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Title: Impact-defined climate targets: estimating ensembles of pathways of compatibleanthropogenic drivers through inversion of the cause-effect chainKeywords: Climatemodels, Paris agreement, Climate impacts, Emissions scenarios, Carbon cycle
Abstract: This dissertation presents amultidisciplinary approach to climate changeresearch. It explores the limitations of thecurrent scenario-building framework usedby the Intergovernmental Panel on ClimateChange (IPCC) and presents new strategies forbetter understanding climate futures. UsingPathfinder, a simple model focused on climateand the carbon cycle, this research fills a gapin the range of existing simple climate modelsby incorporating the latest data and providinga backward, temperature-driven examinationof climate change scenarios. Prospects forimprovement are then identified by discussingthe representation of the ocean in Pathfinder,focusing on the Ocean Heat-Carbon Nexus andits critical role in the global carbon cycle andthe response of Earth’s climate to cumulativeCO2 emissions. A comparison ismade betweenthe representations of the Ocean Heat-CarbonNexus in Pathfinder and state-of-the-art Earthsystem models, highlighting the significantdiscrepancies and potential implications forfuture warming scenarios. After introducingPathfinder, my research first examines theCO2 emission reductions physically requiredto meet the 1.5C global warming target,

emphasizing the importance of CO2 emissionsfrom land use and non-CO2 forcing. We thenreverse the causal chain to link environmentalimpacts to anthropogenic activities, whichis a unique approach. The study maps thespaces of anthropogenic activities compatiblewith planetary boundaries and introduces amodeling framework that accounts for globalwarming, ocean acidification, sea level rise, andArctic sea ice melt. Furthermore, this thesisexamines the role of Integrated AssessmentModels (IAMs) in understanding the costsassociated with these climate scenarios. Itexplores the impact of conceptual choices inthese models on the identification of robustmitigation pathways and examines the effectsof physical uncertainty and intergenerationalequity. This manuscript concludes with anappreciation of the key contributions of mydoctoral research to climate change modeling,exploration of new frontiers and opportunitiesin the field, and personal insights into theresearch journey. Overall, this researchrepresents a unique, innovative approach toclimate change modeling that will hopefullyprovide practical tools for assessing anddeveloping mitigation strategies.
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Contributions de cette thèse
Le fil conducteur de cette thèse tourne autour de la question que nous posons dans la section

1.5 : Pouvons-nous proposer un cadre méthodologique qui permette de construire des scénarios qui
inversent la chaîne de causalité depuis la définition de l’exposition aux impacts jusqu’aux contraintes
socio-économiques des scénarios d’atténuation cohérents avec les impacts précédemment définis ?
Dans un premier temps, nous présentons Pathfinder, un nouveau modèle simple qui répond aux
principales exigences que nous avons identifiées pour appliquer notre cadre méthodologique. En
particulier, Pathfinder est inversible et peut donc être modéliser une inversion de la chaîne causale.
Une fois notre outil principal développé et diagnostiqué, la deuxième étape consiste à développer
une approche rétrospective qui nous permet de calculer à rebours les émissions de CO2 à partir destrajectoires ex ante de température et de concentration atmosphérique de CO2. Grâce à cette
approche, nous proposons un nouveau cadre qui permet de trouver un ensemble exhaustif de
scénarios d’émissions compatibles avec les objectifs choisis pour les impacts physiques du
changement climatique tels que l’élévation du niveau de la mer, le réchauffement planétaire et
l’acidification des océans. Enfin, la dernière étape développée dans cette thèse fournit une première
évaluation de la robustesse économique des scénarios précédemment définis. Les sous-sections
suivantes détaillent la principale contribution de mon travail à ces trois étapes, en soulignant
l’inversion de la chaîne causale.

Présentation de Pathfinder
Le chapitre 2 présente le modèle Pathfinder, un modèle climatique global nouveau et innovant

représentant le cycle du carbone. Ce modèle a été développé pour concilier simplicité et précision,
en mettant l’accent sur la représentation des processus physiques liés au CO2. Le modèle
Pathfinder est calibré par inférence bayésienne de manière à pouvoir intégrer les observations les
plus récentes. Sa simplicité facilite le couplage avec des modèles d’évaluation intégrée et
l’exploration d’un large éventail de scénarios climatiques. Le modèle est open source et fait l’objet
d’une description complète pour la première fois dans ce chapitre, détaillant le processus de
calibration et l’estimation des paramètres.
La performance du modèle Pathfinder est évaluée à l’aide de métriques de diagnostic considérées
comme clés. Nous montrons que le modèle fonctionne très bien dans la période historique. Nous
fournissons également des diagnostics pour des simulations idéalisées qui démontrent l’intérêt de la
calibration bayésienne pour fournir des estimations "intermédiaires" entre des modèles complexes
et des observations. Enfin, nous validons le modèle par rapport aux scénarios de prévision utilisés
dans l’AR6 du GIEC. Les projections de Pathfinder s’accordent très bien avec les scénarios évalués
par le GIEC dans l’AR6, en particulier pour les scénarios de faible réchauffement, que nous avons
largement explorés dans nos différentes études.
Le modèle Pathfinder comble une lacune dans la littérature en fournissant un modèle simple mais
efficace pour les scénarios climatiques. Malgré sa simplicité, le modèle Pathfinder reproduit
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fidèlement le comportement et les résultats de modèles plus complexes. Ceci est particulièrement
utile pour les modèles d’évaluation intégrée. Nous identifions également des possibilités
d’amélioration du modèle, notamment la réduction de la complexité lorsque cela est possible, le
développement d’une formulation alternative de la dynamique du carbone océanique, l’intégration
de l’usage des terres, l’extension de l’approche bayésienne et l’inclusion potentielle de forçages
climatiques autres que le CO2 dans le modèle Pathfinder. Notre approche de ces améliorations
potentielles souligne leur engagement à améliorer l’utilité et l’efficacité du modèle dans la
modélisation climatique.
Thomas Gasser avait déjà développé lemodèle avant le début demon doctorat. Personnellement, j’ai
participé au développement du module de niveau de la mer, j’ai effectué tous les tests de diagnostic
et j’ai fait l’analyse de la représentation de l’océan dans Pathfinder.

Proposer un nouveau cadre pour l’élaboration de scénarios
Comme première application de Pathfinder, nous estimons les chances de limiter le

réchauffement à 1,5°C en effectuant une analyse complète des exigences physiques nécessaires
pour limiter le réchauffement climatique à 1,5°C, sur la base des données les plus récentes jusqu’en
2022. Nous affirmons qu’une probabilité de 50 % de maintenir le réchauffement climatique en
dessous de 1,5 °C au cours de ce siècle nécessite une diminution linéaire des émissions de CO2provenant des combustibles fossiles et de l’industrie d’environ 5 % par an, un taux de
décarbonisation qui doit être maintenu chaque année. Il est intéressant de noter que ce taux n’est
que légèrement inférieur aux réductions sans précédent des émissions à court terme observées
pendant la pandémie de COVID-19. Notre étude met également en évidence le rôle critique des
émissions de CO2 supposées provenir de l’utilisation des terres et du forçage non CO2 dans la
détermination de la probabilité de rester en dessous du seuil de réchauffement global de 1,5°C.
Pour faire avancer l’exploration des scénarios, nous avons proposé une nouvelle approche
rétrospective qui inclut non seulement l’objectif de température mais aussi des impacts tels que
l’acidification des océans et l’élévation du niveau de la mer. Plus précisément, nous examinons des
milliers de scénarios dans 1 500 états physiques du monde différents afin de fournir une estimation
complète de l’éventail des scénarios possibles, qui restent tous, par construction, en deçà de la
limite de réchauffement global de 2 °C. Nous considérons différentes limites planétaires
indépendamment et en les combinant les unes avec les autres, et examinons les effets non linéaires
de ces combinaisons sur l’espace d’émissions compatible en comparant l’enveloppe de tous les
scénarios qui restent dans une limite donnée.
Nous exprimons l’espace compatible en termes de caractéristiques clés des activités anthropiques et
les associons à une probabilité que cet espace soit sûr, ce que nous appelons le niveau de sécurité.
Nous analysons ces espaces compatibles pour comprendre et quantifier les compromis entre les
différentes options et stratégies d’atténuation. Dans l’ensemble, il en résulte un cadre innovant qui
détermine ce qui est physiquement possible ou non afin de rester à l’intérieur d’un ensemble de
limites planétaires.
Concernant ma contribution personnelle à la création de ce cadre, j’ai joué un rôle actif dans la
conceptualisation des deux études. J’ai réalisé l’ensemble des représentations graphiques et des
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analyses des données présentées dans les articles.

Évaluer la robustesse économique des scénarios
Dans le chapitre 4, notre travail commence à partir des scénarios générés dans le chapitre 3.

Nous nous concentrons uniquement sur la limite des 2°C de réchauffement global et ajoutons une
dimension socio-économique pour réduire l’espace compatible physiquement pertinent à un
ensemble de trajectoires économiquement robustes. Pour ce faire, nous adoptons une approche
basée uniquement sur les coûts d’atténuation.
Notre objectif est de fournir une analyse complète des mécanismes qui déterminent les coûts
quasi-optimaux. Les coûts des trajectoires d’émissions de CO2 calculés par Pathfinder sont estimés
et comparés en utilisant une série de choix conceptuels pour le critère de minimisation et la
fonction de coût choisie pour estimer les coûts d’atténuation. Les trajectoires parmi les 10% les
moins coûteuses sont définies comme quasi-optimales, et nous introduisons le concept de
trajectoires robustes pour désigner les trajectoires qui sont communes à toutes les approches
conceptuelles que nous examinons. Outre l’incertitude économique découlant des choix
conceptuels, nous prenons également en compte l’incertitude physique en calculant les proportions
de trajectoires robustes dans chaque état physique du monde. Nous prenons également en compte
l’équité intergénérationnelle en essayant de minimiser la différence entre une génération actuelle
(2021-2060) et une génération future (2061-2100).
Enfin, nous illustrons des trajectoires économiquement et générationnellement robustes pour
différentes configurations et fournissons une représentation visuelle de l’analyse afin d’aider les
décideurs politiques à prendre des décisions plus éclairées sur les stratégies d’atténuation du
changement climatique. Nous montrons que l’éventail des trajectoires quasi-optimales est réduit
lorsque des conditions de robustesse sont ajoutées. Les trajectoires présentant des pics d’émissions
tardifs ou nécessitant l’utilisation d’une grande quantité d’émissions négatives ne font pas partie des
trajectoires les plus robustes. L’enveloppe la plus restrictive des trajectoires garantit la robustesse
générationnelle et économique. Cela suggère que le fait d’atteindre rapidement des émissions
nettes nulles en utilisant des émissions négatives dans la seconde moitié du 21e siècle est plus
équitable que les trajevtoires économiquement robustes qui visent des émissions nettes nulles à la
fin du siècle.
Pour cette partie, j’ai été très actif dans la proposition et la conceptualisation de l’étude. J’ai également
réalisé l’ensemble de la représentation et de l’analyse des données.



14 CONTENTS



1 - Introduction

15



16 CHAPTER 1. INTRODUCTION

1.1 . A brief history of climate change attribution
Climate change, a pervasive and escalating global concern, is intrinsically tied to the rapid

increase in the concentration of greenhouse gases (GHGs) in Earth’s atmosphere, primarily resulting
from human activities (IPCC; 2021b). These GHGs, including carbon dioxide, methane, and nitrous
oxide, play a fundamental role in regulating the planet’s temperature through the greenhouse effect
- a natural process where GHGs trap the infra-red waves emitted by the Earth, preventing them
from escaping back into space, thereby warming the Earth’s surface.

The scientific understanding and attribution of global warming to human influence constitute a
progressive revelation that has unfolded over two centuries. The genesis of this notion can be
traced back to the 19th century when Joseph Fourier postulated the existence of the Earth’s natural
greenhouse effect (Fourier; 1824), and John Tyndall discovered the heat-absorbing capacity of certain
gases (Tyndall; 1861), which set the foundation for our comprehension of greenhouse gases. This
was followed by Svante Arrhenius’s groundbreaking prediction in 1896 that the combustion of coal
could lead to a rise in global temperatures (Arrhenius; 1896).

A significant leap was made in the mid-20th century when Charles David Keeling initiated direct
measurements of atmospheric CO2 levels at the Mauna Loa Observatory in Hawaii, yielding a steady
rise in CO2 concentrations, encapsulated in the Keeling Curve (Keeling; 1960). Subsequent
advancements in the latter half of the 20th century involved the development of intricate climate
models that indicated the inability of natural factors alone to account for the observed warming
trend (Manabe and Wetherald; 1967).

The role of the Intergovernmental Panel on Climate Change (IPCC) has been indispensable in this
scientific journey. This institution was established in 1988 by the World Meteorological Organization
(WMO) and the United Nations Environment Programme (UNEP). Its role is not to produce any
research but only to assess existing research. Beginning with a cautious attribution of some
observed warming to human activities in their first assessment report in 1990 (Houghton et al.;
1990), the IPCC has, with increasing certainty, underscored the human fingerprint on climate change
in subsequent reports. By their 2001 report, the "likely" association of human activities with the
majority of observed warming in the past half-century was proposed (Houghton et al.; 2001). This
connection was deemed "very likely" in 2007 (Alley et al.; 2007) and "extremely likely" in 2013 (IPCC;
2013), culminating in the unequivocal assertion of human-induced warming in the 2021 report (IPCC;
2021b).

This gradual understanding over centuries led to affirming the consensus within the scientific
community regarding the anthropogenic causes of climate change. However, much research is still
needed to understand all the mechanisms of climate change, as well as to explore the need for and
solutions to adaptation and mitigation. One task of the IPCC is to collect and summarize current
knowledge on all these issues.

1.2 . Studying climate change now requires a multidisciplinary approach
The IPCC operates through three distinct but interconnected Working Groups (WGs), each

tasked with addressing specific facets of climate change. Working Group I (WG I) takes on the



1.3. THE RCP-SSP FRAMEWORK 17
responsibility of examining the physical science underpinning climate change, focusing on our
current understanding of climatic systems, processes, and the scientific basis of climate change. The
activities of WG I are centered around determining how and why the climate is changing, and
projecting how it might change in the future (IPCC; 2021a). Working Group II (WG II) delves into the
implications of climate change for socio-economic and natural systems. This group appraises both
potential risks and opportunities arising from climate change, exploring the concept of vulnerability
and how human and natural systems might adapt to climate change (Pörtner et al.; 2022). Working
Group III (WG III), on the other hand, investigates the various strategies for mitigating climate
change. This entails the exploration of technological, socio-economic, and policy instruments that
could potentially limit the magnitude or rate of global warming and its related effects (IPCC; 2022a).
Despite each group working within its distinct realm, there exists a profound degree of interaction
among them which notably arises in the process of building projections scenarios. This process
stands as a quintessential component of the IPCC’s function and is intrinsically linked to the
collective work of the IPCC’s three WGs. These scenarios serve as projections of the future, weaving
together elements of societal, economic, and environmental significance to illuminate the potential
impacts of climate change and to propose response strategies (IPCC; 2023b). Primarily, the mission
of WG I is to understand, explain, and project the relationship between anthropogenic activities and
climate change variables such as radiative forcing, temperature, or sea level rise (IPCC; 2021b).
Understanding this relationship helps WG III set emissions budgets consistent with a target for
radiative forcing or temperature to create scenarios for anthropogenic activities. This group is
examining the effectiveness and feasibility of a range of options for reducing greenhouse gas
emissions that include changes in energy production and use, changes in land use, and the adoption
of new technologies (IPCC; 2022b). These emissions scenarios, based on different levels of radiative
forcing for the year 2100, form the essential basis for Earth System Models (ESMs) used by the WG I
communities to simulate future climate conditions (IPCC; 2021b). The WG II then uses these
projected climate conditions under the form of global warming temperatures to assess their
potential impacts and vulnerabilities. The group assesses the impacts of different scenarios on
sectors such as agriculture, water resources, ecosystems, and human health. In addition, the group
is assessing how socioeconomic variables, including population growth, economic progress, and
governance, might affect the vulnerability of societies to projected climate change (IPCC; 2022c).
Throughout this intricate procedure to generate scenarios, there exists significant interaction and
mutual feedback among the three working groups. The culmination of this process is the RCP-SSP
framework that provides a comprehensive suite of scenarios, each presenting a consistent portrayal
of potential future climate conditions and responsive strategies (Van Vuuren et al.; 2014; O’Neill
et al.; 2020).

1.3 . The RCP-SSP framework
The Representative Concentration Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs)

together form an integral framework in contemporary climate change research (Van Vuuren et al.;
2014; O’Neill et al.; 2020), serving to illustrate potential trajectories of climate evolution and societal
response. The previous approach (with scenarios A1, A2, B1, B2 in IPCC (2023a)) was defining stories
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leading to emissions (WGIII) leading to implications for climate (WGI) and impacts (WGII), on which
mitigation was discussed by WGIII only at the end of the process. The RCP-SSP framework starts with
the RCPs, allowing to work directly on climate impacts (WGI), and in parallel discusses the conditions
under which such a concentration can be achieved following different socioeconomic narratives
(WGIII). The RCPs, introduced by the IPCC for its fifth Assessment Report (AR5) in 2014 (Van Vuuren
et al.; 2011; IPCC; 2013), encompass four distinct greenhouse gas concentration trajectories. Each RCP
signifies a unique radiative forcing scenario - the measure of the change in energy in the Earth’s
atmosphere due to greenhouse gases - by the year 2100, relative to preindustrial levels. The
RCPs—RCP2.6, RCP4.5, RCP6.0, and RCP8.5—encompass a spectrum of future emissions from low to
very high levels and were utilized as crucial input for projecting future climatic alterations. In
contrast, SSPs, a more recent introduction for the IPCC’s sixth Assessment Report (AR6), portray
divergent socioeconomic futures in the absence of explicit climate policy interventions, indifferent to
specific climatic outcomes (Van Vuuren, Riahi, Moss, Edmonds, Thomson, Nakicenovic, Kram,
Berkhout, Swart, Janetos et al.; 2012; O’Neill et al.; 2014). Five SSP narratives—SSP1 through
SSP5—offer a wide spectrum of global development possibilities, reflecting a variety of challenges
for climate change mitigation and adaptation (Riahi et al.; 2017). The coupling of RCPs and SSPs
yields the RCP-SSP framework, providing an inclusive matrix to delve into prospective scenarios
(Van Vuuren et al.; 2014). The goals of this framework are well summarized by O’Neill et al. (2020):
• To support climate change-related research globally across research communities and be
extendable to other scales, sectors and issue areas;
• To facilitate research that integrates climate and societal futures by providing more detailed
socioeconomic and political conditions as inputs to studies of impacts, adaptation and mitigation;
• To foster consideration of uncertainty in future climate and societal conditions by describing a
wide range of plausible futures
• To encourage more coherent synthesis in scientific assessments by improving the consistency of
climate and societal assumptions in the literature; and
• To support research and analysis to inform policy
Overall, the framework achieved its goal (O’Neill et al.; 2020) and five combinations of SSPs and RCPs
were chosen to be representative illustrative pathways in the most recent IPCC report (O’Neill et al.;
2016).

1.4 . Limitations and needs for improvement of WGs cooperation in the scenario-making process
We have quickly explained how the IPCC WGs possess immense potential for fostering a robust,

interdisciplinary understanding of climate change (IPCC; 2023b). However, there are inherent needs
and limitations in the collaborative approach within and between these WGs. A key requisite
involves intensifying cross-disciplinary collaboration, which is crucial given the interdisciplinary
nature of climate change, spanning from physical sciences to socio-economic impacts and
mitigation strategies. Another aspect to address is the synchronization of report timelines, currently
exhibiting variability between the working groups, which can impede the effective integration of
their findings (IPCC; 2022c). Streamlining the production of reports could expedite the assimilation
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of findings from one group into the work of the others. The integration of the work of the three WGs
through an iterative risk management framework (Rawshan Ara Begum et al.; 2022; New et al.; 2022)
that combines identifying risks, assessing response options, and monitoring and reviewing the
effectiveness of these measures is another approach suggested by WG II (IPCC; 2022c).

The development of shared scenarios across the working groups can ensure consistency and
coherence in their assessments. The RCP-SSP scenario framework, while essential, needs
improvement to maintain its relevance and applicability (O’Neill et al.; 2020). When refining the
scenario framework, a crucial focus is on integrating feedback loops (Calvin and Bond-Lamberty;
2018), expanding the scope to include impacts, adaptation, and vulnerability (IAV) (Wilbanks and Ebi;
2014), biodiversity studies, and downscaling to capture the multiple manifestations of climate
change at regional and local scales (O’Neill et al.; 2020). However, these additions come with
significant modeling and computational costs. Fully coupling all elements of climate change with
their inherent complexity could make the modeling process computationally prohibitive
(Van Vuuren, Bayer, Chuwah, Ganzeveld, Hazeleger, van den Hurk, Van Noije, O’Neill and Strengers;
2012; Calvin and Bond-Lamberty; 2018). One challenge is finding the right level of model complexity
for the study (Calvin and Bond-Lamberty; 2018).

One solution is to develop emulators capable of reproducing the results of complexmodels, but at
amuch lower computational cost (Nicholls et al.; 2020, 2021). Simple carbon climatemodels are among
the most widely developed and used emulators. Such models have found extensive applications as
mediators between Working Groups I and III (Guivarch et al.; 2022) to assess the climate impacts of
socioeconomic scenarios. Since these models are generally used as assessment tools by economists
rather than being integrated into Integrated Assessment Models (IAMs) via extensive feedback loops,
there aremany opportunities to develop them further. In addition, the development of emulators that
facilitate the connection between the climate science and IAV communities is still in its early stages.
This is partly because most emulators operate on a global scale and focus primarily on temperature,
whereas climate change impacts are local and not necessarily linear with temperature. However,
there is a clear need in this area, as ISIMIP studies currently have to wait for ESMs to provide them
with scenarios that do not even necessarily meet all of their needs (O’Neill et al.; 2020; Wilbanks and
Ebi; 2014; Rosenzweig et al.; 2017). A reverse approach, focusing on simple climate models (SCMs) and
using IAMs to assess the feasibility of scenarios, would allow complexity to be favored on the Earth
system side to improve the representation of relevant impact variables. Therefore, WGII could more
easily create their own scenarios that meet their needs, and it would be easier for WGIII to integrate
impacts into their socioeconomic scenarios.

1.5 . Aims and structure of this thesis
This thesis is designed to contribute to the global considerations for improving the existing

scenario framework, to promote the integration of different domains of climate change research,
and to utilize emulators for more efficient computation. Specifically, the goal of this thesis is to
propose a framework that considers different physical impacts of climate change. While most
existing scenarios are based only on a temperature target, we want to consider other physical
impacts such as sea level rise or ocean acidification. In a second step, we aim to express the impacts
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in terms of exposures (on land, population, costs, etc.), with a direct link to physical variables. Based
on these impacts, we then intend to map emission scenarios associated with selected exposures.
Finally, we aspire for our framework to provide an initial assessment of the socioeconomic costs
generated by the proposed scenarios. In summary, the scientific question guiding all the studies
presented in this thesis is the proposition of a methodological framework that allows the
construction of scenarios, reversing the causal chain from the definition of impact exposure to the
socioeconomic constraints of mitigation scenarios compatible with the previously defined impacts.

In the first part of the thesis ( Chapter 2), we start with the physical sciences and find that a new,
robust SCM is needed that accounts for geophysical uncertainty. The construction of a new model is
critical because it is the most important tool we use to understand potential changes in the Earth’s
climate system due to anthropogenic activities.

In the secondpart ( Chapter 3), we venture into the realmofmultiple climate impacts anduse them
to delineate a compatible space and support the selection of scenarios for detailed study. This process
involves mapping a very large ensemble of scenarios that capture the tradeoffs and opportunities
constrained by the choice of mitigation strategies and planetary boundaries.

The third part (Chapter 4) integrates socioeconomic considerations and assesses the robustness
of some of the impact-based scenarios developed in the previous phase. This section emphasizes the
ease with which the scope of the Working Group III can be integrated into our proposed framework.
Through this integration, we ensure that the prospective strategies for mitigating climate change are
not only scientifically feasible, but can also be economically viable.

In essence, this thesis aims to illustrate through a case study that new methodologies can be
developed to contribute to thinking about how the individual threads of climate science, impact
assessment, and socioeconomic factors can be woven together to create a more comprehensive
and actionable tapestry of climate change scenarios.
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2.1 . Existing climate models
To fully understand the stakes and interests of our approach, it is important to situate the model

we use within the global spectrum of climate models. A wide range of numerical models are used
in the study of the climate system. These climate models (Figure 2.1) are the main tools for studying
the possible future of climate under different scenarios. The most complicated models are called
global Earth system models (ESMs). Each ESM has at its core a GCM (General Circulation Model) that
simulates the dynamics of the atmosphere and ocean. Regional models and a hierarchy of simpler
models are used to complement the ESMs. (Chen et al.; 2021; Hajima et al.; 2014) There are three
aspects on which we can play to define a climate model (Claussen et al.; 2002). The first aspect we
need to consider is the level of integration of the model. This refers to the number of components
of the Earth system that are represented. Since everything in the system is interconnected, adding a
component means adding new interactions between the already existing components. Then one can
choose the number of processes that describe the climate component that one wants to represent.
The third aspect is complexity, which is characterized by the level of detail in which each process
is represented. The closer we want to be to the physical reality of a process, the more complex it
becomes. It is obvious that improving the representation of any of these three aspects is associated
with increasing computational costs. Thus, depending on the intentions of themodeler, somemodels
may be more relevant than others.

2.1.1 . Earth System Models (ESMs)
The Earth System is a complex network of physical, biological, and chemical processes that have

global implications. Since conducting experiments on the real Earth System is not feasible, scientists
rely on computer simulations to understand its behavior and response to external factors like
greenhouse gases. These simulations help improve our understanding of the Earth System, guide
further studies, and make projections of future climate change (Flato; 2011).

In the early 20th century, Vilhelm Bjerknes developed the ’primitive equations’ of motion and
state, which describe the dynamics of weather using principles of physics (Bjerknes; 1910). However,
these equations lacked closed-form solutions and numerical techniques were not advanced enough
to provide approximate solutions (Edwards; 2011). It was not until the advent of digital computers
after World War II that better mathematical methods for numerical modeling emerged. Weather
prediction was one of the first applications of digital computers, using Cartesian grids and
finite-difference methods (Harper; 2012). This success led to efforts to model the global circulation
and simulate climate using General Circulation Models or global climate models (GCMs). GCMs
extended the techniques of numerical weather prediction to a larger scale and employed the
primitive equations to compute atmospheric motion. GCMs consist of a ’dynamical core’ and ’model
physics’ to simulate large-scale fluid motion and other physical processes (Edwards; 2011; Grassl;
2000). Now, GCMs are especially focused on the dynamics of climate circulation. They are very
complete in terms of detail of representation of the process they model but they do not necessarily
cover all aspects of climate sciences. They can be integrated altogether to improve their
comprehensiveness of the global climate system. They can also be coupled to models that simulate
other processes (such as the ice-sheet).

Evaluating and comparing these models has become increasingly important, leading to
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Figure 2.1: Classification of climate models. The OSCAR model that inspired our model is looking tohave as much interactions and processes as possible while keeping a low detail of representation toreduce computational costs. Our model (PathFinder) focuses on the carbon cycle and some impactsemulation. Thanks to this simplicity, it can be counted among the conceptual models.
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collaborative projects and intercomparison studies. These simulations have revealed important
findings, such as the ocean’s capacity to absorb heat and the cooling effects of sulfate aerosols
(Flato; 2011).

However, comprehensive Earth System Models (ESMs) that incorporate feedbacks between the
physical climate and biogeochemical cycles are necessary for a more holistic understanding of
climate change (Flato; 2011). Different institutes have developed their own ESMs by combining
various component models, such as the dynamic global vegetation model and carbon cycle model,
to study the impact of biogeochemical and biophysical processes on climate (Kawamiya et al.; 2020).
The structure of ESMs includes atmospheric-ocean coupled climate models, terrestrial ecosystem
models, ocean ecosystem models, land surface models, and aerosol transport models. They are
based on fundamental physical principles (such as the Navier-Stokes or Clausius–Clapeyron
equations) or on empirical relationships derived from observations, and, to the extent that is
practical, they are bound by such principles (such as the conservation of mass and energy) (Chen
et al.; 2021). The Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP) has explored
climate-carbon cycle feedback in ESMs and highlighted the importance of incorporating the carbon
cycle into climate change projections (Friedlingstein et al.; 2006). The CMIP (Coupled Model
Intercomparison Project) has played a critical role in contributing to IPCC reports by including
experiments using ESMs with carbon cycle components (Arora et al.; 2013, 2020).

However, their global approach make them very demanding in term of computational cost. High-
performance computers are used to numerically calculate the evolution of climate-relevant variables
on three-dimensional discrete grids (Staniforth and Thuburn; 2012; André et al.; 2014; Balaji et al.; 2017).
Which processes can be openly resolved or require parameterization depends on the horizontal and
vertical spatial (and temporal) resolution of these grids (Chen et al.; 2021).

2.1.2 . EMICs
Earth System Models of Intermediate Complexity (EMICs), another class of models described in

Claussen et al. (2000), occupy a unique position in climate modeling. Though they encapsulate many
of the processes seen in more comprehensive models, they do so in a simpler, more parameterized
form. EMICs are capable of explicitly simulating the interactions among various components of the
climate system, including biogeochemical cycles. On the other hand, an EMIC is simple enough to
support long-term climate simulations spanning tens of thousands of years, even up to the
timescales of glacial cycles. One key distinction of EMICs lies in their degrees of freedom. Like
comprehensive models, but unlike conceptual models, an EMIC’s degrees of freedom significantly
outnumber its adjustable parameters, often by several orders of magnitude.

EMICs can be classified into a spectrum of climate system models based on their level of detail
and integration of components (see Figure 2.1). Models in this spectrum can include a variety of
atmospheric modules such as statistical-dynamical models, energy-moisture balance models,
quasi-geostrophic models, and primitive equation models (Hajima et al.; 2014). They may also
include ocean modules, which may be three-dimensional or zonally averaged, and sea ice modules,
which may be purely thermodynamic or include advection and dynamics. Biospheric modules in
these models generally account for terrestrial carbon pools, marine and terrestrial carbon pools,
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and global vegetation dynamics. The dimensionality of a model, whether 2D, 2.5D, or 3D, represents
its spatial resolution and the number of critical processes it explicitly describes. EMICs are typically
classified as simplified comprehensive models, integration-focused models, or models with unique
characteristics, determined by their module combination and intended research focus. This model
spectrum also includes comprehensive models that differ in their level of detail and component
variety (Claussen et al.; 2002).

2.1.3 . SCMs and emulators
The study by Chen et al. (2021) provides an in-depth explanation of the terms ’physical emulators’

and ’simple climate models’. These denote a vast category of heavily parameterized models
designed to reproduce the responses of the more complex, process-based models, and provide
rapid translation of emissions into probabilistic forecasts of physical climate system changes,
factoring in concentrations and radiative forcing. Emulators primarily extrapolate findings from
ESMs and observational data to cover a wider range of emissions scenarios (see Cross-Chapter Box
7.1 of Forster et al. (2021)). Due to their computational efficiency, they present novel analytical
opportunities, especially considering the extensive computational resources required for ESM
simulations. However, the practicality and value of emulation methods are bound by their skill in
reproducing the global mean climate responses generated by ESMs. This is largely limited to global
mean or hemispheric land/ocean temperatures and their capacity to skillfully extrapolate beyond
the calibrated range. The terms ’emulator’ and ’simple climate model’ (SCM) are often used
interchangeably, but they are distinct. SCM pertains to a class of models with fewer dimensions that
simulate elements like the energy balance, radiative transfer, and the carbon cycle, or combinations
thereof. SCMs can also be calibrated to replicate the climate-mean variables of a particular ESM,
provided they have the structural flexibility to encapsulate both parametric and structural
uncertainties inherent in process-oriented ESM responses. In such a configuration, they are referred
to as emulators.
Different sorts of SCMs
Various SCMs have been developed to emulate and simulate climate processes, each with its own
level of complexity and representation of physical phenomena and of climate components. At the
simplest end, we find the generic impulse response model (AR5-IR) outlined in Myhre et al. (2013)
that provides a parametric representation of climate forcers’ impacts on the energy budget with
annual-mean values. Models similar to AR5-IR are called two-layer models (Held et al.; 2010;
Rohrschneider et al.; 2019; Nicholls et al.; 2020), they simulate the exchange of heat between upper
and deep ocean layers, reflecting the ocean heat uptake and its effect on surface warming. In the
cross-chapter box 7.1 from Forster et al. (2021), the two-layer emulator is defined as equivalent to a
two-timescale impulse-response model (Geoffroy et al.; 2013). In that case, the emulator is an
extension of the energy budget equation (Forster et al.; 2021) and allows for heat exchange between
the upper- and deep-ocean layers, mimicking the ocean heat uptake that reduces the rate of surface
warming under radiative forcing. SCMs also count higher-complexity approaches that include
upwelling, diffusion and entrainment in the ocean component (e.g., MAGICC (Meinshausen et al.;
2011); OSCAR (Gasser et al.; 2017); CICERO SCM (Skeie et al.; 2017); FaIR (Smith et al.; 2018; Leach et al.;
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Figure 2.2: Ensemble of SCMs assessed by RCMIP (Nicholls et al.; 2020, 2021)

2020)). More comprehensive models like MAGICC (Meinshausen et al.; 2011) encompass a multitude
of components, including representations of greenhouse gas cycles, aerosol emissions, hemispheric
and regional differentiations, and multiple ocean layers, operating on a monthly time step internally
but reporting annual mean values. Some models adopt a hybrid approach, enhancing complexity in
specific domains while maintaining simplicity elsewhere. For instance, OSCAR (Gasser et al.; 2017)
incorporates a regionalized land carbon cycle, and EMGC (Hope et al.; 2017) captures natural
variability in its representation. Finally, a range of statistical approaches (Schwarber et al.; 2019;
Beusch et al.; 2020; Cummins et al.; 2020; Quilcaille et al.; 2022) can be used to emulate some
processes too complex to be represented in SCMs such as regional downscaling (Jalota et al.; 2018;
Beusch et al.; 2020), natural variability (Cummins et al.; 2020; Hope et al.; 2017) or extreme
temperatures (Quilcaille et al.; 2022).
Different use of SCMs
The development of different SCMs is driven by various purposes and objectives (Chen et al.; 2021).
Some models aim to be as simple as possible for teaching purposes, such as the two-layer energy
balance model (Myhre et al.; 2013; Held et al.; 2010). Others strive for comprehensiveness to capture
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uncertainties across multiple Earth system domains, as exemplified by models like MAGICC
(Meinshausen et al.; 2011). There are also models like OSCAR that focus on higher-complexity
representations of specific domains (Gasser et al.; 2017).

A common motivation underlying many models is the improvement of parameterizations to
reflect the latest understanding of complex Earth system interactions. These models aim to emulate
the global mean temperature response. Simple models that incorporate rudimentary
representations of spatial heterogeneity, like four-box simple climate models, also seek to better
represent heterogeneous forcers such as black carbon, refine the forcing-feedback framework,
explore new parameterizations of ocean heat uptake, and enhance representations of volcanic
aerosol-induced cooling (Chen et al.; 2021). Simple models also play a crucial role in understanding
climate feedback and sensitivity by enabling investigations into the climate response to changes in
the Earth’s energy balance (Rohrschneider et al.; 2019).

Emulators or SCMs have been extensively utilized in recent IPCC reports (IPCC; 2021, 2022). The
cross-chapter box 7.1 of Forster et al. (2021) enumerates all the different use of SCMs and emulators.
In the WGI Report (IPCC; 2021), emulation is primarily employed to estimate the change in global
surface air temperature (GSAT) resulting from effective radiative forcing (ERF) or concentration
changes. Multiple versions of a two-layer energy budget emulator are employed, albeit with
different calibrations in various sections, to maintain independent lines of evidence. Fox-Kemper
et al. (2021) also incorporates projections of ocean heat content from the two-layer emulator of
Forster et al. (2021) to estimate the thermostatic component of future sea level rise.

Emissions-driven emulators are another type of emulator used in the report. They are employed
in Lee et al. (2021) to emulate GSAT beyond 2100, as the long-term response has been deemed suitable
for representing the behavior of Earth System Models (ESMs). In Canadell et al. (2021), emissions-
driven emulators are used to explore the non-CO2 GSAT contribution in emissions scenarios. Szopa
et al. (2021) and Forster et al. (2021) utilize two-layer model configurations calibrated to match the
probabilistic GSAT responses of emissions-driven emulators.

In the WGIII report (IPCC; 2022), emissions-driven emulators are used to communicate the
outcomes of the physical climate science assessment and quantify temperature outcomes
associated with different emissions scenarios. These emulators provide computational efficiency,
enabling analysis of numerous multi-gas emissions scenarios with various characteristics, such as
the year of peak temperature or 2030 emissions levels, in line with the goal of limiting global
warming to below 1.5°C or 2.0°C. The emulators’ probabilistic distributions are calibrated based on
WGI-assessed ranges of Equilibrium Climate Sensitivity (ECS), Transient Climate Response (TCR),
historical GSAT change, ERF, carbon cycle metrics, and future warming projections under the
concentration-driven Shared Socioeconomic Pathway (SSP) scenarios. They are then utilized by
WGIII for a GSAT-based classification of mitigation scenarios consistent with the physical
understanding assessed in WGI.
Validation and future development of SCMs
Given the broad usage and significant implications of SCMs and emulators, it is of paramount
importance to continually evaluate and update these models. An important part of this process is
the Reduced Complexity Model Intercomparison Project (RCMIP), which enables the systematic,
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standardized, and comprehensive evaluation of SCMs.
In their evaluation in Nicholls et al. (2021), they have observed that the best-performing SCMs can

effectively match their proxy assessment across various climate metrics. However, it is important
to note that no SCM was able to match the proxy assessment across all metrics they evaluate. Even
amongmodels with similar levels of agreement with the proxy assessment, some divergence in future
projectionswas evident. This divergence canbe attributed to the differentmodel structures employed
in simple climate models.

RCMIP ensures that these models effectively integrate the latest scientific understanding
(Nicholls et al.; 2020, 2021). The integration of this understanding within an internally consistent SCM
framework, accounting for implicit cross-correlations, represents the best existing approach to
inform decision-making processes and other scientific domains.

For this reason, the development and improvement of SCMs to broaden their scope is critical
to integrate more and more aspects of climate change research. In the next section, we introduce
Pathfinder, an SCM designed to address some of the limitations identified in existing SCMs.
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2.2 . Pathfinder v1.0.1: a Bayesian-inferred simple carbon–climatemodel to exploreclimate change scenarios

Abstract: The Pathfinder model was developed to fill a perceived gap within the range ofexisting simple climate models. Pathfinder is a compilation of existing formulations describingthe climate and carbon cycle systems, chosen for their balance between mathematicalsimplicity and physical accuracy. The resulting model is simple enough to be used withBayesian inference algorithms for calibration, which enables assimilation of the latest data fromcomplex Earth system models and the IPCC 6th assessment report, as well as a yearly updatebased on observations of global temperature and atmospheric CO2. The model’s simplicity alsoenables coupling with integrated assessment models and their optimization algorithms, orrunning the model in a backward temperature-driven fashion. In spite of this simplicity, themodel accurately reproduces behaviours and results from complex models – including severaluncertainty ranges – when run following standardized diagnostic experiments. Pathfinder isopen-source, and this is its first comprehensive description.



Pathfinder v1.0.1: a Bayesian-inferred simple carbon-climate model
to explore climate change scenarios
Thomas Bossy1,2,*, Thomas Gasser1,*, and Philippe Ciais2

1International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
2Laboratoire des Sciences du Climat et de l’Environnement (LSCE), Gif-sur-Yvette, France
*These authors contributed equally to this work.

