposed observers.

3. Third, use observers to compute the bound values of quantitative property. When performing
model checking, an observer can give an answer such as YEs or No for the satisfaction of the given
property. For quantitative properties, however, users usually expect to know, instead of whether the
property is bounded by [tyin, tmax], that the exact bound of the property|tyin, tmax). In order to fill
this gap of usage, we propose an iterative dichotomy method that will gradually approach the bound

value by combining the observer with a binary search engine.
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Real-Time Property- Specific Reduction for TPN

RESUME

Ce chapitre propose une approche spécifique aux propriétés temps réels pour réduire l'espace d’état du
réseau de Petri temporisé avant de générer le graphe d’états pour la vérification.

La vérification de modéle pour des systémes asynchrones rencontre souvent des problémes de passage a
I’échelle car le nombre d’états dans I'execution du systéme augmente généralement exponentiellement avec
lataille du systéme. Un systéme réaliste contient donc souvent un trés grand nombre d’états et de transitions
possibles. Les méthodes de vérification classiques rencontrent souvent ce probléme car elles suivent le but,
plus ou moins explicite, que de nombreuses propriétés de natures différentes seront évaluées en s'appuyant
sur le méme graphe d’états. Cette idée impose de construire les systémes de transition les plus concrets
et précis pour évaluer ensuite toute nature de propriétés. Les méthodes de réduction existantes suivent
généralement cette philosophie pour préserver un espace d’état complet. Ces méthodes génériques ont

améliorées significativement I'efficacité de la vérification de modeles, mais leurs améliorations sont de plus
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en plus difficiles. Nous proposons de mettre de coté 'universalité des propriétés vérifiées, et d’introduire
des méthodes de réduction spécifiques aux propriétés.

Les idées principales de cette partie sont, d'une part d’éliminer les parties du réseau de Petri sans rapport
avec la propriété qui doit étre vérifiée, et d'autres part de remplacer certaines parties pertinentes pour la
propriété par des réseaux équivalents vis a vis de cette propriété mais conduisant a un plus petit nombre
d’états et de transitions. La dépendance entre une partie dans un réseau de Petri temporisé et la propriété
d’accessibilité considérée est dérivée de la causalité entre les transitions et les états dans le graphe d’états.
Ceciimpose une analyse basée sur la construction du graphe d’états qui est paradoxale car si nous pouvons
générer le graphe d’états, il n'est plus nécessaire de le réduire. Nous proposons donc d'utiliser une sur-
approximation de cette causalité sous la forme de la dépendance structurelle interne au réseau en imposant
la divergence temporelle des parties éliminées et substituées.

Nous proposons, d'une part un algorithme pour rechercher dans un réseau de Petri les parties sans rap-
port avec les places, transitions et variables dont dépendent la propriété cible, et d’autre part un algorithme
pour réduire les autres parties du réseau tout en préservant la propriété cible. La méthode de réduction
pour les structures dont dépend la propriété consiste a diviser le réseau en sous-réseau de plus petite taille
dont les relations avec le réseau global sont minimales, puis a construire une abstraction de chaque sous-
réseau lorsqu’il présente un comportement régulier par rapport aux propriétés temps réels considérées. Ce
comportement régulier est une abstraction de toutes les traces dans le graphe d’état du point de vue des
observations. Nous proposons plusieurs structures réguliéres possibles et nous utilisons notre méthode de
vérification pour montrer que la structure réguliére permet de remplacer le sous-réseau et pour en calculer
les caractéristiques temporisées. Cette approche est pertinente en terme de cotit de vérification par la na-
ture combinatoire de cette-ci : le cotit de vérification sur une partie est en général beaucoup plus faible que
le cout global. I est donc possible d’étudier plusieurs structures régulieres pour chaque partie du réseau
avant que le cotit cumulé soit supérieur au cott de vérification du réseau complet. Cette approche permet
de réduire la taille de I'espace de chaque sous-réseau et de rendre calculable I'espace d’états du réseau com-
plet avec les parties réduites avec les ressources usuellement disponibles . Cette méthode a donné de bons
résultats expérimentaux pour la vérification des propriétés temps réel au niveau des modeles d'architecture.
Ces travaux devront maintenant étre étendus et expérimentés pour d’autres familles de propriétés et de

systémes.
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Progress Map 4:Real-Time Property-Specific State Space Reduction

In the current chapter, we propose the real-time property-specific TPN reduction approach applied be-
fore generating the state class graph to verify the real-time properties using model checking (Progress Map
4). The verification of concurrent asynchronous systems using model checking usually encounter scalabil-
ity problems very quickly along with the growth of system size (Challenge 4 in page 22). Our proposal is
to build an equivalent of the original TPN, which exhibits the same property-specific behavior, and has less
transitions and states. This reduces directly the scale of computation before generating the state space. The
proposed reduction method is based on similar ideas as the partial order reduction, which is aimed at reduc-
ing the size of the state space that needs to be searched. The partial order reduction exploits the commuta-
tivity of concurrent executed transitions which result in the same state when expanding the state class graph.

Our approach exploits the commutativity of sub-nets of TPN which result in the same property-specific be-

185



6.1. INTRODUCTION

havior before expanding the state class graph. The approach is based on classic TPN model extended with
data manipulation (tts) provided by the TINA toolset. To exploit the property-specific reduction, first a
property relevance algorithm is applied to eliminate parts of property-irrelevant TPN structures, then the
topology-implicit semantic equivalence and behavioral equivalence patterns are applied to identify the re-

ducible sub-nets and reduce them using equivalent sub-nets. (Contribution 4 in page 24)

6.1 INTRODUCTION

The key issue that prevents a wide application of model checking in the industry is the scalability with
respect to the size of the target system. A common system usually has thousands and even millions of
states and transitions. Although a huge part of impossible transition firing sequences are eliminated during
the building of system’s behavior, the probable permutation of all others is still a very large number that will
easily lead to combinatorial state space explosion.

Classic verification methodologies usually encounter scalability issue very quickly along with the growth
of system size, because it follows an implicit purpose: once the reachability graph is generated, it can be
reused to verify many different properties of the system, just by changing the assessed logic formulas. This
consideration requires to build the most concrete and precise transition system to be used to assess any kind
of properties. It makes sense if the assessed system does not change often the states and if there is a large
number of requirements to assess. However, it is well known that the generation of state class graph for
large scale models is the most expensive phase in terms of resource and time consumption. Theoretically,
generating the reachability graph only once seems to be resource-saving by eliminating the effort of re-
generating. However, this global-resource-saving principle implies an assumption that is sometimes false:
that it will always be possible to generate the reachability graph with common available resources. The ex-
isting state space reduction methods, partial order reduction [Valg1, GYLH " 96], compositional reasoning
[MC81, GL94], symmetry [ CEFJ96, ESo6], abstraction techniques [CGL94], on-the-fly model checking
[Holo6, BRVo4], etc., usually follow the same philosophy to produce a complete state space that preserves
the mandatory semantics that allow the verification of all kinds of properties. These generic reduction
methods have effectively improved the efficiency of model checking techniques. But their improvement is
becoming more and more difficult. We thus might put aside the universality of the semantics expressed in
the transition systems that allow to assess all kinds of properties, and take into account property specific

reduction methods.
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A typical system will run with a large amount of transitions and make the above prerequisites hard to
maintain. The fundamental reason why this computation-oriented approach is not scalable is because it
tries to preserve all information for the verification afterwards. In the context of the thesis, we focus on
state space reduction approaches related to TPN models dedicated to real-time property verification. In

Chapter 3 and Chapter s, we have presented the use of the following approaches:

« Modeling abstraction: If the designer is sure that some components will not impact the property,

there components will not be modeled.

« Mappingabstraction: After defining the execution semantics for the end-user model, the property-
specific system model (UML-MARTE model) is mapped to the property-specific verification model (TPN
model), which contains all the property-specific behaviors. Part of property-irrelevant information

is eliminated using this abstraction.

« State abstraction: The tool tina provides abstraction options for the generated state class graph,
which preserves different information. All observers defined in the precedent chapter do not re-
quire preserving the LTL/CTL/CTL * semantics in the state class graph because the logic assertions
used to verify the properties require only the marking feature of the state class graph. Therefore, the
state abstraction option used is the highest possible (marking abstraction) comparing to the current

theoretical progress in TPN field, and the logic assertions are accessibility assertions.

« On-the-fly checking: Using on-the-fly model checking provided by the sift model checker.

Both on-the-fly and state abstraction techniques focus on reducing state space when performing model
checking. Another reasonable thinking is to build an equivalent of the original TPN in term of property-
specific behavior, but with less states and transitions. This reduces directly the scale of computation before
expanding the state space. The assessed TPN will be reduced in several appropriate ways according to the
target properties before being sent to the model checker.

Our approach focuses on the following contributions:

« The core idea of our proposal is to eliminate the property-irrelevant structures in a TPN model, then
substitute the property-relevant structures by an equivalent with less states and transitions. The TINA
toolset supports extended TPN with data handling called Time Transition Systems (tts), including
the precondition function PRE and the action function AcT. Our approach is based on this new TPN

feature.
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« The modeling and mapping abstractions only eliminate part of property-irrelevant behaviors. The
relevancy between a TPN structure and the target property is decided by the causality between TPN
transitions and states in the state class graph. In other words, measuring precisely the causality be-
tween TPN transitions requires a state class graph-based analysis. This leads to the following paradox
that if we are able to generate the state class graph for the given TPN before the reduction, we may not
need to reduce it any more. The solution is to use an over-approximation of causality, i.e. use TPN’s
structure dependence to deduce the causality. The relevance between two transitions at TPN level
is the necessary condition that they are causally dependent. We propose an algorithm to search the
TPN structures irrelevant to all the places, transitions and variables referred to by the target property,

and reduce those structures irrelevant to the property.

« The property-relevant structure is reduced using the commutativity of sub-net in the TPN model
which results in the same property-specific behavior. For some sub-net patterns recurring frequently
in an asynchronous system, we define the topology-implicit semantic equivalence patterns to iden-
tify these sub-net and substitute them by the equivalent sub-net that exhibits the same property-
specific behavior. This part of work is similar to the existing work of [SB96]. The work [SB96]
targeted a general TPN model, while we define some new patterns that are derived from the asyn-

chronous system.

« The topology-implicit semantic equivalence patterns are in fact simple behavior equivalent patterns.
In some cases, it is complex to detect and extract a localized topology pattern. A novel real-time
property-specific reduction method is proposed in this chapter. This method first identifies the pos-
sibly reducible sub-net, and then builds an equivalent net which exhibits the same property-specific
behavior as the original net. Before substituting the equivalent sub-net, we use refinement functions

to ensure that the substitution is correct.

In this chapter, Section 6.2 analyzes the relevancy between system components under observation and
present reduction method for property-irrelevant TPN structures; Section 6.3 gives an overview of property-
specific reduction method; Section 6.4 presents the topology-implicit semantic equivalence patterns; Sec-

tion 6.5 illustrates the method using behavioral equivalence.
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6.2 REDUCTION FOR PROPERTY-IRRELEVANT STRUCTURES

In a complex system, there are usually many components running concurrently. Some are pseudo-concurrent
because they are eventually synchronized somewhere by data exchange. Others are of real-concurrent,
for example, redundant sensors/actuators.

Fig. 6.2.1 is an example showing the relevancy between TPN system components integrated with prop-
erty observers. It is shown that those real concurrent components are separated non connected graph (A
and C in Fig. 6.2.1), and those pseudo-concurrent components are weakly connected graph with explicit

cuts (B, E, D, Fin Fig. 6.2.1).

TPN Model
A
B Obs D

c Rk

Figure 6.2.1: Relevancy between System Components

The TPN observers (points in A and B) for the given property are attached on sub-TPN A and B. If we
are sure there is no places, transitions or variables referred to by the observers in A and B, we can remove
C completely from the TPN model. The removal of C will not impact the observation in A and B.

The time divergence issue introduced by TPN must be discussed here. Suppose Cis simply composed by
the following structure in Fig. 6.2.2. As the time constraint of transition T is zero, this infinite loop does not
consume time. This behavior blocks the time for the whole system. The transitions in the other components
will never be activated if they are tagged with strictly positive time bound. Thus, we must ensure that the
time is able to evolve in our target TPN model. In this case, the time divergence in C must be ensured before it
is removed. Another solution is to avoid the time divergence issue in the modeling phase (in our case UML).
The UML model represents an abstraction of the real system’s behavior. The time divergence problem only
occurs in the TPN system, because besides possessing their own clocks, the asynchronous TPN components

also sharing a common clock. According to the mapping semantics defined in Chapter 3, if C does not
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exchange data with the other parts in the UML model, no transitions or places will be added between them
in the TPN model. In other words, C is also independent in the TPN model. Therefore, if a component is
independent in TPN, we can deduce that it is also independent in UML. Meanwhile, if it is not relevant to the

observer, it can be removed from both the UML and the TPN models.

[0,0]
P T

Figure 6.2.2: Time Divergence Issue

Once C is removed from the original TPN, the construction of state class graph will become easier be-
cause the number of transitions in the system has been reduced. The same action can be taken on D because
B does not depend on D’s behavior due to the uni-directional cut from B to D. On the other hand, the re-
duction of E or F may change the observer’s result (i.e. the original property of the system that we want to
verify) of B because they have outgoing cuts to B.

The above illustration on relevancy between components with integrated observers gives two principles

to define a formal method to reduce those property-irrelevant structures:
« Identification: Property-irrelevant sub-TPN can be identified by analyzing observer’s dependency.

+ Reduction: Property-irrelevant sub-TPN can be removed without changing the property.

6.2.1 Relevancy Analysis for TPN Extended with Data Handling

The relevancy between a TPN structure and the target property can be measured precisely using the causality
between TPN transitions and states in the state class graph. This measurement leads to the following paradox
that if we are able to generate the state class graph for the given TPN before the reduction, we may not need
to reduce it any more. The solution is to use an over-approximation of causality, i.e. use TPN structure
dependence to deduce the causality. The relevance between two transitions at TPN level is the necessary
condition that they are causally dependent.

The behavior of a transition depends on its pre-conditions. In classic TPN, it refers to the incoming

places of the transition. For example, in Fig. 6.2.3 (a), only P, and P, will impact T’s behavior. In other
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words, whenever P, will obtain markings or lose markings won’t change the particular time sequence that
T will fire. The direct outgoing transitions of T’s incoming places, i.e. T, can also create dependencies,
because with conflict, the time that T, fires will eventually change that of T. In the context of extended tts
feature, the dependency between variables must also be included. Fig. 6.2.3 (b) shows that all transitions
manipulating the variables (place marking is also taken into account as variables) which has been referenced
in the precondition (PRE) of a property-relevant transition are also marked as property-relevant. Therefore,

Ty, Tx, and P, are tagged as relevant.

Act: X:=1

bl F—— ===
| | |
I L - — - I

(a) Classic TPN (b) Classic TPN with Data (TTS)

Figure 6.2.3: Relevant Structure for TPN Transition

The specification of a place dependency is quite simple. All incoming and outgoing transitions are taken
into account, because both of them impact the marking of the place. Since tts extends only transition’s
semantic, the identification of the property-relevant elements for a given place in TPN with or without tts

feature are done in the same way. (Fig. 6.2.4)

Figure 6.2.4: Relevant Structure for TPN Place
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6.2.2 Algorithm for Reducing Property-Irrelevant Structure

According to the above analysis on relevant structures of TPN (with data) transition and place, we propose
an algorithm to automate the reduction of irrelevant structures. Before providing the algorithm, we define
three core functions.

Transition dependency search F(t) = <St, Sp>: F(t) extracts, for a given transition t, its direct dependent

transition set St and place set Sp,
« Sp=S,US,
. S/P = of
« S, = {pl|pl € PRE(t).vp} (vp are the places used as variables)
« St = {tr|Acr(tr).variables C PRE(t).variables}

where ot are ingoing places of the given transition t.

Place dependency search G(p) = <St>: G(p) extracts, for a given place p, its direct dependent transition

set St,
« Sy = epUpe

where op and pe are respectively ingoing and outgoing transitions of the given place p.

Property dependency search I(P) = <P, T>: I(P) extracts, for a given target property P, its dependent
place set I’ and dependent transition set T. A property is assessed using TPN observers and logic formulas
(in our case y-calculus (MMC)). IP and T are the set of places and transitions that respectively contains all
the sets of place and transition in TPN observers (resp. Op and Or), the sets of place and transition directly
attached to observers (resp. ¥, and ¥..) and the sets of place and transition referred to in logic formulas

MMC (resp. ¢, and ¢..), then
« P=0prUy,U¢,
« T=0rU VrJér
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We present the pseudo-code of the algorithm (see Algo. 1) for searching property-relevant and property-
irrelevant structures. The TPN system is defined as a set of places/transitions (Sp U Sr). The arcs are com-
bined in the ingoings and outgoings of places and transitions. The input data are TPN model with observers
(Op U Or) and logic formulas MMC corresponding to the target property P. The desired outputs are the set

of property-relevant structure and the set of property-irrelevant structure.

Data: System Sp U St and observers Op U Or, property P
Result: S,, S;,

<SP ST> :=1(P)

while not all elements in SF and in ST have been tagged do
p = SP.getUntagged() ;

ST.addA11(G(p)) ;

p.tag();

t = ST.getuUntagged() ;

SP.addA11(F(t).Sp) ;

ST.addA11(F(t).Sr) ;

t.tag();

end
S, = <Sf, S;‘r> ;
S1'r - S_r)'

Algorithm 1: Relevant and Irrelevant TPN Structures Search

The search starts from the places and transitions depending on property, including TPN observers, tran-
sitions directly attached to observers, and places/transitions referred to by MMC logic formulas. Therefore,
initially S” := P and ST := T. The following iterative process tags the relevant elements using predefined

functions F(t) and G(p). If not all the elements in S? or ST have been tagged as property-relevant:

« p = ST.getuntagged(): Get each place p not tagged from S¥.

ST.addA11(G(p)): Search dependent transitions of p and add them in S7.

p.tag(): Tagplace p as property-relevant structure.
« t = ST.getUntagged(): Get each transition ¢ not tagged from S7.

o SP.addA11(F(t).Sp), SF.addA11(F(t).Sr): Search dependent places and transitions of p and add

them in S? and ST.
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« p.tag(): Tagtas property—relevant structure.

In the end, the property-relevant set is the pair of the sets of relevant place and relevant transition; the
property-irrelevant set is complementary to property-relevant set.
The algorithm that identifies all property-relevant and property-irrelevant elements through relevancy

propagation is illustrated below using an example (see Ex. 6.1).

Example 6.1 (Relevancy Propagation Example) Fig. 6.2.5 (a) is the original system TPN model, with ob-
server Py, and the property assertion to be checked is Po,s = 1. We use Algo. 1 to tag the property-relevant

structures and eliminate the property-irrelevant structure.

Ts Ps Ty P4

T3 P2 Ty Pobs
O-FO

(b)

Figure 6.2.5: Example of Propagation of Property-Relevant TPN Structure

The relevancy propagation process is illustrated below, the propagation result is Fig. 6.2.5 (b).

1. Initially, using 1(P), the observer place P,y and its dependent transition T, are tagged as relevant (here

we use red color as tag).
2. Using B(T,), P, is tagged.
3. Using G(P,), T, is tagged.
4. Using F(T,), P, is tagged.
5. UsingG(P,), T, and T, are tagged.
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6. Using B(T,), P, is tagged.

The removal action for property-irrelevant structures s trivial. Allincomingand outgoingarcs of property-
irrelevant TPN elements will be deleted along with the elements themselves before being passed to the model
checker. For both Algo. 1 and the removal operation, the complexity is O(N), where N is number of ele-

ments (transition and place) of the given system.

