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INTRODUCTION

Cells are constantly readapting their shape to achieve biological
processes such as migration, intracellular trafficking and division. Such
processes require the active remodelling of cell membranes which is
fuelled by the dynamics of the actin cytoskeleton (Blanchoin et al.
2014).

Assessing the mechanisms of membrane remodelling by the actin
cytoskeleton in the complex environment of the cell interior is very
challenging. Indeed, many different types of proteins are implied in
these processes. Therefore, reconstituted biomimetic systems are
useful as they have the advantage of a biochemically controlled
environment. They allow controlling and tuning the biophysical
properties of both membranes and reconstituted actin networks. This
in vitro approach is based on the bottom-up design of biomimetic
systems of increasing complexity to understand the role of each
element of the biological machinery and their interplay on cell shape
changes.

In this work, my objective is to build biomimetic systems comprising
phase-separated lipid membranes and actin networks. Indeed, the cell
membrane is highly heterogeneous, and these heterogeneities interact
with the actin cytoskeleton (Fritzsche et al. 2017). However, the
membranes used in biomimetic studies are, in most cases,
homogeneous. Only (Liu and Fletcher 2006) used heterogeneous Giant
Unilamellar Vesicles that contain lipid domains. They show that the
actin network affects lipid domain formation and organisation on
GUVs. This result suggested that cells control membrane organisation
by readapting their actin cytoskeleton. Nevertheless, the effect of
membrane heterogeneities on membrane remodelling by actin
remains unclear.

This manuscript is organized as follows. In section 2, | introduce the
context of my work: | briefly describe the properties of biological
membranes and of the actin cytoskeleton, as observed in biological
situations and in reconstituted biomimetic systems. | show how



reconstituted lipid membranes such as Giant Unilamellar Vesicles
(GUVs), supported lipid bilayers (SLBs) or membrane nanotubes allied
with techniques such as micropipette aspiration (Rawicz et al. 2000),
optical tweezers (A. Allard, Valentino, et al. 2020) and Atomic Force
Microscopy (AFM) (Lamour et al. 2020) gives access to the physical
properties of reconstituted membranes. Moreover, | show the effects
of reconstituted actin networks on these membrane models, allowing
mimicking some of the shape changes observed in vivo. In particular, |
participated in two reviews articles summarising the scientific literature
on reconstituted GUVs interacting with actin networks (Lopes dos
Santos and Campillo 2022) and membrane nanotubes remodelling by
actin in vivo and in vitro (Antoine Allard, Lopes dos Santos, and
Campillo 2021).

Section 3 presents all the materials and methods used for this work:
namely the preparation of reconstituted membrane systems coupled
with actin networks and the observation techniques that | used, such
as STED, AFM, and fluorescence microscopy.

Finally, in section 4, | present and discuss my results. First, | studied the
mechanics and morphology of phase-separated nanotubes with the
AFM. Then, | investigated on GUVs how membrane composition and
actin network structure affect membrane remodelling by actin.
Furthermore, | developed a system based on GUVs with lipid domains
that allows spatial control of the site of actin polymerization, allowing
a new degree of control over these biomimetic systems.



STATE OF THE ART: STUDYING CELL SHAPE CHANGES
USING BIOMIMETIC SYSTEMS

2.1

In this section, we will present the elements that control cellular shape
changes and, therefore, the main ingredients that we will use in our
experiments: membranes and actin

First, we must describe what a cell is. Living organisms are divided into
three groups: Bacteria, archaea, and eukaryotes, and all share a
common basic unit, the cell. Eukaryotic living organisms are composed
of cells with a nucleus and organelles surrounded by selective
membranes, which we will describe in detail below. The
deoxyribonucleic acid (DNA) molecule inside the nucleus carries all the
genetic information indispensable to sustain life. Besides
compartmentalising essential elements for cell life, the membranes
also participate in many biological functions.

Many of the receptors that trigger cell shape changes and allow cells
to probe their external environment are embedded in biological
membranes. Depending on the signalling pathway activated
(Biyasheva et al. 2004), many biological responses such as endocytosis,
exocytosis, lamellipodia or filopodia imply various types of membrane
remodelling. Moreover, the actin cytoskeleton plays an essential role
in membrane remodelling by applying the forces needed to deform
the membrane. It translates into local deformations such as filopodia
to probe the environment and endocytosis to uptake external
components, or global deformations resulting for instance in cell
division. Cell membranes and the actin cytoskeleton are thus major
actors of cell life, and | will give more details about both in the
following sections.

BIOLOGICAL MEMBRANES
Structure of biological membranes

Biological membranes are composed of many different types of lipids



(van Meer, Voelker, and Feigenson 2008) that self-assemble in a bilayer
and comprise many embedded proteins. Lipids and proteins diffuse in
the two-dimensional plane of the membrane. This structure constitutes
the so-called “fluid mosaic” model (Singer and Nicolson 1972). Besides,
the membranes can be described as thin elastic sheets under tension
regarding bending and stretching deformations. We will present these
aspects in the following sections.

Composition

Biological membranes are formed of lipids, which form barriers
between the internal and external regions isolating intracellular
compartments from the cytosol or the whole cell from external
medium. However, membranes are semi-permeable to water and small
uncharged molecules. Larger molecules and ions rely on membrane
pores or channels that passively or actively regulate the passage
(Delcour 2009).

Lipids composing membranes are amphiphilicc meaning they have a
hydrophilic head and one or more hydrophobic hydrocarbon tails. The
most abundant lipids in cell membranes are phospholipids such as
phosphatidylcholine (PC), phosphatidylethanolamine (PE) and
sphingomyelin (SM). These lipids differ from one another by their polar
head composition, as depicted in Figure 1. The PC has two
hydrocarbon tails linked to a glycerol-phosphate-choline group that
forms the polar head. Like PC, the SM has a phosphocholine group and
a serine replacing the glycerol present in PC to form the polar head. PE
differs from SM by the ethanolamine replacing the choline on its polar
head.

The hydrophobic tail also affects the properties of the lipid. Double
bonds between carbons in one or both chains of the lipid or
unsaturations affect their properties. Saturated tails have no double
bonds and, as a result, have straight, unkinked tails. Unsaturated tails
have double bonds and, as a result, have kinked tails, as depicted in
Figure 1. These differences in structure affect the mechanical
properties of the membrane, such as the fluidity and lateral
organisation of the membrane (Baumgart, Hess, and Webb 2003;
Rawicz et al. 2000). Furthermore, the length of the lipid tail also affects



the mechanical properties of the membrane. A thicker membrane is
stiffer (Rawicz et al. 2000).

In addition to phospholipids, most cell membranes contain
cholesterol, a sterol (van Meer, Voelker, and Feigenson 2008). Smaller
in size compared to phospholipids, the cholesterol has a single tail. Its
size allows it to insert between phospholipids, and by interacting with
them, it can change membrane properties such as phospholipids
organisation, membrane fluidity and bending rigidity (Hao, Mukherjee,
and Maxfield 2001; Kwik et al. 2003; Silvius 2003; Titushkin and Cho
2006).
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Figure 1: Structure of bilayer components. Three phospholipids:
phosphatidylcholine (PC); sphingomyelin (SM) and
phosphatidylethanolamine (PE); and cholesterol. All present a
hydrophilic polar head and a hydrophobic tail. Adapted from (Alberts et
al. 2008).

Lipids self-assembly

In an aqueous environment and due to the energetically unfavourable
interaction between the hydrophobic tail and water, phospholipids will
"hide” their hydrophobic tail by forming self-assembled structures.
Moreover, the lipid geometry dictates the type of structure formed
(Israelachvili 2011). In the case of conical lipids, a round structure called



micelle forms, where the hydrophilic head faces the aqueous solution,
and the hydrophobic tail is towards the interior. Phospholipids being
cylindrical or truncated cones, they spontaneously form bilayers. Due
to the energetically unfavourable state, the bilayer closes on itself and
tends to form a sealed compartment (Figure 2).
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Figure 2: Self-assembly of lipids. Lipid shape (A) defines the
structure: micelle or lipid bilayer (B). The latter self-arranges into a
vesicle (Alberts et al. 2008)
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Membrane fluidity

Lipid bilayers are considered a two-dimensional fluid with the
following features:

- Rotational diffusion: Lipids rotate on themselves. The associated
diffusion coefficient, Drotis 10° rad®/s (Moore, Lopez, and Klein
2001);

- Flipping diffusion: lipids can flip from one monolayer to the
other in a timescale of a few hours (McConnell and Kornberg
1971);

- Lateral diffusion: Lipids diffuse laterally within a monolayer, Diat
is 1 to 10 um?/s (Filippov, Oradd, and Lindblom 2003).

The diffusion of a lipid depends on the bilayer composition. For
instance, Dot decreases upon adding cholesterol (Filippov, Oradd, and



Lindblom 2003). Because of its size, cholesterol inserts into the bilayer
and interacts with phospholipids impairing their mobility.

Furthermore, SM possesses longer hydrophobic tails than
phosphatidylcholine, and SM membranes are more rigid than PC
membranes (Hac-Wydro and Wydro 2007; Niemela, Hyvonen, and
Vattulainen 2004; Tristram-Nagle, Petrache, and Nagle 1998). The SM
tend to be more saturated than PC lipids. These effects also favour
their segregation from other lipids and, thus, the formation of lipid
domains (described in section 2.1.1).

Membrane domains

The early works that led to the idea of the fluid mosaic model mainly
implied homogeneous membranes (Singer and Nicolson 1972). (Brown
and Rose 1992) showed that detergent-resistant membranes (DRM)
were enriched in sphingolipids and cholesterol, implying that cell
membranes were heterogeneous. More recent works (Edidin 2003;
Nicolson 2014) highlighted the lipid bilayer's heterogeneity and, in
particular, the existence of lipid domains called “rafts” (Nicolson and
Ferreira de Mattos 2021). Altogether, these works showed that
segregated membrane regions driven by preferential interaction
between certain lipid classes coexist along the membrane. These
domains have functional roles (Kai Simons and lkonen 1997; K. Simons
and Toomre 2000), such as intracellular trafficking (Surma et al. 2011;
Kulkarni, Wiemer, and Chang 2022) or by sorting proteins required for
the activation of signalling pathways (Rothberg et al. 1990; Shelby et
al. 2021).

Moreover, the experiments realised by (Baumgart, Hammond, et al.
2007) showed that giant plasma membrane vesicles (GPMV) formed
large lipid domains. GPMVs are isolated after treatment of the cell
membrane. They maintain the majority of lipids and membrane
proteins when compared to DRM. GPMVs composition is extremely
close to cell membranes but lack cytoskeleton. This membrane model
is great for observations of a natural membrane, but its composition is
not controlled as in a synthetic membrane. Note that the large-scale
domains observed in GPMVs are absent in cell membranes, probably



2.1.2

because of the interplay between the membrane and the cytoskeleton.

Synthetic membranes are biochemically controlled. They are prepared
from purified lipids and can comprise lipid mixtures exhibiting lipid
domains (Ahmed, Brown, and London 1997; Silvius, del Giudice, and
Lafleur 1996). Therefore, they are also used to study membrane
domains (see section 2.1.3).

Membrane physics
Membrane elasticity

To describe the elasticity of membranes, particularly their stretching
and bending properties, membranes are modelled as thin sheets of
elastic material. Note that pure lipid membranes have no elastic
resistance to shearing (Figure 3) because of their fluid nature.
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Figure 3: Types of membrane deformation: from flat membrane
where no forces are applied (A) to in-plane deformations (B), left: area
expansion (stretching), right: shear. Out-of-plane deformations:
bending. Lower panel: any out-of-plane deformation is defined by its
principal curvatures (C7 and C,) that give the mean curvature C. Adapted
from (Canham 1970; Girard 2004).



Stretching energy is linked to the relative change in the area of the
membrane ATA :

AA
Estretching = X? (1)

Where x is the stretching modulus, on the order of 0.1 N/m (Helfrich
1973; E. Evans and Rawicz 1990), AA is the area variation, and A is the
total area of the membrane.

The energy associated with the bending of the membrane writes:

1
Ebending = EK(C - CO)Z (2)

Where k is the membrane bending rigidity, ranging from 10 to 50 kgT
(Bochicchio and Monticelli 2016), depending on the lipid composition
of the membrane. Lipid tail unsaturation levels, length (Rawicz et al.
2000) and interactions with other lipid tails (Chakraborty et al. 2020)
affect membrane bending rigidity. The mean curvature of the
membrane C is defined by the sum 7/R7 + 1/R2, where R7and R are
the principal radii of curvature of the membrane. The spontaneous
curvature Cp accounts for a curved membrane at rest, if the membrane
is flat at rest, Co = 0. Spontaneous curvature can happen when proteins
such as proteins of the Bin/Amphiphysin/Rvs (BAR) superfamily (Gallop
et al. 2006; Mesarec et al. 2021; Peter et al. 2004) bind to the
membrane.

Kk =Kq.h*/ce (3)

Finally, another critical parameter to describe membrane mechanics is
the mechanical tension in the membrane plane. This parameter is not
easy to define; therefore, we will illustrate it through a classical
experiment. (E. Evans and Rawicz 1990; Rawicz et al. 2000), among
others, used the micropipette aspiration technique on Giant
Unilamellar Vesicles, cell-sized spheres of lipid membrane (see section
2.1.3), to probe the response of lipid membrane to an increase in
tension. In this micropipette experiment, membrane tension o can be
calculated by applying the Laplace law knowing the pressure
difference AP between the micropipette interior and exterior and the

10



vesicle radius R and the pipette radius r (Drury and Dembo 1999):

o=—"—
2(1-%)
Two regimes are observed when the GUV membrane is submitted to
increasing mechanical tension. A high membrane tension regime,
where the relation between tension and area is linear and depends on
the stretching modulus x (Figure 4 A). After a few percent of stretching
deformation, the membrane ruptures, and the corresponding lysis
tension is on the order of 103 N/m (Evan Evans et al. 2003; Nichol and
Hutter 1996). In a low membrane tension regime, the thermal
membrane fluctuations are smoothed by increasing membrane
tension, and tension and membrane area increase has a logarithmic
relation (Figure 4 B).

AP (4)

The area increase of the membrane AA/A can be calculated by
measuring the geometrical parameters of the vesicle, R, r, and the
length of the vesicle aspirated in the micropipette. The contributions
of membrane fluctuations, dominated by the bending rigidity, and
membrane stretching on the membrane area increase are linked by the
so-called Helfrich relation:

AA  kgT k?
== ®)

~ 4 "8k ‘oaz 'K,
This equation shows the logarithmic term accounting for membrane
fluctuations and the linear term accounting for membrane stretching.
In most situations, particularly in the experiments that we will present
in this manuscript, we work in the regime where membrane
fluctuations dominate, and we do not consider stretching effects.

11
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Figure 4: Micropipette aspiration of GUVs illustrating their
bending and stretching properties. A: Micrograph of the experiments
showing an increase of L for an increased tension. B: Membrane tension
versus apparent area expansion, the linear part of the curve corresponds
to the elastic regime. C: Semilog plot of tension versus apparent area
expansion for the same data as in (A). Linear fits (dashed lines) applied
to the range of very low tensions yield the elastic bending moduli, k.
Adapted from (Rawicz et al. 2000).

Physics of membrane nanotubes

Inside living cells, many cylindrical structures made of lipid
membranes, here called membrane nanotubes, are observed (section
2.3.2). Here, we will briefly present the physics of their formation. These
membrane nanotubes form when a lipid membrane is submitted to a
point force; in vivo, this force can be exerted by various processes
summed up on Figure 5 A. Figure 5 B shows the effect of a point force
f exerted on a membrane, here a GUV. Upon increase of the force, the
GUV becomes ellipsoidal and when the force is increased up to a
critical force fo, a membrane nanotube forms and coexists with a quasi-
spherical vesicle (Rossier et al. 2003). The free energy of the tube can
be written as :

TTK
Frupe = TL + 2nrLo,, — fL (6)

Where L is the tube length, o, is the membrane tension, and « is the
bending rigidity of the lipid membrane. The first term accounts for the

12



bending energy, the second one for the effect of membrane tension
and the third one corresponds to the work of the external force. From
equation 6, we can obtain the force to maintain the nanotube:

fo = 2w/ 20,k (7)

and the equilibrium radius of the nanotube (Hochmuth et al. 1982;

Waugh 1982) :
r= /—" ®)
20,

The pulling force and the tube radius are therefore linked by :

_ZTL'k
Ty

9

Meaning that for the same radius, the pulling force only depends on
the bending rigidity k and thus the lipid composition. For instance, with
typical values of membrane tension ranging from 0.01 to 0.3 mN/m
(Gauthier, Masters, and Sheetz 2012; Lieber et al. 2013), the membrane
nanotube radius is in the order of tens of nm, and the pulling force is
in the order of tens of pN.(9)

13



2.1.3
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Figure 5: Schematic representation of membrane nanotube
formation: A: Various modes of formation in vivo (Roux 2013). B: plot
of force F versus elongation L of a liposome. At small forces, the liposome
has an ellipsoidal shape, and the force is proportional to L—Riposome,
where Riposome (S the initial radius of the liposome. Under strong forces,
the shape becomes a “cigar” of length L and radius R. At intermediate
force F = FO, we have coexistence between a quasi-spherical liposome
and a tether (Rossier et al. 2003).

Biomimetic membrane systems

Artificial membranes are ideal for biochemical and biophysical studies
for a few reasons. The biochemically controlled conditions allow the
reconstitution of biologically relevant processes in a minimal system
with controlled composition. Moreover, mechanical parameters such
as bending rigidity and tension can also be tuned. With a bottom-up
approach, experiments gain in complexity by adding more building
blocks, such as cytoskeleton proteins (presented in 2.2.3), which gives
more complexity to biomimetic systems and, thus, mimic more
accurately the cellular situation.

In this section, different biomimetic systems that reconstitute
biological membranes are presented.

14



Supported lipid bilayers (SLB)

SLBs are obtained by adhesion and rupture of small vesicles onto a
substrate, for example, glass. Lipids Dyt and Dyor are similar to those of
free lipid bilayers due to a thin layer of water (1-2 nm) between the
glass and the lipid bilayer. Once attached to a surface, it allows using
techniques such as atomic force microscopy (AFM) (Mingeot-Leclercq
et al. 2008; Picas, Rico, and Scheuring 2012). Nevertheless, as the
membrane of SLBs is attached to a substrate, it gives a strong
limitation to this system to study membrane shape changes. It could
lead to using another membrane model, liposomes.

Liposomes

As mentioned, a free lipid bilayer closes on itself, forming a vesicle or
liposome with various sizes:

- Small unilamellar vesicles (SUV ~ 15-30 nm): prepared by
sonication of lipid bilayers films;

- Large unilamellar vesicles (LUV ~ 100-200 nm): extrusion on
MLV;

- Giant unilamellar vesicles (GUV ~ 1-100 um): prepared by
electroformation (Angelova and Dimitrov 1988) inverted
emulsion (Pautot, Frisken, and Weitz 2003) or gel swelling
(Horger et al. 2009).

The first two, SUVs and LUVs, are below the diffraction limit of visible
light (around 200 nm). Thus, GUVs and GPMVs are suitable for
observations by optical microscopy of membrane behaviour. Plus, their
size is cell-like, allowing comparisons with cell membrane behaviour
and mimicking physical properties of biological membranes such as
fluidity and tension. Therefore, GUVs are ideal for biophysical
experiments with either the membrane alone or a reconstituted
protein at its surface. Membrane thermal fluctuation or membrane
deformation induced by proteins are assessed through such systems.
For instance, (Helfer et al. 2000) showed that bending rigidity increases
when GUVs are surrounded by F-actin, which decreases membrane
thermal fluctuations. (Giardini, Fletcher, and Theriot 2003) highlighted
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the effect of the actin network stresses capable of propelling GUVs and
pulling a membrane nanotube. (Liu et al. 2008a) demonstrate the
impact of membrane elasticity on actin networks organisation. These
articles will be presented in detail below. (Avalos-Padilla, Georgiev, and
Dimova 2021) pointed out the effect of the clustering of ESCRT-IIl on
membrane deformation. (Jahnke et al. 2022) illustrated how the motor
activity of myosin can pull membrane nanotubes of tens of
micrometres long from GUVs.

Membrane nanotubes

Here, we review the techniques for forming and assessing nanotubes'
mechanical properties. The first class of techniques mainly forms a
single nanotube with a controlled force. (Borghi, Rossier, and
Brochard-Wyart 2003) used glass micro-rods to attach GUVs and form
nanotubes by applying a hydrodynamic flow dragging the GUV from
the micro-rod. (A. Allard, Valentino, et al. 2020; Cuvelier et al. 2005; V.
Heinrich and Waugh 1996; Roy et al. 2020) used optically or
magnetically trapped beads to apply a point force on a GUV and form
nanotubes as depicted in Figure 6 A and B. In most cases, the GUV is
held by a micropipette which can be used to set the membrane
tension. The other class of techniques allows the formation of many
nanotubes without measuring the tube force. Nanotubes can be
formed by using the force generated by kinesin sliding on
microtubules, as shown in Figure 6 C and D (Imam and Bachand 2019;
Koster et al. 2003; Roux et al. 2002) or by the motor activity of myosin
(Jahnke et al. 2022). More recently, without using GUVs (Dar, Kamerkar,
and Pucadyil 2017; Lamour et al. 2020) pulled membrane nanotubes
by applying a hydrodynamic flow to lipids dried on surfaces, as
demonstrated in Figure 6 E. The interest of these techniques is to yield
a very high number of nanotubes. Moreover, these nanotubes are
attached to the surface, allowing the assessment by AFM of their
properties (see section 4.1).
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Figure 6: Membrane nanotubes pulling techniques. A:
Representation of optical trap experiment. B: Membrane nanotube
extrusion as seen in confocal fluorescence imaging (Roy et al. 2020).
Representation of tubes pulled from GUV on a surface covered by
microtubules (MTs). D: Fluorescence confocal microscopy of EPC tubes
pulled from a GUV (Roux et al. 2002). E: schematic of Suported
membrane tubes (SMrT) templates showing the supported lipid bilayer
(SLB) at source and membrane tubes. Scale bars, 10 um (Dar, Kamerkar,
and Pucadyil 2017).

17



2.2

ACTIN CYTOSKELETON

The cell shape is maintained by its cytoskeleton and remodelled when
needed, as previously mentioned in section 2.1.1. This cytoskeleton
comprises three families of filaments: microtubules, intermediate
filaments, and actin filaments. All three ensure dynamic and
mechanical rearrangements of the cell to execute cellular functions.
Nevertheless, actin has been shown to play a crucial in cell shape
changes; therefore, only actin cytoskeleton properties are presented in
this section. Depicted in Figure 7 A are the different actin structures
and the deformation of the plasma membrane that they induce. Note
that Figure 7 B is the overlay of A showing the mechanical profiles of
these different actin structures, which gives us an insight into how
these structures impact the membrane.
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Figure 7: A: schematic representation of the cell with the different
architectures indicated. i) the cell cortex; ii) an example of a contractile
fibre, the stress fibre; iii) the lamellipodium; and iv) filopodia. The zoom
regions highlight the architectural specificities of different regions of the
cell. B: overlay of the actin architecture and its mechanical profile. The
red rectangles are visco-elastic elements (dashpots) representing the
actin network, while the green circles are active springs corresponding
to myosin motor activity (Blanchoin et al. 2014).
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2.2.1 Actin structure

Actin filaments or F-actin are formed by actin subunits called actin
monomers or G-actin (Figure 8). The latter is a globular polypeptide
chain of 42 kDa and about 57 A, that can bind to one ATP (adenosine
triphosphate) or ADP (adenosine diphosphate) and a divalent cation,
magnesium (Mg?*) or calcium (Ca®*), two cofactors essential for actin
polymerisation (W Kabsch, Mannherz, and Suck 1985; Wolfgang
Kabsch et al. 1990).

plus end i B actin molecule

) plusend

(ADP when S
in filament) #8805

minus end

Figure 8: Representation of G-actin and F-actin. (A) G-actin with its
central ATP/ADP binding cleft and two binding sites (plus or barbed end
and minus or pointed end) for another G-actin. (B) Polarised F-actin is
structured as a double-stranded helix presenting a complete twist every
37 nm (Alberts et al. 2008).