Correspondence: Thomas Gasser (gasser@iiasa.ac.at)

1 Introduction

Simple climate models (SCMs) typically simulate global mean temperature change caused by either atmospheric concentration

changes or anthropogenic emissions, of CO2 and other climatically active species. They are most often composed of ad hoc

parametric laws that emulate the behaviour of more complex Earth system models (ESMs). The emulation allows simulating

large ensembles of experiments that would be too costly to compute with ESMs. However, the SCM denomination refers to a5

fairly broad range of models whose complexity can go from a couple of boxes that only emulate one part of the climate system

(e.g. a global temperature impulse response function; Geoffroy et al., 2013b) to hundreds of state variables representing the

different cycles of greenhouse gases and their effect on climate change (e.g. the compact Earth system model OSCAR; Gasser

et al., 2017). Simpler models are easier and faster to solve, but they may not be adequate for all usages. Therefore, finding the

“simplest but not simpler” model depends on a study’s precise goals.10

In our recent research, we have perceived a deficiency within the existing offer of SCMs, in spite of their large and growing

number (Nicholls et al., 2020). We have therefore developed the Pathfinder model to fill this gap: it is a parsimonious CO2-only

model that carefully balances simplicity and accuracy of representation of physical processes. Pathfinder was designed to fulfil

three key requirements: 1. the capacity to be calibrated using Bayesian inference, 2. the capacity to be coupled with integrated

assessment models (IAMs), and 3. the capacity to explore a very large number of climate scenarios to narrow down those15

compatible with limiting climate impacts. The latter motivated the model’s name.

While these three requirements clearly call for the simplest model possible, as they all need a fast solving model, they also

imply a certain degree of complexity. The Bayesian calibration requires an explicit representation of the processes (i.e. the vari-

ables) that are used to constrain the model. Coupling with IAMs requires accurately embedding the latest advances of climate

sciences to be policy relevant (National Academies of Sciences and Medicine, 2017). And exploring future climate impacts20

requires the flexibility to link additional (and potentially regional) impact variables to the core carbon-climate equations.

The Pathfinder model is essentially an integration of existing formulations, adapted to our modelling framework and goals.

It is calibrated on Earth system models that contributed to the Coupled Model Intercomparison Project phase 6 (CMIP6), on

additional data from the 6th assessment report of the IPCC (AR6), and on observations of global Earth properties up to the year
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2021. The calibration philosophy of Pathfinder is to use complex models as prior information, and only real-world observations25

and assessments combining many lines of evidence as constraints.

Compared to other SCMs (Nicholls et al., 2020), Pathfinder is much simpler than models like MAGICC (Meinshausen et al.,

2011), OSCAR (Gasser et al., 2017) or even HECTOR (Hartin et al., 2015). It is comparable in complexity to FaIR (Smith

et al., 2018) or BernSCM (Strassmann and Joos, 2018), although it is closer to the latter as it trades off an explicit representation

of non-CO2 species for one of the carbon cycle’s main components. This choice was made to help calibration, keep the model30

invertible, and be compatible with IAMs such as DICE (Nordhaus, 2017). While most SCMs are calibrated using procedures

that resemble Bayesian inference (Nicholls et al., 2021), Pathfinder relies on an established algorithm whose implementation

is fully tractable, and that allows for an annual update as observations of atmospheric CO2 and global temperature become

available.

Here, we present the first public release of Pathfinder and its source code. We first provide a detailed description of the35

model’s equations. We then describe the Bayesian setup used for calibration, the sources of prior information for it, and the

resulting posterior configuration. We end with a validation of the model using standard diagnostic simulations and quantitative

metrics for the climate system and carbon cycle.

2 Equations

An overview of Pathfinder is presented in Figure 1. The model is composed of a climate module, of three separate modules for40

the carbon cycle (ocean, land without land use and land permafrost), and of two additional modules describing global impacts:

sea level rise (SLR), and surface ocean acidification. We do not emulate cycles of other non-CO2 gases. Mathematically, the

model is driven by prescribing time series of any combination of two of four variables: global mean surface temperature

(GMST) anomaly (noted T ), global atmospheric CO2 concentration (C), global non-CO2 effective radiative forcing (Rx),

and global anthropogenic emissions of CO2 (ECO2). The model can therefore be run in the traditional emission-driven and45

concentration-driven modes, but also in a temperature-driven mode (in terms of code, implemented as separate versions of the

model). This is notably important for the calibration, during which it is driven by observations of GMST and atmospheric CO2.

The following presents all equations of the models. Variables are noted using Roman letters, and compiled in Tables B1 and

B2. With a few exceptions, parameters are noted using Greek letters, and summarized in Tables B3 and B4. The model has

21 state variables that follow a first-order differential equations in time. The time variable is noted t and kept implicit unless50

required.

2.1 Climate

The GMST change (T ) induced by effective radiative forcing (ERF; R) is represented using a widely used two-box energy

balance model with deep ocean heat uptake efficacy (Geoffroy et al., 2013a; Armour, 2017). The first box represents the Earth

surface’s temperature (including atmosphere, land and surface ocean), and the other one is the deep ocean’s temperature (Td).55
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Figure 1. Pathfinder in a nutshell: Green blocks represent the carbon cycle, and red blocks the climate response. Blue blocks with dotted

arrows are impacts that can be derived with the model. Grey blocks are variables that are directly related to anthropogenic activity. Possible

inputs of the model are distinguishable through the bold contours of the blocks. In this scheme, arrows correspond to a forward mode where

inputs would be ECO2 and Rx

Their time-differential equations are:

Θs
dT

dt
=R− ϕ ln(2)

T2×
T − ϵheat θ (T −Td) (1)

and

Θd
dTd

dt
= θ (T −Td) (2)

where ϕ is the radiative parameter of CO2, T2× is the equilibrium climate sensitivity (ECS) at CO2 doubling, Θs is the heat60

capacity of the surface, Θd is the heat capacity of the deep ocean, θ is the heat exchange coefficient, and ϵheat is the deep ocean

heat uptake efficacy.

The global ERF is simply the sum of the CO2 contribution (RCO2), expressed using the IPCC AR5 formula (Myhre et al.,

2013), and that of non-CO2 climate forcers (Rx):

R=RCO2 +Rx (3)65
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with

RCO2 = ϕ ln

(
C

Cpi

)
(4)

where Cpi is the preindustrial atmospheric CO2 concentration.

The above energy balance model naturally provides the ocean heat content (OHC; Uohc) as:

Uohc = αohc (Θs T +Θd Td) (5)70

and the ocean heat uptake (OHU) as:

dUohc

dt
= αohc (Θs

dT

dt
+Θd

dTd

dt
) (6)

where αohc is the fraction of energy used to warm the ocean (i.e. excluding the energy needed to heat up the atmosphere and

land, and to melt ice).

2.2 Sea level rise75

Global SLR has been implemented in Pathfinder as a variable of interest to model climate change impacts. In this version, it is

firstly a proof of concept, modelled in a simple yet sensible manner. The total sea level rise (Htot) is the sum of contributions

from thermal expansion (Hthx), Greenland ice sheet (GIS; Hgis), Antarctica ice sheet (AIS; Hais), and glaciers (Hgla):

Htot =Hthx +Hgis +Hais +Hgla (7)

The thermal expansion contribution scales linearly with the OHC (Goodwin et al., 2017; Fox-Kemper et al., 2021):80

Hthx = Λthx Uohc (8)

where Λthx is the scaling factor of the thermosteric contribution to SLR. Note, however, that the thermal capacity of the climate

module does not match that of the real-world ocean (Geoffroy et al., 2013b), and so this equation cannot describe equilibrium

SLR over millennial timescales.

To model contributions from ice sheets and glaciers, we followed the general approach of Mengel et al. (2016). The SLR85

caused by GIS follows a first-order differential equation with its specific timescale, and the equilibrium SLR from GIS is

assumed to be a cubic function of GMST:

dHgis

dt
= λgis +

1

τgis

(
Λgis1 T +Λgis3 T

3 −Hgis

)
(9)

where λgis is an offset parameter introduced because GIS was not in a steady state at the end of the preindustrial era, Λgis1

is the linear term of equilibrium of GIS SLR, Λgis3 is the cubic term of equilibrium of GIS SLR, and τgis is the timescale of90

the GIS contribution. The motivation for replacing the quadratic term of Mengel et al. (2016) by a cubic one is the oddness of

the cubic function that leads to negative (and not positive) SLR for negative T (which happens during the earlier years of the

calibration run).
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The contribution from glaciers is also a first-order differential equation with an equilibrium inspired by Mengel et al. (2016).

We expanded it with a cubic term to account for the fact that we aggregate all glaciers together and allow more skewness in95

the curve describing the equilibrium SLR as a function of T . In addition, we added an exponential sensitivity to speed up the

convergence to equilibrium under warmer climate:

dHgla

dt
= λgla +

exp(γgla T )

τgla

(
Λgla

(
1− exp

(
−Γgla1 T −Γgla3 T

3
))

−Hgla

)
(10)

where λgla is an offset parameter accounting for the lack of initial steady-state, Λgla is the SLR potential if all glaciers melted,

Γgla1 is the linear sensitivity of glaciers’ equilibrium to climate change, Γgla3 is the cubic sensitivity of glaciers’ equilibrium100

to climate change, τgla is the timescale of the glaciers contribution, and γgla is the sensitivity of glaciers’ timescale to climate

change.

Following Mengel et al. (2016), the contribution from AIS is further divided in two terms, one for surface mass balance

(SMB; Hais,smb) and one for solid ice discharge (SID; Hais,sid), so that Hais =Hais,smb+Hais,sid. It is expected that precipita-

tion will increase over Antarctica under higher GMST, leading to increase in SMB and to a negative sea level rise contribution105

modeled as:

dHais,smb

dt
=−Λais,smb T (11)

where Λais,smb is the AIS SMB sensitivity to climate change (expressed in sea level equivalent). At the same time, increasing

surface ocean temperatures will cause more SID through basal melting, which we model using a first-order differential equation

assumed to be independent of the SMB effect, and with a term that speeds up the effect the more SID happened:110

dHais,sid

dt
= λais +

1+αais Hais,sid

τais
(Λais T −Hais,sid) (12)

where λais is an offset parameter accounting for the lack of initial steady-state, Λais is the SLR equilibrium of AIS SID, τais is

the timescale of the AIS SID contribution, and αais is the sensitivity of the timescale to past SID. In the model’s code, however,

we directly solve for the total AIS contribution as:

dHais

dt
=−Λais,smb T +λais +

1+αais (Hais −Hais,smb)

τais
(Λais T − (Hais −Hais,smb)) (13)115

2.3 Ocean carbon

To calculate the ocean carbon sink, we use the classic mixed-layer impulse response function model from Joos et al. (1996),

updated to the equivalent box-model formulation of Strassmann and Joos (2018), and extended in places to introduce parameter

adjustments for calibration. In the model, the mixed layer is split into 5 boxes (subscript j), as represented in Figure 4, so that

the total carbon in the mixed layer pool (Co) is:120

Co =
∑

j

Co,j (14)

This total carbon mass is converted into a molar concentration of dissolved inorganic carbon (DIC; cdic) following:

cdic =
αdic

βdic
Co (15)
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where αdic is a fixed conversion factor, and βdic is a scaling factor for the conversion. (The latter can be seen as a factor

multiplying the mixed layer depth: it is 1 if the depth is unchanged from the original Strassmann and Joos (2018) model.)125

The non-linear carbonate chemistry in the mixed layer is emulated in two steps. First, the model’s original polynomial

function is used to determine the partial pressure of CO2 affected by changes in DIC only (pdic):

pdic =(1.5568− 0.013993To) cdic

+(7.4706− 0.20207To) 10
−3 cdic

2

− (1.2748− 0.12015To) 10
−5 cdic

3

+(2.4491− 0.12639To) 10
−7 cdic

4

− (1.5768− 0.15326To) 10
−10 cdic

5 (16)

where To is the preindustrial surface ocean temperature. Second, the actual partial pressure of CO2 (pCO2) is calculated using130

an exponential climate sensitivity (Takahashi et al., 1993; Joos et al., 2001):

pCO2 = (pdic +Cpi) exp(γdic T ) (17)

where γdic is the sensitivity of pCO2 to climate change.

The flux of carbon between the atmosphere and the ocean (Focean, defined positively if it is a carbon sink) is caused by

the difference in partial pressure of CO2 in the atmosphere and at the oceanic surface, following an exchange rate that varies135

linearly with GMST, that is here used as a proxy for wind changes:

Focean = νgx (1+ γgx T ) (C − pCO2) (18)

where νgx is the preindustrial gas-exchange rate, and γgx is its sensitivity to climate change.

This flux of carbon entering the ocean is split between the mixed layer carbon subpools, and this added carbon is subsequently

transported towards the deep ocean at a rate specific to each subpool. This leads to the following differential equations:140

dCo,j

dt
=− Co,j

κτo τo,j
+αo,j Focean, ∀j (19)

where αo,j are the subpools’ splitting shares (with
∑

j αo,j = 1), τo,j are the subpools’ timescales for transport to the deep

ocean, and κτo is a scaling factor applied to all subpools. Finally, the deep ocean carbon pool (Cd) is obtained through mass

balance:

dCd

dt
=
∑

j

Co,j

κτo τo,j
(20)145

2.4 Ocean acidification

While in the real world, ocean acidification is directly related to the carbonate chemistry and the ocean uptake of anthropogenic

carbon, we do not have a simple formulation at our disposal that could link it to our ocean carbon cycle module. We therefore
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use a readily available emulation of the surface ocean acidification (pH) that links it directly to the atmospheric concentration

of CO2 (Bernie et al., 2010) with the following polynomial approximation:150

pH = κpH (8.5541− 0.00173C +1.3264 10−6 C2 − 4.4943 10−10 C3) (21)

where κpH is a scaling factor (that defaults to 1). We note that this approach is reasonable for the surface ocean, as it quickly

equilibrates with the atmosphere (but it would not work for the deep ocean).

2.5 Land carbon

The land carbon module of Pathfinder is a simplified version of the one in OSCAR (Gasser et al., 2017, 2020). It is shrunk155

down to four global carbon pools: vegetation, litter, active and passive soil (see Figure 2). All terrestrial biomes are lumped

together, and there is therefore no accounting of the impact of land use change on the land carbon cycle in this version of

Pathfinder. This is an extreme assumption – although very common in SCMs – motivated by simplicity, and it implies that CO2

emissions from fossil fuel burning and land use change are assumed to behave in the exact same way, in spite of their not doing

so in reality (Gitz and Ciais, 2003; Gasser and Ciais, 2013).160

The vegetation carbon pool (Cv) results from the balance between net primary productivity (NPP; Fnpp), emission from

wildfires (Efire), emission from harvest and grazing (Eharv), and loss of carbon from biomass mortality (Fmort):

dCv

dt
= Fnpp −Efire −Eharv −Fmort (22)

NPP is expressed as its own preindustrial value multiplied by a function of CO2 and of GMST (rnpp). This function thus

embeds the so-called CO2-fertilisation effect, whereby NPP increases with atmospheric CO2, described using a generalised165

logarithmic functional form:

Fnpp = Fnpp0 rnpp (23)

with

rnpp =

(
1+

βnpp

αnpp

(
1−

(
C

Cpi

)−αnpp
))

(1+ γnpp T ) (24)

where Fnpp0 is the preindustrial NPP, βnpp is the CO2-fertilisation sensitivity, αnpp is the CO2-fertilisation shape parameter for170

saturation, and γnpp is the sensitivity of NPP to climate change (that can be positive or negative). The generalised logarithmic

functional form implies that: rnpp → (1+βnpp ln(C/Cpi))(1+ γnppT ) as αnpp → 0+.

Harvesting and mortality fluxes are taken proportional to the carbon pool itself even though in reality the mortality fluxes

are climate dependent. For simplicity we assume a constant mortality following the equations in OSCAR (Gasser et al., 2017):

175

Eharv = νharv Cv (25)
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and

Fmort = νmort Cv (26)

where νharv is the harvesting/grazing rate, and νmort is the mortality rate.

Wildfires emissions are also assumed proportional to the vegetation carbon pool, but with an additional linear dependency180

of the emission rate on CO2 (as a proxy of changes in leaf area index and evapotranspiration) and GMST (rfire):

Efire = νfire rfire Cv (27)

with

rfire =

(
1+βfire

(
C

Cpi
− 1

))
(1+ γfire T ) (28)

where νfire is the wildfires rate, βfire is the sensitivity of wildfires to CO2, and γfire is their sensitivity to climate change.185

Soil carbon is divided into three pools. The litter carbon pool (Cs1) receives the mortality flux as sole input, it emits part of

its carbon through heterotrophic respiration (Erh1), and it transfers another part to the next pool through stabilization (Fstab):

dCs1

dt
= Fmort −Fstab −Erh1 (29)

Similarly, the active soil carbon pool (Cs2) receives the stabilization flux, is respired (Erh2), and transfers carbon to the last

pool through passivization (Fpass):190

dCs2

dt
= Fstab −Fpass −Erh2 (30)

The passive carbon pool (Cs3) receives this final input flux and is respired (Erh3):

dCs3

dt
= Fpass −Erh3 (31)

Although information pertaining to this fourth pool is not commonly provided by ESMs, it was introduced in Pathfinder to

adjust the complex models’ turnover time of soil carbon to better match isotopic data (He et al., 2016). For completeness, we195

note that the total heterotrophic respiration is Erh = Erh1+Erh2+Erh3, and the total soil carbon pool is Cs = Cs1+Cs2+Cs3.

All soil-originating fluxes are taken proportional to their pool of origin, and multiplied by a function (rrh) explained hereafter.

For the litter pool, this gives:

Erh1 = νrh1 rrh Cs1 (32)

and200

Fstab = νstab rrh Cs1 (33)

where νrh1 is the litter respiration rate, and νstab is the stabilization rate. For the active soil pool, we have:

Erh2 =
νrh23 − νrh3 αpass

1−αpass
rrh Cs2 (34)
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and

Fpass = νrh3
αpass

1−αpass
rrh Cs2 (35)205

and for the passive soil pool:

Erh3 = νrh3 rrh Cs3 (36)

where νrh23 is the soil respiration rate (averaged over active and passive pools), νrh3 is the passive soil respiration rate, and

αpass is the fraction of passive carbon (over active+passive soil carbon). This slightly convoluted formulation is motivated by

the lack of information regarding the active/passive split in ESMs, which we alleviate using additional data during calibration.210

In addition, the function rrh, describing the dependency of respiration (and related fluxes) on temperature and on the avail-

ability of fresh organic matter to be decomposed, is defined as:

rrh =

(
1+βrh

(
Cs1

Cs1 +Cs2 +Cs3

(
1+

νstab
νrh23

)
− 1

))

︸ ︷︷ ︸(
1+βrh

(
Cs1

Cs

Cs(t0)
Cs1(t0)

− 1
))

exp(γrh T ) (37)

where βrh is the sensitivity of the respiration to fresh organic matter availability (expressed here as the relative change in the

Cs1/Cs ratio with regard to preindustrial times), and γrh is its sensitivity to climate change (equivalent to a "Q10" formulation215

with Q10 = exp(10 γrh)).

Finally, the net carbon flux from the atmosphere to the land (Fland, defined positively if it is a carbon sink) is obtained as the

net budget of all pools combined:

Fland = Fnpp −Efire −Eharv −Erh (38)

and this system of equations leads to the following preindustrial steady-state:220





Cv(t0) =
Fnpp0

νfire+νharv+νmort

Cs1(t0) = Cv(t0)
νmort

νrh1+νstab

Cs2(t0) = Cs1(t0)
νstab

νrh23
(1−αpass)

Cs3(t0) = Cs1(t0)
νstab

νrh23
αpass

(39)

2.6 Permafrost carbon

As the land carbon cycle described in the previous section does not account for permafrost carbon, we implemented this

feedback using the emulator developed by Gasser et al. (2018) but aggregated into a unique global region. Figure 3 gives a

representation of the permafrost module as described in the following. The emulation starts with a theoretical thawed fraction225

(ā) that represents the fraction of thawed carbon under steady-state for a certain level of local warming. It is formulated with a
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Figure 2. The land sink model in Pathfinder is derived from OSCAR (Gasser et al., 2017) and represents the biosphere as a set of four carbon

pools: vegetation, litter , active soil and passive soil. These pools exchange carbon through fluxes whose direction is given by the arrows.

sigmoid function (that equals 0 at preindustrial and 1 under very high GMST):

ā=−amin +
(1+ amin)

(
1+

((
1+ 1

amin

)κa

− 1
)
exp(−γa κa αlst T )

) 1
κa

(40)

where −amin is the minimum thawed fraction (corresponding to 100% frozen soil carbon), κa is a shape parameter determining

the asymmetry of the function, γa is the sensitivity of the theoretical thawed fraction to local climate change, and αlst is the230

proportionality factor between local and global climate change.

The actual thawed fraction (a) then moves towards its theoretical value at a speed that depends on whether it is thawing (i.e.

a < ā) or freezing (i.e. a > ā). This is written as a non-linear differential equation:

da

dt
= 0.5 (νthaw + νfroz) (ā− a)+ 0.5 |(νthaw − νfroz) (ā− a)| (41)

where νthaw is the rate of thawing, and νfroz is the rate of freezing. Because νthaw > νfroz, the absolute value in the equation235

leads to the right-hand side being νthaw(ā−a) if a < ā, or νfroz(ā−a) if a > ā. The change in the pool of frozen carbon (Cfr)

naturally follows:

dCfr

dt
=−da

dt
Cfr0 (42)

where Cfr0 is the amount of frozen carbon at preindustrial times.

Thawed carbon is not directly emitted to the atmosphere: it is split into three thawed carbon subpools (Cth,j) that have their240

own decay time, but are all affected by an additional function (rrt). This leads to the following budget equations:

dCth,j

dt
=−αth,j

dCfr

dt
− Cth,j

κτth τth,j
rrt, ∀j (43)

where αth,j are the subpools’ splitting shares (with
∑

j αth,j = 1), τth,j are the subpools’ decay times, and κτth is a scaling

factor applied to all subpools. The additional rrt function describes the sensitivity of heterotrophic respiration to climate change

in boreal regions, using a Gaussian formula:245

rrt = exp
(
κrt γrt1 αlst T −κrt γrt2 (αlst T )

2
)

(44)
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where κrt is a factor scaling the sensitivity of thawed carbon against that of regular soil carbon, γrt1 is the sensitivity to local

temperature change (i.e. a Q10), and γrt2 is the quadratic term in the latter sensitivity that represents a saturation effect. Noting

that all the emitted carbon is assumed to be CO2, the global emission from permafrost (Epf ) is thus:

Epf =
∑

j

Cth,j

κτth τth,j
rrt (45)250
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Figure 3. The permafrost carbon model in Pathfinder is taken from Gasser et al. (2018). The frozen pool dynamic lags behind a theoretical

value that is determined by the temperature anomaly. Thawed carbon is then split between three pools that are emitted to the atmosphere at

different rates.

2.7 Atmospheric CO2

The change in atmospheric concentration of CO2 is the budget of all carbon cycle fluxes to which we add the exogenous

anthropogenic emissions (ECO2):

αC
dC

dt
= ECO2 +Epf −Fland −Focean (46)
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where αC is the conversion factor from volume fraction to mass for CO2.255

3 Bayesian calibration

3.1 Principle

Bayesian inference is a powerful tool for assimilating observational data into reduced-complexity models such as Pathfinder

(Ricciuto et al., 2008). The approach consists in deducing probability distributions of parameters from a priori knowledge

on those distributions and on distributions of observations of some of the model’s variables, using Bayes’ theorem (Bayes,260

1763).Summarily, the Bayesian calibration updates the joint distribution of parameters to make it as compatible with the

constraints as possible given their prior estimates, which increases internal coherence of Pathfinder by excluding combination

of parameters that are unlikely.

Such a Bayesian calibration is vulnerable to the possibility that the priors draw on the same information as the constraints.

However, given that Pathfinder is a patchwork of emulators whose parameters are obtained independently from one another265

and following differing experimental setups, we expect that the coherence of information contained within the priors and the

constraints is very low. Our choice of using only complex models as prior information and only observations and assessments

as constraints also aims at limiting this vulnerability.

Concretely, the posterior probability Ppost of a sample k from the joint parameters distribution ξk, conditional to a set of

observations x, is proportional (symbol ∝) to its own prior probability Ppre and to the likelihood L of the model simulating x270

given ξk:

Ppost(ξk|x)∝ L(x|ξk)Ppre(ξk) (47)

Here, we assume all observations are independently and identically distributed following a normal distribution (with mean

values µx, and standard deviations σx expressed in real physical units), which leads to the following likelihood:

L(x|ξk) =
nx∏

i=1

1

σx,i

√
2π

exp

(
− (Fi(ξk)−µx,i)

2

2σ2
x,i

)
(48)275

where Fi(ξk) is the model’s output for the i-th observable (out of nx) with input parameters ξk.

3.2 Implementation

The Pathfinder model is a set of differential equations with a number of input parameters, of which nξ are calibrated through

Bayesian inference, and an additional two input variables provided as time series (i.e. one value per time step required). While

the two input time series can be any combination of two out of four variables (anthropogenic CO2 emissions, non-CO2 ERF,280

atmospheric CO2 concentration, or GMST), for calibration we use the two most well constrained variables that are direct

physical observations of the global Earth system: atmospheric CO2 and GMST. These input time series cover the historical
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period from 1751 to 2020. Therefore, the ξk vector is:

ξk =
{
{ξj}nξ

j=1,{C(t)}2021t=1751,{T (t)}2021t=1751

}
k

(49)

However, to ease the computation by reducing the dimension of the system, we do not use annual time series of observations285

as inputs, but we assume that each input time series (for variable X being C or T ) follows:

X(t) =Xµ(t)+ σ̃X Xσ(t)+ ϵX AR1(t;ρX) (50)

where Xµ and Xσ are fixed exogenous annual time series (i.e. structural parameters), σ̃X is the relative standard deviation of

the time series (without noise), ϵX is the noise intensity, and AR1 is an autoregressive process of order 1 and autocorrelation

parameter ρX . This assumption leads to the final expression of the ξk vector:290

ξk =
{
{ξj}nξ

j=1, σ̃C , ϵC ,ρC , σ̃T , ϵT ,ρT ,
}
k

(51)

During this Bayesian assimilation, the Pathfinder model is run solely over the historical period (from 1750 to 2021), as

the constraints concern only preindustrial or historical years. For the computation, thetime-differential system of Pathfinder is

solved using an implicit-explicit numerical scheme (also called IMEX), with a time step of one quarter of a year. This solving

scheme relies on: first, writing the differential equations of all state variables X as:295

dX

dt
=−ν X +R (52)

where ν is the constant speed of the linear part of the differential equation, and R is its non-linear part; second, discretizing

these equations as:

X(t+ δt)−X(t)

δt
=−ν X(t+ δt)+R(t) (53)

where δt is the solving time step (which is 1
nt

times the annual time step of the model’s inputs and outputs, here nt = 4); and300

third, explicitly solving for all X(t+δt). We note this is also the default solving scheme for regular simulations with the model,

although the value of nt can be altered and alternative schemes are available.

The Bayesian procedure itself is implemented using the Python computer language, and specifically the PyMC3 package

(Salvatier et al., 2016). The solving of equation 47 and its normalization are done using the package’s full-rank Automatic

Differentiation Variational Inference (ADVI) algorithm (Kucukelbir et al., 2017), with 100,000 iterations (and default algorithm305

options). The choice of variational inference instead of Markov chain Monte Carlo is motivated by the significant size our

model (Blei et al., 2017) and the speed of ADVI. An additional strength of the full-rank version of the ADVI algorithm is

its ability to generate correlated posterior distributions even if the prior ones are uncorrelated. Convergence of the algorithm

was controlled through convergence of the ELBO metric (Kucukelbir et al., 2017). All results presented hereafter are obtained

through drawing 2000 sets of parameters – that we call configurations – from the posterior or prior distributions.310
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3.3 Constraints

We use a set of 19 constraints related to all aspects of the model that correspond to the set of observations x in the Bayesian

calibration. Many of the constraints are observations, but some are ranges assessed by expert panels such as the Global Carbon

Project or the IPCC. They cover either a recent point in time or an assumed preindustrial equilibrium, and they are typically

taken over a period of at least a few years to reduce the effect of natural variability.315

Table 1 summarises these constraints, the periods over which they are considered, and their distributions. The following

subsections provide further details on the constraints, and the constraints distributions are shown in Figure 6.

3.3.1 Climate system

To constrain the temperature response, we use the same five data sets of observed GMST as in Section 3.4.8, to derive average

and standard deviation of two constraints: the average GMST change, and the average GMST yearly trend obtained through320

second-order accuracy gradient (Fornberg, 1988), both over the latest 20 years of data (2002–2021). Because this data is already

used as input to the Bayesian setup, albeit in a different way, it does not provide much of a constraint, and is used mostly to

ensure the σ̃T and ϵT parameters remain within sensible range.

To further constrain the climate system, we use the mean OHU assessed by the IPCC AR6 over 2006–2018 (Gulev et al.,

2021, Table 2.7), and the non-CO2 ERF (averaged over 2010-2019) also estimated for the AR6. The central value of the latter325

is taken from Dentener et al. (2021, Table AIII.3, and corresponding GitHub repository), and its uncertainty is constructed

using data from Forster et al. (2021, Table 7.8) and assuming the ERF of all species are normally distributed and uncorrelated,

but fully correlated in time for each separate species (which likely overestimates the uncertainty).

To better align with the IPCC AR6, we also constrain the ECS of our model (i.e. the T2× parameters). To do so, because

the distribution of ECS cannot be assumed normal, we follow the framework of Roe and Baker (2007) who define the climate330

feedback factor ff so that T2× = T ∗
2×/(1−ff), where T ∗

2× is the minimal ECS value (roughly corresponding to the Planck

feedback). We assume this feedback factor follows a logit-normal distribution, which implies logit(ff) = ln(ff/(1−ff)) =

ln(T2×/T ∗
2× − 1) follows a normal distribution. We therefore constrain logit(ff), using distribution parameters and a value of

T ∗
2× calibrated to fit the probabilistic ranges of ECS provided by the AR6. This fit of the ECS distribution is illustrated in

Figure B9.335

3.3.2 Carbon cycle

Similarly to what is done with GMST, we constrain the atmospheric CO2 level over the latest 10 years of data (2012-2021)

using the NOAA/ESRL data (Tans and Keeling, 2010). The rest of the global CO2 budget is constrained using the 2021 Global

Carbon Budget (GCB; Friedlingstein et al., 2022). We use namely the net atmospheric CO2 growth and total anthropogenic

emissions (fossil and land use) over the last 10 years, and the ocean and land carbon sinks accumulated since the beginning of340

the instrumental measurement period (1960-2020). Note that our definition of the land carbon sink ignoring land use change is

consistent with that of the GCB.
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Given its number of parameters and their inconsistent sources, we further constrain the land carbon module by considering

present-day (mean over 1998-2002) NPP (Ciais et al., 2013; Zhao et al., 2005), and preindustrial vegetation and soil carbon

pools. These preindustrial pools are taken from the AR6 for the central value (Canadell et al., 2021, Figure 5.12), but their345

relative uncertainty is taken from the AR5 (Ciais et al., 2013, Figure 6.1) since it is lacking in the AR6. In addition, the soil

carbon pool constraint is corrected downward by estimates of peatland carbon (Yu et al., 2010, Table 1), since it is an ecosystem

missing in TRENDY models (and in ours) but not in the IPCC assessments.

3.3.3 Sea level rise

To constrain the separate SLR contributions from thermal expansion, GIS, AIS and glaciers, we use the model-based SLR350

speed estimates over the recent past (averaged over 2006–2018) reported in the AR6 (Fox-Kemper et al., 2021, Table 9.5). To

constrain the total contribution, we also use the historical (1901–1990) sea level rise inferred from tide gauges from the same

source, although the value is corrected upward for the missed impact of uncharted glaciers (Parkes and Marzeion, 2018).

Contrarily to all other modules, the SLR module is not assumed to start at steady-state in 1750, which is represented through

the λice (ice ∈ [gla,gis,ais]) parameters. We assume this is entirely due to the so-called little ice age (LIA) relaxation, which we355

assume can be simply modeled in Pathfinder through exponential decay of our three ice-related contributions since t0 = 1750.

This gives a net LIA contribution of Hlia =
∑

iceλice τice exp
(
− t−t0

τice

)
. We constrain this diagnostic variable using the global

SLR reported by Slangen et al. (2016) over 1900–2005 for their control experiment.

3.4 Parameters (prior distributions)

Out of the model’s 77 parameters, 33 are assumed to be fixed (i.e. they are structural parameters), and the remaining nξ360

= 44 parameters are estimated through Bayesian inference. Prior distributions of the ξj parameters are assumed log-normal

if the physical parameter must be defined positive, logit-normal if it must be between 0 and 1, and normal otherwise. To

avoid extreme parameter values that could make the model diverge during calibration, the posterior distributions are bound to

µξ,j±5σξ,j , where µξ,j and σξ,j are the mean and standard deviation of the j-th parameter’s prior distribution. These two values

are taken from the literature, deduced from multi-model ensembles, or in a few instances arbitrarily set, as described in the365

following subsections. Note that when parameters are deduced from multi-model ensembles, there are effectively two rounds

of calibration: first, a calibration on individual models using ordinary least square regressions to obtain prior distributions, and

second, the Bayesian calibration itself that leads to the posterior distributions. In addition, the prior distributions of σ̃X , ϵX

and ρX are assumed normal, half-normal and uniform, respectively. All prior distributions are assumed independent, so that

the prior joint distribution ξ does not exhibit any covariance.370

All parameters are summarised in Tables B5 and B6 along with their properties and values. The following subsections further

explain how the prior distributions of the parameters are established, and these distributions are shown in Figure 5
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3.4.1 Climate

All the parameters of the climate module are calibrated. The prior distribution of the radiative parameter ϕ is taken from the

AR5 (Myhre et al., 2013, Table 8.SM.1). All other prior distributions of the parameters of the climate module (i.e. T2×, Θs,375

Θd, θ and ϵheat) are taken from 35 CMIP6 models whose climate responses were derived for the AR6 using the abrupt-4xCO2

experiment (Smith et al., 2021, Section 7.SM.2.1, and corresponding GitHub repository). Here, T2× is simply assumed to be

half the reported equilibrium temperature at quadrupled CO2. In addition, the prior distribution of the ocean warming fraction

αohc is taken from the AR6 (Forster et al., 2021, Table 7.1).

3.4.2 Sea level rise380

Some parameters from the SLR module are structural: the maximum SLR contribution from glaciers (Λgla) is taken from Fox-

Kemper et al. (2021, Section 9.6.3.2), the equilibrium AIS SLR (Λais ) is from (Church et al., 2013, Figure 13.14), and the τgis,

τgla and τais timescales are the mean values from Mengel et al. (2016, Table S1) (assuming they provide the 90%-range of a

log-normal distribution). All other parameters are calibrated. The prior distribution of the thermosteric parameter Λthx is taken

from the AR6 (Fox-Kemper et al., 2021, Section 9.2.4.1), as are the prior distributions of the preindustrial offset parameters385

λgis, λgla and λais (Fox-Kemper et al., 2021, earliest period of Table 9.5). For the remaining parameters, we derive prior

distributions using SLR projections compiled by Edwards et al. (2021) for a number of ice sheets and glaciers models, over

various RCP and SSP scenarios. Using the models’ outputs, we apply equation 9 to estimate the Λgis1 and Λgis3 parameters,

equation 10 for the Γgla1, Γgla3 and γgla parameters, and equation 12 for the Λais,smb and αais parameters. During these fits,

all other parameters are assumed to take their default value if structural, and their best-guess value otherwise. Results of this390

calibration on the individual models compiled by Edwards et al. (2021) are shown for each SLR contribution in Figures B6,

B7 and B8.

3.4.3 Ocean carbon

The ocean carbon cycle module has a number of structural parameters: αdic, all αo,j and all τo,j are taken from Strassmann and

Joos (2018, Tables A2 and A3, based on the Princeton model). The prior distribution of the adjustment factor κτo is arbitrarily395

taken to apply a 20% uncertainty on the oceanic transport timescales. All other prior distributions for this module’s parameters

are derived from 12 CMIP6 models with interactive carbon cycle that contributed to C4MIP (Arora et al., 2020). To is taken

on average over the piControl simulation. νgx and γgx are calibrated by applying equation 18 to the models’ outputs for the

1pctCO2, 1pctCO2-rad and 1pctCO2-bgc experiments, while βdic and γdic are calibrated by applying equations 14-17 and 19.

Results of this calibration on the individual CMIP6 models is shown in Figures B1 and B2.400

3.4.4 Ocean acidification

In this version of Pathfinder, κpH is a structural parameter set to 1.
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Figure 4. The ocean sink model in Pathfinder follows the structure of the mixed-layer pulse response function introduced by Joos et al.

(1996). The mix-layer is represented through five subpools which each has a different timescale for transport to the deep ocean carbon pool

3.4.5 Land carbon

Parameters related to the passive soil carbon pool are taken from He et al. (2016, Table S5): νrh3 is structural, while αpass is

not. All the prior distribution of the parameters related to the preindustrial steady-state of the land carbon (i.e. Fnpp0, νfire,405

νharv, νmort, νstab, νrh1 and νcs) are derived from 11 TRENDYv7 models (Sitch et al., 2015; Le Quéré et al., 2018), exactly

as for OSCAR v3.1 (Gasser et al., 2020) except that all biomes and regions are lumped together. The prior distribution of the

remaining parameters are derived from 12 CMIP6 models that contributed to C4MIP (Arora et al., 2020). Using the models’

outputs for the 1pctCO2, 1pctCO2-rad and 1pctCO2-bgc experiments, we calibrated βnpp, αnpp and γnpp through equation 24,

βfire and γfire through equation 28, and βrh and γrh through equation 37. Results of this calibration on the individual CMIP6410

models is shown in Figure B3, B4 and B5.

3.4.6 Permafrost carbon

The permafrost module’s parameters are recalibrated using the same algorithm as used by Gasser et al. (2018), but adapted to

the global formulation of Pathfinder. First, the algorithm is run once to obtain a set of parameters reproducing the behavior of

the global average of five permafrost models (with data from UVic (MacDougall, 2021) added to the four original models).415

This gives the values of the structural parameters (i.e. αlst, γrt1, γrt2, κrt, amin, all αth,j , all τth,j , νthaw and νfroz). Second,
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the algorithm is run five additional times, for each of the five permafrost models separately, with the structural parameters

established in the first step, to obtain prior distributions of the remaining parameters (i.e. Cfr0, κa, γa and κτth ).

3.4.7 Atmospheric CO2

The conversion factor αC is a structural parameter whose value is taken from the latest GCBs (e.g. Le Quéré et al., 2018).420

The prior distribution of preindustrial CO2 concentration (Cpi) is taken from the AR6 (Gulev et al., 2021, Section 2.2.3.2.1),

assuming the difference between minimum and maximum over the 0–1850 period is representative of the 90% uncertainty

range.

