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This thesis is concerned with the qualitative study of multi-solitons of a onedimensional nonlinear wave equation known as the ϕ 6 model. This model has applications in condensed matter theory, high energy physics, and cosmology.

The solitons associated with this model are known as kinks and antikinks, and both are the unique non-constant stationary solutions of the ϕ 6 model having finite energy.

In the first part of the thesis, we describe all the solutions of the ϕ 6 model satisfying a boundary condition with energy close to the minimum. We will prove that any of these solutions is a small perturbation of a sum of two moving kinks during a large time interval. We also analyze the movement of these solitons as a two-body problem using an explicit ordinary differential system. We prove that the displacement of the two kinks is a small perturbation of the solution of this ordinary differential system during a large time interval.

In the second part of the thesis, we analyze the collision between two kinks of the ϕ 6 model. We prove that the collision is almost elastic, which is unexpected since this model is non-completely integrable. We estimate the defect produced by the collision in the speed of each soliton and in the size of the residue. We prove that the size of the defect is of order smaller than a polynomial for low incoming speed.
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Résumé

Cette thèse s'inscrit dans l'étude qualitative des multi-solitons d'une équation d'onde non linéaire unidimensionnelle connue sous le nom de mòdele ϕ 6 . Ce modèle a des applications en théorie de la matière condensée, en physique des hautes énergies et en cosmologie. Les solitons associés à ce modèle sont connus sous le nom de kinks et antikinks, et tous deux sont les uniques solutions stationnaires non constantes du modèle ϕ 6 ayant une énergie finie.

Dans la première partie de la thèse, nous décrivons toutes les solutions du modèle ϕ 6 satisfaisant une condition aux limites avec une énergie proche du minimum. Nous allons prouver que chacune de ces solutions est une petite perturbation d'une somme de deux kinks en mouvement pendant un grand intervalle de temps.

Nous analysons également le mouvement de ces solitons comme un problème à deux corps en utilisant un système différentiel ordinaire explicite. Nous prouvons que le déplacement des deux kinks est une petite perturbation de la solution de ce système différentiel ordinaire pendant un grand intervalle de temps.

Dans la deuxième partie de la thèse, nous analysons la collision entre deux kinks du modèle ϕ 6 . Nous prouvons que la collision est presque élastique, ce qui est inattendu puisque ce modèle est non intégrable. Nous estimons le défaut produit par la collision dans la vitesse de chaque soliton et dans la taille du résidu. Nous prouvons que la taille du défaut est d'ordre inférieur au polynôme pour une faible vitesse entrante.

Mots clés :

• Équation d'onde non linéaire unidimensionnelle 

Introduction

We consider the following partial differential equation

∂ 2 t ϕ(t, x) -∂ 2 x ϕ(t, x) + 2ϕ(t, x) -8ϕ(t, x) 2 + 6ϕ(t, x) 5 = 0, ( ϕ 6 ) 
which is known in the physics literature also as the ϕ 6 model. The partial differential equation (ϕ 6 ) is a scalar field of dimension 1 + 1 of the form

∂ 2 t ϕ(t, x) -∂ 2 x ϕ(t, x) + U ′ (ϕ(t, x)) = 0,
for the potential function

U (ϕ) = ϕ 2 (1 -ϕ 2 ) 2 .
First, we are interested in the study of all the solutions ϕ(t, x) satisfying, for any t ∈ R, the following boundary condition and having energy slightly bigger than the minimum of the energy of all solutions of (ϕ 6 ) satisfying (Bc). We are going to verify that these solutions are close to a sum of two solitons and each of them moves with a small speed. Moreover, we will see that the displacement of each soliton is very close to an explicit solution of an ordinary differential system under additional conditions.

The second topic discussed in this manuscript is the study of the elasticity of the collision between two moving solitons of the partial differential equation (ϕ 6 ). More precisely, we will only consider the collision between two increasing solitons H 1 , H 2 which are approaching with a sufficiently small speed v > 0 and study their long-time behavior after they collide.

The study of nonlinear wave equation (ϕ 6 ) has applications in different fields of theoretical physics. More precisely, this model has applications in condensed matter theory, see [START_REF] Bishop | Solitons and Condensed Matter Physics[END_REF], which is a field of physics interested in studying the properties of a system of particles or atoms either under conditions of very low temperature or when there exist high interaction forces between the components of the system. The study of the ϕ 6 model has also applications in cosmology, see for example [START_REF] Vilekin | Cosmic Strings and Other Topological Defects[END_REF], and high energy physics, see for example [START_REF] Vakhid | Kink interactions in the (1+1)-dimensional ϕ 6 model[END_REF] and [START_REF] Dorey | Kinkantikink collisions in the ϕ 6 model[END_REF]. Before we state our main results, we will introduce briefly the mathematical theory of scalar fields, the concept of topological solitons with a focus on the kinks and antikinks, and the local theory of the partial differential equation (ϕ 6 ).

Notation 1.0.1. In this manuscript, for any n, m ∈ N ≥1 , we denote the space of smooth functions f : R n → R m with compact support by C ∞ 0 (R n ; R m ) . In particular, when m = 1, we denote C ∞ 0 (R n ; R m ) by C ∞ 0 (R n ). Similarly, for any 1 ≤ p ≤ +∞, we denote the space L p (R n ; R m ) as the real linear space generated by all the measurable functions f : R n → R m satisfying R n |f (x)| p dx < +∞.

If p = +∞, we denote L ∞ (R n ; R m ) as the real linear space generated by all the measurable

functions f : R n → R m satisfying inf c > 0|λ x ∈ R n |f (x)| > c = 0 < +∞,
where λ is the Lebesgue measure in the Euclidean space R n . If m = 1, we denote, for any 0 < p < +∞, each space L p (R n ; R m ) by L p (R n ) .

For any m, n ∈ N ≥1 and any function f : R n → R n , we use the following notation

∆f (x) = n i=1 ∂ 2 ∂x 2 i f (x), ∇f (x) = (∂ x i f (x)) i∈{1,...,n} ,
for every x ∈ R n .

Brief introduction to Lagrangians

First, we consider the Euclidean space R 1+n with the Minkowski metric g = -dt 2 + n j=1 dx 2 j and a complete Riemannian manifold M of dimension n with a Riemannian metric ĝ. We denote the set of maps ϕ : (R 1+n , g) → (M, ĝ) by O and, for any function f : R n+1 → M of class C 1 at least, we define, for any µ ∈ {0, ..., n} and any (t, x) = (t, x 1 , ...,

x n ) ∈ R n , ∂ µ f (t, x) =    ∂ xµ f (t, x), if µ ̸ = 0, -∂ t f (t, x), otherwise.
Moreover, for any x ∈ M and any v(x) in the tangent space T x M, we denote |v| ĝ = ĝ (v(x), v(x))

1 2 . Next, we consider a smooth function U : M ⊂ R n+1 → R ≥0 and the set D as D = {ϕ ∈ O| ϕ ∈ L ∞ (R 1+n ; M ), and for all t ∈ R,

n i=1 |∂ x i ϕ(t, x)| ĝ , |∂ t ϕ(t, x)| ĝ ∈ L 2 x (R n )},
Additionaly, for an interval (t 1 , t 2 ) not necessarily bounded and any functions ϕ 1 , ϕ 2 : R n → M in L ∞ , we study the critical points of the function L : D∩{ϕ(t j , x) = ϕ j (x) for j ∈ {1, 2}} → R denoted by

L(ϕ) = t 2 t 1 R n 1 2 n µ=0
ĝ (∂ µ ϕ(t, x), ∂ µ ϕ(t, x)) + U (ϕ(t, x)) dxdt.

(Ge. Lagr.)

It is well known that the critical points of functions (Ge. Lagr.) are solutions of nonlinear wave equations, see Chapter 2 of [START_REF] Manton | Topological Solitons[END_REF] for more information. Indeed, many dispersive models are obtained from the research of this kind of variational problem, see for example the sine-Gordon and ϕ 4 models in Chapter 5 of [START_REF] Manton | Topological Solitons[END_REF], and the wave maps in the book [START_REF] Geba | An introduction to the theory of wave maps and related geometric problems[END_REF]. The motivation of the study of these variational problems has applications in different fields of mathematical physics, for example, condensed matter theory [START_REF] Bishop | Solitons and Condensed Matter Physics[END_REF] and cosmology [START_REF] Vilekin | Cosmic Strings and Other Topological Defects[END_REF], see also [START_REF] Manton | Topological Solitons[END_REF] for more information.

Actually, if we consider M = R n and ĝ the Euclidean metric of R n , the function L can be rewritten as

L(ϕ) = t 2 t 1 R n 1 2 |∇ϕ(t, x)| 2 -|∂ t ϕ(t, x)| 2 + U (ϕ(t, x)) dxdt.
(Simpl. Lagr.)

If ϕ(t, x) is a critical point of L, then, for any function δ ∈ C ∞ 0 (R n+1 , R n ) such that supp δ ⊂⊂ (t 1 , t 2 ) × K for some compact set K ⊂ R n , we obtain from the identity lim ϵ→0 L(ϕ + ϵδ) -L(ϕ) ϵ = 0, and integration by parts that ϕ shall satisfy the following Euler-Lagrange equation

∂ 2 t ϕ(t, x) -∆ϕ(t, x) + ∇U (ϕ(t, x)) = 0, (1.1) 
for any t ∈ (t 1 , t 2 ) . The partial differential equation (ϕ 6 ) studied in this thesis also satisfies equation (1.1) when n = 1 and U (ϕ) = ϕ 2 (1 -ϕ 2 ) 2 . See also Chapter 2 of [START_REF] Manton | Topological Solitons[END_REF] for more references about Lagrangians.

Scalar fields and Lagrangians

Background context

We consider, for n ∈ N ≥1 , a smooth potential function U : R n → R ≥0 satisfying lim |y|→±∞ U (y) = +∞ such that the set U -1 {0} is a compact manifold and every u ∈ U -1 {0} also satisfies U ′ (u) = 0. We consider for any field ϕ : R n → M such that |∂ x i ϕ(x)| is in L 2 (R n ) for all i ∈ {1, ..., n} the following function

L U (ϕ) = R n n i=1 |∂ x i ϕ(x)| 2 2 + U (ϕ(x)) dx. (Stat. Lagr.)
We define the vacuum set by

V = {y ∈ M | U (y) = 0}. (Vacuum)
Clearly, if a Lipschitz field ϕ : R n → R m is in L ∞ satisfying L U (ϕ) = 0, then it is not difficult to verify the existence of µ ∈ V such that ϕ ≡ µ. Moreover, if ϕ ∈ C (R n ; R n ) is a Lipschitz function satisfying L U (ϕ) < +∞, we would also need for any v ∈ S n-1 that lim r→+∞ inf y∈V |ϕ(vr) -y| = 0.

Otherwise, R n U (ϕ(x)) dx = +∞. Furthermore, for any non-constant map σ : S n-1 → V, we can consider the following set When n = 1, we can identify the set S n-1 as the binary set {-1, 1}. In this case, we will see in the next sections that the existence of solutions of problem P.0 is possible only if there doesn't exist v ∈ V satisfying either σ(-1) < v < σ [START_REF] Alejo | On the asymptotic stability of the sine-Gordon kink in the energy space[END_REF] or σ(1) < v < σ(-1).

V σ = {ϕ| ϕ : R n → R n , L U (ϕ) < +∞
However, when n ≥ 2, there doesn't exist any solution of problem (P.0) for any nonconstant continuous map σ : S n-1 → V and any continuous potential function U : R n → R ≥0

satisfying the conditions lim |y|→+∞ U (y) = +∞ and U ′ (u) = 0 always when U (u) = 0. This result is known as Derrick's Theorem, see Section 4.2 of the book [START_REF] Manton | Topological Solitons[END_REF] for more information.

Moreover, using an argument of contradiction, the proof of Derrick's Theorem is straightforward. More precisely, If n ≥ 2 and there exists a non-constant continuous field satisfying ϕ ∈ V δ minimizing L U , then we would have that ϕ (r) (x) := ϕ(rx) should satisfy L U (ϕ (r) ) ≥ L U (ϕ) for all r > 0, because the set {ϕ (r) | r ∈ R >0 } is contained in V δ . But, from the change of variable y(x) = xr and identity ∇ϕ (r) (x) = r∇ϕ(rx), we can verify the following equations

R n U (ϕ (r) (x)) dx = 1 r n R n U (ϕ(x)) dx, R n ∇ϕ (r) (x) 2 dx = 1 r n-2 R n |∇ϕ(x)| 2 dx,
for every r > 0. Therefore, we have

L U ϕ (r) = 1 2r n-2 R n |∇ϕ(x)| 2 dx + 1 r n R n U (ϕ(x)) dx .
If n ≥ 3, then the function L U ϕ (r) is decreasing on r unless ϕ is a constant function with image on V, so ϕ is not a solution of problem P.0, which is a contradiction. If n = 2, the function L U (ϕ r ) is non-decreasing only if

R n U (ϕ(x)) dx = 0,
which would imply that the image of ϕ is contained in V. But, since ϕ is a weak solution of equation (1.2), U ′ (u)| u ∈ V = {0} and M is a compact set, we would have that ϕ : R n → R n should be a bounded harmonic function, therefore Liouville's Theorem would imply that ϕ should be a constant map, which is a contradiction of ϕ being in V σ .

One-dimensional scalar fields

From now on, we consider n = 1 and a smooth function U : R n → R ≥0 satisfying lim |y|→+∞ U (y) = +∞, and V = U -1 {0} is a compact set.

In this particular case, the partial differential equation (1.2) can be rewritten as the following elliptic equation

ϕ ′′ (x) = U ′ (ϕ(x)). (1.3) 
Since U ∈ C ∞ , we can verify using the elliptic regularity theory that if ϕ ∈ L ∞ (R) is a weak solution of equation (1.3), then ϕ ∈ C ∞ , see Theorem 2 from Chapter 6 of [START_REF] Evans | Partial Differential Equations[END_REF] for more information. Clearly, if ϕ is a strong solution (1.3) satisfying L U (ϕ) < +∞, then ϕ is a critical point of L U .

Definition 1.2.1. We say that a one-dimensional scalar field ϕ is a topological soliton of the differential equation (1.3), if ϕ is a strong solution of (1.3), it satisfies

R ϕ ′ (x) 2 + U (ϕ(x)) dx < +∞,
and ϕ ∞ := lim r→+∞ ϕ(r•) : {-1, 1} → V is a non-constant map.

Remark 1.2.2. Furthermore, when n = 2, we highlight that the topological solitons are critical points of Lagragians of a different form from (1.2) and we have verified earlier that there doesn't exist any non-constant solution of (1.3) satisfying

R n U (ϕ(x)) + |∇ϕ(x)| 2 dx < +∞,
when n ≥ 2, see also Subsection 7.1 of Chapter 7 from the book [START_REF] Manton | Topological Solitons[END_REF].

For example, for n = 2 and the potential function U (ϕ) = (1 -|ϕ| 2 ) 2 , the topological solitons are defined as the non-constant maps

(ϕ, A) : R 2 → C × R 2 ,
which are the critical points of the following Lagrangian

R |∇ A ϕ(x)| 2 + |curl A(x)| 2 + 1 -|ϕ(x)| 2 2
dx, (1.4) where ∇ := ∇ -iA and

curl(f 1 , f 2 )(x) = ∂f 2 ∂x 1 (x) - ∂f 1 ∂x 2 (x), curl(f ) = ∂f (x) ∂x 2 , - ∂f (x) ∂x 1 ,
for any functions (f 1 , f 2 ) : R 2 → R 2 , f : R 2 → R and all x ∈ R 2 . Furthermore, the Euler-Lagrange equations associated to (1.4) are given by

∇ 2 A ϕ(x) =2 1 -|ϕ(x)| 2 ϕ(x), (1.5) curl 2 A = Im iϕ(x)∇ A ϕ(x) ,
where ∇ A f (x) := ∇f (x) -iA(x)f (x) for any function f : R 2 → C. One of the reasons to consider the Lagrangian (1.4) instead of (Stat. Lagr.) is to use, for any α ∈ R, the following transformation ϕ α (x) = ϕ(x)e iα , which is an invariance (1.4) and also satisfies

R 2 U (ϕ α (x)) dx = R 2 U (ϕ(x)) dx.
For more detailed information, see Subsection 2.6 of Chapter 2 and Chapter 7 of the book [START_REF] Manton | Topological Solitons[END_REF], see also the article [START_REF] Gustafson | Effective dynamics of magnetic vortices[END_REF] for more information about the partial differential equation (1.5) and its topological solitons.

Since we are mainly interested in the topological solitons associated with the partial differential equation (ϕ 6 ), we will describe in the next sections the properties of topological solitons associated with one-dimensional scalar field equations, which are the strong solutions of (1.3) satisfying all the conditions in Definition 1.2.1. The topological solitons associated with one-dimensional scalar fields are divided into two groups the kinks and the antikinks.

Kinks and antikinks

In this subsection, we consider U ∈ C ∞ (R) satisfying U (y) ≥ 0 for any y ∈ R and lim |y|→+∞ U (y) = +∞. In addition, we assume that U satisfies the following property

U ′′ (x) ̸ = 0, for all x ∈ V, (Non-degeneracy) 
where V is defined in (Vacuum) for n = 1.

Next, we consider a solution ϕ ∈ C ∞ (R) of the ordinary differential equation

   ϕ ′′ (x) = U ′ (ϕ(x)), lim x→+∞ ϕ(x) and lim x→-∞ ϕ(x) ∈ V, (1.6) 
satisfying L U (ϕ) < +∞, where L U is defined in (Stat. Lagr.). Now, we are going to present the properties of all the solutions ϕ of the ordinary differential equation (1.6) satisfying Moreover, since lim x→±∞ ϕ(x) ∈ V and V = U -1 (0), we would obtain from the identity above that ϕ(x 0 ) ∈ V, otherwise L U (ϕ) = +∞. Consequently, ϕ would satisfy the following ordinary differential system of equations

L U (ϕ) < +∞.
   ϕ ′′ (x) = U ′′ (ϕ(x)), ϕ(x 0 ) ∈ V, dϕ(x 0 ) dx = 0.
However, from Picard-Lindelöf Existence-Uniqueness Theorem, we would obtain that ϕ(x) = ϕ(x 0 ) for any x ∈ R, which contradicts (1.7). In conclusion, ϕ shall be a constant function. Furthermore, from the proof of Lemma 1.2.3, if ϕ is a smooth function satisfying ϕ ′′ (x) = U ′ (ϕ(x)) for any x ∈ R, then dϕ(x) dx 2 -2U (ϕ(x)) is constant. Moreover, if L U (ϕ) < +∞, we also would have that dϕ(x) dx 2 = 2U (ϕ(x)) , for all x ∈ R.

Consequently, (1.8) is a necessary condition for a function ϕ to be a topological soliton. Therefore, to conclude the proof of Lemma 1.2.4, it is enough to verify that only one of the equations in (1.8) shall be true.

We assume by contradiction that there exist x 1 , x 2 ∈ R such that ϕ ′ (x 1 ) = + 2U (ϕ(x 1 )), ϕ ′ (x 2 ) = -2U (ϕ(x 2 )).

Hence, from the Intermediate Value Theorem, there exist x 3 ∈ R satisfying ϕ ′ (x 3 ) = 0, from which we would obtain that ϕ(x 3 ) ∈ U -1 (0). However, from Picard-Lindelöf Existence-Uniqueness Theorem, we would obtain that ϕ(x) = ϕ(x 3 ) for all x ∈ R, which contradicts the hypothesis that ϕ is a topological soliton satisfying Definition 1.2.1. In conclusion, the statement of Lemma 1.2.4 is true.

Definition 1.2.5. We say that a real function ϕ : R → R is a kink associated to the potential function U if, and only if, the function ϕ is a non-constant solution of the following ordinary differential equation ϕ ′ (x) = 2U (ϕ(x)), (1.9) and L U (ϕ) < +∞. We say that a function ψ is an antikink if, and only if, the function ϕ(x) := ψ (-x) is a kink.

Remark 1.2.6. Let ϕ be a kink function. We consider

υ +∞ = lim x→+∞ ϕ(x), υ -∞ = lim x→-∞ ϕ(x).
From Lemma 1.2.4, υ +∞ ̸ = υ -∞ , furthermore, since

ϕ ′ (x) = 2U (ϕ(x)) ≥ 0,
it is not difficult to verify that (υ -∞ , υ +∞ ) ∩ V = ∅. Otherwise, we would obtain the existence of x 0 ∈ R such that ϕ (x 0 ) ∈ V, which would imply that ϕ is a constant function.

The ϕ 6 model 1.3.1 Preliminaries

From now on, we consider the potential function U : R → R given by U (ϕ) = ϕ 2 (1 -ϕ 2 ) 2 .

We consider the following nonlinear wave equation

   ∂ 2 t ϕ(t, x) -∂ 2
x ϕ(t, x) + 2ϕ(t, x) -8ϕ(t, x) 2 + 6ϕ(t, x) 5 = 0, lim x→+∞ ϕ(x) = 1, lim x→-∞ ϕ(x) = -1, (ϕ 6 -NLW)

which is equivalent to the scalar field of dimension 1 + 1

∂ 2 t ϕ(t, x) -∂ 2 x ϕ(t, x) + U ′ (ϕ(t, x)) = 0.
The kinks associated with U are solutions of the following ordinary differential equation By a standard application of the Fundamental Theorem of Calculus, we obtain that the following functions

ϕ ′ (x) = √ 2 ϕ(x) 1 -ϕ(x) 2 . ( 1 
H 0,1 (x) = e √ 2x 1 + e 2 √ 2x
, H -1,0 (x) = -e - √ 2x

1 + e -2 √ 2x (1.11) are solutions of ordinary differential equation (1.10). Indeed, from Picard-Lindelöf Existence-Uniqueness Theorem and since H 0,1 is a function in C ∞ (R) satisfying lim x→-∞ H 0,1 (x) = 0, lim x→+∞ H 0,1 (x) = 1, we deduce that the only solutions of (1.10) satisfying the boundary conditions lim x→-∞ ϕ(x) = 0, lim x→+∞ ϕ(x) = 1 are the set of functions whose elements are the scalar fields ϕ h : R → R defined by ϕ h (x) = H 0,1 (x + h) for any x, h ∈ R. Similarly, the only kinks satisfying the boundary condition lim x→-∞ ϕ(x) = -1 and lim x→+∞ ϕ(x) = 0 are the translations of the function H -1,0 (x).

Notation 1.3.1. We denote the Sobolev space H 1 x (R) as the completion of the space

C ∞ 0 (R) in the norm ∥•∥ H 1 x satisfying ∥f ∥ 2 H 1 x = R df (x) dx 2 + f (x) 2 dx,
for any real function f ∈ C ∞ 0 (R). We also consider the norm

∥•∥ L 2 x which satisfies ∥f ∥ L 2 x = R f (x) 2 dx,
for every f ∈ L 2 x (R) Definition 1.3.2. For any t ∈ R, cos t √ -∆ and sin t √ -∆ are the linear bounded maps

cos t √ -∆ : L 2 x (R) , ∥•∥ L 2 x → L 2 x (R) , ∥•∥ L 2 x , sin t √ -∆ : L 2 x (R) , ∥•∥ L 2 x → L 2 x (R) , ∥•∥ L 2 x ,
which satisfies for any f ∈ C ∞ 0 (R) the following identities

cos t √ -∆ f (x) = R f ( 
y) cos (2πt|y|)e 2πixy dy,

sin t √ -∆ f (x) = R f (y) sin (2πt|y|)e 2πixy dy,
where f is the Fourier transform of f, which is defined by

f (x) = R f (y)e -2πixy
dy, for all x ∈ R.

We also denote sin (t

√ -∆) √ -∆
by the bounded linear map with same domain as sin t √ -∆ which satisfies the following identity

sin t √ -∆ √ -∆ f (x) = R f (y)
2π|y| sin (2πt|y|)e 2πixy dy, for any f ∈ C ∞ 0 (R).

Lemma 1.3.3.

There exists C > 0 such that for any f, g ∈ H 1 x (R), we have

∥f g∥ H 1 x ≤ C ∥f ∥ H 1 x ∥g∥ H 1 x .
Proof. See Lemma A.8 and its proof in [START_REF] Tao | Nonlinear dispersive equations: local and global analysis[END_REF].

Definition 1.3.4. We say that a real function ϕ : R 2 → R is a solution in the energy space of the partial differential equation (ϕ 6 -NLW) if, and only if, for all t ∈ R the function ϕ(t, x) satisfies ∥ϕ(t, x) -H 0,1 (x) -H -1,0 (x)∥ H 1 x + ∥∂ t ϕ(t, x)∥ L 2 x < +∞, and for any t, t 0 ∈ R, the function u(t, x) = ϕ(t, x) -H 0,1 (x) -H -1,0 (x) is a solution of the following integral equation

u(t, x) = F u(t, x) := cos (t -t 0 ) √ -∆ u(t 0 , x) + sin (t -t 0 ) √ -∆ √ -∆ ∂ t u(t 0 , x) + t t 0 sin (t -s) √ -∆ √ -∆   U ′ (H 0,1 (x)) + U ′ (H -1,0 (x))
-U ′ (H 0,1 (x) + H -1,0 (x) + u(s, x))

  ds (1.12)

in the space C(R, H 1 x (R)) ∩ C 1 (R, L 2 x (R))
, which means that the following map

f (t) := u(t, •)
is a continuous function from R to H 1 x (R) and the derivative df (t) dt is a well-defined continuous map from R to L 2

x (R). For a better understanding in this concept of solution, see Chapter 3 of [START_REF] Tao | Nonlinear dispersive equations: local and global analysis[END_REF].

From now on, we are going to verify that the Definition 1.3.4 is consistent. If ϕ is a smooth solution of the partial differential equation (ϕ 6 ), then the function u(t, x) = ϕ(t, x) -H 0,1 (x) -H -1,0 (x) is a smooth solution of the partial differential equation

∂ 2 t u(t, x) -∂ 2
x u(t, x) = U ′ (H 0,1 (x)) + U ′ (H -1,0 (x))-U ′ (H 0,1 (x) + H -1,0 (x) + u(t, x)) . (1.13) Indeed, from the identity U (ϕ) = ϕ 2 (1 -ϕ 2 ) 2 and Taylor's Theorem, we deduce for any functions u 1 , u 2 ∈ H 1 x (R) the following identity

U ′ (H 0,1 (x) + H -1,0 (x) + u 1 (x)) -U ′ (H 0,1 (x) + H -1,0 (x) + u 2 (x)) = 6 j=2 U (j) (H 0,1 (x) + H -1,0 (x)) u 1 (x) j-1 -u 2 (x) j-1 (j -2)! .
So, from the elementary estimate,

|u 1 (x) j-1 -u 2 (x) j-1 | ≤ (j -1) |u 1 (x)| j-2 + |u 2 (x)| j-2 |u 1 (x) -u 2 (x)|
obtained from the Fundamental Theorem of Calculus and the fact that U, H 0,1 , H -1,0 ∈ C ∞ and H 0,1 , H -1,0 ∈ L ∞ x (R), we deduce using Lemma 1.3.3 for any natural number 2 ≤ j ≤ 6 the existence of a constant C j satisfying U (j) (H 0,1 (x) + H -1,0 (x)) u 1 (x) j-1 -u 2 (x) j-1

H 1 x ≤ C j ∥u 1 ∥ j-2 H 1 x + ∥u 2 ∥ j-2 H 1 x ∥u 1 (x) -u 2 (x)∥ H 1 x .
Therefore, if there exist two solutions u, υ of the integral equation (1.12) belonging to the space C ([-T + t 0 , T + t 0 ] , H 1

x (R)) ∩ C 1 ([-T + t 0 , T + t 0 ] , L 2 x (R)) , we deduce using Lemma 1.3.3 the existence of a constant C > 0 independent of u and υ satisfying for any t ∈ [-T + t 0 , T + t 0 ] the following inequality

∥u(t) -υ(t)∥ H 1 x + ∥∂ t u(t) -∂ t υ(t)∥ L 2 x ≤ C t t 0 [1 + |s -t 0 |] 1 + max{∥u(s)∥ H 1 x , ∥υ(s)∥ H 1 x } 4 ∥u(s) -υ(s)∥ H 1 x ds.
Consequently, using Gronwall Lemma, we can verify that u(s) = v(s) for any s in the interval [-T + t 0 , T + t 0 ] , from which we conclude the uniqueness of the solution of the partial differential equation (1.13) in the space H 1 x (R) × L 2 x (R). Similarly, assuming t 0 = 0, using the map F defined at (1.12) and considering δ 0 = ∥(u 0 , u 1 )∥ H 1

x ×L 2

x , we can deduce the existence of a T 0 > 0 depending only on δ 0 such that the following restriction of F

F : u (u, ∂ t u) ∈ C [-T 0 , T 0 ] , H 1 x (R) × L 2 x (R) , sup t∈[-T 0 ,T 0 ] ∥(u(t), ∂ t u(t))∥ H 1 x ×L 2 x < 2δ 0 → u (u, ∂ t u) ∈ C [-T 0 , T 0 ] , H 1 x (R) × L 2 x (R) , sup t∈[-T 0 ,T 0 ] ∥(u(t), ∂ t u(t))∥ H 1 x ×L 2
x < 2δ 0 is a contraction. Therefore, using Banach Fixed-Point Theorem, we can verify that (1.13) is locally well-posed in the space H 1 x (R) × L 2 x (R). The solutions of the partial differential equation (ϕ 6 ) in the energy space satisfy the following conservation laws: 2 2 + U (ϕ(t, x)) dx, (Energy)

E(ϕ) = R ∂ x ϕ(t, x) 2 + ∂ t ϕ(t, x)
P (ϕ) = - R ∂ x ϕ(t, x)∂ t ϕ(t, x) dx. (Momentum)
Moreover, the solutions ϕ(t, x) of (ϕ 6 ) satisfy the following invariances:

• Time translation: For any h ∈ R, ϕ(t + h, x) is also a solution of (ϕ 6 ),

• Space translation: For any h ∈ R, ϕ(t, x + h) is also a solution of (ϕ 6 ),

• Space reflection: ϕ(t, -x) is also a solution of (ϕ 6 ),

• Time reflection: ϕ(-t, x) is also a solution of (ϕ 6 ).

In addition, for any v ∈ (-1, 1) and any (t 0 , x 0 ) ∈ R 2 , if ϕ(t, x) is a solution of (ϕ 6 ), then the Lorentz transformation

ψ(t, x) := ϕ t -t 0 -v(x -x 0 ) √ 1 -v 2 , x -x 0 -v(t -t 0 ) √ 1 -v 2
is also a solution of the partial differential equation (ϕ 6 ). Consequently, if H is a stationary solution of (ϕ 6 ), then the following function

φ(t, x) = H x -vt √ 1 -v 2
is also a solution of (ϕ 6 ). We observe that the kinks and anti-kinks are the unique nonconstant stationary solutions of (ϕ 6 ) with finite energy, see Chapter 5 of [START_REF] Manton | Topological Solitons[END_REF]. Moreover, the Space translations of the kink H 0,1 are the minimizers of the Energy function E(ϕ) when ϕ satisfies the boundary conditions lim x→-∞ ϕ(x) = 0 and lim x→+∞ ϕ(x) = 1, see Chapter 5 of [START_REF] Manton | Topological Solitons[END_REF] for the proof of this fact.

Furthermore, since the real function U (ϕ) = ϕ 2 (1-ϕ 2 ) 2 is positive and satisfies lim y→± U (y) = +∞, any solution ϕ of (2.1) having finite energy is global in time.

More precisely, if E(ϕ) < +∞, then there exists C > 0 such that ∥ϕ(t, •)∥ L ∞ x (R) < C for any t in the domain of ϕ, from which, using the local well-posedness of partial differential equation (2.1), we obtain the global well-posedness of (2.1) in the space of solutions having finite energy. Because, if E(ϕ) < +∞, then, for any real t in the domain of ϕ, 

2E(ϕ).

Therefore, since U is a non-negative function satisfying lim y→±∞ U (y) = +∞, if there existed a real sequence (t n ) n∈N in the domain of ϕ satisfying lim n→+∞ ∥ϕ(t n , •)∥ L ∞ x (R) = +∞, then there would exist a n ∈ N such that R U (ϕ(t n , x)) dx > E(ϕ), which is a contradiction.

Finally, for each t ∈ R, we consider the Kinetic Energy E k (ϕ)(t) of a solution ϕ in the energy spaces by

E k (ϕ)(t) = R ∂ t ϕ(t, x) 2 2 dx,
and we denote the Potential Energy E pot (ϕ)(t) by E(ϕ) -E k (ϕ)(t).

Previous results in the stability and dynamics of kinks

In this subsection of the thesis, we briefly describe the previous results obtained about stability and dynamics of one or two kinks for some dispersive nonlinear equations.

For the ϕ 4 model, which is the partial differential equation

∂ 2 t ϕ(t, x) -∂ 2 x ϕ(t, x) -ϕ(t, x) + ϕ(t, x) 3 = 0, (t, x) ∈ R 2 ,
asymptotic stability of a single kink under odd perturbations was proved by Kowalczyk, Martel, and Muñoz in [START_REF] Kowalczyk | Kink dynamics in the ϕ 4 model: asymptotic stability for odd perturbations in the energy space[END_REF]. Moreover, in [START_REF] Delort | On the stability of kink solutions of the ϕ 4 model in 1 + 1 space time dimensions[END_REF], Delort and Masmoudi obtained the decay rates for the size of the perturbations of the kink for this model.

Under assumptions on the potential function U, it was proved in [START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF], for the following partial differential equation

∂ 2 t ϕ(t, x) -∂ 2 x ϕ(t, x) + U ′ (ϕ(t, x)) = 0, (t, x) ∈ R 2 , (1.14)
the asymptotic stability of a kink by Kowalczyk, Martel, Muñoz, and Van Den Bosch. Indeed, the result of this article applies to the ϕ 6 model which we studied in this thesis, therefore the kinks H 0,1 and H -1,0 are asymptotically stable in some sense.

For the sine-Gordon model

∂ 2 t ϕ(t, x) -∂ 2
x ϕ(t, x) + sin (ϕ(t, x)) = 0, Schlag and Lührmann proved asymptotic stability of a single kink under odd perturbations in [START_REF] Schlag | Asymptotic stability of the sine-Gordon kink under odd perturbations[END_REF]. Moreover, in [START_REF] Alejo | On the asymptotic stability of the sine-Gordon kink in the energy space[END_REF], Alejo, Muñoz and Palacios, proved asymptotic stability result of a single kink in a specific manifold of perturbations.

With respect to nonlinear Schrödinger equation models, we refer the to the work [START_REF] Béthuel | Orbital stability of the black soliton to the Gross-Pitaevskii equation[END_REF] about orbital stability of a kink in the Gross-Pitaevskii equation. For more references in stability of solitons in nonlinear Schrödinger equations, see also the classical work [START_REF] Buslaev | On the stability of solitary waves for nonlinear Schrödinger equation[END_REF] about orbital stability of solitary waves and [START_REF] Buslaev | On asymptotic stability of solitary waves for nonlinear Schrödinger equations[END_REF] about asymptotic stability of solitons.

Regarding the topic of dynamics, in [START_REF] Jendrej | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF], for a certain set of potential functions U, Jendrej, Lawrie and Kowalczyk described the dynamics of strongly interacting kink-antikink pair solutions of (1.14). The strongly interacting kink-antikink pairs are the solutions of (1.14) which converge in infinity to a sum of kink and antikink each one moving with a speed converging asymptotically to zero. In [START_REF] Jendrej | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF], it was also obtained the existence the strongly interacting kink-antikink pairs and their uniqueness under time and space translation.

With respect to the Klein-Gordon model, Krieger, Nakanishi and Schlag proved asymptotic stability of solitary waves in the article [START_REF] Krieger | Global dynamics above the ground state energy for the one-dimensional NLKG equation[END_REF]. Kowalczyk, Martel and Muñoz also proved asymptotic stability of solitons and studied their dynamics for one dimensional Klein-Gordon in [START_REF] Kowalczyk | Soliton dynamics for the 1D NLKG equation with symmetry and in the absence of internal modes[END_REF]. See also the recent article [START_REF] Germain | Quadratic Klein-Gordon equations with a potential in one dimension[END_REF] by Germain and Pusateri about asymptotic stability of solitary waves for Klein-Gordon models.

The literature about stability and dynamics of solitons for nonlinear dispersive equations is vast and not only restricted to one-dimensional nonlinear dispersive equations. For example, see the references [START_REF] Gustafson | Effective dynamics of magnetic vortices[END_REF], [START_REF] Colliander | Vortex dynamics for the Ginzburg-Landau-Schrödinger equation[END_REF], [START_REF] Sandier | Gamma-convergence of gradient flows and applications to Ginzburg-Landau vortex dynamics[END_REF], [START_REF] Leon | Dynamics of Ginzburg-Landau vortices[END_REF] about dynamics and stability of vortices, which are topological solitons associated with scalar fields of dimension 1 + 2.

Collision of solitons for nonlinear dispersive models

The study of the collision of solitons in nonlinear dispersive equations focuses on understanding the long time behavior of a solution ϕ(t, x) when time variable t approaches -∞ knowing that this solution converges in some norm to a finite sum of solitary waves when the t goes to +∞. For non-integrable models, there aren't many references that study the collision between solitons for nonlinear dispersive models.

In many complete integrable models, the solutions can be described explicitly and the collision between solitons is completely elastic, see for example the results for the Kortewegde Vries equation in [START_REF] Miura | The korteweg-de vries equation: a survey of results[END_REF], see also [START_REF] Clarkson | Solitons, nonlinear evolution equations and inverse scattering[END_REF], [START_REF] Hirota | Exact solution of the korteweg-de vries equation for multiple collisions of solitons[END_REF] and the classical work of Lax in [START_REF] Peter | Integrals of nonlinear equations of evolution and solitary waves[END_REF]. Contrary to the collision of solitons in completely integrable systems, it is expected in non-integrable models that the collision between two solitons is not elastic, which means that, after the collision instant, the solution will not converge when t goes to +∞ to a sum of two solitary waves with same energy and momentum as the two solitons before they collide.

In [START_REF] Martel | Stability of two soliton colision for non-integrable gKdV equations[END_REF], Martel and Merle studied the stability of the collision between solitons for the generalized Korteweg-de Vries equation and, in [START_REF] Martel | Description of two soliton collision for the quartic gKdV equation[END_REF], [START_REF] Martel | Inelastic interaction of nearly equal solitons for the quartic gKdV equation[END_REF], the same authors proved inelasticity of the collision between two solitons for the quartic generalized Korteweg-de Vries equation.

In [START_REF] Muñoz | On the inelastic 2-soliton collision for generalized KdV equations[END_REF], [START_REF] Muñoz | Inelastic character of solitons of slowly varying gKdV equations[END_REF], Muñoz extended the argument used in [START_REF] Martel | Inelastic interaction of nearly equal solitons for the quartic gKdV equation[END_REF] to prove the inelasticity of the collision between two solitons for other generalized Korteweg-de Vries models.

For nonlinear Schrödinger equation models, in [START_REF] Perelman | Two soliton collision for nonlinear Schrödinger equations in dimension 1[END_REF], Perelman studied the collision between two solitons of different size and obtained inelasticity, indeed after the collision instant she proved that the solution doesn't preserve the two solitons' structure.

Main results

We recall the one-dimensional nonlinear wave equation (ϕ 6 -NLW)

   ∂ 2 t ϕ(t, x) -∂ 2
x ϕ(t, x) + 2ϕ(t, x) -8ϕ(t, x) 2 + 6ϕ(t, x) 5 = 0, lim x→+∞ ϕ(t, x) = 1, lim x→-∞ ϕ(t, x) = -1.

In Chapter 2, we will describe all the solutions of (ϕ 6 -NLW) in the energy space with energy slightly bigger than 2E (H 0,1 ) . Actually, from the estimate

R ∂ t ϕ(t, x) 2 2 + ∂ x ϕ(t, x) 2 2 + U (ϕ(t, x)) dx ≥ R ∂ x ϕ(t, x) 2 2 + U (ϕ(t, x)) dx = R 2U (ϕ(t, x)) |∂ x ϕ(t, x)| dx + 1 2 R ∂ x ϕ(t, x) 2 -2U (ϕ(t, x)) 2 dx ≥ R 2U (ϕ(t, x)) |∂ x ϕ(t, x)| dx ≥ 1 -1
2U (y) dy = 2E (H 0,1 ) , we have that 2E (H 0,1 ) is the minimum possible value for E (ϕ) . This minimum value is not attained, since there isn't a non-constant solution ϕ with finite energy satisfying |∂ x ϕ(t, x)| = 2U (ϕ(t, x)) which is not either a kink or a antikink.

Definition 1.4.1. Let ϕ be a solution in the energy space of the partial differential equation (ϕ 6 -NLW). The energy excess ϵ of ϕ is the following positive value:

ϵ := E (ϕ) -2E (H 0,1 ) .

Description of the solutions with small energy excess

Our first main result is the following:

Theorem 1.4.2. ∃ C > 1, δ 0 > 0, such that if ϵ < δ 0 and (ϕ(0, x) -H 0,1 (x) -H -1,0 (x), ∂ t ϕ(0, x))

∈ H 1 x (R) × L 2 (R)
with E total (ϕ(0), ∂ t ϕ(0)) = 2E(H 0,1 ) + ϵ, then there exist functions x 2 , x 1 ∈ C 2 (R) such that the unique global time solution ϕ(t, x) of (ϕ 6 -NLW) is given by ϕ(t, x) = H 0,1 (x -x 2 (t)) + H -1,0 (x -x 1 (t)) + g(t, x), (1.15) and for any t ∈ R,

ϵ C ≤ e - √ 2(x 2 (t)-x 1 (t)) + max j∈{1,2} ẋj (t) 2 + ∥(g(t), ∂ t g(t))∥ 2 H 1 ×L 2 ≤ Cϵ, (1.16) max j∈{1,2}
|ẍ j (t)| ≤ Cϵ.

(1.17)

Furthermore, we have

∥(g(t), ∂ t g(t))∥ 2 H 1 ×L 2 ≤ C ∥(g(0), ∂ t g(0))∥ 2 H 1 ×L 2 + ϵ 2 exp Cϵ 1 2 |t| ln ( 1 ϵ ) for all t ∈ R. (1.18)
The proof of Theorem 1.4.2 will be presented in the next chapter. Using an argument of contradiction, we will prove that if the energy excess ϵ of ϕ is small enough, then, for any

t ∈ R, there exist x1 (t), x2 (t) ∈ R with x2 (t) ≫ x1 (t) such that ∥ϕ(t, x) -H 0,1 (x -x2 (t)) -H -1,0 (x -x1 (t))∥ H 1 x (R) ≪ 1.
Next, using modulation techniques similar to the one used in [START_REF] Raphaël | Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS[END_REF] an [START_REF] Jendrej | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF], we are going to verify that ϕ(t, x) has the following representation

ϕ(t, x) = H 0,1 (x -x 2 (t)) + H -1,0 (x -x 1 (t)) + g(t, x), (1.19) with x 2 (t) -x 1 (t) ≫ 1, ∥g(t, x)∥ H 1 x (R) ≪ 1 for any t ∈ R and g(t, x) satisfying the orthogo- nality conditions g(t, x), H ′ 0,1 (x -x 2 (t)) L 2 x = g(t, x), H ′ -1,0 (x -x 1 (t)) L 2 x = 0.
(1.20)

From the orthogonality conditions above, we will obtain the following coercive estimate in the energy

c 0 ∥g(t, x)∥ 2 H 1 x (R) ≤ E (ϕ) -E (H 0,1 (x -x 2 (t)) + H -1,0 (x -x 1 (t))) +O ∥g(t, x)∥ 3 H 1 x (R) + |x 2 (t) -x 1 (t)|e -2 √ 2(x 2 (t)-x 1 (t)) .
Therefore, using a bootstrap argument and the continuity of the modulation parameters

x 1 , x 2 , we will deduce the existence of a constant c > 0 such that

∥g(t, x)∥ 2 H 1 x (R) + e - √ 2(x 2 (t)-x 1 (t)) ≤ cϵ, for all t ∈ R.
The estimate ∥∂ t g(t, x)∥ L 2 x ≲ ϵ 1 2 will follow directly from the estimate of the kinetic energy of ϕ and the fact that E(ϕ) -2E (H 0,1 ) = ϵ.

The estimate of the first and second derivatives of the modulation parameter x 1 , x 2 will follow from standard analysis of the ordinary differential equations obtained from the time derivative of the orthogonality conditions (1.20) and combining this result with the estimates above we will deduce inequalities (1.16), (1.17).

The proof of inequality (1.18) will be done more carefully in Chapter 2 using refined energy estimates techniques. More precisely, it will be based on a study of a function F (t) defined from the sum of the quadratic term

R ∂ x g(t, x) 2 + ∂ t g(t, x) 2 2 + 1 2 U ′′ (H 0,1 (x -x 2 (t)) + H -1,0 (x -x 1 (t))) g(t, x) 2 dx
with correction terms. We will prove that this function has small decay in its derivative and it satisfies a coercivity inequality

∥(g(t), ∂ t g(t))∥ H 1 x (R)×L 2 x (R) ≲ F (t) + ϵ 2 .
Using these two observations, we will obtain the following inequality

∥(g(t), ∂ t g(t))∥ 2 H 1 x (R)×L 2 x (R) ≤ C ∥(g(0), ∂ t g(0))∥ 2 H 1 x (R)×L 2 x (R) + ϵ 2 ln 1 ϵ 2 exp Cϵ 1 2 |t| ln ( 1 ϵ ) , (1.21) 
for all t ∈ R.

Dynamics of two kinks with small energy

Furthermore, in the second chapter, we will also prove the following theorem.

Theorem 1.4.3. In notation of Theorem 1.4.2, ∃C, δ 0 > 0, such that if 0 < ϵ < δ 0 , ϕ is a solution of the partial differential equation (ϕ 6 -NLW) in the energy space and E(ϕ) = 2E pot (H 0,1 ) + ϵ, then the smooth functions

d 1 , d 2 ∈ C 2 (R) defined by d 1 (t) = a + bt - 1 2 √ 2 ln 8 v 2 cosh √ 2vt + c 2 , (1.22) d 2 (t) = a + bt + 1 2 √ 2 ln 8 v 2 cosh √ 2vt + c 2 , ( 1.23 
)

such that d j (0) = x j (0), ḋj (0) = ẋj (0) for j ∈ {1, 2}, satisfy max j∈{1,2} |d j (t) -x j (t)| ≤ C min(ϵ 1 2 |t|, ϵt 2 ), max j∈{1,2} | ḋj (t) -ẋj (t)| ≤ Cϵ|t|,
and for --→ g(0) = (g(0, x), ∂ t g(0, x)), we have the following estimates

ϵ max j∈{1, 2} |d j (t) -x j (t)| ≤ C max --→ g(0) , ϵ 2 ln 1 ϵ 11 exp Cϵ 1 2 |t| ln ( 1 ϵ ) , (1.24) ϵ 1 2 max j∈{1, 2} | ḋj (t) -ẋj (t)| ≤ C max --→ g(0) , ϵ 2 ln 1 ϵ 11 exp Cϵ 1 2 |t| ln ( 1 ϵ ) , (1.25) ϵ 1 2 max j∈{1, 2} | dj (t) -ẍj (t)| ≤ C max --→ g(0) , ϵ 2 ln 1 ϵ 11 exp Cϵ 1 2 |t| ln ( 1 ϵ )
.

(1.26)

Both Theorems 1.4.2 and 1.4.3 are from the article [START_REF] Moutinho | Dynamics of two interacting kinks for the ϕ 6 model[END_REF]. The proof of Theorem 1.4.3 relies on the observation that the functions x j (t) -d j (t) will be very close to a solution of a well-known linear ordinary differential system. Therefore, using the estimates (1.16), (1.17) and the inequality (1.21), we will conclude the proof of Theorem 1.4.3 using the method variation of parameters for ordinary differential equations. Finally, the demonstration of estimate (1.18) is going to follow from the energy estimate technique using the function F (t) and the estimate of the derivative Ḟ (t) using the estimates 

Almost elasticity of the collision of two kinks

The third main result of the manuscript is the following statement:

Theorem 1.4.4. For any 0 < θ < 1 and k ∈ N ≥2 , there exists 0 < δ(θ, k) < 1, such that if

0 < v < δ(θ, k), and ϕ(t, x) is the unique solution of (ϕ 6 -NLW) satisfying for all t ≥ 4 ln ( 1 v ) v ϕ(t, x) -H 0,1 x -vt √ 1 -v 2 -H -1,0 x + vt √ 1 -v 2 H 1 x (R) + ∂ t ϕ(t, x) + v √ 1 -v 2 H ′ 0,1 x -vt √ 1 -v 2 - v √ 1 -v 2 H ′ -1,0 x + vt √ 1 -v 2 L 2 x ≤ e -vt , (1.27)
then there exist a real function

v f : (0, 1) × R → R and a number e v,k such that 0 < v f < 1, |e v,k | < ln 8 v 2 and if t ≤ - ln ( 1 v ) 2-θ v , then |v f (t) -v| < v k and ϕ(t, x) -H 0,1   x -e k,v + v f (t)t 1 -v f (t) 2   -H -1,0   x + e k,v -v f (t)t 1 -v f (t) 2   H 1 x (R) + ∂ t ϕ(t, x) + v f (t) 1 -v f (t) 2 H ′ 0,1   x -e k,v + v f (t)t 1 -v f (t) 2   - v f (t) 1 -v f (t) 2 H ′ -1,0   x + e k,v -v f (t)t 1 -v f (t) 2   L 2 x ≤ v k . Furthermore, if -4 ln ( 1 v ) 2-θ v ≤ t ≤ -ln ( 1 v ) 2-θ v , then ϕ(t, x) -H 0,1 x -e k,v + vt √ 1 -v 2 -H -1,0 x + e k,v -vt √ 1 -v 2 H 1 x + ∂ t ϕ(t, x) - v √ 1 -v 2 H ′ 0,1 x -e v,k + vt √ 1 -v 2 + v √ 1 -v 2 H ′ -1,0 x + e v,k -vt √ 1 -v 2 L 2 x ≤ v k .
(1.28)

The existence and uniqueness of two solitary kinks for the ϕ 6 model with the energy norm of the remainder having exponential decay was proved in [START_REF] Chen | Kink networks for scalar fields in dimension 1 + 1[END_REF] by Chen and Jendrej. In particular, when the speed v > 0 is small enough, we have the decay (1.27).

The statement of Theorem 1.4.4 implies that the collision between two kinks for the ϕ 6 model is almost elastic. Indeed, for any k ∈ N, if the speed v of each kink is small enough, then the energy norm of the residue and the change in the speed of each kink is much smaller than v k . Therefore, the collision of two kinks for the ϕ 6 model is different, in nature than the collision of two solitons of quartic generalized Korteweg-de Vries, for which the inelasticity is polynomial with respect to the size of the speed of the solitons, compare Theorem 1.4.4 with Theorem 1 of [START_REF] Martel | Inelastic interaction of nearly equal solitons for the quartic gKdV equation[END_REF]. Moreover, because of the estimate (1.28) concluded in Theorem 1.4.4, it is not possible to apply the methods of [START_REF] Martel | Inelastic interaction of nearly equal solitons for the quartic gKdV equation[END_REF] to prove the inelasticity of the collision between two kinks for the ϕ 6 model.

Sketch of the proof of Theorem 1.4.4

The demonstration of Theorem 1.4.4 is quite long and delicate, and it will be divided into Chapters 3 and 4, corresponding to the preprints [START_REF] Moutinho | Approximate kink-kink solutions for the ϕ 6 model in the low-speed limit[END_REF] and [START_REF] Moutinho | On the collision problem of two kinks for the ϕ 6 model with low speed[END_REF] respectively. First, we are going to create a sequence of approximate solutions (ϕ k ) k∈N ≥2 of equation (ϕ 6 ) satisfying for any v > 0 sufficiently small

lim t→+∞ ϕ k (v, t, x) -H 0,1 x -vt √ 1 -v 2 -H -1,0 x + vt √ 1 -v 2 H 1 x (R) + ∂ t ϕ k (v, t, x) + v √ 1 -v 2 H ′ 0,1 x -vt √ 1 -v 2 -H ′ -1,0 x + vt √ 1 -v 2 L 2 x = 0,
and for all t ∈ R, if 0 < v ≪ 1, then

∂ 2 ϕ k (v, t, x) ∂t 2 - ∂ 2 ϕ k (v, t, x) ∂x 2 + U ′ (ϕ k (v, t, x)) H 1 x (R) ≤ C(k)v 2k |t|v + ln 1 v n k e -2 √ 2|t|v ,
where C(k) > 0 and n k ∈ N for all k ∈ N ≥2 .

Definition 1.4.5. We define Λ :

C 2 (R 2 , R) → C(R 2 , R) as the nonlinear operator satisfying Λ(ϕ 1 )(t, x) = ∂ 2 t ϕ 1 (t, x) -∂ 2 x ϕ 1 (t, x) + U ′ (ϕ 1 (t, x)),
for any function

ϕ 1 ∈ C 2 (R 2 , R).
More precisely, we will prove the following theorem in Chapter 3.

Theorem 1.4.6.

There exist a sequence of functions (ϕ k (v, t, x)) k≥2 , a sequence of real numbers δ(k) > 0 and a sequence of numbers n k ∈ N such that for any

0 < v < δ(k), ϕ k (v, t, x) satisfies lim t→+∞ ϕ k (v, t, x) -H 0,1 x -vt √ 1 -v 2 -H -1,0 x + vt √ 1 -v 2 H 1 x (R) = 0, lim t→+∞ ∂ t ϕ k (v, t, x) + v √ 1 -v 2 H ′ 0,1 x -vt √ 1 -v 2 - v √ 1 -v 2 H ′ -1,0 x + vt √ 1 -v 2 L 2 x = 0, lim t→-∞ ϕ k (v, t, x) -H 0,1 x + vt -e v,k √ 1 -v 2 -H -1,0 x -vt + e v,k √ 1 -v 2 H 1 x (R) = 0, lim t→-∞ ∂ t ϕ k (v, t, x) - v √ 1 -v 2 H ′ 0,1 x + vt -e v,k √ 1 -v 2 + v √ 1 -v 2 H ′ -1,0 x -vt + e v,k √ 1 -v 2 L 2 x (R) = 0, with e v,k ∈ R satisfying lim v→0 e v,k - ln ( 8 v 2 ) √ 2 v| ln (v)| 3 = 0. Moreover, if 0 < v < δ(k), then for any s ≥ 0 and l ∈ N ∪ {0}, there is C(k, s, l) > 0 such that ∂ l ∂t l Λ(ϕ k )(v, t, x) H s x (R) ≤ C(k, s, l)v 2k+l |t|v + ln 1 v 2 n k e -2 √ 2|t|v .
The demonstration of Theorem 1.4.6 is very technical and requires tools from functional and complex analysis. The construction of each approximate solution follows from an argument of induction. We explain briefly the main ideas behind the proof of this theorem.

First, for any 0 < v ≪ 1, we consider the function d v : R → R denoted by

d v (t) = 1 √ 2 ln 8 v 2 cosh √ 2vt
and we consider also

φ 1,v (t, x) = H 0,1   x -dv(t) 2 1 -ḋv(t) 2 4   -H 0,1   -x -dv(t) 2 1 -ḋv(t) 2 4   .
Next, we prove the existence of a Schwartz function M(x) orthogonal to

H ′ 0,1 (x) in L 2 x (R) such that Λ(ϕ 1,v )(t, x) satisfies Λ(φ 1,v )(t, x) = e - √ 2dv(t)   M   x -dv(t) 2 1 -ḋv(t) 2 4   -M   -x -dv(t) 2 1 -ḋv(t) 2 4     + res(v, t, x), (1.29)
where, for any v ∈ (0, 1),

R(v, •) ∈ C ∞ (R 2 ) and if 0 < v ≪ 1, then ∂ l ∂t l res(v, t, x) H s x (R) ≲ s,l v 4+l |t|v + ln 1 v e -2 √
2|t|v , for all l ∈ N ∪ {0}.

Using information obtained in (1.29), we are going to consider a smooth function ϕ 2,0,v (t, x) denoted by

ϕ 2,0,v (t, x) = φ 1,v (t, x) + e - √ 2dv(t)   G   x -dv(t) 2 1 -ḋv(t) 2 4   -G   -x -dv(t) 2 1 -ḋv(t) 2 4     ,
where G is the unique Schwartz function orthogonal in L 2 x (R) to H ′ 0,1 satisfying the identity

- d 2 dx 2 G(x) + U ′′ (H 0,1 (x)) G(x) = -M(x).
Next, for any 0 < v ≪ 1, we are going to create a smooth even function r v : R → R such that the function

φ 2,v (t, x) := H 0,1   x -dv(t) 2 + r v (t) 1 -ḋv(t) 2 4   + H -1,0   x + dv(t) 2 -r v (t) 1 -ḋv(t) 2 4   +e - √ 2dv(t)   G   x -dv(t) 2 + r v (t) 1 -ḋv(t) 2 4   -G   -x -dv(t) 2 + r v (t) 1 -ḋv(t) 2 4     satisfies for all t ∈ R Λ(φ 2,v (t, x)), H ′ 0,1   x -dv(t) 2 + r v (t) 1 -ḋv(t) 2 4   L 2 x + Λ(φ 2,v (t, x)), H ′ -1,0   x + dv(t) 2 -r v (t) 1 -ḋv(t) 2 4   L 2 x ≪ v 6-1 2 ,
indeed we will construct r v as an solution of an explicit ordinary differential equation. Next, we will prove in the third chapter the existence of a parameter a k,v such that the function

ϕ 2 (v, t, x) := φ 2,v (a k,v + t, x) will satisfy Theorem 1.4.6 for k = 2.
The remaining argument of the proof of Theorem 1.4.6 is the construction of ϕ k+1 from the function ϕ k which by the principle of induction concludes the proof of Theorem 1.4.6. For all k ∈ N ≥2 , the argument on proof of the inductive step is similar to the method explained above to obtain ϕ 2 from the function ϕ 1,v .

More precisely, we will prove by induction on k ∈ N ≥2 the existence of a sequence of approximate solutions

(φ k,v ) k∈N ≥2 φ k,v (t, x) =H 0,1   x + ρ k,v (t) 1 -ḋv(t) 2 4   + H -1,0   x -ρ k,v (t) 1 -ḋv(t) 2 4   +e - √ 2dv(t)   G   x + ρ k,v (t) 1 -ḋv(t) 2 4   -G   -x + ρ k,v (t) 1 -ḋv(t) 2 4     + M k i=1 p i,k,v √ 2vt   h i,k   x + ρ k,v (t) 1 -ḋv(t) 2 4   -h i,k   -x + ρ k,v (t) 1 -ḋv(t) 2 4     ,
which satisfies for all l ∈ N ∪ {0} and all s ≥ 0 the inequality

∂ l ∂t l Λ (φ k,v (t, x)) H s x (R) ≤ v 2k-1 2 |t|v + ln 1 v n k e -2 √ 2|t|v , if v ≪ 1, (1.30) 
where n k ∈ N, the real function ρ k,v is smooth, even and, for any 1 ≤ i ≤ M k , the real functions h i,k ∈ S (R) and all the functions p i,k,v are smooth and even. First, assuming the existence of the approximate solution φ k,v for some k = k 0 ∈ N ≥2 , we are going to verify the following estimate

Λ (φ k,v (t, x)) ∼ j∈I k s j,v ( √ 2vt)   R j   x + ρ k,v (t) 1 -ḋv(t) 2 4   -R j   -x + ρ k,v (t) 1 -ḋv(t) 2 4     ,
where, for any j ∈ I k , R j ∈ S (R) and s j,v is a real even smooth function satisfying

d l dt l s j,v (t) ≲ v 2k-1 2 |t|v + ln 1 v n k e -2 √ 2|t|v .
Next, for any j ∈ I k , using Fredholm alternative in the linear self-adjoint operator

-d 2 dx 2 + U ′′ (H 0,1 (x)) : H 2 x (R) ⊂ L 2 x (R) → L 2
x (R), we will deduce the existence and uniqueness of a Schwartz function Y j satisfying

- d 2 dx 2 Y j (x) + U ′′ (H 0,1 (x)) Y j (x) = -R j (x) + R j , H ′ 0,1 L 2 x H ′ 0,1 (x) H ′ 0,1 (x) 2 L 2 x .
The approximate solution φ k 0 +1,v will be constructed using the formula of φ k 0 ,v , more precisely:

φ k 0 +1,v (t, x) = H 0,1   x + ρ k 0 ,v (t) + r k 0 +1,v (t) 1 -ḋv(t) 2 4   + H -1,0   x -ρ k 0 ,v (t) -r k 0 +1,v (t) 1 -ḋv(t) 2 4   +e - √ 2dv(t)   G   x + ρ k 0 ,v (t) + r k 0 +1,v (t) 1 -ḋv(t) 2 4   -G   -x + ρ k 0 ,v (t) + r k 0 ,v (t) 1 -ḋv(t) 2 4     + M k 0 i=1 p i,k 0 ,v √ 2vt   h i,k 0   x + ρ k 0 ,v (t) + r k 0 +1,v (t) 1 -ḋv(t) 2 4   -h i,k 0   -x + ρ k 0 ,v (t) + r k 0 +1,v (t) 1 -ḋv(t) 2 4     + j∈I k 0 s j,v √ 2vt   Y j   x + ρ k 0 ,v (t) + r k 0 +1,v (t) 1 -ḋv(t) 2 4   -Y j   -x + ρ k 0 ,v (t) + r k 0 +1,v (t) 1 -ḋv(t) 2 4     ,
where r k 0 +1,v is a smooth even function satisfying an explicit linear ordinary differential equation. Finally, for each k ∈ N ≥2 and 0 < v ≪ 1, we are going to prove the existence of

a value e k,v having size of order O ln ( 1 v ) v such that ϕ k (v, t, x) := φ k,v (t + e k,v , x) satisfies Theorem 1.4.6.
In Chapter 4, we are going to use the results of Chapter 3 to demonstrate Theorem 1.4.4. For the proof of this theorem, we will denote the function ϕ by

ϕ(t, x) = ϕ k (v, t, x)+ y 1 1 -ḋv(t) 2 4 H ′ 0,1   x -ρ k,v (t) 1 -ḋv(t) 2 4   + y 2 1 -ḋv(t) 2 4 H ′ -1,0   x + ρ k,v (t) 1 -ḋv(t) 2 4   +u(t, x),
where ρ k,v is an explicit function obtained in the construction of ϕ k of Theorem 1.4.6 and y 1 (t), y 2 (t) are the unique real numbers satisfying

u(t, x), H ′ 0,1   x -ρ k,v (t) 1 -ḋv(t) 2 4   L 2 x = 0, u(t, x), H ′ -1,0   x + ρ k,v (t) 1 -ḋv(t) 2 4   L 2 x = 0. (1.31)
Using the condition (1.27) satisfied by ϕ(t, x) when t goes to +∞, we are going to estimate the value of ∥(u(t),

∂ t u(t))∥ H 1 x (R)×L 2
x (R) using the same energy estimate methods used in the proof of the first main result Theorem 1.4.2 to estimate the energy norm of g during a long time interval. Furthermore, using the orthogonality conditions (1.31), we will deduce that the functions y 1 , y 2 satisfy an ordinary differential system of equations very close to a well-known linear differential system. Therefore, using the method of variation of parameters and the estimate of the energy norm of ∥(u(t),

∂ x u(t))∥ H 1 x (R)×L 2
x (R) that we obtained, we are going to evaluate the parameters y 1 (t), y 2 (t) and their derivatives during a large time interval.

Next, using the estimates obtained for

y 1 , y 2 , ∥(u(t), ∂ x u(t))∥ H 1 x (R)×L 2
x (R) and a bootstrap argument, we will deduce that ∥(ϕ(t, x) -

ϕ k (t, x), ∂ t ϕ(t, x) -∂ t ϕ k (t, x))∥ H 1 x (R)×L 2
x (R) is very small during a long time interval, which will imply estimate (1.28) of Theorem 1.4.4. The first estimate of Theorem 1.4.4 will be proved as a consequence of estimate (1.28) and a result about orbital stability of two moving kinks very similar to the Theorem 1 of the article [START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF] about orbital stability of a moving kink for a class of nonlinear wave equations of dimension 1 + 1.

The conclusion of Theorem 1.4.4 is very unexpected since the ϕ 6 model is non-integrable and we proved that the collision between two kinks of this model is almost elastic. Moreover, for any k ∈ N, if v > 0 is small enough, Theorems 1.4.3, 1.4.4 also allow us to describe the displacement of the two solitons during any time t with precision higher than v k , which is a strong result about the dynamics of multi-solitons for non-integrable systems. The result of almost inelasticity obtained in estimates (1.28) is also noteworthy and implies that the defects in the energy norm of the remainder and in the speed of the kinks after the collision can be very insignificant in comparison with the notable result of inelasticity of the collision of two solitons obtained in Theorem 1 of article [START_REF] Martel | Inelastic interaction of nearly equal solitons for the quartic gKdV equation[END_REF] about generalized Korteweg-de Vries equation.

Furthermore, the results of Theorem 1.4.4 open possibilities in the investigation of the collision and the dynamics of multi-kinks for other one-dimensional wave equation models with nonlinearities of a higher order than the ϕ 6 . This topic of research has applications and interests in different fields of Physics, for example, many investigations have been made in High energy physics, see [START_REF] Dorey | Kinkantikink collisions in the ϕ 6 model[END_REF], [START_REF] Vakhid | Kink interactions in the (1+1)-dimensional ϕ 6 model[END_REF].

Notation

In this section, we describe the notation that we are going to use in the following chapters. 

⊂ R → R, a real function g with domain D is in O (f (x)) if and only if there is a uniform constant C > 0 such that 0 ≤ |g(x)| ≤ Cf (x). We denote that two real non-negative functions f, g : D ⊂ R → R ≥0 satisfy f ≲ g, if there is a constant C > 0 such that f (x) ≤ Cg(x), for all x ∈ D.
If f ≲ g and g ≲ f, we denote that f ∼ = g. We use the notation (x) + := max(x, 0). If

g(t, x) ∈ C 1 (R, L 2 (R)) ∩ C(R, H 1 (R)), then we define --→ g(t) ∈ H 1 (R) × L 2 (R) by --→ g(t) = (g(t), ∂ t g(t)),
and we also denote the energy norm of the remainder --→ g(t) as

--→ g(t) = ∥g(t)∥ H 1 + ∥∂ t g(t)∥ L 2 x
to simplify our notation in the text, where the norms

∥•∥ H 1 x , ∥•∥ L 2 x , ∥•∥ H 1 x ×L 2
x are defined, respectively, by

∥f 1 ∥ 2 H 1 x = R df 1 (x) dx 2 + f 1 (x) 2 dx, ∥f 2 ∥ 2 L 2 x = R f 2 (x) 2 dx, ∥(f 1 , f 2 )∥ 2 H 1 x ×L 2 x = ∥f 1 ∥ 2 H 1 x + ∥f 2 ∥ 2 L 2 x , for any f 1 ∈ H 1 (R) and any f 2 ∈ L 2 (R). For any (f 1 , f 2 ) ∈ L 2 x (R) × L 2 x (R) and any (g 1 , g 2 ) ∈ L 2 x (R) × L 2 x (R), we denote ⟨(f 1 , f 2 ), (g 1 , g 2 )⟩ = R f 1 (x)g 1 (x) + f 2 (x)g 2 (x) dx.
For any functions

f 1 (x), g 1 (x) ∈ L 2 x (R), we denote ⟨f 1 , g 1 ⟩ = R f 1 (x)g 1 (x) dx.
We consider N as the set of positive integers. For any k ∈ N and any smooth function f : R → R, we use the following notation

f (k) (x) = d x dx k f (x), for all x ∈ R.
Finally, we consider the hyperbolic functions sech, cosh : R → R and we are going to use the following notations cosh (x) = e x + e -x 2 , sech (x) = (cosh (x)) -1 , for every x ∈ R.

Chapter 2

Dynamics of two interacting kinks for the ϕ 6 model 2.1 Introduction

Background

We recall the partial differential equation (ϕ 6 ), which, for the potential function

U (ϕ) = ϕ 2 (1 -ϕ 2 ) 2 , is denoted by ∂ 2 t ϕ(t, x) -∂ 2 x ϕ(t, x) + U ′ (ϕ(t, x)) = 0, (t, x) ∈ R × R. (2.1)
The potential energy E pot , the kinetic energy E kin and total energy E total associated to the equation (2.1) are given by

E pot (ϕ(t)) = 1 2 R ∂ x ϕ(t, x) 2 dx + R ϕ(t, x) 2 (1 -ϕ(t, x) 2 ) 2 dx, E kin (ϕ(t)) = 1 2 R ∂ t ϕ(t, x) 2 dx, E total (ϕ(t), ∂ t ϕ(t)) = 1 2 R ∂ x ϕ(t, x) 2 + ∂ t ϕ(t, x) 2 dx + R ϕ(t, x) 2 (1 -ϕ(t, x) 2 ) 2 dx.
The vacuum set V of the potential function U is the set 

U -1 {0} = {0,
(ϕ(0), ∂ t ϕ(0)) = E 0 < +∞, then there exists M (E 0 ) > 0 such that ∥ϕ(0, x)∥ L ∞ (R) < M (E 0 ), otherwise the facts that U ∈ C ∞ (R)
and lim ϕ→±∞ U (ϕ) = +∞ would imply that R U (ϕ(0, x)) dx > E 0 . Therefore, similarly to the proof of Theorem 6.1 from the book [START_REF] Shatah | Geometric Wave Equations[END_REF] of Shatah and Struwe, we can verify that the partial differential equation (2.1) is globally well-posed in the energy space since U is a Lipschitz function when restricted to the space of real functions ϕ satisfying ∥ϕ∥ L ∞ (R) < K 0 for some positive number K 0 .

We recall that the stationary solutions of (2.1) are the critical points of the potential energy. From Chapter 1, the only non-constant stationary solutions of (2.1) with finite total energy are the topological solitons called kinks and anti-kinks. Moreover, Remark 1.2.6

implies that each topological soliton

H connects different numbers v 1 , v 2 ∈ V, more precisely, lim x→-∞ H(x) = v 1 , lim x→+∞ H(x) = v 2 , V ∩ {H(x)| x ∈ R} = ∅.
We recall from (1.11) that all kinks of (2.1) are given by

H 0,1 (x -a) = e √ 2(x-a) 1 + e 2 √ 2(x-a) , H -1,0 (x -a) = -H 0,1 (-x + a),
for any real a. The anti-kinks of (2.1) are given by -H 0,1 (x -a), H 0,1 (-x + a) for any a ∈ R.

In the article [START_REF] Manton | Forces between kinks and antikinks with long-range tails[END_REF], for the ϕ 6 model, Manton did approximate computations to verify that the force between two static kinks is repulsive and the force between a kink and anti-kink is attractive. Furthermore, it was also obtained by approximate computations in [START_REF] Manton | Forces between kinks and antikinks with long-range tails[END_REF] that the force of interaction between two topological solitons of the ϕ 6 model has an exponential decay with the distance between the solitons.

The study of kink and multi-kink solutions of nonlinear wave equations has applications in many domains of mathematical physics. More precisely, the model (2.1) that we study has applications in condensed matter physics [START_REF] Bishop | Solitons and Condensed Matter Physics[END_REF] and cosmology [START_REF] Vilekin | Cosmic Strings and Other Topological Defects[END_REF], [START_REF] Hawking | Bubble collisions in the very early universe[END_REF], [START_REF] Giblin | How to run through walls: Dynamics of bubble and soliton collisions[END_REF].

It is well known that the set of solutions in energy space of (2.1) for any potential U is invariant under space translation, time translation, and space reflection. Moreover, if H is a stationary solution of (2.1) and -1 < v < 1, then the function

ϕ(t, x) = H x -vt (1 -v 2 ) 1 2
, which is denominated the Lorentz transformation of H, is also a solution of the partial differential equation (2.1).

The problem of stability of multi-kinks is of great interest in mathematical physics, see for example [START_REF] Vakhid | Kink interactions in the (1+1)-dimensional ϕ 6 model[END_REF], [START_REF] Dorey | Kinkantikink collisions in the ϕ 6 model[END_REF]. For the integrable model mKdV, Muñoz proved in [START_REF] Muñoz | The Gardner equation and the stability of multi-kink solutions of the mKdV equation[END_REF] the H 1 stability and asymptotic stability of multi-kinks. However, for many non-integrable models such as the ϕ 6 nonlinear wave equation, the asymptotic and long-time dynamics of multi-kinks after the instant where the collision or interaction happens are still unknown, even though there are numerical studies of kink-kink collision for the ϕ 6 model, see [START_REF] Vakhid | Kink interactions in the (1+1)-dimensional ϕ 6 model[END_REF], which motivate our research on the topic of the description of long time behavior of a kink-kink pair.

For one-dimensional nonlinear wave equation models, results of stability of a single kink were obtained, for example, asymptotic stability under odd perturbations of a single kink of ϕ 4 model was proved in [START_REF] Kowalczyk | Kink dynamics in the ϕ 4 model: asymptotic stability for odd perturbations in the energy space[END_REF] and the study of the decay rate of this odd perturbation during a long time was studied in [START_REF] Delort | On the stability of kink solutions of the ϕ 4 model in 1 + 1 space time dimensions[END_REF]. Also, in [START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF], Martel, Muñoz, Kowalczyk, and Van Den Bosch proved asymptotic stability of a single kink for a general class of nonlinear wave equations, including the model which we study here.

The main purpose of this chapter is to prove Theorem 1.4.2 and Theorem 1.4.3. Moreover, we will describe the long time behavior of solutions ϕ(t, x) of (2.1) in the energy space such

that lim x→+∞ ϕ(t, x) =1, lim x→-∞ ϕ(t, x) =-1,
with total energy equal to 2E pot (H 01 ) + ϵ, for 0 < ϵ ≪ 1. More precisely, in Theorem 1.4.2, we proved orbital stability for a sum of two moving kinks with total energy 2E pot (H 0,1 ) + ϵ and we verified that the remainder has a better estimate during a long time interval which goes to R as ϵ → 0, indeed we proved that the estimate of the remainder during this long time interval is optimal. In Theorem 1.4.3, we proved that the dynamics of the kinks' movement is very close to two explicit functions d j : R → R during a long time interval.

Theses results are very important to understand the behavior of two kinks after the instant of collision, which happens when the kinetic energy is minimal. Numerically, the study of interaction and collision between kinks for the ϕ 6 model was done in [START_REF] Vakhid | Kink interactions in the (1+1)-dimensional ϕ 6 model[END_REF], in which it was verified that the collision of kinks is close to an elastic collision when the speed of each kink is low and smaller than a critical speed v c .

For nonlinear wave equation models in dimension 2 + 1, there are similar results obtained in the dynamics of topological multi-solitons. For the Higgs Model, there are results in the description of the dynamics of multi-vortices in [START_REF] Stuart | Dynamics of Abelian Higgs vortices in the near Bogolmony regime regime[END_REF] obtained by Stuart and in [START_REF] Gustafson | Effective dynamics of magnetic vortices[END_REF] obtained by Gustafson and Sigal. Indeed, we took inspiration from the proof and statement of Theorem 2 of [START_REF] Gustafson | Effective dynamics of magnetic vortices[END_REF] to construct our main results. Also, in [START_REF] Stuart | The geodesic approximation for Yang-Mills-Higgs equations[END_REF], Stuart described the dynamics of monopole solutions for the Yang-Mills-Higgs equation. For more references, see also [START_REF] Stuart | Analysis of the adiabatic limit for solitons in classical field theory[END_REF], [START_REF] Dunajski | Reduced dynamics of Ward solitons[END_REF], [START_REF] Manton | Asymptotic interactions of critically coupled vortices[END_REF] and [START_REF] Gorshkov | Interactions of solitons in nonintegrable systems: Direct perturbation method and applications[END_REF].

In [START_REF] Bethuel | Dynamics of multiple degree Ginzburg-Landau vortices[END_REF], Bethuel, Orlandi, and Smets described the asymptotic behavior of solutions of a parabolic Ginzburg-Landau equation closed to multi-vortices in the initial instant. For more references, see also [START_REF] Leon | Dynamics of Ginzburg-Landau vortices[END_REF] and [START_REF] Sandier | Gamma-convergence of gradient flows and applications to Ginzburg-Landau vortex dynamics[END_REF].

There are also results in the dynamics of multi-vortices for nonlinear Schrödinger equation, for example, the description of the dynamics of multi-vortices for the Gross-Pitaevski equation was obtained in [START_REF] Yurii | The Ginzburg-Landau equation III. vortices dynamics[END_REF] by Ovchinnikov and Sigal and results in the dynamics of vortices for the Ginzburg-Landau-Schrödinger equations were proved in [START_REF] Colliander | Vortex dynamics for the Ginzburg-Landau-Schrödinger equation[END_REF] by Colliander and Jerrard, see also [START_REF] Leon | Refined jacobian estimates and Gross-Pitaevsky vortex dynamics[END_REF] for more information about Gross-Pitaevski equation.

Main results

We recall that the objective of this chapter is to show orbital stability for the solutions of the equation (2.1) which are close to a sum of two interacting kinks in an initial instant and estimate the size of the time interval where better stability properties hold. The main techniques of the proof are modulation techniques adapted from [START_REF] Jendrej | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF], [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF], and [START_REF] Raphaël | Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS[END_REF] and a refined energy estimate method to control the size of the remainder term.

Definition 2.1.1. We define S as the set g ∈ L ∞ (R) such that ∥g(x) -H 0,1 (x) -H -1,0 (x)∥ H 1 x < +∞.
From the observations made about the global well-posedness of partial differential equation (2.1) in the energy space and, since 1, -1 are in V, we have that (2.1) is also globally well-posed in the affine space S × L 2 x (R). Motivated by the proof and computations that we are going to present, we consider Definition 2.1.2. We define for

x 1 , x 2 ∈ R H x 2 0,1 (x) := H 0,1 (x -x 2 ) and H x 1 -1,0 (x) := H -1,0 (x -x 1 ),
and we say that x 2 is the kink center of H x 2 0,1 (x) and x 1 is the kink center of H x 1 -1,0 (x).

In Chapter 1, we verified for any a ∈ R that the kinks H 0,1 (x -a) are the unique functions minimizing the potential energy in the set of functions satisfying

lim x→+∞ ϕ(t, x) = 1, lim x→-∞ ϕ(t, x) = 0, (2.2) 
since they also satisfy the partial differential equation (1.3) which is the Euler-Lagrange equation associated to the potential energy. Moreover, using the Bogomolny equation (1.9)

satisfied by the kinks, we can verify that all functions ϕ(x) ∈ S have E pot (ϕ) > 2E pot (H 0,1 ), see also the Subsection 2.2 of [START_REF] Jendrej | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF].

Definition 2.1.3. We define the energy excess ϵ of a solution (ϕ(t),

∂ t ϕ(t)) ∈ S × L 2 x (R) as the following value ϵ = E total (ϕ(t), ∂ t ϕ(t)) -2E pot (H 0,1 ).
We recall the notation (x) + := max(x, 0). It's not difficult to verify the following inequal-

ities (D1) |H 0,1 (x)| ≤ e - √ 2(-x) + , (D2) |H -1,0 (x)| ≤ e - √ 2(x) + , (D3) H ′ 0,1 (x) ≤ √ 2e - √ 2(-x) + , (D4) H ′ -1,0 (x) ≤ √ 2e - √ 2(x) + .
Moreover, since

H ′′ 0,1 (x) = U ′ (H 0,1 (x)), (2.3) 
we can verify by induction the following estimate

d k H 0,1 (x) dx k ≲ k min e -2 √ 2x , e √ 2x (2.4) 
for all k ∈ N \ {0}. The following result is crucial in the framework of Chapter 2 :

Lemma 2.1.4 (Modulation Lemma). There exist C 0 , δ 0 > 0, such that if 0 < δ ≤ δ 0 , x 1 , x 2 are real numbers with x 2 -x 1 ≥ 1 δ and g ∈ H 1 (R) satisfies ∥g∥ H 1 x ≤ δ, then for ϕ(x) = H -1,0 (x -x 1 ) + H 0,1 (x -x 2 ) + g(x)
, there exist unique y 1 , y 2 such that for

g 1 (x) = ϕ(x) -H -1,0 (x -y 1 ) -H 0,1 (x -y 2 ),
the four following statements are true

1 ⟨g 1 , ∂ x H -1,0 (x -y 1 )⟩ = 0, 2 ⟨g 1 , ∂ x H 0,1 (x -y 2 )⟩ = 0, 3 ∥g 1 ∥ H 1 x ≤ C 0 δ, 4 |y 2 -x 2 | + |y 1 -x 1 | ≤ C 0 δ.
We will refer to the first and second statements as the orthogonality conditions of the Modulation Lemma.

