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Contrôle génétique de la tolérance à la salinité chez Medicago trancatula 
Résumé : 

 Parmi les contraintes abiotiques la salinité est considérée comme un problème majeur, qui affecte le 
fonctionnement des plantes, en particulier leur croissance et leur rendement. Afin d‘étudier le 
contrôle génétique de la tolérance à la salinité chez Medicago truncatula, plante modèle de la famille 
des légumineuses, deux expérimentations ont été réalisées. La première expérimentation visait à 
étudier l‘effet de la contrainte saline sur différents paramètres morpho-physiologiques pour un panel 
de génotypes de M. truncatula afin de déterminer les traits de phénotypage pour la tolérance à la 
salinité. Les génotypes A17, TN1.11, DZA315.16, A20, TN1.12 et F83005.5 ont été sélectionnés 
parmi des lignées originaires de  différents pays méditerranéens, qui ont été déjà séquencées 
(http://www1.montpellierinra.fr/BRC-MTR/mauguio/mauguio.php). Les génotypes ont été étudiés sous 6 traitements salins (0, 
30, 60, 90,120 et 150 mM NaCl) dans un essai factoriel sous forme de blocs complets aléatoires en 
trois répétitions.  L‘analyse de la variance montre des différences significatives entre les niveaux de 
salinité et une interaction entre les génotypes et les traitements salins concernant la plupart des 
caractères étudiés. Le génotype  « DZA315.16 » présente les valeurs les plus importantes concernant 
les  effets principaux pour les caractères morphologiques alors que « TN1.11 » présente les valeurs 
les plus faibles.  La projection verticale de la surface foliaire de la plante (Leaf Area=LA), 
significativement corrélée à la biomasse des plantes, apparaît comme un trait d‘intérêt pour le 
phénotypage de la tolérance à la salinité. La concentration saline la mieux adaptée pour démontrer les 
différences parmi les lignes étudiées se situe entre 90 et 120 mM NaCl. Le génotype « TN1.11 » 
contrairement à « DZA315.16 » et à « Jemalong-A17 » présente un maintien de la surface foliaire de 
la plante en réponse à la salinité. Pour la deuxième expérimentation, une population de cent lignées 
recombinantes (Recombinant Inbred Lines=RILs) produite par le croisement entre « TN1.11 » et 
« Jemalong-A17 » a été retenue pour l‘analyse du contrôle génétique de la tolérance à la salinité. Les  
RILs ont été développés par la méthode de  descendant mono graines (Single Seed descent= SSD) 
jusqu‘ à la génération  F6 à l‘INP-ENSAT, France. Le plan d‘experimentation est « Spli plots » , sous 
forme de blocs randomisés avec trois répétitions et deux conditions : traitement salin (100 mM NaCl) 
et témoin (eau). L‘expérience a été menée pour déterminer la variabilité génétique et pour identifier 
les QTLs contrôlant les caractères morphologiques et physiologiques chez la population des lignées 
recombinantes (RILs). L‘analyse de la variance a montré une large variation génétique et une 
ségrégation transgressive pour les caractères étudiés. La différence entre la moyenne des RILs et la 
moyenne de leurs parents n‘est pas significative concernant tous les caractères étudiés dans les deux 
conditions, ce qui montre que les RILs utilisées dans notre expérimentation sont représentatives de 
toutes les lignées recombinantes possibles du croisement  « TN1.11 x Jemalong-A17 ».   21 QTLs ont  
été détectés dans la condition témoin et 19 QTLs ont été identifiés sous contrainte saline (100 mM 
NaCl). Le pourcentage de la variance phénotypique expliqué par les QTLs varie entre 4.60% et 
23.01%. Certains de ces QTLs sont spécifiques à la condition saline, ce qui démontre l‘existence du 
contrôle  génétique de la tolérance à la salinité chez M. truncatula ; tandis que  les autres ne sont pas 
spécifiques et contrôlent un même caractère dans les deux conditions. Des QTLs superposés 
concernant différents caractères ont été aussi observés. Les résultats fournissent des informations 
importantes en vue de futures analyses fonctionnelles de la tolérance à la salinité chez M.truncatula et 
pour d‘autres espèces voisines. 
 
 

http://www1.montpellierinra.fr/BRC-MTR/mauguio/mauguio.php
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Abstract: 
Among abiotic stresses salinity is considered as a serious problem affecting plant functions 
especially growth and yield. In order to study the genetic control of salt stress in the model 
legume Medicago truncatula, two experiments were performed. The first experiment was 
conducted to study the effect of salt stress on some morpho-physiological parameters in M. 
truncatula genotypes and to determine the eventual use of some traits as tolerance criteria. 
Genotypes including A17, TN1.11, DZA315.16, A20, TN1.12 and F83005.5 are selected 
through a sequenced lines collection (http://www1.montpellierinra.fr/BRC-
MTR/mauguio/mauguio.php) which are originated from different Mediterranean countries. 
Genotypes were studied under 6 salinity treatments (0, 30, 60, 90,120 and 150 mM NaCl) in 
a factorial experiment based on randomized complete blocks with three replications.  
Analysis of variance show significant differences among genotypes, salinity levels and 
interaction between genotypes and salt treatments for most of studied traits. ―DZA315.16‖ 
genotype presents the highest main effect values for morphological traits whereas‖TN1.11‖ 
has low values. Vertically projected leaf area (LA); show the highest variability through all 
studied salt concentrations. The best concentration to find differences between parental lines 
is 90 to 120 mM Nacl. A segregating population of recombinant inbred lines (100 RILs) of 
M.truncatula derived from a cross between TN1.11 and Jemalong-A17 was used for the 
second experiment. RILs were developed by single-seed descent until F6 generation at the 
INP-ENSAT, France. The experiment was undertaken to determine the genetic variability 
and to identify QTLs controlling several traits related to plant growth and physiology, in the  
population of recombinant inbred lines (RILs). Analyses of variance showed a large genetic 
variation and transgressive segregation for the traits studied. The difference between the 
mean of RILs and the mean of their parents was not significant for all of the traits in both 
conditions, showing that the RILs used in our experiment are representative of the possible 
recombinant lines from the cross TN1.11 x A17. A total of 21 QTLs were detected under 
control and 19 QTLs were identified under 100mM salt stress conditions. The percentage of 
total phenotypic variance explained by the QTLs ranged from 4.60% to 23.01%. Some of the 
QTLs were specific for one condition, demonstrating that the genetic control of a traits 
differed under control and salt stress conditions. Some others are non-specific and control a 
trait in both conditions. Overlapping QTLs for different traits were also observed. The results 
provide important information for further functional analysis of salt tolerance in M. 
truncatula 
 

 

 

 

 

 

http://www1.montpellierinra.fr/BRC-MTR/mauguio/mauguio.php
http://www1.montpellierinra.fr/BRC-MTR/mauguio/mauguio.php
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Abbreviations: 

RILs: recombinant inbred lines 

SFW: Shoot fresh  weight 

SDW: shoot dry weight 

RFW: root fresh weight 

RDW: root dry weight 

PDW: Plant dry weight 

SL: shoot length 

RL: root length 

LA: leaf area 

CC: Chlorophyll content 

F0: Minimal fluorescence level  

Fm: Maximal fluorescence level 

Fv/Fm (φP): potential photochemical efficiency of PSII electron transport 

φPSII: actual efficiency of PSII electron transport 

NPQ: non- photochemical fluorescence quenching 

1-qP: proportion of closed PSII traps 

SNa: Shoot Na+ concentration  

SK: Shoot K+ concentration 

RNa: Root Na+ concentration 

RK:  Root K+ concentration 

SNaK: Shoot Na+/K+ concentration 

RNaK: Root Na+/K+ concentration, 
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Introduction: background to the study and presentation of targets 

Medicago truncatula is a small legume native to the Mediterranean region which is used in 

genomic studies. It is a low-growing, clover-like plant, 10–60 cm tall with trifoliate leaves. 

Each leaflet is rounded, 1–2 cm long, often with a dark spot in the center.  

M. truncatula has been chosen as a model organism for legume biology because it has a 

small diploid genome (2n = 16) and  a high synteny with widely cultivated species such as 

peas or alfalfa, is self-fertile, has a rapid generation time and prolific seed production, and is 

amenable to genetic transformation. Its genome (seven times smaller than pea) provides 

quick access to genomic sequences and produce mutants that are particular to identify the 

functional role of genes. The genome of M. truncatula is currently being sequenced. 

Soil salinity is widely reported to be a major agricultural problem, particularly in irrigated 

agriculture, and research on salinity in plants has produced a vast literature. However, in 

most species there are not many cultivars developed, which are tolerant to saline soils. The 

limited success of selection, can be accounted for by the fact that salt tolernt is a complex 

character controlled by a number of genes or groups of genes. We anticipate that the 

importance of salinity as a breeding objective will increase in the future.  

The objectives of the present research are to study the effects of different salinity 

concentrations on six M. truncatula genotypes, which are the parental lines of some crosses, 

to identify the favourable salinity concentration and suitable crosses for further genetic 

investigation. The recombinant inbred lines (RILs) population of a selected cross  are used 

under the favourable salinity treatment to study the genetic variability of RILs under control 

and salinity conditions as well as to identify the QTLs controlling several plant growth and 

physiological traits which should be used in breeding programs of M. truncatula or other 

related species. 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Legume
http://en.wikipedia.org/wiki/Mediterranean
http://en.wikipedia.org/wiki/Genome
http://en.wikipedia.org/wiki/Clover
http://en.wikipedia.org/wiki/Leaf
http://en.wikipedia.org/wiki/Model_organism
http://en.wikipedia.org/wiki/Diploid
http://en.wikipedia.org/wiki/Genome
http://en.wikipedia.org/wiki/Transformation_(genetics)
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1.1.  Medicago truncatula 

Medicago truncatula is an annual weedy species which belongs to the Fabaceae family, 

Faboideae sub-family, Trifolieae tribe. It is close to the genus Melilotus (sweet clover) and 

Trigonella (fenugreek). The particularity of this family is to develop a symbiotic relationship 

with bacteria that fix the nitrogen available in the air (http://www1.montpellier.inra.fr/BRC-

MTR/accueil.php?menu=medicago&page=menu11). Several cultivated species belongs to the Medicago 

genus, the most famous member and the most extensively cultivated is alfalfa (Medicago 

sativa). Medicago sativa is a perennial, allogamous and tetraploïd species. This species is an 

interesting source of vegetal protein. 

The genus Medicago also includes annual medics such as M. truncatula (barrel medic), M. 

polymorpha (burr medic) and M. scutellata (snail medic). Annual medics are utilized as 

cover crops, short season forage crops, and weed-suppressing smother crops (Castillejo et al., 

2004). 

Among the annual medics, M. truncatula has been developed as a model legume. M. 

truncatula shares many important characteristics with alfalfa, such as its symbiotic 

associations with rhizobia and mycorrhizal fungi, and its high forage quality (Dita et al., 

2006). 

A number of biotic (fungi, bacteria, nematodes, viruses, parasitic plants, insects) and abiotic 

(drought, freezing, salinity, water logging) stresses are severely affecting the yield of 

legumes. Successful application of biotechnology to legumes facing biotic/abiotic constraints 

will require both a good biological knowledge of the target species and the mechanisms 

underlying resistance/tolerance to these stresses. The large genome size and the polyploidy of 

some legumes have hampered this goal, but in order to solve some of these problems. 

Medicago truncatula has emerged as model plant to investigate the genetics of nodulation 

and other important processes such as tolerance to stresses (Dita et al., 2006). M. truncatula 

flowers are yellow, produced singly or in a small inflorescence of 2-5 together. The fruit is a 

small spiny pod (Figure 1).  

 

 

 

http://www1.montpellier.inra.fr/BRC-MTR/accueil.php?menu=medicago&page=menu11
http://www1.montpellier.inra.fr/BRC-MTR/accueil.php?menu=medicago&page=menu11
http://en.wikipedia.org/wiki/Flower
http://en.wikipedia.org/wiki/Inflorescence
http://en.wikipedia.org/wiki/Fruit
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Figure 1.1 Flower, leaf, pod and seed of Medicago truncatula as a model legume           
(http://mips.helmholtz-muenchen.de/plant/medi/). 
 
1.2. Medicago truncatula growth and development cycle 

M. truncatula seeds develop inside a pod that provides protection during development and is 

a source of nutrients, as well as possibly contributing to maintenance of dormancy (Baskin 

and Baskin, 1998). The spines on the resulting mature pod favour mechanical dispersal, and 

the compressed spiral structures presumably contribute to protection of the mature seeds 

against herbivores. M. truncatula displays a typical indeterminate growth habit, resulting in 

flower and seed set over a protracted period after the development of the primary 

inflorescence meristem. The plant is autogamous and sets seed efficiently in the absence of 

http://mips.helmholtz-muenchen.de/plant/medi/
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insect pollination. The only effective method for maximizing seed yield is to grow the plants 

under optimal conditions of nutrition and illumination.  

1.3.  Medicago truncatula as a model legume 
The so-called barrel medic, M. truncatula is a plant of Mediterranean origin which is well 

adapted to semiarid conditions and is a winter-growing annual. There are several hundred 

reported ecotypes of M. truncatula, including commercial varieties such as Jemalong, Cyprus 

and Ghor (Barker et al., 1990). Some of these cultivars are commonly grown in rotation with 

cereal crops in certain regions of Australia.  M. truncatula also grows well in greenhouse and 

several growth cycles can be completed within a year (Barker et al., 1990). M. truncatula 

shows high synteny with other legume plants, especially with M. sativa (Choi et al., 2004). 

Genetic studies of resistance to biotic and abiotic factors in alfalfa are difficult due to its 

outcrossing and tetraploid nature. The closely related species Medicago truncatula has been 

developed as the first model legume plant. It is autogamous with a short life cycle (6 

months), and diploid (2n=2x=16) with a small genome (500 Mbp), which simplifies studies 

on the genetic mechanisms of responses to abiotic and biotic agents, notably with regard to 

the nitrogen-fixing symbiosis with rhizobia (Barker et al., 1990). M. truncatula has not a 

great importance from an agronomic point of view, but it has a syntenic relationship with 

other legume plants, especially with M. sativa (Figure 1- 2). The two species share conserved 

genome structure and content (Choi et al., 2004), and thus M. truncatula can serve as a 

surrogate for cloning the counterparts of many economically important genes in alfalfa (Yang 

et al., 2008). 

M. truncatula is more attractive for transformation work and the associated genetic studies 

than allogamous auto tetraploid M. sativa. Using Jemalong 2HA, transformation (Thomas et 

al., 1992; Chabaud et al., 1996; Wang et al., 2008), regeneration from protoplasts, 

asymmetric somatic hybridisation (Tian and Rose, 1999) and transfer of agriculturally 

important genes such as viral resistance genes was feasible (Jayasena et al., 2001).  

M. truncatula was a focus for several meetings and workshops in the United States and 

Europe in the 1990s to establish it as a model and initiate the development of the necessary 

genetic and genomic tools. There are 227 000 M. truncatula ESTs on the The Gene Index 

Project database (http://compbio.dfci.harvard.edu/tgi/). The first steps towards sequencing 

were taken when Nam et al. (1999) produced the first BAC clones from Jemalong A17. The 

first published genetic map of M. truncatula was produced by Thoquet et al. (2002) using 
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two homozygous lines selected from Jemalong (Jemalong 6 or J6) and the Algerian natural 

population DZA315.16. Thoquet et al. (2002) noted that the three Jemalong lines A17, J5 

and J6 could be considered as closely related genotypes, but different to the highly 

regenerable Jemalong genotype 2HA (Ray, 2008).  

The vast amount of sequence data available in M. truncatula makes it an excellent resource 

for translational genomics. Of course, M. truncatula genome sequence provides a ready 

source for easily accessible DNA markers across legume species, enabling pan-legume 

comparisons, facilitating linkage mapping, comparative genomics, and marker-assisted 

selection (Choi et al., 2004). M. truncatula genome also reveals the scale and scope of 

biologically important gene families, including disease resistance genes (Ameline-Torregrosa 

et al., 2008). M. truncatula sequence creates a platform for gene discovery and positional 

cloning. Finally, the essentially complete M. truncatula genome sequence accelerates 

physical mapping in related species and provides a scaffold for next-generation sequencing in 

close relatives like alfalfa (Young and Udvardi, 2009). 

1.4. Breeding in Medicago Truncatula 

In parallel to its model species statute, the medics are also cultivated in Australia, in a ley 

farming (alternate husbandry) model, and in France where French National Institute for 

Agricultural Research (INRA) selected 4 cultivars that can be used in three main areas:  
 (http://www1.montpellier.inra.fr/BRC-MTR/accueil.php?menu=medicago&page=menu11) 

1. To provide feed for livestock in the dry Causses (ewe, for ewe‘s milk cheese 

―Roquefort‖): to improve the quantity and quality of the rangeland for extensive ewe rearing. 

2. To maintain soils around infrastructures: roadsides, railway lines embankments and 

disturbed areas.  

3. To avoid soil erosion from rainfalls and winds, reduce the use of herbicides, limit 

infiltrations of pesticides in soils and enhance underground life in slopping vineyards. 

The use of annual medics in France is limited to the very south, near the Mediterranean Sea, 

since frost is too important in the northern parts of France for the available cultivars to be 

grown there. Four cultivars were obtained at Montpellier plant breeding department and are 

under Plant Breeder‘s Right (UPOV= L'Union Internationale pour la protection des 

obtentions végétales). They belong to three species: Medicago truncatula, Medicago 

polymorpha and Medicago rigidula. 

http://www1.montpellier.inra.fr/BRC-MTR/accueil.php?menu=medicago&page=menu11
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Figure 1-2 A simplified consensus map for eight legume species. Mt, M. truncatula; Ms, alfalfa; Lj, 
L. japonicus; Ps, pea; Ca, chickpea; Vr, mungbean; Pv, common bean; Gm, soybean. S and L denote 
the short and long arms of each chromosome in M. truncatula. Syntenic blocks are drawn to scale 
based on genetic distance. M. sativa in blue, M. truncatula in red. (Choi et al. 2004) 
 
 
 
 

http://www.plantphysiol.org/content/137/4/1189.full#ref-8
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Breeding objectives have included improved seedling vigor, greater forage yield and seed 

production, greater resistance to pests and diseases. 

1.5. Molecular markers, genetic mapping and identification of QTLs 

Conventionally, plant breeding depends upon morphological/phenotypic markers for 

identification of agronomic traits. With the development of methodologies for the analysis of 

plant gene structure and function, molecular markers have been utilized for identification of 

traits to locate the gene(s) for a trait of interest on a plant chromosome and are widely used to 

study the organization of plant genomes and for the construction of genetic linkage maps. 

Molecular markers are independent from environmental variables and can be scored at any 

stage in the life cycle of a plant. There has thus been marked increase in the application of 

molecular markers in the breeding programmes of various crop plants. Molecular markers 

not only facilitate the development of new varieties by reducing the time required for the 

detection of specific traits in progeny plants, but also fasten the identification of desired 

genes and their corresponding molecular markers, thus accelerating efficient breeding of 

important traits into Medicago truncatula cultivars by marker assisted selection (MAS). 

Several genetic maps have been constructed in M. truncatula. A genetic map of the cross 

Jemalong-6 × DZA315.16 using a population of 199 RILs (LR4) was constructed which 

contains 72 SSR markers (Julier et al., 2007). A RIL population (LR5) was derived from the 

cross between Jemalong A17 and F83005.5 and the RILs population of the cross was 

genotyped by SSR markers and a map with 70 markers was reported (Arraouadi et al., 2012). 

The genetic map of the F83005.5 × DZA45.5 cross (LR3) was also constructed by Hamon et 

al. (2010). Genetic maps of ―A17 × DZA315.16‖ (LR4), and ―A17 × F83005.5‖ (LR5) were 

improved by Ben et al (2013). 

1.5.1. Marker assisted selection (MAS). 

MAS is a technology that changes the process of variety creation from traditional field based 

format to a laboratory format. It is the use of molecular markers to track the location of genes 

of interest in a breeding programme. MAS is a form of indirect selection and most widely 

application of DNA markers. Once traits are mapped a closely linked marker may be used to 

screen large number of samples for rapid identification of progeny that carry desirable 

characteristics. Several molecular marker types are available and each of them has is 

advantage and disadvantage. Restriction fragment length polymorphisms (RFLPs) have been 
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widely and successfully used to construct linkage maps of various species. With the 

development of the polymerase chain reaction (PCR) technology, several marker types 

emerged. The first of those were random amplified polymorphic DNA (RAPD), which 

quickly gained popularity over RFLPs due to the simplicity and decreased costs of the assay. 

However, most researchers realized the weaknesses of RAPDs and do not use them any 

more. Microsatellite markers or simple sequence repeats (SSRs) combine the power of 

RFLPs (codominant markers, reliable, specific genome location) with the ease of RAPDs and 

have the advantage of detecting higher levels of polymorphism.  

Compared with other DNA-based markers, RFLP, single nucleotide polymorphisms (SNPs) 

amplified fragment length polymorphisms (AFLP), simple sequence repeat (SSR) markers 

occur frequently in plants and are multiallelic, co-dominant, highly reproducible and can 

function with low-quality DNA (Morgnate and Olivieri 1993; Roca and Wang. 1994). Many 

SSR markers have been developed and are widely used in plants for genetic mapping, genetic 

diversity assessment, population genetics and marker-assisted selection (Gupta and Varshney 

2000).With the rapid development of expressed sequence tags (ESTs), a large number of 

SSR markers have been developed from the ESTs library of Medicago truncatula 

(Baquerizo-Audot et al. 2001; Eujayl et al. 2004). Eujayl et al. (2004) searched 147,000 M. 

truncatula ESTs and identified 455 SSR primer pairs which produced characteristic SSR 

bands of the expected length in Medicago species. Ellwood et al. (2006) used six SSR 

primers to analyze the genetic diversity and relationships between randomly selected 

specimens from 192 accessions in the core M. truncatula collection. It thus seems that SSR 

markers would be a powerful molecular approach for assessing genetic diversity and 

germplasm characterization in tetraploid alfalfa. Bernadette et al. (2003) used 87 SSR primer 

pairs, most from M. truncatula ESTs, for genotyping and mapping tetraploid alfalfa 

populations and SSR markers have been applied to alfalfa in several other studies (Diwan et 

al. 1997, 2000; Mengoni, 2000, b; Baquerizo et al. 2001; Eujayl et al. 2004; Flajoulot et al. 

2005; Sledge et al. 2005; Ellwood et al. 2006). Marker assisted selection (MAS) is based on 

the identification and use of markers, which are linked to the gene(s) controlling the trait of 

interest. By virtue of linkage, selection may be applied to the marker itself. The advantage 

consists in the opportunity of speeding up the application of the selection procedure. For 

instance, a character which is expressed only at the mature plant stage may be selected at the 

plantlet stage, if selection is applied to a molecular marker. Selection may be applied 
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simultaneously to more than one character. Selection for a resistance gene may be carried out 

without needing to expose the plant to the biotic and abiotic agents. If linkage exists between 

a molecular marker and a quantitative trait locus (QTL), selection may become more efficient 

and rapid. The construction of detailed molecular and genetic maps of the genome of the 

species of interest is necssary for most forms of MAS.  

1.5.2. Use of molecular markers in M.truncatula improvement programmes: 

conservation of genetic resources  

Loss of genetic diversity has become a problem not only of the natural plant and animal 

population but also agriculturally important species. Ancient cultivars or landraces and wild 

relatives of domesticated species are being lost as modern varieties become adopted by 

farmers. Microsatellites are commonly used to study genetic relationships among genotypes 

within species because of their high level of polymorphism (Devos et al. 1995; Korzun et al. 

1997). Microsatellites markers are currently used to identify quantitative trait loci (QTLs) 

and genetic diversity (Medini et al. 2005).  

Molecular genetic markers have enabled the identification of quantitative trait loci (QTL) 

which are involved in the expression of agronomically important traits of M. truncatula, such 

as forage quality (Lagunes Espinoza et al. 2012), flowering date (Pierre et al. 2008) and 

components of biomass like shoot dry weight, root dry weight, length of roots , leaf area or 

leaf morphology (Veatch et al. 2004; Julier et al. 2007; Lopez  2008a;   Espinoza  et al. 2012, 

Pottorff et al. 2012) or physiological traits (Moreau et al. 2012). Genetic analyzes were 

reported for disease resistances (Ben et al. 2013) and abiotic stress such as tolerance to 

drought  (Badri et al. 2011), seed germination and pre-emergence growth at xtreme 

temperatures (Dias et al. 2011) and  water deficit (Vandecasteele et al. 2011). For salt 

tolerance, significant decrease in shoot biomass of M. truncatula genotypes under different 

saline irrigation was reported (Veatch et al. 2004, Lopez 2008a). Salinity stress could induce 

also changes in soluble sugars, amino acids and proline content in shoots (Lopez et al. 