3.4.8 Historical CO2 and GMST

The structural Xµ and Xσ time series are taken from the latest observations, as follows. Tµ and Tσ are taken as the average and425

standard deviation of 5 observational GMST data sets: HadCRUT5 (Morice et al., 2021), Berkeley Earth (Rohde et al., 2013;

Rohde, 2013), GISTEMP (Hansen et al., 2010), NOAAGlobalTemp (Huang et al., 2020), and JMA. We use the 1850–1900

period to define our preindustrial baseline, and GMST change is assumed to be zero before the earliest date available in each

data set. Regarding atmospheric CO2, Cµ is taken as the global value reported by NOAA/ESRL (Tans and Keeling, 2010) and

Cσ as a constant ±1 ppm uncertainty, for 1980 onward (this uncertainty is arbitrarily taken higher than the actual uncertainty430

estimated through instrumental measures to increase freedom in the calibration). Before that period, Cµ comes from the IPCC

AR6 (Dentener et al., 2021, Table AIII.1a), and Cσ is linearly interpolated backwards from the instrumental uncertainty in

1980 to the preindustrial one (Gulev et al., 2021) in 1750. Finally, the prior distribution of ρX is set to Uniform over [0,1], that

of σ̃X is a unit Normal distribution, and that of ϵX is set arbitrarily to a Half-Normal of parameter 0.05 K for GMST and 0.5

ppm for CO2.435

3.5 Results (posterior distributions)

The following subsections discuss the adjustments between the prior and posterior parameters that are the results of the

Bayesian calibration, as well as the matching of the constraints.These sections constantly refer to Figure 5 that shows the

prior and posterior distributions of the model’s parameters, Figure 6 that shows those of the constrained variables, and Figure

7 that displays the correlation matrix of the posterior parameters. (There is no correlation among the prior parameters.) Prior440

and posterior values of the parameters can also be retrieved from Table B6.

3.5.1 Climate system

Our climate-related constraints lead to adjusting all the parameters of the climate module. As explained in Section 3.4.8, the

constraints for present-day GMST change and its derivative are met by construction.

The ECS (T2×) is the parameter with the strongest adjustment, since it is directly constrained. Its precise value is discussed445

hereafter in Section 4.2, but we note that it is unsurprisingly decreased, as the CMIP6 model ensemble tends to overestimate the
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Figure 5. Parameters distributions before (black lines) and after (blue lines) the Bayesian calibration. Parameters are noted under their text

notation, and Tables B3 and B4 provide the corresponding notation in code.
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ECS compared to the IPCC assessed value. Consequently, our posterior logit(ff) matches well the constraint. The adjustment

of the ECS significantly reduces the gap between our posterior distribution of the non-CO2 ERF and its constraint, although

the posterior central value remains 41% lower (but well within uncertainty range).

Among the dynamic parameters that are adjusted, we note that the deep ocean heat capacity Θd is somewhat increased450

compared to the prior, and the heat exchange coefficient θ is also increased. These dynamic parameters are likely adjusted

through our OHU constraint that is corrected in the posterior so the difference in the central values is lowered from 22% to

14%, which remains well within the uncertainty range.

In addition, a number of weak but physically meaningful correlations across the climate module’s parameters are found,

such as a positive correlation between T2× and ϵheat (see e.g. Geoffroy et al., 2013a), a positive correlation between T2× and455

Θd (that tends to exclude configuration that would warm fast and high), and a negative correlation between T2× and ϕ (to

match the GMST and ERF constraints together).

3.5.2 Carbon cycle

Similarly to GMST, the posterior distribution of atmospheric CO2 concentration matches the constraint by construction. Its

derivative, however, is (slightly overly) corrected to match the GCB estimate. Global anthropogenic CO2 emissions are sig-460

nificantly increased to get closer to the GCB constraint, but their central value remains 9% too low. Since these emissions are

determined through mass balance and the atmospheric CO2 matches observations, this implies that the total carbon sinks (i.e.

Fland + Focean) must be weaker.

This is confirmed for the ocean sink, as the posterior central value of Focean is 8% lower than the constraint, but still

noticeably corrected if compared to the prior. This correction is explained by small adjustments in some parameters of the465

ocean carbon module. The mixed layer depth is slightly increased through βdic. All other parameters remain mostly unaffected

by the calibration, and only minor correlations are found. These results, along with the fact that our prior distribution spans

only about half of the constraint’s distribution, suggest that there is a structural limitation in our ocean carbon module that

warrants further investigation.

It is also confirmed that the posterior land sink is weaker than the constraint, by 15% for the central value, which is nev-470

ertheless a significant reduction of the prior gap of 34%. To explain this adjustment, we observe that the CO2-fertilization

sensitivities (βnpp and γnpp) are adjusted upwards. However our constraint on present-day NPP prevents these adjustments

from being too important, as the posterior distribution of this variable is similar to the prior and its central value remains 8–9%

higher than its constraint. An increased preindustrial NPP mechanically leads to an increase in preindustrial carbon pools, but

these require further adjustments of the land carbon turnover rates, and most notably the mortality rate νmort and the passive475

carbon fraction αpass, to better match their constraints (of which the one on total soil carbon is perfectly met).

The land carbon module exhibits significant correlations among posterior parameters. This is likely a consequence of all

the constraints combined as they dictate both the preindustrial steady-state of the module and it’s transient response over the

historical period. Eliminated configurations are those, for instance, that would show high initial carbon pools that are very
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Variable Period Method Prior Posterior Constraints Unit

ECO2 2011-2020 Mean 9.1 ± 1.3 10.0 ± 0.7 11.0 ± 0.9 PgC yr−1

dC
ct

2011-2020 Mean 2.41 ± 0.06 2.40 ± 0.01 2.40 ± 0.01 ppm yr−1

Fland 1960-2020 Sum 95 ± 52 123 ± 26 145 ± 35 PgC

Focean 1960-2020 Sum 89± 12 97 ± 13 105 ± 20 PgC

Cv 1750 Mean 407 ± 54 407 ± 37 450 ± 50 PgC

Cs 1750 Mean 1181 ± 735 1086 ± 284 1088 ± 249 PgC

FNPP 1998-2002 Mean 60.0 ± 7.9 59.5 ± 3.9 55.0 ± 5.0 PgC yr−1

C 2012-2021 Mean 403.6 ± 0.3 403.6 ± 0.1 401.2 ± 0.1 ppm

Rx 2010-2019 Mean 0.01 ± 0.47 0.33 ± 0.37 0.56± 0.53 W m−2

T 2001-2020 Mean 0.96 ± 0.08 0.97 ± 0.06 1.00 ± 0.07 K
dT
dt

2000-2019 Mean 0.028 ± 0.003 0.028 ± 0.002 0.029 ± 0.002 K yr−1

dUohc
dt

2006-2018 Mean 0.56 ± 0.10 0.62 ± 0.09 0.72 ± 0.17 W m−2

dHthx
dt

2006-2018 Mean 1.02 ± 0.22 1.14 ± 0.21 1.39 ± 0.40 mm yr−1

dHgla

dt
2006-2018 Mean 0.63 ± 0.24 0.62 ± 0.04 0.62 ± 0.03 mm yr−1

dHais
dt

2006-2018 Mean -0.02 ± 0.23 0.30 ± 0.10 0.37 ± 0.08 mm yr−1

dHgis

dt
2006-2018 Mean 0.36 ± 0.12 0.57 ± 0.10 0.63 ± 0.07 mm yr−1

Htot 1901-1990 Difference 72 ± 17 83 ± 10 89 ± 32 mm

Hlia 1750 Mean 45 ± 17 45 ± 11 30 ± 13 mm

logit(ff) 1750 Mean 1.69 ± 0.38 1.47 ± 0.28 1.38 ± 0.37 1

Table 1. Constrained variables in Pathfinder, with values before and after calibration. Variables are noted under their text notation, and Tables

B1 and B2 provide the corresponding notation in code. The uncertainty correspond to the 1 σ uncertainty range.

sensitive to climate change (as these would lead to a very weak land sink), or that would exhibit a weak CO2-fertilization effect480

associated with a fast turnover time (that would also lead to a weak sink).

3.5.3 Sea level rise

The prior parameters of the SLR module are the least informed of our Bayesian setup. The model initially underestimates

the thermal expansion, as well as the GIS and AIS SLR rates. The calibration brings the posterior distributions closer to their

respective constraints but it always remain in the lower end of the uncertainty range. The correction is done by adjusting many485

of the module’s parameters (most notably Λgis1, Λais,smb, λais or λgla), and by finding strong correlations among them (thus

excluding physically unrealistic combinations).

The historical SLR is markedly corrected by the constraint: from a 19% gap between the central values of the constraint

and the prior estimate, to only 7% after calibration. Here, we also note that the sum of individual contributions to historical

SLR reported in AR6 do not match that total SLR (Fox-Kemper et al., 2021, Table 9.5), which likely has some impact on490
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Figure 6. Distributions of the constrained variables. Dashed lines give the distributions used to constrain. Black lines give the distribution

before calibration while blue lines give the distribution posterior to calibration. Under a variable’s name, we give the period over which the

constraint is estimated, and the data processing method: mean over the period, difference between last and first year, or sum of all the years

over the period. (1750 is the preindustrial.) Variables are noted under their text notation, and Tables B1 and B2 provide the corresponding

notation in code.

the consistency between our constraints. Finally, although the LIA relaxation contribution is not altered by the calibration, as

its central value remains 50% too high, it is the likely source of the strong correlations found among the parameters of this

module, because it straightforwardly links the individual SLR contributions together.
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Figure 7. Correlation matrix of Pathfinder’s parameters after the Bayesian calibration. Parameters are classified according to the equations

they are related to: climate system, sea level, ocean carbon, land carbon and permafrost carbon. Parameters are noted under their text notation,

and Tables B3 and B4 provide the corresponding notation in code.
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4 Model diagnosis

4.1 Historical period495

Because in the Bayesian setup we do not use annual time series of observations as constraints, the posterior distributions given

in Figure 6 do not inform on the whole dynamic of the model over the historical period. To further diagnose the model’s

behavior, Figure 8 gives the time series from 1900 to 2021 of six key variables. GMST and atmospheric CO2 match very

well the historical observations, by construction of these input time series. The non-CO2 ERF exhibits a very high variability,

owing to our temperature-driven setup and the natural variability in the GMST input. Beyond that, the ERF time series is500

consistent with the AR6 estimates (Smith et al., 2021), albeit somewhat lower on average in the recent past, as seen with the

posterior distribution. Consistently with the interpretation of carbon cycle variables in the calibration results, anthropogenic

CO2 emissions, and the ocean and land carbon sinks are slightly underestimated compared to the GCB estimates (Friedlingstein

et al., 2022). Several reasons could explain this discrepancy, from the lack of land use change in Pathfinder to the inconsistency

of the GCB figures (that do not close the budget, while ours do). Nevertheless, the interest of the calibration is clearly illustrated,505

as the posterior uncertainty range covers observations much better than the prior one.

4.2 Idealized simulations

To complete the diagnosis of our model with common metrics used with climate and carbon models, we ran a set of standard

idealized experiments, corresponding to the CMIP6 abrupt-2xCO2, 1pctCO2, 1pctCO2-bgc and 1pctCO2-rad. A summary of

these metrics’ values is given in Table 2, and the resulting time series are shown in Figure 9.510

The abrupt-2xCO2 experiment sees an abrupt doubling of atmospheric CO2, and it is used to diagnose the model’s ECS that

is defined as the equilibrium temperature for a doubling of the preindustrial atmospheric concentration of CO2 (we acknowl-

edge that it is superfluous with this version of Pathfinder since it is also a parameter). Using the GMST anomaly at the end of

1500 years of this experiment leads to an unconstrained estimate of ECS of 4.1 ± 1.3 K and a constrained estimate of 3.3 ±
0.7 K. Consistently, the latter value is between the ECS value extracted from CMIP6 models (Meehl et al., 2020) that is higher515

(3.7 ± 1.1 K) and the final value assessed in the AR6 that is lower (3.0 K, with a 67% confidence interval between 2.5 and 4.0

K).

Using the 1pctCO2 experiment that sees a 1% yearly increase in atmospheric CO2, we can estimate the model’s transient

climate response (TCR) that is defined as the GMST change after 70 years, when atmospheric concentration CO2 has just

doubled. The CMIP6 models have a TCR of 2.0 ± 0.4 K (Meehl et al., 2020). Pathfinder’s unconstrained value is higher, at520

2.2 ± 0.5 K, while the constrained one goes down to 1.9 ± 0.3 K. If we divide the TCR by the cumulative anthropogenic CO2

emissions compatible with the atmospheric CO2 increase in this experiment, we obtain an estimate of the transient climate

response to emissions (TCRE). Similarly to the TCR, it is higher in the unconstrained ensemble and lower in the constrained

one, when compared to CMIP6 models (Arora et al., 2020). Both downward adjustments of the TCR and TCRE are consistent

with that of ECS, with the posterior TCRE matching very well the AR6 assessed range (Canadell et al., 2021).525
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Figure 8. Historical time series of key variables from Pathfinder. Red lines are observations, black lines are the model’s outputs before

calibration, and blue lines are the same after calibration. Shaded areas and vertical bars correspond to the 1σ uncertainty range. Temperature

observations are taken from HadCRUT5 (Morice et al., 2021), Cowtan and Way (2014), Berkeley Earth (Rohde et al., 2013; Rohde, 2013),

GISTEMP (Hansen et al., 2010), and NOAA/MLOST (Vose et al., 2012). Other sources are NOAA/ESRL (Tans and Keeling, 2010), GCB

2021 (Friedlingstein et al., 2022), and AR6 (Smith et al., 2021).
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To look more closely at the carbon cycle, we perform two variants of the latter experiment: in 1pctCO2-rad, atmospheric

CO2 only has a radiative effect, as it is kept at preindustrial level for the carbon cycle; whereas in 1pctCO2-bgc, atmospheric

CO2 only has a biogeochemical effect, as the climate system sees only preindustrial level. These three experiments are used

to calculate the carbon-concentration (β) and carbon-climate (γ) feedback metrics that measure the carbon sinks’ sensitivities

to changes in atmospheric CO2 and GMST, respectively. We apply the same method as Arora et al. (2020) to calculate these,530

which leads to metrics at the time of CO2 doubling that are in line with CMIP6 models (Arora et al., 2020). As both carbon

sinks were adjusted upwards by the Bayesian calibration, the constraints logically increased both βocean and βland, to values

fairly close to those of the complex models. The γocean is not affected by the calibration, and remains 45% too low, which

again suggests a structural limitation in our formulation of the ocean sink. This is however compensated during calibration by

the γland being 26% higher than in complex models.535

2× CO2 Pathfinder unconstrained Pathfinder constrained CMIP6 AR6

ECS (K) 4.1 ± 1.3 3.3 ± 0.7 3.7 ± 1.1 3.0 (2.0, 4.5)

TCR (K) 2.2 ± 0.5 1.9 ± 0.3 2.0 ± 0.4 1.8 (1.4, 2.2)

TCRE (K EgC−1) 2.20 ± 0.63 1.65 ± 0.32 1.77 ± 0.37 1.65 (1.0, 2.3)

βocean (PgC ppm−1) 0.81 ± 0.10 0.87 ± 0.11 0.91 ± 0.09

γocean (PgC K−1) -12.9 ± 5.4 -12.5 ± 6.0 -8.6 ± 2.9

βland (PgC ppm−1) 1.05 ± 0.5 1.26 ± 0.30 1.22 ± 0.40

γland (PgC K−1) -33.2 ± 26.6 -25.3 ± 24.2 -34.1 ± 38.4

Table 2. Diagnostics of climate and carbon-cycle responses in Pathfinder before and after Bayesian calibration. Comparison with AR6

(Forster et al., 2021; Canadell et al., 2021) and CMIP6 data (Arora et al., 2020; Meehl et al., 2020) is shown. For AR6 data we give the

median and the 90% confidence interval while for every other values we give the mean ± 1 σ

4.3 Scenarios

To further validate Pathfinder, we run the five SSP scenarios (Riahi et al., 2017) for which climate and carbon cycle projections

were reported by a large-enough number of models in the AR6 (namely, ssp119, ssp126, ssp245, ssp370 and ssp585). These

simulations are run with prescribed CO2 concentration and non-CO2 ERF (the latter is taken from Smith et al. (2021)). Time

series of GMST and cumulative land and ocean sinks are shown on Figure 9. Table 3 shows a comparison of the projected540

changes in GMST to the CMIP6 estimates (Lee et al., 2021, Table 4.2), and of carbon pools to Liddicoat et al. (2021) (since

this was not directly reported in the AR6).

Be it on short-, mid- or long-term, Pathfinder’s projections of GMST are very much in line with the one assessed by the

IPCC in the AR6 based on multiple lines of evidence (Lee et al., 2021, Table 4.5). The only significant difference is a smaller

uncertainty range in our projections for the longer-term periods. Although this is the result of the efficiency of the Bayesian545
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Figure 9. Time series of GMST change, integrated land carbon uptake and integrated ocean carbon uptake for idealized experiments (abrupt-

2xCO2, 1pctCO2, 1pctCO2-bgc and 1pctCO2-rad), and projections according to SSP scenarios in Pathfinder. Shaded areas give the 1σ

uncertainty range.
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calibration, one might wonder whether the climate module is over-constrained (or equivalently, too limited in its number of

parameters).

The ocean carbon storage appears overestimated by 5% to 20% by Pathfinder across SSP scenarios. This is consistent with

the upward adjustment of the ocean carbon sink stemming from our Bayesian calibration. To compare the land carbon storage

with CMIP6 models, because our land carbon module does not include land use change processes, we correct the value reported550

by complex models by the cumulative land use change emissions of each scenario (Riahi et al., 2017; Gidden et al., 2019).

While the land carbon storage of Pathfinder is well in line under ssp126 (a scenario consistent with the 2 ◦C target), it is

underestimated in ssp119 (consistent with the 1.5 ◦C target), and increasingly overestimated in higher warming scenarios. A

likely explanation is that the climate-carbon feedback on land is underestimated in Pathfinder, as suggested by the γ metric

seen in Section 4.2. Alternatively (or concurrently), the absence of loss of sink capacity caused by land cover change (Gasser555

and Ciais, 2013; Gasser et al., 2020) can explain the overestimation of the land sink under high CO2. The Pathfinder model’s

estimates of both sinks remain nonetheless well within the CMIP6 models’ uncertainty ranges.

Our SLR emulator gives estimates (Table 4) that are always on the lower of the range reported in the AR6 (Fox-Kemper

et al., 2021, Table 9.9). This can be explained by the fact that our individual SLR rate estimates are on the lower end of

their respective constraints (see Section 3.5.3). This discrepancy also highlights potential structural limitations in the SLR560

module (e.g. too few separate contributions), and the difficulty of calibrating the module given the short time period of data

available, both from complex models (that cover the 21st century only) and observations, compared to the long time scale of

the SLR processes. Nevertheless, our estimates remain within uncertainty range of the IPCC assessment, especially as we do

not account for contribution from land water storage that causes an additional 0.03 [0.01, 0.04] m of SLR in all scenarios in

2100 (Fox-Kemper et al., 2021).565

5 Concluding remarks

In this paper, we have presented the Pathfinder model: a simple global carbon-climate model with selected impact variables,

carefully designed to balance accuracy of representation and simplicity of formulation, and calibrated through Bayesian in-

ference on the latest data from Earth system models and observations. Pathfinder has been shown to perform very well in

comparison to complex models, although there remains room for further improvement of the model and its calibration setup.570

We identify four main avenues to improve the model.

First, some parts of the model may well lean too much on the complexity side of the simplicity–accuracy balance we aimed

to strike, owing to the creation process of Pathfinder that mostly compiled existing formulations. Future development should

therefore strive to reduce complexity wherever possible. The ocean carbon sub-pools and perhaps the land carbon pools are

potential leads in this respect.575

Second, the ocean carbon module alone appears to be limited by its structure inherited from a 25-year-old (yet seminal)

article (Joos et al., 1996). Although it is undoubtedly a significant undertaking, developing an alternative formulation of the
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Experiment Model GMST (K) GMST (K) GMST (K) Ocean Carbon

Storage (PgC)

Land Carbon Storage (PgC)

2021–2040 2041–2060 2081–2100 2015–2100 2015–2100

ssp119 Pathfinder 1.5 (1.3, 1.8) 1.6 (1.4, 1.9) 1.5 (1.2, 1.7) 132 ± 21 49 ± 33

ssp119 AR6 or CMIP6 1.5 (1.2, 1.7) 1.6 (1.2, 2.0) 1.4 (1.0, 1.8) 111 ± 11 73 ± 33

ssp126 Pathfinder 1.5 (1.3, 1.8) 1.8 (1.6, 2.1) 1.9 (1.6, 2.2) 179 ± 28 109 ± 45

ssp126 AR6 or CMIP6 1.5 (1.2, 1.8) 1.7 (1.3, 2.2) 1.8 (1.3, 2.4) 162 ± 8 120 ± 50

ssp245 Pathfinder 1.6 (1.4, 1.8) 2.1 (1.8, 2.4) 2.8 (2.4, 3.3) 265 ± 41 225 ± 76

ssp245 AR6 or CMIP6 1.5 (1.2, 1.8) 2.0 (1.6, 2.5) 2.7 (2.1, 3.5) 252 ± 11 178 ± 76

ssp370 Pathfinder 1.6 (1.4, 1.8) 2.2 (1.9, 2.6) 3.7 (3.2, 4.3) 354 ± 53 330 ± 112

ssp370 AR6 or CMIP6 1.5 (1.2, 1.8) 2.1 (1.7, 2.6) 3.6 (2.8, 4.6) 338 ± 15 269 ± 124

ssp585 Pathfinder 1.7 (1.5, 1.9) 2.5 (2.2, 2.9) 4.4 (3.8, 5.2) 420 ± 63 409 ± 148

ssp585 AR6 or CMIP6 1.6 (1.3, 1.9) 2.4 (1.9, 3.0) 4.4 (3.3, 5.7) 398 ± 17 311 ± 162

Table 3. Comparison of SSP scenarios for GMST change projections (w.r.t. 1850–1900) to AR6 (Lee et al., 2021, Table 4.5), and for ocean

and land carbon storage projections to CMIP6 (Liddicoat et al., 2021). Land carbon storage projections were corrected using the land use

change emissions data from SSPs (Riahi et al., 2017; Gidden et al., 2019). For GMST data we give the median and the 90% confidence

interval while for every other values we give the mean ± 1 σ

ocean carbon dynamic, calibrated on state-of-the-art ocean models and properly connected to ocean pH and the ocean of the

climate module, would benefit more than just the SCM community.

Third, integration of land use and land cover change in such a model appears warranted, despite the difficulty of doing so580

in a physically sensible yet simple manner. Given our expertise with the OSCAR model and its bookkeeping module (Gasser

et al., 2020), we are confident that this can be done, although it will demand extra care to keep the model compatible with the

IAMs it is also meant to be linked to.

Fourth, the Bayesian setup can be extended, notably by including more time periods for the existing constraints, but also by

introducing and constraining entirely new variables such as isotopic ratios (Hellevang and Aagaard, 2015) or inter-hemispheric585

gradients (Ciais et al., 2019); although a balance must be struck with respect to the calibration’s computation time. Here, we

caution against including complex models’ results as constraints in the Bayesian calibration, as was done for the IPCC AR6

(Smith et al., 2021; Nicholls et al., 2021), as it goes against the philosophy of Pathfinder to use complex models’ results as

prior information only.
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Experiment Model SLR (m) SLR (m) SLR rate (mm yr−1) SLR rate (mm yr−1)

2050 2100 2040–2060 2080–2100

ssp119 Pathfinder 0.15 (0.13, 0.18) 0.30 (0.25, 0.36) 3.5 (2.9, 4.2) 2.7 (2.2, 3.4)

ssp119 AR6 0.18 (0.15, 0.23) 0.38 (0.28, 0.55) 4.1 (2.8, 6.0) 4.2 (2.4, 6.6)

ssp126 Pathfinder 0.16 (0.14, 0.19) 0.35 (0.30, 0.43) 4.1 (3.5, 5.0) 3.6 (2.9, 4.5)

ssp126 AR6 0.19 (0.16, 0.25) 0.44 (0.32, 0.62) 4.8 (3.5, 6.8) 5.2 (3.2, 8.0)

ssp245 Pathfinder 0.17 (0.15, 0.20) 0.46 (0.39, 0.56) 5.0 (4.2, 6.0) 6.2 (5.1, 8.0)

ssp245 AR6 0.20 (0.17, 0.26) 0.56 (0.44, 0.76) 5.8 (4.4, 8.0) 7.7 (5.2, 11.6)

ssp370 Pathfinder 0.18 (0.15, 0.21) 0.56 (0.47, 0.69) 5.5 (4.7, 6.7) 9.1 (7.4, 11.7)

ssp370 AR6 0.22 (0.18, 0.27) 0.68 (0.55, 0.90) 6.4 (5.0, 8.7) 10.4 (7.4, 14.8)

ssp585 Pathfinder 0.19 (0.17, 0.23) 0.67 (0.56, 0.82) 6.4 (5.4, 7.8) 11.4 (9.1, 15.0)

ssp585 AR6 0.23 (0.20, 0.29) 0.77 (0.63, 1.01) 7.2 (5.6, 9.7) 12.1 (8.6, 17.6)

Table 4. Comparison of SSP scenarios between Pathfinder and AR6 for SLR (w.r.t. 1995–2014) and SLR speed projections (Fox-Kemper

et al., 2021, Table 9.9). We give the median value and the 90% confidence interval in parentheses

Fifth, although our model is restricted to CO2 by design because of how IAMs like DICE (Nordhaus, 2017) are also limited590

to CO2 emissions, we can imagine many reasons why one would want to add non-CO2 climate forcers into Pathfinder. We

would suggest doing so by following the model’s philosophy: that is, by taking existing reduced-complexity formulations such

as something between FaIR (Leach et al., 2020) and OSCAR (Gasser et al., 2017), and adding the new parameters into the

Bayesian setup with the relevant observational constraints.

In spite of these few shortcomings and potential development leads, Pathfinder v1.0.1 is a powerful tool that fits perfectly595

the niche it has been created for. We will further demonstrate the strengths and flexibility of Pathfinder in other publications.

Meanwhile, we invite the community to seize this open source model, and use it in any study that could benefit from a simple,

fast and accurate carbon-climate model, aligned with the latest climate science.
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2.3 . Representation of the ocean in Pathfinder
In the concluding segment of our paper referenced in section 2.2, we proposed potential

advancements through an alternative representation of the ocean in Pathfinder. In this section, we
delve deeper into the limitations currently present in Pathfinder’s representation of the oceans. This
discussion draws on Séférian et al., 2023, to which I am a co-author.

2.3.1 . Ocean Heat-Carbon nexus
The pivotal role of the oceans in decelerating atmospheric CO2 accumulation and global

warming is well recognized. Observational data confirms that they absorb more than a quarter of
annual human-induced CO2 emissions. This characteristic equips the oceans with a substantial
influence on atmospheric CO2 levels. Additionally, the oceans sequester the majority of the
supplementary heat generated by radiative forcing from greenhouse gas accumulation in the
atmosphere. By moderating both CO2 and heat uptake, the oceans establish a critical link between
Earth’s climate and carbon cycle responses to cumulative CO2 emissions, collectively known as the
"Ocean Heat-Carbon Nexus" (Canadell et al.; 2021)

Themechanisms leading to the Ocean Heat-Carbon Nexus aremulti-faceted, yet well understood.
The primary drivers are the exchanges of heat and carbon across the sea-air interface, which direct the
partitioning of anthropogenic CO2 emissions and additional heat (MacDougall; 2017; Frölicher et al.;
2015). These processes are typically parameterized into well-established expressions that link the flux
to wind stress and the gradient of heat or CO2 across the sea-to-air interface (Garbe et al.; 2014).
The other driver of the Ocean Heat-Carbon Nexus arises from the suite of processes controlling the
capacity of the oceans to store heat and CO2, respectively governed by the important heat capacity
and the CO2 buffering capacity of seawater.

2.3.2 . Regime Shift in the Ocean Heat-Carbon Nexus
Under rising atmospheric CO2 and associated climate change, both theory and complex models

suggest that the Ocean Heat-Carbon Nexus may display a regime shift (Figure 2.3). This regime shift
arises from a combination of three factors. First, both models and theory show that there is no
physical limitation that would reduce the ability of surface ocean temperature to equilibrate with
the atmospheric temperature. This implies that there is no mechanism that would limit the capacity
of the oceans to absorb the additional heat from the atmosphere. Second, and in contrast, the
capacity of the oceans to store CO2 differs from its capacity to store heat because the carbon
buffering capacity decreases as soon as the oceans absorbs anthropogenic CO2 and stores it as
dissolved inorganic carbon (Egleston et al.; 2010). Third, the accumulation of heat tends to
simultaneously exacerbate this phenomenon by reinforcing the stratification of the surface ocean,
preventing the water masses in contact with the atmosphere from mixing with the subsurface
ocean. It reinforces the regime shift of the ocean heat-carbon nexus in a future warmer climate
where each Joules taken up by the oceans drive a stronger saturation of the ocean carbon uptake.

2.3.3 . Comparison of key geophysical properties between ESMs and Pathfinder
Virtually all climate models are assumed to capture the key features of the Ocean Heat-Carbon

Nexus. In particular, because all models do simulate a near proportional relationship between
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Figure 2.3: Depiction of the expected regime shift in the ocean heat-carbon nexus (from Seferian etal.). The ocean heat-carbon nexus emerges from the relationship between the ocean heat uptake (xaxis) and the ocean carbon uptake (y axis).

cumulative emissions of CO2 and change in global mean temperature (the so-called transient
climate response to cumulative CO2 emissions) that mainly arises from the interplay between the
heat and carbon uptake by the oceans (MacDougall and Friedlingstein; 2015; Williams et al.; 2016;
MacDougall; 2017). However, the question of how far the representation of the ocean heat-carbon
nexus is comparable and physically consistent across these different modelling platforms has never
been investigated. Here we take a closer look at the representation of the ocean heat-carbon nexus
in Pathfinder and compare it with the representation in the ESMs.

The modelling paradigm of ESMs primarily arise from the process understanding of the flow of
energy, moisture and chemicals through the atmosphere, ocean and land surface, governing Earth’s
climate. These processes are either explicitly resolved or parameterized in ESMs. On the other hand,
SCMs like Pathfinder are much simpler models than ESMs. They are parametric models designed to
be CPU-efficient, flexible and easily tunable in order to emulate the response of complex ESMs within
a certain domain of validity. Although based on a suite of assumptions and simplification, Pathfinder
is fitted to reproduce key global features of the modern climate, as shown in section 2.2.

If the performances of Pathfinder on replicating historical observations are very satisfying, its
response when used in an idealistic simulation framework where atmospheric CO2 rises by 1% per
year exhibits a much different picture (Figure 2.4). Although the change in global mean surface
temperature is consistent with the model behavior as documented in published climate sensitivity
assessment (Forster et al.; 2021), the response of the ocean heat and carbon uptake as simulated by
Pathfinder does not display the saturation of the ocean carbon uptake observed in the ESMs on
Figure 2.4 and confirmed by theory.

Interestingly, the response of Pathfinder and ESMs is almost indistinguishable, with the uptake
of heat and carbon mirroring historical periods in magnitude. This divergence between historical
period consistency and theoretical inconsistency in idealistic simulations can be attributed to two
key factors. Firstly, the available historical observations do not provide a sufficient constraint on the
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calibrated SCMs when projecting SCMs in a warmer range. Sherwood et al. (2020) also showed the
limitations of the historical record to constrain climate sensitivity.

Secondly, Pathfinder poorly captures the regime shift in the ocean heat-carbon nexus. When
tracking the timing of the regime shift in the ocean heat-carbon nexus as simulated by both
modelling platform, we show a change in the heat-carbon uptake relationship in Pathfinder in year
1900 for a simulation starting in 1850. This is similar to what can be found in ESMs, with a timing of
the regime shift in year 1896±10. However, with pronounced heat and carbon uptake, differences
are clear. While ESMs show saturation in carbon uptake around 5 PgC yr−1, Pathfinder only shows a
progressive diminution of the slope without saturating at 6 PgC yr−1. The perturbed parameter
ensemble (Figure A.1) suggests that this feature is robust across a wide range of parameters and
hence demonstrated that the representation of the ocean heat carbon nexus arises prominently
from the structural properties of Pathfinder.

2.3.4 . Inconsistent physical representation of the key drivingmechanisms of the oceanheat-carbon nexus
Our study identifies several limitations in the Pathfindermodel’s representation of the ocean heat-

carbon nexus. Pathfinder uses certain assumptions and simplifications which lead to inconsistencies
when compared to Earth System Models (ESMs). An analysis of the model’s properties shows that
the modelling framework of Pathfinder do treat in two distinct modules the thermal response of the
ocean to radiative forcing and that of the ocean carbon cycle. Therefore, Pathfinder may rely on
physically inconsistent structures and parameters – such as mixed-layer depths (MLD) and relaxation
time-scales – to simulate the oceanHeat-Carbon nexus, because of essentiallymodelling two different
oceans. In contrast, ESMs do resolve the suite of processes governing the uptake of heat and carbon
by the ocean consistently.

Compared to ESMs which consistently process the uptake of heat and carbon by the ocean, our
analysis reveals that Pathfinder overlooks or simplifies certain processes. It utilizes a pure-diffusion
scheme for vertical heat and carbon exchange with the atmosphere, and indirect interactions for
the coupling between ocean physics and the carbon cycle (see section 2.2). The MLD is a notable
example of such a simplification. In Pathfinder, the MLD is fixed in time and calculated from the
model parameters, producing inconsistent depths in the climate and carbon modules. Indeed, the
MLD is estimated at 86 +- 11 m in the climate module while it is 45 +- 4 m in the carbon module. Both
those values of MLD fall outside the observation range, suggesting that this parameter has been
underlooked. However, ESMs resolve the MLD and allow it to respond to anthropogenic forcing.
These structural and parametric oversights in the Pathfinder model could contribute to an inaccurate
representation of the ocean heat-carbon nexus explaining the failure in reproducing the saturation
of the ocean carbon sink.

2.3.5 . Consequences on projections
When the Pathfinder model is used for projections, its limitations have implications, as

illustrated in Figures 2.4 and 2.6. To address these, we introduced a new constraint using data from
ESMs, tying the ocean heat uptake and the ocean carbon uptake at 2xCO2 ( year 70 of the 1pctCO2simulation). The distribution of this model-based constraint is assumed normal, and taken from the
CMIP6 ESMs’ average and standard deviation (4.58 ± 0.38 ZJ PgC−1). We integrate this novel
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(a) (b)

(c) (d)
Figure 2.4: Comparison of projected warming and ocean heat carbon nexus between ESMs and SCMsunder an idealized set-up. Panels a), b) and c) shows the temporal evolution of the projected oceanheat uptake, ocean carbon uptake and the of the heat uptake on the carbon uptake as simulatedby both ESMs and Pathfinder. Panel d) display the representation of the ocean heat carbon nexusbetween ESMs and SCMs. Pathfinder projections with and without the constraint on the oceanresponse are given in colored solid lines, individual ESMs in thin grey lines and ESM multi-modelmean in green lines.
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Figure 2.5: Distribution of the ratio between the ocean heat uptake and carbon uptake. Greenline gives the distribution in ESMs CMIP6 models used to constrain. Blue line gives the distributionposterior to the calibration without the constraint on the ratio. Orange line gives the distributionposterior to the calibration considering the constraint on the ratio

constraint to the 19 others already used during the Bayesian calibration of Pathfinder and show its
effect on the ratio’s distribution in Figure 2.5. The main effect is to generate a correlation between
the parameter reflecting the depth of the mixed layer and the parameters of the climate module.
We also observe a small effect on idealistic projections in Figure 2.4 with a slightly earlier regime
shift and a diminution of the maximum carbon uptake. However, there is still no clear saturation of
the carbon uptake.

Before applying the constraint, when focusing on the two high-mitigation/low overshoot scenarios
(ssp119 and ssp126), we find at peak warming ranges from 0.91°C to 2.98°C with a mean estimate
of 1.66°C for ssp119, and from1.03°C to 3.57°C with a mean estimate of 1.94°C for ssp126. The high
overshoot scenario (ssp534-over) displays a range of peak warming between 1.42°C and 4.76°C with a
meanestimate of 2.60°C. The application of the geophysical constraint in the oceanheat-carbonnexus
reinforced the simulated warming by about +0.1°C for both high-mitigation/low overshoot scenarios
and up to 0.2°C for the high-overshoot scenario. The constraint also results in a slightly smaller spread
in projected warming (about 5-8% with respect to the reference simulations). Pathfinder simulates a
meanwarming of 1.75°C at peakwarmingwith a range of 0.99–2.91°C in ssp119 and 2.06°Cwith a range
of 1.14–3.52°C for ssp126. Under the high-overshoot scenario the peakwarming ranges between 1.57°C
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Figure 2.6: Temperature projections of six SSPs scenarios without constraining the ratio between theocean heat uptake and the ocean carbon uptake at 2xCO2 (plain lines) and with constraining the ratio(dashed lines). We only show the median value across 2000 Pathfinder’s configurations.

and 4.72°Cwith amean estimate of 2.76°C. While seemingly low, this 0.1°C difference is consequential
in the case of ambitious low-warming scenarios. With an older version of the MAGICC simple climate
models (Meinshausen et al.; 2011) with the 600-probabilistic parameters samples, it was assessed that
+0.1°C at peak warming reduces the likelihood of the ssp126 scenario to stay below 2°C from 66% to
54% and from 10% to 6%. A similar difference of 0.1°C in MAGICC temperature outcomes was also
found in Nicholls et al. (2022) when comparing the IPCC SR15 (Rogelj et al.; 2018) and AR6 (Riahi et al.;
2022) due to the increase in assessed historical warming between SR1.5 and AR6, and an improved
(i.e., weaker) response to emissions.

As stated in this work, such difference is enough to cause all the “1.5°C no overshoot” scenarios
to be reclassified as “1.5°C low overshoot” scenarios. Here, our finding has a stronger implication
has it concerns a geophysical feature commonly misrepresented in all SCMs, potentially inducing in
systematic biases in the projected warming. The implication for the recent categorization of scenarios
(Schleussner et al.; 2022) might be stronger as the additional warming could result in emptying the C1
category that limits warming to 1.5°C in 2100 with a greater than 50% chance.

2.3.6 . Improving Pathfinder
The limitations of the Pathfinder model and their implications necessitate improvements.

Despite the corrections made by adding a constraint on ocean response, the existing structure of
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the Pathfinder model, based on a quarter-century-old article (Joos et al.; 1996), prevents significant
changes in its behavior. For this reason, we decided not to include this constraint in Pathfinder for
all other studies published in this thesis. A thorough revision is needed to develop an alternative
formulation of ocean carbon dynamics based on modern ocean models and properly linked to the
climate module. This would not only help improve the ocean carbon dynamics in Pathfinder, but
also the ocean pH estimates. Given the implications of these results for categorizing scenarios and
achieving low warming targets, addressing these limitations should be a priority for future research.
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3 - Using Pathfinder to explore CO2 emission scenarios
In chapter 2, the need for a new SCM is justified. In the same chapter, we respond to this need

by proposing Pathfinder, which we describe and diagnose, highlighting its strengths but also its
opportunities for improvement. In this chapter, we use Pathfinder to explore new mitigation
scenarios. First, we use the most recent data in a very classical way to estimate the chances that
climate change will stay below 1.5°C, for 54 different idealized but meaningful scenarios (section 3.1).
We then propose an innovative approach to map the range of pathways compatible with different
planetary boundaries to climate change (section 3.3).