Proof. The proof follows from the implicit function theorem for Banach spaces. Now, we recall our main results:

Theorem 2.1.5. There exist C, δ 0 > 0, such that if ϵ < δ 0 and

(ϕ(0), ∂ t ϕ(0)) ∈ S × L 2 x (R) with E total (ϕ(0), ∂ t ϕ(0)) = 2E pot (H 0,1 ) + ϵ, then there exist functions x 1 , x 2 ∈ C 2 (R) such
that, for all t ∈ R, the unique global time solution ϕ(t, x) of (2.1) is given by

ϕ(t) = H 0,1 (x -x 2 (t)) + H -1,0 (x -x 1 (t)) + g(t), (2.5)
with g(t) satisfying, for any t ∈ R, the orthogonality conditions of the Modulation Lemma and

e - √ 2(x 2 (t)-x 1 (t)) + max j∈{1,2} |ẍ j (t)| + max j∈{1,2} ẋj (t) 2 + ∥(g(t), ∂ t g(t))∥ 2 H 1 x ×L 2 x ≤ Cϵ. (2.6)
Furthermore, we have that

∥(g(t), ∂ t g(t))∥ 2 H 1 x ×L 2 x ≤ C min   ϵ, ∥(g(0), ∂ t g(0)))∥ 2 + ϵ 2 exp Cϵ 1 2 |t| ln 1 ϵ   for all t ∈ R.
(2.7) Remark 2.1.6. In notation of the statement of Theorem 2.1.5, for any δ > 0, there exists 

K(δ) ∈ (0, 1) such that if 0 < ϵ < K(δ), E total (ϕ(0), ∂ t ϕ(0)) = 2E pot (H 0,1 ) + ϵ, then we have that ∥(g(0), ∂ t g(0))∥ H 1 x ×L 2 x < δ and x 2 (0) -x 1 (0) > 1 δ ,
, κ > 0 such that if 0 < ϵ < δ, then ϵ κ+1 ≤ ∥(g(T ), ∂ t g(T ))∥ H 1 x ×L 2
x for some T ∈ R satisfying 0 ≤ T ≤ (κ + 1)

ln 1 ϵ ϵ 1 2
.

Proof. See the Appendix Section A.2.

Remark 2.1.8. Theorem 2.1.7 implies that estimate (2.7) is relevant in a time interval (-T, T ) for a T > 0 of order -ϵ -1 2 ln (ϵ). More precisely, for any function r : R + → R + with lim h→0 r(h) = 0, there is a positive value δ(r) such that if 0 < ϵ < δ(r) and

∥(g(0), ∂ t g(0))∥ H 1 x ×L 2 x ≤ r(ϵ)ϵ, then ϵ ≲ ∥(g(t), ∂ t g(t))∥ H 1 x ×L 2 x for some 0 < t = O ln 1 ϵ ϵ 1 2
. Remark 2.1.9. Theorem 2.1.7 also implies the existence of a δ 0 > 0 such that if 0 < ϵ < δ 0 , then, for any (ϕ(0, x), ∂ t ϕ(0, x)) ∈ S × L 2

x (R) with E total (ϕ(0), ∂ t ϕ(0)) equals to 2E pot (H 0,1 ) + ϵ, g(t, x) defined in identity (2.5) 

satisfies ϵ ≲ lim sup t→+∞ ∥(g(t), ∂ t g(t)))∥ H 1 x ×L 2 x , similarly we have that ϵ ≲ lim sup t→-∞ ∥(g(t), ∂ t g(t))∥ H 1 x ×L 2
x . Theorem 2.1.10. Let ϕ satisfy the assumptions in Theorem 2.1.5 and x 1 , x 2 , and g be as in the conclusion of this theorem. Let the functions d 1 , d 2 be defined for any t ∈ R by

d 1 (t) = a + bt - 1 2 √ 2 ln 8 v 2 cosh √ 2vt + c 2 , ( 2.8 
)

d 2 (t) = a + bt + 1 2 √ 2 ln 8 v 2 cosh √ 2vt + c 2 , (2.9)
where a, b, c ∈ R and v ∈ (0, 1) are the unique real values satisfying

d j (0) = x j (0), ḋj (0) = ẋj (0) for j ∈ {1, 2}. Let d(t) = d 2 (t) -d 1 (t), z(t) = x 2 (t) -x 1 (t).
Then, for all t ∈ R, we have

|z(t) -d(t)| ≤ C min(ϵ 1 2 |t|, ϵt 2 ), | ż(t) -ḋ(t)| ≤ Cϵ|t|.
Furthermore, for any t ∈ R,

ϵ max j∈{1, 2} |d j (t) -x j (t)| = O   max ∥(g(0), ∂ t g(0))∥ H 1 x ×L 2 x , ϵ 2 ln 1 ϵ 11 exp   Cϵ 1 2 |t| ln 1 ϵ     , (2.10) ϵ 1 2 max j∈{1, 2} ḋj (t) -ẋj (t) = O   max ∥(g(0), ∂ t g(0))∥ H 1 x ×L 2 x , ϵ 2 ln 1 ϵ 11 exp   Cϵ 1 2 |t| ln 1 ϵ     . (2.11) Remark 2.1.11. If ∥(g(0), ∂ t g(0))∥ H 1 x ×L 2 x = O (ϵ)
, then the estimates (2.10) and (2.11) imply that the functions x j (t), ẋj (t) are very close to d j (t), ḋj (t) during a time interval of order

-ln (ϵ)ϵ -1 2 .
Remark 2.1.12. The proof of Theorem 2.1.5 and Theorem 2.1.10 for t ≤ 0 is analogous to the proof for t ≥ 0, so we will only prove them for t ≥ 0.

Theorem 2.1.10 describes the repulsive behavior of the kinks. More precisely, if the kinetic energy of the kinks and the energy norm of the remainder g are small enough in the initial instant t = 0, then the kinks will move away with displacement z(t) ∼ = ϵ 1 2 t + ln 1 ϵ when t > 0 is big enough belonging to a large time interval.

Furthermore, using Theorem 2.1.10, we can also deduce the following corollary.

Corollary 2.1.13. With the same hypotheses as in Theorem 2.1.10, we have that

max j∈{1, 2} dj (t) -ẍj (t) =O   max ∥(g(0), ∂ t g(0))∥ H 1 x ×L 2 x , ϵ ϵ 1 2 exp Cϵ 1 2 |t| ln 1 ϵ   +O   max ∥(g(0), ∂ t g(0))∥ H 1 x ×L 2 x , ϵ 2 ln 1 ϵ 11 exp Cϵ 1 2 |t| ln 1 ϵ   .
Proof of Corollary 2.1.13. It follows directly from Theorem 2.1.10 and from Lemma A.1.1 presented in the Appendix Section A.1.

Resume of the proof

In this subsection, we present how Chapter 2 is organized and explain briefly the content of each section. Section 2. In this section, we prove the orbital stability of a perturbation of a sum of two kinks. Moreover, we prove that if the initial data (ϕ(0, x), ∂ t ϕ(0, x)) satisfies the hypotheses of Theorem 2.1.5, then there are real functions x 1 , x 2 of class C 2 such that for all t ≥ 0

ϕ(t, x) -H x 2 (t) 0,1 -H x 1 (t) -1,0 H 1 x ≲ ϵ 1 2 , ∂ t ϕ(t, x) -H x 2 (t) 0,1 -H x 1 (t) -1,0 L 2 x ≲ ϵ 1 2 .
First, for every z > 0, we are going to demonstrate the following estimate

E pot (H 0,1 (x -z) + H -1,0 (x)) = 2E pot (H 0,1 ) + 2 √ 2e - √ 2z + O (z + 1)e -2 √ 2z .
(2.12)

The proof of this inequality is similar to the demonstration of Lemma 2.7 of [START_REF] Jendrej | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF] and it follows using the Fundamental Theorem of Calculus.

The proof of the orbital stability will follow from studying the expression

E pot (H x 2 (t) 0,1 + H x 1 (t) -1,0 + g) -E pot (H x 2 (t) 0,1 + H x 1 (t)
-1,0 ), using the fact that the kinks are critical points of E pot and the spectral properties of the operator D 2 E pot (H 0,1 ) , which is also non-negative. Moreover, from the modulation lemma, we will introduce the functions x 2 , x 1 that will guarantee the following coercivity property

∥(g(t), ∂ t g(t))∥ 2 H 1 x ×L 2 x ≲ E pot (H x 2 (t) 0,1 + H x 1 (t) -1,0 + g) -E pot (H x 2 (t) 0,1 + H x 1 (t) -1,0 ).
Therefore, the estimate above and (2.12) will imply that

e - √ 2(x 2 (t)-x 1 (t)) + ∥(g(t), ∂ t g(t))∥ 2 H 1 x ×L 2 x ≲ ϵ. (2.13)
From the orthogonality conditions of the Modulation Lemma and standard ordinary differential equation techniques, we also obtain uniform bounds for

∥ ẋj (t)∥ L ∞ (R) , ∥ẍ j (t)∥ L ∞ (R)
for j ∈ {1, 2}. More precisely, the modulation parameters x 1 and x 2 are going to satisfying the following estimate max

j∈{1,2} ∥ ẋj (t)∥ 2 L ∞ (R) + ∥ẍ j (t)∥ L ∞ (R) ≲ ϵ. (2.14)
The main techniques of this section are an adaption of sections 2 and 3 of [START_REF] Jendrej | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF].

Section 3. In this section, we study the long-time behavior of ẋj (t), x j (t) for j ∈ {1, 2}. More precisely, we prove that the parameters x 1 and x 2 satisfy the following system of differential inequalities ). Our proof of estimates (2.15), (2.16) is based on the proof of Lemma 3.5 from [START_REF] Jendrej | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF]. First, for each j ∈ {1, 2}, the estimate (2.15) is obtained from the time derivative of the equations

ẋj (t) =p j (t) + O (ζ(t)) , (2.15) ṗj (t) =(-1) j+1 1 H ′ 0,1 2 L 2 x d dz z=x 2 (t)-x 1 (t) E pot H z 0,1 + H -1,0 + O (α(t)) , ( 2 
⟨ϕ(t, x) -H -1,0 (x -x 1 (t)) -H 0,1 (x -x 2 (t)) , ∂ x H 0,1 (x -x 2 (t))⟩ = 0, ⟨ϕ(t, x) -H -1,0 (x -x 1 (t)) -H 0,1 (x -x 2 (t)) , ∂ x H -1,0 (x -x 1 (t))⟩ = 0,
which are the orthogonality conditions of the Modulation Lemma. Indeed, we are going to obtain that

ẋ1 (t) = - ∂ t ϕ(t, x), ∂ x H x 1 (t) -1,0 (x) ∥∂ x H 0,1 ∥ 2 L 2 x + O (ζ(t)) , ẋ2 (t) = - ∂ t ϕ(t, x), ∂ x H x 2 (t) 0,1 (x) ∥∂ x H 0,1 ∥ 2 L 2 x + O (ζ(t)) .
Next, we are going to construct a smooth cut-off function 0 ≤ χ ≤ 1 satisfying

χ(x) =    1, if x ≤ θ(1 -γ), 0, if x ≥ θ,
where 0 < γ, θ < 1 are parameters that will be chosen later with the objective of minimizing the modulus of the time derivative of ≲ F (t) + Kϵ 2 and we show that | Ḟ (t)| is small enough for a long time interval. We start the function from the quadratic part of the total energy of ϕ(t), more precisely with

p 1 (t) =- ∂ t ϕ(t), ∂ x H x 1 (t) -1,0 (x) + ∂ x χ x-x 1 (t) x 2 (t)-x 1 (t) g(t) ∥∂ x H 0,1 ∥ 2 L 2 x , p 2 (t) =- ∂ t ϕ(t), ∂ x H x 2 (t) 0,1 (x) + ∂ x 1 -χ x-x 1 (t) x 2 (t)-x 1 (t) g(t) ∥∂ x H 0,1 ∥ 2 L 2 x ,
D(t) = ∥∂ t g(t, x)∥ 2 L 2 x + ∥∂ x g(t, x)∥ 2 L 2 x + R U (2) (H x 2 (t) 0,1 (x) + H x 1 (t) -1,0 (x))g(t, x) 2 dx.
However, we obtain that the terms of worst decay that appear in the computation of Ḋ(t) are of the form R ∂ t g(t, x) k J(x 1 , x 2 , ẋ1 , ẋ2 , x) dx, (2.18) where k ∈ {1, 2, 3} and the function J satisfies for some l ∈ Q ≥0 the following estimates

sup t∈R max j∈{1,2} ∂ ∂x j J(x 1 (t), x 2 (t), ẋ1 (t), ẋ2 (t), x) L 2 x ≲ ϵ l , sup t∈R max j∈{1,2} ∂ ∂ ẋj J(x 1 (t), x 2 (t), ẋ1 (t), ẋ2 (t), x) L 2 x ≲ ϵ l-1 2 ,
and

sup t∈R ∥J (x 1 (t), x 2 (t), ẋ1 (t), ẋ2 (t), x)∥ L 2 x ≲ ϵ l if k = 1, otherwise sup t∈R ∥J (x 1 (t), x 2 (t), ẋ1 (t), ẋ2 (t), x)∥ L ∞ x (R) ≲ ϵ l when k ∈ {2, 3}
. But, we can cancel these bad terms after we add to the function D(t) correction terms of the form

- R g(t, x) k J(x 1 (t), x 2 (t), ẋ1 (t), ẋ2 (t), x) dx, ( 2.19) 
and now, in the time derivative of the sum of D(t) with these correction terms, we obtain an expression with a size of order

ϵ l+ 1 2 ∥(g(t), ∂ t g(t))∥ k H 1 x ×L 2
x which is much smaller than

ϵ l ∥(g(t), ∂ t g(t))∥ k H 1 x ×L 2
x because of inequality (2.14) obtained in Section 2 of this chapter. Next, we consider a smooth cut-off function 0 ≤ ω ≤ 1 satisfying

ω(x) =    1, if x ≤ 1 2 , 0, if x ≥ 3 4 ,
and ω 1 (t, x) = ω x-x 1 (t)

x 2 (t)-x 1 (t) . Based on the argument in the proof of Lemma 4.2 of [START_REF] Jendrej | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF], we aggregate the last correction term 2

R ∂ t g(t, x)∂ x g(t, x) [ ẋ1 (t)ω 1 (t, x) + ẋ2 (t) (1 -ω 1 (t, x))] dx,
whose time derivative will cancel with the term

- R U (3) (H x 2 (t) 0,1 (x) + H x 1 (t) -1,0 (x))( ẋ2 (t)∂ x H x 2 (t) 0,1 + ẋ1 (t)∂ x H x 1 (t) -1,0 )g(t, x) 2 dx,
which comes from Ḋ(t), since we cannot remove this expression using the correction terms similar to (2.19). Finally, we evaluate the time derivative of the function F (t) obtained from the sum D(t) with all the correction terms described above.

Remaining Sections. In the remaining part of this chapter, we prove our main results, the estimate (2.7) of Theorem 2.1.5 is a consequence of the energy estimate obtained in Section 4 and the estimates with high precision of the modulation parameters x 1 (t), x 2 (t) which are obtained in Section 5. In Section 5, we prove the result of Theorem 2.1.10, where we study the evolution of the precision of the modulation parameters estimates by comparing it with a solution of a system of ordinary differential equations. Complementary information for Chapter 2 is given in Appendix Section A.1 and the proof of Theorem 2.1.7 is in the Appendix Section A.2.

Global Stability of two moving kinks

Before the presentation of the proofs of the main theorems, we define a function to study the potential energy of a sum of two kinks. Definition 2.2.1. The function A : R + → R is defined by

A(z) := E pot (H z 0,1 (x) + H -1,0 (x)).
(2.20)

The study of the function A is essential to obtain global control of the norm of the remainder g and the lower bound of x 2 (t) -x 1 (t) in Theorem 2.1.5.

Remark 2.2.2. It is easy to verify that

E pot (H 0,1 (x -x 2 ) + H -1,0 (x -x 1 )) = E pot (H 0,1 (x - (x 2 -x 1 )) + H -1,0 (x)).
We will use several times the following elementary estimate from the Lemma 2.5 of [START_REF] Jendrej | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF] given by: Lemma 2.2.3. For any real numbers x 2 , x 1 , such that x 2 -x 1 > 0 and α, β > 0 with α ̸ = β the following bound holds:

R e -α(x-x 1 ) + e -β(x 2 -x) + dx ≲ α,β e -min(α,β)(x 2 -x 1 ) ,
For any α > 0, the following bound holds R e -α(x-x 1 ) + e -α(x 2 -x) + dx ≲ α (1 + (x 2 -x 1 ))e -α(x 2 -x 1 ) .

The main result of this section is the following Lemma 2.2.4. The function A is of class C 2 and there is a constant C > 0, such that

1. A ′′ (z) -4 √ 2e - √ 2z ≤ C(z + 1)e -2 √ 2z , 2. A ′ (z) + 4e - √ 2z ≤ C(z + 1)e -2 √ 2z , 3. A(z) -2E pot (H 0,1 ) -2 √ 2e - √ 2z ≤ C(z + 1)e -2 √ 2z .
Proof. By the definition of A, it's clear that

A(z) = 1 2 R ∂ x H z 0,1 (x) + H -1,0 (x) 2 dx + R U (H z 0,1 (x) + H -1,0 (x)) dx = ∥∂ x H 0,1 ∥ 2 L 2 x + R ∂ x H z 0,1 (x)∂ x H -1,0 (x) dx + R U (H z 0,1 (x) + H -1,0 (x)) dx.
Since the functions U and H 0,1 are smooth and ∂ x H 0,1 (x) has exponential decay when |x| → +∞, it is possible to differentiate A(z) in z. More precisely, we obtain

A ′ (z) =- R ∂ 2 x H z 0,1 (x)∂ x H -1,0 (x) dx - R U ′ (H z 0,1 (x) + H -1,0 (x))∂ x H z 0,1 (x) dx = R ∂ x H z 0,1 (x) U ′ (H -1,0 )(x) -U ′ (H -1,0 (x) + H z 0,1 (x)) dx.
For similar reasons, it is always possible to differentiate A(z) twice, precisely, we obtain

A ′′ (z) = R ∂ x H z 0,1 (x) 2 U ′′ (H -1,0 (x) + H z 0,1 (x)) -∂ 2 x H z 0,1 (x) U ′ (H -1,0 (x)) -U ′ H -1,0 (x) + H z 0,1 (x)) dx. (2.21)
Then, using integrating by parts, we obtain

A ′′ (z) = R ∂ x H z 0,1 (x)∂ x H -1,0 (x) U ′′ (H -1,0 (x)) -U ′′ (H -1,0 (x) + H z 0,1 (x)) dx. (2.22)
Now, we consider the function

B(z) = R ∂ x H 0,1 (x)∂ x H -1,0 (x + z) U ′′ (0) -U ′′ (H 0,1 (x)) dx. (2.23)
Then, we have

A ′′ (z) -B(z) = R ∂ x H z 0,1 (x)∂ x H -1,0 (x) U ′′ (H -1,0 (x)) -U ′′ (H -1,0 (x) + H z 0,1 (x)) dx - R ∂ x H z 0,1 (x)∂ x H -1,0 (x) U ′′ (0) -U ′′ (H z 0,1 (x)) dx. (2.24)
Also, it is not difficult to verify the following identity

U ′′ (H -1,0 (x)) -U ′′ (H -1,0 (x) + H z 0,1 (x)) -U ′′ (0) -U ′′ (H z 0,1 (x)) = - H -1,0 (x) 0 H z 0,1 (x) 0 U (4) (ω 1 + ω 2 ) dω 1 dω 2 . (2.25)
So, the identities (2.25) and (2.24) imply the following inequality

A ′′ (z) -B(z) ≤ R ∂ x H z 0,1 (x)∂ x H -1,0 (x) H -1,0 (x) 0 H z 0,1 (x) 0 U (4) (ω 1 + ω 2 ) dω 1 dω 2 dx.
Since U is smooth and ∥H 0,1 ∥ L ∞ = 1, we have that there is a constant C > 0 such that

A ′′ (z) -B(z) ≤ C R ∂ x H z 0,1 (x)∂ x H -1,0 (x)H -1,0 (x)H z 0,1 (x) dx. (2.26)
Now, using the inequalities from (D1) to (D4) and Lemma 2.2.3 to inequality (2.26), we obtain that there exists a constant C 1 independent of z such that

A ′′ (z) -B(z) ≤ C 1 (z + 1)e -2 √ 2z . (2.27)
Also, it is not difficult to verify that the estimate

∂ x H -1,0 (x) - √ 2e - √ 2x ≤ C min(e -3 √ 2x , e - √ 2x ), (2.28) 
and the identity (2.23) imply the inequality

B(z) - √ 2e - √ 2z R e - √ 2x ∂ x H 0,1 (x)(U ′′ (0) -U ′′ (H 0,1 (x))) dx ≲ R H 0,1 (x)∂ x H 0,1 (x) min e -3 √ 2(x+z) , e - √ 2(x+z) dx ≲ R e -2 √ 2(-x) + min e -3 √ 2(x+z) , e - √ 2(x+z) dx ≲ 0 -∞ e -2 √ 2(z-x) + e - √ 2x dx + +∞ 0 e -2 √ 2(z-x) + e -3 √ 2(x) + dx.
Since we have the following identity and estimate from Lemma 2.2.

3 0 -∞ e -2 √ 2(z-x) e - √ 2x dx = e -2 √ 2z √ 2 , (2.29) +∞ 0 e -2 √ 2(z-x) + e -3 √ 2(x) + ≲ e -2 √ 2z , ( 2.30) 
we obtain then:

B(z) - √ 2e - √ 2z R e - √ 2x ∂ x H 0,1 (x) U ′′ (0) -U ′′ (H 0,1 (x)) dx ≲ e -2 √ 2z , ( 2.31) 
which clearly implies with (2.27) the inequality

A ′′ (z) - √ 2e - √ 2z R e - √ 2x ∂ x H 0,1 (x) U ′′ (0) -U ′′ (H 0,1 (x)) dx ≲ (z + 1)e -2 √ 2z .
(2.32) Also, we have the identity

R 8(H 0,1 (x)) 3 -6(H 0,1 (x)) 5 e - √ 2x dx = 2 √ 2, (2.33) 
for the proof see the end of Appendix A.1. Since we have the identity U (2) (0) -U (2) (ϕ) = 24ϕ 2 -30ϕ 4 , by integration by parts, we obtain

R e - √ 2x √ 2 ∂ x H 0,1 (x) U ′′ (0) -U ′′ (H 0,1 (x)) dx = R 8(H 0,1 (x)) 3 -6(H 0,1 (x)) 5 e - √ 2x dx.
In conclusion, inequality (2.32) is equivalent to

A ′′ (z) -4 √ 2e - √ 2z ≲ (z + 1)e -2 √ 2z .
The identities

U ′ (ϕ) + U ′ (θ) -U ′ (ϕ + θ) = 24ϕθ(ϕ + θ) -6 4 j=1 5 j ϕ j θ 5-j , A ′ (z) = - R ∂ x H z 0,1 (x) U ′ (H z 0,1 (x) + H -1,0 (x)) + U ′ (H -1,0 (x)) -U ′ (H z 0,1 (x)) dx
and Lemma 2.2.3 imply the following estimate for z > 0 A

′ (z) ≲ e - √ 2z , so lim |z|→+∞ A ′ (z) = 0. In conclusion, integrating inequality A ′′ (z) -4 √ 2e - √ 2z ≲ (z + 1)e -2 √
2z from z to +∞ we obtain the second result of the lemma

A ′ (z) + 4e - √ 2z ≲ (z + 1)e -2 √ 2z . (2.34)
Finally, from the fact that lim z→+∞ E pot (H -1,0 + H z 0,1 (x)) = 2E pot (H 0,1 ), we obtain the last estimate integrating inequality (2.34) from z to +∞, which is

2E pot (H 0,1 ) + 2 √ 2e - √ 2z -A(z) ≲ (z + 1)e -2 √ 2z .
It is not difficult to verify that the Fréchet derivative of E pot as a linear functional from

H 1 (R) to R is given by (DE pot (ϕ))(v) := R ∂ x ϕ(x)∂ x v(x) + U ′ (ϕ(x))v(x) dx. (2.35)
Also, for any v, w ∈ H 1 (R), it is not difficult to verify that

D 2 E pot (ϕ)v, w = R ∂ x v(x)∂ x w(x) dx + R U ′′ (ϕ(x))v(x)w(x) dx. (2.36)
Moreover, the operator D 2 E pot (H 0,1 ) :

H 2 x (R) ⊂ L 2 x (R) → L 2
x (R) satisfies the following property.

Lemma 2.2.5. The operator D 2 E pot (H 0,1 ) satisfies:

ker D 2 E pot (H 0,1 ) = {c∂ x H 0,1 (x)| c ∈ R}, D 2 E pot (H 0,1 ) g, g ≥ c   ∥g∥ 2 L 2 x -⟨g, ∂ x H 0,1 ⟩ 2 1 ∥∂ x H 0,1 ∥ 2 L 2 x   ,
for a constant c > 0 and any g ∈ H 1 (R).

Proof. See Proposition 2.2 from [START_REF] Jendrej | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF], see also [START_REF] Lohe | Soliton structures in p(ϕ) 2[END_REF].

Lemma 2.2.6. [Coercivity Lemma

] There exist C, c, δ > 0, such that if x 2 -x 1 ≥ 1 δ , then for any g ∈ H 1 (R) we have D 2 E pot (H x 2 0,1 + H x 1 -1,0 )g, g ≥ c ∥g∥ 2 H 1 x -C ⟨g, ∂ x H x 1 -1,0 ⟩ 2 + ⟨g, ∂ x H x 2 0,1 ⟩ 2 .
(2.37)

Proof of Coercivity Lemma. The proof of this Lemma is analogous to the proof of Lemma 2.4 in [START_REF] Jendrej | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF].

Lemma 2.2.7.

There is a constant C 2 , such that if

x 2 -x 1 > 0, then DE pot (H x 2 0,1 + H x 1 -1,0 ) L 2 x ≤ C 2 e - √ 2(x 2 -x 1 ) . (2.38)
Proof. By the definition of the potential energy, the equation (2.3), and the exponential decay of the two kinks functions, we have that

DE pot (H x 2 0,1 + H x 1 -1,0 ) = U ′ (H x 2 0,1 + H x 1 -1,0 ) -U ′ (H x 2 0,1 ) -U ′ (H x 1 -1,0 )
as a bounded linear operator from L 2 x (R) to C. So, we have that

DE pot (H x 2 0,1 + H x 1 -1,0 ) = -24H x 2 0,1 H x 1 -1,0 H x 2 0,1 + H x 1 -1,0 + 6 4 j=1 5 j (H x 1 -1,0 ) j (H x 2 0,1 ) 5-j ,
and, then, the conclusion follows directly from Lemma 2.2.3, (D1) and (D2).

Theorem 2.2.8 (Orbital Stability of a sum of two moving kinks). There exists δ 0 > 0 such that if the solution ϕ of (2.1) satisfies (ϕ(0), ∂ t ϕ(0)) ∈ S × L 2 x (R) and the energy excess ϵ = E total (ϕ) -2E pot (H 0,1 ) is smaller than δ 0 , then there exist x 1 , x 2 : R → R functions of class C 2 , such that for all t ∈ R denoting g

(t) = ϕ(t) -H 0,1 (x -x 2 (t)) -H -1,0 (x -x 1 (t))
and z(t) = x 2 (t) -x 1 (t), we have:

1. ∥g(t)∥ H 1 x = O(ϵ 1 2 ), 2. z(t) ≥ 1 √ 2 ln 1 ϵ + ln 2 , 3. ∥∂ t ϕ(t)∥ 2 L 2 x ≤ 2ϵ, 4. max j∈{1,2} | ẋj (t)| 2 + max j∈{1,2} |ẍ j (t)| = O(ϵ).
Proof. First, from the fact that E total (ϕ(x)) > 2E pot (H 0,1 ), we deduce, from the conservation of total energy, the estimate

∥∂ t ϕ(t)∥ 2 L 2 x ≤ 2ϵ. (2.39)
From Remark 2.1.6, we can assume if ϵ ≪ 1 that there exist w 1 , w 2 ∈ R such that

ϕ(0, x) = H 0,1 (x -w 2 ) + H -1,0 (x -w 1 ) + g 1 (x),
and

∥g 1 ∥ H 1 x < δ, w 2 -w 1 > 1 δ ,
for a small constant δ > 0. Since the equation (2.1) is locally well-posed in the space S × L 2 x (R), we conclude that there is a δ 1 > 0 depending only on δ and ϵ such that if

-δ 1 ≤ t ≤ δ 1 , then ∥ϕ(t, x) -H 0,1 (x -w 2 ) -H -1,0 (x -w 1 )∥ H 1 x ≤ 2δ. (2.40)
If δ, ϵ > 0 are small enough, then, from the inequality (2.40) and the Modulation Lemma, we obtain in the time interval [-δ 1 , δ 1 ] the existence of modulation parameters x 1 (t), x 2 (t) such that for

g(t) = ϕ(t) -H 0,1 (x -x 2 (t)) -H -1,0 (x -x 1 (t)),
we have

⟨g(t), ∂ x H 0,1 (x -x 2 (t))⟩ = ⟨g(t), ∂ x H -1,0 (x -x 1 (t))⟩ = 0, (2.41) 1 |x 2 (t) -x 1 (t)| + ∥g(t)∥ H 1 x ≲ δ. (2.42)
From now on, we denote z(t) = x 2 (t) -x 1 (t). From the conservation of the total energy, we have for -δ

1 ≤ t ≤ δ 1 that E total (ϕ(t)) = ∥∂ t ϕ(t)∥ 2 L 2 x 2 + E pot H x 2 (t) 0,1 + H x 1 (t) -1,0 + DE pot H x 2 (t) 0,1 + H x 1 (t)
-1,0 , g(t)

+ D 2 E pot H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t), g(t) 2 + O(∥g(t)∥ 3 H 1 x ).
From Lemma 2.2.4 and (2.42), the above identity implies that

ϵ = ∥∂ t ϕ(t)∥ 2 L 2 x 2 + 2 √ 2e - √ 2z(t) + DE pot H x 2 (t) 0,1 + H x 1 (t)
-1,0 , g(t) 

+ D 2 E pot H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t), g(t) 2 + O ∥g(t)∥ 3 H 1 x + z(t)e -2 √ 2z ( 
x 2 (t) 0,1 + H x 1 (t) -1,0 ), g(t)⟩ ≤ C 2 e - √ 2z(t) ∥g(t)∥ H 1 (R)
. So, the equation (2.43) and the Coercivity Lemma imply, while -δ 1 ≤ t ≤ δ 1 , the following inequality

ϵ + C 2 e - √ 2z(t) ∥g(t)∥ H 1 x ≥ ∥∂ t ϕ(t)∥ 2 L 2 x 2 + 2 √ 2e - √ 2z(t) + c ∥g(t)∥ 2 H 1 x 2 + O ∥g(t)∥ 3 H 1 x + z(t)e -2 √ 2z(t) . (2.44)
Finally, applying the Young inequality in the term C 2 e - √ 2z(t) ∥g(t)∥ H 1 (R) , we obtain that the inequality (2.44) can be rewritten in the form

ϵ ≥ ∥∂ t ϕ(t)∥ 2 L 2 x 2 + 2 √ 2e - √ 2z(t) + c ∥g(t)∥ 2 H 1 x 4 + O ∥g(t)∥ 3 H 1 x + (z(t) + 1)e -2 √ 2z(t) . (2.45)
Then, the estimates (2.45), (2.42) imply for δ > 0 small enough the following inequality

ϵ ≥ ∥∂ t ϕ(t)∥ 2 L 2 x 2 + 2e - √ 2z(t) + c ∥g(t)∥ 2 H 1 x 8 . (2.46)
So, the inequality (2.46) implies the estimates

e - √ 2z(t) < ϵ 2 , ∥g(t)∥ 2 H 1 x ≲ ϵ, (2.47) for t ∈ [-δ 1 , δ 1 ]. In conclusion, if 1 δ ≲ ln ( 1 ϵ ) 1 2
, we can conclude by a bootstrap argument that the inequalities (2.39), (2.47) are true for all t ∈ R. More precisely, we study the set

C =    b ∈ R >0 | ϵ ≥ ∥∂ t ϕ(t)∥ 2 L 2 x 2 + 2e - √ 2z(t) + c ∥g(t)∥ 2 H 1 x 8 , if |t| ≤ b.   
and prove that M = sup b∈C b = +∞. We already have checked that C is not empty, also C is closed by its definition. Now from the previous argument, we can verify that C is open.

So, by connectivity, we obtain that C = R >0 .

In conclusion, it remains to prove that the modulation parameters x 1 (t), x 2 (t) are of class C 2 and that the fourth item of the statement of Theorem 2.2.8 is true.

(Proof of the C 2 regularity of x 1 , x 2 , and of the fourth item.) For δ 0 > 0 small enough, we denote (y 1 (t), y 2 (t)) to be the solution of the following system of ordinary differential equations, with the function g

1 (t) = ϕ(t, x) -H y 2 (t) 0,1 (x) -H y 1 (t) -1,0 (x), ∥∂ x H 0,1 ∥ 2 L 2 x -g 1 (t), ∂ 2 x H y 1 (t) -1,0 ẏ1 (t) + ∂ x H y 2 (t) 0,1 , ∂ x H y 1 (t) -1,0 ẏ2 (t) = -∂ t ϕ(t), ∂ x H y 1 (t)
-1,0 (x) , (2.48)

∂ x H y 2 (t) 0,1 , ∂ x H y 1 (t) -1,0 ẏ1 (t) + ∥∂ x H 0,1 (t)∥ 2 L 2 x -g 1 (t), ∂ 2 x H y 2 0,1 ẏ2 (t) = -∂ t ϕ(t), ∂ x H y 2 (t) 0,1 (x) , (2.49)
with initial condition (y 2 (0), y 1 (0)) = (x 2 (0), x 1 (0)). This system of ordinary differential equations is motivated by the time derivative of the orthogonality conditions of the Modulation Lemma.

Since we have the estimate ln ( 1 ϵ ) ≲ x 2 (0) -x 1 (0) and g 1 (0) = g(0), Lemma 2.2.3 and the inequalities in (2.47) imply that the matrix

  ∥∂ x H 0,1 ∥ 2 L 2 x -g 1 (0), ∂ 2 x H y 1 (0) -1,0 ∂ x H y 2 (0) 0,1 , ∂ x H y 1 (0) -1,0 ∂ x H y 2 (0) 0,1 , ∂ x H y 1 (0) -1,0 ∥∂ x H 0,1 ∥ 2 L 2 x -g 1 (0), ∂ 2 x H y 2 0,1   (2.50)
is positive, so we have from Picard-Lindelöf Theorem that y 2 (t), y 1 (t) are of class C 1 for some interval [-δ, δ], with δ > 0 depending on |x 2 (0) -x 1 (0)| and ϵ. From the fact that (y 2 (0), y 1 (0)) = (x 2 (0), x 1 (0)), we obtain, from the equations (2. 

(t)) = (x 2 (t), x 1 (t)), for t ∈ [-C, C]} = +∞.
(2.51) Also, the argument above implies that if (y 1 (t), y 2 (t)) = (x 1 (t), x 2 (t)) in an instant t, then

y 1 , y 2 are of class C 1 in a neighborhood of t. In conclusion, x 1 , x 2 are functions in C 1 (R). Finally, since ∥g(t)∥ H 1 x = O(ϵ 1 2
) and e - √ 2z(t) = O(ϵ), the following matrix

M (t) :=   ∥∂ x H 0,1 ∥ 2 L 2 x -g(t), ∂ 2 x H x 1 (t) -1,0 ∂ x H x 2 (t) 0,1 , ∂ x H x 1 (t) -1,0 ∂ x H x 2 (t) 0,1 , ∂ x H x 1 (t) -1,0 ∥∂ x H 0,1 ∥ 2 L 2 x -g(t), ∂ 2 x H x 2 (t) 0,1   (2.52)
is uniformly positive for all t ∈ R. So, from the estimate

∥∂ t ϕ(t)∥ L 2 x = O(ϵ 1 2
), the identities x j (t) = y j (t) for j = 1, 2 and the equations (2.48) and (2.49), we obtain max

j∈{1,2} | ẋj (t)| = O(ϵ 1 2 ).
(2.53)

Since the matrix M (t) is invertible for any t ∈ R, we can obtain from the equations (2.48), (2.49) that the functions ẋ1 (t), ẋ2 (t) are given by

ẋ1 (t) ẋ2 (t) = M (t) -1   -∂ t ϕ(t), ∂ x H x 1 (t) -1,0 (x) -∂ t ϕ(t), ∂ x H x 2 (t) 0,1 (x)   .
(2.54)

Now, since we have that (ϕ(t),

∂ t ϕ(t)) ∈ C(R, S × L 2 x (R)) and x 1 (t), x 2 (t) are of class C 1 , we can deduce that (g(t), ∂ t g(t)) ∈ C(R, H 1 (R) × L 2
x (R)). So, by definition, we can verify that

M (t) ∈ C 1 (R, R 4 ).
Also, since ϕ(t, x) is the solution in distributional sense of (2.1), we have that for any y 1 , y 2 ∈ R the following identities hold

∂ x H y 2 0,1 , ∂ 2 t ϕ(t) = -∂ 2 x H y 2 0,1 , ∂ x ϕ(t) -∂ x H y 2 (t) 0,1 , U ′ (ϕ(t)) , ∂ x H y 1 -1,0 , ∂ 2 t ϕ(t) = -∂ 2 x H y 1 -1,0 , ∂ x ϕ(t) -∂ x H y 1 -1,0 , U ′ (ϕ(t)) .
Since (2.1) is locally well-posed in S × L 2 x (R), we obtain from the identities above that the following functions h(t, y)

:= ∂ x H y 0,1 , ∂ 2 t ϕ(t) and l(t, y) := ∂ x H y -1,0 , ∂ 2 t ϕ(t) are continuous in the domain R × R.
So, from the continuity of the functions h(t, y), l(t, y) and from the fact that x 1 , x 2 ∈ C 1 (R), we obtain that the functions

h 1 (t) := -∂ t ϕ(t), ∂ x H x 1 (t) -1,0 (x) , h 2 (t) := -∂ t ϕ(t), ∂ x H x 2 (t) 0,1 (x)
are of class C 1 . In conclusion, from the equation (2.54), by chain rule and product rule, we verify that x 1 , x 2 are in C 2 (R). Now, since x 1 , x 2 ∈ C 2 (R) and ẋ1 , ẋ2 satisfy (2.54), we deduce after differentiate in time the function

M (t) ẋ1 (t) ẋ2 (t)
the following equations

ẍ1 (t) ∥∂ x H 0,1 ∥ 2 L 2 x + ∂ x g(t), ∂ x H x 1 (t) -1,0 + ẍ2 (t) ∂ x H x 1 (t) -1,0 , ∂ x H x 2 (t) 0,1 = ẋ1 (t) 2 ∂ 2 x H x 1 (t) -1,0 , ∂ x g(t) + ẋ1 (t) ∂ 2 x H x 1 (t) -1,0 , ∂ t g(t) + ẋ2 (t) 2 ∂ x H x 1 (t) -1,0 , ∂ 2 x H x 2 (t) 0,1 + ẋ1 (t) ẋ2 (t) ∂ 2 x H x 1 (t) -1,0 , ∂ x H x 2 (t) 0,1 + ẋ1 (t) ∂ 2 x H x 1 (t) -1,0 , ∂ t ϕ(t) -∂ x H x 1 (t) -1,0 , ∂ 2 t ϕ(t) , (2.55) ẍ2 (t) ∥∂ x H 0,1 ∥ 2 L 2 x + ∂ x g(t), ∂ x H x 2 (t) 0,1 + ẍ1 (t) ∂ x H x 1 (t) -1,0 , ∂ x H x 2 (t) 0,1 = ẋ2 (t) 2 ∂ 2 x H x 2 (t) 0,1 , ∂ x g(t) + ẋ2 (t) ∂ 2 x H x 2 (t) 0,1 , ∂ t g(t) + ẋ1 (t) ẋ2 (t) ∂ x H x 1 (t) -1,0 , ∂ 2 x H x 2 (t) 0,1 + ẋ1 (t) 2 ∂ x H x 2 (t) 0,1 , ∂ 2 x H x 1 (t) -1,0 + ẋ2 (t) ∂ 2 x H x 2 (t) 0,1 , ∂ t ϕ(t) -∂ x H x 2 (t) 0,1 , ∂ 2 t ϕ(t) .
(2.56) Also, from the identity g(t) = ϕ(t) -H

x 1 (t) -1,0 -H x 2 (t) 0,1 , we obtain that ∂ t g(t) = ∂ t ϕ(t, x) + ẋ1 (t)∂ x H x 1 (t) -1,0 + ẋ2 (t)∂ x H x 2 (t)
0,1 , so, from the estimates (2.39) and (2.53), we obtain that

∥∂ t g(t)∥ L 2 x = O(ϵ 1 2
).

(2.57)

Now, since ϕ(t) is a distributional solution of (2.1), we also have, from the global equality

ϕ(t) = H x 1 (t) -1,0 + H x 2 (t)
0,1 + g(t), the following identity

∂ x H x 1 (t) -1,0 , ∂ 2 t ϕ(t) = ∂ x H x 1 (t) -1,0 , ∂ 2 x g(t) -U ′′ H x 1 (t) -1,0 g(t) -∂ x H x 1 (t) -1,0 , U ′′ H x 1 (t) -1,0 + H x 2 (t) 0,1 -U ′′ H x 1 (t) -1,0 g(t) + ∂ x H x 1 (t) -1,0 , U ′ H x 1 (t) -1,0 + U ′ H x 2 (t) 0,1 -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 -∂ x H x 1 (t) -1,0 , U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 + g(t) -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 + ∂ x H x 1 (t) -1,0 , U ′′ H x 1 (t) -1,0 + H x 2 (t) 0,1 g(t) . Since ∂ x H x 1 (t) -1,0 ∈ ker D 2 E pot H x 1 (t) -1,0
, we have by integration by parts that

∂ x H x 1 (t) -1,0 , ∂ 2 x g(t) -U ′′ H x 1 (t) -1,0 g(t) = 0.
Since we have

U ′ H x 1 (t) -1,0 + U ′ H x 2 (t) 0,1 -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 = 24H x 1 (t) -1,0 H x 2 (t) 0,1 H x 1 (t) -1,0 + H x 2 (t) 0,1 -6 4 j=1 5 j H x 1 (t) -1,0 j H x 2 (t) 0,1 5-j , ( 2.58) 
Lemma 2.2.3 implies that

∂ x H x 1 (t) -1,0 , U ′ H x 1 (t) -1,0 + U ′ H x 2 (t) 0,1 -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 = O e - √ 2(z(t)) .
Also, from Taylor's Expansion Theorem, we have the estimate

∂ x H x 1 (t) -1,0 , U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 + g(t) -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 -∂ x H x 1 (t) -1,0 , U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 g(t) =O(∥g(t)∥ 2 H 1 x ).
From Lemma 2.2.3, the fact that U is a smooth function and H 0,1 ∈ L ∞ (R), we can obtain

∂ x H x 1 (t) -1,0 , U ′′ H x 1 (t) -1,0 + H x 2 (t) 0,1 -U ′′ H x 1 (t) -1,0 g(t) =O R ∂ x H x 1 (t) -1,0 H x 2 (t) 0,1 |g(t)| dx =O e - √ 2z(t) ∥g(t)∥ H 1 x z(t) 1 2
.

In conclusion, we have

∂ x H x 1 (t) -1,0 , ∂ 2 t ϕ(t) = O ∥g(t)∥ 2 H 1 x + e - √ 2z(t) , ( 2.59) 
and by similar arguments, we have (2.61)

∂ x H x 2 (t) 0,1 , ∂ 2 t ϕ(t) = O ∥g(t)∥ 2 H 1 x + e - √ 2z ( 
The Theorem 2.2.8 can also be improved when the kinetic energy of the solution is included in the computation and additional conditions are added, more precisely:

Theorem 2.2.9. There exist C, c, δ 0 > 0, such that if

0 < ϵ ≤ δ 0 , (ϕ(0, x), ∂ t ϕ(0, x)) ∈ S × L 2 x (R) and E total ((ϕ(0, x), ∂ t ϕ(0, x))) = 2E pot (H 0,1 ) + ϵ, then there are x 2 , x 1 ∈ C 2 (R) such that g(t, x) = ϕ(t, x) -H x 2 (t) 0,1 (x) -H x 1 (t) -1,0 (x) satisfies g(t, x), ∂ x H x 2 (t) 0,1 (x) = 0, g(t, x), ∂ x H x 1 (t) -1,0 (x) = 0,
and, for all t ∈ R,

cϵ ≤ e - √ 2(x 2 (t)-x 1 (t)) + ∥(g(t), ∂ t g(t))∥ 2 H 1 x ×L 2 x + | ẋ1 (t)| 2 + | ẋ2 (t)| 2 ≤ Cϵ. (2.62)
Proof. From Modulation Lemma and Theorem 2.2.8, we can rewrite the solution ϕ(t) in the form

ϕ(t, x) = H x 1 (t) -1,0 (x) + H x 2 (t) 0,1 (x) + g(t, x)
with x 1 (t), x 2 (t), g(t) satisfying the conclusion of Theorem 2.2.8. First, we denote 

ϕ σ (t) = H x 1 (t) -1,0 (x) + H x 2 (t) 0,1 (x), -ẋ1 (t)∂ x H x 1 (t) -1,0 -ẋ2 (t)∂ x H x 2 (t) 0,1 ∈ S × L 2 x (R), ( 2 
such that for (ν 1 , ν 2 ) ∈ S × L 2 x (R) and (v 1 , v 2 ) ∈ H 1 (R) × L 2
x (R), we have the identities

E total (ν 1 , ν 2 ) = ∥∂ x ν 1 ∥ 2 L 2 x + ∥ν 2 ∥ 2 L 2 x 2 + R U (ν 1 (x)) dx, ⟨DE total (ν 1 , ν 2 ), (v 1 , v 2 )⟩ = R ∂ x ν 1 (x)∂ x v 1 (x) + U ′ (ν 1 )v 1 + ν 2 (x)v 2 (x) dx, (2.65) D 2 E total (ν 1 , ν 2 ) = -∂ 2 x + U ′′ (ν 1 ) 0 0 I (2.66) with D 2 E total (ν 1 , ν 2 ) defined as a linear operator from H 2 x (R) × L 2 x (R) to L 2 x (R) × L 2 x (R).
So, from identities (2.65) and (2.66), it is not difficult to verify that

R σ (t) = R U H x 1 (t) -1,0 (x) + H x 2 (t) 0,1 (x) + g(t, x) -U H x 1 (t) -1,0 (x) + H x 2 (t) 0,1 (x) dx - R U ′ H x 1 (t) -1,0 (x) + H x 2 (t) 0,1 (x) g(t, x) dx - R U ′′ H x 1 (t) -1,0 (x) + H x 2 (t) 0,1 (x) g(t, x) 2 2 dx,
and, so,

|R σ (t)| = O ∥g(t)∥ 3 H 1 x .
(2.67) Also, we have

⟨DE total (ϕ σ (t)), (g(t), ∂ t g(t))⟩ = DE pot H x 1 (t) -1,0 + H x 2 (t) 0,1 , g(t) -ẋ1 (t)∂ x H x 1 (t) -1,0 + ẋ2 (t)∂ x H x 2 (t) 0,1 , ∂ t g(t) .
(2.68)

The orthogonality conditions satisfied by g(t) also imply for all t ∈ R that x .

∂ t g(t), ∂ x H x 1 (t) -1,0 = ẋ1 (t) g(t), ∂ 2 x H x 1 (t) -1,0 , (2.69) ∂ t g(t), ∂ x H x 2 (t) 0,1 = ẋ2 (t) g(t), ∂ 2 x H x 2 (t) 0,1 . ( 2 
(2.72)

Finally, there is the identity

ẋ1 (t)∂ x H x 1 (t) -1,0 (x) + ẋ2 (t)∂ x H x 2 (t) 0,1 (x) 2 L 2 x =2 ẋ1 (t) ẋ2 (t) ∂ x H z(t) 0,1 , ∂ x H -1,0 + ẋ1 (t) 2 ∥∂ x H 0,1 ∥ 2 L 2 x + ẋ2 (t) 2 ∥∂ x H 0,1 ∥ 2 L 2
x .

(2.73)

From Lemma 2.2.3, we have that ⟨∂ x H z 0,1 , ∂ x H -1,0 ⟩ = O ze - √ 2z
for z big enough. 

A(z) = E pot (H z 0,1 + H -1,0
) for any z > 0. We assume all the hypotheses of Theorem 2.2.8 and let χ(x) be a smooth function satisfying

χ(x) =    1, if x ≤ θ(1 -γ), 0, if x ≥ θ, (2.74)
and 0 ≤ χ(x) ≤ 1 for all x ∈ R. In notation of Theorem 2.2.8, we denote

χ 0 (t, x) = χ x -x 1 (t) z(t) , --→ g(t) = (g(t), ∂ t g(t)) ∈ H 1 (R) × L 2 x (R) and --→ g(t) = ∥(g(t), ∂ t g(t))∥ H 1 x (R)×L 2 x (R) , α(t) = --→ g(t) max j∈{1, 2} | ẋj (t)| 1 + 1 z(t)γ + 1 z(t) 2 γ 2 max j∈{1, 2} | ẋj (t)| e - √ 2z(t)( 1-γ 2-γ ) + max j∈{1,2} ẋj (t) 2 z(t)e - √ 2z(t) + max j∈{1, 2} ẋj (t) 2 z(t)γ e -2 √ 2z(t)( 1-γ 2-γ ) + --→ g(t) 2 1 γ 2 z(t) 2 + 1 γz(t) + e - √ 2z(t)( 1-γ 2-γ )
.

(2.75)

Then, for θ = 1-γ 2-γ and the correction terms

p 1 (t) =- ∂ t ϕ(t), ∂ x H x 1 (t) -1,0 (x) + ∂ x (χ 0 (t, x)g(t)) ∥∂ x H 0,1 ∥ 2 L 2 x , p 2 (t) =- ∂ t ϕ(t), ∂ x H x 2 (t) 0,1 (x) + ∂ x ([1 -χ 0 (t, x)]g(t)) ∥∂ x H 0,1 ∥ 2 L 2 x ,
we have the following estimates, for j ∈ {1, 2}, 

| ẋj (t) -p j (t)| ≲   1 + χ ′ L ∞ z(t)   max j∈{1,2} | ẋj (t)| --→ g(t) + --→ g(t) 2 (2.76) + max j∈{1,2} | ẋj (t)| z(t)e - √ 2z(t) , ṗj (t) + (-1) j A ′ (z(t)) ∥∂ x H 0,1 ∥ 2 L 2 x ≲ α(t). ( 2 
α(t) ≲ --→ g(0) H 1 x ×L 2 x + ϵ ln 1 ϵ 2 ln ln ( 1 ϵ ) exp 2C |t| ϵ 1 2 ln 1 ϵ .
Proof. For γ ≪ 1 enough and from the definition of χ(x), it is not difficult to verify that

χ ′ L ∞ (R) ≲ 1 γ , χ ′′ L ∞ (R) ≲ 1 γ 2 .
(2.78)

We will only do the proof of the estimates (2.76) and (2.77) for j = 1, the proof for the case j = 2 is completely analogous. From the proof of Theorem 2.2.8, we know that ẋ1 (t), ẋ2 (t) solve the linear system

M (t) ẋ1 (t) ẋ2 (t) = -⟨∂ t ϕ(t), ∂ x H x 1 (t) -1,0 ⟩ -⟨∂ t ϕ(t), ∂ x H x 2 (t) 0,1 ⟩
, where M (t) is the matrix defined by (2.52). Then, from Cramer's rule, we obtain that 

ẋ1 (t) = -∂ t ϕ(t), ∂ x H x 1 (t) -1,0 ∂ x H x 2 (t) 0,1 , ∂ x g(t) + ∥∂ x H 0,1 ∥ 2 L 2 x det(M (t)) + ∂ t ϕ(t), ∂ x H x 2 (t) 0,1 ∂ x H x 2 (t) 0,1 , ∂ x H x 1 (t) -1,
∂ x H x 2 (t) 0,1 , ∂ x H x 1 (t) -1,0 = O z(t)e - √ 2z(t) , (2.80) we obtain that det(M (t)) -∥∂ x H 0,1 ∥ 4 L 2 x = O --→ g(t) + z(t) 2 e -2 √ 2z(t) = O(ϵ 1 2
).

(2.81) So, from the estimate (2.81) and the identity (2.79), we obtain that

ẋ1 (t) + ∂ t ϕ(t), ∂ x H x 1 (t) -1,0 ∥∂ x H 0,1 ∥ 2 L 2 x = O ∂ x H x 1 (t) -1,0 , ∂ x H x 2 (t) 0,1 ∂ t ϕ(t), ∂ x H x 2 (t) 0,1 + O ∂ t ϕ(t), ∂ x H x 1 (t) -1,0 (x) --→ g(t) + z(t) 2 e -2 √ 2z(t)
. (2.82)

Finally, from the definition of g(t, x) in Theorem 2.2.8 we know that

∂ t ϕ(t, x) = -ẋ1 (t)∂ x H x 1 (t) -1,0 (x) -ẋ2 (t)∂ x H x 2 (t) 0,1 (x) + ∂ t g(t, x),
from the Modulation Lemma, we also have verified that 

∂ t g(t), ∂ x H x 1 (t) -1,0 = O --→ g(t) | ẋ1 (t)| , ∂ t g(t), ∂ x H x 2 (t) 0,1 = O --→ g(t) | ẋ2 (t)
∥∂ x H 0,1 ∥ 2 L 2 x =O max j∈{1,2} | ẋj (t)| --→ g(t) + --→ g(t) 2 +O z(t)e - √ 2z(t) max j∈{1,2}
| ẋj (t)| .

(2.83)

By similar reasoning, we can also deduce that

ẋ2 (t) + ∂ t ϕ(t), ∂ x H x 2 (t) 0,1 ∥∂ x H 0,1 ∥ 2 L 2 x =O max j∈{1,2} | ẋj (t)| --→ g(t) + --→ g(t) 2 +O z(t)e - √ 2z(t) max j∈{1,2} | ẋj (t)| . (2.84)
Following the reasoning of Lemma 3.5 of [START_REF] Jendrej | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF], we will use the terms p 1 (t), p 2 (t) with the objective of obtaining the estimates (2.77), which have high precision and will be useful later to approximate x j (t), ẋj (t) by explicit smooth functions during a long time interval.

First, it is not difficult to verify that

⟨∂ t ϕ(t), ∂ x (χ 0 (t)g(t))⟩ = O 1 + χ ′ L ∞ z(t) --→ g(t) 2 + max j∈{1,2} | ẋj (t)| --→ g(t) ,
which clearly implies with estimate (2.83) the inequality (2.76) for j = 1. The proof of inequality (2.76) for j = 2 is completely analogous. Now, the demonstration of the inequality (2.77) is similar to the proof of the second inequality of Lemma 3.5 of [START_REF] Jendrej | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF]. First, we have

ṗ1 (t) =- ∂ t ϕ(t), ∂ t ∂ x H x 1 (t) -1,0 (x) ∥∂ x H 0,1 ∥ 2 L 2 x - ∂ t ϕ(t), ∂ x ∂ t χ 0 (t)g(t) ∥∂ x H 0,1 ∥ 2 L 2 x - ∂ x χ 0 (t)∂ t g(t) , ∂ t ϕ(t) ∥∂ x H 0,1 ∥ 2 L 2 x - ∂ x H x 1 (t) -1,0 , ∂ 2 t ϕ(t) ∥∂ x H 0,1 ∥ 2 L 2 x - ⟨∂ x χ 0 (t)g(t), ∂ 2 t ϕ(t)⟩ ∥∂ x H 0,1 ∥ 2 L 2 x - ⟨χ 0 (t)∂ x g(t), ∂ 2 t ϕ(t)⟩ ∥∂ x H 0,1 ∥ 2 L 2 x (2.85) = I + II + III + IV + V + V I,
(2.86) and we will estimate each term one by one. More precisely, from now on, we will work with a general cut-off function χ(x), that is a smooth function 0 ≤ χ ≤ 1 satisfying

χ(x) =    1, if x ≤ θ(1 -γ), 0, if x ≥ θ.
(2.87) with 0 < θ, γ < 1 and

χ 0 (t, x) = χ x -x 1 (t) z(t) .
(2.88)

The reason for this notation is to improve the precision of the estimate of ṗ1 (t) by the searching of the γ, θ which minimize α(t).

Step 1.(Estimate of I) We will only use the identity I = ẋ1 (t)

∂tϕ(t), ∂ 2 x H x 1 (t) -1,0 ∥∂xH 0,1 ∥ 2 L 2 x .
Step 2.(Estimate of II.) We have, by chain rule and definition of χ 0 , that

II =- ∂ t ϕ(t), ∂ x ∂ t χ 0 (t)g(t) ∥∂ x H 0,1 ∥ 2 L 2 x =- ∂ t ϕ(t), ∂ x χ ′ x-x 1 (t) z(t) d dt x-x 1 (t) z(t) g(t) ∥∂ x H 0,1 ∥ 2 L 2 x = ∂ t ϕ(t), ∂ x χ ′ x-x 1 (t) z(t) ẋ1 (t)z(t)+(x-x 1 (t)) ż(t) z(t) 2 g(t) ∥∂ x H 0,1 ∥ 2 L 2 x .
So, we obtain that

II = ∂ t ϕ(t), χ ′′ x-x 1 (t) z(t) ẋ1 (t) z(t) + (x-x 1 (t)) ż(t) z(t) 2 g(t) z(t) ∥∂ x H 0,1 ∥ 2 L 2 x + ∂ t ϕ(t), χ ′ x-x 1 (t) z(t) ż(t) z(t) 2 g(t) ∥∂ x H 0,1 ∥ 2 L 2 x + ∂ t ϕ(t), χ ′ x-x 1 (t) z(t) ẋ1 (t) z(t) + (x-x 1 (t)) ż(t) z(t) 2 ∂ x g(t) ∥∂ x H 0,1 ∥ 2 L 2 x . (2.89)
First, since the support of χ ′ is contained in [θ(1 -γ), θ], from the estimates (D3) and

(D4) we obtain that

∂ x H x 1 (t) -1,0 2 L 2 x supp ∂xχ 0 (t,x) = O e -2 √ 2θ(1-γ)z(t) , (2.90) ∂ x H x 2 (t) 0,1 2 
L 2 x supp ∂xχ 0 (t,x) = O e -2 √ 2(1-θ)z(t) , (2.91) Now, we recall the identity ∂ t ϕ(t, x) = -ẋ1 (t)∂ x H x 1 (t) -1,0 -ẋ2 (t)∂ x H x 2 (t) 0,1 + ∂ t g(t)
, by using the estimates (2.90), (2.91) in the identity (2.89), we deduce that Step 3.(Estimate of III.) We deduce from the identity

II =O   χ ′ L ∞ (R) max j∈{1, 2} | ẋj (t)| z(t) --→ g(t) 2 + χ ′′ L ∞ (R) --→ g(t) 2 max j∈{1, 2} | ẋj (t)| z(t) 2 +e - √ 2z(t) min((1-θ),θ(1-γ)) χ ′′ L ∞ (R) max j∈{1, 2} ẋj (t) 2 z(t) 2 --→ g(t) + --→ g(t) e - √ 2z(t) min((1-θ),θ(1-γ))    χ ′′ L ∞ (R) z(t) 2 + χ ′ L ∞ (R) z(t)    max j∈{1, 2} ẋj (t) 2   . (2.92) Since 1-γ 2-γ ≤ max((1 -θ), θ(1 -γ)) for 0 < γ, θ < 1,
III = - ⟨∂ x (χ 0 (t)∂ t g(t)), ∂ t ϕ(t)⟩ ∥∂ x H 0,1 ∥ 2 L 2 x that III =- χ ′ x-x 1 (t) z(t) ∂ t g(t), -ẋ1 (t)∂ x H x 1 (t) -1,0 -ẋ2 (t)∂ x H x 2 (t) 0,1 + ∂ t g(t) z(t) ∥∂ x H 0,1 ∥ 2 L 2 x - χ 0 (t, x)∂ 2 t,x g(t), -ẋ1 (t)∂ x H x 1 (t) -1,0 -ẋ2 (t)∂ x H x 2 (t) 0,1 + ∂ t g(t, x) ∥∂ x H 0,1 ∥ 2 L 2 x = III.1 + III.2.
(2.94)

The identity (2.93) and the estimates (2.78), (2.90) and (2.91) imply by Cauchy-Schwarz inequality that

III.1 = O   max j∈{1, 2} | ẋj (t)| e - √ 2z(t)( 1-γ 2-γ ) γz(t) --→ g(t) + 1 z(t)γ --→ g(t) 2   .
(2.95)

In conclusion, we have estimated that III.1 = O(α(t)).

Also, from condition (2.87) and the estimate (2.4), we can deduce that

(1 -χ 0 (t))∂ 2 x H x 1 (t) -1,0 L 2 x + χ 0 (t)∂ 2 x H x 2 (t) 0,1 L 2 x = O e - √ 2z(t)( 1-γ 2-γ ) .
(2.96)

Additionally, we have that

III.2 = - χ 0 (t, x) ∂ 2 t,x ϕ(t) + ẋ1 (t)∂ 2 x H x 1 (t) -1,0 + ẋ2 (t)∂ 2 x H x 2 (t) 0,1 , ∂ t ϕ(t) ∥∂ x H 0,1 ∥ 2 L 2 x .
(2.97)

By integration by parts, we have that

χ x -x 1 (t) z(t) ∂ 2 t,x ϕ(t, x), ∂ t ϕ(t, x) = O 1 γz(t) ∥∂ t ϕ(t)∥ 2 L 2
x (supp ∂xχ 0 (t)) .

In conclusion, from the estimates (2.78), (2.90), (2.91) and identity (2.93), we obtain that

χ x -x 1 (t) z(t) ∂ 2 t,x ϕ(t, x), ∂ t ϕ(t, x) = O   1 γz(t) --→ g(t) 2 + max j∈{1, 2} ẋj (t) 2 γz(t) e -2 √ 2z(t)( 1-γ 2-γ )   . (2.98)
Also, from Lemma (2.2.3), the estimate (2.4) and the fact of 0 ≤ χ 0 ≤ 1, we deduce that t) .

χ 0 (t, x)∂ 2 x H x 2 (t) 0,1 , ∂ x H x 1 (t) -1,0 = O z(t)e - √ 2z(t) , (2.99) (1 -χ 0 (t, x))∂ 2 x H x 1 (t) -1,0 , ∂ x H x 2 (t) 0,1 = O z(t)e - √ 2z ( 
(2.100)

From the estimates (2.90), (2.91) and identity (2.93), we can verify by integration by parts the following estimates

(1 -χ 0 (t)) ẋ1 (t)∂ 2 x H x 1 (t) -1,0 , ẋ1 (t)∂ x H x 1 (t) -1,0 = O ẋ1 (t) 2 γz(t) e -2 √ 2z(t)( 1-γ 2-γ ) , (2.101) χ 0 (t) ẋ2 (t)∂ 2 x H x 2 (t) 0,1 , ẋ2 (t)∂ x H x 2 (t) 0,1 = O ẋ2 (t) 2 γz(t) e -2 √ 2z(t)( 1-γ 2-γ ) . (2.102)
Finally, from Cauchy-Schwarz inequality and the estimate (2.96) we obtain that

(1 -χ 0 (t)) ẋ1 (t)∂ 2 x H x 1 (t) -1,0 , ∂ t g(t) = O | ẋ1 (t)| --→ g(t) e - √ 2z(t)( 1-γ 2-γ ) , (2.103) χ 0 (t) ẋ1 (t)∂ 2 x H x 2 (t) 0,1 , ∂ t g(t) = O | ẋ2 (t)| --→ g(t) e - √ 2z(t)( 1-γ 2-γ ) .
(2.104)

In conclusion, we obtain from the estimates (2.99), (2.100), (2.101), (2.102) (2.103) and (2.104) that

III.2 = -ẋ1 (t) ∂ 2 x H x 1 (t) -1,0 , ∂ t ϕ(t) ∥∂ x H 0,1 ∥ 2 L 2 x + O(α(t)).
(2.105)

This estimate of III.2 and the estimate (2.95) of III.1 imply

III = -ẋ1 (t) ∂ 2 x H x 1 (t) -1,0 , ∂ t ϕ(t) ∥∂ x H 0,1 ∥ 2 L 2 x + O(α(t)).
(2.106)

In conclusion, from the estimates II = O(α(t)), (2.106) and the definition of I, we have

that I + II + III = O(α(t)).
Step 4.(Estimate of V.) We recall that V = -

⟨∂xχ 0 (t)g(t), ∂ 2 t ϕ(t)⟩ ∥∂xH 0,1 ∥ 2 L 2 x
, and that

∂ 2 t ϕ(t) = ∂ 2 x g(t) + U ′ H x 1 (t) -1,0 + U ′ H x 2 (t) 0,1 -U ′′ H x 1 (t) -1,0 + H x 2 (t) 0,1 + U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 + g(t) . (2.107)
First, by integration by parts, using estimate (2.78), we have the following estimate

- 1 ∥∂ x H 0,1 ∥ 2 L 2 x ⟨∂ x χ 0 (t)∂ 2 x g(t), g(t)⟩ = O 1 γz(t) + 1 γ 2 z(t) 2 --→ g(t) 2 = O(α(t)). (2.108) Second, since U is smooth and ∥g(t)∥ L ∞ = O ϵ 1 2
for all t ∈ R, we deduce that

U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 + g(t) , ∂ x χ 0 (t)g(t) ≲ --→ g(t) 2 z(t)γ = O(α(t)). (2.109)
Next, from equation (2.58) and Lemma 2.2.3, we have that

U ′ H x 1 (t) -1,0 + U ′ H x 2 (t) 0,1 -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 L 2 x = O(e - √ 2z(t) ), (2.110) 
then, by Hölder inequality we have that

U ′ H x 1 (t) -1,0 + U ′ H x 2 (t) 0,1 -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 , ∂ x χ 0 (t)∂ x g(t) ≲ --→ g(t) γz(t) e - √ 2z(t) = O(α(t)). (2.111)
Clearly, the estimates (2.108), (2.109) and (2.111) imply that V = O(α(t)).

Step 5.(Estimate of V I.) We know that

V I = - ∂ x g(t)χ 0 (t), ∂ 2 t ϕ(t) ∥∂ x H 0,1 ∥ 2 L 2 x .
We recall the equation (2.107) which implies that

∥∂ x H 0,1 ∥ 2 L 2 x V I = ∂ x g(t)χ 0 (t), U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 + g(t) -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 + ∂ x g(t)χ 0 (t), U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 -U ′ H x 1 (t) -1,0 -U ′ H x 2 (t) 0,1 -∂ x g(t)χ 0 (t), ∂ 2 x g(t) .
By integration by parts, we have from estimate (2.78) that

⟨∂ x g(t, x)χ 0 (t, x), ∂ 2 x g(t, x)⟩ = O 1 γz(t) --→ g(t) 2 .
(2.112)

From the estimate (2.110) and Cauchy-Schwarz inequality, we can obtain the following estimate

∂ x g(t)χ 0 (t), U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 -U ′ H x 1 (t) -1,0 -U ′ H x 2 (t) 0,1 = O e - √ 2z(t) --→ g(t) . (2.113)
Then, to conclude the estimate of V I we just need to study the following term

C(t) := ∂ x g(t)χ 0 (t), U ′ (H x 1 (t) -1,0 + H x 2 (t) 0,1 + g(t)) -U ′ (H x 1 (t) -1,0 + H x 2 (t) 0,1
) . Since we have from Taylor's theorem that

U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 + g(t) -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 = 6 k=2 U (k) H x 1 (t) -1,0 + H x 2 (t) 0,1 g(t) k-1 (k -1)! ,
from estimate (2.78), we can deduce using integration by parts that

C(t) + χ 0 (t)∂ x H x 1 (t) -1,0 + H x 2 (t) 0,1 , 6 k=3 U (k) H x 1 (t) -1,0 + H x 2 (t) 0,1 g(t) k-1 (k -1)! = O(α(t)).
Since

χ 0 (t)∂ x H x 2 (t) 0,1 L ∞ + (1 -χ 0 (t))∂ x H x 1 (t) -1,0 L ∞ = O e - √ 2z(t)( 1-γ 2-γ ) ,
we obtain that

C(t) = -∂ x H x 1 (t) -1,0 , 6 k=3 U (k) H x 1 (t) -1,0 + H x 2 (t) 0,1 g(t) k-1 (k -1)! + O 1 γz(t) --→ g(t) 2 + e - √ 2z(t)( 1-γ 2-γ ) --→ g(t) 2 .
Also, from Lemma 2.2.3 and the fact that

∥g(t)∥ L ∞ ≲ --→ g(t)
, we deduce that

∂ x H x 1 -1,0 , U ′′ H x 1 (t) -1,0 -U ′′ H x 1 (t) -1,0 + H x 2 (t) 0,1 g(t) = O e - √ 2z(t) --→ g(t) . (2.114)
In conclusion, we obtain that

C(t) = - R ∂ x H x 1 (t) -1,0 U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 + g(t) -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 dx + R ∂ x H x 1 (t) -1,0 U ′′ H x 1 (t) -1,0 g(t, x) dx + O(α(t)). (2.115) So V I = -R ∂ x H x 1 (t) -1,0 U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 + g(t) -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 dx ∥∂ x H 0,1 ∥ 2 L 2 x + R ∂ x H x 1 (t) -1,0 U ′′ H x 1 (t) -1,0 g(t, x) dx ∥∂ x H 0,1 ∥ 2 L 2 x + O(α(t)). (2.116)
Step 6.(Sum of IV, V I.) From the identities (2.107) and

IV = - ∂ x H x 1 (t) -1,0 , ∂ 2 t ϕ(t) ∥∂ x H 0,1 ∥ 2 L 2 x , we obtain that IV =- U ′ H x 1 (t) -1,0 + U ′ H x 2 (t) 0,1 -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 , ∂ x H x 1 (t) -1,0 ∥∂ x H 0,1 ∥ 2 L 2 x - ∂ 2 x g(t) -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 + g(t) -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 , ∂ x H x 1 (t) -1,0 ∥∂ x H 0,1 ∥ 2 L 2 x . (2.117)
In conclusion, from the identity

∂ 2 x -U ′′ H x 1 (t) -1,0 ∂ x H x 1 (t)
-1,0 = 0 and by integration by parts, we have that

IV + V I = - U ′ H x 1 (t) -1,0 + U ′ H x 2 (t) 0,1 -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 , ∂ x H x 1 (t) -1,0 ∥∂ x H 0,1 ∥ 2 L 2 x + O(α(t)).
From our previous results, we conclude that

I + II + III + IV + V + V I = - U ′ H x 1 (t) -1,0 + U ′ H x 2 (t) 0,1 -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 , ∂ x H x 1 (t) -1,0 ∥∂ x H 0,1 ∥ 2 L 2 x + O(α(t)). (2.118)
The conclusion of the lemma follows from estimate (2.118) with identity

Ȧ(z(t)) = -U ′ (H -1,0 ) + U ′ H z(t) 0,1 -U ′ H -1,0 + H z(t) 0,1 , ∂ x H -1,0 ,
which can be obtained from (2.21) by integration by parts with the fact that

U ′ H -1,0 + H z(t) 0,1 , ∂ x H -1,0 + ∂ x H z(t) 0,1 = 0.
Remark 2.3.3. Since, we know from Lemma 2.2.3 that

Ȧ(z(t)) + 4e - √ 2z(t) ≲ z(t)e -2 √ 2z(t) ,
and, by elementary calculus with change of variables, that

∥∂ x H 0,1 ∥ 2 L 2 x = 1 2 √
2 , then the estimates (2.76) and (2.77) obtained in Lemma 2.3.1 motivate us to study the following ordinary differential equation

d(t) = 16 √ 2e - √ 2d(t) . (2.119)
Clearly, the solution of (2.119) satisfies the equation

d dt ḋ(t) 2 4 + 8e - √ 2d(t) = 0. (2.

120)

As a consequence, it can be verified that if d(t 0 ) > 0 for some t 0 ∈ R, then there are real constants v > 0, c such that

d(t) = 1 √ 2 ln 8 v 2 cosh √ 2vt + c 2 for all t ∈ R. (2.121)
In conclusion, the solution of the equations

d1 (t) =-8 √ 2e - √ 2d(t) , d2 (t) =8 √ 2e - √ 2d(t) , d 2 (t) -d 1 (t) =d(t) > 0,
are given by 

d 2 (t) = a + bt + 1 2 √ 2 ln 8 v 2 cosh √ 2vt + c 2 , (2.122) d 1 (t) = a + bt - 1 2 √ 2 ln 8 v 2 cosh √ 2vt + c 2 , ( 2 

Energy Estimate Method

Before applying Lemma 2.3.1, we need to construct a function F (t) to get better estimate on the value of ∥(g(t), ∂ t g(t))∥ H 1

x ×L 2

x than that obtained in Theorem 2.2.8. From now on, we consider

ϕ(t) = H 0,1 (x-x 2 (t))+H -1,0 (x-x 1 (t))+g(t, x), with x 1 (t), x 2 (t)
satisfying the orthogonality conditions of the Modulation Lemma and x 1 , x 2 , (g(t), ∂ t g(t)) and ϵ > 0 satisfying all the properties of Theorem 2.2.8. Before we enunciate the main theorem of this section, we consider the following notation

D 2 E total H x 2 (t) 0,1 + H x 1 (t) -1,0 --→ g(t), --→ g(t) = R ∂ x g(t, x) 2 + ∂ t g(t, x) 2 + U ′′ H x 2 (t) 0,1 (x) + H x 1 (t) -1,0 (x) g(t, x) 2 dx.
We also denote ω

1 (t, x) = ω x-x 1 (t) x 2 (t)-x 1 (t)
for ω a smooth cut-off function with the image contained in the interval [0, 1] and satisfying the following condition

ω(x) =    1, if x ≤ 3 4 , 0, if x ≥ 4 5 .
We consider now the following function

F (t) = D 2 E total H x 2 (t) 0,1 + H x 1 (t) -1,0 --→ g(t), --→ g(t) L 2 ×L 2 +2 R ∂ t g(t)∂ x g(t) ẋ1 (t)ω 1 (t, x) + ẋ2 (t)(1 -ω 1 (t, x)) dx -2 R g(t) U ′ (H x 1 (t) -1,0 ) + U ′ (H x 2 (t) 0,1 ) -U ′ (H x 2 (t) 0,1 + H x 1 (t) -1,0 ) dx +2 R g(t) ẋ1 (t) 2 ∂ 2 x H x 1 (t) -1,0 + ẋ2 (t) 2 ∂ 2 x H x 2 (t) 0,1 dx + 1 3 R U (3) (H x 2 (t) 0,1 + H x 1 (t) -1,0 )g(t) 3 dx. (2.124) Since x 1 , x 2 are functions of class C 2 , it is not difficult to verify that (g(t), ∂ t g(t)) solves
the integral equation associated to the following partial differential equation

∂ 2 t g(t, x) -∂ 2 x g(t, x) + U (2) (H x 2 (t) 0,1 (x) + H x 1 (t) -1,0 (x))g(t, x) =-U ′ (H x 2 (t) 0,1 (x) + H x 1 (t) -1,0 (x) + g(t, x)) -U ′ (H x 2 (t) 0,1 (x) + H x 1 (t) -1,0 (x)) -U ′′ (H x 2 (t) 0,1 (x) + H x 1 (t) -1,0 (x))g(t, x) +U ′ (H x 1 (t) -1,0 (x)) + U ′ (H x 2 (t) 0,1 (x)) -U ′ (H x 2 (t) 0,1 (x) + H x 1 (t) -1,0 (x)) -ẋ1 (t) 2 ∂ 2 x H x 1 (t) -1,0 (x) -ẋ2 (t) 2 ∂ 2 x H x 2 (t) 0,1 (x) +ẍ 1 (t)∂ x H x 1 (t) -1,0 (x) + ẍ2 (t)∂ x H x 2 (t) 0,1 (x) (II) in the space H 1 (R) × L 2
x (R).

Theorem 2.4.1. Assuming the hypotheses of Theorem 2.2.8 and recalling its notation, let

--→ g(t) = ∥(g(t), ∂ t g(t))∥ H 1 x ×L 2
x and let δ(t) be the following quantity

δ(t) = --→ g(t) e - √ 2z(t) max j∈{1,2} | ẋj (t)| + max j∈{1,2} | ẋj (t)| 3 e - √ 2z(t) 5 + --→ g(t) 2 max j∈{1, 2} | ẋj (t)| z(t) + max j∈{1, 2} ẋj (t) 2 + max j∈{1, 2} |ẍ j (t)| + --→ g(t) 4 + --→ g(t) max j∈{1,2} | ẋj (t)ẍ j (t)| .
Then, there exist positive constants A 1 , A 2 , A 3 such that the function F (t) satisfies the inequalities

F (t) + A 1 ϵ 2 ≥ A 2 --→ g(t) 2 , Ḟ (t) ≤ A 3 δ(t).
Remark 2.4.2. Theorem 2.2.8 and Theorem 2.4.1 imply

Ḟ (t) ≲ ϵ 1 2 ln ( 1 ϵ ) --→ g(t) 2 + --→ g(t) ϵ 3 2 .
Proof. Since the formula defining function F (t) is very large, we decompose the function in a sum of five terms F 1 , F 2 , F 3 , F 4 and F 5 . More specifically:

F 1 (t) = R ∂ t g(t) 2 + ∂ x g(t) 2 + U ′′ H x 1 (t) -1,0 + H x 2 (t) 0,1 g(t, x) 2 dx, F 2 (t) =-2 R g(t) U ′ H x 1 (t) -1,0 + U ′ H x 2 (t) 0,1 -U ′ H x 2 (t) 0,1 + H x 1 (t) -1,0 dx, F 3 (t) =2 R g(t) ẋ1 (t) 2 ∂ 2 x H x 1 (t) -1,0 + ẋ2 (t) 2 ∂ 2 x H x 2 (t) 0,1 dx, F 4 (t) =2 R ∂ t g(t)∂ x g(t)( ẋ1 (t)ω 1 (t) + ẋ2 (t)(1 -ω 1 (t))) dx, F 5 (t) = 1 3 R U (3) H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t) 3 dx.
First, we prove that Ḟ (t) ≲ δ(t). The main idea of the proof of this item is to estimate each derivative dF j (t) dt , for 1 ≤ j ≤ 5, with an error of size O(δ(t)), then we will check that the sum of these estimates are going to be a value of order O(δ(t)), which means that the main terms of the estimates of these derivatives cancel.