2008b). Arraouadi et al. (2011, 2012) reported the effect of moderate salt stress on aerial 

parts of M. truncatula. Salt treatment reduced significantly leaves and roots K+ content, 

whereas Na+ content increased in leaves and roots in M. truncatula. 
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1.6. Effects of salinity and adaptation strategies 

1.6.1. Effects of salinity on the production 

Salt stress has a major negative effect on food production and quality worldwide by limiting 

the growth, development, and yield of crops (Tester and Davenport. 2003). More than one-

fifth of the world's arable lands are now under salt stress. As the global population increases, 

water resource management is deteriorating and salinity level of lands becomes more 

extreme which provoke decreases in development of agricultural economics.  

Salt stress can damage plants by several mechanisms, including water deficit, ion toxicity, 

nutrient imbalance, and oxidative stress (Vinocur et.al, 2005). Plants respond and adapt to 

salt stress through a series of biochemical and physiological changes, involving expression 

and coordination of many genes (Bartels and Sunkar 2005; Chinnusamy et.al 2005). Gene 

expression in the model plant Arabidopsis thaliana in response to salt and other abiotic 

stresses has been studied extensively (Zhu et. al., 2001; Seki et.al, 2002).  

Currently, 50% of all irrigation schemes are affected by salinity. Nutrient disturbances under 

salinity reduce plant growth by affecting the availability, transport, and partitioning of 

nutrients. However, salinity can differentially affect the mineral nutrition of plants. Salinity 

may cause nutrient deficiencies or imbalances, due to the competition of Na+ and Cl– with 

nutrients such as K+, Ca2+, and NO (Yuncai and Schmidhalter 2005). 

In general, high NaCl concentrations affect plant morphology, at different levels such as 

changes in plant architecture, vegetative growth or variations in leaf thickness. They also 

modify physiology and plant metabolism and affects the overall cell metabolic activities like 

seed germination, nitrogen metabolism, ionic toxicity, stomatal regulation and 

photosynthesis rate (Edmeades et al. 2001; Santos et al. 2002; Vinocur and Altman 2005). 

Salt tolerance is thus usually assessed as the percent biomass production in saline versus 

control over a prolonged period of time.  

1.6.1.1. Effects of salinity on photosynthetic activity  

The stresses imposed by salinity relate to ion composition and to ion concentration within the 

plants. When dissolved salt concentrations in soil solutions increase, water energy gradients 

decrease, making it more difficult for water and nutrients to move through root membranes 

and into the plant. The rate of water and solute uptake slows, but does not cease. With time, 

the solute-rich soil water increases ionic concentrations within the plant‘s aqueous 
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transportation stream. This osmotic effect, encountered at the root membrane, applies at all 

the plant‘s internal membranes served by its conductive tissue. In addition to the osmotic 

effect of concentrated solutes, there are ionic effects that arise from the specific composition 

of the solute flowing through plant tissue. Internal excesses of particular ions may cause 

membrane damage, interfere with solute balances, or cause shifts in nutrient concentrations. 

Salinization of soils is becoming an increasing problem in production systems where high 

rates of fertilization and irrigation are employed in climates with high evapotranspiration. 

The initial effects of increasing soil salinity are very similar to those observed when plants 

are exposed to drought. Reductions in leaf water potential will reduce stomatal conductance 

and eventually inhibit photosynthetic metabolism. 

It has been widely reported that photosynthetic capacity of chloroplast is depressed due to 

salt stress because of the reasons that salt stress leads to instability of the pigment protein 

complexes, destruction of chlorophylls and changes in the quantity and composition of 

carotenoids (Dubey, 1997). Besides, plants growing under saline condition, high stress, and 

photo inhibition are known to damage PSII (Ashraf and Harris, 2004). The measurements of 

chlorophyll fluorescence provide quantitative information about photosynthesis through non 

invasive means (Lichtenthaler, 1996). Fv/Fm ratio gives an estimate of the maximum 

quantum efficiency of PSII photochemistry (Baker and Rosenqvist, 2004) and has been 

widely used to detect stress induced perturbations in the photosynthetic apparatus (Weng and 

Lai, 2005; Sixto et al. 2005) 

1.6.2. Mechanisms of adaptation to salinity 

During their life-cycle, plants acclimate to environmental constraints by a wide range of 

mechanisms that are classified as avoidance or tolerance strategies (Levitt, 1980). In case of 

lowered water availability in the environment, stress avoidance essentially aims at 

maintaining the initial plant water status and lowering the rate of stress imposed at the tissue 

or cellular level. Tolerance strategies aim at preventing damage and maintaining metabolism, 

once water deficit has been established. Avoidance and tolerance mechanisms are not active 

in a temporal sequence. Their distinction is conceptual, but useful when studying plant 

response to stress (Verslues et al., 2006). 

Plant acclimatory responses are complex, exhibiting multigenic and interrelated properties. 

In addition, it should be hampered, due to heterogeneities in factors influencing stress 

responses such as plant age, growth conditions, and the experimental treatments, such as 
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severity, duration, and method of stress imposition (Aguirrezabal et al., 2006). Consequently, 

robust parameters for a specific definition of stress are still missing. Due to the complexity of 

plant stress response and its interlinked mechanisms and influencing factors, it becomes 

necessary to extend research to multilevel analyses (Jogaiah et al., 2012). 

1.6.2.1. Plants Vary in Tolerance to salinity 

Plants differ greatly in their tolerance to salinity, as reflected in their different growth 

responses. Through the cereals, rice (Oryza sativa) is the most sensitive and barley (Hordeum 

vulgare) is the most tolerant. The variation in salinity tolerance in dicotyledonous species is 

even greater than in monocotyledonous species. Some legumes are very sensitive, even more 

sensitive than rice (L¨auchli, 1984).To understand the physiological mechanisms responsible 

for the salinity tolerance of species, it is necessary to know whether their growth is being 

limited by the osmotic effect of the salt in the soil, or the toxic effect of the salt within the 

plant. In the simplest analysis of the response of a plant to salinity stress, the reduction in 

shoot growth occurs in two phases: a rapid response to the increase in external osmotic 

pressure, and a slower response due to the accumulation of Na+ in leaves. 

In the first, osmotic phase, which starts immediately after the salt concentration around the 

roots increases to a threshold level, the rate of shoot growth falls significantly. The threshold 

level is approximately 40 mM NaCl for most plants, or less for sensitive plants like rice and 

Arabidopsis. 

This is largely (but not entirely) due to the osmotic effect of the salt outside the roots. Figure 

1-3a shows the effect on the rate of shoot growth, which is, the rate of increase in shoot dry 

matter or in leaf area over time. The rate at which growing leaves expand is reduced, new 

leaves emerge more slowly, and lateral buds develop more slowly or remain non active, so 

fewer branches or lateral shoots form. The second, ion-specific, phase of plant response to 

salinity starts when salt accumulates to toxic concentrations in the old leaves (which are no 

longer expanding and so no longer diluting the salt arriving in them as younger growing 

leaves do), and they die. If the rate at which they die is greater than the rate at which new 

leaves are produced, the photosynthetic capacity of the plant will no longer be able to supply 

the carbohydrate requirement of the young leaves, which further reduces their growth rate 

(Figure 1- 3a). The osmotic stress not only has an immediate effect on growth, but also has a 

greater effect on growth rates than the ionic stress. Ionic stress impacts on growth much later, 

and with less effect than the osmotic stress, especially at low to moderate salinity levels 
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(Figure 1-3a). The effect of increased tolerance to the osmotic stress, with no change in ionic 

stress tolerance, is shown by the dotted line in Figure 3a. A significant genetic variation 

within species exists in the osmotic response. An increase in ionic tolerance takes longer to 

appear (Figure 1- 3b). Within many species, documented genetic variation exists in the rate 

of accumulation of Na+ and Cl− in leaves, as well as in the degree to which these ions can be 

tolerated. An increase in tolerance to both stresses would enable a plant to grow at a 

reasonably rapid rate throughout its life cycle. This combined tolerance is shown in Figure 

3c. For most species, Na+ appears to reach a toxic concentration before Cl− does, and so 

most studies have concentrated on Na+ exclusion and the control of Na+ transport within the  

plant. However for some species, such as soybean, citrus, and grapevine, Cl− is considered to 

be the more toxic ion (L¨auchli, 1984; Storey et al, 1999). The evidence for this is the 

association between genetic differences in the rate of Cl− accumulation in leaves and the 

 

 

Figure 1.3. The growth response to salinity stress occurs in two phases: a rapid response to the increase in 

external osmotic pressure (the osmotic phase), and a slower response due to the accumulation of Na+ in leaves 

(the ionic phase). The solid green line represents the change in the growth rate after the addition of NaCl. (a) 

The broken green line represents the hypothetical response of a plant with an increased tolerance to the osmotic 

component of salinity stress. (b) The broken red line represents the response of a plant with an increased 

tolerance to the ionic component of salinity stress. (c) The green-and-red line represents the response of a plant 

with increased tolerance to both the osmotic and ionic components of salinity stress ( Munns et al, 1995). 
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plant‘s salinity tolerance.This difference may arise because Na+ is not so effectively in the 

woody roots and stems that little reaches the leaves, and K+ becomes the major cation. Thus 

Cl−, which continues to pass to the lamina, becomes the more significant toxic component of 

the saline solution. 

1.6.2.2. Osmotic stress tolerance  

The decreased rate of leaf growth after an increase in soil salinity is primarily due to the 

osmotic effect of the salt around the roots. A sudden increase in soil salinity causes leaf cells 

to lose water, but this loss of cell volume and turgor is transient.Within hours, cells regain 

their original volume and turgor owing to osmotic adjustment, but despite this, cell 

elongation rates are reduced (Yeo et al, 1991; Passioura and Munns, 2000; Cramer, 2002 and 

Fricke and Peters, 2002). Over days, reductions in cell elongation and also cell division lead 

to slower leaf appearance and smaller final size. Cell dimensions change, with more 

reduction in area than depth, so leaves are smaller and thicker.  

The mechanism that down regulates leaf growth and shoot development under stress is not 

precisely known. The reduction in leaf growth must be regulated by long distance signals in 

the form of hormones or their precursors, because the reduced leaf growth rate is independent 

of carbohydrate supply(Munns et al, 2000) and water status (Munns et al, 2000; Fricke and 

Peters, 2002). The reduction occurs in the absence of nutrient deficiency (Hu et al, 2007) and 

ion toxicity, as evidenced by very low concentrations of Na+ and Cl− in expanding cells or 

tissues that do not correlate with growth rates (Fricke, 2004; Hu et al, 2005; Neves-Piestun 

and Bernstein, 2005 ; Hu et al, 2007).  

Root growth is usually less affected than leaf growth, and root elongation rate recovers 

remarkably well after exposure to NaCl or other osmotica (Munns, 2002). Recovery from a 

moderate stress of up to 0.4 MPa (megapascal) of mannitol, KCl, or NaCl (i.e., an osmotic 

shock that does not cause plasmolysis) is complete within an hour (Foyer and Noctor, 2005).  

Recovery from NaCl concentrations as high as 150 mM can occur within a day (Munns, 

2002). In contrast to leaves, these recoveries take place despite turgor not being fully restored 

(Frensch and Hsiao, 1994). This indicates different changes in cell wall properties compared 

with leaves.  
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1.6.2.3. Photosynthesis and Stomatal Conductance 

Rates of photosynthesis per unit leaf area in salt-treated plants are often unchanged, even 

though stomatal conductance is reduced (James et al, 2002). This paradox is explained by the 

changes in cell anatomy described above that give rise to smaller, thicker leaves and result in 

a higher chloroplast density per unit leaf area. When photosynthesis is expressed on a unit 

chlorophyll basis, rather than a leaf area basis, a reduction due to salinity can usually be 

measured. In any case, the reduction in leaf area due to salinity means that photosynthesis per 

plant is always reduced. 

Cause-effect relationships between photosynthesis and growth rate can be difficult to 

unravel. It is always difficult to know whether a reduced rate of photosynthesis is the cause 

of a growth reduction, or the result. With the start of salinity stress, a reduced rate of 

photosynthesis is certainly not the only cause of a growth reduction because of the rapidity of 

the change in leaf expansion rates (Cramer and Bowman, 1991; Passioura and Munns ; 2000;  

Fricke, 2004), but also because of the increase in stored carbohydrate, which indicates 

unused assimilate (Munns, 2000). At high salinity, salts can build up in leaves to excessive 

levels. Salts may build up in the apoplast and dehydrate the cell, they may build up in the 

cytoplasm and inhibit enzymes involved in carbohydrate metabolism, or they may develop in 

the chloroplast and play a direct toxic effect on photosynthetic processes. 

1.6.2.4. Accumulation of sodium ions in shoot 

The main site of Na+ toxicity for most plants is the leaf blade, where Na+ accumulates after 

being deposited in the transpiration stream, rather than in the roots (Munns, 2002). A plant 

transpires 50 times more water than it retains in leaves (Munns, 2006), so excluding Na+ 

from the leaf blades is important, even more so for perennial than for annual species, because 

the leaves of perennials live and transpire for longer. Most Na+ that is delivered to the shoot 

remains in the shoot, because for most plants, the movement of Na+ from the shoot to the 

roots can likely recirculate only a small proportion of the Na+ that is delivered to the shoot. 

As such, the processes determining Na+ accumulation in the shoot are primarily the 

processes controlling the net delivery of Na+ into the root xylem. 

1.6.2.5. K+ accumulation in cytoplasm.  

The concentration of K+ in the cytoplasm relative to that of Na+ may be a contributing factor 

to salinity tolerance. In Arabidopsis, an additional supply of K+ alleviated the phenotype of 

http://click.thesaurus.com/click/nn1ov4?clksite=thes&clkquery=A1023F1D15686FAC51FFEA4AAB946CEB&clkpage=the&clkimpr=UUw+P1lUeQcfm1FN&clkld=0&clkorgn=0&clken=1clk&clkord=0&clkblk=d&clktemp=mid&clkmod=1clk&clkitem=develop&clkdest=http%3A%2F%2Fthesaurus.com%2Fbrowse%2Fdevelop
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the sos mutants (Zhu, 2002), which may be due to an increase in cytoplasmic K+ 

concentrations. In barley Chen et al, (2005) found a negative correlation between the 

magnitude of K+ efflux from the root and salt tolerance of mature barley plants. This 

phenomenon may be related to root K+ status, although a strong relationship between leaf 

K+ concentrations and salinity tolerance has not been found. We can resume that 

accumulation of Na+ and K+ in shoots and roots are affected differently by salinity 

according to genotypes of species. The amounts of sodium (Na+) and potassium (K+) ions 

were measured in pooled tissues of 3 plants from each replication of each genotype just in 

our second experiment which was realized with 100mM NaCl and control (water). Genetic 

variability for Na+ and K+ content and also QTLs controlling the traits in both conditions 

were identified 

1.7. Fluorescence  

1.7.1. Fluorescence induction 

During the induction of photosynthesis when a dark-adapted leaf is exposed to light, large 

changes in chlorophyll fluorescence occur. The rapid changes in fluorescence that occur 

during the rapid induction to a peak have been attractive for detecting differences in 

photosynthetic performance of plants. On immediate exposure to light, fluorescence rises to 

the minimal level of fluorescence, termed Fo level, which is the fluorescence level obtained 

when the PSII reaction centers are in the ‗open‘ state (capable of photochemistry since QA, 

the primary quinone acceptor of PSII, is maximally oxidized). It should be noted that if the 

actinic photosynthetic photon flux density (PPFD) being used to drive the fluorescence 

induction is saturating and effects maximal closure of PSII reaction centers (maximal 

reduction of QA) at Fp, then the maximal fluorescence level, defined as Fm will be attained. 

The difference between Fm and Fo is termed the variable fluorescence, Fv. Absolute 

fluorescence values, such as Fo and Fm, are dependent upon both the photochemical 

activities and the optical properties of the leaf and, consequently, it is essential to remove the 

variable of leaf optical properties when attempting to compare changes in fluorescence 

characteristics between different leaf samples. This can be achieved by comparing ratios of 

fluorescence values. The potential of the use of ratios of the fluorescence induction. 
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1.7.2. Modulated fluorescence measurements 

The majority of fluorescence measurements are now made using modulated fluorometers 

with the leaf balance in a known state. The procedures for making such measurements are 

shown in Fig. 1-4, together with the fluorescence levels for a leaf in specific states. For a 

dark-adapted leaf, Fo is determined using a very low PPFD (generally considerably below 1 

µmol m-2 s-1), which ensures that almost all of the PSII reaction centers are in the open state 

(capable of photochemistry). When the dark-adapted leaf is exposed to a short actinic light 

pulse of very high PPFD (generally less than 1 s at several thousand µmol m-2 s-1), a maximal 

level of fluorescence (Fm) is generated as the majority of the PSII reaction centers have been 

closed (Incapable of photochemistry). The ratio of Fv/Fm provides an estimate of the 

maximum quantum efficiency of PSII photochemistry (Butler, 1978). Fv/Fm has been widely 

used to detect stress-induced perturbations in the photosynthetic apparatus, since decreases in 

Fv/Fm can be due to the development of slowly relaxing quenching processes and photo 

damage to PSII reaction centers, both of which reduce the maximum quantum efficiency of 

PSII photochemistry. The potential for the application of fluorescence measurements to study 

changes in leaf photosynthetic performance increase dramatically with the development of 

the light addition technique which could resolve fluorescence quenching into photochemical 

and non-photochemical components (Bradbury and Baker, 1981, 1984). When a leaf in the 

light-adapted state is exposed to a saturating pulse of very high PPFD, there is an increase in 

fluorescence from the Fʹ  level to a maximal level, Fʹ m (Fig. 1-4).  

The difference between Fʹ m and Fʹ  is termed Fʹ q since this is the fluorescence that has 

been quenched from the maximal level. The saturating light pulse maximally closes the PSII 

reaction centers and consequently removes any photochemical quenching by open PSII 

reaction centers. For a healthy leaf operating at steady-state photosynthesis under moderate 

to high PPFDs, the Fʹ m level generated by the saturating light pulse will be considerably 

less than the Fm level generated from a dark-adapted leaf by the same pulse (Fig.1-4). This 

difference is due to the development of light induced, non-photochemical quenching 

processes during the induction of photosynthesis in the leaf. The demonstration that the ratio 

Fʹ q/Fʹ m was an estimate of the quantum yield of PSII photochemistry for a leaf at any 

given  
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light condition (Genty et al., 1989) has led to this parameter, being widely used to estimate 

the operating quantum efficiency of PSII electron transport (hereafter termed the PSII 

operating efficiency). 

 

 

Fig. 1.4. Protocol for quenching analysis using modulated fluorescence. A dark-adapted leaf is exposed to 

various light treatments. The fluorescence parameters denoted with a prime originate from the illuminated leaf, 

where energy-dependent, non-photochemical quenching is present. The parameters without a prime are obtained 

from the leaf in the dark-adapted state, where there is no energy-dependent non-photochemical quenching. The 

different colours of the trace denote different light treatments. White, weak measuring light alone (0.1 µmol 

photons m-2 s-1) that gives Fo. Yellow, saturating light pulse (<1 s duration, >6000 µmol photons m-2 s-1) that 

gives Fm in darkness and Fʹ m in light. Blue, actinic light that drives photosynthesis (in this case 685 µmol 

photons m-2 s-1) that gives Fʹ  (if steady-state has been reached this has often been denoted by Fʹ s). The 

actinic light can be produced from a range of sources, for example, sunlight, halogen lamp, light-emitting 

diodes. The initial peak of fluorescence is denoted as Fp (without prime, since it originates from the 

nomenclature of the rapid phase of fluorescence induction, see Fig. 1). Red, far-red light (30 µmol photons m-2 

s-1 at 720–730 nm for 4 s) that excites PSI only, and thus oxidizes the plastoquinone and QA pools associated 

with PSII and gives Fʹ o: Orange, variable fluorescence calculated as Fv/Fm-Fo from the dark-adapted leaf and 
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Fʹ v = Fʹ m - Fʹ o from the illuminated leaf. Green, fluorescence that is quenched from Fʹ m to Fʹ  by PSII 

photochemistry in the illuminated leaf, calculated as Fʹ q = Fʹ m - Fʹ : All parameters except Fʹ q; Fv, and 

Fʹ v; are measured from the baseline. (Neil et al, 2004)) 

 

The PSII operating efficiency has been shown to be the product of two other important 

fluorescence parameters, Fʹ v/Fʹ m (the maximum efficiency of PSII under the given light 

conditions, generally determined by the level of quenching in PSII reaction centers and 

antenna) and Fʹ q/Fʹ v (the PSII efficiency factor which relates to the ability to maintain 

PSII reaction centers in the open state): 

 

 

 

Fʹ v is the variable fluorescence of a light-adapted leaf defined as (Fʹ m - Foʹ ) (Fig. 1.4). 

Foʹ  is the minimal level of fluorescence when PSII centers are maximally open for the leaf 

in a light-adapted state. Foʹ  has frequently been measured by exposing the leaf at Fʹ  to 

weak far-red light in the absence of actinic light (van Kooten and Snel, 1990; Maxwell and 

Johnson, 2000), since it is assumed that far red light will preferentially excite PSI relative to 

PSII thus removing electrons from the PSII electron acceptors and opening the PSII reaction 

centers.  

Non-photochemical quenching (heat dissipation) has been quantified using NPQ which 

compares the light induced Fʹ m level to the dark-adapted Fm level (Bilger and Bjo¨rkman, 

1990): 

 

 

 

It is important to recognize that NPQ assesses increases in non-photochemical quenching in a 

light-adapted leaf relative to the non-photochemical quenching occurring in the dark-adapted 
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state. Consequently, it is only valid to make comparisons between samples which have the 

same quenching characteristics in the dark-adapted state; similar values of Fv/Fm would be a 

good indication of this.  

In the first experiment we have measured several fluorescence values (minimum 

fluorescence (Fo), maximum fluorescence (Fm), ratio of variable on maximum fluorescence 

(Fv/Fm where Fv = Fm-Fo) for the six genotypes with different saline concentrations and 

control to identify the effect of genotype an salinity on the fluorescence values. The same 

method was applied also on the recombinant inbred lines of the second experiment which 

was realized with 100mM NaCl and control (water). Genetic variability for fluorescence 

values and also QTLs controlling the traits in both conditions were identified 
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2.1 Plant materials 

Two successive experiments were undertaken in order to identify the effect of different NaCl 

 concentrations on six genotypes which are parental lines of some crosses and then based on 

the results of the first experiment, we realized the second one inorder to detect QTLs 

controlling several growth and physiological traits in a Recombinant Inbred Lines (RILs) 

population of M. truncatula. 

       2.1.1Genotypes 

The six Medicago truncatula genotypes including TN1.11, A17, DZA315.16, A20, TN1.21 

and F83005.5, used in the first experiment were selected through a sequenced lines collection 

(http://www1.montpellier inra.fr/BRC-MTR/mauguio/mauguio.php), coming from different 

Mediterranean countries and present a high genetic variability (Table 2.1). All genotypes are 

pure lines derived from one plant by single seed descendant method. Seeds were produced at 

INRA Montpellier and Ecolab Toulouse-France in the greenhouse. 

 Recombinant inbred lines populations for some combinations between different genotypes 

are available as presented in fig 2-1. According the results of the first experiment the 

population of recombinant inbred lines (100 RILs) of M.truncatula in F6 generation derived 

from the cross between TN1.11 and Jemalong-A17 (A17) was used in the second 

experiment.  

Table 2.1. Medicago truncatula genotypes and their origin 

Line  Origin 
A17b  Unknown 
F83005.5 a, b  France 
TN1.11 b  Tunisia 
TN1.21 b  Tunisia 
A20 b  Morocco 
DZA315.16 a,b  Algeria 

                                a Lines from the core collection CC16 
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                    b Sequenced lines 

 
    2.1.2 Experimental conditions 
In the first experiment the seeds of all genotypes were scarified with sand paper and then 

placed in Petri dishes on a piece of blotting paper imbibed with sterile water. The dishes were 

kept at 4°C in obscurity for 4-5 days, to overcome seed dormancy, and then for 24 h at 25°C 

to let them germinate. Seedlings with root length of about 4 mm were individually 

transferred to pots (10 cm diameter and 10cm deep) filled with 3:1 (V: V) of perlite and sand. 