6.3 REDUCTION FOR PROPERTY-RELEVANT STRUCTURES

The property-relevant structure is reduced using the commutativity of sub-net in the TPN model which
results in the same property-specific behavior. The property-specific reduction method has similar idea to
the partial order reduction.

The partial order reduction [CGP99, GVLH " 96] is usually used in asynchronous concurrent systems,
in which most of the activities in different processes are performed independently, without a global syn-
chronization. The most successful techniques for dealing with this problem are based on the partial order
reduction [GPg3, Pelgy, Valg1]. The main idea of partial order reduction is to construct a reduced state
class graph by eliminating the unnecessary behaviors. This method is based on the dependencies that ex-
ist between the transitions of a system. It exploits the commutativity of concurrently executed transitions,
which result in the same state when executed in different orders. The reduction method then specifies the
set of transitions that should be included in the reduced state class graph. The reduced behavior is a subset
of the behavior of the full state class graph. Thus it does not add any information to the behavior of a system.

Compared to the partial order reduction, the proposed property-specific reduction exploits the commu-
tativity of TPN structure before generating the state class graph, which result in the same property-specific
behavior. The partial order reduction is performed at the state class graph level, while the property-specific
reduction is performed at the TPN model level.

Another related work [DPC " 09, DBRL12] by P. Dhaussy et al. proposed to improve model checking
with context modeling. As requirements are usually related to specific use cases (context), they restricted
the system behavior with a specific surrounding environment (modeling the context) describing the dif-
ferent configurations in which one wants to verify the system. It may take more effort for the engineers to
explicitly and formally express more detailed requirements, but can make the model checking more efh-
cient under a fully specified environment. This additional work may be required anyway with the integra-

tion of the DO-331 Model Based Development and Verification supplement in the safety critical system
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development process, which enforces the writing of more precises requirements. They provide the Context
Description Language (CDL) and the Observer Based Prover (0BP) toolset ! based on this method. Both of
our works aim to provide property specific reduction methods for formal verification. They focus on the
modeling aspect, while we focus on the verification aspect. Both approaches could be integrated to provide
an even better scalability.

For some sub-net patterns recurring frequently in an asynchronous system, we define the topology-
implicit semantic equivalence patterns to identify these sub-net and substitute them by the equivalent sub-
net that exhibits the same property-specific behavior. This part of work is similar to the existing work of
[SBo6, Ber83, BT 86, Hadgo]. Berthelot originally developed set of reduction rules for general Petri nets
[Ber83,B*86]. Haddad extended Berthelot’s approach to Colored Petrinets [Hadgo]. Sloan et al. targeted
the patterns in a general TPN model [SB96], while we define some new patterns that are derived from the
asynchronous system.

The topology-implicit semantic equivalence patterns are in fact simple behavior equivalent patterns. In
some cases, it is complex to detect and extract a localized topology pattern. A novel real-time property-
specific reduction method is proposed in this chapter. This method first identifies the possibly reducible
sub-net, and then builds an equivalent net which exhibits the same property-specific behavior as the original
net. Before substituting the equivalent sub-net, we use refinement functions to ensure that the substitution
is correct.

Before going to the detailed explanations, we define a symbolic system to ease the discussion:
« T" and T~ : for a given transition T, represent respectively T’s outgoing and incoming arcs.
« P*and P~ : for a given place P, represent respectively P’s outgoing and incoming arcs.
« a.Pand a.T: for a given arc g, represent respectively a’s associated place P and transition T >
« card(S): returns the number of elements in set S.
« U(S): if card(S) = 1, returning the unique element in set S.

« TRM and PR®):; for a given TPN N, represent respectively the reducible transition and place sets.

"http://www.obpcdl.org/doku.php
?An arc has unique associated place and transition. Which one is source or target can be ignored here.
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For the property-relevant TPN, we distinguish the reducible and non-reducible structure. The non-
reducible structure is the places and transitions referred to by the observers used to verify the property.

The other parts are all considered as reducible structure.

6.4 REDUCTION USING TOPOLOGY-IMPLICIT SEMANTIC EQUIVALENCE

For property-relevant structures, the most direct reduction method is to combine the sequential parts into
reduced ones which have less states and transitions but retains the same properties (real-time, safety, etc.).
Several topology patterns have been developed under this principle along with their corresponding re-
duction rules. All reducible elements must not be those directly associated with properties, including ob-
servers, transitions directly attached to observers, and places/transitions referred to in logic formulas MMC.

The topology-implicit semantic equivalence patterns include:
« Redundant zero-time pattern

- Sequential pattern
- Indirect initialization pattern

— Shorten cycle pattern

« Sequential encapsulation pattern

6.4.1 Redundant Zero-Time Patterns

The objective of these patterns is to reduce the transitions with zero time interval that can increase the
complexity of transition fire sequence’s combination but do not provide any supplementary information

for execution flow (Fig. 6.4.1, Fig. 6.4.2 and Fig. 6.4.3).

6.4.1.1 Sequential Pattern

Identification function F, (N) = <P,,,., T, Py, > willidentify and give out a triple of TPN elements <Py, T, Ppos>
that matches this sequential Redundant Zero-Time Pattern in the given TPN N:

. Te TV p, PR p, . € PrN
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Figure 6.4.1: Redundant Zero-Time Pattern: Sequential

. { card(T1) = card(T~) =1

card(P,,) = card(P,,y) =1

U(T"). welght = U(T").weight =1
) u(T)P=>p,

U(T").P = Ppost

U<P re) (Pp_ost)'T =T

Pyye.marking = Pyoi.marking = o

T.minTime = T.maxTime = o

If Nisatts, then PRE(T) = () and AcT(T) = ()

Reduction function G, (Ppre, T, Ppost, N) = <P,, N'> will reduce the given triple <P, T, P

> in the TPN

pre» pos

N to a new place P, in the new TPN N’ without zero-interval transition:
« P, isanewly created place, P, ¢ N
« P,.marking = o, P, € PR(N')

« Pf =PyqandP; =P,
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(b)

Figure 6.4.2: Redundant Zero-Time Pattern: Indirect Initialization

6.4.1.2 Indirect Initialization Pattern

Identification function F, (N) = <P,,,., T, Ppo.> will identify and give out a triple elements <Py, T, Pyost>

that matches Indirect Initialization Pattern in a given TPN N:

'TETRN Ppree]:ED postEP

[ card(T") = card( ~) =card(P},) =1
e § car ( post) =
( Ppre =0
[ U(T").P = P,
U(T+) P =Py
( pre) T=T
T € Py T
Pp,e marking = U(P;‘re) marking
. Pyye.marking > 1
Pyosr.marking = o

\

o T.minTime = T.maxTime = o
« IfNisatts, then PRE(T) = @ and AcT(T) = ()
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Reduction function G, (P, T, Py, N) = <P,, N'> will reduce the given triple <Py, T, Ppost, N> in TPN

N to a new structure with only one place P, in the new TPN N’ without zero-interval transition.
« P,isanewly created place, P, ¢ N
« P,.marking = U(T").weight, P, € PRV
- P = post and P, = P,y —{1}

6.4.1.3 Shorten Cycle Pattern

[00] n [t11t2]
DS G EERIEE S
| enter D T

\

- -

Figure 6.4.3: Redundant Zero-Time Pattern: Shorten Cycle

Identification function F;(N)= <Teuter, Ppre; Texit, Ppost> will give outa 4-tuple of elements < Tepter, Ppre, Texits Ppost™

that matches Shorten Cycle Pattern in a given TPN N:
° enter € TR(N); Texit € TR( Ppre € ]P)R( post S ]P)R(N

( Card(Tji_’lter) - Card(Textt) =1

. card(P;re) = card(

arc € Ty, = card(arc.PT) =

pre) - card( post) - card( post) =1

U<T:r_1ter) P = U(Texzt) P = Ppost

U(P}.). T = U(Ppost). T = Tenter
U(P,)-T = U(Ppoet). T = Texit
L Py € Tex,t,Ppre € T, ter
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{ pre-marking = U( Pre) weight = U( p,e) weight = U(P,,).weight = (P;rost).weight

Pyost-marking = o

o Tepter-minTime = Tpper.maxTime = o

« If Nisatts, then PRE(T o) = () and PRE(T i) = ()

Reduction function G;( Tenter; Ppre; Texits Ppost: N) = <T,, N'>willreduce the given 4-tuple < Tenter, Ppre; Texit: Ppost™

in TPN N to a new structure with only one combined transition T, in the new TPN N':

o T,isanewly created transition, T, ¢ N
o T,.minTime = T,.minTime and T,.maxTime = T,y maxTime, T, € TRA)

. TH=T"

r exit

— Pporand T, = T ey — Ppogt

+ IfNisatts, then ACT(T,) = {ACT(Tenter); ACT(Tonit) }

6.4.2 Sequential Encapsulation Pattern

The objective of this pattern is to reduce the transitions by combining sequential transitions into a unique

one which encapsulates all necessary information from the original ones (time, preconditions, actions) (see

Fig. 6.4.4).

|—=————————————— -
| 5 Tore P Thost Q T 3 Q
| n C

|

|

| ny [tl’tz] [t3;t4] :Il4 Qﬁytzﬁ-q_

() (b)

Figure 6.4.4: Sequential Encapsulation Pattern

Identification function F,(N) =< Tyre, P, Tpoe> willidentify and give out a triple of elements < Ty, P, Tpost>

that matches Sequential Encapsulation Pattern in a given TPN N:
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. Pe PRV T, € TN T, € TRN

card(P*) = card(P~) = 1and card(T,,,) = card(T,,y) =1
arc € T,,, = card(arc.PT) =1

U(P+) welght ( _).weight
. U(P").T Tpre

U<P+) ost

U(T )P = U(Tp_ost) =P

 P.marking = o

« If Nisatts,then PRE(Tpost) =0

Reduction function G, (Pp., T, Pyost, N) = <T,, N'> will reduce the given triple <Py, T, Pyost, N> in TPN

N to a new structure with only one transition T, in the new TPN N':
o T, is newly created transition, T, € N
. T, € PRY)

o T,.minTime = Tp..minTime + Tpos.minTime and T,.maxTime = T

pre-maxTime + Tyoe. maxTime

« T = Thuand T, =T,,

« IfNisatts, then PRE(T,) = PRE(T}.) and ACT(T,) = {ACT(Tpre); ACT(Tpost) }

6.5 REDUCTION USING BEHAVIORAL EQUIVALENCE

The state space reduced by the topology-based patterns is limited. It still requires more reduction to gen-
erate large scale asynchronous systems. A novel reduction method based on property-specific behavioral
equivalence is proposed. The topology-based method follows the same principle that the replacement must
exhibit the same property-specific behavior (in our case real-time property-specific behavior). We can con-
sider topology-based patterns as a subset of behavioral equivalence method, which focus on a straightfor-

ward behavior patterns.
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We first provide an example in Section 6.5.1, and then give an overview of the proposal in Section 6.5.2.
The one-way-out and generic behavioral equivalence pattern are respectively provided in Section 6.5.3 and

Section 6.5.4. At last, some issues are discussed in Section 6.5.5.

6.5.1 Example of Behavioral Equivalence

The example from Ex. 6.2 illustrates the key ideas of the behavioral equivalence methods.

Example 6.2 (Example of Behavioral Equivalence) Fig. 6.5.1 is a TPN model that cannot be reduced any
more using topology-implicit semantic equivalence patterns. When generating the marking abstraction reachability
graph from this net in TINA, it contains 177 states and 365 transitions. This system can be seen as two parts: part
A standing for the structure in dotted frame, and part B standing for the other parts. Transition t, is considered as
a portal transition between parts A and B.

Fig. 6.5.2 shows the reduction result using a behavioral equivalence method. Part A is still in the reduced
structure, and part B of original net has been reduced. The reduced TPN only contains 3 states and 3 transitions,
but it exhibits the same behavior as the original net for the outside observer, which looks at the periodic firing time
of the portal transition t. In both nets, the firing time of t, exhibits the result in Table 6.5.1. For each occurrence n
(n € N) of fired t,, the firing time interval [min,,, max,] is [s + 17(n — 1), 10 + 69(n — 1)].

The key idea of behavioral equivalence reduction is to identify TPN structures, then replace it with behavioral
equivalent but reduced structures. The system before reduction and after reduction have the same behavior from

the viewpoint of transition property verification (in our case real-time property verification).

’ Occurrence ‘ Time [£7", 19 ] ‘ Time Diff [¢min — gmin | gmax _ max ] ‘
o [0, 0] -
1 [5, 10] [s, 10]
2 [22,79] (17, 69]
3 (39, 148] (17, 69]
n [s+17(n-1), 10+ 69(n-1)] [17, 69]

Table 6.5.1: Example Result: Same Firing Time in Both Net
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Figure 6.5.2: Example Result of Behavioral Equivalence

6.5.2 Approach Overview

An overview of the approach is illustrated in Fig. 6.5.3. We first identify and extract the reducible sub-
blocks like A, B, and C from the whole system using Identification functions. These sub-blocks contain
one outgoing and at most one incoming portal TPN transitions. In Fig. 6.5.3, A has one outgoing portal
transition, while B and C have one incoming and one outgoing portal transitions. Then the state space
of the reducible sub-blocks are reduced using the Reduction functions. The reduced sub-blocks (A", B,
and (') are built, and then used to replace the original sub-blocks after their soundness is assessed using
Refinement functions. The Identification, Reduction and Refinement functions rely on the real-time property

specification and observer-based verification approaches from our verification toolset.
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Figure 6.5.3: Overview of Behavior Equivalence Approach

6.5.3 One-Way-Out Behavioral Equivalence Pattern

Fig. 6.5.4 illustrates the concept of reduction by one-way-out behavioral equivalence. This TPN has 3 sub
blocks: A, B and C. All of the three blocks are property-relevant but also reducible. Both of blocks A and
B have a portal transition T, (resp. T3) to block C. Block A has a feature that it only produces tokens via
its unique boundary transition T, periodically or sporadically. The same characteristic can be found on
block B. Therefore, from the viewpoint of C, regardless the complex inner behaviors of the blocks A and B,
they are nothing but single transitions that may fire regularly under a pattern which sometimes feeds it by
some tokens. This observation gives an opportunity to abstract and redefine this regularity to a fixed TPN

structure that may contains less states and transitions than the one before reduction.

A B
Ty [tyt5] C? @ [ti;tj]
A T\ /T
X~
C [t3ty] @ d ol é [tps
— 3ty T{ > C |« P
1
T / AN
3 N
[t [toty) J
(a) (b)

Figure 6.5.4: Reduction pattern of Behavioral Equivalence
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Fig. 6.5.4 (b) shows how the behavioral pattern of a block like A or B can be simplified. Assuming there
is a powerful but invisible observer that will record, for each fired transitions T4 / T, their occurrence time.
Definitively, each occurrence T; must have a minimal and maximum time interval bound T7"" and T7"**.
T7" and T7** are derived by adding BCET (Best Case Execution Time) and WCET (Worst Case Execution
Time) observers on transitions T4/ Tp respectively. We have presented the method for computing WCET
value in Section 5.5.2 of Chapter 5. The computation method for BCET is similar to the use of observer
composition to represent minimum time interval between Init and current transitions.

The occurrence of T,/ T can be finite (block A) or infinite (block B). The method to check whether a
transition produces finite or infinite occurrence is to add an isFinite(E) observer (presented in Section 5.3.2

of Chapter 5) on the transition.

Finite Occurrence Transition If the occurrence is finite, the abstraction is relatively simple: it can be
represented by a finite sequential section of transitions Ty, = {T;} (i € N) with adapted time interval

[min;, max;], (£7" = "% = o) :
o min; = £ — grin

. max; = £ — fre

Infinite Occurrence Transition If the occurrence is infinite, the above sequential representation is no
longer useful. Nevertheless, as our work focuses on finite-state systems, we can deduce that the original
behavior of block A/B is finite in an infinite time scope. In other words, there must exist a repeating behav-
ioral pattern in block A/B. In general, such a pattern is composed of a finite sequential section of transitions
Toeq = {T;} (i € N) and aloop section of transitions T},,, = {T;} (j € N). The block B in Fig. 6.5.4
illustrates the composition of sequential and loop sections.

In the Fig. 6.5.2 of Ex. 6.2, the part {p,, t,, p,, t;, p.} corresponds to the reduction result of an infinite
occurrence block. p,, t,, pi, t, is the finite sequential section, and t,, p, is the infinite loop section.

The reduction method includes 3 functions: identification, reduction and refinement.

Identification function F(N) = <A, T,,,> identifies and extracts, for a given TPN N, the sub-net A which
matches the pattern that could be possible reduced (necessary condition) using one-way-out behavioral

equivalence pattern, and the boundary exit transition set T,
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Data: A, t

Result: Ng

i — o gmar = o
Ng.add(new Place(1));

i:=0;

while tHasOcc(i++) do

£"" .= getOCCBCET(A, t,1) ;
"% := getOCCWCET (A, t,1) ;
T;.min = £ — ¢Mn
T;.max = "% — ("%
Ns.add(T;, new Place(o));
end

Algorithm 2: Building Sequential Section

Ais a strongly connected graph, A C N, T,,s C A
«Vp €A (pe PR A (pt CA)A(p~ CA)

e VtEA, (t€ TRV A (£ C A)

e Toe={t{t€ A)A(tTNA#D)}

Reduction function G(A, t) = <Ng, N1 > extracts, for a given sub-net A matching the above pattern and
one of the transition t in the T, set, the equivalent sequential structure N, and the eventual loop section
N if the occurrence of t is infinite.

The sub-net A is extracted from the whole system. This function first checks whether the occurrence
of tin sub-net A is finite using the isFinite() observer. The isFinite() observer is given in the section
5.3.2 of chapter 5. In both cases, the ™" and £/"** are measured using predefined BCET and WCET observers
for the i occurrence of fired t.

In the finite case, there is only a sequential section Ns. The set of sequential transitions Ty, = {T;}
(i € N) in Ng is built using ™" and /. Each transition T} in T..q is associated with a time range
[T;.min, T;.max]. The algorithm for building N from A using the transition ¢ is described in Algo. 2.
Initially, £ and 7 are set as o. Ny starts from an initial place with one token. Whether t' has occurred is
checked using tHasOcc (i) function relying on the observer 0(#). For each new occurrence (i) of fired t, a

pair of BCET and WCET observers are added to ¢ in the sub-net A to compute the ™" and #"**. Then the time
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range [ T;.min, T;.max] is associated to the transition T;. T; is added in N, and an associated new place
without token is also added in N.

In the infinite case, the key issue is to identify the occurrence of fired t that divides the sequential section
Njs and the loop section Ny.. The algorithm Algo. 3 is proposed to build the Ng and Ny, sections by searching
for the loop starting transition (loopStartIndex) and the length of loop (loopLength).

Since the occurrence of the fired t is infinite, an occurrence bound value is predefined as occThreshold to
stop the algorithm. Since the Identification function F(N) uses necessary conditions, the identified sub-net
A is considered as non-reducible if the loop section cannot be found using occThreshold. Another bound
value loopThreshold judges whether the loopStartIndex and the loopLength are found. If the loop pattern
holds for loopThreshold times, it is considered that this division of Ng and Ny, is statistically correct. It
is obvious that no matter how big that loopThreshold is, the assurance cannot reach 100%, because the
execution is infinite. In order to make sure that the replacement refines exactly the same behavior as the
original system, a pre-check (refinement) must be performed before integrating the reduced structure into

the whole system.

Refinement function H(A, t, Ng, N ) checks the refinement between the identified reducible sub-net A

and the equivalent net A" = Ny U Ny, for a given transition ¢ in T\, in the following way:

« Let ng be the length of sequential section N, and n, be the length of the loop section N.