2.2.2 Actin dynamics

In the presence of the two cofactors mentioned above and at
physiological salt conditions, polymerisation can occur, and its
dynamic is composed of several successive steps. First, G-actin
monomers spontaneously bind to one another to form a dimer in a
polarised way, with the barbed ends pointing in the same direction.
However, the link between the two G-actin is weak, and the dimer
easily dissociates (Zigmond 1998). This step is called the lag phase
before entering the polymerisation phase.

Nucleation

The binding of a third actin monomer stabilises the trimer structure,
forming a nucleus that facilitates the binding of other monomers. The
nucleation marks the beginning of F-actin elongation.

Elongation

During this phase, new monomers bind, and the oligomers elongate.
Monomers assemble and disassemble at the two ends of the filament
at different rates. The rate of assembly and disassembly of monomers
at each end of the filament to the filament is known as Kon and Ko,
respectively. The Kon is inversely proportional to the concentration of
free monomers, C, and the Ko is constant, with K,,C = K,¢¢.
Consequently, during filament growth, the available monomers are
incorporated in filaments, and C decreases. This leads to a steady state
that corresponds to a critical concentration (C,) can be calculated :

Korr

C.=
¢ KOTl

(10)

For actin polymerisation to occur, C must be higher than C, (Figure 9).
Moreover, due to the differences between Ko, on the barbed and
pointed ends, the C, is different on each end of the filament. The
barbed end C. is 0.12 pM, and the pointed end C, is 0.6 pM (Thomas
D. Pollard 2016). Therefore, when above C., polymerisation prevails
over depolymerisation, and the barbed end is the fast-growing end
compared to the slower pointed end (T D Pollard 1986). The elongation
speed is also controlled by ATP, cations or other proteins (see section
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Figure 9: The actin polymerisation sequence from monomers to
filaments. All three actin polymerisation phases (nucleation,
elongation, and steady-state phase of actin filament assembly) are
represented in the histogram showing filament size as a function of
polymerisation time (adapted from www.mechanobio.info).

Steady-state

At C. a plateau phase is reached. The balance between the assembly
and disassembly of the filament keeps its length constant. The
hydrolysis of ATP into ADP is essential for this phase. G-actin linked to
ATP incorporates at the barbed end of the filament. Then, ATP is
hydrolysed to become ADP, and the ADP-actin dissembles when it
reaches the pointed end of the filament (Fujiwara et al. 2002).
Moreover, the difference of the C, at the two ends of the filament
results in the assembly of ATP-actin at the barbed end and disassembly
of ADP-actin at the pointed end due to the hydrolysis of ATP that
changes the conformation of actin subunit and destabilises actin
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2.2.3

interactions (Carlier 1990; Carlier, Pantaloni, and Korn 1986). The two
processes occur at an identical rate, creating what is called the
“treadmilling of actin” (Wegner 1976).

F-actin has a persistence length (/) of 15 ym (Isambert et al. 1995;
McCullough et al. 2008), meaning that below [, F-actin behaves as a
rigid rod, whereas F-actin is flexible at a larger scale.

Actin Binding Proteins

Regulation of F-actin dynamics relies on multiple proteins called actin-
binding proteins (ABPs). These ABPs regulate the dynamics of G-actin
or F-actin and the structure of actin networks of network structure.
These effects are summarised in (Figure 10), and we will present in
more detail some of the ABPs | use in my experiments.

G-actin regulation

In vivo, G-actin concentration is around 150 - 200 uM for eukaryotic
cells (Funk et al. 2019; Thomas D. Pollard, Blanchoin, and Mullins 2000),
much larger than the critical concentration for actin polymerisation.
However, the cell must maintain a pool of available monomers to form
new actin structures dynamically. Proteins regulating G-actin assembly
are essential to regulate F-actin formation (Figure 10). For instance,
the action of proteins, such as profilin, keeps actin in monomeric form.

Profilin is a 14 kDa protein that binds monomeric actin. It complexes
with G-actin by its barbed end, leaving the ATP/ADP binding site free
(Thomas D. Pollard, Blanchoin, and Mullins 2000). Sterically hindering
assembly at the minus end consequently lowers the nucleation
probability. Moreover, profilin-actin is favourably bounded to the
barbed end of filaments, where profilin rapidly dissociates
(Courtemanche and Pollard 2013; Goldschmidt-Clermont et al. 1991),
freeing the barbed for the addition of another monomer. (Funk et al.
2019) showed a linear relation between filament elongation speed and
actin-profilin concentration when it is below its physiological
concentration of 20 uM. A higher concentration leads to the saturation
of the elongation speed.
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As detailed above, profilin modulates the dynamics of F-actin growth
by directly regulating G-actin properties. Regulation at the level of F-
actin is also possible by other ABPs.

F-actin regulation

Capping protein (CP) is a heterodimer of 64 kDa that strongly bonds
(Kon=0.1 = 1 nM) to the barbed end of the filament. The half-life time
of CP dissociation is 30 minutes (Edwards et al. 2014; Schafer, Jennings,
and Cooper 1996), which hinders further filament elongation due to
the high affinity to actin. Moreover, by controlling F-actin length, it also
controls actin network structure. It was shown that shorter filaments
create denser actin networks that produce forces to push the
membrane (lwasa and Mullins 2007; Kawska et al. 2012).

High-order actin network

The nucleation of filaments relays on some proteins, such as the
Arp2/3 complex or formins, resulting in different actin structures.
Arp2/3 forms branched networks, while formins form parallel bundles
of F-actin (Figure 10).

The Arp2/3 complex, or actin-related protein complex, is a 54 kDa
protein composed of seven subunits and has structural similarities with
actin (Machesky et al. 1994). For instance, it can bind and act as a cap
for the pointed end of F-actin (Mullins, Heuser, and Pollard 1998), but
it can laterally bind to F-actin, nucleate a new filament and form an
angle of 70° with the first filament (Machesky et al. 1999; Mullins,
Heuser, and Pollard 1998; Rouiller et al. 2008). Consequently, Arp2/3
forms a branched actin network. However, Arp2/3 is constitutively
inactivated. It requires the action of a nucleating-promoting factor
(NPF) or activator. Several proteins can activate Arp2/3. Some of these
proteins belong to the Wiskott-Aldrich syndrome protein family
(WASp), are localised at the membrane, and share a common C-
terminal domain (Espinoza-Sanchez et al. 2018; Rotty, Wu, and Bear
2013) called Verprolin homology-central-acidic region (VCA). The V
region binds actin monomers, the acidic or A motif binds and activates
Arp2/3, and the central cofilin homology or C region enhances the
interactions between V/actin and A/Arp2/3 (Ti et al. 2011). Moreover,
the N-terminal of the VCA domain contains a proline-rich domain
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(PRD) that binds profilin-actin, rendering it available for the barbed
end of the filament (Bieling et al. 2018). This work used a constitutively
active VCA, detailed in section 3.3.

Other proteins can rearrange the actin cytoskeleton without inducing
actin nucleation. Different actin structures can be achieved by the
insertion of proteins that bind filaments together in what can be called
a cross-linking effect (Figure 10).

Crosslinkers

Fascin is a 58 kDa monomeric protein with two actin-binding domains
(ABD) at its C-terminal end (Tseng et al. 2001). Its compact form and
ABDs allow the bundling of F-actin in parallel. Indeed, the actin bundle
formed by fascin are 8 nm apart. Compared to individual F-actin, the
actin bundle reaches the stiffness required to push and form
membrane structures such as filopodia (Mogilner and Rubinstein 2005;
Vignjevic et al. 2006).

Alpha-actinin (or a-actinin) is a 200 kDa anti-parallel homodimer
belonging to the spectrin superfamily (Djinovi¢-Carugo et al. 1999;
Maruyama and Ebashi 1965). The monomers of actinin have an ABD
arranged in an anti-parallel manner. It was shown that the ABD can
display variable orientations (Winkler, Linsdorf, and Jockusch 1997)
and thus arrange bonded F-actin in variable orientations and angles
(Hampton, Taylor, and Taylor 2007; Meyer and Aebi 1990). Depending
on the ABD configuration, bundles and or networks form in the
presence of a-actinin.
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Figure 10: Overview of actin-binding proteins and their functions.
Schematic illustration of nucleation, elongation, capping, severing,
branching and cross-linking of F-actin (Alberts et al. 2008).
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2.3

RECONSTITUTED MEMBRANE-ACTIN SYSTEMS

Membranes and actin on their own represent an entire research field.
For example, membrane composition and lipid structures can
determine its mechanical properties (Filippov, Oradd, and Lindblom
2003; Hackl, Seifert, and Sackmann 1997; Rawicz et al. 2000). And
experiments performed with beads in cellular extracts with a minimal
set of purified proteins allowed to identify the proteins needed for
actin-induced motility and the forces applied by the actin network
(Bernheim-Groswasser et al. 2002; Loisel et al. 1999; Noireaux et al.
2000; van der Gucht et al. 2005).

Below, | present two review articles that | authored, summarising the
context of my work. First, | summarise existing works on actin
polymerisation on GUVs.

The first review focus on the actin-induced deformations of the
membrane rather than the actin-induced motility. Nevertheless,
mentioning a few studies on the propulsion of the GUVs by an actin
“comet” is important. Indeed, biomimetic systems allow for mimicking
the propulsion of pathogens or endosomes inside the cell. Such
systems highlighted, for example, the role of Arp2/3 concentrations
(Delatour, Helfer, et al. 2008), NPFs mobility (Delatour, Shekhar, et al.
2008) and the detailed forces applied by the actin comet to the GUV
(Giardini, Fletcher, and Theriot 2003; Upadhyaya et al. 2003). Our first
review presents articles focusing on the actin-membrane interaction
and the actin-induced shape changes on GUVs. We sought to highlight
how different actin networks result in different membrane
deformations.
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2.3.1 Review 1: Studying actin-induced cell shape changes using Unilamellar
Vesicles and reconstituted actin networks.
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Giant Unilamellar Vesicles and reconstituted actin
networks

Rogério Lopes dos Santos' and © Clément Campillo’-?
'LAMBE, Université d’Evry Val d’Essonne, CNRS, CEA, Université Paris-Saclay, 91025 Evry-Courcouronnes, France; %Institut Universitaire de France (IUF), Paris, France
Correspondence: Clément Campillo (clement.campillo@univ-evry.fr)

10d//:dyny woyy papeojumoq

control cellular processes such as motility and division. However, the mechanisms of
interplay between cell membranes and actomyosin are complicated to decipher in the
complex environment of the cytoplasm. Using biomimetic systems offers an alternative
approach to studying cell shape changes in assays with controlled biochemical compos-
ition. Biomimetic systems allow quantitative experiments that can help to build physical
models describing the processes of cell shape changes. This article reviews works in
which actin networks are reconstructed inside or outside cell-sized Giant Unilamellar
Vesicles (GUVs), which are models of cell membranes. We show how various actin net-
works affect the shape and mechanics of GUVs and how some cell shape changes can
be reproduced in vitro using these minimal systems.

OPEN a ACCESS Cell shape changes that are fuelled by the dynamics of the actomyosin cytoskeleton

Introduction

Many biological processes rely on changes in cellular shape. Global changes, for example, in the case
of motility and division, and local changes for exo/endocytosis and filopodia formation. The actin
cytoskeleton plays a crucial role in such shape changes [1]. It generates polymerization-induced forces
deforming the lipid bilayers surrounding the cell and most of its internal compartments by dynamic-
ally switching globular 42 kDa actin monomers (G-actin) to polymerized filaments (F-actin). In the
cell, many Actin Binding Proteins (ABPs) control actin assemblies dynamics and structure in at least
six manners:

I. By influencing the ability of G-actin to form filaments, such as profilin [2];
II. By severing actin filaments or preventing their elongation, such as capping proteins (CP);
III. By nucleating filaments, such as the Actin related protein or Arp2/3 complex [3] and formins.
Arp2/3 is a protein complex that, when activated, can nucleate a new filament on the side of a
pre-existing filament and thus generate branched networks. Arp2/3 is rich in the lamellipodium
of migrating cells, and the polymerization of Arp2/3-nucleated networks generates forces that
push the cell membrane forward. Formins nucleate the elongation of bundles of parallel actin fila-
ments [4];
IV. By regulating the nucleation of filaments by activating the nucleators, for example, WASP (for
Received: 8 June 2022 Wiskott-Aldrich syndrome protein), that regulate F-actin nucleation by activating the Arp2/3
Revised: 12 August 2022 complex [5]. These types of proteins are known as Nucleation Promoting Factors (NPF);
Accepted: 22 August 2022 V. By building higher-order actin-based structures. Such structures are achieved through both cross-
Version of Record published: linking filaments such as o-actinin [6] and fascin [7] and linking filaments with membranes as
16 September 2022 proteins of the ezrin-radixin-moesin family [8];
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VI. By exerting forces on F-actin. Proteins of the myosin family exert these forces by walking along F-actin
using the energy of ATP hydrolysis [9]. Myosin II forms minifilaments that create tension in actin net-
works by pulling on F-actin.

Within the cell, the diversity of these ABPs leads to the formation and cohabitation of several types of actin-
based structures, such as the cortex, stress fibers, or filopodia [1], that reorganize both spatially and temporally
in response to internal and external stimuli. Studying these actin-based structures can be problematic in the
complex environment of the cell interior, which contains hundreds of proteins potentially interacting with
actin. However, a bottom-up strategy based on biomimetic systems can decipher how actin-based structures
such as the cortex or filopodia appear, the minimal set of components required for their formation, and their
mechanical effects on cell shape. Model systems made of lipid membranes and actin networks reconstituted
from purified proteins are helpful to answer these questions since they allow the in vitro reconstitution of cellu-
lar actin-based structures [10]. Therefore, it is possible to study the physical mechanisms of the formation and
maintenance of these structures.

Among membrane models that study the effect of actin dynamics on lipid membranes, Giant Unilamellar
Vesicles (GUVs), also called liposomes, are of practical interest as these spheres made of a nanometer-thick
bilayer are the size of living cells and can be easily imaged by optical microscopy. Actin can be coupled either
to the inside or outside leaflet of the GUVs membrane. In these two configurations, GUV membranes appear
flat at the scale of actin networks mesh size, roughly tens of nanometers [11]. Note that the confinement of
actin structures can affect membrane shape. Another critical difference is that the inside configuration imposes
a finite amount of proteins, contrary to the outside configuration, where this supply is enormous. In this mini-
review, we present how actin affects GUVs. In particular, we highlight how these biomimetic systems reproduce
in vitro some steps of cellular shape changes, thus allowing for the deciphering of their physical mechanisms.
We also show how these experiments pave the way for the design of synthetic soft nanomachines inspired by
living cells.

We present results by ascending order of complexity in the actin machinery. In most cases, this also corre-
sponds to chronological order. In section I, we present experiments with actin filaments polymerized without
nucleators. Then, the same type of filaments in the presence of crosslinkers (section IT) and myosin II (section
III). Finally, we present examples where nucleators trigger actin polymerization specifically at the GUVs mem-
brane. In each section, we distinguish between assays based on the ‘inside’ or ‘outside’ configuration, which can
be associated with different preparation techniques (Table 1).

Actin filaments formed without NPFs
The most straightforward assays correspond to actin filaments polymerized without NPFs that are artificially
coupled to the outer leaflet or encapsulated in the lumen of GUVs,

Helfer et al. have studied GUVs surrounded by a layer of F-actin connected to their membrane by biotin-
streptavidin links (Figure 1A). Optical tweezer microrheology shows that this layer strengthens the GUV mem-
brane. It reduces its transverse thermal fluctuations by increasing its bending rigidity, i.e. the energy to pay to
change the curvature of the membrane, from 10 kgT for a lipid membrane to 100-1000 kgT when the same
membrane is coated with actin filaments [12]. Studying in-plane fluctuations of beads attached to the GUV
membrane, the authors show that, in the presence of actin filaments, these composite membranes also have a
viscoelastic behavior with a 2D shear modulus on the order of 107¢ N/m [13]. In contrast, due to their fluidity,
there is no elastic resistance to shearing in actin-free lipid membranes. Therefore, these studies show that the
actin layer strengthens the GUV membrane by increasing its bending and shearing rigidities.

To encapsulate F-actin, GUVs are formed by electroformation (EF) [14] in a solution containing G-actin
(Figure 1B). Then, polymerization is triggered inside the GUVs by Mg”* influx through ionophores inserted in
their membrane [15]. Thanks to steric hindrance, PEGylated lipids and cholesterol limit the adsorption of
F-actin to the lipid bilayer. In these experiments, F-actin spatial distribution is correlated to the GUV size: in
GUVs smaller than 18 pum, F-actin forms a cortex close to the GUVs membrane, whereas in larger GUVs,
actin appears as a ‘fuzzy’ homogeneous network. Such differences in actin organization are due to a competi-
tion between the GUV size and the persistence length (Ip) of F-actin, which is ~10 to 17 pm [16,17]. These
results were among the first to establish that in a GUV larger than Ip, filaments can distribute anywhere,

1 528 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND).
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Table 1 Table summarizing the experimental details of all articles presented in the five sections of the text: inside or
outside geometry, GUVs preparation techniques, lipid composition of the GUVs membrane, composition of the actin
and actin-related proteins mixture, interaction of the actin structures with the GUVs membranes and effects of the

« ~ PORTLAND
0 ® prEss

actin on the membrane Part 1 of 3
In
vs. GUVs Protein Membrane Sollicitation/
Article Out Preparation Lipid composition mixture attachment Deformation
F-actin Helferetal.  Out EF DOPC F-actin (15%  Biotin-streptavidin - Microrheology: actin
without [12] PE-Biotin 5% biotinylated) increases the
NPFs Helfer et al. with membrane bending
[13] streptavidin rigidity and adds a
viscoelastic response
Limozinand In EF DMPC F-actin 2— Non-specific Effect of confinement
Sackmann DMPE-PEG 2.5% 10 pM on F-actin
[19] Cholesterol 17% o-actinin 0.1- morphology
1M
filamin 100-
300 nM
Limozin et al. In EF DMPC F-actin Non-specific Effect of confinement
[15] DMPE-PEG 0-5% on F-actin
Cholesterol 0-37% morphology
F-actin + Tsai et al. In Agarose gel DOPC F-actin Non-specific Actin protrusions
crosslinkers  [24] swelling PEG-PE 2.5-5% 12 uM
PE-Biotin 0-2.5%  fascin 0.6—
24 uM
Litscheletal. In  cDICE POPC G-actin 2—- Non-specific Ring-like formation of
[25] PE-Biotin 1% 6 pM bundled actin
fascin 66—
300 nM
Bashirzadeh In Modified DOPC 70% G-actin 5 M Non-specific Crosslinked F-actin
etal cDICE Cholesterol 30% fascin 0.5 organization in
[20,26] 2.5pM confined space
o-actinin 0.5—
1.5 uM
F-actin Tsai et al. In  Agarose gel DOPC 93.8% G-actin 24— Biotin-streptavidin - Actin cortex
without [29] swelling PEG-DOPE 5 95 uM detachment from
NPFs + PE-Biotin 1% Myosin 0.12- membrane
myosin |l 1.9 pM
Takiguchi In IE EPC F-actin 50— Non-specific Crosslinking of
et al. [28] 200 pM F-actin by myosins
myosin Il 3.8—
15 pM
NPFs at Liu and Out EF DPPC 17.2% actin 6 pM PIP2/N-WASP Effect of actin on
membrane  Fletcher [35] DOPC 52.2% N-WASP membrane phase
Cholesterol 30% 390 nM transition
Bodipy-TMR-PIP2  Arp2/3
0.6% 150 nM
Liuetal [38] Out EF EPC 75% actin 8.5 uM  PIP2/N-WASP Filopodia-like
DOPS 20% N-WASP protrusions emerging
PIP2 5% 400 nM from dendritic
Arp2/3 networks
160 nM
Simonetal. QOut EF EPC actin 3 pM biotin-spVCA Inward and outward
[40,41] PE-Biotin 0.1% spVCA protrusions emerging
Kusters et al. DGS-Ni 5% 350 nM from dendritic
[42] profilin 3 pM networks; Wrinkled
Allard et al. Arp2/3 37 nM or buckled
[43] CP 0-25nM deformations; Tubule

stabilization by actin
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Table 1 Table summarizing the experimental details of all articles presented in the five sections of the text: inside or
outside geometry, GUVs preparation techniques, lipid composition of the GUVs membrane, composition of the actin
and actin-related proteins mixture, interaction of the actin structures with the GUVs membranes and effects of the
actin on the membrane Part 2 of 3

In
vs. GUVs Protein Membrane Sollicitation/
Article Out Preparation Lipid composition mixture attachment Deformation

Pontanietal. In IE EPC 58% G-actin Histidin-nickel Mimic of the actin
[46] DGS-Ni 5% 8.5 mM cortex
Cholesterol 37% Arp2/3
0.12mM
Gelsolin
50 nM
ADF-cofilin
2mM
Profilin 1 mM
WCA-His
0.64 mM
Wubshet In Modified DOPC 70% Actin 5.3 pM  Histidin-nickel Protrusion only in the
etal. [47] cDICE cholesterol 25% Arp2/3 1 pM presence of fascin
DGS-Ni 5% His-VCA reveals competition
0.5 pM with Arp2/3 for
fascin 10— G-actin
50%
Murrell et al.  In IE EPC 53% G-actin Histidin-nickel Viscous dissipation
(48] Cholesterol 37% 13 mM slows down GUV
DGS-Ni 10% Arp2/3 spreading on
0.24 mM adhesive substrates
gelsolin
0.1 mM
ADF-cofilin
4mM
WCA-His
2.2mM
Campillo in IE/EF EPC 58-52% Actin 3- Histidin-nickel Friction induced by
etal. [50] DGS-Ni 5-10% 13 mM membrane nanotube
Guevorkian Cholesterol 37% Arp2/3 0.24— extrusion and lipid
et al. [52] PE-Biotin 0.1-1%  0.45 mM diffusion hindered by
WWCA-His actin cortex
2.2-7.8mM
Gelsolin 0-
0.1 mM
ADF-cofilin 0-
4mM
profilin O-
10 mM

Myosin II+  Carvalho Qut EF EPC Actin 1-3 pM  biotin-SpVCA Peeling of actin
branched et al. [55] PE-Biotin 0.1% S-pVCA 100~ cortex or GUV
networks 160 nM squeezing
profilin 3 uM
Arp2/3 50 nM
CP 10-50 nM
Caorsietal. out EF EPC actin 3 pM biotin-SpVCA Myosin motors
[57] PE-Biotin 0.1-1%  SpVCA increase actin cortex
350 nM tension
profilin 3 pM
Arp2/3 35 nM
CP 20 nM
50 nM
Myosin I

Continued
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Table 1 Table summarizing the experimental details of all articles presented in the five sections of the text: inside or
outside g try, GUVs prep techniques, lipid position of the GUVs membrane, composition of the actin
and actin-related proteins mixture, interaction of the actin structures with the GUVs membranes and effects of the
actin on the membrane Part 3 of 3
In
vs. GUVs Protein Membrane Sollicitation/
Article Out Preparation Lipid composition mixture attachment Deformation
Loiseauetal. In  cDICE EPC actin 10 uM  Histidin-nickel Formation of blebs
[59] DGS-Ni 0.1-10%  His-anilin 0.1-
PE-Biotin 2.5% 1pM
Myosin Il 0.5~
1M
Ddrre et al. In cDICE EPC actin 3 uM Histidin-nickel CP-induced
[61] DGS-Ni 0.1-10%  His-VCA membrane bulging
PE-Biotin 2.5% 300 nM infout and fission
Arp2/3 under Myosin Il
300 nM activity
Profilin
13.5 uM
CP 20~
180 nM
Myosin Il
5pM
Bashirzadeh In  Modified DOPC 70% actin 5 puM Histidin-nickel Blebs formed by
et al. [30] cDICE Cholesterol 25% His-VCA branched contractile
DGS-Ni 5% 1pM actomyosin ring
Arp 2/3 1 uM
Myosin II
63 nM
Fascin 1 pM
o-actinin
0.5 pM

whereas, in a smaller GUV, they stay at the periphery to minimize their bending energy [15]. A detailed study
of the mechanism by which confinement affects the structure and mechanics of actin filaments was done in
droplets instead of GUVs by Claessens et al. [18].