Step 1.(The derivative of F 1 (t).) By definition of F 1 (t), we have that

dF 1 (t) dt =2 R ∂ 2 t g(t, x) -∂ 2 x g(t, x) + U ′′ (H x 2 (t) 0,1 (x) + H x 1 (t) -1,0 (x))g(t, x) ∂ t g(t, x) dx - R ẋ1 (t)∂ x H x 1 (t) -1,0 (x)U (3) H x 2 (t) 0,1 (x) + H x 1 (t) -1,0 (x) g(t, x) 2 dx - R ẋ2 (t)∂ x H x 2 (t) 0,1 (x)U (3) H x 2 (t) 0,1 (x) + H x 1 (t) -1,0 (x) g(t, x) 2 dx.
Moreover, from the identity (II) satisfied by g(t, x), we can rewrite the value of dF 1 (t) dt as

dF 1 (t) dt =2 R U ′ H x 1 (t) -1,0 + U ′ H x 2 (t) 0,1 -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 ∂ t g(t) dx -2 R U ′ H x 2 (t) 0,1 + H x 1 (t) -1,0 + g(t) -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 ∂ t g(t) dx +2 R U ′′ H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t)∂ t g(t) dx -2 R ẋ1 (t) 2 ∂ 2 x H x 1 (t) -1,0 + ẋ2 (t) 2 ∂ 2 x H x 2 (t) 0,1 ∂ t g(t) dx +2 R ẍ1 (t)∂ x H x 1 (t) -1,0 + ẍ2 (t)∂ x H x 2 (t) 0,1 ∂ t g(t) dx - R ẋ1 (t)∂ x H x 1 (t) -1,0 + ẋ2 (t)∂ x H x 2 (t) 0,1 U (3) H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t) 2 dx,
and, from the orthogonality conditions of the Modulation Lemma, we obtain

dF 1 (t) dt =2 R U ′′ H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t)∂ t g(t) dx -2 R U ′ H x 2 (t) 0,1 + H x 1 (t) -1,0 + g(t) -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 ∂ t g(t) dx +2 R U ′ H x 1 (t) -1,0 + U ′ H x 2 (t) 0,1 -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 ∂ t g(t) dx -2 R ẋ1 (t) 2 ∂ 2 x H x 1 (t) -1,0 + ẋ2 (t) 2 ∂ 2 x H x 2 (t) 0,1 ∂ t g(t) dx +2 R ẍ1 (t) ẋ1 (t)∂ 2 x H x 1 (t) -1,0 + ẍ2 (t) ẋ2 (t)∂ 2 x H x 2 (t) 0,1 g(t) dx - R ẋ1 (t)∂ x H x 1 (t) -1,0 + ẋ2 (t)∂ x H x 2 (t) 0,1 U (3) H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t) 2 dx, which implies dF 1 (t) dt =2 R U ′′ H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t)∂ t g(t, x) dx -2 R U ′ H x 2 (t) 0,1 + H x 1 (t) -1,0 + g(t) -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 ∂ t g(t) dx +2 R U ′ H x 1 (t) -1,0 + U ′ H x 2 (t) 0,1 -U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 ∂ t g(t) dx -2 R ẋ1 (t) 2 ∂ 2 x H x 1 (t) -1,0 + ẋ2 (t) 2 ∂ 2 x H x 2 (t) 0,1 ∂ t g(t) dx - R ẋ1 (t)∂ x H x 1 (t) -1,0 + ẋ2 (t)∂ x H x 2 (t) 0,1 U (3) H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t) 2 dx +O (δ(t)) .
(2.125)

Step 2.(The derivative of F 2 (t).) It is not difficult to verify that

dF 2 (t) dt =2 R g(t)U ′′ H x 1 (t) -1,0 ∂ x H x 1 (t) -1,0 ẋ1 (t) dx +2 R g(t)U ′′ H x 2 (t) 0,1 ∂ x H x 2 (t) 0,1 ẋ2 (t) dx -2 R ∂ t g(t) U ′ H x 1 (t) -1,0 + U ′ H x 2 (t) 0,1 -U ′ H x 2 (t) 0,1 + H x 1 (t) -1,0 dx -2 R U ′′ H x 2 (t) 0,1 + H x 1 (t) -1,0 ∂ x H x 1 (t) -1,0 ẋ1 (t) + ∂ x H x 2 (t) 0,1 ẋ2 (t) g(t) dx.
From the definition of the function U , we can deduce that

U ′′ H x 2 (t) 0,1 (x) + H x 1 (t) -1,0 (x) -U ′′ H x 1 (t) -1,0 (x) = O H x 1 (t) -1,0 (x)H x 2 (t) 0,1 (x) + H x 2 (t) 0,1 (x) 2 , U ′′ H x 2 (t) 0,1 (x) + H x 1 (t) -1,0 (x) -U ′′ H x 2 (t) 0,1 (x) = O H x 1 (t) -1,0 (x)H x 2 (t) 0,1 (x) + H x 1 (t) -1,0 (x) 2 ,
therefore, we obtain from Lemma 2.2.3 and Cauchy-Schwarz inequality that t) .

R U ′′ H x 2 (t) 0,1 -U ′′ H x 2 (t) 0,1 + H x 1 (t) -1,0 ∂ x H x 2 (t) 0,1 g(t) dx ≲ --→ g(t) e - √ 2z(t) , R U ′′ H x 1 (t) -1,0 -U ′′ H x 2 (t) 0,1 + H x 1 (t) -1,0 ∂ x H x 1 (t) -1,0 g(t) dx ≲ --→ g(t) e - √ 2z ( 
In conclusion, we obtain from the identity satisfied by dF 2 (t)

dt that dF 2 (t) dt = -2 R ∂ t g(t) U ′ H x 1 (t) -1,0 + U ′ H x 2 (t) 0,1 dx +2 R ∂ t g(t, x)U ′ H x 2 (t) 0,1 + H x 1 (t) -1,0 dx + O(δ(t)). (2.126)
Step 3.(The derivative of F 3 (t).) From the definition of F 3 (t), we obtain that

dF 3 (t) dt =2 R ∂ t g(t) ẋ1 (t) 2 ∂ 2 x H x 1 (t) -1,0 + ẋ2 (t) 2 ∂ 2 x H x 2 (t) 0,1 dx -2 R g(t) ẋ1 (t) 3 ∂ 3 x H x 1 (t) -1,0 + ẋ2 (t) 3 ∂ 3 x H x 2 (t) 0,1 dx +4 R g(t) ẋ1 (t)ẍ 1 (t)∂ 2 x H x 1 (t) -1,0 + ẋ2 (t)ẍ 2 (t)∂ 2 x H x 2 (t) 0,1 dx,
which can be rewritten as

dF 3 (t) dt =2 R ∂ t g(t) ẋ1 (t) 2 ∂ 2 x H x 1 (t) -1,0 + ẋ2 (t) 2 ∂ 2 x H x 2 (t) 0,1 dx -2 R g(t) ẋ1 (t) 3 ∂ 3 x H x 1 (t) -1,0 + ẋ2 (t) 3 ∂ 3 x H x 2 (t) 0,1 dx + O(δ(t)).
(2.127)

Step 4.(Sum of dF 1 dt , dF 2 dt , dF 3 dt .) If we sum the estimates (2.125), (2.126) and (2.127), we obtain that

3 i=1 dF i (t) dt =2 R U ′′ H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t)∂ t g(t) dx -2 R U ′ H x 2 (t) 0,1 + H x 1 (t) -1,0 + g(t) -U ′ H x 2 (t) 0,1 + H x 1 (t) -1,0 ∂ t g(t) dx - R ẋ1 (t)∂ x H x 1 (t) -1,0 + ẋ2 (t)∂ x H x 2 (t) 0,1 U (3) H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t) 2 dx -2 R g(t) ẋ1 (t) 3 ∂ 3 x H x 1 (t) -1,0 + ẋ2 (t) 3 ∂ 3 x H x 2 (t) 0,1 dx + O(δ(t)).
More precisely, from Taylor's Expansion Theorem and since

--→ g(t) 4 ≤ δ(t), 3 i=1 dF i (t) dt =- R U (3) H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t) 2 ∂ t g(t) dx - R ẋ1 (t)∂ x H x 1 (t) -1,0 + ẋ2 (t)∂ x H x 2 (t) 0,1 U (3) H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t) 2 dx -2 R g(t) ẋ1 (t) 3 ∂ 3 x H x 1 (t) -1,0 + ẋ2 (t) 3 ∂ 3 x H x 2 (t) 0,1 dx + O(δ(t)).
(2.128)

Step 5.(The derivative of F 4 (t).) The computation of the derivative of F 4 (t) will be more careful since the motivation for the addition of this term is to cancel with the expression 

- R ẋ1 (t)∂ x H x 1 (t) -1,0 + ẋ2 (t)∂ x H x 2 (t) 0,1 U (3) H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t)
d dt 2 R ∂ t g(t)∂ x g(t) ẋ1 (t)ω 1 (t) dx =2ẍ 1 (t) R ω 1 (t, x)∂ t g(t)∂ x g(t) dx +2 ẋ1 (t) R ω 1 (t, x)∂ 2 t g(t)∂ x g(t) dx +2 ẋ1 (t) R ∂ t ω 1 (t)∂ t g(t)∂ x g(t) dx +2 ẋ1 (t) R ω 1 (t, x)∂ 2 t,x g(t, x)∂ t g(t) dx.
From the definition of ω

1 (t, x) = ω x-x 1 (t)
x 2 (t)-x 1 (t) , we have

∂ t ω 1 (t, x) = ω ′ x -x 1 (t) x 2 (t) -x 1 (t) -ẋ1 (t)z(t) -ż(t)(x -x 1 (t)) z(t) 2 . (2.130) Since in the support of ω ′ (x) is contained in the set 3 4 ≤ x ≤ 4 5
, we obtain the following estimate:

2 ẋ1 (t) R ∂ t ω 1 (t)∂ t g(t)∂ x g(t) dx = O max j∈{1,2} | ẋj (t)| z(t) --→ g(t) 2 = O(δ(t)). (2.131)
Clearly, from integration by parts, we deduce that

2 ẋ1 (t) R ω 1 (t)∂ 2 t,x g(t)∂ t g(t) dx = O max j∈{1,2} | ẋj (t)| z(t) --→ g(t) 2 = O(δ(t)).
(2.132) Also, we have

2ẍ 1 (t) R ω 1 (t)∂ t g(t)∂ x g(t) dx = O max j∈{1,2} |ẍ j (t)| --→ g(t) 2 = O(δ(t)).
(2.133) So, to estimate the time derivative of (2.129) with precision O(δ(t)), it is enough to estimate

2 ẋ1 (t) R ω 1 (t, x)∂ 2 t g(t, x)∂ x g(t, x) dx.
We have that

2 ẋ1 (t) R ω 1 (t)∂ 2 t g(t)∂ x g(t) dx =2 ẋ1 (t) R ω 1 (t)∂ 2 x g(t)∂ x g(t) dx -2 ẋ1 (t) R ω 1 (t)U ′′ H x 1 (t) -1,0 + H x 2 (t) 0,1 g(t)∂ x g(t) dx +2 ẋ1 (t) R ω 1 (t) ∂ 2 t g(t) -∂ 2 x g(t) ∂ x g(t) dx +2 ẋ1 (t) R ω 1 (t)U ′′ H x 1 (t) -1,0 + H x 2 (t) 0,1 g(t)∂ x g(t) dx. (2.134)
From integration by parts, the first term of the right-hand side of equation (2.134) satisfies

2 ẋ1 (t) R ω 1 (t)∂ 2 x g(t)∂ x g(t) dx = O max j∈{1,2} | ẋj (t)| z(t) --→ g(t) 2 = O(δ(t)).
(2.135) From Taylor's Expansion Theorem, we have that

U ′ H x 2 (t) 0,1 + H x 1 (t) -1,0 + g(t) - 3 j=1 U (j) H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t) j-1 (j -1)! L 2 x = O --→ g(t) 3 . (2.136)
Also, we have verified the identity

U ′ (ϕ) + U ′ (θ) -U ′ (ϕ + θ) = 24ϕθ(ϕ + θ) -6 4 j=1 5 j ϕ j θ 5-j ,
which clearly implies with the inequalities (D1), (D2) and Lemma 2.2.3 the estimate

U ′ H x 2 (t) 0,1 + U ′ H x 1 (t) -1,0 -U ′ H x 2 (t) 0,1 + H x 1 (t) -1,0 L 2 x = O e - √ 2z(t) . (2.137)
Finally, it is not difficult to verify that

-ẋ1 (t) 2 ∂ 2 x H x 1 (t) -1,0 -ẋ2 (t) 2 ∂ 2 x H x 2 (t) 0,1 + ẍ1 (t)∂ x H x 1 (t) -1,0 + ẍ2 (t)∂ x H x 2 (t) 0,1 L 2 x = O max j∈{1,2} | ẋj (t)| 2 + |ẍ j (t)| . (2.138)
Then, from estimates (2.136), (2.137) and (2.138) and the partial differential equation (II) satisfied by g(t, x), we can obtain the estimate

2 ẋ1 (t) R ω 1 (t) ∂ 2 t g(t) -∂ 2 x g(t) + U ′′ H x 1 (t) -1,0 + H x 2 (t) 0,1 g(t) ∂ x g(t) dx =-ẋ1 (t) R ω 1 (t)U (3) H x 1 (t) -1,0 + H x 2 (t) 0,1 g(t) 2 ∂ x g(t) dx -2 ẋ1 (t) 3 R ∂ 2 x H x 1 (t) -1,0 ∂ x g(t) dx -2 ẋ1 (t) ẋ2 (t) 2 R ω 1 (t)∂ 2 x H x 2 (t) 0,1 ∂ x g(t) dx -2 ẋ1 (t) 3 R (ω 1 (t) -1)∂ 2 x H x 1 (t) -1,0 ∂ x g(t) dx + O --→ g(t) 4 max j∈{1,2} | ẋj (t)| +O max j∈{1,2} |ẍ j (t) ẋj (t)| --→ g(t) + e - √ 2z(t) max j∈{1,2} | ẋj (t)| --→ g(t) ,
which, by integration by parts and by Cauchy-Schwarz inequality using the estimate (2.96)

for ω 1 , we obtain that

2 ẋ1 (t) R ω 1 (t) ∂ 2 t g(t) -∂ 2 x g(t) + U ′′ H x 1 (t) -1,0 + H x 2 (t) 0,1 g(t) ∂ x g(t) dx = ẋ1 (t) 3 R ω 1 (t)U (4) H x 1 (t) -1,0 + H x 2 (t) 0,1 ∂ x H x 1 (t) -1,0 + ∂ x H x 2 (t) 0,1 g(t) 3 dx -2 ẋ1 (t) 3 R ∂ 2 x H x 1 (t) -1,0 ∂ x g(t) dx + O max j∈{1,2} | ẋj (t)| z(t) --→ g(t) 3 + O max j∈{1,2} | ẋj (t)| 3 e - √ 2z(t) 5 --→ g(t) + O(δ(t)). (2.139) Now, to finish the estimate of 2 ẋ1 (t) R ω 1 (t, x)∂ 2 t g(t, x)∂ x g(t,
x) dx, it remains to study the integral given by

-2 ẋ1 (t) R ω 1 (t)U ′′ H x 1 (t) -1,0 (x) + H x 2 (t) 0,1 (x) g(t)∂ x g(t) dx, (2.140)
which by integration by parts is equal to

ẋ1 (t) R ω 1 (t)U (3) H x 1 (t) -1,0 + H x 2 (t) 0,1 ∂ x H x 1 (t) -1,0 g(t) 2 dx + ẋ1 (t) R ω 1 (t)U (3) H x 1 (t) -1,0 + H x 2 (t) 0,1 ∂ x H x 2 (t) 0,1 g(t) 2 dx + O(δ(t)). (2.141) Since the support of ω 1 (t, x) is included in {x| (x -x 2 (t)) ≤ -z(t) 5 } and the support of 1 -ω 1 (t, x) is included in {x| (x -x 1 (t)) ≥ 3z(t)
4 }, from the exponential decay properties of the kink solutions in (D1), (D2), (D3), (D4) we obtain the estimates

ẋ1 (t) R (ω 1 (t) -1)U (3) H x 1 (t) -1,0 + H x 2 (t) 0,1 ∂ x H x 1 (t) -1,0 g(t) 2 dx = O(δ(t)), (2.142) ẋ2 (t) R ω 1 (t)U (3) H x 1 (t) -1,0 + H x 2 (t) 0,1 ∂ x H x 2 (t) 0,1 g(t) 2 dx = O(δ(t)), (2.143) 1 3 ẋ1 (t) R (1 -ω 1 (t))U (4) (H x 1 (t) -1,0 + H x 2 (t) 0,1 )∂ x H x 1 (t) -1,0 g(t) 3 dt = O(δ(t)), (2.144) 1 3 ẋ2 (t) R (ω 1 (t))U (4) H x 1 (t) -1,0 + H x 2 (t) 0,1 ∂ x H x 2 (t) 0,1 g(t) 3 dt = O(δ(t)). (2.145)
In conclusion, we obtain that the estimates (2.142), (2.143) imply the following estimate 

-2 ẋ1 (t) R ω 1 (t, x)U ′′ H x 1 (t) -1,0 + H x 2 (t) 0,1 g(t)∂ x g(t) dx = R ẋ1 (t)∂ x H x 1 (t) -1,0 U (3) H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t) 2 dx + O(δ(t)). (2.
2 d dt R ∂ t g(t)∂ x g(t) ẋ1 (t)ω 1 (t) dx =-2 ẋ1 (t) 3 R ∂ 2 x H x 1 (t) -1,0 ∂ x g(t) dx + 1 3 R U (4) H x 1 (t) -1,0 + H x 2 (t) 0,1 ẋ1 (t)∂ x H x 1 (t) -1,0 g(t) 3 dx + R ẋ1 (t)∂ x H x 1 (t) -1,0 U (3) (H x 2 (t) 0,1 + H x 1 (t) -1,0 )g(t) 2 dx + O(δ(t)).
By an analogous argument, we deduce that

2 d dt R ∂ t g(t)∂ x g(t) ẋ2 (t)(1 -ω 1 (t)) dx =-2 ẋ2 (t) 3 R ∂ 2 x H x 2 (t) 0,1 ∂ x g(t) dx + ẋ2 (t) 3 R U (4) H x 1 (t) -1,0 + H x 2 (t) 0,1 ∂ x H x 2 (t) 0,1 g(t) 3 dx + R ẋ2 (t)∂ x H x 2 (t) 0,1 U (3) H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t) 2 dx +O(δ(t)).
In conclusion, we have that

dF 4 (t) dt = R ẋ1 (t)∂ x H x 1 (t) -1,0 + ẋ2 (t)∂ x H x 2 (t) 0,1 U (3) H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t) 2 dx -2 ẋ2 (t) 3 R ∂ 2 x H x 2 (t) 0,1 ∂ x g(t) dx -2 ẋ1 (t) 3 R ∂ 2 x H x 1 (t) -1,0 ∂ x g(t) dx + R 1 3 U (4) H x 1 (t) -1,0 + H x 2 (t) 0,1 ẋ1 (t)∂ x H x 1 (t) -1,0 + ẋ2 (t)∂ x H x 2 (t) 0,1 g(t) 3 dx +O(δ(t)).
(2.147)

Step 6.(The derivative of F 5 (t).) We have that 

dF 5 (t) dt = R U (3) H x 1 (t) -1,0 + H x 2 (t) 0,1 g(t) 2 ∂ t g(t) dx - 1 3 R U (4) H x 1 (t) -1,0 + H x 2 (t) 0,1 ẋ1 (t)∂ x H x 1 (t) -1,0 + ẋ2 (t)∂ x H x 2 (t) 0,1 g(t) 3 dx. ( 2 
dF 4 (t) dt + dF 5 (t) dt = R ẋ1 (t)∂ x H x 1 (t) -1,0 U (3) H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t) 2 dx + R ẋ2 (t)∂ x H x 2 (t) 0,1 U (3) H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t) 2 dx -2 ẋ1 (t) 3 R ∂ 2 x H x 1 (t) -1,0 ∂ x g(t) dx -2 ẋ2 (t) 3 R ∂ 2 x H x 2 (t) 0,1 ∂ x g(t) dx + R U (3) H x 1 (t) -1,0 + H x 2 (t) 0,1 g(t) 2 ∂ t g(t) dx + O(δ(t)). (2.149)
Then, the sum of identities (2.128) and (2.149) implies 5

i=1 dF i (t) dt = O(δ(t)), this finishes the proof of inequality Ḟ (t) = O(δ(t)). Proof of F (t) + A 1 ϵ 2 ≥ A 2 ϵ 2 . The Coercivity Lemma implies that ∃ c > 0, such that F 1 (t) ≥ c --→ g(t)
2

. Also, from Theorem 2.2.8, we have the global estimate max

j∈{1,2} | ẋj (t)| 2 + |ẍ j (t)| + e - √ 2z(t) + --→ g(t) 2 = O(ϵ), (2.150) which implies that |F 3 (t)| = O --→ g(t) ϵ , |F 4 (t)| = O --→ g(t) 2 ϵ 1 2 , |F 5 (t)| = O --→ g(t) 2 ϵ 1 2
. Also, since

U ′ H x 1 (t) -1,0 (x) + U ′ H x 2 (t) 0,1 (x) -U ′ H x 2 (t) 0,1 (x) + H x 1 (t) -1,0 (x) = O H x 1 (t) -1,0 (x)H x 2 (t) 0,1 (x) H x 2 (t) 0,1 (x) + H x 1 (t) -1,0 (x) , Lemma 2.

and Cauchy-Schwarz inequality imply that

|F 2 (t)| = O --→ g(t) e - √ 2z(t) .
Then, the conclusion of

F (t)+A 1 ϵ 2 ≥ A 2 --→ g(t)
Remark 2.4.3. In the proof of Theorem 2.4.1, from Theorem 2.2.8 we have

|F 2 (t)|+|F 3 (t)| = O --→ g(t) ϵ . Since |F 4 (t)| + |F 5 (t)| = O --→ g(t) 2 ϵ 1 2 and |F 1 (t)| ≲ --→ g(t) 2 , then Young inequality implies that |F (t)| ≲ --→ g(t) 2 + ϵ 2 .
Remark 2.4.4 (General Energy Estimate). For any 0 < θ, γ < 1, we can create a smooth cut-off function 0 ≤ χ(x) ≤ 1 such that

χ(x) =    0, if x ≤ θ(1 -γ), 1, if x ≥ θ.
We define

χ 0 (t, x) = χ x -x 1 (t) x 2 (t) -x 1 (t)
.

If we consider the following function

L(t) = D 2 E total (H x 2 (t) 0,1 + H x 1 (t) -1,0 ) --→ g(t), --→ g(t) L 2 ×L 2 +2 R ∂ t g(t)∂ x g(t) ẋ1 (t)χ 0 (t) + ẋ2 (t) (1 -χ 0 (t)) dx -2 R g(t) U ′ H x 1 (t) -1,0 + U ′ H x 2 (t) 0,1 -U ′ H x 2 (t) 0,1 + H x 1 (t) -1,0 dx +2 R g(t) ẋ1 (t) 2 ∂ 2 x H x 1 (t) -1,0 + ẋ2 (t) 2 ∂ 2 x H x 2 (t) 0,1 dx + 1 3 R U (3) H x 2 (t) 0,1 + H x 1 (t) -1,0 g(t) 3 dx,
then, by a similar proof to the Theorem 2.4.1, we obtain that if 0 < ϵ ≪ 1 and

δ 1 (t) = δ(t) + max j∈{1,2} | ẋj (t)| 3 max(e - √ 2z(t)(1-θ) , e - √ 2z(t)θ(1-γ) ) --→ g(t) -max j∈{1,2} | ẋj (t)| 3 e - √ 2 5 z(t) --→ g(t) , (2.151) then there are positive constants A 1 , A 2 > 0 such that L(t) = O(δ 1 (t)), L(t) + A 1 ϵ 2 ≥ A 2 ϵ 2 .
Our first application of Theorem 2.4.1 is to estimate the size of the remainder --→ g(t) during a long time interval. More precisely, this corresponds to the following theorem, which is a weaker version of Theorem 2.1.5.

Theorem 2.4.5. There is

δ > 0, such that if 0 < ϵ < δ, (ϕ(0), ∂ t ϕ(0)) ∈ S × L 2 x (R) and E total (ϕ(0), ∂ t ϕ(0)) = 2E pot (H 0,1 ) + ϵ, then there exist x 1 , x 2 ∈ C 2 (R) such that the unique solution of (2.1) is given, for any t ∈ R, by ϕ(t) = H 0,1 (x -x 2 (t)) + H -1,0 (x -x 1 (t)) + g(t), (2.152)
with g(t) satisfying orthogonality conditions of the Modulation Lemma and

∥(g(t), ∂ t g(t))∥ 2 H 1 x ×L 2 x ≤ C ∥(g(0), ∂ t g(0))∥ 2 H 1 x ×L 2 x + ϵ ln 1 ϵ 2 exp   Cϵ 1 2 |t| ln 1 ϵ   , (2.153) for all t ∈ R.
Proof of Theorem 2.4.5. In notation of Theorem 2.4.1, from Theorem 2.4.1 and Remark 2.4.3, there are uniform positive constants A 2 , A 1 such that for all t ≥ 0

A 2 --→ g(t) 2 ≤ F (t) + A 1 ϵ 2 ≤ C --→ g(t) 2 + ϵ 2 .
(2.154)

From now on, we denote

G(t) := F (t) + A 1 ϵ ln 1 ϵ 2 .
From the inequality (2.154) and Remark 2.4.2, there is a constant C > 0 such that, for all t ≥ 0, G(t) satisfies

G(t) ≤ G(0) + C   t 0 G(s) ϵ 1 2 ln 1 ϵ ds   .
In conclusion, from Gronwall Lemma, we obtain that

G(t) ≤ G(0) exp Cϵ 1 2 t ln 1 ϵ for all t ≥ 0.
Then, from the definition of G and inequality (2.154), we verify the inequality (2.153) for any t ≥ 0. The proof of inequality (2.153) for the case t < 0 is completely analogous.

Global Dynamics of Modulation Parameters

Lemma 2.5.1. In notation of Theorem 2.1.5, ∃C > 0, such that if the hypotheses of Theorem 2.1.5 are true, then for --→ g(0) = (g(0, x), ∂ t g(0, x)) we have that there are functions

p 1 (t), p 2 (t) ∈ C 1 (R ≥0 )
, such that for j ∈ {1, 2} and any t ≥ 0, we have:

| ẋj (t) -p j (t)| ≲ --→ g(0) H 1 x ×L 2 x + ϵ ln 1 ϵ ϵ 1 2 exp 2Cϵ 1 2 t ln 1 ϵ , (2.155) ṗj (t) -(-1) j 8 √ 2e - √ 2z(t) ≲ --→ g(0) H 1 x ×L 2 x + ϵ ln 1 ϵ 2 ln ln 1 ϵ exp 2Cϵ 1 2 t ln 1 ϵ .
(2.156)

Proof. In the notation of Lemma 2.3.1, we consider the functions p j (t) for j ∈ {1, 2} and we consider θ = 1-γ 2-γ , the value of γ will be chosen later. From Lemma 2.3.1, we have that

| ẋj (t) -p j (t)| ≲ 1 + 1 γz(t) max j∈{1,2} | ẋj (t)| --→ g(t) + --→ g(t) 2 + max j∈{1,2} | ẋj (t)| z(t)e - √ 2z(t) .
We recall from Theorem 2.2.8 the estimates max j∈{1,

2} | ẋj (t)| = O(ϵ 1 2 ), e - √ 2z(t) = O(ϵ). From
Theorem 2.4.5, we have that

--→ g(t) ≲ --→ g(0) + ϵ ln 1 ϵ exp Cϵ 1 2 |t| ln 1 ϵ .
To simplify our computations, we denote c 0 = --→ g(0) +ϵ ln 1 ϵ ϵ ln 1 ϵ . Then, we obtain for any j ∈ {1, 2} and all t ≥ 0 that

| ẋj (t) -p j (t)| ≲ 1 + 1 γ ln 1 ϵ c 0 ϵ 3 2 ln 1 ϵ exp Cϵ 1 2 t ln 1 ϵ + 1 + 1 γ ln 1 ϵ c 0 ϵ ln 1 ϵ 2 exp 2Cϵ 1 2 t ln 1 ϵ . (2.157) Since e - √ 2z(t) ≲ ϵ, we deduce for ϵ ≪ 1 that z(t)e - √ 2z(t) ≲ ϵ ln 1 ϵ < ϵ 1-γ (2-γ)2 ln 1 ϵ .
Then, for any t ≥ 0, we obtain from the same estimates and the definition (2.75) of α(t) that

α(t) ≲c 2 0 ϵ ln 1 ϵ 2 max k∈{1, 2} 1 γz(t) k + ϵ 1-γ 2-γ exp 2 Cϵ 1 2 t ln 1 ϵ +c 0 ϵ 2-γ (2-γ)2 ln 1 ϵ exp Cϵ 1 2 t ln 1 ϵ   1 + 1 γz(t) + ϵ 1 2 (γz(t)) 2   + ϵ 1+ 2(1-γ) 2-γ z(t)γ .
(2.158) However, if γ ln 1 ϵ ≤ 1 and z(0) ∼ = ln 1 ϵ , which is possible, then the right-hand side of inequality (2.158) is greater than or equivalent to ϵ ln

1 ϵ 2 while 0 ≤ t ≲ ln 1 ϵ ϵ 1 2 . But, it is not difficult to verify for γ = ln ln 1 ϵ ln 1 ϵ that the right-hand side of inequality (2.158) is smaller than ϵ ln 1 ϵ 2 .
Therefore, from now on, we are going to study the right-hand side of (2.158) for 1 ln( 1 ϵ ) < γ < 1. Since we know that ln ( 1 ϵ ) ≲ z(t) from Theorem 2.2.8, the inequality (2.158) implies for

1 ln ( 1 ϵ ) < γ < 1 and t ≥ 0 that α(t) ≲ β(t) := c 0 ϵ ln 1 ϵ 2 1 γ ln 1 ϵ + ϵ 1-γ 2-γ exp 2 Cϵ 1 2 t ln 1 ϵ + c 0 ϵ 2-γ 2(2-γ) ln 1 ϵ exp Cϵ 1 2 t ln 1 ϵ + ϵ 1+ 2(1-γ) 2-γ γ ln 1 ϵ = β 1 (t) + β 2 (t) + β 3 (t), respectively. (2.159) For ϵ > 0 small enough, it is not difficult to verify that if β 3 (t) ≥ β 1 (t), then γ ≥ ln ln 1 ϵ ln 1 ϵ . Moreover, if we have that 1 > γ > 8 ln ln 1 ϵ ln 1 ϵ
, we obtain from the following estimate

β 3 (t) = ϵ 2 ϵ -γ 2-γ γ ln 1 ϵ > ϵ 2 ln 1 ϵ exp 8 ln ln 1 ϵ 2 -γ = ϵ 2 ln 1 ϵ ln 1 ϵ 8 2-γ , that β 3 (t) > (ϵ ln ( 1 ϵ )) 2 ln ln 1 ϵ . If γ ≤ ln ln ( 1 ϵ ) ln 1 ϵ , then (ϵ ln 1 ϵ ) 2 ln ln 1 ϵ ≲ β 1 (t) for any t ≥ 0.
In conclusion, for any case we have that (ϵ 2 ln 1 ϵ ) 

2 ln ln 1 ϵ ≲ β(t) when t ≥ 0, so we choose γ = ln ln 1 ϵ ln 1 ϵ . As a consequence, there exists a constant C 1 > 0 such that, for any t ∈ R ≥0 , α(t) ≤ C 1 c 2 0 ϵ ln 1 ϵ 2 ln ln 1 ϵ exp 2Cϵ 1 2 t ln 1 ϵ . ( 2 
(ln 1 ϵ ) m ≲ --→ g(0) for a constant m > 0, then, for γ = 1 8 , we have from Lemma 2.3.1 that there is p(t) ∈ C 2 (R) satisfying for all t ≥ 0 | ż(t) -p(t)| ≲ ϵ 1 2 --→ g(0) , (2.161) ṗ(t) -16 √ 2e - √ 2z(t) ≲ --→ g(0) 2 z(t) . ( 2 

.162)

Then, for the smooth real function d(t) satisfying

d(t) = 16 √ 2e - √ 2d(t) , (d(0), ḋ(0)) = (z(0), ż(0)),
and since e - √ 2z(t) ≲ ϵ, ln 1 ϵ ≲ z(t), we can deduce for any t ≥ 0 that Y (t) = (z(t) -d(t)) satisfies the following integral inequality for a constant K > 0

|Y (t)| ≤ K      ϵ 1 2 --→ g(0) t + --→ g(0) 2 ln 1 ϵ t 2 + t 0 s 0 ϵ |Y (s 1 )| ds 1 ds      = Λ (|Y |) (t), Y (0) = 0, Ẏ (0) = 0. Indeed, for any k ∈ N and all t ≥ 0, |Y (t)| ≤ Λ (k) (|Y |) (t). We also can verify for any T > 0 that Λ (k) (|Y |) (t) is a Cauchy sequence in the Banach space L ∞ [0, T ] . In conclusion, we can deduce for any t ≥ 0 that |Y (t)| ≲ Q(tK 1 2
), where Q(t) is the solution of the following integral equation

Q(t) = ϵ 1 2 --→ g(0) t + --→ g(0) 2 ln 1 ϵ t 2 + t 0 s 0 ϵQ(s 1 ) ds 1 ds.

By standard ordinary differential equation techniques, we deduce for any

t ≥ 0 that |z(t) -d(t)| ≲ Q(tK 1 2 ) =      --→ g(0) 2 + --→ g(0) 2 ϵ ln 1 ϵ      e ϵ 1 2 tK 1 2 +      - --→ g(0) 2 + --→ g(0) 2 ϵ ln 1 ϵ      e -ϵ 1 2 tK 1 2 -2 --→ g(0) 2 ϵ ln 1 ϵ , (2.163)
and from ż(0) = ḋ(0) and the estimates (2.161) and (2.162), we obtain that

ż(t) -ḋ(t) ≲ |p(0) -ż(0)| + t 0 ϵ |z(s) -d(s)| ds, (2.164)
from which with (2.163) we obtain for all t ≥ 0 that 

ż(t) -ḋ(t) ≲ e ϵ 1 2 tK 1 2 ϵ 1 2      --→ g(0) + --→ g(0) 2 ϵ ln 1 ϵ      . ( 2 
(t), d 2 (t). If --→ g(0) ≥ ϵ 1 2
(ln 1 ϵ )

5 , then, using estimates 

max j∈{1, 2} |d j (t) -x j (t)| = O(min(ϵ|t|, ϵ 1 2 |t|)), max j∈{1, 2} ḋj (t) -ẋj (t) = O(
K > 0 such that if --→ g(0) ≤ ϵ 1 2 (ln 1 ϵ ) 5 ,
all the hypotheses of Theorem 2.1.10 are true and

ϵ (ln 1 ϵ ) 8 ≲ e - √ 2z(0) ≲ ϵ, then we have for t ≥ 0 that max j∈{1, 2} |x j (t) -d j (t)| = O      max --→ g(0) , ϵ ln 1 ϵ 2 ln 1 ϵ 6 ϵ ln ln 1 ϵ exp Kϵ 1 2 t ln 1 ϵ      , (2.166) max j∈{1, 2} ẋj (t) -ḋj (t) = O   max --→ g(0) , ϵ ln 1 ϵ 2 ln 1 ϵ 6 ϵ 1 2 ln ln 1 ϵ exp Kϵ 1 2 t ln 1 ϵ    .
(2.167)

Proof of Lemma 2.5.5. First, in notation of Lemma 2.5.1, we consider

p(t) := p 2 (t) -p 1 (t), z(t) := x 2 (t) -x 1 (t), ż(t) := ẋ2 (t) -ẋ1 (t).
Also, motivated by Remark 2.3.3, we consider the smooth function d(t) solution of the following ordinary differential equation

   d(t) = 16 √ 2e - √ 2d(t) , (d(0), ḋ(0)) = (z(0), ż(0)).
Step 1.(Estimate of z(t), ż(t)) From now on, we denote the functions

W (t) = z(t) - d(t), V (t) = p(t) -ḋ(t).
Then, Lemma 2.5.1 implies that W, V satisfy for any t ∈ R ≥0 the following differential estimates

Ẇ (t) -V (t) =O   max --→ g(0) , ϵ ln 1 ϵ ϵ 1 2 exp 2Cϵ 1 2 t ln 1 ϵ   , V (t) + 16 √ 2e - √ 2d(t) -16 √ 2e - √ 2z(t) =O      max --→ g(0) , ϵ ln 1 ϵ 2 ln ln ( 1 ϵ ) exp 2Cϵ 1 2 t ln 1 ϵ      .
From the above estimates and Taylor's Expansion Theorem, we deduce for t ≥ 0 the following system of differential equations, while |W (t)| < 1 :

                           Ẇ (t) =V (t) + O max --→ g(0) , ϵ ln 1 ϵ ϵ 1 2 exp 2Cϵ 1 2 t ln 1 ϵ , V (t) =-32e - √ 2d(t) W (t) + O e - √ 2d(t) W (t) 2 +O      max --→ g(0) , ϵ ln 1 ϵ 2 ln ln 1 ϵ exp 2Cϵ 1 2 t ln 1 ϵ      . (2.168) Recalling Remark 2.3.3, we have that d(t) = 1 √ 2 ln 8 v 2 cosh ( √ 2vt + c) 2 , (2.169)
where v > 0 and c ∈ R are chosen such that (d(0), ḋ(0)) = (z(0), ż(0)). Moreover, it is not

difficult to verify that v = ż(0) 2 4 + 8e - √ 2z(0) 1 2 , c = arctanh     ż(0) 32e - √ 2z(0) + ż(0) 2 1 2     . Moreover, since 8e - √ 2z(0) = v 2 sech (c) 2 ≤ 4v 2 e -2|c|
, we obtain from the hypothesis for e - √ 2z(0)

that ϵ 1 2 (ln 1 ϵ ) 4 ≲ v ≲ ϵ 1 2
and as a consequence the estimate |c| ≲ ln (ln ( 1 ϵ )). Also, it is not difficult to verify that the functions

n(t) = ( √ 2vt + c) tanh ( √ 2vt + c) -1, m(t) = tanh ( √ 2vt + c)
generate all solutions of the following ordinary differential equation

ÿ(t) = -32e - √ 2d(t) y(t), (2.170)
which is obtained from the linear part of the system (2.168).

To simplify our computations, we use the following notation

error 1 (t) = max --→ g(0) , ϵ ln 1 ϵ ϵ 1 2 exp 2Cϵ 1 2 t ln 1 ϵ , error 2 (t) =e - √ 2d(t) (z(t) -d(t)) 2 + max --→ g(0) , ϵ ln 1 ϵ 2 ln ln 1 ϵ exp 2Cϵ 1 2 t ln 1 ϵ .
From the variation of parameters technique for ordinary differential equations, we can write that

W (t) V (t) = c 1 (t) m(t) ṁ(t) + c 2 (t) n(t) ṅ(t) , ( 2.171) 
such that for any t ≥ 0

                         m(t) n(t) ṁ(t) ṅ(t)     ċ1 (t) ċ2 (t)   =   O(error 1 (t)) O(error 2 (t))   ,   m(0) n(0) ṁ(0) ṅ(0)     c 1 (0) c 2 (0)   =    0 O --→ g(0) + ϵ ln 1 ϵ ϵ 1 2    .
The presence of an error in the condition of the initial data c 1 (0), c 2 (0) comes from estimate

(2.155) of Lemma 2.5.1. Since for all t ∈ R m(t) ṅ(t) -ṁ(t)n(t) = √ 2v,

we can verify by

Cramer's rule and from the fact that ϵ 1 2

(ln 1 ϵ ) 4 ≲ v that c 1 (0) =O max --→ g(0) , ϵ ln 1 ϵ |c tanh (c) -1| ln 1 ϵ 4 , (2.172) c 2 (0) =O max --→ g(0) , ϵ ln 1 ϵ |tanh (c)| ln 1 ϵ 4 , (2.173)
and, for all t ≥ 0, the estimates

| ċ1 (t)| =O   | ṅ(t)| max --→ g(0) , ϵ ln 1 ϵ exp 2Cϵ 1 2 t ln 1 ϵ   +O |n(t)|v sech ( √ 2vt + c) 2 |W (t)| 2 +O      |n(t)| max --→ g(0) , ϵ ln 1 ϵ 2 v ln ln 1 ϵ exp 2Cϵ 1 2 t ln 1 ϵ      , (2.174) | ċ2 (t)| =O |m(t)| v sech ( √ 2vt + c) 2 |W (t)| 2 +O      |m(t)| max --→ g(0) , ϵ ln 1 ϵ 2 v ln ln 1 ϵ exp 2Cϵ 1 2 t ln 1 ϵ      +O   max --→ g(0) , ϵ ln 1 ϵ exp 2Cϵ 1 2 t ln 1 ϵ ϵ 1 2 sech( √ 2vt + c) 2   .
(2.175)

Since we have for all x ≥ 0 that

d dx - sech (x) 2 x 2 + 3 tanh (x) 2 = sech (x) 2 2 + x tanh (x) sech (x) 2 ≥ |x tanh (x) -1| sech (x) 2 2 = |n(x)| sech (x) 2 2 ,
we deduce from the Fundamental Theorem of Calculus, the fact that

n(t) = ( √ 2vt + c) tanh( √ 2vt + c) -1, estimate ϵ 1 2 ln ( 1 ϵ ) 4 ≲ v ≲ ϵ 1 2
and the estimates (2.174), (2.175) that

|c 1 (t) -c 1 (0)| =O   max --→ g(0) , ϵ ln 1 ϵ ln 1 ϵ exp 2Ctϵ 1 2 ln 1 ϵ   +O   exp 2Cϵ 1 2 t ln 1 ϵ ∥n(s)∥ L ∞ s [0,t] max --→ g(0) , ϵ ln 1 ϵ 2 ln 1 ϵ 5 ϵ ln ln 1 ϵ    +O - sech (x) 2 x 2 + 3 tanh (x) 2 √ 2vt+c c ∥W (s)∥ 2 L ∞ s [0,t] ,
(2.176) for any t ≥ 0. From a similar argument, we deduce that

|c 2 (t) -c 2 (0)| =O ∥W (s)∥ 2 L ∞ s [0,t] tanh ( √ 2vt + c) -tanh (c) +O   max --→ g(0) , ϵ ln 1 ϵ 2   exp   2Cϵ 1 2 t ln 1 ϵ   -1   ln 1 ϵ 5 ϵ ln ln 1 ϵ    +O   max --→ g(0) , ϵ ln 1 ϵ ln 1 ϵ exp   2Ct ϵ 1 2 ln 1 ϵ     , (2.177)
for any t ≥ 0.

From the estimates v ≲ ϵ 1 2 , |c| ≲ ln ln 1 ϵ , we obtain for ϵ ≪ 1 while t ≥ 0 and

∥W (s)∥ L ∞ s [0,t] ϵ 1 2 t + ln ln 1 ϵ ln ln 1 ϵ ≤ 1, (2.178) that ∥W (s)∥ 2 L ∞ s [0,t] (1 + |n(t)|) ≲ ∥W (s)∥ L ∞ s [0,t] 1 ln ln 1 ϵ .
(2.179) Also, from |n(t)| ≤ ( √ 2v|t| + |c|), we deduce for any t ≥ 0 that

|n(t)| ≲ ϵ 1 2 t + ln ln 1 ϵ ≲ ln 1 ϵ exp   ϵ 1 2 t ln 1 ϵ   (2.180)
In conclusion, the estimates (2.176), (2.177), (2.179), (2.180) and the definition of W (t) = z(t) -d(t) imply that while t ≥ 0 and the condition (2.178) is true, then

|W (t)| ≲ f (t) = max --→ g(0) , ϵ ln 1 ϵ 2 ln 1 ϵ 6 ϵ ln ln 1 ϵ exp   (2C + 1)ϵ 1 2 t ln 1 ϵ   .
(2.181)

Then, from the expression for V (t) in the equation (2.171) and the estimates (2.176),

(2.177), (2.180), we obtain that if inequality (2.181) is true and t ≥ 0, then

|V (t)| ≲ max --→ g(0) , ϵ ln 1 ϵ 2 ln ( 1 ϵ ) 6 ϵ 1 2 ln ln ( 1 ϵ ) exp   (4C + 3)ϵ 1 2 t ln 1 ϵ   + max --→ g(0) , ϵ ln 1 ϵ 4 ln 1 ϵ 12 ϵ 3 2 ln ln 1 ϵ 2 exp (4C + 3)ϵ 1 2 t ln 1 ϵ , (2.182) which implies the following estimate Ẇ (t) ≲ max --→ g(0) , ϵ ln 1 ϵ 2 ln 1 ϵ 6 ϵ 1 2 ln ln 1 ϵ exp (4C + 3)ϵ 1 2 t ln 1 ϵ .
(2.183)

Indeed, from the bound --→ g(0) ≲ ϵ 1 2 (ln 1 ϵ ) 4 , we deduce that (2.178) is true if 0 ≤ t ≤ [ln ln 1 ϵ ] ln 1 ϵ (4C+2)ϵ 1 2
. As a consequence, the estimates (2.181) and (2.183) are true if 0

≤ t ≤ [ln ln 1 ϵ ] ln 1 ϵ (4C+2)ϵ 1 2
. But, for t ≥ 0, we have that 

|W (t)| ≲ ϵ 1 2 t ≲ 3 ln 1 ϵ exp   ϵ 1 2 t 3 ln 1 ϵ   , Ẇ (t) ≲ ϵt ≲ 3ϵ 1 2 ln 1 ϵ exp   ϵ 1 2 t 3 ln 1 ϵ   . (2.184) Since f (t) defined in inequality (2.181) is strictly increasing and f (0) ≲ 1 (ln 1 ϵ ) 2 ln ln 1 ϵ , there is an instant T M > 0 such that exp   ϵ 1 2 T M ln 1 ϵ   f (T M ) = 1 ln 1 ϵ ln ln 1 ϵ 2 , ( 2 
--→ g(0) ≲ ϵ 1 2 (ln 1 ϵ ) 4 we deduce 1 ln 1 ϵ ln ln 1 ϵ 2 ≲ 1 ln 1 ϵ 2 ln ln 1 ϵ exp   (2C + 2)ϵ 1 2 T M ln 1 ϵ   , from which we obtain that T M ≥ 3 8(C+1) ln ln 1 ϵ (ln 1 ϵ ) ϵ 1 2
for ϵ ≪ 1. In conclusion, since f (t) is an increasing function, we have for t ≥ T M and ϵ ≪ 1 that

f (t) exp   [17(C + 1) + 4]ϵ 1 2 t 3 ln 1 ϵ   ≥ 1 ln 1 ϵ ln ln 1 ϵ 2 exp   [17(C + 1) + 1]ϵ 1 2 t 3 ln 1 ϵ   ≥ ln 1 ϵ 1+ 1 8 ln ln 1 ϵ 2 exp   ϵ 1 2 t 3 ln 1 ϵ   ,
from which with the estimates (2.184) and (2.181) we deduce for all t ≥ 0 that 

|W (t)| ≲ max --→ g(0) , ϵ ln 1 ϵ 2 ln 1 ϵ 6 ϵ ln ln 1 ϵ exp   (8C + 9)ϵ 1 2 t ln 1 ϵ   . ( 2 
Ṁ (t) -N (t) ≲ max --→ g(0) , ϵ ln 1 ϵ ϵ 1 2 exp Cϵ 1 2 t ln 1 ϵ , Ṅ (t) ≲ max --→ g(0) , ϵ ln 1 ϵ 2 ln ln 1 ϵ exp 2Cϵ 1 2 t ln 1 ϵ .
Also, from inequality (2.155) and the fact that for j ∈ {1, 2} d j (0) = x j (0), ḋj (0) = ẋj (0), we deduce that M (0) = 0 and |N (0

)| ≲ max --→ g(0) , ϵ ln 1 ϵ ϵ 1 2
. Then, from the Fundamental Theorem of Calculus, we obtain for all t ≥ 0 that 

N (t) =O      max --→ g(0) , ϵ ln 1 ϵ 2 ln 1 ϵ ϵ 1 2 ln ln 1 ϵ exp 4Cϵ 1 2 t ln 1 ϵ      , (2.189) M (t) =O      max --→ g(0) , ϵ ln 1 ϵ 2 ln 1 ϵ 2 ϵ ln ln 1 ϵ exp 4Cϵ 1 2 t ln 1 ϵ      . ( 2 
e - √ 2z(0) ≪ ϵ ln 1 ϵ 8 , ϵ 1 2 ln 1 ϵ 4 ≲ v ≲ ϵ 1 2 , -ln 1 ϵ 2 < c < 0,
∥W (s)∥ L ∞ s [0,t] ϵ 1 2 t + ln 1 ϵ 2 ln ln 1 ϵ ≤ 1, (2.191) that ∥W (s)∥ 2 L ∞ s [0,t] (1 + |n(t)|) ≲ ∥W (s)∥ L ∞ s [0,t] 1 ln ln 1 ϵ ,
which implies by a similar reasoning to the proof of Lemma 2.5.5 for a uniform constant C > 1 and any t ∈ R ≥0 the following estimates

|W (t)| ≲ max --→ g(0) , ϵ ln 1 ϵ 2 ln 1 ϵ 7 ϵ ln ln 1 ϵ exp Cϵ 1 2 t ln 1 ϵ = f 1 (t, C), (2.192) Ẇ (t) ≲ max --→ g(0) , ϵ ln 1 ϵ 2 ln 1 ϵ 7 ϵ 1 2 ln ln 1 ϵ exp Cϵ 1 2 t ln 1 ϵ = f 2 (t, C).
(2.193)

From the estimates (2.192), (2.193) and

--→ g(0) ≤ ϵ 1 2
(ln 1 ϵ )

5 , we deduce that the condition

(2.191) holds while 0 ≤ t ≤ ln ln 1 ϵ (ln 1 ϵ ) 4(C+1)ϵ 1 2
. Indeed, since --→ g(0)

2 ≤ ϵ (ln 1 ϵ )
10 , we can verify that there is an instant

ln ln 1 ϵ (ln 1 ϵ ) 4(C+1)ϵ 1 2
≤ T M such that (2.191) and (2.192) are true for 0 ≤ t ≤ T M and

f 1 (T M , C) exp   ϵ 1 2 T M ln 1 ϵ   = 1 ln 1 ϵ 2+ 1 2 ln ln 1 ϵ .
In conclusion, we can repeat the argument in the proof of step 1 of Lemma 2.5.5 and deduce that there is

1 < K ≲ C + 1 such that for all t ≥ 0 |W (t)| ≲ f 1 (t, K), Ẇ (t) ≲ f 2 (t, K).
(2.194) Lemma 2.5.8. In notation of Theorem 2.1.10,

∃K > 1, δ > 0 such that if 0 < ϵ < δ, 0 < v ≤ ϵ 1 2 (ln 1 ϵ ) 4 , --→ g(0) = (g(0, x), ∂ t g(0, x)) and --→ g(0) ≤ ϵ 1 2
(ln 1 ϵ )

5 , then we have for all t ≥ 0 that

max j∈{1, 2} |d j (t) -x j (t)| =O      max --→ g(0) , ϵ ln 1 ϵ 2 ϵ ln ln 1 ϵ ln 1 ϵ 2 exp Ktϵ 1 2 ln 1 ϵ      , (2.195) max j∈{1, 2} ḋj (t) -ẋj (t) =O      max --→ g(0) , ϵ ln 1 ϵ 2 ϵ 1 2 ln ln 1 ϵ ln 1 ϵ exp Ktϵ 1 2 ln 1 ϵ      . (2.196)
Proof of Lemma 2.5.8. First, we recall that

d(t) = 1 √ 2 ln 8 v 2 cosh √ 2vt + c , which implies that e - √ 2d(t) = v 2 8 sech √ 2vt + c 2 .
(2.197)

We recall the notation

W (t) = z(t) -d(t), V (t) = p(t) -ḋ(t).
From the first inequality of Lemma 2.5.1, we have that

|V (0)| ≲ max --→ g(0) , ϵ ln 1 ϵ ϵ 1 2 . (2.198)
We already verified that W, V satisfy the following ordinary differential system

                           Ẇ (t) =V (t) + O max --→ g(0) , ϵ ln 1 ϵ ϵ 1 2 exp Cϵ 1 2 t ln 1 ϵ , V (t) =-32e - √ 2d(t) W (t) + O e - √ 2z(t) W (t) 2 +O      max --→ g(0) , ϵ ln 1 ϵ 2 ln ln 1 ϵ exp 2Cϵ 1 2 t ln 1 ϵ      . (2.199) However, since v 2 ≤ ϵ (ln 1 ϵ ) 8 , we deduce from (2.197) that e - √ 2d(t) ≲ ϵ (ln 1 ϵ )
8 for all t ≥ 0. So, while ∥W (s)∥ L ∞ [0,t] < 1, we have from the system of ordinary differential equations above for some constant C > 0 independent of ϵ that

V (t) ≲ ϵ ln 1 ϵ 8 ∥W (s)∥ L ∞ [0,t] + max --→ g(0) , ϵ ln 1 ϵ 2 ln ln 1 ϵ exp 2Cϵ 1 2 t ln 1 ϵ
, for all t ≥ 0, from which we deduce the following estimate for any t ≥ 0

|V (t) -V (0)| = O    ϵt ln 1 ϵ 8 ∥W (s)∥ L ∞ [0,t]    + O      max --→ g(0) , ϵ ln 1 ϵ 2 ln 1 ϵ ϵ 1 2 ln ln 1 ϵ exp 2Cϵ 1 2 t ln 1 ϵ      . In conclusion, while ∥W (s)∥ L ∞ [0,t] < 1, we have that Ẇ (t) ≤ |V (0)| + O      max --→ g(0) , ϵ ln ( 1 ϵ ) 2 ln 1 ϵ ϵ 1 2 ln ln 1 ϵ exp 2Cϵ 1 2 t ln 1 ϵ      + O    ϵt ln 1 ϵ 8 ∥W (s)∥ L ∞ [0,t]    . (2.200)
Finally, since W (0) = 0, the Fundamental Theorem of Calculus and (2.200) imply the following estimate for all t ≥ 0

∥W (s)∥ L ∞ [0,t] ≤ |V (0)| t + O      max --→ g(0) , ϵ ln ( 1 ϵ ) 2 ln ( 1 ϵ ) 2 ϵ ln ln ( 1 ϵ ) exp 2Cϵ 1 2 t ln ( 1 ϵ )      + O   ϵt 2 ln ( 1 ϵ ) 8 ∥W (s)∥ L ∞ [0,t]   . (2.201)
Then, the estimates (2.198) and (2.201) imply if ϵ ≪ 1 that

|W (t)| ≲ max --→ g(0) , ϵ ln 1 ϵ 2 ln 1 ϵ 2 ϵ ln ln 1 ϵ exp   (2C + 1)ϵ 1 2 t ln 1 ϵ   , (2.202) for 0 ≤ t ≤ (ln 1 ϵ ) ln ln 1 ϵ (8C+4)ϵ 1 2
. From (2.202) and (2.200), we deduce for 0

≤ t ≤ (ln 1 ϵ ) ln ln 1 ϵ (8C+4)ϵ 1 2 that Ẇ (t) ≲ max --→ g(0) , ϵ ln 1 ϵ 2 ln 1 ϵ 2 ϵ 1 2 ln ln 1 ϵ exp   (2C + 1)ϵ 1 2 t ln 1 ϵ   .
(2.203)

Since |W (t)| ≲ ϵ 1 2 t, Ẇ (t)
≲ ϵt for all t ≥ 0, we can verify by a similar argument to the proof of Step 1 of Lemma 2.5.5 that for all t ≥ 0 there is a constant 1 

< K ≲ (C + 1) such that |W (t)| ≲ max --→ g(0) , ϵ ln 1 ϵ 2 ln 1 ϵ 2 ϵ ln ln 1 ϵ exp Kϵ 1 2 t ln 1 ϵ , (2.204) Ẇ (t) ≲ max --→ g(0) , ϵ ln 1 ϵ 2 ln 1 ϵ 2 ϵ 1 2 ln ln 1 ϵ exp Kϵ 1 2 t ln 1 ϵ . ( 2 
(ln 1 ϵ ) 5 , ϵ 1 2
(ln 1 ϵ )

4 ≲ v and one of the following statements

1. e - √ 2z(0) ≪ ϵ (ln 1 ϵ ) 8 and c > 0, 2. e - √ 2z(0) ≪ ϵ (ln 1 ϵ ) 8 and c ≤ -ln 1 ϵ 2
were true, then we would have that e - √ 2d(t) ≪ ϵ (ln 1 ϵ )

8 for 0 ≤ t ≲ (ln 1 ϵ ) 2 ϵ 1 2
. Moreover, assuming

e - √ 2z(0) ln 1 ϵ 8 ≪ ϵ, if c > 0, then we have for all t ≥ 0 that e - √ 2d(t) = v 2 8 sech ( √ 2vt + c) 2 ≤ v 2 8 sech (c) 2 = e - √ 2z(0) ≪ ϵ ln 1 ϵ 8 , otherwise if c ≤ -ln 1 ϵ 2 , since 0 < v ≲ ϵ 1 2 , then there is 1 ≲ K such that for 0 ≤ t ≤ K(ln 1 ϵ ) 2 ϵ 1 2
, then 2 √ 2vt + c > |c| , and so

e - √ 2d(t) ≤ v 2 sech - c 2 2 ≪ ϵ ln 1 ϵ 8 .
In conclusion, the result of Lemma 2.5.8 would be true for these two cases.

From the following inequality max

--→ g(0) , ϵ ln 1 ϵ ≤ ln 1 ϵ max --→ g(0) , ϵ ,
we deduce from Lemmas 2.5.5, 2.5.8 and Remarks 2.5.6, 2.5.7 and 2.5.9 the statement of Theorem 2.1.10.

Proof of Theorem 2.1.5

If --→ g(0) ≥ ϵ ln 1 ϵ , the result of Theorem 2.1.5 is a direct consequence of Theorem 2.4.5. So, from now on, we assume that --→ g(0) < ϵ ln 1 ϵ . We recall from Theorem 2.1.10 the notations v, c, d 1 (t), d 2 (t) and we denote

d(t) = d 2 (t) -d 1 (t) that satisfies d(t) = 1 √ 2 ln 8 v 2 cosh ( √ 2vt + c) 2 , e - √ 2d(t) = v 2 8 sech ( √ 2vt + c) 2 .
From the definition of

d 1 (t), d 2 (t), d(t), we know that max j∈{1, 2} dj (t) + e - √ 2d(t) = O v 2 sech ( √ 2vt + c) 2 ,
and since z(0) = d(0), ż(0) = ḋ(0), we have that v, c satisfy the following identities

v = e - √ 2z(0) + ẋ2 (0) -ẋ1 (0) 2 2 1 2
, c = arctanh ẋ2 (0) -ẋ1 (0) 2v , so Theorem 2.2.8 implies that v ≲ ϵ 1 2 . From the Corollary 2.1.13 and the Theorem 2.1.10, we deduce that ∃C > 0 such that if

ϵ ≪ 1 and 0 ≤ t ≤ (ln ln 1 ϵ ) ln 1 ϵ ϵ 1 2
, then we have that max

j∈{1, 2} |ẍ j (t)| =O max j∈{1,2} dj (t) + O   ϵ 3 2 ln 1 ϵ 9 exp Ctϵ 1 2 ln 1 ϵ   , (2.206) e - √ 2z(t) =e - √ 2d(t) + O max e - √ 2d(t) , e - √ 2z(t) |z(t) -d(t)| (2.207) =e - √ 2d(t) + O   ϵ 2 ln 1 ϵ 9 exp Ctϵ 1 2 ln 1 ϵ   .
Next, we consider a smooth function 0 ≤ χ 2 (x) ≤ 1 that satisfies

χ 2 (x) =    1, if x ≤ 9 20 , 0, if x ≥ 1 2 .
We denote

χ 2 (t, x) = χ 2 x -x 1 (t) x -x 2 (t) .
From Theorem 2.4.1 and Remark 2.4.4, the estimates (2.206) and (2.207) of the modulation parameters imply that for the following function

L 1 (t) = D 2 E total H x 2 (t) 0,1 + H x 1 (t) -1,0 --→ g(t), --→ g(t) ⟩ L 2 ×L 2 +2 R ∂ t g(t)∂ x g(t) ẋ1 (t)χ 2 (t, x) + ẋ2 (t) (1 -χ 2 (t)) dx -2 R g(t, x) U ′ H x 1 (t) -1,0 + U ′ H x 2 (t) 0,1 -U ′ H x 2 (t) 0,1 + H x 1 (t) -1,0 dx +2 R g(t, x) ẋ1 (t) 2 ∂ 2 x H x 1 (t) -1,0 + ẋ2 (t) 2 ∂ 2 x H x 2 (t) 0,1 (x) dx + 1 3 R U (3) H x 2 (t) 0,1 + H x 1 (t)
-1,0 g(t) 3 dx, and the following quantity δ 1 (t) denoted by 

δ 1 (t) = --→ g(t) e - √ 2z(t) max j∈{1,2} | ẋj (t)| + max j∈{1,2} | ẋj (t)| 3 e -9 √ 2z(t) 20 + --→ g(t) max j∈{1,2} | ẋj (t)| |ẍ j (t)| + --→ g(t) 2 max j∈{1, 2} | ẋj (t)| z(t) + --→ g(t) 2 max j∈{1, 2} ẋj (t) 2 + max j∈{1, 2} |ẍ j (t)| + --→ g(t)
δ 2 (t) = --→ g(t) v 2 ϵ 1 2 sech ( √ 2vt + c) 2 + --→ g(t) ϵ 2 ln 1 ϵ 9 exp Ctϵ 1 2 ln 1 ϵ + ϵ 3 2 e -9 √ 2z(t) 20 --→ g(t) + max j∈{1,2} | ẋj (t)| z(t) --→ g(t) 2 + --→ g(t) 4 , L1 (t) = O(δ 2 (t)) if 0 ≤ t ≤ (ln ln 1 ϵ ) ln 1 ϵ ϵ 1 2
. Now, similarly to the proof of Theorem 2.4.5, we denote G(s) = max --→ g(s) , ϵ . From Theorem 2.4.1 and Remark 2.4.4, we have that there are positive constants

K, k > 0 inde- pendent of ϵ such that k --→ g(t) 2 ≤ L 1 (t) + Kϵ 2 .
We recall that Theorem 2.2.8 implies that

ln 1 ϵ ≲ z(t), e - √ 2z(t) + max j∈{1,2} | ẋj (t)| 2 + max j∈{1, 2} |ẍ j (t)| = O(ϵ),
from which with the definition of G(s) and estimates (2.206) and (2.207) we deduce that

δ 2 (t) ≲ G(t)v 2 sech ( √ 2vt + c) 2 ϵ 1 2 + G(t)ϵ 39 20 + G(t) 2 ϵ 1 2 ln 1 ϵ , while 0 ≤ t ≤ (ln ln 1 ϵ ) ln 1 ϵ ϵ 1 2
.

In conclusion, the Fundamental Theorem of Calculus implies that ∃K > 0 independent of ϵ such that

G(t) 2 ≤ K   G(0) 2 + t 0 G(s)v 2 sech ( √ 2vs + c) 2 ϵ 1 2 + G(s)ϵ 39 20 + G(s) 2 ϵ 1 2 ln 1 ϵ ds   , (2.208) while 0 ≤ t ≤ (ln ln 1 ϵ ) ln 1 ϵ ϵ 1 2
. 2 , we verify that while the term

Since d dt [tanh ( √ 2vt + c)] = √ 2v sech ( √ 2vt + c)
G(s)v 2 sech ( √ 2vt + c) 2 ϵ 1 2
is dominant in the integral of the estimate (2.208), then G(t) ≲ G(0). The remaining case corresponds when G(s) 2 ϵ

1 2 ln ( 1 ϵ ) is the dominant term in the integral of (2.208) from an instant 0 ≤ t 0 ≤ (ln ln 1 ϵ ) ln 1 ϵ ϵ 1 2
. Similarly to the proof of 2.4.5, we have for

t 0 ≤ t ≤ (ln ln 1 ϵ ) ln 1 ϵ ϵ 1 2 that G(t) ≲ G(t 0 ) exp C (t-t 0 )ϵ 1 2 ln 1 ϵ .
In conclusion, in any case, we have for 0

≤ t ≤ (ln ln 1 ϵ ) ln 1 ϵ ϵ 1 2 that G(t) ≲ G(0) exp C tϵ 1 2 ln 1 ϵ . (2.209) But, for T ≥ (ln ln 1 ϵ ) ln 1 ϵ ϵ 1 2
and K > 2 we have that

ϵ ln 1 ϵ exp   K ϵ 1 2 T ln 1 ϵ   ≤ ϵ exp   2Kϵ 1 2 T ln 1 ϵ   .
In conclusion, from the result of Theorem 2.4.5, we can exchange the constant C > 0 by a larger constant such that estimate (2.209) is true for all t ≥ 0.

Introduction

We recall for the potential function

U (ϕ) = ϕ 2 (1 -ϕ 2 ) 2 the partial differential equation ∂ 2 t ϕ(t, x) -∂ 2 x ϕ(t, x) + U ′ (ϕ(t, x)) = 0, (t, x) ∈ R × R. (3.1)
From Chapter 1, we also recall the energy and the momentum quantities given by (Energy) and (Momentum) respectively. We recall the potential energy formula, which is

E pot (ϕ)(t) = R ∂ x ϕ(t, x) 2 2 + U (ϕ(t, x)) dx.
If the solution of the partial differential equation (3.1) has finite energy, the quantities (Energy) and (Momentum) are preserved for all t ∈ R.

Moreover, if H is a stationary solution of (3.1), then, for any -1 < v < 1, the Lorentz transformation of H given by

ϕ(t, x) = H x -vt √ 1 -v 2 (3.2)
is also a solution of (3.1).

The only non-constant stationary solutions of (3.1) with finite energy are the topological solitons denominated kinks and anti-kinks. The kinks of (3.1) are the space translation of the functions denoted in (1.11) and the anti-kinks are the space reflection around 0 of the kinks. Moreover, from Chapter 2, we recall the estimate (2.4) which implies the existence of

a constant C(k) > 0 for any k ∈ N such that d k dx k H 0,1 (x) ≤ C(k) min e √ 2x , e -2 √ 2x for all x ∈ R. (3.3)
Finally, since

H ′ 0,1 (x) = √ 2 e √ 2x (1+e 2 √ 2x ) 3 2
, we have that

H ′ 0,1 (x) 2 L 2 x = 1 2 √ 2 .
In [START_REF] Chen | Kink networks for scalar fields in dimension 1 + 1[END_REF], it was obtained for any -1 < v < 1 the existence of a solution ϕ(t, x) of (3.1)

satisfying lim t→+∞ ϕ(t, x) -H 0,1 x -vt √ 1 -v 2 -H -1,0 x + vt √ 1 -v 2 H 1 x (R) = 0, (3.4) lim t→+∞ ∂ t ϕ(t, x) + v √ 1 -v 2 H ′ 0,1 x -vt √ 1 -v 2 - v √ 1 -v 2 H ′ -1,0 x + vt √ 1 -v 2 L 2 x = 0. (3.5)
However, the uniqueness of a solution ϕ(t, x) satisfying (3.4) and (3.5) is still an open problem.

In Chapter 2, we studied the dynamics of two kinks of (3.1) with energy slightly bigger than two times the energy of a kink. The asymptotic stability of a kink for the ϕ 6 model was obtained in [START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF]. See also the references [START_REF] Germain | Quadratic Klein-Gordon equations with a potential in one dimension[END_REF], [START_REF] Kowalczyk | Kink dynamics in the ϕ 4 model: asymptotic stability for odd perturbations in the energy space[END_REF], [START_REF] Krieger | Global dynamics above the ground state energy for the one-dimensional NLKG equation[END_REF] and [START_REF] Schlag | Asymptotic stability of the sine-Gordon kink under odd perturbations[END_REF] for more information on the stability and asymptotic stability of a kink for other one-dimension nonlinear wave equation models. For more information about kinks and other topological solitons, see the book [START_REF] Manton | Topological Solitons[END_REF].

The objective of this chapter is to construct a sequence of approximate solutions ϕ k (v, t, x)

satisfying for any 0 < v ≪ 1 and s > 0

∂ 2 t ϕ k (v, t, x) -∂ 2 x ϕ k (v, t, x) + U ′ (ϕ k (v, t, x)) L ∞ t H s x ≪ v 2k-1 2 ,
and

lim t→+∞ -→ ϕ k (v, t, x) - --→ H 0,1 x -vt √ 1 -v 2 - ---→ H -1,0 x + vt √ 1 -v 2 H s x = 0, with - → f (t, x) = (f (t, x), ∂ t f (t, x)) for any function f ∈ C 1 (R 2
) . This result is the first part of our work about the study of the collision of two kinks with low speed v.

The study of dynamics of multi-kink solutions for the ϕ 6 is motivated from condensed matter, see [START_REF] Bishop | Solitons and Condensed Matter Physics[END_REF], and cosmology [START_REF] Vilekin | Cosmic Strings and Other Topological Defects[END_REF]. Also, there is a large literature about the numerical study of collision of multi-kinks for the ϕ 6 , for example in high energy physics see [START_REF] Dorey | Kinkantikink collisions in the ϕ 6 model[END_REF] and [START_REF] Vakhid | Kink interactions in the (1+1)-dimensional ϕ 6 model[END_REF].

More precisely, in the article [START_REF] Vakhid | Kink interactions in the (1+1)-dimensional ϕ 6 model[END_REF] it was numerically proved that there is a critical velocity v c , so that if two kinks collide with a velocity smaller than v c , the collision is very close to an elastic collision.

Motivated by [START_REF] Vakhid | Kink interactions in the (1+1)-dimensional ϕ 6 model[END_REF], we theoretically study the high elasticity of the collision of two kinks with low speed for the ϕ 6 model. The sequence of approximate solutions ϕ k (v, t, x) will be useful later in the next chapter to study the elasticity of collision of two kinks with low speed.

Since the ϕ 6 model is a non-integrable system, there are many issues and difficulties in the studying of the collision problem for two kinks of this model.

There exist few mathematical results about the inelasticity of the collision of two solitons for other dispersive models. In [START_REF] Martel | Inelastic interaction of nearly equal solitons for the quartic gKdV equation[END_REF], Martel and Merle proved the inelasticity of the collision of two solitons with low speed for the quartic gKdV . There are results on the elasticity and inelasticity of the collision of solitons for gKdV for a certain class of nonlinearities, see [START_REF] Muñoz | On the inelastic 2-soliton collision for generalized KdV equations[END_REF] and [START_REF] Muñoz | Inelastic character of solitons of slowly varying gKdV equations[END_REF] by Muñoz, see also [START_REF] Martel | Stability of two soliton colision for non-integrable gKdV equations[END_REF] by Martel and Merle. For nonlinear Schrödinger equation, in [START_REF] Perelman | Two soliton collision for nonlinear Schrödinger equations in dimension 1[END_REF], Perelman studied the collision of two solitons of different sizes and obtained that after the collision the solution doesn't preserve the two solitons' structure.

Main Results

Definition 3.1.1. We define Λ :

C 2 (R 2 , R) → C(R 2 , R) as the nonlinear operator satisfying Λ(ϕ 1 )(t, x) = ∂ 2 t ϕ 1 (t, x) -∂ 2 x ϕ 1 (t, x) + U ′ (ϕ 1 (t, x)),
for any function

ϕ 1 ∈ C 2 (R 2 , R).
And, for any smooth functions w

: (0, 1) × R → R, ϕ : R 2 → R, let ϕ 2 (t, x) := ϕ (t, w(t, x)) , then we define Λ (ϕ (t, w(t, x))) = Λ (ϕ 2 ) (t, x), for all (t, x) ∈ R 2 .
From Chapter 1, we recall Theorem 1.4.6 which is the main result of Chapter 3 :

Theorem 3.1.2.
There exist a sequence of functions (ϕ k (v, t, x)) k≥2 , a sequence of real values δ(k) > 0 and a sequence of numbers n k ∈ N such that for any

0 < v < δ(k), ϕ k (v, t, x) satisfies lim t→+∞ ϕ k (v, t, x) -H 0,1 x -vt √ 1 -v 2 -H -1,0 x + vt √ 1 -v 2 H 1 x = 0, lim t→+∞ ∂ t ϕ k (v, t, x) + v √ 1 -v 2 H 0,1 x -vt √ 1 -v 2 - v √ 1 -v 2 H -1,0 x + vt √ 1 -v 2 L 2 x = 0, lim t→-∞ ϕ k (v, t, x) -H 0,1 x + vt -e v,k √ 1 -v 2 -H -1,0 x -vt + e v,k √ 1 -v 2 H 1 x = 0, lim t→-∞ ∂ t ϕ k (v, t, x) - v √ 1 -v 2 H 0,1 x + vt -e v,k √ 1 -v 2 + v √ 1 -v 2 H -1,0 x -vt + e v,k √ 1 -v 2 L 2 x = 0, with e v,k ∈ R satisfying lim v→0 e v,k - ln ( 8 v 2 ) √ 2 v| ln (v)| 3 = 0.
Moreover, if 0 < v < δ(k), then for any s ≥ 0 and l ∈ N ∪ {0}, there exists C(k, s, l) > 0 such that

∂ l ∂t l Λ(ϕ k )(v, t, x) H s x ≤ C(k, s, l)v 2k+l |t|v + ln 1 v 2 n k e -2 √ 2|t|v .

Organization of Chapter 3

In this chapter, we denote by G ∈ S (R) the following function

G(x) = e - √ 2x - e - √ 2x (1 + e 2 √ 2x ) 3 2 + 2 √ 2 xe √ 2x (1 + e 2 √ 2x ) 3 2 + k 1 e √ 2x (1 + e 2 √ 2x ) 3 2 , ( 3.6) 
where k 1 ∈ R is the unique real number such that G(x),

H ′ 0,1 (x) = 0. The function G satisfies - ∂ 2 ∂x 2 G(x) + U (2) (H 0,1 (x)) G(x) = U (2) (H 0,1 (x)) -2 e - √ 2x + 8 √ 2H ′ 0,1 (x), (3.7) 
see Remark A.3.2 in the Appendix for the proof. Next, from Chapter 2, we recall, for 0 < v < 1, the following function

d v (t) = 1 √ 2 ln 8 v 2 cosh √ 2vt 2 , ( 3.8) 
which is a solution to the ordinary differential equation

dv (t) = 16 √ 2e - √ 2dv(t) . (3.9)
In Section 3.2, we are going to develop the main techniques necessary to construct each approximate solution ϕ k of Theorem 3.1.2. More precisely, we are going to construct function spaces in Subsection 3.2.1 and study the applications of Fredholm alternative of the linear operator -∂ 2 x + U (2) (H 0,1 (x)) restricted to these function spaces in Subsection 3.2.2.

In Section 3.3, we will prove auxiliary estimates with the objective of simplifying, in the next sections, the computation and evaluation of Λ(ϕ k )(v, t, x) for each k ∈ N ≥2 and 0 < v ≪ 1.

In Section 3.4, we are going to prove Theorem 3.1.2 for the case k = 2. More precisely, for v > 0 small enough, we will first choose the function

φ 2,0 (t, x) =H 0,1   x -dv(t) 2 1 -ḋv(t) 2 4   -H 0,1   -x -dv(t) 2 1 -ḋv(t) 2 4   +e - √ 2dv(t) G   x -dv(t) 2 1 -ḋv(t) 2 4   -e - √ 2dv(t) G   -x -dv(t) 2 1 -ḋv(t) 2 4  
as a candidate for the case k = 2. The next argument is to use the main results of Subsection 3.2.1 and Section 3.3 to estimate Λ(φ 2,0 )(t, x), see also Lemma 3.5.6 and Corollary 3.5.7 for a better understanding of the main ideas behind this argument. More precisely, we are going to verify the existence of two finite sets of Schwartz functions with exponential decay in both directions (h i (x)) i∈I and (p i (t)) i∈I such that

Λ(φ 2,0 )(t, x) = i∈I p i ( √ 2vt)   h i   x -dv(t) 2 1 -ḋv(t) 2 4   -h i   -x -dv(t) 2 1 -ḋv(t) 2 4     + u v (t, x),
where the function u v : R 2 → R 2 is smooth and satisfies, for a real constant q > 0, any l ∈ N ∪ {0} and any s > 0, the estimate

∂ l ∂t l u v (t, x) H s x ≤ C(s, l)v 6+l ln 1 v + |t|v q e -2 √ 2|t|v , for all t ∈ R, if 0 < v ≪ 1,
where C(s, l) is a positive number depending only on l and s. Next, using the estimate above of Λ(φ 2,0 )(t, x), we are going to construct a linear ordinary differential equation with a solution being a smooth function r v (t) with L ∞ (R) norm of order v 2 ln 1 v . Using the function r v (t), we are going to verify, for

φ 2,1 (t, x) =H 0,1   x + r v (t) -dv(t) 2 1 -ḋv(t) 2 4   -H 0,1   -x + r v (t) -dv(t) 2 1 -ḋv(t) 2 4   +e - √ 2dv(t) G   x + r v (t) -dv(t) 2 1 -ḋv(t) 2 4   -e - √ 2dv(t) G   -x + r v (t) -dv(t) 2 1 -ḋv(t) 2 4   ,
and an explicit real value e 2,v , that the function ϕ 2 (v, t, x) := φ 2,1 (t+e 2,v , x) satisfies Theorem 3.1.2 for the case k = 2, if v > 0 is small enough. In Section 3.5, we are going to prove Theorem 3.1.2 by an argument of induction on k ∈ N ≥2 . The proof of complementary information is done in the Subsection A.3 of the Appendix.

Notation

In this subsection, we will present the notations that are going to be used in the next sections of this chapter.

Notation 3.1.3. For any pair of functions w

: R 2 → R, h ∈ L ∞
x (R) we denote h w (t, x) by the following function

h w (t, x) = h (w(t, x)) -h (w(t, -x)) for any (t, x) ∈ R 2 .
Next, for any s ≥ 0, we consider the norm

∥•∥ H s x given by ∥f ∥ H s x = ∥f ∥ H s x = R (1 + |x|) 2s | f (x)| 2 dx 1 2
, for any

f ∈ H s x (R),
where f is the Fourier transform of the function f. Finally, we denote D as the set given by {z ∈ C |z| < 1}.

Functional analysis methods

Asymptotic analysis methods

We will use the following Lemma in several occasions. 

R |x -x 1 | m e -α(x-x 1 ) + e -β(x 2 -x) + ≲ α,β,m max (1 + ζ m ) e -αζ , e -βζ ,
For any α > 0, the following bound holds

R |x -x 1 | m e -α(x-x 1 ) + e -α(x 2 -x) + ≲ α 1 + ζ m+1 e -αζ .
Proof. Elementary computations.

Next, we define the function spaces S + and S -. They will be used to construct the approximate solutions ϕ k (v, t, x) of Theorem 3.1.2 for each k ∈ N ≥2 . Definition 3.2.2. S + is the linear subspace of L ∞ (R) such that f ∈ S + , if and only if all the following conditions are true

• f ′ ∈ S (R) and there is a holomorphic function F : {z ∈ C| -1 < Im (z) < 1} → C such that F (e √ 2x ) = f (x) for all x ∈ R. • F satisfies F (z) = +∞ k=0 a k z 2k+1
, for some sequence of real numbers (a k ) and all z ∈ D.

Definition 3.2.3. S -is the linear subspace of L ∞ (R) such that g ∈ S -, if and only if all the following conditions are true 

• g ′ ∈ S (R) and there is a holomorphic function G : {z ∈ C| -1 < Im (z) < 1} → C such that G(e - √ 2x ) = g(x) for all x ∈ R. • G satisfies G(z) = +∞ k=1 b k z 2k ,
l ∈ N, f (l) ∈ S + and g (l) ∈ S -.
The following Lemma is a direct consequence of Definitions 3.2.2 and 3.2.3.

Lemma 3.2.7 (Multiplicative Lemma). If f 1 , f 2 , f 3 ∈ S + , then the function g 1 (x) := f 1 (-x)f 2 (-x) is in S -and the function g 2 (x) := f 1 (x)f 2 (x)f 3 (x) is in S + .
Definition 3.2.8. We define, for any n ∈ N ∪ {0}, the linear spaces

S +,n = {x n f (x)| f (x) ∈ S + ∩ S (R)} and S -,n = {x n f (x)| f (x) ∈ S -∩ S (R)}
, and for any m ∈ N ∪ {0}, we define

S + m = m n=0 S +,n , S - m = m n=0 S -,n , S + ∞ = +∞ n=0 S +,n , S - ∞ = +∞ n=0 S -,n .
Remark 3.2.9. From Definition 3.2.8, for any m ∈ N ∪ {0}, it is not difficult to verify that

d dx S + m = df dx | f ∈ S + m ⊂S + m , d dx S - m = df dx | f ∈ S - m ⊂S - m .
Remark 

(f ) = min{2k + 1| k ∈ N ∪ {0}, a k ̸ = 0}.
And in notation of definition 3.2.3, if g ∈ S -, we define 

val -(g) = min{2k| k ∈ N, b k ̸ = 0}
(x) ∈ S + ∩ S (R) for all n ∈ ∆, h n (-x) is in S + ∩ S (R) for all n ∈ Ω = N \ ∆ and (d n ) n≥1
⊂ N is a strictly increasing sequence satisfying, for any M ∈ N and any ζ ≥ 1, the following equation

f (x -ζ)g(x) = 1≤n≤M, n∈∆ h n (x -ζ)e - √ 2dnζ + 1≤n≤M, n∈Ω h n (x)e - √ 2dnζ + e - √ 2d M ζ f M (x -ζ)g M (x), (3.10 
)

where f M ∈ S + , g M ∈ S -with f M or g M in S (R). Also, ∥f M (x -ζ)g M (x)∥ H k x (R) ≲ k,M 1 for any ζ ≥ 1.
Lemma 3.2.17. Let f ∈ S + , g ∈ S -, then:

• If val + (f ) > val -(g), then there exist h 1 ∈ S + ∩ S (R) and functions f 1 ∈ S + , g 1 ∈ S - satisfying, for any ζ ≥ 1, the following identity f (x -ζ)g(x) = h 1 (x -ζ)e -val -(g)ζ + e - √ 2 val -(g)ζ f 1 (x -ζ)g 1 (x),
and at least one of the functions

f 1 , g 1 is in S (R). • If val -(g) > val + (f ), then there exist ĥ1 ∈ S (R) ∩ S + and functions f 1 ∈ S + , g 1 ∈ S - satisfying, for any ζ ≥ 1, the following identity f (x -ζ)g(x) = ĥ1 (-x)e -val + (f )ζ + e - √ 2 val + (f )ζ f 1 (-x + ζ)g 1 (-x),
and at least one of the functions f 1 , g 1 is in S (R).

