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Résumé

Cette these s’inscrit dans I'étude qualitative des multi-solitons d’une équation
d’onde non linéaire unidimensionnelle connue sous le nom de modele ¢°. Ce mo-
dele a des applications en théorie de la matiere condensée, en physique des hautes
énergies et en cosmologie. Les solitons associés a ce modele sont connus sous le
nom de kinks et antikinks, et tous deux sont les uniques solutions stationnaires

non constantes du modele ¢° ayant une énergie finie.

Dans la premiere partie de la these, nous décrivons toutes les solutions du modele
¢° satisfaisant une condition aux limites avec une énergie proche du minimum.
Nous allons prouver que chacune de ces solutions est une petite perturbation
d’une somme de deux kinks en mouvement pendant un grand intervalle de temps.
Nous analysons également le mouvement de ces solitons comme un probleme a
deux corps en utilisant un systeme différentiel ordinaire explicite. Nous prouvons
que le déplacement des deux kinks est une petite perturbation de la solution de

ce systeme différentiel ordinaire pendant un grand intervalle de temps.

Dans la deuxieme partie de la these, nous analysons la collision entre deux kinks
du modele ¢° Nous prouvons que la collision est presque élastique, ce qui est
inattendu puisque ce modele est non intégrable. Nous estimons le défaut produit
par la collision dans la vitesse de chaque soliton et dans la taille du résidu. Nous
prouvons que la taille du défaut est d’ordre inférieur au polynéme pour une faible

vitesse entrante.

Mots clés :

« Equation d’onde non linéaire unidimensionnelle
o Multi-solitons

o Kinks

o Antikinks

e Modele ¢°

+ Collision

o Probléme a deux corps

e Modele non intégrable



Abstract

This thesis is concerned with the qualitative study of multi-solitons of a one-
dimensional nonlinear wave equation known as the ¢% model. This model has
applications in condensed matter theory, high energy physics, and cosmology.
The solitons associated with this model are known as kinks and antikinks, and
both are the unique non-constant stationary solutions of the ¢® model having

finite energy.

In the first part of the thesis, we describe all the solutions of the ¢® model sat-
isfying a boundary condition with energy close to the minimum. We will prove
that any of these solutions is a small perturbation of a sum of two moving kinks
during a large time interval. We also analyze the movement of these solitons as a
two-body problem using an explicit ordinary differential system. We prove that
the displacement of the two kinks is a small perturbation of the solution of this

ordinary differential system during a large time interval.

In the second part of the thesis, we analyze the collision between two kinks of the
¢°® model. We prove that the collision is almost elastic, which is unexpected since
this model is non-completely integrable. We estimate the defect produced by the
collision in the speed of each soliton and in the size of the residue. We prove that

the size of the defect is of order smaller than a polynomial for low incoming speed.

Keywords:

e One-dimensional nonlinear wave equation
o Multi-solitons

o Kinks

o Antikinks

e ¢ model

« Collision

o Two-body problem

» Non-integrable model
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Chapter 1

Introduction

We consider the following partial differential equation

0{p(t,x) — Opo(t, x) + 20(t, x) — 86(t,x)* + 6(t, x)* = 0, (¢°)

which is known in the physics literature also as the ¢® model. The partial differential equation
(#°) is a scalar field of dimension 1+ 1 of the form

OFo(t,x) — 02(t,x) + U (¢(t,x)) =0,

for the potential function U(¢p) = ¢*(1 — ¢?)2.
First, we are interested in the study of all the solutions ¢(t, x) satisfying, for any ¢t € R,
the following boundary condition

lim ¢(t,z) = —1, lim ¢(t,z) =1, (Be)

T——00 T—+400

and having energy slightly bigger than the minimum of the energy of all solutions of
satisfying (Bd). We are going to verify that these solutions are close to a sum of two solitons
and each of them moves with a small speed. Moreover, we will see that the displacement
of each soliton is very close to an explicit solution of an ordinary differential system under
additional conditions.

The second topic discussed in this manuscript is the study of the elasticity of the collision
between two moving solitons of the partial differential equation . More precisely, we will
only consider the collision between two increasing solitons H;, H, which are approaching
with a sufficiently small speed v > 0 and study their long-time behavior after they collide.

The study of nonlinear wave equation has applications in different fields of theoretical
physics. More precisely, this model has applications in condensed matter theory, see [3], which
is a field of physics interested in studying the properties of a system of particles or atoms
either under conditions of very low temperature or when there exist high interaction forces
between the components of the system. The study of the ¢® model has also applications in
cosmology, see for example [62], and high energy physics, see for example [17] and [14].

Before we state our main results, we will introduce briefly the mathematical theory of
scalar fields, the concept of topological solitons with a focus on the kinks and antikinks, and
the local theory of the partial differential equation .
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Notation 1.0.1. In this manuscript, for any n, m € N>y, we denote the space of smooth
functions f : R™ — R™ with compact support by C§° (R™;R™). In particular, when m = 1,
we denote C3° (R™; R™) by C3°(R™).

Similarly, for any 1 < p < 400, we denote the space LP(R™;R™) as the real linear space
generated by all the measurable functions f : R™ — R™ satisfying

/ ()P de < +o0.
R?’L

If p = +00, we denote L°(R™;R™) as the real linear space generated by all the measurable

functions f : R™ — R™ satisfying
inf {c > 0|\ {:E € R”‘ |f(z)| > c} = O} < +o0,

where X is the Lebesque measure in the Euclidean space R™. If m = 1, we denote, for any
0 < p < 400, each space LP(R";R™) by LP (R™).

For any m, n € N>y and any function f : R" — R", we use the following notation

D) = 3 @), VI) = 00y

for every x € R™.

1.1 Brief introduction to Lagrangians

First, we consider the Euclidean space R'*" with the Minkowski metric g = —dt* +>_, da?
and a complete Riemannian manifold M of dimension n with a Riemannian metric §. We
denote the set of maps ¢ : (R g) — (M, §) by O and, for any function f : R"** — M of
class C! at least, we define, for any p € {0,...,n} and any (¢,2) = (t, 1, ...,2,) € R",

On, [ (t, ), if 1 7 0,

8P‘f(t,l’) = {—@f(t,x)a otherwise.

Moreover, for any x € M and any v(z) in the tangent space T,M, we denote |v|; =

3 (v(x), v(x))? .

Next, we consider a smooth function U : M C R™™ — R and the set D as
D={p€O|pe LR M), andforallt e R, Y |02, 0(¢, )|, 10:b(t, )], € L2(R™)},
i=1

Additionaly, for an interval (¢;,t3) not necessarily bounded and any functions ¢, ¢9 : R" —
M in L>, we study the critical points of the function L : DN{¢(t;, x) = ¢;(z) for j € {1,2}} —
R denoted by

L(6) = /tt /. ;i (04 6(t, ), D, (t, 2)) + U((t, 2)) durdt. (Ge. Lagr.)



It is well known that the critical points of functions are solutions of nonlinear
wave equations, see Chapter 2 of [36] for more information. Indeed, many dispersive models
are obtained from the research of this kind of variational problem, see for example the sine-
Gordon and ¢! models in Chapter 5 of [36], and the wave maps in the book [I8]. The
motivation of the study of these variational problems has applications in different fields of
mathematical physics, for example, condensed matter theory [3] and cosmology [62], see also
[36] for more information.

Actually, if we consider M = R" and § the Euclidean metric of R", the function L can be

rewritten as

/tl / IVe(t2) — 100(t, 2)] + U(6(t,x)) dedt. (Simpl. Lagr.)

If ¢(t, z) is a critical point of L, then, for any function § € C§°(R"™!, R™) such that suppd CC
(t1,t2) x K for some compact set K C R™, we obtain from the identity

o L6+ ) = L(9)

e—0 €

and integration by parts that ¢ shall satisfy the following Euler-Lagrange equation
0;(t,x) — At x) + VU((t, x)) = 0, (1.1)

for any ¢ € (t1,t3) . The partial differential equation (¢°) studied in this thesis also satisfies
equation (L.I) when n = 1 and U(¢) = ¢2 (1 — ¢%)*. Sece also Chapter 2 of [36] for more

references about Lagrangians.

1.2 Scalar fields and Lagrangians

1.2.1 Background context

We consider, for n € Nx4, a smooth potential function U : R" — R satisfying lim,|—, 1o U(y)
+00 such that the set U~'{0} is a compact manifold and every u € U~'{0} also satisfies

U (u) = 0. We consider for any field ¢ : R® — M such that |0,,¢(x)| is in L*(R") for all
i € {1,...,n} the following function

/ Z |8IZ + U (¢()) du. (Stat. Lagr.)

We define the vacuum set by

V={ye M|U(y) =0}. (Vacuum)
Clearly, if a Lipschitz field ¢ : R® — R™ is in L™ satisfying Ly (¢) = 0, then it is not difficult
to verify the existence of u € V such that ¢ = p. Moreover, if ¢ € C'(R"; R™) is a Lipschitz

function satisfying Ly (¢) < +00, we would also need for any v € S*™! that

lim inf |¢p(vr) —y| = 0.

r——+oo yey



Otherwise, [g. U(¢p(x))dx = +o0.
Furthermore, for any non-constant map o : S*~! — V, we can consider the following set

V, ={6|¢:R" = R" Ly(¢) < +o0 and ¢o == lim ¢(r-) : S"* — V is equal to o},

T—>+00

and the following problem:

Is there a continuous function ¢ € V, satisfying Ly (¢) = wlélé Ly (y)? (P.0)

If there existed a minimizer ¢, then it should be a weak solution of the following Euler-
Lagrange equation

Ad(x) = VU(9). (1.2)

When n = 1, we can identify the set S"~! as the binary set {—1,1}. In this case, we will
see in the next sections that the existence of solutions of problem is possible only if there
doesn’t exist v € V satisfying either o(—1) <v < (1) or o(1) < v < g(—1).

However, when n > 2, there doesn’t exist any solution of problem for any non-
constant continuous map o : S"~! — V and any continuous potential function U : R" — Rxg
satisfying the conditions limy| 40 U(y) = 400 and U (u) = 0 always when U(u) = 0. This
result is known as Derrick’s Theorem, see Section 4.2 of the book [36] for more information.

Moreover, using an argument of contradiction, the proof of Derrick’s Theorem is straight-
forward. More precisely, If n > 2 and there exists a non-constant continuous field sat-
isfying ¢ € V5 minimizing Ly, then we would have that ¢¢y(x) = ¢(rx) should satisfy
Ly(é@y) > Ly(¢) for all » > 0, because the set {¢¢)|r € Ry} is contained in V. But,
from the change of variable y(x) = xr and identity Vo((x) = rVe¢(rx), we can verify the

following equations

/Rn U(¢e(x)) do = L U(p(z)) dz, /Rn [V ()

r" Jrn

2 1 2
Cdr=— [ Vo)’ da.

for every r > 0. Therefore, we have

L (00) = 5 | [ V0@ de] + = [ [ 0660 ).

If n > 3, then the function Ly (gbm) is decreasing on r unless ¢ is a constant function with
image on V, so ¢ is not a solution of problem [P.0] which is a contradiction. If n = 2, the

function Ly (¢,) is non-decreasing only if

L, Uloa)) dz =,

which would imply that the image of ¢ is contained in V. But, since ¢ is a weak solution of
equation (|1.2)), {U’ (w)|u e V} = {0} and M is a compact set, we would have that ¢ : R" —
R" should be a bounded harmonic function, therefore Liouville’s Theorem would imply that

¢ should be a constant map, which is a contradiction of ¢ being in V.



1.2.2 One-dimensional scalar fields

From now on, we consider n = 1 and a smooth function U : R" — R satisfying

lim U(y) = +oo, and ¥V = U {0} is a compact set.

ly|—+o0

In this particular case, the partial differential equation (|1.2)) can be rewritten as the following

elliptic equation

1" /

¢ (z) = U (¢(x)). (1.3)
Since U € C*, we can verify using the elliptic regularity theory that if ¢ € L™ (R) is a
weak solution of equation , then ¢ € C*, see Theorem 2 from Chapter 6 of [16] for
more information. Clearly, if ¢ is a strong solution satisfying Ly (¢) < 400, then ¢ is a

critical point of L.

Definition 1.2.1. We say that a one-dimensional scalar field ¢ is a topological soliton of the

differential equation (1.3)), if ¢ is a strong solution of (1.3)), it satisfies

J

and ¢oo = lim, 1o O(r) : {=1,1} = V is a non-constant map.

/

¢ (@) +U (9(x)) dr < +oo,

Remark 1.2.2. Furthermore, when n = 2, we highlight that the topological solitons are
critical points of Lagragians of a different form from (1.2) and we have verified earlier that
there doesn’t exist any non-constant solution of (1.3|) satisfying

[ U(6(@) + Vo) dv < +oo,

when n > 2, see also Subsection 7.1 of Chapter 7 from the book [30].
For example, for n = 2 and the potential function U(¢) = (1 — |gz5|2)2, the topological

solitons are defined as the non-constant maps
(6, A) : R* = C x R?,
which are the critical points of the following Lagrangian

L 1940(@) + el A@)* + (1= lo(a)[")” da. (1.4)
where V. .=V —iA and

_ o

curl(fi, f2)(x) = .

()

J0f1 _ (U@ _o7te)
_ 871-2(’%)’ curl(f) = < 04 T 0xq ) ’

for any functions (fi, f2) : R? = R? f: R* — R and all z € R% Furthermore, the Euler-
Lagrange equations associated to (1.4) are given by

Vis(r) =2 (1 - |o(x)*) ¢(x), (1.5)
curl’” A =Im (i6(2)V ag()) .



where V 4 f(x) = Vf(x) —iA(x)f(x) for any function f : R? — C. One of the reasons to

consider the Lagrangian (1.4]) instead of (Stat. Lagr.) is to use, for any a € R, the following
transformation ¢ (x) = ¢(x)e'®, which is an invariance (1.4) and also satisfies

[, Ua(@)de = [ U(6(2)) da.

R2 R2

For more detailed information, see Subsection 2.6 of Chapter 2 and Chapter 7 of the book
[36], see also the article [2Z] for more information about the partial differential equation (|1.5))

and its topological solitons.

Since we are mainly interested in the topological solitons associated with the partial
differential equation , we will describe in the next sections the properties of topological
solitons associated with one-dimensional scalar field equations, which are the strong solutions
of satisfying all the conditions in Definition m The topological solitons associated

with one-dimensional scalar fields are divided into two groups the kinks and the antikinks.

1.2.3 Kinks and antikinks

In this subsection, we consider U € C*°(R) satisfying U(y) > 0 for any y € R and

limyy— 400 U(y) = +00. In addition, we assume that U satisfies the following property

U'(x) £0, forall z € V, (Non-degeneracy)

where V is defined in (Vacuum)) for n = 1.

Next, we consider a solution ¢ € C*(R) of the ordinary differential equation

{J@%:wa», 16)

lim, o ¢(z) and lim, , o ¢(x) € V,

satisfying Ly (¢) < +oo, where Ly is defined in (Stat. Lagr.)). Now, we are going to present
the properties of all the solutions ¢ of the ordinary differential equation (1.6|) satisfying

LU(¢) < +00.

Lemma 1.2.3. Iflim,, o, ¢(z) = lim,_,, ¢(x), then the smooth solution ¢(x) of the prob-
lem (1.6]) is a constant function.

Proof of Lemma[1.2.3. Since lim,_, o, ¢(x) is equal to lim,_, o ¢(x), if ¢ is not a constant

function, then there would exists zy € R satisfying either

Jim_6(x) < ola) = maxé(e) or lim_ o(a) > ow) = mino(e)  (17)
and so, % = 0. Furthermore, since ¢ € C*°(R), we have from the ordinary differential
equation (|1.6) that

LTI _ ot (o) =2 [6"0) - U (00)] 6 0) = 0

dr | dx ’



and so, the function d(flgf)Z — 2U (¢(x)) is constant. Therefore, we would deduce from the

Fundamental Theorem of Calculus that

dp(z)®
de

2[U (¢(x)) — U (¢(xy))] for any x € R.

Moreover, since lim, ,1., ¢(x) € V and ¥V = U~(0), we would obtain from the identity
above that ¢(zg) € V, otherwise Ly (¢) = +oo. Consequently, ¢ would satisfy the following

ordinary differential system of equations

{d’(z) = U"(¢(x)),

do(zo) __
¢( )EV7%_O

However, from Picard-Lindelof Existence-Uniqueness Theorem, we would obtain that ¢(x) =
¢(xo) for any x € R, which contradicts ((1.7]). In conclusion, ¢ shall be a constant function. [

Lemma 1.2.4. The unique solutions of (1.6 which are topological solitons associated to U

are the smooth solutions ¢ of only one of the following ordinary differential equations

¢ (x) = \2U((x)) or ¢ (z) = —/2U (¢(x)), (1.8)
which satisfy Ly(¢) < +o0.

Proof of Lemmal1.2.7] First, from elliptic regularity theory, Definition and Lemma
we can verify that ¢ : R — R is a topological soliton only if ¢ € C*°(R) and ¢ satisfies
lim ¢(z) # lim ¢(x).

r——+00 T——00

Furthermore, from the proof of Lemma [1.2.3, if ¢ is a smooth function satisfying ¢" (z) =
U' (¢(x)) for any = € R, then %&:3)2 —2U (¢(x)) is constant. Moreover, if Ly (¢) < +o0, we

also would have that
dg(x)”
dz
Consequently, is a necessary condition for a function ¢ to be a topological soliton.

=2U (¢(x)), for all x € R.

Therefore, to conclude the proof of Lemma [I.2.4] it is enough to verify that only one of the
equations in (|1.8)) shall be true.

We assume by contradiction that there exist z;, zo € R such that

¢ (1) = +\/2U(8(21)), ¢ (22) = —\/2U (8(2)).

