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Résumé

Cette these s’inscrit dans I'étude qualitative des multi-solitons d’une équation
d’onde non linéaire unidimensionnelle connue sous le nom de modele ¢°. Ce mo-
dele a des applications en théorie de la matiere condensée, en physique des hautes
énergies et en cosmologie. Les solitons associés a ce modele sont connus sous le
nom de kinks et antikinks, et tous deux sont les uniques solutions stationnaires

non constantes du modele ¢° ayant une énergie finie.

Dans la premiere partie de la these, nous décrivons toutes les solutions du modele
¢° satisfaisant une condition aux limites avec une énergie proche du minimum.
Nous allons prouver que chacune de ces solutions est une petite perturbation
d’une somme de deux kinks en mouvement pendant un grand intervalle de temps.
Nous analysons également le mouvement de ces solitons comme un probleme a
deux corps en utilisant un systeme différentiel ordinaire explicite. Nous prouvons
que le déplacement des deux kinks est une petite perturbation de la solution de

ce systeme différentiel ordinaire pendant un grand intervalle de temps.

Dans la deuxieme partie de la these, nous analysons la collision entre deux kinks
du modele ¢° Nous prouvons que la collision est presque élastique, ce qui est
inattendu puisque ce modele est non intégrable. Nous estimons le défaut produit
par la collision dans la vitesse de chaque soliton et dans la taille du résidu. Nous
prouvons que la taille du défaut est d’ordre inférieur au polynéme pour une faible

vitesse entrante.

Mots clés :

« Equation d’onde non linéaire unidimensionnelle
o Multi-solitons

o Kinks

o Antikinks

e Modele ¢°

+ Collision

o Probléme a deux corps

e Modele non intégrable



Abstract

This thesis is concerned with the qualitative study of multi-solitons of a one-
dimensional nonlinear wave equation known as the ¢% model. This model has
applications in condensed matter theory, high energy physics, and cosmology.
The solitons associated with this model are known as kinks and antikinks, and
both are the unique non-constant stationary solutions of the ¢® model having

finite energy.

In the first part of the thesis, we describe all the solutions of the ¢® model sat-
isfying a boundary condition with energy close to the minimum. We will prove
that any of these solutions is a small perturbation of a sum of two moving kinks
during a large time interval. We also analyze the movement of these solitons as a
two-body problem using an explicit ordinary differential system. We prove that
the displacement of the two kinks is a small perturbation of the solution of this

ordinary differential system during a large time interval.

In the second part of the thesis, we analyze the collision between two kinks of the
¢°® model. We prove that the collision is almost elastic, which is unexpected since
this model is non-completely integrable. We estimate the defect produced by the
collision in the speed of each soliton and in the size of the residue. We prove that

the size of the defect is of order smaller than a polynomial for low incoming speed.

Keywords:

e One-dimensional nonlinear wave equation
o Multi-solitons

o Kinks

o Antikinks

e ¢ model

« Collision

o Two-body problem

» Non-integrable model
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Chapter 1

Introduction

We consider the following partial differential equation

0{p(t,x) — Opo(t, x) + 20(t, x) — 86(t,x)* + 6(t, x)* = 0, (¢°)

which is known in the physics literature also as the ¢® model. The partial differential equation
(#°) is a scalar field of dimension 1+ 1 of the form

OFo(t,x) — 02(t,x) + U (¢(t,x)) =0,

for the potential function U(¢p) = ¢*(1 — ¢?)2.
First, we are interested in the study of all the solutions ¢(t, x) satisfying, for any ¢t € R,
the following boundary condition

lim ¢(t,z) = —1, lim ¢(t,z) =1, (Be)

T——00 T—+400

and having energy slightly bigger than the minimum of the energy of all solutions of
satisfying (Bd). We are going to verify that these solutions are close to a sum of two solitons
and each of them moves with a small speed. Moreover, we will see that the displacement
of each soliton is very close to an explicit solution of an ordinary differential system under
additional conditions.

The second topic discussed in this manuscript is the study of the elasticity of the collision
between two moving solitons of the partial differential equation . More precisely, we will
only consider the collision between two increasing solitons H;, H, which are approaching
with a sufficiently small speed v > 0 and study their long-time behavior after they collide.

The study of nonlinear wave equation has applications in different fields of theoretical
physics. More precisely, this model has applications in condensed matter theory, see [3], which
is a field of physics interested in studying the properties of a system of particles or atoms
either under conditions of very low temperature or when there exist high interaction forces
between the components of the system. The study of the ¢® model has also applications in
cosmology, see for example [62], and high energy physics, see for example [17] and [14].

Before we state our main results, we will introduce briefly the mathematical theory of
scalar fields, the concept of topological solitons with a focus on the kinks and antikinks, and
the local theory of the partial differential equation .
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Notation 1.0.1. In this manuscript, for any n, m € N>y, we denote the space of smooth
functions f : R™ — R™ with compact support by C§° (R™;R™). In particular, when m = 1,
we denote C3° (R™; R™) by C3°(R™).

Similarly, for any 1 < p < 400, we denote the space LP(R™;R™) as the real linear space
generated by all the measurable functions f : R™ — R™ satisfying

/ ()P de < +o0.
R?’L

If p = +00, we denote L°(R™;R™) as the real linear space generated by all the measurable

functions f : R™ — R™ satisfying
inf {c > 0|\ {:E € R”‘ |f(z)| > c} = O} < +o0,

where X is the Lebesque measure in the Euclidean space R™. If m = 1, we denote, for any
0 < p < 400, each space LP(R";R™) by LP (R™).

For any m, n € N>y and any function f : R" — R", we use the following notation

D) = 3 @), VI) = 00y

for every x € R™.

1.1 Brief introduction to Lagrangians

First, we consider the Euclidean space R'*" with the Minkowski metric g = —dt* +>_, da?
and a complete Riemannian manifold M of dimension n with a Riemannian metric §. We
denote the set of maps ¢ : (R g) — (M, §) by O and, for any function f : R"** — M of
class C! at least, we define, for any p € {0,...,n} and any (¢,2) = (t, 1, ...,2,) € R",

On, [ (t, ), if 1 7 0,

8P‘f(t,l’) = {—@f(t,x)a otherwise.

Moreover, for any x € M and any v(z) in the tangent space T,M, we denote |v|; =

3 (v(x), v(x))? .

Next, we consider a smooth function U : M C R™™ — R and the set D as
D={p€O|pe LR M), andforallt e R, Y |02, 0(¢, )|, 10:b(t, )], € L2(R™)},
i=1

Additionaly, for an interval (¢;,t3) not necessarily bounded and any functions ¢, ¢9 : R" —
M in L>, we study the critical points of the function L : DN{¢(t;, x) = ¢;(z) for j € {1,2}} —
R denoted by

L(6) = /tt /. ;i (04 6(t, ), D, (t, 2)) + U((t, 2)) durdt. (Ge. Lagr.)



It is well known that the critical points of functions are solutions of nonlinear
wave equations, see Chapter 2 of [36] for more information. Indeed, many dispersive models
are obtained from the research of this kind of variational problem, see for example the sine-
Gordon and ¢! models in Chapter 5 of [36], and the wave maps in the book [I8]. The
motivation of the study of these variational problems has applications in different fields of
mathematical physics, for example, condensed matter theory [3] and cosmology [62], see also
[36] for more information.

Actually, if we consider M = R" and § the Euclidean metric of R", the function L can be

rewritten as

/tl / IVe(t2) — 100(t, 2)] + U(6(t,x)) dedt. (Simpl. Lagr.)

If ¢(t, z) is a critical point of L, then, for any function § € C§°(R"™!, R™) such that suppd CC
(t1,t2) x K for some compact set K C R™, we obtain from the identity

o L6+ ) = L(9)

e—0 €

and integration by parts that ¢ shall satisfy the following Euler-Lagrange equation
0;(t,x) — At x) + VU((t, x)) = 0, (1.1)

for any ¢ € (t1,t3) . The partial differential equation (¢°) studied in this thesis also satisfies
equation (L.I) when n = 1 and U(¢) = ¢2 (1 — ¢%)*. Sece also Chapter 2 of [36] for more

references about Lagrangians.

1.2 Scalar fields and Lagrangians

1.2.1 Background context

We consider, for n € Nx4, a smooth potential function U : R" — R satisfying lim,|—, 1o U(y)
+00 such that the set U~'{0} is a compact manifold and every u € U~'{0} also satisfies

U (u) = 0. We consider for any field ¢ : R® — M such that |0,,¢(x)| is in L*(R") for all
i € {1,...,n} the following function

/ Z |8IZ + U (¢()) du. (Stat. Lagr.)

We define the vacuum set by

V={ye M|U(y) =0}. (Vacuum)
Clearly, if a Lipschitz field ¢ : R® — R™ is in L™ satisfying Ly (¢) = 0, then it is not difficult
to verify the existence of u € V such that ¢ = p. Moreover, if ¢ € C'(R"; R™) is a Lipschitz

function satisfying Ly (¢) < +00, we would also need for any v € S*™! that

lim inf |¢p(vr) —y| = 0.

r——+oo yey



Otherwise, [g. U(¢p(x))dx = +o0.
Furthermore, for any non-constant map o : S*~! — V, we can consider the following set

V, ={6|¢:R" = R" Ly(¢) < +o0 and ¢o == lim ¢(r-) : S"* — V is equal to o},

T—>+00

and the following problem:

Is there a continuous function ¢ € V, satisfying Ly (¢) = wlélé Ly (y)? (P.0)

If there existed a minimizer ¢, then it should be a weak solution of the following Euler-
Lagrange equation

Ad(x) = VU(9). (1.2)

When n = 1, we can identify the set S"~! as the binary set {—1,1}. In this case, we will
see in the next sections that the existence of solutions of problem is possible only if there
doesn’t exist v € V satisfying either o(—1) <v < (1) or o(1) < v < g(—1).

However, when n > 2, there doesn’t exist any solution of problem for any non-
constant continuous map o : S"~! — V and any continuous potential function U : R" — Rxg
satisfying the conditions limy| 40 U(y) = 400 and U (u) = 0 always when U(u) = 0. This
result is known as Derrick’s Theorem, see Section 4.2 of the book [36] for more information.

Moreover, using an argument of contradiction, the proof of Derrick’s Theorem is straight-
forward. More precisely, If n > 2 and there exists a non-constant continuous field sat-
isfying ¢ € V5 minimizing Ly, then we would have that ¢¢y(x) = ¢(rx) should satisfy
Ly(é@y) > Ly(¢) for all » > 0, because the set {¢¢)|r € Ry} is contained in V. But,
from the change of variable y(x) = xr and identity Vo((x) = rVe¢(rx), we can verify the

following equations

/Rn U(¢e(x)) do = L U(p(z)) dz, /Rn [V ()

r" Jrn

2 1 2
Cdr=— [ Vo)’ da.

for every r > 0. Therefore, we have

L (00) = 5 | [ V0@ de] + = [ [ 0660 ).

If n > 3, then the function Ly (gbm) is decreasing on r unless ¢ is a constant function with
image on V, so ¢ is not a solution of problem [P.0] which is a contradiction. If n = 2, the

function Ly (¢,) is non-decreasing only if

L, Uloa)) dz =,

which would imply that the image of ¢ is contained in V. But, since ¢ is a weak solution of
equation (|1.2)), {U’ (w)|u e V} = {0} and M is a compact set, we would have that ¢ : R" —
R" should be a bounded harmonic function, therefore Liouville’s Theorem would imply that

¢ should be a constant map, which is a contradiction of ¢ being in V.



1.2.2 One-dimensional scalar fields

From now on, we consider n = 1 and a smooth function U : R" — R satisfying

lim U(y) = +oo, and ¥V = U {0} is a compact set.

ly|—+o0

In this particular case, the partial differential equation (|1.2)) can be rewritten as the following

elliptic equation

1" /

¢ (z) = U (¢(x)). (1.3)
Since U € C*, we can verify using the elliptic regularity theory that if ¢ € L™ (R) is a
weak solution of equation , then ¢ € C*, see Theorem 2 from Chapter 6 of [16] for
more information. Clearly, if ¢ is a strong solution satisfying Ly (¢) < 400, then ¢ is a

critical point of L.

Definition 1.2.1. We say that a one-dimensional scalar field ¢ is a topological soliton of the

differential equation (1.3)), if ¢ is a strong solution of (1.3)), it satisfies

J

and ¢oo = lim, 1o O(r) : {=1,1} = V is a non-constant map.

/

¢ (@) +U (9(x)) dr < +oo,

Remark 1.2.2. Furthermore, when n = 2, we highlight that the topological solitons are
critical points of Lagragians of a different form from (1.2) and we have verified earlier that
there doesn’t exist any non-constant solution of (1.3|) satisfying

[ U(6(@) + Vo) dv < +oo,

when n > 2, see also Subsection 7.1 of Chapter 7 from the book [30].
For example, for n = 2 and the potential function U(¢) = (1 — |gz5|2)2, the topological

solitons are defined as the non-constant maps
(6, A) : R* = C x R?,
which are the critical points of the following Lagrangian

L 1940(@) + el A@)* + (1= lo(a)[")” da. (1.4)
where V. .=V —iA and

_ o

curl(fi, f2)(x) = .

()

J0f1 _ (U@ _o7te)
_ 871-2(’%)’ curl(f) = < 04 T 0xq ) ’

for any functions (fi, f2) : R? = R? f: R* — R and all z € R% Furthermore, the Euler-
Lagrange equations associated to (1.4) are given by

Vis(r) =2 (1 - |o(x)*) ¢(x), (1.5)
curl’” A =Im (i6(2)V ag()) .



where V 4 f(x) = Vf(x) —iA(x)f(x) for any function f : R? — C. One of the reasons to

consider the Lagrangian (1.4]) instead of (Stat. Lagr.) is to use, for any a € R, the following
transformation ¢ (x) = ¢(x)e'®, which is an invariance (1.4) and also satisfies

[, Ua(@)de = [ U(6(2)) da.

R2 R2

For more detailed information, see Subsection 2.6 of Chapter 2 and Chapter 7 of the book
[36], see also the article [2Z] for more information about the partial differential equation (|1.5))

and its topological solitons.

Since we are mainly interested in the topological solitons associated with the partial
differential equation , we will describe in the next sections the properties of topological
solitons associated with one-dimensional scalar field equations, which are the strong solutions
of satisfying all the conditions in Definition m The topological solitons associated

with one-dimensional scalar fields are divided into two groups the kinks and the antikinks.

1.2.3 Kinks and antikinks

In this subsection, we consider U € C*°(R) satisfying U(y) > 0 for any y € R and

limyy— 400 U(y) = +00. In addition, we assume that U satisfies the following property

U'(x) £0, forall z € V, (Non-degeneracy)

where V is defined in (Vacuum)) for n = 1.

Next, we consider a solution ¢ € C*(R) of the ordinary differential equation

{J@%:wa», 16)

lim, o ¢(z) and lim, , o ¢(x) € V,

satisfying Ly (¢) < +oo, where Ly is defined in (Stat. Lagr.)). Now, we are going to present
the properties of all the solutions ¢ of the ordinary differential equation (1.6|) satisfying

LU(¢) < +00.

Lemma 1.2.3. Iflim,, o, ¢(z) = lim,_,, ¢(x), then the smooth solution ¢(x) of the prob-
lem (1.6]) is a constant function.

Proof of Lemma[1.2.3. Since lim,_, o, ¢(x) is equal to lim,_, o ¢(x), if ¢ is not a constant

function, then there would exists zy € R satisfying either

Jim_6(x) < ola) = maxé(e) or lim_ o(a) > ow) = mino(e)  (17)
and so, % = 0. Furthermore, since ¢ € C*°(R), we have from the ordinary differential
equation (|1.6) that

LTI _ ot (o) =2 [6"0) - U (00)] 6 0) = 0

dr | dx ’



and so, the function d(flgf)Z — 2U (¢(x)) is constant. Therefore, we would deduce from the

Fundamental Theorem of Calculus that

dp(z)®
de

2[U (¢(x)) — U (¢(xy))] for any x € R.

Moreover, since lim, ,1., ¢(x) € V and ¥V = U~(0), we would obtain from the identity
above that ¢(zg) € V, otherwise Ly (¢) = +oo. Consequently, ¢ would satisfy the following

ordinary differential system of equations

{d’(z) = U"(¢(x)),

do(zo) __
¢( )EV7%_O

However, from Picard-Lindelof Existence-Uniqueness Theorem, we would obtain that ¢(x) =
¢(xo) for any x € R, which contradicts ((1.7]). In conclusion, ¢ shall be a constant function. [

Lemma 1.2.4. The unique solutions of (1.6 which are topological solitons associated to U

are the smooth solutions ¢ of only one of the following ordinary differential equations

¢ (x) = \2U((x)) or ¢ (z) = —/2U (¢(x)), (1.8)
which satisfy Ly(¢) < +o0.

Proof of Lemmal1.2.7] First, from elliptic regularity theory, Definition and Lemma
we can verify that ¢ : R — R is a topological soliton only if ¢ € C*°(R) and ¢ satisfies
lim ¢(z) # lim ¢(x).

r——+00 T——00

Furthermore, from the proof of Lemma [1.2.3, if ¢ is a smooth function satisfying ¢" (z) =
U' (¢(x)) for any = € R, then %&:3)2 —2U (¢(x)) is constant. Moreover, if Ly (¢) < +o0, we

also would have that
dg(x)”
dz
Consequently, is a necessary condition for a function ¢ to be a topological soliton.

=2U (¢(x)), for all x € R.

Therefore, to conclude the proof of Lemma [I.2.4] it is enough to verify that only one of the
equations in (|1.8)) shall be true.

We assume by contradiction that there exist z;, zo € R such that

¢ (1) = +\/2U(8(21)), ¢ (22) = —\/2U (8(2)).

Hence, from the Intermediate Value Theorem, there exist z;3 € R satisfying ¢ (x3) = 0,
from which we would obtain that ¢(z3) € U~'(0). However, from Picard-Lindelof Existence-
Uniqueness Theorem, we would obtain that ¢(x) = ¢(z3) for all x € R, which contradicts
the hypothesis that ¢ is a topological soliton satisfying Definition [I.2.1} In conclusion, the
statement of Lemma [[.2.4] is true. O



Definition 1.2.5. We say that a real function ¢ : R — R is a kink associated to the potential
function U if, and only if, the function ¢ is a non-constant solution of the following ordinary

differential equation

/

¢ (x) = \2U (¢(x)), (1.9)
and Ly(¢) < +oo. We say that a function 1 is an antikink if, and only if, the function
o(x) =1 (—x) is a kink.

Remark 1.2.6. Let ¢ be a kink function. We consider

Yoo = 1‘1—1>r—&¥100 ¢($), Voo = acgr—noo ¢<:L‘)

From Lemma[1.2.4, Ui # U_oo, furthermore, since

¢ (x) = \/2U (¢(x)) > 0,

it is not difficult to verify that (V_uo,Vyo) NV = 0. Otherwise, we would obtain the existence
of xg € R such that ¢ (zo) € V, which would imply that ¢ is a constant function.

1.3 The ¢° model

1.3.1 Preliminaries
From now on, we consider the potential function U : R — R given by U(¢) = ¢ (1 — ¢2)2.

We consider the following nonlinear wave equation

(¢°~NLW)

0;d(t, ) = 030(t, =) + 20(t, ) — 8(t, 2)* + 6(t, 2)* =0,
limg 1 o0 ¢(x) =1, lim,, ¢(x) =—1,

which is equivalent to the scalar field of dimension 1 + 1
R o(t, x) = 030 (t,x) + U (9(t, ) = 0.
The kinks associated with U are solutions of the following ordinary differential equation
¢ (x) = V2|é(z) (1 - o(x))]. (1.10)

Clearly, the vacuum set V associated to this potential function is {0, —1,+1}. Therefore,
Lemma and Remark imply that the only possible kink solutions ¢ : R — R should
satisfy one of the following boundary condition

lim ¢(z)=—1and lim ¢(z) =0, or xEIPoo ¢(r) =0and lim ¢(z) =1.

IT—r—00 Tr—-+00 T——+00

By a standard application of the Fundamental Theorem of Calculus, we obtain that the

following functions

e\/ﬁz e—\/ix

N P
1+ e2V2e V1 +e2V2

(1.11)



are solutions of ordinary differential equation . Indeed, from Picard-Lindelof Existence-
Uniqueness Theorem and since Hy; is a function in C*(R) satisfying lim,, - Hoi(z) =
0, lim, 1o Ho1(z) = 1, we deduce that the only solutions of satisfying the boundary
conditions lim, , ., ¢(z) = 0, lim,_,, o, ¢(x) = 1 are the set of functions whose elements are
the scalar fields ¢y, : R — R defined by ¢p(x) = Ho1(x + h) for any x, h € R. Similarly, the
only kinks satisfying the boundary condition lim,_,_, ¢(x) = —1 and lim,_, ., ¢(z) = 0 are

the translations of the function H_; o(z).

Notation 1.3.1. We denote the Sobolev space H:(R) as the completion of the space C5°(R)

in the norm ||-|| ;1 satisfying

) df (z)°
1 = [ Y pwan,

for any real function f € Cg°(R). We also consider the norm ||-|| . which satisfies
1Fle = [ f@)*da,
= Jr
for every f € L2(R)
Definition 1.3.2. For anyt € R, cos (tv—A) and sin (t\/—A) are the linear bounded maps
cos (tV=A) : (L2(®R) |l ll2) = (L2 (R) [l 2) -
sin (tv=A) : (L2 (R), [ll,2) = (22 ®R), |1l 2) -
which satisfies for any f € C3°(R) the following identities
cos (V=) f(x) = [ f(y)cos (2ntlyl)e* dy,
R
sin (1V/=8) f(x) = [ f(y) sin (2ntly])e2= dy,
R
where f is the Fourier transform of f, which is defined by

fz) = /R f(y)e™2™=¥ dy, for all x € R.

sin (tM)

VTN by the bounded linear map with same domain as sin (t\/—A) which
satisfies the following identity

sin —A F
(V2) 1 [ fw

27|y|

We also denote

sin (27t|y|)e*™™¥ dy,

N
for any f € C5°(R).

Lemma 1.3.3. There exists C > 0 such that for any f, g € H:(R), we have

17 9lley < C NNy N9l gz -



Proof. See Lemma A.8 and its proof in [61]. O

Definition 1.3.4. We say that a real function ¢ : R* — R is a solution in the energy space
of the partial differential equation (¢°—NLW)) if, and only if, for allt € R the function ¢(t, x)
satisfies

lo(t,2) = Ho(x) — Hoyo(2)]] gy + 100 (t, 2) || 12 < +00,
and for any t, ty € R, the function u(t,z) = ¢(t,z) — Ho1(x) — H_19(x) is a solution of the

following integral equation

sin ((t — to)ﬁ)
VA

(U’ (Hon(x)) + U (H_1())

Oyu(to, x)

u(t,x) = Fu(t,x) == cos ((t — to)\/z)u(tg, x) +

t sin ((t - S)M)
to VvV—-A

_|_

U (Hoa(x) + H_10(x) + u(s, a:))) ds (1.12)

in the space C(R, HL(R)) N CY(R, L3(R)), which means that the following map

f(t) = u(ta )
df (t)

is a continuous function from R to H:(R) and the derivative =5 s a well-defined continuous

map from R to L2(R). For a better understanding in this concept of solution, see Chapter 3
of [61].

From now on, we are going to verify that the Definition is consistent. If ¢ is a
smooth solution of the partial differential equation , then the function u(t, ) = ¢(t,x) —

Ho1(x) — H_19(z) is a smooth solution of the partial differential equation
Otu(t, ) — O*u(t,x) = U/(H071(l')> +U/(H_170(x))—UI (Ho1(z) + H_10(z) +u(t,z)). (1.13)
Indeed, from the identity U(¢) = ¢2 (1 — ¢2)” and Taylor’s Theorem, we deduce for any

functions uy, uy € H!(R) the following identity

U (Ho(x) + Ho10(z) + ui(x)) — U (Ho(x) + Ho10(z) 4 ug(x)) =
uy(z)) " — ug(w)
(j —2)!

6
S UY (Ho(x) + H g o(x))
=2

So, from the elementary estimate,

Jua () = w2V < (5= 1) (Jua(@)P 72 + [ua(@) ) [un (2) — ua(x)]

obtained from the Fundamental Theorem of Calculus and the fact that U, Hy,, H_1o € C*
and Hoq, H_19 € L°(R), we deduce using Lemma for any natural number 2 < 5 < 6

the existence of a constant C; satisfying
(U9 (Ho 1 (2) + Ho10(@)) [ur (V™ = ua(aV ||, <

C; (Jluallas” + lluallfn?) s () = ua(@) |, -

10



Therefore, if there exist two solutions u, v of the integral equation belonging to the
space C ([=T + to, T + to] , HL(R)) NC* ([T + to, T + to] , L2(R)) , we deduce using Lemma
the existence of a constant C' > 0 independent of v and v satisfying for any t €
[—T + to, T + to] the following inequality

[u(t) = o)l 1 + [10u(t) — G (t)]| 2 <

C [ 11+ 1s = tall (1 max{ ()L [0(6) ) ) = 5y .

Consequently, using Gronwall Lemma, we can verify that u(s) = wv(s) for any s in the
interval [T + to,T + to], from which we conclude the uniqueness of the solution of the
partial differential equation (1.13)) in the space H}(R) x L2(R).

Similarly, assuming t; = 0, using the map F' defined at and considering d, =
[[(wo, )|l g1 12 » We can deduce the existence of a Ty > 0 depending only on dy such that the

following restriction of F

F: {u\ (u, 0u) € C ([=To, To] , Hy(R) x L2(R)),  sup ||(u(t), () s, 12 < 250}

tG[*To,To}

— {u\ (u, Ou) € C ([=To, To] , Hy(R) x LA(R)),  sup ||(u(t), du(t)) | 1,12 < 250}

tG[—Tg,To}

is a contraction. Therefore, using Banach Fixed-Point Theorem, we can verify that (1.13) is
locally well-posed in the space H!(R) x L2(R).
The solutions of the partial differential equation (¢°) in the energy space satisfy the

following conservation laws:

plo) = [ AR g0, a (Energy)

P(¢) = —/Ragcgb(t,x)@tqﬁ(t,x) dx. (Momentum)

Moreover, the solutions ¢(t, z) of satisfy the following invariances:

Time translation: For any h € R, ¢(t + h, ) is also a solution of ,

Space translation: For any h € R, ¢(t,z + h) is also a solution of ,

Space reflection: ¢(t, —x) is also a solution of ,
o Time reflection: ¢(—t, ) is also a solution of .

In addition, for any v € (—1,1) and any (to, zo) € R?, if ¢(¢, ) is a solution of , then the

Lorentz transformation

t—m—Mx—m)x—m—U@—%U

Wt"c):‘f’( Vi—e | VI-@
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is also a solution of the partial differential equation . Consequently, if H is a stationary
solution of , then the following function

T — vt
et =1 ()
is also a solution of . We observe that the kinks and anti-kinks are the unique non-
constant stationary solutions of with finite energy, see Chapter 5 of [36].

Moreover, the Space translations of the kink Hy ; are the minimizers of the Energy function
E(¢) when ¢ satisfies the boundary conditions lim,_,_ ¢(x) = 0 and lim,_, ;- ¢(z) = 1, see
Chapter 5 of [36] for the proof of this fact.

Furthermore, since the real function U(¢) = ¢?(1—¢?)? is positive and satisfies lim, 4 U(y) =
+00, any solution ¢ of having finite energy is global in time.

More precisely, if E(¢) < +oo, then there exists C' > 0 such that [[¢(t, )| jecm) < C for
any t in the domain of ¢, from which, using the local well-posedness of partial differential
equation , we obtain the global well-posedness of in the space of solutions having
finite energy. Because, if E(¢) < +00, then, for any real ¢ in the domain of ¢,

AamawfszEw»

which implies with Cauchy-Schwarz inequality that

6(t,x) — ¢t y)| < |o — y|2\/2E(9).

Therefore, since U is a non-negative function satisfying lim,, 1., U(y) = +o0, if there existed

a real sequence (t,)nen in the domain of ¢ satisfying limy, 4o [|¢(tn, )| oo (m)y = +00, then

there would exist a n € N such that [ U(¢(t,, x))dx > E(¢), which is a contradiction.
Finally, for each ¢ € R, we consider the Kinetic Energy Ex(¢)(t) of a solution ¢ in the

energy spaces by

Bo)0) = [ 2 g,

and we denote the Potential Energy E,.+(¢)(t) by E(¢) — Ex(¢)(1).

1.3.2 Previous results in the stability and dynamics of kinks

In this subsection of the thesis, we briefly describe the previous results obtained about sta-
bility and dynamics of one or two kinks for some dispersive nonlinear equations.

For the ¢* model, which is the partial differential equation
07 o(t,x) — Bio(t, x) — @(t,x) + ¢(t,x)° = 0, (t,7) € R?,

asymptotic stability of a single kink under odd perturbations was proved by Kowalczyk,
Martel, and Mufioz in [29]. Moreover, in [I3], Delort and Masmoudi obtained the decay rates

for the size of the perturbations of the kink for this model.

12



Under assumptions on the potential function U, it was proved in [31], for the following

partial differential equation
oot x) — Ot 2) + U (4(t,2)) =0, (t,2) €R?, (1.14)

the asymptotic stability of a kink by Kowalczyk, Martel, Munoz, and Van Den Bosch. Indeed,
the result of this article applies to the ¢® model which we studied in this thesis, therefore the
kinks Hy; and H_; are asymptotically stable in some sense.

For the sine-Gordon model
O o(t, ) — 0Zp(t, x) + sin (§(t, z)) = 0,

Schlag and Lithrmann proved asymptotic stability of a single kink under odd perturbations
in [56]. Moreover, in [I], Alejo, Munioz and Palacios, proved asymptotic stability result of a
single kink in a specific manifold of perturbations.

With respect to nonlinear Schrédinger equation models, we refer the to the work [6] about
orbital stability of a kink in the Gross-Pitaevskii equation. For more references in stability
of solitons in nonlinear Schrédinger equations, see also the classical work [5] about orbital
stability of solitary waves and [4] about asymptotic stability of solitons.

Regarding the topic of dynamics, in [26], for a certain set of potential functions U, Jendrej,
Lawrie and Kowalczyk described the dynamics of strongly interacting kink-antikink pair
solutions of . The strongly interacting kink-antikink pairs are the solutions of
which converge in infinity to a sum of kink and antikink each one moving with a speed
converging asymptotically to zero. In [20], it was also obtained the existence the strongly
interacting kink-antikink pairs and their uniqueness under time and space translation.

With respect to the Klein-Gordon model, Krieger, Nakanishi and Schlag proved asymp-
totic stability of solitary waves in the article [32]. Kowalczyk, Martel and Munoz also proved
asymptotic stability of solitons and studied their dynamics for one dimensional Klein-Gordon
n [30]. See also the recent article [19] by Germain and Pusateri about asymptotic stability
of solitary waves for Klein-Gordon models.

The literature about stability and dynamics of solitons for nonlinear dispersive equations is
vast and not only restricted to one-dimensional nonlinear dispersive equations. For example,
see the references [22], [I1], [55], [27] about dynamics and stability of vortices, which are

topological solitons associated with scalar fields of dimension 1 + 2.

1.3.3 Collision of solitons for nonlinear dispersive models

The study of the collision of solitons in nonlinear dispersive equations focuses on under-
standing the long time behavior of a solution ¢(t,x) when time variable ¢ approaches —oo
knowing that this solution converges in some norm to a finite sum of solitary waves when
the t goes to 4+00. For non-integrable models, there aren’t many references that study the

collision between solitons for nonlinear dispersive models.
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In many complete integrable models, the solutions can be described explicitly and the
collision between solitons is completely elastic, see for example the results for the Korteweg-
de Vries equation in [45], see also [9], [25] and the classical work of Lax in [33]. Contrary
to the collision of solitons in completely integrable systems, it is expected in non-integrable
models that the collision between two solitons is not elastic, which means that, after the
collision instant, the solution will not converge when ¢ goes to +o0o to a sum of two solitary
waves with same energy and momentum as the two solitons before they collide.

In [39], Martel and Merle studied the stability of the collision between solitons for the
generalized Korteweg-de Vries equation and, in [40], [41], the same authors proved inelasticity
of the collision between two solitons for the quartic generalized Korteweg-de Vries equation.
In [49], [50], Munoz extended the argument used in [41] to prove the inelasticity of the collision
between two solitons for other generalized Korteweg-de Vries models.

For nonlinear Schrodinger equation models, in [53], Perelman studied the collision between
two solitons of different size and obtained inelasticity, indeed after the collision instant she

proved that the solution doesn’t preserve the two solitons’ structure.

1.4 Main results
We recall the one-dimensional nonlinear wave equation (j¢°—NLW)|)

O2p(t,x) — 02¢(t, x) + 20(t,x) — 8¢(t, z)* + 6¢(t,x)° = 0,
lim, , o ¢(t,z) =1, lim,, o, o(t,z) = —1.

In Chapter 2, we will describe all the solutions of (¢°—NLW)]) in the energy space with energy
slightly bigger than 2E (Hp ;). Actually, from the estimate

/Ratas@ 2 %02 o0 da > |2 ”5” + U ((t,x)) de

2
Fx¢(t, )

_/\/m@mx\dﬁz/[
> [ \RU (6(t,2)) o6(4,2) da;zj_lmdy=2E<Ho,1),

we have that 2F (Hp ;) is the minimum possible value for £ (¢). This minimum value is not

attained, since there isn’t a non-constant solution ¢ with finite energy satisfying |0,¢(t, x)| =
2U (¢(t,xz)) which is not either a kink or a antikink.

Definition 1.4.1. Let ¢ be a solution in the energy space of the partial differential equation
(0°—NLW)|). The energy excess € of ¢ is the following positive value:

e = E(¢) — 2E (Hy,).

14



1.4.1 Description of the solutions with small energy excess
Our first main result is the following:
Theorem 1.4.2. 3C > 1,y > 0, such that if € < g and

(6(0,) — Ho(2) — H_10(2), 0,6(0,2)) € HA(R) x LA(R)

with Eiora(9(0),0,0(0)) = 2E(Hy 1) + €, then there exist functions xo, 11 € C*(R) such that
the unique global time solution ¢(t,z) of (p°—NLW)) is given by

¢(t,x) = Ho(x — x2(t)) + Hor oz — 21(t)) + g(t, 2), (1.15)
and for any t € R,
€ .
© < e VARO-20) 4 max 3502 + [(9(), Ag)l e < Cei (116)
C je{1,2}
T < (. .
max [1(1)] < Ce (1.17)

Furthermore, we have

600500y < €[ 160010 O g+ €] o (Tl ) foranti e = 119

The proof of Theorem will be presented in the next chapter. Using an argument of
contradiction, we will prove that if the energy excess € of ¢ is small enough, then, for any
t € R, there exist 1(t), Z2(t) € R with 25(¢) > 21(t) such that

[6(t, 2) — Hop (z — 22(t)) — Hor0 (2 = 21(8)) || gra gy < 1.

Next, using modulation techniques similar to the one used in [54] an [26], we are going to

verify that ¢(¢,x) has the following representation
¢(t,x) = Hoy (x — 22(t)) + Horo (z — 21 (8)) + g(t, ), (1.19)

with 2(t) — z1(t) > 1, |lg(t, )| g1 gy < 1 for any ¢ € R and g(¢, z) satisfying the orthogo-

nality conditions

(9(t.2). H, (z = wa(1)) |, = (9(t.2), H 1 (x = 11(1)) , =0. (1.20)

From the orthogonality conditions above, we will obtain the following coercive estimate in

the energy

Co ”g(t, x)”?i%(R) < E <¢) - F (HO,I (.CL' — sz(t)) + H*l,O (l’ _ xl(t)))
+0 (Hg(t?x)HiI%(R) + ’QZQ(t) — xl(t)‘e*Q\/i(ffz(t)*m(t))) .

Therefore, using a bootstrap argument and the continuity of the modulation parameters

x1, o, we will deduce the existence of a constant ¢ > 0 such that
lg(t, 93)”?{;(]1@) + e VR2@mO—n () < ce, for all t € R.
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The estimate [|0,g(¢, )[|;2 < ez will follow directly from the estimate of the kinetic energy
of ¢ and the fact that E(¢) —2F (Hp,) = €.

The estimate of the first and second derivatives of the modulation parameter x;, x5 will
follow from standard analysis of the ordinary differential equations obtained from the time
derivative of the orthogonality conditions and combining this result with the estimates
above we will deduce inequalities , .

The proof of inequality will be done more carefully in Chapter 2 using refined
energy estimates techniques. More precisely, it will be based on a study of a function F(t)

defined from the sum of the quadratic term

/ Opg(t, )2 + Oig(t,x)*> 1
R

5 + §U” (Hog (v — 22(t)) + H_10 (x — 21(¢))) g(t, 7)* dz

with correction terms. We will prove that this function has small decay in its derivative and

it satisfies a coercivity inequality

1), g rra myerz )y S F(2) + €.

Using these two observations, we will obtain the following inequality

2
1(g(t), Beg ) i1 gy 222y < €| 1(9(0), Beg(0) 13y L2y + € I <> } exp (

for all t € R.

1.4.2 Dynamics of two kinks with small energy

Furthermore, in the second chapter, we will also prove the following theorem.

Theorem 1.4.3. In notation of Theorem [1.4.3, 3C, 80 > 0, such that if 0 < € < &y, ¢ is
a solution of the partial differential equation (¢°—NLW|) in the energy space and E(¢) =
2E,01(Ho1) + €, then the smooth functions dy, dy € C* (R) defined by

di(t) = a+ bt — 2\1/5 In (52 cosh (\/ivt + 0)2), (1.22)
dy(t) = a+ bt + 2\1/5 In (U82 cosh (\/§vt + 0)2), (1.23)

such that d;(0) = z;(0), d;(0) = 4,(0) for j € {1, 2}, satisfy

max [d5(t) = a;(0)] < Cmin(e e, ), max d;(t) - (0] < Celt,
7€,

2 N Cenlt|
ejg%§}|dj(t) x;(t)] _C’max( g(O; ,e) ln<e> eXp(ln(i)) (1.24)
; . 2 NM Ot
2 . — 7. < — .
€ jg%)é}w](t) (1) _C’max( g(O; ,e) hl(e) eXp(ln(i)) (1.25)
1 . . 2 n Cez |t
€2 [max, |d;(t) — ;(t)| < C'max ( g(O; ,e) In (€> exp ( In (1) ) (1.26)
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Both Theorems [1.4.2] and [1.4.3] are from the article [47].

The proof of Theorem relies on the observation that the functions x;(¢) — d;(t) will
be very close to a solution of a well-known linear ordinary differential system. Therefore,
using the estimates , and the inequality , we will conclude the proof of

Theorem [1.4.3] using the method variation of parameters for ordinary differential equations.

Finally, the demonstration of estimate is going to follow from the energy estimate
technique using the function F(¢) and the estimate of the derivative F(t) using the estimates
(L-25), of Theorem instead of the global estimate max;eq oy |4;(t)* + |&;(¢)] =
O (e).

The statement of Theorem also describes with high precision the dynamics of two
interacting kinks for the ¢° model, which is the behavior of the displacement solitons when
initially they are very close to each other and their energy is slightly larger than the minimal
value of the energy of a solution of the problem . Moreover, the conclusions of
Theorem allow us to understand with high precision the effect of the repulsive force
of interaction between the kinks in their dynamics during a very large time interval. The
methods we used to study the dynamics of two kinks for the ¢% model are not only restricted
to this partial differential equation and they can be very useful to understand the dynamics
and properties of multi-solitons for other non-complete integrable systems. Actually, we will

also prove in the second chapter that the precision in our estimate (1.21]) is optimal in an
In(1
interval of size of order O (E}“>> .

1.4.3 Almost elasticity of the collision of two kinks

The third main result of the manuscript is the following statement:

Theorem 1.4.4. For any 0 < 0 < 1 and k € Nx,, there exists 0 < §(0,k) < 1, such that if
0<wv<d(0,k), and ¢(t,z) is the unique solution of (¢°—NLW)) satisfying for all t > 4@

o, ) + v I T — vt v I T+t
X)) + ——= — 10| —
' VI—o2 A\ =2 VI—o2 TP\ T =2
then there exist a real function vy : (0,1) x R — R and a number e, such that 0 < vy < 1,

)
ley | < In (v%) and if t < <7) then |vp(t) — v| < v* and

T — ekv—i-vf(tt £L‘+€kv—1}f(t>
— H,
HW’ ot ( V1= (1) ) ( V1 — ot )

H3(R)
atqs(t,x)Jr”fi(t)HéJ (a: 6kv+Uf(t)t) vy (t) H'lo(ere,w_ (t)
<

T — vt T+ vt
Hgb(t,a:) — Hoa <m> —H_ (W)
<e
L3

Hy(R)

vt (1.27)

1=y (t)? 1 —;(t)?
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A (1)2° (1)
Furthermore, if —an() <t< #, then

T — ep, + vt T+ €y —U
toa)— Hoy [— 22t 2 ) — [
H¢< “) 0’1< Vi ) 10( Vi >

<wv

ot gt () ()|
(1.28)

The existence and uniqueness of two solitary kinks for the ¢® model with the energy
norm of the remainder having exponential decay was proved in [8] by Chen and Jendrej. In
particular, when the speed v > 0 is small enough, we have the decay .

The statement of Theorem implies that the collision between two kinks for the ¢°
model is almost elastic. Indeed, for any k£ € N if the speed v of each kink is small enough,
then the energy norm of the residue and the change in the speed of each kink is much smaller
than v*. Therefore, the collision of two kinks for the ¢® model is different, in nature than the
collision of two solitons of quartic generalized Korteweg-de Vries, for which the inelasticity is
polynomial with respect to the size of the speed of the solitons, compare Theorem [1.4.4] with
Theorem 1 of [4I]. Moreover, because of the estimate (1.28)) concluded in Theorem |1.4.4] it
is not possible to apply the methods of [41] to prove the inelasticity of the collision between
two kinks for the ¢° model.

1.4.4 Sketch of the proof of Theorem [1.4.4

The demonstration of Theorem is quite long and delicate, and it will be divided into
Chapters 3 and 4, corresponding to the preprints [46] and [48] respectively. First, we are
going to create a sequence of approximate solutions (¢y) ren, Of equation (¢°) satisfying for
any v > 0 sufficiently small

lim
t——4o00

xr — vt T+ vt
on(0.2) — Ho (>_H, ()
k( ) 0,1 m 1,0 m )

v / x—ut / x4 vt
ot s oo () - 0 (75

and for all t € R, if 0 < v < 1, then

1

where C(k) > 0 and n;, € N for all & € N,.

=0,
L3

82¢k<vat7$) 82¢k(v,t,x)

Ot2 - o2 U/ (¢k(?),t,$))

< O (I -+ 1n (1)> e~2VElly.
v

HE(R)

Definition 1.4.5. We define A : C?*(R* R) — C(R?* R) as the nonlinear operator satisfying
A(gbl)(t? ZL‘) = afqbl(ta CL’) - a§¢1(t7 ZL’) + U,<¢1(t7 J])),
for any function ¢, € C*(R?, R).
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More precisely, we will prove the following theorem in Chapter 3.

Theorem 1.4.6. There exist a sequence of functions (¢r(v,t,2)),~, , a sequence of real num-

bers (k) > 0 and a sequence of numbers ny € N such that for any 0 < v < §(k), ¢x(v,t,x)

satisfies
i [au0.0) + *H ( )~ o (), =0
Jim O pi (v, x) — \/11:71)21%,1 (x J\r/qut_;;v’k> + \/1717H/—1,0 (W) . =0,

with e, € R satisfying
ln(%)
Euk — \/%
lim ———k——
0 o (o)
Moreover, if 0 < v < 6(k), then for any s > 0 and | € NU {0}, there is C(k,s,l) > 0 such
that

= 0.

1 Tk
G, t2)| < Chs 0 (It +1n () Ve,
v

o

H3(R)
The demonstration of Theorem is very technical and requires tools from functional

and complex analysis. The construction of each approximate solution follows from an argu-

ment of induction. We explain briefly the main ideas behind the proof of this theorem.

First, for any 0 < v < 1, we consider the function d, : R — R denoted by

d,(t) = \}5 In <52 cosh (\/ivt))

and we consider also
dy(t) du(t)
r— = —y — 2
901v(t755):H01<.2 )—Ho1(.2 )
’ ’ dy(t)2 ’ dy(t)2
1 == v1—=9-

Next, we prove the existence of a Schwartz function M(x) orthogonal to H(/M(x) in L2(R)
such that A(¢1,)(t, x) satisfies

A0 b
Apr)(t,z) = e V2RO M [ —2_ | - M [ —— 2
’ 1— dy (t)? 1— dy ()2

4 4

+res(v, t,x), (1.29)

where, for any v € (0,1), R(v,-) € C*(R?) and if 0 < v < 1, then

~S,

1

Hres v, t, x

ot! H3 (R)
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Using information obtained in ([1.29)), we are going to consider a smooth function ¢q o, (¢, z)
denoted by

dy () dy(t)
B 3y (1) Ty R
v t,iL‘ - v t7$ te i - I ’
$2.00(t, ) = pro(t, 7) [g ( 1 dv(t)2) g ( 1 _ du(®? )]
4 4

where G is the unique Schwartz function orthogonal in L2(R) to H , satisfying the identity

—j;ax) +U" (Hou(x)) G(a) = —M(x).

Next, for any 0 < v < 1, we are going to create a smooth even function r, : R — R such
that the function

du(t) dv(t)
_ T — 2y +r(t) T+ 75 — ()

4

4

2dy () T — d”Q(t) + 7y (1) -z — d”2(t) + 7,(t)
+e g . -g .
1— dy (t)? 1— dy(t)?
V 4 4

satisfies for all £ € R
dy(t)
o= 2 ()
A(SDQ,U(t’:L‘))’HO,l 2 )
1 — dy(t)
4 L2

dy(t)
/ X —I— - T’U t 1
+ <A(902,v(tax)>7H—l,0 ( 2 ( >)> Lvo2,
L2

indeed we will construct r, as an solution of an explicit ordinary differential equation. Next,
we will prove in the third chapter the existence of a parameter ay, such that the function
Pa(v,t,x) = pa,(ak, +t, x) will satisfy Theorem for k = 2.

The remaining argument of the proof of Theorem is the construction of ¢y, from
the function ¢ which by the principle of induction concludes the proof of Theorem [1.4.6] For
all k& € N>o, the argument on proof of the inductive step is similar to the method explained
above to obtain ¢, from the function ¢, ,.

More precisely, we will prove by induction on £ € N, the existence of a sequence of

approximate solutions (¢y.,)

keN>,
T+ pro(t) T — pro(t)
Pralt, ) =Ho (() HHo | S
1— & 1 ==

aa [ ($+Pk,v(t)> - (—x+pk,v<t>)]
+e g | ——= §| —==-
d, (1)2 du (1)
1 == VI==
My,
| 2 pea(t) [T pea(t)
+ ;pz,k,v (\/El)t) [hz,k ( dv(t)Q) - hz,k ( dv(t)Q )

1 — 02 1 - 02
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which satisfies for all [ € NU {0} and all s > 0 the inequality

Hal

, 1\ ™
gﬁA(¢hv@,x» gzﬂk2<uh}+1n()> e~V if g < 1, (1.30)
v

HE(R)
where nj, € N, the real function py, is smooth, even and, for any 1 < i < My, the real
functions h;; € (R) and all the functions p; j, are smooth and even. First, assuming the

existence of the approximate solution ¢y, for some k = kg € N>o, we are going to verify the

R (2 +oro(t) | R (=2 + prw(t)
7 1 dy ()2 7 1 dy ()2 ’
T4 T4

where, for any j € I, Rj € Y(R) and Sjw is a real even smooth function satisfying
d' 2k—1 1 " —2v/2
‘ tzSJ’”(t)‘ ,S v 2 (|t|v +In (v)) e .

Next, for any j € I, using Fredholm alternative in the linear self-adjoint operator —% +
U" (Ho1(2)) : HX(R) C L2(R) — L2(R), we will deduce the existence and uniqueness of a

Schwartz function Y; satisfying

following estimate

A (Wk,v(t7x)) ~ Z Sj,v(\/ﬁvt)

JjEly

_ddzyj(x) +U" (Hou(2)) Yi(z) = —Rj(x) + <Rj H[/M>L2 }/[071(37)2_
’ ’ HO,l(m)

L3
The approximate solution ¢y,+1,, Will be constructed using the formula of ¢y, ,, more pre-

cisely:

Ut vt B vt_ Ut
@m+LA@x):,H&I(x—%p%,()+r%+L()>_+fLmo(x Prow(®) = Thor1.0(t)

dy (t)2 dy (t)2
I—= 1 —

4
e VL) [g (x + Pros(t) + mﬁl,v(t)) g (—x + Pros(t) + rko,v@))

1 — Sl — 4@
)
Mg -
v t v t _ v t v t
+ 3 Pikow (\/§m‘) [hi,ko (x + Prow(t) + Thot1,0( )) ~ han, ( T+ Prol )frkoﬂ, ( ))
=1

4

T+ Pho v (t) + rko-i-lﬂf(t) —T + Phko v (t) + rko-i-l,v(t)
+ Z Sjw (\/ivt) y] dv(t)Q - yj dv(t)Q )
1 — = 1 —
€Ik 4 1

where 7,41, is a smooth even function satisfying an explicit linear ordinary differential
equation. Finally, for each £ € N>y and 0 < v < 1, we are going to prove the existence of
a value e, having size of order O (m(j)) such that ¢y (v,t,7) = g(t + g, ) satisfies
Theorem [L.4.6]

In Chapter 4, we are going to use the results of Chapter 3 to demonstrate Theorem [1.4.4]

/ I—i_pkv(t)
H ———— | 4u(t, ),
b (W (t,2)

For the proof of this theorem, we will denote the function ¢ by

¢(t7 iL‘) = ¢k(’U, t, l’)—l—LH{),l (x - pk,.v(t> ) + Y2
1 1

EAGE dy (1)2 _ d®)?

1 ! 4
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where py,, is an explicit function obtained in the construction of ¢, of Theorem and

y1(t), yo(t) are the unique real numbers satisfying

v = pra(t) / T+ pro(t)
<U(ta$)aH0,1 (1%@)2)> =0, <U(t;$), H (1W = 0. (1.31)
T4 T4 L2

L2 4

Using the condition satisfied by ¢(¢, ) when t goes to +00, we are going to estimate
the value of [|(u(t), du(?)) | g1 (r)xr2(r) using the same energy estimate methods used in the
proof of the first main result Theorem to estimate the energy norm of g during a long
time interval.

Furthermore, using the orthogonality conditions , we will deduce that the functions
Y1, Yo satisfy an ordinary differential system of equations very close to a well-known linear
differential system. Therefore, using the method of variation of parameters and the estimate
of the energy norm of [|(u(t), yu(t))|| 1 myxr2(r) that we obtained, we are going to evaluate
the parameters y;(t), y2(t) and their derivatives during a large time interval.

Next, using the estimates obtained for yi, ya, [[(w(t), 0xu(t))| 1Ry 12 (=) and a bootstrap
argument, we will deduce that [[(¢(¢,z) — ¢x(t, ), 00(t, x) — Ordn(t, @)l g1y 12 (w) 18 Very
small during a long time interval, which will imply estimate of Theorem [1.4.4 The
first estimate of Theoremwill be proved as a consequence of estimate and a result
about orbital stability of two moving kinks very similar to the Theorem 1 of the article [31]
about orbital stability of a moving kink for a class of nonlinear wave equations of dimension
1+ 1.

The conclusion of Theorem is very unexpected since the ¢° model is non-integrable
and we proved that the collision between two kinks of this model is almost elastic. Moreover,
for any k£ € N, if v > 0 is small enough, Theorems also allow us to describe the
displacement of the two solitons during any time ¢ with precision higher than v*, which is
a strong result about the dynamics of multi-solitons for non-integrable systems. The result
of almost inelasticity obtained in estimates ([1.28]) is also noteworthy and implies that the
defects in the energy norm of the remainder and in the speed of the kinks after the collision
can be very insignificant in comparison with the notable result of inelasticity of the collision
of two solitons obtained in Theorem 1 of article [41] about generalized Korteweg-de Vries
equation.

Furthermore, the results of Theorem open possibilities in the investigation of the
collision and the dynamics of multi-kinks for other one-dimensional wave equation models
with nonlinearities of a higher order than the ¢%. This topic of research has applications and
interests in different fields of Physics, for example, many investigations have been made in

High energy physics, see [14], [17].

1.5 Notation

In this section, we describe the notation that we are going to use in the following chapters.
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Notation 1.5.1. For any D C R, any non-negative real function f : D C R — R, a real
function g with domain D is in O (f(x)) if and only if there is a uniform constant C > 0 such
that 0 < |g(x)| < C'f(z). We denote that two real non-negative functions f,g: D C R — Rxg
satisfy

3o,

if there is a constant C' > 0 such that
f(z) < Cyg(x), for all z € D.

If f < g andg < f, we denote that f = g. We use the notation (x); = max(x,0). If
g(t,z) € CHR, L*(R)) N C(R, H'(R)), then we define g‘(t_g € HY(R) x L*(R) by

9‘3 (9t9 )

and we also denote the energy norm of the remainder ﬁ as

9] = lo®) s + 1929001

to simplify our notation in the text, where the norms ||| g, |2, ||l g1xz2 are defined,
x x x x

respectively, by

d 2
15y = [ DO f@rar, 1502 = [ A2 de, N gz = 1Al + 151

for any fi € H'(R) and any f> € L*(R). For any (f1, f2) € LL(R) x LZ(R) and any (91, 92) €
LA(R) x LZ(R), we denote
((f1, f2), (91, 92)) /fl )91 (%) + f2(x)g2(x) dx

For any functions f1(z), g1(x) € L2(R), we denote

<f1,91> :/Rfl(l’)gl(x) dx

We consider N as the set of positive integers. For any k € N and any smooth function
f R = R, we use the following notation
d$
dzk

o (z) = (x), for all x € R.

Finally, we consider the hyperbolic functions sech, cosh : R — R and we are going to use the

following notations

cosh (z) = €+2€, sech (z) = (cosh ()", for every x € R.
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Chapter 2

Dynamics of two interacting kinks for
the ¢ model
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Abstract

We consider the nonlinear wave equation known as the ¢° model in dimension
14+1. We describe the long-time behavior of this model’s solutions close to a sum
of two kinks with energy slightly larger than twice the minimum energy of non-
constant stationary solutions. Using the energy conservation law and spectral
analysis, we prove the orbital stability of two moving kinks. We show for low
energy excess € that these solutions can be described for a long time of order
—In(e)e 2 as the sum of two moving kinks such that each kink’s center is close
to an explicit function which is a solution of an ordinary differential system of
equations. These ordinary differential equations are obtained using the techniques
from the previous work of M. Kowalczyk, J. Jendrej, and A. Lawrie in 2022 and
a classical argument of modulation analysis. We also prove that our estimate of
the energy norm of the remainder is close to the optimal during a time interval
At of order —In (e)e™2.



2.1 Introduction

2.1.1 Background

We recall the partial differential equation , which, for the potential function U(¢) =
»*(1 — ¢?)?, is denoted by

Rot,x) — ot x) + U (6(t,x) =0, (t,z) € R x R. (2.1)

The potential energy £, the kinetic energy Fy;, and total energy FEiu, associated to the
equation (2.1)) are given by

Fpa9(0)) =y [ 0uo(t2)?do+ [ 6(t,2(1 — 6(1,2))? d,
Buanl0(1)) = [ 00(t,) do,
Bl (0),00(0) =3 [ [0:0(,2)7 + 0i9(t, "] da
+ [0t P01 - o(t,0))? do.

The vacuum set V of the potential function U is the set U~'{0} = {0,1, —1}. We say that if
a solution ¢(t, x) of the integral equation associated to has Fiota (¢, 0ip) < +00, then it
is in the energy space. The solutions of in the energy space have constant total energy
Biotat(9(t), 0:p(t)).

From standard energy estimate techniques, the Cauchy Problem associated to is lo-
cally well-posed in the energy space. Moreover, if Eyq1(¢(0), 0;¢(0)) = Ey < 400, then there
exists M (Ep) > 0 such that [[¢(0, )| ey < M(Ep), otherwise the facts that U € C*(R)
and limy, 1. U(¢) = 400 would imply that [ U(¢(0,z))dx > E,. Therefore, similarly to
the proof of Theorem 6.1 from the book [57] of Shatah and Struwe, we can verify that the
partial differential equation ({2.1)) is globally well-posed in the energy space since U is a Lip-
schitz function when restricted to the space of real functions ¢ satisfying ||¢||;wr) < Ko for
some positive number K.

We recall that the stationary solutions of are the critical points of the potential
energy. From Chapter 1, the only non-constant stationary solutions of with finite
total energy are the topological solitons called kinks and anti-kinks. Moreover, Remark

implies that each topological soliton H connects different numbers vy, vo € V, more precisely,

lim H(z) = vy, ml_lgIFlOOH(:E) =y, VN{H(z)|z € R} = 0.

T—r—00
We recall from ([1.11)) that all kinks of ([2.1]) are given by
e\/i(x_a)
Hyi(z —a) = , H 1 o(x —a) = —Hoa(—2 + a),

V14 Vi)

for any real a. The anti-kinks of (2.1 are given by —Hg1(x —a), Ho1(—z +a) for any a € R.



In the article [35], for the ¢® model, Manton did approximate computations to verify that
the force between two static kinks is repulsive and the force between a kink and anti-kink
is attractive. Furthermore, it was also obtained by approximate computations in [35] that
the force of interaction between two topological solitons of the ¢% model has an exponential
decay with the distance between the solitons.

The study of kink and multi-kink solutions of nonlinear wave equations has applications
in many domains of mathematical physics. More precisely, the model that we study
has applications in condensed matter physics [3] and cosmology [62], [23], [20].

It is well known that the set of solutions in energy space of for any potential U is
invariant under space translation, time translation, and space reflection. Moreover, if H is a
stationary solution of and —1 < v < 1, then the function

olt,x) = H <M> ,
(1= o)}
which is denominated the Lorentz transformation of H, is also a solution of the partial
differential equation (2.1)).

The problem of stability of multi-kinks is of great interest in mathematical physics, see
for example [17], [14]. For the integrable model mKdV, Muiioz proved in [51] the H' stability
and asymptotic stability of multi-kinks. However, for many non-integrable models such as
the ¢% nonlinear wave equation, the asymptotic and long-time dynamics of multi-kinks after
the instant where the collision or interaction happens are still unknown, even though there
are numerical studies of kink-kink collision for the ¢ model, see [17], which motivate our
research on the topic of the description of long time behavior of a kink-kink pair.

For one-dimensional nonlinear wave equation models, results of stability of a single kink
were obtained, for example, asymptotic stability under odd perturbations of a single kink of
¢* model was proved in [29] and the study of the decay rate of this odd perturbation during a
long time was studied in [13]. Also, in [31], Martel, Mutioz, Kowalczyk, and Van Den Bosch
proved asymptotic stability of a single kink for a general class of nonlinear wave equations,
including the model which we study here.

The main purpose of this chapter is to prove Theorem and Theorem [I.4.3] Moreover,
we will describe the long time behavior of solutions ¢(¢, x) of in the energy space such
that

lim ¢(t,z) =1,

T—+00

lim ¢(t,x) =—1,

T—r—00

with total energy equal to 2E,,(Ho)+e¢, for 0 < € < 1. More precisely, in Theorem |1.4.2] we
proved orbital stability for a sum of two moving kinks with total energy 2E,,(Ho1) + € and
we verified that the remainder has a better estimate during a long time interval which goes

to R as € — 0, indeed we proved that the estimate of the remainder during this long time
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interval is optimal. In Theorem [I.4.3] we proved that the dynamics of the kinks’ movement
is very close to two explicit functions d; : R — R during a long time interval.