Proof of Lemma 3.2.17. We consider the notation of Definition 3.2.2 and Definition 3.2.3. For 2w 1 + 1 = val + (f ) and 2w 2 = val -(g) there are only two cases to consider, which are 2w 1 + 1 > 2w 2 and 2w 1 + 1 < 2w 2 .

First, we consider the case where 2w

1 + 1 > 2w 2 . f (x -ζ)g(x) =f (x -ζ)b w 2 e -2w 2 √ 2x + f (x -ζ) g(x) -b w 2 e -2w 2 √ 2x =f (x -ζ)b w 2 e -2 √ 2w 2 (x-ζ) e -2 √ 2w 2 ζ +e -2 √ 2w 2 ζ f (x -ζ)e -2 √ 2w 2 (x-ζ) g(x)e +2 √ 2w 2 x -b w 2 . Because 2w 1 + 1 > 2w 2 and f ∈ S + , we have that f (x)e -2w 2 √ 2x ∈ S + ∩ S (R). Clearly, if g(x)e +2 √ 2w 2 
x -b w 2 ∈ S -, then, from the identity above, Lemma 3.2.17 would be true for the case where val + (f ) > val -(g). Moreover, for any x > 0, we have that

g(x)e +2 √ 2w 2 x -b w 2 = +∞ n=w 2 +1 b n e -2(n-w 2 ) √ 2x . (3.11)
Since G(z) is analytic in the region D, we clearly have that the following function

Q(z) = G(z) z 2w 2 -b w 2 = +∞ n=w 2 +1 b n z 2(n-w 2 ) (3.12)
is analytic in D, from which, using the product rule of the derivative, for any x > 1 and l, m ∈ N, we deduce that

(1 + |x| m ) d l dx l g(x)e +2 √ 2w 2 x -b w 2 ≲ l,m 1. (3.13) 
From equation (3.12) and from the fact that G(z) has a holomorphic extension in the region

B = {z| -1 < Im z < 1} since g ∈ S -, we conclude that Q(z) has a holomorphic extension in the region B. Moreover, since g ∈ S -, then g ∈ L ∞ x (R) ∩ C ∞ (R) and g ′ ∈ S (R), from
which we deduce the following estimate

(1 + |x| m ) d l dx l g(x)e +2 √ 2w 2 x ≲ l,m 1 for any x < -1 and l ∈ N ≥1 ,
and so, we conclude that 

d dx g(x)e +2 √ 2w 2 x -b w 2 ∈ S (R). Analogously, if 2w 2 = val -(g) > val + (f ) = 2w 1 + 1,
h 1 (x) = g(-x)e -(2w 1 +1) √ 2x ∈ S + ∩ S (R), g 1 (x) = f (-x)e (2w 1 +1) √ 2x -a w 1 ∈ S -,
and 

f (x -ζ)g(x) = g(x)a w 1 e √ 2(2w 1 +1)x e - √ 2(2w 1 +1)ζ + e - √ 2(2w 1 +1)ζ g(x)e √ 2(2w 1 +1)x f (x -ζ)e - √ 2(2w 1 +1)(x-ζ) -a w 1 . (3.
+ (f ), val -(g)) .
Proof. From an argument of analogy, it is enough to consider the case where 2w

1 + 1 = val + (f ) > val -(g) = 2w 2 .
In this case, from the proof of Proposition 3.2.16, we have that the real function ĥ1 (x) = b w 2 f (x)e -2 √ 2w 2 x satisfies ĥ1 ∈ S + ∩ S (R), ĥ1 ̸ ≡ 0 and the following identity

f (x -ζ)g(x) = ĥ1 (x -ζ)e -2 √ 2w 2 ζ + e -2 √ 2w 2 ζ f 1 (x -ζ)g 1 (x), (3.15) 
where f 1 ∈ S + , g 1 ∈ S -and either f 1 or g 1 is in S (R). In conclusion, Lemma 3.2.1 and equation (3.15) imply for any s ≥ 0 that

lim ζ→+∞ f (x -ζ)g(x)e 2 √ 2w 2 ζ -ĥ1 (x -ζ) H s x = 0, (3.16) 
and so,

0 < lim ζ→+∞ f (x -ζ)g(x)e 2 √ 2w 2 ζ H s x < ∞. (3.17)
Since ĥ1 ∈ S (R) and ĥ1 ̸ ≡ 0, ĥ1 H s x ̸ = 0 for all s ≥ 0. Therefore, using equations (3.16) and (3.17), we can verify that the unique possible choice for d 1 is 2w 2 . And so, the function h 1 satisfying Proposition 3.2.16 for f and g is unique and equal to ĥ1 , otherwise (3.16) would be false. Similarly, we can repeat the argument above for the case val + (f ) < val -(g) and obtain in this situation that

d 1 = val + (f ) and h 1 (x) = a w 1 g(x)e (2w 1 +1) √ 2x . Next, assuming that (h n , d n ) is unique for all 1 ≤ n ≤ M 0 ∈ N, we can repeat the argument above in f M 0 (x -ζ)g M 0 (x) and conclude that (h M 0 +1 , d M 0 +1
) is unique too. In conclusion, from the principle of finite induction applied on n ∈ N, we obtain the uniqueness of (h n , d n ) n∈N satisfying Proposition 3.2.16 when both functions f and g are not identically zero.

Remark 3.2.19. When f ̸ ≡ 0 and g ̸ ≡ 0, we can find explicitly the sequence (h n , d n ) satisfying (3.10) from the proof of Lemma 3.2.17.

Remark 3.2.20. If f (x) = x m f 0 (x), g(x) = x l g 0 (x) such that m, l ∈ N, f 0 ∈ S + ∩S (R) and g 0 ∈ S -∩ S (R), then there exist a sequence of pairs (h n , d n ) n≥1 and a set ∆ ⊂ N satisfying h n (x) ∈ S + ∩ S (R) for all n ∈ ∆, h n (-x) is in S + ∩ S (R) for all n ∈ Ω = N ≥1 \ ∆, d n ∈ N
is strictly increasing such that for any ζ ≥ 1, x ̸ = 0, x ̸ = ζ and M ∈ N we have the following equation

f (x -ζ)g(x) (x -ζ) m x l = 1≤n≤M, n∈∆ h n (x -ζ)e - √ 2dnζ + 1≤n≤M, n∈Ω h n (x)e - √ 2dnζ + e - √ 2d M ζ f M (x -ζ)g M (x),
where f M ∈ S + , g M ∈ S -and f M or g M is in S (R). Furthermore, the sequence (h n , d n ) n∈N is unique.

Remark 3.2.21. From Proposition 3.2.16, we can deduce if f (-x) ∈ S + , g(-x) ∈ S -, f ̸ ≡ 0 and g ̸ ≡ 0, then there exists a sequence of pairs

(h n , d n ) n≥1 and a set ∆ ⊂ N such that h n (x) is in S + ∩ S (R) for all n ∈ ∆, h n (-x) is in S + ∩ S (R) for all n ∈ Ω = N \ ∆ and (d n ) n≥1 ⊂ N
is a strictly increasing sequence satisfying, for any M ∈ N and any ζ ≥ 1, the following equation

f (-x + ζ)g(-x) = 1≤n≤M, n∈∆ h n (x -ζ)e - √ 2dnζ + 1≤n≤M, n∈Ω h n (x)e - √ 2dnζ + e - √ 2d M ζ f M (x -ζ)g M (x), (3.18 
)

where f M ∈ S + , g M ∈ S -and f M or g M is in S (R). Furthermore, the sequence (h n , d n ) n∈N is unique.
We also demonstrate the following lemma, which will be essential to obtain the results in the next subsection.

Lemma 3.2.22. Let m ∈ N and f j ∈ S + ∩ S (R) for 0 ≤ j ≤ m, m j=0 x j f j (x) = 0, if and only if f j ≡ 0 for all 0 ≤ j ≤ m.

Proof. For each 0 ≤ j ≤ m, since f j ∈ S + , we have that either f j ≡ 0 or there exists a natural d j ∈ N ∪ {0} and a j ∈ R with a j ̸ = 0 such that f j (x) = a j e (2d j +1)

√ 2x + O e (2d j +3) √ 2x
for all x ≤ -1. So, there are only two possible cases to consider.

Case 1.(∃f j such that f j (x) ̸ = 0 for some x ≤ -1.) In this situation, we have that there is a natural d min ≥ 0 and a non-trivial real polynomial p(x) of degree at most m such that

0 = m j=0 x j f j (x) = e (2d min +1) √ 2x p(x) + O e (2d min +3) √ 2x |x| m+1 for all x ≤ -1, (3.19) 
which is not possible since if p(x) is a non-identically zero polynomial, then p(x) = c for c ̸ = 0 or lim |x|→+∞ |p(x)| = +∞, but both cases contradict identity (3.19). Case 2.(f j ≡ 0 for all 0 ≤ j ≤ m) Clearly, the second case is the only possible.

Applications of Fredholm alternative

We consider the self-adjoint unbounded linear operator L :

H 2 x (R) ⊂ L 2 x (R) → L 2 x (R) defined by L(f )(x) = - d 2 f (x) dx 2 + U (2) (H 0,1 (x))f (x) for all x ∈ R. (3.20) 
From Lemma 2.6 of [START_REF] Moutinho | Dynamics of two interacting kinks for the ϕ 6 model[END_REF] we know for a constant λ > 0 that σ(L)

⊂ {0} ∪ [λ, +∞), ker(L) = {cH ′ 0,1 (x)| c ∈ C}.
From this, in the proof of Lemma 2.5 of [START_REF] Moutinho | Dynamics of two interacting kinks for the ϕ 6 model[END_REF], we have deduced the existence of a constant k > 0 such that if g ∈ H 1

x (R) satisfies ⟨g, H ′ 0,1 ⟩ = 0, we have that

⟨L(g), g⟩ ≥ k ∥g∥ 2 H 1 x . (3.21)
Next, we consider the linear space

Ort(H ′ 0,1 ) = g ∈ L 2 x (R)| ⟨g, H ′ 0,1 ⟩ = 0 .
Since 0 < H 0,1 < 1 and U is a smooth function, Cauchy-Schwarz inequality implies for any

u, µ ∈ Ort(H ′ 0,1 ) ∩ H 1 x (R) that |⟨L(u), µ⟩| ≤ du dx L 2 x dµ dx L 2 x + U (2) L ∞ x [-1,1] ∥u∥ L 2 x ∥µ∥ L 2 x . (3.22)
In conclusion, from Lax-Milgram Theorem and inequalities (3.21), (3.22), we obtain for any bounded linear map A :

Ort(H ′ 0,1 ) ∩ H 1 x (R) , ∥•∥ H 1 x (R) → R the existence of a unique h A ∈ Ort(H ′ 0,1 ) ∩ H 1 x (R) such that, for any u ∈ Ort(H ′ 0,1 ) ∩ H 1 x (R), we have ⟨L(h A ), u⟩ = A(u). (3.23) 
As a consequence, we can obtain, for any µ ∈ L 2

x , the existence of a unique h(µ

) ∈ Ort H ′ 0,1 ∩ H 1
x (R) satisfying for any u ∈ H 1 x (R) the following identity ⟨L(h(µ)), u⟩ = ⟨µ, u⟩ .

Then, inequalities (3.21), (3.22) imply the existence of β > 0 such that for any µ ∈

Ort H ′ 0,1 ∩ H 1 x (R) , ∥h(µ)∥ H 1 x (R) ≤ β ∥µ∥ L 2 x .
In conclusion, from the density of H 1 x (R) in L 2

x and the fact that h(µ) ∈ Ort H ′ 0,1 ∩ H 1 x (R) , we deduce the following lemma: Lemma 3.2.23. There is a unique injective and bounded linear map

L 1 : Ort H ′ 0,1 , ∥•∥ L 2 x → Ort H ′ 0,1 ∩ H 1 x (R) , ∥•∥ H 1 x , such that for any µ ∈ Ort H ′ 0,1 , L(L 1 (µ)) = µ.
Now, for all m ∈ N ∪ {0}, we are going to consider the linear spaces S + m ∩ Ort H ′ 0,1 and study the applications of the operator L 1 in these subspaces. More precisely, we are going to prove the following lemma: Lemma 3.2.24. The map L 1 defined in Lemma 3.2.23 satisfies

L 1 S + m ∩ Ort H ′ 0,1 ⊂ S + m+1 ∩ Ort H ′ 0,1 for all m ∈ N ∪ {0}. Proof. From Lemma A.3.3 in Appendix section, we have that if f ∈ S (R)∩Ort H ′ 0,1 , then L 1 (f ) ∈ S (R).
Since L 1 is a linear map, it is enough to prove for any g(x) ∈ S + ∩ S (R) and any m ∈ N ∪ {0} that

L 1 x m g(x) -κH ′ 0,1 (x) ∈ S + m+1 , (3.24) with κ satisfying x m g(x), H ′ 0,1 (x) = κ H ′ 0,1 2 
L 2
x . To simplify our notation, we denote h(x) =

x m g(x) -kH ′ 0,1 (x). From Lemma 3.2.23, L 1 x m g(x) -kH ′ 0,1 (x 
) is well defined, so it is only necessary to prove (3.24) by induction on m ∈ N ∪ {0}. We also observe that we can apply a change of variable z(x) = e √ 2x to rewrite the ordinary differential equation

-f (2) (x) + U (2) (H 0,1 (x))f (x) = h(x) (3.25)
as

-2z 2 d 2 F 0 (z) dz 2 -2z dF 0 (z) dz + (2 + E(z)) F 0 (z) = H(z), (3.26) 
where F 0 (e

√ 2x ) = f (x), H(e √ 2x ) = h(x)
and

E : {z ∈ C| -1 < Im (z) < 1} → C
is the analytic function

E(z) = -24 z 2 1 + z 2 + 30 z 4 (1 + z 2 ) 2 ,
because of the following identity U (2) 

(H 0,1 (x)) = 2 -24 e 2 √ 2x (1+e 2 √ 2x ) + 30 e 4 √ 2x (1+e 2 √ 2x ) 2 .
We also recall that the operator L defined in (3.20) satisfies L H ′ 0,1 = 0 and

H ′ 0,1 (x) = √ 2e √ 2x (1+e 2 √ 2x ) 3 2
. Also, using the method of variation of parameters, we have that the real function

c(x) = 1 -e -2 √ 2x 4 √ 2 + 3x 2 + 3(e 2 √ 2x -1) 4 √ 2 + e 4 √ 2x -1 8 √ 2 , ( 3.27) 
satisfies L c(x)H ′ 0,1 (x) = 0. In conclusion, from the Picard-Lindelöf Theorem, we deduce that

L -1 {0} =      c 1   -e -2 √ 2x 4 √ 2 + 3x 2 + 3e 2 √ 2x 4 √ 2 + e 4 √ 2x 8 √ 2   + c 2   e √ 2x (1 + e 2 √ 2x ) 3 2 c 1 , c 2 ∈ R    .
(3.28)

Moreover, we can verify that c(x)

H ′ 0,1 (x) satisfies +∞ 0 c(x) 2 H ′ 0,1 (x) 2 dx = +∞, 0 -∞ c(x) 2 H ′ 0,1 (x) 2 dx = +∞,
from which we deduce with identity (3.28) that

L -1 {0} ∩ L 2 x (R ≤-1 ) = L -1 {0} ∩ L 2 x = c 1 H ′ 0,1 (x)| c 1 ∈ R . (3.29)
In conclusion, from Theorem 3.2.23 and identity (3.29), we deduce that if

h ∈ Ort H ′ 0,1 , f ∈ L 2 x (R ≤-1 ) and -f (2) (x) + U (2) (H 0,1 (x))f (x) = h(x) for all x ∈ R, then there exists a constant κ 1 ∈ R such that L 1 (h)(x) -f (x) = κ 1 H ′ 0,1 (x 
) for all x ∈ R. So, to prove Lemma 3.2.24 it is enough to find one f ∈ S + m+1 such that L(f )(x) = h(x). Case (m = 0.) If h ∈ S + 0 , there exist an analytic function

H : {z ∈ C| -1 < Im (z) < 1} → C,
and a sequence (h k ) k∈N such that H(z) = +∞ k=0 h k z 2k+1 for any z ∈ D and h(x) = H e √ 2x
for all x ∈ R. We are going to construct a sequence (c k ) k∈N∪{0} such that there exists a solution

f ∈ S + 1 ∩ S (R) of L(f )(x) = h(x) satisfying for all x < 0 f (x) = c 0 xH ′ 0,1 (x) + +∞ k=0 c k e (2k+1) √ 2x . (3.30)
First, since L(H ′ 0,1 )(x) = 0, we have for any smooth function g(x) that

L(g)(x) = -2c 0 H ′′ 0,1 (x)- d 2 dx 2 g(x) -c 0 xH ′ 0,1 (x) +U (2) (H 0,1 (x)) g(x) -c 0 xH ′′ 0,1 (x) . (3.31) Next, if (c k ) k∈N is a real sequence such that the function F 1 (z) = +∞ k=0 c k z 2k+1 is analytic
in the open unitary disk D, then the chain rule of derivative implies for any x < 0 that

dF 1 (e √ 2x ) dx = √ 2 +∞ k=0 c k (2k + 1)e (2k+1) √ 2x , d 2 F 1 (e √ 2x
)

dx 2 = 2 +∞ k=0 c k (2k + 1) 2 e (2k+1) √ 2x . (3.32)
We also denote the analytic expansion of E(z) in the open complex unitary disk as 

E(z) = +∞ k=1 p k z 2k , ( 3 
   -4c 0 = h 0 , (2 -2(2k + 1) 2 ) c k = h k + 2c 0 u k -j+m=k, j≥1 c m p j , for any k ≥ 1.
(3.34)

From now on, we consider the sequence (c k ) k∈N∪{0} to be the unique solution of the linear recurrence (3.34). Clearly, for any 0 < ϵ < 1, we have that lim k→+∞ |c k |ϵ k = 0, which implies lim sup

k→+∞ |c k | 1 k ≤ 1.
Otherwise, (c k ϵ k 2 ) k∈N would be an unbounded sequence and there would be a subsequence (c k j ) j∈N , so that |c l |ϵ

l 2 < |c k j |ϵ k j
2 for all 0 ≤ l < k j , from which we would obtain with the identities lim n→+∞ p n ϵ

n 2 = lim n→+∞ h n ϵ n 2 = lim n→+∞ u n ϵ n 2 = 0 that ϵ k j 2 |c k j |(2(2k j + 1) 2 -2) ≫ 2|c 0 u k j |ϵ k j 2 + |h k j |ϵ k j 2 + 2(k j + 1)|c k j |ϵ k j 2 (ϵ j 2 p j ) L ∞ (N)
, but this estimate would contradict (3.34). So, we deduced that

F 1 (z) = +∞ k=0 c k z 2k+1
is analytic in D. In conclusion, the recurrence (3.34) implies that the function f (x) denoted in (3.30) satisfies L(f )(x) = h(x) for all x < 0.

Moreover, because E(z), 1 z are analytic in the simply connected regions

B δ,+ = z ∈ C| -1 < Im(z) < 1, |z| > δ, Re(z) > - 4 5 δ , B δ,-= z ∈ C| -1 < Im(z) < 1, |z| > δ, Re(z) < 4 5 δ
for any 0 < δ < 1, we obtain, from h ∈ S + and the ordinary differential equation (3.26), the existence of a unique holomorphic function F + in the region B δ,+ which is a solution of (3.26) and satisfies F 1 (e

√ 2x ) + c 0 xH ′ 0,1 (x) = F + (e √ 2x
) for all e √ 2x ∈ B δ,+ ∩ D, see Chapter 3.7

of [START_REF] Coddington | Theory of Ordinary Differential Equations[END_REF]. By analogy, there exists a unique holomorphic function F -with domain B δ,-which is a solution of (3.26) and satisfies F 1 (e

√ 2x ) + c 0 xH ′ 0,1 (x) = F -(e √ 2x ) for all e √ 2x ∈ B δ,-∩ D.
In conclusion, there exists a unique analytic function F 2 in the region

B = {z ∈ C| -1 < Im(z) < 1} such that F 2 (z) = F 1 (z)
for all z ∈ D and the real function

c 0 xH ′ 0,1 (x) + F 2 e √ 2x ∈ L -1 {h}.
Indeed, from the recurrence relation (3.34) and identities (3.31), (3.32), (3.33), we conclude that if

f (x) = c 0 xH ′ 0,1 (x) + F 2 (e √ 2x ), (3.35) 
then f (x) ∈ L 2 x (R ≤-1 ), and L(f

)(x) = h(x) for all x ∈ R. In conclusion, there exists τ ∈ R such that L 1 (h)(x) = f (x) -τ H ′ 0,1 (x), and since L 1 (h)(x) ∈ S (R), identity (3.35) implies that L 1 (h)(x) is in S + 1 .
General case(m ≥ 1.) Based on the observation made in (3.24), it suffices to check for any g ∈ S + ∩ S (R) that

T m (g) := L 1     x m g -x m g, H ′ 0,1 H ′ 0,1 H ′ 0,1 2 L 2 x     ∈ S + m+1 , ( 3.36) 
for all m ∈ N ∪ {0}. Clearly, we checked (3.36) when m = 0 in the first case. Now, we assume that (3.36) is true for all m ∈ N ∪ {0} satisfying 0 ≤ m ≤ M, for some number M ∈ N ∪ {0}.

From the inductive hypothesis, if g ∈ S + ∩ S (R), then T M (g) ∈ S + M +1 , which implies the existence of a finite set of functions (f m ) 0≤m≤M +1 ⊂ S + ∩ S (R) such that

T M (g) = M +1 m=0 x m f m .
(3.37)

Moreover, since L (T M (g)) ∈ S + M , we derive from Lemma 3.2.22 and identity (3.37) the identity x M +1 L(f M +1 )(x) = 0, which is possible only if f M +1 = σH ′ 0,1 for a real number σ. Therefore, we have

T M (g)(x) = σx M +1 H ′ 0,1 (x) + M m=0
x m f m (x) for any x ∈ R.

(3.38)

Consequently,

d dx T M (g)(x) -σx M +1 H ′′ 0,1 (x) is in S + M ,
from which, using (3.36) and identity L(H ′ 0,1 )(x) = 0, we obtain that

- d 2 dx 2 xT M (g)(x) +U (2) (H 0,1 (x))xT M (g)(x)-x M +1 g(x) -τ M xH ′ 0,1 (x) -2σx M +1 H ′′ 0,1 (x) is in S + M ,
where

τ M = x M g, H ′ 0,1 H ′ 0,1 2 
L 2 x .
Using identity L(H ′ 0,1 )(x) = 0, we also obtain that

- d 2 dx 2 - σx M +2 H ′ 0,1 (x) M + 2 + U (2) (H 0,1 (x)) - σx M +2 H ′ 0,1 (x) M + 2 =2σx M +1 H ′′ 0,1 (x) +σ(M + 1)x M H ′ 0,1 (x). 
Therefore, using that xH ′ 0,1 and x M H ′ 0,1 are in S + M , we deduce

L xT M (g)(x) - σx M +2 H ′ 0,1 (x) M + 2 -x M +1 g(x) is in S + M , from which, for τ M +1 H ′ 0,1 2 
L 2 = ⟨H ′ 0,1 , x M +1 g(x)⟩, we obtain that L 1 x M +1 g -τ M +1 H ′ 0,1 -xT M (g) - σx M +2 H ′ 0,1 M + 2 is in S + M +1 . (3.39)
In conclusion, we obtain that (3.36) is true for m = M + 1, so by induction, it is true for all m ∈ N ∪ {0}, so Lemma 3.2.24 is true for all m ∈ N ∪ {0}.

Auxiliary estimates

In this section, we will prove useful lemmas, which will be used later to estimate

∂ l ∂t l Λ(ϕ k )(v, t, x) for all k ∈ N ≥2 and l ∈ N ∪ {0}.
First, we can verify by induction that |d (l) (t)| ≲ l v l , for any l ∈ N, more precisely:

Lemma 3.3.1. For any v ∈ (0, 1), the function d v (t) = 1 √ 2 ln 8 v 2 cosh √ 2vt 2 satisfies ḋv (t) L ∞ (R)
= 2v and

d v (t) -2v|t| - 1 √ 2 ln 8 v 2 + √ 2 ln 2 ≲e -2 √ 2|t|v , |d (l) v (t)| ≲ l v l e -2 √
2|t|v for all natural number l ≥ 2.

Proof. The proof of the first inequality follows directly from the definition of d v and the following estimate

|ln (1 + x)| ≲ |x|, for all x ∈ (0, 1).
From ḋv (t) = 2v tanh √ 2vt , we obtain that ḋv (t)

L ∞ (R) = 2v. Moreover, because dv (t) = 16 √ 2e - √ 2dv(t) = 2 √ 2v 2 sech ( √ 2vt) 2 , Lemma 3.3.1 is also true for l = 2.
Next, since the following function q : C \ {i, -i} → C q(z) := 2z 1 + z 2 satisfies q(z) = q (z -1 ) and it is analytic when restricted to the set B = {z ∈ C| -1 < Im z < 1}, we have

q (l) (x) L ∞ x (R) = q (l) (x) L ∞ x ({x∈R| |x|≤1})
< +∞ for all l ∈ N ∪ {0}.

In conclusion, since

sech (x) = 2e -x 1 + e -2x , then, for all l ∈ N ∪ {0}, d l dx l sech (x) ≲ l e -|x| . (3.40) Furthermore, since dv (t) = 2 √ 2v 2 sech √ 2vt 2 
, we have for any l ≥ 2 that

d (l) v (t) = 2 √ 2v 2 d l-2 dt l-2 sech √ 2vt 2 = 2 √ 2( √ 2) l-2 v l d l-2 dx l-2 x= √ 2vt sech (x) 2 . (3.41)
In conclusion, we obtain that Lemma 3.3.1 is also true for any l ∈ N ≥2 , and so, it is true for all l ∈ N ∪ {0}.

From now on, we denote the function w 0 : R 2 → R by

w 0 (t, x) = x -dv(t) 2 1 -ḋv(t) 2 4 (3.42)
We will use several times the function w 0 (t, x) in the next sections too. Clearly, from (3.9), for any h ∈ C ∞ (R), we have the following identity

∂ ∂t [h (w 0 (t, x))] = - ḋv (t) 4 -ḋv (t) 2 h ′ (w 0 (t, x))+ 16 √ 2 ḋv (t) 4 -ḋv (t) 2 e - √ 2dv(t) w 0 (t, x)h ′ (w 0 (t, x)). (3.43)
Moreover, we have:

Lemma 3.3.2. If f ∈ S +
m for some m ∈ N ∪ {0}, then for any numbers l, k 1 ∈ N ∪ {0} the function f (w 0 (t, x)) satisfies the following estimate

∂ l f (w 0 (t, x)) ∂t l H k 1 x ≲ l,k 1 v l (1 + |x|) l max 0≤j≤k 1 +l f (j) (x) L 2 x ≲ f,l,k 1 v l . (3.44)
More precisely, there exist a natural number N l and a finite set

{(h i,l , p i,l,v ) ∈ S + m+l × C ∞ | 1 ≤ i ≤ N l } such that ∂ l f (w 0 (t, x)) ∂t l = N l i=1 h i,l (w 0 (t, x))p i,l,v (t), (3.45) 
and, for all

1 ≤ i ≤ N l and all k 1 ∈ N ∪ {0} ∂ k 1 h i,l (x) ∂x k 1 ≲ k 1 ,l (1 + |x|) l max 0≤j≤k 1 +l f (j) (x) , ∂ k 1 p i,l,v (t) ∂t k 1 L ∞ (R) ≲ l,k 1 v k 1 +l , if 0 < v ≪ 1. (3.46)
Furthermore, if l is odd, then p i,l,v (t) is an odd function for all 1 ≤ i ≤ N l , otherwise they are all even functions.

Proof. We will prove by induction for all l ∈ N ∪ {0} the existence of N l ∈ N such that (3.45) holds, and for all 1 t) and they also satisfy (3.46) for all 1 ≤ i ≤ N l and all k 1 ∈ N ∪ {0}.

≤ i ≤ N l h i,l ∈ S + m+l , p i,l,v (t) = (-1) l p i,l,v (-
The case l = 0 is trivial, we can just take the unitary set {(f, 1)} ⊂ S + m × C ∞ . So, there exists l 0 ∈ N ∪ {0} such that Lemma 3.3.2 is true for all l ∈ N ∪ {0} satisfying 0 ≤ l ≤ l 0 . In conclusion, using the identity (3.45) for l = l 0 and identity (3.43), we obtain that

∂ l 0 +1 f (w 0 (t, x)) ∂t l 0 +1 = N l 0 i=1 ∂h i,l 0 (w 0 (t, x)) ∂t p i,l 0 (t) + h i,l 0 (w 0 (t, x)) ṗi,l 0 ,v (t) (3.47) = N l 0 i=1 -h ′ i,l 0 (w 0 (t, x)) ḋv (t)p i,l 0 ,v (t) 4 -ḋv (t) 2 + N l 0 i=1 h i,l 0 (w 0 (t, x)) ṗi,l 0 ,v (t)+w 0 (t, x)h ′ i,l 0 (w 0 (t, x)) 16 √ 2 ḋv (t)p i,l 0 ,v (t) 4 -ḋv (t) 2 e - √ 2dv(t) . (3.48) Since h i,l 0 ∈ S + m+l 0 , we deduce that h ′ i,l 0 ∈ S + m+l 0 ⊂ S + m+l 0 +1 and xh ′ i,l 0 ∈ S + m+l 0 +1 . Also, we recall that the function d v (t) = 1 √ 2 ln 8 v 2 cosh √ 2vt 2 satisfies for all l ∈ N d (l) v (t) L ∞ (R) ≲ l v l , if 0 < v ≪ 1. (3.49)
Moreover, for any m ∈ N ∪ {0} and any 0 < δ < 1,

d m dθ m 1 √ 1 -θ 2 L ∞ θ (|θ|<δ) < +∞, (3.50) 
because the function q(θ) = (1 -θ 2 )

-1
2 is smooth in the set {θ| |θ| ≤ δ}. Therefore, since the functions h i,l 0 and p i,l 0 ,v satisfy (3.46), using the chain rule of derivative, estimate (3.49) and (3.47), (3.48), we deduce the existence of a natural number N l 0 +1 such that

F l 0 +1,t (x) = N l 0 +1 i=1 h i,l 0 +1 (x)p i,l 0 +1,v (t),
and, for all 1 ≤ i ≤ N l 0 +1 , the functions h i,l 0 +1 , p i,l 0 +1,v satisfy (3.46), h i,l 0 +1 ∈ S + m+l 0 +1 . More precisely, from (3.47) and (3.48), we choose N l 0 +1 = 3N l 0 and

             h i,l 0 +1 (x), p i,l 0+1 ,v (t) = -h ′ i,l 0 (x), ḋv(t)pi,l 0 ,v (t) √ 4-ḋ(t) 2 , if ≤ i ≤ N l 0 , h i,l 0 +1 (x), p i,l 0+1 ,v (t) = xh ′ i-N l 0 ,l 0 (x), 16 √ 2 ḋv(t)pi,l 0 ,v (t) 1-ḋv(t) 2 e - √ 2dv(t) , if N l 0 + 1 ≤ i ≤ 2N l 0 , h i,l 0 +1 (x), p i,l 0+1 ,v (t) = h i-2N l 0 (x), ṗi,l 0 ,v (t) , if 2N l 0 + 1 ≤ i ≤ 3N l 0 ,
for all (t, x) ∈ R 2 . In conclusion, (3.45), (3.46) are true for l = l 0 + 1 and

h i,l 0 +1 ∈ S + m+l 0 +1
for all 1 ≤ i ≤ N l 0 +1 . Finally, since d v (t) is an even smooth function and, for any 1 ≤ i ≤ N l 0 , p i,l 0 ,v (t) = (-1) l 0 p i,l 0 ,v (-t), then, from (3.47) and (3.48), we deduce that p i,l 0 +1,v (t) = (-1) l 0 +1 p i,l 0 +1,v (-t) for all 1 ≤ i ≤ N l 0 +1 . In conclusion, the statement of Lemma 3.3.2 is true for l = l 0 + 1, and so, by induction, it is true for all l ∈ N ∪ {0}.

Remark 3.3.3. If γ : (0, 1) × R → R is a continuous function such that γ(v, •) : R → R is smooth for all 0 < v < 1 and ∂ l γ(v, t) ∂t l ≲ l v l for any l ∈ N ∪ {0} and all t ∈ R, if 0 < v ≪ 1,
then for any Schwartz function f and

ω(t, x) = x -dv(t) 2 + γ(v, t) 1 -ḋv(t) 2 4
, we obtain similarly to the proof of Lemma 3.3.2 that if v ≪ 1, then, for all l ∈ N ∪ {0} and

k 1 ∈ N, ∂ l f (ω(t, x)) ∂t l H k 1 x ≲ l,k 1 v l (1 + |x|) l max 0≤j≤k 1 +l f (j) (x) L 2 x ≲ f,l,k 1 v l . (3.51) Furthermore, if f ∈ C ∞ (R) and f ′ ∈ S (R), for example f = H 0,1 , then from identity ∂ ∂t f (ω(t, x)) = ∂ t γ(v, t) - ḋv (t) 2 1 1 -ḋv(t) 2 4 f ′ (ω(t, x)) + 1 - ḋv (t) 2 4   d dt   1 1 -ḋv(t) 2 4     ω(t, x)f ′ (ω(t, x)),
we obtain from the same argument above any l, k 1 ∈ N that estimate (3.51) holds. We are going to use this remark later in Section 3.5.

Lemma 3.3.4. For any n 1 ∈ N and n 2 ∈ N ∪ {0}, let r : (0, 1) × R → R be a function such that r v := r(v, •) : R → R is smooth for all 0 < v < 1 and satisfies for

n 1 ∈ N, n 2 ∈ N ∪ {0} d l r v (t) dt l ≲ l v n 1 +l ln 1 v n 2 , for all l ∈ N ∪ {0}, if 0 < v ≪ 1.
Then, for any s ≥ 1 and any smooth function h : R → R such that H ′ ∈ S (R), we have

∂ l ∂t l [h (w 0 (t, x + r v (t))) -h (w 0 (t, x))] H s x ≲ h,s,l v n 1 +l ln 1 v n 2 , ∂ l ∂t l   h (w 0 (t, x + r v (t))) -h (w 0 (t, x)) - r v (t) 1 -ḋ(t) 2 4 h ′ (w 0 (t, x))   H s x ≲ h,s,l v 2n 1 +l ln 1 v 2n 2 , if 0 < v ≪ 1.
Proof of Lemma 3.3.4. From the Fundamental Theorem of Calculus and the definition of

w 0 (t, x), we have h (w 0 (t, x + r v (t))) -h (w 0 (t, x)) = r v (t) 1 -ḋ(t) 2 4 1 0 h ′   x -dv(t) 2 + θr v (t) 1 -ḋv(t) 2 4   dθ, (3.52) 
and

h (w 0 (t, x + r v (t))) -h (w 0 (t, x)) - r v (t) 1 -ḋ(t) 2 4 h ′ (w 0 (t, x)) = r v (t) 2 1 -ḋ(t) 2 4 1 0 h ′′   x -dv(t) 2 + θr v (t) 1 -ḋ(t) 2 4   (1 -θ) dθ. (3.53)
From Remark 3.3.3, we obtain for all 0 ≤ θ ≤ 1 and 0 < v ≪ 1 that

∂ l ∂t l h ′′ (w 0 (t, x + θr v (t))) H s x + ∂ l ∂t l h ′ (w 0 (t, x + θr v (t))) H s x ≲ l v l for all l ∈ N ∪ {0}.
In conclusion, from identities (3.52) and (3.53), we conclude Lemma 3.3.4 using the product rule of derivative and Lemma 3. 

d l r v (t) dt l ≲ l v n 1 +l ln 1 v n 2 , if 0 < v ≪ 1 for all l ∈ N ∪ {0}. For any m 1 ∈ N, m 2 ∈ N ∪ {0} and m 3 ∈ Z, let p : (0, 1) × R → R be the function p(v, t) = 1 - ḋv (t) 2 4 m 3 2 exp     -m 1 √ 2(d v (t) + r v (t)) 1 -ḋv(t) 2 4 m 2 2     -e -m 1 √ 2dv(t) .
If m 2 = m 3 = 0 and 0 < v ≪ 1, then for all l ∈ N ∪ {0}

∂ l ∂t l p(v, t) ≲ m 1 ,l v 2m 1 +n 1 +l ln 1 v + |t|v n 2 e -2 √ 2|t|v . (3.54) If m 3 ̸ = 0, m 2 = 0 and 0 < v ≪ 1, then for all l ∈ N ∪ {0} ∂ l ∂t l p(v, t) ≲ l,m 1 max v 2m 1 +2+l , v 2m 1 +n 1 +l ln 1 v + |t|v n 2 e -2 √ 2|t|v . (3.55) If m 2 ̸ = 0 and 0 < v ≪ 1, then for all l ∈ N ∪ {0} ∂ l ∂t l p(v, t) ≲ l,m 1 max v 2m 1 +2+l |t|v + ln 1 v , v 2m 1 +n 1 +l |t|v + ln 1 v n 2 e -2 √ 2|t|v .
(3.56)

Proof. If m 2 = m 3 = 0, then, from the Fundamental Theorem of Calculus, we have

p(v, t) = - √ 2m 1 1 0 e - √ 2m 1 (dv(t)+θrv(t)) r v (t) dθ.
So, for all l ∈ N ∪ {0}, we deduce that

∂ l ∂t l p(v, t) =- √ 2 1 0 d l dt l e - √ 2m 1 (dv(t)+θrv(t)) r v (t) dθ = - √ 2 1 0 l j=0 l j d j dt j e - √ 2m 1 (dv(t)+θrv(t)) d l-j dt l-j r v (t) dθ.
From the hypothesis of r v (t), e -θ √ 2rv(t) ≲ 1 for any 0 ≤ θ ≤ 1 if 0 < v ≪ 1, so, using the chain and product rules, we obtain that

d l dt l e - √ 2θrv(t) ≲ l v l , for any l ∈ N and any 0 ≤ θ ≤ 1. (3.57) Moreover, since 8 m 1 e - √ 2m 1 dv(t) = v 2m 1 sech √ 2vt 2m 1 = dv (t) m 1 2 -3m 1 2
, we have from Lemma 3.3.1 and the product rule of derivative that

d l dt l e - √ 2m 1 dv(t) ≲ l,m 1 v 2m 1 +l e -2 √ 2m 1 |t|v ≲ v 2m 1 +l e -2 √ 2|t|v , for all l ∈ N ∪ {0}, if 0 < v ≪ 1. (3.58)
In conclusion, using the hypotheses satisfied by the function r v and the estimates above, we obtain inequality (3.54).

If m 3 ̸ = 0 and m 2 = 0, we have

p(v, t) = 1 - ḋv (t) 2 4 m 3 2 e -m 1 √ 2(dv(t)+rv(t)) -e -m 1 √ 2dv(t) =e -m 1 √ 2(dv(t)+rv(t)) -e -m 1 √ 2dv(t) + e -m 1 √ 2(dv(t)+rv(t))   1 - ḋv (t) 2 4 m 3 2 -1   .
From the argument above, we have for any l ∈ N ∪ {0} that

d l dt l e -m 1 √ 2(dv(t)+rv(t)) -e - √ 2m 1 dv(t) ≲ l,m 1 v 2m 1 +n 1 +l ln 1 v + |t|v n 2 e -2 √ 2|t|v , if 0 < v ≪ 1.
Moreover, since the function q : (-1, 1) → R denoted by

q(x) = (1 -x 2 ) m 3 2 -1
is smooth when restricted to the compact set [-1 + δ, 1 -δ] for any 0 < δ < 1, we conclude from Lemma 3.3.1, the chain rule and product rule of derivative that if 0 < v ≪ 1, then 

d l dt l   1 - ḋv (t) 2 4 m 3 2 -1   ≲ l,m 3 v 2+l , for all l ∈ N ∪ {0}. ( 3 
p 1 (v, t) = exp     -m 1 √ 2(d v (t) + r v (t)) 1 -ḋv(t) 2 4 m 2 2     -e -m 1 √ 2(dv(t)+rv(t))
satisfies, for any m 1 , m 2 ∈ N and 0 < v ≪ 1, the following inequality

∂ l ∂t l p 1 (v, t) ≲ l,m 1 ,m 2 v 2m 1 +2+l |t|v + ln 1 v e -2 √ 2|t|v , for all l ∈ N ∪ {0}, (3.60) 
then (3.56) is true. From the Fundamental Theorem of Calculus, we obtain

p 1 (v, t) =-m 1 √ 2(r v (t) + d v (t)) 1 0 exp     -m 1 √ 2(d v (t) + r v (t))     1 -θ + θ 1 -ḋv(t) 2 4 m 2 2         dθ + m 1 √ 2(r v (t) + d v (t)) 1 -ḋv(t) 2 4 m 2 2 1 0 exp     -m 1 √ 2(d v (t) + r v (t))     1 -θ + θ 1 -ḋv(t) 2 4 m 2 2         dθ.
Similarly to the proof of (3.59), we deduce if 0 < v ≪ 1, then

d l dt l 1 - ḋv (t) 2 4 - m 2 2 ≲ l,m 2 v 2+l e -2 √
2|t|v for all l, m 2 ∈ N.

(3.61)

Moreover, from the hypotheses satisfied by r v , we obtain using Lemma 3.3.1, estimate (3.61) and the product rule of derivative that if 0 < v ≪ 1, then

d l dt l exp   -m 1 √ 2r v (t)   1 -θ + θ 1 -ḋ(t) 2 4 m 2       ≲ l,m 2 ,m 1 v l , for all 0 ≤ θ ≤ 1 and l ∈ N ∪ {0}.
Similarly, since e - √ 2dv(t) ≲ v 2 ≪ 1 and d v (t) ≲ v|t| + ln 1 v we obtain from Lemma 3.3.1, estimate (3.61) and the product rule of derivative that

d l dt l exp   -m 1 √ 2d v (t)θ    1 1 -ḋ(t) 2 4 m 2 -1       ≲ l,m 2 ,m 1 v l , for all 0 ≤ θ ≤ 1 and l ∈ N ∪ {0}.
In conclusion, using (3.58), Lemma 3.3.1, and the product rule of derivative, we obtain (3.60), and so (3.56) is true.

Lemma 3.3.6. Let m, n ∈ N ∪ {0}, f ∈ S + , g ∈ S -. Let γ : (0, 1) × R → R be a continuous function satisfying for any l ∈ N ∪ {0} d l dt l γ(v, t) ≲ l v l if 0 < v ≪ 1. (3.62)
Then, for

ω(t, x) = w 0 (t, x + γ(v, t)) = x -dv(t) 2 + γ(v, t) 1 -ḋv(t) 2 4 , (3.63) if 0 < v ≪ 1,
then, for any s ≥ 0 and all l ∈ N ∪ {0}, we have

∂ l ∂t l [ω(t, x) m f (ω(t, x)) ω(t, -x) n g (-ω(t, -x))] H s x ≲ s,l,m,n v 2 min(val + (f ),val -(g))+l ln 1 v + |t|v m+n e -2 √ 2|t|v . (3.64) Furthermore, if 0 < v ≪ 1, val + (f ) + 1 ̸ = val -(g) and val -(g) + 1 ̸ = val + (f ), then for all l ∈ N ∪ {0} d l dt l ω(t, x) m f (ω(t, x)) ω(t, -x) n g (-ω(t, -x)) , H ′ 0,1 (ω(t, x)) ≲ l,m,n v l+2 min(val + (f )+1,val -(g)) |t|v + ln 1 v m+n e -2 √ 2|t|v , (3.65)
and

d l dt l ω(t, x) m f (ω(t, x)) ω(t, -x) n g (-ω(t, -x)) , H ′ 0,1 (ω(t, -x)) ≲ l,m,n v l+2 min(val + (f ),val -(g)+1) |t|v + ln 1 v m+n e -2 √ 2|t|v . (3.66) Otherwise, if 0 < v ≪ 1 and val + (f ) + 1 = val -(g), then for any l ∈ N ∪ {0} d l dt l ω(t, x) m f (ω(t, x)) ω(t, -x) n g (-ω(t, -x)) , H ′ 0,1 (ω(t, x)) ≲ l,m,n v l+2 val -(g) |t|v + ln 1 v m+n+1 e -2 √ 2|t|v . (3.67) If 0 < v ≪ 1 and val + (f ) = val -(g) + 1, then d l dt l ω(t, x) m f (ω(t, x)) ω(t, -x) n g (-ω(t, -x)) , H ′ 0,1 (ω(t, -x)) ≲ l,m,n v l+2 val + (f ) |t|v + ln 1 v m+n+1 e -2 √ 2|t|v . (3.68)
Proof of the Lemma 3.3.6. First, by an argument of analogy, it is enough to prove that estimate (3.64) is true for the case val

+ (f ) = 2w 1 + 1 > 2w 2 = val -(g), such that w 1 , w 2 ∈ N.
From the Separation Lemma and Corollary 3.2.18, we have that there exists functions

h 1 ∈ S + ∩ S (R), f 1 ∈ S + , g 1 ∈ S -with either f 1 or g 1 ∈ S (R) such that f (x -ζ)g(x) = h 1 (x -ζ)e -2 √ 2w 2 ζ + e -2 √ 2w 2 ζ f 1 (x -ζ)g 1 (x),
for all x ∈ R and ζ ≥ 1. Moreover, after a change of variables, we obtain that

ω(t, x) m ω(t, -x) n f (ω(t, x)) g (-ω(t, -x)) =ω(t, x) m ω(t, -x) n h 1 (ω(t, x)) exp   -2w 2 √ 2(d v (t) -2γ(v, t)) 1 -ḋv(t) 2 4   +ω(t, x) m ω(t, -x) n exp   -2 √ 2w 2 (d v (t) -2γ(v, t)) 1 -ḋv(t) 2 4   f 1 (ω(t, x)) g 1 (-ω(t, -x)) .
Since f 1 or g 1 ∈ S (R) and

f 1 ∈ S + , g 1 ∈ S -, then either x k 1 f 1 (x) ∈ S + ∞ ⊂ S (R) for all k 1 ∈ N ∪ {0} or x k 1 g 1 (x) ∈ S - ∞ ⊂ S (R) for all k 1 ∈ N ∪ {0}. Consequently, from Remark 3.3.3, if 0 < v ≪ 1, then for all l, k 1 ∈ N ∪ {0} and s ≥ 1 either ∂ l ∂t l ω(t, x) k 1 f 1 (ω(t, x)) H s x ≲ s,l,k 1 v l , or ∂ l ∂t l ω(t, -x) k 1 g 1 (-ω(t, -x)) H s x ≲ s,l,k 1 v l .
From Lemma 3.3.1, if 0 < v ≪ 1, then we also have the following estimate for all l ∈ N

d l dt l   1 4 -ḋv (t) 2   ≲ l v 2+l e -2 √ 2|t|v , ( 3.69) 
which with the hypotheses satisfied by γ(v, t) and the product rule of derivative implies that if 0

< v ≪ 1, then ∂ l ∂t l   d v (t) -2γ(v, t) 4 -ḋv (t) 2   ≲ l v l , for all l ∈ N. (3.70)
Therefore, since

ω(t, x) + ω(t, -x) = -2d v (t) + 4γ(v, t) 4 -ḋv (t) 2 , ( 3.71) 
we deduce, from the product rule of derivative, the hypotheses (3.62) and Cauchy-Schwarz inequality, that if 0 < v ≪ 1, then for all k 1 , l ∈ N ∪ {0}

∂ l ∂t l ω(t, x) m ω(t, -x) n f 1 (ω(t, x)) g 1 (-ω(t, -x)) H k 1 x ≲ m,n,l,f 1 ,g 1 d v (t) max(m,n) v l . (3.72) Moreover, since d v (t) = 1 √ 2 ln 8 v 2 cosh √ 2vt 2 and sup t∈R |γ(v, t)| ≲ 1 when 0 < v ≪ 1, then µ(t) = exp   -2 √ 2w 2 (d v (t) -2γ(v, t)) 1 -ḋ(t) 2 4   ≲ v 4w 2 sech √ 2vt 2 , if 0 < v ≪ 1, (3.73) 
from which with estimate (3.70) implies for all l ∈ N∪{0} that if 0

< v ≪ 1, then d l µ(t) dt l ≲ l,w 2 v l+4w 2 e -2 √ 2v|t| . In conclusion, estimate (3.72) implies, if 0 < v ≪ 1, that for all m, n, l ∈ N ∪ {0} we have ∂ l ∂t l µ(t)ω(t, x) m ω(t, -x) n f 1 (ω(t, x)) g 1 (-ω(t, -x)) H k 1 x ≲ w 1 ,w 2 ,m,n,l |t|v + ln 1 v max(m,n) v 4w 2 +l e -2 √ 2|t|v . (3.74) Finally, since h 1 ∈ S + ∩S (R), we have x k 1 h 1 (x) H s x ≲ s,k 1 1 for all s, k 1 ∈ N∪{0}. Therefore, Remark 3.3.3 implies for 0 < v ≪ 1 that ∂ l ∂t l ω(t, x) k 1 h 1 (ω(t, x)) H s x ≲ s,k 1 ,l v l for all k 1 ∈ N ∪ {0}.
In conclusion, if 0 < v ≪ 1, then, using (3.71), (3.73) and Lemma 3.3.1, we obtain from the product rule of derivative for any

k 1 , l ∈ N ∪ {0} that ∂ l ∂t l [ω(t, x) m ω(t, -x) n h 1 (ω(t, x)) µ(t)] H k 1 x ≲ l,k 1 v l+4w 2 |t|v + ln 1 v n e -2 √ 2|t|v ,
from which with inequality (3.74) and triangle inequality, we deduce (3.64).

From now on, we will prove estimates (3.65), (3.66), (3.67) and (3.68). Indeed, it is sufficient to demonstrate estimates (3.65) and (3.68), because the proof of the other inequalities follows from a similar argument.

Since ω satisfies (3.63), we obtain after a change of variables that 

ω(t, x) m f (ω(t, x)) ω(t, -x) n g (-ω(t, -x)) , H ′ 0,1 (ω(t, x)) = 1 - ḋv (t) 2 4 x m f (x)   -x - d v (t) -2γ(v, t) 1 -ḋv(t) 2 4   n g   x + d v (t) -2γ(v, t) 1 -ḋv(t) 2 4   , H ′ 0,1 (x) .
l ∈ N ∪ {0} that if val + (f ) + 1 ̸ = val -(g), then d l dζ l x m f (x)(x + ζ) n g(x + ζ), H ′ 0,1 (x) ≲ l ζ m+n max e - √ 2(1+val + (f ))ζ , e - √ 2 val -(g)ζ , otherwise d l dζ l x m f (x)(x + ζ) n g(x + ζ), H ′ 0,1 (x) ≲ l ζ m+n+1 e - √ 2 val -(g)ζ .
Finally, from Lemma 3.3.1 and the hypotheses satisfied by γ(v, t), we obtain if 0

< v ≪ 1, then for all l ∈ N ∂ l ∂t l   2d v (t) -4γ(v, t) 4 -ḋv (t) 2   + d l dt l 1 - ḋv (t) 2 4 ≲ l v l .
In conclusion, the product rule of derivative and identity (3.75) 

H(v, t) = ⟨f (w(t, x)) , g((w(t, -x)))⟩ = 1 - ḋv (t) 2 4 f   x - d v (t) -2γ(v, t) 1 -ḋv(t) 2 4   , g(-x) .
So, we can use Lemmas 3.2.1, 3.3.1 and Remark 3.

3.3 to conclude that if 0 < v ≪ 1, then, for all l ∈ N ∪ {0}, ∂ l ∂t l H(v, t) ≲ l v 2+l |t|v + ln 1 v m+n+1 e -2 √ 2v|t| .

Approximate solution for k = 2

First, we recall the function w 0 : R 2 → R denoted by

w 0 (t, x) = x -dv(t) 2 1 -ḋv(t) 2 4 ,
and the function φ 2,0 denoted by

φ 2,0 (t, x) = H 0,1 (w 0 (t, x)) -H 0,1 (w 0 (t, -x)) + e - √ 2dv(t) [G(w 0 (t, x)) -G(w 0 (t, -x))] . (3.76)
Using the results of the last section, we will estimate with high precision precision the function Λ(ϕ 2,0 )(t, x). We recall the identity (3.7) satisfied by the function G -

d 2 dx 2 G(x) + U (2) (H 0,1 (x))G(x) = -24H 0,1 (x) 2 + 30H 0,1 (x) 4 e - √ 2x + 8 √ 2H ′ 0,1 (x). (3.77)
Since H ′ 0,1 is in the kernel of the linear self-adjoint operatord 2 dx 2 + U (2) (H 0,1 ), we can deduce using (3.77) that

R 24H 0,1 (x) 2 -30H 0,1 (x) 4 e - √ 2x H ′ 0,1 (x) dx = 8 √ 2 H ′ 0,1 2 
L 2 x = 4. (3.78)
The main objective of this section is to demonstrate the following theorem.

Theorem 3.4.1. Let d v (t) be the function defined in (3.8). If 0 < v ≪ 1, then there is a smooth even function r v (t) and a value e(v) such that for the following approximate solution

φ 2 (t, x) = H 0,1 (w 0 (t, x + r v (t))) -H 0,1 (w 0 (t, -x + r v (t))) + e - √ 2dv(t) [G (w 0 (t, x + r v (t))) -G (w 0 (t, -x + r v (t)))] , (3.79) ϕ 2 (v, t, x) = φ 2 (t + e(v), x
) satisfies the conclusion of Theorem 3.1.2 for k = 2 and there exists

n 2 ∈ N such that if 0 < v ≪ 1, then d l dt l Λ(φ 2 )(t, x), H ′ 0,1 (w 0 (t, ±x + r v (t))) ≲ l v 6+l |t|v + ln 1 v n 2 +1 e -2 √ 2|t|v , (3.80) for all l ∈ N ∪ {0}. Furthermore, if v ≪ 1, the function r v satisfies ∥r v ∥ L ∞ (R) ≲ v 2 ln 1 v 2 , d l dt l r v (t) ≲ l v 2+l ln 1 v + |t|v e -2 √ 2|t|v ,
for all l ∈ N.

From now on, we say that any two smooth functions f, g : R 2 → R satisfy the relation of equivalence f ∼ = 6 g if, and only if, for any s ≥ 0 and l ∈ N ∪ {0} there exists a positive number C(s, l) such that

∂ l ∂t l [f (t, x) -g(t, x)] H s x ≤ C(s, l)v 6+l |t|v + ln 1 v 2 2 e -2 √ 2|t|v ,
for all t ∈ R. With the objective of simplifying our reasoning, we also say in this section that two functions f, g are equivalent if, and only if, f ∼ = 6 g and that a function f is negligible if

f ∼ = 6 0.

Estimate of non interacting terms of Λ(ϕ 2,0 )(t, x).

In this subsection, we only focus on estimating the main terms of order O(v 2 ) of

Λ H 0,1 (w 0 (t, x)) + e - √ 2dv(t) G (w 0 (t, x)) .
Lemma 3.4.2. For any (t, x) ∈ R 2 , we have

Λ (H 0,1 (w 0 (t, x))) = - 8 √ 2e - √ 2dv(t) 1 -ḋv(t) 2 4 H ′ 0,1 (w 0 (t, x)) + R 1,v (t, w 0 (t, x)) , (3.81)
where the function

R 1,v (t, x) in (3.81) is a finite sum of functions h i (x)p i,v (t), with h i (x) ∈ S + 2 and p i,v (t) ∈ C ∞ (R) being an even function satisfying | d l p i,v (t) dt l | ≲ l v 4+l e -2 √
2v|t| for all l ∈ N ∪ {0}. Furthermore, for any s ≥ 1 and any l ∈ N ∪ {0},

∂ l ∂t l R 1,v (t, w 0 (t, x)) H s x ≲ s,l v 4+l e -2 √ 2v|t| . (3.82) Proof. First, from identities ∂ 2 ∂x 2 H 0,1 (w 0 (t, x)) = 1 1- ḋ(t) 2 4 H ′′ 0,1 (w 0 (t, x)), H ′′ 0,1 (x) = U ′ (H 0,1 (x)),
we have the following equation

ḋv (t) 2 4 -ḋv (t) 2 H ′′ 0,1 (w 0 (t, x)) - ∂ 2 ∂x 2 H 0,1 (w 0 (t, x)) + U ′ (H 0,1 (w 0 (t, x))) = 0. (3.83)
Next, from (3.43), we have

∂ ∂t H 0,1 (w 0 (t, x)) = - ḋv (t) 4 -ḋv (t) 2 H ′ 0,1 (w 0 (t, x)) + 16 √ 2 ḋv (t) 4 -ḋv (t) 2 e - √ 2dv(t) w 0 (t, x)H ′ 0,1 (w 0 (t, x)). (3.84) Now, since f (x) = xH ′ 0,1 (x) ∈ S +
1 and d v (t) is an even smooth function, we obtain from Lemma 3.3.2 the existence of

N 1 ∈ N satisfying ∂ ∂t w 0 (t, x)H ′ 0,1 (w 0 (t, x)) = N 1 i=1 h i,1 (w 0 (t, x)) p i,1,v (t), (3.85) 
such that for all 1

≤ i ≤ N 1 h i,1 ∈ S + 2 , p i,1,v ∈ C ∞ (R) and p i,1
,v is an odd function. They also satisfy for any 1

≤ i ≤ N 1 d l h i,1 (x) dx l ≲ l (1 + |x|) 2 max 0≤j≤2+l f (j) (x) , d l p i,1,v (t) dt l L ∞ (R) ≲ l v 1+l for all l ∈ N ∪ {0}. (3.86) 
In conclusion, we have

∂ ∂t   16 √ 2 ḋv (t)e - √ 2dv(t) 4 -ḋv (t) 2 w 0 (t, x)H ′ 0,1 (w 0 (t, x))   = w 0 (t, x)H ′ 0,1 (w 0 (t, x)) d dt   16 √ 2 ḋv (t)e - √ 2dv(t) 4 -ḋv (t) 2   + 16 √ 2 ḋv (t)e - √ 2dv(t) 4 -ḋv (t) 2 N 1 i=1 h i,1 (w 0 (t, x))p i,1,v (t).
(3.87)

Moreover, from estimate (3.50) and Lemma 3.3.1, we deduce using the chain and product rule of derivative that

d l dt l   ḋv (t)e - √ 2dv(t) 4 -ḋv (t) 2   ≲ l v 3+l e -2 √ 2|t|v for all l ∈ N ∪ {0}. Next, since w 0 (t, x) = x -dv(t) 2 1 -ḋv(t) 2 4 -1 2 and dv (t) = 16 √ 2e - √ 2dv(t) , we can verify that ∂ ∂t   - ḋv (t) 4 -ḋv (t) 2 H ′ 0,1 (w 0 (t, x))   =- 8 √ 2e - √ 2dv(t) 1 -ḋv(t) 2 4 H ′ 0,1 (w 0 (t, x)) + ḋv (t) 2 4 -ḋv (t) 2 H ′′ 0,1 (w 0 (t, x)) (3.88) -ḋv (t) d dt 4 -ḋv (t) 2 -1 2 H ′ 0,1 (w 0 (t, x)) -ḋv (t) d dt 4 -ḋv (t) 2 -1 2 w 0 (t, x)H ′′ 0,1 (w 0 (t, x)).
Using the Remarks 3.2.9 and 3.2.13, we can verify that H ′ 0,1 ∈ S + ∩ S (R), and xH ′′ 0,1 ∈ S + 1 . We also recall the estimate (3.69) which is given by

d l dt l 1 - ḋv (t) 2 4 -1 2 ≲ l v 2+l e -2 √ 2|t|v for all l ∈ N.
In conclusion, from Lemmas 3. 

∂ 2 ∂t 2 - ∂ 2 ∂x 2 + U (2) (H 0,1 (w 0 (t, x))) e - √ 2dv(t) G (w 0 (t, x)) =8 √ 2H ′ 0,1 (w 0 (t, x))e - √ 2dv(t) -24H 0,1 (w 0 (t, x)) 2 -30H 0,1 (w 0 (t, x)) 4 e - √ 2w 0 (t,x) e - √ 2dv(t) +R 2,v (t, w 0 (t, x)) , (3.89) 
where R 2,v (t, x) is a finite sum of functions h i (x)p i,v (t) with h i (x) ∈ S + 3 and p i,v (t) ∈ C ∞ (R) being an even function such that, for any l ∈ N ∪ {0}, d l p i,v (t)

dt l ≲ l v 4+l e -2 √ 2v|t| . Furthermore, if 0 < v ≪ 1, then for any s ≥ 1, l ∈ N ∪ {0}, we have ∂ l ∂t l R 2,v (t, w 0 (t, x)) H s x ≲ s,l v 4+l e -2 √ 2|t|v .
(3.90)

Proof. First, using equation (3.77), we deduce that

ḋv (t) 2 4 -ḋv (t) 2 G (2) (w 0 (t, x)) - ∂ 2 ∂x 2 G(w 0 (t, x)) + U (2) (H 0,1 (w 0 (t, x))) G(w 0 (t, x)) = -24H 0,1 (w 0 (t, x)) 2 -30H 0,1 (w 0 (t, x)) 4 e - √ 2w 0 (t,x) + 8 √ 2H ′ 0,1 (w 0 (t, x)).
Consequently, we have 

R 2,v (t, w 0 (t, x)) = d 2 dt 2 e - √ 2dv(t) G (w 0 (t, x)) + 2 d dt e - √ 2dv(t) ∂ ∂t G (w 0 (t, x)) +e - √ 2dv(t) ∂ 2 ∂t 2 G (w 0 (t, x)) - ḋv (t) 2 4 -ḋv (t) 2 e - √ 2dv(t) G (2) (w 0 (t, x)) . ( 3 
∂ ∂t G(w 0 (t, x)) =   - ḋv (t) 4 -ḋv (t) 2 + 16 √ 2 ḋv (t) 4 -ḋv (t) 2 e - √ 2dv(t) w 0 (t, x)   G (1) (w 0 (t, x)), (3.92) ∂ ∂t G (1) (w 0 (t, x)) =   - ḋv (t) 4 -ḋv (t) 2 + 16 √ 2 ḋv (t) 4 -ḋv (t) 2 e - √ 2dv(t) w 0 (t, x)   G (2) (w 0 (t, x)), (3.93) ∂ ∂t w 0 (t, x)G (1) (w 0 (t, x)) =- ḋ(t) 4 -ḋ(t) 2
w 0 (t, x)G (2) (w 0 (t, x)) + G (1) (w 0 (t, x))

+ 16 √ 2 ḋv (t) 4 -ḋv (t) 2 e - √ 2dv(t) w 0 (t, x) w 0 (t, x)G (2) (w 0 (t, x)) + G (1) (w 0 (t, x)) . (3.94) Moreover, since G ∈ S + 1 , then G (2) (x)
, and x 2 G (2) (x) are in S + 3 . Therefore, using estimates (3.69), Lemma 3.3.1 and identities (3.91), (3.92), (3.93), (3.94), we deduce from the time derivative of (3.92) and the product rule that R 2,v (t, x) is a finite sum of functions h i (x)p i,v (t) satisfying, for any index i, the conditions h i ∈ S 3 + and

d l dt l p i,v (t) ≲ l v 4+l e -2 √ 2|t|v for all l ∈ N ∪ {0}.
Therefore, estimate (3.90) follows from Lemmas 3.3.1, 3.3.2 and the product rule of derivative.

Finally, Since d v (t) is an even function, we can deduce from Lemma 3.3.2 applied on G and identity (3.92) that all the functions p i,v are even.

Applications of Proposition 3.2.16 .

This subsection contains lemmas that are consequences of Proposition 3.2.16 and Remarks 3.2.20, 3.2.21. These lemmas are going to be used later to estimate the remaining terms of Λ(ϕ 2,0 )(t, x). From now on, we denote

M (x) = H 0,1 (x) 1 + e 2 √ 2x , N (x) = H 0,1 (x) 3 1 + e 2 √ 2x , V (x) = H 0,1 (x) 1 + 1 + e 2 √ 2x . (3.95) Remark 3.4.4. From (3.77), -d 2 dx 2 G(x)+U (2) (H 0,1 )G(x) = -24M (x)+30N (x)+8 √ 2H ′ 0,1 (x).
Lemma 3.4.5. For any ζ > 1, we have that , we obtain the following estimate

U ′ (H 0,1 (x -ζ) + H -1,0 (x)) -U ′ (H 0,1 (x -ζ)) -U ′ (H -1,0 (x)) =24e - √ 2ζ [M (x -ζ) -M (-x)] -30e - √ 2ζ [N (x -ζ) -N (-x)] +24e -2 √ 2ζ [V (x -ζ) -V (-x)] + 60e -2 √ 2ζ √ 2 H ′ 0,1 (x -ζ) -H ′ -1,0 (x) +R(x, ζ), ( 3 
U ′ H w 0 0,1 (t, x) -U ′ (H 0,1 (w 0 (t, x))) -U ′ (-H 0,1 (w 0 (t, -x))) ∼ = 6 24 exp   - √ 2d v (t) 1 -ḋv(t) 2 4   M w 0 (t, x) -30 exp   - √ 2d v (t) 1 -ḋv(t) 2 4   N w 0 (t, x) +24 exp   -2 √ 2d v (t) 1 -ḋ(t) 2 4   V w 0 (t, x) + 60 √ 2 exp   -2 √ 2d v (t) 1 -ḋv(t) 2 4   H ′ 0,1 w 0 (t, x).
Moreover, using Lemma 3.3.1 and the chain rule of derivative, we deduce that

d l dt l exp   - √ 2d v (t) 1 -ḋv(t) 2 4   ≲ l v 2+l e -2 √ 2|t|v ,
for any l ∈ N ∪ {0} if 0 < v ≪ 1. Therefore, using Lemma 3.3.6 and the product rule, we deduce from Lemma 3.4.5 that

∂ l ∂t l R   -w 0 (t, -x), d v (t) 1 -ḋv(t) 2 4   H s x ≲ l,s v 6+l e -2 √ 2v|t| ,
for all s ≥ 0 and l ∈ N ∪ {0}.

Proof of Lemma 3.4.5. From the definition of the potential function U we have for any ζ > 1 that 

U ′ (H 0,1 (x -ζ) + H -1,0 (x)) -U ′ (H 0,1 (x -ζ)) -U ′ (H -1,0 (x)) =-24H 0,1 (x -ζ) 2 H -1,0 (x) -24H 0,1 (x -ζ)H -1,0 (x) 2 + 30H 0,1 (x -ζ) 4 H -1,0 (x) +30H 0,1 (x -ζ)H -1,0 (x) 4 + 60H 0,1 (x -ζ) 3 H -1,0 (x) 2 + 60H 0,1 (x -ζ) 2 H -1,0 (x)
-24H 0,1 (x -ζ)H -1,0 (x) 2 , 30H 0,1 (x -ζ)H -1,0 (x) 4 , 60H 0,1 (x -ζ) 3 H -1,0 (x) 2 .
First, since val + (H 0,1 (x)) < val -(H -1,0 (x) 2 ) , we obtain applying Lemma 3.2.17 two times that

-24H 0,1 (x -ζ)H -1,0 (x) 2 =-24H -1,0 (x) 2 e √ 2x e - √ 2ζ -24H -1,0 (x) 2 H 0,1 (x -ζ) -e √ 2(x-ζ) =-24H -1,0 (x) 2 e √ 2x e - √ 2ζ -24e -2 √ 2x H 0,1 (x -ζ) -e √ 2(x-ζ) -24 H -1,0 (x) 2 -e -2 √ 2x H 0,1 (x -ζ) -e √ 2(x-ζ) =-24M (-x)e - √ 2ζ + 24e -2 √ 2ζ V (x -ζ) -24e -2 √ 2ζ H 1,0 (x) 2 e 2 √ 2x -1 H 0,1 (x -ζ)e -2 √ 2(x-ζ) -e - √ 2(x-ζ) ,
and since

H -1,0 (x) 2 e 2 √ 2x -1 = -H -1,0 (x) 2 , H 0,1 (x)e -2 √ 2x -e - √ 2x = - e √ 2x 1 + e 2 √ 2x + 1 + e 2 √ 2x
,

we have that H 0,1 (x)e -2 √ 2x -e - √ 2x ∈ S + ∩ S (R) and H -1,0 (x) 2 e 2 √ 2x -1 ∈ S -.
Furthermore, since val -(H -1,0 (x) 4 ) > val + (H 0,1 (x)), we obtain from Lemma 3.2.17 that

30H 0,1 (x -ζ)H -1,0 (x) 4 =30e - √ 2ζ N (-x) + 30e - √ 2ζ H -1,0 (x) 4 e √ 2x H 0,1 (x -ζ)e - √ 2(x-ζ) -1 =30e - √ 2ζ N (-x) + 30e -2 √ 2ζ H -1,0 (x) 4 e 2 √ 2x H 0,1 (x -ζ)e -2 √ 2(x-ζ) -e - √ 2(x-ζ) ,
and

H -1,0 (x) 4 e 2 √ 2x ∈ S -∩ S (R), H 0,1 (x)e -2 √ 2x -e - √ 2x ∈ S + .
Similarly, since val + (H 0,1 (x) 3 ) > val -(H -1,0 (x) 2 ) , we obtain from Lemma 3.2.17 that

60H 0,1 (x -ζ) 3 H -1,0 (x) 2 =60e -2 √ 2ζ H 0,1 (x -ζ) 3 e -2 √ 2(x-ζ) +60e -2 √ 2ζ H 0,1 (x -ζ) 3 e -2 √ 2(x-ζ) H -1,0 (x) 2 e 2 √ 2x -1 = 60e -2 √ 2ζ √ 2 H ′ 0,1 (x -ζ) + 60e -2 √ 2ζ √ 2 H ′ 0,1 (x -ζ) H -1,0 (x) 2 e 2 √ 2x -1 ,
and

H ′ 0,1 (x) ∈ S + ∩ S (R), H -1,0 (x) 2 e 2 √ 2x -1 ∈ S -.
In conclusion, using all the estimates above and Remark 3.2.21, we obtain the conclusion of Lemma 3.4.5.

Lemma 3.4.7.

There exist A, B, C, D ∈ S + ∩ S (R) and there exists a finite set of quadruples (h i,+ , h i,-, d i , l i ) ∈ S + × S -× N 2 , with h i,+ or h i,-in S (R), l i ∈ {0, 1} and d i ≥ 0, satisfying the following identity

U (2) (H 0,1 (x -ζ) + H -1,0 (x)) -U (2) (H 0,1 (x -ζ)) e - √ 2ζ G(x -ζ) = (x -ζ)A(x -ζ)e -2 √ 2ζ + (x -ζ)B(-x)e -2 √ 2ζ + C(x -ζ)e -2 √ 2ζ + D(-x)e -2 √ 2ζ + i (x -ζ) l i h i,+ (x -ζ)h i,-(x)e -(2+d i ) √ 2ζ , (3.98)
for all x ∈ R and any ζ > 1.

Remark 3.4.8. In notation of Lemma 3.4.7, for all (x, ζ) ∈ R 2 , we denote the real function

Q : R 2 → R by Q(x, ζ) = (x -ζ)A(x -ζ)e - √ 2ζ + (x -ζ)B(-x)e - √ 2ζ + C(x -ζ)e - √ 2ζ + D(-x)e - √ 2ζ , (3.99)
and the function R q : R 2 → R by , we obtain using Lemmas 3.3.5 and 3.4.7 that

R q (x, ζ) = i (x -ζ) l i h i,+ (x -ζ)h i,-(x)e -(1+d i ) √ 2ζ , ( 3 
U (2) H w 0 0,1 (t, x) -U (2) (H 0,1 (w 0 (t, x))) e - √ 2dv(t) G (w 0 (t, x)) = Q   -w 0 (t, -x), d v (t) 1 -ḋv(t) 2 4   e - √ 2dv(t) + R q   -w 0 (t, -x), d v (t) 1 -ḋv(t) 2 4   e - √ 2dv(t) ∼ = 6 Q (-w 0 (t, -x), d v (t)) e - √ 2dv(t) .
Indeed, from Lemma 3.3.6, we also have for all index i, s ≥ 1 and any m ∈ N ∪ {0} that

∂ m ∂t m w 0 (t, x) l i h i,+ (w 0 (t, x)) h i,-(-w 0 (t, -x)) H s x ≲ s,m v 2+m |t|v + ln 1 v e -2 √ 2|t|v , if 0 < v ≪ 1, since l i ∈ {0
, 1} for all i, which implies with Lemma 3.3.1 that 

R q   -w 0 (t, -x), d v (t) 1 -ḋv(t) 2 4   e - √ 2dv(t) ∼ = 6 0. Proof of Lemma 3.4.7. The identity (3.6) implies that G 1 (x) = G(x) -2xH ′ 0,1 (x) ∈ S + ∩ S (R). So,
U (2) (H 0,1 (x -ζ) + H -1,0 (x)) -U (2) (H 0,1 (x -ζ)) G 1 (x -ζ)e - √ 2ζ , 2 U (2) (H 0,1 (x -ζ) + H -1,0 (x)) -U (2) (H 0,1 (x -ζ)) (x -ζ)H ′ 0,1 (x -ζ)e - √ 2ζ .
More precisely, since

U (2) (H 0,1 (x -ζ) + H -1,0 (x)) -U (2) (H 0,1 (x -ζ)) =-24H -1,0 (x) 2 + 30H -1,0 (x) 4 -48H 0,1 (x -ζ)H -1,0 (x) + 30 3 i=1 4 i H -1,0 (x) i H 0,1 (x -ζ) 4-i , we obtain that U (2) (H 0,1 (x -ζ) + H -1,0 (x)) -U (2) (H 0,1 (x -ζ)) G 1 (x -ζ) is a linear com- bination of functions H 0,1 (x -ζ) m i H -1,0 (x) l i h i (x -ζ), such that h i ∈ S + ∩ S (R), m i ∈ N ∪ {0}
, l i ∈ N and 0 < m i + n i is an even number. By similar reasoning, we can verify that

2 U (2) (H 0,1 (x -ζ) + H -1,0 (x)) -U (2) (H 0,1 (x -ζ)) (x -ζ)H ′ 0,1 (x -ζ) is also a linear combination of functions (x -ζ)H 0,1 (x -ζ) m i H -1,0 (x) l i H ′ 0,1 (x -ζ), such that m i ∈ N ∪ {0}, l i ∈ N
and 0 < m i + l i is an even number. Therefore, using Lemma 3.2.7, we can verify that

U (2) (H 0,1 (x -ζ) + H -1,0 (x)) -U (2) (H 0,1 (x -ζ)) G(x -ζ) is a linear combination of functions (x -ζ) α i h i,1 (x -ζ) h i,2 (x)
such that α i ∈ {0, 1}, h i,1 or h i,2 ∈ S (R) and either h i,1 (x) ∈ S + and h i,2 (x) ∈ S -or h i,1 (-x) ∈ S -and h i,2 (-x) ∈ S + . In conclusion, the statement of Lemma 3.64 is a consequence of Proposition 3.2.16 and Remarks 3.2.20, 3.2.21. Lemma 3.4.9. For all ζ ≥ 1,

D 1 (x, ζ) = 6 j=4 1 (j -1)! U (j) (H 0,1 (x -ζ) + H -1,0 (x)) (G(x -ζ) -G(-x)) j-1 e -(j-1) √ 2ζ
satisfies for any l 1 , l 2 ∈ N ∪ {0} the following estimate

∂ l 1 +l 2 ∂x l 1 ∂ζ l 2 D 1 (x, ζ) L 2 x ≲ l 1 +l 2 e -3 √ 2ζ .
Remark 3.4.10. Indeed, using Lemmas 3.3.1, 3.3.2 and the product rule of derivative, we have that

∂ l 1 +l 2 ∂x l 1 ∂t l 2   D 1   -w 0 (t, -x), d v (t) 1 -ḋv(t) 2 4     L 2 x ≲ l 1 ,l 2 v l 2 +6 e -2 √ 2|t|v .
In conclusion, the following function

D 1,1 (t, x) = 6 j=4 1 (j -1)! U (j) H w 0 0,1 (t, x) G w 0 (t, x) j-1 e -(j-1) √ 2dv(t)
satisfies D 1,1 ∼ = 6 0.