F-actin + crosslinkers
Inside

F-actin
Outside

F-actin + myosin ||
Inside

Inside

D F

Helfer
2000

Limozin

Litschel
2002 2021

2003

// F-actin & cross-linker "\,’myosin IIQ membrane

Figure 1. Schematics of biomimetic systems made of GUVs coupled to actin fil ts formed without NPFs.

GUVs coupled to F-actin in the outside (A) and inside (B) configurations; GUVs encapsulating F-actin in the presence of
crosslinkers (C) a-actinin; (D,E) fascin that induces bundles or rings in the lumen of the GUV (F) GUVs encapsulating F-actin in
the presence of myosin Il motors.

2015

2011
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Actin filaments formed without NPFs in the presence of
crosslinkers

In this section, we show how actin filaments polymerized without NPFs in the presence of crosslinkers modu-
late the structure of the actin network and, in some cases, the GUV shape (Figure 1C-E). To the best of our
knowledge, no articles study filaments polymerized without NPFs and crosslinkers on the external membrane
of GUVs; we thus discuss papers where filaments and crosslinkers are co-encapsulated. As in the case of
section I, the competition between the elasticity of the membrane and that of actin-based structures controls
actin organization inside GUVs. In the presence of crosslinkers, the elasticity of actin-based structures varies
due to structural differences between crosslinkers, actin to crosslinker ratio (rCA), and the length of the fila-
ments, resulting in a wide variety of actin structures.

When F-actin crosslinked by o-actinin is encapsulated in GUVs (Figure 2C), two different organizations
appear depending on the GUV size. At temperatures below 15°C, at which polymerization dynamics are slowed
down and bundling formation favored, ring-like structures form in GUVs smaller than 12 pm, whereas
spiderweb-like structures form in larger GUVs [19]. In addition, F-actin asters form at the periphery of GUVs
larger than 16 wm at the same rCA of 1:10, and increasing the rCA does not affect actin organization [20].
However, bundles emerging from the asters are preferentially located at the GUV periphery to minimize
bending energy. In the last article, GUVs were formed using an adapted version of the cDICE (continuous
droplet interface crossing encapsulation) method [21,22].

In the presence of fascin (Figure 2D), F-actin forms bundles that are able to generate enough force to
deform the membrane [23,24]. In GUVs smaller than 8 pm, stiff bundles (rCA =0.2) form membrane protru-
sions, whereas soft bundles (rCA = 0.05) have lower bending energy and form ring or web-like organizations
[24]. Confinement forces bundles to bend and accumulate at membranes if they are sufficiently long [25]
(Figure 2E) or if membrane bending rigidity is high [24]. Moreover, increasing fascin concentration favors
bundle to bundle attraction, increasing their overall persistence length and leading to membrane protrusions
[26].

Lastly, simultaneous encapsulation of o-actinin and fascin still reveals an effect of the confinement over actin
organization as previously described, as well as the competition between fascin and o-actinin for a finite
amount of actin filaments, which results in o-actinin significantly impairing the protruding effect of fascin in
these conditions [20,26].

Actin filaments formed without NPFs in the presence of
myosins |l

In this section, we discuss works that observe the effects of co-encapsulating F-actin formed without NPFs
together with myosins II. Similar actomyosin networks in the outside configuration have never been reported.

Using the Inverted Emulsion (IE) method [27], Takiguchi et al. encapsulated F-actin and heavy-meromyosin
(a fragment of myosin II) in GUVs [28]. The GUVs were of several tens of micrometers, much larger than Ip.
F-actin was homogenously distributed when encapsulated alone, and GUVs were always spherical. However,
when heavy-meromyosin and F-actin were encapsulated, the resulting GUVs had non-spherical shapes. The
author determined that when actin filaments are crosslinked by heavy-meromyosin, the resulting actin bundles
are stiff enough to deform the lipid bilayer.

Other studies have encapsulated F-actin and bipolar myosin II filaments (Figure 2D), able to actively pull on
the actin filaments [29]. The F-actin contained biotinylated actin monomers that can attach to the GUV mem-
brane through biotin-streptavidin bonds. The GUVs were formed spontaneously during the hydration in the
solution containing the proteins of a hybrid film of agarose and lipids. No external force such as an electric
field or centrifugation was applied to form the GUVs. No membrane deformation was observed even if actin
was attached via biotin-streptavidin bonds. Still, actin clusters were observed at high myosin II concentration,
supposedly because myosin-induced forces ruptured actin-membrane links and condensation of actin filaments
in one or few clusters.

To form contractile actomyosin rings, Bashirzadeh et al. [30] encapsulated actin filaments and myosin II in
the presence of crosslinkers. They show that the probability of ring formation is higher when the fascin to
c-actinin ratio is high and GUV size is smaller than 15 p.m. Such conditions seem to impair the formation of
protrusions induced by fascin and the formation of asters by c-actinin, as previously shown [20].
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In the outside configuration: reconstitution of actin-rich membrane domains (A), filopodia-like protrusions (B), filopodia-like
protrusions and endocytic pits-like structures (C), global GUV deformation (D), and actin-coated nanotubes (E); In the inside

configuration: reconstitution of Arp2/3-generated networks allows

forming a cortex-like structure (F); studies on the effect of

the cortex on GUV spreading (G) and on membrane dynamics by nanotube pulling experiments (H). Actomyosin networks
coupled to the GUV surface (I) or GUVs doublets (J) show myosin-induced shape changes; Encapsulation of Arp2/3 generated
actin networks comprising myosin Il motors which then induce membrane protrusions (K,L).
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Actin network polymerization with NPFs at the membrane
The next step in the reconstitution approach is to mimic the situation observed, for instance, in the cell lamelli-
podium, where NPFs are attached to the membrane, and actin dynamically polymerizes at the membrane.

Experiments in the ‘outside’ configuration are inspired by works mimicking in vitro the actin-induced pro-
pulsion of Listeria using beads coated with NPFs. When such beads are bathed either in cell extracts or in a
minimal mixture of purified actin and regulatory proteins, they are propelled by the forces generated by actin
polymerization at their surface. The process starts with filaments nucleation at the bead surface. The nucleation
leads to the growth of an actin gel around the bead. As this gel grows from the bead surface, mechanical stres-
ses are accumulated at the gel’s external surface and eventually lead to its rupture. At this point, the symmetry
of the system is broken, and the bead is pushed forward by a cylindrical structure made of actin gel, sometimes
referred to as an actin ‘comet’ [31]. This ‘bead assay’ was extended to liquid droplets [32] and GUVs coated by
NPFs in cell extracts [33,34]. These last experiments have revealed the spatial distribution of
polymerization-induced forces at the GUV surface during their propulsion by an actin ‘comet.” Here, we focus
on GUVs bathed in cocktails of pure proteins.

Liu and coworkers [35] used GUVs made of a ternary lipid mixture exhibiting a thermally controlled liquid—
liquid phase separation. Below a critical temperature, their membrane segregates between liquid-ordered and
liquid disordered domains; over this temperature, the membrane is homogeneous [36]. The actin network
shifts the transition temperature of lipid phase separation and influences the spatial distribution of the induced
domains (Figure 2A). Because cell membranes are close to phase separation [37], actin networks could contrib-
ute to regulating the spatial organization of cell membranes.

The same researchers also showed that branched actin networks polymerizing around GUVs form finger-like
protrusions [38] (Figure 2B). In this experiment, there were no crosslinkers inducing bundles as in the articles
presented in section II [24,26]. As discussed above, the formation of finger-like protrusion from branched actin
networks stems from the balance between membrane and filaments elasticity. When few filaments push against
a membrane, the energetic cost for membrane deformation favors gathering these filaments into a single
bundle surrounded by a membrane nanotube. In this case, the energy for membrane deformation is reduced.
Contrary to a single filament, the forces induced by the polymerization of several parallel filaments can over-
come the force required to form such cylindrical membrane tubes, which depends on the membrane bending
energy and tension [39]. These results show that membrane elasticity can shape the architecture of actin
networks.

Simon et al.[40] showed two types of actin-induced membrane deformations on GUVs using branched
Arp2/3-nucleated networks in the presence of profilin and capping protein. They observed membrane tubes
pulled toward the GUV exterior and ‘spikes’ toward their interior (Figure 2C). The spikes are observed at low
membrane tension and small mesh size of the actin network, while only tubes form for larger tension and
mesh size. The tubes, created solely by the retrograde flow induced by actin polymerization from the mem-
brane, share similarities with endocytic bulges even though no curvature-inducing proteins are present. The
spikes contain a dendritic network comprising Arp2/3 and CP and are thus very different from the protrusions
induced by bundled actin filaments observed in [38]. They form because local heterogeneities in the growth of
the actin gel induce a normal pressure acting on the membrane. If such heterogeneity reaches a critical size, it
leads to the formation of a spike. The results from [40] clearly show that the same polymerizing dendritic actin
network can simultaneously deform membranes in both directions. These deformations in both directions were
observed in the ‘inside’ geometry in 2018 in the article by Diirre et al. that will be presented below.

Using the same assay, Simon et al. [41] then investigated how both membrane tension and the presence of
CP control shape changes of GUVs. The presence of CP favors membrane deformations for all values of the
membrane tension, whereas, without CP, membrane deformations occur only at low membrane tension. In
another study [42], these actin gel-covered GUVs were osmotically deflated, leading to global shape changes
(Figure 2D). The actin network thickness controls the type of shape changes: for thicknesses higher than
1.5 pm, wrinkles with a wavelength between 5 and 25 wm appear, whereas smaller gel thicknesses lead to
large-scale buckling, which results in crescent-shaped GUVs. Wrinkling is favored for thick cortices because
buckling implies a strong local deformation of the actin gel, which costs more energy than the formation of
wrinkles on all the vesicle surface.

Finally, the same assay was adapted to reconstitute dynamic actin networks at the surface of membrane
nanotubes formed from GUVs (Figure 2E) [43]. The objective of this study was to decipher the largely
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unknown mechanisms by which actin dynamics contribute to the remodeling of membrane nanotubes inside
the cell [44]. During intracellular trafficking, nanotubes are pulled by molecular motors walking on microtu-
bules at the velocity of one micrometer per second. Therefore, to investigate the mechanical stability of actin-
coated nanotubes, they were submitted to elongation at this velocity. When the tubes are covered by actin
sheaths thicker than 100 nm, they fully stabilize the tubes that cannot be deformed in the range of forces
accessible to optical tweezers. Oppositely, thinner actin sheaths break during tube elongation. This breakage
results in heterogenous tubes containing regions covered with actin and regions of bare membrane tubes. The
membrane nanotubes are thicker under the actin coat. In contrast, regions devoid of actin have a smaller diam-
eter that relaxes, expanding within minutes. These actin-free regions could provide enough time and the high
curvature required for the binding of other proteins that act on tube stability. In addition, Atomic Force
Microscopy (AFM) experiments directly probe the effect of the actin coat on tube mechanics and morphology
[45] and validate the estimation of the actin sheath diameter presented.

Reassembling a dynamic actin network at the inner surface of a GUV (i.e. in the ‘inside’ configuration) to
mimic the cell cortex was an experimental challenge. The process was achieved by preparing GUVs containing
the actin machinery in non-polymerizing conditions using the IE technique [46]. A histidine-tagged NPF
(VVCA-His) is specifically attached to the inner GUV membrane containing nickel lipids. The authors demon-
strated that this NPF induces actin polymerization at the GUV membrane when the inside concentration of
salts and ATP is tuned toward polymerization conditions using pores inserted in the membrane (Figure 2F).
Membrane protrusions emerge when this type of cortex-containing GUVs is osmotically deflated [47].

The system developed in [46] was then used in several articles as a tool to investigate the mechanical role of
the cell cortex in a biomimetic approach. First, [48] studied the spreading of the cortex-containing GUVs on
adhesive substrates (Figure 2G). This article showed that a dense and connective actin cortex slows the early
stages of the spreading, which highlights the role of viscous dissipation in the cortex at the onset of cell
spreading.

The effect of the actin cortex on membrane dynamics has also been probed using membrane nanotube for-
mation (Figure 2H). Nanotubes can be formed with optical tweezers from GUVs held in a micropipette in
order to maintain a constant membrane tension. The nanotube length can then be varied to study membrane
dynamics [49]. With this assay, [50] showed that the preparation technique of the GUVs, EF or IE, had a more
significant effect on membrane dynamics than the presence of an actin cortex. Indeed, GUVs with the same
lipid composition formed by these two techniques show no difference in their bending rigidity but a dramatic
difference in their membrane friction. In the case of IE-formed GUVs, the membrane dynamics are very close
to the ones observed on Giant Plasma Membrane Vesicles extracted from living cells [37]. Surprisingly, the
actin network generates only an additional friction force, allowing for the reevaluation of membrane compos-
ition and membrane-cortex attachment roles on membrane dynamics. Nanotubes can also be formed by apply-
ing a hydrodynamic flow to a GUV attached to a microneedle [51]. With this assay, nanotubes are shorter on
GUVs with an actin cortex at the same pulling force than their bare homologs [52], showing that such reconsti-
tuted actin cortices mechanically resist lipid movement. Finally, the cortex-containing GUVs have been used to
demonstrate the role of actin on the scission of tubules induced by Shiga toxin towards the GUV interior [53].
In the presence of a cortex, these tubules are cut and float freely in the GUV lumen. The hypothesis for this
scission is that actin induces nanodomains in the membrane, which could provoke tubule scission because of
the energetic cost of domain coexistence, as proposed in [54].

Myosin |l effect on polymerized Arp2/3-nucleated actin
networks

Myosin II-induced contraction of dendritic actin networks at the external surface of GUVs leads to an increase
in the mechanical tension in the network (Figure 2I). This results in either a global crush of the GUV or the
peeling of the actin network that collapses on one side of the GUV. The first case is favored by actin-membrane
solid attachment, high myosin II concentration, and network cohesiveness [55]. Peeling is a symmetry-breaking
event happening when the built-up tension exceeds the critical stress, at which the actin network ruptures [56].
Quantifying the tension in the actomyosin network has been achieved by measuring the contact angle between
GUV doublets linked by streptavidin-biotin links [57] (Figure 2J). When actin filaments polymerized without
NPF are attached to the doublet surface, its tension remains constant. In contrast, the polymerization of an
actin network increases the doublet tension. When myosin II is added, tension increases in both conditions: for
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actin filaments polymerized without NPF, it strongly increases with myosin II whereas, for gels, polymerization-
and myosin-induced tension synergistically combine to establish a high tension in the actomyosin shell, as it is
the case in living cells [58].

Inside GUVs, Loiseau et al. were the first to adapt the cDICE method [21] to form a contractile actomyosin
cortex [59] using anillin as a crosslinker and membrane-cortex linker. In this assay, membrane protrusions
resembling cellular blebs were observed (Figure 2K). Indeed, myosin II-induced stresses result in the contrac-
tion of the cortex and, therefore, lead to an inward pressure that counteracts the outward osmotic pressure. In
regions where heterogeneities in the cortex lead to a weaker membrane-cortex attachment, this pressure
induces the detachment of the membrane and its blebbing. This biomimetic assay shows in vitro the depend-
ence of the blebbing process on the myosin II concentration and membrane-cortex attachment. Similar bleb-
like protrusions were observed in the presence of o-actinin and fascin as crosslinkers [30].

Following [59], the same group showed how the actomyosin dynamics affected the spreading of these GUV's
on adhesive substrates [60]. The active remodeling of the cortex provides GUVs with an excess membrane area
that allows it to sustain the adhesion-induced increase in its membrane tension and prevents it from bursting.
Finally, [61] showed that CP controls the shape of the actomyosin cortex (Figure 2L). At low CP concentra-
tions, membrane protrusions towards the exterior appear, whereas concave regions are observed at higher con-
centrations (60-120 nM). The effect of motors on these membrane deformations is therefore also dependent
on the CP concentration: formation of star-like clusters at low CP, actin-rich stable domains at intermediary
CP, and fission of membrane protrusions at high CP.

Perspectives

e The studies presented here have shown the minimal components necessary to reconstitute in
vitro some biological processes observed in cellular experiments. Based on such assays, it is
possible to tune the experimental parameters as actin-membrane attachment, actin dynamics,
or myosin-induced contractility to precisely decipher each process’s physical mechanisms.

e The works presented here show that some processes observed in the cell can be reproduced
in vitro and mechanical models tested. Examples of such processes are blebbing, membrane
tubulation or invagination, cell spreading, and the formation of contractile actomyosin rings
that are able to induce membrane constriction.

e An essential aspect of future reconstitution studies would be the control of actomyosin
dynamics in space and time. Recall that different actomyosin networks are simultaneously
observed inside a living cell, and their dynamics are finely regulated. Therefore, a control on
actin polymerization dynamics, motor activity, and membrane structure could be exerted
using light-activated compounds (e.g. caged-ATP, blebbistatin), using DNA nanotechnology
[62], or other external signals [63]. Such responsive systems would trigger the local assembly
of artificial filopodia or blebs and allow for the investigation of how these different actin-based
structures compete for actin-monomers or affect the shape of the GUVs.

¢ As recent studies on living cells have shown how actin networks are interconnected with other
cytoskeletal players [64], another critical aspect for future work would be the reconstitution of
these crosstalks. Biomimetic studies could play an essential role in investigating this coupling
by using model systems; this potential can be seen in [65], where actin and keratin networks
are co-encapsulated in GUVs. More generally, other players have to be coupled with cytoskel-
etal networks, as in [66], where the actin machinery is coupled to ATP production systems.
These studies rely on the future development of cutting-edge encapsulation techniques, such
as microfluidics [67].
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2.3.2 Review 2: Remodelling of membrane tubules by the actin cytoskeleton

This second review summarise the biological situations in which the
actin cytoskeleton remodels membrane tubules. Then, we present the
physics behind nanotube formation and the in vitro reconstitution
experiments that allow us to understand the role of the actin
cytoskeleton in membrane nanotube formation, elongation,
constriction and scission.
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Inside living cells, the remodelling of membrane tubules by actomyosin networks is crucial for processes such as
intracellular trafficking or organelle reshaping. In this review, we first present various in vivo situations in which
actin affects membrane tubule remodelling, then we recall some results on force production by actin dynamics
and on membrane tubules physics. Finally, we show that our knowledge of the underlying mechanisms by which
actomyosin dynamics affect tubule morphology has recently been moved forward. This is thanks to in vitro experi-
ments that mimic cellular membranes and actin dynamics and allow deciphering the physics of tubule remodelling
in biochemically controlled conditions, and shed new light on tubule shape regulation.

In architecture and industrial design, form follows
function (Sullivan, 1896). For biological objects,
from proteins to organisms, shape and funccion are
intimately related. Living cells modify their shape to
achieve biological processes such as division or motil-
ity. These shape changes rely on the reorganisation of
the actomyosin cytoskeleton, a dynamic network of
biopolymers (actin filaments) and molecular motors
of the myosin family, which remodel biological
membranes (Blanchoin et al., 2014). The actin
cytoskeleton comprises at least two types of fila-
ments assemblies: branched actin gels nucleated by
the Arp2/3 complex and actin bundles nucleated
by Formins. The Arp2/3 complex forms new actin
filaments that emerge from a pre-existing filament
with an angle of 70°. In the cell, Arp2/3 complex
gels are found in the lamellipodium, the cortex and
in endocytic patches (Mullins et al., 1998). Formins
sitat the polymerising end of ilaments and stimulate
their parallel elongation forming structures in cells
like filopodia or microvilli (Watanabe et al., 2014;
Evangelista et al., 2003), among others. Changes

To whom correspondence should be addressed (email: clement.campillo@
univ-evry.fr)

2These authors contributed equally to this work.

Key words: Actin, Membrane, Tubule, Vesicle trafficking.

Abbreviations: AFM, Atomic Force Microscopy; ALR, Autophagic Lysosome
Reformation; ATP, Adenosine TriPhosphate; CIE, Clathrin-Independent Endocy-
tosis; CME, Clathrin-Mediated Endocytosis; DRP1, Dynamin-Related Protein 1;
ER, Endoplasmic Reticulum; ERM, Ezrin-Radixin-Moesin; TGN, Trans-Golgi Net-
work

in the actin cytoskeleton structure resulting from
the type of filament nucleation resules in different
mechanisms of force production and therefore dif-
ferent types of membrane deformation. The actin
cortex, an actin-rich region close to the plasma mem-
brane, comprising myosin motors, and linked to the
membrane through Ezrin-Radixin-Moesin (ERM)
proteins (Maniti et al., 2013), is an important player
for membrane remodelling. Its dynamics plays an
important role in global cell shape changes, as the
ones implied in cell motility, but also in local shape
changes implied in endocytosis.

This review focuses on the actomyosin driven
remodelling of a particular type of membrane struc-
tures, hereby called ‘membrane tubules’. They are
cylinders made of a lipid bilayer, with a radius of
tens of nanometres and a length up to micrometres.
Tubular membrane structures are found all over the
cell (Figure 1) and can be classified according to their
lifetime (Roux, 2013). On the one hand, some are
stable tubular structures, such as mitochondria or
some regions of the endoplasmic reticulum (ER). If
they can undergo dynamic rearrangements, they stay
globally cylindrical over time. Hereafter, we call such
cases ‘structural tubules’ (section Structural Tubules).
On the other hand, some tubules are ‘transient’, like

This is an open access article under the terms of the Creative Commons Attribu-
tion License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
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Figure 1| Remodelling of membrane tubules by actin dynamics in eukariotic cells

(Centre) Scheme of a cell. Because the endoplasmic reticulum extends all over the cell, it is drawn partially. (Endoplasmic reticu-
lum) Tubular ER in the periphery of a COS-7 cell expressing Sec61p, an ER membrane marker. Scale bar: 2 um. Reprinted from
(Nixon-Abell et al., 2016). (Golgi) Immunofluorescence confocal image of RPE-1 cells labelled for the Golgi protein GMAP210.
Note the characteristic ribbon-like shape of the Golgi apparatus and its position close to the nucleus. Scale bar: 10 um. Reprinted
from (Egea et al., 2015). (Endosome and Endocytosis) Electron micrographs showing buds (black arrowheads) on an endosome
and via ultra-fast endocytosis. PSD: postsynaptic density. Reprinted from (Watanabe et al., 2014). (Mitochondrion) Mitochondria

in a portion of a living cell stained with rhodamine 128. Scale bar: 10 xm. Reprinted from (Chen, 1988).

the ones extruded from the plasma membrane or
the Golgi apparatus for intracellular trafficking, in
which membranes intermittently deform into vesic-
ular or tubular carriers (section Transient Tubules).
Last, some ‘intermediate’ cases exist: endosomes
and melanosomes are examples of organelles with a
permanent tubular region from which carriers are
dynamically pulled out (section Intermediate Tubular
Structure). In all of these cases, the evolution of a
tubule follows the steps depicted in Figure 2: an ini-
tially flat membrane (i), undergoes budding (ii), then
this bud is pulled out and elongated (iii), potentially
constricted (iv) and finally scissioned (v).

In this review, we highlight the role of actin in
the dynamics of membrane tubules with the eyes of
physicists. Indeed, if the role of the microtubule cy-
toskeleton in the elongation of membrane tubules has
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Figure 2| Actin effect on the fate of membrane tubules
The membrane (black) is deformed over time by forces
produced by the actin cytoskeleton (green arrows). The time
sequence is as follows: (i) flat, (i) budding, (iii) tubulation, (iv)
constriction and (v) scission.
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been widely documented (Gurel et al., 2014; Terasaki
et al., 1986; Egea et al., 2015; Delevoye et al., 2014;
Du et al., 2016), we show here that actin dynam-
ics also have a crucial role in membrane tubules
formation, elongation and scission. It is crucial
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Remodelling of membrane tubules by the actin cytoskeleton

to understand this interaction between actin and
lipid tubules to fully describe the mechanisms of cell
trafficking and remodelling. Indeed, this question is
also of therapeutic importance, as it is clear that intra-
cellular traffic deregulation, namely because of actin
dynamics perturbation, is a hallmark of cancer pro-
gression (Mosesson et al., 2008). For instance, some
human tumours exhibit an unusual expression of pro-
teins (e.g., HIP1, HIP1R or cortactin) which co-
ordinate endocytic sites remodelling by the actin
cytoskeleton. Therefore, links between cancer and
endocyrosis, or more generally tubule remodelling,
through the perturbation of the actin cytoskeleton,
may be the subject of further therapeutic approaches
and motivates this digest of the state of the art. In sec-
tions Structural Tubules, Transient Tubules and Interme-
diate Tubular Structure, we present in vive experiments
that clearly demonstrate actin-induced remodelling
of structural, transient and intermediate tubules, re-
spectively, showing the ubiquitous role of actin in
tubule dynamics. In particular, we explore the me-
chanical role of actin in the steps depicted in Fig-
ure 2. Then, in section Physics of Membrane Tubule Re-
modelling, we describe the physical mechanisms that
explain membrane tubule morphology changes by
the action of cytoskeletal forces, by comparing the
forces required to deform membranes with the ones
generated by actin polymerisation. Finally, we show
that biomimetic systems help to unravel the phys-
ical mechanisms underlying membrane tubule re-
modelling by actin. The advantage over in vivo sit-
uation is that physical and biochemical parameters
can be tuned to test the validity of quantitative mod-
els and help to understand the experiments on living
cells (section In Vitro Tubule Remodelling by Actin).