Four plants of each genotype were grown in a given individual pot under controlled 

conditions at 25°C, with relative humidity of 80% and photosynthetic photon flux of 200 

µmol.m-2.s-1 with 16 h photoperiod. The experiment was carried out in a factorial experiment 

based on randomized complete block design with three replications, 2 pots per replication 

and 4 plants per pot. Plants were grown in the phytotron under controlled conditions. During 

35 days after planting, the plants were sub-irrigated once a week. For control treatment, a 

nutritive solution was used as described by Vadez et al., (1996) whereas the iron source was 

modified by adding 25ml of Fe-EDTA (8.2g /L) per litter. In salinity treatment, NaCl was 

added just one time to the nutritive solution according to different concentrations (0, 30, 60, 

90,120 and 150 mM NaCl). Salt treatments were applied 7 days after planting. To avoid the 

overcoming of NaCl accumulation problem in the substrate, seedlings were sub-irrigated one 

time with NaCl concentrations for the first seven days and other irrigations were done only 

with nutritive solution. Irrigation was done with 2L nutritive solution in each tray of 12 pots 

per week. 

The second experiment was also carried out in the same conditions as explained for the first 

one. The experimental design was split plot in 3 replications. The main factor was salinity 

treatment (100 mM NaCl and control) and sub factor consisted of 100 Rils and their parents.   

2.2 Trait measurement  

Several growth and physiological traits were measured in both experiments which are the 

following.  
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Figure 2.1. RILs populations (LR) obtained by crossing parental lines of Medicago 
truncatula. The full arrows mean that the RILs population is fixed (the lines are 
homozygous) and mapped; the dotted arrows mean that the RILs population is not fixed yet. 
This work is a collaboration with INRA Montpellier, INRA Rennes and the center of 
Biotechnology of Borj Cedria (Tunisia).   
 
  2.2.1 Plant growth  

Plants were harvested 35 days after planting in the first experiment  and 30 days after 

planting in the second one. Fresh weights of shoots and roots for each plant were measured at 

harvest. Plants were oven dried during 3 days at 70°C, and then dry weights of shoot and 

roots were measured. The plants dry weight was also calculated. The relative water content 

(RWC) was measured for 1 plant from each pot. Immediately after harvest, fresh aerial part 

of plants were weighed (FW) and placed in distilled water for 24h at 4˚C and their turgid 
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weight (TW) was recorded. The samples were oven dried at 70°C for 3 days and weighed 

(DW). The RWC was calculated by the formula RWC (%) = ([FW − DW] / [TW − DW]) 

×100. Vertically projected leaf area (LA) of each plant was determined by analyzing the 

photos of ―in situ‖ plants by Image J software, 20 days after salt application in the first 

experiment and 14 days after salt treatment in the second one.  

       2.2.2 Chlorophyll fluorescence parameters 

In both experiments chlorophyll content and chlorophyll fluorescence measurements were 

performed 20 and14 days after salt application for a young and fully expanded leaf from the 

middle section of the plant in the first and second experiments, respectively. Leaf chlorophyll 

content was measured by SPAD-502 chlorophyll meter (Konica Minolta, Osaka, Japan). 

Chlorophyll fluorescence was performed with a pulse-amplitude modulation fluorometer 

(PAM-2000, Walz, Effeltrich, Germany) after 20-min dark adaptation of the plant. Several 

chlorophyll fluorescence parameters were studied as following: the potential photochemical 

efficiency of photosystem II electron transport (ΦP), the actual efficiency of PSII electron 

transport (ΦPSII), non-photochemical fluorescence quenching (NPQ) and the proportion of 

closed PSII traps (1-qP). The chlorophyll fluorescence parameter measurements were done 

according to method described in detail by Maury et al. 1996.  

F0 (minimal fluorescence) and Fm(maximal fluorescence) were determined upon excitation 

of leaves using a weak measuring light of 0.15 µmol quanta m-2 s-1 from a light emitting 

diode and in the form of a 800 ms pulse length at 600 Hz frequency of saturating white light. 

The fibre optics to sample distance and light intensity was chosen, such that the F0 value 

remained under 500 fluorescence unit. The distance from fibre optics to sample was kept 

constant throughout the experiment. Variable to maximum fluorescence ratio was then 

calculated by Fv/Fm = (Fm-F0)/Fm (Schreiber et al., 1994) which represents the efficiency of 

open PS II. Fs at steady state was measured with active light at ∼200 µmol quanta m-2 s-1. 

Actinic light was applied for 2 min 30 sec. Fm‘ was determined by applying a saturation 

pulse of 10 000 µmol quanta m-2 s-1. Foʹ  has frequently been measured by exposing the leaf 

at Fʹ  to weak far-red light in the absence of actinic light. Quenching coefficients were 

calculated using the following equations: 

Proportion of open PSII, qP = (Fm -Fs)/ (Fm -F0 )  

Non-photochemical fluorescence quenching, NPQ = (Fm/Fm )-1 
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The proportion of closed PSII traps (1-qp) 

 

       2.2.3 Na+ and K+ content 

The amounts of sodium (Na+) and potassium (K+) ions were measured in pooled tissues of 3 

plants from each replication of each genotype just in the second experiment. Na+ and K+ 

were assayed by flame emission spectrophotometry (Perkin Elmer, Aanalyst 300, Waltham, 

MA, USA) after nitric acid extraction (HNO3, 0.5%) of the dry shoot and root tissue as 

described by Munns et al. (2010).   

2.3 Molecular methods 

       2.3.1 DNA extraction  

To extract the genomic DNA from a plant, three young leaves are harvested and placed in a 

well of a plate with 96 wells of 2.5 mL each. Then, 2 big glass beads and 2 small glass beads 

are added in each well. The leaves were dried at 65°C for 5 days, and ground with the ―glass 

bead grinder‖ (1 min at maximum power). 500 μL of extraction buffer (2 mL Tris-HCl 1 M 

(PH=8)+ 0.5 mL NaCl 5 M + 0,5 mL EDTA 0.5 M (PH=8)+ sterile DNase-free water for 10 

mL of buffer) are added to each well, the plate is shaken for 15 min and then centrifuged for 

20 min at 4000 rpm. The supernatant from each well is transferred to a new plate and 

centrifuged 20 min at 4000 rpm; again, the supernatant is transferred to a new plate, and 300 

μL of isopropanol are added to each well. The plate is shaken and centrifuged 30 min at 4000 

rpm. The pellet is dried 5 min under the laminar flow hood and then re-suspended in 100 μL 

of DNase-free water. The plate should be kept at -20°C. 

         2.3.2 Polymerase Chain Reaction (PCR) 

The PCR mixtures for 1 μL of genomic DNA (diluted 1: 10 in sterile DNase-free water) 

consists of: 2.5 μL of 10X PCR Buffer (Interchim, France), 1.25 μL of MgCl2 50 mM 

(Interchim, France), 1 μL of each dNTP 1.25 mM (Promega, Madison, WI, USA), 1 μL of 

each primers (Invitrogen™, France), suspended in sterile water (25 ng/μL), 0.25 μL of Taq-

Polymerase and 14 μL of sterile water, for a total of 25 μL. The ordinary reaction conditions 
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are: 94°C for 4 minutes, followed by 38 cycles of 94°C for 30 seconds, 55°C for 30 sec and 

72°C for 30 sec, followed by 72°C for 6 min. 

 

 

       2.3.3 Gel electrophoresis 

The amplified PCR products are separated by gel electrophoresis on 3.5% Agarose (2.6% 

UltraPure Agarose + 0.9% ―Low melting‖ Agarose) in 1XTAE buffer, and stained with 

ethidium bromide. The reading of the electrophoresis gel was used to design a table of the 

genotype of each line in the markers‘ zone, giving the A genotype to the lines that were equal 

to TN1-11 (the female line, by convention) and B genotype to the lines that were equal to 

A17 (the male line).  

2.4 Statistical analysis 

       2.4.1 Statistical analysis for 6 genotypes in the first experiment 

The complete set of data was involved in analysis of variance, using the Statistical Analysis 

System (SAS 7.02 Institute, Inc 1998), to determine the main effects of genotype, salinity 

and their interactions. Means comparison between the salt concentrations or genotypes for 

each studied trait was done with the SNK test. Correlations among different traits in 90 mM 

salinity conditions were calculated using the means of each genotype in all replications.  

       2.4.2 Statistical analysis in the second experiment 

Data of our split plot design were analyzed, to determine genetic variability of 100 RILs in 

salinity and control conditions for the plant growth and physiological traits. Means 

comparison between genotypes for each studied trait was done with LSD test. SAS was also 

used to analyse the frequency distribution of RILs and their parents for tolerence to salinity. 

Correlations among different traits in both salinity and control conditions were calculated 

using the means of each genotype in all replications. Heritability for all the traits in both 

conditions was also calculated as: 

                                                 h² = g
2 / (g

2 + e
2) 

Where: σ g
2

 is the genetic variance and σ e
2

 is the variance of error in the experiments.  

      2.5 Map construction and QTL detection 
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A RIL population, named LR7, was derived from the cross between TN1.11 and Jemalong 

A17 (A17) pure lines. Genetic map of this cross using a population of 192 RILs was 

constructed using 146 SSR markers based on the Medicago truncatula genome sequence 

assembly (Young et al. 2011), (http://www.medicagohapmap.org/?genome) and unigene set 

of Medicago Gene Index at DFCI (http://compbio.dfci.harvard.edu/). The map covers 470 

cM with an average interval between markers of 3.19 cM. PCR conditions, gel 

electrophoresis and genotype scoring were done as previously reported (Julier et al. 2007). 

Each linkage group was numbered according to the M. truncatula reference map 

(http://www.medicago.org/genome/map.php) and is presumed to correspond to one of the 8 

chromosomes in the haploid M. truncatula genome (x=8). QTLs were detected by Multiple 

QTL Mapping (MQM) (Jansen, 1993; Jansen, 1994) using the ―qtl‖ package (Broman, 2003; 

Arends et al., 2010) of the R system. Threshold values for the LOD scores were empirically 

determined by computing 1,000 permutations (Churchill & Doerge, 1994). Additive effects 

of the detected QTL, the percentage of phenotypic variation explained by each one (R2) as 

well as the percentage of total phenotypic variation explained (TR2) were estimated using the 

MQM program of Rqtl. Map chart 2.1 was used for graphical presentation of linkage groups 

and map position. 
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Summary: 
 Among abiotic stresses salinity could be consider as a serious problem affecting plant 

growth and crop yield (Duzan  et al., 2004). A major focus of plant breeding efforts in many 

areas has been to maintain or improve crop productivity in salt-affected environments by 

selecting salt tolerant genotypes (Epstein, 1985; Ashraf, 1994; Nuccio et al., 1999; Pakeeza, 

2007). Salt stress can affect numerous plant functions in legume plants, such as seed 

germination, vegetative growth, and yield (Zhu, 2001). Medicago truncatula has an 

outcrossing rate of less than 3% allowing the generation of highly homozygous genotypes (Li 

et al., 2009). It could be an appropriate model for understanding salt response in legumes. 

Significant decrease in shoot biomass of M. truncatula genotypes under different saline 

irrigation was reported (Veatch et al., 2004). Lopez (2008a) reported that plant biomass of 

some M. truncatula lines was markedly affected by salt stress conditions (25 and 50 mM 

NaCl).  In susceptible genotypes of M. truncatula, salinity stress induces reduction in 

chlorophyll content and fluorescence parameters as; maximum fluorescence (Fm), variable 

fluorescence (Fv) and potential photochemical efficiency of photosystem ΙΙ (Fv/Fm) (Lopez 

et al., 2008b).  

To improve the reliability and selection efficiency for salt tolerance, it is necessary to 

identify the salt-induced characteristic changes in multiple traits among different genotypes. 

The objectives of this research involved evaluation of some morpho-physiological traits of 

six M. truncatula genotypes, irrigated with saline solutions ranging from 0 to 150 mM NaCl 

grown in controlled growth chamber conditions. Genotypes are parental lines of some 

crosses and we tried to identify the important parameters affected by salinity and to 

determine the convenient salinity concentration as well as the favorable crosses which should 

be used in genetic studies of tolerance to salinity programs. 

The experiment was carried out in a factorial design based on randomized complete blocks 

with three replications, 2 pots per replication and 4 plants per pot. Six Medicago truncatula 

genotypes including TN1.11, A17, DZA315.16, A20, TN1.21 and F83005.5 used in our 
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experiment are from different mediterranean countries and present a high genetic variability. 

Seeds were produced at INRA Montpellier and Ecolab Toulouse-France in  greenhouse.  

 During 35 days after planting, the plants were sub-irrigated once a week. For control 

treatment, a nutritive solution was used as described by Vadez et al., (1996) whereas the iron 

source was modified by adding 25ml of Fe-EDTA (8.2g /L) per liter. In salinity treatment, 

NaCl was added just one time to the nutritive solution.  

Leaf chlorophyll content was measured by SPAD-502 chlorophyll meter (Konica Minolta, 

Osaka, Japan). Chlorophyll fluorescence was performed with a pulse-amplitude modulation 

fluorometer (PAM-2000, Walz, Effeltrich, Germany). Vertically projected leaf area (LA) of 

each plant was determined by analyzing the photos of ―in situ‖ plants 20 days after salt 

application. The complete set of data was involved in analysis of variance, to determine the 

main effects of genotype, salinity and their interactions. Means comparison between the salt 

concentrations or genotypes for each studied trait was done with the SNK test. Correlations 

among different traits in 90 mM salinity conditions were calculated using the means of each 

genotype in all replications. Principal component analysis was also carried out for control 

and 90 mM, NaCl , based on the means of each genotype in all replications for the studied 

traits.  
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Abstract: 
Among abiotic stresses salinity is considered as a serious problem affecting plant functions 

especially growth and yield. This research was conducted to study the effect of salt stress on 

some morpho-physiological parameters in Medicago truncatula genotypes and to determine 

the eventual use of some traits as tolerance criteria. Genotypes including TN1.11, A17, 

DZA315.16, A20, TN1.12 and F83005.5 are selected through a sequenced lines collection 

(http://www1.montpellierinra.fr/BRC-MTR/mauguio/mauguio.php)    which are originated 

from different Mediterranean countries. Genotypes were studied under 6 salinity treatments 

(0, 30, 60, 90,120 and 150 mM NaCl) in a factorial experiment based on randomized 

complete block design with three replications. Each replication contains 2 pots with 4 plants. 

Analysis of variance show significant differences among genotypes and salinity levels for 

most of studied traits. The interaction between genotypes and salt treatments was also 

significant in most of the studied traits. ―DZA315.16‖ genotype presents the highest main 

effect values for morphological traits whereas‖TN1.11‖ has low values. Vertically projected 

leaf area measured 20 days after salt treatment (LA); show the highest variability through all 

studied salt concentrations. Genotype ―TN1.11‖ has low values for LA in control and also for 

different salt levels, whereas ―DZA315.16‖ presents the highest values for control and low 

ones for salt concentration. LA measurement with 90 mM salt concentration should be used  

for genotype discrimination and recombinant inbred lines of ―DZA315.16‖x ―TN1.11‖ cross 

as the favorable population for genetic and genomic studies.  

Key words: genotype variability, growth traits, leaf area, salt stress, Chlorophyll content 
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3.1. Introduction  
Abiotic stresses represent the most limiting factors for plant productivity and play a major 

role in the distribution of plant species across different types of environments. Among abiotic 

stresses salinity could be consider as a serious problem affecting plant growth and crop yield 

(Duzan  et al., 2004). Currently more than 20% of the world‘s irrigated lands are salt-

affected. About 60% of salt-affected soils are sodic and alkali soils with limited productivity 

(Qadir et al., 2001). A major focus of plant breeding efforts in many areas has been to 

maintain or improve crop productivity in salt-affected environments by selecting salt tolerant 

genotypes (Epstein, 1985; Ashraf, 1994; Nuccio et al., 1999; Pakeeza, 2007). Among plant 

families, legumes contribute significantly to human and animal diets due to their high protein 

content. They also improve soil fertility through symbiosis with soil bacteria. Salt stress can 

affect numerous plant functions in legume plants, such as seed germination, vegetative 

growth, and yield (Zhu, 2001). The heterozygous and outcrossing nature makes it difficult to 

study the response of genotypes of alfalfa across a range of salinities (Holland and Bingham, 

1994; Xuehui and Brummer, 2012). Medicago truncatula, an annual relative of alfalfa, has 

an outcrossing rate of less than 3% allowing the generation of highly homozygous genotypes 

(Li et al., 2009). It could be an appropriate model for understanding salt response in legumes. 

Significant decrease in shoot biomass of M. truncatula under different saline irrigation was 

reported (Veatch et al., 2004). Lopez (2008a) reported that plant biomass of M. truncatula 

was markedly affected by salt stress conditions (25 and 50 mM NaCl).  Salinity stress could 

induce also changes in soluble sugars, amino acids, proline content and other inorganic 

solutes in shoots of M. truncatula (Lopez et al., 2008a). In susceptible genotypes of M. 

truncatula, salinity stress induces reduction in chlorophyll content and fluorescence 

parameters as; maximum fluorescence (Fm), variable fluorescence (Fv) and potential 

photochemical efficiency of photosystem ΙΙ (Fv/Fm) (Lopez et al., 2008b). Salinity stress 

causes reduction in plant growth, leaf area and consequently dry matter in rice (Asch et al., 

2000). Netondo et al. (2004) reported that photosynthetic activity decreases when sorghum 

varieties are grown under saline conditions leading to reduced growth and productivity. 
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Reduction in chlorophyll fluorescence due to salinity stress was related to the damage of 

chlorophyll under saline conditions which can be attributed to a decrease in chlorophyll 

content and activity of photosystem ΙΙ (Ganivea et al., 1998). Salinity can affect chlorophyll 

content through inhibition of chlorophyll synthesis or an acceleration of its degradation 

(Reddy and Vora, 1986). The reduction of photosystem II activity induced a decrease in the 

potential photochemical efficiency of photosystem ΙΙ (Fv/Fm) in sorghum (Netondo et al., 

2004).   

To improve the reliability and selection efficiency for salt tolerance, it is necessary to 

identify the salt-induced characteristic changes in multiple traits among different genotypes. 

The objectives of this research involved evaluations of some morpho-physiological traits of 

six M. truncatula genotypes, irrigated with saline solutions ranging from 0 to 150 mM NaCl 

grown in controlled growth chamber conditions. Genotypes are parental lines of some 

crosses and we tried to identify the important parameters affected by salinity and to 

determine the convenient salinity concentration as well as the favorable crosses which should 

be used in genetic studies of tolerance to salinity programs. 

3.2. Materials and Methods  

The experiment was carried out in a factorial experiment based on randomized complete 

blocks with three replications, 2 pots per replication and 4 plants per pot. Six Medicago 

truncatula genotypes including TN1.11, A17, DZA315.16, A20, TN1.21 and F83005.5, used 

in the experiment are through a sequenced lines collection (http://www1.montpellier 

inra.fr/BRC-MTR/mauguio/mauguio.php), coming from different Mediterranean countries 

and present a high genetic variability (Table 3.1). All genotypes are pure lines derived from 

one plant as single seed descendants. Seeds were produced at INRA Montpellier and Ecolab 

Toulouse-France in the greenhouse. Recombinant inbred lines populations for some 

combinations between genotypes are also avalable.  

 Seeds of these genotypes were scarified by fine sand paper and then cold treated by placing 

on moist filter paper in a Petri dish and incubated at 4°C for 4 days. After cold treatment, 

seeds were germinated in the dark at room temperature for 12h. Seedlings with root length of 

about 4 mm were individually transferred to pots (10 cm diameter and 10cm deep) filled with 

3:1 (V: V) of perlite and sand. Four plants of each genotype were grown in a given individual 

pot under controlled conditions at 25°C, with relative humidity of 80% and photosynthetic 

photon flux of 200 µmol.m-2.s-1 with 16 h photoperiod. During 35 days after planting, the 
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plants were sub-irrigated once a week. For control treatment, a nutritive solution was used as 

described by Vadez et al., (1996) whereas the iron source was modified by adding 25ml of 

Fe-EDTA (8.2g /L) per liter. In salinity treatment, NaCl was added just one time to the 

nutritive solution according to different concentrations (0, 30, 60, 90,120 and 150 mM 

NaCl). Salt treatments were applied 7 days after planting. To avoid the overcoming of NaCl 

accumulation problem in the substrate, seedlings were sub-irrigated one time with NaCl 

concentrations for the first seven days and other irrigations were done only with nutritive 

solution. Irrigation was done with 2L nutritive solution in each tray of 10 pots per week. 

Leaf chlorophyll content was measured by SPAD-502 chlorophyll meter (Konica Minolta, 

Osaka, Japan). Measurements were performed 14 days after salt application for a young and 

fully expanded leave from the middle section of the plant. Chlorophyll fluorescence was 

performed with a pulse-amplitude modulation fluorometer (PAM-2000, Walz, Effeltrich, 

Germany) for the young fully expanded leave after 20-min dark period. The minimum 

fluorescence (Fo) and the maximum fluorescence (Fm) following a saturating light pulse 

were measured. The ratio of variable on maximum fluorescence (Fv/Fm where Fv = Fm-Fo) 

was calculated. The Fv/Fm ratio represents the potential photochemical efficiency of 

photosystem II electron transport (Krause, 1988).  

Vertically projected leaf area (LA) of each plant was determined by analyzing the photos of 

―in situ‖ plants 20 days after salt application. The aerial part and also roots of each plant (35 

days old) were collected at harvest, then, photographed using a camera. Fresh weights of 

aerial part and roots were measured and thus the samples were dried in the oven at 65-70°C 

for 5 days. Dry weight of aerial part and roots were also measured. Shoot length, root length 

and vertical projected leaf area (LA) were determined by analyzing the photos of each plant 

by Image J software. The complete set of data was involved in analysis of variance, using the 

Statistical Analysis System (SAS 7.02 Institute, Inc 1998), to determine the main effects of 

genotype, salinity and their interactions. Means comparison between the salt concentrations 

or genotypes for each studied trait was done with the SNK test. Correlations among different 

traits in 90 mM salinity conditions were calculated using the means of each genotype in all 

replications. Principal component analysis was also carried out for control and 90 mM, NaCl 

, based on the means of each genotype in all replications for the studied traits.  
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оΦоΦ wŜǎǳƭǘǎ ŀƴŘ 5ƛǎŎǳǎǎƛƻƴ 
 
Analysis of variance for 6 genotypes in different levels of salinity is presented in Table 3.2. 

Results show that the main effect of genotype is significant for all morpho-physiological 

traits and chlorophyll fluorescence parameters except maximum fluorescence (Fm).  This 

indicates that some of studied genotypes are more tolerant to salinity than others. The main 

effect of different levels of salinity present significant effects for all of morpho-physiological 

traits studied. The interaction between genotype and treatment was also significant, for all 

morpho-physiological traits studied showing that the pattern of salinity effect on all 

genotypes is not the same.  
 
The main effects of genotypes for all studied traits are presented in table 3.3. 

―DZA315.16‖genotype shows the highest values for most of morphological traits whereas 

―TN1.11‖ has low values. Significant differences are also observed between other studied 

genotypes. Genetic variability for shoot biomass production in M. truncatula was also 

reported by Veatch et al. (2004). Leaf growth in length and area is reported to decrease in 

susceptible Mungbean varieties (Misra et al., 1997). In our experiment vertical projected leaf 

area (LA) which is very easy to measure has a  high variability through studied traits and 

―DZA315.16‖ and ―A20‖ genotypes present the maximum and minimum values respectively 

(Table 3.3). Our results concerning the main effect of salinity for all studied genotypes are 

resumed in table 4. Fresh and dry shoot and root weights are affected by salt concentrations 

from 60 mM to 150 mM. Vertically projected leaf area (LA) was significantly reduced 20 
 
days after salt application with 90 to 150 mM NaCl concentrations (Table 3.4). In our 
 
experiment salt treatment present also significant effects on chlorophyll content. Leaf 
 
chlorophyll content was affected by salinity in Brassica juncea (Qasim, 1998), rice (Sultana 
 
et al., 1999), tetraploid wheat (Munns and James, 2003) and Brassica oleracea (Bhattacharya 
 
et al., 2004). Salinity can affect chlorophyll content through inhibition of chlorophyll 
 
synthesis or an acceleration of its degradation in naked oat (Avena sativa L.), (Zhao et al., 
 
2007). Decreasing the chlorophyll content was reported as the result of increasing salinity in 
 
guar (Cyamopsis tetragonoloba L.),  (Ashraf et al., 2005). In our experiment maximal 
 
fluorescence level (Fm) and the potential photochemical efficiency of PS II (Fv/Fm) are 
 
significantly reduced with different salinity concentrations compared with control (Table 
 
3.4). Chlorophyll fluorescence could be modified by salinity stress in plants and it can be 
 
used for screening tolerant genotypes in plants non-invasively (Baker and Rosenqvist, 2004). 
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For the most severe salt stress, Fv/Fm decreases significantly in barley (Jiang et al., 2006).  
Fv/Fm reduced significantly at high salt level in sorghum (Netondo et al., 2004). Kafi et al., 
(2009) suggested that only slight inhibition of photosynthesis occurred at high salt level in 

wheat (Triticum aestivum ).  
 