Theses results are very important to understand the behavior of two kinks after the instant
of collision, which happens when the kinetic energy is minimal. Numerically, the study of
interaction and collision between kinks for the ¢% model was done in [I7], in which it was
verified that the collision of kinks is close to an elastic collision when the speed of each kink
is low and smaller than a critical speed v..

For nonlinear wave equation models in dimension 2+ 1, there are similar results obtained
in the dynamics of topological multi-solitons. For the Higgs Model, there are results in the
description of the dynamics of multi-vortices in [58] obtained by Stuart and in [22] obtained by
Gustafson and Sigal. Indeed, we took inspiration from the proof and statement of Theorem 2
of [22] to construct our main results. Also, in [59], Stuart described the dynamics of monopole
solutions for the Yang-Mills-Higgs equation. For more references, see also [60], [15], [37] and
[21].

In [2], Bethuel, Orlandi, and Smets described the asymptotic behavior of solutions of a
parabolic Ginzburg-Landau equation closed to multi-vortices in the initial instant. For more
references, see also [27] and [55].

There are also results in the dynamics of multi-vortices for nonlinear Schrodinger equation,
for example, the description of the dynamics of multi-vortices for the Gross-Pitaevski equation
was obtained in [52] by Ovchinnikov and Sigal and results in the dynamics of vortices for the
Ginzburg-Landau-Schrédinger equations were proved in [II] by Colliander and Jerrard, see

also [28] for more information about Gross-Pitaevski equation.

2.1.2 Main results

We recall that the objective of this chapter is to show orbital stability for the solutions of
the equation (2.1) which are close to a sum of two interacting kinks in an initial instant
and estimate the size of the time interval where better stability properties hold. The main
techniques of the proof are modulation techniques adapted from [26], [43], and [54] and a

refined energy estimate method to control the size of the remainder term.

Definition 2.1.1. We define S as the set g € L*°(R) such that
Hg(x) - HO,1<$> - H_l’O(I)HH% < +00.

From the observations made about the global well-posedness of partial differential equa-
tion (2.1)) in the energy space and, since 1, —1 are in V, we have that (2.1]) is also globally
well-posed in the affine space S x L2(R). Motivated by the proof and computations that we

are going to present, we consider
Definition 2.1.2. We define for x1, o € R
Hgi(x) == Ho1(x — x2) and H" o(x) == H_y g(xv — 11),
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and we say that x5 is the kink center of Hyi(x) and xy is the kink center of H™} o(x).

In Chapter 1, we verified for any a € R that the kinks Hy ; (z —a) are the unique functions

minimizing the potential energy in the set of functions satisfying

lim_o(t,x) =1, lim_o(t,z) =0, (2.2)

T—>+00

since they also satisfy the partial differential equation which is the Euler-Lagrange
equation associated to the potential energy. Moreover, using the Bogomolny equation ((1.9)
satisfied by the kinks, we can verify that all functions ¢(z) € S have E,o(¢) > 2E,0i(Hop 1),
see also the Subsection 2.2 of [26].

Definition 2.1.3. We define the energy excess € of a solution (¢(t),0:d(t)) € S x LA(R) as

the following value

€= Etotal((b(t)y at¢(t)> - 2Epot(HO,1)-

We recall the notation (), = max(x,0). It’s not difficult to verify the following inequal-
ities
(D1) |Hoa(w)] < eV,
(D2) |H_1(2)| < e~ V2B
(D3) [Hyy(2)] < V26 V2,
(D4) [H' o(2)| < v2e V2@,

Moreover, since

"

Hy, (x) = U (Hoa(x)), (2.3)
we can verify by induction the following estimate

dkH(),l (ﬁ)

Tk <) min (6_2\/§x, e‘/iz> (2.4)
T

for all k € N'\ {0}. The following result is crucial in the framework of Chapter 2 :

Lemma 2.1.4 (Modulation Lemma). There exist Cy,dy > 0, such that if 0 < § < o,
x1, T9 are real numbers with xy — 1 > + and g € H'(R) satisfies ||g|l;n < 9, then for

o(x) = H_19(x — 1) + Ho1(x — xa) + g(xss, there exist unique Yy, Yo such that for
g1(z) = ¢(z) — Horo(z — y1) — Hoj(z — ),
the four following statements are true
1 (g1, O:H_10(x —11)) =0,

2 (g1, OuHoa1(x —y2)) =0,
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J HngH}: < Coo,
4 |y2 — za| + |y — 1] < Cyo.

We will refer to the first and second statements as the orthogonality conditions of the Modu-

lation Lemma.
Proof. The proof follows from the implicit function theorem for Banach spaces. ]
Now, we recall our main results:

Theorem 2.1.5. There exist C,dy > 0, such that if € < 69 and

(¢(0),0:6(0)) € S x L(R)

with Epoar($(0), 0;0(0)) = 2E,u(Ho1) + €, then there exist functions xq, xo € C*(R) such
that, for all t € R, the unique global time solution ¢(t,x) of (2.1)) is given by

¢(t) = H071($ — ZUQ(t)) + H_Lo(iv — l’l(t)) + g(t), (25)

with g(t) satisfying, for any t € R, the orthogonality conditions of the Modulation Lemma

and

—\fa; —T i y 2
e V) - mae |5 (0] + max 507 + (00, 09(0) [prs < Ce (26)

Furthermore, we have that

1(9(0), 019731 < C min ( [16(0). 2O + ] exp (S

nl
€

)) for allt € R.
(2.7)
Remark 2.1.6. In notation of the statement of Theorem for any 6 > 0, there exists

K(9) € (0,1) such that if 0 < € < K(5), Etotar(¢(0), 0:p(0)) = 2E 0t (Ho1) + €, then we have

that |[(9(0), 0g(O)|| g1z < 0 and z5(0) — 21(0) > %, for the proof see Lemma and
Corollary in the Appendiz Section [A]]

Theorem 2.1.7. In notation of Theorem there exist constants 6, k > 0 such that if

€ . . Inl
0 <e<d, then 5 <[[(9(T),09(T))|l g1y 2 for some T € R satisfying 0 <T < (rk+1) T
Proof. See the Appendix Section [A.2] O

Remark 2.1.8. Theorem m implies that estimate (2.7) is relevant in a time interval
(=T,T) for a T > 0 of order —e2ln (€). More precisely, for any function r : Ry —
Ry with limy_,or(h) = 0, there is a positive value §(r) such that if 0 < e < (r) and

H(g(o)’atg(o))HHéxL% <r(e)e, then e S “(g(t)ﬁtg(t))HH;ng for some 0 <t = O<ln€)-

1
€2
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Remark 2.1.9. Theorem [2.1.7 also implies the existence of a 09 > 0 such that if 0 <
€ < b, then, for any (¢(0,z),0:¢6(0,2)) € S x L2(R) with Eja(¢(0),0,0(0)) equals to
2E,0t(Ho1) + €, g(t,x) defined in identity satisfies € < hgfip 1(9(®), QgD g2 »
similarly we have that € < htril_sip 1(9(®), Qg ()|l a2 -

Theorem 2.1.10. Let ¢ satisfy the assumptions in Theorem [2.1.5 and z1, x2, and g be as
in the conclusion of this theorem. Let the functions dy, dy be defined for any t € R by

di(t) =a+ bt — 2\1/§ In (U82 cosh (\/ﬁfut + 0)2), (2.8)
dy(t) = a + bt + 2\1/§ In <U82 cosh (\/ﬁvt + 0)2), (2.9)

where a, b, ¢ € R and v € (0,1) are the unique real values satisfying d;(0) = x,(0), d;(0) =
t;(0) for j € {1, 2}. Let d(t) = da(t) — di(t), 2(t) = xa(t) — x1(t). Then, for allt € R, we
have

12(t) — d(t)] < C'min(ez|t],et?), |2(t) — d(t)| < Celt|.

Furthermore, for anyt € R,

€ max 14;(6) — ,(0)] = O (max (160, 09Ol zz ) (1) e (Ceél't')

je{1,2}

1 . , 2/ 1\ Cez |t]
et o |ds () — i (0)] = O [ max (190, 290D sz v€) () exp | <5
]6{1,2} T x € s
(2.11)

Remark 2.1.11. If||(g(0), 0:9(0))|| 12 = O (€), then the estimates (2.10) and (2.11)) imply
that the functions x;(t), @;(t) are very close to d;(t), d;(t) during a time interval of order

—In(e)e 2.

Remark 2.1.12. The proof of Theorem[2.1.5 and Theorem [2.1.1(} for t < 0 is analogous to
the proof for t > 0, so we will only prove them fort > 0.

Theorem describes the repulsive behavior of the kinks. More precisely, if the kinetic
energy of the kinks and the energy norm of the remainder g are small enough in the initial
instant ¢ = 0, then the kinks will move away with displacement z(t) 2 e2t + In< when ¢ >0
is big enough belonging to a large time interval.

Furthermore, using Theorem [2.1.10] we can also deduce the following corollary.

Corollary 2.1.13. With the same hypotheses as in Theorem [2.1.10, we have that

max ‘dj(t) — xj(t)‘ =0 (maX ( 1(9(0), 5’t9(0))||H;xL§ ,€>eé exp (C€é1|t|>>

je{1,2} In =

+0 (m (160) 2600 ) (1) "o (S 1'“)) .

Proof of Corollary[2.1.15. Tt follows directly from Theorem [2.1.10] and from Lemma
presented in the Appendix Section [A1] O
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2.1.3 Resume of the proof

In this subsection, we present how Chapter 2 is organized and explain briefly the content of
each section.

Section 2. In this section, we prove the orbital stability of a perturbation of a sum of two
kinks. Moreover, we prove that if the initial data (¢(0,z), 9:¢(0,x)) satisfies the hypotheses
of Theorem , then there are real functions z;, x5 of class C? such that for all t > 0

1
€2

|ot,2) — Hg3® — H2G)|

| (001.2) — 133" — H2D)

AN

1 Y
Hz

N|=

AN

€2.
L3

First, for every z > 0, we are going to demonstrate the following estimate
Epot (Hon(x = 2) + Ho10(7)) = 2Epot (Ho1) +2V2e V> + O ((z + e V%) (212)

The proof of this inequality is similar to the demonstration of Lemma 2.7 of [26] and it follows
using the Fundamental Theorem of Calculus.

The proof of the orbital stability will follow from studying the expression
Bpor(H33" + HG + 9) = Bpor(H3" + HE),

using the fact that the kinks are critical points of E,, and the spectral properties of the
operator D?E,; (Hy 1), which is also non-negative. Moreover, from the modulation lemma,

we will introduce the functions x,, z; that will guarantee the following coercivity property
19(8), D912 S Bor(Hoi" + HUG + ) = Epor (Hiy® + HH).
Therefore, the estimate above and will imply that
VIO O) 4 (g(0), B9 (0) | ns S (2.13)

From the orthogonality conditions of the Modulation Lemma and standard ordinary dif-
ferential equation techniques, we also obtain uniform bounds for ||&;(¢)|| jee(r) » ;)] oo gy
for j € {1, 2}. More precisely, the modulation parameters z; and x5 are going to satisfying

the following estimate

e (5w + 150 ey S € (2.14)

The main techniques of this section are an adaption of sections 2 and 3 of [26].
Section 3. In this section, we study the long-time behavior of &;(t), x;(t) for j € {1, 2}.
More precisely, we prove that the parameters x; and o satisfy the following system of

differential inequalities

;(t) =p;(t) + O (¢(1)), (2.15)
Pyt =(-1y— L 4 Byt (Hiy 4+ H 1) + 0 (a(t) (2.16)
HHOJ . dz 2= (t)1(1)
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for j € {1,2}, where a(t),((t) are non-negative functions depending only on the functions

(@5(0) ey » (E5(0) ey > (9(8), 0ig())] gz and satistying

1
< _
a(t) < 1111 T (1) Seln o for all t € R, (2.17)

because of the estimates ) and - However, the estimates can be improved
during a large time interval if we could use the estimate in the place of Hﬁ ‘ = O(e2).

Our proof of estimates - is based on the proof of Lemma 3.5 from [26]. First,
for each j € {1,2}, the estimate is obtained from the time derivative of the equations

(¢(t,x) — H 1 0(x — 21(t)) — Hop (z — 22(t)) , O Hoa(x — 22(t)))
(o(t,x) — Hoyo(x — 21(t)) — Hop (z — 22(t)) , 0. H 1 0(x — 21(2)))

0,
0,

which are the orthogonality conditions of the Modulation Lemma. Indeed, we are going to
obtain that

<@amwaH“%>>

i (t) = N +0 (1),
0yp(t, x ,3ng2j(t) x
jjﬁ):j : ||a)H01||2’ . roww).

Next, we are going to construct a smooth cut-off function 0 < y < 1 satisfying

(z) = {3 AT

,if x>0,

where 0 < 7, 8 < 1 are parameters that will be chosen later with the objective of minimizing

the modulus of the time derivative of

(06(1), 0. HIG () + 00 (x (555255) 9(1)))

pi(t) =— H@HCHOJH% 7
(8900, 0150 @) + o, ([ x (5] o)
2 6. Hoa 7

from which with the second time derivative of the orthogonality conditions of Modulation
Lemma and the partial differential equation , we will deduce the estimate for
JjeA{l, 2}

Section 4. In Section 4, we introduce a function F(t) with the objective of controlling

H|| ),0:9(1) || 11512 || for a long time interval. More precisely, we show that the function

F(t) satisfies for a constant K > 0 the global estimate H|| )5 0eg ()| g1 12 5 F(t)+ Ke?

and we show that |F(t)| is small enough for a long time interval. We start the function from

the quadratic part of the total energy of ¢(t), more precisely with
D(t) = 0r9(t, ) + 19:9(t, )52 + [ UD(HEO (@) + D (@)gt, ) da
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However, we obtain that the terms of worst decay that appear in the computation of D(t)

are of the form
/R [8,5 (g(t, :v)k)} J(x1, o, 1, o, ) dz, (2.18)
where k € {1,2,3} and the function J satisfies for some [ € Q> the following estimates

9 : .
37%‘]( 1(), 22(t), &1(t), 22(t), 7)

P : )
aT:JJ(;pl( ), x2(t), T1(t), To(t), x)

< €l

~ )

L3

sup max
teR J€{1,2}

sup max
teR j€{1,2}

L2
and

sup || J (z1(t), z2(t), £1(¢), 22(8), ) || 12 S " if k = 1, otherwise
teR

Sup |7 (z1(t), 22(8), 21(), 22(8), 2 o) S ¢ when k € {2,3}.

But, we can cancel these bad terms after we add to the function D(t) correction terms of the
form

- /R (g(t,0)%) T(ar(8), 2a(t), d1(8), a(2), 2) d, (2.19)
and now, in the time derivative of the sum of D(t) with these correction terms, we ob-
tain an expression with a size of order €2 ||(g(¢), 6?1tg(75))||’;{;X 7z Which is much smaller than
¢ ||(g(t),3tg(t))||l;{%><L% because of inequality obtained in Section 2 of this chapter.

Next, we consider a smooth cut-off function 0 < w < 1 satisfying

and wy(t,x) = w (#ﬁ)@)) . Based on the argument in the proof of Lemma 4.2 of [26], we

aggregate the last correction term
Z/R&gg(t, x)0pg(t, x) [21(t)wr (t, ) + 2o(t) (1 — wy(t, x))] dx,
whose time derivative will cancel with the term
/ U (HGAO (x) + H () (d2(0) 0. H33 Y + 1(0)0,H D) g (¢, 2)? da,

which comes from D(t), since we cannot remove this expression using the correction terms
similar to (2.19). Finally, we evaluate the time derivative of the function F(t) obtained from
the sum D(t) with all the correction terms described above.

Remaining Sections. In the remaining part of this chapter, we prove our main results, the
estimate of Theorem is a consequence of the energy estimate obtained in Section
4 and the estimates with high precision of the modulation parameters x;(t), x2(f) which
are obtained in Section 5. In Section 5, we prove the result of Theorem [2.1.10, where we
study the evolution of the precision of the modulation parameters estimates by comparing it
with a solution of a system of ordinary differential equations. Complementary information

for Chapter 2 is given in Appendix Section and the proof of Theorem [2.1.7] is in the
Appendix Section [A.2]
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2.2 Global Stability of two moving kinks

Before the presentation of the proofs of the main theorems, we define a function to study the

potential energy of a sum of two kinks.

Definition 2.2.1. The function A : R, — R is defined by
A(z) = Epot(Hg 1 (z) + H_10(7)). (2.20)

The study of the function A is essential to obtain global control of the norm of the
remainder g and the lower bound of z5(t) — 1 (¢) in Theorem [2.1.5]

Remark 2.2.2. [t is easy to verify that E,u(Ho1(x — x3) + H_10(x — 21)) = Ept(Ho 1 (z —
(22 — 1)) + H_10(2)).

We will use several times the following elementary estimate from the Lemma 2.5 of [26]

given by:

Lemma 2.2.3. For any real numbers xs, x1, such that xo —x1 > 0 and o, 5 > 0 with o # 3
the following bound holds:

/R emale=e) o —Blar—a)t gy < o= min(af)(@2—a1)

For any a > 0, the following bound holds
/Re_c“(a’_”“)*e_a(m_’:)Jr dr <o (14 (3 — z1))e"@2721),
The main result of this section is the following
Lemma 2.2.4. The function A is of class C* and there is a constant C' > 0, such that

1. |A"(2) — 4V/2e7 V2| < Oz + 1)e2V22,

2. |A'(2) + 467V < Oz + 1)e 222,

3. |A(2) = 2E,0(Ho 1) — 2v/2e7V?%| < C(z 4 1)e 2V22,

Proof. By the definition of A, it’s clear that

2
= / ( H (o +H_1o(:1:)D dz + /R U(Hz(x) + Horo(x)) da
— 0. Houll2, + [ 0uHG 1 (@)0 Hovolw) da + [ U(HG y(2) + Ho1(2)) da

Since the functions U and Hj; are smooth and 0,Hy ;(z) has exponential decay when |z| —

+00, it is possible to differentiate A(z) in z. More precisely, we obtain

’

A'(2) = [ 025 x)axH,l,o(:c) dv — [ U'(H () + Horo(2)0, HG () da

= [ 0uH; (@) [U'(Ho10)(@) = U'(Hovo(a) + Hi o (2))] da
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For similar reasons, it is always possible to differentiate A(z) twice, precisely, we obtain

1

(H_10(x) + Hg 4 (z))

—02HG () U (H-10(z)) = U (H_10(x) + Hgy(2))] da. (2.21)

A'(2) = [ 0.H; (@)U

Then, using integrating by parts, we obtain
A'(z) = /R 0, Hyy ()0, H-10(2) [U" (H_10(2)) — U (H_r0(x) + Hy, (2)] do. (2:22)

Now, we consider the function

/

B(z) = /R 0 Ho ()0, H_19(x + =) [U"(0) — U (Ho, ()] da. (2.23)

Then, we have

1

A'(2) = B(:) = [ 0cHi ()0, H10(0) U (Horo(a)) = U (Horolw) + H, (@) do

1"

~ [ 0uHg ()0 H 10w) U (0) = U (5 (@) | o (2:21)

Also, it is not difficult to verify the following identity

1"

(U (H_10(x)) = U"(Ho10(z) + Hi, ()] = [U"(0) = U"(Hg y(2))] =

Horole) [Hi (@)
—/ v /“ U® (w; + wp) dwr dws. (2.25)
0 0

So, the identities (2.25)) and (2.24) imply the following inequality

"

‘A dx.

H_1(x) Hg}l(x)
(2) ~ B(2)| < /IR GxHél(x)@xH_l,o(x)” /0 /0 U® (w; + wy) dwr dws

Since U is smooth and ||H | ;. = 1, we have that there is a constant C' > 0 such that

[A4"(2) - B(z)| < 0/R

Now, using the inequalities from (D1) to (D4) and Lemma to inequality ([2.26)), we

obtain that there exists a constant C; independent of z such that

0uH{ (2)0: H 1 o(x) H 1 () HG ()| da (2.26)

A" (2) = B(2)| < Ci(z + 1)e 2V, (2.27)
Also, it is not difficult to verify that the estimate
axH,L(](Jj) — \/567\/536

and the identity (2.23)) imply the inequality

< C'min(e V2% ¢=V2), (2.28)

"

B(z) — v2e V% /]R eV, Hy o (2)(U" (0) — U" (Ho (x))) dx

N / HO,l(x)a$H0,1($) min (6_3\/5(“'2), e—\/g(l”rz)) dr
R

< / 6—2\/5(—x)Jr min (6—3\/5(904-2) e—\/ﬁ(x—i—z)) dr
R

Y

< /0 6—2\/§(z—z)+6—\/§x dr + /+OO 6—2\/§(z—x)+6—3\/§(ac)+ dr.
—00 0
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Since we have the following identity and estimate from Lemma [2.2.3]

0 —2v/2z

/ o 2V2(z—x) ,~V22 g _ € 7 (2.29)
o V2
/*‘” 2V =BV < o2VEE (2.30)
0
we obtain then:
’B(z) _ \/567\@/ e V20, Hoy ()[U”(0) = U" (Hoa(x))] dx’ Se (2.31)
R

which clearly implies with the inequality
‘A”(z) — 2 V% /R eV 0, Ho 1 () [U” (0) = U” (Hoa (x))] dx’ (z+1)e2V%. (2.32)
Also, we have the identity
/R (8(Hoa (x))* — 6(Hou () )e V> dr = 2V/2, (2.33)

for the proof see the end of Appendix Since we have the identity U®(0) — U®)(¢) =
24¢% — 30¢*, by integration by parts, we obtain

e~ V2 3 )
/RﬂaxHo,l(x) [U (0)—-U (Hoyl(:z:))] dx = /R (8(}[071(5,;))3 _ 6(H0,1(g;))5)@—\/5x d.

In conclusion, inequality (2.32)) is equivalent to‘ "(2) — 4v2e V2| < (2 4 1)e2V22,

The identities

U'(6) + U (0) — U (& + 0) = 2460(6 + 0) —6( s <5> ¢J‘95f'>,

Jj=1 J

= — [ 0., (@) [U'(Hi 1 (@) + Ho10(2) + U (Horolw) = U'(Hi y(2)] da

and Lemma|2.2.3|imply the following estimate for z > 0 ‘Al(z)’ <e V% g0 limy. 5 4e0 ’A/(z)‘ =
(z +1)e 2V2% from z to 400

0. In conclusion, integrating inequality ‘Au(z) — 4/2e7V%| <

we obtain the second result of the lemma

A(2) + 4672 S (2 4+ 1)e 2V (2.34)

Finally, from the fact that lim. ., Epot(H_10 + H§ (7)) = 2Ey,(Ho,1), we obtain the
last estimate integrating inequality (2.34]) from z to +oo, which is

2Bt (Ho) +2v2e V% — A(2)| S (2 + 1)e 2V,
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It is not difficult to verify that the Fréchet derivative of E,, as a linear functional from
H'(R) to R is given by

(DEpor(¢))(v) = /R@xcb(x)@cv(x) + U (¢(x))v(x) da. (2.35)
Also, for any v, w € H'(R), it is not difficult to verify that
(D*Epor(@)0, w) = /R 0,0(x)dpw(x) di + /R U (6(2))o(x)w(z) d. (2.36)

Moreover, the operator D?E,, (Ho1) : H2(R) C LZ(R) — L2(R) satisfies the following
property.

Lemma 2.2.5. The operator DzEpOt (Ho1) satisfies:

ker (D Epot (Ho1)) = {c0:Hoa(x)| c € R},

1
D*Epot (Ho1) 9,9) = ¢ |ll9ll12 = (9: 0 Hop)* oo |
(D*Epot (Hon) 9.9) > ¢ | lgll72 — (9, 0. Ho,) ol
for a constant ¢ > 0 and any g € H'(R).
Proof. See Proposition 2.2 from [26], see also [34]. O

Lemma 2.2.6. [Coercivity Lemma] There exist C,c, 6 > 0, such that if xo — x1 > %, then
for any g € HY(R) we have

(D*Epor(H33 + H 0)g, 9) > cllgllfy — C [(9, 0 H™ o) + (g, 0:H53)?| (2.37)

Proof of Coercivity Lemma. The proof of this Lemma is analogous to the proof of Lemma
2.4 in [26]. O

Lemma 2.2.7. There is a constant Cs, such that if xo — x1 > 0, then

| DEwt(HG3 + HT )|, < CoemV2e2mm), (2.38)

L3
Proof. By the definition of the potential energy, the equation ({2.3]), and the exponential decay
of the two kinks functions, we have that

’

DEy(H3 + H" o) = U (Hg3 + H" o) — U (Hg3) — U (H™, )

as a bounded linear operator from L2(R) to C. So, we have that

4
x T x x x T 5 x j x —j
DEpo(H§% + HZY o) = —24HZ3 H o[ HE3 + HT) ] + 6 { > ( j> (H" o) (Hi3)* |

J=1

and, then, the conclusion follows directly from Lemma [2.2.3] (D1) and (D2). O
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Theorem 2.2.8 (Orbital Stability of a sum of two moving kinks). There exists 69 > 0 such
that if the solution ¢ of satisfies (¢(0),0:0(0)) € S x L2(R) and the energy excess
€ = Eiotar(¢) — 2E,0t(Ho1) is smaller than 0y, then there exist x1, x2 : R — R functions of
class C?, such that for all t € R denoting g(t) = ¢(t) — Ho1(z — 22(t)) — H_10(z — 21(t))
and z(t) = xo(t) — x1(t), we have:

L lg(®)] 1 = O(e2),
2. z(t) > % [hl% —|—1n2} ,

3. 10:p(®)]72 < 2e,
4. maxjeqi 2y |27 + max;eq 21 |3 ()] = O(e).

Proof. First, from the fact that Eypa(p(x)) > 2E,+(Hop 1), we deduce, from the conservation

of total energy, the estimate

lo()2; < 2e. (2.39)

From Remark [2.1.6] we can assume if € < 1 that there exist wy, wy € R such that
¢(0,2) = Hoy(x —wa) + H_1 o(x —wy) + g1(),

and

lg1ll gy < 0, wa —wi > 5

for a small constant 6 > 0. Since the equation ({2.1)) is locally well-posed in the space
S x L(R), we conclude that there is a §; > 0 depending only on § and e such that if
—51 S t S 51, then

||§Z5(t, ZL’) — H(]J(J] — wg) — H_Lo(l’ — w1)||H% S 25 (240)

If §, ¢ > 0 are small enough, then, from the inequality (2.40) and the Modulation Lemma, we
obtain in the time interval [—dy, §1] the existence of modulation parameters x(t), x2(t) such
that for

g(t) = o(t) — H0,1<x — xa(t)) — Hq,o(l' —x1(t)),
we have
(9(t), O0uHoa(x — 22(2))) = (g(t), O H-10(x — 21(t))) =0, (2.41)

[22(t) — 21(8)] + gl < 0 (2.42)
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From now on, we denote z(t) = z5(t) — z1(¢). From the conservation of the total energy,
we have for —§; < ¢ < 6§, that

o) o
Eiorar(¢(1)) :% + Epor <H0,21(t) + Hfl(,g))

DBy (B3 + B, 9(1))

. (D By (HA® + H™)g(1), 9(1))

+Olg(®)ll77)-

2
From Lemma [2.2.4] and (2.42), the above identity implies that
:Haﬁ(;)ui? o /3 VD) 4 <DE Ot<H32(t) n Hﬂ(f)))? g(t)>
+ <D2E * (ngl )g > + O< ||g(t)||§{% + z(t)e_z\/iz(t)) (2.43)
for any t € [—01,01]. From (2.38]), we can verify that ’(DEpot(Hgﬁ(t) —i—Hfll(f)))? g(t))‘ <
Che V2D ||g (1) mi(r) - S0, the equation and the Coercivity Lemma imply, while —d; <

t < 41, the following inequality

dp(t)|? cllg@®)]?

+0 (g + 2(8)e™>V>0) . (2.44)

Finally, applying the Young inequality in the term Chev2%(®) llg(®)]| iRy, We obtain that
the inequality (2.44]) can be rewritten in the form

0 ¢ t 22 cllg(t 2 1
2 10O 4 oymeva SN o (1 + )+ 1e20) . (1)

Then, the estimates (2.45)), (2.42) imply for 6 > 0 small enough the following inequality

2 2
000N e cloOl

2.46
5 5 (2.46)
So, the inequality ([2.46]) implies the estimates

VO < 2 gl S« (247)

1
for t € [=61,01]. In conclusion, if % Sln (%) 2 we can conclude by a bootstrap argument that
the inequalities (2.39)), (2.47)) are true for all t € R. More precisely, we study the set

a ¢ 2 21
- fremen U0 o, B0y, )

and prove that M = sup,c- b = +00. We already have checked that C' is not empty, also C
is closed by its definition. Now from the previous argument, we can verify that C' is open.

So, by connectivity, we obtain that C' = R,.
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In conclusion, it remains to prove that the modulation parameters x1(t), z2(t) are of class
C? and that the fourth item of the statement of Theorem 2.2.8 is true.
(Proof of the C? regularity of z;, x5, and of the fourth item.)

For 6y > 0 small enough, we denote (y;(t), y2(t)) to be the solution of the following system
of ordinary differential equations, with the function ¢;(t) = ¢(¢,z) — Hgfl(t)(x) - H fll(fo) (x),

(10:Hoall7, = (or(e), 2E20) Yon ) + ( (0135, 0.HY) Jinlt) =
—(0o(t), 0 HYG(x)), (2.48)

((@eH, 0.17Q) Yin(t) + (10 Hoa )13, — (910, O2HE) Jint) =
—(2u8(1), QHF " (x)), (2.49)

with initial condition (y2(0),y1(0)) = (22(0),21(0)). This system of ordinary differential equa-
tions is motivated by the time derivative of the orthogonality conditions of the Modulation
Lemma.

Since we have the estimate In (1) < 22(0) — 21(0) and ¢1(0) = ¢(0), Lemma and the
inequalities in 7) imply that the matrix

||amH01Hia—< 1(0), 2009 (0,13, 0,0

(et o) outuall 0 >,az S I

is positive, so we have from Picard-Lindel6f Theorem that yo(t), yi(¢) are of class C* for
some interval [—4,d], with § > 0 depending on |z5(0) — z1(0)| and e. From the fact that
(y2(0),41(0)) = (22(0), x1(0)), we obtain, from the equations (2.48]) and ([2.49), that (y2(t), y1(t))
also satisfies the orthogonality conditions of Modulation Lemma for ¢ € [—4, 6]. In conclusion,
the uniqueness of Modulation Lemma implies that (y2(t), y1(t)) = (x2(t), z1(t)) for t € [—4,d].
From this argument, we also have for ¢ € [—4,d] that e~ V2w()-n() < 555 By bootstrap,

we can show, repeating the argument above, that
sup{C > 0| (y2(t),11(t)) = (za(t), 21(¢)), for t € [-C,C]} = +o0. (2.51)

Also, the argument above implies that if (y1(¢), y2(t)) = (z1(¢), z2(t)) in an instant ¢, then
Y1, y2 are of class C' in a neighborhood of ¢. In conclusion, xy, zo are functions in C'(R).
Finally, since || g(t)|| ;: = O(e2) and e~ V20 = O(¢), the following matrix

||axH0,1||ig20 - <g(t), 6923Hf11€6)> <ax]-]g21 P H$1(t)>

M(t) = T2 1 9
(0,H33", 0, HE{)) 102 Ho |72 — < (t), 2Hgy")

(2.52)

is uniformly positive for all ¢ € R. So, from the estimate [|0;¢(t)||;2 = O(e 2), the identities
zj(t) = y;(t) for j = 1,2 and the equations (2.48) and (2.49)), we obtain

max |%;(t)] = O(e?). (2.53)

je{1,2}
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Since the matrix M () is invertible for any ¢ € R, we can obtain from the equations (2.48)),
(2.49) that the functions @4 (t), Z2(t) are given by

1(t) 1| <6t¢(t), 3:1:Hf11(,6)(x)>
L.Z(t)] = M) [— <at¢(t)7 angi(t)(x)> : (2.54)

Now, since we have that (¢(t), 9,¢0(t)) € C(R, S x L2(R)) and z1(t), z2(t) are of class C*, we
can deduce that (g(t),d:9(t)) € C(R, HY(R) x L2(R)). So, by definition, we can verify that
M(t) € C*R,R?).

Also, since ¢(t,x) is the solution in distributional sense of , we have that for any
Y1, Y2 € R the following identities hold

(0, HY, 930(t)) = —(02H, 0:0(t)) — (0. HEZY, U'(6(1))),
(0. HY, 5, B2(t)) = —(2H", o, 0u0(t)) — (0. HY, 5, U'(6(1))).
Since is locally well-posed in S x L2(R), we obtain from the identities above that the
following functions h(t,y) = <E)ng71, 8t2q5(t)> and [(t,y) == <8mH31,0, 3t2¢(t)> are continuous
in the domain R x R.

So, from the continuity of the functions h(t,y), I(t,y) and from the fact that x;, xs €
C'(R), we obtain that the functions

hi(t) = = (ro(t), 0 HIG (1)), halt) = — (Dro(t), 0. Hi " (x))

are of class C!. In conclusion, from the equation (2.54]), by chain rule and product rule, we
verify that z;, x5 are in C*(R).
Now, since z1, T3 € C*(R) and i, @9 satisfy (2.54)), we deduce after differentiate in time

the function

the following equations

1) (19 Hoa 3, + (Deg(0), 0.HQ) ) + () (017 10,6H51t>>

=i (8 (O2HTYT, 0ug(t)) + a1 () (OTHTAG), Qg (1))
o (t)? (0. HE, O2HGY >+m(>(my o0, 0. H33") (2.55)
i (1) (G, 00() — (0.HG, 9Fo(D)),

ot >( 10: Hoal[7, + (D:9(0), axH&M) iy (1) (0, H2Y), 0, H3")

=io(t)* (07 Ho 3", Dag(1)) + da(t) (O2HGR", Drg(h))
i (B (t) (0. HEYY, 02HGA) + i (1) (0. H33", 02HT)  (2.56)
+ia(t) (O2HGE", 0i0()) — (0:HG3", 3f6(1))
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Also, from the identity g(t) = ¢(t) — Hfll(,g) — Hgfl(t), we obtain that 0,g(t) = 0,d(t, x) +
Z1(t)0y H”“l(é) + @o(t )@H&ﬁ(t), so, from the estimates (2.39)) and (2.53)), we obtain that

109 (£)]] 12 = O(e?). (2.57)

Now, Since ¢(t) is a distributional solution of (2.1]), we also have, from the global equality
o(t) = H™ 0 + HrQ(t + g(t), the following identity

(0. HAT, 076 (1)) = (0. HAY, 929(t) — U (HAT) 9(1))
— (0.5, [U" (HAQ + H33") - U (H5E)] 9(1))

, U (e

+(0.HA5Q, U (H2D) + U (H3") - U (52D + H3 )
— (012D U (HD + B33 + g(t) — U (HHE + H3V))
+ (0,12 Q, U" (HEG + H33®) (1))

Since 9, H\¢) € ker (D2Epo (H™\()) ), we have by integration by parts that
(0,12, 2g(t) — U" (HAE) g(t)) = 0.

Since we have

’

U (H5Q) + U () - U (B + HEY)
— 2 HO (HO) + B - 6§;(>(mw)@gw)j, (258)
Lemma 223 implies that
(01759, U (HQ) + U7 (H3") = U (2] + H30)) = OV,
Also, from Taylor’s Expansion Theorem, we have the estimate
(0,520, U" (H2G + HZ® + g(1)) - U (H“(“ + Hg3 "))
{0,158, U (5 + HEO) (1)) =0(lg (1))

From Lemma [2.2.3] the fact that U is a smooth function and Hy; € L>(R), we can obtain

(o150, [ (12 + 1350) = U (179)] 90)) =0 ( [ 0§ HEE 1g(0)] do )
zoG-Z w@m%aw%.
In conclusion, we have
(0179, 020(t)) = O( gl + V=), (259)
and by similar arguments, we have

(0:H53, 320(0)) = O(Ilg(@)[, + V™). (2.60)
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Also, the equations ([2.55)) and ([2.56|) form a linear system with & (¢), #2(t). Recalling that
the Matrix M (t) is uniformly positive, we obtain from the estimates (2.47)), (2.53), (2.57),

(2.59) and (2.60) that

max |i;(t)] = O(e). (2.61)

je{1,2}

]

The Theorem [2.2.8can also be improved when the kinetic energy of the solution is included

in the computation and additional conditions are added, more precisely:

Theorem 2.2.9. There exist C, ¢, dg > 0, such that if 0 < € < dg, (¢(0,2),0,0(0,2)) €
S x LA(R) and Eioru((¢(0,2),0:6(0,))) = 2E,u(Ho1) + €, then there are xq, 1 € C*(R)
such that g(t,z) = ¢(t,x) — Hfizl(t) (x) — Hfll(}? (x) satisfies

(g(t,2), 0, Hs3" () = 0, {g(t, 2), 0. H"{ () =0,
and, for allt € R,

ce < e V20O | (g (1), g (1)) 157112 + 81 (1) + [d2(1)]* < Ce. (2.62)

Proof. From Modulation Lemma and Theorem [2.2.8| we can rewrite the solution ¢(¢) in the
form
O(t,) = HUG (2) + H3t (@) + gt )

with z(f), x2(t), g(t) satisfying the conclusion of Theorem [2.2.8 First, we denote
6o(t) = (HAG (@) + H3 " (@), —ia ()0 HAG — d2(0)0,H33 ") € S x LA(R),  (2.63)

then we apply Taylor’s Expansion Theorem in E(¢(t)) around ¢, (t). More precisely, for R, ()
the residue of quadratic order of Taylor’s Expansion of E(¢(t), 0:¢(t)) around ¢,(t), we have:

2Epot(Ho 1) + € =Eitotat (00 (t)) + (D Eiotar(96 (1)), (9(t), drg(t)))

(D B (90 1)) (9 )0l ) (8:000)) , p o,

(2.64)

such that for (v1,12) € S x LZ(R) and (vy,vq) € Hl(R) x L2(R), we have the identities

2 2
10av1 (15 + lIvallLs

Eiotal(V1, 12) = ””2 L+ /RU<I/1(I)) dx,
(D Eyotar(v1,112), (v1,02)) = /R Op11 () 001 () + U/(Vl)vl + vo(x)vo(z) de, (2.65)
DzEtotal(Vh VQ) = [_ag +OU (Vl) g] (266)

with D?E1(v1, v2) defined as a linear operator from H2(R) x L2(R) to L2(R) x L2(R).
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So, from identities (2.65]) and (2.66), it is not difficult to verify that

Ro(t)= [ U (H“‘”( )+ Hy3" (@) + g(t,2)) = U (H2G () + Hg3 () da

- [V (#0@) + B30 @) g(t.2) do
/ U (H2Q (@) + H3" (2)) g(t, x)?
_ dzx,
2
and, so,
1R, ()] = O (lla®)3s) - (2.67)

Also, we have

(DEsora(¢(t)), (9(t),9ig(1))) = (DEpey (H““) + Hi ), g(t))

- (2.68)
< 110 HEG + o (1)0, Hi3, Oyg(t )>
The orthogonality conditions satisfied by ¢(t) also imply for all ¢ € R that
(ug(t), 0 H™)) = inn(t) (g(t), 22H")), (2.69)
(Dug(t), 0. HA") = in(t) (g(t), 2HZZ"). (2.70)

So, the inequality (2.38]) and the identities (2.68)), (2.69)), (2.70) imply that

(D Brar(66 (0). (9(0): 090} = O( 9@y sup [250 + IOl e¥>0). (271)

je{l,2}

From the Coercivity Lemma and the definition of D?FEy4(¢4(t)), we have that

(D?Eroraa (09 (1)) (9(£), 0u(£)), (9(8), Drg(1))) = 11(9(0), Drg(D) 77115 - (2.72)

Finally, there is the identity
(0. HAQ (@) + ()0 3 ()
=24y (t)ia(t) (0 H3Y s OuH 1) + 1(6) |0 Hoa |7

+ia () |0n Hoa |72 -

(2.73)

From Lemma [2.2.3] we have that ‘(&CHSJ, 8xH_170)’ = O(ze’ﬂz) for z big enough.
Then, it is not difficult to verify that Lemma [2.2.4] (2.67), (2.71), (2.72) and (2.73]) imply
directly the statement of the Theorem [2.2.9] which finishes the proof. O

Remark 2.2.10. Theorem[2.2.9 implies that it is possible to have a solution ¢ of the equation
(2.1) with energy excess € > 0 small enough to satisfy all the hypotheses of Theorem [2.1.5.
More precisely, in notation of Theorem |2.1.5, if ||(9(0,2), 0:g9(0,2))|| 1y 2 <K €2 and

e V2O 431 (0)% + i5(0)2 X e,
then we would have that Eyoq(4(0), 0,¢(0)) — 2E,0t(Ho 1) = €.
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2.3 Long Time Behavior of Modulation Parameters

Even though Theorem [2.2.8| implies the orbital stability of a sum of two kinks with low
energy excess, this theorem does not explain the movement of the kinks’ centers z5(t), x;(t)
and their speed for a long time. More precisely, we still don’t know if there is an explicit
smooth real function d(t), such that (z(t), 2(t)) is close to (d(t),d(t)) in a large time interval.

But, the global estimates on the modulus of the first and second derivatives of (), xo(t)
obtained in Theorem [2.2.8| will be very useful to estimate with high precision the functions
x1(t), x2(t) during a very large time interval. Moreover, we first have the following auxiliary

lemma.
Lemma 2.3.1. Let 0 < 6, v < 1. We recall the function
A(z) = Epor(Hgy + H-10)
for any z > 0. We assume all the hypotheses of Theorem and let x(x) be a smooth

function satisfying

1, if x <0(1—7),

x(r) = {1 =00 =) (2.74)
0, ifx >0,

and 0 < x(z) <1 for all x € R. In notation of Theorem we denote

xolt:2) = (T, g8 = (o), i9(0)) € H(®) x L2(R)

2(t)
and HﬁH S R C) "
! L VE(2)
max_|T; 1+ + i ] (e - )
Hﬁ je{l, 2}' ! [ )y | 2(6)? e 2}| i(0)]
+ max .Tj(t)22(t)6_\/§z(t) + maX;e{1,2} x](t) (6—2\/52(15)(;_::))
se{12y z(t)y
L L —ﬂz(t)(m>)]

t =] 2.75

" ’ ( Lﬁz(t)? * vz(t) * (e (2.75)

Then, for 0 = é% and the correction terms

(9i6(t), 0, H") () + Ba(xolt, 2)g(1)))

pl(t) = ||3 H01Hi2 )
b (0(1), 0. HG3 " (2) + 0u([1 = xo(t, 2)]g(t)) )
b “aa:HO,lHLg 7

we have the following estimates, for j € {1,2},

oz [+ ] (g o]« ) e
+ max [i5(1)] 2(t)e VO,
p;(t) + (—1)]’% < af(t). (2.77)
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lnln(%

Remark 2.3.2. We will take v = (L) - With this value of v and the estimates of Theorem
we will see in Lemma [2.5.1] that 3C > 0 such that

*S 2
’> < H1>< 2

1z Za (20|t|e§>
X :
Inln (1) P Ini

Proof. For v < 1 enough and from the definition of x(z), it is not difficult to verify that

|

We will only do the proof of the estimates ([2.76]) and (2.77) for j = 1, the proof for the case
j = 2 is completely analogous. From the proof of Theorem [2.2.8, we know that (), @o(t)

solve the linear system

<1

1
‘L"O(R) ~ ol

<.
.

!

X

"

X (2.78)

)

Lo (R)

wle]- L 28]

where M (t) is the matrix defined by (2.52). Then, from Cramer’s rule, we obtain that

~ (200, 0129 ((DH”, 0,9(0) + 0, o2, )
- () —
(1) det(M(?))
{00), 0. H 02 (0. H32 ", 0, HYY) 2.79)
det(M( ) S
. ol 1 .
Using the definition of the matrix M (t), g‘—SH O(e2) and Lemma [2.2.3| which
implies the following estimate
(0,H33", 0, HG) = O (2(t)e V1), (2.80)

we obtain that

det(M(t)) = |0: o 7

_ (Hﬂ” + (1) —2fz<t>> O(eb). (2.81)

So, from the estimate (2.81)) and the identity (2.79)), we obtain that

(0(t), D HET)
10: Hoa [

= o( [(0.5. 0.1310) (a0(t), 0.151) )
0 (Kat(ﬁ(t), O, H™\ D (x Hﬁ ‘ + z(t)QemZ(t)D . (2.82)

Finally, from the definition of g(¢,z) in Theorem we know that

0t ) = —in ()0, H Y (x) — do(£)0, Hy 3" (x) + Dug(t, ),
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from the Modulation Lemma, we also have verified that

(oug(0), 0,17y = O g8} 1110011 ),
(0ug(0), 0.3y = O( g8} 20011 ),

‘ﬁ” + maxcq,9y [4;(t)] < 1. In conclusion, we can

)

+0 (z@)e—ﬁz( ) max |i;(t)] ) (2.83)

je{1,2}

and from Theorem [2.2.8 we have that

rewrite the estimate (2.82)) as

10 Ho 172

=0{ s s o] + |5

Jj€e{1,2}

By similar reasoning, we can also deduce that

(06(1), 0. HG3 ")

#al :(maxx H H H )
O o 2, g 01| +
—V2z(t)
—i—O(z(t)e max |z;(t)] ) (2.84)

Following the reasoning of Lemma 3.5 of [26], we will use the terms p;(t), pa(t) with the
objective of obtaining the estimates (2.77)), which have high precision and will be useful later

to approximate x;(t), ;(t) by explicit smooth functions during a long time interval.

First, it is not difficult to verify that
@16(0), 0:(0(09(0))) = O [1+ ‘X(’t)“] Jo@|+ mas 1201 |58 ).

which clearly implies with estimate (2.83)) the inequality (2.76) for 7 = 1. The proof of
inequality (2.76) for j = 2 is completely analogous.

Now, the demonstration of the inequality (2.77) is similar to the proof of the second
inequality of Lemma 3.5 of [26]. First, we have

(90(8), (0. H D (@)))  (20(1), B:(Drxo(t)g(1)))

pi(t) =—

10 Ho 172 10, Ho 172
(0:(ag®), do())  (0:HNT, o(t))
10: Hoa 7. 102 Hoa |17
(Dox0(t)g(t), 070(t))  (x0(t)Dug(t), O7(2))
- . - 2 (2.85)
||awH0,1||Lg26 ”azHO,IHL%
=1+1I+1II+1V+V+VI, (2.86)

and we will estimate each term one by one. More precisely, from now on, we will work with

a general cut-off function x(z), that is a smooth function 0 < y < 1 satisfying

1, if 2 <0(1—~),
2.87
x(@) {0, if x> 0. ( )
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with 0 < 6, v <1 and
x—xl(t)>
2(t) )

The reason for this notation is to improve the precision of the estimate of p;(t) by the

Xo(t, ) = x( (2.88)

searching of the 7, § which minimize «(t).
(oo, 0217 )

2
0:Ho 12,

Step 2.(Estimate of I1.) We have, by chain rule and definition of yg, that

(0r(t). 0. (Oxo(t)g(1)))
10, o117,

(o a(v(=)a=0))

10 Ho 172

(0t 0 (55 [t
N 10 Ho 172 |

Step 1.(Estimate of I) We will only use the identity I = &, (¢)

1T =—

So, we obtain that

(o0, (=2 |28 + == o)
2(8) [10: Hoa |17
<<9t¢(t), X (Qf;‘”) j((f)lg(t)>
102 Ho |13
(2u0(0), X' (22 ) | 20 + =200 0,41 )
102 Ho Hig

I =

+

+

(2.89)

First, since the support of x' is contained in [§(1 — 7), 6], from the estimates (D3) and
(D4) we obtain that

" Iy 20
#-10 L2 (Supp 8xxo(t7$)) 7
2
0, Hii" ( )~ Ofe2/a0), (291)
' L2 | supp dxx0(t,x)

Now, we recall the identity 0,¢(t, x) = —d:l(t)amell%) - i‘Q(t)angj(t) + 0:g(t), by using
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the estimates (2.90)), (2.91)) in the identity (2.89)), we deduce that

I[:O( X
+’x

+6—\/§Z(t) min((1—6),0(1—)) ‘

manE{L 2} |[EJ (t)l H

J( SH maxje{l 2} |2;(2)]
mane{LQ} .Z’J(t>2 H H
t
(1) 9(t)

L>(R)

Lo (R)

L>(R)
+Hg‘(5Heﬁz(t)min((lew(m» ‘Xﬁ L=®) | ‘X/ L2®) | max i;(t)? (2.92)
z(t)? 2(t) je{1,23 7’ ' '
Since % < max((1 —6),0(1 —~)) for 0 < 7,0 < 1, we have that the estimate (2.92) is
minimal when 6 = ﬁ So, from now on, we consider
1—v
0=—- 2.93
92— ’Y’ ( )

which implies with (2.78) and (2.92) that 11 = O(«a(t)).
Step 3.(Estimate of I11.) We deduce from the identity

II] — — <ax<X0(t)atg(t))2, at¢(t)>
Ha:EHOJHL%

that
(=2 )ag(t), =1 ()0 HAG — aa(t)0 Hi3 " + drg(t
X kg(t), —i1(t) 1o — Ta(t)0.Ho 1 + Oig(t)
20) [0 Hoy |2

(xolt, 0)0R,9(1), —i(00H) = a(D0HTH + Dug(t, ) )
10 Ho 172
=111+ 1I1.2. (2.94)

The identity (2.93) and the estimates (2.78]), (2.90) and (2.91) imply by Cauchy-Schwarz
In conclusion, we have estimated that 1/1.1 = O(«(t)).

inequality that
) (2.95)
Also, from condition (2.87)) and the estimate (2.4]), we can deduce that

V() (A2
p :O<e V2 Wz—w)). (2.96)

1] =—

maXj;e{1,2} |9UJ( fz(t

vz(t)

III.le(

o e

|(1 = xo(t))22H2

Additionally, we have that

(xolt. ) [02,0(0) + i (O2HY + a(032H5E |, 210(0)
10 Ho 172

,+ [oezHg”

112 =— (2.97)
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By integration by parts, we have that

‘<X(x_z(xt3<t)>8§x¢(t,x), at¢<t,x>>\ = O( =5 1060 s umpona )

In conclusion, from the estimates (2.78)), (2.90), (2.91) and identity (2.93)), we obtain that

(D)ot a0.0)

-0 g

Also, from Lemma ([2.2.3), the estimate (2.4]) and the fact of 0 < xo < 1, we deduce that

t 1—
+ max t)° [e—mzm(z—w)} . (2.98)
je{1,2} fyz(t)

‘< o(t, )P HEY, aﬂgf?ﬂ =O<z(t)6_*/§z(t)>, (2.99)

(1= xolt 2B, 01320 )| = 0= V30, (2.100)

From the estimates (2.90)), (2.91]) and identity (2.93), we can verify by integration by parts

the following estimates

(- xRy, sy - o Lleamnd=) - oy
<><o( i ()02 H5 1, 'Q(t)(‘?xHEf"i(”> = O(Wemz“)‘ﬁ)) (2.102)
’ v2(t)
Finally, from Cauchy-Schwarz inequality and the estimate (2.96 we obtain that
(= xo)i 002G, 0g(t) ) = O(Jin(o)] o) | V=), (2109
<XO<t>aa1<t>a§H§a“>, 09(t) ) = O Jaa(t)] | g0t] [ e~>5D)). (2.104)

In conclusion, we obtain from the estimates (2.99), (2.100), (2.101)), (2.102) (2.103)) and

(2-104) that

<><62 i 00t Ofa()) (2105)
1112 = —a(t + O(a(t)). 2.105
10, Hoall7
This estimate of I77.2 and the estimate (2.95) of I77.1 imply
111 ()<82 i, ot )> O(a(t)) (2.106)
= —11(¢ + O(«(t)). 2.106
10 Ho 172

In conclusion, from the estimates I1 = O(«a(t)), (2.106) and the definition of I, we have
that I + 11 + 111 = O(a(t)).

Step 4.(Estimate of V.) We recall that V' = 8“”X||°8( )H(() 3”82(]5 , and that

O2¢(t) = 02g(t) + [U’ (HAG) + U (H53") = U" (H5 + H33Y) ]

+ [U/ (G + H3Y) — U (H2) + B3 + g(1)) } . (2.107)
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First, by integration by parts, using estimate (2.78)), we have the following estimate

-
10 Ho 172

@rxt2o(t), ) = O [+ | [0 ) = 0ttt 2a08)

V(1)

Second, since U is smooth and ||g(t)||; = O(E%> for all t € R, we deduce that

]<U’ (H2G + He3 ™) = U (H2G) + HG3™ + (1)), 6’x><o(t)g(t>>]

i
< =
™oty

(a(t). (2.109)

Next, from equation (2.58)) and Lemma [2.2.3] we have that

o () + U () = U (2 + B0, = 0 0), @)

L3
then, by Holder inequality we have that

(U (H2Q) + U (Hg3") = U (H2) + HGAD)  daxo(B)Dag (1))

#l,
72(t)

Clearly, the estimates (2.108]), (2.109) and (2.111]) imply that V = O(a(t)).
Step 5.(Estimate of V' I.) We know that

Dug(t)x0(t), DPo(t))
18 Holl72 '

V2 = O(a(t). (2.111)

vro

We recall the equation (2.107) which implies that

10aHo |7, VI

= (Qeg(t)xo(t), U (HZG + Hy3® + (1)) = U (HZG + HG; ™))
+{(0ng(t)x0(t), U (B2 + H33") = U (H2D) = U (Hgi"))
—(0eg(t)x0(t), D2g(1)) .

By integration by parts, we have from estimate (2.78) that

(Duglt.x)alt2). SEg(t.2) = O s

) (2.112)

From the estimate (2.110) and Cauchy-Schwarz inequality, we can obtain the following

estimate

(Bngtyvolt), U (HAY + HZY) — U (H50) - U' (H330)) =

ofe

o] @
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Then, to conclude the estimate of VI we just need to study the following term C(t) =
<8xg(t)X0(t), U’(Hfll(f)) + Hgi(t) +g(t)) — U'(Hfllff)) + ng(t))>. Since we have from Taylor’s
theorem that

U (B3 + B + g(0) — U (B + Hi30) = z(w( 50+ 1) T

from estimate ([2.78]), we can deduce using integration by parts that

e+ (xolt)a, (3 + H2Y). z 0 (19 + 153) L) — 0tato)

Since
Ixo@®a.E |+ = xo®)a BRG] = o(e—ﬁzww),

we obtain that

C(t)=< "”ﬁ(é,ZU’“)( 0+ Ho >(g/<;(tzl)!>

v (5 @l

and the fact that [|g(t)]] - < H 0

(D(3=2)

w

’, we deduce that

@H) (2.114)

Also, from Lemma [2.2.

(0t o0 0" (H59) = U (1759 + H339) |g(t) ) = OV

In conclusion, we obtain that

- [ 0.7 (U (HSG + Hoi 4 g(1) - U (H2G + HRY) ) d

+ /]R 0,0 WU" (H™Y) gt 2) do + O(alt)). (2.115)

So
— J 0y Hm(t) (U (Hml(g) + Hg,zl(t) +g(t)) U (H?l(’g) + Hgi(t)) ) dr
VI =
10 Ho 172
Je 0 HAQU” (HAG) g(t,7) dae

+ O(a(t)). (2.116
Bl (alt)). (2.116)

Step 6.(Sum of [V, VI.) From the identities (2.107)) and

(0.1, 99(0))

IV = :
102 Ho I3

we obtain that

<U’ (559) + U (E3) - U (H2Y) + B3, 0,57 >
v =

H&L‘HOJ“Lg
(a290) — (U (29 + B33 + g0)) = U (B39 + H33) ), 0. -
— . (2117
||azH0,1||ig
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In conclusion, from the identity
{ag — U (H3Y) ]a Y =0
and by integration by parts, we have that
<U’ (HAG) + U (H33") = U (HAQ + H3V) , 0.1 >
HaxHOJHLg

IV+VI=-— +0(a(t)).

From our previous results, we conclude that

IT+1T+1IT+1IV+V+VI=
(U (Q) + U (#530) = U (50 + H3O) 0,0
10 Ho 172

+ O(a(t)). (2.118)
The conclusion of the lemma follows from estimate with identity
A(=(t)) = _<Ul (Ho10) + U (Hz(t)) U (H—IO + Hglt ) Oy H 4 0>
which can be obtained from by integration by parts with the fact that

(U' (Hovo+ HyY) s 0uH 19+ 0:H3 ) = 0.

Remark 2.3.3. Since, we know from Lemma [2.2.3 that
‘A(z(t)) + 46_\@4’5)’ < 2(t)e 2V,

and, by elementary calculus with change of variables, that ||8IH071H22 = 2\/5, then the esti-

mates (2.76)) and (2.77) obtained in Lemma motivate us to study the following ordinary
differential equation

d(t) = 16v/2¢~ V240, (2.119)
Clearly, the solution of (2.119) satisfies the equation

] 2
jt[d(i) + 8e—ﬁd<t>] = 0. (2.120)

As a consequence, it can be verified that if d(ty) > 0 for some ty € R, then there are real

constants v > 0, ¢ such that

d(t) = —=In (52 cosh (\/§vt + c)2> forallt € R. (2.121)
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In conclusion, the solution of the equations

i (1) =—8v/2eV2H0),
sz(t) :Sﬁeiﬁd(t)y
do(t) — dy(t) =d(t) > 0,

are given by

1 8 2
dy(t) = a + bt + WG In <112 cosh (\/ﬁvt + c) ), (2.122)
di(t) = a+ bt — 1 In (8 cosh (ﬂvt + 0)2) (2.123)
n 22 \v? ’ ‘

for a, b real constants. So, we now are motivated to study how close the modulation param-
eters x1, 2 of Theorem[2.2.8 can be to functions dy, ds satisfying, respectively the identities

(2.123) and (2.122) for constants v # 0, a, b, c.

At first view, the statement of the Lemma seems too complex and unnecessary for
use and that a simplified version should be more useful for our objectives. However, we will
show later that for a suitable choice of v depending on the energy excess of the solution ¢(t),

we can get a high precision in the approximation of the modulation parameters z, x5 by
smooth functions d;, ds satisfying (2.123)) and (2.122)) for a large time interval.

2.4 Energy Estimate Method

Before applying Lemma , we need to construct a function F'(t) to get better estimate
on the value of [|(g(¢), 0:9(t))|| g1 2 than that obtained in Theorem m

From now on, we consider ¢(t) = Ho1(x—x2(t))+H_1o(z—x1(t))+9g(t, z), with z1(t), za(t)
satisfying the orthogonality conditions of the Modulation Lemma and xy, xa, (g9(t), 0rg(t))
and € > 0 satisfying all the properties of Theorem [2.2.8, Before we enunciate the main

theorem of this section, we consider the following notation

(D Brana (HG20 -+ 5O 9(0), )

- /R Dug(t, )% + 0yg(t, 2)? + U” (H3 " (@) + H2Q(2) g(t, 2)? da.