Structural tubules

Endoplasmic reticulum

The outer nuclear envelope and the ER enclose a sin-
gle space called the ER lumen that takes 10% of the
cell volume. The ER membrane accounts for half of
the cellular membranes. Briefly, this organelle is es-
sential for protein and lipid syntheses. In particu-
lar, it produces lipids and transmembrane proteins
inserted inside lipid bilayers. The ER delivers pro-
teins by producing cransport vesicles addressed ro the
Golgi apparatus. It forms an interconnected membra-
nous network made of flatcened sheets (cisternae) and

Review

tubules spreading over the cytosol (Park and Black-
stone, 2010). The diameter of chese tubules lies in
the range of 30—100 nm (Gurel et al., 2014), whereas
their length is in the 0.5-2 pm range (Perkins et al.,
2020).

The role of microtubules in the maintenance of the
dynamic tubular structure of the ER in mammals
has been widely documented (Terasaki et al., 1986;
Gurel et al., 2014). Oppositely, in yeast, micro-
tubules have little effect on ER tubule dynamics
(Prinz et al., 2000). Generally, filamentous actin (or
F-Actin) colocalises with the ER, and the ER dynam-
ics are influenced by Arp2/3 complex nucleated actin
networks (Prinz et al., 2000; Griffing, 2010; Lynch
et al., 2011). The formation of tubules from the
ER and the control of their length (elongation and
retraction) is driven by the actomyosin cytoskeleton
(Sparkes et al., 2009; Griffing, 2010) (Figure 3(i)).
While these tubules do not undergo scission, the
presence of actin maintains the ER sheet—tubule
balance and affect their dynamics (Joensuu et al.,
2014). Scrikingly, the ER tubule network fluctuates
less when actin is depolymerised (Prinz et al., 2000).
This implies that actin polymerisation actively in-
creases the fluctuations of such rubules. Alcogether,
these suggest that remodelling and maintenance
of sheet—tubule balance in ER rely on branched
actin networks that stabilise the morphology of ER
sheets. Networks mediated by formins also asso-
ciate with ER/mitochondrion and ER/endosome
contacts (Figures 3(ii) and 3(iii)). While the role
of such networks is debated (Chhabra et al., 2009),
it has been reported that formin-mediated actin
networks are involved for mitochondrial fission and
endosome remodelling, as described later in sections
Mitochondrion and Endosomes

Mitochondrion
Mitochondria produce the energy (adenosine triphos-
phate) required to ensure cellular functions can occur.
They are double-membrane-enclosed organelles that
represent about a fifth of the cell volume and a chird
of its membrane surface (Alberts et al., 2002). Mito-
chondria have the shape of elongated cylinders, typ-
ically 1 ptm long with a diameter of 150-300 nm.
These dimensions may, however, vary between cell
lines (Hartch et al., 2014).

Mitochondria undergo fusion or fission to meet
the metabolic needs of the cell or to ensure their
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Figure 3| Actin is involved during endoplasmic reticulum (ER) remodelling

(i) Actin polymerisation, mediated by the Arp2/3 complex, drives tubules growth outward from the ER and control their retraction.
(ii) The ER tubules and mitochondrion interact at the future mitochondrial fission site, thanks to formin-mediated actin networks.
(iii) Tubules from the ER and tubular endosomes interact with actin. While branched Arp2/3 nucleated networks are involved in
endosome remodelling, the role of formin-mediated networks remains to be deciphered.
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Endosome
f remodeling
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tubulation fission

proper sharing between daughter cells during cell
division. Mitochondrial fission is an example of actin-
dependent tubular remodelling, even if the physical
mechanisms at play are unclear. The known elements
of this process are depicted in Figure 3(ii). Fission
occurs at ER/mitochondrion contact sites, where mi-
tochondria are surrounded by tubules formed from
the ER (Korobova et al., 2013, 2014). Arp2/3 com-
plex and formin mediated actin networks, together
with myosins, are recruited at these sites and in-
duce mitochondrion constriction (Korobova et al.,
2013; Ji et al., 2015; Moore et al., 2016; Schiavon
et al., 2020). The role of actin polymerisation or
myosin contraction forces on this constriction and its
precise role on mitochondrial fission remains to be
elucidated. Completion of mitochondrial scission re-
quires an additional protein, dynamin-related protein
1 (Drpl). It has been reported 7z vitro that Drpl had a
high affinity with actin, suggesting that the presence
of actin could induce its recruitment at mitochon-
drial fission site (Ji et al., 2015). Ultimately, Drpl
itself radially constricts and cuts the mitochondrion
(Hatch et al., 2014).

Transient tubules

Transient tubules are ubiquitously involved in intra-
cellular transport, which encompasses all the cellular
processes involving exchanges of material between
the membrane-delimited compartments of the cell:
cellular organelles and plasma membrane. Their
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formation follows the time sequence previously de-
scribed, which ends with the release of a transport
vesicle that will be carried through the cell. Such
transporters gather proteins and lipids needed for
the targeted region and vary in composition, size
and shape (Ratamero and Royle, 2019). Most trans-
porters are spherical but some can have a tubular
shape (Martinez-Menarguez, 2013). At a given en-
closed volume, a tube has a higher surface area than a
sphere. Consequently, the tubular geometry favours
lipid bilayer enrichment in transmembrane proteins,
while spherical vesicles efficiently transport water
soluble molecules.

Endocytosis

Endocytosis refers to the internalisation of molecules
from outside of the cell by the formation of a
membrane vesicle. The cell has several ways to in-
vaginate the membrane for endocytosis. It either
relies on clathrin, a protein that coats the mem-
brane and initiates its curvature at the endocytic site
(‘clathrin-mediated endocytosis’ or CME, sections
Clathrin-Mediated Endocytosis in Mammalian Cells and
Clathrin-Mediated Endocytosis in Yeast) or is clathrin-
independent (‘clathrin-independent endocytosis’ or
CIE) as in the case of Shiga toxin endocytosis (section
Endocytosis of Shiga Toxin) or caveolin-mediated endo-
cytosis (section Caveolae-Mediated Endocytosis). In the
following, we describe the role of actin during these
processes. In addition, one key player that controls
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Figure 4| Actin is involved during endocytosis

Summary of the role of actin in several types of endocytosis: clathrin-mediated (mammals and yeast) and clathrin-independent
(Shiga toxin and caveolae-mediated endocytosis). Endocytosis is based on budding, tubulation, constriction and fission. In the
presence of clathrin, the timing indicates the time that precedes fission. A question mark indicates that the involvement of actin

remains to be determined. Localisation of actin is indicative.

Clathrin-mediated -60s
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endocytosis is the local tension, which can be due to
both pure lipid membrane tension and to membrane—
cortex attachment (Hochmuth et al., 1996; Boulant
et al., 2011; Shin et al., 2018; Mundy et al., 2002).

Clathrin-mediated endocytosis in mammalian cells

It takes 1-5 min to go from invagination to fission,
relying on the cooperation of numerous proteins
(Yoshida et al., 2018) (Figure 4). The budding
mainly results from the clathrin coat. However, elec-
tron microscopy images show that a dense branched
actin network is present before tubulation and
forms a collar-like actin patch that surrounds the
bud (Collins et al., 2011). The orientation of the
filaments suggests that the actin network produces
compressive forces applied towards the bud. In a later

time, during tubule maturation, depolymerisation
of actin occurs until a new actin assembly is again
required 1 min before completion of the fission (see
first row, Figure 4). Therefore, actin polymerisation
may be involved in producing compressive forces that
enable scission. In addition, bent actin filaments have
been observed close to the neck, this could be a way
to store elastic energy that would later contribute to
tubule constriction (Akamatsu et al., 2020).

Clathrin-mediated endocytosis in yeast

Several proteins cooperate to provide, in a short pe-
riod of time (about 10 s), the necessary force to
counteract the high hydrostatic pressure: pressure
~10 atm = 1 MPa, membrane tension ~0.5 mN/m
and pulling force ~1 uN for endocytosis (Minc et al.,

© 2021 The Authors. Biology of the Cell published by Wiley-VCH GmbH on behalf of Société Frangaise des Microscopies and Société de Biologie Cellulaire de

France

46

/b0/62) 1O K101 SUIUQ) AD[IAL *DURLY SURIY0) KQ §1000Z02-0G/1 | 11°01/10p/0 Ko[1anreiquaut|uo;/sdiy wosy papeojumo] °§ ‘1207 “XTZESILL

T4

:sdipy) SUONIPUO) pur sua | ) 33§ (€20

oA

25U SUOWILIO) AN H(quat|dde 343 £q PILIIAOT A1k AL Y() 951 JO $aYNI 10f KIRIGE] UIUQ AI[Lp) UO



Hoe8

2009; Basu et al., 2014; Lemiére and Berro, 2018;
Dmitrieff and Nédélec, 2016). Endocytosis in yeast
strictly relies on the assembly of a highly dynamic
branched actin network (Gachet and Hyams, 2005;
Goode et al., 2015) (Figure 4, second row) and both
inhibition of actin polymerisation and stabilisation
of filaments with jasplakinolide inhibits endocytosis
(Ayscough, 2000; Kaksonen et al., 2003; Aghamo-
hammadzadeh and Ayscough, 2009).

Endocytosis starts with the arrival of coat pro-
teins, including clathrin and its adaptors with actin-
binding domains (Skruzny et al., 2012). This step
prepares the site for the assembly of a branched actin
network (Figure 4). At a late stage of the coating,
about 8 s before fission, it is still unclear whether
actin dynamics help the formation of the initial bud
(Goode er al., 2015). Data indicates that inhibition
of actin polymerisation with latrunculin A prevents
membrane bending at the endocytic site (Kukulski
et al., 2012; Picco et al., 2015), while immuno-
EM images suggest that membrane bending pre-
cedes actin network assembly (Idrissi et al., 2012).
It was suggested that membrane curvature appears
only when the membrane and the actin polymerisa-
tion are coupled by clathrin adaptors at the cip of the
invagination (Picco et al., 2018).

During tubule elongation, nucleation and poly-
merisation of new branched filaments at cthe plasma
membrane drive tubule elongation thanks to actin-
linking proteins, such as epsin, which couples F-actin
and the tip (Sirotkin et al., 2010; Kaksonen et al.,
2003). Tubule elongation ends 2 s before fission, up
to a tubule length of 140 nm and a cip radius of
7—40 nm (Picco et al., 2018). Then, the actin net-
work reorganises, it extends its volume, F-actin sev-
ering increases and the polymerisation rate is reduced
(Chen and Pollard, 2013; Picco et al., 2015; Sirotkin
et al., 2010). This reorganisation drives fission and
internalisation of a vesicle (Kaksonen et al., 2005,
2003).

Endocytosis of Shiga toxin

The endocytosis of the bacterial Shiga toxin is an ex-
ample of clathrin-independent endocytosis (Figure 4,
third row). The first step of this process is the induc-
tion of tubular membrane invaginations towards the
cell interior. (Romer et al., 2007). Actin networks are
not required for the formation and elongation of these
tubules, while their scission is actin dependent. In-
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deed, tubule formation is due to the imposition of
a local negative curvature to the membrane by the
binding of the toxin, without contribution of actin
dynamics. Oppositely, tube scission is clearly actin
dependent, as inhibition of actin polymerisation leads
to the accumulation of stable and longer tubules. To
explain this scission mechanism, it has been proposed
that actin dynamics were triggering the formation of
lipids nanodomains in the membrane, that could lead
to tubule scission (Romer et al., 2010). This hypoth-
esis emerges from two results: On one hand, actin af-
fects the phase behaviour of lipid domains in model
membranes (Liu and Fletcher, 2006), on the other
hand, the presence of domains favours tubule scission
because of the energetic cost of boundaries berween
domains (Roux et al., 2005; Allain et al., 2004). This
suggests that actin polymerisation could favour the
formation of lipid nanodomains in the membrane and
thus indirectly induce membrane scission.

Ultrafast clathrin-independent endocytosis

While most evidence shows that tubule remodelling
during endocyrosis relies on the presence of a dense
branched actin network able to produce substan-
tial forces, some cells internalise cargoes thanks to
formin-mediated actin bundles (Soykan et al., 2017;
Shin et al., 2018). For instance, neurotransmission
in mice is based on the fusion of synaptic vesicles
followed by two types of endocytosis: slow CME of
synaptic vesicle proteins with a time of about 1-
10 s and ultrafast CIE that rapidly recycles synap-
tic vesicles within 100 ms (Soykan et al., 2017).
In particular, tubule fission during CIE is associ-
ated with formin-mediated actin bundles, coupled
with myosin II, rather than mediated by the Arp2/3
complex.

Caveolae-mediated endocytosis

Caveolae-mediated endocytosis involves invagina-
tions formed by the transmembrane protein cave-
olin, that pinches off cholesterol-rich microdomains
serving as reservoirs when the plasma membrane is
stretched (Conner and Schmid, 2003; Bastiani and
Parton, 2010; Sinha et al., 2011). This type of en-
docytosis leads to the internalisation of small vesi-
cles with a diameter of about 50—60 nm (Conner
and Schmid, 2003). Caveolae-mediated endocyro-
sis is Arp2/3 complex independent and the endo-
cytic sites associate with actin stress fibres (Rohlich
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Remodelling of membrane tubules by the actin cytoskeleton

and Allison, 1976; Echarri et al., 2012; Echarri and
Del Pozo, 2015) (Figure 4). For example, the virus
SV40 hijacks the endocytic pathway to enter che cell.
More specifically, this virus induces a breakdown of
actin stress fibres to promote virus entry through
caveolae-mediated endocytosis (Pelkmans et al.,
2002). Last, an actin patch emerges to form an actin
tail that propels the enclosed virus from the endocytic
site. While actin is unquestionably present, its me-
chanical role during this form of endocytosis remains
to be elucidated.

Transport from the Golgi apparatus
The morphology of the Golgi apparatus is highly
variable among living systems, ranging from isolated
tubules to stacked compartments (Egea et al., 2013).
For eukaryotes, one cisterna faces the ER to trade
material, the medial stacks sort proteins for correct
addressing, while the last cisterna, the trans-Golgi
network (TGN), faces the plasma membrane. The lat-
ter redirects vesicles towards different cell locations,
such as the plasma membrane or endosomes. The
study of the interaction between actin and the Golgi
apparatus is challenging because of its proximity to
the nucleus, a region abundant in proteins, including
actin (Gurel et al., 2014). Besides, the microtubule
cytoskeleton plays an important role in maintaining
the shape and dynamics of the Golgi apparatus, as
reviewed in (Egea et al., 2015). In particular, micro-
tubules and microtubules-associated motors control
the formation and fusion of tubular structures from
the Golgi. Here, we restrict to the effect of actin
dynamics on the fate of membrane tubules.
ER-Golgi apparatus exchanges require activation
of the Arp2/3 complex (Campellone et al., 2008). The
induced branched actin network polymerises on the
Golgi apparatus and is then involved in vesicle se-
cretion from the TGN (Chen et al., 2004; Almeida
et al., 2011). There is no evidence that actin is able
to induce the budding while the Arp2/3 complex de-
fect inhibits elongation of tubules (Almeida et al.,
2011). A burst of actin, associated with several types
of myosins near the Golgi, precedes fission events,
suggesting the role of actomyosin dynamics during
constriction and scission (Delestre-Delacour et al.,
2017; Brownhill et al., 2009; Miserey-Lenkei et al.,
2017; Almeida et al., 2011). Furthermore, it has
been proposed that the association of actin might af-
fect Golgi functions by spatially segregating its se-

Review

cretory activities to some given membrane regions,
others being inhibited by the presence of actin that
impairs membrane remodelling. The detailed physi-
cal mechanisms remain to be elucidated (Egea et al.,
2015).

Intermediate tubular structures
Endosomes

The endosomes (from early to late) are the interme-
diates between organelles that send (Golgi, plasma
membrane) and the ones that receive (Golgi, lyso-
some or plasma membrane) transport vesicles. An
early endosome has a tubular-vesicular shape and is
often located at the periphery of the cell to sort pro-
teins coming from the plasma membrane. Some pro-
teins are redirected back to the plasma membrane for
recycling, while remaining early endosomes mature
to form late endosomes. The late endosome is a hub
that sorts proteins towards TGN or lysosomes (sec-
tion Lysosomes).

The nucleation of branched actin necworks appears
at the contact site between endosomal and ER tubules
(Figure 3(iii)) (Rowland et al., 2014; Dong et al.,
2016). Branched actin networks are involved in the
maintenance of endosome morphology, as observed
by knocking ourt the activation of the Arp2/3 com-
plex (Gomez et al., 2012). However, its knockdown
increases both endosomal membrane tubulation and
fission defects (Derivery et al., 2009; Gomez and Bil-
ladeau, 2009; Duleh and Welch, 2010). F-actin net-
works stabilise the morphology of endosomes, which
might help initiate a membrane tubule, while micro-
tubule associated-molecular motors further elongate
these tubules (Delevoye et al., 2014) that eventually
undergo fission thanks to the actin cytoskeleton.

Lysosomes

‘Lysosome’ is a term that includes numerous or-
ganelles, such as endolysosomes, phagolysosomes and
autolysosomes, which all have different functions
(Saffi and Botelho, 2019). In general, lysosomes de-
grade cargoes from endocytosis or autophagy. They
are spherical organelles with an acidic lumen where
molecules are digested. Transmembrane proteins en-
sure the passage of the digested products back to-
wards the cytosol. The lysosomes also differ in shape:
they can have either a vesicular or a 10 pum-long
tubular shape (Chow et al., 2002). The lysosomes
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Figure 5| Actin is involved in lysosome, melanosome and autolysosome remodelling

(A) The membrane of a parent lysosome can undergo membrane deformation to form a bud (i) or a tubule (i and iii). They may
undergo fission to release a vesicular (i and ii) or tubular (jii) intermediate. Adapted from (Saffi and Botelho, 2019). (B) Branched
actin networks might play a role in tubule remodelling during the recycling pathway from melanosomes. Adapted from (Ripoll
et al., 2018). (C) During autolysosome reformation, a branched actin network facilitates (i) budding and (ji) tubulation of the
autolysosome. Adapted from (Dai et al., 2019).
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are first remodelled by clathrin, which provides the
initial membrane curvature required to form a bud
that lately undergoes fission into a vesicle or is elon-
gated into a tubule (Sridhar et al., 2013; Saffi and
Botelho, 2019) (Figure 5A). Therefore, as for endoso-
mal tubules, /7 vivo experiments show that extrusion,
constriction and fission of lysosomal tubules might
depend on branched actin dynamics, whereas mi-
crotubule associated-molecular motors elongate these
tubules. The physical mechanisms of actomyosin in-
duced endosomal tubules remain to be explored.

Melanosomes

Melanosomes share common properties with endo-
somes and lysosomes (Marks et al., 2013). Similar
to endosomes, they are hubs for endocytic cargoes,
serve as a storage for melanin pigments and recycle
proteins and lipids via tubule carriers. Tubulation
itself might occur without the need of actin, while
constriction and fission at the neck are mediated by
myosin VI, a non-conventional myosin that walks
on actin filaments towards their minus end, and rely
on the presence of a branched actin network rather
than formin-mediated actin filaments (Ripoll et al.,
2018) (Figure 5B). Both depletion of the activator of
the Arp2/3 complex and inhibition of the branched
actin network assembly affect the neck constriction,
and thus increase fission defects.

Autolysosomes

The autophagy pathway allows degradation of in-
tracellular contents—such as proteins, organelles or
foreign bodies—first encapsulated in an autophago-
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some that ultimately fuses with lysosomes (Yu
et al.,, 2018). The last step of autophagy consists
in autophagic lysosome reformation, during which
budding, pulling of micrometre-sized tubules and
fission of their tip occur successively (Munson et al.,
2015; Yu et al., 2010) (Figures 5C(i) and 5(ii)). The
overall process is similar to CME: clathrin initiates
budding (Rong et al., 2012), molecular motors walk-
ing on microtubule tracks pull the invagination (Du
et al., 2016) while dynamin induces tubule fission
(Schulze et al., 2013). The presence of a branched
actin network localised at the base of the invagination
is required for autolysosome tubulation and might
facilitate its initiation (Dai et al., 2019). The role of
actin during the remaining steps is still unexplored.

Physics of membrane tubule remodelling
To understand what could be the physical effect of
actin dynamics in the examples of tubules remod-
elling presented before, let us start by estimating
the maximal force generated by a single poly-
merising actin filament (Kovar and Pollard, 2004).
The rigidity of an actin filament is the product of
its persistence length L, by the thermal energy,
kT X L, ~ 6.1072° N m? where £ is the Boltz-
mann constant, 7" the temperature, and L, ~15 tm
(Isambert et al., 1995). Then, the force to buckle
a filament F is proportional to this rigidity and
inversely proportional to the filament length L:
F = m?*B T x Lp. Buckling of a one-side attached
filament has been experimentally observed for a
filament of L ~ 1 pm in length (Kovar and Pollard,
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Remodelling of membrane tubules by the actin cytoskeleton

2004). Therefore, the maximal force generated by a
single actin filament can be estimated to 1 pN.

The force at the tip of finger-like cell protrusions
(flopodia) has been measured with micropipette suc-
tion and optical tweezers experiments at 10-50 pN
(Peskin etal., 1993; Hochmuth et al., 1996; Shao and
Hochmuth, 1996). The force at the protruding edge
of the lamellipodia, measured by traction force mi-
croscopy, is much larger: 10-200 nN (Harris et al.,
1980; Lee et al., 1994; Oliver et al., 1995). Alto-
gether, this show that the assembly of various actin
networks enable cells to exert forces in the range of
10-200 pN on cell membranes.

Besides, the physics of lipid bilayers can be char-
acterised in our context by two parameters: their
bending modulus & and tension o. In cells, the
bending modulus lies in the range of 10-50 4T,
where kT is the thermal energy, therefore the
membrane is subjected to intense thermal fluctua-
tions, while the membrane tension varies from 10
to 300 wN/m (Gauthier et al., 2012; Lieber et al.,
2013; Batchelder et al., 2011). In the context of
tubule formation, membranes deform following
the previously described sequence. The first step,
tubule initiation, corresponds to the budding of a
flac. membrane to a curved bulge. The energy per
unic area required to bend a flac membrane sheet
is given by e, = 2x/R* where R is the curvature
radius of the bulge (Helfrich, 1973). Consequently,
for R = 100 nm, the maximal energy per unit area
associated to bending is ¢, = 0.04 pN/nm. Then,
the maximal force to bend the membrane over a
height of R is F, = ¢, x R = 4 pN. This force is
thus comparable to the force generated by a single
actin filament of 1 pN, Therefore, few polymerising
filaments in a gel can generate sufficient forces to
induce a membrane bulge.