Proof of Lemma 3.4.9. First, since U ∈ C ∞ (R), 0 < H 0,1 < 1 and H ′ 0,1 ∈ S (R), we obtain for all ζ ∈ R and any l 1 , l 2 , l 3 ∈ N ∪ {0} that

∂ l 1 +l 2 ∂x l 1 ∂ζ l 2 U (l 3 ) (H 0,1 (x -ζ) + H -1,0 (x)) L ∞ x (R) ≲ l 1 ,l 2 ,l 3 1.
In conclusion, since G ∈ S (R) and

∥f g∥ H s x ≲ s ∥f ∥ H s x ∥g∥ L ∞ x (R) + ∥f ∥ H s x ∥g∥ L ∞ x (R) , ∥f g∥ H s x ≲ s ∥f ∥ H s x ∥g∥ H s x for all f, g ∈ H s
x when s ≥ 1, we deduce for any l 1 , l 2 ∈ N ∪ {0} and all ζ ≥ 1 that

∂ l 1 +l 2 ∂x l 1 ∂ζ l 2 D 1 (x, ζ) L 2 x ≲ l 1 +l 2 ∥G∥ 3 H l 1 +l 2 +1 x + ∥G∥ 5 H l 1 +l 2 +1 x e -3 √ 2ζ ≲ e -3 √ 2ζ .
Next, we consider the following lemma. Lemma 3.4.11. There exists a finite set of elements (W i , W i , d i , j i , l i ) ∈ S + ×S -×(N ∪ {0}) 3 such that W i or W i is in S (R), j i , l i satisfy 0 ≤ j i + l i ≤ 2 for all i and we have the following identity

D 2 (x, ζ) = 1 2 U (3) (H 0,1 (x -ζ) + H -1,0 (x)) (G(x -ζ) -G(-x)) 2 e -2 √ 2ζ = 1 2 U (3) (H 0,1 (x -ζ)) G(x -ζ) 2 e -2 √ 2ζ + U (3) (H -1,0 (x)) G(-x) 2 e -2 √ 2ζ + i (x -ζ) j i (-x) l i W i (x -ζ)W i (x)e -(2+d i ) √ 2ζ - i (-x) j i (x -ζ) l i W i (-x)W i (-x + ζ)e -(2+d i ) √ 2ζ , for all ζ ≥ 1.
Remark 3.4.12. In notation of Lemma 3.4.11, for any t ∈ R, if we change the variables x and ζ, respectively, with -w 0 (t, -x) and

dv(t) 1-ḋv (t) 2 4
, we can deduce that

1 2 U (3) H w 0 0,1 (t, x) G w 0 (t, x) 2 e -2 √ 2dv(t) = 1 2 U 3 (H 0,1 ) G 2 w 0 (t, x)e -2 √ 2dv(t) + i w 0 (t, x) j i w 0 (t, -x) l i W i (w 0 (t, x)) W i (-w 0 (t, -x)) e -2 √ 2dv(t) exp   -d i √ 2d v (t) 1 -ḋv(t) 2 4   - i w 0 (t, x) l i w 0 (t, -x) j i W i (w 0 (t, x)) W i (-w 0 (t, -x)) e -2 √ 2dv(t) exp   -d i √ 2d v (t) 1 -ḋv(t) 2 4   .
Furthermore, in notation of Lemma 3.4.11, Lemma 3.3.6 implies for any i that

∂ l ∂t l w 0 (t, x) j i w 0 (t, -x) l i W i (w 0 (t, x)) W i (-w 0 (t, -x)) H s x ≲ s,l v 2+l |t|v + ln 1 v 2 e -2 √ 2|t|v , for all l ∈ N ∪ {0}, if 0 < v ≪ 1.
In conclusion, we have that 

1 2 U (3) H w 0 0,1 (t, x) G w 0 (t, x) 2 e -2 √ 2dv(t) ∼ = 6 1 2 U 3 (H 0,1 ) G 2 w 0 (t, x)e -2 √ 2dv ( 
U (3) (H 0,1 (x -ζ) + H -1,0 (x)) = U (3) (H 0,1 (x -ζ)) + U (3) (H -1,0 (x)) +360 H 0,1 (x -ζ) 2 H -1,0 (x) + H 0,1 (x -ζ)H -1,0 (x) 2 ,
we deduce that

1 2 U (3) (H 0,1 (x -ζ) + H -1,0 (x)) (G(x -ζ) -G(-x)) 2 e -2 √ 2ζ - 1 2 U (3) (H 0,1 (x -ζ)) G(x -ζ) 2 e -2 √ 2ζ - 1 2 U (3) (H -1,0 (x)) G(-x) 2 e -2 √ 2ζ = 1 2 U (3) (H 0,1 (x -ζ)) G(-x) 2 -2G(x -ζ)G(-x) e -2 √ 2ζ + 1 2 U (3) (H -1,0 (x)) G(x -ζ) 2 -2G(x -ζ)G(-x) e -2 √ 2ζ + 360H 0,1 (x -ζ) 2 H -1,0 (x) + 360H 0,1 (x -ζ)H -1,0 (x) 2 G(x -ζ) 2 + G(-x) 2 e -2 √ 2ζ -2 360H 0,1 (x -ζ) 2 H -1,0 (x) + 360H 0,1 (x -ζ)H -1,0 (x) 2 G(x -ζ)G(-x)e -2 √ 2ζ .
(3.101)

Moreover, since U (3) (ϕ) = -48ϕ + 120ϕ 3 is an odd polynomial and H -1,0 (x) = -H 0,1 (-x), the right-hand side of (3.101) is a finite sum of functions

G(x -ζ) l 1 G(-x) l 2 H ζ 0,1 (x) l 3 H 0,1 (-x) l 4 -G(x -ζ) l 2 G(-x) l 1 H ζ 0,1 (x) l 4 H 0,1 (-x) l 3 , such that l 1 , l 2 , l 3 , l 4 ∈ N ∪ {0}, l 1 + l 2 = 2, 4
i=1 l i is odd and min (l 1 + l 3 , l 2 + l 4 ) > 0. Therefore, using Lemma 3.2.7 and Remark 3.2.10, we deduce that (3.101) is a finite sum of functions

J i (x -ζ) N i (x) -J i (-x)N i (-x + ζ) ,
where

J i ∈ S + ∪ S + ∞ and N i ∈ S -∪ S - ∞ .
In conclusion, we obtain the statement of Lemma 3.4.11 from the Proposition 3.2.16 and Remarks 3.2.20, 3.2.21 applied in the right-hand side of (3.101). Now, we can start the estimate of Λ(φ 2,0 )(t, x). First, from the definition of φ 2,0 (t, x) in (3.76), we have that

Λ (φ 2,0 ) (t, x) = ∂ 2 ∂t 2 - ∂ 2 ∂x 2 H w 0 0,1 (t, x) + e - √ 2dv(t) G w 0 (t, x) +U ′ H w 0 0,1 (t, x) + e - √ 2dv(t) G w 0 (t, x) = ∂ 2 ∂t 2 - ∂ 2 ∂x 2 e - √ 2dv(t) G w 0 (t, x) + Λ (H 0,1 (w 0 (t, x))) -Λ (H 0,1 (w 0 (t, -x))) +U ′ H w 0 0,1 (t, x) + e - √ 2dv(t) G w 0 (t, x) -U ′ (H 0,1 (w 0 (t, x))) -U ′ (-H 0,1 (w 0 (t, -x))) .
Therefore, using Taylor's Expansion Theorem, we deduce that

Λ(φ 2,0 )(t, x) -Λ(H 0,1 (w 0 (t, x))) + Λ (H 0,1 (w 0 (t, -x))) = ∂ 2 ∂t 2 - ∂ 2 ∂x 2 e - √ 2dv(t) G w 0 (t, x) +U ′ H w 0 0,1 (t, x) -U ′ (H 0,1 (w 0 (t, x))) -U ′ (-H 0,1 (w 0 (t, -x))) + 6 j=2 U (j) H w 0 0,1 (t, x) (j -1)! e - √ 2dv(t) G w 0 (t, x) j-1 . (3.102)
Consequently, we deduce using Lemma 3.4.2 that

Λ(φ 2,0 )(t, x) =- 8 √ 2e - √ 2dv(t) 1 -ḋv(t) 2 4 H ′ 0,1 w 0 (t, x) + R 1 (t, w 0 (t, x)) -R 1 (t, w 0 (t, -x)) +e - √ 2dv(t) U (2) H w 0 0,1 (t, x) G w 0 (t, x) -U (2) (H 0,1 ) G w 0 (t, x) (3.103) + 6 j=4 U (j) H w 0 0,1 (t, x) (j -1)! e - √ 2dv(t) G w 0 (t, x) j-1 (3.104) +U ′ H w 0 0,1 (t, x) -U ′ (H 0,1 (w 0 (t, x))) -U ′ (-H 0,1 (w 0 (t, -x))) (3.105) + U (3) H w 0 0,1 (t, x) 2 e - √ 2dv(t) G w 0 (t, x) 2 (3.106) + ∂ 2 ∂t 2 - ∂ 2 ∂x 2 e - √ 2dv(t) G w 0 (t, x) + e - √ 2dv(t) U (2) (H 0,1 ) G w 0 (t, x). (3.107)
Next, from Remark 3.4.8, we have that the expression (3.103) is equivalent to

e - √ 2dv(t) [Q (-w 0 (t, -x), d v (t)) -Q (-w 0 (t, x), d v (t))] .
Moreover, Remark 3.4.10 implies that the term (3.104) is negligible.

Additionally, using Remark 3.4.6, we obtain that the expression (3.105) is equivalent to

24 exp   - √ 2d v (t) 1 -ḋv(t) 2 4   M w 0 (t, x) -30 exp   - √ 2d v (t) 1 -ḋv(t) 2 4   N w 0 (t, x) +24 exp   -2 √ 2d v (t) 1 -ḋ(t) 2 4   V w 0 (t, x) + 60 √ 2 exp   -2 √ 2d v (t) 1 -ḋv(t) 2 4   H ′ 0,1 w 0 (t, x).
Finally, Remark 3.4.12 implies that the term (3.106) is equivalent to

e -2 √ 2dv(t) 2 U (3) (H 0,1 ) G 2 w 0 (t, x),
and Lemma 3.4.3 implies the equivalence between the expression (3.107) with

-e - √ 2dv(t) 24M w 0 (t, x) -30N w 0 (t, x) -8 √ 2 H ′ 0,1 w 0 (t, x) +R 2,v (t, w 0 (t, x))-R 2,v (t, w 0 (t, -x)).
Consequently, we have the following estimate

Λ (φ 2,0 ) (t, x) ∼ = 6 - 8 √ 2e - √ 2dv(t) 1 -ḋv(t) 2 4 H ′ 0,1 w 0 (t, x) + R 1,v (t, w 0 (t, x)) -R 1 (t, w 0 (t, -x)) +e - √ 2dv(t) [Q (-w 0 (t, -x), d v (t)) -Q (-w 0 (t, x), d v (t))] +24 exp   - √ 2d v (t) 1 -ḋv(t) 2 4   M w 0 (t, x) -30 exp   - √ 2d v (t) 1 -ḋv(t) 2 4   N w 0 (t, x) +24 exp   -2 √ 2d v (t) 1 -ḋ(t) 2 4   V w 0 (t, x) + 60 √ 2 exp   -2 √ 2d v (t) 1 -ḋv(t) 2 4   H ′ 0,1 w 0 (t, x) -e - √ 2dv(t) 24M w 0 (t, x) -30N w 0 (t, x) -8 √ 2 H ′ 0,1 w 0 (t, x) +R 2,v (t, w 0 (t, x)) -R 2,v (t, w 0 (t, -x)) + e -2 √ 2dv(t) 2 U (3) (H 0,1 ) G 2 w 0 (t, x).
Furthermore, using Lemma 3.3.5 the following result, we deduce the following estimate

d l dt l   exp   -2 √ 2d v (t) 1 -ḋv(t) 2 4   -e -2 √ 2dv(t)   ≲ l v 6+l |t|v + ln 1 v e -2 √ 2|t|v ,
for any l ∈ N ∪ {0} and t ∈ R, if 0 < v ≪ 1. In conclusion, from Lemma 3.3.2, Remark 3.4.8 and the estimate above of Λ(φ 2,0 ), we deduce the following result: Lemma 3.4.13. The function φ 2,0 (t, x) satisfies if 1 < v ≪ 1, for all l ∈ N ∪ {0} and s ≥ 0,

∂ l ∂t l Λ(φ 2,0 )(t, x) H s x ≲ l,s v 4+l |t|v + ln 1 v 2 e -2 √ 2|t|v .
Furthermore, we have that

Λ (φ 2,0 ) (t, x) ∼ = 6 Sym (t, w 0 (t, x)) -Sym (t, w 0 (t, -x)) ,
where, for 0 < v ≪ 1, the function Sym : R 2 → R satisfies, for all (t, x) ∈ R, the following identity

Sym(t, x) =8 √ 2H ′ 0,1 (x)   e - √ 2dv(t) - e - √ 2dv(t) 1 -ḋv(t) 2 4   + 1 2 U (3) (H 0,1 (x)) G(x) 2 e -2 √ 2dv(t) + -24H 0,1 (x) 2 + 30H 0,1 (x) 4 e - √ 2x   e - √ 2dv(t) -exp   - √ 2d v (t) 1 -ḋ(t) 2 4     +R 1,v (t, x) + R 2,v (t, x) +e -2 √ 2dv(t) xA(x) + xB(x) -d(t)B(x) + C(x) -D(x) + 24V (x) + 60 √ 2 H ′ 0,1 (x) .
Now, we can start the demonstration of Theorem 3.4.1. 

Proof of

   H ′ 0,1 2 L 2 x r(t) = -32e - √ 2d(t) H ′ 0,1 2 L 2 x r(t) -H ′ 0,1 (x), Sym(t, x) , r(t) = r(-t).
c 1 , c 2 ∈ R as                  H ′ 0,1 2 L 2 x r(t) =-32e - √ 2d(t) H ′ 0,1 2 L 2 x r(t) -H ′ 0,1 (x), R 1 (t, x) + R 2 (t, x) + c 1 d(t)e -2 √ 2d(t) +c 2 e -2 √ 2d(t) + 4   e - √ 2d(t) 1 -ḋ(t) 2 4 -exp   - √ 2d(t) 1 -ḋ(t) 2 4     , r(t) = r(-t). (3.109) Since d(t) = 1 √ 2 ln 8 v 2 cosh ( √ 2vt) 2 ,
we have that all the solutions of the linear ordinary differential equation r0 (t) = -32e - √ 2d(t) r 0 (t) are a linear combination of

sol 1 (t) = tanh ( √ 2vt) and sol 2 (t) = √ 2vt tanh ( √ 2vt) -1.
From Lemma 3.3.1, we obtain if 0 < v ≪ 1, and l ∈ N ∪ {0},

d l dt l d(t)e -2 √ 2d(t) ≲ l v 4+l v|t| + ln 8 v 2 e -4 √ 2|t|v . (3.110)
Next, to simplify more our notation, we denote

N L(t) = -H ′ 0,1 (x), R 1 (t, x) + R 2 (t, x) + c 1 d(t)e -2 √ 2d(t) + c 2 e -2 √ 2d(t) -4     exp     - √ 2d(t) 1 -ḋ(t) 2 4 1 2     - e - √ 2d(t) 1 -ḋ(t) 2 4     . (3.111)
Using the variation of parameters technique, we can write any C 2 solution r(t) of (3.109) as r(t) = θ 1 (t)sol 1 (t) + θ 2 (t)sol 2 (t) such that θ 1 (t) and θ 2 (t) satisfy for any t ∈ R

sol 1 (t) sol 2 (t) ṡol 1 (t) ṡol 2 (t) θ1 (t) θ2 (t) = 1 H ′ 0,1 2 L 2 x 0 N L(t) = 0 2 √ 2N L(t) .
In conclusion, since for all t ∈ R

det sol 1 (t) sol 2 (t) ṡol 1 (t) ṡol 2 (t) = √ 2v, we have θ2 (t) = 2 v N L(t) tanh ( √ 2vt), θ1 (t) = -2 v N L(t) √ 2vt tanh ( √ 2vt) -1 . (3.112)
From Lemmas 3.4.2 and 3.4.3, we have that R 1 (t, x) and R 2 (t, x) are even in t, so N L(t) is also even. Since we are interested in an even solution r(t) of (3.109), we need θ 1 odd and θ 2 even, so we must choose

θ 2 (t) = 1 √ 2v t -∞ N L(s) tanh ( √ 2vs) ds, θ 1 (t) = -1 √ 2v t 0 N L(s) √ 2vs tanh ( √ 2vs) -1 ds. (3.113)
From Lemmas 3.4.2 and 3.4.3, we deduce for any j ∈ {1, 2} that if 0 < v ≪ 1, then

d l dt l R j (t, x), H ′ 0,1 (x) ≲ l v 4+l sech √ 2vt 2 for all l ∈ N ∪ {0}, (3.114) 
and so, from the equations (3.110),(3.111) and Lemma 3.3.5, we deduce for all 0 < v ≪ 1 and any l ∈ N ∪ {0} that 

d l dt l N L(t) ≲ l v 4+l v|t| + ln 1 v e -2 √ 2|t|v . ( 3 
C > 0 such that if 0 < v ≪ 1, then ∥θ 1 ∥ L ∞ (R) < Cv 2 ln 1 v 2 . ( 3 
|r(t)| ≲ v 2 ln 1 v 2 , | ṙ(t)| ≲ v 3 ln 1 v 2 + |t|v sech √ 2vt 2 . ( 3 
d l r dt l (t) ≲ l v l+2 ln 1 v 2 + |t|v sech ( √ 2vt)
2 for all integers l ≥ 1 and t ∈ R.

(3.119)

Step 2.(Estimate of Λ(φ 2 )(t, x).) From now on, we define the function w 1 : R 2 → R as the unique function satisfying , for every (t, x) ∈ R 2 . Furthermore, similarly to the identity (3.102), we have the following equation

w 1 (t, x) = w 0 (t, x + r v (t)) = x -dv(t) 2 + r v (t) 1 -ḋv(t)
Λ(φ 2 )(t, x) =Λ(H 0,1 (w 1 (t, x))) -Λ (H 0,1 (w 1 (t, -x))) (3.120) + ∂ 2 ∂t 2 - ∂ 2 ∂x 2 e - √ 2d(t) G w 1 (t, x) + U (2) (H 0,1 ) G w 1 (t, x)e - √ 2d(t) (3.121) +U (2) H w 1 0,1 (t, x) G w 1 (t, x)e - √ 2d(t) -U (2) (H 0,1 ) G w 1 (t, x)e - √ 2d(t) (3.122) +U ′ H w 1 0,1 (t, x) -U ′ (H 0,1 (w 1 (t, x))) -U ′ (-H 0,1 (w 1 (t, -x))) (3.123) + U (3) H w 1 0,1 (t, x) 2 e - √ 2d(t) G w 1 (t, x) 2 (3.124) + 6 j=4 U (j) H w 1 0,1 (t, x) (j -1)! e - √ 2d(t) G w 1 (t, x) (j-1)
.

(3.125)

From identity

H ′ 0,1 2 
L 2 x = 1 2 √
2 , the definitions of M (x), N (x) in (3.95) and identity (3.78), we have .

[24M (w 0 (t, x)) -30N (w 0 (t, x))] , H ′ 0,1 (w 0 (t, x)) = 4 1 - ḋ(t)
Therefore, we deduce the following identity exp 

  - √ 2(d(t) -2r(t)) 1 -ḋ(t) 2 4 )   24M (w 0 (t, x)) -30N (w 0 (t, x)), H ′ 0,1 (w 0 (t, x)) -4e - √ 2d(t) = 4 exp   - √ 2(d(t) -2r(t)) 1 -ḋ(t) 2 4   1 - ḋ(t) 2 4 -4e - √ 2d(t) = 4   exp   - √ 2(d(t) -2r(t)) 1 -ḋ(t) 2 4   -e - √ 2(d(t)-2r(t))   1 - ḋ(t) 2 4 (3.126) +4e - √ 2(d(t)-2r(t))   1 - ḋ(t) 2 4 -1   (3.127) +4 e - √ 2(d(t)-2r(t)) -e - √ 2d(t) -2 √ 2e - √ 2d(t) r(t) (3.128) +8 √ 2e - √ 2d(t) r(t). Since e - √ 2d(t) = v 2 8 sech √ 2vt
Rem(t) = exp   - √ 2(d(t) -2r(t)) 1 -ḋ(t) 2 4   24M (w 0 (t, x)) -30N (w 0 (t, x)), H ′ 0,1 (w 0 (t, x)) -4e - √ 2d(t) -8 √ 2e - √ 2d(t) r(t) satisfies d l Rem(t) dt l ≲ l v l+4 |t| v + ln 8 v 2 e -2 √
2v|t| for all t ∈ R and any l ∈ N ∪ {0}.

Substep 2.1.(Estimate of Λ (H 0,1 (w 1 (t, x))) .) From now on, we use the following notation

φ 2 (t, x) = H w 1 0,1 (t, x) + e - √ 2d(t) G w 1 (t, x), for all (t, x) ∈ R 2 .
First, for all (t, x) ∈ R 2 , the following identity 

∂ 2 ∂t 2 H 0,1 (w 1 (t, x)) = ∂ 2 ∂t 2 1 t 1 =t H 0,1 (w 0 (t 1 , x + r(t))) + r(t) 1 -ḋ(t) 2 4 H ′ 0,1 (w 1 (t, x)) - ḋ(t) ṙ(t) 1 -ḋ(t) 2 4 H ′′ 0,1 (w 1 (t, x)) + 8 √ 2 ḋ(t) ṙ(t)e - √ 2d(t) 1 -ḋ(t) 2 4 3 2 w 1 (t, x)H ′ 0,1 (w 1 (t, x)) + 8 √ 2 ṙ(t) ḋ(t)e - √ 2d(t) 1 -ḋ(t)
∂ 2 ∂t 2 H 0,1 (w 1 (t, x)) ∼ = 6 ∂ 2 ∂t 2 1 t 1 =t H 0,1 (w 0 (t 1 , x + r(t))) + r(t) 1 -ḋ(t) 2 4 H ′ 0,1 (w 1 (t, x)) - ḋ(t) ṙ(t) 1 -ḋ(t) 2 4 H ′′ 0,1 (w 1 (t, x)).
Therefore, from Lemma 3.3.4, we deduce from the estimate above and the decay estimates (3.118), (3.119) of r that 

∂ 2 ∂t 2 H 0,1 (w 1 (t, x)) ∼ = 6 ∂ 2 ∂t 2 1 t 1 =t H 0,1 (w 0 (t 1 , x + r(t))) + r(t) 1 -ḋ(t) 2 4 H ′ 0,1 (w 0 (t, x)) - ḋ(t) ṙ(t) 1 -ḋ(t)
∂ 2 ∂t 2 1 t 1 =t H 0,1 (w 0 (t 1 , x + r(t))) - ∂ 2 ∂x 2 [H 0,1 (w 1 (t, x))] + U ′ (H 0,1 (w 1 (t, x))) = - 8 √ 2e - √ 2d(t) (1 -ḋ(t) 2 4 ) 1 2 H ′ 0,1 (w 1 (t, x)) + R 1 (t, w 1 (t, x)) ,
from which with Lemma 3.3.4 and estimates (3.118), (3.119), we obtain the following estimate

∂ 2 ∂t 2 1 t 1 =t H 0,1 (w 0 (t 1 , x + r(t))) - ∂ 2 ∂x 2 [H 0,1 (w 1 (t, x))] + U ′ (H 0,1 (w 1 (t, x))) ∼ = 6 - 8 √ 2e - √ 2d(t) 1 -ḋ(t) 2 4 H ′ 0,1 (w 0 (t, x)) - 8 √ 2r(t)e - √ 2d(t) 1 -ḋ(t) 2 4 H ′′ 0,1 (w 0 (t, x)) + R 1 (t, w 0 (t, x)) . (3.130)
Therefore, we obtain using estimates (3.129) and (3.130) that

Λ (H 0,1 (w 1 (t, x))) ∼ = 6 - 8 √ 2e - √ 2d(t) 1 -ḋ(t) 2 4 H ′ 0,1 (w 0 (t, x)) - 8 √ 2r(t)e - √ 2d(t) 1 -ḋ(t) 2 4 H ′′ 0,1 (w 0 (t, x)) + r(t) 1 -ḋ(t) 2 4 H ′ 0,1 (w 0 (t, x)) - ḋ(t) ṙ(t) 1 -ḋ(t) 2 4 H ′′ 0,1 (w 0 (t, x)) + R 1 (t, w 0 (t, x)).
Consequently, using Lemma 3.4.2, we deduce the following estimate 

Λ (H 0,1 (w 1 (t, x))) -Λ (H 0,1 (w 1 (t, -x))) ∼ = 6 Λ (H 0,1 (w 0 (t, x))) -Λ (H 0,1 (w 0 (t, -x))) - 8 √ 2r(t)e - √ 2d(t) 1 -ḋ(t) 2 4 H ′′ 0,1 w 0 (t, x) + r(t) 1 -ḋ(t) 2 4 H ′ 0,1 w 0 (t, x) - ḋ(t) ṙ(t) 1 -ḋ(t) 2 4 H ′′ 0,1 w 0 (t, x) . ( 3 
∂ 2 ∂t 2 e - √ 2d(t) G (w 1 (t, x)) ∼ = 6 ∂ 2 ∂t 2 e - √ 2d(t) G (w 0 (t, x)) ∼ = 6 ∂ 2 ∂t 2 1 t 1 =t e - √ 2d(t 1 ) G(w 0 (t 1 , x + r(t))) .
Therefore, we deduce from Lemma 3.4.3 the following estimate

∂ 2 ∂t 2 - ∂ 2 ∂x 2 + U (2) (H 0,1 (w 1 (t, x))) e - √ 2d(t) G(w 1 (t, x)) ∼ = 6 -24M (w 1 (t, x)) -30N (w 1 (t, x)) e - √ 2d(t) +8 √ 2H ′ 0,1 (w 1 (t, x)) e - √ 2d (t) 
+R 2 (t, w 1 (t, x)), from which with Lemma 3.3.4 and the decay estimates (3.118), (3.119) of r, we deduce that

∂ 2 ∂t 2 - ∂ 2 ∂x 2 + U (2) (H 0,1 (w 1 (t, x))) e - √ 2d(t) G(w 1 (t, x)) ∼ = 6 -24M (w 0 (t, x)) -30N (w 0 (t, x)) e - √ 2d(t) + 8 √ 2H ′ 0,1 (w 0 (t, x)) e - √ 2d(t) -24M ′ (w 0 (t, x)) -30N ′ (w 0 (t, x)) r(t)e - √ 2d(t) 1 -ḋ(t) 2 4 + 8 √ 2r(t)e - √ 2d(t) 1 -ḋ(t) 2 4 H ′′ 0,1 (w 0 (t, x)) +R 2 (t, w 0 (t, x)).
Hence, using Lemma 3.4.3, we obtain the following estimate 

∂ 2 ∂t 2 - ∂ 2 ∂x 2 + U (2) (H 0,1 (w 1 (t, x))) e - √ 2d(t) G(w 1 (t, x)) ∼ = 6 ∂ 2 ∂t 2 - ∂ 2 ∂x 2 + U (2) (H 0,1 (w 0 (t, x))) e - √ 2d(t) G (w 0 (t, x)) -24M ′ (w 0 (t, x)) -30N ′ (w 0 (t, x)) r(t)e - √ 2d(t) 1 -ḋ(t) 2 4 + 8 √ 2r(t)e - √ 2d(t) 1 -ḋ(t)
U ′ H w 1 0,1 (t, x) -U ′ (H 0,1 (w 1 (t, x))) -U ′ (-H 0,1 (w 1 (t, -x))) = exp   - √ 2(d(t) -2r(t)) 1 -ḋ(t) 2 4   [24M w 1 (t, x) -30N w 1 (t, x)] + exp   - 2 √ 2(d(t) -2r(t)) 1 -d(t) 2 4 )   24V w 1 (t.x) + 60 √ 2 H ′ 0,1 w 1 (t, x) +R   -w 1 (t, x), d(t) -2r(t) 1 -ḋ(t) 2
R   -w 1 (t, x), d(t) -2r(t) 1 -ḋ(t) 2 4   ∼ = 6 0.
Therefore, identity (3.133) and Lemmas 3.3.4, 3.3.5 imply the following estimate

U ′ H w 1 0,1 (t, x) -U ′ (H 0,1 (w 1 (t, x))) -U ′ (-H 0,1 (w 1 (t, -x))) ∼ = 6 exp   - √ 2(d(t) -2r(t)) 1 -ḋ(t) 2 4   [24M w 1 (t, x) -30N w 1 (t, x)] +e -2 √ 2d(t) 24V w 0 (t, x) + 60 √ 2 H ′ 0,1 w 0 (t, x) . (3.134)
Next, using the decay estimates (3.118), (3.119) of r, we deduce from Lemma 3.3.4 that

  M w 1 (t, x) -M w 0 (t, x) - r(t) 1 -ḋ(t) 2 4 M ′ w 0 (t, x)   exp   - √ 2d(t) 1 -ḋ(t) 2 4   ∼ = 6 0, (3.135)   N w 1 (t, x) -N w 0 (t, x) - r(t) 1 -ḋ(t) 2 4 N ′ w 0 (t, x)   exp   - √ 2d(t) 1 -ḋ(t) 2 4   ∼ = 6 0. (3.136)
We also deduce from Taylor's Expansion Theorem and the decay estimates (3.118), (3.119) of the function r that

M w 1 (t, x) exp   - √ 2(d(t) -2r(t)) 1 -ḋ(t) 2 4   ∼ = 6 M w 1 (t, x)   1 + 2r(t) 1 -ḋ(t) 2 4   exp   - √ 2d(t) 1 -ḋ(t) 2 4   N w 1 (t, x) exp   - √ 2(d(t) -2r(t)) 1 -ḋ(t) 2 4   ∼ = 6 N w 1 (t, x)   1 + 2r(t) 1 -ḋ(t) 2 4   exp   - √ 2d(t) 1 -ḋ(t) 2 4   ,
therefore, using now Lemma 3.3.4, we conclude the following estimates

M w 1 (t, x) exp   - √ 2(d(t) -2r(t)) 1 -ḋ(t) 2 4   ∼ = 6 M w 1 (t, x) exp   - √ 2d(t) 1 -ḋ(t) 2 4   +M w 0 (t, x) 2r(t) 1 -ḋ(t) 2 4 exp   - √ 2d(t) 1 -ḋ(t) 2 4   , N w 1 (t, x) exp   - √ 2(d(t) -2r(t)) 1 -ḋ(t) 2 4   ∼ = 6 N w 1 (t, x) exp   - √ 2d(t) 1 -ḋ(t) 2 4   +N w 0 (t, x) 2r(t) 1 -ḋ(t) 2 4 exp   - √ 2d(t) 1 -ḋ(t) 2 4   .
As a consequence, we obtain from estimate (3.133) and Lemma 3.3.5 that

U ′ H w 1 0,1 (t, x) -U ′ (H 0,1 (w 1 (t, x))) -U ′ (-H 0,1 (w 1 (t, -x))) ∼ = 6 [24M w 0 (t, x) -30N w 0 (t, x)] 2r(t) 1 -ḋ(t) 2 4 exp   - √ 2d(t) 1 -ḋ(t) 2 4   + [24M w 0 (t, x) -30N w 0 (t, x)] exp   - √ 2d(t) 1 -ḋ(t) 2 4   + r(t) 1 -ḋ(t) 2 4 24 M ′ w 0 (t, x) -30 N ′ w 0 (t, x) exp   - √ 2d(t) 1 -ḋ(t) 2 4   + 24V w 0 (t, x) + 60 √ 2 H ′ 0,1 w 0 (t, x) e -2 √ 2d(t) ∼ = 6 U ′ H w 0 0,1 (t, x) -U ′ (H 0,1 (w 0 (t, x))) -U ′ (-H 0,1 (w 0 (t, -x))) + r(t) 1 -ḋ(t) 2 4 24 M ′ w 0 (t, x) -30 N ′ w 0 (t, x) exp   - √ 2d(t) 1 -ḋ(t) 2 4   + r(t) 1 -ḋ(t) 2 4 [48M w 0 (t, x) -60N w 0 (t, x)] exp   - √ 2d(t) 1 -ḋ(t) 2 4   .
Therefore, using Remark 3.4.6, we conclude that Now, using identities (3.99) and (3.100), Lemma 3.4.7 also implies the following equation

U ′ H w 1 0,1 (t, x) -U ′ (H 0,1 (w 1 (t, x))) -U ′ (-H 0,1 (w 1 (t, -x))) ∼ = 6 U ′ H w 0 0,1 (t, x) -U ′ (H 0,1 (w 0 (t, x))) -U ′ (-H 0,1 (w 0 (t, -x))) + r(t)e - √ 2d(t) 1 -ḋ(t) 2 4 24 M ′ w 0 (t, x) -30 N ′ w 0 (t, x) + r(t)e - √ 2d(t) 1 -ḋ(t) 2 4 [48M w 0 (t, x) -60N w 0 (t, x)] .
U (2) H w 1 0,1 (t, x) -U (2) (H 0,1 (w 1 (t, x))) e - √ 2d(t) G(w 1 (x, t)) = Q   -w 1 (t, -x), d v (t) -2r(t) 1 -ḋ(t) 2 4   e - √ 2d(t) + R q   -w 1 (t, -x), d(t) -2r(t) 1 -ḋ(t) 2 4   e - √ 2d(t) .
(3.138) Furthermore, from Lemma 3.3.4 and the definition of Q in (3.99), we deduce that

Q   -w 1 (t, -x), d(t) -2r(t) 1 -ḋ(t) 2 4   e - √ 2d(t) ∼ = 6 Q   -w 0 (t, -x), d(t) -2r(t) 1 -ḋ(t) 2 4   e - √ 2d(t) ,
from which with Lemmas 3.3.1, 3.3.5 and identity (3.99), we obtain that 

Q   -w 1 (t, -x), d(t) -2r(t) 1 -ḋ(t) 2 4   e - √ 2d(t) ∼ = 6 Q (-w 0 (t, -x), d(t)) e - √ 2d ( 
R q   -w 1 (t, -x), d(t) -2r(t) 1 -ḋ(t) 2 4   e - √ 2d(t) ∼ = 6 R q (-w 0 (t, -x), d(t)) e - √ 2d(t) ∼ = 6 0.
Consequently, in notation of Lemma 3.4.7, we have from identity (3.99) that U (2) (H 0,1 (w 1 (t, x)) -H 0,1 (w 1 (t, -x))) -U (2) (H 0,1 (w 1 (t, x))) e - √ 2d(t) G(w 1 (t, x))

∼ = 6 w 0 (t, x)A(w 0 (t, x))e -2 √ 2d(t) + w 0 (t, x)B(w 0 (t, -x))e -2 √ 2d(t) + C(w 0 (t, x))e -2 √ 2d(t)
+D(w 0 (t, -x))e -2 √ 2d(t) , from which, using Remark 3.4.8, we deduce

U (2) (H 0,1 (w 1 (t, x)) -H 0,1 (w 1 (t, -x))) -U (2) (H 0,1 (w 1 (t, x))) e - √ 2d(t) G(w 1 (t, x)) ∼ = 6 U (2) H w 0 0,1 (t, x) -U (2) (H 0,1 (w 0 (t, x))) e - √ 2d(t) G(w 0 (t, x)).
In conclusion, since U (2) is an even function, we have

e - √ 2dv(t) U (2) H w 1 0,1 (t, x) G w 1 (t, x) -e - √ 2dv(t) U (2) (H 0,1 ) G w 1 (t, x) ∼ = 6 e - √ 2dv(t) U (2) H w 0 0,1 (t, x) G w 0 (t, x) -e - √ 2dv(t) U (2) (H 0,1 ) G w 0 (t, x). (3.140)
Substep 2.5.(Estimate of (3.124).) Next, using Lemma 3.3.4, we can verify that

1 2 U (3) (H 0,1 (w 1 (t, x)) -H 0,1 (w 1 (t, -x))) [G(w 1 (t, x)) -G(w 1 (t, -x))] 2 e -2 √ 2d(t) ∼ = 6 1 2 U (3) (H 0,1 (w 0 (t, x)) -H 0,1 (w 0 (t, -x))) [G(w 0 (t, x)) -G(w 0 (t, -x))] 2 e -2 √ 2d(t) .
Therefore, from Remark 3.4.11, we obtain 1) .

1 2 U (3) H w 1 0,1 (t, x) [G w 1 (t, x)] 2 e -2 √ 2d(t) ∼ = 6 1 2 U (3) (H 0,1 ) G 2 w 0 (t,
U (j) H w 1 0,1 (t, x) (j -1)! [G w 1 (t, x)] j-1 e - √ 2d(t)(j-1) ∼ = 6 6 j=4 U (j) H w 0 0,1 (t, x) (j -1)! [G w 0 (t, x)] j-1 e - √ 2d(t)(j-
Hence, we obtain using Remark 3.4.10 that 

6 j=4 U (j) H w 1 0,1 (t, x) (j -1)! [G w 1 (t, x)] j-1 e - √ 2d(t)(j-1) ∼ = 6 0. ( 3 
Λ(φ 2 )(t, x) -Λ(ϕ 2,0 )(t, x) ∼ = 6 r(t) (1 -ḋ(t) 2 4 ) 1 2 H ′ 0,1 w 0 (t, x)- ḋ(t) ṙ(t) 1 -ḋ(t) 2 4 H ′′ 0,1 w 0 (t, x) + 8 √ 2r(t)e - √ 2d(t) 1 -ḋ(t) 2 4 H ′′ 0,1 w 0 (t, x) + [48M w 0 (t, x) -60N w 0 (t, x)] r(t) 1 -ḋ(t) 2 4 exp   - √ 2d(t) 1 -ḋ(t) 2 4   .
In conclusion, we deduce from Lemma 3.3.5 and the estimate above that 

Λ(φ 2 )(t, x) -Λ(ϕ 2,0 )(t, x) ∼ = 6 r(t) 1 -ḋ(t) 2 4 H ′ 0,1 w 0 (t, x)- ḋ(t) ṙ(t) 1 -ḋ(t) 2 4 H ′′ 0,1 w 0 (t, x) + 8 √ 2r(t)e - √ 2d(t) 1 -ḋ(t) 2 4 H ′′ 0,1 w 0 (t, x) + [48M w 0 (t, x) -60N w 0 (t, x)] r(t) 1 -ḋ(t) 2
∂ l ∂t l [Λ(φ 2 )(t, x) -Λ(ϕ 2,0 )(t, x)] H s x ≲ l,s v 4+l |t|v + ln 1 v 2 e -2 √ 2|t|v , (3.144)
for all t ∈ R, s ≥ 0 and l ∈ N ∪ {0}. Moreover, Remark 3.3.7 implies for all m, l ∈ N ∪ {0} and

t ∈ R that if h ∈ S + m , then d l dt l h (w 0 (t, x)) , H ′ 0,1 (w 0 (t, -x)) ≲ h,l v 2+l |t|v + ln 1 v m+1 e -2 √ 2|t|v .
Consequently, using Lemma 3.4.13, the ordinary differential equation (3.108), identity (3.78) and estimate (3.143), if 0 < v ≪ 1, there exists n 2 ∈ N satisfying for all l ∈ N ∪ {0} the following estimate 

d l dt l Λ(φ 2 )(t, x), H ′ 0,1   x -d(t) 2 1 -ḋ(t) 2 4 )   ≲ l v l+6 ln 1 v 2 + |t|v n 2 +1 e -2 √ 2|t|v . Therefore, if 0 < v ≪ 1,
d l dt l Λ(φ 2 )(t, x), H ′ 0,1   x + r(t) -d(t) 2 1 -ḋ(t) 2 4   ≲ l v l+6 ln 1 v 2 + |t|v n 2 +1 e -2 √ 2|t|v .
Since ), we consider e(v)

= -1 2v 1 √ 2 ln 8 v 2 + e r .

Approximate solutions for k > 2

We will prove the following theorem, which implies Theorem 3.1.2: Theorem 3.5.1. There exist a sequence of approximate solutions (φ k,v (t, x)) k≥2 , functions r k (v, t) that are smooth and even in t, and numbers

n k ∈ N such that if 0 < v ≪ 1, then for any k ∈ N ≥2 , m ∈ N |r k (v, t)| ≲ k v 2(k-1) ln 1 v n k , ∂ m ∂t m r k (v, t) ≲ k,m v 2(k-1)+m ln 1 v + |t|v n k e -2 √ 2|t|v , (3.145) φ k,v (t, x) satisfies for ρ k (v, t) = -dv(t) 2 + k j=2 r j (v, t) the identity φ k,v (t, x) = H 0,1   x + ρ k (v, t) 1 -ḋv(t) 2 4   + H -1,0   x -ρ k (v, t) 1 -ḋv(t) 2 4   + e - √ 2dv(t)   G   x + ρ k (v, t) 1 -ḋv(t) 2 4   -G   -x + ρ k (v, t) 1 -ḋv(t) 2 4     +T k,v   vt, x + ρ k (v, t) 1 -ḋv(t) 2 4   -T k,v   vt, -x + ρ k (v, t) 1 -ḋv(t) 2 4   , (3.146)
the following estimates for any l ∈ N ∪ {0} and s ≥ 1

∂ l ∂t l Λ(φ k,v (t, x) H s x ≲ k,l,s v 2k+l ln 1 v 2 + |t|v n k e -2 √ 2|t|v , (3.147) and d l dt l   Λ(φ k,v )(t, x), H ′ 0,1   ±x + ρ k (v, t) (1 -ḋv(t) 2 4 ) 1 2     ≲ k,l v 2k+l+2 ln 1 v 2 + |t|v n k +1 e -2 √ 2|t|v , (3.148)
where

T k (t, x) is a finite sum of functions p k,i,v (t)h k,i (x) with h k,i,v ∈ S (R) ∩ S +
∞ and each p k,i,v (t) being an even function satisfying

d m p k,i,v (t) dt m ≲ k,m v 4 ln 1 v 2 + |t| n k,i e -2 √ 2|t|
for a positive number n k,i ∈ N and all m ∈ N ∪ {0}. 

∥r 2 (v, •)∥ L ∞ (R) ≲ v 2 ln 1 v 2 , ∂ l ∂t l r 2 (v, t) ≲ l v 2+l ln 1 v + |t|v e -2 √ 2|t|v ,
for all l ∈ N.

Auxiliary lemmas.

From now on, we assume that Theorem 3.5.1 is true for 2 ≤ k ≤ M. We also consider the following defintion.

Definition 3.5.4. We say that function

F : (0, 1)×R 2 → R is negligible of order (n, m) ∈ N 2
if there exist a constant M (n) satisfying such that F satisfies for any v ∈ (0, 1) small enough the following estimate

∂ l ∂t l F(v, t, x) H s x ≲ l,s v n+l |t|v + ln 1 v m e -2 √ 2|t|v ,
for all t ∈ R, any l ∈ N and all s ≥ 0. Moreover, we also say for any n ∈ N >6 that any two real functions f, g

: (0, 1) × R 2 → R 2 satisfy f ∼ = n g if f -g is a negligible function of order (n, m) for some m ∈ N.
The demonstration of Theorem 3.5.1 will be done by induction on k. However, before the beginning of this proof, we need to prove three lemmas necessary to demonstrate Theorem 3.5.1. The first lemma is the following: Lemma 3.5.5. In notation of Theorem 3.5.1, there exist natural numbers N 1 , N 2 satisfying, for 0 < v ≪ 1, the following estimate

Λ(φ M,v )(t, x) ∼ = 2M+4 N 1 i=1 s i,v ( √ 2vt)   R i   x + ρ M (v, t) 1 -ḋv(t) 2 4   -R i   -x + ρ M (v, t) 1 -ḋv(t) 2 4     such that for all 1 ≤ i, j ≤ N 1 we have ⟨R i , R j ⟩ = δ i,j , R i ∈ S + ∞ ∩ S (R), s i,v ∈ C ∞ (R) satisfies, for all l ∈ N ∪ {0}, d l dt l s i,v (t) ≲ l v 2M |t| + ln 1 v 2 n M e -2 √ 2|t| .
Our demonstration of Lemma 3.5.5 will need the following result.

Lemma 3.5.6.

For any ζ > 1, let ϕ : R ≥1 × R 2 → R be a function of the form ϕ(ζ, t, x) = H 0,1 (x -ζ) -H 0,1 (-x) + N i=1 p i (t) [I i (x -ζ) -I i (-x)] ,
where N < +∞, all the functions p i (t) are smooth with all their non-zero derivatives being in S (R), and for all

1 ≤ i ≤ N , I i ∈ S (R) ∩ S +,m i for some m i ∈ N ∪ {0}. Let Z ζ : R 2 → R
be the following function

Z ζ (t, x) = U ′ (ϕ(ζ, t, x)) -U ′ (H 0,1 (x -ζ)) -U ′ (H -1,0 (x)) , for any (t, x) ∈ R 2 , and ζ > 1. For any k ∈ N, there exist N 1 (k) ∈ N, functions h i ∈ S + ∞ , and numbers n i , l i ∈ N ∪ {0}, α i,j ∈ N ∪ {0} for all 1 ≤ i ≤ N 1 (k) and 1 ≤ j ≤ N such that the following function Z k,ζ (t, x) = N 1 (k) i=1   ζ l i e - √ 2n i ζ (h i (x -ζ) -h i (-x)) N j=1 p j (t) α i,j   , for all (ζ, x) ∈ R ≥1 × R, satisfies for any s ≥ 0 and every (ζ, t) ∈ R ≥1 × R the estimate ∥Z ζ (t, x) -Z k,ζ (t, x)∥ H s x ≤ C(ϕ, s, k)e - √ 2kζ ,
where C(ϕ, s, k) is a positive value depending only on k and s and the function ϕ.

Proof. Proposition 3.2.16 and Remarks 3.2.20, 3.2.21 can be applied to estimate with higher precision the function

Z ζ (t, x) = U ′ (ϕ(ζ, t, x)) -U ′ (H 0,1 (t, x -ζ)) -U ′ (-H 0,1 (-x)) , (3.149) since U ′ (ϕ) = 2ϕ -8ϕ 3 + 6ϕ 5 .
More precisely, since U ′ is an odd polynomial, it is not difficult to verify from the definition of ϕ(ζ, t, x) and the multinomial formula that Z ζ (t, x) is a finite sum of functions of the following kind

X ζ (t, x) =   H 0,1 (x -ζ) α 0 -H 0,1 (-x) β 0 N i,j=1 p j (t) α j I j (x -ζ) α j p i (t) β i -I i (-x) β i   +   H 0,1 (x -ζ) β 0 -H 0,1 (-x) α 0 N i,j=1 p i (t) β i I i (x -ζ) β i p j (t) α j -I j (-x) α j   , such that • α i , β i ∈ N ∪ {0} for all 0 ≤ i ≤ N , • N i=0 α i + β i is odd, • either N i=1 α i + β i ̸ = 0 or min (α 0 , β 0 ) > 0.
Since every I j ∈ S + ∞ , we can apply Lemma 3.2.7 and deduce for any natural number 1 ≤ j ≤ N and any k ∈ N that I j (-x) 2k ∈ S - ∞ and

I j (x) 2k-1 ∈ S + ∞ . Moreover, Lemma 3.2.7 also implies for all k ∈ N that if (f i ) 1≤i≤2k-1 ⊂ S + ∞ , then 2k-1 i=1 f i ∈ S + ∞ , and if (f i ) 1≤i≤2k ⊂ S - ∞ , then 2k i=1 f i ∈ S - ∞ .
Therefore, we deduce that either

H 0,1 (x) α 0 N j=1 I j (x) α j ∈ S + ∞ , H 0,1 (-x) β 0 N i=1 I i (-x) β i ∈ S - ∞ ∪ {1} or H 0,1 (-x) α 0 N j=1 I j (-x) α j ∈ S - ∞ ∪ {1}, H 0,1 (x) β 0 N i=1 I i (x) β i ∈ S + ∞ .
Consequently, we can apply the Separation Lemma and Remark 3.2.21 in the expression

H 0,1 (x -ζ) α 0 N j=1 I j (x -ζ) α j (-H 0,1 (-x)) β 0 N i=1 (-I i (-x)) β i +   (-H 0,1 (-x)) α 0 N j=1 (-I j (-x)) α j   H 0,1 (x -ζ) β 0 N i=1 I i (x -ζ) β i ,
and deduce for any k ∈ N the existence of

N 2 (k) ∈ N, a set of numbers l i,1 , n i,1 ∈ N ∪ {0}
and a set of functions h i,1 ∈ S + ∞ ∩ S (R), such that the function

X k,ζ (t, x) =   N 2 (k) i=1 ζ l i,1 e - √ 2n i,1 ζ h i,1 (x -ζ) -h i,1 (-x)   N j=1 p j (t) α j +β j satisfies, if ζ is large enough, the estimate ∥X ζ (t, x) -X k,ζ (t, x)∥ H s x ≲ s,k e - √ 2(k+1)ζ N j=1 |p j (t)| α j +β j .
In conclusion, using triangle inequality, we obtain the result of Lemma 3.5.6.

Corollary 3.5.7. Let the functions

I i ∈ S (R), p i ∈ C ∞ (R)
be as defined in the statement of Lemma 3.5.6. Let γ : (0, 1) × R → R be a function satisfying

∂ l ∂t l γ(v, t) L ∞ t (R) ≲ l v l , for any l ∈ N ∪ {0}, if 0 < v ≪ 1,
and w : (0, 1) × R 2 → R be the following smooth function

ω(v, t, x) = x -dv(t) 2 + γ(v, t) 1 -ḋv(t) 2 4 .
In addition, let ϕ app : R 2 → R be the following function

ϕ app (t, x) = H 0,1 (w(v, t, x)) -H 0,1 (w(v, t, -x)) + N i=1 p i (t) [I i (w(v, t, x)) -I i (w(v, t, -x))] ,
for all (t, x) ∈ R 2 and Z(t, x) be denoted by

Z(t, x) = U ′ (ϕ app (t, x)) -U ′ (H 0,1 (w(v, t, x))) -U ′ (-H 0,1 (w(v, t, -x))) ,
for any (t, x) ∈ R 2 . If v ≪ 1 and the functions p i also satisfy the following decay estimate

max 1≤i≤N p (l) i (t) ≲ l v l , for every l ∈ N, then, for any k ∈ N ≥2 , there exist N 1 (k) ∈ N, functions h i ∈ S + ∞ , and numbers n i , l i ∈ N ∪ {0}, α i,j ∈ N ∪ {0} for all 1 ≤ i ≤ N 1 (k) and 1 ≤ j ≤ N such that the following function Z k (t, x) =   N 1 (k) i=1   d v (t) -2γ(v, t) 1 -ḋv (t) 2   l i exp   -2 √ 2n i [d v (t) -2γ(v, t)] 1 -v(t) 2   N j=1 p j (t) α j,i h i (w(v, t, x)) -h i (w(v, t, -x))   , for any (t, x) ∈ R 2 , satisfies ∂ l ∂t l [Z k (t, x) -Z(t, x)] H s x ≤ Ĉv l e -2 √ 2kdv(t) d v (t) M 2 (k) ,
for every l ∈ N ∪ {0} and s ≥ 0, where Ĉ > 0 is a constant depending only on the functions (p i ) 1≤i≤N and the numbers l, s and k.

Proof of Corollary 3.5.7. First, from Lemma 3.5.6, if we replace the variables x and ζ, respectively, with -w(t, -x) and

d v (t) -2γ(v, t) 1 -ḋv(t) 2 4 ,
we deduce for any k ∈ N ≥2 the existence of a set of functions

(h i ) i∈N ⊂ S + ∞ , a set of numbers (α j,i ) (j,i)∈N 2 ⊂ N ∪ {0} and two sequences of numbers (l i ) ∈N ⊂ N ∪ {0}, (n i ) i∈N ⊂ N such that if 0 < v ≪ 1, the following function Z k (t, x) =   N 1 (k) i=1   d v (t) -2γ(v, t) 1 -ḋv(t) 2 4   l i exp   -2 √ 2n i (d(t) -2γ(v, t)) 1 -ḋv(t) 2 4   N j=1 p j (t) α j,i h i (w(t, x)) -h i (w(t, -x))  
satisfies, for a constant M 2 (k) ∈ N any m ∈ N, the following estimate

∥Z k (t, x) -Z(t, x)∥ H m x ≲ m,k e -2 √ 2ky(t) (1 + y(t)) M 2 (k) .
Furthermore, Separation Lemma also implies the existence of M 1 (k) ∈ N, for any k ∈ N, such that

Z(t, x) -Z k (t, x) = M 1 (k) i=1 exp   - √ 2N i (d v (t) -2γ(v, t)) 1 -dv(t) 2 4     d v (t) -2γ(v, t) 1 -ḋv(t) 2 4   n i N j=1 p j (t) β j,i h i,1 (w(t, x)) h i,2 (w(t, -x)) , (3.150)
where for any 1

≤ i ≤ M 1 (k), n i ∈ N ∪ {0} and N i in N ≥k , the functions h i,1 , h i,2 ∈ L ∞ x (R) are smooth and all β j,i ∈ N ∪ {0}.
In fact, from Proposition 3.2.16, we could also say for all 1

≤ i ≤ M 1 (k) that 2k ≤ N i , n i ∈ N ∪ {0}, either h i,1 or h i,2 is in S (R) and either h i,1 (x) ∈ S + ∪ S + ∞ , h j,2 (x) ∈ S -∪ S - ∞ or h i,1 (-x) ∈ S + ∪ S + ∞ , h i,2 (-x) ∈ S -∪ S - ∞ .
Moreover, since γ satisfies the condition of Remark 3.3.3, and max 1≤j≤N d l dt l p j (t) ≲ l v l , for all l ∈ N and t ∈ R, we deduce from Remark 3.3.3 and the product rule of derivative that if v > 0 is small enough, then

∂ l ∂t l [Z k (t, x) -Z(t, x)] H s x ≲ s,k,l v k+l e -2 √
2|t|v , for any l ∈ N ∪ {0} and s ≥ 0.

(3.151)

Actually, using the product rule of derivative, for every 1

≤ i ≤ M 1 (k), we have if v > 0 is small enough that d l dt l   N j=1 p j (t) β j,i exp   -2 √ 2N i (d v (t) -2γ(v, t)) 1 -ḋv(t) 2 4     d v (t) -2γ(v, t) 1 -dv(t) 2 4   n i   ≲ l,k v k+l e -2 √ 2|t|v ,
for all l ∈ N ∪ {0} and every t ∈ R. Therefore, since Remark 3.3.3 implies

∂ l ∂t l h i,1 (w(t, x)) H s x + ∂ l ∂t l h i,2 (w(t, x)) H s x ≲ l,s v l ,
for every 1 ≤ i ≤ M 1 (k), we conclude estimate (3.151) from the product rule, triangle inequality and identity (3.150).

Proof of Lemma 3.5.5. First, we consider 0 < v ≪ 1 and recall that Λ(

•) = ∂ 2 ∂t 2 -∂ 2 ∂x 2 + U ′ (•).
From Lemma 3.3.2 and Remark 3.3.3, if h ∈ S + ∞ and p v (t) satisfies for constants q 1 , q 2 ∈ N the following estimate

d l dt l p v (t) ≲ l v 2q 1 ln 1 v + |t| q 2 e -2 √ 2|t| , for all l ∈ N ∪ {0}, then ∂ 2 ∂t 2 - ∂ 2 ∂x 2   p v ( √ 2vt)h   x + ρ M (v, t) 1 -ḋ(t) 2 4     is a finite sum of functions p i,v ( √ 2vt)h i   x+ρ M (v,t) 1- ḋ(t) 2 4
  with h i ∈ S + ∞ and p i,v satisfying for some natural numbers m i > 0, w i the following decay

d l dt l p i ( √ 2vt) ≲ l v 2m i +l ln 1 v + |t|v w i e -2 √
2|t|v , for all l ∈ N ∪ {0}. 

∂ 2 ∂t 2 - ∂ 2 ∂x 2 H 0,1   x -ρ M (v, t) 1 -ḋ(t) 2 4   = -U ′   H 0,1   x -ρ M (v, t) 1 -ḋ(t) 2 4     + residue 0 (t, x), (3.153)
where residue 0 (t, x) is a finite sum of functions

q i,v ( √ 2vt)h i   x -ρ M (v, t) 1 -ḋ(t) 2 4   ,
with h i ∈ S 2 + and

d l q i,v (t) dt l ≲ l v 2 |t| + ln 1 v 2 e -2|t|
, for all l ∈ N ∪ {0}.

Therefore, to finish the proof of Lemma 3.5.5 we need only to study the expression

DU (t, x) = U ′ (φ M,v (t, x)) -U ′   H 0,1   x -ρ M (v, t) 1 -ḋ(t) 2 4     -U ′   H -1,0   x + ρ M (v, t) 1 -ḋ(t) 2 4     .
(3.154) Furthermore, from Corollary 3.5.7, we can obtain for any natural N ≫ 1 the existence of natural numbers N 1 , N 2 , a set of functions h M,j ∈ S + ∞ and a set of functions p M,j,v (t) satisfying property (3.152) such that DU (t, x) satisfies In conclusion, we proved that there exist a finite subset I 0 of N, functions p j,v satisfying property (3.152) and

DU (t, x) ∼ = 2N N 1 j=1 p M,j,v ( √ 2vt)   h M,j   x + ρ M (v, t) 1 -ḋ(t) 2 4   -h M,j   -x + ρ M (v, t) 1 -ḋ(t)
h j ∈ S (R) ∩ S + ∞ such that Λ(φ M,v )(t, x) ∼ = 2N j∈I 0 p j,v ( √ 2vt)   h j   x + ρ M (v, t) 1 -ḋ(t) 2 4   -h j   -x + ρ M (v, t) 1 -ḋ(t) 2 4     . (3.156)
Moreover, after a finite number of applications of Proposition 3.2.16, it is possible to obtain an estimate of the form (3.156) for any N ≫ 1 if we assume v ≪ 1.

From Gram-Schmidt, we can exchange the functions h j in (3.156) by functions

R j ∈ S + ∞ ∩ S (R) such that ⟨R j , R i ⟩ = δ i,j and Λ(φ M,v )(t, x) ∼ = 2N j∈I s j,v ( √ 2vt)   R j   x + ρ M (v, t) 1 -ḋ(t) 2 4   -R j   -x + ρ M (v, t) 1 -ḋ(t) 2 4     , (3.157)
for a finite set I with the functions s j,v (t) also satisfying property (3.152). In conclusion, from the assumption that the conclusion of Theorem 3.5.1 is true when k = M, we deduce from Lemma 3.2.1 and condition ⟨R j , R i ⟩ = δ i,j that, for any j ∈ I, we have

Λ(φ M,v )(t, x), R j   x + ρ M (v, t) 1 -ḋ(t) 2 4   =   1 - ḋ(t) 2 4 1 2 + O(v)   s j,v ( √ 2vt) + i̸ =j, i∈I s i,v ( √ 2vt)O(v) +O v 2N |t|v + ln 1 v N 2 e -2 √ 2|t|v . (3.158)
Since N > M + 1, using the identities(3.158) for all j ∈ I and estimate (3.147), we deduce that

|s j,v (t)| ≲ v 2M |t| + ln 1 v 2 n M e -2 √ 2|t| , ( 3.159) 
for all j ∈ I, and t ∈ R. Furthermore, we can assume the existence of m 0 ∈ N ∪ {0} such that

d l s j,v (t) dt l ≲ l v 2M |t| + ln 1 v 2 n M e -2 √
2|t| , for all j ∈ I, l ∈ N ∪ {0} satisfying 0 ≤ l ≤ m 0 . 

v m 0 +1 s (m 0 +1) j,v √ 2vt   R j   x + ρ M (v, t) 1 -ḋ(t) 2 4   -R j   -x + ρ M (v, t) 1 -ḋ(t) 2 4     ∼ = 2M+m 0 +1 ∂ m 0 +1 Λ (ϕ M,v ) (t, x) ∂t m 0 +1 .
Therefore, similarly to the proof of (3.159) for all j ∈ I and using Remark 3.3.7 in the expressions

R j   x + ρ M (v, t) 1 -ḋ(t) 2 4   , R i   -x + ρ M (v, t) 1 -ḋ(t) 2 4
  for all i, j ∈ I, we obtain the following estimate

d m 0 +1 s j,v (t) dt l ≲ m 0 +1 v 2M |t| + ln 1 v 2 n M e -2 √ 2|t| .
In conclusion, from induction on l, the estimate of the decay of the derivatives of s j,v in Lemma 3.5.5 is true for all l ∈ N ∪ {0}.

The third lemma necessary to the proof of the existence of ϕ M+1,v (t, x) is the following: Lemma 3.5.8. In notation of Lemma 3.5.5, there is a positive number n M such that the following function

P roj(t) = 1 - ḋ(t) 2 4 1 2   N 1 i=1 s i,v ( √ 2vt) R i (x), H ′ 0,1 (x)   satisfies d l dt l P roj(t) ≲ l v 2M +l+2 ln 1 v 2 + |t|v n M e -2 √
2|t|v for all l ∈ N ∪ {0}.

Proof. From Lemma 3.5.5, there exists a function res : (0, 1)×R 2 → R such that res ∼ = 2M+4 0 and

Λ(φ M,v )(t, x) = j∈I s j,v ( √ 2vt)   R j   x + ρ M (v, t) 1 -ḋ(t) 2 4   -R j   -x + ρ M (v, t) 1 -ḋ(t) 2 4     + res(v, t, x).
Therefore, we have the following identity

Λ(φ M,v )(t, x), H ′ 0,1   x + ρ M (v, t) 1 -ḋ(t) 2 4   =P roj(t) + H ′ 0,1   x + ρ M (v, t) 1 -ḋ(t) 2 4   , res(v, t, x) - j s j,v ( √ 2tv) 1 - ḋ(t) 2 4 1 2 H ′ 0,1 (x), R j   -x + 2 ρ M (v, t) 1 -ḋ(t) 2 4   .
(3.161) First, we recall the function

d(t) = 1 √ 2 ln 8 v 2 cosh ( √ 2vt) 2 , which satisfies ḋ(t) L ∞ (R) ≲ v, d (k) (t) L ∞ (R) ≲ v k e -2 √ 2|t|v if k ≥ 2.
We also recall ρ

M (v, t) = M j=2 r j,v (t) -d(t)
2 . Since we are assuming the veracity of estimates (3.145) for any natural number k satisfying 2 ≤ k ≤ M, we deduce, from Remark 3.3.3, Lemma 3.5.5, the product rule of derivative and Cauchy-Schwarz inequality, the existence of N 2 ≥ 0 satisfying for any l ∈ N ∪ {0} the following inequalities

d l dt l   H ′ 0,1   x + ρ M (v, t) 1 -ḋ(t) 2 4   , res(v, t, x)   ≲ l l j=0 ∂ j ∂t j res(v, t, x) L 2 x v l-j ≲ l v 2M+4+l ln 1 v 2 + |t|v N 2 e -2 √ 2|t|v .
Furthermore, Lemma 3.3.1 and Remark 3.3.7 imply for any n ∈ N ∪ {0} that if R j ∈ S + n and 0 < v ≪ 1, then

d l dt l   1 - ḋ(t) 2 4 1 2 H ′ 0,1 (x), R j   -x + 2 ρ M (v, t) 1 -ḋ(t) 2 4     ≲ l v 2+l |t|v + ln 1 v 2 n+1 e -2 √
2v|t| , for all l ∈ N ∪ {0}.

Consequently, from Lemma 3.5.5 and the product rule of derivative, we deduce the existence of a sufficiently large number n M satisfying for v ≪ 1 the following inequality

d l dt l   j s j,v ( √ 2tv) 1 - ḋ(t) 2 4 1 2 H ′ 0,1 (x), R j   -x + 2 ρ M (v, t) 1 -ḋ(t) 2 4     ≲ l,M v 2M+2+l |t|v + ln 1 v 2 n M e -2 √ 2|t|v , (3.162)
for all l ∈ N ∪ {0}.

In conclusion, we obtain Lemma 3.5.8 from the estimates above, Lemma 3.5.5 and triangle inequality.

From now on, for

ρ M (v, t) = -d(t) 2 + M j=2 r j (v, t), we consider w M (t, x) = x + ρ M (v, t) 1 -ḋ(t) 2 4 . (3.163)
To simplify our notation, we denote the function r l,v as r l for every l ∈ N ≥2 . Using the notation of Lemma 3.5.5 and Lemma 3.5.8, we define the function

Γ(t, x) = N 1 i=1 s i,v ( √ 2vt)R i (x) -H ′ 0,1 (x) P roj(t) H ′ 0,1 2 
L 2 1 -ḋ(t) 2 4 .
(3.164) Lemmas 3.5.5 and 3.5.8 imply Γ (t, x) , H ′ 0,1 (w M (x)) = 0 for all t ∈ R, and for any

(t, x) ∈ R 2 Λ(φ M,v )(t, x) ∼ = 2M+4   H ′ 0,1 (w M (t, x)) P roj(t) H ′ 0,1 2 L 2 1 -ḋ(t) 2 4 -H ′ 0,1 (w M (t, -x)) P roj(t) H ′ 0,1 2 L 2 1 -ḋ(t) 2 4   +Γ (t, w M (t, x)) -Γ (t, w M (t, -x)) . (3.165)
Moreover, from Lemma 3.2.23 and Lemma 3.2.24, we can define the function

L 1 (Γ(t, •))(x) ∈ S (R) ∩ S +
∞ , more precisely, from the linearity of L 1 , we have for any (t, x) ∈ R 2 the following identity

L 1 (Γ(t, •))(x) = N 1 i=1 s i,v ( √ 2vt)L 1   R i - H ′ 0,1 H ′ 0,1 2 
L 2 ⟨H ′ 0,1 , R i ⟩    (x), (3.166)
and so, from Lemma 3.5.5, we have for any t ∈ R, s > 0 and l ∈ N ∪ {0} that

∂ l ∂t l L 1 (Γ(t, •))(x) H s x ≲ s,l v 2M+l |t|v + ln 8 v 2 n M e -2 √ 2|t|v . (3.167)
Next, we recall from the inductive hypothesis of Theorem 3.5.1 that φ M,v (t, x) also has the representation (3.146) given by

φ M,v (t, x) = H 0,1 (w M (t, x)) -H 0,1 (w M (t, -x)) + e - √ 2d(t) [G (w M (t, x)) -G (w M (t, -x))] + T M (vt, w M (t, x)) -T M (vt, w M (t, -x)) , (3.168)
where T M (t, x) is a function even on t satisfying for a sufficiently large number n M,1 ∈ N and any s > 0 the following inequality

∂ l ∂t l T M (t, x) H s x ≲ l,s v 4 |t| + ln 1 v 2 n M,1 e -2 √ 2|t| for all l ∈ N ∪ {0}, if 0 < v ≪ 1.
(3.169)

Construction of r M+1 (v, t).

From now on, for j ∈ {1, 2, 3, 4}, we consider the smooth functions I j : R → R defined by

I 1 (t) =e - √ 2d(t) U (3) (H 0,1 (x))e - √ 2x L 1 (Γ(t, •)) (x), H ′ 0,1 (x) , (3.170) I 2 (t) = L 1 (Γ(t, •))   -x + d(t) 1 -ḋ(t) 2 4   , 2 -U (2) (H 0,1 (x)) H ′ 0,1 (x) (3.171) I 3 (t) =-e - √ 2d(t) U (3) (H 0,1 (x)) G(x)L 1 (Γ(t, •)) (x), H ′ 0,1 (x) , (3.172) I 4 (t) =- ∂ 2 ∂t 2 - ḋ(t) 2 4 -ḋ(t) 2 ∂ 2 ∂x 2 L 1 (Γ(t, •)) (x), H ′ 0,1 (x) . (3.173) Denoting the function N L M : R → R by N L M (t) = 4 i=1 I i (t), for any t ∈ R,,
and recalling the function P roj : R → R defined in Lemma 3.5.8, we consider

Res M (t) = N L M (t) -P roj(t),
for any t ∈ R, and the following ordinary differential equation

   H ′ 0,1 2 L 2 x rM+1 (t) =-32 H ′ 0,1 2 L 2 x e - √ 2d(t) r M+1 (t) + Res M (t), r M+1 (t) = r M+1 (-t).
(3.174) From Lemma 3.5.5, we recall the existence of n M > 0 such that, for any l ∈ N ∪ {0}

and 1 ≤ i ≤ N 1 , d l dt l s i,v (t) ≲ l v 2M |t| + ln 1 v 2 n M e -2 √ 2|t| , if 0 < v ≪ 1.
Therefore, for 0 < v ≪ 1 and using Remark 3.3.7 and identities (3.166), (3.171), we deduce the existence

of n M,2 ∈ N ∪ {0} satisfying I (l) 2 (t) ≲ l v 2M+2+l |t|v + ln 1 v n M,2 e -2 √
2|t|v , for every t ∈ R and any l ∈ N ∪ {0}.

Next, from estimate (3.167), Lemma 3.3.1, identity (3.170) and Cauchy-Schwarz inequality, we obtain using the product rule of derivative that

I (l) 1 (t) ≲ l v 2M+2+l |t|v + ln 1 v n M e -2 √
2|t|v , for every t ∈ R and any l ∈ N ∪ {0}. (3.175) Similarly to the proof of estimate (3.175), we deduce that

I (l) 3 (t) ≲ l v 2M+2+l |t|v + ln 1 v n M e -2 √
2|t|v , for every t ∈ R and any l ∈ N ∪ {0}.

Furthermore, using Lemma 3.3.1, estimate (3.167) and the product rule of derivative, we obtain the following decay estimate

I (l) 4 (t) ≲ l v 2M+2+l |t|v + ln 1 v n M e -2 √
2|t|v , for every t ∈ R and any l ∈ N ∪ {0}.

In conclusion, using Lemma 3.5.8, we obtain that the function Res M (t) defined in the ordinary differential equation (3.174) satisfies for some number n M+1 ≥ 0 the following decay estimate 

d l dt l Res M (t) ≲ l v l+2M+2 |t|v + ln 1 v 2 n M+1 e -2
θ M+1,2 (t) = 1 √ 2v t -∞ Res M (s) tanh ( √ 2vs) ds, (3.177) θ M+1,1 (t) = -1 √ 2v t 0 Res M (s) √ 2vs tanh ( √ 2vs) -1 ds, (3.178) that r M+1 (t) = θ M+1,1 (t) tanh ( √ 2vt) + θ M+1,2 (t) √ 2vt tanh ( √ 2vt) -
(t)∥ L ∞ t (R) ≲ v 2M ln 1 v n M+1 .
Next, we are going to denote, for all (t, x) ∈ R 2 and 0 

< v ≪ 1, ϕ M+1,v,0 : R 2 → R by ϕ M+1,v,0 (t, x) =H 0,1 (w M (t, x + r M+1 (t))) -H 0,1 (w M (t, -x + r M+1 (t))) +e - √ 2d(t) [G (w M (t, x + r M+1 (t))) -G (w M (t, -x + r M+1 (t)))] +T M (vt, w M (t, x + r M+1 (t))) -T M (vt, w M (t, -x + r M+1 (t))) , ( 3 
ϕ M+1,v,1 (t, x) =H 0,1 (w M (t, x + r M+1 (t))) -H 0,1 (w M (t, -x + r M+1 (t))) +e - √ 2d(t) [G (w M (t, x + r M+1 (t))) -G (w M (t, -x + r M+1 (t)))] +T M (vt, w M (t, x)) -T M (vt, w M (t, -x)) , for every (t, x) ∈ R 2 , (3.181) satisfies Λ(ϕ M+1,v,1 )(t, x) ∼ = 2M+4 Λ (ϕ M+1,v,0 (t, x)) .
(3.182) Lemma 3.5.9. For any function h ∈ L ∞ (R) such that h ′ ∈ S (R), we have

∂ 2 ∂t 2 [h (w M (t, x + r M+1 (t)))] ∼ = 2M+4 ∂ 2 ∂t 2 1 t 1 =t [h (w M (t 1 , x + r M+1 (t)))] + rM+1 (t) 1 -ḋ(t) 2 4 h ′ (w M (t, x + r M+1 (t))) - ṙM+1 (t) ḋ(t) 1 -ḋ(t) 2 4 h ′′ (w M (t, x + r M+1 (t))) .
(3.183)

Proof of Lemma 3.5.9. First, using (3.163) and the product rule of derivative, we can verify the following identity

∂ 2 ∂t 2 [h (w M (t, x + r M+1 (t)))] = ∂ 2 ∂t 2 1 t 1 =t [h (w M (t 1 , x + r M+1 (t)))] +2 ṙM+1 (t) 1 -ḋ(t) 2 4 ∂ ∂t 1 t 1 =t h ′ (w M (t 1 , x + r M+1 (t))) +2 ṙM+1 (t)   d dt 1 - ḋ(t) 2 4 -1 2   h ′ (w M (t, x + r M+1 (t))) + ṙM+1 (t) 2 1 -ḋ(t) 2 4 h ′′ (w M (t, x + r M+1 )) + rM+1 (t) 1 -ḋ(t) 2 4 h ′ (w M (t, x + r M+1 )) .
We recall that the function w M satisfies, for all (t, x) ∈ R 2 , the equation

w M (t, x) = w 0   t, x - d(t) 2 + M j=2 r j (t)   ,
and the estimates in (3.145) are true for any 2 ≤ k ≤ M from the inductive hypotheses of Theorem 3.1.2.

Using estimate (3.179) and the product rule of derivative, we deduce that

d l dt l ṙM+1 (t) 2 ≲ l v 4M+2+l |t| + ln 1 v 2n M+1 e -4 √
2|t|v , for every t ∈ R and any l ∈ N ∪ {0}.

Therefore, the estimate above, Lemma 3.3.1, Remark 3.3.3 and the product rule of derivative

imply that ṙM+1 (t) 2 2 -ḋ(t) 2 4 h ′′ (w M (t, x + r M+1 )) ∼ = 2M+4 0.
Moreover, from estimates (3.179), we deduce using Lemma 3.3.1, the chain and product rule of derivative that if 0 < v ≪ 1, then

d l dt l   ṙM+1 (t)   d dt 1 - ḋ(t) 2 4 -1 2     ≲ l v 2M+4+l |t|v + ln 1 v n M+1 e -2 √ 2|t|v ,
for every t ∈ R and any l ∈ N∪{0}. So, using Remark 3.3.3 and the product rule of derivative, we obtain that ṙM+1 (t)

  d dt 1 - ḋ(t) 2 4 -1 2   h ′ (w M (t, x + r M+1 (t))) ∼ = 2M+4 0.
Next, from estimates (3.179) and ∥r

M+1 (t)∥ L ∞ ≲ v 2M ln 1 v n M+1
, we deduce using Lemma 3.3.4 for all s ≥ 1 and l ∈ N ∪ {0} that

∂ l ∂t l w M (t, x + r M+1 (t))h ′′ (w M (t, x + r M+1 (t))) -w M (t, x)h ′′ (w M (t, x) H s x ≲ s,l v 2M+l ln 1 v n M+1 , ∂ l ∂t l h ′′ (w M (t, x + r M+1 (t))) -h ′′ (w M (t, x) H s x ≲ s,l v 2M+l ln 1 v n M+1
.

Therefore, since we are assuming the veracity of estimates (3.145) for any 2 ≤ j ≤ M, using the identity

∂ ∂t 1 t 1 =t h ′ (w M (t, x + r M+1 (t))) =   d dt 1 - ḋ(t) 2 4 -1 2   1 - ḋ(t) 2 4 1 2 w M (t, x + r M+1 (t))h ′′ (w M (t, x + r M+1 (t))) + ṙM+1 (t) + M j=2 ṙj (t) -ḋ(t) 2 1 -ḋ(t) 2 4 h ′′ (w M (t, x + r M+1 (t))) , estimate (3 
.179), Lemma 3.3.1 and the product rule of derivative, we deduce that 2 ṙM+1 (t)

1 -ḋ(t) 2 4 ∂ ∂t 1 t 1 =t h ′ (w M (t 1 , x + r M+1 (t))) ∼ = 2M+4 -ṙM+1 (t) ḋ(t) 1 -ḋ(t) 2 4 h ′′ (w M (t 1 , x)) .
In conclusion, estimate (3.183) is true.

Proof of Theorem 3.5.1.

Proof of Theorem 3.5.1. From the observations made at the beginning of this section, we need only to construct φ M+1,v satisfying Theorem 3.5.1 from the function φ M,v denoted in (3.168). Let φ M+1,v : R 2 → R be the function satisfying the following identity

φ M+1,v (t, x) = ϕ M+1,v,0 (t, x)-L 1 (Γ(t, •)) (w M (t, x + r M+1 (t)))+L 1 (Γ(t, •)) (w M (t, -x + r M+1 (t)) , for every (t, x) ∈ R 2 , where ϕ M+1,v,0 (t, x) is defined in (3.180).
From the definition of Λ, we have that

Λ (φ M+1,v ) (t, x) = ∂ 2 ∂t 2 - ∂ 2 ∂x 2 ϕ M+1,v,0 (t, x) + U ′ (φ M+1,v (t, x)) + ∂ 2 ∂t 2 - ∂ 2 ∂x 2 [-L 1 (Γ(t, •)) (w M (t, x + r M+1 (t)))] + ∂ 2 ∂t 2 - ∂ 2 ∂x 2 L 1 (Γ(t, •)) (w M (t, -x + r M+1 (t)) (3.184) Moreover, since -∂ 2 ∂x 2 + U (2) (H 0,1 (x)) L 1 (Γ(t, •)) (x) = Γ(t, x), and w M (t, x) = x-ρ M (v,t) 1- ḋ(t) 2 4
, we have the following identity

- 4 -ḋ(t) 2 4 ∂ 2 ∂x 2 + U (2) (H 0,1 (w M (t, x + r M+1 (t)))) L 1 (Γ(t, •)) (w M (t, x + r M+1 (t))) = Γ(t, w M (t, x + r M+1 (t))). (3.185)
Moreover, from identity (3.184),we deduce that φ M+1,v (t, x) satisfies

Λ(φ M+1,v )(t, x) -Λ(ϕ M+1,v,0 )(t, x) =L M+1,0 (t, x) + L M+1,1 (t, x) -L M+1,1 (t, -x) + L M+1,2 (t, x) -L M+1,2 (t, -x), (3.186) 
for all (t, x) ∈ R 2 , where, for 0 ≤ j ≤ 2, the functions L M+1,j : R 2 → R satisfy for any (t, x) ∈ R 2 the following identities:

L M +1,0 (t, x) =U ′ (φ M+1,v (t, x)) -U ′ (ϕ M+1,v,0 (t, x)) -U (2) (ϕ M+1,v,0 (t, x)) L 1 (Γ(t, •)) (w M (t, -x + r M+1 (t))) -L 1 (Γ(t, •)) (w M (t, x + r M+1 (t)) , (3.187) L M+1,1 (t, x) =- ∂ 2 ∂t 2 - ∂ 2 ∂x 2 + U (2) (H 0,1 (w M (t, x + r M+1 (t)))) L 1 (Γ(t, •)) (w M (t, x + r M+1 )) , (3.188) L M +1,2 (t, x) =-U (2) (ϕ M+1,v,0 (t, x)) -U (2) (H 0,1 (w M (t, x + r M+1 (t)))) L 1 (Γ(t, •)) (w M (t, x + r M+1 )) .
(3.189)

Next, for 3 ≤ j ≤ 6, we denote the functions L M+1,j : R → R by t) , (3.193) and they satisfy the following equation

L M+1,3 (t, x) =U ′ (H 0,1 (w M (t, x + r M+1 )) -H 0,1 (w M (t, -x + r M+1 ))) -U ′ (H 0,1 (w M (t, x + r M+1 (t)))) -U ′ (-H 0,1 (w M (t, -x + r M+1 (t)))) , (3.190) L M+1,4 (t, x) = ∂ 2 ∂t 2 - ∂ 2 ∂x 2 + U (2) (H 0,1 (w M (t, x + r M+1 (t)))) e - √ 2d(t) G (w M (t, x + r M+1 (t))) - ∂ 2 ∂t 2 - ∂ 2 ∂x 2 e - √ 2d(t) G (w M (t, -x + r M+1 (t))) -U (2) (H 0,1 (w M (t, -x + r M+1 (t)))) e - √ 2d(t) G (w M (t, -x + r M+1 (t))) , (3.191) L M +1,5 (t, x) = U (2) (H 0,1 (w M (t, x + r M+1 (t)) -H 0,1 (t, -x + r M+1 (t)))) -U (2) (H 0,1 (w M (t, x + r M+1 (t)))) e - √ 2d(t) G (w M (t, x + r M+1 (t))) -U (2) (H 0,1 (w M (t, x + r M+1 (t)) -H 0,1 (t, -x + r M+1 (t)))) -U (2) (-H 0,1 (w M (t, -x + r M+1 (t)))) e - √ 2d(t) G (w M (t, -x + r M+1 (t))) , (3.192) L M+1,6 (t, x) = U ′ (ϕ M+1,v,0 (t, x)) -U ′ (H 0,1 (w M (t, x + r M+1 )) -H 0,1 (w M (t, -x + r M+1 ))) -U (2) (H 0,1 (w M (t, x + r M+1 (t))) -H 0,1 (w M (t, -x + r M+1 (t)))) × G (w M (t, x + r M+1 (t))) -G (w M (t, -x + r M+1 (t))) e - √ 2d ( 
6 j=3 L M+1,j (t, x) = U ′ (ϕ M+1,v,0 (t, x)) -U ′ (H 0,1 (w M (t, x + r M+1 ))) -U ′ (-H 0,1 (w M (t, -x + r M+1 ))) + ∂ 2 ∂t 2 - ∂ 2 ∂x 2 e - √ 2d(t) (G (w M (t, x + r M+1 (t))) -G (w M (t, -x + r M+1 (t)))) .
We recall the function ϕ M+1,v,1 defined in (3.181) and obtain from (3.180), the identity above and estimate (3.182) that

Λ(ϕ M+1,v,1 )(t, x) ∼ = 2M+4 Λ(ϕ M+1,v,0 )(t, x) (3.194) ∼ = 2M+4 Λ (H 0,1 (w M (t, x + r M+1 ))) + Λ (-H 0,1 (w M+1 (t, -x + r M+1 ))) + ∂ 2 ∂t 2 - ∂ 2 ∂x 2 (T M (vt, x + r M+1 ) -T M (vt, -x + r M+1 )) + 6 j=3 L M+1,j (t, x).
Next, using Lemma 3.5.9, we obtain the following estimate

Λ (H 0,1 (w M (t, x + r M+1 (t)))) ∼ = 2M+4 ∂ 2 ∂t 2 1 t 1 =t - ∂ 2 ∂x 2 H 0,1 (w M (t 1 , x + r M+1 (t))) +U ′ (H 0,1 (w M (t, x + r M+1 (t)))) + rM+1 (t) 1 -ḋ(t) 2 4 H ′ 0,1 (w M (t, x + r M+1 (t))) - ṙM+1 (t) ḋ(t) 1 -ḋ(t) 2 4 H ′′ 0,1 (w M (t, x + r M+1 (t))) . (3.195)
Consequently, using estimates (3.179) and Lemma 3.3.4 in the right-hand side of (3.195),

we obtain the following estimate

Λ (H 0,1 (w M (t, x + r M+1 (t)))) ∼ = 2M+4 Λ (H 0,1 (w M (t, x))) + rM+1 (t) 1 -ḋ(t) 2 4 H ′ 0,1 (w M (t, x)) - ṙM+1 (t) ḋ(t) 1 -ḋ(t) 2 4 H ′′ 0,1 (w M (t, x)) +r M+1 (t) ∂ ∂x Λ (H 0,1 (w M (t, x))) . (3.196) Actually, since H ′′ 0,1 (x) = U ′ (H 0,1 ), we have - ∂ 2 ∂x 2 H 0,1 (w M (t, x)) + U ′ (H 0,1 (w M (t, x))) = -ḋ(t) 2 4 -ḋ(t) 2 H ′′ 0,1 (w M (t, x)) ,
which implies the following equation

Λ (H 0,1 (w M (t, x))) = -ḋ(t) 2 4 -ḋ(t) 2 H ′′ 0,1 (w M (t, x)) + ∂ 2 ∂t 2 H 0,1 (w M (t, x)) .
Consequently, since we are assuming that the estimates in (3.145) are true every k ∈ N satisfying 2 ≤ k ≤ M, we deduce from Lemma 3.3.4 and estimate (3.179) that

r M+1 (t)Λ (H 0,1 (w M (t, x))) = -r M+1 (t) ḋ(t) 2 4 -ḋ(t) 2 Ḧ0,1 (w M (t, x)) + r M+1 (t) ∂ 2 ∂t 2 H 0,1 (w M (t, x)) ∼ = 2M+4 -r M+1 (t) ḋ(t) 2 4 -ḋ(t) 2 Ḧ0,1 (w 0 (t, x)) + r M+1 (t) ∂ 2 ∂t 2 H 0,1 (w 0 (t, x)) ∼ = 2M+4 r M+1 (t)Λ (H 0,1 (w 0 (t, x))) .
Therefore, from Lemma 3.4.2 and the above estimate above, we deduce that

r M+1 (t) ∂ ∂x Λ (H 0,1 (w M (t, x))) ∼ = 2M+4 - r M+1 (t)8 √ 2e - √ 2d(t) 1 -ḋ(t) 2 4 H ′′ 0,1 (w 0 (t, x)) ∼ = 2M+4 - r M+1 (t)8 √ 2e - √ 2d(t) 1 -ḋ(t) 2 4 H ′′ 0,1 (w M (t, x))
due to Lemma 3.3.4 and the assumption that estimates (3.145) are true for 2 ≤ k ≤ M. In conclusion, we have the following estimate

Λ (H 0,1 (w M (t, x + r M+1 (t)))) ∼ = 2M+4 Λ (H 0,1 (w M (t, x))) + rM+1 (t) 1 -ḋ(t) 2 4 H ′ 0,1 (w M (t, x)) - ṙM+1 (t) ḋ(t) + r M+1 (t)8 √ 2e - √ 2d(t) 1 -ḋ(t) 2 4 H ′′ 0,1 (w M (t, x)) . (3.197)
From now, we are going to divide the remaining part of the proof on different steps.