Hence, from the Intermediate Value Theorem, there exist z;3 € R satisfying ¢ (x3) = 0,
from which we would obtain that ¢(z3) € U~'(0). However, from Picard-Lindelof Existence-
Uniqueness Theorem, we would obtain that ¢(x) = ¢(z3) for all x € R, which contradicts
the hypothesis that ¢ is a topological soliton satisfying Definition [I.2.1} In conclusion, the
statement of Lemma [[.2.4] is true. O



Definition 1.2.5. We say that a real function ¢ : R — R is a kink associated to the potential
function U if, and only if, the function ¢ is a non-constant solution of the following ordinary

differential equation

/

¢ (x) = \2U (¢(x)), (1.9)
and Ly(¢) < +oo. We say that a function 1 is an antikink if, and only if, the function
o(x) =1 (—x) is a kink.

Remark 1.2.6. Let ¢ be a kink function. We consider

Yoo = 1‘1—1>r—&¥100 ¢($), Voo = acgr—noo ¢<:L‘)

From Lemma[1.2.4, Ui # U_oo, furthermore, since

¢ (x) = \/2U (¢(x)) > 0,

it is not difficult to verify that (V_uo,Vyo) NV = 0. Otherwise, we would obtain the existence
of xg € R such that ¢ (zo) € V, which would imply that ¢ is a constant function.

1.3 The ¢° model

1.3.1 Preliminaries
From now on, we consider the potential function U : R — R given by U(¢) = ¢ (1 — ¢2)2.

We consider the following nonlinear wave equation

(¢°~NLW)

0;d(t, ) = 030(t, =) + 20(t, ) — 8(t, 2)* + 6(t, 2)* =0,
limg 1 o0 ¢(x) =1, lim,, ¢(x) =—1,

which is equivalent to the scalar field of dimension 1 + 1
R o(t, x) = 030 (t,x) + U (9(t, ) = 0.
The kinks associated with U are solutions of the following ordinary differential equation
¢ (x) = V2|é(z) (1 - o(x))]. (1.10)

Clearly, the vacuum set V associated to this potential function is {0, —1,+1}. Therefore,
Lemma and Remark imply that the only possible kink solutions ¢ : R — R should
satisfy one of the following boundary condition

lim ¢(z)=—1and lim ¢(z) =0, or xEIPoo ¢(r) =0and lim ¢(z) =1.

IT—r—00 Tr—-+00 T——+00

By a standard application of the Fundamental Theorem of Calculus, we obtain that the

following functions

e\/ﬁz e—\/ix

N P
1+ e2V2e V1 +e2V2

(1.11)



are solutions of ordinary differential equation . Indeed, from Picard-Lindelof Existence-
Uniqueness Theorem and since Hy; is a function in C*(R) satisfying lim,, - Hoi(z) =
0, lim, 1o Ho1(z) = 1, we deduce that the only solutions of satisfying the boundary
conditions lim, , ., ¢(z) = 0, lim,_,, o, ¢(x) = 1 are the set of functions whose elements are
the scalar fields ¢y, : R — R defined by ¢p(x) = Ho1(x + h) for any x, h € R. Similarly, the
only kinks satisfying the boundary condition lim,_,_, ¢(x) = —1 and lim,_, ., ¢(z) = 0 are

the translations of the function H_; o(z).

Notation 1.3.1. We denote the Sobolev space H:(R) as the completion of the space C5°(R)

in the norm ||-|| ;1 satisfying

) df (z)°
1 = [ Y pwan,

for any real function f € Cg°(R). We also consider the norm ||-|| . which satisfies
1Fle = [ f@)*da,
= Jr
for every f € L2(R)
Definition 1.3.2. For anyt € R, cos (tv—A) and sin (t\/—A) are the linear bounded maps
cos (tV=A) : (L2(®R) |l ll2) = (L2 (R) [l 2) -
sin (tv=A) : (L2 (R), [ll,2) = (22 ®R), |1l 2) -
which satisfies for any f € C3°(R) the following identities
cos (V=) f(x) = [ f(y)cos (2ntlyl)e* dy,
R
sin (1V/=8) f(x) = [ f(y) sin (2ntly])e2= dy,
R
where f is the Fourier transform of f, which is defined by

fz) = /R f(y)e™2™=¥ dy, for all x € R.

sin (tM)

VTN by the bounded linear map with same domain as sin (t\/—A) which
satisfies the following identity

sin —A F
(V2) 1 [ fw

27|y|

We also denote

sin (27t|y|)e*™™¥ dy,

N
for any f € C5°(R).

Lemma 1.3.3. There exists C > 0 such that for any f, g € H:(R), we have

17 9lley < C NNy N9l gz -



Proof. See Lemma A.8 and its proof in [61]. O

Definition 1.3.4. We say that a real function ¢ : R* — R is a solution in the energy space
of the partial differential equation (¢°—NLW)) if, and only if, for allt € R the function ¢(t, x)
satisfies

lo(t,2) = Ho(x) — Hoyo(2)]] gy + 100 (t, 2) || 12 < +00,
and for any t, ty € R, the function u(t,z) = ¢(t,z) — Ho1(x) — H_19(x) is a solution of the

following integral equation

sin ((t — to)ﬁ)
VA

(U’ (Hon(x)) + U (H_1())

Oyu(to, x)

u(t,x) = Fu(t,x) == cos ((t — to)\/z)u(tg, x) +

t sin ((t - S)M)
to VvV—-A

_|_

U (Hoa(x) + H_10(x) + u(s, a:))) ds (1.12)

in the space C(R, HL(R)) N CY(R, L3(R)), which means that the following map

f(t) = u(ta )
df (t)

is a continuous function from R to H:(R) and the derivative =5 s a well-defined continuous

map from R to L2(R). For a better understanding in this concept of solution, see Chapter 3
of [61].

From now on, we are going to verify that the Definition is consistent. If ¢ is a
smooth solution of the partial differential equation , then the function u(t, ) = ¢(t,x) —

Ho1(x) — H_19(z) is a smooth solution of the partial differential equation
Otu(t, ) — O*u(t,x) = U/(H071(l')> +U/(H_170(x))—UI (Ho1(z) + H_10(z) +u(t,z)). (1.13)
Indeed, from the identity U(¢) = ¢2 (1 — ¢2)” and Taylor’s Theorem, we deduce for any

functions uy, uy € H!(R) the following identity

U (Ho(x) + Ho10(z) + ui(x)) — U (Ho(x) + Ho10(z) 4 ug(x)) =
uy(z)) " — ug(w)
(j —2)!

6
S UY (Ho(x) + H g o(x))
=2

So, from the elementary estimate,

Jua () = w2V < (5= 1) (Jua(@)P 72 + [ua(@) ) [un (2) — ua(x)]

obtained from the Fundamental Theorem of Calculus and the fact that U, Hy,, H_1o € C*
and Hoq, H_19 € L°(R), we deduce using Lemma for any natural number 2 < 5 < 6

the existence of a constant C; satisfying
(U9 (Ho 1 (2) + Ho10(@)) [ur (V™ = ua(aV ||, <

C; (Jluallas” + lluallfn?) s () = ua(@) |, -

10



Therefore, if there exist two solutions u, v of the integral equation belonging to the
space C ([=T + to, T + to] , HL(R)) NC* ([T + to, T + to] , L2(R)) , we deduce using Lemma
the existence of a constant C' > 0 independent of v and v satisfying for any t €
[—T + to, T + to] the following inequality

[u(t) = o)l 1 + [10u(t) — G (t)]| 2 <

C [ 11+ 1s = tall (1 max{ ()L [0(6) ) ) = 5y .

Consequently, using Gronwall Lemma, we can verify that u(s) = wv(s) for any s in the
interval [T + to,T + to], from which we conclude the uniqueness of the solution of the
partial differential equation (1.13)) in the space H}(R) x L2(R).

Similarly, assuming t; = 0, using the map F' defined at and considering d, =
[[(wo, )|l g1 12 » We can deduce the existence of a Ty > 0 depending only on dy such that the

following restriction of F

F: {u\ (u, 0u) € C ([=To, To] , Hy(R) x L2(R)),  sup ||(u(t), () s, 12 < 250}

tG[*To,To}

— {u\ (u, Ou) € C ([=To, To] , Hy(R) x LA(R)),  sup ||(u(t), du(t)) | 1,12 < 250}

tG[—Tg,To}

is a contraction. Therefore, using Banach Fixed-Point Theorem, we can verify that (1.13) is
locally well-posed in the space H!(R) x L2(R).
The solutions of the partial differential equation (¢°) in the energy space satisfy the

following conservation laws:

plo) = [ AR g0, a (Energy)

P(¢) = —/Ragcgb(t,x)@tqﬁ(t,x) dx. (Momentum)

Moreover, the solutions ¢(t, z) of satisfy the following invariances:

Time translation: For any h € R, ¢(t + h, ) is also a solution of ,

Space translation: For any h € R, ¢(t,z + h) is also a solution of ,

Space reflection: ¢(t, —x) is also a solution of ,
o Time reflection: ¢(—t, ) is also a solution of .

In addition, for any v € (—1,1) and any (to, zo) € R?, if ¢(¢, ) is a solution of , then the

Lorentz transformation

t—m—Mx—m)x—m—U@—%U

Wt"c):‘f’( Vi—e | VI-@
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is also a solution of the partial differential equation . Consequently, if H is a stationary
solution of , then the following function

T — vt
et =1 ()
is also a solution of . We observe that the kinks and anti-kinks are the unique non-
constant stationary solutions of with finite energy, see Chapter 5 of [36].

Moreover, the Space translations of the kink Hy ; are the minimizers of the Energy function
E(¢) when ¢ satisfies the boundary conditions lim,_,_ ¢(x) = 0 and lim,_, ;- ¢(z) = 1, see
Chapter 5 of [36] for the proof of this fact.

Furthermore, since the real function U(¢) = ¢?(1—¢?)? is positive and satisfies lim, 4 U(y) =
+00, any solution ¢ of having finite energy is global in time.

More precisely, if E(¢) < +oo, then there exists C' > 0 such that [[¢(t, )| jecm) < C for
any t in the domain of ¢, from which, using the local well-posedness of partial differential
equation , we obtain the global well-posedness of in the space of solutions having
finite energy. Because, if E(¢) < +00, then, for any real ¢ in the domain of ¢,

AamawfszEw»

which implies with Cauchy-Schwarz inequality that

6(t,x) — ¢t y)| < |o — y|2\/2E(9).

Therefore, since U is a non-negative function satisfying lim,, 1., U(y) = +o0, if there existed

a real sequence (t,)nen in the domain of ¢ satisfying limy, 4o [|¢(tn, )| oo (m)y = +00, then

there would exist a n € N such that [ U(¢(t,, x))dx > E(¢), which is a contradiction.
Finally, for each ¢ € R, we consider the Kinetic Energy Ex(¢)(t) of a solution ¢ in the

energy spaces by

Bo)0) = [ 2 g,

and we denote the Potential Energy E,.+(¢)(t) by E(¢) — Ex(¢)(1).

1.3.2 Previous results in the stability and dynamics of kinks

In this subsection of the thesis, we briefly describe the previous results obtained about sta-
bility and dynamics of one or two kinks for some dispersive nonlinear equations.

For the ¢* model, which is the partial differential equation
07 o(t,x) — Bio(t, x) — @(t,x) + ¢(t,x)° = 0, (t,7) € R?,

asymptotic stability of a single kink under odd perturbations was proved by Kowalczyk,
Martel, and Mufioz in [29]. Moreover, in [I3], Delort and Masmoudi obtained the decay rates

for the size of the perturbations of the kink for this model.

12



Under assumptions on the potential function U, it was proved in [31], for the following

partial differential equation
oot x) — Ot 2) + U (4(t,2)) =0, (t,2) €R?, (1.14)

the asymptotic stability of a kink by Kowalczyk, Martel, Munoz, and Van Den Bosch. Indeed,
the result of this article applies to the ¢® model which we studied in this thesis, therefore the
kinks Hy; and H_; are asymptotically stable in some sense.

For the sine-Gordon model
O o(t, ) — 0Zp(t, x) + sin (§(t, z)) = 0,

Schlag and Lithrmann proved asymptotic stability of a single kink under odd perturbations
in [56]. Moreover, in [I], Alejo, Munioz and Palacios, proved asymptotic stability result of a
single kink in a specific manifold of perturbations.

With respect to nonlinear Schrédinger equation models, we refer the to the work [6] about
orbital stability of a kink in the Gross-Pitaevskii equation. For more references in stability
of solitons in nonlinear Schrédinger equations, see also the classical work [5] about orbital
stability of solitary waves and [4] about asymptotic stability of solitons.

Regarding the topic of dynamics, in [26], for a certain set of potential functions U, Jendrej,
Lawrie and Kowalczyk described the dynamics of strongly interacting kink-antikink pair
solutions of . The strongly interacting kink-antikink pairs are the solutions of
which converge in infinity to a sum of kink and antikink each one moving with a speed
converging asymptotically to zero. In [20], it was also obtained the existence the strongly
interacting kink-antikink pairs and their uniqueness under time and space translation.

With respect to the Klein-Gordon model, Krieger, Nakanishi and Schlag proved asymp-
totic stability of solitary waves in the article [32]. Kowalczyk, Martel and Munoz also proved
asymptotic stability of solitons and studied their dynamics for one dimensional Klein-Gordon
n [30]. See also the recent article [19] by Germain and Pusateri about asymptotic stability
of solitary waves for Klein-Gordon models.

The literature about stability and dynamics of solitons for nonlinear dispersive equations is
vast and not only restricted to one-dimensional nonlinear dispersive equations. For example,
see the references [22], [I1], [55], [27] about dynamics and stability of vortices, which are

topological solitons associated with scalar fields of dimension 1 + 2.

1.3.3 Collision of solitons for nonlinear dispersive models

The study of the collision of solitons in nonlinear dispersive equations focuses on under-
standing the long time behavior of a solution ¢(t,x) when time variable ¢ approaches —oo
knowing that this solution converges in some norm to a finite sum of solitary waves when
the t goes to 4+00. For non-integrable models, there aren’t many references that study the

collision between solitons for nonlinear dispersive models.
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In many complete integrable models, the solutions can be described explicitly and the
collision between solitons is completely elastic, see for example the results for the Korteweg-
de Vries equation in [45], see also [9], [25] and the classical work of Lax in [33]. Contrary
to the collision of solitons in completely integrable systems, it is expected in non-integrable
models that the collision between two solitons is not elastic, which means that, after the
collision instant, the solution will not converge when ¢ goes to +o0o to a sum of two solitary
waves with same energy and momentum as the two solitons before they collide.

In [39], Martel and Merle studied the stability of the collision between solitons for the
generalized Korteweg-de Vries equation and, in [40], [41], the same authors proved inelasticity
of the collision between two solitons for the quartic generalized Korteweg-de Vries equation.
In [49], [50], Munoz extended the argument used in [41] to prove the inelasticity of the collision
between two solitons for other generalized Korteweg-de Vries models.

For nonlinear Schrodinger equation models, in [53], Perelman studied the collision between
two solitons of different size and obtained inelasticity, indeed after the collision instant she

proved that the solution doesn’t preserve the two solitons’ structure.

1.4 Main results
We recall the one-dimensional nonlinear wave equation (j¢°—NLW)|)

O2p(t,x) — 02¢(t, x) + 20(t,x) — 8¢(t, z)* + 6¢(t,x)° = 0,
lim, , o ¢(t,z) =1, lim,, o, o(t,z) = —1.

In Chapter 2, we will describe all the solutions of (¢°—NLW)]) in the energy space with energy
slightly bigger than 2E (Hp ;). Actually, from the estimate

/Ratas@ 2 %02 o0 da > |2 ”5” + U ((t,x)) de

2
Fx¢(t, )

_/\/m@mx\dﬁz/[
> [ \RU (6(t,2)) o6(4,2) da;zj_lmdy=2E<Ho,1),

we have that 2F (Hp ;) is the minimum possible value for £ (¢). This minimum value is not

attained, since there isn’t a non-constant solution ¢ with finite energy satisfying |0,¢(t, x)| =
2U (¢(t,xz)) which is not either a kink or a antikink.

Definition 1.4.1. Let ¢ be a solution in the energy space of the partial differential equation
(0°—NLW)|). The energy excess € of ¢ is the following positive value:

e = E(¢) — 2E (Hy,).

14



1.4.1 Description of the solutions with small energy excess
Our first main result is the following:
Theorem 1.4.2. 3C > 1,y > 0, such that if € < g and

(6(0,) — Ho(2) — H_10(2), 0,6(0,2)) € HA(R) x LA(R)

with Eiora(9(0),0,0(0)) = 2E(Hy 1) + €, then there exist functions xo, 11 € C*(R) such that
the unique global time solution ¢(t,z) of (p°—NLW)) is given by

¢(t,x) = Ho(x — x2(t)) + Hor oz — 21(t)) + g(t, 2), (1.15)
and for any t € R,
€ .
© < e VARO-20) 4 max 3502 + [(9(), Ag)l e < Cei (116)
C je{1,2}
T < (. .
max [1(1)] < Ce (1.17)

Furthermore, we have

600500y < €[ 160010 O g+ €] o (Tl ) foranti e = 119

The proof of Theorem will be presented in the next chapter. Using an argument of
contradiction, we will prove that if the energy excess € of ¢ is small enough, then, for any
t € R, there exist 1(t), Z2(t) € R with 25(¢) > 21(t) such that

[6(t, 2) — Hop (z — 22(t)) — Hor0 (2 = 21(8)) || gra gy < 1.

Next, using modulation techniques similar to the one used in [54] an [26], we are going to

verify that ¢(¢,x) has the following representation
¢(t,x) = Hoy (x — 22(t)) + Horo (z — 21 (8)) + g(t, ), (1.19)

with 2(t) — z1(t) > 1, |lg(t, )| g1 gy < 1 for any ¢ € R and g(¢, z) satisfying the orthogo-

nality conditions

(9(t.2). H, (z = wa(1)) |, = (9(t.2), H 1 (x = 11(1)) , =0. (1.20)

From the orthogonality conditions above, we will obtain the following coercive estimate in

the energy

Co ”g(t, x)”?i%(R) < E <¢) - F (HO,I (.CL' — sz(t)) + H*l,O (l’ _ xl(t)))
+0 (Hg(t?x)HiI%(R) + ’QZQ(t) — xl(t)‘e*Q\/i(ffz(t)*m(t))) .