« Let T¢ be the m™ transition of N, and T* be the k™ transition of Ny. (m,k € N;1 < m < ng,1 <
k<np)

« For the i* firing of t in A, denoted as #, creates an occurrence observer for £ and adds it to A;

o Creates ng times the predicate observer of maximum time interval; adds these ones between the
event modifier t; (1 < i < ng) in Ng and the transition Ty (m = i) in Ny ; checks if the following
assertion holds for all T¢: |T(¢£) — T(T%)|< Te.max — T¥ .min

« Creates an event modifier #*, (p = (i — ng) mod ny ) for the i?" fired tin A, and adds the observer of

this modifier to A. As i is infinite, p is also infinite. Thus, # stands for an infinite event.

« Creates n, times the predicate observer of maximum time interval; adds them between the event

modifier # in Ng and the transitions TI’i (k=i — ng) in Ny ; finds all the outgoing arcs of ¢ inside
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Data: A, t, occThreshold, loopThreshold
Result: Ng, N

t:)"i" =0, :=0;

Ns.add(new Place(1)) ;

occ:=o0;

while occ++ < occThreshold do

™in .= getOCccBCET (A, t,0cc) ;

occ

tha¥ := getOCCWCET (A, t,0cc) ;
for loopStartIndex = o; loopStartIndex < occ; loopStartIndex ++ do
for loopLength = 1; loopLength < occ - loopStartIndex; loopLength ++ do
match: =o;
for index = loopStartIndex; index < occ - loopLength; index++ do
if issame(<t;:finex7 t$3§x>} <t:zz1ex+loopLength7 t::?iix—&-looplength >) then
\ match++ ;
end
else break;;
end
if match > loopThreshold then
for k = 1; k < loopStartIndex; k++ do
Te.min = t;fi" — t'k”i’;,
Ti.max = g% — %% ;
Ng.add(Ty, new Place(o));
end
or k = loopStartIndex; k < loopStartIndex + loopLength; k++ do
T..min = t;c”i" — ti”i”l,
Ti.max = g% — 7%%;
Ni.add(Ty, new Place(®));
Np.connect(lastPlace, Tioopstartindesx) ;

=g

end

return ;
end

end

end

end
Algorithm 3: Building Loop Section
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A (the outgoing arcs outside A are not included), redirects the sources of these arcs from ¢ to the
”merge” transition in the time interval observer (this will be detailed in the following example Ex.
6.3), perform the same redirection for A’; checks if | T(#) — T(T%)|< (TX.max — TX.min) holds
for all T%.

When verifying the loop section using refinement, as A and A’ are both infinite, we propose a mechanism
to ensure that the refinement is performed between two equivalent occurrence. We use an example (Ex.

6.3) to illustrate this issue and how the refinement works.

Example 6.3 (Example of Refinement) Inthe Fig. 6.5.5 (a), the model S 5 is an identified sub-net of the whole
system S. E is the target portal transition. From the viewpoint of E4, the net S, exhibits periodic behavior, with
[3, 10] as the period. Sg is the reduced net which exhibits the same property-specific behavior as S4. From the
viewpoint of Ep, Sp also exhibits periodic behavior with [3,10] as the period. Sp does not have the sequential
section but only the loop section with one transition. Before replace Sy by Sg in S, the refinement is performed to
verify Sy and Sg have equivalent property-specific behavior.

According to the above steps, as ng = o, we directly verify the equivalence of the loop section. In S, n, = 1,
thus, p = 1. In Fig. 6.5.5 (), E, stands for t'. The obs is used to check |E}, — Ep|< 8 between infinitely occurred
E!, and Eg. We check the MMC assertion —(Overflow, V Overflowg) in the state class graph preserving markings.
The result is false. This is obvious. For example, if each time E, occurs at the instant 2, while Eg occurs at instant
10, their occurrences quickly become non equivalent.

This problem is solved using a reset mechanism. In Fig. 6.5.5 (b), we first find all the outgoing arcs inside Sa
and Sg (here arcs as and ag). Then we redirect the source of as from E, to Tnerges and redirect the source of
ag from Eg t0 Tyerge. In this way, after the comparison of each occurrence, the loop restarts. The MMC assertion
—(Overflows V Overflowg) is true. In this way, it is proved that Sg is equivalent to S, in terms of property-specific

behavior.

The reduction will likely make the verification more scalable if the reduced behavior has less states and
transitions. However, this will not always be satisfied and we cannot predict the reduction effectiveness
before refinement. This gain introduces additional costs: the computation of function G() and H(). Al-
though the reachability graph of sub-TPN will be much smaller, both G() and H() will be executed several
times for a given sub-TPN. In this work, in order to avoid meaningless computation, the identification of sub-

TPN matching the pattern will only check those strongly connected graphs with more than 10 transitions.
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Figure 6.5.5: Example of Refinement

A more sophisticated gain-cost balance strategy could be studied in future works, like pattern recognition

for target sub TPN together with machine learning on their improvement ratio.

6.5.4 Generic Behavioral Equivalence Pattern

The above one-way-out pattern of refinement gives hints for more generic patterns. First of all, a reducible
sub-net must be independent of its surrounding behavioral context. It means that whether this structure is
"knocked out” from the original TPN or not, it will exhibit exactly the same behavior wheneveritis measured,
in terms of occurrence times, firing time range of each transition and marking bound of each place. This
feature is the key of behavioral equivalence-based reduction because it turns, during model checker’s state
exploration, the combination problem of O(N - M) into a divide-and-conquer problem of O(N + M - §),
where N is the state unfolding complexity caused by this sub-net, M is the complexity caused by the other
parts of the TPN, and & is the complexity introduced by the refined component of the sub-net; it is expected
(and often the case according the early test results) that1 < § < N.

Let S be the system TPN, A be the reducible sub-net of S, and C be the complement structure of Ain S
(see Fig. 6.5.6 (a)). Once A has been identified, the next task is to convert it into a reduced structure B,
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which in order to have eventually § < N. Theoretically, the arcs are the interfaces between A/B and C, and
both transition and place can be the portal elements of A/B to connect to C. In this thesis, we chose to use
transitions as the portal elements because most of our observers are event/transition-based. This will ease
both the reduction function G() when we "knock out” A and find its behavioral equivalence parameters for
building B, and the refinement function H() when we associate A and B to verify they are equivalent using

observers.

Figure 6.5.6: Generic Behavioral Equivalence Pattern

For the generic behavioral equivalence pattern, the two functions G() and H() are the same as the one
given for the one-way-out pattern. We focus on how to identify the sub-nets matching this generic pattern.
More precisely, an identification function is proposed to identify the sub-net structures which consist of
two portal transitions such as transitions P and Q in Fig. 6.5.6.

Before presenting the identification function, two transition sets should be predefined.

Definition 6.1 (Impact Set) Le E be a transition in a given TPN system S, the impact set of E is the set of TPN

transitions that impacts the behavior of E in S, noted as S3. In other words, E causally depends on the elements in

S5,

Definition 6.2 (Impacted Set) Let E be a transition in a given TPN system S, the impacted set of E is the set of
TPN transitions that are impacted by E in S, noted as T5. In other words, the elements in T3, causally depends on
E.

Computation of S3 and T3 Computing precisely the causality between TPN’s transitions is a tough task,
which requires a state class graph-based analysis. This leads to the following paradox: if we are able to

generate the reachability graph for the given TPN before the reduction, we may not need to reduce it any
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more. The solution is to use an over-approximation of causality, i.e. use the TPN’s structure relevance to
deduce the causality. The relevance between two transitions at TPN topology level is the necessary condition
that they are causally dependent. Therefore we can reuse the algorithm Algo. 1 to compute these two sets.

Suppose R is the set including all relevant transitions of E in a system, we have
. S =Rg
. T3 = {X|E € Rx}

We give an example (Ex. 6.4) to illustrate the defined impact and impacted sets.

Example 6.4 (Example of Impact and Impacted Sets) In the net N of Fig. 6.5.7, the target transition is T,
The impact set SI}C is the set of relevant transitions {T,, T, }. The impacted set Tl}l is computed using the sets of
relevant transitions of the other transitions. For T,, its relevant transitions are {T,, T,, T, }; for T, its relevant

transitions are { Ty, T, }. The transition T, does not have any relevant transition. As T, is relevant to T, and T,,
the impacted set Ty, = {T,, T, }.

p3

Ty P1

n®
Ps Ty P4
O+ oy

T3 P2 T
OO

Figure 6.5.7: Example of Impact and Impacted Sets

Identification function F,(N) = <A, P, Q> identifies and extracts, for a given TPN N, the sub-net A that
matches the pattern that could be possibly reduced by generic behavioral equivalence pattern, and the pair

of portal transitions P (incoming) and Q (outgoing). S¥ (resp. Sg) and TY (resp. Tg) are the impact and
impacted sets of P (resp. Q). The algorithm Algo. 4 is used in F,(N).
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Data: N

Result: A, P, Q

forall the transitions L,M € S do
if TY C T} then
A=Ty-TYN+{L};
A" = A\{L,M};
found := true;

forallthe E € A’ do

if | (T4 CAASY C A) then
found = false ;
break ;
end
end
if found then
P=L,Q=M;
return;
end
end

end
Algorithm 4: Generic Behavioral Equivalence Pattern Identification

F() guarantees that the whole structure A will only casually impact part C via transition Q, and will only
be casually impacted by part C via transition P in Fig. 6.5.6. Therefore when the refinement is using P and

Q as portal transitions, it will not change the behavior of the whole system.

6.5.5 Discussion

6.5.5.1 Behavior Coverage

In some cases, using the observed minimum/maximum time range to replace the old sub-structure do
not refine fully the original behavior because there might be some “holes” in this range. For example, a
transition can fire during [10,15] or [20,30], but never during [15,20]. If we use directly [10,30] as the
[min, max] time range in refinement, the real-time behavior is extended. Therefore, a detailed observation
must be taken into account to distinguish the case with and without these time-holes.

For a given observed range [min, max] of transition T at its i" occurrence, the checky exist T; between
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k and k+1 will be executed for all min < k < max. If check; does not pass, the range will be broken into
two sections: [min, k] and [k+1,max]. To be more general, if checky,, checky,, ... checki, do not pass, the
final refined equivalent time ranges of this occurrence will become [min, k, ], [k, + 1, k,], ..., [k, + 1, max].
Accordingly, the sequential transition of the equivalent sub-net will be refined to a sub-structure which
contains all possible fireable time range, but also eliminates those impossible ranges.

Fig. 6.5.9 (a) shows that the transition T in the reduced sub-net A exhibits a firing time range [t,, £,].
But there exists time holes on this time range, as shown in Fig. 6.5.8. The transition T should be replaced by
the sub-range structure (grey part in Fig. 6.5.9 (b)). In each sequential branch of this structure, the second
transition keeps the firing time constraint, while the first transition with time constraint [0,0] plays a role

ensuring that this branch will be selected and fired equally.

t3 3

«é@«lio
A
@)

(a)

Figure 6.5.9: Behavioral Equivalence Pattern: Deal with Hole on Time Interval
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6.5.5.2 Predict the revenue-over-investment

More specifically, for a given TPN, there might be more than one reducible sub-components available.
Different order of reduction will eventually impact the global verification time. A trivial strategy used in this
work uses the sub-net’s size (in terms of transition’s number in the sub-net) to rank the order of reduction:

the smaller one will be reduced first.
6.5.5.3 Formal Proof and Future Research Direction

In this behavioral equivalent approach, we first identify and extract the reducible sub-blocks from the
whole system using an Identification function. Then the state space of the reducible sub-blocks are reduced
using a Reduction function. The reduced sub-blocks are derived, and are then used to replace the original
sub-blocks after their soundness is assessed using a Refinement function.

At the time of writing this thesis, the Reduction and Refinement functions rely on the real-time property
specification and observer-based verification approaches in our verification toolset. Suppose a reducible
TPN sub-net is N, and its reduced sub-net is N\. We use the Reduction function to search for the sequential
and loop sections that are used as the behavioral pattern of N, and then verify if this pattern behaves the
same as the system’s real behavior using the Refinement function. If verified, an N’ conforming to this pattern
will replace the N;. The reduction and refinement functions can be formally specified and proved. This
should be further studied in the near future.

On the other hand, once an N; is identified, in order to compute the N/, some related TPN observers need
to be associated to the N, and the corresponding state class graphs are then generated m times (m depends
on the behavior of N;). Indeed, this approach reduces the state space explosion problem in asynchronous
systems using a time-memory tradeoff. But this approach can still be improved by decreasing the time used
for the reduction and refinement. Itis possible to build the sequential and loop sections for N’ by generating
the state class graph only once and then analyzing its topology structure. This will be an interesting future
research direction.

Boucheneb and Barkaoui proposed in [BB13] an effective method for reducing interleaving semantics
redundancy in the reachability analysis of Time Petri Net. Their work showed that the union of state zones
reached by different interleavings of the same set of transitions is not necessarily a state zone. They estab-
lished sufficient conditions which ensure that this union is a state zone and showed how to compute this
state zone without computing intermediate ones. It is possible to draw lessons from this work and propose

more efficient property specific reduction methods for TPN models.
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6.6 CONCLUSION

This chapter proposes TPN reduction approaches that are applied before verifying real-time properties by
model checking. The classic verification methodology will encounter scalability problem very quickly
along with the growth of system size, as it follows an implicit purpose: once the reachability graph has
been generated, it can be reused to verify many properties of the system, just by changing the modal logic
formulas. This consideration requires to build the most concrete and precise transition system to be able
to assess any kind of properties. It makes sense if the assessed system does not change often and if there is a
large number of requirements to assess. However, it is well known that the generation of reachability graph
for large scale models is the most expensive phase in terms of resource consumption. Theoretically, gener-
ating reachability graphs only once seems to be resource-saving by eliminating the effort of re-generating.
However, this global-resource-saving principle implies an assumption that is sometimes false: we can gen-
erate the reachability graph with common available resources.

We propose to create models equivalent to the original TPN in terms of property-related system behav-
ior, but with less states and transitions. This reduces directly the model scale before performing state space
generation. Compared to other TPN reduction techniques, our approach focus on the following four con-

tributions:

1. Reduction based on TPN with data manipulation features.
The TINA toolset supports extended TPN with data handling called Time Transition Systems (tts),
including the precondition PRE and action AcT functions. Our approach is based on this new fea-
ture. When eliminating property-irrelevant structures, all variables and place marking referred by

the property-relevant structures should be preserved.

2. Reduction driven by property verification.
The reduction is property-driven, which means that most structures irrelevant to the verification of a
given property will be eliminated. Compared to existing techniques [SB96], our approach is driven
by property, because TPN systems have been extended with property observers. This property-driven
characteristic allows removing much more transitions in the TPN models, which directly signifies

more reduced state space in model checking.

3. Reduction based on topology-implicit semantic equivalence.

We propose practical topology-implicit semantic equivalence reduction patterns which are com-
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monly found in TPN models with observer structures for real-time property verification. In this work,

redundant zero-time patterns and sequential encapsulation patterns are proposed.

4. Reduction based on behavioral equivalence.
In some cases, it is complex to detect and extract a localized topology pattern. However, it is manda-
tory to have the whole TPN reduced. Reduction methods based on behavioral equivalence are pro-
posed. These methods identify sub-TPN which exhibits the same behavior as the original nets. Before
reducing the pattern-matched structures, we use refinement functions to ensure the reduced net cor-

responds exactly to the original behavior.
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Contribution to Fault Localization
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Automated Fault Localization in Model Checking

RESUME

Ce chapitre présente une approche automatisée d’assistance a lalocalisation des éléments de modéle partic-
ipants a la non satisfaction des exigences lors de la vérification de modéles. Il s’agit de faciliter et d’accélérer
la mise au point de l'architecture des systémes temps réels en localisant et en classant les éléments suspects
dans un modele pour lequel une exigence n'est pas satisfaite.

La génération d’'un contre exemple dans le cas o1 une exigence n'est pas satisfaite est un service essentiel
fourni par les outils de vérification de modéles. Ces contre exemples illustrent des comportements indésir-
ables mais possibles dans le modeéle considéré du systeme. Cette information peut aider les utilisateurs a
corriger la conception défectueuse du systéme. Cependant, il est généralement tres difficile de compren-
dre l'origine de I'échec en utilisant des contre exemples car d'une part ceux-ci sont en général trés longs
pour les erreurs qui ne sont pas triviales, et d’autre part une erreur peut résulter d'une combinaison de fac-

teurs. Aprés identification de 'erreur, il est également complexe d’extraire des contre exemples les indices
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pour aider a améliorer la conception. Les contre exemples produits par les outils de vérification des mod-
¢les sont généralement des traces qui représentent des séquences d’états et de transitions qui conduisent
a un état dans lequel I'exigence nest pas satisfaite. D’une part, celles-ci sont souvent longues et difficiles a
interpréter car l'origine réelle de I'erreur peut étre une transition, voire une combinaison de transitions ap-
paraissant a n'importe quelle position dans la trace, ce qui nécessite une longue analyse par les concepteurs.
D’autre part, les contre exemples ne correspondent qu’a certains scénarios de défaillance spécifique qui ne
sont pas forcément les plus pertinents pour la compréhension et la correction de I'origine de la défaillance.
Lanalyse peut étre plus précise si elle s'appuie sur I'ensemble des scénarios. Lapproche de vérification pro-
posée sappuie sur l'accessibilité qui construit I'ensemble des traces conduisant dans les états de défaillance
ou ne conduisant pas dans les états souhaités. Elle permet donc de disposer de toutes les informations
exploitables pour 'analyse des échecs.

Ces diftérents aspects nous permettent de conclure que la transmission aux utilisateurs des seuls contre
exemples n'offre qu'une aide pratique tres limitée pour identifier I'origine des défauts et corriger ceux-ci.
Notre objectif est de signaler directement des éléments suspects car ils contribuent a un grand nombre de
scénarios de défaillance. Pour cela, il est nécessaire de localiser et de classer les éléments potentiellement
défectueux dans les modeles en sappuyant sur les résultats de la vérification.

Lanalyse de l'origine des défaillances dans la vérification de modéles est difficile a cause de I'utilisation
d’abstractions. Aumoment de laréduction, le conflit entre la précision du modéle etle cotit de la vérification
estun probléme clé. L'abstraction est souvent nécessaire dans la vérification pour réduire la taille de 'espace
d’états. Elle élimine certains éléments de la sémantique sans rapport avec les exigences mais peut également
combiner certains aspects liés a celles-ci. Mais la distinction des parties combinées pourrait aider dans la
compréhension de la défaillance.