Correlations between some of the morphological or physiological traits, for example; shoot 

fresh weight (SFW) with: shoot dry weight (SDW), root fresh weight (RFW), root dry weight 

(RDW)  and shoot length (SL) are positives and significant in 90 mM NaCl salt treatment 

condition (Table 5). Vertical projected leaf area (LA) also present significant correlations 

with: shoot fresh weight (SFW), shoot dry weight (SDW), root fresh weight (RFW), root dry 

weight (RDW), shoot length (SL), and root length (RL). The results confirm again that leaf 

area (LA) which presents high variability for the main effects of genotypes and salt 

concentrations can be used as selection criteria in salt stress programs. Positives correlations 

between some morphological traits were also reported by Arraouadi (2012). 
 
We have already mentioned (tables 3.3, 3.4 and 3.5) that vertically projected leaf area (LA) 

which is easy to determine present high variability for the main effects of genotypes and 

salinity concentration. Considering the interaction between genotypes and salinity 

concentrations for leaf area (LA), ―TN1.11‖ has rather low values for control and also for 

different salt concentrations, whereas ―DZA315.16‖ genotype has the highest values for 

control and low values for salt treatments (Fig 3.1). ―DZA315.16‖ should be considered as a 

susceptible genotype, contrary ―TN1.11‖ has not high values in the absence of salinity but it 

is tolerant to salt concentrations. Ninety mM salt concentration reduced 10% of LA 

compared with control for ―TN1.11‖ whereas the reduction was about 65% for ―DZA315.16‖ 

(Fig 3.1). Principal component analysis(PCA), revealed that the two principal components 

(PC 1and PC 2) represent 82% of the whole variance in control condition and 79% of the 

whole variance in 90 mM salt concentration(Fig 3.2) . In both conditions, the first component 

explaining 52% of the initial variance in control and 54% in salinity condition comprised of 

shoot fresh and dry weight (SFW and SDR), root fresh and dry weight (RFW and RDW) and 

leaf area (LA) . It shows that, on average, most of growth traits are independent from 

physiological parameters in both conditions. This association was also observed in the results 

of correlation too (Table 3.5).The second component explains 30% of the variance in control 

and 25% in salinity conditions and involved physiological traits. The situation of some traits 

changes according to salinity or control conditions. For example Fm, Fv/Fm, CC, and RL 
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present opposite positions respectively. The situation of genotypes is also changed according 

their resistance and susceptibility to salinity stress as shown in Fig 2. 

We can resume that resistance to salinity is not due to one factor but to several 

morphological and physiological parameters.  Leaf area (LA) is an important trait to increase 

total crop photosynthesis and hence biomass production through increase or extended light 

interception. Salt tolerant genotypes maintain leaf area (LA) at high levels of salt 

concentrations (Fig.3.1). Through measured traits vertically projected leaf area 20 days after 

salt application (LA) which is significantly correlated with growth parameters, should be 

considered a favorable trait (noninvasive and easy to determine) to select salt tolerant 

genotypes in medicago truncatula .Through studied genotypes ―DZA315.16‖ present high 

values for control but low ones in salinity concentration where as ―TN1.11‖ has low values 

in control but it is tolerant to salinity. Recombinant inbred lines (RILs) coming form the 

cross between these two genotypes with 90 mM NaCl concentration should be used in 

genetics and genomics programs.  
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Table 1. Medicago truncatula genotypes and their origin 

Line  Origin 
A17b  Unknown 
F83005.5 a, b  France 
TN1.11 b  Tunisia 
TN1.21 b  Tunisia 
A20 b  Morocco 
DZA315.16 a,b  Algeria 

                                         a Lines from the core collection CC16 

                                        b Sequenced lines 
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Table 2.  Analysis of Variance (mean square values) for the effect of salinity stress in M.trancatula  genotypes 
 

 
*, ** and *** significant at 0.05, 0.01 and 0.001 levels respectively. Shoot fresh  weight (SFW),  shoot dry weight (SDW), root fresh 
weight (RFW),  root dry weight (RDW), shoot length (SL), root length (RL),  leaf area (LA),   Chlorophyll content (CC), Minimal 
fluorescence level (F0), Maximal fluorescence level (Fm),  potential photochemical efficiency of PSII (Fv/Fm, relative units) 

Source df SFW  
 

SDW 
 

RFW 
 

RDW 
 

SL 
 

RL 
 

LA 
 

CC F0 Fm Fv/Fm 

Genotype 5 4148.03* 149.99** 17836.52** 161.47** 158.56* 1506.35** 53154.05** 71.51* 0.03** 0.08 0.003* 

Salinity 5 90345.45** 1769.11** 14905.25** 268.61** 2428.92** 1428.69** 67211.01** 1452.58** 0.07** 3.30** 0.01** 

Genotype ×Salinity 25 11229.08** 220.40** 18368.31** 76.62** 230.78** 426.06** 14304.54** 84.98** 0.02** 0.11* 0.007** 

Error 70 1715.82 33.04 1534.02 20.04 62.43 164.21 1792.09 33.03 0.008 0.05 0.001 
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Table 3. Main effect of  six M. truncatula   genotypes on some morphological and physiological traits  in  several salt                
concentrations (0 to 150 mM)  
 
 
 
 
 
 
 

           

Means followed by the same letter within a column are not significantly different (P≤0.05). Shoot fresh  weight (SFW),  
shoot dry weight (SDW), root fresh weight (RFW),  root dry weight (RDW), shoot length (SL), root length (RL),  leaf area     
(LA),   Chlorophyll content (CC), Minimal fluorescence level (F0), Maximal fluorescence level (Fm),  potential 
photochemical efficiency of PSII (Fv/Fm, relative units 
 
 
 
 
 
 
 
 
 
 
 

          Trait 
Genotype 

SFW  
(mg) 

SDW 
(mg) 

RFW 
(mg) 

RDW 
(mg) 

SL 
(mm) 

RL 
(mm) 

LA-2 
(mm2) 

CC F0 Fm Fv/Fm 

A17 184.61 b 24.79 c 209.60 b 17.38 cd 57.43 ab 187.91 bc 208.62 b 31.36 b 0.34 b 1.06 a 0.76 b 

A20 215.00 ab 27.94 bc 207.13 b 23.66 a 54.52 b 186.82 bc 130.09 d 35.75 a 0.34 b 1.73 a  0.79 a 

DZA315.16 225.76 a 32.55 a 270.73 a 19.67 bc 59.61 ab 190.90 b 292.41 a 32.69 ab 0.35 b 1.67 a  0.78 ab 

F83005.5 207.33 ab 30.73 ab 214.72 b 22.22 ab 62.66 a 177.51 d 228.36 b 33.01 ab 0.44 a 1.81 a 0.76 b 

TN1.11 193.27 b 26.69 bc 191.10 b 16.08 d 56.93 b 203.45 a 229.68 b 33.94 ab 0.34 b 1.69 a  0.77 ab 

TN1.12 196.53 ab 26.68 bc 257.45 a 17.49 cd 55.46 b 180.24 cd 180.38 c 30.02 b 0.35 b 1.65 a  0.77 ab 



 

 

5
2

 

 
 

          Table 4. Main effect of salinity stress on some morphological and physiological traits in six M. truncatula   genotypes 

 

 
Means followed by the same letter within a column are not significantly different (P≤0.05). Shoot fresh  weight (SFW),    shoot 
dry weight (SDW), root fresh weight (RFW),  root dry weight (RDW), shoot length (SL), root length (RL),  leaf area (LA),   
Chlorophyll content (CC), Minimal fluorescence level (F0), Maximal fluorescence level (Fm),  potential photochemical 
efficiency of PSII (Fv/Fm, relative units) 

 
 

 

 

 

 

 

 

 

 

       Trait 
salinity 

SFW 
(mg) 

SDW 
(mg) 

RFW 
(mg) 

RDW 
(mg) 

SL 
(mm) 

RL 
(mm) 

LA 
(mm2) 

CC F0 Fm Fv/Fm 

0 287.18 a 41.18 a 244.84 ab 24.55 a 72.20 a 195.93 a 283.42 a 41.88 a 0.42 a 2.31 a 0.81 a 

30 295.73 a 39.67 a 267.75 a 23.66 a 72.39 a 191.25 a 257.15 a 45.09 a 0.45 a 2.09 b 0.78 bc 

60 194.55 b 27.23 b 229.88 b 18.30 b 55.63 b 194.74 a 257.15 a 32.37 b 0.34 b 1.68.c 0.78 b 

90 159.20 c 19.56 cd 190.31 d 18.62 b 50.08 c 191.55 a 161.56 b 29.54 b 0.34 b 1.88 c 0.76 bc 

120 132.81 c 22.88 c 199.53 cd 16.21 bc 46.74 c 174.56 b 159.94 b 24.98 c 0.29 b 1.24 d 0.76 cd 

150 153.03 c 18.85 d 218.41 bc 15.17 c 49.57 c 178.79 b 148.33 b 22.90 c 0.30 b 1.30 d 0.74 d 
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Table 5.  Coefficients of correlation between measured traits for six genotype under 90 mM NaCl conditions 

  
SFW SDW RFW RDW SL RL LA 

CC F0 Fm Fv/Fm 
(mg) (mg) (mg) (mg) (mm) (mm) (mm2) 

SFW 
(mg) 1           

SDW 
(mg) 0.96** 1          

RFW 
(mg) 0.92** 0.92** 1         

RDW 
(mg) 0.68** 0.81** 0.84** 1        

SL(mm) 0.87** 0.82** 0.76** 0.46 1       
RL 

(mm) 0.63** 0.51* 0.42 0.04 0.71** 1      

LA 0.94** 0.94** 0.85** 0.66** 0.88** 0.61** 1     
CC 0.12 0.13 -0.06 0.07 -0.08 0.01 0.17 1    
F0 0.54* 0.43 0.63** 0.32 0.41 0.44 0.4 -0.34 1   
Fm 0.12 0.11 0.11 -0.03 0.29 0.49* 0.29 -0.19 0.26 1  

Fv/Fm -0.45 -0.34 -0.57* -0.29 -0.25 -0.23 -0.22 0.27 -0.91** 0.09 1 
 

* and ** significant at 0.05 and 0.01 levels, respectively.  Shoot fresh  weight (SFW),  shoot dry weight (SDW), root fresh weight 

(RFW),  root dry weight (RDW), shoot length (SL), root length (RL),  leaf area (LA), Chlorophyll content (CC), Minimal 

fluorescence level (F0), Maximal fluorescence level (Fm),  potential photochemical efficiency of PSII (Fv/Fm, relative units
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Figure 1. The effect of salt concentrations in six  M. truncatula genotypes on vertical projected leaf area (LA) measured 20 days after salt 

treatments 
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Figure 2.Principal components analysis of morphological and physiological traits for six M. truncatula genotypes, 
under control and salt  condition (90 mM NaCl) . 
 PC1 and PC2: First and second principal components. Shoot fresh  weight (SFW),  shoot dry weight (SDW), root 
fresh weight (RFW),  root dry weight (RDW), shoot length (SL), root length (RL),  leaf area (LA), Chlorophyll 
content (CC), Minimal fluorescence level (F0), Maximal fluorescence level (Fm),  potential photochemical efficiency 
of PSII (Fv/Fm, relative units) 
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Discussion: 
Analysis of variance for 6 genotypes in different levels of salinity show that the main 

effect of genotype, levels of salinity and their interaction is significant for most of 

morpho-physiological traits and chlorophyll fluorescence parameters. The interaction 

shows, that the pattern of salinity effect on all genotypes is not the same.  

―DZA315.16‖genotype present the highest values for most of morphological traits 

whereas ―TN1.11‖ has low values. Genetic variability for shoot biomass production in 

M. truncatula was also reported by Veatch et al. (2004). In our experiment vertical 

projected leaf area (LA) which is very easy to measure has a high variability through 

studied traits and ―DZA315.16‖ and ―A20‖ genotypes present the maximum and 

minimum values respectively. In our experiment maximal fluorescence level (Fm) and 

the potential photochemical efficiency of PS II (Fv/Fm) are significantly reduced with 

different salinity concentrations compared with control. Chlorophyll fluorescence could 

be modified by salinity stress in plants and it can be used for screening tolerant 

genotypes in plants non-invasively (Baker and Rosenqvist, 2004). Kafi et al., (2009) 

suggested that only slight inhibition of photosynthesis occurred at high salt level in 

wheat (Triticum aestivum ).  

Correlations between some of the morphological or physiological traits, for example; 

shoot fresh weight (SFW) with: shoot dry weight (SDW), root fresh weight (RFW), root 

dry weight (RDW)  and shoot length (SL) are positives and significant in 90 mM NaCl 

salt treatment condition. Vertical projected leaf area (LA) also present significant 

correlations with: shoot fresh weight (SFW), shoot dry weight (SDW), root fresh weight 

(RFW), root dry weight (RDW), shoot length (SL), and root length (RL). The results 

confirm again that leaf area (LA) which presents high variability for the main effects of 

genotypes and salt concentrations can be used as selection criteria in salt stress 

programs. Positives correlations between some morphological traits were also reported 

by Arraouadi (2012). 

Considering the interaction between genotypes and salinity concentrations for leaf area 

(LA), ―TN1.11‖ has rather low values for control and also for different salt 

concentrations, whereas ―DZA315.16‖ genotype has the highest values for control and 

low values for salt treatments. ―DZA315.16‖ should be considered as a susceptible 
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genotype, contrary ―TN1.11‖ has not high values in the absence of salinity but it is 

tolerant to salt concentrations. Ninety mM salt concentration reduced 10% of LA 

compared with control for ―TN1.11‖ whereas the reduction was about 65% for 

―DZA315.16‖. Principal component analysis (PCA), revealed that the two principal 

components (PC 1and PC 2) represent 82% of the whole variance in control condition 

and 79% of the whole variance in 90 mM salt concentration.  

We can resume that resistance to salinity is not due to one factor but to several 

morphological and physiological parameters.  Leaf area (LA) is an important trait to 

increase total crop photosynthesis and hence biomass production through increase or 

extended light interception. Salt tolerant genotypes maintain leaf area (LA) at high 

levels of salt concentrations. Through measured traits vertically projected leaf area 20 

days after salt application (LA) which is significantly correlated with growth parameters, 

should be considered a favorable trait (noninvasive and easy to determine) to select salt 

tolerant genotypes in medicago truncatula .Through studied genotypes ―DZA315.16‖ 

present high values for control but low ones in salinity concentration where as ―TN1.11‖ 

has low values in control but it is tolerant to salinity. Recombinant inbred lines (RILs) 

coming form the cross between these two genotypes with 90 mM NaCl concentration 

should be used in genetics and genomics programs.  
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Summary: 
High NaCl concentrations affect plant morphology, at different levels such as changes in 

plant architecture, vegetative growth or variations in leaf cuticle thickness. Salinity 

strongly affects photosynthesis, (Santos et al. 2002), and reduces activity of photosystem 

II (PSII) (Pérez-López et al. 2012). Such physiological changes result in decreased plant 

growth and consequently decreased crop yield (Singla and Garg 2005; Tejera et al. 

2006). In soybean following exposure to NaCl treatment for one month, the photon 

saturated photosynthetic rate (PN), the ratio of variable to maximum fluorescence 

(Fv/Fm), the quantum yield of PSII (ΦPSII), and the electron transport rate (ETR) 

decreased dramatically (Kao et al. 2003). 

 Medicago truncatula is widely used as a model plant for legume genetics and genomics. 

Molecular genetic markers have enabled the identification of quantitative trait loci 

(QTL) which are involved in the expression of agronomically important traits of M. 

truncatula, such as forage quality (Lagunes Espinoza et al. 2012), flowering date (Pierre 

et al. 2008) and components of biomass (Veatch et al. 2004; Julier et al. 2007; Lopez  

2008a;   Espinoza el et al. 2012, Pottorff et al. 2012) or physiological traits (Moreau et 

al. 2012). Arraouadi et al. (2011, 2012) reported effect of moderate salt stress on aerial 

parts of M. truncatula. Salt treatment reduced significantly leaves and roots K+ content, 

whereas Na+ content increased in leaves and roots.  

As far as we know identification of QTLs controlling chlorophyll fluorescence 

parameters in M. sativa and M. truncatula  ara not reported in the literature. The present 

research was undertaken to enlarge our understanding of mechanisms underlying 

response to salt stress tolerance in this species. The objectives of the research were  to 

study genetic variability for plant growth and key physiological traits for salt tolerance 

in recombinant inbred lines (RILs) coming from the cross TN1.11 x A17, under control 

and salt stress conditions, and  to map QTLs for the measured traits . 

In our first experment, 6 genotypes were tested under salinity concentrations. Results 

showed that 100mM NaCl should be considered as a favorable concentration to study 

the tolerance to salinity in M. truncatula. TN.1.11 was more tolerant than A17comparing 

growth traits in control with salinity stress condition. Briefly, a population of 100 

recombinant inbred lines (RILs) and their parents (TN1.11 and A17) were grown in the 

http://www.ncbi.nlm.nih.gov.gate1.inist.fr/pubmed?term=Pérez-López%20U%5BAuthor%5D&cauthor=true&cauthor_uid=22286185
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phytotron under controlled conditions. The experiment was carried out in a Split plot 

design based on randomized complete blocks with three replications, 2 pots per 

replication and 4 plants per pot. During 30 days after planting, the plants were sub-

irrigated once a week. For control treatment, a nutritive solution was used as described 

by Vadez et al. (1996).  In salinity treatment, 100mM NaCl was added just one time to 

the nutritive solution. Salt stress was applied 7 days after planting. Irrigation was 

performed every 7 days. Plants were harvested 30 days after the beginning of the 

experiment. Fresh weights and dry weights of shoots and roots for each plant were 

measured. Vertically projected leaf area (LA) of each plant was determined by analyzing 

the photos of ―in situ‖ plants 14 days after salt application by Image J software. 

Chlorophyll content and chlorophyll fluorescence measurements were performed 14 

days after salt application. The amounts of sodium (Na+) and potassium (K+) ions were 

measured in pooled tissues of 3 plants from each replication of each genotype. 

Data were analyzed, to determine genetic variability of RILs in salinity and control 

conditions for the studied traits. Correlations among different traits in both salinity and 

control conditions were calculated using the means of each genotype in all replications. 

Heritability for all the traits in both conditions were also calculated  

A genetic map of the cross between TN1.11 and A17  using a population of 192 RILs 

was constructed using 146 SSR markers based on the Medicago truncatula genome 

sequence assembly (Young et al. 2011), (http://www.medicagohapmap.org/?genome) 

and unigene set of Medicago Gene Index at DFCI (http://compbio.dfci.harvard.edu/). 

QTLs were detected by Multiple QTL Mapping (MQM) (Jansen, 1993; Jansen, 1994) 

using the ―qtl‖ package (Broman, 2003; Arends et al., 2010) of the R system.  

 

 

 

 

 

http://compbio.dfci.harvard.edu/


 

61 
 

6
1

 

Abstract 

Salinity is one of the major stresses that limits crop production worldwide and affects most of 

physiological activities in plant. In order to study the genetic control of salt stress in the model 

legume Medicago truncatula, an experiment was undertaken to determine the genetic variability 

and to identify quantitative trait loci(QTLs) controlling several  traits related to plant growth and 

physiology, in a population of recombinant inbred lines (RILs). Shoot and root dry weights, 

relative water content, leaf area, chlorophyll content, chlorophyll fluorescence parameters and 

Na+ and K+ in shoots and roots were measured. The experiment was carried out with three 

replications. Analyses of variance showed a large genetic variation and transgressive segregation 

for the traits studied, suggesting putative tolerance mechanisms. A total of 21 QTLs were 

detected under control and 19 QTLs were identified under 100mM salt stress conditions. The 

percentage of total phenotypic variance explained by the QTLs ranged from 4.60% to 23.01%. 

Some of the QTLs were specific for one condition, demonstrating that the genetic control of a 

trait differed under control and salt stress conditions. Some others are non-specific and control a 

trait in both conditions. Overlapping QTLs for different traits were also observed. The results 

should be helpful information in further functional analysis of salt tolerance in M. truncatula. 

  

Keywords: Medicago truncatula, Salt stress, Quantitative trait loci, Chlorophyll fluorescence, 

Na+ and K+  content, RILs 
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Introduction 

Intensified by agricultural practices such as irrigation, salinity represents today the major cause 

of land degradation and plant yield decrease over all regions in the world (Graham and Vance 

2003). Salinity in the arid and semi-arid regions of the world as well as in irrigated lands is a 

serious threat to agriculture, reducing plant growth and crop yields (Duzan et al. 2004). In 

general, high NaCl concentrations affect plant morphology, at different levels such as changes in 

plant architecture, vegetative growth or variations in leaf cuticle thickness. They also modify 

physiology and plant metabolism and affects the overall cell metabolic activities like seed 

germination, nitrogen metabolism, ionic toxicity, stomatal regulation and photosynthesis rate 

(Edmeades et al. 2001; Santos et al. 2002; Vinocur and Altman 2005). Salt tolerance is thus 

usually assessed as the percent biomass production in saline versus control condition. During 

initial exposure to salinity, the whole plant photosynthesis is decreased by restricting leaf area 

expansion (Netondo et al 2004). In addition, salinity affects photosynthesis per unit leaf area 

through both stomatal and non-stomatal limitations (Jeranyama et al. 2009, Pérez- López et al. 

2012). During long-term exposure to salinity, the premature senescence of adult leaves reduces 

the photosynthetic area available to support continued growth (Cramer and Nowak, 1992). Such 

physiological changes result in decreased plant growth and consequently decreased crop yield 

(Singla and Garg 2005; Tejera et al. 2006). These effects also limit the ability to maintain 

defense mechanisms (Zheng et al. 2009). Chlorophyll a fluorescence parameters are commonly 

used to study the functioning of photosynthetic apparatus under salt stress. Chlorophyll a 

fluorescence is a sensitive indicator of photosynthetic efficiency in plants and has been proved as 

a rapid, noninvasive, and reliable method to assess photosynthetic performance under various 

environmental stresses (Krause and Weis 1991; Schreiber et al. 1994). Photosystem II (PSII) is 
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more sensitive to all types of stresses compared to PSI (Apostolova et al 2006). The data on the 

effects of salinity stress on photochemical efficiency of PSII are inconsistent. Some studies have 

shown that salt stress inhibits PSII activity in celery and sorghum respectively (Everard et al. 

1994; Netondo et al. 2004), whereas others have indicated no effect on the potential 

photochemical efficiency of PSII (Fv/Fm), in hexaploid triticale (Morant-Manceau et al. 2004). 

Jimenez et al. (1997) reported no significant change in the potential photochemical efficiency of 

PSII (Fv/Fm) in response to NaCl treatments, and concluded that Fv/Fm was not a useful 

indicator of salt stress in roses. In contrast, Misra et al. (2001) suggested Fv/Fm was an early 

indicator of salt stress in mung bean and Brassica seedlings. In soybean following exposure to 

NaCl treatment for one month, the photon saturated photosynthetic rate (PN), the potential 

photochemical efficiency of PSII (Fv/Fm), and the PSII quantum efficiency (ΦPSII) decreased 

dramatically (Kao et al. 2003). Salinity provokes disorders in plant nutrition which may lead to 

K+ deficiency and high accumulation of Na+ in leaves (Mengel and Kirkby 2001). Salinity also 

delay development and promotes the accumulation of toxic ions (Na+ and Cl-), that can lead to 

death of plants before the end of their development in wheat (Munns, 2002). Salt tolerance of the 

crop is the final manifestation of several components, such as Na+ and K+ content, ion balance 

and ion compartmentation. To keep the Na+ level low inside a plant cell is not an easy task 

especially when the external Na+ levels are high in saline soils. A major toxic ion from saline 

soil is Na+ that gets into plant cells through Na+ permeable transporters (Horie and Schroeder 

2004).  

Medicago truncatula is widely used as a model plant for legume genetics and genomics by 

virtue of being an annual, diploid (2n = 16) and autogamous legume with a moderate genome 

size (500–550 Mbp) (May and Dixon 2004). Molecular genetic markers have enabled the 
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identification of quantitative trait loci (QTLs) which are involved in the expression of 

agronomically important traits of M. truncatula, such as forage quality (Lagunes Espinoza et al. 