Therefore, using a bootstrap argument and the continuity of the modulation parameters

x1, o, we will deduce the existence of a constant ¢ > 0 such that
lg(t, 93)”?{;(]1@) + e VR2@mO—n () < ce, for all t € R.
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The estimate [|0,g(¢, )[|;2 < ez will follow directly from the estimate of the kinetic energy
of ¢ and the fact that E(¢) —2F (Hp,) = €.

The estimate of the first and second derivatives of the modulation parameter x;, x5 will
follow from standard analysis of the ordinary differential equations obtained from the time
derivative of the orthogonality conditions and combining this result with the estimates
above we will deduce inequalities , .

The proof of inequality will be done more carefully in Chapter 2 using refined
energy estimates techniques. More precisely, it will be based on a study of a function F(t)

defined from the sum of the quadratic term

/ Opg(t, )2 + Oig(t,x)*> 1
R

5 + §U” (Hog (v — 22(t)) + H_10 (x — 21(¢))) g(t, 7)* dz

with correction terms. We will prove that this function has small decay in its derivative and

it satisfies a coercivity inequality

1), g rra myerz )y S F(2) + €.

Using these two observations, we will obtain the following inequality

2
1(g(t), Beg ) i1 gy 222y < €| 1(9(0), Beg(0) 13y L2y + € I <> } exp (

for all t € R.

1.4.2 Dynamics of two kinks with small energy

Furthermore, in the second chapter, we will also prove the following theorem.

Theorem 1.4.3. In notation of Theorem [1.4.3, 3C, 80 > 0, such that if 0 < € < &y, ¢ is
a solution of the partial differential equation (¢°—NLW|) in the energy space and E(¢) =
2E,01(Ho1) + €, then the smooth functions dy, dy € C* (R) defined by

di(t) = a+ bt — 2\1/5 In (52 cosh (\/ivt + 0)2), (1.22)
dy(t) = a+ bt + 2\1/5 In (U82 cosh (\/§vt + 0)2), (1.23)

such that d;(0) = z;(0), d;(0) = 4,(0) for j € {1, 2}, satisfy

max [d5(t) = a;(0)] < Cmin(e e, ), max d;(t) - (0] < Celt,
7€,

2 N Cenlt|
ejg%§}|dj(t) x;(t)] _C’max( g(O; ,e) ln<e> eXp(ln(i)) (1.24)
; . 2 NM Ot
2 . — 7. < — .
€ jg%)é}w](t) (1) _C’max( g(O; ,e) hl(e) eXp(ln(i)) (1.25)
1 . . 2 n Cez |t
€2 [max, |d;(t) — ;(t)| < C'max ( g(O; ,e) In (€> exp ( In (1) ) (1.26)
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Both Theorems [1.4.2] and [1.4.3] are from the article [47].

The proof of Theorem relies on the observation that the functions x;(¢) — d;(t) will
be very close to a solution of a well-known linear ordinary differential system. Therefore,
using the estimates , and the inequality , we will conclude the proof of

Theorem [1.4.3] using the method variation of parameters for ordinary differential equations.

Finally, the demonstration of estimate is going to follow from the energy estimate
technique using the function F(¢) and the estimate of the derivative F(t) using the estimates
(L-25), of Theorem instead of the global estimate max;eq oy |4;(t)* + |&;(¢)] =
O (e).

The statement of Theorem also describes with high precision the dynamics of two
interacting kinks for the ¢° model, which is the behavior of the displacement solitons when
initially they are very close to each other and their energy is slightly larger than the minimal
value of the energy of a solution of the problem . Moreover, the conclusions of
Theorem allow us to understand with high precision the effect of the repulsive force
of interaction between the kinks in their dynamics during a very large time interval. The
methods we used to study the dynamics of two kinks for the ¢% model are not only restricted
to this partial differential equation and they can be very useful to understand the dynamics
and properties of multi-solitons for other non-complete integrable systems. Actually, we will

also prove in the second chapter that the precision in our estimate (1.21]) is optimal in an
In(1
interval of size of order O (E}“>> .

1.4.3 Almost elasticity of the collision of two kinks

The third main result of the manuscript is the following statement:

Theorem 1.4.4. For any 0 < 0 < 1 and k € Nx,, there exists 0 < §(0,k) < 1, such that if
0<wv<d(0,k), and ¢(t,z) is the unique solution of (¢°—NLW)) satisfying for all t > 4@

o, ) + v I T — vt v I T+t
X)) + ——= — 10| —
' VI—o2 A\ =2 VI—o2 TP\ T =2
then there exist a real function vy : (0,1) x R — R and a number e, such that 0 < vy < 1,

)
ley | < In (v%) and if t < <7) then |vp(t) — v| < v* and

T — ekv—i-vf(tt £L‘+€kv—1}f(t>
— H,
HW’ ot ( V1= (1) ) ( V1 — ot )

H3(R)
atqs(t,x)Jr”fi(t)HéJ (a: 6kv+Uf(t)t) vy (t) H'lo(ere,w_ (t)
<

T — vt T+ vt
Hgb(t,a:) — Hoa <m> —H_ (W)
<e
L3

Hy(R)

vt (1.27)

1=y (t)? 1 —;(t)?
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A (1)2° (1)
Furthermore, if —an() <t< #, then

T — ep, + vt T+ €y —U
toa)— Hoy [— 22t 2 ) — [
H¢< “) 0’1< Vi ) 10( Vi >

<wv

ot gt () ()|
(1.28)

The existence and uniqueness of two solitary kinks for the ¢® model with the energy
norm of the remainder having exponential decay was proved in [8] by Chen and Jendrej. In
particular, when the speed v > 0 is small enough, we have the decay .

The statement of Theorem implies that the collision between two kinks for the ¢°
model is almost elastic. Indeed, for any k£ € N if the speed v of each kink is small enough,
then the energy norm of the residue and the change in the speed of each kink is much smaller
than v*. Therefore, the collision of two kinks for the ¢® model is different, in nature than the
collision of two solitons of quartic generalized Korteweg-de Vries, for which the inelasticity is
polynomial with respect to the size of the speed of the solitons, compare Theorem [1.4.4] with
Theorem 1 of [4I]. Moreover, because of the estimate (1.28)) concluded in Theorem |1.4.4] it
is not possible to apply the methods of [41] to prove the inelasticity of the collision between
two kinks for the ¢° model.

1.4.4 Sketch of the proof of Theorem [1.4.4

The demonstration of Theorem is quite long and delicate, and it will be divided into
Chapters 3 and 4, corresponding to the preprints [46] and [48] respectively. First, we are
going to create a sequence of approximate solutions (¢y) ren, Of equation (¢°) satisfying for
any v > 0 sufficiently small

lim
t——4o00

xr — vt T+ vt
on(0.2) — Ho (>_H, ()
k( ) 0,1 m 1,0 m )

v / x—ut / x4 vt
ot s oo () - 0 (75

and for all t € R, if 0 < v < 1, then

1

where C(k) > 0 and n;, € N for all & € N,.

=0,
L3

82¢k<vat7$) 82¢k(v,t,x)

Ot2 - o2 U/ (¢k(?),t,$))

< O (I -+ 1n (1)> e~2VElly.
v

HE(R)

Definition 1.4.5. We define A : C?*(R* R) — C(R?* R) as the nonlinear operator satisfying
A(gbl)(t? ZL‘) = afqbl(ta CL’) - a§¢1(t7 ZL’) + U,<¢1(t7 J])),
for any function ¢, € C*(R?, R).
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More precisely, we will prove the following theorem in Chapter 3.

Theorem 1.4.6. There exist a sequence of functions (¢r(v,t,2)),~, , a sequence of real num-

bers (k) > 0 and a sequence of numbers ny € N such that for any 0 < v < §(k), ¢x(v,t,x)

satisfies
i [au0.0) + *H ( )~ o (), =0
Jim O pi (v, x) — \/11:71)21%,1 (x J\r/qut_;;v’k> + \/1717H/—1,0 (W) . =0,

with e, € R satisfying
ln(%)
Euk — \/%
lim ———k——
0 o (o)
Moreover, if 0 < v < 6(k), then for any s > 0 and | € NU {0}, there is C(k,s,l) > 0 such
that

= 0.

1 Tk
G, t2)| < Chs 0 (It +1n () Ve,
v

o

H3(R)
The demonstration of Theorem is very technical and requires tools from functional

and complex analysis. The construction of each approximate solution follows from an argu-

ment of induction. We explain briefly the main ideas behind the proof of this theorem.

First, for any 0 < v < 1, we consider the function d, : R — R denoted by

d,(t) = \}5 In <52 cosh (\/ivt))

and we consider also
dy(t) du(t)
r— = —y — 2
901v(t755):H01<.2 )—Ho1(.2 )
’ ’ dy(t)2 ’ dy(t)2
1 == v1—=9-

Next, we prove the existence of a Schwartz function M(x) orthogonal to H(/M(x) in L2(R)
such that A(¢1,)(t, x) satisfies

A0 b
Apr)(t,z) = e V2RO M [ —2_ | - M [ —— 2
’ 1— dy (t)? 1— dy ()2

4 4

+res(v, t,x), (1.29)

where, for any v € (0,1), R(v,-) € C*(R?) and if 0 < v < 1, then

~S,

1

Hres v, t, x

ot! H3 (R)
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Using information obtained in ([1.29)), we are going to consider a smooth function ¢q o, (¢, z)
denoted by

dy () dy(t)
B 3y (1) Ty R
v t,iL‘ - v t7$ te i - I ’
$2.00(t, ) = pro(t, 7) [g ( 1 dv(t)2) g ( 1 _ du(®? )]
4 4

where G is the unique Schwartz function orthogonal in L2(R) to H , satisfying the identity

—j;ax) +U" (Hou(x)) G(a) = —M(x).

Next, for any 0 < v < 1, we are going to create a smooth even function r, : R — R such
that the function

du(t) dv(t)
_ T — 2y +r(t) T+ 75 — ()

4

4

2dy () T — d”Q(t) + 7y (1) -z — d”2(t) + 7,(t)
+e g . -g .
1— dy (t)? 1— dy(t)?
V 4 4

satisfies for all £ € R
dy(t)
o= 2 ()
A(SDQ,U(t’:L‘))’HO,l 2 )
1 — dy(t)
4 L2

dy(t)
/ X —I— - T’U t 1
+ <A(902,v(tax)>7H—l,0 ( 2 ( >)> Lvo2,
L2

indeed we will construct r, as an solution of an explicit ordinary differential equation. Next,
we will prove in the third chapter the existence of a parameter ay, such that the function
Pa(v,t,x) = pa,(ak, +t, x) will satisfy Theorem for k = 2.

The remaining argument of the proof of Theorem is the construction of ¢y, from
the function ¢ which by the principle of induction concludes the proof of Theorem [1.4.6] For
all k& € N>o, the argument on proof of the inductive step is similar to the method explained
above to obtain ¢, from the function ¢, ,.

More precisely, we will prove by induction on £ € N, the existence of a sequence of

approximate solutions (¢y.,)

keN>,
T+ pro(t) T — pro(t)
Pralt, ) =Ho (() HHo | S
1— & 1 ==

aa [ ($+Pk,v(t)> - (—x+pk,v<t>)]
+e g | ——= §| —==-
d, (1)2 du (1)
1 == VI==
My,
| 2 pea(t) [T pea(t)
+ ;pz,k,v (\/El)t) [hz,k ( dv(t)Q) - hz,k ( dv(t)Q )

1 — 02 1 - 02

20



which satisfies for all [ € NU {0} and all s > 0 the inequality

Hal

, 1\ ™
gﬁA(¢hv@,x» gzﬂk2<uh}+1n()> e~V if g < 1, (1.30)
v

HE(R)
where nj, € N, the real function py, is smooth, even and, for any 1 < i < My, the real
functions h;; € (R) and all the functions p; j, are smooth and even. First, assuming the

existence of the approximate solution ¢y, for some k = kg € N>o, we are going to verify the

R (2 +oro(t) | R (=2 + prw(t)
7 1 dy ()2 7 1 dy ()2 ’
T4 T4

where, for any j € I, Rj € Y(R) and Sjw is a real even smooth function satisfying
d' 2k—1 1 " —2v/2
‘ tzSJ’”(t)‘ ,S v 2 (|t|v +In (v)) e .

Next, for any j € I, using Fredholm alternative in the linear self-adjoint operator —% +
U" (Ho1(2)) : HX(R) C L2(R) — L2(R), we will deduce the existence and uniqueness of a

Schwartz function Y; satisfying

following estimate

A (Wk,v(t7x)) ~ Z Sj,v(\/ﬁvt)

JjEly

_ddzyj(x) +U" (Hou(2)) Yi(z) = —Rj(x) + <Rj H[/M>L2 }/[071(37)2_
’ ’ HO,l(m)

L3
The approximate solution ¢y,+1,, Will be constructed using the formula of ¢y, ,, more pre-

cisely:

Ut vt B vt_ Ut
@m+LA@x):,H&I(x—%p%,()+r%+L()>_+fLmo(x Prow(®) = Thor1.0(t)

dy (t)2 dy (t)2
I—= 1 —

4
e VL) [g (x + Pros(t) + mﬁl,v(t)) g (—x + Pros(t) + rko,v@))

1 — Sl — 4@
)
Mg -
v t v t _ v t v t
+ 3 Pikow (\/§m‘) [hi,ko (x + Prow(t) + Thot1,0( )) ~ han, ( T+ Prol )frkoﬂ, ( ))
=1

4

T+ Pho v (t) + rko-i-lﬂf(t) —T + Phko v (t) + rko-i-l,v(t)
+ Z Sjw (\/ivt) y] dv(t)Q - yj dv(t)Q )
1 — = 1 —
€Ik 4 1

where 7,41, is a smooth even function satisfying an explicit linear ordinary differential
equation. Finally, for each £ € N>y and 0 < v < 1, we are going to prove the existence of
a value e, having size of order O (m(j)) such that ¢y (v,t,7) = g(t + g, ) satisfies
Theorem [L.4.6]

In Chapter 4, we are going to use the results of Chapter 3 to demonstrate Theorem [1.4.4]

/ I—i_pkv(t)
H ———— | 4u(t, ),
b (W (t,2)

For the proof of this theorem, we will denote the function ¢ by

¢(t7 iL‘) = ¢k(’U, t, l’)—l—LH{),l (x - pk,.v(t> ) + Y2
1 1

EAGE dy (1)2 _ d®)?

1 ! 4
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where py,, is an explicit function obtained in the construction of ¢, of Theorem and

y1(t), yo(t) are the unique real numbers satisfying

v = pra(t) / T+ pro(t)
<U(ta$)aH0,1 (1%@)2)> =0, <U(t;$), H (1W = 0. (1.31)
T4 T4 L2

L2 4

Using the condition satisfied by ¢(¢, ) when t goes to +00, we are going to estimate
the value of [|(u(t), du(?)) | g1 (r)xr2(r) using the same energy estimate methods used in the
proof of the first main result Theorem to estimate the energy norm of g during a long
time interval.

Furthermore, using the orthogonality conditions , we will deduce that the functions
Y1, Yo satisfy an ordinary differential system of equations very close to a well-known linear
differential system. Therefore, using the method of variation of parameters and the estimate
of the energy norm of [|(u(t), yu(t))|| 1 myxr2(r) that we obtained, we are going to evaluate
the parameters y;(t), y2(t) and their derivatives during a large time interval.

Next, using the estimates obtained for yi, ya, [[(w(t), 0xu(t))| 1Ry 12 (=) and a bootstrap
argument, we will deduce that [[(¢(¢,z) — ¢x(t, ), 00(t, x) — Ordn(t, @)l g1y 12 (w) 18 Very
small during a long time interval, which will imply estimate of Theorem [1.4.4 The
first estimate of Theoremwill be proved as a consequence of estimate and a result
about orbital stability of two moving kinks very similar to the Theorem 1 of the article [31]
about orbital stability of a moving kink for a class of nonlinear wave equations of dimension
1+ 1.

The conclusion of Theorem is very unexpected since the ¢° model is non-integrable
and we proved that the collision between two kinks of this model is almost elastic. Moreover,
for any k£ € N, if v > 0 is small enough, Theorems also allow us to describe the
displacement of the two solitons during any time ¢ with precision higher than v*, which is
a strong result about the dynamics of multi-solitons for non-integrable systems. The result
of almost inelasticity obtained in estimates ([1.28]) is also noteworthy and implies that the
defects in the energy norm of the remainder and in the speed of the kinks after the collision
can be very insignificant in comparison with the notable result of inelasticity of the collision
of two solitons obtained in Theorem 1 of article [41] about generalized Korteweg-de Vries
equation.

Furthermore, the results of Theorem open possibilities in the investigation of the
collision and the dynamics of multi-kinks for other one-dimensional wave equation models
with nonlinearities of a higher order than the ¢%. This topic of research has applications and
interests in different fields of Physics, for example, many investigations have been made in

High energy physics, see [14], [17].

1.5 Notation

In this section, we describe the notation that we are going to use in the following chapters.
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Notation 1.5.1. For any D C R, any non-negative real function f : D C R — R, a real
function g with domain D is in O (f(x)) if and only if there is a uniform constant C > 0 such
that 0 < |g(x)| < C'f(z). We denote that two real non-negative functions f,g: D C R — Rxg
satisfy

3o,

if there is a constant C' > 0 such that
f(z) < Cyg(x), for all z € D.

If f < g andg < f, we denote that f = g. We use the notation (x); = max(x,0). If
g(t,z) € CHR, L*(R)) N C(R, H'(R)), then we define g‘(t_g € HY(R) x L*(R) by

9‘3 (9t9 )

and we also denote the energy norm of the remainder ﬁ as

9] = lo®) s + 1929001

to simplify our notation in the text, where the norms ||| g, |2, ||l g1xz2 are defined,
x x x x

respectively, by

d 2
15y = [ DO f@rar, 1502 = [ A2 de, N gz = 1Al + 151

for any fi € H'(R) and any f> € L*(R). For any (f1, f2) € LL(R) x LZ(R) and any (91, 92) €
LA(R) x LZ(R), we denote
((f1, f2), (91, 92)) /fl )91 (%) + f2(x)g2(x) dx

For any functions f1(z), g1(x) € L2(R), we denote

<f1,91> :/Rfl(l’)gl(x) dx

We consider N as the set of positive integers. For any k € N and any smooth function
f R = R, we use the following notation
d$
dzk

o (z) = (x), for all x € R.