3.1 . On the chances of staying below the 1.5°C warming target
Abstract:The 2022 rebound in fossil fuel CO2 emissions to pre-COVID19 level and the insufficientmitigation pledges at recent COPs question the feasibility of “keeping the 1.5°C target alive.” Here,we calculate the CO2 emissions reduction physically required to stay below 1.5°C, using the latestavailable data up to 2022. For a 50% chance of staying below 1.5°C during this century, fossilfuel and industry CO2 emissions need to decrease linearly by about 5% per year. This level ofdecarbonization would need to occur every year. Such an annual mitigation rate is only slightlyless than the short-term unprecedented emissions reduction caused by the COVID19 pandemic.We further show that the chances of staying below 1.5°C of global warming critically hinge on theassumed land-use CO2 emissions and non-CO2 forcing.
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Main 

At COP27 in Sharm El Sheikh, the Parties reaffirmed their ambition to limit climate change to a 

temperature target of 1.5°C above pre-industrial levels1. Given the world’s emissions trajectory in 

recent years2-4, meeting this target without overshoot seems very ambitious at best, and virtually 

impossible at worst. Global warming has already reached 1.09°C above pre-industrial levels over the 

2010-2019 period5. The latest IPCC 6th Assessment Report (AR6)6 gave an estimate of the remaining 

carbon budget (RCB; that is, the total amount of allowable anthropogenic CO2 emissions) of 500 GtCO2 

from January 2020 for a 50% chance of staying below 1.5°C. This was recently updated2 to 380 GtCO2 

from January 2023, given current annual emissions of ~40 GtCO2 per year2. Another study using an 

updated methodology7 gave an estimate of 300 GtCO2 from January 2022, which is 260 GtCO2 from 

January 2023. One of the sources of uncertainty in the RCB is the assumed level of non-CO2 emissions. 

An aggressive and early abatement of methane and black carbon emissions would advance the timing 

of peak warming and reduce its magnitude8. On the other hand, reductions in sulphate aerosol and 

NOx emissions would cause additional warming in the short term9. Here, we combine the latest 

available data on temperature10, CO2 concentration11, fossil fuel CO2 emissions (including industrial 

processes), land use change (LUC) emissions2, and non-CO2 radiative forcing (RF)12 with the Pathfinder 

model to calculate what it takes to remain below 1.5°C. Pathfinder is a reduced-complexity climate 

and carbon-cycle model, calibrated on observations and climate projections from AR613. By 

differentiating between fossil fuel and LUC emissions, and by exploring non-CO2 RF scenarios 

corresponding to the range of ambitious mitigation scenarios in AR6, we shed light on the likelihood 

of staying below the 1.5°C target and the effect of LUC and non-CO2 on this likelihood.  

To estimate the level of effort needed to remain below 1.5°C, we created stylized mitigation scenarios 

(Supplementary Figure 1). We consider fossil fuel and LUC CO2 emissions separately, as they have 

different dynamics and drivers. For fossil fuel CO2 emissions, we assume a linear rate of decrease 

starting from 2022 and reaching zero in 6 different years (every 5 years from 2035 to 2060). For LUC 

emissions, we apply three interpretations of the Glasgow pledge on deforestation14: a pessimistic one 

with constant emissions until 2050, a mid-range one with a linear decrease of LUC emissions down to 

zero in 2050, and an optimistic one that leads to a peak of negative CO2 emissions in 2035; all 

interpretations then go back to zero in 2100. We also use three contrasted scenarios of non-CO2 RF 

within the most ambitious category of scenarios assessed in the latest IPCC report15,16 (C1 category). 

Finally, we simulate global temperature change until 2100, a commonly accepted time frame of the 

Paris Agreement, and further until 2300 to analyse longer-term dynamics. 

Figure 1 shows that staying below 1.5°C is not fully guaranteed in any of our mitigation scenarios. Even 

a very high decarbonization rate (fossil fuel) of 7.7% yr-1 with the most optimistic assumptions on non-

CO2 and LUC gives only up to an 83% chance. If we take a scenario with intermediate assumptions on 



non-CO2 and LUC, a decarbonization rate of 5.6% yr-1 (i.e. net-zero fossil fuel CO2 emissions in 2040) is 

required to maintain a 53% chance of staying below 1.5°C. This represents a reduction of the same 

order as the temporary 6.3% reduction observed in 2020 during the COVID19 pandemic17, when 

human activities were severely constrained; however, this level of decarbonization would need to 

occur each single year. Our results further show that the choice of non-CO2 scenario has a larger 

impact on the exceedance probability than the LUC scenario, with a maximal spread of 48 and 22 

percentage points respectively (Figure 1). This finding is consistent with the large uncertainty in future 

warming due to non-CO2 reported earlier18.  

 

The RCB shown in the latest IPCC report is based on a large number of scenarios and many models 

with different assumptions. Our approach selectively presents scenarios under an internally consistent 

set of model assumptions. Despite this conceptual difference, a comparison between the 

decarbonization rates in our scenarios and the ones implied by the standard IPCC RCB is still 

informative. Our middle-of-the-road scenario combined with a decarbonization rate of 7.7% yr-1 leads 

to 65% chance of staying below 1.5°C, while the same decarbonization rate gives 50% chance with the 

latest estimate from the IPCC7 (after subtracting the central CO2 LUC emissions). The reference 

milestone of the Emissions Gap report19 of 33 GtCO2 yr-1 emissions in 2030 is comparable to a 

decarbonization rate of 2.6% yr-1 combined with the high LUC scenario. This scenario of the Gap report 

is estimated to have a 33% chance of staying below 1.5°C, while our comparable scenario with a mid-

range non-CO2 scenario gives only an 11% chance. We are therefore more pessimistic than the Gap 

report and more optimistic than the IPCC approach. 

However, if we extend the time horizon to 2300 assuming constant non-CO2 RF after 2100, the chance 

of staying below 1.5°C with a 7.7% yr-1 decarbonization rate drops to 37% (compared to 65%). The 

lower chance for staying below 1.5°C over the longer time horizon is caused by the long-term dynamics 

of the carbon sinks and permafrost carbon, which altogether release CO2 after reaching zero 

emissions. This implies that even if we make the tremendous mitigation efforts needed to stay below 

1.5°C until 2100, some net negative emissions will be needed later on, although such long-term CO2 

emission pathways beyond this century are highly model-dependent3,20 and require further analysis 

using multiple models. 

We have shown that the chances of exceeding the 1.5 °C warming level are high under a wide range 

of assumptions. But when will we know that we have actually crossed the 1.5 °C threshold? If we keep 

emitting CO2 at the current rate, there is about a 50% chance of exceeding the 1.5°C level in 2033 

(Supplementary Figure 2). If we further consider the natural variability in global temperature (see 

Methods), the same likelihood occurs four years earlier (in 2029). This estimate is slightly more 

optimistic than the estimate from the Met Office (that is, a 48% chance of exceeding 1.5°C before 

2026). However, those are estimates for a one-year exceedance whereas the Paris Agreement goal is 

to limit long-term warming levels, which are typically taken over a 10- or 20-year interval5. 

 

The 1.5°C target plays a central role in climate negotiations. Today, the mitigation efforts required to 

keep a mere fifty-fifty chance of meeting the 1.5°C target are comparable to sustaining a CO2 emissions 

reduction with a magnitude similar to the drop caused by COVID19. This would need to happen every 

year until 2040, and to be followed by net negative emissions to avoid any rebound effect. While 

additional efforts to stop deforestation and to reduce emissions of warming non-CO2 species such as 

methane and black carbon would lower the challenge on the fossil fuel CO2 side, nothing less than a 



linear decarbonization rate of 3% yr-1 can preserve these odds. Over the past five years, the trend of 

fossil fuel CO2 emissions has remained positive at 0.3% yr-1. Even if emissions have actually started to 

plateau, we argue that staying below 1.5°C is all but out of reach. We believe it is time the scientific 

community acknowledged this fact. While it is likely that we will exceed the 1.5°C threshold, it does 

not change the fundamental challenge: we have to anticipate and adapt to climate impacts, and we 

have to pursue mitigation efforts, because every fraction of a degree matters. 

Lead contact 

The lead contact is Thomas Bossy: thomas.bossy@lsce.ipsl.fr 

Data and code availability 

The source code of Pathfinder is openly available at https://github.com/tgasser/Pathfinder (last 

access: 13 March 2023). A frozen version of the code as developed in the paper can be found on 

Zenodo at https://doi.org/10.5281/zenodo.7003848. Additional data available upon request. 

Experimental procedures 

We used Pathfinder v1.0.113, a reduced-complexity carbon-climate model. The climate subcomponent 

that links global mean surface temperature to effective RF follows a widely used 2-box model with 

deep ocean heat uptake21. The ocean carbon cycle follows the structure of the Bern Simple Climate 

Model22. The land carbon cycle was adapted from the compact Earth system model OSCAR23. CO2 

emissions from permafrost thaw are globally calculated with the emulator developed by Gasser et 

al.24. The 77 model parameters are based on CMIP6 models, and 44 of them are calibrated through 

Bayesian inference25 using observations and assessed values from the latest IPCC report13. In 

particular, we used observations until 2021 to constrain the temperature10, the non-CO2 RF12, the CO2 

concentration11, CO2 emissions2 as well as the ocean and land carbon sinks2. To account for physical 

uncertainty, the model is run under 534 different configurations in which the 44 parameters are drawn 

from the posterior probability distributions obtained after the Bayesian calibration. The configurations 

were chosen so the historical non-CO2 RF and the anthropogenic CO2 emissions remain within the 

uncertainty range of the most recent estimates. Those estimates were taken in 2022 for CO2 

emissions2 (36.7 ± 1.8 GtCO2 yr-1 for fossil fuel and 4.0 ± 2.2 GtCO2 yr-1 for LUC) and 2019 for non-CO2 

RF11 (1.16 ± 0.13 W m-2). To have the historical starting point of our simulations in 2022, we used the 

trend on the last 10 years available for non-CO2 RF to infer the 2020, 2021 and 2022 values (while CO2 

emissions were taken from the latest Global Carbon Budget2). To model inter-annual temperature 

variability, we added ex-post a red noise on the RF and a white noise on the temperature in the climate 

module26, using the same parameter distributions as in FaIR v2.1 that is calibrated on CMIP6 models27. 

As historical pathways are different in every configuration of the model due to physical uncertainty, 

the starting point of our future scenarios differs depending on the configuration (Supplementary 

Figure 1). For fossil-fuel emissions, we apply a stochastic approach to introduce uncertainty to the 

historical values consistent with the global carbon budget. The historical values of LUC emissions and 

their uncertainty are inferred by computing the difference between global anthropogenic total CO2 

emissions obtained from the Pathfinder historical simulations and those from fossil-fuel emissions. 

Similarly, we decompose non-CO2 RF into a component of non-CO2 greenhouse gases (GHGs) and 

another component of all other non-CO2 RF (including aerosols). We apply a similar stochastic 

approach to non-CO2 GHGs to incorporate uncertainty using assessments from the AR69. By 

subtracting the RF of non-CO2 GHGs from the overall non-CO2 RF, we derive the associated uncertainty 

on other non-CO2 RF.  



In total we explore 54 scenarios reaching net-zero CO2. We have 6 possible dates for net-zero fossil 

fuel emissions (including industrial processes) in 2035, 2040, 2045, 2050, 2055 and 2060. Those 

emissions are assumed to decrease linearly to zero at the chosen date and to remain zero afterwards. 

To each fossil fuel emission scenario we associate 3 LUC scenarios and 3 non-CO2 RF scenarios. Low 

LUC emission scenario is equivalent to the “end gross forest loss” interpretation of the Glasgow pledge 

on deforestation12. Medium LUC is the “end net forest loss” scenario. High LUC is the “end tree cover 

loss” scenario. For non-CO2 RF, we choose 3 scenarios from the C1 category in the latest IPCC 

report15,16. One in the upper range of this set, one mid-rand and one in the lower range (see 

Supplementary Figure 1). To be consistent with historical values in every configuration of the model, 

we rescale non-CO2 RF due to GHGs and other non-CO2 RF separately.  

For Supplementary Figure 2, we needed to explore a business as usual scenario, so we took a mid-

range scenario (IMAGE 3.2 - SSP2_SPA2_45I_LIRE) among the C6-C7 ensemble. Both fossil fuel and 

LUC CO2 emissions remain at 2022 level until 2050. 

Author contributions Methodology, T.B. and T.G.; writing – original draft, T.B.; visualization, T.B.; 

conceptualization – writing – review & editing – all authors. 
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Figure 1 Chances of staying below 1.5°C following various mitigation scenarios for fossil fuel and LUC 

CO2 emissions and non-CO2 RF. Fossil fuel CO2 emissions are assumed to decrease linearly to zero in 

2035, 2040, 2045, 2050, 2055 or 2060. The colors distinguish the scenarios for non-CO2 RF, marker 

shapes differentiate scenarios for CO2 LUC emissions while filled and open markers differentiate the 

time horizon considered for the 1.5°C target (respectively 2100 and 2300). To keep the figure readable, 

the open circle for the 2300 likelihood is only given for the central case (medium LUC and RF) and the 

low LUC /high non-CO2 and high LUC /low non-CO2 combinations are not shown. The red crosses are 

the updated IPCC budgets estimated by Lamboll et al.7 to which our central LUC CO2 emissions was 

subtracted. The dashed line indicates the level of the short-term drop in fossil fuel CO2 emissions 

caused by the COVID pandemic17. Bar plots show the associated budget for fossil fuel emissions (grey 

bars) and the LUC emissions scenarios (brown bars). The 90% uncertainty range is shown in the 

brackets. 

  



 

Supplementary Figure 1 CO2 emissions and non-CO2 RF scenarios used in this study. Shaded areas 

around historical pathways indicate the 1-sigma uncertainty range. As historical pathways are 

different in every configuration of the model due to physical uncertainty, the starting point of our 

projection scenarios differs depending on the configuration. Here, plain lines for both historical and 

projections show the median value given by Pathfinder. 

  



 

Supplementary Figure 2 Chances of remaining below 1.5°C if CO2 emissions remain at current 2022 

levels and if non-CO2 RF follows a scenario in the middle range of the C6-C7 ensemble16 from AR6 

(corresponding to a combination of current policies and moderate actions). Black line indicates the 

results obtained without considering natural variability. Red line shows those including natural 

variability. 
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3.2 . Inversion of the causal chain
In Chapter 2 we presented Pathfinder and demonstrated its robustness and reliability.

Therefore, we could use it to assess the chances of staying below 1.5°C for a series of idealistic
scenarios presented in the previous section. This small study follows the traditional causal chain
which is also followed by the IPCC to create its reference scenarios. As we reflected on the
limitations of this approach, we came up with the idea of using the features of Pathfinder to
propose an entirely new framework for creating and analyzing innovative emissions scenarios.

The conventional method adheres to the natural causation of the Earth system, resulting in a
limited number of scenarios. This limitation arises from the inflexibility and the complexity of the
models, leading to a limited number of scenarios being analyzed in each IPCC cycle. Furthermore,
these scenarios, built on socio-economic storylines, have little constraint on their potential future
impact levels, which leads to a weak sampling of potential climatic impacts. Indeed, the future state of
the climate system and its impacts are often overly simplified to a single physical variable: the average
change in global surface temperature. While this simplification aids communication, it provides a
vague and abstract understanding that masks the myriad of potential mitigation options and various
climatic impacts (Hansen et al.; 2012; Riahi et al.; 2017; Seneviratne et al.; 2018).

Figure 3.1: Synthesis of our approach to inverse the IPCC’s natural causal chain
Here, we aim to introduce a more innovative and holistic approach, thereby addressing the

limitations in the current method. By flipping the causal chain, we propose to explore future
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climates from a fresh perspective. This innovative approach anchors itself on the physical modeling
of the Earth system, essentially reversing the natural causality of the system (Figure 3.1). Climate
objectives are defined in terms of system’s physical variables. These set of trajectories are then
numerically inverted to derive compatible anthropogenic emission trajectories. We want to further
emphasize the importance of formulating climate targets in terms of impacts. These impacts are
global (global temperature change, ocean acidification, sea level rise), but our approach is devoted
to be enlarged to regional, or even socio-economic impacts (see section 3.4). The approach pays
particular attention to potential incompatibilities and synergies between objectives that we define in
terms of planetary boundaries in the next section.

The following chapters of this thesis will further elaborate on this innovative approach. Chapter 3
delves into the inverse approach from physical impacts to CO2 emissions, and Chapter 4 will assess
the cost of these CO2 emissions. This approach aims to reflect on some limitations of the current
IPCC approach, offering a comprehensive, flexible, and impact-focused methodology that can better
inform climate change research and scenario makers.
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3.3 . Spaces of anthropogenic activities compatible with planetary boundaries

Abstract:The concept of planetary boundaries delineates the Earth system’s limits within whichhumanity can sustainably prosper. While these boundaries are expressed in terms of maximumenvironmental impacts, translating them into actionable policies requires linking them toanthropogenic activities. Some boundaries are expressed directly in terms of anthropogenicactivities, and the climate change boundary on temperature can be translated into a carbonbudget. However, other boundaries such as ocean acidification have not been translated intoanthropogenic activities and the effect of combining boundaries has not yet been addressed.Here, we introduce a new modelling framework to translate four ‘planetary boundaries’: two ofthe nine original boundaries (global warming, ocean acidification), and two new relevant onesfor climate impacts (sea level rise and Arctic sea ice melt). Using a reduced-form carbon-climatemodel, we map a wide range of anthropogenic CO2 emissions and removals pathwayscompatible with these boundaries, accounting or not for solar radiation management (SRM)actions that would reduce warming. To account for uncertainties, our framework estimates‘safety levels’ as probabilities that ensure adherence to these boundaries. For each combinationof planetary boundaries, we either set the safety level and determine limits of the compatiblespaces for emissions or we impose conditions on key characteristics to estimate an associatedsafety level. With CO2 emission peaking in 2030, achieving net-zero CO2 in 2100 would stillrequire up to 10 PgC yr-1 of CDR but no SRM to ensure a safety level of the global warmingboundary of 66%. This probability drops to 50% for when the sea level rise or the Arctic sea iceboundary cannot be surpassed. Considering the ocean acidification boundary further reducesthe safety level to only 26%. Notably, the combination of all four boundaries results in a safetylevel of 12%, highlighting a non-linear relationship where the safety level is lower for allboundaries together rather than for any individual. These non-linear limits on compatibleemissions when adding multiple boundaries emphasize the need to include multiple impacttargets in future scenarios. Our framework offers insights for exploring and designing such newscenarios, aiding in the development of sustainable and resilient strategies for the future.
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Spaces of anthropogenic CO2 emissions compatible with planetary 

boundaries 
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Philippe Bousquet 

Abstract 

The concept of planetary boundaries delineates the Earth system’s limits within which humanity can 

sustainably prosper.  

Here we introduce a new modeling framework to translate four "planetary boundaries": global warming, 

ocean acidification, sea level rise, and Arctic sea ice melt. Using a reduced-form carbon- climate model, 

we map a range of anthropogenic CO2 emissions and removals pathways consistent with these 

boundaries, accounting or not for solar radiation management (SRM) measures that would reduce 

warming. Our framework also estimates ‘safety levels’ as probabilities to stay within these boundaries, 

considering the uncertainties about the carbon cycle and climate physics. 

Setting the CO2 emissions peak in 2030, net-zero CO2 in 2100, CDR deployment capacity of up to 10 

PgC per year, and not allowing SRM ensure a safety level of 66% to remain within the global warming 

boundary. This probability drops to 50% for staying within the sea level rise or the Arctic sea ice 

boundary under the same conditions. When the ocean acidification boundary is considered, the safety 

level drops further to 26%. When all four boundaries are considered together, the safety level drops to 

only 12%, indicating a complex interplay of planetary boundaries in determining the safety level. 

Our results suggest a need to assess planetary boundaries holistically to develop sustainable future 

strategies.  

Introduction 

Planetary boundaries define a safe operating space within which humanity can continue to develop and 

prosper1,2. Staying within physical boundaries implies limiting the level of anthropogenic interference 

to the earth system. Therefore, there is a space of CO2 emissions compatible with every planetary 

boundary and with their combinations3. This compatible emission space (henceforth ‘compatible space’) 

has so far been explored for individual planetary boundaries, for instance limiting phosphorus or 

nitrogen fertilizers inputs4-6, or for the global warming boundary of 2°C7-9. There is however no 

systematic exploration of the compatible space for multiple boundaries combined. 

Here, we introduce a modeling framework to systematically explore the compatible space for four 

critical Earth system boundaries: global warming, ocean acidification, sea level rise (SLR) and Arctic 

sea ice melt. While global warming and ocean acidification are original boundaries of Rockstrom et al.1, 

the other two give complementary insight on climate-related impacts. We estimate how the compatible 

space is shaped by different boundaries, individually or as a constellation. 
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The remaining carbon budget7, the total amount of CO2 that can be emitted before reaching a given 

global warming level, is an indicator used to summarize the space compatible with the global warming 

boundary. This concept is based on the near-linear relationship10 between cumulative anthropogenic 

CO2 emissions and global warming. However, the carbon budget is insufficient to summarize spaces 

compatible with other planetary boundaries, as there is no near-linear relationship between emissions 

and pH11 or SLR12.  

To summarize compatible spaces of emissions under multiple boundaries, we focus on four indicators 

derived from the emission timeseries defining the space: the maximum annual amount of Carbon 

Dioxide Removal (CDR), the year of net-zero CO2 emissions, the year of peak CO2 emissions, and the 

maximum annual amount of Solar Radiation Management (SRM) in case this option is considered.  

Possible emissions constrained by planetary boundaries  

To derive the compatible space of emissions without ex-ante socioeconomic constraints, we propose a 

backward (or inverse) approach using the Pathfinder carbon climate model. Pathfinder is a reduced-

complexity model calibrated through Bayesian inference on state-of-the-art complex Earth system 

models and constrained using observational and IPCC AR6 data13. Ex-ante atmospheric CO2 

concentration and global temperature timeseries were generated randomly with analytical expressions 

as input to Pathfinder until year 2500 (Methods). The model is then used to back-calculate compatible 

CO2 emissions through mass balance, given its simulation of the land and ocean carbon sinks, including 

permafrost emissions. The non-CO2 radiative forcing was obtained by inversion of the energy balance 

equations of the climate module. We estimated CDR and SRM as subcomponents of CO2 emissions and 

non-CO2 radiative forcing, respectively. To do so, we took the most mitigation-intensive trajectories, 

without the use of negative emission technologies, from the AR6 scenarios database14 (Methods) as a 

mitigation floor15. If a Pathfinder emission pathway was lower than this floor, we attributed the gap to 

CDR or SRM. Pathfinder emulates physical variables related to our planetary boundaries: pH at the 

oceanic surface, SLR, and Arctic sea ice (Methods). To account for the Earth system’s physical 

uncertainty, the model is run under 1500 different configurations in which parameters are drawn from 

the posterior probability distribution obtained after the Bayesian calibration and represent equally 

likely physical states of the world (Methods). The combination of these configurations with the 

thousands of ex-ante pathways gives us several million possible futures that we use to map the space of 

emissions compatible with staying within planetary boundaries. 

The temperature pathways that we generate all stay below +2°C and asymptotically reach +1.5°C, which 

by construction makes them remain within the global warming planetary boundary1,16. We introduce 

three additional boundaries, as explained above: i) avoiding a collapse of the Arctic sea ice in summer, 

which is equivalent to not exceeding 1.7 ± 0.2◦C of global warming17, ii) avoiding ocean acidification with 

a pH decrease limited to -0.2 unit compared to the pre-industrial level, a threshold beyond which 

oceanic biodiversity integrity may be threatened18-20,  and iii) remaining below 5 cm of SLR per decade, 

a precautionary threshold consistent with previous studies18,19. 
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Because our framework accounts for uncertainty about the carbon cycle and physical climate 

(see Box and Figure 1), we can define the concept of safety level as the percentage of physical 

configurations finding at least one emissions pathway compatible with one or more planetary 

boundaries in a space of emissions bounded by constraints on the key characteristics. To map 

a compatible space, we determine the limit value of a pathway characteristics beyond which 

a planetary boundary is breached for a given safety level. For instance, 2037 is the limit on 

the peak date of CO2 emissions for the global warming boundary with a 67% safety level if 

there is at least one pathway staying below 2°C with a peak CO2 emissions date greater than 

or equal to 2037 in 67% of the model equiprobable physical configurations. When we use the 

concept of safety level, safe pathways are not necessarily the same in the different physical 

configurations. The safety level is then different from the IPCC’s definition of confidence 

level21,22 that is the probabilistic assessment across different physical configurations of the 

compatibility of a given emission pathway with one or several planetary boundaries. The 

limits of a compatible space can be explored for one or multiple planetary boundaries. 

However, in a safe configuration, other pathways with the same characteristic as the limits of 

the compatible space do not necessarily adhere to the planetary boundary. For “safer limits”, 

we investigated alternative definitions of the compatible space in Methods. 
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Box: Method to determine compatible spaces 

Figure 1 illustrates, step by step, our backward approach. First, we generate around 15,000 

trajectories of global mean surface temperature and atmospheric CO2 concentration that follow 

historical data and asymptotically reach 1.5°C with an overshoot up to the 2°C warming level (see 

Methods). Those trajectories are used as inputs to Pathfinder (step 1). To account for physical 

uncertainties, we run the model (step 2) with 1500 sets of parameters that can be seen as 1500 

possible states of the world with their own physics, all independent and calibrated on historical 

observations.  

All pathways stay below the +2°C global warming boundary by construction, and we define 

conditions on CO2 anthropogenic emissions and non-CO2 radiative forcing that we consider 

realistic: in step 3, we exclude pathways rising too quickly (quicker than the most pessimistic 

pathway from AR6 scenarios) or using too much CDR (more than 10 PgC yr−1). We use the envelope 

of all the pathways that stay within a given boundary to illustrate the compatible space. We compare 

the envelope of the default space compatible with the global warming boundary (black envelope) 

with envelopes obtained for other planetary boundaries, either independently (green envelope for 

ocean acidification in Figure 1, step 3) or combined (purple envelope). As explained in main text, 

respecting more boundaries leads to narrower envelopes. 

The next steps are illustrated with the ocean acidification boundary only. To express the compatible 

space in terms of key characteristics, we search for limit values of the characteristics for which there 

remains one last pathway in the compatible space. In Step 4 we extract three of those final pathways 

that show that delaying the CO2 emissions peak requires to deploy more CDR. 

In step 5, we represent the compatible space of CDR deployment and CO2 emission peak associated 

with the ocean acidification boundary. Inside this compatible space, the model always finds at least 

one pathway compatible with the given boundary (here, ocean acidification). The limit of the 

domain gives the trade-off between the two pathway characteristics that are represented assuming 

conditions on other key characteristics remain unchanged. 

These successive steps are illustrated for one Pathfinder configuration only but were repeated for 

all 1500 configurations. Therefore, for a given set of conditions on pathway characteristics and 

planetary boundaries, we assess the existence of at least one compatible pathway in all individual 

physical states of world (i.e. configurations). We define the safety level (in %) as the percentage of 

configurations that find at least one emissions pathway compatible with one or more planetary 

boundaries. 
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Figure 1: Overview of the interpretative framework applied in this study on one of the 1500 

configurations of Pathfinder. We reiterate this process on all configurations to take physical uncertainty 

into account. We define the safety level (in %) as the percentage of configurations that find at least one 

emissions pathway compatible with one or more planetary boundaries for a given set of conditions on 

pathway characteristics. See Box text for a detailed step-by-step walkthrough.  
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Results 

Implications of planetary boundaries for emissions peak, CDR, and net-zero  

First, we verified that our ensemble of emission trajectories encompasses all IPCC AR6 scenarios14 that 

keep temperature below 2◦C (the so-called C1, C2 and C3 categories) (Figure S1). We found that without 

any CDR, it is possible to respect the global warming boundary with a safety level of only 20%, even if 

CO2 emissions peak in 2025. With a peak in 2025, safety levels for no-CDR scenarios are kept at 20% 

for the SLR boundary, reduce to 19% for the ocean acidification boundary, 15% for the arctic sea ice 

boundary, and also 15% for all four boundaries combined. In contrast, if large amounts of CDR are 

assumed (up to 10 PgC yr-1), the global warming boundary safety level is at 86% even with a later peak 

in 2035, and decreases to 83% for the SLR boundary, 64% for the arctic sea ice boundary, 53% for the 

ocean acidification boundary and only 28% for all boundaries combined (Figure 2). The results indicate 

that the restriction of the compatible space is non-linear when combining boundaries. The gap in safety 

levels between no-CDR scenarios with early peak emissions and CDR scenarios with with late peak 

emissions highlight the fact that CDR ‘buys some time’ by delaying the peak of emissions. 

Figure 3 (see also Figure S2) showcases the trade-offs between the year of peak emission and the amount 

of assumed CDR at a 67% safety level for each planetary boundary and their combination. The slope of 

the frontier in Figure 3a quantifies the deployment of (maximum annual) CDR required to compensate 

a delay in the peak date. For example, peaking in 2023 requires less than 2 PgC yr-1 of CDR, while 

peaking in 2030 requires at least 5 PgC yr-1 of CDR to stay under the global warming boundary. Over a 

range of peak dates going from 2023 to 2030, the SLR and acidification boundaries are met with the 

same safety level if the global warming boundary is also met. The arctic sea ice boundary, however, 

requires a stricter compatible space and necessitates an additional 1 PgC yr-1 of CDR. Finally, remaining 

below all the boundaries with peak emissions later than 2030 increases the requirements for CDR, up 

to the assumed maximum value of 10 PgC yr-1. Even for this maximum level of CDR, the ultimate dates 

for emissions to peak is 2033 to remain below all boundaries, 2034 for the arctic sea ice and acidification 

boundaries, 2036 for the SLR boundary, and 2037 for the global warming boundary alone. 

While delaying the peak of CO2 emissions can be compensated to a certain extent by the deployment of 

CDR, the deployment of CDR does not need to happen in the short term. Even for the ambitious target 

of keeping within all boundaries with a 67% safety level, CDR does not appear at significant levels (>0.5 

PgC yr-1) before 2080 (Figure S3). To respect the global warming boundary alone, CDR does not need 

to be significantly deployed before 2100, as long as CO2 emissions peak before 2030. In contrast, IPCC’s 

AR6 trajectories usually deploy CDR in the second half of the 21st century to remain within a Paris-

compliant global warming boundary8,23. We explain this difference to our results by our longer 

timeframe extended until 2500, the absence of a technical learning curve for CDR constraining 

Pathfinder, and our assumption that CDR arrives only after emissions have reached a mitigation-

intensive floor, while AR6 models deploy CDR simultaneously to mitigation efforts24.  
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Figure 2: Safety levels of compatible spaces defined by various combinations of conditions on pathway 

characteristics. Panels a) to f) distinguish conditions on the date of CO2 emissions peak and of net-zero. 

Net-zero in 2100 means that CO2 net-zero is reached in 2100 or later. No information on net-zero means 

that this pathways characteristic is not constrained. Peak in 2023, 2025, 2030 and 2035 means that the 

compatible CO2 pathways reaches their peak in 2023, 2025, 2030, or 2035. Markers distinguish 

conditions on speculative technologies, Up to 10 PgC yr-1 of CDR assumes that SRM will never be 

available while CDR will be available, possibly up to 10 PgC yr-1. No technologies assumes that neither 

SRM nor CDR will be available. CDR available and SRM allowed assumes SRM being possibly used up 

to 2 W m-2 in addition to CDR. Finally, the SRM replaces CDR case assumes that CDR will never be 

available but SRM can be used up to 2 W m-2. Marker lines show the 90% safety level, 67% safety level 

and 50% safety level. 

 

We found that reaching net-zero CO2 emissions in the 21st century is not absolutely required to remain 

within planetary boundaries. Figure 2 shows that achieving net-zero later than 2100 is mainly a threat 

to planetary boundaries in the case of a late emission peak. For instance, staying within the acidification 

boundary with a CO2 emission peak in 2023 and up to 10 PgC yr-1 of CDR has a 99% safety level if net 

zero must be reached before 2100, which drops to 72% if net-zero is reached later than 2100. Similar 

drops are observed for the global warming boundary (99% to 86%), the Arctic sea ice boundary (98% to 

72%), the SLR boundary (99% to 79%) or all boundaries (97% to 50%), giving another illustration of the 

non-linear effect of combined boundaries. The same values but with a peak in 2030 results in a drop of 

from 96% to 26% for the acidification boundary, from 99% to 66% for the global warming boundary, 

a) b) c) 

d) e) f) 
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from 94% to 50% for the Arctic sea ice boundary, from 98% to 50% for the SLR boundary, and from 

89% to 12% for all boundaries. Altogether, the drop in the safety level due to a late net zero is 

significantly larger for a peak in 2030 than for a peak in 2023. It demonstrates that reaching net-zero 

earlier mainly helps to offset a late peak in emissions. 

Figure 3b quantifies the trade-off between net-zero and peak emissions for all boundaries at the 67% 

safety level. With a peak in 2023, net-zero does not have to be reached before 2100 to remain within any 

single planetary boundary as also shown in Figure 2. However, remaining within all boundaries together 

requires net-zero to occur no later than 2075. Delaying the peak of emissions requires net-zero CO2 

emissions to occur earlier in the second half of the 21st century. A late peak means more emissions to 

compensate for and fewer time to compensate them, to remain below 2°C. For the SLR boundary, we 

find pathways that peak in 2037 if net-zero is reached in 2075 whereas if net-zero is reached in 2100, 

emissions must peak by 2025 at the latest. This example shows a stronger effect of short term-action on 

reducing emissions: delaying the peak by 12 years requires to bring net-zero (i.e. long-term action) 

forward by 25 years.  
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Figure 3: Trade-offs between pathway characteristics for 67% safety level. Panel a) gives compatible 

spaces depending on CDR availability (PgC yr-1) and the year of CO2 emissions peak. Panel b) gives 

compatible spaces depending on the years of CO2 emissions net-zero and peak. Shaded areas represent 

the spaces compatible with planetary boundaries and their combination. Plain lines give the frontier of 

the compatible space: at the right or above these lines, it is not geophysically possible to stay below the 

boundary. Markers plots show the limit of the compatible space if the other pathway characteristic is 

not constrained and for three safety levels: 50% (squares), 67% (diamonds) and 90% (circles). Black is 

a) 

b) 

Reading 
example 
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for the global warming boundary, green for the ocean acidification boundary, red for the SLR boundary, 

blue for the Arctic sea ice boundary, and purple for the combination all boundaries. 

Reading example with black dashed lines on panel a): If up to 6 PgC yr-1 of CDR are available, all 

boundaries can be respected with a peak in 2030, the Arctic sea ice and acidification boundaries with a 

peak in 2031 and the SLR and global warming boundaries with a peak in 2033. 

 

Adding solar geoengineering to the compatible space 

Considering solar geoengineering to mitigate climate change raises ethical questions as this technology 

has potential unexpected consequences24. We nevertheless investigated whether SRM could help extend 

the compatible space of emissions. Indeed, some Pathfinder’s ex-ante pathways exhibit a non-CO2 

radiative forcing lower than the most ambitious AR6 scenario in reducing short-lived climate forcers. 

We explain these pathways with low non-CO2 radiative forcing by the deployment of SRM (see above 

and Methods). Allowing the use of SRM in addition to CDR improves the safety level of the compatible 

spaces for a late peak in CO2 emissions. With SRM, the safety level is of 65% for an emission peak in 

2035 when respecting all boundaries, compared to 30% without SRM (Figure 2). Specifically, there is a 

trade-off between postponing the year of peak CO2 emissions and implementing SRM (Figure 4) for all 

boundaries excepted acidification. We see that allowing up to 2W m-2 of SRM only allows to delay peak 

emissions by 3 years (2037 instead of 2034) to keep within the acidification boundary with a safety level 

of 67%. This lack of beneficial impact of SRM is because acidification depends on increased atmospheric 

concentration of CO2, which is only marginally impacted by global temperature change under our model 

assumptions. 

Our approach also allows to quantify SRM as a substitute for CDR in the case of a late peak in emissions, 

when CDR is significant. If the peak is later than 2030, SRM could work as a substitute for CDR: at a 

67% safety level, there is a substitution of ≈ 1 PgC yr-1 of CDR for 0.2 W m-2 of SRM allowed, to stay 

within any individual or combined boundary (Figure S4). This trade-off is also valid for the ocean 

acidification boundary as, in this study, CDR is mainly used for net negative CO2 emissions that cause a 

decrease in atmospheric CO2 concentration. Therefore, trading CDR for SRM does not necessarily imply 

an increase in atmospheric CO2 concentration and does not increase the probability of crossing the pH 

threshold relative to the acidification boundary.  
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Figure 4: Trade-offs between the year of CO2 emissions peak and the amount of SRM (W m-2) allowed 

for a 67% safety level. Shaded areas represent the spaces compatible with one planetary boundary. Plain 

lines give the frontier of the compatible space. Black is for the global warming boundary, green for the 

ocean acidification boundary, red for the SLR boundary, blue for the Arctic sea ice boundary, and purple 

for the combination all boundaries 

 

Discussion 

Despite nonlinear safety level reductions when planetary boundaries are combined, this study shows 

that there is a low probability of meeting climate-related planetary boundaries without CDR if CO2 

emissions peak before 2025. Significant CDR implementation may allow for a later emissions peak but 

the trade-off is limited and peaking later than 2030 seriously jeopardizes the chances to remain within 

planetary boundaries. Other relevant results suggest that ambitious CDR need not be deployed before 

the late 21st century and that early net-zero emissions (between 2050 and 2075) can offset later peaks. 

In addition, the inclusion of SRM can improve the safety level, but the impact on acidification is limited 

due to the dominant role of atmospheric CO2 concentration on this specific impact. 

Our results show that assumptions about the level of future CDR and SRM have a significant impact on 

the space of anthropogenic activities compatible with planetary boundaries, in line with previous 

results15,25-27. Our backward approach only infers compatible global CO2 emissions or non-CO2 effective 

radiative forcing. That is why we define CDR and SRM as additional mitigation solution when a floor of 

positive emissions is reached (see Method). This floor being the lower bound of the AR6 scenarios 

envelope14 without these technologies, we assume that all possible mitigation efforts have been made 

before resorting to CDR or SRM.  
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It is generally accepted that global warming primarily depends on the cumulative CO2 emissions budget, 

rather than the magnitude or timing of emissions peaks28. As a result, long-term mitigation strategies 

often prioritize achieving a net-zero CO2 emissions target29. However, the diversification of boundaries 

diminishes the relevance of carbon budget as a unique indicator to define compatible spaces of 

emissions7. Our study highlights the importance of considering additional key mitigation characteristics 

to comprehensively map the space of compatible future CO2 emissions. In particular, the timing of peak 

CO2 emissions emerges as a key factor in trade-off mechanisms. We have quantified how an earlier 

emissions peak can enable a shift in the net-zero CO2 date, reduce the need for CDR measures, and even 

eliminate the need for SRM techniques. This concept extends the notion of a “closing door” introduced 

by Stocker30, who examined the relationship between the starting date of mitigation efforts, the 

mitigation rate, and the attainment of a specific temperature target. In addition, considering different 

planetary boundaries independently changes the compatible space, and combining them further 

narrows it. The four planetary boundaries could be supplemented by additional boundaries arising from 

physical or anthropogenic impacts of climate change. The selected thresholds are also subject to debate 

due to the inherent uncertainties and judgement values associated with quantifying planetary 

boundaries2,31 

The trade-off between peak emissions and negative emissions has already been highlighted in the results 

of IAM-based projections, but the current AR6 scenario’s framework14 explored a narrower range of 

pathways than our study, often with strong negative emissions in the second half of the 21st century25,32, 

without inclusion of SRM, and limited to the 2100 horizon. Here, we produced ex-ante a large ensemble 

of pathways, ignoring socioeconomic and technological constraints, which allows us to search for 

original scenarios consistent with the Paris Agreement that were not analyzed by IAMs. Figure S1 

illustrates that Pathfinder covers a wider range of possible pathways than was explored by the IAMs. 

Although the IAMs propose scenarios that respect all planetary boundaries, they are based primarily on 

the global warming boundary and do not explore all alternatives.  