Step. 

U ∈ C ∞ (R) and ϕ M+1,v,0 ∈ L ∞ (R 2 ) ∩ C ∞ (R 2 )
, we obtain for any natural number j ≥ 3 that the function

E j,M (t, x) = U (j) (ϕ M+1,v,0 (t, x)) L 1 (Γ(t, •)) (w M (t, x + r M+1 (t))) -L 1 (Γ(t, •)) (w M (t, -x + r M+1 (t)) j-1 satisfies, for all s ≥ 1, ∥E j,M (t, x)∥ H s x ≲ s ∥L 1 (Γ(t, •)) (x)∥ (j-1) H x s ≲ v 2M+4 ln 1 v 2n M e -2 √ 2|t|v(j-1)
if 0 < v ≪ 1. Indeed, using Remark 3.3.3, estimate (3.167) and the product rule of derivative, we obtain similarly for all natural number j ≥ 3 that

∂ l ∂t l E j,M (t, x) H s x ≲ s,l v 2M+4+l ln 1 v 2n M e -2 √ 2|t|v for all l ∈ N ∪ {0}, if 0 < v ≪ 1.
Therefore, since U (ϕ) = ϕ 2 (1 -ϕ 2 ) 2 , the following function

L M +1,0 (t, x) =-U (2) (ϕ M+1,v,0 (t, x)) L 1 (Γ(t, •)) (w M (t, -x + r M+1 (t))) -L 1 (Γ(t, •)) (w M (t, x + r M+1 (t)) +U ′ (φ M+1,v (t, x)) -U ′ (ϕ M+1,v,0 (t, x)) satisfies L M+1,0 ∼ = 2M+4 0.
Step 2.(Estimate of L M+1,3 .) In notation of Lemma 3.4.5, from the definition of w M in (3.163) and Remark 3.4.6, we have

U ′ (H 0,1 (w M (t, x + r M+1 )) -H 0,1 (w M (t, -x + r M+1 ))) -U ′ (H 0,1 (w M (t, x + r M+1 ))) -U ′ (-H 0,1 (w M (t, -x + r M+1 ))) =24 exp   2 √ 2 (ρ M + r M+1 ) 1 -ḋ(t) 2 4   [M (w M (t, x + r M+1 )) -M (w M (t, -x + r M+1 ))] -30 exp   2 √ 2 (ρ M + r M+1 ) 1 -ḋ(t) 2 4   [N (w M (t, x + r M+1 )) -N (w M (t, -x + r M+1 ))] +24 exp   4 √ 2 (ρ M + r M+1 ) 1 -ḋ(t) 2 4   [V (w 0 (t, x + r M+1 )) -V (w M (t, -x + r M+1 ))] + 60 √ 2 exp   4 √ 2 (ρ M + r M+1 ) 1 -ḋ(t) 2 4   H ′ 0,1 (w M (t, x + r M+1 )) -H ′ 0,1 (w M (t, x + r M+1 )) +R   w M (t, x + r M+1 ), -4ρ M -4r M+1 4 -ḋ(t) 2   . Moreover, Lemma 3.4.5 implies that R w M (t, x + r M+1 ), -4ρ M (v,t)-4r M+1 (t) √ 4-ḋ(t) 2 is a finite sum of functions exp   -4 (2 + d i ) √ 2 (ρ M (v, t) -r M+1 (t)) 1 -ḋ(t) 2 4   m i (w M (t, x + r M+1 (t))) n i (-w M (t, -x + r M+1 (t))) ,
where any d i ∈ N, every m i ∈ S + and every n i ∈ S -. Consequently, using the decay estimates 3.179 of r M+1 and estimate (3.145) for any 2 ≤ k ≤ M, Lemmas 3.3.4 and 3.3.5 imply that

R   w M (t, x + r M+1 ), -4ρ M (v, t) -4r M+1 (t) 4 -ḋ(t) 2   ∼ = 2M+4 R   w M (t, x), -4ρ M (t) 4 -ḋ(t) 2   .
Furthermore, since we are assuming the veracity of Theorem 3.5.1 for any k ≤ M belonging to N ≥2 , we deduce from the Fundamental Theorem of Calculus, Lemma 3.3.1, estimates

(3.145) for 2 ≤ k ≤ M and estimate (3.179) that if v ≪ 1, then d l dt l e - √ 2(2ρ M (v,t)-2r M+1 (t)) -e -2 √ 2ρ M (v,t) -2 √ 2r M+1 (t)e -2 √ 2ρ M (v,t) ≲ l v 4M+2+l e -2 √
2v|t| , and

d l dt l e -2 √ 2ρ M (v,t) -e - √ 2d(t) ≲ l v 4 ln 1 v n 2 e -2 √ 2v|t| ,
for any l ∈ N ∪ {0}. Therefore, using estimates ∥r 

M (t)∥ L ∞ ≲ v 2M ln 1 v n M , ( 3 
L M+1,3 (t, x) ∼ = 2M+4 U ′ H w M 0,1 (t, x) -U ′ (H 0,1 (w M (t, x))) -U ′ (-H 0,1 (w M (t, -x))) +2 √ 2r M+1 (t)e - √ 2d(t) [24M (w M (t, x)) -30N (w M (t, x))] -2 √ 2r M+1 (t)e - √ 2d(t) [24M (w M (t, -x)) -30N (w M (t, -x))] + r M+1 e - √ 2d(t) 1 -ḋ(t) 2 4 24M ′ (w M (t, x)) -30N ′ (w M (t, x)) - r M+1 e - √ 2d(t) 1 -ḋ(t) 2 4 24M ′ (w M (t, -x)) -30N ′ (w M (t, -x)) . (3.198)
Step 3.(Estimate of L M+1,4 .) From Lemma 3.3.4, if 0 < v ≪ 1, we deduce for every s ≥ 1 and every l ∈ N ∪ {0} that

∂ l ∂t l [G (w M (t, x + r M+1 (t))) -G (w M (t, x))] H s x ≲ s,l v 2M+l ln 1 v + |t|v n M+1
, which implies with Lemma 3.3.1 the following estimate

∂ 2 ∂t 2 e - √ 2d(t) G (w M (t, x + r M+1 (t))) ∼ = ∂ 2 ∂t 2 e - √ 2d(t) G (w M (t, x)) .
Moreover, using Lemma 3.3.1 and estimate 3.179, Lemma 3.3.4 also implies

e - √ 2d(t) - ∂ 2 ∂x 2 + U (2) (H 0,1 (w M (t, x + r M+1 (t)))) G (w M (t, x + r M+1 (t))) ∼ = 2M+4 e - √ 2d(t) - ∂ 2 ∂x 2 + U (2) (H 0,1 (w M (t, x))) G (w M (t, x)) + r M+1 (t)e - √ 2d(t) ∂ ∂x - ∂ 2 ∂x 2 + U (2) (H 0,1 (w M (t, x))) G (w M (t, x)) .
Therefore,

∂ 2 ∂t 2 - ∂ 2 ∂x 2 + U (2) (H 0,1 (w M (t, x + r M+1 (t)))) e - √ 2d(t) G (w M (t, x + r M+1 (t))) ∼ = 2M+4 ∂ 2 ∂t 2 - ∂ 2 ∂x 2 + U (2) (H 0,1 (w M (t, x))) e - √ 2d(t) G (w M (t, x)) +r M+1 (t)e - √ 2d(t) ∂ ∂x - ∂ 2 ∂x 2 + U (2) (H 0,1 (w M (t, x))) G (w M (t, x)) .
In conclusion, recalling the notation h w M (t, x) = f (w M (t, x))-h (w M (t, -x)) for any function h : R → R, using Lemma 3.3.1, identity (3.191) and estimate (3.179), we obtain the following estimate

L M+1,4 (t, x) ∼ = 2M+4 r M+1 (t)e - √ 2d(t) ∂ ∂x -G (2) + U (2) (H 0,1 )G w M (t, x) +e - √ 2d(t) -G (2) + U (2) (H 0,1 )G w M (t, x) + ∂ 2 ∂t 2 e - √ 2d(t) G w M (t, x) .
(3.199)

Step 4.(Estimate of L M+1,1 .) Since Lemma 3.5.5 implies for all s ≥ 1, l ∈ N ∪ {0} that

∂ l ∂t l L 1 (Γ(t, •)) (x) H s ≲ s,l v 2M+l v|t| + ln 1 v n M e -2 √ 2v|t| if 0 < v ≪ 1,
we can repeat the argument in the second step and obtain, from Lemma 3.3.4 and estimates 3.179, that

L M+1,1 (t, x) = - ∂ 2 ∂t 2 - ∂ 2 ∂x 2 + U (2) (H 0,1 (w M (t, x + r M+1 ))) L 1 (Γ(t, •)) (w M (t, x + r M+1 )) ∼ = 2M+4 - ∂ 2 ∂t 2 - ∂ 2 ∂x 2 + U (2) (H 0,1 (w M (t, x))) L 1 (Γ(t, •)) (w M (t, x)) ∼ = 2M+4 -Γ (t, w M (t, x)) + ḋ(t) 2 4 -ḋ(t) 2 ∂ 2 ∂y 2 y=w M (t,x) L 1 (Γ(t, •)) (y) - ∂ 2 ∂t 2 L 1 (Γ(t, •)) (w M (t, x)) .
Step 5.(Estimate of L M+1,5 .) Lemma 3.3.4 and estimate (3.179) imply for all m ∈ N, l ∈ N ∪ {0} the following estimates

∂ l ∂t l H 0,1 (w M (t, ±x + r M+1 )) m -H 0,1 (w M (t, ±x)) m H s x ≲ m,s,l v 2M+l ln 1 v n M+1 , (3.200) ∂ l ∂t l G (w M (t, x + r M+1 )) m -G (w M (t, x)) m H s x ≲ m,s,l v 2M+l ln 1 v n M+1 , (3.201) if 0 < v ≪ 1. Therefore, since U (2) (H 0,1 (w M (t, x + r M+1 ) -H 0,1 (t, -x + r M+1 ))) -U (2) (H 0,1 (w M (t, x + r M+1 )))
is a real linear combination of functions H 0,1 (w

M (t, x + r M+1 ) m H 0,1 (w M (t, -x + r M+1 ) n
such that m ∈ N ∪ {0} and n ∈ N, we deduce using the identity (3.192) and Lemma 3.3.1 the following estimate

L M +1,5 (t, x) ∼ = 2M+4 e - √ 2d(t) U (2) H w M 0,1 (t, x) G w M (t, x) -e - √ 2d(t) U (2) (H 0,1 )G w M (t, x),
where

f w M (t, x) = f (w M (t, x)) -f (w M (t, -x)) for any function f : R → R and (t, x) ∈ R 2 .
Step 6.(Estimate of L M+1,6 .) From the definition of the functions φ M,v , ϕ M+1,0,v , L M+1,6 respectively in (3.168), (3.180), (3.193) and using the notation

S(v, t, x) = ϕ M+1,v,0 (t, x) -H 0,1 (w M (t, x + r M+1 )) + H 0,1 (w M (t, -x + r M+1 )) ,
we have the following identity

L M+1,6 (t, x) = 6 j=3 U (j) (H 0,1 (w M (t, x + r M+1 )) -H 0,1 (w M (t, -x + r M+1 ))) (j -1)! S(v, t, x) j-1 +U (2) (H 0,1 (w M (t, x + r M+1 )) -H 0,1 (w M (t, -x + r M+1 ))) × [T M (vt, w M (t, x + r M+1 )) -T M (vt, w M (t, -x + r M+1 ))] .
Furthermore, from the assumption that Theorem 3.5.1 is true for any k ∈ N satisfying 2 ≤ k ≤ M, we have the following estimate

∂ l ∂t l [T M (vt, w M (t, x))] H s x ≲ s,l v 4+l |t|v + ln 1 v c k e -2 √ 2|t|v ,
for some positive constant c k , all s ≥ 0, and any l ∈ N ∪ {0} if 0 < v ≪ 1. Therefore, using Lemma 3.3.4 and estimate (3.179), we obtain that if 0 < v ≪ 1, then the following inequality

∂ l ∂t l [T M (vt, w M (t, ±x + r M+1 (t)))] H s x ≲ s,l v 4+l |t|v + ln 1 v c k e -2 √ 2|t|v
is true for every s ≥ 0 and any l ∈ N ∪ {0}. Thus, using estimates (3.200), (3.201) and the following algebraic property of H s x for any s >

1 2 ∥f g∥ H s x ≲ s ∥f ∥ H s x ∥g∥ H s x , for all f, g ∈ H s x ,
we deduce that

L M +1,6 (t, x) ∼ = 2M+4 U (2) H w M 0,1 (t, x) T M (vt, w M (t, x)) -T M (vt, w M (t, -x)) + 6 j=3 U (j) H w M 0,1 (t, x) ϕ M,v (t, x) -H w M 0,1 (t, x) (j-1) (j -1)! . (3.202)
Step 7.(Estimate of L M+1,2 .) Finally, we will estimate the last term, which is

L M +1,2 (t, x) = -U (2) (H 0,1 (w M (t, x + r M+1 )) -H 0,1 (w M (t, -x + r M+1 ))) +U (2) (H 0,1 (w M (t, x + r M+1 ))) L 1 (Γ(t, •)) (w M (t, x + r M+1 )) -U (2) ϕ M,v,0 (t, x) -U (2) H 0,1 (w M (t, x + r M+1 )) -H 0,1 (w M (t, -x + r M+1 )) × L 1 (Γ(t, •)) (w M (t, x + r M+1 )) .
To simplify the estimate of this function, we are going to estimate separately the functions

L M+1,2,1 (t, x) = -U (2) (H 0,1 (w M (t, x + r M+1 )) -H 0,1 (w M (t, -x + r M+1 ))) -U (2) (H 0,1 (w M (t, x + r M+1 ))) L 1 (Γ(t, •)) (w M (t, x + r M+1 )) ,
and

L M+1,2,2 (t, x) = U (2) H 0,1 (w M (t, x + r M+1 )) -H 0,1 (w M (t, -x + r M+1 )) -U (2) ϕ M,v,0 (t, x) L 1 (Γ(t, •)) (w M (t, x + r M+1 )) ,
we also recall that U (2) 

(ϕ) = 2 -24ϕ 2 + 30ϕ 4 .
First, from Taylor's Theorem, we have

L M+1,2,1 (t, x) = L 1 (Γ(t, •)) (w M (t, x + r M+1 )) U (3) (H 0,1 (w M (t, x + r M+1 ))) H 0,1 (w M (t, -x + r M+1 )) + 6 j=4 (-1) (j-1) (j -2)! U (j) (H 0,1 (w M (t, x + r M+1 ))) H 0,1 (w M (t, -x + r M+1 )) j-2
Next, from estimate (3.179) and Lemma 3.3.6, we have for any f ∈ S + ∞ , l and m in N ∪ {0}, and j ∈ N that there exists n 0 ∈ N satisfying

∂ l ∂t l f (w M (t, x + r M+1 )) (H 0,1 (w M (t, x + r M+1 )) 2m H 0,1 (w M (t, -x + r M+1 )) 2j H s x ≲ s,l,m,j,f v 2+l ln 1 v + |t|v n 0 e -2 √ 2|t|v ,
for any s ≥ 0 if 0 < v ≪ 1. Therefore, using Lemmas 3.3.4, 3.5.5, identity (3.166), estimate (3.179) and the product rule of derivative, we deduce 

L M+1,2,1 (t, x) ∼ = 2M+4 L 1 (Γ(t, •)) (w M (t, x + r M+1 )) U (3) (H 0,1 (w M (t, x + r M+1 ))) H 0,1 (w M (t, -x + r M+1 )) ∼ = 2M+4 L 1 (Γ(t, •)) (w M (t, x)) U (3) (H 0,1 (w M (t, x))) H 0,1 (w M (t, -x)) . Moreover, since d k dx k H 0,1 (x) -e √ 2x ≲ k min e 2 √ 2x , e √ 2x ,
L M+1,2,1 (t, x) ∼ = 2M+4 L 1 (Γ(t, •)) (w M (t, x)) U (3) (H 0,1 (w M (t, x))) e √ 2w M (t,-x) ∼ = 2M+4 L 1 (Γ(t, •)) (w M (t, x)) U (3) (H 0,1 (w M (t, x))) e - √ 2w M (t,x) exp   2 √ 2ρ M (v, t) 1 -ḋ(t) 2 4   ∼ = 2M+4 L 1 (Γ(t, •)) (w M (t, x)) U (3) (H 0,1 (w M (t, x))) e - √ 2w M (t,x) e - √ 2d(t) , so ∂ l ∂t l L M+1,2,1 (t, x) H s x ≲ s,l v 2M+2 |t|v + ln 1 v n M e -2 √ 2|t|v .
Next, let w M+1 : R 2 → R be the unique function satisfying

w M+1 (t, x) = w M (t, x + r M+1 (t)), for all (t, x) ∈ R 2 . (3.203)
Since we are assuming that Theorem 3.5.1 is true for k = M, Lemmas 3.3.6, 3.5.5 and the following identity

U (2) (ϕ M,v,0 (t, x)) =U (2) H w M+1 0,1 (t, x) + e - √ 2d(t) U (3) (H w M+1 (t, x)) G w M+1 (t, x) +U (3) H w M+1 0,1 (t, x) [T M (vt, w M+1 (t, x)) -T M (vt, w M+1 (t, -x))] + 6 j=4 1 (j -2)! U (j) H w M+1 0,1 (t, x) ϕ M,v,0 (t, x) -H w M+1 0,1 (t, x) j-2 imply L 1 (Γ(t, •)) (w M (t, x + r M+1 )) U (2) (ϕ M,v,0 (t, x)) ∼ = 2M+4 U (2) H w M+1 0,1 (t, x) L 1 (Γ(t, •)) (w M (t, x + r M+1 )) +e - √ 2d(t) U (3) H w M+1 0,1 (t, x) G w M+1 (t, x)L 1 (Γ(t, •)) (w M (t, x + r M+1 )) .
Thus, we obtain that

L M+1,2,2 (t, x) ∼ = 2M+4 -e - √ 2d(t) U (3) H w M+1 0,1 (t, x) G w M+1 (t, x)L 1 (Γ(t, •)) (w M (t, x + r M+1 )) .
Indeed, using Lemma 3.3.4 and estimates (3.179), we deduce from the estimate above that

L M+1,2,2 (t, x) ∼ = 2M+4 -e - √ 2d(t) U (3) H w M 0,1 (t, x) G w M (t, x)L 1 (Γ(t, •)) (w M (t, x)) .
Furthermore, Lemmas 3.5.5 and 3.3.1 implies, for any 1

≤ i ≤ N 1 , d l dt l s i,v √ 2vt e - √ 2d(t) ≲ l v 2M+2+l |t|v + ln 1 v n M e -2 √ 2|t|v , for all l ∈ N ∪ {0}, if 0 < v ≪ 1. Also, Lemma 3.3.6 implies if f ∈ S + ∞ , then there exists of n 0 ∈ N satisfying ∂ l ∂t l f (w M (t, x)) G (w M (t, x)) H 0,1 (w M (t, x)) α H 0,1 (w M (t, -x)) β H s x ≲ s,α,β,l v 2+l ln 1 v + |t|v n 0 e -2 √ 2|t|v ,
for all s ≥ 0, every l ∈ N ∪ {0}, and any α

∈ N ∪ {0}, β ∈ N with α + β odd, if 0 < v ≪ 1.
By similar reasoning, if f ∈ S + ∞ , there exists n 0 ∈ N satisfying

∂ l ∂t l f (w M (t, x)) G (w M (t, -x)) H 0,1 (w M (t, x)) α H 0,1 (w M (t, -x)) β H s x ≲ s,α,β,l v 2+l ln 1 v + |t|v n 0 e -2 √ 2|t|v ,
for all s ≥ 0, l ∈ N ∪ {0} and any α, β ∈ N ∪ {0} with α + β odd, if 0<v ≪ 1. Therefore, using the estimate above, inequality (3.167) and the inequality

∥f g∥ H s x ≲ s ∥f ∥ H s+1 x ∥g∥ H s+1 x ,
for any f, g ∈ S (R) and all s ≥ 0, we deduce that

L M+1,2,2 (t, x) ∼ = 2M+4 -e - √ 2d(t) U (3) (H 0,1 (w M (t, x))) G (w M (t, x)) L 1 (Γ(t, •)) (w M (t, x)) .
As a consequence, we obtain that

∂ l ∂t l L M+1,2 (t, x) H s x ≲ s,l v 2M+2+l |t|v + ln 1 v n M e -2 √ 2|t|v , ( 3.204) 
and

L M+1,2 (t, x) ∼ = 2M+4 -e - √ 2d(t) U (3) (H 0,1 (w M (t, x))) G (w M (t, x)) L 1 (Γ(t, •)) (w M (t, x)) +e - √ 2d(t) L 1 (Γ(t, •)) (w M (t, x)) U (3) (H 0,1 (w M (t, x))) e - √ 2w M (t,x) .
Step 8.(Estimate of Λ(ϕ M+1,v ).) From the equation (3.186) and the conclusions obtained in all the steps before, we deduce

Λ(φ M+1,v )(t, x) -Λ(ϕ M+1,v,0 )(t, x) ∼ = 2M+4 -Γ (t, w M (t, x)) + Γ (t, w M (t, -x)) + ḋ(t) 2 4 -ḋ(t) 2 ∂ 2 ∂y 2 y=w M (t,x) L 1 (Γ(t, •)) (y) - ḋ(t) 2 4 -ḋ(t) 2 ∂ 2 ∂y 2 y=w M (t,-x) L 1 (Γ(t, •)) (y) - ∂ 2 ∂t 2 L 1 (Γ(t, •)) (w M (t, x)) + ∂ 2 ∂t 2 L 1 (Γ(t, •)) (w M (t, -x)) +e - √ 2d(t) L 1 (Γ(t, •)) (w M (t, x)) U (3) (H 0,1 (w M (t, x))) e - √ 2w M (t,x) -e - √ 2d(t) L 1 (Γ(t, •)) (w M (t, -x)) U (3) (H 0,1 (w M (t, -x))) e - √ 2w M (t,x) -e - √ 2d(t) U (3) (H 0,1 (w M (t, x))) G (w M (t, x)) L 1 (Γ(t, •)) (w M (t, x)) +e - √ 2d(t) U (3) (H 0,1 (w M (t, -x))) G (w M (t, -x)) L 1 (Γ(t, •)) (w M (t, -x)) .
Furthermore, from (3.194) and the estimates of L M+1,j for 3 ≤ j ≤ 6, we deduce

Λ(ϕ M+1,v,0 )(t, x) ∼ = 2M+4 Λ(φ M,v )(t, x) + 2 √ 2r M+1 (t)e - √ 2d(t) [24M w M (t, x) -30N w M (t, x)] + r M+1 (t)e - √ 2d(t) 1 -ḋ(t) 2 4 24 M ′ w M (t, x) -30 N ′ w M (t, x) +r M+1 (t) ∂ ∂x -G (2) + U (2) (H 0,1 ) G w M (t, x) e - √ 2d(t) + rM+1 (t) 1 -ḋ(t) 2 4 H ′ 0,1 (w M (t, x)) -H ′ 0,1 (w M (t, -x)) - ṙM+1 (t) ḋ(t) 1 -ḋ(t) 2 4 H ′′ 0,1 (w M (t, x)) -H ′′ 0,1 (w M (t, -x)) ,
from which with Remark (3.4.4) we deduce that

Λ(ϕ M+1,v,0 )(t, x) ∼ = 2M+4 Λ(φ M,v )(t, x) + 2 √ 2r M+1 (t)e - √ 2d(t) [24M w M (t, x) -30N w M (t, x)] + 8 √ 2r M+1 (t)e - √ 2d(t) -ṙM+1 (t) ḋ(t) 1 -ḋ(t) 2 4 H ′′ 0,1 w M (t, x) + rM+1 (t) 1 -ḋ(t) 2 4 H ′ 0,1 w M (t, x),
We also have, from Lemmas 3.5.5, 3.5.8, for all l ∈ N ∪ {0} and any s ≥ 0 that if 0 < v ≪ 1, then

∂ l ∂t l [Λ (φ M,v ) (t, x) -Γ (t, w M (t, x)) + Γ (t, w M (t, -x))] H s x ≲ s,l v 2M+2+l |t|v + ln 1 v n M e -2 √ 2|t|v .
Therefore, from the estimates above, inequalities (3.204), (3.179), Lemmas 3.3.1, 3.5.5 and Remark 3.3.3, we obtain that the estimate (3.147) of Theorem 3.5.1 is true for k = M + 1.

Furthermore, Lemma 3.3.4 and (3.179) imply that if h ∈ S + ∞ , then we have for all l ∈ N ∪ {0} the following inequality

d l dt l h (w M (t, x + r M+1 (t))) -h (w M (t, x)) , H ′ 0,1 (w M (t, x + r M+1 (t))) ≲ l v 2M+l ln 1 v n M+1 .
Therefore, the estimates above, Remark 3.3.7, the ordinary differential equation (3.174) satisfied by r M+1 and estimate (3.179) of the derivatives of r M+1 imply (3.148) for k = M + 1.

In conclusion, by induction on k, we deduce that Theorem 3.5.1 is true for all k ∈ N ≥2 . Remark 3.5.10. From Theorem 3.5.1, we have that if v ≪ 1, then

lim t→+∞ M k=1 r k (v, t) exists.

Proof of Theorem 3.1.2

Proof of Theorem 3.1.2. The Theorem 3.5.1 implies the existence, for any k ∈ N ≥2 , of a smooth function φ k,v (t, x) and a even function 

r(t) ∈ L ∞ (R) such that if v ≪ 1, then lim t→±∞ φ k,v (t, x) -H 0,1 x ∓ vt + r(t) √ 1 + v 2 -H -1,0 x ± vt -r(t) √ 1 + v 2 H 1 x = 0, lim t→±∞ ∂ t φ k,v (t, x) ± v √ 1 -v 2 H ′ 0,1 x ∓ vt + r(t) √ 1 + v 2 ∓ v √ 1 -v 2 H ′ -1,0 x ± vt -r(t) √ 1 + v 2 L 2 x = 0,
ϕ k (v, t, x) = φ k,v t + ln (v 2 ) -ln (8) 2 √ 2v + lim s→+∞ r(s) v , x
satisfies Theorem 3.1.2.

Introduction

Background

First, we recall the potential function U (ϕ) = ϕ 2 (1-ϕ 2 ) 2 and the partial differential equation

(ϕ 6 ) ∂ 2 t ϕ(t, x) -∂ 2 x ϕ(t, x) + U ′ (ϕ(t, x)) = 0.
From Chapter 1, we have verified that all solutions ϕ(t, x) of (ϕ 6 ) in the energy space preserve the following quantities

E(ϕ)(t) = R [∂ t ϕ(t, x)] 2 + [∂ x ϕ(t, x)] 2 2 + U (ϕ(t, x)) dx, (Energy) 
P (ϕ) =- R ∂ t ϕ(t, x)∂ x ϕ(t, x) dx. (Momentum)
We also recall the kinetic energy and potential energy, which are given respectively by

E kin (ϕ)(t) = R [∂ t ϕ(t, x)] 2 2 dx, E pot (ϕ)(t) = R [∂ x ϕ(t, x)] 2 2 + U (ϕ(t, x)) dx.
We recall that all the kinks associated with the partial differential equation (ϕ 6 ) are given by the space translation of the following functions

H 0,1 (x) = e √ 2x 1 + e 2 √ 2x , H -1,0 (x) = -H 0,1 (-x) = -e - √ 2x 1 + e -2 √ 2x
, and the anti-kinks are the space translation of the following functions

H 1,0 (x) = H 0,1 (-x) = e - √ 2x 1 + e -2 √ 2x , H 0,-1 (x) = -H 0,1 (x) = -e √ 2x 1 + e 2 √ 2x
.

From the previous chapters, we recall the following identity

d dx H 0,1 (x) 2 L 2 x = 1 2 √ 2 , ( 4.1) 
and the following estimates for any k ≥ 1

d k dx k H 0,1 (x) ≲ k min e √ 2x , e -2 √ 2x , ( 4.2) 
and

|H 0,1 (x)| ≤ e √ 2 min(x,0) . ( 4.3) 
In this chapter, we study the traveling kink-kink solutions of (ϕ 6 ) with speed 0 < v < 1 small enough. More precisely, we consider the following definition.

Definition 4.1.1. The traveling kink-kink with speed v ∈ (0, 1) is the unique solution ϕ(t, x) that satisfying for some positive constants K, c and any t ≥ K the following decay estimate

(ϕ(t, x), ∂ t ϕ(t, x)) - --→ H 0,1 x -vt √ 1 -v 2 - ---→ H -1,0 x + vt √ 1 -v 2 H 1 x (R)×L 2 x (R) ≤ e -ct , (4.4) 
where, for any -1 < v < 1 and any y ∈ R,

--→ H 0,1 x -vt + y √ 1 -v 2 =   H 0,1 x-vt+y √ 1-v 2 -v √ 1-v 2 H ′ 0,1 x-vt+y √ 1-v 2   , (4.5) ---→ H -1,0 x + vt -y √ 1 -v 2 =   H -1,0 x+vt-y √ 1-v 2 v √ 1-v 2 H ′ -1,0 x+vt-y √ 1-v 2   . ( 4.6) 
The existence and uniqueness for any 0 < v < 1 of solutions ϕ(t, x) satisfying (4.4) was obtained in [START_REF] Chen | Kink networks for scalar fields in dimension 1 + 1[END_REF], but the uniqueness of the solution of (ϕ 6 ) satisfying for 0

< v < 1 lim t→+∞ - → ϕ (t, x) - --→ H 0,1 x -vt √ 1 -v 2 + ---→ H -1,0 x + vt √ 1 -v 2 H 1 x ×L 2 x = 0
is still an open problem. For references on the existence and uniqueness of multi-soliton solutions of other nonlinear dispersive partial differential equations, see for example [START_REF] Martel | Asymptotic N -Soliton-like-Solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF] and [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF].

For non-integrable dispersive models, there exist previous results about the inelasticity of the collision of two solitons. For example, in the article [START_REF] Martel | Inelastic interaction of nearly equal solitons for the quartic gKdV equation[END_REF], Martel and Merle verified that the collision between two solitons with nearly equal speed is not elastic. More precisely, they obtained that the incoming speed of the two solitons is different of their outgoing speed after their collision.

Since the ϕ 6 model is a non-integrable system, the collision of two kinks with low speed 0 < v < 1 is expected to be inelastic. More precisely, we were expecting the existence of a value k > 1 such that if 0 < v ≪ 1 and ϕ(t, x) is a solution (ϕ 6 ) satisfying the condition (4.4), then ϕ(t, x) should have inelasticity of order v k , which means the existence of t < 0

with |t| ≫ 1 such that (ϕ(t, x), ∂ t ϕ(t, x)) = --→ H 0,1   x + v f t + y 1 (t) 1 -v 2 f   + ---→ H -1,0   x -v f t + y 2 (t) 1 -v 2 f   + ro(t, x), (4.7) with v k ≪ ∥ro(t)∥ H 1 x (R)×L 2 x (R) ≪ v and v f (t), y 1 , y 2 satisfying v k ≪ |v f (t) -v| + max j∈{1,2} | ẏj (t)| ≪ v, (4.8) 
for all t < 0 satisfying |t| ≫ 1. Actually, in the quartic gKdV, the collision of the two solitons satisfies a similar property than our previous expectations in (4.7) and (4.8), see Theorem 1 in the article [START_REF] Martel | Inelastic interaction of nearly equal solitons for the quartic gKdV equation[END_REF] of Martel and Merle for more details.

However, in this chapter, we prove for the ϕ 6 model and any k > 1 that if 0 < v ≪ 1 and t is close to -∞, both estimates (4.7) and (4.8) are not possible. Indeed, we demonstrate that if v ≪ 1 and ϕ(t, x) satisfies (4.4), then there exists a number e k,2v ∈ R satisfying, for all t close to -∞,

(ϕ(t, x), ∂ t ϕ(t, x)) = --→ H 0,1   x + v f t -e k,2v 1 -v 2 f   + ---→ H -1,0   x -v f t + e k,2v 1 -v 2 f   + r c,v (t, x), lim sup t→-∞ ∥r c,v (t)∥ H 1 x ×L 2 x ≤ v 2k and lim sup t→-∞ |v f (v, t) -v| ≤ v 2k . (4.9)
In conclusion, the inelasticity of the collision of two kinks cannot be of any order v k for any 1 ≪ k ∈ N, if the incoming speed v of the kinks is small enough. The problem to verify the inelasticity of the collision of kinks for the ϕ 6 model is still open. But, because of the conclusion obtained in this paper, the change |v -v f | in the speeds of each soliton is much smaller than any monomial function v k , more precisely for all k > 0

lim v→0 + lim sup t→-∞ |v f (v, t) -v| v k = 0, (4.10) 
which is a new result.

The study of collision of kinks for the ϕ 6 model is important for high energy physics, see for example [START_REF] Vakhid | Kink interactions in the (1+1)-dimensional ϕ 6 model[END_REF] and [START_REF] Dorey | Kinkantikink collisions in the ϕ 6 model[END_REF]. Actually, in the article [START_REF] Vakhid | Kink interactions in the (1+1)-dimensional ϕ 6 model[END_REF], it was obtained numerically the existence of a critical speed v c such that if each of the two kinks moves with speed v with absolute value less than v c and they approach each other, then they will collide and the collision will be very elastic, which is exactly the result we obtained rigorously in this chapter. The study of the dynamics of multi-soliton solutions of the ϕ 6 model has also applications in condensed matter physics, see [START_REF] Bishop | Solitons and Condensed Matter Physics[END_REF], and cosmology, see [START_REF] Vilekin | Cosmic Strings and Other Topological Defects[END_REF].

For other nonlinear dispersive equations, there exist rigorous results of inelasticity and stability of collision of solitons. For gKdV models, the inelasticity of collision of solitons was proved for the quartic gKdV in [START_REF] Martel | Inelastic interaction of nearly equal solitons for the quartic gKdV equation[END_REF], and, for a certain class of generalized gKdV, inelasticity of collision between solitons was also proved in [START_REF] Muñoz | On the inelastic 2-soliton collision for generalized KdV equations[END_REF] and [START_REF] Muñoz | Inelastic character of solitons of slowly varying gKdV equations[END_REF] by Muñoz, see also the article [START_REF] Martel | Stability of two soliton colision for non-integrable gKdV equations[END_REF] of Martel and Merle. For nonlinear Schrödinger equation, in [START_REF] Perelman | Two soliton collision for nonlinear Schrödinger equations in dimension 1[END_REF], Perelman studied the collision of two solitons of different sizes and obtained that after that the solution does not preserve the two solitons' structure after the collision. See also the work [START_REF] Martel | Inelasticity of soliton collisions for the 5D energy critical wave equation[END_REF] by Martel and Merle about the inelasticity of the collision of two solitons for the fifth-dimensional energy critical wave equation.

Main Results

The main theorem obtained in Chapter 4 is the following result: Theorem 4.1.2. There exists a continuous function v f : (0, 1) × R → (0, 1) and, for any andϕ(t, x) is a traveling kink-kink solution of (ϕ 6 ) with speed v, then there exists a number e v,k such

0 < θ < 1 and k ∈ N ≥2 , there exists 0 < δ(θ, k) < 1, such that if 0 < v < δ(θ, k),
that |e v,k | < ln 8 v 2 and if t ≤ - (ln 1 v ) 2-θ v , then |v f (v, t) -v| < v k and ϕ(t, x) -H 0,1   x -e k,v + v f t 1 -v 2 f   -H -1,0   x + e k,v -v f t 1 -v 2 f   H 1 x (R) + ∂ t ϕ(t, x) - v f 1 -v 2 f H ′ 0,1   x -e v,k + v f t 1 -v 2 f   + v f 1 -v 2 f H ′ -1,0   x + e v,k -v f t 1 -v 2 f   L 2 x (R) ≤ v k . If -4(ln 1 v ) 2-θ v ≤ t ≤ -(ln 1 v ) 2-θ v , then ϕ(t, x) -H 0,1 x -e k,v + vt √ 1 -v 2 -H -1,0 x + e k,v -vt √ 1 -v 2 H 1 x (R) + ∂ t ϕ(t, x) - v √ 1 -v 2 H ′ 0,1 x -e v,k + vt √ 1 -v 2 + v √ 1 -v 2 H ′ -1,0 x + e v,k -vt √ 1 -v 2 L 2 x (R) ≤ v k .
Clearly, Theorem 4.1.2 implies (4.10). Actually, the first inequality of Theorem 4.1.2 is a consequence of the second inequality of this theorem and the following result about the orbital stability of two moving kinks.

Theorem 4.1.3. There exists a constant c > 0 and, for any θ ∈ (0, 1), there exists δ(θ) ∈ (0, 1) such that if 0 < v < δ(θ), and

(u 1 (x), u 2 (x)) ∈ H 1 x (R) × L 2 x (R) is an odd function satisfying ∥(u 1 , u 2 )∥ H 1 x ×L 2 x < v 2+θ , ( 4.11) 
and y 0 ≥ -4 ln v, then the solution (ϕ(t, x), ∂ t ϕ(t, x)) of the Cauchy problem

         ∂ 2 t ϕ(t, x) -∂ 2 x ϕ(t, x) + U ′ (ϕ(t, x)) = 0,   ϕ(0, x) ∂ t ϕ(0, x)   =   H 0,1 x-y 0 √ 1-v 2 + H -1,0 x+y 0 √ 1-v 2 + u 1 (x) -v √ 1-v 2 H ′ 0,1 x-y 0 √ 1-v 2 + v √ 1-v 2 H ′ -1,0 x+y 0 √ 1-v 2 + u 2 (x)   (4.12)
is given for all t ≥ 0 by

ϕ(t, x) ∂ t ϕ(t, x) =   H 0,1 x-y(t) √ 1-v 2 + H -1,0 x+y(t) √ 1-v 2 + ψ 1 (t, x) -v √ 1-v 2 H ′ 0,1 x-y(t) √ 1-v 2 + v √ 1-v 2 H ′ -1,0 x+y(t) √ 1-v 2 + ψ 2 (t, x)   , ( 4.13) 
such that

|y(0) -y 0 | + ∥(ψ 1 (t, x), ψ 2 (t, x))∥ H 1 x ×L 2 x ≤c ∥(u 1 (x), u 2 (x))∥ 1 2 H 1 x ×L 2 x + c(1 + y 0 ) 1 2 e - √ 2y 0 , | ẏ(t) -v| ≤c ∥(u 1 (x), u 2 (x))∥ 1 2 H 1 x ×L 2 x + ce - √ 2y 0 y 1 2 0 , (4.14) 
for all t ∈ R ≥0 .

Notation

In this subsection, we explain the notation that we are going to use in the next sections of 

→ R satisfying the conditions f (t, •) ∈ L ∞ x (R), and ∂ t f (t, •) ∈ L 2 x (R), we denote the function - → f : R 2 → R 2 by - → f (t, x) = (f (t, x), ∂ t f (t, x)) , for every (t, x) ∈ R 2 .
Next, for any subset D ⊂ R, any v ∈ (0, 1) and any function y

: D → R, we define the functions ----→ H 0,1,v,y : D × R → R 2 , -----→ H -1,0,v,y : D × R → R 2 by ----→ H 0,1,v,y (t, x) =   H 0,1 x-vt+y(t) √ 1-v 2 -v √ 1-v 2 H ′ 0,1 x-vt+y(t) √ 1-v 2   , -----→ H -1,0,v,y (t, x) =   H -1,0 x+vt-y(t) √ 1-v 2 v √ 1-v 2 H ′ -1,0 x+vt-y(t) √ 1-v 2   .
We say that two non-negative functions f 1 (α 1 , ..., α n , x) and f 2 (α 1 , ..., α n , x) both with

domain D × R ⊂ R n+1 satisfy f 1 ≲ α 1 ,...,αn f 2 if there is a positive function L : D → R ≥1 such that f 1 (α 1 , ..., α n , x) ≤ L(α 1 , ..., α n )f 2 (α 1 , ..., α n , x) for all (α 1 , ..., α m , x) ∈ D × R.
Moreover, for any s ≥ 0, we consider the norm ∥•∥ H s x given by

∥f ∥ H s x = ∥f ∥ H s x = R (1 + |x|) 2s | f (x)| 2 dx 1 2 , for any f ∈ H s x (R),
where f is the Fourier transform of the function f. 

Approximate solutions

We recall the following definition and theorem from Chapter 3.

Definition 4.1.5. We define Λ as the nonlinear operator with domain C 2 (R 2 , R) that satisfies:

Λ(ϕ 1 )(t, x) = ∂ 2 t ϕ 1 (t, x) -∂ 2 x ϕ 1 (t, x) + U ′ (ϕ 1 (t, x)), for any ϕ 1 (t, x) ∈ C 2 (R 2 , R).
Theorem 4.1.6. There exist a sequence of functions

(ϕ k (v, t, x)) k≥2 , a sequence of real values δ(k) > 0 and a sequence of numbers n k ∈ N such that for any 0 < v < δ(k), ϕ k (v, t, x) satisfies lim t→+∞ ϕ k (v, t, x) -H 0,1 x -vt √ 1 -v 2 -H -1,0 x + vt √ 1 -v 2 H 1 x = 0, lim t→+∞ ∂ t ϕ k (v, t, x) + v √ 1 -v 2 H ′ 0,1 x -vt √ 1 -v 2 - v √ 1 -v 2 H ′ -1,0 x + vt √ 1 -v 2 L 2 x = 0, lim t→-∞ ϕ k (v, t, x) -H 0,1 x + vt -e v,k √ 1 -v 2 -H -1,0 x -vt + e v,k √ 1 -v 2 H 1 x = 0, lim t→-∞ ∂ t ϕ k (v, t, x) - v √ 1 -v 2 H ′ 0,1 x + vt -e v,k √ 1 -v 2 + v √ 1 -v 2 H ′ -1,0 x -vt + e v,k √ 1 -v 2 L 2 x = 0, with e v,k ∈ R satisfying lim v→0 e v,k - ln ( 8 v 2 ) √ 2 v| ln (v)| 3 = 0. Moreover, if 0 < v < δ(k), then for any s ≥ 0 and l ∈ N ∪ {0}, there is C(k, s, l) > 0 such that ∂ l ∂t l Λ(ϕ k (v, t, x)) H s x (R) ≤ C(k, s, l)v 2k+l |t|v + ln 1 v 2 n k e -2 √ 2|t|v .
From Chapter 3, we recall the Schwartz function G defined by

G(x) = e - √ 2x - e - √ 2x (1 + e 2 √ 2x ) 3 2 + 2 √ 2 xe √ 2x (1 + e 2 √ 2x ) 3 2 + k 1 e √ 2x (1 + e 2 √ 2x ) 3 2 , (4.15) 
for all x ∈ R, where k 1 is the unique real number such that G satisfies G(x), H ′ 0,1 (x) = 0. Moreover, we recall identity 3.7

- d 2 dx 2 G(x) + U (2) (H 0,1 (x))G(x) = -24H 0,1 (x) 2 + 30H 0,1 (x) 4 e - √ 2x + 8 √ 2H ′ 0,1 (x). 
Next, for any v ∈ (0, 1), we recall the function (2.121) defined in Chapter 2 and consider

d v (t) = 1 √ 2 ln 8 v 2 cosh √ 2vt 2 , for any t ∈ R.
From the statement of Theorem 2.1.10 of Chapter 2, we have that the function d v describes the movement between two kinks for the ϕ 6 model during a large time interval when their total energy is small and their initial speeds are both zero.

Furthermore, from the proof of Theorem 3.5.1 in the previous chapter, we can construct inductively an explicit sequence of smooth functions (φ k,v ) k∈N ≥2 , and, for each k ∈ N ≥2 , there exists a real number

τ k,v satisfying |τ k,v | < √ 2 v ln 8 v 2 such that ϕ k (v, t, x) := φ k,v (t + τ k,v ,
x) satisfies Theorem 4.1.6 for all k ∈ N ≥2 . More precisely, the statement of Theorem 3.5.1 is the following: Theorem 4.1.7. There exist a function C : R 4 → R >0 , a sequence of approximate solutions φ k,v (t, x), functions r k (v, t) that are smooth and even on t, and numbers

n k ∈ N such that if 0 < v ≪ 1, then for any m ∈ N ≥1 |r k (v, t)| C(k, 0, 0, 0) ≤ v 2(k-1) ln 1 v n k , ∂ m ∂t m r k (v, t) C(k, 0, l, 0) ≤ v 2(k-1)+m ln 1 v + |t|v n k e -2 √ 2|t|v , (4.16) φ k,v (t, x) satisfies for ρ k (v, t) = -dv(t) 2 + k j=2 r j (v, t) = -dv(t) 2 + c k (v, t) the identity φ k,v (t, x) =H 0,1   x + ρ k (v, t) 1 -ḋv(t) 2 4   + H -1,0   x -ρ k (v, t) 1 -ḋv(t) 2 4   +e - √ 2dv(t)   G   x + ρ k (v, t) 1 -ḋv(t) 2 4   -G   -x + ρ k (v, t) 1 -ḋv(t) 2 4     +R k,v   vt, x + ρ k (v, t) 1 -ḋv(t) 2 4   -R k,v   vt, -x + ρ k (v, t) 1 -ḋv(t) 2 4   (4.17)
the following estimates for any l ∈ N ∪ {0} and s ≥ 1

∂ l ∂t l Λ(φ k,v (t, x) H s ≤ C(k, s, l, 1)v 2k+l ln 1 v 2 + |t|v n k e -2 √ 2|t|v , ( 4.18) 
and

d l dt l   Λ(φ k,v )(t, x), H ′ 0,1   x + ρ k (v, t) (1 -ḋv(t) 2 4 ) 1 2     ≤ C(k, 2, l, 2)v 2k+l+2 ln 1 v 2 + |t|v n k +1 e -2 √ 2|t|v , (4.19) 
where

R k (t, x) is a finite sum of functions p k,i,v (t)h k,i (x) with h k,i ∈ S (R) and each p k,i,v (t)
being an even function satisfying, for all m ∈ N,

d m p k,i,v (t) dt m ≤ C(k, 0, m, 3)v 4 ln 1 v 2 + |t| n k,i e -2 √ 2|t| ,
where n k,i ∈ N depends only on k and i.

Remark 4.1.8. At first look, the statement of Theorem 4.1.7 seems to contain excessive information about the approximate solutions φ k,v (t, x). However, we are going to need every information of Theorem 4.1.7 to study the elasticity and stability of the collision of two kinks with low speed 0 < v < 1.

Organization of Chapter 4

First, from the global well-posedness of the partial differential equation (ϕ 6 ), we recall that if ϕ is a strong solution of (ϕ 6 ) with finite energy satisfying lim x→±∞ ϕ(t 0 , x) = ±1 for some

t 0 ∈ R, then the function ϕ satisfies ∥ϕ(t, x) -H 0,1 (x) -H -1,0 (x)∥ H 1 x < +∞, for all t ∈ R.
In Section 4.2, using the notation of Theorem 4.1.7, we are going to verify that any solution of (ϕ 6 ) with finite energy close to a sum of two kinks can be written as (4.20) such that, for any t ∈ R, u(t) ∈ H 1

ϕ(t, x) = φ k,v (t, x) + y 1 (t) 1 -ḋ(t) 2 4 H ′ 0,1   x -dv(v,t) 2 + c k (v, t) 1 -ḋv(t) 2 4   + y 2 (t) 1 -ḋ(t) 2 4 H ′ 0,1   -x -dv(t) 2 + c k (v, t) 1 -ḋv(t) 2 4   + u(t, x),
x (R) satisfies the following orthogonality conditions

u(t, x), H ′ 0,1   x -dv(t) 2 + c k (v, t) 1 -ḋv(t) 2 4   = 0, u(t, x), H ′ 0,1   -x -dv(t) 2 + c k (v, t) 1 -ḋv(t) 2 4   = 0.
Moreover, using Λ(ϕ) ≡ 0, we can verify that y 1 , y 2 ∈ C 2 (R). Furthermore, using the formula (4.20), we will estimate Λ(ϕ)(t, x). More precisely, we estimate the expression Λ (ϕ) (t, x) - u(t,x) and the estimate of the term Λ (φ k,v ) (t, x) will follow from the main results of Subsection 4.1.4 about the decay of approximate solutions. The function c k (v, t) will not appear in the evaluation of Λ(ϕ)(t, x), since we are going to use only its decay.

Λ (φ k,v ) (t, x), in function of y 1 (t), y 2 (t), d v (t),
Next, in Section 4.3, we are going to construct a function

L(t) to estimate ∥(u(t), ∂ t u(t))∥ H 1 x ×L 2
x during a large time interval. The main argument in this section is analogous to the ideas of Section 2.4 of Chapter 1. More precisely, for

w k,v (t, x) = x -dv(t) 2 + c k (v, t) 1 -ḋv(t) 2 4
, we consider first

L 1 (t) = R ∂ t u(t, x) 2 + ∂ x u(t, x) 2 + U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) u(t, x) 2 dx.
From the orthogonality conditions satisfied by u(t, x), if v ≪ 1, we deduce the following coercivity inequality

∥(u(t), ∂ t u(t))∥ 2 H 1 x ×L 2
x ≲ L 1 (t). The function L(t) will be constructed after correction terms L 2 (t) and L 3 (t) are added to L 1 (t). The motivation for the usage of the correction term L 3 (t) is to reduce the growth of the modulus of the following expression

2 R ∂ 2 t u(t, x) -∂ 2 x u(t, x) + U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, x))) u(t, x) ∂ t u(t, x) dx
in L1 (t). The time derivative of L 2 (t) will cancel with the expression

R ∂ ∂t U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, x))) u(t, x) 2 dx,
from L1 (t). Finally, under additional conditions in the growth of the functions y 1 (t), y 2 (t), if

0 < v ≪ 1, the function L(t) = 3 j=1 L j (t)
will satisfy for a constant C(k) depending only on k the following estimates

L(t) ≲ v ln 1 v ∥(u(t), ∂ t u(t))∥ 2 H 1 x ×L 2 x , ∥(u(t), ∂ t u(t))∥ 2 H 1 x ×L 2 x ≲L(t) + C(k)v 4k ln 1 v 2n k
, for all t in a large time interval, n k is the number denoted in Theorem 4.1.7. Therefore, using Gronwall Lemma and the two estimates above, we are going to obtain an upper bound for

∥(u(t), ∂ t u(t))∥ H 1 x ×L 2
x when t belongs to a large time interval. In Section 4.4, we are going to estimate

- → ϕ (t) ---→ φ k,v (t) H 1 x ×L 2
x during a large time interval. This estimate follows from the study of a linear ordinary differential system whose solutions ŷ1 , ŷ2 are close to y 1 , y 2 during a time interval of size much larger than -ln (v) v and from the conclusions of the last section. Indeed, the closeness of the functions y 1 , y 2 with ŷ1 , ŷ2 during this large time interval is guaranteed because of the upper bound obtained for

∥(u(t), ∂ t u(t))∥ H 1 x ×L 2
x from the control of L(t), which implies that y 1 , y 2 will satisfy an ordinary differential system very close to the linear ordinary differential system satisfied by ŷ1 and ŷ2 .

In Section 4.5, we are going to prove Theorem 4.1.3, the proof of this result is inspired by the demonstration of Theorem 1 of [START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF] and Theorem 1 of [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF]. This result will imply in the next section the second inequality of Theorem 4.1.2. In addition, the main techniques used in this section are modulation techniques based on Section 2 of [START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF] and based on [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF], the use of conservation of energy of ϕ(t, x) and the monotonicity of the localized momentum given by

P + (ϕ(t), ∂ t ϕ(t)) = - +∞ 0 ∂ t ϕ(t, x)∂ x ϕ(t, x) dx.
Finally, in Section 4.6, we will show that the demonstration of Theorem 4.1.2 is a direct consequence of the main results of Sections 4.4 and 4.5. For complementary information, see Section A.4 and Section A.5 of the Appendix.

Auxiliary estimates

First, we recall the following lemma from Chapter 3. Lemma 4.2.1. In notation of Theorem 4.1.7, for 0 < v ≪ 1, let w k,v : R 2 → R be the following function

w k,v (t, x) = x + ρ k (v, t) 1 -ḋv(t) 2 4
,

and let f ∈ L ∞ x (R) be a function satisfying f ′ ∈ S (R). Then, if 0<v ≪ 1, we have for any l ∈ N that ∂ l ∂t l f (w k,v (t, x)) is a finite sum of functions q k,l,i,v (t)h i (w k,v (t, x)) with each h i ∈ S (R) and any q k,l,i,v (t) is a smooth real function satisfying ∥q k,l,i,v ∥ L ∞ (R) ≲ v l .
Furthermore, if 0 < v ≪ 1, we have for all l ∈ N and any s ≥ 0 that

∂ l ∂t l f (w k,v (t, x)) H s x ≲ k,s,l v l .
Moreover, we are going to use the following result several times in the computation of the estimates of this chapter. Lemma 4.2.2. For any s ≥ 1, we have for any functions f, g ∈ S (R) that

∥f g∥ H s x (R) ≲ s ∥f ∥ H s x ∥g∥ L ∞ x + ∥g∥ H s x ∥f ∥ L ∞ x ≲ s ∥f ∥ H s x ∥g∥ H s x .
As a consequence,

∥f g∥ H s x ≲ s 0 ∥f ∥ H s+1 x ∥g∥ H s+1 x ,
for all s ≥ 0.

Proof. See the proof of Lemma A.8 in the book [START_REF] Tao | Nonlinear dispersive equations: local and global analysis[END_REF].

In Chapter 4, to simplify our notation, we denote d v (t) by d(t), which means that

d(t) = 1 √ 2 ln 8 v 2 cosh ( √ 2vt) 2 . ( 4.21) 
In Lemma 3.1 of [START_REF] Moutinho | Approximate kink-kink solutions for the ϕ 6 model in the low-speed limit[END_REF], we have verified by induction the following estimates

| ḋ(t)| ≲ v, and for any l ∈ N ≥2 d (l) (t) ≲ l v l e -2 √ 2|t|v . ( 4.22) 
From now on, we consider for each k ∈ N ≥2 the function ϕ k,v (t, x) satisfying Theorem 4.1.7.

Next, for T 0,k > 0 to be chosen later, we consider the following kind of Cauchy problem

   ∂ 2 t ϕ(t, x) -∂ 2 x ϕ(t, x) + U ′ (ϕ(t, x)) = 0, ∥(ϕ(T 0,k , x), ∂ t ϕ(T 0,k , x)) -(ϕ k,v (T 0,k , x), ∂ t ϕ k,v (T 0,k , x)))∥ H 1 x ×L 2 x < v 8k . ( 4.23) 
Our first objective is to prove the following theorem.

Theorem 4.2.3.

There is a constant C > 0 and for any for any

0 < θ < 1 4 , k ∈ N ≥3 there exist C 1 (k) > 0, δ k,θ > 0 and η k ∈ N such that if 0 < v < δ k,θ and T 0,k = 32k 2 √ 2 ln ( 1 v 2 ) v
, then any solution ϕ(t, x) of (4.23) satisfies:

∥(ϕ(t, x), ∂ t ϕ(t, x)) -(φ k,v (t, x), ∂ t φ k,v (t, x))∥ H 1 x ×L 2 x < C 1 (k)v 2k ln 1 v η k exp C v|t -T 0,k | ln 1 v , (4.24) if |t -T 0,k | < ln 1 v 2-θ v .
Clearly, we can obtain from Theorem 4.2.3 and Theorem 4.1.7 the following result:

Corollary 4.2.4.

There is a constant C > 0 and for any 0

< θ < 1 4 , k ∈ N ≥3 there exist C 1 (k) > 0, δ k,θ > 0 and η k ∈ N such that if 0 < v < δ k,θ and T 0,k = 32k 2 √ 2 ln ( 1 v 2 ) v , then any solution ϕ(t, x) of    ∂ 2 t ϕ(t, x) -∂ 2 x ϕ(t, x) + U ′ (ϕ(t, x)) = 0, ∥(ϕ(T 0,k , x), ∂ t ϕ(T 0,k , x)) -(ϕ k (v, T 0,k , x), ∂ t ϕ k (v, T 0,k , x)))∥ H 1 x ×L 2 x < v 8k satisfies ∥(ϕ(t, x), ∂ t ϕ(t, x)) -(ϕ k (v, t, x), ∂ t ϕ k (v, t, x))∥ H 1 x ×L 2 x < C 1 (k)v 2k ln 1 v η k exp C v|t -T 0,k | ln (v) , (4.25) if |t -T 0,k | < ln 1 v 2-θ v .
Proof 

w k,v (t, x) = x -d(t) 2 + c k (t) 1 -ḋ(t) 2 4
, for all (t, x) ∈ R 2 . (

Moreover, we denote any solution ϕ(t, x) of the partial differential equation (4.23) as

ϕ(t, x) = φ k,v (t, x)+ y 1 (t) 1 -ḋ(t) 2 4 H ′ 0,1 (w k,v (t, x))+ y 2 (t) 1 -ḋ(t) 2 4 H ′ 0,1 (w k,v (t, -x))+u(t, x), ( 4.27) 
such that

u(t, x), H ′ 0,1 (w k,v (t, x)) = u(t, x), H ′ 0,1 (w k,v (t, -x)) = 0. (4.28) 
Furthermore, since Theorem 4.1.7 implies that ζ k (t) = d(t) -2c k (t) ≫ 1 when v is small enough, we deduce from the orthogonal conditions (4.28) satisfied by u(t, x) the following identity y 1 (t)

y 2 (t) = M 1 (t) -1   ϕ(t, x) -φ k,v (t, x), H ′ 0,1 (w k,v (t, x)) ϕ(t, x) -φ k,v (t, x), H ′ -1,0 (w k,v (t, -x))   . ( 4.29) 
where, for any t ∈ R, M (t) is the matrix denoted by

M 1 (t) =    H ′ 0,1 2 L 2 x H ′ 0,1 (x -ζ k (t)), H ′ -1,0 (x) H ′ 0,1 (x -ζ k (t)), H ′ -1,0 (x) H ′ 0,1 2 L 2 x    , which is uniformly positive since ζ k (t) ≫ 1. Moreover, since ln 1 v ≲ ζ k when v > 0 is small enough, we obtain from Lemma 3.2.1 that H ′ 0,1 (x -ζ k (t)), H ′ -1,0 (x) ≪ 1. Therefore, since the matrix M (t) is a smooth function with domain R, then M (t) -1 is also smooth on R.
Next, for ψ(t, x) = ϕ(t, x) -φ k,v (t, x), we obtain from the partial differential equation (4.23) that ψ(t, x) satisfies the following partial differential equation

∂ 2 ∂t 2 ψ(t, x) - ∂ 2 ∂x 2 ψ(t, x) + Λ(φ k,v )(t, x) + 6 j=2 U (j) (φ k,v (t, x)) (j -1)! ψ(t, x) j-1 = 0. (4.30) 
Since φ k,v satisfies Theorem 4.1.7 and the partial differential equation (ϕ 6) is globally wellposed in the energy space, we can verify for any initial data (ψ 0 (x),

ψ 1 (x)) ∈ H 1 x (R) × L 2
x (R) that there exists a unique solution ψ(t, x) of (4.30) satisfying (ψ(0, x), ∂ t ψ(0, x)) = (ψ 0 (x), ψ 1 (x)) and

(ψ(t, x), ∂ t ψ(t, x)) ∈ C R; H 1 x (R) × L 2 x (R) . (4.31)
Therefore, for any function h ∈ S (R), we deduce from (4.30) that

d dt ⟨ψ(t, x), h(x)⟩ = ⟨∂ t ψ(t, x), h(x)⟩ , d 2 dt 2 ⟨ψ(t, x), h(x)⟩ = ∂ 2 ∂x 2 ψ(t, x) -Λ(φ k,v )(t, x) -U ′ (φ k,v (t, x) + ψ(t, x)) + U ′ (φ k,v (t, x)) , h(x) ,
which implies that the real function

P 1 (t) = ψ(t, x), H ′ 0,1 (w k,v (t, x))
and the real function

P 2 (t) = ψ(t, x), H ′ -1,0 (w k,v (t, -x)) are in C 2 (R).
In conclusion, using equation (4.29) and the product rule of derivative, we deduce that y 1 , y 2 ∈ C 2 (R).

In conclusion, we obtain the following lemma: Lemma 4.2.5. Assuming the same hypotheses of Theorem 4.2.3, there exist functions y 1 , y 2 : R → R of class C 2 such that any solution ϕ(t, x) of (4.23) satisfies for any t ∈ R the following identity

ϕ(t, x) = φ k,v (t, x) + y 1 (t) 1 -ḋ(t) 2 4 H ′ 0,1 (w k,v (t, x)) + y 2 (t) 1 -ḋ(t) 2 4 H ′ 0,1 (w k,v (t, -x)) + u(t, x),
where (u(t), ∂ t u(t)) ∈ H 1 x (R) × L 2 x (R) and the function u satisfies the following orthogonality conditions: 

u(t, x), H ′ 0,1 (w k,v (t, x)) =0, u(t, x), H ′ 0,1 (w k,v (t, -x)) =0.
(3) 0,1 (x) = U (2) (H 0,1 (x)) H ′ 0,1 (x), d(t) = 16 √ 2e - √ 2d(t)
, we can deduce that u satisfies the following partial differential equation 

Λ (φ k,v ) (t, x) + ∂ 2 t u(t, x) -∂ 2 x u(t, x) + U (2) (φ k,v (t, x)) (ϕ(t, x) -φ k,v (t, x)) + ÿ1 (t) 1 -ḋ(t) 2 4 H ′ 0,1 (w k,v (t, x)) + ÿ2 (t) 1 -ḋ(t) 2 4 H ′ 0,1 (w k,v (t, -x)) - y 1 (t)8 √ 2e - √ 2d(t) 1 -ḋ(t) 2 4 H (2) 0,1 (w k,v (t, x)) - y 2 (t)8 √ 2e - √ 2d(t) 1 -ḋ(t) 2 4 H (2) 0,1 (w k,v (t, -x)) - ẏ1 (t) ḋ(t) 1 -ḋ(t) 2 4 H (2) 0,1 (w k,v (x, t)) - ẏ2 (t) ḋ(t) 1 -ḋ(t) 2 4 H (2) 0,1 (w k,v (t, -x)) -y 1 (t) U (2) (H 0,1 (w k,v (t, x))) 1 -ḋ(t) 2 4 H ′ 0,1 (w k,v (t, x)) -y 2 (t) U (2) (H 0,1 (w k,v (t, -x))) 1 -ḋ(t) 2 4 H ′ 0,1 (w k,v (t, -x)) = Q(t,
Y 1 (t, x) = U (2) (φ k,v (t, x)) -U (2) (H 0,1 (w k,v (t, x))) y 1 (t) 1 -ḋ(t) 2 4 H ′ 0,1 (w k,v (t, x)) , (4.33) Y 2 (t, x) = U (2) (φ k,v (t, x)) -U (2) (H 0,1 (w k,v (t, -x))) y 2 (t) 1 -ḋ(t) 2 4 H ′ 0,1 (w k,v (t, -x)) . (4.34)
Now, we will estimate the expressions 

Y 1 (t), H ′ 0,1 (w k,v (t, x)) , Y 2 (t), H ′ 0,1 (w k,v (t, -x)
Y 1 (t), H ′ 0,1 (w k,v (t, x)) =4 √ 2e - √ 2d(t) y 1 (t) + y 1 (t)Res 1 (v, t), Y 2 (t), H ′ 0,1 (w k,v (t, x)) =-4 √ 2e - √ 2d(t) y 2 (t) + y 2 (t)Res 2 (v, t),
where, for any j ∈ {1, 2} and all v ∈ (0, 1), the function Res j (v, t) is a Schwartz function on t satisfying for any l ∈ N ∪ {0}, if 0 < v ≪ 1, the following estimate

∂ l ∂t l Res j (v, t) ≲ l v l+4 ln 1 v 2 + |t|v η k e -2 √ 2|t|v , (4.35)
for a number η k ≥ 0 depending only on k ∈ N ≥2 .

Proof of Lemma 4.2.7. First, we observe that

d l dt l e - √ 2d(t) = d l dt l v 2 8 sech √ 2vt 2 ≲ l v 2+l e -2 √ 2|t|v .
Using Taylor's Expansion Theorem, Theorem 4.1.7 and Lemma 4.2.2, we deduce that

U (2) (φ k,v (t, x)) =U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) +e - √ 2d(t) U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) [G(w k,v (t, x)) -G(w k,v (t, -x))] +res 1 (v, t, x),
where, if 0 < v ≪ 1, res 1 (v, t, x) is a smooth function on the variables (t, x) which satisfies for some η k ∈ N and any s ≥ 0, l ∈ N ∪ {0} the following inequality

∂ l ∂t l res 1 (v, t, x) H s x ≲ s,l v 4+l ln 1 v 2 + |t|v η k e -2 √ 2|t|v . (4.36)
Therefore, using identity

U (2) (φ k,v (t, x)) -U (2) (H 0,1 (w k,v (t, x)) = U (2) (φ k,v (t, x)) -U (2) (H 0,1 (w k,v (t, x) -H 0,1 (w k,v (t, -x))) +U (2) (H 0,1 (w k,v (t, x) -H 0,1 (w k,v (t, -x))) -U (2) (H 0,1 (w k,v (t, x)) ,
we obtain that

Y 1 (t, x) 1 - ḋ(t) 2 4 = U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) -U (2) (H 0,1 (w k,v (t, x))) y 1 (t)H ′ 0,1 (w k,v (x, t)) +y 1 (t)e - √ 2d(t) U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) G(w k,v (t, x))H ′ 0,1 (w k,v (t, x)) -y 1 (t)e - √ 2d(t) U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) G(w k,v (t, -x))H ′ 0,1 (w k,v (t, x)) +y 1 (t)res 1 (v, t, x).
(4.37)

By a similar reasoning, we obtain that

Y 2 (t, x) 1 - ḋ(t) 2 4 = U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) -U (2) (H 0,1 (w k,v (t, -x))) y 2 (t)H ′ 0,1 (w k,v (t, -x)) +y 2 (t)e - √ 2d(t) U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) G(w k,v (t, x))H ′ 0,1 (w k,v (t, -x)) -y 2 (t)e - √ 2d(t) U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) G(w k,v (t, -x))H ′ 0,1 (w k,v (t, -x))
+y 2 (t)res 2 (v, t, x), (4.38) where if 0 < v ≪ 1, res 2 (v, t, x) is a smooth function on t, x satisfying, for some constant η k ≥ 0, any l ∈ N ∪ {0} and s ≥ 0, the following estimate

∂ l ∂t l res 2 (v, t, x) H s x ≲ s,l v 4+l ln 1 v 2 + |t|v η k e -2 √ 2|t|v . (4.39)
Next, from the Fundamental Theorem of Calculus, we have for any ζ > 1 that

U (2) H ζ 0,1 (x) + H -1,0 (x) -U (2) H ζ 0,1 (x) ∂ x H ζ 0,1 (x) = U (3) H ζ 0,1 (x) H -1,0 (x)∂ x H ζ 0,1 (x) + 1 0 U (4) H ζ 0,1 + θH -1,0 (1 -θ)H -1,0 (x) 2 ∂ x H ζ 0,1 (x) dθ,
from which with Lemma 3.2.1, estimates (4.2), (4.3) and

d l dx l H -1,0 (x) + e - √ 2x ≲ l min e - √ 2x , e -3 √ 2x ,
we obtain that 

U (2) H ζ 0,1 (x) + H -1,0 (x) -U (2) H ζ 0,1 (x) ∂ x H ζ 0,1 (x), ∂ x H ζ 0,1 (x) = -e - √ 2ζ R U (3) (H 0,1 (x)) H ′ 0,1 (x)
∂ l ∂ζ l U (3) H ζ 0,1 (x) + H -1,0 (x) -U (3) H ζ 0,1 (x) ≲ l |H -1,0 (x)| .
Therefore, since G defined in (4.15) is a Schwartz function, Lemma 3.2.1 implies that

int(ζ) = U (3) H ζ 0,1 (x) + H -1,0 (x) -U (3) H ζ 0,1 (x) G(x -ζ)∂ x H ζ 0,1 (x), ∂ x H ζ 0,1 (x) 
satisfies for all ζ ≥ 1 and any l ∈ N ∪ {0} the following inequality int (l) (ζ) ≲ l e - √ 2ζ .

Moreover, using the following identity

U (3) (ϕ) = -48ϕ + 120ϕ 3 , ( 4.41) 
we can deduce similarly that

int 2 (ζ) = U (3) H ζ 0,1 (x) + H -1,0 (x) G(-x)H ′ -1,0 (x), ∂ x H ζ 0,1 (x) 
satisfies int where the function int 3 satisfies the following identity

U (3) H ζ 0,1 (x) + H -1,0 (x) G(x -ζ)∂ x H ζ 0,1 (x), ∂ x H ζ 0,1 (x) -U (3) H ζ 0,1 (x) + H -1,0 (x) G(-x)H ′ 0,1 (-x), ∂ x H ζ 0,1 (x) = R U (3) (H 0,1 (x)) H ′ 0,1 (x) 2 G(x) dx + int 3 (ζ). (4.42)
From Theorem 4.1.7, estimates (4.22) and identity e - √ 

2d(t) = v 2 8 sech √ 2|t|v 2 , it is not difficult to verify for any l ∈ N ∪ {0} that if 0 < v ≪ 1, then d l dt l exp   2ρ k,v (t) 1 -ḋ(t) 2 4   ≲ l v 2+l e -2 √ 2|t|v . ( 4 
w k,v (t, x) = x -d(t) 2 + c k (t) 1 -ḋ(t) 2
The proof that Y 2 (t) satisfies Lemma 4.2.7 is similar. First, from the Fundamental Theorem of Calculus, we have for any real number ζ ≥ 1 the following identity

U (2) H ζ 0,1 (x) + H -1,0 (x) -U (2) (H -1,0 (x)) H ′ -1,0 (x) = U (2) H ζ 0,1 (x) -2 H ′ -1,0 (x) + U (3) H ζ 0,1 (x) H -1,0 (x)H ′ -1,0 (x) + 1 0 U (4) H ζ 0,1 (x) + θH -1,0 (x) -U (4) (θH -1,0 (x)) H -1,0 (x) 2 H ′ -1,0 (x)(1 -θ) dθ.
Therefore, estimates (4.2), (4.3), identity (4.41) and Lemma 3.2.1 imply for any ζ ≥ 1 the following estimate

d l dζ l U (2) H ζ 0,1 (x) + H -1,0 (x) -U (2) (H -1,0 (x)) -U (2) H ζ 0,1 (x) + 2, H ′ -1,0 (x)∂ x H ζ 0,1 (x) ≲ l ζe -2 √ 2ζ . (4.44)
Similarly, Lemma 3.2.1 and identity (4.41) imply that the functions 

int 4 (ζ) = U (3) H ζ 0,1 (x) + H -1,0 (x) G(x -ζ)H ′ -1,0 (x), ∂ x H ζ 0,1 (x) , int 5 (ζ) = U (3) H ζ 0,1 (x) + H -1,0 (x) G(-x)H ′ -1,0 (x), ∂ x H ζ 0,1 (x) 
Y 2 (t, x), Ḣ0,1 (w k,v (t, x)) = y 2 (t) R U (2) (H 0,1 (x)) -2 H ′ 0,1 (x)H ′ -1,0   x + d(t) 1 -ḋ(t) 2 4   dx
+ y 2 (t)res 6 (v, t), (4.46) where res 6 (v, t) is a real function, which satisfies for some constant 

η k ≥ 0, if 0 < v ≪ 1, ∂ l ∂t l res 6 (v, t) ≲ l v 4+l ln 1 v 2 + |t|v η k e -2 √
l ∈ N ∪ {0} the existence of 0 < δ k,l < 1 such that if 0 < v < δ k,l , then ∂ l ∂t l c k (v, t) L ∞ t (R) ≲ l v 2+l ln 1 v ,
which implies for any l ∈ N and any v ≪ 1

∂ l ∂t l - d(t) 2 + c k (v, t) L ∞ t (R) ≲ l v l , d(t) 2 -v < - d(t) 2 + c k (v, t) .

Energy Estimate Method

In this section, we are going to repeat the main argument of Section 4 of Chapter 2 to construct a function L : R → R, which is going to be used to estimate the energy norm of (u(t), ∂ t u(t)) during a large time interval.

First, we consider a smooth cut-off function χ : R → R satisfying 0 ≤ χ ≤ 1 and

χ(x) =    1, if x ≤ 49 100 , 0, if x ≥ 1 2 .
(4.47)

Next, using the notation of Theorem 4.1.7, we denote 

x 1 (t) = - d(t) 2 + k j=2 r j (v, t), x 2 (t) = d(t) 2 - k j=2 r j (v,
| ẋj (t)| ≲ v, ln 1 v ≲ x 2 (t) -x 1 (t), max j∈{1,2} |ẍ j (t)| ≲ v 2 e -2 √ 2|t|v . (4.49)
From now on, we define the function χ 1 : R 2 → R by

χ 1 (t, x) = χ x -x 1 (t) x 2 (t) -x 1 (t) . (4.50)
Clearly, using the identities

∂ ∂t χ 1 (t, x) = -ẋ1 (t) x 2 (t) -x 1 (t) χ ′ x -x 1 (t) x 2 (t) -x 1 (t) - ( ẋ2 (t) -ẋ1 (t))(x -x 1 (t)) (x 2 (t) -x 1 (t)) 2 χ ′ x -x 1 (t) x 2 (t) -x 1 (t) , ∂ ∂x χ 1 (t, x) = 1 x 2 (t) -x 1 (t) χ ′ x -x 1 (t) x 2 (t) -x 1 (t)
,

we obtain the following estimates 

∂ ∂t χ 1 (t, x) L ∞ x (R) ≲ v ln 1 v , ∂ ∂x χ 1 (t, x) L ∞ x (R) ≲ 1 ln 1 v . ( 4 
A(t, x) = -Λ(φ k,v )(t, x)- y 1 (t)8 √ 2e - √ 2d(t) 1 -ḋ(t) 2 4 H (2) 0,1 (w k,v (t, x))- y 2 (t)8 √ 2e - √ 2d(t) 1 -ḋ(t) 2 4 H (2) 0,1 (w k,v (t, -x)) -Y 1 (t, x) -Y 2 (t, x) + ẏ1 (t) ḋ(t) 1 -ḋ(t) 2 4 H (2) 0,1 (w k,v (t, x)) + ẏ2 (t) ḋ(t) 1 -ḋ(t) 2 4 H (2) 0,1 (w k,v (t, -x)) , (4.52)
for any (t, x) ∈ R 2 . Clearly, in notation of Remark 4.2.6, we have the following identity

∂ 2 t u(t, x) -∂ 2 x u(t, x) + U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) u(t, x) = - ÿ1 (t) 1 -ḋ(t) 2 4 H ′ 0,1 (w k,v (t, x)) - ÿ2 (t) 1 -ḋ(t) 2 4 H ′ 0,1 (w k,v (t, -x)) + A(t, x) + Q(t, x) + U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) -U (2) (φ k,v (t, x)) u(t, x). (4.53)
Next, we consider From now on, we use the notation -→ u (t) = (u(t), ∂ t u(t)) ∈ H 1 x (R)×L 2 x (R). The main objective of the Section 3 is to demonstrate the following theorem. Theorem 4.3.1. There exist constants K, c > 0 and, for any k ∈ N ≥3 , there exists 0 < δ(k) < 1 such that if 0 < v ≤ δ(k), then the function L(t) denoted in (4.54) satisfies, while the following condition

L(t) = R ∂ t u(t, x) 2 + ∂ x u(t, x) 2 + U (2) (H 0,1 (w k,v (t, x) -H 0,1 (w k,v (t, -x)))) u(t, x) 2 dx +2 R ∂ t u(t, x)∂ x u(t, x) [ ẋ1 (t)χ 1 (t, x) + ẋ2 (t) (1 -χ 1 (t, x))] dx
max j∈{1, 2} v 2 |y j (t)| + v| ẏj (t)| < v 2k ln 1 v n k (4.55)
is true, the estimates

c ∥ - → u (t)∥ 2 H 1 x ×L 2 x ≤ L(t) + C(k)v 4k ln 1 v 2n k , and 
L(t) ≤ K v ln 1 v ∥ - → u (t)∥ 2 H 1 x ×L 2 x + C(k) ∥ - → u (t)∥ H 1 x ×L 2 x v 2k+1 ln 1 v n k +v max j∈{1,2} |ÿ j (t)| ∥ - → u (t)∥ H 1 x ×L 2 x + K max j∈{3,6} ∥ - → u (t)∥ j H 1 x ×L 2 x ,
where C(k) > 0 is a constant depending only on k and n k is the number defined in the statement of Theorem 4.1.7.

Proof of Theorem 4.3.1. To simplify the proof of this theorem, we describe briefly the organization of our arguments. First, we denote L(t) as 

L(t) = L 1 (t) + L 2 (t) + L 3 (t), such that L 1 (t) = R ∂ t u(t, x) 2 + ∂ x u(t, x) 2 + U (2) (H 0,1 (w k,v (t, x) -H 0,1 (w k,v (t, -x)))) u(t, x) 2 dx, (L1) L 2 (t) =2 R ∂ t u(t, x)∂ x u(t, x) [ ẋ1 (t)χ 1 (t, x) + ẋ2 (t) (1 -χ 1 (t, x))] dx, (L2) L 3 (t) =-2 R u(t,
∥A(t, x)∥ H 1 (R) ≲ C(k)v 2k ln 1 v + |t|v n k e -2 √ 2|t|v + v 2 e -2 √ 2|t|v max j∈{1,2} |y j (t)| + v max j∈{1,2}
| ẏj (t)|.