Les techniques de localisation des défaillances actuellement disponibles pour la vérification de modeles
produisent généralement un ensemble déléments suspects dans les modeles sans classement particulier.
Dans cette partie, nous avons amélioré l'efficacité de l'analyse des défaillances en fournissant un facteur
de suspicion, lorsqu’une exigence n'est pas satisfaite. Inspiré par la théorie de la divergence de Kullback-
Leibler et la technique TF-IDF (Term Frequency - Inverse Document Frequency) une mesure exploitée
dans l'exploration de données textuelles, le facteur de suspicion est utiliser pour classer les transitions sus-
pectes. Nous construisons I'intégralité des traces d’erreur dans le graphe d’accessibilité en utilisant tous les
états de défaillance. Le facteur de suspicion est ensuite calculé en utilisant la contribution a la défaillance

de chaque transition sur toutes les traces d’erreur. Cette contribution est calculée a partir de I'entropie et
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de I'entropie différentielle de transition. Nous appliquons cette approche aux réseaux de Petri temporisés
et a la méthode de vérification a base d’observateurs pour obtenir toutes les traces d’exécution défaillantes
et les états défaillant dans le graphe d’accessibilité préservant le marquage. Lapproche proposée est illus-
trée a l'aide d’une étude de cas simple, et ensuite validé avec des métriques classiques sur un banc d’essai

automatisé qui génére des modeéles comportant des interblocages.
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Progress Map 5: Automated Fault Localization in Model Checking

In this chapter, we present an automated fault localization approach based on model checking to ease
and accelerate debugging bylocating and ranking the suspicious elements in a model when a safety property
is unsatisfied (Progress Map 5). Counterexamples produced by model checkers often stand for error traces,
which represent sequences of system states and transitions that are often lengthy and difficult to understand,
as they provide every steps (or an abstraction of steps) in the execution leading to the violation states. The
origin of error might be anywhere along these traces and even a combination of transitions that are not
contiguous, thus it requires a lengthy analysis by designers (Challenge s in page 22). Inspired by the TF-IDF
(term frequency-inverse document frequency) measure and the Kullback-Leibler Divergence theory,
we propose a suspiciousness factor to rank the potentially faulty transitions. We apply this approach to

property-specific TPN model relying on observers-based verification approach presented in Chapter s to
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provide all the faulty execution traces and the violation states in the marking reachability graph. Based
on the mapping semantics from UML to TPN, the faulty transitions can be back-traced from TPN to UML. The
approach is illustrated using a simple TPN case study, and then further assessed for its effectiveness and

efficiency on an automated test bed. (Contribution 5 in page 24)

7.1  INTRODUCTION

One of the designers of model checking E. Clarke wrote in [Clao8]: "It is impossible to overestimate the
importance of the counterexample feature. The counterexamples are invaluable in debugging complex sys-
tems.” Generating a counterexample in case a formula is violated is a key service provided by model check-
ers. As exceptions of requirements, counterexamples are expected to display some unwanted but possible
behaviors of the system to help the user(s) in correcting the faulty system design. However, it is usually
an exhausting work to understand the origin of failure using counterexamples and to extract from them
useful debugging clues to help improving the design. Counterexamples produced by model checkers often
stand for error traces, which represent sequences of system states and transitions that are often lengthy and
difficult to understand, as they provide every steps (or an abstraction of steps) in the execution leading
to the violation states. More precisely, the origin of error might be anywhere along these traces and even
a combination of transitions that are not contiguous, thus it requires a lengthy analysis by designers. On
the other hand, the counterexamples derived from the assessment of temporal logic formulae usually only
contain some specific failure scenarios. Even if the toolsets could generate all possible faulty scenarios, this
is not a common feature. Without relying on all the possible error traces, fault analysis might not be precise
enough in most cases.

Based on the above understanding, we advocate that feeding back end users with counterexamples pro-
vides limited help in understanding the origin of defects and in improving model design. Our ultimate
goal is to detect and to provide the designer with ranked suspicious faulty elements. In other words, we
aim to locate and rank the potentially faulty model elements relying on model checking results. The fact
is, although model checking has been developed as a mature and heavily used verification and debugging
technique, the automated fault localization analysis relying on model checking results is still mostly an open
challenge.

Existing automated fault localization techniques in model checking usually produce a set of suspicious

statements without any particular ranking. In this chapter, we introduce an automated fault localization ap-
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proach based on model checking to ease and accelerate debugging by locating and ranking the suspicious

elements in model checking when a safety property is unsatisfied. Inspired by the TF-IDF (term frequency-

inverse document frequency) measure and the Kullback-Leibler Divergence theory, we propose a sus-

piciousness factor to rank the potentially faulty transitions. We construct error traces in the reachability

graph using the violation states. The suspiciousness factor is then computed using the fault contribution of

each transition on all the error traces. The fault contribution is computed using the entropy and differential

entropy of transitions. We apply this approach to Time Petri Net (TPN) models relying on the observers-

based verification approach presented in Chapter 5 to provide all the faulty execution traces and all the

violation states in the state class graph preserving marking. This approach is illustrated using a simple TPN

case study, and then further assessed for its effectiveness and efficiency using an automated test bed.

Compared to existing works, the main contributions are:

« Existing automated fault localization techniques usually produce a set of suspicious statements with-
out any particular ranking. Our approach uses a suspiciousness factor based on information theory
to rank all statements. Up to now, the current test results have shown that this approach is efficient

and effective.

Itis based on a novel idea according to our knowledge and the communication reviews we got: using
information theory to compute the entropy and differential entropy of error traces in the state class
graph. We start with comparing the similarity between information retrieval for documents and fault
localization for error traces. Then we propose an algorithm based onKullback-Leibler Divergence

to compute fault contribution of TPN transitions on error traces.

The automated faultlocalization is applied at the reachability graph level, thus it can be used together
with different verification models (TPN, TA, etc.). It provides fault location feedback for safety prop-

erties.

It has been integrated in the temporal property verification framework for UML-MARTE real-time de-
signs. This fault localization approach is applied to the property-specific verification models (in our
case TPN). These property-specific TPN models are derived from the end-user model (UML-MARTE)
using the property-specific mapping. After performing the property-specific reduction for TPN, the
marking abstraction state-class graph is generated to assess the temporal properties using the observer-

based model checking. If the property is dissatisfied, the violated states are used to locate the origin
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of error. Based on the mapping semantics from the UML model to the TPN model, the faulty transitions

in the marking graph are back-traced from the TPN model to the UML model.

This chapter is organized as follows: Section 7.2 states the targeted problem; Section 7.3 gives some pre-
liminaries; Section 7.4 provides an automated fault localization approach based on the reachability graph;
Experimental results derived from a set of test cases are presented in Section 7.5 to assess the effectiveness
and efficiency of the approach; Section 7.6 introduces the algorithm for back-tracing faulty transitions from

the verification model to end user model.

7.2 PROBLEM STATEMENT

7.2.1 Abstraction Issue

Fault localization in model checking is challenging as models usually have concurrent and indeterministic
behaviors with many possible execution traces. These behaviors are mostly related to the use of abstrac-
tion in their design. Without appropriate information, fault localization may not be precise enough. Given
a sequential, or synchronized concurrent, program which exhibits less execution traces, various debug-
ging methods are available to detect and locate faulty statements. In model-based diagnosis, the use of
abstraction is mandatory to reduce the state space explosion problem. At the time of writing, the conflict
between model precision and verification cost is a key issue in model checking and model-driven engineer-
ing (MDE), therefore a compromise is made to remove the unnecessary information for some verification
purpose while keeping all the property-related information.

There exist mostly three levels of abstraction:

« First, abstraction lies in the design models at early phases of MDE. For example, the specification of the
execution time interval for each action and the condition of transition between actions is enough to
verify the worst-case execution time (WCET) of an activity, while the detailed algorithm of an action

might not be required.

« Secondly, abstraction lies in the mapping from design models to verification models. This one also
targets verification-ease. The property-irrelevant elements can be reduced to decrease the state space

size for model checking.
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« At last, abstraction lies in the reachability graph. Usually, several types of abstraction preserving
different kind of information are provided by model checkers when generating a reachability graph.

In order to scale as much as possible, we choose in our work the highest possible abstraction.

~.2.2 Fault Localization Issue

Sometimes it is difficult, even for seasoned experts, to analyze the fault origin. We take a simple example

(see Ex. 7.1) to illustrate this issue.

Example 7.1 (Fault Localization Example) Assume a system consists of two concurrent processes A and B.
Both execute only once. The execution time is [ 5,10] for A, and [3,7] for B. The expected temporal property P is
Always A After B.

It is obvious that P is unsatisfied. The design fault occurs either on A or on B. To remove this violation, we can
either replace the time constraint of Aby [ 8,10], or replace the time constraint of B by [ 3,4]. However, without extra
information, A and B exhibit the same suspicion. If an extra information is available, e.g. the best case execution
time (BCET) of B is s, then the time constraint of B cannot anymore be replaced by [ 3,4], thus the suspicion of B is
largely decreased.

This example is simple enough to be analyzed manually, while it is impossible for more complex system
with thousands of transitions. Any modification on a transition may impact the verification result through

time constraint propagation.

7.2.3 Existing Works

According to the survey from [Ali12], existing automated fault localization techniques in model checking
usually produce a set of suspicious statements without any particular ranking.

[BNRo3] proposed to analyze fault localization using one single counterexample that violated the ex-
pected properties in a particular case. Whenever a counterexample was found, the approach compared the
error trace derived from the counterexample to all the correct traces that conformed to the requirement.
On the observed error and correct traces, the transitions that led to the deviation from correct traces are
marked as suspicious transitions. This technique has been implemented in the SLAMmodel checker [BRo1].

[GVo3] proposed to rely on multiple counterexamples. It defined the traces that started from initial

states and ended with error states as negative traces, and the traces that did not take the error state as previ-
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ous state as positive traces. It distinguished the transitions that existed in all positive traces; the transitions
that appeared in all negative traces; the transitions that existed in one of positive traces but not in any neg-
ative traces; and the transitions that appeared in one of negative traces, but not in any positive traces. The
algorithm then used the above marked transitions to identify the origin of failure. This method has been

implemented in the Java PathFinder [HPoo] toolset.

[Groos4] proposed to define a distance between the error trace and the successful traces. The distance
was then used to find the closest successful trace to the counterexample. The causes of error were then
derived from the comparison results between the closest successful trace and the counterexample. This

method was implemented in the Explain toolset [ GKLogb].

[CGSo4] extended the concrete distance metric approach of [ Groo4 ] to handle abstract executions of
programs and properties expressed in LTL, resulting in improvements in both the distance metric used and
the expressiveness of explanations over earlier work. This technique has been implemented in the MAGIC
toolset [CCG " o4].

[JM11b] proposed an approach that transformed the fault localization problem to a Max-SAT problem.
It used only one failing trace and the corresponding input to build the Max-SAT formulation. This method
has been implemented in the BugAssist toolset [JM11a].

7.2.4 Proposed Solution

Compared to the above existing works, our approach will improve the effectiveness of fault localization by
providing a suspiciousness factor which is used to rank the suspicious transitions in verification models.
The suspiciousness factor is computed using the fault contribution of each transition in the error traces
derived from the reachability graph. Inspired by information retrieval theory, the basic idea is to compute

the entropy and differential entropy of the transitions in the error traces.

At the time of writing, we have not yet combined our approach with the previous related works. This

can be investigated in the future.
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7.3 PRELIMINARIES

7.3.1 Reachability Graph & Violation States

Reachability graphs are used to solve reachability problems in model checking. They contain all the states in
the execution of a system and all the transitions between these states. In the TINA toolset, depending on the
selected options, tina builds reachability graphs of different abstraction levels, expressed as Kripke transi-
tion systems (ktz). For example, the marking graph of a bounded Petri Net preserves marking reachability
properties but not linear time temporal (LTL) properties.

Finding all violation states in the reachability graph is the first step for error localization. There exist two
model checkers in the TINA toolset which provide (partially) this functionality. muse is a modal y-calculus
model checker which can find all the violation states against the given modal y-calculus (MMC) formula in the
reachability graph. selt isa State/Event LTL model checker which can give one counterexample (therefore
not all the violation states) when the LTL formula is checked as false. If there is a need to find all violation
states for LTL formula, one can apply the biichi automaton translating algorithm by iterating all the states

in the reachability graph.

7.3.2 Error Traces

We aim to compute the fault contribution of each transition in the error traces. The error traces are con-

structed using the violation states in the reachability graph when a safety property is unsatisfied.

Definition 7.1 (Fault Contribution) Fault Contribution (Cg) is a suspiciousness factor to evaluate a transi-

tion’s suspicion level. It is used to rank the suspiciousness of transitions.

The first step to locate the fault source is to enumerate all the violation states in the reachability graph.
According to the observer-based model checking approach for TPN presented in Chapter s, we use the mark-
ing graph as the reachability graph. A TPN state can be seen as a pair (M, D), in which M is a marking, and D
is a set of vectors called the firing domain. The MMC formula is used to check the marking existence, such as
(Mp = 1) or (Mp = o), where Mp is the marking in the observation place P. Once the given MMC is violated,
the set of violation states in the reachability graph is built.

229



7.3. PRELIMINARIES

Definition 7.2 (Error Trace) There may exist several paths from the initial state s, to a violation state s, in the
reachability graph. For all the states {s;} on each path, all the outgoing transitions of s; are gathered in a set called

error trace 7.

We consider not only the transitions on the path that leads from S, to S, in the definition of error trace
but also the direct outgoing transitions of all the states in the execution traces that lead to correct states.
Indeed, in TPN, the transitions outgoing from the same place can mutually influence each other. A faulty
transition can change the way a correct transition is fired if they are both outgoings from the same place.

The correct transition will diminish the Cr of the faulty transition.

Example 7.2 (Error Trace Example) In Fig. 7.3.1, s, is initial state, s, is a violation state. In the execution
trace from s, to s,, there exist four states {s,, s,, s,, 5, } (apart from s, ). The state s, is in a correct trace. When the
system is in state s,, it is possible to transit to s, leading to a correct trace, or to s, leading to a violation state. If s,
is removed from the graph, s, will have higher fault contribution for the violation state. The outgoing transitions of

these four states are considered as error traces m, i.e, m = {to, t,, ts, ty, ts, ty, ta, £y, £y )

WORNNG
So to :5 t :5 ty t3 @Sv
@‘Y@ ® RO

Figure 7.3.1: Error Trace Example

7.3.3 Kullback-Leibler Divergence Applied to Textual Documents

Kullback-Leibler Divergence (also called information divergence, information gain, relative entropy)
[KLs1] is a fundamental equation of information theory that qualifies the proximity of two probability

distributions.

Definition 7.3 (Kullback-Leibler Divergence) Kullback-Leibler Divergence (KL)isameasurein statis-
tics that quantifies how close a probability distribution P={p;} is to a model (or candidate) distribution Q={q;}.
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The KL-divergence of Q from P over a discrete random variable is defined as

Du(P] @ = 3 P 1n% (71)

Note: In the above definition, oln 2 = o, 0ln ﬁ =o,andpln f = o0.
Three properties are derived from it:
- Asymmetry: Dir (P || Q) 7# Dxe(Q || P).
« Non-negative: Dxr (P || Q) > o, Dxr.(P || Q) = oif P matches Q exactly.

. Additive: If P, P, are independent distributions, with the joint distribution P(x, y) = P,(x)P,(y),
and Q, Q,, Q, likewise, then Dgz (P || Q) = Dxr(P, || Q,) + Dxr(P, || Q.).

Kullback-Leibler Divergence has many applications. We give an example of its application to text
classification [BMo98]. A textual document d is a discrete distribution of |d| random variables, where |d|
is the number of terms in the document. Let d, and d, be two documents whose similarity we want to

compute. This is done using Dxz.(d, || d,) and Dgr(d, || d,).

7.3.4 Term Frequency - Inverse Document Frequency

Another major application is the TF-IDF (Term Frequency - Inverse Document Frequency) algorithm [Jon72].
TF-IDF is a numerical statistic which reflects how important a term is for a given document in a corpus
(collection) of documents. It is often used as a weighting factor in information retrieval and text mining.
Variations of the TF-IDF weighting scheme are often used by search engines as a central tool in scoring and
ranking a document’s relevance to a given user query [ MRSo8].

Suppose we have a collection of English textual documents and aim to determine which documents are
most relevant to the query "the model checking” We might start by eliminating documents that do not
contain the three words "the”, "model’, and "checking”, but this still leaves many documents. To further
distinguish them, we might count the number of times each term occurs in each document and sum them
all together; the number of times a term occurs in a document is called its term frequency (TF).

However, as the term "the” is very common, this might incorrectly emphasize documents which hap-

pen to use the word "the” more frequently, without giving enough weight to the more meaningful terms
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"model” and "checking”. The term “the” is not a good keyword to distinguish relevant and non-relevant
documents and terms, unlike the less common words "model” and "checking”. Hence an inverse document
frequency (IDF) factor is incorporated which diminishes the weight of terms that occur very frequently in
the document set and increases the weight of terms that occur rarely.

To summarize the above explanation, TF-IDF is the product of two statistics, TF and IDF. TF stands for
the frequency of a term in a document, and it reflects how important a term is in this document. IDF stands
for the frequency of a term in different documents, and it reflects how distinguishable a term is to the doc-
ument. The TF-IDF weight for a term both increases with the number of occurrences in a document (TF

component); and the rarity of the term across the entire collection (IDF component).

7.4 RANKING Suspicious FAULTY TRANSITIONS

Inspired by the TF-IDF algorithm, we propose a probabilistic faultlocalization approach based on the Kullback-
Leibler Divergence. A relevance weight Cr(t) is computed to assess the contribution of a transition ¢ in

the error traces leading to violation states and thus its contribution to the fault.

7.4.1 CoreIdea

In the TF-IDF algorithm, each term in the documents will contribute to the semantics of keywords. Some
terms are considered as significant if they are more relevant to the semantics of keywords. This is similar to
the fault contribution caused by a given transition in an error trace in model checking. Fig. 7.4.1 compares
the similarity between semantic contribution of terms in documents and fault contribution of transitions
in error traces. Some terms in documents have closer semantic relation to the keywords, the occurrence
of these terms provide more semantic contributions to the occurrence of keywords. Similarly, the fault
propagation depends on the topology of error traces, the occurrence of some transitions will provide more
fault contributions to the occurrence of violation states.

The semantic contribution of a term in documents is measured by TF-IDF, where TF is the contribution
of a term in single document, and IDF is the contribution of a term in a collection of documents. The fault
contribution to the violation states {s,;} caused by a transition t on error traces {;} can also be evalu-
ated by a similar measure Cg(t), defined as TC-ITC (Transition Contribution - Inverse Trace Contribution).

Cr(t) = Tc(t) - ITC(8).
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Documents | > Terms Semantic >| Keyword Semantics
Contribution

Error Traces |o >| Transitions Fault >| Violation States
Contribution

Figure 7.4.1: Comparison to TF-IDF

7.4.2 Fault Localization Example

We use a simple example (see Ex. 7.3) to present the whole fault contribution analysis algorithm.

Example 7.3 (Fault Localization Example) Fig. 7.4.4 (without the observer part) is a TPN model with 10
transitions {t,, t,, ..., t, }. It has two main execution paths (respectively through t, and t, ), both have a loop with
a bound of 2. The expected temporal property is: system’s BCET is bounded within a given time T, i.e. BCET >
T. We aim to automatically identify the potentially faulty transitions, and to rank them according to their fault

contributions to the violation states.

to

¢ [2,8]
ts t10,0] 2[0,0] ty

R TTOTT e
QVE—) —f t8
[1,7] [2,6] (3,7] [2,6]
tg
¢[1,4]

oL

Figure 7.4.2: Example of Fault Localization Algorithm

233



7.4. RANKING SUSPICIOUS FAULTY TRANSITIONS

7.4.3 TC-ITC Algorithm
7.4.3.1 Building Error Traces

The length of error trace L is defined as the number of states before the violation state s,. The algorithm
for enumerating all the error traces in the reachability graph is trivial, but the impact of state cycles in error
traces needs to be discussed.

The reachability graph in Fig. 7.4.3 contains a state cycle C; (s, LN S, KN Sy LN s,). The error traces
passing through s, may loop in C;. Take one error trace as an example, the trace passing through states

Soy S1) 83,84, 56 1S

¢ ¢ t t g
So > {8, =5, =5, > S, ba — Ss

where 7 represents the number of time the cycle is repeated. A repetition will not increase the fault con-
tribution as the system’s behavior is restricted to the three states. Therefore, the cycle can be treated as a

single point represented by a chain of transitions (here t1, t4, 3). In other words, n is taken to be 1.

1 - 503 9 5 ¢
s to 6
I t & 9 @sv
t
’ @ 7 > 4 /87

Figure 7.4.3: Cycle on Error Traces

To assess the expected temporal property, a TPN observer is added in the example (see Fig. 7.4.4).
This observer is used to check the minimum time interval between two events. The observer is linked to
transition f, because place p, is the end place of the running system. The MMC assertion to be checked is:
N(=(=p, A p,)) = Ny, where N(—(—p, A p,)) is the number of states satisfying =(—p, A p,), N4 is the
total number of possible states in the system’s execution.