The non-linearity of boundary combinations argues for diversification of climate impact indicators to 

be considered ex-ante by scenario developers. It is instructive and complementary to IAMs to expand 

the scope of emissions compatible with these boundaries. Even if these pathways turn out not to be 

economically optimal, it is critical to first draw what is physically possible and then decide what is 

socioeconomically feasible. To assess the relevance of a pathway in the socioeconomic dimension, 

coupling of Pathfinder with an IAM or simple impact models seems a natural next step in our work, as 

it would allow the exploration of compatible spaces that are also constrained in the socioeconomic and 

technological dimensions. 

In summary, the framework developed in this study can contribute to enhancing dialogue among the 

Earth system, impacts, and integrated assessment modeling (IAM) communities and encourage 

scenario narratives that explore a wider range of possible futures in an integrated manner. 
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Methods 

Description of Pathfinder 

The Pathfinder model. It is a compilation of existing formulations that describe parts of the Earth 

system, chosen for their good balance between mathematical simplicity and physical accuracy, and 

brought together to form a consistent carbon-climate model of reduced complexity. Here, the global 

temperature anomaly (T) and global atmospheric CO2 concentration (C) are given as independent 

inputs to the model. The model has 73 parameters. 29 of them are fixed and the other 44 parameters 

constrained through a Bayesian calibration33 based on observations and AR6 assessments, as detailed 

in a previous paper13. The drivers (T and C) have been updated with the latest observations available 

until 2021. However, the model is not designed to provide insights for 2022, the first year of the 

simulation, due to the functional form used to generate scenarios. We thus show and discuss the results 

only from 2023 onward. 

A comprehensive description of Pathfinder is provided in Bossy et al. 34, and briefly summarized here. 

The climate subcomponent that links T to effective radiative forcing (R) follows a widely used 2-box 

model with deep ocean heat uptake efficacy35. The total R is caused by atmospheric CO2 (following the 

IPCC AR5 logarithmic formula36) and an aggregate of non-CO2 species. Anthropogenic CO2 emissions 

are determined by the balance between atmospheric CO2, ocean and land carbon sinks, and permafrost 

carbon emissions. The ocean carbon cycle follows the structure of the Bern Simple Climate Model37. The 

land carbon cycle follows the formulation of the compact Earth system model OSCAR38, although it is 

aggregated into one global biome, land cover change is ignored, and it accounts for the so-called passive 

soil carbon that is ignored in most complex models39. It leads to a total of four land carbon pools. 

Emissions from permafrost thaw are calculated with the emulator developed by Gasser et al.40, but 

aggregated into one unique region. Sea level rise is split into thermosteric, glaciers, Greenland and 

Antarctica effects that each follows a first-order differential equation12,41. Additionally, ocean surface 

acidification follows a polynomial fit on C42. 

The use of Bayesian inference allows for the integration of observational data into simplified models 

like Pathfinder33. This approach involves deriving joint probability distributions of parameters based on 

prior knowledge of those distributions and the distributions of observed variables in the model. The 

posterior probability of a sample from the joint parameter distribution, given a set of observations, is 

proportional to the likelihood of the model simulating the observations and the prior probability of the 

parameters. The 44 Pathfinder parameters estimated using Bayesian inference are constrained using a 

set of 18 observations pertaining to most aspects of the global Earth System13: : T (present-day value 

and derivative across five datasets43-47), ocean heat content48, non-CO2 radiative forcing36, recent global 

carbon budget49 (for land, ocean, and atmosphere), preindustrial carbon pools50 (land and atmosphere), 

and satellite-derived sea level rise speeds51. The prior distributions of the parameters are determined 

based on literature values and multi-model ensembles. To estimate the posterior distributions, a full-

rank Automatic Differentiation Variational Inference (ADVI) algorithm is used52, and the Pathfinder 

model is solved using an explicit Eulerian exponential integrator scheme. The paper by Bossy et al.13, 
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provides detailed information on the parameter and observational constraints, as well as diagnostic 

tests to validate the model.  

Input trajectories 

We randomly and independently draw temperature and atmospheric CO2 concentration trajectories 

using 4 different approaches grouped into “series” (Figure S5 and S6 for illustration). Series 1, 2 and 3 

correspond to different analytical expressions while series 4 is derived from AR6 scenarios14. All series 

are divided in sub-series that have common constraints: (1) T, 
𝑑

𝑑𝑡
T and C are defined and differentiable; 

(2) We impose an upper boundary so that T ≤ 2◦C; (3) We also impose limt→∞ T = 1.5◦C; (4) We randomly 

choose an asymptotic value for C which is determined by the share kx,final of non-CO2 components in the 

global radiative forcing. kx,final is uniformly drawn from one of three equiprobable ensembles: 𝑘𝑥,𝑓𝑖𝑛𝑎𝑙  ∈

 ] − 1; −0.1[; 𝑘𝑥,𝑓𝑖𝑛𝑎𝑙  ∈  [−0.1; 0.1]; 𝑘𝑥,𝑓𝑖𝑛𝑎𝑙  ∈ ]0.1; 0.66[ 

In Series 1, for X being T or C, we choose X of the form 𝑋(𝑡) = 𝑋0 + (𝑋𝑙𝑖𝑚 − 𝑋0) ⋅ 𝜔(𝑡 − 𝑡0) + 𝛼 ⋅ 𝑡 ⋅

(1 − 𝜔(𝑡 − 𝑡0) ) , with X0 = X(t=𝑡0 ) the initial value of X given by the historical calibration, with 

𝑡0=2021, and Xlim the asymptotic value. We determine α so that 
𝑑𝑋

𝑑𝑡
|

𝑡=𝑡0

=
𝑑𝑋

𝑑𝑡
|

0
, where  

𝑑𝑋

𝑑𝑡
|

0
 is the 

differentiated variable given by the historical calibration in 2021. 

ω(t) is the function we use to distinguish the sub-series. This function must tend towards 0 for t = 0 

and towards 1 for t → ∞. To keep the continuity and differentiability for X and 
𝑑𝑋

𝑑𝑡
, ω must be 

continuously differentiable at least once. In series 1a, 𝜔(𝑡) = 1 −  𝑒−𝜇0𝑡 − 𝜇1
2  𝑡²  53, in series 1b, 

𝜔(𝑡) =
𝑡

t + 𝜇1𝑒−𝜇0𝑡 , and in series 1c, 𝜔(𝑡) =
𝜇0𝑡²+ 𝜇1𝑡

1 + 𝜇0𝑡²
. Parameter distributions are given in Table S1. 

Series 2 follows the probability density function of a Kumaraswamy distribution54 until it peaks (i.e. for 

t < tpeak), X(𝑡 < 𝑡𝑝𝑒𝑎𝑘) = X₀ + [𝑋𝑝𝑒𝑎𝑘  −  X₀]  ∙  [1 − (1 − (τₒ / (τₒ − 𝑡𝑝𝑒𝑎𝑘))ᵅ)−𝛽  ∙  (1 −

 ((τₒ −  t) / (τₒ − 𝑡𝑝𝑒𝑎𝑘))ᵅ)𝛽] . Peaking dates ( 𝑡𝑝𝑒𝑎𝑘 ) and peaking values ( 𝑋𝑝𝑒𝑎𝑘 ) are chosen 

randomly in ensembles that are compatible with our constraints and for which we can maintain 

continuity and differentiability of X and 
𝑑𝑋

𝑑𝑡
. τₒ is defined such as f(τₒ) = −𝑡𝑝𝑒𝑎𝑘  with 𝑓(𝑡) = −𝑡 ∙

((1 − 
𝑡𝑝𝑒𝑎𝑘

𝑡
)𝛼 − 1) −  𝛼 ∙ 𝛽 ∙

𝑋𝑝𝑒𝑎𝑘−X₀
𝑑𝑋

𝑑𝑡
|
0

. Sub-series have different functional forms after the peak (t > 

tpeak) to converge to the asymptotic value Xlim. Series 2a follows the probability density function of a 

normal distribution such as X(𝑡 ≥ 𝑡𝑝𝑒𝑎𝑘) = 𝑋𝑙𝑖𝑚  + (𝑋𝑝𝑒𝑎𝑘  −  𝑋𝑙𝑖𝑚) ∙ 𝑒
−

(𝑡−𝑡𝑝𝑒𝑎𝑘)2

 𝜏2 . With 𝜏 =

√𝑋𝑝𝑒𝑎𝑘  − 𝑋𝑙𝑖𝑚

√𝑋𝑝𝑒𝑎𝑘  − 𝑋0
∙ (𝑡𝑝𝑒𝑎𝑘 − τₒ) ∙ (1 − (−

τₒ

𝑡𝑝𝑒𝑎𝑘−τₒ
)

𝛼

)
𝛽/2

∙ √
2

𝛼²∙𝛽∙(𝛽−1)
. Series 2b follows the probability 

function of a log-normal distribution so X(𝑡 ≥ 𝑡𝑝𝑒𝑎𝑘) = 𝑋𝑙𝑖𝑚  + (𝑋𝑝𝑒𝑎𝑘  − 𝑋𝑙𝑖𝑚) ∙   𝑒
−0.5

𝑙𝑜𝑔(𝑡/𝑡𝑝𝑒𝑎𝑘)2

 𝜎2  . 

With 𝜎 =
√𝑋𝑝𝑒𝑎𝑘  − 𝑋𝑙𝑖𝑚

√𝑋𝑝𝑒𝑎𝑘 − 𝑋0
∙ (1 −

τₒ

𝑡𝑝𝑒𝑎𝑘
) ∙ (1 − (−

τₒ

𝑡𝑝𝑒𝑎𝑘−τₒ
)

𝛼

)
𝛽/2

∙ √
2

𝛼²∙𝛽∙(𝛽−1)
. Series 2c follows the 

probability function of a Gompertz distribution55: X(𝑡 ≥ 𝑡𝑝𝑒𝑎𝑘) = 𝑋𝑙𝑖𝑚  + (𝑋𝑝𝑒𝑎𝑘  − 𝑋𝑙𝑖𝑚) ∙

 𝜂1 −𝑡/𝑡𝑝𝑒𝑎𝑘  𝑒1 −𝜂
1 −𝑡/𝑡𝑝𝑒𝑎𝑘

. With 𝜂 = 𝑒𝑥𝑝 (
√𝑋𝑝𝑒𝑎𝑘  − 𝑋𝑙𝑖𝑚

√𝑋𝑝𝑒𝑎𝑘 − 𝑋0
∙ (1 −

τₒ

𝑡𝑝𝑒𝑎𝑘
) ∙ (1 − (−

τₒ

𝑡𝑝𝑒𝑎𝑘−τₒ
)

𝛼

)
−𝛽/2

∙
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√
2

𝛼²∙𝛽∙(𝛽−1)
). We apply all three sub-series to the temperature but only series 2a and 2c to the 

atmospheric CO2 concentration. Parameter distributions are given in Table S1. 

Series 3 follows the solution of a damped harmonic oscillator differential system with non-zero initial 

positions and velocities. Depending on sub-series, it is either in a critical regime (series 3a) under the 

form 𝑋(𝑡)  =  𝑋𝑙𝑖𝑚  + (X₀−𝑋𝑙𝑖𝑚 + (𝜅 ∙ (X₀−𝑋𝑙𝑖𝑚) +
𝑑𝑋

𝑑𝑡
|

0
) ∙ 𝑡) ∙ 𝑒−𝜅𝑡 , or in an over-critical regime 

(aperiodic) for series 3b, 𝑋(𝑡)  =  𝑋𝑙𝑖𝑚  +  [(X₀−𝑋𝑙𝑖𝑚) ∙ 𝑐𝑜𝑠ℎ(√𝜅² − Ω² ∙ 𝑡) +
𝜅∙(X₀−𝑋𝑙𝑖𝑚) +

𝑑𝑋

𝑑𝑡
|
0

√𝜅²−Ω²
∙

𝑠𝑖𝑛ℎ(√𝜅² − Ω² ∙ 𝑡)] ∙ 𝑒−𝜅𝑡 . Parameter distributions are given in Table S1. 

Series 4 is derived from the AR6 scenarios. Initially, we simulate all AR6 scenarios14 using Pathfinder 

(as detailed in the subsequent section), and select only those scenarios where the maximum 

temperature remains below 2°C. To these T and C time series, we introduce noise generated through 

an AR(1) process56. We then apply an 11-year moving average to smoothen the trajectories affected 

by noise. We infer the lost 11 values by following the trend observed in the original T or C time series. 

To ensure the generated pathways are continuously differentiable, we fit the resulting trajectories 

with spline functions. These functions are defined piecewise by polynomials and allow for 

differentiation. Similar to other series, we impose constraints on the initial values of X and 
𝑑𝑋

𝑑𝑡
 to 

maintain continuity with the historical trajectory. Additionally, to prevent splines with excessively 

steep or rapid trends at 2100, we also constrain the derivative at that point with the original value of 

the AR6 scenario before the noise. 

Since Series 4 are derived from AR6 scenarios, the processed trajectories are limited to the year 2100. 

However, for our purposes, we require pathways that span up to 2500. To address this, we employ 

the analytical form of Series 3a to extend the trajectories from 2100 to 2500, ensuring continuity and 

differentiability are maintained throughout the extended period. 

 

Series Parameters Values Distribution 

1a 𝜇0 [-0.05, 0, 0.10] Triangular 

 𝜇1 [0, 0.05, 0.10] Triangular 

1b 𝜇0 [0.001, 0.01, 0.10] Triangular 

 𝜇1 [1,100,1000] Triangular 

1c 𝜇0 [2.5E-5, 3E-5, 1E-1] Triangular 

 𝜇1 0 
 

2 α [1.001, 1.0015, 20] Triangular 

 β 2 
 

 tpeak [10, 70, 120] Triangular 

3a - 3b κ [0, 0.05, 0.15] Triangular 

3b Ω [0, κ] Uniform 

Table S1 Characteristics of the parameters for the T and CO2 time series. Values for triangular 

distributions give the minimum, the peak and the maximum of the distribution. Values for uniform 

distribution give the minimum and the maximum. 

Implementation of AR6 scenarios in Pathfinder 
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The AR6 database14 hosts the result of all scenarios explored by different IAM for the working group 3 

of the IPCC. However, these projections are inconsistent with the historical values of Pathfinder, making 

it infeasible to directly incorporate the raw data into our model. 

In the AR6 database, the drivers are CO2 emissions and non-CO2 radiative forcing (Rx). To utilize CO2 

emissions and Rx as inputs in the forward mode of Pathfinder, we perform linear interpolation to 

convert the decadal data into annual data. Subsequently, we rescale both drivers to align with the 

historical trajectories of Pathfinder. Due to the inherent natural variability present in Pathfinder's 

historical runs, it is not possible to directly utilize the year 2021 as a reference for rescaling. Instead, we 

compute the mean value of the historical Pathfinder’s pathways between 2011 and 2021. For observed 

CO2 emissions, we employ the most recent estimates available until 202257 , while for Rx, we utilize 

estimates from 201958 . To establish the starting point of our simulations in 2021, we rely on the available 

trend for Rx over the last 10 years to infer the values for 2020 and 2021. (while CO2 emissions were taken 

from the latest Global Carbon Budget57). 

To rescale CO2 emissions, we extend the mean values calculated in Pathfinder for 2016 by incorporating 

the trend in observational values until 2021. This approach ensures consistency with Pathfinder's 

configurations, as the 2016 value is specific to each configuration, while also aligning with the most 

recently observed trend. The rescaling factor is determined by comparing the reconstructed value for 

2021 with the corresponding value in the AR6 scenario. 

Similarly, for Rx, we reconstruct the historical value in 2021 by extending the mean value calculated in 

Pathfinder for 2016 and incorporating the trend in observational values until 2021. However, the 

treatment of Rx differs from that of CO2 emissions due to its nature as a radiative forcing resulting from 

a combination of various GHGs (positive) and aerosols (mostly negative). Consequently, depending on 

the model's parameterization, the reconstructed historical Rx value in 2021 can be either negative or 

positive. Rescaling Rx without accounting for this decomposition could potentially lead to an artificial 

reversal of the sign of Rx in the scenarios. To address this, we first decompose Rx and rescale each 

component separately: 𝑅𝑥
𝐴𝑅6 = 𝑅𝑥,𝑔ℎ𝑔𝑠

𝐴𝑅6  + 𝑅𝑥,𝑎𝑒𝑟𝑜𝑠𝑜𝑙𝑠
𝐴𝑅6 , where 𝑅𝑥

𝐴𝑅6 is the radiative forcing due to non-CO2 

forcers in AR6 scenarios, 𝑅𝑥,𝑔ℎ𝑔𝑠
𝐴𝑅6  is the radiative forcing due to a combination of different GHGs in AR6 

scenarios, and  Rx,aerosols
AR6  is the radiative forcing due to aerosols in AR6 scenarios. As Pathfinder lacks 

such a decomposition, we use the IPCC AR6 extrapolated value of 𝑅𝑥,𝑔ℎ𝑔𝑠
ℎ𝑖𝑠𝑡 = 1.18 ± 0.14 𝑊 𝑚−2  in 

202158. Assuming a normal distribution we randomly draw one value of the GHG component of Rx for 

each configuration of Pathfinder. Finally, the rescaling factor for GHGs is 
𝑅𝑥,𝑔ℎ𝑔𝑠

ℎ𝑖𝑠𝑡

𝑅𝑥,𝑔ℎ𝑔𝑠
𝐴𝑅6,2021, and the rescaling 

factor for aerosols is 
𝑅𝑥

ℎ𝑖𝑠𝑡− 𝑅𝑥,𝑔ℎ𝑔𝑠
ℎ𝑖𝑠𝑡

𝑅𝑥,𝑎𝑒𝑟𝑜𝑠𝑜𝑙𝑠
𝐴𝑅6,2021 , where 𝑅𝑥

ℎ𝑖𝑠𝑡  is the reconstructed historical value in Pathfinder in 2021 

and 𝑅𝑥,𝑎𝑒𝑟𝑜𝑠𝑜𝑙𝑠
𝐴𝑅6,2021 .and 𝑅𝑥,𝑔ℎ𝑔𝑠

𝐴𝑅6,2021 are the respective AR6 radiative forcing due to a combination of aerosols  

and different GHGs in 2021. 

Definition of SRM and CDR variables 

Carbon Dioxide Removal (CDR) Because of our inverse modelling approach, we do not know the 

CDR contribution to the net anthropogenic CO2 emission pathways (𝐸𝐶𝑂2) we estimate. To do so, we 
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define a time-dependent floor (𝐶𝐷𝑅𝑓𝑙𝑜𝑜𝑟) below which we consider that CDR is needed (Figure S7). This 

𝐶𝐷𝑅𝑓𝑙𝑜𝑜𝑟  follows the lower bound of the CO2 emission pathways envelope from the AR6 scenarios14, 

excluding afforestation and bio-energy with carbon capture and storage (𝐸𝐶𝑂2,𝑚𝑖𝑛
𝐴𝑅6 ). In addition, the AR6 

scenarios were rescaled to be consistent with both Pathfinder historical values and latest observed 

trends. Because, in that case, we want CDR to be 0 in 2021, we must rescale 𝐸𝐶𝑂2,𝑚𝑖𝑛
𝐴𝑅6 . This gives: 

𝐶𝐷𝑅 = {
𝐸𝐶𝑂2 − 𝐶𝐷𝑅𝑓𝑙𝑜𝑜𝑟 𝑖𝑓 𝐸𝐶𝑂2 < 𝐶𝐷𝑅𝑓𝑙𝑜𝑜𝑟

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

with 

𝐶𝐷𝑅𝑓𝑙𝑜𝑜𝑟 =
𝐸𝐶𝑂2,2021

𝐸𝐶𝑂2,𝑚𝑖𝑛,2021
𝐴𝑅6 𝐸𝐶𝑂2,𝑚𝑖𝑛

𝐴𝑅6 , 

where 𝐸𝐶𝑂2,2021 is the Pathfinder’s anthropogenic CO2 emissions in 2021 and 𝐸𝐶𝑂2,𝑚𝑖𝑛,2021
𝐴𝑅6  is the lower 

bound of the CO2 emission pathways envelope from the AR6 scenarios in 2021.  

Solar Radiation Management (SRM) AR6 scenarios do not include SRM or any removal 

technology for GHGs other than CO2. Thus, we directly extract the Rx variable from the AR6 scenarios 

implemented in Pathfinder, and we select the lower bound of the pathway’s envelope (Figure S7). 

Because, it is not regularly decreasing, we smooth it out by taking its minimum value over a rolling 

period of 5 years (𝑅𝑥,𝑚𝑖𝑛
𝐴𝑅6 ). Finally, we offset this already rescaled floor by Pathfinder’s 2021 value 

(𝑅𝑥,2021). That is: 

𝑆𝑅𝑀 = {
𝑅𝑥 − 𝑆𝑅𝑀𝑓𝑙𝑜𝑜𝑟 𝑖𝑓 𝑅𝑥 < 𝑆𝑅𝑀𝑓𝑙𝑜𝑜𝑟

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

with 

𝑆𝑅𝑀𝑓𝑙𝑜𝑜𝑟 = 𝑅𝑥,2021 − 𝑅𝑥,𝑚𝑖𝑛,2021
𝐴𝑅6 + 𝑅𝑥,𝑚𝑖𝑛

𝐴𝑅6 , 

where 𝑅𝑥,𝑚𝑖𝑛,2021
𝐴𝑅6 is the lower bound of the Rx pathways envelope from the AR6 scenarios in 2021. 

Planetary boundaries 

The first planetary boundary we investigate is global warming, whose quantitative boundary is defined 

as an increase of +2°C in global mean surface temperature compared to preindustrial times (late 

Holocene)1,10,59. Inspired by previous studies18,19,30,60,61, we decided to define boundaries focused on 

three key physical impacts: ocean acidification, sea level rise and Arctic sea ice collapse in summer. As 

a baseline for pre-industrial level, we take the starting date of Pathfinder’s historical simulations in 1750. 

Ocean acidification 

Acidification, combined with deoxygenation and sea surface temperature, will severely damage ocean 

ecosystems62. One of the main effects of acidification appears on organisms producing calcium 

carbonate shells and skeletons63. Effects of acidification depend on other factor than just pH and can 

vary regionally62. carbonate shells and skeletons63. Effects of acidification depend on other factor than 

just pH and can vary regionally62. Because it is delicate to identify one global threshold, however, we 

decided to apply a precautionary principle to preserve the oceanic biosphere integrity. Based on the 
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literature18-20,61,64,65 oceanic biosphere integrity. Based on the literature18-20,61,64,65 we propose that global 

pH should not lose 0.2 points compared to pre-industrial level. 

Rate of sea level rise 

Sea level rise can have direct impacts on coastal population66. Some countries (such as small island 

states) are directly threatened with submersion. However, the main impacts of SLR will be coastal 

inundations due to extreme sea levels67. Other impacts can occur like the salinization of freshwater 

lens68 or negative impacts on ecosystems like coral reefs68,69  or mangroves66. SLR is a phenomenon with 

a significant inertia that makes it inevitable to a certain degree in the coming century, even if global 

warming stopped immediately66,70. That is why the stakes are mainly about the rate of SLR to let time 

to society to adapt66. SLR impacts and adaptation capacity vary greatly depending on the coastal 

geography67,71, making it delicate to define a global threshold. As for acidification we impose a 

precautionary threshold of 5 cm per decade that was also used elsewhere18,19.Sea level rise can have 

direct impacts on coastal population66. Some countries (such as small island states) are directly 

threatened with submersion. However, the main impacts of SLR will be coastal inundations due to 

extreme sea levels67. Other impacts can occur like the salinization of freshwater lens68 or negative 

impacts on ecosystems like coral reefs68,69  or mangroves66. SLR is a phenomenon with a significant 

inertia that makes it inevitable to a certain degree in the coming century, even if global warming stopped 

immediately66,70. That is why the stakes are mainly about the rate of SLR to let time to society to adapt66. 

SLR impacts and adaptation capacity vary greatly depending on the coastal geography67,71, making it 

delicate to define a global threshold. As for acidification we impose a precautionary threshold of 5 cm 

per decade that was also used elsewhere18,19. 

Arctic sea ice collapse in summer 

The entire Arctic ecosystem, including polar bears, marine mammals, fish, and the local population, will 

suffer adverse consequences due to the reduction of Arctic sea ice during the summer66. Recent papers 

highlighted also a role of the decline of Arctic sea ice on the weakening of the Atlantic meridian 

overturning circulation (AMOC)72, and even a potential domino effect for a whole range of tipping 

points73. The commonly used threshold to consider the Arctic sea-ice free is when the sea ice area 

reaches below 1 million km
2

. This sea ice coverage in summer can be directly linked to the temperature 

The entire Arctic ecosystem, including polar bears, marine mammals, fish, and the local population, will 

suffer adverse consequences due to the reduction of Arctic sea ice during the summer66. Recent papers 

highlighted also a role of the decline of Arctic sea ice on the weakening of the Atlantic meridian 

overturning circulation (AMOC)72, and even a potential domino effect for a whole range of tipping 

points73. The commonly used threshold to consider the Arctic sea-ice free is when the sea ice area 

reaches below 1 million km
2

. This sea ice coverage in summer can be directly linked to the temperature 

anomaly, with a threshold on temperature anomaly of 1.7± 0.2◦C (for a 95% likelihood interval) that 

covers the ranges proposed by key existing studies17,74-76. The uncertainty in the boundary itself is 

included in Pathfinder’s probabilistic assessment and chosen safety levels. We assume a normal 

distribution of the threshold and randomly draw a value for every of the 1500 states of the world we 
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explore. Hence, every configuration of the model has only one threshold value above which the Arctic 

sea ice is collapsing in summer. 

 Our four planetary boundaries could be supplemented by additional boundaries arising from physical 

or anthropogenic impacts of climate change. 

Alternative definitions of the compatible space 

It is crucial to emphasize that since we are mapping out the limits of the compatible space, even though 

at least one pathway remains with key characteristics equal to the investigated limit, for example with a 

peak date of 2037, other pathways with the same characteristic do not necessarily adhere to the 

planetary boundary. This is because they may fail to comply with the limits of the compatible space for 

other key characteristics. In our example, 2037 is therefore the last year before the remaining envelope 

disappears entirely.  

In the context where defining a safety level based on the presence of "at least one trajectory" is deemed 

excessively risky, it becomes possible to introduce a precautionary threshold by imposing a minimal size 

for the remaining envelope. This approach leads to more stringent constraints on the compatible space, 

as demonstrated in Figure S8. To evaluate the size of the remaining envelope, we estimate its area and 

compare it to a reference area. As depicted in Figure 1, the reference area is determined by the envelope 

of pathways that adhere to the global warming boundary, allowing up to 10 PgC yr-1 of CDR, prohibiting 

SRM, and without restrictions on the year of achieving net-zero CO2 emissions or the peak of CO2 

emissions. We refer to the ratio of the area of the remaining envelope to the reference area as the "area 

ratio," which quantifies the magnitude of the window allowing to remain within a given boundary. This 

definition implies that when only one pathway remains, the envelope area becomes null, and 

consequently, the area ratio becomes null as well. Figure S9 demonstrates that for the global warming 

boundary, the size of the remaining envelope is three times larger when CO2 emissions peak in 2028 

compared to when they peak in 2035. In this context, the year 2037 represents the last feasible date 

before the envelope completely disappears. In Figure S8, we introduce a threshold of 1% for the area 

ratio and compare the resulting safety level values with the values obtained in Figure 2 using the "at 

least one pathway" definition of the compatible space. The analysis reveals that the safety level is 

primarily influenced by the threshold definition when approaching the limit of the compatible space. 

Typically, under the default conditions of a CO2 emissions peak -in 2023 and without imposing 

restrictions on the year of achieving net-zero CO2 emissions, we observe that the change in safety level 

due to the alteration of the threshold definition is visible only when CDR and SRM are prohibited. Even 

in such cases, the change in safety level is not substantial, ranging from -3 to -7 points of percentage. 

Conversely, if a peak in CO2 emissions is enforced in 2035, we demonstrate that the impact of the 

threshold definition on the safety levels is both strong and significant, except when the safety levels were 

already very low. This outcome implies that even under the most extreme conditions regarding key 

characteristics (late peak, no SRM, few CDR available), the most optimistic states of the world (i.e. 

configurations) in Pathfinder can identify multiple pathways compatible with a given planetary 

boundary.  
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3.4 . Possible addition of impacts in relation with human activities
In section 3.3, we propose to reverse the natural causality of the system. We define the

planetary boundaries and look for the anthropogenic activities that make it possible to stay within
these boundaries. However, these limits are physical variables and cannot be directly converted into
exposure. A natural improvement to this framework would be to define climate targets locally in
terms of the exposure of land or population in each country. To this end, Pathfinder could be
coupled with the spatially resolved emulator MESMER, which can emulate local annual
temperatures (Beusch et al.; 2020), extreme temperatures (Quilcaille et al.; 2022), and even local
precipitation (Schöngart et al.; 2023) from global temperature projections. This coupling would allow
local variables to be used to emulate local impacts.
For starters, we could use existing crop yield emulators. The AgMIP emulator (Franke et al.; 2020)
was used to calibrate a very simple model linking crop yields to atmospheric CO2 concentration,
temperature anomaly, precipitation perturbation and applied nitrogen via a polynomial model of
order 3. In another study (Abramoff et al.; 2023), machine learning methods were used to predict
yields of four crop species ( maize, rice, wheat, soybeans) based on spatial coordinates, the average
local area-weighted temperature in degrees Celsius measured around 2000, the average local
area-weighted annual precipitation in mm around the year 2000, the projected global temperature
change from a base period (2000-2010), the projected annual site-specific precipitation change from
the base period, and the mean CO2 concentration in parts per million to emulate. Coupling one of
these emulators with Pathfinder and MESMER, and then crossing the maps with population
projections, would allow estimation of human exposure to changes in crop yields.
Another relatively simple improvement to add more human impacts would be to link the global SLR
to local extreme sea levels that cause coastal flooding. To this end, an emulator has been developed
that projects local sea level based on global sea level rise and tide gauge data to project local sea level
(Kopp et al.; 2014). Based on this local sea level, using the GEV distribution, it is possible to estimate
the evolution of the return period of local extreme sea levels (Buchanan et al.; 2017). Assuming that
cities are currently adapted to a 1 in 100 year return period, their model yields the new return period
of such events as a function of global SLR. By comparing these data with population projections, it is
possible to estimate the change in the number of people exposed to extreme sea levels.
These two impacts are of particular interest because they are not linearly dependent on temperature.
Therefore, we expect nonlinear combination effects similar to those we observed in the previous
section. We have not found similarly simple emulators for other impacts. However, the ISIMIP dataset
provides a framework for defining functions that allow population or land exposure to a range of
country-level impacts to be linked to global temperature change (Rosenzweig et al.; 2017). Previous
work has created such an emulator for a range of impacts: Wildfires, tropical cyclones, river floods,
heat waves, or droughts (Lange et al.; 2020). Using more recent data (ISIMIP3b, www.isimip.org), the
Climate Solutions Explorer (www.climate-solutions-explorer.eu) maps and presents information
on mitigation pathways, avoided climate impacts, vulnerabilities, and risks arising from development
and climate change (Werning et al.; 2023). We can use this type of data to reverse the approach and
show the temperature associated with an acceptable threshold for exposure. For illustration, we set
this threshold at 5% of the currently unexposed population. Then, for a given impact, here medium
water stress assessed by the water stress index (WSI), we can indicate the temperature at which this

www.isimip.org
www.climate-solutions-explorer.eu
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acceptable threshold is exceeded (see Figure 3.2). To preventmore than 5% of the world’s population,
who are not currently at risk, frombeing exposed tomediumwater stress, it is necessary to stay below
1.9C. Therefore, this type of inverted map may be interesting for setting temperature targets at the
international or regional level. Overall, these three examples show that Pathfinder can be used to
estimate an ensemble of anthropogenic emission pathways that are consistent with climate targets
defined by impacts. This can be very interesting for scenario development in collaboration with policy
makers, as climate change impacts are more concrete in terms of affected populations than a global
temperature target.
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4.1 . Different sorts of IAMs
Preamble

For the introduction of this chapter I want to give some context of the socio-economic modelling
of mitigation pathways. Such dissertation subject is not new and a lot of literature has already done a
very good job. In particular, an entire annex of AR6 WGIII report is dedicated to describe the different
modelling tools. Hence, this section is greatly inspired from this annex (Guivarch et al.; 2022).

4.1.1 . Economic Modelling Frameworks
Economic modelling frameworks form a diverse spectrum, distinguished by several critical

characteristics, following the classifications proposed by various authors (Hardt and O’Neill; 2017;
Capellán-Pérez et al.; 2020). The literature typically categorizes models across three dimensions:
level of detail and heterogeneity, mathematical algorithm concepts, and temporal and spatial
system boundaries (Krey; 2014).
Climate mitigation models, for instance, are commonly distinguished as bottom-up or top-down,
based on their degree of detail (Van Vuuren et al.; 2009). Bottom-up models offer intricate technical
detail on a limited set of mitigation strategies for a specific sector or sub-sector. However, they often
overlook the relations and interactions within the broader system. Conversely, top-down models
provide a comprehensive, albeit less detailed, analysis, focusing on systemic interactions like market
dynamics and policy instrument interactions within the global economy. Significantly, IAMs are
generally top-down, with a focus on modeling sectoral mitigation strategies. Nonetheless, the
dichotomy between bottom-up and top-down models has blurred since the IPCC’s Fifth Assessment
Report (AR5), with models now incorporating elements from both.
A further characteristic that models are classified on is their mathematical algorithm concept.
Simulation models observe the dynamic behavior of a system and require comprehensive
knowledge to make choices among alternatives (Lund et al.; 2017). On the other hand, optimisation
models aim to maximize or minimize an objective function within set constraints (Iqbal et al.; 2014).
Moreover,modelling tools differ in their approach to temporal considerations. Somemodels utilize an
intertemporal optimization approach with perfect foresight, where decisions are based on complete
information about the system’s future states (Keppo and Strubegger; 2010). In contrast, recursive-
dynamic models make decisions sequentially, without foreknowledge of future states (Nerini et al.;
2017).

4.1.2 . Classification Integrated Assessment Models (IAMs)
IAMs are simplified simulacra of the complex interplay between economy, society, and the

environment (Weyant; 2017). They depict the interconnected energy-economy-land-climate system
to varying degrees. Significant differences among IAMs include geographical, sectoral, spatial and
time resolution, socio-economic assumptions, technological representation, and assumptions of
equilibrium. IAMs differ in the extent to which they endogenize all emissions and their sources,
processes, and activities. However, they can be classified in two broad categories.

Cost-benefit IAMs were conceived to evaluate the optimal strategies of climate policy,
considering both the economic expenses of mitigation and the financial repercussions of climate
change. In these models, the problem of climate change mitigation is addressed through a
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cost-benefit framework, making a direct comparison between the economic costs of mitigation and
the economic benefits of lessened impacts (Weyant; 2017). This perspective results in a focus on
issues like the social cost of carbon or optimal trade-offs over time between mitigation and impacts
(Metcalf and Stock; 2017). Despite considerable uncertainties, these models generate a specific
output path, with the damage function contributing to over 50% of this uncertainty (van der Wijst
et al.; 2021). The oldest cost-benefit IAM is DICE, which was developed based on the work of
Nordhaus (Nordhaus; 1992). The DICE model was initially employed to examine the integration of
human and natural Earth systems within a cost-benefit framework. Soon, a multiregional version
called the Regional Dynamic Integrated model of Climate and the Economy (RICE) was developed
(Nordhaus and Yang; 1996). Further models have been developed along the same lines, such as
PAGE (Hope; 2013)), and FUND (Tol; 1997). Typically, these models comprise three parts: emissions
and mitigation, atmosphere and climate, and climate impacts. The costs associated with mitigation
and the damages from climate change are generally monetized, allowing a comparison between
mitigation and impacts on a common basis. Detailed descriptions of the energy or land-use systems
that generate emissions are usually absent, and likewise, detailed descriptions of the physical
process links between climate change and emissions are generally beyond their scope. Instead,
these models utilize emission mitigation supply schedules and climate damage functions, allowing
cost-benefit IAMs to explicitly weigh costs and benefits, albeit without the ability to provide insight
into the actual processes that lead to these costs and benefits. Challenges for these models include
assigning value to human life loss and non market damages, as well as determining the relative
value of impacts over different periods of time.
Process-based IAMs share a similar developmental timeframe with cost benefit IAMs but were
crafted along different lines to serve distinct purposes. These models were created to offer detailed
information about human and natural Earth system processes and their interactions. Their initial
focus was on determining anthropogenic carbon emissions, prompting the development of detailed
representations of long-term energy production, transformation, and land-use processes (Riahi
et al.; 2017). Over time, these models have evolved in complexity, incorporating increasing detail in
their representations of the energy system and economy, while also broadening their scope to
include natural Earth system processes such as the carbon cycle. Current iterations of
process-based IAMs typically contain representations of agriculture, land use, land cover, and
terrestrial carbon cycle processes, in addition to atmosphere and climate processes. Each
process-based IAM was developed independently, resulting in models that emphasize different
features of the climate change problem. Some models, for instance, accentuate the development of
detailed atmosphere and climate system models. Others focus on the comprehensive
representation of technology, while some highlight regional differences in emission patterns and
energy systems data. These process-based IAMs require an interdisciplinary approach, given their
complex nature, involving research and modeling teams across various fields.

4.1.3 . Policy relevance of IAMs
IAMs provide crucial knowledge to guide future climate action strategies. They offer potential

climate change and action pathways under varying assumptions about socio-economic, institutional,
and technological developments. IAMs aid policymakers, the private sector, and civil society by
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outlining possible approaches towards a multitude of long-term climate outcomes, while
simultaneously presenting potential conflicts between various pathways. The IAM literature has
examined numerous trade-offs, such as mitigation levels (Riahi et al.; 2017), timing of action(Luderer
et al.; 2018), global vs regionally and sectorally fragmented actions (Bauer et al.; 2020), supply-side vs
demand-side measures (Grubler et al.; 2018), technology deployment preferences (Krey; 2014), and
varying socio-economic futures (Riahi et al.; 2017), amongst others. Policy analysis with IAMs
generally involves comparison of a baseline scenario with policy intervention scenarios.
Uncertainties in baseline projections are addressed using SSPs that represent a spectrum of
possible future developments. The baseline scenario can be defined as a no-policy scenario, or it
can include GHG emissions policies such as the Nationally Determined Contributions (NDCs,
Roelfsema et al. (2020)), and other preexisting policies like energy subsidies and taxes. It can be
augmented by additional sector policies, such as technology support, aimed at helping the
long-term climate goals to be reached. Another key paramater for the policy relevance of IAMs is the
discounting that is used to compare economic flows through time. For instance, in cost-benefit
analysis (CBA), the choice of discount rate is critical for balancing mitigation costs against the cost of
avoided climate damages in the future. A lower discount rate encourages more significant
abatement efforts and lesser global temperature increases. In cost-effective analysis (CEA), the
discount rate influences the timing of emission reductions to limit warming to a specific
temperature level. A lower discount rate here promotes more immediate emission reductions and
the use of currently available mitigation options. CBA and CEA both use a social discount rate to
compare costs and benefits over time. Discounting is also used for ex-post comparison of mitigation
cost pathways across models and scenarios, with typically applied discount rates of 2-5% (Admiraal
et al.; 2016). Overall, understanding and appropriately using discount rates is crucial for policy
decisions relating to climate change mitigation, adaptation, and inter-generational equity. IAMs
allow for sensitivity analysis, helping to assess the importance of strategically developing new
technologies and options for mitigation. They can identify sticking points in climate policy
frameworks, providing guidance on policy prioritization by identifying crucial levers for achieving
long-term climate mitigation targets.