(4.56)

In conclusion, we obtain from (L3) and Cauchy-Schwartz inequality the existence of a value C(k) > 0 depending only on k satisfying 

|L 3 (t)| ≲ ∥u(t)∥ L 2 x   C(k)v 2k ln 1 v + |t|v n k e -2 √ 2|t|v + v 2 e -2 √ 2|t|v max j∈{1,2}
L1 (t) =2 R ∂ t u(t, x) ∂ 2 t u(t, x) -∂ 2 x u(t, x) + U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) u(t, x) dx - ḋ(t) 2 1 -ḋ(t) 2 4 1 2 R U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) H ′ 0,1 (w k,v (t, x)) u(t, x) 2 dx + ḋ(t) 2 1 -ḋ(t) 2 4 1 2 R U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) H ′ 0,1 (w k,v (t, -x)) u(t, x) 2 dx +O v ln 1 v ∥ - → u (t)∥ 2 H 1 x ×L 2 x ( 4 
L1 (t) + L3 (t) =2 R ∂ t u(t, x) U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) -U (2) (φ k,v (t, x)) u(t, x) dx + ḋ(t) 2 1 -ḋ(t) 2 4 R U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) H ′ 0,1 (w k,v (t, -x)) u(t, x) 2 dx - ḋ(t) 2 1 -ḋ(t) 2 4 R U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) H ′ 0,1 (w k,v (t, x)) u(t, x) 2 dx +O v max j∈{1,2} |ÿ j (t)| ∥u(t)∥ H 1 x + max j∈{3,6} ∥ - → u (t)∥ j H 1 x ×L 2 x + ∥ - → u (t)∥ H 1 x ×L 2 x max j∈{1,2} |y j (t)| 2 +O ∥ - → u (t)∥ H 1 x ×L 2 x max j∈{1,2} | ẏj (t)|v 2 + |y j (t)|v 3 e -2 √ 2|t|v + ∥ - → u (t)∥ 2 H 1 x ×L 2 x v ln 1 v +O C(k) ∥ - → u (t)∥ H 1 x ×L 2 x v 2k+1 ln 1 v n k . ( 4 
U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) -U (2) (ϕ k,v (t, x)) H s x ≲ s,k v 2 e -2 √ 2|t|v .
Therefore, we deduce using Cauchy-Schwarz inequality that 2 R ∂ t u(t, x) U (2) 

(H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) -U (2) (ϕ k,v (t, x)) u(t, x) dx ≲ U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, x))) -U (2) (ϕ k,v (t, x)) u(t, x) L 2 x ∥∂ t u(t, x)∥ L 2 x ≲ U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) -U (2) (ϕ k,v (t, x)) H 1 x ∥ - → u (t)∥ 2 H 1 x ×L 2 x ≲ v 2 ∥ - → u (t)∥ 2 H 1 x ×L 2 x .
In conclusion,

L1 (t) + L3 (t) = ḋ(t) 2 1 -ḋ(t) 2 4 R U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) H ′ 0,1 (w k,v (t, -x)) u(t, x) 2 dx - ḋ(t) 2 1 -ḋ(t) 2 4 R U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) H ′ 0,1 (w k,v (t, x)) u(t, x) 2 dx +O v max j∈{1,2} |ÿ j (t)| ∥u(t)∥ H 1 x + max j∈{3,6} ∥ - → u (t)∥ j H 1 x ×L 2 x + ∥ - → u (t)∥ H 1 x ×L 2 x max j∈{1,2} |y j (t)| 2 +O ∥ - → u (t)∥ H 1 x ×L 2 x max j∈{1,2} | ẏj (t)|v 2 + |y j (t)|v 3 e -2 √ 2|t|v + ∥ - → u (t)∥ 2 H 1 x ×L 2 x v ln 1 v +O C(k) ∥ - → u (t)∥ H 1 x ×L 2 x v 2k+1 ln 1 v n k . (4.62)
Based on the arguments of [START_REF] Jendrej | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF] and Chapter 2, we are going to estimate the derivative of L 2 (t), for more accurate information see the third step of Lemma 4.2 in [START_REF] Jendrej | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF] or Theorem 2.4.1 from Chapter 2. Because of an argument of analogy, we only need to estimate the time derivative of

L 2,1 (t) = 2 ẋ1 (t) R χ 1 (t, x)∂ t u(t, x)∂ x u(t, x) dx
to evaluate with high precision the derivative of L 2 (t). From the estimates (4.51), we can

verify first that if v ≪ 1, then L2,1 (t) = 2 ẋ1 (t) R χ 1 (t, x)∂ 2 t u(t, x)∂ x u(t, x) dx + 2 ẋ1 (t) R χ 1 (t, x)∂ t u(t, x)∂ 2 x,t u(t, x) dx +O v ln 1 v ∥ - → u (t)∥ 2 H 1 x ×L 2
x , from which we deduce, using integration by parts and estimates (4.49), (4.51), that

L2,1 (t) =2 ẋ1 (t) R χ 1 (t, x)∂ 2 t u(t, x)∂ x u(t, x) dx + O v ln 1 v ∥ - → u (t)∥ 2 H 1 x ×L 2 x =2 ẋ1 (t) R χ 1 (t, x) ∂ 2 t u(t, x) -∂ 2 x u(t, x) ∂ x u(t, x) dx +2 ẋ1 (t) R χ 1 (t, x)U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) u(t, x)∂ x u(t, x) dx +2 ẋ1 (t) R χ 1 (t, x)∂ 2 x u(t, x)∂ x u(t, x) dx -2 ẋ1 (t) R χ 1 (t, x)U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) u(t, x)∂ x u(t, x) dx +O v ln 1 v ∥ - → u (t)∥ 2 H 1 x ×L 2 x ,
and, after using integration by parts again, we deduce from (4.51) that

L2,1 (t) =2 ẋ1 (t) R χ 1 (t, x) ∂ 2 t u(t) -∂ 2 x u(t) ∂ x u(t) dx +2 ẋ1 (t) R χ 1 (t)U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) u(t)∂ x u(t) dx + ẋ1 (t) 1 -ḋ(t) 2 4 R χ 1 (t)U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) H ′ 0,1 (w k,v (t, x)) u(t) 2 dx + ẋ1 (t) 1 -ḋ(t) 2 4 R χ 1 (t)U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) H ′ 0,1 (w k,v (t, -x)) u(t) 2 dx +O v ln 1 v ∥ - → u (t)∥ 2 H 1 x ×L 2 x .
Next, using estimates (4.2) satisfied by H 0,1 , the definition of χ 1 (t, x), Theorem 4.1.7 and identity (4.26), we deduce, for v ≪ 1, the following inequality 

χ 1 (t, x)H ′ 0,1 (w k,v (t, x)) + (1 -χ 1 (t, x))H ′ 0,1 (w k,v (t, -x)) ≲ e - √ 2 
49d(t) 100 ≲ v 98 100 ≪ 1 ln 1 v , from which we conclude that L2,1 (t) =2 ẋ1 (t) R χ 1 (t) ∂ 2 t u(t, x) -∂ 2 x u(t, x) ∂ x u(t, x) dx +2 ẋ1 (t) R χ 1 (t)U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) u(t, x)∂ x u(t, x) dx + ẋ1 (t) 1 -ḋ(t) 2 4 R U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) H ′ 0,1 (w k,v (t, -x)) u(t, x) 2 dx +O v ln 1 v ∥ - → u (t)∥ 2 H 1 x ×L 2 x . Furthermore,
1 -ḋ(t) 2 4 R U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) H ′ 0,1 (w k,v (t, -x)) u(t, x) 2 dx +O ∥ - → u (t)∥ H 1 x ×L 2 x v max j∈{1,2} |ÿ j (t)| + C(k)v 2k+1 ln 1 v n k + v max j∈{2,6} ∥ - → u (t)∥ j H 1 x ×L 2 x +O ∥ - → u (t)∥ H 1 x ×L 2 x v 3 e -2 √ 2v|t| max j∈{1,2} |y j (t)| + v 2 | ẏj (t)| + v ln 1 v ∥ - → u (t)∥ 2 H 1 x ×L 2 x .
Therefore, using an argument of analogy, we obtain, for any positive number v ≪ 1, that

L2 (t) = ẋ2 (t) 1 -ḋ(t) 2 4 R U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) H ′ 0,1 (w k,v (t, x)) u(t, x) 2 dx + ẋ1 (t) 1 -ḋ(t) 2 4 R U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) H ′ 0,1 (w k,v (t, -x)) u(t, x) 2 dx +O ∥ - → u (t)∥ H 1 x ×L 2 x v max j∈{1,2} |ÿ j (t)| + C(k)v 2k+1 ln 1 v n k + v max j∈{3,6} ∥ - → u (t)∥ j H 1 x ×L 2 x +O ∥ - → u (t)∥ H 1 x ×L 2 x v 3 e -2 √ 2v|t| max j∈{1,2} |y j (t)| + v 2 | ẏj (t)| + v ln 1 v ∥ - → u (t)∥ 2 H 1 x ×L 2 x , (4.63) 
where C(k) > 0 is a parameter depending only on k. Moreover, using (4.48) and Theorem 4.1.7, we deduce from estimate (4.63) that

L2 (t) = ḋ(t) 4 -ḋ(t) 2 R U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) H ′ 0,1 (w k,v (t, x)) u(t, x) 2 dx - ḋ(t) 4 -ḋ(t) 2 R U (3) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) H ′ 0,1 (w k,v (t, -x)) u(t, x) 2 dx +O ∥ - → u (t)∥ H 1 x ×L 2 x v max j∈{1,2} |ÿ j (t)| + C(k)v 2k+1 ln 1 v n k + v max j∈{3,6} ∥ - → u (t)∥ j H 1 x ×L 2 x +O ∥ - → u (t)∥ H 1 x ×L 2 x v 3 e -2 √ 2v|t| max j∈{1,2} |y j (t)| + v 2 | ẏj (t)| + v ln 1 v ∥ - → u (t)∥ 2 H 1 x ×L 2 x . (4.64)
Finally, the estimate (4.64) and (4.61) imply, for any k ∈ N ≥3 , the existence of a parameter C(k) > 0, depending only on k, which satisfies for any positive number v ≪ 1 the estimate 

| L(t)| =O v max j∈{1,2} |ÿ j (t)| ∥ - → u (t)∥ H 1 x ×L 2 x + max j∈{3,6} ∥ - → u (t)∥ j H 1 x ×L 2 x +O ∥ - → u (t)∥ H 1 x ×L 2 x max j∈{1,2} |y j (t)| 2 +O ∥ - → u (t)∥ H 1 x ×L 2 x max j∈{1,2} | ẏj (t)|v 2 + |y j (t)|v 3 e -2 √ 2|t|v +O   ∥ - → u (t)∥ 2 H 1 x ×L 2 x v ln 1 v 2 + C(k) ∥ - → u (t)∥ H 1 x ×L 2 x v 2k+1 ln 1 v n k   , ( 4 
L 1 (t) ≥ K ∥ - → u (t)∥ 2 H 1 x ×L 2 x .
Next, from the definition of L 2 (t) and estimates (4.49), we obtain that if v ≪ 1, then

|L 2 (t)| ≪ v 3 4 ∥ - → u (t)∥ 2 H 1 x ×L 2
x , and while condition (4.55) is true, we deduce from Theorem 4.1.7 and estimate (4.56) the following inequality

|L 3 (t)| ≲ k ∥ - → u (t)∥ H 1 x ×L 2 x v 2k ln 1 v n k .
So, using Young inequality, we can find a parameter C 1 (k) > 0 large enough depending only on k such that

|L 3 (t)| ≤ K 2 ∥ - → u (t)∥ 2 H 1 x ×L 2 x + C 1 (k)v 4k ln 1 v 2n k .
In conclusion, all the estimates above imply the first inequality of Theorem 4. 

ϕ(t, x) = φ k,v (t, x) + y 1 (t) 1 -ḋ(t) 2 4 H ′ 0,1 (w k,v (t, x)) + y 2 (t) 1 -ḋ(t) 2 4 H ′ 0,1 (w k,v (t, -x)) + u(t, x),
such that the function u(t, x) satisfies the orthogonality conditions (4.28) and y 1 , y 2 are functions in C 2 (R).

Step 1.(Ordinary differential system of y 1 (t), y 2 (t).) From Remarks 3.5.3, 4.2.6 and the definition of A(t, x) in (4.52), we have that u(t, x) is a solution of a partial differential equation of the form

∂ 2 t u(t, x) -∂ 2 x u(t, x) + U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) u(t, x) = - ÿ1 (t) 1 -ḋ(t) 2 4 H ′ 0,1 (w k,v (t, x)) - ÿ2 (t) 1 -ḋ(t) 2 4 H ′ 0,1 (w k,v (t, -x))
+A(t, x) + P 1 (v, t, x), (4.66)

where P 1 (v, t, x) satisfies for any 0 < v ≪ 1 and any t ∈ R the inequality .

∥P 1 (v, t, x)∥ H 1 x ≲ ∥u(t)∥
With the objective of simplifying our computations, we denote

N OL(t) = ∥u(t)∥ 2 H 1 + max j∈{1, 2} |y j (t)| 2 + v 2(k+1) |t|v + ln 1 v 2 n k +1 e -2 √ 2|t|v (4.67) 
+ ∥u(t)∥ 

∂ 2 t u(t, x), H ′ 0,1 (w k,v (t, x)) = ḋ(t) 1 -ḋ(t) 2 4 ∂ t u(t, x), H (2) 0,1 (w k,v (t, x)) L 2 x +O ∥ - → u (t)∥ H 1 x ×L 2 x v 2 . (4.70)
Also, using integration by parts, identity -H

(3) 0,1 (x) + U (2) (H 0,1 (x))H ′ 0,1 (x) = 0, Lemma 3.2.1 and Cauchy-Schwarz inequality, we deduce that if 0 < v ≪ 1, then 

-∂ 2 x u(t) + U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) u(t), H ′ 0,1 (w k,v (t, x)) = u(t), U (2) (H 0,1 (w k,v (t, x)) -H 0,1 (w k,v (t, -x))) -U (2) (H 0,1 (w k,v (t, x))) H ′ 0,1 (w k,v (t, x)) +O v 2 ∥ - → u (t)∥ H 1 x ×L 2 x =O v 2 ∥ - → u (t)∥ H 1 x ×L 2 x . ( 4 
   Ḣ0,1 2 L 2 x O d(t)e - √ 2d(t) O d(t)e - √ 2d(t) Ḣ0,1 2 L 2 x    ÿ1 (t) ÿ2 (t) =e - √ 2d(t) -4 √ 2 4 √ 2 4 √ 2 -4 √ 2 y 1 (t) y 2 (t) +   O v 2 ∥ - → u (t)∥ H 1 x ×L 2 x O v 2 ∥ - → u (t)∥ H 1 x ×L 2 x   -      ḋ(t) 1- ḋ(t) 2 4 ∂ t u(t, x), H (2) 
0,1 (w k,v (t, x))

L 2 x ḋ(t) 1- ḋ(t) 2 4 ∂ t u(t, x), H (2) 
0,1 (w k,v (t, -x))

L 2 x      + O k (N OL(t)) O k (N OL(t)) . (4.72)
Step 2.(Refined ordinary differential system.) Motivated by equation (4.72), for j ∈ {1, 2} we define the functions

c j (t) = y j (t) -y j (T 0,k ) + 2 √ 2 t T 0,k ḋ(s) 1 -ḋ(s) 2 4 u(s), H (2) 0,1 w k,v (s, (-1) j+1 x) L 2 x ds.
Clearly, we can verify using (4.22), Lemma 4.2.1 and Cauchy-Schwarz inequality that

ċj (t) = ẏj (t) + 2 √ 2 ḋ(t) 1 -ḋ(t) 2 4 u(t, x), H (2) 
0,1 w k,v (t, (-1) j+1 x)

L 2 x , cj (t) =ÿ j (t) + 2 √ 2 ḋ(t) 1 -ḋ(t) 2 4 ∂ t u(t, x), Ḧ0,1 w k,v (t, (-1) j+1 x) L 2 x + O v 2 ∥u(t)∥ H 1 x .
In conclusion, from the ordinary differential system of equations (4.72) we deduce that

d dt      y 1 (t) y 2 (t) ċ1 (t) ċ2 (t)      =       0 0 1 0 0 0 0 1 -16e - √ 2d(t) 16e - √ 2d(t) 0 0 16e - √ 2d(t) -16e - √ 2d(t) 0 0            y 1 (t) y 2 (t) ċ1 (t) ċ2 (t)      +        O(v ∥u(t)∥ H 1 x ) O(v ∥u(t)∥ H 1 x ) O k (N OL(t)) + O v 2 ∥ - → u (t)∥ H 1 x ×L 2 x O k (N OL(t)) + O v 2 ∥ - → u (t)∥ H 1 x ×L 2 x       
.

Actually, using the following change of variables e 1 (t) = y 1 (t) -y 2 (t), e 2 (t) = y 1 (t) +

y 2 (t), ξ 1 (t) = c 1 (t) -c 2 (t) and ξ 2 (t) = c 1 (t) + c 2 (t)
, we obtain from the ordinary differential system of equations above that

d dt       e 1 (t) e 2 (t) ξ1 (t) ξ2 (t)       =       0 0 1 0 0 0 0 1 -32e - √ 2d(t) 0 0 0 0 0 0 0             e 1 (t) e 2 (t) ξ1 (t) ξ2 (t)       +        O(v ∥u(t)∥ H 1 x ) O(v ∥u(t)∥ H 1 x ) O k (N OL(t)) + O v 2 ∥ - → u (t)∥ H 1 x ×L 2 x O k (N OL(t)) + O v 2 ∥ - → u (t)∥ H 1 x ×L 2 x        . ( 4.73) 
To simplify our notation, we denote

M 1 (t) =       0 0 1 0 0 0 0 1 -32e - √ 2d(t) 0 0 0 0 0 0 0       . (4.74)
It is not difficult to verify that all the solutions of linear ordinary differential equation

L(t) = M 1 (t)L(t) for L(t) ∈ R 4 ,
are the linear space generated by the following functions

L 1 (t) =       tanh ( √ 2vt) 0 √ 2v sech ( √ 2vt) 2 0       , L 2 (t) =       √ 2vt tanh ( √ 2vt) -1 0 2v 2 t sech ( √ 2vt) 2 + √ 2v tanh ( √ 2vt) 0       , L 3 (t) =      0 1 0 0      , L 4 (t) =      0 t 0 1      .
Also, by elementary computation, we can verify for any t

∈ R that det [L 1 (t), L 2 (t), L 3 (t), L 4 (t)] = - √ 2v. (4.75)
In conclusion, using the variation of parameters technique, we can write any C 1 solution of (4.73) as L(t) = 4 i=1 a i (t)L i (t), such that a i (t) ∈ C 1 (R) for all 1 ≤ i ≤ 4 and

      tanh ( √ 2vt) √ 2vt tanh ( √ 2vt) -1 0 0 0 0 1 t √ 2v sech ( √ 2vt) 2 2v 2 t sech ( √ 2vt) 2 + √ 2v tanh ( √ 2vt) 0 0 0 0 0 1            ȧ1 (t) ȧ2 (t) ȧ3 (t) ȧ4 (t)      =        O(v ∥u(t)∥ H 1 x ) O(v ∥u(t)∥ H 1 x ) O k (N OL(t)) + O v 2 ∥ - → u (t)∥ H 1 x ×L 2 x O k (N OL(t)) + O v 2 ∥ - → u (t)∥ H 1 x ×L 2 x        , (4.76) with       tanh ( √ 2vT 0,k ) √ 2vT 0,k tanh ( √ 2vT 0,k ) -1 0 0 0 0 1 T 0,k √ 2v sech ( √ 2vT 0,k ) 2 2v 2 t sech ( √ 2vT 0,k ) 2 + √ 2v tanh ( √ 2vT 0,k ) 0 0 0 0 0 1            a 1 (T 0,k ) a 2 (T 0,k ) a 3 (T 0,k ) a 4 (T 0,k )      =      y 1 (T 0,k ) -y 2 (T 0,k ) y 1 (T 0,k ) + y 1 (T 0,k ) ċ1 (T 0,k ) ċ2 (T 0,k )      . (4.77) Step 3.(Estimate of ∥ - → u (t)∥ H 1 x ×L 2
x .) From now on, for C 1 > 1, C 2 > 0 being fixed numbers to be chosen later, we consider the following set

B C 1 ,C 2 = t ∈ R max j∈{1, 2} |y j (t)|v 2 + | ẏj (t)|v ≤ C 1 v 2(k+1) ln 1 v n k +3 exp C 2 v|t -T 0,k | ln 1 v .
We also consider the following set

D u,v = t ∈ R ∥ - → u (t)∥ H 1 x ×L 2 x < v 2 . First, if v 2 |y(T 0,k )| + v| ẏ(T 0,k )| < v 3k and v ≪ 1, then T 0,k ∈ B C 1 ,C 2 ∩ D u,v . Indeed, this happens when ∥(φ k,v (T 0,k ), ∂ t φ k,v (T 0,k )) -(ϕ(T 0,k ), ∂ t ϕ(T 0,k )))∥ H 1 x ×L 2 x < v 4k ,
because since u(t, x) satisfies the orthogonality conditions (4.28), we can verify using Lemma 3.2.1 that

∥φ k,v (T 0,k ) -ϕ(T 0,k )∥ 2 H 1 x ∼ = max j∈{1,2} y j (T 0,k ) 2 + ∥u (T 0,k )∥ 2 H 1 x . (4.78)
By a similar reasoning but using now Lemma 4.2.1 and estimate (4.78), we can verify that if

0 < v ≪ 1, then max j∈{1,2} ẏj (T 0,k ) 2 + ∥∂ t u (T 0,k )∥ 2 L 2 x ≲ ∥(φ k,v (T 0,k ), ∂ t φ k, (T 0,k )) -(ϕ(T 0,k ), ∂ t ϕ(T 0,k ))∥ 2 H 1 x ×L 2 x , (4.79) 
where T 0,k satisfies the hypothesis of Theorem 4.2.3, for more details see Appendix B in [START_REF] Moutinho | Dynamics of two interacting kinks for the ϕ 6 model[END_REF]. Also, for any θ ∈ (0, 1), if v ≪ 1, then while 

|t -T 0,k | < ln 1 v 2-θ v ,
|ÿ j (t)| ≲ k v 2k ln 1 v n k + v ∥ - → u (t)∥ H 1 x ×L 2 x + ∥ - → u (t)∥ 2 H 1 x ×L 2 x .
In conclusion, if v ≪ 1, from Theorem 4.3.1, we deduce that the functional L(t) defined in last section satisfies, for a constant C 0 and a parameter C(k) depending only on k, the estimates

| L(t)| ≲v max j∈{1,2} |ÿ j (t)| ∥ - → u (t)∥ H 1 x ×L 2 x + ∥ - → u (t)∥ 3 H 1 x ×L 2 x +C(k) ∥ - → u (t)∥ H 1 x ×L 2 x v 2k+1 ln 1 v n k + ∥ - → u (t)∥ 2 H 1 x ×L 2 x v ln 1 v 2 , C 0 ∥ - → u (t)∥ 2 H 1 x (R)×L 2 x (R) ≤L(t) + C(k)v 4k ln 1 v 2n k .
Therefore, from the ordinary differential system of equations defined in (4.72), we conclude

for v ≪ 1 that if t ∈ B C 1 ,C 2 ∩ D u,v and |t -T 0,k | < ln 1 v 2-θ v , ( 4.80) 
then there exists a constant C(k) > 0 depending only on k satisfying

| L(t)| ≲ C(k) ∥ - → u (t)∥ H 1 x ×L 2 x v 2k+1 ln 1 v n k + ∥ - → u (t)∥ 2 H 1 x ×L 2 x v ln 1 v 2 .
Therefore, by a similar argument to the proof of Theorem 4. 

∥(u(t), ∂ t u(t))∥ H 1 x ×L 2 x ≲ k max ∥ - → u (T 0,k )∥ H 1 x ×L 2 x , v 2k ln 1 v n k +1 exp K|t -T 0,k |v ln 1 v . ( 4 
< v ≪ 1, then N OL(t) ≪ v 2 max ∥ - → u (T 0,k )∥ H 1 x ×L 2 x , v 2k ln 1 v n k +1 exp K|t -T 0,k |v ln 1 v . ( 4 
| ȧ1 (t)| ≲ k v 2k+1 [|t|v + 1] ln 1 v n k +1 exp K v|t -T 0,k | ln 1 v , | ȧ2 (t)| ≲ k v 2k+1 ln 1 v n k +1 exp K v|t -T 0,k | ln 1 v , | ȧ3 (t)| ≲ k v 2k+1 [|t|v + 1] ln 1 v n k +1 exp K v|t -T 0,k | ln 1 v , | ȧ4 (t)| ≲ k v 2k+2 ln 1 v n k +1 exp K v|t -T 0,k | ln 1 v .
In conclusion, using the initial condition (4.77), we deduce from the fact that T 0,k is in

B C 1 ,C 2
,the Fundamental Theorem of Calculus and the elementary estimate 

|t|v < ln 1 v exp v|t| ln 1 v , that if {θt + (1 -θ)T 0,k | 0 < θ < 1} ⊂ B C 1 ,
     = 4 j=1 a j L j (t)
the existence of C 1 (k) > 0 depending on k such that for C 2 = K + 2 and v ≪ 1 we have that if

|t -T 0,k | < ln 1 v 2-θ v , then t ∈ B C 1 (k),C 2 .
Remark 4.4.1. For any constants θ, γ ∈ (0, 1), obviously

lim v→ + 0 v γ exp ln 1 v θ = 0.
In conclusion, for fixed k ∈ N large and 0 < θ < 1 4 , we can deduce from Theorem 4.2.3 that there is a

∆ k,θ > 0 such that if 0 < v < ∆ k,θ , then ∥(ϕ(t, x), ∂ t ϕ(t, x)) -(ϕ k (v, t, x), ∂ t ϕ k (v, t, x))∥ H 1 x ×L 2 x < v 2k-1 2 , for all t satisfying |t -T 0,k | < ln 1 v 2-θ v .

Proof of Theorem 4.1.3

The main objective of this section is to prove Theorem 4.1.3.

Remark 4.5.1. The importance of this theorem is to describe the dynamics of the two solitons before the collision instant, for all t < 0 and |t| ≫ 1. More precisely, if two moving kinks are coming from an infinite distance with a sufficiently low speed v satisfying v ≤ δ(2k), then the inelasticity of the collision is going to be of order at most O(v k ) and the kinks will move away each one with the speed of size in modulus v + O(v k ) when t goes to -∞.

The proof of Theorem 4.1.3 uses energy estimate techniques from the article [START_REF] Daniel | Stability theory for solitary-wave solutions of scalar field equations[END_REF]. Furthermore, the demonstration of Theorem 4.1.3 is quite similar to the proof of Theorem 1 of the article [START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF] and also uses modulation techniques inspired by [START_REF] Raphaël | Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS[END_REF] and [START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF].

From now on, we consider

P + (ϕ(t), ∂ t ϕ(t)) = - +∞ 0 ∂ t ϕ(t, x)∂ x ϕ(t, x) dx, ( 4.83) 
and since the solution ϕ(t, x) is an odd function in the variable x for all t ∈ R, we have that

E(ϕ) = 2 +∞ 0 ∂ x ϕ(t, x) 2 + ∂ t ϕ(t, x) 2 2 + U (ϕ(t, x)) dx = 2E + (ϕ(t), ∂ t ϕ(t)) ,
where

E + (ϕ(t), ∂ t ϕ(t)) = +∞ 0 ∂ x ϕ(t, x) 2 + ∂ t ϕ(t, x) 2 2 + U (ϕ(t, x)) dx (4.84)
is a conserved quantity.

Modulation techniques

First, similarly to [START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF], we consider for any 0

< v < 1, y ∈ R the following function on x ∈ R --→ H 0,1 ((v, y), x) =   H 0,1 x-y √ 1-v 2 -v √ 1-v 2 H ′ 0,1 x-y √ 1-v 2   , ( 4.85) 
and ---→ H -1,0 ((v, y), x) = ---→ H 0,1 ((v, y), -x), for all x ∈ R. Next, we consider the anti-symmetric map

J = 0 1 -1 0 , ( 4.86) 
and based on [START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF], we consider for any 0 < v < 1 and any y ∈ R the following functions, which were defined in subsection 2.3 of [START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF],

C v,y (x) =   1 √ 1-v 2 H ′ 0,1 x-y √ 1-v 2 -v 1-v 2 H (2) 0,1 x-y √ 1-v 2   , (4.87) D v,y (x) =   v 1-v 2 x-y √ 1-v 2 H ′ 0,1 x-y √ 1-v 2 -1 (1-v 2 ) 3 2 H ′ 0,1 x-y √ 1-v 2 -v 2 (1-v 2 ) 3 2 x-y √ 1-v 2 H (2) 0,1 x-y √ 1-v 2   , ( 4.88) 
see also the article [7].

The following identity is going to be useful for our next results.

Lemma 4.5.2. For any v ∈ (0, 1), it holds

∂ x --→ H 0,1 ((v, 0), x) , JD 0,v = -1 -v 2 -3 2 H ′ 0,1 2 
L 2 x .
Proof. See the proof of Lemma 2.4 from the article [START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF].

Next, for any value y 0 ≫ 1, we are going to modulate any odd function (ϕ 0 , ϕ 1 ) close to ---→ H -1,0 ((v, y 0 ), x) + --→ H 0,1 ((v, y 0 ), x) in the energy norm in terms of an orthogonal condition.

Lemma 4.5.3. There exist K > 0 and δ

0 , δ 1 ∈ (0, 1) such that if 0 < v < δ 1 , y 0 > 1 δ 1 , 0 ≤ δ ≤ δ 0 and (ϕ 1 -H 0,1 -H -1,0 , ϕ 2 ) ∈ H 1 x (R) × L 2 x (R) is an odd function satisfying (ϕ 1 (x), ϕ 2 (x)) - ---→ H -1,0 ((v, y 0 ), x) - --→ H 0,1 ((v, y 0 ), x) H 1 x ×L 2 x ≤ δv, (4.89)
then there exists a unique ŷ > 1 such that |ŷ -y 0 | ≤ Kδv and the function

- → κ (x) = (ϕ 1 (x), ϕ 2 (x)) - ---→ H -1,0 ((v, ŷ), x) - --→ H 0,1 ((v, ŷ), x) satisfies ∥ - → κ ∥ H 1 x ×L 2 x ≤ Kδv, (4.90) and ⟨ - → κ (x), J • D v,ŷ (x)⟩ = 0.
Proof of Lemma 4.5.3. The proof is completely analogous to the proof of Lemma 2.1 of the article [START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF].

Corollary 4.5.4. In the notation of Lemma 4.5.3, there exists a constant C > 1 such that if v ∈ (0, 1) is small enough, then there exists at most one number y ≥ 2 ln 1 v satisfying with the function

- → κ 0 (x) = (ϕ 1 (x), ϕ 2 (x)) - ---→ H -1,0 ((v, y), x) - --→ H 0,1 ((v, y), x) the estimate ∥ - → κ 0 ∥ H 1 x ×L 2 x ≤ min{δ 0 v, K 3C δ 0 v} and ⟨ - → κ 0 (x), J • D v,y (x)⟩ = 0.
Proof of Corollary 4.5.4. Let y 1 , y 2 two real numbers satisfying the results of Corollary 4.5.4. We consider the following functions

- → κ 1 (x) =(κ 1,0 (x), κ 1,1 (x)) = (ϕ 1 (x), ϕ 2 (x)) - ---→ H -1,0 ((v, y 1 ), x) - --→ H 0,1 ((v, y 1 ), x), - → κ 2 (x) =(κ 2,0 (x), κ 2,1 (x)) = (ϕ 0 (x), ϕ 1 (x)) - ---→ H -1,0 ((v, y 2 ), x) - --→ H 0,1 ((v, y 2 ), x).
Choosing x = y 1 , we obtain the following identity

H 0,1 (0)-H 0,1 y 1 -y 2 √ 1 -v 2 = -H 0,1 -2y 1 √ 1 -v 2 +H 0,1 -y 1 -y 2 √ 1 -v 2 +κ 2,0 (y 1 )-κ 1,0 (y 1 ). (4.91)
Since there exists a constant c > 0 satisfying for any f ∈ H

1 x (R) the inequality ∥f ∥ L ∞ x (R) ≤ c ∥f ∥ H 1
x , we deduce from equation (4.91) and the hypotheses of Corollary 4.5.4 that

H 0,1 (0) -H 0,1 y 1 -y 2 √ 1 -v 2 ≤ 2cK 3C δ 0 v + H 0,1 -2y 1 √ 1 -v 2 + H 0,1 -y 1 -y 2 √ 1 -v 2 ,
from which we deduce the following estimate

H 0,1 (0) -H 0,1 y 1 -y 2 √ 1 -v 2 ≤ 2cK 3C δ 0 v + 2v 4 .
Consequently, since H 0,1 is an increasing function and

H ′ 0,1 (0) = 1 2 , we obtain that if δ 1 ≪ 1 and 0 < v < δ 1 , then |y 1 -y 2 | ≤ 5Kc 3C δ 0 v.
Therefore, choosing C = 2c + 1, from Lemma 4.5.3, we shall have y 1 = y 2 if v > 0 is small enough.

Finally, using Lemma 4.5.3 and repeating the argument of the demonstration of Lemma 2.11 in [START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF], we can verify the following result.

Lemma 4.5.5. There exist

K > 1, δ 0 > 0 and δ 1 ∈ (0, 1) such that if 0 < δ 2 < δ 0 , 0 < v < δ 1 , y 0 > 7 2 ln 1 v and the solution (ϕ(t, x), ∂ t ϕ(t, x)) of (ϕ 6 ) satisfies for a T > 0 sup t∈[0,T ] inf y∈R ≥y 0 (ϕ(t, x), ∂ t ϕ(t, x)) - ---→ H -1,0 ((v, y), x) - --→ H 0,1 ((v, y), x) H 1 x ×L 2 x ≤ δ 2 v, (4.92)
then there exist a real function y

1 : [0, T ] → R ≥ y 0 2 such that the solution (ϕ(t), ∂ t ϕ(t)) satisfies for any 0 ≤ t ≤ T : (ϕ(t), ∂ t ϕ(t)) = ---→ H -1,0 ((v, y 1 (t)), x) + --→ H 0,1 ((v, y 1 (t)), x) + (ψ 1 (t), ψ 2 (t)), (4.93) ∥(ψ 1 (t), ψ 2 (t))∥ H 1 x ×L 2 x ≤ Kδ 2 v, (4.94) where (ψ 1 (t), ψ 2 (t)) ∈ H 1 x (R) × L 2
x (R) and y 1 (t) satisfy the orthogonality condition of Lemma 4.5.3, and y 1 (t) is a functions of class C 1 satisfying the following inequality:

| ẏ1 (t) -v| ≤ K ∥(ψ 1 (t), ψ 2 (t))∥ H 1 x ×L 2
x + e -2 √ 2y 1 (t) .

(4.95)

Proof. First, from Lemma 4.5.3 and the fact that 

- → ϕ ∈ C (R; H 1 x (R) × L 2 x (R)), if δ 1 is small enough, we can find a constant K > 0 and a function ŷ : [0, T ] → 3 ln 1 v , +∞ such that for - → κ (t, x) = (ϕ(t, x), ∂ t ϕ(t, x)) - ---→ H -1,0 ((v, ŷ(t)), x) - --→ H 0,1 ((v, ŷ(t)), x), ( 4 
(t, x), ψ 2 (t, x)), JD v,y 1 (t) (x) = 0, (4.98) 
where J is defined in (4.86), and we are going to verify that if y 1 (0) = ŷ(0), then y 1 (t) = ŷ(t) for all 0 ≤ t ≤ T. From the global well-posedness of the partial differential (ϕ 6 ) in the energy space, we have for any

T 0 > 0 that ϕ(t, x) -H 0,1 (x) -H -1,0 (x) ∈ C ([-T 0 , T 0 ] , H 1 x (R)) and ∂ t ϕ(t, x) ∈ C ([-T 0 , T 0 ] , L 2
x (R)) . Therefore, if there exists a interval [0, T 1 ] ⊂ [0, T ] such that y 1 ∈ C 1 ([0, T 1 ]) when restricted to this interval and

(ϕ(t), ∂ t ϕ(t)) = ---→ H -1,0 ((v, y 1 (t)) , x) + --→ H 0,1 ((v, y 1 (t)) , x) + (ψ 1 (t), ψ 2 (t)), for any t ∈ [0, T 1 ] , (4.99) 
then (ψ 1 (t), ψ 2 (t)) = (ψ 1 (t, x), ψ 2 (t, x)) satisfies, for any functions h 1 , h 2 ∈ S (R), the following identity

d dt ⟨(ψ 1 (t, x), ψ 2 (t, x)), (h 1 (x), h 2 (x))⟩ = ⟨∂ t (ψ 1 (t, x), ψ 2 (t, x)), (h 1 (x), h 2 (x))⟩ , if t ∈ [0, T 1 ] .
Consequently, if we derive the equation (4.98) in time, we obtain the following linear ordinary differential equation satisfied by y 1 (t)

ẏ1 (t) (ψ 1 (t, x), ψ 2 (t, x)), J∂ y 1 D v,y 1 (t) (x) + ∂ t (ψ 1 (t, x), ψ 2 (t, x)), JD v,y 1 (t) (x) = 0. (4.100) Clearly, since x m H ′ 0,1 (x) ∈ S (R) for all m ∈ N ∪ {0}, we have that the functions ω 1 , ω 2 : [0, T ] × (1, +∞) → R defined by ω 1 (t, y) = ⟨(ψ 1 (t, x), ψ 2 (t, x)), J∂ y D v,y (x)⟩ , ω 2 (t, y) = ⟨∂ t (ψ 1 (t, x), ψ 2 (t, x)), JD v,y (x)⟩ are continuous and, for any t ∈ [0, T ] , ω 1 (t, •), ω 2 (t, •) : (1, +∞) → R are smooth.
Step 2.(Partial differential equation satisfied by -→ ψ .) First, we consider the following selfadjoint operator Hess(y 1 (t), x) :

H 2 x (R) ⊂ L 2 x (R) → R, which satisfies, for all t ∈ [0, T ] , Hess(y 1 (t), x) = -∂ 2 x + U (2) H 0,1 x-y 1 (t) √ 1-v 2 -H 0,1 -x-y 1 (t) √ 1-v 2 0 0 1 , ( 4.101) 
and the self-adjoint operator Hess 1 (y 1 (t), x) :

H 2 x (R) ⊂ L 2 x (R) → R denoted by Hess 1 (y 1 (t), x) = -∂ 2 x + U (2) H 0,1 x-y 1 (t) √ 1-v 2 0 0 1 . (4.102)
Next, we consider the following maps Int : R 2 → R 2 and T : R 2 × H 1 x (R) → R 2 , which we denote by

Int(y, x) = 0 U ′ -H 0,1 -x-y 1 √ 1-v 2 + U ′ H 0,1 x-y √ 1-v 2 - 0 U ′ H 0,1 x-y √ 1-v 2 -H 0,1 -x-y √ 1-v 2 , (4.103) T (y, x, ψ) = 0 -6 j=3 U (j) H 0,1 x-y √ 1-v 2 -H 0,1 -x-y √ 1-v 2 ψ(x) j-1 (j-1)! , ( 4.104) 
for any (y,

x) ∈ R 2 and ψ ∈ H 1 x (R). Therefore, if [0, T 1 ] ⊂ [0, T ] , y 1 ∈ C 1 ([0, T 1 ]
) and y 1 ≥ 1, 0 < v 1 < 1 then, from the partial differential equation (ϕ 6 ) and identity (4.99), we deduce that (ψ 1 (t, x), ψ 2 (t, x)) is a solution in the space C ([0,

T 1 ] , H 1 x (R) × L 2 x (R)) of the following partial differential equation ∂ t (ψ 1 (t, x), ψ 2 (t, x)) = ( ẏ1 (t) -v) C v,y 1 (t) (x) -C v,y 1 (t) (-x) +J Hess(y 1 (t), x)(ψ 1 (t, x), ψ 2 (t, x)) + Int(y 1 (t), x) + T (y 1 (t), x, ψ 1 (t)), (4.105)
where J is the antissymetric operator defined in (4.86).

In the next step, we are going to assume the existence of 0 ≤ T 1 ≤ T such that y 1 is of class C 1 in the interval [0, T 1 ] , and y 1 ≥ 1 for any t ∈ [0, T 1 ] . Moreover, we will prove that when this condition is true, then | ẏ1 (t) -v| is sufficiently small for all t ∈ [0, T 1 ] .

Step 3.(Estimate of | ẏ1 (t) -v| .) Uniquely in this step, for any continuous non-negative function f : [0, T 1 ]×(0, 1)×(1, +∞) → R, we say that a function g : [0, T 1 ]×(0, 1)×(1, +∞) → R is O(f ), if and only if, g is a continuous function satisfying the following properties:

• there exists a constant c > 0 such that |g

(t, v, y)| < cf (t, v, y) for all (t, v, y) in [0, T 1 ] × (0, 1) × (1, +∞), • g(t, •) : (0, 1) × (1, +∞) → R is smooth for all t ∈ [0, T 1 ] .
We recall that J, C v,y 1 (t) and D v,y 1 (t) are defined, respectively, in (4.86), (4.87) and (4.88). Using Lemma 3.2.1, we obtain that if y 1 (t) ≥ 1 and v ∈ (0, 1) is small enough, then

C v,y 1 (t) (x), J • D v,y 1 (t) (-x) + C v,y 1 (t) (x), JC v,y 1 (t) (-x) + D v,y 1 (t) (x), JD v,y 1 (t) (-x) ≲ y 1 (t) 4 e -2 √ 2y 1 (t) .
(4.106) Furthermore, using the partial differential equation (4.105) satisfied by (ψ 1 (t, x), ψ 2 (t, x)),

we deduce for any t ∈ [0, T 1 ] ⊂ [0, T ] the following identity

∂ t (ψ 1 (t, x), ψ 2 (t, x)), JD v,y 1 (t) (x) =( ẏ1 (t) -v) C v,y 1 (t) (x), JD v,y 1 (t) (x) -( ẏ1 (t) -v) C v,y 1 (t) (-x), JD v,y 1 (t) (x) + J Hess(y 1 (t), x)(ψ 1 (t, x), ψ 2 (t, x)), JD v,y 1 (t) (x) + T (y 1 (t), x, ψ 1 (t)) + Int(y 1 (t), x), JD v,y 1 (t) (x) . (4.107)
Moreover, from Lemma 4.5.2 and identity J * = -J, we have

JD v,y 1 (t) (x), C v,y 1 (t) (x) = -D v,y 1 (t) (x), JC v,y 1 (t) (x) = 1 -v 2 -3 2 H ′ 0,1 2 
L 2 x . (4.108)
Therefore, using equation (4.107), estimates (4.106) and Lemma 3.2.1, we deduce the following estimate

∂ t (ψ 1 (t, x), ψ 2 (t, x)), JD v,y 1 (t) (x) = ( ẏ1 (t) -v) 1 -v 2 -3 2 H ′ 0,1 2 L 2 x + O y 1 (t) 4 e -2 √ 2y 1 (t) + J Hess(y 1 (t), x)(ψ 1 (t, x), ψ 2 (t, x)), JD v,y 1 (t) + T (y 1 (t), x, ψ 1 (t)), JD v,y 1 (t) (x) + Int(y 1 (t), x), JD v,y 1 (t) (x) .
Furthermore, since, for any ζ ∈ R, we have the following identity

U ′ H ζ 0,1 (x) + H -1,0 (x) -U ′ H ζ 0,1 (x) -U ′ (H -1,0 (x)) = -24H -1,0 (x)H ζ 0,1 (x) H -1,0 (x) + H ζ 0,1 (x) + 4 j=1 5 j H -1,0 (x) j H ζ 0,1 (x) 5-j ,
we deduce from Lemma 3.2.1 and the definition of function Int that ∥Int(y

1 (t), x, ψ(t))∥ L 2 x ≲ e -2 √ 2y 1 (t) . Next, since U (l) L ∞ [-1,1]
< +∞ for any l ∈ N ∪ {0}, we deduce using Lemma 4.2.2 and the definition of function T that 

∥T (y 1 (t), x, ψ 1 (t))∥ L 2 x ≤ ∥T (y 1 (t), x, ψ 1 (t))∥ H 1 x ≲ ∥ψ 1 (t, x)∥ 2 H 1 x . As a consequence, ∂ t (ψ 1 (t, x), ψ 2 (t, x)), JD v,y 1 (t) (x) =( ẏ1 (t) -v) 1 -v 2 -3 2 H ′ 0,1 2 L 2 x + O y 1 (t) 4 e -2 √ 2y 1 (t) + J Hess(y 1 (t), x)(ψ 1 (t, x), ψ 2 (t, x)), JD v 1 (t),y 1 (t) (x) (4.109) +O e -2 √ 2y 1 (t) + - → ψ (t) 2 H 1 x ×L 2 x , ( 4 
(t), x)] D v,y 1 (t) (x) L 2 x (R;R 2 ) ≲ e -2 √ 2y 1 (t) ,
for all t ∈ [0, T 1 ] . Thus, after using integration by parts and Cauchy-Schwarz inequality, we deduce for all t ∈ [0, T 1 ] that

J [Hess(y 1 (t), x) -Hess 1 (y 1 (t), x)] - → ψ (t), JD v 1 (t),y 1 (t) (x) ≲ - → ψ (t) H 1 x ×L 2 x e -2 √ 2y 1 (t) .
Consequently, since ⟨j(a) : a⟩ = 0 for all a ∈ R 2 , we obtain that if y 1 is a function of class C 1 in the interval [0, T 1 ] and v ∈ (0, 1) is small enough, then

∂ t (ψ 1 (t, x), ψ 2 (t, x)), JD v,y 1 (t) (x) = ( ẏ1 (t) -v)     - H ′ 0,1 2 
L 2 x (1 -v 2 ) 3 2 + O y 1 (t) 4 e -2 √ 2y 1 (t)     + J Hess 1 (y 1 (t), x)(ψ 1 (t, x), ψ 2 (t, x)), JD v,y 1 (t) (x) +O e -2 √ 2y 1 (t) + - → ψ (t) 2 H 1 x ×L 2 x , (4.111) 
for any t ∈ [0, T 1 ] .

Next, using (4.102), it is not difficult to verify the following identity

Hess 1 (y 1 (t), x)D v,y 1 (t) (x) -vJ ∂ x D v,y 1 (t) (x) = JC v,y 1 (t) (x),
see Lemma 2.4 of [START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF] for the proof. Consequently, we have for any t ∈ [0, T 1 ] that

J Hess 1 (y 1 (t), x)(ψ 1 (t, x), ψ 2 (t, x)), JD v,y 1 (t) (x) =-v (ψ 1 (t, x), ψ 2 (t, x)), J∂ y 1 D v,y 1 (t) (x) + (ψ 1 (t, x), ψ 2 (t, x)), JC v,y 1 (t) (x) .
In conclusion, estimate (4.111) and identity (4.100) imply that

( ẏ1 (t) -v)     -H ′ 0,1 2 
L 2 x (1 -v 2 ) 3 2 + O ∥(ψ 1 (t), ψ 2 (t))∥ H 1 x ×L 2 x + y 1 (t) 4 e -2 √ 2y 1 (t)     = O e -2 √ 2y 1 (t) + ∥(ψ 1 (t), ψ 2 (t))∥ H 1 x ×L 2 
x , (4.112) for all t ∈ [0, T 1 ] .

Step 4.(Proof that y 1 ∈ C 1 .) Furthermore, the equations (4.100) and (4.107) imply that y 1 shall satisfy the following ordinary differential equation

( ẏ1 (t) -v)   C v,y 1 (t) (x), JD v,y 1 (t) (x) -C v,y 1 (t) (-x), JD v,y 1 (t) (x) + (ψ 1 (t), ψ 2 (t)), J∂ y 1 D v,y 1 (t) (x)   =-v (ψ 1 (t, x), ψ 2 (t, x)), J∂ y 1 D v,y 1 (t) (x) -J Hess(y 1 (t), x)(ψ 1 (t, x), ψ 2 (t, x)) + T (y 1 (t), x, ψ 1 (t)) + Int(y 1 (t), x), JD v,y 1 (t) (x) , (4.113)
which is a first-order non-autonomous differential system of the form

( ẏ1 (t) -v) α v (t, y 1 (t)) = β v (t, y 1 (t)) ,
where the functions the functions α v , β v : [0, T ] × R → R are continuous when v ∈ (0, 1).

Moreover, from the hypotheses of Lemma 4.5.5, Lemma 3.2.1 and identities (4.101), (4.103), (4.104), we can deduce for any t ∈ [0, T ] that the restrictions of α v (t, •) and β v (t, •) in the set 3 ln 1 v , +∞ are locally Lipschitz when v is small enough. Furthermore, from the first step, we have y 1 (0) = ŷ(0) > 3 ln 1 v which implies y 1 (0) 4 e -2 √ 2y 1 (0) < v 3 , if v is small enough. Moreover, we deduce from (4.96) and (4.97) that ∥(ψ

1 (0), ψ 2 (0))∥ H 1 x ×L 2
x ≤ Kδ 2 v and we also have

α v (0, y 1 (0)) = -H ′ 0,1 2 L 2 x (1 -v 2 ) 3 2 + O(v) > 0,
because of the estimate (4.112) when v is small enough.

Consequently, Picard-Lindelöf Theorem implies the existence of an interval [0,

T 1 ] ⊂ [0, T ] such that y 1 : [0, T 1 ] → R >2 ln 1 v is a C 1 function
and since y 1 satisfies (4.100), we have for any 

t ∈ [0, T 1 ] that (ψ 1 (t, x), ψ 2 (t, x)), JD v,y 1 (t) (x) = - → ψ (0, x), JD v,y 1 (0) (x) = 0. ( 4 
(t) = ŷ(t) for all t ∈ [0, T 1 ] . As a consequence, y 1 (t) ≥ 3 ln 1 v for all t ∈ [0, T 1 ] and ∥(ψ 1 (t), ψ 2 (t))∥ H 1 x ×L 2 x = - → ϕ (t, x) - ---→ H -1,0 ((v, y 1 (t)), x) - --→ H 0,1 ((v, y 1 (t)), x) H 1 x ×L 2 x ≤ Kδ 2 v (4.
115) for all t ∈ [0, T 1 ] , because of estimate (4.96) and identity (4.97).

Therefore, using a bootstrap argument and estimate (4.112), we can conclude that the function y 1 is in C 1 [0, T ] and satisfies (4.114) for all t ∈ [0, T ] . Finally, estimate (4.95) is a direct consequence of (4.112), (4.115) and the fact that y 1 ≥ 3 ln 1 v .

Orbital stability of the parameter y

In this subsection, we consider ϕ(t, x) as a solution of (ϕ 6 ) having finite energy and with an initial data (u 1 (x), u 2 (x)) satisfying the hypotheses of Theorem 4.1.3. Moreover, if v is small enough, from the local well-posedness of the partial differential equation (ϕ 6 ) in the space of solutions with finite energy, we can deduce from Lemma 4.5.3 the existence of a constant C > 0 and a positive number ϵ such that for all t ∈ [0, ϵ]

(ϕ(t, x), ∂ t ϕ(t, x)) = ---→ H -1,0 ((v, y(t)), x) + --→ H 0,1 ((v, y(t)), x) + (ψ 1 (t, x), ψ 2 (t, x)),
where (ψ 1 (t, x), ψ 2 (t, x)) is an odd function in x, and y(t), (ψ 1 (t, x), ψ 2 (t, x)) satisfy the orthogonality conditions in Lemma 4.5.3 and the following inequality 

|y(t) -y 0 | + ∥(ψ 1 (t, x), ψ 2 (t, x))∥ H 1 x ×L 2 x ≤ 2C ∥(u 1 , u 2 )∥ H 1 x ×L 2 x . ( 4 
E + (ϕ(t), ∂ t ϕ(t)) = +∞ 0 ∂ x ϕ(t, x) 2 + ∂ t ϕ(t, x) 2 2 + U (ϕ(t, x)) dx.
Next, we substitute ϕ(t, x) and ∂ t ϕ(t, x) in the equation above by the formula of (ϕ(t, x), ∂ t ϕ(t, x))

in Step 1. Using (4.3), (4.2) and since y(t) > 1 for 0 ≤ t ≤ ϵ, we obtain for all x ≥ 0 that

∂ l ∂x l H -1,0 x + y(t) √ 1 -v 2 ≲ l (1 -v 2 ) -l 2 e - √ 2(y(t)+x) for any l ∈ N ∪ {0}, (4.120) 
from which we also deduce, using Lemma 3.2.1, the following estimate < +∞ for any l ∈ N, we can deduce using Lemma 4.2.2 the following inequality

R H ′ 0,1 x -y(t) √ 1 -v 2 H ′ -1,0 x + y(t) √ 1 -v 2 ≲ 1 -v 2
U (l) H 0,1 x -y(t) √ 1 -v 2 + H -1,0 x + y(t) √ 1 -v 2 ψ 1 (t, x) l H 1 x ≲ l ∥ψ 1 (t, x)∥ l H 1 x .
In conclusion, since

ϕ(t, x) =H 0,1 x -y(t) √ 1 -v 2 + H -1,0 x + y(t) √ 1 -v 2 + ψ 1 (t, x), (4.122) ∂ t ϕ(t, x) =- v √ 1 -v 2 H ′ 0,1 x -y(t) √ 1 -v 2 + v √ 1 -v 2 H ′ -1,0 x + y(t) √ 1 -v 2 + ψ 2 (t, x), ( 4.123) 
we deduce from the formula (4.84), estimates (4.120), (4.121) and Taylor's Expansion Theo-rem that 

E + (ϕ(t), ∂ t ϕ(t)) = +∞ 0 1 + v 2 2(1 -v 2 ) H ′ 0,1 x -y(t) √ 1 -v 2 2 + U H 0,1 x -y(t) √ 1 -v 2 dx - 1 √ 1 -v 2 +∞ 0 vH ′ 0,1 x -y(t) √ 1 -v 2 ψ 2 (t, x) dx -H ′ 0,1 x -y(t) √ 1 -v 2 ∂ x ψ 1 (t, x) + +∞ 0 U ′ H 0,1 x -y(t) √ 1 -v 2 ψ 1 (t, x) dx + 1 2 +∞ 0 ∂ x ψ 1 (t, x) 2 + U (2) H 0,1 x -y(t) √ 1 -v 2 ψ 1 (t, x) 2 + ψ 2 (t, x) 2 dx +O 1 -v 2 -1 2 y(t)e -2 √ 2y(t) +O - → ψ (t) H 1 x ×L 2 x e - √ 2y(t) + ∥ψ 1 (t, x)∥ 3 H 1 x (R) , ( 4 
E + (ϕ(t), ∂ t ϕ(t)) = +∞ -∞ 1 + v 2 2(1 -v 2 ) H ′ 0,1 x -y(t) √ 1 -v 2 2 + U H 0,1 x -y(t) √ 1 -v 2 dx -1 √ 1 -v 2 +∞ -∞ vH ′ 0,1 x -y(t) √ 1 -v 2 ψ 2 (t, x) -H ′ 0,1 x -y(t) √ 1 -v 2 ∂ x ψ 1 (t, x) + +∞ -∞ U ′ H 0,1 x -y(t) √ 1 -v 2 ψ 1 (t.x) dx + 1 2 +∞ 0 ∂ x ψ 1 (t, x) 2 + U (2) H 0,1 x -y(t) √ 1 -v 2 ψ 1 (t, x) 2 + ψ 2 (t, x) 2 dx +O 1 -v 2 -1 2 y(t)e -2 √ 2y(t) +O - → ψ (t) H 1 x ×L 2 x e - √ 2y(t) + ∥ψ 1 (t, x)∥ 3 H 1 x (R) , (4.125) 
We also recall the Bogomolny identity H ′ 0,1 (x) = 2U (H 0,1 (x)), from which we deduce with change of variables that

1 2 R H ′ 0,1 x √ 1 -v 2 2 dx = R U H 0,1 x √ 1 -v 2 dx = √ 1 -v 2 H ′ 0,1 2 L 2 x 2 . ( 4 

.126)

Step 3. Conclusion of the estimate of E + (t).

Since

--→ H 0,1 ((v, y(t)), x)) is defined by --→ H 0,1 ((v, y(t)), x) =    H 0,1 x-y(t) √ 1-v(t) 2 -v √ 1-v 2 H ′ 0,1 x-y(t) √ 1-v 2    ,
and we can verify by similar reasoning to (4.124) the identity

E --→ H 0,1 ((v, y(t)), x) = +∞ -∞ 1 + v 2 2(1 -v 2 ) H ′ 0,1 x -y(t) √ 1 -v 2 2 + U H 0,1 x -y(t) √ 1 -v 2 dx, we conclude that E --→ H 0,1 ((v, y(t)), x) = 1 √ 1-v 2 H ′ 0,1 2 L 2
x . In conclusion, using (4.125), we obtain that

E + (ϕ(t), ∂ t ϕ(t)) = 1 √ 1 -v 2 H ′ 0,1 2 L 2 x - +∞ -∞ v √ 1 -v 2 H ′ 0,1 x -y(t) √ 1 -v 2 ψ 2 (t, x) dx + +∞ -∞ 1 √ 1 -v 2 H ′ 0,1 x -y(t) √ 1 -v 2 ∂ x ψ 1 (t, x) + +∞ -∞ U ′ H 0,1 x -y(t) √ 1 -v 2 ψ 1 (t, x) dx + 1 2 +∞ 0 ∂ x ψ 1 (t, x) 2 + U (2) H 0,1 x -y(t) √ 1 -v 2 ψ 1 (t, x) 2 + ψ 2 (t, x) 2 +O 1 -v 2 -1 2 y(t)e -2 √ 2y(t) + ∥(ψ 1 (t), ψ 2 (t))∥ H 1 x ×L 2 x e - √ 2y(t) +O ∥ψ 1 (t)∥ 3 H 1 x (R) ,
from this using integration by parts we conclude that

E + (ϕ(t), ∂ t ϕ(t)) = 1 √ 1 -v 2 H ′ 0,1 2 
L 2 x + v J • C v,y(t) , --→ ψ(t) + 1 2 +∞ 0 ψ 2 (t, x) 2 + ∂ x ψ 1 (t, x) 2 + U (2) H 0,1 x -y(t) √ 1 -v 2 ψ 1 (t, x) 2 +O 1 -v 2 -1 2 y(t)e -2 √ 2y(t) +O ∥(ψ 1 (t), ψ 2 (t))∥ H 1 x ×L 2 x e - √ 2y(t) + ∥ψ 1 (t)∥ 3 H 1 x , ( 4.127) 
where the function C v,y (x) is defined in (4.87).

Step 4. Estimate of -vP + (ϕ(t), ∂ t ϕ(t)) . First, we recall from (4.83) that P + (ϕ(t), ∂ t ϕ(t)) is given by

P + (ϕ(t), ∂ t ϕ(t)) = - +∞ 0 ∂ t ϕ(t, x)∂ x ϕ(t, x) dx.
Then, while (ϕ(t, x), ∂ t ϕ(t, x)) satisfies the formula

(ϕ(t, x), ∂ t ϕ(t, x)) = ---→ H -1,0 ((v, y(t)), x) + --→ H 0,1 ((v, y(t)), x) + (ψ 1 (t, x), ψ 2 (t, x)),
using the estimates (4.120) and (4.121), we obtain by similar reasoning to the estimate of (2.12) of Lemma 2.3 in [START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF] that 

-vP + (ϕ(t), ∂ t ϕ(t)) =- v 2 √ 1 -v 2 H ′ 0,1 2 L 2 x -v J • C v,y(t) , - → ψ (t) +v +∞ 0 ∂ x ψ 1 (t, x)ψ 2 (t, x) dx + O v 2 (1 -v 2 ) y(t)e -2 √ 2y(t) +O v √ 1 -v 2 e - √ 2y(t) ∥(ψ 1 (t), ψ 2 (t))∥ H 1 x ×L 2 x , ( 4 
H ′ 0,1 x -y(t) √ 1 -v 2 H ′ -1,0 x + y(t) √ 1 -v 2 dx,
and from the elementary estimate

0 -∞ H ′ 0,1 x -y(t) √ 1 -v 2 2 dx + +∞ 0 H ′ -1,0 x + y(t) √ 1 -v 2 2 dx ≲ e -2 √ 2y(t) ,
which can be obtained from (4.120).

Step 5.(Estimate and monotonicity of M (ϕ(t), ∂ t ϕ(t)).) From estimates (4.127) and (4.128), we deduce

M (ϕ(t), ∂ t ϕ(t)) =E + (ϕ(t), ∂ t ϕ(t)) -vP + (ϕ(t), ∂ t ϕ(t)) = √ 1 -v 2 Ḣ0,1 2 L 2 x + 1 2   +∞ 0 ψ 2 (t, x) 2 + ∂ x ψ 1 (t, x) 2 + U (2)   H 0,1   x -y(t) 1 -v(t) 2     ψ 1 (t, x) 2 dx   +O v ∥(ψ 1 (t), ψ 2 (t))∥ 2 H 1 x ×L 2 x + ∥(ψ 1 (t), ψ 2 (t))∥ H 1 x ×L 2 x e - √ 2y (t) 
+O ∥ψ 1 (t)∥ 

E + --→ H 0,1 (v, y(t)) + ---→ H -1,0 (v, y(t)) = 1 √ 1 -v 2 H ′ 0,1 2 L 2 x + O y(t)e -2 √ 2y(t) , P + --→ H 0,1 (v, y(t)) + ---→ H -1,0 (v, y(t)) = v √ 1 -v 2 H ′ 0,1 2 L 2 x + O y(t)e -2 √ 2y(t) .
Therefore, we obtain that

M --→ H 0,1 (v, y(t)) + ---→ H -1,0 (v, y(t)) = √ 1 -v 2 H ′ 0,1 2 
L 2 x + O y(t)e -2 √ 2y(t) , ( 4.130) 
from which we deduce

M (ϕ(t), ∂ t ϕ(t)) =M --→ H 0,1 (v, y(0)) + ---→ H -1,0 (v, y(0)) + 1 2 +∞ 0 ψ 2 (t, x) 2 + ∂ x ψ 1 (t, x) 2 + U (2) H 0,1 x -y(t) √ 1 -v 2 ψ 1 (t, x) 2 dx +O max y(t)e -2 √ 2y(t) , y(0)e -2 √ 2y(0) +O v ∥(ψ 1 (t), ψ 2 (t))∥ 2 H 1 x ×L 2 x + ∥(ψ 1 (t), ψ 2 (t))∥ 3 H 1 x ×L 2 x .
Consequently, since M (ϕ(0), ∂ t ϕ(0)) ≥ M (ϕ(t), ∂ t ϕ(t)) for all t ≥ 0 and

(ϕ(0), ∂ t ϕ(0)) = --→ H 0,1 (v, y(0)) + ---→ H -1,0 (v, y(0)) + (ψ 1 (0), ψ 2 (0)),
we have for every t ≥ 0 the following estimate

+∞ 0 ψ 2 (t, x) 2 + ∂ x ψ 1 (t, x) 2 + U (2) H 0,1 x -y(t) √ 1 -v 2 ψ 1 (t, x) 2 dx ≲ y(t)e -2 √ 2y(t) + y(0)e -2 √ 2y(0) + v ∥(ψ 1 (t), ψ 2 (t))∥ 2 H 1 x ×L 2 x + ∥(ψ 1 (t), ψ 2 (t))∥ 3 H 1 x ×L 2 x + ∥(ψ 1 (0), ψ 2 (0))∥ H 1 x ×L 2
x , from which with Lemma A.4.5 we deduce for all t ≥ 0 that

∥(ψ 1 (t), ψ 2 (t))∥ 2 H 1 x ×L 2 x ≲ y(t)e -2 √ 2y(t) + y(0)e -2 √ 2y(0) + ∥(ψ 1 (0), ψ 2 (0))∥ H 1 x ×L 2 x , (4.131) if v ≪ 1.
Step 6.(Final Argument.)

The last argument is to prove that the set denoted by 

BO = t ∈ R ≥0 ∥(ψ 1 (t), ψ 2 (t))∥ H 1 x ×L 2 x ≤ v 1+ θ 4 ,
| + ∥(ψ 1 (t), ψ 2 (t))∥ H 1 x ×L 2 x ≤ 2C ∥(u 1 , u 2 )∥ H 1 x ×L 2 x . (4.133) Since ∥(u 1 , u 2 )∥ H 1 x ×L 2
x ≤ v 2+θ and Lemma 4.5.3 implies the estimate ∥(ψ

1 (0), ψ 2 (0))∥ H 1 x ×L 2 x ≲ ∥(u 1 , u 2 )∥ H 1 x ×L 2
x , from (4.133) and Lemma 4.5.5, we deduce the existence of a constant 0 < K independent of ϵ and v such that y(t) is a function of class C 1 in [0, ϵ] and for any t ∈ [0, ϵ], the inequality 

| ẏ(t) -v| ≤ K ∥(ψ 1 (t), ψ 2 (t))∥ H 1 x ×L 2 x + e -2 √ 2y(t) (4.134) is true. Therefore, ẏ(t) ≥ v -K ∥(ψ 1 (t), ψ 2 (t))∥ H 1 x ×L 2 x + e -2 √ 2y(t) , ( 4 
(0), ψ 2 (0))∥ H 1 x ×L 2 x ≲ ∥(u 1 , u 2 )∥ H 1 x ×L 2 x ≤ v 2+θ imply that if 0 ≤ t ≤ ϵ 2 and 0 < v ≪ 1, then ẏ(t) ≥ v -v 2 -Ke -3 √ 2y(0) 2 ≥ 4v 5 . ( 4 
∥(ψ 1 (t), ψ 2 (t))∥ H 1 x ×L 2 x (x) ≲ ∥(u 1 , u 2 )∥ 1 2 H 1 x ×L 2 x + y(0) 1 2 e - √ 2y(0) ≪ v 1+ θ 4 , (4.137) if [0, t] ∈ BO.
In conclusion, BO = R ≥0 and estimates (4.134), (4.137) imply the result of Theorem 4.1.3 for all t ≥ 0.

Proof of Theorem 4.1.2

First, from Theorem 1.3 in the article [START_REF] Chen | Kink networks for scalar fields in dimension 1 + 1[END_REF], we know for any 0 < v < 1 that there exist δ(v) > 0, T (v) > 0 and a solution ϕ(t, x) of (ϕ 6 ) with finite energy satisfying the identity 

ϕ(t, x) = H 0,1 x -vt √ 1 -v 2 + H -1,0 -x -vt √ 1 -v 2 + ψ(t, x), ( 4 
(v), T (v) > 0 such that sup t≥T (v) ∥(ψ(t, x), ∂ t ψ(t, x))∥ H 1 x ×L 2 x e δ(v)t < 1, (4.140) 
indeed, in [START_REF] Chen | Kink networks for scalar fields in dimension 1 + 1[END_REF] it was proved using the Fixed point theorem that for any 0 < v < 1 that there is a unique solution of (ϕ 6 ) that satisfies (4.139) for some T, δ > 0.

Next, if we restrict the argument of the proof of Proposition 3.6 of [START_REF] Chen | Kink networks for scalar fields in dimension 1 + 1[END_REF] to the traveling kink-kink of the ϕ 6 model, we can find explicitly the values of δ(v) and T (v). More precisely, we have: Theorem 4.6.1. There is δ 0 > 0 such that if 0 < v < δ 0 , then there exists a unique solution ϕ(t, x) of (ϕ 6 ) with

h(t, x) = ϕ(t, x) -H 0,1 x -vt √ 1 -v 2 -H -1,0 x + vt √ 1 -v 2 ,
satisfying (4.139) for some 0 < δ < 1 and T > 0. Furthermore, we have if t ≥

4 ln 1 v v that ∥(h(t, x), ∂ t h(t, x))∥ H 1 x ×L 2
x ≤ e -vt . (4.141)

This solution is also an odd function on x.

Proof. See Appendix Section A.4

Finally, we have obtained all the framework necessary to start the demonstration of Theorem 4.1.2.

Proof of Theorem 4.1.2. First, from Theorem 4.6.1, for any k ∈ N bigger than 2 and 0 < v ≤ δ 0 , we have that the traveling kink-kink with speed v satisfies for T

0,k = 32k ln ( 1 v 2 ) 2 √ 2v
the following estimate:

∥(h(T 0,k ), ∂ t h(T 0,k ))∥ H 1 x ×L 2 x ≤ v 16 √ 2k , ( 4.142) 
for h(t, x) the function denoted in Theorem 4.6.1. Now, we start the proof of the second item of Theorem 4.1.2.

Step 1.(Proof of the second inequality of Theorem 4.1.2.) First, in notation of Theorem 4.1.7, we consider

ϕ k (v, t, x) = φ k,v (t, x + τ k,v ).
For the T 0,k given before, we can verify using Theorems 4.1.6, 4.1.7 that

ϕ k (v, T 0,k , x) -H 0,1 x -vT 0,k √ 1 -v 2 -H -1,0 x + vT 0,k √ 1 -v 2 H 1 x + ∂ t ϕ k (v, T 0,k , x) + v √ 1 -v 2 H ′ 0,1 x -vT 0,k √ 1 -v 2 - v √ 1 -v 2 H ′ -1,0 x + vT 0,k √ 1 -v 2 H 1 x ≤ v 15k .
In conclusion, Theorem 4.2.3 and Remark 4.4.1 imply that there is ∆ k,θ > 0 such that if also

v < ∆ k,θ , then ∥(ϕ(t, x), ∂ t ϕ(t, x)) -(ϕ k (v, t, x), ∂ t ϕ k (v, t, x))∥ H 1 x ×L 2 x < v 2k-1 2 , while |t -T 0,k | < ln 1 v 2-θ 2 v .
Also, Theorem 4.1.7 and Theorem 4.1.6 implies that if v ≪ 1 and

-4 ln 1 v 2-θ v ≤ t ≤ - ln 1 v 2-θ v , then there exist e k,v satisfying e v,k -1 √ 2 ln 8 v 2 ≪ 1 such that ϕ k (v, t, x) -H 0,1 x -e k,v + vt √ 1 -v 2 -H -1,0 x + e k,v -vt √ 1 -v 2 H 1 x + ∂ t ϕ k (v, t, x) - v √ 1 -v 2 H ′ 0,1 x -e k,v + vt √ 1 -v 2 + v √ 1 -v 2 H ′ -1,0 x + e k,v -vt √ 1 -v 2 L 2 x ≪ v 2k-1 2 .
(4.143)

In conclusion, the second inequality of Theorem 4.1.2 follows from the observation above and Remark 4.4.1.

Step 2.(Proof of the first inequality of Theorem 4.1.2.)

From Step 1, for

t 0 = - (ln 1 v ) 2-θ v
, it was obtained that ϕ(t 0 , x) satisfies (4.143). Next, we are going to study the behavior of ϕ(t, x) for t ≤ t 0 , which is equivalent to studying the function ϕ 1 (t, x) = ϕ(-(t + t 0 ), x) for t ≥ 0. However, from the estimate (4.143), we can verify that (ϕ 1 (0, x), ∂ t ϕ 1 (0, x)) satisfies the hypotheses of Theorem 4.1.3, if we consider y 0 = e k,v -vt 0 and 0 < v <≪ 1. Therefore, using the result of Theorem 4.1.3 and the identity ϕ 1 (t, x) = ϕ(-(t + t 0 ), x), we obtain the first inequality of Theorem 4.1.2.

max j∈{1, 2} dj (t) -ẍj (t) = O max j∈{1, 2} |d j (t) -x j (t)| ϵ + ϵz(t)e - √ 2z(t) + --→ g(t) ϵ 1 2 . Lemma A.1.2. For U (ϕ) = ϕ 2 (1 -ϕ 2 ) 2 , we have that U ′ H x 1 (t) -1,0 (x) + H x 2 (t) 0,1 (x) -U ′ H x 1 (t) -1,0 (x) -U ′ H x 2 (t) 0,1 (x) =24e - √ 2z(t)   H x 1 (t) -1,0 (x) 1 + e -2 √ 2(x-x 1 (t)) + H x 2 (t) 0,1 (x) 1 + e 2 √ 2(x-x 2 (t))   -30e - √ 2z(t)   H x 1 (t) -1,0 (x) 3 1 + e -2 √ 2(x-x 1 (t)) + H x 2 (t) 0,1 (x) 3 1 + e 2 √ 2(x-x 2 (t))   + r(t, x), such that ∥r(t)∥ L 2 x (R) = O(e -2 √ 2z(t) ).
Proof. By direct computations, we verify that

U ′ H x 1 (t) -1,0 + H x 2 (t) 0,1 -U ′ H x 1 (t) -1,0 -U ′ H x 2 (t) 0,1 =-24H x 1 (t) -1,0 H x 2 (t) 0,1 H x 1 (t) -1,0 + H x 2 (t) 0,1 +30H x 1 (t) -1,0 H x 2 (t) 0,1 H x 1 (t) -1,0 3 + H x 2 (t) 0,1 3 +60 H x 1 (t) -1,0 H x 2 (t) 0,1 2 H x 1 (t) -1,0 + H x 2 (t) 0,1 . 
First, from the definition of H 0,1 (x), we verify that 60 H

x 1 (t) -1,0 H x 2 (t) 0,1 2 H x 1 (t) -1,0 + H x 2 (t) 0,1 = 60e -2 √ 2z(t) H x 2 (t) 0,1 (1 + e 2 √ 2(x-x 2 (t)) )(1 + e -2 √ 2(x-x 1 (t)) ) + 60e -2 √ 2z(t) H x 1 (t) -1,0 (1 + e -2 √ 2(x-x 1 (t)) )(1 + e 2 √ 2(x-x 2 (t))
) .

Using (2.4), we can verify using by induction for any k ∈ N that

d k dx k 1 (1 + e 2 √ 2x ) = d k dx k   1 - e 2 √ 2x (1 + e 2 √ 2x )   = d k dx k H 0,1 (x) 2 = O(1), (A.1)
and since H 0,1 (x)

(1+e 2 √ 2x ) = e √ 2x (1+e 2 √ 2x ) 3 2
is a Schwartz function, we deduce using Lemma 2.2.3 that 60(H

x 1 (t) -1,0 H x 2 (t) 0,1 ) 2 (H x 1 (t) -1,0 + H x 2 (t) 0,1 ) is in H k x (R) and it satisfies for all k > 0 the following estimate ∂ k ∂x k (H x 1 (t) -1,0 H x 2 (t) 0,1 ) 2 (H x 1 (t) -1,0 + H x 2 (t) 0,1 ) L 2 x = O e -2 √ 2z(t) . (A.2)
Next, using the identity

H x 1 (t) -1,0 (x)H x 2 (t) 0,1 (x) = - e - √ 2z(t) (1 + e 2 √ 2(x-x 2 (t)) )(1 + e -2 √ 2(x-x 1 (t)) ) , (A.3) the identity 1 - 1 1 + e 2 √ 2x = e 2 √ 2x 1 + e 2 √ 2x + 1 + e 2 √ 2x
, and Lemma 2.2.3, we deduce that 24(H

x 1 (t) -1,0 ) 2 H x 2 (t) 0,1 + 24e - √ 2z(t) H x 1 (t) -1,0 (x) 1 + e -2 √ 2(x-x 1 (t)) L 2 x =O e -2 √ 2z(t) , (A.4) 30(H x 1 (t) -1,0 ) 4 H x 2 (t) 0,1 + 30e - √ 2z(t) (H x 1 (t) -1,0 (x)) 3 1 + e -2 √ 2(x-x 1 (t)) L 2 x =O e -3 √ 2z(t) . (A.5)
The estimate of the remaining terms -24H

x 1 (t) -1,0 H x 2 (t) 0,1 2 , 30H x 1 (t) -1,0 H x 2 (t) 0,1 4 
is completely analogous to (A.4) and (A.5) respectively. In conclusion, all of the estimates above imply the estimate stated in the Lemma A.1.2.

Proof of Lemma A.1.1. First, we recall the global estimate e - √ 2z(t) ≲ ϵ. We also recall the identity (2.33)

R 8(H 0,1 (x)) 3 -6(H 0,1 (x)) 5 e - √ 2x dx = 2 √ 2,
which, by integration by parts, implies that t) . We also recall the partial differential equation satisfied by the remainder g(t, x) (II), which can be rewritten as which satisfies E pot (φ n ) ≥ E pot (H 0,1 ) and

R 24 H 0,1 (x)∂ x H 0,1 (x) 1 + e 2 √ 2x -30 (H 0,1 (x)) 3 ∂ x H 0,1 (x)
∥∂ x H 0,1 ∥ 2 L 2 x = ∥∂ 2 x H 0,1 ∥ 2 L 2 x = 1 2 √ 2 that dj (t) ∥∂ x H 0,1 ∥ 2 L 2 x = (-1) j 4e - √ 2d ( 
U ′ H x 2 (t) 0,1 (x) + H x 1 (t) -1,0 (x) -U ′ H x 1 (t) -1,0 (x) -U ′ H x 2 (t) 0,1 (x) -ẍ2 (t)∂ x H x 2 (t) 0,1 (x) =-∂ 2 t g(t, x) -∂ 2 x g(t, x) + U (2) H x 2 (t) 0,1 (x) + H x 1 (t) -1,0 (x) g(t, x) + 6 k=3 U (k) H x 1 (t) -1,0 + H x 2 (t) 0,1 g(t) k-1 (k -1)! -ẋ1 (t) 2 ∂ 2 x H x 1 (t) -1,0 (x) -ẋ2 (t) 2 ∂ 2 x H x 2 (t) 0,1 (x) + ẍ1 (t)∂ x H x 1 (t) -1,0 (x) 
dφ n (x) dx =    dϕn(x)
dx , if 0 < ϕ n (x) < 1, 0, for almost every x ∈ R satisfying either ϕ n (x) ≤ 0 or ϕ n (x) ≥ 1, we can deduce with the estimates above and inequality lim sup n→+∞ ∥ϕ n ∥ L ∞ < c that if n ≫ 1, then

∥ϕ n (x) -φ n (x)∥ 2 L 2 x + dϕ n (x) dx - dφ n (x) dx 2 L 2 x ≲ |E pot (ϕ n ) -E pot (H 0,1 )| , |E pot (ϕ n ) -E pot (φ n )| ≲ |E pot (ϕ n ) -E pot (H 0,1 )| .
Consequently, using triangle inequality and conditions (A.10), (A.12), we would obtain that lim n→+∞ inf y∈R ∥φ n (x) -H 0,1 (x + y)∥ H 1 x > 0.

In conclusion, we can restrict the proof to the case where 0 ≤ ϕ n (x) ≤ 1 and n ≫ 1. Now, from the density of H 2 (R) in H 1 (R), we can also restrict the contradiction hypotheses to the situation where dϕn dx (x) is a continuous function for all n ∈ N. Also, we have that if ∥ϕ(x) -H 0,1 (x)∥ H 1 x < +∞, then E pot (ϕ(x)) ≥ E pot (H 0,1 (x)). In conclusion, there is a sequence of positive numbers (ϵ n ) n such that E pot (ϕ n ) = E pot (H 0,1 ) + ϵ n , lim n→+∞ ϵ n = 0. Also, τ y ϕ(x) = ϕ(x -y) satisfies E pot (ϕ(x)) = E pot (τ y ϕ(x)) for any y ∈ R. In conclusion, since for all n ∈ N, lim x→+∞ ϕ n (x) = 1 and lim x→-∞ ϕ n (x) = 0, we can restrict to the case where

ϕ n (0) = 1 √ 2 ,
for all n ∈ N.

Next, we consider the notations (v) + = max(v, 0) and (v) -= -(v -(v) + ) . Since dϕn(x) dx is a continuous function on x, we deduce that dϕn(x) dx +

and dϕn (x) dx are also continuous functions on x for all n ∈ N. In conclusion, for any n ∈ N, we have that the set x ≲ ϵ n for all 1 ≪ n. We recall that U (ϕ) = ϕ 2 (1 -ϕ 2 ) 2 is a Lipschitz function in the set {ϕ| 0 ≤ ϕ ≤ 1}. Then, because H 0,1 (x) is the unique solution of the following ordinary differential equation otherwise we would obtain that there are 0 < θ < In conclusion, for any 1 > ω > 0 there is a number h(ω) such that if n ≥ h(ω) then (A.21) holds. So we deduce for any 0 < ω < 1 that there is a number h 1 (ω) such that if n ≥ h 1 (ω), then |ϕ n (x) -H 0,1 (x)| ≤ ω for all x ∈ R.

U -= x ∈ R| dϕ n (x) dx < 0 (A.
(A.28)

Then, if ω ≤ Clearly, ϕ(x) = ϕ -(x) for x < y and ϕ(x) = ϕ + (x) for x > y. From identity U (0) = 0, we deduce that E pot (ϕ) = E pot (ϕ -) + E pot (ϕ + ), also, we have that

E pot (H -1,0 ) < E pot (ϕ -), E pot (H 0,1 ) < E pot (ϕ + ).
In conclusion, since E pot (ϕ) = 2E pot (H 0,1 ) + ϵ, Lemma A.1.3 implies that if ϵ < ϵ 0 ≪ 1, then there exist x 2 , x 1 ∈ R such that ∥ϕ(x) -H 0,1 (x -x 2 ) -H -1,0 (x -x 1 )∥ H x ≤ 1. Therefore, using estimate (A.32) and the Fundamental Theorem of Calculus, we deduce that if 0 < ϵ 0 ≪ 1, then

|E pot (ϕ) -E pot (H 0,1 (x -x 2 ) + H -1,0 (x -x 1 ))| < e -2 √ 2 1 δ . (A.34)
Furthermore, since the function A(z) = E pot H z 0,1 (x) + H -1,0 (x) is a continuous function on R ≥0 and A(z) > 2E pot (H 0,1 ) for any z ≥ 0, we have for any k > 0 that there exists δ k > 0 satisfying sup {z∈[0,k]} A(z) > 2E pot (H 0,1 ) + δ k .