After budding, tubulation occurs if a force /s fur-
ther applied on the bulge. After an overshoot force
for tubule initiation (Derényi et al., 2002), the free
energy of the tubule reads:

TK
Frubule = ?L + 2R, Lo — fL (1)
t

where L is the tubule length and R, its radius. This
free energy is composed of three terms that respec-
tively describe the bending energy, the effect of ten-
sion and the mechanical work of the external force.
This last expression allows calculating the equilib-

Review

rium tubule radius Ry and force f; of the tubule, that
are related by (Waugh and Hochmuth, 1987) and
(Derényi et al., 2002):

2
fo=2m+2k0o = ;K (2)

0

These relations link the tubule radius R, with its
mechanical properties (bending modulus and mem-
brane tension). Taking the values given above allows
tubule radii in the range 8—100 nm and leads to
forces in the 2—160 pN range. Therefore, several
polymerising filaments are sufficient to elongate a
membrane tubule by pulling at its tip, provided that
its tension is not too large (Simon et al., 2019).

Once the tubule is formed, it can be affected by
polymerisation of proteins, such as dynamin, lead-
ing to its constriction. Whether actin can induce the
same polymerisation force remains to be explored.
In che sicuation where this polymerisation applies a
pressure P, on the tubule surface, its free energy be-
comes (Roux et al., 2010):

K 5
Feubule = R_L + 2nRoLo +P,nR°L (3)
0

In this equation, the bending modulus term tends
to increase the tubule radius, while both membrane
tension and positive actin polymerisation pressure
will decrease it. There is, thus, a critical radius
R. = 20P, at which these two compressive effects
are equal. To estimate the polymerisation pressure P,
in the case of actin, we consider that each filament ex-
erts a force of 1 pN on a surface £2 = (50 nm)?, which
is the characteristic actin network mesh size (Pontani
et al., 2009; Kawska et al., 2012), yielding a pres-
sure of P, = 10° Pa. The actin pressure contribution
will overrake the one of membrane tension for radii
Ry » R. = 20—400 nm. Therefore, actin alone would
be dominant for large membrane tubules, which are
still in the range of few actin network mesh size. Po-
tentially, the local compression of the tubule could
help with its scission and, thus, the release of a trans-
porter.

Besides its direct role in force generation, actin
may also induce indirect forces, through friction (Al-
lard et al., 2020a; Campillo et al., 2013; Guevorkian
et al., 2015; Borghi and Brochard-Wyart, 2007).
During the overall process of tubule formation, lipids
flow from the flat membrane towards the tubule.
Since the cell membrane is highly coupled with
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abundant transmembrane proteins and connected
with the underlying actin cortex, lipid mobility is
hindered, which affect the dynamics of tubule ex-
trusion. The presence of such a friction could ulti-
mately lead to the scission of tubules under elon-
gation (Simunovic et al., 2017). As previously de-
scribed, there is experimental evidence of the role of
actin in one or several steps of membrane tubule re-
modelling in vivo (sections Structural Tubules, Tran-
sient Tubules and Intermediate Tubular Structure). Due
to the complexity of the processes involved in cells,
deciphering the mechanical role of actin in tubule re-
modelling is difficult. The use of in vitro systems is
thus an appealing alternative.

In vitro tubule remodelling by actin
Assessing the role of actin i vive can be complex
because of its numerous vital functions (division, mi-
gration, etc.). Thus, modifying the actin cytoskeleton
to determine its effect on a particular process can in-
duce perturbations on others. Therefore, the physical
mechanisms by which actin affects tubule morphol-
ogy are challenging to elucidate in the complex
environment of the cell interior. Moreover, the nano-
metric size of tubules, comparable with the typical
mesh size of actin networks (~30-50 nm; Kawska
et al., 2012), adds an additional difficuley. In order
to reduce this complexity, in vitro systems present
the advantage of a controlled biochemical environ-
ment and enable nano- imaging and mechanically
probing the tubules, opening the way to decipher
the mechanical role of actin in tubule remodelling.

Historically, biomimetic experiments based on
actin polymerisation at the surface of micrometric
objects could first reproduce actin-based mortility
on: hard beads (Loisel et al., 1999; Cameron et al.,
1999; Noireaux et al., 2000; Bernheim-Groswasser
et al., 2002), liquid droplets (Boukellal et al., 2003;
Trichet et al., 2008) or giant liposomes larger than
10 pm (Upadhyaya et al., 2003; Giardini et al.,
2003). While new polymerisation occurs at the bead
or droplet surface where Arp2/3 complex activators
are located, elastic stresses build up in the actin net-
work (Noireaux et al., 2000). These stresses induce
the network rupture and actin forms a tail that pro-
pels the object forward.

In liposome experiments, polymerisation activa-
tors are coupled to lipid heads. These experiments
recapitulate some steps of tubule evolution depicted
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in Figure 2. During the formation of an actin rail
propelling liposomes bathed in cytoplasmic extract,
a large tubule was first observed at the centre of the
tail (Giardini et al., 2003).

Liposomes bathed in the cytosol of HEK cells
exhibit many tubules (Anitei et al., 2017). To ex-
plain their extrusion and elongation, the authors
propose the following mechanism: clathrin induces
membrane budding and tubule elongation remains
dependent on the mechanical action of the actin
network. Recently, liposomes covered by a polymeri-
sation activator, and bached in a minimal cockrail
of pure proteins exhibit two types of membrane
protrusion (Simon et al., 2019): ‘spikes’ towards
the liposome interior, reminiscent of filopodia, and
tubules towards their exterior (Figures 6A-GC).
These tubules are very similar to the ones observed
by (Anitei et al.,, 2017) in cell extracts, showing
that budding and tubule elongation can successfully
happen in the absence of membrane-bending pro-
teins, only because of actin polymerisation dynamics.
Interestingly, membrane tension controls the type of
protrusion: spikes form only at low tension, whereas
tubules always appear. Altogether, these results
highlight the crucial role of actin in tubule forma-
tion, and its ability to form tubules independently
without the help of motors or membrane bending
proteins. Inward and outward protrusions were also
observed when actin polymerises at the inner surface
of liposomes, and depend on the presence of capping
proteins (Diirre et al., 2018). Furthermore, when
non-muscle myosin II is added, fission of inward
membrane deformations was observed.

Additionally, the mechanics and morphology of
preformed membrane tubules are affected by the
presence of branched actin networks (Figures 6D and
GE). Atomic force microscopy (AFM) nanomapping
of tubules before and after actin polymerisation at
their surface allows direct observation of 2 ~ 100 nm
sheath of actin that surrounds the tubule and in-
creases its effective rigidicy (Lamour et al., 2020). Us-
ing optical tweezers, tubules surrounded by an actin
sheath can mechanically be probed by mimicking
tubule elongation iz vive under the action of molecu-
lar motors (Allard et al., 2020a). In this case, the fate
of the tubule depends on the actin amount: A sleeve
thicker than a few hundreds of nanometres is unable
to deform and such a sheath of actin stabilises the
entire tubule, in length and radius, while at smaller
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Remodelling of membrane tubules by the actin cytoskeleton

Figure 6 | In vitro systems to study the effect reconstituted actin networks on membrane nanotubes

(A-C) Confocal observations of inwards (spikes) and outwards (tubules) protrusions induced by the growth of a branched actin
network on initially spherical vesicles. Membrane is observed in A, capping protein in B and merge in C, scale bar 5 um.
Reproduced from (Simon et al., 2019). (D and E) AFM imaging of bare preformed tubules on a glass substrate before (D) and
after actin polymerisation (E). Reproduced from (Lamour et al., 2020). (F and G) Confocal images before (F) and after (G) pulling
a preformed tubule held by an optical tweezer, revealing local changes in tubule radius due to lipid mobility hindrance by the
presence of the actin cytoskeleton (arrows). See (Allard et al., 2020a) for more details.

Nanotubes + F-actin

250 nm
p—

sleeve thicknesses, pulling on the membrane tubule
allows tearing the surrounding actin sleeve. Discon-
tinuous tubule regions appear and smaller tubule
radii are observed in portions where the actin sleeve is
absent (Figures 6F and 6G). This heterogeneity stems
from lipids flow hindrance under the actin sleeve.
When maintained for several minutes, the tubule ra-
dius homogenises along its length. Inside the cell,
actin may provide enough time and curvature geome-
tries for the binding of remodelling proteins that act
on tubule stability/instability (Morlot et al., 2012).
Finally, the actin sheath damps the thermal fluctu-
ations of the tubule (Allard et al., 2020b). In these
studies, tubule scission by actin dynamics were never
observed and may rely on other parameters such as
the lipid composition or the presence of molecular
motors.

Conclusion
The role of actin is crucial during all steps of tubule
remodelling, namely membrane budding, tubule

elongation, constriction and scission. Many 7z vivo
examples presented in sections Structural Tubules,
Transient Tubules and Intermediate Tubular Structure
show that actin dynamics are implied in all stages
of tubule formation and destabilisation, in a variety
of physiological contexts. The general importance of
the actin-microtubule crosstalk (Pimm and Henty-
Ridilla, 2021) highlights the unelucidated question
of the relative importance of actin and microtubule-
induced tubulation. We have shown that
microtubule-associated motors were mainly involved
in the elongation of tubules, as in the case of the Golgi
apparatus, or in the long-range transport of transport
intermediates after tubule scission, in endocytosis for
instance. Nevertheless, we have also highlighted that
actin and microtubules were both necessary to main-
tain the dynamical shape of the ER notably, showing
that they could have synergistic or redundant roles
that are still unclear. In processes, as tubulation from
the Golgi, actin and microtubules affect different
steps of tubules formation, raising the question of
how the timing of actin and microtubule-related
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steps are orchestrated. Besides, we show in section
Physics of Membrane Tubule Remodelling, based on
simple considerations of membrane tubule and actin
biophysics, that actin dynamics are theoretically able
to bud, elongate and constrict membrane tubules.
Finally, in section In Vitro Tubule Remodelling by Actin,
we detail that in vitro experiments are powerful to
decipher the mechanics of tubule remodelling. In
particular, they clearly show that actin alone can ini-
tiate budding and elongation of membrane tubules
(Simon et al., 2019). Actin polymerisation on formed
tubules induces their stabilisation, whereas scission
could have been expected from in vive experiments.
To go further in the biomimetic approach and closer
to the cellular situation, the effect of other players has
to be further investigated in vitro, in particular com-
plex membrane compositions and motor proteins. A
combination of top-down and bottom-up approaches
promises exciting experiments for future years.
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MATERIALS AND METHODS

3.1

3.2

BUFFERS

If not specified, all chemicals are purchased from Sigma-Aldrich (St.
Louis, Missouri). The buffer for nanotube formation, referred to as NaCl
buffer, contains 100 mM NaCl and 20 mM [(4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid) HEPES] at pH 7.4. A second buffer,
referred to as TPl (the internal buffer of GUVs) contains 200 mM
sucrose, 2 mM Tris in Milli Q water. Then, for actin polymerisation
experiments, we used a buffer referred to as TPE (the external buffer
of GUVs) that contains 95 mM sucrose, 1 mM Tris, 50 mM KCl, 2 mM
MgClI2, 0.1 mM DTT, 0.02 mg/ml B-casein and 2 mM ATP in Milli Q
water. A third buffer, referred to as G-buffer, is used to prepare actin
monomers in solution. It contains 2 mM Tris, 0.2 mM CaCl2, 0.2 mM
DTT and 0.2 mM ATP. To avoid ATP denaturation, its addition to TPE
or G-buffer is executed on ice. Final buffers are adjusted to 7.4 pH and
200 mOsm. They are stored at -20°C for up to 6 months.

BIOMIMETIC MEMBRANE SYSTEMS

1,2-dioleoyl-sn-glycero-3-phosphocholine (referred to as DOPC), N-
(dodecanoyl)-sphing-4-enine-1-phosphocholine (sphingomyelin, re-
ferred to as SM), cholesterol (referred as C) from ovine wool, DSPE-PEG
(2000)-Biotin  (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
[biotinyl(polyethylene glycol) 2000]) (PEG-biotin lipids) and 18:1 DGS-
NTA(Ni) (1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)
iminodiacetic acid)succinyl] (Ni-NTA) are obtained from Avanti® Polar
Lipids, Inc. (Alabaster, AL). Fluorescent lipids are Texas Red™ r-1,2-di-
hexadecanoylsn-glycero-3-phosphoethanolamine triethylammonium
salt (Texas-Red™ DHPE) and 4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-
Diaza-s-Indacene-3-Pentanoic Acid (BODIPY™ FL C5) from Ther-
moFisher (Waltham, MA).

Figure 11 recapitulates all the lipid compositions used in this work:
standard homogenous membranes and ternary lipid mixtures (referred
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3.2.1

to as heterogeneous) forming lipid domains. Ternary lipid mixture
containing DOPC, cholesterol and sphingomyelin (at a molecular ratio
of 2:1:2) are mixed with fluorescent lipids at 0.5% and PEG-biotin at 0.1
% or 3 % to prepare Giant Unilamellar Vesicles (GUV) or nanotubes,
respectively. Final lipid mixtures are at 2.5 mg/mL in the organic
solvent chloroform/methanol 5:3 (viv) and stored at -20°C. Lipid
mixtures are ready to be deposited on the proper support to form
GUVs or lipid nanotubes.

Giant Unilamellar Vesicles preparation

GUVs are prepared using the electroformation technique, adapted
from (Angelova and Dimitrov 1988), which consists in rehydrating a
dried lipid film under an electric field. The first step is to spread a 10
uL lipid mixture on the conductive side of two indium tin oxide (ITO)-
coated glass slides. A nitrogen stream dries the organic solvent applied
for a few seconds. A 1 mm thick PDMS spacer is placed between the
two ITO glass slides (conductive sides facing each other), forming a
closed chamber, which is then filled with 400 pL TPl using a 0.75 pm
diameter needle syringe. An alternating current is applied (10 Hz, 1V
RMS) between the two slides for two h. For homogeneous lipid
mixtures, this step is performed at room temperature and over the
miscibility temperature for heterogeneous lipid mixtures, which is
60°C. GUVs are then collected using the same syringe and conserved
at 4°C for up to one week.
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3.2.2

Mol %
Composition Homogeneous Heterogeneous
Sphingomyelin - 64.5 42.8 42.8 42.8
Cholesterol - 349 13.8 13.8 13.8
DOPC 99.4 - 42.8 42.8 42.8
DSPE-PEG 0.1 0.1 0.1 (3 for )
(2000) Biotin nanotubes)
DGS-NTA(Ni) - - - - 1
TeEaHSEEd_ 0.5 0.5 05 i 05
Bodipy-FL-C5 - - - 0.1 -

Figure 11: Composition of homogeneous and heterogeneous lipid
mixtures used for GUVs or nanotube preparation, including fluorescent
lipids and lipids used to bind actin NPF (PEG-biotin and Ni-NTA).

Supported membrane nanotubes

To perform AFM analysis and extract the mechanical properties of lipid
nanotubes, the latter must be attached to a surface, as presented later
in section 4.1. Thus, we will present here how we coat glass substrates.

Glass functionalisation with streptavidin

For this work, we used 35 mm dishes comprising a 14 mm-diameter
uncoated glass well at their centre (MatTek Corporation, Ashland, MA).
They avoid using standard 35 mm dishes and thus reduce the amount
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of proteins used for actin network reconstitution assays.

Firstly, glass bottom wells are cleaned with ethanol, activated by ozone
exposition, and filled with a solution of 94 % methanol, 4 % deionised
water, 2 % of 3-aminopropyl-triethoxysilane (APTES, 97 % purity; from
Sigma-Aldrich, St. Louis, Missouri) (viv) and 1 mM acetic acid. After 48
h, a coat of APTES is formed on top of the glass by chemisorption as
depicted in Figure 12. The glass surface is rinsed with ethanol and
dried with a nitrogen stream. Then, a monolayer of streptavidin is
grafted on the APTES layer by first immersing the silanised glass in a
glutaraldehyde solution (12 % in water), which is rinsed with water after
20 min, and then, for 50 min in a solution of streptavidin (from Sigma-
Aldrich) diluted at 5 pg/mL in PBS. To elute and eliminate non-
covalently bound streptavidin, the glass surface is rinsed in the
following order with PBS, SDS (0.01 % in water) and deionised water to
remove salts. Finally, the surface is dried with a nitrogen stream and
kept dry for up to 3 months.

A (?/\CH3
SN
Glass slide <+ —Si—
}OH HC O S‘I OMN H,
HC O

3-(Aminopropyl)triethoxysilane

S

! -3
Glass slide O*S‘ |*O\/\N H2 H w H
(‘) Gutaraldehyde
c ‘ l’ NH, R
O Protein or Peptide
L.
Glass slidej‘O_SI_O\/\N I‘\l _ R
? H H

Figure 12: Glass silanisation steps. A: Formation of APTES monolayer
on the glass; B: Formation of a covalent bridge by glutaraldehyde
(aldehyde groups) between APTES (amine group) and C: Streptavidin
(represented by R bonded to an amine group)
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3.3

Formation of lipid nanotubes

1 pL of the desired lipid mixture at 2 mg/mL is deposited in several
droplets of about 0.1 pyL on streptavidin-coated glass. The organic
solvent is dried with a nitrogen stream. Lipid droplets are rehydrated
in 2 mL NaCl buffer at 100 mM. Then, a hydrodynamic flow is manually
applied with a 1 mL pipette to form tubes from the lipid deposits.
Lipids presenting a PEG-biotin at their polar heads bind to streptavidin,
forming supported lipid nanotubes. At last, the chamber is rinsed twice
with 2 mL of TPI to remove exceeding floating lipids. Lipid nanotubes
are now ready for experiments and microscope observation.

RECONSTITUTED ACTIN NETWORKS

Porcine Arp2/3, alpha-actinin (rabbit skeletal muscle, >90% pure) and
fascin (Wild-Type, Human Recombinant, > 95% pure) are purchased
from Cytoskeleton (Denver, CO). Proline-rich domain VCA of human
WASP with a streptavidin and histidine tag (S-pVCA-His), mouse a1f32
capping protein and profiling are all purified at UMR 168,
PhysicoChimie Curie by John Manzi.

Biotinylated or nickel lipids are used to link the proline-rich domain
VCA (pVCA) of human WASP via its streptavidin or histidine tag (S-
pVCA-His), respectively, to activate the Arp 2/3 complex and actin
polymerisation.

Preparation of actin monomers

For this reconstitution, commercial actin (rabbit skeletal muscle, >99%
pure from Cytoskeleton, Denver, CO) and fluorescent actin (Actin, from
rabbit muscle, Alexa Fluor™ 488 conjugate, in solution from
Thermofisher, Waltham, MA) are mixed at a ratio of 15% in G-buffer at
a final concentration of 30 yM of actin monomers and left to
depolymerise for 48h. This actin solution is then stored at 4°C for up
to 3 weeks.

Actin polymerisation on the GUVs surface

First, we coat the GUV surface comprising biotinylated lipids with the
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NPF SpVCA. In an Eppendorf tube, 10 pL of freshly electroformed GUVs
are incubated in 350 uM SpVCA for a final volume of 20 uL in TPE for
15 minutes. In a second Eppendorf tube, 5 minutes before SpVCA
coating is completed, 15 pL of the actin polymerisation cocktail is
prepared in TPE with the following actin-binding proteins (ABP) at the
following concentrations: 37 nM Arp2/3, 25 nM capping protein, 3 uM
profilin, and 3 pyM actin monomers as in (Carvalho et al. 2013). For
further experiments, we added a-actinin or fascin at a ratio of V4 for G-
actin to the polymerisation solution. Then, 5 uL of SpVCA-coated GUVs
are added for actin polymerisation for 15 minutes and finally diluted
twice in TPE to stop polymerisation.

Actin polymerisation on nanotubes

The Actin polymerisation protocol on tubes is adapted from the
protocol for GUVs. Tubes are attached to the glass-bottom microwells
of the Mattek dishes, which volume is 150 pL, and after nanotube
formation, the whole dish is filled with 2 mL TPI. Then, TPl is carefully
removed, leaving 150 pL at the glass-bottom microwell, and the whole
dish is refilled with 2 mL TPE, the suitable buffer for SpVCA coating.

Before SpVCA coating, we remove TPE, leaving 150 pL in the glass-
bottom microwell used for incubation. Incubation time is 15 minutes
for a final concentration of 800 nM SpVCA in the microwell. After that,
non-bounded SpVCA is removed to prevent non-specific actin
polymerisation by gently adding 2 mL of TPE in the Mattek well and
removing it, leaving 150 pL in the glass-bottom microwell. Then, the
actin polymerisation solution at final concentrations of ABPs and actin
added into the 150 pyL microwell corresponds to the concentrations
used for actin polymerisation on GUVs.
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34

3.4.1

34.2

MICROSCOPY TECHNIQUES

Epifluorescence microscopy

Fluorescent images are acquired using a Zeiss inverted microscope
with a 63x oil-immersion objective to perform epifluorescence
microscopy (GFP filter cube, excitation 470 nm, emission 525 nm; Texas
red filter cube: excitation 545-580 nm). Images are collected by
AxioCam MRm® camera (Zeiss).

Image analysis are performed with ImageJ software. On the GUVs, the
coupled to actin networks following parameters were measured:

l.  size is obtained by fitting an ellipse to the GUV contour,
ll.  aspect ratio,
lll.  actin tail length

Stimulated Emisson Depletion Microscopy (STED)

The principle of STED relies on a donut shape-controlled fluorescence
(Figure 13). This means that at the central hole, an excitation
wavelength activates the fluorochromes, and a second beam induces
a ground state around this central area. The constricted activated area
is around 20 nm, which makes STED a super resolution microscopy
technique.
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Figure 13: Scheme of STED microscopy principle showing the
excitation laser at the centre surrounded by the STED laser, which results
in a 20 nm central fluorescence point (https.//abberior.rocks/knowledge-
base/how-the-donut-changed-the-world/).

For STED microscopy assays, abberior STAR RED conjugated to 1,2-
dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) was kindly
provided by Frédéric Eghiaian from Abberior instruments. STAR RED is
also known as KK114, and a wavelength between 630 — 650 nm can
excite it. At 0.2 % STAR RED-DOPE replaced TexasRed-DHPE for STED
experiments.

Atomic Force Microscopy (AFM)

For AFM experiments, we used BL-AC40TS-C2 cantilevers (Olympus).
The tip apex is in silicon, has a radius of around 8 nm, resonates at
about 25 kHz in liquid, and has a spring constant of 0.09-0.12 N/m.
We used the Quantitative Imaging™ mode that scans samples
recording a force spectroscopy curve in every location.

Our acquisition parameters are as follows: z length of 50-150 nm;
vertical tip speed of 10-30 um/s and the force setpoint at a range of
50-100 pN. The force curves are fitted by f = k.82, where k
corresponds to the local rigidity and § to the contact point of the tip
on the sample.
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3.5

MICROFLUIDIC DEVICES

We will see in section 4.2 the need to develop an assay allowing
blocking GUVs in microtraps. For this purpose, we used an epoxy
microfluidic mould realised by Jacques Fattaccioli's team at CNRS UMR
8640. The microfluidic device printed on PDMS forms a chamber after
bonding to a glass slide. The microfluidic device contains designed
structures that trap GUVs entering the chamber using a hydrodynamic
flow but also allow the further insertion of proteins on the GUVs.

First step: Preparation of PDMS

PDMS is mixed with a curing agent (Sylgard 184) at a mass ratio of 1:10
and degassed under a vacuum pump for about 20 min.

Second step: Printing traps onto PDMS

Once degassed, the PDMS is poured on the epoxy mould and cured at
80°C for at least two hours to obtain a PDMS device with traps (Figure
31). Then, the inlet (2.5 mm diameter) and the outlet (0.5 mm diameter)
are punched into the solid PDMS device.

Third step: Assembly of the microfluidic device

A glass slide is cleaned with ethanol and dried with a nitrogen stream,
and both PDMS and glass slides are treated with air plasma for 30
seconds. PDMS's trap side is turned to the activated glass side and
bonded via Si-O-Si links. A gentle pressure is applied to maximise
surface contact.

Right after, to prevent further interactions of injected compounds with
the PDMS and glass surfaces, we had to passivate the interior of the
chamber. We have tried several compounds (see details in section 4.3):
Polyvinyl pyrrolidone [poly(N-vinyl-2-pyrrolidone), PVP] at 20% (W:V),
PLL-g-PEG at 0,5 mg/ml and Pluronic® F-127, a non-ionic copolymer
at 2%( W:V).
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RESULTS

4.1

PHASE-SEPARATED LIPID NANOTUBES

This section presents the study of phase-separated membrane
nanotubes that | prepared and characterised using high-resolution
STED and AFM microscopy. | used STED to highlight the morphology
of L, and Ls domains along the nanotubes. Then, | probed their
morphology and mechanics by AFM applying the model developed by
(Lamour et al. 2020) for homogeneous nanotubes.