4.1.4 . Limitations of IAMs
Aggregated IAMs, while useful for exploring a wide range of scenarios, have limited accuracy and

are more suited to qualitative than quantitative insights (Heal; 2017). Critics have targeted
optimization modelling, which assumes perfect foresight of future costs, and focuses on a
cost-optimal path . The heavy dependence of these paths on the discount rate has also been
criticized. The cost functions in IAMs, including damage functions and others, are seen as highly
uncertain, leading to a degree of scepticism (Keppo et al.; 2021; Trutnevyte; 2016; Pindyck; 2017).
Moreover, IAMs have faced criticism for potentially omitting important dynamics related to climate
damages, economic benefits of mitigation (Stern; 2016), bioenergy, land degradation and
management (Creutzig et al.; 2015), carbon dioxide removal (Smith et al.; 2016), technological
progress (Creutzig et al.; 2017), actor heterogeneity, and the distributional impacts of climate change
and policy. Other concerns include the perceived lack of transparency in IAMs and their inability to
account for underlying socio-cultural transitions and extreme or discontinuous outcomes (Weyant;
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2017). Critics argue that IAMs tend to focus on only a subset of relevant futures, potentially steering
society in certain directions without sufficient scrutiny (Beck and Mahony; 2017).

Despite these criticisms, the IAMs community has made continuous improvements in model
design and scenario creation. These include better representations of energy demand, renewable
energy, carbon dioxide removal technologies, and land management. Increased efforts have also
been made to enhance transparency and better contextualise results for users. The research
community is also addressing the limitations related to transformative change, engaging with social
scientists to provide a more complete picture of high-impact climate change scenarios and deep
transformation pathways. An iterative approach between researchers and societal actors is being
adopted to continuously refine research questions and IAM applications.

4.1.5 . Potential of inverting the IAM-SCM approach
The conventional approach of employing Simple Climate Models (SCMs) has largely seen them

serve as assessment tools for IAMs to foster integration between the WGI and WGIII sections of the
IPCC reports. This framework operates as a pipeline, comprising three key stages: harmonization of
emission scenarios, infilling of missing data, and climate model emulation, all aimed at ensuring a
comprehensive, consistent, and comparable evaluation of climate responses across different
emission scenarios. The harmonization stage, which aligns emission scenarios with a common
source of historical emissions, ensures that climate futures arising from different scenarios reflect
unique future emission evolutions, not disparate historical starting points (Nicholls et al.; 2020;
Gidden et al.; 2019). The infilling process complements the harmonization step by ensuring that all
relevant anthropogenic emissions are accounted for, minimizing the risk of a skewed climate
assessment. This step is necessary due to variations in reporting by different IAMs (Lamboll et al.;
2020). Lastly, the pipeline utilizes WGI-calibrated climate model emulators, selected based on expert
judgment, to provide a scientifically robust assessment of climate responses (Forster et al.; 2021).
These emulators are calibrated to match a range of key climate metrics assessed by WGI. The
outcome is a robust climate assessment process that effectively integrates WGI’s physical climate
understanding and WGIII’s socio-economic climate strategies, providing a comprehensive overview
of climate change trajectories and related implications. This perspective and usage have significantly
shaped the interpretation and application of such models in understanding climate change
scenarios. However, in an endeavour to overcome limitations and address critical viewpoints, it may
be beneficial to consider inverting this conventional approach by using Pathfinder described in
Chapter 2 as a starting point. This new framework would not replace the conventional approach, but
would complement it and help identify in advance what types of scenarios should be explored in
detail.
An innovative way of contemplating this is to let physics, particularly climate and impact models,
delineate a set of scenarios compatible with desired climate targets. These scenarios, generated by
physical models and impact assessments, inherently factor in a broad spectrum of climate variables
and associated impacts, thereby ensuring a wide-ranging consideration of possible climate futures.
The approach described in chapter 3makes it possible to generate such scenarios. Then an economic
module can be employed to assess the cost implications of each scenario. This appraisal allows for
the ranking of these climate pathways based on economic feasibility, subsequently guiding decision-
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makers in choosing the most cost-effective strategy. This is the subject of this chapter.
This reversed approach could address one of the main critiques levelled against IAMs, namely, their
perceived lack of focus on the full spectrum of possible outcomes. With this inversion, we propose
exploring the entire realm of possibilities initially and then narrowing down to amore relevant subset
that can be further scrutinized using complex IAMs.
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4.2 . Near-optimal and Paris-compliant pathways robust to physical uncertainty,economic paradigms, and intergenerational equity
Abstract: Integrated Assessment Models (IAMs) play a crucial role in examining the potentialimpacts of various policy options and socio-economic developments on outcomes such asgreenhouse gas emissions, climate change, and human well-being. However, there is limitedunderstanding of how the conceptual choices in these models, such as the form of costfunctions or minimization criteria, influence the identification of mitigation pathways. Here, weaddress this gap by analyzing a large set of CO2 emission pathways that are compatible withthe 2°C temperature target, generated using a reduced-form climate model with a thousanddifferent representations of Earth system physics for a comprehensive representation ofclimate uncertainty. We estimate and compare the costs of these CO2 emission pathwaysaccording to a variety of conceptual choices for both the minimization criterion and the costfunction. Given the size and scope of our ensemble, we consider the least-cost pathways arenear optimal. We find that about half of the near-optimal pathways are common to allconceptual choices (six cost functions and two minimization criteria) and can therefore bedescribed as economically robust. To deal with the physical uncertainty represented by thethousand physical states of the world of our ensemble, we calculate the proportions of robustpathways in each of them and summarize the results by reporting the median value. If wechoose net present value (NPV) as the minimization criterion, about 80% of the near-optimalpathways are robust to the choice of the cost function. The shape of the cost function becomesmore discriminatory when a minimax approach is chosen as the minimization criterion. Weestablish that the most important distinguishing factor is whether or not inertia is considered inthe costs. To consider generational cost repartition, we propose a third minimization criterionwith the difference in costs between the current generation (2021-2060) and the futuregeneration (2061-2100). 24% of the near-optimal pathways are robust to this minimizationcriterion across all the cost functions and are described as generationally robust. Hence, it ismore difficult to be generationally robust than economically robust. About half of thesegenerationally robust pathways are also economically robust to conceptual choices regardingthe cost function and the minimization criterion. Accounting for physical uncertainty appears tobe critical for 4% of the explored physical states of the world that do not find generationally andeconomically robust pathways. However, when they exist, these pathways are characterized byearly onset of mitigation and net negative emissions at a reasonable scale, similar to or slightlymore optimistic than comparable IPCC scenarios. Overall, our results highlight the importanceof understanding conceptual choices when IAMs are used to develop mitigation policies andcan the modelling community to take more informed decisions about the climate changemitigation strategies to select for in-depth modelling.
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Introduction 

Climate change mitigation is a complex challenge that requires careful planning and strategic decision-

making. Integrated Assessment Models (IAMs) have emerged as a crucial tool for informing these 

decisions, providing insights into the potential costs and benefits of different mitigation strategies [1]. 

However, the use of aggregated IAMs is not without limitations and uncertainties. These models often 

rely on simplified representations of complex economic and climatic processes, leading to significant 

structural uncertainties in their projections [2, 3]. 

While previous studies [4-6] have acknowledged and explored these limitations and uncertainties, 

there remains a significant gap in our understanding of how they interact with - and influence - the 

identification of cost-optimal or near-optimal pathways. In particular, the impact of various 

conceptual choices on mitigation costs calculation and optimization remains under-studied [7]. In light 

of these considerations, the objective of this study is to explore how different cost function paradigms 

and minimization criteria impact the identification of near-optimal pathways for climate change 

mitigation.  

We use a backward approach to back-calculate global CO2 emission scenarios based on temperature 

and atmospheric CO2 concentration pathways that correspond to the Paris Agreement goals: staying 

below +2°C and asymptotically reaching +1.5°C in the very long term. To do this, we use Pathfinder, a 

reduced complexity climate model calibrated using observations and climate projections from the 

sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) [8]. 

Pathfinder provides about 2500 CO2 ex-ante emission scenarios, all of which remain below 2°C. The 

model is run under 1000 different configurations where the parameters are drawn from the posterior 

probability distribution obtained after Bayesian calibration[8] and represent equally likely physical 

states of the world. Combining this probabilistic evaluation with the thousands of semi-randomly 

generated pathways yields several million possible futures. 

With this very large ensemble of pathways, which comprehensively explores the space of physically 

compatible emission pathways that remain below 2°C, we search for economically near-optimal 

pathways in terms of abatement costs. To address the uncertainty of the abatement cost function [3, 

9] and the different minimization criterion [10, 11], we explore variations of these two key choices 

and look for robust pathways defined as the pathways identified as “least cost” in at least two of these 

variations. We test six different forms of the abatement cost function and two minimization criteria 

for comparing costs: a net present value (NPV) approach (discounting at 4%) and an alternative 

minimax approach that minimizes the maximum relative cost (as a percentage of GDP) across 

pathways, without discounting. While physical uncertainty is addressed by the thousand physical 

configurations of Pathfinder, we add a final dimension to the analysis with intergenerational cost 

sharing to identify robust and equitable set of CO2 emission pathways consistent with the 2°C 

temperature target. 

Methods 

Generation of pathways meeting Paris Agreement 



Unlike most aggregated IAMs[2], we do not look for one cost-optimal pathway, but for a set of near-

optimal pathways derived from a much larger ensemble of possible emission pathways. We back-

calculate CO2 emission and non-CO2 radiative forcing (non-CO2 RF) pathways that correspond to 

temperature pathways that stay below 2°C and asymptotically reach 1.5°C in the long term (Figure 1, 

step 2). If CO2 emissions fall below the lower limit of the AR6 scenarios envelope [12], we attribute 

the gap to carbon dioxide removal (CDR). This model is known as Pathfinder v1.0.1 [8], a reduced-

complexity carbon-climate model. The model parameters are based on CMIP6 models and were 

calibrated by Bayesian inference [13] using observations and assessed values from the latest IPCC 

report. To account for physical uncertainty, the model is run under 1000 different configurations (i.e. 

a set of model parameters representing the physics of the Earth system), with parameters drawn from 

the posterior probability distributions resulting from the Bayesian calibration (Figure 1, step 2). 

Our ex-ante method for generating temperature and CO2 atmospheric concentration input 

trajectories cannot include socioeconomic constraints by construction (Supplementary Materials). 

Therefore, the output of Pathfinder is a large ensemble of emissions pathways, some of which explore 

implausible values of CO2 emissions or non-CO2 RF. To eliminate these unrealistic pathways, we add 

two conditions : i) limit CDR to a maximum of 37 GtCO2 yr-1 and ii) impose that non-CO2 RF cannot fall 

below the lower limit of the AR6 scenarios envelope [12]. In other words, all our pathways are 

consistent with mitigation of non-CO2 forcers in AR6 and do not rely on speculative technology such 

as solar radiation management or direct CH4 removal. To avoid retaining pathways being realistic only 

because of a particular Earth system physics in Pathfinder, we ensure that the two conditions above 

are met in at least 80% of the 1000 configurations. 

Definition of abatement cost functions 

Aggregated IAMs do not represent all the mitigation technologies and their costs. They necessitate 

the use of stylized cost functions that are defined by each modeling team. The choice of a cost function 

results in a wide range of projections for the optimal carbon tax [14]. A common debate about this 

choice regards the most effective approach to incorporate dynamic realism, i.e. the consideration of 

prior abatements in the cost function [7]. Historically, most IAMs have overlooked dynamic realism, 

but in recent years, an increasing number of models have integrated it into their abatement cost 

functions through induced innovation or inertia. Yet, there is no consensus on the specific form of the 

term that represents emission reduction. While many models employ a power law, others propose 

the inclusion of a linear term. 

To address the various conceptual possibilities, we developed six abatement cost functions derived 

from five aggregated models: ACC2 [15], DICE [16], PAGE [17], RESPONSE [18] and DICE-PACE [7]. 

Based on insights from the literature, we determined that the abatement costs (denoted as 

𝑐 (𝑎,
𝑑𝑎

𝑑𝑡
, ∑ 𝑎 , 𝑡) and measured in 109$ yr-1) can be derived from the abatement relative to a baseline 

(a in GtCO2 yr-1), the abatement rate (
𝑑𝑎

𝑑𝑡
 in GtCO2 yr-2), the absolute cumulative abated emissions (∑ 𝑎 

in GtCO2) and the time (t). Specifically, we decompose the cost into the product of two functions: 

𝑇𝑒𝑐ℎ(𝑡, ∑ 𝑎)  which represents technological change and 𝑆(𝑎,
𝑑𝑎

𝑑𝑡
) which indicates the form of the cost 

function. We can write 𝑐 (𝑎,
𝑑𝑎

𝑑𝑡
, ∑ 𝑎 , 𝑡) =  𝑇𝑒𝑐ℎ(𝑡, ∑ 𝑎) 𝑆(𝑎,

𝑑𝑎

𝑑𝑡
). One can note that this cost does not 

consider non-CO2 RF pathways. 

Technological change can manifest as either endogenous or exogenous. In the case of exogenous 

technological change, referred to as autonomous technological change, it follows the form 



𝑇𝑒𝑐ℎ(𝑡)  = 𝜏𝑡, where τ represents a discount factor resulting in an annual decrease in abatement 

costs by (1 - 𝜏)*100% due to external innovation. 

If we assume endogenous technological change, we utilize the expression 𝑇𝑒𝑐ℎ(∑ 𝑎)  = (1 +  𝜎 ∑ 𝑎)𝜇, 

which captures induced innovation through the process of learning by doing (LBD). Past abated 

emissions (∑ 𝑎) are considered an experiential gain that reduces future costs. To account for the initial 

experience stock (IES) of avoided emissions, which serves as a reference, we define 𝜎 =
1

𝐼𝐸𝑆
 as the 

reciprocal of IES.  

In total, three terms can be combined to form 𝑆 (𝑎,
𝑑𝑎

𝑑𝑡
). Firstly, to model the initial behavior of 

abatement costs, we introduce a linear term (βa). Setting β = 0 represents a pathway where the initial 

abatement is free.  

Secondly, all examined models incorporate a non-linear cost function, such as (𝛼 − 𝛽)
𝑎𝜃

𝜃𝐸𝜃−1 derived 

from DICE [16] and employed in RESPONSE [18] and DICE-PACE [7]. Here, α represents the marginal 

cost for maximum mitigation (a = E), which essentially represents the current price of the backstop 

technology. The cost elasticity, denoted as θ, remains constant. 

Finally, we define an inertia term that penalises the speed of decarbonisation, expressed as 
𝐺𝐷𝑃

𝐸𝜑
(𝛿

𝑑𝑎

𝑑𝑡
)

φ

, where 𝜏 represents a scaling factor reflecting the transition timescale measured in years. 

The cost parameter φ, greater than 1, shapes the inertia term.  

The non-linear and inertia terms incorporate E and GDP as multipliers to maintain the homogeneity 

of the cost function. These terms show the dependency of calculated costs on the chosen baselines. 

To evaluate the impact of conceptual choices on abatement costs, not all combinations of these terms 

are explored. We calculate the costs for each CO2 emission pathway using six distinct cost functions 

that are chosen for their relevance (Supplementary Materials; Figure 1, step 3). 

The non-linear term is present under various forms in most of the functions from aggregated IAMs. 

Therefore, we build all the cost functions around this term. First, we take the most common function 

used in DICE [16].  

• DICE: 𝑐(𝑎, 𝑡) = 𝜏𝑡  [𝛼
𝑎𝜃

𝜃𝐸𝜃−1] 

( 1) 

Since autonomous technical change and LBD have the same discounting role, it is near impossible to 

calibrate both terms simultaneously, so we choose either one or the other. Therefore, the second 

functional form is the same as DICE, but autonomous technical change is replaced by LBD.  

• DICE_LBD: 𝑐(𝑎, ∑ 𝑎) =  (1 + 𝜎 ∑ 𝑎)μ[𝛼
𝑎𝜃

𝜃𝐸𝜃−1] 

( 2) 

This conceptual approach takes into account the dynamic realism of emitting systems through induced 

innovation. It is also possible to maintain an exogenous innovation and introduce an inertia term to 

the DICE form. 

• DICE_inertia: 𝑐 (𝑎,
𝑑𝑎

𝑑𝑡
, 𝑡) =  𝜏𝑡  [𝛼

𝑎𝜃

𝜃𝐸𝜃−1 +
𝐺𝐷𝑃

𝐸²
(𝛿

𝑑𝑎

𝑑𝑡
)

𝜑
] 

( 3) 



Instead of inertia, we can add a linear term that artificially determines the costs in the first years. 

• DICE_linear: 𝑐(𝑎, 𝑡) =  𝜏𝑡  [𝛽 𝑎 + (𝛼 − 𝛽)
𝑎𝜃

𝜃𝐸𝜃−1
] 

( 4) 

DICE_inertia and DICE_linear have a new term not represented in other models to study its influence 

when combined only with the mainstream cost function (DICE). Each of the first four functions allows 

each conceptual choice to be studied separately. We added two more complex functions to examine 

how abatement costs behave when we combine several of these conceptual terms, while keeping the 

distinction between exogenous and endogenous technological innovation. 

• Full: 𝑐 (𝑎,
𝑑𝑎

𝑑𝑡
, 𝑡) =  𝜏𝑡  [𝛽 𝑎 + (𝛼 − 𝛽)

𝑎𝜃

𝜃𝐸𝜃−1 +
𝐺𝐷𝑃

𝐸²
(𝛿

𝑑𝑎

𝑑𝑡
)

𝜑
] 

( 5) 

• Full_LBD: 𝑐 (𝑎, ∑ 𝑎 ,
𝑑𝑎

𝑑𝑡
) = (1 + 𝜎 ∑ 𝑎)μ[𝛽 𝑎 + (𝛼 − 𝛽)

𝑎𝜃

𝜃𝐸𝜃−1 +
𝐺𝐷𝑃

𝐸²
(𝛿

𝑑𝑎

𝑑𝑡
)

𝜑

] 

( 6) 

Overall, we chose the DICE function because it is widely used in the literature and provides a baseline 

for comparison. The DICE_LBD, DICE_inertia and DICE_linear functions were chosen to explore the 

impact of including inertia and linear terms, which have been suggested as important factors in 

previous studies [7, 18]. The Full and Full_LBD functions were chosen to examine the combined effect 

of these terms. 

Calibration method 

To calibrate the parameters of the six cost functions in equations (1) to (6), we employ data from the 

AR6 Scenario Explorer database [12]. Process-based integrated assessment models (IAMs) utilize 

numerous metrics to derive abatement costs [19]. These metrics encompass GDP loss, consumption 

loss, marginal costs of the energy system, marginal energy investments, or carbon price, serving as 

proxies for abatement costs. Consequently, directly comparing abatement costs with the IAM 

database outputs [12] poses challenges, as the reference or baseline values used to estimate costs are 

not always explicitly provided for each metric, and complete metric values are not available for all 

scenarios. 

Therefore, for scenarios that can be mapped to a consistent "baseline" scenario, we calculate the GDP 

loss and assume it to be equivalent to the abatement cost. However, the six cost functions aim to 

represent several processes that may not have been explicitly considered in IAM scenarios. 

Furthermore, the functional forms contain numerous terms and parameters without sufficient 

constraints to effectively replicate costs from complex models. Thus, instead of striving for exact 

replication of each model’s behavior, we opt for a rough calibration approach utilizing three target 

years in 2030, 2050, and 2100. These years were chosen because they are commonly used reference 

years in IPCC reports [20, 21] and they allow to constrain our functions on the short-, mid- and long-

term. Our primary objective is to obtain estimates that provide a realistic order of magnitude 

compared to the AR6 models’ ensemble rather than a precise model replication. Consequently, we 

calibrate the functional forms simultaneously for all models and scenarios. 

In total, there are eight unknown parameters (φ, θ, µ, σ, α, β, δ, τ), with up to seven parameters within 

the same cost function. To maintain a low degree of freedom in the calibration, we fix all parameters 

except the two that are common to all cost functions: α and θ. In the Supplementary Materials, we 



present the examination of an alternative calibration method that offers greater degrees of freedom, 

highlighting its limitations through comprehensive testing. Based on literature, we select µ = -2 and φ 

= 2 as the shape parameters [7, 17, 18]. For the sensitivity parameters, based on existing models and 

literature [16-18], we set σ = 1.4 10-4 GtCO2
-1, β = $136 tCO2

-1, δ = 5 years and τ = 0.995 (Supplementary 

Materials).  

Choice of GDP and CO2 emissions baseline 

Central to our methodology is the requirement for a baseline for both Gross Domestic Product (GDP) 

and anthropogenic CO2 emissions. Such baselines are crucial to facilitate the application of our 

selected cost functions to these scenarios. 

The trajectory of our scenarios extends to the year 2500, a horizon that poses significant challenges 

to forecasting GDP or CO2 emissions. For example, the AR6 scenarios only extend to the year 2100 

[12]. Relying on these scenarios alone has a potential pitfall, as it could lead to an artificial shift of 

associated costs beyond 2100. 

To overcome this challenge, we incorporated the projections proposed by Rennert and colleagues 

[22], which leveraged expert assessments to project long-term GDP and CO2 emissions until 2300. We 

adopted the median values of these projections to define our baseline. Upon comparison with the 

AR6 scenarios until 2100 [12], we observe that GDP projections remain consistent. However, our 

baseline emissions are found to reside at the lower end of the AR6 baseline range (Figure S1). To 

ensure that abatement always starts at 0 GtCO2 yr-1, we apply a scaling factor to the baseline so that 

CO2 emissions in the first year of the projections (2021) correspond to the initial value of Pathfinder’s 

scenarios in each configuration of the model.  

Definition of near-optimal and robust pathways 

The substantial scale of our ensemble, encompassing mitigation trajectories that maintain consistency 

with the 2°C threshold, enables us to assume that the subset of pathways which are minimizing 

abatement costs, are close to optimal. In this study, we define a pathway as near-optimal within each 

functional form of the cost function and in each of the 1000 configurations if it falls within the 10% 

least expensive trajectories in the ensemble produced by Pathfinder (Figure 1, Step 4, the choice of 

10% is discussed in the Supplementary Materials). The determination of near-optimal pathways 

depends on the choice of the minimization criterion. Therefore, we used two criteria. First, we apply 

the net present value (NPV) approach for the period from 2021 to 2300, using a discount rate of 4% 

in agreement with existing literature [16]. Second, we examine a minimax approach by comparing the 

maximum relative cost (as a percentage of GDP) across pathways, without discounting. The NPV 

method is widely used for cost optimization [16, 17]. Our definition of minimax is different from the 

minimax regret method used in IAMs to account for parameter uncertainty and minimize regret in the 

presence of multiple uncertain futures [23].  

Given the two minimization criteria and our six cost functions, there is twelve combinations resulting 

into different subsets of near-optimal pathways. These subsets can be intersected altogether (all 

twelve combinations) or through a more selective number of combinations. Pathways remaining 

present within the chosen intersection are defined as 'robust'. To quantify the degree of robustness, 

we count the number of robust pathways and provide it as a percentage. This robustness score is 

computed as the ratio of the robust pathways to the size of a subset of near-optimal pathways (10% 

of the ensemble’s size). 



In this manuscript, the term "economically robust" is used for a pathway that exhibits near-optimality 

regardless of the employed cost function and/or minimization criteria. We designate as "robust to 

NPV" a pathway that demonstrates robustness across all cost functions when NPV is utilized as the 

criterion for minimization. Similarly, a pathway that withstands robustness assessments across all cost 

functions using minimax as the minimization criterion is labeled as "robust to minimax."   



 

Figure 1 Global framework for defining robust pathways. In step 1, we analytically generate 2°C-

compliant temperature and CO2 concentration pathways. In Step 2, we use Pathfinder to back-

calculate CO2 emissions and non-CO2 RF pathways that are compatible with our inputs. In Step 3, we 

estimate abatement costs for all our pathways using six different cost functions. In Step 4, we select 

only the 10% least expensive pathways (according to a chosen minimization criterion). In Step 5, we 

compare all subsets of least expensive pathways to define robust near-optimal pathways. This process 

is applied to 1000 physical worlds, each yielding a different percentage of robust pathways. 

Consideration of intergenerational cost repartition 

Embedded within the question of the minimization criterion is the intergenerational distribution of 

costs. The selection of the discount rate is pivotal and has been a topic of considerable debate within 

the sphere of environmental economics [10, 11, 24].  

The minimax strategy seeks to circumvent the complexities associated with the discount rate and 

expressly avoids signaling a preference for the present. It endeavors to minimize the maximum cost 

(relative to GDP) throughout the entire temporal span. While this may result in a higher total cost, it 

ensures that no single generation bears disproportionately high costs for the sake of benefiting others. 

This methodology should not be conflated with the minimax-regret approach from previous studies, 

which minimized NPV using an integrated assessment model with extreme parameters for climate 

sensitivity, damage estimates, and mitigation costs [23].  

In order to evaluate the impact of the minimization criterion on the distribution of costs across 

generations, we partition two generational periods for comparison: an existing generation spanning 

the years 2021-2060, and a future generation encompassing the years 2061-2100. This partition 

follows previous work [25] and provides a simple framework to assess intergenerational distribution 

of global costs. Specifically, we calculate the difference of the NPV estimated for these periods 

separately (NPV1 for 2021-2060 and NPV2 for 2061-2100). Following [25] we normalize the difference 

using NPV2. The term "generationally robust" is assigned to a pathway that exhibits near-optimality 

regardless of the employed cost function and with 𝑁𝑃𝑉𝐷𝑖𝑓𝑓 =
𝑁𝑃𝑉1−𝑁𝑃𝑉2

𝑁𝑃𝑉2
 as the minimization 

criterion.  



  

Figure 2 Comparison of abatement costs in AR6 with calibrated costs estimated from the six cost 

functions: DICE (panel a.), Full_LBD (panel b.), DICE_inertia (panel c.), Full (panel d.), DICE_linear (panel 

e.), and DICE_LBD (panel f.). The colors represent the three target years we focus on: 2030 (blue), 2050 

(red), 2100 (green). This figure is zoomed in and shows most of the points. Figure S2 shows the same 

panels with all the points.   

c) 

a) b) 

d) 

e) f) 

 



 

Figure 3 Distribution of mitigation costs from AR6 (white boxes) compared to the six calibrated cost 

functions (colored boxes) for scenarios across six categories ranked from high to low mitigation 

scenarios (C1 to C6). Costs are calculated and calibrated on three crossing points in 2030 (panel a.), 

2050 (panel b.), and 2100 (panel c.) 

 



Results 

Calibration results 

The success of the calibration process is assessed for the three target years in 2030, 2050, and 2100. 

In Figure 2, the costs obtained from six different calibrated cost functions are compared against the 

AR6 IAMs costs. The results in 2050 and 2100 demonstrate that all six functions yield similar 

projections reasonably aligned with the AR6. However, the calibrated functions tend to underestimate 

costs when they are high, i.e. approaching 10% of GDP, while overestimating costs when they are low 

(Figure S2). Figure 3 presents the cost distribution in the target years and differentiates scenarios into 

categories from C1 (high mitigation) to C6 (low mitigation) defined in the IPCC’s working group III 

report [26] (Figure S3). In 2050 and 2100, all functional forms of cost estimation remain within the 

uncertainty range of the IPCC AR6 costs [12]. Nevertheless, in 2050, there is a slight tendency for all 

functional forms to overestimate costs associated with the high mitigation scenarios (C1 and C2 

scenarios). In 2100, regardless of the scenario classification (C1 to C6), all functional forms yield similar 

cost estimates, with a slight overestimation observed for the C5 scenarios. 

Turning our attention to the costs in 2030, the cost estimates associated with the functions 

incorporating inertia (DICE_inertia, Full, Full_LBD) exhibit significantly higher overestimation (Figure 

S1, Figure 2). Figure 3 provides further evidence that functions incorporating inertia consistently yield 

cost estimates well above the range provided by the IPCC for all scenarios, whereas the functions 

without inertia (DICE, DICE_LBD, DICE_linear) align more closely with the IPCC estimates. This 

discrepancy is particularly pronounced for the scenarios demanding more stringent mitigation 

measures, namely C1, C2, and C3. The introduction of the inertia term with a transition time scale (δ) 

of 5 years, which is more optimistic than what is typically found in the literature, leads to a short-term 

overestimation of costs. This outcome is expected due to the absence of explicit consideration of 

inertia in the process-based IAMs employed in the AR6 database [7]. Interestingly, in the presence of 

the inertia term, the inclusion of the linear term in the cost functions (Full and Full_LBD) further 

overestimates the costs compared to the functions without this linear term (DICE_inertia). Conversely, 

the linear term alone (DICE_linear) does not contribute to higher cost estimates. 

 α θ 

DICE $636 / tCO2 1.93 

DICE_LBD $792 / tCO2 2.17 

Full $661 / tCO2 5.46 

Full_LBD $807 / tCO2 5.74 

DICE_inertia $881 / tCO2 3.84 

DICE_linear $742 / tCO2 3.35 

 

Table 1: Calibration of the parameters of the abatement cost functions. α represents the marginal cost 

for maximum mitigation, which essentially represents the current price of the backstop technology. 

The cost elasticity is denoted as θ. 

The calibrated values of the parameters in Table 1 demonstrate that θ, the shape parameter of the 

power law, is independent of the function used to estimate technological change (endogenous or 

exogenous). Regardless of whether LBD is included, the same functional forms yield very similar 

calibrated values for θ. It is observed that the number of terms included in the cost function 

determines the value of θ. When only the power law is considered, θ is approximately 2 (DICE and 

DICE_LBD). Introducing the power law alongside another term increases θ to approximately 3.5 



(DICE_inertia and DICE_linear). Finally, incorporating all three terms (Full and Full_LBD) in the cost 

function yields a value of θ around 5.5. The value of α, the sensitivity parameter of the power law, 

remains stable between $640/tCO2 to $880/tCO2.. It is in agreement with other similar model’s 

parametrisation (Supplementary Materials). 

Selection of economically robust pathways 

As previously explained, our investigation incorporates two minimization criteria via NPV and minimax 

optimization methodologies. We apply these criteria on the large ensemble of Pathfinder’s CO2 

emission scenarios to estimate near-optimal pathways for each conceptual cost function. When 

applying the NPV approach, the choice of the cost function seems to exert minimal influence, as a 

substantial 78% of the near-optimal pathways are common across all cost functions. However, if the 

minimax approach is used, the robustness of the near-optimal pathways falls to 55%. This is insightful 

to identify economically robust near-optimal pathways that are universally shared by both NPV and 

minimax approaches. These economically pathways robust to the choice of both the cost function and 

minimization criterion, constitute 54% of all near-optimal pathways. Therefore, a vast majority of 

pathways demonstrating robustness under the minimax approach also exhibit similar robustness 

under the NPV approach, as depicted in Figure 4.a. 

Minimax DICE Full_LBD DICE_inertia Full DICE_linear DICE_LBD 

DICE 100% 62 61% 61% 93% 93% 

Full_LBD  100% 98% 98% 57% 57% 

DICE_inertia   100% 100% 55% 56% 

Full    100% 55% 56% 

DICE_linear     100% 96% 

DICE_LBD      100% 

Table 2.a Percentage of near-optimal pathways robust for minimaxf and two cost functions. The 

minimax criterion minimizes the maximum relative cost (as a percentage of GDP) across pathways, 

without discounting. 

NPV DICE Full_LBD DICE_inertia Full DICE_linear DICE_LBD 

DICE 100% 83% 83% 83% 91% 93% 

Full_LBD  100% 98% 98% 81% 83% 

DICE_inertia   100% 100% 81% 83% 

Full    100% 81% 83% 

DICE_linear     100% 96% 

DICE_LBD      100% 

Table 2.b Percentage of near-optimal pathways robust for NPV and two cost functions. The NPV 

criterion minimizes the net present value on the period 2021-2300. 

NPVDiff DICE Full_LBD DICE_inertia Full DICE_linear DICE_LBD 

DICE 100% 47% 47% 47% 68% 84% 

Full_LBD  100% 99% 99% 38% 33% 

DICE_inertia   100% 100% 38% 33% 

Full    100% 38% 33% 

DICE_linear     100% 58% 

DICE_LBD      100% 

Table 2.c Percentage of near-optimal pathways robust for NPVDiff and two cost functions. The NPVDiff 

criterion minimizes the difference of net present value between two generations spanning on the 

periods 2021-2060 and 2061-2100. 



The main discriminatory factor explaining why only 55% of near-optimal pathways are robust to 

minimax is whether inertia is included in the cost function. On Figure 4.c we divide the cost functions 

between the ones with inertia (DICE_inertia, Full, Full_LBD) and the ones without (DICE, DICE_LBD, 

DICE_linear). Both robustness scores to minimax are 98% (with inertia) and 92% (without inertia). This 

result puts the debates on the linear or technological terms into perspective and would argue for a 

comparison only between DICE and DICE_inertia. 

Impact of the minimization criterion on inter-generational equity 

Following previous studies [27], we evaluate the cost distribution by calculating the NPV difference 

(NPVDiff) over two generation spans. We find that 24% of the near-optimal pathways are robust to the 

NPV difference (i.e. generationally robust). We find that the choice of the cost function has a large 

impact and the key distinguishing feature is inertia. On Figure 4.d we divide the cost functions between 

the ones with inertia and the ones without. We find a generational robustness scores of 99% for 

functions with inertia meaning that near-optimal pathways are almost identical for the three 

functions. Conversely, the generational robustness is only 57% for functions without inertia.  

Figure 4.a shows that there is overlap between pathways robust to NPV, minimax and NPVDiff. Indeed, 

12% of the near-optimal pathways show robustness to NPV and NPVDiff. 11% of the near-optimal 

pathways show robustness to NPV, minimax, and NPVDiff and can be qualified as economically and 

generationally robust. 

Generationally robust pathways minimize the difference of NPV between the present and future 

generations. Yet, it does not say anything about the value of NPVDiff (defined as 𝑁𝑃𝑉𝐷𝑖𝑓𝑓 =
𝑁𝑃𝑉1−𝑁𝑃𝑉2

𝑁𝑃𝑉2
). On Figure S4, we show the distribution of NPVDiff values for generationally robust near-

optimal pathways. On one hand, cost functions without inertia are centered on zero and NPVDiff 

spreads between -0.3 and 0.3. On the other hand, cost functions with inertia shifts costs significantly 

toward the first generation as NPVDiff is centered on 60. 

The role of physical parameters on defining near-optimal pathways. 

The determination of robust pathways was repeated for each potential physical world. The physical 

uncertainties have been accounted for as we have reported so far the median robustness scores 

across our 1000 potential worlds. However, a comprehensive exploration of the uncertainty range 

engendered by the 1000 configurations proves informative. The distribution across configurations of 

four critical robustness scores is shown in Figure 5.Figure 5.a focuses on pathways robust to minimax, 

Figure 5.b on pathways economically robust, Figure 5.c on pathways generationally robust and Figure 

5.d on pathways generationally and economically robust. These distributions underscore that the six 

cost functions are able to lead to near-optimal pathways robust to various minimization criteria in the 

vast majority of the configurations. In Figure 5, there are about 1% of the configurations that do not 

find near-optimal pathways generationally robust (Figure 5.c) and about 4% not finding economically 

and generationally robust pathways (Figure 5.d). The distributions do not exhibit significant skewness, 

justifying the use of the median.   



 

Figure 4 Venn diagrams showing the robustness score for near-optimal pathways that are robust to 

minimax, NPV and NPVDiff (panel a). Panels b, c and d decompose the robustness score for these robust 

pathways among cost functions that do or do not account for inertia. The intersection spaces of the 

circles in panels b, c and d correspond to the size of ellipses in panel a. All robustness scores correspond 

to the median value across all Pathfinder’s configurations. 

For enhanced understanding of these distributions, their correlation with certain diagnostic metrics 

on the model's climate and carbon cycle are considered (Figure 6). Notably, a correlation emerges 

between the Equilibrium Climate Sensitivity (ECS [28]]) or the Transient Climate Response to Emissions 

(TCRE [29]) and the robustness score of near-optimal pathways that are economically robust. High 

TCRE or ECS means that the Earth system is more sensitive to anthropogenic emissions and stronger 

mitigation is needed to remain below 2°C. The negative correlation signifies that a heightened ECS or 

TCRE in the model corresponds with lower agreement between the cost functions used to define near-

optimal pathways. Therefore, a configuration featuring a lower TCRE or ECS permits smoother 

mitigation scenarios, attenuating the impact of inertia on costs. Since inertia is the decisive factor 

when evaluating the robustness score of near-optimal pathways economically robust or only robust 

to a minimax minimization criterion, a diminished inertia impact logically fosters greater consensus 

among cost functions and thus a larger robustness score. 

a) 

b) c) 

d) 



 

 

Figure 5 Distribution of the robustness score for near-optimal pathways robust to minimax (panel a), 

minimax and NPV (panel b), NPVDiff (panel c), and NPVDiff, NPV and minimax (panel d). The black line 

gives the median value of these distributions. In panel d., the red line gives the 1st percentile of the 

configuration with the least economically and generationally robust pathways. 

There is no significant correlation between physical parameters of the model and the robustness score 

for generationally or economically and generationally robust pathways. 

Influence of robustness criteria on the envelope of near-optimal pathways 

We set thresholds for the capacity of physical configurations to identify economically and 

generationally robust pathways. Suitable thresholds may diverge based on stakeholder groups and 

risk attitudes [30]. We propose a focus on two: the median (i.e. the 50th percentile), that we have 

already extensively used, and the 1st percentile of configurations that locate the smallest robustness 

score of economically and generationally robust pathways. Looking at the 1st percentile is our 

equivalent of the 'worst possible physical world' aligning with robust decision-making strategies that 

aim to identify resilience and adaptability amidst uncertainty [31].   

c) 

b) a) 

d) 

 



  

Figure 6 Scatter plots representing the robustness of near-optimal pathways robust to minimax (panels 

a, c) or economically robust, i.e robust to minimax and NPV (panels b, d) in function of the ECS (panels 

a, b) or the TCRE (panels c, d).  

To explore how the different definitions of robustness influence the selection of pathways, we 

juxtapose the envelopes of near-optimal pathways generated by different definitions of robustness. 

Figure 7 illustrate how the envelope of near-optimal pathways reduces when adding conditions for 

robustness and for the 50th (Figure 7.a) and 1st percentiles (Figure 7.b) of the least robust 

configurations. On both panels, the widest envelope corresponds to all the 2°C compatible pathways. 

In this non-optimized case, certain pathways deploy up to 37 GtCO2 yr-1 of CDR prior to 2050 and other 

pathways remain below 2°C with late emission peak and mitigation. The second widest envelope 

correspond to near-optimal pathways employing only NPV as the minimization criterion and DICE as 

the cost function (denominated as DICE-NPV). Pathways from this envelope use up to 33 GtCO2 yr-1 

from CDR, albeit not prior to 2100. The third envelope encompass economically robust near-optimal 

pathways. The most extreme of these scenarios requires around 11 GtCO2 yr-1 from CDR slightly before 

2100. Ultimately, the most restrictive envelope in Figure 7.a ensures both generational and economic 

a) b) 

c) d) 



robustness. It covers the lower end of the envelope of economically robust pathways. It implies that 

earlier net-zero emissions with the use of CDR in the second part of the 21st century is more 

generationally equitable than pathways aiming for net-zero at the end of the century. As shown in 

Figure 5.d, there are no near-optimal pathways economically and generationally robust for the 1st 

percentile of configurations. Therefore, the last envelope disappears in Figure 7.b. Overall, 

irrespective of the physical configuration, extreme pathways featuring early and severe, or delayed 

mitigation vanish when economic robustness is incorporated. Conversely, economically and 

generationally near-optimal pathways, when they exist, appear to advocate a significant early 

mitigation allowing to delay the deployment of 11 GtCO2 yr-1 of negative emissions after 2100. Further 

analysis in Supplementary Materials demonstrates the consistency of these pathways with 

comparable IPCC’s AR6 scenarios. 

Discussion 

Our approach to mitigation costs is conceptual and systematic rather than practical. In fact, process-

based IAMs behave very differently depending on the model and the SSP scenario chosen. Some very 

simple mathematical representations [32] reproduce the marginal abatement costs of particular 

models and scenarios at the expense of generalization and economic interpretation of the emulator. 