2012), flowering date (Pierre et al. 2008) and components of biomass like shoot dry weight, root 

dry weight, length of roots , leaf area or leaf morphology (Veatch et al. 2004; Julier et al. 2007; 

Lopez et al 2008a;   Espinoza el et al. 2012, Pottorff et al. 2012) or physiological traits (Moreau 

et al. 2012). Genetic analyzes were reported for disease resistances (Ben et al. 2013),  abiotic 

stress such as tolerance to drought  (Badri et al. 2011), seed germination and pre-emergence 

growth at extreme temperatures (Dias et al. 2011) and  water deficit (Badri et al. 2011; 

Vandecasteele et al. 2011). For salt tolerance, significant decrease in shoot biomass of M. 

truncatula under different saline irrigation was reported (Veatch et al. 2004, Lopez et al. 2008a). 

Salinity stress could induce also changes in soluble sugars, amino acids and proline content in 

shoots (Lopez et al. 2008b). Arraouadi et al. (2011, 2012) reported the effect of moderate salt 

stress on aerial parts of M. truncatula. Salt treatment reduced significantly leaves and roots K+ 

content, whereas Na+ content increased in leaves and roots in M. truncatula. As far as we know 

identification of QTLs controlling chlorophyll fluorescence parameters in M. truncatula and in 

its closely related cultivated crop M. sativa is not reported in the literature. 

The present research was undertaken to enlarge our understanding of mechanisms underlying 

response to salt stress tolerance in this species. The objectives of the research were (i) to evaluate 

genetic variability for plant growth and key physiological traits for salt tolerance in our selected 

recombinant inbred lines (RILs) coming from the cross TN1.11 x A17, under control and salt 

stress conditions, and (ii) to map QTLs for the measured traits with the aim to compare the 

genetic control of traits that may putatively drive whole-plant response to salt stress.  
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Materials and methods 

Plant materials and experimental conditions 

In a preliminary study, six genotypes, which are parental lines of recombinant inbred line (RILs) 

populations, were tested under salinity concentrations varying from 30 to 150 mM NaCl. Results 

showed that the RIL population coming from the cross TN1.11xA17 (LR7) with 100mM NaCl 

should be considered as a favorable combination to study the tolerance to salinity in M. 

truncatula. TN1.11 was more resistance than A17 when comparing growth traits in control with 

salinity stress. This finding was confirmed by previous data by Zahaf et al (2012) that identified 

TN1.11, an accession sampled in a salty Tunisian soil, as a resistant line with increased in vitro 

root growth under salt stress as well as a differential accumulation of sodium ions when 

compared to A17. 

Briefly, a population of 100 recombinant inbred lines (RILs) and their parents (TN1.11 and 

A17) were grown in the phytotron under controlled conditions. The experiment consisted of a 

split-plot design with three blocks. The main factor consisted of salinity treatment (control and 

100mM NaCl) and sub factor consisted of genotypes (RILs and parental lines). The RILs and 

their two parents were randomized within each treatment-block combination. Two pots per 

genotype   and four plants per pot were used in each bloc. Seeds were scarified by fine sand 

paper and then cold treated by placing on moist filter paper in a Petri dish and incubated at 4°C 

for 4 days. After cold treatment, seeds were germinated in the dark at room temperature for 12h. 

Seedlings with root length of about 4 mm were individually transferred to pots (10 cm diameter 

and 10cm deep) filled with 3:1 (V: V) of perlite and sand. Four plants of each genotype were 

grown in a given individual pot under controlled conditions at 25°C, with relative humidity of 

80% and photosynthetic photon flux of 200µmol.m-2.s-1 with 16 h photoperiod. During 30 days 
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after planting, the plants were sub-irrigated once a week. For control treatment, a nutritive 

solution was used as described by Vadez et al. (1996) whereas the iron source was modified by 

adding 25ml of Fe-EDTA (8.2g /L) per liter. In salinity treatment, 100mM NaCl was added just 

one time to the nutritive solution. Salt stress was applied 7 days after planting. To avoid the 

overcoming of NaCl accumulation problem in the substrate, seedlings were sub-irrigated one 

time with NaCl concentration for the first seven days and other irrigations were done only with 

nutritive solution. Irrigation was performed every 7 days.  

Trait measurement 

Plant growth  

Plants were harvested 30 days after the beginning of the experiment. Fresh weights of shoots and 

roots for each plant were measured at harvest. Plants were oven dried during 3 days at 70°C, and 

then dry weights of shoot and roots were measured. The plants dry weight was also calculated. 

The relative water content (RWC) was measured for one plant from each pot. Immediately after 

harvest, fresh aerial part of plants were weighed (FW) and placed in distilled water for 24h at 

4˚C and their turgid weight (TW) was recorded. The samples were oven dried at 70°C for 3 days 

and weighed (DW). The RWC was calculated by the formula RWC (%) = ([FW − DW] / [TW 

− DW]) ×100. Vertically projected leaf area (LA) of each plant was determined by analyzing the 

photos of ―in situ‖ plants 14 days after salt application by Image J software.  

Chlorophyll fluorescence parameters 

Chlorophyll content and chlorophyll fluorescence measurements were performed 14 days after 

salt application for a young and fully expanded leaf from the middle section of the plant. Leaf 

chlorophyll content was measured by SPAD-502 chlorophyll meter (Konica Minolta, Osaka, 

Japan). Chlorophyll fluorescence was performed with a pulse-amplitude modulation fluorometer 
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(PAM-2000, Walz, Effeltrich, Germany) after 20-min dark adaptation of the plant. Four 

chlorophyll fluorescence parameters were studied as following: the potential photochemical 

efficiency of photosystem II electron transport (ΦP), the actual quantum efficiency of PSII 

electron transport (ΦPSII), non-photochemical fluorescence quenching (NPQ) and the 

proportion of closed PSII traps (1-qP). The chlorophyll fluorescence parameter measurements 

were done according to method described in detail by Maury et al. (1996).  

Na+ and K+ content 

The amounts of sodium (Na+) and potassium (K+) ions were measured in pooled tissues of 3 

plants from each replication of each genotype. Na+ and K+ were assessed by flame emission 

spectrophotometry (Perkin Elmer, Aanalyst 300, Waltham, MA, USA) after nitric acid extraction 

(HNO3, 0.5%) of the dry shoot and root tissue as described by Munns et al. (2010). 

Statistical analysis 

Data of the split-plot experiment were analyzed and the mean squares of salinity and genotype 

effects as well as their interaction were determined. Mean of parents were compared in control 

and salinity stress separately for each trait and also the percent of each trait in saline versus 

control was calculated for parental lines and for the mean of RILs. Genetic gain which present 

the difference between the mean of parental lines and the mean of 10% selected RILs was 

calculated for salinity and control conditions. Heritability for all the traits in both conditions was 

also calculated as: 

                                                 h² = g
2 / (g

2 + e
2) 

Where: σ g
2

 is the genetic variance and σ e
2

 is the variance of error in the experiments. 

Correlations among different traits in both salinity and control conditions were estimated as 

r(xy)=Cov(xy) / (V(x) x V(y))0.5 , where Cov(xy) is the covariance between traits x and y and V is 

variance of each trait. Correlations were calculated using the means of each genotype in all 



 

68 
 

6
8

 

replications. Our results show that heritability is high for all the studied traits and environmental 

effect is very low as the experiment was realized in phytotron under controlled conditions, so 

correlations should be considered as genetic correlations. 

Linkage map and QTL mapping 

A genetic map of the cross between TN1.11 and A17 was constructed using a population of 192 

RILs and 146 SSR markers. Microsatellites (SSR) sequences, regularly positioned along M. 

truncatula 8 chromosomes were identified in silico using currently available M. truncatula A17 

genome sequence data (http://jcvi.org/cgi-bin/medicago/) and SSR markers were developed as 

described previously (Mun et al 2006). The sequence of the primers used for SSR amplification 

is given in supplemented Table. A number of these markers had been previously mapped on 

different M. truncatula mapping populations (Ben et al 2013), allowing comparison of map 

positions between populations. The genetic map was built using the CarthaGene software (de 

Givry et al 2005). Each linkage group in our map was numbered according to previously 

published M.truncatula maps and is presumed to  correspond to one of the eight chromosomes in 

the haploid M.truncatula genome(x=8). The map spans 470 cM with an average distance 

between markers of 3.28 cM (Table 5).  

 

QTLs were detected by Multiple QTL Mapping (MQM) (Jansen 1993; Jansen and Stam 1994) 

using the ―qtl‖ package (Broman et al. 2003; Arends et al. 2010) of the R system. Threshold 

values for the LOD scores were empirically determined by computing 1,000 permutations 

(Churchill and Doerge 1994). Additive effects of the detected QTL, the percentage of 

phenotypic variation explained by each one (R2) as well as the percentage of total phenotypic 

variation explained (TR2) were estimated using the MQM program of Rqtl. Mapchart 2.1 was 

used for graphical presentation of linkage groups and map position. 

 

Results 

Genetic variability for plant growth traits  

Results of analysis of variance for the split-plot experiment data are summarized in table 1. Mean 

squares of genotype, salinity and their interaction effects are significant for all the studied traits.   

http://jcvi.org/cgi-bin/medicago/
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In both conditions, significant difference between the two parental lines TN1.11 and A17 was 

observed for root weights and leaf area (Table 2). The difference between parents was also 

significant for shoot and plant dry weights in salinity stress. Salt tolerance, assessed as the 

percent of a trait in saline versus control condition summarized in Table 2, show that the values 

of TN.1.11 for most of growth traits are higher than those of A17.The difference between the 

mean of the RILs and the mean of the parents was not significant for most of growth studied 

traits in both conditions, as expected for F6 RILs, due to the reduction of dominance effect 

(Table2). Shoot, root and plant dry weights and leaf area were reduced significantly by salt 

treatment in RILs population compared with control. The percent of these traits in saline versus 

control shows nicely this reduction (Table 2).  Relative water content presents a high genetic 

variability in RIL population for salt treatment and it varies from 49.66% to 89.57% (Table1). 

Genetic gain expressed by the difference between 10% of selected RILs and the mean of parents 

for all growing traits is significant (Table 1). 

 To estimate the importance of measured traits in the description of the observed phenotypic 

variability between analyzed RILs, heritability was estimated for the traits. Heritability for the 

growth traits has high values as presented in Table 2. Correlation matrix between the studied 

traits in control and salinity conditions is shown in Tables 3 and 4. Correlations between all 

growth traits are positives and significant in both conditions.  

Genetic variability for physiological traits  

Results of our experiment summarized in Table 1 and 2, show significant effects for most of 

physiological traits studied. In control conditions, significant difference between the two parental 

lines TN1.11 and A17 was observed for chlorophyll content (CC), shoot and root Na+ and K+ 

concentrations. In salt conditions also significant differences between parents were observed for 
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most of the physiological studied traits. Salinity tolerance expressed by values of these traits 

versus control, presents high or low values. The difference between the mean of the RILs and 

the mean of the parents was not significant for the studied traits except for shoot and root Na+ 

concentrations under control conditions. Chlorophyll content (CC), potential photochemical 

efficiency of PSII electron transport (ΦP), actual quantum efficiency of PSII electron transport 

(ΦPSII) and shoot and root K+ concentrations were reduced significantly by salt treatment in 

RILs population compared with control. Salinity tolerance values [(salinity/control) x100] 

summarized in Table 2 confirms this reduction.  Salt treatment in RILs increased the non-

photochemical fluorescence quenching (NPQ). NPQ ranged from 0.10 to 0.87 in control 

condition, with the mean value of 0.41, whereas it ranged from 0.28 to 2.83 in salt treatment with 

the mean value of 0.77. Salt treatment increased the mean value of RILs in proportion of closed 

PSII traps (1-qP) from 0.22 in control to 0.42 in saline conditions. Salt treatment increased the 

mean value of RILs in shoot and root Na+ concentrations, from 0.86µmol/mg and 1.64µmol/mg 

in control to 2.97µmol/mg and 2.51µmol/mg in salinity condition respectively (Table 2). 

 For most of the physiological traits heritability was high in both conditions (Table 2). Potential 

photochemical efficiency of PSII electron transport (ΦP) and proportion of closed PSII traps (1-

qP) in control condition and non photochemical fluorescence quenching (NPQ), shoot K+ (SK) 

and shoot Na+/K+ (SNaK) in salt stress condition presented rather low values for heritability 

compared with other traits. Genetic gain (10% selected lines- MP) for important physiological 

traits has significant, positive or negative value, depending on the trait (Table 1). 

Correlations between physiological traits (Tables 3 and 4) are in some cases changed according 

to the two culture conditions. For example the relation between non photochemical fluorescence 

quenching (NPQ) and the proportion of closed PSII traps (1-qP) is not significant in control  
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(-0.090), but it is positive and significant in salinity condition (0.191*). Also correlation between 

RK and SK is significant in salinity (0.210*) and non significant in control condition (-0.060).  

Quantitative trait loci for growth and physiological traits 

The molecular genetic linkage map of M. truncatula with eight linkage groups (LG) is 

constructed using SSR markers and 192 recombinant inbred lines (RILs) of the cross TN1.11 x 

A17. The number of markers in each linkage group, its length and average distance between 

markers are presented in Table 5.  The map contains 146 SSR markers which were used for QTL 

identification. The markers with their positions are presented in the left side, and QTLs are 

presented in the right side of linkage groups (Fig. 1). QTL mapping showed the presence of 

several QTLs involved in all measured traits. The number of detected QTLs varied depending 

on the traits and salt treatments or control conditions. Some of the detected QTLs (Tables 6 and 7 

and Fig 1) are specific and are revealed only in control or in saline conditions (FP sl.5 and 

FPct.4). Some others are non-specific and control a trait in both saline and control conditions 

(LA sl.7 and LAcl.7, CCsl7 and CCct7 or FPSIIct6 and FPSIIsl6). Overlapping QTLs are also 

observed which control more than one trait under saline treatment or both conditions (PDWsl.8, 

1-qPsl.8 and SDWsl.8).  A total of 21 QTLs were detected under control and 19 under salt 

condition. QTLs involved in tolerence to salt are located on all linkage groups (Table 6,7 and 

Fig. 1). The phenotypic variance explained by each QTL (R2) ranged from 3.14% to 10.77%, 

and the percentage of total phenotypic variance (TR2) varies from 4.62% to 23.01%. The signs 

of additive effects show that alleles having positive effects for QTLs come from both TN1.11 

and A17 parents for different traits (Tables 6 and 7). The transgressive phenotypes presening 

genetic gain observed for some traits (Table 1) could be explained by the presence of QTLs of 

opposite sign in the two parents. Their recombination resulted in RILs with higher values than 
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those of their parents, which is explained by various positive gene effects having been 

accumulated.   

Discussion 

Genetic variation for plant growth traits 

A large genetic variability was observed for all of plant growth traits measured 30 days after 

planting, under both control and salinity conditions across RILs (Table 1 and 2). Genetic 

variability was also observed in other M. truncatula RIL populations for some morphological 

traits (Julier et al. 2007; Espinoza Ldel et al. 2012). This was also evidenced under salt treatment 

(Arraouadi et al. 2011). In the present study significant differences between the parents under 

salt stress for shoot, root, plant dry weights and leaf area (LA) indicated differential responses to 

salt stress (Table 2). Significant genotype x treatment interaction suggests that the parental lines 

respond differently to salt stress and may thus carry different genes for adaptation to salt stress. 

Tolerance to salinity (TS) for growth traits expressed by the percent of the value of a trait in 

salinity versus control condition is greater for TN.1.11 than for A17. For example TS for plant 

dry weight is 86.19% for TN.1.11 whereas it is only 55.08% in A17. This shows that parental 

line A17 is more sensitive to salinity stress than TN.1.11. The difference between the mean of 

RILs and the mean of their parents was not significant for most of the traits in both conditions 

(Table 2), showing that the RILs used in our experiment are representative of the possible 

recombinant lines from the cross TN1.11 x A17. Our results show that, shoot and root dry 

weights for the mean of RILs were reduced significantly in salinity stress (11.52mg and 10.61 

mg respectively) when compared with  control condition ( 15.05mg and 12.93mg). Similarly, the 

mean of RILs plant dry weight (PDW) was also reduced from 27.90mg in control condition to 

22.10mg in salt treatment. This phenomenon shows that the relative performance of genotypes 
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for growth traits in early stage of development reduces on salinity condition. Similar results are 

reported in other M. truncatula RIL populations, (Veatch et al. 2004; Lopez et al. 2008a; 

Arraouadi et al. 2011). Palma et al, (2013) presented also a significant decrease of PDW under 

salt stress in M. sativa. As suggested by Ashraf and Foolad (2007), and Munns and Tester 

(2008), decrease of plant growth under saline conditions may be due to osmotic reduction in 

water availability or to excessive ion (particularly Na+) accumulation in plant tissues. Vertical 

projected leaf area (LA) was reduced by salt stress in our experiment (Table 1 and 2). For 

example salinity tolerance [(salinity/ control) x100] in RILs population for this trait is 83.59 

(Table 2). In a preliminary experiment we found that LA is an important parameter for 

discrimination of genotypes in salt stress condition. Arraouadi et al. (2011) also reported that leaf 

area under salt condition decreases in M. truncatula. Relative water content (RWC) in RIL 

population ranged from 47.90 to 82.21 in control condition, and from 49.66 to 89.57 in salt 

treatment (Table 2), indicating that some of the RILs have the ability to sustain their water 

content under moderate stress. This phenomenon was also reported for the RILs population of 

M. truncatula in response to salinity (Arraouadi et al. 2011), and for tobacco in salt stress 

condition (Yadav et al. 2012).  

Heritability for the growth traits (Table2) present high values compared with those reported by 

Arraouadi et al. (2011) under greenhouse condition. Our experiments were realized in controlled 

phytotron conditions where the temperature and light were measured and showed stable values, 

consecutively, with expected lower environment variances. Higher heritabilities, will be obtained 

compared with greenhouse if the RILs population presents a high genetic variability. As such, it may 

be also possible that the genetic variability for the traits in LR7 population is higher than those of the LR5 

population used by Arraouadi et al (2011). Correlations between growth traits (SDW, RDW, PDW 

and LA) are positive and significant in both conditions suggesting that salt affect these growth 
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traits to the same extent. It also suggests that vigor in control conditions is a good predictor of 

plant vigor in salty environment.  

Genetic variation for physiological traits  

We reported for the first time several evaluations of photosynthetic parameters in M.truncatula, 

with the idea to better characterize the effect of salt stress onto that key process. Significant 

differences between the parents under salt stress for potential photochemical efficiency of PSII 

electron transport (ΦP), actual quantum efficiency of PSII electron transport (ΦPSII) and 

proportion of closed PSII traps (1-qP), as well as for shoot and root Na+ and root K+ 

concentrations indicated differential responses to salt stress (Table 2). Significant treatment x 

genotype interaction suggests that the parental lines carry different genes for adaptation that 

allow responding differently to salt stress. As described for growth traits, the difference between 

the mean of RILs and the mean of their parents was not significant for most of the physiological 

traits (Table 2), showing that the RILs used in our experiment are representative of the possible 

recombinant lines from the cross TN1.11 × A17 in both conditions. In our experiment 

Chlorophyll Content (CC) and the potential photochemical efficiency of PSII electron transport 

(ΦP) were reduced by salt treatment compared with control. Salt stress affects also 

photosynthetic components in Populus euphratica and Atriplex centralasiatica (Ma et al. 1997, 

Qiu et al. 2003). Misra et al. (2001) in mung bean and Brassica seedlings reported that ΦP is an 

early indicator of salt stress. Reduction in chlorophyll fluorescence due to salinity stress was 

related to the damage of chlorophyll under saline conditions which can be attributed to a 

decrease in chlorophyll content and activity of photosystem ΙΙ in cotton (Ganivea et al. 1998). 

Actual quantum efficiency of PSII electron transport (ΦPSII) was reduced in RILs by salt 

treatment from 0.55 to 0.42 in our experiment. Netondo et al. (2004) reported that photosynthetic 
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activity decreases when sorghum varieties are grown under saline conditions leading to reduced 

growth and plant biomass. The reduction of PSII activity induced a decrease in the potential 

photochemical efficiency of photosystem ΙΙ (Fv/Fm) in their experiment. Increased 1-qP values 

under salt stress condition in our study could be due to closure of PSII reaction centers, which is 

associated to PSII inactivation, resulting from a saturation of photosynthesis and other electron 

sinks by light (Osmond et al. 1993). We have observed that even when thermal energy 

dissipation occurred via NPQ, over-excitation occurred in some RILs under salt stress condition 

resulting in a large genetic variation for 1-qP (Table 2). Genetic gain expressed by the difference 

between 10% selected RILs and the mean of parents is positive or negative according the 

importance of the trait (Table1). Salinity reduced ΦPSII du to decrease in the rate of 

consumption of ATP and NADPH by photosynthesis (Mohammed et al 1995). These results, in 

saturation of photosynthesis and other electron sinks by light, and consequently PSII 

inactivation, and increased 1-qP (Osmond et al. 1993). The chlorophyll fluorescence parameters 

suggested that the RILs genotype differed in their photochemical response to salt stress and this 

result enlarge our understanding of mechanisms underlying salinity tolerance in M. truncatula. 

As far as we know the genetic variability for the above mentioned fluorescence parameters in M. 

truncatula or M. sativa are not reported in the literature. Whether or not differences in 

chlorophyll fluorescence parameters may be linked to differential growth performances, these 

parameters have to be studied. The influence of salt stress on this putative relation is also a 

challenging question. 

Shoot and root K+ concentration in RILs population were reduced significantly from 2.71 and 

2.91µmol/mg in control to 1.41µmol/mg and 1.60 µmol/mg  in salt condition respectively (Table 

2). Salt stress significantly increased shoot and root Na+ concentrations in RILs from 
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0.86µmol/mg and 1.64 µmol/mg in control to 2.97µmol/mg and 2.51 µmol/mg in salt condition, 

respectively (Table 2). This shows that some lines of the RILs population have the capacity to 

regulate K+ transport during 30 days salt stress, despite increased Na+ concentrations. The same 

results are reported by Arraouadi et al. (2012) for Na+ and K+ contents in leaves, stems and roots 

in this species. 

Heritabilities for most of the physiological traits were high in both conditions (Table 2). Potential 

photochemical efficiency of PSII electron transport (ΦP),  proportion of closed PSII traps (1-qP) 

in control condition and non photochemical fluorescence quenching (NPQ), shoot K+ (SK) and 

shoot Na+K+ (SNaK) in salt stress condition presented rather low values for heritability 

compared with growth traits. Positive or negative correlations are observed between 

physiological traits (Tables 3 and 4) which are in some cases changed according the two culture 

conditions, revealing a strong modification of their relationships, due to salt stress. Positive 

correlation between potential photochemical efficiency of PSII electron transport (ΦP) and actual 

quantum efficiency of PSII electron transport (ΦPSII) was found in control (0.211*). Positive 

correlation between root Na+/K+ (RNaK) and root dry weight (RDW) suggests that tolerant lines 

are those which are able to maintain low levels of root Na+/K+ concentration in their roots. 

Similarly, shoot and root dry weight showed low correlation with Na+, K+ concentration and 

Na+/K+ ratio in rice, in salt conditions (Masood et al. 2004). In M. truncatula, Arraouadi et al. 

(2012) showed positive correlations between ion concentration ratio in root and stem, leaves and 

root dry weights. 

Genetic map 

Our genetic map of the cross ―TN1.11x A17” was constructed using a population of 192 RILs 

(LR7) which contains 146 SSR markers based on the Medicago truncatula genome sequence 
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(Table 5). A genetic map of the cross between ―Jemalong 6 × DZA315.16” using a population 

of 199 RILs, (LR4), was also constructed which contains 370 SSR markers (Julier et al. 

2007,Ben et al,2013). A RIL population (LR5) was derived from the cross between Jemalong 

A17 and F83005.5 and the RIL population of the cross was genotyped by SSR markers and a 

map with 70 markers was reported (Arraouadi et al. 2012, Ben et al. 2013). The genetic map of 

the F83005.5 × DZA45.5 cross (LR3) was also constructed by Hamon et al. (2010).  Our RIL 

population (LR7) has not been used for mapping by other authors. 