Finally, we consider the hyperbolic functions sech, cosh : R — R and we are going to use the

following notations

cosh (z) = €+2€, sech (z) = (cosh ()", for every x € R.
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Chapter 2

Dynamics of two interacting kinks for
the ¢ model
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Abstract

We consider the nonlinear wave equation known as the ¢° model in dimension
14+1. We describe the long-time behavior of this model’s solutions close to a sum
of two kinks with energy slightly larger than twice the minimum energy of non-
constant stationary solutions. Using the energy conservation law and spectral
analysis, we prove the orbital stability of two moving kinks. We show for low
energy excess € that these solutions can be described for a long time of order
—In(e)e 2 as the sum of two moving kinks such that each kink’s center is close
to an explicit function which is a solution of an ordinary differential system of
equations. These ordinary differential equations are obtained using the techniques
from the previous work of M. Kowalczyk, J. Jendrej, and A. Lawrie in 2022 and
a classical argument of modulation analysis. We also prove that our estimate of
the energy norm of the remainder is close to the optimal during a time interval
At of order —In (e)e™2.



2.1 Introduction

2.1.1 Background

We recall the partial differential equation , which, for the potential function U(¢) =
»*(1 — ¢?)?, is denoted by

Rot,x) — ot x) + U (6(t,x) =0, (t,z) € R x R. (2.1)

The potential energy £, the kinetic energy Fy;, and total energy FEiu, associated to the
equation (2.1)) are given by

Fpa9(0)) =y [ 0uo(t2)?do+ [ 6(t,2(1 — 6(1,2))? d,
Buanl0(1)) = [ 00(t,) do,
Bl (0),00(0) =3 [ [0:0(,2)7 + 0i9(t, "] da
+ [0t P01 - o(t,0))? do.

The vacuum set V of the potential function U is the set U~'{0} = {0,1, —1}. We say that if
a solution ¢(t, x) of the integral equation associated to has Fiota (¢, 0ip) < +00, then it
is in the energy space. The solutions of in the energy space have constant total energy
Biotat(9(t), 0:p(t)).

From standard energy estimate techniques, the Cauchy Problem associated to is lo-
cally well-posed in the energy space. Moreover, if Eyq1(¢(0), 0;¢(0)) = Ey < 400, then there
exists M (Ep) > 0 such that [[¢(0, )| ey < M(Ep), otherwise the facts that U € C*(R)
and limy, 1. U(¢) = 400 would imply that [ U(¢(0,z))dx > E,. Therefore, similarly to
the proof of Theorem 6.1 from the book [57] of Shatah and Struwe, we can verify that the
partial differential equation ({2.1)) is globally well-posed in the energy space since U is a Lip-
schitz function when restricted to the space of real functions ¢ satisfying ||¢||;wr) < Ko for
some positive number K.

We recall that the stationary solutions of are the critical points of the potential
energy. From Chapter 1, the only non-constant stationary solutions of with finite
total energy are the topological solitons called kinks and anti-kinks. Moreover, Remark

implies that each topological soliton H connects different numbers vy, vo € V, more precisely,

lim H(z) = vy, ml_lgIFlOOH(:E) =y, VN{H(z)|z € R} = 0.

T—r—00
We recall from ([1.11)) that all kinks of ([2.1]) are given by
e\/i(x_a)
Hyi(z —a) = , H 1 o(x —a) = —Hoa(—2 + a),

V14 Vi)

for any real a. The anti-kinks of (2.1 are given by —Hg1(x —a), Ho1(—z +a) for any a € R.



In the article [35], for the ¢® model, Manton did approximate computations to verify that
the force between two static kinks is repulsive and the force between a kink and anti-kink
is attractive. Furthermore, it was also obtained by approximate computations in [35] that
the force of interaction between two topological solitons of the ¢% model has an exponential
decay with the distance between the solitons.

The study of kink and multi-kink solutions of nonlinear wave equations has applications
in many domains of mathematical physics. More precisely, the model that we study
has applications in condensed matter physics [3] and cosmology [62], [23], [20].

It is well known that the set of solutions in energy space of for any potential U is
invariant under space translation, time translation, and space reflection. Moreover, if H is a
stationary solution of and —1 < v < 1, then the function

olt,x) = H <M> ,
(1= o)}
which is denominated the Lorentz transformation of H, is also a solution of the partial
differential equation (2.1)).

The problem of stability of multi-kinks is of great interest in mathematical physics, see
for example [17], [14]. For the integrable model mKdV, Muiioz proved in [51] the H' stability
and asymptotic stability of multi-kinks. However, for many non-integrable models such as
the ¢% nonlinear wave equation, the asymptotic and long-time dynamics of multi-kinks after
the instant where the collision or interaction happens are still unknown, even though there
are numerical studies of kink-kink collision for the ¢ model, see [17], which motivate our
research on the topic of the description of long time behavior of a kink-kink pair.

For one-dimensional nonlinear wave equation models, results of stability of a single kink
were obtained, for example, asymptotic stability under odd perturbations of a single kink of
¢* model was proved in [29] and the study of the decay rate of this odd perturbation during a
long time was studied in [13]. Also, in [31], Martel, Mutioz, Kowalczyk, and Van Den Bosch
proved asymptotic stability of a single kink for a general class of nonlinear wave equations,
including the model which we study here.

The main purpose of this chapter is to prove Theorem and Theorem [I.4.3] Moreover,
we will describe the long time behavior of solutions ¢(¢, x) of in the energy space such
that

lim ¢(t,z) =1,

T—+00

lim ¢(t,x) =—1,

T—r—00

with total energy equal to 2E,,(Ho)+e¢, for 0 < € < 1. More precisely, in Theorem |1.4.2] we
proved orbital stability for a sum of two moving kinks with total energy 2E,,(Ho1) + € and
we verified that the remainder has a better estimate during a long time interval which goes

to R as € — 0, indeed we proved that the estimate of the remainder during this long time
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interval is optimal. In Theorem [I.4.3] we proved that the dynamics of the kinks’ movement
is very close to two explicit functions d; : R — R during a long time interval.

Theses results are very important to understand the behavior of two kinks after the instant
of collision, which happens when the kinetic energy is minimal. Numerically, the study of
interaction and collision between kinks for the ¢% model was done in [I7], in which it was
verified that the collision of kinks is close to an elastic collision when the speed of each kink
is low and smaller than a critical speed v..

For nonlinear wave equation models in dimension 2+ 1, there are similar results obtained
in the dynamics of topological multi-solitons. For the Higgs Model, there are results in the
description of the dynamics of multi-vortices in [58] obtained by Stuart and in [22] obtained by
Gustafson and Sigal. Indeed, we took inspiration from the proof and statement of Theorem 2
of [22] to construct our main results. Also, in [59], Stuart described the dynamics of monopole
solutions for the Yang-Mills-Higgs equation. For more references, see also [60], [15], [37] and
[21].

In [2], Bethuel, Orlandi, and Smets described the asymptotic behavior of solutions of a
parabolic Ginzburg-Landau equation closed to multi-vortices in the initial instant. For more
references, see also [27] and [55].

There are also results in the dynamics of multi-vortices for nonlinear Schrodinger equation,
for example, the description of the dynamics of multi-vortices for the Gross-Pitaevski equation
was obtained in [52] by Ovchinnikov and Sigal and results in the dynamics of vortices for the
Ginzburg-Landau-Schrédinger equations were proved in [II] by Colliander and Jerrard, see

also [28] for more information about Gross-Pitaevski equation.

2.1.2 Main results

We recall that the objective of this chapter is to show orbital stability for the solutions of
the equation (2.1) which are close to a sum of two interacting kinks in an initial instant
and estimate the size of the time interval where better stability properties hold. The main
techniques of the proof are modulation techniques adapted from [26], [43], and [54] and a

refined energy estimate method to control the size of the remainder term.

Definition 2.1.1. We define S as the set g € L*°(R) such that
Hg(x) - HO,1<$> - H_l’O(I)HH% < +00.

From the observations made about the global well-posedness of partial differential equa-
tion (2.1)) in the energy space and, since 1, —1 are in V, we have that (2.1]) is also globally
well-posed in the affine space S x L2(R). Motivated by the proof and computations that we

are going to present, we consider
Definition 2.1.2. We define for x1, o € R
Hgi(x) == Ho1(x — x2) and H" o(x) == H_y g(xv — 11),
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and we say that x5 is the kink center of Hyi(x) and xy is the kink center of H™} o(x).

In Chapter 1, we verified for any a € R that the kinks Hy ; (z —a) are the unique functions

minimizing the potential energy in the set of functions satisfying

lim_o(t,x) =1, lim_o(t,z) =0, (2.2)

T—>+00

since they also satisfy the partial differential equation which is the Euler-Lagrange
equation associated to the potential energy. Moreover, using the Bogomolny equation ((1.9)
satisfied by the kinks, we can verify that all functions ¢(z) € S have E,o(¢) > 2E,0i(Hop 1),
see also the Subsection 2.2 of [26].

Definition 2.1.3. We define the energy excess € of a solution (¢(t),0:d(t)) € S x LA(R) as

the following value

€= Etotal((b(t)y at¢(t)> - 2Epot(HO,1)-

We recall the notation (), = max(x,0). It’s not difficult to verify the following inequal-
ities
(D1) |Hoa(w)] < eV,
(D2) |H_1(2)| < e~ V2B
(D3) [Hyy(2)] < V26 V2,
(D4) [H' o(2)| < v2e V2@,

Moreover, since

"

Hy, (x) = U (Hoa(x)), (2.3)
we can verify by induction the following estimate

dkH(),l (ﬁ)

Tk <) min (6_2\/§x, e‘/iz> (2.4)
T

for all k € N'\ {0}. The following result is crucial in the framework of Chapter 2 :

Lemma 2.1.4 (Modulation Lemma). There exist Cy,dy > 0, such that if 0 < § < o,
x1, T9 are real numbers with xy — 1 > + and g € H'(R) satisfies ||g|l;n < 9, then for

o(x) = H_19(x — 1) + Ho1(x — xa) + g(xss, there exist unique Yy, Yo such that for
g1(z) = ¢(z) — Horo(z — y1) — Hoj(z — ),
the four following statements are true
1 (g1, O:H_10(x —11)) =0,

2 (g1, OuHoa1(x —y2)) =0,
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J HngH}: < Coo,
4 |y2 — za| + |y — 1] < Cyo.

We will refer to the first and second statements as the orthogonality conditions of the Modu-

lation Lemma.
Proof. The proof follows from the implicit function theorem for Banach spaces. ]
Now, we recall our main results:

Theorem 2.1.5. There exist C,dy > 0, such that if € < 69 and

(¢(0),0:6(0)) € S x L(R)

with Epoar($(0), 0;0(0)) = 2E,u(Ho1) + €, then there exist functions xq, xo € C*(R) such
that, for all t € R, the unique global time solution ¢(t,x) of (2.1)) is given by

¢(t) = H071($ — ZUQ(t)) + H_Lo(iv — l’l(t)) + g(t), (25)

with g(t) satisfying, for any t € R, the orthogonality conditions of the Modulation Lemma

and

—\fa; —T i y 2
e V) - mae |5 (0] + max 507 + (00, 09(0) [prs < Ce (26)

Furthermore, we have that

1(9(0), 019731 < C min ( [16(0). 2O + ] exp (S

nl
€

)) for allt € R.
(2.7)
Remark 2.1.6. In notation of the statement of Theorem for any 6 > 0, there exists

K(9) € (0,1) such that if 0 < € < K(5), Etotar(¢(0), 0:p(0)) = 2E 0t (Ho1) + €, then we have

that |[(9(0), 0g(O)|| g1z < 0 and z5(0) — 21(0) > %, for the proof see Lemma and
Corollary in the Appendiz Section [A]]

Theorem 2.1.7. In notation of Theorem there exist constants 6, k > 0 such that if

€ . . Inl
0 <e<d, then 5 <[[(9(T),09(T))|l g1y 2 for some T € R satisfying 0 <T < (rk+1) T
Proof. See the Appendix Section [A.2] O

Remark 2.1.8. Theorem m implies that estimate (2.7) is relevant in a time interval
(=T,T) for a T > 0 of order —e2ln (€). More precisely, for any function r : Ry —
Ry with limy_,or(h) = 0, there is a positive value §(r) such that if 0 < e < (r) and

H(g(o)’atg(o))HHéxL% <r(e)e, then e S “(g(t)ﬁtg(t))HH;ng for some 0 <t = O<ln€)-

1
€2
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Remark 2.1.9. Theorem [2.1.7 also implies the existence of a 09 > 0 such that if 0 <
€ < b, then, for any (¢(0,z),0:¢6(0,2)) € S x L2(R) with Eja(¢(0),0,0(0)) equals to
2E,0t(Ho1) + €, g(t,x) defined in identity satisfies € < hgfip 1(9(®), QgD g2 »
similarly we have that € < htril_sip 1(9(®), Qg ()|l a2 -

Theorem 2.1.10. Let ¢ satisfy the assumptions in Theorem [2.1.5 and z1, x2, and g be as
in the conclusion of this theorem. Let the functions dy, dy be defined for any t € R by

di(t) =a+ bt — 2\1/§ In (U82 cosh (\/ﬁfut + 0)2), (2.8)
dy(t) = a + bt + 2\1/§ In <U82 cosh (\/ﬁvt + 0)2), (2.9)

where a, b, ¢ € R and v € (0,1) are the unique real values satisfying d;(0) = x,(0), d;(0) =
t;(0) for j € {1, 2}. Let d(t) = da(t) — di(t), 2(t) = xa(t) — x1(t). Then, for allt € R, we
have

12(t) — d(t)] < C'min(ez|t],et?), |2(t) — d(t)| < Celt|.

Furthermore, for anyt € R,

€ max 14;(6) — ,(0)] = O (max (160, 09Ol zz ) (1) e (Ceél't')

je{1,2}

1 . , 2/ 1\ Cez |t]
et o |ds () — i (0)] = O [ max (190, 290D sz v€) () exp | <5
]6{1,2} T x € s
(2.11)

Remark 2.1.11. If||(g(0), 0:9(0))|| 12 = O (€), then the estimates (2.10) and (2.11)) imply
that the functions x;(t), @;(t) are very close to d;(t), d;(t) during a time interval of order

—In(e)e 2.

Remark 2.1.12. The proof of Theorem[2.1.5 and Theorem [2.1.1(} for t < 0 is analogous to
the proof for t > 0, so we will only prove them fort > 0.

Theorem describes the repulsive behavior of the kinks. More precisely, if the kinetic
energy of the kinks and the energy norm of the remainder g are small enough in the initial
instant ¢ = 0, then the kinks will move away with displacement z(t) 2 e2t + In< when ¢ >0
is big enough belonging to a large time interval.

Furthermore, using Theorem [2.1.10] we can also deduce the following corollary.

Corollary 2.1.13. With the same hypotheses as in Theorem [2.1.10, we have that

max ‘dj(t) — xj(t)‘ =0 (maX ( 1(9(0), 5’t9(0))||H;xL§ ,€>eé exp (C€é1|t|>>

je{1,2} In =

+0 (m (160) 2600 ) (1) "o (S 1'“)) .

Proof of Corollary[2.1.15. Tt follows directly from Theorem [2.1.10] and from Lemma
presented in the Appendix Section [A1] O
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2.1.3 Resume of the proof

In this subsection, we present how Chapter 2 is organized and explain briefly the content of
each section.

Section 2. In this section, we prove the orbital stability of a perturbation of a sum of two
kinks. Moreover, we prove that if the initial data (¢(0,z), 9:¢(0,x)) satisfies the hypotheses
of Theorem , then there are real functions z;, x5 of class C? such that for all t > 0

1
€2

|ot,2) — Hg3® — H2G)|

| (001.2) — 133" — H2D)

AN

1 Y
Hz

N|=

AN

€2.
L3

First, for every z > 0, we are going to demonstrate the following estimate
Epot (Hon(x = 2) + Ho10(7)) = 2Epot (Ho1) +2V2e V> + O ((z + e V%) (212)

The proof of this inequality is similar to the demonstration of Lemma 2.7 of [26] and it follows
using the Fundamental Theorem of Calculus.

The proof of the orbital stability will follow from studying the expression
Bpor(H33" + HG + 9) = Bpor(H3" + HE),

using the fact that the kinks are critical points of E,, and the spectral properties of the
operator D?E,; (Hy 1), which is also non-negative. Moreover, from the modulation lemma,

we will introduce the functions x,, z; that will guarantee the following coercivity property
19(8), D912 S Bor(Hoi" + HUG + ) = Epor (Hiy® + HH).
Therefore, the estimate above and will imply that
VIO O) 4 (g(0), B9 (0) | ns S (2.13)

From the orthogonality conditions of the Modulation Lemma and standard ordinary dif-
ferential equation techniques, we also obtain uniform bounds for ||&;(¢)|| jee(r) » ;)] oo gy
for j € {1, 2}. More precisely, the modulation parameters z; and x5 are going to satisfying

the following estimate

e (5w + 150 ey S € (2.14)

The main techniques of this section are an adaption of sections 2 and 3 of [26].
Section 3. In this section, we study the long-time behavior of &;(t), x;(t) for j € {1, 2}.
More precisely, we prove that the parameters x; and o satisfy the following system of

differential inequalities

;(t) =p;(t) + O (¢(1)), (2.15)
Pyt =(-1y— L 4 Byt (Hiy 4+ H 1) + 0 (a(t) (2.16)
HHOJ . dz 2= (t)1(1)
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for j € {1,2}, where a(t),((t) are non-negative functions depending only on the functions

(@5(0) ey » (E5(0) ey > (9(8), 0ig())] gz and satistying

1
< _
a(t) < 1111 T (1) Seln o for all t € R, (2.17)

because of the estimates ) and - However, the estimates can be improved
during a large time interval if we could use the estimate in the place of Hﬁ ‘ = O(e2).