We also denote wy(t,x) = w(%) for w a smooth cut-off function with the image
contained in the interval [0, 1] and satisfying the following condition
1, ifx <
wlz) =14 .
0, if x >

Y

(SN TV
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We consider now the following function
F( ) <D EtOtal (Hgal )-g-g g—§>L2><L2
+2 / 0,9(1),g(t) |1 ()wn (£, ) + 2 (t) (1 — wi (£, )

=2 [ o) (U (R + U () — U0 + 1) ) da

dx

v2 [ gtofiaerotnty + P02 s
+§AJJ uﬁ%)+faﬁﬁgafdx (2.124)

Since x1, x5 are functions of class C?, it is not difficult to verify that (g(¢),d;g(t)) solves
the integral equation associated to the following partial differential equation
gt x) — Bg(t,z) + UP (HGE" () + HI5G (x))g 2, )
=—|U(Hg3" (@) + B (2) + g(t, 2)) = U'(H33" (@) + HY (a)
~U" (Hg3" (0) + H50 (x))g 2, )
- P P e 11
U ) + U O @) U0 + 1oy
i (1P HTG (@) — da(1) 021" (2)
i1 (6)0; H”“(“( ) + 2 (1)0: Ho 1 (2)
in the space H'(R) x L2(R).

Theorem 2.4.1. Assuming the hypotheses of Theorem [2.2.§ and recalling its notation, let
HﬁH = ||(9(t), 0eg(t))|| 1« 2 and let 6(t) be the following quantity

\/52 t
s ] o s g )

je{1,2} je{1,2}
2 mane{Lz} |9§'](t)|
+ot] ( + s (17 mae [i(0)] )

max_|&;(t)3;(¢)].

+Ha
je{1,2}

* o

Then, there exist positive constants Ay, As, As such that the function F(t) satisfies the in-

equalities

F(t) + Aje® > Ay ) B < Asd(t).

Remark 2.4.2. Theorem and Theorem imply

o] 5 5 o] + [

3
2
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Proof. Since the formula defining function F'(¢) is very large, we decompose the function in

a sum of five terms Fy, Fy, F3, F, and F;5. More specifically:
= [ agt) —I—@xg( U (B9 + HAY) gt 2)? de,
(1) ==2 [ g [U' (B9) + U (B53") U (B33 + YD) da,
=2 [ o) [:'n(t)?az H) + ot 021" d,
Fu(t) =2 [ 0,g(8)0,9(8) i (o (1) + (8) (1 = wr (1) dor,

Cl?1(t) 3
3/ U (H3" + B g(1)° do.

First, we prove that ‘F( )’ d(t). The main idea of the proof of this item is to estimate
cach derivative 228 for 1 < j < 5, with an error of size O(8(t)), then we will check that the
sum of these estlmates are going to be a value of order O(§(t)), which means that the main
terms of the estimates of these derivatives cancel.

Step 1.(The derivative of Fi(t).) By definition of Fj(t), we have that

dFl

)y / (92g(t,2) — D2g(t,x) + U (H53 " (x) + HAG (2))g(t, x)) Dug(t, x) da
— [ #1001 @)U (H33 (@) + B (@) g(t, 2) do

— [ 200, H53 (@)U (H330 (@) + HYG (@) g(t,2)* o

dFy (t)
pr as

Moreover, from the identity satisfied by ¢(¢,x), we can rewrite the value of

dF (1 ,
; _2/ )+ U (HD) — U (HE) + H3Y)] dg(t) da

—2/ ngl +HZ 1(0)+9(t))_U/
+2 / U + HY) g(0)ug(t) da

=] [ (0202H7] + ia (0202 H33 |19 (1) do

+2/
-

(2 + H33Y)] 0ug(t) da

i (00, HY + it )angjﬂatg(t) dz

i1 (00 HG + (00, B30 |UO (HAO + H5G) g0 do,
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and, from the orthogonality conditions of the Modulation Lemma, we obtain

dFl( )

—2 / U (H + BY) g(0)dug(t) da
| (Hgﬁ(” +HSG +g1) — U (HHG + H3Y) ]atg(t) dx
+2 [ [0 (H59) + U (H33Y) = U (HASG + H3Y)| dug (1) de

=2 [ (0202 H + (P02 | 09(1) do

12 [ 100020 + (002002 H53 g0 da

— [ 1028 + sa 0,30 |0 (530 + 1) g0 do
which implies

dFy(t
dt

_Q/U (H32® + HD) 9(0)dug(t, z) da
—2/U(H "+ m1E ) + () - U (2 + Hg3 )}atg(t)dx

+2 / U (H5Q) + U (H3®) = U (HEG + H3 )| dwg(t) da

- (2.125)

_2/ ()20 H 10 |+ i ()02 H M(t)]atg( ) dz

_/ :1:1 6 H _|_$2( )ang‘zl }U?’ (Hgi()_{_Hm(t)) (t)zdx
6(t)) -

Step 2.(The derivative of Fy(t).) It is not difficult to verify that
dF5(t .

515022/ (U (D) 0. HE i (1) do
+2/ ngi )3 5’21“ Ty (t) da
_2/ 8tg t )+U (sz(t)) U/ (sz(t) +Hx1 t))] dr

—2/U H{fﬁ >+H 0) [0:H Qi (1) + 0, HGZ o (1)) (1) .
From the definition of the function U, we can deduce that

U (Hi" (2) + H2 (@) = U" (H2D (@) = 0( 70 @) O @) + | 3O )] )

U (B3O @) + B @) - U7 (H3O@) = of [H G @ HY @) + [E @) ).

therefore, we obtain from Lemma and Cauchy-Schwarz inequality that

‘/ (B3 ™) — 0" (3O + B 0, H3 Vg () de| < V2D

fz

/R[U”(Hfllfg))—U”(H 10+ H9O)] 0, H Dg(t) da| <
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In conclusion, we obtain from the identity satisfied by dFQ ) that

dF2 - —2/ ag(t) U (HZQ) + U (H53™) | da
+2/Ratg(t,x)U’ (H2" + H™) de +0(6(). (2.126)

Step 3.(The derivative of F3(t).) From the definition of F3(t), we obtain that

dF3 2/ Org(t) |1 (1)*0*H xll(é) + @9(t)?0% H, xg(t)] dx
_2/ t H™ 4+ (1) 0%, zm} da
4 [ g®)[o1(0ir (002G + a0 02H ] dor
which can be rewritten as
WD s [ ong(0) i 020218 + o002 0337]
2 / i (OPOH) + da(0)02H2 " do + O(6(1)). (2.127)
Step 4.(Sum of dj;l, d;;?, %.) If we sum the estimates , and , we obtain
that
) _y / U (H3Y + H) g(0)org(t) da
2 [ |0 (H3s® + g + g(t)) U (H3 + 1) o) do
—/ (¢ aHI11<3>+x2()a BOlU® (B3O + 1Y) g(1)2da
2 / (t)202 H™Y + iyt )3331{33@] dz + O(5(t)).
4
More precisely, from Taylor’s Expansion Theorem and since < 0(t),

3

Z / e (Hé”‘i“) + H) g(0?] 0ug(t) do
- [ [ 9“1%) + i (0)0, B U (B + B1Y) g(0)da
_2/ HAG + o ()02 H } dz + O(6(1)). (2.128)

Step 5.(The derivative of Fy(t).) The computation of the derivative of Fy(t) will be more

careful since the motivation for the addition of this term is to cancel with the expression
- /R [#1(0)0, HY + ()0, HAV | U (H3® + B g(0)*de

of (2.128). The construction of functional Fj(t) is based on the momentum correction term
of Lemma 4.2 of [26]. To estimate % 4(

the time derivative of

with precision of O(d(¢)), it is just necessary to study

2 /R 0,9(1)Dug(£)iy (£)wr (1) d, (2.129)
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since the estimate of the other term in Fj(t) is completely analogous. First, we have the

identity

=231(t) | wi(t,z)0g(t)0g(t) dx
R

+2m@y/wmtx> 9()0,g(t) do
+2i (¢ /R@twl (t)0yg(t)0,g(t) dx

+244(¢) /Rwl (t,x)0; ,9(t, ©)0,g(t) dx.

{/&g 0rg(t)ar(t)wi(t) dz

From the definition of wy(¢,2) = w(#ﬁit)), we have

Don (b 2) = w/< x — x1(t) ) <—x’1(t)z(t) — 2(t)(x — xl(t))> . (2.130)

xo(t) — x1(t) z(t)?

Since in the support of w'(z) is contained in the set % <z< %, we obtain the following

estimate:
. . |$J _
2 (t) /R i1 (D)Brg(1)Dug(t) dz = O (mm i - (2.131)
Clearly, from integration by parts, we deduce that
2d4 () / w1 ()07 ,g(t)0sg(t) dx = O ( max |x] ) (2.132)
R ’ je{2y z(t
Also, we have
2i1(t) [ (D0 ()Dug(t) di = < max |#;(t |H ) _ (2.133)
R je{1,2}

So, to estimate the time derivative of (2.129)) with precision O(d(t)), it is enough to estimate

2 (1) /R w1 (1, 2)O2g(t, 2)0g(t, 7) da.

We have that

2 (1) /R w1 (D)02g(1)Dug(t) da =241 (¢ /R B,9(t) da
—muw/ (U ( % 4 12 g(6)9,9(t) do
2in(t) [ wn(t) [29(t) — 029(1)] Dug(t) do
2 (2) /R w0 (HG + H3Z") g(6)Deg(t) de. (2.134)

From integration by parts, the first term of the right-hand side of equation ([2.134)) satisfies

|$J
]6{1 2} Z

241 (1) /Rwl(t)(‘?ig(t)axg(t) dr =0 ( ) (2.135)
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From Taylor’s Expansion Theorem, we have that

g(t)~
(J— )

U (H33Y + G + (1) — 233 D (Hg3" + H)

~oJ«

U'(¢) + U (6) — U (¢ + 0) = 2468(¢ + 0) — 6(24: @ ¢je5j>,

=1

). (2.136)

Also, we have verified the identity

which clearly implies with the inequalities (D1), (D2) and Lemma the estimate

| (H53Y) + U (H2)) = U (H3® + B2

_ -2z
=0 (e7v21). (2.137)
Finally, it is not difficult to verify that

| =1 (6202 HAG — ()02 Ho 3" + i1 (6) 0, HEAG + ()0, HG 3

L3

=0 (maX |25 (t))* + |i-j(t)\> . (2.138)

e{1,2}

Then, from estimates (2.136)), (2.137) and (2.138)) and the partial differential equation
satisfied by g(¢,z), we can obtain the estimate

2 (t) /R wit) [07g(t) — O2g(t) + U (HEG + H33™) g(t)] Dag(t) do
——ir(t) [ iU (HOG + B3) g(0)%0.9(¢) do
YNC / O2H" W0, g(t) do — 2y ()i (t)? / ()82H§2(t)81g()dx

_23';1(15)3/R( (t) —1)02H” &Eg Ydz + O (H max_|@; (¢ |>

je{1,2}

+0 (s, 1,0 |H9‘3H+e” e, 1,0 [0 )

e{1,2} Jje{1,2}

which, by integration by parts and by Cauchy-Schwarz inequality using the estimate (2.96)

for wy, we obtain that

2i(t) [ wi(t) [029(t) = O29(t) + U (HO] + Hi3®) g(0)] Drg(t) da

_ da(t)
3

2 (¢ /82 )d:z:+O<

/ Wi (HU® (H W9+ 1Y) [0, +angﬁ<t)} g(t)? da
R

)

\ﬁH) e

Now, to finish the estimate of 2i(t) [ wi(t, £)02g(t, ©)0,9(t, x) dz, it remains to study
the integral given by

24 (t) /]R W (U

36{1 2} Z

_V2z(1)
+ O max |&;(t) e 5
je{1.2)

"

(20 () + HG3 (2)) 9()D:g (1) de, (2.140)
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which by integration by parts is equal to

i1 (t) /R (U (H + H3) 0,870 (1) da
+x‘1(t)/Rw1(t)U(3) (A + H3Y) 0,33 g(1)? dv + O(6(1)).  (2.141)
Since the support of wy (¢, x) is included in {x| (x — z5(t)) < —@} and the support of

1 — wy(t, x) is included in {z| (x — x1(t)) > 327(0}, from the exponential decay properties of
the kink solutions in (D1), (D2), (D3), (D4) we obtain the estimates

i1 (t) /]R (wi(t) = DUS (HY) + H3O) 0,18 g(t)* dx| = O(5(1)), (2.142)
(1) [ U (HZ + Hﬁﬁ(”) 0, Hy3 " g(1)? dz| = O(8(1)), (2.143)
}bl(t) /R (1= wi () UDEHDG + HG3 )0, H™( g(t)* dt| = O(8()), (2.144)
;ig(t) /R (i)W (HAG + Hy3 ™) 0. Hi " g(t)? dt| = O(3(2)). (2.145)

In conclusion, we obtain that the estimates (2.142)), (2.143) imply the following estimate

2 (t) /R it o) U" (B + HE ) ()ax (t) do

_/xl 00, HN QU (HAO + H)) (1) dx + O(3(t)). (2.146)

Then, the estimates (2.134)), (2.139)), (2.144]), (2.145)) and (2.146|) imply that

22 ([ 0.0 (e 1) da:)

+o / U@ (g5 +H§21(t)) (61(6)0. HY) g(t)? da

+/ i1 (00, HG) UO (H? + HD)g(t)” dx + O(8(2)).
By an analogous argument, we deduce that
25 ([ 090,901 — e (6) )
— 2 (1) / OPHE D0, 9(t) du
I 5 () 4 1) 0,550 o0 de

+ / b5(00, HAOU® (Hyt® + H™)) g(t)? da
A ,
+O(5(1)).
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In conclusion, we have that

dF(t . .
;;L/R[ (O HDY + ao(00, Hy ] U (HO + HA) () der
— 2o (t /82[{321 0pg(t) dx — 2i (¢ /82 xl(t 0029 (t) dz

+/ U (HAQ + H3O) 5100, HE + (00,3 9(0) do
+O(8(t)). (2.147)

Step 6.(The derivative of F5(t).) We have that

S /YJ@ 2+ HA) gt 0ug(0) da

-3 /R U (HE + B2 [#0(00,HE + aa(0)0, HAP] g(t) de. (2.148)

Step 7.(Conclusion of estimate of |F(t)|) From the identities (2.147) and (2.148)), we obtain
that

AFi(t) | dFy()

:/R 110 HAQUS (H33Y + B2 QD) g(t)? da

di di
+ [t 8xH§21(”U(3) (H““’ + ) g(t)? du
—2i (t /82 )0,9(t) dz — 2i(t) /82H§21 D,9(t) dx
+ / U® (G + H3) g(1)*Drg(t) da + O(3(1)). (2.149)

Then, the sum of identities (2.128)) and (2.149)) implies 37_, d};it(t) = O(4(t)), this finishes the
proof of inequality ‘F(t)’ =0(d(t)).
Proof of F(t ) + A2 > Ase?. The Coercivity Lemma implies that 3¢ > 0, such that

)>c . Also, from Theorem [2.2.8] we have the global estimate

max |i;(0)7 + i (0)] + e V20 + H ( (o), (2.150)

-t =o([sl] ). 1 =o( o ).

U (HAG () + U (Hi" (@) = U (Hg3” (@) + HEG ()] =
(’H:m(t )H(g)c,Ql(t)(x) {Hx ()( )+Hx1(t)( )H) :

which implies that |Fy(t)] — o( H (¢

Also, since

Lemma and Cauchy-Schwarz inequality imply that
Fy()] = O(H @ e—ﬁz@)).

Then, the conclusion of F'(t)+ Aje? > Ay
enough. ]

for € small
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Remark 2.4.3. In the proof of Theorem from Theorem“ 2.2.8 we have |F2( )+ F5(t)| =
0 (‘ e> . Since |Fy(t)] + |F5(t)] = H ) and |Fi(t)

inequality tmplies that
2
F(t)| < Hg(t3H e

Remark 2.4.4 (General Energy Estimate). For any 0 < 0,7 < 1, we can create a smooth
cut-off function 0 < x(x) <1 such that

(@) = {o, if e <6(1—7),

, then Young

1,if x > 0.

We define ) -
Xo(t, ) =X <> .

) (t) — T (t)

If we consider the following function

L(t) = <D Etotal(H§1t +HY ﬂ 9—§> 12

+2 /R Org(t)0,9(1) {:tl(t)x()(t) + do(t) (1 — Xo(t))} do
2 o) (U (E) 4 (539) - (530 + )

+2 /R g(t) i1 (1202 H

1 T T :
+§ /R U (Ho,l(t) + H—1(,6)> g(t)* dz,

HY + o ()22 Hy3 Y | doe

then, by a similar proof to the Theorem we obtain that if 0 < e < 1 and

B1() = 8(t) + mag |5 (1)|° max(e VIO, VA1) \WH
— max |i;(t)*e” (2.151)
je{1,2}

then there are positive constants Ay, Ay > 0 such that

()| = 0(61(1)), L(t) + A€ > Ase

Our first application of Theorem [2.4.1| is to estimate the size of the remainder ‘g‘(t_g H

during a long time interval. More precisely, this corresponds to the following theorem, which
is a weaker version of Theorem [2.1.9]

Theorem 2.4.5. There is § > 0, such that if 0 < € < 6, (¢(0),0,¢(0)) € S x L2(R) and
FEiotai(6(0),0:0(0)) = 2E,,:(Ho 1) + €, then there exist xy,x5 € C*(R) such that the unique
solution of (2.1)) is given, for anyt € R, by

¢(t) = Hoa(x — 22(t)) + H_10(x — 21(t)) + g(2), (2.152)
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with g(t) satisfying orthogonality conditions of the Modulation Lemma and

H@mx@gmnmgug+(dni)]wp(ﬁjfg, (2153)

€

1(9(0),00(0) 311 < C

forallt € R.

Proof of Theorem [2.4.5, In notation of Theorem from Theorem and Remark[2.4.3]

there are uniform positive constants As, A; such that for all t > 0

<P+ A < C(H (t

2). (2.154)

From now on, we denote G(t) = F(t) + A; (e In %)2 From the inequality (2.154) and
Remark [2.4.2] there is a constant C' > 0 such that, for all t > 0, G(t) satisfies

G(t) < G(0) + C (/OtG(s)eids) .

lnz

In conclusion, from Gronwall Lemma, we obtain that G(t) < G(0)exp <C€2t> for all
t > 0. Then, from the definition of G and inequality (2.154)), we verify the inequality (2.153])
for any ¢ > 0. The proof of inequality (2.153) for the case ¢t < 0 is completely analogous. [

2.5 Global Dynamics of Modulation Parameters

Lemma 2.5.1. In notation of Theorem [2 3C > 0, such that if the hypotheses of The-
orem [2.1.5 are true, then for ﬁ g(0 m) 0:9(0,z)) we have that there are functions
p1(t), pa(t) € CH(Rsy), such that for j € {1, 2} and any t > 0, we have:

. 1 20t
|z;(t) —p;(t)| S <Hﬁ’Hle2 +eln )62 exp( ol ), (2.155)
2
(o], +m) l
. ; V32 1512 € 2C €2t
[p5(t) — (~178v2e 0| < iy exp (1) (2.156)

Proof. In the notation of Lemma [2.3.1] we consider the functions p;(t) for j € {1, 2} and we

consider = ; the value of v will be chosen later. From Lemma [2.3.1] we have that

o) s s o]+ [

We recall from Theoremthe estimates max; e, 2y |[4;()] = O(e2), e VEM = O(e). From
Theorem we have that

1 3
Jst3] < (Jofol] + em ) esn (7))

—ﬁz(t)
100 t .
)+ max (2,020

m@—mmsp+

v2(t)
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+elnf
. Then, we obtain for any j € {1, 2}

8 G

To simplify our computations, we denote ¢y =
and all ¢ > 0 that

. 1 3 1 Cﬁ%t
50) = 50 % 1+ —r] et e (1)

1 1\2  /2Ce3t
+[ ’Ylni] (coelne) exp( Il ) (2.157)

Since e V2 < ¢ we deduce for € < 1 that z(t)e VZ® < elni < 61 e In . Then,
for any ¢ > 0, we obtain from the same estimates and the deﬁmtlon of a(t) that

1\2 1 \¢ 1 Cezt
<c? - e = ik
a(t) <c <€ In e) Lrer?};} (72(15)) +e W] exp (2 Il )

1
1 €2

., (2.158
B 2(2177) ( )
1+ +

e [62@1,)2 In 1} exp (C’e%t)
€ In 2 v2(t)  (v2(t))? 2(t)y

However, if 'yln% < 1 and 2(0) = 1n%, which is possible, then the right-hand side of
2
inequality (2.158] m is greater than or equivalent to (e In l)

, it is not

difficult to verify for v = —= that the right-hand side of inequality (2.158) is smaller than
2
(e In f) :
Therefore, from now on, we are going to study the rlght hand side of (2.158 m ) for Tl) <

v < 1. Since we know that In (1) < z(¢) from Theorem the inequality (2.158)) implies

for ln(—l)<7<1andt20that

a(t) S B(t) = (coeln 1>2 [ ! i +er 31 exp <2iit>

€ vln 2

2(1 w)

a1
+ ¢’ G In - exp (
€ 7111 <

= [1(t) 4+ B2(t) + B3(t), respectively. (2.159)

Inln *

For € > 0 small enough, it is not difficult to verify that if 83(t) > Bi(t), then v > ——=.

1
Moreover, if we have that 1 >~ > 8%, we obtain from the following estimate

e €2 8Inln 2t €2 1\ 7=
Bs(t) = — > 1ep<2_76>: 1(111) ,

yln:  In In -

that By(t) > (oG 1> Ay < PR then ﬁn) < fu(t) for any ¢ > 0.

21 1 2
In conclusion, for any case we have that (lnlr; 1> < [B(t) when t > 0, so we choose

lnln =
T Ini
€

. As a consequence, there exists a constant C; > 0 such that, for any ¢ € R,

2
eln ! 3
at) < Clcg(s) exp (206 t). (2.160)

Inln + ln%
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So, the estimates (2.157)), (2.160]), Remark and our choice of v imply the inequalities

[@.155) and (2.150). 0

Remark 2.5.2. [f ( Hﬁ’ for a constant m > 0, then, for v = é, we have from
Lemma |2.5. 1 “ that there 23 p(t) € C*(R) satisfying for all t >0

15(t) — p(t)| S €2 (2.161)

B(t) — 16V2e7V0)| < H (2.162)

Then, for the smooth real function d(t) satisfying
d(t) = 16v2¢7V>"1 | (d(0),d(0)) = (2(0), (0)),

and since eV < ¢ Int < 2(t), we can deduce for any t > 0 that Y (t) = (2(t) — d(1))
satisfies the following integral inequality for a constant K >0

e« L

Y(t) < K €2

ﬁ+// Y (s1)] dsids | = A(]Y]) (0),

Y (0) =0, Y(0) = 0.

Indeed, for any k € N and allt > 0, |Y ()| < A® (|Y]) (t). We also can verify for any T > 0
that A% (|Y|) (t) is a Cauchy sequence in the Banach space L™ [0,T]. In conclusion, we can
deduce for anyt > 0 that |Y (t)] < Q(tK?2), where Q(t) is the solution of the following integral

equation
Q(t) = e2 g‘(O—S‘ H t—l—//e@ ) dsi ds.

By standard ordinary differential equation techmques we deduce for any t > 0 that

POl o

t) —d(t)| S QtKz) = etk
2(0) - d1)] £ Q) -
O] O O
eln < eln (2.163)
and from #(0) = d(0) and the estimates [2.161)) and (2.162), we obtain that
£(t) — d(t)| £ Ip(0) — 2(0 y+/ s)| ds, (2.164)
from which with (2.163|) we obtain for allt > 0 that
. 11 Hg(o
2(t) —d(t)]| S e e Hg(TﬁH | (2.165)
eln =
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Howewver, the precision of the estimates (2.163) and ([2.165|) is very bad when €< t, which
motivate us to apply Lemma to estimate the modulation parameters x1(t), xo(t) for

’t ln%
Remark 2.5. 3 We recall from Theorem [2.1.1(] the definitions of the functions di(t), da(t).
If ﬁH 5, then, using estimates

Jg{%}ld() (1) = Omin(elt], €4}, .ggu;}{dj(t) (0] = O,

we deduce for a positive constant C' large enough the inequalities (2.10)) and - 2.11) of Theorem
2110

Remark 2.5.4. If

l\.’)b—‘

b < oy

the estimates of maxjcq oy |2;(t) — d;(t)], maxjecq, 2y ‘Jij t) — dj(t)‘ can be done by studying

separated cases depending on the initial data z(0), 2(0).

1
Lemma 2.5.5. In notation of Theorem|2.4.1), there exists K > 0 such that if g‘(()_ﬂ < (1%)5,
all the hypotheses of Theorem |2.1.10) i Z)S < —v/22(0) < €, then we have for
t>0 that 6
6
1 1
25(6) — d (1) = o =] ) ) (55 (2.166)
Jgﬁl};} i ! elnln P In < ’ '

ezlnlnf

max ‘i;j(t) —d-(t) = (max( ,eln ) (1>6exp (}fneélt)) (2.167)

jefL, 2}
Proof of Lemma [2.5.5. First, in notation of Lemma [2.5.1], we consider
p(t) = pa(t) = pa(t), 2(t) = 2a(t) — 21 (t), 2(1) = @2(t) — @1(2).
Also, motivated by Remark [2.3.3] we consider the smooth function d(t) solution of the fol-

lowing ordinary differential equation

{d‘@) = 164/2eV2(®)
(d(0),d(0)) = (2(0), 2(0)).

Step 1.(Estimate of z(t), 2(¢)) From now on, we denote the functions W(t) = z(t) —
d(t), V(t) = p(t) — d(t). Then, Lemma implies that W, V' satisfy for any t € Rx

the following differential estimates
. 1\ . 2Ceat
W () = V()| =0 | max ( H 0] ,e1n )62 exp (fi)) ,
€ n-

2

‘ max(H ,elni) 95t
‘V(t) +16v/2e V240 16\/56"&/2“)‘ =0 e exp ( )
nln (2
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From the above estimates and Taylor’s Expansion Theorem, we deduce for ¢ > 0 the following

system of differential equations, while |W (¢)| <1 :

,e€ln )e? exp <2§1€2t)),
V() ==32e VW (k) + O (e VO (1)?) 6

o (5],

In ln

W(t)=V(t )—i—O(max(H

(2.168)

€ln > (206575)
exp

Ini

€

Recalling Remark [2.3.3, we have that
1
V2
where v > 0 and ¢ € R are chosen such that (d(0),d(0)) = (2(0), 2(0)). Moreover, it is not

difficult to verify that

d(t) = In (52 cosh (V2ut + ¢) >, (2.169)

1

. 2 1 .
v = (Z(Z) + 86_\/52(0)) 2, ¢ = arctanh 20)
[382e=v2:0) + 2(0)?2]

N

Moreover since 8¢V2#(0) = y2sech (¢)® < 4v2e 2 we obtain from the hypothesis for e=V2#(0)
that ( )
Also, it is not difficult to verify that the functions

< v < ez and as a consequence the estimate |¢| < In (In (1))

n(t) = (vV2ut + ¢) tanh (vV2ut + ¢) — 1, m(t) = tanh (v2vt + ¢)
generate all solutions of the following ordinary differential equation
i(t) = —32e~ V2O (1), (2.170)

which is obtained from the linear part of the system (2.168)).

To simplify our computations, we use the following notation

errory(t) = max(Hﬁ’ eln >e2 exp (20€2t>,

1

y€ln ) <2Ceét>
exp | —— |.

max ( 900
_\/§d(t)( ( ) d(t T

errory(t) =e = ln

From the variation of parameters technique for ordinary differential equations, we can

[VVV((E))] =alf) miﬂ + (1) mm , (2.171)

write that
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such that for any ¢ > 0

[m(t) n(t)] [z:l(t)' _O(ermrl(t))]
alt) 20 :

éo(t) O(errory(t))

)] [ex] _ !
() n<o>] Lz«» " |o({Jo@] + em i]é)] |

The presence of an error in the condition of the initial data ¢;(0), c2(0) comes from estimate

(2.155)) of Lemma Since for all t € R m(t)n(t) — m(t)n(t) = v2v, we can verify by
1

: S o that

()
o0)=0 (s [
¢5(0) =0 <max ( Hg‘((ﬁ

and, for all ¢ > 0, the estimates
&1(8)] =0 (m<t>| mas ([0 e ) o (21(”))

+0 <|n(t)\vsech (V2vt +¢)” IW(L‘>|2>

2
m’ ,eln i) 203t
exp (1> y (2174)

vlnln%

Cramer’s rule and from the fact that

,€ln 1) |ctanh (¢) — 1| <ln 1>4> : (2.172)

€

ln C)) tanh (c)| (m 1)4> | (2.173)

0 | () fad(

165 ()] =0 (|m(t)] vsech (v2ut + )’ \W(t)E)

2
max(‘m ,elni) <206§t>
exp | ——

vlnln%
+0 | max <Hm

Since we have for all z > 0 that

+0 | [m(?)]

1 2Ce3
,€ln ) exp ( 16161225)6; sech(v/2vt + 0)2) : (2.175)
€ nt

d sech (z)’z  3tanh () _ sech (z)? 9
e (— 5 + 5 = 5 + x tanh (x) sech ()
S |z tanh () — 1| sech (z)? _|n(z)] sech (z)?

- 2 2 ’

we deduce from the Fundamental Theorem of Calculus, the fact that n(t) = (v2vt +
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o
Nl

c)tanh(v/2vt + ¢) — 1, estimate <v<er

mAf SUSE and the estimates (2.174]), (2.175)) that
2Ctes
ler(t) — 1 (0)] = (max <H ,eln — > ( )exp (?))
1n€
203t <1H 1)5
+0O | exp ( ) IIn(s )||Loo[0t] max < H ,eln e) elnlnf

\/Evt+c 9
||W<s>||Lgo[0,ﬂ) i)

=

L0 <|_sechéx) T, 3tan2h (x)

C

for any ¢ > 0. From a similar argument, we deduce that

c2(t) = e2(0)] =0 (W ()10 | tanh (V20t + ) — tanh (c)] )
o0 [ ] o) [ 252) 1] S
+0 (max < Hﬂ(ﬁ ,eln 1) <1n i) exp (ZC’tlfl)) : (2.177)

From the estimates v < €2, le] < Inln %, we obtain for € < 1 while £ > 0 and

for any ¢ > 0.

11
1 ()]0 [e%t +Inln ] = <1
S b E

<1, (2.178)
€
that .
W () e (L + 1)) S W (30 - (2.179)
Also, from |n(t)| < (v2vlt| + |c|), we deduce for any ¢ > 0 that
; 1 1 3t
In(t)| Se2t+Inln— < (ln > exp (621) (2.180)
€ € In -

In conclusion, the estimates (2.176), (2.177)), (2.179)), (2.180) and the definition of W (t) =
z(t) — d(t) imply that while ¢ > 0 and the condition (2.178)) is true, then

,eln ) (ln%)G - ((20+1)6;t)_

Wl <50 oo

2.181
elnlnf ( )

Ini
€

Then, from the expression for V() in the equation (2.171)) and the estimates (2.176]),
(2.177)), (2.180]), we obtain that if inequality (2.181]) is true and ¢ > 0, then

V(o)) max ([ g(0]] et C))Z;iﬁ);) P ((401;?6%)

+ max < H

anl) L (004 s
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which implies the following estimate

i <maX(H

6111) g ) <40+3)e§t>'

2.183
n ln% ( )
1
Indeed, from the bound HHH i)4, we deduce that is true if 0 < ¢t <
[lnln ]lnf

Inln |In 2
cs2 . As a consequence, the estimates (2.181)) and (2.183)) are true if 0 < ¢ < [inn £]tn ¢
=+ 62
But, for ¢ > 0, we have that

= (Ct2)ez
s 1 3t . ! 1t
[W(t)] Sext <3 (ln (—:) exp <3€1nl> , W(t)‘ Set S 3e? (ln e) exp (361111) . (2.184)

Since f(t) defined in inequality ([2.181)) is strictly increasing and f(0)
is an instant Ty, > 0 such that

1
ez 1
eXp( ].Ill )f(TM):ln ( 27

7 —y (2.185)

from which with estimate (2.181]) and condition (2.178)) we deduce that 2.181) is true for
0 <t < Ty Also, from the identity ([2.185) m and the fact that

90| 5
L < 1 ((20+2)65TM)
Inl (lnln )2 ~ <ln %)21D1n% P Int ’

€

we deduce
’ ~ ( )4

. . 3 Inln L (ln l)
from which we obtain that T}, R —

(B R for € < 1. In conclusion, since f(t) is an
increasing function, we have for ¢ > T); and € < 1 that

F(t) exp ([17(0 —gli)f 4]6225) N 1 1 R ([17(0 +1) + 1}%)

3111%

. (ln i)Hi exp ( eétl) 7
B (lnln%) 31n€

from which with the estimates ([2.184)) and (|2.181]) we deduce for all £ > 0 that

w

N

elnln Int

,eln ) (ln%)ﬁ - ((8C+9)Eét>_

(2.186)

€

As consequence, we obtain from the estimates (2.172]), (2.173), (2.176]), (2.177)) and ([2.186])
that

T @ o)

W)

N

ezlnlnf

(2.187)

Int
€
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for all ¢ > 0.
Step 2.(Estimate of |x1(t) + xo(t)|, |21(f) + @2(t)|.) First, we define

M) = (@1(8) + 22() — (d1(0) + da(0)), (1) i= (pa() + pa(0)) — (da(t) + do(1)). (2188)
From the inequalities (2.155)), (2.156) of Lemma [2.5.1] we obtain for all ¢ > 0, respectively:

M(t) - N(t)| S max(HgA(O_g Jeln 1)& exp (Ceit)

In
2
' _ max ( Hm ,€ln i) OCest
‘N(t)’ ~ lnln% exp( ln% )

Also, from inequality (2.155) and the fact that for j € {1,2} d;(0) = z;(0), d;(0) = @;(0),
we deduce that M(0) = 0 and |N(0)| < max (Hg?[)_g
Theorem of Calculus, we obtain for all ¢ > 0 that

,eln i) e2. Then, from the Fundamental

2
N(#t) =0 | —— ( Hm o i) In (4065’5) (2.189)
= - exp|(———1) 1|, :
ez Ilnln % P %
2 2
maX(HgA(O_g ,€ln i) (ln %) AC et
elnln ; In ¢

In conclusion, for K = 16C' 4 18, we verify from triangle inequality that the estimates

(2.186)) and (2.190)) imply (2.166)) and the estimates (2.187)) and (2.189)) imply (2.167). O

Remark 2.5.6. The estimates (2.190) and (2.189) are true for any initial data m €
H'(R) x L2(R) such that the hypotheses of Theorem |2.1.1(} are true.

Remark 2.5.7 (Similar Case). If we add the following conditions

N

eVEO)
)" ()
to the hypotheses of Theorem |2.1.10}, then, by repeating the above proof of Lemma |2.5.5, we
would still obtain for any t > 0 the estimates (2.174)), (2.175), (2.176]) and (2.177)).

2
However, since now |c| < (ln %) , if € < 1 enough, we can verify while t > 0 and

1 1\?2
5@562,—(ln> <ec<0,
€

1\? 1
W ()l oo po.1 (6;15—1— (111 e> ) lnlng <1, (2.191)

that
1
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which implies by a similar reasoning to the proof of Lemma for a uniform constant

C > 1 and any t € R>q the following estimates

1)’ nl 7
W) < - < H Eh’l:nle) (1 E> exp (iff) fi(t, C), (2.192)
0] s [5]  2) (11) Xp(fef) peor o

From the estimates (2.192), (2.193) and HﬁH

—=—~ we deduce that the condition

)
) holds while 0 < t < M Indeed, since < —5, we can verify that
A(C+1)e2 (1 1)
there is an instant w < Ty such that m and m are true for 0 <t < Ty

(C+1)e2
and

ez JVs 1
ln% ) B (ln %)H% lnln%

In conclusion, we can repeat the argument in the proof of step 1 of Lemma and
deduce that there is 1 < K < C + 1 such that for allt >0

f1(Tar, C) exp (

W) S filt, K),

V()| S flt K). (2.194)

Lemma 2.5.8. In notation of Theorem K > 1,6 > 0 such that if 0 < e < §,0 <
(O

< i I, 9‘3 = (9(0,2),0,9(0,2)) and ’ < i 1)5, then we have for all t > 0 that
2
max(’m ,elni) 1\ 2 Ktes
jg%}é}ld () = ;(0)] = elnln% (hl 6) exp< ln% > ’ (2.195)
( )
max eln ) 1
. ’ € 1 Kte2
jg%%)é} )d — @ ‘ T ln% (ln e) exp ( o1 ) ) (2.196)

Proof of Lemma [2.5.8. First, we recall that

d(t) = \/15 In (1}82 cosh (\/_vt + c)>

which implies that
2

_v
8
We recall the notation W (t) = z(t) — d(t), V(t) = p(t) — d(t). From the first inequality of

Lemma [2.5.1] we have that

e V2 — — gech (\/_vt + c) . (2.197)

Vo v

el ) 1 (2.198)
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We already verified that W, V satisfy the following ordinary differential system

Cert
,€ln )62 exp<1 )),

V() ==32e"V2OW (1) + O (e VEOW (1)?)

W(t) =V(t )+O(maX<H

(2.199)
max <H ,€ln > 9 et
In ln exp( ln% )
However, since v? < we deduce from m ) that e —v2d(t) < for all ¢ > 0.

= Sy

So, while [|[W(s)|| o4 < 1, we have from the system of ordinary differential equations above

for some constant C' > 0 independent of € that

2
max(Hg(O;) ,elni) OCest
exp () for all £ > 0,

Inln % In i

‘V(t)‘ < (161)8 HW(S)HLOO[O,t] +
nl

from which we deduce the following estimate for any ¢t > 0

et
V() —V(0)] =0 (18 W(S)Loo[o,ﬂ)
(ln E)

max(Hg‘—S eln) n% <2065t>
exp | —1—

€2 lnln

In conclusion, while [[W(s)|| [ < 1, we have that

2
,eln(i)) In i

W)|<IvVO)+0 o ( H

1
eilnln%

+0 ((lt) W(s)mo,t]) - (2200

Finally, since W (0) = 0, the Fundamental Theorem of Calculus and (2.200) imply the

following estimate for all ¢ > 0

W ()l <o, < V0)[ 2+ O
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Then, the estimates (2.198) and (2.201]) imply if € < 1 that

2

(] 0 e

|W N eln 1n exp (h]_i) s (2202)

ot
for0<t< w From ([2.202)) and ([2.200]), we deduce for 0 <t < (l(l;gi)l; that
s ([ ) 6 o e
W) < exp |~ ) (2.203)
€3 lnlnf ln;

Since |[W(t)] < ezt, |Vi (t)’ < et for all £ > 0, we can verify by a similar argument to the
proof of Step 1 of Lemma that for all £ > 0 there is a constant 1 < K < (C' 4 1) such
that

max( g(T)ﬁ ,elni>2 (ln%)2 Kest
W) ATy exp 1 ): (2.204)
_ max( gﬁ ,elni>2 (111%)2 Kebt
W) < pyme exp (m1> (2.205)
In conclusion, estimates and follow from Remark , inequalities ,
and triangle inequality. O

Remark 2. 5 9. We recall the definition (2.169) of d(t). It is not difficult to verify that if

RIES

—/22(0) €
1. e < (1n%)8

2. e~V22(0) « C

< v and one of the following statements

and ¢ > 0,

)8 and ¢ < — (ln %)2

were true, then we would have that e V() e for0 <t < (in

(in ) ¢
e~ V20 (ln ) <L €, if ¢ > 0, then we have for all t > 0 that

m\»—'

)2

. Moreover, assuming

[N

2
sech (¢)? = e V20O «

eV — ) Sech(\/_vt + c) < %

_ ¢
(ln %)8’
1

2
otherwise if ¢ < — (ln %) , since 0 < v < €2, then there is 1 < K such that for 0 < t <

Y

nl 2
Ma then 2‘\/51115—1—(:‘ > |e|, and so

€2

2
e~ V2d(®) < v?sech (—C> < LS.

2 (ln %)
In conclusion, the result of Lemma[2.5.8 would be true for these two cases.
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From the following inequality

o[ ) = (2 5.

we deduce from Lemmas and Remarks [2.5.6] 2.5.7] and [2.5.9] the statement of
Theorem [2.1.10L

2.6 Proof of Theorem 2.1.5|

If HRO_;H >eln %, the result of Theorem [2.1.5[is a direct consequence of Theorem [2.4.5, So,

from now on, we assume that m ’ <eln %
We recall from Theorem [2.1.10] the notations v, ¢, di(t), d2(t) and we denote d(t) =

do(t) — dq(t) that satisfies

1

V2

From the definition of d;(t), da(t), d(t), we know that

8 2
d(t) In <v2 cosh (vV2vt + 0)2), e V2 = % sech (v2ut + 0)2.

max, ’d](t)’ 4 e V2 = O(v2 sech (v2ut + c)2>,
Jel,

and since z(0) = d(0), 2(0) = d(0), we have that v, ¢ satisfy the following identities

v = <e—\/52(0) + (362(0);%(0»2)% , ¢ = arctanh (W»

so Theorem implies that v < €2,
From the Corollary [2.1.13| and the Theorem [2.1.10, we deduce that 4C' > 0 such that if

Inln2)In =
e<<1and0§t§(%

7 , then we have that
€2

; s 3 1\* Ctez
s 0 =0( gy i) w0 (4 (o) ew (G7)) o
eV —e~V20) 4 O (max (e‘ﬁd(t), e_‘/iz(t)) |2(t) — d(t)|> (2.207)

9 :
:ef\/id(t) + O (62 (ln 1) eXp <C{t€1)) X
€ In ¢

Next, we consider a smooth function 0 < x,(z) < 1 that satisfies

0, if
We denote 0
r — T
t = .
x2(,2) X2(£B—$2(t)>
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From Theorem and Remark [2.4.4] the estimates (2.206]) and (2.207)) of the modula-

tion parameters imply that for the following function
Lyi(t) = <D Etotai (Hgﬁ(t +Hxl(t))ﬂ ﬁ> )L2x L2
+2 [ 0g(D)0,9(8) |1 (Exalt, ) + a(t) (1 = xalt)
=2 [ gt (V' (H09) + U (H30) U (330 + 1Y) ) da
+2 [ glt.x { (2O H + (e PORHGH ()| do

z1(t) 3
3/ U® (H33 + H7Y) g(t)* d,

dx

and the following quantity d;(¢) denoted by

t) = HQFSH <e—\/§z(t) max |z;(t)] + max |&;(¢ )|3 e_wgg<t>>

Je{1,2} je{1,2}

+ o8| ma 12,0 125600 + o8|
uz

we have ‘Ll(t)‘ = O(6:(t)) for t > 0. Moreover, estimates (2.206)), (2.207) and the bound

Ly(t) = O(d1(t)) imply that for
) )
€ (ln 1) exp <Ct€1>
In-=

-
il

mane{1,2} |37](t)|

(max i;(t)? + max_ |i;(t > H
jef1,2} jell, 2}

v%€? sech (vV2ut + 0)2 + H (t

3 9V2z(1)
+ €27 20

N

]6{1 2} z(t

(ln In

l)111%

€

Li(t)] = 0(a(1)) if 0 <t <

Nl

Now, similarly to the proof of Theorem [2.4.5] we denote G(s) = max <‘ ) . From
Theorem and Remark [2.4.4] we have that there are p0s1t1ve constants K,k > 0 inde-
pendent of € such that

2
ﬂwt < Li(t) + Ké.

We recall that Theorem [2.2.8| implies that

1
-\ < —V22(1) —
In (6) S (1), e + max [5(1)" + max [3(8)] = O(e),

from which with the definition of G(s) and estimates (2.206)) and (2.207) we deduce that

5a(t) < G(t)v? sech (V20 + ¢)'e? + G(t)e® + G(t)?

1\t
while 0 < ¢ < (nle)ine

TS

€
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In conclusion, the Fundamental Theorem of Calculus implies that 3K > 0 independent
of € such that

Gt)? < ( +/ Yo?sech (v20s + ¢) ed + G(s)ed +G(s>21% ds) . (2.208)

while 0 < ¢t < M

Since 4 [tanh (\/§vt + ¢)] = v2vsech (v2vt + 0)2, we verify that while the term

1

G(s)v? sech (v2ut + 0)265

is dominant in the integral of the estimate (2.208)), then G(t) < G(0). The remaining case
1

corresponds when G(s )21;(2 is the dominant term in the integral of (2.208]) from an instant
In =

. Similarly to the proof of [2.4.5, we have for ty < t < w that

52 52

G(t) S G(to) exp <C<t-lt>>

L Inl
In conclusion, in any case, we have for 0 <t < % that
52

0 < to < (lnln )lnf

G(t) < G(0) exp (Cﬁfl) (2.209)

n 1'1l 1’1l
But, for T' > % and K > 2 we have that
€2

1
€ (ln 1) exp Kﬂ < eexp QKGIT :
€ In ¢ In-=

€

In conclusion, from the result of Theorem [2.4.5, we can exchange the constant C' > 0 by a

larger constant such that estimate (2.209)) is true for all ¢ > 0.
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Chapter 3

Approximate kink-kink solutions for
the ¢ model in the low-speed limit
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Abstract

This chapter is the first part of a series of two chapters that study the problem
of elasticity and stability of the collision of two kinks with low speed v for the
nonlinear wave equation known as the ¢% model in dimension 1 + 1. In this
paper, we construct a sequence of approximate solutions (¢x(v,t, r))ken,, for this
nonlinear wave equation such that each function ¢ (v, t, x) converges in the energy
norm to the traveling kink-kink with speed v when ¢ goes to +o00. The methods

used in this chapter are not restricted only to the ¢% model.



3.1 Introduction

We recall for the potential function U(¢) = ¢*(1 — ¢?)? the partial differential equation
GRo(t,x) — OP0(t,2) + U'(6(t, 1)) =0, (t,2) € R x R (3.1)

From Chapter 1, we also recall the energy and the momentum quantities given by (Energy))
and (Momentum)|) respectively. We recall the potential energy formula, which is

Epot(9)(1) = /}R W + U(o(t, ) dx.

If the solution of the partial differential equation (3.1) has finite energy, the quantities
(Energy]) and (Momentuml) are preserved for all t € R.

Moreover, if H is a stationary solution of (3.1]), then, for any —1 < v < 1, the Lorentz

transformation of H given by

¢@@:H<%;%> (3.2)

is also a solution of .

The only non-constant stationary solutions of with finite energy are the topological
solitons denominated kinks and anti-kinks. The kinks of are the space translation of
the functions denoted in and the anti-kinks are the space reflection around 0 of the
kinks. Moreover, from Chapter 2, we recall the estimate (2.4) which implies the existence of
a constant C'(k) > 0 for any k € N such that

dk

. V2r —2v2zx
Wﬂo,l(x) < C(k) min (e L€ ) for all = € R. (3.3)
Finally, since Hy,(z) = \/5#, we have that HH(/M(ZB) ; = ﬁ

(1+€2\/§m>2
In [8], it was obtained for any —1 < v < 1 the existence of a solution ¢(¢,z) of ({3.1)

satisfying

x — vt x + vl
i o o) — o (2200 gy (et —0, (34
ti+mooH¢( z) = Hou (m) 0 (\/1 —02> HA(R) o
v ;o x— ot v ’ T+t
i Lot o> - g (EE Zo @35
t_g_noo t¢( l’) m O,l( /1_v2> V1 — 22 1,0( /1_02) L2 ( )

However, the uniqueness of a solution ¢(t, =) satisfying and is still an open problem.
In Chapter 2, we studied the dynamics of two kinks of with energy slightly bigger than
two times the energy of a kink. The asymptotic stability of a kink for the ¢® model was
obtained in [31]. See also the references [19], [29], [32] and [56] for more information on the
stability and asymptotic stability of a kink for other one-dimension nonlinear wave equation
models. For more information about kinks and other topological solitons, see the book [36].

The objective of this chapter is to construct a sequence of approximate solutions ¢ (v, t, )

satisfying for any 0 < v < 1 and s >0

Hafgbk(v, t,x) — 2pp(v,t,x) + U (or(v,t, x))

L°Hg



and

— — [ x — vt — ([ x4+ vt
li ,t,x) — H —_ | - H_ _— =0,
e ‘ Pi(0,%,) = Hoa (m) Ho (m)

H3
with ?(t,x) = (f(t,2),0:f(t,z)) for any function f € C*(R?). This result is the first part
of our work about the study of the collision of two kinks with low speed v.

The study of dynamics of multi-kink solutions for the ¢° is motivated from condensed
matter, see [3], and cosmology [62]. Also, there is a large literature about the numerical study
of collision of multi-kinks for the ¢%, for example in high energy physics see [14] and [17].
More precisely, in the article [17] it was numerically proved that there is a critical velocity
Ve, so that if two kinks collide with a velocity smaller than v., the collision is very close to
an elastic collision.

Motivated by [17], we theoretically study the high elasticity of the collision of two kinks
with low speed for the ¢® model. The sequence of approximate solutions ¢ (v,t,z) will be
useful later in the next chapter to study the elasticity of collision of two kinks with low speed.
Since the ¢% model is a non-integrable system, there are many issues and difficulties in the
studying of the collision problem for two kinks of this model.

There exist few mathematical results about the inelasticity of the collision of two solitons
for other dispersive models. In [41], Martel and Merle proved the inelasticity of the collision
of two solitons with low speed for the quartic gKdV. There are results on the elasticity and
inelasticity of the collision of solitons for gKdV for a certain class of nonlinearities, see [49]
and [50] by Mufioz, see also [39] by Martel and Merle. For nonlinear Schrédinger equation, in
[53], Perelman studied the collision of two solitons of different sizes and obtained that after

the collision the solution doesn’t preserve the two solitons’ structure.

3.1.1 Main Results

Definition 3.1.1. We define A : C*(R?,R) — C(R?* R) as the nonlinear operator satisfying

Ay (t,z) = 02y (t,x) — D2py(t, ) + U (41 (t, x)),

for any function ¢; € C*(R% R). And, for any smooth functions w : (0,1) xR — R, ¢ : R* —
R, let po(t,x) == ¢ (t,w(t,x)), then we define

A (o (t,w(t, ) = A(¢s) (t,x), for all (t,x) € R
From Chapter 1, we recall Theorem which is the main result of Chapter 3 :

Theorem 3.1.2. There exist a sequence of functions (¢r(v,t,x)),~, , a sSequence of real values
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d(k) > 0 and a sequence of numbers ny, € N such that for any 0 < v < §(k), ¢r(v,t, z) satisfies

Jlim_ ‘ (v, t,x) — Hoy, (%) — H_1g (%) e 0,
dim (0,640, 2) + ﬂv_jﬂm <%> _ ﬂv_izﬂﬂw (%) L 0,
tLiznoo O (v, t,x) — \/10_7}[071 <x %’u,k) n \/11)_71}2[{170 (W) . -0,

with e, € R satisfying
ln(%)
Euk — \/%
lim ——«—
0 o[l (0)P
Moreover, if 0 < v < 0(k), then for any s > 0 and | € NU {0}, there exists C(k,s,l) > 0
such that

=0.

@

1 ngk
< 2k+1 ( ( )) —2\/§|t\v‘
Py C(k,s, v [t|v + In 2 e

Hy
3.1.2 Organization of Chapter 3

In this chapter, we denote by G € .(R) the following function

reV?? I eV
(1+ 62\/§$)% T

e~ V2
s +2V2
2

_ V22
gle) = = v

(3.6)

!

where k; € R is the unique real number such that <Q(:17), H0,1(513)> = 0. The function G
satisfies
P
o2
see Remark in the Appendix for the proof. Next, from Chapter 2, we recall, for
0 < v < 1, the following function

G(x) + U (Hou (7)) G(2) = (UP (Hoa(x)) — 2) e V2 +8V2Hy (x),  (3.7)

d,(t) = \/15 In (; cosh (\/ﬁvtf), (3.8)

which is a solution to the ordinary differential equation
dy(t) = 161/2e V20 (), (3.9)

In Section [3.2] we are going to develop the main techniques necessary to construct each
approximate solution ¢y of Theorem [3.1.2, More precisely, we are going to construct function
spaces in Subsection and study the applications of Fredholm alternative of the linear
operator —02 + U (Hy(x)) restricted to these function spaces in Subsection m
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In Section [3.3] we will prove auxiliary estimates with the objective of simplifying, in
the next sections, the computation and evaluation of A(¢y)(v,t,x) for each k € Nsy and
<okl

In Section 3.4, we are going to prove Theorem for the case k = 2. More precisely,

for v > 0 small enough, we will first choose the function

20 (t,2) =Ho1 | ——=—= | — Hop | ——=
’ ’ dy(t)? ’ dy(t)?
1 — delt? V1 — w2

do(t) du(t)

+€wm@g(iﬂ—fz )_eﬂau%z(—x—:z)
du (1)2 dy (1)2
1 — dlt? V1 — w2

as a candidate for the case kK = 2. The next argument is to use the main results of Subsection

and Section [3.3| to estimate A(pq)(t, z), see also Lemma and Corollary for

a better understanding of the main ideas behind this argument. More precisely, we are going

to verify the existence of two finite sets of Schwartz functions with exponential decay in both
directions (h;(x)),c; and (p;(t)),c; such that

Alp2o)(t2) = Y pi(V20t) by | = | =y |
iel 1— 2 1 — et

+ u’U(t7 x)?

where the function wu, : R?> — R? is smooth and satisfies, for a real constant ¢ > 0, any
[ € NU{0} and any s > 0, the estimate

o 1 1 s
uy(t,z)|| < C(s,Dv5 {ln (v) + |t|v] e V2 forallt e R, if 0 < v < 1,

ot

H;

where C(s,l) is a positive number depending only on [ and s. Next, using the estimate
above of A(pa0)(t,x), we are going to construct a linear ordinary differential equation with
a solution being a smooth function 7,(t) with L>(R) norm of order v?In (%) Using the

function r,(t), we are going to verify, for

dy (1) dy (1)
T+ 1ry(t) — 5~ —T +1ry(t) — =5~
802,1(75, x) :HO,l ( ( ) 2 ) - HO,l ( ( ) 2 )

dy (t)? dy (t)2
== e
dy(t dy(t
e, [Tt — 2( : e [ T () - 2( )
VP0G . V20g . ,
1 — d®? 1 — du®?
4 4

and an explicit real value es ,, that the function ¢o(v,t, z) = w1 (t+e2,, x) satisfies Theorem
for the case k = 2, if v > 0 is small enough.

In Section [3.5] we are going to prove Theorem by an argument of induction on
k € Nss. The proof of complementary information is done in the Subsection of the
Appendix.
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3.1.3 Notation

In this subsection, we will present the notations that are going to be used in the next sections

of this chapter.

Notation 3.1.3. For any pair of functions w : R? — R, h € L®°(R) we denote h*(t,z) by

the following function
R“(t,z) = h (w(t,z)) — h (w(t,—x)) for any (t,z) € R%

Next, for any s > 0, we consider the norm ||-|

s given by

£ = 1z = ([ D@ de ) for any f € HR)

where f is the Fourier transform of the function f. Finally, we denote D as the set given by
{zeC|lz] <1}.

3.2 Functional analysis methods
3.2.1 Asymptotic analysis methods
We will use the following Lemma in several occasions.

Lemma 3.2.1. For any real numbers xo, x1, such that { = xo—x1 > 0 and «, 5, m > 0 with
a # B the following bound holds:

~Y

/ |ZE - Il|m€_o¢(%_ml)+6_5(%2_33)+ <a,ﬂ,m max <<1 + Cm> e—OéC’ G_BC) )
R
For any a > 0, the following bound holds
/ |Z’ . xlymefa(xf:pl)Jrefa(xzfz)Jr Sa {1 + Cerl} efaC.
R
Proof. Elementary computations. ]

Next, we define the function spaces St and S~. They will be used to construct the
approximate solutions ¢ (v, t,z) of Theorem for each k € N,.

Definition 3.2.2. ST is the linear subspace of L°(R) such that f € ST, if and only if all

the following conditions are true

o f € Z(R) and there is a holomorphic function F : {z € C| -1 < Im(z) < 1} — C
such that F(eV?®) = f(x) for all z € R.

o F satisfies F(2) = 425 a,2?**L) for some sequence of real numbers (ai) and all z € D.

Definition 3.2.3. S~ is the linear subspace of L>°(R) such that g € S~, if and only if all

the following conditions are true

86



e g € Z(R) and there is a holomorphic function G : {z € C| -1 < Im(z) < 1} — C
such that G(e V%) = g(x) for all x € R.

o G satisfies G(z) = 125 bpz?, for some sequence of real numbers (by) and all z € D.

Remark 3.2.4. In Definitions|3.2.9 and|[3.2.5, from standard complex analysis theory, the

holomorphic functions F' and G are unique.

Remark 3.2.5. From Definition[3.2.3, if fi, fo € S™, then fify € S=. Therefore, S~ is an

algebra.

Remark 3.2.6. From Definitions (3.2.2) and |[3.2.5, if f € ST and g € S™, then, for any
leN, fO e 8t and g € S~.

The following Lemma is a direct consequence of Definitions [3.2.2] and [3.2.3]

Lemma 3.2.7 (Multiplicative Lemma). If fi, fo, fs € ST, then the function gi(z) =
fi(=x) fo(=x) is in S~ and the function go(x) = f1(z) fo(x) f3(x) is in ST.

Definition 3.2.8. We define, for any n € NU{0}, the linear spaces ST = {a" f(z)| f(x) €
STNSR)} and S™" = {2"f(z)| f(x) € ST N.L(R)}, and for any m € NU {0}, we define

m m +o00 400
Sm=@ st S, =P, SL=PS5 S =Ps
n=0 n=0 n=0 n=0
Remark 3.2.9. From Definition[3.2.8, for any m € NU{0}, it is not difficult to verify that
d goy _ [ df + +
e {55} = {dxy fe sm} Sy,
d df _ _
- {Sn}= {dxy fe Sm} s,
Remark 3.2.10. From Remark S is an algebra. Furthermore, the result of Lemma

is also true if we replace the function spaces ST and S~ respectively, with ST, and S

in the statement of this lemma.

Remark 3.2.11. We will prove later in Lemma that the linear space generated by the
union of all subspaces S C #(R) is a direct sum. By analogy, the same result is true for

the union of all subspaces S, .

Remark 3.2.12. In the deﬁmtion we can verify that if F'(2) is a polynomial function,
then F = 0. Otherwise, the identity f(x) = F(eV®*) would imply that lim,_ .. |f(z)] =
limg_ 400 | F(eV2)| = +o00, if F(2) is a non-trivial polynomial, which contradicts first condi-
tion in definition . Similarly, we can verify that G(z) in definition m cannot be a

non-zero polynomial.

Remark 3.2.13. For any number | € NU {0}, any odd number m and any even number n,
we have that dd—;l [Hoi(x)™] € ST and dd—; [H_10(z)"] € S™.
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Definition 3.2.14. In notation of definition[3.2.3, If f € S*, we define
val, (f) = min{2k + 1| k € NU {0}, a; # 0}.
And in notation of definition[3.2.9, if g € S~, we define
val_(g) = min{2k| k € N, b, # 0}.

Remark 3.2.15. The exponential decay of the functions in STN . (R), S™N.Z(R) and S;},
are going to be very important to obtain high precision in the approximate solutions of the

main theorem.
Now, we can prove the main proposition of this subsection.

Lemma 3.2.16 (Separation Lemma). If f € St g € S™, then there exist a sequence of
pairs (hy,dp)n>1 and a set A C N such that h,(z) € STN.L(R) for alln € A, h,(—x) is in
STNA(R) foralln € Q@ =N\A and (d,)n>1 C N is a strictly increasing sequence satisfying,
for any M € N and any ( > 1, the following equation

fle=Qga) = X halw— Qe 4 37 hp(w)e V4 eI (0 — Ogan(),

1<n<M, 1<n<M,
neA ne

(3.10)

where fm € ST, gum € ST with faq or gy in F(R). Also, || fm(z — O gam (@) gy Skom 1
for any ¢ > 1.