We prefer to use functions that we can interpret economically at the expense of accuracy. However, 

our functions remain simplified and global representations. In particular, our aggregate approach does 

not separate the costs of negative emissions technologies from those of conventional emissions 

reductions. 

To calibrate the six cost functions, we decided to fix all parameters save for two (α and θ) that are 

universally applied across all functions. We also propose an alternative route featuring free 

calibration, where the two shape parameters were fixed, but with sensitivity parameters calibrated 

(Supplementary Materials). This permits up to four free parameters simultaneously, leading to the 

negation of some of the terms of the cost functions. Therefore, such an alternate calibration unveils 

the most suitable terms for representing process-based costs, providing insights into the dynamics 

modelled by process-based IAMs, at the cost of eliminating some of the conceptual terms we 

investigated in our study. For instance, we found that inertia is unnecessary to emulate these costs, 

indicating that complex IAMs might not adequately model it. 

Minimization criterion forms the second choice for calculating mitigation costs that we analyzed. We 

made deliberate choices in setting the discount rate, a topic extensively debated with well-

documented implications of these decisions [23, 24]. A discount rate of 4% is generally acceptable, 

mirroring the value used in most IAMs, although it generates a strong preference for the present. The 

minimax approach does not necessitate a discount rate but is different from an NPV without 

discounting. To substantiate this distinction, we executed a recalculation of cost estimations and 

optimizations using a 0% discount rate. In this case, 59% of the near-optimal pathways for the NPV 

devoid of discounting are robust. Interestingly, this percentage is more aligned with the minimax 

approach than with the NPV that incorporates a 4% discounting. Yet, it is worth noting that the NPV 

with 0% discounting generates fewer economically robust pathways as compared to an NPV with a 4% 

discount. Thus, it can be effectively inferred that 54% of near-optimal pathways display robustness 

under both the minimax and NPV paradigms incorporating a discount rate. Contrarily, a mere 38% of 

pathways manifest robustness under both the NPV bereft of any discounting and the minimax 

approach (Figure S5).   



 

 

Figure 7 Economically and generationally robust pathways for two Pathfinder configurations 

corresponding to the 50th (gray) and the 1st (red) percentiles of the distributions of ratios of near-

optimal pathways robust to minimax, NPV and NPVDiff. Shaded areas give the envelopes (from lighter 

to darker) of 1) all the Paris-compliant pathways calculated by Pathfinder, 2) the near-optimal 

pathways for DICE as a cost function and NPV as a minimization paradigm, 3) the near-optimal 

pathways economically robust, and 4) the near optimal pathways economically and generationally 

robust. The envelopes are represented for the 50th percentile on panel a), and for the 1st percentile on 

panel b). Envelope 4) only appears on panel a) and is hatched. Panel c) zooms on the period 2020-2100 

and shows all economically and generationally robust pathways for both 1st and 50th percentile 

configurations. Black and blue dashed lines represent the envelope of C4 and C1-C3 AR6 scenarios. 

Non-CO2 RF coupled to the CO2 emission trajectories of panel c) are shown in Figure S6. 

 

We opted for a cost-effective approach under a constraint of limiting the temperature to below 2°C 

to comply with the Paris Agreement. In doing so, we compare pathways that peak at 2°C in 2100 and 

tend towards 1.5°C in 2500 with pathways that asymptotically reach 1.5°C in 2100. Our cost-effective 

approach assumes that damages are the same across all emission scenarios meeting that target. This 

constitutes a potent assumption, especially if we intend to tackle intergenerational equity issues. One 

could argue that a 2°C limit is adequate to prevent the most disastrous damages, but the impacts of a 

c) 

b) 

a) 



1.5°C and a 2°C scenario diverge significantly in terms of costs, population vulnerability, or biodiversity 

loss [33, 34]. However, our methodology could be applied to any temperature target and hence, 

remains an insightful tool for identifying and exploring near-optimal scenarios. Further consideration 

of potential damages and their distribution across generations would be a natural follow-up paper. 

Conclusion 

This study has built a comprehensive ensemble of 2°C-compatible CO2 emission scenarios with 1000 

different physical representations of the Earth system. This approach allows us to identify pathways 

near-optimal in terms of mitigation costs according to various perspectives, facilitating a comparative 

analysis. We have calibrated and analyzed six unique abatement cost functions, each representing a 

different paradigm for modeling abatement costs in aggregated IAMs. Additionally, we questioned 

the optimization paradigm by testing two minimization criteria to define near-optimal pathways. 

We have found that most near-optimal pathways remain consistent regardless of the calculation 

method. However, significant differences between cost paradigms emerge when employing the 

minimax criterion. The primary differentiating factor is inertia, which resonates with the ongoing 

debate regarding the inclusion of more dynamic realism in the models [7]. 

Further analysis indicates that some of these economically robust, near-optimal pathways are also 

among the pathways that distribute costs most evenly between the current and future generations. 

These economically and generationally robust, near-optimal pathways are within the range of 

comparable AR6 scenarios. Accounting for physical uncertainties shows that there are worst-case 

scenarios where it is no longer possible to optimize the intergenerational distribution of mitigation 

costs while remaining economically robust. When Earth system physics permit them, economically 

and generationally robust, near-optimal pathways suggest early mitigation efforts and deployment of 

a measured amount of negative emissions. However, because each CO2 emissions pathway is 

associated with a decorrelated mitigation scenario for non-CO2 GHGs, this paper encourages further 

detailed research on robust pathways.   
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4.4 . Downscaling of global CO2 emission pathways
Many caveats and perspectives of our approach to defining near-optimal robust pathways are

discussed in the paper Near-optimal and Paris-compliant pathways robust to physical uncertainty,
economic paradigms, and intergenerational equity or its appendix. However, to ground this paper in
the global framework of my doctoral research, this section will discuss what the next step would be
if we were able to identify a selection of global CO2 emission pathways. Keeping in mind the idea of
facilitating the proposal and exploration of new scenarios, we find that process-based IAMs are
more likely to be used to deal with a carbon budget constraint at the global level than with time
series. Since most process-based IAMs are regionalized, it may be interesting to propose a
downscaling of global CO2 emission pathways to the country level. To do this, we draw inspiration
from the literature on carbon budget quotas (Gignac and Matthews; 2015; Raupach et al.; 2014;
Van den Berg et al.; 2020), but adapt it to apply this quota to each time step of the emissions
pathway. The choice of downscaling method is difficult because there are many different
approaches to allocating effort that represent different visions of fairness and equity.
Grandfathering assumes that the quota should remain proportional to current emissions; per capita
convergence assumes that the emissions allocation should be proportional to the country’s
population; historical emissions can be added to the equation through a carbon debt; ability to pay
determines the budget, taking into account countries’ GDP per capita. Here we will consider
different nuances between grandfathering and overall per capita convergence to share emissions
until 2100. The assumption that an abrupt transition to annual emissions proportional to population
is not realistic. Therefore, we define downscaling for the end-of-century budget and propose a
smooth transition from historical emissions. We define a country’s budget in 2100 as

b(r) = sfinal(r, ω) ·B (4.1)
where the budget sharing quota defined as

sfinal(r, ω) = ((1− ω) · e(y0, r)
E(y0)

+ ω · pop(y0, r)
POP (y0)

) (4.2)
where B is the global carbon budget in 2100, r is the country or region, e(y0,r)

E(y0)
is the current ratio of

regional emissions to global CO2 emissions, pop(y0,r)POP (y0)
is the current ratio of current regional population

to global population, and ω is a factor representing the preference between grandfathering (ω = 0)
and per capita convergence (ω = 1).
We note thatB =

∑2100
t=y0

E(t)withE(y) the annual global emissions, y the year, and y0 the initial yearof our projections. We translate the quota for the budget into an annual factor, so we have expressed
annual regional emissions e(y, r) as

e(y, r, ω) = σ(y, r, ω) · E(y) (4.3)
σ(y, r, ω) is iteratively defined as

σ(y, r, ω) =
α(y) · s(y, r, ω)− γ(y − 1, r, ω) + asum(y − 1) · s(y, r, ω)

α(y)
(4.4)
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with

s(y, r, ω) =
(2100− y) · e(y0,r)

E(y0)
+ y · sfinal(r, ω)

2100− y0
(4.5)

α(y) =
E(y)

B
(4.6)

γ(y − 1, r, ω) =

y−1∑

t=y0

α(t) · σ(t, r, ω) (4.7)

asum(y − 1) =

y−1∑

t=y0

α(t) (4.8)
(4.9)

Therefore, s(y, r, ω) is the temporary budget sharing quota in year y, α(y) is the share of annual
emissions in the total budget, asum(y) is the cumulative share of past emissions in the total budget,
and γ(y, r, ω) is the cumulative share of past emission sharing quotas weighted by the share of each
annual emission in the total budget. The initialization is given by

σ(r, y0) =
e(y0, r)

E(y0)
(4.10)

γ(y0, r) = α(y0) · σ(y0, r) (4.11)
asum(y0) = α(y0) (4.12)

A major advantage of this approach is that the political or ethical decision for the effort- sharing
approach is only included in the final budget sharing quotas sfinal(r, ω). Therefore, we can easily
reproduce this method with other vision of effort- sharing.

In summary, downscaling global CO2 emissions to the regional level would allow us to close the
loop with regionally defined impacts, which was quickly discussed in section 3.4 of Chapter 3.
Because this downscaling method is simple to implement and computationally easy, we believe it is
a promising development for improving our integrated backward-looking approach.
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5.1 . Key contributions of this thesis
The common thread of this thesis revolves around the question we posed in section 1.5: Can

we propose a methodological framework that allows the construction of scenarios that reverse the
causal chain from the definition of impact exposure to the socioeconomic constraints of mitigation
scenarios consistent with the previously defined impacts?
In a first step, we introduced Pathfinder, a new, simple model that meets the key requirements we
identified to apply our methodological framework. In particular, Pathfinder is invertible, so it can be
run backwards. Once we developed and diagnosed our main tool, the second step was to develop a
backward approach that allows us to back-calculate CO2 emissions from ex-ante temperature and
atmospheric CO2 concentration pathways. Thanks to this approach, we have proposed a new
framework that finds a comprehensive ensemble of emission scenarios compatible with the chosen
targets for the physical impacts of climate change such as sea level rise, global warming and ocean
acidification. Finally, the last step developed in this thesis provides an initial assessment of the
economic robustness of the previously defined scenarios. The following subsections detail the main
contribution of my work to these three steps, highlighting the reversal of the cause-effect chain.

5.1.1 . Introducing Pathfinder
Chapter 2 introduces the Pathfinder model, a new and innovative global carbon climate model.

This model was developed to balance simplicity and accuracy, with an emphasis on representing CO2-related physical processes. The Pathfinder model is calibrated using Bayesian inference so that it can
integrate the latest observations. Its simplicity facilitates coupling with integrated assessmentmodels
and exploration of a wide range of climate scenarios. The model is open source and is described
comprehensively for the first time in this chapter, detailing the calibration process and parameter
estimation.
The performance of the Pathfinder model is evaluated using key diagnostic metrics. We show that
the model performs very well in the historical period. We also provide diagnostics for idealized
simulations that demonstrate the interest of Bayesian calibration in providing “middle of the road”
estimates between complex models and observations. Finally, we validate the model against the
forecast scenarios used in IPCC AR6. Pathfinder’s projections agree very well with the scenarios
evaluated by the IPCC in AR6, especially for low-warming scenarios, which we have explored
extensively in our various studies.
The Pathfinder model fills a gap in the literature by providing a simple but effective model for
climate scenarios. Despite its simplicity, the Pathfinder model accurately reproduces the behavior
and results of more complex models. This is particularly useful for integrated assessment models.
We also identify opportunities to further improve the model, including reducing complexity where
possible, developing an alternative formulation of ocean carbon dynamics, integrating land use and
land cover change, extending the Bayesian approach, and potentially including non-CO2 climate
forcers into Pathfinder. Our approach to addressing these potential improvements underscores
their commitment to improving the utility and effectiveness of the model in climate modeling.
Thomas Gasser already developed the model before the start of my PhD. Personally, I helped to the
development of the sea level module, I ran all the diagnostic tests and made the analysis on the
representation of the ocean in Pathfinder.
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5.1.2 . Proposing a new framework for scenario development

As a first application of Pathfinder, we estimate the chances of limiting warming to 1.5°C by
conducting a comprehensive analysis of the physical requirements needed to limit global warming
to 1.5°C, based on the most recent data through 2022. We argue that a 50 percent probability of
keeping global warming below 1.5°C this century requires a linear decrease in CO2 emissions from
fossil fuels and industry of about 5 percent per year, a decarbonization rate that must be sustained
annually. Interestingly, this rate is only slightly below the unprecedented near-term emissions
reductions seen during the COVID -19 pandemic. Our study also highlights the critical role of
assumed CO2 emissions from land use and non-CO2 forcing in determining the likelihood of staying
below the 1.5°C global warming threshold.
To further advance the exploration of scenarios, we proposed a new backward approach that
includes not only the temperature target but also impacts such as ocean acidification and sea level
rise. Specifically, we consider thousands of pathways in 1500 different physical states of the world to
provide a comprehensive estimate of the range of possible pathways, all of which remain below the
+2°C global warming limit by design. We consider different planetary boundaries independently and
in combination with each other, and examine the nonlinear effects of these combinations on
compatible space by comparing the envelope of all pathways that remain within a given boundary.
We express the compatible space in terms of key characteristics on anthropogenic activities and
associate them with a probability that this space is safe, which we call the safety level. We analyze
these compatible spaces to understand and quantify the tradeoffs between different options and
mitigation strategies. Overall, this results in an innovative framework that determines what is and is
not physically possible to stay within a set of planetary boundaries.
About my personal contribution to the creation of this framework, I took an active role in the
conceptualization of both studies. I did all the data representation and analysis presented in the
papers.

5.1.3 . Assessing the economic robustness of scenarios
In Chapter 4, our work begins with pathways generated in Chapter 3. We focus only on the 2°C

global warming boundary and add a socioeconomic dimension to reduce the physically relevant
compatible space to an economically robust set of pathways. To do this, we adopt a cost-effective
approach based only on mitigation costs.
Our goal is to provide a comprehensive analysis of mechanisms that determine near-optimal costs.
The costs of the CO2 emission pathways calculated by Pathfinder are estimated and compared using
a series of conceptual choices for the minimization criterion and the cost function chosen to
estimate the mitigation costs. The least-cost pathways are defined as near-optimal, and we
introduce the concept of robust pathways to denote pathways that are common to all of the
conceptual approaches we examine. In addition to the economic uncertainty arising from the
conceptual choices, we also consider physical uncertainty by calculating the proportions of robust
pathways in each physical state of the world. We also consider intergenerational equity by
attempting to minimize the difference between a current generation (2021-2060) and a future
generation (2061-2100).
Finally, we illustrate economically and generationally robust pathways for different configurations
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and provide a visual representation of the analysis to help policymakers make more informed
decisions about climate change mitigation strategies. We show that the range of near-optimal
pathways is reduced when conditions for robustness are added. Pathways with late emission peaks
or that require the use of a large amount of CDR are not among the most robust pathways. The
most restrictive envelope of pathways ensures both generational and economic robustness. This
suggests that achieving net-zero emissions early by using CDR in the second half of the 21st century
is more intergenerationally equitable than economically robust pathways that target net-zero
emissions at the end of the century.
For this part, I was very active in the proposition and conceptualization of the study. I also made all
the data representation and analysis.
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5.2 . Limitations and new frontiers
In the previous section, we recalled the main achievements of this thesis, demonstrating that

we, at least partly, succeeded to propose a framework that reverses the causal chain to estimate
ensembles of pathways of CO2 emissions compatible to impact-defined climate targets. However,
we also faced many challenges with some of them remaining unsolved. This section presents first
limitations of our approach and the development they would require (5.2.1,5.2.2). Then, we discuss
new frontiers that would gain to be developed in future works (5.2.3,5.2.4).

5.2.1 . Development of the representation of non-CO2 gases in Pathfinder
In Chapters 3 and 4, reference is made to the difficulty of interpreting non-CO2 radiative forcingbecause it is an aggregate variable that is independent of CO2 emissions and is difficult to

disaggregate. Because of this aggregate variable, we cannot include the methane pledge to estimate
the chances to stay below 1.5°C in Chapter 3, although it would be help reducing uncertainty about
the non-CO2 contribution by having a separate estimation of methane forcing. In mapping
compatible spaces, a more detailed decomposition of non-CO2 forcers would also allow a more
precise determination of the lower bound below which we consider SRM to be deployed. This could
also open up new analytical perspectives, e.g., with respect to trade-offs between methane
mitigation and deployment of CDR. In Chapter 4, a more detailed decomposition of non-CO2 forcerswould allow us to allocate the costs of mitigating some non-CO2 GHGs and more concretely
interpret the policy implications of our near-optimal pathways. To improve the decomposition of
non-CO2 forcers in Pathfinder, one solution would be to add the methane cycle or even the nitrogen
cycle. If the methane cycle already exists in other SCMs, emulating the nitrogen cycle might be more
challenging. In either case, this would result in additional computational costs to consider, since one
of the goals of Pathfinder is to keep computational costs low. Another solution would be to attribute
some of the non-CO2 radiative forcing to GHGs that are co-emitted with CO2. However, these
co-emissions (mainly CH4) are sector dependent and would therefore require a decomposition of
CO2 emissions, which is also non-trivial and would require strong assumptions. Therefore, I do not
really believe in this second possibility in the context of a backward-looking use of Pathfinder.

5.2.2 . Exploring optimization as an alternative to brute force in Pathfinder
The brute force methodology employed by Pathfinder in Chapters 3 and 4 – which generates

thousands of trajectories in an attempt to encompass the entirety of possible pathways – is not
without its drawbacks. Firstly, there’s no absolute guarantee that the method captures every
potential scenario, and secondly, formulating continuous, differentiable pathways for temperature
and CO2 concentration, which in turn yield credible CO2 emissions and non-CO2 radiative forcing, isa challenging task. A potential solution to these constraints could be the implementation of an
optimization-based approach. This approach would allow us to explore the space of potential
trajectories systematically, ensuring all possibilities are captured and generating plausible pathways
with greater efficiency. An additional advantage lies in the existing GAMS version of Pathfinder,
which has previously been utilized in a DICE study as a replacement for the climate module, thereby
simplifying the adoption of this optimization technique. However, rather than a single cost
optimization, a series of optimizations might be more suited to outlining the boundaries of
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compatible spaces. The process would involve the use of impact objectives and constraints for all
pathway characteristics (excluding one, as detailed in Section 3.3), with the output being the
pathway that presents the least restrictive constraint for the unconstrained pathway characteristic.
Through this, we could gain a more efficient, thorough exploration of potential climate change
scenarios. To increase efficiency further, we could execute the optimization iteratively, gradually
introducing constraints on key characteristics or impact objectives until the process yields no viable
solution. This would result in a smaller set of pathways compared to the brute force approach.
However, it’s important to note that optimization is more computationally demanding. Furthermore,
the feasibility of implementing all constraints is still uncertain, as we have not yet attempted to do
so. Hence, while promising, the success of this approach will depend on its practical
implementation.

5.2.3 . Improvement of the ocean module of Pathfinder
Chapter 2 discussion scrutinizes the "Ocean Heat-Carbon Nexus" and its depiction in simplistic

climate models, including Pathfinder. However, a noteworthy divergence is observed in the
representation of this nexus in Pathfinder when compared to the latest Earth System Models (ESMs)
employed in recent IPCC assessments. This discrepancy is attributed to the physical inconsistency in
SCMs that crudely account for the coupling between the ocean thermal and carbon cycle modules.
The discussion further identifies a regime shift in the ocean heat-carbon nexus, driven by three
factors: the unrestricted ability of the surface ocean temperature to equilibrate with the
atmospheric temperature, the ocean’s differing capacities to retain heat and absorb CO2, and the
accumulation of heat which intensifies the stratification of the surface ocean. An in-depth
examination of the representation of the ocean heat-carbon nexus in Pathfinder reveals that the
response of the ocean heat and carbon uptake as simulated by Pathfinder does not exhibit the
saturation of the ocean carbon uptake observed in the ESMs and corroborated by theory. The
modelling framework of Pathfinder treats the thermal response of the ocean to radiative forcing
and that of the ocean carbon cycle in two distinct modules, leading to physically inconsistent
structures and parameters. The development of an alternative formulation of the ocean carbon
dynamic, calibrated on state-of-the-art ocean models and properly connected to ocean pH and the
ocean of the climate module, would be a significant advancement for the SCM community. This
finding is a relevant example of the interest in constantly thinking about how to improve or add to
the representation of processes in SCMs.

5.2.4 . Addition of impacts of climate change on human activities
Chapter 3 proposes a reversal of system causality by defining planetary boundaries and

identifying human activities that stay within these limits. As discussed in section 3.4, Pathfinder,
coupled with spatially-resolved emulators, could be used to set local climate targets based on land
area or population exposure. Initial applications could use existing crop yield emulators to predict
crop yields based on various factors. This, combined with population projections, would estimate
human exposure to changes in crop yields. Additionally, linking global SLR to local extreme sea level
could allow to estimate exposure to coastal flooding. Furthermore, the ISIMIP dataset provides a
framework for linking exposure to various impacts with global temperature change. Ultimately,
Pathfinder can estimate anthropogenic emission pathways consistent with climate targets, aiding
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policy makers in scenario design.
The evaluation of impacts in terms of exposure necessitates a critical examination of adaptation
strategies and population projections. While the SSPs narratives offer some guidance, the
integration of expertise from impact specialists would greatly enhance the articulation of population
or land area exposure in the most pertinent manner. In addition, while quantifying exposure is of
considerable interest, describing target-based pathways requires establishing acceptance
thresholds for exposure. From a research standpoint, the simplest solution might be to arbitrarily
select thresholds for sensitivity analysis, but this raises questions about the appropriateness of
using Pathfinder for scenario development. It raises ethical considerations about the authority of
researchers or policy makers to consider the exposure of several million people to climate change
impacts as acceptable. Even more critical is the question of how we should deal with impacts that
cannot be quantified in terms of human exposure, such as loss of biodiversity. It is an inescapable
truth that we will never be able to comprehensively model all the impacts of climate change,
especially not with emulators. As we move forward, it is important to keep in mind that while we are
developing a powerful tool to suggest a novel and complementary approach to building future
scenarios, such modeling tools should not be misconstrued as definitive predictions for policy
decisions.

5.3 . Reflecting on the challenges and drivers in Climate Change research
5.3.1 . Simple climate models can help to build integrated framework between allclimate change disciplines

The advantage of a simple climate model, such as Pathfinder, is its simplicity and computational
efficiency. Such a model can readily encapsulate fundamental aspects of climate science, which can
be easily understood and manipulated by stakeholders from a variety of backgrounds. This
accessibility can foster productive discussions and scenario-building exercises among all IPCC WGs
and decision-makers, bridging the gap that currently exists between these disparate but
interconnected fields of study. The streamlined nature of simple climate models does not detract
from their utility. They efficiently capture key aspects of the Earth’s climate system, acting as
powerful tools for testing different scenarios. By focusing on core climate dynamics, these models
allow the exploration of a wide array of potential futures, each of which has varying climate,
biodiversity, and socio-economic implications. This broad range of scenarios forms a rich tapestry
from which decision-makers can weave climate policy. In the context of the global framework this
thesis proposed, Pathfinder serves as the backbone. It offers the geophysical basis upon which
socio-economic considerations and impact analyses can be integrated. The possibility to couple
other emulators further enhances the potential of this platform by replicating the outcomes of
complex models with a significantly lower computational cost. This capability not only broadens the
scope of potential scenario investigations but also makes the entire process more feasible and
time-efficient. In essence, by placing a simple climate model at the core of our framework, we aim to
create a platform that encourages multi-disciplinary dialogue and holistic scenario development.
This integrative approach provides a more comprehensive outlook on the intricacies of climate
change and its impacts, facilitating more informed, robust, and forward-thinking decision-making.
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Our hope is that such framework can catalyze an era of enhanced collaboration and integrative
thinking in addressing one of the most pressing challenges of our time – climate change.

5.3.2 . The challenge of visualizing the results
The appeal of simple climate models primarily lies in their low computational cost, enabling a

broader exploration of scenarios compared to complex models. This ability facilitates an in-depth
analysis across two primary dimensions: a diverse range of scenario timeseries and the inherent
physical uncertainty. The expansion of our analysis dimensions was accomplished through multiple
methods. In Chapter 3, scenarios were categorized based on key characteristics such as CO2emissions peak, CO2 net zero dates or the volume of CDR. Also a combination of different impacts
or planetary boundaries was considered for a more comprehensive view of possible climate change
outcomes adding a dimension to the framework. In Chapter 4, we introduced economic aspects into
our analysis by calculating and comparing costs across different cost functions and minimization
criteria. The challenge, then, arises when dealing with this multitude of dimensions. Crafting
visualizations that not only illustrate but accurately represent the results becomes an intricate task.
In Chapter 3, we managed to circumvent this issue by introducing the concept of ’compatible
spaces,’ which effectively bypasses the temporal dimension. However, in Chapter 4, we initially
sidestepped this problem by focusing on the ratio of overlapping sub-ensembles to define
near-optimal robs. Still, subsequent discussions highlighted the need to portray actual emission
scenarios as timeseries. The idea of presenting a median or average across configurations was
dismissed due to the unique and non-comparable nature of each scenario. This brought forth the
need to select a "representative" configuration, thereby defining what "representative" means in
this context, but at the cost of losing some information. Collectively, these experiences underline
the complexity of applying intricate analytic grids to multidimensional climate data. On the contrary,
simpler approaches, like the study on the chances of staying below 1.5°C, often deliver more
impactful and straightforward results. As we continue to advance climate modeling, finding the
balance between these intricate, multi-dimensional explorations and the communication of clear,
concise findings will remain a key challenge and learning experience.

5.3.3 . About the drivers of research
Throughout the course of my PhD, I’ve grappled with the concept of political relevance in the

context of climate change research. Climate science, in its essence, straddles the realm of pure
scientific inquiry and its societal implications, including policy-making and strategic planning. Our
research efforts invariably raise the question - how do our results contribute to a broader
understanding of climate impacts, and how can they inform mitigation strategies, estimate feedback
loops, and more? In the climate research community, there is an understandable tendency to align
our work with the latest findings of esteemed bodies like the IPCC or initiatives like CMIP. These
entities provide crucial comparative frameworks that, while not entirely identical to our
methodologies, offer some common ground for interpretation and analysis. However, the question
arises - should these comparison frameworks be the drivers of our research? Undoubtedly, aligning
with these recognized frameworks can enhance a study’s visibility and acceptance within the
scientific community. It also facilitates inclusion in important global reports. However, this
alignment may inadvertently encourage researchers to fit their work into predefined molds to gain
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recognition. It might also lead to skepticism when the results diverge from these reference
frameworks, despite the potentially distinct methods and incomparable nature of these findings.
This dynamic can result in a circular pattern, where the same scenarios are studied over and over
again, and discussions tend to orbit around popular topics while sidelining alternative approaches
or less-explored areas. The answer to the question of what should drive our scientific pursuit
remains elusive. Nevertheless, one key insight that I have derived from my doctoral journey is the
importance of maintaining an open mind. Regardless of the prevailing trends, alternative
approaches and original results can offer invaluable perspectives, stimulate intellectual growth, and
propel our collective understanding forward. As researchers in a field as vital and urgent as climate
change, it is our responsibility to promote and welcome diversity in thought, methodologies, and
conclusions.
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Appendix A: Additional information on the model

A1 Technical requirements

Pathfinder has been developed and run in Python (v3.7.6) (Van Rossum and Drake, 2009), preferentially using IPython

(v7.19.0) (Pérez and Granger, 2007). Currently, packages required to run it are NumPy (v1.19.2) (Harris et al., 2020), SciPy

(v1.5.2) (Virtanen et al., 2020) and Xarray (v0.16.0) (Hoyer and Hamman, 2017), and it has hard-coded dependencies on800

PyMC3 (v3.8) (Salvatier et al., 2016) and Theano (v1.0.4) (Theano Development Team, 2016) that are in fact used only for

calibration. Other versions of Python or these packages were not tested.

The calibration procedure takes about 9 hours to run on a desktop computer (with a base speed of 3.4 GHz). Simple use

of the model is much faster: the idealized experiments and SSP scenarios for this description paper, which represent 2984

simulated years, were run in about 20 minutes for all 2000 configurations and on a single core. A single simulated year takes805

a few tenth of a second, although a number of options in the model can drastically alter this performance. Note also that this

scales sub-linearly with the amount of configurations or scenarios because of the internal workings of the Xarray package,

albeit at the cost of increased demand in random-access memory.

A2 Known issues

Two relatively benign issues that have been identified during development remain unsolved. First, the model requires a high810

number of sub-time steps (i.e. high nt) to remain stable under high CO2, because of the ocean carbon cycle. Second, the version

of the model that is driven by T and Rx time series is extremely sensitive to its inputs, because mathematically it requires the

first two derivatives of T and the first derivative of Rx.

A3 Changelog

Brief description of the successive versions of Pathfinder:815

v1.0.1. Exact same physical equations and numerical values as v1.0. Added best-guess parameters calculated as the average

of the posterior distribution, and corresponding historical outputs, for single-configuration runs. Improved README and

MANUAL files.

v1.0. First release. Exact model described in the preprint version of this very paper (Bossy et al., 2022).

Appendix B: Additional figures and tables820
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Figure B1. Calibration to estimate prior νgx and γgx from CMIP6 time series of Focean. We fit our equation on the results of the +1% CO2

(1pctCO2) experiment (in blue) and its variants 1pctCO2-rad (in green) and 1pctCO2-bgc (in orange). Coloured markers are CMIP6 models

data while the solid black lines show the fit from Pathfinder. Panels without black line indicate that at least one of the required variables was

not reported by the complex model.
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Figure B2. Calibration to estimate prior βdic and γdic from CMIP6 time series of pCO2 . We fit our equation on the results of the +1% CO2

(1pctCO2) experiment (in blue) and its variants 1pctCO2-rad (in green) and 1pctCO2-bgc (in orange). Coloured markers are CMIP6 models

data while the solid black lines show the fit from Pathfinder. Panels without black line indicate that at least one of the required variables was

not reported by the complex model.
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Figure B3. Calibration to estimate prior βef and γef from CMIP6 time series of rfire, shown as a ratio over its preindustrial value. We fit

our equation on the results of the +1% CO2 (1pctCO2) experiment (in blue) and its variants 1pctCO2-rad (in green) and 1pctCO2-bgc (in

orange). Coloured markers are CMIP6 models data while the solid black lines show the fit from Pathfinder. Panels without black line indicate

that at least one of the required variables was not reported by the complex model.
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Figure B4. Calibration to estimate prior βrh and γrh from CMIP6 time series of rrh, shown as a ratio over its preindustrial value. We fit

our equation on the results of the +1% CO2 (1pctCO2) experiment (in blue) and its variants 1pctCO2-rad (in green) and 1pctCO2-bgc (in

orange). Coloured markers are CMIP6 models data while the solid black lines show the fit from Pathfinder. Panels without black line indicate

that at least one of the required variables was not reported by the complex model.
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Figure B5. Calibration to estimate prior βnpp, αnpp and γnpp from CMIP6 time series of rnpp, shown as a ratio over its preindustrial value.

We fit our equation on the results of the +1% CO2 (1pctCO2) experiment (in blue) and its variants 1pctCO2-rad (in green) and 1pctCO2-bgc

(in orange). Coloured markers are CMIP6 models data while the solid black lines show the fit from Pathfinder. Panels without black line

indicate that at least one of the required variables was not reported by the complex model.
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Figure B6. Calibration to estimate the prior of GIS SLR module parameters (Λgis1, Λgis3 and λgis0). We fit our equation on the compiled

outputs from Edwards et al. (2021) for which there is more than one scenario available. Each panel’s title displays the name of the institute,

model and configuration used. Coloured markers are the models data while the solid black lines show the fit from Pathfinder.
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Figure B7. Calibration to estimate the prior of Glaciers SLR module parameters (Γgla1, Γgla3, γgla and λgla0). We fit our equation on the

compiled outputs from Edwards et al. (2021) for which there is more than one scenario available. Each panel’s title displays the name of the

model or study used. Coloured markers are the models data while the solid black lines show the fit from Pathfinder.
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Figure B8. Calibration to estimate the prior of AIS SLR module parameters (Λais,smb, αais and λais0). We fit our equation on the compiled

outputs from Edwards et al. (2021) for which there is more than one scenario available. Each panel’s title displays the name of the institute,

model and configuration used. Coloured markers are the models data while the solid black lines show the fit from Pathfinder.
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Figure B9. Distribution of the logit of the ECS (T2×) inferred from AR6. Blue points are the assessments from AR6, the plain line is the

CDF fitted on those assessment and the dashed line is the PDF associated with the CDF (arbitrary scale). The value of the fitted parameters

is given above the plot.
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In manual In code Description Units

Rc RFco2 CO2 (effective) radiative forcing W m−2

Rx ERFx Non-CO2 effective radiative forcing W m−2

R ERF Effective radiative forcing W m−2

T T Global surface temperature anomaly K

Td Td Deep ocean temperature anomaly K

logit(ff) logit_ff Logit of the climate feedback factor (for calib.) 1

Uohc OHC Ocean heat content (anomaly) W yr m−2

Hthx Hthx Thermosteric sea level rise mm

Hgla Hgla Glaciers’ contribution to sea level rise mm

Hgis Hgis Grenland ice sheet’s contribution to sea level rise mm

Hais,smb Hais_smb Surface mass balance component of Hais mm

Hais Hais Antartica ice sheet’s contribution to sea level rise mm

Htot Htot Total sea level rise mm

Hlia Hlia Sea level rise from relaxation after LIA between 1900 and 2005 (for calib.) mm

Co,j Co_j Change in surface ocean carbon subpools PgC j ∈ [[1,5]]

Co Co Change in surface ocean carbon pool PgC

Cd Cd Change in deep ocean carbon pool

cdic dic Change in surface DIC µmol kg−1

pdic pdic Subcomponent of pCO2 ppm

pCO2 pCO2 CO2 partial pressure at the ocean surface ppm

Focean Focean Ocean carbon sink PgC yr−1

Table B1. Summary of PathFinder’s equation variables in climate, sea level and ocean carbon modules.
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In manual In code Description Units

rnpp r_npp Relative change in NPP 1

rfire r_fire Relative change in wildfire intensity 1

rrh r_rh Relative change in heterotrophic respiration rate 1

Fnpp NPP Net primary productivity PgC yr−1

Efire Efire Emissions from wildfire PgC yr−1

Eharv Eharv Emissions from harvest and grazing PgC yr−1

Fmort Fmort Mortality flux PgC yr−1

Erh1 RH1 Litter heterotrophic respiration PgC yr−1

Fstab Fstab Stabilization flux PgC yr−1

Erh2 RH2 Active soil heterotrophic respiration PgC yr−1

Fpass Fpass Passivization flux PgC yr−1

Erh3 RH3 Passive soil heterotrophic respiration PgC yr−1

Fland Fland Land carbon sink PgC yr−1

Erh RH Heterotrophic respiration PgC yr−1

Cv Cv Vegetation carbon pool PgC

Cs1 Cs1 Litter carbon pool PgC

Cs2 Cs2 Active soil carbon pool PgC

Cs3 Cs3 Passive soil carbon pool PgC

Cs Cs Total soil carbon pool PgC

rrt r_rt Relative change in permafrost respiration rate 1

ā abar Theoretical thawed fraction 1

a a Actual thawed fraction 1

Epf Epf Emissions from permafrost PgC yr−1

Cth,j Cth_j Thawed permafrost carbon subpools PgC j ∈ [[1,3]]

Cfr Cfr Frozen permafrost carbon pool PgC

ECO2 Eco2 Anthropogenic CO2 emissions PgC yr−1

C CO2 Atmospheric CO2 concentration ppm

pH pH Surface ocean pH 1

Table B2. Summary of PathFinder’s equation variables for land carbon, permafrost and atmospheric modules.
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In manual In code Description Units

ϕ phi Radiative parameter of CO2 W m−2

T2× T2x Equilibrium climate sensitivity K

Θs THs Heat capacity of the surface W yr m−2 K−1

Θd THd Heat capacity of the deep ocean W yr m−2 K−1

θ th Heat exchange coefficient W m−2 K−1

ϵheat eheat Deep ocean heat uptake efficacy 1

T ∗
2× T2x0 Minimal value of the ECS distribution (for calib.) K

αohc aOHC Fraction of energy warming the ocean 1

Λthx Lthx Proportionality factor of thermosteric SLR mm m2 W−1 yr−1

λgla lgla0 Initial imbalance in SLR from Glaciers mm yr−1

Λgla Lgla Maximum contribution to SLR from Glaciers mm

Γgla1 Ggla1 Linear sensitivity of steady-state Glaciers SLR to climate K−1

Γgla3 Ggla3 Cubic sensitivity of steady-state Glaciers SLR to climate K−3

τgla tgla Timescale of Glaciers’ contribution to SLR yr

γgla ggla Sensitivity of Glaciers’ timescale to climate K−1

λgis lgis0 Initial imbalance in SLR from GIS mm yr−1

Λgis1 Lgis1 Linear sensitivity of steady-state GIS SLR to climate mm K−1

Λgis3 Lgis3 Cubic sensitivity of steady-state GIS SLR to climate mm K−3

τgis tgis Timescale of GIS contribution to SLR yr

Λais,smb Lais_smb Sensitivity of AIS SMB increase due to climate mm yr−1 K−1

λais lais Initial imbalance in SLR from AIS mm yr−1

Λais Lais Sensitivity of steady-state AIS SLR to climate mm K−1

τais tais Timescale of AIS contribution to SLR yr

αais aais Sensitivity of AIS timescale to AIS SLR mm−1

αdic adic Conversion factor for DIC µmol kg−1 PgC−1

βdic bdic Inverse-scaling factor for DIC 1

γdic gdic Sensitivity of pCO2 to climate K−1

To To Preindustrial surface ocean temperature °C

νgx vgx Surface ocean gas exchange rate yr−1

γgx ggx Sensitivity of gas exchange to climate K−1

αo,j aoc_j Surface ocean subpools fractions 1 j ∈ [[1,5]]

τo,j toc_j Timescales of surface ocean subpools yr j ∈ [[1,5]]

κτo k_toc Scaling factor for timescales of surface ocean subpools 1

Table B3. Parameters used in the climate, ocean carbon and sea level modules.
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In manual In code Description Units

βnpp bnpp Sensitivity of NPP to CO2 (= fertilization effect) 1

αnpp anpp Shape parameter for fertilization effect 1

γnpp gnpp Sensitivity of NPP to climate K−1

βfire bfire Sensitivity of wildfire intensity to CO2 1

γfire gfire Sensitivity of wildfire intensity to climate K−1

βrh brh Sensitivity of heterotrophic respiration to fresh organic matter 1

γrh grh Sensitivity of heterotrophic respiration to climate K−1

Fnpp,0 npp0 Preindustrial NPP PgC yr−1

νfire vfire Wildfire intensity yr−1

νharv vharv Harvest and grazing rate yr−1

νmort vmort Mortality rate yr−1

νstab vstab Stabilization rate yr−1

νrh1 vrh1 Litter heterotrophic respiration rate yr−1

νrh23 vrh23 Soil (active and passive) respiration rate yr−1

νrh3 vrh3 Passive soil respiration rate yr−1

αpass apass Fraction of passive soil 1

αlst aLST Climate scaling factor over permafrost regions 1

γrt1 grt1 Sensitivity of (boreal) heterotrophic respiration to climate K−1

γrt2 grt2 Sensitivity of (boreal) heterotrophic respiration to climate (quadratic) K−2