For the expected property BCET > T, when T = 10, the verification result is False. Ny is 39, transition
number is 50, while N(—(—p, A p,)) is 37. Therefore, there exist two violation states (S,, and S,;,) in the
reachability graph (see Fig. 7.4.5). The error traces are:
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tg t1[0,0] ‘l‘ /8] £5[0,0] ts

Figure 7.4.4: Verification of Fault Localization Example

= {tO’ t17t2’t5>t107t37t9>t10}
7[2 = {tht17t27t47t107t7,t9,t10}
Ty = {to’tUt?-?tS?t107t37t67t107t57t107t37t107t9}

7.4.3.2 Transition Contribution

Definition 7.4 (Transition Contribution (TC)) T7C is a measure of the occurrence frequency of a transition t

in an error trace m. It reflects a transition’s contribution to violation state s, on . It is defined to be

(=S & (7.2)

where Q; is number of occurrence times of t on error trace ; of length L;, and M is the number of error traces.

It uses the raw frequency of a transition in a error trace, i.e. the number of times that transition ¢ occurs

in error trace 7.
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Figure 7.4.5: Reachability Graph of Fault Localization Example

~.4.3.3 Inverse Trace Contribution

Definition 7.5 (Inverse Trace Contribution ITC) ITC is a measure of whether a transition t is common or

rare among all the error traces derived from all the violation states. It is defined to be

M

I7C(t) = log, ——, (7:3)

> X

1 if t occurs at least one time in an error trace

where X; = and M is the total number of error traces.

o otherwise

It is obtained by dividing the total number of error traces by the number of error traces containing the

violation, and then taking the logarithm of that quotient.
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7.4.3.4 Fault Contribution of Transition

The weight TC-ITC is the product of the above two measures. In some cases, this product is o, which
does not mean it cannot be the fault source but only implies that the elements make the least contributions
to the violation states and have the least probability comparing to the others and should be checked at last.

It is expected that the ranking of faulty possibility computed by the algorithm corresponds to manual
analysis and human intuition, as it was shown for TF-IDF and other applications. We use the example from
Fig. 7.4.4 to illustrate how they are matched. A more detailed automated benchmark is presented in the
next section.

We give the computation result of the example in Fig. 7.4.6. The results show the fault contributions

(normalized for comparing the trend) of each transition when T varies from s to so.

0,4
0,35

0,3 —10
0,25 t2

0,2

Normalized Faulty Contribution

0,15 7 t5
t6

0,1 —t7
—1t8

0,05 —1t9

0
56 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

BCET Test Value
Figure 7.4.6: Feedback of Fault Localization Example

We explain the results in Fig. 7.4.6 in the following part:

« 1 < T < s: since the BCET of the system is 5, there will not be any violated state and accordingly no

fault localization will be launched.

o T > 47: since the WCET of the system is 47, the reachability graph will not have any change after this
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threshold, therefore the fault contribution of each transition will preserve the same value as T = 47.

o § < T < 47: since T represents the expected BCET of the system, all execution with time inferior to
T will be considered as violation. Without any other information, a reasonable heuristics can then be
derived from this assertion: for BCET property, the less a transition can contribute/has contributed
to the global execution time, the higher risk it will be the fault origin. Another intuition-valid rule
is: when an element holds a more complex function, it has a higher risk to have design faults. To
heuristically quantify the coefficient of these two different types of fault contribution is a subjective
measure often context-dependent. In order to avoid this indecisive discussion, each time we en-
counter this situation in our example, we will just explain the two aspects without trying to combine

them into one score for matching the ranking.

We will now check whether the computed ranking of fault source matches these two references. We

observe in this figure statistical trends that:

- Topologically symmetric pair (t,, t,) has a higher risk to be the fault cause than (t,, t,)
and (tg, tg). This matches the heuristic rule because in whichever execution, t, and t, will only
contribute once to the global execution time (i.e. [2,6] and [3,7] respectively), while t,, t4, t,
and tg can at most execute twice and will contribute more (i.e [6,10], [2, 14], [8, 16] and [4,

12] respectively).

— In each symmetric pair of above, t, > t,, t; > t, and ts > t;. This keeps demonstrating that

it is always the one with the smallest execution time that get more risk to be the faulty one.

- t,, t, t, and t, are equally the least suspicious elements. This conforms to the intuition
because in all execution paths, whether good or bad, t, and t, will always be executed therefore
no information added for assessing the risk that they have to be the fault cause. For t, and t, it
is a similar approach, because a design fault will either be on the left side or the right side, and

in all execution paths of the left (resp. the right ) side, t, (resp. t,) will always be executed.

— Pair (t, t,) has a higher risk than (t;, t;). Generally since ts/ts has smaller execution time
than t,/t,, it shall be more risky to be the error source according to the first heuristic rule.
However, since t,/t, plays a role that not only postpone the execution (like t5/t;), but also
branch the execution path (ts/ts do not have this function), their chance to be the fault cause

will be re-distributed and raised as the second rule is engaged.
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7.5 EXPERIMENTS

To assess the success of a fault localization algorithm, many important criteria should be measured, such as
effectiveness, precision, informativeness, efficiency, performance, scalability and information usefulness.
In our work, we assess our approach by using two very significant criteria: effectiveness and efficiency.

Effectiveness. An effective fault localization method should point out the origin of failure. The ef-
fectiveness can be evaluated by the precision. According to the survey [WDog], the effectiveness can be
assessed by a score called EXAM in terms of the percentage of statements that have to be examined until the
first statement containing the fault is reached [EWDC10, WQog, WSQGo8, WWQZo8]. A similar score
using the percentage of the program that need not be examined to find a faulty statement has been defined
in [CZos, JHos, RtPRo3 ]. These two scores provide the same information, but the EXAM score is more di-
rect and easier to understand. In this work, we use the EXAMscore to assess the effectiveness of our approach,
which is the percentage of transitions that have to be examined until the first faulty transition is found.

Efficiency. The faultlocalization techniques in model checking, like other techniques, should terminate
in a timely manner, limited by some resource constraints. The efficiency can be assessed by the scalability
and the performance.

In order to assess the effectiveness and efliciency of the proposed method, we have designed an auto-

mated test bed.

7.5.1 Automated Test Bed

The test bed will randomly generate systems which might have deadlocks, then apply the proposed analy-
sis algorithm and check that it detects the introduced deadlocks. The general scenario we have chosen is
deadlock in systems with concurrent use of resources. The main reason to use this common scenario as
template is because it is relatively easy to create a scalable system with deadlock heuristically. Although the
test bed only contains only one property, the effectiveness and efficiency evaluations will be meaningful
for all safety properties, because the approach is based on the analysis of reachability graph.

For a given TPN system S(P, R, M), P are the processes which run infinitely and need a resource before
the next task (a task is represented by a transition); R are resources which are shared by all processes, but
only accessible in an exclusive way; M is a matrix to decide whether process P; will need to access resource

R;. Coffman identified four conditions that must hold simultaneously in order to have a deadlock [ CES71]:
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1. Mutual exclusion condition The resources involved are non-sharable.

2. Hold and wait condition A process is currently holding at least one resource and requesting addi-

tional resources which are being held by other processes.
3. No-preemptive condition Resources already allocated to a process cannot be preempted.

4. Circular wait condition The processes in the system form a circular list or chain where each process

in the list is waiting for a resource held by the next process in the list.

According to these conditions, each process is designed to be moderately consuming the resource, i.e. it
will use its resources exclusively, always release one before locking another. The order in which a resource
is accessed in each process is however random, which establishes the necessary condition of deadlock. In
practice, the first three conditions can be constructed statically when building the test case, while the fourth
one can only be checked dynamically during the system’s execution. Therefore, the generated TPN will not
systematically guarantee that a "real” deadlock will occur. For example, among the 10,000 generated test
cases that may have only one deadlock, the "real” deadlock occurs in 400 cases. Among the 10,000 gener-
ated test cases that may have 9 deadlocks, the "real” deadlocks occur only in one single case.

To improve the success of creating a deadlock in the system, we introduced another mechanism to en-
force deadlocks: randomly let some processes during some tasks forget to release a resource it is locking.
These tasks are then considered as the error source of system’s deadlock.

With a generated system and its already known faulty transitions (release-forgot tasks), the test bed will

apply our method to compute the fault contribution of each task.

7.5.2  Evaluation of Efficiency

We have generated thousands of test cases by assigning P and R values from § to 20, creating 1 to 9 faulty
transitions, with all the other parameters totally random. To create systems with deadlocks, we generate
10,000 cases for each fault number from 1 to 9. After examining the circular wait condition, most of these
cases are deadlock-free, therefore the number of deadlocked systems is in fact much smaller than 10,000.

The exact number of deadlock test cases is shown as the second column in Table 7.5.1.
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Table 7.5.1: Efficiency Evaluation

System Evaluation
Fault Num. | Deadlocked Systems | Av. State/Transition | Average Time (s)

1 400 4949 / 15440 2.9092
2 517 2428 / 7130 1.1244
3 500 9884 /31237 3.3533
4 402 8811/ 26663 2.5998
s 303 6756 / 18247 1.2196
6 504 27094 / 75808 5.064

7 757 104857 / 304741 15.0072
8 100 112306 / 283004 15.0289
9 1 241920/ 583200 36.906

The tests are performed on a 2.4 GHz Intel Core 2 Duo processor running Mac OS X 10.6.8. The system
parameters and efficiency evaluation results are shown in Table 7.5.1. The average time of evaluation shows

that the approach is efficient for large scale system.

7.5.3 Evaluation of Effectiveness

The effectiveness evaluation is shown in Table 7.5.2. We give out EXAM score, EXAM score variance, rank, and
rank variance for the best and worst cases, and then show the average EXAM score and rank. The EXAM score
varies from 0.7% to 13.3% for best cases, and varies from 3.9% to 18.6% for worst cases. In average, EXAM
varies from 2.3% to 15.9% which corresponds to ranking results from 1 to 8. The stability is represented
by the variance result. These experimental results shows our approach is effective. The user only need to

assess 15.9% model elements in the worst case to find the error source.

7.6 BACK-TRACING FAULT TRANSITIONS IN UML

In the above automated fault localization approach, we compute fault contribution Cp for each transition
in the error traces in the reachability graph. From the viewpoint of designers, the verification model TPN

might be transparent to them, what they expect to get as feedback are guidance information in UML.
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Table 7.5.2: Effectiveness Evaluation

EN Best Case Worst Case Average
" | Exam [ ExamVar | Rank | RankVar | ExaM | ExaMVar | Rank | RankVar | ExaM | Rank
1 0,13335 | 0,00134 | 3,25 1,79 0,18603 | 0,00244 | 4,33 1,63 0,15969 | 3,79
2 0,04229 | 0,00219 1,1 1,75 0,09574 | 0,00213 2,11 1,75 0,069015 | 1,604
3 0,02108 | 0,00106 0,75 1,52 0,05892 0,0009 1,75 1,52 0,04 1,25
4 0,00722 0,0004 0,26 0,49 0,039 0,00042 1,26 0,49 0,02311 0,76
S 0,02044 0,0017 0,83 2,95 0,0478 0,00162 1,83 2,95 0,03412 1,33
6 0,05369 | 0,00336 | 2,46 7,36 0,0766 0,0033 3,46 7,36 0,065145 | 2,96
7 0,08857 | 0,00372 4,61 10,9 0,10822 0,0037 5,61 10,9 0,098395 5,11
8 0,13091 | 0,00099 7,3 3,95 0,14905 0,001 8,3 3,95 0,13998 7,8
9 0,10169 o] 6 o 0,11864 o 7 o] 0,11016§ 6,5

In Chapter 3, we have mapped UML models to TPN using property-driven approach. Each element in the
chosen UML diagram has been mapped to a TPN structure for the purpose of property-verification-ease. The
algorithm to compute fault contribution of a UML element is trivial.

Suppose an UML element E is mapped to a TPN structure S =< P, T >, where P is the set of places and
T is the set of transitions, T = {t,, t2, ..., t; }. Then the fault contribution of E is computed as below:

Cr(E) = Z Cr(t:) (7.4)

7.7 CONCLUSION

Automated failure analysis and fault localization in model checking is a hard problem, due to information
reduction caused by model abstraction. Yet, it is a key issue, as providing counterexamples is not enough to
help designers in debugging models. This may require a great deal of human effort to locate faulty elements.
Some works have provided good results by producing a set of suspicious faulty elements without particular
ranking factor.

In this chapter, inspired by the theory of Kullback-Leibler Divergence and its successful application
TF-IDF in data mining, we start with comparing the similarity between information retrieval for documents

and fault localization for error traces. We propose to compute the fault contributions of each transition on
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error traces. The fault contribution is the product of transition contribution (TC) and inverse trace contri-
bution (ITC). Based on the mapping semantics between UML models and TPN model, the faulty transitions
are then back-traced to UML model. The approach is illustrated using a simple case study, and then further
assessed for its effectiveness and efficiency on a designed automated test bed.

The main contributions of the current chapter [ GPC14a] is summarized as follows:

1. Existing automated faultlocalization techniques usually produce a set of suspicious statements with-
out any particular ranking. Our approach uses a suspiciousness factor based on information theory

to rank all statements. The current test results have shown that our approach is efficient and effective.

2. Itis based on a novelidea according to our understanding: using information theory to compute the
entropy and differential entropy of error traces in the reachability graph. We start with comparing the
similarity between information retrieval for documents and fault localization for error traces. Then
we propose an algorithm based on Kullback-Leibler Divergence to compute fault contribution

of TPN transitions on error traces.

3. The automated faultlocalization is applied at the reachability graph level, thus it can be used together
with different verification models (TPN, TA, etc.) if the verification toolset can provide several (in
not all) erroneous execution traces and violated states. It provides fault location feedback for safety

properties.

4. It has been integrated in the temporal property verification framework for UML-MARTE real-time de-
signs. We apply this fault localization approach to the property-specific verification model (in our
case TPN). This property-specific TPN model is derived from the end-user model (UML-MARTE) using
the property-specific mapping. After performing the property-specific reduction for TPN, the mark-
ing abstraction state-class graph is generated to assess the temporal properties using the observer-
based model checking. If the property is dissatisfied, the violated states are used to locate the origin
of error. Based on the mapping semantics from the UML model to the TPN model, the faulty transitions

in the marking graph are back-traced from the TPN model to the UML model.
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Application to Flight Management System

RESUME

Dans ce chapitre, nous utilisons un cas d’étude avionique développé par Michael Lauer en 2013 pour tester
les différentes méthodes proposées. Il s’agit d’'une partie du systéme de gestion de vol FMS (Flight Manage-
ment System) . Dans ce cas d’¢tude, nous étudions les exigences en terme de latence des communications
et de fraicheur des données.

Les architectures avioniques modulaires intégrées IMA (Integrated Modular Avionic) sont utilisées
pour exécuter un ensemble d’applications partageant des ressources de calcul, appelées modules, commu-
niquant par un réseau partagé AFDX (Avionics Full DupleX switched ethernet) et connecté a un ensemble
de capteurs. Chaque fonction s’exécute au sein d’une partition du module. Le cas détude traite d'une
sous-partie du systéme de navigation dont 'objectif est de controdler I'affichage d’informations de naviga-
tion sur les écrans de pilotage. Le systeme de navigation interagit avec I'équipage au travers d’écrans et de

claviers. Sur requéte du pilote ou du copilote, saisie au moyen de leurs claviers respectifs, le systéme doit
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afficher les informations du prochain point de navigation (way point) sur les écrans multi-fonction (Multi
Function Display). Ces informations sont de deux types: des informations statiques et des informations
dynamiques mises a jour périodiquement. Pour des raisons de sireté, le FMS repose sur une architecture
redondante. Sur chaque voie de cette redondance, le FMS est composé d’une fonctions KU (Keyboard
and control Unit) comportant le clavier et d'une fonction MED (Muti Functional Display) comportant
I’écran. Le pilot peut entrer une requéte d’affichage d’'un point de navigation. Cette requéte est recue par la
fonction KU. La requéte est alors transmise aux gestionnaires de vol FM (Flight Manager) qui question-
nent en paralléle la base de données de navigation NDB (Navigation DataBase). Celle-ci retourne aux FM
les informations statiques du point de navigation qui sont ensuite périodiquement enrichies par chaque
FM avec les informations dynamiques calculées en fonction des données de vol (vitesse, position, ... ) pro-
duites par les centrales inertielles ADIRU (Air Data Inertial Reference Unit). Au final, chaque FM envoie
périodiquement a chaque MFD les informations a afficher. Chaque ADIRU élabore les données de vol a
partir de données de base fournies par des mesures envoyées par des capteurs.

Pour illustrer les exigences que doit satisfaire le systéme et évaluer nos propositions, nous en présen-
tons deux: 'exigence de latence relative a une chaine fonctionnelle, et 'exigence de fraicheur relative a une
chaine fonctionnelle. Lexigence de latence permet de garantir que le systeme répond suffisamment rapi-
dement a une sollicitation. L'exigence de fraicheur permet de garantir qu'une donnée affichée du systéme
dépend d’informations suffisamment récentes pour étre pertinente.

Nous modélisons l'architecture du cas détude en utilisant le diagramme de structure composite de
UML-MARTE, puis son comportement en utilisant les diagrammes d'activité et de machine d’état de UML-
MARTE. Le modéle obtenu est ensuite traduit automatiquement en réseau de Pétri temporisé selon I'approche
dédiée aux propriétés temps réels en utilisant la sémantique d’exécution définie dans le chapitre 3. Les ex-
igences temps réels sont spécifiées en utilisant les patrons de propriété définis dans le chapitre 4. Apres
avoir réduit 'espace d’état par la méthode de réduction spécifique aux propriétés temps réels définie dans
le chapitre 6, le graphe d’état préservant la sémantiques du marquage est généré pour évaluer les propriétés
temps réel en utilisant les observateurs dans le réseau de Pétri temporisé défini par le chapitre 5. Les résul-
tats obtenus sont identiques a ceux des travaux de M. Lauer a base de programmation linéaire en variable
entiére. Nous réalisons ensuite la méme série d’expériences que M. Lauer afin dévaluer si ce coit est ac-
ceptable sur des systeme de taille industrielle ce qui est le cas pour ce type de systeme d’avionique avec une

structure relativement réguliere qui se préte bien a la réduction.
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In the current chapter, we use an avionic case study, a part of flight management system (FMS), to test the
whole proposal from Part One (Property-driven approaches). In this case study, the latency and freshness
requirements are assessed. We model the property-specific architecture of the case study using UML-MARTE
composite structure, and model the property-specific behavior using the activity and the state machine di-
agrams. The UML-MARTE model is then mapped to a property-specific TPN model using the mapping seman-
tics defined in Chapter 3. The real-time requirements are specified using the property patterns defined in
Chapter 4. After performing the property-specific reduction for TPN presented in Chapter 6, the state-class
graph preserving marking semantics is generated to assess the real-time properties using the observer-based
model checking (Chapter 5). The experiment results show that our approach is able to analyze large scale

systems more complex than the current real systems implemented in the Airbus A380 FMs.

8.1 INTRODUCTION

In the previous chapters, we have presented the contributions, including the property-driven approaches
(the mapping from UML-MARTE to property specific TPN, the real-time property specification patterns, the
real-time property verification based on observers in model checking, and the property specific reduction
for TPN), and the fault localization in model checking. We have implemented and integrated the above
approaches in the UMLMMC (UML-MARTE Model Checking) toolset.