Lemma 3.2.17. Let f € ST, g € S, then:

o Ifval (f) > val_(g), then there exist hy € ST N (R) and functions f; € ST, g1 € S~
satisfying, for any ¢ > 1, the following identity

fle = Qglx) = ha(w = (e 4 e7VER-WX £ (2 — () gy (),
and at least one of the functions fi, g1 is in .7 (R).

e« Ifval_(g) > val,(f), then there exist hy € .Z(R)N St and functions fi € ST, g1 € S~
satisfying, for any ¢ > 1, the following identity

~

fla = Qg(x) = ha(=a)em ¢y eV, (—i 4 () g1 (—a),
and at least one of the functions fi, g1 is in .7 (R).

Proof of Lemma[3.2.17. We consider the notation of Definition [3.2.2] and Definition [3.2.3]

For 2w; + 1 = val(f) and 2wy = val_(g) there are only two cases to consider, which are
2wy + 1 > 2wy and 2w; + 1 < 2ws.
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First, we consider the case where 2w; + 1 > 2ws.
Fl@ = Qg(x) =f(x — Obu,e Y% + f(a = ) [g(x) — bupe V]
= — e POV
e 2V2wal {f(x - C)e‘hﬁw?(aj%) (g(:v)e“ﬁw” - bw2>] .
Because 2wy + 1 > 2w, and f € S*, we have that f(z)e 222" ¢ §+ 0 #(R). Clearly, if

g(x)e“ﬂw?f” — by, € S, then, from the identity above, Lemma [3.2.17] would be true for the

case where val, (f) > val_(g). Moreover, for any = > 0, we have that
+oo
g(a:)e”‘/iw” —byy = > b~ 2(nw2)V2e, (3.11)
n=wo+1

Since G(z) is analytic in the region D, we clearly have that the following function

G(z)

Z2w2

+oo
— by = > b2 (3.12)

n=wo+1

Q(z) =

is analytic in D, from which, using the product rule of the derivative, for any z > 1 and
[, m € N, we deduce that

dl
‘(1 +|2™) - lg(@)e ™2 — by, || S 1 (3.13)

From equation (3.12)) and from the fact that G(z) has a holomorphic extension in the region
B={z] —1<Imz < 1} since g € S~, we conclude that ((z) has a holomorphic extension
in the region B. Moreover, since g € S—, then g € LL(R) N C=(R) and ¢ € .#(R), from

which we deduce the following estimate

dl
|(1 + |$|m)@ [g(a:)e“‘/i“’”} Sim 1 for any x < —1 and [ € N5y,

and so, we conclude that - {g(x)e”‘/iw” - wa e Z(R).
Analogously, if 2wy = wval_(g) > wval,(f) = 2w; + 1, then we can deduce from the
Definition [3.2.2] and Definition [3.2.3] that

hi(x) = g(—x)e_@wl“)‘/ix € STNSR), gi(x) = f(—x)e@wl“)‘@” — Qy, €57,
and

f(x - C)g(x) = g(m)awleﬁ(2w1+1)xe—\/§(2w1+1)<
4+ e~ V2@uit1)¢ |:g(x)€\/§(2’w1+1)$ (f(:v (e VRRuHDE=0) _ awl)} e

O
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Proof of Proposition[3.2.16. If f =0 or g =0, we can take h,, = 0 and d,, = n for all n € N.
From now on, we consider the case where both f and g are not identically zero. Clearly,
Lemma implies Proposition for the case where M = 1.

Moreover, if Proposition [3.2.16|is true when M = M, € N, we can repeat the argument
above of the proof of Lemma using fu, gu, in the place of f, g and conclude that
Proposition is also true when M = M, + 1, so by induction on M, Proposition [3.2.16
is true for all M € N. O

Corollary 3.2.18. If f € ST,g € S~ and f £ 0, g # 0, then the sequence (hy,,dy)nen
satisfying Proposition is unique. Furthermore, d; = min (val,(f),val_(g)).

Proof. From an argument of analogy, it is enough to consider the case where 2w, + 1 =
valy(f) > val_(g) = 2ws. In this case, from the proof of Proposition [3.2.16 we have that the
real function hy(x) = by, f(x)e 2227 satisfies hy € ST N.Z(R), hy # 0 and the following
identity

fx = Ogla) = h(z = Qe V22 4 e fi (2 — ()gu (a), (3.15)

where f; € ST, g1 € S~ and either f; or g; is in .(R). In conclusion, Lemma and
equation (3.15)) imply for any s > 0 that

lim Hf(x - C)g(ac)ez\/i"”24 — hy(x — C)‘ =0, (3.16)
¢—+o0 H;
and so,
. 2v2wo¢
0< CEIEOOHf x (x)e”var? s < (3.17)

Since by € .% (R) and hi # 0, H = 0 for all s > 0. Therefore, using equations (3
and - we can verify that the umque possible choice for d; is 2ws. And so, the function
hy satisfying Proposition 6| for f and g is unique and equal to h1, otherwise would
be false. Similarly, we can repeat the argument above for the case val(f) < Val,(g) and
obtain in this situation that d; = val, (f) and hy(2) = ay, g(x)e@1+Dv2e,

Next, assuming that (h,,d,) is unique for all 1 < n < M, € N, we can repeat the

argument above in fu, (z — ()gm,(z) and conclude that (ha 11, dag+1) 1S unique too. In
conclusion, from the principle of finite induction applied on n € N, we obtain the uniqueness
of (hy,d,)nen satisfying Proposition [3.2.16| when both functions f and g are not identically

Zero. ]

Remark 3.2.19. When f # 0 and g # 0, we can find explicitly the sequence (h,,d,) satis-
fying (3.10) from the proof of Lemma |3.2.17

Remark 3.2.20. If f(z) = 2™ fo(x), g(z) = 2'go(x) such thatm, | € N, fo € STN.Z(R) and
go € ST N.L(R), then there ezist a sequence of pairs (hy,d,)n>1 and a set A C N satisfying
ho(z) € STNL(R) for alln € A, hy(—x) is in STNS(R) foralln € Q =Ns1\ A, d, €N
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is strictly increasing such that for any ( > 1, x # 0, x # ¢ and M € N we have the following

equation
fle—0{glx) N —\BdnC ~V2dnC | —V2dpC _
1<n<M, 1<n<M,

neA neqQ

where far € ST, gm € ST and faq or gaq is in L (R). Furthermore, the sequence (hy,, dp)nen

1S UNique.

Remark 3.2.21. From Proposition[3.2.16, we can deduce if f(—z) € S*, g(—x) € 5=, f £ 0
and g # 0, then there exists a sequence of pairs (hy,, dy)n>1 and a set A C N such that h,(x) is
in STN(R) foralln € A, h,(—z) is in STNS(R) for alln € Q =N\ A and (d,)n>1 CN
is a strictly increasing sequence satisfying, for any M € N and any ¢ > 1, the following

equation

fmr+Qg(=2) = 3 ha(e=Qe "+ 3 hy()e VeV fy (2 = Ogua(),
1<n<M, 1<n<M,
neA ne
(3.18)
where fag € ST, g € ST and faq or g is in L (R). Furthermore, the sequence (hy, dy,)nen

18 UNique.

We also demonstrate the following lemma, which will be essential to obtain the results in

the next subsection.

Lemma 3.2.22. Let m € N and f; € ST N.2(R) for 0 < j <m, X2 f;(x) = 0, if and
only if f; =0 for all 0 < j < m.

Proof. For each 0 < j < m, since f; € ST, we have that either f; = 0 or there exists a
natural d; € NU{0} and a; € R with a; # 0 such that f;(z) = a;e?%+t)v2 L O <6(2d1+3)‘/§x)
for all x < —1. So, there are only two possible cases to consider.

Case 1.(3f; such that f;(x) # 0 for some z < —1.) In this situation, we have that there is

a natural d,,;, > 0 and a non-trivial real polynomial p(x) of degree at most m such that

0= alf;(x) = e@dmint V200 4) 4 O (e@d“‘i“”)ﬁﬂx\mﬂ) for all z < —1, (3.19)
=0
which is not possible since if p(z) is a non-identically zero polynomial, then p(z) = ¢ for
¢ # 0 or lim;, 4 |[P(x)| = +00, but both cases contradict identity (3.19).

Case 2.(f; =0 for all 0 < j < m) Clearly, the second case is the only possible. [

3.2.2 Applications of Fredholm alternative

We consider the self-adjoint unbounded linear operator L : H2(R) C L2(R) — L2(R) defined
by
d*f(z)

dax?

L(f)(x)=— +U®(Hy,(x))f(z) for all z € R. (3.20)
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From Lemma 2.6 of [47] we know for a constant A > 0 that o(L) C {0} U [\, +00), ker(L) =
{cHy,(z)| c € C}. From this, in the proof of Lemma 2.5 of [47], we have deduced the existence
of a constant k > 0 such that if g € H!(R) satisfies (g, H(/M) = 0, we have that

(L(9), 9) > kllgllFs - (3.21)

Next, we consider the linear space
Ort(Hy,) = {g € L2(R)| (g, Hy,) = 0} .

Since 0 < Hp; < 1 and U is a smooth function, Cauchy-Schwarz inequality implies for any
u, L € Ort(H(/M) N H! (R) that

d7u
dx

dp

(L (). )] < -

U]y Ml e (3.22)

L} L3

In conclusion, from Lax-Milgram Theorem and inequalities (3.21)), (3.22)), we obtain for
any bounded linear map A : (Ort(H(l)’l) NnH! (R), ||-||H1(R)) — R the existence of a unique
ha € Ort(Hy,) N HL (R) such that, for any u € Ort(Hy,) N HA(R), we have

(L(ha), u) = Au). (3.23)

As a consequence, we can obtain, for any u € L2, the existence of a unique h(u) € Ort (Hé’l) N
H! (R) satisfying for any u € H} (R) the following identity

(LA (), u) = (p, u)

Then, inequalities (3.21)), (3.22) imply the existence of 5 > 0 such that for any pu €
Ort <H671> NH! (R), A ()|l 1wy < B llpll 2 - In conclusion, from the density of H!(R)in L?

and the fact that h(u) € Ort (H(/)’l) N H! (R), we deduce the following lemma:
Lemma 3.2.23. There is a unique injective and bounded linear map

Ly« (Ort (Hoa) s IF122) = (Ort (Hoa) 0 H (R), [y )
such that for any p € Ort (H(l)vl) s L(Ly(p)) = p.

Now, for all m € NU {0}, we are going to consider the linear spaces S N Ort (H{)’l) and
study the applications of the operator L in these subspaces. More precisely, we are going to

prove the following lemma:

Lemma 3.2.24. The map L; defined in Lemma |3.2.25 satisfies Ly (S;; N Ort (H('),l)) C
Stoinort <H671> for all m € NU{0}.
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Proof. From Lemma|A.3.3|in Appendix section, we have that if f € (R)NOrt (H{)’l) , then
Li(f) € Z(R). Since L; is a linear map, it is enough to prove for any g(x) € ST N .#(R)
and any m € NU {0} that

Ly (xmg(x) - /ﬁH(l)’l(x)) €St (3.24)

! ! 2
with k satisfying <mmg(x), H0,1(37)> =K HHO’IHH . To simplify our notation, we denote h(z) =
xmg(x) — k:H(/)’l(x). From Lemma |3.2.23] 14 (:vmg(:v) — k:H(/)l(x)> is well defined, so it is only
necessary to prove (3.24)) by induction on m € NU {0}. We also observe that we can apply

a change of variable z(z) = eV%" to rewrite the ordinary differential equation

[P (@) + U (Hoa(2) (2) = hz) (3.25)
_2Z2d25Z02(z) B 2Zdﬁc’;)£2) (24 B(2)) Fylz) = H(2), (3.26)

where Fy(eV2®) = f(z), H(eV?*) = h(z) and
E:{2eC| -1<Im(z)<1}—>C

is the analytic function

22 2
E(z) =-24 + 30 ,
( ) 14+ 22 (1 + 22)2
because of the following identity U® (Hy (7)) = 2 — 24( 2{;1) + 30%.

We also recall that the operator L defined in satisfies L <H0’1> =0 and Hy,(z) =

%. Also, using the method of variation of parameters, we have that the real function
+e )2

1—e2V20 3 3(e2V2 1) W2 _

0(910)274\/§ +?+ 2 + ol

satisfies L (C([B)HOJ(ZL‘)) = 0. In conclusion, from the Picard—Lindel6f Theorem, we deduce
that

(3.27)

L —e~WI 3y 3e2V2r 4V eV2e
L0} = — += + to| ——— |, ER
{} 1 4\/§ 5 4\/§ 8\/5 Co (1+62\/5$)% C1, C2
(3.28)
Moreover, we can verify that c(z)H, (z) satisfies
JFOO / O !
/ c(z)*Hy ,(2)* dx = +o0, / c(x)*Hy,(x)*dr = +oo,
0 7 o )
from which we deduce with identity (3.28]) that
L0} N L2A(Rey) = L7HO} N L2 = {1y (2)] e € R}, (3.29)

In conclusion, from Theorem [3.2.23|and identity (3.29), we deduce that if h € Ort <H6’1> ,
f € L2(R<y) and —fP(z) + UP(Hy,(2))f(z) = h(x) for all + € R, then there exists a
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constant k1 € R such that L;(h)(z) — f(z) = k1Hy,(z) for all € R. So, to prove Lemma

3.2.24| it is enough to find one f € S}, such that L(f)(z) = h(x).
Case (m = 0.) If h € Sy, there exist an analytic function

H:{zeC| -1<Im(z) <1} = C,

and a sequence (hy,)gen such that H(z) = 370 hpz?**1 for any z € D and h(z) = H (e‘/i’”>
for all x € R. We are going to construct a sequence (cj)renuqo} such that there exists a
solution f € S{ N.Z(R) of L(f)(z) = h(x) satisfying for all x < 0

+oo
f(x) = corHy,(x) + cpePFVae, (3.30)
k=0

First, since L(H(/M)(x) = 0, we have for any smooth function g(x) that

" d2 ! 1"
L(g)(x) = ~2c0Hy, () == [g(x) = corHy, ()| +UP (Ho s (0)) [g(x) — corHg, (x)] . (3.31)
Next, if (cx)ren is a real sequence such that the function Fy(z) = 3520 ¢x2?**! is analytic in

the open unitary disk D, then the chain rule of derivative implies for any x < 0 that

dF V2z +oo A2F V2 +oo
1516 NG > c(2k + 1)e@Hivar ;@2 )y > 2k + 1)2e@EHDVEE (3 39)
L k=0 z k=0

We also denote the analytic expansion of E(z) in the open complex unitary disk as
+oo
E(z) =Y p2™, (3.33)
k=1

and since H(l)"l = 2Hy, — 8H§, + 6Hj, € S*, we have for z < 0 that Hé’}l(x) = 2eV2r 4
S upe@HOV2E it U (2) = Y72 ugp2® analytic in D.
Moreover, using identity (3.31]), we would obtain that if L(g) = h,

+o0o
g(x) = coxH(/M(x) +> eIV for any x < 0,
k=0
and limsup,_, , |Ck\% < 1, then (&) ey {0y should satisfy the following equations:
—4co = hy,
R (3.34)
(2=22k+1)*) ¢ = [hk + 2¢0Uk — X jimek, j>1 cmpj} , for any k > 1.
From now on, we consider the sequence (c;)renugoy to be the unique solution of the linear

recurrence (3.34)). Clearly, for any 0 < € < 1, we have that limy,_, ,  |cx|€® = 0, which implies

limsup\ck]% <1l
k—+o00

Otherwise, (ckeg)keN would be an unbounded sequence and there would be a subsequence
k.
(ck;)jen, so that lalez < |ckj\67j for all 0 < [ < kj;, from which we would obtain with the

identities lim,,_, o ppe2 = lim, . hpe2 = lim, ., u,e2 = 0 that

€ e, [(2(2k; +1)% = 2) > 2|coup, €3 + |hy e +2(k; + 1)|c, e

(E%pj)HLOO(N) ’
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but this estimate would contradict (3.34). So, we deduced that
+oo
Fl(z) — Z CkZZk—H
k=0

is analytic in . In conclusion, the recurrence (3.34)) implies that the function f(z) denoted
in (3.30) satisfies L(f)(x) = h(z) for all x < 0.

Moreover, because E(z), % are analytic in the simply connected regions

4
B, — {z €C| —1<Im(z) <1, |z| > 6 Re(z) > —55} ,
4
Bs_ - {z €C| —1<Im(z) <1, |2| > 6 Re(z) < 55}

for any 0 < § < 1, we obtain, from h € S* and the ordinary differential equation ,
the existence of a unique holomorphic function Fy in the region B;s . which is a solution of
and satisfies F} (V) + coxHy (z) = F,(eV27) for all eV2* € By, ND, see Chapter 3.7
of [10]. By analogy, there exists a unique holomorphic function F_ with domain Bs_ which
is a solution of and satisfies F (eV2%) + coxHy, (z) = F_(eV?*) for all eV®* € Bs_ ND.
In conclusion, there exists a unique analytic function F, in the region B = {z € C| — 1 <
Im(z) < 1} such that Fy(z) = Fi(z) for all z € D and the real function

corHyy(x) + Fy (eV?") € L7 {h}.

Indeed, from the recurrence relation (3.34) and identities (3.31)), (3.32)), (3.33)), we con-
clude that if

f(x) = corHy, (z) + Fae’?®), (3.35)

then f(z) € L2(R<_y), and L(f)(x) = h(z) for all z € R. In conclusion, there exists 7 € R
such that Li(h)(z) = f(z) — THy, (), and since Li(h)(z) € #(R), identity (3.35) implies
that Li(h)(z) is in S

General case(m > 1.) Based on the observation made in (3.24), it suffices to check for
any g € ST N.7(R) that

Tn(g) =Ly | 2™g — <xmg, H(l)71> % € S:1+17 (3.36)

for all m € NU{0}. Clearly, we checked (3.36]) when m = 0 in the first case. Now, we assume
that (3.36) is true for all m € NU {0} satisfying 0 < m < M, for some number M € NU{0}.
From the inductive hypothesis, if g € ST N .7 (R), then Ty(g) € Si;.1, which implies the

existence of a finite set of functions (fi)g<p<rsr € ST N (R) such that
M+1

Tulo) = 3 4" fon (3.37)

m=0
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Moreover, since L (Ty(g)) € Si;, we derive from Lemma [3.2.22 and identity (3.37)) the
identity x"*L(far+1)(2) =

Therefore, we have

0, which is possible only if fy;11 = O'H(/)J for a real number o.

Ty(g)(z) = UZL’MHH )+ Z 2™ f(z) for any x € R. (3.38)
Consequently,
d "
2 Lar(9) () — oM Hy (z) is in S,
l’ b
from which, using (3.36) and identity L(H671)(x) = 0, we obtain that
d2 4 " . .
2 [xTM(g)(x)}+U(2)(H0,1(x))xTM(g)(x)— [mMHg(:p) —TurHy () — 20$M+1H071(I)} is in S},
where /
<ng7 Ho71>
™™ — ﬁ
HHOJ L2

Using identity L(H(/)yl)(at) = 0, we also obtain that

&2 [ oaM2H, (z) ) oxM*2H  (2) Mol er
da? [_ M +2 + U (Hoa () | - M+ 2 =200 " Hy, ()

+o(M + l)xMH(l)J(:p).
Therefore, using that xH('M and oM H(l),l are in Sy;, we deduce

aa:M“Hé’l(x)

L («Tla)te) - Y

) — 2M*g(z) is in Sy,

2 /
L= (Hop, zM*1g(x)), we obtain that

. !
from which, for 73,44 HHOJ

M+2 7’
ox™ ™ Hy,

Ly (xM+1g _ TM+1H(/),1) - [xTM(g) T ’ 1 is in Sy 4. (3.39)

In conclusion, we obtain that (3.36) is true for m = M + 1, so by induction, it is true for
all m € NU {0}, so Lemma [3.2.24] is true for all m € NU {0}. O

3.3 Auxiliary estimates

In this section, we will prove useful lemmas, which will be used later to estimate g—;l/\(gbk) (v,t,x)
for all k € N>y and [ € NU {0}.
First, we can verify by induction that |[d®(¢)| <; !, for any [ € N, more precisely:
2
Lemma 3.3.1. For any v € (0,1), the function d,(t) = % In (52 cosh (\/ﬁvt) ) satisfies
t)H = 2v and
Lo (R)

<672\f|t\v

d()—2v\t|—\}§ln(8)+\/_ln2

A (t)| Sy L2Vl for all natural number [ > 2.
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Proof. The proof of the first inequality follows directly from the definition of d, and the
following estimate
In (14 z)| < |z|, for all x € (0,1).

From d,(t) = 2v tanh (\/§vt>, we obtain that

dv(t)H = 2v. Moreover, because
L>o(R)

dy(t) = 16v/2e V2% = 21/20% sech (\/ﬁvt)Q,
Lemma [3.3.1is also true for [ = 2.

Next, since the following function ¢ : C\ {i, —i} — C

2z

q(z) = 1122

satisfies q(z) = ¢ (271) and it is analytic when restricted to the set B={z € C| -1 <Imz <

1}, we have

4" ()

_ 1)
Lo®) Hq ()| e o ryy < o0 for all L€ NU {0},

In conclusion, since

2e”"
h(z) —
sech () Tt
then, for all [ € NU {0},
d! L
@sech (z)] < el (3.40)

. 2
Furthermore, since d,(t) = 2v/202 sech (ﬁvt) , we have for any [ > 2 that

d172

dD(t) = 2v/20? e

[sech (\/51}1&)2] = 2V2(V/2) %! a

dl‘l—2

o [sech (x) } . (3.41)

In conclusion, we obtain that Lemma is also true for any [ € Nso, and so, it is true for
all 1 e NU{0}. O

From now on, we denote the function wy : R> — R by

wolt, x) = Ldg(t) (3.42)
(UALD) - 1 B dv(t)2 .

We will use several times the function wy(t, z) in the next sections too. Clearly, from ([3.9)),

for any h € C*°(R), we have the following identity

0 [h (wo(t,z))] = — (1) hl(wo(t, x))+we*ﬁdv(t)

ot Ji—d )2 1= d,(1)? wolt, z)h (wo(t,z)). (3.43)

Moreover, we have:
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Lemma 3.3.2. If f € S for some m € NU{0}, then for any numbers I, ky € NU {0} the

function f(wo(t,z)) satisfies the following estimate

‘ 0'f (wo(t, 7))

ot!
More precisely, there exist a natural number Ny and a finite set {(hiy, pijo) € Sy x C®1 <
i < Ni} such that

Sf,l,kl Ul. (344)

< ()
Ly S 0L ) e max |f9) ()

0" f (wo(t, )
ot!

and, for all 1 <i < N; and all k; € NU {0}

= El: hia(wo(t, ))pigo(t), (3.45)

(3.46)
Furthermore, if | is odd, then p;;,(t) is an odd function for all 1 < i < N, otherwise they

are all even functions.

8k1 hi,l (I)
Oz

"1 pigo(t)

Itk <l,k1 Ulirl, ifo<ov< .

~Y

Lo (R)

St (14 e’ 9 (@)

0<J<k +l

Proof. We will prove by induction for all [ € NU{0} the existence of N; € N such that
holds, and for all 1 <4 < N, hyy € Sy, pigo(t) = (=1)'pi1.0(—t) and they also satisfy
for all 1 <¢ < N; and all ky € NU {0}.

The case | = 0 is trivial, we can just take the unitary set {(f,1)} C S x C*. So, there
exists lp € NU {0} such that Lemma is true for all I € NU {0} satisfying 0 <[ <. In
conclusion, using the identity for I = [y and identity , we obtain that

0" f(wo(t, )
Dtlo 1

Y9 by, wo (t,2))

-2

Nlo

Pio (1) 4 i (wo (t, 2))Pi g0 (1) (3.47)

’ dv<t)pl lo U(t)
Z; ito (Wo (£, 7)) 0
+ Z(; hi,lo (U}O(t, x))pi,lo,v(t)+w0(t «T)hz o (’U}o(t, x)) 16\/;d (d)I()Z)lo v( >€7\/§dv(t)-

(3.48)

Since hiy, € S, we deduce that h; 1o € Sty € Spiiosr and xh; 1o € S ii41- Also, we

L In ( > cosh (\/_vt) ) satisfies for all [ € N

recall that the function d,(t) = 7

HLOC(R) <ol 0 < v < 1. (3.49)

Moreover, for any m € NU {0} and any 0 < ¢ < 1,

e
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SIS

because the function ¢(6) = (1 — 6?)” 2 is smooth in the set {0]|0| < §}. Therefore, since the
functions h;;, and p; . satisfy (3.46)), using the chain rule of derivative, estimate (3.49) and
(13.47)), (3.48]), we deduce the existence of a natural number Ny . such that

Nig+1

Flor10(2) = Y higos1(@)piges1,0(t),
=1

and, for all 1 < ¢ < N 44, the functions h; 41, pijg+1,0 satisty (3.46), k41 € S;LLHOH. More
precisely, from (3.47) and (3.48)), we choose N; 41 = 3N;, and

! dv(t) i, ,v(t) : .
(hi,lo+1<x)7pi,lo.H,v(t)) = <—hi7l0(l’)> \/ﬁlp_(;#) if <@ <N,

, 16v/2dy () ps 1 o (£)  _ . .
(hi’lo+1<x>7pi,lo+1,v(t)) - (xhiNzo,lo (ZL‘), %e ﬁdv(t)) , if NZO +1<:i< 2]\floa

(hi,l0+1('r)7p’i,lo+1,v(t)) - (hi72NlO ($)7pi,lo,v(t)) ) lf 2Nl0 + 1 S Z S 3Nlo7

for all (¢,z) € R% In conclusion, (3.47), are true for [ = lop + 1 and higo41 € Shpyo41
for all 1 < i < Nj 4. Finally, since d,(t) is an even smooth function and, for any 1 < i <
Nig, Pitow(t) = (=1)p; 1, (1), then, from and (3.48)), we deduce that p;1,(t) =
(=)t lp, v10(=t) for all 1 < i < Npyy. In conclusion, the statement of Lemma is
true for [ = Iy + 1, and so, by induction, it is true for all [ € NU {0}. O

Remark 3.3.3. Ifv:(0,1) x R — R is a continuous function such that y(v,-) : R — R is
smooth for all 0 < v <1 and

'y(v,t)

o1l SlvlforcmylENU{O}andalltER,z'f0<v<<1,

then for any Schwartz function f and

)

dy (t)2
1-— i

w(t,z) =

we obtain similarly to the proof of Lemma that if v < 1, then, for alll € NU{0} and
ki € N,

Furthermore, if f € C*(R) and f € #(R), for example f = Ho 1, then from identity

dy(t) 1 ,
o T o)

d,(t)? [ d 1 /
+ 1-— 4 (dt llwl) w(t,x)f (W(twr))u

T4

0'f(w(t,z))

atl rSf,l,/ﬂ Ul. (351)

LE

l
Stk V
HA

! ©))
(Lt fal)! max |9 ()

o (ott ) = 0 0.1) -

we obtain from the same argument above any l, ky € N that estimate (3.51) holds. We are

going to use this remark later in Section [3.5,

99



Lemma 3.3.4. For any ny € N and ny € NU{0}, let r: (0,1) x R = R be a function such
that v, = r(v,-) : R = R is smooth for all 0 < v < 1 and satisfies for n; € N, no € NU {0}

< n1+lln<1>n2a

v

d'r,(t)
dt!

foralll e NU{0}, if 0 < v < 1. Then, for any s > 1 and any smooth function h : R — R
such that H € . (R), we have

NG

H@tl (wo(t, x +1,(t))) — h (wo(t, x))] N Spos U H I <U> ’

l ’ 1 2ng
O bttt 4 @)~ hntee) ~ O || S (1)

if0<ov<l.

Proof of Lemma|(5.5.4. From the Fundamental Theorem of Calculus and the definition of

wo(t, ), we have

T L, g — D) T
h<w0<t,x+m<t>>>—h<wo<t,x>>:”“)W / h( , 0 “)> W0, (352

d du ()2
== e
and
Tv(t) ’
h(wo(t,z +1,(t))) — h (wo(t,x)) — Wh (wo(t, z))
T4
A - X N(:
_ ”(? / (2 DN gy (3.59)
e N

From Remark [3.3.3, we obtain for all 0 < # <1 and 0 < v < 1 that

/

(wo(t, @ + Or,(t <; o' for all I € NU {0}.

(wo(t,x + Or,(1)))]

o b Ll

Hs
In conclusion, from identities {D and ([3.53)), we conclude Lemma using the product
rule of derivative and Lemma [3.3.1] O

Lemma 3.3.5. For any ny € N and ny € NU {0} and for 0 < v <1, letr, : R — R being a

smooth function satisfying

1\™
< v"1+lln() Jifo<ov k1
v

~Y

dt!

d'r,(t) ‘

for alll € NU{0}. For any m; € N, my € NU{0} and m3 € Z, let p: (0,1) x R — R be the

function

. m3
dv(t)2> ’ exp _mlﬂ(dv(t) +m7;v(t)) _ emiV2du(t).
do(®)2\ 2
(-4
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If my=m3=0and 0 <v < 1, then for alll € NU {0}
al 2mi+ni+l1 1 " —2V2|tlv
|atlp(v,t)| Sy v (ln <v> + |t|v> e~ 2V, (3.54)
If mg #0, my =0 and 0 < v < 1, then for alll € NU {0}
al 1 no
%p(v t)‘ <im, Max (valHH,val*m“ (ln () - ]t|fu> ) g2V, (3.55)
v

If my #0 and 0 < v < 1, then for alll € NU {0}

1 1 n2
p Nl mi max <U2m1+2+l (‘t|v + ]-n <>> 9 U2m1+n1+l (|t|/U + 111 <>> )6_2\/§t|v.
atl , " -

(3.56)

Proof. If my = mg = 0, then, from the Fundamental Theorem of Calculus, we have

1
p(v,t) = —\/§m1/ 6_‘/5"“(d“(t)w“’(t))rv(t) do.
0

So, for all [ € NU {0}, we deduce that
5 / dtl e VI O+ (). (4 ﬂ do —

V2 N & rmvmmoronm) C7 g
- /o;) a | | g .

8th

e_ex/im(t)’ <1forany 0 <60 <1if0<wv < 1,so0, using the

chain and product rules, we obtain that

From the hypothesis of r,(t),

d
‘dtl —V20r(| < ! for any I € N and any 0 < 6 < 1. (3.57)
2m -
Moreover, since 8™ e~ V2mdu(t) — y2m1 gech (\/ﬁvt) "=, (t)m12 , we have from Lemma

and the product rule of derivative that

St p¥mtle= 2Vl < p¥mtle=2V2I for all [ € NU {0}, if 0 <v < 1.

(3.58)

In conclusion, using the hypotheses satisfied by the function r, and the estimates above, we
obtain inequality ((3.54)).

If ms # 0 and my = 0, we have

d' o~ V2midy (1)
dtl

m

. o\ 3
p(v,t) = <1 _ CZUE?) 2 e,mlﬁ(dv(t)er(t)) N e*ml\ﬁdu(t)

. m3
VI (B4 (0) _ —mavBdu(t) v/ du(t)ro(e) {( dv(t)2> ’ ]
=e " VATV e TV 4 oT MV G )T 1— —1].
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From the argument above, we have for any [ € NU {0} that

1 "2
,Sl,rm p2mitni+l (ln <U> + |t|v) 6—2\/§|t\v7

if 0 < v < 1. Moreover, since the function ¢ : (—1,1) — R denoted by

1
’ il [emm V@) _ ~VEman (0]
dt

g(z) = (1—2%)7 — 1

is smooth when restricted to the compact set [—1 + d,1 — 4] for any 0 < § < 1, we conclude
from Lemma [3.3.1} the chain rule and product rule of derivative that if 0 < v < 1, then

gl dy(2\ T
dtl [(1_ 4 ) -1

In conclusion, using the product rule of derivative, we obtain (3.55)) from (3.57)), (3.58|) and
359)
Finally, we will prove now (j3.56|). Clearly, using estimates (3.55)) and (3.59)), if the function

Simg V2 for all 1 € NU {0} (3.59)

—m1 \/§<dv (t) + Ty (t)) —mlf(

pi(v,t) = exp e — eV 2Ad(B (1)
dy(t)2) 2
(1-%45)

satisfies, for any my, my € N and 0 < v < 1, the following inequality

1
‘3151191 v, t) ‘ Stimymy VT (\t!v +1In (v)) e 2V for all | € NU {0}, (3.60)

then (3.56) is true. From the Fundamental Theorem of Calculus, we obtain

(v, t) :—ml\/i(rv(t) +d,(t)) /01 exp —ml\@(dv(t) +7,(t) |1 -0+ (;?()2)7712 db
1— &)
ml\/_(m(t) m2( ) /01 exp —ml\/ﬁ(dv(t) +r,(t) [1— 60+ % dé.

-4

Similarly to the proof of (3.59), we deduce if 0 < v < 1, then

dy ()2
(1=
d ey
dt! 4

Moreover, from the hypotheses satisfied by r,, we obtain using Lemma estimate (13.61])
and the product rule of derivative that if 0 < v < 1, then

Stmy 22V for all 1, my € N. (3.61)

dl
xp | —=miv2r,(t) |1 — 60 +

dtl e W §l7m27m1 Ul, for all 0 S 0 S land l e NU {O}
1—




Similarly, since e”V2®(®) < 2 < 1 and d,(t) < v|t| + In (%) we obtain from Lemma [3.3.1]
estimate (3.61)) and the product rule of derivative that

d 1
ar exp (ml\/ﬁdv(t)‘g {OJW - 1])

In conclusion, using (3.58)), Lemma|3.3.1], and the product rule of derivative, we obtain (3.60)),
and so (3.56)) is true. O

Lemma 3.3.6. Let m, n € NU{0}, fe ST, g€ S™. Let v:(0,1) x R — R be a continuous
function satisfying for any | € NU {0}

dl
@V(U t)

Stmamy V', for all 0 < 0 < 1 and [ € NU {0}.

< vhifo<v < L (3.62)

Then, for
x — d”T(t) + (v, t)

wl(t,r) =wolt,x + v(v,t)) = =
( ) 0( ’7( )) W

if 0 <v <1, then, for any s > 0 and all ] € NU {0}, we have

(3.63)

| 100" (ol )t 2" (-t~

H3
in(val 1 1 ™ ovE
St V2O 1 (9) <1n( >—|—|t|v> 2/ (3.64)

Furthermore, if 0 < v < 1, val. (f) 4+ 1 # val_(g) and val_(g) + 1 # val (f), then for all
l e NU{0}

jﬂ< (t,2)" f (w(t, x)) w(t, —2)"g (~w(t,—2)) , Hy, <w<t,x>>>\

m-+n
ton plF2min(vals (£)+1,val- <|t|v tn (1)) 6_2\@'“”7 (3.65)
v

and
1

dtt

(w(t, o)™ f (w(t,z) w(t, —2)"g (~w(t, —)) , Hy, (w(t, —.r>>>|

. 1 m-+n
<tmn plT2min(valy (f),val-(9)+1) <|t|v +1n ()> e—2V2tv (3.66)
v

~Y

Otherwise, if 0 < v < 1 and valy(f) + 1 = val_(g), then for any | € NU {0}

l
jﬂ< (t,2)™ f (w(t, x)) w(t, —2)"g (~w(t,—2)) , Hy, <w<t,x>>>\
<o o (MU Hn(i))m*"“e_mw (3.67)

If0 <v <1 andval,(f) =val_(g) + 1, then

l
!

jﬂ< (t, 7)™ f (w(t, x)) w(t, —2)"g (~w(t,—2)) , Hy, <w<t7—x>>>]

m+n-+1
< o2V <|t|U tn (1)> 22 (3 68)
v
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Proof of the Lemma[3.5.0, First, by an argument of analogy, it is enough to prove that esti-
mate is true for the case val(f) = 2wy + 1 > 2wy = val_(g), such that w;, wy € N.
From the Separation Lemma and Corollary [3.2.18] we have that there exists functions
hy € STNZ(R), f1 € ST, g1 € S~ with either f; or g; € .7(R) such that

flo = Qgla) = hy(x — ¢)e 2228 4 722wl £ ( — () gy (),

for all x € R and { > 1. Moreover, after a change of variables, we obtain that

wit,z)"w(t, —2)" f (w(t,x)) g (~w(t, —x))
=w(t,r)"w(t, —x)"hy (w(t,z)) exp (—szﬂ(dv(t) — 2v(v, t)))

do (1)?
1 — Gl

dy(t)2
1—

ot 2)™w(t, )" exp (‘Mw2<d”“>. — (e t”) f1 (wlt, 2)) g1 (—lt, —a)).

Since f; or g; € .Z(R) and f; € ST, g, € S7, then either 2™ f,(z) € ST C .7 (R) for all
ki € NU{0} or 2¥1¢g,(z) € S C .Z(R) for all k; € NU {0}. Consequently, from Remark
3.3.3L if 0 < v <« 1, then for all [, k;, € NU{0} and s > 1 either

8l
H@tl [ (t, x)klfl( (t,x))} Seilk Ul,
or
(t, —2)" g1 (~w(t, —)) S V-
|5 L I,

From Lemma |3.3.1] if 0 < v < 1, then we also have the following estimate for all [ € N

drem
dtt | /4 — d,(t)2

which with the hypotheses satisfied by (v, t) and the product rule of derivative implies that
if 0 <v <« 1, then

<, p2tle—2V2ltl (3.69)

~

<; o', for all I € N. (3.70)

kK [czm —2y(0,1)
ot! 4—d,(t)?

Therefore, since
—2d,(t) + 4v(v, t)

4 — dy(t)?
we deduce, from the product rule of derivative, the hypotheses (3.62)) and Cauchy-Schwarz
inequality, that if 0 < v < 1, then for all k;, [ € NU {0}

w(t,x) + w(t, —x) = (3.71)

[ttt a1y ot 1 (=)

k
Hpt

S frgr Qo)X (3.72)
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2
Moreover, since d,(t) = = In <v82 cosh (ﬂvt) ) and sup,ep [7(v,t)] S 1when 0 < v < 1,
then

pu(t) = exp (_2\/§w2<d”(t) — 2v(v, 1))

a2
1—=5

©

) < v*2 sech (\/ﬁvt)Q, if 0 <v <1, (3.73)

from which with estimate (3.70)) implies for all | € NU{0} that if 0 < v < 1, then \ 29| <),
vl e=2V2ultl T conclusion, estimate (3.72)) implies, if 0 < v < 1, that for all m, n, [ €
N U {0} we have

Hatl ,o)"w(t, —2)" fi (w(t, @) g1 (~w(t, —z))

k
H,!

1 max(m,n)
S we,m,nd (|t\v +In (U)> plwetl o =2v2[t (3.74)

Finally, since by € STN.Y(R), we have H klhl(x)HH Sey Lforall s, ki € NU{0}. Therefore,
Remark [3.3.3] implies for 0 < v < 1 that ’

(t,2)" hy (@(t,2))]|| e ' for all by € NU{0}.

H3

o

In conclusion, if 0 < v < 1, then, using (3.71)), (3.73) and Lemma [3.3.1, we obtain from the
product rule of derivative for any &y, [ € NU {0} that

k
H!

from which with inequality (3.74) and triangle inequality, we deduce (3.64)).
From now on, we will prove estimates (3.65)), (3.66)), (3.67)) and (3.68]). Indeed, it is suffi-

cient to demonstrate estimates (3.65]) and (3.68]), because the proof of the other inequalities

follows from a similar argument.
Since w satisfies (3.63]), we obtain after a change of variables that

<w<t7 x)mf (W(t7 ZE)) w(tv _x>ng (_w(t7 —I)) ) H(l),l (W(t7 .’L‘))>

do(t)? | do(t) = 29(v,0)\ " do(t) = 29(v,0)\ .
1- 4 <:c f(a:)(—a:— 1_%%)2 ) g(:c—l— 1_%%)2 ),H071(a:)>.

(3.75)

Moreover, since f € ST and g € S™, we deduce from Lemma for any ¢ > 1 and all
[ € NU{0} that if val (f) + 1 # val_(g), then

‘jcl (@™ f(@) (@ + )"gle +C), Hy, (@) |

<, ¢ max (6—\/5(1+va1+(f))<17 6—\/5‘/&17(9)4)

otherwise
} <m+n+1e—\/§val_ (g)C.

- (@ (@) (@ + Q)" g(w + ), Ho,y ()| S

dl
i
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Finally, from Lemma and the hypotheses satisfied by (v, ), we obtain if 0 < v < 1,
then for alll e N

l j 2
d dy(t)?| _

w l
dt! 4 ’

~l

ot!

aF%@—mmﬂy%
4 — dv (t)2

In conclusion, the product rule of derivative and identity (3.75]) imply (3.65), if val (f)+1 #

val_(g), otherwise they imply (3.68). The inequalities (3.66]) and (3.67)) can be demonstrated
using an analogous argument. O

Remark 3.3.7. For any m,n € NU{0} and any f € S}, g € St

. we have the following

identity
HW@ZUW@W&WW#M”Z1—%T%fG—%Q:?$ﬂ>mﬂO-

So, we can use Lemmas and Remark[3.3.3 to conclude that if 0 < v < 1, then,
for alll € NU {0},

[

1 m+n—+1
WH(U,t)’ <, vt <|t|v + In (v)) o—2V20lt]

3.4 Approximate solution for k£ =2

First, we recall the function wy : R? — R denoted by

dy (t)
2

wo(t,x) =

and the function ¢y denoted by
20(t, ) = Ho(wo(t, ) — Ho1(wo(t, —2)) + e=V2#® [G(wy(t, x)) — Glwo(t, —))] . (3.76)

Using the results of the last section, we will estimate with high precision precision the function
A(pa,0)(t, ). We recall the identity (3.7)) satisfied by the function G

—;l;g () + UP (Ho(2))G(x) = |~24Ho 1 (x)? + 30Hy 1 (x)"] eV + 8V2H, (z).  (3.77)

Since H(/),l is in the kernel of the linear self-adjoint operator —% +U®@ (Hy,), we can deduce

using (3.77) that

/R [24Hy 1 (0)* — 30Ho (0)"] € V2 Hy y (2) d = 8V2 | Hy |, = 4. (3.78)

2
L3

The main objective of this section is to demonstrate the following theorem.
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Theorem 3.4.1. Let d,(t) be the function defined in (3.8). If 0 < v < 1, then there is a

smooth even function r,(t) and a value e(v) such that for the following approximate solution

oa(t,2) = Hoy (wolt, + 1o(t)) — Hoa (wo(t, —x + 74(2)))
+ e V2O (G (wo(t, 2 + 1y (1) — G (wolt, —z + ro(1)))], (3.79)

o(v,t,x) = pao(t + e(v),x) satisfies the conclusion of Theorem for k = 2 and there
exists ng € N such that if 0 < v < 1, then

;Zl (Apa)(t, ), Hyy (wolt, £ + m(t)))>‘ TR (Itlv +1n (i))mﬂ e 2V (3.80)

for alll € NU{0}. Furthermore, if v < 1, the function r, satisfies

1
In <> + |t|v} e 2Vt
v

<l U2+l

~Y

1
Irollieiey S 07In (),

for all l € N.

dtt ro(t)

d’ ‘

From now on, we say that any two smooth functions f, g : R? — R satisfy the relation
of equivalence f =4 g if, and only if, for any s > 0 and [ € NU {0} there exists a positive
number C(s,1) such that

1 2
< C(s, [|t|v +1n <2>} e2V2lh,
v

| 1(t0) - a0

H

for all ¢ € R. With the objective of simplifying our reasoning, we also say in this section that

two functions f, g are equivalent if, and only if, f =4 ¢ and that a function f is negligible if

J =6 0.

3.4.1 Estimate of non interacting terms of A(¢q2)(t, z).

In this subsection, we only focus on estimating the main terms of order O(v?) of

A(Hos (wo (t,2)) + e~V0G (wi(t,2) ).
Lemma 3.4.2. For any (t,z) € R?, we have

8/Fe VL

dy (t)2
1-— -

A (Hopqi(wo(t,x))) = — H(;’l(wo(t, x)) + Ry, (t,wo(t, x)), (3.81)

where the function Ry, (t,x) in (3.81)) is a finite sum of functions h;(x)p;,(t), with h;(z) €
S5 and p;,(t) € C=(R) being an even function satisfying \M\ <, vttlem2V2ll for gl

dtt
[ € NU{0}. Furthermore, for any s > 1 and any l € NU {0},

g vitle 2Vl (3.82)
H;

H al Rl v(t U)o(t IE))

Ot l
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1"

Proof. First, from identities %H&l(wo(t,x)) = L~ Hy,(wo(t,x)), Hy,(x) = U (Hoy(z)),

we have the following equation

dru t 2 1" 82 /
T () = s Hoslun(t2) + U (HuaCwoft. ) =0, (353)
Next, from (3.43]), we have
%) dy(t , 16v/2d,(t) _ ,
—Hy1(wo(t,z)) = — ®) Hy (wo(t, v)) + Me ﬂd“(t)wg(t,x)HOJ(wO(t,x)).

ot 4 —d,(t)? 4 — d,(t)?

(3.84)

Now, since f(z) = zHy,(x) € Si and d,(t) is an even smooth function, we obtain from
Lemma [3.3.2] the existence of N; € N satisfying

2 oot ) Hi (1, 2)] = 3 Cn(t,2)) i 0, (3.85)

i=1
such that for all 1 < i < Ny h;; € Sy, pi1e € C®(R) and p; 1, is an odd function. They
also satisfy for any 1 <1 < N;

dl hi,l (ZL’)
dxt

< o't for all 1 € NU{0}.
Lo (R)

S fel)? s [£9(0)

d'pi1o(t)
’ dt!

(3.86)

In conclusion, we have

0 [16v/2d,(t)eV*4 0
ot 4 — d,(t)?

wwm%mmwﬁzmwmmww@@{

161/2d, (t)e V2 ()
4 — d,(t)?

161/2d, (t)e V2 ()
4 — d,(t)?

N1
> haa(wolt, 2))piw(t).
i=1

(3.87)
Moreover, from estimate (3.50) and Lemma [3.3.1] we deduce using the chain and product

rule of derivative that

dl d t *\/idv(t)
[”()6 < vPHe 22 for all 1 € N U {0}.

dt' | 4 —d,(t)?

; -1 .
Next, since wy(t, z) = (x — d”(t)) (1 — d”(t)Q) > and d,(t) = 16v/2e V20 we can verify

2 4
that
0 d, (1) , 8y/2eV2o(t) dy(t)® .
ot —_7.]{0,1(100@,53)) :_WHO,1(w0(ta z)) + mﬂm(wo(tﬁ))
4 —d,( 1 i

(3.88)



Using the Remarks [3.2.9{and [3.2.13] we can verify that Hy, € S* N.%(R), and 2Hy, € 57
We also recall the estimate (3.69) which is given by

d L d (t)2 2
dtt 4

In conclusion, from Lemmas|3.3.1} |3.3.2] identities (3.83)), (3.84)), equations (3.87)) and (i3.88)),

we obtain that Ry, (¢, z) is a finite sum of functions p; ,(¢)h;(x) with h; € S5 and p; , satisfying

<, 2o 220 fo1 a1 [ € N,

~Y

~Y

z

y < vt te VRN for all 1 € NU {0},

P, w(t)

Since d,(t) is an even function, equations (3.87) and (3.88]) imply that all the functions
pi(t) are also even. Estimate (3.82) is obtained from Lemma and the product rule of
derivative on time applied to each function p;,(¢)h; (wo(t,)) . ]

Lemma 3.4.3. The function G defined in (3.6)) satisfies the following identity

[gtz - 382 +U® (Ho,l(U)O(tvI)))] (e_ﬁd”(t)g (wo(t7$))>
=8v/2H, , (wo(t, x))e V4O

(3.89)
— [24Ho,1 (wo(t, 2))* — B0Ho,y (wo(t, x))"| eV 00 V2R WL Ry (¢, wo(t, 7))

where Ra,(t,x) is a finite sum of functions h;(z)p;.(t) with hi(x ) € S§ and pi,(t) € C*(R)

=2Vl pyrthermore,

dtl
if 0 < v <1, then for any s > 1,1 € NU{0}, we hcwe

<, vt 22, (3.90)
H;

HGHRZU t wo t .1'))

Proof. First, using equation (3.77)), we deduce that

dy(t)? g
4_d-v(t)29( )(wo(tax)) T or?

— [24Hoy (wo(t, ))* — B0Hoy (wo(t, x))*| eY2" ") 4 8V/2Hy , (wo(t, ).

G(wo(t, x)) + U (Ho(wo(t,x))) G(wo(t, x))

Consequently, we have

Ry (1wt 2)) = [ ;if“] G (wolt,x)) +2 [jt -ﬂdv@] 9.6 (wolt. )
0* dy(t)*
+e fd”(t)aﬁg(w()(t’x))_zl—c(l}])(we VA OGD) (wy(t,2)).  (3.91)
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Clearly identities (3.43) and d,(t) = 16y/2e~V2%® imply the following equations

0 | dv(t) 16/2d,(t (t ) —V2d, (t 1
ag(wo(@x)) = L + o L) ()wo(t,x)_ G (wo(t, ),
(3.92)
0 1 o dv(t) 16\/§dv<t> —V/2dy (¢ _ 2
@g( (ot ) = L—dy(t)2 A du(t) e VIR )wo(@ﬂ?)_ GP (wo(t, z)),
(3.93)
0 _ d(t) 2 1
5 [wo(t, 2)GM (wo(t, )] i [wo(t, 2)G® (wo(t, ) + G (wo(t, 7))
+¢6“Z““%f¢wﬂﬂwaax>hmu¢mgwkwaax»—+9“xwaux»]

o (3.94)

Moreover, since G € S;, then G®(z), and 22G? (x) are in S5. Therefore, using estimates
(3.69)), Lemma and identities (3.91)), (3.92), (3.93), (3.94), we deduce from the time
derivative of (3.92)) and the product rule that R, , (¢, z) is a finite sum of functions h;(x)p; ,(t)

satisfying, for any index ¢, the conditions h; € S and

i

@pi,v(t) N v4+l€_2\/§‘t|” for all I € NU {0}.

Therefore, estimate (3.90]) follows from Lemmas “ - and the product rule of derivative.
Finally, Since d,(t ) is an even function, we can deduce from Lemma applied on G and
identity (3.92) that all the functions p;, are even. ]

3.4.2 Applications of Proposition [3.2.16 .

This subsection contains lemmas that are consequences of Proposition [3.2.16| and Remarks
3.2.20), [3.2.21] These lemmas are going to be used later to estimate the remaining terms of

A(¢a0)(t, ). From now on, we denote

~ Hoa(z) CHoa(x)® Hy, ()

M(z) = , N(x) = : (3.95)
N \/1+e2fw 1+\/1+e2\/5w
Remark 3.4.4. From (3.77), —-£,G(2)+U® (Hy1)G (x) = —24M (2)+30N () +8v2H, , (v).

Lemma 3.4.5. For any ¢ > 1, we have that

U' (Hoa(x = ¢) + Ho10(x)) = U (Hou( = () = U (H-10(x))
246~ (M — ¢) — M(~)] ~30¢VE [N(w — ) — N(~a)
V3 606_2\/§C ’ ’
UV (@ = Q) = V() + —— [Ho(x =€) = H ()] (3.96)
R(x, (),
where R(z,¢) is a finite sum of terms my(x — C)ng(x)e~ CTaIVE with m; € ST, n; € S~ and

d; € NU{0}.
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Remark 3.4.6. In notation of Lemma if we replace x, , respectively, with —wq(t, —x)

and \/%, we obtain the following estimate
12

’

U (Hy3(t2)) = U (Hog (wolt,z)) — U’ (—Hop (wo(t, —2)))
624 exp (_\/idU(t)> M™(t,z) — 30 exp (_\/idv(t)> N (t, )

1— dvit)2 1— dvit)2
=22y (t) \ g 60 —2v/2d,(1) ;\wo
+24 exp (]__cl(t)Q) V (t, .73) + ﬁ exp W (H0,1> (t, x)
4 4

Moreover, using Lemma |3.5.1] and the chain rule of derivative, we deduce that

dl - ( V24, (t) )

dtl | _ e@?

< U2+l€—2\/§|t|v’

~Y

4
for any l € NU {0} if 0 < v < 1. Therefore, using Lemma and the product rule, we
deduce from Lemma that

l

) dy(1)
%R (—WO(ta —.17), 1_ dv(t)2)

4

6+l —2v2vt
<, vTle II’

~oly

H;
for all s >0 and ] € NU{0}.

Proof of Lemma |3.4.5. From the definition of the potential function U we have for any ¢ > 1
that

U' (Hop(z = Q)+ Ho19(x)) = U (Hoa(z — ) = U (H-10(x))

:—24H071(I - C)2H_1’0(I) - 24H071(l' - C)H_1,0<17>2 + SOHO,I (ZL’ - C)4H—1,O<x) (3 97)
+30H0’1(ZL‘ — C)H_170(JZ>4 + 60H071(I' - §)3H_170<I')2 + 60H071(17 - g)QH_L()(l')g, '

and so Lemma [3.96] follows directly from Proposition [3.2.16] applied to each term of the right-
hand side of (3.97). Indeed, from Remark [3.2.21] we need only to apply Proposition [3.2.16

in the expressions
—24H0’1(.T - C)H_Lo(x)Q, SOHOJ(.T - C)H_Lo(x)‘l, 60H071(ZE - C)3H_170((L’)2.

First, since valy (Hoi(z)) < wval_ (H_19(x)?), we obtain applying Lemma two
times that
~24Hy, (z — Q)H_y19(w)? =—24H_1 o(w)%e"* e~V — 24H_, o(x)* [Ho:(x — ¢) — V2]
=—24H 4 o(z 2020V _ 9gem2V2 [Ho,l(x — () — eﬁ(z_o}
—24 {H,l,o(:cf — e’Qﬁm} [Ho,l(x —() — eﬂ(“’@]
——24M (—x)e V> 4 24722V (2 — ()
e~V [H170<x)2€2\/§:c _ 1} [Ho,l(iﬁ _ <)6—2\@(x—<) _ e—ﬂ(fﬁ-()} ’

111



and since

e\/QQT

1+62\/§x+,/1+62\/§x

we have that Hy(x)e 2V2* — e V2 ¢ S+ 0 #(R) and H_j o(z)%e?V> —1 € 5~.
Furthermore, since val_ (H_y(x)*) > val,(Hy1(z)), we obtain from Lemma [3.2.17| that

H_LQ(JZ)QGQ\/?QC —1= —H_L()(I‘)Q, H071(£L')€_2\/§$ — G_ﬁx = —

30Ho1(z — ¢)H_10(z)*
=30e” ﬁCN( x) + 306_\/§CH_1,0<1')46\/§Q: [H0,1($ - C)e_‘/ﬁ(”ﬁ_o — 1]
=30 VAN (—x) + 30 VX H_y o(x)"e??" [ Hyy(x — )e V20 — V20|
and H_jo(z)'e?V* € S~ N.L(R), Hoi(x)e V¥ — e V2 ¢ 5+,

Similarly, since valy (Ho1(z)?) > val_ (H_10(x)?%), we obtain from Lemma [3.2.17 that

60H0’1 (.T — <)3H7170<l’)2 :60672\/541“[071(1’ — C)3€72\/§(I70
+60e VX Hyy (1 — ¢)Pe V2070 [H_y o)V — 1
60e-2vV2% 60e2v2¢
:TH“‘(QJ Q)+ —F
2 V2
and Hy,(z) € S*NA(R), H_1g(z)%?V* —1€ 5.

’

He (2 = ¢) [Ho1o(x)%e®? — 1],

In conclusion, using all the estimates above and Remark |3.2.21] we obtain the conclusion of
Lemma [3.4.51 N

Lemma 3.4.7. There exist A, B, C, D € STN.(R) and there exists a finite set of quadru-
ples (hiy, hi—, d;, ;) € ST x S™ x N2 with h;y or h;_ in S (R), ; € {0,1} and d; > 0,
satisfying the following identity

(U@ (Hoi(x = ¢) + Hoyo(x)) = U (Hoa(x — €))] e V%G (z — ¢)
= (x = QA(z — Qe X + (z = )B(—2)e >V + C(z — Qe 2V 4 D(—z)e 2VX
+ 2 (2 = )by (@ = Qi (w)e HIVE(3.98)

forallx € R and any ¢ > 1.

Remark 3.4.8. In notation of Lemma for all (x,¢) € R?, we denote the real function
Q:R?2 %R by

Q(z,¢) = (x—O)A(x— e VE + (2= O)B(—2)e V= +C(z — e VX + D(—z)e V%, (3.99)
and the function R, : R* = R by

Ry(w,¢) = Y (= )iy (@ = Oy (w)e FV, (3.100)

%
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for any (z,¢) € R2 If we change the variables x, C, respectively, with —wy(t,—z) and

\/%, we obtain using Lemmas|3.3.5 and|3.4.7 that
1- @

(0@ (Hy3(t,2)) = UP (Ho (wolt, 2)))] e V240G (wo(t, 2))
9 (—wo<t, —x),dv@) VIO 4 R, ( oft, ), 2 __ )e—ﬂdv@)
1

dy ()2 dy(t)?
== - Ta

> Q (—wo(t, —x),d, (t)) e V20,
Indeed, from Lemma we also have for all index i, s > 1 and any m € NU {0} that

1
Ssam 07 <It|v +1In ()) e~ 2Vl
(%

if 0 <v <1, since l; € {0,1} for all i, which implies with Lemma that

R, (—wo(t, —x), dv(t)) e~ V2u() ()

H (wolt, )" ha s (wo(t, ) hi - (—wo (£, —7)))]

dy ()2
1 — G2

Proof of Lemma[3-4.1 The identity (3.6) implies that Gi(z) = G(z) — 2zHy,(z) € ST N
Z(R). So, the proof follows from Remark (3.2.13] applications of Proposition (3.2.16] and
Remark [3.2.2T] in the following expressions
(U(Q) (Hoa(z — )+ Ho10(x)) — U®) (Ho (2 — C))) Gz — eV,
2 (U®) (Ho(x = ¢) + Hoyp(x)) = U (Hoa(x = Q) (& — () Hy (x — (e V™.
More precisely, since
U® (Hoi(z = ¢) + Hoyo(x)) = U? (Hpa(z = ¢))
=—24H 1 4(z)* + 30H_1(z)*

—48Hy 1 (z — Q)H_10(z) + 302 ( ) H_yo(x) Hoa(z — ),

we obtain that (U(Q) (Hop(z —¢) + H_19(x)) —U® (Hoy(z — ())) Gi(z — () is a linear com-
bination of functions

Hoa(x = ¢)™ Hoy ()" hi(z = (),
such that h; € STNS(R), m; € NU{0},l; € Nand 0 < m; + n; is an even number. By
similar reasoning, we can verify that

2 [U(Q) (Hoa(z —¢) + H_1o(z)) — U® (Hoa(x — O)} (= QHy, (x = Q)

is also a linear combination of functions (z — {)Hg 1 (x — C)miH_Lo(a:)liH(;’l(a: — (), such that
m; € NU{0}, [; € N and 0 < m; + [; is an even number. Therefore, using Lemma [3.2.7 we

can verify that

[U® (Hox(x = ¢) + Hoo(x) = UP (Hoa(x = €)] Gz — Q)
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is a linear combination of functions

(= C)hip (x — ) hip ()

such that o; € {0,1}, h;1 or h;o € (R) and either h;1(z) € ST and h;»(z) € S~ or
hii(—x) € S~ and h;2(—z) € ST. In conclusion, the statement of Lemma is a conse-

quence of Proposition [3.2.16] and Remarks [3.2.20] 3.2.21] O

Lemma 3.4.9. For all { > 1,

0L

UY (Ho(x = ¢) + Ho10(x)) (G(x — ¢) = G(—a))~H 70DV

satisfies for any ly, Iy € NU {0} the following estimate

all+lg -
‘ dxh dcl Difa,¢) 12 Sty €72V
Remark 3.4.10. Indeed, using Lemmas and the product rule of derivative, we
have that
all+l2 d (t) ) v
‘ D o ['D1 (—wo(t, —x), ”7%@)2 <iL 2462Vl
)]

In conclusion, the following function

6
Dlltl' :Z

J=4

U(j) (ng? (t, :1:)) Guo(t, x)jflef(jfl)\/idv(t)

satisfies D11 = 0.