κrt krt Scaling factor for sensitivity of permafrost respiration to climate 1

amin amin Minimal thawed fraction 1

κa ka Shape parameter for theoretical thawed fraction 1

γa ga Sensitivity of theoretical thawed fraction to climate K−1

νthaw vthaw Thawing rate yr−1

νfroz vfroz Freezing rate yr−1

αth,j ath_j Thawed permafrost carbon subpools fractions 1 j ∈ [[1,3]]

τth,j tth_j Timescales of thawed permafrost carbon subpools yr j ∈ [[1,3]]

κτth k_tth Scaling factor for timescales of surface ocean subpools 1

Cfr,0 Cfr0 Preindustrial frozen permafrost carbon pool PgC

αC aCO2 Conversion factor for atmospheric CO2 PgC ppm−1

Cpi CO2pi Preindustrial CO2 concentration ppm

κpH k_pH Scaling factor for surface ocean pH 1

σ̃C std_CO2 Relative standard deviation of the historical CO2 time series (for calib.) 1

ϵC ampl_CO2 Noise amplitude of the historical CO2 time series (for calib.) ppm

ρC corr_CO2 Autocorrelation of the historical CO2 time series (for calib.) 1

σ̃T std_T Relative standard deviation of the historical T time series (for calib.) 1

ϵT ampl_T Noise amplitude of the historical T time series (for calib.) K

ρT corr_T Autocorrelation of the historical T time series (for calib.) 1
Table B4. Parameters used in the permafrost, land carbon modules and for calibration.51



Parameters Prior Unit

Lgla 380 mm

Lais 1200 mm

tgla 190 yr

tgis 481 yr

tais 2093 yr

T2x0 0.61 K

adic 4.49 µmol kg−1 PgC−1

aoc_1 0.87 1

aoc_2 0.06 1

aoc_3 0.04 1

aoc_4 0.02 1

aoc_5 0.01 1

toc_1 1.3 yr

toc_2 16.7 yr

toc_3 65 yr

toc_4 348 yr

toc_5 109 yr

vrh3 8.27 10−5 yr−1

aLST 1.87 1

grt1 0.12 K−1

grt2 0.0029 K−2

krt 1.34 1

amin 0.98 1

vthaw 0.14 yr−1

vfroz 0.011 yr−1

ath_1 0.05 1

ath_2 0.12 1

ath_3 0.83 1

tth_1 18.2 yr

tth_2 252 yr

tth_3 3490 yr

aCO2 2.12 PgC ppm−1

k_pH 1 1

Table B5. Structural parameters values. Parameters are noted under their code notation, and Tables B3 and B4 provide the corresponding

notation in text.
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Parameters Prior Posterior Unit Parameters Prior Posterior Unit

phi 5.35 ± 0.54 5.29 ± 0.54 W m−2 T2x 4.13 ± 1.37 3.37 ± 0.77 K

THs 8.14 ± 0.99 8.21 ± 1.06 W yr m−2 K−1 THd 108.6 ± 61.8 123.8 ± 57.8 W yr m−2 K−1

th 0.61 ± 0.13 0.67 ± 0.12 W m−2 K−1 eheat 1.35 ± 0.40 1.41 ± 0.43 1

aOHC 0.91 ± 0.02 0.91 ± 0.02 1 Lthx 1.82 ± 0.21 1.85 ± 0.23 mm m2 W−1 yr−1

lgla0 0.59 ± 0.24 0.40 ± 0.21 mm yr−1 Ggla1 0.34 ± 0.18 0.34 ± 0.05 mm K−1

Ggla3 0.022 ± 0.013 0.022 ± 0.013 mm K−3 ggla 0.12 ± 0.09 0.11 ± 0.07 K−1

Lgis1 82 ± 45 189 ± 55 mm K−1 Lgis3 5.7 ± 1.4 5.8 ± 1.5 mm K−3

Lais_smb 0.61 ± 0.19 0.40 ± 0.10 mm K−1 yr−1 lais0 0.00 ± 0.11 0.07 ± 0.08 mm yr−1

aais 0.002 ± 0.003 0.004 ± 0.003 mm−1 lgis0 0.33 ± 0.14 0.35 ± 0.14 mm yr−1

k_toc 1.00 ± 0.20 0.91 ± 0.18 1 vgx 0.19 ± 0.06 0.20 ± 0.07 PgC ppm−1 yr−1

ggx 0.018 ± 0.029 0.019 ± 0.033 K−1 To 18.0 ± 0.5 18.0 ± 0.5 K

bdic 0.87 ± 0.08 0.90 ± 0.09 1 gdic 0.04 ± 0.02 0.04 ± 0.02 K−1

npp0 48.2 ± 5.1 46.5 ± 3.3 PgC yr−1 vfire 0.006 ± 0.003 0.006 ± 0.002 yr−1

vharv 0.003 ± 0.003 0.003 ± 0.002 yr−1 vmort 0.11 ± 0.01 0.11 ± 0.01 yr−1

vstab 0.32 ± 0.28 0.30 ± 0.22 yr−1 vrh1 0.33 ± 0.29 0.27 ± 0.20 yr−1

vrh23 0.024 ± 0.009 0.024 ± 0.008 yr−1 bnpp 0.93 ± 0.37 1.09 ± 0.25 1

anpp 0.48 ± 0.57 0.36 ± 0.38 1 gnpp -0.014 ± 0.023 -0.005 ± 0.024 K−1

bfire -0.05 ± 0.12 -0.06 ± 0.14 1 gfire 0.052 ± 0.072 0.044 ± 0.088 K−1

brh 1.06 ± 0.43 1.01 ± 0.41 1 grh 0.056 ± 0.053 0.042 ± 0.035 K−1

apass 0.69 ± 0.19 0.63 ± 0.20 1 ga 0.13 ± 0.04 0.13 ± 0.04 K−1

ka 2.6 ± 2.0 2.4 ± 1.8 1 k_tth 0.96 ± 0.93 1.00 ± 0.87 1

Cfr0 546 ± 120 538 ± 122 PgC CO2pi 278 ± 3 279 ± 3 ppm

Table B6. Calibrated parameters values before and after Bayesian calibration. Parameters are noted under their code notation, and Tables B3

and B4 provide the corresponding notation in text. The uncertainty correspond to the 1 σ uncertainty range.
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A.2 . Supplementary Figure for section 2.3

Figure A.1: Perturbed parameter ensemble from Pathfinder under an idealized set-up. Individualrealization of Pathfinder are given in colored solid lines, individual ESMs in thin grey lines and ESMmulti-model mean in black lines.
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Supplementary text 

Coverage of AR6 scenarios 

As explicated in the primary textual content, our Pathfinder scenarios encompass the entirety of 

comparable AR6 scenarios in 100% of the configurations. This signifies that the estimated limits of the 

compatible spaces we explore are consistently less restrictive than those of the AR6 scenario 

ensemble, thereby affirming our exploration of a broader range of potential future scenarios (Figure S1 

for illustration). Figure S10 provides a comparative analysis of the limits of the compatible space 

between AR6 scenarios and the scenarios generated by Pathfinder. The considered ensembles employ 

a consistent year of peak CO2 emissions in 2022, assuming net-zero achievable in 2050, prohibiting 

SRM, and permitting the deployment of CDR up to 10 PgC yr-1. Each subplot of Figure S10 represents 

a limit for a distinct key characteristic while the other pathway characteristics adhere to their default 

constraints. It is noteworthy that both AR6 and Pathfinder scenarios identify pathways that do not 

require the implementation of CDR (Figure S10.a). From a logical standpoint, if CDR is unnecessary, 

the specific year of achieving net-zero emissions or the commencement of significant CDR becomes 

irrelevant. Figure S10.b, focusing on the year of peak CO2 emissions, reveals that Pathfinder identifies 

pathways capable of peaking between 2030 and 2040, irrespective of the safety level or boundary 

considered. In contrast, the AR6 scenarios indicate a peak in 2030 at latest or even 2025 for the Arctic 

sea ice boundary associated to a 90% safety level. Moreover, Figure S10.c demonstrates that 

Pathfinder scenarios exhibit peak CO2 emissions surpassing those depicted in AR6 scenarios across all 

boundaries and safety levels. 

Interpretation of the limits of compatible spaces 

We look at thousands of pathways in every state of the world. Although our sampling is extensive 

enough to provide a comprehensive estimation of the range of possibilities, it does not encompass 

every conceivable pathway. Consequently, situations arise in which, under identical constraints on all 

pathway characteristics except for one (e.g., 10 PgC yr-1 of CDR, absence SRM, net zero emissions by 

2100), we may not identify a compatible pathway for all values of the variable pathway characteristic 

below the limit of the compatible space in a given state of the world. For instance, we might establish 

a limit of the compatible space in 2037 for the peak date but fail to discover a pathway with a peak in 

2035. For the sake of simplicity in interpreting the results, we assume that this pathway would be 

viable but was not generated by Pathfinder. To illustrate the advantages of this simplification, let us 

consider the result in which the limit of the compatible space for all boundaries combined is 

determined to be 2033 at a 67% safety level, with net-zero emissions achieved by 2050, CDR limited 

to 10 PgC yr-1, and no SRM. In practice, this outcome indicates that 67% of Pathfinder's 

configurations identify at least one pathway meeting these conditions with a peak date in 2033 or 

later. Consequently, it is plausible that a configuration exists with a pathway peaking in 2035 but no 

pathways peaking in 2033. By virtue of our assumption, we can confidently assert that 67% of 

Pathfinder's configurations discover at least one pathway with a peak date in 2033. 
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Supplementary Figures 

 

b) 

c) 

a) 

d) 

e) 
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Figure S1: Illustration with the “best guess” configuration of Pathfinder. It is a configuration where 

we apply the mean value to all parameters. In this specific configuration, AR6 C1-C3 scenarios that 

are Paris-compliant (black lines) are covered by scenarios calculated by Pathfinder in our framework 

(colored envelopes) under comparable conditions on pathways characteristics: no SRM and up to 10 

PgC.yr-1 of CDR. All pathways remain below 2°C. Pathfinder pathways tend to 1.5°C in the long term. 

Our results show that this coverage is similar in all 1500 configurations of Pathfinder used in this 

study. Panel a) shows the pathways compatible with the global warming boundary. Panel b) shows 

pathways compatible with the ocean acidification boundary. Panel c) shows pathways compatible 

with the SLR boundary. Panel d) shows pathways compatible with the Arctic sea ice boundary. Panel 

e) shows pathways compatible with all boundaries together.
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Figure S2: Trade-offs between the date of emissions peak and the total amount of CDR needed before 

2100, for a 67% safety level. Shaded areas represent the spaces compatible with one planetary 

boundaries. Plain lines give the frontier of the compatible space. Black is for the global warming 

boundary, green for the ocean acidification boundary, red for the SLR boundary, blue for the Arctic 

sea ice boundary, and purple for the combination all boundaries. 
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Figure S3: Trade-offs interaction between the year when CDR is significantly deployed (more than 0.5 

PgC.yr-1) and the year of peak emission for a 67% safety level. Shaded areas represent the spaces 

compatible with one planetary boundary. Plain lines give the frontier of the compatible space. Black is 

for the global warming boundary, green for the ocean acidification boundary, red for the SLR 

boundary, blue for the Arctic sea ice boundary, and purple for the combination all boundaries.  
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Figure S4: Trade-offs between CDR available and how much SRM is allowed in the case of a peak of 

CO2 emission in 2030 for a 67% safety level. Shaded areas represent the spaces compatible with one 

planetary boundary. Plain lines give the frontier of the compatible space. Black is for the global 

warming boundary, green for the ocean acidification boundary, red for the SLR boundary, blue for the 

Arctic sea ice boundary, and purple for the combination all boundaries.  
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Figure S5: Temperature trajectories classified by series for one configuration of Pathfinder  
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Figure S6: Atmospheric CO2 concentration classified by series for one configuration of Pathfinder 
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Figure S7: SRM (Panel a) and CDR (Panel b) floors in Pathfinder. Shaded areas show the 1-sigma 

uncertainty range.  

a) 

b) 
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Figure S8: Safety levels of compatible spaces defined by various combinations of conditions on 

pathway characteristics and for two different definitions of the compatible space. Plain markers 

reproduce results from Figure 2 by defining a space compatible when there remains at least one 

pathway. Empty markers give the same values for a space considered compatible only if the relative 

size of the remaining compatible pathways envelope is kept above a 1% area ratio (Methods). Subplots 

distinguish conditions on the date of CO2 emissions peak and of net-zero. Net-zero in 2100 means that 

CO2 net-zero is reached in 2100 or later. No information on net-zero means that this pathways 

characteristic is not constrained. Peak in 2023, 2025, 2030 and 2035 means that the compatible CO2 

pathways reaches their peak in 2023, 2025, 2030, or 2035. Markers distinguish conditions on 

speculative technologies, Up to 10 PgC yr-1 of CDR assumes that SRM will never be available while 

CDR will be available, possibly up to 10 PgC yr-1. No technologies assumes that neither SRM nor CDR 

will be available. CDR available and SRM allowed assumes SRM being possibly used up to 2 W m-2 in 

addition to CDR. Finally, the SRM replaces CDR case assumes that CDR will never be available but 

SRM can be used up to 2 W m-2. Marker lines show the 90% safety level, 67% safety level and 50% 

safety level.  
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Figure S9: Size of the remaining envelope for different planetary boundaries for a 67% safety level. 

Panel a shows the evolution of the size under different year of CO2 emission peak with up to 10PgC yr-1 

of CDR, no SRM and net-zero CO2 emissions reachable in 2050. Panel b shows the evolution of the 

size under different amount of CDR available at peak deployment with no SRM, CO2 emissions peak in 

2023 and net-zero CO2 emissions reachable in 2050. Panel c shows the evolution of the size under 

different year of net-zero CO2 emission with up to 10PgC yr-1 of CDR, no SRM and CO2 emissions peak 

in 2023.  

a) 

b) 

c) 
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Figure S10: Limits of the compatible space for one key characteristic if the other pathway 

characteristics are not constrained and for three safety levels: 50% (squares), 67% (diamonds) and 

90% (circles). Panel a focus on the amount of CDR available at peak deployment, panel b on the year 

of CO2 peak emissions and panel c focus on the level of CO2 emission peak. Black is for the global 

warming boundary, green for the ocean acidification boundary, red for the SLR boundary, blue for the 

Arctic sea ice boundary, and purple for the combination all boundaries. We compare those limits given 

by the ensemble of scenarios from Pathfinder (plain markers) to the same limits given by the ensemble 

of scenarios C1, C2 and C3 from the AR6 database run through Pathfinder (empty markers). If the 

limit is the same for both scenarios ensemble, we only show plain markers. 

 

c) b) a) 
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SUPPLEMENTARY MATERIALS 

Supplementary texts 

Input trajectories: Temperature and Atmospheric CO2 concentration. 

We randomly and independently draw temperature (T) and atmospheric CO2 concentration (C) 

trajectories using 4 different approaches grouped into “series” and “sub-series”. Series 1, 2 and 

3 correspond to different analytical expressions while series 4 is derived from AR6 scenarios[1]. 

All series have some common characteristics: 

• T, 𝑑

𝑑𝑡
T and C are defined and differentiable. 

• We impose an upper boundary so that T ≤ 2◦C. 

• We also impose limt→∞ T = 1.5◦C. 

• We randomly choose an asymptotic value for C which is determined by the share 

kx,final of non-CO2 components in the global radiative forcing. kx,final is uniformly drawn 

within one of three equiprobable ensembles (i.e. 1/3 chance of being in each): 

o 𝑘𝑥,𝑓𝑖𝑛𝑎𝑙  ∈ ] − 1; −0.1[  

o 𝑘𝑥,𝑓𝑖𝑛𝑎𝑙  ∈  [−0.1; 0.1] 

o 𝑘𝑥,𝑓𝑖𝑛𝑎𝑙  ∈ ]0.1; 0.66[ 

In Series 1, for X being T or C, we choose X of the form 𝑋(𝑡) = 𝑋0 + (𝑋𝑙𝑖𝑚 − 𝑋0) ⋅ 𝜔(𝑡 − 𝑡0) +

𝛼 ⋅ 𝑡 ⋅ (1 − 𝜔(𝑡 − 𝑡0) ), with X0 = X(t=𝑡0) the initial value of X given by the historical calibration, 

with 𝑡0=2021, and Xlim the asymptotic value. We determine α so that 
𝑑𝑋

𝑑𝑡
|

𝑡=𝑡0

=
𝑑𝑋

𝑑𝑡
|

0
, where  

𝑑𝑋

𝑑𝑡
|

0
 

is the differentiated variable given by the historical calibration in 2021. 

ω(t) is the function we use to distinguish the sub-series. This function must tend towards 0 for t 

= 0 and towards 1 for t → ∞. To keep the continuity and differentiability for X and 
𝑑𝑋

𝑑𝑡
, ω must be 

continuously differentiable at least once. In series 1a, 𝜔(𝑡) = 1 −  𝑒−𝜇0𝑡 − 𝜇1
2  𝑡² [2], in series 1b, 

𝜔(𝑡) =
𝑡

t + 𝜇1𝑒−𝜇0𝑡 , and in series 1c, 𝜔(𝑡) =
𝜇0𝑡²+ 𝜇1𝑡

1 + 𝜇0𝑡²
. Parameter distributions are given in Table 

S1. 

Series 2 follows the probability density function of a Kumaraswamy distribution[3] until it peaks 

(i.e. for t < tpeak), X(𝑡 < 𝑡𝑝𝑒𝑎𝑘) = X₀ + [𝑋𝑝𝑒𝑎𝑘  −  X₀]  ∙  [1 − (1 −  (τₒ / (τₒ − 𝑡𝑝𝑒𝑎𝑘))ᵅ)−𝛽  ∙

 (1 − ((τₒ −  t) / (τₒ − 𝑡𝑝𝑒𝑎𝑘))ᵅ)𝛽]. Peaking dates (𝑡𝑝𝑒𝑎𝑘) and peaking values (𝑋𝑝𝑒𝑎𝑘) are 

chosen randomly in ensembles that are compatible with our constraints and for which we can 

maintain continuity and differentiability of X and 
𝑑𝑋

𝑑𝑡
. τₒ is defined such as f(τₒ) = −𝑡𝑝𝑒𝑎𝑘  with 

𝑓(𝑡) = −𝑡 ∙ ((1 −  
𝑡𝑝𝑒𝑎𝑘

𝑡
)𝛼 − 1) −  𝛼 ∙ 𝛽 ∙

𝑋𝑝𝑒𝑎𝑘−X₀
𝑑𝑋

𝑑𝑡
|
0

. Sub-series have different functional forms 

after the peak (t > tpeak) to converge to the asymptotic value Xlim. Series 2a follows the probability 

density function of a normal distribution such as X(𝑡 ≥ 𝑡𝑝𝑒𝑎𝑘) = 𝑋𝑙𝑖𝑚  + (𝑋𝑝𝑒𝑎𝑘  − 𝑋𝑙𝑖𝑚) ∙

𝑒
−

(𝑡−𝑡𝑝𝑒𝑎𝑘)2

 𝜏2 . With τ =
√𝑋𝑝𝑒𝑎𝑘  − 𝑋𝑙𝑖𝑚

√𝑋𝑝𝑒𝑎𝑘  − 𝑋0
∙ (𝑡𝑝𝑒𝑎𝑘 − τₒ) ∙ (1 − (−

τₒ

𝑡𝑝𝑒𝑎𝑘−τₒ
)

𝛼

)
𝛽/2

∙ √
2

𝛼²∙𝛽∙(𝛽−1)
. Series 



2b follows the probability function of a log-normal distribution so X(𝑡 ≥ 𝑡𝑝𝑒𝑎𝑘) = 𝑋𝑙𝑖𝑚  +

(𝑋𝑝𝑒𝑎𝑘  − 𝑋𝑙𝑖𝑚) ∙   𝑒
−0.5

𝑙𝑜𝑔(𝑡/𝑡𝑝𝑒𝑎𝑘)2

 𝜎2  . With 𝜎 =
√𝑋𝑝𝑒𝑎𝑘  − 𝑋𝑙𝑖𝑚

√𝑋𝑝𝑒𝑎𝑘  − 𝑋0
∙ (1 −

τₒ

𝑡𝑝𝑒𝑎𝑘
) ∙ (1 −

(−
τₒ

𝑡𝑝𝑒𝑎𝑘−τₒ
)

𝛼

)
𝛽/2

∙ √
2

𝛼²∙𝛽∙(𝛽−1)
. Series 2c follows the probability function of a Gompertz 

distribution[4]: X(𝑡 ≥ 𝑡𝑝𝑒𝑎𝑘) = 𝑋𝑙𝑖𝑚  + (𝑋𝑝𝑒𝑎𝑘  − 𝑋𝑙𝑖𝑚) ∙  𝜂1 −𝑡/𝑡𝑝𝑒𝑎𝑘  𝑒1 −𝜂
1 −𝑡/𝑡𝑝𝑒𝑎𝑘

. With 𝜂 =

𝑒𝑥𝑝 (
√𝑋𝑝𝑒𝑎𝑘  − 𝑋𝑙𝑖𝑚

√𝑋𝑝𝑒𝑎𝑘  − 𝑋0
∙ (1 −

τₒ

𝑡𝑝𝑒𝑎𝑘
) ∙ (1 − (−

τₒ

𝑡𝑝𝑒𝑎𝑘−τₒ
)

𝛼

)
−𝛽/2

∙ √
2

𝛼²∙𝛽∙(𝛽−1)
). We apply all three sub-

series to the temperature but only series 2a and 2c to the atmospheric CO2 concentration. 

Parameter distributions are given in Table S1. 

Series 3 follows the solution of a damped harmonic oscillator differential system with non-zero 

initial positions and velocities. Depending on sub-series, it is either in a critical regime (series 3a) 

under the form 𝑋(𝑡)  =  𝑋𝑙𝑖𝑚  + (X₀−𝑋𝑙𝑖𝑚 + (𝜅 ∙ (X₀−𝑋𝑙𝑖𝑚) +
𝑑𝑋

𝑑𝑡
|

0
) ∙ 𝑡) ∙ 𝑒−𝜅𝑡, or in an over-

critical regime (aperiodic) for series 3b, 𝑋(𝑡)  =  𝑋𝑙𝑖𝑚  + [(X₀−𝑋𝑙𝑖𝑚) ∙ 𝑐𝑜𝑠ℎ(√𝜅² − Ω² ∙ 𝑡) +

𝜅∙(X₀−𝑋𝑙𝑖𝑚) +
𝑑𝑋

𝑑𝑡
|
0

√𝜅²−Ω²
∙ 𝑠𝑖𝑛ℎ(√𝜅² − Ω² ∙ 𝑡)] ∙ 𝑒−𝜅𝑡 . Parameter distributions are given in Table S1. 

Series 4 is derived from the AR6 scenarios. Initially, we simulate all AR6 scenarios[1] using 

Pathfinder (as detailed in the subsequent section), and select only those scenarios where the 

maximum temperature remains below 2°C. To these T and C time series, we introduce noise 

generated through an AR(1) process[5]. We then apply an 11-year moving average to smoothen 

the trajectories affected by noise. We infer the lost 11 values by following the trend observed in 

the original T or C time series. To ensure the generated pathways are continuously differentiable, 

we fit the resulting trajectories with spline functions. These functions are defined piecewise by 

polynomials and allow for differentiation. Similar to other series, we impose constraints on the 

initial values of X and 
𝑑𝑋

𝑑𝑡
 to maintain continuity with the historical trajectory. Additionally, to 

prevent splines with excessively steep or rapid trends at 2100, we also constrain the derivative 

at that point with the original value of the AR6 scenario before the noise. 

Since Series 4 are derived from AR6 scenarios, the processed trajectories are limited to the year 

2100. However, for our purposes, we require pathways that span up to 2500. To address this, we 

employ the analytical form of Series 3a to extend the trajectories from 2100 to 2500, ensuring 

continuity and differentiability are maintained throughout the extended period. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Series Parameters Values Distribution 

1a 𝜇0 [-0.05, 0, 0.10] Triangular 
 

𝜇1 [0, 0.05, 0.10] Triangular 

1b 𝜇0 [0.001, 0.01, 0.10] Triangular 
 

𝜇1 [1,100,1000] Triangular 

1c 𝜇0 [2.5E-5, 3E-5, 1E-1] Triangular 
 

𝜇1 0 
 

2 α [1.001, 1.0015, 20] Triangular 
 

β 2 
 

 
tpeak [10, 70, 120] Triangular 

3a - 3b κ [0, 0.05, 0.15] Triangular 

3b Ω [0, κ] Uniform 

Table S1 Characteristics of the parameters for the T and CO2 time series. Values for triangular 

distributions give the minimum, the peak and the maximum of the distribution. Values for 

uniform distribution give the minimum and the maximum. 

Implementation of AR6 scenarios in Pathfinder 

The AR6 database[1] hosts scenarios explored by different IAM and assessed by the working 

group 3 of the IPCC. However, these projections are inconsistent with the historical values of 

Pathfinder, making it infeasible to directly incorporate the raw data into our model. 

To utilize CO2 emissions and non-CO2 radiative forcing (Rx) as inputs to Pathfinder, we perform 

linear interpolation to convert the pentadal or decadal data into annual data. Then, we rescale 

both drivers to align with the historical trajectories of Pathfinder. Due to the inherent natural 

variability present in Pathfinder's historical runs, it is not possible to directly utilize the year 2021 

as a reference for rescaling. Instead, we compute the mean value of the historical Pathfinder’s 

pathways between 2011 and 2021. We extend the mean values calculated in Pathfinder for 2016 

by incorporating the trend in observational values until 2021. This approach ensures consistency 

with Pathfinder's configurations, as the 2016 value is specific to each configuration, while also 

aligning with the most recently observed trend. The rescaling factor is determined by comparing 

the reconstructed value for 2021 with the corresponding value in the AR6 scenario. 

For observed CO2 emissions, we employ the most recent estimates available until 2022[6] , while 

for Rx, we utilize estimates from 2019[7] . To establish the starting point of our simulations in 

2021, we rely on the available trend for Rx over the last 10 years to infer the values for 2020 and 

2021. (while CO2 emissions were taken from the latest Global Carbon Budget[6]). 

Similarly, for Rx, we reconstruct the historical value in 2021 by extending the mean value 

calculated in Pathfinder for 2016 and incorporating the trend in observational values until 2021. 

However, the treatment of Rx differs from that of CO2 emissions due to its nature as a radiative 

forcing resulting from a combination of various GHGs (positive) and aerosols (mostly negative). 

Consequently, depending on the model's parameterization, the reconstructed historical Rx value 

in 2021 can be either negative or positive. Rescaling Rx without accounting for this decomposition 

could potentially lead to an artificial reversal of the sign of Rx in the scenarios. To address this, 

we first decompose Rx and rescale each component separately: 𝑅𝑥
𝐴𝑅6 = 𝑅𝑥,𝑔ℎ𝑔𝑠

𝐴𝑅6  + 𝑅𝑥,𝑎𝑒𝑟𝑜𝑠𝑜𝑙𝑠
𝐴𝑅6 , 

where 𝑅𝑥
𝐴𝑅6 is the radiative forcing due to non-CO2 forcers in AR6 scenarios, 𝑅𝑥,𝑔ℎ𝑔𝑠

𝐴𝑅6  is the 



radiative forcing due to a combination of different GHGs in AR6 scenarios, and  Rx,aerosols
AR6  is the 

radiative forcing due to aerosols in AR6 scenarios. As Pathfinder lacks such a decomposition, we 

use the IPCC AR6 extrapolated value of 𝑅𝑥,𝑔ℎ𝑔𝑠
ℎ𝑖𝑠𝑡 = 1.18 ± 0.14 𝑊 𝑚−2 in 2021[7]. Assuming a 

normal distribution we randomly draw one value of the GHG component of Rx for each 

configuration of Pathfinder. Finally, the rescaling factor for GHGs is 
𝑅𝑥,𝑔ℎ𝑔𝑠

ℎ𝑖𝑠𝑡

𝑅𝑥,𝑔ℎ𝑔𝑠
𝐴𝑅6,2021, and the rescaling 

factor for aerosols is 
𝑅𝑥

ℎ𝑖𝑠𝑡− 𝑅𝑥,𝑔ℎ𝑔𝑠
ℎ𝑖𝑠𝑡

𝑅𝑥,𝑎𝑒𝑟𝑜𝑠𝑜𝑙𝑠
𝐴𝑅6,2021 , where 𝑅𝑥

ℎ𝑖𝑠𝑡  is the reconstructed historical value in Pathfinder 

in 2021 and 𝑅𝑥,𝑎𝑒𝑟𝑜𝑠𝑜𝑙𝑠
𝐴𝑅6,2021 .and 𝑅𝑥,𝑔ℎ𝑔𝑠

𝐴𝑅6,2021 are the respective AR6 radiative forcing due to a 

combination of aerosols  and different GHGs in 2021. 

 

Cost functions and parameters values in the existing models 

To derive our six cost functions, we conducted a comprehensive literature review, and isolated five 

models. These were selected based on factors such as data availability, prominence in the literature, 

and their aggregate form. All the terms we introduce in the six functions appear in at least one of 

these models. They therefore provide a starting point to choose a value for our ad hoc parameters or 

simply to assess the credibility of our calibrated parameters. We explain the values of these 

parameters below. 

All models except ACC2 [8] have a term in their cost functions that represents autonomous technical 

change. 𝜏 is estimated between 0.95 (low estimate of RESPONSE [9]) and 0.998 (PAGE [10]), while 

DICE [11] estimates of 0.995 are widely used. For this reason, we chose 𝜏=0.995 in this paper. 

Induced technical change is introduced in this form only in PAGE. Their model estimate the IES to be 

150 GtCO2 and 𝜏=ln(0.2). Calibration of our functions fails at such values. We fix σ=1.4.10-4 GtCO2
-1, 

which corresponds to IES = 7333 GtCO2 and 𝜏=-2. 

The linear term was introduced by the RESPONSE model as a term that sets the price of the first 

mitigation option. The assumption 𝜏 =0 for no initial abatement cost is adopted by all other stylized 

IAMs we examined. RESPONSE examines four scenarios with marginal costs for initial abatement 

estimated between $0 and $229/tCO2. On this basis, and given the free calibration of the sensitivity 

parameters (see next section), we set 𝜏 =$136/tCO2. 

The non-linear term serves as the baseline value since it is widely used in all aggregated abatement 

cost functions. Therefore, this is the only term common to all cost functions studied. The two 

parameters of this non-linear term are calibrated. 𝜏 ranges between $ 636/tCO2 and $ 881/tCO2 and 

𝜏 varies between 1.93 and 5.74. In the literature, the models estimate 𝜏 between $400 (PAGE) and 

$1200 (High estimate of RESPONSE) per tCO2. The elasticity 𝜏 varies between 2 (ACC2) and 3.5 

(RESPONSE). 

Finally, the inertia term has been a source of discussion in the community. Two models (RESPONSE 

and DICE-PACE) use this term in a similar form in their function. RESPONSE estimates the transition 

time 𝜏 to be about 5 years, while DICE-PACE [12] uses previous diffusion rates of technologies such as 

nuclear, wind, or coal power to provide an estimate between 20 and 40 years. Following RESPONSE, 

we set 𝜏 = 5 years. The cost parameter 𝜏 is greater than 1 and shapes the inertia term, as with 𝜏, we 

decide to give this parameter a fixed value of 𝜏=2.  

Free calibration of the sensitivity parameters of the cost function 



Instead of having only two free parameters, an alternative calibration method is to calibrate all 

sensitivity parameters. In total, there are 8 unknown parameters (𝜏, θ, µ, σ, α, β, δ, τ) and up to 7 in 

the same functional form. Since it is impossible to leave all parameters free for calibration, we set all 

shape parameters similarly as in the previous section: µ = -2, θ = 2.5, and 𝜏 = 2. 

The distribution of costs in Figure S7 shows that, in 2050 and 2100, all cost functions estimate similar 

costs, regardless of the classification of the scenario (C1 to C6). In 2030, DICE and DICE_LBD are slightly 

lower than the other functions in all classifications, although the distribution of DICE is slightly larger. 

We also compare these distributions to the original distribution from the AR6 data [1]. With the 

exception of C1 and C2 in 2050, where the estimates of the cost functions are slightly too high, the 

median of the estimates of the functions is always within the uncertainty range of the AR6 data. 

 α θ τ β δ σ φ μ 

DICE 3223 $/tC 2.5 0.994      

DICE_LBD 2372 $/tC 2.5    3.00 10-5 PgC-1  -2 

Full 1752 $/tC 2.5 0.9997 346 $/tC 1.48 yr  2  

Full_LBD 1711 $/tC 2.5  348 $/tC 1.5 yr 7.00 10-19 PgC-1 2 -2 

DICE_inertia 2500 $/tC 2.5 0.9973  2.5 yr  2  

DICE_linear 1771 $/tC 2.5 0.9992 417 $/tC     

Table S2: Calibration of the parameters of the abatement cost functions 

A disadvantage of this calibration is that some terms of the cost function all but disappear, since the 

LBD sensitivity parameter (σ) in Full_LBD is very close to 0. For the inertia term, δ is between 1.5 and 

2.5 years, which does not cancel the term but significantly reduces its role. Moreover, this value is 

quite small for the economic interpretation we have given to this term: a transition period for a new 

technology between invention and generalization of its use. Finally, τ can also be very close to 1 (e.g., 

0.9997 in Full), again minimizing the impact of this discounting term. 

Consequently, due to this “cancelation” of some parameters by the calibration, comparing all six cost 

functions would not be relevant anymore. It also appears that some cost functions seem to be more 

efficient in fitting data from more complex models. Typically, an LBD term based on the accumulation 

of experience does not help to predict abatement costs from processed-based IAMs. 

Discussion of “10% cheapest” as a threshold for near-optimality 

When defining near-optimal pathways, we chose to select all pathways that are among the 10% least 

expensive trajectories in the ensemble produced by Pathfinder. The choice of 10% relates to other 

studies that impose a tolerance threshold relative to the optimal pathways [13, 14]. However, our 

method differs from theirs, as they explore near-optimal spaces that differ from the cost-optimal path 

while staying in a 10% range around the optimized cost. In our work, the cost function is a tool to 

compare different conceptual approaches and the calibration only ensures that the modelled costs 

remain in the right order of magnitude for three target years.  

Results for NPV with 0% discounting 

Here, we follow the same analysis as before, except that we do not apply discounting to NPV (4% 

discount rate in the main text). This new minimization criterion does not favor the present and still 

differs from the minimax. 

Selecting near-optimal pathways that are robust to all cost functions 



In the NPV approach without discounting (NPV-nodisc), the conceptual choice of cost function is more 

discriminating, as we find 59% of near-optimal pathways are robust to NPV-nodisc. As with minimax, 

the discriminating factor is inertia. Indeed, Figure S5 illustrates that when the minimax approach is 

used, the costs calculated with or without accounting for inertia match respectively 99% and 93% of 

near optimal pathways.  

Overall, it is particularly interesting to look for economically robust near-optimal pathways that apply 

to both the NPV-nodisc and minimax approaches. These pathways, which are economically robust to 

two minimization criteria with no preference for the present, account for 38% of the near-optimal 

pathways. This result demonstrates the difference between the two approaches. 

It is also possible to apply this no discounting approach to NPVDiff (NPVDiff-nodisc). When using NPVDiff-

nodisc to define generational robustness, we find that there are no near-optimal pathways that are 

generationally robust, while robustness is 99% for cost functions with inertia (DICE_inertia, Full, 

Full_LBD) and 48% for those without (DICE, DICE_linear, DICE_LBD). 

NPV-nodisc 

 DICE Full_LBD DICE_inertia Full DICE_linear DICE_LBD 

DICE 100% 67% 67% 67% 94% 94% 

Full_LBD  100% 99% 99% 63% 63% 

DICE_inertia   100% 100% 62% 62% 

Full    100% 62% 62% 

DICE_linear     100% 98% 

DICE_LBD      100% 

Table S3 Matrix of ratios of robust pathways for NPV and two forms of cost functions 

 

Consistency of robust near-optimal pathways with AR6 scenarios 

It is important to remember that it is the size of the ensemble of 2°C-compliant pathways computed 

by Pathfinder that allows us to define near-optimal pathways. While our main results give median 

values, Pathfinder computes these pathways in 1000 configurations representing as many plausible 

physical states of the world. However, because of how the pathways are generated (see above), the 

studied trajectories also depend on these independent physical worlds.  

Since pathways are uniquely tied to each individual configuration, it is impossible to derive a median 

trajectory across all configurations. Hence, representing a median trajectory for CO2 emissions is 

challenging as it requires to mix pathways from all configurations that are not comparable. However, 

we can examine a 'best guess' configuration where parameters are closest to their median distribution 

value suggesting that this is the physical state of world that is the most likely to happen. By replicating 

the selection process of robust pathways delineated in Figure 1, we are able to present pathways that 

are both economically and generationally robust in this ‘best guess’ configuration.  

The scenarios under this configuration, as plotted in Figure 7.c, are comparable to scenarios that carry 

'at least a 50% chance' in the AR6 categorisation framework. Consequently, our economically and 

generationally robust near-optimal pathways are aligned with C4 scenarios, which represent a 50% or 

greater likelihood of staying below a 2°C increase [1].   



Supplementary Figures 

 

Figure S1 Comparison of abatement costs in AR6 with calibrated costs estimated using the 6 cost 

functions: DICE (panel a.), Full_LBD (panel b.), DICE_inertia (panel c.), Full (panel d.), DICE_linear (panel 

e.), and DICE_LBD (panel f.). The colors represent the 3 crossing points we focus on: 2030 (blue), 2050 

(red), 2100 (green). The plain lines show the linear regression illustrating the trend of the calibrated 

costs for all 3 crossing points.

c) 

a) b) 

d) 

e) f) 



Figure S2 GDP (panel a) and CO2 emissions (panel b) baselines. The black lines show the baselines 

used in this study, i.e., the median value of the Rennert et al. [15] projections. The colored bar in panel 

a shows the range of baseline GDP from the AR6 scenarios at the three crossing points (2030, 2050, 

2100). The colored lines in panel b show the baselines of CO2 emissions from the AR6 scenarios 

through 2100. 

b) a) 



 

Figure S3: Scenarios classification in IPCC’s WGIII AR6 report [16]. This figure is taken from Chapter 3, 

section 3.2 [17].  



 

Figure S4 Distribution of NPVDiff for generationally robust near-optimal pathways in the configuration 

corresponding to the 50th percentile of least robust pathways (as in Figures 7.a and 7.b). Panel a shows 

NPVDiff for cost functions without inertia and panel b for cost functions with inertia. 

  

b) a) 



 

Figure S5 Venn diagrams showing the proportion of near-optimal pathways that are robust to 

minimax, NPV-nodisc and NPVDiff (panel a). Panels b, c and d decompose the proportion of these robust 

pathways among cost functions that do or do not account for inertia. The intersection spaces of the 

circles in panels b, c and d correspond to the size of ellipses in panel a. 

a) 

b) c) 

d) 



 

Figure S6: Non CO2 RF corresponding to economically and generationally robust pathways for a 

median configuration of Pathfinder (Figure 7.c). Black pathways remain below 2°C and are similar to 

C4 scenarios from AR6 (envelope represented with black dashed lines). Blue dashed lines represent 

the envelope of C1-C3 scenarios from AR6 

  



 

 

 

Figure S7 Distribution of mitigation costs from AR6 (white boxes) compared to the six calibrated cost 

functions (colored boxes) for scenarios across 6 categories (C1 to C6) for the “free calibration”. Costs 

are calculated and calibrated on three crossing points in 2030 (panel a.), 2050 (panel b.), and 2100 

(panel c.) 

  

a) 

b) 

c) 
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