Our proof of estimates - is based on the proof of Lemma 3.5 from [26]. First,
for each j € {1,2}, the estimate is obtained from the time derivative of the equations

(¢(t,x) — H 1 0(x — 21(t)) — Hop (z — 22(t)) , O Hoa(x — 22(t)))
(o(t,x) — Hoyo(x — 21(t)) — Hop (z — 22(t)) , 0. H 1 0(x — 21(2)))

0,
0,

which are the orthogonality conditions of the Modulation Lemma. Indeed, we are going to
obtain that

<@amwaH“%>>

i (t) = N +0 (1),
0yp(t, x ,3ng2j(t) x
jjﬁ):j : ||a)H01||2’ . roww).

Next, we are going to construct a smooth cut-off function 0 < y < 1 satisfying

(z) = {3 AT

,if x>0,

where 0 < 7, 8 < 1 are parameters that will be chosen later with the objective of minimizing

the modulus of the time derivative of

(06(1), 0. HIG () + 00 (x (555255) 9(1)))

pi(t) =— H@HCHOJH% 7
(8900, 0150 @) + o, ([ x (5] o)
2 6. Hoa 7

from which with the second time derivative of the orthogonality conditions of Modulation
Lemma and the partial differential equation , we will deduce the estimate for
JjeA{l, 2}

Section 4. In Section 4, we introduce a function F(t) with the objective of controlling

H|| ),0:9(1) || 11512 || for a long time interval. More precisely, we show that the function

F(t) satisfies for a constant K > 0 the global estimate H|| )5 0eg ()| g1 12 5 F(t)+ Ke?

and we show that |F(t)| is small enough for a long time interval. We start the function from

the quadratic part of the total energy of ¢(t), more precisely with
D(t) = 0r9(t, ) + 19:9(t, )52 + [ UD(HEO (@) + D (@)gt, ) da
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However, we obtain that the terms of worst decay that appear in the computation of D(t)

are of the form
/R [8,5 (g(t, :v)k)} J(x1, o, 1, o, ) dz, (2.18)
where k € {1,2,3} and the function J satisfies for some [ € Q> the following estimates

9 : .
37%‘]( 1(), 22(t), &1(t), 22(t), 7)

P : )
aT:JJ(;pl( ), x2(t), T1(t), To(t), x)

< €l

~ )

L3

sup max
teR J€{1,2}

sup max
teR j€{1,2}

L2
and

sup || J (z1(t), z2(t), £1(¢), 22(8), ) || 12 S " if k = 1, otherwise
teR

Sup |7 (z1(t), 22(8), 21(), 22(8), 2 o) S ¢ when k € {2,3}.

But, we can cancel these bad terms after we add to the function D(t) correction terms of the
form

- /R (g(t,0)%) T(ar(8), 2a(t), d1(8), a(2), 2) d, (2.19)
and now, in the time derivative of the sum of D(t) with these correction terms, we ob-
tain an expression with a size of order €2 ||(g(¢), 6?1tg(75))||’;{;X 7z Which is much smaller than
¢ ||(g(t),3tg(t))||l;{%><L% because of inequality obtained in Section 2 of this chapter.

Next, we consider a smooth cut-off function 0 < w < 1 satisfying

and wy(t,x) = w (#ﬁ)@)) . Based on the argument in the proof of Lemma 4.2 of [26], we

aggregate the last correction term
Z/R&gg(t, x)0pg(t, x) [21(t)wr (t, ) + 2o(t) (1 — wy(t, x))] dx,
whose time derivative will cancel with the term
/ U (HGAO (x) + H () (d2(0) 0. H33 Y + 1(0)0,H D) g (¢, 2)? da,

which comes from D(t), since we cannot remove this expression using the correction terms
similar to (2.19). Finally, we evaluate the time derivative of the function F(t) obtained from
the sum D(t) with all the correction terms described above.

Remaining Sections. In the remaining part of this chapter, we prove our main results, the
estimate of Theorem is a consequence of the energy estimate obtained in Section
4 and the estimates with high precision of the modulation parameters x;(t), x2(f) which
are obtained in Section 5. In Section 5, we prove the result of Theorem [2.1.10, where we
study the evolution of the precision of the modulation parameters estimates by comparing it
with a solution of a system of ordinary differential equations. Complementary information

for Chapter 2 is given in Appendix Section and the proof of Theorem [2.1.7] is in the
Appendix Section [A.2]
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2.2 Global Stability of two moving kinks

Before the presentation of the proofs of the main theorems, we define a function to study the

potential energy of a sum of two kinks.

Definition 2.2.1. The function A : R, — R is defined by
A(z) = Epot(Hg 1 (z) + H_10(7)). (2.20)

The study of the function A is essential to obtain global control of the norm of the
remainder g and the lower bound of z5(t) — 1 (¢) in Theorem [2.1.5]

Remark 2.2.2. [t is easy to verify that E,u(Ho1(x — x3) + H_10(x — 21)) = Ept(Ho 1 (z —
(22 — 1)) + H_10(2)).

We will use several times the following elementary estimate from the Lemma 2.5 of [26]

given by:

Lemma 2.2.3. For any real numbers xs, x1, such that xo —x1 > 0 and o, 5 > 0 with o # 3
the following bound holds:

/R emale=e) o —Blar—a)t gy < o= min(af)(@2—a1)

For any a > 0, the following bound holds
/Re_c“(a’_”“)*e_a(m_’:)Jr dr <o (14 (3 — z1))e"@2721),
The main result of this section is the following
Lemma 2.2.4. The function A is of class C* and there is a constant C' > 0, such that

1. |A"(2) — 4V/2e7 V2| < Oz + 1)e2V22,

2. |A'(2) + 467V < Oz + 1)e 222,

3. |A(2) = 2E,0(Ho 1) — 2v/2e7V?%| < C(z 4 1)e 2V22,

Proof. By the definition of A, it’s clear that

2
= / ( H (o +H_1o(:1:)D dz + /R U(Hz(x) + Horo(x)) da
— 0. Houll2, + [ 0uHG 1 (@)0 Hovolw) da + [ U(HG y(2) + Ho1(2)) da

Since the functions U and Hj; are smooth and 0,Hy ;(z) has exponential decay when |z| —

+00, it is possible to differentiate A(z) in z. More precisely, we obtain

’

A'(2) = [ 025 x)axH,l,o(:c) dv — [ U'(H () + Horo(2)0, HG () da

= [ 0uH; (@) [U'(Ho10)(@) = U'(Hovo(a) + Hi o (2))] da
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For similar reasons, it is always possible to differentiate A(z) twice, precisely, we obtain

1

(H_10(x) + Hg 4 (z))

—02HG () U (H-10(z)) = U (H_10(x) + Hgy(2))] da. (2.21)

A'(2) = [ 0.H; (@)U

Then, using integrating by parts, we obtain
A'(z) = /R 0, Hyy ()0, H-10(2) [U" (H_10(2)) — U (H_r0(x) + Hy, (2)] do. (2:22)

Now, we consider the function

/

B(z) = /R 0 Ho ()0, H_19(x + =) [U"(0) — U (Ho, ()] da. (2.23)

Then, we have

1

A'(2) = B(:) = [ 0cHi ()0, H10(0) U (Horo(a)) = U (Horolw) + H, (@) do

1"

~ [ 0uHg ()0 H 10w) U (0) = U (5 (@) | o (2:21)

Also, it is not difficult to verify the following identity

1"

(U (H_10(x)) = U"(Ho10(z) + Hi, ()] = [U"(0) = U"(Hg y(2))] =

Horole) [Hi (@)
—/ v /“ U® (w; + wp) dwr dws. (2.25)
0 0

So, the identities (2.25)) and (2.24) imply the following inequality

"

‘A dx.

H_1(x) Hg}l(x)
(2) ~ B(2)| < /IR GxHél(x)@xH_l,o(x)” /0 /0 U® (w; + wy) dwr dws

Since U is smooth and ||H | ;. = 1, we have that there is a constant C' > 0 such that

[A4"(2) - B(z)| < 0/R

Now, using the inequalities from (D1) to (D4) and Lemma to inequality ([2.26)), we

obtain that there exists a constant C; independent of z such that

0uH{ (2)0: H 1 o(x) H 1 () HG ()| da (2.26)

A" (2) = B(2)| < Ci(z + 1)e 2V, (2.27)
Also, it is not difficult to verify that the estimate
axH,L(](Jj) — \/567\/536

and the identity (2.23)) imply the inequality

< C'min(e V2% ¢=V2), (2.28)

"

B(z) — v2e V% /]R eV, Hy o (2)(U" (0) — U" (Ho (x))) dx

N / HO,l(x)a$H0,1($) min (6_3\/5(“'2), e—\/g(l”rz)) dr
R

< / 6—2\/5(—x)Jr min (6—3\/5(904-2) e—\/ﬁ(x—i—z)) dr
R

Y

< /0 6—2\/§(z—z)+6—\/§x dr + /+OO 6—2\/§(z—x)+6—3\/§(ac)+ dr.
—00 0
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Since we have the following identity and estimate from Lemma [2.2.3]

0 —2v/2z

/ o 2V2(z—x) ,~V22 g _ € 7 (2.29)
o V2
/*‘” 2V =BV < o2VEE (2.30)
0
we obtain then:
’B(z) _ \/567\@/ e V20, Hoy ()[U”(0) = U" (Hoa(x))] dx’ Se (2.31)
R

which clearly implies with the inequality
‘A”(z) — 2 V% /R eV 0, Ho 1 () [U” (0) = U” (Hoa (x))] dx’ (z+1)e2V%. (2.32)
Also, we have the identity
/R (8(Hoa (x))* — 6(Hou () )e V> dr = 2V/2, (2.33)

for the proof see the end of Appendix Since we have the identity U®(0) — U®)(¢) =
24¢% — 30¢*, by integration by parts, we obtain

e~ V2 3 )
/RﬂaxHo,l(x) [U (0)—-U (Hoyl(:z:))] dx = /R (8(}[071(5,;))3 _ 6(H0,1(g;))5)@—\/5x d.

In conclusion, inequality (2.32)) is equivalent to‘ "(2) — 4v2e V2| < (2 4 1)e2V22,

The identities

U'(6) + U (0) — U (& + 0) = 2460(6 + 0) —6( s <5> ¢J‘95f'>,

Jj=1 J

= — [ 0., (@) [U'(Hi 1 (@) + Ho10(2) + U (Horolw) = U'(Hi y(2)] da

and Lemma|2.2.3|imply the following estimate for z > 0 ‘Al(z)’ <e V% g0 limy. 5 4e0 ’A/(z)‘ =
(z +1)e 2V2% from z to 400

0. In conclusion, integrating inequality ‘Au(z) — 4/2e7V%| <

we obtain the second result of the lemma

A(2) + 4672 S (2 4+ 1)e 2V (2.34)

Finally, from the fact that lim. ., Epot(H_10 + H§ (7)) = 2Ey,(Ho,1), we obtain the
last estimate integrating inequality (2.34]) from z to +oo, which is

2Bt (Ho) +2v2e V% — A(2)| S (2 + 1)e 2V,
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It is not difficult to verify that the Fréchet derivative of E,, as a linear functional from
H'(R) to R is given by

(DEpor(¢))(v) = /R@xcb(x)@cv(x) + U (¢(x))v(x) da. (2.35)
Also, for any v, w € H'(R), it is not difficult to verify that
(D*Epor(@)0, w) = /R 0,0(x)dpw(x) di + /R U (6(2))o(x)w(z) d. (2.36)

Moreover, the operator D?E,, (Ho1) : H2(R) C LZ(R) — L2(R) satisfies the following
property.

Lemma 2.2.5. The operator DzEpOt (Ho1) satisfies:

ker (D Epot (Ho1)) = {c0:Hoa(x)| c € R},

1
D*Epot (Ho1) 9,9) = ¢ |ll9ll12 = (9: 0 Hop)* oo |
(D*Epot (Hon) 9.9) > ¢ | lgll72 — (9, 0. Ho,) ol
for a constant ¢ > 0 and any g € H'(R).
Proof. See Proposition 2.2 from [26], see also [34]. O

Lemma 2.2.6. [Coercivity Lemma] There exist C,c, 6 > 0, such that if xo — x1 > %, then
for any g € HY(R) we have

(D*Epor(H33 + H 0)g, 9) > cllgllfy — C [(9, 0 H™ o) + (g, 0:H53)?| (2.37)

Proof of Coercivity Lemma. The proof of this Lemma is analogous to the proof of Lemma
2.4 in [26]. O

Lemma 2.2.7. There is a constant Cs, such that if xo — x1 > 0, then

| DEwt(HG3 + HT )|, < CoemV2e2mm), (2.38)

L3
Proof. By the definition of the potential energy, the equation ({2.3]), and the exponential decay
of the two kinks functions, we have that

’

DEy(H3 + H" o) = U (Hg3 + H" o) — U (Hg3) — U (H™, )

as a bounded linear operator from L2(R) to C. So, we have that

4
x T x x x T 5 x j x —j
DEpo(H§% + HZY o) = —24HZ3 H o[ HE3 + HT) ] + 6 { > ( j> (H" o) (Hi3)* |

J=1

and, then, the conclusion follows directly from Lemma [2.2.3] (D1) and (D2). O
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Theorem 2.2.8 (Orbital Stability of a sum of two moving kinks). There exists 69 > 0 such
that if the solution ¢ of satisfies (¢(0),0:0(0)) € S x L2(R) and the energy excess
€ = Eiotar(¢) — 2E,0t(Ho1) is smaller than 0y, then there exist x1, x2 : R — R functions of
class C?, such that for all t € R denoting g(t) = ¢(t) — Ho1(z — 22(t)) — H_10(z — 21(t))
and z(t) = xo(t) — x1(t), we have:

L lg(®)] 1 = O(e2),
2. z(t) > % [hl% —|—1n2} ,

3. 10:p(®)]72 < 2e,
4. maxjeqi 2y |27 + max;eq 21 |3 ()] = O(e).

Proof. First, from the fact that Eypa(p(x)) > 2E,+(Hop 1), we deduce, from the conservation

of total energy, the estimate

lo()2; < 2e. (2.39)

From Remark [2.1.6] we can assume if € < 1 that there exist wy, wy € R such that
¢(0,2) = Hoy(x —wa) + H_1 o(x —wy) + g1(),

and

lg1ll gy < 0, wa —wi > 5

for a small constant 6 > 0. Since the equation ({2.1)) is locally well-posed in the space
S x L(R), we conclude that there is a §; > 0 depending only on § and e such that if
—51 S t S 51, then

||§Z5(t, ZL’) — H(]J(J] — wg) — H_Lo(l’ — w1)||H% S 25 (240)

If §, ¢ > 0 are small enough, then, from the inequality (2.40) and the Modulation Lemma, we
obtain in the time interval [—dy, §1] the existence of modulation parameters x(t), x2(t) such
that for

g(t) = o(t) — H0,1<x — xa(t)) — Hq,o(l' —x1(t)),
we have
(9(t), O0uHoa(x — 22(2))) = (g(t), O H-10(x — 21(t))) =0, (2.41)

[22(t) — 21(8)] + gl < 0 (2.42)
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From now on, we denote z(t) = z5(t) — z1(¢). From the conservation of the total energy,
we have for —§; < ¢ < 6§, that

o) o
Eiorar(¢(1)) :% + Epor <H0,21(t) + Hfl(,g))

DBy (B3 + B, 9(1))

. (D By (HA® + H™)g(1), 9(1))

+Olg(®)ll77)-

2
From Lemma [2.2.4] and (2.42), the above identity implies that
:Haﬁ(;)ui? o /3 VD) 4 <DE Ot<H32(t) n Hﬂ(f)))? g(t)>
+ <D2E * (ngl )g > + O< ||g(t)||§{% + z(t)e_z\/iz(t)) (2.43)
for any t € [—01,01]. From (2.38]), we can verify that ’(DEpot(Hgﬁ(t) —i—Hfll(f)))? g(t))‘ <
Che V2D ||g (1) mi(r) - S0, the equation and the Coercivity Lemma imply, while —d; <

t < 41, the following inequality

dp(t)|? cllg@®)]?

+0 (g + 2(8)e™>V>0) . (2.44)

Finally, applying the Young inequality in the term Chev2%(®) llg(®)]| iRy, We obtain that
the inequality (2.44]) can be rewritten in the form

0 ¢ t 22 cllg(t 2 1
2 10O 4 oymeva SN o (1 + )+ 1e20) . (1)

Then, the estimates (2.45)), (2.42) imply for 6 > 0 small enough the following inequality

2 2
000N e cloOl

2.46
5 5 (2.46)
So, the inequality ([2.46]) implies the estimates

VO < 2 gl S« (247)

1
for t € [=61,01]. In conclusion, if % Sln (%) 2 we can conclude by a bootstrap argument that
the inequalities (2.39)), (2.47)) are true for all t € R. More precisely, we study the set

a ¢ 2 21
- fremen U0 o, B0y, )

and prove that M = sup,c- b = +00. We already have checked that C' is not empty, also C
is closed by its definition. Now from the previous argument, we can verify that C' is open.

So, by connectivity, we obtain that C' = R,.
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In conclusion, it remains to prove that the modulation parameters x1(t), z2(t) are of class
C? and that the fourth item of the statement of Theorem 2.2.8 is true.
(Proof of the C? regularity of z;, x5, and of the fourth item.)

For 6y > 0 small enough, we denote (y;(t), y2(t)) to be the solution of the following system
of ordinary differential equations, with the function ¢;(t) = ¢(¢,z) — Hgfl(t)(x) - H fll(fo) (x),

(10:Hoall7, = (or(e), 2E20) Yon ) + ( (0135, 0.HY) Jinlt) =
—(0o(t), 0 HYG(x)), (2.48)

((@eH, 0.17Q) Yin(t) + (10 Hoa )13, — (910, O2HE) Jint) =
—(2u8(1), QHF " (x)), (2.49)

with initial condition (y2(0),y1(0)) = (22(0),21(0)). This system of ordinary differential equa-
tions is motivated by the time derivative of the orthogonality conditions of the Modulation
Lemma.