Proof of Lemma[3.4.9. First, since U € C*(R), 0 < Hp; < 1 and Hy, € .#(R), we obtain
for all ¢ € R and any [y, Iy, I3 € NU {0} that

In conclusion, since G € .(R) and

all +12

OxtroCl L

U (Hox(z = ¢) + H_10(x))

511 2,13
L (R)

179l Ss 11 s
1F9ll s s I f 11 gs l9ll s for all f, g € H7 when s > 1, we deduce for any Iy, l» € NU{0} and
all ¢ > 1 that
all+l2 B B
5ok DO S, [||g||§{ll+12+1 1 ||g||;l_1+12+1} eIV < VI
s 18C 2 12 T x

Next, we consider the following lemma.
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Lemma 3.4.11. There exists a finite set of elements (W;, Wi, d;, 7, ;) € STx S~ x(NU{0})
such that W; or W; is in . (R), ji, l; satisfy 0 < j;+1; < 2 for alli and we have the following
identity

Dy(, Q) =gU® (His (& — €) + Horp(a)) (G — ©) — G())* e %
=5 [V (Hoao = 0) Gl = 0% 4+ U (H_g(a) G~ >
+ 2 (2 = O (=) Wil — YW (z)e” Ve
- i(—ar)ﬁ(a: = QW)W + Qe BHIVEC
forall ¢ > 1.

Remark 3.4.12. In notation of Lemma for any t € R, if we change the variables x

and ¢, respectively, with —w(t, —z) and %, we can deduce that
1l

1
5U(3) (H(I)L,}i) (t, x)) G (t, x>2672\/§dv(t)

1 w
D) [Ug (Ho) Qﬂ " (¢, )e 2V

+Zwo(t,x)ﬁwo(t, — )W, (wo(t, ) Wi (—wo(t, —2)) e~ 2V20(0) oy (WM,@))

dy (t)2
1 — Gl
B Zw()(ta x)liUJO(tv _‘r)jlwz (w()(ta l’)) Wi (_w()(ta _I)) 6_2\/§dv(t) €Xp ( d \/_dd(t() )) '
i 1 v

Furthermore, in notation of Lemma Lemma [3.5.6 implies for any i that

1 2
Sea v (o +1n () e2v2,
v

for alll e NU{0}, if 0 < v < 1. In conclusion, we have that

H@tl wo(t, )Y wo(t, —2) Wi (wo(t, ©)) Wi (—wo(t, —a:))}

H3

1 1 w
SUD (Hy3(2)) G0t a)e V200 =g 2 [U7 (Hoy) 67 (1 w)e >0,

Proof of Lemma[3.4.11] The proof follows from Proposition[3.2.16|and Remarks[3.2.20] [3.2.21]

More precisely, since

U® (Hox(x = ¢) + Ho10(x)) = UP (Ho1(z — Q) + UP (H_1(2))
+360 [ Ho 1 (v — ¢)*H_10(x) + Ho:(x — () H_10(2)*],
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we deduce that

;U(g) (Hoa(z — Q) + Hor9(2)) (G(z — ¢) — G(—x))* 72V

~5U® (Hoa(r = )Gl — 0% % — JU®) (H_, () G(~)e %

=SU® (Hoa(e = 0)) (G(~2)? — 20(z — ()G (1)) e /%

+ [360Ho,1(x — ) H_10(z) + 360Ho 1 (v — Q) H_10(2)?] (G(x — ¢)? + G(—)?) e >/
~2[360Ho.(x — ¢)*Ho10(x) +360Ho, (x — () H-10(2)*] Gz = ()G (—x)e ™.
(3.101)

Moreover, since U®)(¢) = —48¢ + 120¢° is an odd polynomial and H_;(z) = —Hg1(—2),
the right-hand side of (3.101)) is a finite sum of functions

Gz — Q)"G(—a)=H, (2)" Hop(—2)"* — Gz — ()*G(~x)" H5, (2)" Hon(—2)",

such that ll, lQ, lg, l4 e NU {0}7 ll + l2 = 2, Z?:l lz is odd and min (ll + l3,l2 + l4) > 0.
Therefore, using Lemma and Remark [3.2.10, we deduce that (3.101)) is a finite sum of

functions

Ji (& = QN; (z) = Fi(=2)N; (=2 + (),

where J; € ST U ST and N; € S~ U S,. In conclusion, we obtain the statement of Lemma
3.4.11] from the Proposition [3.2.16| and Remarks [3.2.20] [3.2.21] applied in the right-hand side
of (3.101]). [

Now, we can start the estimate of A(pq)(¢,x). First, from the definition of 9 (¢, x) in
(13.76]), we have that

2 2
A (pa2p) (t,2) = [86752 — 88332] (Hé‘ji’(tw) + e V2O Guo (g x)) +U (Hg‘fg (t,z) + G_ﬁdv(t)gwo(t,f))
82 82 \/§d
— 5 ] 7Y HOG0,2)] 4 o Can(t2) = A (o (il )

+U (Hys (8, x) + eV OG0 (¢, ) — U (Hos (wo(t, 7)) — U’ (—Hox (wolt, —x))).

Therefore, using Taylor’s Expansion Theorem, we deduce that

Alp20)(t, x) — A(Ho (wo(t, x))) + A (Hoy (wo(t, —)))

P "
- [at - a] [e7V? 4G (1, )]

+U" (H3(t,2)) = U’ (Ho (wo(t, x))) = U’ (=Ho (wo(t, —2))) (3.102)
6 [0 (Hé‘f?(t,a:))

+ -
=2 (j—1)!

{e’ﬂd”(t)gwo (t, x)}j_l .
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Consequently, we deduce using Lemma [3.4.2] that

8v/2¢~V20(1) ( /

Alpoo)(t,7) =— Hyy)" (@) + R (8, wo(t, x)) — Ra (£, wo(t, —))

1 d'vglt)l’
+e 20O [UC) (Hyh(t,2)) G0 (t2) = (U (Hoa) G)™ (t,2)]  (3.103)
6 U (HY (¢, j—
_|-Z ( 0,1( ‘T>) [e_ﬂdv(t)gwo(t7x)]] ! (3104)
j=4 (] —1)!
+U" (B3 (t,2)) = U (Hoa (wo(t2))) = U (~Hoa (wo(t,~2)))  (3.105)
U(3) Hwo t,
N ( 02,1( x)) {6_\/§dv(t)gwo(t’x)}2 (3.106)
82 82 7 wo B , wo
n laﬁ . W] [e Vadu() g (t,x)} 4 e V2du(t) [U(Q) (HOJ)Q} (t,x). (3.107)

Next, from Remark [3.4.8, we have that the expression (3.103)) is equivalent to
e V2O [Q (~wo(t, —), du(t) — Q (~wolt, ), (1))

Moreover, Remark [3.4.10] implies that the term (3.104)) is negligible.
Additionally, using Remark [3.4.6, we obtain that the expression ([3.105) is equivalent to

—V/2d,(t —V2d,(t
24 exp \/—()2 M®™(t,z) — 30 exp \/—()2 N (t,x)
1 w@®? 1/1_%

4

+24 exp (Mdv(t)) Vet z) + & exp (Mdv(t)) (H&l)wo (t,x).

L 2
Finally, Remark [3.4.12 implies that the term (|3.106)) is equivalent to

—24/2d, (1) w

QT [U(3) (HO,l) g2] 0 (t, I),
and Lemma implies the equivalence between the expression (3.107)) with
e~ V2du(t) [24M“’0(t, x) — 30N (t,z) — 8v2 (H(l)’l)wo (t, x)}%—RQ’U(t, wo(t, x))—Ra,(t, wo(t, —x)).

Consequently, we have the following estimate

84/2e~ V2 (1)

A (pa0) (t,7) Zo— (Ho)™ (t,2) + Ruy (t,wo(t, 2)) — Ry (t,wo(t, —))

1 — UE
e V20O [Q (—wq(t, —), dy(t)) — Q (—wolt, ), dy(t))]
+24 exp M M*™(t,x) — 30 exp M N (t, )
1— 207 1— 2l
—2v2d,(t) \ |, 60 —2/2d,,(t) N
+24 exp ( 1 # ) 14 (ta .1') + ﬁexp ( 1_ %5)2 (HO,l) (t,l‘)

—e VRO [2400 (¢, ) — BON0(t, ) — 8v/2 (Hy, )™ (t,0)]

+R27U(t, wo(t, [E)) — Rgm(t, wo(t, —ZE))

6—2\/§dv(t)

g [PV ]

wo

(t, ).
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Furthermore, using Lemma the following result, we deduce the following estimate

! —
d [exp( mdv@))_emm < o [0+ In (1)]62@“1,7
(%

dil | _ &2

4

for any l e NU{0} and ¢t € R, if 0 < v < 1. In conclusion, from Lemma [3.3.2) Remark

and the estimate above of A(p2(), we deduce the following result:

Lemma 3.4.13. The function p20(t, x) satisfies if 1 <v < 1, for alll € NU{0} and s > 0,

1
<is VT [t|o + In (19)] g2V,

Y

al
H Alga0)(t,2)
H;

ot

Furthermore, we have that

A (902,0) (t? .%’) g6 Sym (t7 wO(t7 $>) - Sym (ta w0<ta —33)) )

where, for 0 < v < 1, the function Sym : R?> — R satisfies, for all (t,z) € R, the following

identity
/ e_ﬁdv(t) 1
Sym(t, ) :8\/§H071(a:) o~ V2du(t) _ —— + 5U(S) (Ho(2)) g(l,)QefQ\/idv(t)
1 _ v
4
—V2d,(t
+ [—24H071(ZE)2 + 30H071(:L‘)4} e_\/ix |:@_\/§dv(t) — exp <\/_d((t)2)]
1 4@
1

+Ry(t ) + Rao(t, 2)

60
e 2V [xA(x) +2B(x) —d(t)B(z) + C(z) — D(x) + 24V (z) + Ho’l(x)] .
Now, we can start the demonstration of Theorem (3.4.1

3.4.3 Proof of Theorem [3.4.1.

Proof of Theorem[3.4.1. Step 1.(Construction of r,(t) for k = 2.)

First, we recall Ry ,(t,z), Ro,(t,2) defined, respectively, in equation (3.81) of Lemma
and in equation of Lemma m To lighten more our notation, we denote
Ry 4, Ray, dy(t) by Ry, Ry, d(t) from now on. Also, we recall the functions M (x), N(z) and
V(zx) from and the functions A, B, C, D from Lemma Next, based on Lemma

3.4.13| we consider the following ordinary differential equation

{H i, i%f(t) — 5230 | ;r(t) —(Hy (), Sym(t,)), (5.108)
r(t) =r(=t)

Indeed, from the definition of Sym in the statement of Lemma |3.4.13] identities (3.78)) and
HH(M = 2%/5, the ordinary differential equation (3.108)) can be rewritten for fixed constants

2
L
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c1, c2 € R as

|#o

2 ’ 2 ’
12 (1) =—32¢~ V20 | Hy | L2 70 - (Hyy(7), Ra(t,x) + Ro(t, ) + crd(t)e >V
)

—V2d(1) —V/2d(t

®)?

1- % ==
r(t) =r(=t)
(3.109)
Since d(t) = % In (v% cosh (\/§vt)2), we have that all the solutions of the linear ordinary
differential equation 7o (t) = —32e~ V24 0y (t) are a linear combination of

soly(t) = tanh (v2vt) and soly(t) = v/2vt tanh (v2vt) — 1.

From Lemma [3.3.1] we obtain if 0 < v < 1, and [ € NU {0},

8
N <v|t| +In (2)> e 4V2ty. (3.110)
v

d' 2v/2d(t)

Next, to simplify more our notation, we denote

NL(t) = = (Hy,(x), Ri(t, ) + Ra(t, ) ) + cad(t)e V210 4 gpe V240

_ —/2d(t)
—4 |exp v2dn) | e . (3.111)

Using the variation of parameters technique, we can write any C? solution r(t) of (3.109) as
r(t) = 01(t)soli(t) + O5(t)sols(t) such that 01(t) and 65(t) satisfy for any ¢t € R

et | B o O S Ao

L3

In conclusion, since for all t € R

dot lsoll(t) solg(t)l Vo,

SOll (t) 5012 (t)

we have

bo(t) = 3NL(t) tanh (v3ut), 6 (£) = _U2NL(t) [Vavttanh (Vaul) — 1] (3.112)

From Lemmas [3.4.2| and [3.4.3] we have that R;(¢,z) and Rs(t,z) are even in ¢, so NL(t) is
also even. Since we are interested in an even solution r(t) of (3.109)), we need 6; odd and 6,

even, so we must choose

1
= 75

—1

V2v

/Ot NL(s) [\/51}5 tanh (v/2vs) — 1} ds.
(3.113)

02(t) /_too NL(s) tanh (v2vs) ds, 6 (t) =
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From Lemmas [3.4.2[ and [3.4.3] we deduce for any j € {1,2} that if 0 < v < 1, then

d' /
T <Rj(t,x), H0,1($)>| < v* sech (\/évt)Q for all I € NU {0}, (3.114)

and so, from the equations (3.110]),(3.111)) and Lemma [3.3.5] we deduce for all 0 < v < 1
and any [ € NU {0} that
dl

—NL(t)| <

1
7 vt (v|t| +1In <U>) e 2V2ly, (3.115)

Therefore, from the definition of d(t), the identities (3.111)), (3.112)) and the estimates (3.114]),

(3.115)), using the Fundamental Theorem of Calculus, we deduce the existence of a constant
C > 0 such that if 0 < v < 1, then

1
161 oy < Co?1n (qﬂ) (3.116)

Furthermore, since NL(t) is an even function and tanh (/2vs) is an odd function, we have
that

/t NL(s)tanh (ﬁvs) ds = — /:oo NL(s)tanh (\/51}3) ds

from which with identity (3.113)), we deduce the following estimate

16,()| < |NL( )| tanh (v/2vs) ds, for all € R. (3.117)

\/_
Therefore, the estimate (3.115]) implies that

CAGINK [ln (f ) + U‘t@ “2V2 for any ¢ € R.

Finally, since r(t) = 601(t)soly(t) 4+ 0(t)soly(t) and 7(t) = 01(t)soly(t) + Oa(t)s0la(t), we
deduce for all ¢ € R that

1 1
r(#)] < o In <2) ()] < v [m ( ) T lt } sech (Vaut)”. (3.118)
v
Moreover, (3.115)) and the definitions of sol; and soly, we can verify by induction on [ € N
for any 0 < v < 1 that

<l Ul+2

~Y

1
In ( ) + |t } sech (\/§vt)2 for all integers [ > 1 and ¢ € R. (3.119)

2l (t)

d'r ’

Step 2.(Estimate of A(¢2)(¢,x).) From now on, we define the function w; : R> — R as the

unique function satisfying

wi(t,x) = wo(t,z +1y(t)) = 2 _ ,
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for every (t,z) € R% Furthermore, similarly to the identity (3.102)), we have the following

equation

Ap2)(t, x) =A(Hoa (wi(t, x))) — A (Hoy (wi(t, —))) (3.120)
0? 0? _ w w _
+ [8152_ 8332] e V210Gu (t,2)| + (U (Hop) G| (1 x)e Y0 (3.121)
FUS (H (4,2)) G (1 2)e 210 = [US (Hoa) 6] (1a)e™210 - (3122)
+U" (Hi(t, 7)) = U’ (Hoy (wi(t, @) = U (= Hoy (wi(t, —1))) (3.123)
U® (Hgi(t,
+ ( ;’1( 2) [ema0Gw (¢, )] (3.124)
5 U9 (Hyi(t, ) =
AT —V2d(t) pw: J
+]; o1 e gu (t,z)]" . (3.125)
From identity HH(/M ; = 2—\1/5, the definitions of M (z), N(zx) in and identity (3.78),
we have :
, d(t)?
([24M (wo(t, ) — BON (wo(t, 7)), Ho (wo(t, x))) = 41/1 — i

Therefore, we deduce the following identity

exp (_\/i(d(t) _ 27’@))) <24M(wo(t,£13)) — 30N (wo(t, x)), H671(w0(t, x))> _ g V(D)

2
- 57
—V/2(d(t) — 2 i(t)2
_ dexp V2d(t) —2e(@)) [ dO?  vsae
1 dw? 4
4
g [exp Y2 = 20@) ) e | [ A (3.126)
| dup 4
4
+4e—ﬁ(d(t)—2r(t)) [ 1 — d(i)Q — 1} (3.127)
44 [e_ﬁ(d(t)—zr(t)) _ V) _ Qﬂe‘ﬁd(t)r(t)} (3.128)

+8v/2e V2 (1),

2
Since e~ V2d() — %sech (\/ivt) , using estimates (3.118) and (3.119) of the function r, we

deduce from an application of Lemma in the expressions (3.126)), (3.127) and from an
application of Taylor’s Expansion Theorem in the term (3.128]) that the following function

—V/2(d(t) — 2r(t))

d(t)?
1 4

Rem(t) = exp ( ) (24M (wo(t, ) — B0N (wo(t, x)), Hoy, (wo(t, 7))

— 4V _ g\/2e~ V2N (1)

satisfies ‘%‘ < ottt Ut\ v+ 1In (%)} e~2V2ultl for all t € R and any [ € NU {0}.

(%

Substep 2.1.(Estimate of A (Hg(wi(t,x))).) From now on, we use the following notation

pa(t, ) = HYL(t,2) + e V2OGw (¢ 7). for all (t,7) € R
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First, for all (t,z) € R?, the following identity

0? 07 i*(t)
@H&l(wl(zﬁ, z)) ~on tlthO’l(wO(tl’x +7r(1))) + WHO (wi(t,z))
~AOH Gty + 2Oy )

1— 42 " ( d())

8v/27 (1) d(t)e~V2d®) ;
SV2ROAWOTT ) HY (w8, 2))
(-

implies with the product rule, estimates (3.69)), (3.118]), (3.119)), Lemmas and Remark
3.3.3l that

5> o
@Ho,l(wl(t,x)) =6 87t%

Hy (wo(ty, x +17(t))) + —=—=
 Hoa(wo(tro + )+~

d(t)r(t)
_1 — MHo,l(wl(t@))-

4

Therefore, from Lemma |3.3.4] we deduce from the estimate above and the decay estimates

(13.118), (3.119) of r that

Py (wi(t, 7)) = Py (wo (¢ x+r(t)))+LH, (wo(t, z))

o2 0,1\W1\L, —6 815% et 0,1{Woll1, 1—%%)2 0,1 VWO Y
d(t)i(t) . u
—1(>d.((t)2H0’1(w0(t,x)). (3.129)

1
Moreover, Lemma, implies that

02 02 )
éﬁhﬁﬂnm“%x+“m) aQWMQMQ@ﬂ+U(ﬂM@M@@»
= _WH(I)J (wi(t,x)) + Ry (t,wi(t, x)),
(1-55)2

from which with Lemma and estimates (3.118)), (3.119)), we obtain the following estimate

 Hoawn(tn o 4+ r(0)) = 51 (Hoa (wn(t0)] + U’ (Hoa (un(t,))

o 8Y2em V) 8/2r (1) e~ V2d(0)
~ H,, (w1, z)) — SY2I0)e

d(t)? ' d(t)2
VIi—=5- 1 ==
Therefore, we obtain using estimates (3.129)) and (3.130|) that

e*\/id(t) , r e*\/id(t) ,
A(Hox (wr(t,2))) 2 — 222 gt gt 2)) — 22000 0 o t,2)

82
o2

Hy, (wo(t, z)) + Ry (t,wo(t,x)). (3.130)

1 — d(:?2 ’ 1— CZ(Z?2
P(t , d(t)r(t)
Ottt e) — PTG, ) + R, w1 2).
1— (i) 1— 4
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Consequently, using Lemma [3.4.2] we deduce the following estimate

A (Hoq (wi(t, @) — A (Hoq (wi(t, —x))) Z6A (Hoa (wolt, x))) — A (Hoa (wo(t, —)))
8v/2r(t e~ V2d(®) 1\ Wo
_ \/fjw ( ) (t,x)

T(t) / wo
e (o) ()
4

- f(j)z((;) (Hoy)™ (t.2). (3.131)

Substep 2.2.(Estimate of (3.121]).) Next, from Lemmas 3.3.4] we deduce with esti-
mates , and the product rule that

92
or?

’ V2d(t) A
[e g (wg(t,x))} = o

[ fdt)g( (¢, ))}N o

e V21G (wy (ty, @+ r(t))] -

t1=t
Therefore, we deduce from Lemma the following estimate
2
05~ 53 T UY Hoalwn(t, xm] (720G (un(t,2)))

=6 — |:24M (wl (t, ZL')) — 30N (U)l(t, .T)) :| e_\/ﬁd(t)+8\/§H(’),1 (wl (t, JI)) e—ﬁd(t)
+R2<t, W1 (t, ZE)),

from which with Lemma and the decay estimates (3.118)), (3.119) of r, we deduce that

=y [ 240 (ot ) = 30N (wo(t, ) | =V 4+ 8VEH (wa e Va0
rit)e PSIUEA

TE " o1 ()

—[24M, (wo(t,z)) — 30N (wo(t,z) }

+Ro(t, wo(t, z)).

Hence, using Lemma [3.4.3], we obtain the following estimate

lgﬁ a 882 + U <H0,1(w1(t,x)))] (e*x/id(t)g(m(t,x)))
s [ 2 .| (0 ()
: : r(t)e V210
_{24;\4 (wo(t, x)) — 30N (wo(t, z)) w
8\/_7'1()d(t)2 Hy, (wo(t, ). (3.132)
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Substep 2.3.(Estimate of (3.123)).) In notation of Lemma [3.4.5, we have the following
identity

’

U (Hyy(t,2)) — U (Hoa(wi(t, 7)) = U (= Hoy(wi(t, —)))
= exp (- v2(d(t) - QT(t») [24 M1 (t, ) — 30N (t, z)]

d(t)2
1==5

2V/3(d(t) — 2r (1)) N 60 , v
d(t) — 2r(t)
+R (—W1 (t, l‘), 1_(1(4?2) .

Moreover, similarly to the proof of Remark [3.4.6] Lemmas [3.3.4] and [3.4.5] imply that

R (—wl(t, x), d(ti:\/iizgf)) ~:0

Therefore, identity (3.133]) and Lemmas |3.3.4} imply the following estimate

/

U (Hi(t2)) = U (Hoa(wi(t,2))) = U' (= Hoa(wi(t, —1)))
26 exp (— v2(d(1) - 2T(t>)) 24M™ (t, ) — 30N (¢, z)]

d(1)?
1==F

60 o\ W
e 2V [241/‘”0(?5,%) +— (Ho,l) 't @1 - (3.134)

V2
Next, using the decay estimates (3.118)), (3.119) of r, we deduce from Lemma that
y y r(t N —/2d(t) \
{M Wt z) — M (t,z) — ()d(t) (M) (¢, x)] exp (;@3) =~:0,  (3.135)
== ==
» » r(t N —/2d(t) \
{N Ht,x) — N™(t,z) - 1()&@)2 <N) ’ (t,f)] exp (1(1(@))2> =6 0. (3.136)
T4 T4

We also deduce from Taylor’s Expansion Theorem and the decay estimates (3.118]), (3.119)

of the function r that
—V2(d(t) — 2r(t)) L) ] o ( —V2d(1) )

M™*(t, z) exp ( ) =6 M"Y (t, )

d(t)2 d(t)? d(t)2
1— (4) 1— (4) 1— (4)
—/2(d(t) — 2r(t 2r(t —/2d(t
N (t,x) exp v2(d() . 27"( ) s NL(t, x) l—i-L?2 exp \/_()2 ,
1__di) 1__di) 1__d%
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therefore, using now Lemma [3.3.4] we conclude the following estimates

M™'(t, x) exp (—ﬁ(d(t) _ 2r(t))) =M (t, x) exp (_\/Ed(t))

d(t)? d(t)?
1 — (4) 1 — (4)
2 —v2
+Mwo (t, ZL‘) T<t? exp M ,
1 — d@)? 1 _ d@)?
1 4
—V2(d(t) — 2r(t —/2d(t
Nw1 (t, JI) exp \/_< ( ) : T’( )) gGNUH (t, 33) exp &
1 4?2 1 d?
1 1
2 -2
+ N (¢, z)i exp M :
1 — d@)? 1 — d@)?
1 4
As a consequence, we obtain from estimate (3.133)) and Lemma that
U (Hg3 () — U (Hos (an(6,0) — U (~Hy ()
2 —V2
=g [24M™0(t, x) — 30N (¢, x)] & exp \/_d,(t)
1 d? 1 — )2
1 1
—/2d(t
+ [RAM (¢, 3) — 30N (£, 7)) exp ( L) )
1—
1

e 1 () =30 () ] e (220

(
+ l24vw° (t,z) + \6/% (Hon)™ (¢, x)] e~ 2V2d(1)
~6U" (Hy3(t, 7)) = U’ (Hoy (wo(t, ) — U (= Hoy (wolt, —1)))

MO oa (M) (t,2) = 30 (V)" (t,2)] exp (—ﬂd(ﬂ)

1— d(i) 1— d(i)2
t —V2d(t
+L). [48M™°(t,x) — 60N (¢, x)] exp Q :

1 — d(?2 1— d(i)2

Therefore, using Remark [3.4.6] we conclude that

U (Hgi () = U (Ho, (wn(t,2))) = U' (= Ho, (un(t, 1))
~U' (Héf?(taf)) — U’ (Hoa (wo(t, ) = U (= Hoa (wo(t, —)))

r efﬁd(t) 7\ Wo 7\ Wo
W™ o ()™ (t,2) — 30 (V)™ (t,2)]

d(t)?
1— &8 (3.137)
—/2d(t)
e st 2) — GONY ()]
1 4?2
4

Substep 2.4.(Estimate of (3.122]).)
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Now, using identities (3.99)) and (3.100)), Lemma also implies the following equation

(U@ (Hyi(t2)) = UP (Hoa(wi(t,2))| e V> DG (w, (x, 1))

-0 (—wl(t, ), S 220 W)) eV | R, (—wl(t, ), A = 2) 27"“)) eV,

a0y a2
== 1 ==

(3.138)

Furthermore, from Lemma and the definition of Q in (3.99), we deduce that

Q (—wl(t, —x), d(t)_%(t)) e V2d(t) >~ Q (—wo(t, —x), Cl(t)_w) e—\/id(t)’

d(t)? d(t)?
== vi—"4

1
from which with Lemmas |3.3.1], and identity (3.99), we obtain that

° (‘wl@, ~a), M) V0 24, Q (—un(t, ~a),d(1) O (3130)
=1

Using identity (3.100) and Remark [3.4.8, we can deduce similarly to the proof of estimate
(3.139)) that

d(t) — 2r(t
" (_wl(t’ - W) eV 2 R, (—wo(t, —), (1)) e~V =,
T4

Consequently, in notation of Lemma |3.4.7, we have from identity (3.99)) that

(U@ (Hoi(wr(t, 7)) — Hoa(wi(t,—))) — UP (Ho(wi(t, )| e V2 OG (w (¢, 2))
=~ wo(t, 2) A(wo(t, ))e 22 g (t, 2) B(wo(t, —z))e 2240  C(wy(t, z))e 220
+D(wo(t, —x))e V210,

from which, using Remark [3.4.8, we deduce

[U(Q) (Hoa(wi(t,x)) = Hoa(wi(t, —))) = U® (Hoa(wn (2, ﬁ)))} eV OG (wy (8, x))
= [U® (Hy3(t,2)) = UP (Ho(wolt, 2)))| eV> G (wo(t, 7).

In conclusion, since U® is an even function, we have

eV OUD (HE(t x)) G () — e V2O [UD (Hy 1) G]™ (¢ 2)
=5 e VEROUR (H(t ) G0 (t,2) — e V2RO [UD (Hyy) )™ (t,2). (3.140)

Substep 2.5.(Estimate of (3.124]).) Next, using Lemma [3.3.4] we can verify that

SUS) (Hoa s (t,2)) = o (wn(t,—2)) (6w (t,2)) = Glun (1, —a)) 2V

=4 ;U(?)) (HO,l(wo(t, fL’)) - H071(w0(t, —x))) [g(wo(t7 I’)) _ Q(wg(t, —17))]2 6_2\/§d(t)'
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Therefore, from Remark [3.4.11] we obtain

U (Hi 0. ) 167 1) %40 2 3 00 (o) 6] )0, (3140

Substep 2.6.(Estimate of (3.125).) Furthermore, similarly to the proof of estimate (3.141]),

we can verify that

6 U0 (Hi(t,)) U (s (t,2)

(G (¢, m)]]—l e—V2d(H)(j-1) = Z [G™(t, x)]ﬂ—l e~ V2d(H)(-1)
=4

= =1 (= 1)
Hence, we obtain using Remark |3.4.10| that
6 UW) (HY(t,x . .
( 0,1( )> [gwl (t, gj)]]*l e—\/id(t)(j—l) 26 0. (3142)

= U=

Substep 2.7.(Conclusion of estimate of A (¢2) (£, ).) From identity (3.102]), after we use the
estimates (3.131)), (3.132)), (3.140)), (3.137)), (3.141)), (3.142)) respectively, in the terms (3.120)),
B121), B122), B-123), (3.124), (3.125), we obtain

M) (t,2) = Albno)t,0) So—ir (Heo) ™ ()= SO0 (1) (.2)

(1 (i)2>% :
8\/§T(t)€_\/§d(t) 1\ Wo
+ o (Hot)™ (t,)
t —+/2d(t
—|—[48M“’°(t,x)—60Nw°(t,:c)]L).eXp ﬂ .

In conclusion, we deduce from Lemma [3.3.5] and the estimate above that

M) (1) = Mot 0) 2o (Hi) ™ (1)~ (17,) ™ 1.0

4 4
8\/§T<t)€_\/§d(t) " wo
+ e (HO,l) (t, )
4
t
+ [A8M™° (t, ) — 60N (t, )] %eﬁd“). (3.143)
1 — &7
4

Step 3.(Conclusion of the proof of Theorem [3.4.1])

Using Lemmas (3.3.1], and estimates (3.118)), (3.119), we conclude from the product
rule of derivative and estimate (3.143)) that if 0 < v < 1, then

Hal

TN ) ~ Al ()] S v (el i () ) e (310

Hz

forallt e R, s > 0and [ € NU{0}.

Moreover, Remark implies for all m,l € NU{0} and ¢t € R that if h € S;},, then
dl 1 m+1
[t|v + In ()} e~ 2V,
v

l
@ <h,l ,U2+

~Y

(h(wo(t, ), Ho s (wol(t, —)))
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Consequently, using Lemma |3.4.13] the ordinary differential equation (3.108]), identity (3.78])
and estimate (3.143)), if 0 < v < 1, there exists ny € N satisfying for all [ € NU {0} the

following estimate

! < ’ Xr — M
i A(902)<t7x)7 HOI 72 >
” S\Wi-4E
Therefore, if 0 < v < 1, Lemmas [3.3.4] [3.4.13] inequality (3.144]) and estimates (3.118)),
(3.119) of r(¢) imply for any I € NU {0} and all ¢ € R that

dl ’ xXr + T(t) - @ ]. 2+1 72\/§|t|v
T <A(902)(t,l’), Hy, (1_d(t)2 In <U ) + WU] € :
4

Since 5 is an odd function on x, the estimate above implies .

Finally, since d(t) and r(t) are even functions and lim,, . r(t) exists, there exists a
number e(v) such that ¢q(v,t,x) = @a(t + e(v), x) satisfies Theorem for k = 2. More
precisely, because d(t) = 2uvt + - ln( ) + O(e72V2%) when t > 1 and lim,_, 1 7(s) = €, =

O(v*In (%)2), we consider e(v) = 5+ [ : ln( ) + eT] : O

na+1
< otte [ln ( ! ) + |t|v} 2 e 2Vt
v?

< l+6

~J

3.5 Approximate solutions for k& > 2

We will prove the following theorem, which implies Theorem [3.1.2}

Theorem 3.5.1. There exist a sequence of approzimate solutions (Pru(t,®)),~, , functions
ri(v,t) that are smooth and even in t, and numbers ny, € N such that if 0 < v < 1, then for
any k € Nso, meN

1\]™ | O™ 1
(0, 8)] <o 02D {m ()} o t)‘ S v2 D m( ) + [t } e~2V2llo,
v
(3.145)
Yro(t,x) satisfies for pp(v,t) = d”(t) + ZJ o 7j(v,t) the identity
_ T+ pk(vat) T — pk(v>t)
Oro(t,r) = Hog (1W +H 19 W
T4 4
t — t
teV2e |g [ ZILRD i pk(.% 2)’ _g A ki 'Ok.(vyz)
1— M 1— %
T+ pr(v,t —x + pr(v,t
+ T (v ,pkg (t)Q)) Trw ( ,p';((t)Q )) , (3.146)
1 — @®? 1 — d®?
4 4
the following estimates for any l € NU{0} and s > 1
1
Hatl (pkv t SC) Sk,l,s U2k+l In (U ) + ’t‘ :| 72\/§|t\v, (3147)
Hs
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and

d o[£z + pr(v, 1) 2142 1 et —2v/2|t|v
i <A(g0kjv)(t,x), Hy, ((1—d”it)2)5 Sk v In <v ) + |¢] } e )

(3.148)
where T (t, z) is a finite sum of functions py;.,(t)hyi(x) with hy,., € % (R)NSEL and each

Pr.iv(t) being an even function satisfying

1 i
Zpom U (ln( >+|t|> e~ 2V21l

for a positive number ny,; € N and all m € N U {0}.

dmpk,i,v (t>
dtm

Remark 3.5.2. From the result of the subsection before, we have that @o(t,x) and r(t) satisfy
all the properties (3.146)), (3.145) and for k =2 if v < 1, so Theorem[3.5.1] is true
for k. =2. We are going to prove that if, for any 2 < k < M, there exists a smooth function
wro(t, ) denoted by m ) that satisfies the conclusion of Theorem 11if0 <v <1, then
there exists also as1.(t, x) satisfying (3.146), (3.148) and Theorem|3_| if v < 1. Next,

1

after a time translation of order O (m(f)) , this function will satisfy Theorem |3.1.2

Remark 3.5.3. Furthermore, from Theorem we also have that ro satisfies, if v > 0 s
small enough, the following estimates
1 —2/2|t|v
In ( ) + ]t\v} e :
v

[
e M S 70 (). |gretent) | S0

for alll € N.

3.5.1 Auxiliary lemmas.

From now on, we assume that Theorem [3.5.1] is true for 2 < k < M. We also consider the

following defintion.

Definition 3.5.4. We say that function F : (0,1) x R* — R is negligible of order (n,m) € N?
if there exist a constant M (n) satisfying such that F satisfies for any v € (0,1) small enough

the following estimate

vt:c

1 m
g v (|t|v +1In (v)) e’2ﬁ|t|“,

Hs
1:

e

forallt € R, any l € N and all s > 0. Moreover, we also say for any n € Nsg that any two
real functions f,g: (0,1) x R* — R? satisfy f =, g if f — g is a negligible function of order

(n,m) for some m € N.

The demonstration of Theorem [3.5.1| will be done by induction on k. However, before the
beginning of this proof, we need to prove three lemmas necessary to demonstrate Theorem
The first lemma is the following:

129



Lemma 3.5.5. In notation of Theorem there exist natural numbers Ny, No satisfying,
for 0 < v < 1, the following estimate

Aprmo)(t, ) ZEopsa %Si,v(\/ivt) [Rz (WWM) R (—x + pm(v, t))

i=1 1-— —d“gf)Q 11— d”(t)2

such that for all 1 < i,j < N1 we have (R;, R;) = dij, Ri € SLNA(R), s;, € C(R)
satisfies, for alll € NU {0}, |47 s“}(t)‘ < v*M [|t| +1In (v%)]nm e—2V2lt

Our demonstration of Lemma [3.5.5 will need the following result.

Lemma 3.5.6. For any ¢ > 1, let ¢ : Rs; X R? — R be a function of the form

¢(Ct,x) = Hop (v — () — Hop (—2) + Zpl Ii(x = ) = I; (—2)],

where N < +00, all the functions p;(t) are smooth with all their non-zero derivatives being
in S (R), and for all1 <i <N, I, € S(R)NST™ for some m; € NU{0}. Let Z, : R* - R

be the following function

Zc(t’f’?) = U,<¢(C,t,$)) -U (H071(93 —() — U (H—l,o(l”)),

for any (t,z) € R?, and ¢ > 1. For any k € N, there exist Ni(k) € N, functions h; € ST,
and numbers n;, l; € NU{0}, o ; € NU{0} for all 1 <i < Ni(k) and 1 < j <N such that

the following function

Nl(k) N
Zic(t,x) = Z Clie’ﬁ”ic (hi(x — () — hi(—x)) Hpj(t)a” , for all (¢,z) € Rsy X R,
=1 j=1

satisfies for any s > 0 and every (¢,t) € Rs; X R the estimate

|Z2(t,7) — Zyc(t, )]

uy < C(0, 5, k)e ™,
where C(¢, s, k) is a positive value depending only on k and s and the function ¢.

Proof. Proposition [3.2.16] and Remarks [3.2.20] can be applied to estimate with higher

precision the function

Ze(t,x) = U ($(¢, 1) = U (Hoa (t,x =€) = U (=Ho (—)), (3.149)

since U'(¢) = 2¢ — 84> +6¢°. More precisely, since U is an odd polynomial, it is not difficult
to verify from the definition of ¢((,t,z) and the multinomial formula that Z.(¢, z) is a finite

sum of functions of the following kind

Xelt, ) = o (2= O (~Hoa () ) lnlpf 0L, <>afpz-<t>ﬂi(—fi<—a:>)&]
| te =0 (0" o000 (-1 0 )] |
such that
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o a;, ;e NU{0} forall 0 <i <N,
. Zf\io o; + B; is odd,
o cither Zfil a; + f; # 0 or min (ayg, By) > 0.
Since every I; € SE, we can apply Lemma and deduce for any natural number 1 <
j <N and any k € N that [;(—z)* € S and I;(z)*~! € S£. Moreover, Lemma [3.2.7 also
implies for all k € N that if (f;)1<i<ox_1 C SL, then [I2*7! fi € S, and if (fi)1<icor C S,
then [T?*, f; € Sg. Therefore, we deduce that either
Ho, (z HI )% € 8%, Ho, (— 501‘[1 x)% e S, U{l} or
N
Hyq (— H )% e S U{1}, Hoy (z BOHI )7 e St

Consequently, we can apply the Separation Lemma and Remark [3.2.21] in the expression

Ho, (z — C“OHI x—C [( Hoy (— H

N
( H01 1:[ ]Hm(x— H x—C)ﬁa

and deduce for any k € N the existence of N3(k) € N, a set of numbers /;1, n;; € NU {0}
and a set of functions h;; € SL N .7 (R), such that the function

Na (k)

N
Aioe(t, 1) = {Z ¢re f”“C(h (& =€) ~hia (—x))] [T i)™+

satisfies, if ( is large enough, the estimate

| X (t, 2) — Xy e (t, )]

N
s Soe D)7

In conclusion, using triangle inequality, we obtain the result of Lemma [3.5.6] [
Corollary 3.5.7. Let the functions I; € ./ (R), p; € C*°(R) be as defined in the statement
of Lemma[3.5.6, Let v : (0,1) x R — R be a function satisfying

<o, foranyl e NU{0}, if 0 <v < 1,
(R)

Hatﬂ

and w : (0,1) x R*> = R be the following smooth function

dy (1)
z— 20 4yt
w(v, t,x) = 2+l )
1—

dy (t)2
4
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In addition, let ¢apy : R* — R be the following function

¢app<t7 l’) = HO,l (U)(U, tu SU)) HO 1 ( + sz i U, tu '/:C)) - [z ('ll)(’U, t? —SL'))] 9
for all (t,z) € R? and Z(t,x) be denoted by

Z(t,ﬂ?) = U/(¢app(t7$)) - U, (HO,l (w(v,t, x))) - U, (_HO,l (w<va t _aj))) )

for any (t,z) € R% If v < 1 and the functions p; also satisfy the following decay estimate

O] < ol
max ||p; (t)H < o', for every l € N,

then, for any k € Nso, there exist Ni(k) € N, functions h; € SL, and numbers n;, l; €
NU{0}, a;; € NU{0} for all1l <i < Ni(k) and 1 < j <N such that the following function

Ni(k) o) ]" _9/3n,
[ 58] () s

—h; (w(v,t,—x)) )] , for any (t,z) € R?,

satisfies
< évleq\/ikdu ® g

H3

OR

v )

Hatl [Z4(t,7) — Z(t, )]

for every I € NU{0} and s > 0, where C' >0 is a constant depending only on the functions
(pi)1<i<n and the numbers [, s and k.

Proof of Corollary[3.5.7 First, from Lemma [3.5.6] if we replace the variables z and ¢, re-
spectively, with —w(t, —x) and
dv(t) B 27(’0’ t)

dy(t)2
1— 2

we deduce for any k € N>, the existence of a set of functions (h;),.y C S, a set of numbers
(@ji)jipeve € NU{0} and two sequences of numbers (I;)en C NU {0}, (nl)leN C N such that
if 0 < v < 1, the following function

N1 (k) — 2v(v " — n; — 27y(v, N
a(tw)zlz [dv<t> 2y( ,t>] exp( 2v2n; (d(t) — 21(v,1)) )U o (s (i a)

P | — D2 1_ dvglt)

by (w(t, —2) )]

satisfies, for a constant My(k) € N any m € N, the following estimate

126t 2) = Z(t,2) |y S €720 (14 ()"0

~Y
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Furthermore, Separation Lemma also implies the existence of M;(k) € N, for any k € N,
such that

Z(t,x) — Zi(t,z) =
Mgexp(_ﬁNxclzv(t)—m(U,t))) (dv<t>—zy<v2,t>> ﬁpﬂ Vi (w(t,2)) hg (w(t, ).

i=1 _% 1_%

(3.150)

where for any 1 <1 < M;(k), n, € NU{0} and N; in N3y, the functions h; 1, h;o € L°(R)
are smooth and all 8;;, € NU {0}.

In fact, from Proposition [3.2.16] we could also say for all 1 < i < M; (k) that 2k < N;, n; €
N U {0}, either h;; or h;s is in . (R) and either h; (x) € ST USL, hja(x) € STUSL or
hii(—x) € STUSYE, hia(—x) € STUSL. Moreover, since v satisfies the condition of Remark
3.3.3} and

<
1%<N| tlp](t)| <o, foralll € Nand t € R,

we deduce from Remark [3.3.3|and the product rule of derivative that if v > 0 is small enough,
then

2t x) — Zt2)]| Seps VeV for any 1 e NU{0} and s > 0. (3.151)

~Y

Hz

Actually, using the product rule of derivative, for every 1 < i < M;(k), we have if v > 0

is small enough that

& [ﬁp (t)5 exp (—mwy(w - 27(%@)) (dm - 27(vyt))m

4
for all [ € NU {0} and every t € R. Therefore, since Remark implies

|t

<0 Uk+l672\/§|t|v’

Nl7

[

+ @hm(w(t, ZE))

| st
Hz

~l,s

H

for every 1 < i < M;(k), we conclude estimate (3.151]) from the product rule, triangle

inequality and identity (3.150). ]
Proof of Lemma[3.5.5. First, we consider 0 < v < 1 and recall that A(:) = g—; — 83:2 +U'().

From Lemma and Remark [3.3.3] if h € S and p,(t) satisfies for constants q;, ¢o € N

the following estimate

d 1
’dtlpv(t) < v [ln ( ) + |t@ e V2 for all [ € NU {0},
then
0?0 z + pa(v,t)
E = L (Vo [ ST
o ] (o (* 225
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z+pm(v,t)

is a finite sum of functions pijv(\/ivt)hi (W) with h; € SE and p;, satisfying for some
e

natural numbers m; > 0, w; the following decay

d .
‘ S;l U2ml+l

il {pi (ﬁvt)}

1 i
In () + |t|v} e’2ﬂ|t|”, for all I € NU {0}. (3.152)
v

Next, using Lemma m, Remark [3.3.3|and identity Hg,l(x) = U'(Hy,(z)), we can verify
similarly to the proof of Lemma [3.4.2] the following estimate

o> r— pm(v,t) : r— pm(v,t) :
9 Ny (roem)) (g [ em(t) dueo(t,z), (3.153
[8152 83:2] o ( 1 o2 VR Ox + residueo(t, z), (3.153)

1
where residuey(t, z) is a finite sum of functions
— t
tea (oD, (ﬂfw(v)) |

d(1)?
=5

with h; € ST and

‘dlqm(t)

|
iy ’ <0 <|t| o <2>) =21 for all I € NU {0}.
v

Therefore, to finish the proof of Lemma [3.5.5| we need only to study the expression

DU(t,2) = U (pagalt,2)) — U (H (‘W”)» v <H (W”)» |

1 4?2 1 d(t)?

4 T4

(3.154)

Furthermore, from Corollary [3.5.7, we can obtain for any natural N > 1 the existence

of natural numbers Ny, Ny, a set of functions hp; € S and a set of functions pay ;. (t)
satisfying property (3.152) such that DU (t, z) satisfies

N x + v, t -+ v, 3
DU(t, ) Zon Y ppajo(v201) [hM,j (1[)/\45(02) — ; pﬂz((t)Q N1 (3.155)
J=1 i i

Moreover, if two functions p;(t), p2(t) satisfy property (3.152)), then, from the product rule
of derivative, pi(t)p2(t) have much smaller decay than the right-hand side of (3.152)) as
|t| = +00, because of the e~ 42l contribution obtained in the product of these functions.

In conclusion, we proved that there exist a finite subset I, of N, functions p;, satisfying

property (3.152) and h; € . (R) N SL such that

o) 2w 5 V2t [ (5200 ), (S22
j€ly 1— 4 14

Moreover, after a finite number of applications of Proposition [3.2.16] it is possible to obtain
an estimate of the form (3.156)) for any N > 1 if we assume v < 1.
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From Gram-Schmidt, we can exchange the functions h; in (3.156) by functions R; &
St N(R) such that (R;, R;) = J;; and

Appn)(t:2) Zon Y s5.0(V20t) [Rj (“LWM) ~ R, (_“W(U’t))] . (3.157)
jel 1 — 402 1 - 402

for a finite set / with the functions s;,(t) also satisfying property (3.152). In conclusion,
from the assumption that the conclusion of Theorem [3.5.1] is true when & = M, we deduce
from Lemma and condition (R;, R;) = 0, ; that, for any j € I, we have

<A(¢M,v)(t,x),7zj (“W(“)» _ (1 _ ‘“?2)% +O()

1 — dv?
+ 3 s, (V201)O(v)

4
i#£j,iel
1\\ ™
+0 <U2N (|tyu +1n ()) eth) . (3.158)
v

Since N > M + 1, using the identities(3.158|) for all ;7 € I and estimate (3.147)), we deduce
that

Sjwv (\/5’015)

1]
i (O S v I+ ()] e (3.150)
v

forall j € I, and t € R.
Furthermore, we can assume the existence of mg € NU {0} such that
dl$j7v (t)
dt!

1y\]"™"M
<; v*M {|t| +1In (2)] e V21 forall j € I, 1 € NU {0} satisfying 0 < [ < m.
v
(3.160)
But, from estimate (3.157), assumption (3.160f), Lemma and Remark [3.3.3] we deduce

using the product rule of derivative that

mot+l +1 (mo+1) ' x + IOM<U7 t) . ) —T+ pM(Ua t)
S 2yt (Vaut) [72] (d<t>2 R | —

jel 1 — =~ 1-— i

4
~ amO-HA <¢M,v> <t7 l.)
=2M+mo+1 Hpmotl

Therefore, similarly to the proof of (3.159)) for all j € I and using Remark in the

expressions
t — t
R, (Lemb D) o (Zr o ONN o e,
1— dt)? 1 — d(t)?
1

4

we obtain the following estimate

dm0+1 Sj,v (t)

1\1™Mm
2M . —2v/2]¢|
| S v i ()] e

2

In conclusion, from induction on [, the estimate of the decay of the derivatives of s;, in
Lemma is true for all [ € NU{0}. O
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The third lemma necessary to the proof of the existence of ¢rs11.,(t, ) is the following:

Lemma 3.5.8. In notation of Lemma there is a positive number ny, such that the

following function

satisfies
dl

dt!

PT‘O]( ) 2M+l+2

1 i
In (2) + |t|v] e 2V for all 1 € NU {0}
v

Proof. From Lemma|3.5.5, there exists a function res : (0, 1) xR? — R such that res =14 0

and

z+ pm(v,t —2 + pm(v,t
Alprmo)(t,z) = Zsj,v(\/EUt) [Rj (d(t)2>) - R, ( o )> + res(v, t, ).
jel == ==
Therefore, we have the following identity
! x+ pM(U? t)
A(@M,v)(tax)a HO,l —d(1€2
=75
/ t
=Proj(t) + <H0,1 (%) ,Tes(v,t7x>>
1 — 42
! (3.161)

First, we recall the function d(t) = 71 (U% cosh (\/§vt)2), which satisfies
Hd(t)H <o, ||d® H < pke 2V if | > 9
L (R) L>=(R)

We also recall pa(v,t) = Zj/\i2 Ti0(t) — @. Since we are assuming the veracity of estimates
(3.145) for any natural number k satisfying 2 < k < M, we deduce, from Remark [3.3.3]
Lemma the product rule of derivative and Cauchy-Schwarz inequality, the existence of

vl

)

Ny > 0 satisfying for any [ € NU {0} the following inequalities
d' : t
& <H071 TP ) ot e >
1
: ( )] o
v?

Furthermore, Lemma and Remark imply for any n € NU{0} that if R; € S, and

0 < v <1, then
d [, _de\' /[, p(v,)
4

<l U2+l

Y

2M+4+1
S

1 n+1
tlv + In (gﬂ e=2V2l for all 1 € NU {0}.
v

136



Consequently, from Lemma and the product rule of derivative, we deduce the existence
of a sufficiently large number n, satisfying for v < 1 the following inequality

o [Sva (1= 1Y (i o, (o et )|

J 1 — )~

<y g VEMEH

Nl7

NN
[tlv + In (UQH e V2l (3.162)

for all I € NU{0}.
In conclusion, we obtain Lemma[3.5.8| from the estimates above, Lemma [3.5.5and triangle

inequality. O]
_ _d@) Mo ‘
From now on, for pyp(v,t) = =57 + 375, 75(v, ), we consider
_ Tt pm(v, )

1
To simplify our notation, we denote the function 7;, as 7; for every | € Ns,. Using the

notation of Lemma [3.5.5] and Lemma |3.5.8 we define the function

Al / Proj(t
D(t,x) = 8i0(V20)Ri(2) = Hy g (2) 3 ®) L (3.164)

Lemmas [3.5.5 and [3.5.8] imply <F (t,z), H(l),1 (waqg (:v))> = 0 for all t € R, and for any
(t,z) € R?

N ) Proj(t)
Ao (t, ) Zopia Hy, (wm(t, z)) 2 02
HHOv1 L2 1 4
Proj(t)
HO 1 (w/\/l (ta —(L’)) ;12 d(t)2
| Hoa| L /1 — 42

+T (t,wm(t,x)) =T (t, wam(t, —x)). (3.165)

Moreover, from Lemma|3.2.23|and Lemma|3.2.24] we can define the function Li(I'(¢,-))(z) €
S (R)N ST, more precisely, from the linearity of Ly, we have for any (¢, z) € R? the following

identity
< Hyy o
LTt ) (@) = 3 sin(VRot) Ly [ Ri— —24 () Ry | (0), (3.160)
= H 0.1]| 12
and so, from Lemma [3.5.5] we have for any t € R, s > 0 and | € NU {0} that
o 8\\"M
T LT, N )| Ko o?MH (wv +1n ()) o2Vl (3.167)
ot g 02

Next, we recall from the inductive hypothesis of Theorem that . (t, ) also has
the representation (3.146|) given by

Pt w) = Hoy (wp(t,x)) — Hop (war(t, =) + e V21O [G (wp(t, ) — G (wp(t, —))]
+ T (vt,wp(t, ) — Taq (vt wpq(t, —z)), (3.168)
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where Ty (t, z) is a function even on ¢ satisfying for a sufficiently large number ns; € N and
any s > 0 the following inequality
o

Tl Tam(t, )

1 nm,1
< o <|t| +1n (2)) 22 for all [ € NU {0}, if 0 < v < 1.
v
(3.169)

Hz

3.5.2 Construction of 7y(v,1).

From now on, for j € {1,2,3,4}, we consider the smooth functions I, : R — R defined by

14 (8) =30 (U0 (1) VP Ly (U(1, ) (1), Hop(2)) (3.170)
() = ( \/%)7[2—[](2)(}[0,1(%))} M) )
fs<t>= VRO (UD (Hos(2)) G(x) Ly (D(t, ) (x), Hy, (x)), (3.172)
L) = <[§t—%i L (F(29) (). o (0)) (3173)

Denoting the function NL, : R — R by

4
NLup(t) =D L(t), for any t € R,

=1

and recalling the function Proj : R — R defined in Lemma we consider
Resp(t) = NLu(t) — Proj(t),

for any t € R, and the following ordinary differential equation

2
L e_‘ﬁd(t)rMH(t) + Resp(t),

{HHO 1 7"/\/1+1( ) =—32 HH(I),l
TM+1(t) = rpme1(—t).

From Lemma we recall the existence of nys > 0 such that, for any [ € N U {0}
and 1 < i < Ny, tlsw(t)’ < oM [|t! +1In (U%)]TW e~2V21 if 0 < v < 1. Therefore, for
0 < v < 1 and using Remark and identities (3.166), (3.171)), we deduce the existence
of ny2 € NU{0} satistying

(3.174)

1 nm,2
’Iél)(t)‘ <p P MAE <|t|v +In <v)> e V2 for every t € R and any [ € NU {0}.

Next, from estimate (3.167]), Lemma [3.3.1] identity (3.170|) and Cauchy-Schwarz inequal-

ity, we obtain using the product rule of derivative that

) 2M+2+1 Ly —2/2|t]
‘Il (t)‘ <iv (|t\v +1In ()) e v, for every t € R and any [ € NU {0}.
v
(3.175)
Similarly to the proof of estimate (3.175)), we deduce that

10@)] S o2 (o (2)) eV g t€R and any [ € NU{0
3 <iv vtn (- e , for every t € R and any [ € {0}.
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Furthermore, using Lemma [3.3.1} estimate (3.167)) and the product rule of derivative, we

obtain the following decay estimate
0 < 2ZMA2+ 1 e —2v/2|t|v
‘14 (t)‘ N |t|v + In e , for every t € R and any [ € NU {0}.
v

In conclusion, using Lemma we obtain that the function Resp(t) defined in the
ordinary differential equation (3.174)) satisfies for some number n 1 > 0 the following decay

estimate

d I+2M+-2 LA™ oy
— Resp(t)| Sy oM (]t\v +In ()) e V2l for every t € R and any [ € NU {0}.

dt! v2
(3.176)
Repeating the argument in the first step of the proof of Theorem we have for the

following functions

Ort412(1) :\/151} /_too Resaq(s) tanh (vV2vs) ds, (3.177)
Orts11(1) :\;511; /Ot Resp(s) [\/ﬁvs tanh (v2vs) — 1} ds, (3.178)

that 711 (t) = Oagar1(f) tanh (v201) +0pgs12(1) {\/ﬁvt tanh (v/2vt) — 1} is even and satisfies
the ordinary differential equation (3.174)). Moreover, from the decay estimates of Resp,(t) in

(3.176|), we can deduce by induction on [ € N the existence of a number n a1 > 0 satisfying
dl 1 NM+1
’dtlrMH(t) < p?MH <|t|v +1In <2>> e"2V21 for every t € R and any [ € N,
v

(3.179)

50 limy 4 o0 maq41(t) exists and HTM+1(?5)||L§<>(R) <v*Min (%)nMH.
Next, we are going to denote, for all (£,2) € R? and 0 < v < 1, 1100 : R2 — R by

Omt100(t ) =Hop (Wm(t, © + 1y (t))) — Hon (wm(t, =2 + 141 (1))
e YOG (wan(t, 2+ raa (1) = G (wmlt, =2+ raca (D)) (3.180)
+Tm (vt wa(t, x + 1ar1(8))) — Tan (v, W (t, —2 + raaga (1)),
and use this function to construct a1, : R? = R satisfying Theorem for k = M +1,
which will imply the statement of this theorem for all £ € N>, by induction.

Since we assume Theorem [3.5.1] is true for £k = M, we deduce from Lemma and
estimates (3.179)) of (11 that the following function

Omr1(t, ) =Hon (W (t, 2+ 141 (t))) — Hop (wp(t, =2 + 7a141(2)))
+e VO [G (wpg(t, 2 4+ Tpasr (1) — G (wpnlt, =z + raga (1)) (3.181)
+ T (vt waq(t, 1)) — T (vt, waq(t, —x)) , for every (t,z) € R?,

satisfies
A(Pm1,01) (@) Zopara A (1,00, 7)) - (3.182)
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Lemma 3.5.9. For any function h € L*(R) such that h' € #(R), we have

o 0 0 (0 O] Zoncsaigg] a0+ e ()
7 +1(2 /
i\/l_(g(f}h (wa (2 +raga(t))) (3.183)

Lt O 4 e ()
1 dw?

4
Proof of Lemma[3.5.9 First, using (3.163)) and the product rule of derivative, we can verify
the following identity

02 0?

[ (war (82 + raega (1)) 7 (wa (b1, 2 + T (1))

o2 :((97% ty=t
+2f_<f>)£ W o+ )]
+27 p41 (1) [(jt (1 — di)Q)_;] h (wa(t, @ + raga(t))
+Mh” (war(t, x4+ 7p041)) + mh/ (wpam(t, o +7Tr141)) -
T4 T4

We recall that the function wy, satisfies, for all (¢,z) € R?, the equation

M
wm(t, x) = wo (t,x — d(;) + er(t)) ,

=2
and the estimates in (3.145)) are true for any 2 < £ < M from the inductive hypotheses of

Theorem [3.1.2
Using estimate (3.179) and the product rule of derivative, we deduce that

2npm 4

d’ !
’ 6_4‘5'“”, for every t € R and any [ € NU {0}.