So far, only two papers have observed phase-separated nanotubes:
(Roux et al. 2005) studied their fission, and (Yuan et al. 2008) showed
the light-induced formation of disc-like domains along the nanotubes.
The work presented here is the first step towards constructing a
biomimetic assay comprising phase-separated nanotubes and actin
networks to address the question of tube remodelling by actin
dynamics.

Preparation of phase-separated membrane nanotubes

First, we sought to prepare nanotubes using a ternary lipid
composition (DOPC/SM/Cholesterol 2/2/1) known to form lipid
domains in SLBs and GUVs (Sorre et al. 2009; Veatch and Keller 2003)
when the temperature is below the miscibility temperature of 37°C.

We adapted the protocol presented in (Lamour et al. 2020) for
homogeneous nanotubes. The nanotubes are formed at a temperature
above the miscibility temperature, around 60°C, and then left to cool
to room temperature before observation. By epifluorescence
microscopy, we observed Liquid disordered (Ls) and Liquid ordered (Lo)
domains coexisting along the nanotubes (Figure 14 A). These domains
are observable and distinguishable by fluorescence microscopy: L4
domains being enriched in fluorescent lipids (Baumgart, Hunt, et al.
2007) appear much brighter than L, domains. In our experiments,
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nanotubes are attached to a glass surface functionalized with
streptavidin for AFM experiments, as described in section 3.2.2. In the
case of phase-separated nanotubes, the PEG-Biotinylated lipids are
segregated in L, domains (we verified this using GUVs, see section
4.2.2.2). Therefore, the L, domains are attached to the substrate, and
the Lsdomains are free. Note that we never observed nanotube fission
in our experiments.

Then, we sought to elucidate the structure of these phase-separated
nanotubes at a higher resolution. To do so, we imaged the nanotubes
using confocal microscopy and STED, and compared the acquired
images. In confocal microscopy, the size difference between the
domains is hardly distinguishable (Figure 14 B), whereas, in STED, we
clearly see the morphology difference between Lo, and Ly domains, as
shown in Figure 14 C. To quantify this difference, we drew
fluorescence intensity profiles across Lo (blue box in Figure 14 C) and
La (red box in Figure 14 C) domains. Characteristic profiles are shown
in Figure 14 D. For L, domains, we clearly distinguish the two edges of
the nanotube, which appear as two peaks on the fluorescence profile,
and thus easily provide a measurement of the nanotube width. For Lqg
domains, the diameter of the nanotubes is comparable with the
resolution of STED (around a few tens of nanometers), the profile thus
shows a single intensity peak, and we use the width of this peak at half
of its maximum height to evaluate the tube diameter. Figure 14 E
shows that L, domains are much wider than Ly domains (686 nm +
233 nmyvs. 120 nm + 34 nm). Knowing the relationship between tube
force, tube radius and membrane rigidities (see equation in section
2.1.2) and assuming a force equilibrium between L, and Ls domains,
we can write for phase-separated nanotubes without attachment
(Allain et al. 2004; M. Heinrich et al. 2010):

k o k k k T o
Lo — 2k op Zlo = 14 and thus L"=ﬁ=ﬁ(11)

ky, oL, mn, Tig kp, 1, oL

fLO = de lmplles

Knowing the values of k for L, and Ls domains, 65 and 20 kgT,
respectively (note that we assume that the segregation of the lipids is
total between the domains), Lo, domains should be 3.25 times wider

. . T .
than Lgs domains for free nanotubes. In our case, the ratio Tﬂ is 5.7,
Lg
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meaning the nanotubes are much wider than the prediction above (M.
Heinrich et al. 2010). As our nanotubes are attached by the L, domains,
these domains are probably not cylindrical. Moreover, as described
above, the method used to measure Ls domains diameter provides a
rough approximation compared to L, domains that are measured from
one fluorescence intensity peak to another.

In Figure 14 F, we followed the previous estimations (Eq.8) to calculate
theoretical values of the membrane tension in L, and Ls domains using
o= K/ZTZ' Each point on the plot represents the tension of the Lo
domain as a function of the tension of the Ls domain for one nanotube.
A linear fit of our data gives a value for 24 of 3.84 whereas the ratio

O'LO

kL, - : . o
kﬂ is 3.25. Nevertheless, the dispersion of points is wide, and no clear

Lg
trend emerged from this plot.
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Figure 14: Observation of phase-separated nanotubes. A:
epifluorescence microscopy image showing an array of phase-separated
nanotubes. B: confocal image of a nanotube vs. C: STED image of the
same nanotube clearly show a difference between Lo, and L4 domains. D:
fluorescence intensity profile from the blue and red boxes in panel C,
corresponding to the L, and Lq domains. D: nanotubes diameter in L,
and Lqs domains. Each point represents a nanotube. Square points
represent elongated L, domains as in C, and round points for sphere-like
Lo domains. E: nanotube tension calculated from nanotube diameter and
bending rigidity. The slope is 3.84 + 1.15. N=3 independent experiments
corresponding to 28 nanotubes.

Probing mechanical properties of phase-separated membrane
nanotubes

Phase-separated nanotubes present morphological differences
between different domains. Here, we use AFM to acquire
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nanomechanical maps of these nanotubes. We follow the approach
developed by (Lamour et al. 2020), who showed the relationship
between the height and the rigidity of homogenous nanotubes using
AFM.

First, we image phase-separated nanotubes by fluorescence
microscopy to spot boundaries between L, and Ly domains. Then, we
record 1 ym by 1T um AFM images of these regions using AFM in
Quantitative Imaging (Ql, from JPK-Bruker) mode. In this imaging
mode, the AFM tip is vertically moved in the direction of the sample at
each point of the image. During the approach sequence, the tip
touches the sample and provides the height of the contact point. Then,
the tip indents the sample up to a predefined force called “force
setpoint” (Figure 15 A). The part of the force curve corresponding to
the indentation is fitted by F = K2 with F the force on the tip, and &§
the indentation depth to obtain the nanotube rigidity K. Thus, from
this sequence, we simultaneously obtain maps of the sample
morphology and rigidity (Figure 15 B).
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Figure 15: AFM Quantitative imaging of phase-separated
nanotube. A: 3D topography image of nanotube composed by Loand Lqg
domains over which the AFM cantilever is represented in grey. B: Force-
distance curve corresponding to one pixel from a nanotube image.

Figure 16 (A and B) shows topography and rigidity maps of the
boundary between two adjacent domains along a single nanotube. In
Figure 16 C, we draw an intensity profile from the height and rigidity
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maps of Figure 16 A and B. The differences in height and rigidity
between the L, and Ls domains are clearly visible: the Ly domain is
smaller and stiffer than the L, domain. In Figure 16 D, we gathered the
widths and heights of the L4 and L, domains of our nanotubes. AFM
images show that Ls domains appear wider than high, whereas their L,
domains have similar widths and heights. This was also observed by
(Lamour et al. 2020) for homogeneous nanotubes made of DOPC or
SM/Cholesterol. The widths obtained by AFM are close to the value
measured on STED images for Ly domains. For L, domains, the widths
are higher than the heights, even if this effect is less pronounced in the
AFM measurements.
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Figure 16: AFM nanomechanical mapping of phase-separated
nanotubes. A: Topography map. B: Rigidity map. C: Intensity profile
corresponding to the white box in A showing differences in height and
rigidity along the nanotube. D: Height vs. Width for a population of
nanotubes.

The model developed by (Lamour et al. 2020) predicts a power-law
relationship between the rigidity of nanotubes and their height. We
tested if this model works for the Ls and L, domains of phase-
separated nanotubes.

71



For all the nanotubes presented in Figure 14, we plot in Figure 17 A
their height (h) vs. rigidity (K) in the Ls and L, domains. The data corre-
sponding to the two domains of the same nanotube are represented
by the same symbol in the histograms of Figure 17 A and B. In Figure
17 A, a power law dependence between K and height is indeed ob-
served for the L4 (red dots) and L, (blue dots) domains. The red and
blue lines display the predicted trend from (Lamour et al. 2020):

3 1
K = 22 k2(kyT) 2h~3 (12)

with no adjustable parameter, where k is the bending rigidity of the
membrane. Then, the normalized rigidity:

~ K
K = 3 Y (13)
22 k2 (kgT) "2

is plotted against nanotube height in Figure 17 B, and all values
collapse on the same master curve as predicted. This shows that the
model also accurately predicts the relationship between nanotube
rigidity and height in the case of phase-separated nanotubes.

Furthermore, the model provides a prescription to compute the local
membrane tension from the rigidity of the nanotube:

(kgT)'/3K?/3 (14)

o =

2
22%/

As a result, for each nanotube, we calculated the distinct tensions of
the Ly and L, domains. These tensions are plotted in Figure 17 (insert)
and show that the calculated tensions in the two domains are coherent
with the values of the bending rigidities as predicted by (M. Heinrich
et al. 2010) (Eq. 14).
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Figure 17: Mechanical properties of phase-separated nanotubes.
AFM data of nanotubes represented by different symbols. The L4 and Lo
domains of a nanotube are shown as red and blue, respectively. A:
nanotube rigidity plotted as a function of the nanotube height. B:
normalised rigidity, K vs. nanotube height. Insert: the tension of L4
domain as a function of the tension in the L, domain. The slope is 3.75
+ 0.40.

Therefore, we successfully prepared phase-separated nanotubes from
mixtures of DOPC, SM and cholesterol. We indeed observed micron-
sized domains along the nanotubes, as evidenced by fluorescent
images. Using STED microscopy, we directly saw the difference in size
between the Ls and L, domains. Finally, we use AFM to observe these
differences in size coupled with differences in local tension. The power-
law relationship between nanotube height and nanotube rigidity
predicted by (Lamour et al. 2020) for homogeneous nanotubes still
works for phase-separated nanotubes. This assay could be used to
test the remodelling of phase-separated nanotubes by actin dynamics.
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4.2

4.2.1

ACTIN-INDUCED SHAPE CHANGES ON GUVs

In this section, | present my results on the shape changes induced by
the polymerisation of an actin network at the surface of GUVs. | will
study how these shape changes are affected, first, by membrane
mechanics and then by the structure of the actin network. First, we
work on GUVs with homogeneous membranes of different bending
rigidities and study how they deform in the presence of an Arp2/3-
nucleated actin network. Then, we assess the effect of the crosslinkers
a-actinin and fascin on these homogeneous GUVs. Finally, | present
results on GUVs whose membranes show phase-separated lipid
domains coupled with the same types of actin networks: branched
Arp2/3 networks, with and without crosslinkers.

Remodelling of homogeneous GUVs by actin network polymerisation
Effect of membrane bending rigidity

First, we consider a biomimetic system composed of homogeneous
GUVs. Their membrane is either DOPC or a mixture of sphingomyelin
and cholesterol (SMC). These compositions have different bending
rigidities, 20 and 65 kgT, respectively (Rawicz et al. 2000; Marsh 2006).
We also used these lipids together as a ternary lipid composition to
produce phase-separated membranes (sections 4.1.1 and 4.2.2). On
these homogeneous GUVS, we polymerise Arp2/3-nucleated
branched actin networks (Figure 18). For these experiments, we mix
the actin cocktail and GUVs preincubated with SpVCA. We let actin
polymerise and observe the GUVs after a fixed time of 15 min. This
assay is close to the one presented by (Simon et al. 2018), where the
GUVs were made of EPC with a bending rigidity of 10 k5 T. At this stage,
we only change the membrane composition and thus its bending
rigidity. The actin cocktail and NPF surface density is identical.

(Simon et al. 2019) showed that inward (“spikes”) and outward
(“tubes”) membrane deformations could simultaneously form at the
surface of GUVs because of actin polymerisation from the membrane.
The type of protrusions observed, tubes or spikes, was controlled by
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the interplay between network mesh size and membrane tension; we
will return to these results below. In this section, we explore the effect
of membrane bending rigidity on the membrane response to actin
polymerisation.
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Figure 18: Effect of branched Arp2/3 actin networks polymerised
at the surface of homogeneous GUVs with different membrane
bending rigidities. The two first rows depict symmetric shells at the
surface of DOPC (A) and SMC (B) GUVs. The third and fourth rows show
actin comets observed after symmetry breaking on DOPC (C) and SMC
(D) GUVs. Epifluorescence images (63x magnification). Scale bar = 5 um
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Figure 18 shows the two types of actin structures observed in
experiments on homogenous lipid membranes: a symmetric actin shell
(A, B) or an asymmetric actin tail (C, D), usually referred to as a “comet”.
From previous experiments performed on beads, droplets, or GUVs, it
has been shown that these two actin structures reflect two subsequent
steps of actin polymerisation. First, an actin network grows from the
GUV surface, forming a homogeneous shell. Then, because of stress
accumulation at the surface of the actin shell (van der Gucht et al.
2005), it ruptures, the system breaks its symmetry, and further actin
polymerisation generates a comet that propels the GUV (Giardini,
Fletcher, and Theriot 2003; Upadhyaya et al. 2003). Let us now
characterise the cortices and comets observed in our experiments.

First, we quantify the fraction of shells and comets for DOPC and SMC
homogeneous GUVs in Figure 19 A and B. We also observe some
GUVs which display neither clearly actin shells nor comets; we
categorise these as “undetermined”. Comets are more frequent than
cortices in DOPC GUVs, whereas this tendency is reverted in the case
of SMC GUVs. For GUVs with a larger bending rigidity, the probability
of breaking the symmetry of the actin cortex is lower.

Then, we examine the case of symmetric actin shells. (Simon et al.
2019) showed that membrane nanotubes were pulled outwards all
around the GUVs because of actin polymerisation dynamics. We also
observe such tubes in Figure 18 A and B for DOPC and SMC mem-
branes. Nevertheless, we very frequently observed tubes in shells
formed from DOPC membranes (about 75%), which are visible in only
20% of shells in the case of SMC GUVs. Such results seem to indicate
that a larger bending rigidity impairs tube formation. (Simon et al.
2019) also reported inward protrusions, “spikes”, when membrane ten-
sion was decreased by osmotically deflating the GUVs. As expected,
we do not observe such spikes in our experiments as we do not inten-
tionally reduce the membrane tension.

Surprisingly, we observed another feature in the case of SMC mem-
branes only: for almost 40% of the GUVs presenting a symmetric shell,
their membrane displays visible micron-scale wrinkles (Figure 18 B
and Figure 19 B). This effect seems related to the bending rigidity of
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the membrane as it is observed only in the GUVs with the stiffest mem-
brane (Figure 19 C). We will come back on this below.
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Figure 19: Type of actin structures and membrane deformations
formed on homogenous GUVs: asymmetric comets vs. symmetric
shells in A and B. C: Effect of membrane composition on shape changes
for GUVs with a symmetric shell Outwards membrane tubes and
membrane wrinkling induced by the polymerisation of an Arp2/3
branched actin network shell on DOPC (A) or SMC (B) GUVs. A: DOPC
GUVs (112 GUVs from n=2 experiments) and B: SMC GUVs (72 GUVs
from n=2 experiments) GUVs.

Finally, when actin polymerisation induces symmetry breaking of the
actin shell (Figure 18 C and D), we observe actin comets on one side
of the GUVs. Inside the comet, a network of nanotubes is observed at
the beginning of the comet (where the GUV was at the onset of the
polymerisation), probably corresponding to the tubes pulled in the
cortex before symmetry breaking. These tubes appear to coalesce
during symmetry breaking and end up in a single nanotube inside the
comet, as already observed by (Upadhyaya et al. 2003). In Figure 20,
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we illustrated this process by choosing GUVs at different stages of the
symmetry-breaking sequence, showing the transition from a
symmetric shell containing radial nanotubes distributed evenly in the
actin network towards an asymmetric comet in which the nanotubes
have coalesced.

Figure 20: Reconstruction of the sequence of symmetry breaking
of an Arp2/3 actin network polymerising around a DOPC GUV.
From left to right, we have chosen different GUVs displaying a symmetric
actin shell (7" row), GUVs captured during the rupture of the gel (rows
2,3,4) showing how the membrane nanotubes are grouped at the back
of the GUVs, and finally, GUV with an actin comet (last row) showing
how the tubes have coalesced.

Effect of crosslinkers

Then, we added to our actin cocktail the crosslinker a-actinin or the
bundler fascin to modulate the structure of the actin network grown
around GUVs. We assess how these network structures modulate
DOPC and SMC GUV shape changes.
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Figure 21: Effect of a-actinin and fascin on branched Arp2/3 actin
networks polymerised at the surface of homogeneous GUVs made
of DOPC. The two first rows (A) depict symmetric shells and comets in
the presence of a-actinin. The third and fourth rows (B), in the presence
of fascin. Scale bar = 5 um.

As observed in the previous section, we observe two types of actin
structures on DOPC membranes (Figure 21), symmetric shells or
asymmetric comets. As in (Figure 19 A), the symmetry-breaking case
is more frequent in our experimental system. Adding a-actinin or
fascin to Arp2/3 actin networks does not change this tendency (Figure
22 A).
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Figure 22: Effect of Arp2/3, a-actinin or fascin on DOPC GUVs.
Histograms showing: A: Comets and symmetric shells distribution; B:
Percentage of GUVs with a symmetric shell presenting tubes or wrinkled
membrane; C: Aspect ratio of symmetry broke GUVs (mean of 10 GUVs
in each condition); D: Comet actin tails length (mean of 10 GUVs in each
condition). N=2; a total of 112, 159 and 100 GUVs of Arp2/3, a-actinin
and fascin condition, respectively.

However, in the presence of a-actinin and fascin on DOPC GUVs, the
membrane deformations induced by the actin network show strong
differences. For symmetric shells, most GUVs display a very large
number of tubes at their surface for Arp2/3 alone and Arp2/3 with a-
actinin (Figure 18 A and Figure 21 A, respectively, quantification in
Figure 22 B). Oppositely, in the presence of fascin, most GUVs display
no tubes or only one (Figure 21 B, quantification in Figure 22 B). The
presence of fascin thus impairs the formation of tubes on DOPC
membranes. Besides, wrinkles are observed on DOPC membranes only
in the presence of a-actinin and not in the case of Arp2/3 and Arp2/3
with fascin (Figure 22 B).
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Figure 23: Morphology of asymmetric comets of Arp2/3, a-actinin
and fascin formed on DOPC GUVs with three different actin networks:
Arp2/3 alone, Arp2/3 with a-actinin or Arp2/3 with fascin. Scale bar =
5um.

Then, we examine the case of comets on DOPC GUVs; whereas comets
containing a-actinin have the same length as Arp2/3 comets, fascin
induces longer comets (Figure 23), and they appear inhomogeneous
(Figure 24 A). Similar inhomogeneities in the actin density inside
comets were already observed by (Bernheim-Groswasser et al. 2002)
in an experiment on polystyrene beads covered by VCA in the presence
of a-actinin, revealing saltatory movements of the beads. In our
experiments, compared to Arp2/3 and a-actinin, in the presence of
fascin, the actin tail of an asymmetric comet on DOPC GUV presents
fluorescence inhomogeneity (Figure 24 B). Note that we have also
measured the aspect ratio of the GUV in the presence of a comet, but
no significant difference appeared in the three conditions (Figure 22
O).
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Figure 25: Effect of a-actinin or fascin actin network on SMC GUV:s.
In the first panel (A), an actin network in the presence of a-actinin results
in a symmetric shell or asymmetric comet. In the second panel (B), an
actin network in the presence of fascin results in a symmetric shell or
asymmetric comet. Scale bar = 5 um

Now, we test the effect of a-actinin and fascin on GUVs made of SMC,
thus with a larger bending rigidity. Figure 25 shows that we still
observe symmetric shells and asymmetric actin comets when adding
a-actinin or fascin (as in Figure 18 B and D).

When compared to DOPC GUVs, the SMC GUVs seem to favour the
formation of symmetric shells (Figure 19 A and B), and the addition of
a-actinin or fascin has no effect on this, as quantified in (Figure 26 A).
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In symmetric shells polymerised on SMC GUVs in the presence of a-
actinin, we observe very strong wrinkling (Figure 25 A and Figure 26
B) and very few GUVs with tubes, in striking contrast with the case of
DOPC GUVs. Note that the large wrinkles differ from the “spikes”
observed by (Simon et al. 2019), which were triangular and, in most
cases, much longer. GUVs with polymerised symmetric shells in the
presence of fascin do not show any deformations, and the GUVs
present a smooth surface (Figure 25 B and Figure 26 B).

In the case of comets, the presence of a-actinin does not affect the
length of the comet nor the aspect ratio of the GUV from which the
comet emerges compared to the case of Arp2/3-only (Figure 26 C and
D), as shown in (Figure 18 D) and (Figure 25 B). However, fascin
induces longer comets, and the GUVs appear more elongated (Figure
25 B and Figure 26 D).
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Figure 26: SMC GUVs shape changes under a-actinin or fascin actin
network. A: Morphology distribution of SMC GUVs with an Arp2/3 actin
network in the presence or not of a-actinin or fascin. B: Percentage of
GUVs with a symmetric shell presenting tubes or wrinkled membranes.
N=2 experiments; for 72, 47 and 112 GUVs for Arp 2/3, a-actinin and
fascin condition, respectively.
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Conclusion

We tried to summarise our results in Figure 27, and there are three
important observations: the effect of the membrane properties, of the
actin crosslinker and the actin bundler.

The first effect is due to the bending rigidity. On GUVs polymerised
with an Arp2/3 actin network, we observe almost four times more
symmetry breaking for DOPC GUVs than for SMC GUVs (Figure 22 A
vs. Figure 26 A), and this trend is still observed when a-actinin or fascin
is added. For membrane deformations, we observe about 40% of SMC
GUVs with membrane wrinkles and only 15% of GUVs with tubes for
SMC GUVs (Figure 26 B) in striking contrast with DOPC GUVs, with
almost 80% of GUVs presenting tubes and no GUVs with wrinkles
(Figure 22 B).

The second effect comes from the addition of the crosslinker a-actinin.
In this condition, 85% of DOPC GUVs present membrane wrinkling
(Figure 22 B), and SMC GUVs show a two-fold increase for GUVs
presenting membrane wrinkles compared to the Arp2/3-only
condition (Figure 26 B). For DOPC and SMC GUVs, the crosslinker only
slightly increased the number of GUVs presenting tubes.

Finally, in the presence of fascin, DOPC GUVs present longer comets
and saltatory traces (Figure 21 B and Figure 22 D). SMC GUVs
squeezed by the comets have a peanut shape (Figure 25 B). Concern-
ing membrane deformations, DOPC and SMC GUVs overall have
smooth membranes. For SMC GUVs with an actin shell, less than 10%
GUVs present membrane wrinkles (Figure 26 B) and very few DOPC
GUVs present just one tube, as in Figure 21 B.
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Figure 27: Schematic representation of actin-induced
deformations. Low bending rigidity DOPC GUVS vs. higher bending
rigidity SMC GUVs. Both tested with Arp2/3-only, a-actinin or fascin.
Each condition presents two forms: actin shells and comets.