In conclusion, we obtain from Lemma 2.2.4 and the estimate (A.34) that x 2 -x 1 ≥ 1 δ if 0 < ϵ 0 ≪ 1 and ϵ < ϵ 0 . Now, we complement our manuscript by presenting the proof of identity (2.33). (2.33). From the definition of the function H 0,1 (x), we have 

Proof of Identity

dy, = 1 2 √ 2 (-4y -3 2 -4y -1 2 ) ∞ 1 = 2 √ 2.
A. , which implies that v ≲ ϵ In conclusion, if ϵ ≪ 1 enough, we obtain for 0 ≤ t ≤ N ln ( 1 ϵ ) ϵ The conclusion of the demonstration will follow from studying separate cases in the choice of v > 0, c. We also observe that K, K 1 are uniform constants and the value of N ∈ N >0 can be chosen at the beginning of the proof to be as much large as we need. Therefore, since 0 < H ′ 0,1 ∈ kerd 2 dx 2 + U (2) (H 0,1 ) , we conclude that d 2 dx 2 + U (2) (H 0,1 ) ξ(x)H ′ 0,1 (x) = H ′ 0,1 (x).

Remark A.3.2. From the identity U (2) (H 0,1 (x)) = 2 -24H 0,1 (x) 2 + 30H 0,1 (x) 4 , we deduce that

- d 2 dx 2 + U (2) (H 0,1 (x)) e - √ 2x = 30H 0,1 (x) 4 -24H 0,1 (x) 2 e - √ 2x .
In conclusion, Lemma A. x (R) such that f (x), H ′ 0,1 (x) = 0 and -f (2) (x) + U (2) (H 0,1 (x))f (x) = g(x).

(A.52)

The identity (A.52) above implies that f ∈ H 2 x (R). Moreover, since H 0,1 ∈ L ∞ x (R) and

H ′ 0,1 (x) = √ 2 e √ 2x 1 + e 2 √ 2x 3 2 
∈ S (R), we obtain that d l dx l U (2) (H 0,1 (x)) ∈ S (R) for all natural l ≥ 1. So, we obtain that if f (x) ∈ H k x (R) for k ≥ 1, then, since H k x (R) is an algebra for k ≥ 1, g(x)-U (2) (H 0,1 (x))f (x) ∈ H k (R). Then, from equation (A.52), if f ∈ H k x (R), then f (2) (x) ∈ H k x (R), which would imply that f (k+2) (x) is in L 2

x (R), and by elementary Fourier analysis theory or interpolation theory we would verify obtain f (l) (x) ∈ L 2

x (R) for any natural l satisfying 0 ≤ l ≤ k + 2. In conclusion, by a standard argument of induction, we obtain that, for any natural k, f (x) ∈ H k x (R), and as a consequence f (x) ∈ C ∞ (R).

Proof of Lemma A.4.4. First, to simplify our computations we denote

γ d(t) = 1 1 -ḋ(t) 2 4
.

Next, we can verify using a change of variables that U (2) H + 0,1 (x, t) g(x), g(x) = 1 -

ḋ(t) 2
4 R U (2) Moreover, L = -∂ 2 x + U (2) (H 0,1 (x)) is a positive operator in L 2 (R) when it is restricted to the orthogonal complement of H ′ 0,1 (x) in L 2

x (R), see [START_REF] Jendrej | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF] or [START_REF] Moutinho | Dynamics of two interacting kinks for the ϕ 6 model[END_REF] for the proof. In conclusion, we deduce that there is a constant C > 0 independent of v > 0 such that The remaining part of the proof proceeds exactly as the proof of Lemma 2.6 of [START_REF] Moutinho | Dynamics of two interacting kinks for the ϕ 6 model[END_REF].

-
Lemma A.4.5. There exist C > 1, c > 0 δ > 0 such that if 0 < v < δ, then we have for any

(φ 1 , φ 2 ) ∈ H 1 x (R) × L 2 x (R) that R φ 2 2 +∂ x φ 2 1 +U (2) H 0,1 x √ 1 -v 2 φ 1 (x) 2 dx ≥ c ∥(φ 1 , φ 2 )∥ 2 H 1 x ×L 2 x -C ⟨(φ 1 , φ 2 ), JD v,0 (x)⟩ 2 .
Proof. The proof is completely analogous to the proof of property (2) of Lemma 2.8 in the article [START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF].

A.5 Proof of Theorem 4.6.1

We start by denoting J = 0 1 -1 0 , and we consider for x ∈ R and -1 < v < 1 the following functions

ψ 0 -1,0 (x, v) = J   H ′ -1,0 ( x √ 1-v 2 ) v 1-v 2 H (2) -1,0 x √ 1-v 2   , (A.62) ψ 1 -1,0 (x, v) = J   vxH ′ -1,0 x √ 1-v 2 1 √ 1-v 2 H ′ -1,0 x √ 1-v 2 + v 2 x 1-v 2 H (2) -1,0 x √ 1-v 2   , (A.63)
and we denote, for j ∈ {0, 1}, ψ j 0,1 (x, v) = ψ j -1,0 (-x, -v). Next, we will use Lemma 2.6 of [START_REF] Chen | Kink networks for scalar fields in dimension 1 + 1[END_REF] From now on, we denote ψ j -1,0 (v; t, x) = ψ j -1,0 (x + vt, v) and ψ j 0,1 (v; t, x) = ψ j -1,0 (x -vt, v) for any j ∈ {0, 1}. Furthermore, using Lemma 3.2.1, we can verify similarly to the proof of Proposition 2.8 of [START_REF] Chen | Kink networks for scalar fields in dimension 1 + 1[END_REF] the following result.

L +,-(v, t) = -∂ 2 ∂x 2 + U (2) H 0,1 x-vt √ 1-v 2 + H -1,0 x+vt √ 1-v 2
Lemma A.5.2. There exists C > 0, such that for any 0 < v < 1, we have for all t ∈ R ≥1 that ∂ ∂t ψ 0 0,1 (v; t, x) -L +,-Jψ 0 0,1 (v; t, x) Next, we consider a smooth cut function 0 ≤ χ(x) ≤ 1 that satisfies

χ(x) =    1, if x ≤ 2(1 -10 -3 ), 0, if x ≥ 2.
From now on, for each 0 < v < 1, we consider p(v) = v 2 (1 -10 -3 ) and we also denote χ 1 (v; t, x) = χ x + vt p(v)t , χ 2 (v; t, x) = 1 -χ x + vt p(v)t .

Lemma A.5.3. There is c, δ 0 > 0 such that if 0 < v < δ 0 , then Then, using the estimates (2.13) and (A.76), the proof of Lemma A.5.3 is analogous to the demonstration of Lemma 2.3 of [START_REF] Jendrej | Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line[END_REF] or the proof of Lemma 2.5 in [START_REF] Moutinho | Dynamics of two interacting kinks for the ϕ 6 model[END_REF] or the demonstration of Lemma A.4.4 in the section Appendix A.

Q(t, r) = 1 2 R ∂ t r
Remark A.5.4. Indeed, Proposition 2.10 of [START_REF] Chen | Kink networks for scalar fields in dimension 1 + 1[END_REF] implies that for any 0 < v < 1, there is T v and c v , such that Lemma A.5.3 holds with c v in the place of c for all t ≥ T v .

Lemma A.5.5. There is C > 0, such that, for any 0 < v < As a consequence, using integration by parts, we deduce that 

d dt R ∂ t h(t) 2 + ∂ x h(t) 2 + U (2) H 0,1 x -vt √ 1 -v 2 + H -1,0 x + vt √ 1 -v 2 h(t) 2 dx =- v √ 1 -v 2 R U (3) H 0,1 x -vt √ 1 -v 2 + H -1,0 x + vt √ 1 -v 2 H ′ 0,1 x -vt √ 1 -v 2 h(t) 2 dx + v √ 1 -v 2 R U (3) H 0,1 x -vt √ 1 -v 2 + H -1,0 x + vt √ 1 -v 2 H ′ -1,0 x + vt √ 1 -v 2 h(t)
= R χ j (v; t, x)U (3) H 0,1 x -vt √ 1 -v 2 + H -1,0 x + vt √ 1 -v 2 H ′ 0,1 x -vt √ 1 -v 2 h(t, x) 2 dx + R χ j (v; t, x)U (3) H 0,1 x -vt √ 1 -v 2 + H -1,0 x + vt √ 1 -v 2 H ′ -1,0 x + vt √ 1 -v 2 h(t, x) 2 dx +O χ ′ L ∞ x (R) 1 vt ∥(h(t), ∂ t h(t))∥ 2 H 1 x ×L 2 x + ∥f (t)∥ L 2 x ∥(h(t), ∂ t h(t))∥ H 1 x ×L 2 x .
From the definitions of χ 1 (v; t, x) and χ 2 (v; t, x), we can verify for all t > 1 that

H ′ 0,1 x -vt √ 1 -v 2 χ 1 (v; t, x) < √ 2 exp - √ 2vt(1 + 2 × 10 -3 ) √ 1 -v 2 , H ′ -1,0 x + vt √ 1 -v 2 χ 2 (v; t, x) < √ 2 exp - √ 2vt(1 -10 -3 ) 2 √ 1 -v 2 ,
In conclusion, we obtain that 

= v 2 √ 1 -v 2 R U (3) H 0,1 x -vt √ 1 -v 2 + H -1,0 x + vt √ 1 -v 2 H ′ 0,1 x -vt √ 1 -v 2 h(t, x) 2 dx - v 2 √ 1 -v 2 R U (3) H 0,1 x -vt √ 1 -v 2 + H -1,0 x + vt √ 1 -v 2 H ′ -1,0 x + vt √ 1 -v 2 h(t, x) 2 dx +O χ ′ L ∞ x (R) 1 t ∥(h(t), ∂ t h(t))∥ 2 H 1 x ×L 2 x + v ∥f (t)∥ L 2 x ∥(h(t), ∂ t h(t))∥ H 1 x ×L 2 x +O   v exp   - √ 2vt(1 -10 -3 ) 2 (1 -v 2 ) 1 2   ∥h(t, x)∥ 2 H 1 x (R)   .
(A.80) So, using estimate (A.80), Lemma A.5.5 will follow from the sum of (A.78) and (A.79).

Lemma A.5.6. There is C > 0, such that, for any 0

< v < 1, if f (t, x) ∈ L ∞ t (R; H 1 x (R)) and h(t, x) ∈ L ∞ t (R ≥1 ; H 1 x (R)) ∩ C 1 t (R ≥1 ; L 2 x (R)
) is a solution of the integral equation associated to the following partial differential equation

∂ 2 t h(t, x) -∂ 2 x h(t, x) + U (2) H 0,1 x -vt √ 1 -v 2 + H -1,0 x + vt √ 1 -v 2 h(t, x) = f (t, x),
for some boundary condition (h(t 0 ), ∂ t h(t 0 )) ∈ H 1 x (R)×L x + vt √ 1 -v 2 + H 0,1

=U ′ H -1,0 x + vt √ 1 -v 2 + H 0,1 x -vt √ 1 -v 2 + g(t, x) -U ′ H -1,0 x + vt √ 1 -v 2 -U ′ H 0,1 x -vt √ 1 -v 2 -U (2) H -1,0 x + vt √ 1 -v 2 + H 0,1 x -vt √ 1 -v 2 g(t,
x -vt √ 1 -v 2 µ(t, x) = N (v, -→ µ )(t, x), (A.92) such that µ ∈ H 1 v,T 0 . Indeed, the uniqueness is guaranteed by estimate (A.87) and from estimates (A.87) and (A.90) we have that the map S is a contraction in the set

B = {u ∈ H 1 v,T 0 | ∥u∥ H 1 v,T 0 ≤ 1},
and so, Theorem 4.6.1 follows similarly to the proof of Proposition 3.6 of [START_REF] Chen | Kink networks for scalar fields in dimension 1 + 1[END_REF] by using the Banach's fixed point theorem.

•

  

  lim

  and ϕ ∞ := lim r→+∞ ϕ(r•) : S n-1 → V is equal to σ}, and the following problem: Is there a continuous function ϕ ∈ V σ satisfying L U (ϕ) = inf ψ∈Vσ L U (ψ)? (P.0) If there existed a minimizer ϕ, then it should be a weak solution of the following Euler-Lagrange equation ∆ϕ(x) = ∇U (ϕ). (1.2)

Lemma 1 . 2 . 3 . 2 - 2 - 2 = 2 [

 1232222 If lim x→-∞ ϕ(x) = lim x→+∞ ϕ(x), then the smooth solution ϕ(x) of the problem (1.6) is a constant function. Proof of Lemma 1.2.3. Since lim x→-∞ ϕ(x) is equal to lim x→+∞ ϕ(x), if ϕ is not a constant function, then there would exists x 0 ∈ R satisfying either lim x→+∞ ϕ(x) < ϕ(x 0 ) = max x∈R ϕ(x) or lim x→+∞ ϕ(x) > ϕ(x 0 ) = min x∈R ϕ(x) (1.7)and so, dϕ(x 0 ) dx = 0. Furthermore, since ϕ ∈ C ∞ (R), we have from the ordinary differential equation (1.6) thatd dx dϕ(x) dx 2U (ϕ(x)) = 2 ϕ ′′ (x) -U ′ (ϕ(x)) ϕ ′ (x) = 0,and so, the functiondϕ(x) dx 2U (ϕ(x)) is constant. Therefore, we would deduce from the Fundamental Theorem of Calculus that dϕ(x) dx U (ϕ(x)) -U (ϕ(x 0 ))] for any x ∈ R.

Lemma 1 . 2 . 4 .

 124 The unique solutions of(1.6) which are topological solitons associated to U are the smooth solutions ϕ of only one of the following ordinary differential equationsϕ ′ (x) = 2U (ϕ(x)) or ϕ ′ (x) = -2U (ϕ(x)),(1.8)which satisfy L U (ϕ) < +∞.Proof of Lemma 1.2.4. First, from elliptic regularity theory, Definition 1.2.1 and Lemma 1.2.3, we can verify that ϕ : R → R is a topological soliton only if ϕ ∈ C ∞ (R) and ϕ satisfies lim x→+∞ ϕ(x) ̸ = lim x→-∞ ϕ(x).

. 10 )

 10 Clearly, the vacuum set V associated to this potential function is {0, -1, +1}. Therefore, Lemma 1.2.4 and Remark 1.2.6 imply that the only possible kink solutions ϕ : R → R should satisfy one of the following boundary condition lim

R

  ∂ x ϕ(t, x) 2 ≤ 2E(ϕ),which implies with Cauchy-Schwarz inequality that|ϕ(t, x) -ϕ(t, y)| ≤ |x -y| 1 2

( 1 .

 1 [START_REF] Hirota | Exact solution of the korteweg-de vries equation for multiple collisions of solitons[END_REF],(1.26) of Theorem 1.4.3 instead of the global estimate max j∈{1,2} | ẋj (t)| 2 + |ẍ j (t)| = O (ϵ) .The statement of Theorem 1.4.3 also describes with high precision the dynamics of two interacting kinks for the ϕ 6 model, which is the behavior of the displacement solitons when initially they are very close to each other and their energy is slightly larger than the minimal value of the energy of a solution of the problem (ϕ 6 -NLW). Moreover, the conclusions of Theorem 1.4.3 allow us to understand with high precision the effect of the repulsive force of interaction between the kinks in their dynamics during a very large time interval. The methods we used to study the dynamics of two kinks for the ϕ 6 model are not only restricted to this partial differential equation and they can be very useful to understand the dynamics and properties of multi-solitons for other non-complete integrable systems. Actually, we will also prove in the second chapter that the precision in our estimate (1.21) is optimal in an interval of size of order O ln ( 1 v ) v .

Notation 1 . 5 . 1 .

 151 For any D ⊂ R, any non-negative real function f : D

Lemma 3 . 2 . 1 .

 321 For any real numbers x 2 , x 1 , such that ζ = x 2 -x 1 > 0 and α, β, m > 0 with α ̸ = β the following bound holds:

1 ∈ 1 k

 11 S + , we have for x < 0 that H ′′ 0,1 (x) = 2e √ 2x + +∞ k=1 u k e (2k+1) √ 2x , with U(z) = +∞ k=1 u k z k analytic in D. Moreover, using identity (3.31), we would obtain that if L(g) = h, g(x) = c 0 xH ′ 0,1 (x) + +∞ k=0 c k e (2k+1) √ 2x , for any x < 0, and lim sup k→+∞ |c k | ≤ 1, then (c k ) k∈N∪{0} should satisfy the following equations:

3 . 1 . 3 . 3 . 5 .

 31335 Lemma For any n 1 ∈ N and n 2 ∈ N ∪ {0} and for 0 < v < 1, let r v : R → R being a smooth function satisfying

  f ∈ S + and g ∈ S -, we deduce from Lemma 3.2.1 for any ζ ≥ 1 and all

( 3 . 2 ,

 32 108) Indeed, from the definition of Sym in the statement of Lemma 3.4.13, identities (3.78) and H ′ the ordinary differential equation (3.108) can be rewritten for fixed constants

  .115) Therefore, from the definition of d(t), the identities (3.111), (3.112) and the estimates (3.114), (3.115), using the Fundamental Theorem of Calculus, we deduce the existence of a constant

  .118) Moreover, (3.115) and the definitions of sol 1 and sol 2 , we can verify by induction on l ∈ N for any 0 < v ≪ 1 that

2

 2 

4

 4 

2

 2 

4

 4 

2 ,

 2 using estimates (3.118) and (3.119) of the function r, we deduce from an application of Lemma 3.3.5 in the expressions (3.126), (3.127) and from an application of Taylor's Expansion Theorem in the term (3.128) that the following function

2

 2 

4

 4 

3 2 w 1

 321 (t, x)H ′′ 0,1 (w 1 (t, x)) implies with the product rule, estimates (3.69), (3.118), (3.119), Lemmas 3.3.1 and Remark 3.3.3 that

2

 2 

4 H0, 1

 41 ′′ (w 0 (t, x)). (3.129) Moreover, Lemma 3.4.2 implies that

2

 2 

4 HSubstep 2 . 3 .

 423 ′′ 0,1 (w 0 (t, x)) .(3.132) 123 (Estimate of (3.123).) In notation of Lemma 3.4.5, we have the following identity

  to the proof of Remark 3.4.6, Lemmas 3.3.4 and 3.4.5 imply that

Substep 2 . 4 .

 24 (Estimate of (3.122).)

Step 3 .

 3 (Conclusion of the proof of Theorem 3.4.1.) Using Lemmas 3.3.1, 3.3.2 and estimates (3.118), (3.119), we conclude from the product rule of derivative and estimate (3.143) that if 0 < v ≪ 1, then

  Lemma 3.3.1, Remark 3.3.3 and identity H ′′ 0,1 (x) = U ′ (H 0,1 (x)), we can verify similarly to the proof of Lemma 3.4.2 the following estimate

4 √

 4 two functions p 1 (t), p 2 (t) satisfy property (3.152), then, from the product rule of derivative, p 1 (t)p 2 (t) have much smaller decay than the right-hand side of (3.152) as |t| → +∞, because of the e -2|t| contribution obtained in the product of these functions.

  estimate (3.157), assumption (3.160), Lemma 3.3.1 and Remark 3.3.3, we deduce using the product rule of derivative that j∈I 2

√

  2v|t| , for every t ∈ R and any l ∈ N ∪ {0}. (3.176) Repeating the argument in the first step of the proof of Theorem 3.4.1, we have for the following functions

  .180) and use this function to construct φ M+1,v : R 2 → R satisfying Theorem 3.5.1 for k = M + 1, which will imply the statement of this theorem for all k ∈ N ≥2 by induction. Since we assume Theorem 3.5.1 is true for k = M, we deduce from Lemma 3.3.4 and estimates (3.179) of r M+1 that the following function

  .179) and (3.145) for 2 ≤ k ≤ M, we deduce from Lemmas 3.3.5, 3.3.4 the following estimate

  and lim t→+∞ |r(t)| ≲ v 2 ln 1 v . In conclusion, from Lemma 3.3.1, Remark 3.5.10 and Theorem 3.5.1, the function

Chapter 4 . 4 . 1 . 4 .

 4414 Notation First, for any real function f : R 2

  Finally, for any n ∈ N and any a, b ∈ R n , we denote the scalar product in the Euclidean space R n by ⟨a : b⟩ = n j=1 a j b j , where a = (a 1 , ..., a n ) and b = (b 1 , ..., b n ) .

Remark 4 . 2 . 6 .

 426 Using Lemmas 4.2.1, 4.2.2, 4.2.5 , Λ(ϕ) = 0, Theorem 4.1.7, Remark 3.5.3 and identities H

1 res

 1 2 e - √ 2x dx + res 3 (ζ), (4.40) with res 3 ∈ C ∞ (R ≥1 ) satisfying for all l ∈ N ∪ {0} and ζ ≥ U ∈ C ∞ (R) and we have estimates (4.2), (4.3), we deduce for al ζ ≥ 1 and any l ∈ N ∪ {0} that

  ) ≲ l e - √ 2ζ for any l ∈ N ∪ {0} and ζ ≥ 1. As a consequence, we deduce that there exists a real function int 3 : R ≥1 → R satisfying for any l ∈ N ∪ {0} int

. 43 )

 43 In conclusion, using estimates (4.37), (4.40), (4.42) and Lemma A.4.3 of Appendix Section A.4, identity

  ζ ≥ 1 and any l ∈ N ∪ {0}. Therefore, from estimates (4.43), (4.38), (4.44), (4.45), Lemma 3.2.1 and Theorem 4.1.7 imply that

- 2 R

 2 u(t, x)A(t, x) dx.(4.54) 

1 2

 1 dϕ = E pot (H 0,1 ) + 0 -2U (ϕ) dϕ > E pot (H 0,1 ),which contradicts (A.10) if n ≫ 1. Thus, if we consider the following function φ n (x) = min (max (ϕ n (x), 0) , 1) ,

2 , 2 L 2 x<

 222 we deduce from Gronwall Lemma that for any K > 0 we havelim n→+∞ ∥ϕ n (x) -H 0,1 (x)∥ L ∞ [-K,K] = 0, lim n→+∞ dϕ n (x) dx -1 ≪ n, then dϕn(x)dx 2E pot (H 0,1 ) + 1, and so we obtain from Cauchy-Schwarz inequality that|ϕ n (x) -ϕ n (y)| ≤ |x -y| M > 0.The inequality (A.20) implies that for any 1 > ω > 0 there is a numberh(ω) ∈ N such that if n ≥ h(ω) then ∥ϕ n (x) -H 0,1 (x)∥ L ∞ {x| 1 ω <|x|} < ω, (A.21)

2 x= 0 .Corollary A. 1 . 4 .

 2014 (x)2 + U (H 0,1 (x)) dx = 0, we obtain that lim n→+∞ ∥ϕ n (x) -H 0,1 (x)∥ L 2 x = 0 and, from the initial value problem (A.18) satisfied for each ϕ n , we conclude that lim n→+∞ dϕn dx (x) -H ′ 0,1 (x) L In conclusion, inequality (A.12) is false.From Lemma A.1.3, we obtain the following corollary: For any δ > 0 there existsϵ 0 > 0 such that if 0 < ϵ ≤ ϵ 0 , ∥ϕ(x) -H 0,1 (x) -H -1,0 (x)∥ H 1 x < +∞,and E pot (ϕ) = 2E pot (H 0,1 ) + ϵ, then there exist x 2 , x 1 ∈ R such thatx 2 -x 1 ≥ 1 δ , ∥ϕ(x) -H 0,1 (x -x 2 ) + H -1,0 (x -x 1 )∥ H 1 x ≤ δ. (A.31)Proof of Corollary A.1.4. First, from a similar reasoning to the proof of Lemma A.1.3 we can assume by density that dϕ(x) dx ∈ H 1 x (R). Next, from the hypothesis∥ϕ(x) -H 0,1 (x) -H -1,0 (x)∥ H 1 (R) < +∞,we deduce using the intermediate value theorem that there is a y ∈ R such that ϕ(y) = 0. Now, we consider the functions ϕ -

R 8 ( 2 √

 82 H 0,1 (x)) 3 -6(H 0,1 (x)) of variable y(x) = (1 + e 2x ), we obtain R 8(H 0,1 (x)) 3 -6(H 0,1 (x)) 5 e -

1 2 .

 2 Since we have verified in Theorem 2.2.8 that e - √ 2z(t) ≲ ϵ, the mean value theorem implies that e - √ 2z(t) -e - √ 2d(t) = O(ϵ |z(t) -d(t)|), from which we deduce from (A.43) that

2 ,A. 3 Lemma A. 3 . 1 . 4 √ 2 + 1 4 √ 2e 2 √√2x 1 + e 2 √ 2x - 3 2,

 23314212123 which contradicts the fact that (A.35) and (A.40) should be true, which finishes our proof. Linear properties of -d 2 dx 2 + U (2) (H 0,1 (x)) The function ξ : R → R denoted by ξ(x) = xProof of Lemma A.3.1. Clearly, we have that ξ ′ (x) = 1 2x , so using identityH ′ 0,1 (x) = √ 2e we obtain that d dx ξ ′ (x)H ′ 0,1 (x) 2 = H ′ 0,1 (x) 2 .

dx 2 G 3 .

 23 3.1 implies thatd 2 dx 2 + U (2) (H 0,1 (x)) e - √ 2x + 8 √ 2ξ(x)H ′ 0,1 (x) = 30H 0,1 (x) 4 -24H 0,1 (x) 2 e - (x) + U (2) (H 0,1 (x))G(x) = 30H 0,1 (x) 4 -24H 0,1 (x)In notation of Lemma 3.2.23, if g(x) ∈ S (R) and g(x), H ′ 0,1 (x) = 0, then we have that L 1 (g)(x) ∈ S (R).Proof of LemmaA.3.3. Step 1.(f (x) ∈ ∩ k≥1 H k x (R).) Following Lemma 3.2.23, we have the existence of the unique function f = L 1 (g) ∈ H1 

4 

 4 = g(yγ -1 d(t) ).

  any l ∈ N.

  for the proof see Lemma A.1.3 and Corollary A.1.4 in the Appendix Section A.1. In notation of Theorem 2.1.5, there exist constants δ

	Theorem 2.1.7.

2.3 Long Time Behavior of Modulation Parameters

  

	Even though Theorem 2.2.8 implies the orbital stability of a sum of two kinks with low
	energy excess, this theorem does not explain the movement of the kinks' centers x 2 (t), x 1 (t)
	and their speed for a long time. More precisely, we still don't know if there is an explicit
	smooth real function d(t), such that (z(t), ż(t)) is close to (d(t), ḋ(t)) in a large time interval.
	But, the global estimates on the modulus of the first and second derivatives of x 1 (t), x 2 (t)
	obtained in Theorem 2.2.8 will be very useful to estimate with high precision the functions
	x 1 (t), x 2 (t) during a very large time interval. Moreover, we first have the following auxiliary
	lemma.	
	Lemma 2.3.1. Let 0 < θ, γ < 1. We recall the function
	Then, it is not difficult to verify that Lemma 2.2.4, (2.67), (2.71), (2.72) and (2.73) imply
	directly the statement of the Theorem 2.2.9 which finishes the proof.
	Remark 2.2.10. Theorem 2.2.9 implies that it is possible to have a solution ϕ of the equation
	(2.1) with energy excess ϵ > 0 small enough to satisfy all the hypotheses of Theorem 2.1.5.
	More precisely, in notation of Theorem 2.1.5, if ∥(g(0, x), ∂ t g(0, x))∥ H 1 x ×L 2 x ≪ ϵ	1 2 and
	e -√	2z(0) + ẋ1 (0) 2 + ẋ2 (0) 2 ∼ = ϵ,
	then we would have that E total (ϕ(0), ∂ t ϕ(0)) -2E pot (H 0,1 ) ∼ = ϵ.

  However, the precision of the estimates (2.163) and (2.165) is very bad when ϵ -1 2 ≪ t, which motivate us to apply Lemma 2.3.1 to estimate the modulation parameters x 1 (t), x 2 (t) for We recall from Theorem 2.1.10 the definitions of the functions d 1

	|t| ≲	ln 1 ϵ 2 ϵ 1	.
	Remark 2.5.3.

.165)

  ϵ|t|), we deduce for a positive constant C large enough the inequalities (2.10) and (2.11) of Theorem 2.1.10. 

	Remark 2.5.4. If		
	--→ g(0) ≤	1 2 ϵ ln 1 ϵ	5 ,

the estimates of max j∈{1,2} |x j (t) -d j (t)| , max j∈{1, 2} ẋj (t) -ḋj (t) can be done by studying separated cases depending on the initial data z(0), ż(0). Lemma 2.5.5. In notation of Theorem 2.4.1, there exists

Remark 2.5.6. The

  

	.190)
	In conclusion, for K = 16C + 18, we verify from triangle inequality that the estimates
	(2.186) and (2.190) imply (2.166) and the estimates (2.187) and (2.189) imply (2.167).

estimates

(2.190

) and (2.189) are true for any initial data

--→ g(0) ∈ H 1 (R) × L 2

x (R) such that the hypotheses of Theorem 2.1.10 are true.

Remark 2.5.7 (Similar Case). If we add the following conditions

  for some sequence of real numbers (b k ) and all z ∈ D. In Definitions 3.2.2 and 3.2.3, from standard complex analysis theory, the holomorphic functions F and G are unique. From Definition 3.2.3, if f 1 , f 2 ∈ S -, then f 1 f 2 ∈ S -. Therefore, S -is an algebra. From Definitions (3.2.2) and 3.2.3, if f ∈ S + and g ∈ S -, then, for any

	Remark 3.2.4. Remark 3.2.5. Remark 3.2.6.

14 )

 14 Proof of Proposition 3.2.[START_REF] Evans | Partial Differential Equations[END_REF]. If f ≡ 0 or g ≡ 0, we can take h n = 0 and d n = n for all n ∈ N. From now on, we consider the case where both f and g are not identically zero. Clearly, Lemma 3.2.17 implies Proposition 3.2.16 for the case where M = 1. Moreover, if Proposition 3.2.16 is true when M = M 0 ∈ N, we can repeat the argument above of the proof of Lemma 3.2.17 using f M 0 , g M 0 in the place of f, g and conclude that Proposition 3.2.16 is also true when M = M 0 + 1, so by induction on M, Proposition 3.2.16 is true for all M ∈ N. If f ∈ S + , g ∈ S -and f ̸ ≡ 0, g ̸ ≡ 0, then the sequence (h n , d n ) n∈N satisfying Proposition 3.2.16 is unique. Furthermore, d 1 = min (val

	Corollary 3.2.18.

  .[START_REF] Stuart | The geodesic approximation for Yang-Mills-Higgs equations[END_REF] In conclusion, using the product rule of derivative, we obtain(3.55) from (3.57), (3.58) and (3.59) Finally, we will prove now (3.56). Clearly, using estimates (3.55) and (3.59), if the function

  For any m, n ∈ N ∪ {0} and any f ∈ S + m , g ∈ S + n , we have the following identity

	imply (3.65), if val + (f ) + 1 ̸ =
	val -(g), otherwise they imply (3.68). The inequalities (3.66) and (3.67) can be demonstrated
	using an analogous argument.
	Remark 3.3.7.

  3.1, 3.3.2, identities (3.83), (3.84), equations (3.87) and (3.88), we obtain that R 1,v (t, x) is a finite sum of functions p i,v (t)h i (x) with h i ∈ S + 2 and p i,v satisfying

	d l dt l p i,v (t) ≲ l v 4+l e -2 √	2|t|v for all l ∈ N ∪ {0}.
	Since d v (t) is an even function, equations (3.87) and (3.88) imply that all the functions
	p i,v (t) are also even. Estimate (3.82) is obtained from Lemma 3.3.1 and the product rule of
	derivative on time applied to each function p	

i,v (t)h i (w 0 (t, x)) . Lemma 3.4.3. The function G defined in (3.6) satisfies the following identity

  the proof follows from Remark 3.2.13, applications of Proposition 3.2.16, and Remark 3.2.21 in the following expressions

  t) .

	Proof of Lemma 3.4.11. The proof follows from Proposition 3.2.16 and Remarks 3.2.20, 3.2.21.
	More precisely, since

Theorem 3.4.1.

  

	V (x) from (3.95) and the functions A, B, C, D from Lemma 3.4.7. Next, based on Lemma
	3.4.13, we consider the following ordinary differential equation

Proof of

Theorem 3.4

.1. Step 1.(Construction of r v (t) for k = 2.) First, we recall R 1,v (t, x), R 2,v (t, x) defined,

respectively, in equation (3.81) of Lemma 3.4.2 and in equation (3.89) of Lemma 3.4.3. To lighten more our notation, we denote

R 1,v , R 2,v , d v (t) by R 1 , R 2 ,

d(t

) from now on. Also, we recall the functions M (x), N (x) and

  φ 2 is an odd function on x, the estimate above implies (3.80).

Finally, since d(t) and r(t) are even functions and lim t→+∞ r(t) exists, there exists a number e(v) such that ϕ 2 (v, t, x) = φ 2 (t + e(v), x) satisfies Theorem 3.1.2 for k = 2. More precisely, because d(t) = 2vt + 1 √ 2 ln 8 v 2 + O(e -2 √ 2vt ) when t ≫ 1 and lim s→±∞ r(s) = e r = O(v 2 ln 1 v 2

  From the result of the subsection before, we have that φ 2 (t, x) and r(t) satisfy all the properties (3.146),(3.145) and (3.148) for k = 2 if v ≪ 1, so Theorem 3.5.1 is true

	Remark 3.5.2.

for k = 2. We are going to prove that if, for any 2 ≤ k ≤ M, there exists a smooth function

φ k,v (t,

x) denoted by (3.146) that satisfies the conclusion of Theorem 3.5.1 if 0 < v ≪ 1, then there exists also φ M+1,v (t, x) satisfying (3.146), (3.148) and Theorem 3.5.1 if v ≪ 1. Next, after a time translation of order O ln ( 1 v ) v , this function will satisfy Theorem 3.1.2. Remark 3.5.3. Furthermore, from Theorem 3.4.1, we also have that r 2 satisfies, if v > 0 is small enough, the following estimates

  1(Estimate of L M+1,0 (t, x).) First, we recall the inequality ∥f g∥ H s s ≲ s ∥f ∥ H s s ∥g∥ H s x for all s ≥ 1. So, using Remark 3.3.3, Lemma 3.3.6, estimate (3.167) and the facts that

  we can verify using Lemmas 3.2.1, 3.3.4, 3.3.6 and estimate (3.200) that

  of Corollary 4.2.4. It follows from Theorem 4.2.3 and Theorems 4.1.6, 4.1.7.With the objective of simplifying the demonstration of Theorem 4.2.3, we are going to elaborate on necessary lemmas before the proof of Theorem 4.2.3. From now on, to simplify our notation, we will use d(t), c k (t) in the place of d v (t), c k (v, t) respectively for any k ∈ N ≥2 , every t ∈ R and v ∈ (0, 1) small enough. For any k ∈ N ≥2 , We also consider the following function

  ) . In notation of Theorem 4.1.7 and Lemma 4.2.5, the functions Y 1 (t) and Y 2 (t) satisfy

	Lemma 4.2.7.

  .51) Finally, using the notation (4.27) and the functions Y 1 (t), Y 2 (t) denoted respectively by (4.33) and (4.34), we define the function A : R 2 → R by

  .61) Moreover, using estimates (4.22), Lemma 4.2.2 and identity U (ϕ) = ϕ 2 (1 -ϕ 2 ) 2 , we obtain from Theorem 4.1.7 that if 0 < v ≪ 1 and s ≥ 0, then

  .65) from which we obtain the existence of a new constant C(k) > 0 satisfying the second inequality of Theorem 4.3.1 if the condition (4.55) is true and v ≪ 1. Now, it remains to prove the first inequality of Theorem 4.3.1. Using change of variables and Lemma 2.2.6, it is not difficult to verify that there exists K > 0 such that if v ≪ 1, then

  and t ∈ B C 1 ,C 2 ∩ D u,v, we can verify the following estimate

	max j∈{1,2}	v 2 |y j (t)| + v| ẏj (t)| < v 2k+1 ln	1 v	n k	,
	from which with estimate (4.72), the definition of N OL(t) at (4.67), the definition of D u,v
	and the assumption of k ≥ 2, we obtain that			
	max j∈{1,2}				

  5 in [47], we can verify from Theorem 4.3.1 and the Gronwall Lemma applied on L(t) that there exists a constant K > 1 non depending on k and v such that if t satisfies condition (4.80) and t ∈ B C 1 ,C 2 ∩ D u,v , then we have the following estimate

  .81) In conclusion, if v ≪ 1, t ∈ B C 1 ,C2 and t satisfies (4.80), then t ∈ D u,v and (4.81) is true. Estimate of y 1 (t), y 2 (t).) Next, we are going to use the estimate (4.81) in the ordinary differential system of equations (4.73) to estimate the evolution of y 1 (t) and y 2 (t) while t ∈ B C 1 ,C 2 and t satisfies condition (4.80). From (4.67), we have that if t ∈ B C 1 ,C 2 , t satisfies condition (4.80) and 0

	Step 4.(

  c 2 and t satisfies (4.80), then 4}, the fact that e 1 (t) = y 1 (t) -y 2 (t), e 2 (t) = y 1 (t) + y 2 (t) and ξ 1 (t) = c 1 (t) -c 2 (t), ξ 2 (t) = c 1 (t) + c 2 (t), we can verify by triangle inequality and the identity

	|a 1 (t)| + |a 3 (t)| ≲ k v 2k ln	1 v	n k +3	exp	(K + 1)|t -T 0,k |v v ln 1	,
	v|a 2 (t)| + |a 4 (t)| ≲ k v 2k+1 ln	1 v	n k +2	exp	K|t -T 0,k |v v ln 1	.
	In conclusion from the ordinary differential system of equations (4.73) satisfied by e j (t)
	for j ∈ {1, 2, 3,  e 1 (t)					
	 e 2 (t)    e 3 (t)					
	e 4 (t)					

  Construction of the ordinary differential equation satisfied by y 1 .) The argument of the demonstration of the remaining part of Lemma 4.5.5 is completely analogous to the proof of Lemma 2.11 of[START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF]. More precisely, similarly to Lemma 2.11 of[START_REF] Kowalczyk | A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models[END_REF], we will construct an ordinary differential equation with solution y 1 (t), which, during their time of existence, preserves the following orthogonality conditions (ψ 1

		.96)
	we have -→ κ (t), ŷ(t) satisfying the orthogonality condition of Lemma 4.5.3 and	
	∥ -→ κ (t)∥ H 1 x ×L 2 x ≤ Kδ 2 v,	(4.97)
	for all 0 ≤ t ≤ T.	
	Next, we are going to construct a linear ordinary differential system of equations with
	solution y 1 (t) and we are going to verify that if y 1 (0) = ŷ(0), then y 1 (t) = ŷ(t), for all
	t ∈ [0, T ] .	
	Step 1.(	

  .110) for any t ∈ [0, T 1 ] . Furthermore, using identities (4.101), (4.102), the formula of D v,y in (4.88) and Lemma 3.2.1, we can deduce the following estimate [Hess(y 1 (t), x) -Hess 1 (y 1

  .114) Furthermore, since ŷ(t) ≥ 3 ln 1 v , we can deduce from the continuity of function y 1 , Lemma 4.5.3 and Corollary 4.5.4 the identity y 1

  Proof of Theorem 4.1.3. From the observations in Remark 4.5.6, it is enough to prove Theorem 4.1.3 for the case where -→ ψ 0 (x) is a smooth odd function. To simplify our proof, we separate the argument into different steps.Step 1.(Local description of solution ϕ(t, x).)From the observation of inequality (4.116) and from the Lemma 4.5.3, we can verify the existence of an interval [0, ϵ] such that if t ∈ [0, ϵ],

	then							
	(ϕ(t, x), ∂ t ϕ(t, x)) =	---→ H -1,0 ((v, y(t)), x) +	--→ H 0,1 ((v, y(t)), x) + (ψ 1 (t, x), ψ 2 (t, x)),	(4.119)
	with v(t), y(t), (ψ 1 (t, x), ψ 2 (t, x)) satisfying all the conditions of Lemma 4.5.3.
	Step 2.(Estimate of E + (ϕ(t), ∂ t ϕ(t)) around the kinks.) We recall the definition of E + (ϕ(t), ∂ t ϕ(t))
	in (4.84) given by							
									(4.117)
	First, from the local well-posedness of the partial differential equation (ϕ 6 ) in the energy
	space, it is enough to verify Theorem 4.1.3 to the case where (u 1 (x), u 2 (x)) is a smooth odd
	function because the estimate (4.14) and the density of smooth functions in Sobolev spaces
	would imply that (4.14) would be true for any (u 1 (x), u 2 (x)) ∈ H 1 x × L 2 x satisfying the hypoth-
	esis of Theorem 4.1.3.							
	Since P d dt	-	0	+∞	∂ t ϕ(t, x)∂ x ϕ(t, x) dx =	1 2	ϕ(t, 0) 2 ≥ 0.	(4.118)
	In conclusion, since it was verified before that E + (t) is a conserved quantity, we have that
			M (ϕ(t)) ≤ M (ϕ(0)) for any t ≥ 0,

.116) Finally, we are ready to start the proof of Theorem 4.1.3 Remark 4.5.6 (Main argument). The main techniques of the demonstration of Theorem 4.1.3 are inspired by the proof of Theorem 1 of [31]. More precisely, recalling the functions E + and P + from (4.84) and (4.83), we will analyze the function

M (ϕ(t)) = E + (ϕ(t)) -vP + (ϕ(t)). + (t)

is not necessarily a conserved quantity, M (t) is not necessarily a constant function given any smooth initial initial data of (ϕ(0, x), ∂ t ϕ(0, x)) satisfying the hypotheses of Theorem 4.14.

However, P + (t) is a non-increasing function in time, more precisely, for smooth solutions ϕ(t, x) of (4.12), we can verify using integration by parts, from the fact that ϕ(t, x) is an odd function in x for any t ∈ R, the estimate and using Lemma 4.5.3, we are going to verify that M (0)-M (t) satisfies a coercive inequality, from which we will deduce

(4.14)

.

  .136)In conclusion, estimate (4.133), the hypothesis of y 0 ≥ 4 ln 1 v and inequality (4.136) imply for v ≪ 1 that if 0 ≤ t ≤ ϵ 2 , then y(t) ≥ y(0) + 4v 5 t and [0,ϵ 2 ] ⊂ BO. If t ∈ [ϵ 2 ,ϵ], it is not difficult to verify that y(t) ≥ y(0) in this region. Indeed, the continuity of the function y would imply otherwise the existence of t i satisfying ϵ 2 < t i ≤ ϵ, y(t i ) = y(0) and y(s) > y(0) for any ϵ 2 ≤ s < t i , which implies that estimate (4.136) is true for t ∈ [ϵ 2 , t 1 ]. But, repeating the argument above, we would conclude that y(t i ) ≥ y(0)+ 4v 5 t i , which is a contradiction. In conclusion, the interval [0, ϵ] is contained in the set BO.

	Similarly, from Lemma 4.5.5, we can use inequality (4.135) to verify that y(t) ≥ y(0) + 4v 5 t
	always when [0, t] ⊂ BO. Therefore, estimate (4.131) implies

  .Furthermore, from the estimate (A.6), Lemma A.1.2 and Lemma 2.2.3, we obtain that=ẍ 2 (t) ∥∂ x H 0,1 ∥ 2 L 2 x -(ẍ 2 (t) -d2 (t)) ∥∂ x H 0,1 ∥ 2 H 0,1 (x)∥ H 1 x < +∞, 0 < E pot (ϕ(x)) -E pot (H 0,1 ) < ϵ(δ), (A.9)then there is a real number y such that∥ϕ(x) -H 0,1 (x -y)∥ H 1 x ≤ δ.Proof of Lemma A.1.3. The proof of Lemma A.1.3 will follow by a contradiction argument. We assume the existence of a sequence of real functions (ϕ n (x)) n satisfying lim First, the condition (A.10) and the fact that lim ϕ→+∞ U (ϕ) = +∞ imply the existence of a positive constant c, which satisfies∥ϕ n ∥ L ∞ < c if n ≫ 1. Next, since U (ϕ) = ϕ 2 (1 -ϕ 2 ) 2 and |E pot (ϕ n ) -E pot (H 0,1 )| ≪ 1 for 1 ≪ n, it is not difficult to verify from the definition of the potential energy functional E pot that if 1 ≪ n, ≲ |E pot (ϕ n ) -E pot (H 0,1 )| . ≲ |E pot (ϕ n ) -E pot (H 0,1 )| ,and if there is x 0 ∈ R such that ϕ n (x 0 ) ≤ -1 2 , we would obtain that

	U	′ H -1,0 + H x 1 (t) 0,1 x 2 (t)	-U	′ H -1,0 -U x 1 (t)	′ H 0,1 x 2 (t)	x 2 (t) 0,1 , ∂ x H
							L 2 x
	then		∥ϕ n (x) -1∥ 2 L 2 ({x|ϕn(x)>1}) +	+O |ẍ 1 (t)| z(t)e -+O e -√ 2z(t) max j∈{1, 2} √ 2z(t) |x j (t) -d j (t)| + e -2 √ 2 dϕ n (x) dx L 2 ({x|ϕn(x)>1})	2z(t) z(t) .	(A.8)
	We recall from the proof of Theorem 2.4.1 the following estimate By an analogous argument, we can verify that
	R	U (2) H 0,1 (x) -U (2) H x 2 (t) 0,1 (x) + H x 2 (t) -1,0 (x) ∂ x H x 1 (t) 0,1 (x)g(t, x) dx x 2 (t) = O ∥ϕ n (x)∥ 2 L 2 ({x|-1 2 dϕ n (x) 2 <ϕn(x)<0}) + dx L 2 ({x|-1 2 <ϕn(x)<0})	--→ g(t) e -	√	2z(t) .
	Also, from the Modulation Lemma, we have that
	+∞ x 0	1 2	⟨∂ 2 t g(t), ∂ x H 0,1 ⟩ = x 2 (t) dϕ n (x) dx	d dt	⟨∂ t g(t), ∂ x H 0,1 ⟩ + ẋ2 (t)⟨∂ t g(t), ∂ x H x 2 (t) 0,1 ⟩ x 2 (t)
				=	+∞ x 0	= 2U (ϕ n (x)) dϕ n (x) d dt ẋ2 (t)⟨g(t), ∂ 2 x H dx dx + 1 2 +∞ x 0	dϕ n (x) dx	-2U (ϕ
							x 2 (t) 0,1	and e -	√	2z(t) = O ϵ	1 2	, we obtain from
	(A.8) and (A.7) that
					ẍ2 (t) -d2 (t) = O max j∈{1, 2}	|d j (t) -x j (t)| ϵ + ϵz(t)e -√	2z(t) +	--→ g(t) ϵ	1 2
							(A.7)

x 2 (t) 0,1 ⟩ + ẋ2 (t)⟨∂ t g(t), ∂ x H x 2 (t) 0,1 ⟩ = ẍ2 (t)⟨g(t), ∂ 2 x H x 2 (t) 0,1 ⟩ + 2 ẋ2 (t)⟨∂ t g(t), ∂ x H x 2 (t) 0,1 ⟩.

In conclusion, since

∂ x H x 2 (t) 0,1 ∈ ker D 2 E

pot H , the estimate of ẍ1 (t) -d1 (t) is completely analogous, which finishes the proof of Lemma A.1.1. Lemma A.1.3. For any δ > 0 there is a ϵ(δ) > 0 such that if ∥ϕ(x) -n→+∞ E pot (ϕ n ) =E pot (H 0,1 ), (A.10) ∥ϕ n (x) -H 0,1 (x)∥ H 1 x <+∞, (A.11) such that lim n→+∞ inf y∈R ∥ϕ n (x) -H 0,1 (x + y)∥ H 1 x > 0. (A.12) 2 + U (ϕ n (x)) dx n (x))

  [START_REF] Delort | On the stability of kink solutions of the ϕ 4 model in 1 + 1 space time dimensions[END_REF] is an enumerable union of disjoint open intervals (a k,n , b k,n ) k∈N , which are bounded, sincelim x→+∞ ϕ n (x) = 1, lim x→-∞ ϕ n (x) = 0 and 0 ≤ ϕ n (x) ≤ 1. Now, let E be a set of disjoint open bounded intervals (h i,n , l i,n ) ⊂ R satisfying the conditions ϕ n (h i,n ) = ϕ n (l i,n ),Furthermore, we can deduce from Lebesgue's dominated convergence theorem that (ϕ n (x)) ≤ ϵ n , (A.[START_REF] Dunajski | Reduced dynamics of Ward solitons[END_REF] for every finite or enumerable collectionE of disjoint open bounded intervals (h i,n , l i,n ) ⊂ R, i ∈ I ⊂ Z such that ϕ n (h i,n ) = ϕ n (l i,n ).In conclusion, we can deduce from (A.15) that from which we deduce with lim x→-∞ ϕ n (x) = 0 and lim x→+∞ ϕ n (x) = 1 that E pot (H 0,1 ) + ϵ n ≥ 1 2

	Moreover, we can verify that							
	E pot (ϕ n ) =	1 2	 	R	dϕ n (x) dx	-2U (ϕ n (x))	2	dx   +	R	2U (ϕ n (x))	dϕ n (x) dx	dx,
					 	R		dϕ n (x) dx	-2U (ϕ n (x))	2	dx	  +	0	1	2U (ϕ) dϕ
					=	1 2	 	R		dϕ n (x) dx	-2U (ϕ n (x))	2	dx	  + E pot (H 0,1 ).
	Then, from estimate (A.17), we have that	
					dϕ n (x) dx	= 2U (ϕ n (x)) + r n (x), ϕ n (0) =	1 √ 2	,	(A.18)
	with ∥r n ∥ 2 L 2											
							l i,n	1	dϕ n (x)	
						h i,n	2		dx	
								l i,n	1	dϕ n (x)
					i∈I	h i,n	2	dx	
									R		dϕ n (x) dx	2 -	dx ≤ 2ϵ n ,	(A.16)
	and so for 1 ≪ n we have that						
					dϕ n (x) dx	-	dϕ n (x) dx	2 L 2 x	≤ 8ϵ n , ϕ n (0) =	1 √ 2	.	(A.17)

(A.14) 

and {i| (h i,n , l i,n ) ∈ E} = I ⊂ Z. For any i ∈ I, the following function

f i,n (x) =    ϕ n (x) if x ≤ h i,n , ϕ n (x + l i,n -h i,n ) if x > h i,n , satisfies E pot (H 0,1 ) ≤ E pot (f i,n ) ≤ E pot (ϕ n ) = E pot (H 0,1 ) + ϵ n , which implies that 2 + U (ϕ n (x)) ≤ ϵ n . 2 + U

  1 4 , a subsequence (m n ) n∈N and a sequence of real numbers (x n ) n∈N with lim n→+∞ m n = +∞, |x n | > n + 1 such that |ϕ mn (x n ) -1| > θ if x n > 0, (A.22) |ϕ mn (x n )| > θ if x n < 0. (A.23)However, since we are considering ϕ n (x) ∈ C 1 (R) and 0 ≤ ϕ n ≤ 1, we would obtain from the intermediate value theorem that there would exist a sequence (y n ) n with y n > x n > n + 1 ory n < x n < -n -1 such that 1 -θ ≤ ϕ mn (y n ) ≤ 1 + θ, if y n > 0, (A.24) ϕ mn (y n ) = θ otherwise. (A.25)But, estimates (A.20), (A.24), (A.25) and identityU (ϕ) = ϕ 2 (1 -ϕ 2 ) 2 would imply that (x) 2 + U (H 0,1 (x)) = E pot (H 0,1(x)), (A.27) estimate (A.26) would imply that lim n→+∞ E pot (ϕ mn ) > E pot (H 0,1 ) which contradicts our hypotheses.

	1 ≲	|x|≥n-2	U (ϕ mn (x)) dx for all n ≫ 1,	(A.26)
	and because of estimate (A.19) and the following identity
	lim K→+∞	K -K	1 2	′ 0,1 H

  1 100 , n ≥ h(ω) and K ≥ 200, estimates (A.28) and (A.19) imply that

	+∞ K	U (ϕ n (x)) +	1 2	dϕ n (x) dx	2	dx ≥	1 2	+∞ K	(1 -ϕ n (x)) 2 +	dϕ n (x) dx	2	dx,	(A.29)
	-K -∞	U (ϕ n (x)) +	1 2	dϕ n (x) dx	2	dx ≥	1 2	-K -∞	ϕ n (x) 2 +	dϕ n (x) dx	2	dx.	(A.30)
	In conclusion, from estimates (A.28), (A.29), (A.30) and			
		lim K→+∞ |x|≥K								

1 x

 1 ≤ ∥ϕ + -H 0,1 (x -x 2 )∥ H 1 x + ∥ϕ --H -1,0 (x -x 1 )∥ H 1 x ≤ e -4 δ ≪ δ. (A.32)So, to finish the proof of Corollary A.1.4, we need only to verify that we havex 2 -x 1 ≥ 1 δ if 0 < ϵ 0 ≪ 1. But, we recall that H 0,1 (0) = 1 ≪ 1, then x 1 < y < x 2 .Using the fact that U is a smooth function, Lemma 2.2.7and identity (2.35), we can verify the existence of a constant C > 0 satisfying the following inequality|DE pot (H 0,1 (x -x 2 ) + H -1,0 (x -x 1 ) + u) (v)| ≤ C ∥v∥ H 1x . for any u, v ∈ H 1 (R) such that ∥u∥ H 1

			√	2 , from which with estimate (A.32) we deduce
	that					
	ϕ + (x 2 ) -	1 √ 2	≲ δ, ϕ -(x 1 ) +	1 √ 2	≲ δ,	(A.33)
	so if ϵ 0					

2 Proof of Theorem 2.1.7

  Proof of Theorem 2.1.7. We use the notations of Theorem 2.1.10 and Theorem 2.[START_REF] Buslaev | On asymptotic stability of solitary waves for nonlinear Schrödinger equations[END_REF].1. Clearly, if the result of Theorem 2.1.7 is false, then by contradiction for any N ≫ 1 the inequality We recall from Theorem 2.2.8 that 1 √ 2 ln 1 ϵ < z(t) for all t ≥ 0. Since, from Lemma 2.2.3, we have that ∂ 2 x H ≲ ϵ ln 1 ϵ if 0 < ϵ ≪ 1, we deduce from the equation (A.38) that there is a uniform constant K > 1 such that for all t ≥ 0 we have the following estimate ∥g(t)∥ L 2 In conclusion, estimate (A.39) and Lemma 2.2.3 imply that there is a K > 1 such that Ṗ1 (t) + Ṗ2 (t) + ∥∂ t r(t)∥ L 2 x ≤ K From the partial differential equation (2.1) satisfied by ϕ(t, x) and the representation (A.36) of g(t, x), we deduce in the distributional sense that for any h(x) ∈ H 1 (R) that h(x), ( P1 (t) + ẋ1 (t) 2 )∂ 2 x H =h(x), P 1 (t) -∂ 2 x + U (2) (H From Lemma A.1.2 and estimates (A.43) and (A.45), we obtain from (A.46) that which imply with Theorem 2.2.8 the existence of a uniform constant C > 0 such that , the estimates (A.39), (A.40), (A.41), (A.43), (A.45) and (A.48) imply that there is a uniform constant K 1 > 0 such that if ϵ ≪ 1 enough, then for j ∈ {1, 2} we have that for 0 ≤ t ≤ ≥ -2 j=1 Pj (t) + ẋj (t) 2 + 2 j=1 ẋj (t) 2 , we deduce from the estimates (A.49) and (A.42) that

	x 1 (t) -1,0 , ∂ 2 x H 0,1 x 2 (t) x 1 (t) -1,0 + ( P2 (t) + ẋ2 (t) 2 )∂ 2 ≲ z(t)e -√ 2z(t) and z(t)e -x H x 2 (t) 0,1 x 1 (t) -1,0 ) ∂ 2 x H √ -1,0 x 1 (t) t r(t), ∂ 2 ∂ 2 x H x 2 (t) 0,1 ≤ Cϵ 1 2 --→ r(t) , ∂ 2 t r(t), ∂ 2 x H x 1 (t) -1,0 ≤ Cϵ From (A.39), (A.40) and (A.41), we obtain that --→ r(t) ≲ --→ g(t) . 2z(t) x K ≤ |P 1 (t)| + |P 2 (t)| + ∥r(t)∥ L 2 x ≤ K --→ 1 2 g(t) . --→ r(t) . -h(x), P 2 (t) -∂ 2 x + U (2) (H x 2 (t) 0,1 ) ∂ 2 x H x 2 (t) 0,1 In conclusion, after we apply the partial differential equation (A.47) in the distributional (A.48) (A.39) From Theorem 2.2.8 and the orthogonality conditions (A.37), we deduce that ∂ t r(t), ∂ 2 x H x 2 (t) 0,1 = ẋ2 (t) r(t), ∂ 3 x H x 2 (t) 0,1 = O ∥r(t)∥ L 2 x ϵ 1 2 -h(x), ∂ 2 t r(t) -∂ 2 x r(t) + U (2) (H x 2 (t) 0,1 + H x 1 (t) -1,0 )r(t) -h(x), U ′ (H x 2 (t) 0,1 + H x 1 (t) -1,0 ) + U ′ (H x 2 (t) 0,1 ) -U ′ (H x 1 (t) -1,0 ) sense to ∂ 2 x H x 2 (t) 0,1 , ∂ 2 x 1 (t) x H -1,0 N ln 1 ϵ 1 ϵ 2 , ∂ t r(t), ∂ 2 x H x 1 (t) -1,0 = ẋ2 (t) r(t), ∂ 3 x H x 1 (t) -1,0 = O ∥r(t)∥ L 2 x ϵ 1 2 . + h(x), ẍ1 (t)∂ x H x 1 (t) -1,0 (x) + ẍ2 (t)∂ x H x 2 (t) 0,1 (x) -h(x), P 1 (t) U (2) (H x 2 (t) 0,1 + H x 1 (t) -1,0 ) -U (2) (H x 1 (t) -1,0 ) ∂ 2 x H x 1 (t) -1,0 (A.46) Pj (t) + ẋj (t) 2 ≤ K 1   e -√ 2d(t) + ϵ 3 2 ln 1 ϵ M +1 exp 10Cϵ 1 2 t ln 1 ϵ +  ϵ N  ,
	-h(x), P 2 (t) U (2) (H 0,1 + H x 2 (t) -1,0 ) -U (2) (H x 1 (t) 0,1 ) ∂ 2 x 2 (t) x H 0,1 x 2 (t) from which we deduce for all 0 ≤ t ≤ N ln 1 ϵ 1 that ϵ 2 --→ g(t) +O ∥h∥ L 2 x ∥g(t)∥ 2 H 1 x + max j∈{1, 2} |ẍ j (t)| +O ∥h∥ L 2 x max j∈{1, 2} Ṗj (t) ẋj (t) + max j∈{1, 2} |P j (t)| e -√ 2z(t) 2 j=1 Pj (t) + ẋj (t) 2 ≤ 2K 1   e -√ 2d(t) + ϵ 3 2 ln 1 ϵ M +1 exp 10Cϵ 1 2 t ln 1 ϵ +  ϵ N  .	(A.40) (A.49)
	--→ g(t) ≤ We recall from Theorem 2.2.9 the following estimate --→ g(t) . ϵ ≤ --→ g(t) h(x), ( P1 (t) + ẋ1 (t) 2 )∂ 2 x H x 1 (t) -1,0 + ( P2 (t) + ẋ2 (t) 2 )∂ 2 x H x 2 (t) 0,1 Since 2 j=1 Pj (t) 2 j=1 Pj (t) ≥ ϵ -e -√ 2z(t) + 2 --→ g(t) K K ϵ N could be possible for all 0 ≤ t ≤ N ln 1 ϵ ϵ 1 2 x 2 (t) 0,1 (x) + g(t, x), such that ⟨g(t, x), ∂ x H x 1 (t) -1,0 (x)⟩ = 0, ⟨g(t, x), ∂ x H x 2 (t) Also, for all t ≥ 0, we have that g(t, x) has a unique representation as max j∈{1, 2} ẍj (t) -dj (t) ≤ ϵ 3 2 ln 1 ϵ exp 10Cϵ 1 2 t ln ( 1 ϵ ) , +O ∥h∥ L 2 H 1 x + max j∈{1, 2} |ẍ j (t)| x ∥g(t)∥ 2 0,1 (x)⟩ = 0. M +1 exp 10Cϵ 1 2 t ln 1 ϵ , max j∈{1, 2} ẋj (t) -ḋj (t) ≤ ϵ 3 2 ln 1 ϵ M exp 10Cϵ 1 2 t ln 1 ϵ , +O ∥h∥ L 2 x max +O ∥h∥ L 2 x |z(t) -d(t)| e -√ 2z(t) + e -2 2z(t) √ j∈{1, 2} ẍj (t) -dj (t) + e -2d(t) √ x 1 (t) -1,0 ) ∂ 2 x H x 1 (t) -1,0 -h(x), P 2 (t) -∂ 2 x + U (2) (H x 2 (t) 0,1 ) ∂ 2 x H -2K 1 e -√ 2d(t) + ϵ 3 2 ln 1 ϵ M +1 exp 10Cϵ 1 2 t ln 1 ϵ x 2 (t) 0,1 -h(x), ∂ 2 t r(t) -∂ 2 x r(t) + U (2) (H x 2 (t) 0,1 + H x 1 (t) -1,0 )r(t) We recall that from the statement of Theorem 2.1.10 that e -√ 2d(t) = v 2 8 sech ( -2K 1 ϵ N √ 2vt + c) (A.41) (A.35) (A.45) (A.44) (A.47) (A.43) . (A.50) 2 , with v = ż(0) 2 4 + 8e -1 √ 2z(0) 2
	g(t, x) = P 1 (t)∂ 2 x H -1,0 (x) + P 2 (t)∂ 2 x 1 (t) x H 0,1 (x) + r(t, x), x 2 (t) for a uniform constant C > 0. +O ∥h∥ L 2 x max j∈{1, 2} Ṗj (t) ẋj (t) + max j∈{1, 2} |P j (t)| e -√ 2z(t) + |P j (t)ẍ j (t)|	(A.36)
	such that r(t) satisfies the following new orthogonality conditions +O ∥h∥ L 2 x P j (t) ẋj (t) 2 .
	r(t), ∂ 2 x H -1,0 x 1 (t) From the condition (A.37), we deduce that = 0, r(t), ∂ 2 x H 0,1 x 2 (t)	= 0.	(A.37)
	In conclusion, we deduce that ∂ 2 t r(t), ∂ 2 x H x 2 (t) 0,1 =	d dt	ẋ2 (t) r(t), ∂ 3 x H 0,1 x 2 (t)	+ ẋ2 (t) ∂ t r(t), ∂ 3 x H 0,1 x 2 (t)	,
	∥g(t)∥ 2 L 2 x = ∂ 2 x H 0,1 ∂ 2 t r(t), ∂ 2 x H x 1 (t) -1,0	2 L 2 x = (P 2 1 + P 2 2 ) + ∥r(t)∥ 2 L 2 x + 2P 1 P 2 ∂ 2 x H 0,1 , ∂ 2 z(t) x H -1,0 . d dt ẋ1 (t) r(t), ∂ 3 x 1 (t) x H -1,0	(A.38)

= T if ϵ ≪ 1 enough.

From Modulation Lemma, we can denote the solution ϕ(t, x) as

ϕ(t, x) = H x 1 (t)

-1,0 (x) + H for all t ≥ 0. Finally, Minkowski inequality and estimate (A.39) imply that there is a uniform

constant K > 1 such that ∥∂ x r(t, x)∥ L 2 x ≤ K 2 + ẋ1 (t) 2 + ẋ2 (t) 2 + e - √ 2z

(

t) ≤ Kϵ (A.42) for some uniform constant K > 1. Now, from hypothesis (A.35), we obtain from Theorem 2.1.10 and Corollary 2.1.13 that there are constants M ∈ N and C > 0 such that for all t ≥ 0 the following inequalities are true max j∈{1, 2} |x j (t) -d j (t)| ≤ ϵ ln 1 ϵ +O |P j (t)ẍ j (t)| + P j (t) ẋj (t) 2 . =h(x), P 1 (t) -∂ 2 x + U (2) (H + ẋ1 (t) ∂ t r(t), ∂ 3 x H x 1 (t) -1,0 ,

  )2K .) From inequality (A.51), we deduce that which contradicts the fact that (A.40) and (A.35) should be true for ϵ ≪ 1.)2K , |c| > 2 ln ( 1 ϵ ).) It is not difficult to verify that for 0 ≤ t ≤ min( |c| ≤ v 2 8 sech ( c 2 ) 2 ≲ ϵ 3 . Therefore, if N > 10KK 1 and ϵ > 0 is small enough, estimate (A.51) would imply that 2 j=1 Pj (t) ≥ ϵ4K is true in this time interval. Also, since now v ∼ = ϵ so we obtain a contradiction by a similar argument to the Case 1.

	8ϵ (1+4K 1 2 Case 1.(v 2 ≤ j=1 Pj (t) ≥	ϵ 2K	-	--→ g(t)	2	-4K 1 ϵ	3 2		ln	1 ϵ	M +1	exp	10Cϵ ln 1 ϵ	1 2 t	-	2K 1 ϵ N	,
	then, from (A.35) we deduce for 0 ≤ t ≤	ln 1 ϵ ϵ 1 2	that if ϵ is small enough and N > 10KK 1 , then
	2 j=1 Pj (t) ≥ ϵ 4K , and so,														
				2 j=1	Ṗj (t) ≥	ϵt 4K	-	2 j=1	Ṗj (0) ,
	8ϵ (1+4K 1 2 Case 2.(v 2 ≥ √ 2v , N ln 1 ϵ ϵ 1 2 ), we have that e -√	2d(t) 1 2 , we have that			
						ln 1 ϵ ϵ 1 2	≲	|c| √ 2 2v	,		
	Case 3.(v 2 ≥						1 2 K ϵ 1 2	1 2	√	2 ln 1 ϵ	that e -	√	1 2 K 1 ϵ 2 8 sech 2 ln 1 1 2 √ 2 ln 1 ϵ 2d(t) ≤ v 2 ϵ	2	≲ ϵ 5
	and ϵ N < ϵ 20K . In conclusion, estimate (A.50) implies that	2 j=1 Pj (t) ≥ ϵ 4K is true in this
	time interval. From the Fundamental Calculus Theorem, we have that
				2 j=1 Ṗj (t) ≥ ϵ(t-t 0 ) 4K -2 j=1 Ṗj (t 0 ) .

8ϵ

(1+4K 1 )2K and |c| ≤ 2 ln 1 ϵ .) For N ≫ 1 and t 0 =

(1+4K 1 )

, we have during the time interval t 0 ≤ t ≤ 2

(1+4K 1 )

In conclusion, hypothesis (A.35) and estimate (A.40) imply for T = 2

(1+2K 1 )

  .

	Lemma A.5.1. The functions						
	Y 0 -1,0 (v; x, t) = -Jψ 0 -1,0 (x + vt, v), -1,0 (x + vt, v) + t -1,0 (v; x, t) = -Jψ 1 Y 1 √ 1 -v 2 Y 0 -1,0 (v; x + vt, t)	(A.64) (A.65)
	are solutions of the linear differential system					
	d dt	w 1 (t) w 2 (t)	= J	-∂ 2 ∂x 2 + U (2) H -1,0 0	x+vt √ 1-v 2	0 1	w 1 (t) w 2 (t)	,	(A.66)
	and the functions								
	Y 0 0,1 (v; x, t) = -Jψ 0 0,1 (x -vt, v), 0,1 (x -vt, v) + t 0,1 (v; x, t) = -Jψ 1 Y 1 √ 1 -v 2 Y 0 0,1 (v; x -vt, t)	(A.67) (A.68)
	are solutions of the linear differential system					
	d dt	w 1 (t) w 2 (t)	= J	-∂ 2 ∂x 2 + U (2) H 0,1 0	x-vt √ 1-v 2	0 1	w 1 (t) w 2 (t)	.	(A.69)

Now, similarly to

[START_REF] Chen | Kink networks for scalar fields in dimension 1 + 1[END_REF]

, we consider the linear operator L +,-(v, t) defined by

  1, if f (t, x) ∈ L ∞ ∂ t h(t, x) 2 + ∂ x h(t, x) 2 + U (2) H 0,1 x -vt √ 1 -v 2 + H -1,0

							t (R; H 1 x (R)) and
	h(t, x) ∈ L ∞ t (R ≥1 ; H 1 x (R)) ∩ C 1 t (R ≥1 ; L 2 x (R)) is a solution of the integral equation associated
	to the following partial differential equation		
	∂ 2 t h(t, x) -∂ 2 x h(t, x) + U (2) H 0,1	x -vt √ 1 -v 2 + H -1,0	x + vt √ 1 -v 2	h(t, x) = f (t, x),
	for some boundary condition (h(t 0 ), ∂ t h(t 0 )) ∈ H 1 x (R) × L 2 x (R), then
	Q(t, h) =	1 2 R					x + vt √ 1 -v 2	h(t, x) 2 dx
		2				
		+	v			
		j=1				
				H 1 x ×L 2 x	v exp	-	√ 2vt (1 -10 -3 ) 2 √ 1 -v 2	+	1 t

R χ j (v; t, x)(-1) j ∂ t h(t, x)∂ x h(t, x) dx, satisfies ∂ ∂t Q(t, h) ≤ C   ∥f (t)∥ L 2 x (R) ∥(h(t), ∂ t h(t))∥ H 1 x ×L 2 x + ∥(h(t), ∂ t h(t))∥ 2   for all t ≥ 1.

Proof. First, from the equation satisfied by h(t, x), we obtain that

R ∂ 2 t h(t, x) -∂ 2 x h(t, x) + U (2) H 0,1 x -vt √ 1 -v 2 + H -1,0 x + vt √ 1 -v 2 h(t, x) 2 ∂ t h(t, x) dx = R f (t,

x)∂ t h(t, x) dx. (A.77)

  Next, from the definition of χ 1 (v; t, x) and χ 2 (v; t, x), we can verify for each j ∈ {1, 2} that (v; t, x)(-1)j ∂ t h(t, x)∂ x h(t, x) dx =v R χ j (v; t, x)(-1) j ∂ 2 t h(t, x)∂ x h(t, x) dx (v; t, x)(-1) j ∂ t h(t, x)∂ x h(t, x) dx =v

	d dt	v				
			+v	χ j (v; t, x)(-1) j ∂ t h(t, x)∂ 2 t,x h(t, x) dx
				R		
			+O χ	′	L ∞ x (R)	v t	∥(h(t), ∂ t h(t))∥ 2 H 1 x ×L 2 x	,
	from which we deduce using integration by parts that		
	d dt	v	R	χ j (v; t, x)(-1) j ∂ 2 t h(t, x)∂ x r(t, x) dx
			+O χ	′	L ∞ x (R)	1 t	∥(h(t), ∂ t h(t))∥ 2 H 1 x ×L 2 x	.
							(A.79)
	From the equation satisfied by h(t, x), we have that			
	v					
	So, using integration by parts, we obtain for any j ∈ {1, 2} that
	2 √ 1 -v 2				

2 dx +2 R f (t, x)h(t, x) dx. (A.78) R χ j R χ j R χ j (v; t, x)(-1) j ∂ 2 t h(t, x)∂ x h(t, x) dx =v R χ j (v; t, x)(-1) j f (t, x)∂ x h(t, x) dx +v R χ j (v; t, x)(-1) j ∂ 2 x h(t, x)∂ x h(t, x) dx -v R χ j (v; t, x)(-1) j U (2) H 0,1 x -vt √ 1 -v 2 + H -1,0 x + vt √ 1 -v 2 h(t, x)∂ x h(t, x) dx. R χ j (v; t, x)∂ 2 t h(t, x)∂ x h(t, x) dx

  (v; t, x)(-1) j ∂ 2 t h(t, x)∂ x h(t, x) dx

	2
	v
	j=1

R χ j

  Proof of Theorem 4.6.1. For T 0 ≥ vt ∥u(t, x)∥ L 2x (R) , ∥u∥ H 1 Next, from Lemma A.5.6, we can verify using the Fundamental Theorem of Calculus that there is a constant C > 1 such that if v ≪ 1, then for any t ≥ T 0 we have that Also, from Lemma A.5.5, we can verify using the Fundamental Theorem of Calculus for any t ≥ T 0 that there is a constantK ≥ 1 such that if v ≪ 1, thenIn conclusion, similarly Step 1 in the proof of Lemma 3.1 of[START_REF] Chen | Kink networks for scalar fields in dimension 1 + 1[END_REF], we deduce using the estimates (A.82), (A.84), (A.83), (A.85) with Lemma A.5.3 and the estimate above (A.86) that there exists a new constant C > 1 such that for any t ≥ T 0 and v ≪ 1 we haveThe fact that the constant C in (A.87) is independent of v follows fromT 0 ≥ 4 ln ( 1 v )We also observe that if (g 1 (t, x), ∂ t g 1 (t, x)) and (g 2 (t, x), ∂ t g 2 (t, x)) are in the space (g(t), ∂ t g(t)) ∈

							4 ln ( 1 v ) v	, we consider similarly to [8] the following norms
	denoted by						
	∥u∥ L 2 v,T 0	= sup t≥T 0					v,T 0	= sup t≥T 0	e vt ∥u(t, x)∥ 2 H 1 x (R) + ∥∂ t u(t, x)∥ 2 L 2 x (R)	1 2 .
	-→ h (t), ψ 0 -1,0 (v; t) ≤C	  ∥f ∥ L 2 v,T 0	e -vt v	+ ∥h∥ H 1 v,T 0	e -(2	√ v 2+1)vt	  ,	(A.82)
	-→ h (t), ψ 1 -1,0 (v; t) ≤C	  ∥f ∥ L 2 v,T 0	e -vt v 2 + ∥h∥ H 1 v,T 0	te -(2 √	2+1)vt + ∥h∥ H 1 v,T 0	√ e -(2 v 2 2+1)vt	  ,
									(A.83)
	and that						
		-→ h (t), ψ 0 0,1 (v; t) ≤C	  ∥f ∥ L 2 v,T 0	e -vt v	+ ∥h∥ H 1 v,T 0	e -(2	√ v 2+1)vt	  ,	(A.84)
		-→ h (t), ψ 1 0,1 (v; t) ≤C	  ∥f ∥ L 2 v,T 0	e -vt v 2 + ∥h∥ H 1 v,T 0	te -(2 √	2+1)vt + ∥h∥ H 1 v,T 0	√ e -(2 v 2 2+1)vt	  .
									(A.85)
	we have d dt d dt +∞ t d ds Q(s, h) ds ≤ K -→ h (t), ψ 0 -1,0 (v; t) ≤C ∥f (t)∥ L 2 x (R) + -→ h (t), ψ 0 0,1 (v; t) ≤C ∥f (t)∥ L 2 x (R) + e -2vt v ∥f ∥ L 2 v,T 0 ∥h∥ H 1 v,T 0	-→ h (t) -→ h (t) + ∥h∥ 2 H 1 x (R)×L 2 x (R) H 1 x (R)×L 2 x (R) H 1 v,T 0 e -2vt exp exp + e -t(2v+ -2 √ (1 -v 2 ) 2vt 1 2 -2 √ 2vt (1 -v 2 ) 1 2 √ 2v(1-10 -3 ) 2 ) , vt , (A.86)
	and,							
	d dt	-→ h (t), ψ 1 -1,0 (v; t) + (1 -v 2 )	1 2	-→ h (t), ψ 0 -1,0 (v; t)
					≤ C ∥h∥ 2   ∥f (t)∥ L 2 x + H 1 v,T 0 ≤ C v 4 ∥f ∥ 2 -→ h (t) v,T 0 H 1 x ×L 2 x L 2 .	(|t|v + 1) exp	-2 (1 -v 2 ) √ 2vt 2 1 (A.87)   ,
									v	, which
	d dt implies that -→ h (t), ψ 1 0,1 (v; t) + (1 -v 2 ) ≤ C 1 2 Proof of Lemma A.5.6. It follows directly from the identity -→ h (t), ψ 0 0,1 (v; t)   ∥f (t)∥ L 2 x + -→ h (t) H 1 x ×L 2 x e -2vt v 4 + e -2vt ≪ v 4 . vt H 1 x (R) × L 2 x (R) such that	(|t|v + 1) exp	-2 (1 -v 2 ) √ 2vt 1 2	  ,
					d dt	-→ h (t) = JL +,-	-→ h (t) +	0 f (t, x)	,	(A.81)
	and from Lemma A.5.2.					

2 x (R), then for -→ h (t) = (h(t, x), ∂ t h(t, x)) e ∥(g(t), ∂ t g(t))∥ L ∞ ([T 0 ,+∞],H 1 x ×L 2 x ) ≤ 1, (A.88)

then, since U ∈ C ∞ , we can verify that the following function

N (v, -→ g )(t, x)

  x) (A.89) satisfies for some new constant C ≥ 1 and any v ≪ 1∥N (v, -→ g 1 (t)) -N (v, -→ g 2 (t))∥ H 1 x ≤ C ∥g 1 (t)∥ H 1 x + ∥g 2 (t)∥ H 1 x ∥g 1 (t) -g 2 (t)∥ H 1 x ,which implies the following estimate given by∥N (v, -→ g 1 (t)) -N (v, -→ g 2 (t))∥ H 1 v,T 0 ≤ Ce -vt ∥g 1 ∥ H 1In conclusion, by repeating the argument of the proof of proposition 3.6 of[START_REF] Chen | Kink networks for scalar fields in dimension 1 + 1[END_REF], we can verify using the Lipschtiz estimate of (A.90) and estimate (A.87) that if T 0 ≥ 4 ln ( 1 v )

	v,T 0	+ ∥g 2 ∥ H 1 v,T 0	v,T 0 ∥g 1 -g 2 ∥ H 1	.	(A.90)

v and v ≪ 1, then there exists a map

S : {u ∈ H 1 v,T 0 | ∥u∥ H 1 v,T 0 ≤ 1} → {u ∈ H 1 v,T 0 | ∥u∥ H 1 v,T 0 ≤ 1} (A.91) such that µ(t, x) = S(u)(t, x)

is the unique solution of the equation

∂ 2 t µ(t, x) -∂ 2

x µ(t, x) + U

(2) 

H -1,0

follows from Young inequality for ϵ small enough.

, and Theorem 4.1.7, we obtain that Y 1 (t) satisfies Lemma 4.2.7.

Chapter 3

Approximate kink-kink solutions for the ϕ 6 model in the low-speed limit Chapter 4

On the kink-kink collision problem for the ϕ 6 model with low speed

Abstract

We study the elasticity of the collision of two kinks with an incoming low speed v ∈ (0, 1) for the nonlinear wave equation in dimension 1 + 1 known as the ϕ 6 model. We prove for any k ∈ N that if the incoming speed v is small enough, then, after the collision, the two kinks will move away with a velocity v f such that |v f -v| ≤ v k and the energy of the remainder will also be smaller than v k . This chapter is the continuation of the work done in Chapter 3 where we constructed a sequence ϕ k of approximate solutions for the ϕ 6 model. The proof of our main result relies on the use of the set of approximate solutions from Chapter 3, modulation analysis, and a refined energy estimate method to evaluate the precision of our approximate solutions during a large time interval.

Appendix A A.1 Auxiliary Results

We start the Appendix Section by presenting the following lemma:

x . Assuming the same hypothesis as in Theorem 2.1.10 and using its notation, we have while

From equation (A.52), we have the following identities

Next, we consider a smooth cut function χ : R → R satisfying 0 ≤ χ ≤ 1 and

From the definition of χ, χ ′ is a smooth function with compact support, so both functions χ ′ , χ (2) ∈ S (R). In conclusion, since f ∈ C ∞ (R) from first step, we deduce that χ ′ f ′ , χ (2) f ∈ S (R). Also, using estimate (3.3) for k = 1

we conclude from the Fundamental theorem of calculus the following estimate

So, f being in C ∞ (R) , the definition of χ and estimate (3.3) imply

In conclusion, since f (x)χ(x) ∈ H k x (R) for any k ≥ 0, identity (A.55) implies that χ(x)f (x) ∈ S (R). By analogy, using (A.53) and the function

A.4 Complementary Estimates

In this Appendix section, we complement our article by demonstrating complementary estimates.

Remark A.4.2. Indeed, the value k 1 in Lemma A.4.1 can be replaced by zero, since

) and integration by parts, we have the following identity

′ (H 0,1 ) = 0, we conclude using integration by parts that

Now, using integration by parts and identity ( 27) of [START_REF] Moutinho | Dynamics of two interacting kinks for the ϕ 6 model[END_REF], we have that

from which we deduce the following Lemma.

2 , then for

and any g ∈ H 1 x (R) such that g(x), ∂ x H + 0,1 (x, t) = 0, g(x), ∂ x H - 0,1 (x, t) = 0, we have

x ≤ -∂ 2 x g(x) + U (2) H + 0,1 (x, t) + H - 0,1 (x, t) g(x), g(x) . (A.57)