. 1
£ ] 5ot 410 (2)
Therefore, the estimate above, Lemma Remark and the product rule of derivative
imply that
7:'M+1(t)2 "
———h (wm (62 4+ Tmp1)) Farga 0.

d()?
2-75

Moreover, from estimates (3.179), we deduce using Lemma [3.3.1) the chain and product
rule of derivative that if 0 < v < 1, then

! SN2\ T3
aclitl [f/vtﬂ(t) [575 <1 — d(? )

for every t € R and any [ € NU{0}. So, using Remark and the product rule of derivative,

we obtain that

Faga (t) [jt (1 — d(i)2>_

< p2MAH <|t|v S n <1>)nM+1 6_2\@\t|v’
v

[N

] W (wpm(t, o + ras (1)) Zanga 0.
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Next, from estimates (8.179) and ||rpgp1(8) || o0 < v*M 10 (%)nMH, we deduce using Lemma
3.3.4/for all s > 1 and [ € NU {0} that

7 w/vz (t, 2+ T ()R (wag(t, 4 7ags1 (1)) — wpr(t, 2)h" (wag(L, ) <al
8t -
v?*MH In 1}"M+1 5
v
al " ” 17" Mm+1
Hatl [h (wpm(t,x +rmpa(t) — b (walt, I)} S 0PMH In v} :
H;

Therefore, since we are assuming the veracity of estimates (3.145|) for any 2 < 5 < M, using
the identity

0

ot W (wplt, © + 71 (2)))

t1=t

_ [c;lt (1 _ d(i) ) : ] (1 — dZ) )2 War(t, T + T pgr (D)) (wag(t, & 4 ragsa ()

. + (T —@ ”
+TM+1() Z] 2(:)32() 20" (wam(t, @+ rag41(1))
1_7

4

estimate (3.179)), Lemma and the product rule of derivative, we deduce that

’

2ipmn(t) 9
1 — 4?0ty
1

In conclusion, estimate (3.183)) is true. O

[ (wnalts, 2+ raea ()] Zasesa ‘M@)“h (s, ).

t1=t

3.5.3 Proof of Theorem [3.5.1].

Proof of Theorem |5.5.1, From the observations made at the beginning of this section, we
need only to construct @41, satisfying Theorem from the function ¢, denoted in
(3.168). Let pari1., : R* = R be the function satisfying the following identity

Patro(t, 2) = drasrwo(t, €)= La(D(E ) (War(ts & + 7 aair () +La(D(E ) (wan(t, =2 + rava (E))

for every (t,z) € R?, where ¢rqy1.00(¢, ) is defined in (3.180).
From the definition of A, we have that

Mo (50 = | = ) dncsnant0) + U (s (.0)
| | AT (et ()] (3184)
g ] Ba00E ) 0=+ a0
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Moreover, since [~ + U® (Hy ()] L (D¢, ) (2) = T(t,2), and wa(t, ) = =24

we have the following identity

Lamder e

2 H U (Hoa (waltz + TMH@))))] Ly (T(E, ) (wp(t; & + 1 (1))

= D(t, wam(t, z +psn (1)), (3.185)

Moreover, from identity (3.184)),we deduce that @41, (t, ) satisfies

A1) () = AMPmr1,00)(E: @)
—LM—I—I 0( ) + ['M-H 1<t l‘) ['M-i-l,l(ta —l’) + £M+1’2(t, l‘) - EM_,_LQ(t, —l’), (3186)

for all (t,z) € R? where, for 0 < j < 2, the functions Lyy1; : R? — R satisfy for any
(t,z) € R? the following identities:

Loriro(t,r) =U (pansrn(t, ) = U (dpas100(t, 7))

—UP (¢pms100(t, 7)) [ (Tt -)) (wan(t, = + 7paga (8))) (3.187)
~Li(D(t)) (wunlt + raen(®) |
L1t z) =— [th 68 5+ U (Hop (wad(t, o + raqqa(t ))))1 Ly (D(t,)) (wpm(t, @ + rpag1)) s
(3.188)
Lary12(t, ) =— [U@) (PMm+1,00(t 7))
(3.189)

~U® (Hox (wpm(t,x + rpeia(1)))) ] Ly (P(2,-)) (wpa(t, & + raega)) -
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Next, for 3 < j <6, we denote the functions Ly¢y1,; : R — R by

L3t ) =U (Hox (war(t, x +7a111)) — Hop (W (t, =2 + 7a111)))
—U' (Hop (wam(t, + raa(8)) = U (=Hox (waqlt, =2 + ragia(t))))

(3.190)

Lonsialtz) = L}at? _ ;;2 +UD (Hyy (wum(t,z + rMH(t))))] [efﬁd(t)g (wam(t, x+ TMJrl(t)))}
_ [gﬁ _ 512] eV OG (W (t, —2 + rasa (t)))]

—U® (Hoy (wm(t, — 2 + 1 (1)) emV20g (wm(t, =2 +rpga(t)))
(3.191)

£M+1,5(t; r) = {U(Q) (Ho,l (wam(t, o+ ra141(t)) — Ho (t, =2 +rrq1(t))))
U (Hos (wnalts + ragsa () [e7VH0G (waa(t 0 + ragea (1)
= U (Hog (waat, + ragia (1)) = Hou (1 =2+ raaia(8)

—U® (—Hoy (wpm(t, =z + rpeia(t)))) } e™V2UOG (wg(t, —a + ragni (1))
(3.192)
Loire(t, ) =U (dasrwo(t,2)) = U (Hox (warlt, © + 7a011)) — Hox (wai(t, =2 + 7a151)))
—U® (Hoy (wp(t, z + rpgr (1) = Hox (wag(t, —z + 7aq41(1)))) X
G (waalty o+ raasa (1)) = G (waalt, 2+ raea(8) eV,
(3.193)

and they satisfy the following equation

6
Z Ls1,4(t,x)

=3

= U (dars100(t:2) = U (Hoa (wp(t, @ +141))) = U (= Hox (wan(t, 2 + 1ag41)))

+ [gﬁ B 88562] [efﬁd(t) (G (wpm(t, o+ 1rp41(t)) — G (wm(t, —z + TMH(t))))} :

We recall the function ¢ 41,1 defined in (3.181)) and obtain from (3.180)), the identity above
and estimate ((3.182)) that

A(¢M+1,u,1)(ta ) g2M+4A(¢/\/t+1,u,o)(75, ) (3.194)
Zomial (Hoy (wpm(t, o +rymq1))) + A(=Hop (wamia(t, =2 + 7p41)))

82 82
+ latg - 8:}52] (Tm(vt, x4+ raer) — Tm(vt, —x + TA101))

6
+ Z Ls1;(t, ).

=3
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Next, using Lemma [3.5.9) we obtain the following estimate

82
o2

82

t1=t 8332
(Ho 1 (wm(t, z +raga(t))))

yTanld) W““) Hyy (wan (1, + e (1)

d(t)?
1=

T’M—&-l(z) (t) HO (o (B 2+ A (1) (3.195)
1— ()

A(Hoqp (wm(t, z +7p041(1)))) Zomta [ ] Hoq (wpm(ts, © + raa(t)))

Consequently, using estimates (3.179) and Lemma in the right-hand side of (3.195|),

we obtain the following estimate

A (Hoq (wpm(t, z +7rm11(1)))) Sorrald (Hox (wm(t, x)))

e (t> ¢ T M41 (t)d(t) I
f_()H (v (02)) = =17 g Hi (a0 ()
+TM+1(t)aal‘A (HO,I (wM (t, JJ))) .

Actually, since Hy,(z) = U'(Ho,), we have

A Ho (waa(t, ) + U (Hox (ot 2))) = 4‘_5(1)1% (wat,))

which implies the following equation

()2 0
TH01 (wam(t, z)) + o

Consequently, since we are assuming that the estimates in (3.145|) are true every &k € N
satisfying 2 < k < M, we deduce from Lemma and estimate (3.179) that

A (Hop (wpmlt, x))) = Ho, (wm(t, @)

_ri/ljlc(llgﬁgi(t) Ho (war(t, ) 4 ragsa (t )(;9152 Ho, (wml(t, @)

—r +1(t)d t)? 0?
M — (0 Ho (wolt,z)) + 7’M+1(t)@
(

Hoq (wo(t,x))) .

T M+1 (t)A (Ho,l (w/\/( (ta 33))) =

SoM4 Ho,l (wo(t, 53))
SoM44 7“M+1( )

Therefore, from Lemma and the above estimate above, we deduce that

0 r £)84/2e~V2d(1)
i (02 (Ho (wpats 2))) oo — 2OBVIET0 o ,2)
o -
T £)8/2e~V2d(®)
Sy — OBV (0 )
1— d(i)
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due to Lemma and the assumption that estimates ([3.145]) are true for 2 <k < M. In

conclusion, we have the following estimate

B 012+ s () Zanses A (o (a(t2) + 0, (o )

Paea(O)d(E) + g (18 2e V20O HY (w(t,z)) . (3.197)

d(t)?
1 1

From now, we are going to divide the remaining part of the proof on different steps.
Step.1(Estimate of L11,0(t,z).) First, we recall the inequality || fgll g Ss | £l g 191 5

for all s > 1. So, using Remark [3.3.3] Lemma [3.3.6, estimate (3.167)) and the facts that

U € C®(R) and ¢rrs1.00 € L®(R?) N C*>(R?), we obtain for any natural number j > 3 that

the function

Eimt,z) = U9 (dprs100(t,2)) [L1(T(E, ) (wad(t, @ + 7ag41(2)))

L) Gt~ 4 raea )]

; 2n, .
satisfies, for all s > 1, ||€; m(t, JI)HHg < [|L1 (T(¢,)) (x)||g;1) < Mt (ln (1)> M e=2v2ltl(i-1)

if 0 < v < 1. Indeed, using Remark|3.3.3, estimate (3.167)) and the product rule of derivative,

we obtain similarly for all natural number j > 3 that

1 2npm V3
<, vPMHA (111 ()) e~ 2V for all 1 € NU {0}, if 0 < v < 1.

~S, v
Hg

al
H 5j,M<t7x)

ot

Therefore, since U(¢) = ¢*(1 — ¢?)?, the following function

Lariolt:x) ==U (@arsot.2)) [LiT(E) (wanlt, —a + 7ara (1)

=Lt ) (ot + raaga (1)
+U/ (@M+1,v(ta $)) - U/ (¢M+1,v,0(t7 l’))

satisfies L4110 Zom4a 0.
Step 2.(Estimate of L4113.) In notation of Lemma [3.4.5 from the definition of wy in
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(3.163)) and Remark |3.4.6, we have

U' (Hox (wam(t, @+ raer)) — Hop (wa(t, =2 + mag41)))
~U’ (Hoa (wpm(t, o +1a41))) — U (=Hoa (wam(t, =z + 1p141)))
=24 exp (2\/5 (Pa + Ta)

| E ) M (wpt 2+ 7o) = M(walty =2+ 7p40) )]

N (wam(t, x4+ ra41)) = N (wm(t, =2 + rage))]

20 2\/_ (pm + Tra41)
—30exp d(t)2

+24 exp

(4\/_ - TMﬂ ) (wo(t, # +7pm41)) =V (wpm(t, =2 + rpa4a))]
)

e (MW . ) [Hy s (wanlt, @+ rann)) = Hoy (wanlt, o+ ransn)

—4pm — 47“M+1)

+R w/\/l(tu x + T/\/H-l)a -
4 — d(1)?

Moreover, Lemma [3.4.5| implies that R (wM(t,x + A1), 4PM(”’t)4TM+1(t)> is a finite

Va—d(t)?

sum of functions

o ( ~4(2+di) V2 (pu(v.1) - wﬂw)

d(t)?
==

mi (Wpm(t, @ + 71 (1)) i (mwm(t, =2 + 7001 (1))

where any d; € N, every m; € ST and every n; € S~. Consequently, using the decay estimates
3.179| of rpy1 and estimate (3.145)) for any 2 < k < M, Lemmas [3.3.4{ and |3.3.5| imply that

R (wM(t,x ), —4;0/\/1(7}:1;(32/"‘“(75)) SZoma R (wM(t,x), M) '

Furthermore, since we are assuming the veracity of Theorem for any k < M belong-
ing to N>, we deduce from the Fundamental Theorem of Calculus, Lemma [3.3.1] estimates
(3.145) for 2 < k < M and estimate (3.179) that if v < 1, then

dl

“ AM+2+ ,—2V/20]t]
dt!

v

{6—\/5(2PM(U¢)—27"M+1(0) e~ 2V2orm(v,t) 2\/_7”M+1( t)e —2\/§p/v1(%t)]

AN

, and

4 1\ —2v/20]t|
<t (ln—) e ,
v

l
‘ @ (e ouaton) _ ]
dt

for any [ € N U {0}. Therefore, using estimates |[rp(t)];e < v*MIn (%)HM, 3.179) and
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(3.145)) for 2 < k < M, we deduce from Lemmas [3.3.5] the following estimate

Lani3(t @) Zoppa U (HE (b)) = U (Hoy (wa(t, ) = U' (= Ho (wa(t, —x)))
F2v/2r i (£)e V24O [24M (wpg(t, ) — 30N (wg(t, z))]
—2v/2r pp1 (£)e V24O [24M (wpg(t, —2)) — 30N (waq(t, —2))]

_\/id(t) / /
Tamp1€ = [24M (waa(t, %)) = 30N (waa, 7))
1 — )7
4
I ,
—% 240 (wag(t, —)) = 30N (waa(t, —2))] . (3.198)
1 — 4&)”

4

Step 3.(Estimate of Lyq114.) From Lemma [3.3.4] if 0 < v < 1, we deduce for every s > 1

and every [ € NU {0} that
! 1 nMM+1
(Wl +raan(®) = G wnta)]| S o (1 () + 1)

9

which implies with Lemma the following estimate
0 —\V/2d(t) 0 —V2d(t)
o €06 (Wt z + ()] = 55 |06 (wa(t,2))]

Moreover, using Lemma and estimate Lemma also implies

o0 (| U s Gt (O] 6 a5+ s (4))

) g € V2O (l ;; U@ (Hyy (waqlt, x)))] G (wm(t, 37)))

s 00O (| 2 U8 (o o (1.0) | 0 st 0) ).

ox 0x?
Therefore,
0? 0? Vad
= g U (Hoy (wlt, 7+ W+l<t>>>>l (729G (wan(t, 2 + raea (1))
~ 872 _ i? + U (Hy (wp(t, z))) (e—ﬁd@)g (wa(t x)))
—2M-+4 o2 972 0,1 ML, ML,
0 0?
b (0 (1000 (o (imt, )] 0 0, 0))).

In conclusion, recalling the notation h*M (¢, x) = f (wam(t, z))—h (waq(t, —x)) for any function
h:R — R, using Lemmam identity (3.191]) and estimate (3.179)), we obtain the following

estimate

0 w
Latrralt, z) Zopparans (Be V20— Oz ([-9% + @G ™ (1. 2))

_i_e,\/id(t) {_g 2) 4 U(2)<H0’1)g]w/\/l (t,x) i (t)gwM (t,I)) .

(3.199)

a0 (¢
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Step 4. (Estimate of Lat41,1.) Since Lemma implies for all s > 1,1 € NU {0} that
mle (I'(¢,- (x)HH Seq v (U]ﬂ +In (%))nM e 2Vl if 0 < v < 1, we can repeat the
argument in the second step and obtain, from Lemma and estimates that

Carenaltia) == | 5 = g U (o Cwmt 4 raas))| 2 (70, (ot 4 ran)
“uaass = | gz = s + U (s (st )] 24000 ) (0a,0)
d(t)? 02

- d(1)2 0y

Ly (T'(t,-)) (y)

y=wm(t,7)
_gtle (D(t,)) (Wt @)).

Step 5.(Estimate of Lyq115.) Lemma and estimate (3.179)) imply for all m € N, [ €
N U {0} the following estimates

g2/\/1-%-4 —I <t7 w/\/l(t7 l’)) +

8l 17 m+1
H o [Ho L (wam(t, £+ 7 pa41))" = Hop (wa(t, ix))m] Sonsg VM In U] , (3.200)
Hz
177 Mm+1
||atz (Wt + 7 pag1)™ g(wM(t,x))m] Sy 0 {ln ] , (3.201)
(%

if 0 < v < 1. Therefore, since
U(2) (H071 (’LUM(t,[E + TM-H) — Hg71 (t, —T + TM+1))) — U(Q) (HO,l (’LUM(t, T+ TM+1)))

is a real linear combination of functions Hp 1 (wpq(t, 2 4+ rage1)” Hox (wa(t, —2 4+ rpge1)”
such that m € NU {0} and n € N, we deduce using the identity (3.192) and Lemma [3.3.1]

the following estimate
Larsrs(t ) Zaprea e VOUR (H (1, 2)) G2 (1 2) — V210 [U (Hy )G ™ (1, 2),

where fM(t,2) = f (wm(t,x)) — f (wa(t, —x)) for any function f: R — R and (¢,2) € R%
Step 6.(Estimate of Lu(416.) From the definition of the functions warwy, Or1+1,000 Lr+16
respectively in (3.168)), (3.180)), (3.193) and using the notation

S(v,t,2) = dpg1,0(t, ) — Hox (W (t, 2 4+ 1raq41)) + Hoq (wm(t, =2 + 7p0141))

we have the following identity

j—1

£M+1,6(t7 QZ) =

(= 1)
@ (Hox (wm(t, =+ 7pas1)) = Hop (wp(t, =2 + mars1)))
X [Th(vt, wa(t, @ + raas1)) = Ta(vt, walt, =2 + raea)] -
Furthermore, from the assumption that Theorem [3.5.1] is true for any k£ € N satisfying
2 < k < M, we have the following estimate

1\
gs,l U4+l (|t|v +In <>> 6—2\/§|t\v’
v

zﬁ: U(j) (Ho,l (wM(t, T+ TM—H)) — Ho,l (w./vl(t, —x + TM—I—I))) [S(U, t, SL’)
+U

[Ta (vt, waq(t, x))]

o
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for some positive constant ¢, all s > 0, and any [ € NU {0} if 0 < v < 1. Therefore, using
Lemma and estimate (3.179)), we obtain that if 0 < v < 1, then the following inequality

<ol it <|t|v +1n (1>) * e~ 2V2ltv
v

is true for every s > 0 and any [ € NU {0}. Thus, using estimates (3.200)), (3.201) and the
following algebraic property of H; for any s > %

1fgllmy Ss 1111

[Ta (vt, waq(t, £ 4+ raea(t)))]

Haﬂ

Gllgs, forall f, g€ H

H3
we deduce that
EM—H,G(ta I) g2/\/l+4 U(2) (H(q)ljiw <t7 .I)) |:TM (Utu wm (ta .Z‘)) - TM (Uta wm <t7 —CL’))]

6 UG (HEM(t, St x) — Hom ()|
+jz:;, ( i )> [¢(A;’j1)!) i )} . (3.202)

Step 7.(Estimate of Lq41,2.) Finally, we will estimate the last term, which is
Lorira(t,z) = [—U(Q) (Hox (w(t, @ + raisn)) — Hos (wpn(t, 2 + raisn))
+UP (Hoy (wp(t,x + TMH)))]Ll (I'(¢, ) (walt, & + ra141))
- [U(Q) <¢M,y,0(t> x))
_y® (HQ1 (wpn(ts 7 + 7air1)) — Hox (wanlt, = + 7aisr)) )]
x Ly (T(L, ) (wa(t, 4+ 7 m41)) -
To simplify the estimate of this function, we are going to estimate separately the functions
Lavirza(ta) = = U (Hoa (waaltw + ragia)) = oo (0t =2 +7a000)
— U® (Ho (wp(t,x + TMH)))}Ll (0t -)) (wag (t, 2+ 7p111))
and
Latsaalt;a) = U (Hou wult o + raasn)) = Ho (waalt, =2+ 7aa11)) )
_y® <¢M,v,o(t, x)ﬂ Ly (T(8,)) (wma(ts 2 + 7asn))

we also recall that U®)(¢) = 2 — 24¢% + 30¢™.

First, from Taylor’s Theorem, we have

Ls12.1(t,x)
=L (I(¢,-)) (wm(t, © + 7pr141))
6 (_1)(3’-1)

+2.

= U —2)!

U® (Hoy (wp(t, x4+ 7a111))) Hox (waq(t, —2 + rags))

uv (Ho,u (wag(t, o +71p041))) Hop (waq(t, —2 + TM+1))j_2
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Next, from estimate (3.179) and Lemma [3.3.6, we have for any f € S, and m in NU {0},
and 7 € N that there exists ny € N satisfying

|| By Flwmt,z+ran)) (Hop (wam(t, @ + i)™ Hoq (wm(t, —z + TM—H))Zj]

H;
1
Sotmag 7 (10 () + o) A,

for any s > 0 if 0 < v < 1. Therefore, using Lemmas |3.3.4} [3.5.5| identity (3.166]), estimate
(3.179) and the product rule of derivative, we deduce

Ls12.1(t,x)
omea L (T(t ) (war(t, @ 4+ 7ags1)) UP (Ho (wamn(t, @ + rpgi1))) Hop (wam(t, —2 + ragg))
~ontra L1 (T(t, ) (wa(t, 2)) UP (Ho (wpg(t, 7)) Hox (wm(t, —2)) -

Moreover, since ‘di—kk {H{)}l(l’) — e‘/éf”} <t min (62‘/51’,6‘/5”3), we can verify using Lemmas
13.2.1} 13.3.4} [3.3.6| and estimate (3.200)) that

£M+1,2,1(75, -73) Somtaln (F(t> )) (wM (ta 55)) u® (Ho,l (U)M (ta w))) €ﬁwM(t’_x)

1 _ 4?2

Somaals (D(t, ) (wam(t, ) U® (Ho1 (wm(t,x))) e~ V2um(ta) exp (W)

) mpaln (D(t, ) (wpa(t, ) UD (Hox (wpg(t, x))) eV 2wambe) =v2de),

i’LM+17271(t,x)“H§ < g vPMH2 (|t|v Tl (%»”M o—2V2ltl

Next, let wyq1 : R? — R be the unique function satisfying
+

SO

Wi (L, ) = wag(t, x + 1pq41(2)), for all (t,2) € R2. (3.203)

Since we are assuming that Theorem [3.5.1] is true for £k = M, Lemmas |3.3.6], and the
following identity

2) (¢M,v,0(t7 x)) —y® (HwM+1( ,x)) + e—ﬁd(t)U(i*») (HwMJrl(t’ x)) GUMHL () x)

+US (Ht (8,2)) [Ton (08, wpgi (8, 2) = Taa (08, warsa (£ —2))
6 1

+2

j=4 (] - 2)'

j—2

U9 (Hyt ' (t,2)) [moolt, ) — Hyt™ (1, 7)]
imply

Li (Dt ) (wa(t, 2 + 70011)) UP (dptwo(t, )
~opea U (H3 4 (t,2)) Ly (D) (Wt @+ Tnsn)
e VPHOUD (Hy (¢ 2)) G (8 ) Ly (D1 )) (waa(t @+ Tag)
Thus, we obtain that

Lani22(t ) Zops —e VIOUD (HE (£ ) G (8, 2) Ly (D(E ) (wadt, @+ Tae) -
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Indeed, using Lemma and estimates (3.179)), we deduce from the estimate above that
Latiralty®) Zopges —e~VHOU (HE(1,2)) G2 (1) Ly (Dt ) (wpalt, ).
Furthermore, Lemmas [3.5.5 and [3.3.1] implies, for any 1 < i < Ny,

[sw (\/_vt) —V2d( t>} p2MF2H (WU St n (i))nM =2Vl

for all [ € NU {0}, if 0 < v < 1. Also, Lemma implies if f € S, then there exists of
no € N satisfying

d'
dtt

(t,0)) G (wa(t, x)) Hox (wan(t, )" Hoa (waa(t, =)

e @

Ha

1
Ss,a,m UQH <ln ( > + |t|v> —Qﬁ\ﬂv’

for all s > 0, every [ € NU {0}, and any « € NU {0}, 5 € N with a+ § odd, if 0 < v < 1.

By similar reasoning, if f € ST, there exists ng € N satisfying

(t,)) G (wa(t, =) Hoa (waa(t, )" Ho (w(t, —z))’|

H ot H

x

1 no
Ssapi v <1n <> + |t|v> =22l
v

for all s > 0,1 € NU{0} and any «, 8 € NU {0} with o + 8 odd, if 0<v < 1. Therefore,
using the estimate above, inequality (3.167)) and the inequality

/9]

e So 1]

HETL 9] HETL

for any f, g € #(R) and all s > 0, we deduce that
L2t 7) Zopes —eV2OUS (Hyy (wpa(t, 7)) G (wm(t, ) Ly (T(t, ) (wm(t, ).

As a consequence, we obtain that

8l
H £M+1 Q(t .T)

1Y) "
o Seq M2 (!ﬂv +In <)> e 2Vt (3.204)
v

H3

and

Lot ) Zonra —e V> OUE) (Hoy (wp(t, 2))) G (waa(t, ) Ly (T, ) (waa(t, )
+e VHOL () (W, 2) U (Ho (wn(t, x))) e V2emlt,
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Step 8.(Estimate of A(¢r141,0).) From the equation (3.186]) and the conclusions obtained in

all the steps before, we deduce

Alpmr1)(t ) = AMdpmy1,00)(t, @)
g2/\/H-4_F <t7 w/\/l(t7 ZL’)) +T (t7 Wm (tv —1’))
_de? YO
1= d02 07 ™ Y T TG0 02 o
S () (waa(t2) + s (00, ) (oaa(t, )
e VHOL (D(E ) (wan(t 2) U (Hos (wiat, @) e 2ot

(I'(
—e VO L (Tt ) (wp(t, —2)) US) (Ho (wp(t, —x))) e~ V2em(t)
—eVHOUE) (Hy s (wpm(t,2))) G (wm(t,z)) Ly (T, ) (wml(t, 7))
+e VHOUE) (Hoy (wp(t, —2))) G (wm(t, —2)) L (D(t, ) (wa(t, —)) .
Furthermore, from and the estimates of L1 for 3 < j <6, we deduce

Ly (T'(t,-)) (y)

A(Prma1,00) (L, )
> rmia N (@) (£, ) + 2V 2 ppgr (e V24O [240M“M (¢, ) — 30N (¢, 7))
,\[ t
P (Be PO 24 (M) (t,2) = 30 (N')™ (¢, )]

d(t)?
==

+TM“<t)6ic ([_g@) +U® (Ho.,) g]w/\/l (t,ﬂﬂ)) o~ V2d(t)

2 (e (0,2)) — Hy (s (1, 2]

d(t)?
1— %
P (B)d(t) 1,0 ,
‘fido [Ho (wae (t,2)) = Hyy (wag (8, =)
T4

from which with Remark (3.4.4) we deduce that

A(¢M+1,v,0)(t7 I)
= it N (@) (£, 2) + 2v/2r apgr (e V24O [240M“M (¢, ) — 30ONYM (¢, z))]
+8\/§7“M+1(t)€_\/§d(t) — P (t)d(t) < " )wM (t,x)

. H
1 B # 0,1
Pt (t) WM
+m (HO,I) (t, @),

4

We also have, from Lemmas |3.5.5] for all [ € NU {0} and any s > 0 that if 0 < v < 1,
then

|70 A (9200 ) =T st ) T 10t~

nm
gy w22 (|t|v +1In <1>> e~2V2liy,
v
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Therefore, from the estimates above, inequalities (3.204)), (3.179), Lemmas , and
Remark , we obtain that the estimate of Theorem is true for k = M + 1.

Furthermore, Lemma and imply that if h € SI, then we have for all [ €
N U {0} the following inequality

l
i < U2M+l
dtl :

~

177 Mm+1
In ] )
v

(h(wpm(t, 2+ ransa () = b (walt, 2)) , Hoy (wan(t, @+ maasa ()

Therefore, the estimates above, Remark , the ordinary differential equation (3.174)) sat-
isfied by 711 and estimate (3.179)) of the derivatives of ry 1 imply (3.148) for & = M + 1.
In conclusion, by induction on k, we deduce that Theorem is true for all k € N>y, [

Remark 3.5.10. From Theorem |3.5.1, we have that if v < 1, then
M

lim Y ry(v,t) ezists.
k=1

t——+o0

3.5.4 Proof of Theorem [3.1.2

Proof of Theorem[3.1.3 The Theorem implies the existence, for any k& € Nsy, of a
smooth function ¢y, (¢, z) and a even function r(t) € L>°(R) such that if v < 1, then

_ r Fot+r(t) x £ vt —r(t)
lim o(t,x) — H, —— | - H_ — =0,
t 400 | Prea(t, ) 0.1 < 1+ v? b V1402 H
, v o [z Fot+r(t) v / x vt —r(t)
lim ||Oyor.0(t, 2) £ ——=H, H | —F————" =0,
t—+o0 n(t, 7) 1 —? 0’1< V1+v? >:Fv1—U2 170( V14w L2

and lim;_, o |7(t)] < v?In (%) In conclusion, from Lemmal3.3.1, Remark|3.5.10{and Theorem
the function
In (v?) — In () ()
Qbk('l),t,l’) = Pk <t+ 2\/51] +sll>I—PooT,x
satisfies Theorem B.1.2] O
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Chapter 4

On the kink-kink collision problem for
the ¢ model
with low speed
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Abstract

We study the elasticity of the collision of two kinks with an incoming low speed
v € (0,1) for the nonlinear wave equation in dimension 1 + 1 known as the ¢°
model. We prove for any k£ € N that if the incoming speed v is small enough,
then, after the collision, the two kinks will move away with a velocity vy such
that |v; — v| < v¥ and the energy of the remainder will also be smaller than
v¥. This chapter is the continuation of the work done in Chapter 3 where we
constructed a sequence ¢y, of approximate solutions for the ¢ model. The proof of
our main result relies on the use of the set of approximate solutions from Chapter
3, modulation analysis, and a refined energy estimate method to evaluate the

precision of our approximate solutions during a large time interval.



4.1 Introduction

4.1.1 Background

First, we recall the potential function U(¢) = ¢*(1—¢?)? and the partial differential equation
(2°)
Go(t,x) — 020(t,x) + U'((t,2)) = 0.

From Chapter 1, we have verified that all solutions ¢(t,z) of in the energy space

preserve the following quantities

B(on) = [ LAtD] 4 [0:00. )

P(¢) :—/R@tgb(t,x)(")xgb(t,x) dx. (Momentum)

+ U(o(t,z)) dx, (Energy)

We also recall the kinetic energy and potential energy, which are given respectively by

Ban@®) = [P0 p)0 = [ ZEIE o, an

We recall that all the kinks associated with the partial differential equation are given

by the space translation of the following functions

eﬁx _e—\/ix

————— Hoio(2) = —Hoi(—2) = F———,
V1 ever V14 e 2o

and the anti-kinks are the space translation of the following functions

6_\/536

V1i+ e2V2

From the previous chapters, we recall the following identity

Hoi(z) =

_ V2

\/1+e2‘@”.

Hio(z) = Ho1(—2x) = Ho_1(x) = —Hpa(z) =

2

H(ZUHOJ(:B) p = 2\1/5, (4.1)
and the following estimates for any k£ > 1
dk
%HOJ(Q?) <k min (eﬁm, 672\&36) , (4.2)
and
|[Ho ()] < e¥2mint0), (4.3)

In this chapter, we study the traveling kink-kink solutions of with speed 0 < v < 1

small enough. More precisely, we consider the following definition.

Definition 4.1.1. The traveling kink-kink with speed v € (0, 1) is the unique solution ¢(t,x)

that satisfying for some positive constants K, ¢ and any t > K the following decay estimate

H(¢<t7$)73@(t,m)) — ]—707_; <M> _ }TJO (Hmﬁ)

<e 4.4
N N < (44)

Hg (R)x L3 (R)




where, for any —1 <v <1 and any y € R,

170—1> <$ — vt+y> _ _ Ho, /(?f_t—;?) ] (4.5)
BNV oy ()]
m(m—i—vt—y) _ Hfl,(]/ (%)7 ] . (4.6)
TNV A (GER)

The existence and uniqueness for any 0 < v < 1 of solutions ¢(¢, x) satisfying (4.4) was
obtained in [8], but the uniqueness of the solution of satisfying for 0 < v < 1

— — ([ v —vt - ([ x+uvt
I t,x) — Hoy | —— | + Ho1o | ———
HT‘OOHM z) = Hox (m) 10 (m)

is still an open problem. For references on the existence and uniqueness of multi-soliton

=0

HlxL2

solutions of other nonlinear dispersive partial differential equations, see for example [38] and
[12).

For non-integrable dispersive models, there exist previous results about the inelasticity of
the collision of two solitons. For example, in the article [41], Martel and Merle verified that
the collision between two solitons with nearly equal speed is not elastic. More precisely, they
obtained that the incoming speed of the two solitons is different of their outgoing speed after
their collision.

Since the ¢° model is a non-integrable system, the collision of two kinks with low speed
0 < v < 1is expected to be inelastic. More precisely, we were expecting the existence of a
value k > 1 such that if 0 < v < 1 and ¢(¢,x) is a solution satisfying the condition
, then ¢(t, x) should have inelasticity of order v¥, which means the existence of t < 0
with [t| > 1 such that

(6(t,2), Di6(t, 2)) = Ho, (x ot & yl(t)) +H o, (m — ot yz(”) Fro(tz), (47)

V1= 3 V1= 3

with v* < o) || g1 ryxp2 ) << v and vg(t), y1, yo satisfying

k .
t) — (1 4.
vt < Jup(t) v|+jg§}§}lyy()|<< v, (4.8)

for all t < 0 satisfying || > 1. Actually, in the quartic g KdV, the collision of the two solitons
satisfies a similar property than our previous expectations in and , see Theorem 1
in the article [4I] of Martel and Merle for more details.

However, in this chapter, we prove for the ¢°® model and any & > 1 that if 0 < v < 1 and
t is close to —oo, both estimates and are not possible. Indeed, we demonstrate
that if v < 1 and ¢(t, z) satisfies , then there exists a number ey 2, € R satisfying, for

all ¢ close to —o0,

— t—eraw )|  — (1 — vyt v
(6(t, ), Dp(t, ) = H) (“”f )+H (m ot “’“’2)+m,v<t,x>,

VA V1—v7
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limsup, oo [7e0 (Ol g1z < v and

limsup |vy(v,t) — v| < v, (4.9)
t

In conclusion, the inelasticity of the collision of two kinks cannot be of any order v* for any
1 <« k € N, if the incoming speed v of the kinks is small enough. The problem to verify
the inelasticity of the collision of kinks for the ¢® model is still open. But, because of the

conclusion obtained in this paper, the change |v — vy| in the speeds of each soliton is much

smaller than any monomial function v*, more precisely for all & > 0
. : ‘Uf (U7 t) _ Ul
lim 1 — =0 4.10
1)1>I(I)1+ tIEEip vk ’ ( )

which is a new result.

The study of collision of kinks for the ¢° model is important for high energy physics, see for
example [I7] and [14]. Actually, in the article [17], it was obtained numerically the existence
of a critical speed v. such that if each of the two kinks moves with speed v with absolute
value less than v, and they approach each other, then they will collide and the collision will
be very elastic, which is exactly the result we obtained rigorously in this chapter. The study
of the dynamics of multi-soliton solutions of the ¢® model has also applications in condensed
matter physics, see [3], and cosmology, see [62].

For other nonlinear dispersive equations, there exist rigorous results of inelasticity and
stability of collision of solitons. For g KdV models, the inelasticity of collision of solitons was
proved for the quartic gKdV in [41], and, for a certain class of generalized g K dV, inelasticity
of collision between solitons was also proved in [49] and [50] by Munoz, see also the article
[39] of Martel and Merle. For nonlinear Schrédinger equation, in [53], Perelman studied the
collision of two solitons of different sizes and obtained that after that the solution does not
preserve the two solitons’ structure after the collision. See also the work [42] by Martel and
Merle about the inelasticity of the collision of two solitons for the fifth-dimensional energy

critical wave equation.

4.1.2 Main Results

The main theorem obtained in Chapter 4 is the following result:

Theorem 4.1.2. There exists a continuous function vy : (0,1) x R — (0,1) and, for any
0<6<1andk e Ny, there exists 0 < §(0, k) < 1, such that if 0 <v < (0, k), and ¢(t, )
is a traveling kink-kink solution of with speed v, then there exists a number e,y such

nl 2—0
that |e, | < In (U%) and if t < —%, then vy (v,t) —v| < v* and

T — €py +vrt T+ ep, — vt
o (=) s (et

v / T — €y + vst v / T+ ey — vt
o)t () (e

V1 —v3 0

+ < o

LZ(R)



()20 (1)’
]f#StSM, then

v

T — e, +ut T+ e, — vt
) s () (=)

V1—1? Vv1—1?

H}(R)
< ok

n 8¢(t ) v I T — ey + vt n v I T+ ey — vt
ST — —— _ _—
! V1I—o2 V1—1? Vi—e2 V1—1? L2(R)

Clearly, Theorem implies (4.10)). Actually, the first inequality of Theorem is
a consequence of the second inequality of this theorem and the following result about the

orbital stability of two moving kinks.

Theorem 4.1.3. There exists a constant ¢ > 0 and, for any 6 € (0,1), there exists §(0) €
(0,1) such that if 0 < v < §(0), and (uy(x),us(x)) € HL(R) x L2(R) is an odd function
satisfying

||(ulvu2)||H;ng < U2+9v (4.11)

and yo > —41Inw, then the solution (p(t,x), 0yp(t, x)) of the Cauchy problem
Go(t,x) — 3o(t.x) + U'((t,2)) = 0,

{ #(0,x) ] _ [ Hy (%) +H_qp ( x1+y32) + uq () ] (4.12)
20(0,2)] | Tz Hon (F) + 7 Hono () + w(@)

is given for all t > 0 by

l¢<t,x>]:{ ng«%

T

B 5 (4.13)
at¢(t,$) = v2H V102

+H 19 (’ﬁy(qf%) + 1 (t, x)
+ i oo (755) + a(t )|

such that

19(0) = yol + 11 (t 2), balt, 2) | g1,eze <ellr (), ua(@) s + L+ yo)2e 2%,
9(t) — vl <c (i (@), ua(@) | s +coV?0ys,  (4.14)

for allt € Rxo.

4.1.3 Notation

In this subsection, we explain the notation that we are going to use in the next sections of
Chapter 4.

Notation 4.1.4. First, for any real function f : R* — R satisfying the conditions f(t,-) €
L(R), and 8,f(t,-) € LX(R), we denote the function J : R2 — R by

7(t,:x) = (f(t,z),0.f(t,x)), for every (t,x) € R2.
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Nezxt, for any subset D C R, any v € (0,1) and any function y : D — R, we define the
functions Ho14y : DXR =R H_ 19,,:DxR—R? by

() |

—
HO,I,v,y(ta l’) =

—v ’ (vater(t)
e Hoa (e
H_i, w
H—l,O,v,y(ta l’) - v / ( my)(t)
Ve oo (e
H o (S5°)

We say that two non-negative functions fi(aq,...,an,z) and fo(oq, ..., an, x) both with
domain D x R C R"™ satisfy fi Sa,
that

an f2 if there is a positive function L : D — R>q such

.....

filaq, .., an, ) < L(ag, ..., ap) falag, ..., an, x) for all (oaq, ..., am, ) € D X R.

Moreover, for any s > 0, we consider the norm ||-|| ;s given by
x

I.f]

we = Wl = ( [+ 12| f@)P o) for any f € HER)

where f is the Fourier transform of the function f.
Finally, for any n € N and any a, b € R™, we denote the scalar product in the Fuclidean
space R™ by

b> = Z a;bj,
j=1

where a = (ay, ..., a,) and b= (by,...,by) .

4.1.4 Approximate solutions
We recall the following definition and theorem from Chapter 3.

Definition 4.1.5. We define A as the nonlinear operator with domain C*(R? R) that satis-

fies:
A1)t ) = u(t,x) — 0in(t, ) + U (1 (t,x)),

for any ¢1(t,x) € C*(R?,R).

Theorem 4.1.6. There exist a sequence of functions (¢r(v,t,)),5, , @ sequence of real values

d(k) > 0 and a sequence of numbers ny € N such that for any 0 < v < 6(k), ¢r(v,t, x) satisfies

Jim ‘%(U t,x) — Hoy (%) —H 9 (%) =0,
tLiznoo ‘ o(v,t,x) — Hoy (%) — H_14 (f ;%%—;m) _o,
Jim 0, pp (v, 7) — \/112_71%1 <$ T/%M) + 11}_ - H._ (x T/;}t_;;vk> =0,
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with e, € R satisfying
In (%)

Euk — V2
lim ——————
=0 o[l o)
Moreover, if 0 < v < d(k), then for any s > 0 and | € NU {0}, there is C(k,s,l) > 0 such
that

=0.

: n
ot < st (s () e
v

ot

H3(R)

From Chapter 3, we recall the Schwartz function G defined by

—V2z ﬂx \/5:5
e xe e
:+2V2
2

Glr)=e V- ——— +k
(@) (1 + e2v22) (1+e2v2r)d (14 e2vin)§

for all x € R, where k; is the unique real number such that G satisfies <g(:1c), Hé,l(x)> = 0.
Moreover, we recall identity [3.7]

P2

da?

Next, for any v € (0, 1), we recall the function defined in Chapter 2 and consider

G(x) + U (Hoy(2))G(x) = |~24Ho, (x)” + 30Ho 1 (2)*] €™V + 8v2Hy, ().

1
d,(t) = 7 In <U82 cosh (\/ivt)2>, for any t € R.

From the statement of Theorem of Chapter 2, we have that the function d, describes
the movement between two kinks for the ¢° model during a large time interval when their
total energy is small and their initial speeds are both zero.

Furthermore, from the proof of Theorem [3.5.1] in the previous chapter, we can construct
inductively an explicit sequence of smooth functions (¢ ) keNs,, and, for each k € N>, there
exists a real number 7, satisfying |7 ,| < ? In (v%) such that ¢y (v,t,z) = @k (t + Thp, T)
satisfies Theorem for all £ € N>o. More precisely, the statement of Theorem is the

following:

Theorem 4.1.7. There exist a function C : R* — Rsq, a sequence of approzimate solutions
Yro(t,x), functions ri(v,t) that are smooth and even on t, and numbers ny € N such that if

0 <v <1, then for any m € N>,
n om
(v, 1)) < k1) (ln 1) g ’mmr’f(v’t)‘ < 2(k=1)+m

C(k,0,0,0) = " C(k,0,1,0) =

1 nk
In— + |t|v] eV (4.16)
v

Yro(t,x) satisfies for py(v,t) = —d“’T(t) + (v, t) = —d“T(t) + ci(v,t) the identity

_ z + pi(v,t)  — (v, 1)
nlt.) =Hy, (ﬁ Nl Wiy v
4

4

r + pr(v,t —x + pr(v,t
L VIO | g pk( 2) G p@( 2)
1 - ©@®? 1 w®?

4 4
t — t
R (o, EEE DY) T k() (4.17)
’ 1 — du()? ’ 1 _ du®?
4 4
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the following estimates for any | € NU{0} and s > 1

1
AMoro(ts)| < C(k, 5,1, 1)0 {m( ) + |t|v} o2Vl (4.18)
8251 s V2
and
d' , t 1 et
R A L | B A Y R T e
dt! ’ "\ dvit) )3 v?

(4.19)
where Ry(t,x) is a finite sum of functions py ;. (t)hii(x) with hy,; € (R) and each py ;. (t)
being an even function satisfying, for all m € N,

d™ pr.iw(t) 1 22
S LERAVA 1 Il
‘ D) < (i, 0,m, 300t (1n () + \t|) ,

where ni; € N depends only on k and 1.

Remark 4.1.8. At first look, the statement of Theorem seems to contain excessive
information about the approximate solutions py,(t, z). However, we are going to need every
information of Theorem[4.1.7 to study the elasticity and stability of the collision of two kinks
with low speed 0 < v < 1.

4.1.5 Organization of Chapter 4

First, from the global well-posedness of the partial differential equation (¢), we recall that
if ¢ is a strong solution of with finite energy satisfying lim, 4., ¢(to, z) = 1 for some
to € R, then the function ¢ satisfies

l¢(t, 2) = Hoa(x) = Ho1o(2)l gy < +00,

for all t € R.
In Section [4.2] using the notation of Theorem [.1.7, we are going to verify that any

solution of with finite energy close to a sum of two kinks can be written as

M) 1 (;p o) ck(v,t))

¢<t,$) = on,v(tvx) +

PO o ()2
1 4 1 - 4
dy (%)
ya(t) , —r — 5=+ cx(v,t)
+ o Hy, ( AT +u(t,x), (4.20)
4 4

such that, for any ¢t € R, u(t) € H(R) satisfies the following orthogonality conditions

duo(t)
;o [x— + ci(v,t)
) dv(t)Q
V1 — 2

do(2)
o[ —r = 2+ (v, t)
<u(t,:c), Hy, ( 12 PNBE )> = 0.




Moreover, using A(¢) = 0, we can verify that y;, y» € C?(R). Furthermore, using the formula
(4.20]), we will estimate A(¢)(t,x). More precisely, we estimate the expression A (¢) (¢,z) —
A (prw) (t, ), in function of y1 (t), y2(t), dy(t), u(t, z) and the estimate of the term A (¢y,) (¢, )
will follow from the main results of Subsection about the decay of approximate solu-
tions. The function ¢ (v, t) will not appear in the evaluation of A(¢)(¢, x), since we are going
to use only its decay.

Next, in Section , we are going to construct a function L(t) to estimate |[(w(t), Opu(t))|| g1 12
during a large time interval. The main argument in this section is analogous to the ideas of
Section [2.4] of Chapter 1. More precisely, for

— &0 4 gy (v, 1)
1 dq,glt)Q

Wiy (t,x) =

we consider first
Ly(t) = / duu(t, x)* + dpu(t, x)? + UP (Hoy (wio(t, ) — Hoy (wio(t, —2))) u(t, z)* da.
R

From the orthogonality conditions satisfied by w(t,x), if v < 1, we deduce the following
coercivity inequality

(), Q) 1112 S La (D).
The function L(t) will be constructed after correction terms Lo(t) and Ls(t) are added to

Ly(t). The motivation for the usage of the correction term Ls(t) is to reduce the growth of

the modulus of the following expression
2 / 07u(t, x) — Dult, ) + UP (Hoy (wio(t, ) — Hoy (wio(t, 7)) ult,z)| dyu(t, z) do
R

in L (t). The time derivative of Ly(t) will cancel with the expression

0

.| 0 o 0.20) = o G100 2
R

from L (t). Finally, under additional conditions in the growth of the functions (), y2(t), if

0 < v < 1, the function L(t) = ?:1 L;(t) will satisfy for a constant C(k) depending only

on k the following estimates

L8] S 1), etz
0. B0y 1 SO + O™ (1)

for all ¢ in a large time interval, ny, is the number denoted in Theorem [4.1.7] Therefore, using
Gronwall Lemma and the two estimates above, we are going to obtain an upper bound for

|(w(t), Opu(t))|| g1 2 When t belongs to a large time interval.

%
In Section , we are going to estimate H o (t) — M(t)‘ ., during a large time in-

Hlx
terval. This estimate follows from the study of a linear ordinary differential system whose
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solutions ¢, 7o are close to y;, y2 during a time interval of size much larger than %(”) and
from the conclusions of the last section. Indeed, the closeness of the functions ¥y, yo with
71, U during this large time interval is guaranteed because of the upper bound obtained for
[[(w(t), 9eu(t)|| 12 from the control of L(t), which implies that yi, y» will satisfy an ordi-
nary differential system very close to the linear ordinary differential system satisfied by
and ¢s.

In Section [4.5] we are going to prove Theorem [£.1.3] the proof of this result is inspired
by the demonstration of Theorem 1 of [31] and Theorem 1 of [44]. This result will imply in
the next section the second inequality of Theorem [£.1.2] In addition, the main techniques
used in this section are modulation techniques based on Section 2 of [31] and based on [44],
the use of conservation of energy of ¢(¢, z) and the monotonicity of the localized momentum
given by .

P00, 00(1) = = [ 99(t,2)0,0(t. ) dr.

Finally, in Section [4.6] we will show that the demonstration of Theorem is a direct
consequence of the main results of Sections [.4and [£.5] For complementary information, see
Section and Section of the Appendix.

4.2 Auxiliary estimates

First, we recall the following lemma from Chapter 3.

Lemma 4.2.1. In notation of Theorem for 0 < v < 1, let wg, : R? — R be the

following function

and let f € LP(R) be a function satisfying f € S (R). Then, if 0<v < 1, we have for any

l € N that l

0
o (ot )

is a finite sum of functions qxp;.0(t)hi (Wi (t,x)) with each h; € L (R) and any qi1.(t) is a

EREAE]

smooth real function satisfying

||Qk7l,i,v HLOO(R) 5 Ul'

Furthermore, if 0 < v < 1, we have for alll € N and any s > 0 that

al
|5t (e

l
§k,s,z v
H3

Moreover, we are going to use the following result several times in the computation of the

estimates of this chapter.
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Lemma 4.2.2. For any s > 1, we have for any functions f, g € ./ (R) that

1 f9]

@) Ss 1 ez 190 ge + gl 171 e s 1N g 191 g -

As a consequence,
19l gz Sso I1f]

Jrans 9] HtL

for all s > 0.
Proof. See the proof of Lemma A.8 in the book [61]. O

In Chapter 4, to simplify our notation, we denote d,(t) by d(t), which means that

d(t) = \}5 In (52 cosh (\/ﬁvt)z). (4.21)

In Lemma 3.1 of [46], we have verified by induction the following estimates
[d(t)| S v, and for any I € Nu, |d0(¢)] < v'e 2V, (4.22)

From now on, we consider for each k € N>, the function ¢y ,(t, z) satisfying Theorem .

Next, for Ty, > 0 to be chosen later, we consider the following kind of Cauchy problem

{afgb(t, x) — 2¢(t, ) + U (4(t,z)) =0, (4.23)

||(¢(TO,/€’ Qf), at¢(T0,k7 33)) - (¢k,v(TO,k7 ':E)v 8t¢k7U(T0,k‘a x)))HH%xL% < USk'

Our first objective is to prove the following theorem.

exist C1(k) > 0, dgg > 0 and n € N such that if 0 < v < 69 and Toy, = 32k ln(”2), then any
solution ¢(t,x) of (4.23)) satisfies:

1\ t— T
169029, 860,2)) = (90821 s ) sy < ColR)e2 (1) " enp (00

Zf 2—0
1

|t—To,k’ < 7<1n v) .
v

Clearly, we can obtain from Theorem [£.2.3] and Theorem [£.1.7] the following result:

1
4>

a(L
Ci(k) > 0, 0k9 > 0 and nx € N such that if 0 < v < 09 and Ty = %%1 (U”2), then any
solution ¢(t,z) of

Corollary 4.2.4. There is a constant C > 0 and for any 0 < 0 < 7, k € Nx3 there exist

0;o(t, ) — 02o(t, ) + U (¢(t, 2)) = 0,
H(gb(TU,k’x)v 8t¢(T0,k7x)) - (¢k(U’T0J€7x>a atqbk‘(”ﬁ TO,k,x)))||H%><L§ < v
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satisfies

1(6(t,2), Db(t,2)) = ({0, 1,2), Ddn(0, 2 12 < Culh)e ()" exp (o'ﬁ—f)') ,
(4.25)

Zf 2—0
1
£ — Tyl < &

Proof of Corollary[{.2.4 Tt follows from Theorem and Theorems [4.1.6] [£.1.7] O

With the objective of simplifying the demonstration of Theorem [£.2.3] we are going to
elaborate on necessary lemmas before the proof of Theorem [£.2.3] From now on, to simplify
our notation, we will use d(t), cx(t) in the place of d,(t), cx(v,t) respectively for any k € Nxo,
every t € R and v € (0,1) small enough. For any k € Nx,, We also consider the following
function

— 40 4ot
v 5t ), for all (t,x) € R, (4.26)

Wiy (t,x) =

Moreover, we denote any solution ¢(¢, z) of the partial differential equation (4.23)) as

01t:0) = pualt )+ i (0042 G (ot =)t ), (427
such that
(u(t,z), Hoy (wio(t, 7)) = (ult,z), Hq (wy,(t,—x))) = 0. (4.28)

Furthermore, since Theorem implies that (j(t) = d(t) — 2¢,(t) > 1 when v is small
enough, we deduce from the orthogonal conditions (4.28)) satisfied by w(¢,x) the following
identity

|fU1 (t)] — M, (t)fl [< <¢<t7 33) - Sok,v(tv ZU), H(/),l (wk,v(ta x))> ] . (4.29)

yz(t) ¢(t7 {L‘) - ka,v(ta JI), H,—I,O (wk,v<t7 _l‘))>
where, for any ¢t € R, M(t) is the matrix denoted by

23 <H(,),1(37 - <k<t));H/170(SU)>]

2

!

<H(l),1($ - gk(t))aH—1,0($)> HHo,l

which is uniformly positive since (i (t) > 1.
Moreover, since ln% < ( when v > 0 is small enough, we obtain from Lemma that
<H(l)71(x — (1)), H’_170(x)> < 1. Therefore, since the matrix M (t) is a smooth function with
domain R, then M (¢)~! is also smooth on R.
Next, for ¥(t,z) = ¢(t,x) — pi(t,z), we obtain from the partial differential equation
that ¢ (¢, x) satisfies the following partial differential equation
0’ 0’ 5 U9 (prolt, @)

@ (t’ l‘) — @@D(t, ZE) + A(S@c,v)(tv J}) + Z

> -1 Y(t, 2yt =0. (4.30)
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Since ¢y, satisfies Theorem and the partial differential equation is globally well-
posed in the energy space, we can verify for any initial data (yo(z),¢1(z)) € HLX(R) x
L2(R) that there exists a unique solution (¢, z) of (4.30]) satisfying (¢(0,x),du(0, 1)) =

(Yo(x),1(x)) and
(6(t,2), 000 (t,2)) € C (R HL(R) x Li(R)). (4.31)

Therefore, for any function h € .#(R), we deduce from (4.30)) that

d
@t 2), b)) = (@olt, ), h(a)).

d2

@ W(t’ I), h(&?» = <8a; (tv .Z’) - A(¢k,v>(t> x) - U/ (@k,v(ta JZ) + w(ta x)) + U/ (Sok,v(ta l‘)) ) h<x)> ’

which implies that the real function P, (t) = <1/J(t, x), H(/M (w2, SB))> and the real function
Pa(t) = <77/}(t,1‘), Hl—l,O (w2, —x))> are in C%(R). In conclusion, using equation (4.29)) and
the product rule of derivative, we deduce that y;, v, € C*(R).

In conclusion, we obtain the following lemma:

Lemma 4.2.5. Assuming the same hypotheses of Theorem[[.2.5, there exist functions yi, ya
R — R of class C? such that any solution ¢(t,x) of ([4.23) satisfies for any t € R the following
identity

Y2 (t) :

n() o Hyy (wyo(t, —2)) + ult, ),

iz o ()
4 4

gb(t,l’) = Spk,v(ta CL’) +

where (u(t), du(t)) € HX(R) x L2(R) and the function u satisfies the following orthogonality

conditions:
(u(t,), Hyy (wyu(t,7))) =0,
(ult,x), Hy, (wiu(t, —2))) =0,
Remark 4.2.6. Using Lemmas|4.2.1, |4.2.2, |4.2.5 , A(¢) = 0, Theorem Remark[3.5.5
and identities H(3)( ) = U® (Ho(x)) Hy, (), d(t) = 16/2e~V20)  we can deduce that u

satisfies the following partial differential equation

A (o) (8, 2) + Ofult, x) = O7ult, z) + U (pru(t, 7)) ($(t,2) = pro(t, )

i (t) / Ba (1) : Y1 (£)8y/2e— V20
+11d(t)H01 (Wi (t, x))+12d(t)2[—[071 (Wi (t, —1)) — 2 - HSY (wy (L, 7))
_ yC _ 42
£)8v/2e~V2d(®) U (t)d(t t
ll >1 d(t)? HO i (wro(t, —2)) = 11< )d(E)Q) H(g?l) (wko(,t)) — ) bt )d(E)Q) Ho (wro(t, —))

4 4 4

(2) wr (£ 2N ) (Hyy (wplt, —
wa(ngfnﬁmwww%mﬁfwﬁjé Dty (il )

= O(t,x), (4.32)
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where Q(t,-) is a function in HL(R) satisfying for allt € R

6

2
10t )l sey S Ity + ey + mavs Js (O + mas [3,(0)

g 9501+ 0 s 0] 2 (i () + o) 2

je{1,2} je{1,2}

if v > 0 is small enough.
Next, from equation of Remark , we consider the terms
yi(t) /

Yi(t,2) = [UP (pro(t,2)) = UP (Hoy (wro(t, 2))] = T o (Wea(t, 2)) (4.33)
Ya(t, @) = [UP (pro(t, ) = UP (Ho (wrolt, —2)))] %Hé 1 (Wio(t, —2)) . (4.34)

Now, we will estimate the expressions

(Ya(0), Hoy (wien(t,))), (Ya(t), Hoy (wia(t, —2))) -

Lemma 4.2.7. In notation of Theorem[{.1.7] and Lemmal[{.2.5, the functions Y1(t) and Y(t)
satisfy

!

(Yi(t), Ho,y (win(t, 7)) =422y, () + 41 (t) Resy (v, 1),
(Ya(t), Hy (wio(t, ) =—4v/2eY* Dy (t) + y(t) Resa (v, 1),

where, for any j € {1,2} and all v € (0,1), the function Res;(v,t) is a Schwartz function on
t satisfying for any 1 € NU{0}, if 0 < v < 1, the following estimate

ln<1> |t|v] g2Vt (4.35)
U

for a number n, > 0 depending only on k € Nxo.

0 Res;(v,t)] < ot

I
i

Proof of Lemma[{.2.7. First, we observe that

d d v
f 2d(t
dtl (t) 7dtl — sech (\/_Ut)

Using Taylor’s Expansion Theorem, Theorem [4.1.7| and Lemma [4.2.2) we deduce that

51 U2+le—2\/§|t\v.

U® (grolt, )
=U" (Ho, (wy(t, x)) = Ho (wr(t, —)))
+eVMOUD) (Ho 1 (wio(t, ) = Hox (wio(t, =) [G(wio(t, 7)) = Glwg(t, —))]
+resi (v, t, ),
where, if 0 < v < 1, res;(v,t,z) is a smooth function on the variables (¢, z) which satisfies

for some n, € N and any s > 0, ] € NU {0} the following inequality

< } U4+l

~S,

In ( = ) + |t|v] g2Vt (4.36)

resi(v,t, x)

[
o
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Therefore, using identity

U (pro(t, ) — UP (Hop(wpo(t, x))
= U (@ro(t,2)) = UP (Ho 1 (wio(t, ) — Ho (wio(t, —)))
+U® (Ho1(wiw(t,z) — Hop(wi(t, —))) — U® (Ho1(wyo(t,x)),

we obtain that

Yi(t,z)\ /1 — d(i)Q

= [UQ) (Hoa(wio(t, ) — Hog (wo(t, —))) — U® (Ho (w2, x)))} yi1(t) Hoy (weo(x,t))
Hyn (t)e VHOUD (Hyy (wyo(t, 7)) — Hox (Weo(t, —2))) Gw(t, 7)) Hyy (wio(t, )
—y1(£)eV2OUD (Ho 1 (wio(t, ) — Ho (wio(t, —2))) Gwio(t, —2)) Hy y (wi(t, 7))
+y1(t)resy (v, t, x)

(4.37)
By a similar reasoning, we obtain that
d(1)?

Yalt, o)1= =~

= U (Hou(wio(t, 2)) = Hoa (weo(t, —2))) = U (Ho (wio(t, —2))| y2(6) Ho,y (wreo(t, )
t, =) G(wio(t, ) Ho s (wio(t, —))
t, =) G(weo(t, =) Hy , (wio(t, —2))

(4.38)

where if 0 < v < 1, ress(v,t,x) is a smooth function on ¢, x satisfying, for some constant
e > 0, any [ € NU{0} and s > 0, the following estimate

4+1
Ss,l v
H;

1 Mk
In <> + \t!v] g2Vl (4.39)

V2

I
H @TeSQ(U, t,x)

Next, from the Fundamental Theorem of Calculus, we have for any ¢ > 1 that

U (His (@) + Hosolw)) = U (HG 1 ()] 0. HG (2)
1
=U® (H§,1(x)> H_l,o(:v)axHé,l(:E)+/o uw (Hé,l + 9H—1,0) (1—0)H_10(x)*0, Hg, (x) do,

from which with Lemma estimates (4.2)), (4.3]) and
dl

] [Hq,o(x) + efﬁx] e’\@”, e’3ﬂm)

<; min <

Y

we obtain that

<[U(2) <H§,1($) + Hfl,o(l’)) -u® (Hgl(x)ﬂ ang,l(gﬁ)a 81H8,1(95)>
— eV /R U® (Hoy(x)) Hy, (2)% > da + ress(C), (4.40)
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with ress € C°(Rx1) satisfying for all . € NU {0} and ¢ > 1
resi (Q)| S ¢ev™.