Quantitative trait loci analysis for plant growth traits 

Results of our experiment concerning identification of QTLs controlling growth traits are 

summarized in Table 6, 7 and Fig 1. Several QTLs are involved in response to growth traits 

under control and salt conditions. In some cases one QTL was found to be associated with more 

than one trait for example on linkage group 8, QTLs for plant dry weight (PDW) and  Shoot dry 

Weight (SDW) are overlapped (Fig 1).They may reflect the same genetic locus controlling 

components that show phenotypic correlations. Most of overlapping QTLs are located on 

linkage group 7. Julier et al. (2007) and Arraouadi et al. (2012) showed that linkage group 7 

contains several QTLs involved in the control of important growth traits notably days to 

flowering. Some of the detected QTLs are specific and control a trait in one condition for 

example the QTL controlling root dry weight on linkage group 5, (RDWst.5). Non-specific or 

general QTLs are also identified in the present study which control one trait in both  salinity 

treatment and control are identified, as for example the QTL on linkage group 7 for Leaf Area 

(LAct.7 and LAsl.7) (Fig.1). These regions may contain different adaptive genes which are 

differentially expressed when salt treatment is applied. They may also contain allelic variants for 

regularity proteins that could exhibit different efficiencies under control or stress conditions. 



 

78 
 

7
8

 

Correlations between different growth traits confirmed also the existence of overlapping and 

non-specific QTLs for the traits. Notably the QTLs RDWsl.1 and RDWsl.5 controlling RDW on 

linkage group1 and 5 are on the same place as the QTL identified by Arraouadi et al. (2011) for 

RDW. 

Quantitative trait loci analyses for physiological traits 

Results of our experiment concerning identification of QTLs controlling physiological traits are 

summarized in Table 6, 7 and Figure 1. Several QTLs are involved in response of the 

physiological studied traits under control and salt conditions. In some cases one QTL was found 

to be associated with more than one trait. Under control conditions, the overlapping QTLs were 

located on linkage group 7 for photochemical efficiency of PSII electron transport (ΦP)  and 

chlorophyll content (CC) (FPct.7 and CCct.7) (Fig.1). In some cases, one QTL is non-specific 

and controls a trait under two conditions. For example a QTL on linkage group 7 for chlorophyll 

content (CCct.7 and CCsl.7) and on linkage groups 6 for actual quantum efficiency of PSII 

electron transport (FPSIIct.6 and FPSIIsl.6) (Fig.1). This reflects the role for some QTLs under 

different conditions, which may be a cause or consequence of the adaptation to salt stress 

condition. These regions may content different adaptive genes which are differentially expressed 

when salt treatment is applied, or allelic variation of important proteins. As far as we know 

identification of QTLs for the above mentioned traits in M. sativa and M. truncatula are not 

reported in the literature. 

Our results showed that detected QTLs for Na+ and K+ traits measured in shoots and roots did 

not share the same map locations, suggesting that the genes controlling the transport of Na+ and 

K+ between the shoots and roots may be different or induced uncoordinatedly by salt stress. A 

similar conclusion is reported by Arraouadi et al. (2012). In rice, the uptake of Na+ and K+ are 
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independent as the major pathways of Na+ and K+ uptake occur in parallel and not directly in 

competition (Koyama at al. 2001). In control condition, the QTL (RNaKct.1) linked to mte114 

marker on linkage group 1 and SNact.2 linked to mte80 marker on linkage group 2, are also 

reported by Arraoudi et al (2012). Correlations between different physiological traits are in 

agreement with relations between identified QTLs. 

Conclusions 

Salinity reduced plant leaf area and affected photosynthetic apparatus, through a reduction in the 

potential photochemical efficiency of photosystem ΙΙ (Fv/Fm). However, the relative importance 

of the reduction on growth performances of M. Truncatula remained to study. The plant shoot 

growth appeared to be more sensitive to salinity, in comparison with root growth, as indicated by 

the decrease in shoot to root dry weight ratio in response to salinity. The signs of additive effects 

show that alleles having positive effects for QTLs controlling growth and physiological traits 

come from both TN1.11 and A17 parents. The transgressive phenotypes observed for some traits 

(Table 1) could be explained by the presence of QTLs of opposite sign in the two parents. Their 

recombination resulted in RILs with higher values than those of their parents, which is explained 

by various positive gene effects having been accumulated. The present study enabled us to 

investigate the genetic basics of major growth and physiological traits in a RIL population 

(TN1.11 x A17) where the parental line originated from a priori very distinct environments, in 

particular for salt content. Through 40 QTLs identified in salinity and control conditions, 23 

located on linkage groups 1, 6 and 7 are overlapping controlling several traits. Some of these 23 

overlapping QTLs are related to both growth and physiological traits. The major output of the 

QTL analysis is identification of relevant genomic regions that may be targeted in genetic and 

genomic programs to dissect functional traits under salinity in M. truncatula. 
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S effect of salinity, G effect of genotypes (RILs), I interaction between  salt treatment and RILs *,** and NS  significant at 0.05, 0.01 probability levels and non-significant, MP  

Mean of Parents:(P1+P2)/2,   (M-10%SRILs)  Mean of  10% selected RILs, (MP-S/MP-C)×100  Percentage of mean of Parents in saline condition versus mean of Parents in 

control condition, CC  chlorophyll content, ΦP potential photochemical efficiency of PSII electron transport,  ΦPSII  actual quantum efficiency of PSII electron transport,  NPQ  

non-photochemical fluorescence quenching, 1-qP proportion of closed PSII traps,   a Significant or non significant difference between mean of  10%  selected RILs  and Mean of 

Parents, b  Na and K concentrations in μmol /mg  of  shoot or root dry weight    

 

 

 

Table 1 Mean squares of analysis of variance and genetic gain for the effect of salinity stress on several traits in recombinant inbred lines (RILs) 
of M.trancatula 

  Mean square    Control   Salt stress 

 S G I  MP  (M-10% S-RILs) Genetic Gain  MP (MP-S/MP-C)×100 M-10% S-RILs Genetic gain  

Shoot dry weight  2005.34** 108.13** 32.18**  16.81 27.31 10.50** (a)  11.55 68.71 18.33 6.78**(a) 

Root dry weight  830.97** 55.03** 14.94**  15.47 20.49 5.02**  11.19 72.33 16.6 5.41** 

Plant dry weight  5417.71** 299.39** 73.01**  32.38 46.43 14.05**  22.73 70.2 33.97 11.24** 

Relative water content 3521.18** 214.58** 150.79**  66.78 78.45 11.67 **  68.85 103.1 86.46 17.61** 

Leaf area  207.47** 18.10** 7.24**  176.92 296.07 119.15**  131.36 74.25 222.97 91.61** 

CC 7308.76** 146.79** 40.16**  35.83 44.88 9.05**  29.75 83.03 38.87 9.12** 

ΦP 0.38** 0.004** 0.004**  0.82 0.86 0.04**  0.76 92.68 0.83 0.07** 

ΦPSII 2.59** 0.04** 0.02**  0.55 0.64 0.09**  0.41 74.55 0.59 0.18** 

NPQ 19.20** 0.30** 0.21**  0.46 0.16 -0.30**  0.55 119.57 0.36 -0.19 ns 

1-qP 5.84** 0.09** 0.03**  0.24 0.07 -0.17**  0.32 133.33 0.17 -0.15** 

Shoot Na+ (b) 676.96** 0.82** 0.79**  0.65 0.42 -0.23**  2.69 413.85 2 -0.69** 

Root Na+ 114.18** 1.15** 0.85**  1.94 0.97 -0.97**  2.4 123.71 1.43 -0.97** 

Shoot K+ 261.15** 0.59** 0.61**  2.55 3.9 1.35**  1.39 54.51 1.87 0.48** 

Root K+ 52.82** 0.83** 0.61**  2.23 3.15 0.92**  1.6 71.75 2.29 0.69** 

Shoot Na+/k+ 556.89** 0.90** 1.00**  0.26 0.15 -0.11**  1.97 757.69 1.27 -0.70 ns 

Root Na+/k+ 116.48** 0.78** 0.62**   0.89 0.38 -0.51**   1.51 169.66 0.86 -0.65** 

http://www.google.fr/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&ved=0CDQQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMean_squared_error&ei=oI5iUf_GHJD07AbguoDIBQ&usg=AFQjCNFijA8CA0oQeh_nDg0O7qfhrR__Uw&sig2=TlMebCrx-RSUvCRba515ag&bvm=bv.44770516,d.d2k
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Table 2 -Genetic variability for growth  and physiological traits in control and salt stress conditions in  M.truncatula  recombinant inbred lines (RILs) 

 Control  Salt stress  

 A17 TN1.11 MP Rils  A17 TN1.11 
(A17-S/A17-C) 

×100 
(TN1.11-S/TN1.11-C) 

×100 
MP Rils 

    Range Mean h2       Range Mean 
(Ril-S/Ril-C) 

×100 
h2 

Shoot dry weight  (mg) 17.76 15.86 ns  (a) 16.81 5.11-35.98 15.05**(b) 0.871  10.03 13.06** (a) 56.48 82.35 11.55 3.43-21.100 11.52 ns (b) 76.54 0.764 

Root dry weight  (mg) 16.76 14.18** 15.47 6.16-26.31 12.93 ns 0.843  9.53 12.84** 56.86 90.55 11.19 4.86-19.53 10.61 ns 82.06 0.732 

Plant dry weight (mg) 35.51 30.04 ns 32.38 12.15-62.28 27.99 ns 0.874  19.56 25.89** 55.08 86.19 22.73 8.41-39.82 22.13 ns 79.06 0.811 

Relative water content 67.46 66.09 ns 66.78 47.90-82.21 66.23 ns 0.682  65.13 72.56 ns 96.55 109.79 68.85 49.66-89.57 71.09 ns 107.34 0.684 

Leaf area  (mm2) 205.5 148.33 ** 176.92 63.46-347.44 176.75 ns 0.913  141.46 121.26** 68.84 81.75 131.36 55.45-242.27 147.75 ns 83.59 0.963 

CC 33.39 38.26** 35.83 24.68-46.70 36.16 ns 0.72  30.96 28.53 ns 92.72 74.57 29.75 12.00-44.98 29.24 ns 80.86 0.832 

ΦP 0.82 0.81 ns 0.82 0.73-0.90 0.81 ns 0.571  0.8 0.72** 97.56 88.89 0.76 0.62-0.87 0.76 ns 93.83 0.751 

ΦPSII 0.54 0.56ns 0.55 0.31-0.67 0.55 ns 0.934  0.45 0.36** 83.33 64.29 0.41 0.19-0.61 0.42 ns 76.36 0.864 

NPQ 0.49 0.43 ns 0.46 0.10-0.87 0.41 ns 0.732  0.57 0.53 ns 116.33 123.26 0.55 0.28-2.83 0.77 ns 187.8 0.381 

1-qP 0.26 0.22 ns 0.24 0.04-0.52 0.22 ns 0.501  0.41 0.23** 157.69 104.55 0.32 0.11-0.92 0.42** 190.91 0.732 

Shoot Na+ 
c
 0.76 0.54** 0.65 0.27-2.76 0.86** 0.942  2.49 2.89** 327.63 535.19 2.69 1.73-5.00 2.97 ns 345.35 0.923 

Root Na+ 1.41 2.46** 1.94 0.86-2.84 1.64** 0.923  2.21 2.59** 156.74 105.28 2.4 1.07-4.33 2.51 ns 153.05 0.952 

Shoot K+ 2.86 2.24** 2.55 1.59-4.16 2.71 ns 0.844  1.5 1.27 ns 52.45 56.70 1.39 0.66-2.17 1.41 ns 52.03 0.521 

Root K+ 1.59 2.80** 2.23 1.28-3.47 2.19 ns 0.881  1.44 1.75** 90.57 62.50 1.6 0.50-2.38 1.60 ns 73.06 0.892 

Shoot Na+/k+ 0.27 0.24 ns 0.26 0.12-1.21 0.34 ns 0.93  1.66 2.28 ns 614.81 950.00 1.97 0.99-8.43 2.25 ns 661.76 0.413 

Root Na+/k+ 0.9 0.88 ns 0.89 0.31-1.88 0.81 ns 0.913  1.53 1.48 ns 170 168.18182 1.51 0.76-4.53 1.69 ns 208.64 0.852 

 

MP Mean of Parents: (P1+P2)/2, (A17-S / A17-C) ×100  Percentage of A17 in saline condition versus A17 in control condition, (TN1.11-S/TN1.11-C) ×100  Percentage of TN1.11 in saline condition versus 

TN1.11 in control condition,  (Ril-S / Ril-C)×100  Percentage of Rils in saline condition versus Rils in control condition, h2  broad sense heritability, CC  chlorophyll content, ΦP potential photochemical 

efficiency of PSII electron transport ,  ΦPSII  actual quantum efficiency of PSII electron transport,  NPQ  non-photochemical fluorescence quenching, 1-qP proportion of closed PSII traps, a 

Significant or non significant difference between A17 and TN1.11.   b Significant or non significant difference between Mean of Parents and Mean of Rills.  c Na and K concentrations in μmol 

/mg  of  shoot or root dry weight    
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          Table 3 Coefficients of correlation between measured traits in M.truncatula under control condition.  

   SDW RDW PDW RWC LA CC φP φPSII NPQ qP SNa RNa SK RK SNaK RNaK 
 SDW 1.000                
 RDW 0.852** 1.000               
 PDW 0.981** 0.941** 1.000              
 RWC -0.101 -0.022 -0.070 1.000             
 LA 0.530** 0.621** 0.581** 0.241* 1.000            
 CC 0.282** 0.380** 0.330** 0.040 0.222* 1.000           
 φP 0.070 0.091 0.080 -0.110 0.002 0.221* 1.000          
 φPSII -0.020 0.002 -0.010 -0.040 -0.090 0.010 0.211* 1.000         
 NPQ -0.030 -0.011 -0.020 -0.020 0.080 -0.160 0.050 0.170 1.000        
 qP 0.180 0.142 0.170 -0.010 0.170 0.130 0.070 -0.380** -0.090 1.000       
 SNa 0.002 0.090 0.040 0.212* -0.050 0.191* 0.050 -0.110 -0.010 0.231** 1.000      
 RNa 0.040 0.130 0.080 -0.080 0.191* 0.040 -0.210* -0.19* -0.090 0.140 -0.070 1.000     
 SK 0.191* 0.190 0.192* -0.080 0.110 0.080 0.010 -0.040 -0.040 -0.130 -0.040 0.040 1.000    
 RK -0.023 -0.160 -0.080 -0.150 -0.140 -0.080 -0.120 -0.170 0.050 -0.050 -0.280** -0.030 -0.060 1.000   
 SNaK -0.071 0.010 -0.040 0.211* -0.090 0.120 0.050 -0.020 0.040 0.221* 0.911** -0.090 -0.411 -0.250** 1.000  
 RNaK 0.032 0.190* 0.090 0.080 0.242** 0.060 -0.060 -0.040 -0.120 0.150 0.140 0.731** 0.090 -0.660** 0.090 1.000 

SDW Shoot dry weight, RDW Root dry weight, PDW Plant dry weight, RWC Relative water content , LA Leaf area, CC Chlorophyll content, φP potential photochemical efficiency 
of PSII electron transport, φPSII actual quantum efficiency of PSII electron transport, NPQ non- photochemical fluorescence quenching, 1-qP proportion of closed PSII traps, SNa 
Shoot Na+ concentration , SK Shoot K+ concentration , RNa Root Na+ concentration, RK  Root K+ concentration,  SNaK Shoot Na+/K+ concentration, RNaK Root Na+/K+ 
concentration,     *,** and NS: significant at 0.05, 0.01 probability levels and non-significant. 
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Table 4 Coefficients of correlation between measured traits in M.truncatula under salt stress condition.  
   SDW RDW PDW RWC LA CC φP φPSII NPQ qP SNa RNa SK RK SNaK RNaK 
 SDW 1.000                

 RDW 0.771** 1.000               

 PDW 0.950** 0.931** 1.000              

 RWC 0.252** 0.170 0.230** 1.000             

 LA 0.590** 0.461** 0.571** 0.020 1.000            

 CC 0.261** 0.190* 0.250** 0.100 0.261** 1.000           

 φP 0.190* -0.010 0.100 -0.010 0.160 0.301** 1.000          

 φPSII -0.050 -0.100 -0.080 0.030 -0.080 0.010 0.090 1.000         

 NPQ 0.020 -0.040 -0.010 -0.020 0.040 0.050 0.180 -0.080 1.000        

 qP 0.040 -0.040 0.000 0.190* 0.060 0.110 0.060 -0.341** 0.191* 1.000       

 SNa 0.090 -0.010 0.050 0.040 0.070 -0.030 -0.210* -0.010 -0.060 0.080 1.000      

 RNa -0.070 0.010 -0.040 -0.070 -0.150 0.010 0.110 -0.160 0.000 -0.060 -0.070 1.000     

 SK 0.170 0.241** 0.211* 0.050 0.060 0.090 0.170 -0.070 -0.080 -0.030 -0.230* 0.160 1.000    

 RK 0.030 0.060 0.050 0.050 -0.030 -0.070 -0.050 -0.150 -0.180 -0.090 0.010 0.231** 0.210* 1.000   

 SNaK -0.070 -0.150 -0.110 0.010 0.040 -0.110 -0.211* 0.020 0.020 0.080 0.750** -0.070 -0.751** -0.140 1.000  

 RNaK -0.070 -0.010 -0.040 -0.040 -0.090 0.110 0.050 0.060 0.130 0.020 -0.060 0.491** -0.030 -0.660** 0.050 1.000 
 SDW Shoot dry weight, RDW Root dry weight, PDW Plant dry weight, RWC Relative water content , LA Leaf area, CC Chlorophyll content  , φP potential photochemical 
efficiency of PSII electron transport , φPSII actual quantum efficiency of PSII electron transport , NPQ non- photochemical fluorescence quenching , 1-qP proportion of closed 
PSII traps, SNa Shoot Na+ concentration , SK Shoot K+ concentration , RNa Root Na+ concentration  , RK  Root K+ concentration,  SNaK Shoot Na+/K+ concentration, RNaK Root 
Na+/K+ concentration,     *,** and NS: significant at 0.05, 0.01 probability levels and non-significant. 
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Table 5 Marker distribution among the linkage groups 
Linkage 
group  

 Marker 
number 

 Length 
(cM) 

Average distance 
(cM) 

1 28 80.70 2.88 

2 17 61.60 3.62 

3 15 53.40 3.56 

4 14 47.50 3.39 

5 25 73.60 2.94 

6 13 44.20 3.40 

7 18 55.60 3.09 

8 16 53.40 3.34 

Total 146 470 3.28 
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Table 6 QTLs detected for growth and physiological traits by Multiple QTL Mapping (MQM) in RILs from the cross A17× TN1.11 
under control condition 

 

Trait QTL Linkage group Marker Position (cM) LOD Additive effect R
2a

  TR
2a

 

Shoot dry weight   SDWct.1 LG1 mt12 32.70-35.00 5.01 2.170 9.00 13.36 

 Root dry weight  RDWct.1 LG1 mt10 29.50-31.60 4.82 1.550 6.77 14.02 

 RDWct.2 LG2 mt44 58.70-61.00 3.38 0.080 8.10  

Plant dry weight  PDWct.1 LG1 mt12 32.70-35.00 5.99 -1.590 8.56 11.77 

Relative water content RWCct.7 LG7 mt114 6.40-10.00 3.88 -1.260 5.77 12.20 

Leaf area   LAct.6 LG6 mte39 0-6.14 4.26 -0.660 9.62 16.67 
 LAct.7 LG7 mt113 0-7.20 3.56 -0.450 6.24  

CC Ccct.7 LG7 mt125 48.20-50.50 3.27 1.320 6.35 7.95 
ΦP FPct.4 LG4 mt68 26.60-30.00 5.94 -0.007 5.55 23.01 

 FPct.7 LG7 mt125 48.00-50.50 6.26 -0.018 7.57  

ΦPSII FPSIIct.6 LG6 mt104 17.60-20.50 6.08 -0.020 5.01 14.13 

NPQ NPQct.1 LG1 mt1 0-2.30 3.47 0.031 6.91 13.26 
 NPQct.3 LG3 mt50 15.90-200 5.54 0.039 4.06  

1-qP 1-qPct.1 LG1 mt6 8.00-10.10 4.04 0.044 5.95 8.61 

Shoot Na
+©

 SNact.2 LG2 mte80 49.20-50.50 4.83 0.130 5.77 13.13 

 SNact.6 LG6 mt109 32.00-35.90 4.14 0.180 5.00 13.20 

Root Na
+
  RNact.1 LG1 mt28 78.00-80.70 3.38 0.150 4.14 7.25 

Shoot K
+
  SKct.1 LG1 mt8 17.50-20.00 3.62 -0.470 4.97 5.38 

Root K
+
  RKct.8 LG8 mt133 4.10-7.00 4.80 -0.200 6.89 13.21 

Shoot Na
+
/k

+
  SNaKct.6 LG6 mt109 32.20-35.90 3.51 0.090 4.41 9.53 

Root Na
+
/k

+
  RNaKct.1 LG1 mte114 78.00-80.70 6.31 0.090 8.98 12.98 

CC chlorophyll content, ΦP potential photochemical efficiency of PSII electron transport, ΦPSII actual quantum efficiency of PSII electron transport, NPQ non-photochemical 

fluorescence quenching, 1-qP proportion of closed PSII traps, a: Percentage of individual phenotypic variance explained, b: Percentage of individual phenotypic variance explained 

by the QTLs given all the covariates,  c:  Na and K concentrations in μmol /mg  of  shoot or root dry weight    
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Table 7 QTLs detected for growth and physiological traits by Multiple QTL Mapping (MQM) in RILs from the cross A17× TN1.11 under salt stress 
condition 

Trait QTL Linkage group Marker Position (cM) LOD Additive effect R
2a

  TR
2a

 

Shoot dry weight SDWsl.8 LG8 mte55 42.80-46.10 9.39 1.030 5.39 9.50 

Root dry weight RDWsl.1 LG1 mt8 17.50-20.00 6.13 -0.750 7.15 18.61 

 RDWsl.5 LG5 mt87 30.00-39.60 4.00 -0.430 10.39  

Plant dry weight PDWsl.8 LG8 mt143 45.00-46.10 8.86 1.210 4.20 7.83 

Relative water content RWCsl.3 LG3 mt50 13.00-15.90 6.11 -1.920 8.36 14.00 

 RWCsl.5 LG5 mt86 24.00-26.4.00 5.98 -1.420 6.96  

Leaf area LAsl.7 LG7 mt114 3.00-6.400 5.22 -0.420 6.84 7.19 

CC Ccsl.7 LG7 mt125 48.60-50.50 3.16 1.290 9.75 11.69 
ΦP FPsl.5 LG5 mt94 57.60-60.50 8.68 -0.020 10.77 19.68 