Tube formation inside actin shells

Our results show an effect of membrane bending rigidity on the
formation of nanotubes during cortex growth, as tubes form more
frequently on DOPC than on SMC. (Simon et al. 2019) described the
formation of tubes by writing a balance between the nanotube
formation force and the friction force induced by actin polymerisation.
The tube formation force writes:

fruve = 21V 2K0
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With k the bending rigidity and ¢ the membrane tension. The drag
force exerted on the tube by the retrograde flow of actin
polymerisation:

fdrag = 6N Tupe (vg - L)

With n the viscosity of the gel, v,its polymerisation velocity, L the
velocity of the tube extremity, and the radius of the tube 7. =
VK/20 . This force cancels when the tube grows at the velocity of the
gel polymerisation. To obtain the gel viscosity, the authors started with
the estimation of the gel elasticity obtained by (Kroy and Frey 1996)
for entangled polymer solutions :

ksTL,

Where [,, is the persistence length of the actin filaments and { the mesh
size of the network. Then, the gel viscosity is estimated by multiplying
this elasticity by a characteristic viscoelastic relaxation time 7, : n =
Et,. (Margaret L. Gardel et al. 2008; M. L. Gardel et al. 2004). Thus,
equating fupeand farqq yields the condition for tube formation :

3
ol < > kpTl,v,Tye

Importantly, this equilibrium does not depend on the membrane
bending stiffness; therefore, this model does not explain our
observations. This description might be extended to account for two
points: first, the drag force on the tube only depends on its radius. This
might not reflect reality, as viscous forces along the whole length of
the tube could play an important role. The second point is that this
model does not consider the friction induced by the linkers between
the actin shell and the membrane during tube elongation, which can
be very important (Campillo et al. 2013).
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Modelling wrinkles in actin shells

We start by recalling the model presented in (Kusters et al. 2019).
When GUVs surrounded by a cortex are deflated, buckling appears for
thin cortices and wrinkling for thick cortices. We never observe
buckling, probably because we do not impose strong volume changes
as in (Kusters et al. 2019). Equation 4 in (Kusters et al. 2019) predicts
the wavelength of the wrinkles :

3K 1/3
1= ()
DOPC and SMC membranes have a bending rigidity of 20 and 65 kaT,
their A are 400 and 544nm, respectively. Such a small change could not
explain why we do not observe membrane wrinkling on DOPC GUVs

We might observe wrinkling in our case not because of osmotic
deflation but because of the actin-induced compression of the GUVs,
which could impose a volume change. In this hypothesis, the forces
generated by actin with a-actinin are larger and could explain why we
observe more wrinkles with the a-actinin network compared to the
Arp2/3-only network.
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4.2.2 Controlling actin network polymerisation on phase-separated GUVs

This section presents the system | developed to target actin
polymerisation on specific parts of phase-separated membranes. We
show the different localisations of actin polymerisation, the
morphologies and membrane reorganisation induced by actin
dynamics. Such a system is the first attempt to mimic compositional
heterogeneities of biomembranes observed in vivo. We present the
results as described in our submitted article and in the additional
results (4.2.2.2).
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Abstract

Deciphering the physical mechanisms underlying cell shape changes, while avoiding
the cellular interior's complexity, involves the development of controlled basic
biomimetic systems that imitate cell functions. In particular, the reconstruction of
cytoskeletal dynamics on cell-sized Giant Unilamellar Vesicles (GUVs) has allowed for
the reconstituting of some cell-like processes in vitro. In fact, such a bottom-up strategy
could be the basis for forming protocells able to reorganize or even move
autonomously. However, reconstituting the subtle and controlled dynamics of the
cytoskeleton-membrane interface in vitro remains an experimental challenge. Taking
advantage of the lipid-induced segregation of an actin polymerization activator, we
present a system that targets actin polymerization on specific domains of phase-
separated GUVs. We observe actin networks localized on Lo, Ld, or on both types of
domains, and the actin-induced deformation or reorganization of these domains. These
results suggest that the system we have developed here could pave the way for future
experiments further detailing the interplay between actin dynamics and membrane
heterogeneities.

Keywords: Lipid domains, Nucleating promotor factor, Actin network, Giant
Unilamellar Vesicles
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l. Introduction

Building synthetic cells is one of the major challenges in synthetic biology'. One
capability that synthetic cells need, which is observed in living cells, is the ability to
change their shape in response to various internal and external stimuli. In living cells,
these shape changes are fuelled by the actin cytoskeleton dynamics that constantly
remodel biological membranes for a wide range of biological processes®. Inside living
cells, Nucleation Promoting Factors (NPFs), such as WASP or WASH, that activate Arp-
2/3-induced actin polymerization are often linked to lipid membranes®. Some
polymerisation nucleators, such as formin, that form actin bundles in filopodia, for
instance, are also linked to lipid membranes. These different actin polymerisation
machineries coexist in the cell and compete for a limited pool of actin monomers*.
Deciphering how actin remodels membranes inside the cell is complicated because
hundreds of proteins associated either with actin or with membranes cooperate for
these processes®®. Therefore, minimal biomimetic systems made with artificial
membranes and reconstituted actin networks are useful. These systems permit
addressing the mechanisms underlying cell shape changes and also forming synthetic
cells able to change their shape, move or divide’. Various minimal systems allow
studying actin effects on reconstituted biological membranes, such as Supported Lipid
Bilayers (SLBs)®®, membrane nanotubes'®'? or Giant Unilamellar Vesicles (GUVs).
Because they are cell-sized and thus allow directly studying membrane remodelling by
optical microscopy, GUVs are relevant for building protocells. Many types of actin
networks have been reconstituted inside or around GUVs. Actin filaments formed
without NPFs as WASP or its VCA domain'®'* were coupled to the GUV membrane with
or without crosslinkers'"7. Then, activators of actin polymerization were coupled to
the GUV membrane and allowed for the in vitro reconstitution of filopodia-like
protrusions'®2%, actin cortex?', blebs?*?* and endocytic pits'®?°. We recently reviewed
these bottom-up reconstitution studies in**. Several articles studied actin
polymerization around GUVs, which induces symmetry breaking of the actin gel and
the propulsion of the GUVs by an actin “comet”, reminiscent of the propulsion of
pathogens or endosomes inside the cell. The role of Arp2/3 concentrations® and NPFs
mobility?® on these processes and the detailed forces applied by the actin comet to the
GUV?"?8 were carefully studied.

One key aspect of biological membranes is their compositional heterogeneity which
plays a crucial role in cell functions®®3'. Heterogeneous membrane domains
dynamically form at the surface of biological membranes and play an important role in
cell signalling as they locally concentrate lipids and membrane species in
submicrometer areas whose properties differ from the rest of the membrane. The
interaction of these domains with the actin cytoskeleton is clearly demonstrated: actin
dynamics forms WASH domains at the surface of endosomes??, induces nanodomains
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in membrane tubules leading to their scission®?, controls protein clusters formation%34
but the mechanisms by which the cytoskeleton affects lipid domain formation, and
stability remains unclear.

A simple model to reconstitute this heterogeneity in vitro is phase-separated GUVs*?
that form Ld (liquid disordered) and Lo (liquid ordered) domains. Some articles
reported the effect of actin or actomyosin on phase-separated SLBs®3%3% or of the
prokaryotic tubulin homolog FtsZ on phase-separated GUVs®. So far, only one seminal
study has addressed the interplay between lipid domains and actin networks on
GUVs?. This article showed how the presence of an actin network polymerized on the
Ld phase of GUVs affects the transition temperature of their membrane and how the
presence of the actin network guides the spatial localization of the domains at the
transition. However, there are many open questions on the crosstalk between phase
separation in membranes and actin dynamics that call for novel experimental systems
coupling phase-separated membranes and actin networks.

Here, we present an approach to target the polymerization of actin networks to specific
regions of phase-separated GUVs. Our experimental setup allows the segregation of
the same NPF to the two types of membrane domains at the surface of GUVs, thus
targeting actin polymerization to Ld, Lo or Ld and Lo domains. We demonstrate this
targeted actin polymerization, study the phenotypes of the observed actin-membrane
systems, and finally show that actin polymerization reorganizes these domains.

Il Results
Experimental strategy

Our strategy is to use a lipid composition that leads to coexisting Lo and Ld lipid
domains on GUVs combined with functionalized lipids that allow the binding of an
activator of actin polymerization, or NPF, to trigger Arp2/3 (Figure 1 A). A classical lipid
composition to prepare phase-separated GUVs is a mixture of DOPC, sphingomyelin,
and cholesterol at a molar ratio of 2/2/1 shown to induce lateral lipid separation®. To
trigger actin polymerization in the presence of the Arp2/3 complex, we use a construct
called "SpVCA" as an NPF. SpVCA comprises two binding tags: streptavidin and
histidine, which allow the NPF to bind to either biotinylated or nickel (Ni-NTA) lipids
(Figure 1B,C).
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Figure 1: Scheme of the experimental strategy. A: Representation of domains and their composition: Lo domains
enriched in sphingomyelin and cholesterol and Ld domains enriched in DOPC and fluorescent TexasRed lipids;
segregation of biotinylated and nickel lipids into the Lo and Ld domain, respectively, that allows segregation of SpVCA;
The activator of actin polymerization (SpVCA) contains two tags, streptavidin and histidine, allowing binding to
biotinylated or nickel lipids, respectively. B: Representation of the polymerization of an Arp2/3 nucleated actin network
on Lo, Ld or Lo and Ld domains at the scale of the domains or of a whole GUV.

To begin, we formed GUVs with this lipid composition and confirmed the presence of
two or more lipid domains at their surface (Figure S 1). The Texas Red fluorescent lipids
we use to visualize GUVs are enriched in the Ld domains*', mainly composed of DOPC?®,
which appear bright on fluorescent images. In contrast, the Lo domains are enriched
with sphingomyelin and cholesterol and appear dark. Then, we assessed the
localization of the functionalized lipids. As shown by*?, Ni-NTA lipids segregate into Ld
domains. We tested that biotinylated lipids segregate into the Lo domain (Figure S 2).

Therefore, including Ni-NTA lipids in our lipid mixtures should allow us to bind SpVCA
and thus target actin polymerization on Ld domains. With PEG-Biotin lipids, actin
should polymerize on Lo domains. Combining Ni-NTA and PEG-Biotin lipids should
induce polymerization on both types of domains. We will probe this in the following
sections. Before presenting these results, we have to clarify an important point on the
morphology of the lipid domains observed on our GUVs. We observe two different
cases: first, some GUVs present two distinct hemispherical domains and are, therefore,
asymmetric. Some other GUVs present multiple domains and thus are mostly
symmetric. These differences in GUV morphology stem from differences in GUV
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composition: if the lipid mixture we use is fixed, the precise composition of each GUV
varies, as shown by*#4 Thus, the size and number of the domains can vary among a
GUV population.

Actin polymerization on Ld domains

First, using 1% of Ni-NTA lipids, we tested whether we target actin polymerization on
the DOPC-enriched Ld domains. We see in Figure 2 that Arp2/3 actin networks
colocalize with the fluorescent lipids and thus are polymerized on the Ld domains. We
observe two types of actin structures: either partial actin shells or elongated actin
comets (Figure 2 C). The partial shells consist of a few micrometers thick actin networks
that emerge from one (Figure 2 A) or several (Figure 2 B) Ld domains. Comets are
more frequently observed than partial shells; we quantified this in Figure S 3A. The
appearance of an actin shell vs an actin comet depends on the local concentration of
the NPFs that can present strong heterogeneities because the intrinsic lipid
composition of GUVs itself is heterogeneous among a single preparation, as shown in
several studies®**. Therefore, the polymerization is more efficient on some of the
GUVs. At the time when we image the GUVs, low polymerization will induce a shell,
whereas more intense polymerization leads to comets. Actin comets are observed
classically in experiments where actin gels are grown at the surface of beads®, oil
droplets*®*’, or homogeneous GUVs®28 In these experiments, the comets form
because the growth of a symmetric actin shell generates mechanical tension in the actin
network. Once a critical stress is reached, the network ruptures and breaks its symmetry,
and a comet forms. The mechanisms of symmetry breaking around GUVs and the
structure of the actin comets in relation to the Arp2/3 concentration and the interaction
between NPFs and actin filaments have been studied in detail in®>?®. In our case, comets
are not necessarily formed through the symmetry-breaking of the actin gel. Indeed, our
GUVs can be asymmetric from the beginning of the experiment, especially in the case
of large domains forming two hemispheres. This is also the case for the actin structures
formed at their surface. Besides, in the partial shells, we cbserve membrane nanotubes
pulled outwards from the membrane because of actin polymerization dynamics (yellow
arrows in Figure 2), as observed by?’. Note that, in our experiments, the osmolarity of
the internal and external buffers are equilibrated, the cbservation of nanotubes in the
actin shell in these conditions agrees with the results of*°. The fact that we observe
either actin shells or actin comets thus reflects heterogeneity in the efficiency of actin
polymerization among GUVs. We believe that this heterogeneity could itself stem from
differences in the lipid composition of the GUVs, already observed in other studies****
and thus of the surface density of the NPFs.
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Figure 2: Polymerization of an Arp2/3 actin network on the Ld domains of phase-separated GUVs. The first two
panels depict a partial shell of actin polymerized on GUVs presenting one (A) or multiple (B) Ld domains. The last panel
(C) shows a comet on a GUV presenting a single large Ld domain connected to the comet. Yellow arrows indicate the
presence of membrane tubes. For each row, we present fluorescent images of lipids, actin and their overlay with an
illustration of the system. Scale bar = 5 um.

Actin polymerization on Lo domains

Then, using 0.1% of biotinylated lipids, we assessed if the polymerization was targeted
to the Lo domains. We see in Figure 3 that we observe the formation of an actin
network on the region of the GUVs where no lipid fluorescence is visible, revealing Lo
domains. To classify the obtained morphologies, we use the same nomenclature as for
Ld domains: partial actin shells formed on single or multiple domains (Figure 3A and
B) or actin comets (Figure 3C). Compared to the precedent case of polymerization on
the Ld domains, where comets were most frequently observed, actin polymerization on
Lo domains induces around only 40% of comets and 40% of partial shells (Figure S 3B).
Note that, as the lipid membrane is not visible in these experiments, the membrane
deformations presented in the schematic are only an assumption based on the fact that
actin recruitment on the two types of domains looks similar (see below).
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Figure 3: Polymerization of Arp2/3 actin networks on the Lo domains of phase-separated GUVs. The first two
panels depict shell-like actin networks polymerized on GUVs presenting one (A) or multiple (B) Lo domains. The last
panel (C) shows a comet formed from a Lo domain. For each row, we present fluorescent images of lipid, actin and their
overlay with an illustration of the system. Scale bar = 5 um.

Actin polymerization on both Lo and Ld domains

Finally, when we prepare GUVs with 0.1% biotinylated and 1% Ni-NTA lipids, we
simultaneously trigger actin polymerization on both types of domains. (Figure 4). Here,
actin forms a continuous actin shell surrounding the whole GUV (50 % of cases,
quantification in Figure S 3C) or a comet on one side of the GUV. In the case of actin
shells, we observe that, with the fraction of Ni-NTA and biotinylated lipids that we use,
the shells are almost continuous. We have made an estimation of their thickness on Lo
and Ld domains from epifluorescence images, which leads to close values (1 + 0.3 pm
for Ld and 1.2 + 0.5 um for Lo, measured on N = 10 GUVs) (Figure 4A and B). Indeed,
we have checked that preparing GUVs without domains in the presence of 0.1%
biotinylated or 1% Ni-NTA lipids led to similar types of actin structures in our
polymerization conditions. This suggests that the efficiency of actin polymerization is
the same on Lo and Ld domains, no matter how our NPF is attached to the membrane.
Note that there are ten times more Ni-NTA lipids than biotinylated lipids, but on the
other hand, the streptavidin-biotin link is much stronger than the Ni-His link, maybe
explaining why actin polymerizes similarly from Lo and Ld domains. In the cases of
polymerization on Lo or Ld domains only, the GUVs could already be asymmetric before
actin polymerization because of lipids segregation. Here, the comets probably emerge
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from continuous symmetric actin shells that break their symmetry because of actin-
induced forces, as observed on homogeneous GUVs?728,
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Figure 4: Polymerization of Arp2/3 actin networks on both Ld and Lo domains of phase-separated GUVs. The
first two panels depict a shell of an actin network polymerized on GUVs presenting two (A) or multiple (B) domains. The
last panel (C) shows a comet. For each row, we present fluorescent images of lipid, actin and their overlay with an
illustration of the system. Scale bar = 5um.

Lipid domains rearrangements

As previously stated, there is a close relationship between lipid domains and actin
dynamics inside living cells*, which mechanisms are unclear. Actin dynamics could
induce or reorganize domains in cell membranes. Here, we compare the number of
domains in our GUVs (two hemispheres vs. multiple domains) before and after actin
polymerization (Figure 5). As previously, we distinguish the cases of shell-like actin
networks and actin comets after polymerization. Figure S4 presents these results
without pooling different experiments.
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Figure 5: Lipid domains rearrangement by actin polymerization on phase-separated GUVs. In all experiments,
we distinguish GUVs with more than two visible domains (multiple domains) and GUVs with only two domains. First
row: Number of lipid domains (2 domains vs multiple domains) before actin polymerization on Ld (A), Lo (B) and
both Ld and Lo domains (C). Second row: number of lipid domains after actin polymerization on Ld, Lo or both
domains, resulting in either partial actin shells (D,F,H) or comets (E,G,I). N=3 experiments for bare GUVs: 80 GUVs
before polymerization on Ld domains, 73 GUVs before polymerization on the Lo domain and 52 GUVs before
polymerization on both domains. N=3 experiments for actin polymerization on the Ld domains: 21 partial shells and
112 comets; Lo domain: 46 partial shells and 42 comets; and on both domains: 62 partial shells and 38 comets.

The majority of bare GUVs containing Ni-NTA (Figure 5 A) or PEG-Biot (Figure 5 B)
comprise multiple domains before actin polymerization, whereas only 40% of GUVs
containing both Ni-NTA and PEG-Biotin form multiple domains (Figure 5 C).
Interestingly, when actin polymerizes only on Ld or Lo domains and forms actin comets,
the repartition of the domains is strongly affected compared to bare GUVs. Indeed,
comparing Figure 5 A vs E and Figure 5 B vs G, we observe that bare GUVs that had
mostly multiple domains before actin polymerization tend to have only two domains
when an actin comet is present. We hypothesize that the domains could coalesce under
the actin comet. Indeed, in actin comets formed on liquid droplets*, the NPFs are
transported in the region attached to the comet during its formation. We suspect that,
in our case, the same mechanism could induce movement of the domains in this region
and, thus, coalescence of adjacent domains. When multiple partial shells of actin are
formed (Figure 5 D and F), the same effect is observed partially in the case of the Lo
domains (Figure 5 F). Surprisingly, when actin is polymerized on both domains, there is
no effect when actin comets form (Figure 5 C vs. I). In contrast, we observe more
domains when partial actin shells form (Figure 5 C vs. H). A similar effect of NPF domain
stabilization was observed by* in experiments on endosomes; abolishing actin
polymerization led to the coalescence of WASH domains. Therefore, in this case, Arp2/3
actin networks also impair the coalescence of membrane domains. Even if the detailed
mechanisms by which actin dynamics could favour or impair membrane domains, these
observations clearly show that actin polymerization affects the number of domains and
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can reorganize them. The dynamics of these processes are beyond the scope of this
article.

. Conclusion

We have developed a biomimetic system to target actin polymerization on specific
domains of phase-separated GUVs. We use an NPF that binds to Ni-NTA and
biotinylated lipids and thus to Ld and Lo domains, respectively. We demonstrated that
this strategy allows triggering actin polymerization on demand on one or both types of
domains. We also characterized the morphology of the actin structures induced on
hemispherical or multiple domains: after actin polymerization, partial actin shells or
actin comets emerge from the desired domain. Compared to the seminal paper by*’
focused on the effect of an actin network polymerized on the Ld phase on the
membrane transition temperature and domain localization, our system allows a larger
flexibility in the localization of the actin polymerization and induces a wider diversity in
the actin structures and membrane deformations observed. Finally, we observe domain
reorganization stemming from actin networks symmetry breaking induced by actin
polymerization dynamics on either Ld or Lo domains. The multiple domains present on
GUVs before actin polymerization are reorganized and coalesce into two separate
hemispheres after actin polymerization. 3 observed that the contraction of actomyosin
networks pinned on phase-separated SLBs also induced lipid domains reorganization.
In this experiment, filaments are preformed, without NPFs, and myosin-induced forces
drive domain reorganization. The process we observe differs as the forces driving
domain rearrangement solely come from actin polymerization dynamics. A
comprehensive description of this rearrangement and its dependence on the mechanics
of the lipid membrane, temperature and the actin cocktail composition would require
the development of novel tools to trigger the onset of actin polymerization and follow
its dynamics. With such experiments, we will follow in detail the dynamics of the
symmetry-breaking process, assess if our system follows the same mechanism as
homogeneous GUVs?>?® and determine if there is a threshold in the density of NPF for
symmetry-breaking. In parallel, our work allows many other follow-up experiments.
First, using a fluorescent NPF would allow us to directly quantify the density,
organization and segregation of NPFs on Lo and Ld domains, in the case of actin shells
and actin comets, to compare, in particular, the behaviour of the NPFs in actin comets
to existing studies on homogeneous GUVs?>. Moreover, using fluorescent Arp2/3, we
could quantify the density of branching® and therefore assess in detail the network
structure emerging from the different lipid domains. Indeed, this is important to
determine if the membrane properties, in particular differences in lipid mobility or
membrane mechanics, could affect the structure of the actin network. Finally, we have
not assessed the dynamics of these shape changes, as our protocol allows observing
the GUVs and actin structures only at a given time. Nevertheless, we can hypothesize
that longer polymerization times would increase the fraction of comets vs shells. Such
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dynamical experiments would be very interesting, especially including ADF-Cofilin in
our actin cocktail to increase the actin turnover to assess its effect on the observed
shape changes.

Our results pave the way for studies mimicking biological processes such as endocytosis
or intracellular trafficking. Indeed, such cell processes require crosstalk between the
cytoskeleton and domains formed in biological membranes®. Using phase-separated
membranes, we could also build more complicated systems in which different actin
activators could coexist on the same membrane, as is the case in cells. For instance, the
lamellipodium contains both Arp2/3 and formins that simultaneously activate actin
polymerisation at the cell membrane and nucleate different types of networks. With our
system, one could investigate how these nucleators cooperate to generate membrane
deformations by controlling their localization in adjacent domains on the same
membrane. Moreover, localized actin polymerization is required for building protocells
in which controlled deformation would be a basis for self-replication or movement’.

V. Methods

Lipids, proteins and buffers. If not specified, all chemicals are purchased from Sigma-
Aldrich (St. Louis, Missouri). 1,2-dioleoyl-sn-glycero-3-phosphocholine (referred to as
DOPC), N-(dodecanoyl)-sphing-4-enine-1-phosphocholine (sphingomyelin, referred to
as SM), cholesterol (referred to as C) from ovine wool, DSPE-PEG (2000)-Biotin
(1,2distearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl(polyethylene  glycol)
2000]) (PEG-biotin lipids) and 18:1 DGS-NTA(NI) (1,2-dioleoyl-sn-glycero-3-[(N-(5-
amino-Tcarboxypentyl) iminodiacetic acid)succinyl] (Ni-NTA) are obtained from
Avanti® Polar Lipids, Inc. (Alabaster, AL). Fluorescent lipids are Texas Red™ r-1,2-
dihexadecanoylsnglycero-3-phosphoethanolamine triethylammonium salt (Texas-
Red™ DHPE) and 44Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-
Pentanoic Acid (BODIPY™ FL C5) from ThermoFisher (Waltham, MA).

Actin from rabbit muscle, porcine Arp2/3 complex and recombinant Human Profilin 1
are purchased from Cytoskeleton (Denver, USA) and used without further purification.
Actin-Alexa Fluor™ 488 conjugate from rabbit muscle in solution is from Thermofisher
(Waltham, MA). Streptavidin-pVCA-Histidine (SpVCA-His, where pVCA is the proline-
rich domain-verprolin homology-central-acidic sequence from human WASP, starting
at amino acid GIn150), and Mouse a1B2 capping protein (CP) are purified by John
Manzi and provided by UMR 168, PhysicoChimie Curie.

GUVs internal buffer contains 0.2 M sucrose, 2 mM Tris and is referred to as TPI. The
external buffer of GUVs (or actin polymerization buffer), referred to as TPE, contains 95
mM sucrose, 1 mM Tris, 50 mM KCl, 2 mM MgCl2, 0.1 mM DTT, 0.02 mg/mL B-casein
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and 2 mM ATP in Milli Q water. Both buffers are adjusted to pH 7.4 and 220 mOsm as
measured with Loeser Osmometer (Typ 16i).

We prepare a solution containing 30 pM monomeric actin with 15% of labelled Alexa
Fluor 488 actin conjugate, and then this solution is incubated in G-Buffer (2 mM Tris,
0.2 mM CaCl2, 2 mM ATP, 0.2 mM DTT, pH 8.0) overnight at 4-C to ensure actin
depolymerization.