Next, since U € C*°(R) and we have estimates (4.2)), (4.3), we deduce for al ( > 1 and
any [ € NU {0} that

al
‘ S| H 10(z)].

3 [U(3) (Hgvl(x) + H_1,0(x>> -u® (Hgl(x))}

Therefore, since G defined in (4.15)) is a Schwartz function, Lemma implies that
int(Q) = (U (Hix(2) + Hor0(2) = U (HG1(2))] G = Q0 (2), 0uH5, (2)

satisfies for all ¢ > 1 and any | € N U {0} the following inequality ’int(l)(g)‘ <, eV,

Moreover, using the following identity
U® () = —48¢ + 120¢°, (4.41)

we can deduce similarly that

’

int5(C) = (U (H5y (@) + Hor0(2)) G(=2) H o), O, H 1 ()

satisfies ‘intg)(C)‘ < e V% for any I e NU{0} and ¢ > 1. As a consequence, we deduce that
there exists a real function int; : R>; — R satisfying for any [ € NU {0}

. [ —
int) (C)] eV,
where the function ints satisfies the following identity

<U(3) (Hé,1(l’) + H71,0(I)) Gz — ()833[{571(1’), 6?ng71(17)>
N <U(3) (Hg,1(17> + H—Lo(x)) g(_x)H(lJ,l(_x)’ 8$H§71(l‘)>
= [ U (Hos () Hy (26 (a) di + inty (). (4.42)

2 2
From Theorem [4.1.7, estimates ([#.22) and identity e~ V20 — % sech (\/§|t|v) , it is not
difficult to verify for any [ € NU {0} that if 0 < v < 1, then

d' ( 2p1,0(1) ) 241 _—2v/2[t]
—exp | —m——=| S v e v, (4.43)
dt! dw? | ™~

==

In conclusion, using estimates (4.37)), (4.40), (4.42) and Lemma of Appendix Section
[A-4], identity

Wiy (t,x) =

and Theorem [4.1.7} we obtain that Y;(¢) satisfies Lemma [4.2.7]
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The proof that Y3(t) satisfies Lemma is similar. First, from the Fundamental The-

orem of Calculus, we have for any real number { > 1 the following identity

(U@ (HSy(2) + Horo(@)) = U (Horow))] H. o)

= {U@) (H§,1<x)) - 2] H/—1,0(x) +U® (Hg,l(l")) H—I,O(I)H—1,0<x)

/

+ /0 1 (U (H§ 1 () + 0H 1 0(x)) — UD (0H_y 0(x))| Hor0(x)H 4 o()(1 = 0) db.

Therefore, estimates (4.2)), (4.3)), identity (4.41) and Lemma imply for any ¢ > 1 the

following estimate
i

10 (U (Ha(@) + Horo(w)) = U (Horo(@) = U (H, (2) +2, H’_1,0<x>axH§,1<x>>|

< CemVE L (4.44)
Similarly, Lemma and identity (4.41]) imply that the functions

int4(¢) = (U (H§,(x) + Horo(x)) Gla — QO H 4 o(x), 8:H;, (x)),
ints(¢) = (U® (H§(x) + H 10(x)) G(—)H, o(x), . H1 ()

satisfy the estimates
N L _
int) Q)] + [int§ ()| S eV, (4.45)

for all ¢ > 1 and any I € NU {0}. Therefore, from estimates (4.43)), (4.38]), (4.44), (4.45),
Lemma [3.2.1] and Theorem [4.1.7 imply that

(Yalt,2), Hoa (wenlt,2))) = wat) |
+ yo(t)resg(v,t), (4.46)

where resg(v,t) is a real function, which satisfies for some constant n, > 0, if 0 < v < 1,

4+l {ln ( 1 ) + |t|1}} —Qﬁ\ﬂv’
U

for all I € NU{0}. So, from identity (A.56) of Appendix Section, estimates (4.22]),

|r636 v, t

ot!

dl 2x - €T - X
'dxl [H,Lo(:c) e V2 } < mm( Var g=3V2 ) :
and Lemma we conclude the proof of Lemma for Ya(t). O

Remark 4.2.8. If v < 1, using the formula U®(¢) = 2—24¢* +30¢*, Lemmas
the estimates (4.36), (4.37), (4.38)) and (4.39) of the proof of Lemma imply for any
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s > 0 that

< 2 —2\f\t|v
e [195(0) g, <o max (1)’
< 3_—22|t|v 2 —2f|t\u
Jnax, 10:Y5 ()| s s n@g}!y (t)|v’e + Ig§§}|y (t)[v7e
2y, < 4 —2\/2|t|v 3_—2V2|t|v
25 [0, S T O™ + e i 0o

2 —2\f\t|v
+ max [;(t)]v"e

These estimates above don’t depend on k, because from Theorem [{.1.7 we can verify for any

[ € NU{0} the ezistence of 0 < dg; < 1 such that if 0 < v < g, then

o 1
‘ k(v t) Sio*n =,
ot L (®) v
which implies for any |l € N and any v < 1
d(t) d(t)
—— + (v, t)] <ol, =L —w< |— + cx(v,1)].
Uy T S

4.3 Energy Estimate Method

In this section, we are going to repeat the main argument of Section 4 of Chapter 2 to

construct a function L : R — R, which is going to be used to estimate the energy norm of

(u(t), Qpu(t)) during a large time interval.

First, we consider a smooth cut-off function y : R — R satisfying 0 < y < 1 and

49
\(z) = Lifzx < %00,
0,if v > 3.

Next, using the notation of Theorem [4.1.7] we denote

d(t i
:El(t):—(2)+ZT] (v,t), zo(t 2> Zr]
j=2 j=2
Actually, Theorem and estimates imply that

1
<o, In- S a(t) — ot
[max [2;(0)] S v, In S @a(t) — 21(t), max [i;(1)

From now on, we define the function y; : R> — R by

x — 11(t) )

xi(t, ) = x <$2(t) — )

Clearly, using the identities

2 —2v/2|t|v
| Swve :

(4.47)

(4.48)

(4.49)

(4.50)

g o) = —ii(t) o w—w(t) ) (@20) — @)@ —zi(t) [z —a(l)
o) zo(t) — x1(t) (m(t) - 561@)) (wa(t) — ()2 <x2<t) - xl(t)> ’
g ) - 1 o x— ()

8xX1<t’ ) z9(t) — x1(t)X (mz(f) - 901@)) ’



we obtain the following estimates

57

1o
v

(4.51)

[ Sou(ta)

L2°(R) L (R)
Finally, using the notation (4.27) and the functions Y;(t), Y5(t) denoted respectively by

(4.33) and (4.34), we define the function A : R? — R by

y1(1)8v/2e>0 ya(t)8/2e” V>

A(t,z) = —A(pr) (t 2)— HSY (wp(t, 7))~ H) (wye(t, —2))

d(t)? ) ' d(t)2
1 0 -
t)d(t 1o (t)d(t
Hitte) - Vit ) + PG 52 G ,00) + O 2 -7, 052
e o

for any (¢,z) € R2. Clearly, in notation of Remark [4.2.6] we have the following identity

Otu(t, r) — O%u(t, ) + U® (Ho 1 (wiw(t,z)) — Hoq (wio(t, —2))) u(t, x)

= O b )~ 2O G, ) + Al ) + Q02
] 02 ] A0

+ {U(Z) (Ho1 (wio(t,2)) — Hoy (wio(t, —))) — U (@p(t, x))} u(t,z). (4.53)
Next, we consider
= /R@tu(t, )2 4 Opu(t, 2)* + UP (Hoy (wro(t, 2) — Hoy (wio(t, —2)))) u(t, z)? dx
+2/R(9tu(t, 2)0u(t, x) [T1(t)x1 (¢, x) + 22(t) (1 — xa(t,x))] dx
—Q/Ru(t, x)A(t,x)dx. (4.54)
From now on, we use the notation u (t) = (u(t), dyu(t)) € HL(R)x L2(R). The main objective
of the Section 3 is to demonstrate the following theorem.

Theorem 4.3.1. There exist constants K, c > 0 and, for any k € Ns3, there exists 0 <
d(k) < 1 such that if 0 < v < §(k), then the function L(t) denoted in (4.54)) satisfies, while

the following condition

1N\ "
» 2k -
max o2y (0] + vl (1)) < o (In ) (4.55)

is true, the estimates

T Ol < £0) + O (1)
and
0] < 5 |gg 17 O + OO0 17Oz (7))

v max [75(0)] 1% @)1y + K max I () 17222 -

where C(k) > 0 is a constant depending only on k and ny is the number defined in the

statement of Theorem [{.1.7],
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Proof of Theorem[{.3.1. To simplify the proof of this theorem, we describe briefly the orga-

nization of our arguments. First, we denote L(t) as
L(t) = Li(t) + Lao(t) + Ls(t),
such that

Ly(t) = /R duu(t, z)* + Opu(t, ©)? + UP (Hy 1 (wio(t, ©) — Hoy (wiy(t, —2)))) u(t, z)? dz,

(L1)
La(t) =2 [ Buu(t, 20t 1) [ia (£ (8, 2) + (1) (1= xa(t,2))] (L2)
La(t) =—2 /R ult, 2)A(t, z) do. (L3)

Next, instead of estimating the size of ’L(t) , we are going to estimate L;(t) for each j €

{1, 2, 3}. Then, using these estimates, we can evaluate with high precision

’L1(t) + Lo(t) + Ls(t)

bl

and obtain the second inequality of Theorem [£.3.1] The proof of the first inequality of
Theorem [4.3.1] is short and it will be done later.

From identity (4.21]), Remark and equation (4.52) satisfied by A(t,x), we deduce
from the triangle inequality that

A 2)] 1 S A (k) (8, 2) | gy + 07220 Jmax [y (1) +v max [g;(t)].

Therefore, from Theorem and Theorem|4.1.7], we obtain the existence of a value C'(k) > 0
depending only on k£ such that if v < 1, then

A )l ey S CO (1 +lelo) €220 o2 V30 e [y,0) -+ v mma [3(0)].

’ " (4.56)

In conclusion, we obtain from and Cauchy-Schwartz inequality the existence of a value
C(k) > 0 depending only on k satisfying

1 Ttk
Lo(O)] S Ol 2 [CO (In 4 Jelo) V30 4223000 mac 1y 0)

Jje{1,2}

+ max, g;(t)[v]. (4.57)

Next, Lemmas 4.2.1} 4.2.2] Remark and identity (4.52) satisfied by A(¢, z) imply the

following inequality

0

o + max |y;(t)[v*e 221" + max |y, (t)[v*

m JEL2 je{1,2}

1AW 2]y < H () (v, £,)]

(s
+ max [5;(t)]v,
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from which with Theorem we conclude the existence of a new value C'(k) depending
only on k satisfying

1 e _ .
9. )|y S OO (I + o) e+ mae [y (f"e 2104 mas [5(0)0?

+ max |§;(t)[v. (4.58)

In conclusion, the identity (L3]), estimate (4.58)) and Cauchy-Schwartz inequality imply the

existence of a new value C'(k) > 0 depending only on k, which satisfies

Eot) +2 [ du(t, 2) Alt,2) da:'

1 Tk
S e )l (OO (1] o)™ e300 & g e
z v J€ed,

. 2 .
; ; . (4
e o)l | 15007 + s 0] 459

Next, Theorem implies that if v < 1, then

Ly(t)
=2 /R du(t, ) [Ofu(t, x) — O2u(t,x) + U (Hoy (weo(t, ) — Hon (wio(t, —2))) u(t, )] dz
M5O (0 (1)) — Ho (a1, —2) Hy (a1, 2)) (e, 2)?
2 (1 _ d(i)2>2 R
b0 [ 0O (B (1,0)) — Hon (it —2) Ho g (i, —) ult, ) d
2(1— 42y E

+0 (L T 00z
' (4.60)

Therefore, from Lemma [4.2.5] identity (4.52)), Remark [4.2.6| hypothesis (4.55), estimates
(4.59)), (4.60]) and orthogonality conditions (4.28)), we obtain the existence of a value C'(k) > 0
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depending only on k such that if v < 1, then
L(t) + Ls(t)

=2 / uu(t, x) (U (Hoy (wio(t, 7)) = Hoy (wio(t, =) = U (pro(t, )] u(t, ) da

2\/17/

/ (Ho 1 (wiw(t, ) — Ho1(wiw(t, —2))) H(/Ll (W (t, 7)) u(t, z)? dx
o /i- d“

(Ho 1 (wip(t,z)) — Ho 1 (wio(t, —2))) H(J,l (wyo(t, =) u(t, v)* dz

je{3,6} © je{1,2}

+0 (ng%} OOy + s V7O sz + 17Oz i o))

_ v v
0 (\W(t)HH;XLz [E%?X} G5O + [y () o2V 1 I Ol m1>

+0 (€O [T Wy o (1))
(4.61)

Moreover, using estimates (4.22]), Lemma and identity U(¢) = ¢*(1 — ¢*)?, we obtain
from Theorem [£.1.7]that if 0 < v < 1 and s > 0, then

[0 (Hox (wra(t.2)) = Hou (e, =2))) = UP (Gt )], Se P20

Therefore, we deduce using Cauchy-Schwarz inequality that

’2 / Ou(t,x) [UP (Hoy (wiy(t, 7)) — Hoy (wiy(t, —x))) = U (¢r0(t, )] ult, x) do
S| (Hos (wiw(t,2)) = Ho (wiolt, 7)) = U (010t )] u(t, 2)
< [[U® (Hon (wea(t.2)) = Hoo (wiot, ~2)) = U (it 2)]],, 17 0 cra

SN O sz -

Lo 10cu(t, )| 2

In conclusion,

Ly (t) + Ly(t)
wa
le/

+0 ( s (550 10+ e 10Ol + 1Ol gy mos |y]<t>|2)

(Ho1 (wip(t, ) — Ho 1 (wie(t, —2))) H(/),l (Wi o(t, —2)) u(t, z)? dx

(Hoa (wiw(t,z)) — Hop(wiw(t, —))) H(’)’1 (wio(t, ) u(t, z)? do

. — v 2 v
+0 <||7(t)||H;xL% B 010 e RO )

Jje{1,2}
0 (C(k) 1 (Ol 02 (m i)n) (462)
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Based on the arguments of [26] and Chapter 2, we are going to estimate the derivative
of Ly(t), for more accurate information see the third step of Lemma 4.2 in [26] or Theorem
from Chapter 2. Because of an argument of analogy, we only need to estimate the time

derivative of

Loy (t) = 201 (¢) /R it 2)du(t, ©)pult, ) da

to evaluate with high precision the derivative of Ly(t). From the estimates (4.51f), we can
verify first that if v < 1, then

Lor(t) = 201 (2) /R i (t, 2)u(t, 2)dpult, @) dr + 21 (t) /R Xt 2)dpu(t, 2)02 u(t, ) da
0 (m 7Oz

from which we deduce, using integration by parts and estimates - that

Laatt) =201(0) [ (600t 000000 +0 1||7<>||2M)

=241 (t) /Xl (t,x [82u(z€ x) — 8§u(t,x)} Oyu(t, x) dx
+244 (¢ / x1(t ) (Hoy (wo(t,2)) — Hoy (wpo(t, —2))) ul(t, 2)dpult, x) do
+241 () /Xl (t, 2)0u(t, v)0yu(t, v) do
R

—211(t) /Rxl(t, ) U@ (Ho 1 (wiw(t,z)) — Hoq (wiw(t, —2))) u(t, x)0pu(t, ) dx
v 2
O (Tr 17Ol
and, after using integration by parts again, we deduce from (4.51)) that

Loa () =21 (%) /R xa(t, ) [GRu(t) — Q2u(t)] O,u(t) da

+2i4(t) /R xl(t)U(Q) (Ho 1 (wip(t,z)) — Ho 1 (wio(t, —2))) u(t)Oyu(t) do

.1'1(t)
*W/ﬂw
/ X (U (Hos (wat,2) — Hoy (ot —))) Ho g (wgolt, ~2) u(t)? do
0 (ml W(t)HH;X@) -

Next, using estimates (4.2]) satisfied by Hp i, the definition of x;(¢,z), Theorem and
identity (4.26)), we deduce, for v < 1, the following inequality

(U (Ho (wiolt, 2)) — Hop (wio(t, —2))) Ho g (wio(t, 2)) u(t)? da

49d(t)

, / _ 08 1
a(t @) Hoy (wi(t,2))| + (1= xa(t, 2)) Hoy (wio(t, —2))| S V2700 S0t < 1,
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from which we conclude that
Loa(t) =2n(t) [ xa(t) [0Fu(t 2) - B2u(t, )] Opu(t, ) da
R

+2i4(t) / x1(OUP (Hyy (wio(t, ) — Hoy (wio(t, —2))) u(t, ©)0,ult, v) da
N
0 (15 1T Ol

Furthermore, from Remark |4.2.6, estimate (4.56|) of A(t,x) and identity (4.53)) satisfied by
u(t, ), we conclude the existence of a value C'(k) > 0 depending only on k£ and satisfying,

3) (Ho 1 (wiw(t,z)) — Hoq (wio(t, —2))) Ht;,l (Wi (t, —)) u(t, x)? dx

for any positive number v < 1,

Ly 1(t) / (Ho 1 (wiw(t, z)) — Hor (wiw(t, —2))) H{M (Wi (t, —)) u(t, x)? dx

1y
2k-+1 i
+0 (umt)u%@ o g 1501+ 0 (102)" 0 e 12Ol
2v - v
+0 (Il |17 s )+ 0,001 + 17 17O ).

je{1,2}

Therefore, using an argument of analogy, we obtain, for any positive number v < 1, that

-2 o
\/702/

+0 (120l az [0 g 1501+ 0 ()] 0 s 17O

j€{3,6}

(Ho1 (wip(t, ) — Ho 1 (wio(t, —2))) H(/),1 (wio(t, ) u(t, z)? dx

(Ho1 (wiw(t, ) — Ho (wie(t, —2))) H(/Ll (Wpo(t, —2)) u(t, z)? dx

+0 (IOl [P s 01+ 30| + 5 17O

je{1.2}

(4.63)

where C'(k) > 0 is a parameter depending only on k. Moreover, using (4.48|) and Theorem
we deduce from estimate (4.63]) that

Lg(t :Lt)_ U® (Ho 1 (wip(t, ) — Ho 1 (wiw(t, —2))) H(l),1 (Weo(t,x)) u(t, r)? dx
4 —d(t)? 'R
—7d(t) U(g) (Ho,l (wkﬂ,(t, l‘)) - HO,l (wk,v(ta —CL’))) H(/),l (wkﬂf(t’ —$)) u<t’ x)Q dx
4 —d(t)? 'R
+0 (2 Olgers [0 g 10+ O (1) |+ s 1200

+0 (I Olgers 1% g 150 + 20t >\] e 1T Ol

je{1,2}

(4.64)
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Finally, the estimate (4.64) and (4.61)) imply, for any k£ € N3, the existence of a parameter
C(k) > 0, depending only on k, which satisfies for any positive number v < 1 the estimate

()] =0 ( s 5570y, + s W()HM)
0 (W( Wierz mavs lus(t >|2>

je{1,2}

0 IOz | g 01"+ e

+0 (HWH?M (o) OO Ol (i 1)) BENE)

from which we obtain the existence of a new constant C'(k) > 0 satisfying the second in-

equality of Theorem if the condition (4.55)) is true and v < 1.
Now, it remains to prove the first inequality of Theorem Using change of variables

and Lemma [2.2.6] it is not difficult to verify that there exists K > 0 such that if v < 1, then
Li(t) = K12 ()12 -

Next, from the definition of Ly(¢) and estimates (4.49)), we obtain that if v < 1, then
Lo < 0 [ Ollgperz

and while condition (4.55) is true, we deduce from Theorem and estimate (4.56) the

following inequality
ok (1. 1\™
Lo S 1T () gz ™ ()

So, using Young inequality, we can find a parameter C;(k) > 0 large enough depending only
on k such that

K 1 2ny
Lo(O)] < 5 T W zs + Cr (00" ()

In conclusion, all the estimates above imply the first inequality of Theorem fo<ovk1
and condition (4.55) is true. [

4.4 Proof of Theorem 4.2.3

From the information of Theorem in the last section, we are ready to start the demon-
stration of Theorem [£.2.3]

Proof of Theorem[].2.3. First, for any (¢,z) € R? Lemma implies that ¢(¢, x) has the

following representation

yl(t) ’ ’
¢(t, .’L') = Spk,v(ta i[f) + WHOJ (UJ]g’v(t, x)) + WHOJ (w;w(t, —x)) + U(t, x),

4
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such that the function u(t,z) satisfies the orthogonality conditions and yi, Yo are
functions in C%*(R).

Step 1.(Ordinary differential system of y;(t), y2(¢).) From Remarks [3.5.3] and the
definition of A(t, z) in (4.52)), we have that u(t, z) is a solution of a partial differential equation

of the form

OPu(t, x) — O*u(t, ) + U® (Ho 1 (wio(t,z)) — Hoq (wio(t, —2))) u(t, x)

O Ga(t)
= _WHOJ (wkﬂ)(t, f]:)) _WHDJ (wk,U(ta _:L'>>
1 K

+A(t, ) + Pi(v, t,z), (4.66)

where P; (v, t,x) satisfies for any 0 < v < 1 and any ¢t € R the inequality

1
2 . —
IPa(w. )y S Il + masg () + masg [gs(O1" (1n () +[efo) e 2200

1
6 - v
Ol + max O + max (Ol (1n () + fo) 22

With the objective of simplifying our computations, we denote

1 ng+1 B .
NOL(®) = [u(®)f + mas [0+ (jtlo+In (7)) e (407)

. 1
6 6 . 3 —2V2|t|v
Ol + max (01" + max (01 (1n () + o) e

1 max{Ln;}
()| (1 (> + ) —2v/2|t|v
+ max y; (0" (I 5 ) + It ¢ :

where 7, is the number denoted in Lemma [£.2.7 Also, from Theorem [4.1.7, Lemma [£.2.7]
and identity (4.52)), we deduce that

<A(t, ), ffo,1 (wrw(t, 37))>
<A(t, .2?), Ho,l (wk,v (t7 —Z’))>

_ V) [—4\/5 42 ] [yl(t)

42 —4/2 yg(t)1+ Rest(t), (4.68)

where, if v < 1, the real function Rest(t) satisfies for any t € R

1 ni+1 1 max{1,m}
VA Rest(t) 5o (o +1n () max (ol (It +1n ;)
v J€EL, v

+ max |y;(t)[v? <|t|v +1n (;)) . (4.69)

Jje{1,2}

From the orthogonality conditions (4.28)), Theorem and Lemma we obtain the

following estimate

(OFu(t, @), Ho, (weot,))) =f_“>() (Ot 2), HGY (wnalt,2)))
+O (I Ol 32 v*) - (4.70)
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Also, using integration by parts, identity —Hé?l)(:v) + U®(Ho(z))Hy () = 0, Lemma [3.2.1
and Cauchy-Schwarz inequality, we deduce that if 0 < v < 1, then

(=02u(t) + U (Ho (wo(t, ) — Hon (wiolt, —2))) u(t), H, (wy(t,7)))
= (u(t), [U®) (Hox (wyo(t, 7)) = Ho (wyy(t, —2))) = U (Hox (wyo(t, 7)))] Hoy (wra(t, 7))
O (v 1 (®)ll 112
=0 (V|7 (D) y3z2) -
(4.71)

From now on, we denote any continuous function f(t) as Oy (NOL(t)), if and only if f

satisfies the following estimate

()] Sk NOL(t).

In conclusion, applying the scalar product of the equation (4.66|) with HO 1 (wg(t,x)) and

Ho 1 (wgo(t, —2)) , we obtain using Lemma and estimates ([£.70), (£.71) that

| o iz O (d(t)e~v210) lgl(t)] Vi) l 42 42 ] [yl(t)]
O (d(t)ev>®) |y, i ija(t) W2 42| [1a(t)
VN ()| 32
Tlo (e >||HW§]
- d(td(t)2 <8u (t,x) H01 (W (2, 35))>L%
1 d(t)2 <3 ( >’ H[()?l) (wk’v(t’ _x>>>L§
(O (NOL(t
+ _OZ (NOL(tm : (4.72)

Step 2.(Refined ordinary differential system.) Motivated by equation (4.72)), for j € {1, 2}

we define the functions

- \/75)2< HY) (wkﬂ,(s, (—1)j+1x))>Lg ds.

Clearly, we can verify using (4.22)), Lemma and Cauchy-Schwarz inequality that

6s0) =050+ 220 (0, 1 (a0, (1))
) ’ 2v/2d(t ’ - )
&(t) =g, (t) + = 5(5 (Opu(t, ), Hoy (wru(t, (—1)7* $)>>La +0 (v [u®)ll ) -
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In conclusion, from the ordinary differential system of equations (4.72)) we deduce that

d |p(t)| _ 0 0 0 1 ()
dt [el(t)| | =16 V2O 16e-V2A0 0 0] |é(t)
Co(t) 16~ V2D _16e-V20) (0 [éo(t)

Ow [[ult)| 1)
O [[ut)| 1)

THOUNOL(#) + 0 (v 1T (#)ll 71012

Ok(NOL(1)) + O (0* | (1)l 1 12

Actually, using the following change of variables ej(t) = yi(t) — y2(t), e2(t) = y1(t) +
ya(t), &1(t) = c1(t) — co(t) and &(t) = ¢1(t) + co(t), we obtain from the ordinary differential

system of equations above that

e (t) 0 0 1 0] [es(t) O [u(t)ll )
d |ex(t)| 0 0.0 1| fex(t)| O(v [[u(®)ll )
dt |&(t)| | =32e7V20 0 0 0] |&i(1) Ow(NOL(1)) + O (0* | (1) 1 12
&(t) 0 0.0 0] [&(t)]  |OWNOL(®) + O (v 2 () 112
(4.73)
To simplify our notation, we denote
0 010
0 0 01
0 000

It is not difficult to verify that all the solutions of linear ordinary differential equation
L(t) = My(t)L(t) for L(t) € R*,

are the linear space generated by the following functions

tanh (v/2vt) V2vut tanh (v/2vt) — 1
0 0
La(t) = v/2v sech (\/51)15)2  Lalt) = 2v?t sech (\/ﬁvt)2 +v/2vtanh (v2ut) |’
0 0
0 0
Lo(t) = |o| - 20 = [
0 1

Also, by elementary computation, we can verify for any ¢t € R that

det [Ly(t), Lo(t), Ls(t), La(t)] = —v/2v. (4.75)
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In conclusion, using the variation of parameters technique, we can write any C! solution of

[@.73) as L(t) = Xt a;(t)Li(t), such that a;(t) € C*(R) for all 1 <i < 4 and

tanh (v/2vt) v2vt tanh (v/2vt) — 1 0 0] Tay(t)
0 0 1t [as(t)
v/2vsech (\/§Ut)2 20t sech (\/ﬁm‘)2 + v2vtanh (v2vt) 0 0] |as(t)
0 0 0 1| Laa(t)
O [[u®) )
Ov [lu(®)| z2)
= | 0UVOL®) + 0 (* [0 Ol yosz) |- 470
Or(NOL(t)) + O (v? ’\7(t)’|H;ng
with
tanh (\/§UTM) \/§vTo7k tanh (ﬂvTM) —1 0 0 ar1(Tok)
O 0 1 TO,k a9 (TO,k)
V/2v sech (ﬂvTo,kf 202t sech (\/§UT0,;€)2 ++v2vtanh (v2vTh,) 0 0 as(To.x)
0 0 0 1 as(To )
Y1 (Tox) — y2(Tok)
y1(Tox) +y1(Tok)
’ ' 4.77
é1(Tox) (477)
CQ(To,k)

Step 3.(Estimate of ||7(t)||Hle2 .) From now on, for C; > 1, Cy > 0 being fixed numbers

to be chosen later, we consider the following set

_ 1" t3 Cyv|t — Tt
Bey o, = {t € R‘ max ly; ()% + |g;(t)|v < CLo**HD <ln v) exp (M) } .

je{1,2 In >

We also consider the following set
Du,v = {t € R‘ ||7(t)”H%><L£ < 02} :

First, if v?|y(Tox)| + v]9(Tox)| < v* and v < 1, then Ty, € Be,.c, N Dy Indeed, this

happens when

|’(<)0k?,v(TO,k)7 at@k,u(TO,k)) - (¢(T0,k)> at¢(T0,k)>)HH%><L% < U4k7

because since u(t, x) satisfies the orthogonality conditions (4.28)), we can verify using Lemma
[3.2.1] that

[on0(Tok) — ¢(T0,k)‘|f'{% = max Y (Tok)? + [lu (To,k)H?{; : (4.78)

By a similar reasoning but using now Lemma and estimate (4.78]), we can verify that if
0 < v <1, then

max 3T + 10 (o)l S N (na(Ton): B (Toa)) = (G(Tnn): A0 Tos) g
(4.79)
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where T ;. satisfies the hypothesis of Theorem [4.2.3| for more details see Appendix B in [47].
Also, for any 6 € (0,1), if v < 1, then while

12—-6

n
’t—To’k‘ < 1;] ,

and t € B¢, ¢, N Dy, we can verify the following estimate
2 2k+1 (1 L™
(T ()] < - ,
jmax v |y ()] + vlg; ()] < v (nv)

from which with estimate (4.72)), the definition of NOL(t) at (4.67), the definition of D,
and the assumption of £ > 2, we obtain that

. I\"* 2
max (550 S v (1) + 01T Oll gz + 17O ez -
]6{1,2} v T x T x
In conclusion, if v < 1, from Theorem [4.3.1] we deduce that the functional L(t¢) defined
in last section satisfies, for a constant Cy and a parameter C'(k) depending only on k, the
estimates

; . 3
|L(t)] Sv max [75(0)] I Ol ze + 1T Oz

1\ ™ (%
O I Olgyzz o™ (103) "+ 17Oy
(% In (ﬁ)

1 2ny
Co ||7(t)||i1%(R)><L§(R) <L(t) + C (k™ (ln v) -

Therefore, from the ordinary differential system of equations defined in (4.72)), we conclude

for v < 1 that if ¢t € B¢, ¢, N D, and

11’11279
|t —Tox| < —2—, (4.80)

then there exists a constant C'(k) > 0 depending only on k satisfying

LS CO T gz ™ (105) "+ 17O s

v
* In (v%) .

Therefore, by a similar argument to the proof of Theorem 4.5 in [47], we can verify from
Theorem and the Gronwall Lemma applied on L(t) that there exists a constant K > 1
non depending on k and v such that if ¢ satisfies condition (4.80) and ¢t € B¢, ¢, N Dy, then

we have the following estimate

1
v

1\ t! K|t — Toxlv
160 005 00 (17 (Tl o2 (1) s (T4,

In
(4.81)

In conclusion, if v < 1, t € B¢, ¢, and t satisfies (4.80)), then ¢t € D, ,, and (4.81)) is true.

Step 4.(Estimate of y; (¢), y2(t).) Next, we are going to use the estimate (4.81]) in the ordinary

differential system of equations (4.73]) to estimate the evolution of y;(t) and ys(t) while
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t € Be, .o, and t satisfies condition (4.80)). From (4.67), we have that if ¢t € B¢, ¢,, t satisfies
condition (4.80) and 0 < v < 1, then

1yt K|t —T,
NOL(0) < vt (1 (Tl o (1n3) " Jenw (T,

Ini
v

(4.82)

In conclusion, from the Cauchy problem (4.23|) satisfied by ¢, identity (4.75)) and estimates
(4.78)), (4.79)), and (4.82), we deduce from the linear system (4.76)) the following estimates

1 ni+1 t— T
)] o0 o+ 1] (1w )" e (KH') |
(% n-

1 ng+1 + T
|as(t)] Spo* (ln ) exp (KW) ’
v o1

v

1yt t—T,
las(t)] Sko? T [[to +1] (ln ) exp (KW) ’
v nl

IR t— 1T
aa(t)] S0 (1n ) exp (K”' 1 ‘) .
(% n-=

In conclusion, using the initial condition (4.77), we deduce from the fact that Tp is in
B¢, .0, ,the Fundamental Theorem of Calculus and the elementary estimate
1 vlt|
itlv <ln—exp | —5 ],
v In =

v

that if {6t + (1 —0)T04| 0 < 8 < 1} C Be, ., and t satisfies (4.80)), then

(K + )|t — Toxlv
ln% ’

1 ng+3
jaa ()] + Jas(t)] o (m U) exp (

1

1yt Klt—T,
laz()] +las)] S (n )" exp ('1”) |
U ni

In conclusion from the ordinary differential system of equations (4.73)) satisfied by e;(t)
for j € {1,2,3,4}, the fact that e;(t) = y1(t) — ya(t), e2(t) = v1(t) + yo(t) and & (t) =
c1(t) — cao(t), &(t) = c1(t) + co(t), we can verify by triangle inequality and the identity

61(t> .
22% = z_; a;L;(t)
)]

the existence of C}(k) > 0 depending on k such that for Cy, = K 42 and v < 1 we have that

if -
(ln %)

|t — TO,k’ < #

Y

then t € BCl(k),Cg- O

Remark 4.4.1. For any constants 6, € (0,1), obviously

1 0
lim v7 exp <[ln } ) = 0.
v—10 v
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In conclusion, for fivred k € N large and 0 < 6 < 1, we can deduce from Theorem that

4
there is a Ayp > 0 such that if 0 < v < Agp, then

[(o(t, ), Or (¢, x)) — (Pn(v, t,2), Oedr (v, t, 2)) || a2 < v,

for all t satisfying
2-6
(ln %)
|t —Tokl < —

4.5 Proof of Theorem 4.1.3

The main objective of this section is to prove Theorem [£.1.3]

Remark 4.5.1. The importance of this theorem is to describe the dynamics of the two solitons
before the collision instant, for all t < 0 and |t| > 1. More precisely, if two moving kinks
are coming from an infinite distance with a sufficiently low speed v satisfying v < §(2k), then
the inelasticity of the collision is going to be of order at most O(v¥) and the kinks will move

away each one with the speed of size in modulus v + O(v*) when t goes to —oo.

The proof of Theorem uses energy estimate techniques from the article [24]. Fur-
thermore, the demonstration of Theorem [4.1.3]is quite similar to the proof of Theorem 1 of
the article [31] and also uses modulation techniques inspired by [54] and [31].

From now on, we consider

+oo
Po(8(1).00()) = — [ 00t 2)0,0(1. ), (4.83)
and since the solution ¢(t, z) is an odd function in the variable = for all ¢ € R, we have that

[/+Oo ax¢(ta ZL‘)2 + at¢<t7 $)2
0

E(¢) =2 ;

LUt 2)) dx] 28, (6(t), B6(1)

where

T 0,¢(t, )* + O P(t, x)?
2

E. (6().06(1)) = | + U((t, 7)) da (4.84)

is a conserved quantity.

4.5.1 Modulation techniques

First, similarly to [31], we consider for any 0 < v < 1, y € R the following function on = € R

— Hy, (2=
Ho,l((U,y)7I>:[ » H,(@_)y ] (4.85)
V1I—2 7701\ 102

and H_1 o((v,y),x) = —H‘o—),l((v,y), —x), for all z € R.

Next, we consider the anti-symmetric map

J= l—01 é] , (4.56)
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and based on [31], we consider for any 0 < v < 1 and any y € R the following functions,

which were defined in subsection 2.3 of [31],

. o
Hy, £
Coy(@) = | VEY o) <41_;v2) : (4.87)
=2 10,1 (m
I v @y pg' (zmy
-2 Vim0 (\/ﬁ)
Dyy(x)=1] _; I ( oy 1 2 ey H(z)( oy ) , (4.88)
R A (1—2)3 VI=0? 0L \Vi-0?

see also the article [7].

The following identity is going to be useful for our next results.

Lemma 4.5.2. For any v € (0,1), it holds

— _3 ;12
(0:Ho ((v,0),2), I D) = = (1=0*) " | Hy,, -
Proof. See the proof of Lemma 2.4 from the article [31]. O

Next, for any value yo > 1, we are going to modulate any odd function (¢g, ¢1) close to
H_10((v,y0),2) + Ho1((v,y0), z) in the energy norm in terms of an orthogonal condition.

Lemma 4.5.3. There exist K > 0 and dy,d1 € (0,1) such that if 0 < v < 01, yo > é, 0<
§ < g and (¢1 — Ho1 — H_10,¢2) € Hy(R) x L2(R) is an odd function satisfying

—
—H_1p

|(61(2), 62()) ((v,90),2) — Hoa (v, 90). 2)]

< bv, (4.89)

HixL2 =
then there ezists a unique § > 1 such that |§ — yo| < Kdv and the function

— —
—H 19 — Hy,

® (x) = (¢1(x), da()) ((v, 9), ) (v, 9), )

satisfies

17 N 12 < Koo, (4.90)
and (R (z),J o Dy4(x)) = 0.

Proof of Lemma[{.5.3 The proof is completely analogous to the proof of Lemma 2.1 of the
article [31]. O

Corollary 4.5.4. In the notation of Lemma [{.5.3, there exists a constant C' > 1 such that
1

if v € (0,1) is small enough, then there exists at most one number y > 2In = satisfying with
the function

e
— Hy,

R(x) = (61(2), da(2)) — H 10((v,9),2) — Hor((v,9), )

the estimate ||Rg|| 1, 2 < min{dov, 2600} and (Ro(x), J o Dy y(z)) = 0.
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Proof of Corollary[4.5.4. Let y1, y2 two real numbers satisfying the results of Corollary [4.5.4]

We consider the following functions

T —

R1(z) =(r10(2), k11(2)) = (d1(2), d2(2)) — H-10((v,31), 2) — Ho1((v, 1), 2),
N — —

K (1) =(k20(7), k2,1(7)) = (¢o(z), d1(x)) — H-10((v,42), ) — Ho1((v, y2), 7).

Choosing x = y;, we obtain the following identity

_ ) e —
Hy1(0)—Hop, <\y/11_7y1)22> =—Hj, (\/%) +Ho, (H) +ro0(y1)—k10(y1). (4.91)

Since there exists a constant ¢ > 0 satisfying for any f € H!(R) the inequality

1l ey < el fllay

we deduce from equation (4.91)) and the hypotheses of Corollary that
Y1 — Yo 2cK —21 —Y1 — Y2
Ho1(0) — H, < v+ [Hoy | 22 )| + [H,, | —A22
from which we deduce the following estimate

— 2cK
H)‘ < 2B s v 20
— v

- 3C
Consequently, since Hj; is an increasing function and Hé,l(()) = %, we obtain that if 6, < 1
and 0 < v < 41, then

)

‘H()J(O) — Hy; (

| < oKc 5
- ——0gv.
Y1 — Y21 = 30 %0
Therefore, choosing C' = 2¢ + 1, from Lemma [£.5.3] we shall have y; = y» if v > 0 is small

enough. O

Finally, using Lemma [£.5.3] and repeating the argument of the demonstration of Lemma

2.11 in [31], we can verify the following result.

Lemma 4.5.5. There exist K > 1, 69 > 0 and §; € (0,1) such that if 0 < dy < 0, 0 < v <
o1, yo > TIn 2 and the solution (¢(t,z),0,¢(t, z)) of satisfies for a T > 0

(6(t, 7). 06(t,2)) — Hro((v.),2) — Hop((v,y).2)

< 521;, (492)

sup inf <
HlxL2

te[0,7] YER>y,

then there exist a real function y, : [0, T] = Ry w such that the solution (¢(t), 0,¢(t)) satisfies
forany 0 <t <T:

(6(1),0u6(1)) = H_10((v, 91 (1)), ) + Hoy (v, 91()), ) + ($1(£), (1)), (4.93)
1 (8) () g1z < KB, (4.94)

where (¥1(t),19(t)) € HY(R) x L2(R) and y,(t) satisfy the orthogonality condition of Lemma
and y,(t) is a functions of class C' satisfying the following inequality:

[52(t) — 0] < K W1 (8), 02(t) | a2 + €220 (4.95)
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_>
Proof. First, from Lemma and the fact that ¢ € C'(R; HL(R) x LZ(R)), if §; is small
enough, we can find a constant K > 0 and a function ¢ : [0,7] — (3 In %, +oo) such that for

—
— Hoa

R (t,2) = (9t 2), 0u(t, 7)) — Horo((0.3(1)). 2) (v, 9(1)), ), (4.96)

we have ® (t), §(t) satisfying the orthogonality condition of Lemma and
||?(t)||H;><L3J < Koyv, (4.97)

forall0 <t <T.

Next, we are going to construct a linear ordinary differential system of equations with
solution y;(t) and we are going to verify that if y;(0) = ¢(0), then y,(t) = ¢(t), for all
tel0,7].

Step 1.(Construction of the ordinary differential equation satisfied by v;.)

The argument of the demonstration of the remaining part of Lemma is completely
analogous to the proof of Lemma 2.11 of [31]. More precisely, similarly to Lemma 2.11 of
[31], we will construct an ordinary differential equation with solution y;(t), which, during

their time of existence, preserves the following orthogonality conditions

<(w1(t7 SL’), 1/}2(237 J"))v JDU7y1(t)(x)> = 07 (498)

where J is defined in (4.86]), and we are going to verify that if y;(0) = §(0), then y; () = §(t)
for all 0 < ¢ < T'. From the global well-posedness of the partial differential in the energy
space, we have for any Ty > 0 that ¢(t,z) — Ho1(z) — H_10(z) € C([-Ty, To) , H:(R)) and
Owd(t, ) € C ([T, Ty], L2(R)) . Therefore, if there exists a interval [0, 7}] C [0, 7] such that
y1 € C*([0,T}]) when restricted to this interval and

(6(8),09(0) = Hovg ((0,1(0) ) + Ho (0,1(0) ) + (01(8),va(t)), for amy ¢ € [0, T,
(4.99)
then (11(t),1(t)) = (V1(t, ), 12(t, x)) satisfies, for any functions hy, hy € Z(R), the follow-
ing identity
jt ((Wr(t, ), 9a(t, ), (ha(2), ha(2))) = (B (t, ), P2(t, 2)), (ha(2), ha(x)))

ift €[0,71].
Consequently, if we derive the equation (4.98)) in time, we obtain the following linear
ordinary differential equation satisfied by y;(t)

01() (W (t, 2), ¥ (t, 7)), JOy, Dy ()) + (0s (W1 (¢, 3), ¥a(t, 7)), T Dy iy (2) ) = 0. (4.100)

Clearly, since 2™ H,(z) € #(R) for all m € N U {0}, we have that the functions wy, w :
[0,7] x (1,4+00) — R defined by

wl(tvy) = <(¢1(t,$),¢2(t,l‘)), ‘]ayDv,y(‘T)) ’ WQ(tvy) = <8t(¢1(t,:)3),77/12(t,$)), ‘]Dwy(x»
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are continuous and, for any ¢ € [0, 7], wy(¢,-), wa(t, ) (1,400) — R are smooth.
Step 2.(Partial differential equation satisfied by w .) First, we consider the following self-
adjoint operator Hess(y(t),z) : H2(R) C L2(R) — R, which satisfies, for all ¢t € [0, 7],

Hess(y1(t), x) = [—82 +U (Ho’l @%)) Ho. ( j%))) ﬂ , (4.101)

and the self-adjoint operator Hess; (y1(t),z) : H2(R) C L2(R) — R denoted by

Hess, (11 (t), ) = [—@%U(z (gzo L (T29) ﬂ (4.102)

Next, we consider the following maps Int : R? — R? and 7 : R? x H}(R) — R?, which we
denote by

0
Int(y,x) = . vy
0o (o ) 50 -
o s () - s (520
0
T = |5 o (1, (30) - s (o)) 2| (100

for any (y,z) € R? and ¢ € H!(R). Therefore, if [0,7y] C [0,7], s € C'([0,T1]) and
y1 > 1,0 < vy < 1 then, from the partial differential equation and identity (4.99), we
deduce that (¢1(t,z),19(t,x)) is a solution in the space C ([0,T1], HL(R) x L3(R)) of the

following partial differential equation

Ot (t ), a(t, ) = (1) = v) [Cognvy(@) = Coguiy (—))]
+J HeSS(yl (t)7 x)(,@bl (tv ZL’), 7702(t7 ZE)) + ]nt(yl (t)a {L‘) + T(yl (t)7 Z, ,QZ)1 (t))v (4105)

where J is the antissymetric operator defined in .

In the next step, we are going to assume the existence of 0 < 77 < T such that y; is of
class C! in the interval [0, T3], and y; > 1 for any ¢ € [0,7T;]. Moreover, we will prove that
when this condition is true, then |g;(t) — v| is sufficiently small for all ¢ € [0,T}] .

Step 3.(Estimate of |y;(t) —v|.) Uniquely in this step, for any continuous non-negative
function f : [0,71]x(0,1)x (1, +00) — R, we say that a function g : [0, 77]x (0, 1) x (1, +00) —

R is O(f), if and only if, ¢ is a continuous function satisfying the following properties:

o there exists a constant ¢ > 0 such that |g(t,v,y)| < cf(t,v,y) for all (¢,v,y) in [0, T}] X
(0,1) x (1, +00),

e g(t,-):(0,1) x (1,400) — R is smooth for all ¢t € [0,T7].
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We recall that J, C, ) and D, ) are defined, respectively, in (4.86)), (4.87) and (4.88).
Using Lemma [3.2.1] we obtain that if y;(¢) > 1 and v € (0,1) is small enough, then

[(Cont(), T © Dy (=2))| + [{ Coan 1) (@), TCo (=)
+ [( Do (@), T Dy (=) | S (1) e V20,

Furthermore, using the partial differential equation (4.105)) satisfied by (1 (¢, x), s (%, x)),
we deduce for any ¢ € [0,71] C [0, 7] the following identity

(0u(Wh1(t, @), ¥a(t, @), T Doy (@) =(G1(8) = ©) (Coy (@), T Doy ()
~(01() = v) (Coyui(—2), T Dy (7))
+ (J Hess(un (1), 2) (1 (¢, 7), ©a(t, 7)), J Dy (7))
+ (T (1), 2, 90(1)) + Int(ya (), ), T Doy ) ()
1

(4.106)

(4.107)
Moreover, from Lemma and identity J* = —J, we have
_3 )
(T Dy (@), Cogu (%)) = = (Do (@), JCo (@) = (1= 0%) 2 ||Hg, | . (4.108)

Therefore, using equation , estimates and Lemma , we deduce the follow-
ing estimate
(B (4,2), (8, ), T Do) = (a(0) =) [ (1= 02) 7 [, [, + O (wa(a)te>2n )]
+(J Hess(yy (1), 2) ($1(t, ), a(t, ), T Dy 1))
+ (T (1 (8), 2,91 (5), T Doy () )
+ (Int(y1(£), 2), T Dy yy ) (7)) -

Furthermore, since, for any ¢ € R, we have the following identity

!
HO,l

U (H§1(x) + Horo(x)) = U (H§u(x)) = U (H 10(x))
— —24H  o(x)H, () (H_Lo(x) + HS (2 ) + Z ( ) H_y () HS, ()",

we deduce from Lemma and the definition of function Int that ||[Int(yi(t), z, ¥ (t))| 2 <

e~2V2u1(t) Next, since HU(l) ey < +oo for any | € NU{0}, we deduce using Lemma {4.2.2

and the definition of function 7 that
T (), 2, s ()2 < T (wa(8), 2, 01 (D) s S Mlebn (8, 2) [ -
As a consequence,
(0¥ (t,2), ¥a(t, ), J Doy () ) =( () — v) {(1 —0?) 22 +0 (u (t)4e—2\/§y1(t)>}

o+ (J Hess(y (£), 2) (1 (1, 2), ta(t, 2)), T Doytin ()
(4.109)

HL) , (4.110)

’
HO,I

—i—O( —2v2y1(t) + Hl/} ‘
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for any t € [0,T1].

Furthermore, using identities (4.101)), (4.102)), the formula of D, , in and Lemma
3.2.1, we can deduce the following estimate

|[Hess(ys (t), ) — Hessy (y1(£), )] Doy, 1) (2)

< 6—2\/5211 (1)
L2(R;R2) ™

for all t € [0,T7]. Thus, after using integration by parts and Cauchy-Schwarz inequality, we
deduce for all ¢ € [0, T3] that

‘<J [Hess(y1(t), z) — Hess; (y1(t), x)] E)( t)s T Dy (1)1 (1) (

Consequently, since (j(a)

6*2\/5?;1(15)_

Q) E EACT

) = 0 for all @ € R? we obtain that if y; is a function of class
C' in the interval [0,7}] and v € (0, 1) is small enough, then

(0t ), ¥ (t,2)), TDy s (7))

— (5 (1) — v) LAl
(1-0?)

h
ol |8

+0 <y1 (t)4e—2\/§y1(t))

+ (T Hess (1(t), @) (@1 (£, 0), s (t, 1), T Doy 0 ()
#0 (20 4 [ 20)

) H;ng) ’

Next, using (4.102), it is not difficult to verify the following identity

for any ¢ € [0,73].

(4.111)

Hessy (y1(£), ) Dy gy () = v [0 Doy ()| = TCoy ()

see Lemma 2.4 of [31] for the proof. Consequently, we have for any t € [0,7}] that
(J Hessy (y1(t), @) (11 (t, ), 2, ), J Dy gy (7)) =

<(¢1<t7 I), ¢2(t7 x))? Jaanv yl(t)( >>
(¥t ), a(t, 7)), JC () ) -
In conclusion, estimate and identity imply that

— || H,
(1) =) <1H_ o F O (010 2Oz + (1))

= O (720 || (a(8), a(t) | rypa) - (4112)
for all t € [0,T].

Step 4.(Proof that y; € C'.) Furthermore, the equations (4.100)) and (4.107)) imply that 1
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shall satisfy the following ordinary differential equation
(1) = 0) [ (Comn(@): TDou(@)) = (Cuaiy (=), T Dy 0 ()

+((1(£), $2(1)), Ty, Doy () )

- <(¢1 (t,x),¥a(t, ), JOy Doy 1) (x)>

— (J Hess(y1(t), o) (¢r(t, ), a(t, 3)) + T (ya(t), @, $1(1)) + Int(ya(t), ), T Doy, (2))
(4.113)

which is a first-order non-autonomous differential system of the form

(yl(t) - U) Oy (t> hn (t)) = 61) (tv Y1 (t)) )

where the functions the functions a,, f, : [0,7] x R — R are continuous when v € (0, 1).
Moreover, from the hypotheses of Lemma , Lemma and identities ,
(4.103), (4.104), we can deduce for any ¢ € [0, that the restrictions of a,(t,-) and SB,(t, -)
in the set (3 In %, +oo) are locally Lipschitz when v is small enough.
Furthermore, from the first step, we have y1(0) = §(0) > 31n 1 which implies y1(0)e V21 (0) <
v3, if v is small enough. Moreover, we deduce from and that [|(¢1(0), ¥2(0)[| g1y 2 <

Kdsv and we also have

, 2
~||Ho,

ay(0,51(0)) =

2

LI
3
2

—— =+ 0(v) >0,
(1—2?)

because of the estimate (4.112)) when v is small enough.

Consequently, Picard-Lindelof Theorem implies the existence of an interval [0, T7] C [0, T]
such that y; : [0,77] = Ro,, 1 is a C! function and since y; satisfies (£.100]), we have for any
t € [0,7)] that )

(Wr(t,2), 0 (t, 2)), T Do (2)) = (6 (0,2), I D0y () ) = 0. (4.114)

Furthermore, since §(t) > 31n %, we can deduce from the continuity of function y;, Lemma
[1.5.3  and Corollary the identity y;(t) = 4(t) for all ¢ € [0,77]. As a consequence,
yi(t) > 3Inl for all t € [0,71] and

— —
—H_ 4 — Hy,

((v,91(2)), x) < Kéyv

11 (0, ) gz = || @ (8, 2) <
T (4.115)

(v, 31(1)), )]

for all ¢t € [0,T1], because of estimate (4.96]) and identity (4.97).
Therefore, using a bootstrap argument and estimate (4.112]), we can conclude that the

function y; is in C'[0,T] and satisfies (4.114)) for all ¢ € [0, T]. Finally, estimate (4.95) is a
direct consequence of (4.112)), (4.115)) and the fact that y; > 31In % [
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4.5.2 Orbital stability of the parameter y

In this subsection, we consider ¢(¢,x) as a solution of having finite energy and with an
initial data (u1(x), us(z)) satisfying the hypotheses of Theorem Moreover, if v is small
enough, from the local well-posedness of the partial differential equation in the space
of solutions with finite energy, we can deduce from Lemma the existence of a constant
C > 0 and a positive number € such that for all ¢ € [0, ¢]

(gb(t,[ﬂ), at¢(t’ ZE)) = m((vay(t»’x) + m((va y(t))v :L') + (wl(t7$)a ¢2(t7 :L')),

where (11(t,x),12(t, x)) is an odd function in z, and y(t), (¢1(t, z),¥a(t, z)) satisfy the or-

thogonality conditions in Lemma [4.5.3 and the following inequality

|y(t) - y0| + ||(¢1(t7 x)7¢2<t’x))||H;xL§ <20 H(Ul?uQ)HH;xL% : (4'116)
Finally, we are ready to start the proof of Theorem [4.1.3

Remark 4.5.6 (Main argument). The main techniques of the demonstration of Theorem
are inspired by the proof of Theorem 1 of [31].
More precisely, recalling the functions E, and Py from (4.84) and (4.83)), we will analyze

the function
M(6(t)) = B+ (6(t) — vP4 (6(1)). (4.117)

First, from the local well-posedness of the partial differential equation in the energy
space, it is enough to verify Theorem to the case where (uy(x),us(x)) is a smooth odd
function because the estimate and the density of smooth functions in Sobolev spaces
would imply that would be true for any (ui(z),us(x)) € HL x L2 satisfying the hypoth-
esis of Theorem[4.1.3

Since Py(t) is not necessarily a conserved quantity, M(t) is not necessarily a constant
function given any smooth initial initial data of (¢(0,x), 0,¢(0,x)) satisfying the hypotheses
of Theorem [{.1J).

However, P.(t) is a non-increasing function in time, more precisely, for smooth solutions
o(t,x) of (4.12), we can verify using integration by parts, from the fact that ¢(t,z) is an odd

function in x for any t € R, the estimate

d

S [ ao 0.0t de] = S0 20 (4.118)

In conclusion, since it was verified before that E(t) is a conserved quantity, we have that
M(6(t)) < M(6(0)) for any ¢ > 0,

and using Lemmal{.5.5, we are going to verify that M (0)—M (t) satisfies a coercive inequality,
from which we will deduce (4.14)).
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Proof of Theorem[{.1.5 From the observations in Remark it is enough to prove The-
orem m for the case where E)O(:c) is a smooth odd function. To simplify our proof, we
separate the argument into different steps.

Step 1.(Local description of solution ¢(¢, z).)From the observation of inequality and
from the Lemma [4.5.3 we can verify the existence of an interval [0, €] such that if ¢ € [0, ],
then

(6(t, 2), (¢, ) = Hr0((v,y()),2) + Hon((0,y(0)), 2) + (r(t, 2), dalt, 2)),  (4.119)

with v(t), y(t), (Y1(t, z),¥s(t, z)) satisfying all the conditions of Lemma [4.5.3]
Step 2.(Estimate of E, (¢(t), ;¢(t)) around the kinks.) We recall the definition of E (¢(t), 0;¢(t))

in (4.84)) given by

Ey (6(t),00(t)) = /0 " O:0(t 2) ;at¢<t’x) + U(o(t,x)) d.

Next, we substitute ¢(t, x) and 0;¢(t, x) in the equation above by the formula of (¢(¢, x), 0;¢(t, z))
in Step 1. Using (4.3)), (4.2) and since y(t) > 1 for 0 < ¢ < €, we obtain for all x > 0 that

' t
@H—l,o (f/;L—L(vZ>| < (1-— vg)_ée_‘/i(y“)”) for any [ € NU {0}, (4.120)

from which we also deduce, using Lemma [3.2.1] the following estimate

(20 (522 <0 e

In addition, since HUU)H

following inequality

o o (728) s (2

< 400 for any [ € N, we can deduce using Lemma [4.2.2 the

Le[-1,1]

l
Sl )| -

Nap=r Vi "

In conclusion, since
o(t,x) =Ho, (3%%2) +H_1p (%) + 1(t, ), (4.122)
Orp(t, ) :—\/1”_702}1671 (fﬂ 1—3&2) + \/11)_7]{/—1,0 (%) +ah(t,x),  (4.123)

we deduce from the formula (4.84]), estimates (4.120)), (4.121]) and Taylor’s Expansion Theo-
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rem that
By (6(0), 0(t)) = | +°° MHQ,I (3%82) +U (HOJ <x 1‘;"’&2)

./1 N /+°° H <f/1__L<zz> o(t, z) do — H(;,1 (\/W) 0.1 (t, )

o (e () o
+1[/0+°°xw1 +U<2>< (

)) 1 (t, z)? +w2(t,x)2] dx

2
1
+0 ((1 — UZ) 2 y(t)e VO
— _
4O ([F 0] g 0 + 1t ) ey )

(4.124)

while (¢(t, x), 0,¢(t, x)) satisfies identities (4.122) and (4.123)). Moreover, from (4.122), we
can obtain from (4.124]), while (¢(¢), 0;¢(t)) satisfies (4.122)) and (4.123)), that

(
B (00,000 = [ (11+_2> . (3%?) LU <H0,1 (%)) i
\/1__1—@2 [ ( 1_ y“g) Ua(t,) = Ho, (%) Ort(t, )

+/_:°U’ (H01< ))%(m)

H
UH(IL1

1 r —y(t)

+o00 ) ) ,
+§ [/0 01 (t, ) + U <H0 (ﬂ)) U1 (t, x)* 4+ y(t, 7) dxl
+0 ((1 - 1}2)7% y(t)e%/iy(t)>

— — 3
O ([0 0 €2+ It s )

We also recall the Bogomolny identity H(l)’l(x) = /2U(Hp:(x)), from which we deduce

with change of variables that

(4.125)

2

L2 (4.126)

2 H

1 / T x H 0,1

— | H, — | d :/ H —_— dr =1 —v2——=
Q/R 0.1 <\/1—02> * RU< 01 (\/1—1)2)) * v 2

Step 3.(Conclusion of the estimate of E(t). )
Since Iﬁ((v, y(t)),z)) is defined by

/!