In order to test the whole property-specific proposal, we use an avionic case study investigated by M.
Lauer et al. [Lau12, LEBP11b, LEBP11a, LEPB10o], which is a part of a flight management system (FMS).
We rely on the system descriptions provided by Lauer et al.. The latency and freshness requirements are
assessed in the case study. We model the architecture using UML-MARTE composite structure diagram, and
model the behavior using activity and state machine diagrams. The UML-MARTE model is then mapped to
property specific TPN model using the mapping semantics defined in Chapter 3. The real-time requirements
are specified using the property patterns defined in Chapter 4. After performing the property-specific re-
duction for TPN presented in Chapter 6, the marking abstraction state-class graph is generated to assess the
real-time properties using the observer-based model checking (Chapter s5). The experiment results show
that our approach is able to analyze large scale systems more complex than the current real systems imple-
mented in the Airbus A380 FMS.

In this chapter, Section 8.2 describes the FMS case study; Section 8.3 models the case study using UML-
MARTE diagrams; Section 8.4 maps the UML-MARTE model to TPN model; Section 8.5 presents the property
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verification results; Section 8.6 gives the results of scalability tests; Section 8.7 compares with the works of

Lauer; Section 8.8 gives the conclusions.

8.2 CASE STuDY: FLIGHT MANAGEMENT SYSTEM

A flight management system (FMS) is a fundamental component of a modern airliner’s avionics. It consists
of two units, a computer unit and a control display unit. The computer unit is integrated as a function on the
hardware platform Integrated Modular Avionics (IMA). The control display unit provides human/machine
interface for data entry and information display. An FMS manages part of the displays in the cockpit. Itis a
primary function of the in-flight management of the flight plan. It guides the aircraft along the flight plan
using various sensors to determine the aircraft’s position. A flight plan is a sequence of waypoints. From the
cockpit, the FMS provides some information on a waypoint requested by the pilot and periodically refreshes

dynamic data related to this waypoint (distance and estimated time of arrival).

8.2.1 Integrated Modular Avionics

The Integrated Modular Avionics (IMA) architecture is defined in the avionics context for sharing commu-
nication and computation resources while ensuring temporal and spatial segregation. An IMA system is a
platform on which a set of functions is statically mapped. Avionics functions executing on the platform
must fulfill safety requirements, one of them being a strong segregation. For that purpose, airframers and
the ARINC corporation have proposed two standards. The standard ARINC 653 [C"97] specifies the man-
agement of computing resources (named modules): the scheduling of functions on each module is de-
fined off-line by a periodic sequence of slots (named partitions) statically organized in a time-frame named
the MAjor time Frame (MAF). Thus, each function periodically executes at fixed times. Modules however
are globally asynchronous. The standard ARINC 664 [Speos ], implemented in AFDX (Avionics Full-Duplex
Switched Ethernet) [Engos ] networks, describes the management of communication resources (switches
and end-systems). Communication flows are statically segregated into Virtual Links (VL). Each VL is ded-
icated to a single function and implements a traffic shaper. It is characterized by a Bandwidth Allocation
Gap (BAG), i.e., the minimal time interval separating two successive messages on the VL. These two stan-
dards globally define the IMA concept which has been implemented in the Airbus 380 and the Boeing 787

for instance. According to this definition, an IMA platform can be seen as a set of modules, switches and
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links compliant to these standards.

The architecture of the FMS case study is represented in Fig. 8.2.1. Seven modules, from Module, to
Module, (named M, .., M, afterwards), are used to map the avionic functions. The functions are described

in the follow part (Section 8.2.3).

[keyboard, | [ display) | [ display, | [keyboard, |
\dli' N/
MoueI

Modulei

Chir, |
Module
— 5 Bl—|
\ /

Modulei

Modulei ./ .\
/ \
RDC, RDC,

i Modulei I

Figure 8.2.1: Architecture of the Case Study

Module6
Bl

Each function is allocated to a partition of a module. Each partition is described by the following real-
time features: period of repetition, duration of the slot and offset in the MAF. We assume that each function
has a worst case execution time less or equal to the duration of its partition. Allocation of both sides of the
plane are symmetrical. The real-time parameters of modules and RDC are summarized in Table 8.2.1. The

sensors capture the sampling data every 20 ms.

249



8.2. CASE STUDY: FLIGHT MANAGEMENT SYSTEM

Table 8.2.1: Parameters of Partitions

Partition | Period | Duration | Offset | Module
KU, 50 25§ o 1
MEFD, 50 25§ 25§ 1
KU, 50 25§ o} 2
MEFD, 50 25 25 2
EM, 60 30 o 3
EM, 60 30 o 4
ADIRU, 60 30 o 5
ADIRU, 60 30 o 6
NDB 100 20 o 7
RDC, 50 10 o -
RDC, 50 10 o -

8.2.2 Avionics Full-Duplex Switched Ethernet

The Avionics Full-Duplex Switched Ethernet (AFDX) network is constituted by five switches S,, ... S;. The
variables exchanged between functions through Virtual Links (VL). A VL defines a logical unidirectional
connection from one source end-system to one or more destination end-systems. Each VL has a dedicated
maximum bandwidth. This bandwidth is allocated by the System Integrator. For each VL, the End Sys-
tem should maintain the ordering of data as delivered by a partition, for both transmission and reception

(ordinal integrity).

At the output of the End System, the flow of frames associated with a particular VL is characterized by
two parameters: Bandwidth Allocation Gap (BAG) and Jitter. If the frames experienced no jitter from the
scheduler, the BAG represents the minimum time interval between the first bits of two consecutive frames

from the same VL. Table 8.2.2 lists the parameters of VL used in the case study.

The parameters of keyboards and sensors are given in Table 8.2.3, including the period time, the traverse

time from sensors to equipments.
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Table 8.2.2: Parameters of Virtual Links

Virtual Link | Source | Destination(s) | Variable(s) | BAG (ms) Route(s)
VL, KU, FM,, FM, wpid, 32 {S, 8.}, {S,, S, }
VL, KU, FM,, FM, wpid, 32 (S, 5.1, {S,, S}
VL, FM, MFD, wplnfo,, ETA, 8 {S,,S.}
VL, FM, NDB query, 16 {S,,S,}
VL, FM, MFD, wplnfo,, ETA, 8 {S, S}
VL EM, NDB query, 16 {S3 , S}
VL, NDB EM, answer, 64 {S, S.}
VL, NDB FM, answer, 64 {S, S}
VL, RDC, ADIRU, pres, 32 {S,}
VL,, RDC, ADIRU, pres, 32 {S}
VL, ADIRU, FM,, FM, speed, 32 {84, 8, 8.}, {S,, S, S5}
VL,, ADIRU, FM,, FM, speed, 32 {S,, S, S; 3, {S,, S, S, }

Table 8.2.3: Parameters of Captors

Sensor | Nature | Period (ms) | Traverse Time (ms) | Equipment
key, | sporadic 60 [0.1,02] M,
key, | sporadic 60 [0.1,02] M,

sensor, | sporadic 20 [0.1,02] RDC,

sensor, | sporadic 20 [0.1,02] RDC,

8.2.3 Functions

In the cockpit, the pilot and the co-pilot use a personal keyboard and two displays to interact with the
FMS. Information displayed on both screens must be similar although they are not processed by the same
components. The FMS uses a redundant implementation of its functions which are segregated on each side
of the plane (named side 1 and side 2).

There exist two main functional chains in the case study. The first one responds to pilot’s sporadic re-
quest in Fig. 8.2.2. At any time, the pilot can request some information on a given waypoint. The KU,

(Keyboard and Cursor Control Unit) controls the physical device used by the pilot to enter his requests.
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When KU, receives a request (req, ), it broadcasts wpid, and wpid, to the Flight Managers FM, and FM,
respectively. The FMs manage the flight plan, i.e., the trajectory between successive waypoints. When a
request occurs, both query the NDB (Navigation Database) by sending query, (resp. query, ) to retrieve the
static information on the waypoint such as the latitude and the longitude. The NDB separately answers
each FM by sending a message answer, (resp. answer,) containing the expected data. Upon reception of
this message, each FM computes two complementary dynamic data: the distance to the waypoint, and the
ETA (Estimated Time of Arrival). These data (wplnfo, and wplnfo, resp.) are periodically sent to respective
MFDs (Multi Functional Display) which periodically elaborate the pages to be displayed on the screens.

query; answer | wplnfo; disp;
wpld, _ FM; ——> NDB ——> FM; ——> MFD; —>
reqy
—> KU
I query, answer, wplnfo, disp,
wpldy = FM, ——=> NDB ——> FM, ———> MFD, — >

Figure 8.2.2: Functional Chain: Sporadic Response to Request

The second functional chain is used to periodically compute flight data (disp, and disp, resp.) refreshed
on displays in Fig. 8.2.3. To compute these data, the FMs use the position and the speed of the aircraft
(speed, and speed, resp.) which are periodically delivered by the ADIRUs (Air Data Inertial Reference Unit).
The ADIRU:s determine the speed and position of the aircraft thanks to data (pres, and pres, resp.) provided
by sensors. Here, we only consider the data provided by one sensor per ADIRU. The sensors communicate

through field networks. Interconnection with the AFDX network is managed by RDCs (Remote Data Con-

centrator).
pres; pres;
——> RDC; ———> ADIRU; speed | ETA disp
1 1
presz presz

——> RDC, ——> ADIRU, speed2

Figure 8.2.3: Functional Chain: Production of Periodic Data

From the above two functional chains in Fig. 8.2.2 and Fig. 8.2.3 we can see that a function can have

252



8.2. CASE STUDY: FLIGHT MANAGEMENT SYSTEM

two behaviors with respect to its data: periodic or sporadic. Sensors, RDCs, ADIRUs and MFDs write there
output data periodically using the last input data received (thus a data can be used several times before it
is refreshed). For these functions, input data are stored in sampling ports in which data are continuously
overwritten. On the contrary, the KUs and the NDB write there data sporadically in response to inputs.
These functions use queuing ports to store their input data before reading them. The FMs use the two

kinds of behaviors: periodic and sporadic.

8.2.4 Real-Time Requirements

Because of their critical nature, IMA systems must also satisfy strong real-time requirements. In this case

study, we focus on 2 real-time requirements: latency and freshness.
8.2.4.1 Latency Real-Time Requirement

The latency allows to guarantee that the system responds quick enough to a request. It corresponds to
the time elapsed between an event at the beginning of a functional chain and the first event depending on
it at the end of the chain, i.e. a sporadic input must result in an output before a given amount of time.
Example 8.1 (Latency Requirement Example) An example of latency is given in Fig. 8.2.4. On the func-

. . reqs wpld, query, answer, wplnfo, disp, . .
tional chain: — KU, —— FM, —— NDB ——— FM, ——— MFD, ——, the maximum time

between req, and the first occurrence of disp, depending on req, must be inferior to 700 ms.

displ[s] disp1 (6]

Y

1
! 0, 25 50 225
1 1
1 1
1
M M
M, i [ M ] [ P FM, L0 i FM, S
15 45 75 195 !
1 1
1 1
1
M7 : NDB NDF| NDB _
[] [] >
'25 45 125 !
1 1
10 I 240

Figure 8.2.4: Latency Real-Time Requirement
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8.2.4.2 Freshness Real-Time Requirement

The freshness allows to ensure that a system variable depending on another variable is fresh enough.
There exist two interpretations of the freshness requirement. One targets the time between an event at
the end of a functional chain and the earliest dependent event at the beginning of the chain. The other
corresponds to the time interval between an event at the end of a functional chain and the earliest previous
event of the dependent event at the beginning of the chain. The work of Lauer et al. followed the former. In
this thesis, we follow the later. Both are reasonable in the context of the case study. We explain the reason

in the following example.

Example 8.2 (Freshness Requirement Example) An example of freshness is given in Fig. 8.2.5. On the
functional chain: 2, rRDC, ¥25 ADIRU, peed, FM, 225 MFD, ——> the worst case of displaying
ETA on the screen by MFD must not be superior to 400 ms. The former interpretation of freshness corresponds to
interval f,, while the later one corresponds to f,. In the context of this case study, the output disp is used as the data
to display on the screen of the pilots. From the viewpoint of the pilots, since the arrival of disp, [1], the displayed
data on the screen has been updated by disp,[1]. The disp, [1], disp, [2] and disp, [3] all depend on the input pres, [1].
When disp, 1] arrives, the displayed data is updated again, as disp, 4] depends on pres4]. Therefore, we can use
f, to measure the freshness between the output disp and its dependent input pres, or use f, to measure the freshness

between the output disp and the previous one of its dependent input pres.

8.3 MODELING AND SEMANTICS

We specify the models of the case study using UML-MARTE. The IMA architecture and AFDX network are spec-
ified using composite structure diagrams; the behavior of each module is specified using activity diagrams
for the functional chain of latency real-time property; the behavior of each module is specified using state
machine diagrams for the functional chain of freshness real-time property. Before modeling the system, an

abstraction of the AFDX network is applied.

8.3.1 Abstraction of AFDX Network

We have discussed the importance of abstraction in the former parts. To analyze a large scale IMA system,

the combinatorial complexity of a real-time property takes its root in the asynchronism of the modules, the
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pres1 [1] pres1 [4]

! 5, 25
' presl[l] Presl[4]

MS i |;EII:E1 1 ;EH:[I >
0 i 25.010 Speedl[l] speedl[z} speedl[3]

M i

3 |

M

P 295

Figure 8.2.5: Freshness Real-Time Requirement

variability of the execution times and the indeterministic congestion in the network [LEBP11b]. Lauer et
al. showed in [LEPB10] that taking into account all these factors in the evaluation of high level properties is
intractable. They showed in [LEBP11b] that the complexity can be significantly reduced by characterizing
the lower (resp. upper) bound of the network traversal time along the VL path as a time interval [a, b]. These
bounds are determined by the trajectory approach [MMo6] which has been successfully applied to AFDX
networks in [BSFog].

In the FMS case study, Lauer et al. considered that each VL; was abstracted by a timed channel ¢; [0.12, 2]
(in ms): each frame released by a VL, traffic shaper undergoes a delay between o.12 ms and 2 ms to reach its
destination. Note that this abstraction is an over-approximation because the bounds of the timed channels

are determined with an over- approximative technique.

By applying this over-approximation abstraction method, the AFDX network of the case study in 8.2.1
is replaced by the channels in Fig. 8.3.1. The VLs with switches and ports are replaced by 16 temporal

channels, C,, ..., C,,. The temporal parameters of each channel are described in Table 8.3.1.
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[keyboard | [ display; | [ display, | [keyboard, ]
N/ N/
Modulei Modulei

Modulei
Cio
RDC,

i Modulei I

Figure 8.3.1: Abstract Network of Case Study

Table 8.3.1: Characters of Timed Channel

Channel | Source | Destination | Variable(s) | BCTT (us) | WCTT (ps)
C, KU, FM, wpid, 298 444
(o KU, FM, wpid, 298 444
C, KU, FM, wpid, 298 444
C, KU, FM, wpid, 298 444
C, EFM, MFD, wplnfo,, ETA, 310 490
C, FM, NDB query, 310 450
C, EM, MFD, wplnfo,, ETA, 310 490
Cs FM, NDB query, 310 450
C, NDB FM, answer, 400 508
Cg NDB FM, answer, 400 508
(O RDC, ADIRU, pres, 150 156
Cio RDC, ADIRU, pres, 150 156
Cy ADIRU, EFM, speed, 452 584
CL ADIRU, FM, speed, 452 584
Cp ADIRU, FM, speed, 452 584
CL ADIRU, FM, speed, 452 584
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The traffic shaper is used to express the regulation of the packets on the VL to ensure the BAG. This regula-
tion specifies the relation on the signals of the copy of the data emitted by the VL. According to the abstrac-
tion method proposed in [Lau12], the delay time caused by the traffic shaper is specified as Ty = ¢ - BAG,
where BAG is defined in Table 8.2.3 and ¢ = o...N,, — 1. Ny, is the number of VL passing through a module

on a functional chain which is specified by the system architecture.

8.3.2 Architecture Model

Using the above abstract method, we specify respectively the architecture of the system related to the veri-

fication of latency and freshness property using the UML-MARTE composite structure diagram.

The architecture related to latency real-time property is shown in Fig. 8.3.2.

<<Communication

<<Allocated>>req <<Communication|  <<Allocated>> query [L——1edia>>

<<Allocated>> wpld []—Med—laL[] <<Allocated>> wpld
M1:KU_MFD_Module <<Communication M3:FM_Module

<<Allocated>> wplnfo[]—w—[] <<Allocated>> wplnfo

<<Allocated>> disp <<Allocated>> anwser [_]

[ ] <<Allocated>> query

M7:NDB_Module

<<Communication
Media>>

[ ] <<Allocated>> anwser

Figure 8.3.2: UML-MARTE Architecture for Latency Real-Time Property

The architecture related to freshness real-time property is shown in Fig. 8.3.3.

<<Communication <<Communication
<<Allocated>> pres Media>> <<Allocated>> pres <<Allocated>> ETA Media>> <<Allocated>> ETA
RDC1:RDC M5:ADIRU_Module |<<Communication M7:FM_Module M1:KU_MFD_Module
<<Allocated>> speed Media>> <<Allocated>> speed <<Allocated>> disp

Figure 8.3.3: UML-MARTE Architecture for Freshness Real-Time Property
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8.3.3 Behavior Model

As a rich modeling language, UML provides many diagrams and modeling entities for the specification of
systems. From the viewpoint of modeling capacity, either activity or state machine diagrams can represent
the system’s abstract behavior. In the context of this thesis, in order to cover all the semantics mapping
methods presented in Chapter 3, both activity and state machine diagrams are used to specify system’s
behavior respectively: system is modeled using activity diagram for verifying latency property, and using

state machine diagram for verifying freshness property.
8.3.3.1 Modeling System Behavior for Latency Functional Chain

Each function on avionic modules can be modeled as an asynchronous action in activity diagrams. The
semantics of asynchronous action implies that only one type of computation occurs from its input to its
output. For a given avionic function, however, it can handle more than one computation during its period.
For example, the functional chain of sporadic response to request(Page 253) indicates that the function

FM, has two types of computation:
1. Take the waypoint as input (wpld, ) and output the query for NDB (query,)
2. Take the answer of NDB as input (answer, ) and output the waypoint’s information (wplInfo,)

Fig. 8.3.4 models the behavior of FM, module using activity diagram. To model FM,, two separated
asynchronous actions are used. The first one (FM, ) is connected to the Pins representing wpld, and query,,
and the second one (FM1a) to answer, and wplnfo,. Since they are derived from the same avionic func-
tion, both their period and offset must be the same. According to avionic system’s feature, not all modules
will be powered at exactly the same time. This means not only that the offset for each avionic function will
be probably different, but also that the value of offset is rather an interval than an exact value. In general,
aMARTE: :DesignModel: :HLAM: :RtSpecification will be created and shared by several asynchronous ac-
tions if they are derived from the same avionic function. This stereotype contains all information required

for the real-time feature of given asynchronous actions.
8.3.3.2 Modeling System Behavior for Freshness Functional Chain
The dependency of values between input and output through a functional chain could also be consid-

ered as a state-transition problem. For each avionic function F; in a given chain, at any given time ¢, the valid
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<<Allocated>> wpld1 <<Allocated>> answer1
<<RtSpecification>>
<<TimeProcessing>> <<TimeProcessing>> occKind = PeriodicPattern
FM1 FM1a (period=[60000,600001];
phase=[0,60000];
<<Allocated>> query1 <<Allocated>> wpinfo1 occurrences=-1)

Figure 8.3.4: UML-MARTE Behavior for Latency Real-Time Property

input value Input! that F; depends on is unique. This dependency will not change until the first function F,
on the functional chain generates a new output value, which is propagated to F;, and F; generates the cor-
responding new output value when it is reactivated in a period. If we consider depending on a given input
value as a state for an avionic function, then this state will change only when it receives an event standing
for its output value based on the time that the next input is generated. The pre-requisites of the occurrence
of this event are: the next input of F; has arrived, the next period of F; starts, and the computation of the
new output is finished. These three pre-requisites are modeled as three states in a state machine diagram.
For simplicity, we consider that the end of the computation happens simultaneously with the generation
of the output by merging them into one event.