 FPsl.7 LG7 mt113 0-6.40 4.48 -0.010 7.23  

ΦPSII FPSIIsl.6 LG6 mt103 14.00-17.20 12.37 0.034 8.77 11.68 

NPQ NPQsl.4 LG4 mte23 0-4.20 5.27 -0.040 6.46 8.67 

1-qP 1-qPsl.8 LG8 mt143 43.00-46.10 4.53 -0.050 3.14 6.61 

Shoot Na
+©

 SNasl.7 LG7 mt119 28.70-31.00 4.72 -0.060 6.54 9.35 

Root Na
+
 RNasl.6 LG6 mte67 23.00-26.70 4.90 -0.190 6.71 8.86 

Shoot K
+
 SKsl.1 LG7 mt122 34.90-38.00 4.13 -0.070 5.00 11.45 

Root K
+
 RKsl.4 LG4 mt64 9.00-11.40 4.00 -0.080 4.10 4.93 

Shoot Na
+
/k

+
 SNaKsl.6 LG6 mte90 4.00-7.20 8.17 0.330 6.93 12.86 

Root Na
+
/k

+
 RNaKsl.7 LG7 mt122 34.90-38.50 4.36 0.120 3.72 4.62 

 
CC chlorophyll content ΦP potential photochemical efficiency of PSII electron transport, ΦPSII actual quantum efficiency of PSII electron transport, NPQ non-photochemical 

fluorescence quenching, 1-qP proportion of closed PSII traps, a: Percentage of individual phenotypic variance explained b: Percentage of individual phenotypic variance explained 

by the QTLs given all the covariates,     c:  Na and K concentrations in μmol /mg of shoot or root dry weight    
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Fig. 1 Linkage map of M. truncatula based on 146 SSR markers using RILs recombinant inbred lines. The markers with their positions are presented in the left side and QTLs 
are presented in the right side of linkage groups. The QTLs are designated as  SDW Shoot dry weight, RDW Root dry weight, PDW Plant dry weight, RWC Relative water content , 
LA Leaf area, CC Chlorophyll content  , FP potential photochemical efficiency of PSII electron transport , FPSII actual quantum efficiency of PSII electron transport , NPQ non- 
photochemical fluorescence quenching , 1-qP proportion of closed PSII traps, SNa Shoot Na+ concentration , SK Shoot K+ concentration , RNa Root Na+ concentration  , RK  Root 
K+ concentration,  SNaK Shoot Na+/K+ concentration, RNaK Root Na+/K+ concentration following treatment (ct, control or sl, salt stressed) and linkage group. Bars represent 
intervals associated with the QTLs 
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Supplementary Table  SSR markers used for mapping TN1.11 x A17 recombinant inbred lines population.  
Name Position Linkage group Alternate name Forward Primer Reverse Primer 

mt1 0 LG1   TGGTGTCAACGGATCCTACC ACTTTTTAACCAAGCTAACACACA 

mt2 2.3 LG1 mte75 MTE75_mtic981 ATTGTAGGCCACATCATTTC AACTTCTCAAGTAAAGCCTTTTT 

mt3 3.8 LG1  MTE2_mtic68 AATTGCAGCAGCAACAATCA TCCAAACCTCCCATGGTATC 

mt4 4.1 LG1 mte4 MTE4_mtic70 GGTACCACTTTGGTATGGTCGT TGTCAGGGACGAAGTTGATG 

mt5 6.8 LG1  mtic262 CAAATCAAATCCAACAAACA GTGATCTCTTCCTGGACTGA 

mt6 10.1 LG1   CGGCTTCGTTTTTAAGATCC CCCATGATTTCATCGCAATA 

mt7 15 LG1   CTCCACCGCTTTTGACCTAA TTTGCACATCCAAATCGAAA 

mt8 17.5 LG1   TGCATTTTTGCTAACTTGGACA TGCAGCTTGCTAACTTGCAC 

mt9 23.9 LG1 mte61 MTE97_mtic1354 CCATGCAATTGAACAAATAA CATGTGTCAACAGATCCTGA 

mt10 31.6 LG1   AACCAAACAATCTTTGCAGGA TTTTTGAAGTGTTTCACGGATT 

mt11 32.1 LG1   CGCAACAGTCTAAACGGAAG TCTCTCTCCCCGAGATTCAA 

mt12 32.7 LG1   TCCCTCTCATTATTCTCAAAACC GATCAAACCAGTGCTCACGA 

mt13 37.4 LG1   TTTTCCTTAAAACATGGTGCAAT CGATTGTTGGAGAAAAACAACT 

mt14 48.4 LG1   GGCACTCAGTGTCAGTGGTT CCCACCCCCAGAAATAACTT 

mt15 49.4 LG1   TCATTTCCTCGGAAAACTCG GTTCCAATGCCAAGCTTCTG 

mt16 51.7 LG1   AAGTGGGTGTATGTTAGCAAATCTC GGCGAGTCAACTCCTTACCA 

mt17 53.6 LG1   AGGTGAATTGGTGGAGATCG GAGGTATCCATTTTATGACAAACG 

mt18 54.8 LG1   CAAACATGATTGACGACGAGA TTGAGTGTGAAACGCATTACG 

mt19 56.2 LG1   CACCGTACGGAACAAAGACA TGTGTGATGAGAGAATGAGACTG 

mt20 61.5 LG1   CAATCTTCCCACAACCACCT CCGGATCTACCAAAGAACGA 

mt21 63 LG1   GGAATGGAAGCAAGGTCAAA ATCCCTTCCAACTCCGACTC 

mt22 67.2 LG1  mtic640 CATAACTTCCAATAACTGCCA GGCCCAACCACAATTTC  

mt23 68.5 LG1 mte6 MTE6_mtic125 CATTCTTCTGCACCCAATCC TGAAATTTGAACGCAGAAATCA 

mt24 72.8 LG1   CCTCTCCTTCCCCTCATTCT TCCTCCTCATTCTCCCTCCTA 

mt25 73.1 LG1   ATCGTCCCCACTGTGTCTTC GTGGGGTTGGTGAGAGTGTT 

mt26 74.2 LG1 mte88 MTE88_mtic999 CTATAGCCGTTAATCTTGATGATCT GCATCATCCCCACATCCTAA 

mt27 76 LG1  mtic713 AGGGTCGCCTCAACTATTA TCAACACCATTTTCTCAATG 

mt28 80.7 LG1 mte114  CGCTACCAAACCACCTAAGC TGGATGGTTGAAATGGAGAAG 

mt29 0 LG2 
  ACCAAGCCCCAACTGGTTAT 

TTCTTGTCTGGTTGTGTGAGC 
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Supplementary Table (Continued) 

Name Position Linkage group Alternate name Forward Primer Reverse Primer 

mt30 0.3 LG2 mte10 MTE10_mtic210 CCAAACTGGCTGTGTTCAAA GCGGTAAGCCTTGCTGTATG 

mt31 1.5 LG2  mtic19 TCTAGAAAAAGCAATGATGTGAGA TGCAACAGAAGAAGCAAAACA 

mt32 5.1 LG2 mte9 mtic643 CGCAACACTTTTACATCTTCACTC TTCGATTTCAGTTCCACCAA 

mt33 9.4 LG2  mtic361 AGCTGAAGTGGAACCACCAG CCCCTAGCTTGAGGAGAGGA 

mt34 16.3 LG2  mtic513 TGATGCGATATGAAGAGAGA AAAATCGGACAAAAGATTAAA 

mt35 20.1 LG2 mte63 MTE63_mtic515 GCCCTTAGACACTGGTTATC TGACGTTGAAGGTAATATTGG 

mt36 27.9 LG2   TCATGTTTGTGTCATCAACACTTT GATCACGCGTTCTCAATCCT 

mt37 33.3 LG2 mte14 MTE14_mtic526 CTCCCTTCATAATAGAAAAATAGG CTCCCATCCATAAATCCTTT 

mt38 39.7 LG2   CCCAGCACAAAACAATATCAAA AGCGCCTCGGTTTCTCAG 

mt39 41.7 LG2   CCAACCATCGGTTCCTATTTT TAGGGCAATTTAGGCTTCCA 

mt40 49.2 LG2 mte80 MTE80_mtic1002 TTACAATATTGGGCAAGTCC AATTTTGGCAATGTCATCTT 

mt41 50.5 LG2   CATGCACTTCTTGGAGAGGA CGTAAGGCATGTGTCATGGT 

mt42 51.5 LG2   GATTTGTGGGAGGAACCAAT TCTGAAATAGAGTTGAGTACATCGAAA 

mt43 56.6 LG2   TGTGAACGGAATAAGCACTCA CCTTGTGTTCATCGAATTTGG 

mt44 58.7 LG2   TTAGCAGTACCGTCGGTTTTC TGCAACAACTCTAGCCACACT 

mt45 61.6 LG2 mte16 MTE16_mtic127 ACCATGACAACCCTCCAGTC TTTGATCTTGTTGCCGAAAT 

mt46 0 LG3 mte17 mtic706 CTGATCAATTGAAACAAACG CTCTCACCCTCTCATTTGAA 

mt47 0.8 LG3   TGCACATTAAATTGTGTCAATCA GGTTCAACTGATGATGAAATGG 

mt48 4.3 LG3  mtic742 CGCGAGTTTATACCATGACT TTCCAGAATGTTCACAATGA 

mt49 11 LG3 mte89 MTE89_mtic1050 GATTAAGCATTTATTGGATGTG ATCATGATCAAAACTATTGC 

mt50 15.9 LG3   CATCCAACAATCCCAAGACA TAGCCGCTGGTTTGATCTTT 

mt51 25.3 LG3   CGTCAAATAAATGAGCCGAAC TTTTTACTCGGTTGAACATTTTT 

mt52 28.3 LG3  MTE84_mtic1029 TGGAAGAAGGTTTTTGATTG CATCTTCCTCTTCCCTCTCT 

mt53 31.5 LG3   GTGGTGGTGGTGAGAGAGGT TCCGACGATGACAACGTAAA 

mt55 33.5 LG3  MTE117_mtic1260 TTTAGCTAGTGGCTCTTTGG TTGGAGGGTCCTACAACTAT 

mt56 37.8 LG3 mte20  TTTCATGGGGTAATTGATGAAAC GAGGCATTTGCCTAGGGTCT 

mt57 43.5 LG3  mtic66 CGATCTTCTTCCGCCATAGA ATTCGTCTGTCCCGACTCTG 

mt58 48.8 LG3   TTATTCCACTACGTGGGGTTG GAGGGCAAACAAACGATGAT 

mt59 53.1 LG3   TGCTCCCAATCTAGCATTCC ATGCGTTTGAGGTTTGAACA 

mt60 53.4 LG3 mte22 MTE22_mtic757 AAGCAACATTATCCCCTTTT CTTCTCTGAGATTTTGAGTGC 

mt61 0 LG4 mte23 MTE23-mtic559 GGGTTTTTGATCCAGATCTT AAGGTGGTCATACGAGCTCC 
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Supplementary Table (Continued) 

Name Position Linkage group Alternate name Forward Primer Reverse Primer 

mt62 4.2 LG4 mte24 MTE24_mtic703 CTTGGCAAAATGTCAACTCT GGAAAGGGGTTAGGTGAGTA 

mt63 7.1 LG4   TCAACCCGAACCAGATAAGC TCAAACCTCAACCACAAAACA 

mt64 11.4 LG4   GGACTCAGGTCGCAAGAAAA TTTGGGAAGGTTAAAGCAGGT 

mt65 17.7 LG4  mtic89 GGAACAAGAAAGATTTGATTTTG TTCGAACGAATGAACCAAGA 

mt66 18.8 LG4   TGAGTCCGATCAGAGGTTGA GGAAGTGCAAGGGAACTGAA 

mt67 25.8 LG4   GATCGAATCAATTTGAAGAAAAA CCTGAAAGAATGGAAAAGGTTG 

mt68 26.6 LG4   CAGATGCATAGGAGGTGCAA AGCGGTCGAAATTTCTCTCA 

mt69 38.2 LG4   TCGGTGAAAATTTATTGGAGA AAGCTCACGGGGATAAAAGG 

mt70 41.6 LG4 mte95 MTE95_mtic1133 TACGGCTCAACTTTGAGTTT AGGATGTAGTATCCCTAGATTAGTTC 

mt71 45.6 LG4   TTGGTTCAACAATCAAATGAGC AGAACCTGTGAGCAGAAGCA 

mt72 45.8 LG4  MTE93_mtic1267 ACTCCTTTATGCATGCTGTT ATCAGTTGAAGCACCAATTT 

mt73 46.2 LG4  mtic37 AAGAGCAAGCAAGAGGATGC TCTTGGCCATTACAATATCATCA 

mt74 47.5 LG4   CGCAATAATATTTGTTGTTTCTTAAA CAACTCCTTATCCGCTGTCA 

mt76 0.5 LG5   CGTACCATTCACCACATTCG TGGTGTTTGTGACGGTGTTT 

mt77 0.8 LG5   CCACAAGGCACCTAAGAAGG TGGATGACAAAAAGTGCTGAA 

mt78 1.6 LG5   TAGCAAATACAGGGACCAAT ATGGCTTCATGCGTTAATAC 

mt79 2.7 LG5   TTGACCTACCATGAGTTTGACG AAGCAACAATTAAATTTGTACGTGA 

mt80 4.6 LG5   TACCTCGCAAATCAAGCTCA TCCAAATCCTATTGCCCGTA 

mt81 6.2 LG5 mte31 mtic148 TAGTCTCTCTAGTACATGACTAATCT CTCCCACACAATTTTTCG 

mt82 8.5 LG5  mtic562 GCTTGTTCTTCTTCAAGCTC ACCTGACTTGTGTTTTATGC 

mt83 12 LG5   GCAACTTCACGGAATCAAAA TGATTTGCTGAAGACCCACA 

mt84 19.6 LG5   TGCAATAATCGAATTTCAAACAA TTTGTATGTGCGTGTCTAAATGG 

mt85 22.4 LG5 mte33 mtic932 GTTTTGTCAATTTTCGAAGG TGGGATAAAATTACGACACA 

mt86 26.4 LG5   AGTGGAAATCACACCTTGAG AAAAATGTGGATTGAACCAT 

mt87 30 LG5   TGAGCAGTACTCAGAAAATGG TCTGAACCCGACTCAGAT 

mt89 40.2 LG5   AGTGGCCGGGAAATATATGG GAGTTCAAGGAAGCAATTACCAA 

mt90 41.3 LG5   TGACACCAACAACAATCTTT TGAGGATCTGGTTTCACCTA 

mt91 41.8 LG5   GTCCCAAATTGTCAGAAAAA TCGTCCCAAAATATAAGGAA 

mt92 49.8 LG5 mtic238  TCTTACCTTCTCTGGCTCATCA CAGAAGGGACATCCACACCT 

mt93 56.5 LG5 mte37 MTE37_mtic836 ACCCACAAGTGCTATCCTCG CGCGCCCACATACATACATA 

mt94 60.5 LG5   ATGGGTTGTGAAACTCCATA ATCTCTTTGTGTGGTTTTGC 
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Supplementary Table (Continued) 

Name Position Linkage group Alternate name Forward Primer Reverse Primer 

mt95 64.8 LG5   GAATTGGGCTATTTTTCTTG GGTACTTCTTAACATGGTTCCT 

mt96 69.4 LG5   TCTTGCCTATCAAAAAGGTGTG TGGACAATACAATGCGCTCT 

mt97 71.1 LG5 mte38 MTE38_mtic732 CTTTTACACGTGCGCTTAAT GTTTCAAAAACATCTCAACAAA 

mt98 71.7 LG5  MTE38_mtic980 GAAGGCATTGATGAAAAGAC TGTACTTCAAAACCGATCCT 

mt99 73.6 LG5 mte66 mtic536 TCACATTAATTATCTTTTCACAA GGCCAAAACATAAAAATTG 

mt100 0 LG6 mte39 MTE39_MTIC831 CTTCACTTGCTTAGCCCTTA TTCACACTATGTGCACCAAC 

mt101 7.2 LG6 mte90 MTE90_mtic1039 CCCTCTCATCTCTCACCATA GCCACACATTTTAATCTAACG 

mt102 10.5 LG6  MTE86_mtic1040 ACCGTACGTGCAGTTATGA TGGGGGATTGTTGTATTTTA 

mt103 17.2 LG6   CGCGGTTTTAGTCACAACCT TCACAACCGTCTTGCATTTC 

mt104 20.5 LG6   TCTGGTACCTCTCTGCATTTGA TCAAAACACGAAAATGACATGA 

mt105 20.7 LG6   TGAAAGATTTAACAATGGTTTCCA TGATGTATGTGGTTTATAATATGGACT 

mt106 26.7 LG6 mte67 mtic759 TCATCACAACCCTAAAGGAC AACCGGAATCATAAAATCCT 

mt107 27.5 LG6   ATGCCAGCAACAAATGGAAT GTTTGCAAGAGCATCAACCA 

mt108 33.8 LG6   GGGAGTTGCGTGCCTATCT TGCGTGTATCCTAGCAAACCT 

mt109 35.9 LG6  mtic711 TTCGGTGTAGCACTTTTTCT ATGGTTTGGTGTGACAAAAT 

mt110 39 LG6   AAACCTCACTCATCTCGCATAG TTCATTGATAGTGGATTAAAGAGTTG 

mt111 40.7 LG6   CCTCGTGGATACGAGTGAGG CTGCCCTCCCAGTCTCAATA 

mt112 44.2 LG6  MTE41_mtic1379 AAGCACGCGAGTCTATAAAA CCACAATTTCTTTTTCCTTG 

mt113 0 LG7   GGAAATTCAATCGCGACCTA CGGAAAATCGATCGAAAGAG 

mt114 6.4 LG7  MTE45_MTIC503 AGCCTGCTCATTTGTATTGC CAATCACTGGAAGCAAGGT 

mt115 11.7 LG7  MTIC147 AATCCTTGATTGCATGGTAG AAGAGAGTATTCATTCTCACTCTAA 

mt116 15 LG7   CCAAAGTGTCAACAGCCAAA TTTTTCTGAGGAACAAATGACTT 

mt117 19.2 LG7 mte60 MTE60_mtic972 AATGACATTTTTCCGTCTTG TTGATTTCAAGCACAAGCTA 

mt118 19.9 LG7   TGGAACAAAGTTTTGTCATTGATT TCAAAACAATCCTAACCGTCA 

mt119 28.7 LG7   CCGAATTGGGAAAGGAACAT GCATGCACTGAAGGTGAGAA 

mt120 31.7 LG7 mte73 MTE73_mtic232 TAAGAAAGCAGGTCAGGATG TCCACAAATGTCTAAAACCA 

mt122 34.9 LG7  mtic635 CCCCAAATCAAACAACACATC GGGCCACCACTATAAACACC 

mt123 43 LG7 mte85 MTE85_mtic1240 CGGAAGAATCAACTTTTTGT TCATCAAAACATGACGATTG 

mt124 48.9 LG7  MTE119_mtic183 AAATGGAAGAAAGTGTCACG TTCTCTTCAAGTGGGAGGTA 

mt125 50.5 LG7  MTE124_mtic509 TTGTGGTGACTAGTGATTGG ATGTGAAGTAAATCCCTTGC 

mt126 51.6 LG7 mte92 MTE92_mtic502 GGATGAAATTGAAAGGAAAACAA CAACAATCAACTAAGCATACTATTCG 
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Supplementary Table (Continued) 

Name Position Linkage group Alternate name Forward Primer Reverse Primer 

mt127 53.1 LG7  mtic723 ACCCCTGAACCTTACAGAGT TATTTCCTGAACCTTTGGTG 

mt128 54.2 LG7  MTE48_mtic516 CAAGCTTCAATTCCACAAGT TGGTGAATTACATGCTCAGA 

mt129 54.9 LG7   GAAACCGCCATTGTTAAACC TCTGTTATTCATCACAATGAGAATTT 

mt130 55.6 LG7   GCCAATATATGCTTGGGTAGC CCACCACCAATCACATACCA 

mt131 0 LG8 mte51 MTE51_mtic86 ATGGCAGCTGCTTCAACTTT CCTCCCCCAAATAACACAAA 

mt132 0.3 LG8   GACTAGCGAACTAACAGGTCAATTA CCACATGTCATTCAAAAAGCA 

mt133 4.1 LG8  mtic762 TCGTCTTCTTCCATCATCCC AATCCACCTCACCAATTCCA 

mt134 7.1 LG8   CTTCATGGGTGGCTTCTAGC TGGAATGATGAAAGTGGGTGT 

mt135 12.6 LG8 mte94 MTE94_mtic1130 CCGTAGAACTCCCCTAAAGA TCCGAATTTTAAAACCATGT 

mt136 14.4 LG8 mte91 mtic75 CCGTCCCTCCACGAAACT TGACATGTATTGTTTATTTTCGTAACA 

mt137 15.5 LG8   CACATCGGTGTTCGATCAAG TCTTGATCAGATGGTCCAAAAA 

mt138 17 LG8   ATGGCATGATTGAACCGAAT TGCAGCTAAATTCAAGGGAGA 

mt139 23.6 LG8   CGTATTGCCAGGAAAACACC GGACTGCTCAAAAGCCTACG 

mt140 26.4 LG8  mtic492 GCGAGCCGAAGTGATGATGA CAACATAAGCCACACACGAAC 

mt141 31.9 LG8   ATCAATGGTCCGAATGGTGT ACCACCGTTCATTCAATCGT 

mt142 42.8 LG8 mte55 MTE55_mtic537 CATCAATTTGTCAGTACTTCGGTCAG TGGGTTCAAGAAGTGGAAGTAAATAAT 

mt143 46.1 LG8  mtic750 GGTTCAGGATATGATCCTCTT ATCCTCTGCTGACAACACTT 

mt144 47.7 LG8 mte56 MTE56_MTIC523 TCGACAGTAATACACGCTCA GTCTGAAAATCATCCAAAGC 

mt145 52.1 LG8  mtic1194 GGCAATCATTAGCTTTCAAC CCTTTTACGAAGCTCTTTGA 

mt146 53.4 LG8 mte58 MTE58_mtic80 TGTACATTTTCAACAGACAAAGCA GCCAAGACTGTGTTTGGTTTC 
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     Discussion: 
Genetic variation for plant growth and physiological traits 
Analysis of variance for RILs and their parents TN1.11 and A17 in both salinity and 

control conditions show significant effects for all of growth and physiological traits 

studied. In both conditions, significant difference between the two parental lines TN1.11 

and A17 was observed for most of the studied traits. The difference between the mean of  

RILs and the mean of the parents was not significant for most of the studied traits. 

Shoot, root and plant dry weights, leaf area, Chlorophyll content (CC), potential 

photochemical efficiency of PSII electron transport (ΦP), actual quantum efficiency of 

PSII electron transport (ΦPSII) and shoot and root K+ concentrations were reduced 

significantly by salt treatment in RILs population compared with control. The same 

results for plant growth traits are reported in other M. truncatula RIL populations, 

(Veatch et al. 2004; Lopez 2008a; Arraouadi et al. 2011). Palma et al, (2013) presented 

also a significant decrease of PDW under salt stress in M. sativa. Arraouadi et al. (2011) 

also reported that leaf area under salt condition decreases in M. truncatula. Salt 

treatment increased the relative water content, non photochemical fluorescence 

quenching (NPQ) and proportion of closed PSII traps (1-qP). Increased 1-qP values 

under salt stress condition in our study could be due to closure of PSII reaction centers, 

which is associated to PSII inactivation, resulting from a saturation of photosynthesis 

and other electron sinks by light (Osmond et al. 1993). As far as we know the genetic 

variability for the fluorescence parameters in M. truncatula or M. sativa are not reported 

in the literature. Wheter or not differences in chlorophyll fluorescence parameters may 

be linked to differential growth performances remained to be studied. The influence of 

salt strees on this putative relation is also a challinging question. 

Heritability for the traits has high values. Correlations between all growth traits are 

positives and significant in both conditions. For example vertical projected leaf area 

(LA), is correlated positively with SDW, RDW and PDW in salinity and control 

conditions. Correlations between physiological traits are in some cases changed 

according the two culture conditions. For example the relation between RWC and the 

proportion of closed PSII traps (1-qP) is not significant in control (-0.010), but positive 

and significant in salinity (0.0.190*). Also correlation between RK and Sk is significant 

in salinity (0.210*) and non significant in control condition (-0.060).  

http://www.sciencedirect.com.gate1.inist.fr/science/article/pii/S088875431100262X
http://www.sciencedirect.com.gate1.inist.fr/science/article/pii/S088875431100262X
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Quantitative trait loci for growth and physiological traits 

The molecular genetic linkage map of M. truncatula with is constructed using SSR 

markers and 192 recombinant inbred lines (RILs) of the cross TN1.11 x A17. The map 

contains 146 SSR markers. QTL mapping showed the presence of several QTLs 

involved in all measured traits. Some of the detected QTLs are specific and are revealed 

only in control or in saline conditions (FP sl.5 and FPct.4), some others are non-specific 

and control a trait in both saline and control conditions (LA sl.7 and LAcl.7, CCsl7 and 

CCct7 or FPSIIct6 and FPSIIsl6). Overlapping QTLs are also observed which control 

more than one trait under saline treatment or both conditions (PDWsl.8, 1-qPsl.8 and 

SDWsl.8).  Most of overlapping QTLs are located on linkage groups 7 (Fig.1). Julier et 

al. (2007) and Arraouadi et al. (2012) showed that linkage group 7 contains several QTLs 

involved in controlling important traits. A total of 21 QTLs were detected under control 

and 19 under salt condition. The phenotypic variance explained by each QTL (R2) 

ranged from 3.14% to 10.77%, and the percentage of total phenotypic variance (TR2) 

varies from 4.62% to 23.01%. The signs of additive effects show that alleles having 

positive effects for QTLs come from both parents for different traits. The transgressive 

phenotypes observed for some traits could be explained by the presence of QTLs of 

opposite sign in the two parents. Their recombination resulted in RILs with higher 

values than those of their parents, which is explained by various positive gene effects 

having been accumulated.  Our results showed that detected QTLs for Na+ and K+ traits 

measured in shoots and roots did not share the same map locations, suggesting that the 

genes controlling the transport of Na+ and K+ between the shoots and roots may be 

different or induced uncoordinatedly by salt stress. A similar conclusion is reported by 

Arraouadi et al. (2012). 