Hox ((v,y(1)),x) =

H“( o yz?)?) ]

— i Hoa (725

and we can verify by similar reasoning to (4.124]) the identity
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. In conclusion, using (4.125)), we

i |
01| 2

we conclude that F (E)ﬁ((v,y(t)),x)) = ﬁ
obtain that

+/+m¢* (

Ll
V dui(t ( ( ))w o)’ +wz<t,x>2]

+0 (1= 02) 2 g0 4 (010,20 gz )
+0 (11O w)) -

o (%) Uolt, ) dx
) st

B (900),000(0) = |

from this using integration by parts we conclude that
1 2
EL (6(t), 0:0(t)) Vi HHO e TV <J ° Cv,y<t>,m>
1

-, [/Om st f)z + 0t (t, )2 + U@ (Hw (%)) il 7) 1

+0 ((1 — v2>_§ y(t)e_Qﬁy(t)>
+O (111 (1), b2 sz € + ln(DI32)

(4.127)

where the function C, ,(x) is defined in (4.87)).
Step 4.(Estimate of —vP, (¢(t), 0:p(t)) )
First, we recall from (4.83)) that P, (¢(t), 0;4(t)) is given by

Py (0(0),00(0) = = [ b(t,)0,0(t,2) d
Then, while (¢(t, z), 0,0 (t, x)) satisfies the formula
(6(t,2), 06(t, 7)) = H_10((0, y(1)), ) + Hor (v, y()), ) + (1 (£, 2), s (t, 7)),

using the estimates (4.120) and (4.121)), we obtain by similar reasoning to the estimate of
(2.12) of Lemma 2.3 in [31] that

(% <J @) C%y(t), g(t)>

—ePy (6(0), 6(8) ==~ [ Ho |, -

2

+v /0+°° Op 1 (t, x)ho(t, ) dx + O <(1 i U2)y(t)e2x/§y(t)> (4.128)

+0 (e Jnle) 0oz )
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more precisely the errors in the estimate (4.128) above come from estimate (4.120) and
Cauchy-Schwarz inequality applied in

/0+OO ’HI—LO (f/%ii)‘ |:|aw¢1<t,$)| + |¢2(t,x)|} dx,

from Lemma applied in the following integral

/0+°° Hy, (%) 2 (%) d,

and from the elementary estimate

0 ’ xr — y(t) +oo T + y(t) 2 —2V2 (t)

which can be obtained from (4.120)).
Step 5.(Estimate and monotonicity of M (¢(t), 0:p(t)).) From estimates (4.127)) and (4.128)),

we deduce

M ((t), 0ip(t)) =E4 (9(1), 0:p(t)) — vPy (¢(1), 0e(t))

1—?
+; /()—"_Oo ¢2<t7 x)Q + ax¢1<t7 x)Q + U(2) (HO,I (xl__yy((tt))?)) ¢1<t7 x)Q dx]

O (0l (a(6). ) gz + 1@ (8). 20 gz €™ 20)

O (11 (D), + +y(t)e 22 0)
(4.129)

Furthermore, using estimate (4.2]) and Lemma|3.2.1] we can also verify the following estimates
L+ O( (t)e —2\/§y(t)) ’

; + 0 (y(t)e_Qﬂy(t)> .

E, (H_—Oj(v,y(t)) + m(va y(t))) \/7 H 0,1

— — v ,
Py (Ho,l(%y(t)) + H_y0(v, ?J(ﬂ)) T HHO,I
Therefore, we obtain that

M (Hox(0,y(t)) + Horov,y(t))) = VI =2 |[Hy,

"0 (y(eO) (4130)
L2
from which we deduce

M (6(2), (1) =M (Ho1(v,9(0)) + H_10(v,(0)))

"é [/0 Uo(t, 2)? + 0pth (t,x)* + U@ (HO,l (\/1__7()>> Y1 (t,z)* d ]
+0 (m { e~ 2V2y(t) y(O)G—Q\@y(O)})
+0 (011 (8), oD erz + W1 () Y2 (D) l3712 ) -
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Consequently, since M (¢(0), 0:¢(0)) > M (¢(t), 0 (t)) for all t > 0 and

(6(0), 0u6(0)) = Ho (v, 5(0)) + H 1 0(v,y(0)) + (¢4 (0), (0)),

we have for every t > 0 the following estimate

/O+Oo 77ZJ2(t7 m)Q + aﬂcdjl(tv m)Q + U(Q) <H0,1 (3%2)) ¢1(t7 ZE)2 dr

< ()0 4 y(0)e VPO 4o | Wy (0), a0 s, g + 1001 (), o) sz
1 (1(0), 2(0)) s

from which with Lemma we deduce for all ¢ > 0 that
11 (), G20 2 S (e 2D 4 y(0)e VO 4 [|(41(0), ¥2(0)) |2, (4131)

ifv < 1.
Step 6.(Final Argument.)
The last argument is to prove that the set denoted by

BO: {tGRzo

(W1 (8), (@) a2 < v y(t) > y(0) and is true.}, (4.132)

is the proper R>(. From the hypotheses of Theorem and Step 1, we can verify that
0 € BO.

Furthermore, from Step 1, we have obtained that there exists € > 0 such that if 0 <t <,
then

(¢(t7 :L‘), 8t¢(ta 1’)) = ﬁ—l,o ((U7 y<t))7 l’) + ﬁ[),l ((U> y(t))7 37) + (,lvbl(ta ZL‘), d}?(t? $>)

and
y(t) = yol + [[(L1 (), 2Ol gy re < 2C ([ (ur, u2) [y sz - (4.133)

Since |[(u1, ua)| g1y 2 < v?*? and Lemma implies the estimate [|(¢1(0), ¥2(0))[| g1y z2 <
[[(wr, w2) || g1 g2 > from and Lemma , we deduce the existence of a constant 0 < K
independent of € and v such that y(¢) is a function of class C' in [0, ¢] and for any ¢ € [0, €],
the inequality

[5(t) — 0] < K [1(a (), 0ot gz + 22O (4.134)

is true. Therefore,

g(t) > v — K [[|(1(8), ()l gz + €220 (4.135)

while ¢ € [0, €]. Moreover, from inequality (4.133]) and the observations done before, to prove
that [0,€] C BO it is only needed to verify that y(t) > y(0) for all ¢ € [0, €].

First, since y(t) is continuous for ¢ € [0, €], there exists €5 € (0, €) such that if 0 <t < ey,
then

3y(0)
y(t) > 1

199



so (4.133), (4.135) and the estimate |[(¢1(0), ¥2(0)) [l gasre S [(wr, w2)|lgaspe < v imply
that if 0 <t < ey and 0 < v < 1, then

_ 3v2y(0) 4v

yt) >v—v - Ke 2z > = (4.136)

In conclusion, estimate , the hypothesis of yy > 4ln% and inequality imply for
v < 1 that if 0 <t < e, then y(t) > y(0) + £t and [0, ¢;] C BO.

If t € [ea, €], it is not difficult to verify that y(¢) > y(0) in this region. Indeed, the
continuity of the function y would imply otherwise the existence of ¢; satisfying e; < t; < €,
y(t;) = y(0) and y(s) > y(0) for any e; < s < t;, which implies that estimate is true
for t € [e2,11]. But, repeating the argument above, we would conclude that y(t;) > y(0)+ 2t
which is a contradiction. In conclusion, the interval [0, €] is contained in the set BO.

Similarly, from Lemma we can use inequality (4.135) to verify that y(¢) > y(0)+ 3t
always when [0, t] C BO. Therefore, estimate (4.131)) implies

1 1
1), Y20l S Nl nsw2) gz + 9(0) 22O 0, (4.137)
if [0,t] € BO.
In conclusion, BO = R>( and estimates (4.134]), (4.137) imply the result of Theorem m
for all ¢ > 0. O

4.6 Proof of Theorem [4.1.2

First, from Theorem 1.3 in the article [§], we know for any 0 < v < 1 that there exist
d(v) >0, T(v) > 0 and a solution ¢(¢,z) of with finite energy satisfying the identity

T — vt —x — Ut
t,x)=Hy1 | —— | + H_ — | + U(t, ), 4.138
o(t, x) 0,1 (m) 1,0 <m> Y(t, ) ( )
and the following decay estimate
sup || (6(t,2), o (8, )y sz € < Fo00, (4.139)

for any 7' > T'(v) and 6 < §(v). Moreover, we can find 6(v), T'(v) > 0 such that

sup (w2, 2), B (t, @)l e € < 1, (4.140)
t>T(v

indeed, in [8] it was proved using the Fixed point theorem that for any 0 < v < 1 that there

is a unique solution of that satisfies (4.139)) for some 7', 6 > 0.
Next, if we restrict the argument of the proof of Proposition 3.6 of [§] to the traveling

kink-kink of the ¢° model, we can find explicitly the values of §(v) and T'(v). More precisely,

we have:
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Theorem 4.6.1. There is 69 > 0 such that if 0 < v < &, then there exists a unique solution

o(t,x) of with

satisfying (4.139) for some 0 < § < 1 and T > 0. Furthermore, we have if t > 412% that
(At ), BA(E, )z < (4.141)

This solution is also an odd function on x.

Proof. See Appendix Section A.4
]

Finally, we have obtained all the framework necessary to start the demonstration of

Theorem [4.1.2]

Proof of Theorem[{.1.4 First, from Theorem [£.6.1], for any k& € N bigger than 2 and 0 <

n(L
v < g, we have that the traveling kink-kink with speed v satisfies for T, = 73%21 \/;}“2) the
following estimate:
1(P(Tok), b To s 1 g2 < 0"V, (4.142)

for h(t,z) the function denoted in Theorem [4.6.1l Now, we start the proof of the second item
of Theorem [4.1.2]
Step 1.(Proof of the second inequality of Theorem [4.1.2])

First, in notation of Theorem [4.1.7] we consider
Qbk(?], t, x) = (pkﬂ)(t? T+ Tk,v)'

For the Ty, given before, we can verify using Theorems [4.1.6] that

x—vTy g x4+ vl
0 T ) — Hoy | 22208 ) _ g (22 000k
|¢’“( b 7) “(m) “’(m .

v (= vTyy v / x+vIyy
0,0x(v, To o, ) + ———H LA o (T 0k
Ou(v Tow ) + ZA—5 m(m) N 1ﬁo<m>

In conclusion, Theorem and Remark imply that there is Ay g > 0 such that if also
v < Agyg, then

+

Hy

[(o(t, 2), 0o (t, 2)) — (dr(v, T, @), Oedr(v, @) iy 2 < Vs,

while
8
1

9.8
|t_T0’k’ < M

Also, Theorem and Theorem implies that if v < 1 and

UG R T I

(Y v

I
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< 1 such that

Cok — % In (v%)

T — €, + vt T+ e, — vt
vt x)— Hyy [Z=Se TV g (T ke T VT
Pilv.17) °’1< i ) LO( Vi )

then there exist ey, satisfying

Hy

+ < v%’%.

v / T — €p, +ut v / T+ e, — vt
0, Jtx) — ———=H —_— |+ —H _—
t¢k(v 55) T2 0t ( T ) 1.2 1,0 ( T2 )

(4.143)

In conclusion, the second inequality of Theorem follows from the observation above and
Remark .41
Step 2.(Proof of the first inequality of Theorem [£.1.2])

From Step 1, for ¢ty = —(ln%vi, it was obtained that ¢(to,x) satisfies . Next,
we are going to study the behavior of ¢(t,z) for t < o, which is equivalent to studying the
function ¢y (t, z) = ¢(—(t +to), z) for t > 0.

However, from the estimate (4.143)), we can verify that (¢1(0,2), 8;¢:1(0,z)) satisfies the
hypotheses of Theorem , if we consider yy = ey, —vtp and 0 < v << 1. Therefore, using
the result of Theorem and the identity ¢;(t,z) = ¢(—(t + to),z), we obtain the first
inequality of Theorem [4.1.2] ]
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Appendix A

A.1 Auxiliary Results

We start the Appendix Section by presenting the following lemma:

Lemma A.1.1. Let Hﬁ” = [[(9(t), 09| g1y 2 - Assuming the same hypothesis as in
Theorem (2.1.1(} and using its notation, we have while max;cq 2y |d;(t) — x;(t)| < 1 that

1
e?).

mas [d,(6) — ()] = O mas 1d,(0) — (0] e+ extye>0 + [ o7

j€{172} jE{l,Q}

Lemma A.1.2. For U(¢) = ¢*(1 — ¢*)?, we have that

U (H2 D (@) + By (@) - U (B2 D (@) - U (H53(x))
x1(t x2(t
g V(D) H—l(,O) (2) n HO,I( )(33)
V14 e 2V2e—n®) /1 4 e2vEa—aa(t)

Hfl(t) T 3 H332(t) T 3
—30e~ V() 1o (@) + o1_() +r(t,z),
V14 e22an®) /14 2vae—ea()

such that |[r(t)]| 2 = O(e72V20),
Proof. By direct computations, we verify that
U (a0 + 1Y) U (0Q) — U (330) =—24m7 130 (504 + 1330
+30H"( H3Y {
+60 (H2G H3
First, from the definition of Hy (), we verify that

60e~2v2=() 2"
(1 4 e2V2@—2(1))(1 4 e—2v2-21(1)))
G0e—2V22(t) [_[fll(g)
+(1 + 6_2\/5(1—11(15)))(1 + e’Qﬁ(x—mg(t)))'

60 (£ H33) [ + 3] =

Using ([2.4)), we can verify using by induction for any k£ € N that
dk: 62\/5:)3
- 1=

dak (1 + e2v2e)
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[Hoa(2)*]| = 0(1), (A1)

dxk

=

d* 1 -
dzb | (14 e2V2) ]|



Hoi(xz) eV2e
(1 2\/51) (1+62\/§z)%

60(H") HyZ 2 (H™Y) + HiZ") is in HF(R) and it satisfies for all k > 0 the following

estimate

and since is a Schwartz function, we deduce using Lemma [2.2.3| that

|| m(t sz(t)) (Han(t) + H(a)cgl(t))} -0 (B—Qﬂz(t)) ) (A2)

L
Next, using the identity
efx/iz(t)

Hzl(t) H 2(t) —
( ) ( ) \/(1_'_62\@(397‘@2(;5)))(1_|_672\/§(:Jc*x1(t)))

: (A-3)

the identity
1 1 B 22z

V1+e2V2e (/14 e2V2r ] 4 e2V2e

and Lemma |2.2.3] we deduce that

Hxl(t)
24(H™\ V2 HZ2O 4 246~V “10 (@) =0 (e72V>1), (A.4)
V14 e2Vie-nm|
le(t) 3
30(H:p1 t)> Hmz(t + 3067\/52@) ( -1,0 ($)) -0 (673\/52(0) _ (A.5)
V14 e2Vie-nm|

The estimate of the remaining terms —24H"} zl(t) (H ”(t)) 30H"} ( ) (H ”(t)) is completely
analogous to (A.4) and (A.5)) respectively. In conclus1on, all of the estimates above imply
the estimate stated in the Lemma [A.T.2] ]

Proof of Lemma[A 11 First, we recall the global estimate e~V?*() < e, We also recall the
identity (2.33))
/]R (8(H0,1(93))3 - 6(H0,1(5U))5>6_ﬁx dz = 2V/2,
which, by integration by parts, implies that
Hy ()0, H H 30, H,
/ 24 Hoa(@)0eHoa(@) _ o (Hoa(2)) OuHoa(@) 1 (A.6)
V14 e2v2e V14 e2v2e
We recall d;(t), do(t) defined in ((1.22)) and (1.23) respectively and d(t) = da(t) — d;(t). Since
d;(t) = (—1)78v/2e V2! for j e {1, 2}, we have d(t) = 161/2e~ V2 " which implies clearly
with the identities

2 2
HaZ‘HO,l”L% - ||62H071||L% = ﬁ

that d;(t) |0, Ho, ||i2 = (—1)74e~ V24" We also recall the partial differential equation satisfied
by the remainder g(¢,x) (II)), which can be rewritten as
U (H33" (2) + HAG (@) = U (B2 (0) = U (H330(2)) = a0 H33 " ()
— (Rg(t,x) = D2g(t,2) + U (H53" () + HAG (2)) g(t, 7))

6 (k) :z:l(t) x2(t) g(t>k_1 2 ﬂfl(t) A7
+ZU ( +H01)(k o iy ()2 07H ) (x) (A7)

—io(t)202H5 3" () + &1 ()0, H™YE ().
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Furthermore, from the estimate (A.6)), Lemma and Lemma [2.2.3] we obtain that

<U' (Hfll(,é) + Hg,2l(t)> _ U/ (Hfll(t)) _ U/ ( :L’2(t)) O, H, >
=i (t) [|0s H01||L2 - ("2(15) — da(t)) 0. Ho |72
+0 <| vz (A.8)
VEs(t) | 9V (1)
+0 <e max [a;(1) = d;(0) +e z(t)).

We recall from the proof of Theorem the following estimate

[0 (539 @)) - U (1550 @) + B @) 0,553 w)g(t ) do

o

e‘ﬁz(t))

Also, from the Modulation Lemma, we have that
X d X . X
(079(1). 0. H ") = — [(0ug(8), 0 Hy")] + (1) (Dug (1), 0. Hi i)

= jt{ 2(t)(9(t), 62ngl(t >} +x'2(t)<atg(t),axH6cj(t)>

= &5 (1)(g(t), O2Hy2 ™) + 25 (1) (Dig(t), 0, H2Y).

In conclusion, since d, Hy, 2 ¢ Ker D?E,y (ng(t)) and e V%0 = O (e%) , we obtain from
(A.8) and (A.7)) that
4)

the estimate of ’:’L”l(t) —d, (t)‘ is completely analogous, which finishes the proof of Lemma

ATl O

. g _ o \[z ()
‘$2<t> dg(t)‘ (Jgg};} |di(t) —z;(t)| e + ex(t + H

Lemma A.1.3. For any § > 0 there is a €(6) > 0 such that if
[o(x) = Hou (@)l < +00, 0 < Epor(¢(2)) — Epor(Ho) < €(9), (A.9)
then there is a real number y such that
6(2) — Hoa(e — )l < 0.

Proof of Lemma[A.1.5 The proof of Lemma will follow by a contradiction argument.

We assume the existence of a sequence of real functions (¢, (z)),, satisfying

Jm Epor(6n) = Epor(Ho ), (A.10)
[fn(2) = Ho ()|l g <+o0, (A.11)

such that
Jiminf {l¢(2) — Hoa(z +y)lly > 0. (A.12)
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First, the condition and the fact that limg o U(¢) = 400 imply the existence of
a positive constant ¢, which satisfies ||¢,||; < cif n > 1.

Next, since U(¢) = ¢*(1 — ¢*)? and |Epo(dn) — Epor(Ho1)| < 1 for 1 < n, it is not
difficult to verify from the definition of the potential energy functional F,, that if 1 < n,
then

depn (x

S [ Epot(0n) = Epor(Hoa )] -

[pn(z) — 1||L2{x|¢>n(x)>1} H
L2({|¢pn(z)>1})

By an analogous argument, we can verify that

don,
H pula < | Bpor(6) — Eyn(Ho)

Lz({xl—%<¢n(x)<0})

16a(@) 122 (o} L <(or<op

and if there is 2o € R such that ¢, (z¢) < —3%, we would obtain that

[ 0w de

- [ e [ e [ ([ - exe
/5 VRU() 46 = EalHor) + /_0; V2U(6) do > Epor(Hon),

which contradicts (A.10) if n > 1. Thus, if we consider the following function

¢©n(x) = min (max (¢, (x),0),1),

which satisfies Epot (¢n) > Epot (Ho1) and

don(z) [958 i1 0 < gu(2) < 1,
de o0, for almost every x € R satisfying either ¢, (z) < 0 or ¢,(z) > 1,

we can deduce with the estimates above and inequality limsup,_,, . ||¢nl;~ < c that if
n > 1, then

2

lon(a) — <||L2+Hd¢” _ denla)

T L2§| ot (Pn) — Epot (Ho 1)l

|Epot (fn) — Epot (n)l S |Epot (fn) — Epor (Ho1)l -

Consequently, using triangle inequality and conditions (A.10)), (A.12)), we would obtain that

lim inf |[¢,(x) — Ho,1($+y)||H; > 0.

n—+o0 yeR

In conclusion, we can restrict the proof to the case where 0 < ¢,,(z) <1 and n > 1.
Now, from the density of H?(R) in H'(R), we can also restrict the contradiction hy-

potheses to the situation where %(z) is a continuous function for all n € N. Also, we have
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that if ||¢(x) — Hoq ()| ;1 < 400, then Epy(d(x)) > Epot(Hoa(x)). In conclusion, there is a

sequence of positive numbers (e,), such that

pot((bn) - pot(HO 1) + €n, hlll €n = 0.

Also, T,¢(x) = ¢(x —y) satisfies Eppr(d(x)) = Epor(1,¢(x)) for any y € R. In conclusion, since

for all n € N, lim, 1 o ¢n(x) = 1 and lim,_, o, ¢,(z) = 0, we can restrict to the case where

1
n(0) = —=,
o(0) =75
for all n € N.
Next, we consider the notations (v); = max(v,0) and (v)_- = — (v — (v)4). Since %f)

dn ()
dx

functions on x for all n € N. In conclusion, for any n € N, we have that the set

is a continuous function on x, we deduce that ( )+ and (‘l‘ﬁsfz(x)) are also continuous

U = { eR| déw < o} (A.13)

is an enumerable union of disjoint open intervals (ag, bkn)ren, Which are bounded, since

lim, 400 On(x) =1, limy o dp(x) =0 and 0 < ¢, (x) < 1.
Now, let E be a set of disjoint open bounded intervals (h;n,l;,) C R satisfying the

conditions
and {i| (hin,lin) € E} =1 C Z. For any i € I, the following function

On(x) if & < hyp,
fz,n(Q:) - .
¢n($ + li,n - hz,n) it x > hi,ny

satisfies Epot(Ho1) < Epot(fin) < Epot(0n) = Epot(Ho 1) + €, which implies that

lim 1 dgbn(m)Q
/hm 2 dr + U(dn(2)) < €n.

Furthermore, we can deduce from Lebesgue’s dominated convergence theorem that

Z/m L) U6, ()) < (A.15)

i€l hin 2 dx

for every finite or enumerable collection E of disjoint open bounded intervals (h;,,li,) C
R, i € I C Z such that ¢, (hin) = ¢n(liy). In conclusion, we can deduce from (A.15]) that

/R (W)Q_ dz < 2, (A.16)

and so for 1 < n we have that

Hd% ‘d%:i N < sen, dn(0) = = (A.17)

o V2
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Moreover, we can verify that

o = [ (2] ) ]+ | VT |1t

from which we deduce with lim, , o ¢,(z) = 0 and lim,_,; « ¢n(x) = 1 that
Epor(Hoa) + €0 >

2 /ﬂ{(‘dcb;:ix) _\/m>2dx +/01\/md¢

:; {/R (‘d%f) - 2U(¢n(x))>2 dx

Then, from estimate (A.17]), we have that

don(z) _ _ 1
dr 2U(¢n (7)) + ro(®), 60(0) = NGh (A.18)

with [|r, |7, < €, for all 1 < n.
We recall that U(¢) = ¢*(1 — ¢?)? is a Lipschitz function in the set {¢|0 < ¢ < 1}. Then,

because Hy(x) is the unique solution of the following ordinary differential equation

() _
8\ 2U(o())

6(0) =¢1§,

we deduce from Gronwall Lemma that for any K > 0 we have

dx,

1

+ Epot(HO,l) .

=0.  (A.19)

L2[-K,K]

d n !
i 16,62) ~ Hoa (o)l g =00 1|5 = 1 0

n—-+o0o n—-+0o d

Also, if 1 < n, then H%f”)
inequality that

2
1 < 2E,,t(Hp 1)+ 1, and so we obtain from Cauchy-Schwarz

2
<M |x— y|% ; (A.20)
L3

dn

[6n() = ulw)] < |z —y]* | 22

for a constant M > 0. The inequality (A.20)) implies that for any 1 > w > 0 there is a number
h(w) € N such that if n > h(w) then

|pn () — HO,l(x)“Loo{ﬂ Lojz)} <w, (A.21)

otherwise we would obtain that there are 0 < 0 < i, a subsequence (M, ),en and a sequence

of real numbers (z,)neny With lim,, o m, = +00, |2,| > n + 1 such that

|Gy, (Tn) — 1| > 0 if x, > 0, (A.22)
|G, (20)| > 0 if , < 0. (A.23)
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However, since we are considering ¢,(z) € C'(R) and 0 < ¢,, < 1, we would obtain from the
intermediate value theorem that there would exist a sequence (y,), with y, > x, >n+1 or

Yn < Tp < —n — 1 such that

1= 0 < b (yn) <1+86, if yo >0, (A.24)
Gm,, (Yn) = 0 otherwise. (A.25)

But, estimates (A.20]), (A.24)), (A.25)) and identity U(¢) = ¢*(1 — ¢*)? would imply that

1< /| UG () o for all n 5 1, (A.26)

and because of estimate (A.19)) and the following identity
K1

lim 2H0 1(2)? + U(Ho (7)) = Epor(Ho, (), (A.27)

K—+oo J_K

estimate would imply that lim, 4o Epot(Pm,) > Epet(Ho1) which contradicts our
hypotheses.

In conclusion, for any 1 > w > 0 there is a number h(w) such that if n > h(w) then
holds. So we deduce for any 0 < w < 1 that there is a number A (w) such that

if n > hy(w), then |¢,(z) — Ho1(z)| < w for all x € R. (A.28)

Then, if w < 145, n > h(w) and K > 200, estimates (A.28) and (A.19) imply that

+00 1 d¢n(x)2 2 d(bn(x)Q
/K Ulgnl@) + 50 do = 5 / (1= n(x w2 da, (A.29)
/_ j U(dn(z)) + ;d%@ dz > ; /_ ;O n(@)? + d%x) dz. (A.30)

In conclusion, from estimates (A.28]), (A.29)), (A.30]) and

1
lim —Hy(2)* + U(Hoa(x)) dz =0,

K—+4o00 lz|>K

we obtain that lim,_, ||¢n(z) — Hoq(x )|| 12 = 0 and, from the initial value problem (A.18)
satisfied for each ¢y, Ln () — Hy,(z) ,» = 0. In conclusion,

inequality (A.12] - is false. ]

From Lemma [A.1.3] we obtain the following corollary:

Corollary A.1.4. For any § > 0 there exists ey > 0 such that if 0 < € < €,

lp(z) = Ho(2) = Horo(@)]| y < oo,

and Epo(¢) = 2E,0(Ho 1) + €, then there exist x9, 21 € R such that
1
To — X1 Z 5, ||§Z5(ZL‘) — H()J(ZL‘ — 172) + H_LQ(ZL‘ — I’l)HH% S 5 (A?)l)
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Proof of Corollary[A.1.4 First, from a similar reasoning to the proof of Lemma [A.1.3] we
can assume by density that %(;) € H(R). Next, from the hypothesis

l6(a) — Hoa(2) — Horo(@)l| ey < +oo,

we deduce using the intermediate value theorem that there is a y € R such that ¢(y) = 0.

Now, we consider the functions

b (@) {¢<x> it o<y,

0 otherwise,

and

¢+ (z) = {0 te=y

¢(x) otherwise.
Clearly, ¢(x) = ¢_(x) for z < y and ¢(x) = ¢, (x) for x > y. From identity U(0) = 0, we
deduce that
Epot(9) = Epot(9-) + Epot(¢1),
also, we have that
Epot(H-10) < Epot(6-), Epot(Ho1) < Epot(94)-
In conclusion, since E,u(¢) = 2E 0t (Ho1) + €, Lemma implies that if € < ¢y < 1, then

there exist x5, 1 € R such that

l¢(x) — Hox(x — x2) — Hor0(2 — @1) ||
< o+ = Hoa(x — @)y + |- — Horo(z — 1)l < €75 < 0. (A32)

So, to finish the proof of Corollary [A.1.4] we need only to verify that we have x5 —z; > 3
if 0 < ¢p < 1. But, we recall that Hy;(0) = %, from which with estimate (A.32) we deduce
that

b_(x1)+ J@‘ <5 (A3

so if ¢ < 1, then x; < y < xo. Using the fact that U is a smooth function, Lemma [2.2.7]
and identity (2.35]), we can verify the existence of a constant C' > 0 satisfying the following

inequality

¢+<x2>—j§] <4

|DEpot (Hoa (= x2) + Hoyo(z — x1) + 1) (v)| < C'[v]| ;-

for any u, v € H'(R) such that ||u|| ;1 < 1. Therefore, using estimate (A.32)) and the Funda-
mental Theorem of Calculus, we deduce that if 0 < ¢y < 1, then

| Epor(0) — Epot (Ho 1 (z — x3) + H_yo(x — 31))| < e 2V?5. (A.34)

Furthermore, since the function A(z) = Epx (Hg’l(:zc) + H_LO(:E)) is a continuous function
on Rsp and A(z) > 2E, (Ho1) for any z > 0, we have for any k£ > 0 that there exists dz > 0
satisfying
sup A(z) > 2E,0 (Ho1) + 0.
{z€[0,k]}
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In conclusion, we obtain from Lemma and the estimate (A.34) that zo — a4
0<e<<1ande<eg. O
Now, we complement our manuscript by presenting the proof of identity (2.33)).
Proof of Identity (2.33)). From the definition of the function Hy(z), we have
2\[&? 4\[316
3 V2 g 8e + 2e
/R (8(H0,1<CU)) 6(Ho,(z ) = / 0+ o2 dz,
by the change of variable y(z) = (1 + ¢2V?*), we obtain
/ (8(Hou(2))* — 6(Ho, (2)))e V" da
1 =8  20y—1)
SR A A
2\/_/ It Y
1 1|
—=(—4yTE Ay =2V2.
1
O]

sl

A.2 Proof of Theorem

Proof of Theorem[2.1.7, We use the notations of Theorem [2.1.10/and Theorem[2.4.1] Clearly,
if the result of Theorem [2.1.7] is false, then by contradiction for any N > 1 the inequality
(A.35)

LB

=T if e < 1 enough.

€ —

could be possible for all 0 < ¢ < N
From Modulation Lemma, we can denote the solution ¢(t, z) as
HEG (0) + Hy® (2) + gt ),

o(t,x) =
such that
(9(t,2), O H™YG (0)) = 0, {g(t,2), 0. H33"(x)) = 0.
Also, for all t > 0, we have that ¢(t,z) has a unique representation as
glt,x) = P(OTHTG (@) + Po(t) 0 H3 3V () + (1, ),
such that r(t) satisfies the following new orthogonality conditions
(r(0), 2HHG) =0, (r(t). BHE") = 0.

In conclusion, we deduce that
) (P + PE) + ()l + 2PPy (025, 02H 1)

lg()lIzz =
211

(A.36)

(A.37)

(A.38)



We recall from Theorem that —5In ¢ < z(t) for all £ > 0. Since, from Lemma [2.2.3,
we have that <8§Hfll(76), 8£H&21(t)> < z(t)e V20 and z(t)e V20 < elnl if 0 < € < 1, we

deduce from the equation (A.38) that there is a uniform constant K > 1 such that for all

t > 0 we have the following estimate

OV < o+ 11201 + 101 < 5[] (4.30)

From Theorem and the orthogonality conditions , we deduce that
(0(0), 2H350) =i(0) (r(t), BHA) = O )] 2 ),
(D), RHAG) =) (r(2), 22H2T) = O( @) €% ).
In conclusion, estimate and Lemma imply that there is a K > 1 such that

B0+ [20)] + 10Ol < K ) (A.40)

for all ¢ > 0. Finally, Minkowski inequality and estimate ({A.39) imply that there is a uniform
constant K > 1 such that

|0.r(t,2),2 < K 902 (A1)
We recall from Theorem the following estimate

<@

for some uniform constant K > 1. Now, from hypothesis ({A.35]), we obtain from Theorem
2.1.10[and Corollary [2.1.13|that there are constants M € N and C' > 0 such that for all t > 0

the following inequalities are true

2
i (02 4 do(8)? + e VPO < Ke (A.42)

\M*L  r10Cest
. _ . < _ X
jg%}é} |z;(t) —di(t)] <e (ln e> exp ( I ! >, (A.43)
. s I\M  /10Cest
Y — . < €2 _ i
Jnax, ‘xj (t) —d; (t)‘ <e <1n e) exp < In 1 ), (A.44)
) ; s (1 10Cezt
jeina) [i5(0) = dj()] < e (1“ ) P ( () ) (A.45)

for a uniform constant C' > 0.

From the partial differential equation (2.1)) satisfied by ¢(t,z) and the representation
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(A.36)) of g(t,x), we deduce in the distributional sense that for any h(x) € H'(R) that

(@), (Brlt) + 1 (1) H “1%)+<P2<> a(1))0H33)
.- )

= (e )
(ian [( AUMLERL L)
.

h(z), ~ (1) + U<2>(H 20 4 o r(t)]

+

[ )

— (=), [U'( H§§>+H 0)+ U HE "y — U]
(h(w), #1(1)2 “<x>+x2< £)0, Hy3"' <x>>
<h(x), Pyt K U (HEY + 5 — U (H”

~(nta). B[ (U <2><H§3“>+Hfa%>>—U<2><H§a >)82H§21 D
@)

+0 (tle [ lat0 13 + o 150 )

(Hhiim [max |Py(t)a;(1)] + max |P;(0) —mt)D

€{1,2} je{1,2}
O (1B (1) (0] + | Pi(1); (1))
From Lemma and estimates ((A.43) and ([A.45), we obtain from (A.46|) that

131(15)2)83 x11(6)+< ()+l‘2(t)2)a2H >
[( 02+ U (H t)) xlt)]>
s i ppns o

N
(
(

- <h(m), [afr(t) —92(t) + U (H“(t) + H Oyt >]>
0
0
0

Je{1,2}

(A.47)
Il [l2(5) — dt)] V20 4 e=22:0])

(s e [as00) = o]+ )
(

Il |l + s, 01

(
+0 (Itls [ [B02,(0)] + s 170130+ 1R08,00)

je{1 2} je{1,2}
(1) (1)?))

From the condition (|A.37]), we deduce that

+O (|Ihll 2 |P,

(3pr(e), B2H) = < [as(t) (1), 8£H§21(”>} T (1) (A (t), BHTO,

(oprtr), 22) = L [iao) (r(0), 0258+ a(0) (0 ), 204D,
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which imply with Theorem [2.2.§] the existence of a uniform constant C' > 0 such that

(1) H . (A.48)

82 Il(t) S CE%

From ([A.39), and (A.41)), we obtain that 7’(73“ < HgFSH

In conclusion, after we apply the partial differential equation in the distributional
sense to 92H", 2H™Y), the estimates (A.39), (A40), (A41), (A-43), (A45) and (A.48)
imply that there is a uniform constant K; > 0 such that if € < 1 enough, then for j € {1, 2}
we have that for 0 <t < Nln

‘<8t2r(t), 33]—]&21(“ < Cez

52

) s (o 1\ M+ 10Cezt
|Bi(t) + 5 (02 < K, (e“@d(t) + e (ln 6) exp (mi) + % :

from which we deduce for all 0 < ¢ < N = that

1\ M+ 10Ce3t
< 2K, ( “V20) 4 s <ln 6) exp (lnel2> + ;{) . (A.49)

2

> Pi(t) + (1)

=1

Since ‘2321 Pj(t)‘ > — ‘Z?:l bi(t) —l—:i:j(t)Q‘ + 35, d;(t)?, we deduce from the estimates

(A19) and (A22) that
2 2
> 2= [0+ ]

M+1 1
—2K1{ V20 4 s <ln 1) exp (10061 tﬂ - 2K1€. (A.50)
€

-1
In = N

We recall that from the statement of Theorem [2.1.10| that e=V2d(®) — %sech(\/ﬁvt + 0)2,

1

1
with v = <Z.€)2 + 86_‘/52(0)) 2, which implies that v < e2. Since we have verified in The-

orem [2.2.8 that e V2*() < ¢ the mean value theorem implies that ’e‘ﬁz(t) — e‘ﬁd(”‘ =
O(e|z(t) — d(t)]), from which we deduce from ({A.43)) that

M+1 1
VW) _ 20| _ o 2 lnl * o 10Cest
€ P Ini '

€

In conclusion, if € < 1 enough, we obtain for 0 <t < Nlnl from - that

e
K {e + {lg(

€2
2
1\ M+1 10Cezt 2K
—4K; {e_ﬁd(t) +e <ln > exp (?)} iy (A.51)
€

Z

=1

In = N

The conclusion of the demonstration will follow from studying separate cases in the choice

of v > 0, c. We also observe that K, K are uniform constants and the value of N € Ny, can
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be chosen at the beginning of the proof to be as much large as we need.
Case 1.(v? .) From inequality (A.51)), we deduce that

M+1 1
s - (4 () o (S0 - 2

In p N ’
then, from (|A.35)) we deduce for 0 <t <! f that if € is small enough and N > 10K K7, then
€2
’Z?:l P](t)‘ > = and so,

4K’

8e
< (14+4K1)2K
2

b

J=1

> -2

)|z 4K

which contradicts the fact that (A.40) and (A.35) should be true for e < 1.

Case 2.(v? > (wa, lc| > 2In(2).) It is not difficult to verify that for 0 < ¢ <
1

rmn(2\|;‘5 ,Nlnf), we have that e~ V240 < %sech(g)Z < €3, Therefore, if N > 10K K, and

€ > 0 is small enough, estimate (A.51) would imply that ‘232-21 Pj(t)’ > - is true in this

1K
L . 1
time interval. Also, since now v = €2, we have that

In - |e]
e% 2\/_ U
so we obtain a contradiction by a similar argument to the Case 1.

Case 3.(v? and [c] < 2Inl) For N > 1 and t, =

1 1
(14+4K1)2 K2+/21n

o =

m , we have

[N

€

1 1 1 2
during the time interval {to <t < 2(1+4K1)252\/§m G } that e~v2d(0) < % sech (2 In i) < e

€2
and + < 557 In conclusion, estimate 0) implies that ‘Zgzl Pj(t)‘ > ;% Is true in this

time mterval. From the Fundamental Calculus Theorem, we have that
S Bi0)] = G — |22 B(to) -

11
In conclusion, hypothesis (A.35)) and estimate (A.40) imply for 7" = o (1+2K1)2 K2 V21n
N > 1 that

o =

and

ST

2 . e%(1+2K1)%\/§1n%
> Pi(T)| > T
j=1 8K2

which contradicts the fact that (A.35)) and (A.40|) should be true, which finishes our proof. [

Y

A.3 Linear properties of —dd; + U (Hy, (7))

Lemma A.3.1. The function { : R — R denoted by &(x) = (4%/5 — ﬁ) satisfies

’ ’

U o) € 0) = i, o).

Proof of Lemma[A.3.1. Clearly, we have that & (z) = %ﬁ—i—m, so using identity Hé,l(x) =
_3
\/_e‘[“”( +€2f$) * . we obtain that



Therefore, since 0 < Hy; € ker (—% + U(2)(H071)) , we conclude that

/ ’

[—dg ; U<2><Ho,1>] () Hy () = Hi ().

dx?
O
Remark A.3.2. From the identity
U(Q) (H071(17)) =2—- 24H071(£C)2 + 30H071(ZL‘)4,
we deduce that
d2
l-dw? + U(Q)(H071(x))] ™V = (30Ho, (z)" — 24Ho, (x)?) V2",

In conclusion, Lemma[A.3.1] implies that

d> ,

[—dﬁ + U<2)(H0,1(x))1 (72" + 8V2¢(x) Hy y(x)) = (30Hy 1 (x)" — 24Ho, (2)?) eV
+8\/§H()71($),
s0,
d> /

—50(x) + UP (Hoa(2))G(x) = (30Ho, (2)*! — 24Ho, (2)) €3 + 8V2H, (),

for all x € R.

/

Lemma A.3.3. In notation of Lemma|3.2.25, if g(x) € 7 (R) and <g(m), Ho,1<x>> =0, then
we have that Li(g)(x) € .7 (R).

Proof of Lemma[A.3.3. Step 1.(f(z) € Ni>1H*(R).) Following Lemma [3.2.23, we have the
existence of the unique function f = L;(g) € H!(R) such that <f(x), H(;jl(x)> =0 and

— (@) + UP (Hou(2)) f(x) = g(x). (A.52)

The identity (A.52) above implies that f € H(R). Moreover, since Hy; € L°(R) and

’ eﬁx
HO,l(x) = \/i—g € 7 (R),
(1 + 62‘/%) ’

we obtain that dd—;lU(z)(HgJ(x)) € Z(R) for all natural [ > 1. So, we obtain that if f(z) €
H¥(R) for k > 1, then, since H¥(R) is an algebra for k > 1, g(x)—U® (Hy,(x))f(z) € H*(R).

Then, from equation (A.52), if f € H¥(R), then f(z) € H¥(R), which would imply that
f%*2(z) is in L2(R), and by elementary Fourier analysis theory or interpolation theory we
would verify obtain f()(z) € L?(R) for any natural [ satisfying 0 < [ < k + 2. In conclusion,
by a standard argument of induction, we obtain that, for any natural k, f(z) € H¥(R), and

as a consequence f(z) € C*(R).
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Step 2.(f(r) € .#(R).) Since U (¢) = 2 — 24¢* + 30¢*, we have lim,_, ., U (Hy (7)) = 8
and lim,_, o, U®(Hp;(x)) = 2. From equation (A.52)), we have the following identities

— () + 2f ()
) (x)+8f(z) =

() + [2 = U (Hoa(2))] f(x), (A.53)

g
g(x) + [8 = UD(Hy ()] £(2). (A.54)

Next, we consider a smooth cut function y : R — R satisfying 0 < y < 1 and

(z) 0, if x < 4,
xTr) =
X 1, if x > 5.

Identity (A.54) implies that h(z) = x(z)f(z) satisfies

—h®(z) + 8h(z) = x(x)g(x) + [8 = UP (Ho(2))] x(2) f(x) — 2x (2) f'(x) = xP (@) (x).
(A.55)

From the definition of x, ¥ is a smooth function with compact support, so both functions
X, x? € Z(R). In conclusion, since f € C=(R) from first step, we deduce that x'f', Y@ f €
7 (R). Also, using estimate (3.3|) for k =1

’Héjl(:c)‘ < min (e\@”, e’zﬁx) ,
we conclude from the Fundamental theorem of calculus the following estimate
8= U (Hos(w))| S e for all x> 1.
So, f being in C* (R), the definition of x and estimate imply
[8 = U (Hox(2))] x(2)f(2) € 7 (R).

In conclusion, since f(z)x(xr) € HF(R) for any k > 0, identity (A.55) implies that
x(x)f(z) € Z(R). By analogy, using (A.53) and the function hy = (1 — x)f, we conclude
that (1 — x)f € L (R), so f € L(R). O

A.4 Complementary Estimates

In this Appendix section, we complement our article by demonstrating complementary esti-

mates.

Lemma A.4.1. For

we have that
LU Hoa () Hy ()G ) da = [ U (s () H, (@)™ d
R ; L 7

—V2 i (U@ (Ho(x)) — 2| Hy,(x)e " da.
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Remark A.4.2. Indeed, the value ky in Lemma can be replaced by zero, since

!

/R U (Ho 1 () Hy, (2)° d = 0.

proof of Lemma[A.].1. First, from identity H((fl) (z) = U'(Hy1(z)) and integration by parts,
we have the following identity

JL U (Hor(@)) H (26w do = [ U'(Hoa(o) [69(0) = U (Hon)(o)]

Moreover, since —G® (x) + U@ (Hy,(7))G(z) = [U(Q)(H()’l(x)) — 2} e~V 4 8v2H,,(x) and
<H(l)71, U/(H071)> = 0, we conclude using integration by parts that
| U (Hoa(@)) Hy, (09 () de =— [ U (Hoa (@) [UD (Hoa(2) — 2] V2 da
/ H) (@) [U® (Hoa(x)) - 2] eV da,
— / u® HOl(x))Hgl(x)Qe—ﬁw dz
—\F/ ) (Hou(2)) — 2] Hy,(2)e™V™ de.

O]
Now, using integration by parts and identity (27) of [47], we have that
—\/—/ ) (Hoa( 2} e*ﬁmH() (z)de = —2/ [6H071(1:)5 — 8H0’1(1‘)3} eV dy = 40/2,
’ R
(A.56)

from which we deduce the following Lemma.

Lemma A.4.3.

U o () Ho o (2 G x) e — [ U (o () Hyg (e i = 472

Lemma A.4.4. There exist§ > 0, ¢ > 0 such that if0 < v < 6, d(t) = = In < 5 cosh (x/_vt> )

NG
then for
xr — @
HJ1($,t) = HO,l 72 >

1 — d(Z)Q]
d(t)
x 4+
Ho(z,t)=H_ 1o | —2— |,
0,1( ) 1,0 ( 1 d(,;)z])

and any g € HY(R) such that

(9(x), 0, Hiy(x,1)) = 0, (g(x), D Hy, (w,1)) = 0,

we have
cllglly < (~02g(x) + U (Hgy (2, 1) + Hoy(2,1)) 9(x), 9(x)) - (A.57)
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Proof of Lemma[A.4.4). First, to simplify our computations we denote
1

V() = 7%1 = JS%)Z :

Next, we can verify using a change of variables that

(UD (Hyfy (2,1)) g(x), glx)) = /1 - d(f? /]R U (Hox(y)) [g ((y + d(;)%z(t)) mb)] 2 dy,

and

[ - w_lid() R/ LZ, L (Wdé))ﬂ dy. (A58)

We denote now .
d(t)? _
an(t,y) =g (y 1— <4) ) = 9(yvan))-

Moreover, L = —0? + U®(Hy,(z)) is a positive operator in L?(R) when it is restricted to
the orthogonal complement of Hy,(z) in L2(R), see [26] or [47] for the proof. In conclusion,
we deduce that there is a constant C' > 0 independent of v > 0 such that

d(t)?
4

<—ddxgg(as) +U® (Hgfl(x,t)) g9(z), g(x)> >Cy\1— ||gl(t7y)||§{?}(R) : (A.59)

so, from d(t) = v tanh (v/2vt) and identity (A.58)), we deduce that there is a constant C; > 0
such that if v < 1, then

<—j;9<x> + U (B (2,1)) g(a), g<x>> > O [lg(@) s (A.60)

Similarly, we can verify for the same constant C; > 0 that if <g(az), 0xH:L0(:v,t)> =0 and
v < 1, then

d> _
(- foasle) + U (Hi(o.0) o), a(0)) > ColsMipy - (D)
The remaining part of the proof proceeds exactly as the proof of Lemma 2.6 of [47]. ]

Lemma A.4.5. There exist C > 1, ¢ > 06 > 0 such that if 0 < v < 9, then we have for any
(¢1,92) € HY(R) x L2(R) that

T
Jorruitet® (H (ﬂ_—)) o) dw > (1 @2l C (01, 2). TDuo()”

Proof. The proof is completely analogous to the proof of property (2) of Lemma 2.8 in the
article [31]. O
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A.5 Proof of Theorem 4.6.1]

0 1
=[5 o]

and we consider for x € R and —1 < v < 1 the following functions

We start by denoting

H z ]

Pligla,v) =J [ Lo g (V}}ﬁ) : (A.63)
i o (i) +

and we denote, for j € {0,1}, ¥ (z,v) = ¢, o(—z, —v).

Next, we will use Lemma 2.6 of [§].

Lemma A.5.1. The functions

YO (v, t) = —Jv° o(x + vt,v), (A.64)
Y}LO(U; x,t) = —J¢l170(x +vt,v) +tvV1 — UQYBLO(U; x + vt t) (A.65)

are solutions of the linear differential system

o] - [ B Y]

~+

]

and the functions

YE)(?l (U7 L, t) = _J¢8,1<I - Uta U)? (A67)
3/0171(7}; x,t) = —Jl/}&l(a: —vt,v) +tV1 — UQY(SI(U; x — vt, t) (A.68)
are solutions of the linear differential system
d [w(t) ~ 2+ UD (Hoy (572%)) 0] [un(t)
- =] Oz " A\V1-02 . A.69
dt lwz(t) 0 1] |wa(t) ( )

Now, similarly to [§], we consider the linear operator Ly _(v,t) defined by

Ly (v t):l_§;+U(Q) (Hou () + Hoo (522%)) O]
B 0 1)

~—~

A.70)

We recall that

eV
Hpi(z) = ———,
V14 e2vee
and
dl : \/Ex —2\/§m
@H(),l(m) < min (e e ) ,
for any [ € N.

From now on, we denote 97 o(v;t,2) = ¢ o(z +vt,v) and ¥ (v;t, ) = ' o(x —vt,v)
for any 7 € {0,1}. Furthermore, using Lemma [3.2.1, we can verify similarly to the proof of
Proposition 2.8 of [§] the following result.
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Lemma A.5.2. There exists C > 0, such that for any 0 < v < 1, we have for allt € R

that
0 —2/20t
Hat‘z’gﬂ”? t,x) — Ly U, (vit, ) p <Cexp (\/1_70‘2’ ) ,
(A.71)
0 —24/2ult
Hatw 1O(U t .CU) L+,—Jw0,1’0('0;t,x) L SC exp (\/1_7,U|2|> 7
(A.72)
’ —2+/20t
Hf?t%’l(“? tox) — Lo _Jub, (vst,x) + VI — 02y (vst, ) L2 <C(|tlv + 1vexp (x/1 _—U’fz') ’
(A.73)
’ —2\/§vt
Hatwil,o(v; t,x) — Ly _JoL, o(vit, ) + V1 — 022 (vt 2) . <O(|t|v + D exp (1—J2|> .
(A.74)

Next, we consider a smooth cut function 0 < x(z) < 1 that satisfies

1,if 2 < 2(1 —1073),
x(@) = {O,if x> 2.

From now on, for each 0 < v < 1, we consider p(v) = ¥ (1 —107%) and we also denote

T + vt T+ vt
Xl(’U;t,m)_X<>,X2(’U§t,$)_1_X< >

p(v)t p(v)t
Lemma A.5.3. There is c¢,69 > 0 such that if 0 < v < dg, then

Q(t,r) V Oyr(t, )2 + 8yr(t, ) + U <H01 (%) Y Hoy, (%)) r(t,x)%lx]
+;v /]R X (vst, ) (=1 0yr(t, 2)8,r(t, 7) do,

()

satisfies for any t >

Q\'—

Q(t.1) 2 ¢ |(r{t), O (t)) 1~ [Z< ).0ur() wil,o<v;t>>2+<<r<t>,atr<t>>,wé,l<v;t>>1.

Proof. From definition of wlm and wé,p we can verify that there is a constant C' > 0 such
that if v < 1, then

/ r — vt 2
<T<t>v HO,l < 1= 112>>

fosa(2))

< C [((r (1), Dur(£)), 0 (03 0)) + 02 [ (r(8), Dur () 2oz
(A.75)

< C[((r(®), 0 (1), W1y o (w5 ) + 0* [[(r(8), 0 (8)) 17 12| -
(A.76)
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Then, using the estimates ([2.13]) and (A.76)), the proof of Lemma is analogous to the
demonstration of Lemma 2.3 of [26] or the proof of Lemma 2.5 in [47] or the demonstration
of Lemma in the section Appendix A. O

Remark A.5.4. Indeed, Proposition 2.10 of [§] implies that for any 0 < v < 1, there is T,
and c,, such that Lemma holds with c, in the place of ¢ for all t > T,.

Lemma A.5.5. There is C > 0, such that, for any 0 < v < 1, if f(t,z) € L*(R; H:(R)) and
h(t,z) € L (Rs1; HE(R)) N C} (Rsq; LA(R)) 4s a solution of the integral equation associated

to the following partial differential equation

x4+ vt

9 e @) T — vt o
oEn(t ) = 020+ U2 (o (S22 ) + o (225 ) ) o) = 100,
for some boundary condition (h(ty), dih(ty)) € HX(R) x L2(R), then

Q(t, h) V Ouh(t, ) + O,h(t,x)? + UC <H01 (%) +Hou, (%)) h(t,a:)Zda:]

+Z:v /R X (s, ) (— 1Y ,h(t, 2)0,h(t, ) da,

satisfies
0
‘({%Q(t, h)' < OO 2wy 1AGE), Och(E)) | 11 2
—V2ut (1-107%)%\ 1
0,000y (v (I ) t”
forallt > 1.

Proof. First, from the equation satisfied by h(¢, ), we obtain that

/R l@fh(t,x) — Ph(t,z)+UP (HOJ (%) +H 10 <%>) h(t,xﬂ Bh(t, x) da
—/ftx h(t,x)dw. (A.77)

As a consequence, using integration by parts, we deduce that

d 9 9 9 x — vt x + vt 9

r l Réth(t) + O,h(t)? + U (HM (W) +H_1 (W)) h(t) dx]
> H), ( ‘7“"1__”;> h(t)? dz
) H o, < ‘”“’;) h(t)? dz

(A.78)

v ve (g xr —ut L H x+ vt
vV1—v2J/r o1 V1 —? 1—7}2
T — vt T+ vt
U® [ H, +H
= ( ‘“(m) ( 1—212)
+2/ft,:17ht,x)dm.
R
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Next, from the definition of x;(v;t,z) and yo(v;t, z), we can verify for each j € {1,2}
that

jt[v /R (03 6, ) (=1 04h(t, )0, h(t, 7) d:p] — / (03 6, ) (=1 O2h(t, 2)0,h(t, x) do
—I—v/ xj(vit, z)(—1) 0uh(t, 2)0; h(t, x) dx

-
40 (I 1000 DN sz )

from which we deduce using integration by parts that
= [ x5t 2)(~ 1O h(t, ) Dpr (1, 2) d
R

/ 1
ey 3 1020 0ROz )
(A.79)

jt[v [ xitwst @) (~1)70h(t, 2)0uh(t, 7) da

+o(

From the equation satisfied by h(t, z), we have that

/X] vit, x) (=1 0?h(t, )0.h(t, ) dx
= (vit,x)(=1) f(t,2)0,h(t, ) d
v/Rxgv,,w Y f(t, )0t ) da

+u / X (038, ) (— 1Y 82h(t, 2),h(t, x) da

x — vt xr + ot
—U/ Xj v, t $ J[](2 (HO,l <m> +H,17[) <m>> h(t,:l:)axh(t,x) dz.

So, using integration by parts, we obtain for any j € {1, 2} that
QM/ x;(vit, 2)07h(t, )0, h(t, ) dx
_/ (it 7) <H01 (%) +H o1 (%)) Hy, <Il__”;> h(t, 2)? dx
+/RX3‘(U;757$)U(3) (Ho,l <\/$1__7U;> +H_ ;) (%)) Hl,l,o <$1+_U;> h(t,z)? dx
+0 (HX’HW) 115 1CA(), OhED sz + 11F B 2 H<h<t>,ath<t>>uHing) :

From the definitions of x;(v;t¢,x) and xa2(v;t, x), we can verify for all £ > 1 that

, — ot 20t(1+2 x 1073
I‘IQ1 (“)Xl(v;t,m) <\/§eXp<—\/_U( +2x10 )>,

V1—1v2 V1 — 2
/ T+ vt V2ut(1 —1073)?
H_, <m> x2(v;t, x) <V2exp <— Vi ’
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In conclusion, we obtain that
2 .
v [ xi(wst,a)(~1Y82h(t, 2)0,h(t, ) do
j=1 7§
- v 3) T — vt T+ vt T — vt 9
_2\/1—1}2/RU <H0,1 <~/1—v2 +H N H1 N h(t,z)* dx

v [y ot vt T+ vt 22 da
QM/RU <H0,1 (M) H_1p (W))HLO (ﬂ) h(t,z)*d
40 (I gy 1R RN Bz 0 10 s 1D, OO 1)

+0 (Uexp ( \/_vt(l — 10 ) ) [A(t, 5U>HHl R))

(1-02)2

(A.80)
So, using estimate (A.80)), Lemma will follow from the sum of (A.78]) and (A.79). O

Lemma A.5.6. There is C > 0, such that, for any 0 < v < 1, if f(t,z) € L*(R; H:(R)) and
h(t,z) € L° (Rs1; HY(R)) N C} (Rs1; L2(R)) ds a solution of the integral equation associated
to the following partial differential equation

fML@—i&Wﬂﬂ+U®(HM<j£;%>+Hjﬁ<;;;%>>mmm:f@J%

for some boundary condition (h(ty), dih(to)) € HX(R)x L2(R), then for ﬁ(t) = (h(t,z),0:h(t, x))
we have

) w01,0<v;t>>\ < 1Ol + [T

—2¢/2ut
m@xz® P\ (1= 2)% )]
—2\/§vt>]

HIR)xL2(®) L ((1 — )

5 (T, 8.0050)] <0 180l + [T 0

<Ol +|F )],

—2v/2ut
12 ([tlo+ 1) exp <<1 . v2)5> ] :

(T 0. sha(0s0) + 1= ) (R0, 08,0:0))

Sl

l

Proof of Lemma[A.5.6, It follows directly from the identity

<C Hf(t)lngjLHﬁ(t)’Héx

—2+/2ut
12 (o +1) exp <(1 — U2)5> ] ,

d— — 0
7 h(t)=JLi_h(t)+ [f(t,x)] , (A.81)

and from Lemma [A.5.2] ]

224



n(l
Proof of Theorem[{.6.1]. For T, > w, we consider similarly to [8] the following norms
denoted by
3

v v 2 2
Jullzs = sup e ult, )l oy Nelln = sup e [t )2y + 100ttt )25 o
v,t0 t>To v t0 t>To

Next, from Lemma we can verify using the Fundamental Theorem of Calculus that
there is a constant C' > 1 such that if v < 1, then for any ¢ > Ty we have that

— [ e vt e—(Z\/ﬁ—i—l)vt
(B0, 0003 0))] <C (Illgz, —— + IRll , (A82)
: —v — \/§+1)vt
- 1 . e —(2v2+1)wt e 2
(B @), 0Lipi)| <C|Ifll2, 5 + Il tem G2 by |
] (A.83)
and that
- [ ot o—(2V2+1)ut
(@), 81w 0)] <C gz, — + llgy, ————— 1 (A84)
— [ efvt 3 ; e—(2\/§+1)vt
[(F @), w32 0i0)] <C [I1fllz, =5 + Ihllste” Y20 a0 i
v, T v v, T v,Tp v
(A.85)

Also, from Lemma we can verify using the Fundamental Theorem of Calculus for
any t > T that there is a constant K > 1 such that if v < 1, then

—2vt —2vt

2 € —t(2v+v2v(1-1073)2)
1l Wl + Wl (S e
(A.86)
In conclusion, similarly Step 1 in the proof of Lemma 3.1 of [§], we deduce using the estimates
(A.82)), (A.84), (A.83), (A.85) with Lemma and the estimate above (A.86)) that there

exists a new constant C' > 1 such that for any t > Ty and v < 1 we have

+OO d e
— <
/t ‘dSQ(s,h)‘ ds < K

v

C
S T (A57)
The fact that the constant C' in (A.87) is independent of v follows from Ty > 41“55), which

implies that
—2vt —2vt
e

+
vt vt

We also observe that if (g1 (¢, ), Org1(t, z)) and (g2(t, x), Org2(t, x)) are in the space (g(t), drg(t)) €
H(R) x L2(R) such that

e
< vt

1(g(t), Deg(t)) HLOO([TO,+oo],H;><L§) <1, (A.88)
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then, since U € C'*°, we can verify that the following function
N(v, g)(t,x)
=U' <H_1,0 <%> + Hoy (%) +9(t, x)) -U (H_Lo (%)) s
oG8 ) (e
satisfies for some new constant C' > 1 and any v < 1

IN(@, g7 () = N, BO)lgs < C [lgsOll gy + g2 ()l ] Nlgr () = g2l 1

which implies the following estimate given by

— —> —v
ING. GO~ N BO Ny, < e (I, + laelns, | I~ lly, - (490
v, Ty v, Ty v, Ty v, Ty

In conclusion, by repeating the argument of the proof of proposition 3.6 of [§], we can verify

n(i
using the Lipschtiz estimate of (A.90) and estimate (A.87)) that if Ty > = U(“) and v < 1,
then there exists a map
S+ fue Mgl <1} = {ue B fulpy, <1} (A1)

such that p(t,z) = S(u)(t,z) is the unique solution of the equation

Oyt 1) — 2p(t, ) + U (H (ﬂ;f) + Ho, (‘t)) ult, ) = N(w, 7)(t,2),
(A.92)

such that u € H, ;. Indeed, the uniqueness is guaranteed by estimate (A.87) and from
estimates (A.87) and (A.90) we have that the map S is a contraction in the set

B={ue Hgllulm, <1}

and so, Theorem follows similarly to the proof of Proposition 3.6 of [8] by using the

Banach’s fixed point theorem. ]
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