The modeling activity is split in two parts: modeling of avionic function and modeling of communica-

tion between functions.

Avionic function Fig. 8.3.5 models the behavior of the FM, module using state machine diagrams. In the
context of this thesis, each F; where i > 1is modeled respectively by a state machine of 7 states. Note: kn1
(resp. kp1) stands for k —1 (resp. k+ 1), ni (resp. np) stands for next input (resp. next period), and co stands

for computing output.

speed k /send ETA_k T kp1
speed kp1 /send ETA kp1

Figure 8.3.5: UML-MARTE Behavior for Freshness Real-Time Property
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« State kn1_ni: F; depends on Input,_,, waiting for next input (Inputk)

« State kn1_np: F; depends on Input;_,, waiting for next period

o State kn1_co: F; depends on Inputy_,, computing Output;

« State k_ni: F; depends on Inputy, waiting for next input (Inputy.,)

« State k_np: F; depends on Inputy, waiting for next period

o State k_co: F; depends on Inputy, computing Outputy.,

« State kp1_ni: F; depends on Inputy,, waiting for next input (Inputy.,)

For F,, since it is the root cause that changes the value dependency for the whole chain, it does not have
the first two states. This abstraction of k (k € N) generalizes the problem so the model can handle any
sequence of input/output.

Accordingly, these states are sequentially connected by 6 transitions:
« The transition from state kn1_ni to state kn1_np (same for state k_ni to state k_np):

— Triggered by event representing Input;
— The effect of the transition takes no time (or no effect)

- No guard is defined
« The transition from state kn1_np to state kn1_co (same for state k_np to state k_co):

— No trigger is defined

— The effect of the transition takes a duration of [0, T], where T is the period of the avionic func-

tion

- No guard is defined
« The transition from state kn1_co to state k_ni (same for state k_co to state kp1_ni):
— No trigger is defined
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— The effect of the transition takes a duration of [B, W], where B/W is the BCET/WCET of the

avionic function. The effect will equally generate an event Output;.

- No guard is defined

Communication
In this applicative scenario, the temporal aspect of transmission via network is not negligible. This can
be modeled, for each pair of Outputy and Input, by the connector between module ports using MARTE

stereotype MARTE: :MARTE_Foundations: :GRM: : CommunicationMedia: :Package T.

8.3.4 Real-Time Requirement Specification

Both latency and freshness real-time requirements can be seen as maximum and minimum end-to-end
time between two events, which corresponds to the specification: Always T(E, Eg) < t and Always
T(E4, Eg) > tin global execution. In order to test the scalability of the verification strategy, we compute
the exact value of latency and freshness real-time property. Instead of verifying end-to-end maximum (min-

imum) time when given an over-estimated value, we compute the bounding value of both requirements.
8.3.4.1 Latency Real-Time Property

Compute WCT (BCT), where always T(req, disp) < WCT(> BCT) in the global execution of the latency

functional chain.
8.3.4.2 Freshness Real-Time Property

Compute WCT (BCT), where always T(req, disp) < WCT(> BCT) in the global execution of the freshness

functional chain.

8.4 MAPPING UML-MARTE TO TPN MODEL

8.4.1 Mapping of the Latency Functional Chain

Fig. 8.4.1 is the mapping of the latency function chain. The latency real-time requirement refers to Module,

(functions KU, and MFD, ), Module, (function FM,) and Module, (function NDB). Module, starts from
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M1_sp
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FM1_NDB_comm NDB_data NDB_exectr

Figure 8.4.1: Mapping Result of System Related to Latency Property

place M1_sp. Through transition M1_str, functions KU, and MFD, run periodically, and the offset of MFD,
is 25ms later than that of KU,. Module, starts from place M3_sp. As the function FM, is used twice in
the functional chain, two instances of FM, with the same offset are generated. Module, starts from place
M7 _sp. The variable produced by NDB will be sent to FM,. It is possible for the variable to wait for the du-
ration of a BAG before sending through the channel. The waiting time of BAG is represented by the transition
NDB_FM,_bag.
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8.4.2 Mapping of the Freshness Functional Chain

RDC_kn1_ni RDC_pl RDC_knl_np RDC_p2 RDC_knl_co RDC_p3 RDC_k_ni RDC_p4 RDC_k_np RDC_p5 RDC_k_co RDC_p6 RDC_kp1_ni
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Figure 8.4.2: Mapping Result of System Related to Freshness Property

Fig. 8.4.2 is the mapping of freshness functional chain. Functions ADIRU, FM, MFD and RDC are
referred in freshness functional chain. Two consecutive output of RDC (pres) are transmitted to ADIRU
function, where variable pres is received and variable speed is transmitted to FM function. After computing

the output variables, ETA is transmitted to MFD function, where the disp variables are computed.
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8.5 VERIFICATION OF REAL-TIME PROPERTY

According to the observer-based model checking verification approach presented in Chapter s, two ob-
servers are used to compute WCT and BCT of latency and freshness real-time requirements. The observers

are added on corresponding transitions in the original system to compute optimized value of properties

(Fig. 8.5.1).
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Figure 8.5.1: TPN Observer for Latency and Freshness Property

The computation results are shown in Table 8.5.1. For latency real-time property, the WCT (resp. BCT)
is 450.4 (reps. 75.2) ms. For freshness real-time property, the WCT (resp. BCT) is 316429 (resp. 1012)

ms. The original system for latency property without TPN observer has 9378 states and 23250 transitions.
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TPN observers impact the size of the state space of the original system. The impact depends on t,,;, and
tmax ON the tester transition. By applying the reduction techniques, the number of states and transitions is
significantly reduced. Take the WCT latency property for example, compared to the execution time before

reduction (278.313 s), the execution time is reduced to 2.484 s.

Table 8.5.1: Real-Time Property Verification Results

Property Property State/Transition Number Execution Time (s)
Value (ms) | Before Reduc. ‘ After Reduc. | Before Reduc. ‘ After Reduc.

System N/A 9378/23250 N/A N/A N/A

Latency WCT 450.4 67105/145024 9/10 278.313 2.484

BCT 75.2 11162/28922 8/9 43.781 3.719

System N/A 53/85% N/A N/A N/A

Freshness WCT 316429 259/446 34/44 7.578 3.688

BCT 1012 125/202 54/79 7.360 2.12§

8.6 SCALABILITY TESTS

The proposed methods target large scale systems. We implement a series of experiments to assess whether
the cost of verification is acceptable for large scale systems by extending the case study. We use the same
parameters as the work of [Lau12]: N and P (Fig. 8.6.1). The depth of the case study is extended by
increasing P. The width of the case study is extended by increasing N. We test the scalability of the proposed

methods by increasing the size of each functional chain using parameters P and N.

8.6.1 Experiments on the Latency Functional Chain

The latency functional chain is enlarged by increasing the number of NDB. Each latency functional chain

traverses P NDB, i.e. 2P + 3 functions.

1 dl 1 2 —1
L, =18 gy, 2% gy, 2% NpB, 2% 20 NDB, . 2477 NDB, (1)
8.1

answerp answerp—, answer, answer; wplnfo, disp,

Ve NDBp_, NDB, 20 gM, 2% MED, 22
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Figure 8.6.1: Architecture with Scalability Parameters

By increasing P from 1 to 11, we give out the property values and solving time by using the proposed
verification and reduction approaches in Table 8.6.1. Most of the time is consumed in the reduction phase.
Once the reduction is finished, the analysis time is faster, even when the binary search method is used to

compute the exact property value. Fig. 8.6.2 shows that the solving time of the case study is almost linear
with respect to the NDB number.
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Table 8.6.1: Scalability Test for Latency Property

NDB/Fun. Prop. Val. (ms) | S/T (afterR.) | Reduction | Analysis Time (s) | Solving Time (s)
weT | BCT | weT | BCT Time(s) | wcT |  BCT WCT | BCT

1/7 75.2 | 450.4 | 9/10 | 8/9 38.049 2.484 1.860 40.533 | 39,909
2/8 125.2 750.4 | 9/10 8/9 57.876 2.656 1.883 60.532 59,759
3/9 275.2 | 1050.4 | 9/10 6/5 79.813 2.812 2.079 82.625 | 81,892
4/10 375.2 | 1350.4 | 9/10 6/5 102.500 2.906 2.079 105.406 | 104,579
5/11 425.2 | 1650.4 | 9/10 6/5 124.987 3.015 2.102 128.002 | 127,089
6/12 575.2 | 1950.4 | 9/10 6/5 149.359 2.891 2.196 152.250 | 151,555
7/13 675.2 | 2250.4 | 9/10 6/5 169.607 2.953 2.227 172.560 | 171,834
8/14 725.2 | 2550.4 | 9/10 6/5 193.329 3.031 2.250 196.360 | 195,579
9/15 875.2 | 2850.4 | 9/10 6/5s 216.239 3.000 2.211 219.239 | 218,45
10/16 975.2 | 3150.4 | 9/10 6/5 239.953 3.047 2.195 243.000 | 242,148
11/17 1025.2 | 3450.4 | 9/10 6/5 263.049 3.188 2.19§ 266.237 | 265,244
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Figure 8.6.2: Solving Time of Scalable Latency Property
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8.6.2 Experiments on the Freshness Functional Chain

The freshness functional chain is enlarged by increasing the number of ADIRU,. Each functional chain

traverses P ADIRU,, e.g. P + 2 functions.

res; res, res; res speed, . disp,
F, =2 ADIRU,, 2% ADIRU,, 2 ... P ADIRU,, 2% FM, % MFD, 2% (322)

By increasing the number of ADIRU, from 1 to 31, we give out the property values and solving time in
Table 8.6.2. The reduction consumes almost no time in this case. The solving time is almost linear to the

ADIRU, number, as shown in Fig. 8.6.3.

Freshness for F;

[N

—+—bct

——wct

Solving Time (s)
O R N WA ULIONOOOLVO

1 3 5 7 9 1113 1517 19 21 23 25 27 29 31
ADIRU; Number

Figure 8.6.3: Solving Time of Freshness Property

8.7 COMPARISON TO THE RESULTS IN THE WORK OF LAUER

The work of Lauer proposed a verification method for end-to-end real-time properties on IMA systems. The
verification method is based on the formal modeling using the tagged signal model, which is then trans-

formed into an Integer Linear Programming (ILP) problem. Upper-bounds of end-to-end properties are
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Table 8.6.2: Scalability Test of Freshness Property

ADIRU, /Fun. Prop. Val. (ms) S/T (after R.) Re.duction Solving Time (s)
Wwet | BCT wet | BeT Time (s) Wwet | BCT

1/4 316429 | 1012 34/44 54/79 0 2,125 3,688
2/5 406585 | 1162 67/99 74/113 o 1,968 3,187
3/6 496741 | 1312 | 123/194 97/153 o 1,844 | 3,094
4/7 586897 | 1462 | 187/306 123/199 o 1,906 3,484
s/8 677053 | 1612 | 253/424 152/251 0 1,797 3,625
6/9 767209 | 1762 | 326/555 184/309 o 1,953 3,64
7/ 10 857365 | 1912 | 403/694 219/373 o 2,172 3,75
8/ 11 947521 | 2062 | 484/841 257/443 o 2,344 | 3,844
9/ 12 1037677 | 2212 | 569/996 298/519 0 2,343 3,875
10/ 13 1127833 | 2362 | 658/1159 342/601 0 2,39 4,031
11/ 14 1217989 | 2512 | 751/1330 389/689 0 2,344 4,406
12/ 1§ 1308145 | 2662 | 848/1509 439/783 0 2,344 4,438
13/ 16 1398301 | 2812 | 949/1696 492/883 o 2,406 4,438
14/ 17 1488457 | 2962 | 1054/1891 | 548/989 o 2,343 4,516
15/ 18 1578613 | 3112 | 1163/2094 | 607/1101 o 2,422 4,812
16/ 19 1668769 | 3262 | 1276/2305 | 669/1219 o 2,781 5,109
17/ 20 1758925 | 3412 | 1393/2524 | 734/1343 o 2,734 | 5,109
18/ 21 1849081 | 3562 | 1514/2751 | 802/1473 0 2,734 5,281
19/ 22 1939237 | 3712 | 1639/2986 | 873/1609 0 2,75 5,563
20/ 23 2029393 | 3862 | 1768/3229 | 947/1751 0 3,016 5,578
21/ 24 2119549 | 4012 | 1901/3480 | 1024/1899 o 3.000 6,609
22 /25 2209705 | 4162 | 2038/3739 | 1104/2053 o 3,266 6,594
23 /26 2299861 | 4312 | 2179/4006 | 1187/2213 o 3,39 6,672
24 /27 2390017 | 4462 | 2324/4281 | 1273/2379 0o 3,391 6,953
25 /28 2480173 | 4612 | 2473/4564 | 1362/2551 o 3,453 7,047
26 /29 2570329 | 4762 | 2626/4855 | 1454/2729 o 3,765 7,687
27/ 30 2660485 | 4912 | 2783/5154 | 1549/2913 0 4,062 8,25
28/ 31 2750641 | 5062 | 2944/5461 | 1647/3103 o 4,125 8,422
29/ 32 2840797 | 5212 | 3109/5776 | 1748/3299 0 4,25 8,796
30/33 2930953 | 5362 | 3278/6099 | 1852/3501 0 4,375 9,406
31/ 34 3021109 | §512 | 3451/6430 | 1959/3709 o 4,532 | 9,484
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computed as optimal solutions of the ILP. They showed on the case study that we reused that the approach
is scalable.

According to the experimental results in the scalability tests by Lauer, for the latency requirement, when
increasing the number of NDB, the solving time slowly grows when the NDB number is less than 7. After
that, the solving time rapidly grows. In our test, the solving time grows is almost linear with respect to the
NDB number. For the freshness requirement, when increasing the number of ADIRU,, the solving time in

both methods is almost linear with respect to the function number.

8.8 CONCLUSION

In order to test the whole property-specific proposal, we use an FMS avionic case study investigated by M.
Lauer et al.. We rely on the descriptions provided by Lauer et al.. The latency and freshness real-time
requirements are assessed in the case study. We model the property-specific architecture of the case study
using UML-MARTE composite structure diagram, and model the property-specific behavior using activity and
state machine diagrams. The UML-MARTE model is then mapped to property-specific TPN model using the
mapping semantics. The real-time requirements are specified using the property patterns. After performing
the property-specific reduction for TPN presented, the marking abstraction state-class graph is generated to
assess the real-time properties using the observer-based model checking. We increase the length of each
functional chain for both properties. The experiment results show that our approach is able to analyze large

scale systems more complex than the current real systems implemented in the Airbus A380 FMS.
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Conclusion

RESUME

Cette these a proposé et expérimenté des méthodes dirigées par les propriétés et un ensemble d'outils as-
sociés pour la vérification des exigences temps réels pour les systemes critiques industriels a 'aide de tech-
niques de vérification de modeles. Elle sappuie sur le langage UML et son profil MARTE en tant que
langage utilisateur, et sur les réseaux de Petri temporisés en tant que langage de vérification. Les proposi-
tions ont été validées a l'aide d’un cas d’étude avionique, une partie du systéme de gestion de vol (FMS)
définie par M. Lauer en 2013, dans lequel les exigences de latence et fraicheur des données sont éval-
uées. Lapproche compléte comporte les cing parties suivantes : la définition de la sémantique d’exécution
spécifiques aux propriétés temps réel pour les modéles d'architecture et de comportement spécifiés en
UML/MARTE; la spécification des exigences temps réel en s'appuyant sur un ensemble de patrons de véri-
fication atomiques dédiés aux propriété temps réel; une méthode itérative d’analyse a base d'observateurs

pour des réseaux de Petri temporisés; des techniques de réduction de l'espace d’états spécifiques aux pro-
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priétés temps réel pour des réseaux de Petri temporisés; une approche pour I'analyse des erreurs détectées
par « vérification des modéles » en s'appuyant sur des idées inspirées de la « fouille de données » (« data
mining » ). Ces propositions ont conduit au développement d’un prototype doutil qui exploite le langage
JAVA et Eclipse Modeling Framework (EMF).

Les aspects suivants pourront étendre les travaux effectués dans cette these :

« Les activités appliquées suivantes pourraient étre réalisées a court terme : compléter et améliorer le
prototype d'outil par I'exploitation de CCSL comme langage de spécification de propriétés, expéri-
menter les propositions dans d’autres cas d’étude, comparer 'approche d’analyse des erreurs avec les

méthodes existantes sur d’autres catégories de modéles.

« A moyen terme, les approches proposées pourraient étre appliquées pour la méme famille de pro-
priétés a d'autres langages de modélisation utilisateur, par exemple AADL et EAST-ADL. ou a des

langages intermédiaires comme FIACRE.

« Egalement a moyen terme, la sémantique d’exécution de 'ordonnancement de ressource pourrait
étre spécialisée aux différentes stratégies habituelles. Nous avons proposé un algorithme d'ordonnan-
cement générique avec prise en compte de la préemption. Celui-ci décide a qui seront allouées
les ressources et permet d’estimer des pires et meilleurs cas car il autorise toute forme d’allocation.
La prise en compte de la sémantique précise des politiques d'ordonnancement classique permettra

d’améliorer la précision des valeurs estimées.

« A plus long terme, 'approche de réduction spécifique aux propriétés doit étre développée a la fois
dans des directions fondamentales et appliquées. Dans cette thése, nous avons éliminé les struc-
tures sans rapport avec la propriété attendue et combiné les états et transitions de sous-réseaux pour
obtenir une abstraction spécifique a la propriété. La fonction de réduction est utilisée pour identi-
fier la régularité des comportements et construire un remplagant par le sous-réseau sélectionné. La
fonction de raffinement est utilisée pour vérifier la correction du remplagant par rapport au réseau
original selon les propriétés considérées. Au moment de rédaction de cette thése, les fonctions de
réduction et de raffinement reposent sur I'approche de vérification des modeles exploitant les obser-
vateurs. Cette approche peut encore étre améliorée en diminuant le temps utilisé pourlaréduction et
le ratinement. Il semble possible de construire les remplagant de sous-réseau en générant le graphe

d’état qu'une seule fois et puis en analysant sa structure. Il serait également souhaitable de prouver
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une fois pour toute la correction de ces substitutions pour éviter d’effectuer ces vérifications a chaque

exploitation de la méthode.