Since we have the estimate In (1) < 22(0) — 21(0) and ¢1(0) = ¢(0), Lemma and the
inequalities in 7) imply that the matrix

||amH01Hia—< 1(0), 2009 (0,13, 0,0

(et o) outuall 0 >,az S I

is positive, so we have from Picard-Lindel6f Theorem that yo(t), yi(¢) are of class C* for
some interval [—4,d], with § > 0 depending on |z5(0) — z1(0)| and e. From the fact that
(y2(0),41(0)) = (22(0), x1(0)), we obtain, from the equations (2.48]) and ([2.49), that (y2(t), y1(t))
also satisfies the orthogonality conditions of Modulation Lemma for ¢ € [—4, 6]. In conclusion,
the uniqueness of Modulation Lemma implies that (y2(t), y1(t)) = (x2(t), z1(t)) for t € [—4,d].
From this argument, we also have for ¢ € [—4,d] that e~ V2w()-n() < 555 By bootstrap,

we can show, repeating the argument above, that
sup{C > 0| (y2(t),11(t)) = (za(t), 21(¢)), for t € [-C,C]} = +o0. (2.51)

Also, the argument above implies that if (y1(¢), y2(t)) = (z1(¢), z2(t)) in an instant ¢, then
Y1, y2 are of class C' in a neighborhood of ¢. In conclusion, xy, zo are functions in C'(R).
Finally, since || g(t)|| ;: = O(e2) and e~ V20 = O(¢), the following matrix

||axH0,1||ig20 - <g(t), 6923Hf11€6)> <ax]-]g21 P H$1(t)>

M(t) = T2 1 9
(0,H33", 0, HE{)) 102 Ho |72 — < (t), 2Hgy")

(2.52)

is uniformly positive for all ¢ € R. So, from the estimate [|0;¢(t)||;2 = O(e 2), the identities
zj(t) = y;(t) for j = 1,2 and the equations (2.48) and (2.49)), we obtain

max |%;(t)] = O(e?). (2.53)

je{1,2}
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Since the matrix M () is invertible for any ¢ € R, we can obtain from the equations (2.48)),
(2.49) that the functions @4 (t), Z2(t) are given by

1(t) 1| <6t¢(t), 3:1:Hf11(,6)(x)>
L.Z(t)] = M) [— <at¢(t)7 angi(t)(x)> : (2.54)

Now, since we have that (¢(t), 9,¢0(t)) € C(R, S x L2(R)) and z1(t), z2(t) are of class C*, we
can deduce that (g(t),d:9(t)) € C(R, HY(R) x L2(R)). So, by definition, we can verify that
M(t) € C*R,R?).

Also, since ¢(t,x) is the solution in distributional sense of , we have that for any
Y1, Y2 € R the following identities hold

(0, HY, 930(t)) = —(02H, 0:0(t)) — (0. HEZY, U'(6(1))),
(0. HY, 5, B2(t)) = —(2H", o, 0u0(t)) — (0. HY, 5, U'(6(1))).
Since is locally well-posed in S x L2(R), we obtain from the identities above that the
following functions h(t,y) = <E)ng71, 8t2q5(t)> and [(t,y) == <8mH31,0, 3t2¢(t)> are continuous
in the domain R x R.

So, from the continuity of the functions h(t,y), I(t,y) and from the fact that x;, xs €
C'(R), we obtain that the functions

hi(t) = = (ro(t), 0 HIG (1)), halt) = — (Dro(t), 0. Hi " (x))

are of class C!. In conclusion, from the equation (2.54]), by chain rule and product rule, we
verify that z;, x5 are in C*(R).
Now, since z1, T3 € C*(R) and i, @9 satisfy (2.54)), we deduce after differentiate in time

the function

the following equations

1) (19 Hoa 3, + (Deg(0), 0.HQ) ) + () (017 10,6H51t>>

=i (8 (O2HTYT, 0ug(t)) + a1 () (OTHTAG), Qg (1))
o (t)? (0. HE, O2HGY >+m(>(my o0, 0. H33") (2.55)
i (1) (G, 00() — (0.HG, 9Fo(D)),

ot >( 10: Hoal[7, + (D:9(0), axH&M) iy (1) (0, H2Y), 0, H3")

=io(t)* (07 Ho 3", Dag(1)) + da(t) (O2HGR", Drg(h))
i (B (t) (0. HEYY, 02HGA) + i (1) (0. H33", 02HT)  (2.56)
+ia(t) (O2HGE", 0i0()) — (0:HG3", 3f6(1))
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Also, from the identity g(t) = ¢(t) — Hfll(,g) — Hgfl(t), we obtain that 0,g(t) = 0,d(t, x) +
Z1(t)0y H”“l(é) + @o(t )@H&ﬁ(t), so, from the estimates (2.39)) and (2.53)), we obtain that

109 (£)]] 12 = O(e?). (2.57)

Now, Since ¢(t) is a distributional solution of (2.1]), we also have, from the global equality
o(t) = H™ 0 + HrQ(t + g(t), the following identity

(0. HAT, 076 (1)) = (0. HAY, 929(t) — U (HAT) 9(1))
— (0.5, [U" (HAQ + H33") - U (H5E)] 9(1))

, U (e

+(0.HA5Q, U (H2D) + U (H3") - U (52D + H3 )
— (012D U (HD + B33 + g(t) — U (HHE + H3V))
+ (0,12 Q, U" (HEG + H33®) (1))

Since 9, H\¢) € ker (D2Epo (H™\()) ), we have by integration by parts that
(0,12, 2g(t) — U" (HAE) g(t)) = 0.

Since we have

’

U (H5Q) + U () - U (B + HEY)
— 2 HO (HO) + B - 6§;(>(mw)@gw)j, (258)
Lemma 223 implies that
(01759, U (HQ) + U7 (H3") = U (2] + H30)) = OV,
Also, from Taylor’s Expansion Theorem, we have the estimate
(0,520, U" (H2G + HZ® + g(1)) - U (H“(“ + Hg3 "))
{0,158, U (5 + HEO) (1)) =0(lg (1))

From Lemma [2.2.3] the fact that U is a smooth function and Hy; € L>(R), we can obtain

(o150, [ (12 + 1350) = U (179)] 90)) =0 ( [ 0§ HEE 1g(0)] do )
zoG-Z w@m%aw%.
In conclusion, we have
(0179, 020(t)) = O( gl + V=), (259)
and by similar arguments, we have

(0:H53, 320(0)) = O(Ilg(@)[, + V™). (2.60)
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Also, the equations ([2.55)) and ([2.56|) form a linear system with & (¢), #2(t). Recalling that
the Matrix M (t) is uniformly positive, we obtain from the estimates (2.47)), (2.53), (2.57),

(2.59) and (2.60) that

max |i;(t)] = O(e). (2.61)

je{1,2}

]

The Theorem [2.2.8can also be improved when the kinetic energy of the solution is included

in the computation and additional conditions are added, more precisely:

Theorem 2.2.9. There exist C, ¢, dg > 0, such that if 0 < € < dg, (¢(0,2),0,0(0,2)) €
S x LA(R) and Eioru((¢(0,2),0:6(0,))) = 2E,u(Ho1) + €, then there are xq, 1 € C*(R)
such that g(t,z) = ¢(t,x) — Hfizl(t) (x) — Hfll(}? (x) satisfies

(g(t,2), 0, Hs3" () = 0, {g(t, 2), 0. H"{ () =0,
and, for allt € R,

ce < e V20O | (g (1), g (1)) 157112 + 81 (1) + [d2(1)]* < Ce. (2.62)

Proof. From Modulation Lemma and Theorem [2.2.8| we can rewrite the solution ¢(¢) in the
form
O(t,) = HUG (2) + H3t (@) + gt )

with z(f), x2(t), g(t) satisfying the conclusion of Theorem [2.2.8 First, we denote
6o(t) = (HAG (@) + H3 " (@), —ia ()0 HAG — d2(0)0,H33 ") € S x LA(R),  (2.63)

then we apply Taylor’s Expansion Theorem in E(¢(t)) around ¢, (t). More precisely, for R, ()
the residue of quadratic order of Taylor’s Expansion of E(¢(t), 0:¢(t)) around ¢,(t), we have:

2Epot(Ho 1) + € =Eitotat (00 (t)) + (D Eiotar(96 (1)), (9(t), drg(t)))

(D B (90 1)) (9 )0l ) (8:000)) , p o,

(2.64)

such that for (v1,12) € S x LZ(R) and (vy,vq) € Hl(R) x L2(R), we have the identities

2 2
10av1 (15 + lIvallLs

Eiotal(V1, 12) = ””2 L+ /RU<I/1(I)) dx,
(D Eyotar(v1,112), (v1,02)) = /R Op11 () 001 () + U/(Vl)vl + vo(x)vo(z) de, (2.65)
DzEtotal(Vh VQ) = [_ag +OU (Vl) g] (266)

with D?E1(v1, v2) defined as a linear operator from H2(R) x L2(R) to L2(R) x L2(R).
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So, from identities (2.65]) and (2.66), it is not difficult to verify that

Ro(t)= [ U (H“‘”( )+ Hy3" (@) + g(t,2)) = U (H2G () + Hg3 () da

- [V (#0@) + B30 @) g(t.2) do
/ U (H2Q (@) + H3" (2)) g(t, x)?
_ dzx,
2
and, so,
1R, ()] = O (lla®)3s) - (2.67)

Also, we have

(DEsora(¢(t)), (9(t),9ig(1))) = (DEpey (H““) + Hi ), g(t))

- (2.68)
< 110 HEG + o (1)0, Hi3, Oyg(t )>
The orthogonality conditions satisfied by ¢(t) also imply for all ¢ € R that
(ug(t), 0 H™)) = inn(t) (g(t), 22H")), (2.69)
(Dug(t), 0. HA") = in(t) (g(t), 2HZZ"). (2.70)

So, the inequality (2.38]) and the identities (2.68)), (2.69)), (2.70) imply that

(D Brar(66 (0). (9(0): 090} = O( 9@y sup [250 + IOl e¥>0). (271)

je{l,2}

From the Coercivity Lemma and the definition of D?FEy4(¢4(t)), we have that

(D?Eroraa (09 (1)) (9(£), 0u(£)), (9(8), Drg(1))) = 11(9(0), Drg(D) 77115 - (2.72)

Finally, there is the identity
(0. HAQ (@) + ()0 3 ()
=24y (t)ia(t) (0 H3Y s OuH 1) + 1(6) |0 Hoa |7

+ia () |0n Hoa |72 -

(2.73)

From Lemma [2.2.3] we have that ‘(&CHSJ, 8xH_170)’ = O(ze’ﬂz) for z big enough.
Then, it is not difficult to verify that Lemma [2.2.4] (2.67), (2.71), (2.72) and (2.73]) imply
directly the statement of the Theorem [2.2.9] which finishes the proof. O

Remark 2.2.10. Theorem[2.2.9 implies that it is possible to have a solution ¢ of the equation
(2.1) with energy excess € > 0 small enough to satisfy all the hypotheses of Theorem [2.1.5.
More precisely, in notation of Theorem |2.1.5, if ||(9(0,2), 0:g9(0,2))|| 1y 2 <K €2 and

e V2O 431 (0)% + i5(0)2 X e,
then we would have that Eyoq(4(0), 0,¢(0)) — 2E,0t(Ho 1) = €.
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2.3 Long Time Behavior of Modulation Parameters

Even though Theorem [2.2.8| implies the orbital stability of a sum of two kinks with low
energy excess, this theorem does not explain the movement of the kinks’ centers z5(t), x;(t)
and their speed for a long time. More precisely, we still don’t know if there is an explicit
smooth real function d(t), such that (z(t), 2(t)) is close to (d(t),d(t)) in a large time interval.

But, the global estimates on the modulus of the first and second derivatives of (), xo(t)
obtained in Theorem [2.2.8| will be very useful to estimate with high precision the functions
x1(t), x2(t) during a very large time interval. Moreover, we first have the following auxiliary

lemma.
Lemma 2.3.1. Let 0 < 6, v < 1. We recall the function
A(z) = Epor(Hgy + H-10)
for any z > 0. We assume all the hypotheses of Theorem and let x(x) be a smooth

function satisfying

1, if x <0(1—7),

x(r) = {1 =00 =) (2.74)
0, ifx >0,

and 0 < x(z) <1 for all x € R. In notation of Theorem we denote

xolt:2) = (T, g8 = (o), i9(0)) € H(®) x L2(R)

2(t)
and HﬁH S R C) "
! L VE(2)
max_|T; 1+ + i ] (e - )
Hﬁ je{l, 2}' ! [ )y | 2(6)? e 2}| i(0)]
+ max .Tj(t)22(t)6_\/§z(t) + maX;e{1,2} x](t) (6—2\/52(15)(;_::))
se{12y z(t)y
L L —ﬂz(t)(m>)]

t =] 2.75

" ’ ( Lﬁz(t)? * vz(t) * (e (2.75)

Then, for 0 = é% and the correction terms

(9i6(t), 0, H") () + Ba(xolt, 2)g(1)))

pl(t) = ||3 H01Hi2 )
b (0(1), 0. HG3 " (2) + 0u([1 = xo(t, 2)]g(t)) )
b “aa:HO,lHLg 7

we have the following estimates, for j € {1,2},

oz [+ ] (g o]« ) e
+ max [i5(1)] 2(t)e VO,
p;(t) + (—1)]’% < af(t). (2.77)
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lnln(%

Remark 2.3.2. We will take v = (L) - With this value of v and the estimates of Theorem
we will see in Lemma [2.5.1] that 3C > 0 such that

*S 2
’> < H1>< 2

1z Za (20|t|e§>
X :
Inln (1) P Ini

Proof. For v < 1 enough and from the definition of x(z), it is not difficult to verify that

|

We will only do the proof of the estimates ([2.76]) and (2.77) for j = 1, the proof for the case
j = 2 is completely analogous. From the proof of Theorem [2.2.8, we know that (), @o(t)

solve the linear system

<1

1
‘L"O(R) ~ ol

<.
.

!

X

"

X (2.78)

)

Lo (R)

wle]- L 28]

where M (t) is the matrix defined by (2.52). Then, from Cramer’s rule, we obtain that

~ (200, 0129 ((DH”, 0,9(0) + 0, o2, )
- () —
(1) det(M(?))
{00), 0. H 02 (0. H32 ", 0, HYY) 2.79)
det(M( ) S
. ol 1 .
Using the definition of the matrix M (t), g‘—SH O(e2) and Lemma [2.2.3| which
implies the following estimate
(0,H33", 0, HG) = O (2(t)e V1), (2.80)

we obtain that

det(M(t)) = |0: o 7

_ (Hﬂ” + (1) —2fz<t>> O(eb). (2.81)

So, from the estimate (2.81)) and the identity (2.79)), we obtain that

(0(t), D HET)
10: Hoa [

= o( [(0.5. 0.1310) (a0(t), 0.151) )
0 (Kat(ﬁ(t), O, H™\ D (x Hﬁ ‘ + z(t)QemZ(t)D . (2.82)

Finally, from the definition of g(¢,z) in Theorem we know that

0t ) = —in ()0, H Y (x) — do(£)0, Hy 3" (x) + Dug(t, ),
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from the Modulation Lemma, we also have verified that

(oug(0), 0,17y = O g8} 1110011 ),
(0ug(0), 0.3y = O( g8} 20011 ),

‘ﬁ” + maxcq,9y [4;(t)] < 1. In conclusion, we can

)

+0 (z@)e—ﬁz( ) max |i;(t)] ) (2.83)

je{1,2}

and from Theorem [2.2.8 we have that

rewrite the estimate (2.82)) as

10 Ho 172

=0{ s s o] + |5

Jj€e{1,2}

By similar reasoning, we can also deduce that

(06(1), 0. HG3 ")

#al :(maxx H H H )
O o 2, g 01| +
—V2z(t)
—i—O(z(t)e max |z;(t)] ) (2.84)

Following the reasoning of Lemma 3.5 of [26], we will use the terms p;(t), pa(t) with the
objective of obtaining the estimates (2.77)), which have high precision and will be useful later

to approximate x;(t), ;(t) by explicit smooth functions during a long time interval.

First, it is not difficult to verify that
@16(0), 0:(0(09(0))) = O [1+ ‘X(’t)“] Jo@|+ mas 1201 |58 ).

which clearly implies with estimate (2.83)) the inequality (2.76) for 7 = 1. The proof of
inequality (2.76) for j = 2 is completely analogous.