Reconstitution of phase-separated GUVs. A ternary lipid mixture is used to achieve
membranes with coexisting liquid lipid domains on GUVs. Ternary lipid mixture
contains DOPC, cholesterol and sphingomyelin at a molecular ratio of 2/1/2 and is
mixed with 0.5% TexasRed lipids, 0.1 % PEG-biotin and/or 1 % NiNTA (GUV). Final lipid
mixtures are at 2.5 mg/mL in the organic solvent chloroform/methanol 5:3 (viv). The
electroformation technique adapted from *° is used to prepare GUVs. Briefly, 10 pL of
the ternary lipid mixture is spread onto indium tin oxide (ITO)-coated plates and dried
by a nitrogen flow. A 1 mm thick PDMS frame is placed between two ITO glass slides
(conductive sides facing each other), forming a closed chamber, which is then filled
with 400 pL TPl using a 0.75 pm diameter needle syringe. Heated at 60°C, an alternating
current is applied (10 Hz, 1 V RMS) to the ITO plates for two hours. Once at room
temperature, GUVs form domains.

Polymerization of an actin network on GUVs. GUVs are incubated for 15 min with
350 nM of SpVCA-His, the activator of the Arp2/3 complex, which binds to the
biotinylated or nickel lipids of the membrane through the streptavidin or histidine tag,
respectively. Actin polymerization starts when SpVCA-His-coated GUVs are placed in a
mixture containing a final concentration of 3 uM monomeric actin (15% fluorescently
labelled with Alexa Fluor 488), 3 uM profilin, 37 nM Arp2/3 complex and 25 nM CP as
in °. We leave the GUVs 15 minutes in the actin cocktail for polymerization. Then, the
GUVs and actin are diluted two times in the external solution (or TPE). The
polymerization is stopped due to the reduction of actin monomers concentration. This
allows observation of the polymerized GUVs without further shape changes due to
actin polymerization.

Observation and acquisition of images. Fluorescent images are acquired using a
Zeiss inverted microscope with a 63x oil-immersion objective to perform
epifluorescence microscopy (GFP filter cube, excitation 470 nm, emission 525 nm; Texas
red filter cube: excitation 545-580 nm, emission 615 nm). Images are collected by
AxioCam MRm camera. For all actin polymerization experiments, the exposure times
are 14,6 milliseconds and 30 milliseconds for DHPE-TexasRed (membrane) and Actin-
Alexa Fluor™ 488 conjugate (actin network), respectively. The actin shell thickness on
GUVs is estimated by drawing a fluorescence intensity profile and measuring the
distance between the membrane and actin fluorescence intensity peaks.
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Supporting information
Phase-separated GUVs

Since our goal is to reconstitute an actin network on the membrane, we have checked
that the addition of the lipids that we use to bind NPF does not impair the formation
of lipid domains on the membrane. Indeed, in the presence of either PEG-Biotin or
NiNTA lipids or both, the formation of lipid domains on GUVs was still observable
(Figure S 1 C, D and E).

Lipids

Bright-field Lipids Overlay
o ,
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X pVCA-histidine
f sphingomyelins
Y cholesterol
PEG-biotinylated
ﬁ lipids
TexasRed-DHPE
s lipids
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Figure S 1: Observation of phase-separated GUVs. On a temperature-controlled assay: GUVs from the ternary lipid
composition showed no domains (A) when the temperature reached 60°C. In contrast, GUVs used for the experiments
presented domains (B) at Room Temperature (RT). This is also the case for GUV's comprising lipids conjugated to either
biotin (C), Ni-NTA (D), or both (E). Scale bar =5 um.

The next step is to check into which domain the PEG-Biotin and Ni-NTA lipids
segregate. In the case of Ni-NTA lipids, (Durre and Bausch, 2019) showed that they
preferentially located into Ls domains. For PEG-Biotin lipids, we marked them using
fluorescent Alexa-680 streptavidin on phase-separated GUVs in which Bodipy was used
to mark the Ld domain (Figure S 2). Indeed, this control experiment shows the
segregation of PEG-Biotin lipids into the Lo domain.
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Lipids Streptavidin-A680 Overlay

Figure S 2: Biotinylated lipids distribution on a phase-separated GUV. From left to right: Lipid membrane marked
in green by Bodipy, then Alexa-680 conjugated streptavidin, which bounds to biotinylated lipids segregated to Lo

domain as shown on the overlay. Scale bar = 5 um. The exposure time for Bodipy and Alexa-680-streptavidin is fixed
at 100 milliseconds. These acquisition settings were used for all images.

Effect of actin polymerization on different regions of GUVs

Compared to the case of Ld domains, where comets were the most frequently observed
actin structure, actin polymerization on Lo domains induces around 40% of partial-shell
structures and 40% of comets (Figure S 3A and B). While polymerization on both

domains induces more actin shells (50%) than comets (30%), as observed in Figure S 3
C.
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Figure S 3: Morphology distribution of GUVs upon polymerization of a branched actin network. Targeting actin
polymerization towards Ld domain (A), Lo domain (B) or both domains (C): Comet represents GUVs with a one-sided
elongated actin tail, and partial actin shells represent GUVs with a partially distributed actin network on its surface.
N=4 independent experiments for a total of 148 GUVs (A). N=3 independent experiments for 109 GUVs (B). In C, actin
shells represent GUVs with a symmetric actin network on their surface. N=3 experiments for 125 GUVs.
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Figure S 4: Lipid domains rearrangement upon actin polymerization on phase-separated GUVs (histograms

without experiments pooling. Each bar represents an independent experiment). In all experiments, we separate
between GUVs with more than two visible domains (multiple domains) and GUVs with two domains. First row: Number
of lipid domains (2 domains vs multiple domains) before actin polymerization on Ld (A), Lo (B) and both domains (C).
Second row: number of lipid domains after actin polymerization on Ld, Lo or both domains, resulting in either partial
actin shells (D,F,H) or comets (E,G,l). N=3 experiments for bare GUVs: 80 GUVs before polymerization on Ld domains,
73 GUVs before polymerization on the Lo domain and 52 GUVs before polymerization on both domains. N=3
experiments for actin polymerization on the Ld domains: 21 partial shells and 112 comets; Lo domain: 46 partial shells
and 42 comets; and on both domains: 62 partial shells and 38 comets. Paired t-test shows non-significant (NS) and
significant results (p<0.05 marked by *) when comparing two groups.
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Figure S 5: Zoom from figure 2B of the membrane deformations induced by a partial actin shell: Actin
polymerization on the Ld domain induces tubes pulled from the membrane (red). Insert shows the schematic
representation of the membrane (red) and actin (green).
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4.2.2.2 Additional results on phase-separated GUVs

In this section, we present some results on phase-separated GUVs that
are not included in the precedent manuscript but that we discuss in
light of the results obtained on homogeneous GUVs (see section 4.2.1).

Polymerisation of a crosslinked actin network on Ls; domains

We performed the same experiments as presented in the previous
article in the presence of a-actinin and fascin (Figure 28), as in the
case of homogeneous GUVs (section 4.2.1). Polymerisation in the
presence of a-actinin also induces partial shells and comets (Figure 28
A, B and C) but favours partial shells compared to the Arp2/3 —only
condition (Figure 29 A), whereas fascin produces only comets (Figure
28 D and Figure 29 A).

As shown in (Figure 22 B), most homogeneous DOPC GUVs
polymerised with Arp2/3 and a-actinin present lipid nanotubes at their
surface. The same tendency appears on phase-separated GUVs.
Surprisingly, almost 40% of phase-separated GUVs present spikes
under partial shells (Figure 29 B), whereas we never observed spikes
on homogeneous GUVs. Membrane wrinkling was greatly reduced
from almost 80% for homogeneous GUVs (Figure 22 B) to 20% for
phase-separated GUVs with an a-actinin actin network (Figure 29 B).
In the presence of fascin, GUVs only form comets (Figure 29 A) which
are comparable to the comets depicted in Figure 18 (C and D).
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Figure 28: Actin network crosslinked by a-actinin polymerised on
the Ls domain of GUVs. The first two panels depict symmetric shells
polymerised on GUVs presenting one (A) or multiple (B) Ls domains.
Panels C and D show asymmetric shells or comets on GUVs presenting
one large L4 domain at the actin side for a-actinin and fascin, respec-
tively. Scale bar 5 um.
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Figure 29: Effect of crosslinked actin networks on Ls domains of
phase-separated-GUVs. A: Morphology distribution of phase-
separated GUVs with an Arp2/3 actin network in the presence or not of
a-actinin or fascin. B: Percentage of GUVs with partial-shell presenting
tubes, spikes or wrinkled membranes. N=4 experiments for a total of 148
GUVs of Arp2/3; N=1 experiment for a total of 53 GUVs of a-actinin.
N=1 experiment for 14 GUVs of fascin.

Actin polymerisation on both lipid domains

Actin polymerisation on both lipid domains induces symmetric actin
shells (55% of GUVs) (Figure 30 A). These shell-like actin networks still
produce tubes in the observable Ly phase, as in the case of polymeri-
zation on the Ly domain alone. Nevertheless, the fraction of GUVs pre-
senting tubes is almost 100% when actin is polymerized on the Ly do-
main alone, whereas when actin is polymerised on both domains, it is
60%. Interestingly, spikes are observed when actin is polymerised on
both domains. However, these GUVs presenting spikes still represent
only a small fraction of around 10% as for GUVs polymerised on the Ly
domain alone (Figure 29 B). Membrane wrinkling appears to be
greatly enhanced when polymerising on Lo, and Ls domains (Figure 30
B). Indeed, 60% of GUVs present wrinkles at their surface, strikingly
contrasting with the 10% of GUVs presenting wrinkles with actin
polymerisation actin on Lgdomains only.
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Figure 30: Effect of Arp2/3 actin network polymerised on both L,
and Ls domain of GUVs. A: Morphology distribution of phase-
separated GUVs with an Arp2/3 actin network. B: Percentage of GUVs
with cortex-like presenting tubes, spikes and wrinkled membranes. N=3
experiments for 125 GUVs.

Conclusion

The visible Ly domain of phase-separated GUVs corresponds to a
DOPC-enriched domain. Thus, we can compare homogeneous DOPC
GUVs and heterogeneous GUVs with actin polymerized on the Lg
domain or on both domains.

For the Arp2/3 actin network without crosslinkers, around 10% of
phase-separated GUVs with polymerization on the Ls domain present
spikes. The same is observed with polymerisation on both Ls and L,
domains. In our experiments, spikes were not observed with
polymerisation on DOPC GUVs, which is in accordance with (Simon et
al. 2019). Indeed, in this article, spikes were mostly observed when the
GUVs were osmotically deflated. Besides, when polymerising on both
domains, a striking increase of wrinkling GUVs to 60% is observed
when compared to Ls domain polymerised GUVs and DOPC GUVs with
5% and no wrinkling, respectively.

In the case of polymerisation on Ls domains in the presence of a-
actinin, the fraction of phase-separated GUVs presenting wrinkling
decreases to 20% compared to DOPC GUVs, which is about 80% of
GUVs. Moreover, we observe a four times increase in Ls domain
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polymerised GUVs presenting spikes (40%) when compared to
previous Arp2/3-only network conditions (Arp2/3-only).

Polymerisation in the presence of Fascin on Ly domains induces only
comets, which are comparable to the other conditions (DOPC and SM
GUVs polymerised with Arp2/3-only or a-actinin; but also with L, and
both domains polymerised with Arp2/3-only.

In summary, on phase-separated GUVs, spikes appear under an actin
cortex-like (Lg and Lq + Lo polymerisation). Adding a-actinin enhances
spikes formation when polymerising on the L4y domain. Here, the only
difference  compared to homogeneous GUVs is the actin
polymerisation targeted to a specific membrane region. The
mechanisms explaining the apparition of spikes only in the presence
of membrane domains are undetermined. Spikes were observed by
(Simon et al. 2019) only when membrane tension was reduced, but in
our case, it is not easy to imagine how the presence of domains could
induce such an effect.
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4.3

TRACKING ACTIN-INDUCED SHAPE CHANGES ON GUV's

Microfluidic chamber

As a dynamic event, actin polymerisation produces a variety of
membrane deformations. As previously shown (Figure 20), these
deformations depend on the structure of the actin network. It's
thought that a symmetric actin network that achieves a critical point of
tension upon network growth will result in its symmetry breaking.
However, following the symmetry-breaking event in time and space is
complicated with our current assay setup because actin polymerisation
occurs in an Eppendorf tube before being stopped by diluting actin
monomers and placed in an observation chamber without traps. For
this reason, we use a microfluidic device containing horseshoe-shaped
traps developed by Jacques Fattacioli (Figure 31) to start following the
dynamics of actin polymerisation on several GUVs (Figure 33). The
chamber allows for trapping individual GUVs and subsequently adding
the actin cocktail while observing GUV remodelling.

" 2!

RN n n

N n

n | n

Figure 31: Microfluidic chamber to study the remodelling of GUVs
by actin dynamics. With 112 traps to be filled from the right (inlet) to
the left (outlet). Scale bar 500um and 50um.
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Coating of the microfluidic device

Chamber coating is essential to avoid the adhesion of elements
introduced in the chamber. However, not all coating molecules were
suitable for our setup. Even if PLL-g-PEG coating was appropriate for
bare GUVs only, after injecting the actin mixture, we could see actin
adhesion on the chamber surface instead of the GUV surface (Figure
32). The same results were obtained with BSA and [-casein. The
coating of the microchamber is better with the molecule of PvP. We
observe few to no adhesion of GUVs and actin.

Lipids Actin Overlay

Figure 32: GUVs and actin adhesion to the chamber. The
microfluidic device was coated with PLL-g_PEG. From left to right: lipid
and actin adhesion can be observed. Scale bar = 10um.

Symmetry breaking event

Finally, | showed we can follow a symmetry-breaking event (Figure 33)
using the microfluidic chambers coated with PvP. SpVCA
preincubation with GUVs outside the chamber before injection and
doubling the actin mixture concentration inside the chamber allowed
a better ratio of GUVs with actin polymerising. We observe a growing
actin network and GUV deformation as a function of time.
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Figure 33: Symmetry breaking event on DOPC GUV. The observation
started after 15min of actin polymerisation on the GUV surface. Scale
bar = 5um.

However, further optimisation is required. Indeed, from 32 selected
GUVs, only 9 GUVs had polymerised actin. Also, a symmetric cortex is
yet to be achieved or observed.

118



CONCLUSION AND PERSPECTIVES

The biomimetic systems developed in this thesis allowed us to assess
how the interplay between membrane mechanics and the structure of
actin networks control the actin-induced shape changes of GUVs.
Knowing that biological membranes comprise a very high number of
different lipids (van Meer, Voelker, and Feigenson 2008), we used
membrane models with different mechanical properties and
comprising lipid domains. It has been shown in experiments in living
cells that the actin cytoskeleton and membrane domains have subtle
interplay (Fritzsche et al. 2017). Besides, we used different types of
ABPs, crosslinkers and bundlers to shape the structure of Arp2/3 actin
networks (Blanchoin et al. 2014).

So far, only (Liu and Fletcher 2006) explored the influence of the actin
network on domain formation in GUVs. The authors demonstrated in
vitro that the polymerisation of an actin network on GUVs changed the
miscibility temperature of their membrane. However, the impact of
lipid domains on actin-induced membrane remodelling is still unclear.

Therefore, | have built an in vitro system comprising heterogeneous
membranes coupled to actin networks. This adds another building
block to the formation of biomimetic systems formed by membranes
and actin networks to reconstitute cell shape changes.

First, | started by forming phase-separated nanotubes. Using STED
microscopy, we demonstrate that membrane nanotubes comprising
ternary lipid composition formed lipid domains. Then, we sought to
quantify these nanotubes' width and tension values as in (Roy et al.
2020). Here, we formed various attached phase-separated nanotubes
by applying a hydrodynamic flow to SLBs. These nanotubes' widths are
quantified, and their tension is calculated. The values we obtained are
in reasonable agreement with theoretical predictions (M. Heinrich et
al. 2010).

AFM can assess the nanomechanical properties of nanotubes. The
approach was developed in the laboratory for homogeneous
membrane nanotubes, and | showed that the protocol and model
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developed by (Lamour et al. 2020) still apply to heterogeneous
membrane nanotubes. The advantage of AFM is the ability to directly
measure local rigidity. Hence, due to the demonstrated relationship
between nanotube height and rigidity, we assessed the morphology
and mechanical properties of the Ls and L, domains of phase-
separated nanotubes. A step further for these experiments would be
to polymerise actin networks to understand their effect on nanotube
remodelling. An interesting approach would be to correlate AFM and
STED microscopy. While AFM is a great tool to assess the mechanical
properties of materials, it is not suitable for all samples. When a soft
material, such as a membrane nanotube, is covered by a harder
material, such as an actin network, the membrane properties are not
accessible.

Then, using GUVs, | explored the shape changes induced by the
polymerisation of actin networks at their surface. Firstly, | sought to
change the mechanical properties of their membrane. Experiments
with two types of homogeneous (DOPC or SMC) GUVs, highlighted the
effect of the membrane composition on the Arp2/3 actin-induced
shape changes observed. More precisely, the bending rigidity controls
the shape changes induced by actin dynamics. We observed more
symmetry breaking for DOPC GUVs, which have a low bending rigidity.
SMC GUVs presented more wrinkles and less nanotubes.

| varied the actin structures by introducing a-actinin or fascin. |
demonstrate the effect of a-actinin on the actin-induced shape
changes. We observe stronger wrinkling in the presence of a-actinin.
Fascin induces longer comets and jumps for DOPC GUVs, and
abolishes the formation of tubes in the actin shells. For SMC GUVs, we
observe no tubes in the shells and peanut shape-like for comets.

A harder membrane seems to impair tube formation and favor
wrinkling, especially when the forces induced by actin growth are
increased by the presence of a crosslinker. Nevertheless, theoretical
modelling is required to understand the detailed mechanisms of these
observations.

Finally, | developed a biomimetic system to target actin polymerization
on specific domains of phase-separated GUVs. By using an NPF that
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binds to Ni-NTA and biotinylated lipids, | demonstrate that the
segregation of these lipids into L4 and Lo, respectively, allows us to
target actin polymerisation on one or both domains. Such a system
allowed the observation of the interplay between actin dynamics and
membrane heterogeneities. For instance, actin structures emerge from
either hemispherical or multiple domains after actin polymerisation.
We observe partial shells and actin comets formed on the desired
domain.

Furthermore, we observe domain reorganization due to actin
polymerization dynamics on either Ls or L, domains. The multiple
domains present on GUVs are reorganised into two separate
hemispheres after actin polymerisation and actin network symmetry
breaking. (Vogel et al. 2017) also induced domain reorganisation.
However, this was achieved by myosin motor activity on preformed
actin filaments bound to phase-separated SLBs.

Although we observe global (formation of comets) or local (tube
pulling, wrinkles) deformations and rearrangements of domains, the L,
domains are not fluorescent in our experiments. We sought to use a
fluorescent analogue of cholesterol that should segregate to the L,
domains (Garvik et al. 2009), but no fluorescent signal was detected
during our experiments. Therefore, a potential actin-induced shape
change was not observed, and thus, a suitable dye (Baumgart, Hunt, et
al. 2007) should be tested under our experimental conditions. This
would allow observation of the L, domains. Another aspect to be
developed in the future is experiments involving different actin
networks on the same GUV. For instance, combining Arp2/3 and
formins by using our experimental strategy would allow the
polymerisation of two types of actin networks on the same GUV.
Arp2/3 and formins are known to be implicated in cell membrane
deformation, such as the formation of filopodia or lamellipodia (Isogai
et al. 2015; Dimchev et al. 2021). Therefore, the polymerisation of
Arp2/3 and formin actin networks on the same GUV could highlight
the crosstalk between them.

Moreover, in order to optimise all these observations of deformations
on GUVs, | started developing a microfluidic device. This device
allowed us to trap GUVs and follow actin polymerisation on them. We
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observed the symmetry breaking of an actin shell, and further
optimisation will allow spatial and temporal following of the actin-
induced shape changes on GUVs. Ultimately, controlling when actin
polymerisation starts could be achieved by light-activated compounds
such as caged-ATP or blebbistatin (Jahnke et al. 2020). However,
different ABPs could also be added on demand to the microchamber
to mimic specific proteins' chronology and reconstitute certain cell
shape changes. Such experiments would pave the way to
understanding the interplay between the elements participating in cell
shape changes.
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Syntheése:

Les cellules adaptent constamment leur forme pour réaliser des
processus biologiques tels que la migration, le trafic intracellulaire et
la division. De tels processus nécessitent le remodelage actif des
membranes cellulaires, alimenté par la dynamique du cytosquelette
d'actine (Blanchoin et al. 2014).

Evaluer les mécanismes de remodelage membranaire par le
cytosquelette d'actine dans une cellule est trés difficile a cause de la
nature tres complexe des cellules. En effet, de nombreux types de
protéines sont impliqués dans ces processus. Par conséquent, les
systemes biomimétiques reconstitués sont utiles car ils présentent
I'avantage d'un environnement biochimiquement contréolé. s
permettent de contrdler et d'ajuster les propriétés biophysiques a la
fois des membranes et des réseaux d'actine reconstitués. Cette
approche in vitro est basée sur la conception ascendante en
complexité de systemes biomimétiques pour comprendre le role de
chaque élément de la machinerie biologique et leur interaction sur les
changements de forme cellulaire.

Dans ce travail, mon objectif est de construire des systéemes
biomimétiques comprenant des membranes lipidiques séparées par
phases et des réseaux d'actine. En effet, la membrane cellulaire est
hautement hétérogene, et ces hétérogénéités interagissent avec le
cytosquelette d'actine (Fritzsche et al. 2017). Cependant, les
membranes utilisées dans les études biomimétiques sont, dans la
plupart des cas, homogenes. Seuls Liu et Fletcher (2006) ont utilisé des
vésicules unilamellaires géantes hétérogenes contenant des domaines
lipidiques. lls ont montré que le réseau d'actine affecte la formation et
I'organisation des domaines lipidiques sur les GUVs. Ce résultat
suggere que les cellules contrélent I'organisation des membranes en
adaptant leur cytosquelette d'actine. Néanmoins, l'effet des
hétérogénéités membranaires sur le remodelage membranaire par
I'actine reste flou.



Ce manuscrit est organisé comme suit. Dans la section 2, j'introduis le
contexte de mon travail : je décris brievement les propriétés des
membranes biologiques et du cytosquelette d'actine, telles
qu'observées dans les situations biologiques et dans les systemes
biomimétiques reconstitués. Je montre comment les membranes
lipidiques reconstituées, telles que les vésicules unilamellaires géantes
(GUVs), les bicouches lipidiques supportées (SLBs) ou les nanotubes
membranaires, associées a des techniques telles que l'aspiration par
micropipette (Rawicz et al. 2000), les pincettes optiques (A. Allard,
Valentino, et al. 2020) et la microscopie a force atomique (AFM)
(Lamour et al. 2020), donnent accés aux propriétés physiques des
membranes reconstituées. De plus, je montre les effets des réseaux
d'actine reconstitués sur ces modeles de membrane, permettant de
reproduire certaines des modifications de forme observées in vivo. En
particulier, j'ai participé a deux articles de revue résumant la littérature
scientifique sur les GUVs reconstituées interagissant avec les réseaux
d'actine (Lopes dos Santos et Campillo 2022) et le remodelage des
nanotubes membranaires par I'actine in vivo et in vitro (Antoine Allard,
Lopes dos Santos, et Campillo 2021).

La section 3 présente tous les matériaux et méthodes utilisés pour ce
travail : notamment la préparation de systemes de membranes
reconstituées couplées a des réseaux d'actine et les techniques
d'observation que j'ai utilisées, telles que la STED, I'AFM et la
microscopie a fluorescence.

Enfin, dans la section 4, je présente et discute mes résultats. Tout
d'abord, j'ai étudié les mécanismes et la morphologie des nanotubes
séparés par phases avec I'AFM. Ensuite, j'ai étudié sur les GUVs
comment la composition membranaire et la structure du réseau
d'actine affectent le remodelage membranaire par I'actine. De plus, j'ai
développé un systeme basé sur les GUVs avec des domaines lipidiques
permettant un contrdle spatial du site de polymérisation de I'actine,
offrant ainsi un nouveau degré de contréle sur ces systemes
biomimétiques.
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