« A plus long terme également, la vérification des transformation de modele exploitées devrait étre
réalisée. La méthode proposée dans cette these repose sur de nombreuses transformations de mod-
¢les qui doivent préserver la sémantique des modéles UML-MARTE et réseau de Petri temporisé. Il
est donc nécessaire de vérifier cette préservation. De nombreuses techniques sont disponibles pour
vérifier ce genre de propriétés pour des langages dont la sémantique est formellement définie. En
ce qui concerne des langages dont il n'existe pas de formalisation de référence tels UML-MARTE,
de nouvelles approches doivent étre explorées. Une solution est de traduire le méme modéle UML-
MARTE vers diftérents langages de vérification et de vérifier si celles-ci convergent vers les mémes
sémantiques formelles. Ceci permet d’'obtenir une meilleure confiance dans les différentes interpré-
tations mais ne remplace pas une sémantique formelle de référence. En effet, si toutes les interpré-
tations sont erronées de maniére cohérente, rien ne sera mis en évidence méme si la diversité des
formalismes permet de réduire le risque. Seuls les tests et la relecture humaine par rapport a la spé-
cification semi-formelle permettent actuellement de pallier a ce soucis mais ces activités ne sont pas
exhaustives. Une variante consiste a exploiter d’autres formes de sémantique en définissant UML-
MARTE sous la forme de propriétés comportementales que doivent satisfaire I'exécution des mod-
¢les. Cette approche peut étre mise en oeuvre simplement en sappuyant sur la vérification de modéle
a chaque traduction et peut étre également prouvée une fois pour toute. L'intérét de cette forme de
sémantique axiomatique est qu'elle est plus proche de la forme des spécifications en langue naturel
et peut sappuyer sur les travaux existant en ingénierie des exigences pour formaliser des exigences

en langue naturelle.
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9.1. FULFILLMENT OF OBJECTIVES

This thesis designed and experimented a property-driven methodology and an associated toolset for
the verification of real-time requirements for industrial scale safety critical systems based on model check-
ing tools. It relies on the UML and its MARTE profile as end-user modeling languages, and on the Time Petri
Nets (TPN) as verification language. It was validated using an avionic use case: a subset of a Flight Manage-
ment System focusing on latency and freshness requirements. The whole methodology and the prototype
includes five parts: real-time property specific system model mapping, real-time property specification,
observer-based real-time property verification, real-time property specific state space reduction, and auto-
matic fault localization.

As a final conclusion, we summarize the fulfillment of objectives in Section 9.1, and the application of

research results in Section 9.2. We also outline some directions for the future research in Section 9.3.

9.1 FULFILLMENT OF OB]ECTIVES

Fulfillment of challenge 1: Specification, implementation and validation of a real-time property spe-
cific execution semantics for UML-MARTE models that allows scalable verification. With respect to the
expected real-time requirement, we have defined a real-time property specific execution semantics for UML-
MARTE architecture models (composite structure diagram) and behavior models (activity and state machine
diagrams). The definition of this execution semantics follows the property-driven approach proposed by
Combemale et al. It allows to map UML-MARTE entities to TPN models, which makes UML model executable
and analyzable by the TINA model checking toolset. This mapping conforms to the UML specification 2.4.1.
It abstracts the system in order to provide more scalable verification for a specific family of properties. The
full mapping library is given in Appendix A. A generic scheduling algorithm including a preemption option
is also defined. This scheduling algorithm is used to decide for the given time T, which resource instance(s)

will be allocated to which requester(s).

Fulfillment of challenge 2: Practical real-time requirement specification method for verification
purpose. From the viewpoint of requirement assessment, we advocate that the qualitative property pat-
terns proposed by Dwyer and the quantitative property patterns proposed by Konrad are not semantically
atomic. These property specifications need to be decomposed into atomic elements to improve the veri-
fication efficiency. A property specification method that can ease the verification is needed to bridge this

gap. We have defined a set of atomic real-time property patterns. These property patterns can be directly

274



9.1. FULFILLMENT OF OBJECTIVES

used to specify real-time requirements. The properties expressed using Dwyer/Konrad’s patterns and CCSL
languages can also be automatically translated to the verification targeted atomic property elements, which

will then be assessed using the observer-based verification approach.

Fulfillment of challenge 3: Scalable model checking support for the verification of real-time prop-
erties in TPN model. The model checking toolset TINA that our work relies on can express qualitative prop-
erties using LTL and CTL logic formulae, but not quantitative properties. To assess the real-time properties
in an efficient manner, we have defined a set of event-based TPN observers and state-based tts observers,
that will be associated to the TPN system under observation. These observers express the same semantics
as the atomic elements defined in the real-time property patterns. The proposed observer-based approach
allows to generate the high abstraction state class graph that only preserves marking information using the
tina state space generation tool from the TINA toolset. It relies on the accessibility assertions in the modal

p-calculus (MMC) and the muse model checker from the TINA toolset.

Fulfillment of challenge 4: Property-specific state space reduction method. We propose a property
specific reduction tool to eliminate the property-irrelevant TPN structures and to build an equivalent of the
property-relevant TPN structures in the TPN system model. The reduction tool exploits the commutativity
of TPN sub-nets which results in the same property-specific behavior before expanding the state class graph.

The equivalent has less states and transitions, and thus directly reduces the scale of computation.

Fulfillment of challenge s: Failure analysis approach to locate the origin of fault. We propose an au-
tomated fault localization approach based on model checking to ease and accelerate debugging by locating
and ranking the suspicious elements in a model when a safety property is unsatisfied. Inspired by the TF-IDF
(term frequency-inverse document frequency) measure and the Kullback-Leibler Divergence theory,
we propose a suspiciousness factor to rank the potentially faulty transitions. We apply this approach to
property specific TPN model relying on observers-based verification approach to provide all the faulty ex-
ecution traces and the violation states in the state class graph preserving markings. Based on the mapping

semantics from UML to TPN, the faulty transitions can be back-traced from TPN to UML.
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9.2 APPLICATION OF RESEARCH RESULTS

We have implemented the approaches presented in this thesis as the prototype toolset UMLMMC (UML-MARTE
Model Checker). It includes the following tools:

« (RTM) Real-Time property specific system model Mapping tool,
« (RTS) Real-Time property Specification tool,

« (RTV) observer-based Real-Time property Verification tool

« (RTR) Real-Time property specific state space Reduction tool,

« (FLMC) automatic Fault Localization tool in Model Checking.

Supported tools.

At the very beginning of this work, we relied on the Topcased (version 5.1.0 under MacOS X 64 bit)
environment for purpose of modeling and development. Our toolset is now compatible with the Papyrus?
(version 0.10.0) and the PoLARSYs IDE 3 (version 0.7).

For model checking, we rely on the TINA toolset 3.2.0 for Intel Macs under MacOS X 64 bit.

Implementation using JAVA and EMF.

This toolset has been developed using the JAVA language and Eclipse Modeling Framework (EMF) #,
which is a modeling framework and code generation facility for building tools and other applications based
on a structured data model. On the one hand, the JAVA language can ease the integration of tools; on
the other hand, JAVA provides many sophisticated tools for the debugging feature, which is mandatory to
rapidly test and improve the algorithms involved in our approaches. The prototype toolset includes 30264

lines of JAVA code.

'http://www.topcased.org/

*https:/ /www.eclipse.org/papyrus/

3http: //polarsys.org/
*https://www.eclipse.org/modeling/emf/
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9.3

FuTURE RESEARCH DIRECTIONS

Both practical and fundamental aspects can follow the work conducted in this thesis.

9.3.1

Short Term Activities

Before discussing the future research directions, we first summarize the following short term future works:

9.3.2

The development of the prototype toolset can be further completed and improved. We have pre-
sented that the real-time requirements based on Dwyer’s and Konrad’s works and CCSL constraints
can be automatically transformed to our real-time property patterns. For now, the prototype of this

tool does not cover all the property mapping. It will be completed in the near future.

In this thesis, we have experimented our approaches on the FMS case study for the end-to-end real-
time requirements. Other industrial case studies should be experimented and used to further val-
idate our proposal. We plan to conduct such activities on railroad signaling system models in the

Open ETCS project * and on other aeronautic use cases in the P project.

The fault localization approach can be further experimented and compared with the existing ap-
proaches. Other test beds involving different kinds of errors should be developed. This feedback
analysis approach can be integrated in other model checking tools to help the designer in the failure

analysis.

Resource scheduling semantics mapping

In the UML-MARTE models, behaviors (activity and state machine) consumes resources such as CPU, mem-

ory, communication resources etc. The scheduling policy applied by the scheduler will impact the real-time

requirements. Thus, if the target system relies on some external resources, the real-time behavior for the

resources scheduling needs to be explicitly specified in the TPN model.

The MARTE profile MARTE : :MARTE_Foundations: :GRM: : Scheduler:schedPolicy provides some typical

scheduling policies for real-time embedded systems, such as Earliest Deadline First, FIFO, Fixed Priority,

Least Laxity First, Round Robin, Time Table Driven. It also allows users to define their own scheduling

policy. Mapping semantics for these well-known scheduling policies to TPN model could introduce some

Shttp://openetcs.org/
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semantic ambiguities. For example, when using Fixed Priority scheduling policy, there is no explicit in-
dication in the UML-MARTE level to specify what should be the scheduler behavior if two requests have the
same priority; but as this information is mandatory for the TPN modeling, then a semantic gap is potentially
created. If we do not have full determinism all the time in the UML-MARTE models, it is possible to introduce
fairness properties to handle the conflicts in TPN models.

Besides, the exact behavior of some dynamic scheduling policy could not be mapped to TPN in a triv-
ial way. For example the EDF/preemptive policy always need to compute for each reassignment cycle
the process which is the closest to its deadline. This requires a dynamic comparison between the amount
clock/time state of each transition and the given reference, which is unfeasible neither in classical TPN nor
in TPN with data extension.

In this thesis, we have proposed a generic scheduling algorithm with preemption option. This schedul-
ing algorithm is used to decide for the given time T, which resource requester(s) will be allocated by the
resource instance(s). The mapping semantics for specific scheduling policy can be a direction for future
research. Gherbi and Khendek discussed in [GKog] a model transformation enabling the schedulability
analysis in UML-SPT (the predecessor of MARTE) real-time systems and implemented a prototype using ATL.
They also defined a metamodel encapsulating the main information required for the schedulability anal-
ysis. The UML-SPT is then transformed to the target analysis model using this metamodel. The analysis

metamodel and the transformation method could be used by our future work on schedulability analysis.

9.3.3 Future Research Direction for Property Specific Reduction Approach

The property-relevant structure is reduced using the commutativity of TPN sub-nets which result in the
same property-specific behavior. The property-specific reduction method relies on similar ideas to partial
order reductions. It can be used for asynchronous concurrent systems, in which most of the activities in
different processes are performed independently, without a globally synchronization.

We first identify and extract the reducible sub-blocks from the whole system using an Identification func-
tion. Then the state space of the reducible sub-blocks are reduced using a Reduction function. The reduced
sub-blocks are derived, and are then used to replace the original sub-blocks after their soundness is assessed
using a Refinement function.

At the time of writing this thesis, the Reduction and Refinement functions rely on the real-time property

specification and observer-based verification approaches in our verification toolset. Suppose a reducible
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TPN sub-net is N and its reduced sub-net is N}. We use the Reduction function to search for the sequential
and loop sections that are used as the behavioral pattern of N, and then verify if this pattern behaves as
the same as the system’s real behavior using the Refinement function. If verified, an N/ conforming to this
pattern will replace N;. The reduction and refinement functions can be formally specified and proved. This
should be further studied in the near future.

On the other hand, once an Nj is identified, in order to compute the associated N, some related TPN
observers need to be associated to N, and the corresponding state class graphs are then generated m times
(m depends on the behavior of N;). Indeed, this approach has reduced the state space explosion problem in
asynchronous systems using a time—memory tradeoff. But this approach can still be improved by decreas-
ing the time used for the reduction and refinement. It is possible to build the sequential and loop sections
for N by generating the state class graph only once and then analyzing its topology structure. This will be
an interesting future research direction.

Boucheneb and Barkaoui proposed in [BB13] an effective method for reducing interleaving semantics
redundancy in the reachability analysis of Time Petri Net. Their work showed that the union of state zones
reached by different interleavings of the same set of transitions is not necessarily a state zone. They estab-
lished sufficient conditions which ensure that this union is a state zone and showed how to compute this
state zone without computing intermediate ones. It is possible to draw lessons from this work and propose

more efficient property specific reduction methods for TPN models.

9.3.4 Verification of Model Transformation

The automatic model transformation referred to in this work is in fact a semantic mapping, which preserves
all the property-related semantics of the source UML-MARTE model. A concern with this method is whether
the model transformation (semantic mapping) is correct. In other words, how to verify this model trans-
formation (semantic mapping). Indeed, this is a crucial question. Some surveys of the state-of-the-art
about the verification of code generation [Davo3, Nec11] and the verification of model transformation
[CS13, PSS98] summarized some expected properties to be verified and possible verification techniques,
as discussed in Section 3.8 of Chapter 3.

The verification of model transformation for the UML-MARTE model is not trivial. Generally, the best
way to verify if the model transformation preserves the intended semantics is to compare the state space

graph of the source and target formal models. A formal semantics must then be defined for UML models as
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a reference semantics. The execution semantics is then compared with this reference semantics. However,
since UML is semi-formal,a formal definition is needed to establish the reference, which is one of the work
in this thesis. Our proposal relies on a translation to a formal model instead of a direct formal specification
of an operational semantics that would allow to build the state space at the UML level. This does not change
the fundamental issue: how to validate this formal specification?

A solution may mitigate the problem by mapping the UML-MARTE model to different formal models and
verifying if they converge into the same formal semantics. Nevertheless, whether the semantics is lost be-
tween a semi-formal model and a formal one can only be assessed using testing and human proof reading.

Another possible solution is derived from translation validation and proof carrying code that have been
experimented for the same purpose for AADL in the QUARTEFT project. This method allows to verify that
some important intended behavioral properties conform to the execution semantics. For example, we can
define TPN observers to assess the run-to-completion processing semantics. More precisely, when an event
occurrence is being processed, the other occurrences of this event cannot be accepted. However, when the
behavior property specification and the execution semantics are both wrong in the same way, this method
does not work. Then some test cases must be used to validate the execution semantics.

As a future research direction, the expected behavior properties would be defined and used to verify the
conformance between the execution semantics and the behavior specification. This can validate some key

execution semantics in the UML models.

9.3.5 Application of the Approaches to Other Modeling Language

The property-driven approaches proposed in this thesis can be applied to other end-user modeling lan-
guage, for example AADL, EAST-ADL, or to intermediate languages like Fiacre. We can assess real-time re-
quirements expressed in these models by following the same approaches: mapping end-user models to
property specific TPN models, expressing real-time requirements using the proposed real-time property pat-
terns, reducing TPN state space using property specific reduction, assessing real-time properties relying on

observer-based model checking, and deriving the ranked faulty elements from the feedback analysis.
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Appendix A:
Coverage Library: Mapping UML-MARTE to TPN
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A.1. COVERAGE LIBRARY OF COMPOSITE STRUCTURE DIAGRAM

A.1 COVERAGE LIBRARY OF COMPOSITE STRUCTURE DIAGRAM

Table A.1.1: Coverage Library of Composite Structure Diagram

Coverage Library: UML-MARTE Composite Structure Diagram

Node Group

Node Type

TPN Mapping Coverage

Object

Part

Role

Interface

Port
CollaborationUse

V

Connections

Connector
InterfaceRealization
Role Binding

< <X
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A.2. COVERAGE LIBRARY OF ACTIVITY DIAGRAM

A.2 COVERAGE LIBRARY OF ACTIVITY DIAGRAM

Table A.2.1: Coverage Library of Activity Diagram

Coverage Library: UML-MARTE Activity Diagram
Node Group | Node Type TPN Mapping Coverage
Common | Activity Partition
Initial Node
Decision Node
Merge Node
Fork Node
Join Node
Activity Final
Control Flow Final
Expansion Region
Structured Activity Node
Conditional Node
Interruptible Activity Region
Loop Node
Sequence Node

Ll

Actions Action

Activity Parameter
Central Buffer
Object DataSt(.)re
Expansion
Input Pin
Output Pin
Control Flow

Connections | Object Flow

OSSN S

Exception Handler
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A.3. COVERAGE LIBRARY OF STATE MACHINE DIAGRAM

Aj

COVERAGE LIBRARY OF STATE MACHINE DIAGRAM

Table A.3.1: Coverage Library of State Machine Diagram

Coverage Library: UML-MARTE State Machine Diagram

Node Group

Node Type

TPN Mapping Coverage

Object

Region

State

Composite State
Submachine State

ConnectionPointReference

FinalState

<<

Pseudostates

Initial

Deep History
Shallow History
Join

Fork

Junction
Choice

Entry Point
Exit Point
Terminate

Connections

External Transition
Local Transition

LN L L

284




B

Appendix B:
Mapping Library: Real-Time Property Pattern
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B.1. PATTERN MAPPING LIBRARY

B.1  PATTERN MAPPING LIBRARY

Note: E stands for event, S for state, S° for entering transition of state, S° for exiting transition of state, and

T for time T t.u..

Table B.1.1: Pattern Mapping Library

Pattern Mapping Library
Pattern Dwyer / Konrad Property Pattern | Mapping Result
Absence of S Absent S
Absence of S at least t Absent D(S) >
Absence Absence of S at most t Absent D(S) < t+1
Absence of E Absent O(E")
Absence of E at least t Always T(E™, E') >t
Absence of E at most t Always T(E™* E') <t
Existence of S Exist S
Existence of S at least t Exist D(S) >t
Existence Existence of S at most t Exist D(S) < t+1
Existence of E Exist O(E")
Existence of E at least t Tlegal semantics !
Existence of E at most t Ilegal semantics !
Universality of S Always S
Universality of S at least t Always D(S) >t
Universality of S at most t Always D(S) < t+1
Universality

Universality of E Hlegalsemantic !
Universality of E at least t Hlegal semantics !
Universality of E at most t Illegal semantics !
K-Bounded Existence of S Ilegal semantic *

Bounded Existence | K-Bounded Existence of S atleastt | Hlegalsemanties”

Continued on next page

'Tllegal in Dwyer’s and Konrad’s pattern system. An event is instantaneous, without time duration.
*Illegal in system design. A state is not specified by the number of occurrences.
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B.1. PATTERN MAPPING LIBRARY

Pattern Konrad Property Pattern Mapping Result
K-Bounded Existence of S at most t | Hlegalsemanties >
K-Bounded Existence of E Exist O(EF)
K-Bounded Existence of E atleast t | Hlegalsemanties '
K-Bounded Existence of E at most t | Hlegalsemanties '
S, precedes S, T(SE,S5) > o
S, precedes S, at least t T(SE,SS) >t
S, precedes S, at most t T(SE,SS) < t
S precedes E T(S,E) > o
S precedes E at least t T(S,E) >t
S precedes E at most t T(S4,E) <t

Precedence
E precedes S T(E,S) > o
E precedes S atleast t T(E,S) >t
E precedes S at most t T(E,S) <t
E, precedes E, T(E,,E,) > o
E, precedes E, atleast t T(E,, E,) >t
E, precedes E, at most t T(E,,E,) <t
S,leadsto S, T(SE,S5) > o
S,leads to S, atleast t T(SE,S5) >t
S,leads to S, at most t T(SE,SS) < t
Sleadsto E T(S*,E) > o
Sleads to E atleast t T(S,E) >t
Sleads to E at most t T(S,E) <t
Response
Eleadsto S T(E,S) > o
Eleads to S atleast T T(E,S) >t
Eleadsto Satmost T T(E,S) <t
E,leadsto E, T(E,,E,) > o
E,leadsto E, atleastt T(E,, E,) >t
E, leads to E, at most t T(E,,E,) <t
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B.2. SCOPE MAPPING LIBRARY

B.2 ScoreE MAPPING LIBRARY

Note: E stands for event, S for state, $° for entering transition of state, S¢ for exiting transition of state, and

I for time interval.

Table B.2.1: Scope Mapping Library

Scope Mapping Library
Scope Konrad Property Pattern Mapping Result
Global Global Global
Before E Before E!
Before , .y , )
E’ Before E within I[fin, tmax) (E'+typax) After E A (E’+t,,;, ) Before E
After E After E'
After After E within I[tin, tias) After (E + ty,in) A\ Before (E + tygy)
Between E, and E, Between E, and E,
Between 1
Between E, and E, within I[t,nin, tma] | E, After (E1 + tpq,) A Between (E, + t,)
and (E, + tpu) V E, Before (E1 + tpg,) A
Between (E, + t,,) and E,
After-Until | After E, Until E, (Exist E, After E, A Between E, and E,) V
(Absent E, After E, A After E,)
Periodically | During each period of E Between E™*and E
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