Now, the demonstration of the inequality (2.77) is similar to the proof of the second
inequality of Lemma 3.5 of [26]. First, we have

(90(8), (0. H D (@)))  (20(1), B:(Drxo(t)g(1)))

pi(t) =—

10 Ho 172 10, Ho 172
(0:(ag®), do())  (0:HNT, o(t))
10: Hoa 7. 102 Hoa |17
(Dox0(t)g(t), 070(t))  (x0(t)Dug(t), O7(2))
- . - 2 (2.85)
||awH0,1||Lg26 ”azHO,IHL%
=1+1I+1II+1V+V+VI, (2.86)

and we will estimate each term one by one. More precisely, from now on, we will work with

a general cut-off function x(z), that is a smooth function 0 < y < 1 satisfying

1, if 2 <0(1—~),
2.87
x(@) {0, if x> 0. ( )
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with 0 < 6, v <1 and
x—xl(t)>
2(t) )

The reason for this notation is to improve the precision of the estimate of p;(t) by the

Xo(t, ) = x( (2.88)

searching of the 7, § which minimize «(t).
(oo, 0217 )

2
0:Ho 12,

Step 2.(Estimate of I1.) We have, by chain rule and definition of yg, that

(0r(t). 0. (Oxo(t)g(1)))
10, o117,

(o a(v(=)a=0))

10 Ho 172

(0t 0 (55 [t
N 10 Ho 172 |

Step 1.(Estimate of I) We will only use the identity I = &, (¢)

1T =—

So, we obtain that

(o0, (=2 |28 + == o)
2(8) [10: Hoa |17
<<9t¢(t), X (Qf;‘”) j((f)lg(t)>
102 Ho |13
(2u0(0), X' (22 ) | 20 + =200 0,41 )
102 Ho Hig

I =

+

+

(2.89)

First, since the support of x' is contained in [§(1 — 7), 6], from the estimates (D3) and
(D4) we obtain that

" Iy 20
#-10 L2 (Supp 8xxo(t7$)) 7
2
0, Hii" ( )~ Ofe2/a0), (291)
' L2 | supp dxx0(t,x)

Now, we recall the identity 0,¢(t, x) = —d:l(t)amell%) - i‘Q(t)angj(t) + 0:g(t), by using
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the estimates (2.90)), (2.91)) in the identity (2.89)), we deduce that

I[:O( X
+’x

+6—\/§Z(t) min((1—6),0(1—)) ‘

manE{L 2} |[EJ (t)l H

J( SH maxje{l 2} |2;(2)]
mane{LQ} .Z’J(t>2 H H
t
(1) 9(t)

L>(R)

Lo (R)

L>(R)
+Hg‘(5Heﬁz(t)min((lew(m» ‘Xﬁ L=®) | ‘X/ L2®) | max i;(t)? (2.92)
z(t)? 2(t) je{1,23 7’ ' '
Since % < max((1 —6),0(1 —~)) for 0 < 7,0 < 1, we have that the estimate (2.92) is
minimal when 6 = ﬁ So, from now on, we consider
1—v
0=—- 2.93
92— ’Y’ ( )

which implies with (2.78) and (2.92) that 11 = O(«a(t)).
Step 3.(Estimate of I11.) We deduce from the identity

II] — — <ax<X0(t)atg(t))2, at¢(t)>
Ha:EHOJHL%

that
(=2 )ag(t), =1 ()0 HAG — aa(t)0 Hi3 " + drg(t
X kg(t), —i1(t) 1o — Ta(t)0.Ho 1 + Oig(t)
20) [0 Hoy |2

(xolt, 0)0R,9(1), —i(00H) = a(D0HTH + Dug(t, ) )
10 Ho 172
=111+ 1I1.2. (2.94)

The identity (2.93) and the estimates (2.78]), (2.90) and (2.91) imply by Cauchy-Schwarz
In conclusion, we have estimated that 1/1.1 = O(«(t)).

inequality that
) (2.95)
Also, from condition (2.87)) and the estimate (2.4]), we can deduce that

V() (A2
p :O<e V2 Wz—w)). (2.96)

1] =—

maXj;e{1,2} |9UJ( fz(t

vz(t)

III.le(

o e

|(1 = xo(t))22H2

Additionally, we have that

(xolt. ) [02,0(0) + i (O2HY + a(032H5E |, 210(0)
10 Ho 172

,+ [oezHg”

112 =— (2.97)
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By integration by parts, we have that

‘<X(x_z(xt3<t)>8§x¢(t,x), at¢<t,x>>\ = O( =5 1060 s umpona )

In conclusion, from the estimates (2.78)), (2.90), (2.91) and identity (2.93)), we obtain that

(D)ot a0.0)

-0 g

Also, from Lemma ([2.2.3), the estimate (2.4]) and the fact of 0 < xo < 1, we deduce that

t 1—
+ max t)° [e—mzm(z—w)} . (2.98)
je{1,2} fyz(t)

‘< o(t, )P HEY, aﬂgf?ﬂ =O<z(t)6_*/§z(t)>, (2.99)

(1= xolt 2B, 01320 )| = 0= V30, (2.100)

From the estimates (2.90)), (2.91]) and identity (2.93), we can verify by integration by parts

the following estimates

(- xRy, sy - o Lleamnd=) - oy
<><o( i ()02 H5 1, 'Q(t)(‘?xHEf"i(”> = O(Wemz“)‘ﬁ)) (2.102)
’ v2(t)
Finally, from Cauchy-Schwarz inequality and the estimate (2.96 we obtain that
(= xo)i 002G, 0g(t) ) = O(Jin(o)] o) | V=), (2109
<XO<t>aa1<t>a§H§a“>, 09(t) ) = O Jaa(t)] | g0t] [ e~>5D)). (2.104)

In conclusion, we obtain from the estimates (2.99), (2.100), (2.101)), (2.102) (2.103)) and

(2-104) that

<><62 i 00t Ofa()) (2105)
1112 = —a(t + O(a(t)). 2.105
10, Hoall7
This estimate of I77.2 and the estimate (2.95) of I77.1 imply
111 ()<82 i, ot )> O(a(t)) (2.106)
= —11(¢ + O(«(t)). 2.106
10 Ho 172

In conclusion, from the estimates I1 = O(«a(t)), (2.106) and the definition of I, we have
that I + 11 + 111 = O(a(t)).

Step 4.(Estimate of V.) We recall that V' = 8“”X||°8( )H(() 3”82(]5 , and that

O2¢(t) = 02g(t) + [U’ (HAG) + U (H53") = U" (H5 + H33Y) ]

+ [U/ (G + H3Y) — U (H2) + B3 + g(1)) } . (2.107)
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First, by integration by parts, using estimate (2.78)), we have the following estimate

-
10 Ho 172

@rxt2o(t), ) = O [+ | [0 ) = 0ttt 2a08)

V(1)

Second, since U is smooth and ||g(t)||; = O(E%> for all t € R, we deduce that

]<U’ (H2G + He3 ™) = U (H2G) + HG3™ + (1)), 6’x><o(t)g(t>>]

i
< =
™oty

(a(t). (2.109)

Next, from equation (2.58)) and Lemma [2.2.3] we have that

o () + U () = U (2 + B0, = 0 0), @)

L3
then, by Holder inequality we have that

(U (H2Q) + U (Hg3") = U (H2) + HGAD)  daxo(B)Dag (1))

#l,
72(t)

Clearly, the estimates (2.108]), (2.109) and (2.111]) imply that V = O(a(t)).
Step 5.(Estimate of V' I.) We know that

Dug(t)x0(t), DPo(t))
18 Holl72 '

V2 = O(a(t). (2.111)

vro

We recall the equation (2.107) which implies that

10aHo |7, VI

= (Qeg(t)xo(t), U (HZG + Hy3® + (1)) = U (HZG + HG; ™))
+{(0ng(t)x0(t), U (B2 + H33") = U (H2D) = U (Hgi"))
—(0eg(t)x0(t), D2g(1)) .

By integration by parts, we have from estimate (2.78) that

(Duglt.x)alt2). SEg(t.2) = O s

) (2.112)

From the estimate (2.110) and Cauchy-Schwarz inequality, we can obtain the following

estimate

(Bngtyvolt), U (HAY + HZY) — U (H50) - U' (H330)) =

ofe

o] @
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Then, to conclude the estimate of VI we just need to study the following term C(t) =
<8xg(t)X0(t), U’(Hfll(f)) + Hgi(t) +g(t)) — U'(Hfllff)) + ng(t))>. Since we have from Taylor’s
theorem that

U (B3 + B + g(0) — U (B + Hi30) = z(w( 50+ 1) T

from estimate ([2.78]), we can deduce using integration by parts that

e+ (xolt)a, (3 + H2Y). z 0 (19 + 153) L) — 0tato)

Since
Ixo@®a.E |+ = xo®)a BRG] = o(e—ﬁzww),

we obtain that

C(t)=< "”ﬁ(é,ZU’“)( 0+ Ho >(g/<;(tzl)!>

v (5 @l

and the fact that [|g(t)]] - < H 0

(D(3=2)

w

’, we deduce that

@H) (2.114)

Also, from Lemma [2.2.

(0t o0 0" (H59) = U (1759 + H339) |g(t) ) = OV

In conclusion, we obtain that

- [ 0.7 (U (HSG + Hoi 4 g(1) - U (H2G + HRY) ) d

+ /]R 0,0 WU" (H™Y) gt 2) do + O(alt)). (2.115)

So
— J 0y Hm(t) (U (Hml(g) + Hg,zl(t) +g(t)) U (H?l(’g) + Hgi(t)) ) dr
VI =
10 Ho 172
Je 0 HAQU” (HAG) g(t,7) dae

+ O(a(t)). (2.116
Bl (alt)). (2.116)

Step 6.(Sum of [V, VI.) From the identities (2.107)) and

(0.1, 99(0))

IV = :
102 Ho I3

we obtain that

<U’ (559) + U (E3) - U (H2Y) + B3, 0,57 >
v =

H&L‘HOJ“Lg
(a290) — (U (29 + B33 + g0)) = U (B39 + H33) ), 0. -
— . (2117
||azH0,1||ig
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In conclusion, from the identity
{ag — U (H3Y) ]a Y =0
and by integration by parts, we have that
<U’ (HAG) + U (H33") = U (HAQ + H3V) , 0.1 >
HaxHOJHLg

IV+VI=-— +0(a(t)).

From our previous results, we conclude that

IT+1T+1IT+1IV+V+VI=
(U (Q) + U (#530) = U (50 + H3O) 0,0
10 Ho 172

+ O(a(t)). (2.118)
The conclusion of the lemma follows from estimate with identity
A(=(t)) = _<Ul (Ho10) + U (Hz(t)) U (H—IO + Hglt ) Oy H 4 0>
which can be obtained from by integration by parts with the fact that

(U' (Hovo+ HyY) s 0uH 19+ 0:H3 ) = 0.

Remark 2.3.3. Since, we know from Lemma [2.2.3 that
‘A(z(t)) + 46_\@4’5)’ < 2(t)e 2V,

and, by elementary calculus with change of variables, that ||8IH071H22 = 2\/5, then the esti-

mates (2.76)) and (2.77) obtained in Lemma motivate us to study the following ordinary
differential equation

d(t) = 16v/2¢~ V240, (2.119)
Clearly, the solution of (2.119) satisfies the equation

] 2
jt[d(i) + 8e—ﬁd<t>] = 0. (2.120)

As a consequence, it can be verified that if d(ty) > 0 for some ty € R, then there are real

constants v > 0, ¢ such that

d(t) = —=In (52 cosh (\/§vt + c)2> forallt € R. (2.121)
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In conclusion, the solution of the equations

i (1) =—8v/2eV2H0),
sz(t) :Sﬁeiﬁd(t)y
do(t) — dy(t) =d(t) > 0,

are given by

1 8 2
dy(t) = a + bt + WG In <112 cosh (\/ﬁvt + c) ), (2.122)
di(t) = a+ bt — 1 In (8 cosh (ﬂvt + 0)2) (2.123)
n 22 \v? ’ ‘

for a, b real constants. So, we now are motivated to study how close the modulation param-
eters x1, 2 of Theorem[2.2.8 can be to functions dy, ds satisfying, respectively the identities

(2.123) and (2.122) for constants v # 0, a, b, c.

At first view, the statement of the Lemma seems too complex and unnecessary for
use and that a simplified version should be more useful for our objectives. However, we will
show later that for a suitable choice of v depending on the energy excess of the solution ¢(t),

we can get a high precision in the approximation of the modulation parameters z, x5 by
smooth functions d;, ds satisfying (2.123)) and (2.122)) for a large time interval.

2.4 Energy Estimate Method

Before applying Lemma , we need to construct a function F'(t) to get better estimate
on the value of [|(g(¢), 0:9(t))|| g1 2 than that obtained in Theorem m

From now on, we consider ¢(t) = Ho1(x—x2(t))+H_1o(z—x1(t))+9g(t, z), with z1(t), za(t)
satisfying the orthogonality conditions of the Modulation Lemma and xy, xa, (g9(t), 0rg(t))
and € > 0 satisfying all the properties of Theorem [2.2.8, Before we enunciate the main

theorem of this section, we consider the following notation

(D Brana (HG20 -+ 5O 9(0), )

- /R Dug(t, )% + 0yg(t, 2)? + U” (H3 " (@) + H2Q(2) g(t, 2)? da.

We also denote wy(t,x) = w(%) for w a smooth cut-off function with the image
contained in the interval [0, 1] and satisfying the following condition
1, ifx <
wlz) =14 .
0, if x >

Y

(SN TV
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We consider now the following function
F( ) <D EtOtal (Hgal )-g-g g—§>L2><L2
+2 / 0,9(1),g(t) |1 ()wn (£, ) + 2 (t) (1 — wi (£, )

=2 [ o) (U (R + U () — U0 + 1) ) da

dx

v2 [ gtofiaerotnty + P02 s
+§AJJ uﬁ%)+faﬁﬁgafdx (2.124)

Since x1, x5 are functions of class C?, it is not difficult to verify that (g(¢),d;g(t)) solves
the integral equation associated to the following partial differential equation
gt x) — Bg(t,z) + UP (HGE" () + HI5G (x))g 2, )
=—|U(Hg3" (@) + B (2) + g(t, 2)) = U'(H33" (@) + HY (a)
~U" (Hg3" (0) + H50 (x))g 2, )
- P P e 11
U ) + U O @) U0 + 1oy
i (1P HTG (@) — da(1) 021" (2)
i1 (6)0; H”“(“( ) + 2 (1)0: Ho 1 (2)
in the space H'(R) x L2(R).

Theorem 2.4.1. Assuming the hypotheses of Theorem [2.2.§ and recalling its notation, let
HﬁH = ||(9(t), 0eg(t))|| 1« 2 and let 6(t) be the following quantity

\/52 t
s ] o s g )

je{1,2} je{1,2}
2 mane{Lz} |9§'](t)|
+ot] ( + s (17 mae [i(0)] )

max_|&;(t)3;(¢)].

+Ha
je{1,2}

* o

Then, there exist positive constants Ay, As, As such that the function F(t) satisfies the in-

equalities

F(t) + Aje® > Ay ) B < Asd(t).

Remark 2.4.2. Theorem and Theorem imply

o] 5 5 o] + [

3
2
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Proof. Since the formula defining function F'(¢) is very large, we decompose the function in

a sum of five terms Fy, Fy, F3, F, and F;5. More specifically:
= [ agt) —I—@xg( U (B9 + HAY) gt 2)? de,
(1) ==2 [ g [U' (B9) + U (B53") U (B33 + YD) da,
=2 [ o) [:'n(t)?az H) + ot 021" d,
Fu(t) =2 [ 0,g(8)0,9(8) i (o (1) + (8) (1 = wr (1) dor,

Cl?1(t) 3
3/ U (H3" + B g(1)° do.

First, we prove that ‘F( )’ d(t). The main idea of the proof of this item is to estimate
cach derivative 228 for 1 < j < 5, with an error of size O(8(t)), then we will check that the
sum of these estlmates are going to be a value of order O(§(t)), which means that the main
terms of the estimates of these derivatives cancel.

Step 1.(The derivative of Fi(t).) By definition of Fj(t), we have that

dFl

)y / (92g(t,2) — D2g(t,x) + U (H53 " (x) + HAG (2))g(t, x)) Dug(t, x) da
— [ #1001 @)U (H33 (@) + B (@) g(t, 2) do

— [ 200, H53 (@)U (H330 (@) + HYG (@) g(t,2)* o

dFy (t)
pr as

Moreover, from the identity satisfied by ¢(¢,x), we can rewrite the value of

dF (1 ,
; _2/ )+ U (HD) — U (HE) + H3Y)] dg(t) da

—2/ ngl +HZ 1(0)+9(t))_U/
+2 / U + HY) g(0)ug(t) da

=] [ (0202H7] + ia (0202 H33 |19 (1) do

+2/
-

(2 + H33Y)] 0ug(t) da

i (00, HY + it )angjﬂatg(t) dz

i1 (00 HG + (00, B30 |UO (HAO + H5G) g0 do,
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and, from the orthogonality conditions of the Modulation Lemma, we obtain

dFl( )

—2 / U (H + BY) g(0)dug(t) da
| (Hgﬁ(” +HSG +g1) — U (HHG + H3Y) ]atg(t) dx
+2 [ [0 (H59) + U (H33Y) = U (HASG + H3Y)| dug (1) de

=2 [ (0202 H + (P02 | 09(1) do

12 [ 100020 + (002002 H53 g0 da

— [ 1028 + sa 0,30 |0 (530 + 1) g0 do
which implies

dFy(t
dt

_Q/U (H32® + HD) 9(0)dug(t, z) da
—2/U(H "+ m1E ) + () - U (2 + Hg3 )}atg(t)dx

+2 / U (H5Q) + U (H3®) = U (HEG + H3 )| dwg(t) da

- (2.125)

_2/ ()20 H 10 |+ i ()02 H M(t)]atg( ) dz

_/ :1:1 6 H _|_$2( )ang‘zl }U?’ (Hgi()_{_Hm(t)) (t)zdx
6(t)) -

Step 2.(The derivative of Fy(t).) It is not difficult to verify that
dF5(t .