 
 
 
 



 

104 
 

1
0

4
 

 
 
 
 
 
 
 

Chapter 5 
 

 
CONCLUSION ET PERSPECTIVES 

 

 

 

 

 

 

 

 

 

 

 

 



 

105 
 

1
0

5
 

Conclusion: 

Afin d‘améliorer la fiabilité et l'efficacité de la sélection pour la tolérance à la salinité, il 

est nécessaire d'identifier les changements induits par les solutions salines sur les 

caractères agronomiques et physiologiques de génotypes d‘une espèce végétale. Cette 

étude a été menée dans le but d'enrichir notre compréhension des bases génétiques de la 

tolérance à la salinité chez Medicago truncatula. Dans la première étape, l'objectif a été 

d'étudier l‘effet d‘une large gamme de concentrations   0 à 150 mM - NaCl, sur  des 

traits morphologiques et physiologiques majeurs chez six génotypes de M. truncatula 

cultivés dans des conditions contrôlées (chambre de culture). Ces génotypes d‘origines 

géographiques variées sont des lignées parentales de différentes populations de lignées 

recombinantes disponibles dans notre laboratoire. Cette première expérimentation nous a 

permis d‘identifier des traits de tolérance à la salinité ainsi que  les conditions de 

phénotypage (concentration optimale en NaCl) et un croisement d‘intérêt pour étudier 

les bases génétiques de la  tolérance à la salinité chez cette espèce.   

Dans une deuxième expérimentation, nous avons étudié la variabilité génétique des traits 

morpho-physiologiques clefs pour la tolérance à la salinité chez une population de 

lignées recombinantes (RILs) issues du croisement « TN1.11 x A17 », dans les 

conditions témoin (eau) et en stress salin. En utilisant notre carte génétique, nous avons 

ensuite identifié et cartographié les QTLs associés à ces traits. Les résultats les plus 

importants sont :     

1-L'effet du stress salin sur les paramètres morphologiques et physiologiques  des 

génotypes de  Medicago truncatula. 

Les résultats des analyses de variance sur 6 lignées parentales traitées avec différentes 

concentrations de NaCl (0 à150 mM)  montrent que certains génotypes sont plus tolérants 

à la salinité que d'autres. L'effet de la salinité est significatif pour tous les traits étudiés. 

L‘interaction entre les génotypes et les traitements est également significative. La lignée 

―DZA315.16‖ a montré les valeurs les plus élevées pour les traits morphologiques alors 

que ―TN1.11‖ a  les valeurs les plus faibles. La variabilité génétique pour la production 

de biomasse foliaire en réponse à la salinité chez M. truncatula a été également observée 

par Veatch et al. (2004). La gamme de concentration saline la plus adaptée pour identifier 

des différences génotypiques est comprise entre 90 et 120 mM NaCl. La surface foliaire - 

verticalement projetée de la plante, qui est facile à mesurer (mesure rapide et non 
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destructrice), montre une forte variabilité. Ce trait est également significativement corrélé 

à la production de biomasse et constitue un trait d‘intérêt pour le phénotypage de la 

tolérance à la salinité. ―DZA315.16‖ et ―A20‖ ont respectivement les valeurs maximales 

et minimales pour ce caractère. Une variabilité importante de la teneur en chlorophylle 

des feuilles selon les concentrations de NaCl a été observée. A notre connaissance,  l'effet 

de la salinité sur ce caractère chez  M. truncatula n‘a pas été étudié. La teneur en 

chlorophylle foliaire est affectée par la salinité chez Brassica juncea (Qasim, 1998), le riz 

(Sultana et al., 1999), le blé (Munns and James, 2003) et chez Brassica oleracea 

(Bhattacharya et al., 2004). La salinité peut affecter la quantité de chlorophylle en 

inhibant la synthèse de chlorophylle ou en accélérant sa dégradation, comme cela a été 

observé chez l'avoine (Avena sativa L.) (Zhao et al, 2007). Le niveau de fluorescence 

maximal (Fm) et l‘efficience photochimique potentielle du PS II (Fv/Fm) sont 

significativement diminués par les différentes concentrations de NaCl utilisées dans notre 

étude par rapport au témoin. Le Fv/Fm est significativement diminué chez l'orge (Jiang et 

al., 2006) et  le sorgho (Netondo et al., 2004) pour des stress salin marqués.   A notre 

connaissance, la réponse de ces caractères physiologiques au stress salin n‘a pas été 

étudiée chez  M. truncatula. 

Les corrélations entre quelques traits morphologiques et physiologiques sont positives et 

significatives dans la condition de culture avec 90 mM NaCl. La surface foliaire de la 

plante montre  une corrélation significative avec la production de biomasse: les poids 

frais et sec de la partie aérienne et les poids frais et sec des racines. Des corrélations 

positives entre certains traits morphologiques chez M. truncatula ont été également 

observées par Arraouadi (2012). En considérant les interactions entre génotype et 

concentration de NaCl pour la surface foliaire, la lignée ―TN1.11‖ montre des valeurs 

faibles dans la condition contrôle (eau) mais aussi dans les différentes concentrations 

salines, alors que ―DZA315.16‖ présente la valeur la plus élevée pour la condition 

contrôle et une faible valeur pour les traitements salins. La lignée A17 présente une 

réponse à la salinité comparable à ―DZA315.16‖. Ces deux génotypes peuvent être  

considérés comme des génotypes « sensibles » en terme de réponse au stress salin, en 

revanche, ―TN1.11‖ est « tolérant » à la salinité. Les populations de RILs issue de 

croisements entre lignées contrastées (sensible vs tolérante) peuvent être des populations 

d‘intérêts pour des études génétiques et génomiques sur la tolérance au stress salin chez 
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M. truncatula. L'analyse en composantes principales montre que la plupart des traits 

morphologiques sont indépendants des paramètres physiologiques, et ceci dans les deux 

conditions. Ce résultat suggère qu‘il est nécessaire de prendre en compte ces différents 

traits une évaluation plus complète des performances d‘un génotype en réponse à la 

salinité. 

2-Développement de  la carte génétique  

Une carte génétique du croisement entre TN1.11 et A17, en  utilisant une population de  

192 RILs, a été construite grâce à 146 marqueurs  SSR.  Les marqueurs  SSRs ont été 

sélectionnés sur la base de l'assemblement de séquences du génome (Young et al. 2011),  

(http://www.medicagohapmap.org/?genome) et l' unigène de ―Medicago Gene Index‖   

(http://compbio.dfci.harvard.edu/). Chaque groupe de linkage a été numéroté selon la 

carte référence de  M. truncatula , présumé  pour correspondre aux 8 chromosomes du 

génome haploide de M. truncatula (x=8).   

3- La variabilité génétique de traits physiologiques et morphologiques chez la plante 

modèle de la légumineuse Medicago truncatula dans les conditions contrôle et de 

stress salin.  

Une grande variabilité génétique a été observée pour tous les traits morpho- 

physiologiques étudiés chez les RILs dans les conditions témoin et de stress salin. La 

variabilité génétique a  été observée chez d'autres populations de RILs de M. truncatula 

pour des traits morphologiques en l‘absence de stress salin (Julier et al. 2007, Espinoza 

Ldel et al. 2012) et en condition saline (Arraouadi et al. 2011). Des différences 

significatives entre les parents dans la condition de stress salin suggèrent  que les lignées 

parentales ont des gènes différents pour  l'adaptation au stress salin. La différence entre la 

moyenne des RILs et celle des parents n'est pas significative pour tous les traits étudiés 

dans les deux conditions, ce qui montre que la population de RILs utilisées dans notre 

étude est représentative de toutes les lignées recombinantes issues du croisement 

« TN1.11 x A17 ». Les poids secs foliaire  et racinaires moyens de la population de RILs 

sont significativement diminués  en réponse au stress salin. Des résultats similaires ont 

été reportés sur d'autres populations de RILs (Veatch et al. 2004; Lopez 2008a; Arraouadi 

et al. 2011).   

La surface foliaire verticalement projetée de la plante est réduite en réponse à la 

contrainte saline. Dans notre première expérimentation, nous avons observé que ce 

http://compbio.dfci.harvard.edu/
http://www.sciencedirect.com.gate1.inist.fr/science/article/pii/S088875431100262X
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caractère est un trait important pour différencier les génotypes en condition de stress 

salin. Arraouadi et al. (2011) ont aussi observé une diminution de la surface foliaire en 

condition de stress salin chez  M. truncatula. Les paramètres de fluorescence de la 

chlorophylle suggèrent que les RILs diffèrent dans leur réponse photochimique à la 

salinité. Ces résultats ont permis d'élargir notre compréhension des mécanismes 

impliqués dans la tolérance au stress salin chez  M. truncatula. A notre connaissance, la 

variabilité génétique des paramètres de fluorescence chez M. truncatula ou M. sativa n‘ 

est  pas rapportée dans la littérature. Le stress salin augmente significativement la 

concentration en ions Na+dans les racines et la partie foliaire. Les résultats montrent aussi 

la capacité de certaines lignées de la population de RILs  à réguler  la teneur en ions K+ 

en condition de stress salin, malgré l'augmentation de la concentration en ions Na+. Les  

mêmes résultats concernant Na+ et K+ dans les feuilles, la tige et les racines ont été 

obtenu par Arraouadi et al. (2012).  L'héritabilité pour les traits étudiés présente des 

valeurs élevées comparées à celles observées par Arraouadi et al. (2011). Dans notre 

étude, les expérimentations  ont été menées dans un phytotron avec des conditions 

contrôlées et sous une faible variabilité environnementale, comparativement aux travaux 

conduits en serre par Arraouadi et al. ( 2011 et 2012).  

4- L'analyse QTL de traits morpho-physiologiques chez Medicago  

   truncatula  

Les signes des effets additifs montrent que les allèles qui, ont un effet positif pour les 

QTLs contrôlant les traits morpho –physiologiques, sont issus des deux parents 

« TN1.11 » et « A17 ». Les phénotypes transgressifs observés pour certains traits 

pourraient expliquer la présence de QTLs de signes opposés chez les deux parents. Leur 

recombinaison chez certaines lignées de la population de RILs aboutit à des lignées ayant  

des valeurs plus élevées par rapport à celle de leurs parents. Ce résultat peut être expliqué 

par l'accumulation des allèles favorables venant des deux parents chez les recombinants. 

Nous avons détecté 40 QTLs au total dans les conditions témoin et en stress salin. La 

plupart des QTLs qui se chevauchent sont situés sur le groupe de linkage 7. Julier et al. 

(2007) et Arraouadi et al. (2012)  ont montré que  ce groupe de linkage contient plusieurs 

QTLs contrôlant des caractères importants chez M. truncatula. De nombreuses co-

localisation de QTLs sont observées, et 23 QTLs localisés dans les groupes de linkage 1, 

6 et 7 se chevauchent. Parmi ces 23 QTLs, certains contrôlent deux ou trois traits 

http://www.sciencedirect.com.gate1.inist.fr/science/article/pii/S088875431100262X
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différents. En revanche, nos résultats ont montré que les QTLs détectés pour les 

concentrations de Na+ et K+ dans les feuilles et les racines ne sont pas localisés aux 

mêmes endroits sur les groupes de liaisons. Des résultats similaires ont été obtenus par 

Arraouadi et al. (2012). 

Notre étude a été réalisée à partir d‘une population de RILs  chez laquelle les lignées 

parentales (TN1.11 et A17) sont originaires d'environnements très différents, en 

particulier pour la salinité du sol. Les résultats nous ont permis d‘identifier les bases 

génétiques de traits majeurs de la croissance et de la physiologie chez cette espèce.  Le 

résultat majeur de l'analyse des QTLs est l'identification de régions génomiques qui 

peuvent être ciblées par des études génétiques ou génomiques  pour étudier des traits 

fonctionnels en condition de stress salin. Nos résultats fournissent une importante 

information pour de futures analyses fonctionnelles des gènes de la tolérance à la salinité 

chez M. truncatula. 

Perspectives : 
Ce travail pourrait être développé par : 

1- Application à la sélection de génotypes d’intérêts : 

Dans notre première expérimentation, la Lignée ‗DZA315.16‘  présente des valeurs 

élevées pour les traits étudiés (en particulier la croissance foliaire) en absence de 

salinité, mais des valeurs faibles pour toutes les  concentrations de NaCl utilisées. La 

lignée "TN1.11" présente un comportement contrasté, avec de faibles valeurs pour ces 

traits dans la condition de contrôle, mais peu affectées par la salinité, ce qui montre que 

cette lignée peut être considérée comme tolérante à la salinité. La création d‘une 

population de lignées recombinantes (RILs), à partir de croisements entre ces deux 

lignées « résistante » et « sensible », est en cours dans notre laboratoire. L‘étude 

génétique  de cette population permettra d‘identifier des lignées nouvelles possédant les 

caractères intéressants de leurs deux parents. Les lignées sélectionnées peuvent être à 

leur tour utilisées dans des travaux génétiques et génomiques de M. truncatula. 

2- Compréhension des différences génotypiques pour la tolérance à la salinité  

2-1. Afin de vérifier la stabilité des zones du génome impliquées dans l‘expression des 

caractères liés à l‘adaptation à la salinité, il serait nécessaire de réaliser des 

expérimentations complémentaires dans différents environnements pédoclimatiques et 
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dans d‘autres fonds génétiques, ce qui permettrait de valider les QTLs constitutifs et les 

QTLs spécifiques aux environnements.  

2-2. Le croisement entre des RILs, présentant des comportements contrastés en situation 

de salinité et un polymorphisme pour des QTLs intéressants, permettrait, par la 

recombinaison génétique, d‘identifier les marqueurs étroitement liés aux QTLs d‘intérêt. 

2-3.La cartographie fine et la réalisation de contig de BAC au voisinage des QTL 

permettrait d‘envisager le clonage positionnel. 

2-4.L‘identification de gènes candidats pour les caractères d‘adaptation étudiés, leur co-

localisation avec les QTLs et enfin, leur validation à partir d‘études d‘association en 

populations naturelles fourniront des outils de grand intérêt pour l‘étude de la diversité 

adaptative intra et interspécifique chez  Medicago truncatula. 

2-5. L‘analyse de l‘expression d‘un nombre de gènes à l‘aide de technique microarray 

peut aider à mieux comprendre les mécanismes impliqués dans la réponse au stress salin, 

ainsi qu‘  au développement de modèles de cultures à paramètres génétiques et d‘outils 

pour l‘aide à la sélection de génotypes d‘intérêt chez cette espèce et principalement 

l‘espèce voisine Medicago sativa. 

Conclusion: 

To improve the reliability and selection efficiency for salt tolerance, it is necessary to 

identify the salt-induced characteristic changes in multiple traits among different 

genotypes. The present research was undertaken to enlarge our understanding of 

mechanisms underlying response to salt stress tolerance in Medicago truncatula. In the 

first step, the objectives of the research involved evaluations of some morpho-

physiological traits of six M. truncatula genotypes, irrigated with saline solutions 

ranging from 0 to 150 mM NaCl grown in controlled growth chamber conditions. 

Genotypes are parental lines of some crosses and we tried to identify the important 

parameters affected by salinity and to determine the convenient salinity concentration as 

well as the favorable crosses which should be used in genetic studies of tolerance to 

salinity programs. In the second step, the objectives were to determine genetic 

variability for plant growth and key physiological traits for salt tolerance in our selected 

recombinant inbred lines (RILs) coming from the cross TN1.11 x A17, under control 

and salt stress conditions, and to map QTLs for the measured traits with the aim to 
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compare the genetic control of the traits that may putatively drive whole-plant response 

to salt stress. The most important results are: 

The effect of salt stress on some morpho-physiological parameters in 

Medicago truncatula genotypes 

The results of Analysis of variance for 6 genotypes at different levels of salinity show 

that some of studied genotypes are more tolerant to salinity than others. The main effect 

of salinity was significant for all morpho-physiological traits studied. The interaction 

between genotype and treatment show that the pattern of salinity effect on all genotypes 

is not the same. ―DZA315.16‖genotype shows the highest values for most of 

morphological traits whereas ―TN1.11‖ has low values. Genetic variability for shoot 

biomass production in M. truncatula was also reported by Veatch et al. (2004). The best 

concentration to find differences between parental lines is situated between 90 and 120 

mM NaCl. Vertical projected leaf area (LA) which is very easy to measure has a high 

variability through studied traits and ―DZA315.16‖ and ―A20‖ genotypes present the 

maximum and minimum values respectively. Salt treatment present also significant 

effect on chlorophyll content in our experiment. As far as we know the effect of salinity 

on chlorophyll content is not reported in this species. Leaf chlorophyll content was 

affected by salinity in Brassica juncea (Qasim, 1998), rice (Sultana et al., 1999), 

tetraploid wheat (Munns and James, 2003) and Brassica oleracea (Bhattacharya et al., 

2004). Salinity can affect chlorophyll content through inhibition of chlorophyll synthesis 

or an acceleration of its degradation in naked oat (Avena sativa L.), (Zhao et al., 2007). 

Maximal fluorescence level (Fm) and the potential photochemical efficiency of PS II 

(Fv/Fm) are significantly reduced with different salinity concentrations compared with 

control. For the most severe salt stress, Fv/Fm decreases significantly in barley (Jiang et 

al., 2006) and Fv/Fm reduced significantly at high salt level in sorghum (Netondo et al., 

2004), whereas no report is available about these traits in M. truncatula.  

Correlations among some of the morphological or physiological traits were positives and 

significant in 90 mM NaCl salt treatment condition. Vertical projected leaf area (LA) 

also present significant correlations with: shoot fresh weight (SFW), shoot dry weight 

(SDW), root fresh weight (RFW), root dry weight (RDW), shoot length (SL), and root 
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length (RL). Positives correlations between some morphological traits in M. truncatula 

were also reported by Arraouadi (2012). 

Considering the interaction between genotypes and salinity concentrations for leaf area 

(LA), ―TN1.11‖ has rather low values for control and also for different salt 

concentrations, whereas ―DZA315.16‖ genotype has the highest values for control and 

low values for salt treatments. ―DZA315.16‖ should be considered as a susceptible 

genotype, contrary ―TN1.11‖ doesn‘t have  high values in the absence of salinity but it is 

tolerant to salt concentrations. The RILs coming from the cross between these two lines 

can be a good material for genetic and genomic investigations. Principal component 

analysis (PCA) showed that, on average, most of growth traits are independent from 

physiological parameters in both conditions. We can resume that resistance to salinity is 

not due to one factor but to several morphological and physiological parameters.   

Development of the genetic map 

A genetic map of the cross between TN1.11 and A17 using a population of 192 RILs 

was constructed which has 146 SSR markers. SSRs were selected based on the 

Medicago truncatula genome sequence assembly (Young et al. 2011), 

(http://www.medicagohapmap.org/?genome) and unigene set of Medicago Gene Index 

at DFCI (http://compbio.dfci.harvard.edu/). Each linkage group in our map was 

numbered according to the M. truncatula reference map  

(http://www.medicago.org/genome/map.php) and is presumed to correspond to one of 

the 8 chromosomes in the haploid M. truncatula genome (x=8). A genetic map of the 

cross between Jemalong-6 × DZA315.16 using a population of 199 RILs, (LR4), was 

also constructed which contains 72 SSR markers (Julier et al., 2007). A RIL population 

(LR5), was derived from the cross between Jemalong A17 and F83005.5 and the RIL 

population of the cross was genotyped by SSR markers and a map with 70 markers was 

reported (Arraouadi et al., 2012). The genetic map of the F83005.5 × DZA45.5 cross 

(LR3) was also constructed by Hamon et al. (2010). 

Genetic variability for morpho-physiological traits in Medicago 

truncatula RILs population under control and salt conditions 

A large genetic variability was observed for all of plant growth traits under both 

conditions across RILs. Genetic variability was also observed in other M. truncatula RIL 

http://compbio.dfci.harvard.edu/
http://www.medicago.org/genome/map.php
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populations for morphological traits (Julier et al. 2007, Espinoza et al. 2012). This was 

also evidenced under salt treatment (Arraouadi et al. 2011). Significant differences 

between the parents under salt stress suggested that the parental lines carry different 

genes for adaptation to salt stress. The difference between the mean of RILs and the 

mean of their parents was not significant for all of the traits in both conditions, showing 

that the RILs used in our experiment are representative of the possible recombinant lines 

from the cross TN1.11 x A17. Shoot and root dry weights for the mean of RILs were 

reduced significantly. The mean of RILs plant dry weight was also reduced. The same 

results are also reported in other M. truncatula RIL populations, (Veatch et al. 2004; 

Lopez 2008a; Arraouadi et al. 2011). Vertical projected leaf area (LA) was reduced by 

salt stress. In our first experiment we found that LA is an important parameter for 

discrimination of genotypes in salt stress condition. Arraouadi et al. (2011) also reported 

that leaf area under salt condition decreases in M. truncatula. The chlorophyll 

fluorescence parameters suggested that the RILs genotypes differed in their 

photochemical response to salt stress. As far as we know the genetic variability for 

fluorescence parameters in M. truncatula or M. sativa are not reported in the literature. 

Salt stress significantly increased shoot and root Na+ concentrations in our experiment. 

Results show also that some lines of the RILs population have the capacity to regulate 

K+ transport during salt stress, despite of increased Na+ concentrations. The same results 

are reported by Arraouadi et al. (2012) for Na+ and K+ contents in leaves, stems and 

roots in this species. Heritability for the studied traits present high values compared with 

those reported by Arraouadi et al. (2011). Our experiments were realized in controlled 

phytotron conditions where environmental variance is low. In that case, a high 

heritability, compared to green house conditions, will be obtained if RILs population 

presents a high genetic variability. Indeed heritability values represent the RILs 

population variability. 

QTL analysis for morpho-physiological traits in Medicago  

   truncatula  

The signs of additive effects show that alleles having positive effects for QTLs 

controlling growth and physiological traits come from both TN1.11 and A17 parents. 

The transgressive phenotypes observed for some traits could be explained by the 

http://www.sciencedirect.com.gate1.inist.fr/science/article/pii/S088875431100262X
http://www.sciencedirect.com.gate1.inist.fr/science/article/pii/S088875431100262X
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presence of QTLs of opposite sign in the two parents. Their recombination resulted in 

RILs with higher values than those of their parents, which is explained by various 

positive gene effects having been accumulated. The present study enabled us to 

investigate the genetic basics of major growth and physiological traits in a RIL 

population (TN1.11 x A17) where the parental line originated from a priori very distinct 

environments, in particular for salt content. According to the results of the present study, 

40 QTLs were identified in salinity and control conditions. Most of overlapping QTLs 

are located on linkage groups 7. Julier et al. (2007) and Arraouadi et al. (2012) showed 

that linkage group 7 contains several QTLs involved in controlling important traits. 

Twenty-three of these QTLs located on linkage groups 1, 6 and 7 were overlapping. 

Some of these 23 overlapping QTLs are related to both growth and physiological traits. 

Our results showed that detected QTLs for Na+ and K+ traits measured in shoots and 

roots did not share the same map locations. A similar conclusion is reported by 

Arraouadi et al. (2012). The major output of the QTL analysis is identification of 

relevant genomic regions that may be targeted in genetic and genomic programs to 

dissect functional traits under salinity. Our results shoud be used for further functional 

analysis of salt-tolerance genes in M. truncatula. 

Perspectives: 
This work could be developed by: 

1.Application for selection of the genotypes of interest: 

―DZA315.16‖ present high values for control but low ones in salinity concentration 

where as ―TN1.11‖ has low values in control but it is tolerant to salinity. Recombinant 

inbred lines (RILs) coming form the cross between these two genotypes should be 

studied under 100 mM NaCl concentration in genetics and genomics programs. New 

lines with interesting characters of both parents should be identified in RILs population. 

 2.Comprehension of genotypic differences in the tolerance to salinity : 

2-1. To verify the stability of regions, the genome involved in the expression of traits 

associated with adaptation to salinity, it would be necessary to conduct further 

experiments in different pedoclimatic environments and other genetic backgrounds, 

which would validate the constitutive QTLs and environment-specific QTLs.  

 



 

115 
 

1
1

5
 

2-2. The cross between RILs, with contrasting behavior in situations of salinity and 

polymorphism for interesting QTLs, would allow us to identify the markers closely 

linked to QTLs of interest, by genetic recombination. 

2-3. Fine mapping and construction of BAC contig in the vicinity of QTLs would 

consider positional cloning. 

2-4. The identification of candidate genes for adaptive traits studied, their co-

localization with QTLs and finally, validation from association studies in natural 

populations provide tools of great interest for the study of diversity adaptive intra and 

interspecific Medicago truncatula. 

2-5. Analysis of the expression of a number of genes using microarray technique may 

help to better understanding the mechanisms involved in the response to salt stress, and 

the development of models of crop genetic parameters and tools to aid in the selection of 

genotypes of interest in this species and especially the related species Medicago sativa. 
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