515022/ (U (D) 0. HE i (1) do
+2/ ngi )3 5’21“ Ty (t) da
_2/ 8tg t )+U (sz(t)) U/ (sz(t) +Hx1 t))] dr

—2/U H{fﬁ >+H 0) [0:H Qi (1) + 0, HGZ o (1)) (1) .
From the definition of the function U, we can deduce that

U (Hi" (2) + H2 (@) = U" (H2D (@) = 0( 70 @) O @) + | 3O )] )

U (B3O @) + B @) - U7 (H3O@) = of [H G @ HY @) + [E @) ).

therefore, we obtain from Lemma and Cauchy-Schwarz inequality that

‘/ (B3 ™) — 0" (3O + B 0, H3 Vg () de| < V2D

fz

/R[U”(Hfllfg))—U”(H 10+ H9O)] 0, H Dg(t) da| <
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In conclusion, we obtain from the identity satisfied by dFQ ) that

dF2 - —2/ ag(t) U (HZQ) + U (H53™) | da
+2/Ratg(t,x)U’ (H2" + H™) de +0(6(). (2.126)

Step 3.(The derivative of F3(t).) From the definition of F3(t), we obtain that

dF3 2/ Org(t) |1 (1)*0*H xll(é) + @9(t)?0% H, xg(t)] dx
_2/ t H™ 4+ (1) 0%, zm} da
4 [ g®)[o1(0ir (002G + a0 02H ] dor
which can be rewritten as
WD s [ ong(0) i 020218 + o002 0337]
2 / i (OPOH) + da(0)02H2 " do + O(6(1)). (2.127)
Step 4.(Sum of dj;l, d;;?, %.) If we sum the estimates , and , we obtain
that
) _y / U (H3Y + H) g(0)org(t) da
2 [ |0 (H3s® + g + g(t)) U (H3 + 1) o) do
—/ (¢ aHI11<3>+x2()a BOlU® (B3O + 1Y) g(1)2da
2 / (t)202 H™Y + iyt )3331{33@] dz + O(5(t)).
4
More precisely, from Taylor’s Expansion Theorem and since < 0(t),

3

Z / e (Hé”‘i“) + H) g(0?] 0ug(t) do
- [ [ 9“1%) + i (0)0, B U (B + B1Y) g(0)da
_2/ HAG + o ()02 H } dz + O(6(1)). (2.128)

Step 5.(The derivative of Fy(t).) The computation of the derivative of Fy(t) will be more

careful since the motivation for the addition of this term is to cancel with the expression
- /R [#1(0)0, HY + ()0, HAV | U (H3® + B g(0)*de

of (2.128). The construction of functional Fj(t) is based on the momentum correction term
of Lemma 4.2 of [26]. To estimate % 4(

the time derivative of

with precision of O(d(¢)), it is just necessary to study

2 /R 0,9(1)Dug(£)iy (£)wr (1) d, (2.129)
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since the estimate of the other term in Fj(t) is completely analogous. First, we have the

identity

=231(t) | wi(t,z)0g(t)0g(t) dx
R

+2m@y/wmtx> 9()0,g(t) do
+2i (¢ /R@twl (t)0yg(t)0,g(t) dx

+244(¢) /Rwl (t,x)0; ,9(t, ©)0,g(t) dx.

{/&g 0rg(t)ar(t)wi(t) dz

From the definition of wy(¢,2) = w(#ﬁit)), we have

Don (b 2) = w/< x — x1(t) ) <—x’1(t)z(t) — 2(t)(x — xl(t))> . (2.130)

xo(t) — x1(t) z(t)?

Since in the support of w'(z) is contained in the set % <z< %, we obtain the following

estimate:
. . |$J _
2 (t) /R i1 (D)Brg(1)Dug(t) dz = O (mm i - (2.131)
Clearly, from integration by parts, we deduce that
2d4 () / w1 ()07 ,g(t)0sg(t) dx = O ( max |x] ) (2.132)
R ’ je{2y z(t
Also, we have
2i1(t) [ (D0 ()Dug(t) di = < max |#;(t |H ) _ (2.133)
R je{1,2}

So, to estimate the time derivative of (2.129)) with precision O(d(t)), it is enough to estimate

2 (1) /R w1 (1, 2)O2g(t, 2)0g(t, 7) da.

We have that

2 (1) /R w1 (D)02g(1)Dug(t) da =241 (¢ /R B,9(t) da
—muw/ (U ( % 4 12 g(6)9,9(t) do
2in(t) [ wn(t) [29(t) — 029(1)] Dug(t) do
2 (2) /R w0 (HG + H3Z") g(6)Deg(t) de. (2.134)

From integration by parts, the first term of the right-hand side of equation ([2.134)) satisfies

|$J
]6{1 2} Z

241 (1) /Rwl(t)(‘?ig(t)axg(t) dr =0 ( ) (2.135)
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From Taylor’s Expansion Theorem, we have that

g(t)~
(J— )

U (H33Y + G + (1) — 233 D (Hg3" + H)

~oJ«

U'(¢) + U (6) — U (¢ + 0) = 2468(¢ + 0) — 6(24: @ ¢je5j>,

=1

). (2.136)

Also, we have verified the identity

which clearly implies with the inequalities (D1), (D2) and Lemma the estimate

| (H53Y) + U (H2)) = U (H3® + B2

_ -2z
=0 (e7v21). (2.137)
Finally, it is not difficult to verify that

| =1 (6202 HAG — ()02 Ho 3" + i1 (6) 0, HEAG + ()0, HG 3

L3

=0 (maX |25 (t))* + |i-j(t)\> . (2.138)

e{1,2}

Then, from estimates (2.136)), (2.137) and (2.138)) and the partial differential equation
satisfied by g(¢,z), we can obtain the estimate

2 (t) /R wit) [07g(t) — O2g(t) + U (HEG + H33™) g(t)] Dag(t) do
——ir(t) [ iU (HOG + B3) g(0)%0.9(¢) do
YNC / O2H" W0, g(t) do — 2y ()i (t)? / ()82H§2(t)81g()dx

_23';1(15)3/R( (t) —1)02H” &Eg Ydz + O (H max_|@; (¢ |>

je{1,2}

+0 (s, 1,0 |H9‘3H+e” e, 1,0 [0 )

e{1,2} Jje{1,2}

which, by integration by parts and by Cauchy-Schwarz inequality using the estimate (2.96)

for wy, we obtain that

2i(t) [ wi(t) [029(t) = O29(t) + U (HO] + Hi3®) g(0)] Drg(t) da

_ da(t)
3

2 (¢ /82 )d:z:+O<

/ Wi (HU® (H W9+ 1Y) [0, +angﬁ<t)} g(t)? da
R

)

\ﬁH) e

Now, to finish the estimate of 2i(t) [ wi(t, £)02g(t, ©)0,9(t, x) dz, it remains to study
the integral given by

24 (t) /]R W (U

36{1 2} Z

_V2z(1)
+ O max |&;(t) e 5
je{1.2)

"

(20 () + HG3 (2)) 9()D:g (1) de, (2.140)
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which by integration by parts is equal to

i1 (t) /R (U (H + H3) 0,870 (1) da
+x‘1(t)/Rw1(t)U(3) (A + H3Y) 0,33 g(1)? dv + O(6(1)).  (2.141)
Since the support of wy (¢, x) is included in {x| (x — z5(t)) < —@} and the support of

1 — wy(t, x) is included in {z| (x — x1(t)) > 327(0}, from the exponential decay properties of
the kink solutions in (D1), (D2), (D3), (D4) we obtain the estimates

i1 (t) /]R (wi(t) = DUS (HY) + H3O) 0,18 g(t)* dx| = O(5(1)), (2.142)
(1) [ U (HZ + Hﬁﬁ(”) 0, Hy3 " g(1)? dz| = O(8(1)), (2.143)
}bl(t) /R (1= wi () UDEHDG + HG3 )0, H™( g(t)* dt| = O(8()), (2.144)
;ig(t) /R (i)W (HAG + Hy3 ™) 0. Hi " g(t)? dt| = O(3(2)). (2.145)

In conclusion, we obtain that the estimates (2.142)), (2.143) imply the following estimate

2 (t) /R it o) U" (B + HE ) ()ax (t) do

_/xl 00, HN QU (HAO + H)) (1) dx + O(3(t)). (2.146)

Then, the estimates (2.134)), (2.139)), (2.144]), (2.145)) and (2.146|) imply that

22 ([ 0.0 (e 1) da:)

+o / U@ (g5 +H§21(t)) (61(6)0. HY) g(t)? da

+/ i1 (00, HG) UO (H? + HD)g(t)” dx + O(8(2)).
By an analogous argument, we deduce that
25 ([ 090,901 — e (6) )
— 2 (1) / OPHE D0, 9(t) du
I 5 () 4 1) 0,550 o0 de

+ / b5(00, HAOU® (Hyt® + H™)) g(t)? da
A ,
+O(5(1)).
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In conclusion, we have that

dF(t . .
;;L/R[ (O HDY + ao(00, Hy ] U (HO + HA) () der
— 2o (t /82[{321 0pg(t) dx — 2i (¢ /82 xl(t 0029 (t) dz

+/ U (HAQ + H3O) 5100, HE + (00,3 9(0) do
+O(8(t)). (2.147)

Step 6.(The derivative of F5(t).) We have that

S /YJ@ 2+ HA) gt 0ug(0) da

-3 /R U (HE + B2 [#0(00,HE + aa(0)0, HAP] g(t) de. (2.148)

Step 7.(Conclusion of estimate of |F(t)|) From the identities (2.147) and (2.148)), we obtain
that

AFi(t) | dFy()

:/R 110 HAQUS (H33Y + B2 QD) g(t)? da

di di
+ [t 8xH§21(”U(3) (H““’ + ) g(t)? du
—2i (t /82 )0,9(t) dz — 2i(t) /82H§21 D,9(t) dx
+ / U® (G + H3) g(1)*Drg(t) da + O(3(1)). (2.149)

Then, the sum of identities (2.128)) and (2.149)) implies 37_, d};it(t) = O(4(t)), this finishes the
proof of inequality ‘F(t)’ =0(d(t)).
Proof of F(t ) + A2 > Ase?. The Coercivity Lemma implies that 3¢ > 0, such that

)>c . Also, from Theorem [2.2.8] we have the global estimate

max |i;(0)7 + i (0)] + e V20 + H ( (o), (2.150)

-t =o([sl] ). 1 =o( o ).

U (HAG () + U (Hi" (@) = U (Hg3” (@) + HEG ()] =
(’H:m(t )H(g)c,Ql(t)(x) {Hx ()( )+Hx1(t)( )H) :

which implies that |Fy(t)] — o( H (¢

Also, since

Lemma and Cauchy-Schwarz inequality imply that
Fy()] = O(H @ e—ﬁz@)).

Then, the conclusion of F'(t)+ Aje? > Ay
enough. ]

for € small
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Remark 2.4.3. In the proof of Theorem from Theorem“ 2.2.8 we have |F2( )+ F5(t)| =
0 (‘ e> . Since |Fy(t)] + |F5(t)] = H ) and |Fi(t)

inequality tmplies that
2
F(t)| < Hg(t3H e

Remark 2.4.4 (General Energy Estimate). For any 0 < 0,7 < 1, we can create a smooth
cut-off function 0 < x(x) <1 such that

(@) = {o, if e <6(1—7),

, then Young

1,if x > 0.

We define ) -
Xo(t, ) =X <> .

) (t) — T (t)

If we consider the following function

L(t) = <D Etotal(H§1t +HY ﬂ 9—§> 12

+2 /R Org(t)0,9(1) {:tl(t)x()(t) + do(t) (1 — Xo(t))} do
2 o) (U (E) 4 (539) - (530 + )

+2 /R g(t) i1 (1202 H

1 T T :
+§ /R U (Ho,l(t) + H—1(,6)> g(t)* dz,

HY + o ()22 Hy3 Y | doe

then, by a similar proof to the Theorem we obtain that if 0 < e < 1 and

B1() = 8(t) + mag |5 (1)|° max(e VIO, VA1) \WH
— max |i;(t)*e” (2.151)
je{1,2}

then there are positive constants Ay, Ay > 0 such that

()| = 0(61(1)), L(t) + A€ > Ase

Our first application of Theorem [2.4.1| is to estimate the size of the remainder ‘g‘(t_g H

during a long time interval. More precisely, this corresponds to the following theorem, which
is a weaker version of Theorem [2.1.9]

Theorem 2.4.5. There is § > 0, such that if 0 < € < 6, (¢(0),0,¢(0)) € S x L2(R) and
FEiotai(6(0),0:0(0)) = 2E,,:(Ho 1) + €, then there exist xy,x5 € C*(R) such that the unique
solution of (2.1)) is given, for anyt € R, by

¢(t) = Hoa(x — 22(t)) + H_10(x — 21(t)) + g(2), (2.152)
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with g(t) satisfying orthogonality conditions of the Modulation Lemma and

H@mx@gmnmgug+(dni)]wp(ﬁjfg, (2153)

€

1(9(0),00(0) 311 < C

forallt € R.

Proof of Theorem [2.4.5, In notation of Theorem from Theorem and Remark[2.4.3]

there are uniform positive constants As, A; such that for all t > 0

<P+ A < C(H (t

2). (2.154)

From now on, we denote G(t) = F(t) + A; (e In %)2 From the inequality (2.154) and
Remark [2.4.2] there is a constant C' > 0 such that, for all t > 0, G(t) satisfies

G(t) < G(0) + C (/OtG(s)eids) .

lnz

In conclusion, from Gronwall Lemma, we obtain that G(t) < G(0)exp <C€2t> for all
t > 0. Then, from the definition of G and inequality (2.154)), we verify the inequality (2.153])
for any ¢ > 0. The proof of inequality (2.153) for the case ¢t < 0 is completely analogous. [

2.5 Global Dynamics of Modulation Parameters

Lemma 2.5.1. In notation of Theorem [2 3C > 0, such that if the hypotheses of The-
orem [2.1.5 are true, then for ﬁ g(0 m) 0:9(0,z)) we have that there are functions
p1(t), pa(t) € CH(Rsy), such that for j € {1, 2} and any t > 0, we have:

. 1 20t
|z;(t) —p;(t)| S <Hﬁ’Hle2 +eln )62 exp( ol ), (2.155)
2
(o], +m) l
. ; V32 1512 € 2C €2t
[p5(t) — (~178v2e 0| < iy exp (1) (2.156)

Proof. In the notation of Lemma [2.3.1] we consider the functions p;(t) for j € {1, 2} and we

consider = ; the value of v will be chosen later. From Lemma [2.3.1] we have that

o) s s o]+ [

We recall from Theoremthe estimates max; e, 2y |[4;()] = O(e2), e VEM = O(e). From
Theorem we have that

1 3
Jst3] < (Jofol] + em ) esn (7))

—ﬁz(t)
100 t .
)+ max (2,020

m@—mmsp+

v2(t)
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+elnf
. Then, we obtain for any j € {1, 2}

8 G

To simplify our computations, we denote ¢y =
and all ¢ > 0 that

. 1 3 1 Cﬁ%t
50) = 50 % 1+ —r] et e (1)

1 1\2  /2Ce3t
+[ ’Ylni] (coelne) exp( Il ) (2.157)

Since e V2 < ¢ we deduce for € < 1 that z(t)e VZ® < elni < 61 e In . Then,
for any ¢ > 0, we obtain from the same estimates and the deﬁmtlon of a(t) that

1\2 1 \¢ 1 Cezt
<c? - e = ik
a(t) <c <€ In e) Lrer?};} (72(15)) +e W] exp (2 Il )

1
1 €2

., (2.158
B 2(2177) ( )
1+ +

e [62@1,)2 In 1} exp (C’e%t)
€ In 2 v2(t)  (v2(t))? 2(t)y

However, if 'yln% < 1 and 2(0) = 1n%, which is possible, then the right-hand side of
2
inequality (2.158] m is greater than or equivalent to (e In l)

, it is not

difficult to verify for v = —= that the right-hand side of inequality (2.158) is smaller than
2
(e In f) :
Therefore, from now on, we are going to study the rlght hand side of (2.158 m ) for Tl) <

v < 1. Since we know that In (1) < z(¢) from Theorem the inequality (2.158)) implies

for ln(—l)<7<1andt20that

a(t) S B(t) = (coeln 1>2 [ ! i +er 31 exp <2iit>

€ vln 2

2(1 w)

a1
+ ¢’ G In - exp (
€ 7111 <

= [1(t) 4+ B2(t) + B3(t), respectively. (2.159)

Inln *

For € > 0 small enough, it is not difficult to verify that if 83(t) > Bi(t), then v > ——=.

1
Moreover, if we have that 1 >~ > 8%, we obtain from the following estimate

e €2 8Inln 2t €2 1\ 7=
Bs(t) = — > 1ep<2_76>: 1(111) ,

yln:  In In -

that By(t) > (oG 1> Ay < PR then ﬁn) < fu(t) for any ¢ > 0.

21 1 2
In conclusion, for any case we have that (lnlr; 1> < [B(t) when t > 0, so we choose

lnln =
T Ini
€

. As a consequence, there exists a constant C; > 0 such that, for any ¢ € R,

2
eln ! 3
at) < Clcg(s) exp (206 t). (2.160)

Inln + ln%
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So, the estimates (2.157)), (2.160]), Remark and our choice of v imply the inequalities

[@.155) and (2.150). 0

Remark 2.5.2. [f ( Hﬁ’ for a constant m > 0, then, for v = é, we have from
Lemma |2.5. 1 “ that there 23 p(t) € C*(R) satisfying for all t >0

15(t) — p(t)| S €2 (2.161)

B(t) — 16V2e7V0)| < H (2.162)

Then, for the smooth real function d(t) satisfying
d(t) = 16v2¢7V>"1 | (d(0),d(0)) = (2(0), (0)),

and since eV < ¢ Int < 2(t), we can deduce for any t > 0 that Y (t) = (2(t) — d(1))
satisfies the following integral inequality for a constant K >0

e« L

Y(t) < K €2

ﬁ+// Y (s1)] dsids | = A(]Y]) (0),

Y (0) =0, Y(0) = 0.

Indeed, for any k € N and allt > 0, |Y ()| < A® (|Y]) (t). We also can verify for any T > 0
that A% (|Y|) (t) is a Cauchy sequence in the Banach space L™ [0,T]. In conclusion, we can
deduce for anyt > 0 that |Y (t)] < Q(tK?2), where Q(t) is the solution of the following integral

equation
Q(t) = e2 g‘(O—S‘ H t—l—//e@ ) dsi ds.

By standard ordinary differential equation techmques we deduce for any t > 0 that

POl o

t) —d(t)| S QtKz) = etk
2(0) - d1)] £ Q) -
O] O O
eln < eln (2.163)
and from #(0) = d(0) and the estimates [2.161)) and (2.162), we obtain that
£(t) — d(t)| £ Ip(0) — 2(0 y+/ s)| ds, (2.164)
from which with (2.163|) we obtain for allt > 0 that
. 11 Hg(o
2(t) —d(t)]| S e e Hg(TﬁH | (2.165)
eln =
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Howewver, the precision of the estimates (2.163) and ([2.165|) is very bad when €< t, which
motivate us to apply Lemma to estimate the modulation parameters x1(t), xo(t) 